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Preface

A “Summer School on Commutative Algebra” was held from July 16 to 26, 1996,
at the Centre de Recerca Matematica (CRM) in Bellaterra, a mathematical re-
search institute sponsored by the Institut d’Estudis Catalans. It was organized by
CRM and supported by CRM, Ministerio de Educacién y Ciencia, Comissié Inter-
departamental de Recerca i Innovacié Tecnologica and Universitat de Barcelona.
The School organizers were J. Elias, J. M. Giral, R. M. Miré-Roig and S. Zarzuela.

The School mainly consisted in 6 series of 5 lectures surveying and high-
lighting recent developements in Commutative Algebra, as well as 9 addressed
talks and 28 short communications. Over 150 participants attended the School
and contributed to its success.

This volume contains texts grown out of the six series of lectures given by the
authors in the Summer School on Commutative Algebra. We are deeply indebted
to them for their effort and excellent job.

The editors want to express their gratitude to the Director of the CRM,
M. Castellet, and its staff for their support to our project without which it would
not have taken place. We also want to thank our graduate students who helped in
several tasks, specially J. Martinez for his unvaluable assistance in the preparation
of this volume. Finally, thanks are due to Birkhauser Verlag for their interest in it.

J. Elias

J.M. Giral
R.M. Miré-Roig
S. Zarzuela

Barcelona, September 1997.



Infinite Free Resolutions

Luchezar L. Avramov

This text is based on the notes for a series of five lectures to the Barcelona Summer
School in Commutative Algebra at the Centre de Recerca Matematica, Institut
d’Estudis Catalans, July 15-26, 1996.

Joan Elias, José Giral, Rosa Maria Miré-Roig, and Santiago Zarzuela were
successively fantastic organizers, graceful hosts, and tactful editors. I am extremely
grateful to them for everything.

It was a pleasure to address the receptive audience, and to be part of it for
the lectures of Mark Green, Craig Huneke, Peter Schenzel, Tito Valla, Wolmer
Vasconcelos, and the talks of many others. I learned a lot, both from and at the
blackboard. Dave Jorgensen supplied a list of typos and corrections, and Alberto
Corso introduced me to Xy-pic; their help is much appreciated.

Srikanth Iyengar has read more versions than he might care to recall. For all
those corrected errors and pertinent suggestions, he has my special thanks.

Finally, I wish to acknowledge my most obvious debt: these notes would not
have been written without Zoya’s understanding and support.

Introduction

A free resolution of a module extends a presentation in terms of generators and
relations, by choosing generators for the relations, then generators for the relations
between relations, ad infinitum. Two questions arise:

How to write down a resolution?

How to read the data it contains?

These notes describe results and techniques for finite modules over a com-
mutative noetherian ring R. An extra hypothesis that R is local (meaning that it
has a unique maximal ideal) is often imposed. It allows for sharper formulations,
due to the existence of unique up to isomorphism minimal free resolutions; in a
global situation, the information can be retrieved from the local case by standard
means (at least when all finite projective modules are free).

* * *

A finite free resolution is studied ‘from the end’, using linear algebra over
the ring(!) R. The information carried by matrices of differentials is interpreted in

The author was partially supported by a grant from the National Science Foundation.



2 L. L. Avramov

terms of the arithmetic of determinantal ideals. When R is a polynomial ring over
a field each module has a finite free resolution; in this case, progress in computer
algebra and programming has largely moved the construction of a resolution for
any concrete module from algebra to hardware.

The monograph of Northcott [125] is devoted to finite free resolutions. Ex-
cellent accounts of the subject can be found in the books of Hochster [89], Roberts
[136], Evans and Griffith [61], Bruns and Herzog [46], Eisenbud [58].

* * *

Here we concentrate on modules that admit no finite free resolution.

There is no single approach to the construction of an infinite resolution and
no single key to the information in it, so the exposition is built around several
recurring themes. We describe them next, in the local case.

* * *

To resolve a module of infinite projective dimension, one needs to solve an
infinite string of iteratively defined systems of linear equations. The result of each
step has consequences for eternity, so a measure of control on the propagation of
solutions is highly desirable. This may be achieved by endowing the resolution with
a multiplicative structure (a natural move for algebraists, accustomed to work with
algebras and modules, rather than vector spaces). Such a structure can always
be put in place, but its internal requirements may prevent the resolution from
being minimal. Craft and design are needed to balance the diverging constraints
of multiplicative structure and minimality; determination of cases when they are
compatible has led to important developments.

Handling of resolutions with multiplicative structures is codified by Differen-
tial Graded homological algebra. Appearances notwithstanding, this theory pre-
cedes the familiar one: Homological Algebra [51] came after Cartan, Eilenberg,
and MacLane [56], [50] developed fundamental ideas and constructions in DG
categories to compute the homology of Eilenberg-MacLane spaces. An algebraist
might choose to view the extra structure as an extension of the domain of rings
and modules in a new, homological, dimension.

DG homological algebra is useful in change of rings problems. They arise in
connection with a homomorphism of rings Q — R and an R-module M, when
homological data on M, available over one of the rings, are needed over the other.
A typical situation arises when R and M have finite free resolutions over @, for
instance when @ is a regular ring. It is then possible to find multiplicative resolu-
tions of M and R over (), that are ‘not too big’, and build from them resolutions of
M over R. Although not minimal in general, such constructions are often useful,
in part due to their functoriality and computability.

Multiplicative structures on a resolution are inherited by derived functors.
It is a basic observation that the induced higher structures in homology do not
depend of the choice of the resolution, and so are invariants of the R-module
(or R-algebra) M. They suggest how to construct multiplicative structures of the
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resolution, or yield obstructions to its existence. Sometimes, they provide criteria
for a ring- or module-theoretic property, e.g. for R to be a complete intersection.
All known proofs that this property localizes depend on such characterizations —
as all proofs that regularity localizes use the homological description of regular
rings.

The behavior of resolutions at infinity gives rise to intriguing results and ques-
tions. New notions are needed to state some of them; for instance, complexity and
curvature of a module are introduced to differentiate between the two known types
of asymptotic growth. A striking aspect of infinite resolutions is the asymptotic
stability that they display, both numerically (uniform patterns of Betti numbers)
and structurally (high syzygies have similar module-theoretic properties). In many
cases this phenomenon can be traced to a simple principle: the beginning of a res-
olution is strongly influenced by the defining relations of the module, that can be
arbitrarily complicated; far from the source, the relations of the ring (thought of
as a residue of some regular local ring) take over. In other words, the singularity
of the ring dominates asymptotic behavior.

Part of the evidence comes from information gathered over specific classes
of rings. At one end of the spectrum sit the complete intersections, characterized
by asymptotically polynomial growth of all resolutions. The other end is occupied
by the Golod rings, defined by an extremal growth condition on the resolution of
the residue field; all resolutions over a Golod ring have asymptotically exponential
growth; higher order homology operations, the Massey products, play a role in
constructions. Results on complete intersections and Golod rings are presented in
detail; generalizations are described or sketched.

A basic problem is whether some form of the polynomial/exponential di-
chotomy extends to all modules over local rings. No intermediate growth occurs
for the residue field, a case of central importance. This result and its proof offer
a glimpse at a mutually beneficial interaction between local algebra and rational
homotopy theory, that has been going on for over a decade.

A major link in that connection is the homotopy Lie algebra of a local ring;
it corresponds to the eponymous object attached to a CW complex, and has a
representation in the cohomology of every R—module. Its structure affects the as-
ymptotic patterns of resolutions, and is particularly simple when R is a complete
intersection: each cohomology module is then a finite graded module over a poly-
nomial ring, that can be investigated with all the usual tools. This brings up a
strong connection with modular representations of finite groups.

* * *

Proving a result over local rings, we imply that a corresponding statement
holds for graded modules over graded rings. Results specific to the graded case
are mostly excluded; that category has a life of its own: after all, Hilbert [88]
introduced resolutions to study graded modules over polynomial rings.

* * *



4 L. L. Avramov

The notes assume a basic preparation in commutative ring theory, includ-
ing a few homological routines. Modulo that, complete proofs are given for all
but a couple of results used in the text. Most proofs are second or third genera-
tion, many of them are new. Constructions from DG algebra are developed from
scratch. A bonus of using DG homological algebra is that spectral sequences may
be eliminated from many arguments; we have kept a modest amount, for reasons
of convenience and as a matter of principle.

* * *

The only earlier monographic exposition specifically devoted to infinite res-
olution is the influential book of Gulliksen and Levin [83], which concentrates on
the residue field of a local ring. The overlap is restricted to Sections 6.1 and 6.3,
with some differences in the approach. Sections 6.2, 7.2, and 8.2 contain material
that has not been presented systematically before.

1. Complexes

This chapter lays the ground for the subsequent exposition. It fixes terminology
and notation, and establishes some basic results.

All rings are assumed’ commutative. No specific references are made to stan-
dard material in commutative algebra, for which the books of Matsumura [117],
Bruns and Herzog [46], or Eisenbud [58], provide ample background.

For technical reasons, we choose to work throughout with algebras over a
ubiquitous commutative ring k, that will usually be unspecified and even unmen-
tioned? (think of k = Z, or k = k, a field).

1.1. Basic constructions. Let R be a ring.
A (bounded below) complex of R—modules is a sequence

8n an—
Fog = Fug —— -

Fy,

of R-linear maps with 8,19, = 0 for n € Z (and F,, = 0 for n < 0). The
underlying R-module {F,,}ncz is denoted F. Modules over R are identified with
complexes concentrated in degree zero (that is, having F,, = 0 for n # 0); ||
denotes the degree of an element x; thus, || = n means x € F,.

Operations on complexes. Let E, F, G be complexes of R—modules.

A degree d homomorphism (: F — G is simply a collection of R-linear maps
{Bn: Frn = Gridtnez. All degree d homomorphisms from F to G form an R-
module, Homp (F, G)4. This is the degree d component of a complex of R—modules

1Following a grand tradition of making blanket statements, to be violated down the road.
2Thus, the unqualified word ‘module’ stands for ‘k-module’; homomorphisms are k-linear; writing
‘ring’ or ‘homomorphism of rings’, we really mean ‘k—algebra’ or ‘homomorphism of k—algebras’.
The convention is only limited by your imagination, and my forgetfulness.
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Homp (F,G), in which the boundary of 3 is classically defined by
d(B) = 9%p — (—=1)Plgod" .
The power of —1 is a manifestation of the sign that rules over homological algebra:
Each transposition of homogeneous entities of degrees i, j is ‘twisted’ by a factor
(—1)¥, and permutations are signed accordingly.
The cycles in Hompg (F, G) are those homomorphisms 3 that satisfy do3 =
(=1)1P1800; they are called chain maps. Chain maps 3,3 : F — G are homotopic

if there exists a homomorphism o: F — G of degree |8| + 1, called a homotopy
from £ to @, such that

B = =000+ (-1)lgod;
equivalently, 3 — ' is the boundary of ¢ in the complex Hompg (F, G) .

A chain map § induces a natural homomorphism H(3): H(F) — H(G) of
degree |3]; homotopic chain maps induce the same homomorphism. Chain maps of
degree zero are the morphisms of the category of complexes. A quasi-isomorphism
is a morphism that induces an isomorphism in homology; the symbol ~ next to

an arrow identifies a quasi®-isomorphism.
The tensor product E ®@p F has (E ®gr F),, = Ziﬂ-:n E; ®r F; and

Aew f)=08P() o f+ (-D)kewd”(f).

The transposition map (e ® f) = (—1)IlFl f @ e is an isomorphism of complexes
T - EQrF —- F®rFE.
A degree d homomorphism 3: F' — G induces degree d homomorphisms

Hompg (E, ) : Hompg (E, F) — Hompg (E,G) ,
Hompg (E, B) (a) = foar;
Homp (B, F) : Hompg (G, E) — Hompg (F, E) ,

Homp, (8, E) (7) = (—=1)1#IMy08;
BRRE: FOrE —-GerE, (BerE)(f®e)=0(f)®e;

E®rB:E®@rF - E®rG, (E@rpB)(e® f)=(-1)"lkex p(f),

with signs determined by the Second Commandment*. All maps are natural in
both arguments. If § is a chain map, then so are the induced maps.

The shift =F of a complex F has (=F),, = F,_1 for each n. In order for the
degree 1 bijection »': FF — sF, sending f € F,, to f € (2F),41, to be a chain
map the differential on > F is defined by 0% (= (f)) = —=F(97(f)).

The mapping cone of a morphism 3: F — G is the complex C(() with un-

G Gy-1
derlying module G* @ (sF)%, and differential (80 (= )82 Fz(ﬁ >> The connecting

3The symbol 2¢ is reserved for the real thing.
40bey the Sign! While orthodox compliance is a nuisance, transgression may have consequences
ranging anywhere from mild embarrassment (confusion of an element and its opposite) to major
disaster (creation of complexes with 92 # 0).
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homomorphism defined by the exact mapping cone sequence
0-G—C(B)—-=F—0

is equal to H(8). Thus, (3 is a quasi-isomorphism if and only if H(C(5)) = 0.

A projective (respectively, free) resolution of an R—module M is a quasi-
isomorphism €f": F — M from a complex F of projective (respectively, free)
modules with F,, = 0 for n < 0. The projective dimension of M is defined by
pdr M = inf{p |M a projective resolution with F, =0 for n > p}.

Example 1.1.1. In the Koszul complex K = K(g; R) on a sequence g = ¢1, ..., gr
of elements of R the module K7 is free with basis z1,...,x,, the module K, is
equal to Az K1 for all n, and the differential is defined by

n
8(331'1 VACERIVAN xzn) = Z(—l)jilgij Ty AR /\.1313.71 A $ij+1 AR /\inn .
j=1

For each R—module M, set K(g; M) = K(g; R)®r M, and note that Ho(K (g;
M)) = M/(g)M. A crucial property of Koszul complexes is their depth®-sensitivity:
If M is a finite module over a noetherian ring R, then

supfi | H; (K (g: M) # 0} = r — depthi((g), M).

In particular, if g1, ..., g, is an R-regular sequence, then K(g; R) is a free resolu-
tion of R’ = R/(g) over R, and H(K (g; M)) = Tor™ (R', M) .

Minimal complexes. A local ring (R,m,k) is a noetherian ring R with unique
maximal ideal m and residue field ¥ = R/m. A complex of R—modules F', such
that 9, (F,) C mF,,_1 for each n, is said to be minimal. Here is the reason:

Proposition 1.1.2. If F' is a bounded below complex of finite free modules over a
local ring (R, m, k), then the following conditions are equivalent.
(i) F is minimal.
(ii) Fach quasi-isomorphism a: F — F is an isomorphism.
(iii) Fach quasi-isomorphism B: F — F’' to a bounded below minimal complex
of free modules is an isomorphism.
(iv) Fach quasi-isomorphism (: F — G to a bounded below complex of free
modules is injective, and G =Im 8 @ F for a split-exact subcomplex E.

Proof. (i) = (iii). The mapping cone C(f) is a bounded below complex of free
modules with H(C(8)) = 0. Such a complex is split-exact, hence so is C(8) @ g k =
C(B ®R k). Thus, H(8 ®p k) is an isomorphism. Since both F' ®pr k and F’' Qg k
have trivial differentials, each (3, ®g k is an isomorphism. As F,, and F), are free
modules, 3, is itself an isomorphism by Nakayama.

5Recall that the depth of an ideal I C R on M, denoted depthp (I, M), is the maximal length of
an M-regular sequence contained in I.
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(iii) = (iv). Choose a subset Y C G such that 9(Y) ®g 1 is a basis of
the vector space (G ®g k). As Y UJ(Y) is linearly independent modulo mG, it
extends to a basis of the R-module G*. Thus, the complex

E: @ (0 — Ry — RO(y) — 0) (%)

yey

is split-exact and a direct summand of G, hence G — G/E = G’ is a quasi-
isomorphism onto a bounded below free complex, that is minimal by construction.
As the composition §’: F — G — G’ is a quasi-isomorphism, it is an isomorphism
by our hypothesis. The assertions of (iv) follow.

(iv) = (ii): the split monomorphisms «,: F;,, — F), are bijective.

(ii) = (i). Assume that (i) fails, and form a surjective quasi-isomorphism
B: F — F/F' = G onto a bounded below free complex as in the argument above.
There is then a morphism v: G — F with gy = idG, cf. Proposition 1.3.1. Such a
~ is necessarily a quasi-isomorphism, hence v3 = « is a quasi-isomorphism F' — F
with Ker o D F’ # 0, a contradiction. O

1.2. Syzygies. In this section (R, m, k) is a local ring. Over such rings, projectives
are free; for finite modules, this follows easily from Nakayama.

A minimal resolution F' of an R—module M is a free resolution, that is also a
minimal complex. If mq, ..., m, minimally generate M, then the Third Command-
ment® prescribes to start the construction of a resolution by a map Fp = R"™ — M
with (a1,...,a.) — aimy + -+ + a,m,. This is a surjection with kernel in mR";
iterating the procedure, one sees that M has a minimal resolution. As any two
resolutions of M are linked by a morphism that induces the identity of M, Propo-
sition 1.1.2 completes the proof of the following result of Eilenberg from [55], where
minimal resolutions are introduced.

Proposition 1.2.1. Fach finite R—module M has a minimal resolution, that is
unique up to isomorphism of complexes. A minimal resolution F is isomorphic
to a direct summand of any resolution of M, with complementary summand a
split-exact free complex. In particular, pdg M = sup{n | F,, # 0}. O

The ‘uniqueness’ of a minimal resolution F' implies that each R-module
Syzf} (M) = Coker(0p41: Fi1 — Fp) = 0, (Fy,) is defined uniquely up to a (non-
canonical) isomorphism; it is called the n’th syzygy of M; note that Syzé% (M) =M,
and SyzZ (M) = 0 for n < 0.

The number B%(M) = rankg F), is called the n'th Betti number of M (over
R). The complexes F® gk and Homp, (F, k) have zero differentials, so Tor™ (M, k)
>~ F, ®r k and Extls (M, k) = Hompg (F,, k) ; in other words:
Proposition 1.2.2. If M is a finite R—module, then

BE(M) = vr(Syz (M)) = dimy, Tory (M, k) = dimy, Ext}, (M, k)

and pdp M = sup{n | BE(M) # 0}. O

6Resolve minimally!
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Syzygies behave well under certain base changes by local homomorphisms,
that is, homomorphisms of local rings (R, m) — (R/,m’) with ¢(m) Cw'.

Proposition 1.2.3. If M is a finite R—module and ¢: R — R’ is a local homomor-
phism such that Torf (R',M) =0 forn > p, then

Syzfip (R g Syz) (M)) = R ®p Syz’ (M) for n>p.

Proof. Let F' be a minimal free resolution of M over R.

Since H, (R ®r F) = Tork (R',M) = 0 for n > p, the complex of R'—
modules (R’ ®g F')s  is a free (and obviously minimal) resolution of the module
Coker(R' ®g Op+1) = R @ Coker 9,11 = R ®p Syzzl';c (M). O

Corollary 1.2.4. Let M be a finite R—module.
(1) If R — R’ is a faithfully flat homomorphism of local rings, then
Syz? (R @r M) = R' @p Syzlt (M) for n>0.
(2) If a sequence g1,...,9r € R is both R—regular and M -regular, then
Syzl' (M') = R' @5 Syz™ (M) for n>0

n

with R = R/(g1,...,9-)R, and M" = M/(g1,...,9-)M. O
Proof. The proposition applies with p = 0, twice: by definition in case (1), and by
Example 1.1.1 in case (2). O

When R is local, depthyp M = depthg(m, M) and depth R = depthp R.

Corollary 1.2.5. If R is a direct summand of Syz,lf (M), then n < m, where m =
max{0, depth R — depth M }.

Proof. Let n > m, and assume that Syz” (M) has R as a direct summand. Choose
a maximal (R@® M)-regular sequence, and complete it (if necessary) to a maximal
R-regular sequence g. By Example 1.1.1 and Proposition 1.2.3, R’ = R/(g) is a
direct summand of a syzygy of the R'-module R’ @ Syz? (M), hence sits in mF”,
where F’ is a free R'—module. As depth R’ = 0, the ideal (0: g m) # 0 annihilates
R'; this is absurd. O

Depth can be computed cohomologically, by the formula
depth, M = inf{n | Ext} (k, M) # 0}.
The following well known fact is recorded for ease of reference.
Lemma 1.2.6. If M is a finite R—module, then
depthp M +1 when depthp M < depth R;
depthp, Syz* (M) = { g > depth R when  depthyp M = depth R;
depth R when  depthp M > depth R.

Proof. Track the vanishing of Ext’, (k,—) through the long exact cohomology
sequence induced by the exact sequence 0 — Syzf (M) — Fy — M — 0. ]
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Proposition 1.2.7. If M is a finite R—-module with pdp M < oo, then

(1) pdg M + depthy M = depth R.

(2) (0:pM) =0, or (0: g M) contains a non-zero-divisor on R.

(3) Yoo o(=1)"BE(M) > 0, with equality if and only if (0: g M) # 0.
Proof. Set m = pdp M, g = depthy M, and d = depth R.

(1) As Syz” (M) # 0 is free, Corollary 1.2.5 yields m + g < d. Thus, g < d,
and if g = d, then M is free and (1) holds. If g < d, then assume by descending
induction that (1) holds for modules of depth > g, and use the lemma:

m+ g = (pdp Syzi' (M) + 1) + (depthp Syz;' (M) — 1) = d.

(2) and (3). If F is a minimal resolution of M and p € Spec R, then

0= (Fn)p = (Fn-1)p =+ — (F1)p = (Fo)p = My — 0
is exact. If p € Ass R, then depth R, = 0, hence M, is free by (1).

Counting ranks, we get Y. (—1)"85(M) = rankg, M, > 0.

If > (-1)"BE(M) = 0, then M, = 0 for all p € AssR, so (0:g M) ¢
Upeass r p» that is, (0: g M) contains a non-zero-divisor.

If (0:r M) # 0, then (0:g, My) = (0:g M), # 0 for p € Ass(0:r M) C
Ass R; as M, is free, this implies M, = 0, and so Y_ (—1)"BE(M) = 0. O

The arguments for (2) and (3) are from Auslander and Buchsbaum’s paper

[17]; there is a new twist in the proof of their famous equality (1). It computes
depths of syzygies when pdy M < oo; otherwise, Okiyama [126] proves:

Proposition 1.2.8. If M is a finite R—-module with pdp M = oo, then

depth Syz” (M) > depth R for n > max{0,depth R — depthy M}
with at most one strict inequality, at n =0 or at n = depth R — depthp M + 1.
Proof. Set M,, = Syzf’ (M) and d = depth R. Tterated use of Lemma 1.2.6 yields

the desired inequality, and reduces the last assertion to proving that inequalities
for n and n + 1 imply equality for n + 2.

Break down a minimal free resolution F' of M into short exact sequences
E':0— My, — F, —" M; — 0. If depthg Npy2 > d, then the co-
homology exact sequence of E"*! implies that the homomorphism

Ext% (k, mpy1) © Bxth (k, Fp1) — Bxt® (k, M,41)
is injective. As depthp M,, > d, the cohomology sequence of E" shows that

Ext% (k,tny1) : BExth (k, My 1 RM) — Ext% (k, F,)
is injective. Since t,0mp+1 = Ont1: Fnt1 — Fn, we see that the map

Ext% (k, 0p11) = Ext% (k, 1) 0 Ext% (k, mpy1)

is injective as well. But O0,41: Fy,41 — F, is a matrix with elements in m, so
Ext% (k,0nt+1) = 0, hence Extf.l% (k, Fro41) = 0. Since depthp Fj,41 = d this is
impossible, so depth M,, < d, as desired. O
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Remark 1.2.9. By the last two results, there exists an R-regular sequence g of
length d = depth R, that is also regular on N = Syz” (M), where m = max{0, d —
depth M}. Proposition 1.2.4.2 yields 8%, (M) = BE(N) = ﬂf/(g)(N/(g)N) for
n > 0. When k is infinite, a sequence g may be found that also preserves multi-
plicity: mult(R) = mult(R/(g)); if k is finite, then R’ = R[t]y[y has mult(R’) =
mult(R), and SF(N) = 85 (N @r R'), for n > 0.

Remark 1.2.10. The name graded ring is reserved! for rings equipped with a direct
sum decomposition R = @i>0 R;, and having Ry = k, a field. For such a ring
we denote m the irrelevant mazimal ideal @, _ o R;. An R-module M is graded if
M = Gajez M; and R;M; C M;y; for all 4,j € Z. To minimize confusion with
gradings arising from complexes, we say that a € M; has internal degrees i, and
write deg(a) = 4. The d’th translate of M is the graded R—module M(d) with
M(d); = Mj+q. A degree zero homomorphism o: M — N of graded R-modules
is an R-linear map such that a(M;) C N; for all j.

The free objects in the category of graded modules and degree zero homomor-
phisms are isomorphic to direct sums of modules of the form R(d). Each graded
R-module M has a graded resolution by free graded modules with differentials
that are homomorphisms of degree zero. If M; = 0 for j < 0 (in particular, if M
is finitely generated), then such a resolution F' exists with 9(F,,) C mF,, for all n.
This minimal graded resolution is unique up to isomorphism of complexes of graded
R-modules, so the numbers (3,,; appearing in isomorphisms F,, = @ ez R(—j)Bns
are uniquely defined, and finite if M is a finite R—module; these graded Betti num-
bers of M over R are denoted S (M).

1.3. Differential graded algebra. The term refers to a hybrid of homological al-
gebra and ring theory. When describing the progeny’, we systematically replace
the compound ‘differential graded’ by the abbreviation DG.

DG algebras. A DG algebra A is a complex (A, ), with an element 1 € Ay (the
unit), and a morphism of complexes (the product)

ARkA— A, a®br— ab,

that is unitary: la = a = al, and associative: a(bc) = (ab)c. In addition, we assume
the A is (graded) commutative:

ab = (—1)1*lpg for a,b e A and a> =0 when |a| isodd,
and that A; = 0 for ¢ < 0; without them, we speak of associative DG algebras.

The fact that the product is a chain map is expressed by the Leibniz rule:

d(ab) = A(a)b + (—1)!ad(b) for a,be A,

Its importance comes from a simple observation: The cycles Z(A) are a graded
subalgebra of A, the boundaries 9(A) are an ideal in Z(A), hence the canonical

It is not that exotic: a commutative ring is precisely a DG algebra concentrated in degree zero,
and a DG module over it is simply a complex. A prime example of a ‘genuine’ DG algebra is a
Koszul complex, with multiplication given by wedge product.



Infinite Free Resolutions 11

projection Z(A) — H(A) makes the homology H(A) into a graded algebra. In
particular, each H,, (A) is a module over the ring Hy(A).

A morphism of DG algebras is a morphism of complexes ¢: A — A’, such
that ¢(1) = 1 and ¢(ab) = ¢(a)p(b); we say that A’ is a DG algebra over A.

If A and A’ are DG algebras, then the tensor products of complexes A ® A’
is a DG algebra with multiplication (a ® a’)(b ®@ V') = (=1)!*IIl(ab @ a'V).

A graded algebra is a DG algebra with zero differential, that is, a family®
{A,}, rather than a direct sum ,, Ay, .

A DG module U over the DG algebra A is a complex together with a mor-
phism A ® U — U, a ® u — au, that satisfies the Leibniz rule

d(au) = d(a)u + (—1)1*ad(u) for a€AandueU

and is unitary and associative in the obvious sense. A module is a DG module with
zero differential; U? is a module over A%, and H(U) is a module over H(A).

Let U and V be DG modules over A.

A homomorphism (: U — V of the underlying complexes is A-linear if
Blau) = (—1)PllelaB(u) for all @ € A and u € U. The A-linear homomorphisms
form a subcomplex Homy (U, V) C Homy (U, V). The action

(aB)(u) = a(B(w)) = (=1)!175(au)

turns it into a DG module over A. Two A-linear chain maps 3,3 : U — V that
are homotopic by an A-linear homotopy are said to be homotopic over A. Thus,
Hy(Homy (U, V) is the set of homotopy classes of A-linear, degree d chain maps.
DG modules over A and their A-linear morphisms are, respectively, the objects
and morphisms of the category of DG modules over A.

The residue complex U ®4 V of U ®, V' by the subcomplex spanned by all
elements au @y v — (—1)!%1*ly @y av, has an action

a(u®@4v) =au®4v = (—1)‘“”"'14 @4 Qv .

It is naturally a DG module over A, and has the usual universal properties.

The shift U becomes a DG module over A by setting as? (u) = (—1)l/sY(au);
the map =V : U — sU is then an A-linear homomorphism.

The mapping cone of a morphism 3: U — V of DG modules over A is a DG
module over A, and the maps in the mapping cone sequence are A-linear.

Semi-free modules. A bounded below DG module F' over A is semi-free if its
underlying A"-module F? has a basis? {e)}rea. Thus, for each f € F there are
unique ay € A with f =3, axex; we set A, = {A € A:|ex| =n}.

8This convention reduces the length of the exposition by 1.713%, as it trims from each argument
all sentences starting with ‘We may assume that the element x is homogeneous’; note that by
Remark 1.2.10 above, a graded ring is the usual thing.

90ver a ring, a such a DG module is simply a bounded below complex of free modules. For
arbitrary DG modules over any graded associative DG algebras, the notion is defined by a
different condition: cf. [33], where the next three propositions are established in general.
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Note that F is not a free object on {ex} in the category of DG modules over
A: As O(ey) is a linear combination of basis elements e, of lower degree, the choice
for the image of e, is restricted by the choices already made for the images of the
e,. What freeness remains is in the important lifting property:

Proposition 1.3.1. If F is a semi-free DG module over a DG algebra A, then each
diagram of morphisms of DG modules over A represented by solid arrows

U
T

L P

F——V

with a surjective quasi-isomorphism B can be completed to a commutative diagram
by a morphism v, that is defined uniquely up to A-linear homotopy.

Remark. A degree d chain map F' — V is nothing but a morphism F — ==V, so
the proposition provides also a ‘unique lifting property’ for chain maps.

Proof. Note that F" = @‘eﬂ <nAex is a DG submodule of F' over A, and F" =
0 for n <« 0. By induction on n, we may assume that v": F™ — U has been
constructed, with a|pn = Soy™.

For each A € A, 41, we have d(ad(ey)) = a(d?(ey)) = 0, so ad(ey) is a cycle
in V. Since (3 is a surjective quasi-isomorphism, there exists a cycle z§ € U, such
that B(2}) = ad(ex). Thus, zy = y"0(ex) — 2} € U satisfies

d(zx) ="9%*(ex) — 9(24) =0 and B(zn) = ad(ey) — B(z4) =0,
that is, z) is a cycle in W = Ker 8. The homology exact sequence of the short

exact sequence of DG modules 0 - W — U — V — 0 shows that H(W) = 0,
hence z) = 9(y,) for some yy € W. In view of our choices, the formula

’Y"H<f+ Z a,\(iA)’Y"(f)Jr Z aryx for fer"

AEA 41 AEA, 11
defines a morphism of DG modules y**1: F**tl — U, with y"T!|pn = 4™, and
completes the inductive construction. As ' = J,, F", setting v(f) = 7"(f)

whenever f € F", we get a morphism v: F' — U with o = (3.

If v': F — U is a morphism with « = v/, then 3(y —+') = 0, hence there
exists a morphism §: F — W such that v — ' = 1§, where t: W C U is the
inclusion. Again, we assume by induction that a homotopy ¢™: F"™ — W between
0|pn and 0 is available: §|pn = O™ + 0™0. As

A(8(ex) —0"d(ex)) = 69(ex) — (90™)(9(er))
= (0= 090")(0(exr)) = (6"0)(I(er)) =0
and H(W) = 0, there is a wy € W such that 9(wy) = d(ex) — c™I(ey). Now

Un+1(f+ Z a,\e,\>:g"(f)+ Z (—1)"“‘@1@

AEA L +1 AEAL 11
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is a degree 1 homomorphism o™ *1: F**t — W, with §|pnt1 = o™ + o™ 10,
and 0" |pn = o™ In the limit, we get a homotopy o: F — W from ¢ to 0, and
then ¢/ = 10: F — U is a homotopy from v to 7. O

Proposition 1.3.2. If F' is a semi-free DG module, then each quasi-isomorphism
B:U —V of DG modules over A induces quasi-isomorphisms

Homy (F,3) : Homy (F,U) — Homa (F,V) ; FRAB: FRAU - F®aV.

Proof. To prove that Homy (F, 8) is a quasi-isomorphism, we show the exactness
of its mapping cone, which is isomorphic to Hom4 (F, C(3)). Thus, we want to
show that each chain map F' — C(f) is homotopic to 0. Such a chain map is a
lifting of F© — 0 over the quasi-isomorphism C(8) — 0. Since 0: F — C(f) is
another such lifting, they are homotopic by Proposition 1.3.1.

To prove that f® 4 F' is a quasi-isomorphism, we use the exact sequences 0 —
Fr — prtl o Pl 0 of DG modules over A, involving the submodules F™
from the preceding proof. The sequences split over A?, and so induce commutative
diagrams with exact rows

0 — = U@ F" —— U@ F"t! — S U@ F"! —— 0
ﬂ®AF"l ﬁmF”“l ﬁwfwll
0 — > VR F" — s Ve Ftl — s Ve Frtt —— 0.
By induction on n, we may assume that 5 ®4 F™ is a quasi-isomorphism. As

Pl o @ Aey with 9(ey) =0forall A € Apy1,
AEAL 41

the map f ®4 F"t! is a quasi-isomorphism. By the Five-Lemma, 3 ®4 F"*t! is
one as well, hence so is f®4 F = § ® (injlim,, F™) = injlim,, (8 ® 4 F™). O

Proposition 1.3.3. Let U be a DG module over a DG algebra A. Each quasi-iso-
morphism ~v: F — G of semi-free modules induces quasi-isomorphisms

Homy (v,U) : Homa (G,U) — Homyu (F,U) ; YRAU: FRAU - G®4U.

Proof. The mapping cone C = C(v) is exact. It is semi-free, so by the pre-
ceding proposition the quasi-isomorphism C' — 0 induces a quasi-isomorphism
Homu (C,C) — 0. Thus, there is a homotopy o from id® to 0. It is eas-
ily verified that Homy (0,U) and o ® 4 U are null-homotopies on Hom4 (C,U)
and C'®4 U, so these complexes are exact. They are isomorphic, respectively, to
71 C(Homy (7,U)) and C(y®4 U), which are therefore exact. We conclude that
Homy (v,U) and v ®4 U are quasi-isomorphisms. O



14 L. L. Avramov

The preceding results have interesting applications even for complexes over
a ring. A first illustration occurs in the proof of Proposition 1.1.2. Another one is
in the following proof of the classical Kinneth Theorem.

Proposition 1.3.4. If G is a bounded below complex of free R—modules, such that
F = H(G) is free, then the Kiinneth map

kY H(G) @ H(U) — H(G ®r U),
kY (cls(g) ® cls(u)) = cls(g @ u),
is an isomorphism for each complex of R—modules U.

Proof. Set F = H(G). The composition of an R— linear splitting of the surjection
Z(G) — F with the injection Z(G) — G is a quasi-isomorphism «y: F' — G of semi-
free DG modules over R. By the last proposition, sois y®rU: F®rU — GRrU.
The Kiinneth map being natural, it suffices to show that ~*U is bijective. As
OF =0 and each F, is free, this is clear. O

2. Multiplicative Structures on Resolutions

Is it possible to ‘enrich’ resolutions over a commutative ring @), by endowing them
with DG module or DG algebra structures? The rather complete — if at first
puzzling — answer comes in three parts:

e For residue rings of (), algebra structures are carried by essentially all reso-
lutions of length < 3; for finite —modules, DG module structures exist on
all resolutions of length < 2.

e Beyond these bounds, not all resolutions support such structures.

e There always exist resolutions, that do carry the desired structure.

In this chapter we present in detail the results available on all three counts. Most
developments in the rest of the notes are built on resolutions that comply with the
Fourth Commandment!?.

2.1. DG algebra resolutions. Let ) be a commutative ring and let R be a Q-
algebra. A DG algebra resolution of R over () consists of a (commutative) DG alge-
bra A, such that A; is a projective Q—module for each i, and a quasi-isomorphism
e A — R of DG algebras over Q.

The next example is the grandfather of all DG algebra resolutions.

Example 2.1.0. If R = Q/(f) for a Q-regular sequence f, then the Koszul complex
on f is a DG algebra resolution of R over Q.

‘Short’ projective resolutions often carry DG algebra structures.

10Resolve in kind!
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Example 2.1.1. If R = @Q/I has a resolution A of length 1 of the form
0—F—-0Q—0

then the only product that makes it a graded algebra over @) is defined by the
condition Fj - F1 = 0; it clearly makes A into a DG algebra.

If ¢ is a matrix, then for J, K C N we denote ¢ the submatrix obtained by
deleting the rows with indices from J and the columns with indices from K.

Example 2.1.2. If R = @/ has a free resolution of length 2, then by the Hilbert-
Burch Theorem there exist a non-zero-divisor a and an r X (r — 1) matrix ¢, such
that a free resolution of R over @ is given by the complex

r—1 T
A: OH@kai@ergQ—ﬂ)
k=1 j=1

0o = ¢ 01 = a(det(c;ﬁl), ey (—1)j_1 det(qﬁj), ceey (—1)T_1 det((br))

Herzog [86] shows that there exists a unique DG algebra structure on A, namely:
r—1
ej ey =—€ e =—a Z(—l)ﬁ'k“ det(qbf»k)fg for j<k; ej-e; =0.
=1

Example 2.1.3. An ideal T in a local ring (Q,n) is Gorenstein if R = @Q/I has
pdg R =p < oo, Ext) (R, Q) = 0 for n # p, and Extg (R,Q) = R; thus, when Q
is regular, I is Gorenstein if and only if R is a Gorenstein ring,.

If I is Gorenstein, pdy R = 3, and I is minimally generated by r elements,
then J. Watanabe [157] proves that the number r is odd, and Buchsbaum-Eisenbud
[47] show that there exists an alternating r x r matrix ¢ with elements in n, such
that a minimal free resolution A of R over Q has the form

A: oﬁQg&@kai@erﬂQﬁo
k=1 j=1

82 = ¢ al = (pf((ﬁ%), BN} (_1)j71 pf((ﬁ?), BRI (_1)7“71 pf(¢:)) = 6;
where pf(«) is the Pfaffian of a. A DG algebra structure on A is given by

r

€j € = —€-€j = Z(—l)j_‘—k_‘—epjkg pf((biii)fg for j < ]43;
(=1

ejre; =05 e fu=[fu-ej =g,
where pjpe is equal to —1 if j < £ < k, and to 1 otherwise, cf. [21].

More generally, Buchsbaum and Eisenbud [47] prove that DG algebra struc-
tures always exist in projective dimension < 3:

Proposition 2.1.4. If A is a projective resolution of a Q—module R, such that Ag =
Q and A, =0 for n >4, then A has a structure of DG algebra.
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Proof. For the construction, consider the complex S?(A), that starts as

co o (A1 ® Ag) ©52(A) B Ay 25 (41 @ Ag) @ As
D5 (N2AD @ Ay 25 A 25 Q-0
with differentials defined by the condition d,,
da(a Ab) = 1(a)b—h(b)a; d5(a®b) = —a A (b) + i(a)b;
04(a®b) = 01 (a)b—ax*d3(b); 04(axb) =2(a) b+ 02(b) ® a,

4, = Op, and the formulas

where * denotes the product in the symmetric algebra. The complex SZ(A) is
projective and naturally augmented to R, so by the Lifting Theorem there is a
morphism z: S*(A) — A that extends the identity map of R.

Define a product on A (temporarily denoted -) by composing the canonical
projection A ® A — S2(A) with p. With the unit 1 € Q@ = Ag, one has all
the properties required from a DG algebra except, possibly, associativity. Because
A, = 0 for n > 4, this may be an issue only for a product of three elements a, b,
¢, of degree 1. For them we have

O5((a-b)-c)=0a(a-b)-c+ (a-b)0i(c)
= (01(a)b) - ¢ — (01(b)a) - ¢+ (a - b)0: (c)
=01(a)(b-c) — 1 (b)(a-c)+ O1(c)(a-Db).

A similar computation of d3(a - (b- ¢)) yields the same result.
As 05 is injective, we conclude that (a-b)-c=a-(b-c). O

Next we describe two existence results in projective dimension 4.

Example 2.1.5. If Q is local, pdg Q/I = 4, and I is Gorenstein, then Kustin and
Miller [101] prove that the minimal free resolution of R over @ has a DG algebra
structure if @ > 3, a restriction removed later by Kustin [97].

Example 2.1.6. If [ is a grade 4 perfect ideal generated by 5 elements in a local
ring () containing 3, then Kustin [98], building on work of Palmer [127], constructs
a DG algebra structure on the minimal free resolution of Q/I.

The question naturally arises whether it is possible to put a DG algebra
structure on each minimal resolution of a residue ring of a local ring. As far as
the projective dimension is concerned, the list above turns out to be essentially
complete: for (perfect) counterexamples in dimension 4, cf. Theorem 2.3.1.

On the positive side, each @Q-algebra has some DG algebra resolution, ob-
tained by a universal construction: Given a cycle z in a DG algebra A, we embed
A into a DG algebra A’ by freely adjoining a variable y such that 0y = z. In A’
the cycle z has been killed: it has become a boundary.

Construction 2.1.7. Exterior variable. When |z| is even, k[y] is the exterior algebra
over k of a free k-module on a generator y of degree |z| 4+ 1; the differential
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of Aly]* = A® @y k[y] is given by
(ao + ary) = (ao) + a1y + (—1)!*ay z;
thus, when A is concentrated in degree zero, A[y] is the Koszul complex K(z; A).

Construction 2.1.8. Polynomial variable. When |z| is odd, k[y] is the polynomial
ring over k on a variable y of degree |z| + 1, A[y]* = A% @y k[y], and

8<¥aiyi> = ;a(ai)yi + ;(—1)\%'@@1‘—1 .

In either case, 0 is the unique differential on A[y]? that extends the differential
on A, satisfies 9(y) = z, and the Leibniz formula; we call y a variable over A, and
often use the more complete notation, Ay |d(y) = z].

Let u = cls(z) € H(A) be the class of z. The quotient complex A[y]/A is
trivial in degrees n < |z| and is equal to Agy in degree n = |z|+1, so the homology
exact sequence shows that the inclusion A < A[y] induces a morphism of graded
algebras H(A)/uH(A) — H(A[y]) that is bijective in degrees < |z|.

A semi-free extension of A is a DG algebra A’ obtained by repeated adjunc-
tion of free variables. If Y is the set of all variables adjoined in the process, then
we write A[Y] for A’; we also set Y,, = {y € Y | |y| = n} and Y,, = U, V.
Semi-free algebra extensions have a lifting property:

Proposition 2.1.9. If A[Y] is a semi-free extension of a DG algebra A, then each
diagram of morphisms of DG algebras over A represented by solid arrows

B
7
AlY] ——C

«

with a surjective quasi-isomorphism B can be completed to a commutative diagram
by a morphism ~y, that is defined uniquely up to A-linear homotopy.

Proof. Set A* = A[Y.;]. Starting with the structure map A — B, we assume that
for some n > —1 we have a morphism ": A™ — B of DG algebras over A, with
Y™ = alan. Over A", the set {1} UY,, ;1 generates a semi-free submodule F™*1
of A[Y]. By Theorem 1.3.1, v extends to a morphism 6"*1: F"*1 — B of DG
modules over A™. The graded commutative algebra (A"*1)% is freely generated
over (A™)? by Y41, so 6”1 extends uniquely to a homomorphisms of graded
algebras 4" t1: A"*t! — B. Since 6"*! is a morphism of DG modules, y"**! is
necessarily a morphism of DG algebras. In the limit, one gets a morphism of DG
algebras v: A[Y] — B, with the desired properties. a

A resolvent of QQ—algebra R is a DG algebra resolution of R over @, that is a
semi-free DG algebra extension of Q.
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Proposition 2.1.10. Each (surjective) homomorphism : Q@ — R has a resolvent
QY] (with Yo = @). When Q is noetherian and R is a finitely generated Q—algebra
there exists a resolvent with Y, finite for each n.

Proof. Factor ¢ as an inclusion @ — Q[Yy] into a polynomial ring on a set Yy
of variables and a surjective morphism ¢': @Q[Yy] — R that maps Yj to a set of
generators of the @—algebra R. The Koszul complex @ — Q[Yo][[Y<1] on a set of
generators of Ker )’ is a semi-free extension of @, with Ho(Q[Y<1]) = R.

By induction on ¢, assume that consecutive adjunctions to Q[Y<1] of sets Y
of variables of degrees j = 2,...,n have produced an extension QQ — Q[Y,,] with
H;(Q[Y<,]) =0 for 0 < i < n. Adjoin to Q[Y<,] a set Y, 41 of variables of degree
n + 1 that kill a set of generators of the Q[Yo]-module H, (Q[Y< »]). As observed
above, we then get H;(Q[Y<n41]) =0for 0 < i <mn—+ 1.

Going over the induction procedure with a noetherian hypothesis in hand, it
is easy to see that a finite set Y, suffices at each step. O

2.2. DG module resolutions. There is nothing esoteric about DG module struc-
tures on resolutions of modules. In fact, they offer a particularly adequate frame-
work for important commutative algebra information.

Remark 2.2.1. Let U be a free resolution of a Q-module M. If f € (0:¢ M),
then both f idY and 0V induce the zero map on M, hence they are homotopic,
say fidY = 8o 4+ 0d. A homotopy ¢ such that o2 = 0 exists if and only if U
can be made a DG module over the Koszul complex A = Q[y|d(y) = f]: just set
yu = o(u), and note that the homotopy condition for ¢ translates precisely into
the Leibniz rule fu = d(yu) + yO(u) for the action of y.

In some cases one can prove the existence of a square-zero homotopy.

Proposition 2.2.2. If (Q,n, k) is a local ring, f € n~n?, and M is a Q-module
such that fM = 0, then the minimal free resolution U of M over Q) has a structure
of semi-free DG module over the Koszul complex A = Qly| d(y) = f].

Proof. Setting f; = f idY7, we restate the desired assertion as follows: For each j
there is a homomorphism o;: U; — Uj41, such that:
9j+10j +0j-10; = fj;  0j-1(Uj-1) = Keroy;
0j-1(Uj—1) is a direct summand of Uj.

Indeed, by the preceding remark the first two conditions define on U a structure
of DG module over A; the third one is then equivalent to an isomorphism of A%
modules Uf 2 A% @ V, with V = U?/yU".

The map o; = 0 has the desired properties when j < 0, so we assume by
induction that o; has been constructed for j < i, with ¢ > —1. Since

Oi1(fit1 — 0i0i41) = fOiy1 — 0i41030i41 = fOiy1 — fOiy1 + 0i-10;0i41 =0

and U is acyclic, there exists a map o;41 such that 0;,100;41 = fit1 — 030;41.
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Furthermore, as 0;0;_1 = 0 by the induction hypothesis, we have

(fix1 — 0:i0i11)0s = fo; — 0:0i1104 = fo; — foi 4+ 040i-10; = 0.
Thus, we can arrange for o;41 to be zero on the direct summand Imo; of U;41.
Let V;41 be a complementary direct summand of Imo; in U;4q. For v €
Vig1 N nViy1, we have 0;420;41(v) = fo — 1 0i+1(v). The two terms on the right
lie in distinct direct summands, and fv ¢ n?Viy1, 80 0;420:41(v) ¢ n?U;11, and
thus 01+1(’U) ¢ HUH_Q. This shows that Ti4+1 ®Q k: V%_;,_l ®Q k — Ui+2 ®Q k is
injective, so 0,41 is a split injection, completing the induction step. O

The construction of o above is taken from Shamash [142]; it is implicit in
Nagata’s [124] description of the syzygies of M over Q/(f) in terms of those over
@, presented next; neither source uses DG module structures.

Theorem 2.2.3. Let (Q,n, k) be a local ring, let f € n~ n? be Q-regular, and let
M be a finite module over R = Q/(f). If U is a minimal free resolution of M over
Q, then there exists a homotopy o from idY to 0Y, such that

U/: '-)L—)~—>L—>ﬂ—)o (*)
fU, +J(Un71) fUy -l—CT(Uo) fUy

is a minimal R-free resolution of M and rankq U,, = rankg U,, + rankr U),_.

Proof. Set A = Q[y|d(y) = f]. By the preceding proposition, U is a semi-free DG
module over A = Q[y|d(y) = f]. Let o be the homotopy given by left multiplica-
tion with y. By Proposition 1.3.2 the quasi-isomorphism A — R induces a quasi-
isomorphism U — U ®4 R = U’. The complex U/(f,y)U = U/(fU +o(U)) =U’
is obviously minimal, so we are done. O

DG module structures are more affordable than DG algebra structures.

Remark 2.2.4. Let S = @/J, and let B be a DG algebra resolution of S over Q.
If A is the Koszul complex on a sequence f C J, then by Proposition 2.1.9 the
canonical map A — Q/(f) — S lifts over the surjective quasi-isomorphism B — S
to a morphism A — B of DG algebras over Q.

Thus, any DG algebra resolution of S over @ is a DG module over each
Koszul complex K(f;Q). However, DG module structures may exist even when
DG algebra structures do not: for an explicit example, cf. Srinivasan [146].

Short projective resolutions always carry DG module structures: Iyengar [92]
notes that a modification of the argument for Proposition 2.1.4 yields

Proposition 2.2.5. Let R = Q/I, and let M be an R—module. If U is a projective
resolution of M, and U,, = 0 for n > 3, then U has a structure of DG module over
each DG algebra resolution A of R over Q. O

On the other hand, not all minimal resolutions of length > 3 support DG
module structures over DG algebras A # @, cf. Theorem 2.3.1.

Let A be a DG algebra resolution of R over @), and let M be an R-module.
A DG module resolution of M over A is a quasi-isomorphism ¢ : U — M of DG
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modules over A, such that for each n the @Q—module U, is projective. To construct
such resolutions in general, we describe a ‘linear’ adjunction process.

Construction 2.2.6. Adjunction of basis elements. Let V' be a DG module over
A, and Z = {2\ € V}iea be a set of cycles. For a linearly independent set
Y = {yx : |ya] = |2a] + 1} rea over the graded algebra A% underlying A, set

8(1} + Z a,\yA) =0(v) + Z d(ax)yx + (—1)lal Z aArZy -
AEA AEA AEA
This is the unique differential on V €, Ay which extends that of V, satisfies
the Leibniz rule, and has d(yy) = z) for A € A.

Proposition 2.2.7. If A is a DG algebra resolution of R over @Q and M is an R—
module, then M has a semi-free resolution U over A.

Proof. Pick a surjective homomorphism F' — M from a free Q—module, and extend
it to a chain map of DG modules €*: U’ = A ®qg F — M. Clearly, Hy(e%) is
surjective. If Z° is a set of cycles whose classes generate Ker Ho(e”), then let U be
the semi-free extension of U°, obtained by adjunction of a linearly independent set
Y1 that kills Z°. Extend € to €!: U! — M by €!(Y'!) = 0, and note that Ho(e') is
an isomorphism. Successively adjoining linearly independent sets Y, of elements
of degree n = 2,3, ... that kill sets Z"~! of cycles generating H,,_1(U"1), we get
a semi-free DG module U = |J,, U™ over A, with a quasi-isomorphism V.U — M.

O

In an important case, the constructions are essentially finite.

Proposition 2.2.8. Let () be a noetherian ring

If R is a finite Q—algebra and M is a finite R—module, then there exist a DG
algebra resolution A of R over Q and a DG module resolution U of M over A,
such that the Q-modules Coker(n?: Q — Ag), A,, and Uy, are finite projective
for all n and are trivial for n > max{de R,pdg M},

Proof. If r1,...,rs generate R as a Q-module, then each r; is a root of a monic
polynomial f; € Q[xz;], hence R is a residue of Q' = Qlz1,...,xs]/(f1,---, fs),
which is a free @—module. Use Proposition 2.1.10 to pick a resolvent A’ = Q'[Y]
such that each A/, is a finite free module over @’. Then use Construction 2.2.7 to
get a semi-free resolution U’ of M over A’ with each U] a finite free Q'—module;
in particular, A/, and U], are finite free Q—modules.

If max{pdg R,pdg M} = m < oo, then define a Q-submodule V' of U’
by setting V_,,, = 0, V;,, = (U}, 1), and V. ,,, = UL .. It is easy to check that
V ={V,} is a DG A’—submodule with H(V') = 0, hence U = U’/V has H{U) = M.
The assumption on pdg M implies that the @-module U,, is projective, so U is
a DG module resolution of M over A’. Similarly, one sees that J C A’ defined
by Jom =0, Jp = 0(A],41), and J.,,, = AL, is a DG ideal of A, such that
A= A'/J is a DG algebra resolution of R. Finally, the Leibniz formula shows that
JU' CV,so U is a DG module over A.
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The fact that Coker 7 is projective can be checked locally; Nakayama’s Lemma
then shows that Im 7 is a direct summand of the free Q—module Ay. |

2.3. Products versus minimality. Our goal is the following non-ezxistence

Theorem 2.3.1. Let k be a field, and @ be the polynomial ring k[s1, sa, s3, S4] with
the usual grading, or the power series ring k[[s1, $2, 83, 84]]. There exists no DG
algebra structure on the minimal Q—free resolution U of the residue ring

S=Q/I where I = (s, 5182, 253, 8354, 52)
or on the minimal Q—free resolution U’ of the Cohen-Macaulay residue ring
S '=Q/I where I' =1+ (5155, s5, 8554, s5).
If A is a DG algebra over Q, and U or U’ is a DG module over A, then A = Q.

Remark. To prove the theorem, we check by a direct computation the non-vanishing
of certain obstructions introduced by Avramov [22], and described in Theorem
3.2.6 below. Both the examples and the computations simplify those appearing in
[22], and were developed in conversations with S. Iyengar.

As in [22], the examples can be used to generate, in any local ring @ with
depth@ = g > 4 (respectively, > 6) perfect ideals of prescribed grades between
4 and g (respectively, Gorenstein ideals of prescribed grades between 6 and g),
whose minimal free resolution admits no DG algebra structure.

Gorenstein ideals of grade 5 with this property had been missing, until the
paper of Srinivasan [147]. The last open question, whether the minimal resolution
of each non-cyclic module of projective dimension 3 (recall Proposition 2.1.4 and
Proposition 2.2.5) carries a structure of DG module over some DG algebra A # Q,
was answered by Iyengar [92] with perfect counter-examples.

Construction 2.3.2. Tor algebras. Let S < R — k be homomorphisms of rings. If
D is a DG algebra resolution D of S over R that is a resolution of S by free R—
modules, cf. Proposition 2.1.10, then Tor (S, k) = H(D ®g k) inherits a structure
of graded algebra. It can be computed also from a DG algebra resolution F of
the second argument, or from resolvents of both arguments, due to the quasi-
isomorphisms of DG algebras
D®grk M D®rFE M S®rE.

Varying in these isomorphisms one varies one of D or F, while keeping the other
fixed, one sees that the algebra structure on Tor does not depend on the choice
of a DG algebra resolution. It can even be computed!! from projective resolutions
D’ and E’ with no multiplicative structure: the unique up to homotopy lifting of

1n fact, this is how they were originally introduced by Cartan and Eilenberg [51].
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pS:S®rS — S toa morphism pP : D' @z D' — D', that conspires with the
Kiinneth map of Proposition 1.3.4 to produce

H(D' @ k) ©r H(D' @ k) = H((D' ®r k) O (D' ©r F))

H(uP' k

~H (D' ®r D) @r (k@r k) L0 (D' @R k).
As the multiplication pu”: D ® g D — D also is a comparison map, the unique
isomorphism H(D' ® k) = H(D ®p k) transforms products into each other.

There is a related structure in the case of R—modules.

Construction 2.3.3. Tor modules. Let 1: Q — R and R — k be homomorphisms
of rings, and let M be an R—module.

Choose a DG algebra resolution €4: A — R over @Q, by Proposition 2.1.10,
and a semi-free resolution €V: U — M over A, by Proposition 2.2.7. As both A
and U are free over Q, we see that Tor? (M, k) = H(U ®q k) is a module over
the graded algebra Tor® (R, k) = H(A ®¢ k) from the preceding construction.
Recycling the discussion there, we verify that this structure is unique, and natural
with respect to the module arguments.

The constructions also have a less well known naturality with respect to the
ring argument; it is the one that we need.

Construction 2.3.4. Naturality. If ¢): Q — R is a ring homomorphism, then &k be-
comes a (Q—algebra, so pick a DG algebra resolution C of k over ). By Proposition
2.1.9, there is a morphism of DG algebras v: C' — E over the identity map of k,
that is unique up to Q-linear homotopy. The induced map H(M ® v): H(M ®q
C) - H(M®RE) is linear over H(R®q ('), and does not depend on the choice of .
Thus, there is a natural homomorphism Tor? (M, k) : Tor® (M, k) — Tor®™ (M, k)
of Tor? (R, k) ~modules.

IfU" — M « V'and C' — k < E’ are arbitrary free resolutions, respectively
over Q and over R, and 8': U’ — V' and 7/: C' — E’ are morphisms inducing
id™ and id®, then Tor? (M, k) = H(3' @y k) = H(M ®4 7).

Remark 2.3.5. Let (Q,n, k) be a local (or graded) ring, let f € n be a (homoge-
neous) regular element, let ¢¥: Q@ — Q/(f) = R be the natural projection, and let
A be the Koszul complex Qy|d(y) = f].

For a DG module resolution U of M over A, set U(z) = @, . Rz ©o U,
with [2()| = 2/ and (2 @ u) = 20D @ yu + 2 @ (u). In Example 3.1.2, we
show that U(x) is a resolution of M over R. By Theorem 3.2.6 and Remark 3.2.7,
if U is minimal, then Ker(Tor¥ (M, k)) = cls(y) Torffﬁl (M, k) for n> 1.

Proof of Theorem 2.3.1. First we look at the residue ring S. By Remark 2.2.4, it
suffices to prove that its minimal free resolution U, over Q = k[sq, S, S3, S4] or over
Q = k[[s1, $2, 83, 84]], has no DG module structure over the Koszul complex A =
Qly|9(y) = f], where f = s? + s3. By the preceding remark, this will follow from
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cls(y )Tor3 (S, k) ¢ Ker( (Tor¥ (S, k)). The Tor’s involved do not change under
completion, so we restrict to the graded polynomial ring.

The Koszul resolvent C' = Q[y1,Y2,¥s,ya | 0(y;) = s;] of k over Q is a DG
algebra over A, via the map y — s1y1 + s4y4; by Remark 2.3.5, the complex C(x),
is a resolution of k over R = Q/(f). For K = S ®¢q C, we have

Tor® (S, k) = H(U ®¢ k) = H(K) (%)

as modules over Tor® (R, k) = k[y|d(y) = 0], cf. Construction 2.3.3. The iso-
morphisms takes Ker Tor? (S, k) to Ker H(:), where ¢ is the inclusion K ¢ L =
S @r C{x). So it suffices to exhibit an element

w € KerHy(e) \ cls(y) H3(K) . @)
It is easy to check that the cycles
z1=(s18) y1 Ay2 Ay, 22 =(s184) Y1 Ay Aya,
23 =(5154) Y1 ANY3 A ya, z4 =(5254) Y1 NY3 Ay,

are linearly independent modulo SO(y; A -+ A ys). MACAULAY [40] shows that
the minimal graded resolution U of the S over @ has the form

0—Q(—6) 25 Q(-5)* 2 Q(-4P 2 Q(-3)* &= Q(-2° L@ —0 (1)

with differentials given by the matrices

01 = (5% $1S89 8983 8384 si)
0 0 0 — 89 — SZ 0 — 8384
0 0 — 83 S1 0 — 3421 0
82 = 0 — S84 S1 0 0 0 0
—S4 SS9 0 0 0 0 s%
S3 0 0 0 8% 5189 0
0 0 5183 ST
s% 0 S$184 0
8184 0 si 0 54
63 = 5354 3421 0 84 = 53
0 —82 0 —S83 51
0 S1 —S83 0 52
—S89 0 0 S4

We conclude from (x) and (1) that rank; Hz(K) =
is a basis of H3(K). Because yz; =

cls(y) Hs (K

2= (5154) Y1 Ny2 ANys ANys € Ky

is a non-zero cycle, and so not a boundary in K, but becomes one in L:

We have proved that w = cls(z) satisfies ().

4, and thus that cls(z1), ...
(Slyl +54y4)z¢ =0fori=1,...
) = 0. On the other hand,

,cls(zq)
,4, we see that

2=0(say2 Nys Ayay +saysz®) € Ly
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Turning to S” = S/(s155, s, 8554, s), consider the commutative square

K — L
K/:SI®SKL—/>S/®SL L/

of morphisms of complexes, with ¢/ = 5’ ®g ¢. For w’ = H(m)(w) it yields
H(/)(w") =H(7")H(¢)(w) = 0.
Assume w’ € cls(y) H3(K'), set m = (¢1,...,ts4), and consider the subcomplex
J: 0-m’Ky - m*K3 - m°Ky; - m°Ky — m'Kp — 0

of K. Since (%) and (}) show that the non-zero homology of K is concentrated
in internal degrees < 6, cf. Remark 1.2.10, we conclude that H(J) = 0, so the
projection £: K — K/J is a quasi-isomorphism. On the other hand, it is clear
that J is a DG ideal of K, such that Kerm = m’K C J. Thus, £ = pm, where
p: K' — K/J is the canonical map. By the surjectivity of H({), we have

H(&)(w) = H(p)(w') € cls(y) H(§) (Hs(K)) = H(§)(cls(y) Hs(K)) -

The injectivity of H() implies w € cls(y) H3(K), violating (f).
Thus, we have found w’ € Ker Hy(¢') \ cls(y) H3(K’). As above, this implies
that U’ carries no structure of DG module over A. O

3. Change of Rings
Fix a homomorphism of rings ¢: Q@ — R, and an R—module M.

We consider various aspects of the problem: How can homological information
on R and M over @ be used to study the module M over R?

3.1. Universal resolutions. A recent result of Iyengar [92] addresses this problem

on the level of resolutions!?.

Theorem 3.1.1. Let €*: A — R be a DG algebra resolution over Q with structure
map n: Q — A, and let €V : U — M be a DG module resolution of M over A.

12In view of Proposition 2.2.8, if Q is noetherian and finite projective @-modules are free,
then a resolution of M over R is finitistically determined by matrix data over @, namely, the
multiplication tables of the algebra A and the module U, and the differentials in these finite
complexes. With the help of computer algebra systems, such as MACAULAY [40], these data
can be effectively gathered, at least when @ is a polynomial ring over a (small) field.
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With A = (R ®¢q Cokern?) and U = (R ®q U), set

Fo(AU) = EB Ai, ®@p - @r Ai, @R Uj;
ptiteFipti=n
p . .
V(@@ ®aeun) =) ()" a e 0G) @ @6 u
r=1
+ (=1t g @ ©a, ® 0(u);
p—1
6”(61 ® - ®ap ®ﬂ) _ (_1)r+z1+..<+zr AL R - ®mr+1 ® - ®ap Ru
r=1
(=Pt @ Ty QT

The homomorphisms 0 = 0’ + 0": F,(A,U) — F,_1(A,U) make F(A,U) into a
complex of R-modules. If the Q-modules Cokernf and U; are free for all i, then
it is a free resolution of M over R.

When Q is a field, A = Ay, and U is an A-module, this is the well known
standard resolution. The First Commandment'® points the way to generalizations:
this is the philosophy of the proof presented at the end of this section.

Example 3.1.2. Let R = Q/(f) for a non-zero-divisor f. If U has a homotopy
o + 00 = fidY with 62 = 0, then by Remark 2.2.1 it is a DG module over
A=Qly|d(y) = f]. As Ay = Ry and A; = 0 for i # 1, all but the last summands
in the expressions for @ and 9” vanish, so F(A, U) takes the form

- — @Rx(i) ®Q Un—2i 2, @Rx(i) ®qQ Un—1-2i —

where 2) =5 ® -+ ® ¥ (i copies), and 9(z) @ u) = 20Y ® o(u) + 2 ® I(u).

In the setup of the example, a resolution of M over R can be constructed even
if no square-zero homotopy is available: this is the contents of the next theorem,
due to Shamash [142]; the proof we present is from [25].

Theorem 3.1.3. If R = Q/(f) for a non-zero-divisor f, M is an R—module, and
U is a resolution of M by free Q—modules, then there exists a family of Q—linear
homomorphisms o = (om € Homg (U,U) gj,l)j >0, such that

ol =9; o0l 4 oM = £igY ZU o" =0 forn>2.

13Resolve!
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If {2 |z®| = 2i};5 ¢ is a linearly independent set over R, then

n n—1
i 2 i
C— @Rx( ) ®q Up—2i — @Rx( ) ®q Un—1-2i
i=0 i=0

8(z? & qu 7 @ ol ()

is a free resolution G(o,U) of M over R,

Remark. Clearly, o = ol! is a homotopy between fidY and 0V. If 2 = 0, then
one can take o™ = 0 for n > 2, and both proposition and example yleld the same
resolutlon In general, rewriting the condition for n = 2 in the form ool + oo =
—02, we see that 02! is a homotopy which corrects the failure of o2 to be actually
0. A similar interpretation applies to all o™ with n > 3, so o is a family of higher
homotopies between fidU and 0Y.

Proof Note that ¢ is determined, let olt) be any homotopy such that fid? =
9ol + 61119, and assume by induction that maps ol/! with the desired properties
have been defined when 1 < j < n for some n > 2. Setting 7[!! = fidY and

7l = =577 glMgli=M for j > 2, we have 9ol = 7] — 519, whence
ool gln=i) = Uil gln=i) _ Glilzln=il 4 GUlgln=dlg for j=1,....n—1.
Summing up these equalities, we are left with 7" = 79, so 7" is a cycle

of degree 2n — 2 in the complex Homg (U, U). By Proposition 1.3.2, U — M
induces a quasi-isomorphism Homg (U, U) — Homg (U, M) ; the latter complex is
zero in positive degrees, hence 71" is a boundary Thus there is a homomorphism
ol U — U of degree 2n — 1, such that 71" = 9ol + ¢["9. This finishes the
inductive construction of the famlly o.

A direct computation shows that 9> = 0. Set G = G(o,U), and note that
there is an exact sequence 0 — R ®Q U — G — 922G — 0 of complexes of free
R-modules. As H;(R®q U) = Tor (R,M) =0 fori#0,1, it yields

M 2Hy(RoqU) 2 Ho(G), H,a(G)=H,(=*G) 2 H,(G) forn>1,
and an exact sequence
0 — Hy(G) — Hy(z2G) - Hy (R®q U) — Hy(G) — 0.
Acyclicity of G will follow by induction on n, once we prove that 9 is bijective.

If 2 € (32G)2 = Rr ®¢ Uy is a cycle, then d(cls(z)) is the class of d(z ® 2) =
1®oll(z) € R@g Uy. To show that Ho(R ®¢g olMl): Ho(R®q U) — Hy(R®g U)
is bijective, note that ot is a homotopy between fidY and 0V, so we may replace
U by any Q—free resolution V' of M, and show that for some homotopy ¢ between
fid" and 0V the map Ho(R®o0) is bijective. Take V to be a semi-free resolution of
M over A= Q[y|9(y) = f], and o to be left multiplication by y, so that Hy(R®0)
is the action of 1®y € H1(R®g A) = Tor? (R,R) onHy(R®qV) = Tor(? (R,M).
By Construction 2.3.3, it can be computed from the resolution A of R over @, as
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the multiplication of H{A®qg M) = Rly]®r M with —(y®1) € H(A®q R) = Ryl;
this is obviously bijective. |

We now turn to the proof of Theorem 3.1.1. It uses a nice tool popular with
algebraic topologists, cf. [50], [115], but neglected by commutative algebraists.

Construction 3.1.4. Bar construction. Consider a DG module U over a DG algebra
A (as always, defined over k), and set A = Coker(n?: k — A). Let

Sﬁ(A,U)ZA@kAi@k“-@kg@kU, for p>0,
—_———
p times

be the DG module, with action of A on the leftmost factor and tensor product
differential 0P, and set S;';(A, U) =0 for p < 0. The expression on the right in

Pau @ - Qa,@u) =(aa1) Qa2 @+ Qap U
p—1
Y (D)0 n @ @ (ai041) ® - ®d, Du
i=1

(-1)Pa®a1 ®- - ®ap—1 @ (apu)
is easily seen to be well-defined. Another easy verification yields
SPTLISP =0 and oP~LEP = §POP for all p.

Thus, (S*(4,U),d) is a complex of DG modules'4, called the standard com-
plex. It comes equipped with k-linear maps

7' SEAU) - U, a®ur— au;
ViU = SEAU), u—1Qu;
o?: SE(AU) — 551 (AU),
aRa® - ®aepRu—1lRae®a ® - Qapu,
that (are seen by another direct computation to) satisfy the relations

k
610'0 _ idSU (A,U) 7 :

k
§PHgP 4 oP—15P = idSr (AU) for p>1.

In particular, when A and U have trivial differentials, H(S¥(A,U)) = U. If,
furthermore, the k-modules A; and U; are free for all i, then this free resolution
is known as the standard resolution of U over A.

Returning to the DG context, we reorganize S* (A,U) into a DG module over
A, by the process familiar ‘totaling’ procedure. The resulting DG module, with

1 Of course, a complex in the category of DG modules is a sequence of morphisms of DG modules
§P: CP — CP~1, such that 6P~16P = 0.



28 L. L. Avramov

the action of A defined in Section 1.3, is the (normalized) bar construction:

B¥(A,U) = P =" (S5(AU))  with 9=20"+0"
p=0
where & denotes the differential of the DG module s?S5(A, U), and 9" is the degree
—1 map induced by the boundary ¢ of the complex of DG modules Sk(A7 U); the
equality 02 = results from the relations
ala/ :0 a/la// :O 8,8”“"8”6/ :O
of which the first two are clear, and the last one is due to the difference by a factor
(—1)? of the differentials of S¥(A,U) and £PSf(A,U). Furthermore, the maps 7',
/', oP, total to maps
m: BYAU) - U, 1:U—-BYAU), o: B*A,U)—B“A4,U).

Clearly, 7 is a morphism of DG modules over A, ¢ is a morphism of complexes
over k, o is a degree 1 morphism of complexes over k, and they are related by

idBk(A,U) _

=1y and do+ 00 = LT .

Thus, H(7) and H(:) are inverse isomorphisms, so 7 is a quasi-isomorphism.
The canonical isomorphism of DG modules over the DG algebra A,

wP(SE(A,U)) = Ay S(A) @ - @y s(A) @ U,

p times

expresses the degree n component of the bar construction as

B, (A, U) = P Ap @ Ay, @ @ Ay, @ Uj .
htp+ii+---+ip+j=n

The signs arising from the application of the shift, cf. Section 1.3, then yield the
following expressions for the two parts of the differential:

V(a1 ®..0aQu)=0a)@a; ® - Qay,du
p . .
) (Rt @ E @ @ 0(,) @ R, Du
r=1

+ (_1)p+h+i1+---+ipa Qa1 Q- Q@ ® ()
a1 ®...00,0u) = (—1)"(a01)Ra® - @a,u

p—1
+ Z(_l)r+h+n+~.-+wa ®al R ® a;aT+1 R --- ®ap RU
r=1

+ (_1)P+h+i1+“'+ip71a ®’d’1 Q- ®’d’p71 ® (apu) .

This finishes our description of the bar construction.
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Proof of Theorem 3.1.1. We apply Construction 3.1.4 to the DG algebra A and its
DG module U, considered as complexes over the base ring k = Q). Thus, we get
quasi-isomorphisms

T EU
B9(4,0U) U M.
On the other hand, as the DG module BQ(A U) is semi-free over A, so

A U)®A€

BP(A,U)=BYA,U)®4 A BO(A,U)®4 R
is a quasi-isomorphism by Proposition 1.3.2. Viewed as a complex of R—modules,

BP(A,U) ®4 R is precisely the complex F(A, U) described in the statement of the
theorem, so F(A,U) is a free resolution of M over R. O

3.2. Spectral sequences. Various spectral sequences relate (co)homological invari-
ants of M over R and over (). Those presented below are first quadrant, that is,
have "E, ;, = 0 when p < 0 or ¢ < 0, and of homological type of , meaning that
their differentials follow the pattern "dy, ;: "Ep ¢ — "Ep—r g4r—1-

For starters, here is a classical Cartan-FEilenberg spectral sequence [51].

Proposition 3.2.1. For each Q-module N there exists a spectral sequence

2Ep7q = Tor (M Tor (R N)) . Torp+q (M, N) )

Proof. Let V.— M be a free resolution over R, and W — N be a free resolution
over . By Proposition 1.3.2, the induced map V ®q W — M ®¢g W is a quasi-
isomorphism, hence H(V ®¢g W) 2 Tor® (M, N). As Voo W =V @gr (R®q W),
the filtration (Vc,) @r (R ®¢g W) yields a spectral sequence

2B,q = Hy(V @r Hy(R®q W)) = Tor? (M, N)

p+q
where Hy(R®@q W) = Tor (R,N) and H,(V®r L) = Tor (M,L). O

In simple cases, this spectral sequence degenerates to an exact sequence. This
may be used to prove the next result, but we take a direct approach.
Proposition 3.2.2. If f is a non-zero-divisor on @, and N is a module over R =
Q/(f), then there is a long exact sequence

Tor¥ (M,N)
_—

- — Tor | (M, N) — Tor% (M, N) Tor® (M, N)

—>TOI‘n 2(M N) —>T0rn 1(M3N) -

Proof. In the description of F(A,U) given in example 3.1.2, define a morphism
1: U — F(A,U) with o(u) = (% ® u, and note that Coker: = x2F(A,U). Thus,
we have a short exact sequence of complexes of free R—modules

0— RooU —224 F(A,U) L 2 F(A,U) — 0.

Tensoring it with N over R, and writing down the homology exact sequence of the
resulting short exact sequence of complexes, we get what we want. O
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The next spectral sequence is introduced by Lescot [107].

Proposition 3.2.3. If ¢ is surjective and k is a residue field of R, then there is a
spectral sequence

Epq = Tord (k, M) @ Torf (k, k) = (Tor? (k, k) @ Tor™ (M, k) )psq-
Proof. Choose free resolutions: U — k over Q; V. — M and W — k over R. As
U ®q V is a bounded below complex of free R—modules, Proposition 1.3.2 yields
the first isomorphisms below; the third ones comes from Proposition 1.3.4:

HU®qVerW)=H(U®qV)®rk) ZH(U ®q k) ®r (V ®rkE))

=~ H(U ®¢ k) @, H(V @g k) = Tor? (k, k) @, Tor™ (M, k).

Thus, the spectral sequence of the filtration (U ®¢g V) ®r (W) has

2Epq = Hy(Hy(U®g V) @g W) = (Tor® (k, k) @3 Tor™ (M, k) )piq-
Since U is a bounded below complex of free ()-modules, U ®q V — U ®g M is a
quasi-isomorphism, so 2E, , & Hp(Toqu (k, M) ®g W), and that module is equal
to Tor (Tor® (k, M), k) = Tor$ (k, M) @i Torl (k, k). O

For us, the preceding sequences have the drawback of going in the ‘wrong’
direction: they require input of data over the ring of interest, R. Next we describe
a sequence where the roles of @) and R are reversed. It belongs to the family of
Eilenberg-Moore spectral sequences, cf. [122].

By Construction 2.3.3, Tor? (M, k) is a module over the graded algebra
Tor® (R, k). A homogeneous free resolution of the former over the latter pro-

vides an ‘approximation’ of a resolution of M over R: this is the contents of the
following special case of a result of Avramov [22].

Proposition 3.2.4. When k is a residue field of R, there is a spectral sequence
Epg = TorgorQ(R’k) (TorQ (M, k), k)y = T0r§+q (M,E) .
Proof. In the notation of Construction 3.1.4, set B = A®qg k and V = U ®q k.

The filtration @, _, (§®i ®V) of B¥(B,V) ®p k yields a spectral sequence
OE:U,q = (SS(B’ V)es k)q - Hp+q(Bk(Ba V) ®p k)
with %, , equal to the tensor product differential. By Kiinneth,
'Eyq = Hy(Sh(B, V) ®@p k)g = (SEHE(B),H(V)) @up) k)g, 'dpg=0F @rk.
As k is a field, S*(H(B), H(V)) is a resolution of H(V') over H(B), so
Ep,q = Torp B (H(V), k) 4.

Since H(B) = Tor® (R, k) and H(V) = Tor® (M, k), the second page of the spec-
tral sequence has the desired form. The isomorphisms

B*(B,V)®p k= (BYAU)®4 R) @rk =F(A,U) ®r k
and Theorem 3.1.1 identify its abutment as Tor™ (M, k). ]
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Corollary 3.2.5. If v is surjective, then for each n > 0 there is an inclusion

Z Tor? (R, k) - Torgﬂ- (M, k) C KerTor¥ (M, k) .

i=1
Proof. The natural map U ®¢ k — F(A,U), that is, V — B*(B, V) ®p k, identi-
fies V with F* C B¥(B,V) @p k. Thus, the map Tor? (M, k) that it induces in
homology factors through

T M,k
: Tor® (M, k) = H, (V) — ?Eg,, = o ( ) .
Sy Tor? (R, k) - Tor%_, (M, )
We get Kerv,, C Ker Tor? (M, k), which is the desired inclusion. O

The next theorem shows that the vector spaces
Ker Tor? (M, k)
S Tor? (R, k) - Tor®_, (M, k)
are obstructions to DG module structures; they were found in [22].

Theorem 3.2.6. Let (Q,n, k) be a local ring, let 1¥: Q — R be a surjective homo-
morphism of rings, and let M be a finite R—module.
If the minimal free resolution A of R over Q has a structure of DG algebra,

and the minimal free resolution U of M over Q admits a structure of DG module
over A, then o¥ (M) =0 for all n.

Proof. Under the hypotheses of the theorem, 8’ ®¢g k = 0 in the bar construction
Bk (B, V)®pk of Proposition 3.2.4, so the only non-zero differential in the spectral
sequence constructed there acts on the first page. Thus, the sequence stops on the
second page, yielding Ker Tor? (M, k) = Kerv,,. O

oy (M) =

n

Remark 3.2.7. Let f be a @Q-regular sequence. Computing the Tor algebra for
R = Q/(f) with the help of the Koszul complex A = K(f; Q) we get

Tor® (R, k) = H(A®r k)= A®gr k = \(A1 ®r k) = \ Tor® (R, k)
and hence Y7, Tor®? (R, k) - Tor?_, (M, k) = Tor? (R, k) - Tor%_, (M, k) .
3.3. Upper bounds. In this section ¢: Q — R is a finite homomorphism of local
rings that induces the identity on their common residue field k, and M is a finite

R-module. We relate the Betti numbers of M over R and Q.
Often, such relations are expressed in terms of the formal power series

= S BROn ez,

known as the Poincaré series of M over R, and the corresponding series over Q.
Results then take the form of coefficientwise inequalities (denoted < and =) of
formal power series; equalities are significant.

Spectral sequence generate inequalities, by an elementary observation:
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Remark 3.3.1. In a spectral sequence of vector spaces "E, , = FE, r > a, the
space "T1E, , is a subquotient of "E, , for > a, and the spaces *E, , are the
subfactors of a filtration of E, 4. Thus, there are (in)equalities

dimy B, = Z rank;, CE, ; < Z rank; "Ep ;4 < Z ranky, “E, 4 .
p+g=n p+g=n p+q=n
Multiplying the n’th one by ", and summing in Z[[t]], we get inequalities
Z dimy, E,t" < Z ( Z ranky, rEp,q>t” for r>a.
n>0 n p+q=n

The next result was initially deduced by Serre from the sequence in Proposi-
tion 3.2.1. It is more expedient to get it from that in Proposition 3.2.4.

PR
(PR(t)—1)

Proposition 3.3.2. There is an inequality P¥, (t) < -

Proof. The spectral sequence of Proposition 3.2.4 has

Z ( Z ranky, 1Ep,q)lf” = E (Zrankk 1Ep)q tq>tp

n  \ptg=n P q
=3 ((#80- 1 pge))

PR (1)
1—t(PR(t) — 1)

=P (PRt — 1) =

so the desired inequality follows from the preceding remark. O

Remark. If equality holds with M = k, then ¥ is called a Golod homomorphism.
These maps, introduced by Levin [109], are studied in detail in [110], [24]; they
are used in many computations of Poincaré series. The ‘absolute case’, when @ is
a regular local ring, is the subject of Chapter 5.

Directly from the spectral sequence in Proposition 3.2.3, we read off
Proposition 3.3.3. There is an inequality P%, (t) Pg(t) < P%(t) PE(t) . O

Remark. If equality holds, then the module M is said to be inert by w: these
modules are introduced and studied by Lescot [107].

In special cases, universal bounds can be sharpened.

Recall [46] that a finite @—module N has rank if for each prime ideal g € Ass Q
the Qq—module Ny is free, and its rank does not depend on q. The common rank
of these free modules is called the @-rank of IV, and denoted rankg N; we write
rankg N > 0 to indicate that the rank of IV is defined.
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Proposition 3.3.4. If f is Q-reqular and R = Q/(f), then

PE (1)
-

> PY (¢
0= Y rankg Syzy (M) "' = (1M+(t)) < Py (t) <

n=1

Proof. Let U be a minimal resolution of M over Q. For each q € Ass (@ we have
[ ¢ q. Thus, My = 0, and so for each n there is an exact sequence

0— Syngrl (M)q — (Un)g — -+ — (Up)g — 0.

It follows that Syzf;”)Jrl (M)q is free of rank ZiZO(—l)iﬂgfi(M): this establishes
the equality, and the first inequality.

For the second inequality, apply the exact sequence of Proposition 3.2.2, to
get A2(M) < BE_ (M) + BE(M) for all n.

The third inequality results from counting the ranks of the free modules in

the resolution of M over R given by Theorem 3.1.3. O

There are useful sufficient conditions for equalities. One is essentially con-
tained in Nagata [124]; the other, from Shamash [142], is given a new proof.

Proposition 3.3.5. Let f be a Q-regular element, and R = Q/(f).
(1) If £ ¢ w2, then P (8) = PS, (8)/(1+1).
(2) I f € 0(0: g M), then PR, (t) = PG, (1)/(1 — 2) .

Proof. (1) This is just the last assertion of Theorem 2.2.3.

(2) Let 51, ..., 5. be a minimal set of generators of n, and write f = >°7_, a;s;
with a; € (0: g M). In a DG algebra resolution V' — k over @, pick y1,...,9. € V4
such that d(y;) = s;. As d(35_, a;y;) = f, Example 3.1.2 yields a resolution G
of k over R, with G,, = @, Rz® ®qg Vn—2; and

(2" ®g o) = Z a;z2D @g yjv+ 29 @ A(v).
j=1

For b € M, the induced differential of M ® g G then satisfies

8(b:r(i) ®qv) = Z a;bz"Y @g yv + br @g d(v) = bz ©g d(v),
j=1

so M @p G=2@;-,=*(M ®¢ V) as complexes of R-modules. This yields

Tor™ (M, k) = H(M @r G) = @) =” Tor® (M, k) .
i=0
The desired equality of Poincaré series is now obvious. O
Remark. The resolution G(o,U) of Theorem 3.1.3 has Y rankp G,t" =
(Y rankq U;t') /(1 — t?). Thus, if U is a minimal resolution of M over @ and
fen(0:9M), then by (2) G(o,U) is a minimal R—free resolution of M. Another
case of minimality is given by Construction 5.1.2, which shows that if pdgy M =1,
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then Syz” (M) has a minimal resolution of that form for each n > 1. Quite the op-
posite happens ‘in general’: it is proved in [32] that if R is a complete intersection
and the Betti numbers of M are not bounded, then Syzf” (M) has such a minimal
resolution for at most one value of n.

4. Growth of Resolutions

The gap between regularity and singularity widens to a chasm in homological local
algebra: Minimal resolutions are always finite over a regular local ring, and (very)
rarely over a singular one. A bridge!® is provided by the Cohen Structure Theorem:
the completion of each local ring is a residue of a regular ring, so by change of
rings techniques homological invariants over the singular ring may be approached
from those — essentially finite — over the regular one.

To describe and compare resolutions of modules over a singular local ring, we
go beyond the primitive dichotomy of finite versus infinite projective dimension,
and analyze infinite sequences of integers, such as ranks of matrices, or Betti
numbers. For that purpose there in no better choice than to follow the time-
tested approach of calculus, and compare sizes of resolutions to the functions we'®
understand best: polynomials and exponentials.

4.1. Regular presentations. Let I be an ideal in a noetherian ring R. Recall that
the minimal number of generators vr(I), the height, and the depth of I are always
related by inequalities, due to Rees and to Krull:

depthp (I, R) < height I < vg(I).

For the rest of this section, (R, m, k) is a local ring; vr(m) is then known as
its embedding dimension, denoted edim R, and the inequalities read

depth R < dim R < edim R.

Discrepancies between these numbers provide measures of irregularity:

e cmd R = dim R — depth R is the Cohen-Macaulay defect of R ;
e codim R = edim R — dim R is the codimension'” of R ;
o codepth R = edim R — depth R is the codepth!'” of R.

15Warning: crossing may take an infinite time.

16 Algebraists.

17Because ‘codimension’ has been used to denote depth, and ‘codepth’ to denote Cohen-Macaulay
defect, the notions described here are sometimes qualified by ‘embedding’; it would be too cum-
bersome to stick to that terminology, and to devise new notation.
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We use the vanishing of codepth R to define'® the regularity of R. Thus, if R
is regular, then each minimal generating set of m is a regular sequence.

Two cornerstone results of commutative ring theory determine the role of
regular rings in the study of free resolutions.

The Auslander-Buchsbaum-Serre Theorem describes them homologically.

Theorem 4.1.1. The following conditions are equivalent.
(i) R is regular.
(if) pdg M < oo for each finite R-module M .
(ili) pdrk < 0.

Proof. (i) = (iii). By Example 1.1.1, the Koszul complex on a minimal set of
generators for m is a free resolution of k.

(iii) = (ii). As TorZ (M, k) =0 for n > 0, apply Proposition 1.2.2.

(il) = (i). We prove that codepth R = 0 by induction on d = depth R. If
d = 0, then k is free by Proposition 1.2.7.1, hence m = 0. If d > 0, then a standard
prime avoidance argument yields a regular element g € m ~ m2. Set R’ = R/(g),
and note that codepth R = codepth R'. As pdp/ k < co by Theorem 2.2.3, we have
codepth R’ = 0 by the induction hypothesis. ([l

Corollary 4.1.2. If R is reqular, then so is R, for each p € Spec R.

Proof. By the theorem, R/p has a finite R—free resolution F’; then F, is a finite
Ry—free resolution of k(p) = R, /pR,, so R, is regular by the theorem. O

The Cohen Structure Theorem establishes the dominating position of regular
rings. A regular presentation of R is an isomorphism R = Q)/I, where @ is a regular
local ring. Many local rings (for example, all those arising in classical algebraic or
analytic geometry), come equipped with such a presentation. By Cohen’s theorem,
every complete local ring has a reqular presentation.

Here is how the two theorems above apply to the study of resolutions.

Since the m-adic completion R is a faithfully flat R—module, a complex of R—
modules F is a (minimal) free resolution of M over R if and only if F=R®gFis

a (minimal) free resolution of M = R®p M over R; in particular, P (t) = P%(t).

The point is: as M and R have finite free resolutions over the ring @), all change
of rings results apply with finite entry data.

If (Q,n,k) is a regular local ring, R = Q/I, and f € I ~ n?, then Q/(f)
is also regular, and maps onto R. Iterating, one sees that if R has some regular
presentation, then it has a minimal one, with edim R = edim Q.

18 This clearly implies the usual definition, in terms of the vanishing of codim R. Conversely, if R is
regular, then the associated graded ring S = @,, m”™/m" 1 is the quotient of a polynomial ring in
e = edim R variables. Since S and R have equal Hilbert-Samuel functions, dim S = dim R = e, so
S is the polynomial ring on the classes in S of a minimal set of generators ¢ of m. In particular,
these classes form an S-regular sequence, and then a standard argument shows that t is an
R-regular sequence.
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Minimal presentations often fade into the background, because some of their
invariants can be computed directly over the ring R, from Koszul complexes on
minimal sets of generators ¢ of m. Different choices of ¢ lead to isomorphic com-
plexes, so when we do not need to make an explicit choice of generators, we write
KT instead of K(t; R), and set KM = KR @p M.

Eemma 4.1.3. If K® is a Koszul complex on a minimal set of generators of m, and
R =Q'/I' (respectively, R = Q/I) is a minimal reqular presentation, then

(1) H(KM) = H(KM) = Tor® (M, k) (2 Tor? (M, k)) .

(2) sup{i | Hy(K™) # 0} = sup{i | Hy(K™) # 0} = pdgy M (= pdg M) .

(3) Hi(KR) =2 Hy(KR*) 2 I'®g k (2T®qk).

Proof. The fact that Ris faithfully flat over R, and mR is its maximal ideal yields
the relations on both ends, so we argue for those in the middle. By Example 1.1.1,
K9 is a minimal free resolution of k over ': this yields (1), and then (2) follows
from Proposition 1.2.2. For (3), use the long exact sequence of Tor?’ (—, k) applied
to the exact sequence 0 — I’ — Q' — R — 0. O

In view of the lemma, Proposition 3.3.2 translates into:

Proposition 4.1.4. For each finite R—module M there is an inequality

edim R—depth M
Z ranky, H; (K)t!

R =0
PM(t) < codepth R ’ 0
1— Z ranky H; (KR)tijl
j=1
Corollary 4.1.5. There is an « € R, such that BE(M) < a™ forn > 1. O

A local ring homomorphism ¢: R — R’, such that mR’ is the maximal ideal
of R/, may be lifted — in more than one way — to a morphism of DG algebras
K¢: KE - KF (we use a ‘functorial’ notation, because in the cases treated
below the choice of a specific lifting will be of no consequence, while it helps to
distinguish K¢ from KR ®@p p: K — KR @p R).

The following easily proved statements have unexpectedly strong consequen-
ces. The second is the key to Serre’s original proof that pdp k characterizes regular-
ity in [140]. The third, also due to Serre, is important in the study of multiplicities,
cf. [141], [17]; its proof below is from Eagon and Fraser [54].

Lemma 4.1.6. The complezes KT and K™ have the following properties.

(1) If g € m~m? is R-regular, then the homomorphism ¢: R — R/(g) induces
a surjective quasi-isomorphism K¥: KB — K1/(9)
(2) If a € K satisfies 0(a) € m®KE, then a € mK .
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(3) For each finite R-module M there is an integer s such that the complex
Ct: 0-m KM ... s wm T lKM Sk -0 (%)
is exact fori > s; for each i, C* is a DG submodule of KM over K.

Proof. (1) Choose y1,...,y. € K, such that {0(y;) = t; | j = 1,...,e} is a
minimal generating set for m. We may assume that g = ¢., and set D = R[y|d(y) =
g]- As K is a semi-free DG module over D, by Proposition 1.3.2 the quasi-
isomorphism D — R/(g) induces a quasi-isomorphism K® — R/(g) @p K% =
KER/(9)

(2) The statement may be rephrased as follows: the map K'/mKEF —
mKE | /m?KZE | induced by the differential 9,, of K is injective for all n > 1.
This is a direct consequence of the formula for the Koszul differential, and the
minimality of the generating set ¢1,...,t..

(3) As C' = Ker(KF® — k) c KF is a DG ideal, C* = (C')'KM is a DG
submodule of K™ . For each 1 < n < e and i > 0, we have equalities

Zn(C") = Zp(KM)Nm "KM = m(Z,(KM) nmi =" LK)

(the first by definition, the second by Artin-Rees). Increasing 4, we may assume
they hold simultaneously for all n. Thus, each 2z € Z,(C?) can be written as
z =35 tjv; with v; € mi~" LM 50 2 = Oy for y = > 5=1Yiv; € Chyy. O

Next we present a result of [21], which shows that the minimal resolution of
each R—module M is part of that of ‘most’ of its residue modules. It is best stated
in terms of a property of minimal complexes.

Remark 4.1.7. Let F' be a minimal complex of free R—modules, with F,, = 0 for
n < 0. If e: ' — N is a morphism to a finite R—module N, let a: F' — G be a
lifting of € to a minimal resolution G of N. Any two liftings are homotopic, so the
homomorphism k£ ® g « = H(k ® g ) depends only on .

We say that € is essential if kK ® g av, is injective for each n. In that case, each
ay, is a split injection, hence o maps F' isomorphically onto a subcomplex of G,
that splits off as a graded R—module; the entire resolution of N is obtained then
from «(F') by adjunction of basis elements, as in Construction 2.2.6.

When pdyi M is finite the next result is a straightforward application of the
Artin-Rees Lemma. Replacing resolutions over R by resolutions over K, we make
Artin-Rees work simultaneously in infinitely many dimensions.

Theorem 4.1.8. Let F' be a minimal free resolution of a finite R—module M. There
exists an integer s > 1, such that for each submodule M’ C m®M the augmentation
e: F— M" = M/M' is essential. In particular,

Proof. Choose s as in Lemma 4.1.6.3, so that C* C K™ is an exact DG submodule.
The projection p: KM — KM /(C* is then a quasi-isomorphism of DG modules over
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K. Let U be a semi-free resolution of k over K%, let M’ be a submodule in m* M,
let w: M — M" be the canonical map. The composition

Uagn (KR @p M) "5 U@gn (KR @p M") — U @xn (KM/C)

of morphisms of DG modules, where 7' = U @ gr (K ®@g ), is equal to U Q=
p, and so is a quasi-isomorphism by Proposition 1.3.2. It follows that H(x’) is
injective. As U is a free resolution of k over R and U ®@gr (KF ®@r 7) = U ®g
m:U®pr M — U ®g M", we see that H(r') = Tor™ (k, 7). If F” is a minimal
free resolution of M"”, then k Qr7': k Qr F — k ®p F" is another avatar of the
same map, so it is injective, as desired. For the equality of Poincaré series, apply
Tor® (k,~) to 0 = M’ — M — M" — 0. O

In a precise sense, the residue field has the ‘largest’ resolution.

Corollary 4.1.9. For each finite R—module M there exists an integer £ > 1, such
that PR (t) < (PE(2).

Proof. By the theorem, P (¢) < Pﬁ/msM(t) for some s, so we may assume that
length, M < oo. The obvious induction on length, using the exact sequence of
Tor® (—, k) then establishes the inequality with ¢ = length rM. a

For another manifestation of the ubiquity of Py (t), cf. Theorem 6.3.6.

4.2. Complexity and curvature. In this section we introduce and begin to study
measures for the asymptotic size of resolutions.
On the polynomial scale, the complexity of M over R is defined by

)

there exists a polynomial f(t) of degree d — 1
CXRM—in{dGN‘ }

such that S%(M) < f(n) for n > 1

this is an adaptation from [25], [26], of a concept originally introduced by Alperin
and Evens [2] to study modular representations of finite groups; clearly, one gets
the same concept by requiring inequalities for n > 0.

Example 4.2.1. (1) If R’ = k[s1]/(s?), and t; € R’ is the image of sy, then

F': >R -SR-S SRR AISER 0. (+)
is a minimal free resolution of k = R'/(t;). Thus, % (k) = 1 for n > 0, and
cxgp k = 1. Each finite module M over the principal ideal ring k[t;] is a finite
direct sum of copies of k and of R', hence 8F (M) = B (M) for n > 1.

(2) Set R = k[s1,s2]/(s%,53) = k[t1,t2]. As R is a free module over its subring
R/, the complex R® g F’ is a minimal resolution of the cyclic module M = R/(t1)
over R. Thus, B%(M) =1 for n >0, and cxg M = 1.

On the other hand, note that Syz® (R/(t1ts)) = k, and let F" be the complex
corresponding to F’ over R” = k[t2]. By the Kiinneth Theorem 1.3.4, F' @ F" is
a resolution of k ®; k = k over R = R’ ®; R”, and is obviously minimal. Thus,
BE(k) =n+1 for n >0, and cxg (R/(tit2)) = cxg (R/(t1,t2)) = 2.
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In particular, over the ring R there exist modules of complexity 0, 1, and 2;
in fact, these are all the possible values: cf. Proposition 4.2.5.4.

Complexity may itself be infinite.

Example 4.2.2. Let R = k[sq, s2]/(s3, 5182, 53). The isomorphism m = k% and the
exact sequence 0 — m — R — k — 0 show that 8%, (k) = 28%(k) for n > 1,
hence 3% (k) = 2" for n > 0, and cxg k = oco. If M is any finite R-module, then
Syzit (M) C mF, is isomorphic to a finite direct sum of copies of k, so cxg M = 0o
unless M is free.

For modules of infinite complexity, the exponential scale is used in [29] to
introduce a notion of curvature'® by the formula

curvg M = limsup V/BE(M).

n—oo
Thus, in the last example, either M is free or curvg M = 2.
Some relations between these asymptotic invariants follow directly from the
definitions, except for (5), which is a consequence of Corollary 4.1.5:

Remark 4.2.3. For a finite R—module M the following hold:
(1) pdg M <0 <= cxgM =0 <= curvg M =0.

2) pdg M =0 <= cxpM >1 < curvg M > 1.

) cxp M <1 <= M has bounded Betti numbers.

) expM <00 = curvg M < 1.

) curvg M < oo.

P

3
4
5

With respect to change of modules, properties of complexity and curvature

mirror well known properties of projective dimension.

Proposition 4.2.4. When M is a finite R—module the following hold.

(1) cxp M < cxpk and curvg M < curvgp k.
(2) For each n there are equalities

cxp M = cxg Syz" (M) and curvg M = curvg Syz5t (M) .

(3) If M’ and M" are R—modules, then
exp(M' @ M") = max {cxg M, cxg M"};
curvp(M' & M") = max {curvg M’ curvgp M"}.

(4) If 0 > M’ — M — M" — 0 is an ezxact sequence of R-modules, then

cxp M < cxpM' +cxpM"” and curvg M < curvg M’ + curvg M” .
(5) If a sequence g C R is regular on R and on M, then

exp(M/(g)M) = cxg M and curvg(M/(g)M) = curvg M .

1980 called because it is the inverse of the radius of convergence of P (t).
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(6) If N is a finite R-module such that Tor™ (M, N) =0 forn > 0, then

max{cxgp M,cxg N} < cxg(M ®g N) < cxg M + cxgp N;

curvp(M ®p N) = max{curvg M,curvg N}.

Proof. (1) comes from Proposition 4.1.9; (2), (3), and (4) are clear.

(5) By Example 1.1.1, Tor® (M, R/(g)) = H,,(K(g; M)), and the latter mod-
ule vanishes for n > 0. Thus, the desired equalities follow from (6).

(6) Let F and G be minimal free resolutions of M and N, respectively; as
H,(F®rG) = Tor® (M, N) = 0 for n > 1, the complex F@xG is a free resolution
of M ®gr N. It is obviously minimal, so

max{G1(M), BH(N)} < Y BHM)BEN) = B (M ®r N).
ptg=n

The inequalities for complexities follow. To get the equality for curvatures, rewrite
the relations above in terms of Poincaré series:

max{PJ; (1), PR (1)} < P (1) PR () = Pl v (1)

A product converges in the smaller of the circles of convergence of its factors, so
the equality of power series yields curvg(M ®p N) < max{curvg M,curvg N};
the converse inequality comes from the inequality of power series. O

The finiteness of projective dimension of a module is notoriously unstable
under change of rings. Complexity and curvature fare better:

Proposition 4.2.5. Let M be a finite R—module, let o: R — R’ be a homomorphism
of local rings, and set M/ = R' @r M.

(1) For each prime ideal p in R there are inequalities

cxg, My < cxg M and curvg, My < curvg M .
(2) If ¢ is a flat local homomorphism, then

cxp M =cxp M and curvg M’ = curvg M .
(3) If Tor? (R, M) =0 for n>> 0, then

cxp M < cxpM and curvg M’ < curvg M .
(4) If g is an R-regular sequence of length r and R’ = R/(g), then

cxp M <cxp M <cxpM +r;

curvg M' = carvg M when pdp M = 0.

Proof. Both (1) and (2) are immediate. (3) results from Proposition 1.2.3. (4)
follows from the inequalities of Poincaré series in Proposition 3.3.4. ]
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Finally, we note a result specific to Cohen-Macaulay rings; it fails in general,
as shown by the ring R = k[[s1, s2]]/(s2, s152) of multiplicity 1.

Proposition 4.2.6. If R is Cohen-Macaulay, then curvg M < mult R — 1; equality
holds when R has minimal multiplicity (defined in Example 15.2.8)

This follows from a lemma, that sharpens the result of Ramras [135].
Lemma 4.2.7. If R is Cohen-Macaulay, mult R =1, and type R = s, then
s
(= DBI(M) = B2 (M) >

n

BE(M)  for n > depth R — depth M .

l—s
Proof. By Remark 1.2.9, we may assume that R is artinian, with length R = [, and
length(0: pm) = s. In a minimal resolution F of M, SyzZ,, (M) C mF,, so

(1 —1)BE(M) = lengthmF,, > length Syzf;rl (M) > ﬁrl(M) forn>1.

As 9((0:gm)F;) C (0: gm)mF,_; = 0, we have (0: g m)F; C Syz, (M), and
hence length Syzf_"H (M) > spE(M). The exact sequence

0 — Sysl, (M) = Fusy — Syzliy (M) — 0
now yields (8%, (M) = length F}, 11 > sBE (M) + sBE(M). O

4.3. Growth problems. As of today, a distinctive feature of the state of knowledge
of infinite free resolutions is that tantalizing questions on the behavior of basic in-
variants can be stated in very simple terms. We present four groups of interrelated
problems, that set benchmarks for many results in the text. Some are (variants)
of problems discussed in more detail in [27], others are new. They could be viewed
in the broader context of growth of algebraic structures, to which the survey of
Ufnarovskij [153] is a good introduction.

For the rest of this section, (R, m, k) is a local ring, and M is a finite R—
module; to avoid distracting special cases, we assume that pdp M = oo.

All problems discussed below have positive answers for modules over Golod
rings and over complete intersections. These two cases, for which exhaustive infor-
mation is available, are treated in detail in later chapters.

Growth. The easily proved inequality over Cohen-Macaulay rings suggests

R
Problem 4.3.1. Is limsup M always finite?
n—oo (M)

There is no problem when the Betti numbers of M are bounded, but little
is known on when such modules occur. The only general construction that I am
aware of, presented in Example 5.1.3, yields modules with periodic of period 2
minimal resolutions. Such a periodicity implies constant Betti numbers, but not
conversely, cf. Remark 5.1.4. On the other hand, there exist rings over which all
infinite Betti sequences are unbounded, cf. Theorem 5.3.3.

The simplest pattern of bounded Betti numbers is highlighted in
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Problem 4.3.2. If a bounded sequence {3%(M)} eventually constant?
Problem 4.3.2, proposed in [134], is subsumed in the next one, from [23]:
Problem 4.3.3. Is the sequence {3%(M)} eventually non-decreasing?

An early class of artinian examples is given by Gover and Ramras [75]. Many
more can be found in the papers discussed after Problem 4.3.9.
Complexity. Complexity is a measure for infinite projective dimensions, in the
polynomial range of the growth spectrum. It is very interesting to know whether
it satisfies an analogue of the Auslander-Buchsbaum result: depth R is an upper
bound for all finite projective dimensions. More precisely, we propose

Problem 4.3.4. Does cxp M < oo imply cxg M < codepth R?

Over a complete intersection the inequality holds for all modules, and all
values between 0 and codepth R occur. More generally, for modules of finite CI-
dimension?® the problem has a positive solution, that comes with a bonus: if R is
Cohen-Macaulay (respectively, Gorenstein), but not a complete intersection, then
cxp M < codepth R — 2 (respectively, < codepth R — 3).

Finite complexity only imposes an upper bound on the Betti numbers, pre-
scribing no asymptote. As in calculus, when {b, } and {¢, } are sequences of positive
real numbers, we write b, ~ ¢, to denote lim,, b, /¢, = 1.

Problem 4.3.5. If cxg M = d < oo, is then SE(M) ~ an?~! for some o € R?

Would Betti sequences turn up that have subpolynomial but not asymp-
totically polynomial growth, then complexity should be refined by the number
limsup,, In (3%(M))/In(n), modeled on?! Gelfand-Kirillov dimension, cf. [71].

Curvature. By d’Alembert’s convergence criterion, curvg M is contained between
liminf, 8%, (M)/BE(M) and limsup,, B ,(M)/BE(M). To quantify the obser-
vation that ‘at infinity’ Betti numbers display uniform behavior, we risk

R
Problem 4.3.6. Is curvg M = lim L(Zw) ?
e BR(M)
A positive answer would solve Problem 4.3.2, and also Problem 4.3.3 when
curvg M > 1. If curvg M = 1, then the Betti sequence of M grows subexponen-
tially; none is known to grow superpolynomially, so we propose

Problem 4.3.7. Does curvg M = 1 imply cxg M < oo ?

For k the answer is positive, cf. Theorem 8.2.1. The dichotomy implied by a
general positive answer would be all the more remarkable for the fact, that inter-
mediate growth does occur in most (even finitely presented!) algebraic systems:
associative algebras, Lie algebras, and groups, cf. [153].

20That class, introduced by Avramov, Gasharov, and Peeva [32], includes the modules of finite
virtual projective dimension of [25], and hence all modules over a complete intersection.
21This is a GK-dimension: that of Extp (M, k) over Extp, (k, k), cf. Chapter 10.



Infinite Free Resolutions 43

Remark 4.2.3 and Proposition 4.2.4 show that the curvatures of all R—modules
(of infinite projective dimension) lie on [1, curvg k], but their actual distribution
is a mystery. Obviously, the first question to ask is:

Problem 4.3.8. Is the set {curvg M | M a finite R—module} finite?
We also propose an exponential version of Problem 4.3.5:
Problem 4.3.9. If curvg M = 3 > 1, is then 8Z(M) ~ af" for some a € R?

This is proved by Sun [150] over generalized Golod rings, cf. Theorem 10.3.3.2.
Intermediate results are known in many other cases. Gasharov and Peeva [70],
[130], prove that if R is Cohen-Macaulay of multiplicity < 8, then there is a real
number v > 1, such that 8%, (M) > B85 (M) for n > 0. This property is called
‘termwise exponential growth’ by Fan [63], who extends some methods of [70] to
handle artinian rings of ‘large’ embedding dimension. For a Cohen presentation
R = Q/I Choi [52], [53] shows that ¢ = ranks (n(I : n)/nl) is an invariant of R,
and that B2, ,(M) > ¢BR(M) for n > 1.

A weaker property, called ‘strongly?? exponential growth’ in [26], is estab-
lished when m3 = 0 by Lescot [106]: for each M there is a real number v > 1,
such that BE(M) > 4™ for n > 0. This special case is significant, as Anick and
Gulliksen [13] prove that each P (t) is rationally related to P% (t) for some artinian
k-algebra (S, n, k) with n® = 0.

Rationality. The study of infinite resolutions over local rings was triggered by a
question, variously and appropriately linked to the names of Kaplansky, Kostrikin,
Serre, and Shafarevich: Does P(t) represent a rational function?

Gulliksen [79] raised the stakes, proving that a positive answer for all (R, m, k)
would imply that P4, () is rational for all R and all M. Anick [10], [11] answered
the original question, with a graded artinian local k-algebra??, such that PkR (t) is
transcendental, but the following is widely open:

Problem 4.3.10. Over which R do all modules have rational Poincaré series?

Anick’s construction, as reworked by Lofwall and Roos [114], is described in
detail by Roos [138], Babenko [39], and Ufnarovskij [153]; these surveys, and that
of Anick [12], also describe a finite CW complex, whose loop space homology has a
transcendental Poincaré series. Bogvad [44] uses the artinian examples to produces
a Gorenstein ring with irrational P1(t). Froberg, Gulliksen and Léfwall [69] show
that the rationality of the Poincaré series of the residue fields is not preserved in
flat families of local rings.

Jacobsson [93] provides the shortest path to irrational Poincaré series. He
also shows that the rationality of P5(¢) does not imply that of all P¥,(#), hence:

Problem 4.3.11. Do all rational P¥;(t) over R have a common denominator?

22The terminological discrepancy reflects the growth of expectations, over a decade.
230f rank 13.
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A result of Levin [111], cf. Corollary 6.3.7, shows that for the last two prob-
lems it suffices to consider modules of finite length. Positive solutions are obtained
over generalized Golod rings in [28], cf. Theorem 10.3.3.1.

Besides the aesthetic of the formula in ‘closed form’ that it embodies, a
rational expression for a Poincaré series has practical applications. First, it provides
a recurrent relation for Betti numbers that can be useful in constructing a minimal
resolution. Second, it allows for efficient estimates of the asymptotic behavior of
Betti sequences; for instance, rationality implies a positive solution to Problem
4.3.7, and yields some information on Problem 4.3.2: a bounded Betti sequence is
eventually periodic, cf. e.g. [26].

