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Preface

This volume consists of articles contributed to the Proceedings of the International
Conference on Modules and Comodules, held in Portugal from September 6 to
September 8, 2006, and dedicated to Robert Wisbauer, on the occasion of his 65th
birthday. The conference was attended by 70 mathematicians from 26 countries
representing 6 continents, and was hosted by the University of Porto.

The first article in this volume is by John Clark, in which he reflects on
Robert’s career and his influence on Modern Algebra, in particular Module Theory.
The articles that follow reflect Robert’s wide interests. These include topics in the
formal Theory of Modules bordering on Category Theory, in Ring Theory, in Hopf
Algebras and Quantum Groups, and in Corings and Comodules. Some of these
fields have a long established tradition, whereas others have emerged in recent
years. To all of them Robert has made significant contributions and proved to be
their untiring ambassador.

Many of the contributing articles have been written by Robert’s students and
collaborators. The enthusiasm with which they embraced the idea of organising a
conference for Robert and wrote articles dedicated specially to him, bears testi-
mony to Robert’s role in the development of Modern Algebra. They also testify to
Robert’s extreme friendliness, openness and helpfulness to all.

We would like to take this opportunity to thank all the local organisers of
the meeting, who created such a stimulating working atmosphere and an exciting
social programme in the beautiful surroundings of Porto. Special thanks go to
Christian Lomp for his personal involvement in organising the conference and in
editing the current volume. Without his enthusiasm, hard work and dedication,
the conference and this volume would not have been possible.

Finally we would like to wish Robert many happy returns. We hope he will
derive great pleasure in reading the articles contained in this volume and dedicated
to him.

Editors:
Tomasz Brzeziński (Swansea)
José Luis Gómez Pardo (Santiago de Compostela)
Ivan Shestakov (São Paulo)
Patrick Smith (Glasgow)
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Centro de Matemática da Universidade do Porto

through the
Programa Operacional Ciência e Inovação 2010
(POCI2010)

The organizers of the conference would like to thank the following institutions for
their support:
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Robert Wisbauer

John Clark

Robert Wisbauer retires this year after a long, distinguished and energetic career in
algebra. Born and raised in Bavaria, close to the border with Czechoslovakia, after
his undergraduate years in Würzburg Robert moved to the University of Düsseldorf
and obtained his doctorate there in 1971. He has been with the Mathematics
Institute in Düsseldorf ever since. Well, not quite “ever since” because in the last
25 years Robert has certainly done a lot of travelling. Indeed, during that time
he has acted as a roving ambassador for module theory and non-associative rings,
spreading their gospel to the four corners of the world and, in particular, developing
collaborations and encouraging young up-and-coming algebraists around the globe.
Of course, he was only able to do this so effectively because of his considerable
language skills and, more importantly, his vast knowledge of and enthusiasm for
his subject.

Perhaps his enthusiasm and love of travel began with a year of study at the
University of Edinburgh during his student days. Then, with his PhD completed,
he visited the University of Moscow as an exchange scientist in 1973 and from this
grew a lasting, working friendship with algebraists from the USSR. In 1978, he
spent some time at the University of Nantes and this encouraged him to develop
bilateral programmes which later included Spanish mathematicians. We could con-
tinue listing his visits abroad and the beneficial effects these had, but instead we
emphasize that the traffic was by no means one way – he has proved a generous,
ever-friendly host in Düsseldorf to a large number of algebraists, both already es-
tablished and those in the early stages of their careers (including several doctoral
students).

We have already alluded to the enviable knowledge he has of his subject. This
is most evidenced by his 1991 text “Foundations of Modules and Ring Theory”.
Its subtitle “A Handbook for Study and Research” describes it aptly, with over 250
citations listed in the Science Citation Index as evidence of how useful the “Foun-
dations” has been to the module-theoretic community. Of course, “Foundations”
also brought to the fore Robert’s beloved σ[M ], the category of R-modules sub-
generated by a fixed module M over a given ring R. A substantial part of Robert’s
legacy will be due to his tenet that much can be done, with more effect, if one



xii J. Clark

can recast a problem or property in σ[M ] from its setting in the (usually) larger
category of all R-modules.

But of course, there’s much more to his legacy than “Foundations”. Indeed
he has nigh on 100 publications, including six monographs, with more than 40
coauthors (from all continents). Consequently, his retirement certainly deserves
attention and it is indeed fitting to have a conference to acknowledge his out-
standing career. It is hoped that his retirement will not curb his travel, (but it has
been said that the moon may soon be his only travel destination left, perhaps a
lunar modules mission).

John Clark
Department of Mathematics and Statistics
University of Otago
Dunedin, PO Box 56
New Zealand
e-mail: jclark@maths.otago.ac.nz
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Injective Morita Contexts (Revisited)

J.Y. Abuhlail and S.K. Nauman

Dedicated to Prof. Robert Wisbauer

Abstract. This paper is an exposition of the so-called injective Morita con-
texts (in which the connecting bimodule morphisms are injective) and Morita
α-contexts (in which the connecting bimodules enjoy some local projectiv-
ity in the sense of Zimmermann-Huisgen). Motivated by situations in which
only one trace ideal is in action, or the compatibility between the bimodule
morphisms is not needed, we introduce the notions of Morita semi-contexts
and Morita data, and investigate them. Injective Morita data will be used
(with the help of static and adstatic modules) to establish equivalences be-
tween some intersecting subcategories related to subcategories of categories of
modules that are localized or colocalized by trace ideals of a Morita datum.
We end up with applications of Morita α-contexts to ∗-modules and injective
right wide Morita contexts.

1. Introduction

Morita contexts, in general, and (semi-)strict Morita contexts (with surjective con-
necting bilinear morphisms), in particular, were extensively studied and developed
exponentially during the last few decades (e.g., [AGH-Z1997]). However, we sin-
cerely feel that there is a gap in the literature on injective Morita contexts (i.e.,
those with injective connecting bilinear morphisms). Apart from the results in
[Nau1994-a], [Nau1994-b] (where the second author initially explored this notion)
and from an application to Grothendieck groups in the recent paper ([Nau2004]),
it seems that injective Morita contexts were not studied systematically at all.

We noticed that in several results of ([Nau1993], [Nau1994-a] and [Nau1994-b])
that are related to Morita contexts, only one trace ideal is used. Observing this fact,
we introduce the notions of Morita semi-contexts and Morita data and investigate
them. Several results are proved then for injective Morita semi contexts and/or
injective Morita data.
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Consider a Morita datum M = (T, S, P,Q, 〈, 〉T , 〈, 〉S), with not necessarily
compatible bimodule morphisms 〈, 〉T : P ⊗S Q → T and 〈, 〉S : Q ⊗T P → S.
We say that M is injective, iff 〈, 〉T and 〈, 〉S are injective, and to be a Morita
α-datum, iff the associated dual pairings Pl := (Q, TP ), Pr := (Q,PS), Ql := (P,
SQ) and Qr := (P,QT ) satisfy the α-condition (which is closely related to the
notion of local projectivity in the sense of Zimmermann-Huisgen [Z-H1976]). The
α-condition was introduced in [AG-TL2001] and further investigated by the first
author in [Abu2005].

While (semi-)strict unital Morita contexts induce equivalences between the
whole module categories of the rings under consideration, we show in this pa-
per how injective Morita (semi-)contexts and injective Morita data play an im-
portant role in establishing equivalences between suitable intersecting subcate-
gories of module categories (e.g., intersections of subcategories that are local-
ized/colocalized by trace ideals of a Morita datum with subcategories of static/ ad-
static modules, etc.). Our main applications, in addition to equivalences related to
the Kato-Ohtake-Müller localization-colocalization theory (developed in [Kat1978],
[KO1979] and [Mül1974]), will be to ∗-modules (introduced by Menini and Orsatti
[MO1989]) and to right wide Morita contexts (introduced by F. Castaño Iglesias
and J. Gómez-Torrecillas [C-IG-T1995]).

Most of our results will be stated for left modules, while deriving the “dual”
versions for right modules is left to the interested reader. Moreover, for Morita
contexts, some results are stated/proved for only one of the Morita semi-contexts,
as the ones corresponding to the second semi-context can be obtained analogously.
For the convenience of the reader, we tried to make the paper self-contained,
so that it can serve as a reference on injective Morita (semi-)contexts and their
applications. In this respect, and for the sake of completeness, we have included
some previous results of the authors that are (in most cases) either provided with
new shorter proofs, or are obtained under weaker conditions.

This paper is organized as follows: After this brief introduction, we give in
Section 2 some preliminaries including the basic properties of dual α-pairings,
which play a central role in rest of the work. The notions of Morita semi-contexts
and Morita data are introduced in Section 3, where we clarify their relations
with the dual pairings and the so-called elementary rngs. Injective Morita (semi-
)contexts appear in Section 4, where we study their interplay with dual α-pairings
and provide some examples and a counter-example. In Section 5 we include some
observations regarding static and adstatic modules and use them to obtain equiv-
alences among suitable intersecting subcategories of modules related to a Morita
(semi-)context. In the last section, more applications are presented, mainly to
subcategories of modules that are localized or colocalized by a trace ideal of an
injective Morita (semi-)context, to ∗-modules and to injective right wide Morita
contexts.
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2. Preliminaries

Throughout, R denotes a commutative ring with 1R �= 0R and A,A′, B,B′ are
unital R-algebras. We have reserved the term “ring” for an associative ring with a
multiplicative unity, and we will use the term “rng” for a general associative ring
(not necessarily with unity). All modules over rings are assumed to be unitary,
and ring morphisms are assumed to respect multiplicative unities. If T and S are
categories, then we write T < S (T ≤ S) to mean that T is a (full) subcategory
of S, and T ≈ S to indicate that T and S are equivalent.

Rngs and their modules

2.1. By an A-rng (T, µT ), we mean an (A,A)-bimodule T with an (A,A)-bilinear
morphism µT : T ⊗A T → T , such that µT ◦ (µT ⊗A idT ) = µT ◦ (idT ⊗A µT ).
We call an A-rng (T, µT ) an A-ring, iff there exists in addition an (A,A)-bilinear
morphism ηT : A → T , called the unity map, such that µT ◦ (ηT ⊗A idT ) = ϑlT and

µT ◦ (idT ⊗A ηT ) = ϑrT (where A ⊗A T
ϑl

T
 T and T ⊗A A
ϑr

T
 T are the canonical
isomorphisms). So, an A-ring is a unital A-rng; and an A-rng is (roughly speaking)
an A-ring not necessarily with unity.

2.2. A morphism of rngs (ψ : δ) : (T : A) → (T ′ : A′) consists of a morphism of
R-algebras δ : A → A′ and an (A,A)-bilinear morphism ψ : T → T ′, such that
µT ′ ◦ χ

(A,A′)
(T ′,T ′) ◦ (ψ ⊗A ψ) = ψ ◦ µT (where χ

(A,A′)
(T ′,T ′) : T ′ ⊗A T ′ → T ′ ⊗A′ T ′ is

the canonical map induced by δ). By RNG we denote the category of associative
rngs with morphisms being rng morphisms, and by URNG < RNG the (non-full)
subcategory of unital rings with morphisms being the morphisms in RNG which
respect multiplicative unities.

2.3. Let (T, µT ) be an A-rng. By a left T -module we mean a left A-module N
with a left A-linear morphism φNT : T ⊗A N → N, such that φNT ◦ (µT ⊗A idN ) =
φNT ◦ (idT ⊗A φNT ). For left T -modules M,N, we call a left A-linear morphism
f : M → N a T -linear morphism, iff f(tm) = tf(m) for all t ∈ T. The category of
left T -modules and left T -linear morphisms is denoted by TM. The category MT

of right T -modules is defined analogously. Let (T : A) and (T ′ : A′) be rngs. We
call an (A,A′)-bimodule N a (T, T ′)-bimodule, iff (N,φNT ) is a left T -module and
(N,φNT ′ ) is a right T ′-module, such that φNT ′ ◦ (φNT ⊗A′ idT ′) = φNT ◦ (idT ⊗A φNT ′).
For (T, T ′)-bimodules M,N, we call an (A,A′)-bilinear morphism f : M → N
(T, T ′)-bilinear, provided f is left T -linear and right T ′-linear. The category of
(T, T ′)-bimodules is denoted by TMT ′ . In particular, for any A-rng T, a left (right)
T -module M has a canonical structure of a unitary right (left) S-module, where
S := End(TM)op (S := End(MT )); and moreover, with this structure M becomes
a (T, S)-bimodule (an (S, T )-bimodule).

Remark 2.1. Similarly, one can define rngs over arbitrary (not-necessarily uni-
tal) ground rngs and rng morphisms between them. Moreover, one can define
(bi)modules over such rngs and (bi)linear morphisms between them.
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Notation 2.4. Let T be an A-rng. We write TU (UT ) to denote that U is a left
(right) T -module. For a left (right) T -module TU, we consider the set ∗U :=
HomT−(U, T ) (U∗ := Hom−T (U, T )) of all left (right) T -linear morphisms from U
to T with the canonical right (left) T -module structure.

Generators and cogenerators

Definition 2.1. Let T be an A-rng. For a left T -module TU consider the following
subclasses of TM :

Gen(TU) := {TV | ∃ a set Λ and an exact sequence U (Λ) → V → 0};
Cogen(TU) := {TW | ∃ a set Λ and an exact sequence 0 →W → UΛ};
Pres(TU) := {TV | ∃ sets Λ1,Λ2 and

an exact sequence U (Λ2) → U (Λ1) → V → 0};
Copres(TU) := {TW | ∃ sets Λ1,Λ2 and

an exact sequence 0 →W → UΛ1 → UΛ2};

A left T -module in Gen(TU) (respectively Cogen(TU), Pres(TU), Copres(TU)) is
said to be U -generated (respectively U -cogenerated, U -presented, U -copresented).
Moreover, we say that TU is a generator (respectively cogenerator, presentor,
copresentor), iff Gen(TU) = TM (respectively Cogen(TU) = TM, Pres(TU) =
TM, Copres(TU) = TM).

Dual α-pairings

In what follows we recall the definition and properties of dual α-pairings introduced
in [AG-TL2001, Definition 2.3.] and studied further in [Abu2005].

2.5. Let T be an A-rng. A dual left T -pairing Pl = (V, TW ) consists of a left T -
module W and a right T -module V with a right T -linear morphism κPl

: V → ∗W
(equivalently a left T -linear morphism χPl

: W → V ∗). For dual left pairings Pl =
(V, TW ), P′

l = (V ′, T ′W ′), a morphism of dual left pairings (ξ, θ) : (V ′,W ′) →
(V,W ) consists of a triple

(ξ, θ : ς) : (V, TW ) → (V ′, T ′W ′),

where ξ : V → V ′ and θ : W ′ → W are T -linear and ς : T → T ′ is a morphism
of rngs, such that considering the induced maps 〈, 〉T : V ×W → T and 〈, 〉T ′ :
V ′ ×W ′ → T ′ we have

〈ξ(v), w′〉T ′ = ς(〈v, θ(w′)〉T ) for all v ∈ V and w′ ∈ W ′. (1)

The dual left pairings with the morphisms defined above build a category, which we
denote by Pl. With Pl(T ) ≤ Pl we denote the full subcategory of dual T -pairings.
The category Pr of dual right pairings and its full subcategory Pr(T ) ≤ Pr of dual
right T -pairings are defined analogously.

Remark 2.2. The reader should be warned that (in general) for a non-commutative
rng T and a dual left T -pairing Pl = (V, TW ), the following map induced by the
right T -linear morphism κPl

: V → ∗W :

〈, 〉T : V ×W → T, 〈v, w〉T := κPl
(v)(w)
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is not necessarily T -balanced, and so does not induce (in general) a map V ⊗TW →
T. In fact, for all v ∈ V, w ∈ W and t ∈ T we have

〈vt, w〉 = κPl
(vt)(w) = [κPl

(v)t](w) = [κPl
(v)(w)]t = 〈v, w〉T t;

〈v, tw〉 = κPl
(v)(tw) = t[κPl

(v)(w)] = t〈v, w〉T .

2.6. Let T be an A-rng, N,W be left T -modules and identify NW with the set of
all mappings from W to N. Considering N with the discrete topology and NW with
the product topology, the induced relative topology on HomT−(W,N) ↪→ NW is
a linear topology (called the finite topology), for which the basis of neighborhoods
of 0 is given by the set of annihilator submodules:

Bf (0) := {F⊥(HomT−(W,N)) | F = {w1, . . . , wk} ⊂ W is a finite subset},
where

F⊥(HomT−(W,N)) := {f ∈ HomT−(W,N)) | f(W ) = 0}.

2.7. Let T be an A-rng, Pl = (V, TW ) a dual left T -pairing and consider for every
right T -module UT the following canonical map

αPl

U : U ⊗T W → Hom−T (V, U),
∑

ui ⊗T wi �→ [v �→
∑

ui〈v, wi〉T ]. (2)

We say that Pl = (V, TW ) ∈ Pl(T ) satisfies the left α-condition (or is a dual

left α-pairing), iff αPl

U is injective for every right T -module UT . By Pαl (T ) ≤
Pl(T ) we denote the full subcategory of dual left T -pairings satisfying the left α-
condition. The full subcategory of dual right α-pairings Pαr (T ) ≤ Pr(T ) is defined
analogously.

Definition 2.2. Let T be an A-rng, Pl = (V, TW ) be a dual left T -pairing and
consider

κPl
: V → ∗W and αPl

V : V ⊗T W → End(VT ).

We say Pl ∈ Pl(T ) is
dense, iff κPl

(V ) ⊆ ∗W is dense (w.r.t. the finite topology on ∗W ↪→ TW );

injective (resp. semi-strict, strict), iff αPl

V is injective (resp. surjective, bijective);

non-degenerate, iff V
κPl
↪→ ∗W and W

χPl
↪→ V ∗ canonically.

2.8. Let T be an A-rng. We call a T -module W locally projective (in the sense of
B. Zimmermann-Huisgen [Z-H1976]), iff for every diagram of T -modules

0 �� F

g′◦ι ��

ι �� W
g

���
��

��
��

�

g′

��
L π

�� N �� 0

with exact rows and finitely generated T -submodule F ⊆ W : for every T -linear
morphism g : W → N, there exists a T -linear morphism g′ : W → L, such that
g ◦ ι = π ◦ g′ ◦ ι.
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For proofs of the following basic properties of locally projective modules and
dual α-pairings see [Abu2005] and [Z-H1976]:

Proposition 2.1. Let T be an A-ring and Pl = (V, TW ) ∈ Pl(T ).

1) The left T -module TW is locally projective if and only if (∗W,W ) is an α-
pairing.

2) The left T -module TW is locally projective, iff for any finite subset {w1, . . . ,

wk} ⊆ W, there exists {(fi, w̃i)}ki=1 ⊂ ∗W ×W such that wj =
k∑

i=1

fi(wj)w̃i

for all j = 1, . . . , k.
3) If TW is locally projective, then TW is flat and T -cogenerated.
4) If Pl ∈ Pαl (T ), then TW is locally projective.
5) If TW is locally projective and κP (V ) ⊆ ∗W is dense, then Pl ∈ Pαl (T ).
6) Assume TT is an injective cogenerator. Then Pl ∈ Pαl (T ) if and only if TW

is locally projective and κPl
(V ) ⊆ ∗W is dense.

7) If T is a QF ring, then Pl ∈ Pαl (T ) if and only if TW is projective and

W
χPl
↪→ V ∗.

The following result completes the nice observation [BW2003, 42.13.] about
locally projective modules:

Proposition 2.2. Let T be a ring, TW a left T -module, S := End(TW )op and
consider the canonical (S, S)-bilinear morphism

[, ]W : ∗W ⊗T W → End(TW ), f ⊗T w �→ [w̃ �→ f(w̃)w].

1) TW is finitely generated projective if and only if [, ]W is surjective.
2) TW is locally projective if and only if Im([, ]W ) ⊆ End(TW ) is dense.

Proof. 1) This follows by [Fai1981, 12.8.].

2) Assume TW is locally projective and consider for every left T -module N the
canonical mapping

[, ]WN :∗ W ⊗T N → HomT (W,N), f ⊗T n �→ [w̃ �→ f(w̃)n].

It follows then by [BW2003, 42.13.], that Im([, ]WN ) ⊆ HomT (W,N) is dense. In
particular, setting N = W we conclude that Im([, ]W ) ⊆ End(TW ) is dense. On
the other hand, assume Im([, ]W ) ⊆ End(TW ) is dense. Then for every finite subset

{w1, . . . , wk} ⊆W, there exists
n∑

i=1

g̃i ⊗T w̃i ∈ ∗W ⊗T W with

wj = idW (wj) = [, ]W (
n∑

i=1

g̃i ⊗T w̃i)(wj) =
n∑

i=1

g̃i(wj)w̃i for j = 1, . . . , k.

It follows then by Proposition 2.1 2) that TW is locally projective. �
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3. Morita (semi-)contexts

We noticed, in the proofs of some results on equivalences between subcategories
of module categories associated to a given Morita context, that no use is made of
the compatibility between the connecting bimodule morphisms (or even that only
one trace ideal is used and so only one of the two bilinear morphisms is really in
action). Some results of this type appeared, for example, in [Nau1993], [Nau1994-a]
and [Nau1994-b]. Moreover, in our considerations some Morita contexts will be
formed for arbitrary associative rngs (i.e., not necessarily unital rings). These
considerations motivate us to make the following general definitions:

3.1. By a Morita semi-context we mean a tuple

mT = ((T : A), (S : B), P,Q, 〈, 〉T , I), (3)

where T is an A-rng, S is a B-rng, P is a (T, S)-bimodule, Q is an (S, T )-bimodule,
〈, 〉T : P ⊗S Q → T is a (T, T )-bilinear morphism and I := Im(〈, 〉T ) � T (called
the trace ideal associated to mT ). We drop the ground rings A,B and the trace
ideal I � T, if they are not explicitly in action. If mT (3) is a Morita semi-context
and T, S are unital rings, then we call mT a unital Morita semi-context.

3.2. Let mT =((T :A),(S :B),P,Q,〈,〉T ), mT ′ = ((T ′ : A′), (S′ : B′), P ′, Q′, 〈, 〉T ′)
be Morita semi-contexts. By a morphism of Morita semi-contexts from mT to mT ′

we mean a four fold set of morphisms

((β : δ), (γ : σ), φ, ψ) : ((T : A), (S : B), P,Q) → ((T ′ : A′), (S′ : B′), P ′, Q′),

where (β : δ) : (T : A) → (T ′ : A′) and (γ : σ) : (S : B) → (S′ : B′) are rng
morphisms, φ : P → P ′ is (T, S)-bilinear and ψ : Q → Q′ is (S, T )-bilinear, such
that

β(〈p, q〉 >T ) = 〈φ(p), ψ(q)〉T ′ for all p ∈ P, q ∈ Q .

Notice that we consider P ′ as a (T, S)-bimodule and Q′ as an (S, T )-bimodule with
actions induced by the morphism of rngs (β : δ) and (γ : σ). By MSC we denote
the category of Morita semi-contexts with morphisms defined as above, and by
UMSC < MSC the (non-full) subcategory of unital Morita semi-contexts.

Morita semi-contexts are closely related to dual pairings in the sense of
[Abu2005]:

3.3. Let (T, S, P,Q,<,>T ) ∈ MSC and consider the canonical isomorphisms of
Abelian groups

Hom(S,T )(Q, ∗P )
ξ
 Hom(T,T )(P ⊗S Q,T )

ζ
 Hom(T,S)(P,Q∗).

This means that we have two dual T -pairings Pl := (Q, TP ) ∈ Pl(T ) and Qr :=
(P,QT ) ∈ Pr(T ), induced by the canonical T -linear morphisms

κPl
:= ξ−1(〈, 〉T ) : Q → ∗P and κQr := ζ(〈, 〉T ) : P → Q∗.
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On the other hand, let (S, T,Q, P, 〈, 〉S) ∈ MSC and consider the canonical iso-
morphisms of Abelian groups

Hom(S,T )(Q,P ∗)
ξ′
 Hom(S,S)(Q⊗T P, S)

ζ′
 Hom(T,S)(P, ∗Q).

Then we have two dual S-pairings Pr := (Q,PS) ∈ Pr(S) and Ql := (P, SQ) ∈
Pl(S), induced by the canonical morphisms

κPr := ξ′−1(〈, 〉S) : Q → P ∗ and κQr := ζ′(〈, 〉S) : P → ∗Q.

3.4. By a Morita datum we mean a tuple

M = ((T : A), (S : B), P,Q, 〈, 〉T , 〈, 〉S , I, J), (4)

where the following are Morita semi-contexts:

MT :=((T :A),(S :B),P,Q,〈,〉T ,I) and MS :=((S :B),(T :A),Q,P,〈,〉S ,J) (5)

If, moreover, the bilinear morphisms 〈, 〉T : P ⊗S Q → T and 〈−, 〉S : Q⊗T P → S
are compatible, in the sense that

〈q, p〉Sq′ = q〈p, q′〉T and p〈q, p′〉S = 〈p, q〉T p′ ∀ p, p′ ∈ P, q, q′ ∈ Q, (6)

then we call M a Morita context. If T, S in a Morita datum (context) M are
unital, then we call M a unital Morita datum (context).

3.5. Let M = ((T : A), (S : B), P,Q, 〈, 〉T , 〈, 〉S) and M′ = ((T ′ : A′), (S′ :
B′), P ′, Q′, 〈, 〉T ′ , 〈, 〉S′) be Morita contexts. Extending [Ami1971, Page 275], we
mean by a morphism of Morita contexts from M to M′ a four fold set of maps

((β : δ), (γ : σ), φ, ψ) : ((T : A), (S : B), P,Q) → ((T ′ : A′), (S′ : B′), P ′, Q′),

where (β : δ) : (T : A) → (T ′ : A′), (γ : σ) : (S : B) → (S′ : B′) are rng
morphisms, φ : P → P ′ is (T, S)-bilinear and ψ : Q → Q′ is (S, T )-bilinear, such
that

β(〈p, q〉T ) = 〈φ(p), ψ(q)〉T ′ and γ(〈q, p〉S) = 〈ψ(q), φ(p)〉S′ ∀ p ∈ P, q ∈ Q.

By MC we denote the category of Morita contexts with morphisms defined as
above, and by UMC < MC the (non-full) subcategory of unital Morita contexts.

Example 3.1. If R is commutative, then any Morita semi-context (R,R, P,Q, 〈, 〉R)
yields a Morita context

(R,R, P,Q, 〈, 〉R, [, ]R),

where [, ]R := Q⊗R P 
 P ⊗R Q
〈,〉R−→ R. �

3.6. We call a Morita semi-context mT = (T, S, P,Q, 〈, 〉T ) semi-derived (derived),
iff S := End(TP )op (and Q = ∗P ). We call a Morita datum, or a Morita context,
M = (T, S, P,Q, 〈, 〉T , 〈, 〉S) semi-derived (derived), iff S = End(TP )op, or T =
End(PS) (S = End(TP )op and Q = ∗P, or T = End(PS) and Q = P ∗).
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Remark 3.1. Following [Cae1998, 1.2.] (however, dropping the condition that the
bilinear map 〈,〉T :P ⊗SQ→T is surjective), Morita semi-contexts (T,S,P,Q,〈〉T )
in our sense were called dual pairs in [Ver2006]. However, we think the terminology
we are using is more informative and avoids confusion with other notions of dual
pairings in the literature (e.g., the ones studied by the first author in [Abu2005]).
The reason for this specific terminology (i.e., Morita semi-contexts) is that every
Morita context contains two Morita semi-contexts as clear from the definition; and
that any Morita semi-context can be extended to a (not necessarily unital) Morita
context in a natural way as explained below.

Elementary rngs

In what follows we demonstrate how to build new Morita (semi-)contexts from
a given Morita semi-context. These constructions are inspired by the notion of
elementary rngs in [Cae1998, 1.2.] (and [Ver2006, Remark 3.8.]):

Lemma 3.1. Let mT := ((T : A), (S : B), P,Q, 〈, 〉T ) ∈ MSC.

1) The (T, T )-bimodule T := P ⊗S Q has a structure of a T -rng (A-rng) with
multiplication

(p⊗S q) ·T (p′ ⊗S q′) := 〈p, q〉T p′ ⊗S q′ ∀ p, p′ ∈ P, q, q′ ∈ Q,

such that 〈, 〉T : T → T is a morphism of A-rngs, P is a (T, S)-bimodule and
Q is an (S,T)-bimodule, where

(p⊗S q) ⇀ p̃ := 〈p, q〉T p̃ and q̃ ↼ (p⊗S q) := q̃〈p, q〉T .
Moreover, we have morphisms of T -rngs (A-rngs)

ψ : T → End(PS), p⊗S q �→ [p̃ �→ 〈p, q〉T p̃];
φ : T → End(SQ)op, p⊗S q �→ [q̃ �→ q̃〈p, q〉T ],

((T : A), (S : B), P,Q, idT) ∈ MSC and we have a morphism of Morita semi-
contexts

(〈, 〉T , idS , , idP , idQ) : (T, S, P,Q, idT) → (T, S, P,Q, 〈, 〉T ).

2) The (S, S)-bimodule S := Q⊗T P has a structure of an S-rng (B-rng) with
multiplication

(q ⊗T p) ·S (q′ ⊗T p′) := q〈p, q′〉T ⊗T p′

= q ⊗T 〈p, q′〉T p′ ∀ p, p′ ∈ P, q, q′ ∈ Q,

such that 〈, 〉S : S → S is a morphism of B-rngs, P is a (T,S)-bimodule and
Q is an (S, T )-bimodule, where

p̃ ↼ (q ⊗T p) := 〈p̃, q〉T p and (q ⊗T p) ⇀ q̃ := q〈p, q̃〉T .
Moreover, we have morphisms of S-rngs (B-rngs)

Ψ : S → End(TP )op, q ⊗T p �→ [p̃ �→ 〈p̃, q〉T p],
Φ : S → End(QT ), q ⊗T p �→ [q̃ �→ q〈p, q̃〉T ],

and M := ((T : A), (S : B), P,Q, 〈, 〉T , idS) is a Morita context.
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Remarks 3.2.

1. Given ((S : B), (T : A), Q, P, 〈, 〉S) ∈ MSC, the (S, S)-bimodule S := Q⊗T P
becomes an S-rng with multiplication

(q ⊗T p) ·S (q′ ⊗T p′) := 〈q, p〉Sq′ ⊗T p′ ∀ p, p′ ∈ P, q, q′ ∈ Q;

and the (T, T )-bimodule T := P ⊗S Q becomes a T -rng with multiplication

(p⊗S q) ·T (p′ ⊗S q′) := p〈q, p′〉S ⊗S q′

= p⊗S 〈q, p′〉Sq′ ∀ p, p′ ∈ P, q, q′ ∈ Q.

Analogous results to those in Lemma 3.1 can be obtained for the S-rng S and
the T -rng T.

2. Given a Morita semi-context (T, S, P,Q, 〈, 〉T ) several equivalent conditions
for the T -rng T := P ⊗S Q to be unital and the modules TP, QT to be firm
can be found in [Ver2006, Theorem 3.3.]. Analogous results can be formu-
lated for the S-rng Q⊗T P and the S-modules PS, SQ corresponding to any
(S, T,Q, P, 〈, 〉S) ∈ MSC.

Proposition 3.1.

1) Let mT = (T, S, P,Q, 〈, 〉T ) ∈ UMSC and assume the A-rng T := P ⊗S Q to
be unital. If 〈, 〉T : T → T respects unities (and mT is injective), then 〈, 〉T
is surjective (T

〈,〉T
 T as A-rings).
2) Let mS = (S, T,Q, P, 〈, 〉S) ∈ UMSC and assume the B-rng S := Q⊗S P to

be unital. If 〈, 〉S : S → S respects unities (and mS is injective), then 〈, 〉S is

surjective (S
〈,〉S
 S as B-rings).

3) Let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S) ∈ UMC and assume the rngs T := P ⊗S Q,
T, S := Q⊗S P to be unital. If 〈, 〉T : P ⊗S Q → T and 〈, 〉S : S → S respect

unities, then T
〈,〉T
 T as A-ring, S

〈,〉S
 S as B-rings and we have equivalences
of categories TM ≈ SM (and MT ≈ MS).

Proof. Assume T is unital with 1T =
∑n

i=1
pi ⊗S qi. If 〈, 〉T respects unities,

then we have
∑n

i=1
〈pi, qi〉T = 1T , and so for any t ∈ T we get t = t1T =

∑n

i=1
t〈pi, qi〉T =

∑n

i=1
〈tpi, qi〉T ∈ Im(〈, 〉T ). One can prove 2) analogously. As

for 3), it is well known that a unital Morita context with surjective connecting

bimodule morphisms is strict (e.g., [Fai1981, 12.7.]), hence T
〈,〉T
 T, S

〈,〉S
 S. The
equivalences of categories TM 
 TM ≈ SM 
 SM (and MT 
 MT ≈ MS 
 MS)
follow then by classical Morita Theory (e.g., [Fai1981, Chapter 12]). �

Definition 3.1. Let T be an A-rng, VT a right T -module and consider for every left
T -module TL the annihilator

ann⊗
L (VT ) := {l ∈ L | V ⊗T l = 0}.
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Following [AF1974, Exercises 19], we say VT is L-faithful, iff ann⊗
L (VT ) = 0; and

to be completely faithful, iff VT is L-faithful for every left T -module SL. Similarly,
we can define completely faithful left T -modules.

Under suitable conditions, the following result characterizes the Morita data,
which are Morita contexts:

Proposition 3.2. Let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S) be a Morita datum.

1) If M ∈ MC, then S
id
 S and T

id
 T as rngs.
2) Assume TP is Q-faithful and QT is P -faithful. Then M ∈ MC if and only if

S
id
 S and T

id
 T as rngs.

Proof. 1) Obvious.

2) Assume S
id
 S and T

id
 T as rngs. If p ∈ P and q, q′ ∈ Q are arbitrary, then we
have for any p̃ ∈ P :

〈q, p〉Sq′ ⊗T p̃ = (q ⊗T p) ·S (q′ ⊗T p̃) = (q ⊗T p) ·S (q′ ⊗T p̃) = q〈p, q′〉T ⊗T p̃,

hence 〈q, p〉Sq′− q〈p, q′〉T ∈ ann⊗
Q(P ) = 0 (since TP is Q-faithful), i.e., 〈q, p〉Sq′ =

q〈p, q′〉T for all p ∈ P and q, q′ ∈ Q. Assuming QT is P -faithful, one can prove
analogously that 〈p, q〉T p′ = p〈q, p′〉S for all p, p′ ∈ P and q ∈ Q. Consequently,
M is a Morita context. �

4. Injective Morita (semi-)contexts

Definition 4.1. We call a Morita semi-context mT = (T, S, P,Q, 〈, 〉T , I) :
– injective (resp. semi-strict, strict), iff 〈, 〉T : P ⊗S Q → T is injective (resp.

surjective, bijective);
– non-degenerate, iff Q ↪→ ∗P and P ↪→ Q∗ canonically;
– Morita α-semi-context, iff Pl := (Q, TP ) ∈ Pαl (T ) and Qr := (P,QT ) ∈
Pαr (T ).

Notation 4.1. By MSC
α ≤ MSC (UMSC

α ≤ UMSC) we denote the full subcategory
of (unital) Morita semi-contexts satisfying the α-condition. Moreover, we denote
by IMSC ≤ MSC (IUMSC ≤ UMSC) the full subcategory of injective (unital)
Morita semi-contexts.

Definition 4.2. We say a Morita datum (context) M = (T, S, P,Q, 〈, 〉T , 〈, 〉S , I, J) :
– is injective (resp. semi-strict, strict), iff 〈, 〉T : P ⊗S Q → T and 〈, 〉S :

Q⊗T P → S are injective (resp. surjective, bijective);
– is non-degenerate, iff Q ↪→ ∗P, P ↪→ Q∗, Q ↪→ P ∗ and P ↪→ ∗Q canonically;
– satisfies the left α-condition, iff Pl := (Q, TP ) ∈ Pαl (T ) and Ql := (P,
SQ) ∈ Pαl (S);

– satisfies the right α-condition, iff Qr :=(P,QT )∈Pαr (T ) and Pr :=(Q,PS)∈
Pαr (S);
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– satisfies the α-condition, or M is a Morita α-datum (Morita α-context), iff
M satisfies both the left and the right α-conditions.

Notation 4.2. By MC
α
l ≤ MC (UMC

α
l ≤ UMC) we denote the full subcategory

of Morita contexts satisfying the left α-condition, and by MC
α
r ≤ MC (UMC

α
r ≤

UMC) the full subcategory of (unital) Morita contexts satisfying the right α-condi-
tion. Moreover, we set MC

α := MC
α
l ∩MC

α
r and UMC

α := UMC
α
l ∩ UMC

α
r .

Lemma 4.1. Let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S , I, J) ∈ MC. Consider the Morita
semi-context MS := (S, T,Q, P, 〈, 〉S), the dual pairings Pl := (Q, TP ) ∈ Pl(T ),
Qr := (P,QT ) ∈ Pr(T ) and the canonical morphisms of rings

ρP : S → End(TP )op and λQ : S → End(QT ).

1) If Qr is injective (semi-strict), then MS is injective (ρP : S → End(TP )op

is a surjective morphism of B-rngs).
2) Assume PS is faithful and let Qr be semi-strict. Then S 
 End(TP )op

(an isomorphism of unital B-rings) and MS is strict.
3) If Pl is injective (semi-strict), then MS is injective (λQ : S → End(QT )

is a surjective morphism of B-rngs).
4) Assume SQ is faithful and let Pl be semi-strict. Then S 
 End(QT )

(an isomorphism of unital B-rings) and MS is strict.

Proof. We prove only 1) and 2), as 3) and 4) can be proved analogously.
Consider the following butterfly diagram with canonical morphisms

Q⊗T Q∗

[,]rQ

��

∗P ⊗T P

[,]lP

��

Q⊗T P

idQ⊗TκQr

����������������������

κPl
⊗T idP

�����������������������

〈,〉S

��

αQ
P

�������������
αP

Q

�������������

αQr
P

��

α
Pl
Q

		

Hom−T (∗P,Q)

(κPl
,Q)



��
��
��
��
��
��
��
��
��
��
��
��
��
�

Hom−T (Q∗, P )

(κQr ,P )

���
��

��
��

��
��

��
��

��
��

��
��

��
��

�

S

λQ

����������������������������

ρP

��																											

End(QT ) End(TP )op

(7)
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Let
∑

qi ⊗T pi ∈ Q⊗T P be arbitrary. For every p̃ ∈ P we have
[(

κQr , P ) ◦ αQP
)(∑

qi ⊗T pi

)]
(p̃) =

∑
〈p̃, qi〉T pi

=
∑

p̃〈qi, pi〉S = ρP

(∑
〈qi, pi〉S

)
(p̃) = (ρP ◦ 〈, 〉S)

(∑
qi ⊗T pi

)
(p̃),

i.e., αQr

P := (κQr , P ) ◦ αQP = ρP ◦ 〈, 〉S ; and

[, ]lP ◦ (κPl
⊗T idP ))

(∑
qi ⊗T pi

)]
(p̃) =

∑
κPl

(qi)(p̃)pi =
∑

〈p̃, qi〉T pi

=
∑

p̃〈qi, pi〉S = ρP

(∑
〈qi, pi〉S

)
(p̃) =

[
(ρP ◦ 〈, 〉S)

(∑
qi ⊗T pi

)]
(p̃),

i.e., [, ]lP ◦ (κPl
⊗T idP ) = ρP ◦ 〈, 〉S . On the other hand, for every q̃ ∈ Q we have

(
(κPl

, Q) ◦ αPl

Q

)(∑
qi ⊗T pi

)
(q̃) =

∑
qi〈pi, q̃〉T

=
(∑

〈qi, pi〉S
)
q̃ = λQ

(∑
〈qi, pi〉S

)
(q̃) = (λQ ◦ 〈, 〉S)

(∑
qi ⊗T pi

)
,

i.e., αPl

Q := (κPl
, Q) ◦ αPl

Q = λQ ◦ 〈, 〉S and

(
[, ]rQ ◦ (idQ ⊗T κQr )

) (∑
qi ⊗T pi

)]
(q̃) =

∑
qiκQr (pi)(q̃) =

∑
qi〈pi, q̃〉T

=
∑

〈qi, pi〉S q̃ = λQ

(∑
〈qi, pi〉S

)
(q̃) =

[
(λQ ◦ 〈, 〉S)

(∑
qi ⊗T pi

)]
(q̃),

i.e., [, ]rQ ◦ (idQ ⊗T κQr ) = λQ ◦ 〈, 〉S . Hence Diagram (7) is commutative.

(1) Follows directly from the assumptions and the equality αQr

P = ρP ◦ 〈, 〉S .
(2) Let PS be faithful, so that the canonical left S-linear map ρP : S → End(TP )op

is injective. Assume now that Qr is semi-strict. Then ρP is surjective by 1),
whence bijective. Since rings of endomorphisms are unital, we conclude that S 

End(TP )op is a unital B-ring as well (with unity ρ−1

P (idP )). Moreover, the surjec-
tivity of αQr

P = ρP ◦ 〈, 〉S implies that 〈, 〉S is surjective (since ρP is injective), say
1S =

∑
j
〈q̃j , p̃j〉S for some {(q̃j, p̃j)}J ⊆ Q×P. For any

∑
i
qi⊗T pi ∈ Ker(〈, 〉S),

we have then
∑

i
qi ⊗T pi =

(∑
i
qi ⊗T pi

)
· 1S =

∑
i
(qi ⊗T pi) ·

(∑
j
〈q̃j , p̃j〉S

)

=
∑

i,j
qi ⊗T pi〈q̃j , p̃j〉S =

∑
i,j

qi ⊗T 〈pi, q̃j〉T p̃j

=
∑

i,j
qi〈pi, q̃j〉T ⊗T p̃j =

∑
i,j
〈qi, pi〉S q̃j ⊗T p̃j

=
∑

j
(
∑

i

〈qi, pi〉S)q̃j ⊗T p̃j = 0,

i.e., 〈, 〉S is injective, whence an isomorphism. �
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The following result shows that Morita α-contexts are injective:

Corollary 4.1. MC
α
l ∪MC

α
r ≤ IMC.

Example 4.1. Let mT =(T,S,P,Q,〈,〉T ) be a non-degenerate Morita semi-context.
If T is a QF ring and the T -modules TP, QT are projective, then by Proposition
2.1 7) Pl := (Q, TP ) ∈ Pαl (T ) and Qr := (P,QT ) ∈ Pαr (T ) (i.e., mT is a Morita α-
semi-context, whence injective). On the other hand, let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S)
be a non-degenerate Morita datum. If T, S are QF rings and the modules TP, QT ,
PS , SQ are projective, then M is a Morita α-datum (whence injective). �

Every semi-strict unital Morita context is injective (whence strict, e.g.,
[Fai1981, 12.7.]). The following example, which is a modification of [Lam1999,
Example 18.30]), shows that the converse is not necessarily true:

Example 4.2. Let T = M2(Z2) be the ring of 2 × 2 matrices with entries in Z2.

Notice that e =
[

1 0
0 0

]
∈ T is an idempotent, and that eT e 
 Z2 as rings. Set

P := Te = {
[
a′ 0
c′ 0

]
| a′, c′ ∈ Z2} and Q := eT = {

[
a b
0 0

]
| a, b ∈ Z2}.

Then P = Te is a (T, eT e)-bimodule and Q = eT is an (eT e, T )-bimodule. More-
over, we have a Morita context

Me = (T, eT e, T e, eT, 〈, 〉T , 〈.〉eTe),
where the connecting bilinear maps are

〈, 〉T : Te⊗eTe eT → T,

[
a′ 0
c′ 0

]
⊗eTe

[
a b
0 0

]
�→
[
a′a a′b
c′a c′b

]

〈, 〉eTe : eT ⊗T Te → eT e

[
a b
0 0

]
⊗T

[
a′ 0
c′ 0

]
�→
[
aa′ + bc′ 0

0 0

]
.

Straightforward computations show that 〈, 〉T is injective but not surjective (as[
1 1
1 0

]
/∈ Im(〈, 〉T )) and that 〈, 〉eTe is in fact an isomorphism. This means that

Me is an injective Morita context that is not semi-strict (whence not strict). �
Definition 4.3. Let T be a rng and I � T an ideal. For every left T -module TV
consider the canonical T -linear map

ζI,V : V → HomT (I, V ), v �→ [t �→ tv].

We say T I is strongly V -faithful, iff annV (I) := Ker(ζI,V ) := 0. Moreover, we
say I is strongly faithful, if T I is V -faithful for every left T -module TV. Strong
faithfulness of I w.r.t. right T -modules can be defined analogously.
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Remark 4.1. Let T be a rng, I � T an ideal and TU a left ideal. It’s clear that
ann⊗

U (IT ) ⊆ annU (I) := Ker(ζI,U ). Hence, if T I is strongly U -faithful, then IT is
U -faithful (which justifies our terminology). In particular, if T I is strongly faithful,
then IT is completely faithful.

Morita α-contexts are injective by Corollary 4.1. The following result gives a
partial converse:

Lemma 4.2. Let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S , I, J) ∈ MC and assume that the
Morita semi-context MS := (S, T,Q, P, 〈, 〉S , J) is injective.

1) If SJ is strongly faithful, then Qr := (P,QT ) ∈ Pαr (T ).
2) If JS is strongly faithful, then Pl := (Q, TP ) ∈ Pαl (T ).

Proof. We prove only 1), since 2) can be proved similarly. Assume MS is injective
and consider for every left T -module U the following diagram

Q⊗T U
αQr

U ��

ζJ,Q⊗T U 












 HomT−(P,U)

ψQ,U����������������

HomS−(J,Q⊗T U)

(8)

where for all f ∈ HomT−(P,U) and
∑

〈qj , pj〉S ∈ J we define

ψQ,U (f)(
∑

〈qj , pj〉S) :=
∑

qj ⊗T f(pj).

Then we have for every
∑

q̃i ⊗T ũi ∈ Q⊗T U and s =
∑

j
〈qj , pj〉S ∈ J :

(
ψQ,U ◦ αQr

U

)(∑
i
q̃i ⊗T ũi

)
(s) =

∑
j
qj ⊗T

[
αQr

U

(∑
i
q̃i ⊗T ũi

)]
(pj)

=
∑

j
qj ⊗T

∑
i
〈pj , q̃i〉T ũi] =

∑
i,j

qj ⊗T 〈pj , q̃i〉T ũi

=
∑

i,j
qj〈pj , q̃i〉T ⊗T ũi =

∑
i,j
〈qj , pj〉S q̃i ⊗T ũi

= ζJ,Q⊗TU

(∑
i
q̃i ⊗T ũi

)
(s),

i.e., diagram (8) is commutative. If SJ is strongly faithful, then Ker(ζJ,Q⊗TU ) =
annQ⊗TU (J) = 0, hence ζJ,Q⊗TU is injective and it follows then that αQr

U is injec-
tive. �
Proposition 4.1. Let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S , I, J) ∈ IMC. If T I, IT , SJ and
JS are strongly faithful, then M ∈ MC

α.

5. Equivalences of categories

In this section we give some applications of injective Morita (semi-)contexts and in-
jective Morita data to equivalences between suitable subcategories of modules aris-
ing in the Kato-Müller-Ohtake localization-colocalization theory (as developed in
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(e.g., [Kat1978], [KO1979], [Mül1974]). All rings, hence all Morita (semi-)contexts
and data, in this section are unital.

Static and adstatic modules

5.1. ([C-IG-TW2003]) Let A and B be two complete cocomplete Abelian cate-
gories, R : A → B an additive covariant functor with left adjoint L : B → A and
let

ω : LR → 1A and η : 1B → RL

be the induced natural transformations (called the counit and the unit of the ad-
junction, respectively). Related to the adjoint pair (L,R) are two full subcategories
of A and B :

Stat(R) :={X∈A|LR(X)
ωX
 X} and Adstat(R) :={Y ∈B |Y ηY
RL(Y )},

whose members are called R-static objects and R-adstatic objects, respectively.
It is evident (from definition) that we have equivalence of categories Stat(R) ≈
Adstat(R).

A typical situation, in which static and adstatic objects arise naturally is the
following:

5.2. Let T, S be rings, TUS a (T, S)-bimodule and consider the covariant functors

Hl
U := HomT (U,−) : TM → SM and Tl

U := U ⊗S − : SM → TM.

It is well known that (Tl
U ,H

l
U ) is an adjoint pair of covariant functors via the

natural isomorphism

HomT (U ⊗S M,N) 
 HomS(M,HomT (U,N)) for all M ∈ SM and N ∈ TM

and the natural transformations

ωlU : U ⊗S HomT (U,−) → 1
T M and ηlU : 1

SM → HomT (U,U ⊗S −)

yield for every TK and SL the canonical morphisms

ωlU,K : U ⊗S HomT (U,K) → K and ηlU,L : L → HomT (U,U ⊗S L). (9)

We call the Hl
U -static modules U -static w.r.t. S and set

Statl(TUS) := Stat(Hl
U ) = {TK | U ⊗S HomT−(U,K)

ωl
U,K
 K};

and the Hl
U -adstatic modules U -adstatic w.r.t. S and set

Adstatl(TUS) := Adstat(Hl
U ) = {SL | L

ηl
U,L
 HomT−(U,U ⊗S L)}.

By [Nau1990a] and [Nau1990b], there are equivalences of categories

Statl(TUS) ≈ Adstatl(TUS). (10)
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On the other hand, one can define the full subcategories Statr(TUS) ≈
Adstatr(TUS) :

Statr(TUS) := {KS | Hom−S(U,K)⊗T U 
 K};
Adstatr(TUS) := {LT | L 
 Hom−S(U,L⊗T U)}.

In particular, setting

Stat(TU) := Statl(TUEnd(TU)op); Adstat(TU) := Adstatl(TUEnd(TU)op );
Stat(US) := Statr(End(SU)US); Adstat(US) := Adstatr(End(SU)US),

there are equivalences of categories:

Stat(TU) 
 Adstat(TU) and Stat(US) 
 Adstat(US). (11)

Remark 5.1. The theory of static and adstatic modules was developed in a series
of papers by the second author (see the references). They were also considered by
several other authors (e.g., [Alp1990], [CF2004]). For other terminologies used by
different authors, the interested reader may refer to a comprehensive treatment of
the subject by R. Wisbauer in [Wis2000].

Intersecting subcategories

Several intersecting subcategories related to Morita contexts were introduced in
the literature (e.g., [Nau1993], [Nau1994-b]). In what follows we introduce more
and we show that many of these coincide, if one starts with an injective Morita
semi-context. Moreover, other results on equivalences between some intersecting
subcategories related to an injective Morita context will be reframed for arbitrary
(not necessarily compatible) injective Morita data.

Definition 5.1.

1) For a right T -module X, a T -submodule X ′ ⊆ X is called K-pure for some
left T -module TK, iff the following sequence of Abelian groups is exact

0 → X ′ ⊗T K → X ⊗T K → X/X ′ ⊗T K → 0;

2) For a left T -module Y, a T -submodule Y ′ ⊆ Y is called L-copure for some
left T -module TL, iff the following sequence of Abelian groups is exact

0 → HomT (Y/Y ′, L) → HomT (Y, L) → HomT (Y ′, L) → 0.

Definition 5.2. (Compare [KO1979, Theorems 1.3., 2.3.]) Let T be a ring, I � T
an ideal, U a left T -module and consider the canonical T -linear morphisms

ζI,U : U → HomT (I, U) and ξI,U : I ⊗T U → U.

1) We say TU is I-divisible, iff ξI,U is surjective (equivalently, iff IU = U).

2) We say TU is I-localized, iff U
ζI,U
 HomT (I, U) canonically (equivalently, iff

T I is strongly U -faithful and T I ⊆ T is U -copure).

3) We say a left T -module U is I-colocalized, iff I ⊗T U
ξI,U
 U canonically

(equivalently, iff TU is I-divisible and IT ⊆ T is U -pure).
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Notation 5.3. For a ring T, an ideal I � T, and with morphisms being the canonical
ones, we set

ID := {TU | IU = U}; IF := {TU | U ↪→ HomT−(I, U)};
IL := {TU | U 
 HomT (I, U}; IC := {TU | I ⊗T U 
 U};
DI := {UT | UI = U}; FI := {UT | U ↪→ Hom−T (I, U)};
LI := {UT | U 
 HomT (I, U}; CI := {UT | U ⊗T I 
 U}; .

The following result is due to T. Kato, K. Ohtake and B. Müller (e.g.,
[Mül1974], [Kat1978], [KO1979]):

Proposition 5.1. Let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S , I, J) ∈ UMC. Then there are
equivalences of categories

IC ≈ JC, CI ≈ CJ , IL ≈ JL and LI ≈ LJ .

5.4. Let mT = (T, S, P,Q, 〈, 〉T , I) ∈ UMSC and consider the dual pairings Pl :=
(Q, TP ) ∈ Pl(T ) and Qr := (P,QT ) ∈ Pr(T ). For every left (right) T -module U
consider the canonical S-linear morphism induced by 〈, 〉T :

αQr

U : Q⊗T U → HomT−(P,U) (αPl

U : U ⊗T P → Hom−T (Q,U)).

We define

Dl(mT ) := {TU | Q⊗T U
αQr

U
 HomT−(P,U)};

Dr(mT ) := {UT | U ⊗T P
α

Pl
U
 Hom−T (Q,U)}.

Moreover, set

Ul(mT ) :=Statl(TPS)∩Adstatl(SQT ); Ur(mT ) :=Statr(SQT )∩Adstatr(TPS);

Vl(mT ) :=Statl(TPS)∩Dl(mT ); Vr(mT ) :=Statr(SQT )∩Dr(mT );

Vl(mT ) := IC∩Dl(mT ); Vr(mT ) :=CI ∩Dr(mT );

V̂l(mT ) :=Vl(mT )∩IL; V̂r(mT ) :=Vr(mT )∩LI ;

Wl(mT ) :=Adstatl(SQT )∩Dl(mT ); Wr(mT ) :=Adstatr(TPS)∩Dr(mT );

Wl(mT ) := IL∩Dl(mT ); Wr(mT ) :=LI ∩Dr(mT );

Ŵl(mT ) :=Wl(mT )∩IC; Ŵr(mT ) :=Wr(mT )∩CI ;

Xl(mT ) :=Vl(mT )∩Wl(mT ); Xr(mT ) :=Vr(mT )∩Wr(mT );

Xl(mT ) :=Vl(mT )∩Wl(mT ); Xr(mT ) :=Vr(mT )∩Wr(mT ).

X ∗
l (mT ) :={S(Q⊗T U) |V ∈Xl(mT )}; X ∗

r (mT ) :={(U⊗T P )S |V ∈Xr(mT )};

X
∗
l (mT ) :={S(Q⊗T U) |V ∈Xl(mT )}; X

∗
r(mT ) :={(U⊗T P )S |V ∈Xr(mT )}.

(12)
Given mS = (S, T,Q, P, 〈, 〉S , J) ∈ UMSC one can define analogously, the corre-
sponding intersecting subcategories of SM and MS .
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As an immediate consequence of Proposition 5.1 we get

Corollary 5.1. Let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S , I, J) ∈ IUMC and consider the
associated Morita semi-contexts MT and MS (5).

1) If IC ≤ Dl(MT ) and JC ≤ Dl(MS), then Vl(MT ) ≈ Vl(MS). Similarly, if
CI ≤ Dr(MT ) and CJ ≤ Dr(MS), then Vr(MT ) ≈ Vr(MS).

2) If IL ≤ Dl(MT ) and JL ≤ Dl(MS), then Wl(MT ) ≈ Wl(MS). Similarly,
if LI ≤ Dr(MT ) and LJ ≤ Dr(MS), then Wr(MT ) ≈ Wr(MS).

Starting with a Morita context, the following result was obtained in [Nau1993,
Theorem 3.2.]. We restate the result for an arbitrary (not necessarily compatible)
Morita datum and sketch its proof:

Lemma 5.1. Let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S , I, J) be a unital Morita datum and
consider the associated Morita semi-contexts MT and MS in (5). Then there are
equivalences of categories

Xl(MT )
HomT−(P,−)

≈
HomS−(Q,−)

Xl(MS) and Xr(MT )
Hom−T (Q,−)

≈
Hom−S(P,−)

Xr(MS).

Proof. Let TV ∈ Xl(MT ). By the equivalence Statl(TPS)
HomT (P,−)

≈ Adstatl(TPS)
in 5.2 we have HomT−(P, V ) ∈ Adstatl(TPS). Moreover, V ∈ Dl(M), hence
HomT−(P, V ) 
 Q ⊗T V canonically and it follows then from the equivalence

Adstatl(SQT )
Q⊗T −
≈ Statl(SQT ) that HomT−(P, V ) ∈ Statl(SQT ). Moreover, we

have the following natural isomorphisms

P ⊗S HomT−(P, V ) 
 V 
 HomS−(Q,Q⊗T V ) 
 HomS−(Q,HomT−(P, V )),
(13)

i.e., HomT−(P, V ) ∈ Dl(MS). Consequently, HomT−(P, V ) ∈ Xl(MS). Moreover,
(13) yields a natural isomorphism V 
 HomS−(Q,HomT−(P, V )). Analogously,
one can show for every W ∈ Xl(MS) that HomS−(Q,W ) ∈ Xl(MT ) and that
W 
 HomT−(P,HomS−(Q,W )) naturally. Consequently, Xl(MT ) ≈ Xl(MS).
The equivalences Xr(MT ) ≈ Xr(MS) can be proved analogously. �

Proposition 5.2. Let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S , I, J) be a unital injective Morita
datum and consider the associated Morita semi-contexts MT and MS in (5).

1) There are equivalences of categories

Statl(T IT ) ≈ Adstatl(T IT ); Statl(SJS) ≈ Adstatl(SJS);
Statr(T IT ) ≈ Adstatr(T IT ); Statr(SJS) ≈ Adstatr(SJS).

2) If Statl(T IT ) ≤ X ∗
l (MS) and Statl(SJS) ≤ X ∗

l (MT ), then there are equiva-
lences of categories

Statl(T IT ) ≈ Statl(SJS) and Adstatl(T IT ) ≈ Adstatl(SJS).
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3) If Statr(T IT ) ≤ X ∗
r (MS) and Statr(SJS) ≤ X ∗

r (MT ), then there are equiv-
alences of categories

Statr(T IT ) ≈ Statr(SJS) and Adstatr(T IT ) ≈ Adstatr(SJS).

Proof. To prove 1), notice that since M is an injective Morita datum, P ⊗S
Q

<,>T
 I and Q ⊗T P
<,>S
 J as bimodules and so the four equivalences of

categories result from 5.2. To prove 2), one can use an argument similar to that in
[Nau1994-b, Theorem 3.9.] to show that the inclusion Statl(T IT ) = Statl(T (P ⊗S
Q)T ) ≤ X ∗

l (MS) implies Statl(T IT ) = Statl(T (P ⊗S Q)T ) = Xl(MT ) and that
the inclusion Statl(SJS) = Statl(S(Q ⊗T P )S) ≤ X ∗

l (MT ) implies Statl(SJS) =
Statl(S(Q⊗T P )S) = Xl(MS). The result follows then by Lemma 5.1. The proof
of 3) is analogous to that of 2). �

For injective Morita semi-contexts, several subcategories in (12) are shown
to be equal in the following result:

Theorem 5.5. Let mT = (T, S, P,Q,<,>T , I) ∈ IUMS. Then
1) Vl(mT ) = Vl(mT ), Wl(mT ) = Wl(mT ), whence

V̂l(mT ) = Ŵl(mT ) = Xl(mT ) = Xl(mT ) = IC ∩ Dl(mT ) ∩ IL
and

X ∗
l (mT ) = X

∗
l (mT ).

2) Vr(mT ) = Vr(mT ), Wr(mT ) = Wr(mT ), whence

V̂r(mT ) = Ŵr(mT ) = Xr(mT ) = Xr(mT ) = CI ∩ Dr(mT ) ∩ LI
and

X ∗
r (mT ) = X

∗
r(mT ).

Proof. We prove only 1) as 2) can be proved analogously. Assume the Morita
semi-context mT = (T, S, P,Q, 〈, 〉T , I) is injective. By our assumption we have
for every V ∈ Dl(mT ) the commutative diagram

P ⊗S (Q⊗T V ) can

�
��

idP ⊗S(αQr
V ) �

��

(P ⊗S Q)⊗T V

〈,〉T⊗T idV�

��
P ⊗S HomT−(P, V )

ωl
P,V

�� V I ⊗
T
V

ξI,V

��

(14)

Then it becomes obvious that ωlP,V : P ⊗S HomT (P, V ) → V is an isomorphism if
and only if ξI,V : I ⊗T V → V is an isomorphism. Consequently

V(mT ) = Dl(mT ) ∩ Statl(TPS) = Dl(mT ) ∩ IC = V(mT ).
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On the other hand, we have for every V ∈ Dl(mT ) the following commutative
diagram

HomS−(Q,HomT−(P, V )) can

�
�� HomT−(P ⊗S Q,V )

HomS−(Q,Q⊗T V )

(Q,αQr
V ) �

��

V
ηl

P,L

��
ζI,V

�� HomT−(I, V )

(〈,〉T ,V )�

��

(15)
It follows then that ηlP,L : V → HomS(Q,Q⊗T P ) is an isomorphism if and only
if ζI,V : V → HomT (I, V ) is an isomorphism. Consequently,

W(mT ) = Dl(mT ) ∩ Adstatl(TPS) = Dl(mT ) ∩I L = W(mT ).

