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Preface

In 1979 John Conway and Simon Norton published their famous paper entitled
“Monstrous Moonshine.” This paper greatly expanded on earlier observations
and ideas of John McKay and John Thompson and on an observation of
Andrew Ogg stimulated by a lecture of Jacques Tits on the conjectured Fischer-
Griess Monster sporadic finite simple group. The paper presented a number of
conjectures relating the conjugacy classes of the Monster to certain meromor-
phic modular invariant functions, called Hauptmoduln (= principal moduli), for
a particular set of genus zero modular groups. The search for an explanation
of this remarkable connection between finite group theory and number theory
involved the development and application of many diverse areas of mathemat-
ics including vertex (operator) algebras, Borcherds algebras, or generalized
Kac-Moody algebras, automorphic forms and elliptic cohomology, together
with string theory and conformal field theory in theoretical physics. Robert
Griess constructed the Monster; Igor Frenkel, James Lepowsky and Arne
Meurman constructed a “Moonshine Module” for the Monster by means of
vertex operator theory, proving the McKay-Thompson conjecture; and Richard
Borcherds proved the remaining Conway-Norton conjectures for the Moon-
shine Module, which carries the structure of a vertex operator algebra. Many
new problems remain — problems that could not even have been formulated
in 1979.

To mark the 25th anniversary of the publication of the Monstrous Moon-
shine paper, a workshop entitled “Moonshine – the First Quarter Century
and Beyond, a Workshop on the Moonshine Conjectures and Vertex Alge-
bras” was hosted by the International Centre for Mathematical Sciences
at Heriot-Watt University, Edinburgh from 5th July to 13th July in 2004
(www.icms.org.uk/archive/meetings/2004/moonshine). The aim of this work-
shop was to review the impact of Monstrous Moonshine on mathematics and
theoretical physics and to highlight possible new directions. As part of the

vii



viii Preface

workshop, the London Mathematical Society also sponsored a Spitalfield day
wherein talks for a more general audience were presented by Robert L. Wilson,
Geoffrey Mason and John Conway. The workshop and Spitalfields Day were a
tremendous success with many outstanding talks and a high level of interaction
and discussion among over fifty researchers who attended the workshop from
around the globe. This volume consists of seventeen papers based on most
of the talks presented at the meeting. They contain a mixture of expository
and current research material (or both) and represent a very good snapshot of
the current range of research activity that has stemmed from the Moonshine
Conjectures.

The following is a brief overview of the papers in this volume. P. Bantay’s
paper is concerned with the association of a premodular category to any finite
crossed module. In the paper of J. Bruinier and J. Funke, various relationships
between the Kudla-Millson and Borcherds lifts from elliptic modular forms
to automorphic forms are discussed. G. Buhl’s paper is concerned with how
C2-cofiniteness implies the existence of finite generating sets and Poincaré-
Birkhoff-Witt-like spanning sets for a vertex operator algebra and its modules.
In the paper of A. Degeratu and K. Wendland, a new conjecture (due to John
McKay) is examined whereby conjugacy classes of the Monster group (and
its centralisers) are related to the Picard groups of bases in certain ellipti-
cally fibered Calabi-Yau threefolds. C. Dong and Z. Zhao’s paper is a study
of the modular properties of trace functions in orbifold theory for Z-graded
vertex operator superalgebras. B. Doyon’s paper is concerned with sufficient
conditions and explicit constructions of twisted modules for vertex operator
algebras.

In the paper of J. Duncan, vertex operator algebras are discussed whose
automorphism group is a sporadic simple group. T. Gannon’s paper reviews
the meaning of the hauptmodul property in Monstrous Moonshine and specu-
lates on a new proof of the Moonshine conjectures. In the paper of E. Jurisich,
Borcherds’ proof of the Conway-Norton conjectures is outlined based on
the homology of a certain subalgebra of the monster Lie algebra and the
Euler-Poincaré identity. H. Li’s paper is a survey on the connection of cer-
tain infinite-dimensional Lie algebras, including twisted and untwisted affine
Lie algebras, toroidal Lie algebras and quantum torus Lie algebras, with ver-
tex algebras. G. Mason’s first paper is based on his Spitalfields Day talk
and reviews the relationship between vertex operator algebras and elliptic
modular functions and on how this may be generalized to higher genus
Riemann surfaces. His second paper discusses orbifold theory for rational
vertex operator algebras and its use in understanding aspects of generalized
Moonshine.
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In the paper of A. Matsuo, K. Nagatomo and A. Tsuchiya, module cate-
gories over quasi-finite algebras are described and applied to the representation
theory of C2-cofinite vertex operator algebras. A. Milas’s paper is concerned
with the Wronskian of the characters of a rational vertex operator algebra. The
paper of C. Thomas discusses the relationship between generalized Moonshine
for a Monster centraliser group and the elliptic cohomology of the centraliser
group’s classifying space. M. Tuite’s paper concerns permutation orbifolds
and their possible application in understanding the genus zero property in
Monstrous and generalized Moonshine. Finally, R. A. Wilson’s paper is a
survey of recent computational results involving the Monster group.

We would like to thank the International Centre for Mathematical Sciences
(ICMS) and Heriot-Watt University for hosting the workshop. In particular
we thank the director of the ICMS John Toland for his support and Tracey
Dart for her outstanding and expert help in running the workshop. We also
thank the UK Engineering and Physical Science Research Council (EPSRC)
who funded the workshop and the London Mathematical Society (LMS) who
sponsored the Spitalfields Day. We would like to thank the other members of
the Workshop Organising Committee: Andy Baker, Sasha Ivanov and Viach-
eslav Nikulin. We are particularly grateful to Andy Baker for all his hard work
in organizing the workshop and in leading the application processes with the
ICMS, the EPSRC and the LMS. We also thank Chris Eilbeck for his help in
running the workshop and for his photographic record (which can be viewed
at http://www.ma.hw.ac.uk/chris/icms/moonshine). We are very grateful to the
editors and staff at Cambridge University Press for their wonderful and expert
help at every stage of the publication process. Finally, we pay tribute to the late
Charles Thomas who sadly passed away since the workshop. His presented talk
and paper published here are a testament to the originality and beauty of his
research.

James Lepowsky, John McKay and Michael Tuite
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Characters of Crossed Modules and
Premodular Categories

P. Bantay
Institute for Theoretical Physics,

Eötvös University, Budapest

Abstract

A general procedure is presented, associating a premodular category to a finite
crossed module, generalizing the representation category of the double of a
finite group, and the extent to which the resulting premodular category fails to
be modular is explained.

1. Introduction

Modular Tensor Categories (MTCs for short) [1, 16] have attracted much atten-
tion in recent years, which is due to the recognition of their importance in both
pure mathematics – 3-dimensional topology, representations of Vertex Opera-
tor Algebras (VOAs for short) – and theoretical physics (Rational Conformal
Field Theory, Topological Field Theories). They are also closely related to
Moonshine [4, 7, 10]: a most interesting (and mysterious) example of a Mod-
ular Tensor Category, which is responsible for some of the deeper aspects of
Moonshine, is the MTC associated to the Moonshine orbifold, i.e. the fixed
point VOA of the Moonshine module under the action of the Monster: note
that this MTC is yet to be rigorously constructed.

As in every branch of science, a deeper understanding of Modular Tensor
Categories requires a suitable supply of examples. Since the work of Huang
[12], we know that the module category of any rational VOA (satisfying some
technical conditions) is modular, but this important result doesn’t help us that
much, because VOAs are pretty complicated objects usually hard to deal with.
This leads to the desire of associating MTCs to simpler and more accessi-
ble algebraic objects. There are several such constructions, a most notable
case being the one that associates to a finite group the module category of its
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2 P. Bantay

(Drinfeld) double [2, 8]. The aim of the present note is to sketch a general-
ization of this last construction, associating to any (finite) crossed module a
premodular category, i.e. a braided tensor category that falls short of being
modular. The idea behind is to use ’higher dimensional groups’, whose sim-
plest instance are crossed modules [5, 18], for constructing Modular Tensor
Categories. In the sequel we will examine to which extent this idea may be put
to work.

The plan of the paper is the following. In the next section we’ll recall some
basic definitions and results about crossed modules. In Section 3 we introduce
our basic object of study, the tensor category associated to the crossed module,
and discuss some of its properties. Section 4 describes the notion of characters
of crossed modules, the main technical tool in our study. Section 5 discusses
the premodular structure of the category, and the extent to which it fails to be
modular. We conclude by some remarks on the possible applications of the
results presented.

We have decided to present only an outline of the theory, without going into
detailed proofs, since we felt that their inclusion would not help to clarify the
arguments, but could hide the main line of thought. Detailed proofs of all the
results to be presented could be supplied by exploiting the close analogy with
the character theory of finite groups.

2. Crossed modules

To begin with, let’s recall that an action of the group G on the group M is a
homomorphism G → Aut (M) or, what is the same, a map μ : M × G → M
such that

(1) μ (m1m2, g) = μ (m1, g) μ (m2, g) for all m1,m2 ∈ M and g ∈ G;
(2) μ (m, g1g2) = μ (μ (m, g1) , g2) for all m ∈ M and g1, g2 ∈ G.

As is customary, we’ll use the exponential notation μ (m, g) = mg in the
sequel.

A crossed module [5, 11, 18] is nothing but a 4-tuple X = (X1,X2, μ, ∂),
where X1,X2 are groups, μ is an action of X1 on X2, and ∂ : X2 → X1 is a
homomorphism, called the boundary map, that satisfies

XMod1: ∂ (mg) = g−1 (∂m) g for all m ∈ X2 and g ∈ X1;
XMod2: m∂n = n−1mn for all m, n ∈ X2.

A crossed module is finite if both X1 and X2 are finite groups. Examples of
crossed modules abound in algebra and topology, let’s just cite two, coming
from group theory, that will guide our investigations later.
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Example 1. For a group G, we’ll denote by RG the crossed module
(G, 1, μ, ∂), where 1 denotes the trivial subgroup of G, i.e. 1 = {1}, and both
the action μ and the boundary map ∂ are trivial.

Example 2. If G is a group, DG is the crossed module (G,G, μ, id), where
μ is the conjugation action, i.e. μ (m, g) = g−1mg, and id : g �→ g is the
trivial map.

A standard consequence of the defining properties of a crossed module is
that K = ker ∂ is a central subgroup of X2, I = im ∂ is a normal subgroup of
X1, and one has an exact sequence

1 → K → X2 → X1 → C → 1 (1)

where C = X1/I is the cokernel of ∂ [5]. In particular, |X2| |C | = |K | |X1| for
a finite crossed module.

Finally, a morphism φ : X→Y between the crossed modulesX = (X1,X2,

μX , ∂X ) and Y = (Y1,Y2, μY , ∂Y
)

is a pair (φ1, φ2), where φi : Xi → Yi

are group homomorphisms for i = 1, 2, and the following relations hold:

∂Y ◦ φ2 = φ1 ◦ ∂X
μY ◦ (φ2 × φ1) = φ2 ◦ μX ,

which simply express the commutativity of the diagrams

X2
∂X−−−−→ X1

φ2

⏐⏐� ⏐⏐�φ1

Y2 −−−−→
∂Y

Y1

X2×X1
μX−−−−→ X2

φ2×φ1

⏐⏐� ⏐⏐�φ2

Y2×Y1 −−−−→
μY

Y2

3. The category

To any finite crossed module X = (X1,X2, μ, ∂) we’ll associate a braided
tensor category M (X ), which falls short of being modular. Let’s begin by
describing the objects and morphisms of M (X ). Here and in the sequel, we
use the notation

δ (x, y) =
{

1 if x = y,

0 otherwise.

An object of M (X ) is a triple (V, P, Q), where V is a complex linear space,
while P and Q are maps P : X2 → End (V ) and Q : X1 → GL (V ) such that
for all g, h ∈ X1 and m, n ∈ X2
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P (m) P (n) = δ (m, n) P (m) (2)∑
m∈X2

P (m) = idV (3)

Q (g) Q (h) = Q (gh) (4)

P (m) Q (g) = Q (g) P
(
mg) (5)

By the dimension of an object (V, P, Q) we’ll mean the dimension of the
linear space V . A morphism φ : (V1, P1, Q1) → (V2, P2, Q2) between two
objects of M (X ) is a linear map φ : V1 → V2 such that φ◦P1 (m) = P2 (m)◦φ
for all m ∈ X2 and, φ ◦ Q1 (g) = Q2 (g) ◦ φ for all g ∈ X1. In general, we
won’t distinguish isomorphic objects of M (X ).

Let’s look at a couple of illustrating examples of objects of M (X ) for a
finite crossed module X = (X1,X2, μ, ∂).

Example 3. The triple 1 = (V, P, Q), with V = C, P (m) = δ (m, 1) idV

and Q (g) = idV , is a one dimensional object of M (X ), that we’ll call the
trivial object.

Example 4. The triple R = (V, P, Q), with V = C (X1 × X2) and P (m) φ :
(x, y) �→ δ (m, yx ) φ (x, y), Q (g) φ : (x, y) �→ φ (xg, y) for φ ∈ V and
(x, y) ∈ X1 × X2, is an object of M (X ), that we’ll call the regular object.
Clearly, dim R = |X1| |X2|.
Example 5. The triple 0 = (V, P, Q), with V = C (K × C) (remember the
notations K = ker ∂ , I = im ∂ and C = coker ∂ = X1/I from Eq.1) and
P (m) φ : (x, I y) �→ δ (m, x y) φ (x, I y), Q (g) φ : (x, I y) �→ φ (x, I yg) for
φ ∈ V , is an object of M (X ), that we’ll call the vacuum object.

Note that the above objects, which exist for any finite crossed module X ,
need not be distinct. For example, in the category M (RG) (see Example 1)
one has 0 = R, while in M (DG) one has 0 = 1.

Given an object (V, P, Q) of M (X ), a linear subspace W < V is invariant
if P(m)W ⊂ W and Q(g)W ⊂ W for all m ∈ X2 and g ∈ X1. An object
(V, P, Q) is reducible if it has a nontrivial invariant subspace, otherwise it is
irreducible. For a finite crossed module X there are only finitely many iso-
morphism classes of irreducible objects in M (X ), which follows from the
following generalization of Burnside’s classical theorem [13, 15]:∑

p∈Irr(X )

d2
p = |X1| |X2| , (6)

where we denote by Irr (X ) the set of (isomorphism classes of) irreducible
objects of M (X ), and dp denotes the dimension of the irreducible p ∈ Irr (X ).
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The notion of direct sum of objects of M (X ) is the obvious one:

(V1, P1, Q1)⊕ (V2, P2, Q2) = (V1 ⊕ V2, P1 ⊕ P2, Q1 ⊕ Q2) . (7)

The analogue of Maschke’s theorem states that, for a finite crossed module X ,
any object of M (X ) decomposes uniquely (up to ordering) into a direct sum
of irreducible objects.

The tensor product of the objects (V1, P1, Q1) and (V2, P2, Q2) is the triple
(V1 ⊗ V2, P12, Q12), where P12 : m �→∑n∈X2

P1 (n)⊗ P2
(
n−1m
)

and Q12 :
g �→ Q1 (g) ⊗ Q2 (g). The category M (X ) may be shown to be a monoidal
tensor category, which in general fails to be symmetric, but it is always braided,
the braiding being provided by the map

R12 :V1 ⊗ V2 → V2 ⊗ V1

v1 ⊗ v2 �→
∑

m∈X2

Q2 (∂m) v2 ⊗ P1 (m) v1

At this point it is worthwhile to take a look the category M (X ) for the two
canonical examples of crossed modules considered in Section 2, namely RG
andDG for a finite group G. In the first case, sinceX2 = 1, the map P : X2 →
End (V ) is trivial: P (m) = δ (m, 1) id, while the map Q : X1 → Aut (V )
provides a representation of the finite group X1 = G. Thus, for X = RG
the category M (X ) is nothing but the category of representations of the finite
group G. On the other hand, for X = DG the map P is no longer trivial, and a
little thought reveals that in this case M (X ) is just the module category of the
(Drinfeld) double of the finite group G [2, 3, 8]. It is known that this last tensor
category is modular, and describes the properties of the so-called holomorphic
G-orbifold models [9]. So, from this point of view, the category M (X )may be
viewed as a common generalization of the module categories of a finite group
and of its double.

4. Characters

The notion of group characters is an extremely powerful tool in the study
of group representations [13]. Not only do characters distinguish inequiva-
lent representations, but they prove invaluable in actual computations, e.g. the
decomposition into irreducibles, the computation of tensor products, etc. As
it turns out, a close analogue of group characters exists for the (isomorphism
classes of) objects of M (X ). Namely, the character of an object (V, P, Q) of
M (X ) is the complex valued function ψ : X2 × X1 → C given by

ψ (m, g) = TrV (P (m) Q (g)) . (8)
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Clearly, characters of isomorphic objects are equal, and it follows from the
orthogonality relations to be presented a bit later that characters distinguish
inequivalent objects of M (X ). The character ψ of an object of M (X ) is a
class function of the crossed module X , i.e. a complex valued function ψ :
X2 × X1 → C that satisfies

(1) ψ (m, g) = 0 unless mg = m, for m ∈ X2 and g ∈ X1;
(2) ψ

(
mh, h−1gh

) = ψ (m, g) for all m ∈ X2 and g, h ∈ X1.

The set of class functions of a finite crossed module X form a finite
dimensional linear space C � (X ), which carries the natural scalar product

〈ψ1, ψ2〉 = 1

|X1|
∑

m∈X2,g∈X1

ψ1 (m, g)ψ2 (m, g) , (9)

where ψ1, ψ2 ∈ C � (X ), and the bar denotes complex conjugation1.
Characters behave well under direct sums and tensor products: the character

of a direct sum is just the (pointwise) sum of the characters of the summands,
while the character of a tensor product is given by the formula

ψA⊗B (m, g) =
∑

n∈X2

ψA (n, g) ψB

(
n−1m, g

)
, (10)

if ψA, ψB are the characters of the factors.
Irreducible characters, i.e. the characters of the irreducible objects of

M (X ), play a distinguished role, since any character may be written
(uniquely) as a linear combination of irreducible ones with non-negative
integer coefficients. The basic result about irreducible characters is the follow-
ing analogue of the generalized orthogonality relations for group characters
[13, 15]:

1

|X1|
∑

h∈X1

ψp (m, h) ψq

(
m, h−1g

)
= 1

dp
δpqψp (m, g) (11)

for p, q ∈ Irr (X ), where

dp =
∑

m∈X2

ψp (m, 1) (12)

denotes the dimension of the irreducible p. From this one can deduce at once
that the characters of the irreducible representations form an orthonormal basis
in the space C � (X ) of class functions, and that they also satisfy the second
orthogonality relations

1 Note that for the character ψ of an object of M (X ) one has ψ (m, g) = ψ
(

m, g−1
)

.
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∑
p∈Irr(X )

ψp (m, g) ψp (n, h) =
∑
z∈X1

δ
(
n,mz) δ (h−1, z−1gz

)
. (13)

Note that the irreducible characters ψp may be computed explicitly for any
finite crossed module X , e.g. one has ψ1 (m, g) = δ (m, 1) for the identity
object 1 of M (X ) (cf. Example 3).

Using the orthogonality relations, one may express the fusion rule coeffi-
cient Nr

pq , i.e. the multiplicity of the irreducible r ∈ Irr (X ) in the tensor
product of the irreducibles p and q, through the formula

Nr
pq =

1

|X1|
∑

m,n∈X2

∑
g∈X1

ψp (m, g) ψq (n, g) ψr (mn, g). (14)

To each irreducible p ∈ Irr (X ) one may associate the complex number

ωp = 1

dp

∑
m∈X2

ψp (m, ∂m) , (15)

(remember that dp denotes the dimension of the irreducible p), which turns
out to be a root of unity (of order dividing the exponent of I = im ∂), and one
may show that2

ψp (m, g∂m) = ωpψp (m, g) , (16)

for all m ∈ X2, g ∈ X1. Combined with the orthogonality relations Eq.(11),
this leads to (remember that K = ker ∂)∑

p∈Irr(X )

d2
pω
−1
p = |X1| |K | , (17)

to be compared with Eq.(6).
To conclude, let’s just note that the close analogy with ordinary group

characters goes much further, e.g. one may introduce the Frobenius-Schur
indicator

νp = 1

|X1|
∑

m∈X2,g∈X1

δ
(

mg,m−1
)
ψp

(
m, g2
)
. (18)

of the irreducible character ψp, and show that νp may take only the values
0 and ±1, in perfect parallel with the classical case [13]. Of course, this is
related to the fact that ordinary characters of the finite group G are nothing but
the characters of the crossed moduleRG of Example 1: from this perspective,
ordinary character theory of groups is just a special case of the more general
theory presented in this note.

2 This follows from Schur’s lemma, upon noting that
∑

m∈X2
P (m) Q (∂m) commutes with

P (n) Q (g) for all (n, g) ∈ X2 ×X1.
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5. The S matrix and the structure of the vacuum

Up to now, we have seen the close parallel between the structure of the cat-
egory M (X ) and the representation category of a finite group. We now turn
to describe the premodular structure, related to the existence of the so-called
S matrix. This is a square matrix, with rows and columns labeled by the
irreducibles of M (X ), and with matrix elements

Spq = 1

|X |
∑

m,n∈X2

ψp (m, ∂n) ψq (n, ∂m) (19)

for p, q ∈ Irr (X ), where |X | = |X2| |C | = |K | |X1| (remember Eq.(1)). This
matrix is obviously symmetric, and a simple computation shows that

S1p = dp

|X | > 0, (20)

where 1 denotes the identity object of M (X ) (cf. Example 3). The definition of
S is motivated by the case of group doublesDG, when it describes the modular
properties of the corresponding holomorphic G-orbifolds.

A most important feature of the above S matrix is its relation to the fusion
rule coefficients Nr

pq appearing in Eq.(14), for one may show that∑
r∈Irr(X )

Nr
pq Srs = Sps Sqs

S1s
(21)

holds, which is an avatar of Verlinde’s celebrated formula [17]. A closely
related result states that∑

r∈Irr(X )

Nr
pqω

−1
r S1r = ω−1

p ω−1
q Spq , (22)

where the roots of unity ωp are given by Eq.(15). But this is not the end of
the story since, upon introducing the diagonal matrix Tpq = ωpδpq , one may
show that

ST S = T−1ST−1. (23)

Should S satisfy the relation S4 = 1, Eq.(23) would mean that the matrices
S and T give a finite dimensional representation of the modular group SL2 (Z),
which conforms with Verlinde’s theorem [14, 17], i.e.

(1) T is diagonal and of finite order;
(2) S is symmetric;
(3) Verlinde’s formula Eq.(21) holds.
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Should this be the case, M (X ) would be a Modular Tensor Category. As it
turns out, in general this is not the case, because the matrix S of Eq.(19) does
only satisfy the weaker property

S8 = S4. (24)

This means that S is not necessarily invertible: it might have a nontrivial kernel.
This is the extent to which M (X ) fails to be modular in general.

The lack of invertibility of S is related to the reducibility of the vacuum
object 0 (cf. Example 5). Denoting by μp the multiplicity of the irreducible p
in 0, and by D = |C | |K | the dimension of 0, one may show that

μp = D
[

S2
]

1p,
(25)

and that μp > 0 if and only if there exists an α such that

Spq = αS1q for all q ∈ Irr (X ) , (26)

in which case α = μp = dp and ωp = 1. In other words, the irreducible
objects of M (X ) that satisfy Eq.(26) for some constant α are precisely the
irreducible constituents of the vacuum 0. The invertibility of S requires that
the only such object is the identity 1, and this condition may be shown to be
equivalent to the bijectivity of the boundary map ∂ , which in turn is equivalent
to X being isomorphic to DG for some finite group G. Note also that for X =
RG every irreducible of M (X ) satisfies Eq.(26), since in this case 0 = R.

Finally, we note that while M (X ) fails to be modular in case ∂ is not
bijective, it can nevertheless be turned into an MTC! Indeed, according to the
modularizability criterion of Bruguieres [6], one can associate a well-defined
MTC (unique up to isomorphism) to any premodular category in which Eq.(26)
implies ωp = 1 and α = dp. But we won’t pursue this line any further in the
present note, and leave the construction of the corresponding MTC to some
future work.

6. Discussion

As we have sketched in the previous sections, to any finite crossed module
X one may associate a premodular category M (X ). In special instances this
construction gives back the module category of a finite group or that of its
(Drinfeld) double, but in general one gets new premodular categories, which
are very close to being modular: they satisfy the modularizability criterion of
[6], i.e. they can be turned into a Modular Tensor Category. This opens the way
to the construction of a huge number of Modular Tensor Categories starting
from (relatively) simple algebraic structures.
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As stressed before, the category M (X ) may be viewed as a generalization
of the module category of the double of a finite group G, which describes the
properties of holomorphic G-orbifolds [2, 3, 8]. This leads to the speculation
that for a general crossed module X the category M (X ), or more precisely its
modularisation, should describe the properties of some ’generalized’ holomor-
phic orbifold related to X . To find out whether this vague idea may be made to
work seems to be a rewarding task.

Acknowledgments: This work was supported by research grants OTKA
T047041, T037674, T043582, TS044839, the János Bolyai Research Schol-
arship of the Hungarian Academy of Sciences, and EC Marie Curie RTN,
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Abstract

We consider the Kudla-Millson lift from elliptic modular forms of weight
(p + q)/2 to closed q-forms on locally symmetric spaces corresponding to
the orthogonal group O(p, q). We study the L2-norm of the lift following the
Rallis inner product formula. We compute the contribution at the Archimedian
place. For locally symmetric spaces associated to even unimodular lattices, we
obtain an explicit formula for the L2-norm of the lift, which often implies that
the lift is injective. For O(p, 2) we discuss how such injectivity results imply
the surjectivity of the Borcherds lift.

1. Introduction

In previous work [8], we studied the Kudla-Millson theta lift (see e.g. [19]) and
Borcherds’ singular theta lift (e.g. [3, 6]) and established a duality statement
between these two lifts. Both of these lifts have played a significant role in the
study of certain cycles in locally symmetric spaces and Shimura varieties of
orthogonal type. In this paper, we study the injectivity of the Kudla-Millson
theta lift, and revisit part of the material of [6] from the viewpoint of [8], to
obtain surjectivity results for the Borcherds lift. Moreover, we provide evi-
dence for the following principle: The vanishing of the standard L-function of
a cusp form of weight 1 + p/2 at s0 = p/2 corresponds to the existence of a
certain “exceptional automorphic product” on O(p, 2) (see Theorem 1.8).

We now describe the content of this paper in more detail. We begin by recall-
ing the Kudla-Millson lift in a setting which is convenient for the application
to the Borcherds lift. Let (V, Q) be a non-degenerate rational quadratic space
of signature (p, q). We write (·, ·) for the bilinear form corresponding to the

∗ Partially supported by NSF grant DMS-0305448.

12



Injectivity of the Kudla-Millson Lift 13

quadratic form Q. We write r for the Witt index of V , i.e., the dimension of
a rational maximal isotropic subspace. Throughout we assume for simplicity
that the dimension m = p+ q of V is even. We realize the symmetric space D
associated to V as the Grassmannian of oriented negative q-planes in V (R).

Let L ⊂ V be an even lattice of level N , and write L# for the dual lattice.
The quadratic form on L induces a non-degenerate Q/Z-valued quadratic form
on the discriminant group L#/L . Recall that the Weil representation ρL of
the quadratic module (L#/L , Q) is a unitary representation of SL2(Z) on the
group ring C[L#/L], which can be defined as follows [3], [6]. If (eγ )γ∈L#/L

denotes the standard basis of C[L#/L], then ρL is given by the action of the
generators T = ( 1 1

0 1

)
and S = ( 0 −1

1 0

)
of SL2(Z) by

ρL(T )(eγ ) = e(γ 2/2)eγ ,

ρL(S)(eγ ) = e(−(p − q)/8)√|L#/L|
∑

δ∈L#/L

e(−(γ, δ))eδ,

where e(w) := e2π iw . This representation factors through the group
SL2(Z/NZ).

Let 
 ⊂ O(L) be a torsion-free subgroup of finite index which acts trivially
on L#/L . Then

X = 
\D

is a real analytic manifold. For x ∈ L# with Q(x) > 0, we let

Dx = {z ∈ D; z ⊥ x}.
Note that Dx is a subsymmetric space attached to the orthogonal group Hx , the
stabilizer of x in H . Put 
x = 
 ∩ Hx . The quotient

Z(x) = 
x\Dx −→ X

defines a (in general relative) cycle in X . For h ∈ L#/L and n ∈ Q, the group

 acts on Lh,n = {x ∈ L + h; Q(x) = n} with finitely many orbits, and we
define the composite cycle

Z(h, n) =
∑

x∈
\Lh,n

Z(x).

Kudla and Millson constructed Poincaré dual forms for such cycles by
means of the Weil representation, see e.g. [19]. They constructed a Schwartz
form ϕK M ∈ [S(V (R))⊗Zq(D)]O(V )(R) on V (R) taking values inZq(D), the
closed differential q-forms on D. Let ω∞ be the Schrödinger model of the Weil
representation of SL2(R) acting on the space of Schwartz functions S(V (R)),
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associated to the standard additive character. We obtain a C[L#/L]-valued
theta function on the upper half plane H by putting

�(τ, z, ϕK M ) = v−m/4
∑

h∈L#/L

∑
x∈L+h

(ω∞(gτ )ϕK M )(x, z)eh .

Here τ = u + iv ∈ H and gτ =
(

1 u
0 1

) (√v 0

0
√
v
−1

)
∈ SL2(R) is the standard

element moving the base point i ∈ H to τ . In the variable τ , this theta func-
tion transforms as a (non-holomorphic) modular form of weight κ = m/2 for
SL2(Z) of type ρL . In the variable z, it defines a closed q-form on X . Kudla
and Millson showed that the Fourier coefficient at e2π inτ eh is a Poincaré dual
form for the cycle Z(h, n).

Let Sκ,L denote the space of C[L#/L]-valued cusp forms of weight κ and
type ρL for the group SL2(Z). We define a lifting � : Sκ,L → Zq(X) by the
theta integral

f �→ �( f ) =
∫

SL2(Z)\H
〈 f (τ ),�(τ, z, ϕK M)〉 du dv

v2 , (1.1)

where 〈·, ·〉 denotes the standard scalar product on C[L#/L].
In the present paper, we consider the question whether � is injective. We

compute the L2-norm of the differential form �( f ) in the sense of Riemann
geometry by means of the Rallis inner product formula [27]. First, using the
see-saw

Sp(2)

������������ O(V )× O(V )

SL2×SL2

������������
O(V )

and the Siegel-Weil formula (see e.g. [20], [21], [23], [30]), the inner product
can be expressed as a convolution integral of f against the restriction of a
genus 2 Eisenstein series to the diagonal (see Proposition 4.7).

Such convolution integrals can be evaluated by means of the doubling
method, see e.g. [5], [13], [25], [27]. If f is a Hecke eigenform of level N ,
one obtains a special value of the partial standard L-function of f (where the
Euler factors corresponding to the primes dividing the level N and∞ are omit-
ted) times a product of “bad” local factors corresponding to the primes dividing
N and∞. If m > 4, then, by the Euler product expansion, the special value of
the partial standard L-function is non-zero. Therefore the lift �( f ) vanishes
precisely if at least one of the “bad” local factors vanishes. By the analysis of
the present paper we determine the local factor at infinity.
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In the special case where L is even and unimodular, the level of L is N = 1,
so that∞ is the only “bad” place. The space Sκ,L is equal to the space Sκ(
(1))
of scalar valued cusp forms of weight κ for 
(1) = SL2(Z). We obtain the
following explicit formula for the L2-norm of the lift (see Theorem 4.9):

Theorem 1.1. Assume that m > 3 + r , where r is the Witt index of V . Let
f ∈ Sκ(
(1)) be a Hecke eigenform, and write ‖ f ‖2

2 for its Petersson norm,
and D f (s) for its standard L-function. Then �( f ) is square integrable and

‖�( f )‖2
2

‖ f ‖2
2

= C · D f (m/2− 1)

ζ(m/2)ζ(m − 2)
,

where C = C(p, q) is an explicit real constant, which does not depend
on f .The constant C vanishes if and only if p = 1.

Corollary 1.2. Assume that m > max(4, 3 + r) and that L is even unimod-
ular. When p �= 1, the theta lift � is injective. When p = 1, the lift vanishes
identically.

It would be interesting to compute the bad local factors at finite primes (or at
least to show their non-vanishing) as well. However, in our setting, this requires
first a Hecke theory for vector valued modular forms in Sκ,L . Its foundations
are developed in [9], but a newform theory is not yet available. It seems con-
ceivable that one could prove more general injectivity results along these lines.
For the relationship between the vector-valued modular forms in Sκ,L and the
adelic language, see [17].

Note that in this context, J.-S. Li [15] has used the theta correspondence
and the doubling method for automorphic representations in great generality
to obtain non-vanishing results for cohomology when passing to a sufficiently
large level.

In the body of the paper, we actually consider the generalization of the
Kudla-Millson lift due to Funke and Millson [12]. It maps cusp forms in
Sκ,L to closed differential q-forms with values in certain local coefficient sys-
tems. Moreover, we use an adelic set-up for the theta and Eisenstein series in
question.

1.1. Surjectivity of the Borcherds lift

We briefly discuss how the injectivity results on the Kudla-Millson lift imply
surjectivity results for the Borcherds lift. We revisit part of the material of [6]
in the light of the adjointness result of [8] between the regularized theta lift and
the Kudla Millson lift. We restrict ourselves to the Hermitean case of signature
(p, 2) where X is a p-dimensional complex algebraic manifold. The special
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cycles Z(h, n) are algebraic divisors on X , also called Heegner divisors or
rational quadratic divisors.

We say that a meromorphic modular form for 
 has a Heegner divisor, if its
divisor on X is a linear combination of the Z(h, n). A large supply of modular
forms with Heegner divisor is provided by the Borcherds lift, see [2], [3]. We
briefly recall its construction.

A meromorphic modular form for a congruence subgroup of SL2(Z) is
called weakly holomorphic, if its poles are supported on the cusps. If k ∈ Z,
we write M !

k,L for the space of weakly holomorphic modular forms of weight

k for SL2(Z) of type ρL . Any f ∈ M !
k,L has a Fourier expansion of the form

f (τ ) =
∑

h∈L#/L

∑
n∈Z+Q(h)

c(h, n)e(nτ)eh,

where only finitely many coefficients c(h, n) with n < 0 are non-zero. We
write V− for the quadratic space (V,−Q) of signature (2, p) and L− for the
lattice (L ,−Q) in V−.

Theorem 1.3 (Borcherds [3], Theorem 13.3). Let f ∈ M !
1−p/2,L− be a

weakly holomorphic modular form with Fourier coefficients c(h, n). Assume
that c(h, n) ∈ Z for n < 0. Then there exists a meromorphic modular form
�(z, f ) for 
 (with some multiplier system of finite order) such that:

(i) The weight of � is equal to c(0, 0)/2.
(ii) The divisor Z( f ) of � is determined by the principal part of f at the

cusp∞. It equals

Z( f ) =
∑

h∈L#/L

∑
n<0

c(h, n)Z(h, n).

(iii) In a neighborhood of a cusp of 
 the function � has an infinite
product expansion analogous to the Dedekind eta function, see [3],
Theorem 13.3 (5.).

The proof of this result uses a regularized theta lift. Let ϕ p,2
0 ∈ S(V (R)) be

the Gaussian for signature (p, 2). The corresponding Siegel theta function

�(τ, z, ϕ0) = v
∑

h∈L#/L

∑
x∈L+h

(ω∞(gτ )ϕ0)(x, z)eh

transforms like a non-holomorphic modular form of weight p/2 − 1 of type
ρL in the variable τ . Hence the theta integral



Injectivity of the Kudla-Millson Lift 17

�(z, f ) =
∫

(1)\H

〈
f (τ ),�

(
τ, z, ϕ p,2

0

)〉
dμ (1.2)

formally defines a 
-invariant function on D. Because of the singularities of
f at the cusps, the integral diverges. However, Harvey and Moore discovered
that it can be regularized essentially by viewing it as the limit T → ∞ of the
integral over the standard fundamental domain truncated at �(τ ) = T , see [3],
[14]. It turns out that �(z, f ) defines a smooth function on X \ Z( f ) which
has a logarithmic singularity along Z( f ). Moreover,

�(z, f ) = −2 log ‖�(z, f )‖Pet + constant,

where ‖ · ‖Pet denotes the Petersson metric on the line bundle of modular
forms of weight c(0, 0)/2 over X . From this identity, the claimed properties
of �(z, f ) can be derived.

Modular forms for the group 
 ⊂ O(L) arising via this lift are called
automorphic products or Borcherds products. By (ii) they have a Heegner
divisor.

Here we consider the question whether the Borcherds lift is surjective.
More precisely we ask whether every meromorphic modular form for 


with Heegner divisor is the lift �(z, f ) of a weakly holomorphic form f ∈
M !

1−p/2,L−?
An affirmative answer to this question was given in [6] in the special case

that the lattice L splits two hyperbolic planes over Z. In the (more restric-
tive) case that L is unimodular, a different proof was given in [7] using
local Borcherds products and a theorem of Waldspurger on theta series with
harmonic polynomials [29].

The approach of [6] was to first simplify the problem and to consider the
regularized theta lift for a larger space of “input” modular forms. Namely, we
let Hk,L be the space of weak Maass forms of weight k and type ρL . This space
consists of the smooth functions f : H → C[L#/L] that transform with ρL in
weight k under SL2(Z), are annihilated by the weight k Laplacian, and satisfy
f (τ ) = O(eCv) as τ = u + iv → i∞ for some constant C > 0 (see [8]
Section 3).

Any f ∈ Hk,L has a Fourier expansion of the form

f (τ ) =
∑

h∈L#/L

∑
n∈Q

c+(h, n)e(nτ)eh

+
∑

h∈L#/L

c−(h, 0)v1−keh +
∑
n∈Q
n �=0

c−(h, n)H(2πnv)e(nu)eh, (1.3)
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where only finitely many of the coefficients c+(h, n) (respectively c−(h, n))
with negative (respectively positive) index n are non-zero. The function H(w)

is a Whittaker type function.
For f ∈ Hk,L , put ξk( f ) = R−k(v

k f̄ ), where R−k is the standard rais-
ing operator for modular forms of weight −k. This defines an antilinear map
ξk : Hk,L → M !

2−k,L− to the space of weakly holomorphic modular forms in

weight 2 − k. It is easily checked that M !
k,L is the kernel of ξk . According to

[8], Corollary 3.8, the sequence

0 �� M !
k,L

�� Hk,L
ξk �� M !

2−k,L−
�� 0

is exact. We let H+
k,L be the preimage under ξk of the space of cusp

forms S2−k,L− of weight 2 − k with type ρL− . Hence we have the exact
sequence

0 �� M !
k,L

�� H+
k,L

ξk �� S2−k,L− �� 0 .

The space H+
k,L can also be characterized as the subspace of those f ∈ Hk,L

whose Fourier coefficients c−(h, n) with non-negative index n vanish. This
implies that

f (τ ) =
∑

h∈L#/L

∑
n<0

c+(h, n)e(nτ)eh + O(1), �(τ )→∞,

i.e., the singularity at ∞, called the principal part of f , looks like the
singularity of a weakly holomorphic form.

For f ∈ H1−p/2,L− , we can define the regularized theta lift �(z, f ) as in
(1.2), see [6], [8]. This generalized lift is related to the Kudla-Millson lift �
defined in (1.1) in the following way (see [8], Theorem 6.1).

Theorem 1.4. Let f ∈ H+
1−p/2,L− and denote its Fourier expansion as in

(1.3). The (1, 1)-form ddc�(z, f ) can be continued to a smooth form on X. It
satisfies

ddc�(z, f ) = �(ξ1−p/2( f ))(z)+ c+(0, 0)�.

Here � denotes the invariant Kähler form on D normalized as in [8].

On the other hand, the following “weak converse theorem” is proved in [6],
Theorem 4.23.
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Theorem 1.5. Assume that p > r . Let F be a meromorphic modular form for
the group 
 with Heegner divisor

div(F) =
∑

h

∑
n<0

c+(h, n)Z(h, n)

(where c+(h, n) = c+(−h, n) without loss of generality). Then there is a weak
Maass form f ∈ H+

1−p/2,L− with principal part
∑

h
∑

n<0 c+(h, n)e(nτ)eh

whose regularized theta lift satisfies

�(z, f ) = −2 log ‖F‖Pet + constant. (1.4)

Note that the proof in [6] is only given in the case that p ≥ 3 (where the
assumption on the Witt index is automatically fulfilled). However, the argu-
ment extends to the low dimensional cases. It is likely that the hypothesis on
the Witt index can be dropped as well, but we have not checked this.

Corollary 1.6. Assume that p > r . Let F be a meromorphic modular form for
the group 
 with Heegner divisor as in Theorem 1.5. Let f ∈ H+

1−p/2,L− be a
weak Maass form whose regularized theta lift satisfies (1.4). Then

�(ξ1−p/2( f )) = 0.

Proof. The assumption on f implies that

ddc�(z, f ) = −2ddc log ‖F‖Pet = c+(0, 0)�.

On the other hand, according to Theorem 1.4, we have

ddc�(z, f ) = �(ξ1−p/2( f ))(z)+ c+(0, 0)�.

If we combine these identities, we obtain the claim.

Corollary 1.7. Assume the hypotheses of Corollary 1.6. If � is injective, then
f is weakly holomorphic, and F is a constant multiple of the Borcherds lift
�(z, f ) of f in the sense of Theorem 1.3.

Proof. By Corollary 1.6 we have �(ξ1−p/2( f )) = 0. Since � is injective, we
find that ξ1−p/2( f ) = 0. But this means that f is weakly holomorphic.

When the lattice L splits two hyperbolic planes over Z, it was proved in
[6] that � is injective by considering the Fourier expansion of the lift. In
Section 4 of the present paper we show (for even unimodular lattices) how
such injectivity results can be obtained by the Rallis inner products formula.

We end this section by stating a converse of Corollary 1.6. If r > 0, we
let � ∈ L be a primitive isotropic vector, and let �′ ∈ L# be a vector with
(�, �′) = 1. We let L0 be the singular lattice L∩�⊥ and let K be the Lorentzian
lattice L0/Z�.
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Theorem 1.8. Assume that p ≥ 2 and p > r . Let f ∈ H+
k,L− and assume that

the Fourier coefficients c+(h, n) (n < 0) of the principal part of f are integral.
If ξ1−p/2( f ) ∈ ker(�), then there exists a meromorphic modular form F for 

(with some multiplier system of finite order) such that:

(i) The weight of F is equal to c+(0, 0)/2.
(ii) The divisor of F is equal to

Z( f ) =
∑

h∈L#/L

∑
n<0

c+(h, n)Z(h, n).

(iii) In a neighborhood of a cusp of 
, given by a primitive isotropic vector
� ∈ L, the function F has an automorphic product expansion

F(z) = Ce((ρ, z))
∏
λ∈K ′

(λ,W )>0

∏
δ∈L#/L
δ|L0=λ

(
1− e((λ, z))+ (δ, �′))

)c+(λ,Q(λ))
.

Here C is a non-zero constant, and we have used the notation of [3].

Proof. Theorem 1.4 and the fact that �
(
ξ1−p/2( f )

) = 0 imply that

ddc�(z, f ) = c+(0, 0)�.

(In particular, if c+(0, 0) = 0, then f is pluriharmonic.) Now we can argue as
in [6], Lemma 3.13 and Theorem 3.16 to prove the claim.

We note that the assumption on r and p is needed to guarantee that the
multiplier system of F has finite order. (When f is not weakly holomorphic,
we cannot argue with the embedding trick as in [4], Correction).

If f is weakly holomorphic, then ξ1−p/2( f ) = 0 and the Theorem reduces
to Theorem 1.3. However, if � is not injective, and f is a weak Maass form
such that ξ1−p/2( f ) is a non-trivial element of the kernel, then Theorem 1.8
leads to exceptional automorphic products. If there are any cases where �

is not injective, it would be very interesting to construct examples of such
exceptional automorphic products.

Remark 1.9. If p ≥ 4, the existence of the meromorphic modular form F
with divisor (ii) is related to the fact that H1(X,OX ) = 0 in this case, which
can be proved following the argument of [10] §3.1. Therefore the Chern class
map Pic(X)→ H2(X,Z) is injective.

We thank S. Böcherer, E. Freitag, W. T. Gan, S. Kudla, and J. Millson for
very helpful conversations on the content of this paper. The second named
author also thanks the Max Planck Institut für Mathematik in Bonn/Germany
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for its hospitality during the summer 2005 where substantial work on this paper
was done.

2. Theta functions and the Siegel-Weil formula

Let (V, Q) be a non-degenerate rational quadratic space of of dimension m. We
write (·, ·) for the bilinear form corresponding to the quadratic form Q so that
Q(x) = 1

2 (x, x). For simplicity we assume that m is even. We let G = Sp(n)
be the symplectic group acting on a symplectic space of dimension 2n over Q.
The embedding of U(n) into G(R) given by k = A+i B �→ k = ( A B−B A

)
gives

rise to a maximal compact subgroup K∞ ⊂ G(R). At the finite places, we pick
the open compact subgroup K p = Sp(n,Zp). Then K = K∞ × ∏p K p is
the corresponding maximal compact subgroup of G(A), the symplectic group
over the ring of adeles of Q. We let ω = ωn be the Schrödinger model of
the Weil representation of GA acting on S(V n(A)), the space of Schwartz-
Bruhat functions on V n(A), associated to the standard additive character of
A/Q (which on R is given by t �→ e(t) = e2π i t ). Note that since m is even
we do not have to deal with metaplectic coverings. We form the theta series
associated to ϕ ∈ S(V n(A)) by

θ(g, h, ϕ) =
∑

x∈V n(Q )

(ω(g)ϕ)(h−1x), (2.1)

with g ∈ G(A) and h ∈ O(V )(A). We assume ϕ = ϕ∞ ⊗ ϕ f with ϕ∞ ∈
S(V n(R)) and ϕ f ∈ S(V n(A f )).

We now briefly review the Siegel-Weil formula, see e.g. [16]. We put

I (g, ϕ) =
∫

O(V )(Q )\O(V )(A)
θ(g, h, ϕ)dh, (2.2)

where dh is the invariant measure on O(V )(Q )\O(V )(A) normalized to have
total volume 1. By Weil’s convergence criterion [30], I (g, ϕ) is absolutely
convergent if either V is anisotropic or if

m − r > n + 1. (2.3)

Here r is the Witt index of V , i.e., the dimension of a maximal isotropic
subspace of V over Q.

We set n(b) = ( 1 b
0 1

)
for b a symmetric n × n matrix and m(a) =

(
a 0
0 t a−1

)
for a ∈ GL(n). Then the Siegel parabolic is given by P(A) = N (A)M(A)
with N = {n(b); b ∈ Matn, b = t b} and M = {m(a); a ∈ GL(n)}. Then
using the Iwasawa decomposition G(A) = P(A)K we define

�(g, s) = (ω(g)ϕ) (0) · det |a(g)|s−s0
A , (2.4)
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where

s0 = m

2
− n + 1

2
. (2.5)

Thus � defines a section in a certain induced parabolic induction space (see
[16] (I.3.6)). Note that� is determined by its values on K . Since� comes from
ϕ ∈ S(V n(A)), we also see that � is a standard section, i.e., its restriction to K
does not depend on s, and we write �(k) = �(k, s) for k ∈ K . Furthermore,
� factors as � = �∞ ⊗� f .

We then define the Eisenstein series associated to � by

E(g, s,�) =
∑

γ∈P(Q )\G(Q )

�(γ g, s), (2.6)

which for Re(s) > ρn := (n + 1)/2 converges absolutely and has a meromor-
phic continuation to the whole complex plane. The extension of Weil’s work
[30] by Kudla and Rallis in the convergent range is:

Theorem 2.1. ([20], [21].) Assume Weil’s convergence criterion holds.

(i) Then E(g, s,�) is holomorphic at s = s0.
(ii) We have

I (g, ϕ) = c0 E(g, s0,�),

where c0 = 1 if m > n + 1 and c0 = 2 if m ≤ n + 1.

We translate the adelic Eisenstein series into more classical language, see
[16] section IV.2. We let K f (N ) ⊂ ∏p K p be a subgroup of finite index of
level N , i.e.,


 := G(Q ) ∩ (G(R)K f (N ))

contains the principal congruence subgroup 
(N ) ⊂ Sp(n,Z). We assume that
� f is K f (N )-invariant. Furthermore, if ϕ f corresponds to the characteristic
function of a coset of an even lattice L of level N in V , then we have

� f (γ ) =
∏
p|N

�p(γ )

for γ ∈
. Via G(A)=G(Q )G(R)K f (N ) we see that the Eisenstein series
E(g, s,�) is determined by its restriction to G(R). We assume that the
restriction of �(g, s) to K∞ is given by

�κ∞(k, s) := det(k)κ . (2.7)

We denote the unique section at the Archimedian prime with this property by
�κ∞. Let gτ = n(u)m(a) with t aa = v be an element moving the base point
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i1n of the Siegel upper half plane Hn to τ = u+ iv. Then we obtain a classical
Eisenstein series of weight κ (and level N ):

E(gτ , s,�) =
∑

γ∈(P(Q )∩
)\

�κ∞(γ gτ )� f (γ )

= det(v)κ/2
∑

γ∈(P(Q )∩
)\


(
det(v)

| det(cτ + d)|2
)(s+ρn−κ)/2

det(cτ + d)−κ � f (γ ),

with γ = ( a b
c d

)
. In particular, if N = 1 then

E(gτ , s,�) = det(v)κ/2 E (n)
κ

(
τ, (s + ρn − κ)/2

)
, (2.8)

where

E (n)
κ (τ, s) =

∑
γ∈
∞\Sp(n,Z)

(
det�(γ τ))s det(cτ + d)−κ (2.9)

is the classical Siegel Eisenstein series for Sp(n,Z) of weight κ .
For later use, we introduce an embedding ι0 of Sp(n)×Sp(n) into Sp(2n) by

(
a b
c d

)
×
(

a′ b′
c′ d ′

)
�→

⎛⎜⎜⎝
a b

a′ b′
c d

c′ d ′

⎞⎟⎟⎠ . (2.10)

3. Special Schwartz forms

We change the setting in this section and consider the real place only. We
assume that V is now a real quadratic space of signature (p, q) of dimen-
sion m. Since it does not make any extra work we do allow m odd in this
section. We pick an oriented orthogonal basis {vi } of V such that (vα, vα) = 1
for α = 1, . . . , p and (vμ, vμ) = −1 for μ = p + 1, . . . ,m, and we
denote the corresponding coordinate functions by xα and xμ. We let K V be
the maximal compact subgroup of O(V ) stabilizing span{vp+1, . . . , vm}. Thus
K V � O(p)×O(q). We realize the symmetric space D associated to V as the
Grassmannian of oriented negative q-planes in V . Thus D has two components

D = D+ � D−.

Picking for the base point z0 the space span{vp+1, . . . , vm} together with the
induced orientation, we see

D+ = {z ⊂ V ; dim z = q, ( , )|z < 0, z has the same orientation as z0}.
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Thus D+ � SO0(V )/K V
0 , where the subscript indicates the connected com-

ponent of the identity. We associate to z ∈ D the standard majorant ( , )z

given by

(x, x)z = (xz⊥, xz⊥)− (xz, xz),

where x = xz+xz⊥ ∈ V is given by the orthogonal decomposition V = z⊕z⊥.
We write ( , )0 = ( , )z0 .

Let o(V ) be the Lie algebra of O(V ) and let o(V ) = pV ⊕ kV with kV =
Lie(K V ) be the associated Cartan decomposition. Then p = pV is isomorphic
to the tangent space at the base point z0 of D. With respect to the above basis
of V we have

p �
{(

0 X
t X 0

)
; X ∈ Matp,q (R)

}
.

We let Xαμ (1 ≤ α ≤ p, p + 1 ≤ μ ≤ p + q) denote the element of p which
interchanges vα and vμ and annihilates all the other basis elements of V . We
write ωαμ for the element of the dual basis corresponding to Xαμ.

We let ω = ωn be the Weil representation of the metaplectic cover Mp(n,R)
of Sp(n,R) acting on the Schwartz functions S(V n). We let K = Ũ(n)
be the maximal compact subgroup of Mp(n,R) given by the inverse image
of the standard maximal compact subgroup U(n) in Sp(n,R). Recall that K
admits a character det1/2 whose square descends to the determinant character
of U(n). We also write ω for the associated Lie algebra action on the space of
K -finite vectors in S(V n). It is given by the so-called polynomial Fock space
S(V n) ⊂ S(V n). It consists of those Schwartz functions on V n of the form
p(x)ϕ0(x), where p(x) is a polynomial function on V n . Here ϕ0(x) is the stan-
dard Gaussian on V n . More precisely, for x = (x1, . . . , xn) ∈ V n and z ∈ D,
we let

ϕ0(x, z) = exp

(
−π

n∑
i=1

(xi , xi )z

)
,

and set ϕ0(x) = ϕ0(x, z0). We view

ϕ0 ∈ [S(V n)⊗ C∞(D)]O(V ) � [S(V n)⊗
∧0

(p∗)]K V
,

where the isomorphism is given by evaluation at the base point z0 of D. In the
following we will identify corresponding objects under this isomorphism.

Kudla and Millson (see [18]) constructed (in much greater generality)
Schwartz forms ϕK M on V taking values in Aq(D), the differential q-forms
on D. More precisely,
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ϕK M ∈ [S(V )⊗Aq(D)]O(V ) � [S(V )α ⊗
∧q

(p∗)]K V
.

Here S(V )α is the Schwartz space for V twisted by the spinor norm character
α on O(V ). On K V = O(p)×O(q), α is given by 1⊗ det. The Schwartz form
ϕK M is given by

ϕK M = 1

2q/2

p+q∏
μ=p+1

[ p∑
α=1

(
xα − 1

2π

∂

∂xα

)
⊗ Aαμ

]
ϕ0.

Here Aαμ denotes the left multiplication by ωαμ. More generally, we consider
the Schwartz forms

ϕq,� ∈ [S(V )α ⊗
∧q

(p∗)⊗ Sym�(V )]K V

with values in the �-th symmetric powers of V introduced by Funke and
Millson [12]. The forms ϕq,� are given by

ϕq,� =
[

1

2

p∑
α=1

(
xα − 1

2π

∂

∂xα

)
⊗ 1⊗ Avα

]�
ϕK M

= 1

2�

p∑
α1,...,α�=1

[
�∏

i=1

(
xαi −

1

2π

∂

∂xαi

)
⊗ 1⊗

�∏
i=1

Avαi

]
ϕK M .

Here Av denotes the multiplication with the vector v in the symmetric algebra
of V . Note that Sym�(V ) is not an irreducible representation of O(V ), and
we denote by ϕq,[�] the projection of ϕq,� ontoH�(V ), the harmonic �-tensors
in V . It consists of those symmetric �-tensors which are annihilated by the

signature (p, q)-Laplacian � =∑p
α=1

∂2

∂v2
α
−∑m

μ=p+1
∂2

∂v2
μ

. Here we view vα

and vμ as independent variables. It can be also characterized as the space of
symmetric �-tensors in V which are orthogonal with respect to the induced
inner product on Sym�(V ) to vectors of the form r2w. Here w ∈ Sym�−2(V )
and r2 denotes the multiplication with

∑p
α=1 v

2
α−
∑m

μ=p+1 v
2
μ. Recall that we

have Sym�(V ) = H�(V )⊕ r2 Sym�−2(V ) as representations of O(V ).
The Schwartz form ϕq,� (and also ϕq,[�]) is an eigenfunction of weight

m/2+ � under the action of k ∈ K , see [12, 18], i.e.,

ω(k)ϕq,� = det(k)m/2+�ϕq,�. (3.1)

Here k is the element in Ũ(1) corresponding to k ∈ S̃O(2) ⊂ Mp(1,R).
Moreover, ϕq,�(x) is a closed differential form on D.

We normalize the inner product on Sym�(V ) inductively by setting

(w1 · · ·w�,w
′
1 · · ·w′�) =

1

�

�∑
j=1

(w1, w
′
j )(w2 · · ·w�,w

′
1 · · · ŵ′j · · ·w′�).
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With this normalization we easily see that for the restriction of ( , ) to the
positive definite subspace span{vα; 1 ≤ α ≤ p} of V we have

p∑
α1,...,α�=1
β1,...,β�=1

(
�∏

i=1

vαi ,

�∏
i=1

vβi

)
= p�.

We let S̃ym
�
(V ) be the local system on D associated to Sym�(V ). Then for

the wedge product, we have ∧ : Ar (D, S̃ym
�
(V )) × As(D, S̃ym

�
(V )) →

Ar+s(D) by taking the inner product on the fibers Sym�(V ). We are ulti-
mately more interested in the form ϕq,[�], but calculations with ϕq,� are more
convenient. In this context the following lemma will be important later.

Lemma 3.1. Let η ∈ A(p−1)q(D, S̃ym
�−2

(V )). Then

ϕq,� ∧ r2η = − 1

2π
(ω(R)ϕq,�−2) ∧ η.

Here R = 1
2

(
1 i
i −1

) ∈ sl(2,C) is the standard SL(2)-raising operator.

Proof. By the adjointness of 1
�(�−1)� and r2 with respect to the inner product

in Sym•(V ), we have ϕq,� ∧ r2η = 1
�(�−1) (�ϕq,�) ∧ η. Note that � operates

on the coefficient part of ϕq,�. Then switching to the Fock model of the Weil
representation, see the proof of Lemma 3.5, and using (3.9) one easily sees
�ϕq,� = − �(�−1)

2π ω(R)ϕq,�−2. We leave the details to the reader.

We let ∗ denote the Hodge ∗-operator on D. Then ϕq,�(x1) ∧ ∗ϕq,�(x2)

with x = (x1, x2) ∈ V 2, being a top degree differential form, gives rise to a
scalar-valued Schwartz function φq,� on V 2 defined by

φq,�(x, z)μ = ϕq,�(x1, z) ∧ ∗ϕq,�(x2, z). (3.2)

Here μ is the volume form on D induced by the Riemannian metric coming
from the Killing form on g. For convenience we scale the metric such that the
restriction of μ to the base point z0 is given by

μ = ω1,p+1 ∧ · · · ∧ ω1,p+q ∧ ω2,p+1 ∧ · · · ∧ ωp,p+q . (3.3)

Note that

φq,� ∈ [S(V 2)⊗ C∞(D)]O(V ) � [S(V 2)⊗
∧0

(p∗)]K V
.

Lemma 3.2. We have

φq,�(x) = p�

2q+2�

p∑
α1,...,αq+�=1

q+�∏
i=1

(
xαi 1− 1

2π

∂

∂xαi 1

)(
xαi 2− 1

2π

∂

∂xαi 2

)
ϕ0(x)
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= p�

2q+2�

( p∑
α=1

(
xα1 − 1

2π

∂

∂xα1

)(
xα2 − 1

2π

∂

∂xα2

))q+�
ϕ0(x).

Example 3.3. For signature (p, 2), we have

φq,0(x) =
p∑

α=1

(
x2
α1 −

1

4π

)(
x2
α2 −

1

4π

)
ϕ0(x)+4

p∑
α,β=1
α �=β

xα1xβ1xα2xβ2ϕ0(x).

Note that (3.1) immediately implies:

Lemma 3.4. For k1, k2 ∈ S̃O(2) ⊂ Mp(1,R), we have

ω(ι0(k1, k2))φq,� = det(k1k2)
m/2+�φq,�.

The action of the full maximal compact K ⊂ Mp(2,R) on φq,� via the Weil
representation is more complicated, as we now explain. We let

g = k⊕ p+ ⊕ p− (3.4)

be a Harish-Chandra decomposition of g = sp(2,C), where k = Lie(K )C,

p+ =
{

p+(X) = 1

2

(
X i X

i X −X

)
; X ∈ Mat2(C), t X = X

}
, (3.5)

and p− = p+. Note that p+ is the holomorphic tangent space of H2 at the base
point i12 and is spanned by the raising operators

R1 = R11 = p+
(

1 0
0 0

)
, R2 = R22 = p+

(
0 0
0 1

)
, (3.6)

R12 = 1

2
p+
(

0 1
1 0

)
. (3.7)

Note that R1 = ι0(R, 0) and R2 = ι0(0, R) are the images of the SL2-raising
operator R in sp(2,C) under the two standard embeddings of sl(2) into sp(2).

Recall that the adjoint action of K on p+ is isomorphic to the standard
action of K on Sym2(C2). Explicitly, the intertwiner is given by Rrs �→ er es ,
where e1, e2 denotes the standard basis of C2. We obtain an isomorphism of
K -modules

Sym• Sym2 C2 =
∞⊕
j=0

Sym j Sym2 C2 � U (p+) (3.8)

of the symmetric algebra on Sym2 C2 with the universal enveloping algebra
of p+.
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Lemma 3.5. We have

φq,� = p�(−1)q+�

2�πq+� ω(R12)
q+�ϕ0.

Proof. We indicate a quick proof using the Fock model of the Weil represen-
tation. For more details for what follows, see the appendix of [12]. There is
an intertwining map ι : S(V n) → P(Cn(p+q)) from the polynomial Fock
space to the infinitesimal Fock model of the Weil representation acting on the
space of complex polynomials P(Cn(p+q)) in n(p + q) variables such that
ι(ϕ0) = 1. We denote the variables in P(Cn(p+q)) by zαi (1 ≤ α ≤ p) and zμi

(p + 1 ≤ μ ≤ p + q) with i = 1, . . . , n. Moreover, the intertwining map ι

satisfies

ι

(
xαi − 1

2π

∂

∂xαi

)
ι−1 = 1

2π i
zαi .

Hence in the Fock model, we have

φq,� = p�

2q+2�

(
1

2π i

)2(q+�) [ p∑
α=1

zα1zα2

]q+�
.

On the other hand, for the action of the raising operators, we find

ω(Rrs) = 1

8π

p∑
α=1

zαr zαs − 2π
m∑

μ=p+1

∂2

∂zμr∂zμs
. (3.9)

In the Fock model, we therefore have ω(R12)
q+�ϕ0 =

[
1

8π

∑p
α=1 zα1zα2

]q+�
,

and the lemma follows.

We obtain:

Proposition 3.6. For k ∈ K � Ũ(2), we have

ω(k)φq,� = p�(−1)q+�

2�πq+� det(k)(p−q)/2 (Ad(k)R12)
q+� ϕ0.

Proof. This follows immediately from Lemma 3.5 and the fact that the
Gaussian ϕ0 has weight (p − q)/2.

Remark 3.7. The Kudla-Millson forms ϕK M cannot be expressed in terms of
elements in p+.

Proposition 3.6 reduces the K -action on φq,� to the representation theory of
the group U(2)(C) = GL2(C) on Sym• Sym2 C2, which is given as follows.
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Lemma 3.8. The GL2(C)-representation Sym j Sym2 C2 decomposes as

Sym j Sym2 C2 �
[ j/2]⊕
i=0

Sym2 j−4i C2 ⊗ det 2i

into its irreducible constituents. The summand for i = [ j/2] is given by

Sym2 j−4[ j/2] C2 ⊗ det 2[ j/2] =
{

det j if j is even,

Sym2 C2 ⊗ det j−1 if j is odd,
(3.10)

and is generated by the vector

α j =
[ j/2]∑
i=0

( [ j/2]
i

)
(−1)i (e2

1)
i (e2

2)
i (e1e2)

j−2i

=
{[
(e1e2)

2 − e2
1e2

2

] j/2
if j is even,

(e1e2)
[
(e1e2)

2 − e2
1e2

2

][ j/2]
if j is odd. (3.11)

Proof. For the first statement, see e.g. [11], p.81/82. For (3.11), note that in

Sym2 Sym2 C2 = Sym4 C⊕ det 2,

the vector

α2 = (e1e2)
2 − e2

1e2
2

generates the one-dimensional sub-representation. Then, for j even, α j is given
by the image of (α2)

j/2 ∈ Sym j/2 Sym2 Sym2 C2 under the projection onto
Sym j Sym2 C2. The argument for j odd is analogous.

By slight abuse of notation, we also write α j for the corresponding element
in U(p+) and define another Schwartz function ξ = ξq,� ∈ S(V 2) by

ξ = ξq,� = p�(−1)q+�

2�πq+� ω(α j )ϕ0. (3.12)

Proposition 3.9. For the Schwartz function φq,�, there exists a ψ ∈ S(V 2)

such that

φq,� = ξq,� + ω(R1)ω(R2)ψ. (3.13)

Proof. We have

(e1e2)
q+�−αq+�= e2

1e2
2

[(q+�)/2]∑
i = 1

( [(q+�)/2]
i

)
(−1)i (e2

1)
i−1(e2

2)
i−1(e1e2)

q+�−2i .
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Using the intertwiner with U(p+), we recall that e2
i corresponds to Ri . Thus ψ

is given by

ψ = p�(−1)q+�

2�πq+�
[(q+�)/2]∑

i=1

( [(q+�)/2]
i

)
(−1)iω

(
Ri−1

1 Ri−1
2 Rq+�−2i

12

)
ϕ0.

One easily sees using (3.9):

Lemma 3.10. The Schwartz function ξ vanishes identically if and only if
p = 1 and q + � > 1.

Example 3.11. For q = 2, p > 1, and � = 0, we have

φ2,0 ·�p = CϕK M ∧ ϕK M ∧�p−2 + C ′ω(R1)ω(R2)ϕ0 ·�p

for some nonzero constants C and C ′. Here � denotes the Kähler form on the
Hermitian domain D. But we will not need this.

In view of Lemma 3.8 and Proposition 3.6, we see for q + � even that

ω(k)ξ = det(k)m/2+�ξ (3.14)

for k ∈ K . We let �(g, s) be the section in the induced representation
corresponding to the Schwartz function ξ via (2.4).

Proposition 3.12. Let q + � be even. Then � is the standard section (2.7) at
the infinite place of weight m/2+ �. More precisely,

�(s) = C(s)�m/2+�∞ (s) (3.15)

for a certain (explicit) polynomial C(s). Moreover,

C(s0) �= 0

with s0 = (m − 3)/2 as in (2.5) for p > 1, while C(s) ≡ 0 for p = 1.

Proof. The identity (3.15) follows from (3.14) and the uniqueness of �m/2+�∞ .
The precise statement follows from considerations in [22]. The element αq+�
is trivially a highest weight vector of weight μ = (q + �, q + �) of GL2(C).
Therefore we can take αq+� equal to the element u0

μ ∈ U(p+) (or uμ ∈ U(g))
in the notation of [22], p.31/32. Then by Corollary 1.4 of [22], we have �(s) =
uμ�

(p−q)/2∞ (s) = cP(p−q)/2
μ (s)�m/2+�(s), for a certain polynomial P(p−q)/2

μ

and a nonzero constant c. One easily sees P(p−q)/2
μ (s0) �= 0 for p > 1. See

also [22], p. 38. For p = 1, � vanishes identically, since already ξ = 0 by
Lemma 3.10.
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Remark 3.13. For q + � odd, we see in the same way

�(s) = C(s)R12�
m/2+�−1∞ (s)

for a certain polynomial C(s). Note that αq+� is not a highest weight vector
for Sym2 C2 ⊗ det q+�−1 (which has weight (q + �+ 1, q + �− 1)).

4. The L2-norm of the theta lift

We now return to the global situation and retain the notation of Section 2. Let
V be a non-degenerate quadratic space over Q of signature (p, q) and even
dimension m = p + q. We let L ⊂ V be an even lattice and write L# for the
dual lattice. We let H = GSpin(V ). For each prime p, we let L p = L⊗Zp and
let K H

p be the subgroup of H(Qp) which leaves L p stable and acts trivially on
L#

p/L p. Then K H
f =
∏

p K H
p is an open compact subgroup of H(A f ). We let

K H∞ be a maximal compact subgroup of H(R). By strong approximation we
write

H(A) =
∐

j

H(Q )H(R)0h j K H
f (4.1)

with h j ∈ H(A f ). Then we put

X = X K H
f
= H(Q )\(D × H(A f ))/K H

f (4.2)

such that

X �
∐

j

X j (4.3)

with X j =
 j\D+, where 
 j = H(Q ) ∩ (H(R)0h j K H
f h−1

j ). We let ϕ f ∈
S(V (A f ))

K H
f be a K H

f -invariant Schwartz function on the finite adeles. Then
ϕ f corresponds to a linear combination of characteristic functions on the
discriminant group L#/L . Since ϕq,� is an eigenfunction of weight

κ = m/2+ �

under the action of U(1), we can form the classical theta function on H, the
upper half space, by setting

θ(τ, z, ϕq,� ⊗ ϕ f ) = v−κ/2
∑

x∈V (Q )

ϕ f (x)ω∞(gτ )ϕq,�(x, z)

= v−�/2
∑

x∈V (Q )

ϕ f (x)ϕq,�(
√
vx, z)eπ i(x,x)u .
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Here τ = u + iv ∈ H, and gτ =
(

1 u
0 1

) (√v 0

0
√
v
−1

)
∈ SL2(R) ⊂ SL2(A) is the

standard element moving the base point i ∈ H to τ . Then θ(τ, z, ϕq,� ⊗ ϕ f )

transforms like a non-holomorphic modular form of weight κ for the principal
congruence subgroup 
(N ) of SL2(Z) taking values in the differential q-forms
on X . Here N is the level of L , i.e., the smallest positive integer such that
1
2 N (x, x) ∈ Z for all x ∈ L#. In particular, if L is unimodular, θ(τ, z, ϕq,� ⊗
ϕ f ) is a form for the full modular group SL2(Z).

We write Sκ (
(N )) for the space of cusp forms of weight κ for 
(N ). We
normalize the Petersson scalar product be putting

( f, g) = 1

[
(1) : 
(N )]
∫

(N )\H

f (τ )g(τ )vκ dμ(τ) (4.4)

for f, g ∈ Sκ(
(N )). Here dμ(τ) = du dv
v2 is the invariant measure on H. For

f ∈ Sκ(
(N )), we consider the theta lift

�( f ) = ( f, θ(τ, ϕq,� ⊗ ϕ f )
) = ∫


(N )\H
f (τ )θ(τ, ϕq,� ⊗ ϕ f )v

κ dμ(τ).

(4.5)

It defines a linear map

� : Sκ(
(N )) −→ Zq(X, S̃ym
�
(V )) (4.6)

into the S̃ym
�
(V )-valued closed differential q-forms on X .

In order to show the injectivity of �, we study its L2-norm given by

‖�( f )‖2
2 =
∫

X
�( f ) ∧ ∗�( f ). (4.7)

We will use the doubling method to compute ‖�( f )‖2
2, see [5, 13, 25, 27].

Proposition 4.1. Assume that m > 3+ r so that Weil’s convergence crite-
rion (2.3) in genus 2 holds. Then �( f ) is square integrable, and

‖�( f )‖2
2 =
(

f (τ1)⊗ f (τ2), Ĩ (τ1,−τ̄2, φq,� ⊗ φ f )
)
, (4.8)

where ( , ) denotes the Petersson scalar product on 
(N )× 
(N ) and

Ĩ (τ1, τ2, φq,� ⊗ φ f ) =
∫

X
θ(τ1, τ2, z, φq,� ⊗ φ f )μ (4.9)

is the integral over the locally symmetric space of the theta series

θ(τ1, τ2, z, φq,�⊗φ f ) = (v1v2)
−κ/2

∑
x∈V 2(Q )

φ f (x)(ω∞(ι0(gτ1 , gτ2))φq,�(x, z),

(4.10)
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(which by (3.1) defines a modular form of weight κ on 
(N ) × 
(N )). Here
φ f = ϕ f ⊗ ϕ f ∈ S(V 2(A f )).

Proof. The formula (4.8) implies the square integrability since the right hand
side of (4.8) is absolutely convergent by Weil’s convergence criterion (2.3).
We have

‖�( f )‖2
2 =
∫

X

(∫

(N )\H

f (τ1)θ(τ1, ϕq,� ⊗ ϕ f )v
κ
1 dμ(τ1)

)
∧
(∫


(N )\H
f (τ2)θ(τ2, ∗ϕq,� ⊗ ϕ f )v

κ
2 dμ(τ2)

)
.

Interchanging the integration, we obtain∫ ∫
f (τ1) f (τ2)

(∫
X
θ(τ1, ϕq,� ⊗ ϕ f ) ∧ θ(τ2, ∗ϕq,� ⊗ ϕ f )

)
(v1v2)

κdμ(τ1)dμ(τ2).

Since ϕq,� is real valued, we easily see by the explicit formulas of the Weil
representation that

θ(τ2, ∗ϕq,� ⊗ ϕ f ) = θ(−τ̄2, ∗ϕq,� ⊗ ϕ f )

and therefore

θ(τ1, ϕq,� ⊗ ϕ f ) ∧ θ(τ2, ∗ϕq,� ⊗ ϕ f ) = θ(τ1,−τ̄2, z, φq,� ⊗ φ f )μ

by (3.2). This implies the assertion.

Remark 4.2. For signature (p, 2), the lift �( f ) is actually always square inte-
grable, see [6, 8]. We expect this to be true for other signatures as well even
if Weil’s convergence criterion does not hold. In that case, one would need to
regularize the theta integral Ĩ as in [23].

Note that the Schwartz function ξ introduced by (3.12) is K V -invariant. We
can therefore consider ξ ∈ [S(V 2)⊗ C∞(D)]O(V )(R) by setting

ξ(x, z) = ξ(h−1∞ x)

with h∞ ∈ O(V )(R) such that h∞z0 = z. In particular, ξ(x, z0) = ξ(x).

Proposition 4.3. Define θ(τ1, τ2, z, ξ ⊗φ f ) and Ĩ (τ1, τ2, ξ ⊗φ f ) in the same
way as for φq,� in (4.10), (4.9). Then

‖�( f )‖2
2 =
(

f (τ1)⊗ f (τ2), Ĩ (τ1,−τ̄2, ξ ⊗ φ f )
)
.

Proof. By Proposition 3.9 and Proposition 4.1, we see (omitting φ f from the
notation)

‖�( f )‖2
2 =
(

f (τ1)⊗ f (τ2), Ĩ (τ1,−τ̄2, φq,�)
)
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=
(

f (τ1)⊗ f (τ2), Ĩ (τ1,−τ̄2, ξ)
)

+
(

f (τ1)⊗ f (τ2), Ĩ (τ1,−τ̄2, ω(R1)ω(R2)ψ)
)

=
(

f (τ1)⊗ f (τ2), Ĩ (τ1,−τ̄2, ξ)
)

+
(

f (τ1)⊗ f (τ2), R1 R2 Ĩ (τ1,−τ̄2, ψ)
)
.

By the adjointness of the Maass lowering and raising operators with respect to
the Petersson scalar product, the latter summand vanishes.

Corollary 4.4. Let p = 1 and q + � > 1. Then � vanishes identically.

Proof. This is obvious from Proposition 4.3 and ξ = 0 (Lemma 3.10).

Remark 4.5. We could have defined the lift � of f by using the Schwartz
form ϕq,[�] instead of the form ϕq,�. Using Lemma 3.1 we see by the argument
of the proof of Proposition 4.3 that the L2-norms ‖�( f )‖ coincide.

We want to relate the integral Ĩ (τ1, τ2, ξ ⊗ φ f ) to the pullback of a
genus 2 Eisenstein series via the Siegel-Weil formula. We first need to
relate the integral over the locally symmetric space X to an integral over
O(V )(Q )\O(V )(A). We do this following [17], pp. 332. First we define
the theta series associated to ξ more generally for g ∈ Sp(2,A) and h =
(h∞h f ) ∈ O(V )(A) by

θ(g, h, ξ ⊗ φ f ) =
∑

x∈V 2(Q )

ω(g)ξ(h−1∞ x, z0)φ f (h
−1
f x),

where z0 is the base point of D. Note that

θ(τ1, τ2, z, ξ ⊗ φ f ) = (v1v2)
−κ/2θ(ι0(gτ1 , gτ2), h∞, ξ ⊗ φ f )

with h∞ ∈ O(V )(R) such that z = h∞z0.

Proposition 4.6. We have

1

vol(X, μ)
Ĩ (τ1, τ2, ξ ⊗ φ f ) = (v1v2)

−κ/2
∫

O(V )(Q )\O(V )(A)
θ(ι0(gτ1 , gτ2 ), h, ξ ⊗ φ f )dh.

Proof. Arguing as in the proof of Proposition 4.17 of [17], we first obtain

1

vol(X, μ)
Ĩ (τ1, τ2, ξ⊗φ f ) = (v1v2)

−κ/2 1

2

∫
SO(V )(Q )\ SO(V )(A)

θ(ι0(gτ1 , gτ2 ), h, ξ⊗φ f )dh,

where dh is the Tamagawa measure on SO(V )(A). But now the sign repre-
sentation of O(Vv)/SO(Vv) does not occur in the local theta correspondence
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for the pair (Sp(2),O(V )) for any place v if dim V = m > 2, see [26]. Then
arguing as in [17], p. 326, we see

1

2

∫
SO(V )(Q )\ SO(V )(A)

θ(g, h, ξ⊗φ f )dh =
∫

O(V )(Q )\O(V )(A)
θ(g, h, ξ⊗φ f )dh,

from which the proposition follows.

Proposition 4.7. Let �(s) ⊗ � f (s) be the section associated to ξ ⊗ φ f via
(2.4) and let s0 = (m − 3)/2. Then

1

vol(X, μ)
‖�( f )‖2

2 = (v1v2)
−κ/2
(

f (τ1)⊗ f (τ2), E(ι0(gτ1 , g−τ̄2 ), s0, �⊗� f )
)
.

Proof. Using Proposition 4.6 and the Siegel-Weil formula, Theorem 2.1,
we find

1

vol(X, μ)
Ĩ (τ1, τ2, ξ ⊗ φ f ) = (v1v2)

−κ/2 E(ι0(gτ1, gτ2), s0, �⊗� f ).

Now the assertion follows from Proposition 4.3.

Corollary 4.8. Assume that q + � is even and p > 1. Let �κ∞(s) be the stan-
dard section defined by (2.7), and let � f (s) be the section associated to φ f via
(2.4). Then

1

vol(X, μ)
‖�( f )‖2

2 = C(s0)(v1v2)
−κ/2
(

f (τ1)⊗ f (τ2), E(ι0(gτ1 , g−τ̄2 ), s0,�
κ∞ ⊗� f )

)
,

where C(s0) is the nonzero constant in Proposition 3.12.

Proof. We have �(g, s) = C(s)�κ∞(g, s) by Proposition 3.12. Hence the
Corollary immediately follows from Proposition 4.7.

Suppose that f is an eigenform of level N and let S denote the set of
primes dividing N together with∞. Then the doubling method [5, 13, 25, 27]
expresses a convolution integral as on the right hand side above as a product
of the standard L-function L S(s0+ 1

2 , f ) with the Euler factors corresponding
to p ∈ S omitted times a product of “bad” local factors corresponding to the
primes in S. If m > 4 then s0+ 1

2 lies in the region of convergence of the Euler
product of L S(s, f ). Hence the L-value does not vanish. Therefore the lift
�( f ) vanishes precisely if at least one of the “bad” local factors vanishes. By
the analysis of the present paper we determine the local factor at infinity.

We now specialize to the case when the lattice L is even and unimodular.
Then ϕ f corresponds to the characteristic function of L and � f (s) = 1. The
level of L is N = 1, so that ∞ is the only “bad” place. By the above analysis
we obtain a very explicit formula for ‖�( f )‖2

2 as we shall now explain.
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In this case θ(τ, z, ϕq,�) is a modular form of weight κ = m/2 + � for
SL2(Z) and vanishes unless q + � is even, which we assume from now on as
well. Then κ is even, because 8 | p − q. By Corollary 4.8 and (2.8) we have

1

vol(X, μ)
‖�( f )‖2

2 = C(s0)
(

f (τ1)⊗ f (τ2), E (2)
κ (τ1,−τ̄2,−�/2)

)
,

(4.11)

where E (2)
κ (τ1, τ2, s) is the pullback of the classical genus 2 Siegel Eisenstein

series E(2)
κ (τ, s) (see (2.9)) to the diagonal.

We recall the definition of the standard L-function of a Hecke eigenform
f ∈ Sκ(
(1)). We use the normalization of [1], [5], [24]. We denote the
Fourier coefficients of f by c(n) and assume that f is normalized, i.e.,
c(1) = 1. Let p be a prime. The Satake parameters α0,p, α1,p of f at p are
defined by the factorization of the Hecke polynomial

(1− c(p)X + pκ−1 X2) = (1− α0,p X)(1− α0,pα1,p X). (4.12)

Hence

α2
0,pα1,p = pκ−1, α0,p(1+ α1,p) = c(p).

According to Deligne’s theorem, formerly the Ramanujan-Petersson conjec-
ture, we have |α1,p| = 1. The standard L-function of f is defined by the Euler
product

D f (s) =
∏

p

[
(1− p−s)(1− α−1

1,p p−s)(1− α1,p p−s)
]−1

. (4.13)

It converges for �(s) > 1. The corresponding completed L-function

� f (s) = π−
3s
2 


(
s + 1

2

)



(
s + κ − 1

2

)



(
s + κ

2

)
D f (s) (4.14)

has a meromorphic continuation to C and satisfies the functional equation

� f (s) = � f (1− s) (4.15)

(see e.g. [5], [28]). It is well known (see [28], Introduction, [31]) that D f (s)
can be interpreted as the Rankin L-series

D f (s) = ζ(2s)
∞∑

n=1

c(n2)n−s−κ+1 = ζ(2s)

ζ(s)

∞∑
n=1

c(n)2n−s−κ+1.

Theorem 4.9. Assume that m > 3 + r so that Weil’s convergence crite-
rion (2.3) in genus 2 holds. Furthermore, assume that q + � is even and that
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L is even unimodular. Let f ∈ Sκ(
(1)) be a Hecke eigenform, and write
‖ f ‖2

2 = ( f, f ) for its Petersson norm normalized as in (4.4). We have

1

vol(X, μ)
· ‖�( f )‖2

2

‖ f ‖2
2

= C(s0)μ(1, κ,−�/2)
D f (m/2− 1)

ζ(m/2)ζ(m − 2)
,

where

μ(1, κ,−�/2) = 23−m/2(−1)κ/2π

(m/2+ �/2− 1)


(m/2+ �/2)
.

Proof. The statement follows from (4.11) by means of [5], identities (14)
and (22).

Remark 4.10. By the same argument it is easily seen that (�( f ),�(g)) = 0
for two different normalized Hecke eigenforms f and g.

Corollary 4.11. Assume that m > max(4, 3+ r), p > 1, q + � even, and that
L is even unimodular. Then the theta lift � : Sκ(
(1))→ Zq(X, S̃ym

�
(V )) is

injective.

Proof. This follows from Theorem 4.9, Proposition 3.12, and the convergence
of the Euler-product for D f (m/2− 1) in this case.
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Abstract

Moonshine relates three fundamental mathematical objects: the Monster
sporadic simple group, the modular function j (τ ), and the moonshine mod-
ule vertex operator algebra V �. Examining the relationship between modular
functions and the representation theory of vertex operator algebras reveals rich
structure. In particular, C2-cofiniteness (also called Zhu’s finiteness condition)
implies the existence of finite generating sets and Poincaré-Birkhoff-Witt-like
spanning sets for vertex operator algebras and their modules. These spanning
sets feature desirable ordering restrictions, e.g., a difference-one condition.

1. Introduction

The theory of vertex operator algebra blossomed from two major accomplish-
ments: the proof of the McKay-Thompson conjecture by Frenkel, Lepowsky,
and Meurman [FLM88] who constructed the Moonshine module V � and the
proof of the Conway-Norton conjecture by Borcherds [Bor92] using the Moon-
shine module. These two conjectures make up what is commonly referred to
as Monstrous Moonshine, relating the modular function j (τ ) and the Monster
group by way of a third fundamental mathematical object, the Moonshine mod-
ule vertex operator algebra V �. The study of vertex operator algebras continues
to reveal relations within mathematics and with physics.

Representation theory is a particularly rich aspect of the theory of vertex
operator algebras with fundamental connections to number theory, the theory
of simple groups, and string and conformal field theories in physics. A core
idea in the representation theory of vertex operator algebras and conformal

1 A contribution to the Moonshine Conference at ICMS, Edinburgh, July 2004.
2 Supported by a NSF Postdoctoral Fellowship for the Mathematical Sciences.
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field theory is “rationality”, a term used in a variety of ways to describe certain
desirable properties of a vertex operator algebra and its modules. Complete
reducibility of modules is one property that “rationality” invariably encom-
passes, but not always solely. In both mathematics and physics, “rationality” is
a term that suffers from a variety of meanings. Compounding this difficulty is
the variety of module definitions that appear in mathematics and physics litera-
ture. This combination makes the concept “rationality is complete reducibility
of modules” murky at best.

For certain vertex operator algebras, we can achieve some clarity. An
assumption on the “size” of the vertex operator algebra has important implica-
tions for its representation theory. This size condition is called C2-cofiniteness,
and it implies the existence of a finite generating set and Poincaré-Birkhoff-
Witt-like ordered spanning sets for the algebra and modules. An assumption
of C2-cofiniteness on an algebra ensures that even the most basic notion of a
module has “suitable” structure. In addition, the assumption of C2-finiteness
clarifies the concept of complete reducibility for modules of a vertex oper-
ator algebra. Understanding the implications of C2-cofiniteness is especially
important in light of the recent developments in the representation theory of
“non-rational”, C2-cofinite theories [Abe] [CF06] [HLZ].

2. Vertex operator algebras and quotient spaces

For an introduction to the theory of vertex operator algebras, I refer the reader
to “Introduction to Vertex Operator Algebras and Their Representations” by
Lepowsky and Li [LL04]. Throughout this exposition, I will assume that the
vertex operator algebras are of “CFT-type”. That is, a vertex operator algebra
V is of CFT-type if V =⊕n≥0 Vn and V0 = C1. The weight of a homogenous
vector is its L(0)-eigenvalue, L(0)u = (wtu)u. The weight of an operator, or
“mode”, un is also given by the L(0)-action, L(0)unv = wt(un)un L(0)v =
(wtu − n − 1)un L(0)v for n ∈ Z.

One of the powerful tools in the study of these infinite-dimesional objects,
vertex operator algebras, has been to look at quotient spaces. This technique’s
most important example is Zhu’s algebra A(V ) [Zhu96].

Definition 2.1. For V a vertex operator algebra, let

O(V ) = span

{
Resx

(1+ x)wtu

x2
Y (u, x)v : u, v ∈ V

}
,

and let A(V ) = V/O(V ).
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Zhu’s algebra A(V ) is an associative algebra with identity, and it acts on
lowest weight vectors of modules. This concept has been expanded to act on
larger “slices” of modules. The nth Zhu’s algebra An(V ), also an associative
algebra, acts on the bottom n levels of modules [DLM98c].

Definition 2.2. For V a vertex operator algebra and n ∈ N, let

On(V ) = span

{
Resx

(1+ x)wtu+n

x2n+2
Y (u, x)v : u, v ∈ V

}
,

and let An(V ) = V/On(V ), where A0(V ) = A(V ).

Under certain assumptions, all of the nth Zhu’s algebras are semisimple and
hence finite-dimensional. The representation theories of a vertex operator alge-
bra V and its Zhu’s algebras An(V ) are intimately related [Zhu96] [DLM98a]
[DLM98c].

Another family of subspaces spaces used to create interesting quotient
spaces are the Cn spaces. The subspace C2(V ) = span{Resx x−2Y (u, x)v :
u, v ∈ V } was introduced in Zhu’s modularity paper [Zhu96]. One of the cru-
cial assumptions needed to prove the modularity properties of certain graded
traces is finite-dimensionality of the quotient space V/C2(V ). This property is
known as C2-cofiniteness or Zhu’s finiteness condition.

This quotient space V/C2(V ) has the structure of a Poisson algebra.
A Poisson algebra has two operations: an associative product · and a Lie
bracket [, ] with compatibility of these operations given by Liebniz’s Law
[x, y · z] = [x, y] · z + y · [x, z]. For V/C2(V ), the product is given by
u · v = Resx x−1Y (u, x)v = u−1v and the Poisson bracket is given by
[u, v] = Resx Y (u, x)v = u0v. We can expand the definition of C2(V ) to
obtain a family of subspaces.

Definition 2.3. For a vertex operator algebra V and for n ≥ 2, let

Cn(V ) = span{Resx x−nY (u, x)v : u, v ∈ V }.

Then V is called Cn-cofinite if V/Cn(V ) is finite-dimensional.

The case where n = 1 is more nuanced and depending on an author’s focus,
is approached differently. Focusing on the algebra, the naive extension of the
definition, span{Resx x−1Y (u, x)v : u, v ∈ V }, is not particularly interesting
since the creation axiom for vertex operator algebras ensures that this subspace
is all of V . A more interesting subspace is the following.
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Definition 2.4. (cf. [KL99]) For a vertex operator algebra V =⊕n≥0 Vn , let

C1(V ) = span

{
Resx x−1Y (u, x)v, L(−1)u : u, v ∈

⊕
n>0

Vn

}
.

Then V is called C1-cofinite if V/C1(V ) is finite-dimensional.

The assumption of Cn-cofiniteness of a vertex operator algebra controls the
size of other quotient spaces. For example, a simple calculation shows that if
a vertex operator algebra V is C2-cofinite, then A(V ) is finite-dimensional.
The L(−1) derivation property implies Cn(V ) ⊆ Cn−1(V ), and thus Cn-
cofiniteness implies Cn−1-cofiniteness for n ≥ 2. In fact C2-cofiniteness
implies that a great deal of quotient spaces are finite-dimensional [GN03].

There are other interesting quotient spaces. For example, if we define
L(−1)V = span{L(−1)v : v ∈ V }, we can consider the quotient space
V/L(−1)V . This has the structure of a commutative algebra under the
operation u · v = Resx x−1Y (u, x)v = u−1v.

3. Modules

There are a wide variety of definitions of modules for vertex operator algebras.
This variety stems from the amount of grading assumed for a given module
and finite-dimensionality of the graded pieces (or lack thereof). Some mod-
ules are ungraded and others admit a grading by N, Q, R, or C. A N-grading
emphasizes lower-truncation, while the other gradings are given by the L(0)-
eigenvalues. With a grading in place we may impose a further restriction: the
graded pieces must be finite-dimensional.

Not only are there a variety of definitions for modules, the situation is fur-
ther muddled by different names for the same objects (e.g.,“N-graded weak ”
and “admissible”). Other adjectives modifying “module” in the literature are:
weak, strong, ordinary, lowest-weight, and generalized. Because of the vari-
ety in language and structure, an explicit description of some of the different
modules is warranted. A natural starting point is modules for vertex algebras,
which are naturally ungraded. Every vertex operator algebra is a vertex algebra
if one ignores the Virasoro vector and related axioms.

Definition 3.1. For a vertex algebra (V,Y, 1), a vertex algebra module
(M,YM ) is a vector space M with a linear map

YM : V → End(M)[[x, x−1]] (3.1)

v �→ YM(v, x) =
∑
n∈Z

vn x−n−1. (3.2)
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In addition YM satisfies the following:

1) vnw = 0 for n >> 0 where v ∈ V and w ∈ M
2) YM (1, x) = I dM

3) For all u, v ∈ V ,

x−1
0 δ

(
x1 − x2

x0

)
YM (u, x1)YM(v, x2)

− x−1
0 δ

(
x2 − x1

−x0

)
YM(v, x2)YM(u, x1)

= x−1
2 δ

(
x1 − x0

x2

)
YM(Y (u, x0)v, x2). (3.3)

For a vertex operator algebra V = (V,Y, ω, 1), we can consider objects
(M,YM ) as defined above for the vertex algebra structure of V .

Definition 3.2. A weak module for a vertex operator algebra V is a vertex
algebra module for the vertex algebra structure of V .

Weak modules for vertex operator algebras have additional structure that is
a consequence of the vertex algebra module axioms. They admit a representa-
tion of the Virasoro algebra and modules for a vertex operator also obey the
L(−1)-derivation property.

Proposition 3.3. Let V = (V,Y, ω, 1) be a vertex operator algebra and M =
(M,YM ) a weak module for V .

1) YM (ω, x)=∑n∈Z L M(n)x−n−2 where

[L M(m), L M(n)]= (m− n)L M (m+ n)+ m3−m

12
δm+ n,0c

2) YM (L(−1)v, x) = d
dx YM (v, x) for all v ∈ V

Even with this additional structure known, weak modules of vertex oper-
ator algebras still lack suitable structure. Some grading is necessary, and in
particular a lower-truncated grading is desirable. A lower-truncated grading
guarantees the existence of “lowest weight” vectors.

Definition 3.4. A weak module M for a vertex operator algebra V is called
N-gradable if it admits an N-grading, M = ⊕n∈N M(n), such that if v ∈ Vr

then vm M(n) ⊆ M(n + r − m − 1).

The additional structure we have imposed on these modules is a lower-
truncated grading, and we ensure that the grading is compatible with the vertex



Ordered Spanning Sets for Vertex Operator Algebras and their Modules 45

operator algebra action. These modules are also called “admissible” in the liter-
ature. The grading of these N-gradable weak modules differs from the grading
of vertex operator algebras in the following way. The grading of vertex opera-
tor algebra is given by the eigenvalues of L(0), while this is not necessarily true
for for N-gradable modules. A third type of module is one where the grading
is given by the L(0)-action.

Definition 3.5. A weak module M for a vertex operator algebra
V = (V,Y, 1, ω) is a V -module if M is C-graded with M =⊕λ∈C Mλ, and

1) dim(Mλ) <∞,
2) Mλ+n=0 for fixed λ and n << 0,
3) L(0)w = λw = wt(w)w, for w ∈ Mλ.

The grading has been expanded to C to account for all possible L(0)-
eigenvalues, and there is a lower truncation condition. In addition, each graded
piece must be finite-dimensional. Such a finiteness condition is not imposed on
N-gradable weak modules. One result of this finiteness condition and lower-
truncation condition for V -modules is that V -modules are N-gradable weak
modules. In practice, N-gradable weak modules have enough structure to
develop interesting theory. We will see that for C2-cofinite vertex operator
algebras, weak modules are N-gradable as well. In his work on modularity,
Zhu used what he called strong modules. The definition of a strong module
is the same as the definition of an ordinary module except that the axiom
“dim(Mλ) <∞” is omitted.

It is possible to extend the definition of Cn-cofiniteness to modules using
Cn(M) = span{Resx x−nYM(u, x)w|u ∈ V, w ∈ M} for n ≥ 2. Because there
is no creation axiom for modules, it can be interesting to extend the idea of
C1-cofiniteness to modules in the naive way.

Definition 3.6. For a vertex operator algebra V = ⊕n≥0 Vn and a module
M , let

c1(M) = span

{
Resx x−1YM (u, x)w : u ∈

⊕
n>0

Vn, w ∈ M

}
.

Then M is called c1-cofinite if M/c1(M) is finite-dimensional.

This definition appears in the work of Nahm, who studied vertex oper-
ator algebras for which all irreducible N-gradable weak modules are
c1-cofinite [Nah94]. He called such algebras quasirational. Quasirational-
ity or c1-cofiniteness of all irreducible modules is a important assumption
in Huang’s work on modular tensor categories and the Verlinde conjecture
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[Hua03] [Hua05a] [Hua05b]. Huang’s work also requires that the algebras be
C2-cofinite, which implies c1-cofiniteness of the modules [ABD04].

4. Complete reducibility

One desirable property of vertex operator algebras that is featured in both
mathematics and physics is complete reducibility of modules, the primary fea-
ture of “rationality”. The definition differs from author to author, with each
rendition of “rationality” encompassing some minimum amount of “goodness”
needed for the author’s theory to work. The “goodness” invariably includes
some form of complete reducibility of modules and may also include some
finiteness condition, i.e., finite number of irreducible modules, the graded
pieces of irreducible modules are finite-dimensional, or even C2-cofiniteness
for some authors. Calling a vertex operator algebra or conformal field the-
ory “rational” endows that object with some physical importance, but the cost
can sometimes be misinterpretation. A common type of complete reducibility
imposed on a vertex operator algebras is the following.

Every N-gradable weak module is the direct sum of irreducible N-gradable
weak modules.

In mathematical literature, this property is sometimes called rationality, but
certainly not consistently. A clearer naming would be complete reducibil-
ity of N-gradable weak modules (in terms of irreducible N-gradable weak
modules). I will use “complete reducibility of N-gradable weak modules” to
convey this form of complete reducibility. The assumption of this form of
complete reducibility is necessary to prove many important results in ver-
tex operator algebra theory. As mentioned above, the concept of rationality
sometimes includes some finiteness assumptions. Zhu’s formulation of ratio-
nality included two additional conditions: there exists a finite number of
irreducible N-gradable weak modules, and each graded piece of an irreducible
N-gradable weak module is finite-dimensional. However Dong, Li, and Mason
demonstrated that Zhu’s additional conditions are consequences of complete
reducibility of N-gradable modules [DLM98b]. In other words, Zhu’s seem-
ingly stronger formulation of rationality is equivalent to complete reducibility
of N-gradable weak modules. In fact, the Dong-Li-Mason results imply that
complete reducibility of N-gradable weak modules is equivalent to: every
N-gradable weak module is the direct sum of irreducible V -modules. Some
vertex operator algebras feature a stronger form of complete reducibility:

Every weak module is the direct sum of irreducible V -modules.
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This property is called regularity, and examples of vertex operator algebras
that satisfy this form of complete reducibility are the Moonshine module vertex
operator algebra V �, the Virasoro vertex operator algebras L(cp,q , 0), and ver-
tex operator algebras associated to positive definite even lattices [DLM97]. We
will see that many more vertex operator algebras are regular. Zhu conjectured
that complete reducibility of N-gradable modules implies C2-cofiniteness.
This remains an important open question. However for the stronger form
of complete reducibility, Li proved that regular vertex operator algebras are
C2-cofinite [Li99].

5. Spanning sets for algebras and modules

One of the important consequences of C1- or C2-cofiniteness for a ver-
tex operator algebra is that the algebra is finitely generated and has a
Poincaré-Birkhoff-Witt-like spanning sets featuring desirable ordering restric-
tions.

Proposition 5.1. (cf. [LL04]) For a subset S of a vertex operator algebra
V = (V,Y, ω, 1), the subalgebra of V generated by S is

〈S〉 = span{u(1)n1
· · · u(r)nr

1|r ∈ N, u(1), . . . , u(r) ∈ S ∪ {ω}, n1, . . . , nr ∈ Z}.
Different types of spanning sets feature different restrictions on the basic

form, u(1)n1 · · · u(r)nr 1, of spanning set elements. Some restrictions describe how

often the index ni of or the weight of a mode u(i)ni can appear in a spanning
set element, while other restrictions limit the u(i)’s to certain subsets of V .
One way to think about the index restrictions on spanning set elements is
in terms of a difference condition, similar to a difference condition on par-
titions. A difference-n condition on modes means that the indices of adjacent
modes must differ by at least n. That is, for adjacent modes u(i)mi and u(i+1)

mi+1 in
a spanning set element, mi+1 − mi ≥ n.

A natural question is: for a vertex operator algebra V , what sets S generate
V ? Certainly a minimal set S is desirable, and this is what Karel and Li have
explored.

Proposition 5.2. (cf. [KL99]) For a vertex operator algebra V , let X be a
set of homogeneous representatives of a spanning set for the quotient space
V/C1(V ). Then V is spanned by the elements of the form

u(1)n1
· · · u(r)nr

1,

where r ∈ N, u(1), . . . , u(r) ∈ X, n1, . . . , nr ∈ Z, and wt(u1
n1
) ≥ · · · ≥

wt(ur
nr
) > 0.
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In addition to showing that representatives of a basis for V/C1(V ) generate
V , Karel and Li also show that this set is a minimal generating set of V . So
C1-cofinite vertex operator algebras are finitely generated. Karel and Li also
prove an analogous spanning set for N-gradable weak modules.

Proposition 5.3. (cf. [KL99]) For a vertex operator algebra V and an
irreducible N-gradable weak module M = ⊕n≥0 M(n), let X be a set
of homogeneous representatives of a spanning set for the quotient space
V/C1(V ). Then M is spanned by the elements of the form

u(1)n1
· · · u(r)nr

w,

where r ∈ N, u(1), . . . , u(r) ∈ X, n1, . . . , nr ∈ Z, w ∈ M(0), and wt(u1
n1
)

≥ · · · ≥ wt(ur
nr
) > 0.