5. Modules over Golod Rings

In this chapter (R, m, k) is a local ring.
Golod [74] characterized those rings R over which the resolution of & has the
fastest growth allowed by Proposition 4.1.4, that is, which have

edim R
a0 (1+1)

- 1— Z;c;dleptthankk Hj (KR)tj+1 '

(5.0.1)

They are now known as Golod rings. We present some highlights of the abundant
information available on resolutions of modules over them. It neatly splits into two
pieces, corresponding to codepth R < 1 and codepth R > 2.

5.1. Hypersurfaces. A local ring with codepth R <1 is called a hypersurface.

To account for the name, consider a minimal presentation R Q/I. Lemma
4.1.3.2 yields pdy Q/I < 1, so I is principal, say I = (f); in particular, regular
rings are hypersurfaces. If R is a hypersurface, then Pf(t) = (1 4 t)°dm % by
Example 1.1.1 when it is regular, and P2 (¢) = (14t)°d™ /(1 —#2) by Proposition
3.3.5.2 when it is singular. Thus, a hypersurface is a Golod ring.

Resolutions over hypersurface rings have a nice periodicity, discovered by
Eisenbud [57]. In particular, cxg M < 1 for each R—module M. Remark 8.1.1.3
contains a strong converse: if cxp k < 1, then R is a hypersurface.

Theorem 5.1.1. If M is a finite module over a hypersurface ring R, then 55+1(M)
= BE(M) for n > m = depth R — depth M. The minimal free resolution of M
becomes periodic of period 2 after at most m + 1 steps. It is periodic if and only if
M is maximal Cohen-Macaulay without free direct summand.

Proof. By the uniqueness of the minimal free resolution F', to say that it is periodic
of period 2 after s steps amounts to saying that the syzygy modules Syzf (M) and
Syzﬁ_2 (M) are isomorphic. We may test the isomorphism of these finite mod-
ules after tensoring by the faithfully flat R—module R. Since R ® R Syzf} (M) =
Syzf(]/w\ ), we may assume that the ring R is complete, and hence of the form
Q/(f) for some regular local ring Q.
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For m = depth R — depth M + 1, Proposition 1.2.8 and Corollary 1.2.5
show that Syzi (M) is maximal Cohen-Macaulay without free direct summand;
this establishes the ‘only if’ part of the last assertion. As @ is regular, and
depth Syz" (M) = depth R = depth@ — 1, we have pdg Syz2 (M) = 1, so the
other assertions follow from the next construction. O

Construction 5.1.2. Periodic resolutions. Let (@, n, k) be alocal ring, let f € nbea
regular element, and let M be a finite module over R = Q/(f), with pdg M = 1. By
Proposition 1.2.7, its minimal resolution U over @ is of the form 0 — U; — Uy — 0
with U; 2 Uy = Q°. Since fM = 0, the homothety f idy, lifts to a homomorphism
o: Uy — U;.

Considered as a degree 1 map of complexes o: U — U, it is a homotopy
between fidV and 0. If 6: Uy — Uy is the differential of U, this means that
60 = fid"° and 66 = fidY'. Thinking of o and § as b x b matrices, we get matrix
equalities o = fI, = o4, called by Eisenbud [57] a matriz factorization of f.
Clearly, this defines an infinite complex of free R—modules

F((S,U): ...%R@QU@%R@QUHMR@QU@—)-” (*)

If 1®u; € Ker(R® 6) for uy € Uy, then d(uy) = fup = do(ug) with ug € Up.
As ¢ is injective, u; = o(ug), and thus Ker(R ® §) C Im(R ® o). By a symmetric
argument Ker(R® o) C Im(R ® 6), so F(J,0) resolves Coker(R ®¢ ) = M.

When M has a free direct summand, its minimal resolution is not periodic, so
F(6,0) is not minimal. Conversely, if F'(d, o) is not minimal, then N = Im(R®0) ¢
m(R®qg Ui), so R has a basis element in N. Thus, N has a free direct summand,;
since N = Coker(R ® 0) = M, so does M.

Iyengar [92] notes an alternative approach to the preceding construction:

Remark. The shortness of U forces 02 = 0; reversing Remark 2.2.1, we define a DG
module structure of U over the Koszul complex A = Q[y|d(y) = f], by setting
yu = o(u) for v € U. Comparison of formulas then shows that F(d,0) coincides
with the resolution F(A,U) of Example 3.1.2.

Modules with periodic resolutions exist over all non-linear hypersurface sec-
tions: the relevant example, due to Buchweitz, Greuel, and Schreyer [48], is adapted
for the present purpose by Herzog, Ulrich, and Backelin [87].

Example 5.1.3. In the notation of Construction 5.1.2, assume that f € n2, so that
[ =00, ais;, with a;,s; € m. Let K be the Koszul complex on si,..., S, let
x1,...,T beabasis of K1, such that 9(x;) = s; fori = 1,.. ., e. Left multiplication
with Y°¢_, a;z; € K yields a map 7 such that 07 + 70 = fidg, cf. 2.2.1. Setting
Up =P, Ko; and Uy = @, K2i+1, one then sees that

622(82i+1 +T2i+1): U, — U and U:Z(agi—ﬁ-Tgi)Z Uy — U,
i i
is a matrix factorization of f over @, so the preceding remark provides a periodic
of period 2 minimal resolution of the R—module Coker(R ®¢ §) = M.
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Remark 5.1.4. A ring R satisfies the Eisenbud conjecture if each module of com-
plexity 1 has a resolution that is eventually periodic of period 2. This is known for
various R: complete intersections (Eisenbud, [57]); with codepth R < 3, (Avramov,
[26]); with codepth R < 4 that are Gorenstein ([26]) or Cohen-Macaulay almost
complete intersections (Kustin and Palmer, [102]); Cohen-Macaulay of multiplic-
ity < 7, or Gorenstein of multiplicity < 11, (Gasharov and Peeva, [70]); some
‘determinantal’ cases, ([26]; Kustin [99], [100]).

On the other hand, Gasharov and Peeva [70] introduce a series of graded
rings of embedding dimension 4 and multiplicity 8, setting

2 2 2 .2
R = kl[sy, 82, $3, 84]/(a5183 + 5283, S154 + S2S4, S3S4, S7, S5, S5, 84)

for some non-zero element a in a field k. It is easy to check that

n
S R—n) P Rt D) > with 0, = (’3 a tf‘;”‘*)
2
is a minimal exact complex of graded R-modules, hence M = Cokerd; has

BE(M) = 2 for all n > 0. It is proved in [70] that this complex is periodic of
period ¢ if and only if ¢ is the order of a in the multiplicative group of k, so
Eisenbud’s conjecture fails when ¢ > 2; similar examples over Gorenstein rings of
embedding dimension 5 and multiplicity 12 are also given.

5.2. Golod rings. To investigate the rings satisfying (5.0.1), Golod [74] introduced
in commutative algebra certain higher order homology operations, that have be-
come an important tool for the construction and study of resolutions.

In this section, we use the shorthand notation @ = (—1)*/*1a.

Remark 5.2.1. Let A be a DG algebra, with Hyo(A) = k. We say that A admits a
trivial Massey operation, if for some k-basis b = {hr}rea of H. 1(A) there exists
a function p: | |2, b° — A, such that

p(hy) = 2y € Z(A)  with  cls(z)) = ha;
p-1
8/“(h)\17 ey h)\p) = Z,u(h)\l, ey h)\j)ﬂ’(h)\_H—l? ceey h,/\p) .
j=1

The fact that A admits a trivial Massey operation means that the algebra
structure on H(A) is highly trivial. For example, zy,2zx, = £0u(hy,, hy,) implies
that H. 1(A) - H.1(A4) = 0. Furthermore, as

[Py sy b))l = Thoag [ 4+ [ha, | +p — 1,
if H;(A) = 0 for i > 0, then there are only finitely many obstructions — known as
Massey products — to the construction of a trivial Massey operation.

Theorem 5.2.2. If the Koszul complexr K® of a local ring (R, m, k) admits a trivial
Massey operation i, defined on a basis b = {hy}rean of Hs 1(KF), then

Gn = o, Kl @rVi, ®r--- @rV;
pthtii+-Fip=n

p?
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where each V,, is an R-module with basis {vy : n = |va| = |hx| + 1}rea, and

a(a@)l})\l®---®U>\p):5'(a)®y>\l®...®U/\

P

p
1)\@\ZGM(hAU...,hAj)@)v,\HI ®--Quy,

is a minimal free resolution (G, 0) of k. In particular, the ring R is Golod.

Remark 5.2.3. The theorem contains one direction of Golod’s result: in [74] he
also shows that, conversely, the equality of Poincaré series implies that each basis
of H(KF) has a trivial Massey operation, cf. also [83]. The proof given below is
taken from Levin [110], and uses an idea of Ghione and Gulliksen [72].

The condition for R to be Golod means that that the differentials "d, , of
the spectral sequence 3.2.4 vanish for » > 1. Thus, the theorem is ‘explained’
by Guggenheim and May’s description [76] of the differentials of Eilenberg-Moore
spectral sequences in terms of certain matric Massey products, introduced by May
[118]; for proofs using that approach, cf. [18], [24].

Proof. The verification that 9% = 0 is direct, using the formulas in Remark 5.2.1.
To see that G is exact, note that K = K7 is naturally a subcomplex of G, and
G/K =2 G®rV with (g ® v) = d(g) ® v. The exact sequence

0-K—->G—-GrV -0

of complexes of R—modules has a homology exact sequence

= @, (Hoej(G) @5 Vi) — Ho(K) — Ha(G)

=@, (Hioj(G) ®r Vj) —2— Hyo(K) — ...

It is clear that Ho(G) = k, and that 9,,41(1 ® vy) = hyx. Thus, 9,41 is surjective,
and the homology sequence splits. In the exact sequence

0 — Hi(G) — Ho(K) @r Vo 25 Hi(K) — 0

we have Ho(K) ® r Vo = Hy(K), hence H; (G) = 0. Working backwards from here,
we see that H,(G) =0 for n > 1.

We induce on p to prove that p(ha,,...,hy,) € mK " for all sequences
Bays-- oy ha, Ip =1, then pu(hy) C Z(K®), and Z(K*) C mK" by Lemma 4.1.6.2.
If p > 1, then the definition and the induction hypothesis imply O (hy,, ..., hy,) €
m2KE so u(hy,,- -, hy,) € mK ", again by loc. cit.

Thus, G is a minimal resolution of k. A computation identical with the one
for the upper bound in the proof of Proposition 3.3.2 shows that ) rankg G, t"
is given by the right hand side of (5.0.1), so R is Golod. ]
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The following conditions often suffice to recognize a Golod ring,

Proposition 5.2.4. A local ring R is Golod if some of the following hold:
(1) H. 1(KT) is generated by a set of cycles Z, such that Z* = 0.

) R/(g) is Golod for a reqular element g € m ~ m?.

) R=Q/(f) for a Golod ring (Q,n, k) and a regular element f € n~ nZ.

) R~ Q/I, where (Q,n,k) is regqular, edim @Q = edim R, and the minimal
resolution A ofﬁ over @ is a DG algebra with A5 1-A>1 CnA.

(2
(3
(4

Proof. (1) Select a subset {z)x € Z}xea such that b = {cls(zx)}rea is a basis of
H. 1 (K%). A trivial Massey operation can then be defined by setting u(hy, , ..., hy,)
=0 for 7 > 2, so R is Golod by Theorem 5.2.2.

(2) and (3). We note that: edim R = edim(R/(g)) — 1 (obvious); PH(t) =
(1+1) Pg/(g) (t) (Proposition 3.3.5.1); ranky H, (K ) = rank; H,,(K %/ (9)) for each
n (Lemma 4.1.6.1). Putting these equalities together, we see that R satisfies the
defining equality (5.0.1) if and only if R/(g) does.

(4) The Golod conditions for R and R are equivalent, so we may assume that
Q/I is a regular presentation of R. By Theorem 5.2.2, it suffices to show that K%
admits a trivial Massey operation.

Choose a set of cycles {2y € A®g K%} en, such that b = {hy = cls(z)) }rea
is a basis of H.1(4 ®q K®). Set pu(hy) = z), and assume by induction that
a function p: | J7_] b A ®g K has been constructed for some p > 2, and
satisfies the condltlons of Remark 5.2.1. The element

ZA1,ee 0 Ap —ZM h/\17"'7 ) (h)\JJrN...,h)\p)

is then a cycle in A ®qg K. If e: K9 —> k is the augmentation, then
(A©@q €)(2r...,) € (AQQE)>1- (ARQK)>1 =0.

Since (A ®q €) is a quasi-isomorphism, ZA1,..,2, 18 @ boundary, so extend p to

”_, b" by choosing p(hy,, ..., hy,) such that d(u(hx,, ..., hy,)) = 2,
completes the inductive construction of a trivial Massey operation on A ®Q K@,
The augmentation A — R induces a surjective quasi-isomorphism ¢: A ®g K¢ —
K, so to get a trivial Massey operation on the basis H(¢)(b) of Hs 1 (K%), set
W (G(hry)s - 6(hn,)) = Bulha, - . B, ). 0

As a first application, we present a result of Shamash [142].

Proposition 5.2.5. If codim R < 1, then R is Golod.

.....

Proof. We may assume that R is a complete, and so has a minimal regular pre-
sentation R 2 Q/I. As @ is a catenary domain, height I < 1; since @ is factorial,
there is an f € n such that I = fJ. In K = R®q K@ each cycle of degree
> 1 has the form 1 ® z, where z € K@ satisfies 9(2) = fv for some v € K9.
Also, fO(v) = O(fv) = 9*(z) = 0, and so d(v) = 0. Choosing u € K? such that
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A(u) = f, we get d(z—uv) = 0. As K< is acyclic, z—uv = d(w) for some w € K.
Thus, cls(1® 2) = cls(1 ®u) cls(1®v), so Hs 1 (K ) is generated by (1®@u)Z(KR).
As u? = 0, case (1) of Proposition 5.2.4 applies. O

Remark. 1t is not clear how the Golod property of a local ring relates to other
characteristics of its singularity. For one thing, it does not fit in the hierarchy

regular = complete intersection = Gorenstein = Cohen-Macaulay.

The only Golod rings that are Gorenstein are the hypersurfaces: compare Remark
5.2.3 with the fact that if R is Gorenstein, then H(K ) has Poincaré duality. On
the other hand, a Golod ring may or may not be Cohen-Macaulay: compare the
preceding proposition with Example 5.2.8. Furthermore, the Golod condition is
not stable under localization, as demonstrated by the next example.

Example 5.2.6. Let @ be the regular ring k[si,s2,53](s,,s,,55)- The ring R =
Q/(s%s3,s3s3) is Golod by Proposition 5.2.5. On the other hand, its localization
at p = (s1,s2) is the ring £[s1, s2]/(s%,s3), where ¢ = k(s3). By example 4.2.1.2,
Pf“’ t)=1/(1 —t)> = (1 +¢)?/(1 — 2t2 + t*), so R, is not Golod.

Golod rings are defined by an extremal property; this might be why they
appear frequently as solutions to extremal problems.

Example 5.2.7. Let Q be a graded polynomial ring generated by Q) over k, and
let S be a residue ring of @, such that ranky S; = rank; @1 = e. A (now) famous
theorem of Macaulay proves that there exists a lex-segment monomial ideal I, such
that R = Q/I and S ranky S,, = ranky R,, for all n, and ﬁ?j(S) < ﬁle (R) for the
first graded Betti number, c¢f” Remark 1.2.10.

Bigatti [43] and Hulett [90] in characteristic zero, and Pardue [128] in general,
extend Macaulay’s theorem to a coefficientwise inequality of Poincaré series in two
variables

PR =D ARSI’ < D B! =Pt ).
n,j

As I is a stable monomial ideal, P R(t, u) is known explicitly from the minimal free
resolution A of R over @, given by Eliahou and Kervaire [60].

Peeva [129] constructs a DG algebra structure on A, such that A;4; C nAd;;
when ¢ > 1 and 5 > 1. By Proposition 5.2.4.4, this implies that R is Golod. The
same conclusion is obtained by Aramova and Herzog [14], who verify that condition
5.2.4.1 holds. Thus, there are (in)equalities

(1 + tu)e - (1 + tu)e

P‘S,Yt,u< =<
() 1+t —tP2(tu) 1+t —tPUt,u)

=P (t,u).

Example 5.2.8. Let R be a Cohen-Macaulay ring of dimension d.

As the residue field of R’ = R[t]yq is infinite, we can choose a regular
sequence g = {g1, ..., g4} such that the length of R” = R'/(g) is equal to mult R,
the multiplicity of R, cf. Remark 1.2.9. Such a sequence is linearly independent
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modulo m?, hence edim R’ = edim R’ — d = codim R’ = codim R. Thus, 1 +
edim R” = 1+ length(m” /m2?) = length(R" /m”?) < length R". This translates to
an inequality codim R < mult R — 1, noted by Abhyankar [1].

If equality holds, then R is said to have minimal multiplicity. Such a ring
is Golod. Indeed, it suffices to prove that for R’. Proposition 5.2.4.2 reduces the
problem to R”. As Z(K®") C m"K®" by Lemma 4.1.6.2 and m”2 = 0, Proposition
5.2.4.1 shows that R” is Golod. Another look at R” shows that mult R = type R+1,
so for each M with pdp M = co Lemma 4.2.7 yields

at™+!

PR (t) = O+ T e R 1

with a positive a € Z, and f(t) € Z[t] of degree m = dim R — depth M.
5.3. Golod modules. A Golod module is a finite R—module M, whose Poincaré
series reaches the upper bound in the inequality of Proposition 4.1.4:
Pl () = otk UK DP
1— Zj o 1 ranky, H; (KH)ti+!
Thus, R is a Golod ring if and only if k£ is a Golod module. A result of Lescot

[107] establishes a tight connection between Golod conditions on a ring and on its
modules; part (1) is independently due to Levin [111].

Theorem 5.3.2. (1) If R has a Golod module M # 0, then R is a Golod ring.
(2) If R is a Golod ring, and M is a finite R—module, then the module
Syz (M) is Golod for n > p = edim R — depth M.
Proof. (1) Referring successively to the definition, Proposition 3.3.3, and the in-
equality at the beginning of this section, we get a sequence of (in)equalities
> _ o ranky, H;(KM)t
1— Zj . ranky, Hj (KR!

(5.3.1)

PR =P () - PE(®)

> is o ranky H,; (KRt
1 =37, ranky Hy(KR)t+
Lemma 4.1.3 shows that the expressions at the ends are equal, so equalities hold
throughout. Cancelling P%,(¢) from both sides of the last equality, we see that
PJI(t) satisfies the defining formula for Golod rings.

(2) Set M; = Syz (M). Tensoring the short exact sequence of complexes
from the proof of Theorem 5.2.2 with M;, we get exact sequences

0— KM - M;®rG— M;r (GRRV)—0.
Setting ¢ = codepth R, note that
H,(M; ®r G) = Tor? (M;, k) ;

<P (1) - PR(t) < PG (1) -

q
H, (M; ©r G) ©r V) = @ Torf_; | (M, k) @4 H;(K").

j=1



Infinite Free Resolutions 51

The short exact sequences produce commutative diagrams with exact rows

Torf, | (M, k) — P Torfl; (M;, k) @ H,(KF)

Jj=1

H,, (KM:)

ot Jeaj(éj@id)

i+l

p
Tor® (M 1,k) = @D Tori_; 1 (Mig1, k) @ Hy(K®) ——H,_; (KMe)
j=1

where the connecting homomorphisms 9¢, come from the exact sequences
0—>Mi+1—>R’6i —>Mi—>0.
Note that Hy(K™) = 0 for s > p, so (0 is surjective for s > p + 1. Assume

. S .
by induction that ¢; is surjective for s > p — i + 1. Since 0; is surjective for all
4, both vertical arrows are onto, so the diagram shows that (i*! is surjective for
s > p —i. We conclude that (2 is surjective for s > 1. Since the complex G @r V

starts in degree 2, the map .} is surjective as well. Thus,

Tor? (M, k) = H,(K») @ éTorgfj;l (M,, k) @ H;(K™T) for n>0
=1
and hence J
BE(M,) = rank;, H, (K™) + zq:ﬁf_j_l(Mp) ranky, H; (K7) for n>0.
=1
These numerical equalities add ljlp to the defining equation (5.3.1). O

Betti numbers of modules over Golod rings are well documented in the next
theorem. It collects results from work of several authors: Ghione and Gulliksen [72]
establish the rational expression in (1); the bound on its numerator, and a proof
that 8%, (M) > BE(M) for n > edim R, are due to Lescot [107]; the exponential
growth result in (5) is established by Peeva [130], while the asymptotic formula in
(3) is a consequence of the result of Sun [150].

Hypersurfaces are excluded from the statement of the theorem, as they have
been dealt with in Section 5.1.

Theorem 5.3.3. Let R be a Golod ring with codepth R = q > 2, and let M be a
finite R—-module with edim R — depth M = p. If pdp M = oo, then:
(1) There exist polynomials with positive integer coefficients, p(t) of degree p—1
and q(t) of degree < q, such that
q(t) i
1-— Z?:I ranky, H; (K )ti+1

(2) cxp M =00 and curvp M = > 1.

P (t) = p(t) +
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(3) BE(M) ~ ap™ for some real number a > 0.

R (M
) Jm Ty =5
R R
® Ty 2| Gy | p<i<praf =1 1hrnzp,

Proof. The module M, = Syzf (M) is Golod by Theorem 5.3.2.2, and has
p = edim R — depth M), = depth R — depth M}, 4+ codepth R > ¢ + 2.

Proposition 1.2.8 shows that its depth is equal to depth R. Replacing M by M,
we see that it suffices to prove the theorem when M is a Golod module, and p = 0.
For simplicity, we write 3, instead of BZ(M).
(1) then holds by definition.
(5) Let R = Q/I be a minimal Cohen presentation. With r; = rankg Syz< (M)
and s; = rankg Syz (R ) we have
>, ranky H; J(KM)E P%“) B bttt

PR — = -
w(t) = 1 — 3, ranky, H; (K R)ti+1 1+t—tP%(t) L—t375  siti!

where the first equality holds because M is Golod, the second by Lemma 4.1.3.1,
and the third by Proposition 3.3.5.2. This yields numerical relations

Bn+1=0Bn+518n—1+ -+ 5¢-18n—g+1 + 41 for n>0.

Since s; > 1 because R is not a hypersurface, we get 8,411 > B, for n > 0. Thus,
min{B , (M)/BE(M) |0 <i < g} =~ > 1, so assume by induction that n > ¢—1
and Bi11/6; > v for i <n. As 7,41 = 0 for n > ¢ — 1, we have

Br+1 = Bn + 810n—1 + -+ Sg-18n—g+1
2 YBn-1+ 817002+ -+ 54-17Bn—q = V0n -

(2) is a direct consequence of (5).

(3) Let p be the radius of convergence of P, (t). Since this is a series with
positive coefficients, p is a root of the polynomial g(t) = 1 — Z?:l s;t7. Because
g(0) =1 > 0 and g(1) = 1 — > rankg Syzﬁ_1 (R) < 0, we have p < 1. As
g(p)=— Z?Zl jsjp?~! <0, the root p is simple. Let &, ..., &y, be the remaining
roots of g(t); assuming that one of them is equal to (p for some ¢ € C with || =1
and ¢ # 1, we get

(Cp)

Z|SJ Cp)’ |—Zs]p7—1

which is absurd. Thus, p < |&] for i = 1,...,m. Set & = p, and write PY;(t) as a
sum of prime fractions /(1 — & 't)" with oy, € C for i = 0,...,m. Expanding
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each one of them by the binomial formula, we see that
m  ng h
On=ap™ " +ZZO¢m( tn- )f " with a #0.
i=1 h=1

Thus, o = lim,_.s0 Bnp" > 0; as p~! = curvg M = 3, this is what we want.

(4) is a direct consequence of (3). O
The next result is due to Scheja [143]; the proof is from [21].

Proposition 5.3.4. Let e = edim R and r = rank;, Hy (K*). If codepth R = 2, then
either R is Golod, and then PR(t) = (1 +t)*"'/(1 —t — (r — 1)t?), or R is a
complete intersection, and then PE(t) = (14 )¢72/(1 — 2t + 2) .

Proof. Completing if necessary, we may assume that R = Q/I, with (Q,n, k) a
regular local ring, and I C n?. The Auslander-Buchsbaum Equality yields pdg R =
depth Q—depth R = codepth R = 2. By Example 2.1.2, the minimal free resolution
A of R over @ is a DG algebra, such that A; A; C nAs, unless I is generated by
a regular sequence. In the latter case R is a complete intersection by definition;
in the former, it is Golod by Proposition 5.2.4.4. The Poincaré series come from
Proposition 3.3.5.2 and formula (5.0.1), respectively. ]

We complement the discussion in Section 1 with Iyengar’s [92] construction
of minimal resolutions over Golod rings of codepth 2; the very different case of
complete intersection is treated by Avramov and Buchweitz [31].

Example 5.3.5. Let R = Q/I be a Golod ring with codepth R = 2. If edim R —
depth M = p, then N = Syzf (M) has pdg N = 2 by Proposition 1.2.8 and Lemma
1.2.6. By Proposition 2.2.5, the minimal free resolution U of N over @ is a DG
module over the DG algebra A of Example 2.1.2. If F(A,U) = F is the resolution
of N over R given by Theorem 3.1.1, then

> PRt
ZrankR F.t" = N—()Q =PE(®)
—~ 1+t —tPY(t)

because the R—module N is Golod by Theorem 5.3.2.2. Thus, F' is minimal.

6. Tate Resolutions

A process of killing cycles of odd degree by adjunction of divided powers — rather
than polynomial — variables, was systematically used by H. Cartan in his spectac-
ular computation [50] of the homology of Eilenberg-MacLane spaces [56]. Their
potential for commutative algebra was realized by Tate?* [151].

Section 1 presents most of Tate’s paper. Section 3 contains a major theorem of
Gulliksen [77] and Schoeller [139]; it is proved essentially by Gulliksen’s arguments,

24From the introduction of [151]: ‘Our “adjunction of variables” is a naive approach to the
exterior algebras and twisted polynomial rings familiar to topologists, and the ideas involved
were clarified in my mind by conversations with John Moore.’
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but in a new framework motivated by Quillen’s construction of the cotangent
complex in characteristic 0 and developed in Section 2.

6.1. Construction. Let A be a DG algebra, and let z € A be a cycle.

Construction 6.1.1. Divided powers variable. The k—algebra k(x) on a divided pow-
ers variable x of positive even degree is the free k-module with basis {z(*) : |2()| =
ilz|}: > 0 and multiplication table
@z = <Z —~._J>x(i+j) for 4,7 >0;
i

it is customary to set W =z 20 =1 and 29 =0 for i < 0.
Set A(z)t = A" @, k(x). If 2 € A is cycle of positive odd degree, then

3<Zaix(i)> Za x()+z |°“|a (=1

is a differential on A(x), that extends that of A, and satisfies the Leibniz rule.

For uniformity of notation, when |x| is odd A(x|d(x) = z) stands for the
algebra A[z|0(z) = z], described in Construction 2.1.7; when |z] = 0 we set
Az |0(z) = 0) = Alz | d(z) = 0], cf. Construction 2.1.8.

Example 6.1.2. Let B be a strictly graded commutative algebra. An element u €
By is regular on B if it is not invertible, and has the smallest possible annihilator:
When d is even this means that (0: pu) = 0, the usual concept for commutative
rings; when d is odd this means that (0 :p u) = Bu, because u? = 0 implies
uB C (0: pu).

It is easy to see that u is regular if and only if 7: B(x|9d(z) = u) — B/(u),
TI'( > bix(i)) = bo+ (u), is a quasi-isomorphism. Indeed, this is classical if d is even.
When d is odd, z = 3 bz is a cycle precisely when ub; = 0 for i > 0; if u is
regular, then b; = a;u for each 4, so z = by + 9( 3, (—1)l%la;z(+1)); else, there is
a v ¢ (u) such that uv = 0, hence Ker H() > cls(ux) # 0.

A semi-free I'-extension A(X) of A is a DG algebra obtained by iterated (pos-
sibly, transfinite) sequence of adjunctions of the three types of variables described
above; we say that the elements of X are I"-variables over A.

Remark 6.1.3. Let A — A(X) be a semi-free I'-extension, with d(z)) = z) € A.
Consider the semi-free extension A[Y |9(yx) = 2,], and let a: A[Y] — A(X) be
the morphism of DG algebras defined by a(y») = x for each A. A simple induction

yields a(y}) = (z')x&l) Thus, if n! is invertible in A, then
1 iq
(i) m)): Yn " "Un, for iy .- 4i <
5 () oad O] or mErHlgsT

defines a morphism of complexes (A(X))<, — (A[Y])<n, inverse to ac,. When
Ap is a Q-algebra, a and [ are inverse isomorphisms of DG algebras.
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Let ¢: R — S be a homomorphism of commutative rings. A factorization
of ¢ through a semi-free T-extension R < R(X) followed by a surjective quasi-
isomorphism R(X) — S is called a Tate resolution of S over R (or, of the R—algebra
S). Revisiting the proof of Proposition 2.1.10, this time killing classes of odd degree
by adjunction of divided powers variables, one gets

Proposition 6.1.4. Fach R-algebra S has a Tate resolution. If R is noetherian and
S is a finitely generated R—algebra (and a residue ring of R), then such a resolution
exists with all X; finite (and Xy = &). O

We take a close look at the effect that an adjunctions of I'-variables has
on homology. If 1: A — A(X) is a semi-free I'-extension, and 9(X) C A, then
W = {cls(0(x)) € H(A) | x € X} is contained in the kernel of the algebra homo-
morphism H(:): H(A) — H(A(X)), hence there is an induced homomorphism of
graded algebras 7: H(A)/(W)H(A) — H(A(X)).

Let A — A(zx|0(z) = z) be an extension with |z| = d and w = cls(z).
Remark 6.1.5. When d > 0 is even, there is an exact sequence of chain maps
0—-A5A@) 5 A—0  where Y(a+ab)=b,
has degree —d — 1, and the homology exact sequence is

o= Hyg(A) 5 Hy(A) H,, (A{x)) H, g 1(A) —....

In a special case, it appears in most textbooks on commutative algebra: A =
K(f;Q) is the Koszul complex on f and A(x) = K(f,g;@) is that on f U {g}.

Hn () Hy (9)

Remark 6.1.6. When d > 0 is odd, there is an exact sequence of chain maps
0— A% Alz) % Az) -0 where 19(2 aix(i)> = Z Y
i i

of degree —d — 1, and the homology exact sequence is

= Hya(Alr)) 22 H, (4) 22 H, (Ax)) Hyoao1(Alz) — ...

Unlike the preceding case, multiplication by w does not appear as a map in
this sequence. To analyze its impact, consider the spectral sequence of the filtration
dicp Az Tts module ?E, , is the homology of the complex

Han (9)
—

qud(;ﬂﬁLl)(A) - Hq—dp(A) = qud(pfl)(A) )
so for all ¢ there are equalities
H (A) (OIH(A)IU) —nd

2 q 2 a—p
Eog= """ and Epg=—7F"""+~
T wHg-a(A) T wHe penya(A)

Setting s = inf{n | (0:pa) w)n # wH,_4(A)}, we get *E, 4 = 0 for p > 1 and
q < dp + s. Since "d, , maps "E, , to "E,_; 44r—1, we have ?Eq, = ®Eg, for

when p > 1.
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q <2d+ s and ?E; , = ®E; 4 for ¢ < 3d + s. The spectral sequence converges to
H(A(z)), so for n < s the inclusion ¢: A — A(X) induces isomorphisms

_ . Ha(4)
Tn:
w and (A)
and short exact sequences

Hn(A) (OH(A) w)n
’an,d(A) an,d(A)

We extend to the graded commutative setup a basic tool of a commutative
algebraist’s trade: A sequence w = uq,...,u;,--- C B is reqular on B if (u) # B
and the image of u; is regular on B/(uq,...,u;—1)B for each ¢ > 1. The following
result is from the source [151]. When A = Ay, the extension A(X) is an usual
Koszul complex and condition (ii) means that H,(A(X)) = 0 for n > 0, so we
have an extension of the classical characterization of regular sequences. On the
other hand, when 94 = 0, condition (iii) extends the homological description of
regular elements in Example 6.1.2.

~H,(A(X)) for0<n<d+s,

0— L Hy (Alz)) — —0 ford+s+1<n<2d+s.

Proposition 6.1.7. Let A be a DG algebra, let w = wi,...,wj,... be a sequence
of classes in H(A), let z be a sequence of cycles such that cls(z;) = w; for each i,
and let 1: A — A(X|0(X) = z) be a semi-free I'-extension.
Implications (i) = (ii) = (iii) then hold among the conditions:
(i) The sequence w is reqular in H(A).

(ii) The canonical map T: H(A(X)) is an isomorphism.

—_—

(w) H(A)
(iii) The canonical map H(t): H(A) — H(A(X)) is surjective.

The conditions are equivalent if w = w1, or |w;| > 0 for all j, or each H;(A) is

noetherian over S = Ho(A) and all w; of degree zero are in the Jacobson radical

of S. In these cases, any permutation of a reqular sequence is itself regular.

Proof. Homology commutes with direct limits, so we may assume that the sequence
z is finite, say z = 21, ..., 2;, and induce on 7. For i = 1, set z = z;, w = wy, and
d = |w|. When d is even Remark 6.1.5 readily yields (ili) = (i) = (ii), so
assume that d is odd.

(i) = (ii). If w is regular on H(A), then ?E, , = 0 for p > 0 in the spectral
sequence in Remark 6.1.6, hence

Hy(A)/wHy—a(A) = *Eo,g = “Eo,q = Hy(A(X)).
(ili) = (i). If w is not regular, then by Remark 6.1.6 the sequence

H(s)

0: w)g
Hevwon(A) 0 | (Al — L@

w Hs_d<A)
is exact, with non-trivial quotient. This contradicts the surjectivity of 7.

Let i > 1, assume that the proposition has been proved for sequences of
length ¢ — 1, set X' = 21,...,2;_1, X = X' U {a;}, and consider the semi-free
I-extensions ¢': A — A(X’) and A(X') — A(X")(z;) = A(X).

—0
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(i) = (). If w = wy,...,w; is regular on H(A), then so is the sequence
w’' = wy,...,w;_1, hence H(A)/(w’) H(A) =2 H(A(X")) by the induction hypoth-
esis. As w; is regular on H(A)/(w')H(A), the basis of the induction yields an
isomorphism H(A)/(w)H(A) =2 H(A(X)).

(iii) = (i). Since the homomorphism H(¢) factors as

ooy 2, AKX
H(4) = H{AXD) — T

where o« = H(¢'), we see that + is onto. The basis of our induction shows that w;
is regular on H(A(X")), and that + is bijective. Thus, S« is onto, so

H, (A(X")) = a(H,(A) + wi Hy_g(A(X"))  for neZandd=|uw].

— H(A(X)),

When d > 0, induction on n shows that « is surjective; when d = 0, the same
conclusion comes from Nakayama’s Lemma, which applies since H,(A(X")) is a
finite Hy(A(X’))-module. The surjectivity of @ and the induction hypothesis imply
that w’ is regular on H(A); thus, w is regular on H(A). O

Theorem 6.1.8. Let Q@ be a ring, let B be a DG algebra resolution of S =
Q/(s1,-..,8¢), and choose 1, ...,x. € By such that d(x;) = s; fori=1,...,e.
For f=fi,....fr €Quwith f; =Y _jaijs; forj=1,....r, set zj = > .5 | Gz,
where overlines denote images in R = Q/(f).

If f is Q-regular, then C = B{y1,...,y, |0(y;) = ;) resolves S over R.

Proof. With A = Q(Y |9(y;) = f;), we have quasi-isomorphisms of DG algebras
a: A— Rand 8: B— S, and hence induced quasi-isomorphisms

— B 1o} A
B=BagR <% BogA 22%% §&oA=S,...,u|0(y;) = 0) .

As z; = (B®q a)( X5 aizi — y;) and (B ®q A) (327, aijzi — y;) = —yj, We
see that Hy(B) is a free module on wy,...,w,, where w; = cls(z;), and H(B) is
the exterior algebra A Hi (B). Thus, the sequence w, ..., w, is regular on H(B),

so H(C) = H(B)/(ws,...,w,) = S by the preceding proposition. O
For B = Q{x1,...,2.|0(x;) = s;) and t; = 3; € R, the theorem yields

Corollary 6.1.9. If both sequences f and s are Q-regular, then the DG algebra
C=R(x1,...,Te;Y1,---,yr |O(x;i) =t; O(y;) = z;) resolves S over R. O

Remark. A result of Blanco, Majadas, and Rodicio [41] rounds off this circle of
ideas: H, (R(X1, X3)) = 0 for n > 1 if and only if {cls(d(x)) | * € X2} is a basis of
H = H;(R(X31)) over S = Ho(R(X1)), and the canonical map of graded algebras
Ng H — H(R(X,)) is bijective.

In characteristic 0, the theorem holds with R{X) replaced by R[X], cf. Re-
mark 6.1.3; in general, the use of divided powers is essential:

Example 6.1.10. Let Q = k[[s]], where k is a field of characteristic p > 0, set
R = Q/(s™*1) for some m > 1, and let ¢ be the image of s.
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For each i > 0, the DG algebra G = R[y1,y2|0(y1) = t; d(y2) = t"y1] has
G = v and Gaiy1 = Ryiys, with O(ys) = it™yy'~! and d(y1ys) = tys. Thus,
Hip(G) = Haip—1(G) = k for ¢ > 0. If R[Y] is a resolvent of k, then it contains a
subalgebra isomorphic to G, and so cannot be minimal.

6.2. Derivations. Throughout this section, A <— A(X) is a semi-free I'-extension.
First, we describe a convenient basis.

Remark 6.2.1. The following conventions are in force: (¥ = 0 and z(©) = 1 for all
x € X and all ¢ < 0; when |z is odd, z(® is defined only for i < 1, and z(}) =
when |z| = 0, () stands for z*.

Order X = {xx}aea, first by ) < z, if |xx| < |x,|, then by well-ordering
each X,,. For every sequence of I'-variables z,, < --- < z,, and every sequence
of integers i, > 1,...,4, > 1, the product a:ff 2 f,l”) is called a normal I'-
monomial on X; its degree is i,|z,| + -+ + iu|xy; by convention, 1 is a normal
monomial. The normal monomials form the standard basis of A(X)% over A"

To contain a proliferation of signs, we use the canonical bimodule structure
carried by each DG module V over a graded commutative DG algebra B. Namely,
B operates on V on the right by vb = (—1)/*/I!lby for all v € V and b € B. This
operation is right associative (that is, v(bb’) = (vb)V'), distributive, unitary, and
commutes with the original action: (bv)b' = b(vd’).

Remark 6.2.2. Let U be a module over A(X) ",
A map of k-modules ¥: A(X) — U, such that

Ha) =0 forall a€ A;
D) =00 + (—)Iey(p')  forall b € A(X);
(W) = 9(z)zD for all = € Xeyen and all i € N,

is called an A-linear I'-derivation; it is a homomorphism of A% modules.
It is easy to see by induction that

) o (i—1) if =0:
@@y _ )W if |z ;

and

9 (ixy) u ) 1 3 ) (“1 (z’)\j) (ixg)
(x}\l .. ) Z Jj— x ..Q?((E)\J )...x}\q

Jj=1

where s; = [0 (ix, [2a, | + - 4 ix,|2a, ])-

In particular, ¢ is determined by its value on X. Conversely, each homo-
geneous map X — U extends to a (necessarily unique) A-linear I'-derivation
¥: A(X) — U. Indeed, define the action of ¥ on the standard basis by the for-
mulas above, and extend it by A-linearity; it suffices to check the Leibniz rule on
products of normal monomials, and this is straightforward.
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Let Der’y (A(X),U) be the set of all A-linear I-derivations from A(X) to U.
It is easy to see that Der)y (A(X),U) is a submodule of Homy (A(X),U), for the
operation of A(X)% on the target: (ba)(b') = ba(b').

If U is a DG module over A(X), and ¥ is an A-linear I'-derivation, then
so is 99 — (—1)!"199, hence Homa (A(X),U) contains Der) (A(X),U) as a DG
submodule over A(X); we call it the DG module of A-linear I'-derivations. If ¢
is a cycle in Der), (A(X),U), that is, if 99 = (—1)I?199, then we say that 9 is a
chain I'-derivation. Clearly, if 3: U — V is a homomorphism of DG modules over
A(X), then ¥ — (o} is a natural homomorphism

Der’y (A(X),3) : Der), (A(X),U) — Der} (A(X),V),
of DG modules over A(X), which is a chain map if 3 is one.

Over a commutative ring, the derivation functor is representable by module
of Kahler differentials. The next proposition establishes the representability of the
functor of I'-derivations of semi-free I'-extensions.

Proposition 6.2.3. There exist a semi-free DG module Diff y A(X) over A(X) and
a degree zero chain I'-derwation d: A(X) — Diff } A(X) such that

(1) (Diff, A(X))? has a basis dX = {dz : |dz| = |z|},ex over A(X)".
(2) d(z) = dz for allz € X .
(3) A(b(dx)) = A(b)(dx) + (—1)1"Ibd(d(x)) for all b € A(X).
(4) The map (3 Bod is a natural in U isomorphism
Hom 4 x) (Diff )y A(X),U) — Der} (A(X),U)

of DG modules over A(X), with inverse given by

5( > axdx) =Y ()Ml () .

reX rzeX

Remark. We call Diff} A(X) the DG module of I'-differentials of A(X) over A,
and d the universal chain I'-derivation of A(X) over A.
Proof. Let D be a module with basis dX = {dx : |dz| = |z|}sex over A(X)!. By
Remark 6.2.2, there is a unique degree zero I'-derivation d: A(X) — D, such that
d(z) = dz for all z € X . A short computation shows that dod — dod: A(X) — D
is an A-linear I'-derivation. It is trivial on X, hence dod = dod. In particular,
0?(dx)) = d(0*(z)) = 0 for all z € X, so 9* = 0.

The DG module Diff} A(X) = (D, d) has the first three properties by con-
struction. The last one is verified by inspection. O
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In combination with Proposition 1.3.2, the preceding result yields:

Corollary 6.2.4. IfU — V is a (surjective) quasi-isomorphism of DG modules over
A(X), then so is Der)y (A(X),U) — Der), (A(X),V). O

Construction 6.2.5. Indecomposables. Let J denote the kernel of the morphism
Ag — S = Ho(A(X)), and let X>2) be the set of normal T-monomials x,(j“) o)
that are decomposable, that is, satisfy ¢, + --- + 14, > 2. It is clear that A +
JX 4+ AX>?) is a DG submodule of A(X) over A, hence the projection 7: A —
A(X)/(A+ JX + AX>?) defines a complex of free S~modules

Indj AX): ... 89X, Ot SX, — ... .

We call it the complex of I'-indecomposables of the extension A — A(X). It is
used to construct DG I'-derivations, by means of the next lemma.

Lemma 6.2.6. Let V' be a complex of S—modules, let U a DG module over A with
U; =0 foriv <0, and let B: U — V a surjective quasi-isomorphism.

For each chain map &: Ind’y A(X) — V of degree n there exists a degree n
chain I'-deriwation ¥: A(X) — U such that Y = &m; any two such derivations
are homotopic by a homotopy that is itself an A-linear I'-derivation.

Furthermore, for each family {u, € Uy | B(uy) = &(x) for x € X,,} C U there
is a chain I'-derivation 9, satisfying 9(x) = u, for all x € X,,.

Proof. The canonical projection A(X) — Ind)} A(X) is an A-linear chain I'-
derivation, so Proposition 6.2.3.4 yields a morphism D — Ind}; A(X) of DG mod-
ules over A(X), that maps dz to = for each z € X. It induces a morphism of
complexes of free S—modules S ® 4(xy D — Ind); A(X) that is bijective on the
bases, and hence is an isomorphism. Thus, we have isomorphisms

Hom 4(x) (D, V) = Homg (S®a(x)D,V) = Homg (Ind}} A(X),V)

On the other hand, for the semi-free module D = Diff} A(X) over A(X),
Corollary 6.2.4 gives the surjective quasi-isomorphism below

Der), (A(X),U) —— Der; (A(X),V) = Homyx) (D, V)

while the isomorphism comes from Proposition 6.2.3.4.

Concatenating these two sequences of morphisms, we get a surjective quasi-
isomorphism a: Der’y (A(X),U) — Homg (Ind’; A(X), V), so we can choose a cy-
cle ¥ € Der)y (A(X),U) with a(¢) = &: this is the desired chain I-derivation.d(x) =
uy for all z € X,,. Any two choices differ by the boundary of some v € Der’y (A(X),
U), that is, of a I'-derivation. Finally, observe that the ¢; = 0 for ¢ > n, and the
choice of 9,, is only subject to the condition Sot,, = &omn, so I,(z) = u, for
x € X, is a possible choice. O
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In these notes, applications of the lemma go through the following

Proposition 6.2.7. Assume that A(X) — S is a quasi-isomorphism.

If v € X, C Ind)} A(X) is such that T = © € X,, + 8,41 is a free direct
summand of Coker 8,11, then there is an A-linear chain I'-derivation ¥: A(X) —
A(X) of degree —n, with 9(x) =1 and ¥(X,{z}) = 0.

Proof. Since Sx N Im,,+1 = 0, the homomorphism of S—-modules &,: SX,, — S
defined by &, (z) = 1 and &,(X,, \ {z}) = 0 extends to a morphisms of complexes
Ind’; A(X) — S; apply the lemma with U = A(X) and V = S. O

6.3. Acyclic closures. The notion is introduced by Gulliksen in [83], where the
main results below may be found. Our approach is somewhat different, as it is
based on techniques from the preceding section.

Construction 6.3.1. Acyclic closures. Let A be a DG algebra, such that Ag is a
local ring (R, m, k), and each R—module H,,(A) is finitely generated, let A — S be
a surjective augmentation, and set J = Ker(R — S).

Successively adjoining finite packages of I'-variables in degrees 1, 2, 3, etc.,
one arrives at a semi-free I'-extension A — A(X), such that Ho(A(X)) = S, and
H,(A(X)) =0 for n # 0 (recall the argument for Proposition 2.1.10).

The Third Commandment imposes the following decisions: (1) X = X, 1; (2)
0(X1) minimally generates J mod 91(A1); (3) {cls(d(x)) | # € X,4+1} minimally
generates H, (A(X,,)) for n > 1. Extensions obtained in that way are called
acyclic closures of S over A.

The set X, is finite for each n, so we number the I'-variables X by the natural
numbers, in such a way that |x;| < |z;| for i < j. The standard basis of Remark
6.2.1 is then indexed by infinite sequences I = (i1,...,%;,...), such that i, is a
non-negative integer, i; < 1 when |z;| is odd, and i; = 0 for j > ¢ = ¢(I); we call
such an I an indezing sequence, and set z(!) = x(lil) . -x((IZ‘I).

We set |I] = Z;io ij]z;|. For an indexing sequence H = (h1,...,hj,...), we
set I > H if |I| > |H|; when |I| = |H|, we set I > H if there is an £ > 0, such that
ig > hg,and i; = h; for j > £. We now have a linear order on all indexing sequences,
and we linearly order the basis accordingly. Since |z(!)| = |I|, it refines the order
on the variables, and is just (an extension of ) the usual degree-lexicographic order.

To recognize an acyclic closure when we see one, we prove:

Lemma 6.3.2. A semi-free I'-extension A — A(X) is an acyclic closure of S if and
only if X = X_1, Ho(A(X)) = S, and the complex of free S—modules Indy A(X)
of Construction 6.2.5 is minimal.

Proof. As Xy = @, the complex Ind’y A(X) is trivial in degrees < 0.

Assume that A(X) is an acychc closure. For 2’ € X,,41, write z = 9(2') as
Y op 0z +w with z € X,,, a, € R, and w € A(X_ >Ifn—1then(9()=
means » . a,0(x) € 01(A1), so a, € m by (2). If n Z 2, then Y~ a,cls(0(x)) =
0 a; € m by (3); thus, Ind’; A(X) is minimal.
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Assume that Ind’y A(X) is minimal. If (2) or (3) fails, then there are z;, , ..., z;,
€ Xnt1; Gigy---,0i, € Ry y € A(Xp), such that x;, — a2, — - — a2, — Y
is a cycle. In A(X), it is equal to O(u + 3 cy, ,, Co¥ + w), with u € RXpn4o,
¢, € Ry and w € A(Xc,). As d(cyv) = 9(cy)v — ¢,0(v) € JXpp1 + AXG2)
and d(w) € AX>?) | where X(>2) is the set of decomposable I'-monomials from
Construction 6.2.5, we get d(u) = x;, — asx;, — -+ — asx;, ¢ mInd)y A(X). This
contradicts the minimality of Ind’, A(X). O

We are now ready to prove a key technical fact.

Lemma 6.3.3. If A(X) is an acyclic closure of k over A, then there exist A-linear
chain I'-derivations ¥;: A(X) — A(X) fori > 1, such that:

0 for|xn| < |x;| and h #£ i}
" iy — {0 For on] < o] and b #
1 forh=1.
(2) Each 9; is unique up to an A-linear I'-derivation homotopy.
(3) When I is an indexing sequence, q is such that i; = 0 for j > q, 9 =

9" - 97, and H is an indezing sequence, then

0 forH<I;
91 (1)) = {1 G H T

Remark. In the composition ¥/, the indices of ¥;; appear in decreasing order.

Proof. By Lemma 6.3.2, Ind’; A(X) is a complex of k—vector spaces with trivial
differential, so derivations ¥; satisfying (1) and (2) are provided by Proposition
6.2.7. As the ¥; are I'-derivations, (3) follows by induction on }_ ;. O

The next result is due to Gulliksen [83].

Theorem 6.3.4. Let A be a DG algebra, such that Ag is a local ring (R, m, k), and
each R—module H,, (A) is finitely generated. If A(X) is an acyclic closure of k over
A, then 0(A(X)) C JA(X), where Jo =m, and J, = A, for n > 0.

Proof. Take an arbitrary b € A(X), and write its boundary in the standard basis:
o(b) =3 agz ™). We have to prove that if [H| = |b|—1, then ay € m. Assuming
the contrary, we can find an indexing sequence I with a;y ¢ m and ay € m for
H > I. Using the preceding lemma, we get

+01(07 (b)) = 0" (0(b)) = ar + Y ag?’ (z™) =a; mod mA(X) .
H>1

This is a contradiction, because 9;(A(X)1) = m. O

The important special case when A = Ay is proved independently by Gullik-
sen [77] (using derivations) and Schoeller [139] (using Hopf algebras):

Theorem 6.3.5. If (R,m, k) is a local ring and R(X) is an acyclic closure of the
R-algebra k, then R(X) is a minimal resolution of the R—module k. |
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As a first application we prove a result of Levin [111], where HX (t) denotes
the Hilbert series > . rank,(m"N/m"T1N)t" of a finite R-module N.

Theorem 6.3.6. For each finite R—module M there is an integer s such that
PR, (1) =HE L (—t) PE() for each i>s.

Proof. By Theorem 6.3.5, there is a minimal resolution U = R(X) of k over R
that is a semi-free DG module over the Koszul complex K = R(X;). Choose s as
in Lemma 4.1.6.3, so that for i > s the complexes

O 0—mm MoK, — - —m 'Mep K —m'M®r Ky — 0

are exact (here e = edim R). Fix such an i, set N = m‘M, and for each p > 0 set
Fp = @‘ek‘ <p<mN ®R K)e)\.
Take z € Z,(mN @ U) N FP. When p = 0 we have

Zn(mN ®@r K) = Z,(m™' M @r K) = 0(m'M @p K1 1) = O(N ®g Kny1)

with the second equality due to the exactness of C**17”. When p > 0, assume by
induction that Z(mN @z U) N FP~1 C (N ®p U), and write 2z = D oxea, Gaex +v

with v € FP~1. and {e)}aen a K basis of U, Now

= Oar)ex+ Y axd(ex) +d(v)

XEA, XEA,
implies d(ay) = 0 for A € Ap, hence ay = 9(by) with by € N @g K, and
z = Za(b)\ ey +v= (Z b)\e)\):F Zb)\a(e)\)Jr’U
AEA, XEA, AEA,

Since u = Zx\eAp byd(ex) € N @gmU = mN ®p U, we see that u + v lies in
Z(mN @r U)NFP~L C (N @ U), and hence z € (N @ U).

We have ZmN @rU) CION®rU), so mN@rU C N®gU induces the zero
map in homology, that is, Tor (mi“M, k) — Tor® (miM7 k) is trivial. Thus, for
each n € 7Z we get an exact sequence

0 — Tork (m'M, k) — Torf (mM/m"™™ M, k) — Tory_; (m™™* M, k) —0
of k—vector spaces. They yield an equality of Poincaré series
Posar(t) + ¢ Py () = ranky (m? M/m?*1 M) PE(1) (%5)

for each j > ¢. Multiplying (*;) by (—t)’~% and summing the resulting equalities
in Z[[t]] over j > i, we obtain PX,,, (t) = HﬁlM( t)PE(t), as desired. O
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The?® reader will note that the argument above may be used to yield a new
proof of Theorem 4.1.8. By that result, P¥, (t) = Pﬁ/miM(t)—t PE, (t); by Hilbert
theory we know that HE, , (t)(1 — t)4™ M ¢ Z[t] (for each i), hence

Corollary 6.3.7. If all R—modules of finite length have rational Poincaré series,
then PX.(t) is rational for all R-modules M. O

A second application, from Gulliksen [78], treats partial acyclic closures.
Proposition 6.3.8. If e = edim R, then H. 1(R(X<,))*™ =0 for each n > 1.
Proof. By Theorem 6.3.5, Z;(R(X)) = ((R(X))); € m(R(X)); for i > 1, so

Zi(R(X<n)) = Z(R(X)) N R(X < n)i Cm(R(X)) N R(X<n)i = m(R(Xcn)i)

Thus, every cycle z € Z;(R(X<,)) can be written in the form

z = thvj = Z@(.’lﬁj)ﬂj = ija(vj) + 8(23@1@) R
j=1 j=1

Jj=1

so each element of H,1(R(X<,)) is represented by a cycle in X1 R(X ,). As
(X1 R(X )T = (X0) T R(X ) = 0, we get Ho 1 (R(X )" =0. 0

Remark 6.3.9. To study ‘uniqueness’ of acyclic closures, one needs the category
of DG algebras with divided powers: these are DG algebras, whose elements of
positive even degree are equipped with a family of operations {a — a(i)}i>0
that satisfy (among other things) the conditions imposed on the T'-variables in
Construction 6.1.1; they are also known as DG I'-algebras®®, due to the use by
Eilenberg-MacLane [56] and Cartan [50] of v;(a) to denote a®).

It is proved in [83] that R(X) has a unique structure of DG T'-algebra, that
extends the natural divided powers of the I'-variables in X, and if R(X’) is an
acyclic closure of S, then R(X) = R(X') as DG I'-algebras over R.

7. Deviations of a Local Ring
In this chapter (R, m, k) is a local ring.

We describe a sequence of homological invariants of the R—module k, that are
‘logarithmically’ related to its Betti numbers. They are introduced formalistically
in Section 1, and shown to measure the deviation of R from being regular or a
complete intersection in Section 3. In Section 2 we develop tools for their study,

that reduce some problems over the singular ring R to problems over a regular
ring, by means of minimal models for R.

25 Attentive.
26This accounts for the I'’s appearing from Section 6.1 onward.
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7.1. Deviations and Betti numbers. We need an elementary observation.
Remark 7.1.1. For each formal power series P(t) = 1+ 37, b;t’ with b; € Z,
there exist uniquely defined e,, € Z, such that

o0

H(l + t2i—1)62171
P(t) = =15

H(l o t2i)egi

i=1

where the product converges in the (¢ ) adlc topology of the ring Z|[[t]].

Indeed, let p;(t) = (1—(—t)7)(=1)""". Setting Py(t) = 1, assume by induction
that P,—1(t) = [[,— 1ph( )er satisfies P(t) = P,_1(t) (mod ¢™) with uniquely
defined ey,. If P(t)— P,_1(t) = e,t™ (mod t"*1), then set P, (t) = P,_1(t)-pn(t)*"
The binomial expansion of p,,(t)°» shows that P(t) = P,(t) (mod t"*1) and that
en is the only integer with that property.

The exponent e,, defined by the product decomposition of the Poincaré series
PR(t) is denoted®” e, (R) and called the n’th deviation of R (for reasons to be
clarified in Section 3); we set £,(R) = 0 for n < 0. Here are the first few relations

between Betti numbers 3, = 8% (k) and deviations e,, = ¢, (R):

B =c¢1; 53263—1—5251—&-(831);
h=eat (821> ; B4 =¢€4+ €361 + (52) + &2 (€1> + <51> .
2 2 4
Remark 7.1.2. The equality Py (t) APkR( t) and the uniqueness of the product
decomposition show that &, (R) = €, (R) for all n.
A first algebraic description of the deviations is given by
Theorem 7.1.3. If R(X) is an acyclic closure of k over R, then
card X,, = ¢, (R) for nez.

Proof. By the minimality of R(X) established in Theorem 6.3.5, we have equalities

Tor™ (k, k) = H(R(X) ®gk) = k(X) = @, x k({z). Furthermore,

. 1+t21 if xe Xgi1;
ki (k(z)n)t" = /
Zran k(K (z)n) {1/(1_7521) if xe Xy,

27This numbering is at odds with [83], where e, stands for e,11(R).
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by Constructions 2.1.7 and 6.1.1, so we get

o0

H(l _|_ t2i—1)card(X2i,1)
Pf() = =

H(l _ tQi)card(quv)

=1

The coefficient of t" depends only on the first n factors, so the product converges
in the t-adic topology, and the desired equalities follow from Remark 7.1.1. ]

We record a couple of easy consequences.

Corollary 7.1.4. ,(R) > 0 for alln € Z. O
Corollary 7.1.5. IfR = Q/I is a minimal regular presentation, then e1(R) = vg(n)
and EQ(R) = VQ(I) .

Proof. By Remark 7.1.2, we may assume that R = @/I. Condition (6.3.1.0) for
acyclic closures then yields the first equality, and implies that R(X7) is the Koszul
complex K. The second equality now comes from Lemma 4.1.3.3. O

A most important property of deviations is their behavior under change of
rings: it is additive, as opposed to the multiplicative nature of Betti numbers. The
logarithmic nature of the deviations will reappear in Theorem 7.4.2.

Proposition 7.1.6. If g € R is regular, then

eﬁmm={ig A
 fea(R) if g¢m*;
e2(R/(9)) = {EQ(R)+1 if ge€m?;

en(R/(9)) = en(R) for n>3.
Proof. For R' = R/(g), Proposition 3.3.5 yields Py (t) = (1 — t?) PkR' (t) if g € m?
and PR(t) = (1 +1) PkR/ (t) if g ¢ m?; now apply Remark 7.1.1. O

7.2. Minimal models. In this section (@, n, k) is a local ring.
A minimal DG algebra over @) is a semi-free extension @) — Q[Y] such that
Y =Y. and the differential 0 is decomposable in the sense that

oY1) CQYy and (V) C Y QYiaY,; for n>2

where Y, denotes a minimal set of generators of n; when (Y1) C n?, the minimality
condition can be rewritten in the handy format 9(Q[Y]) C (V)2 Q[ ].
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Remark 7.2.1. Along with a minimal DG algebra Q[Y], we consider the residue
DG algebras Q[Y]/ (Y. »n)Q[Y] = k[Ys ] for n > 1. Their initial homology is easy to
compute: for degree reasons, the decomposability of 9 implies that (kY. ,];) =0
when 7 < 2n, hence

k if 1=0;
Hz(k[Y>7zD: 0 if 0<i<n;
kY, if n<i<2n.

Mimicking the proof of Lemma 6.3.2, we get a criterion for minimality:

Lemma 7.2.2. A semi-free extension Q — Q[Y] with Y = Y. 1 is minimal if and
only if 9(Y1) minimally generates Ker (Q — Ho(Q[Y])) and 8(Y,,) minimally gen-
erates Hy,—1(Q[Y< n—1]) for n > 2. O

Minimal DG algebras are ‘as unique as’ minimal complexes.

Lemma 7.2.3. Fach quasi-isomorphism ¢: Q[Y] — Q[Y’] of minimal DG algebras
over @ is an isomorphism.

Proof. Consider the restrictions ¢<": Q[Y. ] — Q[Y.,] and the morphisms ¢~ " =
(k®qye 1 ®): k[Ysn] — k[Y., ] induced by ¢. By the preceding lemma, 9(Y1) and
0(Y{) are minimal sets of generators of Ker(Q — Hp(Q[Y])), so by Nakayama
$1: QY7 — QY is an isomorphism of @Q-modules, and hence ¢<! is an isomor-
phism of DG algebras over Q.

Assume by induction that ¢<™ is bijective for some n > 1. By Proposition
1.3.3 then so is ¢~ ™, hence H,,11(¢> ™) is an isomorphism. By Remark 7.2.1, this
is simply ¢, ', : kY41 — kY, 4, hence (k ®Q[Ye ] <) K[YC i) — K[V ]
is bijective; by Nakayama, so is ¢<"+1. O

If R = Q/I, then a minimal model of R over Q) is a quasi-isomorphism
QY] — R, where Q[Y] is a minimal DG algebra.

Proposition 7.2.4. Each residue ring R = Q/I has a minimal model over Q.
Any two minimal models are isomorphic DG algebras over Q.

Proof. Going through the construction in 2.1.10 of a resolvent of R over ) and
strictly observing the Third Commandment, one gets a quasi-isomorphism Q[Y] —
R; the DG algebra Q[Y] is minimal by Lemma 7.2.2. If Q[Y’] — R is a quasi-
isomorphism from a minimal DG algebra, then by the lifting property of Proposi-
tion 2.1.9 there is a quasi-isomorphism Q[Y] — Q[Y”’] of DG algebras over Q); it is
an isomorphism by Lemma 7.2.3. (|

Remark. The proposition is from Wolffhardt [159], where minimal models are
called ‘special algebra resolutions’. The ‘model’ terminology is introduced in [23]
so as to reflect the similarity with the DG algebras (over Q) used by Sullivan [148]
to encode the rational homotopy type of finite CW complexes. This parallel will
bear fruits in Section 8.2.
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Minimal models are not to be confused with acyclic closures: If R = Q/I,
then the minimal model and acyclic closure of R over () coincide in two cases only
— when [ is generated by a regular sequence, or when R O Q.

It is proved in [159] when R contains a field (by using bar constructions) and
in [18] in general (by using Hopf algebras) that the deviations of R can be read
off a minimal model. More generally, we have:

Proposition 7.2.5. Let (Q,n, k) be a reqular local ring.

If QY] is a semi-free extension with Y = Y51 and H(Q[Y]) = R, then for
each n € Z there is an inequality cardY, > en41(R); equalities hold for all n if
and only if (Y1) C n? and Q[Y] is a minimal DG algebra.

Recall that two DG algebras A and A’ are quasi-isomorphic if there exists
a sequence of quasi-isomorphisms of DG algebras A ~ A! ~ ... ~ A™ ~ A/,
pointing in either direction. The next result is from Avramov [23].

Theorem 7.2.6. Let R(X) be an acyclic closure of k over R, let R = Q/I be a

minimal Cohen presentation, and let Q[Y] be a minimal model ofﬁ over Q.
For each n > 1 the DG algebras R{X,) and k[Ys,] = Q[Y]/(Y.n) are
quasi-isomorphic, and cardY,, = card X,,11 = €,,41(R) forn > 0.

Thus, a minimal model of R over ) contains essentially the same information
as an acyclic closure of k over R; the model has an advantage: it is defined over a
regular ring, where relations are easier to compute than over R.

In view of Proposition 6.3.8, minimal models are homologically nilpotent:

Corollary 7.2.7. If e = edim R and Q[Y] is a minimal model of ]TB, then for each
n > 1 the product of any (e + 1) elements of Hy 1(k[Y> »]) 4s equal to 0. O

Wiebe [158] proves the next result through a lengthy computation.

Corollary 7.2.8. Ifﬁ = Q/I is a minimal regular presentation and E is the Koszul
complex on a minimal generating set of I, then e3(R) = vo(Hi(E)) .

Proof. Remark 7.1.2; the theorem, and Lemma 7.2.2 yield e3(R) = e3(R) =
cardYs = vg(Hi(E)). O

Part of Theorem 7.2.6 is generalized in

Proposition 7.2.9. If Q[Y] is a minimal DG algebra over a regular local ring Q,
then there exists an acyclic closure QY |(X) of k over Q[Y], such that X = {z, :
y €Y, |xy| =|y| + 1} and for each y € Y there is an inclusion

Oy) —y € S (V)QIYonl(Xen)  where n = Jy|.
=0

We start the proofs of the theorems with a couple of general lemmas.
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Lemma 7.2.10. For a (surjective) morphism of DG algebras ¢: A — A’ and a set
{zx}rea C Z(A) there is a unique (surjective) morphism of DG algebras

P(X): A<{CU/\}A€A |0(zx) = Z/\> - AI<{~T)\})\6A |0(zx) = ¢(Z/\)>
with ¢(X)|a=¢ and ¢(X)(xx)=zr forallXeA.

If ¢ is a quasi-isomorphism, then so is ¢(X).

Proof. The first assertion is clear. Since homology commutes with direct limits, for
the second one we may assume that X is finite. By induction, it suffices to treat
the case X = {z}. The result then follows from the homology exact sequences of
Remarks 6.1.5 and 6.1.6, and the Five-Lemma. a

Lemma 7.2.11. Let A = k[Y'] be a minimal DG algebra over k, and let kY’ C A
denote the span of the variables. For a linearly independent set Z = {z)x}xea C
kY’ ' NZ(A) the canonical morphism of DG algebras

§: B=A{axbren|0(zn) = 21) — A/(Z)
with §(x(;)) =0 forallAe A andi>0
s a surjective quasi-isomorphism.

Proof. Consider the subalgebra C = k[Z]{zr}rea | O(zx) = 2x) C B. By (an easy
special case of) Proposition 6.1.7, the canonical projection e: C' — k is a quasi-
isomorphism. Since B is a semi-free DG module over C, Proposition 1.3.2 shows
that m = B®c¢ e: B — A/(Z) is a quasi-isomorphism. O

~

Proof of Theorem 7.2.6. The canonical map R(X) — R®zR(X) = R(X) is a quasi-
isomorphism, and induces quasi-isomorphisms R(X_,) — R(X_,) for n > 1, so
we assume that R = @/I and take a minimal model p: Q[Y] — R.

Choose a minimal generating set Yy = {t1,...,t.} of m and pick s1,...,s. €
Q@ with p(s;) = t;. Lemma 7.2.10 yields a quasi-isomorphism

(X1)

R(X1 | O(x;) = t:) <= QIY|(X1|d(x;) = s:)
for a set of I'-variables X7 = {z1,...,2z.}. On the other hand, as s1,...,s. is a
Q-regular sequence, so Q(X1) — k is a quasi-isomorphism, and then Proposition
1.3.2 yields a quasi-isomorphism 7': Q[Y](X1) — k[Y].

Let n > 1, and assume by induction that we have constructed surjective
quasi-isomorphisms of DG algebras

R(X<n) —— QY)(X<n) —— k[Ys,]

The classes of {9(x) | x € X,+1} form a basis of H, (R(X< ,)) by (6.3.1.2). Since p"
is a surjective quasi-isomorphism, these cycles are images of cycles in QY (X ),
so by Lemma 7.2.10 we get a surjective quasi-isomorphism

R(X 1) = RIX_) (Xop1) <20 QYT (1) = QIV (X <) -
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The same lemma yields a surjective quasi-isomorphism

(X,

QIYI(Xcns1) = QI (X n) (Xnpr) T KIY: ] (Xnga) -
As H, (k[Y>,]) = kY, by Remark 7.2.1, the differential 0,11 induces an iso-
morphism kX, 11 — kY. Lemma 7.2.11 yields a surjective quasi-isomorphism
EL YL (X g1) — K[Ys 1], We set !t = ¢nFlon(X,,41), and note that
card(X,,4+1) = ep+1(R) by Theorem 7.1.3. O

Proof of Proposition 7.2.5. Choose g = ¢1,...,9s € I and f = f1,...,fr € I
such that f U g is a minimal set of generators of I, and g maps to a basis of
I/(INn?). The sequence g is then Q-regular, and R = Q’'/I’ is a minimal regular
presentation, with Q' = Q/(g) and I' = I/(g); set n’ =n/(g).

After a linear change of the variables of degree 1, we may assume that there is
a sequence of variables y = y1,...,ys in Y7, such that 9(y;) = ¢; for 1 <i < s The
Koszul complex Q[y | d(y;) = g;] is then a resolvent of @', so Q[Y] — Q[Y]/(g,y) =
Q'[Y’] is a quasi-isomorphism by Proposition 1.3.2. As card(Y,) = card(Y,) — s
for n = 0,1, and card(Y,)) = card(Y,) otherwise, we may assume that R = Q/I is
a minimal presentation, and Q[Y] is a semi-free extension with H(Q[Y]) = R; we
then have card(Yp) = e1(R).

Let Q[Y’] be a minimal model of R over @, so that card(Y,)) = e,11(R)
by Theorem 7.2.6. Proposition 2.1.9 yields morphisms v: Q[Y'] — QI[Y] and
B: Q[Y] — Q[Y'] of DG algebras over @, such that H(8) = id®. By Lemma
7.2.3, v is an automorphism of Q[Y’], so for each n > 1, the composition of
v k[YL,] — K[Ys ] with 827 E[YS ] — k[YL,] is then bijective. In particu-
lar, 5> ™ is onto, so card(Y;,) > card(Y})) = e, 41 (R) for n > 1.

Assume that card(Y},) = e,41(R) for all n. The equalities for n < 1 mean that
I Cn? and 9(Y7) minimally generates I; equality for n > 2 implies that H,, (3> ")
is bijective, hence in k[Y,] the differential 0,41 is trivial; this is equivalent to
saying that in Q[X] the differential 0,1 is decomposable. O

Proof of Proposition 7.2.9. We first construct surjective quasi-isomorphisms
7 QY (Xcn) = k[Ysn] with X, ={z,:yeY,_1}.

Let Yo = {s1,..., 5.} be a system of generators of n, set X1 = {z1,...,2.},
and Q[Y (X |0(x;) = s;). As in the proof of Theorem 7.2.6 we have a quasi-
isomorphism 7': Q[Y](X1) — k[Y].

Assume that 7™ has been constructed for some n > 1. Now each y € Y,
is a cycle in k[Y- ], so y = 7" (z,) for some cycle z,; write z, in the form y +
> yey: ayy +v, withay € nfory’ € Y =Y, ~\{y}, and v € QY. ](X<r). Since
a, = 9(b,) for appropriate b,y € QX;, after replacing z, with the homologous
cycle z, — O( doyey byy'), we can assume that z, —y € QY. ,](X,). Lemma
7.2.10 yields a Surjegtive quasi-isomorphism

QIYI(X 1) = QIVIX ) (K1) 2 BV (X 1) -
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Lemma 7.2.11 yields a surjective quism £": k[YS ,](Xp+1) — k[Y> nt1], S0 to com-
plete the induction step set p"*! = p"(X,, 1) and 77! = " Flor™ (X, 11).

In the limit, we get a quasi-isomorphism 7: Q[Y](X) — k. As 0(X;1) = Yp
minimally generates n, and 9(X,,) minimally generates H,,(Q[Y (X< ,,)) for n > 2,
the DG algebra Q[Y](X) is an acyclic closure of k over Q[Y]. By the choice of z,
above, and Theorem 6.3.4, we see that 0(z,) — y lies in

n—1
(QIY<nl(X<n) )n N (MQYIX) )n = D> (¥)RY<nl(X<n))n
j=0
This is the desired condition on the differential. O

7.3. Complete intersections. Now we can ‘explain’ the term deviation.

Remark 7.3.1. By Corollary 7.1.5 1 (R) = edim R, so the following conditions are
equivalent: (i) R is a field; (ii) e;(R) = 0; (iii) ¢;(R) =0 for i > 1.

More generally, the regularity of a ring is detected by its deviations.

Theorem 7.3.2. The following conditions are equivalent.
(i) R is regular.
(ii) e2(R) =0.
(iii) en(R) =0 forn>2.

Proof. When R is regular, the Koszul complex K is exact, yielding Pf(t) =
(14 t)3mE; thus, (i) = (iii) by the uniqueness of the product decomposition
(7.1.1). On the other hand, (ii) = (i) by Corollary 7.1.5. O

Recall that R is a complete intersection if R has a minimal Cohen presentation
Q/I, with I generated by a regular sequence; in that case, eo(R) = codim R by
Corollary 7.2.8. Complete intersections of codimension 0 (respectively, < 1) are
precisely the regular (respectively, hypersurface) rings.

The next result gives characterizations of complete intersections in terms of
vanishing of deviations, due to Assmus [15] for (iii) and to Gulliksen [78] for (iv)
and [82] for (v). The use of minimal models in their proofs is new.

Theorem 7.3.3. The following conditions are equivalent.

(i) R is a complete intersection.
(ii) e3(R) =0.
(ili) e, (R) =0 forn > 3.
(iv) en(R) =0 forn>>0.
(v) €2:(R) =0 fori>0.

Proof. We may take R = @Q/I with (Q,n, k) regular, f = f1,..., f» minimally
generating I, and f C n2, cf. Remark 7.1.2; let E be the Koszul complex on f.
(i) = (iii). If f is a Q-regular sequence, then r = codim R, so the deviations
of R are computed by Theorem 7.3.2 and Proposition 7.1.6.
(i) = (i). By Corollary 7.2.8 we have H;(E) =0, so f is Q-regular.
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(v) = (iv) Take n big enough, so that e9;(R) = 0 for 2 > n. By Theorem
7.2.6, the DG algebra k[Y- ,] is a polynomial ring with variables of even degree.
Their boundaries have odd degree, so are trivial, and thus H(k[YS ,]) = k[Y> ] is
a polynomial ring. Each element of H. 1(k[Y> ,]) is nilpotent by Corollary 7.2.7,
so we conclude that Y- , = @.

(iv) = (i) Taking, as we may, g = f1,..., fc to be a maximal regular
sequence in I, we set R = @Q/(g). By Corollary 6.1.9, the R'-algebra k has a
minimal free resolution of the form C' = R'(x1,...,Zctcti). By the choice of g,

the DG algebra C° = C’ ®p R can be extended to an acyclic closure R(X) of
k by adjunction of I'-variables of degree > 2. We order them in such a way that
|z;| < |zj| for i < j, set C' = C'(Teyei1s-- - Teteri), and s; = sup{n | H, (C?) #
0}. Assuming that R is not a complete intersection, we prove that X is infinite by
showing that s; = oo for each ¢ > 0.

Each element of I is a zero-divisor modulo (g), so pdgp (R'/IR') = oo by
Proposition 1.2.7.2; as H(C?) = Tor® (R, k), we get sp = oo. For the induction
step, set A = C*Y 2 = zeyerq, 2 = O(x), and u = cls(z), and assume that
s; = 8 < oo. When |z| is even, the homology exact sequence in Remark 6.1.6
yields s;—1 < s+ |z|, contradicting the induction hypothesis. When |z| is odd the
sequence in Remark 6.1.5 shows that H(A) = H¢ s(A) +uH(A). A simple iteration
yields H(A) = He o4 ¢y (A) +uctt H(A). But u®*! = 0 by Proposition 6.3.8, hence
si—1 < s + e|ul; this contradiction proves that s; = oo. O

The last result is vastly generalized in Halperin’s [84] rigidity theorem:
Theorem 7.3.4. Ife,(R) =0 and n > 0 then R is a complete intersection. n

A proof that uses techniques developed in Section 6.2, and extends the the-
orem to a relative situation, is given in [30].

7.4. Localization. The theme of the preceding section may be summarized as
follows: The deviations of a local ring reflect the character of its singularity. Thus,
one would expect that they do not go up under localization, and in particular that
the complete intersection property localizes.

It is instructive to generalize the discussion by considering the number

cid(R) = e3(R) —e1(R) + dim R
that in view of the next lemma we?® call the complete intersection defect of R. The
lemma also shows that in the definition of complete intersection the restriction to
minimal presentations is spurious.
Lemma 7.4.1. Ifl/% >~ Q/I is a regular presentation, then

cid R = vg(I) — height(I) > 0.
Furthermore, the following conditions are equivalent: (i) cid R = 0; (ii) I is gen-

erated by a reqular sequence; (iii) R is a complete intersection,

28Kiehl and Kunz introduced it in [96] by the expression in Lemma 7.4.1, and called it the
deviation of R; that was before an infinite supply of deviations appeared on the scene.
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Proof. Choose a regular sequence g = gi,...,gq as in the proof of Proposition
7.2.5. With Q" = Q/(g) and I' = I/(g) we have a minimal Cohen presentation
R Q'/I'. Corollary 7.1.5 provides the first equality below, the catenarity of Q'
yields the last one, and Krull’s Principal Ideal Theorem gives the inequality:

cidR = VQ/(I/) — Z/Q/(ﬂ/) +dimR = I/Q(I) — Z/Q(n) +dim R
=vg(I) — (dim@ — dim R) = vo(I) — height(I) > 0.

The equivalence (i) <= (ii) now follows from the Cohen-Macaulay Theorem.
Applied to the minimal presentation R = Q'/I', it yields (ii) <= (iii). O

For the study of complete intersection defects and even deviations, the first
part of the next theorem?® suffices; it is due to Avramov [20]. For odd deviations
one needs the second part, due to André [9].

Theorem 7.4.2. If R — S is a faithfully flat homomorphism of local rings, then
for each i > 1 there is an integer §; > 0, such that

£2i(R) < 2i(5) = €2:(R) + £2:(S/mS) — d;;

€9;-1(S/mS) < e9;-1(5) = €2;-1(R) + £2;—1(S/mS) — 4; .

Furthermore, §; = 0 for i >0, and y_;°,8; < codepth(S/mS). [ |
As in [20], we deduce:
Theorem 7.4.3. If R — S is a flat local homomorphism, then
cid § = cid R + cid(S/mS) .

In particular, S is a complete intersection if and only if both R and S/mS are.
Proof. The first two equalities of Theorem 7.4.2 yield

£2(S) —e1(S) = e2(R) — e1(R) + £2(S/mS) — £1(S/mS).
Classically, dim S = dim R + dim(S/mS), so we have the desired result. O

Corollary 7.4.4. For each prime ideal p of R, cid(R,) < cid R.

Proof. As dim R = dim R we have cid R = cid R by Remark 7.1.2. Let R Q/I
be a regular presentation, a£1d pick prime ideals p’ C R and q C @, such that
p’NR=pandp’ =qR. As Ry = Qq/1, is a regular presentation,

cid R = vg(I) — height(I) > vq, (I4) — height(Iy) = cid(Ry) ,
with equalities coming from Lemma 7.4.1, and inequality from the obvious relations

vQ(I) > vq,(Iq) and height(/) < height(/,). Finally, the theorem applied to the

~

flat homomorphism R, — R, yields cid(ﬁp/) > cid(Ry). O

29For a more natural statement, cf. Remark 10.2.4.
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It is now clear that complete intersections localize, a fact initially proved
in [19]. This is sharpened in the corollary of the next theorem from [20], [9],
which represents a quantitative extension to arbitrary local rings of the classical
localization of regularity, cf. Corollary 4.1.2.

Theorem 7.4.5. Ifp is a prime ideal of R, then an inequality €, (R,) < €,(R) holds
for all even n and for almost all odd n. When R is a residue ring of a regular local
ring the inequalities hold for all n.

Proof. If R is a residue ring of a regular local ring @, let Q[Y] be a minimal model
of R. If q is the inverse image of p in @, then Q4[Y] is a semi-free extension of Q4
with H(Q4[Y]) = R,. Applying Proposition 7.2.5 first to Q[Y], then to Qq4[Y], we
get epq1(R) = card(Yy,) > ent1(Ry) .

In general, pick (by faithful flatness) a prime ideal p’ in R, such that p = p'NR.
By Remark 7.1.2 and the preceding case we then have ,(R) = e,(R) > En(ﬁp/)
for all n. On the other hand, Theorem 7.4.2 yields an inequality En(ﬁp/) > en(Rp)
for all even n, and almost all odd n. O

Corollary 7.4.6. If R is a complete intersection, then for each prime ideal p of R
the ring Ry is a complete intersection with codim(R,) < codim R. O

Proof. In view of Theorem 7.3.3, the inequalities of deviations for n = 27 > 0 prove
that R, is a complete intersection. Since codim R = e2(R) by Corollary 7.1.5, the
inequality for n = 2 shows that codim(R,) < codim R. O

For the first deviation, there is a more precise result of Lech [103]; a simpler
proof is given by Vasconcelos [154].

Theorem 7.4.7. For each prime ideal p of R, e1(Rp) + dim(R/p) < e1(R). [ |

We spell out the obvious remaining problems. The first one has a positive
solution when char(k) = 2, due to André [8].

Problem 7.4.8. Let R — S be a faithfully flat homomorphism of local rings. Does
an equality £,(5) = e, (R) 4+ £,(S/mS) hold for each n > 37

Note that by Corollary 7.1.5 we have
e1(R) — e1(5) + &1(S/mS) = edim(R) — edim(S) + edim(S/mS) > 0.

The inequality is strict unless a minimal generating set of m extends to one of n,
so additivity may fail for n = 1 and hence, by Theorem 7.4.2; also for n = 2.

Problem 7.4.9. Does ¢, (R,) < e,(R) hold for all p € Spec R and odd n > 37

It is easily seen from the proof of Theorem 7.4.5 that a positive solution of
the first problem implies one for the second. Larfeldt and Lech [104] prove that
the two problems are, in fact, equivalent.
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8. Test Modules

Ring are ‘non-linear’ objects, so some of their properties are easier to verify after
translation into conditions on some canonically defined modules.

The Auslander-Buchsbaum-Serre Theorem provides a model: the regularity of
alocal ring (R, m, k) is tested by checking the finiteness of the projective dimension
of k. In terms of asymptotic invariants, this is stated as

cxpk =0 <= Risregular <= curvpk =0.
The first two sections establish similar descriptions of complete intersections:
cxpk < o0 < R is a complete intersection <= curvgk <1.

For algebras essentially of finite type, another classical test for regularity is
given by the Jacobian criterion. Section 3 discusses extensions to complete inter-
sections, in terms of the homology of Kéhler differentials. The results there are
partly motivated by (still open in general) conjectures of Vasconcelos.

8.1. Residue field. In this section (R, m, k) is a local ring.

We start with a few general observations on the Betti numbers of k. They
show that an extremal property of Poincaré series characterizes complete intersec-
tions — and places across the spectrum from Golod rings.

Remarks 8.1.1. Set e = edim R, r = rank;, H;(KT), and ¢,, = ¢,(R).
(1) There is an inequality of formal power series
(141t)°
(1-e)r
Indeed, Corollary 7.1.5 yields Py (t) = (1+1)°(1—t2)~"Q(t), with Q(t) = [[>2,(1+
2= hye2ion [T, (1 — t27)%24; also, Q(t) = 1 by Corollary 7.1.4.

(2) Theorem 7.3.3 shows that equality holds in (1) if and only if R is a
complete intersection. In that case, cxg k = r = codim R, and

Ry s~ fe—T\(n+r—1—i
@J@—;( ; )( .1 ) for n>0.

(3) If R is not a hypersurface, then 32(k) > gE | (k) for n > 1.
Indeed, then e > 1 and r > 2, so we have coefficientwise (in)equalities

PI(t) =

3 (810 B = (L= OPE® = (@07

Gulliksen [78], [82] extends the Auslander-Buchsbaum-Serre Theorem in

Theorem 8.1.2. The following conditions are equivalent.
(i) R is a complete intersection (respectively, of codimension < ¢).
(ii) cxp M < oo (respectively, cxg M < c¢) for each finite R—module M .
(ili) cxpk < oo (respectively, cxp k < c).
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Proof. By Proposition 4.2.4 we have cxgp M < cxpgk, and the complexity of k is
equal to codim R by Remark 8.1.1.2, so (i) implies (ii).

When R is not a complete intersection Theorem 7.3.3 gives infinitely many
indices 44 with €2;,(R) > 0. Remark 7.1.1 then yields an inequality

1 1 = n4d—1\
PR = - = i — (2i)n
k(t)f(l_tzzl)...(l_tmd) T (1 —t2i)d Z( d—1 )t

n=0

with 4 =4y -+ - 4. Thus, cxg k > d for each d > 1, so (iii) implies (i). O

Remark 8.1.3. We get a new proof of Corollary 7.4.6 by recycling the classical
argument for regularity. Proposition 4.2.4.1 and Remark 8.1.1.2 yield

exg, (Rp/pRy) < cxr(R/p) < cxpk = codim R,
so R, is a complete intersection of codimension < codim R by the theorem.

We finish this section by a computation of the curvature of k in terms of the
deviations of R; the purely analytical argument is from Babenko [38].

Proposition 8.1.4. If R is not a complete intersection, then
curvg k = limsup V/en(R).
n

Proof. Note that limsup,, V/e,(R) = 1/n, where 7 is the radius of convergence of
the series E(t) = > "7, £,(R)t". By the definition of curvg k, we have to show that
n = p, where p is the radius of convergence of the Poincaré series P(t) = Py (t);
note that p > 0 by Remark 4.2.3.5. By Corollary 7.1.4, we have ,(R) = &, > 0,
so by the product formula of Remark 7.1.1 we get a coefficientwise inequality
P(t) = E(t), hence n > p > 0.

To prove that p > 7, we show that if 0 < v < ), then P(t) converges at t = ~.
We have n < 1, because F(t) has integer coefficients and &,, > 0 for infinitely many
n by Theorem 7.3.3. For j > 1 we then get

By a similar computation, 0 < In(1 ++9) < (1 —7)~!47, so

oo
O<L Z E9i— 1111 1—|—’}/21 1)—622‘1n(1—’}/2i)) S
i=1

The numerical series with non-negative coefficients L(7y) converges, so the product
in 7.1.1 converges at ¢t =+, as desired. O
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8.2. Residue domains. In this section (R, m, k) is a local ring.
The results that follow are from Avramov [23].

Theorem 8.2.1. Ifp is a prime ideal of R such that R, is not a complete intersec-
tion, then there is a real number B > 1 with the property that

ﬁf(R/p) > 6" for n>0.

The converse may fail: the ring R, in Example 5.2.6 is a complete intersec-
tion, but curvg(R/p) > 1 by Theorem 5.3.3.2. Finite modules over a complete
intersection have curvature < 1 by Proposition 4.2.4 and Remark 8.1.1.2, so

Corollary 8.2.2. The following conditions are equivalent:

(i) R is a complete intersection.
(ii) curvg M <1 for each finite R—module M .
(iii) curvgk <1. O

The key to the proof of the theorem is to look at deviations.

Theorem 8.2.3. When R is not a complete intersection there exist a sequence of
integers 0 < s1 < --- < s; <... and a real number v > 1, such that

e (R) 27" for j>1
and sj41 =1;(s; — 1) + 2 with integers 2 < i; < edim R+ 1.

Remark. The last result and its proof are ‘looking glass images’ — in the sense
of [49], [33] — of a theorem of Félix, Halperin, and Thomas [66] on the rational
homotopy groups 7, (X) ®z Q of a finite CW complex X it relies heavily on Félix
and Halperin’s [64] theory of rational Ljusternik-Schnirelmann category.

That theorem was used by Félix and Thomas [65] to prove Corollary 8.2.2
for graded rings over fields of characteristic 0, but the L.-S. category arguments
do not extend to local rings or to positive characteristic. This is typical of a larger
picture: a theorem in rational homotopy or local algebra raises a conjecture in the
other field, but a proof usually requires new tools.

The arguments below use the properties of minimal models already estab-
lished in Section 7.2, and the additional information contained in the next lemma,
proved at the end of the section.

Lemma 8.2.4. Let k[Y] be a minimal DG algebra, such that H,(k[Y]) = 0 for
n > m. If ¢: k[Y] — k[U] is a surjective morphism of DG algebras, such that U
is a set of exterior variables and O(U) = 0, then card(U) < m.

As the proof of the theorem for rational homotopy groups, the one of the
theorem on deviations proceeds in three steps. The lemma is needed for the first
claim, which (now) can be obtained directly from Theorem 7.3.4, or from its pre-
cursor in [34]: If R is not a complete intersection, then e,(R) # 0 for n > 0.
We present the original argument in order to keep the notes self-contained, and
because of its intrinsic interest. The exposition of the arguments for Claims 2 and
3 follows [30].
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Proof of Theorem 8.2.3. As may assume that R is complete, we take a minimal
regular presentation R 2 Q)/I and a minimal model Q[Y] of R over Q.

Note that the DG algebra k[Y] = Q[Y]/nQ[Y] is minimal by Remark 7.2.1,
that cardY;,, = ,,41(R) for n > 1 by Theorem 7.2.6, and that

H,(k[Y]) = Tor® (k,R) =0  for n>m=edimR+1. (%)
Assuming that R is not a complete intersection, we show that the numbers
2n
a(n) = card Y, and s(n) = Z a(j)
j=n

satisfy the following list of increasingly stronger properties:
Claim 1. The sequence s(n) is unbounded.
Claim 2. The sequence a(n) is unbounded.

Claim 3. There exist positive integers r1,72,... with r;4; =4;r;+1and 2 <1i; <
m, and a real number v > 1, such that a(n) > v™ for each j > 0.

The last claim yields the theorem: with v =v/v and s; = r; + 1 we have
€s; (R) = a(rj) >0 = 'yzri > A/TjJFl =% for j>1.

For the rest of the proof, we write Y[n] for the span of U?Zn Y;, and abuse
notation by letting Y,, stand also for the k-linear span of the variables y € Y};
thus, Y[Zn] is the k-linear span of all products involving ¢ elements of Y[ n]"

Proof of Claim 1. Assume that there is a ¢ € N such that s(n) < ¢ for all n > 1.

We are going to construct for all » > 1 and h > 0 surjective morphisms of DG
algebras ¢, : k[Y] — k[U}], where each Uy is a set {uj,,,...,u}, .} of exterior
variables subject to the restrictions

[ty 1] > up| +1 for n>1;
Uil > b |+ F (U [T for i=2,00r
The second condition forces O(U;)) = 0, so in view of (*) Lemma 8.2.4 implies that
r < m. This contradiction establishes the unboundedness of s(n).
By Theorems 7.2.6 and 7.3.3, there is an infinite sequence y1,¥s2, -+ € Yoqd
with |ypy1| > |yn| + 1. Setting n, = |yn|, note that the compositions k[Y] —

E[Ysn,] = k[Yon,]/(Yon, \ {yn}) have the desired properties for r = 1.
Assume by induction that morphisms ¢} have been constructed for some

r > 1. We fix n > 0, simplify the notation by setting u;; = u?n+i)T+j, Ui =U,,,,
and ¢; = ¢y, for i = 0,...,cand j = 1,...,r, and embark on an auxiliary

construction. Choose an index ¢ > |uci| + -+ + [uer| + 1 such that Y, # @, and
pick y € Y. For : =0, ..., c the intervals

I = [(q+ [ua| + 1), (q+ |wir| + - + |uir| + 1)]

are disjoint and contained in the interval [q, 2¢].
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Since s(q) < ¢, we can choose an index 4 such that Y; = & for all s € I;.
The restriction of ¢; to B = k[Y_ 4] yields a surjective morphism of DG algebras
B — k[U;]. Tensoring it with k[Y] over B, we get a surjective morphism k[Y] —
C = k[U;] @ k[Y]. Note that C% = k[U;] ®j k[Y> ¢]? is equal to k[U;] in degrees
< g — 1, to kY, in degree ¢, and has no algebra generators in degrees from I;.
As the differential 9¢ is decomposable, the ideal of C' generated by the variables
Y. ¢, ~ {y} is closed under the differential of C.

We have now constructed a surjective morphism of DG algebras

kY] = C = C/(Yaq ~{yHC = klur ..., ur 1]

where u; = uy; for j = 1,...,r and u,41 is the image of y; clearly, the condition
luj| > |ui] + -+ + |uj—1| + 1 holds for j = 2,...,r + 1. To end the auxiliary
construction, choose an integer n’ such that rn’ > (n+c+1)r. Setting nqy = 1 and
np =nj,_, for h > 2, and applying the construction to n, for h =1,2,..., we get

a sequence of surjective morphisms qSZill with the desired properties.

Proof of Claim 2. We assume that there exists a number ¢ such that rank; Y, <c¢
for all n, and work out a contradiction.

Fix for the moment an integer n > 1. For every y € Y, ,, there are uniquely
defined o;(y) € Yl C k[Y% ], such that

A(y) = Zai(y) mod (Y= 20)k[Y 0]) -

1>2

Clearly, the maps «;: Y, — Y[fw where y — «a;(y), are k-linear. The minimality
of k[Y] is inherited by k[Y ,], so there we have 8()’[;]) = 0 for all i. Recalling
from Corollary 7.2.7 that

(Ho 1 (k[Y> nD)m =0 for every n > 1 )

we see that Y[:ﬁ consists of boundaries, so we get an inclusion

Zyﬁ ‘ai(Ysn) 2 Y- (1)

For degree reasons, a;(Y;) =0 when j < in+1 or j > i(2n) + 1, so

2in+2 i(2n)+1
s(in+1) = Z rank; Y; > Z ranky, o;(Y;) = ranky o; (Y= ) . (8)
j=in+1 j=in+1

Set d = (2m)™ and choose by Claim 1 an integer ng such that s(ng) > (md)?.
Assume by induction on j that we have integers ng,n1,...,n; such that

m(np—1+1) >np+ 1 and s(ny) > (md)s(np—1) for 1 <h<j. (N
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Choose n;4+1 = In; + 1 such that s(n;4+1) = max{s(in; +1) | 2 < i < m}. It is
then clear that m(n; +1) > n;41 + 1. Using (§) and (i), we get

(m —1)s(ny)" *s(nj41) > Zs(nj)mfis(mj +1)

> ranky, (Z Y[T;iai(yé n; )) > ranky, Y[Z]

> (m*d)s(n;)" !

so s(njy1) > (md)s(n;), completing the induction step. Clearly, () implies that
m? (no+1) > n;+1 and s(n;) > m?s(ng)d’ hold for j > 1. Thus, we get c¢(n;+1) >
s(n;), and hence c¢(ng + 1) > s(ng)d’ for all j. This is absurd.

Proof of Claim 3. Set b = (2m)™*!, choose 71 so that a(r1) = a > b, and assume
by induction that ry,...,r; have been found with the property that
ih—1

rh=1p_1Th—1+1 with 2 <i,_1 <m and al(ry) > %
for 1 < h < j. The condition B(y) = d(y) mod ((Y>,,)k[Y>,,]) defines a k-
linear homomorphism £: Y, — >, YTZJ Noting that B(y) = 0 unless |y| = 1
(mod 7;), and using the fact that £[Y] is minimal and satisfies condition (1), we
obtain 37", Y ' 3(Yir,;+1) 2 Y7 as in the the proof of the preceding claim. It
follows that

. m—i a(ry)y o alry)™ afr;)™
;a(rj) a(ir; +1) > ( mj > > (QWJL)m = (2m)+ .
The assumption that a(ir; + 1) < a(r;)?/b for 2 < i < m, leads to the impossible

inequality (m—1)a(r;)™ > (2m)a(r;)™. Thus, a(ir; +1) > (r;)"/b for some i = i,
so the induction step is complete with r;,1 =i;r; + 1.

The quantities P; = (¢;---41) and S; = Zi:g(ij -+ -1;_p) satisfy

1 1 1 1
Pj>Pj(§+-~-+§> sz<a+~-~+ilmz_J_> =5;.

Thus, Pjr1 > S;r1 + 1 =711, and hence P; > 7‘j+1/r1. Since a > b, we have

) - . rit1
a(r;) _ a(rj_y)i-1) a’s a\" a\
a(rj+1) Z 2 Z J b1+11 2 e 2 st > E > E

To finish the proof of the claim, note that v > 1 and set v = "{/a/b. g
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Proof of Theorem 8.2.1. Since 3% (R/p) > By (Rp/pR,) for each n, we may assume
that p = m; set 8, = B%(R/m) and e = edim R.

As R is not a complete intersection, Theorem 8.2.3 provides an infinite se-
quence s1,52,... with (e + 1)s; > s;41, such that e,,(R) > % for some real
number v > 1. For n > 2 we have (3, > 01 = e > 1 by Remark 8.1.1.3, hence

ﬁ:min{ Yy, B, .., {/B} >1
and 3, > " for s1 >n >0.1If 5,41 >n > s; with 7 > 1, then
B > Bs; = e, (R) 2 7% > etV > goavt > g
so the desired inequality 3,, > ™ holds for all n > 0. ]

Proof of Lemma 8.2.4. Since ¢': k[Y]? — K[U] is a surjective homomorphism of
graded free k-algebras, the ideal Ker ¢! has a linearly independent generating
set Y = {y,... ,y;, ...} C kY, which we can assume ordered in such a way
that |y, ;] > [y;| for j > 1. As Ker¢ is a DG ideal, we have 9(y;) = 0 and
0(yi11) € (W1,---,y;) for j > 1. Assume that for some j > 1 the morphism ¢
factors through a quasi-isomorphism

w0 A= RY )@, al) TS R yp) = B

Ly
that maps #;,(") to zero for 1 < i < j and n > 1. As the Yipr = Wj(yg»ﬂ) is a
cycle in B, there is a cycle zj 1 € A7 such that ©/(z;11) = 7/ (y},,). By Lemma
7.2.10, 77 extends to a quasi-isomorphism
(@l ) AT = AVl | 0(2 ) = 2j4) — B2 |0(2 ) =T)4) -
Lemma 7.2.11 shows that the map &: B/(z},,) — B7/(y;,,) that sends
> bix;+1(i) to bo + (Y¥j41) is a quasi-isomorphism; thus, so is
m T = glomd (¢ y)r AT = B ) — B/ (yj41) = BT
In the limit, we obtain a factorization of ¢ in the form
kY] — k[YNX) T k[U]

with a surjective quasi-isomorphism 7, such that Ker 7 is generated by Ker ¢ and
m;(l) with ¢,7 > 1. By Lemma 7.2.10, 7 extends to a quasi-isomorphism

m(X"): RYI(X')(X") — K[UNX"[0() = uy) -

where X" = {zf,..., 2/ }. The DG algebra on the right is quasi-isomorphic to k, so
we get a semi-free resolution W’ = k[Y|(X'UX") of k over k[Y]. Another semi free
resolution W = k[Y](X) of k over k[Y], such that X = {z, : |x,| = |y|+1, y € Y},
and 9(k[Y](X)) C (Y)W, is given by Proposition 7.2.9 (applied with @ = k). By
Propositions 1.3.1 and 1.3.2, the vector spaces V' = k ®yy) W' = k(X' U X") and
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V =k @iy} W = k(X) are quasi-isomorphic. As 9V =0, we get (in)equalities of
formal power series

H(]- +t21‘—1)card(Xz1;1)

i:loo = Z ranky V,t" = Z ranky H, (V)t"
[ - iyracen "
=1

= Z ranky, H, (V/)t" < Z ranky, V,t"

n

L) L)
H(l + t2i71)card(X§i_1) H(l + t2i71)card(Xé’i_1)
— =1 . =1
H(l _ t2i)card(X§i) H(l _ tQi)card(Xé'i)
=1 i=1

On the other hand, by construction we have for each j an equality
card X1 = cardY; = card Y] + card U; = card X}, + card X7, .

It follows that H(V') = V', that is, that 9(W') C (Y)W".
As W% is a free module over k[Y](X') % and H. (W) = 0, we see that

Zoa (RYI(X) = Zoa (W) 0 (RY X)) = 0(W') 0 (R[Y(X7))
S (MW NEYNX') = (VEYIX) .

Since 7: k[Y(X') — k[U] is a surjective quasi-isomorphism, we can find
Z1y .-y 2m € Z(K[Y](X")) with 7(2;) = u;. For them we have

21z € (Lo (RYIX')))™ CZ((V)"E[Y (X)) € Z(TR[Y](X))
where J C k[Y] is defined by

0 for n < m;
Jn = OV ]msr) forn=m;
kY], forn >m.

For degree reasons, J is a DG ideal of k[Y]. By hypothesis H, (k[Y]) = 0 for
n > m, so H(J) 2 H(k[Y]) = 0. Thus, the projection 7: k[Y] — k[Y]/J is a quasi-
isomorphism; Proposition 1.3.2 then shows that the induced map k[Y](X') —
E[Y](X') /JE[Y]{X') is one, hence

Z(JEYN(X')) = O(JE[Y (X)) € O(K[Y (X))

hence cls(z) = 0. The computation 0 = H(w)(cls(z1) - - - cls(zm)) = U1 ... tUm # 0
now yield the desired contradiction. (Il
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8.3. Conormal modules. In this section we fix a presentation R = @/I, where
(Q,n, k) is a local or graded ring, and I C n? is minimally generated by f. The
R-module I/I? is called the conormal module of the presentation®C.

If f is a regular sequence, then it is well known and easy to see that the
image of f modulo I? is a basis of the conormal module, and the projective di-
mension pdg R is finite. The starting point of the present discussion is a well

known converse, due to Ferrand [68] and Vasconcelos [154]:

Theorem 8.3.1. If pdgy R < oo and the R-module I/1? is free, then f is a regular
sequence. |

Later, Vasconcelos [155] conjectured a considerably stronger statement: If
pdg R < oo and pdp(I/I1?) < oo, then f is a regular sequence. Various known
cases of small projective dimension are surveyed in [156]; the one below is proved
by Vasconcelos and Gulliksen.

Theorem 8.3.2. The conjecture holds if pdz(I/1%) < 1.

Proof. In view of the preceding theorem, it suffices to assume that pdg(1/I?) = 1,
and draw a contradiction.

For the Koszul complex E = Q(X1|0(X;1) = f), set Z = Z1(F) and H =
H;(E). Tensoring the exact sequence 0 — Z — Q" — I — 0 with R over Q, we
get an exact sequence of R-modules Z/IZ — R" — I/I?> — 0. As O(E) C IFy,
we have an induced exact sequence H — R" — I/I?> — 0. The assumption
pdy(I/I?) =1 then implies that H contains a free direct summand Rcls(z) & R;
note that z € nF;, because f minimally generates I.

Let E(X.2) = Q(X) be an acyclic closure of R = Hy(E) over E, such that
O(x) = z for some z € X5. The cokernel of the differential do: RXs — RX; of the
complex of indecomposables Indzg Q(X) is equal to H, so Proposition 6.2.7 yields
a Q-linear I'-derivation 9: Q(X) — Q(X) of degree —2, with ¥(x) = 1.

The I-derivation § = H(Y ®q k) of Q(X)®gk = k(X) has 0(z) = 1. As
A(z)=2®1=0¢€ Ey/uF, each 2 is a cycle. Assuming that () = 9(v), we get
1= 0i(z®) = #'d(v) = 0, which is absurd. Thus, 0 # Ha;(k(X)) = Tor$ (R, k)
for all 7 > 0, contradicting the hypothesis that pdg R is finite. |

Next we present the results of Avramov and Herzog [35] on graded ring.

Theorem 8.3.3. Let Q = k[s1,..., S| be a graded polynomial ring over a field k of
characteristic 0, with variables of positive degree, let I be a homogeneous ideal of
Q, and set R = Q/I. The following conditions are equivalent.

(i) R is a complete intersection.
(ii) pdg(I/I?) < .
(iii) exr(I/I?) < 0o
(iv) curvg(I/I?) < 1.
If R is not a complete intersection, then curvg I/I? = curvg k.

300r: of the embedding Spec(R) C Spec(Q).
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The result is proved together with the next one:

Theorem 8.3.4. If R is as in the preceding theorem, and gy is its module of
Kahler differentials over k, then the following conditions are equivalent.

(i) R is a complete intersection.
(ll) CXR(QR|k) < 00.
(iii) curvp(Qpgk) < 1.
If R is not a complete intersection, then curvg Qg = curvg k.

Remark. If pdg Qgjx < oo, then the theorem implies that R is a complete inter-
section — another conjecture of Vasconcelos — but there is more.

If p is a minimal prime ideal, then Qg = (QR|k)p has finite projective
dimension over R,. Thus, it is free, hence R, is regular by the Jacobian criterion,
and so R is reduced by Serre’s criterion. Conversely, if R is a reduced complete
intersection, then Ferrand [68] and Vasconcelos [154] prove that pdp Qg < 1.

The asymptotic results are easy consequences of more precise termwise in-
equalities®! for the graded invariants described in Remark 1.2.10.

Theorem 8.3.5. In the notation of Theorem 8.3.3, for alln > 0 and j € Z there is
an inequality between graded Betti numbers and deviations:

55’;—(91%%) > eny1,(R) and 5]-([/12) > ent2,i(R).

Our proof proceeds through a structural result on the resolution of I/1?, that
depends on the grading and on the characteristic; the following is open:

Problem 8.3.6. When R is a local ring and R = @/I is a regular presentation,
does an inequality 32(I/I%) > &,42(R) hold for each n > 0?

In the arguments, we use graded versions of some basic constructions.

Remark 8.3.7. The first step in the construction of a minimal model of R over
Q@ is a Koszul complex on the set f of minimal generators of I; we choose f to
consist of homogeneous elements, so the first Koszul homology is a finite graded
@Q-module. Assume by induction that H,, (Q[Y< »]) has the same property for some
n > 1; to kill it we adjoin a minimal set of homogeneous generators, and assign to
each variable y € Y,,11 an internal degree, equal to that of d(y).

Thus, we get a graded minimal model Q[Ys1] = k[Y] of R over Q. Similar
considerations yield a graded acyclic closure R(X) of k over R. The arguments in
Sections 6.3 and 7.2 are compatible with the internal gradings, so the ‘obvious’
graded versions of the results proved there are available.

Remark 8.3.8. Proposition 6.2.3 can be repeated for ordinary (that is, not sub-
ject to a condition involving divided powers) k-linear derivations of the DG al-
gebra k[Y] over k, to produce a DG module of differentials Diff, k[Y] over k[Y].
It is semi-free with basis {dy : |dy| = |y|; deg(dy) = deg(y)}yey, where deg(a)

31Equalities hold for n = 0 by Corollary 7.1.5, but it appears that the other inequalities are
strict unless R is a (reduced) complete intersection.
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is the internal degree of a; the map y — dy extends to a universal derivation
d: k]Y] — Diffy k[Y]; the differential is determined by 9(dy) = d(9(y)); each k-
linear derivation of k[Y] into a DG module U over k[Y] factors uniquely as the
composition of d with a homomorphism of DG modules Diff;, k[Y] — U.

Consider the complex of free R-modules L = R ®yy) Diffy k[Y]. (Using
Lemma 7.2.3 on the uniqueness of minimal models and a functorial construction of
Diffy, k[Y], it can be shown that this complex is defined uniquely up to isomorphism
by the k—algebra R; we do not use that here, and refer to [35] for details.) For
g € QY1, an easy computation shows that the differential

O1: Ly — Lo acts by 81(1@9):1@)22;
i=1 7"

dy;, where 0O1(9)=f€Q.

On the other hand, the ‘second fundamental exact sequence’ for the module Qp;
of Kdhler differentials of the k—algebra R has the form

Ny
I/1? % Rog Qo — Qe — 0 with 6(f+1%) =10 L.
i=1

— Oy
As Qqyp, is free with basis {dyi, ..., dy.}, we conclude that Ho(L) = Qpgjs.

Recall from Remark 4.1.7, that an augmentation e: F' — N of a complex of
free R—modules F' is essential, if for some lifting a: F' — G to a minimal resolution
G of N, the map k ®p « is injective. In that case, @ maps F' isomorphically onto
a subcomplex of G, that splits off as a graded R—module.

Theorem 8.3.9. The augmentation €-: L — Ho(L) = Qpx is essential.
A special morphism is at the heart of the arguments to follow.

Construction 8.3.10. Euler morphisms. The graded algebra R has an Euler deriva-
tion R — m, that multiplies each homogeneous element a € R by its (internal)
degree. By Proposition 1.3.1, the R-linear map 7: g, — m that it defines lifts
to a morphism w: Diff; k[Y] — V of DG modules over k[Y], where " : V — m is
a semi-free resolution of m over k[Y]. We call such a lifting an Euler morphism,; it
is unique up to k[Y]-linear homotopy.

Lemma 8.3.11. Let k[Y] be a graded minimal model of R over k, and let U =
E[Y{X) be a graded acyclic closure of k over k[Y], as in Remark 8.3.7.

The DG module V = ==Y (U/k[Y]) is a semi-free resolution of m over k[Y],
and there is an Euler morphism w: Diffy, k[Y] — V, such that

w(dy) = —deg(y)r, mod nX,i1+ (EYeni1(Xen))nt1  for yeYy.

Proof. Set D™ =11, ., k[Y]dy € Diff k[Y] = D.

The map a — deg(a)a is a k-linear chain I-derivation k[Y] — U. In degree
zero homology it induces the zero map R — k, so it is homotopic to 0. If £: D — U
is the k[Y]-linear morphism that corresponds to it by Proposition 6.2.3, then ¢ is
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homotopic to 0. We set £" = £|p» and by induction on n construct k[Y]-linear
homotopies ¢™: D™ — U between ™ and 0, such that
1.