Moreover, we have

V̂l(mT ) := Vl(mT ) ∩ IL = Vl(mT ) ∩ IL = IC ∩ Dl(mT )∩ IL
= IC ∩Wl(mT ) = IC ∩Wl(mT ) = Ŵl(mT ).

On the other hand, we have

Xl(mT ) = Vl(mT ) ∩Wl(mT ) = Vl(mT ) ∩Wl(mT ) = Xl(mT )

and so the equalities V̂l(mT ) = Ŵl(mT ) = Xl(mT ) = Xl(mT ) and X ∗
l (mT ) =

X
∗
l (mT ) are established. �

In addition to establishing several other equivalences of intersecting subcat-
egories, the following result reframes the equivalence of categories V̂ ≈ Ŵ in
[Nau1994-b, Theorem 4.9.] for an arbitrary (not necessarily compatible) injective
Morita datum:

Theorem 5.6. Let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S , I, J) be an injective Morita datum
and consider the associated Morita semi-contexts MT and MS (5).

1) The following subcategories are mutually equivalent:

V̂l(MT ) = Ŵl(MT ) = Xl(MT ) = Xl(MT )

≈ Xl(MS) = Xl(MS) = Ŵl(MS) = V̂l(MS).
(16)

2) If Vl(MT ) ≤ IL and Wl(MS) ≤ JC, then Vl(MT ) ≈ Wl(MS).
If Wl(MT ) ≤ IC and Vl(MS) ≤ JL, then Wl(MT ) ≈ Vl(MS).

3) The following subcategories are mutually equivalent:

V̂r(MT ) = Ŵr(MT ) = Xr(MT ) = Xr(MT )

≈ Xr(MS) = Xr(MS) = Ŵr(MS) = V̂r(MS).
(17)

4) If Vr(MT ) ≤ LI and Wr(MT ) ≤ CJ , then Vr(MT ) ≈ Wr(MS).
If Wr(MT ) ≤ CJ and Vr(MS) ≤ LI , then Vr(MS) ≈ Wr(MT ).
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Proof. By Lemma 5.1, Xl(MT ) ≈ Xl(MS) and so 1) follows by Theorem 5.5. If
Vl(MT ) ≤ IL and Wl(MS) ≤ JC, then we have

Vl(MT ) = Vl(MT ) ∩ IL = V̂l(MT ) ≈ Ŵl(MS) = Wl(MS) ∩ JC = Wl(MS).

On the other hand, if Wl(MT ) ≤ IL and Vl(MS) ≤ JC, then

Wl(MT ) = Wl(MT ) ∩ IC = Ŵl(MT ) ≈ V̂l(MS) = Vl(MS) ∩ JL = Vl(MS).

So we have established 2). The results in 3) and 4) can be obtained analogously.
�

6. More applications

In this final section we give more applications of Morita α-(semi-)contexts and
injective Morita (semi-)contexts. All rings in this section are unital, whence all
Morita (semi-)contexts are unital. Moreover, for any ring T we denote with TE an
arbitrary, but fixed, injective cogenerator in TM.

Notation 6.1. Let T be an A-ring. For any left T -module TV, we set #V :=
HomT (V, TE). If moreover, TVS is a (T, S)-bimodule for some B-ring S, then
we consider #

S V with the left S-module structure induced by that of VS .

Lemma 6.1. (Compare [Col1990, Lemma 3.2.], [CF2004, Lemmas 2.1.2., 2.1.3.])
Let T be an A-ring, S a B-ring and TVS a (T, S)-bimodule,

1) A left T -module TK is V -generated if and only if the canonical T -linear
morphism

ωlV,K : V ⊗S HomT (V,K) → K (18)
is surjective. Moreover, V ⊗S W ⊆ Pres(TV ) ⊆ Gen(TV ) for every left S-
module SW.

2) A left S-module SL is #
S V -cogenerated if and only if the canonical S-linear

morphism
ηlV,L : L → HomT (V, V ⊗S L) (19)

is injective. Moreover, HomT (V,M) ⊆ Copres(#S V ) ⊆ Cogen(#S V ) for every
left T -module TM.

Remark 6.1. Let T be an A-ring, S a B-ring and TVS a (T, S)-bimodule. Notice
that for any left S-module SL we have

ann⊗
L (VS) := {l ∈ L | V ⊗S l = 0} = Ker(ηlV,L),

whence (by Lemma 6.1 2)) VS is L-faithful if and only if SL is #
S V -cogenerated. It

follows then that VS is completely faithful if and only if #
S V is a cogenerator.

Localization and colocalization

In what follows we clarify the relations between static (adstatic) modules and
subcategories colocalized (localized) by a trace ideal of a Morita context satisfying
the α-condition.



Injective Morita Contexts (Revisited) 23

Recall that for any (T, S)-bimodule TPS we have by Lemma 6.1:

Statl(TPS) ⊆ Gen(TP ) and Adstatl(TPS) ⊆ Cogen(#S P ). (20)

Theorem 6.2. Let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S , I, J) ∈ UMC. Then we have

IC ⊆ ID ⊆ Gen(TP ). (21)

Assume Pr := (Q,PS) ∈ Pαr (S). Then

1) Gen(TP ) = Statl(TPS) ⊆ IF.

2) If Gen(TP ) ⊆ IC, then IC = ID = Gen(TP ) = Statl(TPS).
3) If Qr := (P,QT ) ∈ Pαr (T ), then T I ⊆ TT is pure and IC = ID.

Proof. For every left T -module TK, consider the following diagram with canonical
morphisms and let α2 := ζI,K ◦ ωlP,K . It is easy to see that both rectangles and
the two right triangles commutes:

P ⊗S Q⊗T K
idP ⊗Sα

Qr
K��

〈,〉T⊗T idK

��

P ⊗S HomT (P,K)
αPr

HomT (P,K)��

ωl
P,K

��

α2

��

HomS(Q,HomT (P,K))

HomT (P ⊗S Q,K)

�

��

I ⊗T K
ξI,K

��

α1

��

K
ζI,K

�� HomT (I,K)

(〈,〉T ,K)

��

(22)

It follows directly from the definitions that IC ⊆ ID and Statl(TPS) ⊆ Gen(TP ).
If TK is I-divisible, then ξI,K ◦ 〈, 〉T ⊗T idK = ωlP,K ◦ idP ⊗S αQr

K is surjective,
whence ωlP,K is surjective and we conclude that TK is P -generated by Lemma 6.1
1). Consequently, ID ⊆ Gen(TP ).

Assume now that Pr ∈ Pαr (S). Considering the canonical map ρQ : T →
End(SQ)op, the map ρQ ◦ 〈, 〉T = αPr

Q is injective and so the bilinear map 〈, 〉T is

injective (i.e., P ⊗S Q
〈,〉T
 I). Define α1 := (idP ⊗S αQr

K ) ◦ (〈, 〉T ⊗T idK)−1, so
that the left triangles commute. Notice that αPr

HomT (P,K) is injective and the com-
mutativity of the upper right triangle in Diagram (22) implies that α2 is injective
(whence ωlP,K is injective by the commutativity of the lower right triangle).

1. If K ∈ Statl(TPS), then the commutativity of the lower right triangle (22)
and the injectivity of α2 show that ζI,K is injective; hence, Statl(TPS) ⊆ IF.
On the other hand, if TK is P -generated, then ωlP,K is surjective by Lemma
6.1 (1), thence bijective, i.e., K ∈ Statl(TPS). Consequently, Gen(TP ) =
Statl(TPS).

2. This follows directly from the inclusions in (21) and 1).
3. Assume Qr := (P,QT ) ∈ Pαr (T ). Since Pr ∈ Pαr (S), it follows by analogy

to Proposition 2.1 3) that PS is flat, hence idP ⊗S αQr

K is injective. The
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commutativity of the upper left triangle in Diagram (22) implies then that
α1 is injective, thence ξI,K is injective by commutativity of the lower left

triangle (i.e., T I ⊆ TT is K-pure). If TK is divisible, then K ⊗T I
ξI,K
 K

(i.e., K ∈ IC). �

Theorem 6.3. Let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S , I, J) ∈ UMC. Then we have

JL ⊆ JF ⊆ Cogen(#S P ) and Adstatl(TPS) ⊆ Cogen(#S P ).

Assume Qr := (P,QT ) ∈ Pαr (T ). Then

1) JS ⊆ SS is pure and JC ⊆ Cogen(#S P ).
2) If Pr := (Q,PS) ∈ Pαr (S), then JL ⊆ Adstatl(TPS) ⊆ Cogen(#S P ) ⊆ JF.

3) If Pr∈Pαr (S) and Cogen(#S P )⊆ JL, then JL=Cogen(#S P )=Adstatl(TPS).

Proof. For every right S-module L consider the commutative diagram with canoni-
cal morphisms and let α3 be so defined, that the left triangles become commutative

J ⊗S L
ξJ,L ��

α3

��

L

ηl
P,L

��

ζJ,L �� HomS(J, L)

(〈,〉S,L)

��
HomS(Q⊗T P,L)

� can

��
Q⊗T P ⊗S L

(〈,〉S)⊗SidL

��

αQr
P⊗SL

�� HomT (P, P ⊗S L)
(P,αPr

L )

��

α4

��

HomT (P,HomS(Q,L))

(23)

By definition JL ⊆ JF and Adstatl(TPS) ⊆ Cogen(#S P ). If SL ∈ JF, then ζJ,L is
injective and it follows by commutativity of the right rectangle in Diagram (23)
that ηlP,L is injective, hence SL is #

S P -cogenerated by Lemma 6.1 2). Consequently,

JF ⊆ Cogen(#S P ).
Assume now that Qr ∈ Pαr (T ). Then it follows from Lemma 4.1 that 〈, 〉S

is injective (hence Q ⊗T P
〈,〉S
 J) and so α4 := (can ◦ (〈, 〉S , L))−1 ◦ (P, αPr

L ) is
injective.

1. Since α3 is injective, ξJ,L is also injective for every SL, i.e., JS ⊆ SS is pure.
If SL ∈ JC, then it follows from the commutativity of the left rectangle in
Diagram (23) that ηlP,L is injective, hence L ∈ Cogen(#S P ) by Lemma 6.1 (2).

2. Assume that Pr ∈ Pαr (S), so that α4 is injective. If SL ∈ JL, then ζJ,L
is an isomorphism, thence ηlP,L is surjective (notice that α4 is injective).
Consequently, JL ⊆ Adstatl(TPS).

3. This follows directly from the assumptions and 2). �
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∗-modules

To the end of this section, we fix a unital ring T, a left T -module TP and set
S := End(TP )op.

Definition 6.1. ([MO1989]) We call TP a ∗-module, iff Gen(TP ) ≈ Cogen(#S P ).

Remark 6.2. It was shown by J. Trlifaj [Trl1994] that all ∗-modules are finitely
generated.

By definition, Statl(TPS) ≤ TM and Adstatl(TPS) ≤ SM are the largest
subcategories between which the adjunction (P ⊗S −,HomT (P,−)) induces an
equivalence. On the other hand, Lemma 6.1 shows that Gen(TP ) ≤ TM and
Cogen(#S P ) ≤ SM are the largest such subcategories (see [Col1990, Section 3]
for more details). This suggests the following observation:

Proposition 6.1. ([Xin1999, Lemma 2.3.]) We have

TP is a ∗ -module ⇔ Stat(TP ) = Gen(TP ) and Adstat(TP ) = Cogen(#S P ).

Definition 6.2. A left T -module TU is said to be

semi-
∑

-quasi-projective (abbr. s-
∑

-quasi-projective),

iff for any left T -module TV ∈ Pres(TU) and any U -presentation

U (Λ) → U (Λ′) → V → 0

of TV (if any), the following induced sequence is exact:

HomT (U,U (Λ)) → HomT (U,U (Λ′)) → HomT (U, V ) → 0;

weakly-
∑

-quasi-projective (abbr. w-
∑

-quasi-projective),

iff for any left T -module TV and any short exact sequence

0 → K → U (Λ′) → V → 0

with K ∈ Gen(TU) (if any), the following induced sequence is exact:

0 → HomT (U,K) → HomT (U,U (Λ′)) → HomT (U, V ) → 0;

self-tilting, iff TU is w-
∑

-quasi-projective and Gen(TU) = Pres(TU);
∑

-self-static, iff any direct sum U (Λ) is U -static.
(self)-small, iff HomT (U,−) commutes with direct sums (of TU);

Proposition 6.2. Assume M = (T, S, P,Q, 〈, 〉T , 〈, 〉S) is a unital Morita context.
1) If Pr := (Q,PS) ∈ Pαr (S), then:

(a) Gen(TP ) = Statl(TPS);
(b) there is an equivalence of categories Gen(TP ) ≈ Cop(#S P );
(c) TP is

∑
-self-static and Statl(TPS) is closed under factor modules.

(d) Gen(TP ) = Pres(TP );
2) If M ∈ UMC

α
r and Cogen(#S P ) ⊆ JL, then:
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(a) Gen(TP ) = Statl(TPS) and Cogen(#S P ) = Adstatl(TPS);
(b) there is an equivalence of categories Cogen(#S P ) ≈ Gen(TP );
(c) TP is a ∗-module;
(d) TP is self-tilting and self-small.

Proof. 1) If Pr ∈ Pαr (S), then it follows by Theorem 6.2 that Gen(TP ) =
Statl(TPS), which is equivalent to each of b) and c) by [Wis2000, 4.4.] and to
d) by [Wis2000, 4.3.].

2) It follows by the assumptions, Theorems 6.2, 6.3 and 5.2 that Gen(TP ) =
Statl(TPS) ≈ Adstatl(TPS) = Cogen(#S P ), whence Gen(TP ) ≈ Cogen(#S P ) (which
is the definition of ∗-modules). Hence a) ⇔ b) ⇔ c). The equivalence a) ⇔ d) is
evident by [Wis2000, Corollary 4.7.] and we are done. �

Wide Morita contexts

Wide Morita contexts were introduced by F. Castaño Iglesias and J. Gómez-
Torrecillas [C-IG-T1995] and [C-IG-T1996] as an extension of classical Morita
contexts to Abelian categories.

Definition 6.3. Let A and B be Abelian categories. A right (left) wide Morita
context between A and B is a datum Wr = (G,A,B, F, η, ρ), where G : A � B : F
are right (left) exact covariant functors and η : F ◦ G −→ 1A, ρ : G ◦ F −→ 1B
(η : 1A −→ F ◦ G, ρ : 1B −→ G ◦ F ) are natural transformations, such that for
every pair of objects (A,B) ∈ A × B the compatibility conditions G(ηA) = ρG(A)

and F (ρB) = ηF (B) hold.

Definition 6.4. Let A and B be Abelian categories and W = (G,A,B, F, η, ρ) be
a right (left) wide Morita context. We call W injective (respectively semi-strict,
strict), iff η and ρ are monomorphisms (respectively epimorphisms, isomorphisms).

Remarks 6.3. Let W = (G,A,B, F, η, ρ) be a right (left) wide Morita context.

1. It follows by [CDN2005, Propositions 1.1., 1.4.] that if either η or ρ is an
epimorphism (monomorphism), then W is strict, whence A ≈ B.

2. The resemblance of injective left wide Morita contexts is with the Morita-
Takeuchi contexts for comodules of coalgebras, i.e., the so called pre-equi-
valence data for categories of comodules introduced in [Tak1977] (see
[C-IG-T1998] for more details).

Injective right wide Morita contexts. In a recent work [CDN2005, 5.1.], Chifan, et
al. clarified (for module categories) the relation between classical Morita contexts
and right wide Morita contexts. For the convenience of the reader and for later
reference, we include in what follows a brief description of this relation.

6.4. Let T, S be rings, A := TM and B := SM. Associated to each Morita context
M = (T, S, P,Q, 〈, 〉T , 〈, 〉S) is a wide Morita context as follows: Define G : A � B :
F by G(−) = Q⊗T− and F (−) = P⊗S−. Then there are natural transformations
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η : F ◦G −→ 1
T M and ρ : G ◦ F −→ 1

SM such that for each TV and WS :

ηV : P ⊗S (Q⊗T V ) → V,
∑

pi ⊗S (qi ⊗T vi) �→
∑

〈pi, qi〉T vi,
ρW : Q⊗T (P ⊗S W ) → W,

∑
qi ⊗T (pi ⊗S wi) �→

∑
〈qi, pi〉Swi.

(24)

Then the datum Wr(M) := (G, TM, SM, F, η, ρ) is a right wide Morita context.
Conversely, let T ′, S′ be two rings and W ′

r = (G′, T ′M, S′M, F ′, η′, ρ′) be a
right wide Morita context between T ′M and S′M such that the right exact functors
G′ : T ′M � S′M : F ′ commute with direct sums. By Watts’ Theorems (e.g.,
[Gol1979]), there exists a (T, S)-bimodule P ′ (e.g., F ′(S′)) such that F ′ 
 P ′⊗S′−,
an (S, T )-bimodule Q′ such that G′ 
 Q′⊗T ′− and there should exist two bilinear
forms

〈, 〉T ′ : P ′ ⊗S′ Q′ → T ′ and 〈, 〉S′ : Q′ ⊗T ′ P ′ → S′,

such that the natural transformations η′ : F ′ ◦G′ → 1
T ′M, ρ : G′ ◦ F ′ → 1

S′M are
given by

η′V ′(p′ ⊗S′ q′ ⊗T ′ v′) = 〈p′, q′〉T ′v′ and ρ′W ′(q′ ⊗T p′ ⊗S w′) = 〈q′, p′〉S′w′

for all V ′ ∈ T ′M, W ′ ∈ S′M, p′ ∈ P ′, q′ ∈ Q′, v′ ∈ V ′ and w′ ∈ W ′. It can
be shown that in this way one obtains a Morita context M′ = M′(W ′

r) :=
(T ′, S′, P ′, Q′, 〈, 〉T ′ , 〈, 〉S′). Moreover, it turns out that given a wide Morita context
Wr, we have Wr 
 Wr(M(Wr)).

The following result clarifies the relation between injective Morita contexts
and injective right wide Morita contexts.

Theorem 6.5. Let M = (T, S, P,Q, 〈, 〉T , 〈, 〉S) be a Morita context, A := TM, B :=
SM and consider the induced right wide Morita context Wr(M) :=(G,A,B,F,η,ρ).

1) If Wr(M) is an injective right wide Morita context, then M is an injective
Morita context.

2) If M ∈ UMC
α
r , then Wr(M) is an injective right wide Morita context.

Proof. 1) LetWr(M) be an injective right wide Morita context. Then in particular,
〈, 〉T = ηT and 〈, 〉S = ρS are injective, i.e., M is an injective Morita context.

2) Assume that M satisfies the right α-condition. Suppose there exists some TV

and
∑

pi ⊗S (qi ⊗T vi) ∈ Ker(ηV ). Then for any q ∈ Q we have

0 = q ⊗T ηV (
∑

(pi ⊗S qi) ⊗T vi) =
∑

q ⊗T 〈pi, qi〉T vi
=
∑

q〈pi, qi〉T ⊗T vi =
∑

〈q, pi〉Sqi ⊗T vi

=
∑

〈q, pi〉S(qi ⊗T vi) = αPr

Q⊗TV
(
∑

pi ⊗S (qi ⊗T vi))(q).

Since Pr := (Q,PS) ∈ Pαr (S), the morphism αPr

Q⊗T V
is injective and so

∑
pi ⊗S

(qi ⊗T vi) = 0, i.e., ηV is injective. Analogously, suppose
∑

qi ⊗T (pi ⊗S wi) ∈
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Ker(ρW ). Then for any p ∈ P we have

0 = p⊗S ρW (
∑

qi ⊗T (pi ⊗S wi) =
∑

p⊗S 〈qi, pi〉Swi
=
∑

p〈qi, pi〉S ⊗S wi =
∑

〈p, qi〉T pi ⊗S wi

=
∑

〈p, qi〉T (pi ⊗S wi) = αQr

P⊗SW
(
∑

qi ⊗T (pi ⊗S wi))(p).

Since Qr := (P,QT ) ∈ Pαr (T ), the morphism αQr

P⊗SW
is injective and so

∑
qi ⊗T

(pi ⊗S wi) = 0, i.e., ρW is injective. Consequently, the induced right wide Morita
context Wr(M) is injective. �
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A Categorical Proof of a Useful Result

A. Ardizzoni and C. Menini

Dedicated to Robert Wisbauer

Abstract. We give a categorical proof of the following equality
n⋂

i=0

(V ⊗ Vn−i + Vi ⊗ V ) =

n∑

i=1

Vi ⊗ Vn+1−i

which holds for any chain {0} = V0 ⊆ V1 ⊆ V2 ⊆ · · · of subspaces of a vector
space V.

Keywords. Monoidal categories, abelian categories, colimits.

1. Introduction

Let (C,∆, ε) be a coalgebra over a field K, let C0 = Corad (C) and let

Ci = ∧i+1C0 = ∆−1 (C ⊗ Ci−1 + C0 ⊗ C) .

A key step in the proof that (Ci)i∈N
is a coalgebra filtration, namely that

∆ (Cn) ⊆
∑n

i=0
Ci ⊗ Cn−i

is based (see [Sw, Theorem 9.1.6 page 191] and [Mo, Theorem 5.2.2 page 60]) on
the following result (see [Sw, Lemma 9.1.5 page 190]): for any ascending chain of
subspaces {0} = V0 ⊆ V1 ⊆ V2 ⊆ · · · of a vector space V , the following equality
holds for every n ∈ N:

⋂n

i=0
(V ⊗ Vn−i + Vi ⊗ V ) =

∑n

i=1
Vi ⊗ Vn+1−i.

The aim of this paper is to give a categorical proof of this result in the framework
of monoidal categories.

Some applications of this result can be found in [AM].

This paper was written while both the authors were members of G.N.S.A.G.A. with partial
financial support from M.i.U.R..
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2. Preliminaries and notations

Notations. Let [(X, iX)] be a subobject of an object E in an abelian category
C, where iX = iEX : X ↪→ E is a monomorphism and [(X, iX)] is the associated
equivalence class. By abuse of language, we will say that (X, iX) is a subobject of
E and we will write (X, iX) = (Y, iY ) to mean that (Y, iY ) ∈ [(X, iX)]. The same
convention applies to cokernels. If (X, iX) is a subobject of E then we will write
(E/X, pX) = Coker(iX), where pX = pEX : E → E/X .
Let (X1, i

Y1
X1

) be a subobject of Y1 and let (X2, i
Y2
X2

) be a subobject of Y2. Let
x : X1 → X2 and y : Y1 → Y2 be morphisms such that y ◦ iY1

X1
= iY2

X2
◦ x. Then

there exists a unique morphism, which we denote by y/x = y
x : Y1/X1 → Y2/X2,

such that y
x ◦ p

Y1
X1

= pY2
X2

◦ y:

X1

x

��

� �
i
Y1
X1 �� Y1

y

��

p
Y1
X1 �� Y1

X1

y
x

��
X2

� �
i
Y2
X2 �� Y2

p
Y2
X2 �� Y2

X2

δu,v will denote the Kronecker symbol for every u, v ∈ N.
Given a family of morphisms (fa)a∈I , where fa : A → Aa, ∆

[
(fa)a∈I

]
will

denote the associated diagonal morphism. Analogously ∇
[
(ga)a∈I

]
will denote the

codiagonal morphism associated to a family (ga)a∈I , where ga : Aa → A.

2.1. Monoidal categories. Recall that (see [Ka, Chap. XI]) a monoidal category is a
category M endowed with an object 1 ∈ M (called unit), a functor ⊗ : M×M→
M (called tensor product), and functorial isomorphisms aX,Y,Z : (X ⊗ Y ) ⊗ Z →
X ⊗ (Y ⊗ Z), lX : 1 ⊗ X → X, rX : X ⊗ 1 → X, for every X,Y, Z in M.
The functorial morphism a is called the associativity constraint and satisfies the
Pentagon Axiom, that is the following relation

(U ⊗ aV,W,X) ◦ aU,V⊗W,X ◦ (aU,V,W ⊗X) = aU,V,W⊗X ◦ aU⊗V,W,X

holds true, for every U, V,W,X in M. The morphisms l and r are called the unit
constraints and they obey the Triangle Axiom, that is (V ⊗lW )◦aV,1,W = rV ⊗W ,
for every V,W in M.

It is well known that the Pentagon Axiom completely solves the consis-
tency problem arising out of the possibility of going from ((U ⊗ V ) ⊗ W ) ⊗ X
to U ⊗ (V ⊗ (W ⊗ X)) in two different ways (see [Maj, page 420]). This allows
the notation X1 ⊗ · · · ⊗Xn forgetting the brackets for any object obtained from
X1, . . . , Xn using ⊗. Also, as a consequence of the coherence theorem, the con-
straints take care of themselves and can then be omitted in any computation
involving morphisms in M.

Thus, for sake of simplicity, from now on, we will omit the associativity
constraints.
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2.2. We fix the following assumptions.

• M is a monoidal category which is abelian with additive tensor functors.
• ((Xi)i∈N, (ξ

j
i )i,j∈N) is a direct system in M where, for i ≤ j, ξji : Xi → Xj .

• (ξi : Xi → X)i∈N is a compatible family of morphisms with respect to the
given direct system.

Fix n ∈ N and assume that

• ξi+1
i : Xi → Xi+1 is a split monomorphism for every 0 ≤ i ≤ n− 1, i.e., there

exists a morphism λii+1 : Xi+1 → Xi such that λii+1 ◦ ξi+1
i = IdXi .

• X0 = 0,
• ξn : Xn → X is a monomorphism.
• ξn ⊗ X,X ⊗ ξn, ξn ⊗ X

Xn
, XXn

⊗ ξn,
ξn

Xa
⊗ ξn

Xb
are monomorphisms for every

0 ≤ a, b ≤ n.

Denote by τi : X → X
Xi

the canonical projection for every i ∈ N.

For i = j let λij := IdXj and for i < j ≤ n, let λij : Xj → Xi be the
composition

λii+1 ◦ · · · ◦ λ
j−1
j : Xj → Xi.

Clearly,

λab ◦ ξba = IdXa , for every a ≤ b ≤ n. (1)

Set

τba :=
(
Xn

λb
n→ Xb

ωb
a→ Xb

Xa

)
, for every a ≤ b ≤ n (2)

where ωba denotes the canonical projection. Note that τna = ωna . Since the following
sequence

0 → Xa
ξb

a−→ Xb
ωb

a−→ Xb

Xa
→ 0 (3)

is exact and in view of (1), there exists a unique morphism σab : Xb

Xa
→ Xb such

that

σab ◦ ωba + ξba ◦ λab = IdXb
. (4)

Moreover

ωba ◦ σab = Id Xb
Xa

, for every a ≤ b ≤ n. (5)

Clearly also the following sequence

0 → Xb

Xa

σa
b−→ Xb

λa
b−→ Xa → 0 (6)

is exact.
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Lemma 2.1. The following relations hold.

τ ba ◦ ξnt = 0, for every t ≤ a ≤ b ≤ n. (7)

τba ◦ ξnb ◦ σab = IdXb/Xa
, for every a ≤ b ≤ n. (8)

λab ◦ ξbu = λau, for every a ≤ u ≤ b. (9)

τaa−1 ◦ ξnu ◦ σu−1
u = δa,uIdXa/Xa−1 for every 0 ≤ a, u ≤ n. (10)
∑

1≤a≤t
ξta ◦ σa−1

a ◦ ωaa−1 ◦ λat = IdXt . (11)

ωnt =
∑

u+1≤b≤n
ωnt ξ

n
b σ

b−1
b τbb−1, for every 0 ≤ u ≤ t ≤ n. (12)

ωnj ξ
n
i = 0, for every i ≤ j. (13)

σjnω
n
j ξ
n
i σ

i−1
i = ξni σ

i−1
i , for every j + 1 ≤ i. (14)

Proof. (7) follows by the following argument:

τba ◦ ξnt
(2)
= ωba ◦ λbn ◦ ξnt = ωba ◦ λbn ◦ ξnb ◦ ξbt
(1)
= ωba ◦ ξbt = ωba ◦ ξba ◦ ξat
(3)
= 0.

(8) follows by the following argument:

τ ba ◦ ξnb ◦ σab
(2)
= ωba ◦ λbn ◦ ξnb ◦ σab

(1),(5)
= IdXb/Xa

.

(9) follows by the following argument:

λab ◦ ξbu = λau ◦ λub ◦ ξbu
(1)
= λau.

Let us prove that (10) holds. If a = u the formula follows by (8). If u ≤ a− 1 the
formula follows by (7). Assume a < u. Then

τaa−1 ◦ ξnu ◦ σu−1
u

(2)
= ωaa−1 ◦ λan ◦ ξnu ◦ σu−1

u

(9)
= ωaa−1 ◦ λau ◦ σu−1

u

= ωaa−1 ◦ λau−1 ◦ λu−1
u ◦ σu−1

u

(6)
= 0.

Hence (10) is true.
Let us prove (11) by induction on t ≥ 1.
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t = 1: Then
∑

1≤a≤t

ξta ◦ σa−1
a ◦ ωaa−1 ◦ λat = ξ1

1 ◦ σ0
1 ◦ ω1

0 ◦ λ1
1 = IdX1 .

t⇒ t + 1: We have
∑

1≤a≤t+1

ξt+1
a ◦ σa−1

a ◦ ωaa−1 ◦ λat+1

= ξt+1
t+1 ◦ σtt+1 ◦ ωt+1

t ◦ λt+1
t+1 +

∑

1≤a≤t

ξt+1
a ◦ σa−1

a ◦ ωaa−1 ◦ λat+1

= σtt+1 ◦ ωt+1
t + ξt+1

t ◦




∑

1≤a≤t

ξta ◦ σa−1
a ◦ ωaa−1 ◦ λat



 ◦ λtt+1

(11)
= σtt+1 ◦ ωt+1

t + ξt+1
t ◦ λtt+1

(4)
= IdXt+1 .

Let us prove (12). For every 1 ≤ u ≤ t ≤ n we have

ωnt
(11)
= ωnt

∑

1≤b≤n
ξnb σ

b−1
b τbb−1 =

∑

1≤b≤n
ωnt ξ

n
b σ

b−1
b τbb−1

=
∑

1≤b≤n
b≥u+1

ωnt ξ
n
b σ

b−1
b τbb−1 +

∑

1≤b≤n
b≤u

ωnt ξ
n
b σ

b−1
b τbb−1

=
∑

u+1≤b≤n
ωnt ξ

n
b σ

b−1
b τbb−1 +

∑

1≤b≤n,b≤u
ωnt ξ

n
t ξ

t
bσ
b−1
b τbb−1

(3)
=

∑

u+1≤b≤n
ωnt ξ

n
b σ

b−1
b τbb−1.

Note that the first equality in the above computation tells us that (12) holds also
in the case u = 0.

(13) follows by the following argument:

ωnj ξ
n
i = ωnj ξ

n
j ξ

j
i

(3)
= 0.

(14) follows by the following argument:

j
nω

n
j ξ

n
i σ

i−1
i

(4)
=
(
IdXn − ξnj λ

j
n

)
ξni σ

i−1
i = ξni σ

i−1
i − ξnj λ

j
nξ
n
i σ

i−1
i

(9)
= ξni σ

i−1
i − ξnj λ

j
iσ
i−1
i = ξni σ

i−1
i − ξnj λ

j
i−1λ

i−1
i σi−1

i

(6)
= ξni σ

i−1
i . �
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3. The main result

Proposition 3.1. The following sequence is exact.

⊕

a+b=n+1

Xa ⊗Xb

∇[(ξn
a ⊗ξn

b )a+b=n+1]−→ Xn ⊗Xn

∆



(τa
a−1⊗τ

b
b−1)

1≤a,b≤n,
a+b≥n+2





−→

⊕

1≤a,b≤n
a+b≥n+2

Xa

Xa−1
⊗ Xb

Xb−1
→ 0.

Proof. Let us prove that ∆



(τaa−1 ⊗ τbb−1

)
1≤a,b≤n,
a+b≥n+2



 is a split epimorphism:

∆



(τaa−1 ⊗ τbb−1

)
1≤a,b≤n,
a+b≥n+2



 ◦ ∇



(ξnu ◦ σu−1
u ⊗ ξnv ◦ σv−1

v

)
1≤u,v≤n,
u+v≥n+2





= ∆



∇



[(τaa−1 ◦ ξnu ◦ σu−1
u ⊗ τbb−1 ◦ ξnv ◦ σv−1

v

)]
1≤u,v≤n,
u+v≥n+2





1≤a,b≤n,
a+b≥n+2





(10)
= ∆



∇



[(δa,uIdXa/Xa−1 ⊗ δb,vIdXb/Xb−1

)]
1≤u,v≤n,
u+v≥n+2





1≤a,b≤n,
a+b≥n+2





= Id ⊕

1≤a,b≤n
a+b≥n+2

Xa
Xa−1

⊗ Xb
Xb−1

.

Now we have

∆



(τaa−1 ⊗ τbb−1

)
1≤a,b≤n,
a+b≥n+2



 ◦ ∇
[
(ξnu ⊗ ξnv )u+v=n+1

]

= ∆



∇
[(
τaa−1ξ

n
u ⊗ τbb−1ξ

n
v

)
u+v=n+1

]

1≤a,b≤n,
a+b≥n+2



 .

Since u + v = n + 1 and a+ b ≥ n + 2 we deduce that either u ≤ a− 1 ≤ a ≤ n or
v ≤ b − 1 ≤ b ≤ n. In view of (7), we have that τaa−1ξ

n
u ⊗ τbb−1ξ

n
v = 0 so that the

composition above is zero.
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Let now f : Xn ⊗Xn → Z be a morphism such that

f ◦ ∇
[
(ξna ⊗ ξnb )a+b=n+1

]
= 0.

Thus
f ◦ (ξna ⊗ ξnb ) = 0 for every 0 ≤ a, b ≤ n + 1, a + b = n + 1.

Moreover, if 0 ≤ a, b ≤ n + 1 and a + b ≤ n + 1, then

f ◦ (ξna ⊗ ξnb ) = f ◦
(
ξna ⊗ ξnn+1−a

)
◦
(
Xa ⊗ ξn+1−a

b

)
= 0

so that
f ◦ (ξna ⊗ ξnb ) = 0 for every 0 ≤ a, b ≤ n + 1

such that a + b ≤ n + 1.
(15)

We have

f ◦ ∇



(ξnu ◦ σu−1
u ⊗ ξnv ◦ σv−1

v

)
1≤u,v≤n,
u+v≥n+2



 ◦ ∆



(τaa−1 ⊗ τbb−1

)
1≤a,b≤n,
a+b≥n+2





=
∑

1≤a,b≤n,
a+b≥n+2

f ◦
(
ξna ◦ σa−1

a τaa−1 ⊗ ξnb ◦ σb−1
b τbb−1

)
.

By applying (11) to the case t = n, we get
∑

1≤a≤n

ξna ◦ σa−1
a τaa−1 =

∑

1≤a≤n

ξna ◦ σa−1
a ◦ ωaa−1 ◦ λan

(11)
= IdXn

so that
∑

1≤a,b≤n

(
ξna ◦ σa−1

a τaa−1 ⊗ ξnb ◦ σb−1
b τbb−1

)

=




∑

1≤a≤n

ξna ◦ σa−1
a τaa−1



⊗




∑

1≤b≤n

ξnb ◦ σb−1
b τbb−1



 = IdXn⊗Xn .

Therefore

f = f ◦ IdXn⊗Xn = f ◦
∑

1≤a,b≤n

(
ξna ◦ σa−1

a τaa−1 ⊗ ξnb ◦ σb−1
b τbb−1

)

=
∑

1≤a,b≤n
a+b≤n+1

f ◦
(
ξna ◦ σa−1

a τaa−1 ⊗ ξnb ◦ σb−1
b τbb−1

)

+
∑

1≤a,b≤n
a+b≥n+2

f ◦
(
ξna ◦ σa−1

a τaa−1 ⊗ ξnb ◦ σb−1
b τbb−1

)

(15)
=

∑

1≤a,b≤n
a+b≥n+2

f ◦
(
ξna ◦ σa−1

a τaa−1 ⊗ ξnb ◦ σb−1
b τbb−1

)
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= f ◦ ∇



(ξnu ◦ σu−1
u ⊗ ξnv ◦ σv−1

v

)
1≤u,v≤n,
u+v≥n+2



 ◦∆



(τaa−1 ⊗ τbb−1

)
1≤a,b≤n,
a+b≥n+2



 .

�

Lemma 3.1. Consider the following commutative diagram

⊕
a+b=n+1

Xa ⊗Xb

∇[(ξn
a ⊗ξn

b )
a+b=n+1]−→ Xn ⊗Xn

∆[(τn
a ⊗τn

b )
a+b=n]

−→
⊕

a+b=n

Xn

Xa
⊗ Xn

Xb

Id ↓ ↓ ξn ⊗ ξn ↓
⊕

a+b=n

ξn

Xa
⊗ ξn

Xb

⊕
a+b=n+1

Xa ⊗Xb

∇[(ξa⊗ξb)a+b=n+1]−→ X ⊗X
∆[(τa⊗τb)a+b=n]

−→
⊕

a+b=n

X
Xa

⊗ X
Xb

.

Then the lower sequence is exact whenever the upper one is exact.

Proof. Let f : Z → X ⊗X be a morphism such that ∆
[
(τa ⊗ τb)a+b=n

]
◦ f = 0.

Then
(τa ⊗ τb) ◦ f = 0, for every a + b = n. (16)

Since ξn ⊗X is a monomorphism, we get the exact sequence

0 → Xn ⊗X
ξn⊗X−→ X ⊗X

τn⊗X−→ X

Xn
⊗X.

Since X0 = 0, we have

(τn ⊗X) ◦ f = (τn ⊗ τ0) ◦ f (16)
= 0.

By the universal property of the kernel, there exists a unique morphism f ′ : Z →
Xn ⊗X such that

(ξn ⊗X) ◦ f ′ = f. (17)

Since Xn ⊗ ξn is a monomorphism, we have an exact sequence

0 → Xn ⊗Xn
Xn⊗ξn−→ Xn ⊗X

Xn⊗τn−→ Xn ⊗
X

Xn
.

Since X0 = 0, we obtain
(
ξn ⊗

X

Xn

)
◦ (Xn ⊗ τn) ◦ f ′ = (X ⊗ τn) ◦ (ξn ⊗X) ◦ f ′

(17)
= (X ⊗ τn) ◦ f = (τ0 ⊗ τn) ◦ f (16)

= 0.

Since ξn⊗ X
Xn

is a monomorphism, we get (Xn ⊗ τn)◦f ′ = 0. Thus by the universal
property of the kernel, there exists a unique morphism f : Z → Xn ⊗ Xn such
that (Xn ⊗ ξn) ◦ f = f ′. Hence

(ξn ⊗ ξn) ◦ f = (ξn ⊗X) ◦ (Xn ⊗ ξn) ◦ f = (ξn ⊗X) ◦ f ′ (17)
= f.
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Therefore(
⊕

a+b=n

ξn
Xa

⊗ ξn
Xb

)
◦ ∆

[
(τna ⊗ τnb )a+b=n

]
◦ f = ∆

[
(τa ⊗ τb)a+b=n

]
◦ (ξn ⊗ ξn) ◦ f

= ∆
[
(τa ⊗ τb)a+b=n

]
◦ f = 0.

Since ξn

Xa
⊗ ξn

Xb
is a monomorphism, the finite coproduct

(
⊕

a+b=n

ξn

Xa
⊗ ξn

Xb

)
is a

monomorphism too so that we obtain ∆
[
(τna ⊗ τnb )a+b=n

]
◦ f = 0. Write

∇
[
(ξna ⊗ ξnb )a+b=n+1

]
= un ◦ u′

n and ∇
[
(ξa ⊗ ξb)a+b=n+1

]
= vn ◦ v′n

where

un : Im
{
∇
[
(ξna ⊗ ξnb )a+b=n+1

]}
→ Xn ⊗Xn,

vn : Im
{
∇
[
(ξa ⊗ ξb)a+b=n+1

]}
→ Xn ⊗Xn

are monomorphisms and

u′
n :

⊕

a+b=n+1

Xa ⊗Xb → Im
{
∇
[
(ξna ⊗ ξnb )a+b=n+1

]}
,

v′n :
⊕

a+b=n+1

Xa ⊗Xb → Im
{
∇
[
(ξa ⊗ ξb)a+b=n+1

]}

are epimorphisms. From the commutativity of

⊕
a+b=n+1

Xa ⊗Xb

∇[(ξn
a ⊗ξn

b )
a+b=n+1]−→ Xn ⊗Xn

Id ↓ ↓ ξn ⊗ ξn
⊕

a+b=n+1

Xa ⊗Xb

∇[(ξa⊗ξb)a+b=n+1]−→ X ⊗X

we get that there exists a unique morphism

wn : Im
{
∇
[
(ξna ⊗ ξnb )a+b=n+1

]}
→ Im

{
∇
[
(ξa ⊗ ξb)a+b=n+1

]}

that makes the left square of the diagram below commutative

0 → Im
{
∇
[
(ξna ⊗ ξnb )a+b=n+1

]}
un−→ Xn ⊗Xn

∆[(τn
a ⊗τn

b )
a+b=n]

−→
⊕

a+b=n

Xn

Xa
⊗ Xn

Xb

wn ↓ ↓ ξn ⊗ ξn ↓
⊕

a+b=n

ξn

Xa
⊗ ξn

Xb

0 → Im
{
∇
[
(ξa ⊗ ξb)a+b=n+1

]} vn−→ X ⊗X
∆[(τa⊗τb)a+b=n]

−→
⊕

a+b=n

X
Xa

⊗ X
Xb

.

Note that by assumption the upper sequence in the diagram above is exact.
Thus, since ∆

[
(τna ⊗ τnb )a+b=n

]
◦ f = 0, by the universal property of the

kernel, there exists a unique morphism

f̂ : Z → Im
{
∇
[
(ξna ⊗ ξnb )a+b=n+1

]}
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such that un ◦ f̂ = f. We have

vn ◦
(
wn ◦ f̂

)
= (ξn ⊗ ξn) ◦ un ◦ f̂ = (ξn ⊗ ξn) ◦ f = f.

Since vn is a monomorphism this is enough to conclude that the lower sequence
in the diagram above is exact too. �

Theorem 3.1. Let M be a monoidal category which is abelian and with additive
tensor functors. Let ((Xi)i∈N, (ξ

j
i )i,j∈N) be a direct system in M where, for i ≤ j,

ξji : Xi → Xj.
Let (ξi : Xi → X)i∈N be a compatible family of morphisms with respect to the

given direct system.
Fix n ∈ N and assume that

• ξi+1
i : Xi → Xi+1 is a split monomorphism for every 0 ≤ i ≤ n− 1,

• X0 = 0,
• ξn : Xn → X is a monomorphism,
• ξn ⊗ X,X ⊗ ξn, ξn ⊗ X

Xn
, XXn

⊗ ξn,
ξn

Xa
⊗ ξn

Xb
are monomorphisms for every

0 ≤ a, b ≤ n (e.g., the tensor product functors are left exact).

Denote by τi : X → X
Xi

the canonical projection for every i ∈ N.
Then the following sequence is exact.

⊕

a+b=n+1

Xa ⊗Xb

∇[(ξa⊗ξb)a+b=n+1]−→ X ⊗X
∆[(τa⊗τb)a+b=n]

−→
⊕

a+b=n

X

Xa
⊗ X

Xb
.

Proof. In view of Lemma 3.1, it remains to prove that the following sequence is
exact

⊕
a+b=n+1

Xa ⊗Xb

∇[(ξn
a ⊗ξn

b )a+b=n+1]−→ Xn ⊗Xn

∆[(τn
a ⊗τn

b )a+b=n]
−→

⊕
a+b=n

Xn

Xa
⊗ Xn

Xb

Denote by

γu :
Xn

Xu
⊗ Xn

Xn−u
→

⊕

a+b=n

Xn

Xa
⊗ Xn

Xb

the canonical inclusion for every 0 ≤ u ≤ n.

We compute

∇








∑

0≤t≤n
γt
(
ωnt ξ

n
uσ

u−1
u ⊗ ωnn−tξ

n
v σ

v−1
v

)




1≤u,v≤n,
u+v≥n+2



 ◦ ∆



(τaa−1 ⊗ τbb−1

)
1≤a,b≤n,
a+b≥n+2





=
∑

1≤a,b≤n,
a+b≥n+2

∑

0≤t≤n
γt
(
ωnt ξ

n
aσ

a−1
a ⊗ ωnn−tξ

n
b σ

b−1
b

)
◦
(
τaa−1 ⊗ τbb−1

)
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=





∑
1≤a,b≤n,
a+b≥n+2

∑
0≤t≤a−1 γt

(
ωnt ξ

n
aσ

a−1
a ⊗ ωnn−tξ

n
b σ

b−1
b

)
◦
(
τaa−1 ⊗ τbb−1

)
+

+
∑

1≤a,b≤n,
a+b≥n+2

∑
a≤t≤n γt

(
ωnt ξ

n
aσ

a−1
a ⊗ ωnn−tξ

n
b σ

b−1
b

)
◦
(
τaa−1 ⊗ τbb−1

)





=





∑
1≤a,b≤n,
a+b≥n+2

∑
0≤t≤a−1 γt

(
ωnt ξ

n
aσ

a−1
a ⊗ ωnn−tξ

n
b σ

b−1
b

)
◦
(
τaa−1 ⊗ τbb−1

)
+

+
∑

1≤a,b≤n,
a+b≥n+2

∑
a≤t≤n γt

(
ωnt ξ

n
t ξ

t
aσ

a−1
a ⊗ ωnn−tξ

n
b σ

b−1
b

)
◦
(
τaa−1 ⊗ τbb−1

)





(3)
=

∑

1≤a,b≤n,
a+b≥n+2

∑

0≤t≤a−1

γt
(
ωnt ξ

n
aσ

a−1
a τaa−1 ⊗ ωnn−tξ

n
b σ

b−1
b τbb−1

)

=
∑

1≤a≤n

∑

0≤t≤a−1

γt



ωnt ξ
n
aσ

a−1
a τaa−1 ⊗ ωnn−t




∑

1≤b≤n,
b≥n+2−a

ξnb σ
b−1
b τbb−1









(12)
=

∑

1≤a≤n

∑

0≤t≤a−1

γt
(
ωnt ξ

n
aσ

a−1
a τaa−1 ⊗ ωnn−t

)

=
∑

0≤t≤n−1

∑

t+1≤a≤n
γt
(
ωnt ξ

n
aσ

a−1
a τaa−1 ⊗ ωnn−t

)

=
∑

0≤t≤n−1

γt



ωnt




∑

t+1≤a≤n
ξnaσ

a−1
a τaa−1



⊗ ωnn−t



 (12)
=

∑

0≤t≤n−1

γt
(
ωnt ⊗ ωnn−t

)

= ∆
[
(ωna ⊗ ωnb )a+b=n

]
= ∆

[
(τna ⊗ τnb )a+b=n

]

In conclusion we have proved that

∇








∑

0≤t≤n
γt
(
ωnt ξ

n
uσ

u−1
u ⊗ ωnn−tξ

n
v σ

v−1
v

)




1≤u,v≤n,
u+v≥n+2



 ◦ ∆



(τaa−1 ⊗ τbb−1

)
1≤a,b≤n,
a+b≥n+2





= ∆
[
(τna ⊗ τnb )a+b=n

]

In view of Proposition 3.1, in order to conclude we will prove that

∇








∑

0≤t≤n
γt
(
ωnt ξ

n
uσ

u−1
u ⊗ ωnn−tξ

n
v σ

v−1
v

)




1≤u,v≤n,
u+v≥n+2





= ∇




[
∆
[(
ωnt ξ

n
uσ

u−1
u ⊗ ωnn−tξ

n
v σ

v−1
v

)
0≤t≤n

]]

1≤u,v≤n,
u+v≥n+2





is a monomorphism.



42 A. Ardizzoni and C. Menini

We have




∆




[
∇
[(
ωuu−1λ

u
nξ
n
a+1λ

a+1
n σan ⊗ ωvv−1λ

v
nσ

b
n

)
a+b=n

]]

1≤u,v≤n,
u+v≥n+2





◦∇




[
∆
[(
ωnt ξ

n
c σ

c−1
c ⊗ ωnn−tξ

n
d σ

d−1
d

)
0≤t≤n

]]

1≤c,d≤n,
c+d≥n+2









= ∆








∇








∇
[ (

ωuu−1λ
u
nξ
n
a+1λ

a+1
n σan
⊗ωvv−1λ

v
nσ

b
n

)
a+b=n

]

◦∆
[(
ωnt ξ

n
c σ

c−1
c ⊗ ωnn−tξ

n
d σ

d−1
d

)
0≤t≤n

]





1≤c,d≤n,
c+d≥n+2









1≤u,v≤n,
u+v≥n+2





= ∆








∇





[
∑

a+b=n

(
ωuu−1λ

u
nξ
n
a+1λ

a+1
n σanω

n
a ξ

n
c σ

c−1
c

⊗ωvv−1λ
v
nσ

b
nω

n
b ξ
n
d σ

d−1
d

)
]

1≤c,d≤n,
c+d≥n+2









1≤u,v≤n,
u+v≥n+2





Consider ωuu−1λ
u
nξ
n
a+1λ

a+1
n σanω

n
a ξ

n
c σ

c−1
c and ωvv−1λ

v
nσ

b
nω

n
b ξ

n
d σ

d−1
d .

If d ≤ b, then ωvv−1λ
v
nσ

b
nω

n
b ξ

n
d σ

d−1
d

(13)
= 0.

If b + 1 ≤ d, then ωvv−1λ
v
nσ

b
nω

n
b ξ

n
d σ

d−1
d

(14)
= ωvv−1λ

v
nξ
n
d σ

d−1
d .

If c ≤ a, then ωuu−1λ
u
nξ
n
a+1λ

a+1
n σanω

n
a ξ

n
c σ

c−1
c

(13)
= 0.

If a + 1 ≤ c, then ωuu−1λ
u
nξ
n
a+1λ

a+1
n σanω

n
a ξ

n
c σ

c−1
c

(14)
= ωuu−1λ

u
nξ
n
a+1λ

a+1
n ξnc σ

c−1
c

(9)
= ωuu−1λ

u
nξ
n
a+1λ

a+1
c σc−1

c .

In order to write the last term we distinguish between two cases.

If a+1 ≤ c−1, then ωuu−1λ
u
nξ
n
a+1λ

a+1
c σc−1

c = ωuu−1λ
u
nξ
n
a+1λ

a+1
c−1λ

c−1
c σc−1

c

(6)
= 0.

If a+1 = c, then ωuu−1λ
u
nξ
n
a+1λ

a+1
c σc−1

c = ωuu−1λ
u
nξ
n
c λ

c
cσ
c−1
c = ωuu−1λ

u
nξ
n
c σ

c−1
c

= τuu−1ξ
n
c σ

c−1
c

(10)
= δu,cIdXu/Xu−1

We have so proved that

ωuu−1λ
u
nξ
n
a+1λ

a+1
n σanω

n
a ξ

n
c σ

c−1
c = δu,cδa+1,cIdXu/Xu−1 ,

ωvv−1λ
v
nσ

b
nω

n
b ξ

n
d σ

d−1
d =

{
0 d ≤ b

ωvv−1λ
v
nξ
n
d σ

d−1
d d ≥ b + 1
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and hence

∆








∇





[
∑

a+b=n

(
ωuu−1λ

u
nξ
n
u−2λ

u−2
n σanω

n
a ξ

n
c σ

c−1
c

⊗ ωvv−1λ
v
nσ

b
nω

n
b ξ

n
d σ

d−1
d

)
]

1≤c,d≤n,
c+d≥n+2









1≤u,v≤n,
u+v≥n+2





= ∆








∇





[
∑

a+b=n

(
δu,cδa+1,cIdXu/Xu−1

⊗ ωvv−1λ
v
nσ

b
nω

n
b ξ
n
d σ

d−1
d

)
]

1≤c,d≤n,
c+d≥n+2









1≤u,v≤n,
u+v≥n+2





= ∆







∇





[ (
δu,cIdXu/Xu−1

⊗ ωvv−1λ
v
nσ

n−c+1
n ωnn−c+1ξ

n
d σ

d−1
d

)
]

1≤c,d≤n,
c+d≥n+2









1≤u,v≤n,
u+v≥n+2





d�n−c+1
= ∆







∇



[(δu,cIdXu/Xu−1 ⊗ ωvv−1λ
v
nξ
n
d σ

d−1
d

)]
1≤c,d≤n,
c+d≥n+2









1≤u,v≤n,
u+v≥n+2





= ∆







∇



[(δu,cIdXu/Xu−1 ⊗ τvv−1ξ
n
d σ

d−1
d

)]
1≤c,d≤n,
c+d≥n+2









1≤u,v≤n,
u+v≥n+2





(10)
= ∆







∇



[(δu,cIdXu/Xu−1 ⊗ δv,dIdXd/Xd−1

)]
1≤c,d≤n,
c+d≥n+2









1≤u,v≤n,
u+v≥n+2





= Id ⊕

1≤c,d≤n,
c+d≥n+2

Xc
Xc−1

⊗ Xd
Xd−1

.

�
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Theorem 3.2. Let M be a monoidal category which is abelian and with additive
tensor functors. Let ((Xi)i∈N, (ξ

j
i )i,j∈N) be a direct system in M where, for i ≤ j,

ξji : Xi → Xj.
Let (ξi : Xi → X)i∈N be a compatible family of morphisms with respect to the

given direct system.
Fix n ∈ N and assume that

• ξi+1
i : Xi → Xi+1 is a split monomorphism for every 0 ≤ i ≤ n− 1,

• X0 = 0,
• there exists λn : X → Xn such that

λn ◦ ξj = ξnj , for every j ≤ n (18)

and denote by τi : X → X
Xi

the canonical projection for every i ∈ N.

Then the following sequence is exact.

⊕

a+b=n+1

Xa ⊗Xb

∇[(ξa⊗ξb)a+b=n+1]−→ X ⊗X
∆[(τa⊗τb)a+b=n]

−→
⊕

a+b=n

X

Xa
⊗ X

Xb
.

Proof. In view of (18), λn ◦ ξn = ξnn = IdXn so that ξn, ξn ⊗ X,X ⊗ ξn, ξn ⊗
X
Xn

, XXn
⊗ ξn are split monomorphisms. We can apply Theorem 3.1 once proved

that ξn

Xa
⊗ ξn

Xb
is a monomorphism for every 0 ≤ a, b ≤ n. Note that in view of (18)

we can consider the morphism λn

Xa
and we have

λn
Xa

◦ ξn
Xa

=
λn ◦ ξn
Xa

(18)
=

IdXn

Xa
= Id Xn

Xa

. �

Corollary 3.1. Let M be a monoidal category which is abelian and with additive
tensor functors. Let ((Xi)i∈N, (ξ

j
i )i,j∈N) be a direct system in M where, for i ≤ j,

ξji : Xi → Xj.
Let (X, ξi) := lim−→Xi, with ξi : Xi → X. Assume that

• ξji : Xi → Xj is a split monomorphism for every i ≤ j,
• X0 = 0,

and denote by τi : X → X
Xi

the canonical projection for every i ∈ N.

Then, for every n ∈ N, the following sequence is exact.

⊕

a+b=n+1

Xa ⊗Xb

∇[(ξa⊗ξb)a+b=n+1]−→ X ⊗X
∆[(τa⊗τb)a+b=n]

−→
⊕

a+b=n

X

Xa
⊗ X

Xb
.

Proof. Mimicking the proof of [Ar, Lemma 3.12], for every i ∈ N, one proves there
exists λi : X → Xi such that λi ◦ ξj = ξij , for every j ≤ i. Now to conclude, apply
Theorem 3.2. �
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1. Introduction

We fix an algebraically closed field k of characteristic 0; all vector spaces, Hopf
algebras and tensor products are considered over k. If H is a Hopf algebra, then
G(H) := {x ∈ H − 0 : ∆(x) = x⊗x} is a subgroup of the group of units of H ; this
is a basic invariant of Hopf algebras. Recall that H is pointed if the coradical of H
equals kG(H), or equivalently if any irreducible H-comodule is one-dimensional.

The purpose of this paper is to show the validity of the following classification
theorem.

Theorem 1.1. Let H be a pointed Hopf algebra with finitely generated abelian group
G(H), and generic infinitesimal braiding (see page 50). Then the following are
equivalent:
(a) H is a domain with finite Gelfand-Kirillov dimension.
(b) The group Γ := G(H) is free abelian of finite rank, and there exists a generic

datum D for Γ such that H 
 U(D) as Hopf algebras.

We refer to the Appendix for the definitions of generic datum and U(D); see
[AS3] for a detailed exposition. The general scheme of the proof is exactly the same
as for the proof of [AS3, Th. 5.2], an analogous theorem but assuming “positive”
instead of “generic” infinitesimal braiding. The main new feature is the following
result.

Lemma 1.2. Let (V, c) be a finite-dimensional braided vector space with generic
braiding. Then the following are equivalent:
(a) B(V ) has finite Gelfand-Kirillov dimension.
(b) (V, c) is twist-equivalent to a braiding of DJ-type with finite Cartan matrix.
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Rosso has proved this assuming “positive” instead of “generic” infinitesimal
braiding [R1, Th. 21]. Once we establish Lemma 1.2, the proofs of Lemma 5.1
and Th. 5.2 in [AS3] extend immediately to the generic case. Why can Lemma
1.2 be proved now? Because of the fundamental result of Heckenberger [H1] on
Nichols algebras of Cartan type, see Th. 3.10 below. Heckenberger’s theorem has
as starting point Kharchenko’s theory of PBW-bases in a class of pointed Hopf
algebras. Besides, Heckenberger introduced the important notion of Weyl groupoid,
crucial in the proof of [H1, Th. 1].

Here is the plan of this note. In Section 2 we overview Kharchenko’s theory
of PBW-bases. It has to be mentioned that related results were announced by
Rosso [R2]. See also [U] for a generalization. We sketch a proof of [R1, L. 19] using
PBW-bases. Section 3 is devoted to the Weyl groupoid. We discuss its definition
and the proof of [H1, Th. 1] in our own terms. Then we prove Lemma 1.2.

2. PBW-basis of Nichols algebras of diagonal type

The goal is to describe an appropriate PBW-basis of the Nichols algebra B(V ) of
a braided vector space of diagonal type. The argument is as follows. First, there
is a basis of the tensor algebra of a vector space V (with a fixed basis) by Lyndon
words, appropriately chosen monomials on the elements of the basis. Any Lyndon
word has a canonical decomposition as a product of a pair of smaller words, called
the Shirshov decomposition. If V has a braiding c, then for any Lyndon word
l there is a polynomial [l]c called an hyperletter1, defined by induction on the
length as a braided commutator of the hyperletters corresponding to the words
in the Shirshov decomposition. The hyperletters form a PBW-basis of T (V ) and
their classes form a PBW-basis of B(V ).

2.1. Lyndon words

Let X be a finite set with a fixed total order: x1 < · · · < xθ. Let X be the corre-
sponding vocabulary – the set of words with letters in X – with the lexicographical
order. This order is stable by left, but not by right, multiplication: x1 < x1x2 but
x1x3 > x1x2x3. However, if u < v and u does not “begin” by v, then uw < vt, for
all w, t ∈ X.

Definition 2.1. A Lyndon word is u ∈ X, u �= 1, such that u is smaller than any
of its proper ends: if u = vw, v, w ∈ X−{1}, then u < w. We denote by L the set
of Lyndon words.

Here are some relevant properties of Lyndon words.
(a) If u ∈ L and s ≥ 2, then us /∈ L.
(b) Let u ∈ X − X . Then, u is Lyndon if and only if for any representation

u = u1u2, with u1, u2 ∈ X not empty, one has u1u2 = u < u2u1.

1Kharchenko baptised this elements as superletters, but we suggest to call them hyperletters to
avoid confusions with the theory of supermathematics.
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(c) Any Lyndon word begins by its smallest letter.
(d) If u1, u2 ∈ L, u1 < u2, then u1u2 ∈ L.
(e) If u, v ∈ L, u < v then uk < v, for all k ∈ N.
(f) Let u, u1 ∈ L such that u = u3u2 and u2 < u1. Then uu1 < u3u1, uu1 < u2u1.

Theorem 2.2. (Lyndon). Any word u ∈ X can be written in a unique way as a
product of non increasing Lyndon words: u = l1l2 . . . lr, li ∈ L, lr ≤ · · · ≤ l1. �

The Lyndon decomposition of u ∈ X is the unique decomposition given by
the Theorem; the li ∈ L appearing in the decomposition are called the Lyndon
letters of u.

The lexicographical order of X turns out to be the same as the lexicographical
order on the Lyndon letters. Namely, if v = l1 . . . lr is the Lyndon decomposition
of v, then u < v if and only if:

(i) the Lyndon decomposition of u is u = l1 . . . li, for some 1 ≤ i < r, or
(ii) the Lyndon decomposition of u is u = l1 . . . li−1ll

′
i+1 . . . l

′
s, for some 1 ≤ i < r,

s ∈ N and l, l′i+1, . . . , l
′
s in L, with l < li.