For both the algebra and module spanning sets, the ordering restriction on
the modes u(i)ni is in terms of the weight of the mode, and there is no restriction

on how often an index ni of a mode u(i)ni can appear in a spanning set element.
However, one can prove an alternate version of the algebra spanning set, where
the ordering restriction on the operators is in terms of the indices of modes, i.e.,
the ni ’s.

Proposition 5.4. For a vertex operator algebra V , let X be a set of homoge-
neous representatives of a spanning set for the quotient space V/C1(V ). Then
V is spanned by the elements of the form

u(1)n1
· · · u(r)nr

1,

where r ∈ N, u(1), . . . , u(r) ∈ X, n1, . . . , nr ∈ Z, and n1 ≤ · · · ≤ nr < 0.

The proof of this algebra spanning set is the same as the proof of the Karel-Li
spanning result, since the mechanism for reordering the modes is the same.
This same mechanism is just used to impose a different ordering. It is possi-
ble to extend this spanning set to modules. Since there is no creation axiom
for modules, modes un with n ≥ 0 need to be limited in some way in the
expression of spanning set elements.

Lemma 5.5. Given an N-gradable weak module M = ⊕n≥0 M(n) and X a
finite set of vectors in V , there exists T ∈ N such that unw = 0 for all n ≥ T ,
u ∈ X, and w ∈ M(0).

Proof: We have uwtu+Lw = 0 for all v ∈ V , L ≥ 0, and w ∈ M(0). Let
T = maxu∈X {wtu}. �

In particular, if X is a set of representatives of a basis of V/C1(V ) for a
C1-cofinite vertex operator algebra, such a T exists.
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Proposition 5.6. For a C1-cofinite vertex operator algebra V and an irre-
ducible N-gradable weak module M =⊕n≥0 M(n), let X be a set of homoge-
neous representatives of a spanning set for the quotient space V/C1(V ). Then
M is spanned by the elements of the form

u(1)n1
· · · u(r)nr

w,

where r ∈ N, u(1), . . . , u(r) ∈ X, n1, . . . , nr ∈ Z, w ∈ M(0), and n1 ≤ · · · ≤
nr < T (as above).

Gaberdiel and Neitzke developed another type of spanning set for a vertex
operator algebra using a set of representatives of a basis of the quotient space
V/C2(V ). Though this generating set is not minimal, it does have stronger
ordering restrictions than the spanning set of Karel and Li.

Proposition 5.7. (cf. [GN03]) For a vertex operator algebra V , let X be a
set of homogeneous representatives of a spanning set for the quotient space
V/C2(V ). Then V is spanned by the elements of the form

u(1)n1
· · · u(r)nr

1,

where r ∈ N, u(1), . . . , u(r) ∈ X, n1, . . . , nr ∈ Z, and n1 < · · · < nr < 0.

By enlarging the generating set, Gaberdiel and Neitzke were able to intro-
duce a repetition restriction. Each index of a mode can only appear once in the
expression of a spanning set element, or in other words this is a no-repetion
restriction on the indices of modes. One corollary of Proposition 5.7 is that
C2-cofiniteness implies Cn-cofiniteness for n ≥ 2. The converse, mentioned
above, is also true, yielding the following result.

Corollary 5.8. (cf. [GN03]) If a vertex operator algebra V is Cn-cofinite for
some n ≥ 2 then V is Cn-cofinite for all n ≥ 2.

C1-cofiniteness of a vertex operator algebra is a strictly weaker condition
since the vertex operator algebra constructed from a Heisenberg algebra is C1-
cofinite, but is not C2-cofinite.

A more natural way to view the no-repetition restriction is in terms of a
difference condition. The Gaberdiel and Neitzke algebra spanning set obeys
a difference-one condition, and the reformulation of the Karel and Li alge-
bra spanning set obeys a difference-zero condition. A natural extension
of the Gaberdiel-Neitzke result would be a module spanning set satisfy-
ing a difference-one condition. This next result is a partial solution to this
difference-one module spanning set question.
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Proposition 5.9. (cf. [Buh02]) For a C2-cofinite vertex operator algebra V
and an irreducible N-gradable weak module M = ⊕n≥0 M(n), let X be a
set of homogeneous representatives of a spanning set for the quotient space
V/C2(V ). Then M is spanned by the elements of the form

u(1)n1
· · · u(r)nr

w,

where r ∈ N, u(1), . . . , u(r) ∈ X, n1, . . . , nr ∈ Z, w ∈ M(0), and u1
n1
≤ · · · ≤

ur
nr
< T (with T as above) where n j−1 < n j if n j < 0 and n j = n j+1 for at

most Q indices j for n j ≥ 0, where Q ∈ N, and Q is fixed for V .

In this module spanning set, the modes with negative indices obey a
difference-one condition, but the non-negative modes do not. However, the
non-negative modes may repeat only a globally finite number of times. This
spanning set was useful in proving a number of results, yet it still is not a true
difference-one condition module spanning set. Miyamoto provides a further
refinement obtaining a full difference-one module spanning set.

Proposition 5.10. (cf. [Miy04]) For a C2-cofinite vertex operator algebra V
and an irreducible N-gradable weak module M = ⊕n≥0 M(n), let X be a
set of homogeneous representatives of a spanning set for the quotient space
V/C2(V ). Then M is spanned by the elements of the form

u(1)n1
· · · u(r)nr

w,

where r ∈ N, u(1), . . . , u(r) ∈ X, n1, . . . , nr ∈ Z, w ∈ M(0), and u1
n1
< · · · <

ur
nr
< T (as above).

Viewed in terms of difference conditions, this means that C1-cofiniteness
implies a difference-zero condition on elements of a spanning set of a vertex
operator algebra and its modules, and C2-cofiniteness implies a difference-one
condition on elements of a spanning set of a vertex operator algebra and its
modules.

Orbifold theory and twisted modules are important aspects of the repre-
sentation theory of vertex operator algebras. A paper by Yamauchi [Yam04]
addresses twisted modules, and the full statement of his difference-one
spanning set theorem applies in this larger generality.

Again an underlying assumption in this exposition is that the vertex oper-
ator algebras are of CFT-type. Miyamoto’s result is true for vertex operator
algebras that are not of CFT-type [Miy04]. In particular, he assumed that
V =⊕n≥0 Vn , but V0 not necessarily one-dimensional.
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6. Finiteness Results

As mentioned in previous sections, C2-cofiniteness implies the finite-
dimensionality of many quotient spaces of the algebra and implies the exis-
tence of a finite generating set for the algebra. The assumption of C2-finiteness
has implications for the representation theory of vertex operator algebras
beyond the difference-one module spanning set.

Theorem 6.1. Let V be a C2-cofinite vertex operator algebra. Then:

1. V has finite number of irreducible V -modules up to isomorphism.
[KL99]

2. Weak modules for V are N-gradable weak modules.[ABD04]
3. Irreducible N-gradable weak modules for V are irreducible V -modules.

[KL99]
4. Irreducible weak modules for V are irreducible V -modules. [ABD04]
5. The associative algebra A(V ) is finite-dimensional.

Practically, this means that under the assumption of C2-cofiniteness, we
do not need to be concerned about the myriad types of modules. The weak-
est definition of modules is sufficient, as weak modules are gradable and
lower truncated. Further, any irreducible module has a grading given by
the L(0)-action and each graded piece is finite-dimensional. Some of these
results were extended by Miyamoto, in his extended generality described
above.

Theorem 6.2. [Miy04] For V a vertex operator algebra, the following are
equivalent:

1. V is C2-cofinite.
2. Every weak module is a direct sum of generalized eigenspaces of L(0).
3. Every weak module is an N-gradable weak module M = ⊕n≥0 M(n)

such that M(n) is a direct sum of generalized eigenspaces of L(0).
4. V is finitely generated and every weak module is an N-gradable weak

module.

In light of this, we see that C2-cofiniteness is equivalent to all mod-
ules having suitable properties for an interesting representation theory, with
the lone exception of complete reducibility. However, the assumption of
C2-cofiniteness unifies notions of complete reducibility.

Theorem 6.3. [ABD04] [Li99] For a C2-cofinite vertex operator algebra V ,
the following are equivalent:
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1. Every weak module for V is the direct sum of irreducible V -modules.
2. Every N-gradable weak module is the direct sum of irreducible

N-gradable weak modules.

In particular, this means that all known vertex operator algebras with com-
plete reducibility of N-gradable weak modules are regular. Theorem 6.1 should
be compared with the following theorem for vertex operator algebras with
complete reducibility of N-gradable weak modules.

Theorem 6.4. Let V be a vertex operator algebra for which every N-gradable
weak module is the direct sum of irreducible V -modules. Then:

1. V has a finite number of irreducible V modules up to isomorphism.
[DLM98a]

2. Irreducible N-gradable weak modules for V are irreducible V -modules.
[DLM98a]

3. The associative algebra A(V ) is semisimple and finite-dimensional.
[DLM98c]

This is compelling evidence that complete reducibility of N-gradable weak
modules and C2-cofiniteness are somehow related. Zhu conjectured that
complete reducibility of N-gradable weak modules implies C2-cofiniteness
[Zhu96]. The converse of this conjecture has been disproved. Building on the
work of Kausch and Gaberdiel [GK96], Abe and Carqueville-Flohr construct
examples of C2-cofinite vertex operators for which there exist N-gradable
weak modules that are not completely reducible. Specifically, Abe constructs
a family of C2-cofinite vertex operator algebras with central charge −2d for
d ∈ Z+ with reducible indecomposible modules [Abe]. Carqueville and Flohr
prove that the vertex operator algebras constructed from the triplet algebras
cp,1 are C2-cofinite and also have reducible indecomposible modules [CF06].
However Zhu’s conjecture as to whether complete reducibility of N-gradable
weak modules implies C2-cofiniteness remains open.
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Abstract

A new conjecture due to John McKay claims that there exists a link between
(1) the conjugacy classes of the Monster sporadic group and its offspring,
and (2) the Picard groups of bases in certain elliptically fibered Calabi-Yau
threefolds. These Calabi-Yau spaces arise as F-theory duals of point-like
instantons on ADE type quotient singularities. We believe that this conjec-
ture, may it be true or false, connects the Monster with a fascinating area of
mathematical physics which is yet to be fully explored and exploited by mathe-
maticians. This article aims to clarify the statement of McKay’s conjecture and
to embed it into the mathematical context of heterotic/F-theory string-string
dualities.

1. Introduction

John McKay has observed a remarkable connection between the three spo-
radic groups: the Monster, the Baby Monster, the Fischer group, and the three
affine Dynkin diagrams: E8, E7, E6 [McK80]. Let us present this statement in
more detail, following Borcherds [Bor02, Bor01] and Glauberman and Norton
[GN01].

The Monster group M has a total number of 194 conjugacy classes, two of
which contain elements of order 2; we denote them by 2A and 2B. The class
2A is the conjugacy class of the Fischer involution in M so that its centralizer
is a double cover of the Baby Monster B. There are 9 conjugacy classes of M
which can be written in the form [t ti ], i = 0, . . . , 8, with t, ti of type 2A. The

55
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orders of t ti ∈ M are 1, 2, 3, 4, 5, 6, 2, 3, 4, numbers which are familiar as the
numbers which label1 the affine Dynkin diagram E8.

The Baby Monster B has 5 conjugacy classes of elements which can be
written as a product of two elements of type 2A. These have orders 2, 4, 3, 2, 1,
the numbers labeling the affine Dynkin diagram F4. The diagram is related
to the affine Dynkin diagram of E8 as follows: Omitting the node labeled 2 on
the left side of the diagram in the latter gives the E7 Dynkin diagram, which
we then extend to get its affine version. Folding this by its Z2 automorphism
gives the affine Dynkin diagram of F4. On the level of the associated sporadic
groups the omission of the node labeled 2 corresponds to taking the centralizer
of an element of type 2A in M, which gives the Baby Monster B.

The Fischer group Fi24 has 3 classes of elements that are products of two
elements of type 2A. The orders are 2, 3, 1, the numbers labeling the affine
Dynkin diagram of G2. This diagram is obtained from the affine Dynkin
diagram of E6 via a folding under a symmetry of order 3.

John McKay has pointed out another mysterious appearance of the num-
ber 194 of conjugacy classes of the Monster, together with various E8’s. 194
occurs as the Picard number of the base in an elliptically fibered Calabi-Yau
3-fold with section, which was studied by Aspinwall, Morrison, and Katz
[AM97, AKM00] in the context of the so–called heterotic – F-theory duality.
The 3-fold is the F-theory dual of the E8 × E8 heterotic data consisting of 24
pointlike instantons in an E8 quotient singularity on a K 3 surface. This is the
most degenerate situation of a heterotic – F-theory pair: The maximal number
of pointlike instantons is moved into the worst possible quotient singularity on
K 3. Moreover, on the F-theory side, our 3-fold has Euler characteristic 960,
the current record among Calabi-Yau 3-folds. McKay’s observation adds that
on the F-theory side we also find the maximal number of conjugacy classes of
a sporadic group . . . Though the evidence may be scarce, if McKay’s numerol-
ogy is true, then this points to a very interesting connection: surface orbifold
singularities for the exceptional simply-laced Dynkin diagrams should cor-
respond to elliptically fibered Calabi-Yau 3-folds over rational surfaces with
Picard number equal to the number of conjugacy classes in the three sporadic
simple groups.

Motivated by these observations, we originally set out to prove or disprove
McKay’s conjecture. Using the results of [AM97] it is not too hard to see that

1 In terms of representation theory, if α1, . . . , α8 denote the fundamental roots in a chosen
root system for E8, and if α0 is the negative of the maximal root of the system, then

there exist integers c0, c1, . . . , c8 with c0 = 1, so that
8∑

i=0

ciαi = 0. Here (c0, . . . , c8) =
(1, 2, 3, 4, 5, 6, 2, 3, 4).
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the conjecture at least needs refinement, since 24 pointlike instantons on other
ADE type singularities under the heterotic – F-theory duality do not produce
any convincing numerology. In fact, because F4 and G2 are non-simply laced
but give the Dynkin data corresponding to the Baby Monster and the Fischer
group, any naive attempt to collect further evidence for McKay’s conjecture by
placing pointlike instantons on other rational double points was bound to fail.
We will briefly comment on possible remedies in the Conclusions. However,
instead of ending this work here by announcing that McKay’s conjecture as
yet awaits confirmation by further data points, we prefer to report on the fasci-
nating areas of mathematical physics which this very conjecture relates to: On
our journey we quickly got entangled in the amazing features of string-string
dualities. Though friendly giants have not yet been sighted, pointlike instan-
tons will certainly make their appearance in this work. In summary, the reader
should be warned that the title of this work can be misleading: It honestly states
the outset of this project but does not reflect the fact that the pointlike instan-
tons or rather the heterotic – F-theory duality which supposedly confronts them
with the friendly giant is playing the main part in our study. We aim to give a
mathematical account of some foundations of string-string duality and include
some of the open questions which we plan to address in future work. Much
of our discussion is collected from the vast literature on this topic. However,
we attempt to carefully separate physics lore from mathematical derivations, to
pinpoint the open questions, to explain computations in algorithmic form, and
to illustrate them with examples where appropriate, in a form which is not yet
available in the literature. A number of original observations are found in this
work, but on the large this is a review article. We hope to convince the reader
that this field of mathematical physics deserves more attention than it has so
far received from mathematicians.

The paper is organized as follows:
In Section 2 we present aspects of heterotic E8× E8 and type IIA string the-

ory which are relevant for our later discussion. The main focus is on the form of
the massless spectrum; we describe first the massless spectrum of the D = 10
theories, and then its modification as we compactify to a lower dimensional
theory. We treat the cases when the compactifying manifolds are K 3 surfaces,
T 4, K 3 × T 2, and smooth Calabi-Yau 3-folds, and in each of these cases we
determine the numbers nV , nT , nH of linearly independent vector-, tensor-,
and hypermultiplets in the massless spectrum. More precisely, we study care-
fully the behavior of the Yang-Mills multiplet in 10-dimensional heterotic
theories under compactification. We modify an Atiyah-Hitchin-Singer index
theorem [AHS78, Thm. 6.1] to relate the multiplicities arising in this context
to the dimensions of the moduli spaces of anti-selfdual connections on E8-
bundles over K 3. These moduli spaces must have non-negative dimensions
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to yield consistent theories, imposing bounds on the instanton numbers of the
bundles in play. Although these observations must be known to physicists, we
have not been able to find explanations, along the lines we are giving, in the
literature. We also discover a correction to the count of neutral versus charged
massless hypermultiplets which seems to have escaped mention so far.

In Section 3 we discuss the anomaly cancellation condition, which in
physics arises as a consistency condition for string theory. Our focus is the
heterotic E8 × E8 theory compactified on a K 3 surface, where this condition
takes the form

nH − nV + 29nT = 273.

We give two ways to derive it: (1) directly on the space-time, and (2) on the K 3
surface by employing a purely index theoretical argument. It is not clear from
the literature whether the physics community is aware of the equivalence of
(1) and (2). We end the section by discussing a number of examples. Similar
(and more extensive) collections of examples have appeared previously, see
particularly [BIK+96]; our list is representative in view of the later comparison
to purely geometrical techniques which are shown to reproduce the numbers
nH , nV , nT in Section 5.3.

Section 4 presents first the conjectured duality between heterotic and type
IIA theories. In the so–called F-theory limit a duality is induced between
heterotic E8 × E8 string theory compactified on a K 3 surface and F-theory
compactified on a Calabi-Yau 3-fold which is K 3-fibered. The existence of
such a limit with the desired properties requires the Calabi-Yau 3-fold to be
elliptically fibered, with a section, over a rational surface. The duality predicts
that the numbers of linearly independent vector-, tensor-, and hypermultiplets
of two dual theories agree.

In Section 5 we analyze the implications of this conjecture from the per-
spective of the geometry of the elliptically fibered Calabi-Yau 3-fold, and
we explain how the above mentioned anomaly cancellation condition (on the
heterotic side) induces a classically unknown relation among the geometric
invariants of the Calabi-Yau 3-fold (on the F-theory side). The significance
of this interpretation of the duality was first observed in [GM03]. We give a
detailed summary of this latter work. Particularly, incorporating the more gen-
eral results of [Mir83], we describe an algorithm to calculate the Euler numbers
of these Calabi-Yau 3-folds. This includes a brief discussion of “charged hyper-
multiplets”, together with some new evidence for the geometric realization
of these mysterious structures. We plan to give a more complete construc-
tion in the near future. We end this section by presenting examples where we
check that in each case the results match the data on the heterotic side. We
also include examples where the heterotic analysis is impossible, because the
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bundles degenerate in a way which still needs to be understood: the case of
pointlike instantons on ADE type quotient singularities on a K 3 surface which
was pioneered in [AM97]. We give details of the geometric analysis on the
F-theory side, most of which must have been known to the authors of [AM97],
but which have not appeared elsewhere.

We conclude with a discussion in Section 6 where we take stock of our
results, relate them back to McKay’s conjecture, and suggest some further steps
to take.

Two appendices summarize background material on Rarita-Schwinger fields
and on characteristic classes, particularly for K 3 surfaces.
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2. Vocabulary from heterotic and type IIA theories

Let us present some of the standard lore of superstring theory. Consistency
conditions require one to work on a ten-dimensional real space-time with
Minkowski signature, where there are five basic theories: two N = 2 (type
IIA and type IIB), and three N = 1 theories (heterotic E8 × E8, heterotic
SO(32), and type I). At first level the difference between these theories is
given by the number N of supersymmetries, and by their “massless field con-
tent”. In fact, when space-time is the ten dimensional Minkowski space, then
this information is sufficient to tell the five theories apart, and since we are not
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capable to address string theory in general, we will focus on issues related to
these massless particles.

Interesting structure arises when the space-time is of the form M1,D−1×Xd ,
where d + D = 10, M1,D−1 is flat D-dimensional Minkowski space, and
the “internal” Xd is a real d-dimensional manifold which admits Ricci-flat
Kähler-Einstein metrics. On M1,D−1 it is convenient to work with light-cone
coordinates, i.e. with x± = (x0 ± x D−1

)
/
√

2 and the remaining (D − 2)
transverse directions, which are space-like. The massless particles are labeled
by irreducible representations of Spin(D − 2), the double cover of the little
group SO(D− 2), which acts on the transverse directions. Both have the same
Lie algebra so(D − 2) which we shall use for convenience from now on.

In this section we describe the massless field content of our main protago-
nists, namely the type IIA and heterotic E8 × E8 string theories. We do this
first on M1,9 and then compactify to M1,D−1 × Xd with D = 6 and D = 4,
respectively.

Much of this section consists of standard material [GSW87, Pol98]. Our
exposition aims to present the mathematical details, some of which we have
not been able to find explicitly in the literature.

2.1. Massless spectra in D = 10

As stated above, massless particles in 10 dimensions are given by irreducible
representations of so(8). Let 8v, 8+, 8− denote the real vector, the positive,
and the negative real spinor representation of so(8). Spinors transforming in
8± are called Majorana-Weyl spinors (see e.g. [Pol98, II, Appendix B] for a
useful account on spinors and supersymmetry in various dimensions). Recall
that 8v, 8+, 8− are related to one another by the triality automorphism of so(8)
[Stu03]. For each of the superstring theories, the massless particles arise as
tensor products of “left” and “right moving” representations, where the left
hand side is always 8v ⊕ 8+.

Type IIA for D = 10
In type IIA theories the massless spectrum is (8v⊕ 8+)⊗ (8v⊕ 8−). Expand-
ing into irreducible representations of so(8), one has the explicit field content,
organized into four sectors with the following standard notations:

the NS-NS sector: 8v⊗8v = 35⊕ 28⊕ 1 → gM N ⊕ BM N ⊕ φ

the R-NS sector: 8+⊗8v = 56+ ⊕ 8− → �+M ⊕�−
the NS-R sector: 8v⊗8− = 56− ⊕ 8+ → �−M ⊕�+
the R-R sector: 8+⊗8− = 56v ⊕ 8v → CM N P ⊕ CM

(2.1.1)
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Here, gM N gives the metric on M1,9 up to scaling and is called the graviton;
the 2-form BM N on M1,9 is the B-field2; the scalar φ is the dilaton; the two
fields �±M in the 56± are the Majorana-Weyl gravitinos of opposite chiralities;
the �∓ are Majorana-Weyl dilatinos; CM N P is called RR 3-form, CM is an RR
1-form. The graviton has spin 2, all p-forms have spin 1, while the gravitinos
have spin 3

2 and pure spinors have spin 1
2 . The fields �±M with spin 3

2 carry
both vector and spinor indices; in the physics literature such fields are called
Rarita-Schwinger fields, see Appendix A for more details.

Remark. Consider the group Spin(n) (or Spin(1, n+1)). If n ≡ 0(mod4) then
the smallest real irreducible representation of the real Clifford algebra Cl(n)
decomposes into two inequivalent representations. On the other hand if n ≡
0(mod2) then the smallest irreducible complex representation of the complex
Clifford algebra Cl(n) decomposes into two inequivalent complex irreducible
representations. If these last two representations are self-dual, and if they allow
a real structure such that their real part is a real spin representation, then spinors
in those real representations are called Majorana-Weyl spinors (for Spin(n),
these are normally called pseudoreal, but we will not make this distinction).
From Bott periodicity and the classification of these representations for small
n, it can be seen that the condition for the existence of Majorana-Weyl spinors
is a dimensional one: n ≡ 0(mod8). For example, for Spin(8) let 8± denote the
real spin irreducible representations of real dimension 8, and let 8C± denote the
complex spin irreducible representations. Then the Majorana-Weyl condition
gives that

8C± = 8±⊗RC, 8± = Re(8C±). (2.1.2)

Heterotic E8 × E8 for D = 10
The massless spectrum of heterotic G10 = E8×E8 strings is (8v⊕8+)⊗(8v⊕
Ad(G10)), such that there is supersymmetry only on the left hand side, with
the following two irreducible representations of the N = 1 super Poincaré
algebra:

R(10) : (8v ⊕ 8+)⊗8v = 35⊕ 28⊕ 1 ⊕ 56+ ⊕ 8−
Y (10) : (8v ⊕ 8+)⊗ Ad(G10) = (8v ⊗ Ad(G10))⊕ (8+ ⊗ Ad(G10))

→ AM ⊕�+
(2.1.3)

The irreducible representations of the super Poincaré algebra along with their
decomposition under so(D− 2) are commonly called supermultiplets. Above,

2 The B-field is only locally given by a 2-form, as shall be of importance in Section 3.2.1. For the
time being, however, we can safely view BM N as a 2-form on M1,9.
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R(10) is the supergravity multiplet, which agrees with the NS-NS plus the
R-NS sector of type IIA, containing the graviton gM N , the B-field BM N , the
dilaton φ, the gravitino �+M , and the dilatino �−. Second, Y (10) is the super-
Yang-Mills multiplet, where AM is a gauge field, i.e. a connection 1-form on
a principal G10-bundle on M1,9. For definiteness we always identify the spin
connection with the gauge connection. The superpartner �+ of AM is called
gaugino and is a positive spinor on M1,9 with values in the adjoint represen-
tation of G10. We will see later that under compactification to K 3 anomaly
cancellation forces the instanton number of the connection AM to be 24, see
(2.2.22) and Section 3.

2.2. Compactification

Let us now “compactify” d dimensions, that is consider the above-mentioned
M1,D−1 × Xd as background for our strings. We will refer to M1,D−1 as
space-time, and here assume that the compact space Xd is smooth. Space-time
indices are denoted by μ, ν, while coordinates on Xd are indexed by i, j . We
summarize the discussion in [GSW87, II, p. 366 ff].

The massless fields of the ten-dimensional theory decompose under the
action of so(D − 2) ⊕ so(d), and we view the components as fields on the
Minkowski space M1,D−1. At the same time they give sections in certain fiber
bundles on Xd , depending on the type of field under consideration, together
with associated geometrical differential operators, which can be of Dirac-type,
Laplacians, or Yang-Mills or Einstein linearizations. These operators are “mass
operators”, and massless fields are characterized as sections in their kernels.

As a representative case consider spinor fields and the corresponding Dirac
operator. The above tells us that we need to calculate the kernel of a Dirac
operator D/ on X . In fact, pairs of elements of opposite helicity in this kernel
can conspire and acquire mass, and it is believed that they tend to do so in
nature unless a large gauge group remains unbroken, see [GSW87, II, p. 368].
Hence generically to calculate the dimension of the space of massless spinors
we determine the index of the appropriate Dirac operator on the compactify-
ing manifold X : This index gives the number of independent solutions to the
massless equations of motion which cannot become massive. In other words, a
positive index of D/ implies that, when viewed as fields on X , we have ind D/
massless fields having positive chirality, while a negative index implies that we
have (− ind D/ ) massless fields of negative chirality.

Similar comments hold for the other fields: Rarita-Schwinger fields,
p-forms, gauge fields, or gravitational fields, where p-forms give massless
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fields iff they are harmonic. Some massless fields satisfy linear equations and
these are easy to figure out using the appropriate index theorem on the com-
pactifying manifold X . On the other hand, there are fields like the gauge fields
and the gravitational fields which satisfy non-linear equations [GSW87, II,
p. 398]: the Ricci-flat Einstein equation for the metric, and the Yang-Mills
equation for the gauge fields. To count the number of independent massless
solutions, one considers the kernel of the linearizations of these operators
around a solution.

2.2.1. Compactification to D = 6

Consider superstring theory on M1,5 × X4. We need to decompose 8v , 8+,
and 8− under the action of so(4) ⊕ so(4) ⊂ so(8). The vector representation
decomposes as

8v = (4, 1)⊕ (1, 4)

where 4 is the natural 4-dimensional vector representation of so(4). To fig-
ure out how the spinor representations decompose we need to look first at the
decomposition of the complexifications. Under so(4)⊕ so(4) we have

8C+ = (2C+, 2C+)⊕ (2C−, 2C−), 8C− = (2C+, 2C−)⊕ (2C−, 2C+),

where 2C± are the complex irreducible spin representations of so(4), which have
complex dimension 2 each. There are also two real irreducible spin represen-
tations 4± of so(4) of dimension 4 each, which are related to the respective
complex spin representations by

4± = Re(2C±⊗C2). (2.2.1)

The above and formula (2.1.2) give

8+ = 4++ ⊕ 4−− , 8− = 4+− ⊕ 4−+,

where the double indices refer to the behavior of the real four dimensional
representations under the respective so(4) actions.

To summarize, under so(4)⊕ so(4) we have

8v = (4, 1)⊕ (1, 4), 8+ = (4++)⊕ (4−−), 8− = (4+−)⊕ (4−+).
(2.2.2)

Below, we determine the massless field content arising from compactifica-
tion of ten-dimensional string theories to six dimensions. These fields are
conveniently grouped into supermultiplets of the respective superalgebras.
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The following multiplets can arise in our setting [Sei88], where we give the
contribution from each irreducible representation of the space-time-so(4):

• in six-dimensional theories with N = (1, 1) supersymmetry,

supergravity multiplet: bosonic: (9)⊕ 4(4)⊕ (3+)⊕ (3−)⊕ (1),

fermionic: (12+)⊕ (12−)⊕ (4+)⊕ (4−),
matter multiplet: bosonic: (4)⊕ 4(1),

fermionic: (4+)⊕ (4−);
(2.2.3)

• in six-dimensional theories with N = 1 supersymmetry (notations as in
[Wal88, Sch96])

R(6) supergravity multiplet: (9)⊕ (12+)⊕ (3+) → gμν ⊕ ψ+μ ⊕ B+μν,
T (6) tensormultiplet: (3−)⊕ (4−)⊕ (1) → B−μν ⊕ ψ− ⊕ φ,

H(6) hypermultiplet: 4(1)⊕ (4−) → 4ϕα ⊕ χ−,
V (6) vectormultiplet: (4)⊕ (4+) → Aμ ⊕ λ+.

(2.2.4)

We explain below how the first situation arises in the cases of type IIA theory
compactified on K 3 and heterotic E8 × E8 compactified on T 4, while the
second situation arises in the case of heterotic E8 × E8 theory compactified
on K 3.

Type IIA on K3
Let us assume that X4 is a K 3 surface and consider type IIA strings on M1,5×
X4, which yield an N = (1, 1) supersymmetric theory. The NS-NS sector in
(2.1.1) gives under so(4)⊕ so(4):

8v⊗8v = ((4, 1) ⊕ (1, 4))⊗ ((4, 1) ⊕ (1, 4))

= (9, 1)⊕ (4, 4)⊕ (1, 1⊕ 9)︸ ︷︷ ︸
=35

⊕ (3+ ⊕ 3−, 1)⊕ (4, 4)⊕ (1, 3+ ⊕ 3−)︸ ︷︷ ︸
=28

⊕ (1, 1)︸ ︷︷ ︸
=1

.

Here we use the decomposition of the 6-dimensional representation �2(R4) of
so(4) into the two irreducible representations �2± of dimension 3.

At the level of fields this means that the graviton gM N , which transforms in
the 35 of so(8), decomposes into

gM N −→ gμν ⊕ gμi ⊕ gi j
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where the six-dimensional graviton gμν gives the metric on the transversal
directions of M1,5 up to scaling (a spin 2 field), gμi are 1-forms (spin 1 fields),
and gi j are scalar fields (spin 0) on M1,5. To count the dimension of the spaces
of corresponding massless fields we need to consider each component as a
section of a bundle on K 3. gμν yields a scalar on K 3 which is automatically
massless. Hence gμν gives one massless field in the 9 of so(4). Since K 3 has no
closed one-forms, gμi generically can only contribute to the massive spectrum.
To first order in perturbation theory the scalars gi j are the components of a
Ricci-flat metric on X . The kernel of the linearized Einstein equation around
gi j gives the corresponding massless fields. The dimension of this kernel is 58,
the real dimension of the space of Einstein metrics on K 3.

Analogously, the B-field BM N decomposes into

BM N −→ B+μν ⊕ B−μν ⊕ Bμi ⊕ B+i j ⊕ B−i j ,

where B+μν and B−μν are selfdual and respectively anti-selfdual 2-forms, Bμi a
1-form and Bi j scalar fields on M1,5. The B±μν give massless fields in the 3±
of so(4), and the one-forms Bμi become massive. The B±i j give two-forms on

K 3. The space of closed two-forms on K 3 is 22 dimensional, such that the B±i j
contribute a 22-dimensional space of massless scalars to the spectrum, called
the B-field parameters.

The scalar dilaton in the 1 of so(8) descends to a scalar dilaton φ in the 1 of
so(4).

In the R-NS sector, to decompose 56+ ⊕ 8− = �+M ⊕ �− it is again
convenient to look at the complexifications:

56C+−→ (6C+, 2C+) ⊕ (6C−, 2C−) ⊕(2C+, 2C+⊗4C)⊕(2C−, 2C−⊗4C),

8C− −→ (2C−, 2C+) ⊕ (2C+, 2C−),

�+M −→ ψ+μ⊗η+ ⊕ ψ−μ⊗η− ⊕ χ+⊗ψ+i ⊕ χ−⊗ψ−i ,
�− −→ψ− ⊗ η+⊕ψ+ ⊗ η−.

where we use 2C± ⊗ 4C = 6C± ⊕ 2C∓ as representations of so(4). In the real
setting this corresponds to 4±⊗4 = 12± ⊕ 4∓, where 12± = Re(6C±⊗C2).

In the NS-R sector we similarly have:

56C−−→ (6C−, 2C+) ⊕ (6C+, 2C−) ⊕(2C−, 2C+⊗4C)⊕(2C+, 2C−⊗4C),

8C+ −→ (2C+, 2C+) ⊕ (2C−, 2C−),

�−M −→ ψ−μ⊗η+ ⊕ ψ+μ⊗η− ⊕ χ−⊗ψ+i ⊕ χ+⊗ψ−i ,
�+ −→ ψ+ ⊗ η+⊕ψ− ⊗ η−.
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The massless fields arise as spinors in the kernel of the respective Dirac opera-
tors on K 3, and the dimension of the space of massless spinors is given by the
index of that Dirac operator. To obtain the number of independent gravitinos
ψ±μ we use

ind D/ =
∫

X
Â(R0) = 2

with R0 the Riemann curvature tensor on X . This means that the space of
solutions to the massless field equation D/ψ = 0 which cannot become mas-
sive has complex dimension 2. From (2.2.1), a pair of two complex spinors in
the kernel of D/ gives one positive chirality Rarita-Schwinger gravitino. Hence
we get one positive chirality Rarita-Schwinger gravitino ψ+μ from �+M and
one negative chirality Rarita-Schwinger gravitino ψ−μ from �−M , respectively.
The same index calculation also shows that the ten-dimensional dilatinos
�∓ contribute six-dimensional dilatinos ψ∓. The fermions χ± coming from
the ten-dimensional gravitinos �±μ are governed by the index of the Rarita-
Schwinger Dirac operator D̃/ RS on sections of S± ⊗ T ∗X , where S± denote
the spinor bundles on X . By (B.9) we have ind (D̃/ RS) = −40, amounting to
20 negative chirality spinors χ− coming from �+M and 20 positive chirality
spinors χ+ coming from �−M .

In the R-R sector we finally have:

56v −→(4, 1)⊕(3+ ⊕ 3−, 4)⊕(4, 3+ ⊕ 3−)⊕(1, 4), 8v −→(4, 1)⊕(1, 4),

CM N P −→Cμνρ⊕ Cμνi ⊕ Cμi j ⊕ Ci jk , CM−→ Cμ ⊕ Ci .

The space-time two-forms Cμνi and the zero-forms Ci jk, Ci give one-forms
and three-forms on K 3 respectively; generically they are massive since there
are no harmonic one-forms or three-forms on K 3. Massless fields arise from
the three-form Cμνρ and from the one-forms Cμi j , Cμ, which are zero-forms
and two-forms on K 3, respectively. Since the spaces of closed zero- and two-
forms on K 3 are one- and 22-dimensional, in total we get a 24-dimensional
space of massless fields, all of which transform in the 4 of so(4). In
summary,

Proposition 2.1. The massless spectrum of type IIA strings compactified to six
dimensions on an internal K 3 surface contains 1 graviton gμν in the (9), 81
(linearly independent) scalars gi j , Bi j , φ in the (1), a selfdual and an anti-
selfdual B±μν in the (3±), 2 gravitinos ψ±μ in the (12±), 2 dilatinos ψ∓ in the
(4∓), 40 fermions χ± in the (4±), and 24 vectors Cμνρ, Cμi j , Cμ in the (4)
of so(4). They are grouped into supermultiplets according to (2.2.3), where
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for definiteness we set C := (Cμνρ,C(2,0)
μi j ,C(0,2)

μi j ,Cμ) with the superscripts
indicating the Dolbeault grading of the cohomology of K 3:

1× (supergravity multiplet) :
(9) ⊕(12+)⊕(12−)⊕4(4)⊕(3+)⊕(3−)⊕(4+)⊕(4−)⊕(1)
(gμν)⊕ ψ+μ ⊕ ψ−μ ⊕ C ⊕ B+μν ⊕ B−μν ⊕ ψ+ ⊕ ψ− ⊕ φ

20× (matter multiplet) :
80(1) ⊕ 20(4)⊕20((4+)⊕ (4−))

(gi j , Bi j )⊕C(1,1)
i j ⊕ χ+ ⊕χ− .

Heterotic E8 × E8 strings on K3
We now follow [Wal88, p. 379], changing the chiralities in ten dimensions to
satisfy the conventions in [GSW85] and adding in further details.

We again assume that X4 is a K 3 surface and consider G10 = E8 × E8

heterotic strings on M1,5 × X4. This means that M1,5 × X4 carries a gauge
bundle E with holonomy G10. The field AM in the Yang-Mills hypermultiplet
Y (10) of (2.1.3) yields its connection. To compactify we also need to assume
that the holonomy of E decomposes into a product H × K ⊂ G10 with H
the holonomy of E viewed as a bundle on M1,5 and K the holonomy of E
viewed as a bundle on X4. This is detailed and used below (2.2.6). Viewed as a
bundle on X , for reasons of consistency the connection of E is Hermitian-Yang-
Mills, where the Donaldson-Uhlenbeck-Yau theorem [Don85, UY86] states
that equivalently E is semi-stable. Since X is a Kähler manifold of complex
dimension 2, Hermitian-Yang-Mills connections are precisely the anti-selfdual
(ASD) connections.

We have listed the massless ten-dimensional multiplets of heterotic strings
in (2.2.4), so a general theory has massless spectrum

R(6)⊕ nT T (6)⊕ nH H(6)⊕ nV V (6), (2.2.5)

where we need to determine nT , nH , nV .
If we are compactifying a theory which possesses a Lorentz-invariant action,

then self-dual and anti-self dual two-forms B±μν are paired up, hence there is
only one tensormultiplet, nT = 1 [DHVW85, DHVW86]. This is the case
we focus on first. On the other hand, a general theory need not arise from
compactification, and nT > 1 is allowed.

The supergravity multiplet R(10) of (2.1.3) agrees with the NS-NS plus
the R-NS sector of type IIA. Hence to compactify to six dimensions we can
use the previous results obtaining as massless fields: gμν , the graviton in the
(9), 81 scalars gi j , Bi j , φ in the (1), selfdual and anti-selfdual two-forms B±μν
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in the (3±), a gravitino ψ+μ in the (12+), a dilatino ψ− in the (4−), and 20
fermions χ− in the (4−). A quick glance at (2.2.4) reveals that theψ−, χ− can
either belong to a tensor or a hypermultiplet. However, we know that we need
to produce precisely one tensormultiplet, so we can safely assume that ψ−
resides in the tensormultiplet, while the χ− live in hypermultiplets. Altogether
we have listed the content of the following multiplets:

R(10) −→ R(6)⊕ T (6)⊕ 20H(6). (2.2.6)

To determine nH , nV in (2.2.5), note that the chirality of the fields χ−, λ+
respectively distinguishes hypermultiplets from vectormultiplets, the only two
types of multiplets that are left for Y (10) to contribute to. Hence it suffices
to consider the reduction of the only fermionic field �+ in the super-Yang-
Mills multiplet Y (10) of (2.1.3). The gaugino �+ is a positive spinor on M1,9

with values in the adjoint representation of the gauge group G10 = E8 × E8

of the ten-dimensional theory. On reducing from ten to six dimensions the
gauge group is broken to some subgroup H = H1 × H2 ⊂ E8 × E8 with
Hi ⊂ E8, while the components Ai of the gauge field A with K 3 indices, the
Higgs bosons, acquire expectation values in K = K 1 × K 2 ⊂ E8 × E8, with
K i ⊂ E8 the maximal simple subgroup of the centralizer of Hi . This means
that the gauge bundle E , which we always view as a sum of two E8 bundles
E i , gives a K -principal bundle on K 3 with curvature taking values in adj(K).

The adjoint representation of E8 now decomposes under each Hi × K i as

adj(E8) =
⊕
a∈Ai

Li
a⊗Qi

a =
(

adj(Hi )⊗ 1
)
⊕
⊕

a∈Ai
matter

(
Li

a⊗Qi
a

)
, (2.2.7)

where Li
a and Qi

a are representations of Hi and K i . In particular,∑
a∈Ai

matter

dim Qi
a · dim Li

a =
∑
a∈Ai

dim Qi
a · dim Li

a − dim (Hi )

= dim (adj(E8))− dim (Hi ) = 248− dim (Hi ).

(2.2.8)

Representations with labels in Ai
matter comprise the so-called matter multi-

plets. Here 1⊗adj(Ki) gives the neutral matter multiplets, and all other Li
a⊗Qi

a
with a ∈ Ai

matter give charged matter multiplets. We have

�+ =
∑

i,a∈Ai

(
λ+a,i⊗η+a,i + λ−a,i⊗η−a,i

)
, (2.2.9)

where λ±a,i is a section of S±M ⊗ Li
a , and η±a,i is a section of S±⊗Qi

a , with

S±M , S± the spinor bundles on M and X , respectively. To determine the net
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number of massless fields we need to calculate the index of a Dirac operator
D/ Q : S+ ⊗ E i

Q → S− ⊗ E i
Q on K 3, twisted by a K i -bundle E i

Q corresponding

to the representation Q of K i . Since

ind (D/ Q) = − ind (D/ Q∗),

the index vanishes if Q is a real (or pseudoreal) representation. For complex
representations Q we have

ind (D/ Q) =
∫

X
Â(R0)ch(Q),

where R0 is the Riemannian curvature of the K 3 surface and ch(Q) is a form
in the induced curvature F0 of the associated bundle E i

Q . See Appendix B for
further details on characteristic classes.

In general for a simple Lie group G with Lie algebra g, for any G-bundle
E i

Q corresponding to a representation Q of G we introduce the first Pontrjagin

class p1(E i
Q):

p1(E i
Q) := −

1

8π2

∫
X

Trace Q(F
2
0 ). (2.2.10)

Then expansion of ch(Q) yields

ind (D/ Q)= dim Q
∫

X
Â(R0)− 1

8π2

∫
X

Trace Q(F
2
0 )

(B.8)= 2dim Q+ p1(E i
Q).

(2.2.11)

Next, following [AHS78] for any G-bundle on X the instanton number is
given by

k := 1

8π2

1

2c2(G)

∫
X

Trace g(F
2
0 ), (2.2.12)

where c2(G) is the dual Coxeter number of G. It is important to note that the
instanton number is a topological invariant of the bundle. If the holonomy is a
proper subgroup of G, then the instanton number is also equal to the expression
on the right hand side of (2.2.12) where G is replaced by the holonomy group
and g by its Lie algebra. Hence the expression (2.2.12) could be used as the
definition of the dual Coxeter number c2(G). Now with ki the Lie algebra of
K i , the instanton number of the E8-bundle E i is

ki = 1

8π2

1

2c2(K i )

∫
X

Trace ki (F2
0 ) =

1

8π2

1

2c2(E8)

∫
X

Trace e8(F
2
0 ).

Since c2(E8) = 30 and by (2.2.10) we thus have

p1(E i ) = −60ki . (2.2.13)
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Using the so–called index ind (Q) of the representation Q, which is defined by

∀Y, Z ∈ ki : Trace Q(Y ◦ Z) = ind (Q)

c2(K i )
Trace ki (Y ◦ Z),

we moreover get

p1(E i
Q) = −2ki ind (Q). (2.2.14)

Hence (2.2.11) yields

ind (D/ Q) = 2dim (Q)− 2ki ind (Q) . (2.2.15)

This number is related3 to the dimension of the moduli space of irreducible
ASD connections on E i

Q: The moduli space is either empty or has the
hyperkähler dimension

ki ind (Q)− dim (Q). (2.2.16)

The proof is essentially identical to the proof for the analogous theorem
[AHS78, Thm. 6.1], with the only modification that now we work with ASD
connections on a vector bundle E i

Q .
In order to complete the counting of the various multiplets below, we note

p1(E i )
(2.2.10)= − 1

8π2

∫
K 3

Trace e8(F
2
0 )

(2.2.7)= −
∑
a∈Ai

dim Li
a ·

1

8π2

∫
K 3

Trace Qi
a
(F2

0 )

(2.2.14)= −2ki
∑
a∈Ai

dim Li
a · ind (Qi

a).

Since Ai
matter differs from Ai only by Li

a = adj(Hi), with Qi
a = 1 and

ind (1)= 0 this gives

ki
∑

a∈Ai
matter

dim Li
a · ind (Qi

a) = ki
∑
a∈Ai

dim Li
a · ind (Qi

a)

= − p1(E i )

2
(2.2.13)= 30ki . (2.2.17)

Finally returning to the reduction of the ten-dimensional gaugino �+ under
compactification to six dimensions in (2.2.9), we set

N (Li
a) :=

1

2
ind (D/ Qi

a
)

(2.2.15)= dim Qi
a − ki · ind (Qi

a), (2.2.18)

3 This and the derivation of (2.2.19) following Proposition 2.2 is present between the lines in the
physics literature, but we could not find it phrased out explicitly.
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where we have taken into account that pairs of spinors have to be considered
in order to count Weyl spinors. As discussed at the beginning of Section 2.2, if
N (Li

a) is positive, then we have positive chirality spinors from the Minkowski
point of view, i.e. using (2.2.4) there are N (Li

a) vectormultiplets in the rep-
resentation Li

a of the unbroken gauge group. If N (Li
a) is negative, then

accordingly we have (−N (Li
a)) hypermultiplets in the representation Li

a of
the unbroken gauge group. In particular, N (adj(Hi)) = 1. For all other labels
a ∈ Ai

matter , by (2.2.16) we know that (−N (Li
a)) gives the dimension of the

moduli space of ASD connections on E i
Qi

a
. This number must be non-negative

in order for such a theory with unbroken gauge group H = H1 × H 2 to exist.
Hence

Y (10) −→
∑

i

dim (Hi ) · V (6)⊕
∑

i,a∈Ai
matter

(−N (Li
a)) dim Li

a · H(6),

(2.2.19)

where∑
a∈Ai

matter

(−N (Li
a)) dim Li

a
(2.2.18)= ki ·

∑
a∈Ai

matter

ind (Qi
a) · dim Li

a

−
∑

a∈Ai
matter

dim Qi
a · dim Li

a

(2.2.17),(2.2.8)= 30 ki − 248+ dim (Hi ). (2.2.20)

Remark. As already pointed out, for a theory as above to exist we must have

N (Li
a) = dim Qi

a − ki · ind (Qi
a) ≤ 0, for all a ∈ Ai

matter .

These inequalities give lower bounds on the instanton numbers k1, k2.

So far, we have worked with smooth bundles E i on smooth K 3 surfaces.
However, interesting new structures arise when these bundles degenerate to
pointlike instantons, i.e. when the curvature of E i acquires singularities in
the form of Dirac delta distributions. In [DK90, Definition 4.4.1] the result-
ing connections on E i are called ideal ASD connections. In this situation the
Pontrjagin classes (2.2.10) and the instanton numbers (2.2.12) are defined in
terms of the smooth part F0 of the curvature. According to [SW96, Wit96b]
non-perturbative strong coupling singularities occur when instantons become
pointlike, associated to tensionless strings. The process is accompanied by the
emergence of an additional tensormultiplet for each pointlike instanton along
with an additional neutral hypermultiplet contributing scalars which account
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for the location of the instanton on the K 3 surface. The scalar in the addi-
tional tensormultiplet is believed to give the parameter of a non-classical
phase transition. Altogether the contributions from the Yang-Mills sector
amount to

l T (6) ⊕
(

l −
∑

i,a∈Ai
matter

N (Li
a)dim Li

a

)
H(6) ⊕

∑
i

dim (Hi ) V (6)

(2.2.20)= l T (6)⊕
(

30
(

k1 + k2
)
− 496+ dim (H)+ l

)
H(6)

⊕ dim (H) V (6) (2.2.21)

if there are l distinct pointlike instantons. According to what was said after
(2.2.8), of the hypermultiplets, (k1c2(K 1) + k2c2(K 2) − dim K + l) are
neutral.

One constraint to our theory coming from the Green-Schwarz mechanism
in ten dimensions (see (3.2.1) with 1/α = −c2(E8) = −30 as argued below
(3.2.2)) is ∫

K 3

(
tr(R2

0)−
1

30
Trace e8⊕e8(F̌

2
0)

)
= 0,

where F̌0 denotes the total curvature of E , i.e. F0 plus contributions of Dirac
delta distributions from pointlike instantons. With the correct normalization of
the Dirac delta distribution one gets

24 = χ(K 3) = 1

16π2

∫
X

tr(R2
0) =

1

60

1

8π2

∫
X

Trace e8⊕e8(F
2
0 )+ l

(2.2.10)= − 1

60
p1(E1)− 1

60
p1(E2)+ l

(2.2.13)= k1 + k2 + l.

(2.2.22)

Hence (2.2.6) and (2.2.21) give

Proposition 2.2. Consider a theory with unbroken gauge group H which is
obtained by compactification to six dimensions on a smooth internal K 3 sur-
face from a ten-dimensional E8×E8 heterotic string theory. Moreover, assume
that the bundle on K 3 has degenerated to receive l distinct pointlike instantons.
Then the massless spectrum is given by

R(6)⊕ (l + 1) T (6)⊕ (244+ dim H − 29l) H(6)⊕ dim (H) V (6).

The nH hypermultiplets receive 20 contributions that give moduli of the K 3
surface. The bundle E on K 3 decomposes into two E8-bundles E1, E2 with
instanton numbers k1, k2 such that k1 + k2 + l = 24, and with holonomy
groups K 1, K 2, where K 1 × K 2 ⊂ E8 × E8 is the maximal simple subgroup
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of the centralizer of H. Then with c2(K i ) denoting the respective dual Coxeter
numbers, further

k1c2(K
1)+ k2c2(K

2)− dim K + l

of the hypermultiplets are neutral and give moduli of the bundle E on K 3.

Remark. To clear notations, we introduce n0
H and nch

H , the numbers of neutral
and charged hypermultiplets, respectively, so that generically,

nH = n0
H+nch

H , n0
H = 20+k1c2(K

1)+k2c2(K
2)−dim K+l. (2.2.23)

If K contains factors that are non-simply laced Lie groups then the decomposi-
tion nH = n0

H + nch
H into uncharged and charged matter is a little more subtle:

In (2.2.7) the corresponding summands Li
a ⊗ Qi

a with non-trivial Li
a and Qi

a
can have non-zero subspaces that are uncharged under the gauge group. This
increases n0

H and accordingly decreases nch
H compared to the above formula.

We will briefly discuss this effect in Section 5.2.2 below. See also Section 3.3.5
for an example.

Heterotic E8 × E8 strings on T 4

Let us now consider heterotic G10 = E8 × E8 strings compactified to
M1,5 × X4 where X4 is a real four-torus. As opposed to the case where X4

is a K 3 surface these theories enjoy enhanced supersymmetry since the holon-
omy of the torus is trivial, and hence all components of the supercharges in the
ten-dimensional theory yield components of supercharges of the compactified
theory, see e.g. [Asp97, p. 38]. In this situation massless particles of opposite
chirality do not pair up to become massive. However, since all fields give flat
sections of the relevant bundles on the torus X4, starting from the massless
spectrum (2.1.3) of the ten-dimensional theory we can decompose all repre-
sentations with respect to the space-time so(4) as before and take the results at
face value without any index calculations. The gauge group is generically bro-
ken to Hgen = U (1)16. Since dim Hgen = 16, and using the decompositions
obtained previously, we generically have

35 : gM N → gμν ⊕ gμi ⊕ gi j in 1(9)⊕ 4(4)⊕ 10(1),

28 : BM N → B+μν ⊕ B−μν ⊕ Bμi ⊕ Bi j in 1(3+)⊕ 1(3−)⊕ 4(4)⊕ 6(1),

1 : φ → φ in 1(1),

56+ : �+M → ψ+μ ⊕ ψ−μ ⊕ χ+ ⊕ χ− in (12+)⊕ (12−)⊕ 4 ((4+)⊕ (4−)),
8− : �− → ψ− ⊕ ψ+ in (4+)⊕ (4−),
8v ⊗ Ad(G10) : AM → Aμ ⊕ Ai in 16 ((4)⊕ 4(1)) ,

8+ ⊗ Ad(G10) : �+ → λ+ ⊕ λ− in 16 ((4+)⊕ (4−)) .
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Altogether we find one graviton gμν in the (9), 24 (linearly independent) vec-
tors gμi , Bμi , Aμ in the (4), 81 scalars gi j , Bi j , φ, Ai in the (1), a selfdual
and an anti-selfdual two-form B±μν in the (3±), 2 gravitinos ψ±μ in the (12±),
40 fermions χ±, λ± in the (4±), and 2 dilatinos ψ∓ in the (4∓) of so(4).
Comparison with (2.2.3) and Proposition 2.1 shows

Proposition 2.3. The massless spectrum of heterotic E8 × E8 strings com-
pactified to six dimensions on an internal four-torus generically consists of 1
supergravity and 20 matter multiplets in (2.2.3) and agrees with the massless
spectrum of type IIA strings compactified to six dimensions on an internal K 3
surface by Proposition 2.1.

The agreement of the generic massless spectra of heterotic E8 × E8 strings
on T 4 and type IIA strings on K 3 nowadays is believed not to be a coincidence.
We will address this issue in Section 4.

2.2.2. Compactification to D = 4

Consider now superstring theories on M1,3 × X6. We will need to decompose
our representations of so(8) under so(2) ⊕ so(6), where for so(2) we denote
the two-dimensional tensor, vector, and spin 3

2 representations by 2t , 2v, 2s ,
respectively, all of which are equivalent. There also exists a “spinor” in two
dimensions, which transforms trivially under so(2), denoted 1s . The possible
massless supermultiplets forN = 2 supersymmetry are then

R(4) supergravity multiplet: (2t )⊕ 2(2s)⊕ (2v),

H(4) hypermultiplet: 4(1s)⊕ 4(1),

V (4) vectormultiplet: (2v)⊕ 4(1s)⊕ 2(1).

(2.2.24)

For our discussion it hence suffices to consider the bosonic parts of the mass-
less spectra: These already uniquely determine the numbers of independent
supermultiplets of each type. In what follows we describe this analysis for
type IIA compactified on a Calabi-Yau 3-fold, and for heterotic E8 × E8

compactified on T 2 × K 3.

Type IIA on a Calabi-Yau 3-fold
Assume that X6 is a Calabi-Yau 3-fold with full SU(3) holonomy, i.e. with
Betti numbers

b0 = b6 = 1, b1 = b5 = 0, b2 = b4 = h1,1(X), b3 = 2
(

h1,2(X)+ 1
)
.

To obtain the massless spectrum of type IIA strings compactified to four
dimensions with internal X we decompose the bosonic massless fields of the
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ten-dimensional theory in the NS-NS and the R-R sectors as given in (2.1.1)
as before:

35 : gM N → gμν ⊕ gμi ⊕ gi j in 1(2t )⊕ 6(2v)⊕ 21(1),

28 : BM N → Bμν ⊕ Bμi ⊕ Bi j in 1(1)⊕ 6(2v)⊕ 15(1),

1 : φ → φ in 1(1),

56v : CM N P → Cμνi ⊕ Cμi j ⊕ Ci jk in 6(1)⊕ 15(2v)⊕ 20(1),

8v : CM → Cμ ⊕ Ci in 1(2v)⊕ 6(1).

Since X carries no closed one-forms, gμi , Bμi , Cμνi and Ci become mas-
sive. gμν contributes the graviton in the 2t to the massless spectrum. The
gi j contribute massless scalars, according to the Ricci-flat deformations of
this metric on X . There are two types of deformations of this Ricci-flat met-
ric: (1) those corresponding to deformations of a chosen complex structure
and giving in total 2h1,2(X) parameters; (2) those corresponding to deforma-
tions of a chosen Kähler structure and giving a total of h1,1(X) parameters.
This analysis uses the fact that the moduli space of Calabi-Yau 3-folds locally
splits into the product of Kähler and complex structure deformations. In total,
one gets h1,1(X)+ 2h1,2(X) independent scalars coming from gi j . Moreover,
a := Bμν contributes a massless scalar, known as the axion, while Bi j gives
b2 = h1,1(X) massless scalars. The dilaton φ is a scalar as always. Cμi j gives
b2 = h1,1(X) massless fields in the 2v , while Ci jk gives b3 = 2

(
h1,2(X)+ 1

)
additional massless scalars. Finally, Cμ contributes one massless vector in the
2v , known as the graviphoton. Altogether comparison with (2.2.24) yields

Proposition 2.4. The massless spectrum of type IIA strings compactified to
four dimensions on a smooth internal Calabi-Yau 3-fold X with full SU(3)
holonomy consists of the following supermultiplets, where schematically we
list the bosonic field content:

1× R(4) : (2t)⊕ (2v)→ gμν ⊕ Cμ,(
h1,2(X)+ 1

)× H(4) : 4
(
h1,2(X)+ 1

)
(1)→Ci jk ⊕ δgi j ⊕ a ⊕ φ,

h1,1(X)× V (4) : h1,1(X) (2v)⊕ 2h1,1(X) (1)→Cμi j ⊕ δgi j̄ ⊕ Bi j .

Heterotic E8 × E8 strings on T 2 × K3
We now calculate the massless spectrum of heterotic G10 = E8 × E8 string
theories compactified to four dimensions on an internal X6 which is the prod-
uct of a real two-torus T 2 and a K 3 surface, essentially following [Asp97].
It is easiest to use the results of Proposition 2.2 for heterotic E8 × E8 strings
compactified to six dimensions on an internal K 3 surface, and to compactify
two further space-like dimensions of M1,5 to a two-torus T 2. As before let K
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denote the holonomy of the gauge bundle viewed as bundle on K 3. K is the
maximal simple subgroup of the centralizer for the unbroken gauge group H
in E8 × E8 under compactification to six dimensions with internal K 3. We
can choose the torus T 2 together with a flat bundle with holonomy U (1)r ,
and then the observed gauge group in the D = 4 uncompactified dimensions
is the centralizer of U (1)r × K in E8 × E8. This implies U (1)r ⊂ H , and
in fact generically the observed gauge group is broken to the Abelian group
H = U (1)r .

As for type IIA strings compactified to four dimensions we can restrict
to the discussion of bosonic fields, because the supermultiplets (2.2.24) are
already distinguished by their bosonic field content. We decompose the rele-
vant representations of so(4) with respect to so(2) ⊕ so(2), keeping track of
the space-time indices:

9 −→ (2t)⊕ 2(2v)⊕ 3(1), 1 −→ (1),

3± −→ 1(2v)⊕ 1(1), 4 −→ 1(2v)⊕ 2(1).

Using this, let us discuss the fate of each six-dimensional supermultiplet
in (2.2.4): The bosonic fields gμν, B+μν of the six-dimensional supergravity
multiplet contribute a four-dimensional graviton gμν in the (2t ), three vec-
tors gμa, B+μa in the (2v), and four scalars gab, B+ab in the (1), where a, b
denote the coordinates on T 2. The graviton and one of the vectors fill up the
bosonic field content of the four-dimensional supergravity multiplet R(4). The
remaining two vectors and four scalars give two four-dimensional vectormulti-
plets V (4). The bosonic fields B−μν, φ of each six-dimensional tensormultiplet
descend to one vector B−μa in the (2v) and two scalars a = Bμν, φ in the
(1), yielding the bosonic field content of a four-dimensional vector multiplet
V (4). The only bosonic fields in a six-dimensional hypermultiplet are quadru-
plets of scalars, which descend to quadruplets of scalars in four dimensions,
yielding the bosonic field content of a four-dimensional hypermultiplet H(4).
Finally, the only bosonic field in a six-dimensional vectormultiplet is the gauge
field Aμ, yielding a vector in the (2v) and two scalars in the (1) in four dimen-
sions, i.e. the bosonic field content of a four-dimensional vectormultiplet V (4).
Summarizing, we have

R(6) −→ R(4)⊕ 2 V (4), T (6) −→ V (4),

H(6) −→ H(4), V (6) −→ V (4).

Now from Proposition 2.2 we obtain

Proposition 2.5. Consider a theory which is obtained by compactification to
four dimensions on an internal product of a two-torus T 2 and a smooth K 3
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surface from a ten-dimensional E8×E8 heterotic string theory where the gauge
group on compactification to K 3 is H. Moreover, assume that the bundle on
the K 3 surface has degenerated to receive l distinct pointlike instantons. Then
the massless spectrum is given by

R(4)⊕ (244+ dim H − 29l) H(4)⊕ (3+ l + rk H) V (4)⊕ (dim H − rk H) V (4).

Here, 20 hypermultiplets account for the moduli of the K 3 surface, and with
notations as in Proposition 2.2 at least

n0
H − 20 = k1c2(K

1)+ k2c2(K
2)− dim K + l

hypermultiplets give the moduli of the gauge bundle on K 3, with additional
contributions in special cases as remarked after Proposition 2.2. One of the
vectormultiplets contains the axion-dilaton pair, two of the vectormultiplets
give moduli of T 2, and rk H vectormultiplets give moduli of the heterotic
bundle on T 2. Further l vectormultiplets correspond to l distinct pointlike
instantons. If H is non-Abelian, i.e. dim H− rk H �= 0, then one has enhanced
gauge symmetry, and the additional dim H − rk H vectormultiplets do not
allow a perturbative interpretation in this heterotic theory.

3. Anomalies

To yield string theory as a promising approach towards describing nature, par-
ity violation has to be incorporated in a consistent manner. However, parity
violating superstring theories can suffer from anomalies. Let us give a brief
summary, following [GSW87, II §10]. Helpful introductions to this topic can
also be found in [AGG85, PS95, Wei05, Pol98, BM03, SS04, Adl, Har05].

Very roughly speaking, an anomaly arises when under quantization of a
classical system in the resulting quantum field theory a classical symmetry
is broken. In terms of the Feynman calculus there then are divergent radia-
tive corrections which do not allow regularization. Such divergent Feynman
diagrams are always one-loop diagrams [Adl69, Bar69], with a chiral fermion
around the loop and a classically conserved current attached, the conservation
of which is not compatible with regularization. For our purposes we need to
work in D = 2n space-time dimensions, and below we will see that anomalies
of the type of interest here can occur only for odd n. We restrict the discussion
to specific local anomalies which lead to fatal inconsistencies of the result-
ing quantum field theory, in contrast to global anomalies which can yield a
welcome technique to break global symmetries for phenomenological reasons.

Mathematically, in order to calculate the relevant propagators in a field the-
ory one in particular needs the determinants of those differential operators that
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give the equations of motion for the various fields. In the bosonic case the dif-
ferential operator in question is a Laplacian, and zeta function regularization
is a well-understood technique to define a determinant of it. For the fermions,
however, one has to deal with families of Dirac operators, which depend on the
metric of the underlying manifold and on a gauge connection. By the results of
[Ati84, AS84] the existence of, say, gauge covariant propagators is obstructed
by the first Chern class of the determinant of the index bundle associated to the
relevant family of Dirac operators. In other words, if this bundle is non-trivial,
then a gauge covariant propagator cannot be defined and the theory is anoma-
lous. The family index theorem [AS71] hence allows to calculate all quantities
that govern potential anomalies. As is explained in [ASZ84], the relevant first
Chern class can be evaluated by restricting to families parametrized on two-
dimensional spheres. Hence the anomaly of a theory on a D-dimensional spin
manifold M is given by the (D + 2) form

ÎD+2 =
(

Â(Z)ch(V )
)

D+2 .

Here, Z is a fiber bundle with base S2 and fiber M , i.e. it is a (D + 2) dimen-
sional manifold. Hence Â(Z)ch(V ) is the density which occurs in the family
index theorem as the curvature of the determinant bundle of the index bundle
associated to a two-dimensional family of Dirac operators on M , coupled to
a vector bundle V on M . Indeed,

∫
M Â(Z)ch(V ) gives the Chern character of

the index bundle on the base S2 of Z , which up to a constant agrees with the
first Chern class of this bundle.

As can be seen from our discussion of massless spectra in Section 2, all chi-
ral fields in our string theories that can contribute to the bundle V are sections
of either a spin bundle, a Rarita-Schwinger bundle, or a bundle of two-forms.
For all of them the Chern classes can be expressed as combinations of the
Pontrjagin classes of M , and therefore they can only integrate over M to a
non-vanishing class in degree 2 if D = 4k + 2, k ∈ N, which we will assume
from now on.

ÎD+2 is related to the actual anomaly G by a process known as transgression:
ÎD+2 is closed and gauge invariant, d ÎD+2 = 0 = δ ÎD+2. Hence one locally
has ÎD+2 = d ID+1, where ID+1 can be viewed as closed one-form on G if the
base S2 of Z is a two-sphere inM/G. HereM is the infinite dimensional space
of parameters (be it the space of metrics, the space of gauge connections, or
the product of these two), and G is the infinite Lie group of symmetries ofM.
In other words, ID+1 is obtained precisely by Chern’s transgression operation.
Moreover, since dδ ID+1 = 0 but in general ID+1 is not gauge invariant one
finds δ ID+1 = d ID . Now ID can be viewed as D-form on M . It is ambiguous
up to a closed form which is irrelevant for the actual anomaly G = ∫M ID . The
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value of G gives the change of the effective action under gauge or coordinate
transformations, indeed the “anomaly” of the effective theory in the sense of
the breaking of classical symmetries.

In [ASZ84] one also finds the following argument: While the structure group
of the spin frame bundle of Z in our formula for ÎD+2 is so(D + 2), it may
be reduced to so(D) ⊕ so(2), and Â(Z) factors into so(D) and so(2) pieces,
respectively. Only the so(D) contributions ID+2 are relevant, since on the one
hand the so(2) pieces are universal, and on the other hand approximating them
by 1 is sufficient for checking consistency by results of [WZ71, BZ84]. Note
that this approximation, strictly speaking, does not restrict the relevant contri-
butions to ÎD+2 to forms on M . However, in all calculations this subtlety is
irrelevant: ÎD+2 is viewed as a formal object, given that (D + 2) forms on M
do not make sense, but solely the dependence on the coordinates of M is of
interest. To implement this, let R be the Riemann curvature of the spin frame
bundle of Z and R the Riemann curvature of M . According to the splitting
principle, there exist two-forms x0, x1, . . . , x2k+1 such that

1

2

(
−1

4

)m

tr(R2m) = 1

4m

2k+1∑
i=0

x2m
i −→ Y2m : = 1

4m

2k+1∑
i=1

x2m
i

= 1

2

(
−1

4

)m

tr(R
2m
),

where in restricting attention to Y2m we assume that x0 is the so(2) piece of
the curvature, while the xi with i > 0 give the so(D) pieces which are relevant
for our discussion. We also follow [GSW87] and [Sch02] in surpressing the
dependence on the base of Z .

3.1. Gravitational and gauge anomalies

By the above, potential anomalies of the type we are interested in can only
occur for string theories with chiral fields in an external space-time of dimen-
sion D = 4k + 2, k ∈ N. Of the theories considered in Section 2 this amounts
to the cases D = 10 and D = 6. Contributions to the anomaly can come
from space-time spinors �∓, �+, ψ−, χ−, λ+, i.e. from spin 1

2 fields, or
from Rarita-Schwinger fields �±M , ψ±μ , i.e. from spin 3

2 fields, or from chi-
ral two-forms B±μν . The indices of the respective Dirac operators contribute
with a sign according to their chirality. This implies that theories of type IIA
can never suffer from anomalies of this type, since spinors occur only in pairs
of opposite chiralities in these theories, with their contributions to the anomaly
cancelling.
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Among the theories discussed in Section 2 we therefore only need to con-
sider the heterotic E8 × E8 theory in D = 10 space-time dimensions, see
(2.1.3), and the one in D = 6 space-time dimensions with internal K 3 surface,
see Proposition 2.2. The heterotic E8 × E8 theories with internal real four-
torus are anomaly free, since these theories enjoy enhanced supersymmetry,
and their spectrum is non-chiral, as can be seen from Proposition 2.3.

Before discussing anomaly cancellation, let us determine the form of each
possible contribution to the anomaly. This is very nicely explained in [ASZ84].
As a warm-up, consider a chiral spin 1

2 field, i.e. a section ψ+ of the spinor
bundle S+ which obeys D/ψ+ = 0 for the ordinary untwisted Dirac operator
D/ : S+ −→ S−. We need the index bundle of the family D/ over M, which
depends on the curvature R,

I1/2(R) = Â(R)4k+4 where Â(R) =
2k+1∏
i=1

1
2 xi

sinh 1
2 xi

.

More generally a spinor with values in some gauge bundle of curvature F
contributes an anomaly given by the index of the corresponding twisted Dirac
operator,

I1/2(R, F) =
(
(tr(eiF)Â(R))

)
4k+4

, where I1/2(R) = I1/2(R, 0).

For Rarita-Schwinger fields one needs the index of the Rarita-Schwinger com-
plex (A.6). The contributions#S+#S− which equally occur in the domain and
in the image of the Rarita-Schwinger operator D/ RS cancel out, leaving us with
the Dirac operator on

(
S+ ⊗ T ∗M

) # S+ = S+ ⊗ (T ∗M # 1), see [ASZ84,
§IV.V]. In the physics literature, the virtual subtraction of 1 is referred to as
subtracting ghost contributions. The relevant index is hence given by

I3/2(R) =
(

Â(R)(2
2k+1∑
i=1

cosh xi − 1)

)
4k+4

.

Finally, for chiral two-forms one needs the density of the twisted Dirac
operator D/ A : S+ ⊗ S− −→ S− ⊗ S−, i.e.

IA(R) = −1

8
L(R)4k+4, where L(R) =

2k+1∏
i=1

xi

tanh xi
,

the Hirzebruch L-genus.
Altogether every contribution to the anomaly can be expressed in terms of

known universal polynomials in the Y2m . For later convenience let us give the
result for the various anomalies: For chiral spinors governed by a twisted Dirac
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operator let g := tr(1), the dimension of the representation to which our chiral
spinor belongs, and g = 1 for F = 0. For D = 10 one finds [GSW85, II,
pp. 351-352],

I3/2(R) = 1

45360
(7920Y6 − 9450Y2Y4 + 2205Y 3

2 ),

IA(R) = 1

45360
(−7936Y6 + 9408Y2Y4 − 2240Y 3

2 ), (3.1.1)

I1/2(R, F) = − 1

720
trF6 − 1

144
trF4Y2 − 1

8
trF2
(

1

45
Y4 + 1

18
Y 2

2

)
− g

(
1

2835
Y6 + 1

1080
Y2Y4 + 1

1296
Y 3

2

)
,

while for D = 6 we have [GSW87, II, pp. 349-351]

I3/2(R) = 1

72
(−43Y 2

2 + 98Y4),

IA(R) = − 1

45
(5Y 2

2 − 7Y4), (3.1.2)

I1/2(R, F) = 1

24
trF4 + 1

12
trF2Y2 + g

(
1

180
Y4 + 1

72
Y 2

2

)
.

3.2. Anomaly cancellation

Before turning to the discussion of anomaly cancellation for the heterotic
E8× E8 theories, let us mention that for D = 10 from (3.1.1) one obtains

I3/2(R)+ IA(R)− I1/2(R, 0) = 0.

This means that a ten-dimensional theory is free of anomalies if it has as its
chiral field content m complex negative chirality spin 1

2 field, m complex pos-
itive chirality spin 3

2 field, and m real self-dual antisymmetric tensor. In fact,
with m = 2 this is precisely the chiral field content of type IIB string theory.
This surprising fact was first observed in [AGW84].

3.2.1. Anomaly free heterotic E8 × E8 theories in D = 10 dimensions

Let us now turn to heterotic G10 = E8×E8 theories in ten dimensions. Accord-
ing to (2.1.3) we obtain contributions to the anomaly from one gravitino �+M ,
one dilatino �−, and one gaugino �+, such that the anomaly is

Î12 = I3/2(R)− I1/2(R, 0)+ I1/2(R, F).

Using (3.1.1) one determines the coefficient of Y6 in Î12 to be a multiple of
(496− g), which vanishes precisely because g = dim G10 = 496.
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Although this is an encouraging start, in pure supergravity in D = 4k + 2
dimensions the total anomaly Î4k+4 turns out to never vanish. However, accord-
ing to the seminal papers [GS84, GS85b, GS85a], in heterotic theories a
further anomalous diagram occurs which we have not yet discussed. It is a
tree diagram in which the massless 2-form B of the supergravity multiplet is
exchanged between two gauge bosons and either two gluons, or two graviti-
nos, or four gravitons. In more mathematical terms, as already mentioned in
the footnote on page 61, the B-field is only locally given by a closed 2-form. It
is a closed differential cochain and in particular transforms non-trivially under
gauge transformations. Accordingly, it does contribute to gauge anomalies. In
fact, the non-trivial Yang-Mills gauge transformation of the B-field gives a
potential for a gauge-invariant three-form field strength H . With ωL and ωY

denoting the Lorentz and Yang-Mills Chern-Simons forms, the latter obeys

H = d B + ωL + αωY $⇒ d H = tr(R
2
)+ αTr(F

2
). (3.2.1)

The anomalous tree diagram therefore contributes a term (αTr(F
2
) +

tr(R
2
))X4k with a 4k-form X4k . Hence to cancel the anomaly Î4k+4, we must

have

Î4k+4 ∼ (αTr(F
2
)+ tr(R

2
))X4k. (3.2.2)

One can show (see e.g. [GSW85]) that in ten dimensions this factorization
holds if G10 = E8× E8 or G10 = SO(32)/Z2 and with α = −1/30 (note that
also dim SO(32)/Z2 = 496), so that anomalies are indeed cancelled in these
theories. If X4k can be integrated to d X4k−1 = X4k , then the factorization
(3.2.2) together with the known properties of the Chern-Simons forms allow to
solve the descent equations and to calculate the actual anomaly coming from
the tree diagram for the exchange of B described above.

The process of anomaly cancellation described here is known as the Green-
Schwarz mechanism [GS84, GS85b, GS85a]. It remains one of the mysteries
of string theory to understand why it works, and its discovery meant a break-
through that triggered what is now known as the First String Revolution.

3.2.2. Anomaly free heterotic E8 × E8 theories in D = 6 dimensions

Let us determine when a heterotic E8× E8 string theory in D = 6 dimensions
with an internal K 3 surface is anomaly free. We know that its massless spec-
trum is of the form (2.2.5). The requirement that the theory be anomaly-free
poses a restriction on the numbers nT , nV , n H . The Green-Schwarz mech-
anism described above applies just as in the ten-dimensional situation. It
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implies, by integration of (3.2.1) over the internal K 3 surface, that the instan-
ton number (2.2.12) of the heterotic bundle viewed as a bundle on K 3 is 24
(see (2.2.22)). The Green-Schwarz mechanism cancels all contributions to
the anomaly by terms of the form (3.2.2), apart from those proportional to

Y4 ∼ tr(R
4
). Hence in order to check anomaly cancellation we need to collect

the contributions to the coefficient of Y4 in the total anomaly, carefully taking
into account the various fields in our multiplets and their chiralities.

The fields from the supergravity multiplet R(6) of (2.2.4) which contribute
to the anomaly are the gravitino ψ+μ and the self-dual tensor field B+μν , both of
positive chirality. From (3.1.2) we read the coefficient in front of Y4,

98

72
+ 7

45
= 1

180
(245+ 28) = 273

180
.

The fields from a tensormultiplet T (6) of (2.2.4) which contribute to the
anomaly are the anti-self-dual tensor field B−μν and the spinor ψ−, both of
negative chirality, yielding the following coefficient in front of Y4,

− 7

45
− 1

180
= − 1

180
(28+ 1) = − 29

180
.

The only field from each vectormultiplet V (6) of (2.2.4) contributing to the
anomaly is the spinor λ+ of positive chirality, giving a coefficient

1

180
,

while from each hypermultiplet we get a contribution from the spinor χ− of
negative chirality, thus the coefficient

− 1

180

in front of Y4. Adding everything up we find

Proposition 3.1. A heterotic E8× E8 string theory in D = 6 dimensions with
internal K 3 surface and nT , nV , nH tensor-, vector- and hypermultiplets,
respectively, is anomaly free iff

nH − nV = 273− 29nT , (3.2.3)

and the instanton number is 24.

In Proposition 2.2 we have determined the massless spectrum for examples
of theories of the type addressed in the above proposition. Namely, consider a
theory which is obtained by compactification from a ten-dimensional E8× E8

heterotic theory to six dimensions on a smooth internal K 3 surface. Denote
the unbroken gauge group by H and assume furthermore that the bundle on



84 Anda Degeratu and Katrin Wendland

K 3 has degenerated to receive l distinct pointlike instantons. Then according
to Proposition 2.2 the massless spectrum obeys

nT = l + 1, nV = dim (H), nH = 244+ dim (H)− 29l.

We immediately see that the anomaly cancellation condition of Proposition 3.1
holds. Note that we have thus given two independent derivations for the for-
mula (3.2.3) for this case. In other words, heterotic string theories arising from
compactification of anomaly free theories in ten dimensions are automatically
anomaly free, and this remains true when the gauge bundle acquires pointlike
instantons.

3.3. Examples

This section is devoted to the presentation of a number of examples, where
we carry out the calculations of the numbers nT , nV , n0

H , and nch
H explained

above. In view of the heterotic – F-theory duality these examples are represen-
tative, as we shall see in Section 5.3. In each case, anomaly cancellation (3.2.3)
holds.

Assume that the heterotic bundle data specify two E8 bundles with instanton
numbers k1, k2 and l1, l2 distinct pointlike instantons, respectively, where the
holonomy is given by K i ⊂ E8 and by (2.2.22) we have k1+k2+l1+l2 = 24.
In this case the unbroken gauge group of the heterotic theory is H1 × H 2

with Hi ⊂ E8 the centralizer of K i in E8. We use the unbroken gauge group
H1 × H2 to label these examples as in [BIK+96], where a similar analysis is
performed.

3.3.1. Completely broken gauge group

If the gauge group is completely broken, the K 3 bundle has holonomy
K = E8 × E8. Assuming no pointlike instantons, by Proposition 2.2 and
(2.2.23)

nV = 0, nT = 1, n0
H = 20+ 30(k1 + k2)− 496 = 244, nch

H = 0.
(3.3.1)

3.3.2. Unbroken E8 gauge group

With gauge group H = E8 × {id} we have holonomy K = {id} × E8. An
E8 bundle can have trivial holonomy only if all its curvature is concentrated
in pointlike instantons. So let us assume that there are l = l1 distinct point-
like instantons, k1 = 0, while the second bundle has full E8 holonomy with
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instanton number k2 and we assume l2 = 0. From (2.2.7) we see that there is
no charged matter, such that with Proposition 2.2 and (2.2.23)

nV = 248, nT = l+1, n0
H = 20+30k2−248+l = 492−29l, nch

H = 0.
(3.3.2)

3.3.3. Unbroken E7 gauge group

With gauge group H = E7×{id}we have holonomy K = SU(2)×E8. Assume
that there are l distinct pointlike instantons on the bundle with SU(2) holon-
omy and effective instanton number k1, while the second bundle has full E8

holonomy with instanton number k2. From (2.2.7) we see that there is a contri-
bution to the charged matter, 248 = (133, 1)⊕(56, 2)⊕(1, 3), in which (56, 2)
gives charged hypermultiplets. The multiplicity is computed from (2.2.18) and
(2.2.19) and amounts to

N (56) = k1 ind (2)− dim (2) = 1

2
k1 − 2.

In total from Proposition 2.2 and (2.2.23) we have

nV = 133, nT = l + 1,

n0
H = 20+ 2k1 + 30k2 − 251+ l = −231+ 2k1 + 30k2 + l,

nch
H = 28k1 − 112. (3.3.3)

3.3.4. Unbroken E6 gauge group

With gauge group H = E6 × {id} we have holonomy K = SU(3) × E8.
Assume that there are l distinct pointlike instantons on the bundle with SU(3)
holonomy and effective instanton number k1, while the second bundle has full
E8 holonomy with instanton number k2. From (2.2.7) we see that there is a
contribution to the charged matter, 248 = (78, 1)⊕ (27, 3)⊕ (27, 3)⊕ (1, 8),
in which (27, 3) ⊕ (27, 3) gives charged hypermultiplets. The multiplicity is
computed from (2.2.18) and (2.2.19) and amounts to

N (27) = N (27) = k1 ind (3)− dim (3) = 1

2
k1 − 3.

To ease computations like this one, the book [MP81] is recommended, where
indices of representations like the ones that occur here are tabulated. In total
from Proposition 2.2 and (2.2.23) we have

nV = 78, nT = l + 1,

n0
H = 20+ 3k1 + 30k2 − 256+ l = −236+ 3k1 + 30k2 + l,

nch
H = 27k1 − 162. (3.3.4)
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3.3.5. Unbroken F4 gauge group

With gauge group H = F4×{id}we have holonomy K =G2×E8. From (2.2.7)
we see that there is a contribution to the charged matter, 248 = (52, 1) ⊕
(26, 7)⊕ (1, 14), in which (26, 7) contributes charged hypermultiplets. How-
ever, in this case a two-dimensional subspace of the 26 is in fact uncharged
under the gauge group, i.e. the kernel of the representation when restricted
to the Cartan torus t of H is two-dimensional. The corresponding multiplets
contribute to n0

H rather than nch
H (see the remark after Proposition 2.2). The

multiplicity of 26 obtained from (2.2.18) and (2.2.19) is

N (26) = k1 ind (7)− dim (7) = k1 − 7.

In total from Proposition 2.2 and (2.2.23) we have

nV = 52, nT = 1,

n0
H = 20+ 4k1 + 30k2 − 262+ 2(k1 − 7) = −256+ 6k1 + 30k2,

nch
H = 24k1 − 168. (3.3.5)

3.3.6. Unbroken Spin(10) gauge group

With gauge group H = Spin(10) × {id} we have holonomy K = SU(4) ×
E8. From (2.2.7) we see that there is a contribution to the charged matter,
248 = (45, 1)⊕ (10, 6)⊕ (16, 4⊕ 4)⊕ (1, 15), in which (10, 6)⊕ (16, 4⊕ 4)
contributes charged hypermultiplets. The multiplicities obtained from (2.2.18)
and (2.2.19) are

N (10) = k1 ind (6)− dim (6) = k1 − 6,

N (16) = 2
(

k1 ind (4)− dim (4)
)
= k1 − 8.

In total from Proposition 2.2 and (2.2.23) we have

nV = 45, nT = 1, n0
H = 20+ 4k1 + 30k2 − 263 = −243+ 4k1 + 30k2,

nch
H = 10(k1 − 6)+ 16(k1 − 8) = 26k1 − 188. (3.3.6)

4. Heterotic – type IIA and F-theory duality

While the five basic string theories in ten-dimensional Minkowski space can
be distinguished by their numbers of supersymmetries and their massless field
content, after compactification to D dimensions with D < 10 this is not true
anymore. As a consequence, so-called string-string dualities between various
string theories were conjectured. In fact it is claimed that all string theories are
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connected by a web of dualities. Here we concentrate on the heterotic – type
IIA duality and the heterotic – F-theory duality. For our purposes, the latter is
best viewed as a certain limit of the former.

4.1. The heterotic – type IIA duality

We have already encountered an example of the phenomenon known as a
string-string duality. Namely, in Proposition 2.3 we observed that in compact-
ifications to six dimensions the massless spectra agree for heterotic E8 × E8

strings with internal real four-torus on the one hand and for type IIA strings
with internal K 3 surface on the other hand. In fact, more can be said since the
(classical) moduli spaces of the respective theories are known explicitly. The
scalars in the massless supermultiplets give real coordinates of these moduli
spaces, and for both theories one finds the moduli space

R × O+(4, 20;Z)\O+(4, 20;R)/ (SO(4)× O(20)) , (4.1.1)

where the factor R accounts for the dilaton, and the remaining 80-dimensional
quaternionic Kähler space corresponds to the 20 × 4 scalars from the 20
hypermultiplets.

On the basis of these stunning agreements physicists have made the daring
conjecture [HT95, Wit95] that these string theories in fact are equivalent. One
says that there is a string-string duality between heterotic and type IIA theo-
ries, respectively. Much evidence in favor of this conjectured duality has been
collected, including the fact that the low energy effective actions agree [Wit95].

It is important to note that this string-string duality cannot be seen purely
perturbatively, since it maps the heterotic dilaton to the negative of the type
IIA dilaton [Wit95], and thus the string coupling constant is inverted under
the duality. Nevertheless, we have geometric interpretations of all scalars in
the hypermultiplets in terms of an Einstein metric, a B-field, and a connection
one-form of a flat bundle on a real four-torus on the one hand, and in terms of
an Einstein metric and a B-field on a K 3 surface on the other hand. Hence the
conjectured duality induces a map between these geometric structures. This
can be made very explicit as follows: For the K 3 surface on the type IIA side
we can always choose a complex structure such that this surface is elliptically
fibered with section. In standard (singular) Weierstraß form it is given by an
equation

y2 = x3 + x f (z)+ g(z), with f (z) =
8∑

m=0

f (m)zm, g(z) =
12∑

n=0

g(n)zn,

(4.1.2)
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where (x, y) are affine coordinates in CP2 for the fiber, while z is an affine
coordinate in the base CP1 of the fibration and f ( j), g(k) are complex con-
stants. We explicitly allow degenerations of our K 3 surface where it obtains
singularities of ADE type: For example, if f (z) = αz4 and g(z) = z5+βz6+
z7 with α, β ∈ C, then near z = 0 (and similarly near z = ∞), the equation
(4.1.2) gives

y2 = x3 + z5 + . . . ,

with the familiar exponents (2, 3, 5) of an E8 quotient singularity. The actual
K 3 surface is obtained by minimally resolving all such singularities. This is
why the above model is called the singular Weierstraß model. The possible
singular fibers have been classified by Kodaira [Kod64].

More generally note that the Grassmannian O+(4, 20;R)/SO(4) × O(20)
of (4.1.1) is modelled on the cohomology of K 3, H∗(K 3,R) ∼= R4,20, and
its points are given by positive definite oriented four-planes in H∗(K 3,R)
which encode the geometric data of a real Einstein metric and a B-field on
K 3 [AM94]. If the K 3 surfaces under inspection are restricted to have specific
singularities, then this amounts to restricting these four-planes to E⊥, where
E ⊂ Heven(K 3,Z) is the lattice associated to the exceptional divisor in the
resolution of that singularity. Hence with m = rk E the Grassmannian factor
in (4.1.1) reduces to O+(4, 20−m;R)/SO(4)×O(20−m). In the interpretation
of (4.1.1) as moduli space of real four-tori equipped with semi-stable E8× E8

bundles, the restriction of four-planes to E⊥ amounts to restricting to bun-
dles on the four-torus with some unbroken gauge symmetry, i.e. with restricted
holonomy. Specifically, to the lattice E one can associated a semi-simple Lie
algebra g ⊂ e8 ⊕ e8 because E comes from a collection of singularities of
ADE type on K 3. The restricted holonomy of the gauge bundle then is the
centralizer K of G ⊂ E8 × E8, where G has Lie algebra g. In particular, in
the above example the toroidal bundle has trivial holonomy and full E8 × E8

gauge symmetry with g = e8 ⊕ e8.
One finds [MV96b] that the coefficients f ( j), g(k) in (4.1.2) with j ≤

3, k ≤ 5 give the data of one of the heterotic E8 bundles, while the data of the
second heterotic E8 bundle are encoded in the coefficients with j ≥ 5, k ≥ 7.
The remaining two parameters f (4) and g(6) on the heterotic side are inter-
preted as specifying complex structure and complexified Kähler structure of
an elliptic curve. This may be surprising, since we expect to find the geometric
data of a real four-torus. However, for such a torus one can always choose a
complex structure such that it is elliptically fibered. Then f (4) and g(6) only
give the data of the base of such a fibration. Correspondingly on the type IIA
side we have not specified the Kähler class of our K 3 surface.
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Following [HT95, FHSV95, KV95, Sen96a, Vaf96, DMW96], the conjec-
tured heterotic – type IIA duality in six dimensions has been generalized to a
conjectured heterotic – type IIA duality in four dimensions. Surprisingly, the
following naive idea seems to work: Consider heterotic E8 × E8 strings in six
dimensions with internal space the product of a real two-torus and a K 3 sur-
face. Using an elliptic fibration of the K 3 surface, the complex structure of
the internal space can always be chosen such that it is a fibration with section
over CP1 and with generic fiber a complex two-torus. A fiberwise application
of the six-dimensional heterotic – type IIA duality yields this theory dual to a
type IIA theory in four dimensions with internal Calabi-Yau 3-fold which is
K 3-fibered over the “same” CP1 we used on the heterotic side. We will see
below that this idea carries tremendously far.

Note that any heterotic – type IIA duality in four dimensions requires a
matching of the massless spectra found in Propositions 2.4 and 2.5, respec-
tively. Particularly for heterotic theories on a product of a real two-torus and
a K 3 surface, the form of the moduli space associated to the scalars which
give geometric moduli in the vectormultiplets is known, at least at small string
coupling, where perturbative techniques hold: With m = rk H the rank of the
unbroken gauge group H on compactification to K 3 as in Proposition 2.5, one
has a space of the form

O+(2, 2+ m;Z)\O+(2, 2+ m;R)/ (SO(2)× O(2+ m))× SU(2)/U (1),
(4.1.3)

where the second factor accounts for the axion-dilaton pair. If a dual type IIA
theory exists, then the moduli space formed by the scalars of (m + 3) of its
vectormultiplets must take the same form as above in a regime where some
parameter corresponding to the heterotic dilaton becomes small. In [AL96] it
was shown that this implies that the respective type IIA theory has an internal
Calabi-Yau 3-fold which is K 3-fibered. If this fibration has a section, then the
size of the section corresponds to the value of the heterotic dilaton.

To match the hypermultiplet spectrum recall that on the heterotic side the
hypermultiplets appear in two disguises, neutral and charged (2.2.23). On the
type IIA side all (h1,2(X)+ 1) hypermultiplets of Proposition 2.4 are neutral.
The charged hypermultiplets (as well as (dim H−rk H) of the vectormultiplets
in Proposition 2.5) arise from non-perturbative phenomena which we have not
yet accounted for on the type IIA side, since we have always assumed the
Calabi-Yau 3-fold to be smooth. On the heterotic side this restriction amounts
to assuming Abelian gauge groups H where no enhanced symmetry and no
charged matter occurs. Using Propositions 2.4 and 2.5 we altogether have
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Conjecture 4.1. There exists a duality between four-dimensional string theo-
ries which maps a heterotic E8 × E8 string theory on a product of an elliptic
curve and a K 3 surface to a type IIA theory with an internal Calabi-Yau
3-fold X which is K 3-fibered, if there exists a regime where both the respective
perturbation theories converge. Moreover, if the heterotic theory arises from
compactification from a ten-dimensional theory such that the gauge group on
compactification to K 3 is H and the gauge bundle viewed as a bundle on K 3
acquires l distinct pointlike instantons, then X has Hodge numbers

h1,2(X) = n0
H − 1 = 19+ k1c2(K

1)+ k2c2(K
2)− dim K + l,

h1,1(X) = 3+ rk H + l

with notations as in Proposition 2.2 and with the comment concerning a
possible enhancement of n0

H as stated after that proposition.

If in addition the Calabi-Yau 3-fold X on the type IIA side of the duality is
elliptically fibered, then to capture its complex structure data it is often conve-
nient to use a singular Weierstraß form (4.1.2), where now the coefficients of
the polynomials f and g depend on a second affine parameter z2 of the base
CP1 of the K 3-fibration of X :

y2 = x3 + x
8∑

m=0

zm
1 f (m)(z2)+

12∑
n=0

zn
1g(n)(z2) (4.1.4)

with deg f (i) = 8 and deg g( j) = 12. Generalizing the discussion in the
case of an elliptically fibered K 3 surface and according to physics lore
[MV96b, BIK+96] the various parameters in (4.1.4) are assigned an inter-
pretation in the dual heterotic theory. Namely, the parameters governing the
polynomials f (0), . . . , f (3), g(0), . . . , g(5) correspond to the bundle param-
eters of one E8 bundle, those governing the polynomials f (5), . . . , f (8),
g(7), . . . , g(12) correspond to the bundle parameters of the second E8 bundle,
while f (4) and g(6) give the complex structure data of the K 3 surface in the het-
erotic product of an elliptic curve with K 3. This description can be very useful,
for instance because in many examples a parameter count in the polynomials
already leads to a correct determination of h1,2(X). Moreover, this setting is
tailor made for the application of a spectral cover description of the heterotic
bundles [FMW97, BJPS97, BCG+98]. However, the ansatz has to be handled
with care. First, the parameter count only works when all complex structure
deformations of X respect the algebraic form of (4.1.4). It is not hard to con-
struct examples where not all contributions to h1,2(X) are visible in terms of a
parameter count in (4.1.4). Second, the assumption that a global form (4.1.4)
of the equation for X exists does not always hold, because globally one need
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not have coordinate transforms that yield all fibers of an elliptic fibration in
Weierstraß form. Finally, in (4.1.4) one has tacitly assumed that all fibrations
have at least one global section.

4.2. The F-theory limit

For the heterotic – type IIA duality in four dimensions our presentation of
the matching of multiplets in Conjecture 4.1 so far is exact only for Abelian
gauge groups H . This is the generic case, but in our Proposition 2.5 we
have already accounted for the possibility of enhanced gauge symmetry on
the heterotic side, which goes along with the appearance of charged hyper-
multiplets. The natural setup for considering non-Abelian gauge groups is a
decompactification limit of the real two-torus in the heterotic theory. To per-
form such an operation, in (4.1.3) one has to choose a subspace of the form
O+(2, 2;Z)\O+(2, 2;R)/SO(2) × O(2), singling out the parameters of T 2

to make its volume large. In this limit, all parameters of T 2 are lost, and
the theory becomes effectively six-dimensional. In particular, the gauge group
is the centralizer in E8 × E8 of the holonomy group of the K 3-bundle. In
general this can be a non-Abelian group, and the charged hypermultiplets
capture the respective decomposition of the holonomy representation as in
(2.2.7).

On the type IIA side, this decompactification process corresponds
to taking a so–called F-theory limit. The physics literature on this
theme is vast, see for example [Vaf96, Sen96b, Wit95, MV96a, MV96b,
BIK+96, AM97]. The singling out of heterotic T 2 parameters in terms of
O+(2, 2;Z)\O+(2, 2;R)/SO(2) × O(2) corresponds to imposing the struc-
ture of an elliptic fibration with section on the Calabi-Yau 3-fold X of the type
IIA side [MV96a]. Since X is also K 3-fibered, altogether we obtain an elliptic
fibration of X over a rational surface Z → CP1. In the process of passing to
the F-theory limit, the parameter for the size of the fiber of Z → CP1 is lost.
Moreover, the size of the elliptic fiber in X → Z stabilizes to a constant value,
which a priori can be taken to be zero. This means that X becomes singular:
The Kähler class of X belongs to a face of a Kähler cone.

Since Z is a rational surface, it possesses two special sections, the section
at infinity and the zero section. According to [MV96a, MV96b, BIK+96] the
Kodaira type of the generic fiber over these special sections gives the two fac-
tors H1, H 2 of the unbroken gauge group corresponding to the two heterotic
E8-bundles in the dual theory. This is compatible with the discussion of (4.1.4):
If for Z → CP1 we view z1 as affine coordinate on the fiber, while z2 gives
a coordinate on the base, then the zero section is located at z1 = 0, where
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the behavior of the elliptic fibration X → Z is encoded in the polynomi-
als f (0), . . . , f (3), g(0), . . . , g(5), and analogously for the section at infinity
located at (z1)

−1 = 0 with f (5), . . . , f (8), g(7), . . . , g(12) – the bundle param-
eters as claimed. Under the assumption that the heterotic K 3 surface is smooth
one can check that no other families of degenerate fibers of non-trivial ADE
type occur in the fibration. In particular,

h1,1(X) = 1+ rk(H1)+ rk(H 2)+ ρ(Z)

with ρ(Z) the Picard number of the base Z . Note that if the base Z of the
fibration X → Z is minimal, then Z is a Hirzebruch surface Fn , and in this
case its Picard number is ρ(Z) = 2. In general, introduce l ∈ N such that

ρ(Z) = 2+ l

and observe from Conjecture 4.1 that l corresponds to the number of pointlike
instantons on the heterotic side.

Altogether we have:

Conjecture 4.2. Consider the decompactification limit onto K 3 of a heterotic
E8 × E8 theory on T 2 × K 3 with smooth K 3 surface, unbroken gauge group
H, and l distinct pointlike instantons. This is a six-dimensional theory with
massless spectrum according to Proposition 2.2. Under heterotic – F-theory
duality this theory is mapped to the F-theory limit of type IIA strings on a
Calabi-Yau 3-fold X with the following properties:

X is elliptically fibered with a section over a rational surface Z with Picard
number ρ(Z) and K 3-fibered over the base of Z → CP1. The fibers of X → Z
are shrunken to zero volume, corresponding to the size of the heterotic T 2

becoming infinite. Similarly, the moduli of the fiber of Z → CP1 have dropped
out, matching the loss of the complex structure parameters for the heterotic T 2.
The Kähler parameter giving the size of the base of Z → CP1 corresponds to
the scalar dilaton in a tensormultiplet of the heterotic theory. Additional l ten-
sormultiplets accounting for the l pointlike instantons on the heterotic side
match the l remaining Kähler parameters of Z. Of the heterotic vectormul-
tiplets, rk(H) account for bundle parameters of the gauge bundle on T 2 in
the original four-dimensional heterotic theory. These are recovered as Kähler
moduli of X in terms of degenerate fibers of the elliptic fibration over the two
special sections of Z. Namely, the generic fibers over these sections are ADE
type Kodaira fibers which match the ADE types of the summands of the gauge
algebra h. Altogether we have

ρ(Z) = l + 2, h1,1(X) = 3+ rk(H)+ l.
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Finally, the n0
H neutral hypermultiplets of the heterotic theory match the hyper-

multiplets that are carried unaltered from the type IIA theory into the F-theory
limit:

n0
H = h1,2(X)+ 1.

So far, we have deliberately omitted a discussion of charged hypermultiplets
on the F-theory side, although the conjectured heterotic – F-theory duality pre-
dicts their existence. Indeed, since delicate and interesting issues arise from
their investigation we devote much of the Section 5.2 to their study.

The decompactification limit of our heterotic theory on T 2 × K 3 gives a
six-dimensional theory. Hence anomaly cancellation (3.2.3) is an issue. In fact,
since the numbers of the various supermultiplets in this theory are related to
the geometric invariants of the dual Calabi-Yau 3-fold by Conjecture 4.2, the
duality predicts a classically unknown relation between these invariants:

Conjecture 4.3. Let X → Z denote an elliptically fibered Calabi-Yau 3-
fold with section, where Z is a rational surface. Assume that X gives the
background of an F-theory limit of type IIA string theory which is dual to a
consistent, that is an anomaly free decompactification limit of heterotic strings
on some T 2×K 3 to K 3. Then there exists an associated gauge group H which
arises from families of ADE-type Kodaira fibers in the fibration X → Z, and
a number nch

H of “charged hypermultiplets” which is a “charged dimension”

dim ch(") = dim (")− dim (ker "|Cartan torus(H))

of a representation " of H. Moreover, the Picard number ρ(Z) and the Hodge
number h1,2(X) obey

h1,2(X)+ 29ρ(Z)− dim (H)+ nch
H = 301.

In the above conjecture we have made no assumptions to the effect that X
is smooth or that the respective four-dimensional string theories arise from
compactification. Indeed, the conjecture is supposed to hold in great generality.
In the setting of Conjecture 4.2 and Proposition 2.2 we can prove the conjecture
with little difficulty: We know that the invariants ρ(Z), h1,2(X), nch

H and H
are related to the numbers nT , nH , nV of tensor-, hyper- and vectormultiplets
as follows:

nT = l+1= ρ(Z)−1, nH = n0
H+nch

H = h1,2(X)+1+nch
H , nV = dim (H).