)

0" (dy) = deg(y)z, mod nX, + (k[Y< n]<X<n>])n .

0‘”|Dn—1 = O'ni

()

If |y| = 0, then set 0°(dy) = deg(y)z,: clearly, the formula above holds. Let
n > 1, and assume by induction that "' has been found. It is easy to check that
&(dy) — deg(y)d(zy) — 0™ 10(dy) is a cycle; as n > 1, it is a boundary, that we
write as O(uy + vy) with u, € QXp41, and vy € k[Y¢ pt1]{X<n)n+1. Because d is
a derivation and 9(Y) C (Y)2k[Y], we get
d(9Y) C d((Y)*k[Y]) € (YV)d(k[Y]) = (Y)D

Since 0"~ ! is k[Y]-linear, this implies:

o™ to(dy) = a"1d(0(y)) € Wy, = nYy, + E[Y_ (X< n)n
By Proposition 7.2.9, we have d(v,) € W, hence

uy) = &(dy) — deg(y)0(zy) — o™ A(dy) — I(vy) € W, .

By the same theorem, we conclude that u, € nX, 1. The map o": D" — U,
o"(dy) = deg(y)z, + uy + vy, defines a homomorphism of DG modules over k[Y]
that satisfies (). As for |y| < n we have

o™ (dy) + 0" 9(dy) = deg(y)d(z,) + O(uy + v,) + o™ Ld(dy) = £(dy),

the induction step of the construction is complete.

In the limit, the maps ¢™ define a homotopy o: D — U between £ and 0.
Let w: D — V be the composition of ¢ with the canonical k[Y]-linear, degree —1
homomorphism U — U/k[Y] — ==Y U/k[Y]) = V. As Im¢ C k[Y], the equality
Jo + 00 = £ implies dw = w0, S0 w is a chain map D — V.

The homology exact sequence of 0 — k[Y] — U — U/k[Y] — 0 yields
H,(U/Kk[Y]) = 0 for n # 1 and H1(V) = m, so V = s~ }U/k[Y]) is a semi-
free resolution of m. For n = 0, formula () shows that Ho(w): Qg — m is the
homomorphism induced by the Euler derivation; for n > 1, the formula yields a
congruence w(dy) = —deg(y)zy, mod nX,11 + (E[Yenp1(Xcn)])ntr- O

Proof of Theorem 8.3.9. Let w: Diffy k[Y] — V be the Euler morphism, con-
structed in the preceding lemma, and consider the induced morphism

@: L= R @y Diff k[Y] 225 R@py V=G
of complexes of graded R—modules. The lemma yields congruences
(k@rw)(l1®dy) =1®deg(y)ry, mod (k(Xcn)nt1) foryey, andn >0,
which show®? that k ® w is injective. Furthermore, Ho(w) is the homomorphism

v: Qpr — m defined by the Euler derivation.

32This is the only place where the hypothesis of characteristic 0 is used.
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By Proposition 1.3.2, the quasi-isomorphism p: k[Y] — R induces a quasi-
isomorphism p @ V: V = k[Y] ®py] V — R @y V = G, so G is a minimal free
resolution of m over R. Let F' be a minimal free resolution of Qp, over R, let
a: L — F be a lifting of the identity map of Qg;, and let 3: F' — G be a lifting
of ~. Since Ho(Ba) = ~, the morphisms w and fa are homotopic. As noted in
Remark 4.1.7, this yields

k@rw=Fkor (Ba) = (kerB3)(k®ra),
so k ®pg « is injective. This is the desired assertion. O

Proof of Theorem 8.3.5. By construction, L, is a free R—module with basis Y,
and card(Y;,) = &,41(R) by Theorem 7.2.6. The inequalities for the Betti numbers
of Qg follow from the result that we have just proved.

The morphism @ used in its proof induces a morphism @’: L' = 'L, —
s7!G. 1 = G’, such that @’ is a split injection of R-modules. An easy compu-
tation shows that Ho(L') = I/I?, so replacing in the preceding argument F by
a minimal resolution of I/I?, we conclude that ¢": L' — I/I? is essential. That
gives the second series of inequalities. ]

Proof of Theorem 8.3.3 and Theorem 8.3.4. In view of Corollary 8.2.2, in each case
it suffices to prove the last assertion. Using Proposition 4.2.4.1, Theorem 8.3.5,
and Proposition 8.1.4, we get

curvg k > curvg(I/1?) = limsup {/BE(I/I2) > limsup Ve, (R) = curvgk.

We have Theorem 8.3.3. An identical argument yields Theorem 8.3.4. ]

9. Modules over Complete Intersections

Currently, homological algebra over complete intersections is an active area of re-
search on infinite free resolutions. This chapter describes some basic techniques
and results. Most proofs depend on a remarkable higher level structure on resolu-
tions, introduced in Section 1 under more general hypotheses. It is then applied
to modules over complete intersections, to study Betti numbers in Section 2, and
other homological problems in Section 3.

9.1. Cohomology operators. In this section R = Q/(f), where f = f1,..., fr is
a regular sequence in a (not necessarily regular local) commutative ring . We
denote E = Q[y1,...,yr | 0(y;) = f;] the Koszul complex on f, and let k: E — R
be its canonical augmentation.

Extending Shamash’s [142] construction of resolutions over hypersurface sec-
tions, cf. Theorem 3.1.3, Eisenbud [57] produces (in a finite number of steps, if
pdg M is finite). a free resolution of an R-module M starting from any free reso-
lution of M over ). Here we present a version of that construction, from Avramov
and Buchweitz [31]; the result is somewhat weaker, but easier to prove and suffi-
cient for our purposes.
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Theorem 9.1.1. Let M be a finite R-module, let €V: U — M be a DG module
resolution of M over E such that U, is a free Q-module for each n.

Let G = Q(v1,...,v.) be a Q—module with basis {v(H) = (M) g (he)
[0 | = 2(hy|vr| + -+ helvg|), H= (h1,...,h.) €N}, and set

Cn(E»U) = @az ®R Unfia;

i>0

A @ u) = — Z’U(Hj) @ yu + v @ a(u)

j=1

where @i =R®q G, Uj =R®q Uj, and Hj = (hl,...,hj —17...,hr).
Then (C(E,U),0) is a free resolution of M over R.

Remark. The Koszul complex K on a regular sequence s with (s) D f is a DG
module over F; by inspection, C(FE, K) = C, the resolution of Corollary 6.1.9.
Proof. Let pu: E ®g E — E be the morphism of DG algebras, given by the mul-
tiplication of the exterior algebra. An elementary computation shows that Ker u
is generated by y; =y, ®1-1®uy;, for j =1,...,r. Thus, p is the composition
of (E®q E) — D = (E®q E)(vi,...,v,|0(vj) = y;) with v: D — E, where
v(vH)) = 0if |H| > 0. By Proposition 1.3.2, the map

E®QK}:E@QEHE@QR:R<yla---vyr|a(yj):0>

is a quasi-isomorphism. As (E®q#k)(y;) = y;, we see that H(E®q E) is the exterior
algebra on H; (E®¢ E), itself a free R—module with basis cls(y}), . . ., cls(y..). Thus,
Proposition 6.1.7 applied to the I'-extension F®qg E — D, shows that v is a quasi-
isomorphism of DG algebras.

Since v is a morphism of semi-free DG modules over FE for the action of E
on the right, by Proposition 1.3.3 sois v®pU: D®g U — E®g U = U, hence
H(D ®p U) = M. On the other hand, (D ®p U)? = Ef ®qg G ®¢g U? is a semi-
free DG module for the action of E on the left. Thus, by Proposition 1.3.2 the
morphism k @pU: D@pU — R®p D ®g U is a quasi-isomorphism. Comparison
shows that R®r D ®g U = C(E,U) as complexes of R—modules. O

Construction 9.1.2. Cohomology operators. Let S = R[x1,...,xr] be a graded
algebra with variables x1, ..., X, of degree®3 —2. In the notation of the preceding
theorem, set x; - v() = v(H3) for 1 < j < r. These are R-linear endomorphisms
of degree —2 of C(E,U)!. They clearly commute with each other, and a glance
at the formula for the differential 9 of the complex C(E,U) shows that they are
chain maps: x;0 = dy;. Thus, C(E,U) is a DG module over the graded algebra®*
of cohomology operators S of the presentation R = Q/(f).

33This will not be surprising, once the X;'s reveal their cohomological nature.
34The algebra S itself has a trivial differential; this nicely illustrates the fact that DG module
structures are to be found in all walks of life.
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The construction above, taken from [31], is a variant of that of Eisenbud [57],
cf. Construction 9.1.5. The introduction of operators of degree —2 on (co)homology
is due to Gulliksen [80]; other constructions have been given by Mehta [119] and
Avramov [25]. For a long time, it had been held that they coincide, but a close
reading of the published arguments has revealed serious flaws. In fact, they yield
the same result, but only up to sign: this is proved in [37]; ironically, that proof
introduces two new constructions.

Proposition 9.1.3. For each R—-module N there are S—linear homomorphisms
x;: Torji (M,N) — Tory}_, (M, N)

) for 1<j<c andall n,
x;: Ext}h (M,N) — Ext};™ (M, N)
which turn Tor™ (M, N) and Extg (M, N) into modules over S.

These structures depend only on f, are natural in both module arguments,
and commute with the connecting maps induced by short exact sequences.

Proof. For the first statement, observe that for each R—module N, the complexes
C(E,U) ®g N and Hompg (C(E,U),N) have an induced structure of DG S-
module. Naturality in IV is clear, as is linearity of the connecting homomorphisms
induced by an exact sequence 0 - N/ — N — N” — 0.

If B: M’ — M is a homomorphism of R-modules, and U’ is a resolution of
M’ given by Construction 2.2.7, then by the lifting property of Proposition 1.3.1
there is a morphism a: U’ — U of DG modules over E such that H(a) = g.
The expressions for the differential in Theorem 9.1.1, and for the action of x; in
Construction 9.1.2 show that v ® v/ — v#) ® () defines a morphism of
DG S-modules C(E,a): C(E,U’") — C(E,U). All choices of o are homotopic,
so the degree 0 maps of S—modules H(C(E, a) ®g N) and HHompg (C(E, a), N)
are uniquely defined, and equal respectively to Tor™ (8, N) and Extg (8, N). This
proves naturality in M, and independence from the choice of U.

Let 0 » M’ — M — M" — 0 be a short exact sequence of R—modules, and
choose a semi-free resolution U” of M" over E, such that U"% is a free module
over E%. By the usual ‘Horseshoe Lemma’ argument, there exists a differential on
Ul =U'"® U"Y, such that U becomes a DG module resolution of M over E, and
the canonical exact sequence 0 — U’ — U — U"” — 0 is one of DG modules over
E. Due to the expression for the differential in Theorem 9.1.1, it gives rise to an
exact sequence of DG modules over S:

0— C(E,U")—C(E,U)— C(E,U")—0
that splits over R. It induces short exact sequences of DG modules over &

0—CE,U)or N —CE,U)@r N - C(E,U")®r N —0
0 — Hompg (C(E,U"),N) —Hompg (C(E,U), N) —Homg (C(E,U’),N) — 0

Their connecting maps commute with the action of the operators x;. O
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The importance of the algebra of cohomology operators stems from

Theorem 9.1.4. If M and N are finite modules over a moetherian ring R, such
that R = Q/(f) for some Q-reqular sequence f, then the S—module Exty (M, N)
is finite if and only if Extgy (M, N) =0 for n>> 0.

Remark. Most of the remaining results in this chapter are based on this theorem.
Section 2 uses the ‘if’ part; different proofs for it are given in each one of the papers
quoted in Construction 9.1.2; here we use an elementary argument to establish a
special case, that suffices for many applications. Section 3 is based on the converse
statement in the special case N = k, proved in [25]; the general result is established
in [32].

Partial proof of Theorem 9.1.4. Assume that @) is noetherian, finite projective Q-
modules are free, and pdz M is finite. Proposition 2.2.8 then yields a DG module
resolution U of M over E, which is a finite complex of free Q—modules. By the
preceding result, we may use U to compute the action of S. As Hompg (C(E,U), R)
is a semi-free DG module over § with underlying module S ® g Homg (U, R) , we
see that it suffices to prove the

Claim. If F is a semi-free S—module of finite rank, then for each finite R—module
N the S—module H(F ®g N) is noetherian.

The advantage is that now we can induce on n = ranks F. If n = 1, then F is
a shift of S, so H(F®r N) 2 ="S®g N is a finite S—module. If n > 0, then choose
a basis element u € F of minimal degree. As d(u) = 0 for degree reasons, Su is
a DG submodule of F, and G = F/Su is semi-free of rank n — 1. The homology
exact sequence now yields an exact sequence of degree zero homomorphisms of
S-modules Su®p N — H(F @ g N) — H(G ®r N), where the two outer ones are
noetherian by induction. The claim follows. O

Eisenbud [57] shows how to compute the operators from any resolution.

Construction 9.1.5. Eisenbud operators. A lifting to @ of a free resolution (F,9)
of M over R is a pair (F 8) consisting of a free @-module F and a degree —1
endomorphism 8 of F, such that (F, 9) = (F ®o R, d ®q R).

Liftings always exist — just take arbitrary inverse images in () of the elements
of the matrices of the differentials 8,,. The relation 8% = 0 yields §2(F) C (f)F,
hence for j = 1,...,r there are degree —2 endomorphisms of Q—modules 77 : F—
F, such that 9% = > i fiT

Each lifting produces a family of Eisenbud operators

T={"=7®gR:F - F}icjcr.

Proposition 9.1.6. Let T be a family of Eisenbud operators defined by f.

For 1 < j < r the maps 77 are chain maps of degree —2, that are defined
uniquely up to homotopy, commute with each other up to homotopy, commute
up to homotopy with any comparison of resolutions F' — F constructed over a
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homomorphism of R-modules 3: M' — M, and satisfy
H(Homp (7/,N)) = —x; .

Proof. Let (ﬁ’ L0 ) be a lifting of a free resolution (F’,9") of an R-module M’,
choose a family of maps ¥ = {77}: F' — F’ as above, and set 7/ = {77 =
77 @g R}. If a: F' — F is a chain map and a&: F' > Fisa map of @—modules
such that & ®g R = «, then the equality do = (=1)l*“lad’ implies that for 1 <
j < r there exist Q-linear homomorphisms o7: F' — F with |o7| = |a] — 1 and
da — (—1)lelad = >y fjo?. Thus, we have

ij TJOé*OLT) 0%a — ad'?

(Zaf ol +( |°‘8a8') (—1)l (ifjajé' - 5&5’)
j=1

T

= ij (5Jj — (—1)‘Uj|0j5/) .
j=1

Since the elements of f are linearly independent modulo 12, we get

o —ar’’ =0(c? ®g R) — (—1)|a'j|(aj ®g RO’ for 1<j<r,
that is, o7 ®q R: F' — F is a homotopy from i to ar’l. We can now get most
of the desired assertions by suitably specializing the maps chosen above.

First, lettinga = 0’ = danda = 0’ = 9, wecanset 0/ =0for1 < j <7, and
so conclude that each 77 is a chain map. Next, taking o = id!" and varying 7/, we
see that 71,..., 7" are defined uniquely up to homotopy. Then, keeping oo = 77 and
7' = 7, we see that 77 commutes up to homotopy with each 7*. Finally, choosing
a to be a lifting of a homomorphism of R-modules 3: M’ — M, we obtain that

9o and ar’”’ are homotopic for each j.
The resolution F' = (C(E,U),d) of Theorem 9.1.1 has an obvious lifting:

F=U" ®o G with (') @ u) = —ZU(HJ') @ yju+ v @ d(u) .
j=1
From it we get 02(v() @ u) = Z o) @ fiu=— Z;Zl fix; () @ u) and
hence H(Homp (TJ,N) )=—x, for 1<j<r. O

Remark 9.1.7. For any integer d with 1 < d < r, the operators x1,...,xq act on
Exty (M, k) in two ways: the initial one, from R = Q/(f), and a new one, from

the presentation R = P/(f1,..., fa) with P = Q/(fa+1,---, fr)-
These actions coincide. Indeed, if (F 8) is a lifting to @ of a free resolution

(F,d) of M over R, then it is clear that (F ®q P, d ®q P) is a lifting of (F,0) to
P. In this case we have (0@ P)? = ijl 1;(77 @¢g P). Thus, we may use 7/ @¢q P
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to compute the operation of x; coming from the new presentation. It remains to
observe that (77 g P) ®@p R =17 ®¢ R.

9.2. Betti numbers. Our method for studying homology over complete intersec-
tions is to use the action of the algebra of cohomology operators, in order to replace
‘degree by degree’ computations by ‘global’ considerations.

At that level, we are essentially dealing with finite graded modules over poly-
nomial rings. This converts homological algebra back into commutative algebra,
and opens the door to the use geometric methods to study cohomology. Such an
approach was pioneered by Quillen [132] for cohomology of groups, and has evolved
into a powerful tool of modular representation theory, cf. Benson [42] and Evens
[62] for monographic expositions. Geometric methods are used in [25] to study
resolutions over commutative rings.

For reference and comparison, the next theorem is presented along the lines
of Theorem 5.3.3. It is compiled from four papers: the fact that P4, (¢) is rational
with denominator (1 — #2)°dimE i from Gulliksen [80]; the comparison of the
orders of the poles, and (3), are from Avramov [25]; the first part of (5) comes
from Eisenbud [57], the second from Avramov, Gasharov, and Peeva [32].

Theorem 9.2.1. Let R be a complete intersection with edim R = e and codim R =
r. For a finite R—module M # 0 with depth R — depth M = m and pdp M = oo,
the following hold.

(1) There is a polynomial p(t) € Z[t] with p(£1) # 0, such that
t)
PE (1) = p(
M0 = e -
(2) cxp M =d < codimR and curvp M = 1.

with c¢<d.

b
(3) BIH(M) ~ 5 (d— 1) n®!  where b= p(1) > 0.

(d—1)!
B (M)
W Saran T
R
(5.1) %ﬁé\? =1 and Syzl,, (M) = Syz (M) forn >m if cxp M = 1.
1 (M) R R ‘
(5.2) BRI > 1 and Syz,; o (M) — Syz,, (M) forn>>0ifcxp M > 2.

Remark. A more precise version of the last inequality is proved in [32]: there are
polynomials hy (t) of degree d — 2 with leading terms a4 > 0, such that for n > 0
the difference B (M) — BE(M) is equal to hy (n) if n is even, and to h_(n) if n
is odd; however, it is possible that a4 # a_, cf. Example 9.2.4.

Example 9.2.2. By Remark 8.1.1.2, we have 8%(k) ~ 2¢7™n"~1/(r — 1), so ¢ =
—dim R, d = codim R, b = 1, and px(t) = 1.

Recall that if R is a complete intersection, then mult R > gcodim R



Infinite Free Resolutions 93

Example 9.2.3. If mult(R) = 2", then for each M there is an integer valued poly-
nomial b(t) € Q[t] such that B2(M) = b(n) for n > 0, cf. [28]. This generalizes a
well known property of complete intersections of quadrics.

Not all Betti sequences are eventually given by some polynomial in n.

Example 9.2.4. Let g = (egl) —ranky m?/m3 be the number of ‘quadratic relations’
of R. It is proved in [28] that
1=+ (1 +t)e L. (et — 1)

Pg/nﬂ (t) = (1 _ t)r . (1 + t)r—q—l -t

Thus, when ¢ < r — 2 the Poincaré series has poles at t = 1 and at t = —1,
so the even and odd Betti numbers are each given by a different polynomial. For
instance, if R = k[s1, s2]/(s{*, s32), with a; > 3, then 8 (R/m?) is equal to 3n+1

if n is even, and to %n + % if n is odd.

As (5.1) shows, if a Betti sequence is bounded, then it stabilizes after at
most depth R steps. However, if cxg M > 2, then there exist modules whose Betti
sequence strictly decreases over an initial interval of any given length. This shows
that no bound on the degree of the polynomial p(t) can be expressed as a function
only of invariants of the ring R:

Example 9.2.5. Let R be a complete intersection of codimension ¢ > 2. Fix N =
Syz? (k), with n > dim R, and let F be its minimal free resolution. The module
N is maximal Cohen-Macaulay, cf. 1.2.8, hence the complex

0N - F Bpr Aopr
where —* = Homp (—, R), is exact and minimal. Splice it to the right of a minimal
free resolution of N*: now you are holding a ‘doubly infinite’ exact complex of finite
free R—modules, that you can truncate at will. The cokernel of 0% is guaranteed
to have s 4 1 strictly decreasing Betti numbers at the beginning of its resolution,
cf. Remark 8.1.1.3.

Before starting on the proof, we make a general observation.

Remark 9.2.6. Let @ be a regular local ring, f be a Q—regular sequence, and set
R=Q/(f). If M is a finite R—module, then Exty (M, k) is a finite module over
R[x1,--.,xr] by Theorem 9.1.4.

Since m annihilates Extp (M, k) = 0, we see that M = Extp (M, k) is a
finite module over the graded polynomial ring P = k[xi,...,Xx,]. In particular,
the Hilbert-Serre Theorem applies to the graded P—module M, and shows that
P (t) = q(t)/(1 — t?)" for some polynomial ¢(t) € Z[t].

Proof of Theorem 9.2.1. The hypotheses of the theorem and its conclusions do not
change if one replaces (R, M) by (R',M ®pr R’), where R’ is the completion of
the local ring R[um[,). Thus, we assume that R = Q/(f), where Q is regular with
infinite residue field k, and f is a regular sequence.

Let F be a minimal free resolution of M over R, and set 3, = BX(M).
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(1) Due to Remark 9.2.6, P¥,(t) can be written in the form

d—1 c—1
m; l;
PRt =) —2— —  f(t
M() j:O(l_t)d—_]+;(1+t)c—z+f()a
with max{c,d} < r and f(t) € Q[t]. Thus, for n > 0, there are equalities
/l
o ' B p— = n° ' +g,(n) foreven n;
3, = (d—1)! (c—1)! (+)

! MO pd=1 b n~t+g_(n) for odd n;
(d—1)! (c—1)! ’

with mo # 0, and polynomials g4 (t) of degree < max{c,d} — 1. As the Betti
numbers of M are positive, we have d > ¢, and d > 0.

Assume next that d = ¢, so that ¢y # 0. The positivity of Betti numbers
implies that mg £ £y > 0, hence mg > 0.

Set v(j, 2s) = >7__;(—=1)"fas—i. Formula (x) shows that for all s,k > 0 the
function 2s — ~(2h,2s) is given by a polynomial in 2s of degree d with leading
coefficient ag = ((4h + 1)y 4+ mo)/(d — 1)!, and the function 2s — v(2h + 1,2s)
by a polynomial of the same degree with leading coefficient a1 = ((4h + 3)¢o —
mg)/(d — 1)!. Thus: if £y < 0, then ag < 0 for h > 0, so (2h,2s) < 0; if £y > 0,
then a; > 0 for A > 0, so y(2h + 1,2s) > 0.

Localization of F' at a minimal prime ideal p of R yields an exact sequence

0 Loy = (Brasgly == = (Bacdy = = (Fou_y)y = Ny = 0.
Counting lengths over Ry, we get an equality
(4, 2s) - length(Ry) = (—1)7 (length(L;) + length(N;))

which shows that v(2h,2s) > 0 and v(2h + 1, 2s) < 0, regardless of the sign of £;.
We have a contradiction, so we conclude that d > c.

(3) Since d > ¢, formula (x) yields lim,, oo Bn/n%"1 = mg/(d — 1)!.
On the other hand, mg = lim; 1 (1 — t)¢ P, (t) = p(1)/2¢.

(2) and (4) are trivial consequences of (1) and (3).

(5) By Theorem 9.1.4, Extp (M, k) is a finite graded module over the poly-
nomial ring k[x1,. .., xr]. Thus, its graded submodule

{p € Extp (M,k) | (x1,---,Xxr)™p =0 for some m}

is finite-dimensional, and hence is trivial, say, in degrees > s. Since k is infinite,
we can find a linear combination x of xi,..., X, that is a non-zero-divisor on
Extz°® (M, k). Thus, the operator y is injective on Extz® (M, k). Dualizing, we
see that y: Tor§+2 (M, k) — TorZ (M, k) is surjective when n > s.

Changing bases, we may assume that x = x1, and switch attention to the
presentation R = P/(f), where P = Q/(f2,...,f-) and f is the image of fi;
note that f is P-regular. Let (F,d) be a lifting of the complex (F,d) to P, and
let 7: F — Fand 7 = 7®p R: F — F be the degree —2 endomorphisms from
Construction 9.1.5. By Remark 9.1.7, we have y = Hompg (7, k) .
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Since x, is surjective for n > s, so are the maps T,42: ﬁn+2 — ﬁn and
Tn+2: Fnie — F, by Nakayama. The chain map 7 induces surjections Syzf} 1o (M)
— Syz2 (M) for n > s. Localize the defining exact sequence

0 — Syzy (M) — Foyy —2 F, — Syzf (M) — 0

at a minimal prime p of R. For n > s a lengths count over R, yields
Bpi1 — Bn = (length Syz", (M,) — length Syzf» (M,) ) / length(R,) > 0,
Next we assume that 38, = B,+1 = b # 0 for some n > s, and show that
Bnt2 = b. Since T,42 is surjective for n > s, we have F,4o = F ® G with E =
Ker 7,42, and the restriction 6 of 7, Tnt2 tO G is an isomorphism with F Let
C G — Fn+1 be the restriction of 6n+2 As 8n+1C is the restriction to G of
3n+16n+2 fTnt2, where P/(f) = R, we have 8n+1C /0, and hence

A" Ousi N'C= N'(Das1€) = N'(10) = f* \" 6.

Note that G, Fn+1, and F have rank b and fix isomorphisms of P with
A(G), N (Fns1), and A"(Fy). The maps A’ 9pi1, A”C, and A’ 6 are then given
by multiplication with elements of P, say y, z, and u, respectively. The equality
above becomes yz = fPu. As @ is bijective so is /\b(@)7 hence v is a unit in P. As f is
P-regular, so is y, hence 5n+1 is injective. From 5n+15n+2 (E) = fTai2(E) =0 we
now see that E C Ker 5n+2, so Im 5n+2 is a homomorphic image of ﬁn+2/E ~ 3.
Remarking that

(Coker 9y, 13) @p R = Coker 8y, 43 = Syzlt, o (M)

we conclude that Syz~, , (M) is a homomorphic image of the free R-module G ®p
R = RP. Tt follows that Bn+2 < b= [,. On the other hand, we already know that
Bnt2 = Bnt1 = Bn, hence all three are equal to b. Thus, the sequence {8, }n>s i8
either strictly increasing or constant: we have proved (5.2).

If Bh+2 = Bn, then rankp Fn+2 = rankp Fn, so E = 0 and the surjective
homomorphism 7,12 is bijective. To finish the proof of (5.1), we show that for
m = depth R—depth M the complex F. ,, is periodic of period 2. It is the minimal
free resolution of N = Syz’ 11 (M ), and N is a maximal Cohen-Macaulay module
by Proposition 1. 2 8 Thus, F*,, = Hompg (F. ,, R) is exact except in degree 0,
and Ho(FZ,,) = N*. Since F m 1s minimal, N* is a syzygy of C,, = Coker 9} for
each n > m. For n >> 0 the mlmmal resolution of C), is periodic of period 2, hence
sois FZ .. ]

9.3. Complexity and Tor. Let (R, m, k) be a local ring.

If R = Q/I is a complete intersection and @ is regular, then the finite global
dimension of ) implies that all R—modules have finite complexity. However, to
study a specific R—module, it often pays off to use an intermediate (singular)
complete intersection P, that retains the crucial property pdp M < co. With this
approach, the following factorization theorem is proved in [25].
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Theorem 9.3.1. Let R = Q/I be a regular presentation with I generated by a
reqular sequence. If k is infinite, then for each finite R—module M the surjection
@ — R factors as Q — P — R, with the kernels of both maps generated by regular
sequences, pdp M < oo, and cxgp M = pdp R.

Proof. As in Remark 9.2.6, consider the finite graded module M = Ext}, (M, k)
over the ring P defined by the presentation R = @/I. Elementary dimension
theory shows that the Krull dimension of M over P is equal to cxp M =d. As k
is infinite, we may choose a homogeneous system of parameters x1, ..., xq for M,
and extend it to a basis 1, ..., X, of P?, the degree 2 component of P.

It is not hard to see that I can be generated by a QQ-regular sequence f =
fi..., fr that defines the operators x1, . . ., x,- Remark 9.1.7 identifies k[x1, . . - , Xd]
C P with the ring P’ of cohomology operators of a presentation R = P/(f1,..., f4),
where P = Q/(fa+1,---, fr). As M is finite over P’, Theorem 9.1.4 shows that
Ext's (M, k) =0 for n > 0, that is, pdp M < cc. a

To deal with intrinsic properties of the R—module M, a concept of wvirtual
projective dimension is introduced in [25] by the formula®®

— " is a local ring such that R = Q'/(f’
vdeM—inf{de,M‘ © & Q//(f)},
for some @Q'-regular sequence f

Clearly, vpdp M < oo whenever R is a complete intersection.

Recall that pdy M is finite if and only if cxp M = 0. It is easy to see that in
that case, vpdp M = pdp M. Thus, the following result extends of the Auslander-
Buchsbaum Equality.

Theorem 9.3.2. If M is a finite R—module and vpdr M is finite, then
vpdp M = depth R — depthp M + cxp M .

Proof. We may assume that R is complete with infinite residue field.
Choosing Q' with pdg M = vpdy M, we have

vpdr M = pdg M = depth Q" — depth M
= pdg R+ depth R — depth M > cxgr M + depth R — depth M

where the inequality comes from Corollary 4.2.5.4. On the other hand, the preced-
ing theorem provides a ring P from which R is obtained by factoring out a regular
sequence, and that satisfies pdp R = cxp M, so we get

vpdp M < pdp M = depth P — depth M
=pdp R+ depth R — depth M = cxr M + depth R — depth M

where the inequality holds by definition. O

351f k is infinite; otherwise, R and M are replaced by R= R[u] m[u] and M=M RR R.
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Next we study the vanishing of Tor functors over a local ring. The subject
starts with a famous rigidity theorem of Auslander [16] and Lichtenbaum [112]:

Theorem 9.3.3. If M and N are finite modules over a regular ring R and
Tor (M,N) =0 for some i>0,
then Tor® (M,N) =0 for all n > i. |

Heitmann [85] proves that rigidity may fail, even with R Cohen-Macaulay
and pdyp M finite. On the other hand, there are partial extensions of the theorem
to complete intersections. The first one is due to Murthy [123].

Theorem 9.3.4. If M and N are finite modules over a complete intersection R of
codimension r, and for some © > 0 there are equalities

Tor]' (M,N) =---=Torf, (M,N) =0
then TorZ (M, N) =0 for all n > i.
In codimension 1, this is complemented by Huncke and Wiegand [91]:
Theorem 9.3.5. If M and N are finite modules over a hypersurface R, and
Tor]' (M,N) = Tor’; (M,N) =0 for some i>0,
then either M or N has finite projective dimension.

When the vanishing occurs outside of an initial interval, Jorgensen [95] draws
the conclusion from the vanishing of fewer Tor’s.

Theorem 9.3.6. Let M be a finite module over a complete intersection R, such that
cxp M = d and depth R — depth M = m. For a finite R—module N, the following
are equivalent.

(i) TorZ (M,N) =0 forn>m.
(ii) Tor® (M,N) =0 forn>>0.
(iit) Torf (M,N) =--- = Torﬁ_d (M,N) =0 for some i > m.
The number of vanishing Tor’s in (iii) cannot be reduced further; the next

example elaborates on a construction from [95].

Example 9.3.7. For i > 1, R = Kk[[s1, ..., s2.]/(S18741, -+, SrS2r), and N
R/(Sr41, - - -, S2r) there is a module M;, such that cxg M; = r, Torf (M;,N) =
for i <n <i+r, but Torf (M;, N) # 0 for infinitely many n.

Corollary 6.1.9 yields a minimal resolution

o |l

F=R(x1,...,29, |0(xj) =5;,0(xr1j) = Spyjz; for 1 < j <)
of M = R/(31,...,5r) = E[[Sr+1,--.,S20]]- As M is maximal Cohen-Macaulay,
F* = Hompg (F, R) is exact in degrees # 0. It is easy to see that the sequence

o 78;

[oa

I Fy Ej Fy with o(x) = sp41 - Sorx
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is exact. The splice of F' with =~!F* along ¢ is a doubly infinite complex (G, 9)
of free R—modules. By construction, H,,(G ® g N) = Tor, (M, N) for n > 1 and
H,(G®r N) = Ext}%_" (M, N) for n < —2; as 0 ®g N = 0 trivial, these equalities
extend to n = 0 and n = —1, respectively.

For 1 < j <, consider N; = N/(5j41,...,5-)N = k[[s1,...,5s;]], note that
Tor® (M, N;) and Extg (M, N;) are annihilated by (31,...,52,), and set
() = Z ranky, Tor® (M, N;)t" and E;(t) = Zrankk Exty, (M, N;)t"

n=0 n=0

The exact sequences 0 — Nj; LN 7 — Nj_1 — 0 induce (co)homology sequences
in which multiplication by s; is the zero map, so

() =Ty +4T5()  and By () = B(0) + | Ej(0).

Since and Ny & k, we have Ty(t) = Eo(t) = P (t) = 1/(1 —t)", and hence
To(t) 1 t" Eo(t) t
T’r’ t == = d E’r‘ t = =
U=y ~a_eyr ™ =T =~ a_py

Now set M; =Imo_,_;_1; as Tor (M;,N) 2H,,—,—i(G®g N) for n > 1, these
equalities establish the desired property.

We start the proofs with a couple of easy lemmas.

Lemma 9.3.8. Let f1,..., fq be a regular sequence in a commutative ring Q, and

set R=Q/(fr,....fa)- If
Tor® (M,N) =--- = Tor® (M,N) =0
for integers s and t with s +d < t, then there are isomorphisms
Tor? ,_, (M,N) = Tor | (M,N) ;
Tor JM,N) =-.. = = Tor®? (M, N) =
TorH_1 (M,N) = Torf; (M,N) .
Proof. The Cartan-Eilenberg change of rings spectral sequence 3.2.1 has

?Ep,q = Torl (Tor? (M, R) ,N) = Tor%, (M,N) .
If E is the Koszul complex resolving R over @), then
TorQ (M, R) = Hy(M ©q E) = M ®g E, = M(2) |

hence 2E,, , = Torp (M, N)( ). Thus, ?E, 4 = 0 for s < p < t. It follows that the
only possibly non-zero module in total degree s+d—1is ?E;_1 4 :Torﬁd_1 (M,N),
that all modules in total degree n for s + d < n < t are trivial, and that the only
possibly non-zero module in total degree t + 1 is 2E; 1 o = To1r£1r1 (M,N) . For
degree reasons, no non-trivial differential can enter or quit these modules. This
gives the desired isomorphisms. O
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Proof of Theorem 9.3.4. Since TorlJrT (M, N) = 0 and TorHTJr1 (M,N) =
TorH_H_1 (M N) by the lemma, we get TorlJrTJr (M,N) =0 by Theorem 9.3.3,
hence TorH_T_i_1 (M, N) = 0. Tteration yields Tor? (M,N) =0 forn>i+r. O

C. Miller [120] provides a simple proof of Theorem 9.3.5, based on

Lemma 9.3.9. Let M, N be finite modules over a complete intersection R.
If Tor® (M, N) =0 forn > 1, then cxg M + cxg N = cxp(M @ N).
If Tor® (M, N) =0 for n>> 0, then cxg M + cxg N < codim R.

Proof. As PM®QN( ) = PE(t) - PR(t), cf. the proof of Proposition 4.2.4.6, com-
parison of orders of poles at t = 1 and Theorem 9.2.1.2 yield the first assertion.
For the second one, replace M by a high syzygy M’; then cxg M/ + cxg N =
cxp(M' ®g N) < codim R, the inequality coming from loc. cit. O

Proof of Theorem 9.3.5. By Theorem 9.3.4, Tor? (M, N) = 0 for n > i; thus,
cxp M 4+ cxp N <1 by lemma 9.3.9, so pdp M or pdyp N is finite. |

We use the factorization theorem to give a short
Proof of Theorem 9.3.6. Only (iii) = (i) needs a proof. We may assume that R
is complete with infinite residue field. By hypothesis, there are s,t € N, such that
m<s<s+d<tand Tor (M,N) =0 for s < j < t. For the smallest such s,
choose P as in Theorem 9. 3 1; as pdp M is finite,

pdp M = depth P — depth M = depth R +d —depthM =m +d.

We see that if s > m + 1, then Torf+d_1 (M,N) = 05 the first isomorphism in
Lemma 9.3.8 yields Torf_1 (M,N) = 0, contradicting the minimality of s. Thus,
s = m + 1; it follows that ¢t +1 > pdp M, and so Torf;l (M,N) = 0. The last
isomorphism of the lemma yields Torﬁl (M,N) = 0. Iterate. . . O

10. Homotopy Lie Algebra of a Local Ring

It is a remarkable phenomenon that very sensitive homological information on a
local ring is encrypted in a non-commutative object — a graded Lie algebra. We
construct it, and show that its very existence affects the size of free resolutions,
while its structure influences their form.

This chapter provides a short introduction to a huge area of research: the
use of non-commutative algebra for the construction and study of free resolutions.
We start by providing a self-contained construction of a graded Lie algebra, whose
universal enveloping algebra is the Ext-algebra of the local ring.
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10.1. Products in cohomology. We revert to a commutative ring k, and con-
sider graded associative®® algebras over k. The primitive example of an associative
algebra is a matrix ring. The graded version is the k-module of homogeneous ho-
momorphisms Homy (C, C) , with composition as product and the identity map as
unit. If C' is a complex, then the derivation on Homy (C,C), used since Section
1.1, turns it into an associative DG algebra. It appears in

Construction 10.1.1. Ext algebras. When e¢: F' — L is a free resolution of a k—
module L, Proposition 1.3.2 yields an isomorphism

HHomy (F,e) : HHomg (F, F) 2 HHomy (F, L) = Ext, (L, L) .

Thus, F' defines a structure of graded k—algebra on Ext, (L, L) .

In degree zero, it is the usual product of Homy (L, L), an invariant of the
k-module L. To see that all of it is invariant, take a resolution F’ of L, and choose
morphisms a: F — F’ and o': F/ — F, lifting the identity of L. As o’a also
is such a morphism, there is a homotopy o with o’a = idf +00 + 0. Define
¢: Homy (F, F) — Homg (F', F') by ¢(8) = afa’. If B and v: F — F are chain
maps, then

6(87) = aBra’ = af(a’a)ya’ — aB(do)ra’ — aB(od)ya’
= (afa’)(ara’) — (~1)l9(aBora’) — (=1)"(afoya’)d
= 6(B)e(y) + 07 + (-1)"70
with 7 = —(—1)#l$(Bo7). In homology, this shows that H(¢) is an homomorphism
of algebras. As ¢ is a quasi-isomorphism by Propositions 1.3.2 and 1.3.3, H(¢) is
an isomorphism. It is also unique: all choices for @ and o’ are homotopic to the
original ones, producing homotopic maps ¢, and hence the same H(¢).

We have finished the construction of the Ext algebra of the k—module L, with
the composition product®”.

The next structure®® might at first seem complicated.

Remark 10.1.2. A graded Lie algebra 3° over k is a k-module g = {g"}nez
equipped with a k-bilinear pairing, called the Lie bracket

[ ]gxg! — g™ for QjeZ, (9,) = [0,€],
such that for all ¥, £, ¢ € g signed versions of the classical conditions hold:
(1) [9,€ = —(=1D)IVlEl[g, ) (anti-commutativity)
(2) [, [€, ¢l = [[9, €], ¢ + (=1)IIElg, [, (] (Jacobi identity)

36That is, not assumed positively graded or graded commutative.

37 Another pairing is the Yoneda product, that splices exact sequences representing elements of
Ext; they differ by a subtle sign, treated with care by Bourbaki [45].

38 An early appearance is in the form g"t! = 7, (X), the n’th homotopy group of a topological
space X, with bracket given by the Whitehead product; the proof by Uehara and Massey [152]
of the Jacobi identity for the Whitehead product was the first major application of the (then)
newly discovered Massey triple product.

39Tn postmodern parlance, a super Lie algebra.
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To deal with deviant behavior over rings without %, we extend the definition
by requiring, in addition?’, that

(13) [9,9] =0 for 9 € govn.

(23) [v,[v,v]] =0 for v € g°Id.

and that g be endowed with a square!

2h+1 4h+2

for heZ, U»—>U[2],

g -9

such that the following conditions are satisfied:

(3) (v+w)ll =v,w] — vl — w2 for v,w € godd with |v] = |w|;
(4) (av)® = a2v® for a € k and v € o9 ;

(5) [v,9] = [v,[v,9]] for v € g°d and ¥ € g.

A Lie subalgebra is a subset of g closed under brackets and squares; with the
induced operations, it is a graded Lie algebra in its own right. A homomorphism
0:bh — g of graded Lie algebras is a degree zero k—linear map of the underlying
graded k-modules, such that 8[0,¢] = [3(9), B(¢)] and B(VP) = B(v)2.

One way to get a Lie structure is to partly forget an associative one. Let
B be a graded associative algebra over k. The underlying module of B, with
bracket [z, y] = zy — (=1)1*I¥lyz (the graded commutator) and square vl = v? for
v € B4 is a graded Lie algebra, denoted Lie(B): the axioms are readily verified
by direct computations. The non-triviality of the operations measures how far the
algebra B is from being graded commutative.

There is also a vehicle to go from Lie to associative algebras. A universal
enveloping algebra of g is a graded associative k—algebra U together with a degree
0 homomorphism of graded Lie algebras ¢: g — Lie(U) with the following property:
for each associative algebra B and each Lie algebra homomorphism (: g — Lie(B),
there is a unique homomorphism of associative algebras §': U — B, such that
B = '1; we call 3 the universal extension of (3.

Remark 10.1.3. For the first few statements on enveloping algebras, one just needs
to exercise plain abstract nonsense:

(1) Any two universal enveloping algebras of g are isomorphic by a unique
isomorphism, hence a notation Uy(g) is warranted.

(2) Each homomorphism § — g of graded Lie algebras induces a natural
homomorphism Ug(h) — Ui(g) of graded (associative) algebras.

40 Anticommutativity implies 2[¢, 9] = 0 for @ € g®¥°", so (1%) is superfluous when k 3 % Jacobi

yields 3[¢, [9,4]] = 0 for all 9, so (2%) is redundant when k 3 %
410nly needed if % ¢ k: conditions (3) and (4) imply that 202! = [v,v]; when 2 is invertible,
2] —

ol %[v, v] satisfies condition (5), by the Jacobi identity.
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(3) The graded k-algebra Ug(g) is isomorphic to the residue of the tensor
algebra T (g) modulo the two-sided ideal generated by

IRE—(—1)Ele 9 —[9,¢ forall 9, €g;

(2]

VRU—v for all v e g°dd;

the map ¢ is the composition of g C T'(g) with the projection T'(g) — U.

(4) Assume that g" = 0 for n < 0, and that ¥ = {¢;}; -1 is a set of generators
of g, linearly ordered so that |J;| < |¢;] for i < j. We consider indezing sequences
I = (i1,142,...) of integers ¢; > 0, such that ¢; < 1 if |9,| is odd and i; = 0 for
j > 0. For each I, pick any ¢ such that i; = 0 for j > ¢, and form the (well
defined) normal monomial 91 = ¥ - -9 € Uy(g).

The normal monomials span?? Uy(g). Indeed, (3) shows that Uy (g) is spanned
by all product of elements of 9. If such a product contains ¥? with |¥;| odd, then
replace 97 by 19?]; if it contains ¥;9; with i < j, then replace it by 9,9; £ [¢;, 9;];
express each ¥? and [0J;,7,] as a linear combination of generators. Applying the
procedure to each of the new monomials, after a finite number of steps one ends
up with a linear combination of normal monomials.

Returning to homological algebra, we show how basic constructions of Lie
algebras create cohomological structures. A DG Lie algebra over k is a graded Lie
algebra g with a degree —1 k-linear map 9: g — g, such that 9% = 0,

a19,€) = [0(9), €] + (=1)"![9,0(9)], and O(9") = [0(9), 0] for ¥ € g**°.

A morphism of DG Lie algebras is a homomorphism of the underlying graded Lie
algebras, that is also a morphism of complexes. Homology is a functor from DG
Lie algebras to graded Lie algebras.
Lie algebras of derivations are paradigmatic throughout Lie theory. Here is a
DG version, based on the I'-free extensions of Chapter 6.
Lemma 10.1.4. Let k — k(X) be a semi-free I'-extension. The inclusion
Der) (k(X), k(X)) C Lie(Homy (k(X),k(X)))
is one of DG Lie algebras.
Proof. The proof is a series of exercises on the Sign Rule.
If b, ¢, are elements of k(X ), and v is a derivation of odd degree, then
v2(be) =v (v(b)c n (—1)\blbv(c))
=v?(b)e + (—1)PIIPHEDy () u(e) + (—1) Plu(b)u(c) + (—=1)PHPIh? ()
=v?(b)e + bv?(c).

42In fact, if ¥ is a basis of g, then the normal monomials form a basis of Uy(g): this is the
contents of the celebrated Poincaré-Birkhoff-Witt Theorem. The original proof(s) provide one of
the first applications of ‘standard basis’ techniques; for an argument in the graded framework,
cf. Milnor and Moore [121]; for the case needed here, cf. Theorem 10.2.1.
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If x is a I-variable of even degree, and ¢, £ are I'-derivations, then
V32D = v(v(x)zY) = 02 (2)20Y — (v())2272 = % (2)2)
and
[9,8)(@®) =0¢(2") = ()" lew (2 )
:,9(5(33)33(1‘—1)) — (—1)“9”5'5(19(3;)90("_1))
—9¢ ()2 4 (—1)lg ()9 )2 =)
— (=)l ()= — (—1)IPNEIFIEN g ()¢ ()2 i—2)
= ([#,€)(z)) 2D

A lengthier computation shows that [+, ] is a derivation, completing the verifica-
tion that Der) (k(X), k(X)) is a Lie subalgebra of Lie(Homy (k(X),k(X))).

It remains to prove that the differential of the derivation complex satisfies the
requirements for a graded Lie algebra. This is best done by ‘interiorizing’ it: as 0 is
a DG I'-derivation of k(X), it may be viewed as an element ¢ € Der) (k(X),k(X)),
and then 9(9) = [6,9]. The conditions on 9[¥),£] and d(v?) are now seen to be
transcriptions of the Jacobi identity and its complement. O

It is tempting to mimic the construction of Ext algebras: Choose a Tate
resolution k(X) of a commutative k—algebra P, and associate with P the graded
Lie algebra HDer] (k(X),k(X)). If Q C P, then it is an invariant of P: this is
proved by Quillen [133], as an outgrowth of his investigation of rational homotopy
theory [131]. The general case is very different:

Example 10.1.5. The Tate resolution A = k(X of k over itself, with X = &, yields
HDer) (A, A) = 0. If F5 C k, then another Tate resolution of k is

B = ]k<u, {zi, Ti}iso | O(u) =0,0(x;) = u@) ,0(x)) = u(zi)xi>

with |u| = 2 (hence |z;| = 27! 41 and |2}| = 2¢+2 +2). Using Corollary 6.2.4 and
Construction 6.2.5, one gets HDer]! (B, B) = Homy (Ind) B, k), and Ind] B is the
free k-module with basis {x;};>1 U{z.}iso0.

10.2. Homotopy Lie algebra. In this section (R, m, k) is a local ring.

Some of the problems occurring in the last example may be circumvented,
by using acyclic closures. We follows the ideas of Sjodin [144], and simplify the
exposition by using complexes of derivations from Section 6.2.

Theorem 10.2.1. Let R(X) be an acyclic closure of k over R, where X = {x;};>1
and |z;| < |x;| for i < j, and set w(R) = HDer}, (R(X), R(X)).
(1) w(R) is a graded Lie algebra over k.
(2) rank, 7" (R) = ep(R) forn € Z.
(3) m(R) has a k-basis
0= {91 = ClS(l?i) | Y; € Der;éb (R<X>7R<X>), 19l(.’E]) = (Sij fO’I"j < ’i}i> 1-
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(4) The normal monomials on © form a k-basis of Ug(m(R)).

(5) Der}, (R(X), R(X)) C Hompg (R(X), R(X)) induces an injective homomor-
phism of graded Lie algebras v: w(R) — Lie(Extg (k, k)). Its universal ex-
tension is an isomorphism of associative algebras

(2 Ug(r(R)) & Extyg (k, k) .

Remark. By Remark 6.3.9, different choices of acyclic closures yield the same Lie
algebra 7(R); it is called the homotopy Lie algebra of R.

Proof. (1) and (2). Let € denote the quasi-isomorphism R(X) — k, and let k —
k(X)) be the semi-free I'-extension with trivial differential. Using Lemma 6.2.4, the
minimality of R(X), and Proposition 6.2.3.4, we get

m(R) = HDer}, (R(X), R(X)) = HDer}, (R(X), k)
=~ HDer] (k(X), k) = Der] (k(X), k) = Homy, (kX, k) .

So m(R) is a k—module; by Theorem 7.1.3, ranky, 7™ (R) = card(X,) = e,(R).

(3) Lemma 6.3.3.1 provides a set of R-linear I'-derivations {¥;};> 1, with
Vi(z;) = 6;5 for j <i. As {x;};-1 is a basis of kX, the isomorphisms above imply
that © is linearly independent in w(R). Since ©,, has e,(R) elements for each n,
it is a basis by (2).

(4) and (5). In the commutative diagram

Dery, (R(X), R(X)) —— Homg (R(X), R(X))
Der§<R<X>,e>lz :lHomR(mx%e)
Der}, (R(X),k) ——— Hompg (R(X),k)

the left hand arrow is a quasi-isomorphism, as noted for (1); the right hand one is
a quasi-isomorphism by Proposition 1.3.2.

Let 0! € Ug(m(R)) be a normal monomial on ©. For a normal I'-monomial
) on X by Lemma 6.3.3.3 we see that ¢/ (91) (z(H)) =cls (ﬂl(x(H))) isequal to 0
if H < I,andto1if H = I. As the normal I-monomials on X form a basis of k(X),
the triangular form of the matrix implies that the images of the normal monomials
on © form a basis of Hompg (R(X), k) = Extg (k, k). Thus, the homomorphism ¢/
is surjective, and the images of the normal monomials are linearly independent.
By (4) and Remark 10.1.3.4, these monomials generate U (7(R)), so we conclude
that ¢/ is an isomorphism, as desired. O

Sjodin [144] shows how to compute the Lie operations on 7! (R).

Example 10.2.2. Let R = /I, where (Q,n, k) is regular, n is minimally generated
by s1,...,8e, and I is minimally generated by f1,..., f., with

fi= Z Ghi,jShSi with ap;; € Q for1<j<r.

1<h<i<e
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Using overbars to denote images in R, and setting z; = Zhgiahi,jghﬂ?i, we see
that the acyclic closure R{X) of k over R is then obtained from
R<x1,...,xe+r |6(m1) =3 for 1 <i<e;0(xeq;) =2for1<j< r>

by adjunction of I'-variables of degree > 3. Let ¥4,...9, be the I'-derivations
of R{x1,...,x.), defined by ¥;(z) = ;5. To extend them to I'-derivations of
R{x1,...,Zeyr), such that 99; = —19;0, note that

i i
9;0(Teq;) = < § ahushxz) = § Qhi,j5h = 3( § ahi,jl‘h),
h=1 h—1

h<i
and set U;(xeq;) = — Y ), Gnijon for 1 <i < eand 1 < j <r. This yields
[19}“19@](56@4_]') = —GQhi,j for h <1 and ’19£2] (xe-&-j) = —Qj;j -

Thus, on the basis elements of Theorem 10.2.1, the Lie bracket 7!(R) x 7!(R) —
72(R) and square 7! (R) — m%(R) are given by

(01, 0:] Zah” etj for h <i and (Gi)[Z] = — Za2i7j96+j

Jj=1 Jj=1

where a’ denotes the image in k of a € R.

Consider the k-subspace of 72(R), spanned by the commutators and squares
of all elements of 7!(R) (in fact, the squares suffice, cf. 10.1.2). By the preceding
computation, its rank ¢ is equal to that of the (egl) X r matrix (ap; ;) reduced
modulo n, that is ¢ = (“}") —rank, (I/INm?). In particular, 7' (R) generates 72(R)
if and only if the r quadratic forms f; = 3", < @nijSns; are linearly independent
in gr,(Q). At the other extreme, the Lie subalgebra of 7(R) generated by 7!(R)
is is reduced to 7 (R) itself if and only if I C m3.

Example 10.2.3. By Theorems 10.2.1.2 and 7.3.3, if 7(R) is finite dimensional,
then R is a complete intersection and 7 (R) is concentrated in degrees 1 and 2,
so the preceding example determines its structure. The Lie subalgebra 7=>2(R)
is central in 7 (R), and its universal enveloping algebra is the polynomial ring
P = k[b1,...,0,]. An isomorphism of P-modules Extp (k,k) = P ®j &, where &
is the vector space underlying the exterior algebra on 7!(R) = Homy (m/m?, k),
refines the equality P (t) = (1+1)°/(1 —t3)".

Conversely, each graded Lie algebra g with rank g* > rank; g? and g" = 0
for n # 1,2 is of the form 7(R) for an appropriate complete intersection: one
starts by fixing the desired quadratic parts g; = Zhgiahi7.jsh8i of the relations,
and uses a ‘prime avoidance’ argument to find elements p; in a high power of m,
such that the sequence g1 + p1,..., g, + pr is regular, cf. [144].

We conclude with some general remarks on the homotopy Lie algebra. A
detailed study belongs to a different exposition.
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Remark 10.2.4. A local homomorphism of local rings ¢: R — S induces a homo-
morphism of graded Lie algebra 7(p): 7(S) — 7(R) ®j ¢, where £ is the residue
field of S. This yields a contravariant functor with remarkable properties. For
example, if ¢ is flat, then for each i there is an exact sequence

0 —— 72 1(S/mS) —— w2~ 1(S) —— 1%~ Y(R) @ ¢

2i—1 . . .
2 7%(S/mS) 72 (S) 7% (R) @ £ 0
where 0% ~! = 0 for almost all i, and Y~ rank 3%~ < codepth(S/mS): this is
proved (in dual form) in [20] and [9]. The Lie algebra 7 (R) is a looking glass version
of the Lie algebra of rational homotopy groups in algebraic topology, cf. [23] and
[33] for a systematic discussion.

Remark. The original construction of w(R) proceeded in two steps.

The first, initiated by Assmus [15], and completed by Levin [108] and Schoeller
[139], constructs a homomorphism A: Tor®™ (k,k) — Tor® (k,k) ® Tor’ (k, k)
of T-algebras, giving Tor® (k, k) a structure of Hopf algebra. The second identifies
the composition product as the dual of A under the isomorphism of Hopf algebras
Extp (k, k) = Homy (TorR (k. k), k).

At that point, a structure theorem due to Milnor and Moore [121] in charac-

teristic 0 and to André in characteristic p > 0 (adjusted by Sjédin [145] for p = 2)
shows that such a Hopf algebra is the universal enveloping algebra of graded Lie
algebra. In fact, these results prove much more: namely, an equivalence (of certain
subcategories) of the categories of I'-Hopf algebras and graded Lie algebras, given
in one direction by the universal enveloping algebra functor.
Remark. A graded Lie algebra H*(R, k, k) is attached to R by the simplicially
defined tangent cohomology of André and Quillen. There is a homomorphism of
graded Lie algebras H* (R, k, k) — 7(R), cf. [4]. Tt is bijective for complete intersec-
tions, or when char(k) = 0, cf. [133]; when char(k) = p > 0, this holds in degrees
< 2p, but not always in degree 2p+1, cf. [7]. The computation of H*(R, k, k) is very
difficult in positive characteristic: for the small ring R = Fa[s1, s2]/(s7, s152, 83) it
requires the book of Goerss [73]; for comparison, 7(R) is the free Lie algebra on
the 2-dimensional vector space 7!(R).

10.3. Applications. Once again, (R, m, k) denotes a local ring.

We relate this chapter to the bulk of the notes by discussing two kinds of
applications of w(R) to the study of resolutions. The structure of 7 (R) is reflected
in the Poincaré series of finite R—modules. To illustrate the point, we characterize
Golod rings in terms of their homotopy Lie algebras.

Example 10.3.1. Let V be a vector space over k. A graded Lie algebra g is free on
V,if V C g and each degree zero k—linear map from V to a graded Lie algebra b
extends uniquely to a homomorphism of Lie algebras g — b.

It is easy to see that free Lie algebras exist on any V: just take g to be the
subspace of the tensor algebra Ty (V'), spanned by all commutators of elements of
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V', and all squares of elements of V,qq . Using the universal property of Tx (V') one
sees that g is a free Lie algebra on V', and comparing it with that of Ug(g) one
concludes that these two algebras coincide.

Avramov [21] and Lofwall [113] prove that R is Golod if and only if 7> 2(R)
is free, and then it is the free Lie algebra on V = Homy, (s H, 1(K%),k) .

This nicely ‘explains’ the formula (5.0.1) for the Poincaré series of k over a
Golod ring: f(t) = (1 + ¢)¢ is the Hilbert series of the vector space £ underlying
the exterior algebra on 7'(R) = Homy, (m/m?, k) ; the expression g(t) = 1/(1 —
>, rank H; (K ®)t*+1) is the Hilbert series of 7, the tensor algebra on V, and
P (t) = f(t)g(t) reflects an isomorphism Extp (k, k) = T @4 £ of T-modules.

The bracket and the square in a free Lie algebra are as non-trivial as possible,
so the cohomological descriptions of Golod rings above and of complete intersec-
tions in Example 10.2.3 put a maximal distance between them (compare Remark
8.1.1.3). However, there exists a level at which these descriptions coalesce: the Lie
algebra m>3(R) is free, because it is trivial in the first case, and because freeness
is inherited by Lie subalgebras, cf. [105], in the second.

Remark 10.3.2. It is proved in [28], using results from [24], that the following
conditions on a local ring R are equivalent:
(i) m(R) contains a free Lie subalgebra of finite codimension;
(ii) for some r € Z, the Lie algebra 72 "(R) is free;
(iii) for some s € Z, the DG algebra R(X_ ;) admits a trivial Massey operation,
cf. Remark 5.2.1.

When they hold, the ring R is called generalized Golod (of level < s). Such
rings abound in small codepth: this is the case when edim R — depthR < 3
(Avramov, Kustin, and Miller [36]), or when edim R — depthR = 4 and R is
Gorenstein (Jacobsson, Kustin, and Miller [94]) or an almost complete intersec-
tion (Kustin and Palmer [102]). Kustin [99], [100] proves that certain determinantal
relations define generalized Golod rings.

Theorem 10.3.3. Let R be a generalized Golod ring of level < s.

(1) There is a polynomial den(t) € Z[t], and for each finite R—module M there
is a polynomial q(t) € Z[t], such that PY,(t) = q(t)/den(t); the numerator
for M =k divides []o; 1, (1+ t3 )2 (R,
(2) If cxp M = oo, then curvg M = 3 > 1 and there is a real number o such
that BE(M) ~ af". [ ]
The first part is proved by Avramov [28], the second by Sun [150]. Both use,
among other things, a theorem of Gulliksen [81] that extends Remark 9.2.6.

Theorem 10.3.4. Let R(X) be an acyclic closure of k over R. If M is a finite
R—-module, then for each n > 1 there is a polynomial h,(t) € Z[t], such that
= : B (t)

rank; H;(M @ R(Xn))t" = .
; sn [Ty;<n(1 - £27)224 (R)
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Theorem 10.3.3, or results that it generalizes, has been used in essentially all
cases when the Poincaré series is known to be rational for all finite modules. It is
difficult to resist asking the next question; a positive answer would be unexpected
and very useful; a negative one might be equally interesting, since it would most
likely involve unusual constructions.

Problem 10.3.5. If P (¢) is rational for each M, is then R generalized Golod?

Next we describe applications of 7 (R) that do not make specific assumptions
on its form. They use the following easy consequence of Theorem 10.2.1.

Remark 10.3.6. Let h be a graded Lie subalgebra of 7(R). By completing a basis
of h to one of w(R), and considering the corresponding basis of normal monomials
of Ug(m(R)) = Extp (k,k), cf. Theorem 10.2.1, one easily sees that there is an
isomorphism U(g) = Ui(h) ®r V of left modules over Ui(h), where V is the
tensor product of the exterior algebra on (g/h)°4d with the symmetric algebra on
(g/b)eve™. By a simple count of basis elements,

H;')il (1+ t2i71)22‘_1

T2, (1 — t20)F

For each R-module M, the vector space Extp (M, k) is a left module over the
universal enveloping algebra Exty (k, k) : it suffices to make the obvious changes
in the construction of cohomology products in Section 10.1. This module structure
is the essential tool in the proof of the next result. In fact, it has already been
used throughout Chapter 9, in a different guise: over a complete intersection, the
actions on Extg (M, k) of the graded algebras denoted P in Remark 9.2.6 and in
Remark 10.2.3 are the same, cf. [37].

Motivated by Proposition 4.2.4.1, we say that a module L over a local ring
(R,m, k) is extremal, if cxgp L = cxp k and curvg L = curvg k. For instance, The-
orems 8.3.3 and 8.3.4 show that (in the graded characteristic zero case) the conor-
mal module and the module of differentials are extremal when R is not a complete
intersection. Results from [29] add more instances, among them:

HY (1) = with £ = rankg(g/h)" .

Theorem 10.3.7. If R is a local ring of embedding dimension e, M is a finite R—
module and L is a submodule such that L O mM, then

PR(t) - (141)° = Pf(t) - ranky, (‘:f) .

For m*M C m*~1 M, we get a quantitative version of Levin’s characterization
of regularity [108]: If mM # 0 and pdz(mM) < oo, then R is regular:

Corollary 10.3.8. If mM # 0 for some i > 1, then m'M is extremal. g

Corollary 10.3.9. Each non-zero R—module M # k may be obtained as an exten-
sion of an extremal R—module by another such module. In particular, the extremal
R-modules generate the Grothendieck group of R. O

Here is another class of extremal modules from [29].
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Remark 10.3.10. If N # 0 is a homomorphic image of a finite direct sum of syzygies
of k, then cxg N = c¢xg k and curvg N = curvg k. As a consequence, we get a result
of Martsinkovsky [116]: pdg N = oo, unless R is regular.

Proof of Theorem 10.3.7. The commutative diagram of R—modules

0 L M N 0
L
0 s oL N 0

induces a commutative square of homomorphisms of graded Ieft modules

Extp (L, k) —>— Extp (N, k)

I H

L 8
Extp (E,k> —— Extp (N, k)

over E = Extpg (k, k), where ' and 0 are connecting maps of degree 1.
As m annihilates L/mL and N, we have isomorphisms

L L
EXtR (M,k) = E®k Homk (nl_L’k;)
Extp (N, k) & FE ®; Homy, (N, k)

of graded E-modules. By Remark 10.3.6, E = U ®; A(7'(R)) as graded left
modules over the subalgebra U = Uy (n>2R). Noting that 7'(R) = E', we can
rewrite 0 as the top map of the commutative diagram

L
U @ N(E') @), Homy, <E’ k> —— U@ A(E") @ Homy, (N, k)

ul Ju

L
U ®, Homy (E’k> _— U ®; E' @1 Homy, (N, k)

H &

0]
_UsE U @, Exth (N, k) .

of homomorphisms of graded left U—modules.
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The preceding information combines to yield a commutative square

Exty, (L, k) % Extp(N,k)

I I

L 0
U @y, Homy, (H k) U, 17 @y, Exth, (N, k)

of homomorphisms of graded U-modules, with injective right hand vertical ar-
row. Thus, Extp (N, k) contains a copy of the free module £(U) ®; Im dg. By the
commutativity of the square, Extp (L, k) contains a copy of U ®j Im d°.

On the other hand, a length count in the cohomology exact sequence

0 — Hompg (N, k) — H M H L) 2 Bl (N, k)
— — e — —_— —
omp s omp L, omp L7 Xtp s

yields rank;, 0° = rankg(mM/mL). Thus, Pf(t) %= rankg(mM/mL) - le,(t) To
finish the proof, multiply this inequality by (1 + ¢)¢, then simplify the right hand
side by using the equality (14 t)¢ - Hy,(t) = Pf(t) from 10.3.6. O
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Generic Initial Ideals

Mark L. Green

Introduction

A very powerful technique in commutative algebra was introduced by Macaulay,
who realized that studying the initial terms of elements of an ideal gives one great
insight into the algebra and combinatorics of the ideal. The initial ideal depends
on the choice of coordinates, but there is an object, the initial ideal in generic
coordinates, which is coordinate-independent. Generic initial ideals appeared in
the work of Grauert and Hironaka.

The present set of notes began as course notes for a course I gave at UCLA.
My interest in the subject rekindled when I discovered the material in Chapters
5 and 6, and I am extremely grateful to the organizers — Joan Elias, José Giral,
Rosa Mir6-Roig and Santiago Zarzuela — of the Centre de Recerca Matematica
Summer School in Commutative Algebra for giving me the opportunity to give
a series of lectures on this subject in the summer of 1996 in Barcelona. I am
especially honored to have been included as a geometric outlier among a cluster
of distinguished algebraists — Luchezar Avramov, Craig Huneke, Peter Schenzel,
Giuseppe Valla, and Wolmer Vasconcelos.

The table of contents will probably strike the reader as a strange brew
of commutative algebra, geometry, and combinatorics, with a little bit of non-
commutative algebra thrown in for good measure. These reflect to some extent
the quirks of my mathematical personality, but I hope that the patient reader
will come away convinced that there is indeed an interesting field of study here
where ideas from these different areas meet as equals and work together in har-
mony. Readers coming to these notes from the geometric side will retrace my own
struggle in coming to grips with the algebraic side of the subject, while those ap-
proaching from the algebraic side will encounter the geometric language of sheaves
and varieties in what I hope is a friendly environment.

There are several general ideas that weave their way through this manuscript.
The first is that by using gins, one can separate the geometry and the combina-
torics, and indeed certain statements about, for example, curves in P? are best
understood as statements about their gins — an example is the proof of Laudal’s
Lemma in Chapter 4. The second, somewhat hidden, is that there is a “differen-
tial geometry of ideals,” as exemplified by Lemma 2.16 in Chapter 2 and by my
proof of Strano’s theorem. A third idea is that some purely algebraic results can
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be elucidated if one thinks about them geometrically — see for example the proof
of the Macaulay-Gotzmann estimates in Chapter 3.

These notes contain original results of mine, not published elsewhere, and of
course many results by others, hopefully attributed correctly. Almost all of the
proofs are new — indeed, my hope is to provide a unifying framework and a new
perspective.

I would like to thank a number of mathematicians who influenced my thinking
on this subject: D. Bayer, E. Bierstone, R. Braun, M. Cook, D. Eisenbud, Ph.
Ellia, G. Floystad, G. Gotzmann, A. Iarrobino, J.M. Landsberg, R. Lazarsfeld, P.
Milman, P. Pedersen, C. Peskine, C. Rippel, M. Stillman, R. Strano, B. Sturmfels.
I also want to acknowledge my heavy reliance on the computer program Macaulay,
without which these notes would not exist, and to extend my thanks to its creators,
Dave Bayer and Mike Stillman, and my favorite scriptwriter, David Eisenbud.
Michele Cook, Kristina Crona, Bo Ilic, Rich Liebling, and Mihnea Popa caught
mistakes in an earlier version and made helpful suggestions for revisions, for which
they have my gratitude and the readers’ as well.

1. The Initial Ideal

Let V be a vector space over C with basis x1, 2, ... ,Zn, and let S = ®,S*V
denote the symmetric algebra on V, or equivalently Clzy, ... ,z,]. We will use
multi-index notation, so that o/ = 22k - - - xir where I = (i1,42,... ,i,). We let
HEDYEI

We want to impose a total order on the monomials in a reasonable way. It
turns out that there is more than one reasonable way to do this.

Definition 1.1. A total order on the monomials of each degree is a multiplicative
order if

(1) x1 > x9 > -+ > xy, and

(2) If ¥ > 27, then 2% 2! > 2K/ for all multi-indices K.

Definition 1.2. Given a monomial order, we extend it to monomials of different
degrees by I > J if |I| < |J|.

Rremark. Definition 1.2 is rather non-standard, but is the right thing for the
purpose of ordering initial terms of syzygies. The more normal I > J if |I| > |J]
is better in most other contexts.

For n = 2, Definition 1.1 forces in each degree d the order z¢ > z{ tzy >
--- > z4. However, for n = 3, the only information about the monomials of degree
2 we obtain is
J)% > x1To > Z‘ll‘g,l‘% > Tox3 > .T%
Either inequality between x1z3 and 22 is permitted.
Given a multiplicative order, we will use interchangeably the notations =/ >
x/ and I > J.
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The two most famous multiplicative orders are:

Definition 1.3. The lexicographic order is defined by saying that, if |I| = |.J|, then
x! > 7 if for some k, i,, = j, for m < k and i), > ji. The reverse lexicographic
order is defined by saying that, if |I| = |J|, then 2! > x” if for some k, iy = jm
for m > k and i < ji.

Example 1.4. If n =3 and |I| = 2, the lexicographic order is
x} > 2179 > T1T3 > 35 > T3 > 23
The reverse lexicographic order is
;Ef > T1x2 > :cg > T1T3 > T3z > x%

Notice that these are the only possible multiplicative orders in this case. In general,
there are other multiplicative orders. The lexicographic order is just the order
words would appear in a dictionary if x; is the first letter of the alphabet and
> means “comes first in alphabetical order.” In reverse lexicographic order, a
monomial is dragged down by having a high z,, term, much like a mathematician
being judged on his or her worst paper.

There is a classification of monomial orders that is useful for some later
results.

Example 1.5. (General Multiplicative Orders) Let A be a finitely generated sub-
group of RV of rank n. If we identify A = Z" with multi-indices in n variables,
and put the lexicographic order on R, then this induces an order on monomials
of any given degree by I > J if and only if I — J maps to a positive element of
RY under the lexicographic order. This is easily seen to be a multiplicative order,
since I > J implies I + K > J + K. The Theorem below says that these in fact
give all possible multiplicative orders.

I learned of this result from Christoph Rippel, who also supplied the proof.
See [Rol], [Ro2] for related results.

Theorem 1.6 (Robbiano). Given any multiplicative order on the monomials in n
variables, there exists an injective group homomorphism

o Zn(Ho,H1L;HN—1)RN
for some N < n such that the lexicographic order on RN pulls back to the given
monomial order, i.e. if |I| = |J| and I > J, then a(I) > a(J).

Proof. We extend the monomial order from positive multi-indices to all integer
multi-indices by I — J > K — L if and only if I + L > J + K for positive multi-
indices I, J, K, L; one easily checks that the multiplicative property ensures that
this is well-defined. We now extend this to rational multi-indices by %I > %J if and
only if I > J for any positive integer k. This allows us to clear denominators. This
procedure gives a well-defined answer because the multiplicative property ensures
that for ordinary multi-indices I, J of the same degree, I > J implies kI > kJ for
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any positive integer k (by kI > (k—1D)I+J > (k—2)I+2J > --- > kJ). Let
Ho(q) = q¢1 + - + qn; we will also denote by Hy the corresponding hyperplane in
Q™. We thus have a total ordering on Hy given by our monomial order. Let A be
the set of strictly positive elements of Hy. Under the standard inclusion Q™ C R",
let A be the topological closure of A. Let —A = {q | —¢ € A}. Note that A is
closed under positive scalar multiplication and that A U —A = Hy. Thus A is
a half-space, defined by a linear form H; € R™*. Adjust the sign of H; so that
H; > 0on A. Now HiNHygNQ" is a linear subspace of Q™ which has a total order,
and therefore if it is not empty, has the order given by an element Hy € R™*. We
may continue this procedure, decreasing the dimension of Hy N H; N--- N Hy as
a real vector space, so that after at most n — 1 steps, the procedure terminates.
Now, on Hy, if Hy(gq) > 0, then ¢ > 0, while if Hy(q) = 0 and Hz(q) > 0, then
q > 0, etc. By construction, the lexicographic order on R¥ gives the order on Hy,
and hence the monomial order. The map « is just (Ho, H1,... ,Hn—1). O

Corollary 1.7. Given any multiplicative order and any finite set of monomials S
in n variables, there exist positive integers di, ... ,d, such that for any I,J € S,
I > J if and only Ika diip < Zk dk]k

Proof. Since S is finite, there exists a constant D > 0 such that for all 4, |H;| < D
on S, and such that for I € S, H;(I) # 0 implies that |H;(I)| > 1/D. Now on
elements of S of the same degree, the function

f=-Hy_1—D*Hy_y—-- = D*""H;

has the property that I > J if and only if f(I) < f(J). We may approximate f by
a function with rational coefficients without changing this property, and can then
clear denominators to replace f by a linear function e with integral coefficients. If
we now let d = e + BHy for some large number B chosen so that the coefficients
of d are positive integers, then we have the d = (dy, ... ,d,) we want. O

Lemma 1.8. Given a homogeneous ideal I, TFAE:
(1) I is generated by monomials;
(2)If feland f=Y,a;x’, then z/ € I whenever a; # 0.

Definition 1.9. A homogencous ideal satisfying either of the two equivalent prop-
erties of the preceding lemma is called a monomial ideal.
If f € S*V is a homogeneous polynomial, write f = Sorarz’. Let
I, = max({I | a; # 0}).

Then the initial monomial of f is

We note the formulas

in(fg) = in(f)in(g),
in(f 4+ g) < max(in(f), in(g)).
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If I C S is a homogeneous ideal, then the initial ideal of I is the ideal in([I)
generated by

{in(f) | f € I};

note that the set above is closed under multiplication. Clearly, in(/) is a monomial
ideal.

Example. I = (2% + 3z122,22% + 23). The initial monomial of both generators
is 22. However, twice the first generator minus the second generator has initial
monomial x;x5. No linear combination with constant coefficients of the generators
has smaller initial monomial, so in(I)y = (22, z122). It is automatic that in(7)3
contains (23, 2329, 7123), but by direct computation we can find an element of I
which is equal to 23, and thus has initial monomial z3. Thus in(I); = (21, z2)?,
and in(I) = (23, x122, 23).

Definition 1.10. For each monomial z” € in(I), there is an element f; € I with
in(f;) = 2”. A choice of elements f; as x” ranges over a basis for in(I)y are called
a standard basis for 1.

Remark. A standard basis is not unique. It is possible to make f; unique by
requiring that the coefficient in f; of 2% is zero for every 2% € in(I)y with K # J.
We will call this a reduced standard basis for I;. This bears the same relation to a
standard basis as reduced row echelon form does to row echelon form in Gaussian
elimination.

Example. I = (23 + 3z172,22% + 23) revisited. A standard basis for I is (2% +
3x129, 1122—(1/6)23, 23). A reduced standard basis would be (22 +(1/2)23, 2129 —
(1/6)23, 23).

Proposition 1.11. For any homogeneous ideal I, a standard basis {f;} for I is in
fact a basis for I4. In particular, I; and in(I)g have the same dimension.

Proof. 1t is clear that the f; are linearly independent, since if f =) ;c;f; is a
linear combination of them, then in(f) = 27/, where J,,, = max{J | c¢; # 0}. To
see that they span, let K be the smallest multi-index such that there is an f € I;
not in the span of the f; having in(f) = 2. If the coefficient of 2 in f is ¢, then
f —cfKk is an element of I; not in the span of the f; and having lower initial term
than f. O

We note that I and in(I) have the same Hilbert function, i.e. the same di-
mension in every degree.

Corollary 1.12. If I C J, then I = J if and only if in(I) = in(J).
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Example 1.13. Symmetric polynomials Let S, be the symmetric group on n let-
ters, which acts on k[z1, ... ,x,] by permuting the variables. The symmetric poly-
nomials are the polynomials left invariant by this action, denoted k[z1, ... ,2,]5".
The elementary symmetric functions o, are defined by
n n

H(:}: +x;)=a2"+ Z opz" k.

i=1 k=1
The basic fact is that:

Theorem 1.14. The natural map
kloy,... o0 = k[z1,... ,z,]%"
is an isomorphism.

There is a famous proof that appears in Artin’s book on Galois theory that
proves this using Galois theory. However, there is an easier proof using initial
ideals, which is well-known — I am not sure who found it originally.

Proof. One must check both that the map is surjective and injective. If p is a
symmetric polynomial, and if we use the lex order, then

in(p) =zt - ain,
where i1 > i3 > -+ > i, by symmetry. Now

J1

in(al ~-~a£l") — x{1+]z+~~+1nx%2+m+3n

we see that these initial terms are all different, which proves injectivity of the
map, and that any weakly decreasing sequence of exponents occurs, which proves
surjectivity. O

Proposition 1.15. Let I be a monomial ideal. Then
in(l)=1.

Proof. Let f1, fo,..., fr be a set of monomials generating I. Let f = Zle a; fi,
where a; € S. We do an induction on max{in(a;f;) | 1 < i < k}. If in(f) equals
this, then it is of the form in(a;)in(f;) = (in(a;))f; € in(I). If not, then two or
more of the leading terms of the a; f; cancel; in this case, deleting the leading terms
of those a; achieving the maximum gives a new expression for f which decreases
the quantity on which we are doing the induction. (|

Proposition 1.16. Let I be a monomial ideal. Then for any p, there is a basis for
the p’th syzygies of I of the form ), a;s;, where s; is a basis for the (p — 1)’st
syzygies of I and the a; are monomials.

Proof. If My, ..., My is a set of monomial generators for I and ) . a;M; =01is a
syzygy, then choose i so that in(a;M;) is as large as possible. Then we may throw
away all monomials appearing in any a;M; which are not equal to in(a;M;). Now
we rewrite this syzygy as a linear combination of syzygies of the form z/M; —
s M; = 0. Continuing inductively, we assume that there exists a basis for the
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(p—1)’st syzygies with monomial coefficients and with the total monomial (defined
inductively by multiplying the monomial M; by the successive coefficients which
occur) constant for all terms which occur. Now if we have a p’th syzygy >, a;s;, we
may break it down into a sum of terms all of which have the same total monomial,
and thus with monomial coefficients. ]

Definition 1.17. Let S = S[T]. We can now make S into a graded ring by setting
deg(acli1 cooginTI) =iy + -+ + ip; in other words, we treat T as having degree 0.
By a family of homogeneous S-modules we mean a finitely-generated homogeneous
S-module M.

We introduce the notation S; = S/(T —t), and thus S; £ S as a graded ring.
If M is a family of homogeneous S-modules, we let M; = M ®g S;.

Theorem 1.18. Let M be a family of homogeneous S-modules. TFAE:

(1) The Hilbert function of M is constant;

(2) For any t, any resolution 0 — E, — M — 0 of M by free S-modules has the
property that 0 — E, ® S; — M; — 0 is exact.

Proof. (2) — (1): Since the Hilbert function of M, is the alternating sum of the
Hilbert functions of the F;®.S;, and these are independent of ¢, the Hilbert function
of M; is constant.

(1) — (2): Let E, be a resolution of M by free S modules. It is of course enough
to check that the sequence remains exact when tensored by S; in each degree
d. However, any graded homogeneous S-module K has the property that Ky is
naturally an R = S/(z1,... ,x,) 2 C[T]-module. By the classification of modules
over a PID,

Mg = (@, R(b;)) © (SrR(ck)/ (pr(T)))

for some polynomials p(T). Since R/(p(T)) ® R/(T —t) is zero if T'—t does not
divide p(T) and R/(T —t) if (T —t) does divide p(T), we see that (M;)q has
constant dimension in ¢ for all d if and only if the torsion part vanishes, i.e. My
is free. In this case, all Tors of M, vanish, so the sequence (Fo)q ® R/(T —t) is a
resolution of (M;)y for all t. This is equivalent to what we want. |

Definition 1.19. We will call a family of homogeneous S-modules satisfying either

of the equivalent conditions of the preceding theorem a flat family of S-modules.

Remark. We do not need here the full power of flatness, so we will not tie this
in with the usual definition of flatness (see [E]).

Theorem 1.20 (Bayer). Let I be an ideal. Then there is a flat family of ideals I
with Iy = in(I) and I canonically isomorphic to I for all t # 0.

Proof. Choose positive integers d; for i = 1,... ,n. If J = (j1,J2,... ,jn), let

d(J) = Z d;ji-
=1
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Given I, we now choose the d; so that d(J) > d(K) if and only if J < K whenever
|J| = | K] is the same as the degree of any generator of in(I) and or of any term
appearing in the syzygies of in(/); we can do this for any multiplicative monomial
order by Corollary 1.7. If f € S, let

f:ZaJx‘].
J

Let
d(f) = ming, £0d(J).
If in(f) = 270, then d(f) = d(Jp). We now let

ft) = Z at¥ =g
J

Note that f(0) = in(f) and f(1) = f. Also, for t # 0, the substitution x; — i T,
carries f to t41) f (t). This gives a 1-parameter group acting on S. We note that
d(fg) = d(f) + d(g), and thus

(f9) @) = f(t)g(t)-

However, (f + g)(t) need not equal f(t) + g(t).
Now let {27} jca be a set of generators for in(I), and let f; € I be the
element of the standard basis for I with initial term x”/. Let

Iy = (fs(t))sea.
Thus Iy = in(I), and under the substitution x; — t%x;, I is carried to I; for all

t £ 0.

It remains to check flatness. Given any syzygy
Z quJ = Oa
JeA
let
d = min,,,»o(d(uy) + d(J)).
Then
St A=y 1) £ (1) = 0.

Evaluated at 0, this gives
Z in(uy)z’ =0,
d(uy)+d(J)=d

a non-trivial syzygy of in(I). Conversely, given any syzygy of the generators of
in(I), we can break it up into pieces of the form

E mﬂc‘] =0,
JeA

where m is a monomial and

d(my) +d(J) =d
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for all J appearing in the sum. Now f =3, m;f; € I, and d(in(f)) > d. We may
therefore write
[ = Z hk [k,
KeA
where d(hx) + d(K) > d. Now

2 ma 50 = 3 (071 =0

deforms the syzygy >~ ,m sz’ into a syzygy of I,. This completes the proof. [

Corollary 1.21. (The Cancellation Principle) For any ideal I and any i and d, there
is a complex of S/m-modules V& such that

V;d = Torf(in(l)7 S/m)q4

and
H; (V&) = Tor? (I, 8/m)g.

Proof. Let I be the flat family constructed above and F, a free S resolution of the
family. Let R = S/(x1,... ,2,) 2 C[T] and R; = R/(T —t) = S/(;vl,... T, T —
t). Let E. = F, ® R, and let él E; — E;_1 be the maps Let Elt = F; ® R;
and ¢;(t): E;; — F;_1, the induced maps Since F,; = Ey ® (S;/m;), under the
identification S; 2 S we have that Tor? (I;, S/m) = H;(E,. ;). Choose for each i a
maximal minor of ¢;(0) with non- Vambhlng determinant, and let U C C denote a
Zariski open subset containing 0 for which all of these minors have non-vanishing
determinant. If R(U) is the regular functions on U, we may use these minors to
find a resolution of our family of ideals restricted to U by free R(U) modules F,
such that, using analogous notation to that used for the E’s, if w, F, — F;_q are
the maps, ¥;(0) = 0 for all i. Now we have that F; ® Ry 2 Tor? (Iy, S/m) for all i
and H;(F, ;) = Tory (I;,S/m) for all i and all t € U. Now in our case, Iy = in(I)
and, for all ¢, I; = I for t # 0, and hence the Tor’s of I; are the same for all
t # 0. Taking any t € U with ¢ # 0, the complex F, ; satisfies the conclusion of
this corollary. O
Remark. One way to paraphrase this Corollary is to say that the minimal free
resolution of I is obtained from that of in(I) by cancelling some adjacent terms

of the same degree. There is no a priori way to tell which potential cancellations
occur without knowing more about I than just its initial ideal.

Definition 1.22. If g = (g;;) € GL(V) and f € SV, we will denote by g(f) the
standard action of GL(V) on SV under the substitution

Ty — E GijTyj-
J

We let g(I) = {g(f) | f € I}. The Borel subgroup B = {(g;;) € GL(V) | gi; =
0 for j > i}; these are the lower triangular matrices. Let T = {(g;;) € GL(V) |
gij = 0 for j < i}; these are the upper-triangular matrices.
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Lemma 1.23. If g € T and f € SV, then in(g(f)) = in(f).

Proof. Tt is enough to show that for g € T, in(g(x”)) = 27 for all multi-indices .J.
However,

g(@”) = T[O gwar)’)

i=1 k=1
= det(g)z” + lower terms. O

Definition 1.24. An elementary move ey for 1 < k < n — 1 is defined by
ex(z?) ==z

where

J = (jla"' 7jkflajk + 17jk+1 - ]-ajk+23"' 7jn)a

and where we adopt the convention that x” = 0 if some j,, < 0.

Proposition 1.25. Let I be a monomial ideal. Then TFAE:

(1) If ¥’ € I, then for every elementary move ey(x”) € I;

(2) g(I) = I for every g belonging to the Borel subgroup B;

(3) in(g(I)) = I for every g in some open neighborhood of the identity in B.

Proof. To see that (2) implies (1), we note that if E; ; denotes the matrix with a
1 in the (4, j) position and zeros elsewhere, then if g = Id + Ej1 x, we see that

Jk+1 j
k+1 m
o) =3 ()i

m=0
If g(I) = I, then in particular it is a monomial ideal and thus every term of g(z”)
belongs to I. In particular, e(z”) € I.

To see that (1) implies (2), we note that it is enough to check that g(I) =1

when g is of the form g = mld + tEj41 k, since these generate B. Now

ola) = WZ_ ()o@,

If 7 € I and I satisfies (1), then g(x”) € I for all ¢, which completes the proof.

x
It is automatic that (2) implies (3). Assuming (3), and letting g = Id+FEx41 k,

we have that
Jk+1

Jy _ Jht1 my,.J
@ = 3 () e
We see that its leading term ei"'“ (z7) € I, and note that g(ei’“+1 (z7)) = ei’““ (z7
so that this term is also in g(I). Inductively, g(ej*(z”)) = ef*(z/) + 3, ), bref (z”
for some coefficients b,., and thus inductively (on decreasing m) ef(z”/) € I Ng(I
for all m. Thus z/ € g(I), so g(I) = I, proving (2).

D\—/\—/\v
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Definition 1.26. A monomial ideal I is said to be Borel-fixed if any of the equivalent
conditions of the preceding proposition holds.

Example. Some monomial ideals. The ideal (2%, 23) is not Borel-fixed, because
the elementary move e;(z3) = x122 does not belong to I. The monomial ideal
(23, 2339, 123, 23, 2222) is Borel-fixed.

Theorem 1.27 (Galligo’s Theorem). For any multiplicative monomial order and
any homogeneous ideal I, there is a Zariski open subset U C GL(V') such that
in(g(I)) is constant and Borel-fixed for g € U.

Remark. We will call in(g(I)) for g € U the generic initial ideal of T and denote
it gin(I). Grauert studied this invariant for ideals in the ring of germs of analytic
functions at a point of C™. A property which holds for g(I) for all g belonging to
a Zariski open subset of GL(V') will be said to hold for general coordinates.

It is also worth remarking that although gin(I) is well-defined for any multi-

plicative order, it definitely depends on which order you are using. For example, if
I is three general conics in @1, z2, 23, then gin(I)y is the highest three monomials
in the order being used, and these are :c%, r1T2, x123 for lexicographic order and
22, 1129, 73 for reverse lexicographic order.
Proof. If I; has dimension N, consider the N x ("_Cll"’d) matrix M (I;) given by
writing out a basis for I; in terms of a decreasing basis for the monomials of degree
d. Then the dimension of the intersection of in(I)y with the highest k¥ monomials
of degree d is the rank of the submatrix My (I;) consisting of the first k& columns of
M (I4). The rank of My (g(I)q) is constant for g in a Zariski open subset of GL(V),
since the rank is the size of the largest minor having non-zero determinant. We
thus see that for a given d, in(g(l))q is constant on a Zariski open subset Uy of
GL(V). We may inductively choose the sets Uy so that Ugq1 C Uy for all d. Let us
now define an ideal gin(I) by gin(I)g = in(g(I))q for (any) g € Uy. Now the ideal
gin([]) is finitely generated, so by some degree dy we have all the generators. The
Zariski open set we want is Ug,,.

We now wish to see that in(g(1))q is Borel-fixed for g in this Zariski open
set U. We may change coordinates so that the identity belongs to U. By Theorem
1.20, there is a flat family of ideals I; with Iy = in(I) and, for ¢t # 0, I; = §:(1)
for some diagonal matrix d;. In particular, in(I;) = Iy for all t. We now introduce
the numbers Nj(I) to be dim(in(I) N Jy), where Ji denotes the span of the k
highest monomials of degree d. For any flat family of ideals Ky, since Ni(I) is
the rank of the matrix My (I), we have that Ny(Ky) < Ni(K;) for small values
of t. Applying this to the family g(I;), we see that for any g € GL(V), Ni(Ip) <
Ni(g(Ip)) < Ni(g(I:)) for small values of t. For g near the identity, we have that
Ni(g(It)) = Ni(I;) = Ni(Ip) for small values of ¢, and thus the inequalities are
all equalities. It thus follows that for small values of ¢ and g near the identity,
Ni(9(Ip)) = Ni(Ip). Since in general the numbers Ny (I) determine in(f)q,this
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implies that in(g(lp)) = Ip for g near the identity. However, by Proposition 1.25,
this implies that Iy is Borel-fixed. However, Iy was in(g(I)) for a general g. O

Example 1.28. in(I) Borel-fixed but in(I) # gin(I) If we take I = (2%, 122, v1203+
x3), then for the rlex order, in(I) = (22,2172, 173), which is Borel-fixed. However,
gin(I) = (22, 2122,23). Thus although gin(I) is Borel-fixed, some non-generic
initial ideals of I may also be Borel-fixed.

We now introduce the diagram of a monomial ideal. We may envision the
monomials of degree d in n variables as an (n — 1)-simplex whose vertices cor-
respond to z{,...,2%, and where 2! corresponds to the point with barycentric
coordinates (i1/d, ... ,in/d). We insert a 0 in a point if the corresponding mono-
mial does not belong to the initial ideal of I. The generic diagram of [ is the
diagram of the generic initial ideal of I.

It is possible to define the initial term of syzygies of an ideal as well. There is
not universal agreement on the best way to do this; personally, I incline to think
that the following scheme, suggested by Frank Schreyer, is the best. At this point
it is convenient to introduce the following notations:

Definition 1.29. The notation ¢ @ z5r-1 @ ... @ 250 < alr @ 2lr—1 @ ... @ xlo
is defined inductively in p to mean that either Ko +---+ K, < Lo+ ---+ Ly or
Ko+ ++K,=Lo+ + L, and 25r-1 @ ... @ a0 > glv-1 @ ... @ zlo. The
case p = 0 is covered by Definitions 1.1 and 1.2.

Remark. Here, ® means ®c; it is really just a placeholder. This definition takes
some getting used to — for example, 23 ® 21 < T2 ® 172 < 11 ® 3. On the other
hand, 1 ® x% < Tog® x% because :L“lx% < x%xQ.

Definition 1.30. Let I be a homogeneous ideal with a minimal set of generators
fis-.., fn chosen so that in(f1) = 2”1, ... ,in(fy) = 2/~ are distinct. To a syzygy
>, aifi = 0 we associate the vector . a; ® z'i. The highest term of a syzygy s =
> aifi ismax{in(a; f;) | i = 1,... , N'}. The initial term of ), a, f; is the maximal
element among in(a;) ® in(f;); it is denoted in(s). Choose a basis s1,... ,sn, for
the syzygies, each having distinct initial terms. The initial term of a second syzygy
> bis; = 0 is the maximal element among in(b;) ® in(s;). Inductively, choose bases
for the syzygies having distinct initial terms, and define the initial term of a p’th
Syzygy . a;s; as the maximal element among in(a;) ®in(s;); it will be of the form
28 @ xKr-1 ® ... @20, The initial module of p’th syzygies of I is the submodule
of S®c - ®c S, with p+ 1 tensor products, consisting of initial terms of p’th
syzygies of I; it is an S-module under multiplication of the leftmost factor.

We want to compute the minimal free resolution of a Borel fixed monomial
ideal. We need the notation that for a multi-index J = (j1,...,Jn), max(J) =
max{i | j; > 0}. Similarly, min(J) = min{i | j; > 0}.

Theorem 1.31 (Eliahou-Kervaire). (cf. [E-K]) Let I be a Borel fixed monomial

ideal with generators x’t,...,x’~. Then the initial module of first syzygies of
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I is minimally generated by z;, ® ' as j = 1,...N and 1 < i3 < max(J;).
More generally, the initial module of p’th syzygies of J is minimally generated by
Ti, @i, @@ Ty, ®@x’i wherel < j < N and ip < ip_1 < --- < iy <max(Jj).

Proof. We begin with the first syzygies of I. If § < m = max(J;), then because I is
Borel-fixed, by a series of elementary moves we see that /s ~™%% € I. Thus there is
a syzygy of the form z;27i —x™T K 27k where K is some multi-index in which i does
not appear. Further, since i+ .J; = m+ K + Ji, we see that z;@xti > 2T @k,
since either |J;| > |Ji| or |J;| = |Ji| and then, as i < m, J; < Jj. Thus z; @ 277 is
the leading term of this syzygy. Now, if we look at the second term z™ 1% @ x7*,
if min(m + K) < max(Jy), then we may apply further syzygies of the same type
and replace the second term by a term which is lower in our ordering. Since this
procedure must terminate after a finite number of steps, as we are decreasing the
term at each step, we may assume that we have a minimal set of generators for
the first syzygies of I of the form above with min(m + K) > max(J).

Now if 2X @2/ —x @zt is any element of a minimal set of generators of the
first syzygies of I, we may assume that ¥ and 2’ have no common factors. By
using the syzygies we already have, we can arrange that min(z%) > max(x/*) and
min(zL) > max(z”t). Since K and L have no common factor, it follows from K +
Jx = L+ J; that max(z”/*) > max(z¥) and max(z”t) > max(z®). So min(z*) >
max(x’) and min(z?) > max(2¥). However, this forces both inequalities to be
equalities, which in turn forces £ and 2 to have a common factor unless they
are both empty. Thus, after using the syzygies we already have, we can kill off
every other syzygy. This proves that syzygies with initial term z;, ® 77 with
i1 < max(J;) give a minimal set of generators of the first syzygies of I.

Let us assume inductively that the result holds for e’th syzygies fore < p—1
and try to prove it for p. We denote for i < fe_1--- < i1 < max(J;) by Sijic—l'“il
the syzygy with leading term z;, ® z;,_, ® -++ ® x;, ® ¥’7, where inductively we
may assume that all other terms z” ® Sl{klefl--~ ;, Which occur in these syzygies have
min(L) > l.. We note that for i, < i,_1, xips;]:ilmil — xipflsijip,gmil is a syzygy
whose leading term is strictly lower than x;, @ - - - @ x4, ® 27, since tensoring with

any variable preserves order of terms. We thus obtain syzygies S;I,fip_lwil with
leading term x;, ® - -+ @ x;, ® 2’7 and, by using these syzygies, we may make all
other terms z¥ ® Siyklp—l'”ll which occur in these syzygies have min(L) > 1,,.

It remains to prove inductively that these syzygies span the p’th syzygies.
Given any generator for the p'th syzygies of I, let 2 @ sj;ipil,,,il be the leading
term, which we may assume by using the syzygies we already have that min(K) >
ip. The term 25+ @ S;I;p
the form z¥ ® 52]:1%1’ and since =¥ ® si’ﬁ”ll is not the leading term, |L| > |K]|.
Note that K +J; + i1+ -+ i, =L+ Jpy + 11 +---+1,. Now if si;’ﬁ__ll contains a

term of the form 2™ ®5¢JZ,1...¢17 then Jy +li+---+l, =M+ Jj+i1+--+ip_1,

., must be cancelled by a term appearing in one of
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and thus K + 14, = L + M. Taking into account the inequality on the degrees
of L and K, and the fact |M| > 0, we have that |[M| = 1 and |L| = |K|. Thus
M = g, and =¥ > z¥. Since K + ip, = L + m, we conclude that i, > m. If
m # ip, then m appears in K, and thus m > min(K) > ip, so m = i, in any
case, and hence K = L. If z,, ® ng,l--.il is not the leading term of Siﬁ»»ll’ then
we know m > i,_1 > i, which would be a contradiction If it is the leading term,
then z,, ® s;];l__,il Wp . =zl ® Sikwli’ and
these were supposed to be distinct terms This is a contradiction. This shows that
the p’'th syzygies of I are spanned by syzygies of the form s;]pj___il with 4, < -+ <
i1 < max(J;). O

=1, ® SlJ:, . But now z¥ ® s

Example. Minimal free resolution of I = (x%, 2179, 7123, 23). The initial terms of
possible first syzygies are 1 ® r1T2, T1 @ 1x3, T3 Q 123, T1 ®x2 The only second
syzygy has leading term z1 ® o ® x123. There are no third syzygies. The minimal
free resolution thus has the form S(—4) — S3(=3) @ S(—4) — S3(-2)® S(-3) —
I —0.

There is a picture that I find useful for using the Eliahou-Kervaire theorem.

For the ideal I = (23, 23xs, 123, 23, 2222), the picture is as follows:

3 2 2 3 2 2
x[2] x[1] x[2] x[2] x[1] xI[

1/ /

x [ x[ x[1] x[1] x[2]

x[

From each generator 7 of the monomial ideal, draw a line downwards for
each variable z; with ¢ < max(J). The second row of the diagram corresponds to
the first syzygies of the monomial ideal. Now from each x; in the second row, draw
a line downwards for each variable x; with j < ¢. The third row represents the
second syzygies of the monomial ideal. Continue this procedure until the process
terminates. In the picture, from the fact that the generators have (from left to
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right) degrees 3,3,3,3,4 respectively, we get that the first syzygies have degrees
4,4,4,5,5 and the second syzygy has degree 6.

Corollary 1.32. Let I be a Borel-fixed monomial ideal with x”t,... 'V as gen-
erators. Let ¢ (I) = card{J; | |J;| = d and max(.J;) = k}. Then

dim(ror (1,8/m)a) = S e (1),

k

Corollary 1.33. Let I be any homogeneous ideal. Then using the notations of the
preceding corollary,

-1
dlm(Tor (I,S/m)q) <Zc (gin(J (kp )

Proof. This follows from the preceding Corollary by the Cancellation Principle.

Corollary 1.34. (Hilbert’s Syzygy Theorem) The minimal free resolution E, of any
homogeneous ideal I has E,, =0 for p > n.

Proof. By Galligo’s Theorem and the Cancellation Principle, it is enough to check
this for Borel-fixed monomial ideals. However, if p > n, the sequence of inequalities
ip < ip—1 < --- < i1 <max(J;) cannot be satisfied. O

Example 1.35. (due to G. Evans and H. Hullett) In three variables, let
I = (x123, o3, 75, 25, 235)
J = (2,23, 2%, 2l xlns)
In reverse lexicographic order,
gin(l) = gin(J) = (23, 1120, 2125, T3, ¥323, Tows, 23).

In terms of the notation above, ¢ = 1,¢2 = 1,¢3 = 1,¢3 = 2,¢3 = 1,¢§ = 1 and
all other ¢f = 0. The minimal free resolution E, of gin(I) = gin(J) is therefore

Ey = S*(—2) @ S*(=3) @ S(—4) ® S(-5)
By = S(-3)® S°(—4) ® S*(-5) @ S*(—6)
= S%(—5) @ S(—6) @ S(~7).
For I, the minimal free resolution has
Ey = S*(—2) @ S3(-3)
Ey = 8(-3)® S*(—4) @ S(—6)
Ey = S(=5)® S(-T).

Notice that an S(—5) and an S(—6) have cancelled between Es and E1, and that an
S(—4) and an S(—5) have cancelled between E7 and Ey. It is even more interesting
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to notice that there is an S(—3) in F; and Ey that did not cancel. The minimal
free resolution of J has

Eo = S?(—2) @ S?(-3) © S(-5)
E, = S%(—4) @ 5?(-6)
Ey = S(—6)® S(-7).

Here, different cancellations took place, and an S(—6) is present in both F5 and
F, that did not cancel. One might legitimately wonder if there is an ideal K
whose minimal free resolution has the one of the maximal cancellations permitted
by the Cancellation Theorem coming from cancelling all cancellable terms of the
resolution of J, namely

Ey = 5*(—2) ® S*(-3) @ 5(-5)
Ey = S*(—4) @ S(-6)
Ey = S(=17).

They point out that this is impossible, since the Fs term forces S/K to be Goren-
stein, and therefore the Fy and Ej terms of the resolution of K would be dual to
each other after an appropriate twist, and they are not.

Alternatively, one might wonder whether it is possible to cancel all cancellable
terms of the minimal free resolution of I to obtain an ideal K with minimal free
resolution

Ey = S?(—2) @ 5?(-3)
Ey = S%(—4) @ S(-6)
Ey = S(—5) @ S(-7).

This also can be ruled out. Since the Hilbert function of K is the same as that
of J, which contains a regular sequence, then K is forced to contain a regular
sequence, of the form @1, @2, C7 consisting of 2 conics and a cubic. Let L be the
ideal spanned by these three polynomials, and thus K = L + (C2) for some cubic
C5. From the exact sequence

0—K/L—S/L—S/K—0,

we have by the exact sequence for Tor that Tor{(K/L,S/m) = (S/m)3(—4) @
(S/m)(—6). This means that the three linear forms x1, x2, x3 take Co to an element
of L under multiplication, and this rules out there being a cubic independent of
these which also does so. This contradiction rules out this possibility.

The moral content of this example is that neither of the “smallest” minimal
free resolutions having the same Hilbert function as those of I and J can indeed
be the minimal free resolution of an ideal. However, the minimal free resolutions
of I and J do incorporate all possible cancellations between them, so that what-
ever rules forbid certain cancellations must be fairly complicated, since if certain
cancellations take place that forbids other cancellations which would otherwise be
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permitted. This example highlights the mysterious aspects of which terms can and
do cancel as we move from the minimal free resolution of gin(I) to that of I.
A useful remark is:

Proposition 1.36. If 27,2 € in(I), and either |J| > |K| or |J| = |K| and 27 <
X, then X ® x7 belongs to the module of initial terms of syzygies of I.

Proof. The leading term of the Koszul syzygy 7/ @ 2% — 2 @ 2/ is 2% @ 2/. O
The rest of this section will give another way of looking at the initial ideal.
Let V' be a vector space of dimension n and choose an ordered basis ey, ... e, for

V.

Definition 1.37. If v = )", v;e; is a non-zero element of V' and j = min{i | v; # 0},
then we define the initial term of v to be in(v) = e;. If W C V is a linear subspace
of V, then the initial subspace of W is in(W) = span{in(v) | v € W}.

Definition 1.38. Let I C {1,2,... ,n}, we denote by V; = span{e; | i € I'}; we will
call these standard flags of V.

Remark. For a subspace W C V., in(W) = V; for some set of indices I with
|| = dim(W).

Definition 1.39. If W C V is a linear subspace, then if wy,... ,wq is a basis for
W and w; = Zj w;je;, the d x n matrix My = (w;;) will be called the Pliicker
matrix of W with respect to the basis wy,... ,wq. If I C {1,2,... ,n} is a set of

indices with |I| = d, let p;y(W) denote the determinant of the d x d minor of My,
taking the columns indexed by I; these are the Pliicker coordinates of W.

Remark. Whether or not p; (W) vanishes depends only on W and I, and not on
the choice of basis of W.

Proposition 1.40. Let W C V be a linear subspace with in(W) = V;. If we order
the sets of indices of size d = dim(W) lexicographically (with 1 > 2 > --- > n),
then

I =max{J ||J|=d and p;(W) # 0}.

Proof. Choose a basis wi, ... ,wq for W such that in(w;) = e;;, where I =
{i1,... ,iq} with i1 < iy < --+ < ig4. For this basis, it is clear that p;(W) # 0, as
the minor we are taking the determinant of is upper-triangular with all diagonal
entries non-zero. If J > I in lexicographic order, then the row-rank of the minor
corresponding to J is equal to card(I N J), which is < d. ]

Definition 1.41. Let F'V = Viit1,i42,... .n} = SPan{€iy1,... ,en}, this is the filtra-

tion on V associated to the ordered basis ey, ... ,e,.

Proposition 1.42. Let in(W) = V;. Then dim(W N F*V) = card(I N {i + 1,i +
2,...,n}).
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Proof. We have that for v # 0, v € F'V if and only if in(v) = e; with j > . The
proposition follows immediately. O

Definition 1.43. Let G(d,n) denote the Grassmannian of linear subspaces of V' of
dimension d. Then

Schub; = {W € G(d,n) | in(W) = V;}

is the Schubert cell associated to the index I.

Remark. We note that Schub; is a quasi-projective variety, being the Zariski
open subset pr # 0 of the projective variety {p; =0 for J > I'}. We note that the
Zariski closure

Schub; = {py =0 for all J > I with |J| = d}.

We now let G C GL(n,C) be a connected algebraic group with Lie algebra
G CGL(n,C).

Definition 1.44. If g € G and W C V a linear subspace of dimension d, let gWW =
{g(v) | v € W}. This induces a map ¢w: G — G(d,n).

Proposition 1.45. There is a non-empty Zariski open subset U C G and a unique
set of indices I such that in(gW) = Vy for all g € U.

Proof. Tt follows from the definition that G(d, n) is the disjoint union of the Schub;
as I ranges over subsets of size d of {1,2,... ,n}. Choose I = min{J | ¢pw (G) C
Schub,}. Take U = ¢y (Schuby). This is non-empty by the minimality of 7 and
Zariski open since it is the preimage of a Zariski open subset of Schub; under the
morphism ¢y . |

Definition 1.46. In the preceding Proposition, V; is the generic initial subspace of
W for G, denoted gin(W).

Example 1.47. If we look at the action of GL(n,C) on S%V, taking as basis the
monomials 7 ordered by some monomial order and let W = I; C S9V, then
gin(W) is what we have denoted gin([)g4.

Definition 1.48. A subgroup B C G with Lie algebra BB has the infinitesimal prop-
erty if, for all v € B and all i < j, either both y(e;) = 0 and y(e;) = 0 or
in(y(e;)) > max(e;, in(y(e;)).

Example 1.49. If we have the action of G = GL(n,C) on SV, with basis z”/
ordered by a monomial order, and B is the Borel subgroup, then the infinitesimal
property is satisfied.
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Example 1.50. If we let G = GL(n, C) act on V%2 (using the language of Young
diagrams), then if we take a basis of standard tableaux, then an acceptable order
must respect the order on the total weight of the tableaux. The problem is that
there exist tableaux having the same weight, e.g.

1 2 1 3
3 4 2 4-

These do not have the infinitesimal property for the Borel subgroup of G—see the
thesis of Christoph Rippel [Ri].

Proposition 1.51. If W is a linear subspace of V' with gin(W) = V;, and B C G
has the infinitesimal property, then for any i € I and «y € B, ifin(y(e;)) = e;, then
jel.

Proof. Letting 4,7 be as in the Proposition, filter V by V° = V, V! = FiV,
V?2 = F'V. By the infinitesimal property, v(V?2) C V. We now invoke (somewhat
prematurely) Lemma 2.16 — if w = e; + lower terms € W, then vy(w) € W + V2,
from which we conclude that y(e;) € in(W). O

Remark. For the case of ideals, the preceding proposition is the statement that
the generic initial ideal is Borel-fixed.

Comments for students:

Another source for much of this material is Ch. 15 of Eisenbud’s book [E]. He
has a nice history of the origins of the subject, in which the names of Macaulay,
Grobner, Buchberger, Hironaka, Grauert, and Schreyer figure prominently. From
my perspective, a real watershed in the subject was Bayer’s thesis and his subse-
quent joint work with Mike Stillman, which begins relating rlex gins to geometry
by discovering the link with saturation and regularity, featured in Chapter 2.

Bayer and Stillman also inaugurated the computational phase of the sub-
ject with their implementation of various algorithms in the computer program,
Macaulay. Eisenbud has a nice series of computer projects at the end of Chapter
15 of [E] for those who want to get their feet wet computationally. It is a good
idea to learn to use Macaulay or a similar language if you want to work in this
subject; however, it is not at all necessary to become a wizard or guru — as I am
living proof.

2. Regularity and Saturation
If I, J C S are homogeneous ideals, we have the ideal quotient
(I:J)={PeS|PQeclforal e J}

We let m denote the maximal ideal (x1,...,2y,).
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Definition 2.1. A homogeneous ideal I is saturated if (I : m) = I. The saturation
I of T is

st = UkEO(I : mk).

A homogeneous ideal I is m-saturated if I; = I;"“ for all d > m.