Here is another characterization of Lyndon words. See [Sh, Kh] for more
details.

Theorem 2.3. Let u ∈ X − X. Then, u ∈ L if and only if there exist u1, u2 ∈ L
with u1 < u2 such that u = u1u2. �

Let u ∈ L−X . A decomposition u = u1u2, with u1, u2 ∈ L, is not unique. A
very useful decomposition is singled out in the following way.

Definition 2.4. [Sh]. Let u ∈ L −X. A decomposition u = u1u2, with u1, u2 ∈ L
such that u2 is the smallest end among those proper non-empty ends of u is called
the Shirshov decomposition of u.

Let u, v, w ∈ L be such that u = vw. Then, u = vw is the Shirshov de-
composition of u if and only if either v ∈ X , or else if v = v1v2 is the Shirshov
decomposition of v, then w ≤ v2.

2.2. Braided vector spaces of diagonal type

We briefly recall some notions we shall work with; we refer to [AS2] for more details.
A braided vector space is a pair (V, c), where V is a vector space and c ∈ Aut(V⊗V )
is a solution of the braid equation: (c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).
We extend the braiding to c : T (V )⊗T (V ) → T (V )⊗T (V ) in the usual way. If
x, y ∈ T (V ), then the braided bracket is

[x, y]c := multiplication ◦ (id−c) (x⊗y) . (1)

Assume that dimV < ∞ and pick a basis x1, . . . , xθ of V , so that we may
identify kX with T (V ). The algebra T (V ) has different gradings:

(i) As usual, T (V ) = ⊕n≥0T
n(V ) is N0-graded. If � denotes the length of a word

in X, then T n(V ) = ⊕x∈X, �(x)=nkx.
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(ii) Let e1, . . . , eθ be the canonical basis of Z
θ. Then T (V ) is also Z

θ-graded,
where the degree is determined by deg xi = ei, 1 ≤ i ≤ θ.
We say that a braided vector space (V, c) is of diagonal type with respect

to the basis x1, . . . xθ if there exist qij ∈ k
× such that c(xi⊗xj) = qijxj⊗xi,

1 ≤ i, j ≤ θ. Let χ : Z
θ ×Z

θ → k
× be the bilinear form determined by χ(ei, ej) =

qij , 1 ≤ i, j ≤ θ. Then
c(u⊗v) = qu,vv⊗u (2)

for any u, v ∈ X, where qu,v = χ(deg u, deg v) ∈ k
×. Here and elsewhere the degree

is with respect to the Z
θ grading, see above. In this case, the braided bracket sat-

isfies a “braided” Jacobi identity as well as braided derivation properties, namely

[[u, v]c , w]
c

= [u, [v, w]c]c − qu,vv [u,w]c + qvw [u,w]c v, (3)

[u, v w]c = [u, v]c w + qu,vv [u,w]c , (4)

[u v, w]c = qv,w [u,w]c v + u [v, w]c , (5)

for any homogeneous u, v, w ∈ T (V ).
Let (V, c) be a braided vector space. Let Ĩ(V ) be the largest homogeneous

Hopf ideal of the tensor algebra T (V ) that has no intersection with V ⊕ k. The
Nichols algebra B(V ) = T (V )/Ĩ(V ) is a braided Hopf algebra with very rigid
properties; it appears naturally in the structure of pointed Hopf algebras. If (V, c)
is of diagonal type, then the ideal Ĩ(V ) is Z

θ-homogeneous hence B(V ) is Z
θ-

graded. See [AS2] for details. The following statement, that we include for later
reference, is well known.

Lemma 2.5.
(a) If qii is a root of unit of order N > 1, then xNi = 0. In particular, if B(V ) is

an integral domain, then qii = 1 or it is not a root of unit, i = 1, . . . , θ.
(b) If i �= j, then (adcxi)r(xj) = 0 if and only if (r)!qii

∏
0≤k≤r−1(1− qkiiqijqji) =

0.
(c) If i �= j and qijqji = qrii, where 0 ≤ −r < ord(qii) (which could be infinite),

then (adcxi)1−r(xj) = 0. �
We shall say that a braiding c is generic if it is diagonal with matrix (qij)

where qii is not a root of 1, for any i.
Finally, we recall that the infinitesimal braiding of a pointed Hopf algebra

H is the braided vector space arising as the space of coinvariants of the Hopf
bimodule H1/H0, where H0 ⊂ H1 are the first terms of the coradical filtration of
H . We refer to [AS2] for a detailed explanation.

2.3. PBW-basis on the tensor algebra of a braided vector space of diagonal type

We begin by the formal definition of PBW-basis.

Definition 2.6. Let A be an algebra, P, S ⊂ A and h : S → N∪{∞}. Let also < be
a linear order on S. Let us denote by B(P, S,<, h) the set
{
p se11 . . . set

t : t ∈ N0, s1 > · · · > st, si ∈ S, 0 < ei < h(si), p ∈ P
}
.
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If B(P, S,<, h) is a basis of A, then we say that (P, S,<, h) is a set of PBW
generators with height h, and that B(P, S,<, h) is a PBW-basis of A. If P , <, h
are clear from the context, then we shall simply say that S is a PBW-basis of A.

Let us start with a finite-dimensional braided vector space (V, c); we fix a
basis x1, . . . , xθ of V , so that we may identify kX with T (V ). Recall the braided
bracket (1). Let us consider the graded map [−]c of kX given by

[u]c :=






u, if u = 1 or u ∈ X ;
[[v]c , [w]c]c, if u ∈ L, �(u) > 1 and u = vw

is the Shirshov decomposition;
[u1]c . . . [ut]c , if u ∈ X− L

with Lyndon decomposition u = u1 . . . ut;

Let us now assume that (V, c) is of diagonal type with respect to the basis
x1, . . . , xθ, with matrix (qij).

Definition 2.7. Given l ∈ L, the polynomial [l]c is called a hyperletter. Conse-
quently, a hyperword is a word in hyperletters, and a monotone hyperword is a
hyperword of the form W = [u1]k1c . . . [um]km

c , where u1 > · · · > um.

Let us collect some facts about hyperletters and hyperwords.
(a) Let u ∈ L. Then [u]c is a homogeneous polynomial with coefficients in Z [qij ]

and [u]c ∈ u + kX
�(u)
>u .

(b) Given monotone hyperwords W,V , one has

W = [w1]c . . . [wm]c > V = [v1]c . . . [vt]c ,

where w1 ≥ · · · ≥ wr, v1 ≥ · · · ≥ vs, if and only if

w = w1 . . . wm > v = vi . . . vt.

Furthermore, the principal word of the polynomial W , when decomposed as
sum of monomials, is w with coefficient 1.

The following statement is due to Rosso.

Theorem 2.8. [R2]. Let m,n ∈ L, with m < n. Then [[m]c , [n]c]c is a Z [qij ]-
linear combination of monotone hyperwords [l1]c . . . [lr]c , li ∈ L, whose hyperletters
satisfy n > li ≥ mn, and such that [mn]c appears in the expansion with non-zero
coefficient. Moreover, for any hyperword

deg(l1 . . . lr) = deg(mn). �
The next technical Lemma is crucial in the proof of Theorem 2.10 below and

also in the next subsection. Part (a) appears in [Kh], part (b) in [R2].

Lemma 2.9.
(a) Any hyperword W is a linear combination of monotone hyperwords bigger

than W , [l1] · · · [lr] , li ∈ L, such that deg(W ) = deg(l1 . . . lr), and whose
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hyperletters are between the biggest and the lowest hyperletter of the given
word.

(b) For any Lyndon word l, let Wl be the vector subspace of T (V ) generated by
the monotone hyperwords in hyperletters [li]c, li ∈ L such that li ≥ l. Then
Wl is a subalgebra. �

From this, it can be deduced that the set of monotone hyperwords is a basis
of T (V ), or in other words that our first goal is achieved.

Theorem 2.10. [Kh]. The set of hyperletters is a PBW-basis of T (V ). �

2.4. PBW Basis on quotients of the tensor algebra of a braided vector space of
diagonal type

We are next interested in Hopf algebra quotients of T (V ). We begin by describing
the comultiplication of hyperwords.

Lemma 2.11. [R2]. Let u ∈ X, and u = u1 . . . urv
m, v, ui ∈ L, v < ur ≤ · · · ≤ u1

the Lyndon decomposition of u. Then,

∆ ([u]c) = 1⊗ [u]c +
m∑

i=0

(
n

i

)

qv,v

[u1]c . . . [ur]c [v]ic⊗ [v]n−ic

+
∑

l1≥···≥lp>v,li∈L
0≤j≤m

x
(j)
l1,...,lp

⊗ [l1]c . . . [lp]c [v]jc ;

each x
(j)
l1,...,lp

is Z
θ-homogeneous, and deg(x(j)

l1,...,lp
)+deg(l1 . . . lpvj) = deg(u). �

The following definition appears in [Ha] and is used implicitly in [Kh].

Definition 2.12. Let u, v ∈ X. We say that u � v if and only if either �(u) < �(v),
or else �(u) = �(v) and u > v (lexicographical order). This � is a total order, called
the deg-lex order.

Note that the empty word 1 is the maximal element for �. Also, this order
is invariant by right and left multiplication.

Let now I be a proper Hopf ideal of T (V ), and set H = T (V )/I. Let π :
T (V ) → H be the canonical projection. Let us consider the subset of X:

GI := {u ∈ X : u /∈ Xu + I} .

Proposition 2.13. [Kh], see also [R2]. The set π(GI) is a basis of H. �

Notice that

(a) If u ∈ GI and u = vw, then v, w ∈ GI .
(b) Any word u ∈ GI factorizes uniquely as a non-increasing product of Lyndon

words in GI .
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Towards finding a PBW-basis the quotient H of T (V ), we look at the set

SI := GI ∩ L. (6)

We then define the function hI : SI → {2, 3, . . .} ∪ {∞} by

hI(u) := min
{
t ∈ N : ut ∈ kXut + I

}
. (7)

With these conventions, we are now able to state the main result of this
subsection.

Theorem 2.14. [Kh]. Keep the notation above. Then

B′
I := B ({1 + I} , [SI ]c + I,<, hI)

is a PBW-basis of H = T (V )/I. �

The next consequences of the Theorem 2.14 are used later. See [Kh] for proofs.

Corollary 2.15. A word u belongs to GI if and only if the corresponding hyperletter
[u]c is not a linear combination, modulo I, of greater hyperwords of the same degree
as u and of hyperwords of lower degree, where all the hyperwords belong to BI . �

Proposition 2.16. In the conditions of the Theorem 2.14, if v ∈ SI is such that
hI(v) < ∞, then qv,v is a root of unit. In this case, if t is the order of qv,v, then
hI(v) = t. �

Corollary 2.17. If hI(v) := h < ∞, then [v]h is a linear combination of monotone
hyperwords, in greater hyperletters of length h�(v), and of monotone hyperwords
of lower length. �

2.5. PBW Basis on the Nichols algebra of a braided vector space of diagonal type

Keep the notation of the preceding subsection. By Theorem 2.14, the Nichols
algebra B(V ) has a PBW-basis consisting of homogeneous elements (with respect
to the Z

θ-grading). As in [H1], we can even assume that
� The height of a PBW-generator [u] , deg(u) = d, is finite if and only if 2 ≤

ord(qu,u) < ∞, and in such case, hĨ(V )(u) = ord(qu,u).

This is possible because if the height of [u] , deg(u) = d, is finite, then 2 ≤
ord(qu,u) = m < ∞, by Proposition 2.16. And if 2 ≤ ord(qu,u) = m < ∞, but
hĨ(V )(u) is infinite, we can add [u]m to the PBW basis: in this case, hĨ(V )(u) =

ord(qu,u), and qum,um = qm
2

u,u = 1.
Let ∆+(B(V )) ⊆ N

n be the set of degrees of the generators of the PBW-
basis, counted with their multiplicities and let also ∆(B(V )) = ∆+(B(V )) ∪
(−∆+(B(V ))). We now show that ∆+(B(V )) is independent of the choice of the
PBW-basis with the property �, a fact repeatedly used in [H1].

Let R := k[x±1
1 , . . . , x±1

θ ], resp. R̂ := k[[x±1
1 , . . . , x±1

θ ]], the algebra of Lau-
rent polynomials in θ variables, resp. formal Laurent series in θ variables. If
n = (n1, . . . , nθ) ∈ Z

θ, then we set Xn = Xn1
1 · · ·Xnθ

θ . If T ∈ Aut(Zθ), then we
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denote by the same letter T the algebra automorphisms T : R → R, T : R̂ → R̂,
T (Xn) = XT (n), for all n ∈ Z

θ. We also set

qh(t) :=
th − 1
t − 1

∈ k[t], h ∈ N; q∞(t) :=
1

1 − t
=

∞∑

s=0

ts ∈ k[[t]].

We say that a Z
θ-graded vector space V = ⊕n∈ZθV n is locally finite if dimV n <

∞, for all n ∈ Z
θ. In this case, the Hilbert or Poincaré series of V is HV =∑

n∈Zθ dimV nXn. If V , W are Z
θ graded, then V⊗W = ⊕n∈Zθ

(
⊕p∈ZθV p⊗Wn−p)

is Z
θ-graded. If V,W are locally finite and additionally V n = Wn = 0, for all

n < M , for some M ∈ Z
θ, then V⊗W is locally finite, and HV⊗W = HVHW .

Lemma 2.18. Let χ : Z
θ × Z

θ → k
× be a bilinear form and set qα := χ(α, α),

hα := ord qα, α ∈ Z
θ. Let N,M ∈ N and α1, . . . , αN , β1, . . . , βM ∈ N

θ
0 \ {0} such

that ∏

1≤i≤N
qhαi

(Xαi) =
∏

1≤j≤M
qhβj

(Xβj ). (8)

Then N = M and exists σ ∈ SN such that αi = βσ(i).

Proof. If γ ∈ N
θ
0 \ {0}, then set

Cγ :=

{
(s1, . . . , sN ) :

N∑

i=1

siαi = γ, 0 ≤ si < hαi , 1 ≤ i ≤ N

}
,

cγ := #Cγ ∈ N0. Then the series in (8) equals 1 +
∑

N
θ
0\{0}

cγX
γ . Let m1 :=

min{|γ| : cγ �= 0}. Then m1 = cγ1 , for some γ1 ∈ N
θ
0 \ {0}, and s = (s1, . . . , sN ) ∈

Cγ1 should belong to the canonical basis. Let I := {i : αi = γ1} ⊆ {1, . . .N},
J := {j : βj = γ1} ⊆ {1, . . .M}. Since cγ1 = #I = #J , there exists a bijection
from I to J , and moreover,

∏
1≤i≤N,i/∈I qhαi

(Xαi) =
∏

1≤j≤M,j /∈J qhβj
(Xβj ). The

Lemma then follows by induction on k = min{N,M}. �

Hence, if V = ⊕n∈ZθV n is locally finite, and HV =
∏

1≤i≤N qhαi
(Xαi), then

the family α1, . . . , αN is unique up to a permutation.

We now sketch a proof of [R1, Lemma 19] using the PBW-basis; see [A] for
a complete exposition.

Lemma 2.19. Let V be a braided vector space of diagonal type with matrix qij ∈ k
×.

If B(V ) is a domain and its Gelfand-Kirillov dimension is finite, then for any pair
i, j ∈ {1, . . . , θ} , i �= j, there exists mij ≥ 0 such that

(adcxi)mij+1(xj) = 0.

Proof. Let i ∈ {1, . . . , θ}. By Lemma 2.5, either qii is not a root of the unit or else
it is 1. Suppose that there are i �= j ∈ {1, . . . , θ} such that (adcxi)m(xj) �= 0, for
all m > 0; say, i = 1, j = 2. Hence qm11q12q21 �= 1, m ∈ N. Then one can show by
induction that xm1 x2 ∈ SI , using Corollary 2.15. Next, assume that [xm1 x2]c has



On Nichols Algebras with Generic Braiding 55

finite height. Then, using Corollary 2.17, necessarily [xm1 x2]kc = 0 for some k. Let
ck =

∏k−1
p=0(1 − qp11q12q21). Using skew-derivations, we obtain that

q
−k (m+1)m

2
21 (m)q−1

22
!cmk (km)q−1

11
! = 0,

a contradiction. Thus each xk1x2 has infinite height. Thus,
[
xk1x2

]
c

is a PBW-
generator of infinite height. If r ≤ n and 0 ≤ n1 ≤ · · · ≤ nr, ni ∈ N such that∑r

j=1 nj = n − r, then [xn1
1 x2] . . . [xnr

1 x2] ∈ Bn(V ) is an element of B′
I . This

collection is linearly independent, hence

dimBn(V ) ≥
n∑

r=1

(
(n− r) + r − 1

n− r

)
=

n−1∑

r=0

(
n− 1
r

)
= 2n−1.

Therefore, GKdim(B(V )) = ∞. �

3. The Weyl groupoid

3.1. Groupoids

There are several alternative definitions of a groupoid; let us simply say that a
groupoid is a category (whose collection of all arrows is a set) where all the arrows
are invertible. Let G be a groupoid; it induces an equivalence relation ≈ on the set
of objects (or points) P by x ≈ y iff there exists an arrow g ∈ G going from x to
y. If x ∈ P , then G(x) = all arrows going from x to itself, is a group. A groupoid
is essentially determined by

• the equivalence relation ≈, and
• the family of groups G(x), where x runs in a set of representants of the

partition associated to ≈.

A relevant example of a groupoid (for the purposes of this paper) is the
transformation groupoid : if G is a group acting on a set X , then G = G ×X is a
groupoid with operation (g, x)(h, y) = (gh, y) if x = h(y), but undefined otherwise.
Thus the set of points in G is X and an arrow (g, x) goes from x to g(x):

x

(g,x)
��
g(x)

In this example, G(x) is just the isotropy group of x. Thus, if G acts freely on X
(that is, all the isotropy groups are trivially) then G is just the equivalence relation
whose classes are the orbits of the action. This is the case if

G = GL(θ,Z), X = set of all ordered bases of Z
θ, (9)

with the natural action.



56 N. Andruskiewitsch and I.E. Angiono

3.2. The ith reflection

For i, j ∈ {1, . . . , θ} , i �= j, we consider

Mi,j := {(adcxi)m(xj) : m ∈ N} ,
mij := min {m ∈ N : (m + 1)qii(1 − qmii qijqji) = 0} .

By Lemma 2.5, mi,j <∞ if and only if Mi,j is finite. In this case,

(adcxi)mij (xj) �= 0, (adcxi)mij+1(xj) = 0.

Let i ∈ {1, . . . , θ}. Set mii = −2. If any set Mi,j is finite, for all j ∈ {1, . . . , θ},
i �= j, then we define a linear map si : Z

θ → Z
θ, by si(ej) = ej + mijei, j ∈

{1, . . . , θ}. Note that s2
i = id.

We recall that there are operators yLi , y
R
i : B(V ) → B(V ), i = 1, . . . , n that

play the role of left and right invariant derivations. There is next a Hopf algebra
Hi := k

[
yRi
]

#k
[
ei, e

−1
i

]
; B(V ) is an Hi-module algebra. We explicitly record the

following equality in Ai := (B(V )op#Hcop
i )op:

(ρ#1) ·op
(
1#yRi

)
=
(
1#yRi

)
·op (e−1

i � ρ)#1 + yRi (ρ)#1, ρ ∈ B(V ). (10)

In the setting above, the following Lemma is crucial for the proof of Theorem
3.2. See [A] for a complete proof, slightly different from the argument sketched in
[H1].

Lemma 3.1. B(V ) ∼= ker(yLi )⊗k [xi] as graded vector spaces. Moreover, ker(yLi ) is
generated as algebra by ∪j �=iMi,j. �

The next result is the basic ingredient of the Weyl groupoid. We discuss some
details of the proof that are implicit in [H1].

Theorem 3.2. [H1, Prop. 1]. Let i ∈ {1, . . . , θ} such that Mi,j is finite, for all
j ∈ {1, . . . , θ}, i �= j. Let Vi be the vector subspace of Ai generated by

{(adcxi)mij (xj) : j �= i} ∪
{
yRi
}
.

The subalgebra Bi of Ai spanned by Vi is isomorphic to B(Vi), and

∆+(Bi) =
{
si
(
∆+ (B(V ))

)
\ {−ei}

}
∪ {ei} .

Proof. We just comment the last statement. The algebra Hi is Z
θ-graded, with

deg yRi = −ei, deg e±1
i = 0. Hence, the algebra Ai is Z

θ-graded, because B(V ) and
Hi are graded, and (10) holds.

Hence, consider the abstract basis {uj}j∈{1,...,θ} of Vi, with the grading
deg uj = ej , B(Vi) is Z

θ-graded. Consider also the algebra homomorphism Ω :
B(Vi) → Bi given by

Ω(uj) :=
{

(adcxi)mij (xj) j �= i,
yRi j = i.

By the first part of the Theorem, proved in [H1], Ω is an isomorphism.
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Note:
• deg Ω(uj) = deg ((adcxi)

mij (xj)) = ej + mijei = si(deg uj), if j �= i;
• deg Ω(ui) = deg

(
yRi
)

= −ei = si(deg ui).
As Ω is an algebra homomorphism, deg(Ω(u)) = si(deg(u)), for all u ∈ B(Vi). As
s2
i = id, si(deg(Ω(u))) = deg(u), for all u ∈ B(Vi), and HB(Vi) = si(HBi).

Suppose first that ordxi = hi < ∞. Then

HBi = Hker yL
i
H

k[yR
i ] = Hker yL

i
qhi(X

−1
i ) =

HB(V )

qhi(Xi)
qhi(X

−1
i ),

the first equality because of ∆(B(V )) ⊆ N
θ
0, the second since ordxi = ord yRi , and

the last by Proposition 3.1. As si is an algebra homomorphism, we have

HB(Vi) = si(HBi) = si
(
HB(V )

) qhi(Xi)
qhi(X

−1
i )

.

But

si
(
HB(V )

)
=

∏

α∈∆+(B(V ))

si (qhα(Xα))

=




∏

α∈∆+(B(V ))\{ei}
qhα(Xsi(α))



 qhi(X
−1
i );

thus

HB(Vi) =




∏

α∈∆+(B(V ))\{ei}
qhα(Xsi(α))



 qhi(Xi).

By Lemma 2.18, ∆+(Bi) = {si (∆+ (B(V ))) \ {−ei}} ∪ {ei}.
Suppose now that ordxi = hi = ∞. We have to manipulate somehow the

Hilbert series, because Ai is not locally finite. For this, we introduce an extra
variable X0, corresponding to an extra generator ẽ0 of Z

θ+1 (whose canonical basis
is denoted ẽ0, ẽ1, . . . , ẽθ), and consider Λ = 1

2Z
θ+1. We then define a Λ-grading in

B(V ), by

d̃eg(xj) =

{
ẽj j �= i,
1
2 (ẽi − ẽ0), j = i.

Let s̃i : Λ → Λ given by

s̃i(ẽj) =






ẽj + mij

2 (ẽi − ẽ0) j �= i, 0,
ẽ0, j = i,

ẽi, j = 0.

Consider the homomorphism Ξ : Λ → Z
θ, given by

Ξ(ẽj) =

{
ej j �= 0,
−ei, j = 0.
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Hence d̃eg(xj) = Ξ(deg xj), for each j ∈ {1, . . . , θ}. Note that

• Ξ(s̃i(ẽj)) = Ξ(ẽj + mij

2 (ẽi − ẽ0)) = ej + mijei = si(ej) = si(Ξ(ẽj)), if j �= i,
• Ξ(s̃i(ẽi)) = Ξ(ẽ0) = −ei = si(ei) = si(Ξ(ẽi)),
• Ξ(s̃i(ẽ0)) = Ξ(ẽi) = ei = si(−ei) = si(Ξ(ẽ0));

thus Ξ(s̃i(α)) = si(Ξ(α)), for all α ∈ Λ. With respect to grading, we can repeat
the previous argument, defining ∆̃+(B(V )) ⊆ Λ in analogous way to ∆+(B(V )).
We get

∆̃+(B(Vi)) =
(
s̃i(∆̃+(B(V )) \ {−ẽi}

)
∪ {ẽi};

as Ξ(∆̃+(B(V ))) = ∆+(B(V )), Ξ(∆̃+(B(Vi))) = ∆+(B(Vi)), we have

∆+(B(Vi)) = Ξ
((

s̃i(∆̃+(B(V )) \ {−ẽi}
)
∪ {ẽi}

)

= si

(
Ξ
(

∆̃+(B(V )) \ {ẽi}
)
∪ {ei}

)

=
(
si
(
∆+ (B(V ))

)
\ {−ei}

)
∪ {ei} .

The proof now follows from Lemma 2.18. �

By Theorem 3.2, the initial braided vector space with matrix (qkj)1≤k,j≤θ ,
is transformed into another braided vector space of diagonal type Vi, with matrix
(qkj)1≤k,j≤θ , where qjk = q

mijmik

ii q
mij

ik qmik
ji qjk, j, k ∈ {1, . . . , θ}.

If j �= i, then mij = min
{
m ∈ N : (m + 1)qii

(
qmii qijqji = 0

)}
= mij . Thus,

the previous transformation is invertible.

3.3. Definition of the Weyl groupoid

Let E = (e1, . . . , eθ) be the canonical basis of Z
θ. Let (qij)1≤i,j≤θ ∈ (C×)θ×θ. We

fix once and for all the bilinear form χ : Z
θ × Z

θ → C
× given by

χ(ei, ej) = qij , 1 ≤ i, j ≤ θ.

Let F = (f1, . . . , fθ) be an arbitrary ordered basis of Z
θ and let q̃ij = χ(fi, fj),

1 ≤ i, j ≤ θ, the braiding matrix with respect to the basis F . Fix i ∈ {1, . . . , θ}. If
1 ≤ i �= j ≤ θ, then we consider the set

{m ∈ N0 : (m + 1)q̃ii
(q̃mii q̃ij q̃ji − 1) = 0}.

This set might well be empty, for instance if q̃ii = 1 �= q̃ij q̃ji for all j �= i. If this set
is nonempty, then its minimal element is denoted mij (which of course depends
on the basis F ). Set also mii = −2. Let si,F ∈ GL(Zθ) be the pseudo-reflection
given by si,F (fj) := fj + mijfi, j ∈ {1, . . . , θ} .

Let us compute the braiding matrix with respect to the matrix si,F (F ). Let
uj := si,F (fj) and q̂rj = χ(ur,uj). If we also set mii := −2, 1 ≤ i ≤ θ by conve-
nience, then

q̂rs = q̃ mirmis

ii q̃ mis

ri q̃ mir

is q̃rs, 1 ≤ r, s ≤ θ. (11)
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In particular q̂ii = q̃ii and q̂jj =
(
q̃
mij

ii q̃jiq̃ij
) mij

q̃jj , 1 ≤ j ≤ θ. Thus, even if mij

are defined for the basis F and for all i �= j, they need not be defined for the basis
si,F (F ). For example, if

(
q̃ii q̃ij
q̃ji q̃jj

)
=
(
−1 −ξ
ξ ξ−2

)
,

where ξ is a root of 1 of order > 4, then
(
q̂ii q̂ij
q̂ji q̂jj

)
=
(

−1 ξ−1

−ξ−1 1

)
and mji

is not defined with respect to the new basis si,F (F ). However, for an arbitrary F
and i such that mij for F is defined, then mij is defined for the new basis si,F (F )
and coincides with the old one, so that

si,si,F (F ) = si,F . (12)

Notice that formula (11) and a variation thereof appear in [H2].

Definition 3.3. The Weyl groupoid W (χ) of the bilinear form χ is the smallest
subgroupoid of the transformation groupoid (9) with respect to the following prop-
erties:

• (id, E) ∈W (χ),
• if (id, F ) ∈ W (χ) and si,F is defined, then (si,F , F ) ∈W (χ).

In other words, W (χ) is just a set of bases of Z
θ: the canonical basis E,

then all bases si,E(E) provided that si,E is defined, then all bases sj,si(E)si,E(E)
provided that si,E and sj,si(E) are defined, and so on.

Here is an alternative description of the Weyl groupoid. Consider the set of all
pairs (F, (q̃ij)1≤i,j≤θ) where F is an ordered basis of Z

θ and the q̃ij ’s are non-zero
scalars. Let us say that

(F, (q̃ij)1≤i,j≤θ) ∼ (U, (q̂ij)1≤i,j≤θ)

if there exists and index i such that mij exists for all 1 ≤ i �= j ≤ θ, U = si,F (F )
and q̂ij is obtained from q̃ij by (11). By (12) this is reflexive; consider the
equivalence relation ≈ generated by ∼. Then W (χ) is the equivalence class of
(E, (qij)1≤i,j≤θ) with respect to ≈. Actually, if

(F, (q̃ij)1≤i,j≤θ) and (U, (q̂ij)1≤i,j≤θ)

belong to the equivalence class, there will be a unique s ∈ GL(Zθ), which is a
product of suitable si’s, such that (s, F ) ∈ W (χ) and s(F ) = U .

The equivalence class of (F, (q̃ij)1≤i,j≤θ) is denoted W (F, (q̃ij)1≤i,j≤θ). Fur-
thermore, if χ is a fixed bilinear form as above, F = (fi)1≤i≤θ and q̃ij = χ(fi, fj),
1 ≤ i, j ≤ θ, then we denote W (F, χ) := W (F, (q̃ij)1≤i,j≤θ); and W (χ) := W (E,χ)
where E is the canonical basis.

From this viewpoint, it is natural to introduce the following concept.
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Definition 3.4. We say that (q̃ij)1≤i,j≤θ and (q̂ij)1≤i,j≤θ ∈ k
× are Weyl equivalent

if there exist ordered bases F and U such that

(F, (q̃ij)1≤i,j≤θ) ≈ (U, (q̂ij)1≤i,j≤θ).

Now recall that (q̃ij)1≤i,j≤θ and (q̂ij)1≤i,j≤θ ∈ k
× are twist equivalent if q̃ii = q̂ii

and q̃ij q̃ji = q̂ij q̂ji for all 1 ≤ i, j ≤ θ.
It turns out that it is natural to consider the equivalence relation ≈WH gen-

erated by twist- and Weyl-equivalence, see [H2, Def. 3], see also [H3, Def. 2]. We
propose to call ≈WH the Weyl-Heckenberger equivalence; note that this is the
“Weyl equivalence” in [H2]. We suggest this new terminology because the Weyl
groupoid is really an equivalence relation.

The Weyl groupoid is meant to generalize the set of basis of a root system.
For convenience we set P(χ) = {F : (id, F ) ∈ W (χ)}, the set of points of the
groupoid W (χ). Then the generalized root system2 associated to χ is

∆(χ) =
⋃

F∈P(χ)

F. (13)

We record for later use the following evident fact.

Remark 3.5. The following are equivalent:

1. The groupoid W (χ) is finite.
2. The set P(χ) is finite.
3. The generalized root system ∆(χ) is finite. �

Let also c : W (χ) → GL(θ,Z), c(s, F ) = s if (s, F ) ∈ W (χ). We denote by
W0(χ) the subgroup generated by the image of c. Compare with [Se].

Let us say that χ is standard if for any F ∈ P(χ), the integers mrj are
defined, for all 1 ≤ r, j ≤ θ, and the integers mrj for the bases si,F (F ) coincide
with those for F for all i, r, j (clearly it is enough to assume this for the canonical
basis E).

Proposition 3.6. Assume that χ is standard. Then

W0(χ) = 〈si,E : 1 ≤ i ≤ θ〉.

Furthermore W0(χ) acts freely and transitively on P(χ). �

The first claim says that W0(χ) is a Coxeter group. The second implies that
W0(χ) and P(χ) have the same cardinal.

2Actually this is a little misleading, since in the case of braidings of symmetrizable Cartan type,
one would get just the real roots.
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Proof. Let F ∈ P(χ). Since χ is standard, for any 1 ≤ i, j ≤ θ

sj,si,F (F ) = si,F sj,F si,F . (14)

Hence W0(χ) ⊆ 〈si,E : 1 ≤ i ≤ θ〉; the other inclusion being clear, the first claim
is established. Now, by the very definition of the Weyl groupoid, there exists a
unique w ∈ W0(χ) such that w(E) = F . Thus, to prove the second claim we
only need to check that the action is well defined; and for this, it is enough to
prove: if w ∈ W0(χ), then w(E) ∈ P(χ). We proceed by induction on the length
of w, the case of length one being obvious. Let w′ = wsi,E , with length of w′ =
length of w + 1. Then F = w(E) ∈ P(χ). The matrix of si,F in the basis E
is ‖si,F ‖E = ‖ id ‖F,E‖si,F ‖F ‖ id ‖E,F and since χ is standard, we conclude that
si,F = wsi,Ew

−1. 3 That is, w′ = si,Fw and w′(E) = si,F (F ) ∈ P(χ). �

Remark 3.7. Assume that χ is standard. Then the following are equivalent:

1. The groupoid W (χ) is finite.
2. The set P(χ) is finite.
3. The generalized root system ∆(χ) is finite.
4. The group W0(χ) is finite.

If this holds, then W0(χ) is a finite Coxeter group; and thus belongs to the well-
known classification list in [B].

3.4. Nichols algebras of Cartan type

Definition 3.8. A braided vector space (V, c) is of Cartan type if it is of diagonal
type with matrix (qij)1≤i,j≤θ and for any i, j ∈ {1, . . . , θ}, qii �= 1, and there exists
aij ∈ Z such that

qijqji = q
aij

ii .

The integers aij are uniquely determined by requiring that aii = 2, 0 ≤ −aij <
ord(qii), 1 ≤ i �= j ≤ θ. Thus (aij)1≤i,j≤θ is a generalized Cartan matrix [K].

If (V, c) is a braided vector space of Cartan type with generalized Cartan
matrix (aij)1≤i,j≤θ, then for any i, j ∈ {1, . . . , θ} , j �= i, mij = −aij . It is easy to
see that a braiding of Cartan type is standard, see the first part of the proof of
[H1, Th. 1]. Hence we have from Remark 3.7:

Lemma 3.9. Assume that χ is of Cartan type with symmetrizable Cartan matrix
C. Then the following are equivalent:

1. The generalized root system ∆(χ) is finite.
2. The Cartan matrix C is of finite type. �

We are now ready to sketch a proof of the main theorem in [H1].

3Here, one uses that the matrix ‖ id ‖F,E when seen as transformation of Z
θ , sends ei to fi for

all i.
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Theorem 3.10. Let V be a braided vector space of Cartan type with Cartan matrix
C. Then, the following are equivalent.

1. The set ∆(B(V )) is finite.
2. The Cartan matrix C is of finite type.

Proof. (1) ⇒ (2). As ∆(χ) ⊆ ∆(B(V )), ∆(χ) is finite. If C is symmetrizable,
we apply Lemma 3.9. If C is not symmetrizable, one reduces as in [AS1] to the
smallest possible cases, see [H1]. See [H1] for the proof of (2) ⇒ (1). �

We can now prove Lemma 1.2: (b) =⇒ (a) was already discussed in [AS3].
(a) =⇒ (b): it follows from Lemma 2.19 that (V, c) is of Cartan type; hence it
is of finite Cartan type, by Theorem 3.10. To prove that (V, c) is of DJ-type – see
[AS3, p. 84] – it is enough to assume that C is irreducible; then the result follows
by inspection.

We readily get the following Corollary, as in [AS3, Th.2.9] – that really follows
from results of Lusztig and Rosso. Let V be a braided vector space of diagonal
type with matrix qij ∈ k

×. Let mij ≥ 0 be as in Lemma 2.19.

Corollary 3.11. If B(V ) is a domain and its Gelfand-Kirillov dimension is finite,
then B(V ) 
 k < x1, . . . , xθ : (adcxi)mij+1(xj) = 0, i �= j >. �

Notice that the hypothesis “B(V ) is a domain” is equivalent to “qii = 1 or it
is not a root of 1, for all i”, cf. [Kh].

Appendix A. Generic data and the definition of U(D)

In this Appendix, we briefly recall the main definitions and results from [AS3]
needed for Theorem 1.1. Everything below belongs to [AS3]; see loc. cit. for more
details. Below, we shall refer to the following terminology.

• Γ is a free abelian group of finite rank s.
• (aij) ∈ Z

θ×θ is a Cartan matrix of finite type [K]; we denote by (d1, . . . , dθ) a
diagonal matrix of positive integers such that diaij = djaji, which is minimal
with this property.

• X is the set of connected components of the Dynkin diagram corresponding
to the Cartan matrix (aij); if i, j ∈ {1, . . . , θ}, then i ∼ j means that they
belong to the same connected component.

• (qI)I∈X is a family of elements in k which are not roots of 1.
• g1, . . . , gθ are elements in Γ, χ1, . . . , χθ are characters in Γ̂, and all these

satisfy

〈χi, gi〉 = qdi

I , 〈χj , gi〉〈χi, gj〉 = q
diaij

I , for all 1 ≤ i, j ≤ θ, i ∈ I.

We say that two vertices i and j are linkable (or that i is linkable to j) if
i �∼ j, gigj �= 1 and χiχj = ε.
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Definition A.1. A linking datum for

Γ, (aij), (qI)I∈X , g1, . . . , gθ and χ1, . . . , χθ

is a collection (λij)1≤i<j≤θ,i�j of elements in {0, 1} such that λij is arbitrary if i
and j are linkable but 0 otherwise. Given a linking datum, we say that two vertices
i and j are linked if λij �= 0. The collection

D = D((aij), (qI), (gi), (χi), (λij)),

where (λij) is a linking datum, will be called a generic datum of finite Cartan type
for Γ.

In the next Definition, adc is the “braided” adjoint representation, see [AS3].

Definition A.2. Let D = D((aij), (qI), (gi), (χi), (λij)) be a generic datum of finite
Cartan type for Γ. Let U(D) be the algebra presented by generators a1, . . . , aθ,
y±1
1 , . . . , y±1

s and relations

y±1
m y±1

h = y±1
h y±1

m , y±1
m y∓1

m = 1, 1 ≤ m,h ≤ s, (15)

yhaj = χj(yh)ajyh, 1 ≤ h ≤ s, 1 ≤ j ≤ θ, (16)

(adc ai)1−aijaj = 0, 1 ≤ i �= j ≤ θ, i ∼ j, (17)

aiaj − χj(gi)ajai = λij(1 − gigj), 1 ≤ i < j ≤ θ, i �∼ j. (18)

The relevant properties of U(D) are stated in the following result.

Theorem A.3. [AS3, Th. 4.3]. The algebra U(D) is a pointed Hopf algebra with
structure determined by

∆yh = yh ⊗ yh, ∆ai = ai ⊗ 1 + gi ⊗ ai, 1 ≤ h ≤ s, 1 ≤ i ≤ θ. (19)

Furthermore, U(D) has a PBW-basis given by monomials in the root vectors,
that are defined by an iterative procedure. The coradical filtration of U(D) is given
by the ascending filtration in powers of those root vectors. The associated graded
Hopf algebra grU(D) is isomorphic to B(V )#kΓ; U(D) is a domain with finite
Gelfand-Kirillov dimension.
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Finite-dimensional Hopf Algebras

V.A. Artamonov and I.A. Chubarov

To Prof. Robert Wisbauer on the occasion of his 65th anniversary

Abstract. In this paper we establish properties of dual Hopf algebras for two
series of finite-dimensional semisimple Hopf algebras. It is shown none of dual
algebra belong to this class.

1. Introduction

This article as the previous one [A] was motivated by a result by G.M. Seitz who
characterized finite groups G having only one irreducible complex representation of
degree n > 1. Such a group G is either an extraspecial 2-group of order 22m+1, n =
2m, or |G| = n(n + 1), where n + 1 = pf , p a prime [H][Theorem 7.10]. So in [A]
semisimple finite-dimensional Hopf algebras H were studied which had only one
irreducible representation Φ of degree n greater than 1. One could expect that a
restriction of Φ to the subgroup of group-like elements G(H) would be irreducible,
so G could be one of the groups characterized by Seitz. But it turns out to be not
the case.

Let H be a finite-dimensional semisimple Hopf algebra over an algebraically
closed field k, such that chark and dimH are coprime.

Throughout the paper we shall keep to notations from [M]. For example there
is a left and right action f ⇀ x, x ↼ f of f ∈ H∗ on x ∈ H , defined as follows: if
∆(x) =

∑
x x(1) ⊗ x(2) then

f ⇀ x =
∑

x

x(1)〈f, x(2)〉, x ↼ f =
∑

x

〈f, x(1)〉x(2)

Suppose that a semisimple finite-dimensional Hopf H as an algebra has up to an
isomorphism only one irreducible representation. Denote by G = G(H∗) the group

Research partially supported by grants RFBR 06-01-00037, NSh-5666.2006.1.
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of group-like elements in the dual Hopf algebra H∗. Then H as a k-algebra has a
semisimple direct decomposition

H = ⊕g∈Gkeg ⊕Mat(n, k)E, (1)

where {eg, g ∈ G, E} is a system of central orthogonal idempotents in H . Here
E is the identity matrix in Mat(n, k). Moreover 1 =

∑
g∈G eg + E in H . It follows

from Nichols-Zoeller Theorem [NZ] that the order |G| of G divides n2.

Theorem 1.1 ([A]). Let G = G(H∗) be the group of group-like elements in the
dual Hopf algebra H∗, and H have direct decomposition (1) where eg, E are cor-
responding central idempotents. Then comultiplication ∆, counit ε and antipode S
in H have the form

∆(x) =
∑

g∈G
[(g ⇀ x) ⊗ eg + eg ⊗ (x ↼ g)] + ∆′(x),

∆(et) =
∑

g,h∈G, gh=t

eg ⊗ eh + ∆t.

Here x ∈ Mat(n, k), t ∈ G and ∆′(x), ∆t ∈ Mat(n, k) ⊗ Mat(n, k). The elements
∆′(E) and ∆g, g ∈ G, is a set of orthogonal idempotents, satisfying the following
relations:

[1 ⊗ (g ⇀ )] ∆t = ∆tg−1 ; [(↼ g)⊗ 1] ∆t = ∆g−1t.

Moreover if g ∈ G, then S(eg) = eg−1 . If µ : H ⊗ H → H is the multiplication
map then

µ(1 ⊗ S)∆g = µ(S ⊗ 1)∆g = δg,1eg,

µ(1 ⊗ S)∆′(x) = µ(S ⊗ 1)∆′(x) = 0

for all g ∈ G and for all x ∈ Mat(n, k).

Under additional assumption that |G| = n2, equivalently ∆′ = 0, it is proved
in [A] that up to a Hopf algebra isomorphism H belongs to one of the following
two series. In the modified form the main result of [A, Theorems 4.1 and 5.1] can
be formulated in the following form.

Theorem 1.2 ([A]). Suppose that H is from (1), G = G(H∗). Then |G| = n2 if
and only if ∆′ = 0 in Theorem 1.1. Moreover by [TY, Corollary 3.3] the group G
is Abelian.

Let U = (uij), V = (vij) be matrices from GL(n, k) such that V = 1
nU

−1 and
either U = E, V = 1

nE or U = S, V = − 1
nS, where

S =





T 0 . . . 0
0 T . . . 0
. . . . . . . . . . . . . .
0 0 . . . T



 , T =
(

0 −1
1 0

)
.
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In both cases comultiplication ∆, counit ε and antipode S are as follows:

∆(eg) =
∑

h∈G
eh ⊗ eh−1g + ∆g, ∆g ∈ Mat(n, k)⊗ Mat(n, k),

∆(x) =
∑

g∈G
[(g ⇀ x) ⊗ eg + eg ⊗ (x ↼ g)] , x ∈ Mat(n, k)

ε(eg) = δg,1, ε(x) = 0, x ∈ Mat(n, k)

S(y) =

{
eg−1 , y = g ∈ G,

nU tyV = U tyU−1 y ∈ Mat(n, k).

where

∆g =
∑

i,j,p,q

(
Eij ↼ g−1

)
⊗ uipvqjEpq =

∑

i,j,p,q

Eij ⊗ uipvqj
(
g−1 ⇀ Epq

)

Moreover there exists a projective representation g �→ Ag ∈ GL(n, k) of degree n
such that

g ⇀ x = AgxAg−1 ,

x ↼ g = n2U tAgV xU tAg−1V = U tAgU
−1xU tAg−1U−1,

AgU
tAhU

−1A−1
g U tA−1

h U−1 = [Ag, U tA−1
h U−1] = µg,hE, µg,h ∈ k∗,

∆g =
n∑

i,j,p,q,r,s=1

Eij ⊗ uiparp(g−1)aqs(g)vqjErs

for any g ∈ G. Moreover trAg = nδg,1 and

R =
∑

i,j

Eij ⊗ Eji =
∑

g∈G
U tAg−1 ⊗ tAgV (2)

Conversely, if H has semisimple decomposition (1) with comultiplication as above
then H is a Hopf algebra.

Here Eij are matrix unit elements and tAg is the transpose of a matrix Ag.

Following [OM] we shall call the matrix S from Theorem 1.2 hyperbolic.
In [TY, Theorem 3.2] there is given a classification of Hopf algebras H in

terms of category of representations and in terms of bicharacters of G. As an
application in [TY, Theorem 4.1] the authors proved that in the case n = 2
there exist up to equivalence four classes of Hopf algebras H . Theorem 1.2 gives
an explicit form of comultiplication in H for arbitrary n in terms of projective
representations up to an orthogonal (symplectic) equivalence. This form allows us
to carry our calculations in dual Hopf algebra H∗ and prove Theorem 6.1.
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Observe that (2) can be presented in another form, namely

n(trZ)E = n2 [tr(V ZU)]E = n2
∑

ij

Eij(V ZU)Eji

= n2
∑

g∈G
U tAg−1V ZU tAgV =

∑

g∈G
(Z ↼ g−1) = Z ↼




∑

g∈G
g




(3)

for any matrix Z ∈ Mat(n, k).

Theorem 1.3 ([A]). Let H be from Theorem 1.2. Then

w =
∑

g∈G
χg,weg + Zw ∈ H, Zw ∈ Mat(n, k), χg,w ∈ k

is a group-like element from H if and only if the following conditions are satisfied
1) χgh,w = χg,wχh,w for all g, h ∈ G which means that χ∗,w is a one-dimen-

sional character of G;
2) g ⇀ Zw = χg,wZw = Zw ↼ g for every g ∈ G.
3) ZwU

tZw = U .

Moreover if w, Y are from Theorem 1.3 then Zw ⊗ Zw =
∑

g∈G χg,w∆g.

Since U2 = ±E it follows from the property 1.3) in Theorem 1.3 that

Z−1
w = U tZwU

−1 = U−2
(
U tZwU

−1
)
U2 = U−1 tZwU.

It was shown in [A] that H is a group algebra if and only if the following equivalent
conditions are satisfied:

1. H is cocommutative,
2. g ⇀ x = x ↼ g for all g ∈ G, x ∈ Mat(n, k).
3. Ag = ±tAg for each g ∈ G.

In Theorem 4.7 we specify the form of all matrices Zw keeping invariant all other
data of H . We show that taking an isomorphic copy of H we can assume that
matrices Zw, w ∈ G(H), have block-diagonal form where sizes of blocks are 1, 2, 4
of a prescribed form.

If H is a Hopf algebra from Theorem 1.2 then the dual Hopf algebra H∗ is
also semisimple [M1]. The aim of this paper is to give an answer to the following
question raised by N. Andruskiewitsch: does there exist a Hopf algebra H such
that both H and H∗ belong to series from Theorem 1.1 or Theorem 1.2, provided
n > 2. If n = 2 then there exists an example of H isomorphic to H∗ due to G. Kac
and V. Paljutkin [KP] The first main result of the paper Theorem 6.1 shows that
if H is from Theorem 1.2 then a semisimple Hopf algebra H∗ could not isomorphic
to any algebra from Theorem 1.1.

In the second part of the paper which starts from §4 we specify in Theo-
rem 4.7 the structure of a group G(H) of group-like elements and in Proposition 5.2
one-dimensional direct summands in the dual Hopf algebra H∗ where H is from
Theorem 1.2. Moreover in Proposition 5.3 we find an explicit form of direct sum
of non-commutative simple direct summands in semisimple decomposition of H∗.
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The authors thank Prof. S. Natale for useful discussions and comments. She
indicated papers [N1], [N2], [T], [TY] where the similar class of Hopf algebras
was considered from another point of view, namely in [N2, §3.4]. In the present
paper we develop group-theoretical approach and direct calculations which could
be useful for other purposes. We are also grateful to the referee for very useful
remarks.

2. Antipode

In this section we are going to consider properties of an antipode in a semisimple
Hopf algebra from Theorem 1.1. An antipode S is an involutive anti-automorphism
of the semisimple finite-dimensional Hopf algebra H from (1). Then Mat(n, k) is
S-invariant. By [P, §12.7] there exists an invertible matrix U ∈ GL(n, k) such that
S(x) = U txU−1, where tx is the transpose of x. Since S2 = 1 for any matrix x we
have

x = S (S(x)) = U t
(
U txU−1

)
U−1 = U tU−1x tU U−1

and therefore U tU−1 = λE for some λ ∈ k∗. It follows that U = λ tU and λ = ±1.
Hence U is (skew)symmetric. We have proved

Proposition 2.1. There is a (skew)symmetric matrix U ∈ GL(n, k) such that
S(x) = U txU−1 for all x ∈ Mat(n, k). In particular

tr (S(x)) = trx

for any matrix x.

If ∆(x) =
∑
x x(1) ⊗ x(2) then ∆(S(x)) =

∑
x S(x(2))⊗S(x(1)) and therefore

f ⇀ S(x) =
∑

x

S(x(2))〈f, S(x(1))〉 =
∑

x

S(x(2))〈S(f), x(1)〉

= S

(
∑

x

x(2)〈f−1, x(1)〉
)

= S
(
x ↼ f−1

) (4)

for all f ∈ G and all x ∈ Mat(n, k). Similarly

S(x) ↼ f = S
(
f−1 ⇀ x

)
. (5)

Proposition 2.2. For any matrix x and any g ∈ G we have

tr(g ⇀ x) = tr(x ↼ g) = tr(x).

Proof. If g ∈ G then the map x �→ g ⇀ x is an automorphism of the matrix algebra
Mat(n, k). Since each automorphism of Mat(n, k) is inner, it preserves traces. �
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3. Dual algebra H∗

The Hopf algebra H from Theorem 1.1 has a base eg, g ∈ G, and Eij , 1 � i, j � n,
where {Eij | 1 � i, j � n} is a system of matrix units in Mat(n, k). The space
Mat(n, k) is equipped with a bilinear form

〈A,B〉 = tr (A · S(B)) = tr(A · U tBU−1), (6)

which is non-degenerate because n is not divisible by chark. Here S is the antipode
from Proposition 2.1. Note that

〈UEpqU
−1, Eij〉 = tr(EpqEji) = δqjδpi.

So the base
{
Eij = UEijU

−1 | i, j = 1, . . . , n
}

(7)

of Mat(n, k) is dual to the base {Eij | i, j = 1, . . . , n} with respect to the form (6).
Denote by Mat(n, k)∗ the linear span of the base (7) which is viewed as the dual
space to Mat(n, k). So the identification of Mat(n, k)∗ → Mat(n, k) is given by the
map 〈X,−〉 � X .

Expand each Eji to the element of H∗ such that 〈Eji, eg〉 = 0 for g ∈ G. In
particular 〈X,Eij〉 is equal to the (i, j)th entry of the matrix U−1XU . Hence as
a linear space H∗ is a direct sum H∗ = kG ⊕ Mat(n, k)∗, where kG is the group
algebra of the group G.

Proposition 3.1. Let g ∈ G and X,Y ∈ Mat(n, k). Then

〈X,Y ↼ g〉 = 〈g ⇀ X, Y 〉, 〈X ↼ g, Y 〉 = 〈X, g ⇀ Y 〉,
〈X,Y 〉 = 〈Y,X〉.

It means that the operators g ⇀, ↼ g are adjoint with respect to the symmetric
bilinear form (6).

Proof. Applying (4), (5), Proposition 2.1 and Proposition 2.2 we obtain

〈X,Y 〉 = tr (X · S(Y )) = tr [S (X · S(Y ))] = tr (Y · S(X)) = 〈Y,X〉;
〈X,Y ↼ g〉 = tr (X · S(Y ↼ g)) = tr

[
X
(
g−1 ⇀ S(Y )

)]

= tr
[
g ⇀

(
X
(
g−1 ⇀ S(Y )

))]
= tr [(g ⇀ X)S(Y )] = 〈g ⇀ X, Y 〉.

The second equality can be proved in a similar way. �
Corollary 3.2. If w,w′ ∈ G(H) in Theorem 1.3 and w /∈ w′K then 〈Zw, Z ′

w〉 = 0.
Moreover 〈Zw, Zw〉 = n. Here K is the subgroup of all v ∈ G(H) such that χg,v = 1
for all g ∈ G, see Section 4, Propositions 4.2 and 4.3.

Proof. Applying Theorem 1.2, Theorem 1.3, property 1.3) and Proposition 4.3 we
obtain

〈Zw, Z ′
w〉 = tr

(
ZwU

tZw′U−1
)

= tr
(
Zw′Z−1

w

)

= tr (Zw′w−1) =

{
0, w /∈ w′K,

n, w = w′. �
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Proposition 3.3. Let ∆∗ be the comultiplication in H∗. Then

∆∗(Epq) =
n∑

j=1

Epj ⊗ Ejq

and if g ∈ G then ∆∗(g) = g ⊗ g.

Proof. Recall that (H ⊗H)∗ = H∗ ⊗H∗ and therefore 〈∆∗f, x⊗ y〉 = 〈f, xy〉 for
all f ∈ H∗ and all x, y ∈ H [M]. Let

a =
∑

h∈G
αheh + X ∈ H, αh ∈ k, X ∈ Mat(n, k),

b =
∑

h∈G
βheh + Y ∈ H, βh ∈ k, Y ∈ Mat(n, k).

Then for any Epq ∈ Mat(n, k), g ∈ G we have

〈∆∗(Epq), a⊗ b〉 = 〈Epq, XY 〉 = tr
(
EpqU

t(XY )U−1
)

=
(
U tY tXU−1

)
qp

=
n∑

j=1

(
U tY U−1

)
qj

(
U tXU−1

)
jp

=
n∑

j=1

tr
(
EjqU

tY U−1
)

tr
(
EpjU

tXU−1
)

=
n∑

j=1

〈Epj , X〉〈Ejq, Y 〉,

〈∆∗(g), a⊗ b〉 = 〈g, ab〉 = αgβg = 〈g, a〉〈g, b〉. �

Corollary 3.4. Let w ∈ G(H) in Theorem 1.3 and g ∈ G. Then w ⇀ g = χg,wg =
g ↼ w.

Proof. We know that ∆∗(g) = g ⊗ g. Hence w ⇀ g = g〈w, g〉 = χg,wg by Theo-
rem 1.3. �

Let a ∗ b denote the convolution multiplication in H∗. Note that ε is the unit
element in H∗ and it is equal to 1 ∈ G.

Proposition 3.5. Suppose that H is from Theorem 1.2. If g, h ∈ G and X,Y ∈
Mat(n, k)∗ then

g ∗ h = gh, g ∗X = g ⇀ X, X ∗ g = X ↼ g,

X ∗ Y =
1
n

∑

g∈G
〈Y ↼ g−1, X〉g =

1
n

∑

g∈G
〈Y ∗ g−1, X〉g.

Proof. Let ∆g =
∑

i ai⊗ bi, where ai, bi ∈ Mat(n, k) and Z ∈ Mat(n, k). Applying
Theorem 1.2 and Proposition 3.1 we obtain for f ∈ G

〈g ∗ h, ef 〉 =
∑

r∈G
〈g, er〉〈h, er−1f 〉 +

∑

i

〈g, ai〉〈g, bi〉 = 〈gh, ef〉;

〈g ∗ h,X〉 =
∑

f∈G
[〈g, f ⇀ X〉〈h, ef 〉+ 〈g, ef 〉〈h,X ↼ f〉] = 0;
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〈g ∗X, eh〉 =
∑

r∈G
〈g, er〉〈X, er−1h〉+

n∑

i,j=1

〈g, ai〉〈X, bi〉

= 0 = 〈X ∗ g, ef〉;

〈g ∗X,Y 〉 =
∑

f∈G
[〈g, f ⇀ Y 〉〈X, ef 〉 + 〈g, ef〉〈X,Y ↼ f〉]

= 〈X,Y ↼ g〉 = 〈g ⇀ X, Y 〉;

〈X ∗ g, Y 〉 =
∑

f∈G
[〈X, f ⇀ Y 〉〈g, ef 〉 + 〈X, ef〉〈g, Y ↼ f〉]

= 〈X, g ⇀ Y 〉 = 〈X ↼ g, Y 〉;

〈X ∗ Y, Z〉 =
∑

f∈G
[〈X, f ⇀ Z〉〈Y, ef 〉 + 〈X, ef〉〈Y, Z ↼ f〉] = 0.

Set Mij =
∑
p,q uipEpqvqj ∈ Mat(n, k) in notations of Theorem 1.2. Then

〈X ∗ Y, eg〉 =
∑

r∈G
〈X, er〉〈Y, er−1g〉+

n∑

i,j=1

〈X,Ei,j〉〈Y, g−1 ⇀ Mi,j〉

=
n∑

i,j=1

〈X,Ei,j〉〈Y ↼ g−1,Mi,j〉

=
n∑

i,j,p,q=1

〈X,Ei,j〉uipvqj〈Y ↼ g−1, Ep,q〉

=
n∑

i,j,p,q=1

(U−1XU)ijuipvqj
(
U−1(Y ↼ g−1)U

)
pq

=
1
n

tr
(
UU−1(Y ↼ g−1)UU−1 t

(
U−1XU

))

=
1
n

tr
(
(Y ↼ g−1)U tXU−1

)
=

1
n
〈Y ↼ g−1, X〉. �

Corollary 3.6. Let H be from Theorem 1.2. Then H∗ is a Z2-graded algebra with
the grading

H∗ = H∗
0 ⊕H∗

1 , H∗
0 = kG, H∗

1 = Mat(n, k)∗.
In particular Mat(n, k)∗ is a free cyclic left and right kG-module.

The last statement follows from [M, §3.1].

4. Group-like elements in H

Starting from this section we shall assume that H is from Theorem 1.2. In this
section we shall specify the form of element from the group G(H).

Each element of the group of group-like elements G(H) is characterized in
Theorem 1.3.
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Proposition 4.1. The maps

G→ k∗, g �→ χg,w, w ∈ G(H) is fixed;

G(H) → k∗, w �→ χg,w, g ∈ G is fixed;

G(H) → GL(n, k), w �→ Zw.

are group homomorphisms. The last homomorphism is injective.

Proof. The first map is a group homomorphism by Theorem 1.3. Consider the
second and the third maps. If

w =
∑

g

χg,weg + Zw, u =
∑

g

χg,ueg + Zu ∈ G(H)

then wu =
∑

g χg,wχg,ueg + ZwZu ∈ G(H). Hence all maps are homomorphisms.
If Zw = E, then g ⇀ E = E for all g ∈ G and therefore χg,w = 1 for all

g ∈ G. It means that w is the identity element of G(H). �
Let F be the set all g ∈ G such that χg,w = 1 for all w ∈ G(H). It is

easy to check that F is a normal subgroup in G. Similarly let K be the set of all
w ∈ G(H) such that χg,w = 1 for all g ∈ G. It is easy again to check that K is
a normal subgroup in G(H) containing G(H)′. If w ∈ K then w =

∑
g eg + Zw.

An element w = 1 with Zw = E exists so the other one is −E, [A]. Hence K
is a central subgroup in G(H) of order 2 consisting of elements

∑
g eg ± E. The

group G(H)/K is isomorphic via the map w �→ χ∗,w to a subgroup of the group of
one-dimensional characters of G. Since the group G is Abelian by [TY] the group
of one-dimensional characters of G is isomorphic to G. We have proved

Proposition 4.2. The group G(H) contains a central subgroup K of order 2. The
group G(H)/K is isomorphic to a subgroup of the group of one-dimensional char-
acters of G. In particular, G(H) is nilpotent of class 2 and G(H)/K is Abelian and
isomorphic to a subgroup of G. The group G(H) has an Abelian normal subgroup
N , the centralizer of K, of index 1 or 2.

Proposition 4.1 and Theorem 1.3 mean that there is a faithful n-dimensional
representation w �→ Zw of groups

G(H) →
{

O(n, k), U = E

Sp(n, k) U = S,
where O(n, k) stands for the group of orthogonal matrices of size n and Sp(n, k)
denotes the group of symplectic matrices of even size n.

Proposition 4.3. If w ∈ G(H) \K then trZw = 0. In particular the order of w in
G(H)/K is less than n.

Proof. Take Z = Zw in (3). Then by Theorem 1.3, property 1.3)

ntr(Zw)E =
∑

g∈G
(Z ↼ g) =




∑

g∈G
χg,w



Zw.
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If w /∈ K then χg,w is nontrivial and therefore by orthogonality relation∑
g∈G χg,w = 0.