Hence the anomaly cancellation condition (3.2.3) implies

301 = 28+ nH − nV + 29nT = h1,2(X)+ nch
H − dim (H)+ 29ρ(Z),

as claimed.
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Although the four-dimensional heterotic – type IIA duality as well as the het-
erotic – F-theory duality remain highly non-trivial conjectures, Conjecture 4.3
has valuable predictive power: On the one hand it serves as an important test
for the duality. On the other hand, we so far had to assume that the het-
erotic K 3 surface is smooth, since techniques for a direct investigation of the
degeneration phenomena which occur when pointlike instantons coalesce at
singularities of the K 3 surface are not known. However, using the F-theory
dual of such a degeneration much more can be said, in particular the parame-
ters entering Conjecture 4.3 can be calculated directly in the F-theory picture
[AM97], see also Section 5.3.7.

5. F-theory on elliptically fibered Calabi-Yau 3-folds

In this section we explore the geometric setting of the F-theory side in Conjec-
ture 4.2 intrinsically. We discuss how the invariants h1,2(X), ρ(Z) as well
as H and nch

H , which are related to one another in Conjecture 4.3, should
be encoded in the very geometry of an elliptically fibered Calabi-Yau 3-fold
X → Z with section. The duality predicts the form of the elliptic fibration. For
simplicity in this section we assume that the fibration has precisely one section,
because this is the situation assumed in several steps of [GM03], which we use
severely. It should not be too hard to include cases where the Mordell-Weil
group has non-zero rank, but we have not found a full account in the literature,
and we have not yet completed the relevant calculations.

While h1,2(X), ρ(Z) as well as H can indeed be obtained by a classical
analysis, the invariant nch

H remains rather mysterious. We discuss these quanti-
ties separately, where we deal with the “classical” analysis in Section 5.1 and
with “charged matter” in Section 5.2.

5.1. Some invariants of elliptically fibered Calabi-Yau 3-folds

As mentioned above, in many examples a parameter count in (4.1.4) yields
a prediction for the value of h1,2(X) in the F-theory picture. This however
does not always give the right answer, because deformations of the complex
structure of our Calabi-Yau 3-fold need not all be given in terms of polynomial
deformations of the singular Weierstraß form. On the other hand, there are
classical geometric methods to calculate h1,2(X) from the data predicted by
the duality.

Of the invariants involved in Conjecture 4.3, from the fibration X → Z
one can directly read an associated “gauge group” H ; this is a semisimple
Lie group whose simple factors are in 1 : 1 correspondence to families of
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degenerate fibers in X → Z of ADE Kodaira type and such that the ADE
types match [Wit96a, AKM00]. Note that indeed according to [Mir83, §7]
near smooth points of the reduced discriminant locus of our fibration such
families are locally trivializable. Particular care has to be taken with fibers
of types Ik, I V, I ∗k , and I V ∗, because generically a family of such fibers
in π : X → Z , i.e. π−1(�i ) for some divisor �i ⊂ Z , is not globally
trivializable, because the fibration has monodromy [AG96]. While without
monodromy one would associate factors of the gauge algebra according to

Ik �→ su(k) = ak−1, I V �→ su(3) = a2,

I ∗k �→ so(2k + 8) = dk+4, I V ∗ �→ e6

to such families, monodromy can reduce the associated Lie algebra to the cor-
responding non-simply-laced algebra that is read from the respective Dynkin
diagram under modding out of an outer automorphism:

I2k �→ sp(k) = ck, I2k+1 �→ sp(k) = ck, I V �→ sp(1) = a1,

I ∗k �→ so(2k + 7) = bk+3 or, if k = 0, g2, I V ∗ �→ f4. (5.1.1)

In calculations, the difference between families with and without monodromy
cannot be seen in the “short” Weierstraß form (4.1.4). Rather, one needs a
“long” Weierstraß form

y2+a1(z1, z2)xy+a3(z1, z2)y = x3+a2(z1, z2)x
2+a4(z1, z2)x+a6(z1, z2),

(5.1.2)

where as before x, y are affine coordinates of CP2 for the fiber and z1, z2 are
appropriate local coordinates of the base Z of X → Z . Here it is convenient to
assume that the divisor �i over which we want to study a family of degenerate
fibers is given by z1 = const. Then the vanishing orders γ1, γ2, γ3, γ4, γ6 of
a1, a2, a3, a4, a6 with respect to z2 encode the type of generic fiber over �i ,
including information about the monodromy. For example, vanishing orders
(γ1, γ2, γ3, γ4, γ6) = (1, 2, 2, 3, 5) give fibers of type I V ∗ without mon-
odromy, while (γ1, γ2, γ3, γ4, γ6) = (1, 2, 2, 3, 4) gives type I V ∗ fibers with
monodromy. All relevant data are tabulated in [GM03, Table 1].

With H the total gauge group obtained from families of degenerate fibers
one has

h1,1(X) = 1+ rk(H)+ ρ(Z),

and all these data can be read off from the geometry as predicted by the
duality. Therefore, to determine the remaining classical invariant h1,2(X) of
Conjecture 4.3 we can equivalently compute the Euler characteristic of X ,
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χ(X) = 2
(

h1,1(X)− h1,2(X)
)
.

The rest of this section is devoted to describing an algorithm for the computa-
tion of χ(X).

If X is a Calabi-Yau 3-fold which is elliptically fibered over a rational sur-
face Z and K 3-fibered with a section over the base of Z → CP1, then it arises
from a singular Weierstraß fibration X̃ → Z̃ over a Hirzebruch surface Z̃ = Fn

by a sequence of blowups in the base. Let us first collect some properties of
this singular fibration. As explained above, the fibration over the section C0 of
Fn at infinity and over the zero section C∞4 is governed by the bundle data
of the dual heterotic theory. Particularly, n = −C2

0 = C2∞ is related to the
topological data k1, k2, l1, l2 of the two heterotic E8 bundles by

k1 + l1 = 12− n, k2 + l2 = 12+ n (5.1.3)

if the i th bundle acquires li pointlike instantons. These identities arise from a
number of conjectures in the physics literature [SW96, Wit96c, MV96a], and
we view their validity as part of the conjectured duality. Denote by

y2 = x3 + a(z1, z2)x + b(z1, z2) (5.1.4)

the singular Weierstraß fibration X̃ → Z̃ with Z̃ = Fn , with z1, z2 affine
coordinates on the zero section C∞ and respectively the fiber F of Fn . More-
over a(z1, z2) and b(z1, z2) are polynomials as in (4.1.4) which define divisors
Ã and B̃ in Z̃ . The fibers of (5.1.4) degenerate over the discriminant �̃ ⊂ Z̃
which hence captures all the interesting topology of X̃ and eventually of X . The
discriminant is the zero locus of δ = 4a3 + 27b2. Since X̃ → Z̃ is assumed
to be a singular Calabi-Yau 3-fold, X̃ must in particular have trivial canonical
class. With L = −K Z̃ denoting the anticanonical class of Z̃ = Fn this implies
(see e.g. [Asp97, §6.2])

�̃ = 3 Ã = 2B̃ with Ã = 4L , B̃ = 6L .

Recall also

L = 2C0 + (2+ n)F, C2
0 = −n, F2 = 0,

C0 · F = 1, C∞ = C0 + nF, C2∞ = n. (5.1.5)

In the context of our duality the discriminant �̃ in general decomposes into
several irreducible components,

�̃ = �̃het + �̃′,

4 We apologize for this seemingly confusing notation, which however is compatible with [AM97]
and thus facilitates a comparison to that work. See [GH78, p. 518] for the standard mathematical
notations.
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where the generic fibers over the irreducible �̃′ are of type I1, while �̃het

is in general reducible and in particular accounts for more exotic families of
degenerate fibers dictated by the heterotic dual. �̃het in the present context
always consists of a collection of smooth rational curves in Z̃ = Fn .

As mentioned above, the Calabi-Yau 3-fold X → Z is obtained by a
sequence of blowups of Z̃ from (5.1.4) to yield Z . We always assume that
sufficiently many blowups have been performed such that all fibers of X → Z
are minimal according to Kodaira’s list of degenerate fibers [Kod64]. As we
shall see when we present some examples in Section 5.3, the blowups can be a
delicate issue which needs to be dealt with by a detailed analysis of the singu-
larities in (5.1.2). For the proper transforms of the various divisors we write

A = Ahet + A′, B = Bhet + B ′, and then � = �het +�′, (5.1.6)

where in particular �′ is the proper transform of �̃′. For later bookkeeping let
us denote by b j the number of blowups of points on �̃′ of multiplicity α j . In
particular,

�′(�′ + K Z ) = �̃′̃
Z
(�̃′̃

Z
+ KZ̃ )−

∑
j

α j (α j − 1)b j , (5.1.7)

see e.g. [GM03, Corollary 6.3].
All contributions to the Euler characteristic χ(X) are captured by the dis-

criminant � ⊂ Z of X → Z and the singular fibers over it. To keep track of
all of them, we consider the decomposition of � into irreducible components,
� = ⋃r

i=1 �i
⋃
�′, where from the above all �i are smooth rational curves

and the generic fibers over �′ are of Kodaira type I1. Contributions to χ(X)
can come from the generic fibers over each component of �, from intersection
points between any two of these components, from singular points (cusps) on
�′, and from the Euler characteristic of � itself. See [Mir83, (3.1)] for confir-
mation that we may indeed assume that no other singularities but cusps occur
in the residual discriminant �′. To tabulate all this information, we need to
introduce some notation.

First, let χi ∈ N denote the Euler characteristic of the generic fibers over �i .
The values of χi in each case are tabulated in [GM03, Table 3] in the column
marked “m”. Note that the corresponding number for �′ is 1. By P1, . . . , P I

we denote all intersection points of irreducible components of �. Particularly
let I ′ denote the number of points Pi on �′. When counting intersection points
of two given components of � care has to be taken since the intersection
number of the respective divisors counts points with multiplicities, while our
P1, . . . , P I are understood to be pairwise distinct. Since all �i are assumed
to be smooth rational curves, this issue is only relevant in interpreting �i ·�′.
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The necessary local case by case analysis has been carried out in [GM03],
and the respective multiplicities are found in [GM03, Table 2] as exponents
of t in the columns marked “l.e. at Pk”, and where “transversal” amounts to
multiplicity 1. Note that in several cases intersections of �i and �′ come in
two different “types P1, P2”, meaning that for P ∈ �i ∩ �′ the local geom-
etry near π−1(P) depends on whether P is of type P1 or P2. A case by case
analysis of the defining polynomials shows that there are never more than two
types. One can use [GM03, Table E] to determine the numbers B1, B2 of each
type of intersection and thus to disentangle the value of �i ·�′ in these cases.
Moreover,

− ε1 B1 − ε2 B2 (5.1.8)

with εi taken from [GM03, Table 4] gives the contribution to I ′ from the
collision �i ∩ �′. The Euler characteristic of each fiber π−1(Pi ) can be
found in [GM03, Table 4] if Pi ∈ �′, and otherwise one uses [Mir83, Table
(14.1)]. Even though in the latter work, Miranda does not take monodromy
into account, these calculations are still valid for our purposes, since the com-
putation of the Euler characteristic only depends on the geometry of the fiber
over Pi which he describes in great detail.

Cusps of �′ are denoted by Q1, . . . , QC , and each of them carries a special
fiber of type I I , contributing χ(π−1(Qi )) = 2 to the Euler characteristic. Note
that cusps in (5.1.4) are characterized by the simultaneous vanishing of a and
b, such that their total number in the resolved Calabi-Yau 3-fold X is given by
A′ · B ′, as long as these cusps do not coalesce with an intersection point of
�′ with one of the other components of �. From [GM03, Proposition 8] one
obtains the general formula for the number C of cusps, where an overcounting
in A′ · B ′ is observed when �′ intersects �i which carry generic fibers of types
Ik, I ∗0 , I ∗1 , or I ∗2 . One uses [GM03, Table 4] to read off the invariants entering
here: If �′ ∩ �i has B1 intersection points of “type P1” and B2 intersection
points of “type P2”, then

C = A′ · B′ − μ1 B1 − μ2 B2, (5.1.9)

with μ1, μ2 taken from [GM03, Table 4].
Altogether we have

χ(X) = χ
(
π−1(�′ −

I⋃
j=1

{P j } −
C⋃

j=1

{Q j })
)
+

r∑
i=1

χ
(
�i −

I⋃
j=1

{P j }
)
χi

+
I∑

j=1

χ(π−1(P j ))+ 2C.
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From the above discussion we can determine all contributions, where the first
one simplifies to

χ

⎛⎝π−1(�′ −
I⋃

j=1

{P j } −
C⋃

j=1

{Q j })
⎞⎠ = χ(π−1(�′))− I ′ − C

= −�′(�′ + KZ )+ 2C − I ′ − C
(5.1.7)= −�̃′(�̃′ + KZ̃ )

+
∑

j

α j (α j − 1)b j − I ′ + C

In summary,

Proposition 5.1. Let X → Z be a Calabi-Yau 3-fold which arises via a
sequence of blowups in the base of the singular Weierstraß fibration X̃ → Z̃
over a Hirzebruch surface Z̃ = Fn, associated to the data coming from a het-
erotic E8 × E8 theory compactified on a K 3 surface. Assume that X → Z
has precisely one section and that all fibers are minimal. Then the Euler
characteristic of X is given by

χ(X) = −�̃′(�̃′ + K Z̃ )+
∑

j

α j (α j − 1)b j

+
r∑

i=1

χ
(
�i −

I⋃
j=1

{P j }
)
χi +

I∑
j=1

χ(π−1(P j ))− I ′ + 3C,

where generically C = A′ · B′, but in general C is obtained from (5.1.9) and
I ′ is obtained according to the discussion around (5.1.8).

5.2. Charged matter

Above we have explained that the heterotic – F-theory duality yields suffi-
ciently detailed predictions about the elliptically fibered Calabi-Yau 3-fold
X → Z on the F-theory side such that one can recover geometric invariants
like h1,2(X) and h1,1(X) along with ρ(Z) and an associated “gauge group” H .
In light of Conjecture 4.3 one could then simply define

nch
H := 301+ dim (H)− h1,2(X)− 29ρ(Z)

and accept it as a new invariant of elliptically fibered Calabi-Yau 3-folds with
section that occur as F-theory duals of well-defined heterotic string theories.
However, from the derivation on the heterotic side for this invariant around
Proposition 2.2, we know that nch

H is a purely gauge theoretic quantity obtained
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through the representation theory of H . Hence rather than using Conjecture 4.3
as a definition of nch

H one should expect an intrinsic geometric interpretation
of this quantity and view the anomaly cancellation condition as a classically
unknown relation between geometric invariants attached to elliptically fibered
Calabi-Yau 3-folds with section. This is the viewpoint we are going to take
here.

In fact, if the heterotic – F-theory duality holds on the level of string theory,
then we are forced into this viewpoint: According to Proposition 2.2 the quan-
tity nch

H accounts for part of the hypermultiplet spectrum of the dual heterotic
theory, namely the charged part, and hence must also occur on the F-theory
side. Similarly, for non-Abelian H we have dim H − rk H additional vector-
multiplets to account for which so far have escaped our explanations on the
F-theory side.

Since in the F-theory limit the fibers of the elliptic fibration shrink to zero
size, i.e. the Calabi-Yau 3-fold X is taken to the boundary of the Kähler cone,
one can expect the additional multiplets to arise due to this degeneration of
X . Indeed, explanations along these lines can be found in the literature, see in
particular [KV97, AKM00]. This work connects the appearance of additional
multiplets to two phenomena which occur in this limit, distinguished by the
way the fibers of the elliptic fibration degenerate: (1) in families, or (2) isolated.
Let us attempt to summarize and comment on these explanations.

5.2.1. Families of degenerate fibers yielding new vectormultiplets

From Proposition 2.4 we know that on a smooth Calabi-Yau 3-fold X a
type IIA string theory possesses h1,1(X) vectormultiplets. These in particu-
lar include an RR three-form Cμi j in each multiplet which can be integrated
over two-cycles in X to produce one-forms. The latter can be interpreted as
analogs of Yang-Mills connection one-forms of a gauge theory which can
become non-Abelian when (−2) curves in X shrink to zero size [AKM00].

More precisely, consider a family of degenerate elliptic fibers in an ellip-
tically fibered Calabi-Yau 3-fold such that the degenerate fiber is a bouquet
of rational curves. As explained above, to this type of family one associates
a simple factor Gi of the “gauge group” H , an ADE type Lie group. Each
rational curve in the bouquet has normal bundle O ⊕ O(−2) in X , and in the
family of degenerate fibers it sweeps out a four-cycle Si in X with normal
bundle O(−2). These four-cycles are in 1 : 1 correspondence with the genera-
tors of a Cartan torus of Gi . Indeed, following [Wit96a, KV97, AKM00] one
defines U (1) charges with respect to each Si on any (−2) curve in the degener-
ate fiber via the intersection form. Here one views the (−2) curve as the cycle
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which a two-brane wraps to produce a new massless particle with “electric
charge” given by its U (1) charge if the size of the relevant (−2) curve shrinks
to zero. Since the (−2) curves in the degenerate fiber are in 1 : 1 correspon-
dence with the roots of Gi , and because the rational curves underlying Si have
intersection form given by the Cartan matrix of Gi , one obtains the adjoint rep-
resentation of Gi . In particular, the “gauge representation” associated to the Si

is enhanced from a rk Gi to a dim Gi dimensional representation, accounting
for the missing vectormultiplets: One has to add one “charged” vectormultiplet
corresponding to each root of Gi .

In fact, for definiteness recall from Section 5.1 that

� =
r⋃

i=1

�i ∪ �′,

with smooth irreducible curves �i , and �′ the residual discriminant of the
fibration π : X → Z , an irreducible curve over which the generic fibers are of
Kodaira type I1. For each �i the fiber over it gives rise to a simply-laced Lie
algebra, which may be trivial if the fibers are of type I1 or I I . If there is no
monodromy within π−1(�i ), then this determines the associated factor Gi of
H . If within π−1(�i ) there is monodromy, then Gi is the corresponding non-
simply-laced Lie group which descends from the simply laced one as listed on
the algebra level in (5.1.1). To summarize, the enhanced gauge group is

H =
r∏

i=1

Gi ,

and the total number of vector multiplets is dim H =∑r
i=1 dim Gi .

5.2.2. Colliding degenerate fibers yielding charged hypermultiplets

We have now accounted for all effects of the degeneration of X in the F-theory
limit, apart from the special degenerate fibers which occur over collision
points of irreducible components of the discriminant � ⊂ Z of the fibra-
tion π : X → Z . It is important to note that the type of fiber over such
a collision point is not simply obtained by adding the vanishing orders of
the polynomials a1, a2, a3, a4, a6 in (5.1.2). Rather, according to [Mir83]
a generic curve C ⊂ Z through the collision point yields a surface π−1(C)
with a singularity at the collision point. Minimally resolving this singularity
gives a degenerate fiber Y of the type predicted by simply adding the vanish-
ing orders of a1, . . . , a6. The isolated degenerate fiber of π : X → Z is hence
obtained by contracting some of the irreducible curves in Y . The explanations
in [KV97] amount to translating this result into the language of the “gauge
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theory” associated to the group H as described above. The geometric setting
hints towards various interesting phenomena that are related to these collision
points. Particularly in view of the gauge theory attached to families of degen-
erate fibers according to Section 5.2.1, one expects representations of gi ⊕ g j

attached to the fibers over collision points which are non-trivial with respect
to both summands, where gi , g j are the gauge algebras associated to the two
colliding families of degenerate fibers. This phenomenon is the expected origin
of the charged hypermultiplets [Wit96a, KV97, AKM00].

For the geometry of elliptically fibered Calabi-Yau 3-folds X → Z which
occur in the heterotic – F-theory duality this means that at least formally it
should be possible to associate to each degenerate fiber over an intersection
of irreducible components of the discriminant, (a) a representation of the total
gauge group H , and (b) a prescription to calculate its charged dimension, such
that nch

H is the sum of all these charged dimensions. For the situation where
� = ∪r

i=1�i ∪�′ obeys �i ∩� j = ∅ for all i �= j this idea has been carried
out in [GM03]. This work hence covers all F-theory duals of heterotic theories
compactified on smooth K 3 surfaces and with smooth bundles. To calculate
nch

H from the results of [GM03] one proceeds as follows:
We have already explained in Section 5.1 how to determine the number of

intersection points P1, . . . , P I (I = I ′ such that one of the colliding divisors is
always�′ under our assumptions), along with their multiplicities and the infor-
mation whether or not monodromy is involved in one of the colliding families.
While [GM03, Table 4] gives the type of fiber over each collision point, the
associated representations are listed in [GM03, Table A]. Here, ρ1, ρ2 denote
representations attached to collision points of “type P1, P2” respectively (see
Section 5.1 for this terminology), and ρ0 is a representation which is “non-
isolated” in the sense that monodromy prevents a localization over the collision
points.

While representations of type ρ1, ρ2 contribute to nch
H according to their

dimensions at each collision point, greater care has to be taken when determin-
ing the contributions for representations of type ρ0. First, if at a collision point
Pk ∈ �i ∩ �′ monodromy occurs, then one needs to work with a branched
cover �′i of �i which parametrizes the exceptional curves in one homology
class [GM03, Corollary 1.3]. The difference g′i − gi of genera between �′i and
�i is obtained from [GM03, Tabel E] and replaces the number of collision
points in �i ∩ �′ in the contribution to nch

H from ρ0 [GM03, Theorem 8.2].
This is an effect of having “non-isolated” representations: Some of the points
in �i ∩�′ belong to the same orbit under this representation. There is a second
crucial effect of monodromy. Recall that we distinguish between charged and
uncharged hypermultiplets, where uncharged matter is characterized by the
fact that it transforms trivially under the gauge group. Generically, on the
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heterotic side the representations Li
a ⊗ Qi

a in (2.2.7) with non-trivial Li
a, Qi

a
yield trivial kernel when restricted to the Cartan torus t of the gauge group H .
However, with monodromy this need not be the case such that one can obtain
additional contributions to the uncharged matter, and accordingly a smaller
contribution to the charged matter from ρ0 as above. In [GM03] the relevant
contribution of ρ0 to nch

H is called the charged dimension

dim (ρ0)ch := dim (ρ0)− dim ker(ρ0)|t

and can be obtained from [GM03, Table B].
The invariant nch

H altogether receives a contribution (g′i−gi )dim (ρ0)ch from
ρ0. If dim (ρ0)ch �= dim (ρ0) then n0

H receives an additional contribution (g′i −
gi )(dim (ρ0) − dim (ρ0)ch) which must be added to our formula (2.2.23) in
order for h1,2(X) = n0

H + 1 to hold in Conjecture 4.2. To our knowledge, this
latter correction has escaped mention in the literature, so far.

After having established the prescription for the calculation nch
H from

[GM03] we naturally ask whether the invariants h1,2(X), ρ(Z), dim (H), and
nch

H associated to an elliptic fibration X → Z obey the anomaly cancella-
tion condition of Conjecture 4.3. Indeed, one of the main results of [GM03]
is the confirmation of this classically unknown identity in the cases they
treat. Moreover, a verification of anomaly cancellation in the context of the
Green-Schwarz mechanism is given. These results of [GM03] yield yet another
striking and highly non-trivial piece of evidence in favor of the conjectured
heterotic – F-theory duality. However, they arise from a local case-by-case
analysis and do not give an entirely intrinsic explanation for the origin of the
representations attached formally to collisions of families of degenerate fibers
in X → Z . Although the familiar branching rules from the heterotic dual
are invoked to determine the relevant representations, as is also suggested in
[KV97], the actual mathematical origin of the “gauge theory” associated to
degenerate fibers remains mysterious.

Indeed, in light of the gauge theory attached to each family of degenerate
fibers according to Section 5.2.1, there seems to be a natural explanation in
terms of the local geometry of the isolated degenerate fibers which also gives
a lead on how to calculate nch

H in general [AKM00]. As mentioned above, one
expects that both factors Gi , G j of the gauge group associated to two col-
liding families should act non-trivially on the representation associated to the
collision. While generic rational curves in this isolated fiber will have vanish-
ing charge with respect to one of the two groups, in some cases such a curve
can have non-trivial charge with respect to both Gi and G j . As before, this
charge is encoded in the respective normal bundle of the rational curve in X .
Generically, such a curve will have normal bundleO⊕O(−2) orO(−2)⊕O,
while in some cases curves with normal bundleO(−1)⊕O(−1) can occur. The
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latter are expected to be the sources of the charged hypermultiplets. Note how-
ever that the explanation definitely needs adjustment. In the setting which the
authors of [GM03] restrict to, either Gi or G j is trivial, so the above approach
would predict absence of charged hypermultiplets. This prediction is false. We
believe that in [AKM00] one needs to assume that neither of Gi , G j is trivial.

The above idea is shown to work for colliding families of type In and Im ,
respectively, in [AKM00], but it seems not to have been pushed further in the
physics literature. However, we have found encouraging confirmation beyond
this case in [Mir83], where the local geometry of fibers over such collision
points is studied in detail. In particular, a list of “fundamental collisions” is
given, to which all other collisions can be reduced by appropriate blowups
of the base. The topology of the isolated fiber for each fundamental collision
is worked out, along with the normal bundles of the irreducible components
of these fibers. The only fundamental collisions with at least one irreducible
component of the isolated fiber having normal bundle O(−1) ⊕ O(−1) are
collisions of types

In + Im , In + I ∗m , I V + I ∗0 , and I I I + I ∗0 . (5.2.1)

We view it as a striking confirmation of the ideas of [AKM00] that in a wealth
of examples where nch

H can be calculated on the heterotic side and hence a
prediction for its value is available, its geometric derivation involves only
collisions of type (5.2.1), or non-fundamental collisions, or collisions which
generically suffer from monodromy – and no counter example is known to us.
In other words, for all cases that are covered by [Mir83] the ideas of [AKM00]
can be confirmed. Nevertheless – and surprisingly – Miranda’s list has not yet
been extended to all relevant cases to provide a complete intrinsic explanation
for charged hypermultiplets in the geometry of elliptically fibered Calabi-Yau
3-folds. In particular, monodromy is not taken into account in [Mir83] – and in
fact is also not addressed in [KV97]. Of course, several further examples are
discussed in [AKM00], including some with monodromy, and various meth-
ods that apply in special cases are known [KMP96, Wit96a, AG96, BIK+96,
Sad96, KV97, IMS97, CPR98, Int98, DE99], but a general intrinsic under-
standing apparently has not yet been reached. We are currently working on
filling this gap.

5.3. Examples

In this section we present a number of examples to illustrate the algorithms
explained above. They are chosen representatively to show all the special
features that to our knowledge can occur in these algorithms.
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As a first step, using the heterotic input data we need to specify the respective
singular Weierstraß fibration (5.1.2) over Z̃ = Fn in each case. We assume that
the heterotic data ki , li , K i , Hi are given as in Section 3.3. Recall that n is
then determined by (5.1.3). Moreover, the fibration X̃ → Z̃ degenerates over
C0 and C∞, where H 1, H 2 determine the Kodaira type of the generic singular
elliptic fiber. Using [AM97, Table 1] this gives the vanishing orders αi , βi , di

of a, b, and δ in the short Weierstraß form (5.1.4) along C0 and C∞. Hence we
can specify the components Ã′, B̃′, �̃′ of the discriminant yielding A′, B ′, �′
of (5.1.6) after blowup:

Ã′ = 4L − α0C0 − α∞C∞, B̃ ′ = 6L − β0C0 − β∞C∞,
�̃′ = 12L − d0C0 − d∞C∞, (5.3.1)

with the notation of (5.1). In fact, in most of the cases discussed below no
further blowup will be necessary, such that Ã′ = A′, B̃′ = B ′, �̃′ = �′ and
the collision points of components of � which take center stage in the analysis
are counted by the intersection numbers �′ · C0 and �′ · C∞. In some cases,
though, collisions turn out to be non-minimal, such that blowups are needed,
as we shall describe in more detail where necessary.

As mentioned above, to correctly incorporate monodromies instead of the
short Weierstraß form (5.1.4) one needs to use the long version (5.1.2) from
which the former is obtained via

c2 := a2
1 + 4a2, c4 := a1a3 + 2a4, c6 := a2

3 + 4a6,

a = − 1

48

(
c2

2 − 24c4

)
, b = − 1

864

(
−c3

2 + 36c2c4 − 216c6

)
.

For later convenience let us also introduce the following notation: We write
Yα,β;γ1,γ2,γ3,γ4,γ6(g) to denote a Y -type fiber, where α, β, γi are the vanishing
orders of a, b in (5.1.4) and ai in (5.1.2), respectively, and g is the Lie algebra
of the associated gauge group. We sometimes simply call such a fiber “of type
(α, β; γ1, γ2, γ3, γ4, γ6)”.

5.3.1. Completely broken gauge group

If the gauge group is trivial, H = {id}, this means that our K 3 bundle has
holonomy K = E8 × E8. Since no additional singular fibers are imposed,
we have

A′ = 4L = 8C0 + (8+ 4n)F,

B ′ = 6L = 12C0 + (12+ 6n)F,

�′ = 12L = 24C0 + (24+ 12n)F.
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Because there are no collisions, Z̃ = Z needs no further blowups and hence

ρ(Z) = 2, h1,1(X) = 3.

Furthermore we directly obtain all contributions to the formula for χ(X) in
Proposition 5.1:

�′ · (�′ + K Z̃ ) = 1056,
∑

j
α j (α j − 1)b j = 0,

r∑
i=1

χ
(
�i −⋃I

j=1{P j })χi = 0,

I∑
j=1

χ(π−1(P j )) = 0, I ′ = 0, C = A′ · B ′ = 192.

Hence

χ(X) = −480, h1,2(X) = 243.

Moreover since there are no collisions, no charged hypermultiplets occur,
nch

H = 0. First, anomaly cancellation according to Conjecture 4.3 is seen
to hold (as of course follows from the results of [GM03]). Second, compar-
ing these data to the ones obtained for the heterotic dual (3.3.1), we see that
Conjecture 4.2 is met.

5.3.2. Unbroken E8 gauge group

If the gauge group is H = E8 × {id}, this means that our heterotic K 3 bundle
has holonomy K = {id} × E8. So we are imposing I I ∗ fibers on C0 and

Ã′ = 4L − 4C0 = 4C0 + (8+ 4n)F,

B̃′ = 6L − 5C0 = 7C0 + (12+ 6n)F,

�̃′ = 12L − 10C0 = 14C0 + (24+ 12n)F.

We have �̃′ · C0 = 2(12 − n) and find that each intersection has multiplicity
α j = 2. These intersections are non-minimal, so b j = 12 − n blowups are
necessary, yielding

ρ(Z) = 14− n, h1,1(X) = 23− n.

After blowup, no collisions are left. The contributions to the formula for χ(X)
in Proposition 5.1 are:

�′ · (�′ + KZ̃ )= 130n + 596,
∑

j
α j (α j − 1)b j = 24− 2n,

r∑
i=1

χ
(
�i −⋃I

j=1{P j })χi = 20,
I∑

j=1
χ(π−1(P j ))= 0,

I ′ = 0, C = Ã′ · B̃′ = 104+ 24n.
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Hence

χ(X) = −60n − 240, h1,2(X) = 143+ 29n.

Since there are no collisions, no charged hypermultiplets occur, nch
H = 0.

Anomaly cancellation according to Conjecture 4.3 holds (in accord with
[GM03]). Moreover, comparing these data to the ones obtained for the het-
erotic dual (3.3.2) with l = −n + 12 according to (5.1.3), we see that
Conjecture 4.2 is met.

5.3.3. Unbroken E7 gauge group

If the gauge group is H = E7 × {id}, this means that our K 3 bundle has
holonomy K = SU(2)× E8. So we are imposing I I I ∗ fibers on C0 and

Ã′ = 4L − 3C0 = 5C0 + (8+ 4n)F,

B̃′ = 6L − 5C0 = 7C0 + (12+ 6n)F,

�̃′ = 12L − 9C0 = 15C0 + (24+ 12n)F.

We have �̃′ · C0 = 3(8 − n) and from [GM03, Table 2] find that each inter-
section has multiplicity α j = 3. These intersections are minimal, but we can
choose to blow up b j = l of them, yielding

ρ(Z) = 2+ l, h1,1(X) = 10+ l.

After blowup, (8 − n − l) collisions are left. From [GM03, Table 4] the
Euler characteristic of the isolated fibers over such collision points is 9. The
contributions to the formula for χ(X) in Proposition 5.1 hence are:

�′ · (�′ + K Z̃ )= 126n + 642,
∑

j
α j (α j − 1)b j = 6l,

r∑
i=1

χ
(
�i −
⋃I

j=1{P j }
)
χi =−54+ 9n + 9l,

I∑
j=1

χ(π−1(P j ))= 72− 9n − 9l,

I ′ = 8− n − l, C = Ã′ · B̃′ − l = 23n + 116− l.

The formula for the number of cusps C takes into account that each collision of
C0 with �̃′ izzs also a cusp of �̃′ which is resolved if we blow up. Altogether

χ(X) = −56n − 284+ 4l, h1,2(X) = 28n + 152− l.

By [GM03, Table A] each of the (8− n − l) collisions carries charged matter,
contributing 1

2 56 to nch
H . One hence has nch

H = 224 − 28n − 28l. Anomaly
cancellation according to Conjecture 4.3 holds, and comparing these data to
the ones obtained for the heterotic dual (3.3.3) with k1 + l = −n + 12 and
k2 = n + 12 according to (5.1.3), we see that Conjecture 4.2 is met.
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5.3.4. Unbroken E6 gauge group

If the gauge group is H = E6 × {id}, this means that our K 3 bundle has
holonomy K = SU(3) × E8. So we are imposing I V ∗ fibers on C0, but with
trivial monodromy, which is the non-generic case. We have

Ã′ = 4L − 3C0= 5C0+(8+ 4n)F,

B̃′ = 6L − 4C0= 8C0+(12+ 6n)F,

�̃′ = 12L − 8C0= 16C0+(24+ 12n)F, �̃′ · C0= 2(12− 2n)= 4(6− n).

From [GM03, Table 2] each intersection between C0 and �̃′ has multiplicity
α j = 4. These intersections are minimal, but we can choose to blow up b j = l
of them, yielding

ρ(Z) = 2+ l, h1,1(X) = 9+ l.

After blowup, (6 − n − l) collisions are left. From [GM03, Table 4] the
Euler characteristic of the isolated fibers over such collision points is 9. The
contributions to the formula for χ(X) in Proposition 5.1 hence are:

�′ · (�′ + K Z̃ )=120n + 688,
∑

j
α j (α j − 1)b j =12l,

r∑
i=1

χ
(
�i −
⋃I

j=1{P j }
)
χi =−32+ 8n + 8l,

I∑
j=1

χ(π−1(P j ))=54− 9n − 9l,

I ′ =6− n − l, C = Ã′ · B̃′ − 2l=22n + 124− 2l.

The formula for the number of cusps C takes into account that each collision
of C0 with �̃′ is also a cusp of �̃′ which is resolved if we blow up; in fact, the
collision with �̃′ has multiplicity 4 and the number of cusps is reduced by 2
by each blowup. Altogether

χ(X) = −54n − 300+ 6l, h1,2(X) = 27n + 159− 2l.

By [GM03, Table A] each of the (6− n − l) collisions carries charged matter,
contributing 27 to nch

H . One hence has nch
H = 162 − 27n − 27l. Anomaly

cancellation according to Conjecture 4.3 holds, and comparing these data to
the ones obtained for the heterotic dual (3.3.4) with k1 + l = −n + 12 and
k2 = n + 12 according to (5.1.3), we see that Conjecture 4.2 is met.

5.3.5. Unbroken F4 gauge group

If the gauge group is H = F4 × {id}, this means that our heterotic K 3 bundle
has holonomy K = G2 × E8. So we are imposing I V ∗ fibers on C0 as in the
previous subsection, but with nontrivial monodromy, which is the generic case.
The results for Ã′, B̃ ′, �̃′, �̃′ ·C0 can be taken from the previous subsection,
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but now according to [GM03, Table 2] each intersection between C0 and �̃′
has multiplicity α j = 2. These intersections are minimal, but the collisions
cannot be removed by blowups. Hence we do not blow up at all, b j = 0, and

ρ(Z) = 2, h1,1(X) = 7.

We have (12 − 2n) collisions between C0 and �′. From [GM03, Table 4]
the Euler characteristic of the fibers associated to such collision points is 6.
Note that in this case we have monodromy, which will affect the calculation
of the charged hypermultiplets. The contributions to the formula for χ(X) in
Proposition 5.1 are:

�′ · (�′ + KZ̃ )= 120n + 688,
∑

j
α j (α j − 1)b j = 0,

r∑
i=1

χ
(
�i −⋃I

j=1{P j })χi =−80+ 16n,
I∑

j=1
χ(π−1(P j ))= 72− 12n,

I ′ = 12− 2n, C = Ã′ · B̃′ = 22n + 124.

Altogether

χ(X) = −48n − 336, h1,2(X) = 24n + 175.

By [GM03, Table A] each of the (12 − 2n) collisions carries charged mat-
ter, with associated representation 26. However, we have monodromy, and the
charged dimension of this representation is only dim (26)ch = 24 according to
[GM03, Table B]. Moreover, its multiplicity in nch

H is not (12− 2n) but rather
(g′ − g) = 5 − n as can be obtained from [GM03, Table E]. One hence has
nch

H = 120−24n. Anomaly cancellation according to Conjecture 4.3 holds, and
comparing these data to the ones obtained for the heterotic dual (3.3.5) with
k1 = −n+12 and k2 = n+12 according to (5.1.3), we see that Conjecture 4.2
is met.

5.3.6. Unbroken Spin(10) gauge group

If the gauge group is H = Spin(10)× {id}, this means that our K 3 bundle has
holonomy K = SU(4)× E8. So we are imposing I ∗1 fibers on C0, and we have

Ã′ = 4L − 2C0 = 6C0 + (8+ 4n)F,

B̃′ = 6L − 3C0 = 9C0 + (12+ 6n)F,

�̃′ = 12L − 7C0 = 17C0 + (24+ 12n)F, �̃′ · C0 = 24− 5n.

In this case determining the multiplicities of intersection points is a bit trickier
than before, because there are two different “types P1, P2” of intersections.
Using [GM03, Table E] one finds that there are B1 = 6 − n intersections of
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“type P1”, and B2 = 4−n intersections of “type P2”. Since when counted with
multiplicities the total number of intersections is 24− 5n, one finds that inter-
sections of “type P1” have multiplicity 2, while intersections of “type P2” have
multiplicity 3. We choose not to blow up any of these intersections, b j = 0,
yielding

ρ(Z) = 2, h1,1(X) = 8.

In total, we have B1+ B2 = 10− 2n collisions, and from [GM03, Table 4] the
Euler characteristic of the isolated fibers over collision points of both “types
P1, P2” is 8. The contributions to the formula for χ(X) in Proposition 5.1
hence are:

�′ · (�′ + K Z̃ )= 112n + 734,
∑

j
α j (α j − 1)b j = 0,

r∑
i=1

χ
(
�i −⋃I

j=1{P j })χi =−56+ 14n,
I∑

j=1
χ(π−1(P j ))= 80− 16n,

I ′ = 10− 2n, C = Ã′ · B̃′ − μ1 B1 − μ2 B2 = 20n + 136.

For the number of cusps in this case we have to apply the general formula
(5.1.9) with μ1 = 0 and μ2 = 2 according to [GM03, Table 4]. Altogether

χ(X) = −52n − 312, h1,2(X) = 26n + 164.

By [GM03, Tables A, B] each of the (10−2n) collisions carries charged matter,
where the (6 − n) points of “type P1” contribute 10, and the (4 − n) points
of “type P2” contribute 16, each to nch

H . One hence has nch
H = 124 − 26n.

Anomaly cancellation according to Conjecture 4.3 holds, and comparing these
data to the ones obtained for the heterotic dual (3.3.6) with k1 = −n + 12 and
k2 = n + 12 according to (5.1.3), we see that Conjecture 4.2 is met.

5.3.7. 24 pointlike instantons on singularities of type E8, E7, or E6

Recall that in our Proposition 2.2 we restricted the internal K 3 surfaces of our
heterotic string theories to be smooth, because the analysis which lead to the
formulas for nH , nV , nT cannot be performed as stated if pointlike instantons
collide with singularities on K 3. In fact, no direct technique to tackle that
situation is known. However, the heterotic – F-theory duality comes to aid
and allows to predict the massless spectrum even in such highly degenerate
cases [AM97]. Let us describe three of the most degenerate situations, which
where brought to our attention by McKay’s conjecture as mentioned in the
Introduction.

On the heterotic side, we assume total degeneration of the bundle data
to 24 pointlike instantons. This amounts to a primordial gauge group
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E8 × E8 and thus to imposing I I ∗ fibers on C0 and C∞ in Z̃ = Fn ,
yielding

Ã′0 = 4L − 4C0 − 4C∞ = 8F,

B̃ ′0 = 6L − 5C0 − 5C∞ = 2C0 + (12+ n)F,

�̃′0 = 12L − 10C0 − 10C∞ = 4C0 + (24+ 2n)F.

Furthermore, we impose singularities of type E8, E7, E6 on the heterotic K 3
surface. On the F-theory side, according to [AM97], this corresponds to impos-
ing additional degenerations of the Weierstraß form over one fiber F of Z̃ = Fn

of type I I ∗, I I I ∗, I V ∗, respectively. The most degenerate situation arises
when all pointlike instantons coalesce on the singularity of the heterotic K 3
surface. Since in F-theory each pointlike instanton corresponds to a (multiple)
intersection of �̃′0 with C0 or C∞, respectively, this amounts to degenerating
X̃ such that all intersections of �̃′0 with C0 and C∞ are situated also on F . To
desingularize the highly degenerate variety X̃ one performs a chain of blowups
of Z̃ , as we shall now describe, following [AM97].

To explain the general procedure let us blow up the singularity coming
from the intersection of two rational curves �1, �2 which carry excep-
tional fibers of type (α, β; γ1, γ2, γ3, γ4, γ6) and (α′, β ′; γ ′1, γ ′2, γ ′3, γ ′4, γ ′6),
respectively, such that over the intersection of �1 and �2 we have a non-
minimal fiber. In other words, we assume α + α′ ≥ 4, β + β ′ ≥ 6. We
take the coordinate t on �1 and s on �2, such that the fibration is locally
given by

y2 + sγ1 tγ
′
1 xy + sγ3 tγ

′
3 y = x3 + sγ2 tγ

′
2 x2 + sγ4 tγ

′
4 x + sγ6 tγ

′
6 .

To blow up, we set

s = s1t1, t = t1, x = t2
1 x1, y = t3

1 y1,

i.e. we blow the base up in s = t = 0, as well as the fiber in x = y = 0. The
equation becomes

y2
1 + sγ1

1 t
γ1+γ ′1−1
1 x1 y1 + sγ3

1 t
γ3+γ ′3−3
1 y1= x3

1 + sγ2
1 t

γ2+γ ′2−2
1 x2

1 + sγ4
1 t

γ4+γ ′4−4
1 x1

+ sγ6
1 t

γ6+γ ′6−6
1 ,

which along the new divisor {t1 = 0} has a Kodaira fiber of type

(α′′, β ′′; γ1+γ ′1−1, γ2+γ ′2−2, γ3+γ ′3−3, γ4+γ ′4−4, γ6+γ ′6−6). (5.3.2)



112 Anda Degeratu and Katrin Wendland

Additionally moving instantons into the collision point the Weierstraß model
for the fibration becomes

y2+ sγ1 tγ
′
1 xy+ sγ3 tγ

′
3 y = x3+ sγ2 tγ

′
2 x2+ sγ4 tγ

′
4 x + sγ6 tγ

′
6(s+λtk) (5.3.3)

for some constant λ, and k ∈ N accounting for the number of instantons.
Blowing up as before we obtain

y2
1 + sγ1

1 t
γ1+γ ′1−1
1 x1 y1+ sγ3

1 t
γ3+γ ′3−3
1 y1= x3

1 + sγ2
1 t

γ2+γ ′2−2
1 x2

1 + sγ4
1 t

γ4+γ ′4−4
1 x1

+ sγ6
1 t

γ6+γ ′6−5
1 (s1 + λtk−1). (5.3.4)

We have introduced a new CP1 with fibers of type

(α′′, β ′′; γ1+γ ′1−1, γ2+γ ′2−2, γ3+γ ′3−3, γ4+γ ′4−4, γ6+γ ′6−5). (5.3.5)

E8 instantons on an E8 singularity
An E8 type singularity in the K 3 surface on the heterotic side implies that X̃
has I I ∗ fibers not only over C0 and C∞ but also over a fiber F . Forcing these,
the divisors Ã′0, B̃′0, and �̃′0 become

Ã′ = Ã′0 − 4F = 4F,

B̃ ′ = B̃ ′0 − 5F = 2C0 + (7+ n)F,

�̃′ = �̃′0 − 10F = 4C0 + (14+ 2n)F.

Hence

�̃′ · C0 = 2(7− n), �̃′ · C∞ = 2(7+ n), �̃′ · F = 2 · 2.
The first two formulas show that there are in total 14 instantons that can be
moved into the E8 singularity. There is an apparent difference between this
number and the total instanton number 24 on the heterotic side; the interpre-
tation of this mismatch in [AM97] says that the singularity on K 3 “eats” 10
pointlike instantons. The last formula shows that there are two further collision
points of multiplicity 2 of �̃′ with F , which will eventually be blown up.

We now move all 7± n pointlike instantons into each collision point of two
I I ∗4,5;1,2,3,4,5(e8) fibers. This amounts to k = 7± n in (5.3.3). Performing one
blow up (5.3.5) shows that we obtain a new divisor with (4, 5; 1, 2, 3, 4, 5)
type fibers, i.e. I I ∗4,5;1,2,3,4,5(e8). According to (5.3.4), in the collision of this
new divisor with C0 or C∞ one still has k − 1 pointlike instantons. Taking
the two collisions of F with �̃′ into account, altogether we need to perform
b j = 14 + 2 blowups of points of multiplicity α j = 2 of the discriminant.
Moreover, we have produced a chain of 15 CP1’s in Z with I I ∗ curves in the
fiber.
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To smoothen the 3-fold where non-minimal fibers appear over collisions of
any two curves with I I ∗ fibers, another chain of blowups is necessary. Iterative
application of (5.3.2) gives

I I ∗4,5;1,2,3,4,5(e8)+ I I ∗4,5;1,2,3,4,5(e8)

−→ I I ∗4,5;1,2,3,4,5(e8)+ I0|4,0;1,2,3,4,0 + I I4,1;1,2,3,4,1
+ I V4,2;1,2,3,4,2(su(2))+ I ∗0 |4,3;1,2,3,4,3(g2)+ I I4,1;1,2,3,4,1
+ I V ∗4,4;1,2,3,4,4(f4)+ I I4,1;1,2,3,4,1 + I ∗0 |4,3;1,2,3,4,3(g2)

+ I V4,2;1,2,3,4,2(su(2))+ I I4,1;1,2,3,4,1 + I0|4,0;1,2,3,4,0
+ I I ∗4,5;1,2,3,4,5(e8)

Here we have performed 11 blowups. We have contributions to the Picard num-
ber from: the Hirzebruch surface (2); blowups from residual intersections of �̃′
with F (2); the chain of CP1’s with I I ∗ fibers over them (14); the additional
contributions from the blowups of their collisions (176 = 16 × 11). In total,
we get

ρ(Z) = 2+ 2+ 14+ 176 = 194.

John McKay remarks that ρ(Z) = 194 is precisely the number of conjugacy
classes in the Monster sporadic group M.

As to the gauge group, each of the 15 curves in the fiber of Z which carry
I I ∗ singularities contributes an e8. Furthermore, by the above each of the 16
blowups of a I I ∗ + I I ∗ collision contributes f4 ⊕ g⊕2

2 ⊕ su(2)⊕2. Together
with the primordial e⊕2

8 over C0 and C∞, the total gauge algebra is

e⊕17
8 ⊕ f⊕16

4 ⊕ g⊕32
2 ⊕ su(2)⊕32.

The total gauge group H has dimension and rank

dim H = 5592 and rk H = 296.

Next we need calculate h1,2(X). Using the algorithm described in Section 5.1
this amounts to calculating χ(X). To apply the formula given in Proposition
5.1, let us determine its various contributions:

�̃′ · (�̃′ + K Z̃ ) = 76,
∑

j
α j (α j − 1)b j = 2× 16 = 32,

r∑
i=1

χ
(
�i −⋃I

j=1{P j })χi = 20,
I∑

j=1
χ(π−1(P j )) = 960,

I ′ = 0, C = Ã′ · B̃ ′ = 8.

From here we get

χ(X) = 960, h1,1(X) = 1+ 194+ 296 = 491, h1,2(X) = 11.
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Note that h1,2(X) + 1 = n0
H , the number of K 3 parameters on the heterotic

side, where the complex structure of K 3 is constrained to having an E8 sin-
gularity on K 3, as predicted by Conjecture 4.2. Indeed, it is conjectured that
the neutral hypermultiplets are not affected by all the degenerations due to
pointlike instantons coalescing with K 3 singularities.

Finally let us calculate nch
H . According to the explanations in Section 5.2.2

we need to consider collisions of families of degenerate curves of type (5.2.1).
From the above, we have two collisions of type I V (su(2)) + I ∗0 (g2) for each
of the 16 chains obtained from blowing up I I ∗ + I I ∗. This gives 32 contri-
butions to the charged hypermultiplets. The resulting matter representation of
g2⊕ su(2) is 1

2 ((2, 1)+ (2, 7)) according to [Int98], where the prefactor indi-
cates that these representations are quaternionic and contribute with half their
dimension in nch

H . Altogether we have

nch
H = 256

and one checks that anomaly cancellation according to Conjecture 4.3 holds. It
should be emphasized that the calculation of the charged matter representations
in [Int98] uses the anomaly cancellation condition rather than giving a direct
derivation. In fact, since I ∗0 (g2) suffers monodromy, in this case not even a
conjecture is known to us which describes such a direct derivation. We are in
the process of filling this gap in the literature. That representations of the type
exist which yield anomaly cancellation is already remarkable.

E8 instantons on an E7 singularity
By the same procedure as for an E8 singularity on K 3, we obtain:

Ã′ = Ã′0 − 3F = 5F,

B̃ ′ = B̃ ′0 − 5F = 2C0 + (7+ n)F,

�̃′ = �̃′0 − 9F = 4C0 + (15+ 2n)F.

Hence

�̃′ · C0 = 1+ 2(7− n), �̃′ · C∞ = 1+ 2(7+ n), �̃′ · F = 2 · 2.
As before, 14 instantons can be moved into the E7 singularity. In the first two
formulas the summand 1 takes into account that colliding I I ∗ and I I I ∗ fibers
forces an additional intersection with �̃′, which has multiplicity 2 on F.

We now move all 7 ± n pointlike instantons into each collision point of
I I ∗4,5;1,2,3,4,5(e8) and I I I ∗3,5;1,2,3,3,5(e7) fibers. As before we repeatedly apply
(5.3.3) with k = 7±n obtaining 14 additional divisors with I I I ∗3,5;1,2,3,3,5(e7)
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fibers. Altogether we need to perform b j = 14 blowups of points of
multiplicity α j = 2 of the discriminant.

The chains of blowups needed to smoothen the 3-fold are as follows

I I ∗4,5;1,2,3,4,5(e8)+ I I I ∗3,5;1,2,3,3,5(e7)

−→ I I ∗4,5;1,2,3,4,5(e8)+ I0|3,0;1,2,2,3,0 + I I3,1;1,2,2,3,1
+ I V3,2;1,2,2,3,2(su(2))+ I ∗0 |3,3;1,2,2,3,3(g2)+ I I2,1;1,2,1,2,1
+ I V ∗3,4;1,2,2,3,4(f4)+ I I1,1;1,2,1,1,1 + I ∗0 |2,3;1,2,2,2,3(g2)

+ I I I1,2;1,2,2,1,2(su(2))+ I0|0,1;1,2,2,0,1 + I I I ∗3,5;1,2,3,3,5(e7),

+ I0|0,1;1,2,2,0,1 + I I I ∗3,5;1,2,3,3,5(e7),

I I I ∗3,5;1,2,3,3,5(e7)+ I I I ∗3,5;1,2,3,3,5(e7)

−→ I I I ∗3,5;1,2,3,3,5(e7)+ I0|0,2;1,2,3,0,2 + I I I1,3;1,2,3,1,3(su(2))
+ I ∗0 |2,4;1,2,3,2,4(so(7))+ I I I1,3;1,2,3,1,3(su(2))+ I0|0,2;1,2,3,0,2
+ I I I ∗3,5;1,2,3,3,5(e7).

Recall that the collision I I ∗ + I I I ∗ forced an additional intersection with
�̃′. In the process of blowing up, this collision with F moves onto one of the
divisors carrying I ∗0 (g2) fibers and transversally intersects it.

We have contributions to the Picard number from: the Hirzebruch surface
(2); the chain of CP1’s with I I I ∗ fibers over them (14); the additional contri-
butions from the blowups of their collisions (90 = 14× 5+ 2× 10). In total,
we get

ρ(Z) = 2+ 14+ 90 = 106.

The total gauge algebra is

e⊕2
8 ⊕ e⊕17

6 ⊕ su(2)⊕2 ⊕ su(3)⊕18 ⊕ g⊕2
2 ⊕ f⊕2

4 .

The total gauge group H has dimension and rank

dim H = 3041 and rk H = 211.

The contributions to χ(X) in Proposition 5.1 amount to

�̃′ · (�̃′ + K Z̃ ) = 82,
∑

j
α j (α j − 1)b j = 2× 14 = 28,

r∑
i=1

χ
(
�i −⋃I

j=1{P j })χi = 8,
I∑

j=1
χ(π−1(P j )) = 630,

I ′ = 2, C = Ã′ · B̃ ′ = 10.

From here we get

χ(X) = 612, h1,1(X) = 318, h1,2(X) = 12.
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Again h1,2(X)+ 1 = n0
H , the number of K 3 parameters on the heterotic side,

where the complex structure of K 3 is constrained to having an E7 singularity
on K 3, as predicted by Conjecture 4.2.

For nch
H we list collisions of curves of type (5.2.1): We have 4 collisions

I V (su(2))+ I ∗0 (g2) and I I I (su(2))+ I ∗0 (g2) each as well as 2×14 collisions
I I I (su(2)) + I ∗0 (so(7)). According to [Int98], the associated representations
are, respectively, 1

2((2, 1)+ (2, 7)) of su(2)⊕ g2 and 1
2(2, 8) of su(2)⊕ so(7)

amounting to a total of

nch
H = 256.

The same comment as above applies to the derivation of the charged rep-
resentations in [Int98]. One checks that anomaly cancellation according to
Conjecture 4.3 holds. We do not yet understand why the remaining colli-
sions of �′ with families of I ∗0 (g2) fibers do not contribute to the charged
hypermultiplets.

E8 instantons on an E6 singularity
This time we have

Ã′ = Ã′0 − 3F = 4F,

B̃ ′ = B̃ ′0 − 4F = 2C0 + (8+ n)F,

�̃′ = �̃′0 − 8F = 4C0 + (16+ 2n)F

�̃′ · C0 = 2(8− n), �̃′ · C∞ = 2(8+ n), �̃′ · F = 4.

Hence 16 instantons can be moved into the E6 singularity. In order to consis-
tently impose families of I I ∗ and I V ∗ fibers like this, the I V ∗ fibers cannot
suffer from monodromy. The collision then forces an additional intersection
with �̃′ in the intersection I I ∗ + I V ∗ with multiplicity 2. This is accounted
for in the last formula above and also contributes 2 to each of the intersections
of �̃′ with C0 and C∞.

We now move all 7± n free pointlike instantons into each collision point of
I I ∗4,5;1,2,3,4,5(e8) and I V ∗3,4;1,2,2,3,5(e6) fibers. As before we repeatedly apply
(5.3.3) with k = 7 ± n. Altogether 14 blowups introduce additional divisors
with I V ∗3,4;1,2,2,3,5(e6) fibers. In this situation, the collisions I I ∗ + I V ∗ still

force an additional intersection with �̃′, which make one further blowup of
the discriminant necessary each, yielding new divisors with I V ∗3,4;1,2,2,3,4(f4)

fibers over them. The latter intersect �̃′ with multiplicity 2 away from other
collisions. Altogether we perform b j = 16 blowups of points of multiplicity
α j = 2 of the discriminant.
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The chains of blowups needed to smoothen the 3-fold are as follows

I I ∗4,5;1,2,3,4,5(e8)+ I V ∗3,4;1,2,2,3,4(f4)

−→ I I ∗4,5;1,2,3,4,5(e8)+ I0|3,0;1,2,2,3,0 + I I3,1;1,2,2,3,1
+ I V3,2;1,2,2,3,2(su(2))+ I ∗0 |3,3;1,2,2,3,3(g2)+ I I2,1;1,2,1,2,1
+ I V ∗3,4;1,2,2,3,4(f4),

I V ∗3,4;1,2,2,3,4(f4)+ I V ∗3,4;1,2,2,3,5(e6)

−→ I V ∗3,4;1,2,2,3,4(f4)+ I0|1,0;1,2,0,1,1 + I V2,2;1,2,1,2,3(su(3))
+ I0|1,0;1,2,0,1,2 + I V ∗3,4;1,2,2,3,5(e6),

I V ∗3,4;1,2,2,3,5(e6)+ I V ∗3,4;1,2,2,3,5(e6)

−→ I V ∗3,4;1,2,2,3,5(e6)+ I0|1,0;1,2,0,1,3 + I V2,2;1,2,1,2,4(su(3))
+ I0|1,0;1,2,0,1,3 + I V ∗3,4;1,2,2,3,5(e6).

We have contributions to the Picard number from: the Hirzebruch surface (2);
the chain of CP1’s with I V ∗ fibers over them (16); the additional contributions
from the blowups of their collisions (58 = 2× 5+ 16× 3). In total, we get

ρ(Z) = 2+ 16+ 58 = 76.

The total gauge algebra is

e⊕2
8 ⊕ e⊕15

6 ⊕ f⊕2
4 ⊕ su(2)⊕2 ⊕ g⊕2

2 ⊕ su(3)⊕16.

The total gauge group H has dimension and rank

dim H = 1932 and rk H = 152.

The contributions to χ(X) in Proposition 5.1 amount to

�̃′ · (�̃′ + K Z̃ ) = 88,
∑

j
α j (α j − 1)b j = 2× 16 = 32,

r∑
i=1

χ
(
�i −⋃I

j=1{P j })χi = 4,
I∑

j=1
χ(π−1(P j )) = 456,

I ′ = 2, C = Ã′ · B̃ ′ = 10.

From here we get

χ(X) = 432, h1,1(X) = 229, h1,2(X) = 13.

Once again h1,2(X) + 1 = n0
H , the number of K 3 parameters on the het-

erotic side, where the complex structure of K 3 is constrained to having an E6

singularity on K 3, as predicted by Conjecture 4.2.
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For nch
H we list collisions of curves of type (5.2.1): We have 2 collisions

I V (su(2))+ I ∗0 (g2)which according to [Int98] have associated representations
1
2 ((2, 1)+ (2, 7)) of su(2)⊕ g2 amounting to a total

nch
H = 16.

One checks that anomaly cancellation according to Conjecture 4.3 holds.
Again we do not understand why the remaining collisions of �̃′ with families
of I V ∗(f4) fibers do not contribute to the charged hypermultiplets.

6. Conclusions

Having devoted the bulk of this work to the description of our understand-
ing of aspects of the heterotic – F-theory duality, we would like to return
to the original motivation of this project, namely a new conjecture by John
McKay. His conjecture relates geometric data of Calabi-Yau three-folds on the
F-theory side of this duality to the Monster sporadic group and its offspring.
Namely, as before let X → Z denote the Calabi-Yau three-fold which arises as
F-theory dual of the heterotic theory with 24 pointlike E8 instantons localized
at an E8 type quotient singularity on K 3. Then following [AM97, AKM00]
for the Picard number of the base we have shown ρ(Z) = 194, which as
John McKay has observed agrees with the number of conjugacy classes of the
Monster sporadic group M. He conjectures that this is not a coincidence.

As described in the Introduction, McKay supports his conjecture by a known
relation between the conjugacy classes of M and the Dynkin data of E8

[McK80, GN01]. Also note that 24 pointlike instantons in an E8 type quotient
singularity give the most degenerate case of the heterotic – F-theory duality
with the maximal number of pointlike instantons in the worst possible singu-
larity on K 3. Relating the F-theory dual Calabi-Yau three-fold X → Z to the
largest finite sporadic group may not be completely unexpected, in particular
as the Euler characteristic of this three-fold is 960, see Section 5.3.7, the largest
value among all known elliptically fibered Calabi-Yau three-folds.

Naturally one would like to support McKay’s conjecture by further data
points. A possible lead is the above-mentioned relation between M and the
Dynkin data of E8, which roughly extends to relating the Baby monster B to
E7 and the Fischer group Fi24 to E6 [GN01]. However, see Section 5.3.7, the
respective Picard numbers ρ(Z) of the bases of the F-theory dual Calabi-Yau
three-folds corresponding to 24 pointlike E8 instantons in quotient singulari-
ties of type E7 and E6 do not agree with the numbers of conjugacy classes of
B and Fi24. Hence McKay’s conjecture requires some refinement. This may be
related to the details of the identification of group data and Dynkin data for
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B ↔ Ẽ7 and Fi24 ↔ Ẽ6. As explained in the Introduction, the relevant Dynkin
data are obtained via folding Ẽ7 and Ẽ6 to the non-simply laced diagrams F̃4

and G̃2. Therefore one would like to find a way of implementing this folding
procedure geometrically on the F-theory side. One promising possibility could
amount to making use of less standard orbifold techniques, like Slodowy’s
interpretation of non-simply laced Dynkin diagrams in the description of the
geometry of certain quotient singularities [Slo80].

In conclusion, at this point McKay’s new conjecture is definitely not settled.
However, it directs towards innovative and beautiful mathematics. Even if the
foundation of the conjecture5 is rather weak, we hope that by now the reader
appreciates the importance and depth of the duality and its geometric meaning,
be the conjecture true or wrong.

I have that sneaking hope, a hope unsupported by any facts or any evidence, that some-
time in the twenty-first century physicists will stumble upon the Monster group, built
in some unsuspected way into the structure of the universe.

(F. J. Dyson, “Unfashionable Pursuits”, Math. Intelligencer 5 (1983), no. 3, 47–54)

A. Rarita-Schwinger fields

In the physics literature, massless fields are called Rarita-Schwinger fields,
if they transform in the highest irreducible component RS of S ⊗ V where
S denotes the spinor representation, and V denotes the vector representation
of so(D − 2). However, this terminology is not used completely consistently
and great care has to be taken with it: For example, let M = M1,D−1 and
denote by S±M the corresponding spinor bundles. Naively, a massless Rarita-
Schwinger field is a section in S+M⊗T ∗M which vanishes under the associated
Dirac operator D/ . However, reduction to so(D − 2) yields T ∗x M ∼= V ⊕ 1⊕ 1
for every x ∈ M , and moreover S+ ⊗ V = S− ⊕ RS+, where now S± are the
components of the spin representation of so(1, D − 1) arising under reduction
to so(D − 2). Hence to extract RS+ we need to work on a virtual bundle and
with the Dirac operator

D/ RS :
(
S+ ⊗ T ∗M

)# S+ # S+ # S− −→ (S− ⊗ T ∗M
)# S− # S− # S+.

(A.6)
By stretching of terminology, even if M is Euclidean one calls the above the
Rarita-Schwinger complex of M , where S± denote the spinor bundles on M
[ASZ84, §IV.V].

Remark. For D = 4 the bundles S± have dimension two each, such that
S+ ⊗ S− ∼= T ∗M , and if �2S+ ∼= 1 then S+ ⊗ T ∗M # S+ # S+ # S− ∼=
5 E8 vs. 194.
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Sym2(S+)⊗S− # (S+ ⊕ S+), where Sym2 denotes the two-symmetric ten-
sor product. This latter virtual bundle is given as the standard domain of
Rarita-Schwinger operators in [EGH80] if M is a K 3 surface.

To compute the index of D/ RS , one introduces the Dirac operator D̃/ RS on
S+ ⊗ T ∗M and uses the additivity of the index to get

ind (D/ RS) = ind (D̃/ RS)− ind (D/ ), (A.7)

where D/ : S+ → S−.
Note that the definition of the index requires us to work with complex vector

bundles, so for real fields we simply complexify real representations.

B. Characteristic classes and properties of K3 surfaces

We collect a few properties of characteristic classes in particular for K 3,
carefully keeping track of all the prefactors.

Let E be a complex bundle over a manifold X , with connection A (which
is a u(n) valued 1-form) and associated curvature FE . To it one associates the
total Chern form:

c(FE ) = det

(
In + i

2π
FE
)
,

where In is the n × n identity matrix. The integral of the component in each
degree gives the corresponding Chern class of E :

c1(E) = i
2π

∫
X Trace (FE ), c2(E) = 1

8π2

∫
X

(
Trace (F2

E )−
(
Trace (FE )

)2)
, . . . .

We also have the Chern character

ch(E) =
∫

X
Trace

[
exp

(
i

2π
FE
)]
= d+c1(E)+ 1

2

(
c2

1(E)− 2c2(E)
)
+ . . . ,

where d is the rank of the complex bundle E .
Now for a real vector bundle E , with connection 1-form valued in so(n) this

time, and with curvature FE , the corresponding form is the total Pontrjagin
form

p(FE ) = det

(
In + 1

2π
FE

)
,

which gives the Pontrjagin classes of E when the component in each degree is
integrated over X . Note that FT

E = −FE such that only the even powers of FE

contribute. One sets

pk(E) :=
∫

X
p(FE )4k such that p1(E) = − 1

8π2

∫
X

Trace (F2
E ), . . . .
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We can analyze the Pontrjagin classes in terms of Chern classes for a real
vector bundle E ,

pk(E) = (−1)kc2k(E⊗C).

Conversely, if we are given a complex vector bundle E , we introduce a real
vector bundle E such that E ⊕ E = C⊗ E and therefore

p1(E) = (c2
1 − 2c2)(E) = − 1

4π2

∫
X

Trace (F2
E ) = − 1

8π2

∫
X

Trace (F2
E ),

since a diagonal matrix in u(n) with the entry i x j is mapped to

[
0 −x j

x j 0

]
in so(2n). This also gives a cross-check for the formula for the Pontrjagin class.

On a spin manifold X with Riemannian curvature R, we have the A-hat form

Â(R) = 1− 1

24
p1(R)+ 1

5760
(7p2

1 − 4p2)+ . . . ,

which when integrated over X gives the index of the Dirac operator D/ :
S+ → S−,

ind (D/ ) =
∫

X
Â(R).

For a twisted Dirac operator D/ E , with S+ twisted by a complex vector bundle
E of rank d, we have D/ E : S+ ⊗ E −→ S− ⊗ E and

ind (D/ E ) =
∫

X
Â(R)ch(E).

If we assume that X is a 4-manifold then the above considerations give

ind (D/ ) = − 1

24

∫
X

p1(R) = 1

24 · 8π2

∫
X

Trace (R2),

and its twisted version

ind (D/ E ) = − d

24

∫
X

p1(R)+ 1

2

∫
X
(c2

1(FE )− 2c2(FE ))

= d

24 · 8π2

∫
X

Trace (R2)− 1

8π2

∫
X

Trace (F2
E ) .

Now for a K 3 surface we have the signature

τ(K 3) = 1

3

∫
K 3

p1(R) = −16,

the Euler characteristic

χ(K 3) =
∫

K 3
c2(R) = 24,
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and the A-hat genus

Â(K 3) = −1

8
τ = 2. (B.8)

Also, on a spin four-manifold X the index of the twisted Dirac operator D̃/ RS

on S+⊗T ∗X is

ind (D̃/ RS)(X) =
20

24

∫
X

p1(R).

By (A.7) the Rarita-Schwinger operator then has index

ind (D/ RS)(X) = 21

24

∫
X

p1(R) .

In particular, for a K 3 surface X we obtain

ind (D̃/ RS)(X) = −40. (B.9)

References

[Adl] S. L. ADLER, Anomalies; hep-th/0411038.
[Adl69] , Axial vector vertex in spinor electrodynamics, Phys. Rev.

177 (1969), 2426–2438.
[AG96] P. S. ASPINWALL AND M. GROSS, The SO(32) Heterotic

String on a K 3 Surface, Phys. Lett. B387 (1996), 735–742;
hep-th/9605131.

[AGG85] L. ALVAREZ-GAUMÉ AND P. H. GINSPARG, The structure of
gauge and gravitational anomalies, Ann. Physics 161 (1985),
423–526, Erratum-ibid.171:233,1986.

[AGW84] L. ALVAREZ-GAUMÉ AND E. WITTEN, Gravitational anoma-
lies, Nucl. Phys. B234 (1984), 269–379.

[AHS78] M. F. ATIYAH, N. J. HITCHIN, AND I. M. SINGER, Self-duality
in four-dimensional Riemannian geometry, prsla 362 (1978),
no. 1711, 425–461.

[AKM00] P. S. ASPINWALL, S. KATZ, AND D. R. MORRISON, Lie groups,
Calabi-Yau threefolds, and F-theory, Adv. Theor. Math. Phys. 4
(2000), 95–126; hep-th/0002012.

[AL96] P. S. ASPINWALL AND J. LOUIS, On the Ubiquity of K 3 Fibra-
tions in String Duality, Phys. Lett. B369 (1996), 233–242;
hep-th/9510234.

[AM94] P. S. ASPINWALL AND D. R. MORRISON, String theory on K 3
surfaces, in: Mirror symmetry II, B. Greene and S. T. Yau, eds.,
1994, pp. 703–716; hep-th/9404151.



Friendly Giant Meets Pointlike Instantons? 123

[AM97] , Point-like instantons on K 3 orbifolds, Nucl. Phys. B503
(1997), 533–564; hep-th/9705104.

[AS71] M. F. ATIYAH AND I. M. SINGER, The index of elliptic operators
IV, Adv. Math. 93 (1971), 119–138.

[AS84] , Dirac operators coupled to vector potentials, Proc. Nat.
Acad. Sci. U. S. A. 81 (1984), no. 8, Phys. Sci., 2597–2600.

[Asp97] P. S. ASPINWALL, K 3 surfaces and string duality, in: Fields,
strings and duality (Boulder, CO, 1996), World Sci. Publishing,
River Edge, NJ, 1997, pp. 421–540; hep-th/9611137.

[ASZ84] O. ALVAREZ, I. M. SINGER, AND B. ZUMINO, Gravitational
anomalies and the family’s index theorem, Commun. Math. Phys.
96 (1984), no. 3, 409–417.

[Ati84] M. ATIYAH, Anomalies and index theory, in: Supersymmetry
and supergravity/nonperturbative QCD (Mahabaleshwar, 1984),
vol. 208 of Lecture Notes in Phys., Springer, Berlin, 1984,
pp. 313–322.

[Bar69] W. A. BARDEEN, Anomalous Ward identities in spinor field
theories, Phys. Rev. 184 (1969), 1848–1857.

[BCG+98] M. BERSHADSKY, T. M. CHIANG, B. R. GREENE,
A. JOHANSEN, AND C. I. LAZAROIU, F-theory and lin-
ear sigma models, Nucl. Phys. B527 (1998), 531–570;
hep-th/9712023.

[BIK+96] M. BERSHADSKY, K. INTRILIGATOR, S. KACHRU, D. R.
MORRISON, V. SADOV, AND C. VAFA, Geometric singulari-
ties and enhanced gauge symmetries, Nucl. Phys. B481 (1996),
215–252; hep-th/9605200.

[BJPS97] M. BERSHADSKY, A. JOHANSEN, T. PANTEV, AND V. SADOV,
On four-dimensional compactifications of F-theory, Nucl. Phys.
B505 (1997), 165–201; hep-th/9701165.

[BM03] A. BILAL AND S. METZGER, Anomaly cancellation in
M-theory: A critical review, Nucl. Phys. B675 (2003), 416–446;
hep-th/0307152.

[Bor01] R. E. BORCHERDS, Problems in Moonshine, in: First Inter-
national Congress of Chinese Mathematicians (Beijing, 1998),
vol. 20 of AMS/IP Stud. Adv. Math., Amer. Math. Soc., Provi-
dence, RI, 2001, pp. 3–10.

[Bor02] R. E. BORCHERDS, What is the monster?, Notices of the A. M. S
49 (2002), no. 9, 1076–1077; arXiv:math.GR/0209328.

[BZ84] W. A. BARDEEN AND B. ZUMINO, Consistent and covariant
anomalies in gauge and gravitational theories, Nucl. Phys. B244
(1984), 421.



124 Anda Degeratu and Katrin Wendland

[CPR98] P. CANDELAS, E. PEREVALOV, AND G. RAJESH, Matter
from toric geometry, Nucl. Phys. B519 (1998), 225–238;
hep-th/9707049.

[DE99] D.-E. DIACONESCU AND R. ENTIN, Calabi-Yau spaces and
five-dimensional field theories with exceptional gauge symmetry,
Nucl. Phys. B538 (1999), 451–484; hep-th/9807170.

[DHVW85] L. J. DIXON, J. HARVEY, C. VAFA, AND E. WITTEN, Strings
on orbifolds, Nucl. Phys. B261 (1985), 678–686.

[DHVW86] , Strings on orbifolds II, Nucl. Phys. B274 (1986), 285–314.
[DK90] S. K. DONALDSON AND P. B. KRONHEIMER, The geometry

of four-manifolds, Oxford Mathematical Monographs, Oxford
University Press, New York, 1990.

[DMW96] M. J. DUFF, R. MINASIAN, AND E. WITTEN, Evidence for
Heterotic/Heterotic Duality, Nucl. Phys. B465 (1996), 413–438;
hep-th/9601036.

[Don85] S. K. DONALDSON, Anti–self–dual Yang–Mills connections on
complex algebraic surfaces and stable vector bundles, Proc.
Lond. Math. Soc. 3 (1985), 1–26.

[EGH80] T. EGUCHI, P. B. GILKEY, AND A. J. HANSON, Gravitation,
gauge theories and differential geometry, Phys. Rev. 66 (1980),
213.

[FHSV95] S. FERRARA, J. A. HARVEY, A. STROMINGER, AND C. VAFA,
Second quantized mirror symmetry, Phys. Lett. B361 (1995),
59–65; hep-th/9505162.

[FMW97] R. FRIEDMAN, J. MORGAN, AND E. WITTEN, Vector bundles
and F theory, Commun. Math. Phys. 187 (1997), no. 3, 679–743;
hep-th/9701162.

[GH78] P. GRIFFITHS AND J. HARRIS, Principles of algebraic geometry,
John Wiley & Sons, New York, 1978.

[GM03] A. GRASSI AND D. R. MORRISON, Group representations and
the Euler characteristic of elliptically fibered Calabi-Yau three-
folds, J. Alg. Geom. 12 (2003), 321–356; math.ag/0005196.

[GN01] G. GLAUBERMAN AND S. P. NORTON, On McKay’s connection
between the affine E8 diagram and the Monster, Proceedings
on Moonshine and related topics (Montréal, QC, 1999) (Provi-
dence, RI), CRM Proc. Lecture Notes, vol. 30, Amer. Math. Soc.,
pp. 37–42.

[GS84] M. B. GREEN AND J. H. SCHWARZ, Anomaly cancellation in
supersymmetric D = 10 gauge theory and superstring theory,
Phys. Lett. B149 (1984), 117–122.



Friendly Giant Meets Pointlike Instantons? 125

[GS85a] , The hexagon gauge anomaly in type I superstring theory,
Nucl. Phys. B255 (1985), no. 1, 93–114.

[GS85b] , Infinity cancellations in SO(32) superstring theory, Phys.
Lett. B151 (1985), no. 1, 21–25.

[GSW85] M. B. GREEN, J. H. SCHWARZ, AND P. C. WEST, Anomaly
free chiral theories in six dimensions, Nucl. Phys. B254 (1985),
327–348.

[GSW87] M. GREEN, J. H. SCHWARZ, AND E. WITTEN, Superstring
theory I & II, Cambridge University Press, 1987.

[Har05] J. A. HARVEY, TASI 2003 lectures on anomalies; hep-th/
0509097.

[HT95] C. M. HULL AND P. K. TOWNSEND, Unity of superstring duali-
ties, Nucl. Phys. B438 (1995), 109–137; hep-th/9410167.

[IMS97] K. A. INTRILIGATOR, D. R. MORRISON, AND N. SEIBERG,
Five-dimensional supersymmetric gauge theories and degenera-
tions of Calabi-Yau spaces, Nucl. Phys. B497 (1997), 56–100;
hep-th/9702198.

[Int98] K. A. INTRILIGATOR, New string theories in six dimensions
via branes at orbifold singularities, Adv. Theor. Math. Phys. 1
(1998), 271–282; hep-th/9708117.

[KMP96] S. KATZ, D. R. MORRISON, AND M. R. PLESSER, Enhanced
Gauge Symmetry in Type II String Theory, Nucl. Phys. B477
(1996), 105–140; hep-th/9601108.

[Kod64] K. KODAIRA, On the structure of compact complex analytic
surfaces, I. Am. J. Math. 86 (1964), 751–798.

[KV95] S. KACHRU AND C. VAFA, Exact results for N = 2 compact-
ifications of heterotic strings, Nucl. Phys. B450 (1995), 69–89;
hep-th/9505105.

[KV97] S. KATZ AND C. VAFA, Matter from geometry, Nucl. Phys. B497
(1997), 146–154; hep-th/9606086.

[McK80] J. MCKAY, Graphs, singularities, and finite groups, in: The
Santa Cruz Conference on Finite Groups (Univ. California, Santa
Cruz, Calif., 1979), Amer. Math. Soc., Providence, R. I., 1980,
pp. 183–186.

[Mir83] R. MIRANDA, Smooth models for elliptic threefolds, in: The
birational geometry of degenerations (Cambridge, Mass., 1981),
vol. 29 of Progr. Math., Birkhäuser Boston, Mass., 1983,
pp. 85–133.

[MP81] W. G. MCKAY AND J. PATERA, Tables of dimensions, indices,
and branching rules for representations of simple Lie algebras,



126 Anda Degeratu and Katrin Wendland

Lecture Notes in Pure and Applied Mathematics, vol. 69, Marcel
Dekker Inc., New York, 1981.

[MV96a] D. R. MORRISON AND C. VAFA, Compactifications of F-Theory
on Calabi–Yau Threefolds – I, Nucl. Phys. B473 (1996), 74–92;
hep-th/9602114.

[MV96b] , Compactifications of F-Theory on Calabi–Yau
Threefolds – II, Nucl. Phys. B476 (1996), 437–469;
hep-th/9603161.

[Pol98] J. POLCHINSKI, String theory. Vols. I & II, Cambridge Mono-
graphs on Mathematical Physics, Cambridge University Press,
Cambridge, 1998.

[PS95] M. E. PESKIN AND D. V. SCHROEDER, An introduction to
quantum field theory, Addison-Wesley Publishing Company
Advanced Book Program, Reading, MA, 1995, Edited and with a
foreword by David Pines.

[Sad96] V. SADOV, Generalized Green-Schwarz mechanism in F theory,
Phys. Lett. B388 (1996), 45–50; hep-th/9606008.

[Sch96] J. H. SCHWARZ, Anomaly-Free Supersymmetric Models
in Six Dimensions, Phys. Lett. B371 (1996), 223–230;
hep-th/9512053.

[Sch02] , Anomaly cancellation: A retrospective from a mod-
ern perspective, Int. J. Mod. Phys. A17S1 (2002), 157–166;
hep-th/0107059.

[Sei88] N. SEIBERG, Observations on the moduli space of superconfor-
mal field theories, Nucl. Phys. B303 (1988), 286–304.

[Sen96a] A. SEN, F-theory and Orientifolds, Nucl. Phys. B475 (1996),
562–578; hep-th/9605150.

[Sen96b] , M-Theory on (K 3 × S1)/Z2, Phys. Rev. D53 (1996),
6725–6729; hep-th/9602010.

[Slo80] P. SLODOWY, Simple singularities and simple algebraic groups,
Lecture Notes in Mathematics, vol. 815, Springer, Berlin, 1980.

[SS04] C. A. SCRUCCA AND M. SERONE, Anomalies in field the-
ories with extra dimensions, Int. J. Mod. Phys. A19 (2004),
2579–2642; hep-th/0403163.

[Stu03] E. STUDY, Geometrie der Dynamen, Leipzig: Teubner, 1903.
[SW96] N. SEIBERG AND E. WITTEN, Comments on String Dynam-

ics in Six Dimensions, Nucl. Phys. B471 (1996), 121–134;
hep-th/9603003.



Friendly Giant Meets Pointlike Instantons? 127

[UY86] K. K. UHLENBECK AND S.-T. YAU, On the existence of
Hermitian–Yang-Mills connections in stable vector bundles,
Commun. Pure Appl. Math. Suppl. 39(S) (1986), 257–293.

[Vaf96] C. VAFA, Evidence for F-Theory, Nucl. Phys. B469 (1996),
403–418; hep-th/9602022.

[Wal88] M. WALTON, The Heterotic string on the simplest Calabi-
Yau manifold and its orbifold limits, Phys. Rev. D 37 (1988),
377–390.

[Wei05] S. WEINBERG, The quantum theory of fields. Vol. II, Cambridge
University Press, Cambridge, 2005, Modern applications.

[Wit95] E. WITTEN, String theory dynamics in various dimensions, Nucl.
Phys. B443 (1995), 85–126; hep-th/9503124.

[Wit96a] , Phase Transitions In M-Theory And F-Theory, Nucl. Phys.
B471 (1996), 195–216; hep-th/9603150.

[Wit96b] , Physical interpretation of certain strong coupling
singularities, Mod. Phys. Lett. A11 (1996), 2649–2654;
hep-th/9609159.

[Wit96c] , Strong Coupling Expansion Of Calabi-Yau Compactifica-
tion, Nucl. Phys. B471 (1996), 135–158; hep-th/9602070.

[WZ71] J. WESS AND B. ZUMINO, Consequences of anomalous Ward
identities, Phys. Lett. B37 (1971), 95.



Modularity of Trace Functions in Orbifold
Theory for Z-Graded Vertex Operator

Superalgebras
Chongying Dong1 and Zhongping Zhao
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University of California, Santa Cruz, CA 95064

Abstract

We study the trace functions in orbifold theory for Z-graded vertex operator
superalgebras and obtain a modular invariance result. More precisely, let V be
a C2-cofinite Z-graded vertex operator superalgebra and G a finite automor-
phism group of V . Then for any commuting pair (g, h) ∈ G, the hσ -trace
function associated to a simple g-twisted V -modules is holomorphic in the
upper half plane, where σ is the canonical involution on V coming from the
superspace structure of V . If V is further g-rational for every g ∈ G, the trace
functions afford a representation for the full modular group SL(2,Z).

1. Introduction

This work is a continuation of our study of the modular invariance for trace
functions in orbifold theory. Motivated by generalized moonshine [N] and orb-
ifold theory in physics [DVVV], the modular invariance of trace functions
in orbifold theory has been studied for an vertex operator algebra [DLM3],
under suitable conditions. This work has been generalized to a 1

2Z-graded ver-
tex operator superalgebra [DZ2] (also see [H]), under suitable assumptions. In
this paper we investigate the modular invariance of trace functions in orbifold
theory for a Z-graded vertex operator superalgebra.

There is an essential difference between a Z-graded vertex operator super-
algebra considered in this paper and a 1

2Z-graded vertex operator superalgebra
studied in [DZ1]-[DZ2]. For a 1

2Z-graded vertex operator superalgebra V =
⊕n∈ 1

2 ZVn the even part of V is
∑

n∈Z Vn and the odd part is
∑

n∈Z Vn+ 1
2
. In

other words, the weight of an even vector is always integer while the weight

1 Supported by NSF grants, China NSF grant 10328102 and a faculty research grant from the
University of California at Santa Cruz.
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of an nonzero odd vector is not an integer. But for a Z-graded vertex operator
algebra V = ⊕n∈ZVn, each Vn is a direct sum of even part V0̄,n and odd part
V1̄,n . So the weight of a vector is always an integer.

It is true that many Z-graded vertex operator superalgebras can be obtained
from 1

2Z-graded vertex operator superalgebras by changing the Virasoro ele-
ments (cf. [DM2]). In this case we can apply the results from [DZ1] and [DZ2]
to these Z-graded vertex operator superalgebras without extra work. Unfortu-
nately, there are many Z-graded vertex operator superalgebras which cannot
be obtained in this way. So an independent study of Z-graded vertex operator
superalgebra becomes necessary, although the main ideas and methods in this
paper are similar to those used in [Z], [DLM3] and [DZ2].

There is a subtle difference among these modular invariance results. In order
to explain this we fix a finite automorphism group G of the vertex operator
superalgebra. We use g and h for two commuting elements in G. For vertex
operator superalgebras, there is a special automorphism σ of order 2 com-
ing from the structure of the superspace. The involution σ can be expressed
as (−1)F in the physics literature (cf. [GSW], [P]) where F is the fermion
number. Here is the difference: for a vertex operator algebra, the space of all
h-traces on g-twisted sectors is modular invariant [DLM3], for a 1

2Z-graded
vertex operator superalgebra, the space of all hσ -traces on gσ -twisted sectors
is modular invariant [DZ2], and for a Z-graded vertex operator superalgebra,
the space of all hσ -traces on g-twisted sectors is modular invariant. It is worth
pointing out that the hσ -trace in the physics literature is called the super trace.

A systematic study of the modular invariance of trace functions for a vertex
operator algebra V with G = 1 was first carried out in [Z]. This work was
extended in [DLM3] to an arbitrary finite automorphism group G. Since the
setting, ideas and most results in this paper are similar to those in [Z], [DLM2],
[DLM3], [DZ1], and [DZ2], we refer the reader in many places to these papers
for details.

The organization of this paper is as follows: In section 2, we review the defi-
nition of Z-graded vertex operator superalgebra (VOSA) and various notions of
g-twisted modules. Section 3 is devoted to studying the representation theory
for Z-graded VOSA. We introduce the associative algebra Ag(V ), and inves-
tigate the relation between the g-twisted modules and and Ag(V )-modules.
Section 4 is the heart of the paper. We fix a Z-graded vertex operator superal-
gebra V and a finite automorphism group G. We define the space C(g, h) of
1-point functions on the torus associated to any commuting pair g, h ∈ G
and establish the modular invariance property. We prove that for a simple
g-twisted module M, two commuting elements g and h of G such that M is
σ -stable and h-stable, the graded hσ -trace function on M is a 1-point function.
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Moreover, when V is g-rational, the collection of the trace functions associated
to the inequivalent simple hσ, h stable g-twisted V modules forms a basis of
C(g, h). In Section 5 we discuss an example to show the modularity of trace
functions.

2. Z-graded vertex operator superalgebras

Let V = V0̄ ⊕ V1̄ be Z2-graded vector space. For any v ∈ Vī with i = 0, 1 we
define ṽ = ī . Moreover, let εu,v = (−1)ũṽ and εv = (−1)ṽ for homogeneous
u, v ∈ V .

Let z, z0, z1, z2 be the independent commuting formal variables. We shall
use the formal δ-function δ(z) = ∑n∈Z zn and we refer the reader to [FLM3]
on the basic properties of the δ-functions. The following definition of Z-graded
vertex operator superalgebra is a generalization of the notion of vertex operator
algebra formulated in [B] and [FLM3].

Definition 2.1. A Z-graded vertex operator superalgebra (Z-graded VOSA) is
a Z× Z2-graded vector space

V =
⊕
n∈Z

Vn = V0̄ ⊕ V1̄ =
⊕
n∈Z

(V0̄,n ⊕ V1̄,n) (wtv = n if v ∈ Vn)

where

Vī =
⊕
n∈Z

Vī,n,

together with two distinguished vectors 1 ∈ V0̄,0, ω ∈ V0̄,2 and equipped with
a linear map

V → (End V )[[z, z−1]],
v �→ Y (v, z) =

∑
n∈Z

v(n)z−n−1 (v(n) ∈ End V )

satisfying the following axioms for u, v ∈ V :
(i) u(n)v = 0 for sufficiently large n;

(ii) If u ∈ Vī and v ∈ Vj̄ , then u(n)v ∈ Vī+ j̄ for all n ∈ Z where i,
j = 0, 1;

(iii) Y (1, z) = I dV and Y (v, z)1 = v +∑n≥2 v(−n)1zn−1;
(iv) Set Y (ω, z) =∑n∈Z L(n)z−n−2 : Then

[L(m), L(n)] = (m − n)L(m + n)+ 1

12
(m3 − m)δm+n,0c (2.1)
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where c ∈ C is called the central charge, and

L(0)|Vn = n, n ∈ Z, (2.2)
d

dz
Y (v, z) = Y (L(−1)v, z); (2.3)

(v) For Z2-homogeneous u, v ∈ V,

z−1
0 δ

(
z1 − z2

z0

)
Y (u, z1)Y (v, z2)− εu,vz−1

0 δ

(
z2 − z1

−z0

)
× Y (v, z2)Y (u, z1) = z−1

2 δ

(
z1 − z0

z2

)
Y (Y (u, z0)v, z2) (2.4)

where (zi − z j )
n is expanded in nonnegative powers of z j .

Fix a Z-graded vertex operator superalgebra V and we set

Y [v, z] = Y (v, ez − 1)ezwtv =
∑
n∈Z

v[n]z−n−1. (2.5)

Following the proof of Theorem 4.21 of [Z] we have:

Theorem 2.2. (V,Y [ ], 1, ω̃) is a Z-graded vertex operator superalgebra,
where ω̃ = ω − c

24 .

Let Y [ω̃, z] = ∑n∈Z L[n]z−n−2. Then V = ⊕n∈Z V[n] is again Z-graded
and L[0] = n on V[n]. We will write wt[v] = n if v ∈ V[n].

Definition 2.3. A linear bijection g from a Z-graded VOSA V to itself is called
an automorphism of V if g preserves 1, ω and each Vī , and

gY (v, z)g−1 = Y (gv, z)

for v ∈ V .

Note that if V is a 1
2Z-graded vertex operator superalgebra, the assump-

tion that g preserves each Vī in the definition of automorphism is unnecessary
(cf. [DZ2]).

We denote the full automorphism group of V by Aut(V ). If we define an
action, say σ, on V associated to the superspace structure of V via σ |Vī =
(−1)i , then σ is a central element of Aut(V ) and will play a special role, as
in [DZ2].

Let g be an automorphism of V of finite period T . Then we have the
following eigenspace decomposition:

V = ⊕r∈Z/T ZV r (2.6)
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where

V r = {v ∈ V |gv = e−2π ir/T v}.
We now give various notions of g−twisted V -module. The twisted sectors
and the twisted vertex operators for finite automorphisms of even lattice ver-
tex operator algebras were first constructed in [L1] and [FLM2]. In [L2] and
[DL], the twisted Jacobi identity was formulated and shown to hold for these
operators. These results led to the notion of g-twisted V -module for a vertex
operator algebra V and an automorphism g of V [D2] and [FFR].

Definition 2.4. A weak g-twisted V -module is a vector space M equipped
with a linear map

V → (EndM)[[z1/T , z−1/T ]]
v �→ YM(v, z) =∑n∈Q v(n)z

−n−1

which satisfies:

(i) v(m)w = 0 for v ∈ V, w ∈ M and m >> 0;
(ii) YM(1, z) = I dM ;

(iii) For v ∈ V r and 0 ≤ r ≤ T − 1

YM (v, z) =
∑

n∈ r
T +Z

v(n)z−n−1;

(iv) For u ∈ V r ,

z−1
0 δ

(
z1 − z2

z0

)
YM(u, z1)YM (v, z2)− εu,vz−1

0 δ

(
z2 − z1

−z0

)
YM(v, z2)

× YM(u, z1) = z−1
2

(
z1 − z0

z2

)−r/T

δ

(
z1 − z0

z2

)
YM (Y (u, z0)v, z2)

(2.7)

Set

YM (ω, z) =
∑
n∈Z

L(n)z−n−2.

Then we have YM (L(−1)v, z) = d
dz YM(v, z) for v ∈ V, and the L(n) also

satisfy the Virasoro algebra relations with central charge c (see [DLM1]).

Definition 2.5. A weak g-twisted V -module M is admissible if it is 1
T Z+-

gradable:

M =
⊕

0≤n∈ 1
T Z

M(n) (2.8)
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such that for homogeneous v ∈ V,

v(m)M(n) ⊆ M(n + wtv − m − 1). (2.9)

Note that a uniform degree shift of M gives an isomorphic admissible
V -module.

Definition 2.6. A weak g-twisted V -module M is called an ordinary g-twisted
V -module if it is C-graded with

M =
∐
λ∈C

Mλ (2.10)

where Mλ = {w ∈ M |L(0)w = λw} such that dim Mλ is finite and for fixed λ,
M n

T
+ λ = 0 for all small enough integers n.

It is not hard to prove that any ordinary g-twisted V -module is admissible.
If g = 1 we have the notions of of weak, admissible and ordinary V -modules.

If M is a simple g-twisted V -module, then

M =
∞⊕

n=0

Mλ+n/T (2.11)

for some λ ∈ C such that Mλ �= 0 (cf. [Z]). λ is defined to be the conformal
weight of M.

Definition 2.7.

(i) A Z-graded VOSA V is called g-rational for an automorphism g
of finite order if the category of admissible modules is completely
reducible. V is called rational if it is 1-rational.

(ii) V is called holomorphic if V is rational and V is the only irreducible
V -module up to isomorphism.

(iii) V is called g-regular if any weak g-twisted V -module is a direct sum
of irreducible ordinary g-twisted V -modules.

3. The associative algebra Ag(V )

In this section we construct the associative algebra Ag(V ) and study the rela-
tion between admissible g-twisted V -modules and Ag(V )-modules. The result
is similar to those obtained in [DLM2] (also see [Z], [KW], [X], [DZ1]).

We assume that the order of g is T . For 0 ≤ r ≤ T − 1 we define δr =
δr,0. Let Og(V ) be the linear span of all u ◦g v, where for homogeneous u ∈
V r (cf. (2.6)) and v ∈ V,
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u ◦g v = Resz
(1+ z)wtu−1+δr+ r

T

z1+δr
Y (u, z)v. (3.1)

Set Ag(V ) = V/Og(V ) and define a second bilinear product ∗g on V for the
above u, v as follows:

u ∗g v = ReszY (u, z)
(1+ z)wt u

z
v (3.2)

if r = 0 and u ∗g v = 0 if r > 0. It is easy to see that Ag(V ) is, in fact, a
quotient of V 0.

As in [DLM2], [X] and [DZ2] we have

Theorem 3.1. Ag(V ) = V/Og(V ) is an associative algebra with identity
1 + Og(V ) under the product ∗g. Moreover, ω + Og(V ) lies in the center of
Ag(V ).

For a weak g-twisted V -module M,we define the space of the lowest weight
vectors as follows:

�(M) = {w ∈ M |u(m − 1+ n)w = 0, u ∈ Vm , n > 0, m ∈ Z}.

We have (see [DLM2]):

Theorem 3.2. Let M be a weak g-twisted V -module. Then

(i) �(M) is an Ag(V )-module such that v + Og(V ) acts as o(v).
(ii) If M =∑n≥0 M(n/T ) is an admissible g-twisted V -module such that

M(0) �= 0, then M(0) ⊂ �(M) is an Ag(V )-submodule. Moreover,
M is irreducible if and only if M(0) = �(M) and M(0) is a simple
Ag(V )-module.

(iii) The map M → M(0) gives a 1-1 correspondence between the irre-
ducible admissible g-twisted V -modules and simple Ag(V )-modules.

We also have (see [DLM2] and [DZ1]):

Theorem 3.3. Suppose that V is a g-rational vertex operator superalgebra.
Then the following hold:

(i) Ag(V ) is a finite dimensional semisimple associative algebra.
(ii) V has only finitely many irreducible admissible g-twisted modules up

to isomorphism.
(iii) Every irreducible admissible g-twisted V -module is ordinary.
(iv) V is g−1-rational.



Modularity of Trace Functions in Orbifold Theory 135

4. Modularity of trace functions

We are working in the setting of section 5 in [DLM3]. In particular, g, h are
commuting elements in Aut (V ) with finite orders o(g) = T, o(h) = T1, A
is the subgroup of Aut (V ) generated by g and h, N = lcm(T, T1) is the

exponent of A, 
(T, T1) is the subgroup of matrices

(
a b
c d

)
in SL(2,Z)

satisfying a ≡ d ≡ 1 (mod N ), b ≡ 0(mod T ), c ≡ 0(mod T1) and M(T, T1)

is the ring of holomorphic modular forms on 
(T, T1) with natural gradation
M(T, T1) = ⊕k≥0 Mk(T, T1),where Mk(T, T1) is the space of forms of weight
k. Then M(T, T1) is a Noetherian ring.

Recall the Bernoulli polynomials Br (x) ∈ Q[x] defined by

tetx

(et − 1)
=

∞∑
r=0

Br (x)tr

r ! .

For even k ≥ 2, the normalized Eisenstein series Ek(τ ) is given by

Ek(τ ) = −Bk

k! + 2

(k − 1)!
∞∑

n=1

σk−1(n)q
n. (4.1)

Also introduce

Qk(μ, λ, qτ ) = Qk(μ, λ, τ )

= 1

(k − 1)!
∑
n≥0

λ(n + j/T )k−1qn+ j/T
τ

1− λqn+ j/T
τ

+ (−1)k

(k − 1)!
∑
n≥1

λ−1(n − j/T )k−1qn− j/T
τ

1− λ−1qn− j/T
τ

− Bk( j/T )

k! (4.2)

for (μ, λ) =
(

e
2π i j

T , e
2π il
T1

)
and (μ, λ) �= (1, 1), when k ≥ 1 and k ∈ Z. Here

(n + j/T )k−1 = 1 if n = 0, j = 0 and k = 1. Similarly, (n − j/T )k−1 = 1
if n = 1, j = M and k = 1. We also define

Q0(μ, λ, τ ) = −1. (4.3)

It is proved in [DLM3] that E2k, Qr are contained in M(T, T1) for k ≥ 2 and
r ≥ 0.

Set V (T, T1) = M(T, T1)⊗C V . Given v ∈ V with gv = μ−1v, hv = λ−1v

we define a vector space O(g, h) which is a M(T, T1)-submodule of V (T, T1)

spanned by the following elements:

v[0]w,w ∈ V, (μ, λ) = (1, 1) (4.4)

v[−2]w +
∞∑

k=2

(2k − 1)E2k(τ )⊗ v[2k − 2]w, (μ, λ) = (1, 1) (4.5)
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v, (εv, μ, λ) �= (1, 1, 1) (4.6)
∞∑

k=0

Qk(μ, λ, τ )⊗ v[k − 1]w, (μ, λ) �= (1, 1). (4.7)

Definition 4.1. Let h denote the upper half plane. The space of (g, h) 1-point
functions C (g, h) is defined to be the vector space consisting of functions

S : V (T, T1)× h→ C

such that

(i) S(v, τ ) is holomorphic in τ for v ∈ V (T, T1),

(ii) S(v, τ ) is linear in v and for f ∈ M(T, T1), v ∈ V,

S( f ⊗ v, τ ) = f (τ )S(v, τ ),

(iii) S(v, τ ) = 0 if v ∈ O(g, h),
(iv) If v ∈ V with σv = gv = hv = v, then

S(L[−2]v, τ ) = ∂S(v, τ )+
∞∑

l=2

E2l(τ )S(L[2l − 2]v, τ ). (4.8)

Here ∂S is the operator which is linear in v and satisfies

∂S(v, τ ) = ∂k S(v, τ ) = 1

2π i

d

dτ
S(v, τ )+ k E2(τ )S(v, τ ) (4.9)

for v ∈ V[k].

We have the following modular invariance result (see Theorem 5.4 of
[DLM3]):

Theorem 4.2. For S ∈ C(g, h) and γ =
(

a b
c d

)
∈ 
, we define

S|γ (v, τ ) = S|kγ (v, τ ) = (cτ + d)−k S(v, γ τ) (4.10)

for v ∈ V[k], and extend linearly. Then S|γ ∈ C((g, h)γ ).

Let g, h, σ, V be as before, and M be a simple g-twisted module. We now
show how the graded hσ -trace function on g-twisted V -module M produces a
(g, h) 1-point function.