Example. [ = (22,1129, 73) in 2 variables. Since (I : m)y contains x3, I is not
2-saturated. However, I is 3-saturated. If we took the same ideal in 3 or more
variables, it would be saturated.

Associated to a homogeneous ideal I we have its sheafification, which is a
coherent sheaf on P™~!. For d sufficiently large, the image of the sheaf map eq: I;®
Opn-1(—d) — Opn-1 is constant, and this image is Z, the sheafification of I. The
map ey induces an injection I; — HY(Z(d)). We repeat the well-known basic result:

Proposition 2.2. A homogeneous ideal I is saturated if and only if the map
ea: Iy — H°(Z(d)) is an isomorphism for all d > 0, and m-saturated if and
only if e4 is an isomorphism for d > m. I is m-saturated for m >> 0. For any I,
s = o HO(Z(d)).

Definition 2.3. The satiety of I is the smallest m for which I is m-saturated. We
denote it sat([).

Let
0—-F, 1—--—FE —>FE—>I1—-0
be a minimal free resolution of I, where
Ep = ©;5(—ap;).
Then [ is m-regular if a,; —p < m for all p, j. The regularity of I is the smallest m

for which I is m-regular; the regularity of I thus equals max{a,;—p}. Alternatively,
the regularity of I is the largest g for which Torg (I,8/m)pqq # 0 for some p.

Definition 2.4. A coherent sheaf F on P" is m-regular if H(F(m —q)) = 0 for all
q > 0.

Remark. If F is m-regular, then it is (m+1)-regular, by an argument of Casteln-
uovo (see [G1] or see below for the case we need.) By the Serre vanishing theorem,
every coherent sheaf F is m-regular for m >> 0.

Definition 2.5. The regularity of F is the smallest m for which F is m-regular.
We denote it reg(F).

Example. [ = (2%, 2122, %3) in 2 variables. The minimal free resolution of I is 0 —
S(-3)®S(—4) — S?(—-2)®S(-3) — I — 0. The maximum of 3—1,4—1,2—0,3—0
is 3, so reg(I) = 3. We note that the saturation of I is S, and that the sheafification
of I is Op1, which is O-regular.

We state the well-known fact:
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Proposition 2.6. An ideal I is m-regular if and only if I is m-saturated and its
sheafification T is m-regular. For a saturated homogeneous ideal I, the regularity
of I equals the regularity of its sheafification.

Proof. Assume I is m-regular. Let Z be the ideal sheaf on P®~! which is the sheafi-
fication of I. If E, is the minimal free resolution of I, let £ be the sheafification
of E,, so that &, is a resolution of Z. Note that

Ep = @;0pn-1(—ay)).
The image of
ax: HY(Eo(k)) — H(Z(k))
is I, and by the hypercohomology spectral sequence oy is surjective provided that
H%(&,(k)) =0

for all ¢ > 0. The only case to check is ¢ = n — 1, and here the vanishing is
guaranteed if a,_1; < n+k for all j, and this follows from m-regularity if k > m.

The only differentials which can come into H4(Z(m—q)) originate from terms
of the form H??(E,(m — q)) & ®;Opn-1(m — q — ap;)). For ¢ > 0, these vanish
by the Bott Vanishing Theorem unless p+¢ =n—1and m — ¢ —ap; < —n.
However, the last inequality is equivalent to a,; > m + p + 1, which contradicts
the hypothesis that I is m-regular.

Conversely, if Z is m-regular, then let F, be the minimal free resolution of
I, with E, = ®;S5(—ap;). If I has regularity k, with & > m, choose the largest p
such that a,; = k + p for some j. If we sheafify F,, we have a resolution & of 7.
The E; term of the hypercohomology spectral sequence for 0 — Eo(k+p —n) —
Z(k+p—mn) — 0 has one term equal to H"~Y(€,(k+p—n)) = H" 1 (®;0pn-1 (k+
p—mn—ap;)). This contains a non-zero term that survives to the £, term, when,
unless n — 1 = p = 0, it must map isomorphically to H* '=P(Z(k + p — n)),
which therefore is non-zero. So 7 is not (k — 1)-regular, unless n — 1 — p = 0,
i.e. p = n — 1. However, in this case, since I is m-saturated and m < k — 1,
H%(&y(k —1)) — HY(Z(k — 1)) is surjective, so this cannot occur. Hence k < m.
This proves the second part. The third part follows from the first two. O

We have the following result of Bayer-Stillman [B-S]:

Proposition 2.7. I is m-saturated if and only if, for a general linear form h € V,
(I:h)g =14 foralld>m.

Proof. Since 15 C (I : m)q C (I : h)gq, the if direction is automatic for any h. So
assume [ is m saturated. For a finitely generated homogeneous S-module M, if
w € M, then Ann(u) = {f € S| fu = 0}. A prime ideal p which is Ann(u) for
some u € M is called an associated prime of M. It is a theorem that Ass(M),
the set of associated primes of M, is finite ([M], [E]). A non-zero element f € S
is a zero-divisor if and only if f € Uycass(ar)p. Now let M = 3 ,o  (S/I)4. Now
either m € Ass(M), or else a general linear form h does not belong to UpeAss(M)Ps
in which case h is not a zero-divisor for M. This is equivalent to (I : h)y = I for
all d > m. If m € Ass(M), then if m = Ann(u) for some non-zero v € M, then
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u € (I : m)g for some d > m, but u ¢ I, so I is not m-saturated, which is a
contradiction. O

Corollary 2.8. For a general linear form h, (I : h)q = I4 for d > reg(I).

Proof. Since m-regular implies m-saturated, this follows directly from the Propo-
sition. 0

Proposition 2.9. For a Borel-fixed monomial ideal I, (I : z,,) = (I : m).

Proof. Automatically, (I : m) C (I : x,). Conversely, if f € (I : x,,), then z, f € I.
Now, applying a series of elementary moves to every monomial appearing in ., f,
we see that x;f € I since I is Borel-fixed. So f € (I : m), which proves the other
inclusion. |

Corollary 2.10. For a Borel-fixed monomial ideal I, sat(I) is the degree of the
largest generator of I involving x,,. In particular, I is saturated if no generator of
I involves x,,.

Proof. By the proposition above, I is m-saturated if and ounly if (I : x,)q = Ig
for all d > m. If I has a generator of degree d > m + 1 which involves x,,, then
(I : xp)a—1 # Ig—1. If T has no generator of degree > m + 1 which involves z,,
then if 27 € (I : z,)q4, but 27 ¢ I, for some d > m, then z,z7 = ¥z where
is a generator of I and |K| > 0. By using the syzygies of a Borel-fixed ideal, we
may arrange that min(K) > max(L). Thus z,, must divide 2%, and hence 27 € I,
which is a contradiction. O

Proposition 2.11. For a Borel-fixed monomial ideal I, reg(I) is the maximal degree
of a generator of I.

Proof. If 27 is a generator of I, then by Corollary 1.32, if k = max{i | z; appears
in J}, then 27 contributes (g) elements to the p’th syzygies of I in degree |J| + p.
The regularity is thus the degree of the highest generator. O

Example. I = (2%, x122,23) in 2 variables. This is a Borel-fixed monomial ideal.
It is not saturated because some of its generators involve x5. The degree of the
highest generator is 3, which we already saw computes reg(I).

Corollary 2.12. For a homogeneous ideal I, using any order, reg(I) < reg(in([)).
In particular, in any order, reg(I) is bounded by the degree of the highest generator
of gin(I).

Proof. Since I is a flat deformation of in(I), by the Cancellation Principle 1.21,
the minimal free resolution of I is derived from that of in(/) by cancelling certain
adjacent terms. Since the regularity is the maximal value of a,; —p for the minimal
free resolution, this cannot go up when we cancel terms. The second statement
now follows from Proposition 2.11 and the fact the gin(I) is Borel-fixed. O

At this point, we introduce a somewhat finer invariant than the initial ideal.
We could get by without these, but I am introducing them out of the conviction
that they are useful in their own right.
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Definition 2.13. Let I be a graded homogeneous ideal over k[xy,... ,x,] and h a
linear form. For f € Iy, we say that f € Ly(I, h) if f = h*g for some polynomial
g, i.e. g € (I :hF). If we write f = Yok hifq_i, where f; € k[x1,... ,2n_1]i, then
we let Ly(I,h)g = {fa_i | f € Li(I,h)}, the K’th ideal of leading terms of I with
respect to h. For h = x,,, we denote Ly (I,x,) and Ly(I,x,) by Li(I) and L (I)
respectively.

For h € V', let H be the corresponding hyperplane and Iy the restriction of
I to H. Let Vi = V/(h). If h is general, the coefficient of z,, is non-zero, so that
we may identify S*Vy with S*V in a natural way, where V is the vector space
spanned by x1,...,x,—1. We will consider Iy as a graded ideal in the symmetric
algebra on V.

Proposition 2.14. For a general linear form h and a general choice of coordinates,
then using the rlex order, gin(Ly(I)) = gin((I : h*)g) = (gin(I) : 2F),, =
Ly (gin(I)) holds for all k > 0.

Proof. For any given degree, in(I : h¥)y is constant on a Zariski open set of
linear forms. We will make a general choice of coordinates by choosing which
linear forms will be z1,... ,z,. For a general linear form h, as a first step we
choose coordinates such that h = ,. Thus (I : h*)h¥ = Ly (I) for this choice of
coordinates, and (I : h*)g = Li(I). Now (I : h*)g and Ly (I) both involve only
Z1,...,Tn—1, and hence a general choice of coordinates does not involve x,, for
these, so we get the first equality of gins. Now we note that in reverse lexicographic
order, z¥ [in(p) « 2 |p, as if the leading term of p has a factor of z%, then every
term of p has such a factor. From this, we see the second equality. O

Corollary 2.15. For a general linear form, in rlex order, gin(Igy) = (gin(1)),, -

The following general fact is useful in proving the next proposition, and is
also used in Chapter 6:

Lemma 2.16. Let W be a finite-dimensional vector space with a fixed descending
flagW = W° D W! D W2 D ... Let M € End(W) be such that, for all p,
M((WP) C WP~ and consider g(t) = Exp(tM) € GL(W). Let V.C W be a
fixed subspace and let VP (t) = WP N g(t)(V). If the dimension of VP(t) is locally
constant at t = 0, then
M(VP(0)) € VP=H(0) + WP

Proof. If the dimension of V?(t) is locally constant at 0 and v € V?(0), then
there is a power series v(t) = v° + tv + 202 + .-+ where v¥ € V for all k and
g(t)(v(t)) € WP for all t. Expanding out g(t) = I +tM + (t*/2)M? + - - -, we have,
looking at the coefficient of ¢, that Mv® + v € WP. Since v° € WP, by hypothesis

we know that Mv® € WP~! and thus v! € WP~!. Thus v' € VP=1(0), and now
MY € VP=1(0) + WP, completing the proof. O

Proposition 2.17. For a general choice of coordinates, mLy(I) C Ly_1(I).
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Proof. We use Lemma 2.16. Filter W = S9V by Wk = {zkp | p € S4=kV}. Take M
to be the linear map p — z;0p/dz,,. Note that M(W*) C W*~1. Now g(t) = e'M
corresponds to the substitution x,, +— x, + txz; = h(t). If we have chosen general
coordinates, then the dimension of W* N g(t)(I) = Li(I, h(t)) is locally constant,

and thus we conclude that x;Ly(I) C Ly_1(I) for all i, proving the desired result.
|

Proposition 2.18. For a general h, and all k > 0, (I : h¥) C [%¢,

Proof. If h¥p € I, write p = po + hgq, where py € Li(I,h) and ¢ is a polynomial.
Then by Proposition 2.17, 27py € Lo(I,h) if |J| = k. It follows that for any L
with |L| > k, that 2”p is an element of I modulo h, so we have x“p + hUp, € I.
Now multiplying by h*, we see that x“h*p + h*+1U; € I, and hence h*H1U,, € I.
By Corollary 2.8, we have for a general h that (I : h**1),, = I,,, for m >> 0, and
thus by taking |L| sufficiently large, Uz, € I and therefore X p € I. It follows that
p € I3, O

Corollary 2.19. For a general linear form h, I*** = U (I : h*).
Proof. This follows from Uy, (I : k) C 158 = Uy (I : m*) C Uk(I : h¥). O

Proposition 2.20. For a general choice of coordinates,
Isat Z Lk

Proof. The inclusion C is easy, since if p € I*®, then p € (I : m*) C (I : 2F) for
some k. So p|., € (I : 2F),, . For a general choice of coordinates, this is equivalent
to saying p|,, € Li(I). The set of all possible p|,, for p € I is Lo(I%").

The more difficult inclusion O is just a reinterpretation of the preceding
proposition. O

Proposition 2.21. For a general choice of coordinates, for the rlex order,
(1) gin(I) = 325, 325, wpein(Li(D));
(2) gin(I**) = 32, 3, whgin(Ly (1)) = Ug(gin(1) : z3;).

Proof. The first statement is just that the initial term of any element of I is just
the initial term of its leading term if we are using rlex. The second statement
follows from the preceding Proposition, and the fact from Proposition 2.14 that
gin(Ly (1)) = (gin(I) : 23))a, - 0

Example 2.22. [ is saturated but in(I) is not. In 3 variables, let I = (2%, x1z2+22).
This ideal is saturated. On the other hand, in(I) = ($%7$1$2,$1$§,$3) which is
not saturated, since z1xs € (in(f) : m). However, if we use generic coordinates,
then this kind of problem evaporates.

Lemma 2.23. A homogeneous ideal I is m-saturated if and only if, in generic
coordinates, for all d > m and all k > 0, Ly(I)g— = Lxy1(I)d—k-
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Proof. After a general change of coordinates, I is m-saturated if and only if (I :
Tp)a = Iy foralld > m. If f € (I : z,)4, then for some k > 0, z%|f but not xF+1|f.
We may write f = z¥ g, where g is not divisible by z,,. Since z,, f € I, we have that
xfﬁ‘lg € I, and thus g € I~/k+1(1)d,k7 and thus g determines a non-zero element
ge€ Lk+1(1)d—k~ Now feliffge Lk‘(I)d—k iff g € Lk(I)d—k~ Thus (I : Jjn)d 7é 14
iff for some k > 0, Lk(I)d—k 7& Lk+1([)d—k~ [l

Theorem 2.24 (Bayer-Stillman). For a homogeneous ideal I, using rlex order,
sat(I) = sat(gin(I)), i.e. the maximal degree of a generator of gin(I) involving
Zn. In particular, I is saturated iff no generator of rlex gin(I) involves x,.

Proof. In view of the preceding Lemma, after a general change of coordinates, I
is m-saturated iff for all d > m, Lp(I)g—r = Li+1(I)q—k. However, since Ly (I) C
Li+1(I), this equality is equivalent to equality of their Hilbert functions, and
hence to gin(Lx(I))g—k = gin(Lgy1(I))a—x for all k£ > 0 and all d > m. However,
by Proposition 2.14, in rlex order, gin(Ly(I)) = L(gin(/)), and now using Lemma
2.23 again, we see that the preceding condition is equivalent to gin(I) being m-
saturated. This says that sat(I) = sat(gin(I)). However, Corollary 2.10 says that
for a Borel-fixed monomial ideal such as gin(I), its satiety is the degree of the
largest generator involving x,,. O

Proposition 2.25. If M, N are graded homogeneous S-modules with M C N. For

any p,q,
(1) If Mj, = Ny, for q—p—1 <k < q— p, then Torg(M, S/m)g — Torg(N, S/m),

is an isomorphism;
(2) If My, = Ny, for k = ¢ —p, then Torg(M, S/m), — Torg(N, S/m), is surjective.

Proof. Consider the Koszul resolution K, of S/m, so K, = APV ® S(—p). By the
symmetry of Tor, Tor;?(N/M, S/m), = Hp(Ke ® (N/M)),. The latter is zero if
(N/M)4—p = 0. The result now follows from the exact sequence for Tor. O

In the following theorem’s proof, we let S = S/(z,,) and m its maximal ideal.
Theorem 2.26. In generic coordinates, if
Ai = {In+1—i = 0, Tn42—i = 0, e Iy = 0},

then I is m-regular if and only if I is m-saturated and I, is m-saturated for all
i1=1,...,n.

Proof. Since by Proposition 2.6, m-regular implies m-saturated, neither condition
can hold if I is not m-saturated. So assume that I is m-saturated. From the exact
sequence

0—{I:zy)(—-1)—=I1—1I, —0,

we see that we have an exact sequence

— Torg(l, S/m), — Torg(lxn, S/m), —
Tord (I :x,),S/m)y_1 — Torgfl(l, S/m), —

p—1
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for all p, g. We also have, because APV = APV @ AP~V that
TorS (I, S/m)y = TorS (I,,,5/f) ® Tors_; (I, ,5/f)q-1.

Now if I is m-regular, then Torg(L S/m), =0 for ¢ > p+m and by m-saturation
and the Proposition above, Torf;fl((l txp), S/m)g1 = Torgfl(l, S/m)q—1 =0 for
q>p+m,so Torf([zn, S/m), = 0 for ¢ > m+p, and this, using a formula above,
forces I, to be m-regular, and hence by induction, all of the I, are m-regular
and hence, by Proposition 2.6, m-saturated.

Conversely, if all of the I, are m-saturated, then inductively I, is m-regular.
Assume that I is not m-regular, so that Torg(L S/m), # 0 for some ¢ > m+p, and
we may choose the largest ¢ — p for which this happens. By the argument above,
in this range Torg (I,58/m), = Torg((l : Zn), S/m),. From the exact sequence for
Tor, either

TOffH(ImnaS/m)qH # 0,
which is forbidden by I, being m-regular, or

Tor?([, S/m)g41 # 0,

which is forbidden by the maximality of ¢ — p. This is a contradiction, so I is
m-regular. O

Theorem 2.27 (Bayer-Stillman). The regularity of I is equal to the regularity of
the rlex gin(I), or equivalently by 2.11 to the degree of the largest generator of
the rlex gin(I).

Remark. If one does not work in generic coordinates, one only has that the
regularity of in(I) is > the regularity of I. An example is the ideal generated by
2, 2129 + 22
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Proof. We first show that I and gin(I) have the same regularity. It is logically
equivalent to show that I is m-regular if and only if in(7) is m-regular. By Theorem
2.26 above, it is enough to show that I, is m-saturated if and only if in(1)y, is
m-saturated. By Corollary 2.15,

in(I)a, = in(la,),

and now we are done by Theorem 2.24.

By definition, the regularity of gin(I) is > the largest degree of a generator
of gin(I). Now by the Theorem, gin(I) is m-regular if and only if all of the Ix,
are m-saturated. If d < m is the largest degree of a generator of gin([), then d >
the largest degree of a generator of I,,, and hence I, is d-saturated for all ¢, and
hence I is d < m-regular, which is a contradiction. So the regularity of gin(I) is
the largest degree of a generator of gin(I) (Of course, we could use Theorem 1.31
on the resolution of a Borel-fixed ideal to prove this, but this is a much simpler
direct argument.) O
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Example. Two quadrics in the plane. If (Q1,Q2 is a regular sequence of two
quadrics in 3 variables, then the rlex gin of the ideal I they generate is 22, 122, 3.
The minimal free resolution of I is 0 — S(—4) — S?(=2) — I — 0. From Def-
inition 2.3, we see that the maximum of a,; — p is 3, achieved at the left of the
resolution, so reg(I) = 3. The maximal degree of a generator of the rlex gin of I is
3, as Theorem 2.27 claims. No generator of the rlex gin involves x3, which agrees
with the fact that this is the saturated ideal of 4 points in the plane.

For a large class of examples, see Chapter 4.

Proposition 2.28 (Crystallization Principle). Let I be a homogeneous ideal gener-
ated in degrees < d. Using the rlex order, assume that gin(I) has no generator in
degree d + 1. Then gin(I) is generated in degrees < d and I is d-regular.

Proof. By the Cancellation Principle (Corollary 1.21), for every k there is a complex
VE with

VE = Tor? (gin(I), S/m)y,
for every p and with

Hy(VE) = Torl (1, S/m)y.
If k > d, Hy(VF) =0, and thus V¥ — V{ is surjective for & > d. So for k > d, if
VFE =0, then VF = 0. By Theorem 1.31 on the structure of resolutions of Borel-
fixed ideals, we know that for all k, if V¥ = 0, then Vf’“’1 = 0. So for k > d,
Vit = 0 implies VOIH'1 = 0. By hypothesis, Vb‘“‘l =0, s0 V& =0 for k > d. This
says that all generators of gin(/) have degree < d, and hence by Theorem 2.27
that I is d-regular. O

Corollary 2.29. Let I be a homogencous ideal. Assume that every generator of
rlex gin(I) in degree d+ 1 is the initial term of a generator of I. Let J be the ideal
generated by the generators of I having degree < d. Then J is d-regular.

Proof. gin(J) C gin(I), and gin(J); = gin(I)y for k < d. Thus any generator of
gin(J) in degree d + 1 would also be a generator of gin(I), but could not be the
initial term of a generator of I. Thus the proposition applies to J. O

Example. Two quadrics in the plane with a common factor. If I = (Q1,Q2) is an
ideal generated by two quadrics in the plane, then in rlex, gin(I)s is necessarily
22, 7129, as this is the only Borel-fixed monomial ideal in degree 2 with 2 elements.
If there is no new generator for the rlex gin in degree 3, then the crystallization
principle proclaims that there are no further generators in any degree, so gin(I) =
(22, 2129). Tt follows that this is a saturated ideal whose Hilbert polynomial is
Pg1(d) = d + 2, from which it follows that I is the ideal of a line union a point.
The line must be a common factor of Q1,Q2, and conversely two quadrics with a
common factor have this gin. If there is a generator of gin(/) in degree 3, by the
Borel-fixed property it must be either z3 or z12%. In the latter case, gin(I%) =
(1), so once again Q1,Q2 must have a line as common factor, and then there is
also a point of intersection, ruling out this case. If the generator is x3, then the
quadrics form a regular sequence.
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As may be seen from the foregoing results, the reverse lexicographic order is
extremely well-suited to intersecting with a general hyperplane. The lexicographic
order is analogously well-suited to projecting to a general subspace of lower di-
mension (I am grateful to David Eisenbud for pointing this out to me), as we will
see in Chapter 6.

We collect together what we know in the following:

Theorem 2.30. Using rlex order, for any homogeneous ideal I,

(1) sat(I) is the degree of the largest generator of gin(I) involving x,, and reg(I)
is the degree of the largest generator of gin(I).

(2) gin(I") = Ugso(gin(l) : %)

(3) I is saturated iff no generator of gin(I) involves x,,.

(4) For a general linear form h corresponding to a hyperplane H, gin(Iy) =
(gin(1))., . More generally, for any k > 0, gin((I : h¥)g) = (gin(1) : 2F),, .

(5) For a general hyperplane H, reg(I) = max(sat(I),reg(Iy)).

(6) For a general nested sequence of nested linear spaces Ag 2 A+ 2O Ap—q
where we have codim(A;) = i, reg(I) = max— {sat(I,)}.

(7) In any order, reg(I) is less than or equal to the degree of the highest generator
of gin(I).

We now return to the study of the ideal of leading terms and relate the
minimal free resolutions of the Ly (I) to the minimal free resolution of I itself.

If V is a vector space and M = @®,M, is a finitely-generated graded module
over S(V), we denote by K2, (M, V) the Koszul complex

.. _>/\P+1V®Mm_p_l _ APV@Mm_p —>/\p_1V®Mm—p+1 N
with the indexes set up so that K. P = APV ® M,,_, and denote
Kpg(M, V) = H P(Kpyq(M,V)).

Lemma 2.31. If M is a finitely-generated graded S (V)-module, where V. — V is
quotient with dim(V') = dim(V') — 1, then

K:IMI(M’ V) = Kp,q(Mv V) D K:P—L(I(Mv V)

Proof. This follows easily from the decomposition APV 22 APV @ AP~V and the
fact that the extra element of V acts trivially on M, which induces an isomorphism

Ko (M, V)2 K (M, V)& K (M, V). O
Proposition 2.32. Let I be a graded homogeneous ideal in k[zy,... ,z,] and let
V.V be the vector space spanned by x1,...,%, and Z1,...,Typ—1 respectively.

There is a spectral sequence for any m with EY? = K_, qmyq(Lp(1),V) @
K—p—g—1,m+q(Lp(I), V) which abuts to K_p—q m+pt+q(L, V).

Proof. We filter I by FPI = L,(I), and thus Gi*I = L,(I). The complex
e, (I,V) is filtered by the FP, and thus (see p. 440 of [G-H]) there is a spec-
tral sequence with B} = HPTI(Ky _ (Ly(I),V)) = K_pgmq(Lp(I), V). Since
., acts trivially on Ly (I), by the preceding Lemma EY? 2 K_p,_y o (Lp(1), V) D

K p—g—1,m+q(Lp(I), V). The spectral sequence abuts to K_,_g mipt+q([, V). O
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Comments for students:

One of the most difficult things for algebraists is learning how to interpret al-
gebraic results geometrically. One classic and encyclopaedic source is Hartshorne’s
book [H]; another quite beautiful treatment is Serre’s classic paper [S], which is
often used by students. Eisenbud’s book [E] does a wonderful job on interpreting
algebraic theorems geometrically, but he assumes that you already know some of
the geometric language, e.g. sheaves.

Non-algebraists may be thrown by associated primes. These appear in Mat-
sumura’s book [M] or in Eisenbud’s book [E], among many others.

The relation between the Koszul complex and Tor’s, and a proof of the sym-
metry of Tor, appears in my notes on Koszul cohomology [G1], where there are
also some geometric results relating to regularity, or alternatively in Eisenbud [E].

The regularity of an ideal is a crucial geometric property, and there are im-
portant conjectures on the regularity of projective varieties. For some results on

specific varieties, one might consult [G1] while a powerful general result is that of
[G-L-P].

3. The Macaulay-Gotzmann Estimates on the Growth of Ideals

Proposition 3.1. If kg > kg1 >--->ky >0andly >1l3_1 > --->1; >0, then

(o)) =9+ =)+ ()

if and only if (kq,kq-1,-.. ,k1) > (la,la=1,-.. ,11) in the lexicographic order, i.e.
kq>lqorkyg=14 and kq_1 > l4_1, etc. We use the convention (Z) =0ifa<b.

Proof. We note that the inequalities force l; > I; +d —i. If kg > l4, then we note
(=5
_ (lg) ; (15:11) - (ld—<;l—1>) o
() (@) ()

If k4 = g, then we may subtract off these terms and proceed by induction on d,
the case d = 1 being obvious. O

Definition 3.2. Let d > 0 be an integer and ¢ > 0 another. The d’th Macaulay
representation of ¢ is the unique way of writing

() () )
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where kg > kq—1 > -+ > ks > 6 > 0. We will use the notations
kg+1 kg—1+1 ks +1
<d> _ (Nd d—1 0
¢ <d+1)+( d >+ +<5+1)’
~ (ka—1 kg1 —1 ks —1
o= (M) (0 ) e (05)

where by convention (j) =0 if a < b.

Remark. Uniqueness of the d’th Macaulay representation is guaranteed by the
proposition above. We remark that k; = max{k | ¢ > (S)} Inductively, all the
k; are chosen maximally so that ¢ — iji (kj) > 0. It is also elementary from
this Proposition to note that ¢ — cg~ is weakly increasing in ¢ and ¢ — ¢<%>
increasing in c.

is

Example. The 3'rd Macaulay representation of 27. Since (g) =20<27T< (g) =
35, we see that 27 = (3) + 7= (3) + (2) +1= ( ) ( ) + ( ) is the Macaulay
representation of 27 for d = 3. Now 27<3> = (Z) + ( ) ( ) = 46, while 2735 =

(5)+ )+ () =13

Theorem 3.3 (Macaulay’s Estimate on the Growth of Ideals). Let I be a homoge-
neous ideal with the Hilbert function of S/I denoted h(d). Then

h(d+1) < h(d)<*>.

Theorem 3.4 (Hyperplane Restriction Theorem). Let I be a homogeneous ideal
and Iy its restriction to a general hyperplane. Let h, hy be the Hilbert functions
of S/1,Sy /Iy respectively. Then

hH(d) S h(d)<d>.
Proposition 3.5. Let I be a homogeneous ideal with Hilbert function h for S/I.

Then for all d > 1,
d
d) < (Z h(j))<d>-
§=0

Proof. It is easiest to prove all of these theorems and the proposition at once by
doing induction on both d and the number of variables. In this proof, we use rlex
order.

Proposition for d,n — 1 implies Hyperplane Restriction Theorem for d,n: If we
work in general coordinates, we may take H = x,,. Furthermore, since gin(Iy) =
gin(I),,, , we may replace I by gin(I) and thus reduce (since I and gin(I) have the
same Hilbert functions) to the case where I is a Borel-fixed monomial ideal. We
now write
Ij=Jg+ando1+- - +ally,

where J; is a Borel-fixed monomial ideal of degree j and involves only 1, ... ,Zp—1.
Since I is Borel-fixed, using elementary moves we have that mJ; C J;i1. So let J
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be the ideal in n—1 variables generated by the J;. If the proposition is true in n—1

. d : d .
variables, then hg/t](d) < (ijo hg/J(j))<d>. However, hg/r(d) = ijo hg/J(j)
and hgy /1, (d) = hg,;(d), so the Proposition in degree d and n — 1 variables
implies the hyperplane restriction Theorem in n variables and degree d.

Hyperplane Restriction Theorem for d, n implies Macaulay’s Estimate for d — 1, n:
There is an exact sequence

0—({:H)g-1—Ig— Igq—0.

From this, if h, hyy are the Hilbert functions for S/I, Sy /Iy respectively, we obtain
the inequality h(d) < h(d—1)+hg(d). Using the Hyperplane Restriction Theorem,
hi(d) < h(d)<gs. Thus h(d) — h(d)<q> < h(d — 1). By an easy binomial identity,
for any ¢, (¢ — c<q>)<%"'> > c. Taking upper < d — 1 > of both sides of the
inequality on h and noting that this is an increasing function, we get that h(d) <
h(d —1)<¢=1> as desired.

Macaulay’s estimate for d — 1,n and the Proposition for n and degrees < d — 1
implies the Proposition for d, n: It is convenient to introduce the notation, if ¢ has
d’th Macaulay representation (kdd) + 4 (k ), that fa(c) = (de) + (k‘sg'l);
note (f4(c))<a> = c. We also note that fq(c<qs) < ¢; we get an inequality because
of terms with k,, = m. Let h(d) denote the Hilbert function of I. Using the
Proposition for n,d — 1, we may assume h(d — 1) < (h(0) 4+ -+ + h(d — 1)) <d—1>-
Taking fys—1 of both sides and using fy(c<as>) < ¢, we have fy_1(h(d — 1)) <
h(0)+---+h(d—1). We need to show fq(h(d)) < h(0)+---+ h(d). By Macaulay’s
estimate, h(d) < h(d—1)<?"'>. Now h(d)+ f4_1(h(d—1)) < h(0)+---+h(d). It is
therefore enough to show that in general, if ¢ < b<9=> then c+ fq_1(b) > fa(c).1

¢ has d’th Macaulay representation (k )+ (k‘s) then b > (kd 1) +- 4 (k‘S D) 1f
d>1andb> (k“ 1)—1— —|—(k2 1)—i—llfé— 1. Now fq_1(b) > ( ARk —|—( L) or
fa—1(b) > ( DEXE —|—( *) +1, depending on . Adding, we see that ¢+ fq—1(b) >
(kf‘j'l) 4+ 4 (k5;'1) in either case.

To start the induction, we note that for n = 1 the only interesting case of
the Proposition for any d is that h(i) = 1 for ¢« = 0,1,... ,d. Now f4(h(d)) =
(dzl) = h(0)+---+h(d). The other case we need to start the induction isd = 1, n
arbitrary, and here the only interesting case is h(1) # 0, which forces h(0) = 1, so
the statement is h(1) < (14 A(1))<1s, but (1 + A(1))<1> = h(1), so this is clear.
This completes the proof. O

Definition 3.6. A monomial ideal is said to be a lex segment ideal in degree d if
1, is spanned by the first dim(I;) monomials in lexicographic order.
Example. The monomial ideal (z1, x5, ¥3x3, z223, ¥3) in 3 variables.

This is a lex segment ideal in all degrees.

Example. The lex gin of 2 general cubics in 4 variables.
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If C1, Cs are two general cubics in 4 variables and I = (C1, Cs), then using lex
order, one may verify that gin(l) = (2%, v123, v12003, T1227323, 12075, 7125, 25).
It is Borel-fixed, as it must be since it is a gin. This is not a lex segment ideal
in degree 6 — rather than z§, the next term in lex order not in the ideal is z; 3.
This example was suggested by Bernd Sturmfels, and helped to motivate the work

discussed in Chapter 6.

Proposition 3.7 (Macaulay). If I is a lex segment ideal in degree d and has no
generators in degree d + 1, then hg;(d + 1) = hg/;(d)<%>, i.e. I achieves the
maximum for Macaulay’s bound.

Proof. In one variable, the result is obvious, since the only cases to consider are
hs/r(d) = 0,1, and these are both easily verified. So we proceed by induction on
the number of variables. We may write Iy = Jg+x1J4_1+ - '—}—x‘fJO, where the J;

involves only the variables xs, ... ,x,. Because I is a lex segment ideal, for some i,
Jj = Clza,... ,xy]; for j <iand J; =0 for j >4, and J; is a lex segment ideal in
n— 1 variables. Thus hg;;(d) = hg,7,(0)+ ("7 )+ -+ (2279 + (*757). Now

Logr = Wy + 2 (MJg1 + Ja) + -+ 2f(@Jo + J1) + 2$ o, and hgyp(d+1) =
hgy,(i+1)+ (’Zi;) NI (";}jd). Since hg, s, (d) < ("*i7?), if may write the i’th
Macaulay representation for hg,;, (d) as (k;) +oe (’?), then the d’th Macaulay

representation for hg,(d) is (”_§+d) +- 4+ (":T) + (kj) +t (]2") We now

see that if the proposition is true for J;, then it is true for 1. O
Theorem 3.8 (Gotzmann’s Persistence Theorem). Let I be a homogeneous ideal
generated in degrees < d + 1. If in Macaulay’s estimate,

h(d + 1) = h(d)<?>,

then I is d-regular and
h(k +1) = h(k)<+>
for all k > d.

Remark. We could just as well assume [ is generated in degrees < d, since we
cannot achieve Macaulay’s bound if there are any generators in degree d 4 1.

Proof. By comparing I with gin(I), we note that since the ideal generated by
gin([)y must satisfy Macaulay’s bound, if gin(I) had a generator in degree d + 1,
then I would be off by at least that number of generators from achieving equality
in Macaulay’s bound. So gin(I) has no new generators in degree d + 1, and since
I is generated in degree < d + 1, we conclude by the Crystallization Principle
(Proposition 2.28) that I is d regular and gin(7) is generated in degrees < d. We
may now replace I by gin(I), so we may assume that I is a Borel-fixed monomial
ideal. We inductively assume the theorem if either the degree or number of variables
is smaller than d, n respectively, since the cases n = 1 and d = 1 are easy. Write

Io=Jg+2ndg1+ -+ a2ty
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where J; is homogeneous of degree j and involves only x1,... ,z,—1. The Borel-
fixed property shows that m.J; C J; ;1. Denote by J the ideal generated by the .J;.
If S =Clz1,... ,2n-1], then hg/;(d) = hg,;(d) + -+ hg,;(0). We note that

Lip1 = Jag1 + anda+ - + 2l o,

and thus s (d-+1) = hg s (d+1)+ -+ g (0 Let hyr(d) = () 4+ () be
the d’th Macaulay representation of hg,r(d). If equality holds in Macaulay’s esti-

mate, then hg,7(d+1) = (%) +---+ (%¢!). Taking the difference, hg, ;(d+1) =

(d]ffl) +ot (5]ff1). By Proposition 3.5, hg,;(d) < (hg;s(d)+---+hg,;(0)<a> =
hg/1(d)<a>. This latter is (k‘gl) +t (k‘sgl), and thus we see that equality holds
for Macaulay’s estimate for J in degree d, and also that hg,,(d) = (hg,,;(d) +
R hg/J(O))<d>. By induction, this means that equality holds for Macaulay’s
estimate for J in all degrees > d. Now Ijio = Jayo + Tndar1 + -+ + 23+2Jy, so
hsyr(d+2) = 023 hg,;(j) = hsyr(d+1) + hg,;(d+2). However, the right hand

side s the sum of (£17) + -+ () and (44 + -+ (7). and hence i

(kd“:;) +F (%5:22). Thus hg/;(d+2) = hg/r(d+ 1)<?*1> and thus equality in
Macaulay’s estimate holds in degree d + 1 if it holds in degree d. Of course, this
is formally equivalent to showing that it holds in all degrees k > d if it holds in

degree d. O

Corollary 3.9. If I is a homogeneous ideal generated in degrees < d and equality
holds for Macaulay’s estimate for I in degree d, and if hg/;(d) has Macaulay

representation in degree d given by (kj) 4+ 4 (k(;"), then
_ (kat+k—d ks +k—d

Remark. The decomposition of monomial ideals I; into ix‘ffiJi is a reflection
of the filtration on any I given by Iy D h(I : h)g—1 D h*(I : h®)q—2 D ---
which has successive quotients I, (I : h)g, (I : h?)g,.... For H general, we are
just decomposing gin(/), into the generic initial ideals of these quotients; this is
just the decomposition for the rlex order gin(I)q = >, 2¥gin(Ly(I))q—k using the
ideals of leading terms.

for all k > d.

Definition 3.10. For any I, the Hilbert function hg,;(d) is equal to a polynomial
Pg/1(d) for d >> 0, called the Hilbert polynomial of S/I.

Theorem 3.11 (Gotzmann’s Regularity Theorem). Any graded ideal I, has Hilbert
polynomial of the form

Poya(k) = (k ;al) N <k+zi - 1) oot (k+as ;8(87 1))
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where
ap > az >+ >as > 0.

Furthermore, the associated ideal sheaf I is s-regular.

Remark. We will prove a somewhat stronger result. Let
sq = card{i | a; > q — 1}.
Note that s; = s. Then in fact for each g > 0,
HY(Z(k—q)) =0 fork > s,

Proof. We denote P(k) = Pg/;(k). Let H be a general hyperplane, and 7’ =
7 ® Og. We have the exact sequence

0—-Z(k—1)—Z(k)—>TI'(k) =0

arising from restriction. If Py (k) is the Hilbert polynomial of Z’ viewed as a
coherent sheaf on H, then we have by this sequence that

Py (k) = P(k) — P(k — 1).

By induction on dimension of the ambient projective space, the case of dimension
0 being obvious, we may assume that Pg (k) has the form

Pty = (51 0) + (P e (B0 )

by > by >---by > 0.
We may further assume that if

ty =card{i | b; > q— 1},

where

then for every ¢ > 0,
HY(I'(k—q)) =0 for k> t,.

We immediately conclude that

Pk) = (k;al)Jr(kJrzz_l)+"’+<k+ata_t(t_1))+6

where e is an unknown constant and a; = b; + 1. Thus sq41 = ¢4 for ¢ > 0. We
immediately see by the restriction sequence for Z’, together with Theorem B, that
for all ¢ > 1,
HYZ(k—q) =0 for k> sq4.
It remains to show that this also holds for ¢ = 1, and that e > 0.
Let fq = codim(H*(Z(d)), H°(Op+(d))), and fq g the analogous numbers for
Z'. If e < 0, then for k >> 0,

f< <k+a1>+<k+azl)+m+ (k‘i’at(tl))'
aq as a
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By our result on codimensions for restriction to a general hyperplane, for k£ >> 0,

hﬂ<c¢m>+0+?—v+”+<hwiw—n>:%%%
1 2 t

which is a contradiction. So e > 0. Setting a;y1 = ary2 = -+ = a4 = 0, we get
that P(k) has the desired formula, where s =t + e.
By the vanishing of cohomology that we have so far, we have that

fa < P(d), ford>sy—2,

with equality holding if and only if H!(Z(d)) = 0. For d = s — 1, we may write

d+a; d+ay—1 d+as—(s—1)
P(d) = )
o= (") () e (UG
By Macaulay’s theorem, if fs_; < P(s — 1), then it remains behind forever, con-
tradicting the fact that fi, = P(k) for kK >> 0. Thus H'(Z(s — 1)) = 0, which

is the last thing we need to conclude 7 is s-regular. This completes the proof of
Gotzmann’s Regularity Theorem. O

Remark. Using the notation of the theorem, for d sufficiently large, hg/;(d) =

(dtlal) + (d_dljlaz) +- (dfd(f(slf)i)as), and thus every homogeneous ideal achieves

Macaulay’s bound for d sufficiently large.

This completes a survey of the fundamental results in this circle of ideas. We
include some interesting but more specialized results.

Proposition 3.12. Let I be a homogeneous ideal generated in degrees < d. If I; is
a lex segment ideal in degree d, then I is a lex segment ideal in degree k for all
k> d.

Proof. We need only check the case k = d+1, since then inductively we are done. If
x’ € I; and, in the lexicographic order, ¥ > 2™ we need to show z% = L+
for some L satisfying z > 27. If k,, > 0, we may take k = m. If k,, = 0, then
choose p so that k; = j; + 0, for ¢ < p and k, > jp + dpm. Clearly p < m. If
kp > jp + 1, we may take k = p. If k, = j, + 1, then if any k; > 0 for some [ > p,
we can take k = [. Otherwise, 2 = z,2/, and we may take k = p. O

Proposition 3.13. Let I be a lex segment ideal in degree d. Then (I : m) is a lex
segment ideal in degree d — 1.

Proof. If 27 € (I : m)4_1, assume 2% > 27 in the lexicographic order. Then
B+ > ¢+ for all 4. Since /¢ € I for all 4 and I is a lex segment ideal, this
implies %+ € I, for all 4, and thus 2% € (I : m)4_;. ]

Proposition 3.14. Let J; be a lex segment ideal in degree d in n — 1 variables.
Then Iy = Jg+ xp(Jg : ) + - + 28 (Jy : m?) is a lex segment ideal in degree d
in n variables.
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Proof. Given a monomial in I; of the form ¥z Where K 1nvolves only variables

T1,..., 7y 1, and 2 € (Jg : mF), assume that olal > X2k where L 1nvolves
only z1,...,2,. We need to show that ¥ € (J : ) If | = k, then 2¥ > 2

and we are done, as (Jq : mF) is a lex segment ideal by Proposition 3.13. If k < [,
then zlzl-* > 2% which implies that 2Z2™ > X for any M with |[M| =1 -k,

and hence z¥ € (Jy : m!). If k > [, then a > 252kl Let Ly consist of the
last k — [ indices of z%, then al~Lo > 2% Hence xL~Lo € (J : m*), and hence
L (J:mb). O

Definition 3.15. Given ¢ > 0, d > 1, let <%>¢ be the smallest number e such that
e<d=1> > ¢

Remark. If the d’th Macaulay representation of ¢ = (kd) +-- 4 (k‘s) thenif§ > 1,

<d>e — (kj 11) +o 4 (k;:ll) while if § = 1, then <%>¢ = (kj 11) + - (k2 1) +1.

Definition 3.16. Given ¢ > 0, d > 2, let 4~c denote the smallest integer e such
that e<4~ = c.

Remark. If the d’th Macaulay representation of ¢ is (kj) 4+ -+ (’?), then
case= (") +o+ (0.

Proposition 3.17. Let I be a homogeneous ideal such that

d
Z hs/1(j) = <a>(hs/1(d)).

Then hS/I(] — 1) = <9>hg;(j) for all 1 < j < d. Furthermore, I; = (I : m@~7)
for all j < d.

Proof. We proceed by induction on d, the case d = 1 being easy. Let the d’th
Macaulay representation for hg/r(d) = (kdd) + o+ (’?). Then Z;l:o hs/1(j) =

(k“jl) +-+ (k5+1) If § > 1, then by Macaulay’s estimate, hg/(d—1) > (kd‘i__ll) +
o (R 1) We also have ZJ o hsyr(G) = (J4) + -+ + (%), and therefore by
Proposition 3.5, hg/r(d—1) < (kj f)—l— +(k5 1) Combining the two inequalities,
hg/i(d —1) = <d,1>(2?;3 hs/1(4)), and so by induction on d we are done. If

6 = 1, then Z?;é hs/1(j) = (dk_dl) + -+ (kf) + 1. This implies by Proposition

3.5 that hg);(d — 1) < P+ (T +1 = <%>hg/r(d) On the other
hand, by Macaulay’s estimate, hg/;(d — 1) > <%>hg,;(d), so we have equality,
and hg/r(d —1) = (Z?;é hs/1(j))<d—1>. We are now done with all but the last
statement by induction on d.

If we replace I; by K; = (I; : m%7)then 37 hs/x(j) < S0_o hs/r(j),
while hg/k (d) = hg/1(d), so by the inequality of Proposition 3.5, together with the
fact that Z?:o hg/1(j) = <a>hs/1(d), we must have Z?:o dim(K;) :Z?:o dim(I;)
for all 7 < d, and hence, since I; C K;, we have I; = K for all j <d. O
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Lemm_a 3.18. Let I_be a homogeneous ideal. Then for a general hyperplane H,
(I : HZ)H Q (IH : m}I)

Proof. If we write H = "', t;x;, then any element of (I : H') is represented by a
polynomial P bi-homogeneous in = and ¢ such that H*P € I. Differentiating with

respect to ¢/ with |J| = 4, we see that #/ P + HU; € I for some Uy, and thus
2/ P|lg € Iy. Hence P € (I : miy). O

Theorem 3.19. Let I be a homogeneous ideal such that hg, i, (d) = c and
hs/1(d) = <g>c for a general hyperplane H. Then

hSH/(IH:mg_[)(d — ) — <d—itl>p

for all 0 < i <d.

SH/(IH:miF;I)(d — 1+ 1)

Proof. If we write
gin(I)g = Jg+ xpJa_1+ -+ x4 Jp,

where J; are homogeneous of degree ¢ and involve only z1,...,z,_1, then the
assumption on ¢ implies that the ideal J in n — 1 variables generated by the J;
satisfies the hypotheses of Proposition 3.17. However, if we use reverse lexico-
graphic order, J; = Ig q. The equality claimed in the theorem now follows from
that of Proposition 3.17. g

Remark. It is not true that if hg, /1, (d) = hg/1(d)<a>, then gin(I) is a lex
segment ideal in degree d. For example, if n = 4, the ideal I = (22, z122,23) has
codimension 7, and 7.9~ = 3, and indeed Iy has codimension 3. This is Borel-
fixed, so I = gin([), which is not a lex segment ideal. This does not violate the
theorem because <5~ 3 = 6, but it shows that there are ideals achieving Macaulay’s
bound whose gin’s are not lex segment ideals.

Corollary 3.20. Let I be a homogeneous ideal such that hg/;(d) = d + 1 and
hs, /1, (d) =1. Then I3 = I(L)q for some line L.

Proof. This satisfies the hypotheses of the theorem, so using the notations of the
proof, J; has codimension 1, so (Iy : m%‘l)l has codimension 1, hence is the
ideal of a point in H. Thus I 4 2 I(P)q for some point P, and by comparing
codimensions we get equality. This implies that the base locus of I; contains a line,
so I C I(L)4, but then equality holds since they have the same codimension. [

Example 3.21. 6 cubics in 3 variables. Given the ideal I generated by 6 cubics in
3 variables, hg/r(3) = 4 = (é), s0 4<3> = (i) = 5. We conclude from Macaulay’s
bound that the ideal generated in degree 4 has codimension at most 5, so dimension
at least 10. One way to achieve this is to take the six cubics to be the six cubics
vanishing on a line L. By Gotzmann’s persistence theorem, any set of 6 cubics
achieving this bound must have hg,;(d) = d 4 1 for all d > 3. It follows that the
base locus of the variety defined by the six cubics contains a curve of degree 1,
and hence is a line, so this is thus the only possibility.
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Alternatively, given 6 cubics in 3 variables, 4<3> = (3) = 1, so the restric-
tion of the cubics to a general line has codimension at most 1 by the hyperplane
restriction theorem. Once again, if the bound is achieved, then by Corollary 3.20,
the six cubics are the ideal of a line, and then the restriction to a general line is
the ideal of the intersection of the two lines.

The lex segment for six cubics in 3 variables is 3, 3xa, 2323, 1173, T17273,
x123, which is the ideal of the line z;.

Example 3.22. The case hg/;(d) < d.

If hg/r(d) = ¢ < d, then the Macaulay representation is kg = d, kg1 =
d—1,... ,ki_cy1 =d—c+1. It follows that ¢<9> = ¢. Assume I is generated in
degrees < d. If hg/;(d + 1) = ¢, then it remains at this value for arbitrarily large
degree, and thus I; must be the ideal of a set of points of length c. If we achieve
Macaulay’s bound ¢ and the variety of I; is empty, i.e. I; is base-point free, then
by applying Gotzmann’s theorem at each step, necessarily I, . is the full set of
polynomials of degree d + c. In any case, the Hilbert function of I must stabilize
after < c steps.

Comments for students:

There is a very beautiful combinatorial side to this subject; see Richard Stan-
ley’s book [St] for a survey of some results.

Gotzmann’s Persistence Theorem is from [Go], with an alternate proof of
mine in [G2], where the Hyperplane Restriction Theorem first appears. For a
perspective on Macaulay’s theorem in the context of commutative algebra, one
might consult the book of Bruns and Herzog [B-H]. Gotzmann originally proved
his theorem as a tool for constructing moduli spaces — one wants to know that
once the Hilbert function is specified, one has a bound on the regularity of the
ideal. My interest in his result, and indeed in commutative algebra, grew out of
my work on the explicit Noether-Lefschetz problem in Hodge theory; this work is
described in my notes on Koszul cohomology [G1] and in Lecture 7 of my CIME
lectures [G3]. Most of the proofs given here are new.

The question of how Hilbert functions of ideals can grow is quite interesting,
and there are many results, and lots of open problems. If we are allowed to insert
new generators at will, then using lex segment ideals, one can get any Hilbert
function satisfying Macaulay’s bound at each stage. One expects to improve on
Macaulay’s bound if one knows some additional geometric information, or if one
knows that the ideal contains a certain kind of subideal, or if one knows more than
one step of the history of the growth of the Hilbert function and one assumes that
there are no new generators. For a conjecture about ideals that contain a regular
sequence of quadrics, see [E-G-H]. For a fascinating table of some possible Hilbert
functions, see [R]. Chapter 4 will deal with one example of how to use additional
geometric information.
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4. Points in P2 and Curves in P3

In this section, we will use rlex order. The reason is that this is the order adapted
to hyperplane sections.

Let I" be a collection of d points in the plane, and I the graded ideal of I". For
generic coordinates, gin([l) is a Borel-fixed saturated ideal, and thus (by Theorem
2.30) x5 does not appear in any generator of gin(I). It thus has generators of the
form

ah ah 19:;"“ Lt a0,
Because gin([) is Borel-fixed, A\g > A1 > -+ > A1 > 0.

Definition 4.1. For a set I' of d points, if

. A
gin(It) = (x’f,x’f 13:2’“ L, mlwg‘l,xéo),

we will say that I' has invariants Ao, A1, ... , \g_1.

We note that for any m > 0,

hS/I me Ai)-

Taking m large, we have that d = ZZ Ai. Notice that therefore h'(Zr(m)) =
d— Y min(m — i, \;) for any m > 0. Another consequence of the formula is:

Lemma 4.2. Two set of points in the plane have the same invariants g, ... , Ag—1
if and only if they have the same Hilbert function.

Example. Four general points in the plane. The ideal of 4 general points in P2
is I = (Q1,Q2), where QQ1,Q2 are general conics. In rlex order, we know that
gin(I) = (22, 2129,23). Thus \g =3, \y = 1, k = 2.

There is a nice way to draw a picture of the rlex gin of I in this situation.
In the picture below, we show all monomials in x1, 72,23 of degree 5. a7 is in
the lower left corner, x5 is in the lower right corner, and 3 is at the top. The
black dots (when I do not have PostScript graphics available, these are replaced
by “X”s) denote monomials that belong to gin(I) and the empty circles (“zeros”)
denote monomials that are missing. In terms of this diagram, the fact that the
ideal is saturated translates into the fact that the diagram in degree one lower
is obtained by suppressing the bottom row of the diagram. It follows that if we
draw a diagram of a set of points whose bottom row is all black dots, then we
can reconstruct the diagram in any degree from the given one. Notice that in the
diagram, Ay = 3 comes from the string of 3 zeros running from the top toward
the bottom right corner, and A; = 1 is the string of 1 zero parallel to it. This is a
general fact.
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If we look in generic coordinates at A = S/I as a module over S = Clx, 23],

we see that 1,zq,... ,x]fl are a minimal set of generators. The relations have

leading terms x;j -2J. Thus a minimal free resolution of A over § is
0 — @F5S(=Xj = j) = @S (i) — A— 0.
Following Gruson-Peskine [G-P], we let
n; =X\ +J for j =0,1,... ,k—1.

Since Aj_1 > A;, it follows that n;_1 = Aj_1 + 75 — 1 > A; + j = n;. The sequence
ng > Mny > --- > np_1 > 0 is called the numerical character of I', and it is related
to our invariants by

)\j =n; — j
This invariant was introduced by Gruson and Peskine to obtain a necessary and
sufficient condition for identifying Hilbert functions of general hyperplane sections

of irreducible reduced non-degenerate curves in P3. An interesting version of their
result is given below, but first we need a useful Proposition:

Proposition 4.3. Let I, J be two homogeneous ideals. If in(I) Nin(J) C in(I N J),
then in(I + J) = in(J) + in(J).

Proof. In the conclusion, it is obvious that the left-hand side contains the right.
So assume F' € I + J, and write F' = P+ @ where P € I, Q € J. We may assume
by induction that we have chosen P, so that in(P) is as small as possible. If
in(P) # in(Q), then either in(F') = in(P) or in(F) = in(Q), and therefore in(F) €
in(I) +in(J). If in(P) = in(Q), then by hypothesis there is an element R € INJ
such that in(R) = in(P) = in(Q). For some constant ¢, in(P — cR) < in(P).
Replace P,@ by P — cR, @ + cR. We have decreased in(P), and this contradicts
the assumption that it was already as small as possible. O

Theorem 4.4 (Ellia-Peskine). If \; > \;11 + 2 for some i < k — 1, then I contains
a subset I'y of Ay + - -+ + A; points lying on a curve of degree i + 1. Furthermore,
if ' = I'y + 'y, then I'y has invariants A;j+1, Ajt2,...,Ag—1 and I'y has invari-
ants Ao, A1,..., ;. Furthermore, the decomposition of I into two subsets having
invariants Ag, ... ,A\; and \i41, ..., A\p—1 Is unique.
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Proof. There is no generator of the initial ideal of I in degree m = A\; 41 +i+ 2. If
J is the ideal generated by the elements of I of degree < m—1 = \; 11 +i+1, then
the initial ideal of J contains no generator of degree m. Thus by the crystallization
principle (Proposition 2.28) every generator of gin(J) has degree < m — 1, and
hence the initial ideal of J has generators x’f,m’fflmé\"’l, . w’iﬂm‘;""“. Now for
a general hyperplane H, gin((Jz)%*') = 2" by Theorem 2.30, and hence is the
ideal of 7 + 1 points on the line H. Thus the base locus of J contains a plane
curve of degree i + 1 given by a polynomial F. The elements of I corresponding to
generators of gin(I) of degree < m—1 are of the form goF, 1 F, . .. , gx—i—1 F', where
in(g;) = x{xgi““. The ideal generated by go, ... ,gr_;_1 is saturated, hence the
ideal of a set of points I'e with invariants A;y1,...,Ax—1; it is non-empty because
i < k — 1. Note that (I : F) = (go,.-- ,gk—i—1)- We note that gin(F) N gin(I) C
gin(J) = gin((F)N 1), so by Proposition 4.3, gin({ + (F')) = gin(I) + gin(F'). Thus
gin(I 4 (F)) = (21, 2427, -+, 2)°), which is saturated and by counting degrees
must be the ideal of a set of points I';y which has invariants Ag,... , A;. Finally,
note that (I : F)- (I + (F)) C1,s0 Ty + Ty DT, which since both sides have the
same number of points forces equality.

It remains to see uniqueness. Let ' = f‘l + f‘g be another decomposition hav-
ing the same invariants. Let Fe If“l,i+17 and note that FIf“Q,AHlH C Irniitite,
and by Hilbert functions we must have equality. Thus FIfQ,AiHH =FIr, xn 141
Let R be the greatest common divisor of F,F' and G = F/R, G = F/R. Then
Iry niq+1 C G, and since gin of the left-hand side is not generated by single el-
ement if 4 <k — 1, we must have G constant, and hence I, x,.,+1 = Ip, 5, 415
which forces I'y = f‘g, which shows uniqueness. O
Remark. Something a bit stronger that Theorem 4.4 is true. If A\; = A;41+2, then
one draws the same conclusion if the generator of in(I) of degree \; + i represents
a generator of I, because then Corollary 2.29 applies.

Example. Five points in the plane, 4 of them on a line.

The ideal of 5 points in the plane, of which 4 are collinear, is [ = (LM, LM', F),
where L is the line containing 4 of the points, M, M’ are the linear forms vanishing
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at the fifth point, and F' is a quartic cutting L at the 4 points and passing through
the 5'th point. The rlex gin(l) = (22, z172,23). So A\g = 4, \; = 1, k = 2. Since
Ao > A1 + 2, we conclude by Theorem 4.4 that any set of points with this rlex gin
must consist of 5 points, 4 of them on a line.

Definition 4.5. A set I' of points is said to be in uniform position if every pair of
subsets of I' having the same number of points have the same Hilbert function.

The relevance of this definition for us is:

Proposition 4.6 (Uniform Position Principle). Let X be an irreducible variety in
P” of dimension n. Then for a general codimension-n linear space A C P", ANX
is a set of points in uniform position.

Proof. See pp. 109-113 of [A-C-G-H]. O

Definition 4.7. A variety X C P” is non-degenerate if X does not lie in any
hyperplane.

Corollary 4.8 (Gruson-Peskine). If a set of points I' in the plane with invariants
A0s A1y - -+, Ak—1 IS in uniform position, then

ANi—=1>2Xp >N —2

for alli =0,1,...,k—2. In particular, this holds for a general hyperplane section
of a reduced irreducible non-degenerate curve in P3.

Proof. If the inequalities are violated for ¢, we are in the situation of the theorem,
so we have a decomposition I' = I'y 4+ I's. If the points I' are in uniform position,
then for any other decomposition I' = I'1 4+ I'y into subsets of the same sizes
as I'y and I'y, the Hilbert functions of fl and fg are the same as those as I'y, 'y
respectively. By Lemma 4.2, the same statement is true of the invariants, and hence
by uniqueness of the decomposition I' =Ty +T'5, I'; = I';. This is a contradiction
to how fl was chosen. O

Corollary 4.9. If a set of points I' in the plane with invariants \g, A2, ... , A\g—1 IS
in uniform position, then

d/k+ (k—1)/2 <X < d/k+k—1,

with A\g = d/k + k — 1 holding if and only if T is a complete intersection of type
(k,d/k).

Proof. We have that A\g <A\ +2<X2+4--- < A1 +2(k—1). Adding up all of
these, we conclude that kX\g < Zi:ol()\i +2i) =d+k(k—1). So Ao < £ +k—1.
We also have \g > A\ +1> Aag+2>--- > A\_1+k—1, from which it follows that
kMo > d+k(k—1)/2. Thus A\ > %—i—%. If equality holds in the upper inequality for
Ao, then \; = d/k+k—1—2i. In particular, \,_1 = d/k— (k—1). Thus I+ contains
an element F' of degree k and an element G of degree d/k — (k—1)+k—1=d/k
which is not a multiple of F'. By the remark following Theorem 4.4 (i.e. by the
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Crystallization Principle), there can be no further generators of Ir, so It = (F, Q)
and T is a complete intersection of type (k,d/k). O

Example 4.10. 8 points in P? failing to impose independent conditions on cu-
bics. Given 8 points in the plane which fail to impose independent conditions on
cubics with invariants Ag,...,Ax—1, we note that necessarily Ay > 5, as other-
wise hg/r(3) = 8. If Ay < 2, then A\g of the points lie on a line. If A\; > 3, then
Ao =5,A1 =3, k =2, and the points lie on a conic. Thus we obtain the classical
result that either at least 5 of the points lie on a line or else all 8 lie on a conic.
Note that in all of these cases, we can read off from the gin that the points impose
independent conditions on cubics.

For our later considerations, certain notations estimates are helpful.

Definition 4.11. Let i,,(I') = dim(Ir ). For m > 0, let dy, = im, — im—1. We will
call (dg,dk+1,...) the difference sequence of I'. Here k is the degree of the lowest
generator of Ir.

Example. 5 points in P2, 4 of them on a line. For the example discussed earlier of 5
points in the plane, 4 of them on a line, we have (da,ds,dy,...) = (2,3,5,6,7,...).
These points are not in uniform position. Referring back to the diagram of this set
of points, note that in general dj is the number of black dots in the k + 1’st row
of the diagram.

Proposition 4.12. Let I' be d points in the plane in uniform position.

(1) dpy1 > dm + 2 forall \p_1 +k—1<m < Ao;

(2) If dypy1 = diy + 2 for some Ap—1 +k —1 < m < Ao, then It has no generators
in degree m + 1;

(3)d =32 (m~+1—dy).

Proof. (1) and (2) We note that i, = ("}?) — hg/1(m), so dm = m + 1 —
(hg/m(m) — hgyr.(m — 1)). Using the formula for the Hilbert function at the
beginning of this section, hg,.(m)—hg . (m—1) = Zf:_ol min(m—i, \;) —min(m—
1—14,)) =card{i | m < X\; +4}. Thus, dppy1 — dyy = 1+ card{i | m = \; + i}
If dypt1 = dpy + 1, then choose an 4 such that A; +¢ > m > A\j41 + 4+ 1, this is
possible as A\g > m > A\p_1 +k—1. Then \; > A\;11 + 3, violating the Ellia-Peskine
Theorem. If dy,+1 = d, + 2, then as in the proof of the Ellia-Peskine Theorem,
if there is a generator of Ir in degree m + 1, then the ideal generated by It , is
m-regular, and we obtain that the points of I' are not in uniform position.

(3) Since dyy, =ty — b1 and m + 1 = (mg'Q) - (m2+1), we see that Z:;fzk(m +
1 —dm) = hs/r. (M) = d.
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Corollary 4.13. Let I' be d points and I' be d points. If

k k
D dn(0) > > dm(T)
m=0 m=0

for k sufficiently large, then d<d.
Proof. This follows from (3). O

Proposition 4.14. Let I" be d points in the plane. Assume that It has g,, generators
in degree m and s,, generators for the first syzygy module in degree m. Then
—dp—1 + 2dm, — dimg1 = Sm41 — Gm+1-
Proof. Let 0 — &;5(—b;) — @;5(—a;) — Ir — 0 be the minimal free resolution of
Ir. Now iy = >, (M7 312) — > (m_gf+2). Taking differences, d,,, = ), max(m—
a;+1,0) =3 max(m—>b;+1,0). Now dp, —dm—1 = > p <, Gk — D <y Sk- Finally,
(dm+1 — dm) — (dm — dim—1) = gm+1 — Sm+1, Which is equivalent to the formula
claimed.

An alternate proof: both sides of the formula are the same for I+ and gin(Ir).
For the left-hand side, this is because they have the same Hilbert function, while for
the right-hand side it follows from the Cancellation Theorem. For gin(I), gmt1 =
dm+1 — dpym — 1 and s;41 = dyy, — dip—1 — 1, and the result follows by taking the
difference of these two equations. O

Proposition 4.15 (Hilbert-Burch Theorem). The minimal free resolution of gin(Ir)
is

0— @FS(—N —i—1) = (B} S(—\ —4)) @ S(—k) — gin(Ir) — 0.
The minimal free resolution of I is obtained from this by cancelling those S(—\; —
i) not corresponding to generators of Ip.

Proof. This is a direct consequence of Theorem 1.31 and the Cancellation Principle
(Corollary 1.21). O

Remark. The preceding proposition illustrates the much more general Hilbert-
Burch Theorem; see [E] for an algebraic treatment of this result.

Example 4.16. I" be a set of d points in the plane in uniform position with ds > 1
and dgyq > 4. Then d < s% + 1.

For any s > 1 and any set of points I' as above, we have that by (2) of
Proposition 4.12, ds1 > min(2k 4+ 2,s+ k+ 1) for any k > 1. By (3), this implies
that

d<14+24+ - +s+(s+1-1)+(s+2—-4)+(s+3—-6)+---+1
=14+2+--4+s+s+(s=-2)+(s=3)+---+1
_s(s+1) (s—1)(s—2)
= 5 + s+ 9
=s2+1. O
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Proposition 4.17. (Harris) Let Z be a set of points in the plane and W D Z a
complete intersection given by a regular sequence of degrees a,b. Then m + 1 —
Ay (W = Z) =deg1-m(W) — dey1-m(Z), where e = a + b — 2.

Proof. Let H be a general hyperplane. The ring R = Sy /Iw|g is Gorenstein with
socle in degree a+b—2, and thus the multiplication R,, X Rgtp—2—m — Retp—2 = C
is a perfect pairing. Now Iyy_z = (Iw : Iz), and thus if we let Iz, [y _z denote
the images of Iz, Iyy_ 7 in R = S/Iy, we see that in R, Iyy_z = (0 : I;). It follows
that the codimension of Iyy_z in degree m equals the dimension of I, in degree
e—m. Thus ic_n(Z) —ic—m(W) = hg/rw—_z(m). Taking differences, we see that
de—m(Z) - de—m(W) = hS/waz(m) - hS/IW*Z(m + 1) =m+2— dm-l-l(W - Z)
Replacing m by m — 1 gives the desired formula. g

We now turn to the more challenging subject of curves in P3.

Let C be a reduced irreducible non-degenerate curve of degree d in P3, and
let I be its homogeneous ideal. Let H be a hyperplane and I' = H N C the
associated hyperplane section. By the exact sequence

0—-Zc(m—1) = Zeg(m) — Ir(m) — 0,
we see that the restriction map Ic ,, — Ir ., is surjective for m >> 0. Thus
Ir = (Ic|w)™,

and the initial ideal of It in generic coordinates is constant on a Zariski open
subset of hyperplanes. Let Ag, A1,...,As—1 be the invariants of I' for a generic
choice of H.

We now will look at the generic initial ideal gin(I¢) of I¢. Since I¢ is satu-
rated, no generator of gin(I¢) involves x4. Let h be a general linear form on H,
and L the corresponding line in H. Then we may write

gin(Ig|p) = (a:f,x‘i_lxgs‘l,... o1 ht b)),

where s > 0 and pg > pt1 > -+ - > ps—1 > 0 because the ideal is Borel-fixed.

Definition 4.18. For any pair of positive integers (i1,12), let
folin,iz) = min{iz | 20 2b2l? € gin(Ic)},
where we allow for the possibility fc(i1,i2) = co.
Because gin(I¢) is Borel-fixed, if fo(i1,42) < oo, then
folin,iz) > fe(ir iz +1) > fol(in + 1,42).

Thus if 0 < fo(i1,i2) < oo, ! xéza:gcm’i?) is a generator of gin(I¢). We note that
folin,iz) = 0 if and only if z7'2%? € gin(I¢|L). The generators of gin(I¢) are x5,
aS Tl el 2h and 2222l ) for iy < g, and fo(iy,is) < co. We
note that if I' has invariants Ao, ... ,Ak—1, then s > k and p1; > A; for all 0 <7 < k.

Recall that for m >> 0, hg/;.(m) =1 — g+ dm, where d is the degree of C
and ¢ is the arithmetic genus of C. For C reduced and irreducible, g > 0. For C'
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smooth, g is equal to the geometric genus of C, defined as h°(Q¢) = ' (C, R);
if C is singular, we have only that ¢ is > the geometric genus, with the difference
being computable from the singularities. In what follows, genus will always mean
arithmetic genus.

Proposition 4.19. Let C' be a curve whose general hyperplane section has invariants
A0y -+ s As—1. The (arithmetic) genus of C' is

s =1+ G-+ (3 )= X s

i=0 f(i1,i2)<oo
Proof. For m >> 0,
m—+1—1
FPTIES DD DRI SR IORS

1=0 j=m+2—i—X\; f(i1,42)<oco

s—1 - 1
m+2—i m+2—i—\ o

X (MM X st
i—0 f(i1,i2)<oo

|
—

S

()\i(m—&-l—i)—();))—i- S flinia).

f(i17i2)<00

Il
o

i

On the other hand, hg/gin(1.)(m) = 1 — g(C) + md, where C has degree d. Since
>; Ai = d, we may cancel and obtain

1-a@) =Y -0 - G+ X S,
f(

i=0 i1,12) <00

from which the desired formula follows. O

Example. The general rational curve of degree 5 in P3.

The rlex gin of the ideal Ic of the general rational quintic in (3, 22z,
z173, o3, 2323). For a general hyperplane H, by Theorem 2.30, gin(Ic|y) =
(23, 239, 1123, 23, 2323), and by the same theorem, if I = C N H, gin(lt) =
gin((Io|p)®™) = (2%, 2123, 23), and thus the invariants are A\g = 3, \; = 2, k = 2.
The only finite but non-zero value of f(i1,142) is f(2,0) = 2. The formula of Propo-
sition 4.19 gives ¢g(C') = 0.

If we want to draw a diagram representing the rlex gin of a curve in P32, the
ideal way to do it would be to use a tetrahedron representing the monomials of
some degree d. Unfortunately, 2-dimensional projections of these are hard to read,
so I have come up with a schematic version.
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O

I am showing the monomials in x1, 22, 3 in degree 4, with the same positions
as for diagrams of ideals of points in P2, Referring to Definition 4.18, if fc (i, j) = 0,
we put a black dot (“X”) in the spot corresponding to xix;, i.e. in the 7 + j row
(counting the top as zero) and in the j’th spot from the left (counting the leftmost
spot as 0). If fc(i,j) = k > 0, we put a circle containing the number k in the
spot 4, 7. If fo(i,7) = oo, we put a blank circle in the spot ¢, j. Once again, once
we have a diagram whose bottom row is all black, saturation implies that we can
reconstruct the rlex gin from the diagram.

Once we have this diagram, the diagram of the general hyperplane section I’
is obtained by replacing all circles with numbers in them with black dots.

Corollary 4.20. Let C' be a reduced irreducible non-degenerate curve whose generic
hyperplane section has invariants g, ... ,As_1. Then

g(C) <1+ 2((1 — )X + <A2>)

Remark. In terms of diagrams, this says that the genus is obtained by counting
1 for each empty circle in the third row, 2 for each empty circle in the fourth row,
etc.(ignore the first and second rows), and adding, and then subtracting the sum
of the numbers inside circles. Try this for the diagram of the general rational curve
of degree 5 and see that you get 0.

Example 4.21. Constraints coming from g > 0.

We cannot have a reduced irreducible curve C' with gin(C) = (2%, 2122,
x3, x3x3). This is a Borel-fixed ideal, and gin(Ir) would be (2%, z122,23), which
corresponds to 3 points in uniform position. However, we would have g = —1,

which is forbidden.

Definition 4.22. We will call 3, ;)< fc(i1,42) the number of sporadic zeros
of C. It is bounded above by 1+ 37— (i — 1)\, + (%)). If it is zero, we will say

that C' has no sporadic zeros. If ' x22% ¢ gin(Ic) but f(iy,is) < 0o, we will say

that z{'z52x% is a sporadic zero of degree i1 + iz + i3.
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Example. The general rational quintic. Revisiting the general rational quintic in
P3, we see that it has 2 sporadic zeros, at 22 and z?x3, so of degrees 2 and 3.

The name “sporadic zero” is best understood by referring to the diagram of
the ideal of this curve. A circle with a number inside it represents that number of
sporadic zeros.

Proposition 4.23. The number of sporadic zeros in degree m is the dimension of
the cokernel of the restriction map Ic m|g — Ir m, or equivalently the dimension
of the kernel of multiplication by H, H: H(Zc(m — 1)) — HY(Zc(m)).

Proof. 1f x? x?w?;" is a sporadic zero of degree m, then it belongs to gin(Ir), but
not to gin(I¢), and conversely, any such monomial is a sporadic zero. Noting that
the dimension of the cokernel of the restriction map gin(I¢)|z,—0 — gin(Ir) is the
same as that of the ideals themselves, we obtain the first part. From the exact
sequence

0—Zc(m—1) = Ze(m) — Ir(m) — 0,
we see that
It fim(Ic.m) 2 ker(H : H' (Zc(m — 1)) — H' (Zc(m))),
which implies the second part.

Remark. The relevance of the map H: HY(Zc(m — 1)) — H*(Zg(m)) to our
considerations is inspired by the work of Strano, although of course he did not
phrase things in terms of sporadic zeros.

Proposition 4.24. Let C be a reduced irreducible curve in P3 with Ic having
minimal free resolution 0 — Fy — F; — Ey — Ic — 0. Then E5 = 0 if and only
if C' has no sporadic zeros.

Proof. If 0 — & — & — &y — Zc — 0 is the sheafification of the exact sequence
above, then for any m, we have that

R (Zo(m)) = ker(H3(Ea(m)) — H3(E1(m))).

If & = @;0ps(—ay), since the matrix defining the map from Es to E; has no
constant term, we see that H'(Z¢(a; —4)) # 0 for all j. Thus Ey = 0 if and only
if HY(Z¢(m)) = 0 for all m > 0.

By the preceding Proposition, C' has no sporadic zeros if and only if the map

H: H (Zg(m — 1)) — HY(Zc(m))

is injective for all m > 1. Since H'(Zc(m)) = 0 for m >> 0, this implies that
HY(Zc(m)) = 0 for all m > 0. O

Corollary 4.25. A reduced irreducible curve C has no sporadic zeros if and only
if I is equal to the ideal of m x m minors of an m X (m + 1) polynomial matrix
which drops rank in codimension 2.
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Proof. If E5 = 0, then the matrix giving the map E; — Ep is m x (m + 1) for
some m, and by Fitting ideals the ideal sheaf where this matrix drops rank is Z¢.
Conversely, if such a matrix drops rank in the correct codimension (2 in this case),
then its minimal free resolution is an Eagon-Northcott complex, which is just the
resolution &1 — &) — Z¢ — 0. Finally, by the long exact sequence for cohomology
one sees that I is generated by these minors. |

Remark. Once again, this illustrates the Hilbert-Burch Theorem.

Problem 4.26. For reduced irreducible curves C, what constraints are there on the
sporadic zeros, i.e. on the numbers fc(iy,i2)?

This problem is the fundamental unsolved problem in studying generic initial
ideals of curves in P2. We will give many examples of general classes of constraints,
of which the inequality on the number of sporadic zeros is the first.

Example 4.27. The generic initial ideal contains more information than the Hilbert
function.

The ideals I = (23, 23229, 2123, 23, 2222) and J = (23, 2229, 2123, 25, 2373,
r3x3) are Borel-fixed monomial ideals, hence equal their own generic initial ideals.
They have the same Hilbert function, but different generic initial ideals. I am not
claiming that they are both generic initial ideals of reduced irreducible curves.

We now want to discuss generic initial ideals for reduced, irreducible, non-
degenerate curves of low degree.

Example 4.28. Curves of degree 3. The only uniform position candidate for gin(Ir)
is (2%, 1122, 23). The genus bound implies that there are no sporadic zeros. Thus
gin(Io) = (23, 122, 23).

O

Note that the minimal free resolution of gin(I¢) is S?(—3) — S3(-2) —
gin(I) — 0. No cancellation is possible, so this is the minimal free resolution of
I by the Cancellation Theorem. Thus I¢ is generated by the 2 x 2 minors of a
2 x 3 matrix of linear forms. This is a rational normal curve (i.e. a twisted cubic),
which indeed has the generic initial ideal claimed.
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Example 4.29. Curves of degree 4. The only uniform position candidate for gin(Ir)
is (22, x122,73). There is thus at most one sporadic zero. If there are no sporadic
zeros, then Io contains two quadrics which cannot have a common factor, and
hence C is a complete intersection of type (2,2). Since gin(I) is Borel-fixed, the
only possibilities if there is one sporadic zero are gin(I¢) = (22, 7122, ¥, T373)

O

and gin(Io) = (22, 2123, 23, v12073).

O
O O

However, the first one of these has both generators of Ir belonging to the
image of I, and hence the restriction map Ic — Ir is surjective, contradicting
the existence of a sporadic zero. The second case indeed occurs as the ideal of a
general rational quartic, i.e. as a curve of type (1,3) on a smooth quadric.

An essential problem in eliminating false candidates for generic initial ideals
of reduced irreducible curves is that, once we have a saturated ideal whose general
hyperplane section is a collection of points in uniform position, we might have
the ideal of a reduced irreducible curve union a finite set of points. None of our
methods thus far have the potential to eliminate such cases. A beautiful idea of
Strano allows one to do this.

Let C be a reduced irreducible curve and H a general hyperplane, with
I' = CN H the general hyperplane section. We will denote H*: H'(Z¢(m —k)) —
HY(Zc(m)) the obvious multiplication map.

Definition 4.30. We will say that an element o € H*(Z¢(m)) is primitive if it does
not lie in the image of H.
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Remark. Equivalently, « is primitive if and only if its restriction ar € H*(Zr(m))
is non-zero; this is an easy consequence of the restriction sequence.

Proposition 4.31. (Strano [Str]) Let o € H*(Zc(m—k)) be an element of ker(H").
Then ar € (0:m%), i.e. ar is annihilated by all polynomials of degree k on H.

Proof. Since H is a general hyperplane, we may assume that the dimension of
ker(H*) is constant on a Zariski open set of hyperplanes containing H. If ¢y, ... ,t,
are homogeneous coordinates on the dual projective space of hyperplanes, and we
write H =Y.' | t;x;, then we may extend « to a homogeneously varying element
of HY(Zc(m — k)). If we now differentiate the equation H*a ~ 0 with respect
to ﬁ, we obtain z;, -+ x;,a + Hf;,...;; ~ 0 for some 8 € HY(Zc(m — 1)).
Restricting to I', we obtain x;, - --x; ar ~ 0. O

Proposition 4.32. Let the minimal free resolution of It be
0— @jS(—bj) — @iS(—ai) — Ir — 0.

Then there exists a non-zero element o € H(Zr(m—k)) which is annihilated by all
polynomials of degree k if and only if there is an element of @bj§m+2H2(OP2 (m—
k — b;)) that maps to zero in &;H*(Opz(m — k — a;)) under the natural map
induced by the resolution.

Proof. The sheafification of the resolution of It is 0— @;Op2(—b;)— &;Op2(—a;)
— I — 0. From this, we obtain that H'(Zr(m — k)) = ker(®; H*(Op2(m — k —
b;)) — ®iH*(Op2(m — k — a;))). Now an element of H?(Op2(q)) is annihilated
by all polynomials of degree k if and only if ¢ > —k — 2. Thus our element of the
kernel must belong to @y, <m+2H?(Op2(m — k — b;)).

Theorem 4.33. (Strano) If C' is a reduced irreducible curve and has a sporadic
zero in degree m, then It has a syzygy in degree < m + 2.

Proof. If C has a sporadic zero in degree m, then by Proposition 4.23 there is a
non-zero « € ker(H: H'(Zo(m — 1)) — H'(Zo(m))). Continuing inductively to
see whether « and its preimages belong to im(H), we obtain a primitive element
B € HY(Zc(m — k)) in the kernel of H*. Since f3 is primitive, Br is non-zero, and
by Proposition 4.31 it is annihilated by all polynomials of degree k. By Proposition
4.32, Br € ®p;<m+2H?*(Op2(m — k — bj)), and hence b; < m + 2 for some j. O

Corollary 4.35. (Strano [Str]) If C is a reduced irreducible curve whose hyperplane
section has the Hilbert function of a complete intersection of type (m,n), where
m,n > 2, then C' is a complete intersection of type (m,n).

Proof. Since the Hilbert function determines the generic initial ideal for a set
of points in the plane, we know that gin(Ir) is the same as that of a complete
intersection of type (m,n). By Corollary 4.9, this implies that " is a complete
intersection of type (m,n). Thus the only syzygy of It is of degree m + n. So C
has no sporadic zeros in degrees < m + n — 3. In particular, the restriction map
Ic — It is surjective in degrees m and n (since m + n — 3 > m,n by hypothesis),



170 M. L. Green

and hence the restriction map I — Ir is surjective. If F, G are elements of I~ of
degrees m,n going to the generators of Ir, then I = (F,G) and C' is a complete
intersection of type (m,n). a

Corollary 4.36 (Laudal’s Lemma). (Strano) If C' is a reduced irreducible curve of
degree d such that It ¢ # 0 and Ic s = 0, then d < 52 4+ 1.

Proof. We may assume that Ir ;_; = 0, as otherwise replace s by s — 1. Since
Ic,s — Ir s is not surjective, C has a sporadic zero in degree s, and hence I has
a syzygy in degree < s + 2. If d,,, are the difference sequence for I', then ds > 1,
since It s # 0. If d; = 2, then since by uniform position the two independent
elements of Ir s cannot have a common factor, so there must be a generator of
It in degree s + 1 in order for there to be a syzygy by degree s + 2. This forces
dsy1 > 4. If ds = 1, then there must be at least 2 generators of It in degree s+ 1,
as otherwise the syzygy of degree < s+ 2 would give a common factor and violate
uniform position. So in this case, ds11 > 4. If ds > 3, then by (1) of Proposition
4.12, dsy1 > 5. So in all cases, we conclude ds > 1 and ds11 > 4. Now by Example
4.16, this implies d < s? + 1. O

In proving Laudal’s Lemma, we are far from using the full strength of Strano’s
method. For example, we have:

Proposition 4.37. Let C' be a reduced irreducible curve with Ic s = 0 having
difference sequence for I' given by (ds,ds+1,ds+2,...) = (1,4,6,...). Then C has
no sporadic zeros in degree s + 1.

Proof. By Proposition 4.14, the minimal free resolution of Ir must be of the form
0— S(—(s+2) @ (®;5(=b;)) — S(—=s) @ S*(—(s+1)) ® (®:S(~a;)) — Ir — 0,
where a; > s+ 1 for all 4 and b; > s+ 3 for all j. Let us introduce the notations

N = {a € H'(ZI¢(k)) | H" *a = 0} and NJ* = {a € H'(Ir(k)) | Pa =
0 for all P € H°(Oy(m —k))}. There is an exact sequence

0— NF |, - N™, — N"— N™

From the resolution for I, we see that N?_; = N 2 C and N?_, = N:T) = C,
while Nij = N,j“ =0for k #s—1,s—2. Also, ]\7,2” = 0 for m < s. From the
exact sequence above, we conclude that dim(N**)) < 1. If @ € N1} is non-zero,
then because N, has dimension 1, the two linear forms which annihilate ar lift
to two linear forms [q,l> that annihilate a. If we write [;a =¢ P;, where P; is a
homogeneous polynomial of degree s — 1, then [{P, — 3P, =¢ 0. Since I¢s =0
by hypothesis, we conclude that there exists a polynomial U of degree s — 2 such
that P; = [;U for i = 1,2. Now l;(a — U) =¢ 0, and this forces « — U =¢ 0, and
then a is zero in H'(Z¢(s — 2)). Thus N1, = 0.

Now by the exact sequence above, dim(N, firll) < 1. However, the sporadic
zero of degree s gives an element of this space, and hence there is room for no
other element. Any sporadic zero of degree s+ 1 gives a primitive element of some
N,‘:H, and hence there cannot be one. O
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We now introduce some standard notation. On P", if V. = H°(Opn(1)),
then define a bundle M by 0 - M — V ® Opn — Opn(l) — 0. One may
identify A2V =2 H°(M(1)). On P3, an element of A%V of rank 4 gives a surjection
M* — Ops(1) — 0 whose kernel is a rank 2 vector bundle E. A bundle arising in
this way is called a null-correlation bundle.

Let 0 € H°(P3, E(s)), where E is a null-correlation bundle. For s > 2, a
general o defines a smooth curve C. We now have a resolution 0 — A2E*(—2s) —
E*(—s) — Z¢ — 0. If H is a general hyperplane and I' = C' N H, we also have
0 — A2E*|g(—2s) — E*|g(—s) — Ir — 0. From this, we see that h°(Z¢(s)) =0
and h°(Zr(s)) = 1. A Chern class computation shows that deg(C) = s% + 1.
Corollary 4.38. (Gruson-Peskine, Strano) If C' is a reduced irreducible curve of

degree s%2 + 1 such that Ics =0 and Ir s # 0, then if s > 3, C' is a curve arising
from a null-correlation bundle.

Proof. If ir s > 2, then the difference sequence d,,ds41,... for I' is at least
2,4,6,..., and this gives degree > s? + 2. So ir s = 1, and by Proposition 4.12,
ir,s+1 > 4. Hence the difference sequence is at least 1,4,6,..., and since this

gives degree s? + 1, we must have equality. We use the fact s > 3 to conclude that
dsyo = 6, for which we need that 6 < s+3. Now C' has one sporadic zero in degree s
and none in degree s+1. However, since I is generated in degrees < s+1 by Propo-
sition 4.12, this implies that C has no sporadic zeros except for the one in degree
s, as Ic — Ip . is surjective if k > s+ 1. Thus H: H (Z¢(k)) — H(Zo(k + 1))
is injective for k > s, and hence H'(Zc(k)) = 0 for k > s. Using the fact there
is one sporadic zero, we conclude that H!(Z¢(s — 1)) has dimension 1, and thus
a € ker(H) may be taken to be constant. Since F' =¢ Ha, we see that F' has de-

gree 1 in t, and hence the xi% — xj% are constant, and so is the linear relation
j i

between them. This gives an element of A2V, and one sees that dF is a section of
a twist of a null-correlation bundle, and the result follows. O

Comments for students:

This chapter reverses the historical order. The fundamental result was that
of Gruson-Peskine, which was then improved to the result of Ellia-Peskine [E-P],
[D]. I found this latter result independently, and it is interesting to compare the
initial ideal proof with theirs. This section illustrates the strength of the generic
initial ideal approach in proving geometric results. Further evidence is found in
Michele Cook’s powerful generalization [C] of the result of Gruson-Peskine on con-
nectedness of the numerical character [G-P] and the work of Braun and Floystad
bounding the degree of smooth surfaces in P* which are not of general type.

The topic of curves in P? is a very large area with many beautiful results,
and I hesitate to attempt to give a list of the principal papers. There have been
many fruitful points of view other than the one presented here. I have been most
strongly influenced by the work of Gruson and Peskine, and by Strano. Floystad’s
work on higher gins [F| carries forward the point of view in this chapter; see also
the upcoming Berkeley thesis of Rich Liebling [Li].
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There is some overlap in this chapter with the approach of M. Amasaki [A].

Algebraists seeking a foothold in this chapter should look at the treatment
of the Hilbert-Burch Theorem in Eisenbud’s book (pp. 501-502 of [E]). Corollary
4.35 to Strano’s Theorem has a beautiful algebraic proof by Huneke and Ulrich
[H-U]; perhaps some of the other results in this chapter can be done and perhaps
improved by building on their work.

A highly interesting open problem is to generalize the Ellia-Peskine Theorem
to points in P? and higher.

The diagrams used in this chapter are my invention, although they grew out
of Dave Bayer’s thesis. I use them much more often than is evident in these notes.
The illustrations were created by a Mathematica routine I wrote (which I am
happy to share), which produces the diagram if you give it the gin.

5. Gins in the Exterior Algebra

Some of the results discussed in this section have been found independently by
Aramova, Herzog, and Hibi [A-H-H]; indeed, it is my impression that they have
gone substantially beyond what I present here.

Let V be a vector space spanned by z1,...,z, and E = A*V = @&, APV the
exterior algebra in V. If I = @[} is a homogeneous ideal in A*V, initial terms,
in(I), and gin(/) are defined exactly as before. We do not need to worry about
bounding the regularity, since every ideal dies by degree n.

Most of the important theorems for ideals in the symmetric algebra go
through for the exterior algebra, but in many cases the results are nicer. For
example, Macaulay’s bound is different, reflecting the slower growth of the exte-
rior algebra. The bound is realized by the lex segment ideals, and Gotzmann’s
Persistence Theorem goes through unchanged for this new bound.

Another nice feature of the exterior algebra is that all of the monomial orders,
lex and rlex, agree, because all variables appear to at most the first power.

A finitely-generated graded module M = & M}, over A*V has a minimal free
resolution of the form

b3 —F, —F — Fy— M —Q0,
where
Fp = @iE<_q)bpq7
where for any p only finitely many of the b,, are non-zero. What is different is
that this resolution need not be bounded on the left, i.e. F,, may be non-zero for
arbitrarily large p. For any M as above, there is an analogue of the Koszul complex
By with B} = SPV ® Mj,_, and maps given by the composition
SPV @ My_p — SPTIV RV R My — SPV @ My_pi.
An easy argument shows that
bpq = dim(H?P(By)).
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By analogy with the symmetric case, we will call max{g—p | byq # 0} the regularity
of M and denote it reg(M). For an ideal I C E, we have that reg(l) < n.

The basic theory for exterior ideals is essentially the same as that for sym-
metric ideals, with occasional subtle differences which I will point out as we go
along. The same argument proves the existence of gin(I) and that it is Borel-
fixed. The ideal in(7) is a flat deformation of I as before, and the minimal free
resolution of I is obtained from the minimal free resolution of in(I) by cancelling
some twists of E which occur in adjacent slots of the resolution. If we define
(I:H)={P|HAPel}/(INn{HAQ}), then the same argument shows that
gin(I : H) = (gin(I) : x,,).

The minimal free resolution of a Borel-fixed monomial ideal in F is described
by saying that the leading terms of syzygies involving a monomial 2! are precisely
r; ® x1 where i < max{k | k appears in I}, and that for p’th syzygies the leading
terms are exactly z;, @ z;, | ® - @ x;; ® z!, where i, <i,_1 <. <i; < max{k |
ir # 0}. Note the small but important difference from the symmetric case lies in
the < signs replacing < — this is why resolutions of symmetric modules end after n
steps while resolutions of exterior modules just keep growing. Another consequence
of this resolution is that we have once again that for any homogeneous ideal I,
reg(I) is equal to the maximal degree of a generator of gin(I), and the minimal
free resolution of I is obtained from the minimal free resolution of the Borel-fixed
ideal gin(I) by cancellation of some adjacent terms with the same twist.

For any integer ¢ > 0, we let

() )

be its Macaulay representation. We will denote

K ko K
@ _ [ Fa a1\ L 5
¢ (d+1>+(d>+ +<5+1>'

Theorem 5.1 (Macaulay’s Bound for Exterior Ideals, Kruskal-Katona Theorem).
Let I C A*V be an ideal with the Hilbert function of A*V/I denoted by h(d). Then

h(d+1) < h(d)!?.

Remark. Theorem 5.1 is due to Kruskal-Katona and Schiitzenberger.

Theorem 5.2 (Hyperplane Restriction Theorem). Let I C A*V be an ideal with
the Hilbert function of N*V/I denoted by h(d). Let H be a general hyperplane and
Iy denote the restriction of I to H and hyy(d) the Hilbert function of N*(V/H)/I.
Then

hi(d) < h(d)<g>-
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Proposition 5.3. Let I be a homogeneous exterior ideal with Hilbert function h.
Then for all d > 1,

d
h(d) < () h())<a>-
j=d—1
Proof. We will prove the foregoing three results at once, doing induction on both
d and n. Replacing I by gin(/) in all cases, we may reduce to the case when I is

a Borel-fixed monomial ideal. We let F, E denote A*V and A*(V/zy,).

Proposition for d,n — 1 implies Hyperplane Restriction for d,n: We may write
I, =J4 —&—_and,l. Because [ is Borel-fixed, mJ;_1 C Jy. Let J be the homogeneous
ideal in ' generated by Jq—1 and Jg. Now hg/(d) = hg,;(d) + hg/;(d = 1), so
by the proposition hg,;(d) < hg/1(d)<a>, but Jg = Ials,,.
Hyperplane Restriction for d,n and Macaulay’s Estimate for d,n — 1 imply Ma-
caulay’s Estimate for d,n: As above, we write Iy = Jg + xpJg—1. Now Iz =
Jat1+xnJa, and thus hg/r(d+1) = hg,;(d+1)+hg,;(d). If hgr(d) has Macaulay
representation kg, ..., ks, then hg, ;(d) < (kdd_l) + -+ (k‘;gl). It follows that
hg/s(d+1) < (kdtll) N (’?J:ll), and adding these together gives hg/r(d+1) <
(dljj‘l) + -4 (51151) as desired.
Macaulay’s Estimate for d—1, n implies the Proposition for d, n: Let h(d—1)+h(d)
have Macaulay representation ug, ... ,u,. Then (h(d — 1) + h(d))<a> = (“dd_l) +
-+ (““ﬂ_l) If h(d) is strictly larger than this, then, subtracting, h(d — 1) <
(44t (“;:11). Now using Macaulay’s estimate, h(d) < (“*, ')+ -+ (““;1),
contradicting our assumption that h(d) was larger than this. ([
Theorem 5.4 (Gotzmann’s Persistence Theorem for the Exterior Algebra).
Let I be a homogeneous ideal in the exterior algebra generated in degrees < d+ 1.
If in Macaulay’s estimate,

h(d+1) = h(d), thenreg(I) < d and h(k+ 1) = h(k)
for all k > d.

Proof. By comparing I with gin(I), we note that the ideal generated by gin(I)q
must achieve Macaulay’s bound in degree d, and thus gin(/) cannot have a gen-
erator in degree d + 1. By the Crystallization Principle, this means that gin(7) is
generated in degree < d and therefore reg(I) < d. It further means that the ideal
generated by I; and gin(I) have the same Hilbert function, and so we may replace
I by gin([).

We now write Iy = Jq + x,Jq—1, where Jg, Jg_1 involve only z1,... ,xp_1.
Let J be the homogeneous ideal generated by J;_1 and Jy in E. Since mJy_1 C Jg,
we have that Iy41 = Jat1 + 2nJa, and thus kg (d+1) = hg,;(d+1) + hg,;(d)
and hg/r(d) = hgyy(d) + hgs;(d —1). If hp/r(d) has Macaulay representation
Ud, - - yus, and h,;(d—1) has Macaulay representation lg—1, ... ,l, and hg,;(d)

has Macaulay representation kg, ... ,k,, then (;fl) + e+ ((;fl) = (kj) + -+
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Coy () + o+ (B = G+ + () — ¢, where J fails to achieve

Macaulay’s bound at degree d by € > 0. We know that (kj) 4+ (’Z‘) < (udd_l) +
-+ (**5°1) by the Hyperplane Restriction theorem and monotonicity of <?>, and
thus (dfl) 4+t (;fl) < (dfl) + o+ (;fl) — ¢, from which we conclude that
e =0 and k; = u; — 1 for all <. Thus J achieves Macaulay’s bound in degree d,
and thus by induction, J achieves Macaulay’s bound for all degrees > d. However,
Itt1 = Je1 + x,Jy for all & > d, and now we can read off that hg,;(k+1) =
(l;fl) + e+ (k+11f57d) for all k > d, achieving Macaulay’s bound for all these
degrees. O
There are several reasons why the exterior algebra is important even to com-
mutative algebraists (Most of my friends who are commutative algebraists have
at one time or another expressed the sentiment that the exterior algebra “might
as well be commutative”). One reason is that minimal free resolutions of sym-
metric modules are computed by Koszul cohomology, and the properties of the
exterior algebra can be used to deduce purely commutative consequences — an en-
couraging example is the solution of the Eisenbud-Koh-Stillman conjecture [G4].
Another reason is the following well-known construction, which I learned from
Bernd Sturmfels:

Construction 5.5 (Stanley-Reisner Algebra of a Simplicial Complex). There is
a 1-1 correspondence between simplicial complexes with n vertices and monomial
ideals in £ = A*V where V has dimension n. Given a simplicial complex ¢ in ver-
tices ey, ... ,en, we include ¥ € I, if and only if the simplex e/ does not belong to
o. If X does not belong to o, then no simplex containing e” can belong, so I, is an
ideal. Conversely, the same procedure, given a monomial ideal I, leads to a simpli-
cial complex o;. If fx (o) is the number of simplices e € o such that |K| = k, then
fr(0) = hg (k) by construction. This allows one to reinterpret Macaulay’s bound
on the growth of exterior ideals (=Kruskal-Katona Theorem) as an inequality on
the growth of the number of faces of dimension k of a simplicial complex.

Example. A square.

Let o be a square with vertices ey, es, e3,e4 and edges ejeq, eses, eseq, eq€1.
The ideal I, is the ideal generated by z1 A 3,22 A x4.

Definition 5.6. Let h be a linear form. For any ideal I C FE, there is a complex
W*(E/I,h) given by

(E/D)o o (B/T) A 2 (B)T),,.

Proposition 5.7. Let I C E be a monomial ideal. If h = )~ t;x;, h' =), siz; be
two linear forms such that t; # 0, s; # 0 for all 1 <i < n. Then H*(W*(E/I,h)) =
HF(W*(E/I,N)) for all k > 0.

Proof. The map z; — (s;/t;)x; preserves the monomial ideal I and gives an isomor-
phism of complexes W*(E/I, h) — W*(E/I,h’) which induces an isomorphism on
the cohomology groups. (|
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Definition 5.8. For a monomial ideal I and h =Y | x;, we denote by H*(E/I)
the module H*(W*(E/I, h)).

Definition 5.9. Given a simplicial complex o on the set of vertices {1,2,... ,n},
let o, be the vector space spanned by the k-simplices in o, {eX € o | |K| = k+1}.
The complex o4 is defined by

UnLO'nfli) U i’(707
where O(ei-ir) = Zj(—1)jei1"'i1*1iﬂ'+1"‘ik. The k’th simplicial homology Hy (o)
of o is Hy(cos). The reduced simplicial homology Hy (o) is the cohomology of the
augmented complex o obtained by setting o_1 = k and defining 9(e;) = 1 for all
i; this differs from Hy(o) only for k = 0.

I am not sure to whom to attribute the following result, which once again I
learned from Bernd Sturmfels:

Theorem 5.10. Let o be a simplicial complex. Then for all k, the simplicial ho-
mology Hy(o) = HFY(E/I,)*.

Proof. The complexes 7o and W*+t!(E/I, h) are dual to one another, where h =

> T O

Remark. If E is the exterior algebra on V/h, then ®,H*(E/I,) is an E-algebra,
although the exact structure depends on the choice of h. It is not clear geometri-
cally what this algebra structure corresponds to. It would be nice to have interpre-
tations of the discrete invariants of this E-module in terms of the geometry and
combinatorics of o.

Example. Homology of the square.

Returning to the example of the square, where I, = (21 A 23,22 A z4), if
we take h = 1 + x2 + x3 + 24, then the complex W*(E/I,h) is k — V —
A?V/I,2 — 0 — 0. This is exact at the two terms on the left, but fails to be
surjective at A2V/I, 5, where the cokernel is 1-dimensional. By Theorem 5.10, one
has Hy (o) = k and all the other Hj (o) vanish.

Comments for students:

Although differential geometers and algebraic geometers appreciate the exte-
rior algebra because it supplies the correct framework for integration on manifolds
via the theory of differential forms, commutative algebraists perhaps undervalue
it. A good starting place for seeing how combinatoricists use it is Chapter 2 of
Stanley’s book [St]. Stanley gives a good set of references to the literature for this
topic. I also recommend the paper of Aramova, Herzog, and Hibi [A-H-H].

One way the exterior algebra is useful even in strictly commutative algebra
is via the Koszul complex; see my notes [G1] for a survey. I also recommend my
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paper [G4] for a hint of ways that more subtle facts about the exterior algebra
can be applied to commutative problems. An especially recommended method of
learning about the exterior algebra is to have some coffee with Bernd Sturmfels.

It would be interesting to see further how the geometry and combinatorics
of a simplicial complex is reflected in its Stanley-Reisner algebra.

A beautiful area where the exterior algebra is used is in the field of exterior
differential systems (A wonderful modern treatment is [B-C-G3].) I suspect that
looking at the initial ideals of the ideals in the exterior algebra arising from exterior
differential systems would prove interesting.

6. Lexicographic Gins and Partial Elimination Ideals

Let I = @I be a homogeneous ideal in k[z1,...,z,]. In what follows, we will
look at the generic initial ideal of I for the lexicographic order. We will also look
at some information that is finer than the gin. The remarkable feature of lex gins
is how much geometric information is encoded in them.

Definition 6.1. Ifp € I, has leading term in(p) = xfl ceex

the leading power of x1 in p. We set
Ky(I) = ®afp € Ia | di(p) < k}.

prﬁ f(k(l), then we may write uniquely p = x¥p+q where dy(q) < k. The image
of Ki(I) in k[za,... ,2,] under the map p — p we will denote K (I). We call
K, (I) the k’th partial elimination ideal of 1.

drn
n

, we will set d1 (p) = da,

Remark. K (I) is a homogeneous ideal in k[zs, ... ,x,] and Ki(I) is a graded
module over k[za,...,xy]. The ideal Ky(I) is just the ideal obtained from elim-
inating the variable x1; geometrically it corresponds to the procedure of project-
ing I from the point p = (1,0,...,0). We note that f € f(k([)d if and only if
mult,,(f) > d—k, ie iff f € (z2,... ,2,)"% = I9%, where I, is the homogeneous
ideal of p.

We now give a geometric interpretation of the Ky (I). Let Z = Var(I). Let
7 denote projection from (1,0,...,0) mapping P"~! to P"~2. Set-theoretically,
Ko(I) is the ideal of 7(Z).
Remark. If we take the initial ideal of I for either the lexicographic order or for

the elimination order 1, n — 1 (this means to use lexicographic order on z1, but
then rlex for the remaining variables), then in(I) = >°, a¥in(Ky(I)).

Proposition 6.2. Set-theoretically, K (I) is the ideal of {p € w(Z) | mult,(7(Z))
> k}.

Proof. Let p=(1,0,...,0) and let L be a line through p. Then f € f(k(I) if and
only if mult,(f) > d — k. If we have the length estimate [(Z - L) > k + 1, then
flr =0 for all f € Ki(I) and thus L belongs set-theoretically to the zero locus
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of K (I). Conversely, let P be the ideal of p. For d >> 0, the map P *N1I; —
H(Zz.14+(d—k)p(d)) is surjective, and thus there is an element of K. (I) that does
not vanish identically on L if I(Z - L) < k. If L is the point corresponding to L
under projection from p, then multy (7(Z)) = I(Z - L). O

Definition 6.3. For a homogeneous ideal I, the Jacobi ideal J(I) is the ideal gen-
erated by Of /Ox; for f € [ and 1 <i < n.

Proposition 6.4. For a general choice of coordinates, J(Ky_1(I)) C Ky(I) for all k.

Proof. We apply Lemma 2.16. Fix a degree d and let W = k[xy,... ,2,]q. Let
WP be those polynomials spanned by monomials 2! with i; < k. Let V = I; and
M the linear map q — x19q/0x;, i # 1. Then g(t) is the one parameter family
associated to the substitution x; — z; + tz1. Note that M(WP?) C WP~! because
we increase the power of 1 by at most one. Further, V*(t) = Ky (g(t)(14)). We may
identify V*(¢) + W**! with Ky (I)q + WL If we are using general coordinates,
the dimensions are locally constant, and the result now follows. O
This elementary result is actually quite powerful. For example:

Proposition 6.5. Let Z be a smooth projective variety. For projection m from a
general point of P!, if f € I(z), then Of /Ox; vanishes on the singular locus of
(2).

Proof. If f € Ko(Iz), then 0f/0z; € K1(Iz), and one now uses Proposition 6.2 to
interpret this geometrically. O

Remark. In general, for a variety Z of codimension ¢, it is only the ¢ x ¢ minors
of the matrix of first partials of the generators of the ideal of Z that vanish on
the singular locus of Z, so this gives a condition on the singular locus of a general
projection (This condition is local, so the conclusion is also true of analytic func-
tions vanishing on Z in a neighborhood of a point.) For example, if Z is two lines
in P3 lying in a plane, then Z does not have this property.

We recall, if V' is a vector space and M = &,M, is a finitely-generated graded
module over S(V'), we denote by K2, (M, V') the Koszul complex

. — /\P+1V®Mm7p71 — APV®Mm7p N /\P*1V®Mm7p+1 — e
with the indexes set up so that K P = APV ® M,,_, and denote

’Cp,q(Ma V) = H_p(IC;+q(M7 V))
Proposition 6.6. Let I be a homogeneous ideal in klxy1,...,xy,]. Let V be the vector
space spanned by x1, ... ,x, and V' the vector space spanned by xa, ... ,x,. There

is for each m, a spectral sequence with EY"? = K_p,_g m1op1q(K_p(I),V) abutting
to K—p—gm+2p+q(1, V).

Proof. We filter I by FPI = K_,(I), and thus Gr*I; = K_,(I)ay,. It follows (see
[G-H],p. 440) that there is a spectral sequence with

EPT = HPH(KCS, (G 1, V)
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which abuts to HPTIKCy, (I,V). Thus EY? = K_)_gmyopsq(K_p(I), V) and we
converge to K_p,_g m+2p+q(L, V) as desired. O

Corollary 6.7. Let Z be a reduced projective variety in P! such that p =
(1,0,...,0) is not a component of Z. Then Ko(Iz) is saturated and (Ki(Iz) :
ﬁ'l)d/Kl (IZ)d injects into ,Cnfg’d+2(K0(I), V)

Proof. We note that if f € (Iz : m), then a;f € I for all ¢ > 2. Since p is not
a component of Z, this implies that f vanishes on Z, and therefore f € Iz. So
(Iz : m) = Iz. Tt is now a simple matter to apply the preceding proposition. To
give the flavor of the argument, we give a more explicit version of the proof.

If f e (Ko(Iz) : m), then z;f € Ko(Iz) for ¢ > 2. By the preceding para-

graph, it follows that f € I and it is also clear that f € k[za,...,z,], so
feKo(lz).

If f € (Ki(Iz) : m)g, then there exist g; € K (Iz) such that g; = 1 (i f) +
hi, where h; € kl[za,...,xp)are. Now zig; — x;9; = x;h; — x;h; gives an ele-

ment of A*V* @ Ko(I)ay2 = A"3V @ Ko(I)a42, which represents an element, of

Kn—3,a+2(Ko(I),V). If it represents the zero element, then we can write z;h; —
xjh; = xyu;—xju, for some u; € Ko(I). Since x;(h;—u;) = xj(h;—u;), we conclude

that h; = u;+x;v for some polynomial v € k[zs, ... ,z,]. Now g; —u; = x;(x1 f+v),
and the left-hand terms belong to Iz. Thus 1 f + v € (Iz : m) and hence in I.
It follows that f € K1(Iz). O

Remark. The preceding Corollary is just a sample of the implications of Propo-
sition 6.6.

The following proposition and its corollary are joint with David Eisenbud,
when we spent a week at Stockholm University thanks to the hospitality of Jan-
Erik Roos. We suspect that in some form or other they are probably known.

Given f, g polynomials of the form f = Z?;O 28 fay—iy g = Z?io 28 gay—i, let
us consider the f;, g; to be new variables. The Sylvester matrix Syl(f,g) is the
(dl + dg) X (dl + dg) matrix

fo fr fo - 0 0
0 fo fr - 0 0
0 0 0 - fo1 fa
Jgo 91 g2 - 0 0
0 g0 ;1 -+ 0 0
0 0 0 - Ggdp—1 Gdo

Let Syl (f,g) denote the first (dy + d2 — k) columns of Syl(f, g).
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Remark. The determinant of Syl(f, g) is just the resultant of f and g.

Proposition 6.8. Let I = (f, g), where the coefficients of f and g are independent
variables. We take dy < dy and fo = 1.

(1) The maximal minors of Syl,.(f, g) define a variety of the expected codimension
k+1;

(2) The variety defined by these minors is the set of f,g having a common factor
of degree > k + 1;

(3) Ki(I) is the ideal of maximal minors of Syl (f, g).

Proof. Let R = k[fo,---, fdy,90,--- ,9ds)- Then Syl (f,g) is the matrix of the
linear map R[z]s,—1 @ R[x]q,—1 — R[z]4, +dy—1/span(l,z,... ,z*"1) given by
(A, B)— Af+Bg. Thus ker(Syl,,1(f,9)) ={(A, B)| Af+Bg € span(l,z,... ,z")}.
We want to apply Syl (f,g) to this kernel. Syl,.(f,g) fails to be surjective for a
particular set of values of the f;, g; iff the space of solutions of Af + Bg = 0 has
dimension > k + 1, i.e. f and g have a common factor of degree > k + 1. The
space of such f, g has the expected codimension in the set of all f,g. It therefore
follows that the maximal minors of Sy, ;(f,g) span the kernel, in the sense that
if we pick dy + dp — k of the rows of Syl, ,,(f,g), taking the coefficients of A, B
corresponding to these rows to be the minors and taking the other coefficients
of A, B to be zero gives an element of the kernel, and these solutions span the
set of all solutions. The image of the solution just given under Syl,(f,g) is the
(dy + dy — k) x (dy + da — k) minor of Syl (f,g) determined by these rows. O

Corollary 6.9. Let f, g be general polynomials of degrees dy,ds in n variables. Let
I=(f,g). For k <n—3, K(I) is the ideal of maximal minors of Syl (f, g), and
this is a determinantal variety having the expected codimension k + 1.