Suppose that the order of w in G(H)/K is greater than n. The matrix Zw
has a finite order and therefore it is conjugate to a diagonal matrix





λ1 0 0
0 λ2 0
. . . . . . . . . . . . .
0 0 λn





where λ1, . . . , λn are roots of 1 in k. It follows that each matrix Zjw for j = 1, . . . , n
is conjugate to 



λj1 0 0
0 λj2 0
. . . . . . . . . . . . .
0 0 λjn





and by preceding considerations





trZw = λ1 + · · · + λn = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
trZnw = λn1 + · · ·+ λnn = 0.

From Newton’s formulae in the theory of symmetric functions it follows that λ1 =
· · · = λn = 0 which is impossible. �

Let L be the space of columns of height n equipped with a (skew)symmetric
bilinear form

(x, y) = txUy, x, y ∈ L. (8)

Then each matrix Zw, w ∈ G(H), is an isometry of L with respect to the form (8).

Proposition 4.4. If λ ∈ k is an eigenvalue of a matrix Zw, w ∈ G(H), then λ−1 is
an eigenvalue of Zw with the same multiplicity.

Proof. By the property 1.3) from Theorem 1.3 tZ−1
w = U−1ZwU . Hence the char-

acteristic polynomials of the matrices Zw and Z−1
w coincide. �

Proposition 4.5. Let Zwx = λx, Zwy = µy where λ, µ ∈ k, λµ �= 1 and x, y ∈ L.
Then (x, y) = 0. In particular if λ = µ �= ±1 then (x, y) = 0.

Proof. We have (x, y) = (Zwx, Zwy) = λµ(x, y) and the proof follows. �

Fix a maximal Abelian subgroup N in G(H). By Proposition 4.2 either N =
G(H) or N is a normal subgroup of index 2 in G(H). If N �= G(H) fix a matrix Z =
Zw′ , w ∈ G\N . Then there exists a matrix Zw such that ZZwZ

−1 = [Z,Zw]Zw =
−Zw. Since the group N is Abelian the space L has a direct decomposition L =
⊕ψLψ where each ψ is a character of N and

Lψ = {x ∈ L | (∀w ∈ N) Zwx = ψ(w)x} .
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By Proposition 4.5 we know that Lψ and Lψ′ are orthogonal with respect to (8)
provided ψ(w)ψ′(w) �= 1 for some w ∈ N . Hence L has an orthogonal direct
decomposition

L = ⊕⊥
ψ

[
Lψ ⊕ Lψ−1

]
. (9)

Suppose first that N = G(H). Then L has the orthogonal decomposition (9)
and therefore a restriction of the form (8) to each summand Lψ ⊕ Lψ−1 is non-
degenerate.

Suppose that U = E and there exists an element e ∈ Lψ such that (e, e) = 1.
Then the restriction of the form (8) to ke is non-degenerate and therefore ke has
an orthogonal complement in Lψ ⊕ Lψ−1 which is G(H)-invariant.

Suppose that the restriction of the form (8) to each of the spaces Lψ, Lψ−1

vanishes. Since the form (8) in Lψ⊕Lψ−1 is non-degenerate there exists an element
e = a + b, a ∈ Lψ, b ∈ Lψ−1 such that (e, e) = 2. Then (a, b) = 1. Hence the form
(8) is non-degenerate on ka + kb and ka + kb is G(H)-invariant, namely Zwa =
ψ(w)a, Zwb = ψ−1(w)b. The orthogonal complement to ka + kb in Lψ ⊕ Lψ−1 is
also G(H)-invariant. Finally take some orthonormal base in ka + kb.

Suppose now that U = S is hyperbolic. Let there exist elements a, b ∈ Lψ
such that (a, b) = 1. Proposition 4.5 implies ψ = ψ−1. The restriction of the form
(8) to G(H)-invariant space ka + kb is non-degenerate. So does its orthogonal
complement in Lψ = Lψ−1 .

Suppose that the restriction of the form (8) to Lψ, Lψ−1 vanishes. Then as
above there exist elements a ∈ Lψ, b ∈ Lψ−1 such that (a, b) = 1. Then ka + kb is
G(H)-invariant and the restriction of form (8) to ka + kb is non-degenerate.

Suppose now that G(H) is non-Abelian and therefore N �= G(H).

Proposition 4.6. Let w ∈ G(H) and w′ ∈ G(H) \ N . If Z = Zw′ then for any ψ
we have Z(Lψ) = Lψ′ where

ψ′(w) =

{
ψ(w), [Z,Zw] = E,

−ψ(w), [Z,Zw] = −E.

In particular Lψ ⊥ Lψ′ .

Proof. Let w∈N . If [Z,Zw]=−E and therefore for any x∈Lψ we have Zw (Z(x))=
[Zw,Z]Z (Zw(x)) =−ψ(w)Z(x). Otherwise Z and Zw commute and Zw (Z(x)) =
Z (Zw(x)) = ψ(w)Z(x). In all cases

ψ(w)ψ′(w) =

{
ψ2(w), [Z,Zw] = 1,
−ψ2(w), [Z,Zw] = −E.

Hence ψ′ �= ψ−1 and hence Proposition 4.5 implies Lψ ⊥ Lψ′ . �

If ψ′ is from Proposition 4.6 then ψ′ �= ψ provided N �= G(H). Moreover(
ψ−1

)′ = (ψ′)−1. So the space

L̂ = Lψ + Lψ′ + Lψ−1 + L(ψ−1)′
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is G(H)-invariant and by (9) it has an orthogonal G(H)-invariant direct comple-
ment in L. So the restriction of the form (8) to the space L̂ is nondegenerate [B,
§4.2.]. If N �= G(H) by previous considerations we have ψ �= ψ′ �= ψ−1 �= (ψ′)−1

.

If (ψ′)−1 = ψ, then ψ−1 = ψ′ which is impossible. So we can conclude that there
are only the following situations:

(i) ψ = ψ−1 �= ψ′ = (ψ′)−1;
(ii) ψ, ψ′, ψ−1, (ψ′)−1 are different.

In the case i) Lψ and Lψ′ are orthogonal and L̂ = Lψ ⊕⊥ Lψ′ and Lψ has an
orthogonal complement in L. It means that the restriction of the form (8) to Lψ
is non-degenerate. Then there exists a base {ej} in Lψ such that the Gram matrix
of the form (8) in this base is either equal to the identity matrix in the symmetric
case (U = E) or is hyperbolic in the symplectic case (U = S).

The elements {Z(ei)} form a base of Lψ′ and in this base the Gram matrix
of the form (8) is equal to the Gram matrix in the base {ei}. Moreover each
ej ⊥ Z(ei) and Z2(ej) = ψ(Z2)ej since Z2 ∈ N .

In the symmetric case the linear span 〈ei, Z(ei)〉 is G(H)-invariant and it is
a direct orthogonal summand of L. In the base ei, Z(ei) the Gram matrix is the
identity matrix of size 2, the matrix of Z and of any Zw, w ∈ G(H), is equal to

(
0 ψ(Z2)
1 0

)
and to

(
ψ(w) 0

0 ψ′(w)

)
, (10)

respectively.
In the symplectic case take a linear span

〈e2i+1, e2i+2, Z(e2i+1), Z(e2i+2)〉
of dimension 4. The Gram matrix in the span of the chosen base has the form





0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0



 .

In this base the matrix of Z and of any Zw, w ∈ N , has the form




0 0 ψ(Z2) 0
0 0 0 ψ(Z2)
1 0 0 0
0 1 0 0



 and





ψ(w) 0 0 0
0 ψ(w) 0 0
0 0 ψ′(w) 0
0 0 0 ψ′(w)



 , (11)

respectively.
In the case ii) we have a direct decomposition

L̂ =
(
Lψ ⊕ Lψ−1

)
⊕⊥

(
Lψ′ ⊕ L(ψ′)−1

)
.

A restriction of the form (8) to each of the spaces Lψ, Lψ−1 , Lψ′ , L(ψ′)−1 is a zero
form by Proposition 4.5 but its restriction to Lψ ⊕ Lψ−1 is non-degenerate [B,
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§4.2.]. Hence we can choose a base {ei} in Lψ and a base {e′i} in Lψ′ such that
the Gram matrix in the base {ei, e′i} is equal to

(
0 ±1
1 0

)
.

The sign + is taken in the symmetric case and the sign − is taken in the symplectic
case. Then elements {Z(ei), Z(e′i)} form a base of Lψ′ ⊕ L(ψ′)−1 and

Z2(ei) = ψ(Z2)ei, Z2(e′i) = ψ′(Z2)e′i = ψ(Z2)e′i
by Proposition 4.6. So the Gram matrix of the system of vectors ei, e′i, Z(ei), Z(e′i)
is equal to 



0 ±1 0 0
1 0 0 0
0 0 0 ±1
0 0 1 0





with the same rule for signs as above. The matrix of Z in this base is equal to the
first matrix in (11). On the other side each Zw, w ∈ N, is a diagonal matrix with
diagonal entries ψ(w), ψ(w)−1, ψ′(w), (ψ; (w))−1, respectively.

We have proved

Theorem 4.7. Let N be a maximal Abelian subgroup in G(H). There exists an
isomorphic copy of H such that the following properties are satisfied.

1) If N = G(H) then each matrix Zw is diagonal.
2) If N �= G(H) then N has index 2 in G(H). Let Z = Zw′ where w′ ∈ G(H)\N .

Then each matrix Zw, w ∈ N , has diagonal form. The matrix Z has block-
diagonal form with the followings blocks.

a) In the symmetric case each block of Z has size 2 and is equal to the first
matrix from (10) for some ψ.

b) In the symplectic case each block of Z has size 4 and equal to the first
matrix from (11) for some ψ.

Theorem 4.7 can be considered as a refinement of Theorem 1.3.

5. Central elements

In this section we shall characterize central elements in H∗ where H is from The-
orem 1.2 and find one-dimensional direct summands in H∗. Consider an element

c = a + X ∈ H∗, where a ∈ kG, X ∈ Mat(n, k)∗ (12)

and find criterion of its centrality. By Proposition 3.5 for each h ∈ G we have
h ∗ c = ha + (h ∗X) = c ∗ h = ah + (X ∗ h). Hence a is a central element in kG
and h ∗X = X ∗ h. Similarly applying Proposition 3.1 we obtain

Y ∗ c = Y ∗ a + Y ∗X = (Y ∗ a) +
1
n

∑

g∈G
〈X ↼ g−1, Y 〉g
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c ∗ Y = a ∗ Y + X ∗ Y = (a ∗ Y ) +
1
n

∑

g∈G
〈Y ↼ g−1, X〉g

= (a ∗ Y ) +
1
n

∑

g∈G
〈g−1 ⇀ X,Y 〉g

for any matrix Y ∈ Mat(n, k)∗. Hence for all Y ∈ Mat(n, k)∗ and for all g ∈ G we
have

Y ∗ a = a ∗ Y, X ∗ g = g ∗X. (13)

Hence we have proved

Proposition 5.1. An element (12) is central if and only if a is a central element
in kG and (13) holds for all Y ∈ Mat(n, k)∗ and for all g ∈ G. In particular the
center

Z(H∗) = [Z(H∗) ∩ kG]⊕ [Z(H∗) ∩ Mat(n, k)∗] .
If a ∈ Z(H∗) ∩ kG then (13) holds for any Y ∈ Mat(n, k)∗. Z(H∗) ∩ Mat(n, k)∗

consists of all matrices X ∈ Mat(n, k)∗ satisfying (13) for all g ∈ G. In particular
if we identify Mat(n, k)∗ with Mat(n, k) then the image of Z(H∗) ∩Mat(n, k)∗ in
Mat(n, k) is a subalgebra in Mat(n, k), containing the identity matrix.

Proof. It suffices to prove the last affirmation. Let X1, X2 ∈ Z(H∗) ∩ Mat(n, k)∗.
Then for any h ∈ G we have

(X1X2) ∗ h = X1X2 ↼ h = (X1 ↼ h) (X2 ↼ h)

= (h ⇀ X1) (h ⇀ X1) = h ⇀ X1X2 = h ∗ (X1X2). �
Consider now central idempotents in H∗ corresponding to one-dimensional

representations of H∗. There exists one-to-one correspondence between these cen-
tral idempotents and elements from G(H). Namely if w =

∑
g∈G χg,weg + Zw

from Theorem 1.3 is a group-like element in H then there exists a unique central
idempotent ew =

∑
g∈G τg,wg + Xw ∈ H∗ such that z ∗ ew = ew ∗ z = 〈z, w〉ew for

all z ∈ H∗ and 〈ew, w〉 = 1.
Taking c = ew in Proposition 5.1 we obtain in addition to the conditions

from Proposition 5.1 the following relations:

〈h,w〉ew = χh,wew =
∑

f∈G
χh,wτf,wf + χh,wXw

= h ∗ ew =
∑

g

τg,whg + (h ⇀ Xw);

〈ew, w〉 =
∑

g

τg,wχg,w + 〈Xw, Zw〉 = 1;

〈Y,w〉ew = 〈Y, Zw〉ew =
∑

g

〈Y, Zw〉τg,wg + 〈Y, Zw〉Xw

= Y ∗ ew =
∑

g

τg,w(Y ↼ g) + Y ∗Xw
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=
∑

g

[
τg,w(Y ↼ g) +

1
n
〈Xw ↼ g−1, Y 〉g

]

for all h ∈ G and any matrix Y . It follows that for all g, h ∈ G we have

τg,w = χh,wτhg,w,

χh,wXw = h ⇀ Xw = Xw ↼ h,

1 =
∑

g

τg,wχ,wg + 〈Xw, Zw〉,

τg,w〈Y, Zw〉 =
1
n
〈Xw ↼ g−1, Y 〉 =

1
n
χg,w〈Xw, Y 〉,

〈Y, Zw〉Xw =
∑

g

τg,w(Y ↼ g) = Y ↼




∑

g∈G
τg,wg



 .

Equivalently by Proposition 5.1 and Theorem 1.2 we can write for any Y ∈
Mat(n, k)∗

τg,w = χg−1,wτ1,w,

χh,wXw = h ⇀ Xw = Xw ↼ h, (14)

1 = τ1,w
∑

g

χ−1
g,wχg,w + 〈Xw, Zw〉 = τ1n

2 + 〈Xw, Zw〉, (15)

τ1,wχ
−1
g,w〈Y, Zw〉 =

χ−1
g,w

n
〈Xw, Y 〉 =

χ−1
g,w

n
〈Y,Xw〉, (16)

〈Y, Zw〉Xw = τ1,wY ↼

(
∑

g

χ−1
g,wg

)
. (17)

Since Y is arbitrary the equation (16) has the form

nτ1,wZw = Xw. (18)

If we put Y = Xw in (17) then we obtain 〈Xw, Zw〉Xw = τ1,wn
2Xw by (14). Note

that Xw �= 0 by (18) and Theorem 1.3. Hence 〈Xw, Zw〉 = τ1,wn
2 and (15) implies

τ1,w = 1
2n2 and Xw = 1

2nZw.
Now (17) has the form

n〈Y, Zw〉Zw = Y ↼

(
∑

g

χ−1
g,wg

)
(19)

for all Y ∈ Mat(n, k).

Proposition 5.2. The central idempotent ew corresponding to a group-like element
w =

∑
g χg,weg + Zw ∈ H has the form

ew =
1

2n2

∑

g

χ−1
g,wg +

1
2n

Zw.



80 V.A. Artamonov and I.A. Chubarov

Moreover (19) holds and in particular

1
2n2

∑

g

χ−1
g,w′g ⇀

1
2n

Zw =

{
0, w′ /∈ wK,
1
2nZw, w′ = w.

(20)

The algebra H∗ has a direct decomposition

H∗ =
(
⊕w∈G(H)kew

)
⊕ P (21)

where the ideal P is a direct sum of full matrix algebras of sizes greater than 1.

Proof. In fact applying (19) and Corollary 3.2 we prove the second half of (20).
The first equality in (20) follows from the fact that corresponding to w and to w′

idempotents in kG are orthogonal. �

As was noticed in [A] for any w there exists another group-like element w =∑
g∈G χ−1

g,weg − Zw. Then ew = 1
2n2

∑
g χ

−1
g,wg − 1

2nZw, and therefore

ew + ew =
1
n2

∑

g

χ−1
g,wg ∈ kG ⊂ H∗.

Let K =
{∑

g∈G eg ± E
}

be a central subgroup of order 2 in G(H). Then

1 −
∑

w∈G(H)

ew = 1 − 1
n2

∑

w∈G(H)/K

∑

g∈G
χ−1
g,wg

= 1 − 1
n2

∑

g∈G

∑

w∈G(H)/K

χ−1
g,wg = 1 − 1

|G|
∑

g∈G

∑

w∈G(H)/K

χ−1
g,wg.

Note that by Proposition 4.1

∑

w∈G(H)/K

χ−1
g,w =

{
|G(H)/K| = |G(H)|

2 , χ−1
g,w = 1 for all w ∈ G(H)/K,

0, otherwise.

Let as above F be the set of all g ∈ G such that χg,w = 1 for all w ∈ G(H). Then
F is a normal subgroup in G, containing the derived subgroup G′. It follows that

e = 1 −
∑

w∈G(H)

ew = 1 − |G(H)/K|
|G|

∑

g∈F
g = 1 − |G(H)|

2|G|
∑

g∈F
g (22)

is a sum of central indecomposable idempotents of H∗ corresponding to simple
noncommutative components of H∗. Then this element has the property that it
belongs to ker ε. Hence 1 = |G(H)| |F |

2|G| that is 2|G| = |G(H)| · |F |.

Proposition 5.3. The following assertions take place.
1) Mat(n, k)∗ as a vector space has a decomposition

Mat(n, k)∗ = M ′ ⊕M,

M ′ = ⊕w∈G(H)/KkZw, M = e ∗ Mat(n, k)∗
(23)
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where e is from (22). Moreover M ′ is a subalgebra in Mat(n, k) of dimension
|G(H)|

2 . If f ∈ F then f ∗X = X for any X ∈ M ′.
2) If P is the ideal from Proposition 5.2 in the algebra H∗, then P = e kG⊕M ,

where
dim e kG = dimM = n2 − |G(H)|

2
.

Proof. The equality (21) and Proposition 5.2 imply the decomposition (23) of
Mat(n, k)∗ as a vector space. By Proposition 4.1 the set M ′ is a subalgebra in
Mat(n, k)∗. The dimension of M ′ is equal to the maximal number of linearly in-
dependent elements among Zw. If Zw �= −Zw′ then by Theorem 1.3 they are
eigenvectors for the action of G with different characters. Hence they are indepen-
dent and therefore

dimM ′ =
|G(H)|

2
.

If f ∈ F then χg,w = 1 for all w ∈ G(H). Hence by the property 1.3) from
Theorem 1.2 and by Proposition 3.5 f ∗ Zw = f ⇀ Zw = χg,wZw = Zw.

(22) shows that dim e kG = |G| − |G(H)|
2 and dimP = dimH∗ − |G(H)| =

2|G| − |G(H)|. Thus

dimM = dimP − dim e kG = |G| − |G(H)|
2

. �

Note that M ′ by Corollary 3.2 has orthogonal base Zw, w ∈ G(H)/K with
respect to the from (6).

Proposition 5.4. M consists of all matrices X such that tr (XZw) = 0 for all
w ∈ G(H). In particular M is the orthogonal complement to M ′ with respect to
the bilinear form (6).

Proof. By (21) M consists of all matrices X which are annihilated by each element
ew. Applying Proposition 5.2, Proposition 3.5 and Theorem 1.3 we obtain

0 = X ∗ ew = X ∗
(

1
2n2

∑

g

χ−1
g,w g +

1
2n

Zw

)

=
1

2n2

∑

g

χ−1
g,wX ∗ g +

1
2n

∑

h∈G
〈Zw ∗ h−1, X〉h

=
1

2n2

∑

g

χ−1
g,wX ∗ g +

1
2n

∑

h∈G
χ−1
h,w〈Zw, X〉h.

In other words 0 =
∑

g χ
−1
g,wX ∗ g = 〈X,Zw〉. It follows by Theorem 1.3 that

0 = 〈X,Zw〉 = tr
(
U−1XU tZw

)
= tr

(
X U tZwU

−1
)

= tr
(
X Z−1

w

)
.

By (19) the equality tr(XZw) = 0 for all w implies 0 =
∑

g χ
−1
g,wX ∗ g. �

Proposition 5.5. If M is from Proposition 5.3 then dimM � n2 − n− t for some
integer 0 � t � n

2 . If G(H) is Abelian then t = 0.
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Proof. The set of matrices Zw, w ∈ G(H), by Proposition 4.1 define a faithful
representation of the group G(H). By Proposition 4.2 the group G(H) has an
Abelian subgroup of index 2. Hence by [AS, Chapter 3.5, Theorem 3.7] dimensions
of irreducible representation of G(H) are 1 or 2 and therefore there exists an
invertible matrix S ∈ GL(n, k) such that each matrix S−1ZwS has block diagonal
form

S−1ZwS =





Yw,1 0 0
0 Yw,2 0

. . . . . . . . . . . . . . . . . . .
0 0 Yw,s





where blocks Yw,j has size 1 or 2 which corresponds to an irreducible representation
of G(H).

If X ∈ M and S−1XS has corresponding partition into blocks

S−1XS =





X11 X12 X1s

X21 X22 X2s

. . . . . . . . . . . . . . . . . .
Xs1 Xs2 Xss



 , (24)

then Proposition 5.4 means that
∑s

j=1 tr (XjjYw,j) = 0 for any w ∈ G(H). Hence
M contains all matrices X such that Xjj = 0 in (24) for all j. Suppose that t
diagonal blocks in (24) have size 2 and the other s− t have size 1. Then n = 2t+ s
and the dimension of the space of matrices from (24) with zero diagonal blocks is
equal to n2 − 4t − (s − t) = n2 − 3t− s. Since s = n − 2t we have n2 − 2t− s =
n2 − 3t− n + 2t = n2 − n− t. �

Combining with Proposition 5.3 we can prove

Corollary 5.6. |G(H)| � 3n. If G(H) is Abelian then |G(H)| � 2n.

Proof. By Proposition 5.3 dimM = n2 − |G(H)|
2 . Hence

n2 − |G(H)|
2

� n2 − n− t

and therefore |G(H)|
2 � n + t or |G(H)| � 2n + 2t � 3n. If G(H) is Abelian then

t = 0. �

6. Non-isomorphism of H and of H̃∗

In this section we shall prove that if H and H̃ are Hopf algebras from Theorem 1.2
then H̃∗ and H are non-isomorphic Hopf algebras.

Suppose the opposite that there exists a Hopf algebra isomorphism ξ : H∗ →
H̃ . Then H and H̃ have the same dimension 2n2 and ξ induces group isomorphism
ξ : G = G(H∗) → G(H̃). So |G(H̃)| = n2. Applying Corollary 5.6 we can conclude
that n2 � 3n or n � 3. In this case the group G(H̃) has order 4, 9 because n > 1
and therefore G(H̃) is Abelian. Hence G(H̃) has order 4. So we have proved
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Theorem 6.1. Let n > 2. Then H∗ is not isomorphic to any Hopf algebra H̃
belonging to the class of Hopf algebras from Theorem 1.2.

It means that the Hopf algebra H∗ of dimension 2n2 > 8 where H is from
Theorem 1.2 is a series of semisimple Hopf algebras which is not included in The-
orem 1.2.

Notice that Theorem 6.1 could be proved in another way. If H∗ is an algebra
from Theorem 1.1 then the ideal P = eH∗ from Proposition 5.2 and Proposition 5.3
is a 2-graded ideal in H∗ and it is simple. Following [BZ] we can classify 2-gradings
in P .

7. Triangularity

A Hopf algebra H is triangular if there exists an invertible element R ∈ H ⊗ H
such that R∆(x)R−1 = τ (∆(x)) for all x ∈ H where τ : H ⊗ H → H ⊗ H is a
twist τ(a⊗ b) = b⊗ a for all a, b ∈ H .

Theorem 7.1. Let H be from Theorem 1.1. Suppose that there exists an invertible
matrix T such that T (g ⇀ x)T−1 = x ↼ g for all x ∈ Mat(n, k) and all g ∈ G.
Then H is triangular.

Proof. Let
R =

∑

i,j

Eij ⊗ Eji ∈ Mat(n, k)⊗Mat(n, k).

Is was shown in [A][§5] that R2 = E ⊗ E and (A ⊗ B)R = R(B ⊗ A) for all
A,B ∈ Mat(n, k). Let e =

∑
g∈G eg ∈ kG and

R = e⊗ e + T ⊗ e + e⊗ T−1 +R
We claim that R−1 = e⊗ e + T−1 ⊗ e + e⊗ T +R. In fact

RR−1 = (e⊗ e)2 + (T ⊗ e)
(
T−1 ⊗ e

)
+
(
e⊗ T−1

)
(e⊗ T ) +R2

= e⊗ e + E ⊗ e + e⊗ E + E ⊗ E = (e + E) ⊗ (e + E)
= 1 ⊗ 1.

Suppose that u =
∑
g∈G αgeg + x ∈ H where αg ∈ k and x ∈ Mat(n, k). Then by

Theorem 1.1

R∆(u)R−1 =
(
e⊗ e + T ⊗ e + e⊗ T−1 +R

)

×








∑

g∈G
αg

(
∑

h∈H
eh ⊗ eh−1g + ∆g

)



+
∑

g∈G
((g ⇀ x) ⊗ eg + eg ⊗ (x ↼ g)) + ∆′(x)





×
(
e⊗ e + T−1 ⊗ e + e⊗ T +R

)
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=
∑

g∈G
αg

(
∑

h∈H
eh ⊗ eh−1g

)

+
∑

g∈G

(
T (g ⇀ x)T−1 ⊗ eg + eg ⊗ T (x ↼ g)T−1

)

+
∑

g

αgR∆gR +R∆′(x)R

= τ

(
∆

(
∑

g

αgeg

)
+ ∆′(x)

)

+
∑

g∈G

(
T (g ⇀ x)T−1 ⊗ eg + eg ⊗ T−1(x ↼ g)T

)
.

By the assumption T (g ⇀ x)T−1 = x ↼ g and therefore T−1(x ↼ g)T = g ⇀ x
for all x ∈ Mat(n, k) and all g ∈ G. �

References

[A] Artamonov V.A. On semisimple finite dimensional Hopf algebras, Math. Sbornik
(to appear).

[AS] Artamonov V.A., Slovokhotov Yu.L. Group theory and their applications in
physics, chemistry and crystallography, Publishing center “Academia”, Moscow,
2005.

[B] Bourbaki N., Algebra, Ch. IX. Paris, Hermann.

[BZ] Bahturin Y.A., Zaicev M.V., Group gradings on associative algebras, J. Algebra,
241(2001), 677–698.

[CR] Curtis Ch.W., Reiner I. Representation theory of finite groups and associative
algebras. Interscience Publ., Witney & Sons, New York, London, 1962.

[JHLMYYZ] Jiang-Hua Lu, Min Yanm, Youngchang Zhu, Quasi-triangular structure on
Hopf algebras with positive bases. Contemp. Math., 267(2000), 339–356.

[H] Huppert B., Character theory of finite groups, de Gruyter Expositions in Mathe-
matics 25, 1998.

[KP] Kac, G., Paljutkin, V., Finite ring groups, Trudy Moscow Math. Obschestva, 15
(1966), 224–261.

[LR] Larson, R., Radford, D., Finite-dimensional cosemisimple Hopf algebras in charac-
teristic zero are semisimple. J. Algebra, 117(1988), 267–289.

[M] Montgomery, S., Hopf Algebras and Their Actions on Rings, Regional Conf. Ser.
Math. Amer. Math. Soc., Providence RI, 1993.

[M1] Montgomery S., Classifying finite-dimensional semisimple Hopf algebras, Contemp.
Math., 229(1998), 265–279.

[N1] Natale S., On group theoretical algebras and exact factorizations of finite groups,
J. Algebra, 270 (2003), 190–211.

[N2] Natale S., Semisolvability of semisimple Hopf algebras of low dimension, Memoirs
of AMS vol. 186, 2007.



Dual Algebras of Some Semisimple Finite-dimensional Hopf Algebras 85

[NZ] Nichols W., Zoeller M., A Hopf algebra freeness theorem, Amer. J. Math.,
111(1989), 381–385.

[OM] O’Meara O.T., Symplectic groups, Providence RI, Amer. Math. Soc., 1978.

[P] Pierce, R.S., Associative algebras, Springer-Verlag, New York, Heidelberg, Berlin,
1982.

[S] Schneider H.-J., Lectures on Hopf algebras, Universidad de Cordoba, Trabajos de
Matematica, N 31/95, Cordoba (Argentina), 1995.

[Se] Seitz G.M., Finite groups having only one irreducible representation of degree
greater than one. Proc. Amer. Math. Soc. 19(1968), 459–461.

[T] Tambara D., Representations of tensor categories with fusion rules of self-duality
for finite abelian groups, Israel J. Math., 118(2000), 29–60.

[TY] Tambara D., Yamagami S., Tensor categories with fusion rules of self-duality for
finite abelian groups, J.Algebra 209(1998), 692–707.

V.A. Artamonov and I.A. Chubarov
Department of Algebra
Faculty of Mechanics and Mathematics
Moscow State University
e-mail: artamon@bk.ru
e-mail: igrek@dubki.ru



Modules and Comodules

Trends in Mathematics, 87–99
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Balanced Bilinear Forms for Corings

M. Beattie, D. Bulacu and Ş. Raianu

Dedicated to Robert Wisbauer on the occasion of his 65th birthday

Abstract. We review the role that balanced bilinear forms play in the def-
initions of properties of corings and suggest a definition for a coring to be
symmetric.

1. Introduction

Let k be a commutative ring and A a finite dimensional k-algebra. An element e
in A⊗k A is called A-central, or a Casimir element [3, Section 1.3], if ae = ea for
all a ∈ A. Various properties of A are defined in terms of A-central elements. For
example, A is k-separable if and only if A has an A-central element e such that
π(e) = 1 where π : A⊗k A → A is the usual map π(a⊗k b) = ab. A is a Frobenius
k-algebra if and only if there exists an A-central element e and a map ε ∈ A∗ such
that (ε⊗kA)(e) = (A⊗k ε)(e) = 1. Equivalently, A is Frobenius if and only if there
is a nondegenerate bilinear map B : A × A → k such that B(xy, z) = B(x, yz).
The algebra A is symmetric if A is Frobenius and B(x, y) = B(y, x).

For C a coalgebra over k, various analogous properties of C may be defined
in terms of balanced bilinear forms from C ⊗k C to k, generalizing the idea of
A-central element. A C∗-balanced form is a k-bilinear form B from C ⊗k C to k
such that B(c ↼ c∗, d) = B(c, c∗ ⇀ d) for all c, d ∈ C, c∗ ∈ C∗ with the usual
actions of C∗ on C. For k a field, the idea of a symmetric coalgebra was recently
defined in [4], namely that a k-coalgebra C is symmetric if and only if there is a
nondegenerate symmetric balanced bilinear form B from C ⊗k C to k.

For C an A-coring, where A is not necessarily commutative, the situation is
complicated by the presence of left and right duals. However, the idea of balanced
bilinear forms from C ⊗A C to A still makes sense and is used to define various
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properties of corings analogous to those for coalgebras. We recall some of these
properties, and, in the last section, suggest a working definition for the notion of
a symmetric coring along with some examples.

We will work over a commutative ring k and all maps are assumed to be
k-linear. Throughout this paper, A will denote a not necessarily commutative k-
algebra. We will use the Sweedler summation notation for comultiplication, but
omitting the summation sign. For background on coalgebras over a field we refer
the reader to [5]. The first chapter of [2] contains basics on coalgebras over a
commutative ring. The identity map on a k-module X is denoted simply as X .

2. Corings

Recall that for A a not necessarily commutative ring, an A-coring C is defined
to be a coalgebra in the monoidal category of (A,A)-bimodules, (AMA,⊗A, A).
More precisely, C is an (A,A)-bimodule, together with (A,A)-bimodule maps ∆C :
C → C ⊗A C and εC : C → A such that ∆C is co-associative and the compatibility
conditions (εC ⊗A C) ◦ ∆C(c) = c and (C ⊗A εC) ◦ ∆C(c) = c, for all c ∈ C, hold.

For definitions and details about corings, we refer the reader either to [2] or,
for the original definition, to [9]. We will normally write (A,A)-bimodule actions
on a module M ∈ AMA by juxtaposition, i.e., we write amb for the left action of
a and the right action of b on m.

If A = k, then we recover the definition of a coalgebra over the commutative
ring k. Simple examples of corings include the following.

Examples 2.1.

(i) Trivial coring. For A a ring, let C = A itself and define ∆C(a) = a ⊗A 1 =
1 ⊗A a and εC(a) = a.

(ii) Matrix coring. (See [2, 17.7].) For A a ring, let C = M c
n(A), n by n matrices

over A with A-basis eij , 1 ≤ i, j ≤ n and aeij = eija. Then (C,∆C , εC) is an
A-coring where ∆C(eij) =

∑n
k=1 eik ⊗A ekj and εC(eij) = δi,j , and the maps

are extended by A-linearity.
(iii) An entwining structure example. Let k be a field, let H be a k-Hopf algebra,

and A a right H-comodule algebra via a �→ a[0]⊗k a[1]. Then A⊗kH becomes
an A-coring as follows: the left A-module structure is given by multiplication
on the first component, and the right A-module structure is given by (a ⊗k
h)b = ab[0] ⊗k hb[1]. The comultiplication is ∆ : A ⊗k H −→ (A ⊗k H) ⊗A
(A⊗k H) 
 A⊗k H ⊗k H , ∆(a⊗k h) = (a⊗k h(1))⊗A (1A ⊗k h(2)), and the
counit is ε : A⊗k H −→ A, ε(a⊗k h) = ε(h)a.

(iv) Opposite coring. Let Ao be the opposite algebra of A. If M is an (A,A)-
bimodule, then M is also an (Ao, Ao)-bimodule, denoted Mo, as usual, via
aomobo = (bma)o. The twist map τ : M ⊗A M → Mo ⊗Ao Mo defined by
τ(m ⊗A n) = no ⊗Ao mo is a k-module isomorphism. The opposite coring,
denoted Co, is defined [6, 1.7] to be the Ao-coring (C,�o

C , εC), where comul-
tiplication ∆o

C(co) = τ ◦ �C(c) = (c2)o ⊗Ao (c1)o.
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If A = k, and C is a k-coalgebra, then the dual C∗ is an algebra via the
convolution map. However, for C a coring, there are right and left dual rings
associated with C, denoted C∗ and ∗C.

Following [2, 17.8], we write C∗ := HomA(C, A), the right A-module homo-
morphisms from C to A. C∗ has a ring structure with associative multiplication ∗r
given by f ∗r g(c) = g(f(c1)c2) and unit εC . There is a ring morphism from Ao to
C∗ by ao �→ εC(a−). Thus C∗ has left Ao-action via (εC(b−) ∗r c∗)(c) = c∗(bc) and,
similarly, a right Ao-action. Then C∗ is an (A,A)-bimodule via (ac∗b)(c) = ac∗(bc).

Similarly, ∗C := AHom(C, A), the left A-module homomorphisms from C to
A. ∗C has a ring structure with associative multiplication ∗l given by f ∗l g(c) =
f(c1g(c2)) and unit εC. There is a ring morphism from Ao to ∗C given by a �→
εC(−a). Then ∗C is an (A,A)-bimodule via (ac∗b)(c) = c∗(ca)b.

Note that convolution is not well defined on either C∗ or ∗C. The problem is
that ∆C maps to C ⊗A C and A-linearity may fail.

Again, using notation from [2], we denote ∗C∗ := AHomA(C, A) = ∗C ∩ C∗ to
be the set of (A,A)-bimodule maps from C to A. On ∗C∗ the associative multipli-
cations ∗l and ∗r both equal the convolution multiplication, so that ∗C∗ with the
convolution multiplication f ∗g(c) = f(c1)g(c2) is an associative ring with unit εC .

Remark 2.2. ∗C∗ is not a left or a right A-module under either the A-module
structures of ∗C or of C∗. For suppose f lies in ∗C∗ and we attempt to define af
by (af)(c) = f(ca) (the left A-module structure on ∗C). Now af may not lie in
∗C∗ ⊂ C∗ since (af)(cb) = f(cba) = f(c)ba which is not, in general, equal to
(af)(c)b = f(c)ab. Similarly, if we let (af)(c) = af(c), then af may not lie in ∗C∗.
However, if a ∈ Z(A), the centre of A, then the definitions above of left module
structure agree and af ∈ ∗C∗, so that ∗C∗ is a left Z(A)-module. Similarly, the right
module structures on ∗C and C∗ also may not induce right A-module structures
on ∗C∗ but do induce a right Z(A)-module structure.

For C a coalgebra over a commutative ring k, it is well known that C is a
(C∗, C∗)-bimodule. For corings the situation is somewhat different.

The coring C is a right C∗-module via c ↼ c∗ = c∗(c1)c2 and the right A-action
on C commutes with the right C∗-action. However, C is not an (A, C∗)-bimodule in
general since, for c∗ ∈ C∗, we need not have equality of c∗(ac1)c2 and ac∗(c1)c2.
Similarly, there is a left ∗C-action on C which commutes with the left A-action
given by c∗ ⇀ c = c1c

∗(c2). It follows from the coassociativity of ∆C and the fact
that ∆C is an (A,A)-bimodule map, that C is a (∗C, C∗)-bimodule with the above
actions.

3. Balanced bilinear forms for corings

Recall that M ∈ AM is locally projective as a left A-module if and only if
for any finite set S of elements of M , there exist x1, . . . , xn ∈ M, f1, . . . , fn ∈
AHom(M,A) = ∗M such that m =

∑n
i=1 fi(m)xi, for any m ∈ S. Any object
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of MC , the category of right C-comodules, can be viewed as an object of ∗CM,
the category of left ∗C-modules, and if C is locally projective, then MC is a full
subcategory of ∗CM. Moreover, the rational functor RatC : ∗CM→MC is defined.
Similar statements hold for right local projectivity.

Suppose that C is locally projective as a left A-module. Recall from [2, Section
20], that if M ∈MA is a left ∗C-module, RatC(M), the rational submodule of M ,
may be defined as the set of rational elements of M , where m ∈M is called rational
if there exists

∑n
i=1 mi⊗Aci ∈ M⊗AC such that φ·m =

∑
imiφ(ci), for all φ in ∗C.

By the locally projective condition on C,
∑

imi ⊗A ci is uniquely determined and
so these elements define a right C-comodule structure on RatC(M). For M = ∗C
we have that RatC(∗C) is an ideal of ∗C (and thus also an A-subbimodule of ∗C).

For C locally projective as a right A-module, similar statements hold. Here
the rational functor is denoted CRat : MC∗ → CM, and CRat(C∗) is an ideal of C∗.

With the (A,A)-bimodule structure on C⊗AC given by a(c⊗Ac′)b = ac⊗Ac′b,
the set of balanced bilinear forms on C is defined as follows.

Definition 3.1. The set of balanced bilinear forms on C, denoted bbf(C), is defined
to be the set of σ ∈ AHomA(C ⊗A C, A) such that

(σ ⊗A C) ◦ (C ⊗A ∆C) = (C ⊗A σ) ◦ (∆C ⊗A C)

or, equivalently,

σ(c⊗A d1)d2 = c1σ(c2 ⊗A d), for all c, d ∈ C. (3.1)

By [2, 6.4], if C = C is a locally projective k-coalgebra, then (3.1) is equivalent
to the defining relation for C∗-balanced forms B given in the introduction.

As usual, σ ∈ bbf(C) is called right nondegenerate if σ(c ⊗A C) = 0 implies
c = 0, and left nondegenerate if σ(C ⊗A c) = 0 implies c = 0.

Examples 3.2.

(i) For C = A, the trivial coring of Examples 2.1, let σ = εC ⊗A εC. It is easy to
see that σ ∈ bbf(C) and is nondegenerate.

(ii) For C the n by n matrix coring of Examples 2.1, define σ to be the A-linear
map from C⊗AC to k defined on generators by σ(eij⊗A ekl) = δi,lδj,k. Again,
it is easily checked that σ ∈ bbf(C) and is nondegenerate.

(iii) Let C be the coring A ⊗k H from Examples 2.1 and suppose that H has a
left integral t in H∗. It is well known that B(h, g) = t(hS(g)) where S is the
antipode of H , is a balanced form on H since

h1t(h2S(g)) = h1S(g2)g3t(h2S(g1)) = t(hS(g1))g2 for all g, h ∈ H.

Now define σ : C ⊗A C → A by

σ((a ⊗k h)⊗A (b ⊗k g)) = ab[0]t(hb[1]S(g)).

It is easy to check that σ is A-bilinear and the balanced property comes from
that of B.
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(iv) Let bbf(Co) denote the set of balanced bilinear forms for the Ao-coring Co. For
σ ∈ bbf(C), define σo : Co⊗Ao Co→Ao by σo(co⊗Ao do)=(σ◦τ(co⊗Ao do))o=
(σ(d⊗A c))o. It is easily checked that σo ∈ bbf(Co).

Now, let σ ∈ bbf(C). Since σ is a left and right A-module map, σ induces
a well-defined left A-module map σr : C → C∗, given by σr(c)(d) = σ(c ⊗A d).
It is easily checked that σr is also a right A-module map and a right C∗-module
map. Similarly, σl : C → ∗C defined by σl(d)(c) = σ(c⊗A d) is well defined, a left
∗C-module and an (A,A)-bimodule map.

The next lemma is a straightforward generalization to corings of well-known
facts for coalgebras. Statements (i) and (ii) can be found in [8, Proposition 1] for
coalgebras over a field, and in [2, Section 6.6] for locally projective coalgebras over
a commutative ring.

Lemma 3.3. We have the following bijective correspondences.
(i) Let C be an A-coring which is locally projective as a right and as a left A-

module. There is a bijective correspondence between bbf(C) and the set of
(A,A)-bimodule, right C∗-module maps from C to CRat(C∗). Under this cor-
respondence, right nondegenerate forms correspond to monomorphisms from
C to CRat(C∗).

(ii) For C an A-coring which is locally projective as a right and as a left A-
module, there is a bijective correspondence between bbf(C) and the set of
(A,A)-bimodule, left ∗C-module maps from C to RatC(∗C). Under this corre-
spondence, left nondegenerate forms correspond to monomorphisms from C
to RatC(∗C).

(iii) For any A-coring C, (not necessarily locally projective), there is a bijective
correspondence between bbf(C) and the set of (C, C)-bicomodule maps from
C⊗A C to C, where C⊗A C is a left (right) C-comodule via �C⊗A C (C⊗A�C,
respectively).

Proof. (i) First we show that there is a bijective correspondence between bbf(C)
and AHomA(C, C∗)∩HomC∗(C, C∗). Suppose that ϕ : C → C∗ is an (A,A)-bimodule,
right C∗-module map. Define σ := σϕ : C ⊗A C → A by σϕ(c⊗A d) = ϕ(c)(d), for
all c, d ∈ C. We must show that σϕ is a well-defined (A,A)-bimodule map and is
balanced.

Since ϕ is a right A-module map, we have

σ(ca⊗A d) = ϕ(ca)(d) = (ϕ(c)a)(d) = ϕ(c)(ad) = σ(c⊗A ad),

and so σ is well defined. Next, note that for a, a′ ∈ A, since ϕ(ac) = aϕ(c) and
ϕ(ac) ∈ C∗, then

σ(ac⊗A da′) = ϕ(ac)(da′) = a(ϕ(c)(d))a′,

so that σ is an (A,A)-bimodule map. Finally, to see that σ ∈ bbf(C), note that
for c ∈ C, c∗ ∈ C∗, since ϕ(c ↼ c∗) = ϕ(c) ∗r c∗, then

c∗(c1σ(c2 ⊗A d)) = c∗(σ(c⊗A d1)d2),
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for all d ∈ C. Hence c1σ(c2 ⊗A d) and σ(c ⊗A d1)d2 have the same image under
every c∗∈C∗ and thus, since C is locally projective as an A-module, they are equal.

Conversely, given σ ∈ bbf(C), define the right C∗-module map σr as above. It
is easy to check that σ �→ σr and ϕ �→ σϕ define inverse bijections between bbf(C)
and AHomA(C, C∗)∩HomC∗(C, C∗). Clearly, right nondegenerate forms correspond
to monomorphisms.

Now we show that any map in AHomA(C, C∗)∩HomC∗(C, C∗) has its image in
CRat(C∗) so that AHomA(C, C∗)∩HomC∗(C, C∗) is the set of (A,A) bimodule, right
C∗-module maps from C to CRat(C∗). Let σ ∈ bbf(C) and ϕ = σr ; we show that
every element ϕ(c) is rational, i.e., for each c ∈ C, there exists

∑
i ci⊗kxi ∈ C⊗kC∗

such that ϕ(c) ∗r c∗ =
∑
i c

∗(ci)xi, for all c∗ ∈ C∗. Let
∑

i ci ⊗k xi = c1 ⊗k ϕ(c2).
We have that for any c∗ ∈ C∗ and c, d ∈ C,

(ϕ(c) ∗r c∗)(d) = c∗(ϕ(c)(d1)d2) = c∗(σ(c⊗A d1)d2)
= c∗(c1σ(c2 ⊗A d)) = c∗(c1)ϕ(c2)(d) (since c∗ ∈ C∗),

so that ϕ(c) ∗r c∗ = c∗(c1)ϕ(c2), showing that ϕ(c) is rational.
(ii) For γ : C → ∗C an (A,A)-bimodule, left ∗C-module map, define σγ : C⊗AC → A
by σγ(c⊗A d) = γ(d)(c). Conversely, for σ ∈ bbf(C), define σl as above. The proof
that these provide inverse bijections and that for γ ∈ AHomA(C, ∗C)∩∗CHom(C, ∗C)
then the image of γ lies in RatC(∗C) is analogous to the proof of (i).
(iii) Take σ ∈ bbf(C) and define mσ : C ⊗A C → C by mσ(c⊗A d) = c1σ(c2⊗A d) =
σ(c ⊗A d1)d2. Conversely, given a (C, C)-bicomodule map m : C ⊗A C → C, let
σ = εC ◦m. The verification that mσ is a well-defined (C, C)-bicomodule map (note
that by convention a (C, C)-bicomodule map must be (A,A)-linear), that σ =
εC ◦m ∈ bbf(C) and that the correspondence is bijective is straightforward. �

Remark 3.4. Let C be an A-coring.
(i) For σ ∈ bbf(C), the map m = mσ in Lemma 3.3 (iii) is associative since for

c, d, e ∈ C,

m(c⊗A m(d⊗A e)) = m(c⊗A d1σ(d2 ⊗A e)) = m(c⊗A d1)σ(d2 ⊗A e)

= σ(c⊗A d1)d2σ(d3 ⊗A e) = σ(c⊗A d1)m(d2 ⊗A e)

= m(σ(c ⊗A d1)d2 ⊗A e) = m(m(c⊗A d) ⊗A e).

Then (C,mσ) is an associative ring, in general without a unit.
(ii) For σ ∈ bbf(C) and σr as above, we have that σr is a ring homomorphism

from (C,mσ) to C∗op = ∗(Co). To see this, we compute for all c, d, e ∈ C,

σr(mσ(c⊗A d))(e) = σr(σ(c⊗A d1)d2)(e) = σ(c⊗A d1)σ(d2 ⊗A e)

= σ(c⊗A d1σ(d2 ⊗A e)) = σ(c⊗A σ(d ⊗A e1)e2)

= σr(c)(σ(d ⊗A e1)e2) = σr(c)(σr(d)(e1)e2)

= σr(d) ∗r σr(c)(e).

Similarly, σl is a ring homomorphism from (C,mσ) to (∗C)o.
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(iii) If M is a right C-comodule (i.e., M ∈MA with a coaction ρM : M →M⊗AC
which is a coassociative right A-module map), then M is a right (C,mσ)
module via m · c = m0σ(m1 ⊗A c). The computation to show associativity is
in [2, 26.7] or is a straightforward exercise. Unless σ ◦ ∆C = εC , we need not
have that M ⊗(C,mσ) C ∼= M .

Finally, we note that the notion of balanced bilinear forms for corings is
integral to the definition of coseparable corings and co-Frobenius corings.

Coseparable corings form an important class of corings for which forgetful
functors are separable functors. Recall [2, Section 26] that an A-coring C is called
coseparable if there exists a (C, C)-bicomodule map π : C ⊗A C → C such that
π ◦ ∆C = C. By Lemma 3.3 (iii) or as noted in [2, 26.1(b)], such a map π exists if
and only if there exists σ ∈ bbf(C) (called a cointegral in [2]) such that σ◦∆C = εC ,
i.e., (C,mσ) is a nonunital ring whose product has a section. In other words, (C,mσ)
is a separable A-ring in the sense of [1] or [2, Section 26].

In [2, 27.15], a left (right) co-Frobenius coring is an A-coring C such that
there is an injective morphism from C to ∗C (C∗ respectively). Thus, by Lemma
3.3 (iii), C is left (right) co-Frobenius via an injective morphism which is an (A,A)-
bimodule map if and only if there is a left (right) nondegenerate σ ∈ bbf(C). Note
that this latter is precisely the definition of co-Frobenius in [7, Definition 2.4] (i.e.,
the A-bilinearity is specified) and that there the opposite multiplication to that of
[2] is used on the left and right duals so that A (not Ao) embeds in ∗C and C∗.

Now, a consistent definition of symmetric coring would require that the coring
is co-Frobenius on the left and on the right with some compatibility conditions
between the two structures.

4. The notion of a symmetric coring

In this section, we explore whether the notion of a symmetric coring is a sensible
one, and suggest one possible definition which takes into account the fact that A
is not necessarily commutative.

The idea of a symmetric coalgebra C over a field k was given in [4] where the
authors proved the following.

Theorem 4.1. Let C be a k-coalgebra, k a field. Then the following are equivalent:
(i) There exists an injective morphism α : C → C∗ of (C∗, C∗)-bimodules.

(ii) There exists a bilinear form B : C × C → k which is symmetric, non-
degenerate and C∗-balanced.

A symmetric coalgebra over a field is then defined to be one satisfying the
equivalent conditions of Theorem 4.1.

One might expect that a suitable definition for a symmetric coring would
be that an A-coring C is symmetric if there exists a right and left nondegenerate
symmetric σ ∈ bbf(C). We next show the equivalence of four conditions which
mimic those of Theorem 4.1 in case C is right and left locally projective over A.
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Lemma 4.2. Let C be an A-coring. Let σ ∈ bbf(C) and consider the k-module map
σop from C⊗kC to A defined to be the composite of the twist map τ : C⊗kC → C⊗kC
and the surjection from C ⊗k C to C ⊗A C followed by σ. Then σop ∈ bbf(C) if and
only if the following three conditions hold.

(i) Im(σ) ⊆ Z(A).
(ii) σ(ca⊗A d) = aσ(c⊗A d), for all a ∈ A, c, d ∈ C.
(iii) σ(c1 ⊗A d)c2 = d1σ(c⊗A d2), for all c, d ∈ C.

Proof. If σop ∈ bbf(C), then σop must be well defined on C ⊗A C. Thus we must
have σop(ca ⊗A d) = σop(c ⊗A ad), i.e., σ(d ⊗A ca) = σ(ad ⊗A c). This holds if
and only if σ(d ⊗A c)a = aσ(d ⊗A c), so that Im(σ) ⊆ Z(A). Also, σop must be
an (A,A)-bimodule map, so that σ(c ⊗A ad) = σ(c ⊗A d)a or, equivalently, using
the facts that σ ∈ bbf(C) and Im(σ) ⊆ Z(A), σ(ca ⊗A d) = aσ(c ⊗A d). The last
condition is equivalent to the fact that σop must satisfy the balanced property
(3.1) of Definition 3.1. �

If A = k, then (i) and (ii) in the lemma above are automatic and (iii) holds
if and only if σ ∈ bbf(Co).

Next we fix some notation.
Let Γ denote the subring of ∗C∗ of maps from C to A with image in Z(A),

the centre of A. On Γ the left (right) A-actions induced from those on ∗C and C∗
coincide. Thus we may define an (A,A)-bimodule structure on Γ by (ac∗b)(c) =
c∗(bca) = bc∗(c)a. Note that if f ∈ Γ, then f(c)(ab− ba) = 0, i.e., the image of f
annihilates [A,A], the additive commutator of A.

Proposition 4.3. Let C be an A-coring. If C is left and right locally projective over
A, then the following conditions are equivalent:

(i) There exists an injective morphism α of (A,A)-bimodules from C to the sub-
ring Γ of ∗C∗ defined above such that Im(α) is a (∗C, C∗)-bimodule with left
and right actions given by ∗l and ∗r, and α is a (∗C, C∗)-bimodule map.

(ii) There exists an injective map α : C → ∗C∗ such that α1 := i1◦α is an (A,A)-
bimodule, right C∗-module morphism from C to C∗, and α2 := i2 ◦ α is an
(A,A)-bimodule, left ∗C-module morphism from C to ∗C where i1 : ∗C∗ ↪→ C∗

and i2 : ∗C∗ ↪→ ∗C are the inclusion maps.
(iii) There exists a right nondegenerate σ ∈ bbf(C) such that σop ∈ bbf(C) also.
(iv) There exists a right and left nondegenerate σ ∈ bbf(C) such that σ = σop.

Proof. (i) implies (ii). It is straightforward to check that if a map α satisfies (i),
then it also satisfies (ii).
(ii) implies (iii). Suppose that (ii) holds. Then by Lemma 3.3, α1 = σr for some
right nondegenerate σ ∈ bbf(C) and α2 = ωl for some left nondegenerate ω ∈
bbf(C), i.e., α(c)(d) = σ(c⊗A d) = ω(d⊗A c). Then ω = σop and σop ∈ bbf(C).
(iii) implies (i). Suppose σ ∈ bbf(C) is right nondegenerate and σop ∈ bbf(C). Then
σr is an (A,A)-bimodule map from C to C∗, and (σop)l is an (A,A)-bimodule map
from C to ∗C. Since σr(c)(d) = σ(c ⊗A d) = σop(d ⊗A c) = (σop)l(c)(d), then
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σr = (σop)l. Define α = σr = (σop)l. Then α maps C to ∗C∗ and since σ is
right nondegenerate, α is injective. Also Im(α) is a right C∗-module and α is a
right C∗-module map by Lemma 3.3 since σr(c) ∗r c∗ = σr(c ↼ c∗) ∈ Im(α).
Similarly, Im(α) is a left ∗C-module and α is a left ∗C-module map. By Lemma
4.2, Im(σ) ⊆ Z(A) so that Im(α) ⊆ Γ. Finally, since for f ∈ ∗C, g ∈ C∗, c ∈ C, we
have (f ∗l α(c)) ∗r g = α(f ⇀ c) ∗r g = α((f ⇀ c) ↼ g) = α((f ⇀ (c ↼ g)) =
f ∗l (α(c) ∗r g) so that α is a (∗C, C∗)-bimodule map.

Thus we have shown the equivalence of (i),(ii) and (iii). Clearly (iv) implies
(iii) and it remains to show that the equivalent conditions (i), (ii) and (iii) im-
ply (iv).

Let α satisfy (i), (ii). By Remark 3.4, we have that α = σr is a multiplication
preserving isomorphism from (C,mσ) to Im(α) and α = (σop)l is also a multipli-
cation preserving isomorphism from (C,mσop) to Im(α). Thus (σr)−1 ◦ (σop)l =
α−1 ◦ α = IdC is a multiplication preserving bijection from (C,mσop) to (C,mσ).
Then mσ(c⊗Ad) = mσop (c⊗Ad), i.e., c1σ(c2⊗Ad) = c1σ(d⊗Ac2) so that, applying
εC , we see that σ = σop. �

Note that Proposition 4.3 provides a new proof of the equivalence of the
statements in Theorem 4.1 which does not depend on the fact that the rational
dual of a co-Frobenius coalgebra over a field has local units.

A definition of symmetric coring parallel to the definition of symmetric coal-
gebra over a field would be to require that the coring satisfy condition (iv) in
Proposition 4.3. However, this seems very restrictive, depending on commutativ-
ity of elements in A. Instead, we suggest the following.

Definition 4.4. Let A be a ring, not necessarily commutative, and let A′ be the
ideal of A generated by the additive commutator [A,A] = {ab − ba | a, b ∈ A}.
Let C be an A-coring. We say that C is symmetric if there exists σ ∈ bbf(C)
such that σ is left and right nondegenerate and for all c, d in C, we have that
σ(c⊗A d) − σ(d ⊗A c) ∈ A′.

Examples 4.5.

(i) The trivial coring and the matrix coring from Examples 2.1, with the non-
degenerate balanced forms defined in Examples 3.2 are both symmetric in
the sense of Definition 4.4 but do not satisfy the equivalent conditions of
Proposition 4.3, unless A is commutative.

(ii) The coring C = A ⊗k H from Examples 2.1 with nontrivial H-coaction on
A and with σ as in Examples 3.2 is not symmetric in either sense even if
t(hS(g)) = t(gS(h)) for all g, h ∈ H . (Of course, if the coaction is trivial,
then the coring is clearly symmetric in the sense of Definition 4.4 if B(h, g) =
t(hS(g)) is a symmetric form for H .)

Corings satisfying the equivalent conditions of Proposition 4.3 clearly are
symmetric in the sense of Definition 4.4.

The next example builds a symmetric coring from a symmetric coseparable
k-coalgebra, k a field.
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Example 4.6. Let k be a field and let C be a k-coalgebra with a C∗-balanced
nondegenerate symmetric bilinear form B : C ⊗k C → k such that B ◦ ∆C = εC ;
in other words, C is a symmetric coalgebra via B and also a coseparable coalgebra
via B. For example, let C be a cosemisimple involutory k-Hopf algebra H with
antipode S. Then if λ is a left and right integral for H in H∗ such that λ(1) = 1,
then B : H ⊗k H → k defined by B(h, g) = λ(hS(g)) satisfies the conditions
above.

Let A = C∗, the dual algebra of C with convolution multiplication ∗ and let
C = C; we show first that C has the structure of an A-coring.

C is an (A,A)-bimodule with the standard C∗-bimodule structure on C,
namely c∗ ⇀ c ↼ d∗ = d∗(c1)c2c∗(c3), for all c ∈ C, c∗, d∗ ∈ C∗. Define the
coproduct on C to be the composite of the co-opposite comultiplication of C
and the surjection from C ⊗k C to C ⊗A C, namely ∆C(c) = c2 ⊗A c1. Since
∆C(d∗(c1)c2c∗(c3)) = c∗(c4)c3 ⊗A c2d

∗(c1) = c∗ ⇀ c2 ⊗A c1 ↼ d∗, then ∆C is an
(A,A)-bimodule map and the coassociativity follows from that of ∆C .

Now, we define the counit map for C. For B the balanced bilinear form for
the k-coalgebra C as above, define εC : C → C∗ by εC(c) = B(c,−) = B(−, c).
Note that εC is injective since B is left and right nondegenerate. Then

εC(d∗ ⇀ c)(x) = B(x, c1)d∗(c2) = d∗(x1)B(x2, c) = (d∗ ∗ εC)(x),

so εC is a left A-module map and, similarly, εC is a right A-module map.
The compatibility of ∆C and εC follows from the coseparability of C by

(εC ⊗A C)(c2 ⊗A c1) = εC(c2) ⇀ c1 = c1B(c2, c3) = c

and, similarly, (C ⊗A εC) ◦ ∆C = C. Thus we have shown that C is an A-coring.
Now, define B : C ⊗A C → A by B(c ⊗A d) = εC(c) ∗ εC(d). Since εC is an

(A,A)-bimodule map, then B is also. We show that B is a well-defined balanced
form. To see that B is well defined, we compute for c, d, x ∈ C, c∗ ∈ A,

B(c ↼ c∗ ⊗A d)(x) = c∗(c1)B(c2 ⊗A d)(x)

= c∗(c1)B(c2, x1)B(x2, d)

= B(c, x1)c∗(x2)B(x3, d)

= B(c, x1)B(x2, d1)c∗(d2)

= B(c⊗A c∗ ⇀ d)(x).

To see that B is balanced, we must show that c2 ↼ B(c1⊗A d) = B(c⊗A d2) ⇀ d1,
for all c, d ∈ C. We already showed that c2 ↼ εC(c1) = c and thus we have that

c2 ↼ B(c1 ⊗A d) = c2 ↼ εC(c1) ∗ εC(d) = c ↼ εC(d) = B(d, c1)c2.

Similarly, B(c⊗A d2) ⇀ d1 = d1B(c, d2) and these are equal since B is balanced
and symmetric.

We now show that B is right nondegenerate, i.e., that B(d ⊗A −) = 0
implies d = 0. Since B(d ⊗A c) = B(d,−) ∗ B(−, c), if B(d ⊗A −) = 0, then
B(d, x1)B(c, x2) = 0 for all c, x ∈ C, and, in particular, 0 = B(d, c1)B(c3, c2) =
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B(d, c), for all c ∈ C, contradicting the fact that B is right nondegenerate. Simi-
larly, B is left nondegenerate.

Clearly, B is symmetric in the sense of Definition 4.4 but unless B(c,−) ∗
B(d,−) = B(d,−) ∗ B(c,−) in A = C∗, for all c, d ∈ C, the equivalent conditions
of Proposition 4.3 do not hold.

Finally, we show that if C is an A-coring which is symmetric in the sense of
Definition 4.4 via a map σ ∈ bbf(C) satisfying a further nondegeneracy condition,
then the coring induced by the surjection from A to A/A′ satisfies Proposition
4.3 (iv).