From (2.11), we know that if M is a simple g−twisted module then there
exists a complex number λ such that

M =
∞⊕

n=0

Mλ+ n
T

(4.11)
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Now we define a (hσ)g(hσ)−1-twisted V -module (hσ ◦ M, Yhσ◦M) such
that hσ ◦ M = M as vector spaces and

Yhσ◦M (v, z) = YM ((hσ)
−1v, z).

Since g, h, σ commute each other, hσ ◦ M is, in fact, a simple g-twisted
V -module again. The M is called hσ -stable if hσ ◦ M and M are isomor-
phic g-twisted V -modules. In this case, there is a linear map φ(hσ) : M → M
such that

φ(hσ)YM(v, z)φ(hσ)−1 = YM ((hσ)v, z) (4.12)

for all v ∈ V . Note that φ(hσ) is unique up to a nonzero constant.
We now assume that M is hσ -stable. For homogeneous v ∈ V, we define

the trace function T as follows:

T (v) = TM(v, (g, h), q) = zwtvtrM YM (v, z)φ(hσ)q L(0)− c
24 (4.13)

Here c is the central charge of V . Note that for m ∈ 1
T Z, v(m) maps Mμ to

Mμ+wtv−m−1. Hence

T (v) = qλ−
c

24

∞∑
n=0

trMλ+ n
T

o(v)φ(hσ)q
n
T = trM o(v)φ(hσ)q L(0)− c

24 . (4.14)

In order to state the next theorem we need to recall the C2-cofinite condi-
tion from [Z]. V is called C2-cofinite if V/C2(V ) is finite dimensional where
C2(V ) = 〈u−2v|u, v ∈ V 〉.
Theorem 4.3. Suppose that V is C2-cofinite, g, h ∈ Aut(V )commute and
have finite orders. Let M be a simple g-twisted V -module such that M is hσ -
stable. Then the trace function TM (v, (g, h), q) converges to a holomorphic
function in the upper half plane h where q = e2π iτ and τ ∈ h. Moreover,
TM ∈ C(g, h).

The proof of this theorem is similar to that of Theorem 4.3 of [DZ2] although
the idea goes back to [Z] and [DLM3].

We also have:

Theorem 4.4. Let M1, M2, ..., Ms be the inequivalent simple hσ -stable g-
twisted V -modules, then the corresponding trace functions T1, T2,..., Ts (4.13)
are independent vectors of C(g, h). Moreover, if V is g-rational, T1, T2,..., Ts

form a basis of C(g, h).

The following theorem is an immediate consequence of Theorems 4.3
and 4.4.
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Theorem 4.5. Suppose that V is a C2-cofinite vertex operator superalgebra
and G a finite group of automorphisms of V . Assume that V is x-rational for
each x ∈ G. Let v ∈ V satisfy wt[v] = k. Then the space of (holomorphic)
functions in h spanned by the trace functions TM(v, (g, h), τ ) for all choices
of g, h in G and hσ -stable g-twisted V -modules M is a (finite-dimensional)
SL(2,Z)-module such that

TM |γ (v, (g, h), τ ) = (cτ + d)−k TM (v, (g, h), γ τ),

where γ ∈ SL(2,Z) acts on h as usual.

More precisely, if γ =
(

a b
c d

)
∈ SL(2,Z) then we have an equality

TM

(
v, (g, h),

aτ + b

cτ + d

)
= (cτ + d)k

∑
W

γM,W TW (v, (g
ahc, gbhd), τ ),

where W ranges over the gahc-twisted sectors which are gbhdσ -stable. The
constants γM,W depend on M, W and γ only.

Theorem 4.6. Let V be a rational and C2-cofinite Z-graded VOSA. Let M1,

M2,..., Ms be the collection of inequivalent simple σ -stable V -modules. Then
the space spanned by

Ti (v, τ ) = Ti (v, (1, 1), τ ) = trMi o(v)φ(σ )q L(0)− c
24 (4.15)

admits a representation of the modular group. More precisely, for any γ =(
a b
c d

)
∈ 
 there exists a s × s invertible complex matrix (γi j ) such that

Ti

(
v,

aτ + b

cτ + d

)
= (cτ + d)n

s∑
j=1

γi j Tj (v, τ )

for all v ∈ V[n]. Moreover, the matrix (γi j ) is independent of v.

Recall Definition 2.7. The Following corollary is a special case of
Theorem 4.6.

Corollary 4.7. Assume that V is a holomorphic and C2-cofinite Z-graded
vertex operator superalgebra. Take v ∈ V[k]. Then
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T (v, τ ) = trV o(v)σq L(0)− c
24

is a modular form on SL(2,Z) of weight k.

Remark 4.8. It is interesting to notice that the modular invariance result in
Theorem 4.6 is different from that for a vertex operator algebra in [Z] and
for a 1

2Z-graded vertex operator superalgebra in [DZ2]. In the case of vertex
operator algebra, the space of the graded traces of simple modules is modular
invariant [Z]. But for a 1

2Z-graded vertex operator superalgebra, the space
of graded σ traces on the simple σ -twisted modules is modular invariant. In
the present situation, the space of graded σ traces on the simple V -modules is
modular invariant.

One can also obtain results such as the number of inequivalent, hσ -stable
simple g-twisted V -modules and rationality of central charges and conformal
weights for rational vertex operator superalgebras as in [DLM3] and [DZ2].

5. An example

In this section we consider Z-graded VOSA VZα and its σ -twisted module
VZα+ 1

2α
to demonstrate the modular invariance directly.

We are working in the setting of Chapter 8 of [FLM3]. Let L = Zα be
a nondegenerate lattice of rank 1 with Z-valued symmetric Z-bilinear form
〈 , 〉 s.t. 〈α, α〉 = 1. Set M(1) = C[α(−n)|n > 0] and let C[L] be the group
algebra of the abelian group L . Set 1 = 1⊗ e0 ∈ VL and ω = 1

2α(−1)α(−1).
Recall that a vertex operator (super)algebra is called holomorphic if it is

rational and the only irreducible module is itself. We have the following
theorem (see [B], [FLM3], [D1], [DLM1], [DM1]).

Theorem 5.1.

(i) (VL , Y, 1, ω) is a holomorphic 1
2Z-graded vertex operator super-

algebra with central charge c = rank(L) = 1.
(ii) (VL )0̄ = M(1)⊗ C[2L] and (VL)1̄ = M(1)⊗ C[2L + α].

(iii) VL+ 1
2α

is the unique irreducible σ -twisted module for VL .

One can verify the next theorem easily.

Theorem 5.2.

(i) If we let ω′ = 1
2α(−1)2+ 1

2α(−2), then (VL , Y, 1, ω′) is a holomorphic
Z-graded vertex operator superalgebra with central charge c′ = −2.
(ω′ is a shift in the sense of [DM2].)



140 Chongying Dong and Zhongping Zhao

(ii) VL+ 1
2α

is the unique irreducible σ -twisted module for the Z-graded
vertex operator superalgebra VL .

We consider the group G to be the cyclic group generated by σ. It is straight-
forward to compute the following trace functions for the Z-graded vertex
operator superalgebra VL :

T (1, (1, 1), τ ) = trVZασq L(0)′−−2
24

= q
1

12

∞∑
n=0

P(n)qn
∞∑

s=−∞
(−1)sq

s(s−1)
2

= η(τ)−1θ1(q),

T (1, (1, σ ), τ ) = trVZαq L ′(0)−−2
24

= q
1

12

∞∑
n=0

P(n)qn
∞∑

s=−∞
q

s(s−1)
2

= η(τ)−1θ2(q),

T (1, (σ, σ ), τ ) = trVZα+ 1
2 α

q L ′(0)−−2
24

= q
1

12

∞∑
n=0

P(n)qn
∞∑

s=−∞
q

(
s+ 1

2

)(
s− 1

2

)
2

= η(τ)−1θ3(q),

T (1, (σ, 1), τ ) = trVZα+ 1
2 α
σq L ′(0)−−2

24

= q
1

12

∞∏
n=1

(1+ qn)

∞∑
s=−∞

(−1)sq

(
s+ 1

2

)(
s− 1

2

)
2

= η(τ)−1θ4(q),

where

η(τ) = q
1

24
∏
n≥1

(1− qn)

θ1(q) =
∞∑

n=−∞
(−1)nq

1
2

(
n− 1

2

)2

= 0

θ2(q) =
∞∑

n=−∞
q

1
2

(
n− 1

2

)2
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θ3(q) =
∞∑

n=−∞
q

1
2 n2

θ4(q) =
∞∑

n=−∞
(−1)nq

1
2 n2

.

Recall the transformation law for η functions

η(τ + 1) = e
π i
12 η(τ), η

(
−1

τ

)
= (−iτ)

1
2 η(τ)

η

(
τ + 1

2

)
= η(τ)3

η(τ2 )η(2τ)

and relations

θ2(q) = 2
η(2τ)2

η(τ)

θ3(q) = η(τ)5

η(2τ)2η(τ2 )
2

θ4(q) = η( τ2 )
2

η(τ)
.

The modular transformation property for T (1, (g, h), τ ) for g, h ∈ G can
easily be verified and the result, of course, is the same as what Theorem 4.5
claimed. One can also compute the trace functions for the 1

2Z-graded vertex
operator superalgebra VL and notice that the sets of trace functions in the
two cases are exactly the same. Recall from [DZ1]-[DZ2] the 1

2Z-graded ver-

tex operator superalgebra V
(

H,Z+ 1
2

)
and the trace functions with group

G = 〈σ 〉 for any positive integer l. Since VL and V
(

H,Z+ 1
2

)
with l = 2

are isomorphic 1
2Z-graded vertex operator superalgebras (the boson-fermion

correspondence), one can use the modular invariance result for V
(

H,Z+ 1
2

)
obtained in [DZ2] to check the modular transformation property of the trace
functions for the Z-graded vertex operator superalgebra VL .

Remark 5.3. One can use another shift ω′ = 1
2α(−1)2 − 1

2α(−2) to get an
isomorphic Z-graded vertex operator superalgebra VL and Theorem 5.2 is still
valid. Moreover, the trace functions and the modular transformation property
remain the same.
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Abstract

This contribution is mainly based on joint papers with Lepowsky and Milas,
and some parts of these papers are reproduced here. These papers further
extended works by Lepowsky and by Milas. Following our joint papers, I
explain the general principles of twisted modules for vertex operator algebras
in their powerful formulation using formal series, and derive general relations
satisfied by twisted and untwisted vertex operators. Using these, I prove new
“equivalence” and “construction” theorems, identifying a set of sufficient con-
ditions in order to have a twisted module for a vertex operator algebra, and
a simple way of constructing the twisted vertex operator map. This essen-
tially combines our general relations for twisted modules with ideas of Li
(1996), who had obtained similar construction theorems using different rela-
tions. Then, I show how to apply these theorems in order to construct twisted
modules for the Heisenberg vertex operator algebra. I obtain in a new way
the explicit twisted vertex operator map, and in particular give a new deriva-
tion and expression for the formal operator �x constructed some time ago
by Frenkel, Lepowsky and Meurman. Finally, I reproduce parts of our joint
papers. I use the untwisted relations in the Heisenberg vertex operator algebra
in order to understand properties of a certain central extension of a Lie alge-
bra of differential operators on the circle: the connection between the structure
of the central term in Lie brackets and the Riemann Zeta function at negative
integers. I then use the twisted relations in order to construct in a simple way
a family of representations for this algebra based on twisted modules for the
Heisenberg vertex operator algebra. As a simple consequence of the twisted

∗ The author gratefully acknowledges support from an EPSRC (UK) Postdoctoral Fellowship,
grant GR/S91086/01.
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relations, the construction involves the Bernoulli polynomials at rational values
in a fundamental way.

1. Introduction

This contribution is mainly based on, and partly reproduces, the recent papers
by the present author, Lepowsky and Milas [DLMi1], [DLMi2]. These works
were a continuation of a series of papers of Lepowsky and Milas [L3], [L4],
[M1]–[M3], stimulated by work of Bloch [Bl].

In those papers, we used the general theory of vertex operator algebras to
study central extensions of classical Lie algebras and superalgebras of differ-
ential operators on the circle in connection with values of ζ–functions at the
negative integers, and with the Bernoulli polynomials at rational values. Parts
of the present contribution recall the main results of [DLMi1, DLMi2]: Using
general principles of the theory of vertex operator algebras and their twisted
modules, we obtain a bosonic, twisted construction of a certain central exten-
sion of a Lie algebra of differential operators on the circle, for an arbitrary
twisting automorphism. The construction involves the Bernoulli polynomials
in a fundamental way. This is explained through results in the general theory of
vertex operator algebras, including an identity discovered in [DLMi1, DLMi2]
which was called “modified weak associativity”, and which is a consequence
of the twisted Jacobi identity.

More precisely, we combine and extend methods from [L3], [L4], [M1]–
[M3], [FLM1], [FLM2] and [DL2]. In those earlier papers, vertex operator
techniques were used to analyze untwisted actions of the Lie algebra D̂+, stud-
ied in [Bl], on a module for a Heisenberg Lie algebra of a certain standard
type, based on a finite-dimensional vector space equipped with a nondegener-
ate symmetric bilinear form. Now consider an arbitrary isometry ν of period
say p, that is, with ν p = 1. Then, it was shown in [DLMi1, DLMi2] that
the corresponding ν–twisted modules carry an action of the Lie algebra D̂+
in terms of twisted vertex operators, parametrized by certain quadratic vectors
in the untwisted module. This extends a result from [FLM1], [FLM2], [DL2]
where actions of the Virasoro algebra were constructed using twisted vertex
operators.

Still following [DLMi1, DLMi2], we explicitly compute certain “correc-
tion” terms for the generators of the “Cartan subalgebra” of D̂+ that naturally
appear in any twisted construction. These correction terms are expressed in
terms of special values of certain Bernoulli polynomials. They can in principle
be generated, in the theory of vertex operator algebras, by the formal oper-
ator e�x [FLM1], [FLM2], [DL2] involved in the construction of a twisted
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action for a certain type of vertex operator algebra, the Heisenberg vertex oper-
ator algebra. We generate those correction terms in an easier way, using the
modified weak associativity relation.

Then, the present contribution extends the works [DLMi1, DLMi2]
described above by providing a detailed analysis of the modified weak
associativity relation. We state and prove a new theorem (Theorem 5.1) about
the equivalence of modified weak associativity and weak commutativity with
the twisted Jacobi identity, and a new “construction” theorem (Theorem 5.5),
where we identify a set of sufficient conditions in order to have a twisted mod-
ule for a vertex operator algebra, and a simple way of constructing the twisted
vertex operator map. The latter theorem essentially combines modified weak
associativity with ideas of Li [Li1, Li2], where similar construction theorems
were proven using different general relations of vertex operator algebras and
twisted modules – there may be a “direct” path from Li’s construction the-
orems to ours, but we haven’t investigated this. The use of modified weak
associativity seems to have certain advantages in the twisted case. As an illus-
tration, we give a new proof that the ν-twisted Heisenberg Lie algebra modules
mentioned above are also twisted modules for the Heisenberg vertex operator
algebra. Using our theorems, we explicitly construct the twisted vertex opera-
tor map (Theorem 6.2). This gives a new and relatively simple derivation and
expression for this map, and in particular for the formal operator�x mentioned
above. A consequence of this is that one minor technical assumption that had
to be made in [DLMi1, DLMi2], about the action of the automorphism ν, can
be taken away.

We should mention that in [KR] Kac and Radul established a relationship
between the Lie algebra of differential operators on the circle and the Lie
algebra ĝl(∞); for further work in this direction, see [AFMO], [KWY]. Our
methods and motivation for studying Lie algebras of differential operators,
based on vertex operator algebras, are new and very different, so we do not
pursue their direction.

Although we will present many of the main results of [DLMi2] with some
of the proofs, we refer the reader to this paper for a more extensive discussion
of those results.

Acknowledgments. The author is grateful to J. Lepowsky and A. Milas for
discussions and comments on the manuscript.

2. Vertex operator algebras, untwisted modules and twisted modules

In this section, we recall the definition of vertex operator algebras, (untwisted)
modules and twisted modules. For the basic theory of vertex operator algebras
and modules, we will use the viewpoint of [LL].
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In the theory of vertex operator algebras, formal calculus plays a fundamen-
tal role. Here we recall some basic elements of formal calculus (cf. [LL]).
Formal calculus is the calculus of formal doubly–infinite series of formal
variables, denoted below by x , y, and by x1, x2, . . ., y1, y2, . . .. The central
object of formal calculus is the formal delta–function

δ(x) =
∑
n∈Z

xn

which has the property

δ

(
x1

x2

)
f (x1) = δ

(
x1

x2

)
f (x2)

for any formal series f (x1). The formal delta–function enjoys many other
properties, two of which are:

x−1
2 δ

(
x1 − x0

x2

)
= x−1

1 δ

(
x2 + x0

x1

)
(2.1)

and

x−1
0 δ

(
x1 − x2

x0

)
+ x−1

0 δ

(
x2 − x1

−x0

)
= x−1

2 δ

(
x1 − x0

x2

)
. (2.2)

In these equations, binomial expressions of the type (x1− x2)
n, n ∈ Z appear.

Their meaning as formal series in x1 and x2, as well as the meaning of powers
of more complicated formal series, is summarized in the “binomial expansion
convention” – the notational device according to which binomial expressions
are understood to be expanded in nonnegative integral powers of the second
variable. When more elements of formal calculus are needed below, we shall
recall them.

2.1. Vertex operator algebras and untwisted modules

We recall from [FLM2] the definition of the notion of vertex operator algebra,
a variant of Borcherds’ notion [Bo] of vertex algebra:

Definition 2.1. A vertex operator algebra (V, Y, 1, ω), or V for short, is a
Z–graded vector space

V =
∐
n∈Z

V(n); for v ∈ V(n), wt v = n,

such that

V(n) = 0 for n sufficiently negative,

dim V(n) <∞ for n ∈ Z,
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equipped with a linear map Y (·, x):

Y (·, x) : V → (End V )
[[

x, x−1]]
v �→ Y (v, x) =

∑
n∈Z

vn x−n−1 , vn ∈ End V, (2.3)

where Y (v, x) is called the vertex operator associated with v, and two particu-
lar vectors, 1, ω ∈ V , called respectively the vacuum vector and the conformal
vector, with the following properties:
truncation condition: For every v,w ∈ V

vnw = 0 (2.4)

for n ∈ Z sufficiently large;
vacuum property:

Y (1, x) = 1V (1V is the identity on V ); (2.5)

creation property:

Y (v, x)1 ∈ V [[x]] and lim
x→0

Y (v, x)1 = v ; (2.6)

Virasoro algebra conditions: Let

L(n) = ωn+1 for n ∈ Z, i.e., Y (ω, x) =
∑
n∈Z

L(n)x−n−2 . (2.7)

Then

[L(m), L(n)] = (m − n)L(m + n)+ cV
m3 −m

12
δn+m,0 1V

for m, n ∈ Z, where cV ∈ C is the central charge (also called “rank” of V ),

L(0)v = (wt v)v

for every homogeneous element v, and we have the L(−1)–derivative property:

Y (L(−1)u, x) = d

dx
Y (u, x) ; (2.8)

Jacobi identity:

x−1
0 δ

(
x1 − x2

x0

)
Y (u, x1)Y (v, x2)− x−1

0 δ

(
x2 − x1

−x0

)
Y (v, x2)Y (u, x1)

= x−1
2 δ

(
x1 − x0

x2

)
Y (Y (u, x0)v, x2) . (2.9)
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An important property of vertex operators is skew–symmetry, which is an
easy consequence of the Jacobi identity (cf. [FHL]):

Y (u, x)v = ex L(−1)Y (v,−x)u. (2.10)

Another easy consequence of the Jacobi identity is the L(−1)–bracket
formula:

[L(−1),Y (u, x)] = Y (L(−1)u, x). (2.11)

Fix now a vertex operator algebra (V ,Y, 1, ω), with central charge cV .

Definition 2.2. A (Q–graded) module W for the vertex operator algebra V
(or V –module) is a Q–graded vector space,

W =
∐
n∈Q

W(n); for v ∈ W(n), wt v = n,

such that

W(n) = 0 for n sufficiently negative,

dim W(n) <∞ for n ∈ Q,

equipped with a linear map

YW (·, x) : V → (End W )
[[

x, x−1]]
v �→ YW (v, x) =

∑
n∈Z

vW
n x−n−1 , vW

n ∈ End W, (2.12)

where YW (v, x) is still called the vertex operator associated with v, such that
the following conditions hold:
truncation condition: For every v ∈ V and w ∈ W

vW
n w = 0 (2.13)

for n ∈ Z sufficiently large;
vacuum property:

YW (1, x) = 1W ; (2.14)

Virasoro algebra conditions: Let

LW (n) = ωW
n+1 for n ∈ Z, i.e., YW (ω, x) =

∑
n∈Z

LW (n)x−n−2.

We have

[LW (m), LW (n)] = (m − n)LW (m + n)+ cV
m3 − m

12
δm+n,0 1W ,

LW (0)v = (wt v)v
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for every homogeneous element v ∈ W , and

YW (L(−1)u, x) = d

dx
YW (u, x) ; (2.15)

Jacobi identity:

x−1
0 δ

(
x1 − x2

x0

)
YW (u, x1)YW (v, x2)− x−1

0 δ

(
x2 − x1

−x0

)
YW (v, x2)YW (u, x1)

= x−1
2 δ

(
x1 − x0

x2

)
YW (Y (u, x0)v, x2). (2.16)

From the Jacobi identity (2.16), one can derive the weak commutativity and
weak associativity relations, respectively:

(x1 − x2)
k(u,v)YW (u, x1)YW (v, x2) = (x1 − x2)

k(u,v)YW (v, x2)YW (u, x1)

(2.17)

(x0 + x2)
l(u,w)YW (u, x0 +x2)YW (v, x2)w = (x0 + x2)

l(u,w)YW (Y (u, x0)v, x2)w,

(2.18)

where u, v ∈ V and w ∈ W , valid for large enough nonnegative inte-
gers k(u, v) and l(u, w), their minimum value depending respectively on u, v
and on u, w. For definiteness, we will pick the integers k(u, v) and l(u, w)
to be the smallest nonnegative integers for which the relations above are
valid.

2.2. Twisted modules for vertex operator algebras

The notion of twisted module for a vertex operator algebra was formalized in
[FFR] and [D] (see also the geometric formulation in [FrS]; see also [DLM]),
summarizing the basic properties of the actions of twisted vertex operators
discovered in [FLM1], [FLM2] and [L2]; the main nontrivial axiom in this
notion is the twisted Jacobi identity of [FLM2] (and [L2]); cf. [FLM1].

A critical ingredient in formal calculus needed in the theory of twisted mod-
ules is the appearance of fractional powers of formal variables, like x1/p, p ∈
Z+ (the positive integers). For the purpose of formal calculus, the object x1/p

is to be treated as a new formal variable whose p–th power is x . The binomial
expansion convention is applied as stated at the beginning of Section 2 to bino-
mials of the type (x1 + x2)

1/p. From a geometrical point of view, these rules
correspond to choosing a branch in the “orbifold structure” described (locally)
by the twisted vertex operator algebra module.



Twisted Modules for Vertex Operator Algebras 151

We now fix a positive integer p and a primitive p–th root of unity

ωp ∈ C. (2.19)

We record here two important properties of the formal delta–function involving
fractional powers of formal variables:

δ(x) = 1

p

p−1∑
r=0

δ(ωr
px1/p) (2.20)

and

x−1
2 δ

(
ωr

p

(
x1 − x0

x2

)1/p
)
= x−1

1 δ

(
ω−r

p

(
x2 + x0

x1

)1/p
)
. (2.21)

The latter formula can be found (in a slightly different form) in [Li2]. For the
sake of completeness, we present here a proof.

Proof: The coefficient of x0
0 in equation (2.21) is immediate. Consider some

formal series f (x) =∑n∈C fn xn, fn ∈ C. From the formula

(−1)k(∂/∂x1)
k(xs

1x−s−1
2

) = (∂/∂x2)
k(xs−k

1 x−s−1+k
2

)
for any s ∈ C and k a nonnegative integer, we find that

(−1)k
(

∂

∂x1

)k (
x−1

2 f (x1/x2)
)
=
(

∂

∂x2

)k (
x−1

1 (x1/x2)
1−k f (x1/x2)

)
.

(2.22)

With f (x) = δ
(
ωr

px1/p
)

, we use the formal delta-function property to get

(x1/x2)
1−kδ
(
ωr

p(x1/x2)
1/p
)
= δ
(
ωr

p(x1/x2)
1/p
)

and thus

(−1)k
(

∂

∂x1

)k(
x−1

2 δ
(
ωr

p(x1/x2)
1/p
))
=
(

∂

∂x2

)k(
x−1

1 δ
(
ω−r

p (x2/x1)
1/p
))
.

(2.23)
Summing over nonnegative integers k with the coefficients xk

0/k! on both sides,
we obtain (2.21).

Recall the vertex operator algebra (V, Y, 1, ω) with central charge cV of the
previous subsection. Fix an automorphism ν of period p of the vertex operator
algebra V , that is, a linear automorphism of the vector space V preserving ω
and 1 such that

νY (v, x)ν−1 = Y (νv, x) for v ∈ V, (2.24)



152 Benjamin Doyon

and

ν p = 1V . (2.25)

Definition 2.3. A (Q-graded) ν-twisted V -module M is a Q-graded vector
space,

M =
∐
n∈Q

M(n); for v ∈ M(n), wt v = n,

such that

M(n) = 0 for n sufficiently negative,

dim M(n) <∞ for n ∈ Q,

equipped with a linear map

YM (·, x) : V → (End M)
[[

x1/p, x−1/p]]
v �→ YM(v, x) =

∑
n∈ 1

p Z

vνn x−n−1 , vνn ∈ End M, (2.26)

where YM (v, x) is called the twisted vertex operator associated with v, such
that the following conditions hold:
truncation condition: For every v ∈ V and w ∈ M

vνnw = 0 (2.27)

for n ∈ 1
p Z sufficiently large;

vacuum property:

YM (1, x) = 1M ; (2.28)

Virasoro algebra conditions: Let

L M (n) = ωνn+1 for n ∈ Z, i.e., YM (ω, x) =
∑
n∈Z

L M (n)x
−n−2.

We have

[L M(m), L M(n)] = (m − n)L M (m + n)+ cV
m3 − m

12
δm+n,0 1M ,

L M(0)v = (wt v)v (2.29)

for every homogeneous element v, and

YM(L(−1)u, x) = d

dx
YM (u, x) ; (2.30)
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Jacobi identity:

x−1
0 δ

(
x1− x2

x0

)
YM (u, x1)YM(v, x2)− x−1

0 δ

(
x2− x1

−x0

)
YM (v, x2)YM (u, x1)

= 1

p
x−1

2

p−1∑
r=0

δ

(
ωr

p

(
x1 − x0

x2

)1/p
)

YM(Y (ν
r u, x0)v, x2). (2.31)

Note that when restricted to the fixed–point subalgebra {u ∈ V | νu = u},
a twisted module becomes a true module: the twisted Jacobi identity (2.31)
reduces to the untwisted one (2.16), by (2.20). This will enable us to con-
struct natural representations of a certain infinite-dimensional algebra D̂+ (see
Section 7) on suitable twisted modules.

3. Heisenberg vertex operator algebra and its twisted modules

It is appropriate at this point to make these definitions more substantial by
giving a simple but important example of a vertex operator algebra, and of
some of its twisted modules.

3.1. Heisenberg vertex operator algebra

Following [FLM2], let h be a finite-dimensional abelian Lie algebra (over C)
of dimension d on which there is a nondegenerate symmetric bilinear form
〈·, ·〉. Let ν be an isometry of h of period p > 0:

〈να, νβ〉 = 〈α, β〉, ν pα = α

for all α, β ∈ h. Consider the affine Lie algebra ĥ,

ĥ =
∐
n∈Z

h⊗ tn ⊕CC,

with the commutation relations

[α ⊗ tm, β ⊗ tn] = 〈α, β〉mδm+n,0C (α, β ∈ h, m, n ∈ Z)
[C, ĥ] = 0.

Set

ĥ+ =
∐
n>0

h⊗ tn, ĥ− =
∐
n<0

h⊗ tn.

The subalgebra

ĥ+ ⊕ ĥ− ⊕ CC
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is a Heisenberg Lie algebra. Form the induced (level–one) ĥ–module

S = U(ĥ)⊗U(ĥ+⊕h⊕CC
) C � S(ĥ−) (linearly),

where ĥ+ ⊕ h acts trivially on C and C acts as 1; U(·) denotes universal
enveloping algebra and S(·) denotes the symmetric algebra. Then S is irre-
ducible under the Heisenberg algebra ĥ+ ⊕ ĥ−⊕CC . We will use the notation
α(n) (α ∈ h, n ∈ Z) for the action of α ⊗ tn ∈ ĥ on S.

The induced ĥ-module S carries a natural structure of vertex operator alge-
bra. This structure is constructed as follows (cf. [FLM2]). First, one identifies
the vacuum vector as the element 1 in S: 1 = 1. Consider the following formal
series acting on S:

α(x) =
∑
n∈Z

α(n)x−n−1 (α ∈ h).

Then, the vertex operator map Y (·, x) is given by

Y (α1(−n1) · · ·α j (−n j )1, x)

= ••
1

(n1 − 1)!
(

d

dx

)n1−1

α1(x) · · · 1

(n j − 1)!
(

d

dx

)n j−1

α j (x) •• (3.1)

for αk ∈ h, nk ∈ Z+, k = 1, 2, . . . , j , for all j ∈ N, where •• · •• is the usual
normal ordering, which brings α(n) with n > 0 to the right. Choosing an ortho-
normal basis {ᾱq |q = 1, . . . , d} of h, the conformal vector is ω = 1

2

∑d
q=1

ᾱq(−1)ᾱq(−1)1. This implies in particular that the weight of α(−n)1 is n:

L(0)α(−n)1 = nα(−n)1 (α ∈ h, n ∈ Z+)

where we used

L(0) = 1

2

∑
n∈ 1

p Z

d∑
q=1

•• ᾱq(n)ᾱq(−n) •• .

The isometry ν on h lifts naturally to an automorphism of the vertex operator
algebra S, which we continue to call ν, of period p.

Then (cf. [FLM2]), the various properties of a vertex operator algebra are
indeed satisfied by the quadruplet (V ,Y, 1, ω) just defined.

3.2. Twisted modules

We now proceed as in [L1], [FLM1], [FLM2] and [DL2] to construct a space
S[ν] that carries a natural structure of ν–twisted module for the vertex oper-
ator algebra S. In these papers, the twisted module structure was constructed
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assuming the minor hypothesis that ν preserves a rational lattice in h. We show
in Section 6 that the space S[ν] is a twisted module, without the need for this
minor assumption.

Consider a primitive p–th root of unity ωp. For r ∈ Z set

h(r) = {α ∈ h | να = ωr
pα} ⊂ h.

For α ∈ h, denote by α(r), r ∈ Z, its projection on h(r). Define the ν-twisted
affine Lie algebra ĥ[ν] associated with the abelian Lie algebra h by

ĥ[ν] =
∐

n∈ 1
p Z

h(pn) ⊗ tn ⊕CC (3.2)

with

[α ⊗ tm, β ⊗ tn] = 〈α, β〉mδm+n,0 C

(
α ∈ h(pn), β ∈ h(pm), m, n ∈ 1

p
Z
)

[C, ĥ[ν]] = 0. (3.3)

Set

ĥ[ν]+ =
∐
n>0

h(pn) ⊗ tn, ĥ[ν]− =
∐
n<0

h(pn) ⊗ tn. (3.4)

The subalgebra

ĥ[ν]+ ⊕ ĥ[ν]− ⊕ CC (3.5)

is a Heisenberg Lie algebra. Form the induced (level-one) ĥ[ν]-module

S[ν] = U(ĥ[ν])⊗U(ĥ[ν]+⊕h(0)⊕CC
) C � S

(
ĥ[ν]−) (linearly), (3.6)

where ĥ[ν]+ ⊕ h(0) acts trivially on C and C acts as 1; U(·) denotes univer-
sal enveloping algebra. Then S[ν] is irreducible under the Heisenberg algebra

ĥ[ν]+ ⊕ ĥ[ν]− ⊕ CC . We will use the notation αν(n)
(
α ∈ h(pn), n ∈ 1

p Z
)

for the action of α ⊗ tn ∈ ĥ[ν] on S[ν].
Remark 3.1. The special case where p = 1 (ν = 1h) corresponds to the
ĥ-module S.

The ĥ[ν]-module S[ν] is naturally a ν–twisted module for the vertex opera-
tor algebra S. One first constructs the following formal series acting on S[ν]:

αν(x) =
∑

n∈ 1
p Z

αν(n)x−n−1, (3.7)
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as well as the formal series W (v, x) for all v ∈ S:

W (α1(−n1) · · ·α j (−n j )1, x)

= ••
1

(n1 − 1)!
(

d

dx

)n1−1

αν1(x) · · ·
1

(n j − 1)!
(

d

dx

)n j−1

ανj (x)
•• (3.8)

where αk ∈ h, nk ∈ Z+, k = 1, 2, . . . , j , for all j ∈ N. The twisted vertex
operator map YS[ν](·, x) acting on S[ν] is then given by

YS[ν](v, x) = W (e�xv, x) (v ∈ S) (3.9)

where �x is a certain formal operator involving the formal variable x [FLM1],
[FLM2], [DL2]. This operator is trivial on α(−n)1 ∈ S (n ∈ Z+), so that one
has in particular

YS[ν](α(−n)1, x) = 1

(n − 1)!
(

d

dx

)n−1

αν(x). (3.10)

One crucial (among others) role of the formal operator �x is to make the
fixed–point subalgebra {u | νu = u} act according to a true module action. For
instance, the conformal vector ω is in the fixed–point subalgebra, so that the
vertex operator YS[ν](ω, x) generates a representation of the Virasoro algebra
on the space S[ν]. This representation of the Virasoro algebra was explic-
itly constructed in [DL2]. As one can see in the results of [DL2] and as will
become clear below, the resulting representation Resx xYS[ν](ω, x) of the Vira-
soro generator L(0) is not an (infinite) sum of normal-ordered products the
type
∑

n∈ 1
p Z

••α
ν(n)βν(−n) •• ; rather, there is an extra term proportional to

the identity on S[ν], the so-called correction term, which appears because of
the operator�x . The correction term was calculated in [DL2] using the explicit
action of e�x on ω. In the case of the period–2, ν = −1 automorphism, this
action is given by [FLM1], [FLM2]:

e�xω = ω + 1

16
(dim h)x−2,

and for general automorphism, the calculation was carried out in [DL2] (see
also [FFR] and [FLM2]). These results are relevant, for instance, in the
construction of the moonshine module [FLM2].

The calculation of the action of �x on arbitrary elements of S is, however,
a much more complicated task. Below we will derive some identities among
twisted vertex operators. One of the important consequences of these identities,
for us, will be to give a tool to explicitly construct the twisted vertex operators
associated to elements of S from the knowledge of the twisted vertex opera-
tors associated to “simpler” elements, without requiring the explicit knowledge
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of �x . In fact, these identities allow us to construct recursively twisted vertex
operators associated to all elements of S and to compute�x , only starting from
the knowledge that �x is trivial on α(−n)1 ∈ S (n ∈ Z+).

4. Commutativity and associativity properties

This section follows closely similar sections of [DLMi1] and [DLMi2], and
reproduces the results and some of the proofs. We first recall the main com-
mutativity and associativity properties of vertex operators in the context of
modules ([FLM2], [FHL], [DL1], [Li1]; cf. [LL]), and then we derive other
identities somewhat analogous to these. These other identities were stated and
proven in [DLMi2], and the most important ones were stated in [DLMi1].
All these identities will be generalized to twisted modules, still following
[DLMi1, DLMi2]. Note that taking the module to be the vertex operator
algebra V itself, the relations below specialize to commutativity and associa-
tivity properties in vertex operator algebras. We will give the proofs of the
simplest identities only, referring the reader to [DLMi2] for all the proofs.
Throughout this and the next sections, we fix a vertex operator algebra V and
a V -automorphism ν of period p, ν p = 1V .

4.1. Formal commutativity and associativity for untwisted modules

We already stated the weak commutativity relation (2.17) and the weak asso-
ciativity relation (2.18). They imply the main “formal” commutativity and
associativity properties of vertex operators, which, along with the fact that
these properties are equivalent to the Jacobi identity, can be formulated as
follows (see [LL]):

Theorem 4.1. Let W be a vector space (not assumed to be graded) equipped
with a linear map YW (·, x) (2.12) such that the truncation condition (2.13)
and the Jacobi identity (2.16) hold. Then for u, v ∈ V and w ∈ W , there exist
k(u, v) ∈ N and l(u, w) ∈ N and a (nonunique) element F(u, v, w; x0, x1, x2)

of W ((x0, x1, x2)) such that

xk(u,v)
0 F(u, v, w; x0, x1, x2) ∈ W [[x0]]((x1, x2)),

xl(u,w)
1 F(u, v, w; x0, x1, x2) ∈ W [[x1]]((x0, x2)) (4.1)

and
YW (u, x1)YW (v, x2)w = F(u, v, w; x1 − x2, x1, x2),

YW (v, x2)YW (u, x1)w = F(u, v, w;−x2 + x1, x1, x2),

YW (Y (u, x0)v, x2)w = F(u, v, w; x0, x2 + x0, x2) (4.2)
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(where we are using the binomial expansion convention). Conversely, let W
be a vector space equipped with a linear map YW (·, x) (2.12) such that the
truncation condition (2.13) and the statement above hold, except that k(u, v)
(∈ N) and l(u, w) (∈ N) may depend on all three of u, v and w. Then the
Jacobi identity (2.16) holds.

It is important to note that since k(u, v) can be (and typically is) greater than
0, the formal series F(u, v, w; x1−x2, x1, x2) and F(u, v, w;−x2+x1, x1, x2)

are not in general equal. Along with (4.1), the first two equations of (4.2) repre-
sent formal commutativity, while the first and last equations of (4.2) represent
formal associativity, as formulated in [LL] (see also [FLM2] and [FHL]).
The twisted generalization of this theorem, written below, was proven in
[DLMi2].

4.2. Additional relations in untwisted modules

From the equations in Theorem 4.1, we can derive a number of relations sim-
ilar to weak commutativity and weak associativity but involving formal limit
procedures (the meaning of such formal limit procedures is recalled below).
Even though only one of these will be of use in the following sections, we state
here for completeness of the discussion the two relations that are not “easy”
consequences of weak commutativity and weak associativity. These relations
were proven in [DLMi2]; we report the proofs here.

The first relation can be expressed as follows:

Theorem 4.2. With W as in Theorem 4.1,

lim
x0→−x2+x1

(
(x0 + x2)

l(u,w)YW (Y (u, x0)v, x2)w
)
= xl(u,w)

1 YW (v, x2)Y (u, x1)w

(4.3)

for u, v ∈ V .

The meaning of the formal limit

lim
x0→−x2+x1

(
(x0 + x2)

l(u,w)YW (Y (u, x0)v, x2)w
)

(4.4)

is that one replaces each power of the formal variable x0 in the formal series
(x0 + x2)

l(u,w)YW (Y (u, x0)v, x2)w by the corresponding power of the formal
series −x2 + x1 (defined using the binomial expansion convention). Notice
again that the order of −x2 and x1 is important in −x2 + x1, according to the
binomial expansion convention.
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Proof of Theorem 4.2: Apply the limit limx0→−x2+x1 to the expression

(x0 + x2)
l(u,w)YW (Y (u, x0)v, x2)w

written as in the right–hand side of the third equation of (4.2). This limit is well
defined; indeed, the only possible problems are the negative powers of x2+ x0

in F(u, v, w, x0, x2 + x0, x2), but they are cancelled out by the factor (x0 +
x2)

l(u,w). The resulting expression is read off the second relation of (4.2).

Remark 4.2. It is instructive to consider the following relation, deceptively
similar to (4.3), but that is in fact an immediate consequence of weak
associativity (2.18):

lim
x0→x1−x2

(
(x0 + x2)

l(u,w)YW (Y (u, x0)v, x2)w
)
= xl(u,w)

1 YW (u, x1)YW (v, x2)w.

(4.5)
More precisely, it can be obtained by noticing that the replacement of x0

by x1 − x2 independently in each factor in the expression as written on the
left–hand side of (2.18) is well defined. We emphasize that, by contrast,
the relation (4.3) cannot be obtained in such a manner. Indeed, although
the formal limit procedure limx0→−x2+x1 is of course well defined on the
series on both sides of (2.18), one cannot replace x0 by −x2 + x1 either in
the factor YW (u, x0 + x2)YW (v, x2)w on the left–hand side or in the factor
YW (Y (u, x0)v, x2)w on the right–hand side of (2.18).

The second nontrivial relation, which we call modified weak associativity,
will be important when generalized to twisted modules. It was first written in
[DLMi1]. It is stated as:

Theorem 4.3. With W as in Theorem 4.1,

lim
x1→x2+x0

(
(x1 − x2)

k(u,v)YW (u, x1)YW (v, x2)
)
= xk(u,v)

0 YW (Y (u, x0)v, x2)

(4.6)
for u, v ∈ V .

Proof: Apply the limit limx1→x2+x0 to the expression

(x1 − x2)
k(u,v)YW (u, x1)YW (v, x2)

written as in the right–hand side of the first equation of (4.2). This limit is well
defined, since negative powers of x1 − x2 in F(u, v, w; x1 − x2, x1, x2) are
cancelled out by the factor (x1 − x2)

k(u,v). The resulting expression is read off
the third relation of (4.2).



160 Benjamin Doyon

Remark 4.3. Equation (4.6) can be written in the following form:

lim
x1→x2+x0

((
x1 − x2

x0

)k(u,v)

YW (u, x1)YW (v, x2)

)
= YW (Y (u, x0)v, x2).

(4.7)

The factor
(

x1−x2
x0

)k(u,v)
appearing in front of the product of two vertex opera-

tors on the left–hand side is crucial in giving a well–defined limit, but when
the limit is applied to this factor without the product of vertex operators,
the result is simply 1. We will call such a factor a “resolving factor”. Its
power is apparent, in particular, in the proof of the main commutator formula
(6.1) of [DLMi2]: it allows one to evaluate nontrivial limits of sums of terms
with cancelling “singularities” in a straightforward fashion, evaluating the
limit of each term independently. Its power will also be clear, in the present
paper, when constructing the twisted vertex operator map YS[ν](·, x) and when
studying the algebra D̂+ defined in Section 7.

4.3. Formal commutativity and associativity for twisted modules

We derive below various commutativity and associativity properties of twisted
vertex operators. In order to express some of these properties, we need one
more element of formal calculus: a certain projection operator (see [DLMi2]).
Consider the operator P[[x0,x

−1
0 ]] acting on the space C{x0} of formal series with

any complex powers of x0, which projects to the formal series with integral
powers of x0:

P[[x0,x
−1
0 ]] : C{x0} → C

[[
x0, x−1

0

]]
. (4.8)

We will extend the meaning of this notation in the obvious way to projections
acting on formal series with coefficients lying in vector spaces other than C,
vector spaces which might themselves be spaces of formal series in other for-
mal variables. Notice that when this projection operator acts on a formal series
in x0 with powers that are in 1

p Z, for instance on f (x0) ∈ C[[x1/p
0 , x−1/p

0 ]],
it can be described by an explicit formula:

P[[x0,x
−1
0 ]] f (x0) = 1

p

p−1∑
r=0

⎛⎝ lim
x1/p→ωr

p x1/p
0

f (x)

⎞⎠ .
(See Remark 4.4 below for the meaning of formal limit procedures involv-
ing fractional powers of formal variables.) We will also extend this projection
notation to different kinds of formal series in obvious ways. For instance,
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P
xq/p

0 [[x0,x
−1
0 ]] : C{x0} → C xq/p

0

[[
x0, x−1

0

]]
.

Again, of course, we will extend the meaning of this notation to formal series
with coefficients in vector spaces other than C.

The twisted Jacobi identity (2.31) implies twisted versions of weak commu-
tativity and weak associativity (u, v ∈ V , w ∈ M):

(x2 − x1)
kYM(v, x2)YM (u, x1) = (x2 − x1)

kYM (u, x1)YM (v, x2) (4.9)

P[[x0,x
−1
0 ]]
(
(x0 + x2)

lYM(u, x0 + x2)YM(v, x2)w
)

= (x2 + x0)
l 1

p

p−1∑
r=0

ω
−lr p
p YM(Y (ν

r u, x0)v, x2)w. (4.10)

These relations are valid for all large enough k ∈ N and l ∈ 1
p N, their mini-

mum value depending respectively on u, v and on u, w. For definiteness, we
will denote these minimum values by k(u, v) and l(u, w), respectively (they
depend also on the module M ; in particular, they differ from the integer num-
bers k(u, v) and l(u, w) used in the previous subsection in connection with
the module W ). As in the untwisted case, these relations imply the main “for-
mal” commutativity and associativity properties of twisted vertex operators
[Li2], which, along with with the fact that these properties are equivalent to
the Jacobi identity, can be formulated as follows (it was first formulated in this
form in [DLMi1]):

Theorem 4.4. Let M be a vector space (not assumed to be graded) equipped
with a linear map YM (·, x) (2.26) such that the truncation condition (2.27)
and the Jacobi identity (2.31) hold. Then for u, v ∈ V and w ∈ M,
there exist k(u, v) ∈ N and l(u, w) ∈ 1

p N and a (nonunique) element

F(u, v, w; x0, x1, x2) of M((x0, x1/p
1 , x1/p

2 )) such that

xk(u,v)
0 F(u, v, w; x0, x1, x2) ∈ M[[x0]]

((
x1/p

1 , x1/p
2

))
,

xl(u,w)
1 F(u, v, w; x0, x1, x2) ∈ M

[[
x1/p

1

]]((
x0, x1/p

2

))
(4.11)

and

YM (u, x1)YM(v, x2)w = F(u, v, w; x1 − x2, x1, x2),

YM (v, x2)YM (u, x1)w = F(u, v, w;−x2 + x1, x1, x2),

YM (Y (ν
−su, x0)v, x2)w = lim

x1/p
1 →ωs

p(x2+x0)
1/p

F(u, v, w; x0, x1, x2) (4.12)

for s ∈ Z (where we are using the binomial expansion convention). Con-
versely, let M be a vector space equipped with a linear map YM(·, x) (2.26)
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such that the truncation condition (2.13) and the statement above hold, except
that k(u, v) (∈ N) and l(u, w) (∈ 1

p N) may depend on all three of u, v and w.
Then the Jacobi identity (2.31) holds.

This theorem, as well as (4.9) and (4.10), were proven in [DLMi2].

Remark 4.4. Formal limit procedures involving fractional powers of formal
variables like x1/p

1 have the same meaning as in (4.4), but with x1/p
1 being

treated as a formal variable by itself. For instance, the formal limit procedure

lim
x1/p

1 →ωs
p(x2+x0)

1/p
F(u, v, w; x0, x1, x2)

above means that one replaces each integral power of the formal variable
x1/p

1 in the formal series F(u, v, w; x0, x1, x2) by the corresponding power
of the formal series ωs

p(x2 + x0)
1/p (defined using the binomial expansion

convention).

Remark 4.5. Note that this theorem, and in particular its proof in [DLMi2],
illustrates the phenomenon, which arises again and again throughout the the-
ory of vertex operator algebras, that formal calculus inherently involves just as
much “analysis” as “algebra”: in many relations there are integers that can
be left unspecified, except for their minimum values, and the proof involves
taking these integers “large enough”. Recall that essentially the same issues
arose for example in the use of formal calculus for the proof of the Jacobi iden-
tity for (twisted) vertex operators in [FLM2] (see Chapters 8 and 9). This is
certainly not surprising, since we are using the Jacobi identity (for all twist-
ing automorphisms) in order to prove, in a different approach, properties of
(twisted) vertex operators.

Along with (4.11), the first two equations of (4.12) represent what we call
formal commutativity for twisted vertex operators, while the first and last
equations of (4.12) represent formal associativity for twisted vertex operators.
When specialized to the untwisted case p = 1 (ν = 1V ), these two relations
lead respectively to the usual formal commutativity and formal associativity
for vertex operators, as described in (4.2).

4.4. Additional relations in twisted modules

As in the case of ordinary vertex operators, one can write other relations
involving formal limit procedures. These relations were proven in [DLMi2];
we report the proofs here. Among them, two cannot be directly obtained
from weak commutativity and weak associativity. One of these, the relation
generalizing (4.3), is stated as follows:
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Theorem 4.5. With M as in Theorem 4.4,

lim
x0→−x2+x1

⎛⎝(x2 + x0)
l 1

p

p−1∑
r=0

ω
−lr p
p YM (Y (ν

r u, x0)v, x2)w

⎞⎠
= P[[x1,x

−1
1 ]]
(

xl
1YM(v, x2)YM (u, x1)w

)
, (4.13)

for all l ∈ 1
p Z, l ≥ l(u, w).

Proof: This is proved along the lines of the proof of Theorem 4.2, with some
additions due to the fractional powers. One uses the third equation of (4.12) in
order to rewrite the left–hand side of (4.13) as

lim
x0→−x2+x1

⎛⎝(x2 + x0)
l 1

p

p−1∑
r=0

ω
−lr p
p lim

x1/p
3 →ω−r

p (x2+x0)
1/p

F(u, v, w; x0, x3, x2)

⎞⎠ .
The sum over r keeps only the terms in which x2 + x0 is raised to a power
which has a fractional part equal to the negative of the fractional part of l.
Multiplying by (x2 + x0)

l , for any l ∈ 1
p Z, l ≥ l(u, w), brings the remaining

series to a series with finitely many negative powers of x2 (as well as x0), to
which it is possible to apply the limit limx0→−x2+x1 . This limit of course brings
only integer powers of x1, and the right–hand side of (4.13) can be obtained
from the second equation of (4.12).

Remark 4.6. A relation similar to the last one, but that is a direct consequence
of weak associativity (4.10), is

lim
x0→x1−x2

⎛⎝(x2 + x0)
l 1

p

p−1∑
r=0

ω
−lr p
p YM(Y (ν

r u, x0)v, x2)w

⎞⎠
= P[[x1,x

−1
1 ]]
(

xl
1YM (u, x1)YM (v, x2)w

)
(4.14)

for all l ∈ 1
p Z, l ≥ l(u, w). This generalizes (4.5) (see the comments in

Remark 4.2). It can be obtained by applying the formal limit involved in the
left–hand side to both sides of (4.10).

The most important relation for our purposes, which was first stated in
[DLMi1], generalizing (4.6) and which we call modified weak associativity
for twisted vertex operators, is given by the following theorem:

Theorem 4.6. With M as in Theorem 4.4,

lim
x1/p

1 →ωs
p(x2+x0)

1/p

(
(x1 − x2)

k(u,v)YM(u, x1)YM(v, x2)
)

= xk(u,v)
0 YM (Y (ν

−su, x0)v, x2) (4.15)
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for u, v ∈ V and s ∈ Z.

Proof: The proof is a straightforward generalization of the proof of
Theorem 4.3.

Remark 4.7. The specialization of Theorems 4.4 and 4.6 to the untwisted case
p = 1 and M = W gives, respectively, Theorems 4.1 and 4.3.

Finally, we derive a simple relation, proved in [Li2], that specifies the
structure of the formal series YM(u, x).

Theorem 4.7. With M as in Theorem 4.4,

lim
x1/p

1 →ωs
p x1/p

YM(ν
su, x1) = YM (u, x) (4.16)

for u ∈ V and s ∈ Z.

Proof: In the Jacobi identity (2.31), replace u by νsu and x1/p
1 by ωs

px1/p.
The right–hand side becomes

1

p
x−1

2

p−1∑
r=0

δ

(
ωr+s

p

(
x − x0

x2

)1/p
)

YM(Y (ν
r+su, x0)v, x2),

which is independent of s, as is apparent if we make the shift in the summa-
tion variable r �→ r − s. Hence the left–hand side is also independent of s.
Choosing v = 1 and using the vacuum property (2.28), this gives(

x−1
0 δ

(
x − x2

x0

)
− x−1

0 δ

(
x2 − x

−x0

))
lim

x1/p
1 →ωs

px1/p
YM (ν

su, x1) (4.17)

=
(

x−1
0 δ

(
x − x2

x0

)
− x−1

0 δ

(
x2 − x

−x0

))
YM(u, x)

which, upon using (2.2) and taking Resx2 , gives (4.16).
From Theorem 4.7, we directly have the following corollary:

Corollary 4.8. With M as in Theorem 4.4,

YM (u, x) =
∑

n∈Z+q/p

un x−n−1 for u ∈ V , νu = ω
q
pu, q ∈ Z.

5. Equivalence and construction theorems
from modified weak associativity

This section presents new results related to modified weak associativity. We
will show, loosely speaking, that modified weak associativity (4.15) and weak
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commutativity (4.9) are equivalent to the Jacobi identity (2.31) (“equivalence
theorem”). Then we will show that if the modified weak associativity for
twisted vertex operators is valid for all pairs u, w (to be put in (4.15) instead
of the ordered pair u, v) with u ∈ U and w ∈ V , where U is a generating
subset of a vertex operator algebra V , and if weak commutativity for twisted
vertex operators is valid for all pairs u, v with u, v ∈ U , then both modified
weak associativity and weak commutativity hold for the whole vertex opera-
tor algebra V (“construction theorem”). Similar construction theorems were
proved by Li in the untwisted and twisted cases [Li1, Li2] (cf. [LL]), using the
powerful idea of “local systems of (twisted) vertex operators.” Here we start
from similar ideas but we make use of modified weak associativity discovered
in [DLMi1, DLMi2], in order to illustrate one of its applications. We find it
instructive to give a direct proof of our construction theorem, although there
may be a shorter route from Li’s construction theorems. In the next section, our
two theorems will allow us to construct in a relatively simple way the twisted
vertex operator map for S[ν] – in particular, we will show how the use of mod-
ified weak associativity gives a new explicit form for the operator �x – and
to prove the twisted module structure for S[ν]. We recall that throughout this
section, V is a vertex operator algebra and ν is an automorphism of V .

5.1. Equivalence theorem

It is well known in the theory of vertex operator algebras that, under natural
conditions, the weak commutativity relation (2.17) and the weak associativity
relation (2.18) for untwisted modules are equivalent to the Jacobi identity
(2.16). It is a simple matter to show that this statement is also true when weak
associativity is replaced by modified weak associativity. We state this more
generally for twisted modules (and for the twisted Jacobi identity (2.31)) in
the following theorem.

Theorem 5.1. Let M be a vector space (not assumed to be graded) equipped
with a linear map YM (·, x) (2.26) such that the truncation condition (2.27)
hold.

If modified weak associativity (4.15) holds, for some k ′(u, v) ∈ N, and weak
commutativity (4.9) holds, for a possibly different k(u, v) ∈ N, then we may
change k′(u, v) (in particular, we may lower it) to k′(u, v) = k(u, v), and the
twisted Jacobi identity (2.31) holds. Also, the vector space M is a twisted mod-
ule if, additionally, M is Q − graded and quasi-finite as in the first lines of
Definition 2.3, with the L(0)-weight property (2.29), and the vacuum property
(2.28) holds.
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On the other hand, if the twisted Jacobi identity (2.31) holds, then modified
weak associativity (4.15) and weak commutativity (4.9) hold.

Remark 5.2. Note that this theorem can be specialized to p = 1, apply-
ing then to modules W . It can also be used to show that some vector space
V is a vertex operator algebra; more precisely, in the definition 2.1, the
Jacobi identity can be replaced by modified weak associativity and weak
commutativity.

Proof of Theorem 5.1. The last sentence of the theorem was proven already
by proving modified weak associativity and weak commutativity above.

Weak commutativity (4.9), when both sides are applied on an element w of
M , and the truncation condition immediately imply the first equation of (4.11),
and the first two equations of (4.12). Then, the limit on the left-hand side of
(4.15) with k(u, v) replaced by k′′(u, v) certainly exists for all k′′(u, v) ≥
k(u, v), and the result is the same for any k′′(u, v) that makes the limit exist,
up to the obvious power of x0 (because if all limits exist, then the product of the
limits is the limit of the product). Since we know that this limit gives the right-
hand side for some k′(u, v), we may change it (and lower it if necessary) to
k′(u, v) = k(u, v). Then, writing the product of twisted vertex operators on the
left-hand side of (4.15) as on the right-hand side of the first equation of (4.12),
we see that (4.15) implies the third equation of (4.12). Hence, by Theorem 4.4,
the twisted Jacobi identity holds. With the additional conditions stated in the
theorem, all other parts of the definition (2.3) are satisfied (in particular, the fact
that V is a vertex operator algebra implies that the Virasoro commutation rela-
tions are also satisfied, and the L(−1)-derivative property for vertex operator
algebra (2.8) implies, using (4.15) with v = 1, the corresponding property for
twisted modules (2.30)) and M is a twisted module for V .

5.2. Construction theorem

Consider a generating subset U ⊂ V of the vertex operator algebra V , defined
as follows.

Definition 5.3. A generating subset U ⊂ V of a vertex operator algebra is
a subset such that all elements of V can be written as linear combinations of
elements of the form umvn · · · 1 for u, v, . . . ∈ U and m, n, . . . ∈ Z.

Suppose we are able to define a twisted vertex operator map YM (·, x) as in
(2.26) such that the truncation condition (2.27) holds for all v ∈ V , weak com-
mutativity (4.9) holds for all u, v ∈ U , and modified weak associativity (4.15)
holds for all u ∈ U and v ∈ V . Theorem 5.5 below along with Theorem 5.1 tell
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us that this is enough to have the twisted Jacobi identity, and, with additional
mild conditions (see Theorem 5.1) to have a twisted module.

Remark 5.4. Theorem 5.5 of course requires us to already have a twisted ver-
tex operator map YM (·, x) on the full vertex operator algebra V . On the other
hand, once we have the map on U only (with the properties above), it is easy to
extend it to a map on the set of symbols of the type umvn · · ·w for u, v, . . . , w ∈
U and m, n, . . . ∈ Z by recursive use of modified weak associativity (4.15) with
u ∈ U and v an element in this set of symbols. However, the vertex operator
algebra V is the span of this set of symbols with linear relations amongst them;
these relations depend on the particular vertex operator algebra at hand. In
order to have a twisted module, it is essential to verify that the map on this
set of symbols is well-defined on V ; that is, that it is in agreement with these
linear relations. This is extremely nontrivial, and there does not seem to be yet
a general theorem as to when that happens. Whatever these relations are, they
have to imply those coming from the Jacobi identity (since V is a vertex oper-
ator algebra). It is possible to show that all linear relations coming from the
Jacobi identity are satisfied by this construction. This is beyond the scope of
the present paper, but we hope to clarify some of these issues in a future work.

Note again that the theorem below and the issues discussed in the remark
above are in close relation with results of Li [Li2]; cf. [LL].

Theorem 5.5. Let M be a vector space (not assumed to be graded) equipped
with a linear map YM (·, x) (2.26) such that the truncation condition (2.27)
holds. Fix a generating subset U ⊂ V , as defined in Definition 5.3.

If weak commutativity (4.9) is satisfied for all u, v ∈ U (and fix k(u, v)
∈ N to be the lowest integer that can be taken both in (4.9) and in weak
commutativity for the vertex operator algebra V ), and if modified weak asso-
ciativity (4.15) is satisfied for all u ∈ U and for all v ∈ V (for some
k′(u, v) ∈ N that may be different from k(u, v)), then both weak commuta-
tivity and modified weak associativity are satisfied for all u, v ∈ V . Further,
we may change k′(u, v) (in particular, we may lower it) to k′(u, v) = k(u, v)
for u, v ∈ V , and these integers may be taken to satisfy the formula

k(un0+mv,w) = k(w, u)+ k(w, v)+m (5.1)

for all u, v, w ∈ V where n0 is the highest integer such that un0v �= 0. The
same integers may also be taken in weak commutativity for the vertex operator
algebra V .
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Proof: We start by showing weak commutativity (4.9), and the equation (5.1).
Under the assumptions of the theorem, we have, for u, v, w ∈ U ,

(x − x2 − x0)
k(w,u)(x − x2)

k(w,v)YM(w, x)

· lim
x1/p

1 →ωs
p(x2+x0)

1/p

(
(x1 − x2)

k(u,v)YM (u, x1)YM(v, x2)
)

= lim
x1/p

1 →ωs
p(x2+x0)

1/p

(
(x − x1)

k(w,u)(x − x2)
k(w,v)YM(w, x)

· (x1 − x2)
k(u,v)YM (u, x1)YM(v, x2)

)
= lim

x1/p
1 →ωs

p(x2+x0)
1/p

(
(x1 − x2)

k(u,v)YM (u, x1)YM(v, x2)

· (x − x1)
k(w,u)(x − x2)

k(w,v)YM (w, x)
)

= lim
x1/p

1 →ωs
p(x2+x0)

1/p

(
(x1 − x2)

k(u,v)YM (u, x1)YM(v, x2)
)

· (x − x2 − x0)
k(w,u)(x − x2)

k(w,v)YM (w, x) (5.2)

hence

(x − x2 − x0)
k(w,u)(x − x2)

k(w,v) YM(w, x)YM(Y (ν
−su, x0)v, x2) (5.3)

= (x − x2 − x0)
k(w,u)(x − x2)

k(w,v)YM(Y (ν
−su, x0)v, x2)YM(w, x) .

Both sides have finitely many negative powers of x0. Take the lowest power:

(x − x2)
k(w,u)+k(w,v) YM(w, x)YM((ν

−su)n0v, x2)

= (x − x2)
k(w,u)+k(w,v)YM((ν

−su)n0v, x2)YM(w, x) . (5.4)

This proves weak commutativity for all pairs un0v,w with u, v, w ∈ U , and
we may take k(un0v,w) = k(w, u) + k(w, v) (although we have not proven
that this value is the minimum one for which weak commutativity is valid),
where n0 is the highest integer such that un0v �= 0.

The next power of x0 in the equation (5.3) contains, on each side,
two terms of the same type as those above: one with (ν−su)n0+1v, the
other with (ν−su)n0v. The terms with (ν−su)n0v are multiplied by (x −
x2)

k(w,u)+k(w,v)−1, and those with (ν−su)n0+1v, by (x − x2)
k(w,u)+k(w,v).

Multiplying the resulting equation through by x − x2, we can use the
result (5.4) and we obtain weak commutativity for all pairs un0+1v,w with
u, v, w ∈ U , where n0 is again highest integer such that un0v �= 0. We can take
k(un0+1v,w) = k(w, u)+k(w, v)+1. Repeating the process, we obtain weak
commutativity for all pairs unv,w with u, v, w ∈ U and for all n ∈ Z, with
k(un0+mv,w) = k(w, u)+ k(w, v) + m. Replacing v by unv for u, v ∈ U in
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the argument above, and repeating, we obtain weak commutativity for all pairs
v,w with v ∈ V and w ∈ U . Finally, we can repeat the full argument above
with u, v ∈ U and w ∈ V . The induction from that gives us weak commuta-
tivity for all pairs v,w with v ∈ V and w ∈ V , and in particular gives us (5.1).

Note that the same arguments can be used for the vertex operator Y (·, x), so
that equation (5.1) may be taken to hold also for the k(u, v) involved in weak
commutativity for the vertex operator algebra V . This implies that the inte-
gers k(u, v) involved in weak commutativity for YM (·, x) and those involved
in weak commutativity for the vertex operator algebra V may both be taken to
be given by (5.1) for all elements of the vertex operator algebra. We will do
that for the rest of the proof.

Note also that weak commutativity (4.9) implies, through the arguments of
the proof of Theorem 5.1, that in modified weak associativity (4.15) for u ∈ U
and v ∈ V , which holds by assumption with some integer k′(u, v), we can
change k′(u, v) to k′(u, v) = k(u, v). We will also do that for the rest of the
proof.

Next we show modified weak associativity. First note the following
lemma.

Lemma 5.6. For u, v, w ∈ V and φ ∈ M, there exists a (nonunique) ele-
ment F(u, v, w, φ; x0, x4, x5, x1, x2, x3) of M((x0, x4, x5, x1/p

1 , x1/p
2 , x1/p

3 ))

such that

xk(u,v)
0 F(u, v, w, φ; x0, x4, x5, x1, x2, x3) ∈ M[[x0]]

((
x4, x5, x1/p

1 , x1/p
2 , x1/p

3

))
,

xk(u,w)
4 F(u, v, w, φ; x0, x4, x5, x1, x2, x3) ∈ M[[x4]]

((
x0, x5, x1/p

1 , x1/p
2 , x1/p

3

))
,

xk(v,w)
5 F(u, v, w, φ; x0, x4, x5, x1, x2, x3) ∈ M[[x5]]

((
x0, x4, x1/p

1 , x1/p
2 , x1/p

3

))
(5.5)

and

YM (u, x1)YM (v, x2)YM (w, x3)φ = F (u, v, w, φ; x1 − x2, x1 − x3,

x2 − x3, x1, x2, x3) (5.6)

where k(u, v), k(u, w), k(v,w) ∈ N can be taken as those that appear in the
weak commutativity relation (4.9).

This is an immediate consequence of weak commutativity (4.9). Indeed,
consider

(x1− x2)
k(u,v)(x1− x3)

k(u,w)(x2− x3)
k(v,w)YM (u, x1)YM(v, x2)YM (w, x3)φ .

Thanks to the factor (x1 − x2)
k(u,v)(x1 − x3)

k(u,w)(x2 − x3)
k(v,w), the twisted

vertex operators may be written in any order. Looking at different orders and
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using the truncation property, we see the expression has finitely many negative
powers of x3, finitely many negative powers of x2 and finitely many negative
powers of x1. This shows the lemma.

Now, take u, v,∈ U and w ∈ V , and again φ ∈ M . From modified weak
associativity for vertex operator algebra (4.6) (recall that the module W in
that equation may be replaced by the vertex operator algebra itself V ), which
we will need only for the pair u, v, and from modified weak associativity for
twisted modules, which is valid by assumption when, in (4.15), the (ordered)
pair u, v is replaced by the pair v,w as well as when it is replaced by the pair
u, vnw, we have

YM (Y (Y (u, x0)v, x5)w, x3)φ

= lim
x4→x5+x0

(
x4 − x5

x0

)k(u,v)

YM (Y (u, x4)Y (v, x5)w, x3)

= lim
x4→x5+x0

(
x4 − x5

x0

)k(u,v)∑
n∈Z

x−n−1
5 YM(Y (u, x4)vnw, x3)φ

= lim
x4→x5+x0

(
x4 − x5

x0

)k(u,v)∑
n∈Z

x−n−1
5 lim

x
1
p

1 →(x2+x4)
1
p

(
x1 − x3

x4

)k(u,vnw)

· YM(u, x1)YM(vnw, x3)φ

= lim
x4→x5+x0

(
x4 − x5

x0

)k(u,v)∑
n∈Z

lim

x
1
p

1 →(x3+x4)
1
p

(
x1 − x3

x4

)k(u,vnw)

· Px−n−1
5

YM(u, x1)YM (Y (v, x5)w, x3)φ

where Px−n−1
5

projects onto the formal series with only the terms having the

factor x−n−1
5 . Observe that the lowest power of x5 is −n0 − 1 where n0 is the

highest integer such that vn0w �= 0. Continuing, we find

YM (Y (Y (u, x0)v, x5)w, x3)φ

= lim
x4→x5+x0

(
x4 − x5

x0

)k(u,v)∑
n∈Z

lim

x
1
p

1 →(x3+x4)
1
p

(
x1 − x3

x4

)k(u,vnw)

· Px−n−1
5

lim

x
1
p

2 →(x3+x5)
1
p

(
x2 − x3

x5

)k(v,w)

YM (u, x1)YM (v, x2)YM (w, x3)φ

= lim
x4→x5+x0

(
x4 − x5

x0

)k(u,v)∑
n∈Z

lim

x
1
p

1 →(x3+x4)
1
p

(
x1 − x3

x4

)k(u,vnw)
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· Px−n−1
5

lim

x
1
p

2 →(x3+x5)
1
p

(
x2 − x3

x5

)k(v,w)

F (u, v, w, φ; x1 − x2, x1 − x3,

x2 − x3, x1, x2, x3)

= lim
x4→x5+x0

(
x4 − x5

x0

)k(u,v)∑
n∈Z

lim

x
1
p

1 →(x3+x4)
1
p

(
x1 − x3

x4

)k(u,vnw)

· Px−n−1
5

F(u, v, w, φ; x1 − x3 − x5, x1 − x3, x5, x1, x3 + x5, x3) .

Using the particular value of k(u, vnw) given by (5.1), we can continue
evaluating the limits:

YM (Y (Y (u, x0)v, x5)w, x3)φ

= lim
x4→x5+x0

(
x4− x5

x0

)k(u,v)

F(u, v, w, φ; x4− x5, x4, x5, x3+ x4, x3+ x5, x3)

= F(u, v, w, φ; x0, x5 + x0, x5, x3 + x5 + x0, x3 + x5, x3) . (5.7)

Now, consider the following formal series, and use similar arguments as
those above in order to evaluate it:∑
n∈Z

x−n−1
0 lim

x1/p
2 →(x3+x5)

1/p

(
x2 − x3

x5

)k(unv,w)

YM (unv, x2)YM (w, x3)φ

=
∑
n∈Z

lim
x1/p

2 →(x3+x5)
1/p

(
x2−x3

x5

)k(unv,w)

Px−n−1
0

YM (Y (u, x0)v, x2)YM (w, x3)φ

=
∑
n∈Z

lim
x1/p

2 →(x3+x5)
1/p

(
x2 − x3

x5

)k(unv,w)

· Px−n−1
0

lim
x1/p

1 →(x2+x0)
1/p

(
x1 − x2

x0

)k(u,v)

YM (u, x1)YM (v, x2)YM (w, x3)φ

=
∑
n∈Z

lim
x1/p

2 →(x3+x5)
1/p

(
x2 − x3

x5

)k(unv,w)

· Px−n−1
0

lim
x1/p

1 →(x2+x0)
1/p

(
x1 − x2

x0

)k(u,v)

F (u, v, w, φ; x1 − x2, x1 − x3,

x2 − x3, x1, x2, x3)

=
∑
n∈Z

lim
x1/p

2 →(x3+x5)
1/p

(
x2 − x3

x5

)k(unv,w)

· Px−n−1
0

F(u, v, w, φ; x0, x2 + x0 − x3, x2 − x3, x2 + x0, x2, x3)

= F(u, v, w, φ; x0, x5 + x0, x5, x3 + x5 + x0, x3 + x5, x3). (5.8)
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Comparing with (5.7), and taking any fixed power of x0, we have

YM (Y (unv, x5)w, x3)= lim
x1/p

2 →(x3+x5)
1/p

(
x2−x3

x5

)k(unv,w)

YM (unv, x2)YM (w, x3)φ.

(5.9)
This is modified weak associativity (4.15) for s = 0 and for the pairs unv,w,
for all n ∈ Z. It is a simple matter to compare, instead, the expression

YM (Y (ν
−sY (u, x0)v, x5)w, x3)φ

with the expression

∑
n∈Z

x−n−1
0 lim

x1/p
2 →ωs

p(x3+x5)
1/p

(
x2 − x3

x5

)k(unv,w)

YM(unv, x2)YM (w, x3)φ

using similar steps, and using the fact that ν is an automorphism of V . We
obtain modified weak associativity (4.15) for arbitrary s ∈ Z and for the pairs
unv,w, for all n ∈ Z.

Repeating the argument with v replaced by ũnv for all ũ ∈ U and for all
n ∈ Z, and so on, we find modified weak associativity for all pairs v,w with
v ∈ V and w ∈ V . This proves the last part of the theorem.

Remark 5.8. As usual, it is possible to specialize the theorems above to the
case p = 1 in order to obtain theorems applying to untwisted modules.

Remark 5.9. In the theorem above (in close relation with theorems of [Li2]),
concerned with twisted modules for vertex operators algebras, we assumed
the existence of a vertex operator algebra V . With slight adjustments, the the-
orem can be made into a construction theorem for vertex operator algebras
themselves, in relation with constructions of [Li1] (a more complete construc-
tion theory, the representation theory of vertex operator algebras of [Li1], is
explained at length in [LL], cf. Theorems 5.7.6, 5.7.11 for instance).

6. Proof of the twisted module structure for S[ν] and construction
of the twisted vertex operator map

The twisted module structure of S[ν], for the vertex operator S, was established
in [L1], [FLM1], [FLM2] and [DL2] (assuming that ν preserves a rational
lattice in h). In this section, we present a new proof of the twisted module
structure of S[ν] (which does not require this minor assumption), and we con-
struct explicitly the twisted vertex operators using modified weak associativity
(and in particular, we calculate the explicit form of �x in a simple way).
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Starting from (3.10), we will construct the twisted vertex operator
YS[ν](u, x) for all u ∈ S. As stated above, it is usual in studying vertex operator
algebras to construct vertex operators associated to elements of the vertex oper-
ator algebra from vertex operator associated to “simpler” elements, by using
associativity. However, for twisted vertex operators, the natural weak associa-
tivity (4.10), that is immediately obtained from the Jacobi identity, is somewhat
complicated by the projection operator and hides the simple structure of the
construction. On the other hand, the modified weak associativity (4.15) is sim-
pler, especially when written in the form (specialized for convenience to s = 0)

YM (Y (u, x0)v, x2) = lim
x1/p

1 →(x2+x0)
1/p

((
x1 − x2

x0

)k(u,v)

YM (u, x1)YM(v, x2)

)
.

(6.1)

In order to better understand this formula, note that, as remarked in Remark

4.3, the pre-factor
(

x1−x2
x0

)k(u,v)
gives exactly 1 when the limit procedure

lim
x1/p

1 →(x2+x0)
1/p is applied on it alone. The formula above cannot be sim-

plified by replacing this pre-factor by 1, however, because the limit is not well
defined on the other factor YM (u, x1)YM (v, x2) alone. The construction prin-
ciple will be to replace this product of vertex operators by a normal-ordered
product plus extra terms. On the normal-ordered product, the limit is well
defined, so that the pre-factor multiplying the normal-ordered product can be
set to 1.

It is immediate to see that the set U = {1, α(−1)1|α ∈ h} is a generating
subset for the vertex operator algebra S. Hence, in the proof of the twisted mod-
ule structure of S[ν] using Theorems 5.5 and 5.1, we need first to prove weak
commutativity (4.9) (and it turns out that it holds with k(u, v) = 2 – the integer
k(u, v) = 2 is the one involved in the corresponding weak commutativity for
the vertex operator algebra S) for the operators defined by (3.10) with n = 1.
Then, we need to construct explicitly the map YS[ν](·, x) for all elements of
S recursively by using modified weak associativity. Finally, we need to check
modified weak associativity (4.15) for u ∈ U and v ∈ V . All other require-
ments of Theorem 5.1 are immediate to see from the construction of Section 3.

Theorem 6.1. The operators (3.10) with n = 1 satisfy weak commutativity
(4.9) with k(u, v) = 2.

Proof: We have

αν(x1)β
ν(x2) = ••α

ν(x1)β
ν(x2) •• + h(α, β, x1, x2) (6.2)
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with

h(α, β, x1, x2) =
∑

m∈ 1
p Z,m>0

x−m−1
1 xm−1

2 m〈α(mp), β〉

=
p∑

r=1

(
x2

x1

) r
p 1− r

p + r
p

x1
x2

(x1 − x2)2
〈α(r), β〉 . (6.3)

It is a simple matter to see that

(x1 − x2)
2h(α, β, x1, x2) =

p∑
r=1

(
x2

x1

) r
p
(

1− r

p
+ r

p

x1

x2

)
〈α(r), β〉 . (6.4)

is equal to (x1 − x2)
2h(β, α, x2, x1), using 〈β(r), α〉 = 〈α(−r), β〉. Hence

(x1 − x2)
2[αν(x1), β

ν(x2)] = 0

which proves the theorem.

Theorem 6.2. The space S[ν] has the structure of a twisted module for the
vertex operator algebra S. The general form of the twisted vertex operator
YS[ν](u, x), for any element u of the vertex operator algebra S, is:

YS[ν](α j (−n j ) · · ·α1(−n1)1, x)

=
∑

J⊂{1,..., j}
f{1,..., j}\J (x) ••

∏
l∈J

1

(nl − 1)!
(

d

dx

)nl−1

ανl (x)
•• (6.5)

with n1, . . . , n j ∈ Z+, for some factors f I (x), where we just write the depen-
dence on the index set I , but that really depend on the elements αi and the
integer numbers ni for all i ∈ I . The set J on which we sum takes the values
∅ (the empty set), {1, . . . , j} (if it is different from ∅), and all other proper
subsets of {1, . . . , j} (if any). The factors f I (x) are given by

fI (x) =

⎧⎪⎪⎨⎪⎪⎩
0 |I | odd∑
s∈Pairings(I )

|I |/2∏
l=1

gsl (x) |I | even (6.6)

where |I | is the cardinal of I , where Pairings(I ) is the set of all distinct
sets s = {s1, . . . , s|I |/2} of distinct (without any element in common) pairs
sl = (il , i ′l ) (where the order of elements is not important) of elements il �= i ′l
of I such that {i1, . . . , i|I |/2, i ′1, . . . , i ′|I |/2} = I , and where

g(i,i ′)(x) = g(αi , ni , αi ′, ni ′, x) (6.7)
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with

g(α,m, β, n, x)=Resx0 Resx2 x−m
0 x−n

2

p∑
r=1

(
x+x2

x+x0

) r
p 1− r

p + r
p

x+x0
x+x2

(x0 − x2)2
〈α(r), β〉.

(6.8)

Proof: Clearly, for j = 0 and j = 1 the form (6.5) is consistent with modified
weak associativity and well defined on S, and we must have f∅(x) = 1 and
f I (x) = 0 if |I | = 1. Assume (6.5) to be valid for j replaced with j − 1. With
k a nonnegative integer large enough and n1, . . . , n j ∈ Z+, we have

YS[ν](α j (−n j ) · · ·α1(−n1)1, x)

= Resx0 x
−n j
0 YS[ν](Y (α j (−1)1, x0)α j−1(−n j−1) · · ·α1(−n1)1, x)

= Resx0 x
−n j
0 lim

x1/p
1 →(x+x0)

1/p

((
x1 − x

x0

)k

· YS[ν](α j (−1)1, x1)YS[ν](α j−1(−n j−1) · · ·α1(−n1)1, x)

)
= Resx0 x

−n j
0 lim

x1/p
1 →(x+x0)

1/p

((
x1 − x

x0

)k

· ανj (x1)
∑

J⊂{1,..., j−1}
f{1,..., j−1}\J (x) ••

∏
l∈J

1

(nl − 1)!
(

d

dx

)nl−1

ανl (x)
••

)
.

(6.9)

Now, using the commutation relations (3.3), it is a simple matter to obtain

ανj (x1) ••
∏
l∈J

(
d

dx

)nl−1

ανl (x)
••

= ••α
ν
j (x1)
∏
l∈J

(
d

dx

)nl−1

ανl (x)
••

+
∑
i∈J

(
∂

∂x

)ni−1

h(α j , αi , x1, x) ••
∏

l∈J\{i}

(
d

dx

)nl−1

ανl (x)
••

with h(α, β, x1, x2) defined in (6.3). Note that, comparing with (6.8), we have

g(α,m, β, n, x)=Resx0 x−m
0 lim

x1/p
1 →(x+x0)

1/p

((
x1−x

x0

)k
Resx2 x−n

2 h(α, β, x1, x+x2)

)
.

(6.10)

Using the relation

1

(n − 1)!
(

d

dx

)n−1

f (x) = Resx2 x−n
2 f (x + x2) (6.11)
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for formal series f (x)with finitely many negative powers of x and for n ∈ Z+,
we can now evaluate the limit and the residue on the right-hand side of the last
equality of (6.9):

YS[ν](α j (−n j ) · · ·α1(−n1)1, x)

=
∑

J⊂{1,..., j−1}
f{1,..., j−1}\J (x) ·

(
••

1

(n j − 1)!
(

d

dx

)n j−1

ανj (x)
∏
l∈J

1

(nl − 1)!
(

d

dx

)nl−1

ανl (x)
••

+
∑
i∈J

g(α j , n j , αi , ni , x) ••
∏

l∈J\{i}

1

(nl − 1)!
(

d

dx

)nl−1

ανl (x)
••

)
.

(6.12)

This is still of the form (6.5). Moreover, it is simple to understand, from
comparing (6.12) with (6.9), that the solution (6.6) is correct.

This construction certainly gives us a map YS[ν](·, x) on the vector space
S � S(ĥ−). We need to verify that this map satisfies modified weak
associativity (4.15). This requires three steps.

First, we need to check that operators on the right-hand side of (6.5) are
independent of the order of the pairs (α1, n1), . . . , (α j , n j ) for any positive
integers n1, . . . , n j and any elements α1, . . . , α j of h. The sum over pairings
has this symmetry, and we need to check that

g(α,m, β, n, x) = g(β, n, α,m, x). (6.13)

This is not immediately obvious, because, by the binomial expansion conven-
tion, (x0 − x2)

−2 �= (x2 − x0)
−2). This symmetry can indeed be checked:

g(α,m, β, n, x)− g(β, n, α,m, x)

= Resx0 Resx2 x−m
0 x−n

2

p∑
r=1

·
(

x + x2

x + x0

) r
p
(

1− r

p
+ r

p

x + x0

x + x2

)
×
(

1

(x0 − x2)2
− 1

(x2 − x0)2

)
〈α(r), β〉 (6.14)

= Resx0 Resx2 x−m
0 x−n

2

p∑
r=1

·
(

x + x2

x + x0

) r
p
(

1− r

p
+ r

p

x + x0

x + x2

)
x−1

0
∂

∂x2
δ

(
x2

x0

)
〈α(r), β〉

= 0 (6.15)
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where in the last step, we moved the derivative ∂
∂x2

towards the left using Leib-
niz’s rule, and we used the formal delta-function property and the fact that
m, n ∈ Z+.

Second, we need to check that modified weak associativity (4.15) with
YS[ν](Y (α j (−1)1, x0)α j−1(−n j−1) · · ·α1(−n1)1, x) for its left-hand side is
in agreement, at negative powers of x0, with

YS[ν](α j (n j )α j−1(−n j−1) · · ·α1(−n1)1, x) =
j−1∑
i=1

n jδn j ,ni 〈α j , αi 〉YS[ν](α j−1(−n j−1) · · · α̂i (−ni ) · · ·α1(−n1)1, x)

(6.16)

for n j ∈ N (the nonnegative integers) where ̂αi (−ni ) means that the operator
αi (−ni ) is omitted. Repeating the derivation (6.9), (6.12), we see that this is
equivalent to requiring (with the definition (6.8))

g(α,−m, β, n) = mδm,n〈α, β〉 (6.17)

for m ∈ N, n ∈ Z+. This is a consequence of the fact that(
x + x2

x + x0

)s 1− s + s x+x0
x+x2

(x0 − x2)2
= 1

(x0 − x2)2
+ C[[x0, x2, x−1]] (6.18)

for any s ∈ C. The quantity(
x + x2

x + x0

)s 1− s + s x+x0
x+x2

(x0 − x2)2
− 1

(x0 − x2)2

obviously has only nonnegative powers of x2 and nonpositive powers of x . On
the other hand, it is equal to(

x + x2

x + x0

)s 1− s + s x+x0
x+x2

(x2 − x0)2
− 1

(x2 − x0)2
+((

x + x2

x + x0

)s (
1− s + s

x + x0

x + x2

)
− 1

)
x−1

0
∂

∂x2
δ

(
x2

x0

)
.

The first two terms obviously have only nonnegative powers of x0. The third
term can be evaluated using Leibniz’s rule and gives zero. This completes the
proof of (6.18).

Third, the structure of the construction of Section 3 shows that (4.15) is valid
as well for s �= 0 (equation (4.16) is satisfied).

The other requirements of Theorems 5.1 can be checked from the construc-
tion of Section 3, and with Theorems 5.5 and 6.1, this completes the proof.
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Finally, let us mention that formula (6.5) with (6.6) immediately leads to the
following formula for the operator �x introduced in (3.9):

�x =
d∑

q1,q2=1

∑
m,n∈Z+

ᾱq1(m)ᾱq2(n)

mn
g(ᾱq1 ,m, ᾱq2 , n, x) (6.19)

where we recall that ᾱq , q = 1, . . . , d form an orthonormal basis of h. This
was first constructed, in a different form, in [FLM1] and [FLM2].

7. The Lie algebra D̂+
We will now apply modified weak associativity and the results of the previous
section, that S[ν], constructed in Section 3, is a twisted module for the vertex
operator algebra S, in order to study a certain infinite-dimensional Lie algebra
D̂+ and its representations. This follows closely the results of [DLMi1] and
[DLMi2], and does not give new results with respect to these works.

Let D be the Lie algebra of formal differential operators on C× spanned
by tn Dr , where D = t d

dt and n ∈ Z, r ∈ N (the nonnegative integers).
This Lie algebra has an essentially unique one-dimensional central extension
D̂ = Cc⊕D (denoted in the physics literature byW1+∞).

The representation theory of the highest weight modules of D̂ was initiated
in [KR], where, among other things, the complete classification problem of the
so-called quasi-finite representations1 was settled. The detailed study of the
representation theory of certain subalgebras of D̂ having properties related to
those of certain infinite–rank “classical” Lie algebras was initiated in [KWY]
along the lines of [KR]. In [Bl] and [M2], related Lie algebras (and superal-
gebras) are considered from different viewpoints. As in [DLMi1, DLMi2], we
will follow these lines and concentrate on the Lie subalgebra D̂+ described in
[Bl] and recalled below.

View the elements tn Dr (n ∈ Z, r ∈ N) as generators of the central
extension D̂. They can be taken to satisfy the following commutation relations
(cf. [KR]):

[tm f (D), tng(D)] =
tm+n( f (D + n)g(D)− g(D + m) f (D))+�(tm f (D), tng(D))c,

where f and g are polynomials and � is the 2–cocycle (cf. [KR]) deter-
mined by

1 These are representations with finite-dimensional homogeneous subspaces.
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�(tm f (D), tn g(D))=−�(tng(D), tm f (D))=δm+n,0

m∑
i=1

f (−i)g(m−i), m > 0.

We consider the Lie subalgebra D+ of D generated by the formal differential
operators

L(r)
n = (−1)r+1 Dr (tn D)Dr , (7.1)

where n ∈ Z, r ∈ N [Bl]. The subalgebra D+ has an essentially unique
central extension (cf. [N]) and this extension may be obtained by restriction
of the 2–cocycle � to D+. Let D̂+ = Cc ⊕ D+ be the nontrivial central
extension defined via the slightly normalized 2–cocycle −1

2�, and view the

elements L(r)
n as elements of D̂+. This normalization gives, in particular, the

usual Virasoro algebra bracket relations

[L(0)
m , L(0)

n ] = (m − n)L (0)
m+n +

m3 − m

12
δm+n,0 c. (7.2)

In [Bl] Bloch discovered that the Lie algebra D̂+ can be defined in terms of
generators that lead to a simplification of the central term in the Lie bracket
relations. Oddly enough, if we let

L̄(r)
n = L(r)

n + (−1)r

2
ζ(−1− 2r)δn,0c, (7.3)

then the central term in the commutator

[L̄(r)
m , L̄(s)

n ]=
r+s∑

i=min(r,s)

a(r,s)i (m, n)L̄(i)
m+n+

(r + s + 1)!2
2(2(r + s)+ 3)!m

2(r+s)+3δm+n,0 c

(7.4)
is a pure monomial (here a(r,s)i (m, n) are structure constants), in contrast to the
central term in (7.2) and in other bracket relations that can be found from (7.1).
As was announced in [L3], [L4] and shown in [DLMi2], in order to concep-
tualize this simplification (especially the appearance of zeta-values) one can
construct certain infinite-dimensional projective representations of D+ using
vertex operators.

Let us explain Bloch’s construction [Bl]. Consider the Lie algebra ĥ

introduced in Section 3, and its induced (level-one) module S. Then the
correspondence

L(r)
n �→ 1

2

d∑
q=1

∑
j∈Z

jr (n − j)r •• ᾱq( j)ᾱq(n − j) •• (n ∈ Z) , c �→ d, (7.5)
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where we recall that {ᾱq } is an orthonormal basis of h and •• · •• is the
usual normal ordering, gives a representation of D̂+. Let us denote the oper-
ator on the right–hand side of (7.5) by L(r)(n). In particular, the operators
L(0)(m) (m ∈ Z) give a well-known representation of the Virasoro algebra
with central charge c �→ d,

[L(0)(m), L (0)(n)] = (m − n)L(0)(m + n)+ d
m3 − m

12
δm+n,0,

and the construction (7.5) for those operators is the standard realization of the
Virasoro algebra on a module for a Heisenberg Lie algebra (cf. [FLM2]).

Without going into any detail, let us mention that Bloch [Bl] also studied
certain natural graded traces using this representation of L̄ (r)

0 , and found that,
as in the well-known case of the Virasoro algebra r = 0, they possess nice
modular properties.

The appearance of zeta–values in (7.3) can be conceptualized by the fol-
lowing heuristic argument [Bl]: Suppose that we remove the normal ordering
in (7.5) and use the relation [ᾱq(m), ᾱq(−m)] = m to rewrite ᾱq(m)ᾱq(−m),
with m ≥ 0, as ᾱq(−m)ᾱq(m)+m. It is easy to see that the resulting expression
contains an infinite formal divergent series of the form

12r+1 + 22r+1 + 32r+1 + · · · .
A heuristic argument of Euler’s suggests replacing this formal expression by
ζ(−1− 2r), where ζ is the (analytically continued) Riemann ζ–function. The
resulting (zeta–regularized) operator is well defined and gives the action of
L̄(r)

n ; such operators satisfy the bracket relations (7.4).

7.1. Realization in S: zeta function at negative integers

In order to understand the appearance of the zeta function at negative integers
using the vertex operator algebra S, following [L3, L4, DLMi1, DLMi2], we
need to introduce slightly different vertex operators. Consider a vertex operator
algebra V . The homogeneous vertex operators are defined by

X (u, x) = Y (x L(0)u, x) (u ∈ V ) . (7.6)

The most important property of these operators, for us, is the homogenous
version of modified weak associativity:

lim
x1→ey x2

((
x1

x2
− 1

)k(u,v)

X (u, x1)X (v, x2)

)
= (ey− 1

)k(u,v)
X (Y [u, y]v, x2)

(7.7)
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for u, v ∈ V , and k(u, v) as in Theorem 4.3. Interestingly, in this relation, yet
a new type of vertex operator appears:

Y [u, y] = Y (eyL(0)u, ey − 1) (u ∈ V ) . (7.8)

This vertex operator map generates a vertex operator algebra that is isomorphic
to V , and geometrically corresponding to a change to cylindrical coordinates.
Those properties were proven in [Z1, Z2].

Consider the vertex operator algebra S. Recall that the Virasoro generators
L(n) acting on S are given by the operators on the right-hand side of (7.5) with
r = 0. It is a simple matter to verify that X (α(−1)1, x) = α〈x〉, with

α〈x〉 =
∑
n∈Z

α(n)x−n . (7.9)

Consider now the following formal series, acting on S:

L̄ y1,y2〈x〉 = X

⎛⎝1

2

d∑
q=1

Y [ᾱq(−1)1, y1 − y2]ᾱq(−1)1, ey2 x

⎞⎠ . (7.10)

By (7.7), we have

L̄ y1,y2〈x2〉 = 1

2
lim

x1→x2

d∑
q=1

⎛⎝( x1
x2

ey1−y2 − 1

ey1−y2 − 1

)k

ᾱq〈ey1 x1〉ᾱq 〈ey2 x2〉
⎞⎠ (7.11)

for any fixed k ∈ N, k ≥ 2. Using

d∑
q=1

ᾱq〈ey1 x1〉ᾱq〈ey2 x2〉 =
d∑

q=1

•• ᾱq 〈ey1 x1〉ᾱq 〈ey2 x2〉 ••− ∂

∂y1

(
1

1− x2
x1

e−y1+y2

)
,

we immediately find that

L̄ y1,y2〈x〉 = 1

2

d∑
q=1

•• ᾱq〈ey1 x〉ᾱq 〈ey2 x〉 •• − 1

2

∂

∂y1

(
1

1− e−y1+y2

)
. (7.12)

Defining the operators L̄r1,r2(n), r1, r2 ∈ N, n ∈ Z via

L̄ y1,y2〈x〉 = 1

2

d

(y1 − y2)2
+

∑
n∈Z, r1,r2 ∈N

L̄r1,r2(n)x−n yr1
1 yr2

2

r1!r2! , (7.13)

it is simple to see, using (7.5), that the correspondence

L̄(r)
n �→ L̄r,r (n), c �→ d (7.14)
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for n ∈ Z, r ∈ N gives a representation of the generators (7.3) of the algebra
D̂+. Recall that these generators were introduced by Bloch in order to simplify
the central term in the commutation relations.

As was shown in [DLMi2], from the expression (7.11) of the formal
series L y1,y2〈x〉, involving formal limits, it is a simple matter to compute the
following commutators, first written in [L3]:[

L̄ y1,y2〈x1〉, L̄ y3,y4〈x2〉
]

= −1

2

∂

∂y1

(
L̄−y1+y2+y3,y4〈x2〉δ

(
ey1 x1

ey3 x2

)
+ L̄−y1+y2+y4,y3〈x2〉δ

(
ey1 x1

ey4 x2

))
− 1

2

∂

∂y2

(
L̄ y1−y2+y3,y4〈x2〉δ

(
ey2 x1

ey3 x2

)
+ L̄ y1−y2+y4,y3〈x2〉δ

(
ey2 x1

ey4 x2

))
.

(7.15)

As was announced in [L3, L4] and explained in [DLMi2], a simple analysis of
this commutator shows that the central term in the commutators of the gener-
ators (7.14) is a pure monomial, as in (7.4). This gives a simple explanation
of Bloch’s phenomenon using the vertex operator algebras S. Moreover, the
definition (7.10) says that the operators L y1,y2(x) represent on V the image
of some fundamental algebra elements of V under the transformation to the
cylinder. These fundamental elements, being closely related to the Virasoro
element ω, can be expected, when transformed to the cylinder, to lead to graded
traces with simple modular properties, in agreement with the observations of
Bloch [Bl].

7.2. Representations on S[ν]: Bernoulli polynomials at rational values

Following [DLMi1, DLMi2], we will now construct a representation of D̂+ on
S[ν]. The property that a twisted module is a true module on the fixed-point
subalgebra will be essential below in this construction. This property is guar-
anteed by the operator �x that we calculated above (6.19). In order to have the
correction terms for the representation of the algebra D̂+ on the twisted space
S[ν], one could apply e�x on the vectors generating the representation of the
whole algebra D̂+. This can be a complicated problem, mainly because gen-
erators of D̂+ have arbitrarily large weights. In line with [DLMi1, DLMi2],
below we will calculate the correction terms directly using the modified weak
associativity relation for twisted operators, as well as the simple result (3.10).
Hence in this argument, the explicit action of �x on vectors generating the
representation of the algebra D̂+ is not of importance; all we need to know is
that there exists such an operator �x giving to the space S[ν] the properties of
a twisted module for the vertex operator algebra S.
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In parallel to the previous sub-section, we need to introduce homogeneous
twisted vertex operators. Being given a vertex operator algebra V and a
ν-twisted V -module M , they are defined by

X M(u, x) = YM (x
L(0)u, x) (u ∈ V ) . (7.16)

Again, the most important property of these operators, for us, is the homoge-
nous version of modified weak associativity for twisted vertex operators:

lim
x1/p

1 →ωs
p(e

y x2)
1/p

((
x1

x2
− 1

)k(u,v)

X M(u, x1)X M(v, x2)

)
= (ey − 1

)k(u,v)
X M (Y [ν−su, y]v, x2). (7.17)

for u, v ∈ V, s ∈ Z, and k(u, v) as in Theorem 4.6. Recall the definition of
Y [u, y] in (7.8).

Consider the vertex operator algebra S and its twisted module S[ν]. It is a
simple matter to verify that X S[ν](α(−1)1, x) = αν〈x〉, with

αν〈x〉 =
∑

n∈ 1
p Z

αν(n)x−n . (7.18)

Consider now the following formal series, acting on S[ν]:

L̄ν;y1,y2〈x〉 = X S[ν]

⎛⎝1

2

d∑
q=1

Y [ᾱq(−1)1, y1 − y2]ᾱq(−1)1, ey2 x

⎞⎠ . (7.19)

Since the operator 1
2

∑d
q=1 Y [ᾱq(−1)1, y1 − y2]ᾱq(−1)1 is in the fixed

point subalgebra of S, it is immediate that these operators satisfy the same
commutation relations as (7.15):[

L̄ν;y1,y2〈x1〉, L̄ν;y3,y4〈x2〉
]

=−1

2

∂

∂y1

(
L̄ν;−y1+y2+y3,y4〈x2〉δ

(
ey1 x1

ey3 x2

)
+ L̄ν;−y1+y2+y4,y3〈x2〉δ

(
ey1 x1

ey4 x2

))
− 1

2

∂

∂y2

(
L̄ν;y1−y2+y3,y4〈x2〉δ

(
ey2 x1

ey3 x2

)
+ L̄ν;y1−y2+y4,y3〈x2〉δ

(
ey2 x1

ey4 x2

))
.

(7.20)

Hence, defining the operators L̄ν;r1,r2(n), r1, r2 ∈ N, n ∈ Z via

L̄ν;y1,y2〈x〉 = 1

2

d

(y1 − y2)2
+

∑
n∈Z, r1,r2 ∈N

L̄ν;r1,r2(n)x−n yr1
1 yr2

2

r1!r2! (7.21)
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(in particular, only integer powers of x appear in this expansion), we conclude
that they satisfy the same commutation relations as the operators L̄r1,r2(n)
introduced in (7.13). Then, as in (7.14), we can expect that the correspondence

L̄(r)
n �→ L̄ν;r,r (n), c �→ d (7.22)

for n ∈ Z, r ∈ N gives a representation of the generators (7.3) of the algebra
D̂+ on S[ν]. Bringing this expectation to a proof needs a little more analysis
(in particular, one needs to show that the Lν;r1,r2(n) are related to the Lν;r,r (n)
in the same way as the Lr1,r2(n) are related to the Lr,r (n)), which is done in
detail in [DLMi2].

Now, by (7.17) we have

L̄ν;y1,y2〈x2〉 = 1

2
lim

x1→x2

d∑
q=1

⎛⎝( x1
x2

ey1−y2 − 1

ey1−y2 − 1

)k

ᾱνq 〈ey1 x1〉ᾱνq 〈ey2 x2〉
⎞⎠
(7.23)

for any fixed k ∈ N, k ≥ 2, which gives

L̄ν;y1,y2〈x〉 = 1

2

d∑
q=1

•• ᾱ
ν
q 〈ey1 x〉ᾱνq 〈ey2 x〉 − 1

2

∂

∂y1

⎛⎝p−1∑
k=0

e
k(−y1+y2)

p dim h(k)

1− e−y1+y2

⎞⎠
(7.24)

using

d∑
q=1

ᾱνq 〈ey1 x1〉ᾱνq 〈ey2 x2〉 =
d∑

q=1

•• ᾱ
ν
q 〈ey1 x1〉ᾱνq 〈ey2 x2〉 ••

− ∂

∂y1

⎛⎝p−1∑
k=0

e
k(−y1+y2)

p dim h(k)

1− x2
x1

e−y1+y2

⎞⎠ .
Evaluating the operators L̄ν;r,r (n) from (7.21), we conclude that the operators

L̄ν;r,r (n) = 1

2

d∑
q=1

∑
j∈ 1

p Z

jr (n − j)r •• ᾱ
ν
q ( j)ᾱνq(n − j) ••

− δn,0
(−1)r

4(r + 1)

p−1∑
k=0

dim h(k)B2(r+1)(k/p) (7.25)

form a representation, on S[ν], of the generators (7.3) for the Lie algebra D̂+.
Notice the appearance of the Bernoulli polynomials. From our construction,
this is seen to be directly related to general properties of homogeneous twisted
vertex operators.
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The next result is a simple consequence of the discussion above. It was
shown in [DLMi2]. It describes the action of the “Cartan subalgebra” of D̂+
on a highest weight vector of a canonical quasi-finite D̂+–module; here we
are using the terminology of [KR]. This corollary gives the “correction” terms
referred to in the introduction.

Corollary 7.1. Given a highest weight D̂+–module W , let δ be the linear
functional on the “Cartan subalgebra” of D̂+ (spanned by L(k)

0 for k ∈ N)
defined by

L(k)
0 · w = (−1)kδ

(
L(k)

0

)
w,

where w is a generating highest weight vector of W , and let �(x) be the
generating function

�(x) =
∑
k≥1

δ(L(k)
0 )x2k

(2k)!