Proof. For a general choice of the f; and g; as polynomials in n — 1 variables, the
matrix Syl; ,; drops rank in either the expected codimension k 4 2 or else is the
empty set, which has codimension n — 1 in P"~2. The preceding argument is thus
OK unless k + 2 > n — 1, so the argument works if &k <n — 3. O

Remark. If d; < ds, the first do rows of Syl,(f,g) have entries of degree 0,
and thus for k£ < di, we get the same ideal of maximal minors if we use only
those minors containing all of the first dy rows. We may thus express K (I) under
the conditions of the Proposition or its Corollary as the maximal minors of a
dy x (d1 — k) matrix whose 4,7 entry has degree do + 1 — 4 + j. We also get that
for any n, that K4, _1([) is given by the entries of Syl; _(f,9).

Remark. It is quite easy to find examples where the corollary breaks down if
k > n—3, for instance for K1 (Iz) for Z a set of points in the plane (k = 1, n = 3.)
The reason that lex gins even of complete intersections f,g are so complicated
is that, first of all, if the K (I) are given by resultants, then the initial terms of
the Kj(I) are the lex gin of a determinantal variety in one fewer variable, and
the lex gins of these can be complicated. For k large relative to n, the resultants
don’t work, and even if they do, as we progress to fewer and fewer variables, any
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determinantal description we may have will break down as we pass the expected
codimension. On the other hand, for f,g, as the number of variables goes up,
the K (I) stabilize as determinantal varieties. If we use the 1,n — 1 order on the
variables (i.e. rlex in the last n — 1 variables), the gin will stabilize once the lower
of the two degrees is <n — 2.

Example 6.10. A complete intersection curve of type (3,3) in P3.

The lex gin of a general complete intersection of two cubics in 4 variables is 3,
22 (xo, 23, 2323, x3), w1(xd, 2323, w3xsnd, x323, 2323, ¥dwizy, 2dadad, v3xdad,
2373, 23x], 1oaf, xoxla?, xoxSad, xowdxl, Towixd, woxdxll) woxlal? zowsall,
woxi8, 218), 9. The lex gins of K5(I) and K;(I) occur in parentheses. The x9 at
the end is the lex gin of K((I), which is the saturated ideal of the projection 7 (Z)
of the curve Z; this is a plane curve of degree 9. By the remark following Corollary
6.9, since 1 < 4—3, K1(Iz) is a determinantal ideal of a 3x 2 matrix whose columns
have degrees 3,2,1 and 4,3,2, and thus whose maximal minors have degrees 4,5,6,
and that K5(Iz) is given by the entries of the 3 x 1 matrix with entries of degrees
3,2,1 because 2 = d; — 1. We know that K;([) is the saturated ideal of the double
point locus of 7(Z), and can read off that it has degree 18, i.e. there are 18 double
points. We could also compute this geometrically, since by the adjunction formula
the canonical bundle of Z is Kz = Oz(3 +3 — 4) = Oz(2), and thus deg(Kz) =
2-3-3=18,s0 29 —2 =18, so g = 10. The genus of a plane curve of degree d
with nodes is (dgl) — §, where there are 6 nodes, and thus 10 = (g) —d,s0 0 =18.
K5(I) is not saturated, and it defines the empty ideal, which is expected since
there are no triple points for a general projection of a curve in P3. Nevertheless,
K5(I) contains a line and a conic, and naturally associates to Z and the center of
projection p a plane through p and two lines through p in this plane, which project
to 2 points in P2. It is useful to compute the generic initial ideal for the order 1 3,
i.e. we use lexicographic order on the first variable, but reverse lex in comparing
monomials in the last 3 variables. This gives us the rlex gin of the Kj(I). For
this order, the gin of I7 is: 23, 2% (ve, ¥3, w323, 21), w1 (2, 2322, 2323, 2023, 27), 29.
From this, we can read off the numerical character of the set of double points of Z,
and see that the 18 double points lie on a quartic and a quintic and an additional
sextic — notice that 18 general points do not lie on a quartic, and that 18 general
points on a quartic do not lie on a quintic.

O
O O
O OO0
0 O OO0
e O O OO
e ¢ ¢ O OO
e o 0 0 0 0o O
e o 0 0 0 o o o
e 0o 06 0 0 0 0 o o
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The quartic and the quintic intersect in 20 points, the 18 double points and
2 residual points. The rather remarkable fact, which we leave as an exercise to the
reader, is that the 2 residual points are precisely the 2 points determined by the
linear and quadratic forms in K5 (Iz)!

Example 6.11. The general complete intersection curve of type (2,2,2) in P*.

We let Z be a general complete intersection curve of 3 quadrics in 5 variables.
Geometrically, Z is a canonical curve of genus 5 in P, In the 1 4 order, the gin
of Iz is 22,11 (w2, 23,3, 245, T3 ), T3, ¥322, 237323, 2023, ¥4, The last 5 terms are
the rlex gin of 7(Z), which is the saturated ideal of a curve of degree 8 and genus
5 in P3.

We note that 7(Z) lies on a cubic V. Now K7 (Iz) is not saturated and defines
the empty variety, reflecting the fact that a general projection of a curve in P* into
P? has no double points. However, the two linear forms define a line L in P3. The
first remarkable fact is that L is contained in V. The two quadratic forms in K (Iz)
are the restrictions of the partial derivatives of V' to L. The second remarkable fact
is that m(Z) belongs to the linear series |2H +2L| on V, where H is the hyperplane
bundle. We leave to the reader the enjoyable task of proving these two facts. If we
continue the story by looking at the ideal of 7(Z) in the 1 3 order, we find that its
gin is x%’,x%(w%,mu,ximx%,mm%,xé),xg(cvé,m%xi,x%xi,mxixﬁ),x%. The last
term reflects the fact that the general projection of 7(Z) into P? is a plane curve
of degree 8. From the rlex gin of K (I) we see that there are 16 double points for
this projection, lying on a quartic (and 2 quintics).



Generic Initial Ideals 183

Since Z was a canonical curve, Kz = H, and on the other hand, if D is the
double points locus and D is its preimage in P3, we have that Kz =~ 5H — D7 from
which we conclude that D = 4H, and thus that D, counted twice, is the complete
intersection of the second projection of Z with a plane quartic. Ka(Ir(z)) is a
regular sequence of 3 conics in P2.

Remark. One of the most interesting uses of lex gins, as these examples show, is
their fertility in suggesting geometric constructions. Given a variety Z of a certain
type and a general linear space, one gets a number of distinguished cones over the
linear space. Many of these are not at all obvious geometrically.

We note that there are some interesting further invariants associated to the
partial elimination ideals.

Definition 6.12. For any ideal I and any choice of coordinates, if f € Ki(I)q4,
then there is a lifting f € Ky (I)g+r, unique modulo Ky_1(I). If we write f =
zhf+ x’fflg + -+, then the map f +— g gives a well-defined map

b1 Ki(I) — SV /K 1(1)gs1.

If ¢}.(f) = 0, then we can choose a lifting f of f such that f = b f+ :z:’f_Qg + e
and now f — g gives a map

¢ ker(¢))a — SV /Ky o(I)aya.
The ¢} are defined inductively so that
P ker(%*l)d - Sd+VV/Kk—U(I>d+V-

There is a hierarchy of furthNer constructions exemplified by, if f € Ky,(I)4, choosing
a lifting f € Kp(I)q with f = 2§ f + a:lfflg + x]f”h + -+-. The map f — h gives
a well-defined map

Uk Kip(I)a — STV (Ky—o(I) + 6}, (Ki—1(1)))-
Example 6.13. Griffiths-Harris Fundamental Forms

Let Z C P""¢ be a variety of dimension n and p € Z a smooth point.
Choose coordinates so that p = (1,0,0,...,0). The tangent space to Z at p is
cut out by linear forms ly,...l. where l; € Ky, (Iz) for some k;. Thus we may
identify l1,...,l. with a basis for the dual of the normal space N;(Z), V with
the cotangent space to projective space at p, and T,;Z with V/(,...,l.). The
element ¢;, (1;) € S?V /Ky, —1(I). However, smoothness at p forces all elements of
Ky (I) for all k to be in the ideal generated by Iy, ... ,l.. Thus ¢} (I;) defines a
well-defined element of SQT;Z7 and thus a map I1: Ny Z — SQT;Z. This is the
Griffiths-Harris second fundamental form for Z at p (see [G-H2]). The maps ¢}
give the v + 1’st fundamental form in S**'7*Z and v} (l;) gives an element of
S3TxZ/(T; Z @ im(I1)) which Griffiths and Harris call the cubic form. Applying
a variant of the proof of Proposition 6.4, one sees that by choosing a general point
p € Z, we make the Jacobi ideal of the v + 1’st fundamental form contained in
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the v’'th fundamental form — this is a result of Griffiths and Harris. Some highly
interesting work involving their construction has been done by J.M. Landsberg
([L], [L2]).

Example 6.14. A general complete intersection of 2 cubics in P? projected from a
general point.

If we pick a general point p on a curve Z of type (3,3) in P3, the gin in the 1 3
order is x2(z2, ¥3), 71 (73, v372, xox5, 25), 25. Here, the projection 7(Z) has degree
8 — we lose a degree because the p is on Z. Now K;(Iz) is the saturated ideal
of the double point locus of 7(Z) together with the point of P2 corresponding to
the tangent line to Z at p. Computing the genus, we see that there are 11 double
points, while the gin of Kj(Iz) tells us that the 11 double points and the image
of p lie on a complete intersection of type (3,4) in P2. Ky(I) is the saturated
ideal of the tangent line to Z at p, i.e. of the image of p under =; in the notation
above, l1, 1y are the generators of Ky(Iz). If II(l;) = g;, then the cubic generator
of K1(Iz) is V = l1g2 — laqq. The partials of V' in the directions tangent to Z lie
in Ko(Iz), while the partials of V' with respect to the other variables, restricted
to T,Z, are —q2, q1, and hence the second fundamental form. If the cubic forms of
l; is ¢;, then the quartic generator of Ky (Iz) is W = lyco — lacy, and the partials
of W, restricted to T),Z, are the cubic forms —c3, ¢;.

Remark. Rob Lazarsfeld points out that if Z C P"~!, then if we map the blow-
up Y of P! at Z to ¢(Y) C PV by the linear system I 4, and if p = (1,0, ... ,0)
is a point off of Z mapping to ¢(p), then the Griffiths-Harris fundamental forms
of ¢(Y') at ¢(p) are the Kj(I)q, so that each construction is a special case of the
other.

Comments for students:

This chapter had its origins in a conversation I had with Bernd Sturmfels,
in which he introduced me to the surprising complexity manifested by the lex
gins of even fairly tame ideals. I became curious to “explain” some of this strange
behavior. I have not thought about the material here as long as the material in
Chapters 1-4, and this chapter would certainly have been larger otherwise. I leave
it to the reader to regret or rejoice over this situation.

T have a lot of interesting examples which I have not included here; I encourage
students with access to a computer to explore and to try to figure out what is going
on geometrically using the lex gin.
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Tight Closure, Parameter Ideals,
and Geometry

Craig Huneke

Foreword

These notes are based on five lectures given at the Summer School on Commutative
Algebra held at the CRM in Barcelona during July, 1996. I would like to thank the
organizers J. Elias, J. M. Giral, R. M. Mir6-Roig, and S. Zarzuela for the excellent
job they did. The great success of the Summer School was due mainly to their
efforts.

The topic of these notes is tight closure, a notion introduced by Melvin
Hochster and myself in late 1986. The notes are intended mainly for students
trying to learn something about this subject. Another source for such an intro-
duction is [Hub], but the material in these notes is largely separate. When overlap
does occur, I have tried to give different proofs and new insight. Other useful
introductory articles are [Bru] and [SmS§].

1. An Introduction to Tight Closure

As I mentioned in the Foreword, these notes concern the theory of ‘tight closure’.
Tight closure is an operation upon ideals in rings containing fields, or even upon
submodules of a given module. If I is an ideal in a Noetherian equicharacteristic
ring ' R then we denote the tight closure of I in R by I*. It turns out that I*
is another ideal, containing I, and has the property that it is tightly closed, i.e.
(I*)* = I*. Thus it is a ‘closure’ operation.

These notes will concentrate on the tight closure of parameter ideals in posi-
tive characteristic. There are several reasons I made this choice of material. Study-
ing the tight closure of parameter ideals connects tight closure to several more
classical themes in both algebra and geometry. On the one hand, the existence of
Big Cohen-Macaulay algebras is inherent in studying such tight closures, while an-
other piece of information which is hidden in the tight closure of parameter ideals

The author was partially supported by the NSF. I thank Alberto Corso for helping me with both
the proofreading and the IATEXing.

L“Equicharacteristic’ is just another way to say the ring contains a field. Rings such as the
integers are not equicharacteristic; the fraction field has characteristic 0, but the residue fields
at the maximal ideals have positive characteristic.
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is the Kodaira vanishing theorem. Even more: the Briancon-Skoda theorem and
information about rational singularities are also all captured by the information
provided by the tight closure of parameters. We will discuss all of these topics.

We will also try to give an idea of how elements in the tight closure of ideals
arise. We will concentrate on this, along with basic examples and properties. Other
sections will discuss the all important idea of test elements, F-rationality and
the action of Frobenius on local cohomology, and the relationship of the Kodaira
vanishing theorem to tight closure. See [Hub5] for an expanded introduction to the
subject, and [HH1]-[HH12| for basic papers on tight closure. A large bibliography
is included with much of the work on tight closure and related material.

Most of the results in these notes will be valid in equicharacteristic, i.e. for
Noetherian rings containing a field. However, the proofs in these notes will be
exclusively in characteristic p > 0. The phrase ‘characteristic p’ always means
positive and prime characteristic p. We will use ‘¢’ throughout these notes to
denote a variable power of the characteristic p. Tight closure is a method which
requires reduction to characteristic p, although the theory has now been developed
for any Noetherian ring containing a field.

We set R° to be the set of all elements of R not in any minimal prime of R.
The definition of tight closure for ideals is:

Definition 1.1. Let R be a Noetherian ring of characteristic p > 0. Let I be an
ideal of R. An element = € R is said to be in the tight closure of I if there exists
an element ¢ € R° such that for all large ¢ = p¢, cz? € 119, where Il9 is the ideal
generated by the qth powers of all elements of I.

It is helpful to see an example of tight closure immediately:

Example 1.2. Let R = k[X,Y, Z]/(X3+Y3+23), where k is a field of characteristic
# 3. Let z,y, 2z denote the image of XY, Z in R. R is easily seen to be a two
dimensional Gorenstein normal ring. The elements y, z form a homogeneous system
of parameters. We claim that 22 € (y, z)*. Write 2¢ = 3k + i, where i is either 1 or
2. Then 237224 = g3(+1) — (—y? — 23)F+1. A typical monomial in the expansion
of the latter expression is %/ 23" with j+h = k+1. If both 35 < ¢ and 3h < ¢, then
3(k+1)=3(j+h) <2q < 3k+ 2. It follows that z3229 € (y?, 2%) and hence that
22 € (y,2)*. Even in this simple example, not everything is known about the tight
closure of an arbitrary ideal. See [McD] for a study of this example. McDermott
has noted recently that it is not even known whether zyz € (22,42,2%)* in this
example for arbitrary characteristic.

We will later prove that a power of z can be used as a ‘test’ element for tight
closure in this ring. This means that there is a fixed power of z, say 2", such that
for all ideals I C R and all a € I*, zNa? € Il for all ¢ = p°.

We can use the above remark and Grobner bases to prove that the tight
closure of (y,z) is exactly (y,z,2?). This argument is due to M. Katzman. We
have shown above that (y,z,2%) C (y,z)*. The only thing which needs to be
proved is that z ¢ (y,z)*. Suppose = € (y,z)*. Choose ¢ > N, where N is
chosen as in the paragraph above. Let S = k[X,Y,Z] and consider the ideal
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J=(X3+Y3+23,Y4, 7% in S. Fix a monomial ordering by letting X >Y > Z
and taking reverse lex order. Then in(X? + Y3 + Z3) = X3 and the initial ideal
in(J) = (X3,Y% Z%). We claim that ZV X% ¢ J. This suffices to reach a con-
tradiction. Write ¢ = 3k + 4, where 4 is 1 or 2. Then X7 = (—1)kX{(Y? + Z3)*
modulo J, and so it is enough to prove that in(ZV(—1)*(Y? + Z3)%) ¢ in(J).
However, in(ZN (—1)*X(Y? + Z3)%) = X7V 2ZN ¢ in(J) = (X3,Y4, Z9). This
contradiction proves that = ¢ (y, z)*.

The basic properties of tight closure are summed up in the following theorem:

Theorem 1.3. [HH4] Let R be a Noetherian ring of characteristic p and let I be
an ideal.
a) I C(I*)=(I*)*. If I, C I, CR, then IT C I3.
b) If R is reduced or if I has positive height, then x € R is in I* if and only if
there exists ¢ € R® such that cx? € 19 for all ¢ = p°.
c) An element x € R is in I* iff the image of x in R/P is in the tight closure

of (I + P)/P for every minimal prime P of R.

d) I* C 1, the integral closure of I.
) Further let R be a regular local ring. Then I* = I for every ideal I C R.
) If I is tightly closed, then I : J is tightly closed for every ideal J.
) An intersection of tightly closed ideals is tightly closed.
) I*J* C (IJ)*.
Proof. 1t is clear that I C I*. Suppose that = € (I*)*, and choose ¢ € R° such
that czd € (I*)19 for all large ¢. Choose generators for I*, say (y1,...,Yn) = I*.
Choose d; € R° such that d;y] € 119 for all large . We may write cz? = > siyf
for large ¢. Multiplying by d = d - - - d,, then yields that dexz? € 119 for all large ¢
which proves a).

To prove b) suppose that cz? € I19 for all ¢ > ¢'. If the height of I is positive
simply choose an element d € 197 N R°. Then dex? € I9 for all q. We leave the
case in which R is reduced as an exercise.

We prove c¢). One direction is clear: if z € I*, then this remains true modulo
every minimal prime of R since ¢ € R°. Let Py,..., P, be the minimal primes of
R. If ¢, € R/P; is nonzero we can always lift ¢, to an element ¢; € R° by using
the Prime Avoidance theorem. Suppose that ¢, € R/P; is nonzero and such that
dal e Ii[q] for all large g, where x; (respectively I;) represent the images of x
(respectively I) in R/P;. Choose a lifting ¢; € R° of ¢. Then ¢;2? € T ld + P, for
every i. Choose elements t; in all the minimal primes except P;. Set ¢ = Zl cit;.
It is easy to check that ¢ € R°. Choose ¢’ > 0 so that NI91 = 0, where N is the
nilradical of R. Then cz? € I'9 + N, and so 4217 € ] [qq/], which proves that
zel.

To prove d), recall a definition of integral closure: The integral closure of T
in a Noetherian ring is the set of all elements x such that there exists an element
¢ € R°, the complement of the minimal primes of R, such that cz™ € I" for
infinitely many n. With this definition, part d) is immediate since I'9 C 19,

=08 =h ©



190 C. Huneke

Part e) follows from a theorem of Kunz [Kul]: a ring R of positive character-
istic p is regular iff R'/9 is flat over R for all (equivalently for some) ¢ = p°®, e > 1.
Assume this and suppose that x € I* for some ideal I C R. Then there ex-
ists a ¢ € R° such that for all large ¢, cx? € Il9. Taking gth roots yields that
¢z € TRY9, and hence that ¢'/9 € I :p1/q @ = (I :g 2)RY9, the last equal-
ity following because R'/? is flat over R. It then follows taking gth powers that
ce(I:g m)[‘ﬂ for all large ¢q. This contradicts the assumption that ¢ € R° unless
(I:pz)=R,ie. xel.?

We prove f). It is easy to prove that a finite intersection of tightly closed
ideals is tightly closed. It follows that we may assume that J = (y) is principal.
Suppose that € (I : y)*, where I is tightly closed. Choose ¢ € R° such that
cx? € (I:y)ld C 1ld : 49, Then c(xy)? € I9 implies that zy € I* = I; hence
zel:y.

Parts g) and h) are easy. O

The property e) that ideals in regular rings are tightly closed does not char-
acterize regular rings, but is important enough to warrant its own name.

Definition 1.4. A Noetherian ring in which every ideal is tightly closed is called
weakly F-regular. A Noetherian ring R such that Ry is weakly F-regular for every
multiplicative system W is called F-regular.

It is unfortunate to need the terminology ‘weakly’ F-regular. If tight closure
commutes with localization, then these two definitions are equivalent. We believe
this is true, but have been unable to prove it except in special cases. For work on
this topic see [Wil, Mac, AHH]. On the other hand, we can do a couple special
cases concerning the behavior of tight closure under completion and localization
which we will need later in these notes.

The proof of the first part of Proposition 1.5 below requires knowledge of
test elements. One problem with the definition of tight closure is that the ¢ in the
definition varies with the ideal I and the element x. An element ¢ such that for
all I and x € I*, cx? € 119 for all ¢ is called a test element. The existence of such
elements is a crucial part of tight closure theory.

One of the main theorems guaranteeing the existence of test elements is (cf.
[HH9], (6.2)):

Theorem (Existence of Test Elements). Let R be a reduced algebra of finite type
over an excellent local ring (B, m, K) of characteristic p. Let ¢ € R° be such that
R. is F-regular and Gorenstein (e.g. R. regqular). Then ¢ has a power which is a
test element for R.

We return to test elements in Section 3.

2More generally, from the Buchsbaum-Eisenbud criterion for exactness, it follows that for every
Noetherian ring R of characteristic p, Torf (M, S) = 0 for i > 0 whenever the projective dimen-
sion of M is finite, and where S = R viewed as a module over R via the Frobenius morphism.
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Proposition 1.5. (Completion and Localization). Let (R, m) be an excellent Noe-
therian local ring of characteristic p.

a) Let I be an m-primary ideal. Then I*R = (IR)*.
b) Let I be an ideal generated by a regular sequence, and let W be a multiplica-
tively closed set. Then (I*)w = (Iw)*.

Proof. First we prove a). Choose an element ¢ such that (R,.q). is regular. By
replacing ¢ by a power of itself, we can assume that c is a test element for R,..q,
using the Theorem above.

We may choose a power ¢’ of the characteristic p such that the nilradical
raised to this power is zero. Lift ¢ from R,..q back to an element of R which we
still call c. This element has the following property: = € J* iff for all ¢ > ¢/,
cxd € J4. We call such an element a ¢’-weak test element.

Since R is excellent, (Rred)c will also be regular, and we may assume that
c is also a ¢/-weak test element for R. Without loss of generality, we can assume
that I = I*. If T is not tightly closed, there will be an element z € (I)* N R. Since
R and R have a common test element, it then follows that z € I* = 1.

Next we prove b). Let G = gr;(R) and choose an element s € W such that
anngs = anngws for all w € W. Suppose that wu € I'"™. Assume that v € I" but
u ¢ I"1 where r < m — 1. We claim that s™u € I"™. The choice of s shows that
su € I"T1. Repeating the argument with su in place of u and continuing gives the
claim.

Fix ¢ and an element u € I'9 : w for some w € W. By induction on h we
claim that dj, = 7"y € T4 4 194" This suffices to prove part b) since when
h = qn we get that s("TDdy ¢ Jld 4 Ja(n+1) C Jldl a5 T has n generators.

The case h = 0 follows from the above argument. Suppose dj, € 119 4 79+7
and write d, = Y, maf + >_, t,&¥ where v runs through n-tuples of nonnegative
integers all less than g whose sum is ¢ + h. Some w € W multiplies this element
into Il? giving an equation, wdy, = 3", a;z? = 3, wrizl + 3, wt,a”. Since the z;
form a regular sequence and none of the monomials occurring is formally in the
ideal generated by the other monomials, each wr, € I. Then sr, € I by the choice
of s and so dj41 = sdj, is in Tl9 4 [ath+1

To finish the proof, consider the equations w(q)cz? € T [9]| where ¢ is a test
element, ¢ = p°® runs through all powers of p, and w(q) € W depends on ¢. Choose
s € W as above. Then s("tD9cz9 € I19 and so ¢(s"+1x)9 € T4 which proves that
s"*tlg € I* and therefore z € (I*)w as needed. O

The main topic we will study is the properties of the tight closure of parameter
ideals. We say elements x1, ..., x4 are parameters if they generate an ideal of height
d. A parameter ideal is an ideal generated by parameters. If (R, m) is local and
Noetherian of dimension d, then parameters x1, ..., x4 are said to be a system of
parameters, or s.o.p. for short. Equivalently, the radical of the ideal they generate
is the maximal ideal m. In Gorenstein rings a system of parameters generates an



192 C. Huneke

irreducible ideal. This fact can be effectively used to compute tight closures in
such rings as part (5) of the next theorem shows.

Theorem 1.6. Let R be a Noetherian ring of characteristic p.

(1) Let I be primary to a mazimal ideal m. Then (IRy,)* = (I*)m,.

(2) R is weakly F-regular iff every ideal primary to a maximal ideal is tightly
closed.

(3) R is weakly F-regular iff R, is weakly F-regular for every mazimal ideal m
of R.

(4) Assume that R has a test element c¢. Then the tight closure of an arbitrary
ideal I is the intersection of the tight closure of ideals primary to maximal
ideals.

(5) Suppose that R is local Gorenstein with mazimal ideal m. Then R is weakly
F-regular (in fact even F-reqular) iff an ideal generated by a system of pa-
rameters is tightly closed.

(6) Let S be a weakly F-regular ring and suppose that R C S is a direct summand
of S (as an R-module). Then R is weakly F-regular.

Proof. The only point to (1) is that if ¢ € R° and z € R such that cz? € Il9R,,
then cz? € 119 since I is m-primary. Since every ideal in a Noetherian ring is an
intersection of ideals primary to maximal ideals Part (2) follows from (1), while
(3) is immediate from (1) and (2).

To prove (4), write I as the intersection of ideals of the form I +m™ where m
is maximal. Clearly I* C N, (I +m™)* where the intersection is over all maximal
m and all integers n. The reverse inclusion also holds. For if « ¢ I'* there exists a
fixed power of p, say g, such that cx? ¢ I'%. Choose a maximal ideal m such that
the same equation holds after localizing at m. Then lift back to R to obtain that
cx? ¢ 19 + m™ for all n > 0. Hence cx? ¢ (I +m™)l9. Thus = ¢ (I +m™)*.

We prove (5). By part (2), it suffices to prove every m-primary ideal I is
tightly closed. Let (x1,...,24) be an ideal generated by a system of parameters
which we know to be tightly closed. Using the fact that the x; form a regular
sequence one can prove that (zt,...,z%) is tightly closed for all ¢. Choose ¢ > 0
such that J = (zf,...,2%) C I. By part (f) in Theorem1.3, I = J : (J : I) is
tightly closed (the equality following since R is Gorenstein). This proves that R is
weakly F-regular. We will prove R is even F-regular in (6.2).

Let I C R and suppose that z € I*. It follows that x € (I5)* = IS and so
x € IS N R = I. This proves (6). O

To paraphrase, every regular ring is F-regular. A local Gorenstein ring is
F-regular iff the ideal generated by a single system of parameters is tightly closed.

Example 1.7. By Theorem 1.6, in a Gorenstein local ring if the ideal generated by
a single system of parameters is tightly closed, then so is every ideal. In particular,
if there exists an element uw which generates the socle of an ideal I generated by a
s.0.p. such that u ¢ I'*, then every ideal is tightly closed.
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For example, let R = k[X,Y, Z]/(X?+ Y3+ Z5), where k is a field of positive
characteristic p > 5. Let x,y, 2 denote the image of X,Y,Z in R. R is easily
seen to be a two dimensional Gorenstein normal ring. The elements y, z form a
homogeneous system of parameters. In this case the ideal generated by y and z is
tightly closed. One only needs to check that x ¢ (y, z)*. We will later see that x is a
test element in R. Knowing this, it suffices to see that z(z?) ¢ (y?, 2?) to prove that
z is not in the tight closure of (y, z). Set k = P4, Then P! = 228 = (—y —2%)F.
A typical term in the expansion of (—y® — 2°)¥ is (’;)ygjz“k’j). If 2P+ € (yP, 2P),
then either (’;) =0,3j >por5k—j)>p. Since k < p, the binomial coefficient
is not zero. Notice that 15k = 5(3;) 4+ 3(5(k — 7)) < 5p + 3p = 8p, since k = pT“.
It follows we may choose a j such that both 35 < p and 5(k — j) < p. For such
a choice of j, we see that y%/2°F=7) ¢ (yP, 2P), which proves that z is not in the
tight closure of (y, z).

Example 1.8. Let R = k[X,Y,Z]/(X? + Y3 + Z7), where k is a field of charac-
teristic > 5. Let x,y, z denote the image of X,Y, Z in R. R is easily seen to be a
two dimensional Gorenstein normal ring. The elements y, z form a homogeneous
system of parameters. Although the equation has changed only slightly from that
of Example 1.7, it is now the case that = € (y, 2)*. To see this directly, let k = %1.
Then zz? = 2%* = (=1)¥(y*+27)*. A monomial in the expansion of (y®+ 27)* has
the form y% 27(*=3)  If both 3j < p and 7(k—7) < p then 215 +21(k—j) < Tp+3p,
which implies that 21(%) < 10p, a contradiction. It follows that x4t € (y4, 29)
for all ¢ and = € (y, 2)*.

2. How Does Tight Closure Arise?

One of the basic questions which we will partially answer in this lecture is, ‘where
does tight closure come from’? The examples in Section 1 do little to answer
this question. We know of essentially four ways in which tight closure arises:
through contractions from finite extensions, through the integral closures of pow-
ers of ideals, through the failure of the ring to be Cohen-Macaulay (briefly, ‘colon-
capturing’), and through the persistence of tight closure. On top of these four,
there are other less obvious consequences of putting all four together. Probably
the most fundamental way in which tight closure arises is through the extension
and contraction of ideals in finite extensions. See [HH10, (5.22)] and [Hub, (1.7)].

Theorem 2.1. (Tight closure from contractions). Let S C T be a module-finite
extension of Noetherian domains of positive characteristic p. Let I C S be an
ideal. Then (IT)*NS C I*.

Proof. Let w € (IT)* NS. We can choose an S-linear map ¢ : T — S such that
#(1) = d € S — {0} and we can choose ¢ € T — {0} such that cw? € (IT)l4 for
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all ¢.2 We can choose a nonzero multiple of ¢ in S, and so we may assume that
ce€ S —{0}. It follows that for all ¢, cw? is a T-linear combination of elements of
T4 Applying the map ¢, we find that dew? € I'9 for all ¢, which shows that w is
in the tight closure of I. |

Example 2.2. Consider the hypersurface R defined by 23 4+ ¢ + 23 = 0. In (1.2)
we saw that the tight closure of (y, 2) is (y, z,2%). The fact that x? is in the tight
closure of (y, z) is no ‘accident’; in fact we shall see that it can be explained by
every single way in which we know tight closure arises. We first apply Theorem
2.1 as follows.

First suppose that p = 2 mod(3). Write p = 3k + 2, so that 22P = x6F+4 =
x - (23)HH = g(=1)2HL(y3 + 23)2k 1 We claim that 22 € (yP, 2P). To see this
it suffices to prove that each monomial in the expansion of (y 4+ 2%)2%*! has an
exponent at least p. But if i + 7 =2k +1 and 3i < p—1 and 35 < p — 1 then
3(2k + 1) = 3(i + j) < 2p — 2, a contradiction. Hence z? € (y,z)R/? N R. By
Theorem 2.1, this proves that 22 € (y, 2)*.

The case in which p = 1 mod(3) is not so clear. In that case R is F-pure, which
implies that for every ideal I C R, IR? N R = I. However, one can show that
there is a finite extension of R, say S, such that 2 € (y, 2)SNR. The fraction field
of S is an Artin-Schreier extension of the fraction field of R. It is a good exercise
to try to find S.

It follows from Theorem 2.1 that if S is an arbitrary integral extension of a
Noetherian domain R of positive characteristic, and I C R, then ISN R C I*. For
every element of IS N R is in IT N R for some finite extension T' of R, and then
we may apply Theorem 2.1. For a domain R by R™, the absolute integral closure
of R, we mean the integral closure of R in an algebraic closure of its fraction field.
The discussion above proves that for any ideal, IRT N R C I*. It is one of the
important open questions of tight closure whether equality always holds. The best
that is presently known is a result due to Karen Smith [Sm4]: if I is generated by
parameters in an excellent local domain of characteristic p, then IR™ N R = I*.
We will sketch the proof of this theorem in Section 7. The ring R* has amazing
properties, e.g., the sum of any two prime ideals is either prime or the whole ring.
If R is local, excellent, and of positive characteristic, RT is even a big Cohen-
Macaulay algebra [HH7]. The study of such absolute integral closures is closely
tied to the theory of tight closure. See [HH7, Ho8|.

A second way in which tight closure arises is through what can be thought
of as ‘colon-capturing’. Elements in colon ideals which would be in the base ideal
if the ring were Cohen-Macaulay, are at least in the tight closure of the base ideal.
Specifically:

3Hochster has developed the idea of this proof considerably in his paper [Ho8] where he introduces
the concept of ‘solid closure’.
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Theorem 2.3. (Tight closure via colon-capturing). Let (R,m) be a local equidi-
mensional ring of prime characteristic which is a homomorphic image of a Cohen-

Macaulay local ring S. Let x1,...,x; be parameters in R. Then
a) (x1,...,2¢-1) R Tt C (x1,...,2¢-1)".
b) (@f,....20) g (21 x)" L C (21,...,2¢)".

Proof. We need a lemma which can easily be proved using prime avoidance:

Lemma 2.4. Let S be a catenary Noetherian ring and let Q@ be a proper ideal of S
of height m. Set R = S/Q, and assume that R is equidimensional. Let xq, ..., xy
be parameters in R. Then there exist elements z1,...,zn € Q and lifting y; of x;
such that any j element subset of the y; together with all the z; has height m + j.
Furthermore the z; may be chosen so that there exists an element ¢ ¢ @Q with
Q™ C (21, .., 2m) for some n.

Write R = S/@Q, and choose z; and y; as in Lemma 2.4. Pick an element
¢ ¢ @ such that Q7 C (#1,. -, 2m), where m = height(Q) and ¢’ is a power of p.

We first prove a). Suppose that r = r; € (x1,...,2¢-1) :g x;. Then there is
a relation Y, .., riz; = 0. Lift the r; to s; € S. The relation >, .., riz! =0
becomes in S the relation Y7, _;., s?y! € Q. Raising this equation to the ¢'th
power and multiplying by ¢ gives the relation, > ;,, csg/qy?/q =Y, t;z; for some
t; € S. Now the y; together with the z; form a regular sequence, so we must
have that cs?? € (21,..., 20,97 %, ...,y %). Let d be the image of ¢ in R. Then
dr] € (zf,...,2]_,) for all ¢ > ¢, which finishes the proof.

The proof of b) is similar. Let r € (27,...,27) :g (z1---2,)" L. Lift r to
s € S. There will be a relation in S,

s(yr-y)" Tt = Z si(yi)" +w
1<i<t
where w € Q. Taking a ¢’qth power and multiplying by ¢ yields an equation,
esT9(yy - y) 71D = Z ()77 (i)™ " + Z tiz;.
1<i<t 1<i<m

As the y; together with the z; form a regular sequence, it follows that

es”T € ()7, oo, ()7 21, ),

Going modulo @ then yields that r € (zq,...,z)*. O

Example 2.5. We return to the example R, the hypersurface 23 +y3 + 23 = 0. We
know that 22 € (y, z)*. It is not clear why Theorem 2.3 should relate to this fact
since R is Cohen-Macaulay, and Theorem 2.3 gives no information in the case in
which the ring is Cohen-Macaulay. However let S = R[mit], the Rees algebras of
the homogeneous maximal ideal m of R. In S, y, zt, z + yt are parameters, and
(z + yt)2t = 22(2t) + y(z2t?), so that 2%t € (y,2t) : (2 + yt). By Theorem 2.3,
it follows that 2%t € (y, zt)*. There is a homomorphism ¢ from S back to R by
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first embedding S in R[t], and then setting ¢t = 1. By persistence, Theorem 2.13,
it follows that 22 = ¢(2%t) € ¢((y, 2t))* = (y,2)*.

The idea of colon-capturing has been developed a great deal in the notion of
phantom homology. Homology is phantom if it is in the tight closure of 0 in the
homology module. To study (in fact even define) phantom homology requires a
discussion of the tight closure of a submodule of a given module. See [Abl, HHS,
HH11, Hu5] for developments in this line.

A third way in which tight closure arises is through the integral closure of
powers of ideals. We first recall the definition of integral closures.

Definition 2.6. Given an ideal I, an element z is in the integral closure of I, I, if
x satisfles an equation of the form z* + a12*~1 + -+ 4+ ax = 0 where a; € I*.

An equivalent definition for the integral closure in a Noetherian ring R brings
it closer to the definition of tight closure. An element x is in I iff there exists
an element ¢, not in any minimal prime of R, such that for infinitely many N
(equivalently for all large N), cx¥ € IV.

Assume now that R is a Noetherian local ring of characteristic p. The next
theorem gives a tight closure version of the theorem of Briangon and Skoda. It
appears in [HH4, Theorem 5.4].%

Theorem 2.7. (Tight Closure Briangon-Skoda). Let R be a ring of characteristic
p. Let I be any ideal generated by n elements. For all w > 0,

T C (1ot

Proof. Write I = (aq,...,a,). Let z € In+w, There exists an element ¢ € R° such
that czV € I+@IN for all large N.

We claim for all h > 0, I""+wh C (af, ..., al)* T 1M"=1) Consider a mono-
mial v in the ideal I™**+*" in which the exponent of a; is b;. Let ¢; be the integer

part of b;/h for each i. Then ¢; +1 > b;/h, and so Y . (c; +1) = >, ¢; +n >

4The theorem of Briancon and Skoda was proved in response to a question of Mather: let O, =
C{z1,...,2n} be the ring of convergent power series in n variables. Let f € O,, be a non-unit
(i-e., f vanishes at the origin). The Jacobian ideal of f is j(f) = (8f/0z1,... ,0f/0zn)On. Since
f € 5(f) there is an integer k such that f* € j(f). Mather asked if there a bound for k which
works for all non-units f. Briangon and Skoda answered this question affirmatively with the
following stronger result ([BrS]): Let I C Oy, be an ideal which can be generated by d elements.

Then for every w > 0 I9+w C Jw+1 Since j(f) has at most n generators, applying the theorem
with I = j(f) and w = 0 gives f™ € j(f), answering Mather’s question. The ring O, is a
regular local ring so one may ask if the entirely algebraic statement of the theorem remains true
in any regular ring. Lipman and Sathaye succeeded in proving the same theorem for arbitrary
regular local rings [LS]. Lipman and Teissier partly extended this theorem to rings having rational
singularities, cf. [LT]. Since then, there has been considerable activity in proving more precise
theorems of this type, e.g., see [HH10, AH1, AH2, AHT, RS, Swl, Sw2, Sw3, L2].
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> (bi/h) =n+w, so that ), ¢; > w, i.e. >, ¢; > w+ 1 whence

[Tt € (af,... a0,

i

and divides the given monomial generator v of I™h+wh,

It follows that czN € IMTWN C (... o)+ N1 Put N = q = p°.
We obtain that cz? € (Iw"’l)[q] by ignoring the term V(=1 in the containment
of the above line. Hence z € (I**1)* as claimed. O

Remark 2.8. There is a useful form of the tight closure Briangon-Skoda theorem
for graded rings and homogeneous parameter ideals which we shall later need. If R
is a graded ring, by R>, we denote the ideal generated by all forms of R of degree
at least n. This theorem appears in [HH10, Theorem 7.7] and in [Sm7, Proposition
3.3]. In the latter paper it is generalized to the case of an arbitrary homogeneous
m-primary ideal.

Theorem 2.9. (Graded Briangon-Skoda). Let R be a Noetherian nonnegatively
graded ring of positive Krull dimension d over a field k = Ry of positive character-
istic p. Let f1, ..., fq be a homogeneous system of parameters of degrees ny,...,ng.
Set N =ny +---+nq. Then R>y C I*, where I = (f1,..., fq).

Proof. We first do the case in which the degree of f; is n for all 1 <i < d. In this
case N = dn, and we claim that R>ny C Id C I*, the last containment following
from Theorem 2.7. L

To see the first containment, B>y C I d observe that R is module-finite over
S =k[f1,..., fa]- A form g of degree § > dn satisfies an integral equation,

g+ g™ by =0 (1)

where b; € S. We may assume that the b; are homogeneous and deg(b;) = 0.
This means that b; € R;s NS, and hence b; € (f1,..., fa)*/" C (f1,..., f4)'% In
particular, (1) then proves that g € I¢ as required.

Now suppose that the f; have possibly unequal degrees. Choose nonnegative
integers m; such that Fy = {’“H, Ly = f;"dﬂ have equal degrees, say T. Let
g € R>n where N =n; +--- +ng. Then (gf{"" --- f'*)? has degree at least qdT
and hence by the first case is in the tight closure of (FY,..., Fy). There is then a
¢ € R° such that

C(gfi’”l o f;nd)q c (JC{I(W“H-H)7 o fg(md+1))
and so
(I B3 s (7 )1

which by Theorem 2.3 b) is contained in (f{,..., fJ)*. Multiplying by a test el-
ement d, we obtain that cdg? € (f{,...,f]), and finally that g € (f1,..., fa)*.
O

cg? €
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Example 2.10. In the hypersurface 23433422 = 0 of (1.2) we saw that 22 € (y, 2)*.
This follows at once from the graded Briangon-Skoda Theorem 2.9 since the degree
of 22 is 2 = deg(y) + deg(z). Likewise, in Example 1.8, we saw that z € (y, 2)*
in the hypersurface 22 + 43 + 27 = 0. This hypersurface is weighted homogeneous
with the degree of x = 21 > deg(y) + deg(z) = 14 + 6.

A final way in which tight closure arises is through the property of persistence.
This means that elements in the tight closure of an ideal stay in the tight closure
of the image of the ideal under any homomorphism. This property of tight closure
is not obvious from the definition: the element ¢ in the definition of tight closure
might well go to zero under the given homomorphism. The proof of persistence
needs the following theorem on the existence of test elements, whose proof will be
deferred until the next section.

Definition 2.11. A Noetherian ring R of characteristic p is said to be F-finite if R
is a finite module over RP.

The next theorem appears in [HH9, Theorem 6.20], while the persistence
theorem is essentially [HH9, Theorem 6.24].

Theorem 2.12. (Existence of Test Elements). Let R be either a reduced algebra of
finite type over an excellent local ring (B, m, K) of characteristic p, or a reduced
ring of characteristic p which is F-finite. Let ¢ € R° be such that R. is F-regular
and Gorenstein (e.g. if R. is reqular). Then ¢ has a power which is a test element
for R.

We can now prove,

Theorem 2.13. (Persistence of Tight Closure). Let ¢ : R — S be a homomorphism
of Noetherian rings of characteristic p. Let I be an ideal of R and let w € R be an
element in I*. Assume either that R is essentially of finite type over an excellent
local ring, or that R,.cq is F-finite. Then ¢(w) is in the tight closure of IS.

Proof. If there is a counterexample to the theorem, there is one in which S is a
domain, for if ¢(w) is not in the tight closure of IS, this will remain true when S
is replaced by S/ P for a suitable minimal prime P. Thus, we may assume that S
is a domain. Let @ = Ker (R — 5).

Then we may replace S by R/Q as well. For if tight closure is preserved when
we pass to R/Q, it will also be preserved when we pass to S since R/Q embeds
in S. (The definition of tight closure immediately proves there is no problem with
Theorem 2.13 as long as a test element does not go into a minimal prime of §
under ¢, which is certainly the case if the map is an injective map of domains).
Thus, there is no loss of generality in supposing that S = R/Q for a suitable prime
Qof R. Let Q = Qp 2 Qr_1 2 --- DO Qo be a saturated chain of prime ideals
of R descending from @ such that @)y is a minimal prime of R. We shall prove
by induction on 4 that tight closure is preserved when we pass from R to R/Q);,
0 < i < h. For i = 0 this is clear, for tight closure is always preserved when one
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kills a minimal prime. To carry through the inductive step, we may replace R by
R/Qi—1.
To complete the proof, it suffices to show that if R is a domain and @ is
a height one prime ideal of R, then tight closure is preserved when we pass to
S = R/Q. To see this, let R’ be the integral closure of R in its fraction field
(which is module-finite over R, since R is excellent), and let Q" be a prime ideal of
R’ which lies over @, so that R/Q — R'/Q’ is injective and module-finite. Now,
tight closure is obviously preserved when we pass from R to R’ 2 R. Moreover,
since R’ is excellent normal and @’ is height one (so that Ry, is regular), there
is an element ¢ € R’ — Q' such that R/ is regular. After replacing ¢ by a power
we see that we may assume that ¢ is a test element for R’ not in @Q’. It follows
that tight closure will be preserved when we pass from R’ to T = R’'/Q’. Thus,
the image of w in T is in the tight closure of IT. To finish the proof, we must
show that this implies that the image of w in S is in the tight closure of 1S. (Here,
S C T is a module-finite extension of domains.) This follows from Theorem 2.1.
O

We end this section by giving a few of the consequences of how tight closure
arises.

Theorem 2.14. (Briangon-Skoda). Let (R, m) be a regular local ring containing a
field. Let I be any ideal of R which is generated by | elements. Then for any w > 0

JiH+w C qwtl

Proof. In positive characteristic this follows immediately from Theorem 2.7 and
Theorem 1.3 e). The equicharacteristic zero case follows using reduction to char-
acteristic p. O

We should note, however, that this theorem is known in mixed characteristic.
See [LT, LS].

Theorem 2.15. (Weakly F-regular is Cohen-Macaulay). Let R be a local ring which
is the homomorphic image of a Cohen-Macaulay ring and of positive characteristic.
If R is weakly F-reqular, or even if ideals generated by parameters are tightly closed®
then R is Cohen-Macaulay.

Proof. The proof is immediate from part a) of Theorem 2.3. O

Theorem 2.16. Let S be a regular ring of characteristic p, and suppose that R is
a direct summand of S. Then R is Cohen-Macaulay.

Proof. Tt is easy to reduce to the case in which R is complete local and S is a
regular domain. Since every ideal of R is contracted from .S, and since every ideal
of S is tightly closed, it follows that R is weakly F-regular, i.e. every ideal is tightly
closed (see Theorem 1.6(6)). It follows immediately that R is Cohen-Macaulay by
Theorem 2.15. O

5Such rings are said to be F-rational. We will study these in the eighth section.
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It is also worth pointing out that the ‘Monomial Conjecture’ (see [Ho2, 6])
follows at once from Theorem 2.3.

Theorem 2.17. (The Monomial Conjecture). Let (R,m) be a local ring contain-
g a field and let x1,...,zq be a system of parameters. Then for all t > 1,

(1 zg)™ ¢ (2f,...,28).

Proof. Suppose that R has characteristic p. We may reduce at once to the case
in which R is complete. If (zq1---24)""! € (2f,...,2%), it follows from Theo-
rem 2.3 b) that 1 € (x1,...,24)*. But then there is an element ¢ € R° such that
cl? = c e (zf,...,2%) for all large ¢. This is a contradiction as intersecting the
ideals (z7,...,2%) over all ¢ yields 0. The general case follows from reduction to

characteristic p. O

It is an important question to find a definition of a ‘tight’ closure in mixed
characteristic, or even to find a definition in equicharacteristic 0 which does not
refer back to characteristic p. It is easy to list the properties which a good closure
operation should have to give it the same force as tight closure. The closure should
be persistent. Every ideal in a regular local ring should be closed under the oper-
ation. The operation should capture the colon in the sense of Theorem 2.3. The
closure of an ideal should contain the integral closure of the dth power of itself,
where d is the dimension of the ring. The expansion and contraction of an ideal in
a module-finite extension should be in the closure of the ideal. A final property a
good closure operation should have is a theory of test elements: if ¢ € R is such
that every ideal in R, is closed under the operation, then there should be a fixed
power of ¢ which multiplies the closure of every ideal I C R back into I. We do not
quite know this for tight closure, but we do know many cases where it is true (see
Theorem 2.12 and the next section). A closure with all these properties gives a
very powerful tool. Unfortunately, it is far from clear how to define such a closure
except through reduction to characteristic p.

3. The Test Ideal 1

The existence of test elements is one of the most important theorems in the theory
of tight closure. Recall their definition:

Definition 3.1. Let R be a Noetherian ring of characteristic p. An element ¢ € R°
is said to be a test element if for all ideals I and all z € I*, cz? € Il9 for all
q = p°. An element ¢ € R° is said to be a test element for parameter ideals, or a
parameter test element for short, if for all ideals I generated by parameters, and
all z € I*, cx? € I9 for all ¢ = pe.

For (parameter) test elements it is easy to see that the definition could just
read that cx € I for all (parameter) ideals I. Moreover, both are properly defined
to include the case of tight closures of modules, but we have elected not to do
so in these notes. If the ring is approximately Gorenstein, the notions agree. Any
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excellent normal domain is approximately Gorenstein [Ho4]. The ring R needs to
be reduced to have test elements.

The best result to date about the existence of test elements was given as
Theorem 2.12. We repeat it here (cf. [HH9], (6.2)):

Theorem (Existence of Test Elements). Let R be a reduced algebra of finite type
over an excellent local ring (B, m, K) of characteristic p. Let ¢ € R° be such that
R. is F-reqular and Gorenstein (e.g. R. regular). Then ¢ has a power which is a
test element for R.

Of course, the best theorem one wants is one which says that if R is reduced
(and excellent, perhaps) and if R, is weakly F-regular, then ¢ has a power which
is a test element. This is an open question.

The proof of the above theorem is beyond the scope of these notes. However,
one of the main cases is when the Frobenius map is a finite map, and in this case
complete details can be given. The discussion below is taken from [Hu5]. Kunz
[Kul] has shown that if R is an F-finite Noetherian ring of characteristic p, then
R is excellent. Moreover the property of the Frobenius map being finite passes to
finitely generated R-algebras.

Let (A,m) be a regular local ring of characteristic p. Assume that A'/? is
finite over A as a module. Since A is regular, the Frobenius map is flat, and hence
AP ig a flat A-module. As it is finitely presented and A is local, it is actually
free. It follows that for all ¢ = p¢, A9 is also free over A. Let d € A be nonzero.
For sufficiently large ¢ = p¢, ml9 does not contain d. Taking qth roots yields that
d'/1 ¢ mA'Y/4. Since A/ is free over A it follows that one may use d*/9 as part of a
free basis of A'/9. In particular, there is an A-linear homomorphism ¢ : A¥/9 — A
which sends d/9 to 1.

Next suppose that A is a regular domain but not necessarily local. Taking
pth roots commutes with localization, so that A'/? will be projective over A for
all ¢ = p°. Fix a maximal ideal m of A and a nonzero element d € A. There will
be a power of p, say ¢ = ¢(m), depending upon m, such that d ¢ ml?, and so
d'/1 ¢ mA'/4. One wants a uniform ¢ working for all maximal ideals (see Exercise
11.4 for a more general result). By the paragraph above, there is a homomorphism
from Air{q to A,, sending d'/? to 1. Clearing denominators one sees that there
is an element r,, ¢ m such that there is an A-linear map ¢,, : A},,/f(m) — A,
sending d'/? to 1. The ideal generated by all such r,, is not contained in any
maximal ideal so that there are finitely many of them, say rm,,..., 7 m,, which
generate the unit ideal. Set ¢ = max{q(m;)}. Let m be an arbitrary maximal ideal
of A. Some r,, is not contained in m, say r = r,,,. As there is an A,-linear map
from Ar/%™) — A, sending d/9(™1) to 1, a fortiori there is such a map from
Aam) A Tn particular, d ¢ mldl which proves the existence of a uniform g.

The existence of such a ¢ proves that for each maximal ideal m of A, there
is an element r = r,, and an A,-linear map from A},/q — A, sending d*/9 to 1.
For each such r, there is a power V=, such that there is an A linear map ¢, from
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AY4 — A sending d/9 to rNr. There exists a finite number of such r generating
the unit ideal, so we may express 1 = > s;7V, where N is taken larger than all
N,.,. Taking ¢ = > s;¢,, gives an A-linear map taking d/4 to 1.

Theorem 3.2. [HH3, Theorem 3.4] Let R be an F-finite reduced ring of character-
istic p. Let ¢ be any nonzero element of R such that R, is reqular. Then ¢ has a

power which is a test element.

Proof. Since R, is regular, the discussion preceding this theorem proves that for
every nonzero element d € R there is a sufficiently high power of p, say @, such
that there exists an R.-linear map from Ri/ ?to R. sending d'/@ to 1. Lifting back
to R, one obtains an R-linear map from RY? to R sending d'/© to a power of c.
Taking d = 1 yields an R-linear map from RY? to R sending 1 to ¢V for some
N. The embedding of R'/? into R'/? composed with this R linear map yields an
R-linear map ¢ from R'YP? to R sending 1 to ¢"V. Relabel this power of ¢ as c.
Then there is an R-linear map ¢ from R'/? to R sending 1 to ¢. We claim that for
any such ¢, ¢? is a test element, except in characteristic 2, where ¢® will be a test
element.

Let I be an arbitrary ideal of R, and let z € I*. There is an element d € R,
not in any minimal prime of R such that for all ¢, dz? € Il9. Using the results of
the paragraphs above, there is a power of p, say ¢/, and an R-linear map a from
RVd R sending d'/4 to ¢V for some N. In this case, ¢ 27 € Il9 for all q. Simply
take ¢'th roots of the equation dz9¢ € I199] to obtain that d'/4 29 € IR/
Applying « yields that ¢V2? € Il9 for all . The problem is we must prove that
this power IV can be chosen independently of the element z and the ideal I.

Choose N least with the property that ¢Vz¢ € Il for all q. Write N =
p(|N/p]) + i. Taking pth roots yields that clV/PI+i/p2a ¢ [lIRI/P for all q. Hence
cN/pl+1 20 ¢ T RYP for all q. Applying ¢ we obtain that clV/P1+224 ¢ 114 for all
q. As N was chosen least, we must have that | N/p|+2 > N. It easily follows that
in odd characteristics, N <2 and if p =2, N < 3. O

A ring R is F-finite if R is essentially of finite type over a perfect field K, or
if R is complete with perfect residue field K. In fact, all one needs in both cases is
that K'/? be finite over K. Thus, this is not a very restrictive hypothesis. The more
general theorem of the existence of test elements for excellent local rings follows
from Theorem 2.1 by passing to the complete case and expanding the residue field
to make it finite over its pth powers. However, this is difficult since one must be
able to control the fibers of this base change well enough to control what happens
to tight closures.

As I noted at the beginning of this section, every reduced ring of characteristic
p which is essentially of finite type over an excellent local ring has abundant test
elements in the sense that if Ry is regular, then d has a power which is a test
element. An open question is:

Question 3.3. (Existence of Test Elements). Let R be a reduced excellent ring of
finite Krull dimension and of characteristic p. Does R have a test element?
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Definition 3.4. The test ideal of a reduced ring R, denoted 7(R), is the ideal gen-
erated by all test elements.

It follows that any element of 7(R) not in R° is a test element. If R is a
reduced graded ring over a field such that R has an isolated singularity at its
irrelevant ideal, then it follows from Theorem 3.2 that the test ideal is primary to
the irrelevant ideal. A particularly important question is what ideal it is.

Example 3.5. Let (R, m) be a one-dimensional complete local domain, and let C
be the conductor ideal. In [Cow] it is noted that C' is the test ideal. Let I be an
arbitrary ideal of R. The tight closure of I is simply the integral closure by the
tight closure Briangon-Skoda Theorem. But the integral closure of I is IS N R,
where S is the integral closure of R. Then C'(IS N R) C CSI = CI. Hence C is
contained in the test ideal. Conversely, if (IS N R) C I for every ideal I of R it
easily follows that x € C.

Example 3.6. (F-purity and the test ideal). A ring of characteristic p is F-pure if
the Frobenius map is pure, i.e. if whenever we tensor the Frobeniusmap F': R — R
with an R-module M, the ensuing map is injective. If R is F-finite, then this is
equivalent to the condition that u? € I'P) implies u € I.

Suppose that R is F-pure and has an isolated singularity at m. Then the test
ideal is either R or m. To prove this first observe that the test ideal 7 will be
m-primary, by Theorem 2.12. Choose a power of p, say ¢’, such that md Cr.If I
is an ideal and u € I*, then Tu? C 19 for large q. It follows that mlda'llad’] - Ilad’]
and hence that mud C (I9)F for all large ¢. Since R is F-pure, it follows that
mud C Il9 for all large ¢ and the test ideal contains m. If R is not weakly F-regular,
then the test ideal must be exactly m.

A criterion of Fedder gives a nice condition for a quotient of a regular ring
to be F-pure:

Theorem 3.7. [Fe3] Let R be a regular local ring of characteristic p which is F-
finite. The quotient ring R/I is F-pure iff JIERY§ ¢ mlPl.

Janet Cowden has given a new proof of this theorem [Cow], and used her
method to show that if R is F-pure and F-finite with test ideal 7, then R/7 is also
F-pure. If I = (f) is a hypersurface, Fedder’s criterion becomes particularly easy
to apply. In this case TP : T = (fP~1) and the criterion just reads that P! ¢ ml?]
iff R is F-pure.

The condition that the test ideal be the whole ring simply says that the ring
is weakly F-regular. When R is Gorenstein, this condition is closely related to
the condition that R have rational singularities. We shall discuss this connection
at length in Sections 6 and 7. The next interesting case is when the test ideal
is the maximal ideal. In dimension 1, with algebraically closed residue field of
characteristic at least 5, Cowden has classified complete domains whose test ideal
is the maximal ideal. The only one up to isomorphism is k[[t2,¢3]]. Cowden [Cow]
has also classified 2-dimensional normal Gorenstein complete local domains with
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algebraically closed field of sufficiently large characteristic whose test ideal is the
maximal ideal. These rings turn out to be exactly the class of minimal elliptic
singularities.

An important source of test elements can be deduced (see [HH10, (8.22)])
from a theorem of Lipman and Sathaye. This theorem states:

Theorem 3.8. Let R be a regular Noetherian domain with quotient field K. Let L be
a finite separable field extension of K, and let S be a finitely generated R-subalgebra
of L. Set Jgyp = J = 0" Fitting ideal of the S-module of Kdhler R-differentials
Qg/r- Let T be the integral closure of S. Then JT C S.

We can use this to prove the following:

Theorem 3.9. Let R be a Noetherian domain of characteristic p which is module-
finite over a reqular subring A and whose fraction field is separable over the fraction
field of A. Then every nonzero element of Jr,4 is a test element.

The proof of this needs several steps. We first prove the following lemma:

Lemma 3.10. Let R be a Noetherian domain which is a module-finite and generi-
cally smooth extension of a regular domain A. Then AY9[R] = AY4 @4 R is flat
over R.

Proof. The condition that R is generically smooth over A implies that there is an
element d € A° such that Ry is smooth over A,4. Set S = R4y and B = Ay. We first
claim that S ® g B'/9 = S[B'/4]. This is a local question on B so without loss of
generality we may assume that B is local. Both S ®p B'/9 and S[B'/9] are free
over B, and by Nakayama’s lemma it suffices to see we have an isomorphism after
killing the maximal ideal n of B. But then S/nS is a finite separable extension of
B/n and this is well-known.

The natural map of A/9® 4 R into R'/9 has image A'/4[R]. This map becomes
an isomorphism after inverting d by the argument above. Since both of these rings

are torsion-free over A, the result follows. O

Lemma 3.11. Let the notation be as in Theorem 3.9. Let ¢ € Jgys. Then for all
q=p°, cRY1 C AY4[R].

Proof. The point is that the relative Jacobian ideal Jg/4 is equal to the relative
Jacobian ideal JAl/q[R]/Al/q since A/? is flat over A, and Lemma 3.10 identifies
AY/ 1[R] with AY4® 4 R. Hence any element in Jg /4 multiplies the integral closure
of AY9[R] back into AY9[R]. Since R'/? is contained in the integral closure of
AY4[R], clearly any nonzero element in Jp /A satisfies the conditions of the lemma.

O



Tight Closure, Parameter Ideals, and Geometry 205

Proof of Theorem 3.9. Let ¢ € Jgya. Then for all ¢ = p°, cRY9 C AY[R], by
Lemma 3.11. Let € I*. It suffices to prove that cx € I, since if this holds for
all ideals I and all x € I* then ¢ will be a test element. Assume that R # I : cx.
There exists some nonzero element d € R such that dz? € I'9 for all ¢. By taking a
multiple of d we may assume that d € A. Then d*/92 € IRY4, and by multiplying
by ¢ we obtain that cd'/92 € IAY9[R]. Since A'/9 is flat over A, by base change
AY9[R] is flat over R (see Lemma 3.10). Therefore d'/9 € (I :x cx)AY/9[R]. Raising
to the gth power, one obtains that d € ml4 which is a contradiction. O

Example 3.12. Let R = k[X1,...,X,,]/(F) where F = X{* + - + X2 We can
choose a regular subring A; inside R where 4; = k[X1,..., X;-1, Xit1,. -, Xd)-
and obtain that provided the characteristic p of k does not divide the product
ai---an, that R is generically smooth over all A;. The relative Jacobian ideal
JR/a, 1s simply the partial of F' with respect to X;. It follows that the test ideal
of R contains (X171 ... Xan—1),

4. The Test Ideal II: the Gorenstein Case

In this section we will discuss several results which concern the test ideal of a
Gorenstein ring. In this case, the duality between ideals in R and submodules of
the injective hull of the residue field of R plays an important role and gives us extra
punch. We are aiming for two results. The first result is a result of Smith which
gives that the test ideal localizes in the Gorenstein case. This will be an important
ingredient in Section 7 of the proof that the tight closure and plus closure of
parameters agree. The second says that when the test ideal is m-primary, we can
identity R/7 with the Matlis dual of the tight closure of a system of parameters
of test elements modulo the ideal generated by the parameters. The proofs in
this section rest on the identification of the injective hull of the residue field of
a Gorenstein local ring with the highest local cohomology of the ring. We begin
with a general discussion of local cohomology.

Discussion: Local Cohomology. Fix any set of elements x1,...,z4 for a ring R.
Let I denote the ideal they generate and let x denote their product. The local
cohomology module Hi(R) can be computed as the cohomology at the it spot of
the complex

0—R— PR, — @ Resyrr, — - — Raraszg — 0. 2)

We will use the notation = [Z] to denote the image of the fraction % €
Ry 2,2, in the highest local cohomology H¢(R). If R is graded and the x; are
homogeneous, then the individual modules appearing in the sequence (2) are also
graded, and consequently so are the local cohomology modules. A typical homo-
geneous element in the last local cohomology, 7 = [Z] will have degree equal to

deg(2) —t(D_;<;<qdeg(;)). If 1 is such an element, 7 = 0 iff there exists an integer
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n such that za™ € (2!, 25", ... 25", If R is Cohen-Macaulay, and 1, ...,z
form a system of parameters, then n = 0 iff z € (2}, 25,..., 2%).

If R has characteristic p, then the Frobenius acts on R and all its localizations,
and is compatible with the maps in the complex above, and thus Frobenius acts
on the local cohomology. Specifically, applying the Frobenius to an element n =
[%] € HY(R) gives the element F(n) = [;—fp] If n is homogeneous of degree N,
then evidently the degree of F'(n) is pN. We denote F(n) by nP. Since the Frobenius
acts on the local cohomology, we can easily define the tight closure of submodules
of the local cohomology module. In fact, there is a definition for submodules of
arbitrary modules in general. In these notes of particular importance will be the
tight closure of 0 in the highest local cohomology module H? (R). We say that
n € H (R) is in the tight closure of 0 if there exists an element ¢ € R such that
en? = 0 for all ¢ = p® > 0. Translating this back to R yields that if n = [%],
then 7 is in the tight closure of 0, denoted Obra (r)» iff z € («f,...,2h)*, using
Theorem 2.3.

If (R,m) is Gorenstein, then it is well-known that an injective hull of the
residue field of R can be identified with H% (R), where d = dim R. A crucial point
in our discussion of the test ideal is the following proposition from [HH4, (8.23)]:

Proposition 4.1. Let (R, m) be a Gorenstein local ring of positive characteristic.

Let 7 be the test ideal of R. Then 7 = Anng(07};4 (R)).

Proof. We proved above that 7 C AnnR(Oggﬂ( R)). Conversely suppose that ¢ €
AnnR(O*H;in(R)) N R°. If ¢ ¢ 7, there is an ideal I C R and an element x € I* such
that cx ¢ I. Replace I by an ideal J containing I and maximal with respect to not
containing cx. Then © € J*, cx ¢ J, and J is m-primary and irreducible. Then
R/J embeds in HY (R) as this module is an injective hull of the residue field of
R. But then the image of z in H¢ (R) under this embedding is in OZ’%(R)’ and by
assumption 7 must kill it. O

This Proposition gives us a very powerful corollary:

Corollary 4.2. Let (R, m) be a Gorenstein local ring of positive characteristic with
test ideal T. Let x1, ..., xq be an arbitrary system of parameters generating an ideal
I, and set J = (x1,...,x;) for some 1 <i<d—1. Then
(W) I:I*=I+7,andI:7=1I%
(2) J:7=J%,
(3) Ng (K : K*) =7, where the intersection runs over all ideals K generated by
a full system of parameters,
(4) if J is an ideal such that for all ideals K generated by a system of parameters
K:J=K*, then J=r.

Proof. To prove (1), it suffices to prove that I : 7 = I'*, since then duality forces
I:I*"=1:({:7)=1+7. Suppose that 27 C I. We need to prove that

z € I*, and it suffices to prove that n = [2] € 03,4 (R) by the discussion above. By

x
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Proposition 4.1, 7 = AnnR(O;IgL(R)), and hence by duality, Oj‘fi(R) = Annga ()T
Since 7n = 0, the corollary follows.

Write Iy = J + («!,,...,2}). Suppose that w € J : 7. Then u € I : 7, and
by part (1) it then follows that u € I}*. The proof of (2) will be finished by proving
that N:I; = J*. Suppose that z € NI}, and let ¢ be a test element. Then for all
t and all ¢, cz9 € Jl + (xfil, ..., 2). Intersecting over ¢ yields that for all g,
cz? € J4 which proves the claim.

To prove (3), we first observe that 7 C Nk (K : K*) by definition of the test
ideal. To prove that converse, suppose that u € Nk (K : K*). We can prove u is
a test element by proving that u € AnnR(O;{%(R)). But if n is in OE%(R), we can

represent 7 = [2] for some system of parameters x1,...,24, and 1 € OZ’%(R) is

equivalent to z € K*, where K = (z1,...,z4). Our assumption on u then shows
that uz € K, and hence un = 0.

By (3) it suffices to prove that J = Nk (K : K*) where the intersection runs
over all ideals K generated by a full system of parameters. Since K : J = K*,
duality yields that K : K* = J 4+ K. Hence Ng(K : K*) =Ng(J+ K)=J as J
is separated. It follows that J = 7. O

Corollary 4.3. Let (R,m) be either a complete local Gorenstein ring of character-
istic p, or a nonnegatively graded Gorenstein Ting over a field of characteristic p.
Suppose that x1, ..., x4 is a system of parameters of R, homogeneous in the second
case, which are test elements. Then 7 = (x1,...,24) :r (T1,...,24)*, where T is
the test ideal of R.

Proof. Clearly 7 C (21,...,24) :r (21,...,24)*. To prove the reverse inclusion,
choose an element ¢ € (z1,...,24) :g (%1,...,24)*. Let J be an arbitrary ideal of
R and let & € J*. Suppose that cx ¢ J. This continues to hold after localizing at
some maximal ideal M. If M # m, then since x; are test elements it follows that
x € Ip;. Hence M = m, and we may now assume that R is local with maximal
ideal m.

The proof now follows at once from Corollary 4.2(1), using the assumption
that the z; are test elements and hence in 7. O

The next theorem is a crucial ingredient of the proof of Theorem 7.1. One of
the important unsolved problems of tight closure theory is whether tight closure
commutes with localization. There are a few cases in which this is known. If the
ideal I is generated by a regular sequence, then (I*)y = (Iw)* for an arbitrary
multiplicatively closed subset W of R. Other cases are in [AHH]. Theorem 4.4
gives us the next best thing in the Gorenstein case: the test ideal commutes with
localization.

Theorem 4.4. [Sm4, (4.1)] Let (R, m) be a Gorenstein local ring of characteristic
p with test ideal T. Let P be an arbitrary prime ideal of R. Then the test ideal of
Rp 18 TP.



208 C. Huneke

Proof. Choose arbitrary parameters z,...,x; inside P which form a system of
parameters in Rp. Let I be the ideal they generate in R. By Corollary 4.2 (4)
applied to the ring Rp, it suffices to prove that Ip : 7p = (Ip)* = (I*)p. The
last equality is true because tight closure commutes with localization for ideals
generated by regular sequences by Proposition 1.5 b). To prove this equality it is
enough to prove that I : 7 = I'*, and this holds by Corollary 4.2 (2). O

There are many special properties enjoyed by the tight closure of ideals gen-
erated by test elements which are parameters. We need the following lemma:

Lemma 4.5. Let x1,...,xq be a regular sequence of elements which are test ele-
ments for parameter ideals. Then

(xf, . at) = (2t ah) ()T (2, )

Proof of Lemma 4.5. Let u € (x%,...,x%)*. Since the z; are test elements for pa-
rameters, u € (zf,...,2%) : (¥1,...,2q) = (@}, ..., 2h)+ (21 - 2q)" "' R. Writing u
as s(zy - xq)t ! modulo (x%,..., %), one sees that s(z1 - --zq)' "t € (zf, ..., 25)".
By Theorem 2.3 b), one obtains that s € (z1,...,24)*. O

Theorem 4.6. Let (R, m) be either a complete local Gorenstein ring of character-
istic p, or a nonnegatively graded Gorenstein ring over a field of characteristic p.
Suppose that x1, ..., x4 is a system of parameters of R, homogeneous in the second
case, which are test elements. Set I = (x1,...,xq). Then R/7 and I* /I are Matlis
dual, where T is the test ideal of R.

Proof. We give the proof in the local case. Set I = (x1,...,24). We need to prove
that Hompg(R/7, E) = I*/I, where E is an injective hull of the residue field of
R. Note that F = H?(R) as R is Gorenstein. We may represent an element in
this local cohomology by n = [—] for some ¢t > 1. Define a homomorphlsm

f: I*/I — E by sending the coset of an element u € I* to flu) =] | € E.

P
Observe that f is injective, for if f(u) = 0, then for some n, (x1---2zq)"u €
(27 .. xsﬂ) which forces v € I as R is Cohen-Macaulay.

Let n = [ ] € Hompg(R/7, E), which we identify with the annihilator of

7in E. Then 7'7] = O or equivalently 72 C (z,...,2%). By Corollary 4.2, we then
know that z € (x4,...,2%)* = (z},...,2h) + (21 - - - 24)" " I*, by Lemma 4.5. Write

z=u+ (x1---xq)" v for some u € (zf,...,25) and v € I*. Then n = izl =

[“HQJ; w;t)til ] = [5%5;]- This proves the map f defined above is also surjective
1’

and ﬁnlshes the proof of the Theorem. O

Example 4.7. Let R be the hypersurface 23 + 3> + 22 = 0 over a perfect field
of characteristic p. Then R is F-pure iff p = 1 mod(3). By Fedder’s theorem
(3.7) above, we need to prove that (X% + Y3 4 Z3)P=1 ¢ (X,Y, Z)lPl. Since
(X,Y,2)%=3 C (XP,YP, ZP (XY Z)P~1), whether (X3 + Y3 4 Z3)P=1 ¢ (XP,
YP ZP) is simply a question of whether there exist integers i + j + &k = p — 1 such
that X3'Y31Z3% = (XY Z)P~!, and such integers can be chosen iff p = 1 mod(3).
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Example 4.8. Again let R be the hypersurface 23 + 32 + 22 = 0. Assume that the
characteristic of k is at least 5, and further that k is algebraically closed. If p =1
mod(3), then R is F-pure by (4.7) and consequently Example 3.6 proves that the
test ideal is exactly m, since we know that R is not weakly F-regular. In fact, even
when p = 2 mod(3), the test ideal is exactly m = (x, y, 2).

One can compute by hand many examples of the tight closure of param-
eter ideals in hypersurfaces. An important feature of these calculations is the
degree of the socle element in the highest local cohomology. This degree is the
a-invariant. Precisely, the a-invariant of a graded ring is the largest integer n such
that the nth graded piece of the highest local cohomology H¢,(R) is nonzero
(d = dim(R)). It is particularly easy to compute the a-invariant in the case
R=Fk[X1,...,X,])/(f1,..., fg) is a graded complete intersection. The a-invariant
of R can be calculated to be

a(R) = Y deg(fi)— > deg(X,).

1<i<g 1<i<n

This calculation can be done from the fact that if S is a polynomial ring in n-
variables, and if R = S/I is a graded quotient of S, then the a-invariant of R is
the maximum of the absolute values of the last twists in a minimal graded S-free
resolution of R plus the a-invariant of S, which is — >, -, ., deg(X;).

The following chart gives some data from the calculations of tight closure:

Equation degrees of z,y, z | a-inv | Test Ideal | (y, 2)*
2+ +22=0 1,1,1 0 m (y,z,22)
22+ +yt+25=0 3,2,1 0 m (y,2,2)
4yt +21=0 1,1,1 1 m?2 (y, 2, 2%)
2 +y°+2°=0 1,1,1 2 m3 (y,2,22)
2?2+ +27=0 21,14,6 1 m (y, 2, x)
224+ +y2=0 6,4,1 1 (r,y,2%) | (y,2,7)

2+ +2°=0 15,10,6 -1 R (y,2)

After computing many examples of the test ideal in graded hypersurface rings
with isolated singularities, one reaches a rather amazing conclusion: the test ideal
is always a power of the maximal ideal when the ring is generated by 1-forms.
More generally, the test ideal always seems to consist of all forms of degree greater
than some fixed integer N. Closer inspection reveals that the integer N seems to
be the a-invariant of R.

Summarizing empirical evidence, we reach the following question:

Question 4.9. Let R be a Noetherian nonnegatively graded Gorenstein ring over
a field of characteristic 0 or p > 0. Assume that R has an isolated singularity at
the irrelevant ideal. Is the test ideal R>q41, where a is the a-invariant of R?
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We will give a proof of this question in Section 5 for hypersurfaces with
isolated singularity. This ‘conjecture’ turns out to be closely related to a conjecture
concerning what the tight closure of parameter ideals looks like, which in turn is
related to the Kodaira vanishing theorem. N. Hara [Ha5] has recently proved results
which in conjunction with the results of [HS] imply an affirmative answer to (4.9).

5. The Tight Closure of Parameter Ideals

In this section we will begin our concentration upon the tight closure of parameter
ideals. Throughout, (R, m) will denote either a Noetherian local ring of character-
istic p, or a nonnegatively Noetherian graded ring over a field Ry = k of character-
istic p, with m the irrelevant ideal generated by all forms of positive degree. We fix
the dimension d of R, and let z1,..., x4 be a system of parameters, homogeneous
in the case in which R is graded. Our basic questions are:

What is the tight closure of (x1,...,xq)? Where does it come from?
There are several ways we can list from Section 2:

Remark 5.1. Suppose that R is a domain, and let Rt be the algebraic closure of

R in an algebraic closure of its fraction field. Using Theorem 2.1 it follows that

(x1,...,2g)R"NR C (x1,...,24)*. A subideal of this ‘plus’ closure is often easier

to study, namely the Frobenius closure, (z1,...,24)". The Frobenius closure I

of an ideal I is the set of elements u such that there exists a ¢ = p¢ with u? € I9.
A remarkable theorem of Smith [Sm4] says that in fact

(1?1,...,,CEZ‘)R+QR: (1‘1,...,1’1‘)*

for all ¢ provided R is an excellent local (or graded) domain. We will prove this
result in Section 7. In some sense, we don’t need to look any further! However, it is
extremely difficult to understand what lies in this plus closure. It is possible that
for every ideal J of R, JR™ N R = J*. We know of no counterexample. However,
we do not know this even for 2-dimensional normal local rings, even for the ring
k[z,y, 2]/ (23 + y3 + 23) with char k # 3.

Remark 5.2. The main theorem of [HH7] states that if (R, m) is an excellent local
domain of positive characteristic, then RT is a big Cohen-Macaulay algebra for
R. It is worth noting that this follows at once from colon-capturing and Smith’s
theorem®. For let x1,...,24 be a full system of parameters. To see that RT is
Cohen-Macaulay it suffices to prove that (z1,...,2;) g+ Zix1 = (x1,...,3;)RT
for 0 <i<d-1 Let u € (x1,...,2;) :p+ Tit+1. After extending R by a finite
integral extension we may assume that u € R. By Theorem 2.3, (z1,...,%;) :r
Tiv1 C (T1,...,2:)* = (x1,...,2;) RTNR, the latter equality coming from Smith’s

6Smith uses that RT is Cohen-Macaulay to prove her result, so her result does not give a new
proof that Rt is Cohen-Macaulay, but rather is a good way of understanding the fact that R*
is Cohen-Macaulay and how this fact is related to the theory of tight closure.
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theorem. It follows that u € (zi,...,2z;)RT, which proves that Rt is Cohen-
Macaulay.

Instead of looking at the entire plus closure, which is difficult to work with,
one can instead focus upon the Frobenius closure, I¥. Recall this is the set of
elements u such that there exists a ¢ = p© such that u? € 1'%, Ultimately studying
this piece of the tight closure of parameters ideals relates to the Kodaira vanishing
theorem.

To obtain another piece of the tight closure we may use the colon capturing
of Theorem 2.3. We need a definition to help us:

Definition 5.3. Let S be a ring and let z1,...,z; be parameters in S generating
an ideal I. The notation I"™ indicates the ideal of all elements z € S for which
there exists an integer s with z*7'z € (2§, 3,...,z}), where x = 1 -+ ; is the
product of all the x;.

We call 1™ the limit closure of I. It is an ideal containing I. This defini-
tion actually arises from a consideration of local cohomology. We will discuss this
connection later in this section.

Remark 5.4. Using Theorem 2.3 b) it follows that if I = (x1,...,x4) is a system
of parameters, then I'"™ C I*. Notice that if R is Cohen-Macaulay, I""™ = I.

Remark 5.5. Let I = (z1,...,24) be a system of parameters. Using Theorem 2.7
we know that I¢ C I*. In the graded case this Briancon-Skoda theorem takes
the particularly nice form of Theorem 2.9: setting D = ), deg(x;), we have that
RZD Q (1‘1, PN ,Z‘d)*.

Remark 5.6. If J C I = (z1,...,24), then J* C I*. Of particular interest is
specializing this concept to subsequences of the parameters. In particular, define

Ig&rm — Z(itl, ey Lj—1, L1y - - ,.Td)*.
i
Then 19 C I*. Although it is not obvious, both the germ and the limit closure
of parameters do not depend upon the choice of parameters, only on the ideal they
generate.

Summarizing, we have the following containment for the tight closure of a
parameter ideal I:
ﬁ+1germ +IF _|_Il1m C I,
In the graded case we can make a slightly stronger statement:
RZD 4 Joerm +IF +Ilzm C I*, (3)

where D = )", deg(x;). When do we get equality? What are the relationships
between the various terms on the right hand side of these containments? If R is
Cohen-Macaulay I'“™ = I. This is clear since any system of parameters z1,...,zq
form a regular sequence.
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The germ of I is closely related to the unmixed parts of parameters when
there are enough test elements.

Definition 5.7. The equidimensional hull of an ideal I in a Noetherian ring R
is by definition the intersection of the minimal primary components of maximal
dimension. We denote this intersection by I*"".

The sense of this definition is that if R is biequidimensional and catenary,
and if I is an ideal generated by parameters, then I*™ is exactly the intersection
of all minimal primary components of I, its unmixed part.

Proposition 5.8. Let (R, m) be an equidimensional graded or local ring essentially
of finite type over a field. Assume that R has an m-primary ideal of test elements
for parameter ideals. If I is a parameter ideal of height less than the dimension of
R, then I"™™ = T*.

Proof. Let {x1,xa,...,2;} be the parameters generating I, where | < dim(R). By
assumption every element of m has some power that is a test element for I. Thus,
we can find an element ¢ such that {1, 2,...,2;,¢} also form parameters, and
such that ¢ is a test element for parameter ideals. Let Py, Ps, ..., Ps; be the minimal
primary components of I = (z1,x2,...,z;)R, and let Q1,...,Q, be the embedded
primary components. Because I has height [, every minimal primary component
must have height [ by the Krull principal ideal theorem so the equidimensional
hull of I is simply the intersection of the P;’s.

The minimal primes of I are the radicals \/ﬁ2 of the P;. Choose an element
z € (x1,%2,...,2)*. Then cz € (z1,22,...,21) C (i, P;. But since each P; is pri-
mary and ¢ is not in any v/P;, we must have that z € ﬂle P;, the equidimensional
hull of 1.

For the converse, let z € [ P;. Let ¢ be contained in each @; but no P;. Then
cz € VP NN Qi = (x1,...,2;)R. By the fundamental ‘colon capturing’ property
of tight closure given in Theorem 2.3, we conclude that z € (z1,...,2;)*. Thus
(z1,...,2)* =;_, P, as claimed. 0

It follows that if R has an m-primary ideal of test elements for parameters
and is Cohen-Macaulay then 19¢"™ = [. For partial systems of parameters are
always unmixed in a Cohen-Macaulay ring. Applying Proposition 5.8 then gives
that [9¢"™ = [.

Let R be graded and Cohen-Macaulay with an m-primary ideal of test ele-
ments. The containments of (3) then simply reduce to saying that I+ R>p C I*.
In fact, equality occurs in this case:

Proposition 5.9. Let R be a graded ring over a field Ry = k of characteristic p,

and suppose that x1,...,xq are a homogeneous system of parameters which are
test elements. If R is Cohen-Macaulay then
(.’1117. .. 7.’17d)* = (3?1, o ,.’L’d)F +RZD,

where D =" deg(x;).
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Proof. Theorem 2.9 proves that (z1,...,24)" +R>p C (21,...,24)* in general. Let
u € (21,...,24)*. By Lemma 4.5, u? € (zf,...,23)* C (2f,...,2%, y? 1), where
y = x1 - xq. Suppose that deg(u) =n < D. Then for large ¢, ng < D(¢—1), and
hence u? € (z9,...,z%). O

Can we do even better? For instance, is it possible that elements in the
Frobenius closure but not in the ideal must have high degree? Before we take up
this question in more detail, let us backtrack a bit to the non Cohen-Macaulay
case. If R has an m-primary ideal of test elements for parameters, then it turns
out that while one cannot remove either of the terms I'"™ or 19¢"™ from (3), they
collapse to give the same answer, at least for parameters which are test elements for
parameters. This follows from work of Goto and Yamagishi [GY] on unconditioned
strong d-sequences, dt-sequences for short.

Definition 5.10. [Hu6], [GY] Let R be a commutative ring. A sequence of elements

Z1,-...,Ty, is said to be a d-sequence if for every 0 <i <n —1 and k > i,
(@1, @)t T = (T, 000, @) T T
A sequence z1,...,x, is said to be a strong d-sequence if x"',... /" is a d-

sequence for every m; > 1. Finally a sequence is said to be a d™-sequence if every
permutation of it is a strong d-sequence.

Remark 5.11. Goto and Yamagishi prove a great many properties of such se-
quences. Such sequences are particularly convenient to use in tight closure theory
because of the following observation: if x1,...,x, are parameters which are test
elements for parameter tight closure, then they are a d™-sequence. Since every
power of these elements and every rearrangement of them are still parameters
which are parameter test elements, it suffices to prove they are a d-sequence. If

u € (x1,...,%;) : Tip1Tk, then as x; 112 is a parameter modulo z1,...,x;, we
may apply Theorem 2.3 to see that u € (x1,...,2;)*. The assumption that xj is
a test element for such ideals then implies that u € (1, ..., 2;) : k.

Theorem 5.12. (Germ = Limit Closure). Let (R, m) be as above, and assume that
x1,...,Tq are a system of parameters which are test elements for parameter tight
closure. Let I be the ideal they generate. Then I9¢™™ = JW™,

Proof. We first prove that 9™ C "™, Let u € (o1,...,%_1,Tit1,-..,Tq)" for
some ¢. Since z; is a test element, x;u € (x1,...,2%i-1,%it1,...,2Lq). But then
x1 - zqu € (22,...,2%) which means that u € I,

Conversely we use the following ‘Monomial property’ of d™-sequences proved
by Goto and Yamagishi [GY, Theorem 2.3]:

Theorem 5.13. Let nq,...,ng,my,...,ms be positive integers and suppose that
T1,...,2s are a dt-sequence. The ideal (@' ... alstms) (IL; @) is equal
to

ny Mi—1 _Mit1 ns\ . . ny n
E (@, . a7t et al) tag + (a)t, L al).

%
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Suppose that u € I and choose t such that ux! € (zi™,... 2t),

where x = x1 ---x4. By Remark 5.11, x1,...,z4 form a d'-sequence. Applying
(5.13) with s = d, m; = --- = mg = t, and n; = -+ = ng = 1 gives that
uwey(a,... P Qi1 Gig1s - - - cas)tap + 1= (a1,...,0,-1,Qi41,...,05) ¢ a;. It
follows that J9¢m™ = Jlim, U

The various parts of the tight closure of parameter ideals can be understood
best by going to the limit, i.e. looking at the highest local cohomology of R. This
point of view has been used very effectively by both Smith and Hara. In addition,
the local cohomology modules of an ideal I in R play an important role in the
study of F-rational rings.

Remark 5.14. The term R>p in (3) can be explained in terms of the local co-
homology. Let R be graded. If z1, ..., x4 are homogeneous parameters of degrees
d; with D = Y, d;, then z € R>p iff the degree of n = [2] € H%(R) is greater
than or equal to D — Y. d; = 0. It follows that quﬁz (R) contains all elements of
nonnegative degree, and this is the meaning of the Briangon-Skoda part of the
tight closure of parameter ideals. The most interesting part of the tight closure of
parameters is what occurs in the negative part of the local cohomology.

An important observation is that if x1,..., x4 is a homogeneous system of
parameter for the graded ring R, then an element u € (x1,...,24)" iff n = [4] €
O}}gl (R)" (Here, as above, x represents the product of the elements x;.) It follows that
there is a correspondence between studying the tight closure of parameter ideals

and studying the ‘fundamental’ submodule 07, (R) of the highest local cohomology.
By restricting our attention to 0%, (r) We in some sense are studying the tight

closure of all parameters ideals at the same time. Under this correspondence we
have seen that the limit closure is simply the set of elements going to zero.

Theorem 5.15. (Strong Vanishing Theorem). Let R be a nonnegatively graded ring
over a field Ry = K of characteristic 0 or characteristic p > 0.7 Assume that R has
an m-primary ideal of parameter test elements. Let x1,...,xq be a homogeneous
system of parameters of degrees d1,...,0q. Set 6 = . 0;. Then

(1‘1, . ,.T,‘d)* = (1‘1, .. .,.’I,‘d)germ + R25.

This was originally a conjecture which arose through a reinterpretation of
the Kodaira vanishing theorem in [Sm6] and [HS]. The last section will explain
this connection. This ‘conjecture’ has now been proved by Nobuo Hara [Ha5]. The
next section will give applications of this theorem, and give a direct proof in the
case in which R is a hypersurface.

7At this point we will not be precise about what this means.
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6. The Strong Vanishing Theorem

In this section we will give some of the consequences of the Strong Vanishing
Theorem, discuss equivalent formulations, and prove this theorem for hypersur-
faces with isolated singularity. This theorem was recently proved by N. Hara using
techniques of Deligne and Illusie [DI].

We begin by restricting to the Cohen-Macaulay case.

Theorem 6.1. Let R be a nonnegatively graded Cohen-Macaulay ring over a field
Ry = K of characteristic 0 or characteristic p > 0 Assume that R has an m-

primary ideal of parameter test elements. Let x1,...,xq be a homogeneous system
of parameters of degrees 01,...,04. Set 6 =, ;. Then
(@1, 2q)" = (T1,...,2q) + R>s.

Proof. This is nothing more than a restatement of the Vanishing Theorem 5.15,
using the fact that 19"™ = I if I is Cohen-Macaulay.

The next theorem gives several equivalent forms of the Strong Vanishing
Theorem. Probably the most appealing is the fourth equivalence.

Theorem 6.2. Let (R,m) be a d-dimensional N-graded Noetherian domain over a
field Sy of characteristic p > 0. Assume that R has an m-primary ideal of test
elements for parameter ideals. Then the following are equivalent:

(1) (z1,22,...,24)* = (v1,22,...,74)"™ + R>s for all homogeneous systems of
parameters 1, T, ..., xq for R where § is the sum of the degrees of the x;’s.

(2) (z1,22,...,24)" = (21,22, ...,24)7"™ + R>s for all homogeneous systems
of parameters x1,xa,...,xq for R where § is the sum of the degrees of the
x;’s.

(3) The tight closure of zero in HS(R) has no non-zero elements of negative
degrees. In particular, the tight closure of zero in HZ (R) is precisely the
submodule of elements of non-negative degrees.

(4) The Frobenius acts injectively on HZ (S) in negative degrees.

Further assume that R is Cohen-Macaulay. Then (1)-(4) above are equivalent
to:
(5) (z1,22,...,2a)* = (z1,22,...,24) + R>5 for a fized homogeneous system
of parameters x1,xa,...,xq for R which are test elements for parameters,
where § is the sum of the degrees of the x;’s.

Proof. The equivalence of (1) and (2) follows from Theorem 5.12. The equivalence
of (2) and (3) follows from the discussion in Remark 5.14.

That (3) implies (4) is obvious: if any negative degree element of HZ, () is in
the kernel of the Frobenius map, then it is in the tight closure of zero in HY (S).

To see that (4) implies (3), suppose that Frobenius acts injectively on the
negative degree pieces and 7 is an element of negative degree in the tight closure
of zero in HY (S). Each of the non-zero elements n? has a non-zero multiple in the
socle of HY (S). Because the socle is of fixed degree, the degrees of these multipliers
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must be getting larger and larger as ¢ goes to infinity (because the degree of 77 is
going to —oo as ¢ gets larger). But all elements of large degree are test elements,
so they must actually kill n9.

Clearly (1) implies (5). Assume (5). To prove (2), notice that any element
of the highest local cohomology can be represented in the form [ﬁ] for some
choice of t. If we prove the system of elements z!, ...,z satisfies the conclusion
of (5), then (2) follows as in the proof of (2) implies (3).

Suppose that z € (z},...,2%)* and the degree of z is strictly smaller than
t6. Writing z in (2f,...,2%) + (1 2q)" " (z1,...,24)* by Lemma 4.5, we see
that if there is a nonzero contribution from the last term, say s(zp---z4)'" !,
then the degree of s will be strictly smaller than 4, and the lemma shows that
s € (z1,...,2q)*. This contradicts assumption (5) and finishes the proof. O

The Strong Vanishing Theorem turns out to answer Question 4.9 concerning
the test ideal. The following theorem is a slightly special case of [HS, Theorem
5.4]:

Theorem 6.3. (The Test Ideal and Vanishing Theorem). Let (R, m) be an N-graded
Noetherian domain over a field k = Ry of characteristic p > 0 and of dimension d.
Assume that R is Gorenstein and has an isolated singularity at m. Further assume
that the Strong Vanishing Theorem holds for R.® Then test ideal for R is R>q11,
where a is the a-invariant of R.

Proof. Since R has an isolated singularity, we know that there exists an m-primary
ideal of test elements, and hence we can choose homogeneous parameters x1, ..., g4
which are test elements. By Corollary 4.3, the test ideal is exactly

T=(21,...,2q) :r (T1,...,2q)".
As R is Gorenstein, so are the 0-dimensional rings R/(z1,...,xq), and these
rings are graded. The socle sits in degree a 4+ D, where D =}, ., deg(z;) and

a is the a-invariant of R.
By the Strong Vanishing Theorem, (z1,...,24)* = (Z1,...,24)9" ™+ R>p =

(x1,...,24)+R>p,since R is Cohen-Macaulay. Iif u € (x1,...,24) :r (®1,...,24)",
then uR>p C (21,...,%q). As u has a nonzero multiple in the socle, it follows that
deg(u) > a+1. Conversely, if deg(u) > a+1 then u(x1, ..., zq)* Cu((z1,...,2q4)+
R>p) C(x1,...,24) + R>a+D+1 C (21,...,24). Hence 7 = R>q41. O

It is worth remarking that in the Gorenstein case, the statement of Theo-
rem 6.3 is in fact equivalent to the Strong Vanishing Theorem. For suppose that
T = R>qt1. Let u € (21,...,24) with deg(u) < D, where D is the sum of the
degrees of the homogeneous parameters xy,...,2q. Since 7u C (21,...,24), we
obtain that uR>q+1 C (%1,...,2q). But if uw ¢ (x1,...,24), then u must have a
multiple uv in the socle, necessarily of degree D + a. The degree of v is at least
a+1 since deg(u) < D. Hence u € (x4, ...,x4), which proves the Strong Vanishing
Theorem.

8The Strong Vanishing Theorem holds in characteristic 0 or for ‘large’ characteristic p.
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It is possible to give a direct proof of the Strong Vanishing Theorem for the
case of hypersurfaces with isolated singularity, which does not involve any more
machinery. This was first proved essentially by Fedder, and the proof here, while
new, uses Fedder’s ideas.

Theorem 6.4. (Strong Vanishing for Hypersurfaces). Let R be the ring k[Xo, ...,
Xa)/(f). Assume that R is an isolated singularity which is quasihomogeneous,
where k is a field of characteristic p. Assume that the partial derivatives f; =
aa—)é form a system of parameters in R where 1 < i < d. Further assume that
p > (d—1)(deg(f)) — X1 <ie, deg(Xi). Let yi, ..., ya be a homogeneous system of
parameters of degrees a1, ...,aq. Set A=ay +---+aq. Then

(yl""ayd)* :(yla---ayd)+R2A-

Proof. To prove Theorem 6.4 it suffices to prove this for a single system of param-
eters which are test elements, by Theorem 6.2.5. As R has an isolated singularity,
without loss of generality we may assume that the partial derivatives f; = SB—)J(: for
1 <i < d form a system of parameters, which are clearly homogeneous, and which
are test elements by Theorem 3.9.
Choose an element u € (f1,..., fq)* of minimal degree such that w ¢ (fi,
oy fa). Set 6 =", ;. deg(fi). If u € R>s we are done, so we may assume that
deg(u) < §. By Lemma 4.5,

uf € (ffs o f) = (s fO) + (Fre f)P T (fry s )™
Write
wP =Y nfP (e fa)P s, (4)
1<i<d

where s € (f1,..., fa)". In particular, deg(s) > deg(u). We claim that u? €
(ff,..., f5). If not, the term (f1---f4)? 's in (4) must be nonzero, and so
p(deg(u)) > (p — 1) + deg(u) which contradicts our assumption that deg(u) < 6.

We may rewrite (4) as
uf = Z riff.

1<i<d

We now lift the latter equation back to S = k[Xo,..., X4] and write

u? = Z riff +rft (5)
1<i<d
where 1 < 4. Choose i maximal such that u? € (f7,..., f¥, f*). If i > p, we obtain

that u? € (fi1,..., fa, ), and as S is regular we then find that u € (fi,..., fq)R
as needed.

Assume that (5) holds with ¢ < p, and we’ll prove v? € (ff, ..., f¥,
1), Write D; for the differential aixj' Recall that D;(f) = f;. Applying D;
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to (5) yields an equation which shows that if'='f;r € ((fi,..., fa, /)P, f9)S.
Since ¢ < p we may invert ¢. Moreover this holds for every 1 < 5 < d. We can write

re ((fl""’fdaf)[p},fi)s - ((fl,.,,,fd,fi—l).

Since f, f1,. .., fa form a regular sequence, r € ((f1,..., fa, f)P, FP~1, f)S, where
F = (f1--- f4). It suffices to prove that the term involving FP~! is 0 since in that
case 7 € ((f1,---, fa, [)P), f)S which forces w? € (f},..., f}, f+1)S using (5).
The degree of the term involving FP~! is at least degree (p — 1)d. The degree of
r is at most pdeg(u) — ideg(f) < pdeg(u) — deg(f). It follows that if there is a
nonzero contribution from the term FP~! to r then

p(6 — deg(u)) < 6 — deg(f).
Since (§ — deg(u)) > 0 this does not hold for p > § — deg(f). O

Remark 6.5. A similar proof gives the Strong Vanishing Theorem for complete
intersections which are quasi-homogeneous with isolated singularity. This was es-
sentially done by Fedder with a different proof. See also [Ha4].

Example 6.6. Let S = k[X,Y,Z] and f = X2 + Y3 + Z5. In terms of the proof of
Theorem 6.4 we may choose the partials % and % to be the system of parameters
for R = S/Sf. We must then assume that the characteristic p of k exceeds (d —
1)(deg(f)) — deg(X) — deg(Y) =30 — 10 — 15 = 5.

Write small x,y, z for the images of X,Y,Z in R. Apply Theorem 6.4 to
the parameters y,z of R. We get that the tight closure of (y, z) is contained in
(y,z) + R>16- As R>16 C (y, 2)R, it follows that the test ideal for parameters is
the whole ring if the characteristic of k is at least 7.

Another example is helpful:

Example 6.7. Consider the three hypersurfaces: Ry = k[X,Y, Z] /(X2 +Y3+Y Z4),
Ry = k[X,Y,Z]/(X? + Y3+ Z7), and R3 = k[X,Y, Z, U] /(X5 +Y® + Z5 4+ U®).
We claim that in each case, the test ideal is the maximal ideal, at least for large
enough characteristic.

R; is graded with the weights, deg(z) = 3, deg(y) = 2, and deg(z) = 1. The
a-invariant is then 0 = 6 — 1 — 2 — 3. It follows that the test ideal is the maximal
ideal, provided the characteristic is at least 6—2—3 = 1. Thus the Strong Vanishing
Theorem holds in R; for all characteristics.

R is graded with the weights, deg(z) = 21, deg(y) = 14, and deg(z) = 6.
The a-invariant is then 1 = 42 — 21 — 14 — 6. It follows that the test ideal is the
maximal ideal, provided the characteristic is greater than 42 — 21 — 14 = 7. Hence
the Strong Vanishing Theorem holds in Rs for all characteristics at least 11.

Rj is graded with all the weights 1, and the a-invariant is then 1 =5—-1—1—
1—1. It follows that the test ideal is the maximal ideal, provided the characteristic
is greater than 2(5) —1 — 1 — 1 = 7. The Strong Vanishing Theorem holds in Rj
for all characteristics at least 11.
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7. Plus Closure

In this section we will sketch the proof of the the main theorem from [Sm4]. Recall
that if R is a domain, then by R* we denote the integral closure of R in an algebraic
closure of its fraction field. We will use the fact that RT is Cohen-Macaulay if R
is an excellent local domain of characteristic p > 0. This fact is the main result of
[HH4]. Theorem 5.1 of [Sm4] states:

Theorem 7.1. Let R be a locally excellent Noetherian domain of characteristic p >
0. If I is any parameter ideal of R, then I* = IRT N R.

The proof of this Theorem rests on a thorough understanding of the role
played by the tight closure of zero in the highest local cohomology of a ring R.

Before beginning the proof we need to introduce another submodule of the
highest local cohomology of a d-dimensional Noetherian local ring (R, m).

Definition 7.2. The plus closure of 0 in H% (R), denoted 07 is the kernel of

the natural map

H, (R)

¢ Hy,(R) — Hy, (R) @r RT 2= Hy (RT).

We have already seen that an element z € (z1,...,24)* determines an element
€ e next Proposition delineates some of the basic properties
orwg) € O (r . Th t P ition delineat f the b ti
we Wlll use.

Proposition 7.3. Let (R, m) be an excellent local domain of dimension d and char-
acteristic p > 0, and let BT be as above.

(1) Let x1,...,xq be a system of parameters generating an ideal I. Then

z
[——] € Hd(R)Z[szI

1‘1 ... xd
+ *
(2) Oz (ry < Oty )
(3) OJI_FI%(R) = Oan(R) iff I =1I* for all ideals I generated by systems of param-
eters Ty, ...,xq.
Proof. First suppose that z € I'. Then 2 € IR" and so [;—22-] = 0 in Hy,(R").

z1

Conversely, suppose that [;—2_-] = 0 in Hy,(R"). Since R* is Cohen-Macaulay
by [HH4], it then follows that z € TRT™ N R = I'"". This proves 1).
To prove (2), let n € OE@ (R) and write n = | ] for some system of

X1 qg
parameters z1,...,xq. By (1), we know that z € I'™ C I*. Tt then follows that
1€ Oy
If OHdl(R) = OHd (R)’ and z € I*, then n = [7@»-2-90,1] € 0y i(R) = OHd (R

implies by 1) that z € I'". Hence I* = I". The converse is even ea51er O
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A crucial step in the proof of the main theorem of this section is the fact
that if O*H&(R)/OE%(R) has finite length then it must be zero! (See [Sm4, Theorem
5.1].)

A slightly more general result explains this phenomena. Recall that if n =
[+257) € Hi(R), then 17 = [2].

T Tq wgzd

Lemma 7.4. Let (R, m) be an excellent local domain of positive characteristic p and
dimension d > 1. Set K = OE%(R). Suppose that n € HS (R), and set N, equal to

the submodule of HZ (R) spanned by K together with n,nP, ..., nP". Suppose that
N._1 = N, for some e. Thenn € O?_Id

m

(R)*
Proof. Suppose that N, = N._1, and set ¢ = p°. We then have an equation,

nt =rn® 4 rn® 40, (6)
+
HE (R)'
The element 6 becomes 0 by definition of 0}, (ry» and we may rewrite (6) as

where ¢; < --- < 1 < g are powers of p, and 6 € 0 We now pass to R™.

Pl P29 pd— 0 7 2% g1
[Z‘({..-xg] [ x({..-xg } [ x({...xg ’

where * = z;---z4 and the equation holds in HY (R"). The fact that R* is
Cohen-Macaulay then gives us that

29 =r2P TN 4 2T 4o, (7)

where w € (21, ..., z%)R". The beautiful fact we now need to use is that equation
(7) forces z € (x1,...,24)RT. This is the statement of the modified ‘Equational
Lemma’: see [HH4, 2.2] and [Sm4, (5.3)]. However z € (z1,...,2q4)RT means that
n=I[;75]is0in H{ (RY), and hence n € 0}, (R)" O
Proposition 7.5. Let (R, m) be an excellent local domain of positive characteristic
p and dimension d > 1. If the R-module OB%(R)/OE%(R) has finite length then it
vanishes.

Proof. Let n = [=-] € O%a (). Define Ne as in Lemma 7.4. The fact that

1 € Oya (g implies that for all ¢, n? € 034 5. In particular, OEﬁL(R) C N, C
Ny C -+ CO0ha gy The condition that OE%(R)/OE;{L(R) has finite length forces the

+
Hi (R)

chain of submodules N, to stabilize, and then Lemma 7.4 gives that n € 0

Proof of Theorem 7.1. The proof of (7.1) proceeds by induction on the dimension of
R. Smith makes several technical reductions of this problem which are somewhat
laborious. However, one eventually reaches the situation in which a minimal di-
mensional counterexample (R, m) is complete, normal and local. We next need to
reduce to the Gorenstein case. Accordingly, let (R, m) be complete local and nor-
mal, and suppose that z € I* ¢ IRTNR for an ideal I = (1, ..., q) generated by a
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system of parameters. Choose a coefficient field K and let A = K{[x1,...,24]] C R
be the complete subring generated by the x; over K. Of course, A is a regular local
ring. Set B = A[z]. The inclusions A C B C R prove that B is a complete local
ring of the same dimension d as both A and R. Moreover, B is Gorenstein, in fact is
isomorphic with A[Z]/(f) for some nonzero element f € A[Z]. Theorem 2.1 shows
that z € ((x1,...,24)R)*NB C ((x1,...,24)B)*. On the other hand, z ¢ IB*NB,
since IBY = IR", and z ¢ ITR*. Thus we have reached the situation in which a
minimal dimensional counterexample is Gorenstein.

By Proposition 7.3 (3) it suffices to prove that OJI_rId (R) = ;I%(R), where d is

the dimension of R. By Proposition 7.5 it then suffices to prove that 07, (R)/Ozd (R)
has finite length, and we do this by considering their Matlis duals.

By Theorem 4.6, the Matlis dual of 0%, is 7, the test ideal of R. Denote

’NL(R)
the Matlis dual of OEd (R) by J. We have that 7 C J, and we wish to prove that

J/7 has finite length. Let P be any prime ideal not equal to m.

Choose any element ¢/1 € Jp. Without loss of generality we may assume
that ¢ € J. It suffices to prove that c kills the tight closure of 0 in Hpp (Rp),
where n = dim(Rp), since in that case ¢/1 is in the test ideal of Rp which by
Theorem 4.4 is exactly 7p. In other words, if x4, ..., z, are parameters in R which
form a system of parameters in Rp, we need to prove that c((x1,...,2,)p)* =
c((x1,...,20)*)p C (21,...,2,)p. However, the induction implies that the plus
closure is equal to the tight closure for parameter ideals in Rp. If z € (z1,...,x,)%,
then z/1 € ((z1,...,2n)p)T = ((x1,...,2,)")p (it is elementary to see that
plus closure commutes with localization) and so there exists an element u ¢ P
such that uz € (z1,...,7,)R". Extend z1,...,2, to a full system of parameters

T1,...,2q. Then uz € (z1,...,24)RT and so n = [mlff?zd] € Ozd ()" By choice

of ¢, we then obtain that ¢y = 0 in H¢ (R), and since R is Cohen-Macaulay it
follows that cuz € (z1,...,%4). Since we may vary the parameters z,41,...,2q
(in particular we may raise them to arbitrary powers), we obtain that cuz €
(z1,...,2,). Hence cz € (x1,...,2,)p. It follows that ¢ € 7p, and this finishes the
proof of Theorem 7.1. O

Remark 7.6. Although R™ is not a Noetherian ring, and so the definition of tight
closure does not pertain to this ring, it is nonetheless interesting to see what The-
orem 7.1 means in the context of this ring. Essentially it says that ideals generated
by parameters in RT are tightly closed. For suppose that (R, m) is a complete local
domain of characteristic p and let z1, ..., z4 be a system of parameters in R*. Sup-
pose that z € ((z1,...,24)RT)*, where we take this to mean as usual that there
exists a nonzero element ¢ such that cz? € (zf,...,25)R* for all large g. Choose a
local Noetherian complete ring (.5, n), finite over R containing 1, ..., x4, ¢, z. Then
cze SN(zf,...,2)RT C ((21,...,2%)S)*. Choosing a test element d for S then
gives that for all large ¢, dez? € (x,...,2%)S. Hence z € ((@1,...,24)S)* which
by the main theorem of this section forces z € (x1,...,24)ST = (z1,...,24)RT.
(Observe that the elements x1, . .., x4 must form parameters in S.) It then follows
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that we may think of the ideal (z1,...,24)R" as being tightly closed. It turns
out that Noetherian rings whose parameter ideals are tightly closed are essentially
those with rational singularities. The next section discusses these rings.

8. F-Rational Rings

In this section we will discuss rings in which every ideal generated by parameters
is tightly closed. Such rings are said to be F-rational. It turns out that F-rational
rings are closely related to rational singularities. Indeed, if R is a Noetherian
ring over a field of characteristic 0, then R is ‘F-rational type implies that R
has rational singularities [Sm2]. Recently, using methods from the Deligne-Illusie
proof of Kodaira vanishing, N. Hara has proved that the converse is also true for
such rings [Ha5].

Lemma 8.1. Let (R, m) be an equidimensional local Noetherian ring of characteris-
tic p which is a homomorphic image of a Cohen-Macaulay ring and let x1,...,zq €
m be part of system of parameters. If the ideal (z1,...,xq)R is tightly closed then
so is the ideal (x1,...,2;)R for 0 <i <d.

Proof. The proof of the claim reduces, by reverse induction on 4, to the case
where d > 1 and ¢ = d — 1. Let r be any element in the tight closure of J =
(1,...,24-1)R. Then r € (J + z4R)* = J + x4R by hypothesis, say r = j + zqu.
It follows that r —j € J*+ J = J* and so u € J* :g z4R. Then x4u € J* and so
there exists co € R° such that co(zqu)? € J for all large g. Thus, for all large

q, we have that cou? € J4 ;g 29R = (29,... ,2%_ )R :g 24 R. Theorem 2.3 gives
then that cou? € (x,... ,2%_,)*, which implies that u € J*. Thus, J* = J+zq4J*,
and the fact that J* = J now follows from Nakayama’s lemma. O

We summarize the basic properties of F-rational rings. See [Hub, Section 4]:

Theorem 8.2. [FeW|, [HH10] For Noetherian rings of characteristic p the following
hold. In parts d)—-g) assume either that R is locally excellent or is a homomorphic
image of a Cohen-Macaulay ring.

a) A weakly F-regular ring is F-rational.

b) An F-rational ring is normal.