Theorem 4.7. Let C be an A-coring and let σ ∈ bbf(C) such that
(i) σ is left and right nondegenerate.
(ii) For all c, d ∈ C, we have that σ(c⊗A d) − σ(d⊗A c) ∈ A′.

(iii) σ(c⊗A d) ∈ A′, for all d ∈ C, implies that c ∈ A′C + CA′.
Then the surjection from A to B = A/A′ induces a B-coring structure on
D := B ⊗A C ⊗A B such that D satisfies condition (iv) of Proposition 4.3.

Proof. Let a denote the image of a ∈ A in B = A/A′; for 1, we may write 1B. We
note first that D = B ⊗A C ⊗A B = 1B ⊗A C ⊗A 1B since for a ∈ A, a = (1B)a =
a(1B). In particular, if c ∈ A′C + CA′, then 1B ⊗A c ⊗A 1B = 0 in D. Recall [2,
17.2] that D is a B-coring with counit εD and comultiplication ∆D defined by

εD(1B ⊗A c⊗A 1B) = εC(c), and

∆D(1B ⊗A c⊗A 1B) = (1B ⊗A c1 ⊗A 1B) ⊗B (1B ⊗A c2 ⊗A 1B).

Note that if a′ ∈ A′ then for c, d ∈ C we have σ(c⊗A a′d) = σ(a′d⊗A c) + a′′,
for some a′′ ∈ A′, and so σ(c⊗A a′d) = a′σ(d ⊗A c) + a′′ ∈ A′ and

σ(c⊗A a′d) = σ(ca′ ⊗A d) = 0.

Thus the (B,B)-bimodule map B : D ⊗B D → B given by

B((1B ⊗A c⊗A 1B) ⊗B (1B ⊗A d⊗A 1B)) = σ(c⊗A d),

is well defined. For if x′ − x ∈ A′, then

σ(cx′ ⊗A d) − σ(cx ⊗A d) = σ(c(x′ − x) ⊗A d) ∈ A′.

Furthermore, B is balanced. To see this, we compute for c, d ∈ C,

B((1B ⊗A c⊗A 1B) ⊗B (1B ⊗A d1 ⊗A 1B))(1B ⊗A d2 ⊗A 1B)

= σ(c⊗A d1)⊗A d2 ⊗A 1B
= 1B ⊗A σ(c⊗A d1)d2 ⊗A 1B
= 1B ⊗A c1σ(c2 ⊗A d) ⊗A 1B

= 1B ⊗A c1 ⊗A σ(c2 ⊗A d)

= (1B ⊗A c1 ⊗A 1B)B((1 ⊗A c2 ⊗A 1)⊗B (1B ⊗A d⊗A 1B)).
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Thus, we have that B ∈ bbf(D). We show that B is left and right nondegenerate
and that B = Bop.

Suppose that B((1B ⊗A c ⊗A 1B) ⊗B −) maps all elements of D to 0 ∈ B.
Then σ(c ⊗A d) ∈ A′, for all d ∈ C. By (iii) in the statement of the theorem, we
must have that c ∈ A′C+ CA′. But then 1B ⊗A c⊗A 1B = 0 ∈ D, and so B is right
nondegenerate. Similarly, B is left nondegenerate.

Finally, we note that B = Bop is straightforward, so the proof is complete.
�

Example 4.8. We noted in Example 4.5 that the trivial coring and matrix coring
do not necessarily satisfy the conditions in Proposition 4.3. However, in both cases,
Theorem 4.7 applies.

Further questions

(i) Another equivalent condition for a coalgebra C over a field k to be symmetric
involves the multiplication on C induced by the multiplication on the ring
with local units C∗rat [4, Theorem 3.3 (3)]. This parallels an equivalent condi-
tion for a finite-dimensional algebra over a field to be symmetric [4, Theorem
3.1 (3)], namely that a k-algebra A is symmetric if there exists a k-linear map
f : A→ k such that f(xy) = f(yx) for x, y ∈ A, and Ker(f) does not contain
a non-zero left ideal. An analogous condition should hold in the coring case.

(ii) In [4, Section 5], a functorial characterization of symmetric coalgebras over
a field is given. It is unclear what the corresponding results (if any) for sym-
metric corings should be.
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Abstract. We investigate connections between the right FI-extending right
ring hulls of semiprime homomorphic images of a ring R and the right FI-
extending right rings of quotients of R by considering ideals of R which are
essentially closed and contain the prime radical P(R). As an application of
our results, we show that the bounded central closure of a unital C∗-algebra
A contains a nonzero homomorphic image of A/K for every nonessential ideal
K of A.

Throughout this paper all rings are associative with unity and R denotes such a
ring. Subrings and overrings preserve the unity of the base ring. Ideals without
the adjective “right” or “left” mean two-sided ideals. All modules are assumed to
be unital.

From [6], a ring R is called right FI -extending if for any ideal I of R there
exists an idempotent e ∈ R such that I is right essential in eR. Recall from [14] that
a ring R is called quasi-Baer if the right annihilator of every ideal is generated
by an idempotent of R as a right ideal. In [9, Theorem 4.7] it is shown that a
semiprime ring is right FI-extending if and only if it is quasi-Baer. We use FI
and qB to denote the class of right FI-extending rings and the class of quasi-Baer
rings, respectively.

For a ring R, we use Q(R), I(R), and B(R) to denote the maximal right
ring of quotients of R, the set of all idempotents of R, and the set of all central
idempotents of R, respectively.

For an arbitrary ring R, the right FI-extending right ring hull or the quasi-
Baer right ring hull may not exist or may not be unique in case they do exist,
even when R is right nonsingular. On the other hand, in [12] it is shown that,
for a semiprime ring R, there exists the smallest right FI-extending right ring of
quotients (i.e., right FI-extending ring hull), Q̂FI(R), of R which coincides with its
quasi-Baer right ring hull, Q̂qB(R) (see Theorem 4). Also it is proved in [2] and [12]
that lying over, going up, and incomparability of prime ideals, various regularity
conditions, and classical Krull dimension transfer between R and Q̂FI(R).
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Moreover, an example of a semiprime ring R is provided in [12] which shows
that this transference, in general, fails between a semiprime ring R and its right
rings of quotients which properly contains Q̂FI(R). Indeed, let Z[G] be the group
ring of the group G = {1, g} over the ring Z. Then Z[G] is semiprime and
Q(Z[G]) = Q[G], where Q is the field of rational numbers. Now

Z[G] � Q̂FI(Z[G]) = {(a + c/2 + d/2) + (b + c/2 − d/2)g | a, b, c, d ∈ Z}
� Z[1/2][G] ⊆ Q[G],

where Z[1/2] is the subring of Q generated by Z and 1/2. In this case, for example,
LO (lying over) does not hold between Z[G] and Z[1/2][G]. Assume to the contrary
that LO holds. From [22, Theorem 4.1], LO holds between Z and Z[G]. Hence there
exists a prime ideal P of Z[G] such that P ∩Z = 2Z. By LO, there is a prime ideal
K of Z[1/2][G] such that K ∩Z[G] = P . Now K ∩Z[1/2] = K0 is a prime ideal of
Z[1/2]. So K0∩Z = K∩Z[1/2]∩Z = K∩Z = 2Z. Thus 2 ∈ K0. But since K0 is an
ideal of Z[1/2], 1 = 2 · (1/2) ∈ K0, a contradiction. Next, Q[G] is (von Neumann)
regular but Z[G] is not, so the transference of (von Neumann) regularity does not
hold for right rings of quotients properly containing Q̂FI(R). For further details,
see [12, Example 3.7].

Thereby, semiprime rings exhibit optimal behavior with respect to the exis-
tence (and uniqueness) of right FI-extending right ring hulls and the transference
of various interesting properties between the ring and its right FI-extending ring
hull. Thus, for an arbitrary ring R, it seems natural to investigate connections
between the right FI-extending right ring hulls of semiprime homomorphic images
of R and the right FI-extending right rings of quotients of R.

In this paper, we make such a connection by considering ideals of R which are
essentially closed and contain P(R), the prime radical of R. For example, the ideal
ρ(R) discussed in [5] is an essentially closed ideal and an essential extension of a
supernilpotent radical of R. Also the S-closure, P∗(R), of P(R) (see [18, pp. 42–48]
and [23]) is an essentially closed ideal containing P(R).

Let Q(R) denote the maximal right ring of quotients of R. For an essentially
closed proper ideal I of R such that P(R) ⊆ I and e ∈ I(Q(R)) with IR is
essential in (1 − e)Q(R)R, we show that: (1) if Q(R) = E(RR), then the right
FI-extending ring hull of R/I, Q̂FI(R/I), is isomorphic to the subring of eQ(R)e
generated by eRe and the set of central idempotents B(eQ(R)e) of eQ(R)e, 〈eRe∪
B(eQ(R)e)〉eQ(R)e; (2) if Z(RR) = 0 and T is a right FI-extending right ring of
quotients of R, then 〈eT e〉eQ(R)e is a semiprime right FI-extending right ring of
quotients of an isomorphic copy of Q̂FI(R/I). We apply our results to the study of
homomorphic images of a C∗-algebra. In fact, we show that the bounded central
closure of a unital C∗-algebra A contains a nonzero homomorphic image of A/K
for every nonessential ideal K of A. Some of the results in this paper are related
to, but not corollaries of, those in [17].
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For a right R-module MR and a submodule NR, NR ≤ess MR and NR � MR

(or simply, N � M when the context is clear) mean that NR is essential in MR

and NR is a fully invariant submodule of MR, respectively. Let I be a subset of a
ring R. We use I � R to denote that I is an ideal of R. For a nonempty subset X
of a ring R, we let �R(X), rR(X), and 〈X〉R denote the left annihilator of X in R,
the right annihilator of X in R, and the subring of R generated by X , respectively.
We use Z(RR) and Z2(RR) to denote the right singular ideal and the second right
singular ideal of R, respectively.

According to [3] an idempotent e of a ring R is called left (resp., right )
semicentral if ae = eae (resp., ea = eae) for all a ∈ R. Equivalently, an idempotent
e is left (resp., right) semicentral if and only if eR (resp., Re) is an ideal of R.
For a ring R, we use S�(R) (resp., Sr(R)) to denote the set of all left (resp.,
right) semicentral idempotents. Recall from [7] that a ring R is called semicentral
reduced if S�(R) = {0, 1} (i.e., 1 is a semicentral reduced idempotent of R). It
can be seen that S�(eRe) = {0, e} if and only if Sr(eRe) = {0, e}. Note that
B(R) = S�(R) ∩ Sr(R).

From [18], recall that by definition, the S-closure P∗(R) of P(R), is the small-
est submodule of RR containing P(R) such that R/P∗(R) is nonsingular as a right
R-module. Then we see that P∗(R) is an ideal of R [18, p. 47, Exercise 1]. From [18,
Proposition 2.4] and [23, Proposition 4.11], it follows that P∗(R) is an essentially
closed submodule of RR and [P(R) + Z2(RR)]R ≤ess (P∗(R))R.

Henceforth, we assume that all right essential overrings of R are R-sub-
modules of a fixed injective hull E(RR) of RR and all right rings of quotients
of R are subrings of a fixed maximal right ring of quotients Q(R) of R.

Definition 1. ([11, Definition 2.1]) Let K denote a class of rings. For a ring R, let
S be a right essential overring of R and T an overring of R. Consider the following
conditions.

(i) S ∈ K.
(ii) If T ∈ K and T is a subring of S, then T = S.
(iii) If S and T are subrings of a ring V and T ∈ K, then S is a subring of T .
(iv) If T ∈ K and T is a right essential overring of R, then S is a subring of T .

If S satisfies (i) and (ii), then we say that S is a K right ring hull of R,
denoted by Q̃K(R) (i.e., Q̃K(R) is minimal among right essential overrings of R).
If S satisfies (i) and (iii), then we say that S is the K absolute to V right ring
hull of R, denoted by QV

K (R) (i.e., QV
K (R) is the smallest right essential overring

of R in K that is a subring of V ); for the K absolute to Q(R) right ring hull,
we use the notation Q̂K(R). If S satisfies (i) and (iv), then we say that S is the
K absolute right ring hull of R, denoted by QK(R) (i.e., QK(R) is the smallest
right essential overring of R in K). Thus when QK(R) exists, it is the intersection
of all right essential overrings of R in K. Observe that if Q(R) = E(RR), then
Q̂K(R) = QK(R). Left sided versions can be defined similarly.
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When the class K = FI, QFI(R) and Q̂FI(R) denote the absolute right FI-
extending right ring hull and the absolute to Q(R) right FI-extending right ring
hull of R, respectively. Similarly, QqB(R) and Q̂qB(R) denote the absolute quasi-
Baer right ring hull and the the absolute to Q(R) quasi-Baer right ring hull of R,
respectively.

Lemma 2. Let C be a proper ideal of a ring R such that C is a complement of a
right ideal of R.

(i) If P(R) ⊆ C, then R/C is a semiprime ring.
(ii) If R is semiprime, then R/Z2(RR) is semiprime and right nonsingular.

(iii) R∗ = R/P∗(R) is semiprime and right nonsingular.

Proof. (i) Let X be a right ideal of R such that C is a complement of X . First
we show that (C ⊕X)/C is essential in R/C as a right R/C-module. To see this,
assume to the contrary that there exists a nonzero right R/C-submodule Y/C of
R/C such that [(C ⊕ X)/C] ∩ (Y/C) = 0. There exists y ∈ Y such that y �∈ C.
Then (C + yR) ∩X �= 0. So there exist c ∈ C, r ∈ R, and 0 �= x ∈ X such that
c + yr = x. Then yr = −c + x ∈ (C ⊕ X) ∩ Y ⊆ C. Hence x ∈ C ∩ X = 0, a
contradiction. Therefore (C ⊕X)/C is essential in R/C as a right R/C-module.

Next, let 0 �= H/C � R/C such that (H/C)2 = 0. Then H2 ⊆ C. Since
(C⊕X)/C is essential in R/C as a right R/C-module, (H/C)∩ [(C⊕X)/C] �= 0.
So H ∩ (C⊕X) = C ⊕ (H∩X) �⊆ C. Thus 0 �= H∩X . But (H∩X)2 ⊆ C∩X = 0.
So H∩X ⊆ X∩P(R) ⊆ X∩C = 0, a contradiction. Therefore R/C is a semiprime
ring.

Parts (ii) and (iii) follow as direct consequences of part (i). �
Corollary 3. Let R� = R/P(R). Then we have the following.

(i) R�/Z2(R�R� ) is a semiprime right nonsingular ring.
(ii) Z2(R�R�) = P∗(R�) ⊆ P∗(R)/P(R). Hence R/P∗(R) is a homomorphic image

of R�/Z2(R�
R� ).

Proof. (i) It is a direct consequence of Lemma 2.

(ii) Since Z2(R�
R�)+P(R�) ⊆ P∗(R), then Z2(R�

R� ) ⊆ P∗(R). Note that R�/Z2(R�
R� )

is right nonsingular and so Z2(R�
R� ) is S-closed in R�

R� . Since P(R�) = 0 ⊆
Z2(R�

R� ), then P∗(R) ⊆ Z2(R�
R�). Thus Z2(R�

R� ) = P∗(R�). Now note that
(R/P(R))/(P∗(R)/P(R)) ∼= R/P∗(R) is right nonsingular. So P∗(R)/P(R) is
S-closed in R�

R� , hence P∗(R�) = Z2(R�
R�) ⊆ P∗(R)/P(R). �

When R is a ring, the ring 〈R∪B(Q(R))〉Q(R) has been called the idempotent
closure of R in [2] by Beidar and Wisbauer. We use RB(Q(R)) to denote the
idempotent closure of R.

The next result from [12] shows the existence and uniqueness of the quasi-
Baer and right FI-extending right ring hulls of a semiprime ring. In 1971, Mewborn
[20] proved the existence of a Baer (absolute) ring hull for a semiprime commu-
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tative ring. Our result also generalizes Memborn’s result since every commutative
quasi-Baer ring is a Baer ring.

Theorem 4. (cf. [12, Theorem 3.3]) Let R be a semiprime ring. Then Q̂FI(R) =
RB(Q(R)) and Q̂qB(R) = RB(Q(R)).

In the following theorem, we provide a connection between the right FI-
extending right ring hulls of semiprime homomorphic images of R and the right
FI-extending right rings of quotients of R.

Theorem 5. Let a ring R be either semiprime or Q(R) = E(RR). Assume that I
is a proper ideal of R such that IR is essentially closed in RR. Then we have the
following.

(i) There exists e ∈ I(Q(R)) such that IR ≤ess (1 − e)Q(R)R and I = R ∩ (1 −
e)Q(R).

(ii) eR = eRe and R(1 − e) = (1 − e)R(1 − e).
(iii) R/I is ring isomorphic to eRe.
(iv) If R is semiprime, then eQ(R)e ⊆ Q(eRe).
(v) If E(RR) = Q(R), then E(eReeRe) = eQ(R)e and eQ(R)e = Q(eRe).

(vi) If P(R) ⊆ I, then R/I is semiprime and Q̂FI(R/I) ∼= Q̂FI(eRe) = 〈eRe ∪
B(eQ(R)e)〉eQ(R)e.

(vii) If R is semiprime (resp., right nonsingular and semiprime), then Q̂FI(R/I) ∼=
eQ̂FI(R)e (resp., QFI(R/I) ∼= eQFI(R)e).

Proof. (i) If R is semiprime, use [13, Remark 2.2(i) and Theorem 2.10]. If Q(R) =
E(RR), then the proof is routine.
(ii) If R is semiprime, the proof of this part is clear since e ∈ B(Q(R)). For Q(R) =
E(RR), let r ∈ R with er(1−e) �= 0. Since RR is dense in Q(R)R, there exists s ∈ R
such that er(1 − e)s �= 0 and (1 − e)s ∈ R. Then (1 − e)s ∈ R ∩ (1 − e)Q(R) = I.
Hence 0 �= er(1 − e)s ∈ eI = 0, a contradiction. So eR(1 − e) = 0. Therefore
eR = eRe and R(1 − e) = (1 − e)R(1 − e).
(iii) Define f : R/I → eRe by f(r+I) = er. Then f is well defined because eI = 0.
Clearly f is a ring epimorphism. If x + I ∈ Ker(f), then x ∈ (1− e)Q(R) ∩R. By
part (i), x ∈ I. Hence Ker(f) = 0. Thus f is a ring isomorphism.
(iv) Since e ∈ B(Q(R)), eReeRe is dense in eQ(R)eeRe. Thus eQ(R)e ⊆ Q(eRe).
(v) Assume that E(RR) = Q(R). Let X be a right ideal of eRe and g : X → eQ(R)e
an eRe-module homomorphism. From part (ii) X , eRe, and eQ(R)e are right R-
modules, and g is an R-module homomorphism. Since eQ(R)e ⊆ eQ(R) and eQ(R)
is the injective hull of eRR, then g can be extended to an R-module homomorphism
g : eR → eQ(R). Now g can be extended to an R-module homomorphism g̃ :
eQ(R) → eQ(R). Therefore g̃ is a Q(R)-module homomorphism from [19, p.95].
Thus g is an eRe-module homomorphism. Since eR = eRe (part (ii)),

g(eR) = g(eRe) = g(eRe)e = g(eR)e ⊆ eQ(R)e.
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By the Baer criterion, eQ(R)e is an injective right eRe-module. Since eRe is dense
as a right eRe-submodule of eQ(R)e, eQ(R)e is the injective hull of eRe as a right
eRe-module and eQ(R)e = Q(eRe).
(vi) This is a consequence of parts (iii) and (iv), Lemma 2(i), and Theorem 4.
(vii) Assume that R is semiprime. By [13, Remark 2.2(i) and Theorem 2.10],
e ∈ B(Q(R)). Hence B(eQ(R)e) = eB(Q(R))e. So

Q̂FI(R/I) ∼= 〈eRe ∪ B(eQ(R)e〉eQ(R)e = eRB(Q(R))e = eQ̂FI(R)e

using Theorem 4 and part (v). If additionally Z(RR) = 0, then R/I is right
nonsingular by [18, Propositions 1.28 and 2.4] and eRe is right nonsingular. The
result now follows from the fact that for any right nonsingular ring T , Q̂FI(T ) =
QFI(T ) since Q(T ) = E(TT ). �

Corollary 6. Let R = R/Z2(RR) and R
∗

= R/P∗(R). Then we have the following.
(i) There exists e = e2 ∈ Q(R) such that P(R)R ≤ess (1−e)Q(R)R and P∗(R) =

R ∩ (1 − e)Q(R).
(ii) R/P∗(R) ∼= R/P∗(R).

(iii) Q̂FI(R/P∗(R)) ∼= 〈eRe ∪ B(eQ(R)e)〉eQ(R)e.

Proof. (i) Since R is right nonsingular, all parts of Theorem 5 hold when R is
replaced by R.
(ii) First observe that R/P∗(R) ∼= (R/Z2(RR))/(P∗(R)/Z2(RR)). By Lemma 2(iii),
we have that P(R) = P(R/Z2(RR)) ⊆ P∗(R)/Z2(RR) and P∗(R)/Z2(RR) is an S-
closed submodule of R. Let 0 �= x + Z2(RR) ∈ P∗(R)/Z2(RR). Since (P(R) +
Z2(RR))R ≤ess P∗(R)R, there exists LR ≤ess RR such that Z2(RR) ⊆ L and
xL ⊆ P(R) + Z2(RR). Note that RR is nonsingular. Thus [18, Proposition 1.28]
yields that (L/Z2(RR))R ≤ess RR. Since RR is right nonsingular, xL �⊆ Z2(RR).
So 0 �= (x + Z2(RR))(L/Z2(RR)) ⊆ [P(R) + Z2(RR)]/Z2(RR). Hence [(P(R) +
Z2(RR))/Z2(RR]R ≤ess (P∗(R)/Z2(RR))R. By [18, Propositions 2.3 and 2.4],
P∗(R) = P∗(R)/Z2(RR). Therefore R/P∗(R) ∼= R/P∗(R).
(iii) It follows from an application of Theorem 5 to R. �
Corollaries 3 and 6 motivate one to ask: Is R�/P∗(R�) isomorphic to R/P∗(R)?

Our next example shows that this question, in general, has a negative answer.

Example 7. Let F be a field and

R =
(
F F [x]/x2F [x]
0 F [x]/x2F [x]

)
.

Then P∗(R) = Z2(RR) = R. So R�/P∗(R�) ∼= F ⊕ F , but R/P∗(R) = 0. Also
P∗(R�) = 0 �= P∗(R)/P(R).

Our next corollary shows that every nonzero homomorphic image of a semi-
prime ring R has a nonzero homomorphic image in Q̂FI(R).
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Corollary 8. Let R be a semiprime ring and K a proper ideal of R. Then we have
the following.

(i) K has a unique essential closure I = R ∩ eQ(R) where e ∈ B(Q(R)) and
KR ≤ess eQ(R)R.

(ii) R/K
h→−→ R/I

ι→↪→ Q̂FI(R/I) ∼= eQ̂FI(R)e, where h is the canonical ring
homomorphism and ι is the inclusion homomorphism.

Proof. (i) This part follows from [13, Remark 2.2(i) and Theorem 2.10].

(ii) This part is a consequence of part (i) and Theorem 5(vii). �
Lemma 9. Let A be a unital semiprime Banach algebra. Then every essentially
closed ideal of A is norm closed.

Proof. Let I be an essentially closed ideal of A. Let I denote the norm closure
of I. Clearly �A(I) ⊆ �A(I). Take a ∈ �A(I) and x ∈ I. Then x = limxn, where
each xn ∈ I. Hence ax = a (limxn) = lim axn = 0. Thus �A(I) = �A(I). Now let
0 �= y ∈ I. Then, since A is semiprime, yI �= 0. Hence IA ≤ess IA. Therefore I = I,
so I is norm closed. �

Let A be a (not necessarily unital) C∗-algebra. Then the set Ice of all norm
closed essential ideals of A forms a filter directed downwards by inclusion. The ring
Qb(A) denotes the algebraic direct limit of {M(I)}I∈Ice, where M(I) denotes the
C∗-algebra multipliers of I; and Qb(A) is called the bounded symmetric algebra of
quotients of A in [1, p.57, Definition 2.23]. The norm closure Mloc(A) of Qb(A) (i.e.,
the C∗-algebra direct limit Mloc(A) of {M(I)}I∈Ice) is called the local multiplier
algebra of A [1, p.65, Definition 2.3.1]. The local multiplier algebra Mloc(A) was
first used in [16] and [21] to show the innerness of certain ∗-automorphisms and
derivations. Its structure has been extensively studied in [1]. For more details
on Mloc(A) and Qb(A), see [1], [16], and [21]. Note that C∗-algebras are always
semiprime and right nonsingular.

Proposition 10. Let A be a unital C∗-algebra and I a proper ideal of A such that
IA is essentially closed in AA. Then we have the following.

(i) A/I is a C∗-algebra.
(ii) QqB(A/I) is ∗-isomorphic to eQqB(A)e for some e ∈ B(Q(A)).

Proof. (i) By Lemma 9, I is norm closed. From [15, p.20, Proposition 1.8.2], A/I
is a C∗-algebra.

(ii) By Corollary 8(i), I = A ∩ eQ(A) for some e ∈ B(Q(A)). By [1, p.59, Remark
2.2.9; p.72, Lemma 3.1.2], B(Mloc(A)) = B(Q(A)). Hence e ∈ B(Mloc(A)). From
Theorem 5(iii), f : A/I → eAe defined by f(a + I) = eae for a ∈ A is an
isomorphism. Since e ∈ B(Mloc(A)), e is a projection by [1, p.59, Remark 2.2.9].
Thus f((a + I)∗) = f(a∗ + I) = ea∗e = (eae)∗ = f(a + I)∗. Hence f is a ∗-
isomorphism. Note that QqB(A) = QFI(A) by Theorem 4 because A is semiprime.
Now f induces a ∗-isomorphism from QqB(A/I) to eQqB(A)e. �
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For a unital C∗-algebra A, Corollary 8 and Proposition 10 yield that QqB(A)
(hence the bounded central closure of A [12, Theorem 4.15]) contains a nonzero
homomorphic image of A/K for every nonessential ideal K of A.

A ring R is called right strongly FI-extending [9] if every ideal of R is right
essential in a fully invariant direct summand of RR. Thus R is right strongly FI-
extending if and only if for any I � R there is e ∈ S�(R) such that IR ≤ess eRR.
Right strongly FI-extending rings are right FI-extending, but the converse does
not hold. In fact, let Z3[S3] be the group ring of the symmetric group S3 on
{1, 2, 3} over the field Z3 of three elements. Then Z3[S3] is self-injective (hence
right FI-extending). But it is not right strongly FI-extending by [10].

Proposition 11.

(i) A quasi-Baer right FI-extending ring is right strongly FI-extending.
(ii) ([11, Proposition 1.2(ii)]) A right nonsingular right FI-extending ring is quasi-

Baer (hence right strongly FI-extending).

Proof. We give the proof of part (i). Let R be a quasi-Baer right FI-extending
ring. Take I � R. Since R is quasi-Baer, there exists e ∈ S�(R) such that �R(I) =
R(1− e). Thus I ⊆ rR(�R(I)) = eR. Because R is right FI-extending, there exists
c = c2 ∈ R such that IR ≤ess cRR. Then IR ≤ess eR ∩ cR = ceR. But ce = (ce)2.
So ceR = cR ⊆ eR. Since I ⊆ cR, R(1 − c) = �R(cR) ⊆ �R(I) = R(1 − e).
Hence eR ⊆ cR, thus cR = eR. Therefore c ∈ S�(R), so R is right strongly
FI-extending. �
Proposition 12. ([11, Lemma 1.4]) Let T be a right ring of quotients of a ring R.
Then we have the following.

(i) For right ideals X and Y of T , if XT ≤ess YT , then XR ≤ess YR.
(ii) If X is a fully invariant R-submodule of T , XR ≤ess TXTR.

Theorem 13. Assume that R is a right nonsingular ring and I is a proper ideal
of R with IR essentially closed in RR and P(R) ⊆ I. Let e ∈ I(Q(R)) such that
IR ≤ess (1 − e)Q(R)R. Then for any right FI-extending right ring of quotients T
of R, 〈eT e〉eQ(R)e is a semiprime right FI-extending right ring of quotients of an
isomorphic copy of QFI(R/I).

Proof. Let S = 〈eT e〉eQ(R)e. Take 0 �= X � S. Then S and X are both eRe-
modules. From Theorem 5(ii), S and X are both right R-modules as well. Also
(X ∩R)R ≤ess XR. Since T is right FI-extending and right nonsingular, T is right
strongly FI-extending by Proposition 11. Thus there exists b ∈ S�(T ) such that
T (X ∩ T )TT ≤ess bTT . Therefore T (X ∩ T )TR ≤ess bTR by Proposition 12(i).

Claim 1. ebe ∈ I(S).

Proof of Claim 1. Suppose that there exists y ∈ eR with by(1−b) �= 0. Since RR is
dense in Q(R)R, there exists r1 ∈ R such that by(1− b)r1 �= 0, and y(1− b)r1 ∈ R.
Let y1 = y(1− b)r1. Then y1 ∈ eR∩R and 0 �= by1 ∈ bT . There exists r2 ∈ R such
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that 0 �= by1r2 ∈ T (X ∩ T )T . Now also there exist ti, vi ∈ T and xi ∈ X ∩ T such
that by1r2 =

∑
tixivi. Since 1− b ∈ Sr(T ), it follows that

by1r2 = by(1 − b)r1r2 = by(1− b)r1r2(1 − b) = by1r2(1 − b) =
∑

tixivi(1 − b).

We show that XT (1 − b) = 0. To see this, assume to the contrary that
0 �= xv(1 − b) for some x ∈ X and v ∈ T . Then there exists r3 ∈ R such that
0 �= xv(1 − b)r3 and v(1 − b)r3 ∈ R since RR is dense in TR. Furthermore, there
exists r4 ∈ R such that 0 �= z = xv(1 − b)r3r4 ∈ X ∩ R ⊆ T (X ∩ T )T ⊆ bT .
Thus z = bz(1 − b) ∈ bT (1 − b). Note that b ∈ S�(T ). Thus bT (1 − b) � T . Since
(bT (1−b))2 = 0, (bT (1−b)∩R)2 = 0 and bT (1−b)∩R � R. So bT (1−b)∩R ⊆ P(R).
Now z ∈ bT (1 − b) ∩R ⊆ P(R) ⊆ (1 − e)Q(R). Hence 0 �= z ∈ eR ∩ (1 − e)Q(R),
a contradiction. Thus XT (1 − b) = 0. Therefore by1r2 = 0, a contradiction. So
by(1−b) = 0. Consequently, beR(1−b) = 0, so be = beb. Thus ebe = ebebe = (ebe)2.

Claim 2. XR ≤ess ebeSR.

Proof of Claim 2. First we prove that X ⊆ ebeS. For this, we need to see that
(1 − b)X = 0. Now suppose that (1 − b)x �= 0 for some x ∈ X . Since RR is
dense in Q(R)R, there is r ∈ R such that 0 �= (1 − b)xr, and xr ∈ R. Thus
0 �= (1− b)xr = (1− b)xr(1− b) ∈ (1− b)XT (1− b) = 0 because 1− b ∈ Sr(T ) and
XT (1− b) = 0. So we get a contradiction. Therefore (1− b)X = 0. Hence X = bX .
Since X = eX , X = bX = beX . Thus X = eX = e(beX) = ebeX . Therefore
X ⊆ ebeS.

Let 0 �= s ∈ ebeS. Then there exists r5 ∈ R with 0 �= sr5 ∈ R ∩ eR.
Note that s = ebes = ebs. Therefore sr5 = ebsr5. Since RR is dense in Q(R)R,
there exists a1 ∈ R such that ebsr5a1 �= 0, and bsr5a1 ∈ R. Now note that
bsr5a1 ∈ R ∩ bR ⊆ bT . Since T (X ∩ T )TR ≤ess bTR, there is a2 ∈ R such that 0 �=
bsr5a1a2 ∈ T (X ∩ T )T ∩R. Take r6 = a1a2 ∈ R. Then 0 �= bsr5r6 = bebsr5r6 ∈ R
because s = ebs. So ebsr5r6 = ebesr5r6 �= 0.

By Theorem 5(ii), 0 �= sr5r6 = ebsr5r6 = e(bsr5r6)e ∈ e(T (X ∩ T )T ∩ R)e
because bsr5r6 ∈ R. Since X ⊆ S,

eT (X ∩ T )Te = eT (e(X ∩ T )e)Te = (eT e)(X ∩ T )(eT e) ⊆ X.

So 0 �= sr5r6 ∈ X ∩ eRe. Thus there exists r7 ∈ R such that 0 �= sr5r6r7 ∈ R.
In this case, sr5r6r7 = ebe(sr5r6)r7 = ebe(sr5r6)er7e = sr5r6(er7e) ∈ X since
eR = eRe by Theorem 5(ii) and sr5r6 ∈ X . Thus 0 �= sr5r6r7 ∈ (X ∩R)R. Hence
(X ∩ R)R ≤ess ebeSR. Now since (X ∩ R)R ≤ess XR ≤ ebeSR, it follows that
XR ≤ess ebeSR.

Now, using Theorem 5(ii), XR ≤ess ebeSR implies XeRe ≤ess ebeSeRe. Hence
XS ≤ess ebeSS. Therefore S is right FI-extending. The fact that S is a right ring
of quotients of an isomorphic copy of Q̂FI(R/I) follows from Theorem 5(iii). Since
R/I is semiprime from Theorem 5(vi), R/I and Q̂FI(R/I) are semiprime. So S is
semiprime. �
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Our previous results suggest that when I is an essentially closed proper ideal
of R containing P(R) and R is either quasi-Baer or right FI-extending then R/I
should enjoy the same property. This can be shown by the use of Theorem 5 when
Q(R) = E(RR). The following proposition includes this result, however we prove
it without appealing to either Theorem 5 or Theorem 13.

Proposition 14. Let R be either a quasi-Baer or a right FI-extending ring. If I is
a proper ideal of R such that IR is essentially closed in RR and P(R) ⊆ I, then
R/I is a semiprime quasi-Baer ring.

Proof. From [8, Corollary 1.3] and by the FI-extending property, there is e ∈ S�(R)
such that I = eR. Then note that 1−e ∈ Sr(R). By Lemma 2(i), R/I is semiprime;
and by [4, Lemma 2.1], R/I is quasi-Baer. �
Open question. For a quasi-Baer ring or a right FI-extending ring R, when is
R/P(R) also quasi-Baer?
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Abstract. The definition of an S-category is proposed by weakening the ax-
ioms of a Q-category introduced by Kontsevich and Rosenberg. Examples of
Q- and S-categories and (co)smooth objects in such categories are given.
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1. Introduction

In [12] Kontsevich and Rosenberg introduced the notion of a Q-category as a
framework for developing non-commutative algebraic geometry. Relative to such
a Q-category they introduced and studied the notion of a formally smooth object.
Depending on the choice of Q-category this notion captures, e.g., that of a smooth
algebra of [16], which arose a considerable interest since its role in non-commutative
geometry was revealed in [8].

The aim of these notes is to give a number of examples of Q-categories, and
their weaker version which we term S-categories, of interest in module, coring and
comodule theories, and to give examples of smooth objects in these Q-categories.
Crucial to the definition of an S-category is the notion of a separable functor
introduced in [14]. In these notes we consider only the separability of functors with
adjoints. This case is fully described by the Rafael Theorem [15]: A functor which
has a right (resp. left) adjoint is separable if and only if the unit (resp. counit)
of adjunction is a natural section (resp. retraction). For a detailed discussion of
separable functors we refer to [7].

Throughout these notes, by a category we mean a set-category (i.e., in which
morphisms form sets), by functors we mean covariant functors. All rings are unital
and associative. For an A-coring C, ∆C denotes the coproduct and εC denotes the
counit. Whenever needed, we use the standard Sweedler notation for a coproduct
∆C(c) =

∑
c(1)⊗Ac(2) and for a coaction �M (m) =

∑
m(0)⊗Am(1).
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2. Smoothness and cosmoothness in Q- and S-categories

Here we gather definitions of categories and objects we study in these notes.

Definition 2.1. An S-category is a pair of functors X = ( X̄
u∗ ��

X
u∗

�� ) such that u∗

is separable and left adjoint of u∗.

This means that in an S-category X = ( X̄
u∗ ��

X
u∗

�� ) the unit of adjunction

η : X → u∗u
∗ has a natural retraction ν : u∗u

∗ → X. Therefore, for all objects x
of X and y of X̄, there exist morphisms

X̄(y, u∗(x)) → X(u∗(y), x), g �→ νx ◦ u∗(g).

The notion of an S-category is a straightforward generalisation of that of a Q-
category, introduced in [12]. The latter is defined as a pair of functors X =

( X̄
u∗ ��

X
u∗

�� ) such that u∗ is full and faithful and left adjoint of u∗. In a Q-

category the unit of adjunction η is a natural isomorphism, hence, in particular,
a section. Thus any Q-category is also an S-category. Following the Kontsevich-
Rosenberg terminology (prompted by algebraic geometry) the functors u∗ and u∗

constituting an S-category are termed the direct image and inverse image functors,
respectively.

Definition 2.2. We say that an S-category X = ( X̄
u∗ ��

X
u∗

�� ) is supplemented if

there exists a functor u! : X̄ → X and a natural transformation η̄ : X̄ → u∗u!.

In particular, an S-category X = ( X̄
u∗ ��

X
u∗

�� ) is supplemented if u∗ has a left

adjoint. Furthermore, X is supplemented if the functor u∗ is separable, since, in this
case, the counit of adjunction has a section which we can take for η̄ (and u! = u∗).
This supplemented S-category is termed a self-dual supplemented S-category.

In a supplemented S-category, for any y ∈ X̄, there is a canonical morphism
in X, natural in y,

ry : u∗(y) → u!(y),
defined as a composition

ry : u∗(y)
u∗(η̄y) �� u∗u

∗u!(y)
νu!(y) �� u!(y) .

The existence of canonical morphisms ry allows us to make the following

Definition 2.3. Given a supplemented S-category X = ( X̄
u∗ ��

X
u∗

�� ), with the nat-

ural map r : u∗ → u!, an object x of X is said to be:
(a) formally X-smooth if, for any y ∈ X̄, the mapping X(x, ry) is surjective;
(b) formally X-cosmooth if, for any y ∈ X̄, the mapping X(ry, x) is surjective.
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Remark 2.1. We would like to stress that the notion of formal X-(co)smoothness
is relative to the choice of the retraction of the unit of adjunction, and the choice
of u! and η̄, since the definition of r depends on all these data.

Dually to S- and Q-categories one defines S◦-categories and Q◦-categories.

Definition 2.4. An S◦-category (respectively Q◦-category) is a pair of functors

X = ( X̄
u∗ ��

X
u∗

�� ) such that u∗ is separable (resp. fully faithful) and right adjoint

of u∗.

Thus an adjoint pair of separable functors gives rise to a supplemented S-
and S◦-category. In these notes (with a minor exception) we concentrate on S-
categories.

3. Examples of Q- and S-categories

The following generic example of a Q-category was constructed by Kontsevich and
Rosenberg in [12].

Example 3.1 (The Q-category of morphisms). Let X be any category, and let X2 be
the category of morphisms in X defined as follows. The objects of X2 are morphisms
f , g in X. Morphisms in X2 are commutative squares

x
f ��

��

y

��
x′ g �� y′

where the vertical arrows are in X. Now, set X̄ = X2. The inverse image functor
u∗ is

u∗ : x �→
(
x

x �� x
)
,

(
x

f �� y
)
�→





x
x ��

f

��

x

f

��
y

y �� y



 .

The direct image functor u∗ is defined by

u∗ :
(

x
f �� y

)
�→ x,

x
f ��

��

y

��
x′ g �� y′

�→





x

��
x′



 .

Note that, for all objects x and morphisms f in X,

u∗u
∗(x) = u∗( x

x �� x ) = x, u∗u
∗(f) = f.
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Hence, for all objects x in X, there is an isomorphism (natural in x), ηx : x →
u∗u

∗(x), ηx = x.

Note further that for all objects x
f �� y in X2, u∗u∗(f) = x, and we can

define a morphism εf : u∗u∗(f) → f by

εf =





x
x ��

x

��

x

f

��
x

f �� y



 .

In this way, u∗ is the right adjoint of u∗ with counit ε and unit η. The unit is
obviously a natural isomorphism, hence u∗ is full and faithful and, thus, a Q-

category X = ( X̄
u∗ ��

X
u∗

�� ) is constructed. X is supplemented, since u∗ has a left

adjoint

u! :
(

x
f �� y

)
�→ y,





x
f ��

��

y

��
x′ g �� y′



 �→





y

��
y′



 .

The unit of the adjunction u!  u∗ is, for all f : x→ y,

η̄f =





x
f ��

f

��

y

y

��
y

y �� y



 ,

and thus the corresponding maps r come out as

rf = f.

Consequently, an object x ∈ X is formally X-smooth (when X is supplemented by

u! and η̄) provided, for all y
f �� z ∈ X̄, the mapping

X(x, y) → X(x, z), g �→ f ◦ g,
is surjective. Similarly, x is formally X-cosmooth if and only if the mappings

X(z, x) → X(y, x), g �→ g ◦ f,
are surjective.

This generic example has a useful modification whereby one takes for X̄ any
full subcategory of X2 which contains all the identity morphisms in X.

Example 3.2 (The Wisbauer Q-category). Let R by a ring and M be a left R-
module. Following [17, Section 15] σ[M ] denotes a full subcategory of the category
RM of left R-modules, consisting of objects subgenerated by M . Since σ[M ] is a
full subcategory of RM, the inclusion functor

u∗ : σ[M ] → RM,
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is full and faithful. It also has the right adjoint, the trace functor (see [17, 45.11]
or [5, 41.1]),

u∗ = T M : RM → σ[M ], T M (L) =
∑

{f(N) | N ∈ σ[M ], f ∈ HomR(M,L)}.

Hence there is a Q-category X = ( X̄
u∗ ��

X
u∗

�� ) with X = σ[M ] and X̄ = RM.

All the remaining examples come from the theory of corings.

Example 3.3 (Comodules of a locally projective coring). This is a special case of
Example 3.2. Let (C,∆C , εC) be an A-coring which is locally projective as a left
A-module. Let R = ∗C = HomA−(C, A) be a left dual ring of C with the unit εC
and product, for all r, s ∈ R,

rs : C
∆C �� C⊗AC

C⊗As �� C r �� A.

Take X = MC , the category of right C-comodules, and X̄ = RM. Define a functor

u∗ : MC → RM, M �→M,

where right C-comodule M is given a left R-module structure by rm =∑
m(0)r(m(1)). Since C is a locally projective left A-module, the functor u∗ has a

right adjoint, the rational functor (see [5, 20.1]),

u∗ = RatC : RM → MC , RatC(M) = {n ∈M | n is rational},
where an element n ∈M is said to be rational provided there exists

∑
imi⊗Aci ∈

M⊗AC such that, for all r ∈ R, rm =
∑
imir(ci). Here, the left R-module M is

seen as a right A-module via the anti-algebra map A→ R, a �→ εC(−a).

Example 3.4 (Coseparable corings). Recall that an A-coring (C,∆C , εC) is said to
be coseparable [10] if there exists a (C, C)-bicomodule retraction of the coproduct
∆C . This is equivalent to the existence of a cointegral defined as an (A,A)-bimodule
map δ : C⊗AC → A such that δ ◦ ∆C = εC , and

(C⊗Aδ) ◦ (∆C⊗AC) = (δ⊗AC) ◦ (C⊗A∆C).

Furthermore, this is equivalent to the separability of the forgetful functor (−)A :
MC → MA [4, Theorem 3.5]). Since this forgetful functor is a left adjoint to
−⊗AC : MA → MC , a coseparable coring C gives rise to an S-category X with

X = MC , X̄ = MA, u∗ = (−)A, u∗ = −⊗AC.
This S-category is denoted by X

C
δ . By [4, Theorem 3.5], the retraction ν of the unit

of the adjunction is given explicitly, for all M ∈ MC ,

νM : M⊗AC →M, m⊗Ac �→
∑

m(0)δ(m(1)⊗Ac).

In general, X
C
δ need not to be supplemented. However, if there exists

e ∈ CA := {c ∈ C | ∀a ∈ A, ac = ca},
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then X
C
δ can be supplemented with

u! = −⊗AC, η̄M : M →M⊗AC, m �→ m⊗Ae.

This supplemented S-category is denoted by X
C
δ,e.

Recall that an A-coring C is said to be cosplit if there exists an A-central
element e ∈ CA such that εC(e) = 1. By [4, Theorem 3.3] this is equivalent to
the separability of the functor −⊗AC, and thus a cosplit coring gives rise to an
S◦-category. Therefore, a coring which is both cosplit and coseparable induces a
self-dual, supplemented S-category.

In addition to the defining adjunction of an A-coring, (−)A  − ⊗A C, for
any right C-comodule P , there is a pair of adjoint functors

−⊗BP : MB → MC , HomC(P,−) : MC → MB,

where B is any subring of the endomorphism ring S = EndC(P ) (cf. [5, 18.21].
Depending on the choice of C, P and B this adjunction provides a number of
examples of Q-categories.

Example 3.5 (Comatrix corings). Take a (B,A)-bimodule P that is finitely gener-
ated and projective as a right A-module. Let e ∈ P⊗AP ∗ be the dual basis (where
P ∗ = HomA(P,A)), and let C = P ∗ ⊗B P be the comatrix coring associated to P
[9]. The coproduct and counit in C are given by

∆C(ξ⊗Bp) = ξ⊗Be⊗Bp, εC(ξ⊗Bp) = ξ(p),

for all p ∈ P and ξ ∈ P ∗. P is a right C-comodule with the coaction �P : p �→ e⊗Bp.
Let

X = MB, X̄ = MC , u∗ = −⊗BP, u∗ = HomC(P,−).

In view of [6, Proposition 2.3], X = ( X̄
u∗ ��

X
u∗

�� ) is a Q-category if and only if the

map
B → P⊗AP ∗, b �→ be,

is pure as a morphism of left B-modules (equivalently, P is a totally faithful left
B-module).

Example 3.6 (Strongly (C, A)-injective comodules). Let C be an A-coring, let P

be a right C-comodule and S = EndC(P ). Following [18, 2.9], P is said to be
strongly (C, A)-injective if the coaction �P : P → P⊗AC has a left S-module right
C-comodule retraction. For such a comodule, define

X = MS , X̄ = MC , u∗ = −⊗SP, u∗ = HomC(P,−).

In view of [18, 3.2], if P is a finitely generated and projective as a right A-module,

then X = ( X̄
u∗ ��

X
u∗

�� ) is a Q-category.
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Example 3.7 ((C, A)-injective Galois comodules). Recall that a right C-comodule
is said to be (C, A)-injective, provided there is a right C-colinear retraction of the
coaction. The full subcategory of MC consisting of all (C, A)-injective comodules
is denoted by IC .

Let P be a right comodule of an A-coring C, and let S = EndC(P ) and
T = EndA(P ). Following [18, 4.1], P is said to be a Galois comodule if, for all
N ∈ IC , the evaluation map

HomC(P,N)⊗SP → N, f⊗Sp→ f(p),

is an isomorphism of right C-comodules.
Let P be a Galois comodule, and assume that the inclusion S → T has a

right S-module retraction. By [18, 4.3] this is equivalent to say that P is a (C, A)-
injective comodule, and hence one can consider the following pair of categories and
adjoint functors:

X̄ = MS , X = IC , u∗ = −⊗S P : X̄ → X, u∗ = HomC(P,−) : X → X̄.

Since the evaluation map is the counit of the adjunction u∗  u∗, the Galois

property of P means that the functor u∗ is fully faithful. Thus X = ( X̄
u∗ ��

X
u∗

�� )

is a Q◦-category.

4. Examples of smooth and cosmooth objects

Let C be an A-coring, set X = MC , and consider the full subcategory of X2 consist-
ing of all monomorphisms in MC with an A-module retraction. With these data
one constructs a Q-category as in Example 3.1. This Q-category is denoted by X

C .

Theorem 4.1. A right C-comodule M is (C, A)-injective if and only if M is a
formally X

C-cosmooth object.

Proof. In view of the discussion at the end of Example 3.1, an object M ∈ X = MC

if formally X
C-cosmooth if and only if, for all morphisms f : N → N ′ in MC with

right A-module retraction, the maps

ϑf : HomC(N ′,M) → HomC(N,M), g �→ g ◦ f,

are surjective. This means that, for all h ∈ HomC(N,M), there is g ∈ HomC(N ′,M)
completing the following diagram

M

0 �� N

h

���������� f �� N ′,��

g
��

where the arrow N ′ → N is in MA, and thus is equivalent to M being (C, A)-
injective, see [5, 18.18]. �
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The arguments used in the proof of Theorem 4.1, in particular, the identifi-
cation of (co)smooth objects as object with a (co)splitting property, apply to all
Q-categories of the type described in Example 3.1. This leads to reinterpretation
of smooth algebras and coalgebras in abelian monoidal categories studied in [3].

Example 4.1. Let (V,⊗) be an abelian monoidal category, i.e., a monoidal category
which is abelian and such that the tensor functors −⊗ v, v ⊗− are additive and
right exact, for all objects v of V . Let X be the category of algebras in V , and let
X̄ be a full subcategory of X2, consisting of Hochschild algebra extensions, i.e., of
all surjective algebra morphisms split as morphisms in V and with a square-zero
kernel. Denote the resulting Q-category by HAE. In view of [3, Theorem 3.8], an
algebra in V is formally smooth in the sense of [3, Definition 3.9], i.e., it has the
Hochschild dimension at most 1, if and only if it is a formally HAE-smooth object.

In particular if (V,⊗) is the category of vector spaces (with the usual tensor
product), we obtain the characterisation of smooth algebras [16] (or semi-free
algebras in the sense of [8]), described in [12, Proposition 4.3].

Example 4.2. Let (V,⊗) be an abelian monoidal category. Let X be the category
of coalgebras in V , and let X̄ be a full subcategory of X2, consisting of Hochschild
coalgebra extensions, i.e., of all injective coalgebra morphisms σ : C → E split
as morphisms in V and with the property (p⊗p) ◦ ∆E = 0, where p : E →
cokerσ is the cokernel of σ. Denote the resulting Q-category by HCE. In view
of [3, Theorem 4.16], a coalgebra in V is formally smooth in the sense of [3,
Definition 4.17] if and only if it is a formally HCE-cosmooth object.

The following example is taken from [2].

Example 4.3. Let A and B be rings, and let M be a (B,A)-bimodule. Denote
by EM the class of all (B,B)-bilinear maps f such that HomB(M, f) splits as
an (A,B)-bimodule map. A B-bimodule P is said to be EM -projective, provided
every morphism N → P in EM has a section. By the argument dual to that in the
proof of Theorem 4.1 one can reinterpret EM -projectivity as formal smoothness as
follows.

Take X to be the category of B-bimodules and X̄ = EM , a full subcategory of
X2. Denote the resulting Q-category by E. A B-bimodule P is formally E-smooth
if and only if, for all f : N → N ′ ∈ EM , the function

Θ(f) : HomB,B(P,N) → HomB,B(P,N ′), g �→ f ◦ g,
is surjective. In terminology of [11, Chapter X], E-smoothness of P is equivalent
to the EM -projectivity of P .

A (B,A)-bimodule M is said to be formally smooth provided the kernel of
the evaluation map

evM : M ⊗A HomB(M,B) → B, evM (m⊗A f) = f(m).

is an EM -projective B-bimodule. Thus M is formally smooth if and only if ker evM
is formally E-smooth.
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Next we characterise all smooth and cosmooth objects in the supplemented
S-category X

C
δ,e associated to a coseparable A-coring C with an A-central element

e as in Example 3.4.

Proposition 4.1. Let C be a coseparable A-coring with a cointegral δ and an A-
central element e, and let X

C
δ,e be the associated supplemented S-category. A right

C-comodule M is formally X
C
δ,e-smooth if and only if the map

κM : M →M, m �→
∑

m(0)δ(e⊗Am(1)),

is a right A-linear section (i.e., κM has a left inverse in EndA(M)).

Proof. In this case, for all N ∈ MA, the canonical morphisms rN read

rN : N⊗AC → N⊗AC, n⊗Ac �→
∑

n⊗Ae(1)δ(e(2)⊗Ac).

Using the (defining adjunction) isomorphisms HomC(M,N⊗AC) 
 HomA(M,N),
the maps

HomC(M, rN ) : HomC(M,N⊗AC) → HomC(M,N⊗AC),

can be identified with

ϑM,N : HomA(M,N) → HomA(M,N), f �→ (N⊗AεC) ◦ rN ◦ (f⊗AC) ◦ �M ,

where �M : M → M⊗AC is the coaction. Hence HomC(M, rN ) are surjective for
all N if and only if ϑM,N are surjective for all N . These can be computed further,
for all m ∈ M , f ∈ HomA(M,N),

ϑM,N(f)(m) =
∑

(N⊗AεC) ◦ rN (f(m(0))⊗Am(1))

=
∑

(N⊗AεC)(f(m(0))⊗Ae(1)δ(e(2)⊗Am(1)))

=
∑

f(m(0))δ(e⊗Am(1)) =
∑

f(m(0)δ(e⊗Am(1))) = f(κM (m)),

by the right A-linearity of f . Hence

ϑM,N (f) = f ◦ κM .

If κM has a retraction λM ∈ EndA(M), then for all f ∈ HomA(M,N),

ϑM,N (f ◦ λM ) = f ◦ λM ◦ κM = f,

i.e., the ϑM,N are surjective. If, on the other hand, all the ϑM,N are surjective,
choose N = M and take any λM ∈ ϑ−1

M,M (M). Then

M = ϑM,M (λM ) = λM ◦ κM ,

so λM is a retraction of κM as required. �
Example 4.4 (Modules graded by G-sets). Let G be a group, X be a (right) G-set
and let A = ⊕σ∈G be a G-graded k-algebra. Following [13], a kX-graded right
A-module M = ⊕x∈XMx is said to be graded by G-set X provided, for all x ∈ X ,
σ ∈ G,

MxAσ ⊆Mxσ.
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A morphism of such modules is an A-linear map which preserves the X-grading.
The resulting category is denoted by gr-(G,A,X). It is shown in [7, Section 4.6]
that gr-(G,A,X) is isomorphic to the category of right comodules of the following
coring C. As a left A-module C = A⊗kX . The right A-multiplication is given by

(a⊗x)aσ = aaσ⊗xσ, ∀a ∈ A, x ∈ X, aσ ∈ Aσ.

The coproduct and counit are defined by

∆C(a⊗x) = (a⊗x)⊗A(1A⊗x), εC(a⊗x) = a.

An object M = ⊕x∈XMx in gr-(G,A,X) is a right C-comodule with the coaction
�M : M → M⊗AC, mx �→ mx⊗A1A⊗x, where mx ∈Mx. Also in [7, Section 4.6] it
is shown that C is a coseparable coring with a cointegral (cf. [19, Proposition 2.5.3])

δ : C⊗AC 
 A⊗kX⊗kX → A, a⊗x⊗y �→ aδx,y.

Thus gr-(G,A,X) gives rise to an S-category as in Example 3.4.
Let XG := {x ∈ X | ∀σ ∈ G, xσ = x} be the set of one-point orbits of G in

X . If XG �= ∅, the above S-category can be supplemented as in Example 3.4 by

e := 1A⊗z, z ∈ XG.

In this case, for any M ∈ gr-(G,A,X), the map κM in Proposition 4.1 comes
out as

κM (mx) = mxδx,z, ∀mx ∈ Mx.

Thus a graded module M ∈ gr-(G,A,X) is formally X
A⊗kX
δ,e -smooth if and only if

it is concentrated in degree z, i.e., M = Mz.

Given an A-coring C, the set of right A-module maps C → A, C∗, is a ring
with the unit εC and the product, for all ξ, ξ′ ∈ C∗,

ξξ′ : C
∆C �� C⊗AC

ξ′⊗AC �� C
ξ �� A.

Proposition 4.2. Let C be a coseparable A-coring with a cointegral δ and an A-
central element e, and let X

C
δ,e be the associated supplemented S-category. Then

the following statements are equivalent:
(1) All right C-comodules are formally X

C
δ,e-cosmooth.

(2) The right A-linear map

λ : C → A, c �→ δ(e⊗Ac),
has a left inverse in the dual ring C∗.

(3) The regular right C-comodule C is formally X
C
δ,e-cosmooth.

Proof. Note that C∗ can be identified with EndC(C) via the map ξ �→ (ξ⊗AC)◦∆C
(with the inverse f �→ εC ◦f). Under this identification the product in C∗ coincides
with the composition in EndC(C). Hence (2) is equivalent to saying that the map
rA = (λ⊗AC) ◦ ∆C has a retraction in MC . Denote this retraction by sA. Note
further that, since δ is a cointegral, the rN defined in the proof of Proposition 4.1
can be written as rN = N⊗ArA. This implies that sA is a section of rA if and only
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if sN = N⊗AsA is a retraction of rN = N⊗ArA, for all right A-modules N . Finally
observe that for all M ∈ MC and N ∈ MA, the maps ϕM,N := HomC(rN ,M) come
out explicitly as

ϕM,N : HomC(N⊗AC,M) " f �→ f ◦ rN ∈ HomC(N⊗AC,M).

(2) ⇒ (1) The property sN ◦ rN = N⊗AC, implies that, for all right C-
comodules M and right A-modules N , the maps ϕM,N are surjective. Hence all
right C-comodules are formally X

C
δ,e-cosmooth.

The implication (1) ⇒ (3) is obvious.
(3) ⇒ (2) If C is formally X

C
δ,e-cosmooth, then ϕC,A : EndC(C) → EndC(C) is

surjective. Hence there exists sA ∈ EndC(C) such that

C = ϕC,A(sA) = sA ◦ rA.
This completes the proof. �

A coseparable A-coring C with a cointegral δ is said to be Frobenius-cosepar-
able if there exists e ∈ CA such that, for all c ∈ C, δ(c⊗Ae) = δ(e⊗Ac) = εC(c).
The element e is called a Frobenius element. In particular a Frobenius-coseparable
coring is a Frobenius coring, see [5, 27.5].

Corollary 4.1. Let C be a Frobenius-coseparable A-coring with cointegral δ and
Frobenius element e. Then any right C-comodule is formally X

C
δ,e-cosmooth and

X
C
δ,e-smooth.

Proof. The maps κM in Proposition 4.1 are all identity morphisms, hence they are
sections and thus every right C-comodule is formally X

C
δ,e-smooth. The map λ in

Proposition 4.2 coincides with the counit εC . Since εC is a unit in C∗, it has a left
inverse, and thus every right C-comodule is formally X

C
δ,e-cosmooth. �
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Abstract. Necessary and sufficient conditions are given for a module over a
Dedekind domain to satisfy the ascending chain condition on n-generated sub-
modules for every positive integer n or on submodules with uniform dimen-
sion at most n for every positive integer n. These results are then extended to
modules over commutative Noetherian domains which need not be Dedekind.
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1. Introduction

In this paper all rings are commutative with identity and all modules are unitary.
Let R be any ring. We shall assume that if S is a subring of the ring R then S and
R have the same identity element. Given a positive integer n, an R-module satisfies
n-acc provided every ascending chain of n-generated submodules terminates. We
shall say that an R-module M satisfies pan-acc provided M satisfies n-acc for every
positive integer n. Clearly Noetherian modules satisfy pan-acc. However, Renault
[18] shows that if R is a Noetherian ring then every free R-module satisfies pan-
acc. Frohn [9] improved Renault’s Theorem by proving that if R is a Noetherian
ring then every direct product of copies of R is an R-module satisfying pan-acc.
Modules satisfying these chain conditions over not-necessarily Noetherian rings
have been extensively studied in recent years (see, for example, [1]–[5], [8]–[9],
[11]–[12] and [17]–[18]).

Before we proceed we introduce one item of notation. Let R be a ring and
let M be an R-module. For each maximal ideal P of R we set M(P ) = {m ∈
M : P km = 0 for some positive integer k}. Then M(P ) is clearly a submodule
of M . Note that if R is a one-dimensional Noetherian domain then every torsion



126 E. Sanchez Campos and P.F. Smith

R-module is a direct sum of submodules of the form M(P ), for some maximal
ideals P of R.

In [4, Theorem 3], Baumslag and Baumslag characterize which Z-modules
satisfy pan-acc. Nicolas [17, Théorème 2.3] characterizes which torsion-free mod-
ules over a Dedekind domain satisfy pan-acc. In this paper, we shall show that if
R is a Dedekind domain then an R-module M with torsion submodule T satisfies
pan-acc if and only if M satisfies the following two conditions:

(i) T is reduced and M(P ) �= 0 for at most a finite number of maximal ideals P
of R, and

(ii) every countably generated torsion-free submodule of M is projective.

Heinzer and Lantz [11, p. 272] point out that Fuchs [10, p. 125] has shown
that, for each positive integer n, there exist a torsion-free Z-module An such that
An satisfies n-acc but not (n + 1)-acc.