(cf. [KR]). Then for every automorphism ν of period p as above,

U(D̂+) · 1 ⊂ S[ν]
is a quasi–finite highest weight D̂+–module satisfying

�(x) = 1

2

d

dx

p−1∑
k=0

(e
kx
p − 1)dim h(k)

1− ex . (7.26)
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Vertex Operators and Sporadic Groups

John F. Duncan∗†

Abstract

In the 1980’s, the work of Frenkel, Lepowsky and Meurman, along with that of
Borcherds, culminated in the notion of vertex operator algebra, and an example
whose full symmetry group is the largest sporadic simple group: the Monster.
Thus it was shown that the vertex operators of mathematical physics play a
role in finite group theory. In this article we describe an extension of this phe-
nomenon by introducing the notion of enhanced vertex operator algebra, and
constructing examples that realize other sporadic simple groups, including one
that is not involved in the Monster.

1. Motivation

We begin not with the problem that motivates the article, but with motivation
for the tools that will furnish the solution to this problem. The tools we have
in mind are called vertex operator algebras (VOAs); here follows one way to
motivate the notion.

In mathematics there are various kinds of finite dimensional algebras that
have proven to be significant or interesting in some respect. For example,

(1) semisimple Lie algebras (with invariant bilinear form)
(2) simple Jordan algebras (of type A, B, or C)
(3) the Chevalley algebra (see [Che54])
(4) the Griess algebra (see [Gri82])
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† Email: duncan@math.harvard.edu; homepage: http://math.harvard.edu/
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The items of this list are very different from each other in terms of their prop-
erties and structure theory. Perhaps the only thing they have in common (as
algebras) is finite dimensionality.

Nonetheless, it turns out that there is such a process called affinization
which associates a certain infinite dimensional algebra structure (let’s say
affine algebra), to each finite dimensional example in this list. Not only this,
but the corresponding affine algebra has a distinguished representation (infinite
dimensional) for which the action of the affine algebra extends in a natu-
ral way to a new kind of algebra structure called vertex operator algebra
structure1.

Thus we obtain objects of a common category for each distinct example
here, and the notion of vertex operator algebra (VOA) furnishes a frame-
work within which these distinct finite dimensional algebra structures may be
unified.

2. VOAs

Let us now present a definition of the notion of VOA. For our purposes it is
more natural to consider the larger category of super vertex operator algebras
(SVOAs).

An SVOA is a quadruple (U,Y, 1, ω) where

• U = U0̄ ⊕ U1̄ is a super vector space over a field F say. (We will take F
to be R or C.)

• Y is a map U ⊗ U → U ((z)), so that the image of the vector u ⊗ v

under Y is a Laurent series with coefficients in U . This series is denoted
Y (u, z)v =∑n u(n)vz−n−1, and the operator Y (u, z) is called the vertex
operator associated to u.

• 1 ∈ U0̄ is called the vacuum vector, and is a kind of identity for U in the
sense that we should have Y (1, z)u = u and Y (u, z)1|z=0u = u for all
u ∈ U .

• ω ∈ U0̄ is called the conformal element, and is such that for Y (ω, z) =∑
L(n)z−n−2 the operators L(n) should satisfy the relations

[L(m), L(n)] = (m − n)L(m + n)+ m3 − m

12
c δm+n,0 Id (1)

1 The VOA structure corresponding to a semisimple Lie algebra with invariant bilinear form is
obtained in [FZ92] (see also [FLM88]). VOAs corresponding to the simple Jordan algebras of
types A, B, and C are given in [Lam99]. An affinization of the Chevalley algebra is constructed
in [FFR91], and the VOA corresponding to the Griess algebra is constructed in [FLM88].
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for some scalar value c ∈ F. In other words, the Fourier modes of
Y (ω, z) should generate a representation of the Virasoro algebra, with
some central charge c.

The main axiom for the vertex operators is the Jacobi identity, which states
that

• for Z/2–homogeneous u, v ∈ U and arbitrary a ∈ U we should have

z−1
0 δ

(
z1 − z2

z0

)
Y (u, z1)Y (v, z2)

− (−1)|u||v|z−1
0 δ

(
z2 − z1

−z0

)
Y (v, z2)Y (u, z1)

= z−1
2 δ

(
z1 − z0

z2

)
Y (Y (u, z0)v, z2) (2)

where |u| is 1 or 0 as u is odd or even, and similarly for |v|, and the expres-
sion z−1

0 δ((z1 − z2)/z0), for example, denotes the formal power series

z−1
0 δ

(
z1 − z2

z0

)
=
∑

n,k∈Z,
k≥0

(−1)k
(

n

k

)
z−n−1

0 zn−k
1 zk

2. (3)

From (2) and from the properties of 1 we see the extent to which the triple
(U,Y, 1) behaves like a (super)commutative associative (super)algebra with
identity, since the formal series (3) may be regarded as a “delta function sup-
ported at z1 − z2 = z0 (and expanded in |z1| > |z2|)”. The Jacobi identity
(2) thus encodes, among other things, some sense in which the compositions
Y (u, z1)Y (v, z2), Y (v, z2)Y (u, z1), and Y (Y (u, z1 − z2)v, z2) all coincide.

The structure in (U,Y, 1, ω) which has no analogue in the ordinary super-
algebra case is that furnished by the conformal element ω. This structure
furnished by ω (we will call it conformal structure) manifests in two important
axioms.

• The action of L(0) on U should be diagonalizable with eigenvalues in 1
2Z

and bounded from below. We write U = ⊕n Un for the corresponding
grading on U , and we call Un the subspace of degree n.

• The operator L(−1) should satisfy Y (L(−1)u, z) = DzY (u, z) for all
u ∈ U , where Dz denotes differentiation in z.

The conformal structure is essential for the construction of characters associ-
ated to an SVOA. Zhu has shown [Zhu90] that these characters (under certain
finiteness conditions on the SVOA) span a representation of the Modular
Group PSL2(Z).
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We often write U in place of (U,Y, 1, ω). The scalar c of (1) is called the
rank of U . Modules and module morphisms can be defined in a natural way.
We say that an SVOA is self-dual in the case that it is irreducible as a module
over itself, and has no other inequivalent irreducible modules.

3. Sporadic groups

The Classification of Finite Simple Groups (see [GLS94], [Sol01]) states that
in addition to the

• cyclic groups of prime order
• alternating groups An for n ≥ 5
• finite groups of Lie type (like PSLn(q), P SUn(q), G2(q), &c.)

there are exactly 26 other groups that are finite and simple, and can be included
in none of the infinite families listed. These 26 groups are called the sporadic
groups.

The largest of the sporadic groups is called the Monster2, and was first
constructed by Robert L. Griess, Jr., who obtained this result by explicitly con-
structing a certain commutative non-associative algebra (with invariant bilinear
form) of dimension 196883, with the Monster group M as its full group of
automorphisms. This algebra is named the Griess algebra.

The Monster group furnishes a setting in which the majority (but not all) of
the other sporadic groups may be analyzed, since it involves 19 of the other
sporadic simple groups. Here we say that a group G is involved in the Mon-
ster if G is the homomorphic image of some subgroup of the Monster; that is,
if there is some H in M with normal subgroup N such that H/N is isomor-
phic to G. The sporadic groups that are involved in the Monster are called the
Monstrous sporadic groups.

The remaining 6 sporadic groups not involved in the Monster are called the
non-Monstrous sporadic groups, or more colorfully, the Pariahs.

4. Vertex operators and the Monster

It is a surprising and fascinating fact that the Griess algebra can appear in our
list of finite dimensional algebras admitting affinization (see §1).

The fact that it does is due to the work of Frenkel, Lepowsky and
Meurmann, who extended the notion of affinization (known to exist for cer-
tain Lie algebras) to the Griess algebra using vertex operators, obtaining

2 It is also called the Friendly Giant.
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an infinite dimensional version: the affine Griess algebra. They constructed
a distinguished infinite dimensional module over this affine Griess alge-
bra called the Moonshine Module. They built upon the work of Borcherds
[Bor86] so as to arrive at the notion of vertex operator algebra, and showed
that the Moonshine Module admits such a structure. Finally, they showed
that the full automorphism group of this structure is the Monster simple
group.

In contrast to the situation with Lie algebras or Jordan algebras, the Griess
algebra is an object which is hard to axiomatize. It is perhaps not clear that
there is any reasonable category of algebras (in the orthodox sense) which
includes the Griess algebra as an example (see [Con85]). The notion of VOA
thus provides a remedy to this situation: a setting within which the Griess
algebra can be axiomatized.

A related question is: “How might the Monster group be characterized?”
Having found that such an extraordinary group is the symmetry group of some
structure, we would like to be able recognize this structure as distinguished
in its own right, so that our group might be defined to be just the group of
automorphisms of this distinguished object. In particular, our structure should
belong to some family of similar structures; a family equipped with invariants,
sufficiently rich that they can distinguish our particularly interesting exam-
ples from all others, and sufficiently simple that we can communicate them
easily.

This question of characterization can also be addressed (conjecturally, at
least) within the theory of VOAs. Let us call to attention three invariants for
VOAs:

• rank
• self-duality
• degree (vanishing conditions)

One may check that the Moonshine Module satisfies the following three
properties.

• rank 24
• self-dual
• degree 1 subspace vanishes

It is a conjecture due to Frenkel, Lepowsky and Meurman that the Moonshine
Module is uniquely determined by these properties. Modulo a proof of the
conjecture, VOA theory thus provides a compelling definition of the Mon-
ster group: the automorphism group of the Moonshine Module, a beautifully
characterized object in the category of VOAs.
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5. Vertex operators and Monstrous groups

We have seen that vertex operators may be fruitfully applied to one of the
sporadic groups, and we may wonder if there is anything they can do for the
remaining 25. Let us formulate The Problem:

∗ Given a sporadic group G, find a VOA whose automorphism group is G,
and characterize it.

The fact that 20 of the sporadic groups are involved in the Monster suggests
that The Problem may have solutions, at least for G a Monstrous group. After
all, if G is such a group, then a cover Ĝ = N .G say, of G, is a subgroup of
the Monster, and in particular, acts on the Moonshine Module. This action is
probably very reducible, but by choosing an appropriate irreducible subalgebra
for example, we may well obtain an object – a VOA even – which serves as a
reasonable analogue of the Moonshine Module for our new group Ĝ. We may
even find that the normal subgroup N acts trivially, so that our analogue of
the Moonshine Module actually realizes G itself, and not a cover of G. This
outline is extremely speculative, and certainly does not constitute an acceptable
solution to The Problem, but it does at least give us somewhere to start, at least
in the case that G is a Monstrous group.

It is important to mention that something like this has been carried out
rigourously and successfully in at least one case: that in which G is the Baby
Monster BM, and the group Ĝ is a double cover of G, the centralizer of a so-
called 2A involution in the Monster. The precise method is due to Gerald Höhn
[Höh96], and the result is a self-dual SVOA of rank 23 1

2 whose full automor-
phism group is a direct product 2 × BM of the Baby Monster with a group of
order 2.

6. Vertex operators and the Conway group

At this point we would like to describe a solution to The Problem for a specific
Monstrous group G, which is nonetheless not along the lines just described in
§5. The group we have in mind is the largest sporadic group of Conway, Co1.
The solution we have in mind is the object of the following Theorem.

Theorem 1 ( [Dun07] ). Among nice rational N = 1 SVOAs, there is a unique
one satisfying

• rank 12
• self-dual
• degree 1/2 subspace vanishes



194 John F. Duncan

Let us name this structure ACo. We can see that it admits a convenient char-
acterization. That ACo is a solution to one of our problems is shown by the
next Theorem.

Theorem 2 ( [Dun07] ). The full automorphism group of ACo is the sporadic
group Co1.

We should go no further before addressing the new terminology that has
arisen. The terms nice and rational refer to certain technical conditions on
SVOAs, and it will be convenient to put aside their precise meaning, and refer
the interested reader to the article [Dun07]. (One would expect such technical
conditions to arise in a precise formulation of the uniqueness conjecture for the
Moonshine Module.) Of more importance for our present purpose is the term
N = 1 SVOA.

Definition. An N = 1 SVOA is a quadruple (U,Y, 1, {ω, τ }), such that
(U,Y, 1, ω) is an SVOA, and τ is a distinguished vector of degree 3/2 sat-
isfying τ(0)τ = 2ω, and such that the Fourier coefficients of Y (τ, z) generate a
representation of the Neveu–Schwarz Lie superalgebra on U .3

The Neveu–Schwarz superalgebra is a natural super-analogue of the Vira-
soro algebra. It is also known as the N = 1 Virasoro superalgebra. Thus an
N = 1 SVOA is just like an ordinary SVOA except there is some extra struc-
ture: the role of the Virasoro algebra is now played by the N = 1 Virasoro
superalgebra.

Let us consider for a moment longer, the difference between SVOA structure
and N = 1 SVOA structure. Looking back at Theorem 1, experts will notice
that the conclusion remains true if we drop the the “N = 1” from “N = 1
SVOA” in the hypothesis. That is to say, there is indeed a unique self-dual
SVOA with rank 12 that has vanishing degree 1/2 subspace. In fact, it is a
reasonably familiar object as SVOAs go: it is the lattice SVOA associated to
the integral lattice D+12 (the unique self-dual integral lattice of rank 12 with no
vectors of unit norm).

One may be surprised to see a sporadic group, or even a finite group here,
since the SVOA underlying ACo has infinite automorphism group. In fact, there
is an action by Spin24 (faithful up to some subgroup of order 2). The crux of
the matter is that

(1) for a suitably chosen vector in this Spin24-module ACo the fixing group
is Co1,

3 The definition of N = 1 SVOA here is almost identical to that of N = 1 Neveu–Schwarz vertex
operator superalgebra without odd formal variables (N = 1 NS-VOSA) which was introduced
earlier by Barron [Bar00].
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(2) the precise choice is made for us by the N = 1 Virasoro superalgebra.

Let us also emphasize that the uniqueness result for ACo furnishes a com-
pelling definition of the Conway group: as the full automorphism group of
ACo, a well characterized object in the category of N = 1 SVOAs.

7. Enhanced SVOAs

With the example of ACo in mind, and also with the suspicion that it may be
interesting to consider other extensions of the Virasoro algebra, we formulate
the notion of enhanced SVOA.

Roughly speaking, an enhanced SVOA is a quadruple (U, Y, 1,�) where �
is a finite subset of U (the set of conformal generators) containing a vector ω
for which (U,Y, 1, ω) is an SVOA. (We refer to [Dun06a, §2] for the precise
definition.) The subSVOA of U generated by the elements of � is called the
conformal subSVOA.

The rank of an enhanced SVOA is just the rank of the underlying SVOA.
We say that an enhanced SVOA is self-dual just when it is self-dual as an
SVOA. The automorphism group of an enhanced SVOA is the subgroup of
the automorphism group of the underlying SVOA that fixes every conformal
generator.

We see then that an ordinary SVOA is an enhanced SVOA with � = {ω},
and an N = 1 SVOA is an enhanced SVOA with � = {ω, τ }, and confor-
mal subSVOA a copy of the SVOA associated to the vacuum representation
of the N = 1 Virasoro superalgebra. In order to show that there are other
interesting examples of enhanced SVOA structure, we present the following
result.

Theorem 3 ( [Dun06b] ). There exists a self-dual enhanced SVOA ASuz of
rank 12

ASuz = (ASuz,Y, 1, {ω, j, ν, μ}) (4)

with Aut(ASuz) ∼= 3.Suz.

It turns out that the conformal algebra in this example contains the direct
product of a pair of N = 1 Virasoro superalgebras, at central charges 11 and 1,
respectively. The SVOA underlying ASuz coincides with that underlying ACo,
and taking the diagonal N = 1 Virasoro superalgebra generated by τ = ν +
μ (with central charge 12), we recover the enhanced SVOA structure with
automorphism group Co1.
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8. Beyond the Monster

We have seen already that vertex operators have a role to play in the anal-
ysis of several Monstrous sporadic groups. In the cases of Conway’s group,
Suzuki’s group, the Monster, and the Baby Monster, precise theorems have
been formulated. A very significant question is whether or not there is any
application to sporadic groups beyond the Monster; that is, to pariahs. We
observed at the very beginning that the notion of VOA can unify such dis-
parate notions as ‘semi-simple Lie algebra’ and ‘commutative non-associative
algebra’.

The principal idea of this paper is that vertex operators do play a role in the
representation theory of non-Monstrous sporadic groups.

At this point let us introduce the sporadic group of Rudvalis, Ru. This spo-
radic simple group is not involved in the Monster; it is one of the pariahs. It
has order

145926144000 = 214.33.53.7.13.29 ≈ 3

2
× 1011. (5)

The largest maximal subgroup is of the form 2 F4(2) and has index 4060 in
Ru. (The Tits group has index two in this group.) The next largest maximal
subgroup is a non-split extension of the form 26.G2(2), and has index 188500.
The smallest non-trivial irreducible representations of Ru have degree 378.

9. Vertex operators and Rudvalis’s group

Consider The Problem for G = Ru. The main theorem we wish to present is
the following.

Theorem 4 ( [Dun06a],[Dun06b] ). There exists a self-dual enhanced SVOA
ARu of rank 28

ARu = (ARu,Y, 1, {ω, j, ν, "}) (6)

with Aut(ARu) ∼= 7× Ru.

(Compare this with the statement of Theorem 3.) We will now provide a
description of the enhanced SVOA ARu.

At the level of SVOAs, we have an isomorphism

ARu ∼= VD+28
(7)

where D+28 denotes a self-dual integral lattice of rank 28 with no vectors of
unit length, and with D28 as its even part. We have observed already that there



Vertex Operators and Sporadic Groups 197

are analogous statements for the SVOAs underlying the enhanced SVOAs ACo

and ASuz.

ACo ∼= ASuz ∼= VD+12
, as SVOAs. (8)

In the case of the enhanced SVOA ASuz, the conformal vectors j and ω have
degree 1 and 2 respectively, and the two conformal vectors beyond these; viz.
ν and μ, are both found in the degree 3/2 subspace. In the case of ARu, the
degree 3/2 subspace is trivial. In fact the degree 1/2, 3/2, and 5/2 subspaces
are all trivial for ARu. The extra conformal vectors ν and " for ARu are found in
the degree 7/2 subspace. This space is very large; the dimension is the number
of vectors of square-length 7 in the lattice D+28.

dim(ARu)7/2 = 228/2 ≈ 108 (9)

The most effort in the construction of ARu goes into determining a precise
description of the vectors ν and ". It is a remarkable fact that the finite group
eventually obtained has almost no other point-wise invariants4 in its action on
this 227 dimensional space.

10. The 28 dimensional representation

It is important for our construction of ARu that the Rudvalis group admits a
perfect double cover 2.Ru which has irreducible representations of degree 28
(writable over Z[i]). That the group 2.Ru preserves a lattice of rank 28 over
Z[i] was observed independently by Meurman5, and by Conway and Wales
[CW73] (see also [Con77] and [Wil84]), and this lattice is in fact self-dual
when regarded as a lattice (of rank 56) over Z. We choose to view this 28
dimensional representation in terms of the maximal of G2-type: 26.G2(2),
which becomes 27.G2(2) in the double cover 2.Ru.

The action of the group 27.G2(2) in the 28 dimensional representation can
be understood in the following way in terms of the E8 lattice. Let � denote a
copy of the E8 lattice, the unique self-dual even lattice of rank 8. (A lattice is
a free Z-module equipped with a bilinear form, and an even lattice is a lattice
for which the square-norm of every vector is an even integer.) We may take

� =
{∑

i∈&
ni hi |

∑
i∈&

ni ∈ 2Z; all ni ∈ Z, or all ni ∈ Z+ 1
2

}
(10)

4 In fact, there is just one other invariant in addition to ν and ". It turns out to be j(0)ν.
5 private communication
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where the bilinear form is defined so that 〈hi , h j 〉 = δi j . Then � supports
a structure of non-associative algebra over Z which makes it a copy of the
integral Cayley algebra, or what is the same, a maximal integral order in the
Octonions. To see such a structure explicitly, we assume that the index set
& = {∞, 0, 1, 2, 3, 4, 5, 6} is a copy of the projective line over F7, and then
offer the following defining relations (taken from [CCN+85])

1 = 1
2

∑
i∈&

hi (11)

2h2
i = hi − 1 (12)

2h∞h0 = 1− h3 − h5 − h6 (13)

2h0h∞ = 1− h2 − h1 − h4 (14)

and also the images of these relations under the natural action of L2(7) on the
indices. The sublattice of doubles 2� is an ideal in this algebra, and we may
consider the quotient �̄ = �/2� which becomes a copy of the Cayley algebra
over the finite field F2; what we call the binary Cayley algebra. We should note
that the automorphism group of this algebra is the finite group G2(2) (which
contains the simple group U3(3) to index 2).

There are just 28 = 256 elements in the binary Cayley algebra. We can count
them.

Type Count
zeroes 1
identities 1
involutions 63
square roots of 0 63
idempotents 72
cube roots of 1 56

(15)

There is a natural pairing on the elements of �̄ obtained by sending x to the
pair {x, 1+ x}. This association pairs the zero with the identity, the involutions
with the idempotents, and partitions the idempotents and cube roots into 36
and 28 pairs, respectively. The group G2(2) acts transitively on each of these
different sets of pairs.

The 28 cube root pairs are in a sense the basis upon which the enhanced
SVOA will be constructed. Let us denote them by �. A typical cube root of
unity in �̄ is (hi − h j ) for i �= j ∈ &. A typical involution in �̄ is given by
(hi + h j ) for i �= j ∈ &, and it is important that for any given involution there
are exactly 24 cube roots (12 pairs of cube roots) that are not orthogonal to the
chosen involution. The corresponding 12-subsets of � are called dozens.
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We now introduce a complex vector space r of dimension 28, with Hermitian
form (· , ·) and an orthonormal basis {ai }i∈�, indexed by our cube root pairs.
The structures arising from the binary Cayley algebra described above allow
us to define an action by the group 2.26.G2(2) on this space. For example,
the normal subgroup 2.26 is generated by the transformations that change sign
on the coordinates of a given dozen. With a somewhat finer analysis of the
geometry of �̄ we can define the action of the rest of the group (cf. [Dun06a]);
we call this group the monomial group and we denote it M . (Warning: the
action of G2(2) cannot be realized as coordinate permutations. Instead we must
write generators as coordinate permutations followed by multiplications by
±1 or ±i on particular coordinates. The group M is a non-split extension of
G2(2).) The action of M on r preserves the Hermitian form.

11. The conformal elements

Assume now that we have a Hermitian space r and a unitary action on this
space of the monomial group M of the shape 2.26.G2(2). We assume further
that M is regarded as a matrix group with respect to the basis {ai }, and consists
of monomial matrices (having one non-zero entry in each row and column). We
set u = r⊕ r∗, where r∗ denotes the dual space to r, and is equipped with the
induced Hermitian form. The space u then comes equipped with a Hermitian
form (obtained by taking direct sum of those associated to the summands)
and also a bilinear form 〈· , ·〉, induced by the canonical pairing r × r∗ → C.
We define Cliff(u) to be the Clifford algebra of u defined with respect to this
bilinear form.

Cliff(u) = T (u)/〈u ⊗ u + 〈u, u〉 | u ∈ u〉 (16)

We define CMX to be the module over Cliff(u) spanned by a vector 1X

satisfying u1X = 0 whenever u ∈ r∗. We claim that the isomorphism

CMX ∼=
⊕

∧n(r)1X (17)

holds when these spaces are viewed as modules over Cliff(r) (the subalgebra
of Cliff(u) generated by r ↪→ Cliff(u)). Next we claim that the degree 7/2
subspace of ARu may be naturally identified with the even part of CMX .

(ARu)7/2 ←→ CM0
X
∼=
⊕

∧2n(r) (18)

The Clifford algebra Cliff(u) naturally contains a copy of the group Spin(u),
and the space CM0

X is an irreducible module for this group Spin(u).
Recall that our goal is to define the elements ν and ". We now define ν by

setting

ν = 1X + a�1X (19)
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where a� = a∞a1 · · · a27 ∈ Cliff(u) say. Let us write M for the copy of G2(2)
obtained by replacing each non-zero entry with a 1 in each matrix in M . The
vector " will be expressed in terms of orbits of M on monomials aI 1X for
I ⊂ � with |I | = 14.

It turns out that there are 80 such orbits, but only 68 give rise to invariants
for the monomial group M in ∧14(r)1X ⊂ CM0

X . The vector " is a linear sum
of these invariants, ti say, where the coefficients ri can be taken to lie in Z[i].

" =
68∑

i=1

ri ti (20)

The orbits are paired under complementation, and the coefficients of invari-
ants corresponding to complementary orbits are conjugate (up to sign), so that
ultimately, we require to specify 34 values. We refer to [Dun06a, §5.2] for the
details.

Finally, we take ARu = (ARu,Y, 1, {ω, j, ν, "}) as in the statement of
Theorem 4, and this completes the construction.

It follows from the isomorphism (7), with the lattice SVOA for D+28, that
ARu is self-dual, and has rank 28. To prove that the automorphism group is of
the stated form we prove first that it is finite, by showing that it is a reductive
algebraic group with trivial Lie algebra (cf. [Dun06a, §5.4]). It follows that it
has dimension 0, and hence, is finite. We can explicitly construct generators
for 2.Ru acting on ARu and fixing the vectors {ω, j, ν, "}, and we may employ
an argument from [NRS01], to show that the only other symmetries possible
are scalar multiples of the identity. It is then easy to check that such multiples
must be 14th-roots of unity (since they must preserve " ∈ ∧14(r)1X ). Finally
we obtain a central product 14 ◦ 2.Ru, but the central Z/2 here acts trivially on
ARu, and so the full automorphism group is just 7× Ru.

12. The character

We conclude with consideration of the character of the enhanced SVOA ARu.
The action of the Rudvalis group Ru on ARu preserves a certain vector j of

degree 1. The residue of the corresponding vertex operator Y (j, z) is denoted
J (0), commutes with the Virasoro operator L(0), and has diagonalizable action
on ARu, thus giving rise to a grading by charge. It is natural then to consider
the two variable series

tr|ARu pJ (0)q L(0)−c/24 (21)
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Table 1 The Character of ARu

0 2 4 6 8

0 1
1/2
1 784 378
3/2
2 144452 92512 20475
5/2
3 11327232 8128792 2843568 376740
7/2 40116600 30421755 13123110 3108105 376740
4 490068257 373673216 161446572 35904960 3108105
9/2 2096760960 1649657520 794670240 226546320 35904960
5 13668945136 10818453324 5284484352 1513872360 226546320
11/2 56547022140 45624923820 23757475560 7766243940 1513872360

which we call the (2 variable) character of ARu. Recall the Jacobi theta
function given by

ϑ3(z|τ) =
∑
m∈Z

e2izm+π iτm2
(22)

and also the Dedekind eta function

η(τ) = q1/24
∏
m≥1

(1− qm) (23)

written here according to the convention q = e2π iτ . Let us also convene to
write p = e2π iz . Then we have

Proposition 5 ( [Dun06b] ). The character of ARu is given by

tr|ARu pJ (0)q L(0)−c/24 = 1

2

(
ϑ3(π z|τ)28

η(τ)28
+ ϑ3(π z + π/2|τ)28

η(τ)28

)
+ 1

2
p14q7/2

(
ϑ3(π z + πτ/2|τ)28

η(τ)28
+ ϑ3(π z + πτ/2+ π/2|τ)28

η(τ)28

)
(24)

The terms of lowest charge and degree in the character of ARu are recorded
in Table 1. The column headed m is the coefficient of pm (as a series in q), and
the row headed n is the coefficient of qn−c/24 (as a series in p). The coefficients
of p−m and pm coincide, and all subspaces of odd charge vanish.

Many irreducible representations of Ru are visible in the entries of Table 1.
For example, we have the following equalities, where the left hand sides are



202 John F. Duncan

the dimensions of homogeneous subspaces of ARu, and the right hand sides
indicate decompositions into irreducibles for the Rudvalis group.

378 = 378

784 = 1+ 783

20475 = 20475

92512 = (2)378+ 406+ 91350

144452 = (3)1+ (3)783+ 65975+ 76125

376740 = 27405+ 65975+ 75400+ 102400 (25)
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Abstract

The Conway–Norton conjectures unexpectedly related the Monster with cer-
tain special modular functions (Hauptmoduls). Their proof by Borcherds et
al was remarkable for demonstrating the rich mathematics implicit there.
Unfortunately Moonshine remained about as mysterious after the proof as
before. In particular, a computer check — as opposed to a general conceptual
argument — was used to verify the Monster functions equal the appropriate
modular functions. This, the so-called ‘conceptual gap’, was eventually filled;
we review the solution here. We conclude by speculating on the shape of a new
proof of the Moonshine conjectures.

1. The conceptual gap

The main Conway–Norton conjecture [5] says:

Theorem 1. There is an infinite-dimensional graded representation V =
⊕∞n=−1Vn of the Monster M, such that the McKay–Thompson series

Tg(τ ) := TrV g q L0−1 =
∑

n≥−1

cn(g) qn (1.1)

equals the Hauptmodul Jg for some subgroup 
g of SL2(R).

Moreover, each coefficient cn(g) lies in Z, and 
g contains the congruence
subgroup 
0(N ) as a normal subgroup, where N = h o(g) for some h divid-
ing gcd(24, o(g)) (o(g) is the order of g ∈ M). In his ICM (1998) talk [2],
Borcherds outlined the proof of Theorem 1:

(i) Construction of the Frenkel–Lepowsky–Meurman Moonshine module
V �, which is to equal the space V ;

204
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(ii) Derivation of recursions for the McKay–Thompson coefficients cn(g)
for V �, such as

c4n+2(g) = c2k+2(g
2)+

k∑
j=1

c j (g
2) c2k+1− j (g

2) ∀k ≥ 1 ; (1.2)

(iii) From these recursions, prove Tg = Jg .

The original treatment of part (i) is [12]; see also the excellent review [24]
and references therein. Borcherds derived (ii) by first constructing a Lie alge-
bra out of V �, and then computing its twisted denominator identities [1]. It
was already known that Hauptmoduls satisfied these recursions, and that any
function obeying all those recursions was uniquely determined by its first few
coefficients. Thus establishing (iii) merely requires comparing finitely many
coefficients of each Tg with Jg — in fact, comparing 5 coefficients for each
of the 171 functions suffices [1]. In this way Borcherds accomplished (iii)
and with it completed the proof of Theorem 1. The proof successfully estab-
lished the mathematical richness of the subject, and for his work Borcherds
deservedly received a Fields medal (math’s highest honour) in 1998.

Our quick sketch hides the technical sophistication of the proof of (i) and
(ii). Subsequent treatments of the vertex operator structure of the Moon-
shine module V � of (i) have been given in [11, 18, 26], and the derivations
of the recursions (ii) have been simplified in [19, 20, 21]. But the biggest
disappointment with the proof is hidden in the nearly trivial argument of (iii).

At the risk of sending shivers down Bourbaki’s collective spine, the point
of mathematics is surely not acquiring proofs (just as the point of theoreti-
cal physics is not careful calculations, and that of painting is not the creation
of realistic scenes on canvas). The point of mathematics, like that of any
intellectual discipline, is to find qualitative truths, to abstract out patterns
from the inundation of seemingly isolated facts. An example is the notion of
group. Another, dear to many of us, is the A-D-E meta-pattern: many differ-
ent classifications (e.g. finite subgroups of SU2, subfactors of small index, the
simplest conformal field theories) fall unexpectedly into the same pattern. The
conceptual explanation for the ubiquity of this meta-pattern — that is, the com-
binatorial fact common to its various manifestations — presumably involves
the graphs with largest eigenvalues |λ| ≤ 2.

Likewise, the real challenge of Monstrous Moonshine wasn’t to prove Theo-
rem 1; but rather to understand what the Monster has to do with modularity and
genus-0. The first proof was due to Atkin, Fong and Smith [29], who by study-
ing the first 100 coefficients of the Tg verified (without constructing it) that
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there existed a (possibly virtual) representation V of M obeying the Theorem.
Their proof is forgotten because it didn’t explain anything.

By contrast, the proof of Theorem 1 by Borcherds et al is clearly superior:
it explicitly constructs V = V �, and emphasises the remarkable mathematical
richness saturating the problem. On the other hand, it also fails to explain mod-
ularity and the Hauptmodul property. The problem is step (iii): precisely at the
point where we want to identify the algebraically defined Tg’s with the topo-
logically defined Jg’s, a conceptually empty computer check of a few hundred
coefficients is done. This is called the conceptual gap of Monstrous Moon-
shine, and it has an analogue in Borcherds’ proof of Modular Moonshine [3]
and in Höhn’s proof of ‘generalised Moonshine’ for the Baby Monster [16].
Clearly preferable would be to replace the numerical check of [1] with a more
general theorem.

Next section we review the standard definition of Hauptmodul. In Section 3
we describe the solution [9] to the conceptual gap: it replaces that topological
definition of Hauptmodul with an algebraic one. We conclude the paper with
some speculations. Even with the developments [11, 18, 19, 20, 21, 26] and
especially [9] to the original proof of Theorem 1, the resulting argument still
does a poor job explaining Monstrous Moonshine. Moonshine remains myste-
rious to this day. There is a lot left to do — for example establishing Norton’s
generalised Moonshine [28], or finding the Moonshine manifold [15]. But the
greatest task for Moonshiners is to find a second independent proof of Theo-
rem 1. It would (hopefully) clarify some things that the original proof leaves
murky. In particular, we still don’t know what really is so important about the
Monster, that it has such a rich genus-0 moonshine. To what extent does Mon-
strous Moonshine determine the Monster? We turn to this open problem in
Section 4.

2. The topological meaning of the Hauptmodul property

Just as a periodic function is a function on a compact real curve (i.e. on a
circle), a modular function is a function on a compact complex curve. More
precisely, let + be a compact surface. We can regard this as a complex curve,
and thus put on it a complex analytic structure. Up to (biholomorphic or con-
formal) equivalence, there is a unique genus 0 surface (which we can take to
be the Riemann sphere C ∪ {∞}), but there is a continuum (moduli space)
of inequivalent complex analytic structures which can be placed on a torus
(genus 1), a double-torus, etc. For example, this moduli space for the torus
can be naturally identified with H/SL2(Z), where H is the upper half-plane
{τ ∈ C | Im(τ ) > 0}: for any τ ∈ H, we get the torus C/(Z+Zτ); any torus is
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equivalent to one of that form; if τ ′ = (aτ+b)/(cτ+d) for

(
a b
c d

)
∈ SL2(Z),

then the tori corresponding to τ and τ ′ are equivalent.
We learn from geometry and physics that we should study a space through

the functions (fields) that live on it, which respect the relevant properties of
the space. Therefore we should consider meromorphic functions f : + → C
(a meromorphic function is holomorphic everywhere, except for isolated finite
poles; we would have preferred f to be holomorphic, but then f would be
constant). These f are called modular functions, and are thus as important
as complex curves. Clearly, they should be central to mathematics. Somewhat
more surprising is that in particular they are fundamental to number theory, but
that is another story.

We know all about meromorphic functions for C: these include ratio-
nal functions (i.e. quotients of polynomials), together with transcendental
functions such as exp(z) and cos(z). These transcendental functions all
have an essential singularity at ∞. In fact, the modular functions for the
Riemann sphere are the rational functions in z. By contrast, the modular
functions for the other compact surfaces will be rational functions in two
generators, where those two generators satisfy a polynomial relation. For
example, the modular functions for a torus are generated by the Weierstrass
p-function and its derivative, and p and p′ satisfy the cubic equation defin-
ing the torus. In this way, the sphere is distinguished from all other compact
surfaces.

There are three possible geometries in two dimensions: Euclidean, spherical
and hyperbolic. The most important of these, in any sense, is the hyperbolic
one. The upper half-plane is a model for it: its ‘lines’ consist of vertical half-
lines and semi-circles, its infinitesimal metric is ds = |dτ |/Im(z), etc. As
with Euclidean geometry, ‘lines’ are the paths of shortest distance. Just as the
Euclidean plane R2 has a circular horizon (one infinite point for every angle
θ ), so does the hyperbolic plane H, and it can be identified with R∪{i∞}. The
group of isometries (geometry-preserving transformations H → H) is SL2(R),
which acts on H as fractional linear transformations τ �→ aτ+b

cτ+d , and sends the
horizon to itself.

It turns out that any compact surface + can be realised (in infinitely many
different ways) as the compactification of the space H/
 of orbits, for some
discrete subgroup 
 of SL2(R). The compactification amounts to including
finitely many 
-orbits of horizon points. For the most important example,
H/SL2(Z) can be identified with the sphere with one puncture, correspond-
ing to the single compactification orbit Q ∪ {i∞}. Those points in Q ∪ {i∞}
are called cusps. The 
 of greatest interest in number theory, and to us, are
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those commensurable to SL2(Z): i.e. 
 ∩ SL2(Z) is also an infinite discrete
group with finite index in both 
 and SL2(Z). Their compactification points
will again be the cusps Q ∪ {i∞}. Examples of such groups are SL2(Z) itself,
as well as its subgroups


(N ) = {A ∈ SL2(Z) | A ≡ ±I (mod N )} , (2.1)


0(N ) =
{(

a b
c d

)
∈ SL2(Z)

∣∣ N divides c

}
, (2.2)


1(N ) =
〈

(N ),

(
1 1
0 1

)〉
. (2.3)

For example, H/
0(2) and H/
(2) are spheres with 2 and 3 punctures,
respectively, while e.g. 
0(24) is a torus with 7 punctures.

The modular functions for the compact surface + = H/
 are easy to
describe: they are the meromorphic functions f on H, which are also mero-
morphic at the cusps Q∪{i∞}, and which obey the symmetry f (aτ+b

cτ+d ) = f (τ )

for all

(
a b
c d

)
∈ 
. The precise definition of ‘meromorphic at the cusps’ isn’t

important here. For example, for any 
 obeying(
1 t
0 1

)
∈ 
 iff t ∈ Z , (2.4)

a meromorphic function f (τ ) with symmetry 
 will have a Fourier expansion∑∞
n=−∞ anqn for q = e2π iτ (q is a local coordinate for τ = i∞); then f is

meromorphic at the cusp i∞ iff all but finitely many an , for n < 0, are nonzero.
We say a group 
 is genus-0 when + = H/
 is a sphere. For these 
, there

will be a uniformising function f
(τ) identifying + with the Riemann sphere
C ∪ {∞}. That is, f
 will be the mother-of-all modular functions; i.e., it is a
modular function for 
 with the property that any other modular function f (τ )
for 
 can be written uniquely as a rational function poly( f
(τ))/poly( f
(τ)).
This function f
 is not quite unique (SL2(R) permutes these generating
functions). In genus > 0, two (non-canonical) generating functions will be
needed.

The groups 
 we are interested in are genus-0, contain some 
0(N ), and
obey (2.4). We call such 
 genus-0 groups of Moonshine-type. Cummins [8]
has classified all of these — there are precisely 6486 of them. For these groups
(and more generally a group containing a 
1(N ) rather than a 
0(N )) there is
a canonical choice of generator f
 : we can always choose it uniquely so that
it has a q-expansion of the form q−1 +∑∞n=1 anqn . This choice of generator
is called the Hauptmodul, and will be denoted J
(τ). Some examples are
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J
(1)(τ ) = q−1 + 196884 q + 21493760 q2 + 864299970 q3 + · · · (2.5)

J
0(2)(τ ) = q−1 + 276q − 2048q2 + 11202q3 − 49152q4 + 184024q5 + · · · (2.6)

J
0(13)(τ ) = q−1 − q + 2 q2 + q3 + 2 q4 − 2 q5 − 2 q7 − 2 q8 + q9 + · · · (2.7)

J
0(25)(τ ) = q−1 − q + q4 + q6 − q11 − q14 + q21 + q24 − q26 + · · · . (2.8)

Of course J
(1) is the famous J -function. Exactly 616 of these Hauptmoduls
have integer coefficients (171 of which are the McKay–Thompson series); the
remainder have cyclotomic integer coefficients.

3. The algebraic meaning of the Hauptmodul property

The conceptual gap will be bridged only when we can directly relate the defini-
tion of a Hauptmodul (which is inherently topological), with the ‘replicability’
recursions coming from the twisted denominator identities.

The easiest way to produce functions invariant with respect to some sym-
metry, is to average over the group. For example, given any function f (x), the
average f (x)+ f (−x) is invariant under x ↔ −x . When the group is infinite,
a little more subtlety is required but the same idea can work.

For example, take 
 = SL2(Z) and let p be any prime. Then




(
p 0
0 1

)

 = {A ∈ M2×2(Z) | det(A) = p}

= 


(
p 0
0 1

)
∪

p−1⋃
k=0




(
1 k
0 p

)
. (3.1)

This means that, for any modular function f (τ ) of SL2(Z), f (pτ) will no
longer be SL2(Z)-invariant, but

s(p)
f (τ ) := f (pτ)+

p−1∑
k=0

f

(
τ + k

p

)
(3.2)

is. Considering now f to be the Hauptmodul J , we thus obtain that s(p)
J (τ ) =

P(J (τ ))/Q(J (τ )), for polynomials P, Q. By considering poles and the sur-
jectivity of J , we see that Q must be constant, and hence that s(p)

J must be a

polynomial in J . The same will hold for s(p)
J k .

This implies that there is a monic polynomial Fp(x, y) of degree p + 1 in
x, y, such that

Fp(J (τ ), J (pτ)) = Fp

(
J (τ ), J

(
τ + k

p

))
= 0 ∀k = 0, . . . , p − 1,

(3.3)
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or equivalently

Fp(J (τ ),Y ) = (J (pτ)− Y )
p−1∏
k=0

(
J

(
τ + k

p

)
− Y

)
. (3.4)

For example,

F2(x, y) = (x2 − y)(y2 − x)− 393768 (x2 + y2)− 42987520 xy

− 40491318744 (x + y)+ 12098170833256 . (3.5)

There is nothing special about p being prime; for a composite number m,

the sum in e.g. (3.2) becomes a sum over

(
m/d k

0 d

)
, for all divisors d of m

and all 0 ≤ k < d. Write Am for the set of all these pairs (d, k). Note that its
cardinality ‖Am‖ is ψ(m) = m

∏
p|m(1+ 1/p).

Definition 1. Let h(τ ) = q−1+∑∞n=1 anqn. We say that h(τ ) satisfies a modu-
lar equation of order m > 1, if there is a monic polynomial Fm(x, y) ∈ C[x, y]
such that Fm is of degree ψ(m) in both x and y, and

Fm(h(τ ),Y ) =
∏

(d,k)∈Am

(
h

(
mτ

d2 +
k

d

)
− Y

)
. (3.6)

It is unnecessary to assume that the series h converges; it is enough to require
that (3.6) holds formally at the level of q-series. An easy consequence of this
definition is that Fm(x, y) = Fm(y, x).

We’ve learnt above that the Hauptmodul J satisfies a modular equation of
all orders m > 1. In fact similar reasoning verifies, more generally, that:

Proposition 1. (a) If J
(τ) is the Hauptmodul of some genus-0 group 


of Moonshine-type, with rational coefficients, then J
 satisfies a modular
equation for all m coprime to N.

(b) [10] Likewise, any McKay–Thompson series Tg(τ ) (1.1) satisfies a modular
equation for any m coprime to the order of the element g ∈ M.

Recall there are 616 such J
 , and 171 such Tg. The N in part (a) is the level
of any congruence group 
0(N ) contained in 
. Part (b) involves showing that
the recursions such as (1.2) imply the modular equation property q-coefficient-
wise.

Note that the Hauptmodul property of J
 plays a crucial role in the proof that
they satisfy modular equations. Could the converse of Proposition 1(a) hold?
Such a converse combined with Proposition 1(b) would fill the conceptual gap.

Unfortunately, that is too naive. In particular, h(τ ) = q−1 also satisfies a
modular equation for any m > 1: take Fm(x, y) = (xm − y)(ym − x). Using
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Tchebychev polynomials, it is easy to show that h(τ ) = q−1 + q (which is
essentially cosine) likewise satisfies a modular equation for any m.

However, Kozlov, in a thesis directed by Meurman, proved the following
remarkable fact:

Theorem 2. [22] If h(τ ) = q−1+∑∞n=1 anqn satisfies a modular equation for
all m > 1, then either h = J , h(τ ) = q−1, or h(τ ) = q−1 ± q.

His proof breaks down when we no longer have all those modular equations,
but it gives us confidence to hope that modular equations could provide an
algebraic interpretation of what it means to be a Hauptmodul. Indeed that is
the case!

Theorem 3. [9] Suppose a formal series h(τ ) = q−1 + ∑∞n=1 anqn satis-
fies a modular equation for all m ≡ 1 (mod K ). Then h(τ ) is holomorphic
throughout H. Write


h :=
{(

a b
c d

)
∈ SL2(R) | h

(
aτ + b

cτ + d

)
= h(τ ) ∀τ ∈ H

}
. (3.7)

(a) If 
h �=
{
±
(

1 n
0 1

)
| n ∈ Z

}
, then h is a Hauptmodul for 
h, and 
h

obeys (2.4) and contains 
0(N ) for some N |K∞.

(b) If 
h =
{
±
(

1 n
0 1

)
| n ∈ Z

}
, and the coefficients an of h are algebraic

integers, then h(z) = q−1 + ξq where ξ = 0 or ξgcd(K ,24) = 1.

By ‘N |K∞’ we mean any prime dividing N also divides K . Of course part
(a) implies that 
h is genus-0 and of moonshine-type. When h = Tg , K =
o(g) works (see Prop.1(b)), and all coefficients are integers, and so Theorem
3 establishes the Hauptmodul property and fills the conceptual gap. The proof
of Theorem 3 is difficult: if h(τ1) = h(τ2), then it is fairly easy to prove that
locally there is an invertible holomorphic map α sending an open disc about
τ1 onto one about τ2; the hard part of the proof is to show that α extends to a
globally invertible map H → H (and hence lies in 
h).

The converse of Theorem 3 is also true:

Proposition 2. [9] If h(τ ) = q−1+∑∞n=1 anqn is a Hauptmodul for a group 
h

of moonshine-type, and the coefficients an all lie in the cyclotomic field Q[ξN ],
then there exists a generalised modular equation for any order m coprime to
N. Moreover, the field generated over Q by all coefficients an will be a Galois
extension of Q, with Galois group of exponent 2.

The exponent 2 condition means that that field is generated over Q by a num-
ber of square-roots of rationals. We write ξN for the root of unity exp[2π i/N ].
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The condition that all an lie in the cyclotomic field should be automatically
satisfied. By a ‘generalised modular equation’ of order m > 1, we mean that
there is a polynomial Fm(x, y) ∈ Q[ξN ][x, y] such that Fm is monic of degree
ψ(m) in both x and y, and

Fm((σm .h)(τ ),Y ) =
∏

(d,k)∈Am

(
h

(
mτ

d2
+ k

d

)
− Y

)
. (3.8)

We also have the symmetry condition Fm(x, y) = (σm .Fm)(y, x). Here, σm ∈
Gal(Q[ξN ]/Q) ∼= Z∗N is the Galois automorphism sending ξN to ξm

N ; it acts
on h and Fm coefficient-wise. The beautiful relation of modular functions to
cyclotomic fields and their Galois groups is classical and is reviewed in e.g.
Chapter 6 of [23].

Proposition 2 explains why Proposition 1 predicts more modular equations
than Theorem 3 assumes: if all coefficients an in Theorem 3 are rational, then
indeed we’d get that h would satisfy an ordinary modular equation for all m
coprime to n.

The lesson of Moonshine is that we probably shouldn’t completely
ignore the exceptional functions in Theorem 3(b). It is tempting to call
those 25 functions modular fictions (following John McKay). So a question
could be:

Question 1. What is the question in e.g. vertex algebras, for which the modular
fictions are the answer?

Theorem 3 requires many more modular equations than is probably nec-
essary. In particular, the computer experiments in [4] show that if h has
integer coefficients and satisfies modular equations of order 2 and 3, then f
is either a Hauptmodul, or a modular fiction. Cummins has made the following
conjecture:

Conjecture 1. [7] Let p1, p2 be distinct primes, and ai ∈ C. Suppose h(τ ) =
q−1 +∑∞n=1 anqn satisfies modular equations of order p1, p2. Then

(a) If 
h �=
{
±
(

1 n
0 1

)
| n ∈ Z

}
, then h is a Hauptmodul for 
h, and 
h

obeys (2.4) and contains 
1(N ) for some N coprime to p1, p2.

(b) If 
h =
{
±
(

1 n
0 1

)
| n ∈ Z

}
, then h(z) = q−1 + ξq where ξ = 0 or

ξ gcd(p1−1,p2−1) = 1.

We are far from proving this. However, if h obeys a modular equation of
order m for all m with the property that all prime divisors p of m obey p ≡ 1
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(mod K ) for some fixed K , then h is either a Hauptmodul for 
h containing
some 
1(N ), or h is ‘trivial’ (see [7] for details and a proof). The converse
again is true (again provided the ai are cyclotomic).

It would be interesting to apply similar arguments to fill the related con-
ceptual gaps of Modular Moonshine [3] and Baby Moonshine [16]. Modular
equations have many uses in number theory, besides these in Moonshine —
see e.g. [6] for important applications to class field theory. Modular equations
are also closely related to the notion of replicable functions (see e.g. [27]).

4. The meaning of moonshine

As mentioned earlier, the greatest open challenge for Monstrous Moonshine is
to find a second independent proof. In this section we offer some thoughts on
what this proof may involve; see [14] for details.

A powerful guide to Monstrous Moonshine has been rational conformal field
theory (RCFT). Modularity arises in RCFT through the conjunction of two
standard pictures:

(1) canonical quantisation presents us with a state space V , carrying a rep-
resentation of the symmetries of the theory, a Hamiltonian operator
H , etc. In RCFT, we take graded traces such as TrV q H , defining the
coefficients of our q-expansions.

(2) The Feynman picture interprets the amplitudes using path integrals. In
RCFT this permits us to interpret these graded traces as functions (sec-
tions) over moduli spaces, and hence they carry actions by the relevant
mapping class groups such as SL2(Z). This gives us modularity.

In Monstrous Moonshine, canonical quantisation is successfully abstracted
into the language of vertex operator algebras (VOAs). The present proof of the
Conway–Norton conjectures however ignores the Feynman side, and with it
the lesson from RCFT that modularity is ultimately topological. Perhaps this is
where to search for a second more conceptual proof. After all, the proof of the
modularity of VOA characters [30] — perhaps the deepest result concerning
VOAs — follows exactly this RCFT intuition. Let’s briefly revisit the RCFT
treatment of characters.

In an RCFT, with ‘chiral algebra’ (i.e. VOA) V , the character of a ‘sector’
(i.e. V -module) M is really a ‘one-point function’ on the torus. Fix a torus
C/(Z + Zτ), a local parameter z ∈ C at the marked point (which we can
take to be 0), and a ‘field insertion’ v (which can belong to any V -module,
but for now we’ll take v ∈ V ). The local parameter z is needed for sewing
surfaces together at the marked points (a fundamental process in RCFT). For
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convenience assume that Hv = kv (this eigenvalue k ∈ Q is called the
‘conformal weight’ of v). The character is given by

χM (τ, v, z) := TrM Y (v, e2π iz) q H−c/24 = e−2kπ iz TrMo(v) q H−c/24 , (4.1)

where c is the ‘central charge’ (c = 24 in Monstrous Moonshine), and o(v) is
an endomorphism commuting with H (also called L0). We get a moduli space
M̂1,1 of ‘extended tori’, i.e. tori with a choice of local parameter z at 0, and
what naturally acts on these χM is the mapping class group 
̂1,1 of M̂1,1.

This ‘extended’ moduli space M̂1,1 is larger than the usual moduli space
M1,1 = H/SL2(Z) of a torus with one marked point, and the mapping class
group 
̂1,1 is larger than the familiar mapping class group 
1,1 = SL2(Z). In
fact, 
̂1,1 can be naturally identified with the braid group

B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉 , (4.2)

and acts on the characters by

σ1.χM(τ, v, z) = e−2π ik/12 χM (τ + 1, v, z) , (4.3)

σ2.χM(τ, v, z) = e−2π ik/12 χM

(
τ

1− τ
,

v

(1− τ)k
, z

)
. (4.4)

Thus in RCFT it is really B3 and not SL2(Z)which acts. This is usually ignored
because we specialise χM , and more fundamentally because typically we con-
sider only insertions v ∈ V , and what results is a true action of the modular
group SL2(Z). But taking v from other V -modules is equally fundamental in
the theory, and for those insertions we only get a projective action of SL2(Z)
(though again a true action of B3).

This is just a hint of a much more elementary phenomenon. Recall that a
modular form f for 
 := SL2(Z) is a holomorphic function f : H → C,
which is also holomorphic at the cusps, and which obeys

f

(
aτ + b

cτ + d

)
= μ

(
a b
c d

)
(cτ + d)k f (τ ) ∀

(
a b
c d

)
∈ 
 , (4.5)

for some k ∈ Q (called the weight) and some function μ (called the multiplier)
with modulus |μ| = 1. For example, the Eisenstein series

Ek(τ ) =
∑

(m,n)∈Z2

′ (mτ + n)−k (4.6)

for even k > 2 is a modular form of weight k with trivial multiplier μ, but the
Dedekind eta

η(τ) = q1/24
∞∏

n=1

(1− qn) (4.7)
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is a modular form of weight k = 1/2 with a nontrivial multiplier, given by

μ

(
a b
c d

)
= exp

(
π i

(
a + d

12c
− 1

2
−

c−1∑
i=1

i

c

(
di

c
−
⌊

di

c

⌋
− 1

2

)))
(4.8)

when c > 0.
H can be regarded as a homogeneous space SL2(R)/SO2(R). Nowadays we

are taught to lift a modular form f from H to SL2(R):

φ f

(
a b
c d

)
:= f

(
ai+ b

ci+ d

)
(ci+ d)−k μ

(
a b
c d

)∗
. (4.9)

We’ve sacrificed the implicit SO2(R)-invariance and explicit 
-covariance of
f , for explicit SO2(R)-covariance and explicit 
-invariance of φ f . This is sig-
nificant, because compact Lie groups like the circle SO2(R) are much easier
to handle than infinite discrete groups like SL2(Z). The result is a much more
conceptual and powerful picture.

Thus a modular form should be regarded as a function on the orbit space
X := 
\H. Remarkably, this 3-space X can be naturally identified with the
complement of the trefoil! We are thus led to ask:

Question 2. Do modular forms for SL2(Z) see the trefoil?

An easy calculation shows that the fundamental group π1(X) is in fact
the braid group B3! It is a central extension of SL2(Z) by Z. In particular,
the quotient of B3 by its centre 〈(σ1σ2σ1)

2〉 is PSL2(Z); the isomorphism
B3/〈(σ1σ2σ1)

4〉 ∼= SL2(Z) is defined by the (reduced and specialised) Burau
representation

σ1 �→
(

1 1
0 1

)
, σ2 �→

(
1 0
−1 1

)
. (4.10)

Through this map, which is implicit in (4.3) and (4.4), B3 acts on modular
forms, and the multiplier μ can be lifted to B3. For example, the multiplier of
the Dedekind eta becomes

μ(β) = ξ
degβ
24 ∀β ∈ B3 , (4.11)

where ‘degβ’ denotes the crossing number or degree of a braid. This is vastly
simpler than (4.8)!

In hindsight it isn’t so surprising that the multiplier is simpler as a function
of braids than of 2×2 matrices. The multiplierμwill be a true representation of
SL2(Z) iff the weight k is integral; otherwise it is only a projective representa-
tion. And the standard way to handle projective representations is to centrally
extend. Of course number theorists know this, but have preferred using the
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minimal necessary extension; as half-integer weights are the most common,
they typically only look at a Z2-extension of SL2(Z) called the metaplectic
group Mp2(Z). But unlike B3, Mp2(Z) isn’t much different from the modular
group and the multipliers don’t simplify much when lifted to Mp2(Z). At least
in the context of modular forms, the braid group can be regarded as the uni-
versal central extension of the modular group, and the universal symmetry of
its modular forms.

Topologically, SL2(R) is the interior of the solid torus, so its universal cover-

ing group S̃L2(R) will be the interior of the solid helix, and a central extension

by π1 ∼= Z of SL2(R). S̃L2(R) can be realised [25] as the set of all pairs((
a b
c d

)
, n

)
where

(
a b
c d

)
∈ SL2(R) and n ≡ 0, 1, 2, 3 (mod 4) depend-

ing on whether c = 0 and a > 0, c < 0, c = 0 and a < 0, or c > 0,
respectively. The group operation is (A,m)(B, n) = (AB,m + n + τ), where
τ ∈ {0,±1} is called the Maslov index. Just as SL2(Z) is the set of all inte-
gral points in SL2(R), the braid group B3 is the set of all integral points in

S̃L2(R).
Incidentally, similar comments apply when SL2(Z) is replaced with other

discrete groups — e.g. for 
(2) the relevant central extension is the pure braid
group P3. It would be interesting to topologically identify the central extension
for all the genus-0 groups 
g of Monstrous Moonshine.

So far we have only addressed the issue of modularity. A more subtle ques-
tion in Moonshine is the relation of the Monster to the genus-0 property.
Our best attempt at answering this is that the Monster is probably the largest
exceptional 6-transposition group [28]. This relates to Norton’s generalised
Moonshine through the notion of quilts (see e.g. [17]). The relation of ‘6’ to
genus-0 is that H/
(n) is genus-0 iff n < 6, while H/
(6) is ‘barely’ genus
1. The notion of quilts, and indeed the notion of generalised Moonshine and
orbifolds in RCFT, is related to braids through the right action of B3 on any
G × G (for any group G) given by

(g, h).σ1 = (g, gh) , (g, h).σ2 = (gh−1, h) . (4.12)

Limited space has forced us to be very sketchy here. For more on all these
topics, see [14]. We suggest that the braid group B3 and related central exten-
sions may play a central role in a new, more conceptual proof of the Monstrous
Moonshine conjectures.
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Abstract

We give a summary of R. Borcherds’ solution (with some modifications)
to the following part of the Conway-Norton conjectures: Given the Mon-
ster M and Frenkel-Lepowsky-Meurman’s moonshine module V �, prove the
equality between the graded characters of the elements of M acting on V �

(i.e., the McKay-Thompson series for V �) and the modular functions pro-
vided by Conway and Norton. The equality is established using the homology
of a certain subalgebra of the monster Lie algebra, and the Euler-Poincaré
identity.

1. Introduction

In this paper we present a summary of R. Borcherds’ proof of part of
the Conway-Norton “monstrous moonshine" conjectures: the proof that the
McKay-Thompson series of the Monster simple group acting on the known
structure V � [FLM88] do indeed correspond to the Hauptmoduls presented
in Conway and Norton [CN79]. Interested readers should certainly consult
primary sources, a few of which are [B86], [FLM84], [FLM88], and [B92].
The simplification of the original proof, presented in this paper, can be found
in [J98] and [JLW95]. See also Borcherds’ survey articles about moonshine
[B94] and [B98]. A brief overview of the historical development of the sub-
ject can be found in [FLM88]. What the reader will find in this paper is an
outline of the proof itself, with references to particular results needed to estab-
lish the equality between the McKay-Thompson series for V � and the Laurent
expansions of the relevant modular functions.

Given a group G and a Z-graded G-module V =∐n∈Z V[n], with dimV[n] <
∞ for all n ∈ Z truncated so V[k] = 0 for k < N for some fixed N ∈ Z, the
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McKay-Thompson series for g ∈ G acting on V is defined to be the graded
trace

Tg(q) =
∑
n>N

tr(g|V[n])qn.

The moonshine conjectures of Conway and Norton in [CN79] include the con-
jecture that there should be an infinite-dimensional representation of the (not
yet constructed) Fischer-Griess Monster simple group M such that the McKay-
Thompson series Tg for g ∈ M acting on V have coefficients that are equal to
the coefficients of the q-series expansions of certain modular functions. After
the construction of M [Gr82], a “moonshine module" V � for the Monster
simple group was constructed [FLM84], [FLM88] and many of its proper-
ties, including the determination of some of its McKay-Thompson series, were
proven. The critical example involves the modular function j (τ ), a generator
for the field of functions invariant under the action of SL2(Z) on the upper
half plane. Let q = e2π iτ . Then the normalized q-series expansion denoted by
J (q) = j (q)−744 is one of the Hauptmoduls that occur in the moonshine cor-
respondence [CN79]. Results of [FLM88] include the vertex operator algebra
structure of V �, with the conformal grading V � = ∐i≥0 V �

i , as an M-module,

and the graded dimension correspondence dim V �
i ↔ c(i − 1) to the coeffi-

cients of the modular function J (q) =∑n≥−1 c(n)qn . In other words, shifting

the grading by defining V �
[i−1] = V �

i , we have Te(q) = J (q) as formal series,
where e ∈ M is the identity element.

After the above results, the nontrivial problem of computing the rest of the
McKay-Thompson series of Monster group elements acting on V � remained.
Borcherds showed in [B92] that the McKay-Thompson series are the expected
modular functions. The argument can be summarized as follows: Borcherds
establishes a product formula

p(J (p)− J (q)) =
∏

i=1,2,..., j=−1,1,...

(1− pi q j )c(i j).

This formula is used in the proof, but first note that the formula leads to
recursion formulas for the coefficients of the q-series expansion of J (q), and
hence to recursions for the dimensions of the homogeneous components of
V �. The approach of [B92] is to establish a product formula involving all
of the McKay-Thompson series Tg(q) of elements of g ∈ M acting on V �,
analogous to the above identity for Te(q) = J (q). The more general product
formula in turn leads to a set of recursion formulas that determine the coeffi-
cients of the series, given a (large) set of initial data. For example, to determine∑

tr(g|V �
i+1)q

i = ∑i≥−1 cg(i)qi it is sufficient to compute four of the first
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five coefficients of
∑

tr(gk |V �
i+1)q

i , k ∈ Z, g ∈ M. One also determines
that the Hauptmoduls listed in [CN79] satisfy the same recursion relations and
initial data as the McKay-Thompson series for V �.

The crucial product identity for the McKay-Thompson series is obtained
by Borcherds from the Euler-Poincaré identity for the homology groups of
a particular Lie algebra, the “monster" Lie algebra. This Lie algebra is con-
structed using the tensor product of the vertex operator algebra V � and a vertex
algebra associated with a two-dimensional Lorentzian lattice. The monster
Lie algebra m constructed in [B92] is an infinite-dimensional Z × Z-graded
Lie algebra. The Lie algebra m is then shown to be a generalized Kac-
Moody algebra, or a Borcherds algebra. The “No-ghost" theorem of string
theory is used as a step in establishing an isomorphism between the Z × Z-
homogeneous components of m and the weight spaces of V �. The product
formula for p(J (p) − J (q)) is interpreted as the denominator formula for
the Lie algebra m and used to determine the simple roots. The results per-
taining to the homology groups of Lie algebras of [GL76] are then extended
to include the class of Borcherds algebras and applied to a subalgebra n−
of m to obtain the desired family of identities. Of course, the recursions
and initial data must also be established for the Hauptmoduls; see [Koi] and
[Fer96].

In this paper we will actually discuss a modification of Borcherds proof,
in which it is not necessary to generalize the homology results of [GL76].
We shall compute the homology groups as in [J98], [JLW95] with respect
to a smaller subalgebra u− ⊂ n−. We shall use u− because it is a free Lie
algebra, and therefore computing the homology groups is straightforward. The
Euler-Poincaré identity applied to the subalgebra u− and the trivial u−-module
C leads to recursions sufficient to establish the correspondence between the
McKay-Thompson series for V � and the Hauptmoduls specified by Conway
and Norton [CN79].

2. Vertex operator algebras

We begin by recalling the definition of vertex operator algebra and vertex alge-
bra. The following definition is a variant of Borcherds’ original definition in
[B86]. For a detailed discussion the reader can consult [FLM88], [FHL93],
[DL93].

Definition 1. A vertex operator algebra, (V,Y, 1, ω), consists of a vector
space V , distinguished vectors called the vacuum vector 1 and the confor-
mal vector ω, and a linear map Y (·, z) : V → (End V )[[z, z−1]] which
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is a generating function for operators vn , i.e., for v ∈ V, Y (v, z) =∑
n∈Z vnz−n−1, satisfying the following conditions:

(V1) V =∐n∈Z Vn; for v ∈ Vn , n = wt(v)
(V2) dim Vn <∞ for n ∈ Z
(V3) Vn = 0 for n sufficiently small
(V4) If u, v ∈ V then unv = 0 for n sufficiently large
(V5) Y (1, z) = 1
(V6) Y (v, z)1 ∈ V [[z]] and limz→0 Y (v, z)1 = v, i.e., the creation property

holds
(V7) The following Jacobi identity holds:

z−1
0 δ

(
z1 − z2

z0

)
Y (u, z1)Y (v, z2)− z−1

0 δ

(
z2 − z1

−z0

)
Y (v, z2)Y (u, z1)

= z−1
2 δ

(
z1 − z0

z2

)
Y (Y (u, z0)v, z2). (2.1)

The following conditions relating to the vector ω also hold;

(V8) The operators ωn generate a Virasoro algebra i.e., if we let L(n) =
ωn+1 for n ∈ Z then

[L(m), L(n)] = (m− n)L(m+ n)+ (1/12)(m3−m)δm+n,0(rank V )
(2.2)

(V9) If v ∈ Vn then L(0)v = (wt v)v = nv
(V10) d

dz Y (v, z) = Y (L(−1)v, z).

Definition 2. A vertex algebra (with conformal vector) (V, Y, 1, ω) is a vector
space V with all of the above properties except for V2 and V3.

For a vertex algebra V , and v ∈ V with wt v = n, let (−z−2)L(0)v =
(−z−2)nv. This action extends linearly to all of V .

Definition 3. A bilinear form on a vertex algebra V is invariant if for
v, u, w ∈ V

(Y (v, z)u, w) = (u,Y (ezL(1)(−z−2)L(0)v, z−1)w).

We note that an invariant form satisfies (u, v) = 0 unless wt(u) = wt(v) for
u, v homogeneous elements of V .

The tensor product of vertex algebras is also a vertex algebra [FHL93],
[DL93]. Given two vertex algebras (V,Y, 1V , ωV ) and (W, Y, 1W , ωW ) the
vacuum of V ⊗ W is 1V ⊗ 1W and the conformal vector ω is given by
ωV ⊗ 1W + 1V ⊗ ωW . If the vertex algebras V and W both have invariant
forms in the sense of Definition 3 then it follows from the definition of the



Borcherds’ Proof of the Conway-Norton Conjecture 223

tensor product that the form on V ⊗W given by the product of the forms on V
and W is also invariant.

One large and important class of vertex algebras are those associated with
even lattices. Although the moonshine module V � is not a vertex operator
algebra associated with a lattice (it is a far more complicated object), it is
constructed using the vertex operator algebra associated to the Leech lattice.
The vertex algebra used in the proof of the moonshine correspondence is the
tensor product of the moonshine module and a vertex algebra associated with
a two- dimensional Lorentzian lattice.

Given an even lattice L the vertex algebra VL [B86] associated to the lattice
has underlying vector space

VL = S(ĥ−Z)⊗ C{L}.
(We are using the notation and constructions in [FLM88].) Here we take h =
L ⊗Z C, and ĥ−Z is the negative part of the Heisenberg algebra (with c central)
defined by

ĥZ =
∐
n∈Z

h⊗ tn ⊕ Cc ⊂ h⊗ C[[t]] ⊕ Cc,

so that

ĥ−Z =
∐
n<0

h⊗ tn.

The symmetric algebra on ĥ−Z is denoted S(ĥ−Z). Let L̂ be a central extension
of L by a group of order 2, i.e.,

1 → 〈κ|κ2 = 1〉 → L̂
−→L → 1,

with commutator map given by κ 〈α,β〉, α, β ∈ L . Define C{L} to be the induced

module IndL̂〈κ〉C, where κ acts on C as multiplication by −1.

If a ∈ L̂ denote by ι(a) the element a ⊗ 1 ∈ C{L}. We will use the notation
α(n) = α ⊗ tn ∈ S(ĥ−Z). The vector space VL is spanned by elements of the
form:

α1(−n1)α2(−n2) . . . αk(−nk)ι(a) (2.3)

where a ∈ L̂, αi ∈ h and ni ∈ N. The space VL , equipped with Y (v, z)
as defined in [FLM88] satisfies properties V1 and V4 − V10, so is a vertex
algebra with conformal vector ω.

A vertex algebra VL constructed from an even lattice L automatically has an
invariant bilinear form [B86], which can be defined using the contragredient
module V ′L [FHL93].
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3. Construction of the monster Lie algebra from the moonshine module.

The moonshine module V �, a graded M-module and vertex operator algebra,
is constructed in [FLM88]. The following results describing the structure and
properties of V � appear in Corollary 12.5.4 and Theorem 12.3.1 of [FLM88],
part of which we restate here for the convenience of the reader. The invariance
of the form in the sense of Definition 3 follows from the construction and
results of [Li94]; see [J98]. Recall that J (q) denotes the Laurent, or q-series,
expansion of the modular function j (τ ), normalized so that the coefficient of
q0 is zero.

Theorem 1.

(i) The graded dimension of the moonshine module V � is J (q).
(ii) V � is a vertex operator algebra of rank 24.

(iii) M acts in a natural way as automorphisms as of the vertex operator
algebra V �, i.e.,

gY (v, z)g−1 = Y (gv, z)

for g ∈ M, v ∈ V �

(iv) There is an invariant positive definite hermitian form (·, ·) on V � which
is also invariant under M.

In [B92] the monster Lie algebra is constructed using V � and the vertex
algebra associated with a Lorentzian lattice as follows. Let &1,1 = Z ⊕ Z be
the rank two Lorentzian lattice with bilinear form 〈·, ·〉 given by the matrix(

0 −1
−1 0

)
. The vertex algebra V&1,1 has a conformal vector, and is given

the structure of a trivial M-module. Since V&1,1 is a vertex algebra associated
with an even lattice it has an invariant bilinear form, which we consider as
M-invariant under the trivial group action. Note that V&1,1 is not a vertex oper-
ator algebra, because it does not satisfy conditions (V2) or (V3). For example,
the weight of an element of the form (2.3) is

∑k
i=1 ni + 1

2 〈a, a〉, ni > 0 ∈ Z,
a ∈ &1,1, which can be less than zero and arbitrarily large in absolute value.

Lemma 3.1. The tensor product V = V � ⊗ V&1,1 is a vertex algebra with
conformal vector, and an invariant bilinear form, which is also M-invariant.

Given a vertex operator algebra V , or a vertex algebra V with conformal
vector ω and therefore an action of the Virasoro algebra, let

Pi = {v ∈ V |L(0)v = iv, L(n)v = 0 if n > 0}.
Thus Pi consists of the lowest weight vectors for the Virasoro algebra of
conformal weight i . (P1 is called the physical space). Let u ∈ P0, then
wtL(−1)u = wtω + wtu − 1 = 1 and L−1 P0 ⊂ P1.
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Lemma 3.2. The space P1/L(−1)P0 is a Lie algebra with bracket given by

[u + L(−1)P0, v + L(−1)P0] = u0v + L(−1)P0.

For u, v ∈ P1.

Proof . Let u, v ∈ P1. By formula (8.8.7) of [FLM88] (see [B86])

Y (u, z)v = ezL(−1)Y (v,−z)u. (3.1)

Taking coefficients of z−1 on both sides of (3.1) yields

u0v = −v0u +
∞∑

k=1

(−1)k−1L(−1)kvku ∈ −v0u + L(−1)P0.

Thus the bracket is anti-symmetric. Let u, v, w ∈ P1 The Jacobi identity (V7)
implies

u0v0w − v0u0w = (u0v)0w

(u0(v0w))− (v0(u0w))− ((u0v)0w) = 0.

Since we have shown anti-symmetry (modulo L(−1)P0) the above is equiva-
lent to the usual Lie algebra Jacobi identity for [·, ·] on P1/L(−1)P0.

We can now give the definition of Borcherds’ monster Lie algebra. The ten-
sor product V = V � ⊗ V&1,1 is a vertex algebra with conformal vector, and
invariant bilinear form. This form induces a bilinear form on the Lie algebra
P1/L−1 P0. Note that if u, v, w ∈ P1, then by invariance, and the fact that
L(1)u = 0

(Y (u, z)v,w) = (v,Y (ezL(1)(−z−2)L(0)u, z−1)w)

= −(v,Y (u, z−1)z−2w) = −(v,
∑
n∈Z

unzn−1). (3.2)

Taking the coefficient of z−1 we have for u, v, w ∈ P1/L(−1)P0

(u0v,w) = −(v, u0w),

and so the form on P1/L(1)P0 is invariant in the usual Lie algebra sense.
In addition to the weight grading, the vertex algebra V � ⊗ V&1,1 is graded

by the lattice &1,1. For u, v elements of degree r, s ∈ &1,1, the invariant form
satisfies (u, v) = 0 unless r = s.

Let N (·, ·) denote the nullspace of the bilinear form on P1 so N (·, ·) = {u ∈
P1 | (u, v) = 0 ∀v ∈ P1}. Since, for u = L(−1)v, v ∈ P0, w ∈ P1, it is
immediate that (L(−1)v,w) = (v, L(1)w) = 0, we see L(−1)P0 ⊂ N (·, ·).
This in conjunction with Lemma 3.2 ensures the following is a Lie algebra.
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Definition 4. The monster Lie algebra m is defined by

m = P1/N (·, ·).
The monster Lie algebra is graded by the Lorentzian lattice &1,1 by con-

struction. Elements of m can be written as
∑

u ⊗ ver , where u ∈ V � and

ver = vι(er ) ∈ V&1,1 . Here, a section of the map &̂1,1
−→&1,1 has been chosen

so that er ∈ &̂1,1 satisfies er = r ∈ &1,1. There is a grading of m by the
lattice defined by deg(u ⊗ ver ) = r . It follows from the construction that the
Lie algebra m has a Lie invariant bilinear form, whose radical is zero.

In order to establish the equality between the coefficients of the McKay-
Thompson series for V � and the given Hauptmoduls, it is necessary to deter-
mine the dimensions of the components of m of degrees r ∈ &1,1. Borcherds
[B92] computes the dimensions by using Theorem 2 below, which uses the
No-ghost theorem of string theory. For a proof of the No-ghost theorem see
[GT72], [B92], or the appendix of [J98] for one written more algebraically.

Theorem 2. Let V be a vertex operator algebra with the following properties:

i. V has a symmetric invariant nondegenerate bilinear form.
ii. The central element of the Virasoro algebra acts as multiplication by 24.

iii. The weight grading of V is an N-grading of V , i.e., V = ∐∞n=0 Vn, and
dim V0 = 1.

iv. V is acted on by a group G preserving the above structure; in particular
the form on V is G-invariant.

Let P1 = {u ∈ V ⊗ V&1,1 |L(0)u = u, L(i)u = 0, i > 0}. The group G acts
on V ⊗ V&1,1 via the trivial action on V&1,1 . Let Pr

1 denote the subspace of
P1 of degree r ∈ &1,1. Then the quotient of Pr

1 by the nullspace of its bilinear
form is isomorphic as a G-module with G-invariant bilinear form to V1−〈r,r〉/2

if r �= 0 and to V1 ⊕ C2 if r = 0.

Applying Theorem 2 to V = V �⊗V&1,1 we see that the monster Lie algebra
has (m, n) ∈ Z× Z homogeneous subspaces isomorphic to the weight spaces
V �

mn+1 when (m, n) �= (0, 0), that is, m(m,n) = V �
[mn]. We have shown:

n+ =
∐

m>0,n≥−1

m(m,n),

with

m(m,n) � V �
mn+1

and similarly for n−.
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4. The structure of the monster Lie algebra

A crucial step in [B92] is to identify m = P1/N (·, ·) with a Lie algebra given
by a generalization of a Cartan matrix. This allows one to be able to compute
the homology groups of the trivial module C with respect to an appropriate
subalgebra of m, as can be done for symmetrizable Kac-Moody Lie algebras
[GL76], [Liu92].

The Lie algebra g(A) associated to a symmetrizable matrix A is introduced
in [K90] and [Mo67], but the systematic study of the case where A satisfies
conditions B1-B3 below was carried out by Borcherds. Borcherds algebras
have many properties in common with symmetrizable Kac-Moody algebras
such as an invariant bilinear form and a root lattice grading. One notable dif-
ference is that there may be simple imaginary roots in the root lattice. This is
a desirable property in the monster case m because we wish to associate a root
grading to the hyperbolic Z× Z-grading inherited from V&1,1 .

We review the construction of the Borcherds algebra g(A) of [B88]. Let I be
a (finite or) countable index set and let A = (ai j )i, j∈I be a matrix with entries
in C, satisfying the following conditions:

(B1) A is symmetric.
(B2) If i �= j (i, j ∈ I ), then ai j ≤ 0.
(B3) If aii > 0 (i ∈ I ), then 2ai j/aii ∈ Z for all j ∈ I .

Let g′(A) be the Lie algebra with generators hi , ei , fi , i ∈ I , and the following
defining relations: For all i, j, k ∈ I ,[

hi , h j
] = 0,

[
ei , f j
]− δi j hi = 0,

[hi , ek]− aikek = 0,
[
hi , fk
]+ aik fk = 0

and Serre relations

(ad ei )
−2ai j/aii+1e j = 0, (ad fi )

−2ai j/aii+1 f j = 0

for all i �= j with aii > 0, and finally

[ei , e j ] = 0, [ fi , f j ] = 0

whenever ai j = 0.
Let h = ∑i∈I Chi , n± the subalgebra generated by the elements ei (resp.

the fi ) for i ∈ I = 〈ei 〉. As in the Kac-Moody case, the simple roots αi ∈
(h)∗ are defined to satisfy (αi , α j ) = ai j . Also as in the Kac-Moody case, we
may have linearly dependent simple roots αi and we extend the Lie algebra
as in [GL76] and [Le79] by an appropriate abelian Lie algebra d of degree
derivations, chosen so that the simple roots are linearly independent in (h�d)∗.
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Definition 5. The Lie algebra g(A) = g′(A) � d is the Borcherds or general-
ized Kac-Moody (Lie) algebra associated to the matrix A. Any Lie algebra of
the form g(A)/c where c is a central ideal is also called a Borcherds algebra.

Versions of the following theorem appear in [B88] and [B95], see also [J98].
This theorem allows us to recognize a Lie algebra associated to a matrix A
satisfying B1− B3.

Theorem 3. Let g be a Lie algebra satisfying the following conditions:

(i) g can be Z-graded as
∐

i∈Z gi , gi is finite dimensional if i �= 0, and g

is diagonalizable with respect to g0.
(ii) g has an involution η which maps gi onto g−i and acts as −1 on

noncentral elements of g0, in particular, g0 is abelian.
(iii) g has a Lie algebra-invariant bilinear form (·, ·), invariant under η,

such that gi and g j are orthogonal if i �= − j , and such that the form
(·, ·)0, defined by (x, y)0 = −(x, η(y)) for x, y ∈ g, is positive definite
on gm if m �= 0.

(iv) g0 ⊂ [g, g].
Then there is a central extension ĝ of a Borcherds algebra and a homomor-
phism, π , from ĝ onto g, such that the kernel of π is in the center of ĝ.

The theorem is proven by inductively constructing a set of generators of
gn , n ∈ Z, consisting of g0 weight vectors, using the form (x, y)0. Proofs
can be found in [B91], see [J98] for the theorem stated exactly as above. An
alternative characterization of Borcherds algebra can be found in [B92].

Theorem 4. The Lie algebra m = P1/N(·, ·) is a Borcherds algebra.

Proof . The abelian subalgebra m(0,0) is spanned by elements of the form 1⊗
α(−1)ι(1) where α ∈ &1,1⊗ZC. Note that m(0,0) is two-dimensional. In order
to apply Theorem 3, grade

∑
(m,n)∈&1,1

m(m,n) by i = 2m + n ∈ Z. With this
grading, m satisfies condition (i) of Theorem 3.

There is an involution η is on the vertex algebra V&1,1 , determined by
η(α) = −α for α ∈ &1,1. Extend the involution to V � ⊗ V&1,1 by taking
η(
∑

u ⊗ v) = ∑(u ⊗ ηv) for u ∈ V �, v ∈ V&1,1 . The invariant form given
by Lemma 3.1 is the required non-degenerate invariant bilinear form, satis-
fying condition (iii) in Theorem 3. Let a = e(1,1), b = e(1,−1). Condition
(iv) follows from the fact that m(0,0) is two-dimensional and that the elements
[u ⊗ ι(a), v ⊗ ι(a−1)] and [ι(b), ι(b−1)] for u, v ∈ V �

2 are two linearly inde-
pendent vectors in m(0,0). Thus the Lie algebra m is the homomorphic image
of some Borcherds algebra g(A) associated to a matrix.
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By computing the action of a ∈ g0 = m(0,0) on v ∈ mr , r ∈ &1,1 one
obtains [a, v] = 〈α, r〉v and Borcherds identifies the elements of &1,1 with the
root lattice of m. The following is Theorem 7.2 of [B92].

Theorem 5. The simple roots of the monster Lie algebra m are the vectors
(1, n), n = −1 or n > 0, each with multiplicity c(n).

This theorem is proven [B92] by identifying the product formula

p(J (p)− J (q)) =
∏

i=1,2,..., j=−1,1,...

(1− piq j )c(i j)

with the denominator identity for the Borcherds algebra m.
Since, by definition of m the radical of the invariant form on m is zero,

the kernel of the homomorphism in Theorem 3 is in the center of g(A). We
construct a symmetric matrix B, determined by the root lattice &1,1 and the
multiplicities given by Theorem 2. We have the Lie algebra m is isomorphic
to g(B)/c, where g(B) is the Borcherds algebra associated to the following
matrix B and c is the full center of g(B):

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 · · · 0 −1 · · · −1 · · ·
0
...

0

−2 · · · −2
...

. . .
...

−2 · · · −2

−3 · · · −3
...

. . .
...

−3 · · · −3

· · ·

−1
...

−1

−3 · · · −3
...

. . .
...

−3 · · · −3

−4 · · · −4
...

. . .
...

−4 · · · −4

· · ·

...
...

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In this summary of Borcherds’ proof of part of the moonshine conjectures
we are able to bypass the part of the argument of [B92] that requires a more
extensive development of the theory of Borcherds algebras including general-
izing the results of [GL76]. Instead, we will use Theorem 6 below, proven in
[J98]. Given a vector space U , let L(U ) denote the free Lie algebra generated
by a basis of U . Let J ⊂ I be the set {i ∈ I |aii > 0}. Note that the matrix
(ai j )i, j∈J is a generalized Cartan matrix. Let gJ be the Kac-Moody algebra
associated to this matrix. Then gJ = n+J ⊕ hJ ⊕ n−J , and gJ is isomorphic to
the subalgebra of g(A) generated by {ei , fi } with i ∈ J .

Theorem 6. Let A be a matrix satisfying conditions B1-B3. Let J and gJ be
as above. Assume that if i, j ∈ I\J and i �= j then ai j < 0. Then

g(A) = u+ ⊕ (gJ + h)⊕ u−,
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where u− = L(
∐

j∈I\J U(n−J ) · f j ) and u+ = L(
∐

j∈I\J U(n+J ) · e j ). The

U(n−J ) · f j for j ∈ I\J are integrable highest weight gJ -modules, and the
U(n+J ) · e j are integrable lowest weight gJ -modules.

Note that the conditions on the ai j given in the theorem are equivalent to the
statement that the Lie algebra has no mutually orthogonal imaginary simple
roots. This is the case for the monster Lie algebra m.

The structure of m can now be summarized. There are natural isomorphisms

m(m,n)
∼= V �

mn+1 as an M-module for (m, n) �= (0, 0),

m(0,0) ∼= C⊕ C, a trivial M-module.

It follows from the definition of m that

m(−1,1) ⊕m(0,0) ⊕m(1,−1) ∼= gl2.

Applying Theorem 6 to the above realization of m by generators and relations
gives

m = u+ ⊕ gl2 ⊕ u−,

with u− = L(U ) and u+ = L(U ′). Where L(U ), L(U ′) are free Lie algebras
over vector spaces that are direct sums of gl2-modules.

U =
∐
i>0

Wi ⊗ V �
i+1 and U ′ =

∐
i>0

W ′
i ⊗ V �

i+1.

For i > 0, V �
i+1 is (as usual) the weight i+1 component of V �, Wi denotes the

(unique up to isomorphism) irreducible highest weight gl2-module of dimen-
sion i on which z acts as i + 1 and W ′

i , i > 0, denotes the irreducible lowest
weight module.

5. The homology computation and recursion formulas

We are now ready to establish the recursion relations for the coefficients of the
McKay-Thompson series

∑
i>0 Tr(g|V �

i+1)q
i = ∑i∈Z cg(i)qi . What follows

is a summary of what has appeared in [JLW95]. See [Ka94] and [KK95] for
similar computations.

To compute the homology of the free Lie algebra L(U ) for a vector space U ,
with coefficients in the trivial module (as in [CE56]), consider the following
exact sequence is a U(L(U )) = T (U )-free resolution of the trivial module:

0 → T (U )⊗U
μ→T (U )

ε→C → 0
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where μ is the multiplication map and ε is the augmentation map. One obtains:

H0(L(U ),C) = C

H1(L(U ),C) = U ∼= L(U )/[L(U ), L(U )]
Hn(L(U ),C) = 0 for n ≥ 2.

Let p, q and t be commuting formal variables. The variables p−1 and
q−1 will be used to index the Z ⊕ Z-grading of our vector spaces. All
of the M-modules we encounter are finite-dimensionally Z ⊕ Z-graded
with grading suitably truncated and will be identified with formal series in
R(M)[[p, q]]. Definitions and results from [Kn73] about the λ-ring R(M)

of finite-dimensional representations of M are applicable to formal series in
R(M)[[p, q]]. We summarize the results of, for example, [Kn73] that we use
below.

The representation ring R(M) is a λ-ring [Kn73] with the λ operation given
by exterior powers, so λi V =∧i V for V ∈ R(M).

In the following discussion we let W, V ∈ R(M). The operation
∧i satisfies

∧i
(W ⊕ V ) =

i∑
n=0

∧n
(W )⊗∧i−n

(V ).

Define ∧
t (W ) =∧0

(W )+∧1
(W )t +∧2

(W )t2 + · · · .
Then ∧

t (V ⊕W ) =∧t (V ) ·
∧

t(W ). (5.1)

The Adams operations �k : R(M)→ R(M) are defined for W ∈ R(M) by:

d
dt log
∧

t (W ) =
∑
n≥0

(−1)n�n+1(W )tn. (5.2)

For a class function f : M → C, define(
�k f
)
(g) = f

(
gk).

for all g ∈ M.
Now let W be a finite-dimensionally Z ⊕ Z- graded representation of

M such that W(γ1,γ2) = 0 for γ1, γ2 > 0. We shall write W =∑
(γ1,γ2)∈N2 W(−γ1,−γ2) pγ1qγ2, identifying the graded space and formal series.

We extend the definition of �k to formal series W ∈ R(M)[[p, q]] by defining
�k(p) = pk , �k(q) = qk and in general,



232 Elizabeth Jurisich

�k

⎛⎝ ∑
(γ1,γ2)∈N2

W(−γ1,−γ2) pγ1 qγ2

⎞⎠ = ∑
(γ1,γ2)∈N2

�k (W(−γ1,−γ2)

)
pkγ1qkγ2 .

Recall the structure of u− and U = H1(u
−) as Z ⊕ Z-graded M-modules.

We index the grading by p−1 and q−1; then write u− and U = H1(u
−) as

elements of R[M][[p, q]]:
u− =

∑
(m,n)

V �
mn+1 pmqn (5.3)

and

U =
∑
(m,n)

V �
m+n pmqn, (5.4)

where here and below the sums are over all pairs (m, n) such that m, n > 0.
Define

Ht (u
−) =

∞∑
i=0

Hi (u
−)t i

and let H(u−) denote the alternating sum Ht (u
−)|t=−1. Recall the Euler-

Poincaré identity: ∧
−1(u

−) = H(u−). (5.5)

Taking log of both sides of (5.5) results in the formal power series identity in
R(M)[[p, q]] ⊗Q:

log
∧
−1(u

−) = log H(u−), (5.6)

where we have

log H(u−) = log(1− H1(u
−)) = −

∞∑
n=1

1

n
H1(u

−)n.

Formally integrating (5.2), with W = u−, gives

log
∧

t (u
−) = −

∑
n≥0

�n+1(u−) (−t)n+1

n + 1
.

Then setting t = −1 gives:

− log
∧
−1(u

−) =
∞∑

k=1

1

k
�k(u−).
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Since H1(u
−) = U , equation (5.6) gives

∞∑
k=1

1

k
�k

⎛⎝∑
(m,n)

V �
mn+1 pmqn

⎞⎠ = ∞∑
k=1

1

k

⎛⎝∑
(m,n)

V �
m+n pmqn

⎞⎠k

(5.7)

We say k|(i, j) if k(m, n) = (i, j) for some (m, n) ∈ Z ⊕ Z. For (i, j) ∈
Z+ ⊕ Z+ we define

P(i, j) =
⎧⎨⎩a = (ars)r,s∈Z+ | ars ∈ N,

∑
(r,s)∈Z+⊕Z+

ars(r, s) = (i, j)

⎫⎬⎭ .
We will use the notation |a| = ∑ ars , a! = ∏ ars !. Expanding both sides of
equation (5.7)∑
(i, j)

∑
k|(i, j)

1

k
�k(V �

i j/k2+1

)
pi q j =

∑
(i, j)

∑
a∈P(i, j)

(|a| − 1)!
a!

∏
r,s∈Z+

(
V �

r+s

)ars pi q j .

(5.8)

Then taking the trace of an element g ∈ M on both sides of the identity (5.8)∑
(i, j)

∑
k|(i, j)

1

k
�k(cg

(
i j/k2))pi q j

=
∑
(i, j)

∑
a∈P(i, j)

(|a| − 1)!
a!

∏
r,s∈Z+

cg(r + s − 1)ars piq j .

Equating the coefficients of piq j and applying Möbius inversion yields the
recursion formulas:

cg(i j) =
∑
k>0

k(m,n)=(i, j)

1

k
μ(k)

⎛⎝ ∑
a∈P(m,n)

(|a| − 1)!
a!

∏
r,s∈Z+

cgk (r + s − 1)ars

⎞⎠ .
(5.9)

The coefficients of any replicable function are determined by the first 23
coefficients [CN95], but in the case of the above McKay-Thompson series we
can use a smaller set of coefficients.

An examination of the formula (5.9) shows that cg(n) is determined by
expressions of lower level except when n = 1, 2, 3, 5. Thus the values of the
cg(n) are determined by the ch(1), ch(2), ch(3), ch(5), h ∈ M, and the above
recursions.

As in [B92], we conclude that since both the McKay-Thompson series for
V � and the modular functions of [CN79] satisfy (5.9), all that is necessary to
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prove that these functions are the same is to check the initial data listed above.
For the modular functions, see [Koi] and [Fer96]. For the relevant initial data
about the graded traces of the actions of the elements of the Monster on V �,
the main theorem of [FLM88] is needed, as used in [B92].

References

[B86] R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the
Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10,
3068–3071.

[B88] , Generalized Kac-Moody algebras, J. Algebra 115 (1988),
no. 2, 501–512.

[B91] , Central extensions of generalized Kac-Moody algebras,
J. Algebra 140 (1991), no. 2, 330–335.

[B92] , Monstrous moonshine and monstrous Lie superalgebras,
Invent. Math. 109 (1992), no. 2, 405–444.

[B94] , Sporadic groups and string theory, First European
Congress of Mathematics, Vol. I (Paris, 1992), Progr. Math.,
vol. 119, Birkhäuser, Basel, 1994, pp. 411–421.

[B95] , A characterization of generalized Kac-Moody algebras,
J. Algebra 174 (1995), no. 3, 1073–1079.

[B98] , What is Moonshine?, Proceedings of the International
Congress of Mathematicians, Vol. I (Berlin, 1998), no. Extra Vol.
I, 1998, pp. 607–615.

[CE56] H. Cartan and S. Eilenberg, Homological algebra, Princeton Uni-
versity Press, Princeton, N. J., 1956.

[CN79] J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London
Math. Soc. 11 (1979), no. 3, 308–339.

[CN95] C. J. Cummins and S. P. Norton, Rational Hauptmoduls are replica-
ble, Canad. J. Math. 47 (1995), no. 6, 1201–1218.

[DL93] C. Dong and J. Lepowsky, Generalized vertex algebras and rela-
tive vertex operators, Progress in Mathematics, vol. 112, Birkhäuser
Boston Inc., Boston, MA, 1993.

[Fer96] C. R. Ferenbaugh, Replication formulae for n|h-type Hauptmoduls,
J. Algebra 179 (1996), no. 3, 808–837.

[FHL93] I. B. Frenkel, Y.-Z. Huang, and J. Lepowsky, On axiomatic
approaches to vertex operator algebras and modules, Mem. Amer.
Math. Soc. 104 (1993), no. 494.

[FLM84] I. Frenkel, J. Lepowsky, and A. Meurman, A natural representa-
tion of the Fischer-Griess Monster with the modular function J as



Borcherds’ Proof of the Conway-Norton Conjecture 235

character, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 10, Phys.
Sci., 3256–3260.

[FLM88] , Vertex operator algebras and the Monster, Pure and
Applied Mathematics, vol. 134, Academic Press Inc., Boston, MA,
1988.

[GL76] H. Garland and J. Lepowsky, Lie algebra homology and the
Macdonald-Kac formulas, Invent. Math. 34 (1976), no. 1, 37–76.

[Gr82] R. L. Griess, Jr., The friendly giant, Invent. Math. 69 (1982), no. 1,
1–102.

[GT72] P. Goddard and C. B. Thorn, Compatibility of the dual pomeron with
unitarity and the absence of ghosts in the dual resonance model,
Phys. Lett. B 40 (1972), no. 2, 235–238.

[JLW95] E. Jurisich, J. Lepowsky, and R. L. Wilson, Realizations of the
Monster Lie algebra, Selecta Math. (N.S.) 1 (1995), no. 1, 129–161.

[J98] E. Jurisich, Generalized Kac-Moody Lie algebras, free Lie algebras
and the structure of the Monster Lie algebra, J. Pure Appl. Algebra
126 (1998), no. 1-3, 233–266.

[K90] V. Kac, Infinite-dimensional Lie algebras, third ed., Cambridge
University Press, Cambridge, 1990.

[Ka94] S.-J. Kang, Generalized Kac-Moody algebras and the modular
function j , Math. Ann. 298 (1994), no. 2, 373–384.

[KK95] V. G. Kac and S.-J. Kang, A trace formula for graded Lie alge-
bras and Monstrous Moonshine, Sūrikaisekikenkyūsho Kōkyūroku
(1995), no. 904, 116–129, Moonshine and vertex operator algebra
(Kyoto, 1994).

[Kn73] D. Knutson, λ-rings and the representation theory of the symmetric
group, Springer-Verlag, Berlin, 1973, Lecture Notes in Mathemat-
ics, Vol. 308.

[Koi] M. Koike, On replication formulas and Hecke operators, Nagoya
University preprint.

[Le79] J. Lepowsky, Generalized Verma modules, loop space cohomology
and Macdonald-type identities, Ann. Sci. École Norm. Sup. (4) 12
(1979), no. 2, 169–234.

[Li94] H.-S. Li, Symmetric invariant bilinear forms on vertex operator
algebras, J. Pure Appl. Algebra 96 (1994), no. 3, 279–297.

[Liu92] L. Liu, Kostant’s formula for Kac-Moody Lie algebras, J. Algebra
149 (1992), 155–178.

[Mo67] R. V. Moody, Lie algebras associated with generalized Cartan
matrices, Bull. Amer. Math. Soc. 73 (1967), 217–221.



On the Connection of Certain Lie Algebras with
Vertex Algebras

Haisheng Li
Department of Mathematical Sciences,
Rutgers University, Camden, NJ 08102

E-mail address: hli@camden.rutgers.edu

Abstract

In this paper we survey the connection of certain infinite-dimensional Lie alge-
bras, including twisted and untwisted affine Lie algebras, toroidal Lie algebras
and quantum torus Lie algebras, with vertex algebras.

Introduction

Vertex (operator) algebras are a new class of algebraic structures and they have
deep connections with numerous fields. In mathematics, vertex algebras have
been a vibrant research area. On the other hand, as the algebraic counterpart
of chiral algebras, vertex operator algebras together with their representations
provide a solid foundation for the study of conformal field theory in physics.

Though vertex algebras are highly non-classical, they have connections with
classical algebras such as Lie algebras, associative algebras and groups. In
particular, vertex algebras are often constructed and studied by using clas-
sical (infinite-dimensional) Lie algebras. For example, those vertex operator
algebras associated to (untwisted) affine Kac-Moody Lie algebras (including
infinite-dimensional Heisenberg Lie algebras) and the Virasoro Lie algebra
(cf. [FZ], [DL], [Li1], [LL]) are among the important examples. These two
families of vertex operator algebras underline the algebraic study of the
physical Wess-Zumino-Novikov-Witten model and the minimal models in
conformal field theory, respectively. On the other hand, twisted affine Lie
algebras (see [K1]) can be also associated with vertex operator algebras in
terms of twisted modules (see [FLM], [Li2]). In the theory of Lie algebras,
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by generalizing the loop-realization of untwisted affine Lie algebras, one has
toroidal Lie algebras, which are perfect central extensions of multi-loop Lie
algebras. Toroidal Lie algebras can be also associated with vertex algebras and
their modules (see [BBS]). There is another family of Lie algebras called quan-
tum torus Lie algebras, which are central extensions of (associative) quantum
tori viewed as Lie algebras. Recently, in [Li3] we introduced a new notion of
quasi module for vertex algebras and we proved that certain quantum torus
Lie algebras can be also associated to vertex algebras in terms of quasi mod-
ules. Affine Lie algebras, toroidal Lie algebras and quantum torus Lie algebras
belong to a larger family of Lie algebras called extended affine Lie algebras
(see [S1,2], [AABGP]). Extended affine Lie algebras generalize affine Kac-
Moody Lie algebras in a certain way and they also very much resemble affine
Kac-Moody Lie algebras. A general theory and many examples of extended
affine Lie algebras were given in [AABGP]. We believe that every extended
affine Lie algebra can be associated with vertex algebras in terms of quasi
modules in a similar way to the way that quantum torus Lie algebras were asso-
ciated with vertex algebras in [Li3]. This is a survey and it does not contain any
essentially new result.

We would like to thank the organizers for their hard work in organizing this
excellent workshop and we thank S. Berman for many discussions on toroidal
Lie algebras.

1. Affine Lie algebras and vertex algebras

In this section we present the connection of (untwisted) affine Lie algebras and
toroidal Lie algebras with vertex algebras.

For convenience we first give a definition of a vertex algebra. Recall that
a general (or abstract) non-associative algebra is a vector space A equipped
with a bilinear operation, which is equivalent to a linear map from A to End A
(through left multiplication).

Definition 1.1. A vertex algebra is a vector space V equipped with infinitely
many bilinear operations parametrized by integers, which are equivalent to
infinitely many linear maps:

V → End V ; v �→ vn . (1.1)

For each v, the infinitely many associated left multiplications are written in
terms of the generating function as:

Y (v, x) =
∑
n∈Z

vn x−n−1 ∈ (End V )[[x, x−1]], (1.2)
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which is called the vertex operator associated to v. The following are the
axioms:

(V1) For any u, v ∈ V , unv = 0 for n sufficiently large.
(V2) There exists a special vector 1, called the vacuum vector, such that for

v ∈ V, n ∈ Z,

1nv = δn,−1v, (1.3)

vn1 = 0 if n ≥ 0 and v−11 = v. (1.4)

(V3) For any u, v ∈ V , there exists a nonnegative integer k such that

(x1 − x2)
kY (u, x1)Y (v, x2) = (x1 − x2)

kY (v, x2)Y (u, x1). (1.5)

(V4) For any u, v, w ∈ V , there exists a nonnegative integer l such that

(x0 + x2)
lY (u, x0 + x2)Y (v, x2)w = (x0 + x2)

lY (Y (u, x0)v, x2)w, (1.6)

where

Y (u, x0 + x2) =
∑
n∈Z

un(x0 + x2)
−n−1 =

∑
n∈Z

∑
i≥0

(−n − 1

i

)
un x−n−1−i

0 xi
2

is a formal series in x0 and x2.