¢) If R is local and excellent, then R is F-rational zﬁf% is F-rational.

d) If R is F-rational, then R is Cohen-Macaulay.

e) A local ring (R,m) is F-rational if and only if it is equidimensional and the
ideal generated by one system of parameters is tightly closed.

9 F-rational type means that after expressing relevant data over a finitely generated Z-algebra
(instead of a field) and reducing modulo the maximal ideals in a dense open set, the corresponding
algebra (now in positive characteristic) is F-rational.
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f) R is F-rational if and only if its localization at every mazximal ideal is F -
rational.

g) A localization of an F-rational ring R is F-rational. In particular, a local-
ization of a weakly F-regular ring which is locally excellent is F-rational.

Proof of Theorem 8.2. (See [Hub, Section 4]) a) is immediate from the definitions.

To prove part b) we show the stronger statement that if R is a ring such that
no minimal prime is maximal and every height one principal ideal is tightly closed,
then R is normal. Let N denote the nilradical of R. We first prove that N = 0
as follows. The tight closure of every ideal contains N. For any fixed minimal
prime P choose an element x € R° such that x is not invertible modulo P. The
assumption concerning the spectrum of R guarantees that such a choice is possible.
The product of all such elements, say ¥, is in R° and is not invertible modulo
every minimal prime. Then N, (y™) = N, (y™)* contains N, and is annihilated by
an element of the form z = 1 — ry. But then z € R° and by the same argument
N(1—sz) =0 for some s € R. Hence N = 0. Thus R is reduced. Let r/s be in the
total quotient field of R. If r/s is integral over R, then r € @, and the integral
closure is the same as the tight closure for principal ideals of height at least one
(see the definition of integral closure given in this text, or use Theorem 2.7). Hence
r € (s), and r/s € R.

To prove c) suppose that R is F-rational. Any system of parameters in R
comes from one in R. Let I be the ideal they generate. Using Lemma 1.5 we obtain
that I*R = (IR)*. It follows that R is F-rational. Conversely, if R is F-rational
the faithful flatness of the map from R to R proves that R is F-rational.

To prove d) we may assume that R is a homomorphic image of a Cohen-
Macaulay local ring since in the excellent case we can complete R by using c).
Choose a system of parameters z1,...,x4. We need to prove they form a regular
sequence. If not, there is an ¢ such that (z1,...,2;) : ;41 # (x1,...,2;). But by
Theorem 2.1 (z1,...,2;) : Tit1 C (z1,...,2:)* = (21,...,2;), the last equality
coming from the assumption that R is F-rational.

To prove e) we can again assume that R is a homomorphic image of a
Cohen-Macaulay ring since in the case R is excellent we can complete R by c) for
both directions. The second condition in e) is obviously necessary. Assume that
R is equidimensional and the ideal generated by a single system of parameters
Z1,...,Tq s tightly closed. Let y1,...,y, € R be a system of parameters for R. To
show that (y1,...,y;)R is tightly closed, it will suffice to show that (y1,...,yn)R
is tightly closed. But H/: (R) = thR/(xtl, coah) thR/(yi, ..., yh) where the
map from the term indexed by ¢ to that indexed by ¢+ 1 is induced by multiplica-
tion by 7 - - - 2, (respectively, by y1 - - -y, ) and is injective. Thus, R/(y1,...,Yn)
injects into R/(z¢, ..., z%) for any sufficiently large ¢t. To show that (y1,...,yn)R is
tightly closed in R, it suffices to show that 0 is tightly closed in R/(y1,...,yn)R,
and, hence, to show that 0 is tightly closed in R/(z},...,z!)R. Thus, we have
reduced to the case where y; = z!. The argument will be finished by show-
ing that if (x1,...,2,)R is tightly closed then so is (zf,...,zf)R for every t.
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Let z € (zF,...,z})*. If there is an ¢ such that zz; ¢ (z7,...,z}) one can re-
place z by this new element. Eventually we may assume that z(x1,...,x¢) C
(a%,...,z}). Since the x; form a regular sequence, (27,...,2}) : (x1,...,2) =
(x, ..., 2%, y" "), where y = 1 - - - 2;. Without loss of generality we may assume
that z = uy™~!. Choose ¢ € R° such that cz? € (z1%,...,2y'?) for all large q.
Then cu? € (279, ..., 277) 1y~ D0 = (29 ... zf), the last equality following be-
cause the z; form a regular sequence. Hence u € (z1,...,2¢)* = (21,...,2¢). This
implies that z € (zF,...,z}).

To prove f) first suppose that R,, is F-rational for every maximal ideal m.
Suppose that (z1,...,2,)R has height n in R and that y is in its tight closure
but not in the ideal. Then all this can be preserved while localizing at a suitable
maximal ideal, giving a contradiction. Thus, R is F-rational. The converse follows
immediately from part g).

To prove g), suppose that R is F-rational, and let P be any prime ideal of
R. Choose z1,...,x, € P to be an R-sequence, where n is the height of P (which
is the same as the depth of R on P). The images z1/1,...,z,/1 in Rp will be a
system of parameters. If we can show that the ideal (z1/1,...,2,/1)Rp is tightly
closed in Rp, it will follow from part e) that Rp is F-rational. This follows from
Proposition 1.5.

It now follows that R is F-rational iff all its localizations at primes are, and
this implies that every localization of R is F-rational. O

A criterion for F-rationality in terms of the highest local cohomology module
is given in [Sm2|. The criterion states:

Theorem 8.3. (F-rationality and Local Cohomology). Let (R,m) be a d-dimen-
sional excellent local Cohen-Macaulay ring of characteristic p. R is F-rational iff
HY (R) has no proper nontrivial submodules stable under the action of Frobenius.

Proof. Assume first that R is not F-rational. Choose a system of parameters,
x1,...,2q for R and an element z € (x1,...,24)* but not in the ideal I generated
by these parameters. Consider the element n = [2] € HZ (R). Since R is Cohen-
Macaulay, this element is nonzero in H% (R). Applying Frobenius repeatedly to 7
gives elements [;—z] Let N be the submodule of HZ (R) spanned by these elements.
Clearly N is stable under Frobenius. Since z € (21, ..., 24)* there exists an element
¢ € R° such that cz9 € I'9. This then implies that ¢N = 0. The highest local
cohomology module of R is always faithful, and so IV must be a proper submodule
of HL (R).

Conversely, assume that R is F-rational. Since R is excellent, by Theorem 8.2
¢) we can complete R and assume R is complete. This does not change the highest
local cohomology of R. Suppose that there is a nonzero proper submodule N C
HZ (R) stable under Frobenius. The Matlis dual of HZ (R) is the canonical module
of R (see [HH13] and [HeK]), and since R is reduced this module has constant rank
1. The canonical module maps onto the Matlis dual of N, and the kernel of this
surjection must be a rank 1 nonzero submodule of the canonical module of R.
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In particular the dual of IV is the cokernel of an injective map of rank 1 torsion-
free modules over R and is therefore torsion. Hence there is an element ¢ € R°
which annihilates the Matlis dual of N. Then ¢N = 0 also. Now chose any nonzero
element 7 = [2] € N, where 1, ..., x4 are parameters in R and x represents their
product. All Frobenius powers of 7 are killed by c. Hence [C;—:] =0in HY (R). This
implies that for large t, cz9zt € ({79, 2579, ... 259). As R is Cohen-Macaulay
we then obtain that cz? € (2f,...,2%) which gives that z € (21,...,24)*. Since R
is F-rational, z € (z1,...,z4). Then n = 0, a contradiction. O

9. Rational Singularities

In this section we discuss the relationship between rational singularities and F-
rationality. We begin with a discussion of rational singularities.

Definition 9.1. Let R be a normal local ring which is essentially of finite type
over a field k of characteristic 0. Let f : Z — X = Spec(R) be a resolution of
singularities of X (such resolutions are known to exist in this case by Hironaka).
R is said to be (or have) a rational singularity if R/ f.(Oz) = 0 for all j > 0.

This definition is independent of the resolution of singularities Z. The higher
direct images of the structure sheaf of Z are sometimes hard to understand. If
R has an isolated singularity (i.e., Rp is regular for all nonmaximal primes P),
then R/ f.(Oz) = HJ}F(R) for 1 < j < dim(R) — 2. Since Spec(R) is affine,
RIf.(Oz) = H¥(Z,0z), the usual sheaf cohomology of Z. Moreover, if R is a
rational singularity, then R must be Cohen-Macaulay and normal.

There are many examples of rational singularities. Any regular local ring has
rational singularities. In the homogeneous case, the a-invariant plays an important
role:

Theorem 9.2. [Fl, W5] Let R be a nonnegatively graded ring over a field k = Ry of
characteristic 0. Then R has rational singularities (i.e., Rp is a rational singularity
for every prime P of R) iff the following conditions hold:

(1) R is Cohen-Macaulay and normal.

(2) Rp has a rational singularity for all primes P # M, where M is the unique
homogeneous mazimal ideal.

(3) The a-invariant, a(R), is negative.

Example 9.3.

9.3.1 Set R =k[X,Y,Z]/(X?+ Y3+ Z5), where k is a field of finite characteris-
tic not equal to 2,3, or 5. R is Cohen-Macaulay, normal (use the Jacobian
criterion) and graded. Set deg(X) = 15, deg(Y") = 10, and deg(Z) = 6. The
degree of X2 + Y3 + Z° is 30, while the sum of the degrees of the variables
is 31. The a-invariant is —1 = 30 — 31. R is a rational singularity.
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9.3.2 Let R = k[X,Y,Z]/(X3 + Y3 + Z3), where k is a field of characteristic
# 3. This has the usual grading, and the degree of X3 + Y3 + Z3 is 3. The
a-invariant is 0 = 3 — 3. Hence R does not have a rational singularity.

9.3.3 Let R = k[X,Y,Z]/(X? + Y3+ Z7), where k is a field of characteristic #
2,3,5. We can grade R by setting deg(X) = 21, deg(Y') = 14, and deg(Z) =
6. Then the sum of the degrees of the variables is 41, while the degree of
X% +Y3 + Z7 is 42. The a-invariant is 1 = 42 — 41. R is not a rational
singularity.

9.3.4 If R is a two-dimensional regular local ring and [ is an integrally closed
ideal, then the blow-up of I has rational singularities (see [L3]). This is false
in dimension three.

9.3.5 Perhaps the largest class of rational singularities comes from invariant theory.
By a theorem of Boutot [Bou] if R has rational singularities and is finite type
over the complex numbers and S is a direct summand of R, then S also has
rational singularities. In particular if a reductive groups acts linearly on a
polynomial ring over the complex numbers, then the ring of invariants has
rational singularities.

9.3.6 A recent theorem of Lipman [L1] connects rational singularities to the Cohen-
Macaulay property of Rees algebras. Suppose that (R, m) is a local Cohen-
Macaulay ring which is essentially of finite type over the complex num-
bers. Choose an ideal I such that the blowup of I is smooth, i.e. such that
X = Proj(R[It]) is a desingularization of Spec(R). Then R has rational sin-
gularities iff there exists an integer N such that R[IVt] is Cohen-Macaulay.

9.3.7 It is possible that a partial converse to (9.3.6) is true. Let R be a ring with
rational singularities (in equicharacteristic zero), and suppose that the multi-
Rees ring R[I1t1, ..., I,t,] is both Cohen-Macaulay and normal. Then does
R[I1ty,. .., I t,] have only rational singularities? For n = 1 if we in addition
assume that the blowup of I has rational singularities, then Lipman’s work
gives a positive answer. If this is true, then the Rees ring R[(I; - - - I,,)t] must
also be Cohen-Macaulay, because of Boutot’s theorem (9.3.5) and the fact
that this latter ring is a direct summand of R[I1t1, ..., Inty].

Let us ignore for the moment the problems which exist between the transla-
tion from fields of characteristic 0 to positive characteristic. In any case, a theory
of tight closure exists for rings containing fields of any characteristic, and the the-
orems in these notes carry over from characteristic p to equicharacteristic 0. See
[HH12, Ho9] for proofs. We then can obtain easily:

Theorem 9.4. Let (R, m) be a nonnegatively graded ring over a field Ry of char-
acteristic 0 with an isolated singularity at m. R is F-rational iff R has rational
singularities.

Proof. If R is F-rational, then R is Cohen-Macaulay and normal by Theorem 8.2.
To prove that R has rational singularities, we then need to prove only that the
a-invariant a of R is negative, by Theorem 9.2. If z1,...,24 is a homogeneous
system of parameters with D = ). deg(x;), then since R>p C (z1,...,2q)* =
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(z1,...,24), we see that the highest local cohomology lives only in negative degree.
This means that a < 0, and hence R has rational singularities.

Consider the converse. If R has rational singularities then R is Cohen-Ma-
caulay and normal and a < 0, where a is the a-invariant of R. Let x1,...,24
be a homogeneous system of parameters. The Strong Vanishing Theorem (in the
Cohen-Macaulay and characteristic 0 case) says that

(xl,...,a:d)* = (J]l,...7l‘d)+R2D7

where D = ) deg(x;). However, we have seen that a < 0 exactly means that
R>p C (x1,...,24). It follows that R is F-rational. O

In fact, combining work of Smith [Sm2] and Hara [Hab] gives the following
remarkable result:

Theorem 9.5. Let X be a scheme of finite type over a field of characteristic 0. X
has F-rational type iff X has rational singularities.

Example 9.6. Let R be the hypersurface 22 + y3 + 2% = 0. If the characteristic
of the base field K is at least 7, then R satisfies the Strong Vanishing Theorem
by Theorem 6.4. In particular, R is F-rational, since the tight closure of (y, z) is
exactly (y,z) together with everything of degree at least the sum of the degrees
of y and z. In this case, the degree of y is 10, and the degree of z is 6. Hence
(y,2)* = (y,2) + R>16 = (v, z). (Notice the degree of = is 15.) R is known to be a
rational singularity if the characteristic is at least 7-see Example 6.6. However, in
characteristic 2, for example, we see that 2* € (y?,2°). The element [7] € H7 (R)

has degree —1, and applying the Frobenius gives the element [y“;%] € H2(R)
which is zero since 22 € (y?, 2?). Hence the Frobenius does not act injectively on
the negative degree piece of the top local cohomology. This shows that the Strong
Vanishing Theorem is false if one fixes the characteristic. But the Theorem is still

valid: it does hold for this example whenever the characteristic exceeds 7.

Although we have concentrated on hypersurfaces of dimension two, the theo-
rems hold in arbitrary dimension. For example, if R = k[Xo, ..., Xq]/(XY +- +
X ) then R has an isolated singularity provided the characteristic p of k does not
divide N. The theorem on hypersurfaces guarantees than R satisfies the strong
vanishing conjecture if p > (d — 1)N — d. Since the a-invariant is a = N —d — 1
we obtain for such large p that the test ideal is exactly m~ ~%t2, where m is the
irrelevant ideal.

By the theorem of Boutot, direct summands of rational singularities also
have rational singularities, at least for schemes of finite type over the complex
numbers. It was hoped that direct summands of F-rational rings are F-rational.
However, K. Watanabe recently gave a counterexample. This example is closely
tied to the failure of the Kodaira vanishing theorem in finite characteristics, as the
next section will relate. This counterexample does not contradict the theorems of
Hara or Smith. These theorems are ultimately about characteristic 0 or rings of
characteristic p > 0.
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Example 9.7. This is a sketch of Watanabe’s example. Let A be the hypersurface
22 +y3 4 2° = 0 in characteristic 2. Let B = k[s,t] and let C be the Segre product
of A and B, i.e. the subring generated by all elements in A[s,¢] of the form af
where a € A, f € k[s,t] and deg(a) = deg(f). A is a direct summand of C. We
have seen that A is not F-rational, so it is enough to see that C is F-rational. C
is the invariant ring of an appropriate torus action on D = Als, t]. In particular C
is normal. The local cohomology H%,(C), where M is the irrelevant ideal can be
computed as the invariants of H (D) of the same torus, where N is the irrelevant
ideal of D. Using this it is not difficult to prove that the C' is Cohen-Macaulay
with a-invariant —2. Since the Frobenius acts injectively on the local cohomology
of C, it follows that C' is F-rational.

10. The Kodaira Vanishing Theorem

In this section we discuss the relationship between the Kodaira Vanishing theorem
and the Strong Vanishing Theorem of Section 5. All of this material is taken from
the paper [HS], which in turn was motivated by [Sm6]. The starting point was
the realization that the Kodaira vanishing theorem actually is equivalent to a
statement concerning the tight closure of partial systems of parameters, which is
discussed in [Sm6].

Recall that the Kodaira Vanishing Theorem states that if X is a smooth
projective variety over a field k of characteristic 0 and if £ is an ample line bundle
on X, then H*(X,L£~1) = 0 for i less than the dimension of X.

The following definition comes from [Sm6].

Definition 10.1. For an ample invertible sheaf £ on a normal irreducible projective
variety X, define the section ring for X with respect to L to be the ring

Sc=EPH"(X,L).
neN
The first point in the translation to Commutative Algebra is to change the

sheaf cohomology to the local cohomology of the section ring:

Theorem 10.2. Let Sy be a section ring for a pair (X, L), where L is an ample
invertible sheaf on a projective variety X over a field k. If X is smooth and k has
characteristic zero, then for all i < dim Sr, the graded local cohomology modules

H:n(sﬁ)
have no non-zero graded components of negative degree.

To interpret the vanishing of graded pieces of local cohomology in terms of the
tight closure of parameter ideals, we need to study the unmixed part of parameter
ideals. The following proposition from [HS] is crucial to the interpretation we seek.
The statement and proof are taken from [HS, (2.7)].
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Proposition 10.3. Let (S, m) be an equidimensional graded ring. Assume that for
every P € SpecS — {m}, the local ring Sp is Cohen-Macaulay. The following are
equivalent:

(1) [HE,(S)]n =0 for alln < 0 and all i less than the dimension of S.

(2) For every (homogeneous) parameter ideal I of height i and for alln < 0 and
j < i, [H}(S)]n = 0. Further if n € [Hi(S)]n with n < 0 and n # 0, then
Ann(n) has the same height as I.

(3) For every parameter ideal I of height i, the following holds: If n € [H:(S)],
with n < 0 and n # 0, then Ann(n) has the same height as I.

(4) For every parameter ideal I, the following holds: I""™ C [W™ + S>s, where
6 is the sum of the degrees of a set of parameters generating I.

Proof. Throughout the proof, x1, ..., x; will denote a fixed set of parameters gen-
erating the height ¢ parameter ideal I. Let 0 be the sum of the degrees of these
parameters and let d be the dimension of S. We will prove that (1) = (2) = (3) =
4)=03)=(2)=(1).

Assuming (1), we prove (2) by descending induction on ¢, the height of I.
If i = d, then the second condition is immediate as in any case, the element 7
is annihilated by a power of I, and hence Ann(n) has height at least d. Because
1 # 0, the height cannot be more than d. The first statement is the same as that
in (1), as the radical of I is m.

Assume we have proved (2) for parameter ideals of height greater than i. Fix
n € [Hi(S)], with n < 0. If the annihilator of 1 has height at least i+ 1, then since
the annihilator contains a power of I, there exists an element x;,1 annihilating n
such that x1,...,z;1 form parameters. If the annihilator of n has height i, choose
any x;4+1 such that x1,..., 2,41 form parameters. In either case, let J be the ideal
generated by x1,...,x;11. Recall that there is a long exact sequence of graded
modules and degree preserving

L HY(S) — HI(S) — (HI(S))

Cigr -

If j < i—1, then (HJ(S)) .
parameter ideal of height . The induction applied to J then gives that H7(S) is

zip1 = 0, since Sg, ., is Cohen-Macaulay and I is a
zero in negative degree, and consequently the same is true for H ; (S). For the j =
case, assume on the contrary that the annihilator of 7 is height at least ¢ + 1. The
image of 1 under the localization map in the long exact sequence is 0 by choice
of z;41. Hence 7 is in the image of H%(S). Since the degree of 7 is negative and
i < (i+ 1) — 1, the induction then proves that n = 0.

Clearly (2) implies (3). Assume (3). Write I = I“"™ N K, where the height
of K is at least ¢ + 1. Choose an element z;11 € K such that zi,...,2,41 are
parameters. It easily follows that [*"™ = I :p x;41. Let z € I"™™ and assume
that deg(z) < d. Write zzi41 = 371 <, z;;. Consider the element 1 = [—=5] €
Hi(S). The formula in the above line shows that 7 is killed by ;41 so that the
height of its annihilator is at least ¢ + 1. The degree of n is deg(z) —§ < 0, so
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that by (2), n = 0. Therefore there exists an integer ¢ > 0 such that z(zy --- ;)" €

(281 . 2t which implies that z € I and proves (4).

Assume (4), and let n = [(zl—zli)] € H(S) be such that its annihilator has
height at least i + 1, and such that deg(n) < 0. After replacing z by za!---z!
and z; by xé—“, we may assume that there exists an ideal J of height at least
i+ 1 such that Jz C I. It follows from primary decomposition that z € I*". The
assumption that the degree of 7 is negative implies that the degree of z is strictly
less than 4, the sum of the degrees of the z;. (4) then says that z € I which
forces n = 0.

Now assume (3). By ascending induction on i we will prove that (H7(S)) is
zero in negative degree if j < i. If i = 1, we need to prove that H?wl)(S’) is zero
in negative degrees, which is true since this local cohomology module sits in S.
Suppose we have shown this to be true for z1,...,z;_1. Let J be the ideal they
generate. If j < i—1, then HJ(S) is isomorphic with Hﬂ(S) (I = (z1,...,x;)) since
H]j (S)z; =0for k=j,j—1asS,, is Cohen-Macaulay. The induction assumption
gives the conclusion for these values. If j =4 — 1, then Hi '(S) may be identified
with the kernel of the localization map from H% *(S) — (H'(S))s,. If 7 is in
this kernel, then 7 is annihilated by a power of J, together with a power of x;, and
therefore has annihilator of height at least ¢ > ht(J). If further the degree of 7 is
negative, it follows that 7 = 0, since by (3) the annihilator of any non-zero element
of H}_l(S) of negative degree should have height exactly ¢ — 1. This proves that
H.’-fl(S) is zero in negative degrees, as required.

Finally, assume (2). Condition (1) follows immediately from the case i = d.

O

The following theorem is from [HS, (3.7)].

Theorem 10.4. (Kodaira Vanishing and Tight Closure). Let S be the section ring
for an irreducible projective variety X over a field k with respect to an ample
invertible sheaf L. Let x1,xa,...,x; be parameters in Sy with i < d = dim(Sg). If
X is non-singular and k has characteristic zero, then

(21, @2,y 2)* C (z1, 22, ..., 2)""™ + (Sg)>s,
where § is the sum of the degrees of the z;,1 < j < 1.

Proof. Let I be the ideal generated by x1,...,z;. The assertion of this Theorem
is exactly the statement (4) in Proposition 10.3, using from Proposition 5.8 that
(1,22, ..., 2;)* = (x1,22,...,2;)""™. The equivalent statement (1) of Proposi-
tion 10.3 is exactly the Kodaira Vanishing Theorem as in (10.2) above. The hy-
pothesis of Proposition 10.3 is satisfied because if X is Cohen-Macaulay, then S,
has (at worst) an isolated non-Cohen-Macaulay point at the irrelevant ideal m.

|

The relationship between Kodaira vanishing and the Strong Vanishing Theo-
rem should now be clear: all the Strong Vanishing Theorem does is push the tight
closure interpretation of Kodaira to a full system of parameters. Kodaira vanishing
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says that the negative part of the local cohomology H? (S) is zero if i < dim(S).
This is wildly false for the top local cohomology. Most of it lives in negative degree.
But once a tight closure formulation is given, it becomes clear what piece of the
highest local cohomology must vanish.

Another perspective can be obtained from the equivalent formulation of the
Strong Vanishing Theorem given in Theorem 6.2. It is equivalent to saying that the
Frobenius acts injectively on the negative part of the top local cohomology. What
about the lower local cohomology? Since S is assumed to be Cohen-Macaulay on
the punctured spectrum and is equidimensional, it is well-known that the local
cohomology modules H{ (S) have finite length. In particular, there is a positive
integer N such that H! (S), = 0 for n < —N. Suppose that we knew the Frobenius
acted injectively in negative degree. If n € H{ (S) has negative degree j, then
applying Frobenius e times gives us an element of degree jp©, and for large e,
jp¢ < —N. It follows that n = 0. In other words, the statement that the Frobenius
acts injectively in negative degrees on the lower local cohomology forces it to be
Zero.

In [HS, (3.14)] it is shown that the Strong Vanishing Theorem implies the
Kodaira vanishing theorem. The basic idea of this proof is to use a Bertini theorem
to concentrate ‘bad’ homology in the top local cohomology.
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On the Use of Local Cohomology
in Algebra and Geometry

Peter Schenzel

Introduction

Local cohomology is a useful tool in several branches of commutative algebra and
algebraic geometry. The main aim of this series of lectures is to illustrate a few
of these techniques. The material presented in the sequel needs some basic know-
ledge about commutative resp. homological algebra. The basic chapters of the
textbooks [9], [28], and [48] are a recommended reading for the preparation. The
author’s intention was to present applications of local cohomology in addition to
the examples in these textbooks as well as those of [7].

Several times the author applies spectral sequence techniques for the proofs.
Often people claim that it is possible to avoid spectral sequence arguments in the
proofs for certain results. The present author believes that these techniques are
quite natural. They will give deep insights in the underlying structure. So he forced
these kinds of arguments even in cases where he knows more ‘elementary’ proofs.
He has the hope to interest more researchers working in commutative algebra for
such a powerful technique. As an introduction to spectral sequences he suggests
the study of the corresponding chapters in the textbooks [9] and [48].

In the first section there is an introduction to local duality and dualizing
complexes. There is a consequent use of the Cech complexes. In the main result,
see 1.6, there is a family of dualities, including Matlis duality and duality for a dua-
lizing complex of a complete local ring. This approach does not use ‘sophisticated’
prerequisites like derived categories. It is based on a few results about complexes
and flat resp. injective modules. As applications there are a proof of the local
duality theorem and vanishing theorems of the local cohomology of the canonical
module. In particular it follows that a factorial domain is a Cohen-Macaulay ring
provided it is a ‘half way’ Cohen-Macaulay ring. The first section concludes with
a discussion of the cohomological annihilators Ann H? (M) of a finitely generated
A-module M and an ideal a. The consideration of these annihilators provides more
subtle information than vanishing results.

Section 2 is concerned with the structure of the local cohomology modules
in ‘small’ resp. ‘large’ homological dimensions. The ‘small’ homological dimension
has to do with ideal transforms. To this end there is a generalization of Chevalley’s
theorem about the equivalence of ideal topologies. This is applied in order to prove
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Grothendieck’s finiteness result for ideal transforms. The structure of particular
cases of ideal transforms of certain Rees rings is a main technical tool for the
study of asymptotic prime divisors. On the other side of the range, i.e. the ‘large’
homological dimensions, there is a proof of the Lichtenbaum-Hartshorne vanishing
theorem for local cohomology. In fact the non-vanishing of the d-dimensional local
cohomology of a d-dimensional local ring is the obstruction for the equivalence
of a certain topology to the adic topology. The Lichtenbaum-Hartshorne vanish-
ing theorem is a helpful tool for the proof of a connectedness result invented by
G. Faltings. We do not relate our considerations to a more detailed study of the
cohomological dimension of an ideal. For results on cohomological dimensions see
R. Hartshorne’s article [16]. For more recent developments compare C. Huneke’s
and G. Lyubeznik’s work in [22].

The third Section is devoted to the study of finite free resolutions of an A-
module M in terms of its local cohomology modules. There are length estimates
for Ext"y (M, N) and Tor? (M, N) for two finitely generated A-modules M, N such
that M ®4 N is of finite length. This leads to an equality of the Auslander-
Buchsbaum type, first studied by M. Auslander in [1], and a Cohen-Macaulay
criterion. Moreover there are estimates of the Betti numbers of M in terms of the
Betti numbers of the modules of deficiency of M. More subtle considerations are
included in the case of graded modules over graded rings. This leads to the study
of the Castelnuovo-Mumford regularity and a generalization of M. Green’s duality
result for certain Betti numbers of M and its canonical module Kj,.

The author’s aim is to present several pictures about the powerful tool of local
cohomology in different fields of commutative algebra and algebraic geometry. Of
course the collection of known applications is not exhausted. The reader may feel
a challenge to continue with the study of local cohomology in his own field. In
most of the cases the author tried to present basic ideas of an application. It was
not his goal to present the most sophisticated generalization. The author expects
further applications of local cohomology in the forthcoming textbook [6].

The present contribution has grown out of the author’s series of lectures held
at the Summer School on Commutative Algebra at CRM in Bellaterra, July 16 -
26, 1996. The author thanks the organizers of the Summer School at Centre de
Recerca Matematica for bringing together all of the participants at this exciting
meeting. For the author it was a great pleasure to present a series of lectures in
the nice and stimulating atmosphere of this Summer School. During the meeting
there were a lot of opportunities for discussions with several people; this made
this School so exciting for the author. Among them the author wants to thank
Luchezar Avramov, Hans-Bjorn Foxby, José-Maria Giral, Craig Huneke, David
A. Jorgensen, Ruth Kantorovitz, Leif Melkersson, Claudia Miller, who drew the
author’s attention to several improvements of his original text. The author wants to
thank also the staff members of the Centre de Recerca Matematica for their effort
to make the stay in Bellaterra so pleasant. Finally he wants to thank R. Y. Sharp
for a careful reading of the manuscript and several suggestions for an improvement
of the text.
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1. A Guide to Duality

1.1. Local Duality. Let A denote a commutative Noetherian ring. Let C' denote a
complex of A-modules. For an integer k € Z let C[k] denote the complex C shifted
k places to the left and the sign of differentials changed to (—1)¥, i.e.

(Clk])" = C*™ and  depy = (—1)¥dc.

Moreover note that H"(C[k]) = H"*(C).

For a homomorphism f : C — D of two complexes of A-modules let us
consider the mapping cone M (f). This is the complex C® D[—1] with the boundary
map dps(sy given by the following matrix

(% )
-f —dp

where d¢ resp. dp denote the boundary maps of C' and D resp. Note that (M(f),
dr( f)) forms indeed a complex.
There is a natural short exact sequence of complexes

0— D[-1] 5 M(f) & Cc —o0,

where i(b) = (0, —b) and p(a,b) = a. Clearly these homomorphisms make ¢ and
p into homomorphisms of complexes. Because H""(D[—1]) = H™(D) the con-
necting homomorphism ¢ provides a map 6" : H(C) — H'(D). By an obvious
observation it follows that & = H'(f). Note that f : C — D induces an isomor-
phism on cohomology if and only if M(f) is an exact complex.

Let M, N be two A-modules considered as complexes concentrated in homo-
logical degree zero. Let f : M — N be a homomorphism. Then the mapping cone

of fis

M(f): ..o 0->MAN—0-...
with the cohomology modules given by
ker f 1 =0,
H"(M(f)) =< coker f i=1,
0 otherwise.

This basic observation yields the following result:

Lemma 1.1. Let f : C — D be a homomorphism of complexes. Then there is a
short exact sequence

0— HY(M(H""'(f))) — H"(M(f)) — H(M(H"(f))) — 0
for alln € Z.

Proof. This is an immediate consequence of the long exact cohomology sequence.
Recall that the connecting homomorphism is H'(f). 1
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For a complex C and z € A let C 5 C denote the multiplication map
induced by z, i.e. the map on C" is given by multiplication with z. Furthermore
let C — C®4 A, denote the natural map induced by the localization, i.e. the map
on C™ is given by C™ —— C™ @4 A,., where for an A-module M the map i is the
natural map i : M — M ®4 A,.

In the following let us use the previous consideration in order to construct the
Koszul and Cech complexes with respect to a system of elements z = 1, ... ,z,
of A. To this end we consider the ring A as a complex concentrated in degree zero.
Then define

K (2;A)=M(A S5 A) and K, (A) = M(A — A,).

Note that both of these complexes are bounded in degree 0 and 1. Inductively put

K(z;A) = M(K(y;A) = K (y;4))  and
K (4) = M(K,(A) = K,(A) ®4 Aq),
where y = x1,... ,2,1 and x = x,. For an A-module M finally define

K (z;M) =K (2;4A) 4 M and K, (M) = K,(A) ®a M.

Call them (co-) Koszul complex resp. Cech complex of z with respect to M. Ob-
viously the Cech complex is bounded. It has the following structure

0—- M — @zMwl - EBi<jMwiwj — ... Mwla: — 0

with the corresponding boundary maps.
It is well known that there is an isomorphism of complexes

K, (M) ~ lim K (2™); M),

, a2, see [14]. The direct maps in the direct system are induced

in a natural way by the inductive construction of the complex. The proof follows
by induction on the number of elements.

The importance of the Cech complex is its close relation to the local coho-
mology. For an ideal a of A let I'y denote the section functor with respect to a.
That is, I'y is the subfunctor of the identity functor given by

where (™ = 27, ... |z

IF'e(M)={me M| SuppAm C V(a)}.

The right derived functors of T'y are denoted by H:, i € N. They are called the
local cohomology functors with respect to a.

Lemma 1.2. Let a resp. S be an ideal resp. a multiplicatively closed set of A. Let
E denote an injective A-module. Then

a) T'q(F) is an injective A-module,
b) the natural map E — Eg,e v {, is surjective, and

c) the localization Eg is an injective A-module.
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Proof. The first statement is an easy consequence of Matlis’ Structure Theorem
about injective modules. In order to prove b) let ¢ € Eg be an arbitrary element.
In the case s is A-regular it follows easily that there is an f € E such that e = fs
and { = <, which proves the claim. In the general case choose n € N such that
0:4 8" =0:4 s""!. Recall that A is a Noetherian ring. Then consider the injective

(A/0 :4 s™)-module Hom4(A/0 :4 s™, E). Moreover
Homyu(A/0:4 s",E)~ E/0:g s"

because A/0 :4 s™ ~ s™A. Therefore it turns out that E/0 :g s™ has the structure
of an injective A/0 :4 s"-module. But now s acts on A/0 :4 s™ as a regular
element. Therefore for e + 0 :g s™ there exists an f + 0 :g s”, f € E, such that
e—fs €0:g s". But this proves £ = 1, i.e. the surjectivity of the considered map.

By Matlis’ Structure Theorem and because the localization commutes with
direct sums it is enough to prove statement c¢) for E = E4(A/p), the injective
hull of A/p, p € Spec A. In the case SNp # ( it follows that Es = 0. So let
SNp = 0. Then any s € S acts regularly on E. Therefore the map in b) is an
isomorphism. 1

For simplicity put H} (M) = H"(K;(M)). This could give a misunderstand-
ing to H(M). But in fact both are isomorphic as shown in the sequel.

Theorem 1.3. Let x = x1,... ,x, denote a system of elements of A with a = zA.
Then there are functorial isomorphisms H} (M) ~ H (M) for any A-module M
and any n € Z.

Proof. First note that H)(M) ~ To(M) as is easily seen by the structure of
K, (M). Furthermore let 0 — M’ — M — M" — 0 be a short exact sequence
of A-modules. Because K, (A) consists of flat A-modules the induced sequence of

complexes

0— KQ(M') — KQ(M) — K'E(M") —0
is exact. That is, H}}(-) forms a connected sequence of functors. Therefore, in order
to prove the claim it will be enough to prove that H}'(E) = 0 for n > 0 and an
injective A-module E. This will be proved by induction on r. For r = 1 it is a

particular case of 1.2. Let r > 1. Put y = x1,... ,2,—1 and x = x,. Then 1.1
provides a short exact sequence

0 — Hy(Hy ' (E)) — Hy (E) — H)(Hy (E)) — 0.

For the case n > 2 the claim follows by the induction hypothesis. In the remaining
case n = 1 note that Hy(E) = T'ya(E) is an injective A-module, see 1.2. So the

induction hypothesis applies again. O

Together with 1.1 the previous result provides a short exact sequence describ-
ing the behaviour of local cohomology under enlarging the number of generators
of an ideal.
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Corollary 1.4. Let a resp. x denote an ideal resp. an element of A. Then forn € N
there is a functorial short exact sequence

0 — Hyy(Hy ™ (M) — Hiy yay(M) — H 4 (H (M) — 0
for any A-module M.

The previous theorem provides a structural result about local cohomology
functors with support in m in the case of a local ring (A, m). To this end let
E = E4(A/m) denote the injective hull of the residue field. Furthermore it provides
also a change of ring theorem.

Corollary 1.5. a) Let (A,m) denote a local ring. Then HE(M), n € N, is an
Artinian A-module for any finitely generated A-module M.

b) Let A — B denote a homomorphism of Noetherian rings. Let a be an ideal of A.
For a B-module M there are A-isomorphisms H} (M) ~ H}'5(M) for all n € N.
Here in the first local cohomology module M is considered as an A-module.

Proof. a) Let E'(M) denote the minimal injective resolution of M. Then by Matlis’
Structure Theorem on injective A-modules it follows that I'n,(E"(M)) is a com-
plex consisting of finitely many copies of E in each homological degree. Therefore
H(M) is — as a subquotient of an Artinian A-module — an Artinian module.

b) Let = x1,... ,2, denote a generating set of a. Let Y =Y1,---,Yr denote the
images in B. Then there is the following isomorphism K (M) ~ K, (B) ®p M,
where both sides are considered as complexes of A-modules. This proves the
claim. |

In the following let T'(-) = Hom4 (-, E') denote the Matlis duality functor for
a local ring (A, m). An exceptional role is played by the complex D, = T(K})
with K, = K, (A) as follows by the following theorem. In some sense it extends
the Matlis duality.
For two complexes C, D consider the single complex Hom 4 (C, D) associated
to the corresponding double complex. To be more precise let
Homy (C,D)" = HHomA(C’i, D™,
=
The n-th boundary map restricted to Hom(C?, D**") is given by
Hom (df; ', D™™) 4 (1) Hom (C*, df™).
Note that this induces a boundary map on Hom4(C, D). Moreover, it is easy to
see that H°(Hom(C, D)) is isomorphic to the homotopy equivalence classes of
homomorphisms of the complexes C' and D.
Theorem 1.6. There is a functorial map
M @4 A — Homa (Homa(M, D}), D),

which induces an isomorphism in cohomology for any finitely generated A-module
M.
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Proof. Let M be an arbitrary A-module. First note that for two A-modules X and
Y there is a functorial map

M ®4Homa(X,Y) — Homyu(Homa(M,X),Y),
me f = (m@f)(g) = flg(m))
form e M, f € Hom4(X,Y) and g € Hom4 (M, X). It induces an isomorphism for
a finitely generated A-module M provided Y is an injective A-module. Because D,

is a bounded complex of injective A-modules it induces a functorial isomorphism
of complexes

M ® 4 Hom(D,, D,) — Homa(Hom (M, D), D)

for any finitely generated A-module M.
Now consider the complex Homy4(D;, D). It is isomorphic to T(K; ®a4
T(K,)). Continue with the investigation of the natural map
[ K, 94AT(K,) — E
defined in homological degree zero. In the following we abbreviate
C:=K,24T(K,).

We claim that f induces an isomorphism in cohomology. To this end consider the
spectral sequence

EY = H(K, ®4 T(K;7)) = E' = H™(O).

Because T'(K;7) is an injective A-module it follows that
EY = Hy(T(K,7)) =0
for all i # 0 as shown in 1.3. Here a denotes the ideal generated by x. Let i = 0.
Then we have E?] = Fu(T(KQ_j)). This implies that
B’ = limHomu(A/a" ® K7, E).

Therefore EYY = 0 for j # 0 because of (4/a") ®4 A, = 0 for an element z € a.
Finally
EY° =limHomu(A/a", E) = E,
because F is an Artinian A-module. This proves the claim as is easily seen.
Moreover C' is a complex of injective A-modules as follows by view of 1.2.
Therefore the mapping cone M(f) is an exact complex of injective A-modules.
Furthermore let ¢ = T'(f) denote the natural map

g: A— Homa (D, D).

This induces an isomorphism in cohomology because the mapping cone M(g) =
T(M(f)) is an exact complex. But now Homy(D,, D;) is a complex of flat A-
modules. So there is a sequence of functorial maps

M &a A— M @4 Homa (D, D;) = Homa(Homu (M, D,,), D).
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In order to prove the statement it is enough to show that the first map induces
an isomorphism in cohomology. To this end note that the mapping cone M(g) is
a bounded exact complex of flat A-modules. But now M ®4 M(g) ~ M(1p ® g)
is an exact complex. Therefore the map

Iy ®g: M®aA— M@aHoma(D,,D,)
induces an isomorphism in cohomology. ]

In the case of a complete local ring (4,m) and a system z = z1,...,2, of
elements such that m = Rad z A it follows that D, is a bounded complex of injective
A-modules with finitely generated cohomology such that the natural map

M — Hom(Homu (M, D), D)

induces an isomorphism. Such a complex is called a dualizing complex. By virtue
of this observation call D; a quasi-dualizing complex with support in V'(a), where
a = Rad zA. While the dualizing complex does not exist always, there are no re-
strictions about the existence of quasi-dualizing complexes with support in V(a).
The isomorphisms in 1.6 are a common generalization of the Matlis duality ob-
tained for » = 0 and the duality for a dualizing complex.

The most important feature of the dualizing complex is the local duality
theorem first proved by A. Grothendieck. As an application of our considerations
let us derive another proof.

Theorem 1.7. (Local Duality) Let (A, m) denote a local ring. Let x = x1,... 2,
be a system of elements such that m = RadzA. Then there are functorial isomor-
phisms
Hy (M) ~ Homa(H " (Homa(M, D)), E), n € Z,
for a finitely generated A-module M.
Proof. First note that HJ (M) ~ H"(K, ®4 M) by 1.3. Now D, is a bounded
complex of injective A-modules. As in the proof of 1.6 there is a functorial map
M ® 4 Homa (D, E) — Hom s (Homa (M, D), E),

which is an isomorphism of complexes for any finitely generated A-module M. Now
consider the functorial map

K, — Homa (D}, E) = T*(K}).
By 1.5 and the Matlis duality it induces an isomorphism in cohomology. Because
K, and Homx(D;, E) are complexes of flat A-modules the natural map
M ®y Kg — M ®4 HOIIlA(l)i7 E)
induces an isomorphism in cohomology by the same argument as in 1.6. The proof

follows now by putting together both of the maps. |

In this form of local duality the complex D, plays the role of the dualizing
complex. In the next section there are a few more statements about dualizing
complexes.
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1.2. Dualizing Complexes and Some Vanishing Theorems. Let (A, m) denote a
local ring. For a non-zero finitely generated A-module M there are the well-known
vanishing results depth M = min{n € Z | H;(M) # 0} and dim M = max{n €
Z | HX (M) # 0} shown by A. Grothendieck. In the following we recall two more
subtle vanishing results on H:(M). To this end let us first investigate a few con-
sequences of local duality.

Theorem 1.8. Suppose that the local ring (A, m) is the factor ring of a Gorenstein
ring (B,n) with r = dim B. Then there are functorial isomorphisms

H?(M) ~ Hom 4 (Ext}; (M, B),E), n€Z,

for any finitely generated A-module M, where E denotes the injective hull of the
residue field.

Proof. By 1.5 one may assume without loss of generality that A itself is a Goren-
stein ring. Let z = x1, ... , x, denote a system of parameters of A. Under this addi-
tional Gorenstein assumption it follows that K, is a flat resolution of Hy, (A)[—7] ~
E[—r], where E denotes the injective hull of the residue field. Therefore D, is an

injective resolution of A[r]. By definition it turns out that
H~"(Hom(M, D,)) ~ Exty "(M, A)

for all n € Z. Because of T(Ext’; ™ (M, A)) ~ T(Ext’; ™ (M, A)) this proves the
claim. |

In the situation of 1.8 introduce a few abbreviations. For n € Z put
Ky, = Exty " (M, B).

Moreover for n = dim M we often write K, instead of K}%}[m M The module Ky
is called the canonical module of M. In the case of M = A it coincides with the
classical definition of the canonical module of A. By the Matlis duality and by 1.8
the modules K}, do not depend — up to isomorphisms — on the presentation of the
Gorenstein ring B. Clearly K}, = 0 for all n > dim M and n < 0. Moreover we
have the isomorphism

Ky ®a A~ H™"(Homa(M, D)), n € Z,

as follows by view of 1.7. The advantage of K7, lies in the fact that it is — in
contrast to H~"(Homu4 (M, D)) — a finitely generated A-module.

For a finitely generated A-module M say it satisfies Serre’s condition Sy, k €
N, provided

depth M, > min{k, dim M, } for all p € Supp M.

Note that M satisfies Sy if and only if it is unmixed. M is a Cohen-Macaulay
module if and only if it satisfies Sy for all £ € N.

Lemma 1.9. Let M denote a finitely generated A-module. The finitely generated
A-modules K3, satisfy the following properties:
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3

) (K5)p ~ KxfzdlmA/p for any p € Supp M, i.e. dim K%, < n for all n € Z.

b) If dim M, + dim A/p = dim M for some p € Supp M, then (Ku)p, ~ K, .

c) Ass Ky ={p € AssM | dim A/p = dim M}, i.e. dim M = dim K.

d) Suppose that M is equidimensional. Then M satisfies condition Sy if and
only if dim K3, <n —k for all 0 <n < dim M.

e) Ky satisfies So.

Proof. Let p € Supp M denote a prime ideal. Then (K7};), =~ K;\l[pdimA/p, as is
easily seen by the presentation as an Ext-module. Therefore dim K}, < n.

Let E'(B) denote the minimal injective resolution of B as a B-module. Then
(Homp (M, E'(B)))™ =0 for all n < r — dim M and

Assg H= 4™ M (Homp(M, E'(B))) = {p € Ass M | dim A/p = dim M}.
Putting this together the proofs of a), b), and c¢) follow immediately.

In order to prove d) first note that dim M, + dimA/p = dim M for all
p € SuppM since M is equidimensional. Suppose there is an integer n with
0 <n < dimM and p € Supp K}, such that dim A/p > n — k > 0. This im-
plies H;l;pdlmA/p(Mp) # 0, see 1.8. Therefore

depthM, <n—dimA/p <dimM —dimA/p = dim M, and

depthM, <n-—dimA/p <k,
in contradiction to Sy. Conversely suppose there is a p € Supp M such that
depth M, < min{k,dim M,}. Then (K};), # 0 for n = dim A/p + depth M,
and dim A/p = n — depth M, > n — k, a contradiction. This finishes the proof of
the statement in d).

In order to prove e) it is enough to show that depth Kj; > min{2, dim K,}.
Note that (Kar)p ~ Kuy, for all p € Supp Kjy. This follows because Kjs is un-
mixed by c) and because Supp K is catenarian, i. e. dim M, +dim A/p = dim M
for all p € Supp K.

Without loss of generality we may assume that there is an M-regular element
x € m. Then the short exact sequence 0 — M - M — M/xM — 0 induces an
injection 0 — Kns /2Ky — Kppjpar, which proves the claim. O

Another reading of a) in 1.9 is that giidim A/ (M) # 0 provided H;Ap (My) #
0. This is true for an arbitrary local ring as shown by R. Y. Sharp, see [46, Theorem
(4.8)].
Proposition 1.10. Let p be a t-dimensional prime ideal in a local ring (A, m). Let
M denote a finitely generated A-module such that H;Ap (M) # 0 for a certain
i € N. Then HLFH(M) # 0.
Proof. Choose P € V(p/Al) a prime ideal such that dim/T/P = dim//l\/p;l\ =t In
particular this implies PN A = p and that p;l\ pisa Pﬁp—primary ideal. These
data induce a faithful flat ring homomorphism A, — A\p. It yields that

07 Hpy, (My) ®a, Ap = HggP(Mp ®a, Ap).
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But now there is the following canonical isomorphism M, ® 4, A p=(M®a A) p.
Because pAp is a PAp-primary ideal it follows that 0 # H;A (M ®4 A)p). By
P

Cohen’s Structure Theorem A is a homomorphic image of a Gorenstein ring. By
the faithful flatness of A — A and by the corresponding result for a homomorphic
image of a Gorenstein ring, see 1.9, it turns out that

Hi (M) @ A~ HH(M @4 A) 0,
which finally proves the claim. 1

Note that the previous result has the following consequence. Let p € Supp M
denote a prime ideal. Then

depth M < dim A/p + depth M,

for a finitely generated A-module M. This follows by the non-vanishing of the local
cohomology for the depth of a module.

As above let (A, m) denote a local ring which is the factor ring of a Gorenstein
ring (B,n). Let E'(B) denote the minimal injective resolution of the Gorenstein
ring B as a B-module. The complex D4 = Hompg(A4, E'(B)) is a bounded complex
of injective A-modules and finitely generated cohomology modules H™(Dy) =~
Exti(A, B).

Theorem 1.11. The complex D4 is a dualizing complex of A. That is, there is a
functorial map

M — HomA(HomA(M, DA),DA)

that induces an isomorphism in cohomology for any finitely generated A-module
M.

Proof. Because D, is a bounded complex of injective A-modules there is an iso-
morphism of complexes

M Ry HOmA(DA,DA) -, HOHlA(HOInA(]\/[7 DA),DA)

for any finitely generated A-module M as shown above. By similar arguments as
before there is a natural map A — Homy (D4, D 4). Because both of the complexes
involved — A as well as Hom4 (D, D4) — are complexes of flat A-modules it will
be enough to show that this map induces an isomorphism in cohomology in order
to prove the statement.

Next consider the isomorphism of complexes

Hom (D4, Da) — Homp(Homp (A, E'(B)), E'(B)).

Therefore, in order to show the claim it will be enough to prove the statement for
the Gorenstein ring B. First it will be shown that the natural map

jp : B— Homg(E (B),E (B))
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induces an isomorphism in cohomology. To this end consider the natural map
ip : B — E'(B). It induces an isomorphism of complexes. That is, the mapping
cone M(ig) is exact. Therefore

Homp(M(ig), E'(B)) = M(Homp(ig, E'(B)))
is also an exact complex. Hence
Homp(ig, E'(B)) : Homg(E (B),E(B)) — E(B)

induces an isomorphism in cohomology. Now it is easy to check that the composi-
tion of the homomorphisms

B — Homp(E (B),E (B)) — E(B)
is just ig. Therefore jp induces an isomorphism in cohomology. Moreover
Homp(E'(B), E'(B))

is a complex of flat B-modules. Therefore the natural map jp induces a homo-
morphism of complexes M @5 B — M ® Homp(E (B), E'(B)) which induces —
by the same argument as above — an isomorphism in cohomology. |

By his recent result on Macaulayfications, see [25], T. Kawasaki proved the
converse of 1.11, namely, that A is the quotient of a Gorenstein ring provided A
possesses a dualizing complex.

In the following there is a characterization when a certain complex is a dual-
izing complex. To this end recall the following induction procedure well-suited to
homological arguments.

Proposition 1.12. Let P denote a property of finitely generated A-modules, where
(A,m, k) denotes a local ring with residue field k. Suppose that P satisfies the
following properties:

a) The residue field k has B.

b) If0 - M’ — M — M" — 0 denotes a short exact sequence of finitely
generated A-modules such that M’ and M" have B, then so does M.

¢) If x is an M-regular element such that M/xM has B, then so does M.

Then any finitely generated A-module M has .

The proof is easy. We leave it as an exercise to the interested reader. In the
following we will use this arguments in order to sketch the characterization of
dualizing complexes.

Theorem 1.13. Let D denote a bounded complex of injective A-modules. Assume

that D has finitely generated cohomology modules. Then D is a dualizing complex
if and only if

" _J 0 for n#t

H"(Hom4 (k, D)) _{ kfor n—t

for a certain integer t € 7.
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Proof. Suppose that D is a dualizing complex. Then — by definition — the natural
homomorphism

k — Hom 4 (Homy (k, D), D))

induces an isomorphism in cohomology. Furthermore Hom4(k, D) is a complex
consisting of k-vector spaces and whose cohomology modules are finite dimensional
k-vector spaces. For i € Z let H' = H'(Homa(k, D)) and h; = dimy H;. Then it
is easy to see that that there is an isomorphism of complexes H* = Hom (k, D),
where H' denotes the complex consisting of H* and the zero homomorphisms as
boundary maps. Then for n € Z it follows that

dimy, H" (Hom 4 (Hom 4 (k, D), Zh Ritn-
i€Z

As easily seen this implies the existence of an integer ¢t € Z such that h; = 1 and
h; =0 for any i # t.
In order to prove the converse one has to show that the natural homomor-
phism
M — Hom 4 (Hom 4 (M, D), D)

induces an isomorphism in cohomology for any finitely generated A-module M.
To this end we proceed by 1.12. By the assumption it follows immediately that
a) is true. In order to prove b) recall that Hom 4 (Hom4 (-, D), D) transforms short
exact sequences into short exact sequences of complexes. This holds because D is a
bounded complex of injective A-modules. Finally c¢) is true because the cohomology
modules of Hom 4 (Homyu (M, D), D) are finitely generated A-modules. Then one
might apply Nakayama’s Lemma. 1

In the case the integer ¢ in 1.13 is equal to zero call D a normalized dualizing
complex.

It is noteworthy to say that 1.12 does not apply for the proof of 1.6. In
general it will be not true that the complex Hom(M, D,) has finitely generated
cohomology. So the Nakayama Lemma does not apply in proving condition ¢) in
1.12.

Under the previous assumptions on A and B with r = dim B let D(M) denote
the complex Hom4 (M, D4), where M denotes a finitely generated A-module M.
Then there is an isomorphism D(M) — Homp (M, E'(M)). Therefore

H"(D(M)) ~ Exty (M, B) for all n € Z.

This implies H"~4(D(M)) ~ Ky and H"~"(D(M)) ~ K%, for all n # d = dim M.
Because of D(M)™ = 0 for all n < r — d there is a natural homomorphism of
complexes

(378 KM[d—’I’] — D(M),
where Ky is considered as a complex concentrated in homological degree zero. So
the mapping cone M (ipr) provides a short exact sequence of complexes

0— D(M)[-1] - M(ipr) — Kp[d —r] — 0.
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Therefore we see that H™™"*1(M(ip)) ~ Kj, for all 0 < n < dimM and
H™"tY(M(ip)) = 0 for all n < 0 and all n > dim M. By applying the func-
tor D(+) := Homy(-, D4) it induces a short exact sequence of complexes

0 — D(Kp)[r —d] — D(M(ipr)) — D*(M)[1] — 0.

Recall that D4 is a complex consisting of injective A-modules. By 1.11 and the
definition of Kg,, this yields an exact sequence

0 — H-Y(D(M(inr)) — M = Ky, — H(D(M(iar))) — 0

and isomorphisms H™ (D (M (ipf))) ~ ngwn for all n > 1.
Note that in the particular case of M = A the homomorphism 74 coincides
with the natural map

A — Homy (K4, Ka), a— fa,

of the ring into the endomorphism ring of its canonical module. Here f, denotes
the multiplication map by a.

Theorem 1.14. Let M denote a finitely generated, equidimensional A-module with
d = dim M, where A is a factor ring of a Gorenstein ring. Then for an integer
k > 1 the following statements are equivalent:
(i) M satisfies condition Sk.
(ii) The natural map Tar : M — Kg,, is bijective (resp. injective for k =1) and
HX(Kp) =0 foralld—k+2<n<d.

Proof. First recall that H™(D(M (inr))) =~ K}i(zf for all n > 1. By the local duality
it follows that T'(Ky ) ~ Hy(Kxr) for all n € Z. By virtue of the short exact
sequence and the above isomorphisms the statement in (ii) is equivalent to

(i) H™(D(M(ip))) =0 forall —1<n<k—1.

Next show that (i) = (iii). First recall that D(M (ips)) = Homp (M (ipr), E(B)).
Then there is the following spectral sequence

Ey = Extiy(H 9 (M(in)), B) = E" = H*(D(M (in)))
in order to compute H™(D(M (ipr))). Moreover it follows that

KJTWJerrl for0<r+j+1<dimM and

H™ (M(inr)) = { 0 otherwise.

By the assumptions and 1.9 it implies dim K]TV}HH <r+j+l—kforalljeZ. Asa
consequence of 1.8 it turns out that E57 = 0 for all i, j € Z satisfying i+j < k—1.
That is the spectral sequence proves the condition (iii).

In order to prove the reverse conclusion first note that dim M, + dim A/p =
dim M for all prime ideals p € Supp M since M is equi-dimensional. Then by 1.9
it follows easily

D(M (ip)) @a Ay — D(M (ing,)).
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This means that the claim is a local question. So by induction we have to show that
depth M > k. By induction hypothesis we know that dim K]{/j <j—kforallj>k
and dim K J]\J <0 for all 0 < j < k. Then the above spectral sequences degenerates
partially to the isomorphisms Extly (K37, B) ~ HI(D(M{(iy))) for all j < k — 1.
Recall that Ext'z (N, B) is the onliest possible non-vanishing Ext module for N a
B-module of finite length. By the local duality this implies HZ™ (M) = 0 for all
j <k —1and depthy, M > k, as required. |

It turns out that for a module M satisfying Sy the natural map 75, : M —
Kk,, is an isomorphism. In the case of the canonical module K 4 this means that
the endomorphism ring of K4 is isomorphic to A if and only if A satisfies S;. The
previous result has a dual statement which characterizes the vanishing of the local
cohomology modules below the dimension of the module.

Corollary 1.15. With the notation of 1.14 suppose that the A-module M satisfies
the condition Ss. For an integer k > 2 the following conditions are equivalent:

(i) K satisfies condition Sk.
(ii) H2(M) =0 for alld—k+2 <n <d.

Proof. This is just a consequence of 1.14 and the remark that 75y : M — K, is
an isomorphism. 1

There are several further applications of these vanishing results in the case A
is a quasi-Gorenstein ring or in liaison. For the details compare [41]. We conclude
with one of them, a Cohen-Macaulay characterization for a quasi-Gorenstein ring.
To this end let us call a local ring (A, m) that is a quotient of a Gorenstein ring
B a quasi-Gorenstein ring, provided K4 ~ A. Note that a Cohen-Macaulay quasi-
Gorenstein ring is a Gorenstein ring. A local factorial ring that is a quotient of a
Gorenstein ring is a quasi-Gorenstein ring, see [32].

Theorem 1.16. Let (A, m) denote a quasi-Gorenstein ring such that
1
depth A, > min{dim A, 3 dim Ay, + 1} for all p € Spec A.
Then A is a Gorenstein ring.

Proof. Let d = dim A. It is enough to show that A is a Cohen-Macaulay ring.
This is true for d < 3 by the assumption. By induction A, is a Cohen-Macaulay
ring for all prime ideals p # m. Therefore by the assumption the local ring (A, m)
satisfies the condition Sy for k > %dimA + 1. Because of K4 ~ A the result 1.15
implies that HJ:(A) = 0 for all n < dim A, which proves the Cohen-Macaulayness
of A. |

The previous result says something about the difficulty to construct non-
Cohen-Macaulay factorial domains. If such a ring is ‘half way’ Cohen-Macaulay it
is a Cohen-Macaulay ring. Originally this result was proved by R. Hartshorne and
A. Ogus, see [17].
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1.3. Cohomological Annihilators. Vanishing results on local cohomology modules
provide strong information. More subtle information comes from consideration of
their annihilators. This will be sampled in this subsection.

To this end we have to use a certain generalization of the notion of a regular
sequence. First let us summarize basic facts about filter regular sequences. Let M
denote a finitely generated A-module over (A4, m), a local Noetherian ring.

A system of elements x = z1,... ,z, C m is called a filter regular sequence
of M (or M-filter regular sequence), if

x; ¢p forallpe (AssM/(x1,...,2,—1)M)\ {m}
for all ¢ = 1,... ,r. This is equivalent to saying that the A-modules
(IZ?l,... ,zi_l)M:xi/(xl,... 7Ii_1)M, 1= 1, , T,

are of finite length. Moreover x is an M-filter regular sequence if and only if
..., %} € Ay is an My-regular sequence for all p € (V(x1,... ,2;)NSupp M)\
{m}andi=1,...,r
Lemma 1.17. Let M denote a finitely generated A-module. Suppose that x = x1,
.., T, denotes an M -filter regular sequence.
a) H'(x; M) is an A-module of finite length for all i < r.
b) H;(z; M) is an A-module of finite length for all i > 0.
¢) Supp H{(M) C V(m) for all 0 <i < r, where ¢ = (1, ... ,7,)A.

Proof. Because of the self duality of the Koszul complexes it will be enough to
prove one of the first two statements. Now note that

Supp H'(z; M) C V(z) " Supp M, i< Z.

On the other hand z is an M-regular sequence if and only if H'(z; M) = 0 for
all i < 7. Then the result a) follows by a localization argument of the Koszul
complexes. In order to prove c) note that Supp H!(M) C V(z) N Supp M. Let p
be a non-maximal prime ideal in V(z) N Supp M. By a localization argument it
follows that

HY(M) @4 Ap ~ EAP(Mp) =0 fori<r,

since {%,..., %} is an My-regular sequence. |

Let M denote a finitely generated A-module. Let a denote an ideal of (A4, m).
The vanishing resp. non-vanishing of the local cohomology modules H (M) pro-
vides useful local information on M. For a more subtle consideration the annihi-
lators of HY (M) are of some interest. For a finitely generated A-module M let

a,(M) :=Anng H} (M), n € Z,

denote the n-th cohomological annihilator of M with respect to a.
Now we relate the cohomological annihilators of M to those of M modulo a
bunch of generic hyperplane sections.
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Theorem 1.18. Let x = x1,... ,z, denote an M-filter reqular sequence. Then
an(M) ... apsr (M) Ca,(M/zM) for all integers n.

Proof. Let K := K, denote the Cech complex of A with respect to a system of
generators y = ¥, .. ,ys of the ideal a. Let K'(z; A) ®4 M be the Koszul-co-
complex of M with respect to z. Put
C:=(K s M)@s K(z;A) ~K ®4 K (z; M).
There are two spectral sequences for computing the cohomology of C". First con-
sider
EY = H(K ®4 H(xz; M)) = E = H*(C").
Note that HY (K ®4 N) ~ H.(N), i € Z, for a finitely generated A-module N, see
1.3. Therefore N o
EY ~ H.(H(z; M)) foralli,je€Z.
By 1.17 the A-modules H'(z; M), i < r, are of finite length. So there are the
following isomorphisms
B 0 fori#0 and j #r,
EJ ~ Hi(z; M) fori=0 andj#r,
Hi(M/xzM) for j=r.
To this end recall that H"(z; M) ~ M/xM. By virtue of the spectral sequence it
turns out that N
EY =0 foralli#0, j#r.
Because of the subsequent stages of the spectral sequence
E]icfk:,r+k:71 N E}? N EIZ’CJrk,rfk:«Fl
and Ej PR = Btk reRL — 0 for all k > 2 it yields that BY ~ Hi(M/zM).

By a similar consideration we obtain that E% ~ HJ(z; M) for all j # r. Therefore
there are the following isomorphisms

' Hi(z; M) for0<i<r,
H'(C)~{ HI"(M/zM) forr<i<d,
0 otherwise,

where d = dim M. On the other hand there is the spectral sequence

'EY = HI(K (2;A) @4 HL(M)) = 'E™ = H™/(C).
Because of 'Ey = HJ (z; Hi(M)) it follows that 'Ey = 0 for all j < 0 and j > r.
By the construction of the Koszul comple_zx 'EJ is a subquotient of the direct sum
of copies of H:(M). Therefore a;(M)('Ey’) = 0 for all i,j € Z. Whence it implies
that a;(M)('E%) = 0 for all i, j € Z. By view of the filtration of H*7(C") defined
by 'EY it follows that

ap(M) ... a;(M)H(C") =0 for0<i<rand
air(M)-...-a;(M)HY(C") =0 forr<i<d.

Hence, the above computation of H*(C") proves the claim. |
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For a filter regular sequence x = 1, ... , x, the proof of Theorem 3.3 provides
that ag(M) - ... a;(M)H!(xy,... ,2,; M) =0 for all i < r. Because of the finite
length of H'(x; M) for all i < r this is a particular case of the results shown
in [41]. Moreover the notion of M-filter regular sequences provides an interesting
expression of the local cohomology modules of M.

Lemma 1.19. Let x = x1,... ,x, be an M-filter reqular sequence contained in a.
Put ¢ = (x1,... ,2.)A. Then there are the following isomorphisms
i N H{(M) for0<i<nm,
Hy (M) = { HI""(HI(M)) forr <i<d,
where d = dimy M.
Proof. Consider the spectral sequence
EY = H(H(M)) = B = HI (M),
By 1.17 we have that Supp H? (M) € V(m) for all j <r. Whence EY =0 for all
i # 0 and j # r. Furthermore, EYY = HI(M) for j # r and EY = Hi(H"(M)).
An argument similar to that of the proof given in 1.18 yields that
E% ~ HI(M) and E7 ~ H:(HI(M)).
Because of E% = 0 for j > r the spectral sequence proves the claim. 1

Let z = z1,... ,2, be a system of elements of A. For the following results
put z*) = o¥% ... xk for an integer k € N.

Corollary 1.20. Let z = x1,... ,x, be an M-filter regular sequence contained in a.
The multiplication by x1 - - - x, induces a direct system {HL(M/z™® M)} ren, such
that

HF (M) ~ lim H: (M /2z®) M)

for alli > 0.

Proof. There is a direct system {M/ MM }ren with homomorphisms induced by
the multiplication by 2 - - - 2. By [13] there is an isomorphism

HT (M) ~lim M/z® M.
Then the claim follows by 1.19 since the local cohomology commutes with direct
limits. 1

In order to produce an ‘upper’ approximation of a;(M/zM), x = x1,... , .,
an M-filter regular sequence, a few preliminaries are necessary. For a given i and
7=0,1,...,r set

k;
ai(mM)= () aM/@},... 2)M).
k. ki >1
Furthermore define a;(z; M) = ﬂ;zo a;j(z; M). The next result relates the coho-
mological annihilators of M to those of M/xM.
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Corollary 1.21. Let x = x1,... ,x, be an M-filter reqular sequence contained in a.
Then

Clz(M) et llH_T(M) - az(g,M) - aZ(M) n...N CLH_T(M)
for all 0 <i < d—r. In particular, a;(xz; M) and a;(M) N ...N a;.(M) have the
same radical.
Proof. By 1.18 it follows that a; (M) -...-a;4;(M) C a;;(z; M) for j =0,1,... 7.
Recall that x’fl,... ,xfj forms an M-filter regular sequence, provided that z =
x1,...,%,is an M-filter regular sequence. Whence the first inclusion is true. More-
over, by 1.20 it yields that

a;(z; M) C agj(z; M) C aiy (M)

for all j =0,1,...,r. This proves the second containment relation. ]

The results of this section generalize those for the cohomological annihilators
m, (M) of H (M), n € Z, investigated in [41].

2. A Few Applications of Local Cohomology

2.1. On Ideal Topologies. Let S denote a multiplicatively closed set of a Noe-
therian ring A. For an ideal a of A put ag = adg N A. For an integer n € N let
a(S”) = a"Ag N A denote the n-th symbolic power of a with respect to S. Note that
this generalizes the notion of the n-th symbolic power p(™ = p" Ay, N A of a prime
ideal p of A. The ideal ag is the so-called S-component of a, i.e.

as ={r € A|rs € afor some s € S}.

So the primary decomposition of ag consists of the intersection of all primary
components of a that do not meet S. In other words

Assq AJas ={p € Assa A/a|pnS =0}
Moreover it is easily seen that
Asspag/a={p € AssaA/a|pnNS #0}.

However Supp 4 as/a € V(b), where b = [ [ c s5(as/a) P- Whence it turns out that
as = a:4 (b), where the last colon ideal denotes the stable value of the ascending
chain of ideals

aCaiabCa:ab2C....
Obviously a :4 (b) = a :4 (b’) for two ideals b, b’ with the same radical. On the
other hand for two ideals a, b it follows that

a:a (b) =as, where S=Npeassa/a\v(o)A\Pp.

There is a deep interest in comparing the topology defined by {a(sn)}neN with the
a-adic topology. To this end we shall use the following variation of Chevalley’s
theorem, see [35].
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Theorem 2.1. Let a denote an ideal of a local ring (A, m). Let {b,}nen denote a
descending sequence of ideals. Suppose that the following conditions are satisfied:
a) A is a-adically complete,
b) Npenbn = (0), i.e. the filtration is separated, and
c¢) for all m € N the family of ideals {b, AJ/a™},en satisfies the descending
chain condition.

Then for any m € N there exists an integer n = n(m) such b, C a™.

Proof. The assumption in c) guarantees that for any given m € N there is an
integer n = n(m) such that

b, +a™ =b,p+a™ forall k> 1.

Call the ideal at the stable value ¢,,. Now suppose the conclusion is not true, i.e.
b, € a™ for all n € N and a fixed m € N. Therefore ¢, # a™. Moreover it is easily
seen that ¢,;,+1 + a™ = ¢,,,. Now construct inductively a series (z,,)men satisfying
the following properties

Tm € ¢ \ 0" and X1 = 2, mod a™.

Therefore (2,)men is a convergent series with a limit 0 # = € A. This follows
since A is a-adically complete by a). By definition that means for any m € N there
exists an | € N such that  — z,, € a™ for all n > [ = I(m). Because of z,, € ¢,
this provides that € Npen Npen (¢, + a™). By Krull’s Intersection Theorem and
assumption b) it follows = 0, a contradiction. L

As a first application compare the a-adic topology with the topology derived
by cutting the m-torsion of the powers of a.

Corollary 2.2. For an ideal a of a local ring (A,m) the following conditions are
equivalent:

(1) {a™:a (m)}nen is equivalent to the a-adic topology.
(if) Npen(a™A: (mA)) =0, where A denotes the m-adic completion of A.
(iii) height(aA + p/p) < dim A/p for all p € Ass A.

Proof. Without loss of generality we may assume that A is a complete local ring.
The conclusion (i) = (ii) is obviously true by Krull’s Intersection Theorem. Let
us prove (ii) = (iii). Suppose there is a p € Ass A such that a + p is m-primary.
Then

0#0:(p) S Nnen(a™: (p)) = Nnen(a” : (p+ a)) = Nnen(a” : (m)),

a contradiction. Finally we prove the implication (iii) = (i).

First note that because A is complete it is also a-adically complete. Moreover
for a given m € N the sequence {(a” : (m))A/a™},cn satisfies the descending
chain condition. Note that ((a™ : (m)) + a™)/a™ is a module of finite length for
all large n € N. Suppose that (i) is not true. By virtue of 2.1 this means that
0 # Npen(a™ : (m)), since the conditions a) and c) are satisfied.
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Now choose
p € Assa(Npen(a” : (m)))
an associated prime ideal. Then p = 0 :4 « for some 0 # = € Npen(a™ : (m)).
Therefore p € Ass A.
By the Artin-Rees Lemma there exists a k € N such that a* NzA C za. By
the choice of x there is an integer [ € N such that m‘z C a*. Therefore

mlz CafFNzAC za,
which implies m! C a + p, in contradiction to assumption (iii). O

A remarkable improvement of 2.2 was shown by I. Swanson, see [47]. Under
the equivalent conditions of 2.2 she proved the existence of a k& € N such that
a™ 14 (m) C a” for all n € N.

In the following let us describe the obstruction for the equivalence of both
of the topologies considered in 2.2. To this end let u(a) denote the intersection
of those primary components q of 0 in A such that the associated prime ideal p
satisfies dim A/(a + p) > 0.

Proposition 2.3. Let a denote an ideal of a local ring (A, m). Then it follows that
u(a) = Npen(a™ : (m)).

Proof. Let © € Npen(a™ : (m)) be an arbitrary element. Then it is easily seen that
T € Npena™A, = 0 for every prime ideal p € V(a) \ {m}. That is 2 € 0, for every
p € V(a) \ {m}. By taking the intersection over all those prime ideals it follows
x € u(a). But this means N,en(a™ : (m)) C u(a).

In order to prove the converse containment relation let ¢ = []p, where the
product is taken over all prime ideals p € Ass A such that dim A/(a+p) = 0. Then
u(a) =0:4 (c) and

0:4 (¢) € Npen(a™: () = Npen(a™ : (¢ + a)) = Npen(a™ : (m))

because of Rad(¢ + a) = m, as is easily seen. O

Now consider the case of a principal ideal, important for the applications in
the following.

Corollary 2.4. Let a denote an ideal of a commutative Noetherian ring A. For a
reqular element x € a the following conditions are equivalent:

(i) {z"A :4 (@) }nen is equivalent to the xA-adic topology.

(ii) dim Ap/p > 1 for all P € Ass A/tANV(a) and all p € Ass Ap.

Proof. First prove the implication (i) = (ii). Suppose that there are prime ideals
PeAssA/zANV(a) and p € Ass Ap such that dimg;/p = 1. Because z is an
Z;—regular element this means that dim Ap / (:1:;1; +p) = 0. Note that § is not
a unit in Z;. Now replace ﬁ; by A. Then by 2.2 there is an n € N such that
™A 4 (m) € 2" A for all m > n. Therefore z™A :4 (a) € 2" A for all m > n
since ™A 14 (m) C ™A :4 (a). This contradicts the assumption in (i).
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In order to prove that (ii) =-(i) consider the ideals
Em,n = (ImA ‘A <a> + an)/an - A/l‘nA

for a given n and all m > n. Obviously Asss E,, , C Assa A/zANV (a). Moreover
Eri1n C By pn. That means, for a fixed n € N the set Assy E,, , becomes an
eventually stable set of prime ideals, say X,,. The claim will follow provided X,, =
(0. Suppose that X,, # (. By a localization argument and changing notation one
might assume that X,, = {m}, the maximal ideal of a local ring (A, m). Therefore

Supp E,, ., = V(m) for any fixed n € N and all large m. Whence
A (a) Ca" Ay (m)

for a given n and all large m. By assumption (ii) and 2.2 it follows that for a
given k there is an integer n such that 2”4 :4 (m) C z¥A. Therefore X,, = 0, a
contradiction to the choice of X,,. O

While condition (ii) looks rather technical one should try to simplify it under
reasonable conditions on A. Say a local ring (A, m) satisfies condition (C) provided

dim A/P = dim A/p for all P € Ass A and all p € Ass A/PA.

This is equivalent to saying that A/P is an unmixed local ring for any prime ideal
P e Ass A.

Say that a commutative Noetherian A satisfies locally condition (C) provided
any localization A,,p € Spec A, satisfies condition (C). Let A be an unmixed ring
resp. a factor ring of a Cohen-Macaulay ring. Then it follows that A satisfies
locally (C), see [35]. In particular, by Cohen’s Structure Theorem it turns out that
a complete local ring satisfies locally condition (C).

Proposition 2.5. Let (A,m) denote a local ring satisfying condition (C). Then it
satisfies also locally (C).

Proof. By definition condition (©) implies that, for P € Ass A, A/P is unmixed,
i.e., dimA/P = dim A/pA for all p € Ass A/PA. Now unmixedness localizes, i.e.
for any () € V(P) the local ring Ag/PAg is again unmixed, see [33]. Therefore Ag
satisfies condition (C) for any @ € Spec A. Recall that a for prime ideal Q € V(P)
we have p € Ass A and p C @ if and only if pAg € Ass Ag. |

Now use the results about condition (C) in order to simplify the result in 2.4.

Corollary 2.6. Let A denote a commutative Noetherian ring satisfying locally the
condition (C). Let x € a be a regular element. Then {x"A :4 () }nen is equivalent
to the xA-adic topology if and only if height(a + p/p) > 1 for all p € Ass A. In
particular, in the case of a local ring (A, m) this holds if and only if height(ag—i—
p/p) > 1 for all p € Ass A.

Proof. Let height(a + p/p) > 1 for all primes p € Ass A. Then dim Ap/p > 1 for
all prime ideals P € Ass A/xANV(a) and p € Ass Ap. Because of condition (C)
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for Ap it implies that dim Zl;/q > 1 for all g € Ass ;1;/]3;1;. But now
Ass Ap = Upeass ap Ass Ap /pAp,

see [28, Theorem 23.2], which proves the first part of the result in view of 2.4.
Conversely suppose the equivalence of the ideal topologies and let height(a+
p/p) = 1 for some p € AssA. Then there is a prime ideal P € V(a) such
that dim Ap/pAp = 1. Because 1 is an Ap-regular element it follows that P €
Ass A/xANV(a). So condition (C) provides a contradiction by 2.4. O

2.2. On Ideal Transforms. In this subsection let us discuss the behaviour of certain
intermediate rings lying between a commutative Noetherian ring and its full ring
of quotients. To this end let x € A be a non-zero divisor and A C B C A, an
intermediate ring.

Lemma 2.7. For an intermediate ring A C B C A, the following conditions are
equivalent:

(i) B is a finitely generated A-module.

(ii) There is a k € N such that 2*B C A.

(iii) There is a k € N such that z**1BN A C zA.

(iv) {2"B N A}nen is equivalent to the xA-adic topology.

(v) There is a k € N such that 2" *BN A = 2" (z*B N A) for alln > 1.

Proof. The implication (i) = (v) is a consequence of the Artin-Rees lemma. The
implications (v) = (iv) = (ili) = (ii) are easy to see. Finally we have (ii) =
(i) since B is as an A-submodule of the finitely generated A-module wikA finitely
generated. 1

In the following there is some need for the ideal transform. To this end let a
denote a regular ideal of a commutative Noetherian ring A. Define

To(A) = {q € Q(A) | Supp(Ag + A/A) C V(a)},
where Q(A) denotes the full ring of quotients of A. It follows that
T.(A) ={q € Q(A) | a"q C A for some n € N},

Note that A C T,(A) C A,, where & € a is a non-zero divisor. Moreover, sup-
pose that a = (a1,...,as)A, where each of the a;’s is a non-zero divisor. Then
To(A) = N{_, A, as is easily seen. Moreover one might define T,(B) for an arbi-
trary intermediate ring A C B C Q(A) in a corresponding way.

Ideal transforms were first studied by M. Nagata in connection with Hilbert’s
14th problem, see [34]. It is of some interest to describe when T (A) is an A-algebra
of finite type. As a first step towards this direction consider when it is a finitely
generated A-module.

Lemma 2.8. Let a denote a regular ideal of a commutative ring A. Let x € a be a
non-zero divisor. Then the following conditions are satisfied:
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a) Ta(Ta(A)) = Ta(A),
b) AssgToq(A)/A = Ass A/xANV(a), and
c) rTa(A)NA=rA:(a) for any reqular element r € A.

Proof. The first claim is obvious by definition. In order to prove b) let p = A : ¢ for
some g = -5 € To(A)\ A. Then p = 2" A :4 sand s ¢ 2™ A. That is p € Ass A/zA.
Furthermore a C p since a¥q C A and a¥ C A : g = p, for some k € N. The reverse
conclusion follows by similar arguments.

In order to prove c) first note that rT,(A)NA C rA:4 (a) as easily seen. For
the reverse inclusion note that r7T,(A) : (a) = rT,(4). O

As a consequence of 2.8 it follows that Assa T,(A)/A = AssExt!(A/a, A).
Therefore Ty (A) = A if and only if grade a > 1. There is a relation of ideal trans-
forms to a more functorial construction. First note that Homa(a, A) ~ A :g(4) @
for a regular ideal a in A. Therefore lim Hom 4 (a”, A) =~ Unen(A :g(a) a") = Tu(A).
This yields a short exact sequence

0— A—Ty(A) — HY(A) — 0,
where the monomorphism is just the inclusion map. Therefore T,(A)/A ~ HL(A).
So the ideal transform enables another approach to H!(A).
It is of a particular interest when T, (A) or - equivalently H!(A) - is a finitely

generated A-module. In the following there is a generalization of A. Grothendieck’s
finiteness result, see [13].

Theorem 2.9. (Grothendieck’s Finiteness Result) Let a denote a regular ideal of a
commutative Noetherian ring A. Then the following conditions are equivalent:

(i) Ta(A) is a finitely generated A-module.

(i) dile;/p > 1 for all P € Ass Ext}(A/a, A) and all p € Ass Ap.

Proof. By 2.7 and 2.8 the statement in condition (i) is equivalent to the fact that
{z™A : 4 (a) }nen is equivalent to the zA-adic topology for a non-zero divisor x € a.
Note that T,(A) C A,. By 2.4 this proves the statement because of

Ass AJz ANV (a) = AssExt!(A/a, A)
as mentioned above. O

Under the additional assumption of condition (C) on A there is a further
simplification of the finiteness result.

Corollary 2.10. a) Suppose that A is a factor ring of a Cohen-Macaulay ring. Then
T.(A) is a finitely generated A-module if and only if height(a + p/p) > 1 for all
p € AssA. In particular T,(A) is a finitely generated A-module if and only if
Tatp/p(A/p) is a finitely generated A/p-module for all p € Ass A.

b) Suppose that (A, m) is a local ring. Then To(A) is a finitely generated A-module
if and only if height(ag—l— p/p) > 1 for all p € Ass A.

Proof. Tt is a consequence of 2.9 with the aid of 2.6. |
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In the case of a local ring (A, m) which is a factor ring of a Cohen-Macaulay
ring the finiteness of H} (A) is therefore equivalent to dim A/p > 1 for all prime
ideals p € Ass A.

A more difficult problem is a characterization of when the ideal transform
T,(A) is an A-algebra of finite type. This does not hold even in the case of a
polynomial ring over a field as shown by M. Nagata, see [34], in the context of
Hilbert’s 14th problem.

2.3. Asymptotic Prime Divisors. In the following we apply some of the previous
considerations to the study of asymptotic prime ideals. To this end there is a short
excursion about graded algebras.
For a commutative Noetherian ring A let F' = {a, },cz denote a filtration of

ideals, i.e. a family of ideals satisfying the following conditions:

a) a, = A for all n <0,

b) ap+1 C a, for all n € Z, and

¢) ply C Ay, for all n,m € Z.

Then one may form R(F'), the Rees ring associated to F, i.e. R(F) = @®pezant™ C
Alt, 1], where t denotes an indeterminate. Let a = (ay,... ,as)A denote an ideal
of A. Then F is called an a-admissible filtration, whenever a” C a,, for all n € Z.
For an a-admissible filtration it is easily seen that R(F) is an R(a)-module, where

R(a) = @neza™” = Alast, ... ,ast,t7]

denotes the (extended) Rees ring of A with respect to a. Note that R(a) is the
Rees ring associated to the a-adic filtration F' = {a"},cz.

There are several possibilities to associate an a-admissible filtration F' to
a given ideal a. One of these is defined for a multiplicatively closed subset S
of A. Let agn)m € N, denote the n-th symbolic power of a with respect to S.

Then F = {a(sn)}nez forms an a-admissible filtration. The corresponding Rees
ring Rg(a) := R(F') is called the symbolic Rees ring of a with respect to S. In the
case of S = A\ p for a prime ideal p of A write Rs(p) instead of R 4\,(p).

Let F' denote an a-admissible filtration. It follows that R(F') is a finitely
generated R(a)-module if and only if there is an integer & € N such that a,; =
a™ay for all n € N. Equivalently this holds if and only if a,,4; C a™ for all n € N
and a certain integer k£ > 0. This behaviour sometimes is called linear equivalence
of F' to the a-adic topology.

For an integer k € N let F, = {anx}nez. Then R(Fy) =~ R®) (F), where
R¥)(F) = ®pezanit™ denotes the k-th Veronesean subring of R(F). Before we
continue with the study of ideal transforms there is a characterization of when
R(F) is an A-algebra of finite type.

Proposition 2.11. Let F' = {a, }nez denote a filtration of ideals. Then the following
conditions are equivalent:

(i) R(F) is an A-algebra of finite type.

(ii) There is a k € N such that R(Fy) is an A-algebra of finite type.
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(iii) There is a k € N such that R(F},) is a finitely generated R(ay)-module.
(iv) There is a k € N such that an, = (ai)™ for all n > k.
(v) There is a k € N such that an41 = ayay for allm > k.

Proof. First show (i) = (v). By the assumption there is an r € N such that R(F) =
Alagt, ... ,a.t"]. Put I = r! and k = rl. Then it follows that a, = > al* ---al",
where the sum is taken over all nq,... ,n, such that Z§=1 in; > n. Forn > kit is
easy to see that there is an integer 1 < ¢ < r such that n; > f Whence a,, C a,_;q
for any n > k. That means a, 1, = a,a; for any n > k as is easily seen.

While the implication (v) = (iv) holds trivially the implication (iv) = (iii)
is a consequence of the Artin-Rees lemma. In order to show (iii) = (ii) note that
R(ay) is an A-algebra of finite type.

Finally show (ii) = (i). For 0 < i < k it follows that 2; = ©pezankit™ is an
ideal of R¥)(F), and R (F) is isomorphic to R(F}). So ;,0 < i < 7, is a finitely
generated R%) (F)-module. Because of R(F) = ©F ;" it turns out that R(F)
is a finitely generated R(*)(F)-module. This proves that R(F) is an A-algebra of
finite type. |

The implication (i) = (v) was shown by D. Rees, see [37]. In the case of a
local ring (ii) = (i) was proved by a different argument in [43].

Before we shall continue with the study of certain ideal transforms consider
two applications of the Artin-Rees Lemma. They will be useful in the study of the
Ratliff-Rush closure of an ideal.

Proposition 2.12. Let a,b,b1,... b, t € N, denote ideals of a commutative Noe-
therian ring A.

a) There is a k € N such that
iy (@™ 4 b;) = a™(Ni_y (aF +b;)) + Nl b; for alln > 1.
b) There is a k € N such that
a"tr e b =a"(a" 4 b) +0:4 b for alln > 1.

Proof. In order to prove a) consider the natural injective homomorphism of finitely
generated A-modules

A/t by — @ A/by, a+Ni_ by (a+by,... a0+ by).
Then the Artin-Rees Lemma provides the existence of an integer k € N such that
" (@I A/bi) N (A/ NiZy by) = a”(a" (81 A4/bi) N (A/ Ni_y b))

for all n € N. In fact this proves the statement a).
For the proof of b) let b = (by1,...,bs)A. Then by the Artin-Rees Lemma
there is a ¢ € N such that

ante A b; ga”—i—(O A bi)
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foralln e Nand ¢ = 1,... ,s. Because of the statement in a) there exists a d € N
such that

S (@04 0) Ca" N3 (0:4 b)) =a™+ (0:4b).
But now we have that N{_;(a™ :4 b;) = a™ :4 b for all n € N. So finally there

exists a k € N such that a”** :4 b C a” + (0 :4 b) for all n € N. By passing to
A/0 :4 b the Artin-Rees Lemma proves the claim in b). O

As a first sample of ideal transforms consider T(q;,~1)(R(a)). But now we
have that T(q,—1)(R(a)) C Aft,t7!]. So it is an easy exercise to prove that the
n-th graded piece of the ideal transform is given by

A for n <0,
T(at,tfl)(R(u))n - { (a”)* for n > 0,

where (a")* = Upen(a™t™ : a™) denotes the Ratliff-Rush closure of a™. In the
following put R*(a) = @pez(a™)*t™. A few basic results of the Ratliff-Rush closure
are listed in the following result.

Lemma 2.13. Let a be an ideal of a commutative Noetherian ring A.

a) There is an integer k € N such that (a™)* = a™ +0:4 (a) for alln > k. In
particular (a™)* = a™ for all n > k provided a is a regular ideal.

b) (a"t1)* 14 a = (a®)* for alln € N.

c) Tiar—1)(R(a)) is a finitely generated R(a)-module if and only if a is a regular
ideal.

Proof. Fix an integer n € N. Then for a sufficiently large integer m it follows that
0:40™=0:4 (a) and (a™)* = (a""™ 4+ 0:4 (a)) :a a™. Therefore, by passing to
A/0 :4 {(a) we may assume that a is a regular ideal in order to prove a). Then by
2.12 it follows that
Bnez(a™ iy a)t”

is a finitely generated R(a)-module. Therefore the Artin-Rees Lemma provides the
existence of an integer k € N such that a”™*+1:4 a = a®(a**! :4 a) for all n > 1.
Therefore a”t*+1: 4 a = a®** for all n > 1. This proves the claim in a).

The statement in b) follows easily by the definitions. Finally c) is a conse-
quence of a) and the Artin-Rees Lemma. O

Next let (A, m) denote a local Noetherian ring. For an ideal a of A consider
the ideal transform T(y, ;-1)(R(a)). It is easily seen that its n-th graded component
has the following form

Tt (R(@)n = {

Therefore the finiteness of Ty, ,-1)(R(a)) yields some information about the exis-
tence of an integer k € N such that a”™* : (m) C a” for all n > 1 as it is clear by
the Artin-Rees Lemma. This is a sharpening of the problem on the equivalence of
the topologies investigated at the beginning.

A for n <0,

a”:4 (m) forn > 0.
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In the following let I(a) denote the analytic spread of a, i.e.
I(a) = dim R(a)/(m,t ') R(a),
see D. G. Northcott and D. Rees [36] for basic results. Recall that
height a < I(a) < dim A.

Moreover, I(a) = dim gr4(a)/mgra(a), where gra(a) = ®nena”/a™! denotes the
form ring with respect to a.

Theorem 2.14. Let a denote an ideal of a local ring (A, m).
a) The ideal transform Ty 1—1y(R(a)) is a finitely generated R(a)-module if and
only if
I(aA +p/p) < dim A/p for all p € Ass A.
b) Tim-1y(R(a)) is an A-algebra of finite type if and only if there is a k € N
such that

I(a" A : (mA) +p/p) < dim A/p for all p € Ass A.

Proof. At first prove a). As a consequence of the Artin-Rees Lemma the ideal
transform 7y, ;~1)(R(a)) is finitely generated over R(a) if and only if the corre-

sponding result holds for ad in (/T, m). Therefore, without loss of generality we
may assume that A is a complete local ring.

So we may assume that R(a) is the quotient of a Cohen-Macaulay ring.
Furthermore there is a 1-to-1 correspondence between the associated prime ideals
B of R(a) and the associated prime ideals p of A given by

P —p=PNAresp. p— Spez(a” Np)t".
By virtue of 2.10 T(y -1)(R(a)) is a finitely generated R(a)-module if and only
if Tim/pi-—1)(R(a+p/p)) is a finitely generated R(a + p/p))-module for all p €
Ass A. That is, without loss of generality we may assume (A, m) a complete local
domain after changing the notation. But under this assumption Ty -1y(R(a)) is

a finitely generated R(a)-module if and only if height(m,¢~*)R(a) > 1. Finally A
is a universally catenarian domain. Therefore it holds

height(m, ¢~ ") R(a) = dim R(a) — dim R(a)/(m, ¢ ") R(a).
l

Because of dim R(a) = dim A+1 and dim R(a)/(m,t~})R(a) = I(a) this completes
the proof.
With the aid of statement a) the conclusion in b) follows by virtue of 2.11 [

As above let a denote an ideal of a commutative Noetherian ring A. Let As(a)
resp. Bs(a) denote the ultimately constant values of Ass A/a" resp. Assa”/a"*!
for all large n € N, as shown by M. Brodmann in [4], see also [42].

As it will be shown in the following the previous result 2.14 has to do with
the property m € As(a) for an ideal a of a local ring (A, m). To this end we modify
a result originally shown by L. Burch, see [8]. Further results in this direction were
shown by C. Huneke, see [21].
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Theorem 2.15. Suppose that (A, m) denotes a local Noetherian ring. Then the fol-
lowing results are true:
a) If m & Bs(a), then I(a) < dim A.
b) The converse is true provided A is a universally catenarian domain and
gra(a) is unmized.

Proof. In order to show a) first note that the natural epimorphism
On a"/a"“ — a"fl/a”+lfl with A= A/0:4 (a)

is an isomorphism for all large n € N. This follows easily by the Artin-Rees Lemma.
By passing to A one might assume that a is a regular ideal. Then m ¢ As(a) because
of As(a) = Bs(a) for the regular ideal a, see [30].

Next investigate the Noetherian ring R*(a). Now we claim that

Ass A/(a™)* C Ass A/(a™1)* for all n € N.

To this end note that (a"*1)* : a = (a®)* for all n € N, see 2.13. Let a =
(a1,...,as)A. Then the natural homomorphism

A/(@") = @i A/ (@ e (@) (rag + (a7
is injective for all n € N. Therefore Ass A/(a”)* C Ass A/(a"T1)*, as required.
Because of (a™)* = a” for all large n it turns out that m ¢ Ass A/(a™)* for
all n € N. Because of T(pm¢—1)(R*(a)) = @nez((a™)” : (m))t" it follows that
T(mt-1(R*(a)) = R*(a). By 2.8 this means that grade(m,t~!)R*(a) > 1. But
now

1 < height(m, ¢~ ") R*(a) < dim R*(a) — dim R*(a)/(m, ¢ 1).
Because R*(a) is a finitely generated R(a)-module it implies that

dim R*(a) = dim A+ 1 and dim R*(a)/(m,t ) R*(a) = I(a),

which finally proves the claim a).

In order to prove b) first note that height(m, ¢t~ 1)R*(a) = dim R* —I(a) since
A is universally catenarian and gr4(a) is unmixed. Since (a"™1)* :4 a = (a™)* for
all n € N there is no prime ideal P of R(a) associated to R*(a)/(t~!)R*(a) that
contains (at,t~1)R(a). Because of (a™)* = a™ +0:4 (a) for all sufficiently large n,
see 2.13, it is easy to see that the kernel and the cokernel of the natural graded
homomorphism

R(a)/(t™")R(a) — R(a)"/(t”")R(a)"
are finitely generated R(a)-modules whose support is contained inV ((at, t =) R(a)).
This implies
Ass R*(a)/(t7")R"(a) = {P € Ass R(a)/(t"")R(a) | P 2 (at,t"")R(a)}

as is easily seen. By the assumption it follows that R*(a)/(¢t~!)R*(a) is unmixed.
Therefore

grade(m, ¢ 1)R*(a) > 1 and Tim-1y(R*(a)) = R*(a),
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see 2.8. By definition this means (a™)* : (m) = (a™)* for all n € N. Because of
(a™)* = a™ for all large n this proves the statement. O

A corresponding result is true for the integral closures a” of a”. To this end
let R(a) denote the integral closure of R(a) in A[t,t~']. Then

- a®  forn >0,
R(a)"_{ A forn <0,

where a” denotes the integral closure of a™, i.e. the ideal of all elements z € A
satisfying an equation 2™ +a;x™ ' +...+a,, = 0, where a; € (a™)%,i=1,... ,m.
Note that Ass A/a™ is an increasing sequence that becomes eventually stable for
large n, as shown by L. J. Ratliff, see [40]. Call As(a) the stable value.

Theorem 2.16. Let a denote an ideal of a local ring (A,m). Then the following
conditions are true:

a) If m ¢ As(a), then I(a) < dim A.

b) The converse is true, provided A is a universally catenarian domain.

Proof. First note that a™ : (m) = a™ for all n € N since Ass A/a™, n € N, forms an

increasing sequence. Hence it follows that T{y ¢—1)(R(a)) = R(a). By 2.8 it implies
height(m,t~!)R(a) > 1. Therefore

1 < height(m, ¢t ")R(a) < dim R(a) — I(a),

which proves the claim.

In order to prove the converse first note that height(m, ¢~ !)R(a) = dim R(a)—
I(a), since A is a universally catenarian domain. Therefore the assumption implies
that

1 < height(m, ¢t ') R(a) = height(m,t 1) R(a).
But now Ria) is a Krull domain. Hence any associated prime ideal of the principal
ideal (t~')R(a) is of height 1. Whence by 2.8 it follows that T{y, ;-1)(R(a)) = R(a).
That is, a” : (m) = a” for all n € N, as required. O

The statements of 2.16 were shown by J. Lipman, see [27]. It extends in a
straightforward way to an ideal a of an arbitrary local ring (A, m). This was done
by S. McAdam in [29], see also [42] for a different approach. In order to describe
this result let mAss A denote the set of minimal prime ideals of Ass A.

Corollary 2.17. Let a denote an ideal of a local ring (A,a). Then m € As(a) if and
only if l(aA+p/p) < dim A/p for all p € mAss A.

Proof. First note that m € Ass A/@ if and only if mA € Ass A/aA, see [40]. Fur-
thermore m € Ass A/a if and only if there is a minimal prime ideal p € mAss A
such that m/p € Ass(A/p)/(aA/p), see e.g. [42]. So the claim follows by 2.16 since
the ring A /p is — as a complete local domain — a universally catenarian domain. [
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Some of the previous ideas will be applied to the comparison of the ordinary

powers of an ideal a to the S-symbolic powers {a(Sn)}neN for a multiplicatively
closed subset S of the ring A. To this end use also the symbolic Rees ring Rg(a) =
@nezagn)t" of a with respect to S.

Corollary 2.18. Let S denote a multiplicatively closed subset of A. Let a denote a
reqular ideal of A. Suppose that the following conditions are satisfied:

a) A is a universally catenarian domain,

b) depthgra(a)p > min{l,dimgra(a)p} for all P 2 gra(a);, and
c) l(aAy) < dim A, for all p € As(a) with p NS # 0.

Then a™ = ag") for all sufficiently large n € N.

Proof. As shown in the proof of Theorem 2.15 the assumption b) implies that
R*(a)/(t"')R*(a) is unmixed. Furthermore recall that

Assal /a" = {p € Ass A/a™ | pN S # 0}

Therefore, for large n the set Ass ag")/ a will stabilize to a finite set, say T'(a).
The claim says that T'(a) = (. Suppose that T'(a) # 0. Now recall that the claim
is a local question. Hence without loss of generality we may assume that (A, m) is
a local ring and T'(a) = {m}. Whence ag") =a": (m) for all large n € N.

But now investigate R*(a) and T{y-1)(R*(a)). Since A is universally cate-

narian and R*(a)/(t~!)R*(a) is unmixed it follows by c) that
1 < dim R*(a) — I(a) = height(m, ¢~ *)R*(a).

Therefore Ty, ;1) (R*(a)) = R*(a) and (a™)* : (m) = (a”)* for all n € N. Moreover
(a™)* = a™ for all large n. Putting together all of these equalities it follows that
T(a) = 0, contracting the choice of m. O

Suppose that condition b) in 2.18 holds for any homogeneous prime ideal.
That means that gr4(a) is unmixed with respect to the height. Then the conclusion
of 2.18 holds for all n € N. This follows by a slight modification of the proof of
2.18. To this end one has to replace R*(a) by R(a).

In order to conclude with this section let us relate the finiteness conditions of
the symbolic Rees ring Rg(a) to the existence of an ideal b whose n-th symbolic
power with respect to S coincides with its ordinary power for all large n € N.

Theorem 2.19. Let a resp. S denote an ideal resp. a multiplicatively closed subset
of a commutative Noetherian ring A.

a) Rg(a) is a finitely generated R(a)-module if and only if l(af/l; +p/p) <
dimz;/p for all prime ideals P € As(a) such that PNS # () and all p €
Ass Zj\a.

b) Rs(a) is an A-algebra of finite type if and only if there is a k € N such that

b" = bg") for all large n € N, where b = agk).
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Proof. Firstly show a). Suppose that Rg(a) is a finitely generated R(a)-module.
Let P € As(a) denote a prime ideal such that P NS # 0. Then a"Ap : (PAp) C
a(Sn)AP for all n € Z. Therefore T(pa, 1) (R(adp)) is — as a submodule of
Rsa,(aAp) — a finitely generated R(aAp)-module. Therefore 2.14 proves the ’only
if’ part of the claim.

In order to prove the reverse implication note that by the Artin-Rees Lemma
it will be enough to show that there is a k£ € N such that the module

By = (afg'n+k) +am™)/a"

vanishes for all n > 1. The set of associated prime ideals of Ej , is contained in
the finite set X = Up,>1{P € AssA/a™ | PN S # (}. Therefore the vanishing of
Ey, , is a local question for finitely many prime ideals in X. By induction it will be
enough to prove the vanishing of Ej, ,, at the localization with respect to a minimal
prime ideal in X. By changing the notation let (A, m) denote the local ring at this
localization. Because of the choice of m it implies that agn) = a" :4 (m) for all
n € N. By 2.14 it follows that Ty, ;~1)(R(a)) is a finitely generated R(a)-module.
Therefore {m} ¢ Ass Ej,,, for a certain k € N and all n > 1, i.e. E,, = (0), as
required.

Finally show b). The claim is an easy consequence of 2.11. Recall that b™ =

a(snk) if and only if b™ = b(sn). |

2.4. The Lichtenbaum-Hartshorne Vanishing Theorem. The Lichtenbaum-
Hartshorne vanishing theorem for local cohomology, see [16], characterizes the
vanishing of HZ(A) for an ideal a in a d-dimensional local ring (A4, m). Our proof
yields an essential simplification by the use of ideal topologies.

For a finitely generated d-dimensional A-module M let (Ass M), denote all
the associated prime ideals of M with dimA/p = d. For an ideal a of A let
u= u(ag) denote the intersection of those primary components q of 0 in A such
that dimg/(ag—l— p) > 0 for p € (Ass A\)d, where p = Rad q and d = dim A.

Theorem 2.20. Let a denote an ideal in a d-dimensional local ring (A, m). Then
HZ3(A) ~ Homa(u, E), where E denotes the injective hull of the residue field
A/m. In particular H3(A) is an Artinian A-module and HE(A) = 0 if and only if
dim A/(aA +p) > 0 for all p € (Ass A),.

Proof. As above let T'= Homau(+, E') denote the Matlis duality functor. Because
of the following isomorphisms

T(H(A)) ~ T(HJ(A) ©4 A) = T(H!3(A))

one may assume without loss of generality that A is a complete local ring. So A is
the factor ring of a complete local Gorenstein ring (B, n) with dim A = dim B = d,
say A = B/b. Replacing a by its preimage in B we have to consider T(HY(B/b)).
Let by denote the intersection of all of the primary components ¢ of b such that
dim B/p = d for p its associated prime ideal. Because of dimbg/b < d the short
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exact sequence

0—by/b— B/b— B/by—0
implies that HY(B/b) ~ HY(B/b,). Replacing by by b one may assume that B/b
is unmixed with respect to the dimension. There is an isomorphism

T(HY(B) ® B/b) ~ Homp(B/b, T(HL(B))).
Because the Hom-functor transforms direct into inverse limits it turns out that
T(HY(B)) = lim T(Ext}(B/a", B)) = lim HY(B/a"),

as follows by the local duality, see 1.8. Because of H?(B/a") = a” : (n)/a™ and
because B is a complete local ring we see that lim HY(B/a") ~ Npen(a™ : (n)).
But now the ideal Npen(a™ : (n)) is the ideal v of B that is the intersection of all
primary components g of 0 such that dim B/(a+p) > 0 for p the associated prime
ideal of g, see 2.3. Therefore

T(HY(B) ®p B/b) ~ Homp(B/b,v) ~ (0:5 b) Nv.

Furthermore it follows that (0 :p b) N b = 0 since b is an unmixed ideal in a
Gorenstein ring B with dim B = B/b. Therefore (0 :p b)Nv ~ ((0 :5 b)Nov+b)/b.
Hence (0 : 5 b)Nv is isomorphic to an ideal of B/b. Finally note that u ~ (0 :5 b)No
as follows by considering the set of associated prime ideals. Then the statement is
a consequence of the Matlis duality. |

The vanishing of the ideal u is equivalent to the equivalence of certain ideal
topologies, see 2.2. So there is another characterization of the vanishing of HZ(A)
for certain local rings.

Corollary 2.21. Suppose that (A, m) denotes a formally equidimensional local ring.
Then H3(A) =0, d = dim A, if and only if the topology defined by {a™ : (m)},en
is equivalent to the a-adic topology.

Proof. By virtue of 2.2 {a" : (m)}nen is equivalent to the a-adic topology if and
only if d1mA/(aA +p) >0 forall p € Ass A. But now dim A = dim A/p for all
p € Ass A by the assumption on A. So the claim follows by 2.20. O

2.5. Connectedness Results. Let a,b denote two ideals of a commutative Noe-
therian ring A. Then there is a short exact sequence

0— A/anb-5Alad® A/b B A/(a+b) — 0,

where i(a+anb) = (a+a,—a+b) and p(a+a,b+b) =a+b+(a+b) for a,b € A.
Because of the direct summand in the middle this sequence provides a helpful tool
for connecting properties. This short exact sequence is an important ingredient for
the next lemma.

In order to prove the connectedness theorem we need some preparations. A
basic tool for this section will be the so-called Mayer-Vietoris sequence for local
cohomology helpful also for different purposes.
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Lemma 2.22. Let a,b denote two ideals of a commutative Noetherian ring A. Then
there is a functorial long exact sequence

c— HP (M) — HY (M) & Hi (M) — Hjng(M) — HIHH(M) — ..
for any A-module M.

Proof. Let ¢ denote an ideal of the ring A. Then first note that
lim Ext"(A/c¢", M) ~ H (M)

for any A-module M and all n € Z, see e.g. [14]. Now consider the short exact
sequence at the beginning of this subsection for the ideals a™ and b™. Then take into
account that the topologies defined by the families {a” +b"},,en and {a” Nb™},en
are equivalent to the (a4 b)-adic and anb-adic topology resp. Therefore the direct
limit of the long exact Ext-sequence proves the claim. 1

Our first connectedness result is the following statement, a slight generaliza-
tion of Hartshorne’s connectedness result, see [15].

Theorem 2.23. Let ¢ denote an ideal of a local ring (A, m). Suppose that grade ¢ >
1. Then the scheme Spec A\ V (¢) is connected.

Proof. Because of gradec > 1 it follows that H!(A) = 0 for i = 0,1. Assume that
Spec A\ V(c¢) is not connected. Then there are non-nilpotent ideals a, b satisfying
the following properties:
1) anb is nilpotent,
2) Spec A\V(a) and Spec A\ V (b) are disjoint and non-empty subsets of Spec A.
3) Spec A\ V(c) = (Spec A\ V(a)) U (Spec A\ V(b))
Note that these conditions imply that Rad(a + b) = Rad ¢. Now consider the first
part of the Mayer-Vietoris sequence

0— HY,  (A) — H)(A) & HJ(A) — HJry(A) — Hy, (A).

Because of gradec > 1 and Rad(a + b) = Radc it turns out that H’,  (A) = 0
for i = 0,1. Moreover aN b is nilpotent. Whence it yields that HJ-,(A4) = A. So
the Mayer-Vietoris sequence implies an isomorphism HY(A) & HY(A) ~ A. Since
the ring A — as a local ring — is indecomposable it follows either H?(A) = A and
HY(A) = 0 or H)(A) = 0 and H)(A) = A. But this means that a resp. b is a
nilpotent ideal. Therefore we have a contradiction, so Spec A \ V'(¢) is connected.

|

The author is grateful to Leif Melkersson for suggesting the above simplifi-
cation of the original arguments.

Let a denote the homogeneous ideal in A = k[x, ... , 23] describing the union
of two disjoint lines in IP%. Suppose that a is up to the radical equal to an ideal ¢
generated by two elements. Then Spec A \ V(a) = Spec A \ V(¢) is disconnected.
Therefore gradec¢ < 1, contradicting the fact that ¢ is an ideal of height2 in a
Cohen-Macaulay ring A. So a is not set-theoretically a complete intersection. For
further examples of this type see [15].
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The previous result implies as a corollary a result on the length of chains of
prime ideals in a catenarian local ring.

Corollary 2.24. Let (A, m) denote a local Noetherian ring satisfying the condition
So. Suppose that A is catenarian. Then it is equidimensional, i.e. all of the minimal
prime ideals have the same dimension.

Proof. Let p,q denote two minimal prime ideals of Spec A. Then it is easily seen
that there is a chain of prime ideals

pP=p1,...,pr =1

such that height(p;,p;41) = 1 for all ¢ = 1,... ,r — 1. Hence by the catenarian
condition

By iterating this (r — 1)-times it follows that dim A/p = dim A/q, as required.

In order to prove the connectedness theorem inspired by G. Faltings we need
a lemma first invented by M. Brodmann and J. Rung, see [5].

Lemma 2.25. Let (A,m) denote an analytically irreducible domain with d =
dim A > 1. Suppose there are two ideals b, ¢ of A such that dim A/b > 0,dim A/c >
0, and HAZH(A) = 0. Then dim A/b + ¢ > 0.

bNe

Proof. Suppose the contrary is true. Then b+ ¢ is an m-primary ideal. The Mayer-
Vietoris sequence provides an exact sequence

Hyr (A) — Hyy(A) — Hi(A) @ HY(A) — Hiqo(A).

bNe

Because A is analytically irreducible and because of the vanishing of Hgg HA)
the vanishing result 2.20 yields an isomorphism HZ(A) ~ H3(A) & HZ(A). Be-
cause of the non-vanishing of H¢ (A) this provides the non-vanishing of one of the
direct summands, say HZ(A). By 2.20 this means that b is an m-primary ideal,

contradicting the assumption. |

This lemma is the main technical tool for the connectedness result given in
the sequel.