We shall also consider modules with a somewhat different chain condition.
Let R be any ring. Given a positive integer n, we shall say that an R-module
M satisfies nd-acc provided every ascending chain of submodules with uniform
dimension at most n terminates. In addition, an R-module M satisfies pand-acc
provided M satisfies nd-acc for every positive integer n. Recall that a non-zero
R-module X has uniform dimension n, for some positive integer n, provided X
contains a direct sum X1 ⊕ · · · ⊕Xn of non-zero submodules Xi (1 ≤ i ≤ n) but
X does not contain a direct sum of n+1 non-zero submodules. A zero module
has uniform dimension 0. For more information about uniform dimension see [16,
Section 2.2]. Note that every semisimple R-module satisfies pand-acc. However, by
[18, Lemme 1.1], in general not every semisimple R-module satisfies 1-acc. Note
that the Z-module An mentioned above satisfies nd-acc but not (n + 1)d-acc, for
each positive integer n (see [11, p. 272]).

We shall prove a companion theorem to our result above. Let R be a Dedekind
domain and let M be an R-module with torsion submodule T . Then M satisfies
pand-acc if and only if

(i) T is reduced, and
(ii) every countably generated torsion-free submodule of M is projective.

The proofs of these two theorems occupy the next section. In Section 3, we
consider modules over domains which are related to Dedekind domains but need
not themselves be Dedekind. Finally, in Section 4, we prove that if R is a non-local
Noetherian domain and P any maximal ideal of R then the R-module ⊕∞

k=1(R/P k)
satisfies pan-acc but the R-module

∏∞
k=1(R/P k) does not satisfy 1-acc.

2. Modules over Dedekind domains

To prove our results for modules over Dedekind domains we need some more or
less well-known results. We shall include some proofs for completeness. Note that
we shall always assume that the Dedekind domains we consider are not fields.
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Lemma 2.1. Let R be a Dedekind domain. Then the following statements are equiv-
alent for a torsion-free R-module M .

(i) M satisfies pan-acc.
(ii) M satisfies pand-acc.

(iii) Every countably generated submodule of M is projective.

Proof. By [17, Théorème 2.3]. �

Let R be a domain. An R-module M is called divisible in case M = cM for
every non-zero element c of R. Recall that the domain R is Dedekind if and only
if every divisible R-module is injective (see, for example, [19, Theorem 4.25]). For
a general domain R, an R-module M is called reduced if 0 is the only divisible
submodule of M .

Lemma 2.2. Let R be domain which is not a field and let M be a non-zero divisible
R-module. Then M does not satisfy 1-acc.

Proof. Suppose that M satisfies 1-acc. Let m ∈ M . Suppose that cm = 0 for
some 0 �= c ∈ R. There exists m1 ∈ M such that m = cm1. Similarly there exists
m2 ∈ M such that m1 = cm2. Then Rm ⊆ Rm1 ⊆ Rm2 ⊆ . . . is an ascending
chain of cyclic submodules. There exists a positive integer k such that Rmk =
Rmk+1. Then mk+1 = amk for some a ∈ R and hence mk = cmk+1 = camk so
that (1 − ca)mk = 0. But c2m1 = cm = 0, c3m2 = c2m1 = 0 and, by induction,
ck+1mk = 0. It follows that mk = 0. Therefore, m = 0. Thus M is torsion-free.

Let 0 �= c ∈ R such that c is not a unit in R . Let 0 �= m ∈ M. By
the above argument there exists mk ∈ M , for some positive integer k, such that
0 �= Rm ⊆ Rmk and (1 − ca)mk = 0 for some a ∈ R. In this case ca = 1, a
contradiction. The result follows. �

Lemma 2.3. Let Pi (i ∈ I) be an infinite collection of distinct maximal ideals of a
ring R and let M denote the R-module

⊕
i∈I(R/Pi). Then M does not satisfies

1-acc.

Proof. If Pi (1 ≤ i ≤ n) are distinct maximal ideals of R, for some positive integer
n, then (R/P1) ⊕ · · · ⊕ (R/Pn) ∼= R/(P1 ∩ · · · ∩ Pn) and so is cyclic. The result
follows. �

Corollary 2.1. Let R be a domain and let M be an R-module such that M satisfies
1-acc. Then M(P ) �= 0 for at most a finite number of maximal ideals P of R.

Proof. Let P be a maximal ideal of R such that M(P ) �= 0. Then the R-module
R/P embeds in M(P ). Apply Lemma 2.3. �

Lemma 2.4. Let R be a Dedekind domain and let n be a positive integer. Then an
R-module M with torsion submodule T satisfies n-acc if and only if

(i) T satisfies n-acc, and
(ii) every countably generated torsion-free submodule of M satisfies n-acc.
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Proof. The necessity is clear. Conversely, suppose that M satisfies (i) and (ii). Let
K be any n-generated submodule of M . Then K/(K ∩ T ) ∼= (K + T )/T which is
a finitely generated torsion-free R-module and hence is projective. It follows that
K ∩ T is a direct summand of K so that K ∩ T is also n-generated.

Let L1 ⊆ L2 ⊆ L3 ⊆ · · · be any ascending chain of n-generated submodules
of M . By the above remark, L1 ∩ T ⊆ L2 ∩ T ⊆ · · · is an ascending chain of
n-generated submodules of T . There exists a positive integer k such that Lk∩T =
Lk+1 ∩T = · · · . Let L =

⋃
i≥1 Li. Then L∩T = Lk ∩T. It follows that L∩T is an

n-generated torsion R-module and so c(L∩ T ) = 0 for some 0 �= c ∈ R. Note that
T ∩ cL = 0. For, let y ∈ T ∩ cL. Then y = cx for some x ∈ L and ay = 0 for some
0 �= a ∈ R. This implies that (ac)x = 0 so that x ∈ L ∩ T and hence cx = 0, i.e.,
y = 0. It follows that cL is a countably generated torsion-free submodule of M .
Moreover, cLk ⊆ cLk+1 ⊆ · · · is an ascending chain of n-generated submodules
of cL. By (ii) there exists a positive integer t ≥ k such that cLt = cLt+1 = · · · .
Let i ≥ t. Let u ∈ Li+1. Then there exists v ∈ Li such that cu = cv so that
u − v ∈ Li+1 ∩ T ⊆ Li. Thus u ∈ Li. It follows that Lt = Lt+1 = · · · , as
required. �

In view of Lemmas 2.1 and 2.4 we now consider torsion modules over a
Dedekind domain R. The next lemma is a special case of [4, p. 686 Lemma 1] but
we include a proof for completeness.

Lemma 2.5. Let R be a domain and let n be a positive integer. Let M be a torsion
R-module such that M = M(P1) ⊕ · · · ⊕M(Pk) for some positive integer k and
distinct maximal ideals Pi (1 ≤ i ≤ k). Then M satisfies n-acc if and only if M(Pi)
satisfies n-acc for all 1 ≤ i ≤ k.

Proof. The necessity is clear. Conversely, suppose that M(Pi) satisfies n-acc for
all 1 ≤ i ≤ k. Let L be any n-generated submodule of M . Then L = (L∩M(P1))⊕
· · · ⊕ (L∩M(Pk)) and L∩M(Pi) is an n-generated submodule of M(Pi) for each
1 ≤ i ≤ k. Clearly it follows that M satisfies n-acc �

In view of Lemma 2.5 we now consider a reduced module M over a Dedekind
domain R such that M = M(P ) for some maximal ideal P . Note that the localiza-
tion of R at P is a DVR (discrete valuation ring) and that M is an RP -module such
that for any submodule L of M and any positive integer n, L is an n-generated
R-submodule of M if and only if L is an n-generated RP -submodule of M . Thus
the R-module M satisfies n-acc if and only if the RP -module M satisfies n-acc.

Lemma 2.6. Let R be a DVR and let M be an n-generated torsion R-module for
some positive integer n. Then M = M1 ⊕ · · · ⊕ Mk is a direct sum of cyclic
submodules Mi (1 ≤ i ≤ k) for some positive integer k ≤ n.

Proof. Suppose that M = Rm1 + · · · + Rmn where mi ∈ M (1 ≤ i ≤ n) and
suppose that M �= 0. Let p ∈ R such that Rp is the unique maximal ideal of R.
There exists a positive integer t such that ptM = 0 but pt−1M �= 0. Without loss
of generality ptm1 = 0 but pt−1m1 �= 0. Now M/Rm1 is a direct sum of (k − 1)
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cyclic submodules for some positive integer k ≤ n, by induction on n. Also by [13,
Lemma 4 and Theorem 5 (see the remark on p. 36)], Rm1 is a direct summand of
M . Thus M is a direct sum of k cyclic submodules. �

Lemma 2.7. Let R be a DVR and let M be a reduced torsion R-module. Then there
exists a submodule N of M such that N is a direct sum of cyclic submodules and
M/N is a divisible module.

Proof. By [13, Theorem 9] there exists 0 �= m ∈ M such that Rm is a direct
summand of M . Next Zorn’s Lemma gives a maximal subset {xi : i ∈ I} of M
such that

∑
i∈I Rxi is a direct sum and ⊕i∈IRxi is a pure submodule of M (see [13,

p. 18]). Let N = ⊕i∈IRxi. Suppose that M/N is not divisible. By [13, Theorems
3 and 9], there exists a submodule L of M containing N such that L/N is a non-
zero cyclic direct summand of M/N . Next [13, Lemma 2] gives that L is a pure
submodule of M . Moreover, by [13, Theorem 5], L = N ⊕ Rx for some x ∈ L.
Thus {xi : i ∈ I} ⊂ {x}∪ {xi : i ∈ I} contradicts the choice of the set {xi : i ∈ I}.
It follows that M/N is divisible. �

Lemma 2.8. Let R be a DVR. Then every reduced torsion R-module satisfies pan-
acc.

Proof. Let M be a reduced torsion R-module. Let L1 ⊆ L2 ⊆ L3 ⊆ · · · be any
ascending chain of n-generated submodules of M . Let L =

⋃
i≥1 Li. Then L is a

submodule of M . By Lemma 2.7, there exists a submodule N of M such that N
is a direct sum of cyclic submodules and L/N is a divisible module.

Suppose that N contains a direct sum Rx1 ⊕ · · · ⊕Rxn+1 for some non-zero
elements xi ∈ N (1 ≤ i ≤ n + 1). Then Rx1 ⊕ · · · ⊕ Rxn+1 is contained in an
n-generated submodule Lk, for some positive integer k. This contradicts Lemma
2.6 because every non-zero cyclic submodule of M is uniform. It follows that N is
a finite direct sum of cyclic submodules and hence cN = 0 for some 0 �= c ∈ R.

Define a mapping ϕ : L→ L by ϕ(x) = cx for all x ∈ L. Then imϕ ∼= L/ker ϕ
and N ⊆ kerϕ, so that imϕ is a divisible submodule of M . It follows that imϕ = 0,
cL = 0 and hence L = N . Thus Lk = Lk+1 = · · · for some positive integer k. �

Theorem 2.2. Let R be a Dedekind domain and let M be an R-module with torsion
submodule T . Then M satisfies pan-acc if and only if

(i) T is reduced and M(P ) �= 0 for at most a finite number of maximal ideals P
of R, and

(ii) every countably generated torsion-free submodule of M is projective.

Proof. The necessity follows by Lemmas 2.1 and 2.2 and Corollary 2.1. The suffi-
ciency follows by Lemmas 2.1, 2.4, 2.5 and 2.8 (see the remarks preceding Lemma
2.6). �

We now turn our attention to finding which modules over a Dedekind domain
satisfy pand-acc. Let M be any module. A submodule K of M is called closed
(in M) if K has no proper essential extension in M . For example, every direct
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summand of M is closed in M . Given any submodule N of M , by Zorn’s Lemma
there exists a closed submodule K of M such that N is an essential submodule of
K. If the module M has finite uniform dimension then we shall denote the uniform
dimension of M by u(M). If u(M) = n, for some positive integer n, then we shall
call M n-dimensional.

Lemma 2.9. Let N and K be submodules of a module M .
(a) If N and M/N both have finite uniform dimension then so too does M and

u(M) ≤ u(N) + u(M/N).
(b) If M is a module with finite uniform dimension and K is a closed submodule

of M then the modules K and M/K both have finite uniform dimension and
u(M) = u(K) + u(M/K).

Proof. See [7, 5.10]. �

Note that if R is a domain and K a submodule of an R-module M such that
M/K is a torsion-free R-module then K is a closed submodule of M and part (b)
of Lemma 2.9 applies if M has finite uniform dimension.

Lemma 2.10. Let R be any ring and let n be a positive integer. Then the following
statements are equivalent for an R-module M .

(i) M satisfies nd-acc.
(ii) Every countably generated submodule of M satisfies nd-acc.

(iii) Every submodule N of M with uniform dimension at most n is Noetherian.

Proof. (i) ⇒ (ii) Clear.
(ii) ⇒ (iii) Let L be any submodule of M with uniform dimension at most n. Let
L1 ⊆ L2 ⊆ L3 ⊆ · · · be any ascending chain of finitely generated submodules
of L and let L′ =

⋃
i≥1 Li. Clearly L′ is countably generated and Li has uniform

dimension at most n for all i ≥ 1. By (ii), Lk = Lk+1 = · · · for some positive integer
k. It follows that L satisfies the ascending chain condition on finitely generated
submodules and hence L is Noetherian.
(iii) ⇒ (i) Let H1 ⊆ H2 ⊆ H3 ⊆ · · · be any ascending chain of submodules of M ,
each with uniform dimension at most n. If H =

⋃
i≥1 Hi then H is a submodule

of M with uniform dimension at most n. By (iii), there exists a positive integer t
such that Ht = Ht+1 = · · · . It follows that M satisfies nd-acc. �

Lemma 2.11. Let R be a domain. Let M be an R-module with torsion submodule
T and let n be a positive integer. Then M satisfies nd-acc if and only if

(i) T satisfies nd-acc, and
(ii) every countably generated torsion-free submodule of M satisfies nd-acc.

Proof. The necessity is clear. Conversely, suppose that M satisfies (i) and (ii). Let
N be an n-dimensional submodule of M . Then N∩T is a k-dimensional submodule
of T , for some k ≤ n, so that N ∩T is Noetherian. There exists a non-zero element
c of R such that c(N ∩T ) = 0. Then T ∩ cN = 0 (see the proof of Lemma 2.4) and



Chain Conditions in Modules over Dedekind Domains 131

cN is a torsion-free submodule of M . The mapping that sends x to cx (x ∈ N) is an
epimorphism from N to cN with kernel N ∩ T . Because T is a closed submodule
of M and hence also of N + T , (N + T )/T has uniform dimension h for some
h ≤ n (Lemma 2.9) and thus cN is h-dimensional. By (ii) and Lemma 2.10, cN
is Noetherian. Thus N is Noetherian. The result follows by applying Lemma 2.10
again. �
Lemma 2.12. Let R be a DVR and let M be a reduced torsion R-module. Then M
satisfies pand-acc.

Proof. Let N be a finite-dimensional submodule of M . By [13, Theorem 9] there
exists a cyclic direct summand K of N (because N is reduced and not torsion-
free). Then N = K ⊕K ′ for some submodule K ′. By induction on the dimension
of N , K ′ is Noetherian. Thus N is Noetherian. Now apply Lemma 2.10. �
Theorem 2.3. Let R be a Dedekind domain and let M be an R-module with torsion
submodule T . Then M satisfies pand-acc if and only if

(i) T is reduced, and
(ii) every countably generated torsion-free submodule of M is projective.

Proof. Suppose that M satisfies pand-acc. By Lemma 2.1, every countably gen-
erated torsion-free submodule of M is projective. Moreover, T is clearly reduced
(see [19, Proposition 2.10]). Conversely, suppose that T is reduced and that ev-
ery countably generated torsion-free submodule of M is projective. Let n be any
positive integer. By Lemma 2.1, every torsion-free submodule of M satisfies nd-
acc. Thus to prove that M satisfies nd-acc it is sufficient to prove that T satisfies
nd-acc by Lemma 2.11. Let X be any submodule of T with uniform dimension at
most n. Then X = X(P1) ⊕ · · · ⊕X(Pk) for some positive integer k and distinct
maximal ideals Pi (1 ≤ i ≤ k) of R. For each 1 ≤ i ≤ k, X(Pi) is a reduced torsion
module over the DVR RPi and X(Pi) has uniform dimension at most n, so that
X(Pi) is Noetherian by Lemma 2.12. Thus X is Noetherian. By Lemma 2.10, T
satisfies nd-acc and this completes the proof. �
Corollary 2.4. Let R be a Dedekind domain and let M be any R-module such that
M satisfies pan-acc. Then M satisfies pand-acc.

Proof. By Theorems 2.2 and 2.3. �
Note that Nicolas proves that the converse of Corollary 2.4 holds in case the

module M is torsion-free.

3. Related rings

Given the classification of Baumslag and Baumslag for modules over Z which
satisfy pan-acc, it is not too surprising that this classification can be extended to
modules over a Dedekind domain (Theorem 2.2) and that there is a corresponding
theorem for modules over a Dedekind domain satisfying pand-acc (Theorem 2.3).
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Now we consider modules over domains that are not themselves Dedekind domains
but are closely related to Dedekind domains in some way. This represents a first
attempt to explore what happens more generally. We immediately lose the fact
that for a Dedekind domain R, every finitely generated torsion-free R-module is
projective and consequently the torsion submodule of every finitely generated R-
module is a direct summand. We begin with an elementary result. Recall that all
rings considered are commutative.

Lemma 3.1. Let R be a subring of a ring S such that S is a finitely generated
R-module. Let M be an S-module such that, as an R-module, M satisfies pan-acc.
Then the S-module M satisfies pan-acc.

Proof. There exist a positive integer k and elements si ∈ S (1 ≤ i ≤ k) such
that S = Rs1 + · · · + Rsk. Let n be any positive integer. Then every n-generated
S-submodule of M is an nk-generated R-submodule of M . The result follows. �

Lemma 3.2. Let R be a subring of a domain S such that S is a finitely generated
R-module and let M be any S-module. Then

(i) S is integral over R.
(ii) A ∩R �= 0 for every non-zero ideal A of S.
(iii) The torsion submodule of the S-module M coincides with the torsion sub-

module of the R-module M . In particular, M is a torsion-free S-module if
and only if M is a torsion-free R-module.

(iv) The S-module M is reduced if and only if the R-module M is reduced.
Moreover, if R is a Dedekind domain then S is a one-dimensional Noetherian
domain.

Proof. (i) By [14, Theorem 12].
(ii) By (i).
(iii) By (ii).
(iv) Suppose that the S-module M is not reduced. Then there exists a non-zero
S-submodule N of M such that N = aN for all non-zero a ∈ S. Now N is an
R-submodule of M and N = bN for all non-zero b ∈ R. Thus the R-module M
is not reduced. Conversely, suppose that the R-module M is not reduced and let
L be a non-zero R-submodule of M such that L = bL for all non-zero b ∈ R. Let
H = SL. Then H is a non-zero S-submodule of M . Let 0 �= a ∈ S. By (ii) there
exists c ∈ S such that 0 �= ca ∈ R. Now H = SL = S(caL) ⊆ aSL = aH ⊆ H ,
so that H = aH . It follows that H is a divisible S-submodule of M and hence the
S-module M is not reduced.

The last part follows by [14, Theorem 48]. �

We now consider when modules over certain rings related to Dedekind do-
mains satisfy pan-acc. Note that in the following result the torsion submodule T of
M is both the torsion submodule of the R-module M and the torsion submodule
of the S-module M by Lemma 3.2(iii).
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Theorem 3.1. Let R be a subring of a commutative domain S such that R is a
Dedekind domain and S is a finitely generated R-module. Let M be an S-module
with torsion submodule T . Then the S-module M satisfies pan-acc if and only if

(i) T satisfies pan-acc, and
(ii) every countably generated torsion-free submodule of the S-module M satisfies

pan-acc.

Proof. The necessity is clear. For the sufficiency, first of all note that S = Rs1 +
· · · + Rsk for some positive integer k and si ∈ S (1 ≤ i ≤ k). Let L be a finitely
generated S-module. Then (L + T )/T ∼= L/(L∩ T ) is a finitely generated torsion-
free R-module and hence is projective. It follows that L = (L ∩ T ) ⊕K for some
R-submodule K of L.

Let L1 ⊆ L2 ⊆ L3 ⊆ · · · be any ascending chain of n-generated S-submodules
of M . Note that this chain is also an ascending chain of nk-generatedR-submodules
of M. Hence L1 ∩ T ⊆ L2 ∩ T ⊆ · · · is an ascending chain of nk-generated R-
submodules of T and so an ascending chain of nk-generated S-submodules of T .
There exist a positive integer h ≥ 1 such that Lh ∩ T = Lh+1 ∩ T = · · · . Let
L =

⋃
i≥1 Li. Then Lh ∩ T = L ∩ T . It follows that there exists 0 �= a ∈ R such

that a(L ∩ T ) = 0. Now aL is a countably generated torsion-free S-submodule of
M (see the proof of Lemma 2.4). Next aLh ⊆ aLh+1 ⊆ · · · is an ascending chain
of n-generated S-submodules of aL. By (ii) there exists a positive integer t ≥ h
such that aLt = aLt+1 = · · · . Let y ∈ Lt+1. There exists x ∈ Lt such that ay = ax
so that y − x ∈ Lt+1 ∩ T ⊆ Lt. Thus y ∈ Lt. It follows that Lt = Lt+1 = · · · , as
required. �

Let R be a subring of a ring S. For each prime ideal Q of S, Q∩R is clearly a
prime ideal of R. Given any prime ideal P of R we let πS(P ) denote the (possibly
empty) set of prime ideals Q of S such that P = Q ∩R.

Lemma 3.3. Let R be a subring of a domain S such that S is a finitely generated
R-module and let M be any S-module. Let P be any maximal ideal of R. Then
πS(P ) is a non-empty finite collection of maximal ideals of S. Moreover M(P ) �= 0
if and only if M(Q) �= 0 for some Q ∈ πS(P ).

Proof. By [14, Theorem 44], πS(P ) is non-empty. Note that R/P is a field and
hence S/SP is an Artinian ring. In particular, S/SP is semilocal. This proves that
πS(P ) is a finite collection of maximal ideals of S. If M(Q) �= 0 for some Q ∈ πS(P )
then clearly M(P ) �= 0. Conversely, suppose that M(P ) �= 0. There exist a positive
integer k and maximal ideals Qi (1 ≤ i ≤ k) of S such that πS(P ) = {Q1, . . . , Qk}.
Then Qi/SP (1 ≤ i ≤ k) are the minimal prime ideals of the Artinian ring S/SP .
There exists a positive integer t such that (Q1 . . . Qk)t ⊆ SP . If 0 �= m ∈ M(P )
then P hm = 0 for some positive integer h and hence (Q1 . . . Qk)thm = 0. It follows
that M(Qi) �= 0 for some 1 ≤ i ≤ k. �

Theorem 3.1 shows that in certain cases a module over a domain satisfies
pan-acc precisely when its torsion submodule and its countably generated torsion-
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free submodules satisfy pan-acc. Our next result deals with the case of torsion
modules.

Theorem 3.2. Let R be a subring of a commutative domain S such that R is
a Dedekind domain and S is a finitely generated R-module. Then the following
statements are equivalent for a torsion S-module M .

(i) M satisfies pan-acc.
(ii) M satisfies 1-acc.

(iii) M is a reduced S-module such that M(Q) �= 0 for at most a finite number of
maximal ideals Q of S.

Proof. (i) ⇒ (ii) Clear.
(ii) ⇒ (iii) By Lemma 2.2 and Corollary 2.1.
(iii) ⇒ (i) Suppose that (iii) holds. By Lemmas 3.2(iv) and 3.3, the R-module M
is reduced and M(P ) �= 0 for at most a finite number of maximal ideals P of R.
By Theorem 2.2, the R-module M satisfies pan-acc. Finally by Lemma 3.1, the
S-module M satisfies pan-acc. �

Next we recall a well-known result.

Lemma 3.4. A ring R is perfect if and only if every R-module satisfies pan-acc.

Proof. See [12] or [18, Proposition 1.2]. �

Lemma 3.5. Let S be a subring of a ring R such that R is a finitely generated
S-module and there exists a finitely generated ideal A of R with A ⊆ S and the
ring S/A perfect. Let M be an R-module and let X be an S-submodule of M such
that the S-module X satisfies pan-acc. Then the R-module RX satisfies pan-acc.

Proof. There exist a positive integer k and elements ri ∈ R (1 ≤ i ≤ k) such that
R = Sr1 + · · ·+Srk and there exist a positive integer t and elements ai (1 ≤ i ≤ t)
of A such that A = Ra1 + · · ·+Rat. Let n be any positive integer. Let L1 ⊆ L2 ⊆
L3 ⊆ · · · be any ascending chain of n-generated R-submodules of the R-module
RX . Then AL1 ⊆ AL2 ⊆ AL3 ⊆ · · · is an ascending chain of nkt-generated S-
submodules of the S-module X . By hypothesis, we can suppose without loss of
generality that AL1 = AL2 = · · · . Let L =

⋃
i≥1 Li. Note that A(L/L1) = 0,

so that L1/L1 ⊆ L2/L1 ⊆ L3/L1 ⊆ · · · is an ascending chain of nk-generated
submodules of the (S/A)-module L/L1. By Lemma 3.4, there exists a positive
integer h such that Lh/L1 = Lh+1/L1 = · · · and hence Lh = Lh+1 = · · · . �

Lemma 3.6. Let R be a Noetherian domain. Then every free R-module satisfies
pand-acc.

Proof. Let F be any free R-module and let n be any positive integer. Let L be a
submodule of F of uniform dimension n. Then there exists an n-generated essential
submodule K of L. There exist submodules F1 and F2 of F such that F = F1

⊕
F2,

F1 is finitely generated and K ⊆ F1. Note that (L + F1)/F1
∼= L/(L ∩ F1) and so
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is a torsion module. It follows that L ⊆ F1 and hence L is Noetherian. The result
follows by Lemma 2.10. �

Lemma 3.7. Let R be a domain and let M be a torsion-free R-module such that
M satisfies nd-acc for some positive integer n. Then M satisfies n-acc.

Proof. Let L1 ⊆ L2 ⊆ L3 ⊆ · · · be any ascending chain of n-generated submodules
of M . For each i ≥ 1, Li is a torsion-free homomorphic image of the free R-module
R(n), so that Li has uniform dimension at most n. By hypothesis, there exists k ≥ 1
such that Lk = Lk+1 = · · · . �

We next prove a result for torsion-free modules over certain domains. Note
that this result generalizes Nicolas’ Theorem (see Lemma 2.1).

Theorem 3.3. Let S be a subring of a Dedekind domain R such that R is a finitely
generated S-module and there exists a non-zero ideal A of R with A ⊆ S. Then
the following statements are equivalent for a torsion-free S-module M .

(i) M satisfies pand-acc.
(ii) M satisfies pan-acc.

(iii) Every countably generated S-submodule of M can be embedded in a free S-
module.

Proof. (i) ⇒ (ii) By Lemma 3.7.
(ii) ⇒ (iii) Let X be any countably generated torsion-free S-module which satisfies
pan-acc. Because the Dedekind domain R is a finitely generated module over its
subring S, Eakin’s Theorem gives that S is a Noetherian domain (see, for example,
[15, Theorem 3.6]). By [14, Theorem 48], S is one-dimensional and hence S/A
is an Artinian, and hence perfect, ring. Let M denote the R-module R

⊗
S X .

We can identify X with the S-submodule S
⊗

S X of M . By Lemma 3.5, the R-
module RX satisfies pan-acc. Note that the R-module RX is countably generated
and, by Lemma 3.2(iii), is torsion-free. Lemma 2.1 gives an R-monomorphism
φ : RX → R(I), for some index set I. Let 0 �= a ∈ A. Then aR(I) ⊆ S(I) and
aφ : X → S(I) is an S-monomorphism. Thus X embeds in the free S-module S(I).
Clearly (iii) follows.
(iii) ⇒ (i) By Lemmas 2.10 and 3.6. �

This brings us to the following generalization of Theorem 2.2.

Theorem 3.4. Let R be a subring of a Dedekind domain R′ such that R is also a
Dedekind domain and R′ is a finitely generated R-module. Let A be any non-zero
ideal of R′ and let S be any subring of R′ such that R+A ⊆ S. Then an S-module
M with torsion submodule T satisfies pan-acc if and only if

(i) T is reduced and T (Q) �= 0 for at most a finite number of maximal ideals Q
of S, and

(ii) every countably generated torsion-free submodule of M can be embedded in a
free S-module.



136 E. Sanchez Campos and P.F. Smith

Proof. By Theorems 3.1, 3.2 and 3.3. �
With the notation of Theorem 3.4, we have been unable to find a corre-

sponding characterization for S-modules M which satisfy pand-acc. Our problem
is finding an analogue for Theorem 3.2 (see Lemma 2.11 and Theorem 3.4).

We now show that the situation described in Theorem 3.4 arises naturally.
Let R be any Dedekind domain and let K denote the field of fractions of R. Let
K ′ be any finite separable extension of K and let R′ denote the integral closure
of R in K ′. By [20, p. 264 Theorem 7], R′ is a finitely generated R-module and,
by [20, p. 281 Theorem 19], R′ is a Dedekind domain. Let A be any non-zero ideal
of R′. Then any subring S of R′ such that R + A ⊆ S satisfies the hypotheses of
Theorem 3.4. For example, if R = Z, K = Q and K ′ is the field Q[

√
d], for any

square-free integer d in Z, then R′ = Z[
√
d] or Z[(1 +

√
d)/2] (see, for example, [6,

p. 86 Theorem 1.3]). It follows that the domain S = Z[
√
d] satisfies the hypotheses

of Theorem 3.4 for every square-free rational integer d. Note that the ring Z[
√
d]

is not a Dedekind domain if d ≡ 1 (mod 4) (see [6, p. 86 Theorem 1.3]).

4. Direct sums and direct products

Let R be a (commutative) ring and let P be a maximal ideal of R. Let I be an
index set and let ki be a positive integer for each i ∈ I. We shall show that, in
case R is Noetherian, the direct sum of the modules R/P ki satisfies pan-acc but,
in general, the direct product of the modules R/P ki does not satisfy 1-acc unless
the integers ki (i ∈ I) are bounded above. We also characterize when the direct
sum of cyclic modules over a one-dimensional Noetherian domain satisfies pan-acc.
Finally in this section we shall show that if Mi (i ∈ I) is any collection of modules
each satisfying pand-acc then the module M = ⊕i∈IMi also satisfies pand-acc.

Let P be a maximal ideal of a ring R. Then an ideal A of R will be called
P-primary provided there exists a positive integer k such that P k ⊆ A ⊆ P . Note
that if c is an element of R such that c /∈ P then R = Rc+A for every P -primary
ideal A of R. Note further that if A is a P -primary ideal of R then P k(R/A) = 0 for
some positive integer k. It follows that if Ai (i ∈ I) is any collection of P -primary
ideals of R and M is the R-module ⊕i∈I(R/Ai) then ∩∞

k=1P
kM = 0.

Lemma 4.1. Let P be a maximal ideal of any ring R and let Ai (i ∈ I) be any non-
empty collection of P -primary ideals of R. Then the R-module M = ⊕i∈I(R/Ai)
satisfies 1-acc.

Proof. Suppose that M does not satisfy 1-acc. Then there exist 0 �= m1 ∈ M and
a properly ascending chain Rm1 ⊂ Rm2 ⊂ · · · of cyclic submodules of M . For
each j ≥ 1, mj = cjmj+1 for some cj ∈ R. Suppose that there exists j ≥ 1 such
that cj /∈ P . There exists t such that P tmj+1 = 0. Moreover 1 ∈ Rcj + P t so
that mj+1 ∈ Rcjmj+1 + P tmj+1 ⊆ Rmj , and this implies that Rmj = Rmj+1, a
contradiction. Thus cj ∈ P for all j ≥ 1. Then

m1 = c1m2 = c1c2m3 = · · · = c1 . . . ckmk+1 ∈ P kM
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for all k ≥ 1. Thus m1 ∈ ∩∞
k=1P

kM . But this implies that m1 = 0, a contradiction.
It follows that M satisfies 1-acc. �

Theorem 4.1. Let P be a maximal ideal of a Noetherian ring R and let Ai (i ∈ I)
be any non-empty collection of P -primary ideals of R. Then the R-module M =
⊕i∈I(R/Ai) satisfies pan-acc.

Proof. We prove the result by induction on n. The case n = 1 has been dealt with
in Lemma 4.1. Suppose that n ≥ 2. Let L1 ⊆ L2 ⊆ · · · be any ascending chain of
non-zero n-generated submodules of M . Suppose that for each s ≥ 1 there exists
t > s such that Ls ⊆ PLt. Then there exists an increasing sequence s1 < s2 < · · ·
such that L1 ⊆ PLs1 ⊆ P 2Ls2 ⊆ · · · so that L1 ⊆ ∩∞

k=1P
kM = 0, a contradiction.

Thus we can suppose without loss of generality that L1 � PLs for all s ≥ 2. For
each i ≥ 1 there exist elements xij (1 ≤ j ≤ n) such that Li = Rxi1 + · · · + Rxin.
Let x = x11. Without loss of generality we can suppose that x /∈ PLi for all i ≥ 2.
For each i ≥ 2,

x = ai1xi1 + · · ·+ ainxin.

Without loss of generality we can suppose that ai1 /∈ P for all i ≥ 2. Because every
element of M is annihilated by some power of the maximal ideal P , it is not difficult
to see that xi1 ∈ Rx+Rxi2 + · · ·+Rxin and thus Li = Rx+Rxi2 + · · ·+Rxin for
all i ≥ 2. There exists a finite subset J of I such that x ∈ N = ⊕j∈J(R/Aj). Note
that by induction on n, the module M/N satisfies (n-1)-acc. It follows that the
ascending chain (L1 + N)/N ⊆ (L2 + N)/N ⊆ · · · of (n-1)-generated submodules
(Li+N)/N (i ≥ 1) of M/N terminates. Thus there exists a positive integer k such
that (Lk + N)/N = (Lk+1 + N)/N = · · · . However, N is a Noetherian R-module
so that, without loss of generality, we can suppose that Lk ∩N = Lk+1 ∩N · · · . It
follows that Lk = Lk+1 = · · · . �

We drop the assumption just for a moment that all rings be commutative in
order to prove the following result.

Theorem 4.2. Let R be a right Noetherian ring and let n be any positive integer.
Then every finite direct sum of right R-modules satisfying n-acc also satisfies n-
acc.

Proof. By induction on the number of summands it is sufficient to prove that if
an R-module M = M1 ⊕ M2 is a direct sum of submodules M1,M2 such that
M1 and M2 both satisfy n-acc then M also satisfies n-acc. Let L1 ⊆ L2 ⊆ · · · be
any ascending chain of n-generated submodules of M . Let L =

⋃∞
i=1 Li and note

that L is a submodule of M . Note that (L1 + M1)/M1 ⊆ (L2 + M1)/M1 ⊆ · · ·
is an ascending chain of n-generated submodules of the module M/M1

∼= M2. By
hypothesis, there exists a positive integer k such that (Lk + M1)/M1 = (Lk+1 +
M1)/M1 = · · · and it follows that L + M1 = Lk + M1. But L/(L ∩ M1) ∼=
(L + M1)/M1 = (Lk + M1)/M1 which is a finitely generated module. It follows
that L/(L ∩M1) is a Noetherian module. Similarly, L/(L ∩M2) is a Noetherian
module. But the mapping θ : L → (L/(L ∩ M1)) ⊕ (L/(L ∩ M2)) defined by
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θ(x) = (x+ (L∩M1), x+ (L∩M2)), for all x in L, is a monomorphism. Thus L is
a Noetherian R-module. Hence the ascending chain L1 ⊆ L2 ⊆ · · · of submodules
of L terminates. It follows that M satisfies n-acc. �

Theorem 4.2 allows us to prove the following generalization of [4, p. 694
Corollary].

Corollary 4.3. Let R be a right Noetherian ring, let n be a positive integer and
let Mi(i ∈ I) be any collection of nonsingular right R-modules which each satisfy
n-acc. Then the direct product

∏
i∈I Mi also satisfies n-acc.

Proof. By Theorem 4.2 and [1, Theorem 1.5]. �

We now return to commutative rings. We aim to show that certain modules
over (commutative) one-dimensional Noetherian domains satisfy pan-acc.

Let R be a one-dimensional Noetherian domain. (Note that Dedekind do-
mains are particular examples of one-dimensional Noetherian domains.) Every
non-zero prime ideal of R is maximal and hence the ring R/A is Artinian for every
non-zero ideal A of R by [19, Theorem 4.6]. Let M be any cyclic R-module. Either
M ∼= R or M is Artinian. If M is a non-zero Artinian cyclic module then there
exist a positive integer k, maximal ideals Pi (1 ≤ i ≤ k) and a Pi-primary ideal Ai
of R for each 1 ≤ i ≤ k such that M ∼= (R/A1) ⊕ · · · ⊕ (R/Ak) by [19, Theorem
4.28]

Theorem 4.4. Let R be a one-dimensional Noetherian domain and let M be an R-
module which is a direct sum of cyclic submodules. Then the following statements
are equivalent.

(i) M satisfies pan-acc.
(ii) M satisfies 1-acc.

(iii) M(P ) �= 0 for at most a finite number of maximal ideals P of R.

Proof. (i) ⇒ (ii) Clear.
(ii) ⇒ (iii) By Corollary 2.1.
(iii) ⇒ (i) By the above remarks there exist a positive integer k and submodules
Mi (1 ≤ i ≤ k) of M such that M = M1 ⊕ · · · ⊕ Mk where M1 is zero or free
and for each 2 ≤ i ≤ k there exist a maximal ideal Pi of R, an index set Ji and
Pi-primary ideals Aj (j ∈ Ji) such that Mi

∼= ⊕j∈Ji(R/Aj). By Theorem 4.1, for
each 2 ≤ i ≤ k, Mi satisfies pan-acc. Also by [4, Theorem 8] M1 satisfies pan-acc.
Finally, by Theorem 4.2, M satisfies pan-acc. �

Note that the proof of Theorem 4.4 shows that if R is any Noetherian ring
and an R-module M is a direct sum of cyclic Artinian modules then M satisfies
pan-acc if and only if M(P ) �= 0 for at most a finite number of maximal ideals P of
R, by [19, Theorem 4.28]. We now consider direct products. As we have remarked
above, under certain circumstances direct products of modules do satisfy pan-acc
(see [1], [9], [18]). In contrast we have the following result.
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Theorem 4.5. Let P be a maximal ideal of a non-local ring R such that ∩∞
k=1P

k = 0
and let ki (i ∈ I) be a non-empty collection of positive integers. Then the following
statements are equivalent for the R-module M =

∏
i∈I(R/P ki).

(i) M satisfies pan-acc.
(ii) M satisfies 1-acc.

(iii) There exists a positive integer N such that ki ≤ N for all i ∈ I.

Proof. (i) ⇒ (ii) Clear.
(ii) ⇒ (iii) Suppose that there does not exist a positive integer N such that ki ≤ N
for all i ∈ I. Then ∩i∈IP ki = 0. Let c be any non-unit in R such that c /∈ P. Let
ai ∈ R\P (i ∈ I). For each i ∈ I, P ki(ai + P ki) = 0 and R = Rc + P ki so that
ai + P ki = cbi + P ki for some bi ∈ R. Thus (ai + P ki) = c(bi + P ki). Note that
bi ∈ R\P for each i ∈ I. If x = (ai + P ki) and y = (bi + P ki) then x = cy.
Suppose that Rx = Ry. Then y = dx for some d ∈ R and hence x = cy = cdx.
Thus (1 − cd)x = 0 and hence (1 − cd)ai ∈ P ki for all i ∈ I. Because ai /∈ P it
follows that 1 − cd ∈ P ki for all i ∈ I. Hence 1 − cd ∈ ∩i∈IP ki = 0 and cd = 1,
a contradiction. Thus Rx ⊂ Ry. Starting with the element z1 = (1 + P ki) of M ,
in this way we can form an infinite properly ascending chain Rz1 ⊂ Rz2 ⊂ · · · of
cyclic submodules of M . Thus M does not satisfy 1-acc.
(iii) ⇒ (i) Suppose that there exists a positive integer N such that ki ≤ N for all
i ∈ I. Then PNM = 0 and M is a module over the perfect ring R/PN . By Lemma
3.4 M satisfies pan-acc. �

In particular, let p be any prime in the ring Z and let M denote the Z-module
⊕k≥1(Z/Zpk). Then M satisfies pan-acc but the Z-module

∏
k≥1(Z/Zpk) does not

satisfy 1-acc, nor does the Z-module MN.
Finally we look again at the pand-acc condition. First recall the following

well-known fact.

Lemma 4.2. Let K ⊆ L be submodules of a module M such that K is a closed
submodule of L and L is a closed submodule of M . Then K is a closed submodule
of M .

Proof. See [7, p. 6 (4)]. �
Lemma 4.3. Let K be a closed submodule of a module M such that K and M/K
both satisfy pand-acc. Then M satisfies pand-acc.

Proof. Let N be any submodule of M such that N has finite uniform dimension.
There exists a closed submodule L of K such that N ∩K is an essential submodule
of L. By Lemma 4.2 L is a closed submodule of M . Note that u(L) = u(N ∩K) ≤
u(N). By hypothesis, L is Noetherian. Now (N + L)/N ∼= L/(N ∩ L) so that
(N +L)/N is Noetherian and hence has finite uniform dimension. Thus N +L has
finite uniform dimension by Lemma 2.9(a) and hence so too does (N + L)/L by
Lemma 2.9(b) because L is a closed submodule of N + L. But

(N + K)/K ∼= (N + L)/[(N + L) ∩K] = (N + L)/[L + (N ∩K)] = (N + L)/L.
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Thus (N + K)/K has finite uniform dimension. By hypothesis, (N + K)/K is
Noetherian and hence so too is (N +L)/L. Because L is Noetherian, N +L is also
Noetherian and it follows that N is Noetherian. Now apply Lemma 2.10. �

The next result is due to J. Jenkins (unpublished). Note that it holds for any
ring whether or not the ring is commutative.

Theorem 4.6. Let a module M = ⊕i∈IMi be a direct sum of submodules Mi (i ∈ I).
Then M satisfies pand-acc if and only if for each i in I, Mi satisfies pand-acc.

Proof. The necessity is clear. Conversely, suppose that, for each i ∈ I, Mi satisfies
pand-acc. Let N be any submodule of M such that N has finite uniform dimension.
Then N contains a finitely generated essential submodule L. There exists a finite
subset J of I such that L ⊆ ⊕j∈JMj. Note that L ∩ ⊕i∈I\JMi = 0 and hence
N ∩ ⊕i∈I\JMi = 0. It follows that N embeds in ⊕j∈JMj. But by Lemma 4.3 the
module ⊕j∈JMj satisfies pand-acc. Thus N is Noetherian. The result follows by
Lemma 2.10. �
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c© 2008 Birkhäuser Verlag Basel/Switzerland

τ -Injective Modules
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To Robert Wisbauer on the occasion of his 65th birthday.

Abstract. In this article we consider injective modules relative to a torsion
theory τ . We introduce τ -M -injective and s-τ -M -injective modules, relatively
τ -injective modules, the τ -M -injective hull and Σ-τ -M -injective and Σ-s-τ -
M -injective modules. We then examine the relationship between these new
and known concepts.

Some of the new results obtained include a Generalized Fuchs Crite-
rion characterizing s-τ -M -injective modules, a Generalized Azumaya’s Lemma
characterizing τ -

⊕
I Mi-injective modules, the proof of the existence and

uniqueness up to isomorphism of the τ -M -injective hull and generalizations
of results by Albu and Năstăsescu, Faith, and Cailleau on necessary and suf-
ficient conditions for a module to be Σ-s-τ -M -injective, Σ-τ -injective and for
a direct sum of Σ-s-τ -M -injective modules to be Σ-s-τ -M -injective.

1. Introduction and preliminaries

After the introduction and preliminary sections, the article has three main sections,
on the topics of τ -injectivity, relative τ -injective hulls and relative Σ-τ -injective
modules.

Injective modules relative to a torsion theory τ can be defined in a variety of
ways. We begin with the usual definition of τ -injective modules and the Generalized
Baer Criterion for determining τ -injectivity by looking at τ -dense left ideals of the
ring. We then extend this definition by looking at τ -injectivity relative to a fixed
module M , thus introducing τ -M -injective modules. A slightly different flavour of
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this is also introduced, the s-τ -M -injective modules which generalize the τ
f
-quasi-

injective modules given in [B, 4.1.16]. Subsequently the relationship between these
definitions is explored. In particular we show how one version of relative injectivity
can be used to characterize the others.

Next we modify the Generalized Fuchs Criterion, characterizing s-τ -quasi-
injective modules, and characterize s-τ -M -injectivity using certain types of τ -dense
left ideals.

The section on relative injective hulls is motivated by a flaw in an argument
in [B] on the existence and uniqueness of τ -quasi-injective hulls. We repair the
proof and extend the concept to that of a τ -M -injective hull, generalizing the M -
injective hull found in [W, 17.8]. The existence and uniqueness up to isomorphism
of τ -quasi-injective hulls is a consequence. The section ends with a short proof
of a torsion-theoretic version of Azumaya’s Lemma using a characterization of
τ -M -injectivity via the concept of a trace.

The last section, on Σ-τ -injective modules, is motivated by a result of Faith
and another in [AN] which characterize Σ-injectivity by an ascending chain con-
dition on annihilators. We obtain torsion-theoretic versions of both results, and
of some of their corollaries, most notably a result found in [AN] which is based
on a method of [Cai] and characterizes when a direct sum of Σ-s-τ -M -injectives is
Σ-s-τ -M -injective.

Unless otherwise stated, all modules will be left R-modules for some unitary
ring R, and all homomorphisms will be R-module homomorphisms. We denote the
class of left R-modules by R-Mod. If N,M ∈R-Mod, we write N ≤ M to denote
that N is a submodule of M while if N is an essential submodule of M we write
N �e M . If X is a subset of the module M and n ∈M , we let (X : n) denote the
set { r ∈ R | rn ∈ X }.

In what follows, τ = (T ,F) denotes a hereditary torsion theory on R-Mod.
A submodule N of M is called τ-dense (τ-pure) if M/N is τ -torsion (τ -

torsionfree), in which case we write N �τ -d M (N �τ -p M). We let Dτ (M) denote
the set of all τ -dense submodules of M and Pτ (M) denote the set of all τ -pure
submodules of M . The τ-pure closure of N in M is the intersection of all the
τ -pure submodules of M that contain N . It is denoted by ClMτ (N), or, when M
and τ are understood, by N c. Thus:

ClMτ (N) = N c =
⋂
{K ∈ Pτ (M) |N � K }.

A submodule N of a module M is called τ-essential in M if it is τ -dense and
essential in M , i.e., N ∈ Dτ (M) and N �e M . In this case we write N �τ -e M
and say M is a τ-essential extension of N . If N ≤ M , we say that N is τ-essentially
closed in M if N has no proper τ -essential extensions in M , i.e., if N �τ -e E � M
then N = E. If all its nonzero submodules are τ -dense, M is called τ-compact
(vacuously 0 is τ -compact).

The following collects together some basic torsion theory results for later use.
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Proposition 1.1. Let τ be a torsion theory and M ∈R-Mod.

(1) If K ∈ Dτ (M) and K � L � M then L ∈ Dτ (M).
(2) If K,L ∈ Dτ (M) then K ∩ L ∈ Dτ (M).
(3) Given K � L � M , we have K �τ-d M if and only if K �τ-d L �τ-d M .
(4) If N � M then tτ (M/N) = N c/N and N c = {m ∈ M | (N : m) ∈ Dτ (R) },

and so N is τ-dense in N c.
(5) If m ∈ M and I ∈ Dτ (R) then Im ∈ Dτ (Rm).
(6) Given K � L � M , we have K �τ-e M if and only if K �τ-e L and

L �τ-e M .
(7) If N � M then there is a τ-essentially closed submodule N∗ of M with

N �τ-e N
∗.

Proof. Items (1), (2), and (4) appear in [B, 1.1.11 and 2.1.7] while the proofs
of (3) and (5) are routine. Item (6) follows from (3) and [DHSW, 1.5(2)]. Using
(6) and the property that the union of an ascending chain of torsion modules is
also torsion, the proof of (7) is a straightforward modification of the well-known
argument showing that every submodule N of M has an essential closure N in M
(see [DHSW, p. 6]). �

2. τ -injectivity and related concepts

Recall that a module M is called injective if, for any module L, every homomor-
phism from a submodule K of L to M extends to a homomorphism from L to M .
A torsion-theoretic version of this, as found in [B], now follows.

Definition 2.1. A module M is τ-injective if, for every module L, every homomor-
phism from a τ-dense submodule of L to M extends to a homomorphism from L
to M .

Before detailing the properties of τ -injectivity we give an example, from
Crivei [C98].

A module is called semi-Artinian if it is either 0 or each of its nonzero factor
modules has a nonzero socle (equivalently, a simple submodule). With T as the
class of all semi-Artinian R-modules and F as the class of all R-modules with zero
socle, τD = (T ,F) is a hereditary torsion theory called the Dickson torsion theory.
In [C98, Theorem 6] Crivei shows that an R-module A is τD-injective if and only
if, for any maximal left ideal M of R, any homomorphism f : M → A can be
extended to a homomorphism g : R → A. In [C98, Example 16] he then shows
that if R = F [[x, y]], the power series in indeterminates x, y over a field F , the
R-module R is τD-injective but not injective.

We now continue with the theory of τ -injectivity. The following is a torsion-
theoretic analogue of Baer’s Criterion for injectivity. It is essentially given as [B,
4.1.2].
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Proposition 2.1 (Generalized Baer Criterion). Let M be an R-module. Then the
following are equivalent:

(1) M is τ-injective.
(2) Every homomorphism from a τ-dense left ideal of R to M extends to a ho-

momorphism from R to M .
(3) For each I ∈ Dτ (R) and each f ∈ HomR(I,M), there exists an m ∈M such

that f(a) = am for all a ∈ I.

Remark 2.1. The τ -dense left ideals of R in Proposition 2.1 can be replaced by
τ -essential left ideals of R. (See Bland [B, 4.1.3])

Let M,E ∈ R-Mod. Then E is called M -injective if every homomorphism
from a submodule of M to E extends to a homomorphism from M to E. This is
equivalent to the seemingly stronger requirement that if K � L � M then every
homomorphism from K to E extends to one from L to E, i.e., E is L-injective
for every L � M (see [W, 16.3] for details). This results in the following two
torsion-theoretic definitions.

Definition 2.2. Let M,E ∈ R-Mod. Then E is called τ -M -injective if any homo-
morphism from a τ-dense submodule of M to E extends to a homomorphism from
M to E. We say that E is s-τ -M -injective if, for any N � M , any homomorphism
from a τ-dense submodule of N to E extends to a homomorphism from N to E.
[Here the “s” in “s-τ” is short for “strongly”.]

We note that s-τ -M -injective modules are referred to as M -τ-injective mod-
ules in [PRY]1.

Remark 2.2. From the definitions of τ -injectivity and s-τ -M -injectivity we get:

(1) Every s-τ -M -injective module is τ -M -injective.
(2) A module is s-τ -M -injective if and only if it is (s-)τ -N -injective for every

N � M .

A module Q is said to be quasi-injective if it is Q-injective. The following
definition combines two torsion-theoretic analogues of this found in [B, 4.1.16,

4.1.19]. Note that we have changed Bland’s notation from τ
f
-quasi-injective to

s-τ -quasi-injective.

Definition 2.3. A module Q is said to be s-τ -quasi-injective if, given N ≤ Q and
K ∈ Dτ (N), any f ∈ HomR(K,Q) can be extended to a g ∈ HomR(N,Q). A
module Q is called τ -quasi-injective if, given K ∈ Dτ (Q), any f ∈ HomR(K,Q)
can be extended to a g ∈ HomR(Q,Q).

1Reference [PRY] provides an alternative to our Proposition 2.3, the Generalized Fuchs Criterion,

which is then used to prove our Lemma 4.2, but there is no other obvious overlap with the results
presented here.
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Remark 2.3. Using the definition of s-τ -M -injectivity and the Generalized Baer
Criterion we get the following reformulations.
(1) A module E is τ -injective if and only if it is (s-)τ -M -injective for all M ∈

R-Mod.
(2) A module E is τ -injective if and only if it is (s-)τ -RR-injective.
(3) A module Q is s-τ -quasi-injective if and only if it is s-τ -Q-injective if and

only if it is (s-)τ -K-injective for every K � Q.
(4) A module Q is τ -quasi-injective if and only if it is τ -Q-injective.

In [Fu], Fuchs obtained a condition similar to Baer’s Criterion characterizing
quasi-injectivity, and Bland in [B90] generalized this to s-τ -quasi-injective modules.
Our next aim is to further generalize the condition so as to characterize s-τ -M -
injective modules.

Definition 2.4. For any module M , let Ω(M) denote the set of all left ideals of R
which contain the left annihilator of an element of M . Thus a left ideal I of R is
in Ω(M) if and only if there is an m ∈ M such that (0 : m) � I. Similarly we
denote the set of all left ideals of R which contain the left annihilator of a finite
subset Y of M by Ω̄(M).

The following extends [B, 4.1.17] and is used in the proof of Proposition 2.3.

Proposition 2.2. Let E,M be R-modules. Then the following conditions are equiv-
alent.
(1) E is s-τ-M -injective.
(2) If m ∈ M and K ∈ Dτ (Rm), any map f ∈ HomR(K,E) can be extended to

a map g ∈ HomR(Rm,E).
(3) If K and N are R-modules, not necessarily submodules of M , with K ∈

Dτ (N) and Ω(N) ⊆ Ω(M), any f ∈ HomR(K,E) can be extended to a
g ∈ HomR(N,E).

Proof. (1) ⇒ (2) is obvious and taking N to be a submodule of M gives
(3) ⇒ (1).
(2) ⇒ (3). Suppose that K, N and f ∈ HomR(K,E) are as given in (3). Let
S = { (g, L) |K � L � N, g : L → E, g |K= f }. Partially order S by setting
(g1, L1) � (g2, L2) if L1 � L2 and g1 = g2 |L1 . Then S is inductive and so, by
Zorn’s Lemma, has a maximal element, (h,X) say. It suffices to show that X = N .

Let n ∈ N . We construct a pair (h∗, X + Rn) that contains (h,X). Since
(0 : n) ∈ Ω(N) ⊆ Ω(M), there exists an m ∈ M such that (0 : m) � (0 : n).
Define a map ϕ : (X : n)m → E by ϕ(am) = h(an) for any a ∈ (X : n). This
is a well-defined homomorphism and since X ∈ Dτ (N) we have N/X ∈ T and so
(X : n) ∈ Dτ (R) by Proposition 1.1 (4).

Hence, by Proposition 1.1 (5), we get (X : n)m ∈ Dτ (Rm). Thus, by (2),
ϕ extends to a homomorphism ϕ∗ : Rm → E. This allows us to define a map
h∗ : X +Rn → E which extends h : X → E as follows. For any x ∈ X and r ∈ R,
let h∗(x+ rn) = h(x) +ϕ∗(rm). It is easy to check that h∗ is well defined. Clearly
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h∗|X= h and so h∗|K= h|K= f . Thus (h∗, X+Rn) ∈ S and (h,X) � (h∗, X+Rn).
The maximality of (h,X) now gives X +Rn = X and so n ∈ X . Hence X = N as
required. �

The following generalizes [B, 4.1.18], where it is shown for E = M , thereby
characterizing s-τ -quasi-injective modules. It is our version of the Generalized
Fuchs Criterion.

Proposition 2.3 (Generalized Fuchs Criterion). Let E, M be R-modules. Then the
following conditions are equivalent.
(1) E is s-τ-M -injective.
(2) For each I ∈ Dτ (R), any map f ∈ HomR(I, E) with Ker f ∈ Ω(M) can be

extended to a map g ∈ HomR(R,E).
(3) For each I ∈ Dτ (R), and each f ∈ HomR(I, E) with Ker f ∈ Ω(M), there

exists an x ∈ E such that f(a) = ax for all a ∈ I.

Proof. (1) ⇒ (2). The following commutative diagram illustrates the proof.

0 I R

Im Rm

E

i1

ν1 ν2

i2

f̄ (∃h̄)h̄i2 = f̄

f

� �

�

�

�
�

��

�
�

��

�
�

���

Suppose that I ∈ Dτ (R), E is an s-τ -M -injective module and f ∈ HomR(I, E)
with Ker f ∈ Ω(M). Then (0 : m) � Ker f for some m ∈ M . Let i1 : I → R and
i2 : Im → Rm be the inclusion maps. Define ν1 : I → Im by a �→ am for any
a ∈ I and ν2 : R → Rm by r �→ rm for any r ∈ R. Next define f̄ : Im → E by
am �→ f(a) for any a ∈ I. This is a good definition since if a1, a2 ∈ I are such
that a1m = a2m then a1 − a2 ∈ (0 : m) � Ker f . Since I ∈ Dτ (R), Proposition
1.1 (5) gives Im ∈ Dτ (Rm). Hence, by Proposition 2.2, there is a homomorphism
h̄ : Rm → E, such that h̄i2 = f̄ . To finish, define g : R → E by g = h̄ν2. Then
gi1 = h̄ν2i1 = h̄i2ν1 = f̄ ν1 = f .
(2) ⇒ (1). Let K and N be submodules of M with K ∈ Dτ (N) and f ∈
HomR(K,E). Let S = { (g, L) |K � L � N, g : L → E, g |K= f }. First note
that S �= ∅ since (f,K) ∈ S. Then we may partially order S as in the proof of
Proposition 2.2 and, with respect to this, S has a maximal element, (h,X) say. It
suffices to show that X = N .
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Let n ∈ N . We construct a pair (h∗, X + Rn) that contains (h,X). Since
X ∈ Dτ (N) we have N/X ∈ T and so (0 : n + X) = (X : n) ∈ Dτ (R). Define
ϕ : (X : n) → E by ϕ(a) = h(an) for any a ∈ (X : n). Then, since (0 : n) � Kerϕ,
we have Kerϕ ∈ Ω(M). Thus, by (2), ϕ extends to a homomorphism ϕ∗ : R → E.
This allows us to define a map h∗ : X + Rn → E which extends h : X → E
as follows. For any x ∈ X and r ∈ R, let h∗(x + rn) = h(x) + ϕ∗(r). It is easy
to see that h∗ is well defined. Clearly h∗ |X= h and so h∗ |K= h |K= f . Thus
(h∗, X + Rn) ∈ S and (h,X) � (h∗, X + Rn). Therefore the maximality of (h,X)
gives X + Rn = X and so n ∈ X . Hence X = N as required.
(2) ⇔ (3). This is trivial. �
Lemma 2.1. If M is a τ-compact module, then a τ-M -injective module is M -
injective.

Proof. This follows since every nonzero submodule of M is τ -dense. �
We now state a torsion-theoretic version of Azumaya’s Lemma ([AF, 16.13(2)]).
(The original can be recovered when τ is the torsion theory in which every module
is τ -torsion.) While a direct proof of this is possible, to save room we instead give a
short proof in the next section using techniques developed there (see Lemma 3.2).

Lemma 2.2 (Generalized Azumaya’s Lemma). If E and M =
⊕

I Mi are modules,
then E is τ-M -injective if and only if E is τ-Mi-injective for each i ∈ I.

By Remark 2.2, given modules E and M =
⊕

I Mi such that E is s-τ -M -
injective, then E is s-τ -Mi-injective for each i ∈ I. However the converse of this
remains open.

The next result is based on [G, 8.4] where it is established in the special case
of τ -injectivity. The proof is by standard arguments and so we omit it.

Proposition 2.4. The following statements are true for any module M .
(1) Every direct summand of a (s-)τ-M -injective module is (s-)τ-M -injective.
(2) Let {Ei | i ∈ I } be a family of modules. Then

∏
i∈I Ei is (s-)τ-M -injective if

and only if each Ei is (s-)τ-M -injective.

The following lemma can be found in [DHSW, 7.5].

Lemma 2.3. Let M1 and M2 be R-modules and let M = M1 ⊕M2. Then M1 is
M2-injective if and only if, for every submodule N of M such that N ∩M1 = 0,
there exists a submodule M ′

2 of M such that N � M ′
2 and M = M1 ⊕M ′

2.

An investigation of when a finite direct sum of self-τ -divisible modules is
self-τ -divisible is given in [CC]. There a module D is called self-τ-divisible if, for
any P ∈ Pτ (D) and any f ∈ HomR(P,D), there exists a g ∈ HomR(D,D) such
that g|P= f . We now adapt some of their arguments to obtain analogous results
for τ -quasi-injective modules.

The first result is inspired by [CC, 3.3] and is a torsion-theoretic analogue
of Lemma 2.3. The proof requires only minor modifications of the proof of the
original.
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Proposition 2.5. Let A1 and A2 be modules, A = A1 ⊕ A2, and π1 : A → A1 and
π2 : A → A2 be the canonical projections. Then A1 is τ-A2-injective if and only
if, for every submodule B of A such that B ∩ A1 = 0 and π2(B) ∈ Dτ (A2), there
exists a submodule C of A such that A = A1 ⊕ C and B � C.