The axioms (V3) and (V4) together are equivalent to the Jacobi identity

x−1
0 δ

(
x1 − x2

x0

)
Y (u, x1)Y (v, x2)w − x−1

0 δ

(
x2 − x1

−x0

)
Y (v, x2)Y (u, x1)w

= x−1
2 δ

(
x1 − x0

x2

)
Y (Y (u, x0)v, x2)w, (1.7)

where δ(x) =∑n∈Z xn and

x−1
0 δ

(
x1 − x2

x0

)
=
∑
n∈Z

x−1−n
0 (x1 − x2)

n =
∑
n∈Z

∑
i≥0

(
n

i

)
(−1)i x−1−n

0 xn−i
1 xi

2.

Note that for a non-associative algebra A, an A-module is a vector space
U equipped with a linear map from A to End U . For a vertex algebra V ,
a V -module is a vector space W equipped with infinitely many linear maps
parametrized by integers, which together amount to a linear map

YW (·, x) : V → (End W )[[x, x−1]],
v �→ YW (v, x) =

∑
n∈Z

vn x−n−1,

such that for v ∈ V, w ∈ W , vnw = 0 for n sufficiently large, YW (1, x) = 1W

(the identity operator on W ), and such that (V3) and (V4) with the obvious
modification hold.
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Note that linear operators on a vector space give rise to classical associative
algebras and Lie algebras. Similarly, there is a general construction of vertex
algebras by using vertex operators.

Let W be any vector space. Set

E(W ) = Hom(W,W ((x))). (1.8)

In particular, E(W ) contains the identity operator on W , denoted by 1W . For
φ(x), ψ(x) ∈ E(W ), n ∈ Z, define

ψ(x)nφ(x) = Resx1

(
(x1 − x)nφ(x1)ψ(x)− (−x + x1)

nψ(x)φ(x1)
)
. (1.9)

A subspace U of E(W ) is said to be closed if

φ(x)nψ(x) ∈ U for all φ(x), ψ(x) ∈ E(W ), n ∈ Z.

A subset S of E(W ) is said to be local if for any φ(x), ψ(x) ∈ S, there exists
a nonnegative integer k such that

(x1 − x2)
kφ(x1)ψ(x2) = (x1 − x2)

kψ(x1)φ(x2). (1.10)

We have the following result due to [Li1] (cf. [LL]):

Theorem 1.2. Let W be any vector space. For any local subset S of E(W ),
there exists a (unique) smallest closed local subspace 〈S〉 of E(W ), contain-
ing S and 1W , and 〈S〉 is a vertex algebra with W as a faithful module with
YW (φ(x), x0) = φ(x0).

Let g be a (possibly infinite-dimensional) Lie algebra equipped with a
(possibly degenerate) symmetric invariant bilinear form 〈·, ·〉. Associated to
(g, 〈·, ·〉) we have the (untwisted) affine Lie algebra

ĝ = g⊗ C[t, t−1] ⊕ Cc, (1.11)

where c is central and

[a ⊗ tm, b ⊗ tn] = [a, b] ⊗ tm+n + m〈a, b〉δm+n,0c (1.12)

for a, b ∈ g, m, n ∈ Z.
For a ∈ g, n ∈ Z, we use a(n) for a⊗ tn and for its corresponding operator

on any ĝ-module. For a ∈ g, form the generating function

a(x) =
∑
n∈Z

a(n)x−n−1 ∈ ĝ[[x, x−1]]. (1.13)

For a, b ∈ g, we have

[a(x1), b(x2)] = [a, b](x2)x
−1
2 δ(x1/x2)+ 〈a, b〉c ∂

∂x2
x−1

2 δ(x1/x2). (1.14)
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As (x1 − x2)
m
(

∂
∂x2

)n
x−1

2 δ(x1/x2) = 0 for m > n ≥ 0, we have

(x1 − x2)
2[a(x1), b(x2)] = 0. (1.15)

A ĝ-module W is said to be restricted if for any a ∈ g, w ∈ W , a(n)w = 0
for n sufficiently large, that is, for any a ∈ g, a(x) ∈ E(W ). Then for any
restricted ĝ-module W , UW = {a(x) | a ∈ g} is a local subspace of E(W ). A
ĝ-module W is said to be of level � ∈ C if c acts on W as scalar �. We have
(see [Li1], [LL]):

Proposition 1.3. Let W be any restricted ĝ-module of level � ∈ C. Then UW

is a local subspace of E(W ) and UW generates a vertex algebra VW with W as
a module. Furthermore, VW is naturally a ĝ-module of level � with a(n) acting
as a(x)n for a ∈ g, n ∈ Z and c acting as scalar �, and VW as a ĝ-module is
generated by 1W satisfying the following relation

a(n)1W = 0 for a ∈ g, n ∈ Z.

Set ĝ≥0 = g ⊗ C[t] ⊕ Cc, a Lie subalgebra of ĝ. Let � be any complex
number. Denote by C� the 1-dimensional ĝ≥0-module with g[t] acting trivially
and with c acting as scalar �. Form the induced ĝ-module

Vĝ(�, 0) = U (ĝ)⊗U (ĝ≥0)
C�. (1.16)

Set 1 = 1 ⊗ 1 ∈ Vĝ(�, 0). In view of the P-B-W theorem, we may and we
should identify g as a subspace of Vĝ(�, 0) through the map a �→ a(−1)1.

The following result was obtained in [FZ], [Li1] (cf. [DL]):

Theorem 1.4. For any complex number �, there exists a unique vertex algebra
structure on Vĝ(�, 0) with 1 as the vacuum vector such that

Y (a, x) = a(x) for a ∈ g.

The following result was obtained in [Li1] (cf. [FZ], [LL]):

Theorem 1.5. Let W be any restricted ĝ-module of level � ∈ C. There exists a
unique module structure YW on W for Vĝ(�, 0) such that

YW (a, x) = a(x) for a ∈ g.

On the other hand, for any Vĝ(�, 0)-module (W,YW ), W is a restricted
ĝ-module of level � with a(x) acting as YW (a, x) for a ∈ g.
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Remark 1.6. For the well known Virasoro Lie algebra V ir = ⊕n∈ZLn ⊕Cc,
one has similar results (cf. [FZ], [Li1], [LL]). We here just mention that the
generating function

L(x) =
∑
n∈Z

L(n)x−n−2

satisfies the locality relation (x1 − x2)
4[L(x1), L(x2)] = 0.

Remark 1.7. There is a notion of conformal Lie algebra (see [K2]), or
equivalently, a notion of vertex Lie algebra (see [P], [DLM]), which unifies
(untwisted) affine Lie algebras and the Virasoro Lie algebra. For each vertex
Lie algebra, one has an honest Lie algebra which can be defined in terms of
mutually local generating functions. Furthermore, one obtains similar results
(see [P], [DLM]).

Next we consider toroidal Lie algebras (cf. [AABGP]). Let g be a Lie alge-
bra equipped with a symmetric invariant bilinear form 〈·, ·〉 as before. (Usually,
g is a finite-dimensional simple Lie algebra equipped with the Killing form
suitably normalized.) Fix a positive integer r . We have the following multi-loop
Lie algebra

L(r)(g) = g⊗ C[t±1
1 , . . . , t±1

r ]. (1.17)

For n = (n1, . . . , nr ) ∈ Zr , set tn = tn1
1 · · · tnr

r . Endow L(r)(g) with the
symmetric bilinear form defined by

〈a ⊗ tm, b ⊗ tn〉 = 〈a, b〉δm+n,0 (1.18)

for a, b ∈ g, m,n ∈ Zr , which is invariant. For 1 ≤ i ≤ r , set

di = 1⊗ ti
d

dti
∈ Der(L(r)(g)). (1.19)

The toroidal Lie algebra associated with g and r is a perfect central extension
of the multi-loop Lie algebra L(r)(g):

T (r)(g) = g⊗ C[t±1
1 , . . . , t±1

r ] ⊕ (⊕r
i=1Cci

)⊕ (⊕r
i=1Cdi

)
, (1.20)

where ⊕r
i=1Cci is central and

[a ⊗ tm, b ⊗ tn] = [a, b] ⊗ tm+n +
r∑

i=1

mi 〈a, b〉δm+n,0ci (1.21)

for a, b ∈ g, m,n ∈ Zr . Set

T (r)(g)′ = g⊗ C[t±1
1 , . . . , t±1

r ] ⊕ (⊕r
i=1Cci

)
, (1.22)
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which is a Lie subalgebra of T (r)(g) and which is called the core of the toroidal
Lie algebra. (If [g, g] = g and if 〈·, ·〉 is nondegenerate, then T (r)(g)′ is the
derived subalgebra of T (r)(g).)

For a ∈ g, p = (p1, . . . , pr−1) ∈ Zr−1, form the generating function

a(p, x) =
∑
m∈Z

(a ⊗ t(p,m))x−m−1.

In terms of the generating functions the relations (1.21) can be rewritten as

[a(p, x1), b(q, x2)] = [a, b](p+ q, x2)x
−1
1 δ

(
x2

x1

)
+ 〈a, b〉δp+q,0

∂

∂x2
x−1

1 δ

(
x2

x1

)
cr

+ 〈a, b〉δp+q,0x−1
1 δ

(
x2

x1

) r−1∑
i=1

pi ci x−1
2 (1.23)

for a, b ∈ g, p,q ∈ Zr−1. It follows that

(x1 − x2)
2[a(p, x1), b(q, x2)] = 0. (1.24)

We say that a T (r)(g)-module W is a restricted module if for any w ∈ W
and for any a ∈ g, p ∈ Zr−1, (a⊗ t(p,m))w = 0 for m sufficiently large. Then
for a restricted T (r)(g)-module W , we have

a(p, x) ∈ E(W ) for a ∈ g, p ∈ Zr−1 (1.25)

and the set {a(p, x) | a ∈ g, p ∈ Zr−1} is a local subset of E(W ).
We say that a T (r)(g)-module W is of level � ∈ C if cr acts as scalar �.

Remark 1.8. Let W be a restricted T (r)(g)-module of level �, on which
c1, . . . , cr act trivially. In view of (1.23), the space spanned by the set
{1W } ∪ { a(p, x) | a ∈ g, p ∈ Zr−1} is a “closed” subspace of E(W ) in a
certain sense.

Set

T (r)(g)≥0 = g⊗ C[t±1
1 , . . . , t±1

r−1, tr ] +
(⊕r

i=1Cci
)+ (⊕r

i=1Cdi
)
, (1.26)

T (r)(g)− = g⊗ t−1
r C[t±1

1 , . . . , t±1
r−1, t−1

r ]. (1.27)

Let � be a complex number. Denote by C� the 1-dimensional T (r)(g)≥0

-module on which cr acts as � and g ⊗ C[t±1
1 , . . . , t±1

r−1, tr ] +
(
⊕r−1

i=1 Cci

)
+(⊕r

i=1Cdi
)

acts trivially. Form the induced T (r)(g)-module

VT (r)(g)(�, 0) = U (T (r)(g))⊗U (T (r)(g)≥0) C�, (1.28)
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which is a restricted T (r)(g)-module of level �. Set 1 = 1⊗ 1 ∈ VT (r)(g)(�, 0).
For a ∈ g, p = (p1, . . . , pr−1) ∈ Zr−1, set

a[p] = a ⊗ t p1
1 · · · t pr−1

r−1 ∈ L(r−1)(g). (1.29)

Now we identify the multi-loop algebra L(r−1)(g) as a subspace of
VT (r)(g)(�, 0) through the linear map a[p] �→ (a ⊗ t(p,−1))1.

Proposition 1.9. For any complex number �, there exists a (unique) vertex
algebra structure on VT (r)(g)(�, 0) with 1 as the vacuum vector such that

Y (a[p], x) = a(p, x) for a ∈ g, p ∈ Zr−1.

Furthermore, on any restricted T (r)(g)-module W of level �, on which
c1, . . . , cr−1 act trivially, there exists a (unique) VT (r)(g)(�, 0)-module struc-
ture YW with

YW (a[p], x) = a(p, x) for a ∈ g, p ∈ Zr−1.

Proof . Notice that L(r−1)(g) is a Lie algebra equipped with a symmetric
invariant bilinear form 〈·, ·〉 as defined in (1.18). Then we have a (generalized)

affine Lie algebra ̂L(r−1)(g). Clearly, ̂L (r−1)(g) is isomorphic to the quotient
Lie algebra of T (r)(g)′ by the (r − 1)-dimensional central ideal ⊕r−1

i=1 Cci .

We see that VT (r)(g)(�, 0) � V ̂L(r−1)(g)
(�, 0) as an ̂L(r−1)(g)-module. Then it

follows immediately from Theorems 1.4 and 1.5.

Next we consider the general case with restricted T (r)(g)-modules with non-
trivial actions of c1, . . . , cr−1. First we have the toroidal Lie algebra T (r−1)(g)

and its subalgebra

T (r−1)(g)′ = g⊗ C[t±1
1 , . . . , t±1

r−1] ⊕
(
⊕r−1

i=1 Cci

)
.

Extend the symmetric invariant bilinear form 〈·, ·〉 on (the multi-loop Lie alge-
bra) L(r−1)(g) to T (r−1)(g)′ such that ci for i = 1, . . . , r − 1 lie in the kernel.
With the Lie algebra T (r−1)(g)′ equipped with this symmetric invariant bilin-
ear form (which is degenerate), we have a (generalized) affine Lie algebra

̂T (r−1)(g)′. From Theorem 1.4, for any complex number �, we have a vertex
algebra V ̂T (r−1)(g)′(�, 0) with T (r−1)(g)′ as a subspace.

Proposition 1.10. Let � be any complex number. For any restricted T (r)(g)

-module W of level �, there exists a (unique) V ̂T (r−1)(g)′(�, 0)-module structure

YW with

YW (a[p], x) = a(p, x) for a ∈ g, p ∈ Zr−1
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and YW (ci , x) = ci x−1 for i = 1, . . . , r − 1, where we abuse ci for ele-
ments of V ̂T (r−1)(g)′(�, 0) and for elements of T (r)(g). On the other hand, let

(W,YW ) be a V ̂T (r−1)(g)′(�, 0)-module such that YW (ci , x) ∈ x−1(End W ) for

i = 1, . . . , r − 1. Then W is a restricted T (r)(g)-module of level � where

a(p, x) = YW (a[p], x) for a ∈ g, p ∈ Zr−1

and ci x−1 = YW (ci , x) for i = 1, . . . , r − 1.

Proof . Notice that
∑r−1

i=1 C(ci ⊗C[t, t−1]) is central in the generalized affine

Lie algebra ̂T (r−1)(g)′. In view of (1.23), the Lie algebra T (r)(g)′ is iso-

morphic to the quotient Lie algebra of ̂T (r−1)(g)′ modulo the central ideal∑r−1
i=1
∑

n �=0 C(ci ⊗ tn). Then it follows immediately from Theorem 1.5.

Remark 1.11. In [BBS], certain Lie algebras, which are closely related to
toroidal Lie algebras, were studied in terms of vertex operator algebras and
their modules.

2. Twisted affine Lie algebras and vertex algebras

Affine Kac-Moody Lie algebras consist of untwisted affine Lie algebras and
twisted affine Lie algebras (see [K1]). As we have seen in Section 2, untwisted
affine Lie algebras are associated with vertex algebras and their modules. On
the other hand, twisted affine Lie algebras are associated with vertex algebras
and their twisted modules.

First we review the definition of the notion of twisted module for a vertex
algebra and a conceptual result on vertex algebras and twisted modules. Let
V be a vertex algebra and let σ be an automorphism of V of period r (finite).
Set ωr = exp(2π

√−1/r), a primitive r -th root of unity. Then V =∐r−1
j=0 V j ,

where V j = {v ∈ V | σ(v) = ω
j
r v}.

A σ -twisted V -module ([L], [FLM], [FFR], [D]) is a vector space W
equipped with a linear map

YW : V → Hom(W,W ((x
1
r ))) ⊂ (End W )[[x 1

r , x−
1
r ]]

such that YW (1, x) = 1W and for u ∈ V j , v ∈ V with 0 ≤ j ≤ r − 1 the
following twisted Jacobi identity holds

x−1
0 δ

(
x1− x2

x0

)
YW (u, x1)YW (v, x2)− x−1

0 δ

(
x2− x1

−x0

)
YW (v, x2)YW (u, x1)

= x−1
2 δ

(
x1− x0

x2

)(
x1− x0

x2

)− j
r

YW (Y (u, x0)v, x2). (2.1)
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As a simple consequence we have

x
j
r YW (u, x) ∈ Hom(W,W ((x))) (2.2)

for u ∈ V j with 0 ≤ j ≤ r − 1.
Now let W be a plain vector space and let r be any positive integer. Set

E(W, r) = Hom(W,W ((x1/r ))) ⊂ (End W )[[x 1
r , x−

1
r ]]. (2.3)

Notice that E(W ) = E(W, 1). We define local subspaces of E(W, r) in the
same way as we defined local subspaces of E(W ) in Section 2. Notice that

(End W )[[x 1
r , x− 1

r ]] is naturally Z/rZ-graded as

(End W )[[x 1
r , x−

1
r ]] =

r−1∐
j=0

x−
j
r (End W )[[x, x−1]]. (2.4)

The subspace E(W, r) is Z/rZ-graded and

E(W, r) =
r−1∐
j=0

E(W, r) j =
r−1∐
j=0

x−
j
r E(W ). (2.5)

We define an order r automorphism σ of E(W, r) by

σ(a(x)) = ω
j
r a(x) (2.6)

for a(x) ∈ E(W, r) j = x−
j
r E(W ), 0 ≤ j ≤ r − 1. Under this definition, we

have (cf. (2.2))

x
j
r a(x) ∈ E(W ) = Hom(W,W ((x)))

for a(x) ∈ E(W, r) j , 0 ≤ j ≤ r − 1.
Let a(x), b(x) be a local pair in E(W, r)with homogeneous a(x)∈ E(W, r) j

for some 0 ≤ j ≤ r − 1. We define a(x)nb(x) ∈ E(W, r) for n ∈ Z by

a(x)nb(x) = Resx1

∑
i≥0

(− j
r

i

)
x−

j
r −i x

j
r

1

× ((x1 − x)n+i a(x1)b(x)− (−x + x1)
n+i b(x)a(x1)

)
.

(2.7)

Remark 2.1. As in [Li2], the elements a(x)nb(x) ∈ E(W, r) for n ∈ Z can
also be defined in terms of the generating function

YE (a(x), x0)b(x) =
∑
n∈Z

a(x)nb(x)x−n−1
0
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by

YE (a(x), x0)b(x) = Resx1

(
x1 − x0

x

) j
r · X

⎛⎝= Resx1

(
x + x0

x1

)− j
r · X

⎞⎠ ,
(2.8)

where

X = x−1
0 δ

(
x1 − x

x0

)
a(x1)b(x)− x−1

0 δ

(
x − x1

−x0

)
b(x)a(x1).

Remark 2.2. The elements a(x)nb(x) ∈ E(W, r) for n ∈ Z can also be
defined in terms of the generating function YE (a(x), x0)b(x) by

xk
0 YE (a(x), x0)b(x) = Resx1(x + x0)

− j
r

(
(x1 − x)k x

j
r
1 a(x1)b(x)

)
|x1=x+x0 ,

(2.9)
where k is any nonnegative integer such that

(x1 − x2)
ka(x1)b(x2) = (x1 − x2)

kb(x2)a(x1).

This definition uses the associative algebra aspect of vertex algebras (cf. [Li3]).

The following results were obtained in [Li2]:

Theorem 2.3. Let W be any vector space and let r be any positive integer.
Every maximal Z/rZ-graded local subspace U of E(W, r) is a vertex algebra
with σ as an order r automorphism. Furthermore, W is a faithful σ -twisted
U-module with YW (a(x), x0) = a(x).

Corollary 2.4. Let W be any vector space and let r be any positive integer.
Every Z/rZ-graded local subspace S of E(W, r) generates a vertex algebra
〈S〉 with σ as an order r automorphism. Furthermore, W is a faithful σ -twisted
〈S〉-module with YW (a(x), x0) = a(x).

Let g be a Lie algebra equipped with a symmetric invariant bilinear form
〈·, ·〉 as in Section 2. Recall from Section 2 that we have the (untwisted) affine
Lie algebra ĝ and for any complex number �, we have a vertex algebra Vĝ(�, 0)
which is also a ĝ-module of level �. Let σ be an order r automorphism of g,
preserving the bilinear form. Extend σ to an order r automorphism of the affine
Lie algebra ĝ by σ(c) = c and

σ(a ⊗ t n) = σ(a)⊗ tn for a ∈ g, n ∈ Z.

Furthermore, σ gives rise to an order r automorphism, denoted also by σ , of
Vĝ(�, 0) as a ĝ-module. It follows that σ is an order r automorphism of the
vertex algebra Vĝ(�, 0).
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Consider the Lie algebra

ĝ[r ] = g⊗ C[t 1
r , t−

1
r ] ⊕ Cc, (2.10)

where c is central and for a, b ∈ g, m, n ∈ Z,

[a ⊗ tm/r , b ⊗ tn/r ] = [a, b] ⊗ t (m+n)/r + m

r
〈a, b〉δm+n,0c.

Clearly, the linear map ψ from ĝ to ĝ[r ], defined by ψ(a ⊗ tm) = a ⊗ tm/r

and ψ(c) = 1
r c, is an isomorphism of Lie algebras.

Extend σ to an automorphism of ĝ[r ] by σ(c) = 1 and

σ(a ⊗ tm/r ) = ω−m
r (σ (a)⊗ tm/r ) for a ∈ g, m ∈ Z. (2.11)

The twisted affine Lie algebra ĝ[σ ] (see [FLM]) is defined to be the σ -fixed
point Lie subalgebra of ĝ[r ]. That is,

ĝ[σ ] =
r−1∐
j=0

g j ⊗ t
j
r C[t, t−1] ⊕ Cc, (2.12)

where g j = {a ∈ g | σ(a) = ω
j
r a}. For a ∈ g j form the generating function

a(σ, x) =
∑
n∈Z

(a ⊗ t
j
r +n)x−

j
r −n−1 ∈ x−

j
r ĝ[σ ][[x, x−1]]. (2.13)

For a ∈ g j , b ∈ gk we have

[a(σ, x1), b(σ, x2)]

= x−1
1 δ

(
x2

x1

)(
x2

x1

) j
r [a, b](σ, x2)+〈a, b〉c ∂

∂x2
x−1

1 δ

(
x2

x1

)(
x2

x1

) j
r

. (2.14)

Just as with the untwisted case the following local relation holds:

(x1 − x2)
2[a(σ, x1), b(σ, x2)] = 0.

A ĝ[σ ]-module W is said to be restricted if for any a ∈ g, w ∈ W ,
a(m/r)w = 0 for m sufficiently large and a ĝ[σ ]-module W is said to be
of level � ∈ C if c acts on W as scalar �. If W is a restricted ĝ[σ ]-module,
then a(σ, x) for homogeneous a ∈ g are homogeneous elements of E(W, r)
and they form a local subset. We have (see [Li2]):

Theorem 2.5. Let W be any restricted ĝ[σ ]-module of level �. There exists a
unique σ -twisted module structure YW on W for the vertex algebra Vĝ(�, 0)
such that

YW (a, x) = a(σ, x) for a ∈ g.
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On the other hand, for any σ -twisted Vĝ(�, 0)-module (W,YW ), W is a
restricted ĝ[σ ]-module of level � with a(σ, x) acting as YW (a, x) for a ∈ g.

Remark 2.6. Just as Theorem 1.5 can be used to associate restricted mod-
ules for toroidal Lie algebra L(r)(g) with vertex algebras and modules
in Section 2, Theorem 2.5 can be used to associate restricted modules
for certain twisted toroidal Lie algebras with vertex algebras and twisted
modules.

3. Quantum torus Lie algebras and vertex algebras

Quantum torus Lie algebras are a family of infinite-dimensional Lie alge-
bras which are closely related to toroidal Lie algebras. In [Li3] quan-
tum torus Lie algebras were associated with vertex algebras and quasi
modules.

First we present the Lie algebras of 2-dimensional quantum torus, following
[BGT]. Let q be a nonzero complex number. Consider the following twisted
group algebra of Z2

Cq [t±1
0 , t±1

1 ] = C[t±1
0 , t±1

1 ] (3.1)

as a vector space, where for m, n, r, s ∈ Z,

(tm
0 tn

1 )(t
r
0 t s

1) = qnr tm+r
0 tn+s

1 . (3.2)

Let A be an associative algebra equipped with a (possibly degenerate) sym-
metric invariant bilinear form 〈·, ·〉 in the sense that

〈ab, c〉 = 〈a, bc〉 for a, b, c ∈ A. (3.3)

Consider the tensor product associative algebra

Aq [t±1
0 , t±1

1 ] = A ⊗ Cq [t±1
0 , t±1

1 ]. (3.4)

Naturally, Aq [t±1
0 , t±1

1 ] is a Lie algebra with the commutator map as the
Lie bracket, which is denoted by [·, ·]loop . For a, b ∈ A, m, n, r, s ∈ Z,
we have

[a⊗ tm
0 tn

1 , b⊗ tr
0 ts

1 ]loop = qnr (ab⊗ tm+r
0 tn+s

1 )−qms(ba⊗ tm+r
0 tn+s

1 ). (3.5)

Furthermore, consider the following two-dimensional central extension of the
Lie algebra Aq [t±1

0 , t±1
1 ]:

Âq [t±1
0 , t±1

1 ] = Aq [t±1
0 , t±1

1 ]⊕Cc0⊕Cc1 = A⊗Cq [t±1
0 , t±1

1 ]⊕Cc0⊕Cc1,

(3.6)
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where c0, c1 are central and

[a ⊗ tm
0 tn

1 , b ⊗ tr
0 t s

1 ] = qnr (ab ⊗ tm+r
0 tn+s

1 )− qms(ba ⊗ tm+r
0 tn+s

1 )

+ 〈a, b〉qnr δm+r,0δn+s,0(mc0 + nc1). (3.7)

For a ∈ A, n ∈ Z, set

X (a, n, x) =
∑
m∈Z

(a ⊗ tm
0 tn

1 )x
−m−1 ∈ Âq [t±1

0 , t±1
1 ][[x, x−1]]. (3.8)

Then

[X (a, n, x1), X (b, s, x2)] = q−n X (ab, n + s, q−n x2)x
−1
1 δ

(
q−n x2

x1

)
− X (ba, n + s, x2)x

−1
1 δ

(
qs x2

x1

)
+ 〈a, b〉δn+s,0

∂

∂x2
x−1

1 δ

(
q−n x2

x1

)
c0

+ 〈a, b〉δn+s,0n
(

c1x−1
2

)
x−1

1 δ

(
q−n x2

x1

)
. (3.9)

Consequently, we have

(x1 − q−n x2)
2(x1 − qs x2)[X (a, n, x1), X (b, s, x2)] = 0. (3.10)

For convenience let us just use Âq for the Lie algebra Âq [t±1
0 , t±1

1 ]. An
Âq -module on which c0 acts as a scalar � ∈ C is said to be of level �. An
Âq -module W is said to be restricted if for any a ∈ A, n ∈ Z and for any
w ∈ W , X (a, n, x)w ∈ W ((x)). That is, X (a, n, x) acting on W is an element
of E(W ). It was proved in [Li3] that restricted Âq -modules of a fixed level can
be associated with vertex algebras. This follows from a conceptual result. To
state this result we shall need the following notion:

Definition 3.1. Let V be a vertex algebra. A quasi V -module is a vector space
W equipped with a linear map

YW (·, x) : V → Hom(W,W ((x))) ⊂ (End W )[[x, x−1]]
such that YW (1, x) = 1W and for any u, v ∈ V , there exists a nonzero
polynomial p(x1, x2) such that

x−1
0 δ

(
x1 − x2

x0

)
p(x1, x2)YW (u, x1)YW (v, x2)

− x−1
0 δ

(
x2 − x1

−x0

)
p(x1, x2)YW (v, x2)YW (u, x1)

= x−1
2 δ

(
x1 − x0

x2

)
p(x1, x2)YW (Y (u, x0)v, x2). (3.11)
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Let C(x1, x2) be the field of rational functions in variables x1 and x2. We
define ιx1,x2 to be the algebra homomorphism from C(x1, x2) to C((x1))((x2))

such that ιx1,x2(x
m
1 xn

2 ) = xm
1 xn

2 for m, n ∈ Z and

ιx1,x2(x1 + αx2)
n =
∑
i≥0

(
n

i

)
αi xn−i

1 xi
2

for α ∈ C, n ∈ Z.
Now, let W be any vector space. A subset S of E(W ) is said to be quasi local

if for any φ(x), ψ(x) ∈ S,

p(x1, x2)φ(x1)ψ(x2) = p(x1, x2)ψ(x2)φ(x1) (3.12)

for some nonzero homogeneous polynomial p(x1, x2).
If a(x), b(x) are quasi local, we define a(x)nb(x) for n ∈ Z in terms of the

generating function

YE (a(x), x0)b(x) =
∑
n∈Z

(a(x)nb(x))x−n−1
0

by

YE (a(x), x0)b(x) = ιx,x0(1/p(x0 + x, x)) (p(x1, x)a(x1)b(x)) |x1=x+x0 .

(3.13)
One can show that this definition is independent of the choice of the polyno-
mial p(x1, x2). A quasi local subspace U of E(W ) is said to be closed if

a(x)nb(x) ∈ U for a(x), b(x) ∈ U, n ∈ Z.

The following was proved in [Li3]:

Theorem 3.2. Let W be any vector space. Every maximal quasi local sub-
space U of E(W ) is a vertex algebra with 1W as the vacuum vector and W is
a faithful quasi U-module with YW (α(x), x0) = α(x0). Any quasi local subset
S of E(W ) generates a vertex algebra with W as a faithful quasi module.

It is clear that Theorem 3.2 is applicable to to the case with W a restricted
Âq -module of level �. Moreover, we can also determine the corresponding
vertex algebra. To present the corresponding vertex algebra we need another
algebra. The following was obtained in [Li3]:

Lemma 3.3. Define a non-associative algebra with the underlying vector
space

C∗[t±1
0 , t±1

1 ] = C[t±1
0 , t±1

1 ], (3.14)
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equipped with the multiplication

(tn
0 tm

1 )(t
s
0 tr

1 ) = δn+m,r tn+s
0 tm

1 for m, n, r, s ∈ Z. (3.15)

Endow this non-associative algebra with a bilinear form defined by

〈tn
0 tm

1 , t s
0 tr

1 〉 = δn+s,0δm+n,r for m, n, r, s ∈ Z. (3.16)

Then this algebra is associative and the bilinear form is symmetric and
associative.

Let A be an associative algebra equipped with a symmetric invariant bilinear
form as before. Now, we have an associative algebra A⊗C∗[t±1

0 , t±1
1 ] equipped

with a symmetric invariant bilinear form 〈·, ·〉. The bilinear form is also invari-
ant when A ⊗ C∗[t±1

0 , t±1
1 ] is viewed as a Lie algebra. For convenience,

we set

A∗ = A ⊗ C∗[t±1
0 , t±1

1 ]. (3.17)

Form the (generalized) affine Lie algebra

Â∗ = (A ⊗ C∗[t±1
0 , t±1

1 ])⊗ C[t, t−1] ⊕ Ck. (3.18)

Recall that for any complex number �, we have a vertex algebra VÂ∗(�, 0)
associated with the affine Lie algebra Â∗. The following result was obtained in
[Li3]:

Theorem 3.4. Let A be an associative algebra equipped with a symmetric
invariant bilinear form 〈·, ·〉 and let q be a nonzero complex number which
is not a root of unity. Let Âq be the quantum torus Lie algebra defined in
(3.6). Let A∗ be the Lie algebra defined in (3.17) equipped with the symmetric
invariant bilinear form. Let W be any restricted Âq -module of level � ∈ C,
on which the central element c1 acts as zero. Then there exists a unique quasi
VÂ∗(�, 0)-module structure on W with YW (a ⊗ tm

0 tn
1 , x) = X (a,m, qn x) for

a ∈ A, m, n ∈ Z.

Next we give a new connection between twisted affine Lie algebras and
vertex algebras in terms of quasi modules. Note that the twisted affine Lie
algebra ĝ[σ ] can also be realized as a subalgebra of ĝ (see [K1]). First extend
σ to be an automorphism of ĝ by

σ(c) = c, σ (a ⊗ tn) = σ(a)⊗ ω−n
r tn

for a ∈ g, n ∈ Z. Denote by ĝσ the σ -fixed point Lie subalgebra of ĝ. Then
ĝσ is isomorphic to ĝ[σ ] with c corresponding to c/r .
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Let a ∈ g with σa = ω
j
r a. Set

aσ (x) =
∑
n∈Z

(a ⊗ t j+nr )x− j−nr−1. (3.19)

We have

(xr
1 − xr

2)
2aσ (x1)bσ (x2) = (xr

1 − xr
2)

2bσ (x2)aσ (x1). (3.20)

The following was proved in [Li3]:

Theorem 3.5. Let σ be an order r automorphism of g preserving the bilinear
form and let W be any restricted ĝσ -module of level �/r . There exists a unique
quasi module structure YW on W for Vĝ(�, 0) such that YW (a, x) = aσ (x) for
a ∈ g.

Remark 3.6. Recall that the Lie algebra ĝσ is isomorphic to ĝ[σ ]with c corre-
sponding to c/r . Consequently, the category of restricted ĝσ -modules of level
�/r is canonically isomorphic to the category of restricted ĝ[σ ]-modules of
level �. Combining Theorems 2.5 and 3.5 we have that on every σ -twisted
Vĝ(�, 0)-module there exists a canonical quasi Vĝ(�, 0)-module structure. In
view of this, we expect that for a general vertex operator algebra V , there is a
canonical connection between twisted V -modules and quasi modules. Closely
related to this is a beautiful work [BDM], in which Barron, Dong and Mason
established a correspondence between V -modules and twisted modules for
V⊗n with respect to permutation automorphisms.

4. Extended affine Lie algebras and vertex algebras

Extended affine Lie algebras are a class of Lie algebras which were defined
(see [AABGP]) as Lie algebras equipped with a nondegenerate symmetric
invariant bilinear form and equipped with a Cartan subalgebra such that the
associated root system satisfies a set of conditions. This class of Lie algebras
contains finite-dimensional simple Lie algebras, affine Kac-Moody Lie alge-
bras, toroidal Lie algebras, and some quantum torus Lie algebras as well. On
the one hand, this class is general enough to contain many interesting examples
other than affine Kac-Moody Lie algebras, and on the other hand the structures
of this class of Lie algebras are simple enough to be completely determined
even though there are still lots to be done.

We have seen that affine Lie algebras and toroidal Lie algebras have been
associated to vertex algebras in terms of modules while (special) quantum
torus Lie algebras are associated to vertex algebras in terms of quasi mod-
ules. Extended affine Lie algebras resemble affine Lie algebras very much and
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those examples constructed in [AABGP] are Lie subalgebras of Lie algebras of
(higher dimensional) quantum tori. In view of this we believe that the following
is true:

Conjecture 4.1. Every extended affine Lie algebra can be associated to vertex
algebras in terms of quasi modules.

To prove this conjecture, first one needs to obtain a realization of extended
affine Lie algebras in terms of generating functions. Then one just follows the
example of [Li3] for quantum torus Lie algebras.
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Vertex Operators and Arithmetic: How a Single
Photon Illuminates Number Theory

Geoffrey Mason∗
Department of Mathematics, UC Santa Cruz

1. Introduction

This paper is based on a talk I gave at the Spitalfields Day, held under the aus-
pices of the London Mathematical Society during the Edinburgh Conference
on Moonshine. As such, it is intended for nonspecialists.

Consider the following confluence of ideas:

• As closed strings move in space-time they sweep out a worldsheet which
carries the structure of a Riemann surface.

• Riemann surfaces occur as quotients 
 \ H of the complex upper half-
plane H by arithmetic groups 
 ⊆ SL(2,R).

• The modular forms associated to 
 \ H carry arithmetic information
manifested in the coefficients of the corresponding Fourier series.

• Vertex operator algebra theory may be construed as an algebraicization of
aspects of the theory of elementary particles (bosonic strings) and their
interactions.

• Monstrous Moonshine relates certain distinguished elliptic modular func-
tions (so-called hauptmoduln) to the Monster simple group M.

• M is the automorphism group of a particular vertex operator algebra, the
Moonshine Module V �, which models bosons in the critical dimension
c = 24 as a Z2-orbifold.

The reader who is not conversant with all of these ideas should have no
fear. The statements above are intended only as background, and to sug-
gest several points. The first is the inevitability of connections between
elliptic modular forms, vertex operator algebras and finite groups; the sec-
ond is the intimate connection with ideas from theoretical physics (string

∗ Research supported by the NSF and the Committee on Research, UC Santa Cruz
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theory and conformal field theory). There is also the contrast between gen-
eral statements versus interesting special cases. Indeed, the subject of vertex
operator algebras arose from the very special and quite remarkable Moon-
shine conjectures of Conway and Norton [CN] which concerned the Monster,
and the equally remarkable work of Frenkel-Lepowsky-Meurman [FLM]
and Borcherds [B1], [B2], which showed how these conjectures could be
understood (indeed, solved) by making use of a theory of vertex operator
algebras.

In this paper I will explain how modular forms naturally arise in the the-
ory of vertex operator algebras. This has nothing to do with groups, but rather
is a manifestation of the relations that exist among the first four items listed
above. It is interesting to compare the advent of modularity with the rise of
field theory from classical and quantum mechanics and the parallel devel-
opment of vertex operator algebras from Lie algebras. We take the simplest
possible model, a single free boson. This already contains all (level 1) modular
forms in a sense that we will explain. Following this, we briefly discuss the
situation for more general modular forms, specifically Siegel modular forms.
This is a relatively new topic, but the results that I will mention (obtained
in collaboration with Michael Tuite) suggest that vertex operator algebras
are capable of describing classes of automorphic forms far more general
than the elliptic modular forms which have been the main focus of attention
heretofore.

Thanks are due to the referee for helpful suggestions.

2. In the Beginning. . .

The passage C M ⇒ QM from classical mechanics to quantum mechanics
may briefly be described as follows. A state of a (classical) particle can be
described by a pair of canonically conjugate coordinates, namely position q
and momentum p. This means that they satisfy the relations

{p, p} = {q, q} = 0, {p, q} = −{q, p} = 1 (1)

where {, } is the Poisson bracket. One may include independent states with
canonical conjugates pi , qi , i = 1, 2, ... by setting

{pi , p j } = {qi , q j } = 0, (2)

{pi , q j } = −{q j , pi } = δi, j . (3)



Vertex Operators and Arithmetic 257

There is no need to linger over this; we have only to be aware that QM involves
‘substitutions’

pi , qi ⇒ operators on Fock space,

Poisson brackets ⇒ Lie bracket of operators.

This means that pi and qi are promoted to operators on some linear space (the
Fock space) in such a way that relations (1)–(3) are satisfied when Poisson
brackets are replaced by Lie brackets of the corresponding operators. One can
see easily that Fock space for independent states may be taken to be the tensor
product of the individual Fock spaces. In physics, Fock space is synonymous
with Hilbert space, but for what we wish to say nothing more than a linear
space is required.

The basic example. Recall that a (complex) Heisenberg Lie algebra is a Lie
algebra H defined as a central extension

0 → Z → H → A → 0

with A abelian and Z = [H, H ] = Z(H) being 1-dimensional. Up to
isomorphism, there is a unique Heisenberg Lie algebra of any (odd) finite
dimension and a unique one of countably infinite dimension. It is apparent
that replacing Poisson brackets by Lie brackets in (1)–(3) yields a Heisenberg
Lie algebra. So our Fock space will afford a representation of a Heisenberg Lie
algebra.

The Fock space we take is a weighted polynomial algebra

V = C[x1, x2, ...] ∼=
∞⊗

i=1

C[xi ] (4)

with deg xi = i, i = 1, 2, .... It is indeed a tensor product of Fock spaces for
the individual states. The operators corresponding to pi and qi are

ai = ∂

∂xi
, bi = multiplication by xi

respectively, and the Heisenberg canonical commutator relations (CCR) are
satisfied:

[ai , a j ] = [bi , b j ] = 0, [ai , b j ] = δi, j IdV .

This all goes back to Heisenberg and his conception of matrix mechanics.
The following reformulation has a more modern feel. Namely, we can organize
the CCR into a representation π of the Heisenberg algebra in the guise of
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an affine Lie algebra L̂(A). To explain this, introduce a 1-dimensional Lie
algebra

A = Ca, 〈a, a〉 = 1,

equipped with a symmetric bilinear form 〈 , 〉 and normalized basis vector a.
The loop algebra L(A) is an abelian Lie algebra

L(A) =
⊕
n∈Z

A ⊗ tn ∼= C[t, t−1].

The affine algebra L̂(A) is the corresponding Lie algebra defined via

0 −→ CK −→ L̂(A) −→ L(A) −→ 0

where K is a central element and

[u ⊗ tm, v ⊗ tn] = m〈u, v〉δm+n,0 K , u, v ∈ A.

This is not quite a Heisenberg Lie algebra – the center of L̂(A) contains a⊗ t0

in addition to K . But by setting

π(
a ⊗ tn

√
in

) =
{

∂
∂xn

n ≥ 1
xn n ≤ −1,

π(a ⊗ t0) = 0,

π(K ) = IdV ,

we obtain a representation π of L̂(A) on Fock space which pushes down to
a representation of the corresponding Heisenberg Lie algebra and which is
nothing more than a reorganization of the CCR.

It is useful to notice that π is an induced representation, corresponding to
a Verma module over L̂(A). To see this, let C1 be a 1-dimensional module
for the abelian Lie subalgebra L̂(A)≥ = CK ⊕n≥0 A ⊗ tn where K acts as
multiplication by 1 and A ⊗ tn acts as 0, n ≥ 0. With U denoting universal
enveloping algebra, we have

V ∼= I ndU(L̂(A))
U(L̂(A)≥)1. (5)

In this context we call 1 the vacuum vector. The virtue of this point-of-view
will become apparent later.
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3. First Arithmetic Intermezzo

Fock space (4) decomposes into homogeneous spaces

V =
⊕
n≥0

Vn, (6)

where Vn is spanned by homogeneous polynomials of degree n. The monomial
xe1

1 xe2
2 ... of degree n corresponds to a partition λ of n in the usual way, that is

λ -
e1︷ ︸︸ ︷

1 . . . 1

e2︷ ︸︸ ︷
2 . . . 2 . . . .

It follows that

dim Vn = p(n) = number of (unrestricted) partitions of n.

The partition function of V is

chV (q) =
∑
n≥0

dimVn qn

=
∑
n≥0

p(n)qn

= 1+ q + 2q2 + ...

The arithmetic version of the tensor product in (4) is well-known and due to
Euler:

∑
n≥0

p(n)qn =
∞∏

n=1

chC[xn ](q)

=
∞∏

n=1

(1+ qn + q2n + ...)

=
∞∏

n=1

(1− qn)−1.

One can usefully refine the partition function of V by setting

ZV (q) = q−1/24chV (q) (7)

= q−1/24
∞∏

n=1

(1− qn)−1,
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which is also called the partition function. The inverse is the Dedekind eta
function

η(q) = q1/24
∞∏

n=1

(1− qn).

When we interpret q as a complex variable q = e2π iτ with τ ∈ H, the eta-
function is a holomorphic modular form of weight 1/2 on 
 = SL(2,Z).
Without going into details, this means that there are functional identities

η

(
aτ + b

cτ + d

)
= (24th root of unity)(cτ + d)1/2η(τ)

for all

(
a b
c d

)
∈ 
.

The connection between modular forms and QM that we have sketched
above is somewhat tenuous. It can be strengthened considerably once we make
the move to field theory.

4. . . . There was Light

Quantum field theory is a generalization of QM. Recall the representation π of
the Heisenberg algebra L̂(A) on V . Set

a(n) = π(a ⊗ tn),

and form a sort of generating function

a(z) =
∑
n∈Z

a(n)z−n−1 ∈ EndV [[z, z−1]].

It is the most basic example of a quantum field or vertex operator. As we saw
in Section 2, V has a basis of states indexed by partitions. Indeed, there is a
natural basis adapted to the induced module structure (5), namely

v = vλ = a(−n1)a(−n2)...a(−nk).1 (8)

where n1 ≥ n2 ≥ ... ≥ nk ≥ 1 are the parts of the partition λ.
Now comes the basic idea. Define

Y (vλ, z) = ◦◦
k∏

i=1

1

(ni − 1)! (
∂

∂z
)ni−1a(z)

◦◦ (9)

=
∑
n∈Z

vλ(n)z
−n−1.
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What does this mean? Ignoring the normal ordering symbol
◦◦ ◦◦ for now, we

are defining a sequence of operators vλ(n) on Fock space, the modes of vλ,
associated to each of the basis states vλ, using (formal) partial derivatives of
a(z). Formally, vλ(n) is the operator which appears as the coefficient of z−n−1

in (9), and as such it is a sum of terms of the form (constant)a(n1)...a(nk). For
example, if λ - 12 then

Y (v12 , z) = ◦◦ a(z)2
◦◦

= ◦◦
∑

m,n∈Z

a(m)a(n − m − 1)z−n−1 ◦◦,

v12(n) =
∑
m∈Z

◦◦ a(m)a(n − m − 1)
◦◦ .

For u ∈ V we would like to define v12(n)u via the formalism

v12(n)u =
∑
m∈Z

◦◦ a(m)a(n − m − 1)
◦◦ u. (10)

Without normal ordering, (10) is generally not well-defined for n = 1, meaning
that it will not reduce to a finite sum of nonzero states in Fock space. It is
well-defined if we set

◦◦ a(m)a(n)
◦◦ =
{

a(n)a(m), m + n = 0 ≤ m,
a(m)a(n), otherwise.

(Note that a(m)a(n) = a(n)a(m) if n+m �= 0.) With this device, (10) achieves
legitimacy, because all but a finite number of the normally ordered operators
appearing as summands will annihilate any fixed state u. When we have a
normally ordered product of more than two modes a(n)s, the rule is the same:
operate first with those modes satisfying n ≥ 0.

We define Y (v, z) for an arbitrary state v ∈ V by extending (9) linearly. This
produces a linear map, known as the state-field correspondence in QFT:

V −→ End(V )[[z, z−1]]
v �→ Y (v, z).

Y (v, z) is the quantum field, or vertex operator, associated to state v.
We distinguish three special states in V , two of which we have already seen:

1, a, and ω = 1/2a(−1)21 ∈ V2. From what we have said so far, it follows
that

V0 = C1, Y (1, z) = Id

V1 = Ca, Y (a, z) = a(z).
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The importance of the state ω, often called the conformal vector or Virasoro
vector, is less clear at this point, however its properties are central to our
enterprise. It is traditional to write the field corresponding to ω in the form

Y (ω, z) =
∑
n∈Z

L(n)z−n−2

(note the shift in grading). It is a remarkable fact that the modes L(n) satisfy
the relations defining the Virasoro algebra Vir of central charge c = 1. That is,

[L(m), L(n)] = (m − n)L(m + n)+ m3 − m

12
δm+n,0IdV .

Furthermore, the homogeneous subspaces Vn of V are eigenspaces for L(0):

Vn = {v ∈ V |L(0)v = nv}. (11)

The quadruple (V,Y, 1, ω) is the basic example of a vertex operator algebra
(on the sphere), called the Heisenberg VOA, or free bosonic theory of rank 1. It
models the annihilation and creation of (an infinite set of) bosonic states from
the vacuum. The distinguished state a might correspond to a photon. The linear
span of all modes is a huge Lie algebra

L = 〈v(n) | v ∈ V, n ∈ Z〉
of operators on V . This follows from the following beautiful identity [B1]:

[u(m), v(n)] =
∑
i≥0

(
m
i

)
(u(i)v)(m + n − i). (12)

As we explained before, for given u, v we have u(i)v = 0 for all large
enough i , so that the right-hand-side of (12) is a well-defined finite sum.

It is well known that the Virasoro algebra (more precisely, the Witt algebra
Wi , which is the central quotient of V ir ), acts on L̂(A) as derivations. Indeed,
the modes a(n) and L(n) span a Lie subalgebra of L which is an extension of
Wi by L̂(A).

5. Second Arithmetic Intermezzo

So far we have seen that the passage from CM to QM and then QFT
corresponds to a series of increasingly complicated Lie algebras:

C M ⇒ QM ⇒ QFT

L(A)⇒ L̂(A)⇒ L.
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We have also seen that the eta-function arises rather naturally in QM. We will
now explain how QFT, aka L or the Heisenberg VOA V , produces a large
number of holomorphic modular forms on SL(2,Z) - all of them, in fact.

Recall the grading (6) on V . If v ∈ Vk and

Y (v, z) =
∑
n∈Z

v(n)z−n−1

then one knows that

v(m) : Vn −→ Vn+k−m−1.

In particular, the zero mode o(v) = v(k − 1) satisfies

o(v) : Vn −→ Vn,

that is o(v) has weight zero as an operator. So we can take the graded trace, or
(1-point) correlation function

Z(v, q) = TrV o(v)q L(0)−1/24

= q−1/24
∑
n≥0

TrVn o(v)qn,

where as in (7) we have included an extra term q−1/24. Extending Z to V by
linearity, we obtain a map

Z : V −→ q−c/24C[[q]],
which should be thought of as the character of V .

The discussion in Section 3 shows that Z(1, τ ) = η(τ)−1 is the partition
function, or graded dimension of V . We will now describe the full image of
Z , for which we need some standard notation for modular forms (see [S], for
example, for details).

E2k(q) = −B2k

(2k)! +
2

(2k − 1)!
∞∑

n=1

σ2k−1(n)q
n (Eisenstein series),

where Bk is a Bernoulli number and σ2k−1(n) a power sum. For example,

E2(q) = −1/12+ 2(q + 3q2 + 4q3 + ...)

720E4(q) = 1+ 240(q + 9q2 + 28q3 + ...)

−30240E6(q) = 1− 504(q + 33q2 + 244q3 + ...)

For k ≥ 2, E2k(q) is a holomorphic modular form of weight 2k. That is, taking
q = e2π iτ as before, E2k(τ ) is holomorphic throughout H and

E2k(γ τ) = (cτ + d)2k E2k(τ ), γ =
(

a b
c d

)
∈ SL(2,Z).
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Note that E2 is not a modular form (loc. cit.) E4(q) and E6(q) generate the
algebra of all holomorphic modular forms on SL(2,Z), and together with
E2(q) they freely generate the algebra of quasi-modular forms [KZ]

Q = C[E2(q), E4(q), E6(q)].
We then have [DMN]:

Z(v, q) = f (q)

η(q)
for some f (q) ∈ Q,

every f (q) ∈ Q occurs in this way.

In other words, there is a linear surjection

Z : V −→ 1

η(q)
Q. (13)

It is an interesting feature that, up to a factor of η(q)−1, the correlation
functions are quasi-modular, but not necessarily modular.

There is an integral grading on quasimodular forms in which E2k has
weight 2k:

Q =
⊕
k≥0

Q2k .

It would be natural to think that (13) is a graded map, i.e. if v ∈ Vk then
Z(v, q) = f (q)/η(q) with f (q) ∈ Qk . This is true if v = 1 (when f (q) = 1),
but is generally incorrect. It is important to understand how to restore a grade-
preserving map. We explain the mechanism that achieves this in the next
Section.

6. QFT on the Cylinder

Consider the conformal map

z �→ ez − 1

mapping the complex plane to an infinite cylinder. This induces a VOA on the
cylinder, utilized by physicists for some time and introduced into mathematics
by Zhu [Z]. The idea is to retain the space V but adjust the state-field
correspondence as follows. For v ∈ Vk , set

Y [v, z] = ekzY (v, ez − 1) =
∑
n∈Z

v[n]z−n−1,

ω̃ = ω − 1

24
1.
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Then we obtain a new vertex operator algebra (V,Y [ ], 1, ω̃) which is iso-
morphic1 to the original one. What we mainly need from this is that the new
conformal vector ω̃ corresponds to a field

∑
n L[n]z−n−2 and that the mode

L[0] produces a new grading on V

V = ⊕n≥0V[n], V[n] = {v ∈ V | L[0]v = nv}
which is isomorphic to, but distinct from, the L(0)-grading (11). It turns out
that (13) is a graded map as long as V is endowed with the L[0]-grading. Thus,
there is a surjection for each k ≥ 0,

Z : V[k] −→ 1

η(q)
Qk .

There is an explicit version of this map which is useful. The analog of (8) in
the cylindrical basis of V is

v[λ] = a[−1]e1a[−2]e2 ...a[−r ]er 1 ∈ V[k],

for a partition λ - k = ∑ iei . Attached to λ is the labelled set �λ of size k
consisting of e1 elements (nodes) with label 1, e2 nodes with label 2, etc. Set

F(�λ) = {ϕ ∈ Symm(�λ) | ϕ a fixed-point-free involution}.
(Symm denotes symmetric group.) Then [MT1]

Z(v[λ], q) = 1

η(q)

∑
ϕ∈F(�)

∏
(r,s)

(−1)r+1 (r + s − 1)!
(r − 1)!(s − 1)! Er+s(q),

where (r, s) ranges over the orbits of ϕ acting on �λ and where we are
identifying a node with its label.

7. Compact Bosons

We have been looking at the Heisenberg, or free bosonic CFT on the sphere
(genus 0) and on the torus (genus 1), and have found that the correlation
functions are essentially quasimodular forms, but are not always true mod-
ular forms. In this Section we discuss a class of vertex operator algebras for
which the correlation functions are modular. These are2 the rational conformal
field theories, or rational vertex operator algebras.

1 Since we have not actually defined what a VOA is, this is somewhat prosaic
2 In fact, the implied assertion that the correlation functions of a rational vertex operator algebra

are modular remains open at this time.
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The Heisenberg VOA is not rational, however there is a closely associated
VOA that is. Suppose that

〈 , 〉 : L × L −→ Z

is a positive-definite even lattice of rank l. Then there is a VOA VL with Fock
space defined by

VL ∼= V⊗l ⊗ C[L]. (14)

Physically, this corresponds to compactifying l free bosons so that their
momenta lie on L . Rather than moving in R, they are constrained to the torus
Rl/L . For more information on lattice theories, see [FLM]. A special case of
this construction may be familiar: if we take l = 1 and L = √

2Z then L is
just the root lattice of type A1 and VL can be identified with the corresponding
level 1 affine Kac-Moody Lie algebra [K].

In (14), C[L] is the group algebra of L with basis eα, α ∈ L . Inflicting
this element with degree 〈α, α〉/2 and giving (14) the natural tensor product
grading, we find that the partition function of VL satisfies

ZVL (q) = ZV (q)chC[L](q) = θL(τ )/η(τ)
l

where

chC[L](q) = θL(τ ) =
∑
α∈L

q〈α,α〉/2

is the theta function of L .
In contrast to V , the partition function ZVL of VL is a meromorphic modular

function of weight zero on a congruence subgroup of SL(2,Z) [S]. As in the
case of the Heisenberg VOA discussed before, one can describe the space of
correlation functions spanned by all ZVL (v, q), v ∈ VL , and to give explicit
formulas. In particular, when we transfer VL from the sphere to the cylinder,
one finds for v ∈ (VL)[k] that ZVL (v, q) is a modular function of weight k on a
congruence subgroup of SL(2,Z). For further details see [DMN] and [MT1].

8. Genus 2

We have so far focused on elliptic modular functions, i.e. functions invariant
under a (congruence subgroup of) SL(2,Z). However, one expects that there
are similar connections with other arithmetic groups, and in particular with
the symplectic groups Sp(2g,Z). We will consider only the case g = 2. In
this Section we recall some relevant arithmetic facts. See [F], for example, for
further details.
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If X is a compact Riemann surface of genus 2 then the first homology group
is isomorphic to Z4 and X admits 2 linearly independent holomorphic differ-
entials ν1, ν2. We integrate along a suitable basis for H1(X) (the a-cycles and b
cycles), using the former to normalize and the latter to obtain the period matrix
� for X : ∫

ai

ν j = δi, j ,

∫
bi

ν j = �i j ,

� =
(
�11 �12

�21 �22

)
.

� lies in the genus 2 Siegel upper half-space

H(2) = {� ∈ M2(C) | � = �t , Im� positive-definite}.
There is a left action

Sp(4,Z)×H(2) −→ H(2)(
A B
C D

)
◦� = (A�+ B)(C�+ D)−1

F(�) is a weight k holomorphic Siegel modular form on 
 ⊆ Sp(4,Z) if
F(�) is holomorphic and

F(γ ◦�) = det(C�+ D)k F(�), γ ∈ 
.
Example: Genus 2 Theta function. For an even lattice L of rank l, its genus 2
theta function is defined as

�
(2)
L (�) =

∑
α,β∈L

q〈α,α〉/2r 〈α,β〉s〈β,β〉/2,

(q = e2π i�11 , r = e2π i�12 , s = e2π i�22).

This is a Siegel modular form of weight l/2 on a finite index subgroup of
Sp(4,Z).

9. Genus 2 Partition Function

For a VOA W such as V⊗l or VL , we can make the following definition:

Z (2)
W (q1, ε, q2) =

∑
n≥0

εn
∑

u,v∈V[n]
ZW (u, q1) G−1

u,v ZW (v, q2).

Here, q1, q2 and ε are (for the moment) formal variables, and ZW is the correla-
tion function already discussed. In the inner sum, u and v range independently
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over a basis of V[n]. If dimW[n] = d,Gu,v is a certain invertible d × d matrix
whose (u, v)-entry is a complex number 〈u, v〉 given by a (normalized) invari-
ant bilinear form on W as in [Li]. By way of example, in the case of the free
boson VOA V we can rewrite the definition in terms of symmetric groups Sk

as follows:

Z (2)
V (q1, ε, q2) =

∑
k≥0

∑
g∈Sk

Z(g, q1) Z(g, q2)
εk

k! , (15)

where Z(g, τ ) = Z(v[λ], τ ) is the correlation function determined by λ - k
whenever g lies in the conjugacy class of Sk determined by λ.

What we really wish to do is construct a genus 2 partition function as a
function of� ∈ H(2), but it does not seem to be possible to do this directly. The
fact that we could do so at genus 1 is a happy coincidence, and a misleading
one at that. One must proceed indirectly, first studying the function (15) and
then relating it to the Siegel upper half-space. Michael Tuite and the author
have established the following result:

Let qi = e2π iτi , τi ∈ H. There is a domain D ⊆ H× C×H and

a holomorphic map F : D→ H(2) such that the following holds:

(a) ZW (τ1, ε, τ2) is holomorphic on D
(b) If L is an even lattice of rank l then there is an identity of formal power

series and holomorphic functions

Z (2)
VL
(τ1, ε, τ2)

Z (2)
V⊗l (τ1, ε, τ2)

= �
(2)
L (�), (16)

where (τ1, ε, τ2) ∈ D and � = F(τ1, ε, τ2)

Compare (16) with the genus 1 case:

ZVL (τ )

ZV⊗l (τ )
= θL(τ ).

The idea of the proof, which is long and quite difficult, is to interpret the for-
mula for Z (2) in terms of sewing a pair of genus 1 punctured Riemann surfaces
described by the data encoded in the triple (τ1, ε, τ2). Sewing produces a com-
pact genus 2 Riemann surface which has a period matrix �. This determines
the map F . The proof of (16) makes use of the explicit formulas for the genus
1 correlation functions that we mentioned in Section 7. For further details, see
[T] and the forthcoming [MT2], [MT3].
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Rational Vertex Operator Algebras
and their Orbifolds

Geoffrey Mason∗
Department of Mathematics, UC Santa Cruz

1. Introduction

The Conway-Norton conjectures about the Monster-modular connection, later
established by Borcherds [B] following the work of Frenkel-Lepowsky-
Meurman [FLM], set the stage for an intensive study of the origins of the
relations between finite groups and modular functions. Norton also introduced
generalized moonshine which associates q-expansions to pairs of commuting
elements in M . His conjecture that the nonconstant functions that one obtains
in this way are also hauptmoduln remains open.

By now it is clear that the principal mathematical idea underlying the general
study of such phenomena is that of a vertex operator algebra. For an exten-
sive class of vertex operator algebras, so-called1 rational orbifold models, one
expects a theory completely parallel to Monstrous Moonshine whereby one
associates modular functions to automorphisms of finite order. Furthermore,
this theory naturally accommodates generalized moonshine. From this per-
spective, the Conway-Norton phenomena would be a particularly interesting
sporadic example of a general theory, just as the Monster itself is a particularly
interesting sporadic example of a finite simple group.

In the spirit of the Edinburgh Conference, this paper is mainly devoted to
a review of some of the main results currently available concerning the struc-
ture of rational vertex operator algebras and their orbifolds. We sometimes
use the Frenkel-Lepowsky-Meurman Moonshine Module V � [FLM] to illus-
trate the ideas. We also suggest open problems - many of them well-known -
whose solution would contribute to a more complete theory. At the end of the
paper we announce some new results (joint work with Chongying Dong) which
solve the problem of generalized moonshine for a large class of orbifolds.

∗ Research supported by the NSF and the Committee on Research, UC Santa Cruz
1 A discussion of the term orbifold is given at the beginning of Section 4.
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Our discussion is brief throughout, and by no means complete. We generally
assume the reader to be familiar with the basic facts about the theory of vertex
operator algebras ([FHL], [FLM], [LL]).

2. Rational Vertex Operator Algebras

We denote a vertex operator algebra (VOA) as a Z-graded complex linear space

V =
⊕

Vn.

There is a notion of representation for VOAs, and hence a module category

V -Mod.

For background we refer to [FHL], [LL]. The module category V -Mod is gen-
erally difficult to deal with. For example, although there is a general notion of
dual module (loc. cit), the adjoint module V may not be self-dual. We will not
discuss this further here (cf. [DM1]), but it suggests that one should not expect
a nice theory unless the class of vertex operator algebras is suitably restricted.

One has to deal with several types of V -modules. The most basic are the
simple modules. They have a grading of the general shape

M =
⊕
n≥0

Mλ+n

for some (a priori complex) number λ, the conformal weight of M . In addition
to the simples, there is the idea of an admissible or N-gradable module. We
will not give the definition here (cf. [DLM1], [Z]), but merely note that they
arise naturally from Zhu’s idea of constructing V -modules via the so-called
Zhu algebra A(V ) [Z].

Definition[DLM2]: V is rational in case V -Mod is semisimple in the sense that
every admissible module over V is completely reducible.

Definition[Zhu]: Let C2(V ) be the subspace of V spanned by a(−2)b, a, b ∈
V . Call V C2-cofinite if

dim V/C2(V ) <∞.

The relation between these two definitions is not entirely understood. First
we have

Suppose that V is either rational or C2-cofinite.

Then V has only finitely many simple modules.
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This is proved in [Z] under the hypothesis of C2-cofiniteness. Indeed, it is not
hard to see that the finiteness of dim V/C2(V ) implies that of dim A(V ), and
this in turn implies the finiteness of the number of simple V -modules. If V is
rational then it is shown in [DLM2] that A(V ) is a semisimple algebra, and
hence is necessarily of finite dimension. Physicists have known for some time
that there are VOAs which are not rational but which have only finitely many
simple modules (logarithmic field theories). It seems likely that such theories
are C2-cofinite, though this seems not to have been checked. If so, then one
can expect a large number of C2-cofinite, irrational VOAs. Still, one can hope
that the following is true:

Problem 1: Prove that

V rational ⇒ V C2-cofinite.

We refer the reader to [DLM1], [ABD], [GN] for further background.
For many purposes one needs to know that a given V is both rational and

C2-cofinite. It is therefore of some importance to resolve Problem 1, so that the
C2- assumption can be dispensed with in the presence of rationality. In many
ways, the ‘best’ type of VOA, which we call strongly rational or SRVOAs,
satisfies these and other conditions:

Definition: V is strongly rational if it satisfies

(a) V is rational

(b) V is C2-cofinite

(c) V = C1⊕ V1 ⊕ V2 . . .

(d) V is self-dual i.e. V ∼= V ′ as V -modules.

Conditions (c) and (d) are independent of (a) and (b): one can construct
examples of VOAs satisfying (a) and (b) for which any combination of
(c) or its negation together with (d) or its negation hold [DM1]. The class
of strongly rational vertex operator algebras enjoy many of the properties
generally assumed in the physics literature.

From now on we assume that V is simple SRVOA of central charge c. We
review some basic properties of such V :

1. V admits a unique nondegenerate, invariant bilinear form

〈 , 〉 : V ⊗ V −→ C

normalized so that 〈1, 1〉 = −1. In part, this amounts to a reformulation
of property (d) of a SRVOA. Uniqueness follows from properties (c),
(d) and Li’s theory [Li1]. See also [FHL].
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2. The pair (V1, 〈 , 〉) consisting of the weight 1 subspace of V together
with (the restriction of) 〈 , 〉 is a Lie algebra equipped with a nondegen-
erate, symmetric, invariant bilinear form, where

[a, b] = a(0)b, 〈a, b〉1 = a(1)b, a, b ∈ V1.

These facts are elementary.
3. V1 is a reductive Lie algebra, that is

V1 = T ⊕ L1 ⊕ . . .⊕ Lk,

where T is abelian, each Li a simple Lie algebra, and the restriction of
〈 , 〉 to T and each Li is non-degenerate. It is worth noting that ideas
concerning modular-invariance underlie the proofs [DM2].

4. Each of the affine Lie algebras L̂ i determined by Li is integrable. To
explain this, for u, v ∈ Li we have

[u(m), v(n)] = [u, v](m + n)+ m〈u, v〉δm+n,0

= [u, v](m + n)+ mli (u, v)δm+n,0.

The first equality comes from the VOA axioms, the second arises from
the theory of Kac-Moody Lie algebras [K], the notation being that ( , )
is the non-degenerate form on Li normalized so that (α, α) = 2 for a
long root α in the root system determined by Li , and li is the level of Li .
Integrability is the assertion that each level is a positive integer. This is
proved in [DM3].

Now we come to the question of modular-invariance. Let the (finitely
many) simple V -modules be M1, . . . , Mr , with conformal weights
λ1, . . . , λr and graded dimensions

Z Mi (q) = TrMi q L(0)−c/24 = q−c/24+λ∑
n≥0

dimMi
λi+nqn.

Let q = e2π iτ with τ in the complex upper half-plane H, so that we
may think of the graded dimension as a function Z Mi (τ ) onH.

5. Each Z Mi (τ ) is holomorphic in H. For γ ∈ SL(2,Z) there are scalars
ρi j (γ ) such that

Z Mi

(
aτ + b

cτ + d

)
=

r∑
j=1

ρi j (γ )Z M j (τ ), γ =
(

a b
c d

)
.

The matrices ρ(γ ) afford an r -dimensional representation of
SL(2,Z)/± I . The main ideas for proving this are in Zhu’s fundamental
paper [Z].
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6. The central charge c and each of the conformal weights λi are ratio-
nal numbers. This is proved in [DLM2], extending an argument of
Anderson and Moore [AM].

As a consequence of the last result, there is a positive integer N such
that for each i, λi − c/24 = ni/N , ni ∈ Z, and

Z Mi (q) ∈ qni /N Z[[q]].
Problem 2 (Modular-invariance): Prove that the kernel of the representation
ρ contains the principal congruence subgroup 
(N ) of level N . Equivalently,
prove that each ZMi (q) is a modular function (weight zero) on a congruence
subgroup of SL(2,Z).

3. Automorphism Groups

We continue to assume in this Section that V is a SRVOA, although all four
of the conditions (a)-(d) will not always be required in what follows. The
automorphism group of V is defined in the usual way:

AutV = {g ∈ GL(V ) | gv(n)g−1 = (gv)(n), gω = ω}.
We set G = AutV . It acts on each Vn and preserves 〈 , 〉, so that restriction
provides a sequence of orthogonal representations

G −→ O(Vn).

For g ∈ G, the graded trace of g is defined in the obvious way:

ZV (g, q) = TrV g q L(0)−c/24 = q−c/24
∑
n≥0

TrVn g qn.

Example: AutV � is the Monster simple group M [FLM]. The orthogonal repre-
sentations of M are rational-valued, so that V �

n is a rational-valued M-module.
Hence, for g ∈ M ,

Z(g, q) ∈ q−1Z[[q]].
The nature of G is still not well-understood. The best general result obtained

so far [DG] is that

G is an algebraic group.

The process of exponentiating elements of a (semisimple) Lie algebra to
obtain automorphism in the corresponding Lie group works perfectly well for
V too. More precisely, there is a normal subgroup

L = 〈exp(u(0)) | u ∈ V1〉� G,
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which we call the linear automorphism group of V . The theory of algebraic
groups [H] together with the structure of V1 described in the previous Section
provide a clear picture of the group-theoretic structure of L in case V is an
RSVOA. What is still lacking is a solution to

Problem 4: Prove that L = Go, i.e. L is the connected component of the
identity of G.

A consequence of this (assuming its truth!) is that L has finite index in G, and
from this one further deduces that G is a finite group if, and only if, V1 =
0. If we consider the Moonshine Module V �, for example, this would imply
(because V �

1 = 0) that AutV � is finite - something that even now requires
some effort to prove.

4. Rational orbifolds

Like many things, ‘orbifold’ means different things to different people, and
the different meanings are not necessarily consistent. Orbifold theory within
the context of VOAs has come to mean the general study of the pair (V,G)
where V is a VOA and G ⊆ G a group of automorphisms. We shall allow
ourselves to call the fixed-point space

V G = {v ∈ V | gv = v, ∀g ∈ G}
an orbifold, or orbifold model. It is, of course, a subVOA of V . Orbifold theory
in this sense includes the study of twisted sectors, fusion rules, and intertwining
algebra defined by V and G, among other things, and we shall look at some
of these ideas below. One of the first major constructions in orbifold theory
was the work of Frenkel-Lepowsky-Meurman concerning a Z2-orbifold of the
Leech lattice VOA. We refer the reader to [FLM] for an account of this, where
it is also explained how this relates to a Z2-orbifold of the Leech torus in the
topological sense.

Now let us return to the case when V is a SRVOA. One is then particu-
larly interested in the closed subgroups of G and their orbifolds in the above
sense. In particular, we want to know when V G is a rational VOA for a closed
subgroup G ⊆ G.

By a theorem in [DM4], every irreducible unitary representation of G occurs
as a constituent of the restriction to Vn , for at least one (and therefore infinitely
many) n. Furthermore, V decomposes into a direct sum of simple V G -modules
indexed by the irreducible representations of G, with inequivalent irreducible
G-modules giving rise to inequivalent V G-modules. The upshot is that if G
is not finite then there are infinitely many inequivalent simple V G -modules
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contained in V , so that the orbifold V G cannot be rational. This leaves the
case of finite G, for which the following is a well-known open problem:

Problem 5: If G is a finite group, prove that

V rational ⇒ V G rational.

One also needs to know about C2-cofiniteness. Affirmative solutions to
Problems 1 and 5 would take care of this, but one can also ask

Problem 6: If G is a finite group, prove that

V C2-cofinite ⇒ V G C2-cofinite.

If solutions to these problems are available (and there are very few choices of V
and G which have been checked thus far), then modular-invariance of rational
orbifolds is subsumed within the general problem of modular-invariance for
rational VOAs. However, when we have a group acting on V , the structure of
the orbifold V G and its module category has additional features which are not
present in general. These concern the twisted sectors, which we take up next.

5. Twisted Sectors

Let V be a VOA, G ⊆ G a finite group of automorphisms of V , and g ∈ G an
automorphism of order N . A (simple) g-twisted sector is a graded space

V (g) =
⊕
n≥0

V (g)λ(g)+ n
N

for some scalar λ(g) (the conformal weight), where V acts by ‘twisted’
operators. Naturally, the graded dimension of V (g) is defined to be

ZV (g)(q) = TrV (g)q
L(0)−c/24

= q−c/24+λ(g)∑
n≥0

dimVλ(g)+ n
N

qn/N .

We forgo technical definitions here (cf. [L], [DLM3]), observing only that the
idea of twisted sectors has no good analog in classical representation theory.
In a more leisurely account we would have introduced general g-twisted sec-
tors, which form a category V (g)-Mod. If g = 1 (the ‘untwisted’ case), a
g-twisted module is nothing but a V -module, and from this perspective the
theory of twisted modules is a generalization of the representation theory of
V . Thus it becomes important to know when V is g-rational, which means
that V (g)-Mod is completely reducible in a sense which parallels the defini-
tion in the untwisted case (cf. Section 2). For more background and results in
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this direction, see [DLM2], [DLM3]. The main problem in this direction is the
following:

Problem 7: Prove that V rational⇒ V g-rational.

It is known [DLM3] that, as in the untwisted case, g-rationality implies the
finiteness of the number of inequivalent simple g-twisted modules. One can
therefore refine Problem 7 by asking for the number of simple g-twisted
modules. For more on this, see [DLM2].

One of the main applications of twisted modules is to the representation
theory of orbifolds. It is an immediate consequence of the definitions that a
g-twisted module is an (untwisted) module over the orbifold VOA V G . Thus
one can look for simple V G -modules by decomposing twisted modules. The
basic problem here is

Problem 8: Prove that every simple V G-module is contained in a g-twisted
module for some g ∈ G.

This suggests, for example, that the graded dimension of a simple g-twisted
module should also be a modular function. We abandon the general develop-
ment of rational orbifolds at this point in order to take up a special case where
many of the basic ideas and conjectures show up in simpler form.

6. Modular-invariance in holomorphic orbifolds

Definition: V is holomorphic if it is rational and if, in addition, the adjoint
module V is the unique simple V -module.

From now on, V is assumed to be both holomorphic and an SRVOA,
with G ⊆ G a finite group of automorphisms. We call V G a holomorphic
orbifold.

Example The Moonshine module V � satisfies these conditions.

Working with holomorphic VOAs rather than general rational VOAs is
rather like working with modular forms of level 1 rather than level N . This
is particularly apropos with regard to questions of modular-invariance. For
example, if V is holomorphic then the representation ρ which figures in Prob-
lem 2 is 1-dimensional, in which case modular-invariance is clear. Hence we
have [Z]

If V is a holomorphic VOA then the graded dimension ZV (q) is a

modular function of weight zero on SL(2,Z) (possibly with a character).
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For this to even make sense, we must set q = e2π iτ with τ in the complex upper
half-plane H, and identify ZV (q) with the corresponding function ZV (τ ) on
H. Implicit in the last displayed assertion is the fact that ZV (τ ) is holomor-
phic throughout H. Similar comments apply to the additional q-expansions
that occur below. The most famous example is of course that of V �, where

ZV � (q) = q−1 + 0+ 196884q + . . . .

is the modular function J (q) with constant term zero [FLM].
The theory of twisted sectors is also better understood in the case of holo-

morphic VOAs. In particular [DLM2], there is a unique simple g-twisted sector
V (g) for each finite order automorphism g. There is an interesting relation
between the graded dimension of V (g) and the graded trace of g (the formal
definition is given below):

ZV (g,−1/τ) = (constant)ZV (g)(τ ).

This is proved in [DLM3], and shows that the modularity of ZV (g, q) is
equivalent to that of ZV (g)(q). In the case of the Moonshine Module V �

for example, each ZV � (g, q) is modular thanks to Borcherds solution of the
Conway-Norton Moonshine Conjectures [B]. Therefore, each simple twisted
sector V �(g), g ∈ M, has a graded dimension which is a modular function.
Note that explicit constructions of the twisted sectors are known in only a few
cases. To be most effective, one would like to know

Problem 9: Show that the constant above is always 1.

This would establish a remarkable fact - that the graded dimension of the
g-twisted sector just the S-transform of the graded trace of g on V . Problem 9
remains open even in the case of V � and general g ∈ M , though it is known in
some cases.

Example: (Identify elements of M as in [CN]; η(τ) is the Dedekind eta-
function.)
(a) 2A ∈ M; λ(2A) = 1/2,

Z(2A, τ ) = q−1 + 4372q + . . .

ZV �(2A)(q) = q−1/2 + 4372q1/2 + . . .

(b) 2B ∈ M : λ(2B) = 1,

Z(2B, τ ) = 24+ η(τ)24

η(2τ)24

ZV �(2B)(q) = 24+ 212 η(τ)24

η(τ/2)24
.
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The uniqueness of V (g) can be exploited. It is a general fact [DM5] that if
g, h ∈ G then h induces a functor V (g)-Mod → V (hgh−1)-Mod. In particu-
lar, the unicity of V (g) leads to a projective action of the centralizer CG(g) on
V (g). Thus if gh = hg then there is a graded trace

ZV (g)(h, q) = TrV (g)hq L(0)−c/24

= q−c/24+λ(g)∑
n≥0

TrVλ(g)+ n
N

h qn/N

which is well-defined up to an overall nonzero scalar. Setting Z(g, h, q) =
ZV (g)(h, q), there is the following conjecture which generalizes the relation
between ZV (g)(q) and ZV (g, q) which we discussed above:

Problem 10: For each γ =
(

a b
c d

)
∈ SL(2,Z), prove that

Z(g, h,
aτ + b

cτ + d
) = (constant)Z(gahc, gbhd , τ ),

where the constant is a root of unity.
In the case of V �, this is precisely Norton’s generalized moonshine conjec-

ture mentioned in the Introduction. Note that unlike Problem 9 (corresponding
to the case γ = S) the constant cannot always be taken to be 1. On the other
hand, all of the remaining difficulty in the problem resides in the nature of the
constant, since the equality (with no restrictions on the constant) is known to
be true [DLM3]. It is a consequence of Problem 10 that each Z(g, h, τ ) is a
modular function of weight zero. Assuming an affirmative solution to Problem
8, this in turn is equivalent to the modularity of the graded dimensions of the
simple modules over a holomorphic orbifold.

Finally, we mention unpublished work of the author and Chongying Dong. A
holomorphic linear orbifold is a holomorphic orbifold V G with a finite group
G ⊆ L. Roughly, we can show that much of the program outlined above can
be proved for holomorphic linear orbifolds, and in particular Problems 9 and
10 have affirmative solutions. Indeed, there is a symmetric function ζ(·|·) :
G × G −→ C∗ such that

ζ(g | ·) is a character of CG(g)

Z(g, h, Sτ) = ζ(g|h)Z(h, g−1, τ )

This corresponds precisely to the formalism of [DVVV] in one of the first
papers on orbifolds. For the Moonshine Module V � the linear automorphism
group is trivial, so we find nothing new in this case. On the other hand, for
the holomorphic VOA VE8 corresponding to the E8 root lattice, L is the full
automorphism group. In this case, then, we have a complete proof of modular-
invariance for commuting pairs of elements. Given a linear orbifold, G arises
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from exponentiating elements of V1 and one can make use of the connec-
tion with Lie algebras in the proofs. Furthermore, there are fairly explicit
descriptions of the twisted sectors for elements in L based on a construction
of Li [Li2]. There are connections with some modular-invariance results of
Miyamoto [M].

This completes our survey, though there is much more that one could (and
perhaps should) say. In particular, we have omitted discussion of the ideas
of Bantay [Ba] for proving modular-invariance results using permutation orb-
ifolds and modular data. Huang has recently announced some important results
[Hu] concerning the categorical nature of V -Mod which bear on these issues.
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Quasi-finite Algebras Graded by Hamiltonian
and Vertex Operator Algebras

Atsushi Matsuo∗, Kiyokazu Nagatomo† and Akihiro Tsuchiya‡

Abstract

A general notion of a quasi-finite algebra is introduced as an algebra graded by
the set of all integers equipped with topologies on the homogeneous subspaces
satisfying certain properties. An analogue of the regular bimodule is intro-
duced and various module categories over quasi-finite algebras are described.
When applied to the current algebras (universal enveloping algebras) of vertex
operator algebras satisfying Zhu’s C2-finiteness condition, our general consid-
eration derives important consequences on representation theory of such vertex
operator algebras. In particular, the category of modules over such a vertex
operator algebra is shown to be equivalent to the category of modules over a
finite-dimensional associative algebra.

Introduction

In order to construct conformal field theories on Riemann surfaces associ-
ated with a vertex operator algebra V and to obtain their properties such as
the finite-dimensionality of the space of conformal blocks, factorization of the
blocks along the boundaries of the moduli space of Riemann surfaces and the
fusion functors or the tensor product of V -modules, we need first to impose an
appropriate finiteness condition on V and second to study the structure of the
abelian category of V -modules to some extent.
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One of the candidates of such a finiteness condition is the one introduced by
Y.-C. Zhu ([Zhu]), usually called the C2-finiteness (or C2-cofiniteness), saying
that a certain quotient space V/C2(V ) is finite-dimensional. We will call this
condition Zhu’s finiteness condition in the rest of the paper. This condition was
used in [Zhu] in an essential way to the proof of the modular invariance of char-
acters of V -modules, as well as the condition that the category of V -modules
is semisimple. The modular invariance is a part of the characteristic properties
of rational conformal field theories.

Another important ingredient in Zhu’s derivation of the modular invariance
is the use of an associative algebra A(V ), called Zhu’s algebra, and a functor
from the category of V -modules to the category of A(V )-modules. The funda-
mental result of Zhu is as follows: the functor sends an irreducible V -module
to an irreducible A(V )-module in such a way that the equivalence classes of
irreducibles in the two categories are in one-to-one correspondence. In partic-
ular, the number of irreducible classes is finite if A(V ) is finite-dimensional.
The last property actually follows from Zhu’s finiteness condition mentioned
above.

However, the above-mentioned functor need not give us an equivalence
of categories. Specifically, if we include the cases when the category of
V -modules is not semisimple, the algebra A(V ) is not enough to understand
the properties of the category of V -modules in general. In this regard, it
seems to the authors that detailed analysis of the structure of the abelian cat-
egory of V -modules has not yet been done. (See [DLM3] for some related
results.)

The purpose of the present paper is to fill this gap by making use of the
universal enveloping algebra associated with the vertex operator algebra.

The universal enveloping algebra associated with V , which we will denote
by U = U(V ), is a certain topological algebra first considered by Frenkel
and Zhu in [FrZ]. The presence of a topology is inevitable as the univer-
sal defining relations of vertex operator algebras contain infinite sums. We
will call U the current algebra for short in the rest of the paper. More pre-
cisely, the current algebra U is an associative algebra with unity graded by
the set of integers equipped with a separated linear topology defined by a cer-
tain sequence I0(U), I1(U), . . . of open left ideals such that each homogeneous
subspace U(d) is complete with respect to the relative topology. Note that the
quotient space Qn(U) = U/In(U) is a discrete space, which inherits a grading
from U. We will denote its subspace of degree d by Qn(U)(d). The algebra U is
important in that there is a one-to-one correspondence between V -modules of
certain type and continuous discrete U-modules. (See Section 6 for the precise
statement.)
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The authors noticed while trying to understand the category of V -modules
by means of U that the finiteness property should better be imposed on U
rather than on V as far as the properties of the category as an abelian category
are concerned. Thus we arrived at the concept of quasi-finiteness, which is
defined as follows: U is quasi-finite if and only if the spaces Qn(U)(d) are
finite-dimensional for all integers d and nonnegative integers n. As we will
show in Theorem 9.2.1, Zhu’s finiteness condition actually implies the quasi-
finiteness of U.

Let us assume that U is quasi-finite. Then the spaces Qn(U)(d) have the gen-
eralized eigenspace decompositions with respect to the action of the Virasoro
operator L0, which we will call the Hamiltonian of U. By using this, we can
construct a series of finite-dimensional algebras Un and functors from the cate-
gory of continuous discrete left U-modules to the category of left Un-modules
which give rise to equivalences of categories when n is sufficiently large.
Therefore, under the quasi-finiteness, the category of continuous discrete left
U-modules as an abelian category is completely described by the properties of
the finite-dimensional algebra Un .

In application to conformal field theories on Riemann surfaces, we have
to enlarge the algebra U and to take into account the concept of duality of
U-modules. Therefore we consider two different topologies on U, one is the
original left linear one and the other a right linear one, and take the filter-
wise completion U (V ) and U (V )∨ with respect to the two topologies. Then
we may consider the left U (V )-modules, the right U (V )-modules, the left
U (V )∨-modules, and the right U (V )∨-modules. We can now formulate the
concept of quasi-finiteness for each of the four and can establish the equiv-
alences or the dualities among them. We will call this type of results the
finiteness theorems.

As the argument above deriving the equivalences and the dualities of cat-
egories only uses quite general properties of U and L0, we now postulate
them: we will call a topological algebra A with a distinguished element h
a quasi-finite algebra graded by Hamiltonain if it shares the same prop-
erties with U and L0 as mentioned above. (See Section 2 for the precise
definition.)

The present paper is divided into two parts: Part I consists in explaining
general theory of quasi-finite algebras graded by Hamiltonian and categories
of modules over them and Part II in proving that Zhu’s finiteness condition on
V implies the quasi-finiteness of U.

The plan of Part I is as follows. We will begin by describing in Section 1
the concept of compatible degreewise topological algebras and the associated
topological filtered algebras which are modeled on the topological features
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of U. In Section 2, we define the concept of quasi-finite algebras graded
by Hamiltonian and give some consequences. In particular, for a pair (A, h)
of a quasi-finite algebra A and a Hamiltonian h, we introduce an analogue
of the regular bimodule and define certain finite-dimensional algebras An .
We will show that the regular bimodule is a dense subspace of the alge-
bra (Theorem 2.5.4). Section 3 is devoted to the equivalence of categories
between the category of continuous discrete A-modules, which we will call
exhaustive modules, and the category of An-modules (Theorem 3.3.4). In
Section 4, we will introduce a notion of coexhaustive modules which is a
dual notion of exhaustive modules and establish an equivalence between the
category of exhaustive modules and the category of coexhaustive modules
(Theorem 4.3.3). The duality of modules will be formulated in Section 5 as
the duality between quasi-finite exhaustive left modules and quasi-finite coex-
haustive right modules. We will then summarize various equivalences and the
dualities for quasi-finite modules (Theorem 5.5.1).

The proof of quasi-finiteness of the current algebra U in Part II under
Zhu’s finiteness condition will be done by considering a certain filtration G
on U, which was introduced in [NaT], and a certain universal Poisson algebra
S = S(p) associated with p = V/C2(V ). We will construct a surjective homo-
morphism of Poisson algebra from S to the degreewise completion g̃rGU of
grGU. The quasi-finiteness of U then follows from that of S. We will call S the
Poisson current algebra.

In Section 6, we will describe the construction and some properties of the
current algebra U associated with a vertex operator algebra V . In Section 7, we
will consider the filtration G on U and show that the associated graded algebra
has a structure of a Poisson algebra. In Section 8, we will construct the Poisson
current algebra S associated with any Poisson algebra p and we will show that
S is quasi-finite if p is finite-dimensional (Theorem 8.3.3). In the final section,
we will consider the case when p = V/C2(V ) and construct the surjective
homomorphism ψ : S → g̃rGU of Poisson algebras (Theorem 9.1.2). We will
then combine these results to show that Zhu’s finiteness condition on V implies
quasi-finiteness of the current algebra U (Theorem 9.2.1).

The finiteness theorems mentioned above will give us not only a nice
conceptual understanding of the role of Zhu’s finiteness condition in rep-
resentation theory of vertex operator algebras but also a foundation in the
strategy mentioned at the beginning of this introduction of constructing the
spaces of conformal blocks on general Riemann surfaces and of showing their
expected properties. This will be developed in our forthcoming paper, which
will serve as the continuation of the previous paper [NaT] by two of the
authors.
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Part I

Quasi-finite Algebras Graded by Hamiltonian

1. Linear topologies on graded algebras

In this section, we introduce compatible degreewise topological algebras and
some related notions.

1.1. Preliminaries

Throughout the paper, we will work over an algebraically closed field k of
characteristic zero. A vector space always means a vector space over k and the
scalar multiplication of a vector space is denoted by juxtaposition.

An algebra means an associative algebra over k with unity. The multiplica-
tion of an algebra A is denoted by the dot · and the unity by 1A or simply by 1.
For subsets S and T of A, we denote by S · T the linear span of the elements
of the form s · t with s ∈ S and t ∈ T . The action of A on an A-module M
is denoted again by the dot. We always assume that the unity 1A acts by the
identity operator.

We endow the field k with the discrete topology. Let I0, I1, . . . , In, . . . be a
decreasing sequence of linear subspaces of a vector space V . A linear topol-
ogy defined by In means a topology on V such that for each v ∈ V the
set
{
v + In

∣∣ n = 0, 1, 2, . . .
}

forms a fundamental system of open neighbor-
hoods of v.

Throughout the paper, a topology on a vector space always means a linear
topology given in this way. Such a space is usually called a linearly topologized
vector space in the literatures.

Let V be a vector space with the linear topology defined by In . Any subspace
U which contains In for some n is open and closed, and the quotient topology
on V/U is the discrete topology. The closure of a subspace U is given by⋂

n (U+ In) and U is dense in V if and only if the composite U → V → V/In

of canonical maps is surjective for any n.

287
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The completion of V with respect to the linear topology defined by In is the
projective limit

V̂ = lim←−
n

V/In (1.1.1)

endowed with the projective limit topology, namely the relative topology
induced from

∏∞
n=0 V/In with the product topology of the discrete topolo-

gies on V/In . Let În be the closure of the image of In under the canonical map
V → V̂ . Then În agrees with the kernel of the canonical map V̂ → V/In and
the topology on V̂ is the linear topology defined by În .

The space V is said to be complete if the canonical map V → V̂
is a homeomorphism. Thus a complete space is separated (i.e. Hausdorff)
in our convention. If V is complete then the closure of a subspace U is
given by

Û = lim←−
n

(U + In)/In. (1.1.2)

and for a closed subspace F the quotient space V/F with the quotient topology
is also complete.

We refer the reader to [Bou], [EGA] and [Mac] for linear topologies.

1.2. Compatible degreewise topological algebras

Let A be an algebra and suppose given a grading

A =
⊕

d

A(d) (1.2.1)

indexed by integers such that A(d) ·A(e) ⊂ A(d + e). We simply call such an
A a graded algebra. Let us set

FpA =
⊕
d≤p

A(d), F∨p A =
⊕

d≥−p

A(d) (1.2.2)

where p is an integer. We call the filtration F the associated filtration and F∨
the opposite filtration. Note that the subspaces F0A and F∨0 A are subalgebras
of A.

Let A = ⊕d A(d) be a graded algebra and suppose given a linear topol-
ogy on each A(d). In such a situation, we will say that A is endowed with a
degreewise topology. We assume that the multiplication maps A(d)×A(e)→
A(d + e) are continuous. We will say that A is degreewise complete if each
A(d) is complete.
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Now consider the subspace

A(d) ∩ (A · F−n−1A) =
∑

k≤−n−1

A(d − k) · A(k) (1.2.3)

and let In(A(d)) be its closure in A(d). We assume that {In(A(d))} forms a
fundamental system of open neighborhoods of zero in each A(d).

Definition 1.2.1 A compatible degreewise topological algebra is a graded
algebra A endowed with a degreewise topology such that all the conditions
mentioned above are satisfied. A compatible degreewise complete algebra
is a compatible degreewise topological algebra A such that it is degreewise
complete.

Let A be a compatible degreewise topological algebra. Since the multiplica-
tion maps A(d)× A(e)→ A(d + e) are continuous, we have

A(d) · In(A(e)) ⊂ In(A(d + e)), In(A(d)) · A(e) ⊂ In−e(A(d + e)).
(1.2.4)

Therefore, for a ∈ A(d) and b ∈ A(e), we have

(a + In+e(A(d))) · (b + In(A(e))) ⊂ a · b + In(A(d + e)). (1.2.5)

Instead of In(A(d)), we may consider the closure I∨n (A(d)) of A(d) ∩
(F∨−n−1A · A). Since we have

I∨n (A(d)) = In−d(A(d)), (1.2.6)

the topology defined by I∨n (A(d)) agrees with the one defined by In(A(d)).
In the sequel, we will use the following terminologies: a graded subspace is

said to be degreewise dense if each homogenesous subspace is dense; the sum
of the closures of the homogeneous subspaces of a graded subspace U is called
the degreewise closure of U .

Note 1.2.2 Let A be a graded algebra endowed with a degreewise topology.
In general, there is no canonical way of extending the topologies on the homo-
geneous subspaces to the whole space A which makes A into a topological
algebra.

1.3. Degreewise completion

Let A be a compatible degreewise topological algebra. Set Â = ⊕d Â(d)
where Â(d) is the completion of the space A(d). We call Â the degreewise
completion of A. Since the multiplication maps A(d)× A(e)→ A(d + e) are
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continuous, they induce continuous bilinear maps Â(d) × Â(e) → Â(d + e)
which make Â into an algebra endowed with a degreewise topology.

Proposition 1.3.1 The degreewise completion Â is a compatible degreewise
complete algebra.

For instance, let A = ⊕d A(d) be any graded algebra. We endow the
space A(d) with the linear topology defined by A(d) ∩ (A · F−n−1A). Then
A becomes a compatible degreewise topological algebra and the degreewise
completion Â is degreewise complete. We call this degreewise topology on A
the standard degreewise topology and the algebra Â the standard degreewise
completion.

Note 1.3.2 Giving topologies on the homogeneous subspaces of a graded
algebra in the way described above was considered by some authors, see e.g.
[FeF], [Kac], [FrZ], [Mal], [LiW].

1.4. Associated filtered topological algebra

A topological algebra is said to be left linear if the topology is a linear
topology defined by a sequence of left ideals. Right linearity is defined
similarly.

Let A be a compatible degreewise topological algebra. Let us endow the
algebra A with the associated filtration F. Consider the left ideal In(A) of A
defined by

In(A) =
⊕

d

In(A(d)). (1.4.1)

By the compatibility of A, the space In(A) is the degreewise closure of A ·
F−n−1A. Let us endow the space A with the topology defined by In(A). Then
the relative topology on A(d) induced from A agrees with the original topology
on A(d). For any a ∈ FpA and b ∈ FqA we have (a+ In+q(A)) ·(b+ In(A)) ⊂
a ·b+ In(A). Hence the multiplication A×A → A is continuous. In particular,
as In(A) are left ideals, A is a left linear topological algebra. We simply call
this topology the left linear topology of A.

Now consider the opposite filtration F∨ and set

I∨n (A) =
⊕

d

I∨n (A(d)). (1.4.2)
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The space I∨n (A) is the degreewise closure of F∨−n−1A · A. Then the linear
topology on A defined by I∨n (A) now makes A into a right linear topological
algebra. We call this topology the right linear topology of A.

The left linear topology and the right linear topology on the same algebra A
do not agree with each other in general although the restrictions to A(d) are
the same.

1.5. Filterwise completion

Let A be a compatible degreewise topological algebra. Let us endow A with
the left linear topology and let FpA be the completion

FpA = lim←−
n

FpA/FpA∩ In(A) (1.5.1)

with the projective limit topology. Then the multiplication FpA × FqA →
Fp+qA induces a multiplication FpA × FqA → Fp+qA . Consider the
space

A = lim−→
p

FpA (1.5.2)

and give it the linear topology defined by

In(A ) = Ker
(
A → A/In(A)

)
. (1.5.3)

Then In(A ) is a left ideal of A and, for any a ∈ FpA and b ∈ FqA , we have
(a + In+q(A )) · (b + In(A )) ⊂ a · b + In(A ). Thus the space A becomes
a filtered left linear topological algebra such that the subspaces FpA with the
relative topologies are complete and that the image of A under the canonical
map A → A is a dense subspace of A . We call A the left linear filterwise
completion of A.

Now consider the right linear topology on A and the corresponding filterwise
completion

A ∨ = lim−→
p

F∨pA ∨, F∨pA ∨ = lim←−
n

F∨pA/F∨pA∩ I∨n (A). (1.5.4)

We will call A ∨ the right linear filterwise completion of A.
If A is degreewise complete then the canonical maps A → A and A → A ∨

are injective. We will then identify A with its images. Thus we have two
inclusions

A ← A → A ∨ (1.5.5)
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such that the relative topologies on each A(d) induced from A and from
A ∨ agree with the original topology of a compatible degreewise topological
algebra. Note that the filterwise completions A and A ∨ are not complete in
general.

1.6. Hamiltonian of a graded algebra

Let A be a graded algebra. An element h ∈ A is called a Hamiltonian of A if

A(d) = {a ∈ A
∣∣ [h, a] = da

}
(1.6.1)

holds for any d, where [h, a] = h · a − a · h denotes the commutator. If this
is the case then any central element as well as h itself belongs to A(0) and an
element h′ is a Hamiltonian if and only if h − h′ is central.

An algebra graded by Hamiltonian is a pair (A, h) of a graded algebra A
and a Hamiltonian h ∈ A(0). We will denote by H the subalgebra of A(0)
generated by the Hamiltonian h.

Remark 1.6.1 Let (A, h) be a compatible degreewise complete algebra
graded by Hamiltonian. Then the images of the canonical injections (1.5.5)
are given respectively by

∑
d A (d) and

∑
d A ∨(d), where

A (d) = {a ∈ A
∣∣ [h, a] = da

}
, A ∨(d) = {a ∈ A ∨ ∣∣ [h, a] = da

}
.

(1.6.2)

In the rest of Part I, we will be mainly concerned with a compatible
degreewise complete algebra graded by Hamiltonian.

2. Quasi-finite algebras

In this section, we will formulate a finiteness condition on compatible degree-
wise complete algebras and describe its consequences. In particular, we will
formulate an analogue of the regular bimodule as a degreewise dense subspace
of the algebra.

2.1. Canonical quotient modules

Let A be a compatible degreewise topological algebra and recall the spaces
In(A). We set

Qn(A) = A/In(A). (2.1.1)
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Since In(A) is a left ideal, the quotient Qn(A) is a left A-module. We will call
this module the left canonical quotient module.

By (1.2.4), we have In(A) · F0A ⊂ In(A). Hence the multiplication
A × F0A → A induces a right action of F0A on Qn(A) for any n. Thus
the space Qn(A) is an (A,F0A)-bimodule. In particular, it is an (A(0),A(0))-
bimodule.

Since In(A) is a graded subspace, the grading of A induces a grading on the
quotient by setting Qn(A)(d) = A(d)/In(A(d)). If d ≤ −n − 1 then since
A(d) ⊂ In(A) we have Qn(A)(d) = 0. Thus

Qn(A) =
∞⊕

d=−n

Qn(A)(d). (2.1.2)

Lemma 2.1.1 For any v ∈ Qn(A) there exists an m such that Im(A) · v = 0.

Proof. By (1.2.4) we have In+d(A) · A(d) ⊂ In(A) and hence Im(A) ·
Qn(A)(d) = 0 for m = n + d.

Note that the action A×Qn(A)→ Qn(A) is continuous when A is endowed
with the left linear topology and Qn(A) with the discrete topology.

Lemma 2.1.2 Let v be an element of Qn(A). Then F−n−1A · v = 0 implies
In(A) · v = 0.

Proof. Suppose F−n−1A·v = 0 and choose an m such that Im(A)·v = 0. Since
In(A) is the closure of A · F−n−1A, we have In(A) ⊂ A · F−n−1A + Im(A).
Hence In(A) · v ⊂ A · F−n−1A · v + Im(A) · v = 0.

We may likewise consider the right canonical quotient module Q∨n (A) =
A/I∨n (A). We have analogous statements for the right canonical quotient mod-
ules as well. By the definitions of the filterwise completions A and A ∨, the
spaces Qn(A) and Q∨n (A) are canonically isomorphic to the spaces A /In(A )

and A ∨/I∨n (A ∨), respectively.

2.2. Quasi-finite algebra graded by Hamiltonian

Let A be a compatible degreewise topological algebra. Let us consider the
subspace A(0) of degree zero, which is a subalgebra of A. Then In(A(0))
and I∨n (A(0)) agree with each other and they give a two-sided ideal of A(0).
Therefore, the quotient Qn(A)(0) = A(0)/In(A(0)) is an algebra.
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Lemma 2.2.1 The space Qn(A)(d) is a (Qn+d(A)(0),Qn(A)(0))-bimodule.

Proof. By (1.2.4), we have In+d(A(0)) · A(d) ⊂ In(A(d)) and A(d) ·
In(A(0)) ⊂ In(A(d)). The result follows.

Let h be a Hamiltonian and let hn be the image of h in the quotient
Qn(A)(0). Let Hn be the subalgebra of Qn(A)(0) generated by hn . By
Lemma 2.2.1, the space Qn(A)(d) is in particular an (Hn+d ,Hn)-bimodule.

Definition 2.2.2 A weakly quasi-finite algebra is a compatible degreewise
complete algebra such that Qn(A)(0) are finite-dimensional for all n. A weakly
quasi-finite algebra graded by Hamiltonian is a pair (A, h) of a weakly quasi-
finite algebra A and a Hamiltonian h of A.