Theorem 2.26. Suppose a denotes an ideal of an analytically irreducible domain
(A,m) with d = dim A > 1. Suppose that H'(A) = 0 for n = d — 1,d. Then
(Spec A/a) \ V(m/a) is connected.

Proof. Suppose the contrary. Then there exist ideals b, ¢ of A such that Rad(bNc) =
Rad a and b + ¢ is m-primary, but neither b nor ¢ is an m-primary ideal. Because
of the vanishing of H¢~!(A) Lemma 2.25 provides a contradiction. |

The preceding result shows for instance the non-vanishing of H2(A) for the
ideal a of the union of two disjoint lines in P§ and A = k[zo, ... ,x3]. This yields
another proof that a is not set-theoretically a complete intersection.
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In the following let us generalize this connectedness result to the case of
local rings that are not necessarily analytically unmixed. This was obtained by
C. Huneke and M. Hochster, see [20], by a different argument.

Theorem 2.27. Let (A, m) denote a d-dimensional local ring which is the quotient
of a Gorenstein ring. Assume that A satisfies the condition Ss. Suppose that a
denotes an ideal of A such that H}(A) = 0 for n = d — 1,d. Then the scheme
(Spec A/a) \ V(m/a) is connected.

Proof. As in the proof of 2.26 suppose the contrary. That is, there exist ideals b, ¢
of A such that Rad(bN¢) = Rada and b + ¢ is m-primary, but neither b nor ¢ is
an m-primary ideal. By changing the notation let us assume that A is a complete
local ring. Then the Mayer-Vietoris sequence provides an isomorphism

Hy (A) =~ Hi(A) © H(A).

This implies that K4 >~ u @ v, where u resp. v denotes the intersection of those
primary components q of the zero-ideal of A such that dim A/b + p > 0 resp.
dim A/c+p > 0 for p, the associated prime ideal of g, see 2.20. By the definitions,
see Section 1.2, it follows now that Kx, ~ K, ® K,. Moreover since A satisfies
Sy it is equidimensional by 2.22. Therefore A ~ K ,, as turns out by 1.14.

By the Nakayama lemma one of the direct summands, say K,, is zero, while
for the second summand A ~ K. By 1.9 it follows that Ass K, = Assu. Because
of

Assqu={p € AssA| dimA/b+p =0}
the equality Ass A = Ass K, implies that m C Rad(b+p) for any associated prime
ideal p of A. As is easily seen it follows that m C Rad(b), a contradiction. Therefore
(Spec A/a) \ V(m/a) is connected, as required. O

3. Local Cohomology and Syzygies

3.1. Local Cohomology and Tor’s. As above let (A, m) denote a local ring. Let
T(-) = Homy (-, E) denote the Matlis duality functor, where E = E4(A/m) is the
injective hull of the residue field. In the following consider a length estimate for
the length of Tor2 (M, N) resp. Ext’s (M, N) under the additional assumption that
M ®4 N is an A-module of finite length.

Lemma 3.1. Let M, N denote finitely generated A-modules such that M @ 4 N is
an A-module of finite length. Then

Ext’y (M, H? (N)) and Tor{"(M, HL(N))
are A-modules of finite length for all i,j € Z.

Proof. Without loss of generality we may assume that A is a complete local ring.
Then A is a quotient of a local Gorenstein ring B with dim B = r. By the local
duality theorem, see 1.8, it turns out that Hp(N) ~ T(KY;) for all j € Z, where
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K, ~ Ext); 7 (N, B) with the natural A-module structure, see 1.8. Moreover there
are natural isomorphisms
Ext’y (M, HL (N)) =~ T(Tor(M, K%)) and Tor;" (M, H% (N)) ~ T(Ext’, (M, K%))
for all 7, j € Z. But now Supp K]{, C V(Anng N) for all j € Z. Therefore
Supp Tor;' (M, K%) € V(Anny M, Anna N).
By the assumption M ®4 N is an A-module of finite length. That is,
V(Anng M, Anny N) C V(m),

which proves that Torf(M , KJ]V) is an A-module of finite length for all ¢,j € Z
too. By the Matlis duality the first part of the claim is shown. The second part
follows by the same argument. 1

The previous result 3.1 provides the desired bounds for the length of Torﬁ(M ,N)
and Ext’y (M, N).
Theorem 3.2. Let M, N be two finitely generated A-modules such that M @4 N is
an A-module of finite length. Then

a) La(Exty(M,N)) < 370 La(Bxt)y (M, Hy'(N))) and

b) La(Tor, (M, N)) < 3,50 La(Tory, (M, Hy, (N)))
for alln € Z.

Proof. First choose x = x1,...,24,d = dim A, a system of parameters of A.
Therefore Rad z = m. The corresponding Cech complex K* = K . has the property
that H"(K' ®4 N) ~ HZ(N) for all n € Z, see 1.3. Furthermore choose F"
a minimal free resolution of M. In order to show the first claim consider the
complex K° ®4 Homy4 (F", N). Because of the structure of K* as the direct sum of
localizations it turns out that the natural homomorphism

Homy(F',N) = K" ®4 Homa(F', N)
induces an isomorphism in cohomology. Moreover
K ®4 Homa(F',N) = Homa(F',K ®a N)
as it is easily seen. So there is a spectral sequence
EY) = Exty, (M, H] (N)) = E" = Ext"y(M, N).

Therefore Ext’y (M, N) possesses a finite filtration whose quotients EL"=% are mod-
ules of finite length such that L4(EY"™%) < La(Ey" ") < oo, which proves the
first bound.

In order to prove the second bound proceed by a similar argument. Consider
the complex K" ®4 (F" ®4 N). As above the natural map F* ®4 N — K ®4

(F" ®4 N) induces an isomorphism in cohomology. In order to continue consider
the spectral sequence

Ey? = Tor,(M, H},(N)) = E" = Tor?, (M, N)
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for computing the cohomology of K" ®4 (F" ®4 N). It provides — in a similar way
as above — the second claim. |

In the particular case of N a Cohen-Macaulay module with M ® 4 N of finite
length the spectral sequences in the proof of 3.2 degenerate to isomorphisms.

Corollary 3.3. Let N be a Cohen-Macaulay module. Then there are the following
isomorphisms

Ext’s (M, N) ~ Ext’y*(M, HL(N)) and Toris (M, N) ~ Tor, ,(M, HL(N))
for alln € Z, where d = dim N.

Under the additional assumption that M is an A-module of finite projec-
tive dimension it is of some interest to determine the largest integer n such that
Tor (M, N) # 0. This yields an equality of the Auslander-Buchsbaum type, shown
by M Auslander, see [1, Theorem 1.2].

Theorem 3.4. Let M, N be two non-zero finitely generated A-modules. Suppose
that pd 4 M is finite. Then

sup{n € Z | Tor2 (M, N) # 0} + depth, N = pd 4, M

provided depth Tor? (M, N) = 0, where s = sup{n € Z | Tor?(M,N) # 0}. In
particular the equality holds whenever M @ 4 N is an A- module of finite length.

Proof. Set p = pdy M and t = depthy N. As in the proof of 3.2 consider the
complex C" := K @4 F' ®4 N, where K resp. F' denotes the Cech complex
resp. the (finite) minimal free resolution of M. Then there is the following spectral
sequence
Ey " = Tor (M, Hi,(N)) = E~" = H=H(C).

Consider the stages —i + j =: n < —p +t. In the case n < —p + ¢t it follows that
E;" = 0. Note that whenever j < ¢, then H(N) = 0, and whenever j > t,
then ¢ > p = pd4 M. In the case n = —p + t it follows by a similar consideration
that E, “ =0 for i # p. So there is a partial degeneration to the isomorphism
H=P+Y(C") = Tor} (M, HL (N)) and the vanishing H"(C") = 0 for all n < —p +t.

Next show that H P*'(C") # 0. By 1.5 HL(N) is an Artinian A-module.
Therefore it possesses a submodule which is isomorphic to k¥ = A/m. The corre-
sponding short exact sequence

0—k— HL(N)—C —0

induces an injection 0 — Tor (M, k) — Tor (M, H: (N)). Because of Tor (M, k)
# 0 this shows the claim.
In order to continue with the proof consider the spectral sequence

By~ = Hi(Tor’ (M, N)) = B/ = HI™I(C").

Put i —j =: n. In the case of n < —s it follows that El’ﬂ = 0 by similar arguments
as above in the first spectral sequence. Note that s = sup{n € Z | Tor (M,N) #
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0}. Therefore H"(C") = 0 for all n < —s and H=*(C") ~ HO(Tor’ (M, N)) # 0.
Recall that depth Torfs4 (M, N) = 0. This finally proves —s = —p + t, as required.
|

Another case of describing sup{n € Z | Tor’}(M,N) # 0} was investigated
by M. Auslander, see [1, Theorem 1.2]. It follows in the same way as above by
considering both of the spectral sequences.

As an immediate consequence of 3.4 it turns out that depthy N < pdy M
provided M ®4 N is an A-module of finite length. Under these assumptions a
much stronger inequality holds, namely dim4 N < pd 4 M. This is the Intersection
Theorem proved by C. Peskine and L. Szpiro, see [39], and M. Hochster, see [19],
in the equicharacteristic case, and finally by P. Roberts, see [38], in the remaining
case. For a summary of these and related results about Cohen-Macaulay rings see
also the monograph [7].

In relation to that the following Cohen-Macaulay criterion could be of some
interest.

Corollary 3.5. Let M, N be two finitely generated A-modules such that M ® 4 N
is of finite length. Suppose that pdy M is finite. Then N is a Cohen-Macaulay
module with depth y N = pd 4 M if and only if Tor2(M,N) =0 for all n > 1.

Proof. First assume that N is a Cohen-Macaulay module. Then
Tor (M, N) =~ Tori, ,(M, HL(N)), d = dim N,

as follows by 3.3. But now d = pd 4 M. Therefore the last module vanishes for all
positive n.
For the proof of the reverse implication note that

as follows by 3.4. But now pdy M — dima N > 0 by view of the Intersection
Theorem. This finishes the proof. O

By view of the formula of M. Auslander and D. Buchsbaum one may interpret
the inequality depthy N < pd 4 M in the following way

depth 4 N + depthy M < depth A,

provided M ® 4 N is of finite length and pd 4 M is finite. One might think of it as
a generalization of Serre’s inequality dimy N + dimy M < dim A in the case of A
a regular local ring.

In connection to 3.5 the rigidity of Tor could be of some interest. Let n € N.
Then the conjecture says that Torf_H(M, N) = 0 provided Tor’(M,N) = 0.
This is true for a regular local ring (A, m) as shown by J. P. Serre, see [45], in
the case of unramified regular local rings, and finally for any regular local ring
by S. Lichtenbaum, see [26]. There are also related results in [1]. The rigidity
conjecture for a general local ring and pd 4, M < oo was disproved by R. Heitmann’s
example, see [18]. For some recent developments on the rigidity in connection to
non-regular local rings, see the work of C. Huneke and R. Wiegand in [23].
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Under the assumptions of 3.5 J. P. Serre, see [45], considered the Euler char-
acteristic x (M, N) = 3".o(—1)?La(Tor{*(M, N)) as an intersection number. More
generally for n € N he defined the partial Euler characteristics

Xn(M,N) = (=1)'La(Tor; (M, N)).
i>0

Note that x(M,N) = xo(M, N). In the case of an unramified regular local ring
(A,m) J. P. Serre, see [45], proved the non-negativity of x(M, N). Moreover he
conjectured that this is true for any regular local ring. Recently O. Gabber, see
[11], proved the non-negativity of x(M, N) for any regular local ring. As follows
by view of R. Heitmann’s example x1(M, N) > 0 does not hold in the case of an
arbitrary local ring and pdy M < oo.

The Cohen-Macaulay property of N in 3.5 provides that Ls(M ®4 N) =
Xo(M, N). This equality is equivalent to the vanishing of x1 (M, N). Consider the
particular case of a finitely generated A-module N and M = A/zA, where x =
Z1,...,x, denotes an A-regular sequence. Then pd 4, M = r. Suppose that N/zN is
an A-module of finite length, i.e. dim N < r. Then xo(M, N) = eg(x; N) as follows
since Tor{*(A/zA, N) ~ H;(z; N),i € N,and 3,5, (—1)'La(H;(z; N)) = eo(z; N),
where eg(z; N) denotes the multiplicity of N with respect to z, see [2]. So the
equality L(N/xzN) = eg(z; N) says that N is a Cohen-Macaulay module with
dim N =r.

Conjecture 3.6. Let M, N be two finitely generated A-modules such that M ® 4 N
is an A-module of finite length and pd, M < oc.

a) (Cohen-Macaulay Conjecture) Suppose that L4(M®4N) = xo(M, N). Does
it follows that IV is a Cohen-Macaulay module with pd, M = depth, N7

b) (Weak Rigidity Conjecture) Suppose that x, (M, N) = 0 for a certain n € N.
Does it follows that x,+1 (M, N) =07

Suppose that the weak rigidity conjecture is true. Then x,, (M, N) = 0 implies
inductively that Torj (M, N) = 0 for all k£ > n. To this end recall that pd, M is
finite. Let us return to this observation in the following result.

Corollary 3.7. Let a,b be two ideals of a local ring (A, m). Assume that pd, A/a
is finite and a + b is an m-primary ideal.
a) Suppose that A/a is a Cohen-Macaulay ring with depth A/a + depth A/b =
depth A. Then anb = ab (resp. x(M,N) = La(A/(a+b)).
b) Suppose that A/a is rigid (resp. weakly rigid). Then the converse is true.

Proof. The statement in a) is a consequence of 3.5. Recall that Tori' (A/a, A/b) =
anNb/ab. So its vanishing yields the equality of the intersection with the product.
The statement in b) is clear by the above discussion. |

In the case of A a regular local ring this says that a Nb = ab if and only if
dim A/a + dim A/b = dim A and both A/a and A/b are Cohen-Macaulay rings.
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This was shown by J. P. Serre, see [45]. So one might think of 3.7 as a generalization
to the non-regular case.

3.2. Estimates of Betti Numbers. In the case M = k the second formula shown in
3.2 provides estimates of the Betti numbers of a module in terms of Betti numbers
of its local cohomology modules. This point of view is pursued in this subsection.

To this end let the local ring (A, m) be the quotient of a regular local ring
(B,n) with » = dim B. We are interested in the minimal free resolution of M
as a module over B. Because of the local duality, see 1.8, the local cohomology
modules of M are the Matlis duals of K}, ~ Extl; " (M, B),n € Z, the modules of
deficiency of M. Note that Ky = K¢,, d = dim M, is called the canonical module
of M. In the following let

B (M) = dimy, Tor? (k, M), n € Z,
denote the n-th Betti number of M. Here k denotes the residue field of B.
Theorem 3.8. Let M denote a finitely generated B-module. Then

Sy Bren—i(KY) form>c, and
Bn(M) = { Z?:z Br—n—i(K%)  forn<c,

where c =r — d,d = dim M, denotes the codimension of M.

Proof. In order to prove the bounds note that for a B-module X and all n € Z
there is an isomorphism

Tor? (k, X) ~ H,(z; X),
where H,,(z; X) denotes the Koszul homology of X with respect to z = x4, ... ,z,,
a minimal generating set of n, the maximal ideal of the regular local ring B. This
follows because H,,(x; B) provides a minimal free resolution of B/n over B. Because
of the Matlis duality it yields that

Hyi(s T(K ) = T(H™ (23 Kjy)).
By the self-duality of the Koszul complex it turns out that
H" (23 Kyy) =~ Hyoni(z; Ky
By counting the k-vector space dimension this implies By, i (Hi (M))= Br—pn—i(Ki;)
for all ¢,n € Z. Therefore the claim follows by virtue of 3.2. |

In the particular case of M a Cohen-Macaulay B-module the underlying
spectral sequence degenerates, see 3.3. This proves that 3, (M) = Be—pn(Kr), 0 <
n < ¢. This is well known since Hompg (-, B) preserves exactness of F" in this case.
Here F" denotes the minimal free resolution of M.

Corollary 3.9. Let M be a finitely generated B-module with pdy M = p and
depthy M = t. Then B,(M) = Bo(KY,). That is the rank of the last module in
a minimal free resolution of M is given by the minimal numbers of generators of
the first non-vanishing K.
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Proof. There is a partial degeneration of the spectral sequence to the isomorphism
Tor? (k, M) ~ Tory (k, H} (M)).

As above Tor? (k, H, (M)) ~ T(H" (z; K4;)) ~ T(Ho(z; K%,)), which proves the
claim. Here r denotes the dimension of B or — what is the same — the minimal
number of generators of n, the maximal ideal of the regular local ring B. |

A case of a particular interest is the situation when HY (M), i < d := dimy M,
are finite dimensional A/m-vector spaces. Call a finitely generated A-module M
with this property a quasi-Buchsbaum module.

Corollary 3.10. Let M denote a quasi-Buchsbaum module over the local ring
(A,m). Then

Bu(M) < 3 (n : Z) dimy, Hi (M)

i=0
for all n > ¢, where k = A/m denotes the residue field.

Proof. Tt is an immediate consequence of 3.8. Note that H (M), < d, are finite-
dimensional k-vector spaces. Moreover §,_,_;(k) = (HTH) since B is a regular local
ring of embedding dimension r. |

3.3. Castelnuovo-Mumford Regularity. In order to obtain more precise informa-
tion about the syzygies it is helpful to have additional structure, e.g. the structure
of a graded k-algebra. So let A = @,,>0A,, denote a Noetherian graded algebra
with Ag = k a field and A = Ag[A;]. Then A is the epimorphic image of the
polynomial ring B = k[X1,...,X,], where r = dimy A;. In the following let M
denote a finitely generated graded A-module. Then one might consider it as a
module over B. The finite dimensional k-vector spaces Tor?(k, M) are graded.
They reflect information about the degrees of the minimal generators of the n-th
module of syzygies of M.

The Cech complex K, of B with respect to z = X1,...,X, is a complex of
graded B-modules. In fact it is a flat resolution of the system of inverse polynomi-
als. So the local cohomology modules of a graded B-module are also graded and
therefore H (M) ~ H™(K, ®4 M) is a homomorphism of degree zero. Here m
denotes the homogeneous ideal generated by all variables.

For a graded B-module N let e(N) = sup{n € Z | N,, # 0}, where N,
denotes the n-th graded piece of N. In the case of N an Artinian module it follows
that e(N) < co. Recall that e(N) = —oo in the case N = 0.

Then define reg M the Castelnuovo-Mumford regularity of M a finitely gen-
erated graded B-module by

reg M = max{e(Hy(M))+n|n € Z}.

Note that it is well-defined by 1.5.
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The basics for this construction were initiated by D. Mumford, see [31], who
attributed it to Castelnuovo. The importance of the regularity lies in the following
fact, a relation to the graded Betti numbers of M. There is the equality

reg M = max{e(Tor? (k, M)) —n | n € Z},

shown by D. Eisenbud and S. Goto, see [10]. In the case of M a Cohen-Macaulay
module it turns out that reg M = e(Tor? (k, M)) — ¢, ¢ = codim M.

The following provides an improvement by showing that — just as in the
Cohen-Macaulay case — the regularity is determined by the tail of the minimal
free resolution of M.

Theorem 3.11. Let M denote a finitely generated graded B-module. Let s € N be
an integer. Then the following two integers coincide
a) max{e(H. (M))+i|0<i<s} and
b) max{e(Torf(k,M)) —jlr—s<j<r}h
In particular for s = dimp M it follows that
reg M = max{e(Torf(l@M)) —jle<ji<ry}

where ¢ = r — dimpg M denotes the codimension of M.

Proof. The proof is based on the following spectral sequence
Ey? = H_y(z; HL(M)) = B = H_;_j(z; M)

as it was considered in the proof of 3.2. Here z = X;,... , X, denotes the set of
variables in B. Note that Tor? (k, N) ~ H,,(z; N) for all n € Z and any B-module
N. Moreover the spectral sequence is a spectral sequence of graded modules and
all the homomorphisms are homogeneous of degree zero.

First show the following claim:

Suppose that Hs(z; M)sit # 0 for a certqin teZ andr—1<s <r. Then there
exists a j € Z such that 0 < j < i and Hp(M)i—j # 0.

Assume the contrary, i.e., H&(M)t_j = 0 for all 0 < j < i. Then consider the
spectral sequence

[By 7 iys = Hopj (2 HL (M) thos = [E™]pns = Hy(z; M) .

Recall that all the homomorphisms are homogeneous of degree zero. Now the
corresponding Fs-term is a subquotient of

[©HG (M) (=5 = i
Let j <. Then this vectorspace is zero by the assumption about the local cohomol-
ogy. Let j > ¢. Then s+j > s+ > r and (Sij) = 0. Therefore the corresponding

Ey-term [E5 *777],,, is zero for all j € Z. But then also all the subsequent stages
are zero, i.e., [E*797]; 15 =0 for all j € Z. Whence [E~%];4s = Hs(x; M)45 = 0,
contradicting the assumption.
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The second partial result shows that a certain non-vanishing of HJ (M) im-
plies the existence of a certain minimal generator of a higher syzygy module. More
precisely we show the following claim:

Let r = dim B denote the number of variables of B. Suppose that there are integers
s, b such that the following conditions are satisfied:

a) Hi(M)py1-; =0 for alli < s and

b) Hr(z; H;(M))b-i-r—s 7& 0
Then it follows that Hy._s(x; M)pyr—s 7 0.

Note that the condition in b) means that HZ (M) possesses a socle generator in
degree b — s. Recall that r denotes the number of generators of m.
As above we consider the spectral sequence

By = Hy(zy Hy(M)) = B~ = H,_(x; M)

T,S]

in degree b + r — s. The subsequent stages of [Ey
cohomology of the following sequence

p+r—s are derived by the

[Er;r—n,s+n—1} —r,s]

n

—r4+n,s—n+1
B, ]

bt+r—s [E b+r—s [ btr—s

for n > 2. But now [E, "™t 1], resp. [E, "7, are subquotients
of

Hy (@ Hy "N (M)pgr—s = 0 vesp. Hy (5 Hy "1 (M))pyr—s = 0.
For the second module recall that it is a subquotient of
[@H M) G5 (—r 4 )lyes =0, n>2.
Therefore [E; "*ptr—s = [E*]p4r—s # 0 and
(B s ™~ Hy_ (2 M)y yrs # 0

as follows by the filtration with the corresponding F.-terms.
Now let us prove the statement of the theorem. First of all introduce two
abbreviations. Put

a:= max{e(Tor]B(k:,M)) —jlr—=s<j<r}h
Then by the first claim it follows that a < b, where
b:=max{e(H.(M)) +i|0<i< s}
On the other hand choose j an integer 0 < j < s such that b = e(HH(M)) + j.
Then Hy(M)p—j # 0, Hin(M)e—j = 0 for all ¢ > b, and Hy,(M)p41—; = 0 for all
i < j. Recall that this means that Hj (M) has a socle generator in degree b — j.

Therefore the second claim applies and Tor,Ji j (K, M)p+r—j # 0. In other words,
b < a, as required. O

An easy byproduct of our investigations is the above mentioned fact that
reg M = e(Tor? (K, M)) — ¢, ¢ = r — dim M,
provided M is a Cohen-Macaulay module.
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It is noteworthy to say that P. Jgrgensen, see [24], investigated a non-com-
mutative Castelnuovo-Mumford regularity. In fact he generalized 3.11 to the non-
commutative situation by an interesting argument.

Theorem 3.12. Let M be a finitely generated graded B-module with d = dimp M.
Suppose there is an integer j € 7 such that for all ¢ € Z either

a) Hh(M)j_q =0 or

b) Hi(M)j+1-p =0 for allp < q and HE(M)j_1_, =0 for all p > q.
Then for s € Z it follows that

(1) TorZ(k, M)sy; ~ @I=5(Tor2 ,_,(k, Ki,)sy;)" provided s > ¢, and

(2) Torf(k,M)S_,_j = @g;&(TorsB+i(ka§\4)T—s—j)v & (Toch—s(kaM)r—s—j>v7

provided s < c,

where K}, = Exty “(M, B(—r)), 0 < i < d, denote the module of deficiencies and
Ky is the canonical module of M.

Proof. As above consider the spectral sequence
Ey* ™" = Hop(a; Hyy (M) = E™° = Hy(z; M)

in degree s + j. Firstly we claim that [Ey* "]y, ~ [EZ* ., for all s € Z.
Because [E, * "]+, is a subquotient of

[@H D ) (=5 = )]
the claim is true provided HZ (M);—; = 0. Suppose that HE(M);—; # 0. In order
to prove the claim in this case too note that [E, 77 ""]s4; is the cohomology at
(BT oy = (B ey — (BT T
Then the module at the left resp. the right is a subquotient of
Hpiyn(z; Hém+n71(M))(s+j resp. Hypin(z; Hé:n+1(M))s+j'

Therefore both of them vanish. But this means that the Es-term coincides with
the corresponding E..-term. So the target of the spectral sequence H(z; M)y
admits a finite filtration whose quotients are Hyy;(z; Hi (M))s1j. Because all of
these modules are finite dimensional vectorspaces it follows that

Hy (23 M)y~ &g Hasi(2; Hyy (M) s
for all s € Z.
By the Local Duality theorem there are the following isomorphisms HE (M) ~

T(K%;), 0 <i <d, where T denotes the Matlis duality functor Homy (-, k) in the
case of the graded situation. Therefore we obtain the isomorphisms

Hopi(z; T(Kyp))oqg ~ (TH (25 K3yp)))sts = (Hy—s—i(2; Ky )r—s—j) "

But the last vector space is isomorphic to (Tor? , ,(k, Ki)r—s;)".
In the case of s > ¢ it is known that » — s < d. Hence the first part of the
claim is shown to be true. In the remaining case s < ¢ the summation is taken

from ¢ = 0,... ,d, which proves the second part of the claim. |
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As an application of 3.12 we derive M. Green’s duality theorem [12, Section 2].

Corollary 3.13. Suppose there exists an integer j € Z such that
HY(M)j—q =H{(M)j41-4 =0
for all ¢ < dimp M. Then
Torg (k, M)y = (Tory (k, Kar)r—s—j)",
for all s € Z, where ¢ = codim M.

Proof. 1t follows that the assumptions of Theorem 3.12 are satisfied for j because of
HE{(M)j—1-p =0 for all p > dim M. Therefore the isomorphism is a consequence
of (1) and (2) in 3.12. To this end recall that

TorsB-H‘(ka H;(M))s+j ~ Hoyi(z; H;(M))erj =0,
as follows by the vanishing of Hi (M);_; for all i < dim M. O

M. Green’s duality theorem in 3.13 relates the Betti numbers of M to those
of K. Because of the strong vanishing assumptions in 3.13 very often it does
not give strong information about Betti numbers. Often it says just the vanishing
which follows also by different arguments, e.g., the regularity of M.

Theorem 3.12 is more subtle. We shall illustrate its usefulness by the following
example.

Ezample 3.14. Let C' C P} denote a reduced integral non-degenerate curve over
an algebraically closed field K. Suppose that C' is non-singular and of genus g(C') =
0. Let A = B/I denote its coordinate ring, i.e., B = Klxg,... ,x,] and I its
homogeneous defining ideal. Then

Tor? (k, B/1)sy; ~ Torl,, (k, Hp(B/I))st;

for all s > 1 and all j > 3. To this end recall that A is a two-dimensional domain.
Moreover it is well-known that H&(B/I) = 0 for all ¢ < 0 and g > 2. Furthermore
it is easy to see that Hy(B/I)j—1 =0 for all j < 1. Moreover HZ(B/I);j—1-2 =0
for all j > 3 as follows because of g(C) = 0. That is, for j > 3 one might apply
3.12. In order to conclude we have to show that Torffs(hKB/I)r,s,j = 0 for
j > 3. To this end note that

(Hc—s(g; KB/I)r—s—j)v = s+2(£; ng(B/I))s-‘rj
as is shown in the proof of 3.12. But this vanishes for 7 > 2 as is easily seen.
3.4. The Local Green Modules. As before let E = E4(A/m) denote the injective

hull of the residue field of a local ring (A, m). Let z = z1,... ,z, denote a system
of elements of A. Then for all n € Z there are canonical isomorphisms

H,(z;T(M)) ~T(H"(z; M)) and H"(x;T(M)) ~T(H,(z; M)).
Here T denotes the duality functor Homa (-, E). In the case (A, m) is the factor

ring of a local Gorenstein ring B, then use the modules of deficiency K7}, as defined
in Section 1.2. In order to continue with our investigations we need a sharpening
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of the definition of a filter regular sequence. To this end let M denote a finitely
generated A-module.

An M-filter regular sequence r = x1,...,x, is called a strongly M-filter
regular sequence provided it is filter regular with respect to K;}@ i for n =

0,1,...,dim M. Here A denotes the completion of A.

The necessity to pass to the completion is related to the existence of K7j,.
In the case A is the quotient of a Gorenstein ring it is enough to check the filter
regularity with respect to K7};. This follows because by Cohen’s Structure theorem
A is the quotient of a Gorenstein ring and x is M-filter regular if and only if
itis M ®4 A-filter regular. Because KJ’\’/[® 4 are finitely generated A-modules the
existence of strongly M-filter regular sequences is a consequence of prime avoidance
arguments.

Lemma 3.15. Suppose that x = x1,... ,x, denotes a strongly M -filter regular se-
quence. Let j € 7, denote an integer. Then H;(z; Hi(M)) resp. Hi(z; Hi,(M)) are
A-modules of finite length in the following two cases:

a) for alli <r resp. i >0, and

b) for all i € Z, provided r > j.

Proof. Without loss of generality we may assume that A is a complete local ring.
Because of the isomorphisms

Hy(z; Hi, (M) ~ T(H'(z: KY,)), i, ] € Z,

it will be enough to show that H'(z; K]]V[)) is an A-module of finite length. By
view of 1.17 is follows that this is of finite length in the case 7 < r. In the case
r > i we know that dim K9, < j, see 1.9. Therefore the Koszul cohomology is also
of finite length in the remaining case ¢ = r. The rest of the statement is clear by
the self-duality of the Koszul complex. |

In a certain sense the modules considered in 3.15 are local analogues to the
modules studied by M. Green in [12]. For some results in the graded case see also
[44]. In relation to possible further applications it would be of some interest to find
interpretations of the modules H; (z; Hj (M)). One is given in the following.

Theorem 3.16. Let x = x1,... ,x,, 7 > dim M, denote a strongly M -filter reqular
sequence. Let n € N be an integer. Then there are the following bounds:

a) LA(Hn(@ M)) < Z?ZO LA(Hn_i(@ an(M)))
b) La(Hn(z; M)) <30 La(Hpyi(z; Hy (M))).

Proof. It is enough to prove one of the statements as follows by self-duality of
Koszul complexes. Let us prove the claim in b). To this end consider the complex

C =K ®4 K.(z; M),

where K denotes the Cech complex with respect to a generating set of the maximal
ideal. Now consider the spectral sequences for computing the cohomology of C".



288 P. Schenzel

The first of them is given by
Hi(Hj(z; M) = H™I(C).

Because H;(z; M), j € Z, is an A-module of finite length we get the vanishing of
HE (Hj(z,M)) =0 for all j and i # 0 and

HY\(Hj(z; M)) ~ H;(z; M) for all j € Z.

Therefore there is a partial degeneration of the spectral sequence to the following
isomorphisms
H™™(C") ~ Hy(z; M) for all n € Z.

On the other hand there is the spectral sequence

By = Hya H,(M)) = B = H(C)
By the assumption all the initial terms Ey 7 are A-modules of finite length for
all 4,j € Z, see 3.15. Therefore also the limit terms EL=7 are of finite length
and La(Ey ™ 7) > La(EL7) for all i,j € Z. Whence E™" = H~"(C") admits a
filtration with quotients E% "~ for i € Z. Therefore there is the bound

La(E™") <> La(By™"7Y),
i>0

which proves the result by view of the above estimate. ]

The spectral sequence considered in the proof provides also another partial
degeneration. This could be helpful for different purposes.

Corollary 3.17. Let z and M be as in 3.16. Then there are the following canonical
isomorphisms:
a) H(x; M) ~ H°(a; H (M)), t = depth M.
b) H™(z; M) ~ H"(z; HL(M)) for all n € Z, provided M is a d-dimensional
Cohen-Macaulay module.

In the first case of Corollary 3.17 it is possible to compute the Koszul coho-
mology explicitly.

It turns out that HO(z; HL(M)) ~ (x1,...,2)M :p z/(21,...,24)M. Tt
would be of some interest to give further interpretations of some of the modules
Hi(z; Hu(M)).

There is one result in this direction concerning multiplicities. To this end
recall the notion of a reducing system of parameters in the sense of M. Auslander
and D. A. Buchsbaum, see [2]. Recall that for an arbitrary system of parameters
T =2x,...,xq of M it is known that there is a strongly M-filter regular sequence
Y = Y1,...,yq such that (z1,...,2,)M = (y1,...,9)M,i=1,... ,d = dim M.
Note that y is a reducing system of parameters of M.

In the following denote by Ls(M/xM) resp. eo(x; M) the length resp. the
multiplicity of M with respect to z, see [2] for the details.
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Theorem 3.18. Let x = x1,... ,x4, d =dim M > 1, denote an arbitrary system of
parameters. Choose y = y1,... ,yq as above. Then
d—1

La(M/zM) —eo(z; M) < LA(Hi(Q/§Hi1(M))),

i

I
=

where y' = y1,... ,Yi-1.

Proof. Because of the previous remark one may replace z by y without loss of
generality. Because y is a reducing system of parameters of M it turns out that

La(M/yM) —eo(y; M) = LA(Q/M M yd/g'M),

see [2]. Moreover it follows that y'M :n; ya/y'M C y'M :pr (m)/y’ M. Recall that
Yyq is a parameter for the one-dimensional quotient module M /y’' M. But now

y' My (m)/y'M ~ HY(M/y'M).

In order to continue with the proof let K denote the Cech complex with respect
to a system of parameters of (A, m). Then consider the complex C" := K ®4
K.(y'; M), where K.(y'; M) denotes the Koszul complex of M with respect to /.
Then use the spectral sequence -

By = (/M) = B = 19(C)
Because y' is an M-filter regular sequence H;(y'; M),j # 0, is an A-module of

finite length. That is, for j # 0 it follows that Eé’fj = 0 for all 4 # 0. So there is
a partial degeneration to the isomorphism H%(C") ~ HY (M /y'M). On the other
side there is a spectral sequence

By = Hy(ys Hy(M)) = B = H(C),

Taking into account that E; " is of finite length and E; ** = 0 for i < 0 and i > d
this provides the estimate of the statement. 1

In the case that H:(M), n =0,...,d — 1, is an A-module of finite length
the result in 3.18 specializes to the following bound

d—1
La(M/zM) - eo(a; M) <) (d; 1>LA(H3(M)).
n=0

Therefore 3.18 is a generalization of the ‘classical’ results about Buchsbaum and
generalized Cohen-Macaulay modules to an arbitrary situation.

In this context it is noteworthy to say that there is another bound for the
length L4(M/zM) of the following type

A(M/zM) < ZLA w(z; HY (M),
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This follows immediately by 3.16 because of M/zM ~ HO(M/xM). In the par-
ticular case that HX(M), n=0,...,d — 1, are of finite length it implies that

La(M/zM) <Y (d) La(H(M)) + La(Kar/2Kag).

To this end note that Hy(x; HL(M)) ~ T(H(z; Kyr)).

Moreover in the case of a Cohen-Macaulay module it yields that M/xM ~
T(Kn/xKyp). This implies also the equality of the multiplicities eg(z; M) =
eo(z; Kar).

Let us conclude with another application of 3.18.

Corollary 3.19. Let M denote a finitely generated A-module with dima M —
depthy M < 1. Let z,y, and y' be as above. Suppose that A is the quotient of
a Gorenstein ring B. Then

La(M/zM) — eo(x; M) < La(Ky ' /y' K ),
where d = dims M and K{' = Exty ™ (M, B).
Proof. The proof follows by 3.18 because of Hy_1(y'; H&1(M)) ~ Ho(y'; K ).

Recall that T(K¢ ') ~ HE~1 (M) by the Local Duality Theorem. |
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Problems and Results on Hilbert Functions
of Graded Algebras

Giuseppe Valla

Introduction

Since a projective variety V' = Z(I) C P™ is an intersection of hypersurfaces,
one of the most basic problems we can pose in relation to V is to describe the
hypersurfaces containing it. In particular, one would like to know the maximal
number of linearly independent hypersurfaces of each degree containing V, that
is to know the dimension of I, the vector space of homogeneous polynomials of
degree d vanishing on V for various d. Since one knows the dimension (") of the
space of all forms of degree d, knowing the dimension of I is equivalent to knowing
the Hilbert function of the homogeneous coordinate ring A = k[Xy, ..., X,]/I of
V', which is the vector space dimension of the degree d part of A.

In his famous paper “Uber die Theorie der algebraischen Formen” (see [36])
published a century ago, Hilbert proved that a graded module M over a polynomial
ring has a finite graded free resolution, and concluded from this fact that its Hilbert
function is of polynomial type. The Hilbert polynomial of a graded module is
thus the polynomial which agrees with the Hilbert function Hj;(s) for all large s.
Hilbert’s insight was that all the information encoded in the infinitely many values
of the Hilbert function can be read off from just finitely many of its values.

Hilbert’s original motivation for studying these numbers came from invariant
theory. Given the action of a group on the linear forms of a polynomial ring, he
wanted to understand how the dimension of the space of invariant forms of degree
d can vary with d.

The Hilbert function of the homogeneous coordinate ring of a projective
variety V, which classically was called the postulation of V| is a rich source of
discrete invariants of V' and its embedding. The dimension, the degree and the
arithmetic genus of V' can be immediately computed from the generating function
of the Hilbert function of V' or from its Hilbert polynomial.

As for the Hilbert polynomial, there are two important geometric contexts
in which it appears. The first is the Riemann-Roch theorem which plays an enor-
mously important role in Algebraic Geometry. This celebrated formula arises from
the computation of a suitable Hilbert polynomial. Secondly, the information con-
tained in the coefficients of the Hilbert polynomial is usually presented in Algebraic
Geometry by giving the Chern classes of the corresponding sheaf, a set of different
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integers, which can be deduced from the coefficients, and from which the coefli-
cients can also be deduced (see [16], pg. 44).

The influence of Hilbert’s paper on Commutative Algebra has been tremen-
dous. Both free resolutions and Hilbert functions have fascinated mathematicians
for a long time. In spite of that, many central problems still remain open. The
last few decades have witnessed more intense interest in these objects. I believe
this is due to two facts. One is the arrival of computers and their breathtaking
development. The new power in computation has prompted a renewed interest in
the problem of effective construction in Algebra. The ability to compute efficiently
with polynomial equations has made it possible to investigate complicated exam-
ples that would be impossible to do by hand and has given the right feeling to
tackle more difficult questions.

The second is the work of Stanley in connection with Algebraic Combina-
torics. In 1978 R. Stanley published the fundamental paper “Hilbert functions of
graded algebras” (see [64]) where he related the study of the Hilbert function of
standard graded algebras to several basic problems in Combinatorics. An intro-
duction to this aspect of Commutative Algebra is given in Stanley’s monograph
[66] which is well known as the “green book”.

From the point of view of the theory of Hilbert functions, one of the great-
est merits of Stanley’s work was to restate and explain, in the right setting, a
fundamental theorem of Macaulay which characterizes the Hilbert functions of
homogeneous k-algebras. This theorem is a great source of inspiration for many
researchers in the field.

All the above arguments suffice to justify the choice of “Hilbert functions” as
the right topic for a postgraduate course in Commutative Algebra. I would however
add some further motivation. One of the delightful things about this subject is that
one can begin studying it in an elementary way and, all of a sudden, one can front
extremely challenging and interesting problems. An example will help to clarify
this. The possible Hilbert functions of a homogeneous Cohen-Macaulay algebra
are easily characterized by using Macaulay’s theorem and a standard graded prime
avoidance theorem. The corresponding problem for a Cohen-Macaulay domain is
completely open and we do not even have a guess as to the possible structure of
the corresponding numerical functions.

Further, following what is written at the beginning of Eisenbud’s excellent
book [16], “It has seemed to me for a long time that Commutative Algebra is best
practiced with knowledge of the geometric ideas that played a great role in its
formation: in short, with a view toward Algebraic Geometry”. And what better
topic than Hilbert functions to give a concrete example of this way of thinking?

Since I had to choose among the many different scenes which compose the
picture, I was very much influenced in my choice by what I know better and what
I have worked on recently. This means that the chapters I present here are by no
means the most important in the theory of Hilbert functions. However I was also
guided by the possibility of inserting open problems and conjectures more than
results.
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Besides the basic definitions, the first two sections are devoted to the problem
of characterizing the possible numerical functions which are the Hilbert functions
of some graded algebras with special properties e.g. reduced, Cohen-Macaulay or
Gorenstein. Since the main problems arise when the algebras are integral domains,
we will show that, by the classical Bertini theorem, the h-vector of a Cohen-
Macaulay graded domain of dimension bigger than or equal to two, is the same
as that of the homogeneous coordinate ring of an arithmetically Cohen-Macaulay
projective curve in a suitable projective space. But, by a more recent result of
J. Harris on the generic hyperplane section of a projective curve, this h-vector is
also the h-vector of the homogeneous coordinate ring of a set of points in Uniform
Position. This gives a very interesting shift from a purely algebraic approach to a
more geometric context which has been very useful.

In the third section we introduce a list of conjectures recently made by Eisen-
bud, Green and Harris and which are closely related to the topics introduced in
the first two sections. These conjectures mainly deal with the problem of finding
precise bounds on the multiplicity of special Artinian graded algebras, but they
can also be read in a more geometric contest. A stronger form of some of these
conjectures is a guess which extends, in a very natural way, the main theorem
of Macaulay we have introduced above. Despite the fact that we have almost no
answer to these questions, they fit very well into the picture, because they are so
easy to formulate and so difficult to solve.

A short fourth section is devoted to a longstanding question on the possible
Hilbert function of generic graded algebras. A solution in the case of a polynomial
ring in two variables is given which uses a nice argument related to the Grobner
basis theory of ideals in the polynomial ring. A very natural problem in this theory
closes the section.

In the fifth section we discuss some problems related to the Hilbert function
of a scheme of fat points in projective space. We will try to explain how the
knowledge of the postulation of these zero-dimensional schemes can be used to
study the Waring problem for forms in a polynomial ring and the symplectic
packing problem for the four-dimensional sphere.

As for the first problem, following the approach used by T. Iarrobino in his
recent work, we will show how a deep theorem of Alexander and Hirschowitz on
the Hilbert function of the scheme of generic double fat points gives a complete
solution to the Waring problem for forms, which is the old problem of determining
the least integer G(j) such that the generic form of degree j in k[Xy,..., X,] is
the sum of G(j) powers of linear forms.

As for the second problem, we just present the relationship between an old
conjecture of Nagata on the postulation of a set of fat points in P2 and the problem
on the existence of a full symplectic packing of the four dimensional sphere, as
presented in the work of McDuff and Polterovich.

In the last section we come to the Hilbert function of a local Cohen-Macaulay
ring and present several results and conjectures on this difficult topic. Since the
associated graded ring of a local Cohen-Macaulay ring can be very bad (there do
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exist local complete intersection domains whose associated graded ring has depth
zero), very little is known on the possible Hilbert functions of this kind of ring,
even if this has strong connections with the well developed theory of singularities.

Starting from the classical results of S. Abhyankar, D. Northcott and J.Sally,
we discuss how Cohen-Macaulay local rings which are extremal with respect to
natural numerical constraints on some of their Hilbert coefficients, have good as-
sociated graded rings and special Hilbert functions. A recent result of Rossi and
Valla, which gives a solution to a longstanding conjecture made by Sally, is also
discussed at the end of the section.

I am personally grateful to the organizers of the school for giving me the
possibility to teach on my favourite topic. A number of people helped me a great
deal in the development of this manuscript. In particular, the section on Waring’s
problem is very much influenced by a series of talks Tony Geramita gave in Genova
last year (see [25]). The last section on the Hilbert function in the local case grew
out of a long time cooperation with M. E. Rossi.

Finally T apologize to those whose work I may have failed to cite properly.
My feelings are best described by the following sentence which I found in [32]:

“Certainly, the absence of a reference for any particular discussion should
be taken simply as an indication of my ignorance in this regard, rather than as a
claim of originality.”

1. Macaulay’s Theorem

Our standard assumption will be that k is a field of characteristic zero, R is
the polynomial ring k[X1,...,X,] and M a finitely generated graded R-module
such that M; = 0 if ¢ < 0. If M is such a graded R-module, the homogeneous
components M, of M are k-vector spaces of finite dimension.

Definition 1.1. Let M be a finitely generated graded R-module. The numerical
function

Hy :N—N
defined as
Hyy(t) = dimy (M)
for all t € N is the Hilbert function of M.
The power series

Pu(z) =Y Hu(t)?'
teN
1s called the Hilbert Series of M.

For example, for every ¢t > 0 we have

Hpg(t) = ( !

T-a

n+t—1

. ) and  Pp(z) =
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The most relevant property of the Hilbert series is the fact that it is additive on
short exact sequences of finitely generated R-modules. A classical result of Hilbert
says that the series Pjys(2) is rational and even more,

Theorem 1.2. (Hilbert-Serre) Let M be a finitely generated graded R-module. Then
there exists a polynomial f(z) € Z[z] such that

f(2)

1=z
It is easy to see that if M # 0 then the multiplicity of 1 as a root of f(z) is
less than or equal to n so that we can find a unique polynomial
hz)=ho+hiz+ -+ hsz® € Z[2]

such that h(1) # 0 and for some integer d, 0 < d <n

h(z)
1=z
The polynomial h(z) is called the h-polynomial of M and the vector (hg, h1, ..., hs)
the h-vector of M.

The integer d is the Krull dimension of M.
Now for every ¢ > 0, let

PM(Z) =

PM(Z) =

h(i)(l)
7!

€; =

and

X4\ (X H4id)---(X+1)
i) il
Then it is easy to see that the polynomial

d—1 .
, (X+d—i-1
=3 e ()
has rational coefficients and degree d — 1; further for every ¢t >> 0
pM(t) = HM(t)
The polynomial pp;(X) is called the Hilbert polynomial of M and its leading coef-
ficient is
h(1)
(d—1)1"
This implies that eq(M) := h(1) is a positive integer which is usually denoted
simply by e(M) and called the multiplicity of M.
If d = 0 we define e(M) = dimy(M).
Another relevant property of Hilbert series is the so called sensitivity to reg-
ular sequences. We recall that a sequence Fj ..., F,. of elements of the polyno-
mial ring R is a regular sequence on a finitely generated graded R-module M

if Fy,...,F,. have positive degrees and F; is not a zero-divisor on M modulo
(Fy,...,Fi_1)M fori=1,...,r
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If J is the ideal generated by the homogeneous polynomials Fy, ..., F;, of
degrees di,...,d,, one can prove that

P, z
Pule) < s

with equality holding if and only if the elements F, ..., F;. form a regular sequence
on M. This means that if L € Ry is regular on M, we have

Prryon(z) = Pu(2)(1 = 2).

So that the Hilbert function of the module M/LM is given by the so called first
difference function AHy; of Hpy; which is defined by the formula

1 ift=0
AHwn(t) = { Hy(t) — Ha(t—1) ift > 1.

Now we present a fundamental theorem, due to Macaulay (see [44]), describ-
ing exactly those numerical functions which occur as the Hilbert function H4(t)
of a standard homogeneous k-algebra A. Macaulay’s theorem says that for each ¢
there is an upper bound for H4(t + 1) in terms of H4(t), and this bound is sharp
in the sense that any numerical function satisfying it can be realized as the Hilbert
function of a suitable homogeneous k-algebra.

Let d be a positive integer. One can easily see that any integer a can be
written uniquely in the form

(50 () (4

k(d)>k(d—1)>--->k(j)>j>1

where

For example, if a = 49, d = 4, we get

0=(0)+(0)+ () 0)

Given the integers a and d, we let

oot (KOEN) (RO D) (060

Hence, for example,
8 6 4 2
<4> _
w0 = (5)+ (1) () + )

Theorem 1.3. (Macaulay) Let H : N — N be a numerical function. There exists
a standard homogeneous k-algebra A with Hilbert function Ha = H if and only if
H@O)=1and H(t+1) < H(t)<'> for every t > 1.
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A numerical function verifying the conditions of the above theorem is called
an admissible numerical function.

The following example demonstrates the effectiveness of Macaulay’s theorem.
Let us check that 1432 +422 4523 +7z% is not the Hilbert series of a homogeneous

k-algebra. We have
5 _ 4 n 2
- \3 2

- ) ()

In the same paper Macaulay produced an algorithm to construct, given an
admissible numerical function H, an homogeneous k-algebra having it as Hilbert
function.

Let n = H(1); we fix in the set of monomials of R = k[X1, -+, X,,] a total
order compatible with the semigroup structure of this set. Let us fix for example
the degree lexicographic order. This is the order given by

Xi“XéQ . in > X{?1X§2 . in

if and only if either > a; > > b; or > a; = > b; and for some integer j < n we
have a1 = by, - NS bj,aj+1 > bj+1.

Macaulay proved that if for every ¢t > 0 we delete the smallest H () monomials
of degree t, the remaining monomials generate an ideal I such that Hg,;(t) = H (t)
for every t > 0.

The difficult part of the proof is to show that, due to the upper bound
H(t+1) < H(t)<'>, if a monomial M is in I;, which means that it has not been
erased at level ¢, then M X, is not erased at level t+1 so that M X;,... MX, €1
as we need.

For example the ideal I in R = k[X1, Xo, X3] such that

142—22442°
(1—2)?
and constructed by this algorithm, is the ideal
I= (X} X1X3, X1X3X3).

Pryi(2) =

The ideal constructed following this method is called a lez-segment ideal, in
the sense that a k-basis of its homogeneous part of degree ¢ is an initial segment of
monomials in the given order. Since it is clearly uniquely determined by the given
admissible function, it is called the lex-segment ideal associated to the admissible
numerical function.

This ideal has some very interesting extremal properties. For example it has
the biggest Betti numbers among the perfect ideals with the same multiplicity and
codimension (see [70]).

Macaulay’s theorem is valid for any homogeneous k-algebra. It is not surpris-
ing that additional properties yield further constraints on the Hilbert function.
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We will discuss this feature for reduced, Cohen-Macaulay, Gorenstein and domain
properties. We start with the reduced case.

Theorem 1.4. Let H : N — N be a numerical function. There exists a reduced
homogeneous k-algebra A with Hilbert function Ha = H if and only if either
H=1{1,0,0...} or AH is admissible.

Proof. It A = R/I is reduced it is clear that either depth(A) > 0, or I =
(X1,...,Xy). In the second case all is clear; in the first one we can find a lin-
ear form L which is a regular element on A. Hence the difference of the Hilbert
function of A is the Hilbert function of the graded algebra A/LA. Conversely,
if we are given a function whose difference is admissible, we can construct the
lex-segment ideal J in the polynomial ring S such that Hg,; = AH. This is a
monomial ideal which can be deformed to a radical ideal by a general construction
due to Hartshorne (see [33] and [26]). This can be achieved in the following way.
If m=X{"X3?--- X% is a monomial, we introduce a new variable Xy and set

n a;—1
i(m) = T I (X; — »Xo)
j=1 p=0
If J = (ms,...,ms) is an ideal generated by monomials, the ideal

Z(J) = (l(m1)7 ) l(ms))

is a radical ideal in the polynomial ring R = k[Xo, ..., X,], such that X, is a
regular element on R/I(J) and

S/J ~ (R/1(J))/ Xo(R/1(J])).
Thus if I C R is such a radical deformation of J, we have

Ps;5(2) = Pr/1yyxo(r/1)(2) = Pryr(2)(1 = 2)
so that HS/J = AHR/I' Since Hs'/‘] =AH = AHR/[ we get H = HR/I' |

For example the numerical function H = {1,2,1,1,1,...} is admissible so
it is the Hilbert function of a suitable graded k-algebra, but it is not the Hilbert
function of a reduced k-algebra since its difference function {1,1,—1,0,0,...} is
not admissible.

We pass now to the Cohen-Macaulay case and obtain the following charac-
terization of the Hilbert Series of Cohen-Macaulay homogeneous algebras.

Theorem 1.5. Let hyg,...,hs be a finite sequence of positive integers. There exists
an integer d and a Cohen-Macaulay homogeneous k-algebra A of dimension d such
that
ho +hiz+ -+ hgz®
P =
A(2) (1—2)d

if and only if (ho, ..., hs) is admissible.
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Proof. If R/I is Cohen-Macaulay, by prime avoidance in the graded case, we can
find a maximal regular sequence of linear forms L1,..., Ly such that R/I and its
Artinian reduction (R/I)/(L1,...,Lq)(R/I) share the same h-polynomial. O

In particular the h-vector of a Cohen-Macaulay graded algebra has positive
coordinates.

2. The Perfect Codimension Two and Gorenstein Codimension
Three Case

The problem we have studied in the first section becomes much more difficult if
one tries to deal with Cohen-Macaulay graded domains. In this case very little is
known. Nevertheless, in the codimension two case, thanks to the structure theorem
of Hilbert and Burch, we have a complete solution of the problem.

Let us assume that A = R/I is a non degenerate (i.e. I; = (0)) codimension
two homogeneous k-algebra which is Cohen-Macaulay. Its Hilbert Series is given
by

14224 hoz?+ -+ he2®
PA(Z) - (1 2_ Z)n72 :
The admissibility of the h-polynomial simply means, in this particular case, that if
we let a be the initial degree of A, which is the least integer j such that h; < j+1,
then

hit1 —he <0
for every t > a — 1. This is a trivial consequence of the formula

n<F> = n for every k < n.

Now the Hilbert-Burch theorem says that given a minimal graded free reso-
lution of R/T

0— @ R(~b;) L @&t R(~a;) = R — R/T — 0

the ideal I can be generated by the maximal minors of the (s + 1) x s matrix M
associated to the map of free modules f. We can assume that

a1 <ag << agq1

and
by <bg <+ < bs.
If we let
Ui 1= b; — a; for every i and j
the matrix (u,;) is called the degree matriz associated to A. The reason for this is
that if M := (Gij)7 then deg(Gij) = Uj;5 SO that Gij =0if Uqgj S 0.
The matrix (u;;) has the following properties.
e For every 4 and j we have
Ui < U jy1

Ujj = Uit1 -
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This means that going up or going right in the degree matrix the integers do not
decrease. Hence the smallest integer is in the lower left hand corner. e For every
1,7, h, k we have

U5 + Upk = Uik + Upj-
e Foreveryi=1,...,s

Uit1 i =b; —a;y1 >0
The first two properties are immediate; the third one depends on the fact that if
for some i we have u; 1 ; < 0, then in the Hilbert-Burch matrix Gy, = 0 for h > i
and k < j. But this easily implies that the minor which is obtained by deleting
the first row has to be zero, contrary to the minimality of the resolution.
o If we further assume I to be prime, then for every ¢ =1,...,s — 1 we have

Uig2 ¢ = b; — Gy > 0.

This is clear and easily understood by looking at this picture in which we are
assuming s = 5 and ugs < 0.

e o o o o
e o o o o
e o o o o
0 O o e e
0 0O o o @
0 0 o o o

Here the minor obtained by deleting the first row, which among the other has
minimal degree, splits in two factors, a contradiction to the primality of I.
We clearly have

1+ Zf:l b — Zf;rll 2%
1=z ’

PA(Z) =

hence the h-polynomial of A is
s ) s+1 _a;
h(z) = L+ 2 =3 ‘

(1—2)?
Since the initial degree of A is a1, the condition
hiy1 —hy <0

for every t > a1 — 1 can better be written through the difference function

Ah(z) =h(z)(1 - z) = L+ 30 2 = P o

a (1-2)
This is a polynomial of degree by — 1 which we denote by Z?;_Ol p;z7. With this
notation, the admissibility condition of h(z) becomes

p; < 0for every j > ay.
Now the crucial remark is that we have

pj=1 +ﬁ{m|bm S]} - ﬁ{mlam < J}
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where #(X) denotes the cardinality of the set X. We claim that if ;12 ; > 0 for
every 1 =1,...,5s — 1 then

pj<0:>pj+1<0 (1)

unless j = by — 1.

This can be proved in the following way: let p; < 0 with j +1 < b,; if
j+1 < by, then clearly pj41 < p; <O0. If instead by < j+1, we can find an integer
t such that 1 <t <s—1 and

At4-2 <bt S]"‘l <bt+1.

This means that we have at least ¢t +2 a}s and exactly ¢ b}s which are less than
or equal to j + 1. Hence we get

pj+1:1+ﬁ{m|bm§j+1}_ﬁ{m|am§j+1}§1+t_(t+2):_17

as claimed.

We remark that the condition of the claim simply means that the h-polyno-
mial is of decreasing type or strictly decreasing i.e. after the first step down there
is no flat.

We have proved the following result (see [28]).

Theorem 2.1. Let A = R/I be a codimension two non-degenerate Cohen-Macaulay
homogeneous domain. Then the h-polynomial of A is of decreasing type.

For example there does not exist a graded Cohen-Macaulay domain A of
dimension d and Hilbert series
1+2z+ 22428
P =
A(2) (1—2)d
But the graded algebra
A = k[X1, Xo]/ (X7, X1 X2, X3)
has Hilbert series
Pa(z) =1+2z2+ 2%+ 2%
If we start with a polynomial
h(z) =14 224 hp2® 4+ - + hy2®
which is of decreasing type, one can ask whether we can construct a Cohen-
Macaulay graded domain of dimension d such that
h(z)
(1—-z)*
Peskine and Gruson proved in [29] that the answer is positive and that the projec-
tive coordinate ring of a smooth arithmetically Cohen-Macaulay curve in P3 does

the job. This result can be obtained also by using a sort of deformation which we
are going to explain in the following particular case (see [34]).

PA(Z) =
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Let
h(z) =1+ 22+ 32% 4 25,
This is of decreasing type but if we consider the lex-segment ideal with this Hilbert
series, we get the algebra

A= k[XlaXQ]/(XfaX12X27X1X22>X§)

This is an Artinian codimension two algebra whose degree matrix is

11 2
1 1 2
1 1 2
0 01

Since u42 = 0 we have no hope to deform the corresponding Hilbert Burch matrix
in order to get a domain. Better, we recall that

DY Zj;rll z%

hz) —
(Z) (1 . 2)2 ’
hence we get
s s+1
(14+224322+2%)(1—-2)2=1-323+2"+2° :1—&—22'1” —Zz‘“
i=1 =1

and we can let
a1:a2:a3:3, b1:47 b2:5.

The corresponding degree matrix is

1
1
1

N DN DN

We then consider the ideal J of k[X7, X5] which is generated by the maximal
minors of the matrix

X 0
X, X2
0 X2

It is clear that the algebra B = k[X1, X3]/J is an Artinian graded algebra such
that s s
1-32"+2"+2
P =
() (1—2)2
If we are able to deform this matrix in order to get a domain, we are done. Let us
consider the polynomial ring

=1+422+32%2+ 2%

R = k[XlaXQaX37X4]

and the ideal I generated by the maximal minors of the matrix obtained by de-
forming the above matrix in the following way. We replace the zeroes by forms in
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the new variables and of suitable degrees, accordingly to the degree matrix. For
example we can consider the matrix

X1 X3Xy
X, X2
X, X2

Then it is easy to see that I is the Kernel of the map

¢: R — klu,v]
given by ¢(X;) = u?v?, ¢(X2) = u?0°, ¢(X3) = u” and ¢(X,) = v”. Hence
A = R/I is a codimension two Cohen-Macaulay domain such that

14224322423
PA(Z): (172)2

We remark that in order to deform the matrix to get a prime ideal, we can need
many new variables so that the embedding dimension and the dimension can grow
arbitrarily. But the classical Bertini’s theorem tells us that we may find an example
with dim(A) = 2.

Theorem 2.2. (Bertini) Let A be a Cohen-Macaulay graded domain of dimension
greater or equal than two. Then the h-vector of A is the h-vector of a Cohen-
Macaulay graded domain of dimension two.

For a proof of this result see Corollary 3.3 in [65].
We collect the above remarks in the following theorem.

Theorem 2.3. Let h(z) = 1+ 2z + hoz? + -+ + he2® be a polynomial with integer
coefficients. There exists an integer d and a Cohen-Macaulay graded domain A of
dimension d such that

14224 ho+ -+ hg2t
- (1—2)

if and only if h(z) is admissible and of decreasing type.

PA(Z)

If one deletes the codimension two hypothesis very little is known on the
possible Hilbert function of graded Cohen-Macaulay domain. Several conjectures
have been made but very few results are known. For example Hibi made the
following conjecture in [35].

Recall that a finite sequence (hy, hi, ..., hs) € Z*T1 is called flawless if
i) h; < hg—; for every 0 <14 < [s/2]

i) ho < hy <--- < hygyg-
It is called unimodal if

ho<hi <---<hj>hjp1>--->hs

for some 7, 0 < j <s.
Hibi conjectured that the h-vector of a Cohen-Macaulay domain is flawless.
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This conjecture has been recently disproved by Niesi and Robbiano. They
constructed a Cohen-Macaulay graded domain A with

14324522 + 423 + 424 + 25
- (1-2)? '
This domain is the homogeneous coordinate ring of a reduced irreducible curve in
P* (see [50]).
The following conjecture has been stated by Stanley.

Py(2)

Conjecture 2.4. (Unimodal Conjecture) The h-vector of a graded algebra which is
a Cohen-Macaulay integral domain is unimodal.

The best information we know on the Hilbert function of a graded Cohen-
Macaulay domain comes from a very crucial device introduced by J.Harris in
his fundamental approach to Castelnuovo theory (see [31]). This result could be
considered as a further step after Bertini’s theorem. It tells us that the h-vector
of a Cohen-Macaulay graded domain of dimension at least two is also the h-vector
of the homogeneous coordinate ring of a set of points with a good uniformity
property.

More precisely, let C' be a reduced, irreducible and non-degenerate curve in
P™; the general hyperplane section of C' is a set " of e = deg(C) distinct points
in P*~ 1. The key idea of Harris is the uniform position principle: The points of
I' are indistinguishable from one another.

Theorem 2.5. Let I' be a set of points which are the general hyperplane section of
a reduced, irreducible projective curve. For every subset I of d’ points of T and
for everyn >0

Hr/(n) = min{d’, Hr(n)}.

A set of points which verifies the above condition is said to be in uniform
position. We will write UP for short.

If we start with a non-degenerate graded Cohen-Macaulay domain A of posi-
tive dimension d > 2 and codimension g, then, as we have seen before, the h-vector
of A is the same as that of a graded Cohen-Macaulay domain of dimension two and
codimension g. This can be seen as the homogeneous coordinate ring of a reduced,
irreducible projective curve. Hence the given h-vector is also the h-vector of a set
of points in uniform position in P9. As suggested by Harris, the question becomes

Problem 2.6. What could be the Hilbert function of a set of points in Uniform
Position?

We need good algebraic properties of a set of points in Uniform Position. The
first easy result is the following one (see [45]).

Proposition 2.7. Let I be the defining ideal of a set X of points in P™ in UP. If a
1s the initial degree of I, then I, has no fized components.
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We remark that if dim(I,) = 1 this means that the generator of this vector
space is an irreducible polynomial. We will use later this result to prove that the
h-vector of a set of points in UP in P? is of decreasing type.

One of the most important result on Harris problem is a byproduct of a very
elementary inequality one can prove for points in U P.

In the following, given a set X of points in the projective space P", we denote
by Hx (t) the Hilbert function of the homogeneous coordinate ring of X.

Theorem 2.8. Let X be a set of r distinct points in P™ in UP. Then we have
Hx(m+t) > min{r, Hx(m) + Hx(t) — 1}
for every m,t > 0.

We remark that this property is not so deep. For example does not skip
the h-vector (1,2, 3,2,2) which is not strictly decreasing. Namely, the correspond-
ing Hilbert function is (1, 3,6,8,10, 10,...) which does not contradicts the above
inequality.

In [8] further interesting conditions that have to be satisfied by points in UP
in P™ n > 3, are given.

As a trivial application of this result we get the following theorem (see The-
orem 2.1 in [65]).

Theorem 2.9. (Stanley inequalities) Let A be a graded Cohen-Macaulay domain of
dimension d > 2. Let (1,hy,...,hs) be the h-vector of A and m > 0, n > 1 with
m-+n <s. Then

hi+he+ -+ hp < himgr + b2 + - + g

Proof. The h-vector of A is the same as the h-vector of a set X of points in U P.
Hence

1+ hiz+---+ hg2®
Px(2) = 1—=2

so that Hx(p) = Z?:o h; for every p > 0 and the degree of X is 1+ hy +--- + hs.
By the above theorem we get

Hx(m+mn)>min{l 4 hy +--- + hy, Hx(m) + Hx(n) — 1}

hence

T+hi+-+hmgn > min{l+hy +---+hg, 1+ hy 4+ +hp+1+hy 4+ - +h, — 1}
Since m + n < s, this implies

h1+...+hm+n>h1+...+hm+h1+...+hn

SO
hm+1+"'—|—hm+n2h1+"‘+hn
as desired. O
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We now wish to examine what can be said about the Hilbert function of a
Gorenstein graded algebra. Since the h-vector does not change by passing to an
Artinian reduction, we may assume that A is Artinian and s is the socle degree of
A, which is the biggest integer ¢ such that A; # 0. With these notations we have
the following theorem (see [13]).

Theorem 2.10. (Hilbert Function by Liaison) Let A be an Artinian Gorenstein
algebra with socle degree s and let I be an homogeneous ideal in A. If we let
J =0:1, we have for every t such that 0 <t <'s,

Ha(t)=Ha(s—t) = Hy(t) + Hy(s — t).
In particular
Ha(t) =Hayr(t) + Hayy(s — ).
Proof. Since A is Gorenstein we have
0: A, =A,.

Hence if 7 and j are nonnegative integers with i + j < s and F' € A; is such that
FA; =0, weget FA;_1A; = 0so that FA;_; C A,. This implies F'A;_; = 0 and
going on in this way we get F' = 0. This means that the k-bilinear map induced
by multiplication

Ai X Aj — AiJrj

is nonsingular.
Now let I be an homogeneous ideal of A and let J :=0: I. It is easy to see
that we have

(0:1p)s—t = Js¢
and this implies that Js_; is the kernel of the canonical map
Asft — Hom(It, AS)
This means that
Hy(s—t) < Hi(t)+ Hy(s—1t).
On the other hand, by the nonsingularity of the pairing
As—t X At - Asa
we have an embedding
Jsft — Hom(At/It, As)
which gives
HJ(S — t) S HA/I(t).
Hence
HA(S—t) < H](t) +HJ(8—t) < HA(t) = HA(S— (S—t)) < Hu(s—1t).

Thus we have equality above and the conclusion follows. O
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A trivial consequence of this result is that
the h-vector of a Gorenstein algebra is symmetric.

It is easy to see that the converse does not hold. Let us consider the graded
algebra A = k[X1, X2]/(X?, X1 X2, X3). Then the h vector of A is (1,2,1) which
is symmetric, but A is not Gorenstein since the socle is not a one-dimensional
vector space.

However, somewhat surprisingly, it is sufficient to assume that A is a Cohen-
Macaulay integral domain (see [64]).

This is a consequence of a more general result which we want now to describe.

Definition 2.11. Given a set X of s points in P™ we say that X is a Cayley-
Bacharach scheme (CB for short), if for every subset Y of s — 1 points of X we
have for every t > 0,

Hy (t) = min{s — 1, Hx (¢)}.

With this definition, one can prove easily, by mean of the main theorem in
[27], the following result.

Theorem 2.12. Let X be a set of s points in P™. If X is a CB scheme, then the
h-vector of X is symmetric if and only if the homogeneous coordinate ring of X
is Gorenstein.

Since it is clear that UP implies C'B, we have as a corollary that if the h-
vector of a graded Cohen-Macaulay domain A is symmetric, then A is Gorenstein.

We want now to prove that the h-vector of a set of points in UP in P? is
strictly decreasing (see [45]). This generalize the result we have proved on the
h-vector of a codimension two graded Cohen-Macaulay domain.

Theorem 2.13. The h-vector of the homogeneous coordinate ring of a set of points
in UP in P? is of decreasing type.

Proof. Let X be a set of points in UP in P? and I the defining ideal of X in
R = Kk[Xo, X1, X5]. Since we have seen that the initial part of I has no fixed
components, we may assume that I = (Fy,..., F,) where deg(F}) < deg(F3) <
-+ < deg(F,) and F1, F, is a regular sequence in R. Let J = (F, F»), a = deg(F})
and b = deg(F»). We may choose a linear form L which is a regular element both
on R/I and R/J. As usual we may assume L = Xj. If we let S := R/XoR we have

(1= 2)Pr;s(2) = Pry1)/x0(r)0)(2) = Psys(2),
hence
(1—2)Pryy(2) = (1= 2)Pr(2)(1 — 2*)(1 — 2°) = Ps) (1 — 2*)(1 - 2°).

This proves that the residue classes of F; and F» in R/XoR form a regular se-
quence.

We are left to the case where I is an ideal in S = k[X7, X3] which contains
a regular sequence F, G of forms of degree a and b and we need to prove that the
Hilbert function of S/I is decreasing for every t > b — 1.
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This is now a consequence of a forthcoming result on the tail of the Hilbert
function of suitable zero-dimensional ideals. O

This proof does not use the structure theorem of Hilbert-Burch, hence, it
seems to be the right way towards an extension of the above result for points in
UP in P™ (n > 3). Thus one is led to study the following problem which will be
discussed also later.

Problem 2.14. What can be said about the Hilbert function of an ideal in a poly-

nomial ring R if we know the degrees of a mazximal regular sequence contained in
1?2

The following theorem gives some control on the tail of the Hilbert function
of R/I in terms of the degrees of a regular sequence inside the ideal I. However it
is not enough even to guess the possible shape of the Hilbert function of a set of
points in UP in P3.

Theorem 2.15. Let I be a zero-dimensional ideal of R such that I contains a reqular
sequence Fiy, ..., F, of forms of degrees dy < dy < --- <d,. Setd:=> " di—n
and s := socdeg(R/I).

a) For everyt > d—d, + 1,

Hp)i(t) > Hp/r(t+1)
b) Ford—d,—1 +1<t<s,
Hp(t) > Hpyr(t+1).
c) If (Fy,...,F,_2) is a prime ideal, then ford —d,—1 +1 <t <s,
Hpyr(t) > Hpyr(t+1) +n— 1.

A proof of this result can be found in [68].

Coming back to the Gorenstein case, it is natural to ask for other restric-
tions on the Hilbert function of a Gorenstein algebra, besides the symmetry of
the h-vector. Since a rational function Q(z) is the Hilbert series of some graded
Gorenstein algebra of dimension d if and only if (1 — 2)?Q(z) is the Hilbert series
of some O-dimensional graded Gorenstein algebra, it suffices to consider the case
when A is Artinian.

Problem 2.16. What sequences {1,h1,ha, ..., hs} with hs # 0 satisfies h; = H (i)
for some Artinian graded Gorenstein algebra A?

We call such a sequence a Gorenstein sequence.

The conditions that the sequence be admissible and symmetric (i.e. h; =
hs—;) are by no means sufficient. For example the sequence (1,3,6,7,9,7,6,3,1)
is admissible and symmetric but is not a Gorenstein sequence as we will see in the
next theorem.

By using the structure theorem, due to Buchsbaum and Eisenbud, of codi-
mension three Gorenstein ideals, one can prove, as we did in the perfect codimen-
sion two case, the following theorem (see [64]).
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Theorem 2.17. Let {1,3, ha, ..., hs} be a sequence of nonnegative integers. Then it
is a Gorenstein sequence if and only if it is symmetric and the sequence {1,2, hg —

hi,,... hisj2) — hisj2—1} s admissible.

By using more or less the same ideas as in the perfect codimension two case,
one can prove the following result (see [14]).

Theorem 2.18. Let h(z) = 1+ 3z + ho2? + -+ + hsz® be a polynomial with inte-
ger coefficients. There exists an integer d and a Gorenstein graded domain A of
dimension d such that

1432+ ho+ -+ hg2t

a (1—2)

if and only if h(z) is symmetric and {1,2,hy —h1,, ..., his/2) — hjs/21-1} is admis-
sible and of decreasing type.

PA(Z)

For example the vector (1,3,4,5,5,4,3,1) is symmetric and s = 7. The vec-
tor (1,2,1,1) is admissible but is not of decreasing type. Hence the given vector
(1,3,4,5,5,4,3,1) is the h-vector of a Gorenstein algebra, but not of a Gorenstein
domain.

Instead, the vector (1,3,6,10,13,14,14,13,10,6,3,1) is symmetric and s =
11. Since the vector (1,2, 3,4, 3, 1) is admissible of decreasing type, the given vector
is the h-vector of a Gorenstein domain.

Coming back to the original question about Gorenstein sequences, Stan-
ley and Tarrobino independently made the conjecture that {1, hq,ho,..., hs} is
a Gorenstein sequence if and only if it is symmetric and moreover the sequence
{1,h1 =1, ha = h1,, ..., hissa) — hs/2—1} is admissible. Unfortunately this conjec-
ture, or even the weaker conjecture that the h-vector is unimodal, is false.

Stanley constructed in [64] an Artinian Gorenstein graded algebra whose h-
vector is (1,13,12,13,1). Bernstein and larrobino showed examples of Artinian
Gorenstein algebras with a non unimodal h-vector and embedding dimension 5
(see [7]).

Recently Boij and Laksov showed that the examples of Stanley and Bernstein-
Tarrobino are extreme cases in large classes of counterexamples (see [9]). Namely
they have minimal socle degree and embedding dimension, respectively, in this
class.

We close with the following question:

Problem 2.19. If (1,4, ha,...,4,1) is a Gorenstein sequence, is it unimodal?

3. The EGH Conjecture

Recently Eisenbud, Green and Harris, in the framework of the so called Higher
Castelnuovo Theory, set some very nice conjectures which can be related to a
number of questions we have introduced in the first two sections.
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Following the idea that “curves of rather large genus for their degree are quite
special” they came up with the following conjecture on the Hilbert function of a
set of points in the projective space (see [17]).

Conjecture 3.1. If X C P"™ is a nondegenerate collection of s points lying on m
independent quadrics whose intersection Y is zero-dimensional, then
s<29424n—a-1

where () + b is the 2-binomial expansion of (";1) —m.

In the above setting, it is clear that deg(X) < deg(Y'). By passing to the
homogeneous coordinate ring of Y modulo a general linear form, i.e. by passing to
an Artinian reduction, the above conjecture becomes the following :

Conjecture 3.2. (C,) Let A = k[Xq,...,X,]/I where I is a zero-dimensional ideal
generated by quadrics. If (g) + b is the 2-binomial expansion of H4(2), then

e(A) = dimp(A) <2 +2" +n—a— 1.

We will prove later that this bound is sharp, if indeed it holds.

One can relate the above conjecture to the classical Cayley-Bacharach theory.
Recall that a special case of a modern version of the classical Cayley-Bacharach
theorem is the following result which is also an immediate consequence of the
result on the tail of the Hilbert Function we have seen before (see Theorem 2.15).

Theorem 3.3. Let X be a zero-dimensional scheme in P™ which is the complete
intersection of n hypersurfaces of degree du, ..., dp. Let d:=3% " di—n—1, and
Y a subscheme of X with deg(Y) = deg(X)—1. Then every hypersurface of degree
d containing Y must contain X.

Ifdy=---=d, =2,thend=n—1 and
deg(X)—1=2"—1>2" —2=2" —gn~(n=1),
Hence one can ask more generally the following question.
Conjecture 3.4. (CB) Let X be a zero-dimensional scheme in P™ which is a com-
plete intersection of quadrics. Let Y be a subscheme of X with deg(Y) > deg(X) —

2n—m =21 — 2n=™  Then every hypersurface of degree m containing Y must con-
tain X.

Let us consider in S := k[Xj, ..., X,] the defining ideals § C « of X and Y
respectively. The conjecture can be read as follows: if e(S/a) > 2™ — 2™ then

Hg/o(m) = Hs/g(m).
As before, we may assume that Xy is S/a and S/8 regular. If we let R :=
S/ XS, I =a+ (Xo)/(Xo) and J = 8+ (Xo)/(Xo), we have
Ps/o(2) = Pry1(2)/(1 - 2)
and
Ps(2) = Pryy(2)/(1 = 2).
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From this it follows that
m m
Hgjo(m) =Y Hpy(j)  and  Hgg(m) =Y Hp/y(j)-
j=0 3=0

Further e(S/a) = e(R/I) and J C I is a zero-dimensional ideal generated by a
regular sequence of quadrics. To prove the above conjecture we need to prove that
if e(S/a) = e(R/I) > 2" —=2""™ then Hp,1(j) = Hp/;(j) for every j =0,...,m.
But if Hg/7(j) < Hgys(j) for some j, then I; O J; and we can find an element
Fel;, F¢J Hence I D (J,F) D J and we have

on _on=m — o(R/I) < e(R/(J, F)).

Thus the above conjecture is proved if one can prove the following zero-dimensional
version.

Conjecture 3.5. (A,;) Let A= R/I where I = J+ (F) with J a zero-dimensional
ideal generated by a regular sequence of quadrics and F ¢ J an element of degree
j. Then

e(A) <2m —2nJ,

This conjecture is related to C, in the following way. The first non trivial
case in C, is when [ is an almost complete intersection, i.e. when I is generated
by n + 1 quadrics. This means that

Ha(2) = (”;1> —(n+1)= <”;1)+(n—2).

Since
2l pon2 4 p—(n—-1)—-1=3.2"2=2" 2" 2%

it is clear that the first non trivial case of C,, namely the case H4(2) = (”;1) +
(n — 2), is equivalent to A;;.

This is the conjecture stated several years ago by Rossi and Valla in [55] and
proved under the very restrictive assumption n < 6. Despite the fact that much
time has gone by and many variations of the theme have been introduced in [17],
this is the unique positive result we know on these conjectures. We will prove this
theorem later.

A different way to think about the classical Cayley-Bacharach theorem is the
following. Here, for a zero-dimensional scheme X in P”, the number

wx (t) := deg(X) — Hx(t)

is called the superabundance of the linear system of the hypersurfaces of degree ¢
passing through X. It is well known that

wX(t) = hlzx(t)

where 7 is the ideal sheaf of X. With this notation, the classical Cayley-Bacharach
theorem takes the following form.
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Theorem 3.6. Let X be a zero dimensional scheme in P™ which is the complete
intersection of n hypersurfaces of degree di,...,d,. Let d =%  d; —n, and Y
a subscheme of X with wy(d—1) >0. ThenY = X.

Accordingly, we have the following new version of the above conjecture.

Conjecture 3.7. (GCB,,) Let X be a zero dimensional scheme in P™ which is a
complete intersection of quadrics and let Y be a subscheme of X with wy (m) > 0.
Then

deg(Y) > 2m+1L,

Note that this conjecture is independent of the embedding dimension.

By using the same notation as before, the condition wy (m) > 0 clearly implies
that the socle degree of R/I is bigger or equal than m + 1. Hence we may state
the following conjecture which implies GCB,,, for every m.

Conjecture 3.8. (A) Let A = R/I be an Artinian graded algebra where I is an
ideal containing a zero-dimensional regular sequence of quadrics. If s = socdeg(A)
then

e(A) > 2°.

It is not so difficult to see that in order to prove the above conjecture, we
may assume that A is Gorenstein. Hence we state yet another conjecture.

Conjecture 3.9. (G) Let A= R/I be an Artinian graded Gorenstein algebra where
I is an ideal containing a zero-dimensional reqular sequence of quadrics. If s =
socdeg(A) then

e(A) > 2°.

It turns out that 4, G and A,; are equivalent and we have the promised
theorem.

Theorem 3.10. Conjecture G holds if the socle degree is less than or equal to 4.

Proof. Let R =k[X1,...,X,] and Hs(1) =r <n. Then dim(I;) =n —r and we
can find in I linear forms L,..., L,_, which are linearly independent. Since [
contains a zero-dimensional regular sequence of quadrics, it is easy to see that we
can find in I elements Fy,_,11,..., Fy such that {L1,..., Ly, Fery1,..., Fr}is
aregular sequence in R. If welet K := (Ly,...,Ly—p, Fu—yy1,...,Fy), then K C T
and R/K is a Gorenstein Artinian algebra with e(R/K) = 2" and socdeg(R/K) =
r > s.

Since H4(1) = r, the condition r > s gives the conclusion for s = 1,2,3. Let
s =4 so that r = Ha(1) = Ha(3). If r = 4 then by theorem 2.10 we get

HR/K(4) = HR/I(4) + HR/K:I(O)

so that K : [ = R and K = I. This gives e(R/I) = e(R/K) = 2* as wanted. Let
r > 5; since 32> = 4 and by Macaulay theorem r = H4(3) < H4(2)<?>, we must
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have H,(2) > 4 so that
e(A)>1+5+4+5+1=16=2"
and the conclusion follows. O

Let us see how the above theorem implies conjecture A, for n < 6.
We have an exact sequence of Artinian rings

0—-R/(J:F)—R/J—R/IT—0
from which we deduce
e(R/I)=e(R/J)—e(R/(J:F))=2"—e(R/(J: F)).
The conclusion follows if we can prove that
e(R/(J: F)) >2"2
Hence we must prove that
socdeg(R/(J : F)) =n —2.

Now socdeg(R/J) =n, hence R,+1 C J and F € J: R,_1 so that R,,_1 C J: F.
On the other hand, if R,,_» € J : F, then FR,_3 C J : Ry and F € R», a
contradiction.
Finally we state a last conjecture which is stronger than C,,. This conjecture is
very interesting since it can be seen as a natural extension of Macaulay’s theorem.
Recall that if d is a positive integer, any integer a can be written uniquely in

the form k(d k(d—1 k(4
() () e ()

k(d) >k(d—1)>--->k(j)>j>1.

where

In the following we let

- (1) ()0 ()

Conjecture 3.11. (M) Let A = R/I where I is an homogeneous ideal of R which
contains a zero-dimensional regular sequence of quadrics. Then for everyt > 1 we
have

Ha(t+1) < Ha(t) -

Let us prove that this conjecture implies conjecture C,,.

Let A as in conjecture C,,. Then I contains a zero-dimensional regular se-
quence of quadrics, hence if Hy(2) = (g) +b,a >0 >0, then Hy(0) = 1,
Ha(l)=n, Hao(2) = (‘21) +b, Ha(3) < (‘;) + (g), and so on. Summing up we get

nmaminzsens (3o QO] [0)+ () ()] -

=14n+2"—a—1+20—-1=24+2"+n—aq—1.
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We finish this section by proving that the bound in the above statement is
sharp, if true.
Let h be an integer 0 < h < (72’) and t := (g) — h. We claim that the ideal

I=(X1,... X2, X;X;)

where X; X; runs among the biggest ¢ square free monomials in the lexicographic
order, has Hilbert function

(1, n, h, h(g), h(g)(3), “ee )
In order to prove the claim, we write h = (‘2’) + b with a > b > 0. Then

=) 6)

X1X27 s 7X1Xn7X2X3a N 7X2Xn7 R anaanaer s 7Xn7aXn

are the biggest square free monomials of degree 2 and their number is (g) — (;)

We have to delete the b smallest monomials in the above set and these are the
monomials

Now

Xn—aXn—b+17 o aXn—aXn
which, accordingly, are not in I. Hence the square free monomials of degree ¢
in the variables X,,_,_1,..., X, are not in I; and their number is (‘tl) Also the
monomials of degree ¢ of the kind X,,_,M where M runs among the monomials
of degree ¢t — 1 in the variables X,,_p_1,..., X, are not in I and their number is
( b ) But these are the only monomials of degree ¢ which are not in I, and we

t—1
have proved
a b
Hpyr(t) = (t) + (t B 1) = Hp/1(t = 1)@).
It is clear that one can state similar conjectures for ideals generated by forms

of the same degree not necessarily equal to two. For example in [55] we stated the
following conjecture.

Conjecture 3.12. Let A = R/I where I is an homogeneous codimension h ideal
generated by forms of degree t. Then

e(A) <th=2(t2 —t +1).

For example if h = 2 we can prove the conjecture quite easily. Namely it is
easy to see that we may assume R = k[X,Y] and I = (F, F5, F) is an almost
complete intersection ideal generated by forms of degree ¢ such that £}, F5 form a
regular sequence in R. Let J = (F, F»); then R/.J is an Artinian Gorenstein ring
to which we may apply theorem 2.10 and get

e(R/J:F)>t—1.
From this we get
e(R/I)=t*—e(R/J:F)<t* —t+1.
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4. Hilbert Function of Generic Algebras

In this section we introduce and discuss a longstanding conjecture on the Hilbert
function of generic algebras. As before we let R = k[X3,...,X,] and A = R/I
an homogeneous graded algebra. If I’ € R; is a generic form, it is very natural to
guess that for every ¢ > 0, the multiplication map

F
At — At+j

is of maximal rank, which means that it is injective if dimy(A¢) < dimg(Aigj), it
is surjective if dimy,(A¢) > dimy(Ass;). Since for every F' € R; we have an exact
sequence

0—(0:F)(—j) — A(—j) & A— AJFA — 0,
we get
Hpjpa(t) = Ha(t) — Ha(t — j) + Ho.r(t — j)-
Hence we guess the following equality in the case F' is generic:
Ha pa(t) = max{0, Ha(t) — Ha(t — j)}.

By using the Hilbert series, this can be rewritten as

Pajra(z) =|(1—27)Pa(z)|,
where for a power series Y a;2" with integers coefficients we let |3 a;2*| = Y b; 2"
with b; = a; if ag,...,a; > 0, and b; = 0 if a; < 0 for some j <.
More generally we can fix positive integers r and dy,...,d, and state the

following conjecture.

Conjecture 4.1. Let Fy,...  F,. be generic forms in R of degrees dy,...,d,.. If I =
(Fy,..., F.), then

(1—
Pr/1(2) I Hl — ZZ
We let
IT(1 — 24
’ (1-2)
and call it the expected Hilbert series of the generic algebra of type (r;dy,...,d;).
By the above remark the conjecture holds if and only if for every ¢ =1,...,r

the multiplication map

[A)(Fy,... Fis)le B [A/(FL . Fi1)]ega,

is of maximal rank. Further it is easy to prove that if we let P;(z) be the Hilbert
series of a generic graded algebra of type (r;dy,...,d,), given an ideal I generated
by elements Fi, ..., F, of degrees d,...,d,, one has

lex
Pr1(z) > Py(2) and Pr/1(z) > Pe(2)

where the first inequality is coefficientwise, the second is lexicographic. Both the
conjecture and the inequalities above can be found in [24].
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This has an important consequence: if we can find an example of a graded
algebra R/I such that Pgr/;(z) = P.(z), then we have

Pu(z) = Prji(2) = Py(2) = Pul2).

This clearly implies that P,(z) = P.(z) and the conjecture holds. This means that
in order to prove the conjecture, it is enough to produce one example with the
expected Hilbert series.

The conjecture is true if » < n since in this case a set of generic forms is a
regular sequence. It was proved to be true for »r = n + 1 by Stanley by using the
so called “Hard Lefschetz theorem”, for n = 2 by Fréberg, for n = 3 by Anick (see
[5]). Finally one can prove the conjecture for the first terms in the Hilbert series.
The first non trivial statement comes for degree d + 1 where d = min{d;} and was
proved by Hochster and Laksov (see [38]).

We give here a proof of the conjecture in the case n = 2, by using a device
related to the Grobner basis Theory of ideals in the polynomial ring.

Since the conjecture is true if r < n, we may argue by induction on r and
assume that a graded algebra B := R/(F},...,F,_1) is given with the expected
Hilbert series. We must show that we can find a form F' of degree d := d, in R
such that

F
By — Bt+d

is of maximal rank. We fix in the set of monomials of R the degree reverse lexico-
graphic order. This is the order given by

XleSZ . in > XinXém . in

if and only if either > a; > > b; or > a; = > b; and for some integer j < n we
have ay, = by, an—1 =bp—1, -+ ,a; = bj,a;-1 < bj_1. Now for a given polynomial
Fin R we let M(F) be the biggest among the monomials of F. For a given ideal I
we let M (I) be the monomial ideal generated by M(F), F in I. A Grébner basis
of the ideal I with respect to the given order, is a set of polynomials Fy, ..., F,. € T
such that

M) = (M(Fy),...,M(F,)).

A classical result of Macaulay says that the monomials which are not in M (1)
form a k-vector basis for the k-vector space R/I.

Now the crucial information comes from an old result by A. Galligo (see [6]).
Here Gl(n, k) is the general linear group acting on R and its Borel subgroup is the
subgroup

B:={g € Gl(n,k)|gi; = 0Vj < i}.
Theorem 4.2. (Galligo) Let I be an homogeneous ideal of R; there exists a Zariski

open set U C Gl(n, k), such that the monomial ideal M (gI) is invariant under the
action of B.
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Now it is easy to see that if J is a monomial ideal in R then J is Borel-fized if
and only if the condition X' -+ XP» € J implies X1* - - ~ij+q c XPTTL X €
J for every j, 7 and ¢ such that 1 < j<i<nand 0 <q<p;.

If we restrict ourselves to the case when n = 2, it is clear that the ideal J is
Borel-fixed if and only if J as a k-vector space is generated in each degree by an
initial segment in the given order.

We come now to the proof of the conjecture in k[X7, Xo].

Theorem 4.3. Let Fy,..., F. be generic forms in two variables of degrees dy,. . ., d,.
If I =(Fy,..., F), then

l—z
Pryi(2) ‘Hl—z

Proof. Let J = (Fy,...,F._1) and B = R/J. Since the generators are generic we
have that M(J) is Borel-fixed. Hence, for every degree t, if Hg,;(t) = 7, we have

M(I), k—base of B
t t—1 rvyvt—r r—1yt—r+1 t
XEXUX, L XTXLET XX X

We let d := d, F = F, = X§. We have two possibilities. Either r :=
dim(B) < dim(Biyq) or r := dim(B;) > dim(Biyq). In the first case, by
Macaulay’s theorem, we must have r = ¢ + 1, so that I; = 0 and a base of B
is

(X1, X1 Xoa, ..., Xa X571, X4
By multiplying these monomials with X¢, we get the smallest ¢ + 1 monomials of
degree t + d. Since dim(Byiyq) > t + 1, these monomials are linearly independent
being part of a k-vector base of By 4.
In the second case, a k-vector base of B; is

(XX X

By multiplying these monomials with X¢, we get the smallest 7 monomials of
degree t + d. Since dim(Bi+q) < 7, the conclusion follows. O

Unfortunately, if n > 3, a Borel fixed monomial ideal is no longer an initial
segment. Here the main problem is:

Problem 4.4. If we fix the reverse lexicographic order in the set of monomials of
a polynomial ring R, what is the shape of the Grobner basis of an ideal generated
by generic forms?

5. Fat Points: Waring’s Problem and Symplectic Packing

A famous theorem of Lagrange states that every natural number is the sum of at
most four squares. For example

7=224+17+1*+17
and one cannot do better. In 1770 Waring stated, without a proof, the following:
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e Every natural number is the sum of (at most) 9 positive cubes;

e Every natural number is the sum of (at most) 19 biquadratics.

Much later Hilbert proved that for every j > 2, there exists an integer g(j)
such that every natural number is the sum of (at most) g(j) j*"-powers of positive
integers.

So Waring was asserting that g(3) =9, g(4) = 19, while Lagrange’s theorem
says that g(2) = 4.

The problem of determining g(j) seems close to a final resolution.

However the problem above is only one of the Waring problems, the so called
Little Waring Problem.

The Big Waring Problem comes from the following remark. We know that
g(3) = 9 but only the integers 23 and 239 actually require 9 cubes and only 15
integers (< 8042) actually require 8 cubes. So one is naturally lead to the following

Definition 5.1. Let G(j) be the least integer such that all sufficiently large integers
are the sum of (at most) G(j) j*" powers of positive integers.

It is clear that G(j) < g(j), and since we know that every number congruent
to 7 mod(8) is a sum of 4 squares and not 3, we have G(2) = g(2) = 4. We also
know that

G(3) <7,G(4) =16, G(6) <27, G(7) < 36.

The Big Waring Problem is the problem of determining G(j) for every j.

We can ask the analogous questions in the context of forms in the polynomial
ring C[Xy, ..., X,], C the complex numbers. In this way we enter into the classical
theory of canonical forms of polynomials.

The problem of canonical forms, stated rather loosely, is the following:

Problem 5.2. How much can one form be “simplified” by linear changes of vari-
ables (that is under the action of the general linear group in n variables)?

The history of this problem is interesting and it might be useful to begin
with a specific example. Let us consider a generic quadratic form in C[ X1, X5, X3].
We have to deal with 6 coefficients; hence, if we are allowed two linear forms each
containing 3 coefficients, we have all together 6 coefficients. Thus, if we rely merely
on a count of constants, we are led to the erroneous conclusion that a generic
quadratic form in three variables can be written as the sum of two squares of
linear forms. But this assertion is false, since the sum of two squares is a reducible
polynomial.

More delicate is the case of a generic quartic in three variables. By a similar
counting constants method one can guess that it could be written as the sum of
five fourth powers of linear forms. Clebsch was the first to prove in 1860 that this
is false. We will see later an elementary explanation for this.

We can state now the corresponding Waring problems in the polynomial case.

Problem 5.3. (LWP) For every j > 2, determine the least integer g(j) such that
every form of degree j in C[Xo,...,Xn] can be written as the sum of (at most)
g(j) powers of linear forms.
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Problem 5.4. (BWP) For every j > 2, determine the least integer G(j) such that
the generic form of degree j in R := C[Xo,...,X,] can be written as the sum of
G(j) powers of linear forms.

Let us start with the classical case where j = 2. To each quadratic form in
n+ 1 variables we may associate its symmetric matrix M. Since this matrix can be
diagonalized, the quadratic form is the sum of rank(M) squares of linear forms.
This proves that

G(2) <n+1.
But the matrices of rank < n + 1 form a closed subspace, so that
G2)=n+1.

Beside this, very little was known on the BWP and in [15] Ehrenborg and
Rota write:

“It is our purpose to give in this paper a complete, self-contained, updated
introduction to the theory of canonical forms of polynomials, as it has been known
to this day, to the best of our knowledge ... We believe to yield the complete
solution of the analog of Waring’s problem for forms and we hope to present the
complete solution elsewhere. In the present work, we have limited our exposition
to all cases thus far considered in the literature, supplemented by a few new cases
that caught our fancy.”

But recently, as observed in [42], R. Lazarsfeld noted that the solution of the
BWP is a consequence of a result of Alexander and Hirschowitz on the Hilbert
function of fat points in the projective space (see [2], [3], [4], [37]). Here we present
a more algebraic approach to the problem as described in the paper by larrobino.
We will prove that all the examples worked out in [15] can be obtained by using
a very elementary result of Catalisano, Trung and Valla (see [11]), thus avoiding
the difficult papers of Alexander and Hirschowitz (more than hundred pages of
journal articles!).

We start with a very classical result by A. Terracini (see [67]) which states
that in the case the basic field is C,

e The integer G(j) is the smallest integer s for which there are linear forms
Li,...,Ls in Ry such that

R;= (LY., LY,
It is clear that, above, we can restrict ourselves to consider linear forms which are
generic.

We now denote by S the polynomial ring S = k[Yp, ..., Y;] upon which the
elements of the polynomial ring R act as higher order partial differential operators.
This action is sometimes called the “apolarity” action of R on S. We can describe
this action by saying

0 0 ifi#j
X“’Yj_Yj){ 1 ifi=j.
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The pairing

Rj X Sj — k
is a perfect pairing for each j > 0. This is due to the fact that the matrix of the
corresponding bilinear form is non singular.

Given an ideal I in R we can consider for each ¢ > 0 the vector space (I;)*
in S which is the orthogonal of I;. We know that

For example if I = (X1,..., X,,)?, then it is clear that
(I)* = {monomials of S; not in I;}.

Of course when we write “not in I;” we mean “not in the degree ¢ part of the ideal
of S obtained by changing X; with Y; in the generators of 1.”

Now suppose we are given a set of s distinct points Py,..., Ps in P™ whose
corresponding ideals are @1, . . ., ps, and a sequence my, . . . , my of positive integers.
The subscheme of P" defined by the ideal

]:pmlm@"wm...mpms
is called the subscheme of fat points
Z=mP+ - +mgP;.

The scheme Z is a zero-dimensional scheme which has support on the P/s and
multiplicity ("*"7") at P;. What makes these schemes interesting is the fact that
each vector space I; gives the linear systems on P" consisting of all hypersurfaces
of degree t having at least multiplicity (""'Tbi_l) at each P;. Since R/I is a one
dimensional graded Cohen-Macaulay ring, its Hilbert Function is strictly increasing
and becomes constant when it reaches the degree of Z which is

deg(Z) = Z (”*’Z" - 1).

i=1
One can easily compute the Hilbert function of a scheme of generic fat points in
the case when my = --- = my = 1. With this assumption we have

= min . (")),

If this is the case, we say that R/I has maximal Hilbert function.
In the case of higher multiplicities, the problem is much more complicated.
We use the following notation. If Py, ..., Ps in P" is a set of distinct points,
such that P; := (a0, ..., ), we let

Lp, :=ajYo + -+ ainYy

be the corresponding linear form in 5j.
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The following result has been proved in [22].

Theorem 5.5. Let I be the defining ideal of the scheme of double fat points
Z=2P + -4 2P;.
For every 7 > 0 we have
(L) = (L, ooy I, ;e

By using this theorem we get:
e (5(7) is the least integer s such that there exist s generic points in P™ with

o) =) = (")

where [ is the defining ideal of the scheme of double fat points Z = 2P, +- - -4+ 2PF;.
We can immediately use this theorem to get most of the results of [15]. We
remark that since m; = --- = mg; = 2, we have

deg(Z) =e(R/I) = s(n+1).

Let us start with the classical case: G(2) = n+ 1. Let I be the defining ideal
of the scheme of double fat points

Z:2P1—|—+2Pn+1,

since n + 1 generic points are not on an hyperplane, we have

e = ("37)

Since a set of j points with j < n is always on an hyperplane, we have proved the
claim.

Let us pass to the easy case when we are dealing with forms in two variables.
In this case n = 1 and we prove that

N L . i1
G(j) = the least integer bigger or equal than 75-.

We must prove that
) . 41
HR/I(j)=j+1<:>tZT
where I = p2N---Np?. But R = k[Xo, X1], so that the Artinian reduction of R/I
is an Artinian ring S/J where S = k[X]. This implies that the Hilbert function of
R/I is
Hp(j) = min{j + 1, e(R/I)}.
Since e(R/I) = 2t, we get the conclusion.
We have proved that
e A generic form of degree 25 — 1 in two variables can be written as a sum of j
powers of linear forms.
This is the classical Sylvester’s theorem.
We present now some easy cases where the expected value for G(j) is not
attained.
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e The generic form of degree 4 in 3 variables is not the sum of 5 fourth powers.
We need to prove that

Hp/1(4) <15 = Hg(4)

where [ is the defining ideal of the scheme of double fat points with support 5
points of P2. Since 5 points in P? are on a conic, it is clear that the conclusion
follows.
This is the result of Clebsch we have seen before.
e The generic form of degree 4 in 4 variables is not the sum of 9 fourth powers.
We need to prove that

Hp/1(4) <35 = Hg(4)

where [ is the defining ideal of the scheme of double fat points with support 9
points of P3. Since 9 points in P? are on a quadric, it is clear that the conclusion
follows.
e The generic form of degree 4 in 5 variables is not the sum of 14 cubes.

We need to prove that

HR/I(4) <70 = HR(4)

where [ is the defining ideal of the scheme of double fat points with support 14
points of P%. Since 14 points in P* are on a quadric hypersurface, it is clear that
the conclusion follows.

To study further examples, we need a very elementary result proved by Catal-
isano, Trung and Valla in [11].

Here, for a one-dimensional graded Cohen-Macaulay ring A, the regularity
index r(A) of A is the least integer ¢ such that Ha(t) = e(A4). Also we say that
the points are in general position if n+ 1 of them are not on an hyperplane of P™.

It is clear that generic points are in general position.

Theorem 5.6. Let Z = 2P, + --- + 2P, where Py,...,Ps are points in general
position in P™. If A denotes the homogeneous coordinate ring of Z, then

r(A) < max {3, [ﬂ] } .

n

Further, if the support of Z lies on a rational normal curve, then equality holds
above.

This very elementary result gives a fourth case where the expected value for
G(j) is not attained.
e The generic form of degree 3 in 5 variables is not the sum of seven cubes.
We must show that
Hp/(3) <35

where I is the defining ideal of the scheme of double fat points with support 7 points
of P*. By a theorem of Bertini, if the points are in general position, they are on a
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rational normal curve, so, by the above result, we have r(R/I) = max{3,4} = 4.
Hence
Hp,1(3) <e(R/I)=35= Hg(3).
The following example end up the list worked out in [15].
e The generic form of degree 3 in 4 variables is the sum of 5 cubes.
We need to prove that

Hp/1(3) = 20 = e(R/1)

where [ is the defining ideal of the scheme of double fat points with support 5
generic points of P3. Since we have

-2
max {3, |:3+10} } =3,
3
the conclusion follows.

Despite the fact that all the above results easily follow by elementary argu-
ments, the solution of the BWP is a consequence of a very difficult theorem proved
by Alexander and Hirschowitz.

Theorem 5.7. Let Z = 2P, + --- 4+ 2P where Py,...,Ps are generic points in
P". If A denotes the homogeneous coordinate ring of A, then, except for the four
pathological cases considered above, we have

HA@%:mm{dn+1L<n:t>}.

This theorem proves that, with four exceptions, the Hilbert function of a set
of double fat points with generic support is maximal, i.e. behaves as if the scheme
were reduced.

As a consequence we have the following solution of the BWP.

Theorem 5.8. For every j > 3 we have

aG) :min{t | (n+1)t > ("j”)}

except for the following four cases:
j=4n=2 where G =6, instead of G =5,
j=3n=4 where G =38, instead of G =17,
j =4 n =3 where G =10, instead of G =9,
j=4n =4 where G =15, instead of G = 14,

We remark that the number of forms of degree j in n + 1 variables is ("jj)7
while the numbers of coefficients in a sum of G powers of linear forms

L+ -+ L

is (n 4+ 1)G so that the following guess is confirmed with the well known four
exceptions:

e As soon as the number of coefficients is bigger than or equal to the number
of equations, we do have a solution.
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Now we want to describe a more geometric approach to the BWP involving
some interesting questions related to the dimension of the secant variety of the
Veronese embeddings.

Given the integers n and j we let

N = (n—l—]) — 1.
J

Then it is clear that we have a trivial identification
P(R;) ~ PV
where P(R;) is the projectivization of the vector space R; of the forms of degree
j in R. After this identification, let us consider the Veronese immersion
vi : P" — Py
where if P = (ag,...,a,) € P™ we let

vi(P) = (o -+~ Qi )ig 4o pin=j-
The image v;(P") is called the j-Veronese immersion of P" into PV.
The following remark will be crucial.

Remark 5.9. v;(P") may be seen in P(R;) as the projectivization P(W) of the
subspace W of R; of all forms consisting of powers of linear forms.

For example let n = 2 and j = 2 so that N = 5. Given the quadratic form
Q = Z ainin
0<i<j<2

we consider the symmetric matrix

Qoo o1 @o2

Gor Qi1 a2

Qg2 a12 (22
This matrix has rank < 1 if and only if @ is the square of a linear form. Since the
Veronese surface v5(P?) is the locus of the points in P? such that the matrix

Xoo Xo1 Xo2
Xor X111 Xio
Xoz X2 Xoo

has rank one, @ is the square of a linear form if and only if
(@00, ao1, aoz, a1, a12, az) € va(P?).

The above result does not hold if the characteristic of the base field is positive.
For example if ch(k) = 2 and we consider the case n = 1, j = 2 so that N = 2,
then v, (P!) C P? is the conic of equation

XooX11 — X&)

Instead, the set of quadratic forms in two variables which are squares of linear
forms correspond to the line Xy = 0.
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Now it is clear that going through this idea, one can see how the forms in
R; which are sum of two powers correspond to the lines which meet two distinct
points of the Veronese variety v;(P™). There is a classical construction in Algebraic
Geometry which gives us the right setting.

Definition 5.10. Let X C P? be a projective variety and let k > 2. Secj,_1(X) is
defined as the closure of the union of the P*=1 in P® which cut X in k distinct
points. This variety is called the (k — 1) Secant Variety to X.

It is a classical result that Seci_1(X) is a locally closed subscheme of Pd.
The main remark here is the following.

Remark 5.11. A generic point of Secy—1(v;(P™)) corresponds to a form of degree
j which can be written as the sum of k powers of linear forms.

Hence we may rewrite the big Waring problem as follows.

Problem 5.12. (BWP) Given the integer j determine the least integer G(j) such
that
Secc(j)-1(v;(P")) = P™.

This way of rereading the BWP is classical. One can find more details in the
book by J. Harris (see [31]).

By using the arguments of Emsalem and Iarrobino, we get a way for com-
puting the dimension of these secant varieties by means of the Hilbert Function of
a set of generic fat points in the projective space P™.

More precisely we have the following theorem.

Theorem 5.13. For every n, j and k, let I be the defining ideal of the scheme of
double fat points Z =2P; + --- + 2P, where Py, ..., Py are generic points in P".
Then

dim(Secy—1(v;(P")) = Hg/1(j) — 1.

By using this result, we want to give now a contribution to the LWP by
proving that in the case we are dealing with forms in two variables we have g(j) = j.
This means that every form of degree j in 2 variables is the sum of at most j powers
of linear forms. Now, given any point in P7, we can find an hyperplane through
this point cutting the rational normal curve in j distinct points. This proves that
9(7) < j. On the other hand one can easily see that g(j) = j. Let us consider the
case j = 3. Let P be a point in P3 which lies on a tangent to the rational normal
curve C with parametric equations Xy = 3, X; = t?u, X = tu?, X3 = u>. Take
for example the point P := (0,1,0,0) which lies on the line X5 = X3 = 0 which
is tangent to C in the point (1,0,0,0). This point cannot be on a secant to C,
otherwise the plane through the tangent and the secant line would meet C in four
points. This shows that

Secy (v3(Ph)) = P2,
However the union of the secant lines is not the whole Sec; (v3(P1). We have

Secy (v3(Ph) = {U(secant lines)} U {U(tangent lines)} .
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We also proved that the form X2 X7, which correspond to the point (0, 1,0, 0),
is not the sum of two cubes of linear forms.

The problem of determining the Hilbert function of a scheme of fat points has
other unexpected and interesting applications. First of all we remark that it can
be seen as the Problem of infinitesimal generic interpolation by which we mean
the following.

Problem 5.14. At how many points is it possible to prescribe values to a polynomial
of given degree, together with derivatives up to a given order?

Another recent and interesting application of the arithmetical properties of
schemes of fat points is due to McDuff and Polterovich (see [47]). Let

B*:={zeC?||z] <1}

be the standard four dimensional ball; consider all possible symplectic embeddings
of k disjoint standard 4-dimensional balls of equal radii into B*. Denote by (B, k)
the supremum of volumes which can be filled by such embeddings and define
4 o l)(B4v k)
v(B*, k) = Vol(BY)’

A basic aspect of the symplectic packing problem is to distinguish between the
following cases:

e v(B* k) = 1, that is there exists a full filling,

e v(B* k) < 1, that is there is a packing obstruction.

The history of this problem goes back to Fefferman and Phong who raised in
[23] a somewhat similar question in connection with the uncertainty principle in
quantum mechanics.

The result of McDuff and Polterovich relates this question with a conjecture
made by Nagata in connection with his construction of a counterexample to the
14-th problem of Hilbert (see [48]).

Conjecture 5.15. (Nagata) Let Py,..., P, be generic points in P? and my,...,my
be fized non negative integers. For every k > 9, if d is the initial degree of the
defining ideal of the scheme of fat points

Z=m1P; + -+ myPFx,

we have
Zf:l m;

For k =2,3,5,6,7,8 the assertion of the conjecture is wrong. Nagata showed
that the conjecture is true for the case k = p? where p is an integer. Except for
this special case, Nagata’s conjecture is still quite open.

The connection with the Hilbert function of fat points is given in the following
theorem.

d>
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Theorem 5.16. (McDuff-Polterovich) Assume Nagata’s conjecture is true for some
k. Then there exists a full symplectic packing of B* by k equal standard balls, that
18,

v(B* k) = 1.

By these different reasons the problem of determining properties of the Hilbert
Function of fat points becomes very interesting. Even if we assume that the support
consists of generic points in P2, we have no clear idea on the possible exceptions
to the guess that the Hilbert function should be the same as for reduced zero-
dimensional schemes of the same degree.

Problem 5.17. What is the Hilbert function of a scheme of fat points in P™?

A very special case is when we have a support which is contained on a rational
normal curve. In this case we have seen that the regularity index is as large as
possible. This should imply that the Hilbert function is as small as possible and
leads one to make the following conjecture.