Proof. (⇒) Suppose that A1 is τ -A2-injective and let B � A such that B∩A1 = 0
and π2(B) ∈ Dτ (A2). The homomorphism f = π2 |B: B → π2(B) is an isomor-
phism, because B ∩ A1 = 0. Since A1 is τ -A2-injective and π2(B) ∈ Dτ (A2),
π1f

−1 : π2(B) → A1 extends to a homomorphism g : A2 → A1. Let C = { g(a) +
a | a ∈ A2 }. It is routine to check that C is a submodule of A and A = A1 ⊕ C.
Furthermore, for any b ∈ B we have b = π1(b) + π2(b) = π1f

−1π2(b) + π2(b) =
gπ2(b) + π2(b) ∈ C, and so B � C, as required.
(⇐) Let D ∈ Dτ (A2) and f ∈ HomR(D,A1). Define B = { d − f(d) | d ∈ D }.
It is easily seen that B � A and B ∩ A1 = 0. Furthermore π2(B) = D and
so π2(B) ∈ Dτ (A2). Hence, by assumption, there is a submodule C of A such
that B � C and A = A1 ⊕ C. Let π : A = A1 ⊕ C → A1 be the canonical
projection with kernel C. Let iD : D → A2 and i2 : A2 → A denote the inclusion
homomorphisms. If we define g : A2 → A1 by g = πi2 then for any d ∈ D we have
giD(d) = πi2iD(d) = π(d − f(d) + f(d)) = f(d), since d − f(d) ∈ B � C, and so
giD = f . Thus A1 is τ -A2-injective as required. �

The next result is inspired by [CC, 3.4] and again the proof requires only
minor modifications of the proof of the original result.

Proposition 2.6. Let A ∈ R-Mod, D be a τ-A-injective module and B � A. Then:
(1) D is τ-A/B-injective.
(2) If B ∈ Dτ (A) then D is τ-B-injective.

Proof. (1) Let C/B ∈ Dτ (A/B) and f ∈ HomR(C/B,D). Let i1 : C/B → A/B
and i2 : C → A be the inclusion maps and ν1 : C → C/B and ν2 : A → A/B be
the natural epimorphisms. Since C ∈ Dτ (A), there is an h ∈ HomR(A,D) such
that hi2 = fν1. Define g : A/B → D by g(a+B) = h(a), so that gν2 = h. This is a
good definition since, for any a1, a2 ∈ A, if a1 +B = a2 +B then a1− a2 ∈ B, and
so h(a1− a2) = hi2(a1 − a2) = fν1(a1 − a2) = f((a1− a2) +B) = 0. Furthermore,
gi1ν1 = gν2i2 = hi2 = fν1. Since ν1 is an epimorphism we have gi1 = f and so D
is τ -A/B-injective, as required.
(2) Suppose that B �τ -d A. Let C �τ -d B and let f : C → D be a homomorphism.
Then, by the transitivity of �τ -d, we have C �τ -d A, and so f extends to a
homomorphism g : A → D. Clearly g |B is an extension of f and so D is τ -B-
injective, as required. �
The following definition describes injectivity relationships in a family of modules.

Definition 2.5. The members of a family {Mi}I of modules are said to be relatively
(τ -)injective if Mi is (τ-)Mj-injective for any i, j ∈ I such that i �= j.

By Propositions 2.6 and 2.4 we have the following corollary.
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Corollary 2.7. Let A1 and A2 be modules such that A1 ⊕ A2 is τ-quasi-injective.
Then A1 and A2 are both τ-quasi-injective and relatively τ-injective.

We now extend the main result in [CC, 3.7] for τ -injective modules. This
time the proof does not follow that of [CC, 3.6] but uses instead our version of
Azumaya’s Lemma.

Theorem 2.1. Let A1, . . . , An be relatively τ-injective modules. Then A1⊕· · ·⊕An
is τ-quasi-injective if and only if Ai is τ-quasi-injective for each 1 � i � n.

Proof. (⇒) For each 1 � i � n, Ai is τ -(A1 ⊕ · · · ⊕ An)-injective by Proposition
2.4 and so, by Lemma 2.2, Ai is τ -Ai-injective. Thus Ai is τ -quasi-injective, as
required.

(⇐) Since A1, . . . , An are relatively τ -injective, if each Ai is τ -quasi-injective,
then Ai is τ -Aj-injective for any 1 � i, j � n. Thus, by Lemma 2.2, Ai is τ -
(A1 ⊕ · · · ⊕ An)-injective for each i and so, by Proposition 2.4, A1 ⊕ · · · ⊕ An is
τ -(A1 ⊕ · · · ⊕An)-injective. �

From the proof of Theorem 2.1, it is clear that the following corollary holds.

Corollary 2.8. Let A1, . . . , An be modules. Then A1 ⊕ · · · ⊕An is τ-quasi-injective
if and only if Ai is τ-Aj-injective for any 1 � i, j � n.

3. Relative τ -injective hulls

Here we explore various types of injective hulls relative to a torsion theory τ .
We begin with some useful properties of τ -injectivity which we use to prove a
known result on the existence and uniqueness of τ -injective hulls. We then define
τ -M -injective hulls, generalizing M -injective hulls, and prove their existence and
uniqueness up to isomorphism for M -generated modules. This is used to simplify
a proof of a result in [B], asserting the existence and uniqueness of a τ -quasi-
injective hull, whose proof is flawed. We end the section with a streamlined proof
of a relative version of Azumaya’s Lemma.

The following is a generalization of a result found in [G, 8.4]. We will use it
to define the torsion-theoretic analogue of an injective hull.

Proposition 3.1. Let M be an R-module. Then every τ-pure submodule of an s-τ-
M -injective R-module is s-τ-M -injective.

Proof. Let E be an s-τ -M -injective R-module and N ∈ Pτ (E). We wish to show
that N is s-τ -M -injective. We proceed using our Generalized Fuchs Criterion. Let
f : I → N be an R-homomorphism with I ∈ Dτ (R) and Ker f ∈ Ω(M). Consider
the following diagram, where iI , iN denote the inclusion mappings and νI , νN the
canonical epimorphisms.
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0 I R
R

I
0

0 N E
E

N
0

iI νI

iN νN

f g h

� � � �

� � � �
� � �

Note that f : I → N induces a homomorphism iNf : I → E, which extends
to a homomorphism g : R → E, because clearly Ker f � Ker iNf ∈ Ω(M) and
E is s-τ -M -injective. Thus we have giI = iNf . This induces a homomorphism
h : R/I → E/N , defined by h(r + I) = g(r) + N . It is easily seen that this is a
well-defined homomorphism.

Also note that R/I ∈ T , because I ∈ Dτ (R), and E/N ∈ F , because
N ∈ Pτ (E). Thus h : R/I → E/N is a homomorphism from a τ -torsion to a
τ -torsionfree module and so zero. Hence h(R/I) = (g(R) + N)/N = N/N and so
g(R) � N . Thus we have a homomorphism g : R → N with giI = f and so N is
s-τ -M -injective. �

Corollary 3.2. The following statements are true:
(1) Every τ-pure submodule of a τ-injective module is τ-injective.
(2) Every τ-pure submodule of a s-τ-quasi-injective module is s-τ-quasi-injective.

Proof. These follow from Remarks 2.3 and 2.2. �

Similarly, by replacing the short exact sequence 0 → I → R → R/I → 0 in
the proof of Proposition 3.1 with 0 → D → M → M/D → 0, where D ∈ Dτ (M),
we get:

Proposition 3.3. Every τ-pure submodule of a τ-M -injective module is τ-M -in-
jective.

We recall the following characterization of the injective hull E = E(M) of a
module M (see, e.g., [L, 3.30]).

Theorem 3.1. For modules M � E, the following are equivalent:
(1) E is injective and an essential extension of M .
(2) E is a maximal essential extension of M .
(3) E is a minimal injective extension of M .

We will see later that this result still holds if injectivity is replaced by τ -
injectivity, and essential by τ -essential. The direction (2) ⇒ (3) in the relative
version is stated in [G, p. 84] and proved in [B, p. 104]. To prove the other impli-
cations we first investigate the relationship between τ -injectivity, direct sums and
τ -essential extensions.
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It is worth mentioning here that a module X is M -injective if and only if
f(M) � X for any f ∈ HomR(E(M), E(X)) (see [DHSW, 2.1]). We provide a
torsion-theoretic analogue of this in the next section and use it to obtain a relative
M -injective hull.

But let us first give a torsion-theoretic version of the injective hull which
appears in [G, p. 84]. Note that, by Corollary 3.2, since every injective module is
τ -injective we immediately get that τ -injective hulls as defined below are indeed
τ -injective.

Definition 3.1. A τ -injective hull of a module M is the τ-pure closure of M in an
injective hull E(M) and denoted by Eτ (M), i.e., Eτ (M) = Cl

E(M)
τ (M). (Since the

injective hull E(M) is unique up to isomorphism, Eτ (M) is also likewise unique.)

Since M �e E(M) and, by Proposition 1.1 (4), every module is τ -dense in its
τ -pure closure, we have M �τ -e Eτ (M).

An alternative definition of the τ -injective hull appears in [B, 5.1.1]. There
a τ -injective module E is called a τ -injective hull of a module M if there is a
monomorphism ϕ : M → E with ϕ(M) �τ -e E. In [B, 5.1.2] Bland states that
every module has a τ -injective hull, unique up to isomorphism. He shows that
ClE(M)
τ (M) is indeed a τ -injective hull by an argument similar to that of the proof

of Proposition 3.1.
We next record for easy reference a result of Nishida, [N]. (See also [G, Ex-

ercise 8.11].)

Remark 3.1. The following are equivalent for a module M :
(1) M is τ -injective.
(2) M is a direct summand of its τ -pure closure in any module containing it.
(3) M is a direct summand of its τ -pure closure in E(M), i.e., of Eτ (M).

The following corollary is a variation of the above result and appears in [S, 1.2].

Corollary 3.4. A module M is τ-injective if and only if M is a direct summand of
every module N in which it is τ-dense.

The next two results generalize two well-known characterizations of injective
modules. These results are probably known but we have not found them explicitly
in the literature.

Proposition 3.5. A module M is τ-injective if and only if M has no proper τ-
essential extensions.

Proof. (⇒) Suppose that M �τ -e X for some module X . Then M ∈ Dτ (X) and
so, by Corollary 3.4, X = M⊕Y for some Y � X . But, as M �e X and M∩Y = 0,
we must have Y = 0 and thus M = X . Therefore M has no proper τ -essential
extensions.
(⇐) As noted earlier M �τ -e Eτ (M) and so M = Eτ (M) and thus it is τ -injective.

�
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The next result characterizes when a submodule of a τ -injective module is
τ -injective.

Proposition 3.6. Let M � E, where E is τ-injective. Then M is τ-injective if and
only if M is τ-essentially closed in E.

Proof. (⇒) By Proposition 3.5, if M is τ -injective then it has no proper τ -essential
extensions in E and thus M is τ -essentially closed in E.
(⇐) Let N be any τ -essential extension of M and iN : M → N and iE : M → E
be the inclusion maps. Since M ∈ Dτ (N) and E is τ -injective, iE = fiN for
some f : N → E. Then ker f = 0 since ker fiN = 0 and iN is an essential
monomorphism. Thus f(N) ∼= N . But M � f(N) and, as M �e N and f : N →
f(N) is an isomorphism, we have f(M) �e f(N). Also, since M �τ -d N , we
have f(M) �τ -d f(N). Thus f(M) �τ -e f(N) � E. But f(M) = M and M is
τ -essentially closed in E, so f(M) = f(N). Hence M = N and so M has no proper
τ -essential extensions, and so, by Proposition 3.5, is τ -injective. �

We are now ready to state and prove the torsion-theoretic version of Theorem
3.1, which forms the basis for a very useful characterization of the τ -injective hull
of a module.

Proposition 3.7. For modules M � E the following are equivalent:
(1) E is τ-injective and a τ-essential extension of M .
(2) E is a maximal τ-essential extension of M .
(3) E is a minimal τ-injective extension of M .

Proof. (1) ⇒ (2). Suppose that F is a τ -essential extension of M that contains E.
Then, by Proposition 1.1 (6), we get M �τ -e E �τ -e F . Thus, by Corollary 3.4,
F = E ⊕X for some module X . Since M � E and M �τ -e F we have X = 0 and
so F = E.
(2) ⇒ (3). If E is a maximal τ -essential extension of M , then E is τ -injective
by Proposition 3.5. Let D be a τ -injective module such that M � D � E. As
M �τ -e E we have D �τ -e E and so, by Proposition 3.5, D = E. Thus E is a
minimal τ -injective extension of M .
(3) ⇒ (1). Since M � E, by Proposition 1.1 (7), there is a τ -essentially closed
submodule M∗ of E with M �τ -e M∗. By Proposition 3.6, M∗ is τ -injective and
hence the minimality of E gives M∗ = E and so M �τ -e E. �

Clearly from Definition 3.1 we have the following result.

Proposition 3.8. A module M and its τ-injective hull, E = Eτ (M), satisfy the
(equivalent) properties of Proposition 3.7.

The following is a torsion-theoretic analogue of the result that every injective
module containing a module M contains an injective hull of M .

Proposition 3.9. A τ-injective module E contains a τ-injective hull of each M ≤ E.
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Proof. By Proposition 1.1 (7), E has a τ -essentially closed submodule M∗ with
M �τ -e M∗. By Proposition 3.6, M∗ is τ -injective and so Eτ (M) = M∗ by
Proposition 3.8. �

As already mentioned, given modules X and M , X is M -injective if and only
if f(M) � X for any f ∈ HomR(E(M), E(X)). The next result generalizes this.

Proposition 3.10. Let X and M be modules. Then the following are equivalent:
(1) X is τ-M -injective.
(2) For any f ∈ HomR(M,Eτ (X)), we have f(M) � X.
(3) For any f ∈ HomR(Eτ (M), Eτ (X)), we have f(M) � X.

Proof. (1) ⇒ (2). Let f : M → Eτ (X) and L = f−1(X). We claim that L ∈ Dτ (M)
and so the restriction f |L: L → X extends to a homomorphism g : M → X . To
prove our claim we consider the following isomorphism

M

L
=

M

f−1(X)
∼=

f(M) + X

X
� Eτ (X)

X
∈ T ,

given by m+ f−1(X) �→ f(m) +X for all m ∈ M . To finish the proof it suffices to
show that (f − g)(M) = 0, since then f(M) = g(M) � X . As X �τ -e Eτ (X), we
need only to show that X ∩ (f − g)(M) = 0. Given x ∈ X ∩ (f − g)(M) there is an
m ∈M with x = (f −g)(m) and so f(m) = x+g(m) ∈ X . Thus m ∈ f−1(X) = L
and so f(m) = g(m) and hence x = 0.
(2) ⇒ (3). For any f : Eτ (M) → Eτ (X) we have f(M) = f|M (M) � X (by (2)).
(3) ⇒ (1). Let N ∈ Dτ (M) and f : N → X be a homomorphism. We can consider
f as a homomorphism from N to Eτ (X) which extends to a homomorphism g :
Eτ (M) → Eτ (X) since N �τ -d M �τ -e Eτ (M) and Eτ (X) is τ -injective. By (3),
g(M) � X and so the restriction of g to M is a homomorphism from M to X
which extends f . �

As a corollary we get a torsion-theoretic analogue of a well-known character-
ization of quasi-injectivity (see [MM, 1.15]). This has also been shown directly in
Crivei [C01, 2.1].

Corollary 3.11. A module M is τ-quasi-injective if and only if it is invariant
under all endomorphisms of its τ-injective hull, i.e., f(M) � M for any f ∈
EndR(Eτ (M)).

We use the following definition to prove the existence of τ -M -injective hulls.

Definition 3.2. For modules M and X let ∆M,X = HomR(Eτ (M), Eτ (X)). For any
K � Eτ (M), let ∆M,XK = {

∑n
i=1 fi(ki) | fi ∈ ∆M,X , ki ∈ K for i = 1, . . . , n;

n ∈ N }.

It is clear from the above definition that ∆M,XK is a submodule of Eτ (X).
Recall that, given modules X and M , we say that X is M -generated if there

is an epimorphism f : M (I) → X for some index set I, where M (I) =
⊕

I M .
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Proposition 3.12. The following statements are true for modules X and M :
(1) X is τ-M -injective if and only if ∆M,XM � X.
(2) ∆M,XM is τ-M -injective.
(3) If X is M -generated then X � ∆M,XM and ∆M,XM is the intersection of

all the τ-M -injective submodules of Eτ (X) containing X.

Proof. (1) This is clear from Proposition 3.10 and the definition of ∆M,XM .
(2) To simplify our notation let Q = ∆M,XM . By (1), it suffices to show that
∆M,QM � Q. Note that by definition Q � Eτ (X) and so, by Proposition 3.9,
Eτ (Q) � Eτ (X). Thus ∆M,Q ⊆ ∆M,X and so ∆M,QM � ∆M,XM = Q as re-
quired.
(3) We first show that if X is M -generated, then X � ∆M,XM . Let f : M (I) → X
be an epimorphism, for some index set I, let iX : X → Eτ (X) and iM : M →
Eτ (M) be the inclusion mappings, and let ϕi : M → M (I) be the ith canonical
injection, for any i ∈ I. Then, since M �τ -d Eτ (M), for each i ∈ I there is a
gi : Eτ (M) → Eτ (X) such that giiM = iXfϕi, and thus for any m ∈ M we have
gi(m) = fϕi(m).

Given x ∈ X there is a y = (mi)i∈I ∈M (I) such that x = f(y). We may write
y =

∑t
j=1 ϕij (mij ) where i1, . . . , it ∈ I and ϕij : M → M (I) is the ijth injection.

Then x = f(
∑t

j=1 ϕij (mij )) =
∑t

j=1 fϕij (mij ) =
∑t

j=1 gij (mij ) ∈ ∆M,XM, as
required.

Now let B = {B � Eτ (X) |X � B, ∆M,BM � B }. Note that, by (1),
∆M,BM � B simply means that B is τ -M -injective. To prove our claim it suffices
to show that

⋂
B =

⋂
B∈B B = ∆M,XM . By (2), ∆M,XM is τ -M -injective and

so, as it contains X , it belongs to B and so
⋂
B � ∆M,XM . Take an arbitrary

B ∈ B. To finish it suffices to show that ∆M,XM � B. Note that X � B � Eτ (X)
and, as X �τ -e Eτ (X), we have Eτ (B) = Eτ (X). Thus ∆M,B = ∆M,X and so
∆M,XM = ∆M,BM � B, as required. �

The above result allows us to define the τ -M -injective hull of a module X and
show that this exists and is unique up to isomorphism when X is M -generated.

Definition 3.3. Let X, M and E be modules. Then E is said to be a τ -M -injective
hull of X, and denoted by Eτ-M (X), if there is a monomorphism f : X → E such
that:

(i) f(X) �τ-e E,
(ii) E is a minimal τ-M -injective extension of f(X), i.e., f(X) � E, E is τ-M -

injective, and if Q is τ-M -injective such that f(X) � Q � E then Q = E.

Proposition 3.13. Let M be a module. Then every M -generated module X has a
τ-M -injective hull, namely ∆M,XM , and this is unique up to isomorphism.

Proof. For existence, set Eτ -M (X) = ∆M,XM and let ϕ : X → Eτ -M (X) be
the canonical monomorphism given by Proposition 3.12 (3). Then, by the defini-
tion of ∆M,XM , we have ϕ(X) = X �τ -e Eτ -M (X) �τ -e Eτ (X). Moreover, by
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Proposition 3.12 (3), Eτ -M (X) is the smallest τ -M -injective submodule of Eτ (X)
containing ϕ(X), and so minimal.

For uniqueness, suppose that A is also a τ -M -injective hull of X , and that
f : X → A is the associated monomorphism. We will construct an isomorphism
ψ : Eτ -M (X) → A. The following diagram illustrates the rest of the proof:

0 X Eτ -M(X) Eτ (X)

A

Eτ (A)

f

�

iA

�

ϕ i

ψ

(∃ g) giϕ = iAf

� � �

�

�

Here i and iA are the inclusion maps. We can extend f to a monomorphism
iAf : X → Eτ (A), and ϕ to a monomorphism iϕ : X → Eτ (X). As Eτ (A) is
τ -injective, there is a homomorphism g : Eτ (X) → Eτ (A) such that giϕ = iAf .
We claim that g is an isomorphism. Our goal is to show that g(Eτ -M(X)) = A
and thus taking ψ = g|Eτ-M (X) we get an isomorphism ψ : Eτ -M(X) → A.

First note that g is a monomorphism since giϕ = iAf is a monomorphism
and iϕ is an essential monomorphism. Before we show that g is onto we make and
prove a few more claims.

We simplify our notation by taking EM = g(Eτ -M (X)) and E = g(Eτ (X)).
By the minimality of A as a τ -M -injective τ -essential extension of f(X) it suffices
to show that:

(1) EM is τ -M -injective,
(2) f(X) � EM ,
(3) EM � A or, equivalently, A ∩ EM = EM .

(1) This is obvious since EM = g(Eτ -M (X)) ∼= Eτ -M(X), a τ -M -injective module.

(2) We have f(X) = iAf(X) = giϕ(X) = g(ϕ(X)) � g(Eτ -M(X)) = EM �
g(Eτ (X)) = E � Eτ (A). That is f(X) � EM � E � Eτ (A).

(3) Using the above observation and the fact that f(X) �τ -e A �τ -e Eτ (A) we
get f(X) �τ -e EM �τ -e E �τ -e Eτ (A). Hence Eτ (EM ) = Eτ (E) = Eτ (A). But
E = g(Eτ (X)) ∼= Eτ (X) and so E is τ -injective. Then, by Proposition 3.6, E is
τ -essentially closed in Eτ (A) and so g(Eτ (X)) = Eτ (A). Hence g is onto and so
an isomorphism.
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Similarly f(X) �τ -e A ∩ EM �τ -e Eτ (A) and so Eτ (A ∩ EM ) = Eτ (A) = E.
These observations give ∆M,EM = ∆M,A = ∆M,A∩EM and so ∆M,A∩EMM =
∆M,AM ∩ ∆M,EMM � A ∩ EM . As a result, A ∩ EM and its isomorphic copy
g−1(A ∩ EM ) are τ -M -injective. Now g(ϕ(X)) = giϕ(X) = iAf(X) � A. As
already seen, g(ϕ(X)) � g(Eτ -M(X)) = EM . Thus g(ϕ(X)) � A ∩ EM and so
ϕ(X) � g−1(A ∩ EM ) � g−1(EM ) = g−1g(Eτ -M (X)) = Eτ -M (X). Hence, by the
minimality of Eτ -M (X) as a τ -M -injective submodule of Eτ (X) containing ϕ(X),
we have g−1(A ∩ EM ) = g−1(EM ). Thus A ∩ EM = EM , as required. �

If E is a τ -M -injective hull of X , we will write E = Eτ -M(X). The following
remark gives a useful property of τ -M -injective hulls.

Remark 3.2. Every τ -M -injective τ -essential extension of a module X contains
a τ -M -injective hull of X . That is, if A is τ -M -injective and X �τ -e A then
Eτ -M (X) � A.

Proof. Since X �τ -e A �τ -e Eτ (A) we have Eτ (A) = Eτ (X) and so Eτ -M (X) =
∆M,XM = ∆M,AM � A. �

We now show that the τ -M -injective hull generalizes the concept of a τ -
injective hull.

Remark 3.3. For any R-module M we have Eτ (M) = Eτ -R(M).

Proof. By Propositions 3.13 and 3.12 (3), M �τ -e Eτ -R(M) = ∆R,MR � Eτ (M).
But, by Remark 2.3 (2), Eτ -R(M) is τ -injective since it is τ -R-injective. Thus, by
Proposition 3.8, Eτ (M) = Eτ -R(M), as required. �

The τ -M -injective hull generalizes the concept of an M -injective hull found in
[W, 17.8]. To see this, we first recall a few definitions from [W, p. 118 and p. 141].

For any module M , let σ[M ] denote as usual the Wisbauer category of M , i.e.,
the full subcategory of R-Mod consisting of submodules of M -generated modules.

Definition 3.4. Let M ∈ R-Mod and E,X be modules in σ[M ]. Then E is called
an M -injective hull of X (or an injective hull of X in σ[M ]) if E is A-injective
for every module A ∈ σ[M ] and there is a monomorphism ϕ : X → E such that
ϕ(X) �e E. We denote an M -injective hull of X by EM (X).

The following definition can be found in [W, 13.4, 13.5].

Definition 3.5. Given R-modules U and N , the trace of U in N is defined as

Tr(U,N) =
{∑t

i=1fi(ui) | fi ∈ HomR(U,N), ui ∈ U for i = 1, . . . , t; t ∈ N

}
.

We now state a result from [W, 17.9] on the existence of M -injective hulls.

Proposition 3.14. Let M be an R-module. Then the following are true.
(1) Every module X in σ[M ] has an injective hull EM (X) in σ[M ].
(2) If X ∈ σ[M ] then EM (X) ∼= Tr(M,E(X)) where E(X) is any injective hull

of X in R-Mod.
(3) The injective hull of a module in σ[M ] is unique up to isomorphism.
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Remark 3.4. For any modules M and X we have Tr(M,Eτ (X)) = ∆M,XM =
Eτ -M (X).

Proof. Since Eτ (X) is τ -injective, any f ∈ HomR(M,Eτ (X)) can be extended
to an f̄ ∈ HomR(Eτ (M), Eτ (X)) and so Tr(M,Eτ (X)) � ∆M,XM . Conversely,
for any f ∈ HomR(Eτ (M), Eτ (X), f |M∈ HomR(M,Eτ (X)) and so ∆M,XM �
Tr(M,Eτ (X)). �

Note that when all modules are τ -torsion, we have Eτ (X) = E(X) and so, by
the two preceding results, EM (X) ∼= Tr(M,E(X)) = Tr(M,Eτ (X)) = ∆M,XM =
Eτ -M (X).

The following definition is motivated by [B, 5.1.7].

Definition 3.6. For any module M let ∆M = EndR(Eτ (M)) = ∆M,M . For any
X � Eτ (M) let ∆MX = {

∑n
i=1 fi(xi) | fi ∈ ∆M , xi ∈ X for i = 1, . . . , n; n ∈ N }.

Clearly if X � Eτ (M) then X � ∆MX � Eτ (M) and it is routine to show
that

∆M (∆MX) = ∆MX. ( )

The following proposition appears in [B, 5.1.7]. We note that there is a flaw in
the proof, namely that M/(M∩f−1(M)) ∼= (M+f−1(M))/M . This is remedied by
using the isomorphism M/(M ∩ f−1(M)) ∼= (M + f(M))/M instead. We provide
a simpler alternative below, using Proposition 3.12.

Proposition 3.15. The following statements are true for any module M :

(1) M is τ-quasi-injective if and only if ∆MM = M .
(2) ∆MM is τ-quasi-injective.
(3) ∆MM is the intersection of all the τ-quasi-injective submodules of Eτ (M)

containing M .

Proof. (1) We always have M � ∆MM . By Proposition 3.12, M is τ -quasi-injective
if and only if ∆M,MM � M if and only if ∆MM = M .

(2) Let Q = ∆MM . Then by (1) it suffices to show that ∆QQ = Q. Note that,
since M � Q � Eτ (M) and M �τ -e Eτ (M), it follows from Proposition 1.1 (6)
that M �τ -e Q �τ -e Eτ (M). Hence, by Proposition 3.8, Eτ (Q) = Eτ (M) and so
∆Q = ∆M . Therefore, using ( ), we get ∆QQ = ∆MQ = ∆M (∆MM) = ∆MM =
Q, as required.

(3) Let B = {B � Eτ (M) |M � B, ∆BB = B }. It suffices to show that
⋂
B =⋂

B∈B B = ∆MM . By (2), ∆MM is τ -quasi-injective and, as it contains M , belongs
to B. Thus

⋂
B � ∆MM . Take an arbitrary B ∈ B. To finish it suffices to show

that ∆MM � B. Note that M � B � Eτ (M), and as M �τ -e Eτ (M), it follows
that Eτ (B) = Eτ (M). Thus ∆B = ∆M and so ∆MM � ∆MB = ∆BB = B, as
required. �
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Since Eτ -M (M) = ∆M,MM = ∆MM , we have the following useful corollary.

Corollary 3.16. Eτ-M (M) is τ-quasi-injective.

Definition 3.7. Let M and Q be modules. Then Q is said to be a τ -quasi-injective
hull of M if there is a monomorphism f : M → Q such that:

(i) f(M) �τ-e Q,
(ii) Q is a minimal τ-quasi-injective extension of f(M), i.e., f(M) � Q, Q is

τ-quasi-injective, and if E is τ-quasi-injective such that f(M) � E � Q then
E = Q.

We denote a τ-quasi-injective hull of M by Qτ (M).

We use the next result to show that Qτ (M) exists and is unique up to iso-
morphism.

Lemma 3.1. If Q is a τ-quasi-injective τ-essential extension of M then:
(1) Q is τ-M -injective,
(2) Eτ-M (M)�Q.

Proof. (1) We have M �τ -e Q �τ -e Eτ (Q) and so Eτ (Q) = Eτ (M). Hence
∆M,QM � ∆M,QQ = ∆Q,QQ = ∆QQ = Q. Therefore, by Proposition 3.12, Q
is τ -M -injective.
(2) This follows from Remark 3.2. �

We now give a simple proof of [B, 5.1.8] on the existence and uniqueness of
Qτ (M).

Proposition 3.17. Every module M has a τ-quasi-injective hull which is unique up
to isomorphism. In fact Qτ (M) = Eτ-M (M).

Proof. For existence, note that Eτ -M (M) = ∆M,MM = ∆MM and so, by Propo-
sition 3.15 (3), Eτ -M(M) is a τ -quasi-injective hull for M .

Next suppose that Q is also a τ -quasi-injective hull of M . Then Eτ -M(M) � Q
by Lemma 3.1. But, by Corollary 3.16, Eτ -M(M) is τ -quasi-injective and so the
minimality of Q gives Q = Eτ -M(M). As Eτ -M (M) is unique up to isomorphism
so is Qτ (M). �

We now provide the short proof promised earlier for Lemma 2.2. Before we
proceed, note that, by Proposition 3.12 (1) and Remark 3.4, X is τ -M -injective if
and only if Tr(M,Eτ (X)) � X .

Lemma 3.2 (Generalized Azumaya’s Lemma). If X and M =
⊕

I Mβ are R-
modules, then X is τ-M -injective if and only if X is τ-Mα-injective for each
α ∈ I.

Proof. (⇒) Let α ∈ I and f : Mα → Eτ (X). If ϕα : Mα → M and πα : M → Mα

denote the canonical injection and projection respectively, then we have f(Mα) =
fπαϕα(Mα) = fπα(ϕα(Mα)) � fπα(M) � X , since fπα : M → Eτ (X) and X is
τ -M -injective. Hence Tr(Mα, Eτ (X)) � X and so X is τ -Mα-injective.
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(⇐) Let f : M → Eτ (X) and y ∈ M . Then y =
∑t
j=1 mαj where mαj ∈ Mαj ,

αj ∈ I and t ∈ N. Thus, with ϕα and πα as above, f(y) =
∑t

j=1 f(mαj ) =
∑t

j=1 fϕαjπαj (y) ∈ X , since fϕαj : Mαj → Eτ (X) and X is τ -Mα-injective for
each α. Thus Tr(M,Eτ (X)) � X and so X is τ -M -injective. �

4. Relative Σ-τ -injective modules

In this section we seek conditions for a direct sum of copies of a module E to be
(s-)τ -M -injective. As a result we derive torsion-theoretic analogues of results by
Faith, Albu and Năstăsescu, and Cailleau.

Definition 4.1. If P is a property of a module M then M is said to be Σ-P if M (A)

is (has) P for any index set A, i.e., the direct sum of |A| copies of M is (has) P .
On the other hand, if M (A) is P for any countable index set A, we say that M is
countably Σ-P .

To simplify our notation in this section, given a subset X of R, we let ⊥X
denote the left annihilator of X in R, and X⊥ the right annihilator of X in R.
In other words ⊥X = { r ∈ R | rx = 0, ∀x ∈ X }, and X⊥ = { r ∈ R |xr = 0,
∀x ∈ X }.

We will also use the following notation to distinguish between left and right
annihilators as well as the ring or module from which the elements of the annihi-
lator come.

Definition 4.2. Let X be a nonempty subset of a ring R and Y be a nonempty
subset of a left R-module M . We let

lR(Y ) = ⊥RY = { r ∈ R | rY = 0 }, rM (X) = X⊥M = {m ∈ M |Xm = 0 }.
When the context is clear we will simply write ⊥Y and X⊥. Recall that:

Ω(M) = { I � R | (∃m ∈M) (0 : m) � I },
Ω̄(M) = { I � R | (∃ finite Y ⊆ M) (0 : Y ) � I }.

If E is also a left R-module then we follow [AN, p. 118] and use the notation:

AM (E) = { lR(D) | ∅ �= D ⊆ E, (∃m ∈ M) lR(m) � lR(D) }
= { lR(D) ∈ Ω(M) | ∅ �= D ⊆ E },

ĀM (E) = { lR(D) | ∅ �= D ⊆ E, (∃ finite Y ⊆ M) lR(Y ) � lR(D) }
= { lR(D) ∈ Ω̄(M) | ∅ �= D ⊆ E }.

In particular, if M = RR then for any ∅ �= D ⊆ E we have lR(1) = {0} ⊆ lR(D)
and so

AR(E) = { lR(D) | ∅ �= D ⊆ E }.

The next lemma allows us to construct a properly descending chain from a
properly ascending chain of left annihilators.
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Lemma 4.1. If I and J are left ideals of R which are left annihilators with I ⊂ J
then J⊥ ⊂ I⊥.

Proof. Obviously J⊥ ⊆ I⊥. If J⊥ = I⊥ then we would have ⊥(J⊥) = ⊥(I⊥) and
so, by the double annihilator condition (see [Fa, p. 65]), J = I which contradicts
our assumption. Therefore J⊥ �= I⊥ and thus J⊥ ⊂ I⊥. �

Before we state the next lemma we need the following definition.

Definition 4.3. Let {Mα |α ∈ A } be a family of modules and M =
⊕

α∈AMα. For
any x = (xα)α∈A ∈ M we define the support of x to be the set {α ∈ A |xα �= 0 },
and denote it by supp(x). For any X ⊆ M we define the support of X to be the
set
⋃
x∈X supp(x) = {α ∈ A | (∃x ∈ X) xα �= 0 }, and denote it by supp(X).

The following lemma generalizes results found in [G, 8.13] and [AN, 10.2].

Lemma 4.2. Let {Eα |α ∈ A } be an infinite family of s-τ-M -injective modules. If⊕
α∈C Eα is s-τ-M -injective for any countable subset C of A, then

⊕
α∈AEα is

s-τ-M -injective.

Proof. Let πβ :
⊕

α∈AEα → Eβ be the natural projection. Note that, given I ∈
Dτ (R) and a homomorphism f : I →

⊕
α∈AEα with Ker f ∈ Ω(M) for which

supp(Im(f)) is finite, then f is a map into
⊕

α∈F Eα, where F is a finite subset of
A. Also, by Proposition 2.4,

⊕
α∈F Eα is s-τ -M -injective and so, by Proposition

2.3, f extends to a map from R to
⊕

α∈F Eα. Hence, if we suppose to the contrary
that

⊕
α∈AEα is not s-τ -M -injective, then there is a τ -dense left ideal I of R and

a map f : I →
⊕

α∈AEα for which Ker f ∈ Ω(M), such that supp(Im(f)) is not
finite. Then there is a countably infinite subset C of A such that for any α ∈ C,
πα(Im(f)) �= 0, i.e., C ⊆ supp(Im(f)). Define πC :

⊕
α∈AEα →

⊕
α∈C Eα as

follows: for x ∈
⊕

α∈AEα, let πC(x) = xC where

πα(xC) = πα(πC(x)) =

{
πα(x), if α ∈ C

0, otherwise.

We claim that C = supp(Im(πCf)). First let α ∈ supp(Im(πCf)). Then there
exists an r ∈ I such that πα(πCf(r)) �= 0. But this implies that α ∈ C, by our
definition of πC . Therefore we have supp(Im(πCf)) ⊆ C.

For the reverse containment, let α ∈ C. Then there is an r ∈ I such
that πα(f(r)) �= 0. Hence we have πα(πCf(r)) = πα(f(r)) �= 0. Therefore α ∈
supp(Im(πCf)), as required.

Consider the map πCf : I →
⊕

α∈C Eα. By assumption
⊕

α∈C Eα is s-τ -
M -injective. Furthermore, since Ker f ∈ Ω(M), there is an m ∈ M such that
(0 : m) � Ker f � KerπCf and so KerπCf ∈ Ω(M). Thus, by Proposition 2.3
(3), there exists a y ∈

⊕
α∈C Eα such that πCf(r) = ry for all r ∈ I and thus

C = supp(Im(πCf)) ⊆ supp(y). This is a contradiction since supp(y) is finite,
whereas C is countably infinite. �
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Remark 2.3(2) now gives the following, found in [G, 8.13], as a corollary.

Corollary 4.1. Let {Eα |α ∈ A } be an infinite family of τ-injective modules. If⊕
α∈C Eα is τ-injective for any countable subset C of A, then

⊕
α∈AEα is τ-

injective.

With a little more work one gets the following.

Corollary 4.2. Let {Eα |α ∈ A } be an infinite family of s-τ-quasi-injective mod-
ules. If

⊕
α∈C Eα is s-τ-quasi-injective for any countable subset C of A, then⊕

α∈AEα is s-τ-quasi-injective.

Proof. Since
⊕

α∈AEα is s-τ -quasi-injective if and only if
⊕

α∈AEα is s-τ -
⊕

α∈A
Eα-injective, by Lemma 4.2 it suffices to show that

⊕
α∈C Eα is s-τ -

⊕
α∈AEα-

injective for any countable subset C of A. Using the Generalized Fuchs Criterion,
we need only show that, given I ∈ Dτ (R), every homomorphism f : I →

⊕
α∈C Eα

with Ker f ∈ Ω(
⊕

α∈AEα) extends to a homomorphism g : R →
⊕

α∈C Eα. Given
any m ∈

⊕
α∈AEα, there is a finite subset F of A such that m ∈

⊕
α∈F Eα.

Therefore, if (0 : m) � Ker f , we have Ker f ∈ Ω(
⊕

α∈F Eα). Thus it remains to
show that

⊕
α∈C Eα is s-τ -

⊕
α∈F Eα-injective.

We prove the slightly more general statement that, for any countable subsets
C1 and C2 of A,

⊕
α∈C1

Eα is s-τ -
⊕

α∈C2
Eα-injective. Since C1 ∪C2 is countable,

by assumption
⊕

α∈C1∪C2
Eα is s-τ -

⊕
α∈C1∪C2

Eα-injective. Hence, by Proposition
2.4,

⊕
α∈C1

Eα is s-τ -
⊕

α∈C1∪C2
Eα-injective and so, by Remark 2.2,

⊕
α∈C1

Eα
is s-τ -

⊕
α∈C2

Eα-injective. �
Remark 4.1. Let M be a left R module. Then we have:
(1) M is Σ-τ -injective if and only if M is Σ-(s)-τ -RR-injective.
(2) If M is Σ-s-τ -quasi-injective then M is Σ-s-τ -M -injective.
(3) M is Σ-τ -quasi-injective if and only if M is Σ-τ -M -injective.

Proof. (1) By Remark 2.3, M is Σ-τ -injective if and only if M (I) is (s)-τ -RR-
injective for any index set I if and only if M is Σ-(s)-τ -RR-injective.
(2) If M is Σ-s-τ -quasi-injective then, by Remark 2.3, M (I) is s-τ -M (I)-injective
for any index set I. Thus, by Remark 2.2, M (I) is s-τ -M -injective for any I and
hence M is Σ-s-τ -M -injective.
(3) By Lemma 2.2, M is Σ-τ -quasi-injective if and only if M (I) is τ -M (I)-injective
for any I if and only if M (I) is τ -M -injective for any I if and only if M is Σ-τ -M -
injective. �

Taking Eα = E for every α ∈ A in Lemma 4.2 and Corollary 4.2 give the
following corollaries.

Corollary 4.3. If a module E is countably Σ-s-τ-M -injective then it is Σ-s-τ-M -
injective.

Corollary 4.4. Every countably Σ-s-τ-quasi-injective module is Σ-s-τ-quasi-in-
jective.
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In order to state the next two theorems we need the following definition.

Definition 4.4. Let M be an R-module. A left ideal I of R is called an M -annihilator
if there is an N ⊆ M such that I = (0 : N), i.e., I is the annihilator of a subset
of M .

The motivation for our main result in this section, Theorem 4.2, comes from
a theorem by Albu and Năstăsescu, [AN, 10.4], which we state below. (Taking
M = R gives a well-known theorem of Faith, [AF, 25.1].)

Theorem 4.1. The following statements are equivalent for an M -injective mod-
ule E:
(1) E is Σ-M -injective.
(2) The set ĀM (E) of left ideals of R satisfies the ACC.
(3) AM (E) satisfies the ACC.

We now state the main result of this section which characterizes Σ-s-τ -M -
injective modules, and generalizes the above theorem.

Theorem 4.2. Let E be an s-τ-M -injective module. Then the following statements
are equivalent.
(1) E is countably Σ-s-τ-M -injective, i.e., E(N) is s-τ-M -injective.
(2) If I1 ⊆ I2 ⊆ · · · is an ascending chain in AM (E) such that I∞ =

⋃∞
i=1 Ii is

τ-dense in R then there is a positive integer n such that In = In+k for all
k ∈ N.

(3) The following two conditions hold:
(a) AM (E) ∩ Dτ (R) satisfies the ACC.
(b) If I1 ⊆ I2 ⊆ · · · is an ascending chain in AM (E) such that I∞ =

⋃∞
i=1 Ii

is τ-dense in R, then In is τ-dense in R for some n ∈ N.
(4) E is Σ-s-τ-M -injective, i.e., E(A) is s-τ-M -injective for any set A.

Proof. (1) ⇒ (2). Assume to the contrary that (2) does not hold. Then there exist
left ideals I1, I2, . . . in AM (E) and an m ∈M such that

(0 : m) ⊆ I1 ⊂ I2 ⊂ · · ·
and I∞ =

⋃∞
i=1 Ii is τ -dense in R. By Lemma 4.1, this yields the strictly descending

chain (0 : m)⊥E ⊇ I1
⊥E ⊃ I2

⊥E ⊃ · · · . For every n ∈ N choose an xn ∈ In
⊥E \

In+1
⊥E . Moreover, for a fixed a ∈ I∞, let n be the smallest positive integer such

that a ∈ In. Then, for every k � 0, a ∈ In ⊂ In+k and xn+k ∈ In+k
⊥E . Hence

axn+k = 0. This ensures that the map f : I∞ → E(N) sending a to (ax1, ax2, . . .)
is a well-defined homomorphism.

Moreover, since {x1, x2, . . . } ⊆ (0 : m)⊥E , for any r ∈ (0 : m) we have
f(r) = (rx1, rx2, . . . ) = 0. Hence (0 : m) � Ker f . But, by assumption, E(N) is
s-τ -M -injective and as I∞ is τ -dense, we can infer, using the Generalized Fuchs
Criterion, that there exists an element y = (y1, . . . , yt, 0, . . .) ∈ E(N) such that
f(a) = ay = (ay1, . . . , ayt, 0, . . .) for all a ∈ I∞. We then have (ax1, ax2, . . .) =
(ay1, . . . , ayt, 0, . . .). This implies that axt+1 = 0 for all a ∈ I∞ and thus xt+1 ∈
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I∞
⊥E . But as It+2 ⊂ I∞ we have I∞

⊥E ⊆ It+2
⊥E and so xt+1 ∈ It+2

⊥E . This
contradicts the fact that xt+1 ∈ It+1

⊥E \ It+2
⊥E .

(2) ⇒ (3). In (3a), for any ascending chain of τ -dense left ideals I1 ⊆ I2 ⊆ · · · , I∞
is also τ -dense since it contains each Ik and so by (2) the chain becomes stationary.
In (3b), condition (2) gives In = I∞ for some n � 1, and so In is τ -dense.

(3) ⇒ (1). Assume (3). Let I be a τ -dense left ideal of R and f : I → E(N) be
a homomorphism such that (0 : m) � Ker f for some m ∈ M . Since E is s-τ -
M -injective, by Proposition 2.4 the direct product EN is likewise. Since E(N) is a
submodule of EN, we can consider f as a homomorphism from I to EN and so, by
the Generalized Fuchs Criterion, there is an element x = (x1, x2, . . .) ∈ EN such
that f(a) = ax for all a ∈ I.

Let X = {x1, x2, . . .} and Xk = X \ {x1, x2, . . . , xk} = {xk+1, xk+2, . . .} for
any k � 1. Then the descending chain X ⊇ X1 ⊇ X2 ⊇ · · · yields an ascending
chain ⊥X ⊆ ⊥X1 ⊆ ⊥X2 ⊆ · · · of E-annihilators in R.

To simplify our notation, let Jk+1 = ⊥Xk for all k � 0, where X0 = X , and
J∞ =

⋃∞
i=1 Ji. Note that for any r ∈ (0 : m) � Ker f we have 0 = f(r) = rx =

(rx1, rx2, . . . ) and so r ∈ ⊥R{x1, x2, . . . } = ⊥X = J1. Hence we have Ji ∈ AM (E)
for any i ∈ N.

Since f(I) � E(N), for any a ∈ I, either axk = 0 for all k ∈ N, or there
is a largest integer n ∈ N such that axn �= 0. In either case there is an n ∈ N

such that axn+k = 0 for all k � 1. Therefore a ∈ ⊥Xn = Jn+1 ⊆ J∞ and so
I ⊆ J∞. But I is τ -dense in R so J∞ is likewise. Then, by (3b), there is an � ≥ 1
such that J� is τ -dense in R. This yields an ascending chain J� ⊆ J�+1 ⊆ · · · in
AM (E)∩Dτ (R) which becomes stationary by (3a), say at Jt = ⊥Xt−1. This implies
that I ⊆ J∞ = Jt = ⊥Xt−1. Consequently, for any a ∈ I we have axt+k = 0 for
all k � 0 and so f(a) = ay where y = (x1, x2, . . . , xt, 0, . . .). Since y ∈ E(N) then,
by the Generalized Fuchs Criterion, E(N) is τ -injective.

(1) ⇒ (4) follows from Corollary 4.3 while (4) ⇒ (1) is obvious. �

Note that, by Remark 4.1, the module E is Σ-τ -injective if and only if it is Σ-
s-τ -RR-injective and AR(E) is the set of all E-annihilators in R. Thus, we can use
Theorem 4.2 with M = RR to get the following characterization of Σ-τ -injectivity.

Theorem 4.3. The following statements are equivalent for a τ-injective module E.

(1) E is countably Σ-τ-injective, i.e., E(N) is τ-injective.
(2) If I1 ⊆ I2 ⊆ · · · is an ascending chain of E-annihilators in R such that

I∞ =
⋃∞
i=1 Ii is τ-dense in R, there exists an n ∈ N such that In = In+k for

all k ∈ N.
(3) The τ-dense E-annihilator left ideals in R satisfy the ACC and, if I1 ⊆ I2 ⊆

· · · is an ascending chain of E-annihilators in R such that I∞ =
⋃∞
i=1 Ii is

τ-dense in R, then In is τ-dense in R for some n ∈ N.
(4) E is Σ-τ-injective, i.e., E(A) is τ-injective for any set A.
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We also have the following corollaries which generalize [AN, 10.6, 10.7].

Corollary 4.5. Let {Ei | 1 � i � n } be a family of s-τ-M -injective modules. If Ei
is Σ-s-τ-M -injective for each i, then

⊕n
i=1 Ei is Σ-s-τ-M -injective.

Proof. Note that (
⊕n

i=1 Ei)
(N) =

⊕n
i=1 E

(N)
i . Thus, by Proposition 2.4 (2),⊕n

i=1 E
(N)
i is s-τ -M -injective and so, by Theorem 4.2,

⊕n
i=1 Ei is Σ-s-τ -M -in-

jective, as required. �

Corollary 4.6. If E1, . . . , En are Σ-τ-injective modules, then
⊕n

i=1 Ei is Σ-τ-
injective.

Proof. By Remark 4.1 it suffices to take RM = RR in Corollary 4.5. �

The following theorem generalizes [AN, 10.10]. The proof we give here re-
quires only minor modifications to that in [AN], which in turn is based on that in
[Cai].

Theorem 4.4. Let M be a module, {Eλ |λ ∈ Λ } be a family of modules and
E =

⊕
λ∈Λ Eλ. Suppose that E is s-τ-M -injective. Then E is Σ-s-τ-M -injective

if and only if Eλ is Σ-s-τ-M -injective for all λ ∈ Λ.

Proof. Clearly for any λ ∈ Λ, AM (Eλ) ⊆ AM (E). Hence, by Theorem 4.2, if E is
Σ-s-τ -M -injective then Eλ is Σ-s-τ -M -injective for every λ ∈ Λ.

The following diagram illustrates the proof of the converse.

0 � I R

E(N)

E(nk,pk)

⊕

k∈N

E(nk,pk)

f

�

π(nk,pk)

�

π
�

i
�

(∃h) hi = πf

�

�
�

�
��

π(nk,pk)|⊕k∈N
E(nk,pk)

Corollary 4.5 takes care of the case when Λ is finite. Now suppose that Λ is count-
ably infinite, i.e., E =

⊕
n∈N

En. Then, setting E(n,p) = En for any (n, p) ∈
N × N, we have E(N) =

⊕
(n,p)∈N×N

E(n,p). Let I be a τ -dense left ideal of R

and f : I → E(N) be a homomorphism such that (0 : m) � Ker f for some
m ∈ M . Furthermore, for any (n, p) ∈ N × N, let π(n,p) : E(N) → E(n,p) de-
note the canonical projection and A(n,p) be the image of I under π(n,p)f . Clearly
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Kerπ(n,p) =
⊕

(m,q) �=(n,p) E(m,q). Suppose that the following statement holds:

(∀n ∈ N), (∃(n′, p) ∈ N× N) with n′ > n and A(n′,p) �= 0. ( )

Then we can construct a sequence (nk, pk) of elements of N×N such that for each
k ∈ N we have nk+1 > nk and A(nk,pk) �= 0. Since

⊕
k∈N

E(nk,pk) =
⊕

k∈N
Enk

is
a direct summand of E, it is s-τ -M -injective.

Now consider the canonical projection π : E(N) →
⊕

k∈N
E(nk,pk). Then

(0 : m) � Ker f � Kerπf and so, by Proposition 2.3, there is an x ∈
⊕

k∈N
E(nk,pk)

such that πf(a) = ax for all a ∈ I. Therefore there is a t ∈ N such that
Imπf �

⊕t
k=1 E(nk,pk). Thus, for any k > t, we have A(nk,pk) = Imπ(nk,pk)f =

Imπ(nk,pk)|⊕k∈N
E(nk,pk)

πf = 0. Consequently, statement ( ) fails and so there is
an n ∈ N such that A(n′,p) = 0 whenever (n′, p) ∈ N × N with n′ > n. Thus
Im f ⊆ (

⊕
p∈N

E(1,p))⊕ · · · ⊕ (
⊕

p∈N
E(n,p)) = E

(N)
1 ⊕ · · · ⊕E

(N)
n which, by Propo-

sition 2.4, is s-τ -M -injective and so f extends to R, i.e., E(N) is s-τ -M -injective.
Now let Λ be an arbitrary set. Then E(N) =

⊕
(λ,p)∈Λ×N

E(λ,p), where E(λ,p) =
Eλ for all (λ, p) ∈ Λ × N. Suppose to the contrary that E(N) is not s-τ -M -
injective. Then, by Lemma 4.2, there is a countable subfamily C of {E(λ,p) | (λ, p) ∈
Λ × N } such that

⊕
C∈C C is not s-τ -M -injective. Set ∆ = {λ ∈ Λ | ∃ p ∈

N such that E(λ,p) ∈ C }. Since ∆ is countable, by our proof above D =
⊕

δ∈∆ Eδ is
Σ-s-τ -M -injective. But

⊕
C∈C C is a direct summand of D(N) =

⊕
(δ,p)∈∆×N

E(δ,p)

and so s-τ -M -injective, a contradiction. �

Note that there appears to be a slight error in the last three lines of the proof
in [AN, 10.10]. The argument in the last paragraph of our proof above rectifies
this. We end with a corollary that generalizes [AN, 10.11].

Corollary 4.7. Let M be a module, {Eλ |λ ∈ Λ } be a family of modules and
E =

⊕
λ∈Λ Eλ. Suppose that E is τ-injective. Then E is Σ-τ-injective if and only

if Eλ is Σ-τ-injective for all λ ∈ Λ.

Proof. Take M = RR in Theorem 4.4. �
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A Note on Polynomial Rings over Nil Rings

M.A. Chebotar, W.-F. Ke, P.-H. Lee and E.R. Puczy�lowski

To Robert Wisbauer

Abstract. Let R be a nil ring with pR = 0 for some prime number p. We show
that the polynomial ring R[x, y] in two commuting indeterminates x, y over R
cannot be homomorphically mapped onto a ring with identity. This extends,
in finite characteristic case, a result obtained by Smoktunowicz [8] and gives
a new approximation, in that case, of a positive solution of Köthe’s problem.

Mathematics Subject Classification (2000). 16N40, 16N80.

Keywords. Nil ring, polynomial ring, Brown-McCoy radical, Köthe’s problem.

It is shown in [6] that the polynomial ring R[x] in the indeterminate x over a nil
ring R cannot be homomorphically mapped onto a ring with identity or, shortly,
R[x] is Brown-McCoy radical. A natural question is whether this is also the case
for the polynomial ring R[x, y] in two commuting indeterminates x, y over a nil
ring R. The problem was posed in the paper [4] and then studied in many papers
(e.g., [1], [2] [5], [7]), but still remains open. Smoktunowicz [8] showed that if R[x]
is Jacobson radical for a ring R, then R[x, y] is Brown-McCoy radical. It is well
known that if R[x] is Jacobson radical, then R is nil and that the converse implica-
tion is equivalent to Köthe’s problem [3]. Hence Smoktunowicz’s result shows that
if there should exist an example of a nil ring R such that R[x, y] can be homomor-
phically mapped onto a ring with identity, then R would give a counterexample
to Köthe’s problem. Consequently the result proved in this paper can be viewed
as a step towards a positive solution of Köthe’s problem at least in case of finite
characteristic p. To our best knowledge there are no results in the literature con-
cerning Köthe’s problem in which the characteristic plays a substantial role. Thus
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maybe the result of this paper indicates that the Köthe’s problem in the finite
characteristic case is “easier” than that in the general case.

The following result was proved in [6, Theorem 1].

Theorem 1. The polynomial ring R[x] over a ring R is Brown-McCoy radical if,
and only if, R cannot be homomorphically mapped onto a ring containing non-
nilpotent central elements.

From this result it follows that to prove that R[x, y] is Brown-McCoy radical
for a ring R, it suffices to show that R[x] cannot be homomorphically mapped onto
a ring containing non-nilpotent central elements. We will show that the latter holds
if R is a nil ring with pR = 0 for some prime p. The heart of its proof lies on some
observation, which we illustrate in the case of p = 2.

Suppose that ϕ : R[x] → P is a homomorphism onto a ring P containing non-
nilpotent central elements. Let u = a0+a1x+a2x

2+· · ·+anx
n be such that ϕ(u) is

a non-nilpotent central element of P . Write u = u0 +u1 where u0 = a0 +a2x
2 + · · ·

and u1 = a1x + a3x
3 + · · · . Then ϕ(u0) + ϕ(u1) = ϕ(u) is central in P , and so

ϕ(u0)ϕ(u1) = ϕ(u1)ϕ(u0). Thus ϕ(u)2 = (ϕ(u0) + ϕ(u1))2 = ϕ(u0)2 + ϕ(u1)2 =
ϕ(u2

0) + ϕ(u2
1) = ϕ(u2

0 + u2
1). Note that u′ = u2

0 + u2
1 is a polynomial of the form

(setting ak = 0 for k > n):

u′ = a2
0 + (a0a2 + a2

1 + a2a0)x2 + · · ·+
( 2k∑

i=0

aia2k−i
)
x2k + · · · + a2

nx
2n.

Denote x1 = x2 and a′k =
∑2k

i=0 aia2k−i. We have

u′ = a′0 + a′1x1 + · · ·+ a′kx
k
1 + · · ·+ a′nx

n
1 ,

where we shall keep in mind that a′n = a2
n.

Now, we write again u′ = u′
0 + u′

1 where u′
1 = a′0 + a′2x

2
1 + . . . and u′

2 =
a′1x1 + a′3x

3
1 + . . . . Since ϕ(u′

0) + ϕ(u′
1) = ϕ(u′) = ϕ(u)2 is also central in P , we

have ϕ(u′
0)ϕ(u′

1) = ϕ(u′
1)ϕ(u′

0) and so ϕ(u′)2 = ϕ(u′
0
2 +u′

1
2). Then u′′ = u′

0
2 +u′

1
2

is a polynomial of the form (setting a′k = 0 for k > n):

u′′ = a′0
2 + (a′0a

′
2 + a′1

2 + a′2a
′
0)x2

1 + · · ·+
( 2k∑

i=0

a′ia
′
2k−i

)
x2k

1 + · · ·+ a′n
2
x2n

1 .

Denote x2 = x2
1 = x22

and a′′k =
∑2k
i=0 a

′
ia

′
2k−i. We have

u′′ = a′′0 + a′′1x2 + · · ·+ a′′kx
k
2 + · · · + a′′nx

n
2 ,

where we shall keep in mind that a′′n = a′n
2 = a22

n .
Continuing in this manner l times, we get that ϕ(u(l)) = ϕ(u)2

l

is a nonzero
central element of P , where u(l) is an element of the form

u(l) = a
(l)
0 + a

(l)
1 xl + · · ·+ a

(l)
k xkl + · · · + a(l)

n xnl ,

with xl = x2l

and a
(l)
n = a2l

n . When l is large enough, a(l)
n = 0 since R is nil. We

can continue to reach a contradiction that ϕ(0) is a nonzero central element in P .
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Now we consider the case that p is an arbitrary prime. The general result is a
consequence of the following lemma, which is of independent interest. We denote
by Zp the Galois field of p elements. Clearly a ring R is a Zp-algebra if and only
if pR = 0.

Lemma 2. Let A be a Zp-algebra and b0, b1, . . . , bn ∈ A. If b = b0 + b1 + · · · + bn
is a central element of A, then bp is the sum of elements of the form bi1bi2 . . . bip
with i1 + i2 + · · ·+ ip ≡ 0 (mod p).

Proof. For every i = 1, . . . , p − 1, let ai be the sum of all bj such that j ≡ i
(mod p). It is clear that b = a0 + a1 + · · ·+ ap−1 and it suffices to show that bp is
the sum of elements of the form ai1ai2 · · · aip with i1 + i2 + · · ·+ ip ≡ 0 (mod p).

Consider A as a Zp-subalgebra of the group algebra A#[G], where A# is
the Zp-algebra with identity adjoined to A, and G the cyclic group of order p
generated by the element g. Let u = a0 + a1g + · · · + ap−1g

p−1; then up = c0 +
c1g + · · ·+ cp−1g

p−1 where each cj is the sum of elements of the form ai1ai2 · · ·aip
with i1 + i2 + · · ·+ ip ≡ j (mod p). Let v = b− u; then v = w(1 − g) where

w = a1 + a2(1 + g) + · · ·+ ap−1(1 + g + · · ·+ gp−2).

Thus, vp = wp(1− g)p = wp(1− gp) = 0 since 1− g is a central element of A#[G].
As u = b− v and b is a central element of A#[G], we have

c0 + c1g + · · ·+ cp−1g
p−1 = up = bp − vp = bp ∈ A.

Hence, ci = 0 for i = 1, · · · , p − 1 and so bp = up = c0 is the sum of elements of
the form ai1ai2 · · · aip with i1 + i2 + · · · + ip ≡ 0 (mod p). �

Now we prove the key result of this note.

Theorem 3. If R is a nil Zp-algebra, then R[x] cannot be homomorphically mapped
onto a ring with non-nilpotent central elements.

Proof. Assume the contrary. Let n be the smallest integer such that some polyno-
mial u = a0 + a1x+ · · ·+ anx

n ∈ R[x] of degree n can be mapped via a homomor-
phism onto a non-nilpotent central element of some ring. We may assume further
that the nilpotency index k of an is the smallest among such polynomials.

Let ϕ : R[x] → P be such a homomorphism. Set b = ϕ(u) and bi = ϕ(aixi)
for each i = 0, 1, . . . , n. Then b = b0 + b1 + · · · + bn is a central element of P , so
applying the above lemma, we get that bp = ϕ(v), where

v =
∑

i1+i2+···+ip≡0 (mod p)
ai1ai2 · · · aipxi1+i2+···+ip .

Write v = c0 + c1x
p + c2x

2p + · · · + cnx
np for some c0, c1, . . . , cn ∈ R and set

w = c0 + c1x + c2x
2 + · · · + cnx

n. Note that cn = apn. Let ψ : R[x] → R[x] be
the homomorphism defined by ψ(r0 + r1x + · · · rkxk) = r0 + r1x

p + · · · + rkx
pk.