Let (A, h) be a weakly quasi-finite algebra graded by Hamiltonian and let hn

and Hn be as above. Then Hn is a finite-dimensional commutative algebra for
any nonnegative integer n. This last property is what we will need in practice
in considering a weakly quasi-finite algebra graded by Hamiltonian.

Now let us consider the following conditions for each d:

(a) The spaces Qn(A)(d) are finite-dimensional for all n.
(b) The spaces Q∨n (A)(d) are finite-dimensional for all n.

Thanks to the relation (1.2.6), these conditions are actually equivalent.

Definition 2.2.3 A quasi-finite algebra is a compatible degreewise complete
algebra such that the equivalent conditions (a) and (b) above are satisfied for
all integers d. A quasi-finite algebra graded by Hamiltonian is a pair (A, h) of
a quasi-finite algebra A and a Hamiltonian h of A.

2.3. Spectrum of the Hamiltonian

Let (A, h) be a weakly quasi-finite algebra graded by Hamiltonian and recall
the image hn of h in Qn(A)(0). We let ϕn be the minimal polynomial of hn and
let �n be the set of roots of ϕn . Then the set �n agrees with the eigenvalues of
the left action of h on Qn(A)(0).

Let us introduce a partial order on k by letting λ � μ when λ − μ

is a nonnegative integer and let 
0 be the set of minimal elements of �0.
We put


∞ =
{
γ + k

∣∣ γ ∈ 
0 and k = 0, 1, . . .
}
. (2.3.1)
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We will also use the following notation:


m =
{
γ + k

∣∣ γ ∈ 
0 and k = 0, 1, . . . ,m
}
. (2.3.2)

Let g be the maximum of the integral differences among elements of �0:

g = max {λ− μ | λ,μ ∈ �0, λ � μ} . (2.3.3)

Then we have 
0 ⊂ �0 ⊂ 
g.
Recall the subalgebras H⊂A(0) and Hn ⊂Qn(A)(0). For any left

H-module W , we denote by W [λ] the generalized eigenspace of the
Hamiltonian h acting on W :

W [λ] = {v ∈ W
∣∣ (h − λ)r · v = 0 for some nonnegative integer r

}
.

(2.3.4)

If W is an Hn-module then W [λ] �= 0 implies λ ∈ �n .
Now consider the space

Km(Qn(A)) =
{
v ∈ Qn(A)

∣∣ Im(A) · v = 0
}
. (2.3.5)

Then this is a left Qm(A)(0)-module and hence a left Hm-module. Thus the set
of the eigenvalues of the left action of h on Km(Qn(A)) is contained in the set
�m . Note that v ∈ Km(Qn(A)) if and only if F−m−1A ·v = 0 by Lemma 2.1.2.

Proposition 2.3.1 The set �n is a subset of 
n+g.

Proof. Let λ be an element of �n . Then there exists a generalized eigenvector
v in Qn(A)(0) ⊂ Kn(Qn(A)) with the eigenvalue λ. Since v �= 0 and F−n−1A ·
v = 0, there exists a nonnegative integer k with 0 ≤ k ≤ n for which v /∈
Kk−1(Qn(A)) but v ∈ Kk(Qn(A)). Then A(−k) · v is a nonzero subspace of
K0(Qn(A)). Since A(−k) · v ⊂ Qn(A)[λ− k], we have λ− k ∈ �0 and hence
λ ∈ 
k+g ⊂ 
n+g.

Now Lemma 2.1.1 implies Qn(A)=⋃∞m=0 Km(Qn(A)). Therefore, Propo-
sition 2.3.1 implies that

Qn(A) =
⊕
λ∈
∞

Qn(A)[λ]. (2.3.6)

Lemma 2.3.2 The space Qn(A)[λ] with λ ∈ 
m is a subspace of
Km(Qn(A)).

Proof. Since λ − m − 1 /∈ 
∞, we have F−m−1A · Qn(A)[λ] = 0. Hence
Qn(A)[λ] ⊂ Km(Qn(A)).
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Proposition 2.3.3 The multiplicities of the roots of the minimal polynomial
ϕn do not exceed those of ϕg for any nonnegative integer n.

Proof. Let � be the maximum of the multiplicities of the roots of ϕg and let v
be an element of Qn(A). We show that (h − λ)k · v = 0 for some k implies
(h − λ)� · v = 0. Let λ be a minimal counterexample to this claim: there
exists a nonzero vector v such that (h − λ)k · v = 0 for some k but (h −
λ)� · v �= 0. Then, by the minimality, we have F−1A · (h − λ)� · v = 0 and
hence (h − λ)� · v ∈ K0(Qn(A)) by Lemma 2.1.2. Hence λ ∈ �0 ⊂ 
g and
so v ∈ Qn(A)[λ] ⊂ Kg(Qn(A)) by Lemma 2.3.2. Hence (h − λ)� · v = 0, a
contradiction.

2.4. The regular bimodule

Let (A, h) be a weakly quasi-finite algebra graded by Hamiltonian. We denote
by A[λ,μ] the simultaneous generalized eigenspace of the left and the right
actions of the Hamiltonian h on A:

A[λ,μ] = {a ∈ A
∣∣ (h − λ)r · a = a · (h − μ)r = 0 for some r

}
. (2.4.1)

We will call this λ the left eigenvalue and μ the right eigenvalue of h.
By the definition, A[λ,μ] �= 0 implies that d = λ − μ is an integer and

A[λ,μ] ⊂ A(d). We also note that

A(d) · A[λ,μ] ⊂ A[λ+ d, μ], A[λ,μ] · A(e) ⊂ A[λ,μ− e]. (2.4.2)

It is easy to see that

A[κ, λ] · A[μ, ν] = 0 if λ �= μ. (2.4.3)

Indeed, if a · (h − λ)k = 0 and (h − μ)m · b = 0 with λ �= μ then a · b =
a ·1 ·b = a · (h−λ)k f (h) ·b+a · (h−μ)m g(h) ·b = 0 for some polynomials
f (x) and g(x). Also note that

A[κ, λ] · A[λ,μ] ⊂ A[κ, μ]. (2.4.4)

We now set

B∞(A) =
∑

d

B∞(A)(d), B∞(A)(d) =
∑

λ−μ=d

A[λ,μ]. (2.4.5)

Then by (2.4.2) this is an (A,A)-bimodule. We call B∞(A) the regular
bimodule of A.

Remark 2.4.1 The structure of an (A,A)-bimodule on B∞(A) actually
prolongs to a structure of an (A ,A ∨)-bimodule. (See Proposition 3.1.4.)
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2.5. Denseness of the regular bimodule

To investigate the spaces A[λ,μ] we consider the left canonical quotient
module Qn(A), which is an (A,F0A)-bimodule. Consider the simultaneous
generalized eigenspaces:

Qn(A)[λ,μ] =
{
v ∈ Qn(A)

∣∣ (h − λ)r · v = v · (h − μ)r = 0 for some r
}
.

(2.5.1)

Then Qn(A)[λ,μ] �= 0 implies that d = λ − μ is an integer and that
Qn(A)[λ,μ] ⊂ Qn(A)(d).

Recall that the space Qn(A)(d) is a (Qn+d(A)(0),Qn(A)(0))-bimodule. In
particular, it is an (Hn+d ,Hn)-bimodule. Hence we have

Qn(A)(d) =
∑
μ∈�n

Qn(A)[μ+ d, μ]. (2.5.2)

Note that A(d)·Qn(A)[λ,μ] ⊂ Qn(A)[λ+d, μ] and that Qn(A)[λ,μ]·A(e) ⊂
Qn(A)[λ,μ− e] whenever e ≤ 0.

Lemma 2.5.1 If A[λ,μ] �= 0 then λ,μ ∈ 
∞.

Proof. Let a be a nonzero element of A[λ,μ] with d = λ− μ. Since we have
assumed that A(d) is complete, it is separated. Hence there exists an n such
that the image v of a in Qn(A)(d) is nonzero. Then since v ∈ Qn(A)[λ,μ], we
have λ ∈ 
∞ and μ ∈ 
n ⊂ 
∞.

Lemma 2.5.2 If μ ∈ 
m and n ≥ m then the restriction Qn(A)[λ,μ] →
Qm(A)[λ,μ] of the canonical surjection is an isomorphism for any λ.

Proof. Set d = λ− μ. Consider the kernel Im(A)/In(A) of the canonical sur-
jection Qn(A)→ Qm(A). Consider the map A×F−m−1A → A which induces
A× F−m−1A → Im(A)/In(A). Since Im(A) is the closure of A · F−m−1A, this
map is surjective. Hence the induced map Qn(A)× F−m−1A → Im(A)/In(A)
is also surjective. The right eigenvalues of h on Qn(A) · F−m−1A exceed
those of Qn(A) by more than m. Hence it follows that the set of the right
eigenvalues on the space Im(A)/In(A) does not intersect 
m . This implies the
result.

By this lemma, we have the following result.

Proposition 2.5.3 Let (A, h) be a weakly quasi-finite algebra graded by
Hamiltonian and let m be a nonnegative integer. Then the canonical surjection
A[λ,μ] → Qn(A)[λ,μ] is an isomorphism whenever μ ∈ 
m and n ≥ m.
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Proof. By Lemma 2.5.2, we have a canonical splitting

Qm(A)[λ,μ] → lim←−
n

Qn(A)[λ,μ]. (2.5.3)

Set d = λ − μ. Since A(d) is complete, the projective limit is isomorphic to
the subspace A[λ,μ] of A(d).

The following is the first main result of Part I.

Theorem 2.5.4 Let (A, h) be a weakly quasi-finite algebra graded by
Hamiltonian. Then the regular bimodule B∞(A) is degreewise dense in A.

Proof. By Proposition 2.5.3, the map B∞(A)(d) → Qn(A)(d) =
A(d)/In(A(d)) is surjective for any n. This means that B∞(A)(d) is dense
in A(d).

Note that the whole space B∞(A) is dense in A with respect to the left linear
and the right linear topologies of A.

2.6. The associated finite algebras

Let (A, h) be a weakly quasi-finite algebra graded by Hamiltonian. We set

An = Bn(A) =
∑

λ,μ∈
n

A[λ,μ]. (2.6.1)

Then it follows from (2.4.4) that the space An is closed under the multiplication
of A. Setting An(d) = A(d) ∩An , we have An =⊕d An(d).

By Proposition 2.5.3, we may identify An(0) with a subspace of Qn(A)(0).
Recall the elements 1n and hn of Qn(A)(0), which are the images of 1 and h
under the map A(0)→ Qn(A)(0), respectively. Let

1n =
∑
λ∈�n

1n[λ, λ], hn =
∑
λ∈�n

hn[λ, λ] (2.6.2)

be the decompositions to sums of simultaneous generalized eigenvectors.
We set

1An =
∑
λ∈
n

1n[λ, λ], hAn =
∑
λ∈
n

hn[λ, λ], (2.6.3)

and regard them as elements of An .

Proposition 2.6.1 The graded algebra structure on A induces a graded
algebra structure on An for which 1An is the unity and hAn is a Hamiltonian.
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We set

Pn(A) =
∑
λ∈
∞

∑
μ∈
n

A[λ,μ], P∨m(A) =
∑
λ∈
m

∑
μ∈
∞

A[λ,μ]. (2.6.4)

Then Pn(A) is an (A,An)-bimodule and P∨m(A) is an (Am,A)-bimodule, which
will play prominent roles in the next section.

Remark 2.6.2 The structure of an (A,An)-bimodule on Pn(A) prolongs to a
structure of an (A ,An)-bimodule and the structure of an (Am,A)-bimodule on
P∨m(A) to an (Am,A ∨)-bimodule. (See Remark 2.4.1 and Proposition 3.1.4.)

Let us consider the case when A is quasi-finite.

Proposition 2.6.3 Let (A, h) be a quasi-finite algebra graded by
Hamiltonian. Then An are finite-dimensional for all n.

Proof. For any λ,μ ∈ 
n , the space A[λ,μ] is isomorphic to Qn(A)[λ,μ]
by Proposition 2.5.3. Since the range 
n of λ and μ is finite and
Qn(A)[λ,μ] ⊂ Qn(A)(λ − μ) is finite-dimensional, the space An is also
finite-dimensional.

3. Exhaustive modules

We will define the notion of exhaustive modules and investigate the properties
of the category of such modules over a weakly quasi-finite algebra A graded
by Hamiltonian. In particular, we will show that the category of exhaustive
A-modules and the category of An-modules are equivalent if n ≥ g.

3.1. Exhaustive modules

Let (A, h) be a weakly quasi-finite algebra graded by Hamiltonian and endow
it with the left linear topology.

Definition 3.1.1 A left A-module M is exhaustive if for any v ∈ M there
exists an m such that Im(A) · v = 0.

By this definition, it is easy to see that a left A-module M is exhaustive if
and only if the action A×M → M is continuous with respect to the left linear
topology on A and the discrete topology on M . Note, however, that a topology
on an exhaustive left A-module M need not be the discrete topology in order
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for the action A × M → M to be continuous with respect to the left linear
topology on A.

Lemma 3.1.2 Let M be an exhaustive left A-module and let v be an element
of M. Then F−n−1A · v = 0 implies In(A) · v = 0.

Proof. See the proof of Lemma 2.1.2.

Let us now consider the left linear filterwise completion A . We may
analogously define the notion of exhaustive left A -modules as follows.

Definition 3.1.3 A left A -module M is exhaustive if for any v ∈ M there
exists an m such that Im(A ) · v = 0.

It is fairly clear that results similar to those given above hold for exhaustive
left A -modules. The following proposition is a particular case of a general fact
on topological algebras. (See e.g. [Bou].)

Proposition 3.1.4 For any exhaustive left A-module M, the action A×M →
M induces an exhaustive left A -module structure A × M → M. Conversely,
for any exhaustive left A -module M, the action A × M → M restricts to an
exhaustive left A-module structure.

Thus the notion of exhaustive left A-modules and that of exhaustive left
A -modules have no essential differences.

Note 3.1.5 An exhaustive module is nothing else but a torsion module with
respect to the left linear topology. (See [Gab].)

3.2. Generalized eigenspaces of exhaustive modules

Let A be a compatible degreewise topological algebra. For a left A-module M
and a nonnegative integer n, we set

Kn(M) = {v ∈ M
∣∣ In(A) · v = 0

}
. (3.2.1)

Note that M is exhaustive if and only if M = ⋃n Kn(M) and if this is the
case then Kn(M) = {v ∈ M

∣∣ F−n−1A · v = 0
}

by Lemma 3.1.2.
Consider the case when (A, h) is a weakly quasi-finite algebra graded by

Hamiltonian. Since the space Kn(M) has a structure of a left Qn(A)(0)-
module, M decomposes into the sum of the generalized eigenspaces of the
left action of h:
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Kn(M) =
∑
λ∈�n

Kn(M)[λ]. (3.2.2)

Hence if M is exhaustive then the whole space M also decomposes into the
sum of the generalized eigenspaces.

Let us set

En(M) =
∑
λ∈
n

M[λ]. (3.2.3)

The following is one of the key observations in the present paper.

Proposition 3.2.1 If M is exhaustive then En(M) ⊂ Kn(M) ⊂ En+g(M).

Proof. The containment Kn(M) ⊂ En+g(M) follows from �n ⊂ 
n+g by
(3.2.1). The rest is similar to Lemma 2.3.2. Consider the space M[λ] with λ ∈

n . Then we have A(d) ·M[λ] ⊂ M[λ+d]. Therefore, since λ−n−1 /∈ 
∞,
we have F−n−1A · M[λ] = 0. This implies that En(M) ⊂ Kn(M).

Now consider the space E⊥n (M) =∑λ∈
∞\
n
M[λ] and set

Rn(M) = M/E⊥n (M). (3.2.4)

Then the canonical map En(M)→ Rn(M) is an isomorphism for each n.

3.3. Equivalence of categories

We will mean by the category of exhaustive left A-modules the full sub-
category of the category of left A-modules consisting of exhaustive left
A-modules.

Let M be an exhaustive left A-module. Then the space En(M) is a left
An-module. A homomorphism φ : M ′ → M ′′ of left A-modules induces
a map

En(φ) : En(M
′)→ En(M

′′). (3.3.1)

Thus we have a functor En(−) from the category of exhaustive left A-modules
to the category of left An-modules.

Lemma 3.3.1 If M is exhaustive then K0(M) = 0 implies M = 0.
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Proof. Suppose K0(M) = 0 and M �= 0. Let v be a nonzero element of M .
Since M is exhaustive, In(A) ·v = 0 and hence F−n−1A ·v = 0 for sufficiently
large n. Take the maximal integer n for which F−n−1A · v �= 0. Then by the
maximality F−1A · (F−n−1A · v) = 0 and hence I0(A) · (F−n−1A · v) = 0 by
Lemma 3.1.2. Hence F−n−1A · v ⊂ K0(M) = 0 which is a contradiction.

Lemma 3.3.2 A homomorphism φ : M ′ → M ′′ of exhaustive left A-modules
is an isomorphism if and only if Eg(φ) is an isomorphism of vector spaces.

Proof. Assume that Eg(φ) is an isomorphism of vector spaces. Then, by
Lemma 3.3.1, we see Kerφ = 0 and Cokerφ = 0 since K0(Kerφ) ⊂
Eg(Kerφ) = Ker (Eg(φ)) = 0 and K0(Cokerφ) ⊂ Eg(Cokerφ) =
Coker (Eg(φ)) = 0.

Recall the (A,An)-bimodule Pn(A) defined in Subsection 2.6, which is
an exhaustive left A-module. Therefore, for a left An-module X , the space
Pn(A)⊗An X is an exhaustive left A-module. We note that An = En(Pn(A)).

Lemma 3.3.3 For a left An-module X, the map An ⊗An X → Pn(A)⊗An X
induced by the inclusion An → Pn(A) is injective.

Proof. We set E⊥n (Pn(A)) = ∑λ∈
∞\
n
Pn(A)[λ]. Then the decomposition

Pn(A) = En(Pn(A)) ⊕ E⊥n (Pn(A)) = An ⊕ E⊥n (Pn(A)) is a direct sum
decomposition of a right An-module. Hence the map En(Pn(A)) ⊗An X →
Pn(A)⊗An X is injective.

Now we come to the second main result of Part I. Recall the number g
defined by (2.3.3).

Theorem 3.3.4 Let (A, h) be a weakly quasi-finite algebra graded by
Hamiltonian and let n be an integer such that n ≥ g. Then the functors
En(−) and Pn(A) ⊗An − are mutually inverse equivalences of categories
between the category of exhaustive left A-modules and the category of left
An-modules.

Proof. Let X be a left An-module. By Lemma 3.3.3, the map An ⊗An X →
Pn(A)⊗An X is injective. Therefore

X ∼= An ⊗An X ∼= En(Pn(A)⊗An X). (3.3.2)
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Let M be an exhaustive left A-module. Then, by letting X = En(M) in (3.3.2),
we have En(M) ∼= En(Pn(A)⊗An En(M)). Since n ≥ g, we have Pn(A)⊗An

En(M) ∼= M by Lemma 3.3.2.

Corollary 3.3.5 Let (A, h) be a weakly quasi-finite algebra graded by
Hamiltonian and let n be an integer such that n ≥ g. Then the module Pn(A)
is a progenerator of the category of exhaustive left A-modules.

Let us consider the case when A is quasi-finite. Then the algebra An is
finite-dimensional for all n by Proposition 2.6.3. Thus we have the following
corollary.

Corollary 3.3.6 If (A, h) is a quasi-finite algebra graded by Hamiltonian
then the category of exhaustive left A-modules is equivalent to the category of
left modules over a finite-dimensional algebra.

We may likewise define the notion of exhaustive right A-modules and
exhaustive right A ∨-modules by using the spaces I∨n (A) and I∨n (A ∨), respec-
tively. We have analogous results for the right modules as well.

Note 3.3.7 Theorem 3.3.4 may be viewed as a particular case of a topological
variant of Morita equivalences. See [Gab] for general theory of equivalences
between abelian categories and module categories and [Gre] and [Mez] for
results closely related to Theorem 3.3.4.

4. Coexhaustive modules

We will now consider the notion of coexhaustive modules, which is dual to
that of exhaustive modules. In this section, we will give the definition of coex-
haustive modules and describe their topologies by means of the generalized
eigenspaces. The precise duality will be considered in the next section under
necessary finiteness assumptions.

4.1. Coexhaustive modules

Let (A, h) be a weakly quasi-finite algebra graded by Hamiltonian and let A ∨
be the right filterwise completion.

Let M be a left A ∨-module endowed with a linear topology such that the
action A ∨ ×M → M is continuous. Let us denote by I∨n (M) the closure
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of the space F∨−n−1A
∨ ·M. We assume that {I∨n (M)} forms a fundamental

system of open neighborhoods of zero.

Definition 4.1.1 A compatible topological left A ∨-module is a left
A ∨-module endowed with a linear topology which satisfies the conditions
mentioned above.

LetM be a compatible topological left A ∨-module. Then we have

F∨pA ∨ · I∨n (M) ⊂ I∨n−p(M), I∨n (A ∨) ·M ⊂ I∨n (M) (4.1.1)

because the action A ∨ ×M→M is continuous.

Definition 4.1.2 A compatible topological left A ∨-module is coexhaustive if
it is complete as a topological vector space.

Obviously, the completion of a compatible topological left A ∨-module has
a canonical structure of a coexhaustive left A ∨-module.

4.2. Generalized eigenspaces of coexhaustive modules

LetM be a coexhaustive left A ∨-module. Consider the space

Q∨n (M) =M/I∨n (M). (4.2.1)

Then this is a left Q∨n (A)(0)-module and hence decomposes into the sum of
the generalized eigenspaces as follows:

Q∨n (M) =
∑
μ∈�n

Q∨n (M)[μ]. (4.2.2)

Lemma 4.2.1 If λ ∈ 
m and n ≥ m then the restriction Q∨n (M)[λ] →
Q∨m(M)[λ] of the canonical surjection is an isomorphism.

Proof. See the proof of Lemma 2.5.2.

This lemma implies that the subspace
∑

λ∈
∞M[λ] is dense in M. It also
implies that the space

En(M) =
∑
λ∈
n

M[λ] (4.2.3)
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is a discrete subspace for each n. Consider the space E⊥n (M) =∑
λ∈
∞\
n

M[λ] and let Ê⊥n (M) be its closure inM. Then the quotient

Rn(M) =M/Ê⊥n (M) (4.2.4)

is canonically isomorphic to En(M).

Lemma 4.2.2 If M is a coexhaustive left A ∨-module then the canonical
map Em(M) → Q∨m(M) is injective and the canonical map Q∨m(M) ←
Em+g(M) is surjective.

Proof. By Lemma 4.2.1, we know that the mapM[λ] → Q∨m(M)[λ] is injec-
tive if λ ∈ 
m . Hence the map Em(M) → Q∨m(M) is injective. Now recall
that Q∨m(M) = ∑λ∈
m+g

Q∨m(M)[λ]. Hence the map Q∨m(M) ← Em+g(M)

is surjective.

4.3. Exhaustion and coexhaustion

We will mean by the category of coexhaustive left A ∨-modules the category
for which the objects are the coexhaustive left A ∨-modules and the morphisms
are the continuous homomorphisms of left A ∨-modules.

Let M be a left A -module and regard it as a left A-module by identifying A
with a subalgebra of A via the canonical map A → A . We set

I∨n (M) = F∨−n−1A · M. (4.3.1)

Lemma 4.3.1 If M is exhaustive then I∨n (M) = I∨n (A) · M.

Proof. Since M is exhaustive, I∨m+d(A(d)) · v = Im(A(d)) · v = 0 holds for
sufficiently large m for each d and v ∈ M . Since I∨n (A) is the degreewise
closure of F∨−n−1A ·A, we have I∨n (A) ·v ⊂ F∨−n−1A ·M for each v ∈ M . Thus
I∨n (A) · M = I∨n (M) and the conclusion follows.

Let M be an exhaustive left A -module. Then the lemma implies that the
action A × M → M is continuous with respect to the right linear topology
on A and the linear topology on M defined by I∨n (M). Let Q∨∞(M) be the
completion of M with respect to the linear topology defined by I∨n (M):

Q∨∞(M) = lim←−
n

Q∨n (M), Q∨n (M) = M/I∨n (M). (4.3.2)

Then Q∨∞(M) is a coexhaustive left A ∨-module.
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Let M ′ and M ′′ be exhaustive left A -modules and let φ : M ′ → M ′′
be a homomorphism of left A -modules. Then φ gives rise to a continuous
homomorphism of left A-modules with respect to the right linear topology
on A. Hence it induces a continuous homomorphism Q∨∞(φ) : Q∨∞(M ′) →
Q∨∞(M ′′) of coexhaustive left A ∨-modules. We call the functor Q∨∞(−) the
coexhaustion functor.

Conversely, let M be a coexhaustive left A ∨-module and regard it as a left
A-module via the canonical map A → A ∨. Consider the space

K∞(M) =
⋃

n

Kn(M), Kn(M) = {v ∈M ∣∣ In(A) · v = 0
}
. (4.3.3)

Then this is an exhaustive left A-module and hence an exhaustive left
A -module.

Let ϕ : M′ → M′′ be a continuous homomorphism of coexhaustive left
A ∨-modules. We regard ϕ as a homomorphism of left A-modules via the
canonical map A → A ∨. If In(A) · v = 0 then In(A) · ϕ(v) = ϕ(In(A) · v) =
ϕ(0) = 0. Therefore, ϕ restricts to a homomorphism K∞(ϕ) : K∞(M′) →
K∞(M′′) of left A-modules and hence a homomorphism of left A -modules.
We call the functor K∞(−) the exhaustion functor.

For an exhaustive left A -module M , we set

R∞(M) = lim←−
n

Rn(M) (4.3.4)

and, for a coexhaustive left A ∨-moduleM,

E∞(M) =
⋃

n

En(M). (4.3.5)

Here the space Rn(M) is defined by (3.2.4).

Lemma 4.3.2 For an exhaustive left A -module M its coexhaustion Q∨∞(M)

is canonically isomorphic toR∞(M) as topological vector spaces. For a coex-
haustive left A ∨-moduleM its exhaustion K∞(M) is canonically isomorphic
to E∞(M) as vector spaces.

Proof. Conclusions are clear by the arguments in Subsections 3.2 and 4.2.

Now the following theorem is an immediate consequence of this lemma.

Theorem 4.3.3 Let (A, h) be a weakly quasi-finite algebra graded by Hamil-
tonian and let A and A ∨ be the left and the right filterwise completions,
respectively. Then the functors Q∨∞(−) and K∞(−) are mutually inverse
equivalences of categories between the category of exhaustive left A -modules
and the category of coexhaustive left A ∨-modules.
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In particular, the category of coexhaustive left A ∨-modules is an abelian
category.

We may likewise define the notion of coexhaustive right A -modules by
using the spaces In(A ). We have analogous results for the right modules
as well.

5. Duality for quasi-finite modules

We now consider finiteness conditions for exhaustive modules and for coex-
haustive modules and discuss the duality between the categories of such
modules.

5.1. Quasi-finiteness of exhaustive modules

Let (A, h) be a weakly quasi-finite algebra graded by Hamiltonian and let A

and A ∨ be the left and the right filterwise completions, respectively.

Definition 5.1.1 A quasi-finite left A -module is an exhaustive left A -module
M such that the spaces Kn(M) are finite-dimensional for all n.

For an exhaustive right A ∨-module N , we define the space K∨n (N ) in the
same way as Kn(M) for an exhaustive left A -module M :

K∨n (N ) =
{
v ∈ N

∣∣ v · I∨n (A ∨) = 0
}
. (5.1.1)

Definition 5.1.2 A quasi-finite right A ∨-module is an exhaustive right
A ∨-module N such that the spaces K∨n (N ) are finite-dimensional for all n.

The following proposition characterizes the quasi-finiteness of an algebra
by means of the quasi-finiteness of the canonical quotient modules.

Proposition 5.1.3 Let (A, h) be a weakly quasi-finite algebra graded by
Hamiltonian. Then the following conditions are equivalent:

(a) A is a quasi-finite algebra.
(b) The left canonical quotient modules Qn(A) are quasi-finite for all n.
(c) The right canonical quotient modules Q∨n (A) are quasi-finite for all n.

Proof. We will show the equivalence of (a) and (b). Since Km(Qn(A)) is an
(Hm,Hn)-bimodule, the pair of the left and the right eigenvalues of h on
Km(Qn(A)) are in the finite set �m × �n . Then if Km(Qn(A))(d) �= 0 then
d = λ− μ for some λ ∈ �m and μ ∈ �n . Therefore, we have
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Km(Qn(A)) ⊂
⊕

−n≤d≤m+g

Qn(A)(d). (5.1.2)

On the other hand, it is easy to see that Qn(A)(d) ⊂ Kn+d(Qn(A)). Therefore
we immediately see that Km(Qn(A)) are finite-dimensional for all m and n if
and only if Qn(A)(d) are finite-dimensional for all d and n. The proof for the
equivalence of (a) and (c) is similar.

Now consider the case when (A, h) is a quasi-finite algebra graded by
Hamiltonian. Since En(M) is a left An-module and An is finite-dimensional,
En(M) is finite-dimensional if and only if it is finitely generated as a left
An-module.

Proposition 5.1.4 Let (A, h) be a quasi-finite algebra graded by
Hamiltonian. Then the following conditions for an exhaustive left A -module
M are equivalent:

(a) M is a quasi-finite left A -module.
(b) M is finitely generated as a left A -module.
(c) En(M) are finite-dimensional for all n.
(d) Eg(M) is finite-dimensional.

Proof. We will show (a)⇒(c)⇒(d)⇒(b)⇒(a). Assume that M is quasi-finite.
Then En(M) are finite-dimensional since En(M) ⊂ Kn(M) by Proposition
3.2.1. In particular, Eg(M) is finite-dimensional. Next assume that Eg(M) is
finite-dimensional and let M ′ be the left A -submodule of M generated by
Eg(M). Then K0(M/M ′) ⊂ Eg(M/M ′) = 0. By Lemma 3.3.1, we have
M = M ′ and hence M is finitely generated. Now assume that M is finitely
generated and let v1, . . . , vk be a set of generators. Since M is exhaustive,
there exists n1, . . . , nk such that Ini (A ) · vi = 0 for i = 1, . . . , k. This implies
the existence of a surjective homomorphism Qn1(A) × · · · × Qnk (A) → M
of left A -modules. Since A is quasi-finite and hence the modules Qni (A) are
quasi-finite, so is the image M .

5.2. Quasi-finiteness of coexhaustive modules

Let us now turn to the quasi-finiteness of coexhaustive modules.

Definition 5.2.1 A quasi-finite left A ∨-module is a coexhaustive left
A ∨-module M such that the spaces Q∨n (M) are finite-dimensional for all n.
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For a coexhaustive right A -module N , we set

Qn(N ) = N /In(N ). (5.2.1)

Definition 5.2.2 A quasi-finite right A -module is a coexhaustive right
A -module N such that the spaces Qn(N ) are finite-dimensional for all n.

Let M be an exhaustive left A -module and letM be its coexhaustion. Then
the canonical map En(M)→ Rn(M) is an isomorphism for each n. Therefore,
the consideration in Subsection 4.3 implies the following result.

Proposition 5.2.3 Let (A, h) be a quasi-finite algebra graded by Hamilto-
nian. Let M be an exhaustive left A -module and let M be its coexhaustion.
Then the exhaustive module M is quasi-finite if and only if the coexhaustive
moduleM is quasi-finite.

We have analogous results for quasi-finite right A ∨-modules and for quasi-
finite right A -modules.

5.3. Duality

Let (A, h) be a weakly quasi-finite algebra graded by Hamiltonian. Let M be
an exhaustive left A -module and consider its full dual space N :

N = M∗ = Homk(M,k). (5.3.1)

Then this space becomes a right A -module.
Since M is exhaustive, it decomposes into the sum of the generalized

eigenspaces M =⊕λ∈
∞ M[λ], which gives rise to

N =
∏
λ∈
∞

M[λ]∗ (5.3.2)

where M[λ]∗ is the set of linear functions f : M → k such that f (M[μ]) = 0
holds for any μ �= λ. Therefore, by setting

Jn(N ) = { f ∈ N ∣∣ f (En(M)) = 0
}
, (5.3.3)

we have

N /Jn(N ) =
∏
λ∈
n

M[λ]∗. (5.3.4)

We give N the linear topology defined by Jn(N ).
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Lemma 5.3.1 The right A -module N endowed with the topology as above
is a coexhaustive right A -module.

Proof. Completeness ofN as a topological vector space is clear from the def-
inition. Since ( f · a)(En(M)) = f (a · En(M)) = 0 holds for any f ∈ N and
any a ∈ In(A ), we haveN · In(A ) ⊂ Jn(N ). Hence the actionN ×A → N
is continuous. Let In(N ) be the closure of N · In(A ). It remains to show that
{In(N )} forms a fundamental system of open neighborhoods of zero. Since
Jn(N ) is closed, we have In(N ) ⊂ Jn(N ). Consider the quotient N /In(N ).
Since we have In(N ) · In(A ) ⊂ In(N ), the quotient space N /In(N ) is a right
Qn(A)(0)-module. In particular, it is a right Hn-module. Hence it has the gen-
eralized eigenspace decomposition with respect to the right action of h with
the eigenvalues belonging to �n ⊂ 
n+g . Since Jn+g(N ) is the closure of
E⊥n+g(N ), we have Jn+g(N ) ⊂ In(N ). Hence In(N ) form a basis of open
neighborhoods of zero.

Thus we have shown that for any exhaustive left A -module, its full dual
naturally becomes a coexhaustive right A -module.

Conversely, let N be a coexhaustive right A -module and consider the
continuous dual space M :

M = Homcont
k (N ,k). (5.3.5)

Recall that the base field k is given the discrete topology.
Take any element of M , which is given by a continuous map f : N → k.

Then, for any a ∈ A , the map a · f : N → k is also continuous since
for a ∈ FpA we have (a · f )(v + In(N )) ⊂ f (v · a) + f (In−p(N )) =
f (v ·a) for sufficiently large n. We then have (In(A ) · f )(v) = f (v ·In(A )) ⊂
f (In(N )) = 0 for all v. Therefore, the module M is exhaustive.

Thus we have defined contravariant functors Homk(−,k) and Homcont
k (−,k)

between the category of exhaustive left A -modules and the category of
coexhaustive right A -modules.

Proposition 5.3.2 Let (A, h) be a weakly quasi-finite algebra graded by
Hamiltonian. Then the functors Homk(−,k) and Homcont

k (−,k) give rise to
mutually inverse duality of categories between the category of quasi-finite left
A -modules and the category of quasi-finite right A -modules.

Note 5.3.3 A quasi-finite right A -module is nothing else but a linearly com-
pact right A -module. We may understand the above-mentioned duality as a
version of the Lefschetz duality [Lef] between discrete modules and linearly
compact modules. See also [Mac].
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5.4. Involution

Let (A, h) be a quasi-finite algebra graded by Hamiltonian. Suppose given a
linear involution θ : A → A satisfying the following conditions:

(i) θ(a · b) = θ(b) · θ(a) for any a, b ∈ A and θ(h) = h.
(ii) θ : A(d)→ A(−d) is continuous.

Note that by (i) we have [h, θ(a)] = [θ(h), θ(a)] = −θ([h, a]). Hence
θ(A(d)) = A(−d) and the condition (ii) makes sense. We then have that
θ(In(A)) = I∨n (A). Hence θ extends to anti-isomorphisms

θ∞ : A → A ∨, θ∨∞ : A ∨ → A (5.4.1)

of filtered topological algebras such that θ∞ ◦ θ∨∞ = 1 and θ∨∞ ◦ θ∞ = 1. We
will denote the maps θ∞ and θ∨∞ by the same symbol θ by abuse of notation.

Let M be a left A -module and let ϑ(M) be the same space M as a vector
space. We give ϑ(M) a structure of a right A ∨-module by letting v·a = θ(a)·v
for a ∈ A ∨ and v ∈ M . Similarly, for a right A ∨-module N , we define a left
A -module ϑ∨(N ) in a similar way.

Proposition 5.4.1 The functors ϑ and ϑ∨ are mutually inverse equivalences
of categories between the category of left A -modules and the category of right
A ∨-modules.

Let us compose the involution, the duality and the exhaustion. Then we get
an auto-duality

D : M �→ ϑ(K∞(Homk(M,k))) (5.4.2)

of the category of quasi-finite left A -modules. Note that K∞(Homk(M,k)) is
the restricted dual space:

K∞(Homk(M,k)) =
{

f
∣∣∣ f (E⊥n (M)) = 0 for some n

}
. (5.4.3)

5.5. Finiteness theorems

Let (A, h) be a quasi-finite algebra and consider the following categories.

L1. The category of quasi-finite left A -modules.
L2. The category of quasi-finite left A ∨-modules.
L3. The category of finitely generated left An-modules.

R1. The category of quasi-finite right A ∨-modules.
R2. The category of quasi-finite right A -modules.
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R3. The category of finitely generated right An-modules.

Recall that quasi-finite left A -modules and right A ∨-modules are
exhaustive whereas quasi-finite left A ∨-modules and right A -modules are
coexhaustive.

The following theorem summarizes the results obtained so far regarding the
quasi-finite modules over quasi-finite algebras.

Theorem 5.5.1 Let (A, h) be a quasi-finite algebra graded by Hamiltonian
and let n be an integer such that n ≥ g.

(1) The categories L1, L2 and L3 are equivalent to each other.
(2) The categories R1, R2 and R3 are equivalent to each other.
(3) The categories L1, L2 and L3 and the categories R1, R2 and R3 are dual

to each other.
(4) If A has an involution θ then the categories L1, L2 and L3 and the

categories R1, R2 and R3 are equivalent to each other.



Part II

Quasi-finiteness and Zhu’s Finiteness Condition

6. Vertex operator algebras and current algebras

We now turn our attention to vertex operator algebras. In this section, we will
describe in detail the construction and properties of the universal enveloping
algebra associated with a vertex operator algebra, which we will simply call
the current algebra, in order to give precise statements which seem to have
been overlooked in the literature.

6.1. Vertex operator algebra

Recall that a vertex operator algebra is a graded vector space V with the grad-
ing being indexed by integers equipped with countably many bilinear maps
indexed by integers and two distinguished elements, called the vacuum vec-
tor and the conformal vector (or the Virasoro element), satisfying a number
of axioms ([Bor], [FLM], [FHL]), which we will describe briefly below. See
[MaN] for an account.

Let us denote the homogeneous subspaces of the grading of V by V k where
k is an integer. It is assumed that there exists a nonnegative integer m such that
V k = 0 for k < −m. Therefore, the grading of V is of the following form

V =
∞⊕

k=−m0

V k . (6.1.1)

We will write �(u) = k when u belongs to the subspace V k and call �(u) the
weight of the element u.

Let us denote the countably many bilinear maps by

μn : V × V → V, (u, v) �→ u(n)v. (6.1.2)

It is assumed that they satisfy V j
(n)V

k ⊂ V j+k−n−1. In other words, for
homogeneous u and v, we have

�(u(n)v) = �(u)+�(v)− n − 1. (6.1.3)

313
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Then the sums in the following expression are finite:

∞∑
i=0

(
p

i

)
(u(r+i)v)(p+q−i)w

=
∞∑

i=0

(−1)i
(

r

i

)(
u(p+r−i)(v(q+i)w)− (−1)rv(q+r−i)(u(p+i)w)

)
.

(6.1.4)
The bilinear maps (6.1.2) are assumed to satisfy (6.1.4) for any u, v, w ∈ V
and any integers p, q, r .

The identity (6.1.4), or its equivalent generating-function form called the
Jacobi identity or the Cauchy-Jacobi identity, is the main identity of vertex
operator algebras, as discovered by Frenkel et al. in [FLM], although an equiv-
alent set of particular cases of the coefficient form (6.1.4) had been discovered
by Borcherds in [Bor].

The vacuum vector 1 is an element of weight 0. It enjoys, for any u ∈ V , the
relations u(−1)1 = u and u(n)1 = 0 for n ≥ 0. We set

Tu = u(−2)1. (6.1.5)

Then the axioms imply the relations 1(−1)u = 0 and 1(n)u = 0 for n �= −1 and
that T : V → V is a derivation with respect to the operations (n) for every n.

The conformal vector ω is an element of weight 2. It satisfies

ω(n)ω = 0, (n ≥ 4 or n = 2), ω(1)ω = 2ω, ω(3)ω ∈ k1. (6.1.6)

Then the axioms imply that the operators Ln : V → V defined by Lnu =
ω(n+1)u satisfy the Virasoro commutation relation with the central charge cV

given by 2ω(3)ω = cV 1. Among the Virasoro operators Ln , the ones with
n = 0 and n = −1 have special roles: the weights of V are given by the
eigenvalues of L0 and the derivation T agrees with L−1. In other words,

V k = {v ∈ V
∣∣L0v = kv

}
, Tu = L−1u. (6.1.7)

The weight subspaces are usually assumed to be finite-dimensional.

6.2. The current Lie algebras

Let us consider the space

V [t, t−1] = V ⊗k k[t, t−1]. (6.2.1)
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We define a bilinear map V [t, t−1] × V [t, t−1] → V [t, t−1] by setting

[u ⊗ tm, v ⊗ tn] =
∞∑

i=0

(
m

i

)
(u(i)v)⊗ tm+n−i . (6.2.2)

Consider the quotient space

g = V [t, t−1] / ∂V [t, t−1] (6.2.3)

where ∂ : V [t, t−1] → V [t, t−1] is defined by

∂(u ⊗ tn) = Tu ⊗ tn + nu ⊗ tn−1. (6.2.4)

Then the bracket operation on V [t, t−1] induces a bilinear operation on g

denoted by the same symbol which gives a structure of a Lie algebra on g

([Bor]). We will call the Lie algebra g the associated current Lie algebra. We
will denote the image of an element of V [t, t−1] in g by the same symbol.

Since n 1⊗ tn−1 = ∂(1⊗ tn), we know that 1⊗ tn = 0 in g unless n = −1,
when 1⊗ t−1 is central.

It will be useful to introduce the following notation:

Jn(u) = u ⊗ tn+�(u)−1 (6.2.5)

for a homogeneous u and extend it linearly. We denote its image in g by the
same symbol and assign the degree −n to Jn(u). Then the associated current
Lie algebra is graded by the degree:

g =
⊕

d

g(d). (6.2.6)

Note the relation

[L0, Jn(u)] = −n Jn(u) (6.2.7)

for the element L0 = J0(ω), which follows from the axioms for vertex operator
algebras.

Let U be the quotient algebra of the universal enveloping algebra of the Lie
algebra g by the two sided ideal generated by J0(1) − 1 and let us denote the
image of Jn(u) by the same symbol. We give the degree d1 + · · · + dk to the
element of the form J−d1(u1) · · · J−dk (uk) with u1, . . . , uk ∈ V . Let U(d) be
the span of these vectors of degree d. Then we have

U =
⊕

d

U(d). (6.2.8)

by which the algebra U becomes a graded algebra. Note that the relation (6.2.7)
says that the image of L0 is a Hamiltonian of U.
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Consider the standard degreewise topology on U and let Û denote the
degreewise completion. (See Subsection 1.3.)

6.3. The current algebras

For u, v ∈ V and for integers m, n, r , consider the following expression in Û:

Bm,n,r (u, v) =
∞∑

i=0

(
m +�(u)− 1

i

)
Jm+n+r (u(r+i)v)

−
∞∑

i=0

(−1)i
(

r

i

)
Jm+r−i (u) · Jn+i (v)

+ (−1)r
∞∑

i=0

(−1)i
(

r

i

)
Jn+r−i (v) · Jm+i (u). (6.3.1)

Then the first sum in the right-hand side is actually a finite sum whereas the
second and the last are infinite sums which converge in the linear topology of
Û(−m − n − r). The relation Bm,n,r (u, v) = 0 turns our to be the counterpart
of the identity (6.1.4) in the action of V on a module, where the infinite sums
become finite when they act on each element of the module. (See the next
subsection for the definition of modules.)

Let B be the ideal of Û generated by the elements of the form Bm,n,r (u, v)
with u, v ∈ V and integers m, n, r , and let B̂ be the degreewise closure of B.
Then B̂ is also an ideal of Û.

Remark 6.3.1 The ideal B is in fact generated by the elements of the form
Bm,n,r (u, v) with m = −�(u) + 1. Alternatively, it is also generated by the
elements of the form Bm,n,r (u, v) with r < 0.

We now define the current algebra U associated with V to be the quotient
algebra of Û by the ideal B̂:

U = Û / B̂. (6.3.2)

Then U is a graded algebra, since B̂ is a graded ideal, and the image of L0 is a
Hamiltonian.

Proposition 6.3.2 The pair (U,L0) is a compatible degreewise complete
algebra graded by Hamiltonian.
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Note 6.3.3 The construction of U is essentially due to Frenkel and Zhu [FrZ].
The left linear filterwise completion of U as in Subsection 1.5 is isomorphic to
the current algebra U(V ) considered in [NaT].

6.4. Denseness of the current Lie algebra

Let U be the current algebra associated with a vertex operator algebra V . Let
us regard the current Lie algebra g as a subspace of U and let φ denote the
composition of the canonical maps U → Û → U. By construction, U(d) is a
dense subspace of Û(d).

The following observation is insightful.

Proposition 6.4.1 The image φ(g(d)) is a dense subspace of U(d) for
each d.

Proof. It suffices to show that φ(g) is dense in U with respect to the left linear
topology on U. Let us denote by φn : U → Qn(U) the composite of φ with the
canonical surjection U → Qn(U). By the relation (6.3.1), we have

Js(u) · Jt (v) · 1n

=
n∑

m=0

�(u)+n∑
j=0

(−1)m
(

n− s+m

n− s

)(
�(u)+ n

j

)
Js+t (u(s+�(u)−m− j−1)v) · 1n

(6.4.1)

in the quotient Qn(U) for any integers s and t provided s ≤ n. Hence by
induction we have φn(U) = φn(g) for any nonnegative integer n. Therefore,
since φ(U(d)) is dense, φ(g(d)) is also dense.

6.5. Exhaustive V-modules

Let M be a vector space and suppose given a series of bilinear maps
V ×M→M indexed by integers which we denote by (u, v) �→πM

n (u)v. Such
an M is said to be a weak V -module if it satisfies the conditions listed below.

Set J M
n (u) = πM

n+�(u)−1(u) and let BM
m,n,r (u, v) be the expression (6.3.1)

with Jn being replaced by J M
n . Then the conditions are as follows:

(i) For any u ∈ V and v ∈ M there exists an m such that J M
n (u)v = 0 for

all n ≥ m.
(ii) The operator J M

n (1) is the identity if n = 0 and is zero otherwise.
(iii) The identity BM

m,n,r (u, v) = 0 holds for any integers m, n, r and
u, v ∈ V .
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We will say that a weak V -module is an exhaustive V -module if instead of
the condition (i) the following stronger condition is satisfied:

(i)′ For any v ∈ M there exists an m such that J M
n1
(u1) · · · J M

nk
(uk)v = 0 for

all u1, . . . , uk ∈ V whenever n1 + · · · + nk ≥ m.

Remark 6.5.1 Thanks to the condition (iii), the condition (i)′ follows from
the apparently weaker condition that for any v ∈ M there exists an m such that
J M

n (u)v = 0 for all u ∈ V and n ≥ m by successive use of the relation (6.4.1).

Let us consider the map Jn : V → U which sends u ∈ V to the image of
Jn(u) = u ⊗ tn+�(u)−1 in U. Then any exhaustive left U-module M becomes
an exhaustive V -module by letting J M

n (u) be the action of Jn(u) on M . We
will call this V -module structure on M the associated V -module structure.

Proposition 6.5.2 Let M be an exhaustive V -module. Then there exists a
unique structure of an exhaustive U-module on M such that the associated
V -module structure agrees with the given V -module structure on M.

Proof. Let J M
n : V × M → M be the given V -module structure on M . Then

they induce a map g × M → M which gives a g-module structure on M
by the relation BM

m,n,r (u, v) = 0 with r ≥ 0. By the universal property of
the universal enveloping algebra of g, this lifts to a U-module structure on
M because of the axiom (ii). Since M is an exhaustive V -module, the map
U(d)×M → M is continuous for each d when M is endowed with the discrete
topology. Hence this map prolongs to the action of the degreewise completion
Û. Now the axiom (iii) is nothing else but the defining relations of the algebra
U. Hence the Û-module structure induces a U-module structure on M , which
is exhaustive by Lemma 3.1.2. The uniqueness is clear on each step.

Thus we have obtained the following result.

Theorem 6.5.3 The category of exhaustive V -modules is canonically equiv-
alent to the category of exhaustive U-modules.

Note 6.5.4 Recall from [DLM1] that a weak V -module M is said to be admis-
sible if it is given a grading M = ⊕∞

d=0 Md so that Jn(u) · Md ⊂ Md−n

for any integer n and u ∈ V . Then it is easy to see that any admissible
V -module is exhaustive. The converse is true if U is weakly quasi-finite.
Indeed, if U is weakly quasi-finite and M is exhaustive then it decomposes into
the sum of the generalized eigenspaces of the action of L0 by the argument of
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Subsection 3.2. Then setting Md = ∑λ∈
d
M[λ] we have M = ⊕∞

d=0 Md

with Jn(u) · Md ⊂ Md−n .

7. Associated Poisson algebras

We will consider the associated graded algebra with respect to a filtration on
U and show that it has a structure of a degreewise complete Poisson algebra.

7.1. Zhu’s Poisson algebra

Recall that a (commutative) Poisson algebra is a vector space p equipped with
two bilinear maps · : p×p→ p and { , } : p×p → p called the multiplication
and the Poisson bracket, respectively, such that p is a commutative associative
algebra with unity with respect to the multiplication, p is a Lie algebra with
respect to the Poisson bracket and the Leibniz identity holds:

{x · y, z} = x · {y, z} + y · {x, z}. (7.1.1)

We denote the unity of p by 1p.
Let V be a vertex operator algebra. We let C2(V ) be the span of the elements

of the form u(n)v with u, v ∈ V and n ≤ −2. We set

u · v = u(−1)v and {u, v} = u(0)v. (7.1.2)

The following result is obtained in [Zhu].

Proposition 7.1.1 (Zhu) The operations · and { , } induces a Poisson algebra
structure on V/C2(V ).

Let us call this Poisson algebra Zhu’s Poisson algebra.

7.2. Poisson filtrations and the associated graded algebras

Let V be a vertex operator algebra and let g, U, Û and U as in the preceding
section.

Let Gpg be the image of
⊕

k≤p V k⊗k k[t, t−1] in g and let GpU be the sum
of subspaces Gp1g · · ·Gpk g with k = 0, 1, . . . and p1 + · · · + pk = p in U.
Then G is a separated filtration on U satisfying

GpU · Gq U ⊂ Gp+qU (7.2.1)

for any integers p and q.
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Let GpÛ(d) be the closure of the image of GpU(d) = GpU∩U(d) in Û(d).
Then the associated graded algebra is given by

grGÛ =
⊕

d

⊕
p

grG
p Û(d), grG

p Û(d) = GpÛ(d) /Gp−1Û(d). (7.2.2)

Considering the quotients by B̂, we obtain the induced filtration GpU of the
current algebra U and the associated graded algebra:

grGU =
∞⊕

d=−∞
grGU(d), grGU(d) =

⊕
p

grG
p U(d). (7.2.3)

Let us give the space grGU the induced degreewise topology and let g̃rGU be
the degreewise completion of the algebra grGU:

g̃rGU =
⊕

d

g̃rGU(d), g̃rGU(d) = lim←−
n

grGU(d)
/

In(grGU(d)). (7.2.4)

Then this is a compatible degreewise complete algebra. We will denote the
image of Jn(u) in g̃rGU by ψn(u).

Proposition 7.2.1 The algebra U is quasi-finite if and only if g̃rGU is so.

Proof. By the construction, we have

Qn(g̃rGU)(d) = grGQn(U)(d), Qn(U)(d) =
⋃

p

GpQn(U)(d), (7.2.5)

where GpQn(U)(d) denotes the induced filtration. Hence Qn(U)(d) is finite-
dimensional if and only if Qn(g̃rGU)(d) is so.

7.3. Associated Poisson structure

Consider the operation of taking commutator of elements of U:

U× U → U, (a, b) �→ [a, b] = a · b − b · a. (7.3.1)

Then by the relation (6.3.1) we have

[Jm(u), Jn(v)] =
∞∑

i=0

(
m +�(u)− 1

i

)
Jm+n(u(i)v). (7.3.2)

Lemma 7.3.1 [GpU,GqU] ⊂ Gp+q−1U.

Proof. The left-hand side of (7.3.2) belongs to G�(u)+�(v)U whereas the
element Jm+n(u(i)v) in the right-hand side belongs to G�(u)+�(v)−i−1U for
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i ≥ 0. Hence an element of [GpU,GqU] is written as a sum of elements of
Gp+q−1U.

Thanks to this lemma, the multiplication of grGU is commutative and the
operations [ , ] : GpU× GqU → Gp+q−1U induce operations

grG
p U× grG

q U → grG
p+q−1U, (α, β) �→ {α, β} (7.3.3)

by letting {α, β} be the image of [a, b] in grG
p+q−1U, where a and b are

representatives of α and β, respectively.
In general, we will call a compatible degreewise topological algebra with

a Poisson algebra structure for which the Poisson bracket is continuous a
compatible degreewise topological Poisson algebra. In case the degreewise
topology is complete then we will say that the Poisson algebra is a compatible
degreewise complete Poisson algebra.

Proposition 7.3.2 The multiplication and the bracket operation defined as
above endow the space g̃rGU with a structure of a compatible degreewise
complete Poisson algebra.

7.4. Relation to Zhu’s Poisson algebra

Let us look more carefully at the relations Bm,n,r (u, v) = 0. Let p be an integer
and let m = −�(u)+ 1. Then in case m + n + r = p we have

Jp(u(r)v) =
∞∑

i=0

(−1)i
(

r

i

)
Jm+r−i (u) · Jn+i (v)

− (−1)r
∞∑

i=0

(−1)i
(

r

i

)
Jn+r−i (v) · Jm+i (u). (7.4.1)

Then the left-hand side belongs to G�(u)+�(v)−r−1U whereas the right-hand
side to G�(u)+�(v)U. Therefore,

Jp(u(r)v) ≡ 0 if r ≤ −2. (7.4.2)

This implies that the map Jp : V → grGU factors a map

ψp : V/C2(V )→ grGU. (7.4.3)
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Now substitute r = −1 in (7.4.1) and replace m by m + 1. Then m + n = p
and

Jp(u(−1)v) =
∞∑

i=0

Jm−i (u) · Jn+i (v)+
∞∑

i=0

Jn−i−1(v) · Jm+i+1(u). (7.4.4)

Projecting (7.4.4) to the associated graded algebra, we have

ψp(u(−1)v) =
∞∑

i=0

ψm−i (u) · ψn+i (v)+
∞∑

i=0

ψn−i−1(v) · ψm+i+1(u).

(7.4.5)

Note 7.4.1 The results in this section and the next are reformulations of the
arguments in Subsection 3.2 of [NaT].

8. Poisson current algebras

In this section, we will construct a universal Poisson algebra satisfying the rela-
tions (7.4.5), which we will call a Poisson current algebra, and will investigate
its properties.

8.1. Symmetric algebras on the loop Lie algebras

Let p be a Poisson algebra. A Poisson ideal of p means a subspace a of p such
that both p · a ⊂ a and {p, a} ⊂ a hold.

Consider the case when p is given a grading p =⊕k pk indexed by integers
satisfying

{p j , pk} ⊂ p j+k−1, p j · pk ⊂ p j+k . (8.1.1)

Then the unity 1p must belong to p0. We will call a Poisson algebra endowed
with such a grading a graded Poisson algebra. We denote �(x) = r when
x ∈ pr .

Recall the well-known fact that the symmetric algebra on a Lie algebra has a
canonical structure of a Poisson algebra induced from the Lie bracket operation
on the Lie algebra.

Let p =⊕k pk be a graded Poisson algebra and let p[t, t−1] be the loop Lie
algebra

p[t, t−1] = p⊗k k[t, t−1] (8.1.2)

with the Lie bracket defined by [x ⊗ tm, y ⊗ tn] = {x, y} ⊗ tm+n .
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For each homogeneous x , put

�n(x) = x ⊗ tn+�(x)−1 (8.1.3)

and extend it linearly to all x . Then the Lie bracket operation takes the
following form: [�m(x),�n(y)] = �m+n({x, y}).

Let q be the quotient of p[t, t−1] by the span of the elements �n(1p) with
n �= 0. We will denote the image of �n(x) in q by the same symbol. Since
[�m(1p),�n(x)] = 0, the space q becomes a Lie algebra.

Now let S be the quotient algebra of the symmetric algebra on q by the ideal
generated by �0(1p) − 1 and let us denote the image of �n(x) in S by the
same symbol. We give the degree d1 + · · · + dk to the element of the form
�−d1(x1) · · ·�−dk (xk) with x1, . . . , xk ∈ p. Let S(d) be the span of these
vectors of degree d. Then we have S = ⊕d S(d). The algebra S becomes a
Poisson algebra for which we have

S(d) · S(e) ⊂ S(d + e), {S(d),S(e)} ⊂ S(d + e). (8.1.4)

Recall the standard degreewise topology on S defined by

In(S(d)) =
∑

k≤−n−1

S(d − k) · S(k), (8.1.5)

which is separated. Then the multiplication maps S(d)× S(e)→ S(d + e) are
continuous. Moreover we have the following.

Lemma 8.1.1 The Poisson bracket operation S(d) × S(e) → S(d + e) is
continuous with respect to the standard degreewise topology.

Proof. Let i be any integer with i ≤ −n − 1. Then we have {S(d),S(e − i) ·
S(i)} ⊂ {S(d),S(e−i)}·S(i)+{S(d),S(i)}·S(e−i) ⊂ S(d+e−i)·S(i)+S(e−
i) · S(d + i). Therefore, {u + Ik(S(d)), v + Im(S(e))} ⊂ {u, v} + In(S(d + e))
if k and m satisfy k, k − e,m,m − d ≥ n.

Let Ŝ be the degreewise completion of S with respect to the standard degree-
wise topology. Then by Lemma 8.1.1 the Poisson algebra structure on S
extends to Ŝ. Let us denote the image of�n(x) under the canonical map S → Ŝ
again by the same symbol.

The algebra Ŝ is a compatible degreewise complete Poisson algebra.
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8.2. Poisson current algebras

Let x, y be elements of p and let p be an integer. Motivated by the relations
(7.4.4) and (7.4.5), choose integers m, n with m + n = p and set

Np(x, y) = �m+n(x · y)−
∞∑

i=0

(
�m−i (x) ·�n+i (y)+�n−i−1(y) ·�m+i+1(x)

)
.

(8.2.1)

By the commutativity of Ŝ, this does not depend on the choice of m, n.
Let N̂ denote the degreewise closure of the ideal of Ŝ generated by the

elements of the form Np(x, y) with x, y ∈ p and p an integer.

Lemma 8.2.1 The ideal N̂ is a Poisson ideal of Ŝ.

We let S = S(p) be the quotient of Ŝ by the Poisson ideal N̂:

S = Ŝ / N̂. (8.2.2)

We will call the Poisson algebra S the Poisson current algebra associated with
the Poisson algebra p.

Proposition 8.2.2 The algebra S is a compatible degreewise complete
Poisson algebra.

8.3. Quasi-finiteness

Now assume that our Poisson algebra p is finite-dimensional and let x1, . . . , xr

be a basis of a linear complement of k1p in p. Then the algebra S is
spanned by the elements of the form �−d1(xi1) · · ·�−dk (xik ) with k ≥ 0 and
d1 ≥ · · · ≥ dk .

Consider the left canonical quotient module Qn(S) = S/In(S). Then Qn(S)
is generated as a left S-module by the image 1n of the unit of S.

For each k ≥ 0 and d ≥ −n, consider the set

&k(d) =
{
(d1, . . . , dk)

∣∣ d1 ≥ · · · ≥ dk ≥ −n and d1 + · · · + dk = d
}
.

(8.3.1)

We will call a vector of the form �−d1(xi1) · · ·�−dk (xik ) · 1n a vector with
index (d1, . . . , dk). We put

&
◦

k(d) =
{
(d1, . . . , dk)

∣∣ d1 > · · · > dk ≥ −n and d1 + · · · + dk = d
}

(8.3.2)
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and

&(d) =
∞⋃

k=0

&k(d), &
◦
(d) =

∞⋃
k=0

&
◦

k(d). (8.3.3)

Lemma 8.3.1 The space Qn(S)(d) is spanned by vectors with indices in
&
◦
(d).

Proof. Since the module Qn(S) is exhaustive and the image of each S(d) is
dense in S(d), the space Qn(S)(d) is spanned by vectors with indices in &(d).
Let us show that any vector with index in &k(d) is a linear combination of
vectors with indices in &

◦
(d).

Introduce the lexicographic order on the set &k(d): we define
(d1, . . . , dk) < (e1, . . . , ek) by d1 < e1 and in case d1 = e1 recursively by
(d2, . . . , dk) < (e2, . . . , ek). Then as this is a total order on a finite set, there
exists a maximum element: that is (d + (k − 1)n,−n, . . . ,−n).

We now proceed by induction on the length k. The case k = 1 is trivial.
Assume that the claim is true for any vector with index shorter than k and
suppose given a vector

�−d1(xi1) · · ·�−dk (xik ) · 1n (8.3.4)

with d1 ≥ · · · ≥ dk > −n − 1. If d1 > · · · > dk > −n − 1 then we have
nothing to prove so we consider the case when di = di+1 at some position i .
Recall the relations Np(x, y) = 0, which imply

�−di (xi ) ·�−di (xi+1) = �−2di (xi · xi+1)−
∞∑
j=1

(
�di− j (xi ) ·�di+ j (xi+1)

+�di− j (xi+1) ·�di+ j (xi )
)

(8.3.5)

Hence the vector (8.3.4) is rewritten as the sum of a shorter vector and a finite
number of vectors greater in the lexicographic order. By the inductive hypothe-
sis, the shorter vector is written by the vectors with indices in&

◦
(d). Then apply

the same argument to the vectors with greater indices in the rest of the sum. The
recursion stops within a finite number of steps, at most at the maximum.

Note 8.3.2 The argument described above is a refined variation of the proof
of Theorem 3.2.7 in [NaT]. The idea of utilizing the relation (8.3.5) goes back
to [GaN]. See [Buh] and [Li2] for related results.

We will say that a compatible degreewise complete Poisson algebra is quasi-
finite if the conditions of quasi-finiteness for a compatible degreewise complete
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algebras are satisfied except the existence of a Hamiltonian. Now the following
result is an immediate consequence of Lemma 8.3.1.

Theorem 8.3.3 If p is finite-dimensional then the algebra S is quasi-finite.

Proof. By Lemma 8.3.1, the space Qn(S)(d) is spanned by the vectors with
indices in &

◦
(d) = ⋃∞

k=0 &
◦

k(d), which is a finite set. Since p is finite-
dimensional, the number of the vectors with a fixed index is finite. Hence
Qn(S)(d) is finite-dimensional.

9. Current algebras and Poisson current algebras

In this section, we will show that Zhu’s finiteness condition on a vertex opera-
tor algebra implies the quasi-finiteness of the associated current algebra. This
will be done by relating the results of the preceding section to the Poisson
algebra g̃rGU associated with U.

9.1. Relation to the current algebras

A homomorphism of degreewise topological Poisson algebras is a map from a
degreewise topological Poisson algebra to another such that it is a homomor-
phism of Poisson algebras that preserves the gradings for which the restriction
to each homogeneous subspace is continuous.

Let V be a vertex operator algebra and let p be Zhu’s Poisson algebra
V/C2(V ). Recall the notations in the previous sections of Part II.

By the definition of Zhu’s Poisson algebra, (7.4.2) implies that the maps
V → grGU which sends u ∈ V k to the image ψp(u) of Jp(u) in grG

k U factors
a map

ψp : p → grGU. (9.1.1)

Then the set of the maps ψp : p→ grGU gives rise to a single map

ψ : q→ grGU (9.1.2)

which sends �n(x) to ψn(u), where x = ū is the class of u ∈ V in p.
Now the relations (7.3.2) and (7.4.2) imply that the map ψ is a homomor-

phism of Lie algebras. Since grGU is a Poisson algebra, this map induces
a unique homomorphism S → grGU of Poisson algebras by the univer-
sal property of the symmetric algebra. We denote this map by the same
symbol ψ .
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Lemma 9.1.1 The map ψ prolongs to a surjective homomorphism Ŝ →
g̃rGU of degreewise topological Poisson algebras.

Proof. The assertion follows immediately from the construction by noting the
relation ψ(In(S)) = In(grGU), where the latter space is the one induced from
In(U).

Now let S be the Poisson current algebra of p as defined in Subsection 8.2.
The relation (7.4.5) implies that the ideal N̂ is mapped to the closure of grGB̂.
Therefore, the map Ŝ → g̃rGU induces a homomorphism S → g̃rGU of
degreewise topological Poisson algebras.

Thus we have verified the following result.

Theorem 9.1.2 Let V be a vertex operator algebra and let U be the asso-
ciated current algebra. Let g̃rGU be the degreewise completion of grGU and
let S be the Poisson current algebra associated with Zhu’s Poisson alge-
bra V/C2(V ). Then there exists a surjective homomorphism S → g̃rGU of
degreewise topological Poisson algebras.

9.2. Consequences of Zhu’s finiteness condition

A vertex operator algebra V is said to satisfy Zhu’s finiteness condition or said
to be C2-finite if Zhu’s Poisson algebra p = V/C2(V ) is finite-dimensional.

By combining Proposition 7.2.1, Theorem 9.1.2 and Theorem 8.3.3, we
immediately see that Zhu’s finiteness condition implies quasi-finiteness.
Namely, we have the following theorem which is the main result of Part II.

Theorem 9.2.1 If a vertex operator algebra V satisfies Zhu’s finiteness
condition then the associated current algebra U is quasi-finite.

Let V be a vertex operator algebra satisfying Zhu’s finiteness condition and
let U be the associated current algebra. Let Un be the finite-dimensional alge-
bra associated with U as defined in Subsection 2.6 and let g be the number
defined by (2.3.3). Then Theorem 9.2.1 allows us to apply the results of Part I
to (U,L0). For instance, we have the following.

Corollary 9.2.2 Let V be a C2-finite vertex operator algebra and let n be
an integer such that n ≥ g. Then the category of exhaustive V -modules is
canonically equivalent to the category of left Un-modules.
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Moreover, the finiteness theorems in Subsection 5.5 hold for the various
categories of U-modules.
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Abstract

To every rational vertex operator algebra V we associate an automorphic form
on 
′(1) that we call the Wronskian of V . We have previously shown [M2],
[M3] that in the case of Virasoro minimal models it is possible to give qual-
itative arguments about the Wronskian by using the representation theoretic
methods. Here we apply the theory of automorphic forms and extend our pre-
vious work to a larger class of vertex operator algebras. We also give a detailed
analysis of two-dimensional modular invariant spaces that arise from affine
Kac-Moody Lie algebras.

As a main byproduct of our analysis we provide new proofs of certain
Dyson-Macdonald’s identities for powers of the Dedekind η–function for Cl ,
BCl and Dl series, and related identities (e.g., Jacobi’s Four Square Theorem).

0. Introduction and notation

The existence of a fusion ring and modular invariance of graded dimensions,
or characters, are the most interesting features of every rational conformal field
theory [MS]. When it comes to vertex operator algebra theory, proving mod-
ular invariance [Zh] (cf. [DLM1]) and ultimately the Verlinde formula [Hu1]
is a formidable task. A key ingredient in proving modular invariance is played
by the so-called C2–cofiniteness [Zh] which, in particular, guarantees the con-
vergence of all one-point functions on the torus. The C2–cofiniteness plays
an important role in the proof of the Verlinde conjecture as well [Hu1]. Even
though the vector space spanned by irreducible characters is a P SL(2,Z)–
module (i.e., a modular invariant space), one cannot state the Verlinde formula
without having an action of SL(2,Z) (the operator S2 does not act as the
identity in general–charge conjugation). In fact, irreducible characters are

330
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sometimes linearly dependent. A proper algebraic framework in which all
irreducible characters are accounted is the one of modular data and modular
tensor categories [Hu1], [Hu3]. Modular data were studied intensively by sev-
eral authors [Ga], [CG], [Ban], etc. There are classification results for modular
data with a small number of irreducible modules (or primaries) so one hopes
that modular data approach will help in classification of rational conformal
field theories. Individual irreducible characters have also interesting proper-
ties. The most important result in this direction was obtained in [Ban], where
it was proven that every irreducible character is in fact a (meromorphic) func-
tion on an appropriate modular curve X (N ). One should say that this result
does not apply verbatim to rational vertex operator algebras. In fact, Bantay’s
construction [Ban] uses some facts that are still conjectural in the setting of
rational vertex operator algebras.

In this paper we focus on certain number theoretic properties of modular
invariant spaces spanned by irreducible characters, viewed as P SL(2,Z)-
modules (so we will ignore the Verlinde formula at this point). The main
motivation is our previous work [M2] [M3] where we have proved various
q-series identities by using representation theoretic methods. Here, by using
classical theory of automorphic forms, we extend our results to a larger class
of rational vertex operator algebras.

Let us outline the content of the paper. To every rational vertex operator
algebra V , or more precisely, to a modular invariant space spanned by the
irreducible characters of V , we associate an automorphic formWV (τ ) that we
call the Wronskian of V . Since our space is a P SL(2,Z)-module, we show
thatWV (τ ) is a meromorphic modular form on 
′(1) (see Theorem 1.4). Then
we utilize this fact to show that, under certain conditions,WV (τ ) is a power of
the Dedekind η-function (see Theorem 2.2 and Proposition 2.4). Even though
this phenomena has been observed in a variety of important models, there are
cases where the Wronskian fails to be an η-power (see Section 6). It is an
open question to describeWV (τ ) as an infinite product in terms of some easily
calculated data. Such a formula would have to capture arithmetic properties of
the zeros ofWV (τ ) (see Proposition 2.3).

As an application of our results to familiar rational vertex operator algebras
we have (cf. Theorem 3.1 and Theorem 4.3):

Theorem 0.1. Let V be one of the following:

(i) Vertex operator algebra L A1(k − 1, 0) associated to the affine Kac-
Moody Lie algebra of type A(1)

1 , k ∈ N,
(ii) Virasoro vertex operator algebra L(cp,p′, 0) associated to M(p, p′)

Virasoro minimal models, k = (p−1)(p′−1)
2 ,
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(iii) Rank one lattice vertex operator algebra VL, where L = Zα and
〈α, α〉 = 2N, k = N + 1.

Then
WV (τ ) = η(τ)2k(k−1).

In particular, for appropriate choices of k, p and p′, the above formula give
a series of Dyson-Macdonald’s identities for Cl , BCl and Dl series of affine
root systems, respectively.

The part (ii) in the theorem was proven earlier in [M3] by using representa-
tion theoretic methods.

We analyze further the case of two-dimensional modular invariant spaces
that arise from rational vertex operator algebras. In particular, we compute
WV (τ ) for a class of rational vertex operator algebras associated to affine
Kac-Moody Lie algebras that have exactly two inequivalent modules (see
Proposition 5.2). These models are essentially powers of η(τ), so by using
explicit formulas for the characters we can prove several classical q-series
identities. Here we give two examples that are due to Ramanujan [M2], and
Jacobi, respectively (see Corollary 4.2):

Corollary 0.2.

1− 5
∞∑

n=1

(n

5

) nqn

1− qn
= η(τ)5

η(5τ)
, (0.1)

1+ 8

( ∞∑
n=1

2nq2n

1+ q2n
− (2n − 1)q2n−1

1+ q2n−1

)
=
(∑

n∈Z
(−q)n

2

)4

. (0.2)

It is worth saying here that considering Wronskians in this context is moti-
vated by a more or less classical situation in number theory and the theory of
Riemann surfaces where Weierstrass points on modular curves can be studied
via holomorphic differentials (i.e., cusp forms of weight 2) and Wronskians
[Mir], [Ro]. We hope that WV (τ ) and their zeros play a similar role and may
unravel some hidden arithmetic properties of rational vertex operator algebras.
A word of caution here. In the vertex operator algebra setting irreducible char-
acters give rise to modular invariant spaces (of weight 0), not of weight 2.
Also, in the vertex operator algebra setting we are dealing with meromorphic
modular forms (there will be poles at cusps in general). A possible resolution
is to consider the Wronskian of derivatives of irreducible modules which are
of weight two. We explored this direction further in [MMO].
Notation: Throughout the text we will be using the following notation: N; the
set of non-negative integers, H; the upper half-plane (which does not include
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the cusp at ∞) and q = e2π iτ . To simplify the exposition we will often use
“characters” instead of “modified graded dimensions”. As usual, for N ≥ 1
we let


(N ) =
{[

a b
c d

]
∈ SL(2,Z) : a ≡ d ≡ 1 mod N , b ≡ c ≡ 0 mod N

}
,


0(N ) =
{[

a b
c d

]
∈ SL(2,Z) : c ≡ 0 mod N

}
.

The Eisenstein series are given by

G2k(τ ) = − B2k

(2k)! +
2

(2k − 1)!
∞∑

n=1

n2k−1qn

1− qn
, k ≥ 1,

E2k(τ ) = −(2k)!
B2k

G2k(τ ).
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1. Wronskians and rational vertex operator algebras

In this part to every rational vertex operator algebra V we associate a canonical
automorphic form WV (τ ) that we call the Wronskian of V . We shall see that
this automorphic form coincides with a certain graded trace computed on a
tensor product of several copies of V .

Let us recall first the main parts in the definition of vertex operator algebra
(for more details see [LL], for example). Vertex operator algebra (V,Y, 1, ω)
consists of a Z–graded vector space

V =
∐
n∈Z

Vn, dim(Vn) < +∞,

with two distinguished vectors 1 ∈ V0 (the vacuum vector) and ω ∈ V2 (the
conformal vector), equipped with the vertex operator map

Y : V −→ End(V )[[x, x−1]],
subject to certain grading conditions, the truncation condition, the creation
property and most importantly the Jacobi identity. In addition, the confor-
mal vector ω defines a representation of the Virasoro algebra (i.e., essentially
unique central extension of the Lie algebra of vector fields on the circle), so that
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Y (ω, x) =
∑
n∈Z

L(n)x−n−2,

[L(m), L(n)] = (m − n)L(m + n)+ m3 − m

12
δm+n,0c, (1.1)

Y (L(−1)v, x) = d

dx
Y (v, x),

where c ∈ C (the number c is called the central charge of V ). Moreover, the
operator L(0) is compatible with the grading of V ; L(0) · v = nv, for every
v ∈ Vn . Finally, Y (1, x) is the identity operator on V .

Naturally, we can define the notion of a module for a vertex operator alge-
bra, with an important difference in a relaxation of the grading condition for a
module M , now being a C–graded vector space

M =
∐
r∈C

Mr , dim(Mr ) < +∞,

where, again, M admits an action of the Virasoro algebra (with the same central
charge) and the grading stems from the action of L(0).

We say that a vertex operator algebra V satisfies C2–cofiniteness condition
if dim(V/C2(V )) < +∞, where

C2(V ) = {u−2v : u, v ∈ V }.
The following definition is from [DLM1] [DLM2]:

Definition 1.1. We say that a vertex operator algebra V is rational if V is
C2–cofinite and every admissible V –module is completely reducible.

For various reasons it is important to study graded dimensions, or simply
characters, of irreducible V –modules, where the character of a V –module M
is defined as

tr|Mq L(0)− c
24 = q−c/24

∑
r∈C

dim(Mr )q
r

where c is as in (1.1). Of course, for rational vertex operator algebras it suf-
fices to study irreducible characters, i.e., characters associated to irreducible
representations. Then an important result proven by Zhu [Zh], and improved
slightly by Dong, Li and Mason [DLM1], states that for every rational vertex
operator algebra V the vector space spanned by irreducible characters is mod-
ular invariant, i.e., an SL(2,Z)–module. Moreover, it is known [DLM1] (see
also [AM]) that in the rational case the irreducible characters take the form

tr|Mq L(0)−c/24 = qr
∞∑

n=0

anqn,
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where r is a rational number.
Suppose that V is a rational vertex operator algebra. Denote by MV the

finite-dimensional vector space spanned by irreducible characters of V . Let

dV = dim(MV ).

If a vertex operator algebra is fixed we will often omit writing the subscript V
and write d instead. It is known that in general dV does not equal the number
of mutually inequivalent irreducible modules of V (see Section 3.). Now, pick
a basis { f1, ..., fdV } forMV . Consider the Wronskian

W(
q d

dq

)( f1, ..., fdv ) =

∣∣∣∣∣∣∣∣∣∣∣

f1 f2 . . fdv
f ′1 f ′2 . . f ′dv
. . . . .

. . . . .

f (dv−1)
1 f (dv−1)

2 . . f (dv−1)
dv

∣∣∣∣∣∣∣∣∣∣∣
,

where

f ( j) =
(

q
d

dq

) j

f (q), j ≥ 1.

Clearly, W(
q d

dq

)( f1, ..., fdV )(τ ) is holomorphic and has a q-expansion given

by expanding the determinant. Keep in mind that
(

q d
dq

)
= −i 1

2π
d

dτ .

Definition 1.2. Let V be a rational vertex operator algebra. Then the Wron-
skian WV (τ ) of V is defined as a (non-zero) multiple of W(

q d
dq

)( f1, ..., fdV )

with the property that the leading coefficient in the q-expansion is 1.

The previous definition clearly does not depend on the choice of a basis
forMV . In what follows we will need a few basic properties of the Wronskian
determinant.

Lemma 1.3.

(a) Let A be a linear operator on MV and f and h holomorphic functions
in H, then

W(
q d

dq

)(A · f1, ..., A · fd) = det(A) W(
q d

dq

)( f1, ..., fd).

(b)
W(

q d
dq

)( f · f1, ..., f · fd) = f d W(
q d

dq

)( f1, ..., fd)

(c)
W(

h(τ )q d
dq

)( f1, ..., fd) = h(τ )d(d−1)W(
q d

dq

)( f1, ..., fd).
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Proof: The first formula is clear. Part (b) follows from the Leibnitz formula

( f g)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k)

and properties of the determinant (apply row operations!). Similarly with (c).

Let us recall a few basic definitions in the theory of automorphic forms and
functions (for details consult [Miy] or [Mil]). Let 
 ⊂ 
(1) be a congruence
subgroup (e.g., 
0(N ) or 
(N )). We say that a holomorphic function f in
H is a modular form of weight k with respect to 
, if it has a q-expansion
f (τ ) =∑n≥0 anqn/r , where r ∈ N, and it satisfies f (γ · τ) = j (γ, τ )k f (τ )

where γ ∈ 
, γ =
[

a b
c d

]
and j (γ, τ ) = (cτ + d). The number r is also

denoted as ordi∞( f ). Cusps of 
 ⊂ 
(1) are defined as equivalence classes of
Q∪{i∞} under the action of SL(2,Z). If 
 = 
(1) then there is only one orbit
and the corresponding cusp is i∞. A function f is said to be holomorphic at
i∞ if r ≥ 0. Similarly, f is said to be holomorphic at the cusp r ∈ Q∪{i∞} if
f (ν · τ) is holomorphic at i∞, where ν · i∞ = r . For a function f (τ ) defined
on H we define an action of γ ∈ 
(1) by ( f |kγ )(τ ) = j (γ, τ )−k f (γ · τ).
We say that f is an automorphic form on 
(1) of weight k, with the multiplier
system χ , if ( f |k)(γ · τ) = χ(γ ) f (τ ), where χ is a character of 
(1).

In the following theorem we do not use much of the theory of vertex operator
algebras so it applies for an arbitrary modular invariant vector spaceM.

Theorem 1.4. Let V be as above, then the Wronskian WV (τ ) is a modular
form of weight k(k − 1) for 
′(1) :=
(1)/[
(1), 
(1)]. Moreover, the sixth
power ofWV (τ ) is a holomorphic modular form for SL(2,Z), with a possible
pole at the infinity.

Proof: For simplicity let d = dV . Let f1, ..., fd be a basis forMV . As usual let

S =
[

0 −1
1 0

]
, T =

[
1 1
0 1

]
.

Let us introduce constants Sb
a via

fa(S · τ) =
d∑

b=1

Sb
a fb(a), a = 1, ..., d.

The vector space MV is in fact a P SL(2,Z)–module, because S2 acts as the
identity operator. Also, (ST )3 = I and S4 = I , where I is the identity matrix.
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From these formulas it follows that det(S) = ±1 and (det(T ))6 = 1. We have
to compute

W(
q d

dq

)( f1, ..., fd)(S · τ).

For that purpose notice that

f (i)a (S · τ) =
(
τ 2 d

d(2π iτ)

)i

( fa(S · τ)) =
d∑

a=1

Sb
a

(
τ 2 d

d(2π iτ)

)i

fb(τ ).

The previous formula, combined with Lemma 1.3 (a),(c), yields

W(
τ 2 d

2π idτ

)( f1(S ·τ), ..., fd(S ·τ)) = det(S)τ d(d−1)W(
q d

dq

)( f1(τ ), ..., fd(τ )).

Thus

WV

(−1

τ

)
= ±τ d(d−1)WV (τ ).

For the T action a similar computation yields

WV (τ + 1) = ζ6WV (τ ),

where ζ6 is a sixth root of unity. Let us recall again [DLM1] that every irre-
ducible character of a rational vertex operator algebras has rational q-powers
truncated from below. Thus, the Wronskian W(τ ) has q-expansion

WV (τ ) = q
r
6

∞∑
n=0

anqn, r ∈ Z.

This is a cusp form if r > 0. To prove that WV (τ ) is a modular form on the
commutator subgroup 
′(1) it is enough to recall that, by the definition, 
′(1)
is generated by elements of the form aba−1b−1, which act trivially on any
one-dimensional representation of SL(2,Z).

Remark 1. The group 
′(1) is closely related to a congruence subgroup 
(6)/
SL(2,Z), In fact, the group 
(6) is the smallest principal congruence subgroup
under which the multiplier system for WV trivializes. If we use a presentation
for SL(2,Z/6) given in [CG] it easily follows that the multiplier system factors
through the quotient SL(2,Z/6), thusWV (τ ) is a modular form for 
(6).

Remark 2. Let L(cp,p′, 0) be the Virasoro vertex operator algebra associated
toM(p, p′)–minimal models [LL], [FZ], [M2], [M3]. Then

WL(cp,p′ ,0)(τ ) = η(τ)2k(k−1),
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where k = (p−1)(p′−1)
2 is the number of irreducible modules for L(cp,p′ , 0). In

the case of M(2, 5) minimal models [M2] the Wronskian is η(τ)4. This fact
is useful for proving the Ramanujan’s formula (0.2).

Remark 3. The previous theorem does not apply for rational vertex operator
superalgebras. The vector space spanned by irreducible characters in the vertex
operator superalgebra setting is no longer modular invariant. However, if we
add appropriate twisted modules and super graded traces (i.e., supercharcaters)
we can construct three Wronskians that (conjecturally) get permuted under the
action of SL(2,Z). For an explicit constructions of these automorphic forms
in the case of N = 1 superconformal minimal models we refer the reader
to [M4].

The next result gives another interpretation of WV . In fact, the follow-
ing construction works for vertex operator (super)algebras as well. Let us
introduce some notation first. For every homogeneous v ∈ Vm , Y (v, x) =∑

n∈Z vn x−n−1, acting on a V –module M , let o(v) = vm−1; a grading pre-
serving operator on M . Thus we have a well–defined trace map (which for a
moment we consider only as a formal q–series):

v �→ tr|M o(v)q L(0)−c/24, (1.2)

and its multi-linear extension

v1 ⊗ · · · ⊗ vk �→ tr|Mo(v1)⊗ · · · ⊗ o(vk)q
L(0)−c/24.

The antisymmetrization map

Alt : �k V −→ V⊗k

is defined as usual. Consider now

Alt
{

1 ∧ L[−2]1 ∧ L[−2]21 ∧ · · · ∧ L[−2]k−11
}
∈ V⊗k

.

Proposition 1.5. Suppose that V is rational and M a V⊗dV –module. Then

tr|M o
(

Alt
{

1 ∧ L[−2]1 ∧ · · · ∧ L[−2]k−11
})

q L(0)−c/24 = λWV (τ ),

where λ ∈ Q (possibly zero).

Proof: Firstly, we may assume that M is an irreducible V⊗d
–module. Thus,

M ∼= M1 ⊗ · · · ⊗ Md , where Mi are irreducible V –modules [FHL]. Now,
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tr|M1⊗M2⊗···⊗Md o
(

Alt
{

1 ∧ L[−2]1 ∧ · · · ∧ L[−2]d−11
})

q L(0)−c/24 =∣∣∣∣∣∣∣∣∣∣

tr|M1 q L(0)−c/24 tr|M2q L(0)−c/24

tr|M1o(L[−2]1)q L(0)−c/24 tr|M2 o(L[−2]1)q L(0)−c/24

. .

. .

tr|M1 o(L[−2]d−11)q L(0)−c/24 tr|M2 o(L[−2]d−11)q L(0)−c/24

. . tr|Md q L(0)−c/24

. . tr|Md o(L[−2]1)q L(0)−c/24

. . .

. . .

. . tr|Md o(L[−2]d−11)qL(0)−c/24

∣∣∣∣∣∣∣∣∣∣
.

If the characters of M1,...,Md are linearly dependent then

tr|M1⊗···⊗Md

(
Alt
{

1 ∧ L[−2]1 ∧ · · · ∧ L[−2]k−11
})

q L(0)−c/24 = 0,

because the determinant is equal to zero. Let us compute entries of the
determinant. It is known [Zh] that

tr|M o(L[−2]i 1)q L(0)−c/24

=
i∑

j=0

Pi, j (G2,G4,G6)

(
q

d

dq

) j

tr|Mq L(0)−c/24,

where Pi, j (G2,G4,G6) are certain polynomials in Eisenstein series G2, G4

and G6, and more importantly Pi,i = 1, for every i . Now, from properties of
the determinant it follows that

tr|M1⊗M2⊗···⊗Md o
(

Alt
{

1 ∧ L[−2]1 ∧ · · · ∧ L[−2]d−11
})

q L(0)−c/24

is a multiple of the Wronskian WV (τ ).
Now, the statement obviously works for an arbitrary V⊗d

–module simply
because every V⊗d

–module is a sum of irreducible modules (cf. [LL]).

2. Differential equations and WV (τ)

The Wronskian determinant is a very useful gadget for studying homoge-
neous ordinary differential equations. We review this well-known relationship
applied in the special case where solution spaces are modular invariant sub-
spaces. We should say here that some results from this session have been
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known for a while by physicists and number theorists (e.g., for a related dis-
cussion in the setup of rational conformal field theory setting see [AM], [Mu1],
[Mu2] and [MMS]).

Denote by �(H) the space of holomorphic functions in the upper half-plane
that have q-expansion of the form

s∑
i=1

qri

∞∑
m=0

a(m)i qm .

Let Gr(k) be the Grassmannian of k-dimensional subspaces of �(H) and D(k)

the affine space of k-th order differential operators(
q

d

dq

)k

+
k−1∑
i=0

Pi (q)

(
q

d

dq

)i

,

where Pi (q) are meromorphic functions in H. Then there is an injective map
� from Gr(k) to D(k) given by

( f1, ..., fk) �→ (−1)k
W
(q d

dq )
( f, f1, ..., fk)

W
(q d

dq )
( f1, ..., fk)

, (2.1)

where { f1, ..., fk} is any basis of ( f1, ..., fk) ∈ Gr(k). The preimage of � is

obtained by solving the differential equation (−1)k
W
(q d

dq )
( f, f1,..., fk)

W
(q d

dq )
( f1,..., fk )

= 0. The

coefficients Pi (q) in

(−1)k
W
(q d

dq )
( f, f1, ..., fk)

W
(q d

dq )
( f1, ..., fk)

=
(

q
d

dq

)n

+
k−1∑
i=0

Pi (q)

(
q

d

dq

)i

,

are meromorphic functions in general, but if the Wronskian W(q d
dq )
( f1, ..., fk)

is non-vanishing in H, then Pi (q) will be holomorphic.

Instead of
(

q d
dq

)i
, it is more convenient to work with a slightly modified

differential operators. As in [Ro] we let

�τ = q
d

dq
,

�2
τ = (q

d

dq
+ 2G2)�τ ,

�k
τ = (q

d

dq
+ 2kG2)�

k−1
τ , k ≥ 3.
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From

G2(−1/τ) = τ 2G2(τ )− τ

2π i
,

G2(τ + 1) = G2(τ ),

it follows

�k
τ+1 = �k

τ ,

�k
−1/τ = τ 2k�k

τ . (2.2)

Now, we introduce generalized Wronskian determinants

W i1,...,ik
�τ

( f1, ..., fk) = det[�i j
τ fl ]1≤ j≤k,1≤l≤k,

0 ≤ i1 < i2 < · · · < ik−1 < ik . (2.3)

In particular W 1,2,...,k
�τ

= W�τ . It is not hard to see (see [Ro] for instance) that

W�τ ( f1, ..., fk) = λkW(q d
dq )
( f1, ..., fk), (2.4)

for some nonzero constant λk . From the above formulas we have:

Lemma 2.1. Let { f1, ..., fk} be a basis of MV . Then for every i1, ...ik as in
(2.3)

W i1,...,ik
�τ

( f1, ..., fk)

W�τ ( f1, ..., fk)

is a (meromorphic) modular form of weight 2ii + 2i2 + · · · + 2ik .

Now, we consider again the map � where instead of
(

q d
dq

)
-derivative we

work with the �-derivative. This time to an element ( f1, ..., fk) ∈ Gr(k) we
associate

(−1)k
W�τ ( f, f1, ..., fk)

W�τ
( f1, ..., fk)

. (2.5)

Theorem 2.2. Let S = { f1, ..., fk} be a basis of a modular invariant space
MV and suppose further thatWV (τ ) is non-vanishing in the upper half-plane.
Then there is a unique kth order differential equation with coefficients being
quasimodular forms, with a possible pole at the infinity, with a basis of solution
being S. Moreover,

WV (τ ) = η(τ)2k(k−1).

In particular, if

fi = qhi−c/24
∞∑

n=0

a(i)n qn,
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and the exponents satisfy

hi �= h j , for i �= j,

then the coefficients Pi (q) are holomorphic at the infinity and

24
k∑

i=1

hi = k(2k − 2+ c). (2.6)

Proof: The first part follows immediately from Lemma 2.1 and (2.5) (the
uniqueness is obvious). Suppose now that the Wronskian WV (τ ) is non-
vanishing in H. Then

(−1)k
W�τ ( f, f1, ..., fk)

W�τ ( f1, ..., fk)
= �k f +

k−1∑
i=0

P̃i (τ )�
i f = 0, (2.7)

where P̃i (q) are quotients of certain generalized Wronskians appearing in
Lemma 2.1. From Lemma 2.1 we know that P̃i (q) is a holomorphic modu-
lar form of the weight 2(k − i), with at most polynomial growth at the infinity.
Because of (2.4) it follows we see that P̃i will be holomorphic in H. Thus,
P̃i ∈ C[G4,G6, j]. In particular, P̃k−1(q) = 0 (i.e., there is no holomorphic
modular form of weight 2 with a polynomial growth at the infinity). Let us
recall that the ring of holomorphic quasimodular forms is invariant under the

action of (q d
dq ), i.e., for i = 1, 2, 3,

(
q d

dq

)
G2i (τ ) is expressible in terms of

the basic Eisenstein series G2(τ ), G4(τ ) and G6(τ ). Thus, in

�k f +
k−1∑
i=0

P̃i (τ )�
i f =
(

q
d

dq

)k

f +
k−1∑
i=0

Pi (τ )

(
q

d

dq

)i

f,

Pi are quasimodular forms. It is easy to see that Pk−1(τ ) = k(k− 1)G2(τ ). To
show

WV (τ ) = η(τ)2k(k−1),

we just recall the Abel’s lemma for ODEs and proceed as in Theorem 8.1 [M2]
or as in [M3]. The equality (2.6) is obtained by comparing the leading powers
in the q-expansion of η(τ)2k(k−1) andWV (τ ).

If WV (τ ) has a zero in H, then the previous theorem fails and Pk−1(q) has
poles in general. For instance, consider

y′ + E6

E4
y = 0,

where WV (τ ) = j (τ ). Modular forms such as j (τ ) admit beautiful product
formulas (after Gross, Zagier and Borcherds) so it is tempting to seek for an
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infinite-product formula for WV in general. One idea is to apply a result of
Bruinier, Kohnen and Ono [BKO]:

Proposition 2.3.

Pk−1(τ ) = k(k − 1)E2(τ )

12
− E2

4(τ )E6(τ )

�(τ)

∑
z∈H/
(1)

ezordz(WV )

j (τ )− j (z)
,

where

ez :=
⎧⎨⎩

1
2 if z = i,

1
3 if z = eπ i/3,

1 otherwise.

Proof: Firstly, we recall Theorem 1 from [BKO]: Let F(τ ) = qh∑∞
n=0 anqn,

be a meromorphic weight k modular form for 
(1), then

(q d
dq )F(τ )

F(τ )
= k E2(τ )

12
− E4(τ )

2 E6(τ )

�(τ)

∑
z∈H/
(1)

ezordz(F)

j (τ )− j (z)
.

Because of Pk−1(τ ) = W ′
VWV

, we just have to show that Theorem 1 in [BKO]
also applies for modular forms with a character and, in particular, for WV (τ ).
According to Theorem 1.4, WV (τ )

6 is a modular form for SL(2,Z), which
together with

(WV (τ )
6)′

WV (τ )6
= 6

W ′
V (τ )

WV (τ )
= 6Pk−1(τ )

now proves the claim.

From the previous proposition one can in practice obtain an infinite-product
expression forWV (τ ) (cf. [BKO]).

There is an elegant way of checking whether a modular form is non-
vanishing in H (the same result was obtained in [MMS] as well):

Proposition 2.4. Suppose thatWV (τ ) is of weight k(k−1), k ∈ N and satisfies

ordi∞(WV ) = k(k − 1)

12
,

thenWV (τ ) is non-vanishing in H.

Proof: Let us recall that WV (τ ) is actually an automorphic form with a
character, so that the sixth power ofWV (τ ) is a modular form for 
(1).

An application of the Riemann-Roch formula in the case of a meromor-
phic modular form f on the genus zero surface X = X (1), gives (see [Mil],
[MMS]):
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ordi∞( f )+ ordi ( f )

2
+ ordρ( f )

3
+
∑

Q

ordQ( f ) = k

6
,

where ρ = eπ i/3 and the summation is over the remaining points in H/
(1).
Suppose now that f = WV (τ )

6. Then, 2k = 6m(m − 1) and ordi∞( f ) =
m(m−1)

2 . Because f is holomorphic, it follows thatWV (τ )
6 has no zeros in the

upper half plane. Clearly, the same holds forWV (τ ).

3. Lattice vertex operator algebras of rank one

In this part we apply the results from the previous section in the case of rank
one lattice vertex operator algebras.

Let L = Zα be a rank one even lattice such that

〈α, α〉 = 2N ,

where N ∈ N. We denote by VL the corresponding lattice vertex operator alge-
bra [D] [LL]. It was proven in [D] and [DLM2] (cf. [LL]) that VL is rational for
every N and for a set of representatives of equivalence classes of irreducible
VL -modules we can take

VL+λ, λ ∈ L◦/L ,

where L◦ is the dual lattice of L (cf. [LL]). For a set of representatives of cosets
of L◦/L we choose i α

2N , i = 0, 1, ...2N − 1. Clearly,

|L◦/L| = 2N .

The central charge of VL is one and

ch2N ,i (q) = tr|VL+i α
2N

q L(0)−1/24

=
∑

ν∈L+ iα
2N

q
〈ν,ν〉

2

η(τ)
=

∑
m∈Z

q N (m+i/2N )2

η(τ)
.

It is easy to see that for every i we have

ch2N ,i (q) = ch2N ,2N−i (q). (3.1)

If we analyze the leading terms in the q-expansion of ch2N ,i (q), it follows that
(3.1) are essentially the only linear relations between characters. Thus, for a
basis of the vector spaceMVL we may choose

ch2N ,i (q), i = 0, ..., N .
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The lowest weights of ch2N ,i are given by

h2N ,i = i2

4N
, i = 0, ..., N

Therefore

N∑
i=0

(
h2N ,i − 1

24

)
= N (N + 1)

12
.

Now from Proposition 2.4 and Theorem 2.2 we have:

Theorem 3.1. Let L = Zα, 〈α, α〉 = 2N, N ≥ 1, and VL as the above, then

dV = N + 1,

and

WVL (τ ) = η(τ)2N (N+1).

If we let l := N + 1 in the previous formula and factor 1
η(τ)

from each of
ch2N ,i (q) in the Wronskian WV (τ ), we get the following series of Dyson-
Macdonald’s identities for the affine root system of type Dl (see [Mac],
p.138):

Proposition 3.2.

η(τ)2l2−l = νl

∑
v

χD(v)q
||v||

4(l−1) ,

where in the summation v = (v1, ..., vl) ∈ Zl , such that vi ≡ i−1 (mod 2l−2),
||v|| =∑l

i=1 v
2
i , χD(v) =∏i< j (v

2
i − v2

j ) and νl ∈ Q.

Proof: Follows along the lines of the proof of Proposition 4.4 given below.

4. Vertex operator algebra L A1(k, 0)

In this section we study the Wronskians WV (τ ), where V = L A1(k, 0) is the
level k vertex operator algebra associated to A(1)

1 [LL]. One would hope that
for these vertex operator algebras we can apply methods from [M2], [M3],
to obtain the differential equation satisfied by irreducible characters directly
from the C2-cofiniteness. Even though we had some success in the k = 1
case, the C2–cofiniteness did not provide us with a suitable ODE for k ≥ 2.
Thus, let us first focus on the vertex operator algebra L A1(1, 0) with exactly
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two inequivalent irreducible modules. Recall the well-known formulas for
irreducible characters [FL] (cf. [K]):

tr|L A1 (1,0)
q L(0)−c/24 =

∑
n∈Z

qn2

η(τ)

and

tr|L A1 (1,1)
q L(0)−c/24 =

∑
n∈Z

q(n+
1
2 )

2

η(τ)
.

Theorem 4.1. Irreducible characters tr|L A1 (1,i)
q L(0)−1/24, i = 0, 1 form a

basis for the solutions of(
q

d

dq

)2

y(τ )+ 2G2(τ )

(
q

d

dq

)
y(τ )− 25

4
G4(τ )y(τ ) = 0. (4.1)

Proof: Let V = L A1(1, 0). Firstly, recall that the vertex operator algebra V is
C2–cofinite and dim(V/C2(V )) ≤ 8 (cf. [DLM2]). Moreover, we have∐

i≥4

Vi ⊆ C2(V ).

Thus,

L2[−2]1 ∈ C2(V ).

Let M be a L A1(1, 0)-module. Then, according to Zhu [Zh] there exists v1 ∈
V2 such that

tr|M o(L2[−2]1)q L(0)−1/24 = λG2(τ )tr|M o(v1)q
L(0)−1/24

+ (ν1G2
2(τ )+ ν2G4(τ ))tr|Mq L(0)−1/24, (4.2)

where λ, ν1, ν2 ∈ C. The vector space V2 is four-dimensional, and only
non-zero multiples of hα[−1]21, where {xα, x−α, hα} is the standard basis
of sl2, contribute with a non-zero trace in (4.2). Therefore we may assume
v1 = L[−2]1. After some computation, in parallel to [M2], Theorem 6.3, we
obtain(

q
d

dq

)2

y(τ )+(2−λ)G2(τ )

(
q

d

dq

)
y(τ )+(ν1G2(τ )

2+ν2G4(τ ))y(τ ) = 0,

where y = tr|Mq L(0)−1/24.
From the asymptotic behavior of characters it follows that 2−λ

12 = 1
4 − 1

12 ,
thus λ = 0. Similarly, from the q-expansion we see that ν1 = 0 and ν2 = −25

4 .
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Remark 4. Of course, it would have been much easier to use modular invari-
ance directly and apply results from Section 2, to prove (4.1). In some sense
our proof is representation theoretic since it relies only on the C2-cofiniteness.

The previous Theorem 4.1 and Theorem 6.2 in [M2] give the following
classical identity.