Conjecture 5.18. Given a set of s distinct points on a rational normal curve in
P, and given a set of natural numbers my, ..., mg let

Z:m1p1+"‘+msjjs

be the corresponding scheme of fat points. Then
e The Hilbert function of Z does not depend on the points.
e For every scheme Y of fat points in general position and with the same
multiplicities, we have
Hz(t) < Hy(1)

for every t > 0,

The conjecture holds if m; = - - - = mg = 2 (see [12]); a proof of the conjecture
if n = 2 and of the first part if n = 3 is in [10].

6. The HF of a CM Local Ring

In this section (A, M) will denote a local ring with maximal ideal M. The Hilbert
function of A is, by definition, the Hilbert function of the associated graded ring
of A which is the homogeneous k-algebra

grm(A) = @M/ ML
Hence
H,(t) = dim( Mt/ M)
and
Pa(2) = Pyrp(a)(2)-
This graded algebra gra (A) corresponds to a relevant geometric construction. If

A is the localization at the origin 0 of the coordinate ring of an affine variety V'
passing through 0, then gr((A) is the coordinate ring of the tangent cone of V' at
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0, which is the cone composed of all lines that are the limiting positions of secant
lines to V in 0.

The Proj of this algebra can also be seen as the exceptional set of the blowing
up of V in 0.

Despite the fact that the Hilbert function of a graded k-algebra A is well
understood in the case A is Cohen-Macaulay, very little is known in the local case.
This because the associated graded ring of a local Cohen-Macaulay ring can be
very bad. Consider, for example, the power series ring

A= Ek[[th ).
This is a one-dimensional Cohen-Macaulay local ring and its associated graded
ring is
gTM(A) = k[X’ Y, Z]/(XZ, YZ, Z27Y4)
which is not Cohen-Macaulay. This follows from the fact that
(X,Y,Z)=0 : Z € Ass(grm(A))
and also from the Hilbert series of A which is
1422423
P =
A2) 1—-=z
In the above example, one can compute the defining equations of the tangent
cone in the following way. It is easy to see that

A=EK[[X,Y,Z)])(X*-YZ Y3 - XZ Z* - X3Y?).

Hence grap(A) = k[X,Y, Z]/T* where I = (X* -YZ,Y? - XZ,7% — X3Y?) and
I* is the ideal generated by the initial forms of the elements of I. Here, if a € A
is a non zero element and n is the greatest integer such that a € M", we let

o =ae MM
and call it the initial form of a in gra(A).

Due to the pioneering work made by Northcott in the 50’s (see for example
[51]), several efforts have been made to better understand the Hilbert function of
a Cohen-Macaulay local ring, also in relation with its Hilbert coefficients and the
numerical characters of the corresponding tangent cone.

We start with the observation that, unlike in the graded case, the Hilbert
function is not sensitive to regular sequence, but rather to strong regular sequences.
The second part of the following theorem is due to Valabrega and Valla (see [69]),
while the first assertion is a consequence of a theorem by Singh (see [63]).

Theorem 6.1. Let (A, M) be a local ring and I = (x1,...,2,) an ideal in A. Let
T1,...,Z, be the residue class of x1, ...,z in M/M? and (B,N) := (A/I, M/I).
Then we have :

o Pp(z)/(1—2)" > Pa(2).

e The following conditions are equivalent:
a) Pg(z) = Pa(z)(1 —2)".
b) 1,...,&, form a regular sequence in gra (A).
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¢) x1,...,x, form a reqular sequence in A and
gra (B) = grim(A)/ (1, ..., Tr).
d) x1,...,2, form a regular sequence in A and for everyn >1

M T=M""1T.
A crucial notion in local algebra is that of superficial element.

Definition 6.2. Let (A, M) be a local ring; an element z in M is called superficial
for A if there exists an integer ¢ > 0 such that

(M™:2) N M= Mt
for every n > c.

It is easy to see that a superficial element z is not in M? and that z is super-
ficial for A if and only if * € M/M? does not belong to the relevant associated
prime of gra(A). Hence, if the residue field is infinite, superficial elements always
exist. Further, if depth(A) > 0, then every superficial element is also a regular
element in A.

Definition 6.3. A set of elements x1,..., 2, in the local ring (A, M) is said to be
a superficial sequence if x1 is superficial for A, Tz is superficial for A/x1 A and so
on.

We collect in the following theorem two main properties of superficial se-
quences.

Proposition 6.4. Let (A, M) be a local ring and x1,...,x, a superficial sequence.
If we let J := (x1,...,z,)and (B,N) := (4/J,M/J), then
o depth(grapm(A)) > r < a7,...,x} is a reqular sequence in gra(A).

o depth(grap(A)) > r+ 1 < depth(gra(B)) > 1.

The second property in the above theorem is Sally’s machine which is a very
important trick to reduce dimension in questions relating to depth properties of
grm(A).

Sally proved this result in the case r = d — 1 in [58]; a complete and nice
proof of the general case can be found in [39].

We have seen that we can always find a superficial element inside a local
ring A with infinite residue field. Now we remark that we may always assume the
residue field has this property by passing, if needed, to the local ring A[X]( a4, x)-
Hence if we assume moreover that A has positive depth, every superficial element
is also a regular element in A. This has the right properties to control most of the
numerical invariants under reduction modulo the ideal it generates.

Here we denote by A4 (M) the length of an A-module M and by embcod(A)
the embedding codimension of A which is the integer H4(1) — d. It is clear that
H 4(1)—d is the coefficient h; of z in the h-polynomial of A. Further embcod(A) =0
if and only if A is a regular local ring. Since in this case our problems are clear,
we may assume in the following that A has positive embedding codimension.
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Proposition 6.5. Let (A, M) be a d-dimensional local ring and x a superficial ele-
ment which is also reqular on A. If B := A/x A, we have :

o dim(B)=d— 1.

e Hy(l) = Hp(1) 4+ 1.

e embcod(A) = embcod(B).

o ¢, (B) =er(A) for every k=0,...,d— 1.

o (—1)dey(A) = (—1)%eq(B) — Yo Aa(MITL s/ MI) for every n >> 0.

e ¢4(A) =eq(B) if and only if x* is regqular in gr(A).

We immediately get two classical and basic results due to Abhyankar and
Northcott respectively (see [1] and [51]). In the following e will denote the mul-
tiplicity of A and h its embedding codimension. Further we will write e; instead
of e;(A) and G instead of graq(A). Since henceforth A is assumed to be Cohen-

Macaulay, for every r, 1 < r < d, every superficial sequence of length r is also a
regular sequence in A.

Theorem 6.6. (Abhyankar) Let (A, M) be a d-dimensional Cohen-Macaulay local
ring; then
e>h+1.

Proof. Since e and h does not change modulo a superficial element, we may assume
d = 0. Then

Py(z) =14+ hz+ -+ hg2®
where s > 1 and all the hls are positive integers. Thus
e=1+h+hys+---+hs>h+1 |

We remark that the assumption A is Cohen-Macaulay in the above theorem
is essential.
Let A =Kk[[X,Y]]/(X? XY); then A is not Cohen-Macaulay and we have

_1+z—22

Palz) 1—-=2
sothate=1<h+1=2.

Theorem 6.7. (Northcott) Let (A, M) be a d-dimensional Cohen-Macaulay local
ring; then
e1 >e—1.

Proof. If d =0 we have
Pa(z) =14+ hz+ -+ hs2®
and we need to prove
e1r=h+2ha+---+shg>e—1=14+h+ho+---+hs—1.

Since all the hjs are non negative integers, we get the conclusion.
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If d > 1, then e;(A) = e1(B) > e1(C) and e(4) = e(B) = e(C) where if
z1,...,Tq is a superficial sequence, we let

B = A/(l’l,...,xd_1>
and
C=A/(x1,...,2q)-

The conclusion follows. O

We have an extension of the above theorems which is easy and useful in
applications.

Theorem 6.8. Let (A, M) be a d-dimensional Cohen-Macaulay local ring; then
e1 >2e—h—2.
Proof. If d =0 we have
Py(z) =14+ hz+ -+ hg2®
and we need to prove
er=h+2hg+--+shg >2(1+h+-+hg)—h—2

which is clearly true. If d > 1, then e1(A) = e1(B) > €1(C) and e(A) = e(B) =
e(C) where B and C are Cohen-Macaulay local rings with the same embedding
codimension as A and with dimension 1 and 0 respectively. The conclusion follows
by the case d = 0. ]

We prove now that equality holds in the above theorem if and only if the
h-vector of A is short enough.

Theorem 6.9. Let (A, M) be a d-dimensional Cohen-Macaulay local ring and let s
be the degree of the h-polynomial of A. The following conditions are equivalent:

o s <2.

e¢c; =2e—h—2.
Further, if either of the above conditions holds, then G is Cohen-Macaulay.
Proof. If

1+ hz + hoz?
PA(Z):(l_iz);,

we have e =1+ h + hy and e¢; = h + 2hs. Hence
2e—h—2=2(1+h+hg)—h—2=h+2hy =e;.

Conversely, let e; = 2e — h — 2. If d = 0, we have Ps(z) = 1+ hz + -+ + hs2*®
where s > 1. The condition e; = 2e¢ — h — 2 can be read as

hs+2hs+--+(s—2)hs =0

which implies s < 2.
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If d > 1, then
2e—h—-2=e1(A)=e1(B)>e1(C)>2e—h—2

and e(A) = e(B) = e(C) where B and C are Cohen-Macaulay local ring with the
same embedding codimension as A and with dimension 1 and 0 respectively. Hence
e1(B) =e1(C) = 2e — h — 2 so that

_ Po(z) 14 hz+ hyz?
PB(Z)_lfz_ 1-2
and gr(B) has depth 1. By using Sally’s machine we get depth(G) = d so that G
is Cohen-Macaulay and

Pc(z) . 1+ hZ—i—thQ
Q-2 (12

as wanted. O

Py(z) =

By using the above result, we can see that the extremal cases s < 1,e =h+1
and e; = e — 1 are equivalent and force the Hilbert function of A. We remark here
that results of this kind are not so expected since the Hilbert coefficients give
partial information on the Hilbert polynomial which, in turn, gives asymptotic
information on the Hilbert function.

Theorem 6.10. Let (A, M) be a d-dimensional Cohen-Macaulay local ring and let
s be the degree of the h-polynomial of A. The following conditions are equivalent:

1. s <1.

2. Pa(z) = (14 h2)/(1 - 2)%
3.eg=e—1.

4. €1 = h.

5.e=h+1.

Further, if either of the above conditions holds, then G is Cohen-Macaulay.

Proof. 1t is clear that 1 and 2 are equivalent. Further 2 implies all the other
conditions. Since we have e; > 2e — h — 2, we get

epe—e+1>e—h—12>0, and e1r—h>2e—h-1)>0

so that 3 implies 5 and 4 implies 5. We need only to prove that 5 implies 1.
This is clear if d = 0. Let d > 1 and e = h+ 1. If J denote the ideal generated
by a maximal superficial sequence in M, we have the following square

M D> M?
U U
J DO JM

Since A(M/M?) = h+d, A\(M/J) = h and \(J/MJ) = d, we get M? = JM so
that M™ = JM" ! for every n > 2. By Theorem 6.1 this implies that A and its
Artinian reduction have the same h-vector and the conclusion follows by the case
d=0. O
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The following theorem shows that the next steps, e; = e, e = h + 2, are no
longer equivalent. The condition e; = e is still 7igid in the sense that it forces
the Hilbert function of A and implies that G is Cohen-Macaulay. On the other
hand, despite the fact that e = h + 2 is not rigid, a recent result of Rossi and
Valla describes all the possible Hilbert functions of Cohen-Macaulay local rings
verifying this condition (see [56]).

Theorem 6.11. Let (A, M) be a d-dimensional Cohen-Macaulay local ring. The
following conditions are equivalent:

1. Pa(z) = (1 +hz+2%)/(1 - 2)%

2. €1 = €.

3. €1 = h + 2.

4. e=h+2 and G is Cohen-Macaulay.

Proof. 1t is clear that 1 implies 2. If e; = e, we have by the above theorem
e1 = e > h+2. On the other hand ey > 2e—h—2 =2¢; —h—2,so that e = h+2
and 2 implies 3.

Let e; = h 4 2; then by the above theorem

h+2=e>e>h+2, hence e1=e=h+2=2e—h-—2

and G is Cohen-Macaulay by theorem 6.9. This proves that 3 implies 4.
If e = h + 2 and G is Cohen-Macaulay, we get
Pe(z)
(1—2z)
where C' is an Artinian local ring with the same multiplicity and embedding codi-
mension as A. Since C is Artinian and e = h + 2 we clearly have

PA(Z) =

Po(z) 1+ hz+ 22
P = = . O
S (R (T
Now we come to the very recent result of Rossi and Valla which gives a
positive answer to a longstanding conjecture made by J. Sally (see [60]).
For a local Cohen-Macaulay ring (A, M) we denote by 7(A) the Cohen-
Macaulay type of A which the dimension of the socle of any Artinian reduction
of A.

Theorem 6.12. Let (A, M) be a d-dimensional Cohen-Macaulay local ring. The
following are equivalent:
eec=h+2.
e Pa(z) = (1 +hz+2%)/(1 = 2)¢ for some integer s, 2 < s < h+ 1.
Further, if either of the above conditions holds, then we have:
e 7(A) <h.
o depth(G) > d — 1.
o G is Cohen-Macaulay <= s =2 <= e1 =e <= e1 =h+2 < 7(4) < h.
Finally if A is Gorenstein, such is G.
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For every s in the range 2 < s < h+1, we can exhibit, as in [60], the following
examples of local Cohen-Macaulay ring A with e = h 4+ 2 and

1+ hz+2°
Py (z) = ——
Let
Ap = K[[te, 1+ 143, ¢2e7 1],
Ay = k[[te, o] gorotl gertst2 | g2eml 4243 y2ekd | ydets))
for every 5,3 < s<e—2 and
Aoy = K[[te, o1, ¢2e¥3 g2e+d | y3e-1)),

By using the above theorem we can settle the case e; = e + 1. It turns out
that this condition does not force the Hilbert function of A.

Theorem 6.13. Let (A, M) be a d-dimensional Cohen-Macaulay local ring. The
following conditions are equivalent:
eci=c+1.
e Either P4(z) = (1 +hz+222)/(1 — 2)% or Pa(z) = (1 + hz +23)/(1 — 2)4.
In the first case G is Cohen-Macaulay, in the second case G has depth d — 1.

Proof. 1t is clear that both Hilbert series imply ey = e+ 1. If e; = e+ 1, then
e1=e+1>2e—h—2

implies h+1 < e < h+3.If e = h+ 1, then e; = e — 1, hence we have two
possibilities: either e = h+ 2, and e =h+3,0ore=h+ 3 and ey = h + 4. In the
first case, by the above theorem, we get

1+ hz+ 23
e =T

and depth(G) =d — 1.
In the second case

2¢e—h—2=2h+3)—(h—2)=h+4=¢

so that by Theorem 6.9

14+ hz + 222
Pa(z) = Ao

and G is Cohen-Macaulay. |
The next case is still quite open.

Problem 6.14. Find a structure theory for local Cohen-Macaulay rings verifying

e>h-+3.
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The unique result we know was given by Sally. She proved in [59] that if A
is Gorenstein and e = h + 3, then G is Cohen-Macaulay. In the same paper Sally
gave an example of a Gorenstein local ring with e = h + 4 such that G is not
Cohen-Macaulay. This is the ring

A = E[[t5,¢7,19]]
which is even a complete intersection. We have
A=k[X,Y,Z])(Y® - XZ,X° - Z?)
G=k[X,Y,Z])(XZ, Y5 Y37, Z?%)
and

1+22+22+23+2°
PA(Z)Z 11—~ .

On the other side we have an equivalent problem.
Problem 6.15. Find the possible Hilbert functions of a local Cohen-Macaulay ring
with
e1 > e+ 2.
After proving the rigidity of e and e; near to the lower bound, we now want

to consider the same problem near the upper bound. As for eq, a result of Elias
(see [18]) says that for every local Cohen-Macaulay ring of dimension greater than

or equal to 1, we have
e h
—h-2< < — .

Further, the bound is sharp in the sense that for every integer ¢ such that e—h—2 <
t < (%) — (5) there exists a Cohen-Macaulay local ring A of dimension 1 such that
the Hilbert polynomial of A is

pa(X) =eX —1t.

We remark that this gives all the possible Hilbert polynomials of such rings but
the problem of determining all the possible Hilbert functions is far from a solution.
We proved recently in [21] the following result.

Theorem 6.16. Let (A, M) be a 1-dimensional Cohen-Macaulay local ring. The
following conditions are equivalent:

h
o= (-0
o Py(z) =(1+hz+ Zf;h_H 29 /(1 = 2).
The proof is quite involved and we are not going to present it here. However

we could not extend this result to the higher dimensional case. Hence we formulate
the following problem.

Problem 6.17. Let (A, M) be a d-dimensional Cohen-Macaulay local ring. Are the
following conditions equivalent?

o= (2)

o Pa(z) = (1+hz+ Y, 20)/(1—2)
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To get a lower bound for ez, we introduce a device due to J.Sally (see [61])
which was the main tool in the proof of Sally’s conjecture.
We start by remarking that if A is zero-dimensional then

e1=h+2hy+---+sh, and 62:h2+3h3+-~-+<;)hs

so that we can express e; and es in terms of the integers hy, ..., hs which are non
negative. The same conclusion holds if we are in the one-dimensional case. For this
we need the following classical result on the Hilbert function of a one-dimensional
Cohen-Macaulay local ring.

Theorem 6.18. Let (A, M) be a 1-dimensional Cohen-Macaulay local ring. If x is
a superficial element in M, then for every j >0
Ha(j) =e—p;
where p; == A\(MITL [z M7).
In particular, if s is the degree of the h-polynomial of A,
p026_17 Plze_h_L pJ:O VJZS,

s—1 s—1
el :ij and e :ijj
§=0 j=1

Proof. We have ‘ A

A DM D> Mt

U @] @]

zA D M =M
From this we get

Ha(j) = MM JaMI) = \(MITE /2 M),
But A\(A/zA) = e and A/MJ ~ zA/z M7 so that
Ha(j) = e = A(MITL oM7)
for every j > 0. Further pg =e— Hy(0) =e—1and py =e— Hs(l)=e—h — 1.
Finally, since we have
_lt(e—pr =Dzt (pr—p2)2® 4+ (ps—2 — ps—1)2" "' + ps12°
1—=z

we get the desired formulas for e; and es. O

Py(z)

Similar formulas can be found in the two-dimensional case. For example in
[40] it has been proved that for a two-dimensional Cohen-Macaulay local ring

(A, M) one has
e = Zvj and ey = Zjvj
Jj=0 Jj=21
where, if we let J be the ideal generated by a maximal superficial sequence in M,
we put

v = ANMITL/TMI) =AM JMITH).
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Unfortunately the integers v; can be negative; however, the following construction
due to Ratliff and Rush (see [54]), gives a way to overcome the problem.

Let (A, M) be a Cohen-Macaulay local ring. For every n we consider the
chain of ideals

MPC ML MM M C e MR MEC
This chain stabilizes at an ideal which was denoted by Ratliff and Rush as
Mn = U(M"+k : MF).
E>1
We have

M =M,
and for every i,7 and n
MPCM®  and  MiMI C Mt
Further if x is superficial for A,

Mn+l s g = Mn

for every n > 0.
In the following we let J be the ideal generated by a maximal superficial
sequence of elements in A and we define for every n > 0

On = A(MHL/JMP),

For example we get g = e — 1.
With these notation one can easily prove (see also [39]) that in the case A
has dimension two, we have

el = Zaj and ey = Zjaj.

=0 Jj=z1

As a consequence we get the following lower bound for ey (see [62]).

Proposition 6.19. If (A, M) is a Cohen-Macaulay local ring, we have
es >e;—e+1>0.

Proof. If A has dimension greater than or equal to two, es(A4) = ez(B) and
e1(A) = e1(B) where B is a local Cohen-Macaulay ring of dimension two. Hence

we have
eQ:ngj:ZUijZ(j*l)aj >e—op=¢e —e+ 1

Jjz1 Jjz1 Jj>2

If the dimension is one we can use the same chain of inequalities with p; instead
of ;. Finally if d = 0, then

—1
62—61+6—1:h3+3h4+“‘+(82 )hs

and the conclusion follows. O
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Several partial results and computations suggest the following conjecture.

Conjecture 6.20. Let (A, M) be a d-dimensional Cohen-Macaulay local ring and
let s be the degree of its h-polynomial. The following conditions are equivalent:
eecy=e1—e+1.
o s <2,

Further if this is the case, then G is Cohen-Macaulay.

It is clear that if s < 2, then e = 14+ h+ ho, e; = h+2hs and e; = hy. Hence
61—€+1:h+2h2—(1+h+h2)+1:h2262.

Also the conjecture holds if e; = 0,1,2. Namely, in the case es = 0, we have
e1 = e — 1 and we use 6.10, in the case e; = 1 we have e; = e and we use 6.11,
finally in the case e; = 2 we have e; = e + 1 and we use 6.13.

Here we prove that the conjecture holds if d =0, 1.

Proposition 6.21. Let (A, M) be a Cohen-Macaulay local ring of dimension less
than or equal to 1. If es = e; —e+ 1 then s < 2.
Proof. If d =0 and es = e; — e + 1, by the proof of Proposition 6.19 we have

2

This clearly forces s to be less than or equal to two.
If d = 1, our condition implies

pr+2p2+ -+ (s—1)ps—1=p1+p2+-+ps

1
h3+3h4+~~-+<8 >hs—0.

so that
p2+2p3+ -+ (s —2)ps—1 = 0.
If s > 3, this would imply ps_1 = 0, a contradiction. O
We remark that if e = 3 we would get a proof of the conjecture if we could

prove that there does not exist a two-dimensional Cohen-Macaulay local ring A
such that s .
1+hz+32° -2
Palz) = (1-2)2

In [21] we found an upper bound for e; and proved that, if equality holds, the
Hilbert function is forced and G is Cohen-Macaulay. Since in this case the Hilbert
function is quite complicated, we are not going to describe it. However we note
that a consequence of that result gives the inequality

oMY

which is nice if it is compared with the inequality found by Elias for e;.
We finish with the following very general question.

Problem 6.22. What can be said about the Hilbert function of a Cohen-Macaulay
local ring A?
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Very little is know even if the ring has dimension one. However, in this case,
Elias proved that the Hilbert function is not decreasing if the embedding dimension
is three (see [19]). Orecchia gave in [53] examples of decreasing Hilbert function
with Cohen-Macaulay local rings of embedding dimension five, and finally in [30]
one can find similar examples with embedding dimension four.

It is clear that all the problems we have studied until now for the Hilbert
function of the maximal ideal of a local Cohen-Macaulay ring, can be extended to
the case of an M-primary ideal I. Several results have been given in this setting
showing that the behaviour is quite the same. But for example Sally gave in [62]
an example of a primary ideal I in a local Cohen-Macaulay ring (A, M), such that
the associated graded ring is not Cohen-Macaulay even if e = e; — e + A(A4/I).
This shows that the last conjecture does not hold in the M-primary case. However
we do not know of any counterexample in the case I = M or even with the weaker
assumption I = I.
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Cohomological Degrees of Graded Modules

Wolmer V. Vasconcelos

Introduction

By a degree of a module M we mean a numerical measure of information carried
by M. It must serve the purposes of allowing comparisons between modules and to
exhibit flexible calculus rules that track the degree under some basic constructions
in module theory.

The premier example of a degree (vector space dimension excluded) is that
of the multiplicity of a module. Let (S, m) be a local ring and let M be a finitely
generated S—module. The Hilbert function of M is

Hy :n— 0(M/m"M),
which for n > 0 is given by a polynomial:
deg(M)
Ha(m) ==
The integer deg(M) is the multiplicity of the module M, while the integer d =
dim M is its dimension.

An important property of this degree is its computability. When S is a stan-
dard graded algebra, say S = k[x1,...,z,]/I, and < is a term ordering for the
ring of polynomials, then

deg(S) = deg(k[z1, ... ,x,]/in(I)),
where in(I) is the corresponding initial ideal of I.

On the other hand deg(-) may fail to capture features which are significant
for M. For instance, if M is filtered by a chain of submodules

M=M DMy;>D---D M, D0, Mi/Mi_HES/pi, (1)
where p; is a prime ideal, then

deg(M) = Z deg(S/pi).

dim S/p;=dim M

n? + lower order terms.

Alternatively, if p is an associated prime of M of dimension dim S/p = dim M, the
localization M, is an Artinian module whose length ¢(1,,) is the number of times
p occurs in (1).

OThis research was partially supported by the NSF.
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This formulation still ignores the contributions of the lower dimensional com-
ponents. Partly to address this, another degree was defined that collects informa-
tion about the associated primes of M in all codimensions. First one attaches to
any associated prime p of M a number multys(p) similar to £, (M) (see section 2
for all details). The arithmetic degree of M is the integer

adeg(M) = Z mult s (p) - deg S/p.
peAss(M)

A related degree is gdeg(M), the geometric degree of M, where in this sum
one adds only the terms corresponding to minimal associated primes of M.

One feature of these degrees is that they can be expressed in a way which does
not require the actual knowledge of the associated primes of M. Both adeg(M)
and gdeg(M) are put together from a sum of multiplicities of certain modules
derived from M.

These numbers can be used for many purposes, for instance for the esti-
mation of the exponent in the Nullstellensatz. More precisely, given an ideal
I = (f1,...,fm) of a polynomial ring S = k[z1,...,z,], consider the integers
s such that

(V1) c I

The index of nilpotency or degree of nilpotency nil(I) of an ideal I is the smallest
such integer s. A related index of nilpotency is nily(I), the smallest integer ¢ such
that z* € I, Vax € v/I. Although we shall not pursue it here (see [25], [34], [41]) it
can be seen that nil(I) < deg(S/I). In fact, the degrees of the associated primes
of I do not play a role and the notion of multiplicity has to be replaced by another
one, not larger, that carries structure better.

Our main use of these degrees is to make predictions about the outcome of
carrying out Noether normalization on a graded algebra and as numerical predic-
tors of the properties of an ideal as seen from its primary decomposition.

Let A be a finitely generated, positively graded algebra over a field &,

A=k+ A+ Ao+ =k+ A,

where A; denotes the space of homogeneous elements of degree i. We further
assume that A is generated by its 1-forms, A = k[A;], in which case A; = A;". If
k is sufficiently large and dim A = d, there are forms x1,... ,x4 € A, such that

R=Ek[x1,... ,xq) =k[z) = A=S/I, S=k[x1,... ,Zd,Tds1,--- ,Zn)

is a Noether normalization, that is, the x; are algebraically independent over k
and A is a finite R—module. Let by,bs,... ,bs, be a minimal set of homogeneous
generators of A as an R—module

A= Z sz, deg(bz) =T.
1<i<s

The distribution of the r;’s, particularly of the largest rg(A) of these degrees, may
depend on the choice of R. For the ‘best’ of all Noether normalizations, it will
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be called the reduction number of A: r(A). It turns out that adeg(A) (in large
characteristics) give estimates for r(A).

The Castelnuovo-Mumford’s reqularity of a graded module M is a commonly
used yardstick for it. It can be defined in terms of the vanishing of the local
cohomology modules of M. If m is the irrelevant maximal ideal of the graded
algebra S, then

reg(M) = sup{ac (H}, (M) + i}

where a4 (L) of a graded module L is the supremum of n for which L,, is non—
trivial.

If A is a standard graded algebra, reg(A) > r(A), but its relationship to
adeg(A) is irregular. Nevertheless reg(A) is a wonderful measure since it can be
read from projective resolutions.

Most of our effort will lie in the development of degrees with the following
aspects. S will be either a local ring or a standard graded algebra. Denote by
M(S) the appropriate category of finitely generated S—modules. We shall define
a class of numerical functions

Deg(-) : M(S) — R,
that satisfy the following conditions:

(i) If L = I'n(M) is the submodule of elements of finite support of M and
M = M/L, then

Deg(M) = Deg(M) + £(L), (2)

where £(-) is the ordinary length function.
(ii) If h € S is a regular, generic hyperplane section on M, then

Deg(M) > Deg(M/hAM). (3)
(iii) (The calibration rule) If M is a Cohen-Macaulay module, then
Deg(M) = deg(M), (1)
where deg(M) is the ordinary multiplicity of the module M.

Any such function will satisfy Deg(M) > deg(M), with equality holding if
and only if M is Cohen—Macaulay.

A first issue that arises is whether such functions exist at all in all dimensions.
This is settled in Section 3 when we introduce the notion of the homological degree
hdeg(M) ([40]). Suppose that S is either a graded algebra over an Artinian ring or
a local ring, and let M be a finitely generated S—module. The simplest case where
to look at hdeg(M) is when dimM =dimS =d > 0:

d
hdeg(M) = deg(M) + Z (‘j: 11) - hdeg(Ext (M, S)).



348 W. V. Vasconcelos

Notice that this is basically an iterative definition and therefore can be im-
plemented as a procedure whenever the computation of Exts and multiplicities is
possible.

This definition points at possible uses for this degree. Let I be an ideal with
an irredundant primary decomposition

I=Q1N-NQnm.

When applied to S/I, hdeg() will capture two main aspects of this decomposition.
First, the local contribution of each associated prime ideal, in other words all of
adeg(S/I). Second, in the iterated Exts it will look for interactions amongst the
components.

The most significant aspect of this particular degree lies in the fact that it
satisfies a number of rules of calculation with regard to certain exact sequences.
They are looser than those followed by reg(-). One of the comparisons that will be
made shows that for any standard graded algebra A (Theorem 4.6):

Deg(A) > reg(A),

for any Deg(+) function, in particular for hdeg(:). The fact that it comes coded by
an explicit formula will permit making many a priori estimates for the number of
generators in terms of multiplicities.

Another set of applications concerns the relationship between the number
of generators of an ideal I and the degrees of R/I. Suppose that R is a Cohen—
Macaulay ring which is either a graded algebra over a field or a homomorphic image
of a Gorenstein ring. Then for any ideal I (homogeneous when R is graded), one
has (Theorem 5.3):

v(I) < deg(R) + (9 — 1) deg(R/I) + (d — r — 1)(Deg(R/I) — deg(R/I)),

where d = dim R, g = height (I) and r = depth (R/I).
Another set of results concerns Hilbert functions of local rings. For a Cohen—
Macaulay local ring (R, m), it was established in [27] that for any integer n,

v(m") < deg(R)n"! +d—1,

where d = dim R > 1. In [40], for a local ring, not necessarily Cohen—Macaulay,
which is a homomorphic image of a Gorenstein ring, it is proved that this estimate
will hold replacing deg(R) by hdeg(R). Following [9], one can show that in the
Cohen—Macaulay case one has the considerably sharper estimate (Theorem 6.5):

v(m”) < deg(R) (n zl—ii I 2> + (n ?;ii ; 2).
In particular this establishes the rational function
1+ (deg(R) — 1)t
1-t) 7
as the maximal Hilbert function for Cohen—Macaulay local rings of dimension d
and multiplicity deg(R).

Hp(t)
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There are similar bounds when R is an arbitrary local ring equipped with a
Deg(+) function with deg(R) simply replaced by Deg(R). With its extensions to
m-primary ideals, these estimates provide for sharp predictions on the outcome of
effecting Noether normalizations of certain algebras.

These are text notes for lectures at the Summer School on Commutative Al-
gebra, held at the Centre de Recerca Matematica, in July 1996. They are intended
to be understood without much technical background with the exception of famil-
iarity with basic local cohomology. The material itself comes from several sources
in the literature, but particularly from [40], [9] and [41, Chapter 9]. The latter
contains a more elementary discussion of these degrees and their constructive as-
pects.

We are all very grateful to the organizers of SSCA, Professors J. Elias, J. M.
Giral, R. M. Mir6-Roig and S. Zarzuela, and the direction and staff of CRM for
creating a pleasant and invigorating framework for the meeting. I am personally
thankful to several people but particularly Alberto Corso, Luisa R. Doering and
Tor Gunston.

1. Arithmetic Degree of a Module

In the following, and mostly for convenience, M will be a finitely generated module
over a standard graded algebra, which may be taken to be a polynomial ring
S = k[xy,...,x,], or alternatively a module over a local ring.

We first introduce all the degrees except for one that will come onto stage
later. We shall draw repeatedly from general facts on Hilbert functions and local
cohomology; they all can be found in [6].

Multiplicity

We begin by recalling the definition of multiplicity in Local Algebra. Let (R, m)
be a local ring and let M be a finitely generated R—module. The Hilbert function
of M is

Hyr:n— (M/m"M),
which for n > 0 is given by a polynomial:

_ deg(M)
T

Hys(n) n? + lower order terms.
For convenience we record:

Definition 1.1. The integer deg(M) is the multiplicity of the module M, while the
integer d = dim M is its dimension.

The behavior of deg(M) and dim M with regard to submodules and primary
decomposition follows from:
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Proposition 1.2. Let R be a local ring and let
0—-L—M-—N-—=0
be an exact sequence of R—modules. Then
deg(L) + deg(N) if dimL =dim N = dim M,

deg(M) =< deg(L) if dim N < dim M,
deg(N) if dim L < dim M.

The proof is easy and left to the reader. Used in tandem with the following
definition it gives some flexible rules of computation.

Definition 1.3. Let R be a Noetherian ring and M a finitely R—module. For a
prime ideal p C R, the integer

multaz(p) = €(T'p(M,))
is the length multiplicity of p with respect to M.

This number mult s (p), which vanishes if p is not an associated prime of M,
is a measure of the contribution of p to the primary decomposition of the null
submodule of M. It is not usually accessible through direct computation except
in exceptional cases.

Castelnuovo—-Mumford regularity

Let k be a field, S = k[z1,... , 2] a polynomial ring over k, R = S/I a homo-
geneous k-algebra, and M a finitely generated graded R-module. Then M, as an
S-module, admits a finite graded free resolution:

0 — @js(—j)bm PN @jS(_j)boj — M — 0.

Definition 1.4. The Castelnuovo-Mumford regularity, or simply the Castelnuovo
reqularity, of M is the integer

reg M = max{j —i: b;; # 0}.

In other words, reg M = max{o (Tor? (M, k))—i: i € Z} where for a graded
module N with NV; = 0 for large j, we set ay(N) = max{j: N; # 0}. Let ¢
be an integer. The module M is called g-regular if ¢ > reg (M), equivalently, if
Tor? (M, k);+: = 0 for all i and all j > gq.

Eisenbud and Goto [12] gave an interesting interpretation of regularity. De-
noting by Ms>, the truncated graded R-module @;>,M;, one has (see also [41,
Appendix B]):

Theorem 1.5. The following conditions are equivalent:

(a) M is q-regular;

(b) HL(M);—; =0 for all i and all j > q;

(¢) M>q admits a linear S-resolution, i.e., a graded resolution of the form

0= (=g =) — -+ — S(=q = 1) — S(-q)* — Mz, —0.
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Proof. (a) < (c): By definition, the module M>, has a linear resolution if and only
if for all ¢

Tors (Msq, k)r = Hi(x; M>¢)r = 0

for r # i 4+ q. Here H(x; M) denotes the Koszul homology of M with respect to
the sequence X = x1,... , .

Since (M>4); = 0 for j < ¢, we always have H;(x; M>q), = 0 for r < i +g,
while for r > i+ ¢

H;(x; M), = Hi(x; M), = Tor (M, k),.

Thus the desired result follows.

(b) = (c): We may assume ¢ = 0, and M = M>q. Then it is immediate that
H2 (M) is concentrated in degree 0. This implies that M = HQ (M) & M/H (M).
The first summand is a direct sum of copies of k. Hence M is O-regular if and
only if M/HY (M) is O-regular. In other words we may assume that depth M > 0.
Without any problems we may further assume that k is infinite. Then there exists
an element y € S of degree 1 which is M-regular. From the cohomology exact
sequence associated with

0— M(-1) % M — M/yM — 0

we see that M/yM is O-regular. By induction on the dimension on M, we may
suppose that M/yM has linear S/yS-resolution. But if F' is a minimal graded
free S-resolution, the F'/yF is a minimal graded S/yS-resolution of M/yM. This
implies that F' is a linear S-resolution of M.

(¢) = (b): Again we may assume ¢ = 0, and M = M>¢. Then M has a linear
resolution

— 5(=2)2 — S(-1)* — S — M — 0.
Computing Ext(M, S) with this resolution we see at once that Ext (M, S); = 0

for j < —i. By duality (see [6, Section 3.6]) there exists an isomorphism of graded
R-modules

H (M) ~ Homy (Ext2 ™" (M, S(—m)), k).
Therefore, H. (M);_; = 0 for all j > 0, as desired. O
Arithmetic degree of a module

We now define a key notion of this section. Throughout the ring A will be as
before, either a standard graded algebra or a local ring.

Definition 1.6. Let M be a finitely generated A—module. The arithmetic degree of
M is the integer

adeg(M) = > multy(p)-degA/p. (5)
peAss(M)
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When applied to a module M = S/I, it is clear that this number gives a
numerical signature for the primary decomposition of 1.

The definition applies to general modules, not just graded modules, although
its main use is for graded modules over a standard algebra A. It only requires the
definition of degree of integral domains.

If all the associated primes of M have the same dimension, then adeg(M) is
just the multiplicity deg(M) of M, which is obtained from its Hilbert polynomial.

In general, adeg(M) can be put together as follows. Collecting the associated
primes of M by their dimensions:

dmM =d; >dy > -+ > d,,

adeg(M) = aq, (M) + ag,(M) + - -+ + aq, (M),

where ag, (M) is contribution of all primes in Ass(M) of dimension d;.
The integer ag, (M), in the case of a graded module M, is its multiplicity
deg(M). Bayer and Mumford ([2]) have refined deg(M) into the following integer:

Definition 1.7. The geometric degree of M is the integer

adeg(M) = > multy (p) - deg A/p. (6)
p minimal eAss()
If A= S/I, we want to view reg(A) and adeg(A) as two basic measures of

complexity of A. [2] has a far-flung survey of reg(A4) and adeg(A) in terms of the
degree data of a presentation A = k[z1,...,z,]/I.

Stanley—Reisner rings
An important class of rings arises from monomial ideals generated by squarefree
elements. They are elegantly coded in the following notion.

Definition 1.8. A simplicial complex A on vertex set V is a family of subsets of V/
satisfying

1. If z € V then {z} € A;

2. If F € A and G C F then G € A.

The elements of A are called faces or simplices. If |F| = p+1 then F has dimension
p. We define the dimension of the complex as dim(A) = maxpea (dimF).

Definition 1.9. Given any field & and any simplicial complex A on the finite vertex
set V.= {x1,..., x,} define the face ring or Stanley-Reisner ring k[A] by

E[A] = klx1, ..., zn]/1A,
where
In = (s @iy - @y, | 11 <i2<...<ip and {xi,..., 2 F € D).

We need only consider the minimal non-faces of A to arrive at a set of generators
for Ia.
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Let f, be the number of p-simplices. Since § € A and dim@ = —1, f_; =
1. Also fo is the number of vertices, thus fy = n. We call the d-tuple f(A) =
(fo,---, fa—1), consisting of the number of faces in each dimension, the f-vector
of A. The Hilbert series of k[A\] is determined entirely by f(A),

ho + hit + -+ + hgt?
Hk[A] (t) = (1 — t)d

where the h; are certain linear combinations of the f;, in particular

ha = (=) (x(8) = 1), x(&) = Z(—l)ifzw (7)

We quote two elementary facts about these rings (see [6]).

Proposition 1.10. Let A be a simplicial complex on the vertex set V. = {xq,...,
xn}. Then:

(a) dimk[A] =1+dimA =d.

(b) IA = ﬂF(’inl, e ,SCiT,ZL'ij ¢ F)

As a consequence we have that

gdeg(k[A]) = adeg(k[A]) = number of maximal faces of A;

deg(k[A]) = number of faces of A of maximal dimension.

Computation of the arithmetic degree of a module

We show how a program with the capabilities of CoCoA ([7]) or Macaulay ([3])
can be used to compute the arithmetic degree of a graded module M without
availing itself of any primary decomposition. Let S = k[z1,... ,2,] and suppose
dim M = d < n. It suffices to construct graded modules M;, i =1...n, such that

ai(M) = deg(M).

For each integer ¢ > 0, denote L; = Extfq(M ,S). By local duality ([6, Section
3.5]), a prime ideal p C S of height ¢ is associated to M if and only if (L;), # 0;
furthermore ¢((L;),) = mult(p).

We are set to find a path to adeg(M): Compute for each L; its degree e1(L;)
and codimension ¢;. Then choose M; according to

0 ife; >4
M; = { L; otherwise.

Proposition 1.11. For a graded S—-module M and for each integer i denote by c;
the codimension of Exts(M, S). Then

adeg(M) = | * | deg(Bxt (11, 5)) (®)

i=0
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This can also be expressed as

adeg(M) = _ deg(Extly(Ext (M, 5), 5)). (9)
i=0
Note that this formula (one sets [§] = 1) gives a sum of sums of terms some
of which are not always available.

Degrees and hyperplane sections

Definition 1.12. Let k be a field and let A be a finitely generated N-graded k-
algebra,

A=k+ A1+ -+ A4, +---.

A is a standard algebra if it is generated by its elements of degree 1, that is
A; = (A1), A hyperplane section h of A is a form in A; that is not contained in
any minimal prime of A (sometimes stricter conditions are imposed).

If k£ is an infinite field, most elements of A; are hyperplane sections. A fruitful
method to probe A is to compare the properties of A with those of A/(h) for some
hyperplane section h.

Theorem 1.13. Let (R, m) be a Noetherian local ring of dimension d > 0 and let M
be a finitely generated R—module. Let x € m and consider the short exact sequence
induced by multiplication by x,

0—-L—M-"5M-—G-—0.
If L is a module of finite length, then ((H(G)) > ¢(L). Moreover, if d = 1 then
U(Hy(G)) = €(L) + £(M [z M),
where M = M /torsion.
Note that the last formula follows immediately if M decomposes into a direct
sum of a torsionfree plus torsion summands. In case R is a standard graded algebra

over a field of characteristic zero, the first assertion is contained in the refined
statement of [19, Proposition 3.5].

Arithmetic degree and hyperplane sections
To examine the critical behavior of adeg(M) under hyperplane sections we focus
on the following (see [2], [25], [40]):

Theorem 1.14. Let A be a standard graded algebra, let M be a graded algebra and
let h € Ay be a regular element on M. Then

adeg(M/hM) > adeg(M). (10)
Proof. We first show that if M is a finitely generated R-module and p is an

associated prime of M, then for any h € R that is regular on M, any minimal
prime P of (p,h) is an associated prime of M/hM.
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We may assume that P is the unique maximal ideal of R. Let L = I',(M);
note that we cannot have L C hM as otherwise since h is regular on M we would
have L = hL. This means that there is a mapping

R/p—)Mv

which on reduction modulo h does not have a trivial image. Since R/(p,h) is
annihilated by a power of P, its image will also be of finite length and non-trivial,
and therefore P € Ass(M/hM).

We take stock of the relationship between the associated primes of a module
M and the associated primes of M/hM, where h is a regular element on M.
According to the above, for each associated prime p of M, for which (p, h) is not
the unity ideal (which will be the case when M is a graded module and h is a
homogeneous form of positive degree) there is at least one associated prime of
M/hM containing p: any minimal prime of (p, k) will do.

There may be associated primes of M/hM, such as n, which do not arise in
this manner. We indicate this in the diagram below:

o (]
. / \ . \
In the expression for adeg(M/hM) we are going to keep apart primes such as m

(which we call associated primes of the first kind) and primes as n, which are not
minimal over (p, h), for any p € Ass(M).

Finally we consider the proof proper. For m € Ass(M/hM) of the first kind,
let

A(m) = {pla-“ 7pr}

be the set of associated primes of M such that m is minimal over each ideal (p;, h).
Note that these prime ideals have the same dimension, dim(A/m) + 1. Denote by
I the product of the p; and let L(m) = L = T';(M). We have an embedding

L/hL — M/hM

since L N hM = hL. As a consequence, multy, /7, (m) < multys/ppr(m). On the
other hand,

multL(pi) = multM(pi) (11)
for any prime in the set A(m).
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Let now
L=Ly>LiDLyD--- (12)

be a filtration of L whose factors are of the form A/q for some homogeneous prime
ideal . The number of times in which the prime p = p; occurs in the filtration is
multy, (p). Consider the effect of multiplication by & on the terms of this filtration:
By the snake lemma, we have exact sequences

0— pLiy1 — nli — nA/q — Liy1/hLiy1 — Li/hL; — A/(q,h) — 0.

Localizing at m we get sequences of modules of finite length over An,. Adding
these lengths, and taking into account the collapsing that may occur, we get

Lo/hLw) = > L((A/(2,0)m) = L(hA/Q)wm), (13)

where ,A/qis A / q if h € q and zero otherwise. Note that some of the g may occur
repeatedly according to the previous observation. After the localization at m only
the gq corresponding to the pi’s survive:

multL/hL(m) = Lyw/hLy) Z mult s (pi)€((A/(Pis h))m)- (14)

p;Cm
‘We thus have

adeg(M/hM) = Z mult pz/par (m) deg(A/m)

+ Z mult pz/par(n) deg(A/n)

v

Z multyz/pa (m) deg(A/m)

v

Z mult () /nL(m) (M) deg(A/m)

= Z( > multar (pi)((A/ (pi h)m)) deg(A/m) — (15)

m  p;€A(m)
= ZmultM Z E A/ P“ ) )dEg(A/m))
pi€A(m)
= ZmUItM(Pi)deg(A/Pi)
Pi
= a'deg(M)a

where in equation (15) we first used the equality (11), and then derived from each
L(m) the equality provided by the computation of multiplicities in (13) and (14),
while taking into account that

deg(A/p;) = deg(A/(pi,h) = > L((A/(pi h))m) deg(A/m),
pi€EA(m)
the last equality by [6, Corollary 4.6.8]. O
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2. Reduction Number of an Algebra

The primary goal here is to develop a number of techniques designed to help in
making predictions on the outcome of carrying out Noether normalization on a
graded algebra. It is a mix of homological and combinatorial tools assembled from
several sources. Unfortunately some of them are sensitive to the characteristic of
the field.

Let A be a finitely generated, positively graded algebra over a field &,
A=k+A +As+---=k+ Ay,
where A; denotes the space of homogeneous elements of degree i. Let
R=k[xy,... ,xq) =k[z) = A=S/I, S=k[x1,... , 24, Tds1,--- ,Zn)

be a Noether normalization, that is, the z; are algebraically independent over k
and A is a finite R—module. Let by, bo, ... ,bs be a minimal set of homogeneous
generators of A as an R—module

A= >" Rb;, deg(b;) =ri.
1<i<s

These integers are very hard to predict for which reason we focus on:

Definition 2.1. The reduction number rr(A) of A with respect to R is the supre-
mum of all deg(b;). The (absolute) reduction number r(A) is the infimum of r(A)
over all possible Noether normalizations of A.

One of our aims is to make predictions about these integers, but without
availing ourselves of any Noether normalization. We emphasize this by saying that
the Noether normalizations are invisible to us, and the information we may have
about A comes from the presentation A = S/1I.

The integer r(A) is a measure of complexity of the algebra A. It has been com-
pared to another index of complexity of A, the Castelnuovo-Mumford regularity
of A.

Castelnuovo-Mumford regularity and reduction number

Theorem 2.2. Let A be a standard graded algebra over an infinite field k and let
R — A be a standard Noether normalization. Then rr(A) < reg(A).

Proof. A more general statement is given in [35] and we content ourselves here for
algebras such as A.

Let R — A be a (graded) Noether normalization of A. From Theorem 1.5(b),
reg(A) can be determined by the degrees where the local cohomology modules
H (A) vanish: If we set

ai(A) = ay (Hy(A)) = sup{n | H,(A)n # 0},
then

reg(A) = sup{a;(A) +i}.
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Note that these modules are also given by H}(A), where p is the irrelevant maximal
ideal of R. If we now apply the definition of reg(A), to a minimal resolution of A
as an R-module, we gather that rr(A4) < reg(A). O

This result indicates why reg(A) tends to overshoot rr(A) if A is not Cohen—
Macaulay.

Hilbert function and the reduction number of an algebra
Let A be an standard graded algebra over a field k£ and let

t
HPA(t) = %, d=dimA, f(t) =14at+---+ abtb, ap #0
be its Hilbert—Poincaré series.
If A is Cohen—Macaulay, its reduction number can be read from H P4 (t),
r(A) =b.

One can still roughly estimate r(A) given HP4(t).

The number a(A) = b — d is the index of regularity or a—invariant of A: For
n > a(A), the Hilbert function of A, Ha(n), and its Hilbert polynomial, P (n),
agree (see [6, Chapter 4] for fuller details). Since P4(n) can be obtained from f(t)

and d,
Py(n) = %(_1)iei <Tl +d—i— 1) e; = f(i?(l)

. d—i—1 7l
=0

we can derive a very crude bound for r(A) from an abstract yet sharp result about
reductions given by the following theorem of Eakin and Sathaye ([10]), which we
state in our setting as follows:

Theorem 2.3. (Eakin—Sathaye) Let A be a standard graded algebra over an infinite

field k. For positive integersn and r, suppose dimy, A, < (n :_ 71> . Then there exist
21,... , 20 € Ay such that

Ap = (21, ,2:)An_1.
Moreover, if x1,...,x, € A1 are such that (z1,...,xp)" = A, then r generic
linear combinations of x1,... ,xp will define such sets.

Proposition 2.4. Let A be a standard graded algebra. It is always possible to bound
r(A) given the Hilbert series of A.

Example 2.5. Let us consider two examples. If dim A = 1, P4(n) = eg, so that

taking (”Jlrl) > e, we have

r(A) < sup{a(A4),eq — 1}.
If dim A = 2, its Hilbert polynomial is
Pa(n) =eg(n+1) —ey.
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According to the observation above, if we pick n such that

2
(n‘Qf' >>eo(n+1)—e1,

that is,
n? 4+ (3 — 2e0)n + (2 + 2e9 — 2¢;) > 0,
then
r(A) <sup{a(A4),n —1}.

Remark 2.6. It would be interesting to find similar estimations for reg(A) and
adeg(A). In other words, from the Hilbert function to predict estimates for reg(A)
and/or adeg(A4). We are not raising similar possibilities for the Hilbert polynomial.

The relation type of an algebra

Definition 2.7. Let A = k[z1,... ,z,]/I be a standard algebra over a field k. Sup-
pose that I C (z1,...,2,)?%. The relation type of A is the least integer s such that
I=(I,...,I), where I; is the ith graded component of I. We will denote it by
rt(A).

This integer rt(A) is independent of the presentation. The notion can be
extended to the cases of graded algebras over a commutative ring k.

Proposition 2.8. Let k be an infinite field and let A be a standard Cohen—Macaulay
k-algebra. Then rt(A) <r(A) + 1.

Proof. Let
R=k[z,... ,zq) = A=k[z1,... ,2,]/1

be a standard Noether normalization (degz; = 1). Since A is Cohen—Macaulay,
A = ®¢Rb, and r(A) = max,{deg(by)}.

Computing the Castelnuovo regularity reg(A) with respect to the ring R
gives reg(A) = r(A), while computing it with respect to the ring k[z1,... , 2]
gives reg(A) > rt(A) — 1. O

Remark 2.9. It is usually the case that rt(A) is much smaller than r(A). For ex-
ample, let T be a m x n matrix of distinct indeterminates, and let A = k[T};'s]/I,
where I is the ideal generated by all minors of order 2 of T. It can be shown that
r(A) = min{m,n}, while rt(A) = 2 by definition.

More general relationships between rt(A) and r(A) are not known, one diffi-
culty being that they behave differently with respect to operations such as taking
hyperplane section.
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Cayley-Hamilton theorem

From now on A is a standard graded ring and R = k[z] — A is a fixed Noether
normalization. To determine r(A), we look for equations of integral dependence of
the elements of A with respect to R.

A simple approach is to find graded R—modules on which A acts as endo-
morphisms (e.g. A itself). The most naive path to the equation is through the
Cayley—Hamilton theorem developed by G. Almkvist ([1]), working as follows. Let
FE be a finitely generated R—module and let

f:E—FE
be an endomorphism. Map a free graded module over E and lift f:
F——F
1
F——F
Let
Py(t) =det(tI +¢) =t"+---+a,

be the characteristic polynomial of ¢, n = rank(F'). By the usual Cayley-Hamilton
theorem, we have that P,(f) = 0. The drawback is that n, which is at least the
minimal number of generators of F, may be too large. One should do much better
using a trick of [1]. Lift f to a mapping from a projective resolution of E into
itself,

0 F I3 Fy FE 0
JWS J‘Pl Jtpo Jf
0 F e F Fy FE 0

and define  Py(t) = [[(P,, ()"
=0
This rational function is actually a polynomial in R[¢] ([1]). If E is a graded module
and f is homogeneous, then Py (t) is a homogeneous polynomial, deg E' = deg Py(t).

Theorem 2.10. (Cayley-Hamilton theorem) Let E be a graded module over a ring
of polynomials and let f be an endomorphism of E. If the rank of E over R is
e, P¢(t) is a monic polynomial of degree e. Moreover, if E is torsion—free over R
then Py(f) - E = 0. Furthermore, if E is a faithful A-module and f € Ay then

fe S (Z)A+.
Proof. Most of these properties are proved in [1]. Passing over to the field of
fractions of R, the characteristic polynomial of the vector space mapping

JOK:E®@K —E®K
is precisely Py(t).
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In case the module F is A itself, we do not need the device of Theorem 2.10,
as we can argue directly as follows. For v € Ay, R[u] ~ R[t]/I, where I = f - J,
height(J) > 2. But if A is torsion-free over R, R[u| will have the same property
and necessarily J = (1). This means that the rank of R[u], which is the degree of
f, is at most deg(A).

A question of independent interest is to find R—modules of small multiplicity
that afford embeddings

A — Hompg(E, E).

For example, the relationship between these multiplicities may be as large as
deg(E) = n and deg(4) = L“;J + 1 ([29]). There are however certain restric-
tions to be overcome: If the Cohen—Macaulay type of the localization of A at its
minimal primes is at most 3, then deg(E) > deg(A) (see [14]).

The arithmetic degree of an algebra versus its reduction number

The Cayley—Hamilton theorem proved above is restricted by the requirement on
the module that all associated primes have the same dimension. To be able to
overcome this, we proceed as follows. Given

p:E— E,
we show that there is a filtration by characteristic submodules
E=F, DFE,D>---DFE,=0
such that
adeg(E) =) _ deg(Ei/Eiy1),

where the factors are torsion free over appropriate subrings of a Noether normal-
ization of A/ann(E). We then combine the various characteristic polynomials.

Theorem 2.11. Let A be an affine algebra over an infinite field k, let k[z] be a
Noether normalization of A, and let M be a finitely generated graded, faithful A-
module. Then every element of A satisfies a monic equation over k[z] of degree at
most adeg(M).

Proof. Let
(O)ZLlﬂLgﬂ"'ﬁLn

be an equidimensional decomposition of the trivial submodule of M, derived from
an indecomposable primary decomposition by collecting the components of the
same dimension. If

I; = annihilator (M/L;),
then each ring A/I; is unmixed, equidimensional and

lelA/Iz > dimA/IZ‘Jrl.
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Since k is infinite, there exists a Noether normalization k[z1, ... , z4] of A such that
for each ideal I;, a subset of the {z1,..., 24} generates a Noether normalization
for A/I;.

First, we are going to check that adeg(M) can be determined by adding the
arithmetic degrees of the factors of the filtration

M>LiDLiNLyD---DLiNLyN---NLy,=(0),

at the same time that we use the Cayley—Hamilton theorem.
We write the arithmetic degree of M as
adeg(M) = ay (M) + as (M) + - + an(M),

where a;(M) is the contribution of the prime ideals minimal over I;. (Warning:
This does not mean that a;(M) = adeg(M/L;).) We first claim that (set Lo = M)

adeg(M) = "adeg(Ly M-+ N Li—1/LyN--- N Ly).

i=1

Indeed, there is an embedding

Fl:LlﬂﬂLl_l/Llr\lﬂLl%MlZM/L“

showing that F; is equidimensional of the same dimension as M;. If p is an asso-
ciated prime of I;, localizing we get (L1 N--- N L;), = (0) which shows that

Lp(Mp) CTp((L1N---N Li1)p),

while the converse is clear. This shows that the geometric degree of the module F;
is exactly the contribution of e; = a;(M) to adeg(M).

We are now ready to use Proposition 2.10 on the modules F;. Let f € A act
on each Fj. For each integer i, we have a polynomial

Pi(t) =t + et - Foce,,
with ¢; € (z)7, and such that P;(f) - F; = (0). Consider the polynomial

and evaluate it on f from left to right. As

Pi(f)-Fi =0,
meaning that P;(f) maps (L1 N---NL;_1) into (L1 N---NL;), a simple inspection
shows that Pr(f) = 0, since M is a faithful module. O

Observe that if A is a standard algebra and f is an element of A;, then Py(¢)
gives an equation of integrality of f relative to the ideal generated by z.
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Corollary 2.12. Let A be a standard graded algebra and denote
edeg(A) = inf{ adeg(M) | M faithful graded module }.

For any standard Noether normalization R of A, every element of A satisfies an
equation of degree edeg(A) over R.

Reduction equations from integrality equations
If A is an standard algebra, for a given element u € Aj, a typical equation of
reduction looks like

u® € (z)A,°7 1,

which is less restrictive than an equation of integrality. One should therefore expect
these equations to have lower degrees. Unfortunately we do not yet see how to
approach it.

The following argument shows how to pass from integrality equation to some
reduction equations, but unfortunately injects the issue of characteristic into the
fray.

Proposition 2.13. Let A = k[A4] be a standard algebra over a field k of character-
istic zero. Let R = k[z] — A be a Noether normalization, and suppose that every
element of Ay satisfies a monic equation of degree e over k[z]. Then r(A) < e—1.

Proof. Let uy,...,u, be a set of generators of A; over k, and consider the inte-
grality equation of

u:m1u1+-~-+xnun,
where the z; are elements of k. By assumption, we have
—1
u = (x1ug + -+ Tpup)’ = aut 4+ a,

where a; € (z)'. Expanding u® we obtain
Zaamauo‘ € (z) A1,
«

where o = (aq,...,a,) is an exponent of total degree e, m,, is the multinomial

. (& . . . .
coefficient ( ), and a, is the corresponding ‘monomial’ in the x;. We must show
Q

u® € (z) A5

for each a.

To prove the assertion, it suffices to show that the span of the vectors (anm.),
indexed by the set of all monomials of degree e in n variables, has the dimension
of the space of all such monomials. Indeed, if these vectors lie on a hyperplane

ZCQTQ =0,
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we would have a homogeneous polynomial

X1, X)) =) cama X®
[e%

which vanishes on k™. This means that all the coefficients c,m, are zero, and
therefore each ¢, is zero since the m, do not vanish in characteristic zero. O

3. Cohomological Degree of a Module

In this section we introduce a family of refinements of the arithmetic degree of a
module. The key property we seek is that it behaves well under generic hyperplane
section.

Big degs

Let S be either a standard graded algebra over a field or an Artinian ring, or a
local ring. For reasons of convenience, to be later lifted, S will be assumed to be
a Gorenstein ring. Denote by M(.S) the category of finitely generated S—modules
(graded in case S is a standard graded algebra).

Definition 3.1. A cohomological degree on M(S) is a numerical function
Deg(:) : M(5) — R,
satisfying the following conditions:
(i) If L = I'n(M) is the submodule of elements of finite support of M and
M = M/L, then

Deg(M) = Deg(M) + £(L), (16)

where £(+) is the ordinary length function.
(ii) (Bertini’s rule) If h € S is a regular, generic hyperplane section on M, then

Deg(M) > Deg(M/hM). (17)
(iii) (The calibration rule) If M is a Cohen-Macaulay module, then
Deg(M) = deg(M), (18)

where deg(M) is the ordinary multiplicity of the module M.

There is a great deal of independence among these conditions. We just make
some comments by defining a related function. Suppose that S is a standard graded
algebra over an infinite field. Given a finitely generated graded module M, of
dimension d, there exists a subalgebra R — S, generated by d forms of degree 1,
such that M is a finitely generated R—module. Define

Bdegp(M) =) (M),
i>0
where the 8;(M)’s are the Betti numbers of M as an R-module. The infimum,

among all such Noether ‘normalizations’ of M provide a function similar to Deg(-)
but which differs from it already in dimension 1.
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In the local case, (R,m), dimM = dim R, one takes a minimal reduction

Z1,...,xq of m (the residue field assumed infinite) and define
Kdeg(M) = ((H;(K® M)),
>0

where K is the Koszul complex on the x;. This is the usual formula for multiplicity
but with the signs ignored!

There are two main issues regarding Deg(-) functions:
e Do they exist in all dimensions?
e What are their properties?
In this section we construct one such function, according to [40]. In the next
3 sections we develop some of their properties and consider several applications,
following [9].

Dimension one
There is just one such degree in dimension at most 1.

Proposition 3.2. Let Deg(-) be a cohomological degree on M(S). Then
(i) If dim M =0, Deg(M) = ¢(M).
(ii) If dim M =1, Deg(M) = adeg(M) = deg(M) + (T (M)).

Proof. Follows directly from (16) and (18). O

This means that if (S,p) is a discrete valuation ring and M is a finitely
generated S—module,

M=5 & S/,

1<i<s
then

is taken as the full degree of M. It obviously mixes oranges and pineapples.

Homological degree of a module

To give a proper generality to the next degree to be introduced, let (R, m) be
an Artinian local ring and let A be a finitely generated, graded R algebra, A =
Ap[A1], where Ay is a finite R—algebra. Such algebras are homomorphic images of
polynomial rings S = R'[z1,...,2,] where R’ is a Gorenstein local ring which is
finite over R.

Definition 3.3. Let M be a finitely generated graded module over the graded al-
gebra A and let S be a Gorenstein graded algebra mapping onto A. Assume that
dim S =r, dim M = d. The homological degree of M is the integer

- d—1 ;
hdeg(M) = deg(M) + izéﬂ <l Cride 1) - hdeg(Extiy (M, S)). (19)
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It becomes more compact when dim M = dimS =d > 0:

d
hdeg(M) = deg(M) + Z (‘j - 11) -hdeg(Extly (M, S)). (20)

Note that hdeg(-) has been defined recursively on the dimension of the sup-
port of the module. The explanation for the binomial coefficients will appear later
when we explore this notion under the effect of hyperplane sections.

Remark 3.4. The notation deg(-) occurs also in [20] to denote an entirely distinct
notion of degree.

Dimension two
Proposition 3.5. Let M be a finitely generated S—module. If dim M = 2,
hdeg(M) = adeg(M) + £(Ext%(Exts (M, S), S)).

Proof. By definition (d — 1 =1),

hdeg(M) = deg(M) + hdeg(Ext}(M, S)) + hdeg(Ext% (M, S)).
By local duality,

(T (M) = (EXE(M, 5)),

so we only have to recognize hdeg(Extg(M,S)). But Extg(M,S) has dimension
at most 1. If the dimension is 1, hdeg(Extk(M, S)) consists of two summands, one
that represents the contributions to adeg(M) of the prime ideals to codimension

1 and of ¢(Ext%(Exts(M,S),S)). When the dimension is 0 the situation is even
simpler. O

Example 3.6. To see how the various degrees compare, let S = k[z,y, z,w], and J
an unmixed, non-Cohen-Macaulay ideal of codimension 2. Define I = (z,y, z, w)J
and A = S/I. From the sequence
0— J/ I~k — §/T— S/J—0,
the long sequence of Ext gives
adeg(A) gdeg(A) +v(J),
hdeg(A) = adeg(A) + ((Ext%(S/J,S)).
Thus hdeg(A) and adeg(A) differ by the length of the Hartshorne-Rao module
Ext%(S/J,S).
For instance, if J = (x,y) N (z,w), v(J) = 4 and Ext¥(S/.J,S) ~ k, which
gives deg(A) = gdeg(A) = 2, adeg(A) = 6 and hdeg(A) =T7.
Example 3.7. Let A = S/I, with S a Gorenstein local ring. Suppose that dim A =
2 and unmixed. It is not difficult to see that
hdeg(A) = deg(A) 4 £(A/A),

where A is the S-ification of A. We note that the module E/A is a ‘concrete’
realization of the Hartshorne-Rao module of A.
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Hyperplane section
Let R be a Gorenstein local ring, let M be an R-module and h a regular element
on it. The long exact sequence of cohomology associated to the exact sequence

0—>ML>M—>MHO

shows which aspects must be attended to.

We saw in the previous section that the modules Ext% (M, R) carried all the
information required to define adeg(M). Looking at

Exti (M, R) -5 Exth (M, R) — Ext (M, R) — Exti (M, R) - Ext ' (M, R)

shows that the action of multiplication by h on the modules M; = Ext’ (M, R)

is responsible for how adeg(M) and adeg(M/hM) fail to agree. We must there-
fore examine not just the associated primes of the M;’s but also those of their
cohomology modules. We begin by taking a look at basic features of these M;’s.

Proposition 3.8. Let R be a (locally) Gorenstein ring and let M be a finitely gener-
ated R—module. Suppose the annihilator of M has codimension r. Then the module
ExtR(M, R) is nonzero, and all of its associated primes are of codimension r.

Proof. This is a consequence of the following: If x is a R—regular sequence of length
r, contained in the annihilator of M, then

Exth(M, R) ~ Homp /(x) (M, R/ (x)),

which is the dual of a module over the Cohen—-Macaulay ring R/(x). In particular
the associated prime ideals of Ext’z(M, R) are contained in the set of associated
primes of R/(x). (Even more strongly, Exty (M, R) satisfies the condition Sy of
Serre as a module over R/(x).) O

Let us begin listing elementary properties of this hdeg(-).

Proposition 3.9. Let M be a graded module over the graded algebra A and let S be
a Gorenstein graded algebra such that S/I = A.
(a) hdeg(M) is independent of S.
(b) deg(M) < gdeg(M) < adeg(M) < hdeg(M), and equality holds throughout
if and only if M is Cohen—Macaulay.

Proof. (a) Given two Gorenstein graded algebras over R, S; and Sz, mapping onto
A, we can find another Gorenstein graded algebra S mapping onto S; and onto
Sy which means that to prove (a) we may consider the case of algebras S and S’
such that S = 5"/1.

We are going to show that up to shifts,

Extl (M, S) = Extil" (M, S'),
where r = dim S’ — dim S.

There exists a regular sequence x consisting of r homogeneous elements of
S’ contained in the ideal I, and therefore annihilating the module M.
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Before we go on with the proof, we recall

Proposition 3.10. (Rees lemma) Let R be a commutative ring, E and F R-
modules and x € R. If x is a regular element on R and F and xFE = 0, then

Ext®(E, F) ~ Exty L (B, F/xF),¥n > 1. (21)

In our case, this means that
Ext's, /0 (M, S/ (x)) = Ext§" (M, 5"),

so that we may assume that S and S’ have the same dimension.
We may further assume that dim S = dim .S’ = dim M. Let us show that in
this case,

Exts(M, S) = Extk, (M, S").
Let us begin with the right hand side of this equation. Let
E, : 0—-85 —FEy— - — Eq—0,
be an injective resolution of S’. Applying Homg/ (M, -), we get a complex
Homg (M, E,) = Homg (M, Homg/ (S, E,)) (22)

of S-modules, in which the cohomology of Homg: (S, E,) is Ext%, (S,5), that van-
ishes in all dimensions but 0, since S is a maximal Cohen—Macaulay module for
S’. It follows that Homg (S, E,) is an S—injective resolution of Homg/ (S, ") = S,
since S is a Gorenstein ring. The cohomology of both sides of (22) gives the desired
assertion.

(b) The inequalities are clear and the thenfMacaulayness of M is, by local
duality, expressed by the vanishing of all Extg (M, S) for ¢ > 0. O

Remark 3.11. By the theorem of local duality, hdeg(M) can be in the following
setting. Let R +— A be a finite homomorphism, where R is a Gorenstein algebra.
Then

Ext% (M, R) ~ Extsy(M, S),
where S is as above.

Given the recursive character of the definition of hdeg(-) it is not difficult
to extend the notion to arbitrary local rings. One passes to the completion of the
ring and uses any presentation afforded by Cohen’s structure theorem. We leave
the details to the reader.

The next properties, some of which have attached restrictions, begin to ex-
plore the means to obtain a priori estimates for these degrees.

Proposition 3.12. Let M be a graded module over the graded algebra A and let S
be a Gorenstein graded algebra such that S/I = A.
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(a) Let L = HY (M) be the submodule of M of elements with finite support. Then
hdeg(M) = hdeg(M/L) + £(L).

In particular, if dim M =1, then adeg(M) = hdeg(M).
(b) If dim M =2 and h is a regular hyperplane section on M, then

hdeg(M) > hdeg(M/hM).

Proof. We may again assume that dim S = dim M = d. Part (a) is clear since

Exty(M,S) = Exty(M/L,S), 1<i<d
Ext4(M/L,S) = 0
((Ext&(M,S)) = £(L).

To prove (b), starting from the exact sequence

0-M" MM — 0,
we obtain the long exact sequence of Ext,
0 — Homg (M, S) — Homg(M, S) — Ext5(M,S) —
Extg(M, S) — Extg(M, S) — Extz(M,S) — 0,
since Homg(M,S) = Ext%(M,S) = 0. As for the other modules of this se-
quence, both Homg(M, S) and Extg(M, S) have no embedded primes, and F =
Ext%(M, S) is a module of finite length which is the cokernel of the endomorphism
induced by multiplication by h on the module E = Ext (M, S), of Krull dimension

at most 1.
In arbitrary dimensions, we have by standard properties,

deg(Exts(M,S)) = deg(M)
= deg(M)
= adeg(Homg (M, S5)).
If dim £ = 0, since
UF) < UE),
by adding we get the assertion.
Suppose dim ¥ = 1, and let L denote its submodule of finite support and
put G = E/L. One has adeg(E) = adeg(G) + ¢(L). Consider the exact sequence,

spawned by the snake lemma, obtained by multiplication on E by h; note that it
induces endomorphisms on L and on G:

0—4L— pF—3G— L/hL — E/hE — G/hG — 0.

From above, we have that E/hE = Ext%(M, S), which is a module of finite
length, and thus G/hG has finite length as well. But G is a module of dimension
1 without embedded primes, which means that h is a system of parameters for it
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and thus must be a regular element on it; this means that ,G = 0, and therefore
£(nE) < 0o, which we take into the exact sequence

0 — Homg (M, S)/h - Homg(M, S) — Extg(M,S) — ,E — 0,
and get
deg(Homg(M, S)) = deg(Extg(M, S)),
as in the previous case. Since we also have

adeg(E) = {(L)+ deg(G)

= (L) + deg(G/hG)
> ((L/hL)+ L(G/hG)
> ((E/hE)
= uFp),
we add as earlier to prove the assertion. O

Generalized Cohen—Macaulay modules

For some special modules, Buchsbaum modules being noteworthy, it is possible
to have a more explicit expression of its homological degree. Let R be as above
and assume dim M = d. If M is a Cohen—Macaulay module on the punctured
spectrum, we have

d
hdeg(M) = deg(M)+ Z (d - 1) -hdeg(Ext% (M, R))

‘ (6? - 1)  ((Bxtyy(M, R))
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Note that the binomial term is the invariant of Stiickrad—Vogel in the theory
of Buchsbaum modules ([33, Chap. 1, Proposition 2.6]).

These modules also behave nicely under regular hyperplane sections. Indeed
suppose

0-M-LM—M-—0
is exact and consider the long exact sequence of cohomology
OHMOLMO —>M0—>M1L>M1 —>M1—>

h — h —
Moo — Mg o — Mg_o— Mgy — Mgy — Mg_1 — 0,
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where we may assume dim M = dim R = d and set M; = Ext% (M, R) and M; =
Extif (M, R).

We break up this sequence into two families of shorter sequences

0—>Ni—>Mi—>Li+1—>0

for0<i<d-1. L
If i =0, Lo = 0 and deg(M) = deg(M). For i > 1, the modules of both
sequences have finite lengths and thus
U(N;) = (L)
(M) = U(Li) + l(Lita).
As ¢(M;) > ¢(L;), we get that

O(M;) < U(M;) + £(Mig),
o d—2 .
so multiplying by | . 1 and adding we get
i—

hdeg(M) > hdeg(M/hM).

Strict equality will result if h- M; = 0, as in the case of a Buchsbaum module.
Homologically associated primes of a module
One way to look at the associated primes of a module M is as a set of visible
obstructions to carrying out on M constructions inspired from linear algebra (e.g.

building duals). Some other obstructions may only become visible when we look
at objects derived from a projective resolution of M.

Motivated by the notion of the homological degree of a graded module, we
introduce the following definition.

Definition 3.13. Let R be a Noetherian local ring and let M be a finitely generated
R—module. Suppose S is a Gorenstein local ring with a surjective morphism S — R.
The homologically associated primes of M are the prime ideals of R

h-Ass(M) = | Ass(Exti(M, S)). (23)
i>0

There remains to prove that this definition is independent of the Gorenstein
ring S. In the main case of interest, when R is a graded algebra, the independence
is assured if S is also taken graded as earlier in this section.

Definition 3.14. The prime ideals in
h-Ass(M) \ Ass(M),

are the hidden associated primes of M.
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This definition can be iterated: one can consider the associated primes of all
modules

Extd (Ext2(--- (BExt3 (M, S), S), -+, 5)).

In fact we are going to use this particular form in the main result of this section.
Note that it naturally leads to the notion of well-hidden associated prime of a
module!

Problem 3.15. Let R be a Noetherian local ring, not necessarily Gorenstein, and
let M be a finitely generated R—module. Is the set

U Ass(Ext’ (M, R))
>0

always finite?

Homological degree and hyperplane sections

Let S be a Gorenstein standard graded ring with infinite residue field and M be
a finitely generated graded module over S. We recall that a superficial element of
order r for M is an element z € S, such that 0: p;z is a submodule of M of finite
length.

Definition 3.16. A generic hyperplane section of M is an element h € Sy that is
superficial for all the iterated Exts

M, 4y i = Ext (Exti2(--- (Ext2 ™" (ExtZ (M, S), S), -, 9))),

s

and all sequences of integers i; > iz > -+ > i, > 0.

By local duality it follows that, up to shifts in grading, there are only finitely
many such modules. Actually, it is enough to consider those sequences in which
11 < dim S and p < 2dim S, which ensures the existence of such 1-forms as h.

The following result proves a case of the conjecture which will suffice for all
our applications.

Theorem 3.17. Let S be a standard Gorenstein graded algebra and let M be a
finitely generated graded module. If h € S is a regular, generic hyperplane section
then

hdeg(M) > hdeg(M/hM).

Proof. Tt will require several technical reductions. We assume that h is a regular,
generic hyperplane section for the module M which is regular on .S. We also assume
that dim M = dim S = d, and derive several exact sequences from

O—>ML>M—>N—>O. (24)

~For simplicity, we write M; = Extfg(M7 S), and in the case of N, N; =
Ext?l(N? S). (The latter because N is a module of dimension dimS — 1 and
Ni = Extg) ) (N, S/(h)).)
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Using this notation, in view of the binomial coefficients in the definition of
hdeg(+), it will be enough to show that

hdeg(N;) < hdeg(M;) + hdeg(M; 1), for ¢ > 1.

The sequence (24) gives rises to the long sequence of cohomology
0— My — My — Ny — My — My — Ny — My — - --
— Mgo — Myo— Ng—o —> Mgy — Mg—1 — Ng—1 — 0,

which are broken up into shorter exact sequences as follows:

O—>L¢—>M¢—>Z\Z—>O (25)
0— M; — M; — G; — 0 (26)

We note that all L; have finite length from the c%dition on h. For i = 0,

we have the usual relation, deg(M) = deg(N). In case M; has finite length, then
M;,G; and N; have finite length, and

hdeg(N;) = £(N;) = U(Gi) +4(Lit1)
< hdeg(M;) + hdeg(Mi1).
It is a similar relation that we want to establish for all other cases.
Proposition 3.18. Let S be a Gorenstein graded algebra and let
0—-A—B—C—=0
be an ezxact sequence of graded modules. Then
(a) If A is a module of finite length, then
hdeg(B) = hdeg(A) + hdeg(C).
(b) If C is a module of finite length, then
hdeg(B) < hdeg(A) + hdeg(C).

Proof. They are both clear if B is a module of finite length so we assume dim B =
d>1.
(a): This is immediate since deg(C') = deg(B) and the cohomology sequence
gives
Ext4(B,S) = Ext(C,S), 1<i<d-1, and
((Extd(B,S)) = ((Exti(A,S))+L(Exti(C,S9)).
(b): Similarly we have
Ext4(B,S) = Ext4(A,S), 1<i<d-—1,
and the exact sequence
0 — Ext& (B, S) — Exté '(4,5) — Ext&(C, S) — Ext%(B,S) — Ext&(4,8) — 0.
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If Ext% ' (A, S) has finite length,
hdeg(Ext% '(B,S)) < hdeg(Ext$ '(4,S9)) and
hdeg(Ext(B,S)) < hdeg(Ext4(A,S)) + hdeg(Ext%(, S)).
Otherwise, dim Extg_l(A, S)=1, and
hdeg(Ext?(4,5)) = deg(Exti (A, S)) + A(Twm(Exti (A, S))).
Since we also have
deg(Ext% (B, S)) = deg(Ext% '(4,S)), and
U(Cm(Bxt§ (B, 5)) < A(Twm(ExtE(A,5)),

we again obtain the stated bound. (|

Suppose dim M; > 1. From Proposition 3.18(b) we have
hdeg(N;) < hdeg(G;) + €(Lit1). (28)

We must now relate hdeg(G;) to deg(M;). Apply the functor 'y () to the sequence
(26) and consider the commutative diagram

0 — M, — M,; — G; — 0
T T T

0 = I'n(M;) — Ta(M;) — TI'n(G)
in which we denote by H; the image of
Lo (M;) — T'm(Gi).
Through the snake lemma, we obtain the exact sequence
0 — M; /T (M;) -2 M; /T (M;) — Gi/H; — 0. (29)
Furthermore, from (25) there is a natural isomorphism,
B2 M; /T (M;) ~ Z\Z/Fm(]\/\jz)
while from (26) there is a natural injection
M /T (M;) = M; /T (M;),
whose composite with 3 is induced by multiplication by h on M;/T'n(M;). We

may thus replace ]\Z/Fm(J\Z) by M;/T'w(M;) in (29) and take a as multiplication
by h:

0 — M;/Tm(M;) 2 M;/T(M;) — Gi/H; — 0.
Observe that since
Ext}(M; /Tw(M;), S) = Ext4(M;, S), j < dim S,

h is still a regular, generic hyperplane section for M;/T'y(M;). By induction on
the dimension of the module, we have

hdeg(M; /T (M;)) > hdeg(G;/H;).
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Now from Proposition 3.18(a), we have
hdeg(G;) = hdeg(G,/H;) + ((H;).

Since these summands are bounded, respectively, by hdeg(M;/T'w(M;)) and
(T w(M;)) (in fact, £(H;) = £(L;)), we have

hdeg(G;) < hdeg(M,; /T'w(M;)) + ¢(I'w(M;)) = hdeg(M;),

the last equality by Proposition 3.18(a) again. Finally, taking this estimate into
(28) we get

hdeg(1V;) hdeg(Gs) + ((Lit1) (30)
hdeg(M;) + hdeg(M;+1),

to establish the claim. O

<
<

Remark 3.19. That equality does not always hold is shown by the following exam-
ple. Let R = k[x,y] and M = (z,y)?. Then hdeg(M) = 4 but for any hyperplane
section h, hdeg(M/hM) = 3. To get an example of a ring one takes the idealization
of M.

We shall need the following consequence of the technical details in the proof:
Corollary 3.20. Let M and h be as above and let r be a positive integer. Then
r - hdeg(M) > hdeg(M/h"M).

Proof. We will again argue by induction on the dimension of M, keeping the
notation above on the exact sequence

0—- M M — N0

To begin with, we always have deg(M/h"M) = r - deg(M). In all of the
previous proof there are just two places where h, instead of A", has significance.
First, from (30) we have

hdeg(N;) < hdeg(G;) + £(Liz1), i > 1.

Note that L; denotes the kernel of the multiplication by A" on M;; by induction

on r and the snake lemma, ¢(L;4+1) < r-£(L;4+1). One also has
while from (29) and induction, we have that

hdeg(G;/H;) < r-hdeg(M;/Twn(M;))

= r. (hdeg(Mi) - K(Fm(MZ)))

Finally, noting that H; is a homomorphic image of I'y,(M;) (as remarked
above, tracing thru it holds that ¢(H;) = ¢(L;), which is in any event bounded by
(T (M;)) since h, and therefore A", is also a superficial element).
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Adding all pieces together,

hdeg(N;) < r-hdeg(M;) +r-€(Lit1)
—r - U(Twm(M;)) + £(H;),

which on dropping the second line and replacing ¢(L; 1) by hdeg(M;11) gives
hdeg(N;) <7 - (hdeg(M;) + hdeg(Miy1)),

and we finish as in the theorem. O

It is to be expected that a similar result holds for a generic form of degree r
but not necessarily of type h".

Remark 3.21. The arguments given show that in trying to plug the leaks that
occur in the formula for the arithmetic degree under hyperplane section

adeg(M) < adeg(M/hM),
we may have gone too far in establishing
hdeg(M) > hdeg(M/hM).

Perhaps, somewhere in-between, there exists a degree function Deg(M) that gives
equality. Although hdeg(-) fulfills the key requisite of giving a priori estimates, the
proofs show several places when degree counts may have been overstated.

Homological multiplicity of a local ring
We begin by observing that it still makes sense to define the arithmetic degree,
adeg(R), of the local ring R: In the formula (5), the multiplicity deg(R/p) of
the local ring R/p replaces deg(A/p). The geometric degree, gdeg(R), is defined
similarly, but reg(A) has no obvious extension.

In order to define hdeg(R) we must assume that R is the homomorphic image
of a Gorenstein ring if we want a more or less explicit formula.

In the general case we define hdeg(R) as hdeg(R) in view of the following
which re-states a point made earlier.

Theorem 3.22. Let R be a local ring that is a homomorphic image of a Gorenstein
ring. Then

~

hdeg(R) = hdeg(R).

Definition 3.23. Let R be a local ring that is the homomorphic image of a Goren-
stein ring. The homological multiplicity is the integer ey (R) = hdeg(R). More
generally, for any Deg(-) function, ep(R) = Deg(R).
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4. Regularity versus Cohomological Degrees

We assume throughout that R is a standard graded algebra over a field &, or a local
ring. In either case m will denote the irrelevant maximal ideal. We shall assume
also that at least one extended degree function Deg(-) has been defined. The set
of all extended degree functions will be denoted by D(R). Terminology, except for
that introduced here, will be found in [6].

Our main purpose in this section is to compare Deg(R) to the Castelnuovo

regularity of R. We begin by collecting general properties of Deg(-) functions.

Proposition 4.1. Let Deg(-) be a degree function satisfying (16), (17) and (18). Let
M be a finitely generated module.
(i) If deg(:) denotes the ordinary multiplicity as given by the Hilbert function of

M,

Deg(M) > deg(M),
with equality if and only if M is Cohen—Macaulay.
(i1) If vr(-) denotes the minimal number of generators function,
vr(M) < Deg(M).
(iii) If L is any submodule of finite length of M then
Deg(M) = Deg(M/L) + ¢(L).
(iv) D(R) is a convez set.
Proof. Most assertions following directly from the definitions or elementary prop-
erties of the multiplicity (see [6, Section 4.6]) we prove only (ii).

On induct on d = dim(M). If d = 0, Deg(M) = {(M) > vg(M). In case
d>0,if L =T(M) # 0, the condition (2) implies that it will be enough to prove
the assertion for N = M/L, a module of depth > 0. Let h be a generic hyperplane
section of M; from (3),

Deg(N) = Deg(N/hN) = vg(N/hN) = vg(N),

the second inequality follows by the induction hypothesis, and the last equality by
Nakayama lemma. O

Definition 4.2. The difference Deg(M) — deg(M) will be called (for Deg(-)) the
Cohen—Macaulay deviation of M.

Remark 4.3. We saw that if if dim R = 1, there is a single Deg(-) function on the
category of finitely generated R-modules,

Deg(M) = deg(M) + {(I'n (M)).
It follows easily that if dim R = 1, Deg(-) is semi—additive: For any exact sequence
of modules in M(R),
0—-M-—N—P—0,
Deg(N) < Deg(M) + Deg(P).
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In addition it holds that for any ideal I of R, v(I) < Deg(R). This follows
by considering the exact sequence

0—-INL—IT— ({I+L)/L—0,

where L = HQ(R). The module (I + L)/L is an ideal of the one-dimensional
Cohen-Macaulay local ring R/L, whereby deg(R/L) bounds the minimal number
of generators of any ideal.

For dim R > 2, there are several such functions. This is easy to see when
R = klz,y].

Proposition 4.4. Let M be a finitely generated R—module and let x be a generic
hyperplane section. Then
Deg(M) > Deg(M/xM) + Deg(z - T (M)).
Proof. By the choice of z, T';,(M) = 'y (M), which we denote by L. Consider the
exact sequence
0—L— M — My—0.
Multiplication by x induces by the snake lemma the exact sequence
0—-,L— M—  My— L/zL — M/xM — My/xMy — 0,
where ;M = {m € M | xm = 0}; note that ,My = 0. We have the inequalities of

degrees
Deg(M) = Deg(My) + Deg(L)
Deg(Mo/xMo) + Deg(L),

Y

while on the other hand
Deg(M/xM) = Deg(My/xMy) + Deg(L/xL)
= Deg(Mo/xMo) + Deg(L) — Deg(zL),

from which the assertion follows. O

Castelnuovo regularity
The general rules for the processing of Castelnuovo regularity are codified by the
following:

Proposition 4.5. Let (A, m) be a graded algebra and let
0—-M-—N-—P—0

be an exact sequence of graded modules and homomorphisms. Then

reg(N) < max{reg(M),reg(P)}

reg(M) < max{reg(N),reg(P)+ 1}

reg(P) < max{reg(M)—1,reg(N)}

reg(N) = max{reg(M),reg(P)}, if M has finite length.
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In particular, if N is a graded module and h is a reqular hyperplane section on N,
then
reg(N) = reg(N/hN).
Proof. It follows from the exact sequence of local cohomology
HyH(P) — Hy (M) — Hy(N) — H{ (P) — H (M),

and inspecting the degrees where the terms do not vanish. (|

The following gives a basic comparison between any Deg(+) function and the
Castelnuovo-Mumford index of regularity of a standard graded algebra.

Theorem 4.6. Let A be a standard graded algebra over an infinite field k. For any
function Deg(-), it holds

reg(A) < Deg(A).
Proof. Set d = dim A. We argue by induction on d. The case d = 0 is clear since

A is a standard algebra.
Let L = H2(A); consider the exact sequence

0L —A—A—0.

Since reg(A) = max{ reg(L),reg(A) } (see [11, Corollary 20.19(d)]), it will suffice
to show that Deg(A)—1 bounds reg(L) and reg(A). We first consider the case where
L = 0. This means A = A, when we can choose a generic hyperplane section h for
A. Since Deg(A) > Deg(A/hA) by (3) and reg(A) = reg(A/hA), we are done by
the induction hypothesis.

Suppose now that d > 1 and L # 0. We must show that L has no component
in degrees Deg(A) or higher. Let h be a generic hyperplane section and consider

the exact sequence
0—>L0—>AL>A—>Z—>O.
Taking local cohomology, we have the induced exact sequence
0— Lo — L -~ L — HO(A).
By induction, H (A) has no components in degrees higher than r = Deg(A)—
1. In particular for n > r we must have L,, = hL,,_. _
Finally, from Proposition 4.4, we have that s = ¢(hL) < Deg(A) — Deg(A).
This implies that
Lr+s+1 = h5+1Lr =0,
since the chain of submodules
hAL, D h*AL, D> --- D h*t AL, >0
has length at most s. Thus reg(L) < r + s < Deg(A), as claimed. O

What remains to be clarified is the extent by which Deg(A), particularly
hdeg(A), exceeds reg(A).
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5. Cohomological Degrees and Numbers of Generators

In this section we show how an extended degree function leads to estimates for the
number of generators of an ideal I of a Cohen—Macaulay ring R in terms of the
degrees of R/I.

Let (R, m) be a local ring and let M be a finitely generated R—module. There
are no particularly general relationship between v(M), the minimal number of
generators of M, and its ordinary multiplicity deg(M), except when M is Cohen—
Macaulay. One of these situations is ([6, Corollary 4.6.11]):

Proposition 5.1. Suppose that M is a module of generic rank rank(M) =r > 0
and let I be a minimal reduction of m. Then

LM/IM) > r-deg(R),
and equality holds if and only if M is Cohen—Macaulay.

This is useful since ¢(M/IM) is often an approximation for ¢(M/mM) =
v(M). Another instance, very far away from this context, is that of a module that
is ‘almost free’. We have here in mind the case of an m—primary ideal.

The following is a slight extension of a result of [37] and [40]:

Proposition 5.2. Let (R,m) be a Cohen—Macaulay local ring of dimension d > 0
and let M be a submodule of a free module

0—-M-—R —C—0,
such that C' has finite length. Then
v(M) <r-deg(R) + (d —1)¢(C).

Proof. We use hdeg(M) to estimate v(M). Without loss of generality, say by
passing to its completion, we may assume that R has a canonical module w.
To assemble hdeg(M), note that

EXt%(M, w) = Extgl(c, w),
which vanishes if i < d — 1 and is a module of length ¢(C) when i = d — 1. This

gives

hdeg(M) = deg(M)+ ( - 1))e

= r-deg(R) + (d - DI(C),
since deg(M) = deg(R"). Finally we use that Deg(M) > v(M), for any Deg(-)
function. O

Theorem 5.3. Let (R,m) be a Cohen—Macaulay ring of dimension d, and let I be
an ideal of codimension g > 0. If depth R/I = r, then
v(I) < deg(R)+ (g —1)Deg(R/I) + (d — g — r)(Deg(R/I) — deg(R/1))
= deg(R) + (9 — 1)deg(R/I) + (d —r — 1)(Deg(R/I) — deg(R/I)). (31)
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Proof. Without loss of generality we may assume that R has infinite residue field.
Consider the exact sequence

0—-I—R-—R/I—0.
If g = d, we are in the setting of Proposition 5.2 and we have
v(I) < deg(R) 4+ (d — 1)¢(R/I).

Thus suppose g < d and let x be a generic hyperplane section for both R/
and R. First assume that r > 0. Reducing the sequence modulo (z) gives another
sequence

0—1I/zI — R/(z) — R/(I,z) — 0, (32)

where I/xI can be identified to an ideal I’ of R’ = R/(x), with the same number
of generators as I. Furthermore, by (3) deg(R’/I') = deg(R/I) and Deg(R'/I') <
Deg(R/I). When taken in (31), any changes would only reinforce the inequality.

We may continue in this manner until we exhaust the depth of R/I. This
means that instead of (32) we have the exact sequence

0— (R/I) — I/zl — R/(x) — R/(I,z) — 0. (33)
Note that
«(R/I) C L= Hy(R/I),
and therefore £(,(R/I)) < Deg(R/I) — deg(R/I). This leads to the inequality
v(I) < v(I') + (Deg(R/1) — deg(R/I)),

where I’ is the image of I/z[ in the ring R’ = R/(x).

On the other hand, according to Proposition 4.4, Deg(R’/I") < Deg(R/I) —
Deg(zL). In particular we also have that deg(R'/I") < Deg(R/I). This means that
the reduction from the case d > g to the case d = g can be accomplished with the
addition of (d — g)(Deg(R/I) — deg(R/I)). Making use of the first reduction on r
we obtain the desired estimate. O

Remark 5.4. An elementary application is the well-known result that if both R
and R/I are regular local rings then I is generated by a regular sequence.

6. Hilbert Functions of Local Rings

Let (R, m) be a local ring of dimension d > 0 and let I be an m-primary ideal.
There are at least three graded algebras that have been used to make infinitesimal
studies of I:

R[It] = R+It+1**+---, Rees algebra of I
gr;(R) R/IGI/I?®I*/I?®---, associated graded ring of T
T(I)=Fi(m) = R/m®I/mI®I?/mI>@ -, the special fiber of R[It]
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The last two algebras come equipped with Hilbert functions whose properties
impact directly on the arithmetic of R[It]. Our aim here is to derive general bounds
for these functions, specially in the case of gr, (R).

In the Cohen-Macaulay case, bounds for Hgr(n), valid for all n, found in the
literature ([4], [5], [18], [27], [28], [30]) have tended to be too pessimistic. Here we
derive a bound that is much sharper and then extend it to arbitrary local rings.

Bounding rules
One general approach to finding estimates for the number of generators of an ideal
I of a local ring R is made up of simple rules. They seek to position [ in a diagram

I1/J<— R/J,
in which J is a Cohen-Macaulay ideal and the multiplicity of R/J is small.

Proposition 6.1. Let (R, m) be a one—dimensional local ring and let I be an ideal.
Then

v(I) < deg(R) + ((Hy (R)). (34)
Proof. Denote L = HY (R). For any ideal I, the exact sequence
0—INL—1I— I(R/L)—0

implies that it suffices to show that v(I(R/L)) < deg(R/L).

Noting that R = R/L is a Cohen—Macaulay ring of the same multiplicity as
R, we have that deg(IR) < deg(R). Since IR is a Cohen-Macaulay module, the
multiplicity bounds the number of generators. |

Another simple ‘rule’ is:

Proposition 6.2. Let I be an ideal and let J C I be a subideal such that one of the
following conditions hold:

(i) R/J is a ring of dimension one.
(i) R/J and I/J are Cohen—Macaulay modules.
Then

v(I) <v(J)+ Deg(R/J).

Note that in the two cases all the Deg(-) functions coincide.

When dim R = 2 there is the following general result to bound v(I) ([5]):

Theorem 6.3. Let (R, m) be a Cohen—Macaulay local ring of dimension 2 and mul-
tiplicity e(R). If the ideal I has an irreducible representation I = NI; in which r
of the I;’s are m—primary, then

v(I) < (1+r)e(R).
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Proof. Let z,y be a system of parameters so that deg(R) = ¢(R/(z,y)). If K is the
Koszul complex on these elements, the multiplicity of any module M of dimension
2 is given by the Euler characteristic of the complex K®Q M. In the case of I we have

deg(I) = UHy(K®I))—((Hi(K®1I))
= I/ (z,y)I) = {Tor (R/(2,y),I))

= LI/(z,y)I) — {(Tora(R/(z,y), R/T))
= UI/(z,y)I) — L(H2(K @ R/T))
= UI/(z,y)I) — {(Homg(R/(z,y), R/T)).

Since {(Homp(R/m, R/I)) = r by hypothesis and as R/(z, y) has length e(R)
it follows by the half-exactness of Hompg(-, R/I) that

((Hompg(R/(z,y), R/I)) <7 -e(R).

The assertion of the theorem follows because ¢(I/(x,y)I) > v(I) and deg(l) <
deg(R). O

Maximal Hilbert functions
We are going to use the bounding rules for other choices of the ideal J. In the case
above v(J) was very small but deg(R/J) extremely large. Our choices will seek
J’s in such a manner that the increased number of generators is more than offset
by a decrease in the multiplicity of R/.J. We are going to show one case where this
gain can be realized.

Let us recall the notion of reduction of an ideal. A reduction of an ideal I is
a subideal J C I such that I"** = JI" for some integer 7. The minimum exponent
ry(I) is called the reduction number of I with respect to J. The reductions of I
are ordered by inclusion with the smallest ones referred to as minimal reductions.
If (R,m) is a local ring with infinite residue field then every ideal I has minimal
reductions. They correspond to lifts of Noether normalizations of the algebra

T(I) =@ 1" /mI",
n>0

by forms of degree 1. The smallest reduction number attained among all minimal
reductions is called the reduction number of I; it will be noted by r(I).

We first illustrate how this setup can be used by deriving some results of [27].

Theorem 6.4. Let (R, m) be a Cohen—Macaulay ring of dimension d > 0 and let I
be an m-primary ideal such that the index of nilpotency of R/I is s. Then

v(I) < deg(R)s% ' +d—1.
Proof. Let K = (aq,...,aq) be a minimal reduction of the maximal ideal m. Set
J= (a5, ... ai ).

We have that R/J is a Cohen-Macaulay ring of dimension 1 and multiplicity
deg(R)s?!. Applying Proposition 6.2(ii), we get the assertion since v(J) = d—1.
O
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Before examining arbitrary local ring we deal with the case of Cohen—-Ma-
caulay rings.

Theorem 6.5. Let (R, m) be a Cohen—Macaulay local ring of dimension d > 1. Let
I be an m-primary ideal and s the index of nilpotency of R/I. Then

y(l)ge(R)(SZiIz)+(8;i;2). (35)

Proof. We may assume that the residue field of R is infinite. Let J = (a1, ... ,aq)
be a minimal reduction of m. By assumption, J* C I.

Set Jo = (a1,...,a4—1)%. This is a Cohen—Macaulay ideal of height d — 1,
and the multiplicity of R/.Jy is (easy exercise)

e(R/Jo) = e(R) (s ;f; 2).

Consider the exact sequence
0—1/Jo— R/Jo — R/I — 0.

We have that I/Jp is a Cohen-Macaulay ideal of the one-dimensional Cohen—
Macaulay ring R/Jy. This implies that

v(I/Jy) <e(R/Jy).
One the other hand, we have
s+d—2
V(I) < V(J0)+V(I/J0) < ( d—2 ) +€(R/J0),
to establish the claim. O

Corollary 6.6. Let (R,m) be a Cohen—Macaulay local ring of dimension d > 0.

Then for all n,
d—2 d—2
Ha(n) < e(R) (”2_1 ) + (”;_ ) > (36)

Putting the information together into the Hilbert series of T'(m) we have:

Theorem 6.7. Let (R, m) of a Cohen—Macaulay local ring of dimension d > 0 and
multiplicity e(R). The Hilbert series of R is bounded by the rational function

1+ (e(R) — 1)t
(1—t)d

The bounding it refers to is coefficient by coefficient. There is an interpre-
tation of the maximality of this function (that arose in conversation with Luisa
Doering) in terms of Sally modules. We sketch it leaving the verification of details
(and one conjecture!) to the reader.
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Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0 and let I be
an m—primary ideal. For a given minimal reduction of I, J C I, the Sally module
of I with respect to J is defined by the exact sequence ([38, Chapter 5))

0— I-R[Jt] — I - R[It] — S;(I) — 0.

The module S;(I) (including the degrees of its minimal generators) may depend on
J. However it is easy to verify that the Hilbert function ¢(S;(I),) is independent
of J.

The theorem above is equivalent to the following:

Theorem 6.8. Let J be a minimal reduction of the maximal ideal. The Hilbert
function of Sy(m) is monotonic.

Conjecture 6.9. This assertion holds for the Sally module of any m—primary ideal.

Gorenstein ideals
If R/I is a Gorenstein ring one has similar bounds.

Theorem 6.10. Let (R, m) be a Cohen—Macaulay local ring of dimension d > 1. Let
I be an m—primary irreducible ideal and let s be the index of nilpotency of R/I.

Then
s+d—3 s+d—3
1) <2 .

v <2 (504 (07 (37)
Proof. The case of dim R < 2 follows from Theorem 6.3. For higher dimension, we
use the same reduction as above with one distinction: set Jy = (a1,...,a4-2)%.
The ideal

I/Jo— R/Jo

is still irreducible, and R/Jy is a Cohen—Macaulay ring of dimension 2 and multi-
plicity

e(R/Jo) = e(R) (S ;f; 3>

Applying Theorem 6.3 again to I/Jy and adding generators as above gives the
stated estimate. ]

General local rings
We now extend Theorem 6.5 to arbitrary local rings.

Theorem 6.11. Let (R,m) be a local ring of dimension d > 0 and infinite residue
field. Let I be an m—primary ideal and let s be the index of nilpotency of R/I.
Then for any degree function Deg(-) defined on M(R), one has

v(I) < Deg(R) (8 Zf; 2) + <8 ; f; 2) . (38)
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Proof. We limit ourselves to address the points in the proof of Theorem 6.5 where
the Cohen-Macaulay condition is actually used.

First, the construction of the superficial sequence ay, ... ,aqy_1 must ensure
that they form a regular sequence at each localization R, where p is a prime
ideal of height d — 1. Since R has an infinite residue field this step is clear. Set
L= (al, v ,ad_l) and JO = L°.

Next, we claim (using the previous notation) that

s+d—2
27
We prove this by induction on s, where the case s = 1 follows from Proposition 4.4.
Since these modules have dimension at most 1, by Remark 4.3

Deg(R/L®) < Deg(R/L*™1) + Deg(L*~1/L*).

It suffices to bound Deg(L*~1/L*) by r - Deg(R) where r = (S;f?g). This however
follows from the exact sequence

0—K— (R/L) — L*'/L* =0

Deg(R/Joy) < Deg(R)(

since L¥71/L* is an R/L-module that can be generated by r elements. Further-
more, since L is a complete intersection at the primes of height d — 1, the module
K must have finite length, and therefore

Deg(L*'/L®) + Deg(K) = Deg((R/L)") = r - Deg(R/L) < r - Deg(R).
The rest of the argument is similar:
V(1) < v(L%) + v(I /1),
and from Remark 4.3 we have that the number of generators of the ideal
I1/L° — R/L?
of a one-dimensional ring is bounded by its degree Deg(R/L®). O
Bounding reduction numbers

Theorem 6.12. Let (R,m) be a Cohen—Macaulay local ring of dimension d > 0,
with infinite residue field. Then

r(m) <d-e(R)—2d+1.
Proof. We apply Theorem 6.5 to the powers of the ideal m. One has
n+d-—2 n+d—2
"< .
oy e (7307 4 (749

According to the main theorem of [10], it suffices to find n such that

r(m") < (n ; d>,

since it will imply that r(m) <n — 1.
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To this end, choose n so that

n(* 1) (1) <5)

which is equivalent with

n d—1 n+d
e(R>n+d—1+n+d—1< d -’
This inequality will be satisfied for n = d - e(R) — 2d + 2, as desired. O

Remark 6.13. By comparison, from which we may exclude the regular local ring
case, the best known estimate for the reduction number of m ([27]) is r(m) <
d'-e(R)—1.
Corollary 6.14. For any local ring (R, m) of dimension d > 0 with infinite residue
field and equipped with a degree function Deg(+), one has

r(m) < max{d-Deg(R) — 2d + 1, 0}.
Primary ideals
An as yet unsolved problem is to bound the Hilbert function of an m—primary
ideal I. In [8] there is an approach to this issue but the results are preliminary.

Here we consider the Hilbert function of T'(I), the special fiber of gr;(R). It
will suffice to give estimates for the reduction number of I.

Theorem 6.15. Let (R, m) be a Cohen—Macaulay local ring of dimensiond > 1 and
infinite residue field and let I be an m—primary ideal. Then

V(I™) < e(I) (” ;il | 2) + (n ;fg 2), (39)

where e(I) is the multiplicity of the ideal I.

Proof. The argument here is similar to the previous ones except at one place. Let

J=(a1,...,a4-1,aq) be a minimal reduction of I. Consider the embedding
I"/J5 — R/Jg,
where Jy = (a1,...,a4—1). To bound the number of generators we need a bound
on the multiplicity of R/JJ'. Since
n n+d—2
dea(r/ ) = destre/ 1) (" 7).

we only need to get hold of deg(R/Jp).
Finally, observe that

deg(R/Jy) = inf{ £(R/(Jo,x)), « regular on R/Jy },
in particular deg(R/Jo) < £(R/(Jo,aq)) = L(R/J) = e(I). O

Remark 6.16. In a similar manner, one can show that if I is an m—primary ideal
such that the index of nilpotency of R/I is s and whose multiplicity is e(I), then

r(I) <min{ d-s¥'e(R) —d—1,d-e(I) —2d+1 }.
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We may also, in analogy to ep(R), define the homological multiplicity of a
primary ideal I. We first suit up the local ring R so that it has an infinite residue
field and is the homomorphic image of a Gorenstein ring. The details are left for
the reader.

Remark 6.17. Lech ([21]) gave a rough estimate of the multiplicity e(/) in terms
of {(R/I),

e(I) < (dimR)! - e(R) - ((R/T).

It would be interesting to have an (indirect) independent proof of this formula
along with possible improvements for special ideals.

Depth conditions

The presence of good depth properties in the Rees algebra of I or on its special
fiber F'(I) cuts down these estimates for the reduction of I considerably. Let us
give an instance of this.

Theorem 6.18. Let (R, m) be an analytically equidimensional local ring with resi-
due field of characteristic zero. Let I be an m—primary ideal. Suppose that the Rees
algebra R[It] of I satisfies the condition Sy of Serre (e.g. R[It] is normal). Then
r(I) <e(I; R) — 1. (deg(gr;(R)) = e(I; R) is the multiplicity of the ideal I.)

Proof. The hypothesis implies that the associated graded ring of I,
grr(R) = R[It] ®r (R/),

has the condition Sy of Serre and is equidimensional.

Since the characteristic of the residue field R/m is zero, the Artinian ring
R/I will contain a field k& that maps onto the residue field R/m. Let k[t1,... ,tq]
be a standard Noether normalization of the special fiber F(I) = gr;(R) ® (R/m).
We can lift it to gr;(R) and therefore assume that gr;(R) is a finitely generated,
graded module over A = k[ty,... ,t4] of rank equal to the multiplicity e(I; R). As
all associated primes of gr;(R) have the same dimension, we can bound reduction
number by arithmetic degree (see [39]),

r(I) = r(gr;(R)) < adeg(gr;(R)) = deg(gr;(R)) = e(l; R),

giving the estimate. O

The following (see [35]) places a different kind of constraint on gr;(R):

Theorem 6.19. Let R be a Buchsbaum (resp. Cohen—Macaulay) local ring of dimen-
sion d > 1, let I be an m-primary ideal and suppose that depth gr;(R) > d — 1.
Then t(I) < deg(R)t?~! (resp. r(I) < deg(R)t4~t — 1), where t = nil(R/I).

Question 6.20. Let (R,m) be a local ring that is the homomorphic image of a
Gorenstein ring and let I be an ideal of R. How are ep(R[It]) and en(gr;(R))
related? (At least in case I is m—primary?)
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7. Open Questions

There are at least two sets of open problems about these degrees, those related to
comparisons of different degrees and those associated to the unknown properties
of cohomological degrees.

Bounds problems

There are several conjectures that purport to connect the various measures of
complexity of an algebra A. These questions arise from numerous examples and
special cases when one seeks to link the degree data of the algebra with multiplicity
data.

One of long-standing is ([12]):

Conjecture 7.1. (Eisenbud-Goto) If A is a standard graded domain over an alge-
braically closed field k then

reg(A) < deg(A4) — codim A + 2. (40)
A weaker question asks whether r(A) < deg(A4) — codim A + 2.

Another set of questions are about observed comparisons between the ‘de-
grees’ of an ideal and those of an initial ideal. Here is a typical one:

Conjecture 7.2. Let I be a homogeneous ideal of S = k[z1,... ,2z,] and in(I) its
initial ideal with respect to some term order. Then?
r(S/I) <r(S/in(I)). (41)

Let us display these questions and others in a diagram. The notation em-
ployed is: A = S/I, A’ = S/in(I), a solid arrow denotes an established inequality
(some only in characteristic zero), while a broken arrow signifies a conjectural one
(sometimes corrected by =+).

hdeg(A’) — — — > hdeg(A)

/ /

adeg(A") adeg

The relationship hdeg(A) > reg(A) (Theorem 4.6) is too one-sided. It would
be of interest to estimate the gap between these numbers. In low dimensions this
is done in [15].

1 Added in proof: Bresinsky and Hoa have established this conjecture for generic coordinates.
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Cohomological degrees problems
One advantage of the definition of homological degree is its localization property:

Proposition 7.3. Let M be a finitely generated module over the Noetherian local
ring R. For any prime ideal p

hdeg(M) > hdeg(M,).

Proof. From the recursive character of the definition, this only requires [26, The-
orem 40.1]. 0O

Problem 7.4. Given an arbitrary Deg(-) on M(S) and a prime ideal p C S, con-
struct a corresponding function on M(Sy).

Since hdeg(+) is given explicitly, it would be interesting if its Bertini’s condi-
tion was valid without the appeal to genericity:

Conjecture 7.5. Let M be a graded module and let A be a regular hyperplane
section. Then

hdeg(M) > hdeg(M/hM). (42)

Remark 7.6. Two general lines of investigation yet to be exploited of all of these
degrees are their behavior under linkage and the role played by Koszul homology.

Problem 7.7. Is D(A), the set of all cohomological degree functions, a convex set
of finite dimension?

Problem 7.8. Is there a function Deg(-) that can be used as an intersection of
multiplicity of pairs of modules? To use the analogy, let A be a regular local ring
and let M and N be finitely generated A—modules. What are the properties of the
function

Deg(M,N) = Z ¢iDeg(Tor (M, N)),
>0
where the ¢; are weights? How are Deg(M, N), Deg(M) and Deg(N) related? In a
Bézout embrace?
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