Corollary 4.2. (Jacobi’s Four Square Theorem)

1− 8
∞∑

n=1

(
(2n − 1)q2n−1

1+ q2n−1
− (2n)q2n

1+ q2n

)
=
(∑

n∈Z
(−1)nqn2

)4

. (4.3)

Proof: Apply Jacobi Triple Product Identity to write two θ constants

θ2(τ ) =
∑
n∈Z

q

(
n+ 1

2

)2

and

θ3(τ ) =
∑
n∈Z

qn2

as infinite products:

θ2(τ ) = 2q1/4
∞∏

n=1

(1− q2n)(1+ q2n)2,

θ3(τ ) =
∞∏

n=1

(1− q2n)(1+ q2n−1)2.

Now,

W(
q d

dq

)(chL(1,0)(τ ), chL(1,1)(τ ))

= 2q1/4

(
1

4
− 2

∞∑
n=1

nq2n

1+ q2n
+ 2

∞∑
n=1

(2n − 1)q2n−1

1+ q2n−1

) ∞∏
n=1

(1+ qn)4.(4.4)

Formulas

θ4(τ ) =
∑
n∈Z

(−1)nqn2 =
∞∏

n=1

1− qn

1+ qn
,

WL A1 (1,0)
(τ ) = η(τ)4

now imply (4.3).

As in the previous section we have the following description of
WL A1 (k,0)

(τ ).
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Theorem 4.3. For every k ≥ 1

WL A1 (k,0)
(τ ) = η(τ)2k(k+1).

Proof: Let us denote by hi,k the lowest weight of L A1(k, i − 1) and by ck the
central charge. It is known (cf. [LL]) that

hi,k = i2 − 1

4(k + 2)
,

ck = 3k

k + 2
.

Then

k+1∑
i=1

(
hi,k − ck

24

)
= k(k + 1)

12
.

The proof now follows directly from Proposition 2.4 and Theorem 2.2.

As a consequence we have the following result which is a series of Dyson-
Macdonald’s identity for Cl–series (cf. p. 136 in [Mac]):

Proposition 4.4. For l ≥ 2,

η(τ)2l2+l = μl

∑
n

χC (n)q
||v||

4(l+1) ,

where in the summation n = (n1, ..., nl) ∈ Zl , such that ni ≡ i mod 2(l + 1),
χC (n) = (

∏l
i=1 ni )

∏
i< j (n

2
i − n2

j ), ||n|| =
∑l

i=1 ni , and μl ∈ Q.

Proof: Let us recall the formula for specialized characters of irreducible
L A1(k, 0)–modules (see [K]):

ch|L A1 (k,i−1)(τ ) = 1

2

∑
n ∈ Z

n ≡ i mod 2(k + 2)

nqn2/4(k+2) −
∑
n ∈ Z

n ≡ −i mod 2(k + 2)

nqn2/4(k+2)

η(τ )3

=

∑
n ∈ Z

n ≡ i mod 2(k + 2)

nqn2/4(k+2)

η(τ )3
, (4.5)

where i = 1, ..., k + 1. By Theorem 4.3 we have

η(τ)3k+3WV (τ ) = η(τ)2(k+1)2+(k+1). (4.6)

On the other, WV (τ ) can be computed by expanding the determinant, so by
using the formula (4.5) we have
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η(τ)3k+3Wq d
dq
(ch|L A1 (k,0)

, ..., ch|L A1 (k,k)
)

=
∑

(n1, ..., nk+1) ∈ Zk+1

ni ≡ i mod 2(k + 2)

(

k+1∏
i=1

ni )V (
n2

1

4(k + 2)
, ...,

n2
k+1

4(k + 2)
)q
∑k+1

i=1
n2

i
4(k+2) ,

where V (z1, ..., zk) is the Vandermonde determinant, where μ̃k is a rational
number. Now, take k = l − 1.

5. Modular invariant spaces with dV = 2 and the Schwarzian

In this section we study the dV = 2 case in more details. Let V be a rational
vertex operator algebra with exactly two inequivalent irreducible modules that
have linearly independent characters. We are actually not aware of examples
of simple vertex operator algebras with exactly two inequivalent irreducible
modules whose characters are proportional. On the contrary, there are several
known examples of rational vertex operator algebras for which dV = 2 and
the number of irreducible inequivalent modules is > 2. In the dV = 2 case the
Wronskian is of weight 2 for 
′(1) with a non-trivial multiplier system (other-
wise there would be a holomorphic weight two modular form on SL(2,Z)with
at most polynomial growth at the infinity). Let us recall that the modular curve
X ′(1) = H/
′(1) is of genus one, so the space of holomorphic differential
is one-dimensional [Miy]. More precisely, if we denote by Sk(
) the vector
space of cusp forms of weight k for 
, then

Lemma 5.1.

dimCS2(

′(1)) = 1,

dimCS2(
(6)) = 1,

where both vector spaces of cusp forms are spanned by η(τ)4.

In fact X (6) = H/
(6) is also a genus one modular curve with a
holomorphic differential η(τ)4dτ .

Let us recall

j1/3(τ ) = E4(τ )

η(τ )8
,

which is the third root of Klein’s absolute modular invariant j (τ ) = q−1 +
744+· · · . Here, E4(τ ) is the normalized Eisenstein series of weight 4 (see the
introduction).
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Even though there are no classification results of rational vertex operator
algebras with dV = 2, it is possible to classify modular data with exactly
two inequivalent irreducible modules. By solving the constraints from the
Verlinde formula and the 2-dimensional fusion algebra one obtains 12 inequiv-
alent modular data [Ga], which all can be constructed via affine Kac-Moody
Lie algebras [Ga]. In what follows we compute Wronskians for these twelve
examples. This is by no means the classification result forWV (τ )with dV = 2.

Proposition 5.2. Let L Xr (m, 0) stand for the level m vertex operator algebra
associated to the affine Kac–Moody Lie algebra of type X (1)

r (cf. [LL]), and let
cV be the central charge of V .

(i) We have the following table:

X (1)
r V cV TV WV (τ )

A(1)1 L A1 (1, 0) 1 1
6 η(τ)4

E(1)
7 L E7 (1, 0) 7 1

6 η(τ)4

F(1)
4 L F4 (1, 0) 26

5
1
6 η(τ)4

G(1)
2 LG2 (1, 0) 14

5
1
6 η(τ)4

where

TV =
(

h0 − cV

24

)
+
(

h1 − cV

24

)
,

and h0 and h1 are the lowest weights of two irreducible V –modules.
(ii) Let

V = L Xr (1, 0)⊗ L E8(1, 0),

where L Xr (1, 0) is a vertex operator algebra from the table. Then

WV (τ ) = j (τ )2/3η(τ)4,

with TV = − 1
2 ,

(iii) Let

V = L Xr (1, 0)⊗ L E8(1, 0)⊗ L E8(1, 0),

where L Xr (1, 0) is a vertex operator algebra from the table. Then

WV (τ ) = j (τ )4/3η(τ)4

and TV = − 7
6 .
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Proof: The third and the fourth column in the table can be computed by using
the theory of affine Lie algebra and the Sugawara construction [K], [KW]. In
particular, h0 �= h1 in all cases. Thus, for every V from the table

WV (τ ) = q1/6 + · · · .
Therefore WV (τ ) is a cusp form on 
′(1). Now, Lemma 5.1 implies that
WV (τ ) is η(τ)4, which proves Part (a).

Recall that L E8(1, 0) is a holomorphic1 vertex operator algebra. Also, it is
known (cf. [K]) that tr|L E8 (1,0)

q L(0)−1/3 = j1/3(τ ). Thus, we have a one-to-
one correspondence between the equivalence classes of irreducible V -modules
and the equivalence classes of V ⊗ L E8(1, 0)-modules [FHL]. The same fact

applies for the vertex operator algebra V ⊗ L E8(1, 0)⊗2
. Parts (b) and (c) now

follow from (a) and the second formula in Lemma 1.3.

Remark 5. For completeness let us recall here that the vector space of mod-
ular functions for 
′(1) with a polynomial growth at infinity is given by
C[ j1/3, ( j − 1728)1/2] (cf. [KZ]). Thus, the space of modular forms of weight
two for 
′(1), with the same behavior at the cusps, is given explicitly by
η(τ)4C[ j1/3, ( j − 1728)1/2].

Let f1, f2 be a basis for MV . Then the action of 
(1) on H induces an
action of 
(1) on the f1

f2
-plane in the natural way. Explicitly,

f1(γ · τ)
f2(γ · τ) =

a11
f1(τ )
f2(τ )

+ a12

a21
f1(τ )
f2(τ )

+ a22
,

where [
a11 a12

a21 a22

]
∈ GL(2,C).

Let

g(τ ) = f1(τ )

f2(τ )
.

We shall denote by {g; τ } the Schwarzian derivative of g. Explicitly,

{g; τ } = 2

(
g′′

g′

)′
−
(

g′′

g′

)2

.

Let us also recall the chain rule for the Schwarzian

{g ◦ h; τ } = (h′)2{g; h(τ )} + {h; τ }.
1 A vertex operator algebra V is called holomorphic if, up to equivalence, the only irreducible

V –module is V itself.
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If we take now

h(τ ) = aτ + b

cτ + d
,

such that ad − bc = 1, a, b, c, d ∈ Z, then by using

{h; τ } = 0,

we have

{g; h(τ )} = (cτ + d)4{g ◦ h; τ }
= (cτ + d)4

{
a11g + a12

a21g + a22
; τ
}
= (cτ + d)4{g; τ }.

Thus

{g; τ }|4(γ · τ) = {g; τ },
for every γ ∈ 
(1).

The Schwarzian derivative also appear in the context of second order ordi-
nary differential equations. Let us recall this basic but important fact. Every
second order ODE of the form(

q
d

dq

)2

y(τ )+ P1(τ )

(
q

d

dq

)
y(τ )+ P2(τ )y(τ ) = 0, (5.1)

can be brought to its projective normal form(
q

d

dq

)2

ỹ(τ )+
(

P2(τ )− 1

2

(
q

d

dq

)
P1(τ )− P2

1 (τ )

4

)
ỹ(τ ) = 0, (5.2)

where ỹ(τ ) = y(τ )/
√

W and W is the Wronskian of a fundamental system.
Let y1, y2 be a pair of linear independent solutions of (5.1) or (5.2). Then the
ratio f (τ ) = y1(τ )

y2(τ )
satisfies

{ f ; τ } = 4P2(τ )− 2

(
q

d

dq

)
P1(τ )− P2

1 (τ ). (5.3)

Proposition 5.3. Let f1 and f2 form a basis forMV , then{
f1

f2
; τ
}

(5.4)

is a meromorphic modular form of weight 4. In particular, if WV is non-
vanishing then (5.4) is holomorphic, including at the infinity. Thus, it is a
multiple of E4(τ ).
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Proof: We already proved the first part. Because of (5.3) it follows that (5.4)
can have a pole only at the infinity. However, because of P1(q) = 2G2(q) =
a0 + a1q + · · · ,

ordi∞(y′′ + P1(q)y
′) ≥ ordi∞y.

On the other hand, having a pole at the infinity would imply

ordi∞(y′′ + P1(q)y
′) = ordi∞P2(q)y < ordi∞(y),

which gives the contradiction.

Expressions of the form { f ; τ }, where f is a Hauptmodul for certain genus
zero congruence subgroups such as 
0(n) or 
+0 (n) were studied in [McS].
In particular, it was shown that the Schwarzian derivative of the Hauptmodul
for the torsion free subgroups is always a multiple of E4(τ ). Some of our
examples can also be used to prove related formulas. For instance, in the case
of L A1(1, 0) we have

Corollary 5.4. Let θ2(τ ) =
∑
n∈Z

q

(
n+ 1

2

)2
and θ3(τ ) =

∑
n∈Z

qn2
. Then

{
chL A1 (1,1)

(τ )

chL A1 (1,0)
(τ )
; τ
}
=
{
θ2

θ3
; τ
}
= −45G4(τ ).

Also, for V = L(−22/5, 0) studied in [M2], dV = 2 and we have

Corollary 5.5. Let χ5(n) =
( n

5

)
, (Legendre symbol). Then

jX (5)(τ ) = chL(−22/5,−1/5)(τ )

chL(−22/5,0)(τ )
= q−1/5

∞∏
n=1

(1− qn)−χ5(n)n

and {
jX (5); τ

} = −144

5
G4(τ ).

(The function jX (5) is the Hauptmodul for the genus zero curve X (5) =
H/
(5).)

6. Conclusion and an outlook

In this note we examined various number theoretic aspects of the Wronskian
determinant associated to a rational vertex operator algebra. Even though our
methods are those of automorphic forms rather than vertex operator alge-
bra, it is interesting to see that many classical modular q–series identities
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arise from considerations of graded dimensions of modules. Having in mind
that the coefficients of irreducible characters are non-negative integers, often
with interesting combinatorial interpretation, it is an open problem to find a
link between divisibility properties of partitions and vertex operator algebra
theory.

There are several closely related directions that we have already explored
related to our present work:

• In [M4], in parallel with [M2] and [M3], we derived several infinite series
of q-series identities from consideration of N = 1 super minimal models.
As an example, in the case of N = 1 minimal models of type (2, 8), we
obtained a classical Carlitz’s q-series identity :

1− 2
∞∑

n=1

χ8(n)
nqn

1− qn
= η3(4z)η(2τ)η2(τ )

η2(8τ)
,

where χ8(·) is the Kronecker symbol mod 8.
• It would be interesting to find a proof of Theorem 3.1 and Theorem 4.3

directly from the C2–cofiniteness, in parallel with [M2] and [M3].
• It is not hard to construct examples of Wronskians WV (τ ) with zeros in

the upper half plane. We already indicated that one can just tensor a VOA
with a holomorphic vertex operator algebra such as L E8(1, 0). Here are
two additional more interesting examples:
Let V = L(c2,7, 0)⊗ L(c2,7, 0) where L(c2,7, 0) be the VOA associated
toM(2, 7)–minimal models [M2]. Then dV = 6 (symmetric square) and

WV (τ ) = η(τ)48 E6(τ ),

with the zero at τ = √−1.
The zeros ofWV (τ ) can be more complicated (transcendental?). Let V =
L(c2,9, 0)⊗ L(c2,9, 0), for which dV = 10. Then

WV (τ ) = η(τ)168 E6(τ )( j (τ )+ 12202

143
).

• In [MMO] we investigated the following modular form for the full
modular group:

W(q d
dq )
(ch′1, ..., ch′k)

W
(q d

dq )
(ch1, ..., chk)

, (6.2)
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where ch1,...,chk are irreducible characters ofM(2, 2k+1)Virasoro min-
imal models. We proved that an appropriate normalization of (6.2) give
rise to supersingular j-invariants.
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Moonshine and Group Cohomology
C. B. Thomas

Introduction

If M is the Monster simple group, then to each rational conjugacy class 〈g〉
there is associated a formal q-expansion

jg(q) = q−1 +
∞∑

n=1

ag(n)q
n

with integral coefficients, such that

(M1) For each n � 1 the function g �→ ag(n) is the character of a repre-
sentation space Hn .
For each 〈g〉 there is an integer h dividing the greatest common
divisor (24, |g|), and a discrete 
 sandwiched between the congru-
ence subgroup 
0(N ) and its normaliser in SL2(R) (N = h|g|)
and commensurable with SL2(Z). If Z̄ denotes the upper half-plane
compactified by the cusps of 
, then

(M2) The character jg(q) generates the field of meromorphic functions
defined on the Riemmann surface 
\Z̄ of genus zero.

We shall refer to an infinite representation space of type (M1) as a McKay-
Thompson series, and to (M2) as the ‘genus zero’ property. Similar Moonshine
modules can be constructed for other groups, notably for centralisers CM(g) of
elements in M. Simon Norton proposed a rule for relating these (see Section 5
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below) and we shall regard McKay-Thompson series as being doubly indexed
in this sense, once by the degree n and once by a family {g} of group elements
representing conjugacy classes. Quite independently of the work of Conway
and Norton topologists were becoming interested in a 2-variable generalisation
of K -theory called ‘elliptic cohomology’, and it has since become clear that, at
least for some finite groups G, there is a close relation between doubly-indexed
McKay-Thompson series and the elliptic cohomology of the classifying space
BG. This explains our use of the term ‘elliptic object’, for which however
the ‘genus zero’ condition remains a mystery. One motivation for writing this
survey is to encourage the calculation of Ell∗(BG) for subgroups G of M
in the hope of identifying a cohomological condition equivalent to the more
complex-analytic conditions (M2). That this is not an impossible undertaking
is shown by the fact that, depending on which variant of elliptic cohomology
one uses, one can neglect the 2 or 3-Sylow structure of G.

For any cohomology theory h∗ the calculation of h∗(BG) begins with
that of H∗(BG,Z) or H∗(BG,Fp). In part because K 0(BG) is given by a
certain completion of the representation ring R(G), the subring of ordinary
cohomology generated by characteristic classes of representations is particu-
larly important. Indeed for some groups and some theories, such as Morava
K -theory K (n)∗, such classes serve to generate the cohomology as a module
over the coefficients. For example this holds for the elementary non-abelian
group p1+2+ of order p3; K (n)∗ = K (n)even is generated by Chern classes, but
H odd(p1+2+ ,Z), although small, is non-trivial.

The contents of the paper are as follows: the first two sections are devoted to
ordinary cohomology and include what is known about H∗(BM,Z). Section 3
is concerned with a single example, the eventual aim being to calculate the
cohomology of Co1 at the prime 5. In Section 4 we introduce increasingly
complicated coefficients h∗(point), starting with variants of K -theory, first to
build up to the universal theory (cobordism localised at a single prime p), and
then drop down again to v2-periodic theories. The last section is devoted to
Moonshine modules and elliptic objects.

Some readers are warned that this is not an expanded version of my Edin-
burgh lecture, but may be a version of the lecture which I should have given.
The original lecture, devoted mainly to calculations in ordinary cohomology,
will be published elsewhere.

1. Cohomology of finite groups

We start with a topological definition. If G is a finite (or more generally a
discrete) group a classifying space BG = K (G, 1) is a space X such that
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π1(X) ∼= G and the universal covering space X̃ is contractible. Such spaces
can be shown to exist, either by inductively adding cells to a 2-complex
realising G geometrically (1-cells corresponding to generators and 2-cells to
relations), or by allowing G to act on an infinite-dimensional Stiefel manifold
via a unitary representation. The latter construction has the advantage of show-
ing that BG may be approximated by smooth finite-dimensional manifolds. If
A is an abelian coefficient group, we then define

H∗(G, A) = H∗(BG, A).

This definition is independent of the particular model BG, since this is
unique up to homotopy type. Those expecting a more algebraic definition
should note that we assume a trivial G-structure on A, which will usually be
the integers Z or the finite field Fp. With attention paid to a G-action we must
define our cochains on the equivariant chains of X̃ . If A is a ring, H ∗(G, A)
can be given the structure of a graded ring; we shall be particularly interested
in the commutative subring

H even(G, A) =
⊕
k�0

H2k(G, A).

Let H be a subgroup of G, so that B H is a covering space of BG with cov-
ering map Bi (say). We write the induced map as i∗ : H∗(G, A)→ H∗(H, A)
(restriction), and if j : G → G/H (H normal in G) there is a similarly defined
map j∗ : H∗(G/H, A) → H∗(G, A) (inflation). Conjugation by an element
g, x �→ gxg−1, induces cg : H∗(H, A) → H∗(H g, A), with H g = gHg−1,
and we can also define a covariant map i∗ : H∗(H, A)→ H∗(G, A) (corestric-
tion/transfer), which is an H∗(H, A)-module rather than a ring homomorphism
(Frobenius reciprocity). One way to define this at the level of cochains is to
mimic the construction of an induced representation. Thus, let G1 be contained
in G2 with index s and let F be some subgroup of the symmetric group Ss .
The wreath product G1 0 F is the semi-direct product of s copies of G1 with F ,
the latter group acting by permutation on the former. Embed G2 in the prod-
uct by first choosing left coset representatives {1 = g1, . . . , gs}, noting that
yg j = gσ( j)x j for each y ∈ G2, some x ∈ G1, and some permutation σ ∈ Ss ,
and mapping y to (x1, . . . , xs, σ ). At the cochain level first extend f to a map
defined on the chains of (G1 × · · · × G1) � F and then restrict down to the
subgroup G2.

With these relations with and between subgroups we can prove the basic
proposition that the cohomology of G is detected by the cohomology of a
representative family of Sylow p-subgroups G p. Restricting attention to p-
torsion we have that
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H∗(G, A)(p)
∼= stable elements in H∗(G p, A).

Here an element x is said to be stable if, for all g ∈ G, the restriction of x to
H∗(G p ∩ gG pg−1) is unchanged if we first conjugate by g. From the defini-
tion one sees that the image of H∗(G, A)(p) in H∗(G p, A) certainly consists
of stable elements; the converse depends on properties of the composition
i∗i∗. Note that the stable elements are contained in the set of normaliser-
invariant elements H∗(G p, A)N , where N = NG(G p), which is usually easier
to calculate. Hence the usefulness of

Proposition 1.1. If G p is abelian H∗(G, A)(p)
∼= H∗(G p, A)N .

The main point of the proof of Proposition 1.1 is that, if G p is abelian, the
centraliser Z of G p ∩ Gg

p contains both G p and Gg
p as (conjugate) Sylow

subgroups. It is also important to note that the argument definitely requires
trivial G-action on the coefficients A.

Much of what we will prove in later sections depends on the relation
between cohomology and the representation ring R(G). One can show that,
given a complex representation ρ of degree n, there exist (Chern) classes
ck(ρ) ∈ H2k(G,Z), 1 � k � n with the following properties:

(C1) If ϕ : G1 → G2 is a homomorphism and ρ : G2 → Un a representa-
tion, then ϕ∗(ck(ρ)) = ck(ϕ

∗ρ), where ϕ∗ρ denotes the representation
ρϕ : G1 → Un .

(C2) Denote the total Chern class by c•(ρ) = 1+c1(ρ)+· · ·+cn(ρ). Then
c•(ρ1 + ρ2) = c•(ρ)c•(ρ2).

(C3) The first Chern class c1 defines an isomorphism between H 2(G,Z)
and the 1-dimensional representations Hom(G,C∗).

One possible proof of existence and uniqueness goes as follows. Use (C3)
as a definition of the class c1. Because as an additive group C is divisible
the coboundary map H1(G,C∗)→ H2(G,Z) associated with the short exact
sequence of coefficients

Z −→ C
exp−−→ C∗

is an isomorphism. Property (C2) provides an immediate extension to sums
of 1-dimensional representations. From the previous discussion it suffices to
consider groups of prime power order, which are monomial, i.e., such that an
irreducible representation of degree greater than one is induced up from a 1-
dimensional representation of some proper subgroup. In principle the Chern
classes of an induced representation can be calculated in the same way that we
have defined corestriction, i.e., via H∗(H 0 Sn,Z), and an intermediate deter-
mination of the classes for the permutation representations of the symmetric



362 C. B. Thomas

groups Sm (m � n). See the original paper of L. Evens [7], together with that
by V. Snaith [20], on explicit induction.

Definition 1.2. The Chern ring Ch(G) � Heven(G,Z) is the subring gener-
ated by the Chern classes of the irreducible representations of G.

(It is sometimes useful to consider the larger subring Tre(G) generated by
transferred Euler classes of real representations.)

Proposition 1.3 (Evens-Venkov). H∗(G,Z) is finitely generated as a module
over the Chern subring Ch(G).

For a proof see [23].
This proposition allows us to regard Ch(G) as a calculable approximation

to H∗(G,Z) for many groups G. Using property (C2) we can also define the
total Chern class of a virtual representation [ρ1] − [ρ2] as c•(ρ1)/c•(ρ2), and
one way of extending the theory to modular representations is to apply c• to
the Brauer lift of a representation in characteristic �. More elegant construc-
tions than the one outlined above apply both to finite and zero characteristic,
see [11].

First examples

(1) Cyclic group p = C p generated by A.
Let α̂ be the one-dimensional representation mapping A to ζ =

e2π i/p , a primitive pth root of unity. Then H∗(C p,Z) = Fp[α] where
α = c1(̂α) ∈ H 2.

(2) Elementary abelian group of rank 2 (p, p) = C A
p × C B

p . With the
obvious notation H even(Cp × C p,Z) = Fp[α, β], and there is a
3-dimensional exterior algebra generator μ.

Warning: with increasing rank the Z-cohomology of an elementary
abelian group becomes complicated. Thus H4(3C p,Z) contains an ele-
ment outside the Chern subring. With Fp-coefficients the situation is
much simpler (use the Künneth formula). One obtains H even(rC p,Z)
from the kernel of a ‘coboundary derivation’ δ : Hk(rCp,Fp) →
H k+1(rCp,Fp) associated with the sequence

Z
×p−−→ Z −→ Fp.

(3) Elementary non-abelian or order p3, p1+2+ with presentation

〈A, B, D : A = [B, D], A = central〉.
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The abelianisation of p1+2+ is isomorphic to C B
p × C D

p , providing genera-

tors β and δ in H 2 as in Example 2 above. For the remaining generators of
H even let α̂ be the 1-dimensional representation of 〈A, B〉 which maps A to ζ
and B to 1; then the induced representation i∗α̂ is a typical representative of
the family of p-dimensional irreducible representations of p1+2+ . A formula of
Riemann-Roch type shows that sk(i∗α̂) = cor(αk) for 2 � k � p − 1, where
sk is the k-th Newton polynomial in the Chern classes c j .

Ch(p1+2+ ) = H even(p1+2+ ,Z) is generated by β, δ, cor(αk) (2 � k � p− 1)
and cp(i∗α̂). Perhaps surprisingly, given that the group has exponent p, the last
generator has order p2 rather than p. There are two exterior algebra generators
μ and γ in dimension 3. We omit the numerous relations in H even.

For an expanded version of the results in this section the reader is referred
to [23] and the references therein.

2. An elementary non-abelian group E( p) of order p4

We quote an elementary proposition from representation theory, see [13,
pp295–297].

• Let G be a non-abelian p-group which contains an abelian subgroup H
of index p. Then there exists a normal subgroup K of G of order p such
that K is contained in H ∩ [G,G] ∩ Z(G).

• If H, K � G are as above then every irreducible character of G is given
by either (i) the inflation of an irreducible character of G/K or (ii) the
transfer of some 1-dimensional character ψ of H , which satisfies K �
Kerψ .

• If |G| = pn and |G/[G,G]| = pm , then G has pm 1-dimensional
characters and pn−2 − pm−2 irreducible characters of p-dimensional
representations.

By way of an example consider G with presentation

G = 〈A, B,C, D : A = central, [B,C] = 1, [C, D] = B, [B, D] = A〉.

Write

H = G1 = 〈A, B,C〉 ∼= (p, p, p), [G,G] = 〈A, B〉, K = 〈A〉,
G/[G,G] = CC

p × C D
p .
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We have a diagram of subgroups and quotients:

〈A, B〉 ��

�����������������

�����������������
(p,p,p)

G1 ��

i

�������������������� 〈C〉

�������������������� 〈A, B〉 ��

�����������������

�����������������
p1+2+
G2

��

i ′

��������������������� 〈D〉

�����������������

〈A, B〉 ��

��

G ��

j
��

〈C, D〉

〈B〉 ��
p1+2+

G/〈A〉 �� 〈C, D〉

Here the class of B is central in G/〈A〉. The maps i and i ′ are inclusions, and
j is a quotient map.

The quoted proposition shows that the irreducible characters of degree
greater than 1 are either inflated from the quotient 〈B,C, D〉 ∼= p1+2+ or trans-
ferred from the subgroup 〈A, B,C〉 ∼= (p, p, p). Call these types (a) and (b)
respectively. Taking both together we have p2 − 1 irreducible characters of
degree p, obtained from representations of G1 mapping either A or B to a root
of unity and the remaining two generators to 1. Arguing as for p1+2+ in Exam-
ple 3, and with self-explanatory notation, we see that the Chern subring of
H even(G,Z) is generated by classes α, δ (of degree 2), cor(αr )cor(βs) (2 � r ,
s � p − 1) and the top-dimensional classes cp(ρ1), cp(ρ2) for representative
representations ρ1, and ρ2 of types (a) and (b) respectively.

The calculation of the Chern subring suggests how to obtain the complete
cohomology via a triple comparison of spectral sequences for the restrictions
i∗ and i ′∗ and the inflation j∗ above. (The spectral sequence of a group exten-
sion is explained and used in [23, Chapter 4].) The problem is to understand the
spectral sequence for the extension G. That for G1 (abelian) is easy to under-
stand, that for G2 is described briefly by G. Lewis in [15] (for total degree
� 2p it collapses after page 3 (Corollary 6.34)), while that for G/〈A〉 is the
main object of study in the same paper (collapse after page 4 (Lemma 6.18)).

In general one complicating factor is the fact already referred to in
Example 2 of Section 1, namely that Ch(3C p) is properly contained in
H even(3C p,Z). This does not occur for Fp-coefficients, or for some among
the generalised cohomology theories to be considered in Section 4, and is the
one of the reasons why the analogous calculation seems to be much easier.

For p = 5 we will return to the inclusion i ′ : G2 → G when discussing the
Conway groups. Again, with special attention paid to the prime 5, H∗(G,Fp)

has been studied by D. Green using the programme described in [10] and
briefly considered in the recent survey [5] by J. Carlson.



Moonshine and Group Cohomology 365

3. The sporadic simple groups M24, Co1 and M
In this section we put together the result that H∗(G,Z)(p) is detected by the
stable elements in H∗(G p,Z) with the calculations for p-groups of low rank.
Hence our permitted Sylow subgroups are cyclic (p), elementary abelian of
rank 2 (p, p), p1+2+ and the group E(p) of exponent p and order p4. With little
in the way of additional proof we will list the p-torsion in Z-cohomology for

M24 (p � 3), Co1 (p � 5, Chern ring only for p = 5), M (11 � p � 31).

For primes p � 41 dividing the order of the Monster calculation is easy and
well-known. Another reason for their omission is a desire to understand the
various relations between M and the exceptional Lie group E8. We therefore
concentrate on those primes dividing the order of E8(Fq) for small values of q.

An exception is the prime p = 23, which from the cohomological point of
view shows itself to be slightly anomalous.

The first result combines an easy calculation for cyclic groups with a
3-primary calculation in [9]. It does however appear to be typical, and illus-
trates the close relation between cohomology and modular characters. For M24

the 2-modular character τ (in honour of J. A. Todd) takes the following values
on regular conjugacy classes of prime order

124 1636 1454 1373 1373 12112 1 23 1 23 38

11 2 1
1− i

√
7

2

1+ i
√

7

2
0

−1+ i
√

23

2

−1− i
√

23

2
−1

Proposition 3.1. H even(M24,Z)odd is generated by the Chern classes of
the representation τ . Hodd(M24,Z)(p�5) = 0 and Hodd(M24,Z)(3) has an
exterior algebra generator in degree 11.

Conway’s group Co1 of order 221 39 54 72 11 13 23

p � 11: H∗(Co1,Z)(p) ⊆ Fp[x] with generator a power of x determined by
the index of a Sylow p-centraliser in its normaliser. With the notation of the
Atlas, if ρ2 has degree 276 and ρ17 has degree 673500, the three generators
concerned may be taken to be c10(ρ2), c12(ρ2) and c11(ρ17).

p = 7: a Sylow 7-subgroup is abelian, so the stable elements coin-
cide with those invariant under the normaliser-mod-centraliser (Weyl group)
action. For Co1,7 the group acting is isomorphic to 3 × T ∗ (T ∗ =
binary tetrahedral group), and the invariant elements (ξi ) are generated in
degrees 12, 36, 48 and 35, subject to the relations
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ξ2
35 = 0, ξ2

36 + ξ6
12 + 3ξ2

12ξ48 = 0.

The first of these restricts to a generator of H∗(Co2,Z)(17), which can be
identified with c6(ρ2), where ρ2 is the natural representation of the group in
the Leech lattice. Since there are two conjugacy classes of elements of order
7 in Co1 at least one other representation contributes to the Chern subring.
Inspection of the character table suggests that ρ12 (see above) may suffice.

p = 5: the partial calculation in Section 2 points to the classes ci (ρ j )

( j = 2, 17) again exhausting the (proper) Chern subring of H∗(Co1,Z)(5). As
at the prime 7 it is instructive to restrict to the subgroup Co2, for which Co2,5

is isomorphic to the subgroup G2 of E(5) of order 54. It is known (see for
example [2, Theorem 5.6]) that Ch(Co2)(5) = H even(Co2,Z)(5) is generated
by the Chern classes of ρ2 of degree 23. Since, working either in characteris-
tic 2 or with the 276-dimensional representation of Co1 in characteristic zero,
Ch(Co1)(5) maps onto Ch(Co2)(5), we also have a surjection for H even. At
least one other representation is needed for the kernel; compare the roles of the
inflated (i∗β̂) and transferred (i∗α̂) representations of E(5) itself.

The reader may find the character values below helpful in following the
discussion.

1 5C 5A 5B 7X 7Y

Co1 276 21 6 1 10 3
673750 0 0 0 0 0

Co2 23 – 3 −2 – 2
275 – 5 0 – 2

The Monster (order divisible by 76 112 133 17 19 23 29 31)

17 � p � 31: Arguing as for the Conway group (p � 1) and with irreducible
representations numbered as in the Atlas we have generators c16(ρ2), c8(ρ2),
c11(ρ16), c28(ρ2) and c15(ρ26).

p = 13: the cohomology has been calculated by M. Tezuka and M. Yagita
[11, Theorem 6.6].

The Chern subring is properly contained in H even(M,Z)(13) which is
properly contained in the normaliser-invariant subring. The existence of two
conjugacy classes again suggests that more than one representation (ρ2) is
needed to obtain the Chern subring. This is confirmed by the presence of ele-
ments constructed both from cor(α12) and cor(α12) − β12 − δ12 (notation as
in Section 1, Example 3) in the stable cohomology.
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p = 11: this is much easier than for p = 13. There are generators in dimen-
sions 40, 60 (two), 80 (two), 160 and 240. Since there is only one conjugacy
class of elements of order 11, a single representation provides generators of the
Chern ring, and inspection of the character table shows that these are c110(ρ2)

and c120(ρ2). They may be identified with the so-called Dickson invariants
for the action of the Weyl group 5 × I ∗ (I ∗ = binary icosahedral group) on
F11[x, y].
Remarks for p = 7. This is an extremely interesting question, which is prob-
ably just within the bounds of human calculation. A Sylow subgroup M7 is
isomorphic to an extension of C7 by an extra-special group of order 75, con-
tained in an extension of C3× S∗7 by 71+4+ . (Here the ∗ again denotes ‘binary’.)
A related, possibly easier question is the determination of H∗(G2(p),Z)(p)

for small values of p. Besides helping with the Monster (p = 7) this would
also throw light on the Lyons group (p = 5).

4. Generalised cohomology theories

Our aim is to interpret a module of Moonshine type as an element of h∗(BG),
where h∗ is a cohomology theory admitting complex orientations. This means
that h∗ = {hn : n ∈ Z} is a family of functors from a suitable class of cell
complexes to abelian groups, satisfying the same (Eilenberg-Steenrod) axioms
as H∗ = {Hn : n � 0}, except for the so-called dimension axiom. Thus we
allow h∗(point) to be more complicated than {H0(point) ∼= Z, Hn(point) =
0 (n � 0)}, and we shall also assume that like H∗(X), h∗(X) is a graded
commutative ring. The theory h∗ is said to be complex oriented if an Euler
class eh(L) is defined for any complex line bundle L over X , such that

• eh(L) is natural for bundle maps,
• eh(L) ∈ h2(X), and
• h∗(CPn) is the truncated polynomial algebra over h∗(point) generated by

x , the Euler class of the canonical line bundle over the projective space,
with xn+1 = 0.

Such a theory admits Chern and Euler classes as in Section 1. The relation

eh(L1 ⊗ L2) =
∑
i, j

ai j eh(L1)
i eh(L2)

j ,

with ai j ∈ h2(1−i− j)(point), determines a formal group law for h∗,

Fh(x, y) =
∑
i, j

ai j xi y j .
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Furthermore, at least if 2 is invertible in h0(point), the theory h∗ is very nearly
determined by the pair (h∗(point), Fh), and hence there is a universal coho-
mology theory corresponding to M. Lazard’s universal formal group. In case
this seems too abstract here are some examples:

(i) H ∗(point,Z), Fh = x + y,
(ii) K ∗(point) = Z[u, u−1], Fk = x + y − uxy, complex K -theory (u ∈

K−2(point) is the Bott periodic element). For ‘real K -theory’ we shall
use K O∗(X)⊗ Z[ 1

2 ] with coefficients Z[ 1
2 ][v, v−1] (degree v = −4).

Increasing the complexity of the coefficients we have
(iii) Ell∗J (X) = Ell∗(X) with Ell∗(point) = Z[ 1

2 ][δ, ε, ε−1] (degree δ =
−4, degree ε = −8) and formal group

F(x, y) = x
√

R(y)+ y
√

R(x)/1− εx2 y2,

R(x) = 1 − 2δx2 + εx4. Here J stands for Jacobi; there is a related
theory Ell∗W (X) (here W stands for Weierstrass) with coefficients
Z[ 1

6 ][g1, g2,�
−1].

As parent ‘universal’ theory we shall take oriented cobordism, modulo 2-
torsion. This has coefficients

�∗SO (point) = Z[1
2
][x4, x8, x12, . . . ],

where in the dual homology theory the generator x4 j can be represented by
the complex projective space CP2 j . For those with a non-topological back-
ground we should point out that for ‘bundle-based’ theories such as K ∗ and
K O∗ it is the cohomology which has a nice geometric interpretation, while for
‘manifold-based’ theories such as �∗SO it is the dual homology. It is possible
(author’s unpublished manuscript from the 1960s) to describe �n(X) in terms
of maps into X from manifolds modelled on an n-codimensional subspace of
a separable Hilbert space.

The universality of cobordism is illustrated by results of the kind

�∗U (X)⊗�∗U Z ∼= K ∗(X),

both sides being regarded as Z/2-graded. Variants of this Conner-Floyd
isomorphism hold both for K O∗ and elliptic cohomology.

In Section 5 we will show that a good bundle-theoretic approximation
can be found for Ell∗(BG), provided that G is a finite group for which
Ellodd(BG) = 0. What is the significance of this condition?

The problem with the variants of the universal cohomology theory is that the
coefficients are polynomial rings on infinitely many generators, and that some
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way must be found to cut these down to a more usable size. The first step is to
localise at a single prime p. As a building block for the local theory we obtain
B P∗ with coefficients Z(p)[v1, v2, . . .] with deg(v j ) = 2(p j − 1), where Z(p)

denotes the ring of integers localised at p, and B P∗ inherits a complex orien-
tation from �∗. Concentrating on a single degree, and passing from Z(p) to Fp

we obtain the Morava K -theory K (n)∗ with coefficients Fp[vn, v
−1
n ], and an

inherited complex orientation. In case this seems too abstract it is worth noting
that K (1)∗ turns out to be the mod p reduction of a certain (J.F. Adams’) sum-
mand of p-local K -theory, that K (2)∗ has a similar interpretation (A. Baker’s)
in elliptic cohomology, and that by mapping vn to zero in the non-periodic
theory with coefficients Fp[vn] we recover non-surprisingly H∗( ,Fp).

The advantage of Morava K -theory is that it has good applicable proper-
ties, and that, by considering all values of n, some results can be pulled back
to localised cobordism, and then pushed forward to geometrically interesting
theories such as elliptic cohomology. For p � 3, K (n)∗(X) is a commutative
graded ring, the coefficients form a graded field in the sense that all graded
modules are free, and hence there is a Künneth isomorphism

K (n)∗(X × Y ) ∼= K (n)∗(X)⊗K (n)∗ K (n)∗(Y ).
Let X = BG, an infinite cell complex having only finitely many cells in each
dimension.

Definition 4.1. The finite group G is good in the sense of Hopkins, Kuhn
and Ravenel [12] if K (n)∗BG is additively generated as a K (n)∗-module by
transferred Euler classes of complex representations of subgroups of G.

If G is good, then K (n)odd(BG) = 0. This is immediate from the definition.

Proposition 4.2 (I. Kriz). If H is a normal subgroup of G and G/H ∼= C p,
the goodness of H implies that of G if and only if a certain spectral sequence
with Er,s

2 = Hr (C p, K (n)∗(B H)) collapses.

Now consider a split extension of the form

(elementary abelian p-group) / G � Ct
p.

Proposition 4.3 ([14, Thm 3.1]). An extension of the form above is good.

This can be generalised, for example by allowing the normal subgroup to be
elementary non-abelian. For variants see papers by M. Tezuka and N. Yagita,
in particular [21, §2]. Kriz’s result is stronger than the one stated, since,
besides proving the vanishing of K (n)odd, he also obtains the structure of
K (n)even(BG).
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Corollary 4.4. The groups C p, C p×C p, p1+2+ and E(p) (of order p4) are all
good.

Proof . C p is good, hence so is C p × · · · × C p , and the remaining groups
are extensions of the kind allowed in Proposition 4.2. Arguing more directly
Tezuka and Yagita (op. cit. supra [21, Thm. 4.10]) show that

ChB P (p1+2+ ) = B P∗(BG).

Comparison of Proposition 4.2 with Section 2 shows that K -theoretic calcu-
lations for finite groups can be easier than for ordinary cohomology. Case by
case analysis shows that (p � 5) all groups of order p4 are good. Examples
of groups of order p6 are known to be non-good, and I suspect that the same
holds for p5.

Theorem 4.5. If G is a finite group such that for each odd prime p dividing
the order of a Sylow subgroup G p is good, then Ellodd(BG) = 0.

Proof . For an arbitrary cohomology theory h∗, such that 1/2 ∈ h∗(point),
h∗(BG) is detected by

⊕
p||G|

p=odd

h∗(BG p). A theorem of D. Ravenel, S. Wilson

and N. Yagita [18] implies that B P∗(BG) is concentrated in even dimensions
and that B Peven(BG) is flat over the coefficients, provided that G p is good.
Hence delocalising, the same holds for �∗SO(BG), and for Ell∗(BG) as a
quotient of this universal theory.

Examples 4.6.

Ellodd
J (B M24) = Ellodd

W (BCo1) = 0.

If we restrict attention to extensions G such that the normal subgroup is of
type (p, · · · , p) and the quotient of type (pt), then B P∗(BG) can be obtained
more directly from a spectral sequence with Er,s

2 = Hr (C pt , B Ps(B H)).
B Ps(B H) vanishes for s odd, and is p-torsion free for s even. Hence Er,s

2 = 0
unless r and s are both even, the spectral sequence collapses and Er,s

2 = Er,s∞ .
In particular B Podd(BG) = 0.

Algebraically the results of this section suggest that Ell∗(B M24) is gener-
ated as an Ell∗-module by the Chern classes of the Todd representation τ . In
the next section we consider this more geometrically.
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5. Elliptic Objects

Let ε : R(G) → Z map an element of the complex representation ring of
the finite group G to its virtual dimension, and let R(G )̂ be the completion
with respect to powers of I = Ker ε. Then, if we regard K ∗ as a Z/2-graded
cohomology theory

R(G )̂ ∼= K 0(BG), (i)

K 1(BG) = 0. (ii)

At least for a restricted class of groups G we would like to set up a similar iso-
morphism in elliptic cohomology, and result (ii) above explains the emphasis
on groups which are HKR-good in the previous section. Arguing in terms of
characters localised at the prime p one can prove

Theorem 5.1 ([12], [19], [24]). For any finite group G, with G(2)
p equal to

conjugacy classes of commuting p-power pairs, and R = Ell∗(point), let R
be the algebraic closure of the quotient field of the p-adic completion. Then, if
Ell∗(BG)p is the p-adic completion of Ell∗(BG), there is an isomorphism

Ell∗(BG)p ⊗R R → Map(G(2)
p , R).

This result motivates the still-conjectural definition of an ‘elliptic rep-
resentation ring’ given in [2]. We start with a bundle construction due to
J. L. Brylinski [4], who restricts his attention to the loop space L M of a finite-
dimensional, simply-connected, C∞-manifold M . L M is a Fréchet manifold
modelled on the space of unbased C∞-maps from S1 into M , and admits an
action by A = Diff+(S1), whose fixed point set is the subspace of constant
loops diffeomorphic to M . Let E be an infinite dimensional complex vector
bundle over L M admitting an A-action covering that on M . Infinitesimally we
can consider the action of A on local sections of the bundle E to be an action
of the Virasoro Lie algebra

a = Ṽect(S1) ∼= Vect(S1)⊕ R,

and this restricts to a fibrewise action of a on the restriction of E to the fixed
point set M .

Definition 5.2. The restricted bundle E |M is admissible if, for some fixed
integer m, it admits a decomposition

E |M =
⊕̂

n∈ 1
m Z

En
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under the action of the infinitesimal generator L0 of the rotation subgroup of
Diff+(S1), such that

(i) En has finite fibre dimension, and
(ii) En = 0 for n � n0 ∈ Z.

Denote by KV (L M) the Grothendieck group of admissible a-equivariant
vector bundles over L M , and note that there is a forgetful map

KV (L M)→ K (M)[[q1/m]]
[E] �→

∑
n∈ 1

m ·Z
[En]qn (Laurent series).

Now replace M by the non-simply-connected space BG, which we have
already noted can be approximated by C∞-manifolds. Let

G(2) ={(g1, g2) ∈ G × G : g1g2 = g2g1},


0(2) =
{(

a b
c d

)
∈ SL2(Z) : c = 0 mod 2

}
,

and

Z ={τ ∈ C : im(τ ) > 0}.
As usual q = e2π iτ . Then 
0(2)× G acts on G(2) × Z via

(A, g) · (g1, g2, τ ) =
(

ggd
1 g−b

2 g−1, gg−c
1 ga

2 g−1,
aτ + b

cτ + d

)
.

This is a sightly modified version of S. Norton’s rule, introduced in
the Appendix to [17], quite independently of the development of elliptic
cohomology.

Denote by BCG(g) the classifying space for the centraliser of g in G, as g
runs through a family of representatives for the conjugacy classes in G.

Definition 5.3. The graded elliptic representation ring REll∗(G) =
{REll2k(G) : k � 0} consists, up to equivalence of finite-dimensional
representations on subspaces, of the following data:

• For each centraliser CG(g) a representation space

ρg =
⊕̂

n∈ 1
m ·Z

Hg,n,

such that Hn,g ∈ R(CG(g)) and Hg,n = 0 for n � n0(g).
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• If charq ρ = ∑n χCG (g)(Hg,n)qn , so that charq ρ : G(2) × Z → C, we
require that for each pair (g1, g2) ∈ G(2), charq ρg1(g2) is a modular form
of weight 2k for some congruence subgroup 
 ⊆ 
0(2).

• As (g1, g2) varies in G(2) the class function F = charq ρ satisfies the
equivariant modularity condition

F(A · (g1, g2, τ )) = (cτ + d)−2k F(g1, g2, τ ).

Up to finite index REll∗(G) coincides with the coefficient ring E��∗G for
Devoto’s equivariant cohomology theory. If completion is with respect to the
kernel of the augmentation map ε : E��∗G → E��∗1, induced by the inclusion of
the identity in G, then

E��∗(BG)[1/|G|] ∼= Ê��∗G,
see [6, 24].

For a good group G Ellodd(BG) = 0 and elements of Elleven(BG) are
detected by generalised characters. These two statements are analogues of (i)
and (ii) for K -theory.

Our definition has been chosen to fit in with Brylinski’s, each representa-
tion Hn,g being associated with a flat bundle over BCG(g). The next lemma,
due to R. Steiner, shows how these combine to give an admissible bundle
over L BG.

Lemma 5.4. The free loop space L BG satisfies

L BG �
∐

g

BCG(g),

where g runs through a set of representatives for the conjugacy classes of G.

Norton’s formula thus serves to tie together the graded flat bundles over the
disjoint components of L BG. Our definition also fits in with that of an ellip-
tic object proposed by G. B. Segal in [19]. His bundles come equipped with a
connection, which we can neglect in the case of BG, because of the built-in
flatness. The action of the Virasoro algebra is reflected in the modularity con-
ditions. Without being too precise we can refer to an element in REll∗(G) as
being defined by a compatible family of McKay-Thompson series. Restrict-
ing to the component BG = BCG(1) we obtain an element in R(G)[[q1/m]],
having some of the properties of a Moonshine module.

For each of the groups M,Co1, and M24 the candidates for a Monster or
almost-Monster module have characters which, when restricted the conjugacy
class of g, are modular functions rather than forms, i.e., the class concerned
belongs to Ell0(BG) (restricted to K 0(BG)[[q]]). What of the ‘genus zero’
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condition, that is, how can one give a cohomological condition for the charac-
ter to generate the function field of 
\Z for some subgroup 
 sandwiched
between a congruence subgroup 
0(N ) ⊆ SL2(Z) and its normaliser in
SL2(R)? So far as I know this remains an open problem, although a clue to its
solution may lie with the replication formulae establishing relations between
the finite dimensional summands of the Monster module for M. If Hn = Hn,1

is the n-th summand in the McKay-Thompson series, then J. Conway and
S. Norton claimed (and later R. Borcherds [3] proved it for the Moonshine
module V � of I. Frenkel, J. Lepowsky and A. Meurman [8]) that Hn can be
expressed in terms of H1, H2, H3 and H5 under the action of Hecke operators
{Tm}. In the first instance these are defined for modular forms, can be extended
to McKay-Thompson series by the modularity of the characters, and more sys-
tematically to the cohomology theory Ell∗(X), see various papers of A. Baker
starting with [1].

In the final section of [2] an attempt is made to apply this general programme
to an ‘almost Moonshine module’ associated to the group Co0, the quotient of
which by a central subgroup of order 2 gives Co1. Thus let L be an even,
unimodular 24d-dimensional lattice admitting the finite group G as a group of
automorphisms. Write f : L → 2Z for the associated quadratic form, V for
the representation space L ⊗Z Q and

θL(q) =
∞∑

n=0

anqn,

where

(an = |{x ∈ L : f (x) = 2n}|).
Then θL is the character of an infinite dimensional representation space �G ,

which can be more explicitly described as the complex group algebra C[L]
of the lattice. For each conjugacy class 〈g〉 the character is a modular form
of specific weight 2k, level N and twisting factor ε. We obtain meromorphic
modular forms with the same labels for a second representation space �G as
follows. If ρ : G → SL24d(Q) describes the group action on V , let ρ(g) have
characteristic polynomial equal to∏

i�1

η(iq)ai ,

where

η(τ) = q1/24
∏

n

(1− qn).
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The label N actually equals h|g| with h dividing the g.c.d. (24, |g|), the same
level appearing in the original Moonshine data. Taking characters of both sides
we see that

�G = qd�(−(V q + V q2 + · · · )),
where � denotes the exterior algebra. As a candidate for a Moonshine module
write

�/�G = q−d(C[L] ⊗ Sym(V q + V q2 + · · · ),
where Sym denotes the symmetric algebra. For the group Co0, d = 1 and L is
the Leech lattice. For technical reasons to do with low-dimensional cohomol-
ogy (satisfied for example by the Mathieu group M23 ⊆ Co1) the construction
given in [2] is not quite as general as one might hope. But with more care these
should be removable, the basic idea being transparent and elegant.

In the case of Co0 it turns out that for some conjugacy classes 〈g〉 the charac-
ter of �/�G does not satisfy the ‘genus zero’ condition. There may be some
connection between this and the fact that ‘classical’ elliptic cohomology is
defined away only from the prime 2.

There are other examples which illustrate the significance of the Hecke
operators as cohomology operations. In [16], G. Mason studies the McKay-
Thompson series �G for G = M24. If g represents a conjugacy class in M24

regarded as a subgroup of the symmetric group S24, and g decomposes as a
product of ai cycles on length i , where 1 � i � r and a1+2a2+· · ·+rar = 24,
then the value of the character of �G at g equals η(q) above.

Note that with g = 1,

η1(q) = q
∏
n�1

(1− qn)24 = �(q),

the usual discriminant function. It turns out that the form ηg are eigenforms
(cusp forms invariant under the Hecke operators) since the space of forms
(level N , weight 2k and twisting function ε) taking the value zero at each
cusp, containing ηg , has dimension one. What makes this example partic-
ularly interesting is that, on the one hand the coefficients of �(q) are the
Ramanujan numbers τ(n) and on the other they equal the dimensions of cer-
tain (virtual) representations of M24. The first few terms of the sequence of
dimensions are

1 − 24 252 − 14722 4830 − 6048 − 16744 84480 · · · ,
and, given the definition of �24 in terms of the exterior powers of a vir-
tual representation built from copies of the 24-dimensional representation
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V , it should be possible to find replication formulae for the corresponding
summands.

By way of conclusion here are two further problems:

(1) Identify those sporadic simple groups G for which, at least locally,
Ell∗(BG) is generated over Ell∗(point) by transferred Euler classes.
In particular, for which groups is Ellodd(BG) = 0? Study the action of
the Hecke algebra.

(2) Relate the elliptic representation ring of M24 to Ell∗(B M24) as a mod-
ule generated by the Chern classes of the Todd representation. Start
locally with Devoto’s description of Ell∗(BC p), and extend this to
the non-abelian group p1+2+ . Can one throw any additional light on
Moonshine restricted to the Mathieu groups?
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Abstract

We consider the application of permutation orbifold constructions towards
a new possible understanding of the genus zero property in Monstrous and
Generalized Moonshine. We describe a theory of twisted Hecke operators in
this setting and conjecture on the form of Generalized Moonshine replication
formulas.

1. Introduction

The Conway and Norton Monstrous Moonshine Conjectures [CN], the
construction of the Moonshine Module [FLM] as an orbifold vertex operator
algebra and the completion of the proof of Monstrous Moonshine by Borcherds
[Bo2] provided much of the motivation for the development of Vertex Oper-
ator Algebras (VOAs) e.g. [Bo1], [FLM], [Ka], [MN]. Another highlight of
VOA theory is Zhu’s study of the modular properties of the partition func-
tion (and n-point functions) for generic classes of VOAs [Z]. Zhu’s ideas were
generalized to include orbifold VOAs [DLM] whose relevance to Monstrous
Moonshine is emphasized in refs. [T1], [T2]. Norton’s Generalized Moonshine
Conjectures [N2] concerning centralizers of the Monster group has yet to be
generally proven using either Borcherds’ approach or orbifold partition func-
tion methods although some progress has recently been made in refs. [H] and
[T3], [IT1], [IT2] respectively.

In this note, we sketch a possible new approach to these areas based on
permutation orbifold VOA constructions [DMVV], [BDM]. In particular, we
introduce a theory of twisted Hecke operators generalizing classical Hecke
operators in number theory e.g. [Se]. We then discuss permutation orbifold
constructions where the classical Hecke operators naturally appear and finite
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group and permutation orbifold constructions where the twisted Hecke oper-
ators appear. Using these ideas we formulate a conjecture on the nature of
Generalized Moonshine replication formulas generalizing replication formu-
las for the classical J function and McKay-Thompson series in Monstrous
Moonshine. Detailed proofs will appear elsewhere [T4].

2. Replication Formula for the J Function

We begin with a brief review of Faber polynomials, Hecke algebras and the
replication formula for the classical J function. Consider

t (q) = q−1 + 0+
∑
k≥1

a(k)qk,

the formal series in q. Define the Faber polynomial Pn(x) for t (q) to be
the unique nth order polynomial with coefficients in Z[a(1), . . . , a(n − 1)]
such that

Pn(t (q)) = q−n + O(q). (1)

Thus P1(x) = x , P2(x) = x2− 2a(1), P3(x) = x3− 3a(1)x − 3a(2) etc. The
Faber polynomials for t satisfy the following generating relation e.g. [Cu],
[N1]

exp

⎛⎝−∑
n≥1

pn

n
Pn(x)

⎞⎠ = p(t (p)− x), (2)

for formal parameter p.
Let f (τ ) be a meromorphic function of τ ∈ H, the upper half complex

plane. Then for integer k ≥ 1 define a right modular group action on f for

γ =
(

a b
c d

)
∈ 
 = SL(2,Z) as follows

( f |kγ )(τ ) = (cτ + d)−k f (γ τ), (3)

with γ τ = aτ+b
cτ+d . Then f is a modular form of (necessarily even) weight k if

f is holomorphic in τ and

f |kγ = f.

Define the standard Hecke operators T (n) for n ≥ 1 with the following action
on a modular form f of weight k [Se]

T (n) f (τ ) = 1

n

∑
a≥1,ad=n

ak
∑

0≤b<d

f

(
aτ + b

d

)
. (4)
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These satisfy the Hecke algebra relations

T (mn) = T (m)T (n), (m, n) = 1,

T (p)T
(

pm) = T
(

pm+1
)
+ pk−1T

(
pm−1
)
, m ≥ 1, prime p . (5)

One finds

(T (n) f )|kγ = T (n) f, (6)

i.e. T (n) f is also a modular form of weight k.
The classical example is the Eisenstein series Gk of even weight k ≥ 4 (with

Gk(τ ) = 0 for odd k) [op.cit.]

Gk(τ ) =
∑

m,n∈Z
(m,n)�=(0,0)

1

(mτ + n)k

= 2ζ(k)+ 2
(2π i)k

(k − 1)!
∑
n≥1

σk−1(n)q
n, (7)

where q = exp(2π iτ) and σk(n) =∑d|n dk . Furthermore, Gk is an eigenfunc-
tion of T (n) with eigenvalue determined by the coefficient of qn normalized to
the coefficient of q i.e.

T (n)Gk = σk−1(n)Gk . (8)

Thus it follows from (5) that for k odd

σk(mn) = σk(m)σk(n), (m, n) = 1,

σk(p)σk(pm) = σk

(
pm+1
)
+ pkσk

(
pm−1
)
, m ≥ 1, prime p . (9)

In fact, it is easy to check directly that (9) holds for all k ∈ C.
The classical modular invariant function of weight 0 is given by

J (τ ) = 1728
G3

4

G3
4 − G2

6

− 744

=
∑
k∈Z

c(k)qk = q−1 + 0+ 196884q + 21493760q2 + . . .

with standard normalization c(−1) = 1 and c(0) = 0. J is a hauptmodul
for the genus zero group 
 and is thus a generator for the field of modular
invariants. Thus
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T (n)J (τ ) =
∑

a≥1,a|n

1

a

∑
s∈Z

c
(ns

a

)
qas (10)

= 1

n
q−n + O(q). (11)

is a polynomial in J which from (1) and (11) must be

T (n)J (τ ) = 1

n
Pn(J (τ )), (12)

where Pn is the Faber polynomial corresponding to J . Eqn. (12) is called the
replication formula for J .

Eqn. (10) also implies that∑
n≥1

pnT (n)J (τ )=
∑

r≥1,s∈Z
c(rs)
∑
a≥1

1

a
par qas =−

∑
r≥1,s∈Z

c(rs) log(1−pr qs).

Then (2) implies the famous J function denominator formula [N1], [Bo2]

exp

⎛⎝−∑
n≥1

pn T (n)J (τ )

⎞⎠ = ∏
r≥1,s∈Z

(
1− pr qs)c(rs)

= p(J (p)− J (q)). (13)

This formula is one of the cornerstones of Borcherds’ celebrated proof of the
genus zero Moonshine property where (13) is a denominator formula for a
particular generalized Kac-Moody algebra constructed from the Moonshine
Module V � [Bo2].

3. Twisted Hecke Operators and Eisenstein Series

The definitions of modular functions and Hecke operators above can be gen-
eralized to "twisted" versions as follows. We define a twisted modular form
of integer weight k to be a holomorphic (in τ ) function f = f ((θ, φ), τ ) for
(θ, φ) ∈ U (1)×U (1) such that

f |kγ = f,

where

( f |kγ )((θ, φ), τ ) = (cτ + d)−k f (γ (θ, φ), γ τ),

with left group action

γ (θ, φ) = (θaφb, θcφd). (14)

Clearly the case (θ, φ) = (1, 1) defines a standard modular form of weight k.
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We can extend the definition of the Hecke operator T (n) to twisted modular
forms as follows:

T (n) f ((θ, φ), τ ) = 1

n

∑
a≥1,ad=n

ak
∑

0≤b<d

f

((
θaφb, φd

)
,

aτ + b

d

)
, (15)

which includes the standard definition in the case (θ, φ) = (1, 1). For φ = 1
and θm = 1 for integer m, this Hecke operator is essentially that which appears
in Borcherds’ proof [Bo2] and is discussed at length in ref. [F].

We also define a homothety operator1

R(n) f ((θ, φ), τ ) = f ((θn, φn), τ ). (16)

These operators satisfy the Hecke algebra [T4]

R(mn) = R(m)R(n)

R(m)T (n) = T (n)R(m)

T (mn) = T (m)T (n), (m, n) = 1,

T (p)T
(

pm) = T
(

pm+1
)
+ pk−1T

(
pm−1
)

R(p), m ≥ 1, prime p, (17)

and one again finds

(T (n) f )|kγ = T (n) f, (18)

i.e. T (n) f is also a twisted modular form of weight k.
A twisted Eisenstein series Gk((θ, φ), τ )) of weight k ≥ 1 can also be

defined [DLM], [MTZ]. In particular, for k ≥ 4 we define2

Gk((θ, φ), τ ) =
∑

m,n∈Z
(m,n)�=(0,0)

θmφn

(mτ + n)k
,

for θ, φ ∈ U (1) with Gk((1, 1), τ )) = Gk(τ ) [MTZ]. Gk((θ, φ), τ ) is not an
eigenfunction of T (n) in general. However, for prime p

T (p)Gk((θ, φ), τ ) = pk−1Gk((θ, φ), τ )+ R(p)Gk((θ, φ), τ ). (19)

Hence if (θ, φ) = (θ p, φ p) then T (p)Gk((θ, φ), τ ) = σk−1(p)Gk((θ, φ), τ ).

1 A similar operator is defined in the standard case [Se].
2 The notation used here differs from that of op.cit.
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4. The Permutation Orbifold of a C = 24 Holomorphic Vertex
Operator Algebra

4.1. The Orbifold of a Holomorphic VOA

We now consider a Vertex Operator Algebra V (VOA) of central charge 24
e.g. [FLM], [Ka], [MN]. We assume that V is a Holomorphic VOA (HVOA)
so that V is the unique irreducible module for itself with modular invariant
meromorphic partition function [Sch], [DM]

ZV (τ ) = T rV

(
q L(0)−1

)
=
∑

k≥−1

a(k)qk

= J (τ )+ a(0).

For example, the Moonshine Module V � is a HVOA with ZV � (τ ) = J (τ )
whereas ZVL (τ ) = J (τ )+ 24 for the Leech lattice HVOA VL [FLM].

Let G be a finite subgroup of the automorphism group of V . Then for g ∈ G
define the orbifold trace function

ZV ((g, 1), τ ) = T rV

(
gq L(0)−1

)
,

(so that ZV ((1, 1), τ ) = ZV (τ )). For the Moonshine Module V �

Tg(τ ) = ZV � ((g, 1), τ ), (20)

is the McKay-Thompson series for g ∈ M, the Monster group of automor-
phisms of V �.

Since V is holomorphic, there is a unique twisted module Mh for each h ∈ G
[DLM]. For g ∈ C(h), the h centralizer, g induces a class of linear maps φ(g)
on Mh so that we may define a twisted orbifold trace function3

Z((g, h), q) = Z((g, h), τ ) = T rMh

(
φ(g)q L(0)−1

)
, (21)

a meromorphic function for τ ∈ H [op.cit.]. We define a right action of the
modular group for γ ∈ 
 as follows4

(Z |0γ )((g, h), τ ) = Z(γ (g, h), γ τ), (22)

with

γ (g, h) =
(

gahb, gchd
)
.

The trace function enjoys the modular invariance property

(Z |0γ )((g, h), τ ) = εγ (g, h)Z((g, h), τ ). (23)

3 denoted by Z(h, g−1, τ ) in ref. [DLM],
4 The 0 subscript denotes the modular weight of Z((g, h), τ ).
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for cocycle εγ (g, h) ∈ C∗ [op.cit.] generalizing earlier ideas of Zhu concern-
ing trace functions [Z]. Specializing to the McKay-Thompson series (20), these
results imply that Tg(τ ) is a meromorphic function on H satisfying the modular
invariance property (23) for h = 1.

Let us consider orbifolds without a global phase anomaly i.e. where each
φ(g) acting on Mh can be chosen such that εγ (g, h) = 1 so that [Va]

(Z |0γ )((g, h), τ ) = Z((g, h), τ ). (24)

In particular, this condition implies that for h of order m

Z((1, h), τ ) =
∑

k∈Z a

(
(1, h),

k

m

)
qk/m, (25)

for some integers a((1, h), k
m ) ≥ 0. We next define the G−orbifold partition

function by

Z G−orb(τ ) = 1
|G|
∑

g,h∈G
gh=hg

Z((g, h), τ )

=
∑
[h]∈G

1

|C(h)|
∑

g∈CG (h)

Z((g, h), τ ), (26)

for centralizer C(h) = {hg = gh|g ∈ G} and where [h] denotes a conjugacy
class of G. Clearly Z G−orb(τ ) is also modular invariant. The most well-known
example is the original construction for the Moonshine Module V � as a Z2

orbifold of the Leech lattice VOA [FLM].

4.2. Permutation Orbifolds

Let V⊗n = V ⊗ V ⊗ . . . V denote the nth tensor product VOA with partition
function ZV⊗n (τ ) = Z(τ )n and central charge 24n. The symmetric group Sn

naturally acts on V⊗n as an automorphism group. For each β ∈ Sn there is a
unique β-twisted V⊗n module Mβ which can be explicitly constructed from
the original HVOA V [DMVV], [BDM], [Ba]. Furthermore, we may explicitly
compute the permutation orbifold partition function Z Sn−orb(τ ).

We illustrate this in the first non-trivial case for V ⊗ V . Then S2 = 〈σ 〉 for
2−cycle σ where σ : u ⊗ v→ v ⊗ u for all u ⊗ v ∈ V ⊗ V . We thus find

ZV⊗V ((σ, 1), τ ) = Z(2τ).
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The σ−twisted module Mσ has partition function

ZV⊗V ((1, σ ), τ ) = T rMσ

(
q L(0)−1

)
= Z
(τ

2

)
,

with

ZV⊗V ((σ, σ ), τ ) = Z

(
τ + 1

2

)
,

following (24). Thus we obtain

Z S2−orb(τ ) = 1

2
Z(τ )2 + T (2)Z(τ ), (27)

for Hecke operator T (2) of (4) for weight zero.
In general, for β ∈ Sn , consider the cycle decomposition

β = σ
m1
1 σ

m2
2 . . . σmn

n , (28)

where σk denotes a k−cycle. The conjugacy classes of Sn are enumerated by
the set of partitions of n = ∑

1≤k≤n
kmk . The centralizer is then

C(β) = Sm1 × (Sm2 � C2
m2)× . . .× (Smn � Cn

mn ), (29)

of order
∏

1≤k≤n
kmk mk ! with cyclic group Ck = 〈σk〉 and Smk the permutation

group on the mk cycles σk . We may construct Mβ = ⊗k M⊗mk
σk which has

partition function [BDM]

Z((1, β), τ ) = T rMβ

(
q L(0)−1

)
=
∏

1≤k≤n

Z
(τ

k

)mk
.

One eventually finds that the Sn permutation orbifold partition function is
[DMVV]

Z Sn−orb(τ ) =
∑
[β]∈Sn

1

|C(β)|
∑

α∈C(β)

Z((α, β), τ )

=
∑

m1,...mn∑
kmk=n

∏
1≤k≤n

1

mk ! (T (k)Z(τ ))
mk , (30)

for the classical Hecke operator T (k) of (4).
It is natural to define a permutation orbifold generating function by

Zperm(p, q) = 1+
∑
n≥1

pn Z Sn−orb(τ ), (31)
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for a formal parameter p. Thus we obtain [op.cit.]

Zperm(p, q) = exp

⎛⎝∑
n≥1

pn T (n)Z(τ )

⎞⎠ = ∏
r≥1,s∈Z

1

(1− pr qs)a(rs)
, (32)

where Z(τ ) =∑k≥−1 a(k)qk . This is clearly of the form of the inverse of the
LHS of denominator formula (13). Thus such expressions canonically arise in
the context of permutation orbifolds for C = 24 HVOAs.

Specializing to the case of the Moonshine module V � where Z(τ ) = J (τ )
we obtain

Zperm
V � (p, q) = exp

⎛⎝∑
n≥1

pn T (n)J (τ )

⎞⎠ = 1

p J (p)− p J (q)

= 1+p J (q)+
(

J (q)2− c (1)
)

p2+
(

J (q)3− 2J (q) c (1)− c (2)
)

p3+(
J (q)4− 3c (1) J (q)2− 2J (q) c (2)− c (3)+ c (1)2

)
p4+ . . .

This formula and the infinite product formula of (32) very strongly suggest that
Zperm

V � (p, q) is the partition function for a doubly graded symmetric bosonic
module with Monster characters which is, algebraically speaking, the inverse
of the alternating homological structure constructed by Borcherds [Bo2]. Fur-
thermore, infinite product formulas such as that of (32) have been given the
interesting interpretation as a "second quantized" string partition function
in the physics literature [DMVV]. A rigorous VOA construction for such a
structure would be of obvious interest.

5. Finite Group and Permutation Orbifolds

Let us now consider orbifolding V⊗n with respect to G × Sn where G acts
diagonally on V⊗n and Sn is the permutation group for V⊗n . We consider
again a C = 24 holomorphic VOA, with modular invariant partition function
and where (24) is holds. We may construct unique twisted sectors for each
(h, β) ∈ G × Sn [BDM] to find [T4]

Z Sn−orb((g, h), τ ) =
∑

m1,...mn∑
kmk=n

∏
1≤k≤n

1

mk ! (T (k)Z((g, h), τ ))mk , (33)

where here T (k) is the twisted Hecke Operator of (15). Then (18) implies

(T (n)Z((g, h), τ ))|0γ = T (n)Z((g, h), τ ). (34)
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We may define a permutation orbifold generating function generalizing (31)
as follows:

Zperm((g, h), p, q) =
∑
n≥1

p
n
m Z Sn−orb((g, h), τ )

= exp

⎛⎝∑
n≥1

p
n
m T (n)Z((g, h), τ )

⎞⎠ . (35)

where h is of order m and using (33). For g = 1, this expression reduces to an
infinite product formula generalizing (32) to find

Zperm((1, h), p, q) =
∏

r≥1,s∈Z

(
1− p

r
m q

s
m

)−a((1,hr ), rs
m )

, (36)

where Z((1, hr ), τ )) =∑k∈Z a
(
(1, hr ), k

m

)
q

k
m .

6. Monstrous and Generalized Moonshine - the Genus Zero Property

We now consider the FLM Moonshine Module VOA V � [FLM] and its rela-
tionship to Moonshine. The original Monstrous Moonshine paper of Conway
and Norton described evidence for an unexpected relationship between proper-
ties of the Monster finite group and the theory of modular forms [CN]. Many of
these relationships are now understood to be generic to orbifold constructions
in conformal field theory/VOA theory e.g. [FLM], [T1], [T2], [DLM]. How-
ever, the special feature that sets the Moonshine Module V � apart from other
VOAs is the Genus Zero Property [CN]. This states that for each g ∈ M, the
McKay-Thompson series Tg(τ ) of (20) is a hauptmodul for some genus zero
modular group 
g . Thus for g of prime order o(g) = p, one finds (excluding
one class of order 3) that either 
g = 
0(p) with g = p− (in the notation
of [CN]) or else with g = p+ with 
g = 
0(p)+ = 〈
0(p),Wp〉 where


0(p) =
{(

a b
c d

) ∣∣∣∣c = 0 mod p

}
and Wp : τ →−1/pτ is a Fricke invo-

lution. In general, we say that g ∈ M is Fricke if Tg is invariant under a Fricke
involution WN : τ → −1/Nτ where N = ko(g) and k|24 and is otherwise
non-Fricke. k = 1 in the global phase anomaly free cases where (24) holds.

The distinction between Fricke and non-Fricke classes is particularly impor-
tant in the orbifold interpretation of Moonshine [T1]. There is very significant
evidence for the general conjecture that the genus zero property for a McKay-
Thompson series is equivalent to the statement that for any global phase
anomaly free element g, orbifolding V � with respect to 〈g〉 for g Fricke results
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in V � again whereas orbifolding V � with respect to 〈g〉 for g non-Fricke results
in the Leech lattice VOA [T2].

Generalized Moonshine refers to the still generally unproven conjecture of
Norton [N2] that for each commuting pair g, h ∈ M, then ZV � ((g, h), τ ) is
either a hauptmodul for a genus zero modular group or is a constant. It is
easy to show using (23) that (1) ZV � ((g, h), τ ) is constant iff gchd is non-
Fricke for all (c, d) = 1 [N2], [T3] and (2) if g, h ∈ 〈k〉 for some k ∈ M
then ZV � ((g, h), τ ) is a hauptmodul (since it can then be modular transformed
to a McKay-Thompson series [T3], [IT1], [DLM]). In the remaining "non-
trivial" cases, we may use (23) again to transform ZV � ((g, h), τ ) to a trace
over a Fricke twisted module so that the genus zero property reduces to an
analysis of h Fricke cases alone. The case of h = 2+, with centralizer 2.B
for the Baby Monster B, has now been proved by Hoehn [H]. The relationship
between orbifoldings of the Moonshine module and the genus zero property
of Generalized Moonshine for h = p+ is discussed at length in [T3], [IT1],
[IT2], [I].

The approach taken in Borcherds’ proof of the Monstrous Moonshine genus
zero property is to firstly prove a twisted denominator identity generalizing
(13) [N1], [Bo2]

exp

⎛⎝−∑
n≥1

pn T (n)Tg(τ )

⎞⎠ = p
(
Tg(p)− Tg(q)

)
. (37)

This is the defining formula for completely replicable functions [N1], [FMN]
from which it follows that the leading coefficients of Tgi (τ ) for i = 1, 2, . . .
determine Tg(τ ). Koike showed that the list of hauptmoduln appearing in the
Moonshine Conjectures are completely replicable [Ko]. Based on this result
and an analysis of the leading coefficients (using the explicit form for Tg(τ )

found by FLM for 2− centralizers in the Monster [FLM]) Borcherds then
demonstrated that indeed Tg(τ ) obeys the genus zero property. This part of
the proof was improved upon in [CG] where meromorphicity, modularity and
the genus zero property are shown to generally follow from the infinitely many
replication formulas that follow from (1) and (37), namely

T (n)Tg(q) = 1

n
Fn
(
Tg(q)
)
, (38)

where Fn is the Faber polynomial for Tg(q).
However, as already noted, Tg(q) is known to be meromorphic on H from

[DLM]. Furthermore, by combining (38) with the general modular transfor-
mation property (23) (or (24) in the absence of global anomalies) one can also
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expect to obtain the genus zero property for Tg in a more direct fashion along
the lines of the methods described in refs. [T1], [T2].

On the other hand, in the permutation orbifold construction based on V �,
(37) reads

Zperm
V � ((g, 1), p, q) = exp

⎛⎝∑
n≥1

pnT (n)ZV � ((g, 1), q)

⎞⎠
= 1

p(ZV � ((g, 1), p)− ZV � ((g, 1), q))
.

Recall our previous remarks concerning the reduction of Generalized Moon-
shine to Fricke classes. Consider h a global phase anomaly-free Fricke element
of order o(h) = m so that ZV � ((1, h), qm) = ZV � ((h, 1), q). It follows that

exp

⎛⎝∑
n≥1

pnT (n)Z
(
(1, h), qm)⎞⎠= 1

p
(
ZV � ((1, h), pm)− ZV � ((1, h), qm)

) .
Hence from (36) we find for such Fricke h that

Z perm
V � ((1, h), p, q) = 1

p
1
m
(
ZV � ((1, h), p)− ZV � ((1, h), q)

) . (39)

This together with the general result (36) again suggests the existence of a
symmetric bosonic construction forming a doubly-graded module for the cen-
tralizer of C(h) for each such Fricke element h. It is thus natural to conjecture
that for all order m global phase anomaly-free Fricke elements h the following
holds

Zperm
V � ((g, h), p, q) = exp

⎛⎝∑
n≥1

p
n
m T (n)ZV � ((g, h), q)

⎞⎠
= 1

p
1
m
(
ZV � ((g, h), p)− ZV � ((g, h), q)

) . (40)

From (1), this is equivalent to the following Generalized Moonshine replication
formula for global phase anomaly-free Fricke elements h

T (n)ZV � ((g, h), q) = 1

n
Fn(ZV � ((g, h), q)), (41)

where Fn is the Faber polynomial for ZV � ((g, h), qm)). The equivalence of
this replication formula to the genus zero property for Generalized Moonshine
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would therefore require a suitable generalization of the various Monstrous
Moonshine arguments.

We conclude with the example of n = 2. Then (41) implies

ZV �

((
g2, h
)
, 2τ
)
+ ZV �

((
g, h2
)
,
τ

2

)
+ ZV �

((
gh, h2

)
,
τ + 1

2

)
= ZV � ((g, h), τ )2 − 2a

(
(g, h),

1

m

)
,

where ZV � ((g, h), τ ) = q− 1
m + 0+ a((g, h), 1

m ) q
1
m + ... which corresponds

to an example quoted in ref. [N2]. In particular, for h = 2+ and g of order 2
then using Fricke invariance we find

Th(τ )+ Tg

(τ
2

)
+ Tgh

(
τ + 1

2

)
= ZV � ((g, h), τ )2 − 2a

(
(g, h),

1

2

)
,

which can be easily verified in each case.

References

[Ba] Bantay, P.: Permutation orbifolds, Nucl.Phys. B633, 365–378
(2002).

[BDM] Barron, K., Dong, C. and Mason, G.: Twisted sectors for ten-
sor product vertex operator algebras associated to permutation
orbifolds. Commun.Math.Phys. 227, 349–384 (2002).

[Bo1] Borcherds, R.: Vertex algebras, Kac-Moody algebras and the
Monster. Proc.Natl.Acad.Sci.U.S.A. 83, 3068–3071 (1986).

[Bo2] Borcherds, R.: Monstrous moonshine and monstrous Lie superalge-
bras. Invent.Math. 109, 405–444 (1992).

[CG] Cummins, C.J. and Gannon, T.: Modular equations and the genus
zero property of moonshine functions, Invent.Math. 129, 413–443
(1997).

[Cu] Curtiss, J. H.: Faber Polynomials and the Faber Series, Am. Math.
Mon. 78 577–596 (1971).

[CN] Conway, J.H. and Norton, S.P.: Monstrous moonshine. Bull. London
Math. Soc. 11, 308–339 (1979).

[DLM] Dong, C., Li, H. and Mason, G.: Modular-invariance of
trace functions in orbifold theory and generalized moonshine.
Commun.Math.Phys. 214, 1–56 (2000).

[DM] Dong, C. and Mason, G., Holomorphic vertex operator algebras of
small central charge, Pac.J.Math., 2004, 213 253–266.



Monstrous and Generalized Moonshine and Permutation Orbifolds 391

[DMVV] Dijkgraaf, R., Moore, G., Verlinde, E. and Verlinde, H.: Ellip-
tic genera of symmetric products and the second quantized string,
Commun.Math.Phys. 185, 197–209 (1997).

[F] Ferenbaugh, C.: Lattices and generalized Hecke operators,
in Groups, difference sets and the Monster, Walter de Gruyter,
(1996).

[FMN] Ford, D., McKay, J. and Norton, S.P.: More on replicable functions.
Commun.Algebra 22, 5175–5193 (1994).

[FLM] Frenkel, I., Lepowsky, J. and Meurman, A.: Vertex operator alge-
bras and the Monster. New York:Academic Press, 1988.

[H] Hoehn, G.: Generalized moonshine for the baby monster, Talk
presented at this conference.

[I] Ivanov, R.I.: Generalised Moonshine from Abelian Orbifolds of the
Moonshine Module. Ph.D. Thesis, National University of Ireland,
Galway, 2002.

[IT1] Ivanov, R.I. and Tuite, M.P.: Rational generalised moonshine and
abelian orbifolds. Nucl.Phys. B635 (2002), 435–472.

[IT2] Ivanov, R.I. and Tuite, M.P.: Some irrational generalised moonshine
from orbifolds. Nucl.Phys. B635 (2002), 473–491.

[Ka] Kac, V.: Vertex Operator Algebras for Beginners. University Lecture
Series, Vol. 10, Boston:AMS 1998.

[Ko] Koike, M.: On replication formula and Hecke operators, Nagoya
University preprint.

[MN] Matsuo, A. and Nagatomo, K.: Axioms for a vertex algebra and the
locality of quantum fields, Math.Soc.Japan Memoirs. 4, (1999).

[MTZ] Mason, G., Tuite, M.P. and Zuevsky, A.: Torus n-Point Functions for
R-graded Vertex Operator Superalgebras and Continuous Fermion
Orbifolds, Commun.Math.Phys. 283, 305–342 (2008).

[N1] Norton, S. P.: More on moonshine, in Computational Group Theory,
Academic Press, 185–193 (1984).

[N2] Norton, S.P.: Generalised moonshine. Proc.Symp.PureMath. 47,
208–210 (1987).

[Sch] Schellekens, A.N.: Meromorphic c = 24 conformal field theories,
Commun.Math.Phys. 153, 159–186 (1993).

[Se] Serre, J-P.: A course in arithmetic, Springer-Verlag (Berlin 1978).
[T1] Tuite, M. P.: Monstrous moonshine from orbifolds. Com-

mun.Math.Phys. 146 277–309 (1992).
[T2] Tuite, M. P.: On the relationship between monstrous moonshine and

the uniqueness of the moonshine module. Commun.Math.Phys. 166,
495–532 (1995).



392 Michael P. Tuite

[T3] Tuite, M. P.: Generalised moonshine and abelian orbifold construc-
tions. Contemp.Math. 193, 353–368 (1996).

[T4] Tuite, M. P.: To appear.
[Va] Vafa, C.: Modular invariance and discrete torsion on orbifolds.

Nucl.Phys. B273, 592–606 (1986).
[Z] Zhu, Y.: Modular invariance of characters of vertex operator alge-

bras. J.Amer.Math.Soc. 9, 237–302 (1996).



New computations in the Monster
Robert A. Wilson

School of Mathematical Sciences
Queen Mary, University of London

Mile End Road,
London E1 4NS

Abstract

We survey recent computational results concerning the Monster sporadic
simple group. The main results are: progress towards a complete classification
of the maximal subgroups, including showing that L2(27) is not a subgroup;
showing that the 196882-dimensional module over G F(2) supports a quadratic
form; a complete set of explicit conjugacy class representatives; small repre-
sentations of most of the maximal subgroups; and a partial classification of the
‘nets’ (in the sense of Norton).

1. Introduction

Our aim in this paper is to update the survey [27] by describing the various
explicit computations which have been performed in the Monster group, and
the new information about the Monster which has resulted from these calcu-
lations. We begin by summarising [27] for the benefit of readers who do not
have that paper to hand.

The smallest matrix representations of the Monster have dimension 196882
in characteristics 2 and 3, and dimension 196883 in all other characteristics.
Three of these representations (over the fields of orders 2, 3, and 7) are now
available explicitly [9, 15, 25]. It is hoped that the data and programs to manip-
ulate them will be made available in the next release of MAGMA [16]. The
generating matrices are stored in a compact way, and never written out in full.
The basic operation of the system is to calculate the action of a generator on a
vector of the underlying module.

Our first construction [15] was carried out over the field G F(2) of two
elements in the interests of speed, and proceeded by amalgamating various
3-local subgroups. Unfortunately, these 3-local subgroups are too small to
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contain many useful subgroups, so we embarked on a second construction [9]
over G F(3), in order to utilise the much larger 2-local subgroups. In [27] we
described how Beth Holmes used this construction to find four new maximal
subgroups, and obtain a complete classification of subgroups of the Monster
isomorphic to one of 11 listed simple groups (out of 22 still unclassified). The
third construction [25] was over G F(7), again using the 3-local subgroups, and
the same generators as in the G F(2) case. Thereby one can calculate character
values modulo 14, and obtain good conjugacy class invariants.

2. The 2-local construction

The 2-local construction, although not the first, is easier to describe than the
3-local constructions, and is closely related to the Griess construction [6]. We
shall not describe the construction itself, merely the outcome, and refer the
reader to [9] for details. The idea is first to construct the involution centralizer
21+24.Co1, in such a way that we can both calculate in this subgroup, and
calculate its action on the module of dimension 196882 over G F(3). Then we
make a special ‘triality’ element which normalizes a subgroup 22.211.222.M24,
the centralizer of a 4-group.

Now the 3-modular irreducible representation of degree 196882 for the
Monster restricts to the subgroup 21+24.Co1 as the direct sum of three con-
stituents, of degrees 98304, 98280 and 298. The constituent of degree 98280
is monomial, and that of degree 98304 is a tensor product of representations of
the double cover, of degrees 24 and 4096. Any element of this subgroup can
therefore be specified by three matrices (over G F(3), or more generally, any
field of characteristic not 2), of sizes 24, 4096, and 298, and a monomial per-
mutation on 98280 points. (Note however that this representation is not unique:
negating the matrices of size 24 and 4096 gives a second representation of the
same element.)

By careful choice of basis we can ensure that the triality element can be
written as a monomial permutation on 147456 points, followed by 759 iden-
tical 64 × 64 matrices, and an 850 × 850 matrix. In particular its action on a
vector can be quickly computed.

It is important to realise that the only elements of the Monster which are
stored in one of these two compact formats are the elements of 21+24.Co1 and
the triality element (or rather, eight triality elements, being the elements of
order 3 in the A4 generated by the normal 22 and a triality element). Every
other element of the Monster is stored as a word in these generators. (Some
improvements on this are possible, but seem not to be worth the extra effort.
For example, it would be possible to devise a compact format for most, if not
all, of the subgroup 22.211.222.(M24 × S3).)
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3. The 3-local constructions

When we first seriously considered a computer construction of the Monster
some ten years ago, we decided to produce matrices over G F(2), since cal-
culation with such matrices is much faster than with matrices over any other
field. The disadvantage, however, is that the maximal 2-local subgroups are
no longer available as ingredients of the construction. Thus we decided to use
maximal 3-local subgroups instead. Here again we give only a sketch of the
construction, and refer to [15] for details.

The role of the involution centralizer is now taken by a maximal subgroup
of shape 31+12.2.Suz:2. The restriction of the representation to this subgroup
consists again of a ‘tensor product’ part, of dimension 131220, a ‘monomial’
part, of dimension 65520, and a ‘small’ part. The small part has dimension
142 over G F(2), or dimension 143 in any characteristic bigger than 3. The
‘monomial’ part is in reality induced from a 2-dimensional representation of
a subgroup of index 32760. The ‘tensor product’ part is again not exactly a
tensor product: if we restrict to the subgroup of index 2, it is the direct sum of
two (dual) tensor products over G F(4), each tensor being the product of one
90-dimensional and one 729-dimensional representation.

To generate the Monster, we adjoined a ‘duality’ element normalizing a cer-
tain subgroup of shape 32.35.310.(M11×22). Again, by careful choice of basis
we were able to write this extra element as a combination of a ‘monomial’ per-
mutation on 87480 subspaces of dimension 2, two 324×324 matrices (repeated
11 and 55 times respectively), and a 538× 538 matrix.

In fact these calculations are considerably simplified if there is a cube root
of unity in the field. For this reason, we repeated the calculations over the field
of order 7, and obtained the same set of generators for the Monster in this
different representation [25].

4. Basic calculations

There are just two basic operations available to us in any of the constructions
we have described. The first is to multiply together elements in our chosen
maximal subgroup to create new generators in this subgroup. The second is to
act on a vector by one of these generators, or by the extra ‘triality’ or ‘duality’
element.

An element of the Monster is stored as a word x1t1x2t2 . . ., where the xi

are in our maximal subgroup, and the ti are equal to the extra generator (or
possibly its inverse, in the 2-local version). If we take a ‘random’ vector v in
the underlying module, the chances are extremely good that it lies in a regular
orbit under the Monster. Thus the order of an element x is, with probability
very close to 1, equal to the smallest positive integer n such that vxn = v.
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In [15, 27] we described how to improve this probability to exactly 1 at the
expense of taking two (carefully chosen) vectors instead of one.

The first serious calculations we attempted used the G F(2) construction to
try to improve estimates for the symmetric genus of the Monster. By character
calculations alone, Thompson had shown that the Monster was a quotient of
the triangle group �(2, 3, 29) = 〈x, y, z | x2 = y3 = z29 = xyz = 1〉,
and the challenge was to find the minimal value of n such that the Monster
is a quotient of �(2, 3, n). From Norton’s work on maximal subgroups [18] it
seemed very likely that this minimal value was 7. However, the probability that
a random pair of elements of orders 2 and 3 has product of order 7 is around
10−8, so we would need to look at something like 100 million pairs to have
a reasonable chance of finding (2, 3, 7)-generators for the Monster. This took
some 10 years of processor time. See [24] for more details.

5. The quadratic form

The 196882-dimensional representation of the Monster over the field of two
elements is self-dual, so the Monster preserves a symplectic form on the
module, and embeds in the symplectic group Sp196882(2). The question as to
whether the Monster also preserves a quadratic form seems difficult to answer
from a theoretical perspective. Beth Holmes and Steve Linton (and indepen-
dently Jon Thackray) calculated explicitly a quadratic form which is invariant.
They did not determine whether this form is of + or − type.

6. Traces and conjugacy classes

The trace of a matrix is easy to calculate, but it is less obvious how to calculate
the trace of a linear transformation given in the form of a computer program.
Ultimately it seems to be necessary to calculate the corresponding matrix, and
extract the diagonal entries. This is obviously rather time-consuming compared
to the tracing of individual vectors we have been doing up till now.

Now if p is any prime, the trace modulo p can only distinguish between
different p′-parts of elements, since modulo p we have T r(x p) = T r(x). Thus
in order to distinguish conjugacy classes, it is necessary to calculate traces
modulo two distinct primes. Since we used exactly the same generators in the
representations over G F(2) and over G F(7), we can calculate the trace mod 2
and the trace mod 7 for the same element of the group, thus obtaining the value
of the degree 196883 character modulo 14. Combining this invariant with the
order of the element and the traces of its powers, we are able to identify the
conjugacy class of any element, up to a few ambiguities.
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With this apparatus Richard Barraclough has produced a list of conjugacy
class representatives [3]. To do this, he first improved the efficiency of our pro-
grams so that a trace modulo 7 now takes only a few hours to calculate. Then
he conducted a wide search through words of length 1 and 2. Most classes
turned up in this way, and the few that did not had representatives in the
subgroup 31+12.2.Suz:2. Thus a more targeted search was conducted in this
subgroup. For example, this subgroup contains representatives of both classes
27A and 27B, lying above class 9A in Suz. By finding elements of this type,
and explicitly calculating their centralizers, it was possible to find representa-
tives of classes 27A and 27B, since they have different centralizer orders in the
Monster.

7. Shortening words

As is well-known, the main difficulty in computing with a group whose ele-
ments are given as words is in preventing the words getting too long. We were
able to find two tricks which in combination overcome this obstacle in most
cases. The first trick takes two commuting 2B-involutions, and produces a
short word conjugating one to the other. The second trick is a method of rewrit-
ing a word known to be in the involution centralizer 21+24.Co1, as a word of
length 1.

To take the second part first, note that if we find a word in the generators,
representing an element which commutes with the original 2B-element, then
it belongs to the original subgroup 21+24.Co1. Therefore it can be written in
‘standard’ form (in two ways) as a combination of a 24× 24 matrix, a 4096×
4096 matrix, a monomial permutation on 98280 points, and a 298×298 matrix.
This standard form can be determined by calculating just 36 rows of the full
196882 × 196882 matrix for this element, so can be obtained fairly quickly.
Moreover, if necessary we can even express this standard form as a word in the
original generators for the subgroup.

The first trick relies on the fact that all 2B-elements in 21+24.Co1 can be
obtained from the central involution by a subset of the operations: (1) con-
jugate by the triality element to take it to a non-central involution of 21+24,
(2) conjugate by a random element of 21+24.Co1, (3) conjugate by the triality
element again to move it outside 21+24, and (4) conjugate again by a random
element of 21+24.Co1. Thus to conjugate an arbitrary 2B-element in this group
to the central involution, it suffices to conduct two random searches to find the
correct conjugating elements to reverse the above operation.

Combining these tricks with Ryba’s method for conjugating an involution in
a group to an involution in a known subgroup [14], we can in principle shorten
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any word to one of length less than about 20. Specifically, given an arbitrary
element g which powers to a 2B-element x , there is a good chance that xz will
power to a 2B-element y, where z is our original 2B-element. Since x and z
both centralize y, we can use the first trick to conjugate y to z, say yw1 = z
where w1 has length at most 4. Using the trick again, we can conjugate xw1 to
z, say xw1w2 = z where w1w2 has length at most 8. We then use the second
trick to write gw1w2 as a word of length 1, and thus obtain a word of length at
most 17 for g. More generally, if h is an arbitrary word, we can multiply it by
a random word of short length (preferably length 1) until we find an element g
satisfying the above hypotheses. This is likely to produce a word of length at
most 18 for h.

8. Maximal subgroups

A great deal of theoretical work on classifying the maximal subgroups of
the Monster has been done in [17, 18, 19, 23], which reduced the problem
to classifying conjugacy classes of simple subgroups of just 22 isomorphism
types, subject to a variety of other conditions. In her PhD thesis [7] Beth
Holmes dealt with 11 of the 22 isomorphism types, namely L2(q) for q =
9, 11, 19, 23, 29, 31, 59, 71 and L3(4), U4(2) and M11. Since then she has
completed the cases L2(q) for q = 7, 8, 16, 17, 27, and L3(3), U3(3), and
U3(4). This leaves just the cases L2(13), U3(8) and Sz(8).

The only really effective method of classifying such simple subgroups in a
computational setting is to choose an abstract amalgam generating the desired
isomorphism type of subgroup, and to classify all embeddings of that amalgam
in the Monster. We then look at each embedding to decide whether it indeed
generates a subgroup of the required isomorphism type.

The most successful calculation of this type has been the classification of
subgroups generated by two copies of A5 intersecting in D10 (see [7]). This
amalgam can generate L2(q), for any q ≡ ±1 (mod 5), as well as L3(4),
so this deals with eight of the required cases. In particular, we found four new
maximal subgroups by this method, including subgroups isomorphic to L2(59)
and L2(71), thus answering a long-standing question. In addition, we found
new maximal subgroups L2(29):2 and L2(19):2. (In fact, the L2(29) case was
done by a different method, but with hindsight it would have been easier to use
this method.)

Four more of these cases, namely L2(7), L2(17), L3(3) and U3(3), were
dealt with by an amalgam of two copies of S4, intersecting in D8 (see [8]).
The case U3(4) used a subgroup 5 × A5, extending a diagonal C5 (there are
two classes, so both need to be considered) to D10. In the case L2(8) we can
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assume the 7-element is in class 7B, so from the 2-local analysis [17] we know
the 23:7 centralizes a 2B-element, and most of the calculation can then be done
inside the corresponding subgroup 21+24.Co1.

The case L2(27) relies on an amalgam of 33:13 and D26 intersecting in
13, and the fact that there are just two classes of 33:13 in the Monster (this
follows fairly easily from the results of [23]). In one case a simple counting
argument shows that there is no such L2(27), while in the other case we needed
to check a handful of cases computationally. In particular, there is no subgroup
isomorphic to L2(27) in the Monster, which answers another long-standing
question.

Regarding the three outstanding cases, L2(13), U3(8) and Sz(8), our com-
puters are currently working through the cases for L2(13). After that, the case
of U3(8) should present no serious problems. Our strategy in this case is to
take a subgroup 3× L2(8), and extend one of the diagonal elements of order 9
to a D18.

The final case, Sz(8), is proving more tricky. The only approach we can
think of is to start with a group 23:7 and extend a 7-element to D14. We can
use the fact that Sz(8) contains 23+3:7 to reduce the number of possibilities
for the 23:7. Nevertheless, it is not easy to classify these subgroups. We know
that the involutions are in class 2B. Now there are three classes of 2B-pure
subgroups of order 4, whose normalizers involve composition factors M24,
M12 and A8 respectively. A fairly easy counting argument shows that the first
of these cannot occur in a putative subgroup Sz(8).

In the second case, the normalizer of the 4-group has the shape (22 ×
21+20).(S3×M12:2) inside 21+24.3.Suz:2 inside 21+24.Co1. Now in Sz(8) we
have 23+3/22 ∼= 4 ◦ Q8, which embeds uniquely (up to conjugacy) in M12:2.
In this embedding the central involution is of M12-class 2B. Thus the 23 we
are looking for is either entirely inside 21+24, or maps to a 2B-element in M12.
In the former case, the whole of 23+3:7 must lie inside 21+24.Co1, and it is
straightforward to show that this does not happen. In the latter case it turns out
that the 23:7 lies in the maximal subgroup 23.26.212.218.(L3(2) × 3S6), with
the 23 lying in the normal 23.26.212 but not in the 23.26. It can be shown that
it is unique up to conjugacy. At this stage it seems to be necessary to resort to
computer calculations.

A similar analysis of the third type of 2B2 is in progress.

9. Explicit representations of subgroups

The Monster contains many interesting subgroups, which it may be useful
to study independently. To facilitate such study, we have tried to construct
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small representations of these groups, whenever such representations exist [4].
These representations are available from the Monster page of [26]. In many
cases one of these subgroups may be described as a certain non-split exten-
sion of a group acting (not necessarily faithfully) on a module. While previous
constructions have concentrated on representing p-local subgroups irreducibly
in characteristic different from p, the smallest faithful (reducible) represen-
tations are usually to be found in characteristic p. John Bray has developed
effective methods of constructing such non-split extensions explicitly by glu-
ing together indecomposable (but reducible) modules for the quotient group.
Various techniques are then employed to ensure that the group constructed is
indeed isomorphic to the desired subgroup of the Monster.

In two of the larger cases, namely the 3-local subgroups 32.35.310.(M11 ×
2S4) and 33.32.36.36.(L3(3) × SD16), we felt that the only reliable method
of ensuring that we obtained a group of the right isomorphism type was to
find it explicitly as a subgroup of the Monster. We then employed ad hoc tech-
niques to try to find some smaller representations—in this case permutation
representations.

To date we have representations of all the maximal subgroups except some
of the 2-local subgroups. The latter do not appear to have faithful permutation
representations of reasonable degree, and new methods will be required for
these cases.

10. Character tables

Richard Barraclough has calculated the character table of the group
31+12.2.Suz:2 used in some of our constructions of the Monster, along with
various closely related groups [2]. There are many subtleties which make
this calculation difficult, not the least of which is the fact that there are two
non-isomorphic groups of this shape, whose character tables look very similar.

It would be interesting to have the character tables of other maximal sub-
groups. From the representations described in the previous section, it should be
possible to calculate some of these character tables without difficulty. However,
the larger subgroups still present a formidable challenge.

11. Nets and their classification

Norton has generalised the ideas of Moonshine to commuting pairs of elements
of the Monster, introducing functions F which are invariant under the action
of the modular group via F(g, h) = F(gαhβ, gγ hδ) when αδ − βγ = 1.
This even makes sense for non-commuting elements g and h, in the case when
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g = ab and h = bc, and a, b, c are involutions. In this case, the action of
the modular group corresponds to an action of the three-string braid group on
triples of involutions.

In the case when a, b, c are in class 2A, there are about 1.4 × 106 con-
jugacy classes of triples (a, b, c), which fall into about 14,000 orbits under
the action of the braid group. These orbits are (roughly speaking) what Nor-
ton calls ‘nets’: they have a combinatorial structure of a polyhedron of genus
0 or 1. A complete classification of these nets would be of great interest in
clarifying and developing the ideas of generalised moonshine.

There are various ways of dividing up the set of nets into more manageable
subsets, for example according to the product abc, or the group generated by
a, b, c, or the centralizer of a, b, c. So far, Richard Barraclough has a com-
plete classification of the nets which are centralized by any element of prime
order bigger than 3, and is working on the ones centralized by an element of
order 3 [1].

The classification of nets with trivial centralizer will be difficult, however.
Ultimately it requires calculating the orbits of certain groups on the nearly 1020

involutions in class 2A. This is a major challenge for the future.

12. A presentation for the Monster, and a new existence proof?

Norton has shown how to produce a presentation for the Monster on generators
closely related to the 2-local subgroups we used in one of our constructions.
The proof of this presentation, however, requires deep arguments. We hope
to be able to verify that certain elements in our group satisfy the relations
of this presentation. It may then be possible to provide for the first time
a computational proof of existence of the Monster, independent of Griess’s
proof.
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