Clearly ϕ ◦ ψ : R[x] → P is a homomorphism and w is a polynomial in R[x] of
degree n such that (ϕ ◦ ψ)(w) = ϕ(ψ(w)) = ϕ(v) = bp is a non-nilpotent central
element of P . However, the leading coefficient cn = apn of w has nilpotency index
≤ [k/p] + 1 < k. This contradiction completes the proof. �
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Combining Theorems 1 and 3, we are able to conclude the main theorem.

Theorem 4. If R is a nil ring with pR = 0 for some prime p, then R[x, y] cannot
be homomorphically mapped onto a ring with identity.
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QI-modules

John Dauns and Yiqiang Zhou

Abstract. This paper is about QI-modules M and the full subcategory σ[M ]
of Mod-R subgenerated by M . A ring R is a right QI-ring if every quasi-
injective right R-module is injective. The module M is QI if all quasi-injective
modules in σ[M ] are M -injective. Three classes of rings are presented for
each of which the QI-modules are precisely the semisimple modules. The QI-
modules M are characterized in terms of properties of some lattices of classes
of modules in σ[M ].

1. Introduction

Throughout R is an associative ring with identity, modules are right unital. Let
Mod-R be the category of the right R-modules. For an arbitrary right R-module
M , σ[M ] denotes the full subcategory of Mod-R subgenerated by M , which is
systematically studied in Wisbauer [14]. Following Wisbauer [13], a module M is
called a QI-module if every quasi-injective module in σ[M ] is M -injective. It is easy
to see that every semisimple module is QI and it is known that every QI-module is
locally noetherian. It is beyond the scope of this article to explore when “M is QI”
relative to some other categories built out of M , such as GenM ⊆ σ[M ] ⊆ π[M ],
where GenM is generated by M , while π[M ] is just like σ[M ], except that sums
have been replaced by products, and which also was introduced by Wisbauer [16].

We first give some easy characterizations of a QI-module and present a few
classes of rings R for which the QI-modules are precisely the semisimple modules.
The main results Theorem 3.4 and Theorem 3.9 of this paper are the diverse equiv-
alent characterizations of QI-modules M in terms of properties of some lattices of
classes of modules in σ[M ]. In order to decide what are all QI-modules M , we have
two problems. What are all quasi-injective modules? And for specific modules M ,
what are all quasi-injective modules inside σ[M ]? These questions can be answered
in terms of certain right ideals of the ring R, and for the readers benefit we give
an outline in Section 4 at the end.

For two right R-modules N and M , let EM (N) be the M -injective hull of N
and E(N) the injective hull. For a subset X of M , X⊥ = {r ∈ R : Xr = 0} is the
right annihilator. For x ∈M , let x⊥ = {x}⊥.



174 J. Dauns and Y. Zhou

2. The class of QI-modules

A module M is called strongly prime if M is contained in every nonzero fully
invariant submodule of E(M) (see [1]). It is easy to see that a uniform module M
is strongly prime iff M is contained in every nonzero quasi-injective submodule of
E(M). The equivalence (1) ⇔ (4) in the next proposition is known (see [17]).

Proposition 2.1. The following are equivalent:
1) M is a QI-module.
2) Every module in σ[M ] is QI.
3) Every M -injective module in σ[M ] is QI.
4) M is a locally noetherian module and every cyclic uniform module in σ[M ]

is strongly prime.

Proof. (1) ⇒ (2). Let N ∈ σ[M ] and let P ∈ σ[N ] be quasi-injective. Then
P ∈ σ[M ], so P is M -injective. Thus, P is X-injective for all X ∈ σ[M ]. In
particular, P is N -injective. So N is QI.
(2) ⇒ (3). It is obvious.
(3) ⇒ (1). Let N ∈ σ[M ] be quasi-injective. Then N ⊆ EM (N) ∈ σ[M ]. So EM (N)
is QI by (3). But, N ∈ σ[EM (N)], so N is EM (N)-injective. Thus, N = EM (N)
is M -injective. So M is QI. �

Thus, the class Kq of all QI-modules is closed under submodules and factor
modules. But in general, Kq is not closed under injective hulls, nor under direct
products, nor under extensions of modules.

Example 2.1. Let R = Z. If N = Zp∞ where p is a prime, then N is the injective
hull of soc(N). Since soc(N) is not a direct summand of N , N is not QI (though
soc(N) is QI). If N = Z4, then soc(N) ∼= Z2 and N/soc(N) ∼= Z2. So both soc(N)
and N/soc(N) are QI. But N is not QI because soc(N) is not a direct summand
of N . Moreover, Z is a subdirect product of simple Z-modules, but Z is not QI.

A ring R is right semiartinian if every nonzero R-module has nonzero socle.

Proposition 2.2. Kq is precisely the class of all semisimple R-modules, in either of
the following cases:

1) R is right semiartinian.
2) R is a principal ideal domain.
3) R has finitely many maximal right ideals (in particular, R is local).

Proof. (1) For any 0 �= N ∈ Kq, soc(N) is essential in N since R is right semiar-
tinian. Because N is QI, soc(N) is N -injective and so soc(N) is a direct summand.
Thus, N = soc(N) is semisimple.
(2) We can assume that R is not a field. Let 0 �= N ∈ Kq and let T (N) be
the torsion submodule of N . If N �= T (N), then, since N/T (N) ∈ Kq and Kq
is closed under submodules, there exists a cyclic torsionfree QI-module, say xR.
Then RR ∼= (xR)R is QI. Since R is not a field, take a ∈ R such that a is a
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prime element in R. Thus, R/a2R is QI. But aR/a2R is simple, so it is R/a2R-
injective. This shows that aR/a2R is a direct summand of R/a2R. It follows that
aR/a2R = R/a2R. That is aR = R, a contradiction. So N = T (N) is torsion. For
any x ∈ N , xR ∼= x1R ⊕ · · · ⊕ xkR where x⊥

i = ami

i R with mi > 0 and with ai a
prime element of R (for each i). For the same reason that R/a2R is not QI, xiR
is not QI unless mi = 1. Hence each xiR is simple and hence xR is semisimple.
This shows that N is semisimple.
(3) Let 0 �= N ∈ Kq. Because Kq is closed under submodules, to show that N is
semisimple, we may assume that N is cyclic. So let N = xR and hence N ∼= R/x⊥.
Let I1, . . . , Im be the maximal right ideals of R. We can assume that, for some k
with 1 ≤ k ≤ m, x⊥ ⊆ ∩ki=1Ii but x⊥ �⊆ Ii for i = k + 1, . . . ,m. We claim that
x⊥ = I := ∩ki=1Ii. In fact, if x⊥ ⊂ I, then 0 �= I/x⊥ ⊆ R/x⊥. Because N is QI, N is
noetherian and so is I/x⊥. Hence I/x⊥ contains a maximal submodule, say K/x⊥,
where K is a right ideal of R. Thus, I/K is a simple submodule of R/K. But R/K
is an image of N , so R/K is QI because Kq is closed under factor modules. Thus,
I/K is R/K-injective. Hence R/K = I/K ⊕ J/K where J is a right ideal of R. It
follows that K = I ∩ J and J is a maximal right ideal of R. Since x⊥ ⊆ K ⊆ J ,
J = Ii for some 1 ≤ i ≤ k. Hence K = I ∩ J = I. This is a contradiction. So it
must be that x⊥ = I. It follows that N ∼= R/I ⊆ ⊕ki=1R/Ii. This shows that N is
a submodule of a semisimple module. So N is semisimple. �

Corollary 2.3. Let R be a local ring with Jacobson radical J(R). Then an R-module
N is a QI-module iff N is a direct sum of copies of R/J(R).

Proposition 2.4. The following hold:
1) Every QI-module is a subdirect product of simple modules.
2) Kq is closed under direct products if and only if every direct product of simple

modules is QI.

Proof. (1) This follows from the fact that every QI-module is co-semisimple ([14,
p. 190, 23.1]). For the reader’s convenience, we give a direct proof. Let N be a QI-
module. By Birkhoff’s Theorem, N is a subdirect product of modules {Nα : α ∈ Γ}
where each Nα has an essential socle which is simple. Since Nα is again QI, soc(Nα)
is Nα-injective. It follows that Nα = soc(Nα) is simple.
(2) The implication ‘⇒’ is clear, and the implication ‘⇐’ follows because of (1)
and the fact that Kq is closed under submodules. �

Thus, if every direct product of R-simple modules is semisimple (e.g., R = Zp2

with p a prime), then Kq is closed under direct products.

3. QI-modules and lattices of module classes

In this section, we discuss the relationship between a QI-module M and properties
of some lattices of classes of modules in σ[M ]. We recall a few notions.
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Definition 3.1. [3] A module class K is called a natural class if K is closed under
submodules, direct sums and injective hulls. For a module class F , define c(F) =
{N ∈ Mod-R : ∀0 �= X ⊆ N,X �↪→ Y for any Y ∈ F} and d(F) = {N ∈
Mod-R : ∀0 �= X ⊆ N, ∃0 �= A ⊆ X with A ↪→ Y for some Y ∈ F}. For a
module N , let c(N) = c({N}) and d(N) = d({N}). It is always true that c(F) and
d(F) are natural classes. More generally, for a module M , a subclass K of σ[M ]
is called an M -natural class if K is closed under submodules, direct sums and M -
injective hulls. The collection of the M -natural classes (resp., the natural classes)
is denoted by N (R,M) (resp., N (R)). Notice that both N (R,M) and N (R) are
sets, and K ∈ N (R,M) iff K = L ∩ σ[M ] for some L ∈ N (R).

A module class T is called a hereditary pretorsion class if T is closed under
submodules, direct sums and factor modules. A module class T is a hereditary
pretorsion class iff K = σ[M ] for some module M (see [5]). The collection (or set)
of the hereditary pretorsion classes is denoted by T p(R).

Definition 3.2. [18, 3] A module class K is called a pre-natural class if K is closed
under submodules, direct sums, and tr(K, E(N)) ∈ K for every N ∈ K, where
tr(K, E(N)) =

∑
{f(X) : f ∈ Hom(X,E(N)), X ∈ K}. A module class K is a

pre-natural class iff K = L ∩ T where L ∈ N (R) and T ∈ T p(R). The collection
of the pre-natural classes is denoted by N p(R). Note that N p(R) is a set. For a
module M , we let N p(R,M) be the set of all pre-natural classes contained in σ[M ].
That is N p(R,M) =

{
K ∩ σ[M ] : K ∈ N p(R)

}
.

Lemma 3.3. [18, 3] N p(R) is a complete lattice with the least element 0 = {0} and
the greatest element 1 = Mod-R under the following partial ordering and lattice
operations:

1) For K1,K2 ∈ N p(R), K1 ≤ K2 ⇐⇒ K1 ⊆ K2.
2) For a set of pre-natural classes Ki, ∧Ki = ∩Ki and ∨Ki = d(K) ∩ σ[MK]

where K = ∪Ki and MK = ⊕{Xα : α ∈ Λ} with {Xα : α ∈ Λ} a set of
representatives of isomorphy classes of cyclic submodules of modules in K.

The set of all hereditary pretorsion classes contained in σ[M ] is denoted by
M -ptors in [10]. That is M -ptors =

{
K ∩ σ[M ] : K ∈ T p(R)

}
. Notice that N (R),

N (R,M), N p(R,M), T p(R) and M -ptors all are sublattices of N p(R).

Theorem 3.4. The following are equivalent for a module M :
1) M is a QI-module.
2) N p(R,M) = N (R,M).
3) M -ptors ⊆ N (R,M).
4) N p(R,M) is a uniquely complemented lattice.

Proof. (1) ⇒ (2). Let L ∈ N p(R,M). Write L = K ∩ σ[M ], where K ∈ N p(R).
There exists a module N such that K = d(N)∩σ[N ] by [3, 2.5.4]. Since σ[N ]∩σ[M ]
is a hereditary pretorsion class, σ[N ] ∩ σ[M ] = σ[P ] for a module P . Hence L =
d(N)∩ σ[P ] is a P -natural class. Now we show that L is closed under M -injective
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hulls. Let X ∈ L. Then X ⊆ EP (X) ⊆ EM (X) ⊆ E(X). Since EP (X) is P -
injective, it is quasi-injective, so EP (X) is M -injective by (1). Thus, EP (X) =
EM (X). But EP (X) ∈ L, since L is a P -natural class. So EM (X) ∈ L.
(2) ⇒ (4). The implication follows from a result of Dauns that N (R,M) is a
Boolean lattice (see [3, 6.2.16]).
(4) ⇒ (3). Let K be a hereditary pretorsion class contained in σ[M ]. Notice that
K ∈ N p(R,M). So, by (4), there exists L ∈ N p(R,M) such that K ∧ L = 0 and
K∨L = 1. This shows that K ⊆ c(L)∩σ[M ]. Let J = c(L)∩σ[M ]. Then J ∧L = 0
and J ∨ L = 1 because J ∨ L ≥ K ∨ L = 1. By (4), K = J = c(L) ∩ σ[M ] is an
M -natural class.
(3) ⇒ (1). Let N ∈ σ[M ] be a quasi-injective module. Then σ[N ] ⊆ σ[M ]. By
(3), σ[N ] is an M -natural class. Hence σ[N ] is closed under M -injective hulls. In
particular, EM (N) ∈ σ[N ]. Since N is quasi-injective, N is X-injective for each
X ∈ σ[N ]. Thus, N is EM (N)-injective. This shows that N is a direct summand
of EM (N). It must be that N = EM (N), so N is M -injective. �

Definition 3.5. [15, 1.2] For any subclasses K and L of σ[M ], let

EM (K,L) =
{
N ∈ σ[M ] : ∃X ⊆ N such that X ∈ K, N/X ∈ L

}
.

A subclass K of σ[M ] is said to be closed under extensions in σ[M ] if K =
EM (K,K).

Lemma 3.6. EM (K,L) = K ∨ L for all K,L ∈ N (R,M).

Proof. Let K,L ∈ N (R,M). Then K ∨ L ∈ N (R,M) by [3, 6.1.4]. So K ∨ L
is closed under extensions in σ[M ] by [3, 2.4.5], and hence EM (K,L) ⊆ K ∨ L.
Suppose N ∈ K ∨L. Let X be a submodule of N maximal with respect to X ∈ L
and let Y be a submodule of N maximal with respect to X ∩ Y = 0. (X and Y
exist by Zorn’s Lemma.) Then X is essentially embeddable in N/Y . So N/Y ∈ L
by [3, 2.4.2]. The maximality of X shows that Y ∈ J := c(L) ∩ σ[M ]. But, by [3,
6.2.16], N (R,M) is a Boolean lattice. Hence we obtain that Y ∈ J ∧ (K ∨ L) =
(J ∧ K) ∨ (J ∧ L) = (J ∧ K) ∨ 0 = J ∧ K ≤ K. So N ∈ EM (K,L). �

Let M -tors be the set of all hereditary torsion classes contained in σ[M ].
That is M -tors =

{
K ∈M -ptors : K = EM (K,K)

}
.

Lemma 3.7. The following are equivalent for a module M :
1) M -ptor = M -tor.
2) EM (K,L) = K ∨ L for all K,L ∈M -ptor.

Proof. (1) ⇒ (2). For K,L ∈ M -ptor, K ∪ L ⊆ K ∨ L ∈ M -ptor by [3, 6.1.10].
So, by (1), K ∨ L ∈M -tor and hence EM (K,L) ⊆ K ∨ L. But, by [15, 1.4, p. 75],
EM (K,L) ∈ M -ptor. This shows that K∨L ≤ EM (K,L) since K∨L is the smallest
pre-natural class containing K ∪ L. So EM (K,L) = K ∨ L.
(2) ⇒ (1). For K ∈M -ptor, K = EM (K,K) by (2). So K ∈M -tor. �
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For the Gabriel dimension of modules, we refer to [6, 7]. The Gabriel dimen-
sion of a module N , when exists, is denoted by Gdim(N). Let U be the class
of modules that have Gabriel dimension. Then U ∈ T p(R) and we let µ denote
the left exact preradical corresponding to the hereditary pretorsion class U . For a
module M , σ[M ] ∩ U is again a hereditary pretorsion class, and we let µM be the
left exact preradical corresponding to the hereditary pretorsion class σ[M ] ∩ U .
The next lemma can be proved as in the proof of [3, 6.4.15, p. 182] line by line.
For the definition of an β-simple module (where β is an ordinal), see [3, p. 181].

Lemma 3.8. Let M be a module such that M -ptor = M -tor and let β be an ordinal.
1) If N ∈ σ[M ] is a β-simple module, then µM (EM (N)) is β-simple.
2) If N ∈ σ[M ] is a semisimple module, then N = µM (EM (N)).

Theorem 3.9. The following are equivalent for a module M :
1) M is QI.
2) M is a locally noetherian module and M -ptor = M -tor.
3) M has Gabriel dimension and M -ptor = M -tor.
4) K1 ∨ K2 = EM (K1,K2) for all K1,K2 ∈ N p(R,M).
5) M -ptor = M -tor and EM (K1,K2) ∈ N p

r (R,M) for all K1,K2 ∈ N p(R,M).
6) M -ptor = M -tor and every M -singular quasi-injective module in σ[M ] is

M -injective.

Proof. (1) ⇒ (2). Suppose that (1) holds. Then M is locally noetherian. By Theo-
rem 3.4, every K in M -ptor is an M -natural class, so K is closed under extensions
in σ[M ] by [3, 2.4.5, p. 25].
(2) ⇒ (3). If x ∈ M , then (xR + µ(M))/µ(M) is noetherian, so it has Gabriel
dimension (see [7, Proposition 2.3]). Thus, xR + µ(M) ∈ U by [7, Lemma 1.3].
Thus xR ⊆ µ(M). So M = µ(M) has Gabriel dimension.
(3) ⇒ (1). Since M has Gabriel dimension, M ∈ U , so σ[M ] ⊆ U . Then µM is just
the left exact preradical corresponding to the hereditary pretorsion class σ[M ]. Let
N be a semisimple module in σ[M ]. Then EM (N) ∈ σ[M ] ∩ U . Hence EM (N) =
µM (EM (N)). But, by Lemma 3.8, N = µM (EM (N)). Hence N = EM (N) is M -
injective. Thus, every semisimple module in σ[M ] is M -injective. This shows that
M is locally noetherian. In fact, if A1 ⊂ A2 ⊂ · · · ⊆ xR ⊆M is a strictly ascending
chain of submodules, then for each i ≥ 1, there exist submodules Bi and Ci of
xR such that Ai ⊆ Bi ⊂ Ci ⊆ Ai+1 and Ci/Bi is simple. Let A = ∪iAi. For
each i ≥ 1, let fi : Ci −→ Ci/Bi be the canonical homomorphism. Since Ci/Bi
is M -injective, there is a homomorphism gi : A −→ Ci/Bi which extends fi. Let
S = ⊕i(Ci/Bi). Define a map f : A −→ S = ⊕i(Ci/Bi) by πi ◦ f(a) = gi(a),
where πi is the projection of S onto Ci/Bi. It is easily seen that f is a well-
defined homomorphism. Since S is M -injective, it is xR-injective. So there exists
a homomorphism g : xR −→ S which extends f . Since g(xR) is cyclic, there exists
some n ≥ 1 such that f(A) ⊆ g(xR) ⊆ ⊕j<n(Cj/Bj). For any a ∈ Cn, we have 0 =
πn◦f(a) = gn(a) = a+Bn, implying that a ∈ Bn. So, Cn = Bn, a contradiction. So
M is locally noetherian. To prove that M is QI, it suffices to show that each T in
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M -ptor is an M -natural class by Theorem 3.4, i.e., to show that T is closed under
injective hulls. Now let 0 �= N ∈ T and we need to show that EM (N) ∈ T . Since M
is locally noetherian, by [3, 3.1.25, p. 48], EM (N) = ⊕tNt where each Nt is uniform
M -injective. Thus, it suffices to show that each Nt ∈ T . Let X = N ∩ Et and
Y = Et. Since X has Gabriel dimension (as X ∈ U), X contains a nonzero β-simple
submodule P for some ordinal β. Since Y ∈ σ[M ]∩U , Y = µM (Y ) = µM (EM (P ))
is β-simple by Lemma 3.8. Let τ be the left exact preradical corresponding to the
hereditary pretorsion class σ[N ] and let L = σ[τ(Y )⊕ Y/τ(Y )]. Thus, L is closed
under extensions in σ[M ]. So Y ∈ L. Hence there exists an epimorphism θ : K → Y
where K ⊆ A ⊕ B, A ⊕ τ(Y ) and B = ⊕(Y/τ(Y )). Let L = K ∩ B. Because Y
is β-simple and because τ(Y ) is essential in Y , Gdim(Y/τ(Y )) < β and hence
GdimL < β. Thus, Gdim(θ(L)) < β. As Y is β-simple, it must be that θ(L) = 0.
Hence θ induces an epimorphism K/L→ Y . This shows that K/L = K/(K∩B) ∼=
(K + B)/B ↪→ A, so K/L ∈ σ[X ] since A ∈ σ[X ]. Hence Y ∈ σ[X ] ⊆ T .

(1) ⇒ (4). Suppose that M is QI. Then N p(R,M) = N (R,M) by Theorem 3.4.
Thus, (4) follows by Lemma 3.6.

(4) ⇒ (5). For K ∈ M -ptor, K ∨ K = EM (K,K) by (4). So K is closed under
extensions in σ[M ]. The rest of (5) follows clearly by (4).

(5) ⇒ (6). Let N be an M -singular quasi-injective module. Then N ∈ σ[M ].
Let K = σ[M ]. Then K is closed under extensions in σ[M ] by (5). So K is a
hereditary torsion class in σ[M ] (note that K need not be a hereditary torsion
class in Mod-R). Let τ be the left exact radical in σ[M ] corresponding to K.
Since N is quasi-injective, N = EN (N) = τ(EM (N)). Thus, τ

(
EM (N)/N

)
=

τ
(
EM (N)/τ(EM (N))

)
= 0̄. Let L = d

(
EM (N)/N

)
∩ σ[M ]. By (5), every F in

M -ptor is closed under extensions in σ[M ], so every F in N p(R,M) is closed under
extensions in σ[M ] because of [3, 2.3.5]. So EM (N) ∈ EM (L,K). Thus, there exists
X ⊆ EM (N) such that X ∈ L and EM (N)/X ∈ K. Because τ

(
EM (N)/N

)
= 0̄,

X ∈ L shows that τ(X) = 0. But X ∩N ⊆ τ(X), so X ∩N = 0. This shows that
X = 0 because N is essential in EM (N). So, EM (N) ∈ K = σ[N ]. Since N is quasi-
injective, it follows that N is EM (N)-injective. So N = EM (N) is M -injective.

(6) ⇒ (1). Let N ∈ σ[M ] be quasi-injective. Let T be the class of the M -singular
modules. Then T ∈ M -ptor, so T is closed under extensions in σ[M ] by (6). Let
τ be the left exact radical in σ[M ] corresponding to T . Then τ(N/τ(N)) = 0̄.
Thus, τ(N) is a closed submodule of N . Since N is quasi-injective, N = τ(N)⊕P .
So τ(N) is an M -singular quasi-injective module and hence M -injective by (6).
To show N is M -injective, it suffices to show that P is M -injective. Notice that
P is non M -singular quasi-injective. Let K = σ[P ]. By Lemma 3.7, EM (K, T ) =
K ∨ T = T ∨ K = EM (T ,K). From 0 → P → EM (P ) → EM (P )/P → 0, we have
EM (P ) ∈ EM (K, T ) = EM (T ,K), so there exists X ⊆ EM (P ) such that X ∈ T
and EM (P )/X ∈ K. Since P is non M -singular, P ∩ X = 0. So X = 0 since P
is essential in EM (P ). Thus, EM (P ) ∈ K = σ[P ]. Since P is quasi-injective, P is
EM (P )-injective. So P = EM (P ) is M -injective. �
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4. Quasi-injective modules inside σ[M ]

This section gives an overview of quasi-injective modules. The next lemma gives
necessary and sufficient conditions entirely inside R in terms of right ideals in
order for a module to be quasi-injective, in order for a module in σ[M ] to be
quasi-injective. Its proof follows from [4], and in particular, (2) and (3) of Lemma
4.1 follow from [4, Lemma 2]. To show the contrast between quasi-injectivity and
M -injectivity we also list (4) and (5).

Lemma 4.1. Let M,N ∈ Mod-R and P ∈ σ[M ]. Then the following hold:
1) N is quasi-injective ⇐⇒ ∀x ∈ N and I ≤ RR, any homomorphism φ : xI −→

xR extends to a homomorphism xR −→ xR.
2) N is quasi-injective ⇐⇒ ∀I ≤ RR with x⊥ ⊆ I for some x ∈ N , any ho-

momorphism φ : I −→ N with x⊥ ⊆ Ker(φ) extends to a homomorphism
R −→ N .

3) P is quasi-injective ⇐⇒ ∀y ∈ P and I ≤ RR with y⊥ ⊆ I, any homomor-
phism φ : I −→ P with y⊥ ⊆ Ker(φ) extends to a homomorphism R −→ P .
(Here yR is a typical cyclic module of σ[M ].)

4) P is M -injective ⇐⇒ ∀x⊥ ⊆ I ≤ RR, where x ∈ M , any homomorphism
φ : I −→ P with x⊥ ⊆ Ker(φ) extends to a homomorphism R −→ P .

5) N is M -injective ⇐⇒ ∀x⊥ ⊆ I ≤ RR, where x ∈ M , any homomorphism
φ : I −→ N with x⊥ ⊆ Ker(φ) is of the form φ(i) = yi for all i ∈ I, for some
y ∈ N .

6) N is quasi-injective ⇐⇒ above (5) holds for M = N, and x ∈ N .

Notation 4.2. For any modules MR and NR, define Λ = EndR(E(N)), S =
EndR(EM (N)) and Ñ = ΛN . Then N ⊆ Ñ ⊆ E(N). Note that Ñ and EM (N)
are fully invariant in E(N), and hence quasi-injective.

Remark 4.3. From now on, N ∈ σ[M ].

1) Ñ = ΛN = SN ⊆ EM (N).
2) Hence N is fully invariant in E(N) ⇐⇒ N is fully invariant in EM (N).

Remark 4.4. The following are all equivalent:
1) M is a QI-module.
2) ∀ fully invariant submodule N of E(N) with N ∈ σ[M ], there does not exist

a fully invariant submodule P of E(N) with N ⊂ P ∈ σ[M ].
3) Same as (2), but with ‘E’ replaced by ‘EM ’.

Proof. Note that if M is QI and N,P ∈ σ[M ] such that N is fully invariant in
E(N) and P is fully invariant in E(P ), then N = EM (N) and P = EM (P ).
(1) =⇒ (2). Suppose that N ⊂ P ⊆ E(N). Since N ≤e P is essential, we get that
EM (N) = EM (P ), or N = P , a contradiction.
(1) ⇐= (2). Let N ∈ σ[M ] be quasi-injective. Since N ∈ σ[M ], N ⊆ EM (N). If
N ⊂ EM (N) with N �= EM (N), let P = EM (N) which contradicts (1).

Clearly, (2) and (3) are equivalent. �
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Proposition 4.5. For any module N , Ñ ∈ σ[N ]. Furthermore, Ñ⊥ = N⊥.

Proof. From Ñ = ΛN = Σ{fN : f ∈ HomR(N,E(N))}, and from fN ∼=
N/Ker(f), it follows that Ñ is isomorphic to a quotient of some direct sum of
N ’s, and Ñ ∈ σ[N ]. As a consequence of the latter, ÑN⊥ = 0, and N⊥ ⊆ Ñ⊥.
From N ⊆ Ñ it follows that Ñ⊥ ⊆ N⊥. Thus N⊥ = Ñ⊥. �

We give a description of quasi-injective modules in σ[M ].

Remark 4.6. Let N ∈ σ[M ], and let F = {L ≤ R : L ⊇ ∩ni=1x
⊥
i for some n and

some xi ∈ N}. Notice that if L ⊇ ∩ni=1x
⊥
i then a−1L := (a+L)⊥ ⊇ ∩ni=1(xia)⊥ for

each a ∈ R. Thus, F is a prefilter (see [3, 2.1.8]). Let τ be the left exact preradical
determined by F (see [3, 2.1.3]), and hence τ(EM (N)) = {x ∈ EM (N) : x⊥ ∈ F}.
Then τ(EM (N)) is a submodule of EM (N). In fact, if x1, x2, x ∈ τ(EM (N)) and
r ∈ R, then (x1 − x2)⊥ ⊇ x⊥

1 ∩ x⊥
2 ∈ F . Since x⊥ ∈ F , for some xi ∈ N , x⊥ ⊇

∩ni=1x
⊥
i , and thus (xr)⊥ = r−1x⊥ := (r + x⊥)⊥ ⊇ r−1[∩ni=1x

⊥
i ] = ∩ni=1(xir)⊥,

where xir ∈ N . Consequently, r−1x⊥ ∈ F . So x1 − x2, xr ∈ τ(EM (N)).
In general the inclusion {x⊥ : x ∈ N } ⊂ F is proper (see [11, p. 1282]).

The following hold:

1) Ñ = {x ∈ EM (N) : x⊥ ⊇ y⊥ for some y ∈ N}.
2) Ñ = τ(EM (N)).
3) F is the prefilter generated by {x⊥ : x ∈ N}.

Proof. Conclusion (3) holds by definition of F .

(1) The starting point is the result of de la Rosa and Viljoen [11, Lemma (1),
p. 1281]), which is proved by use of Fuchs [4, Lemma 2, p. 542], which says that
(1) above holds if EM (N) is replaced by E(N). Since each x ∈ Ñ is a quotient of
yR ∈ σ[M ], xR ⊆ trace(σ[M ], E(N)) = EM (N). Thus (1) holds.

(2) Clearly, by (1), Ñ ⊆ τ(EM (N)). For any n, let z ∈ τ(EM (N)) with z⊥ ⊇
∩ni=1y

⊥
i for yi ∈ N . We now apply conclusion (1) to the quasi-injective hull of n

copies of N which equals Ñ ⊕ · · · ⊕ Ñ . Take the diagonal element x = (z, . . . , z) ∈
EM (N) ⊕ · · · ⊕EM (N) and let y = (y1, . . . , yn) ∈ N ⊕ · · · ⊕N . Then z⊥ = x⊥ ⊇
y⊥ = (y1, . . . , yn)⊥ = ∩ni=1y

⊥
i . Thus (z, . . . , z) ∈ Ñ ⊕ · · · ⊕ Ñ , and hence z ∈ Ñ .

Since we can do this argument for any finite n, Ñ = τ(EM (N)). �

A ring R is called a right V-ring if every simple R-module is injective.

Lemma 4.7. If R is not a right V-ring, and N is a QI-module, then x⊥ �= 0 for
each x ∈ N .

Proof. If not, let RR ∼= xR ∈ σ[N ] = Mod-R. Let P ∈ σ[N ] be a simple non-
injective module. Then P is quasi-injective, hence N -injective, hence xR-injective,
and thus injective, a contradiction. �
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Lemma 4.8. The following domains R are not V -rings. Consequently, any QI-
module N over any of these rings is as in the previous lemma, i.e., N does not
contain a free submodule.

1) R has a non-zero primitive ideal.
2) R is commutative and not a field.

Proof. (1) In this case, ∃ 0 �= a ∈ (R/L)⊥ ⊆ L < R, where L < R is a maximal
right ideal. Map aR −→ R/L by ar �→ r + L, and if R/L is injective, extend this
to R by 1 �→ b + L. Then ba ∈ (R/L)⊥ ⊆ L, while L = ba + L = 1 + L is a
contradiction. So R/L is a simple non-injective module.
(2) In this case, R has a non-zero maximal ideal and (1) applies. �

Proposition 4.9. Assume that R is any ring such that for any uniform cyclic mod-
ules 0 �= yR < xR, (xR)⊥ ⊂ (yR)⊥ is a proper inclusion. Then any QI-module N
which contains no free submodules is semisimple.

Proof. By Proposition 2.1(4), the module N contains an essential direct sum
of non-zero uniform cyclic modules xR ≤ N . If xR is not simple, there exists
0 �= yR ⊂ xR. By the hypothesis on R, (xR)⊥ ⊂ (yR)⊥. Then x̃R ∈ σ[xR] by
Proposition 4.5. Since xR is QI, and ỹR ⊆ x̃R, it follows that the quasi-injective
module ỹR is x̃R-injective. So ỹR is a direct summand of x̃R. Thus, ỹR = x̃R

because xR is uniform. So (yR)⊥ = ỹR
⊥

= x̃R
⊥

= (xR)⊥ by Proposition 4.5.
This contradicts the assumption. So each xR is simple. Thus N contains an essen-
tial submodule P that is semisimple. Since N is QI, P is N -injective and hence a
direct summand of N . Thus, N = P is semisimple. �

All commutative rings satisfy the hypothesis of the last proposition.

Corollary 4.10. If R is a commutative ring, then any torsion (i.e., ∀0 �= x ∈
N, x⊥ �= 0) QI-module N is semisimple.
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Corings with Exact Rational Functors
and Injective Objects

L. El Kaoutit and J. Gómez-Torrecillas

Professor Robert Wisbauer gewidmet

Abstract. We describe how some aspects of abstract localization on module
categories have applications to the study of injective comodules over some
special types of corings. We specialize the general results to the case of Doi-
Koppinen modules, generalizing previous results in this setting.

Introduction

The Wisbauer category σ[M ] subgenerated by a module M [20] is a flexible and
useful tool when applied to some at a first look unrelated situations. This has
been the case of the categories of comodules over corings, which, under suitable
conditions, become Wisbauer’s categories [2, 5, 12]. On the other hand, as it was ex-
plained in [6], the categories of entwined modules and, henceforth, of Doi-Koppinen
modules, are instances of categories of comodules over certain corings, which ul-
timately enlarges the field of influence of the methods from Module Theory de-
veloped in [20]. The present paper has been deliberately written from this point
of view, although with a necessarily different style. To illustrate how abstract re-
sults on modules may successfully be applied to more concrete situations, we have
chosen a topic from the theory of Doi-Koppinen modules with roots in the theory
of graded rings and modules, namely, the transfer of the injectivity from relative
modules (Doi-Koppinen, graded) to the underlying modules over the ground ring
(comodule algebra, graded algebra). This was studied at the level of Doi-Koppinen
modules in [10], giving versions in this framework of results on graded modules
from [9]. The methods developed in [10] rest on the exactness of the rational functor
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for semiperfect coalgebras over fields [17], which allows the construction of a suit-
able adjoint pair between the category of Doi-Koppinen modules and the category
of modules over the smash product [10, Theorem 3.5]. The pertinent observation
here, from the point of view of corings, is that one of the functors in that adjoint
pair is already a rational functor for the coring associated to the comodule algebra
[2, Proposition 3.21]. Thus, a relevant ingredient in [10] is, under this interpreta-
tion, the exactness of the trace functor defined by a Wisbauer category of modules
or, equivalently, the exactness of the preradical associated to a closed subcategory
of a category of modules. Here, we make explicit the fact that the exactness of
such a preradical is equivalent to the property of being, up to an equivalence of
categories, the canonical functor of a localization (Theorem 1.1), and, henceforth,
it has a right adjoint, which is explicitly described. This right adjoint will preserve
injective envelopes, since it is a section functor (Proposition 1.3). We then deduce
the general form of the transfer of injective objects stated in [10].

In the rest of this paper, we specialize the former general scheme to corings
with exact rational functors and, even more, to Doi-Koppinen modules where the
coacting coalgebra has an exact rational functor.

The results of this paper should not be considered as completely new. In fact,
most of them could be gathered, with suitable adaptations (not always obvious),
from other sources. Thus, our text resembles a mini-survey. However, we believe
that the reader will not find elsewhere the statements made here, nor the applica-
tions to the transfer of injectivity, since they do not intend to be reproductions of
previously published results. We hope we have presented a study of some aspects
of the theory of corings and their comodules in a new light.

Notations and basic notions. Throughout this paper the word ring will refer to
an associative unital algebra over a commutative ring K. The category of all left
modules over a ring R will be denoted by RMod, being ModR the notation for the
category of all right R-modules. The notation X ∈ A for a category A means that
X is an object of A, and the identity morphism attached to any object X will be
denoted by the same character X .

Recall from [19] that an A-coring is a three-tuple (C,∆C, εC) consisting of an
A-bimodule C and two homomorphisms of A-bimodules (the comultiplication and
the counity)

C
∆C �� C⊗A C , C

εC �� A

such that (∆C⊗AC)◦∆C = (C⊗A∆C)◦∆C and (εC⊗AC)◦∆C = (C⊗AεC)◦∆C = C.
A right C-comodule is a pair (M,ρM ) consisting of a right A-module M

and a right A-linear map ρM : M → M ⊗A C, called right C-coaction, such that
(M⊗A∆C)◦ρM = (ρM ⊗AC)◦ρM and (M⊗A εC)◦ρM = M . A morphism of right
C-comodules (or a right C-colinear map) is a right A-linear map f : M →M ′ satis-
fying ρM ′ ◦f = (f ⊗AC)◦ρM . The K-module of all right C-colinear maps between
two right comodules MC and M ′

C is denoted by HomC(M,M ′). Right C-comodules
and their morphisms form a K-linear category ComodC. Although not abelian in
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general, ComodC is a Grothendieck category provided AC is a flat module, see [12,
Section 1]. The category CComod of left C-comodules is symmetrically defined.

For more information on corings and comodules, the reader is referred to [5]
and its bibliography.

1. Exactness of a preradical, localization, and injective objects

In this section we will derive from [14] some facts on quotient categories that
will be useful in the sequel. Recall that a full subcategory C of a Grothendieck
category G is said to be closed if any subobject and any quotient object of an
object belonging to C is in C, and any direct sum of objects of C is in C. A closed
subcategory C of G defines a preradical r : G → G, which sends an object X of
G to its largest subobject r(X) belonging to C. This preradical is left exact, since
it is right adjoint to the inclusion functor C ⊆ G. By Ker(r) we denote the full
subcategory of G with objects defined by the condition r(X) = 0.

A full subcategory L of G is dense if for any short exact sequence in G

0 �� X �� Y �� Z �� 0 ,

Y is in L if, and only if, both X and Z are in L. From [13, 15.11] we know that a
dense subcategory L is localizing in the sense of [14] if and only if it is stable under
coproducts. Following [14, Chapter III], every localizing subcategory L of G defines
a new Grothendieck category G/L (the quotient category), and an exact functor
T : G → G/L (the canonical functor) that admits a right adjoint S : G/L → G.
The counit φ− : T ◦ S → idG/L of this andjunction is a natural isomorphism. The
unit ψ− : idG → S ◦T satisfies the property that both the kernel and the cokernel
of ψX : X → (S ◦T)(X) belong to L for every object X of G.

The exactness of a preradical r can be expressed in terms of quotient cate-
gories, as the following proposition shows. The underlying ideas of its proof can
be traced back to [17, Theorem 2.3].

Proposition 1.1. Let C be a closed subcategory of a Grothendieck category G with
associated preradical r : G → C, and inclusion functor l : C → G. The following
statements are equivalent:

(i) r is an exact functor;
(ii) K = Ker(r) is a localizing subcategory of C with canonical functor T, and

there exists an equivalence of categories H : G/K → C such that H ◦T = r.

Proof. (i) ⇒ (ii) Since r is exact and preserves coproducts, we easily get that
K = Ker(r) is a localizing subcategory. Consider the canonical adjunctions

C
l �� G
r

�� , G
T �� G/K
S

��

where S is right adjoint to T, and r is right adjoint to the inclusion functor l.
Composing we get a new adjoint pair T ◦ l : C 	 G/K : r ◦ S, which we claim to
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provide an equivalence of categories. The unit of this new adjunction is given by

idC = rl
rψl �� rST l

where ψ− is the unit of the adjunction T  S. For any object M of C, there is an
exact sequence

0 �� X �� l(M)
ψl(M) �� STl(M) �� Y �� 0

with X and Y in K. Apply the exact functor r to obtain an isomorphism r(ψl(M)) :
M = rl(M) ∼= rSTl(M). Therefore, rψl(−) is a natural isomorphism. The counit
of the adjunction T ◦ l  r ◦ S is given by the following composition

T l rS
T λS �� TS ∼=

φ− �� idG/K

where λ− is the counit of the adjunction l  r, and φ− is the counit of the adjunc-
tion T  S. For any object N of G/K, λS(N) is a monomorphism with cokernel
in K since r is exact. Thus, [14, Lemme 2, p. 366] implies that T(λS(N)) is an
isomorphism. Therefore, φN T(λS(N)) is an isomorphism. Therefore, T ◦ l is an
equivalence of categories. On the other hand, by [14, Corollaire 3, p. 368], there
exists a functor H : G/K → C such that H ◦T = r. By composing on the right with
l we get H ◦T◦ l = r◦ l = idC . From this, and using that T◦ l is an equivalence, we
get that H is an equivalence.(ii) ⇒ (i) This is obvious, since T is always exact. �

In the rest of this section we consider G = ModB, the category of right
modules over a ring B. We fix the following notation: C is a closed subcategory of
ModB , with preradical r : ModB → C, and inclusion functor l : C → ModB. We
will consider the twosided ideal a = r(BB), and K = Ker(r).

The following proposition collects a number of well-known consequences of
assuming that r is exact. A short proof is included.

Proposition 1.2. If r is exact then a is an idempotent ideal of B such that B(B/a)
is flat, and r(M) = Ma for every right B-module M . In this way, K = Ker(r)
becomes a localizing subcategory of ModB stable under direct products and injective
envelopes.

Proof. Since r preserves epimorphisms it follows easily that r(M) = Ma, for any
right B-module M . In particular, we get that K = {M ∈ ModB | Ma = 0}.
This easily implies that K is a localizing subcategory stable under direct products
and essential extensions. Finally, the flatness of B(B/a) can be proved as follows.
We know that K is isomorphic to ModB/a. Let π : B → B/a be the canonical
projection; the functor − ⊗B (B/a) : ModB → ModB/a is left adjoint to the
restriction of scalars functor π∗ : ModB/a → ModB. Up to the isomorphism K ∼=
ModB/a, π∗ is nothing but the inclusion functor j : K → ModB . Since K is stable
under injective envelopes, the functor −⊗B (B/a) has to be exact, that is, B(B/a)
is a flat module. �
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If a is any idempotent ideal of B such that B(B/a) is flat, then there is a
canonical isomorphism of B-bimodules a ∼= a ⊗B a. This isomorphism makes a
a B-coring with counit given by the inclusion a ⊆ B. We say that a is a left
idempotent B-coring to refer to this situation. The forgetful functor U : Comoda →
ModB induces then an isomorphism of categories between Comoda and the full
subcategory of ModB whose objects are the modules MB such that Ma = M .

Corollary 1.1. Assume that r is an exact functor. Then
(i) The ideal a = r(BB) is a left idempotent B-coring whose category of all

right comodules Comoda is isomorphic to the quotient category ModB/K. In
particular a is a generator of ModB/K.

(ii) The functor F = HomB (a , −) ◦ l : C → ModB is right adjoint to r, where
l : C → ModB is the inclusion functor. In particular if E is an injective object
of C, then F (E)B is an injective right module.

Proof. (i) By Proposition 1.2, a is a left idempotent B-coring. Its category of right
comodules clearly coincides with the torsion class C, and the stated isomorphism
of categories follows by Proposition 1.1.
(ii) Given any object (M,M ′) in ModB × C, we get natural isomorphisms

HomC (r(M) , M ′) ∼= HomB (M ⊗B a , l(M ′)) ∼= HomB (M , HomB (a , l(M ′))) ,

since r(M) = Ma ∼= M⊗B a. This means that F is right adjoint to r. In particular,
F preserves injectives since r is exact. �

Given a module M in ModB, the Wisbauer category σ[M ] associated to M is
the full subcategory of ModB whose objects are all M -subgenerated modules (see
[20]). By definition, it is a closed subcategory and, in fact, it is easy to prove that
every closed subcategory of ModB is of the form σ[M ]. Therefore, the following
theorem, that summarizes some of the previous results, complements [5, 42.16].

Theorem 1.1. Let C be a closed subcategory of a category of modules ModB with
associated preradical r : ModB → C. Let l : C → ModB be the inclusion functor,
and a = r(B). The following statements are equivalent.

(i) r : ModB → C is an exact functor;
(ii) K = Ker(r) is a localizing subcategory of ModB with canonical functor T, and

there exists an equivalence H : ModB/K → C such that r = H ◦T;
(iii) F = HomB (aB , −) ◦ l : C → ModB is right adjoint to r;
(iv) a is a left idempotent B-coring and the forgetful functor U : Comoda → ModB

induces an isomorphism of categories Comoda
∼= C;

(v) a2 = a and Ma = M for every M in C.

Proof. The equivalences (i) ⇔ (ii) and (i) ⇔ (iii) are immediate from Proposition
1.1 and Corollary 1.1.
(i) ⇒ (iv) is a consequence of Proposition 1.1 and Corollary 1.1(i).
(iv) ⇒ (v) Obvious.
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(v) ⇒ (i) We have easily that r(M) = Ma, for every right B-module M . From this
we get immediately that r is a right exact functor. �

Given a right B-module M ∈ C, by EC(M) we denote its injective hull in
the Grothendieck category C. According to Theorem 1.1, if r is exact, then it
becomes essentially the canonical functor associated to a localization with a section
functor (the terminology is taken from [14]). As a section functor, HomB (a , −) will
preserve injective envelopes, as stated in Proposition 1.3. We give a detailed proof
of this fact, suitable for the forthcoming applications to more concrete situations.

Proposition 1.3. Assume that r : ModB → C is exact, and let M ∈ C. The map

ζM : M → HomB (a , EC(M)) (m �→ ζM (m)(a) = ma, m ∈M,a ∈ a)

gives an injective envelope of M in ModB. As a consequence, M is injective in
ModB if and only if M is injective in C and ζM is an isomorphism.

Proof. By Theorem 1.1, the functor F = HomB (a , −) ◦ l : C → ModB is right
adjoint to the exact functor r. Therefore, F (EC(M)) = HomB (a , EC(M)) is in-
jective in ModB. On the other hand, ζM is obviously a right B-linear map. Let us
show that it is injective. Let m ∈ M such that ζM (m) = 0, that is, ma = 0. By
Theorem 1.1, we have mB = ma, which implies m = 0. Let us prove that ζM is
essential. Pick a non zero element f ∈ HomB (a , EC(M)), so there exists 0 �= u ∈ a
such that 0 �= f(u) ∈ EC(M). Since M is essential in EC(M), there exists a non
zero element b ∈ B such that 0 �= f(u)b ∈ M . Since B/a is flat as a left B-module
(Proposition 1.2), there exists w ∈ a with ub = ubw (see, e.g., [5, 42.5]). If we
consider the map g = fub, then g(x) = (fub)(x) = f(ubx), for all x ∈ a, that is
g = fub = ζM (f(ub)) is a non zero element of ζM (M), as g(w) = f(ub) �= 0. �

Definition 1.1. Assume that a has a set of local units in the sense of [1], that is, a
contains a set E of commuting idempotents such that for every x ∈ a there exits
e ∈ E such that xe = ex = x. A right B-module M is said to be of finite support
if there exits a finite subset F ⊆E such that m

(∑
e∈F e

)
= m for every m ∈M .

A straightforward argument proves that if MB is of finite support, then every
f ∈ HomB (a , M) is of the form f(x) = mx for some m ∈ M . Therefore, we deduce
from Proposition 1.3:

Corollary 1.2. Assume that a has a set of local units, and let M ∈ C of finite
support. Then M is injective in ModB if and only if M is injective in C. As a
consequence, given a homomorphism of rings A → B with AB flat, we deduce that
if M is injective in C, then M is injective in ModA.

Remark 1.1. In Definition 1.1 and Corollary 1.2, it suffices to assume that a con-
tains a set of commuting idempotents E such that a =

∑
e∈E eB.

In what follows we specialize our results to the case where the subcategory C
is isomorphic to the category of right comodules over a given A-coring C. This is the
case when C is member of a rational pairing T = (C, B, 〈−,−〉). Rational pairings
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for coalgebras over commutative rings were introduced in [15] and used in [3] to
study the category of right comodules over the finite dual coalgebra associated
to certain algebras over Noetherian commutative rings. This development was
adapted for corings in [12], see also [2].

Recall from [12, Section 2] that a three-tuple T = (C, B, 〈−,−〉) consisting of
an A-coring C, an A-ring B (i.e., B is an algebra extension of A) and a balanced
A-bilinear form 〈−,−〉 : C× B → A, is said to be a right rational pairing over A
provided
(1) βA : B → ∗C is a ring anti-homomorphism, where ∗C is the left dual convo-

lution ring of C defined in [19, Proposition 3.2], and
(2) αM is an injective map, for each right A-module M ,

where α− and β− are the following natural transformations

βN : B ⊗A N �� Hom (AC , AN) ,

b⊗A n �� [c �→ 〈c, b〉n]

αM : M ⊗A C �� Hom (BA , MA)

m⊗A c �� [b �→ m〈c, b〉] .

Given a right rational pairing T = (C, B, 〈−,−〉) over A, we can define a
functor called the right rational functor as follows. An element m of a right
B-module M is called rational if there exists a set of right rational parameters
{(ci,mi)} ⊆ C × M such that mb =

∑
imi〈ci, b〉, for all b ∈ B. The set of all

rational elements in M is denoted by RatT(M). As it was explained in [12, Sec-
tion 2], the proofs detailed in [15, Section 2] can be adapted in a straightforward
way in order to get that RatT(M) is a B-submodule of M and the assignment
M �→ RatT(M) is a well-defined functor RatT : ModB → ModB, which is in fact a
left exact preradical. Therefore, the full subcategory RatT(ModB) of ModB whose
objects are those B-modules M such that RatT(M) = M is a closed subcategory.
Furthermore, RatT(ModB) is a Grothendieck category which is shown to be iso-
morphic to the category of right comodules ComodC as [12, Theorem 2.6’] asserts
(see also [2, Proposition 2.8]).

Example 1.1. Let C be an A-coring such that AC is a locally projective left
module (see [21, Theorem 2.1] and [2, Lemma 1.29]). Consider the endomor-
phism ring End(CC) as a subring of the endomorphism ring End(AC), that is,
with multiplication opposite to the composition of maps. Since ∆C is a left C-
colinear and a right A-linear map, the canonical ring extension A → End(AC)
factors throughout the extension End(CC) ↪→ End(AC). Therefore, the three-tuple
T = (C,End(CC), 〈−,−〉), where the balanced A-bilinear 〈−,−〉 map is defined by
〈c, f〉 = εC(f(c)), for (c, f) ∈ C × End(CC) is a rational pairing since End(CC) is
already a ring anti-isomorphic to ∗C via the beta map associated to 〈−,−〉. We
refer to T as the right canonical pairing associated to C.

The following theorem complements [5, 20.8].

Theorem 1.2. Let T = (C, B, 〈−,−〉) be a right rational pairing with rational func-
tor RatT : ModB → ModB, and put a = RatT(BB), K = Ker(RatT). The following
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statements are equivalent:

(i) RatT : ModB → ModB is an exact functor;
(ii) K is a localizing subcategory of ModB with canonical functor T, and there

exists an equivalence H : ModB/K → RatT(ModB) such that RatT = H ◦T;
(iii) F = HomB (aB , −) ◦ l : RatT(ModB) → ModB is right adjoint to RatT;
(iv) a is a left idempotent B-coring and the forgetful functor U : Comoda → ModB

induces an isomorphism of categories Comoda
∼= RatT(ModB) ∼= ComodC;

(v) Ba is a pure submodule of BB, a2 = a, and Ca = C.

Proof. By Theorem 1.1 we only need to show that (v) ⇒ (iv) since (iv) ⇒ (v)
is clear. We have that a is a left idempotent B-coring and C ∼= C ⊗B a as right
B-modules. Given any rational right B-module X with its canonical structure of
right C-comodule, we obtain a B-linear isomorphism X ∼= X�C (C⊗B a) (recall
that the comultiplication is a right B-linear map), where the symbol −�C− refers
to the cotensor bifunctor over C. Using the left version of [16, Lemma 2.2], we get

X ∼= X�CC ∼= X�C (C⊗B a) ∼= (X�CC)⊗B a ∼= X ⊗B a.

That is, X is in fact a right a-comodule. �

Remark 1.2. Right rational pairings are instances of right coring measuring in the
sense of [4]. In this way, given an exact rational functor RatT the isomorphism
of categories ComodC

∼= Comoda stated in Theorem 1.2 can be interpreted as an
isomorphism of corings in an adequate category. Following to [4, Definition 2.1],
a B-coring D is called a right extension of an A-coring C provided C is a (C,D)-
bicomodule with the left regular coaction ∆C. Corings understood as pairs (C : A)
(i.e., C is an A-coring) and morphisms understood as right coring extensions (i.e.,
a pairs consisting of an action and coaction) with their bullet composition form a
category denoted by CrgExtrK (see [4] for more details). If we apply this to the
setting of Theorem 1.2, then it can be easily checked that (C : A) and (a : B)
become isomorphic objects in the category CrgExtrK .

From Proposition 1.3 and Corollary 1.2, we obtain:

Proposition 1.4. Let T = (C, B, 〈−,−〉) be a right rational pairing with rational
functor RatT : ModB → ModB, and put a = RatT(BB). Assume that RatT is
an exact functor. Let M be a right C-comodule, and E(MC) its injective hull in
ComodC.
(a) The map

ζM : M → HomB (a , E(MC)) (m �→ ζM (m)(a) = ma, m ∈M,a ∈ a)

gives an injective envelope of M in ModB .
(b) M is injective in ModB if and only if M is injective in ComodC and ζM is

an isomorphism.
(c) If AB is flat, ζM is an isomorphism, and M is injective in ComodC, then M

in injective in ModA.
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(d) If a has a set of local units and M is of finite support, then M is injective in
ComodC if and only if M in injective in ModB.

(e) Assume that a has a set of local units, M is of finite support and AB is flat.
If M is injective in ComodC, then M is injective in ModA.

2. Rational functors for entwined and Doi-Koppinen modules

In this section, we shall study the exactness of the rational functors for the corings
coming from entwining structures. When specialized to the entwining structures
given by a comodule algebra, we will obtain a result from [2]. Most of results in
[10] are deduced.

2.1. Entwining structures with rational functor

Recall from [7] that an entwining structure over K is a three-tuple (A,C)ψ con-
sisting of a K-algebra A with multiplication µ and unity 1, a K-coalgebra C with
comultiplication ∆ and counity ε, and a K-module map ψ : C ⊗K A → A ⊗K C
satisfying

ψ ◦ (C ⊗K µ) = (µ⊗K C)◦(A⊗K ψ) ◦ (ψ ⊗K A),

(A⊗K ∆) ◦ ψ = (ψ ⊗K C)◦(C ⊗K ψ) ◦ (∆⊗K A),

ψ ◦ (C ⊗K 1) = 1 ⊗K C, (A⊗K ε) ◦ ψ = ε⊗K A.

(2.1)

By [6, Proposition 2.2] the corresponding A-coring is C = A ⊗K C with the A-
bimodule structure given by a′′(a′ ⊗K c)a = a′′a′ψ(c ⊗K a), a, a′, a′′ ∈ A, c ∈ C,
the comultiplication ∆C = A ⊗K ∆, and the counit εC = A ⊗K ε. Furthermore,
the category of right C-comodules is isomorphic to the category of right entwined
modules.

The map (φ, ν) : (C,K) → (C, A) defined by ν(1) = 1 and φ(c) = 1 ⊗K
c, is a homomorphism of corings in the sense of [16]. As in [16] the associated
induction and ad-induction functors to this morphism are, respectively, given by
O : ComodC → ComodC and − ⊗K A : ComodC → ComodC, where O is the
cotensor functor −�C(A ⊗K C). When ComodC is interpreted as the category of
entwined modules, O is naturally isomorphic to the forgetful functor. Moreover,
there is a natural isomorphism

HomC (M ⊗K A , N)
∼= �� HomC (M , O(N))

f  �� [m �→ f(m⊗K 1)]

[m⊗K a �→ g(m)a] g,��

for every pair of comodules (MC , NC). Thus the functor O is a right adjoint functor
of − ⊗K A. If CK is a flat module, then O is exact, since UA : ComodC → ModA
is already an exact functor (see, [12, Proposition 1.2]).

We know from [6] that the left dual convolution ring ∗C is isomorphic as a K-
module to HomK (C , A). Up to this isomorphism the convolution multiplication
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reads

f · g = µ ◦ (A⊗K f) ◦ ψ ◦ (C ⊗K g) ◦ ∆C , f, g ∈ HomK (C , A) . (2.2)

The connection between this convolution ring and the usual coalgebra convolution
ring C∗ is given by the following homomorphism of rings

Φ : C∗ �� ∗C, (x  �� A⊗K x). (2.3)

Proposition 2.1. Let (A,C)ψ be an entwining structure over K such that CK is
a locally projective module and consider its corresponding A-coring C = A ⊗K C.
Suppose that there is a right rational pairing T = (C, B, 〈−,−〉) and an anti-
morphism of K-algebras ϕ : C∗ → B which satisfy the following two conditions:
(1) β ◦ ϕ = Φ, where β : B → ∗C is the anti-homomorphism of K-algebras
associated to T and Φ is the homomorphism of rings given in equation (2.3); (2)
for every pair of elements (a, x) ∈ A × C∗, there exists a finite subset of pairs
{(xi, ai)}i ⊆ C∗ × A such that aϕ(x) =

∑
i ϕ(xi)ai. Then, by restricting scalars

we have
RatT (MB) = RatrC (C∗M)

for every right B-module M , where RatrC(−) is the canonical right rational functor
associated to the K-coalgebra C.

Proof. Start with an arbitrary element m ∈ RatT(MB) with right rational system
of parameters {(

∑
k akj ⊗K ckj , mj)}j ⊂ C×M . Then for every x ∈ C∗, we have

xm = mϕ(x) =
∑

k,j

mj〈akj ⊗K ckj , ϕ(x)〉

=
∑

k,j

mjβ(ϕ(x))(akj ⊗K ckj)

=
∑

k,j

mjΦ(x)(akj ⊗K ckj), Φ = β ◦ ϕ,

=
∑

k,j

mjakjx(ckj),

thus {ckj ,mjakj} ⊂ C×M is a right rational system of parameters for m ∈ C∗M ;
that is m ∈ RatrC(C∗M). Therefore, RatT(MB) ⊆ RatrC(C∗M). Conversely, start
with a pair of elements (a, x) ∈ A×C∗, and let {(xi, ai)}i ⊂ C∗ ×A be the finite
system given by hypothesis, that is, aϕ(x) =

∑
i ϕ(xi)ai. So, for every element

m ∈ RatrC(C∗M) with right C-coaction ρRatr
C(C∗M)(m) =

∑
(m) m(0) ⊗K m(1), we

have

x(ma) = (ma)ϕ(x) = m(aϕ(x))

=
∑

m(ϕ(xi)ai), aϕ(x) =
∑

ϕ(xi)ai

=
∑

(xim)ai

=
∑

(m(0)xi(m(1)))ai
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=
∑

m(0)

(
Φ(xi)(1 ⊗K m(1))ai

)

=
∑

m(0)

(
β(ϕ(xi))(1 ⊗K m(1))ai

)

=
∑

m(0)

(
β(ϕ(xi)ai)(1 ⊗K m(1))

)
, β is right A-linear

=
∑

m(0) 〈1 ⊗K m(1), ϕ(xi)ai〉

=
∑

m(0) 〈1 ⊗K m(1), aϕ(x)〉

=
∑

m(0) 〈aψ ⊗K mψ
(1), ϕ(x)〉, ψ(m(1) ⊗K a) =

∑
aψ ⊗K mψ

(1)

=
∑

m(0)aψx(mψ
(1)).

We conclude that ma ∈ RatrC(C∗M) with right C-coaction ρRatr
C(C∗M)(ma) =

∑
m(0)aψ ⊗K mψ

(1). From which we conclude that RatrC(C∗M) is an entwined
module, and thus a right C-comodule or, equivalently, a right rational B-submodule
of MB. Therefore, RatrC(C∗M) ⊆ RatT (MB). �

2.2. The category of Doi-Koppinen modules

We apply the results of Subsection 2.1 to the category of Doi-Koppinen modules.
This category is identified with the category of right rational modules over a well-
known ring. Some results of this section were proved by different methods for
particular Hopf algebras in [8, Theorem 2.3], for algebras and coalgebras over a
field in [10, Proposition 2.7], and more recently for bialgebras in [2, Theorem 3.18,
Proposition 3.21].

Let H be a Hopf K-algebra, (A, ρA) a right H-comodule K-algebra, and
(C, �C) a left H-module K-coalgebra. That is, ρA : A → A ⊗K H and �C :
H⊗K C → C are, respectively, a K-algebra and a K-coalgebra map. We will use
Sweedler’s notation, that is, ∆C(c) =

∑
(c) c(1)⊗K c(2), ∆H(h) =

∑
(h) h(1)⊗Kh(2),

and ρA(a) =
∑

(a) a(1) ⊗K a(2), for every c ∈ C, h ∈ H and a ∈ A.
Following [11, 18], a Doi-Koppinen module is a left A-module M with a

structure of right C-comodule ρM such that, for every a ∈ A, m ∈M ,

ρM (am) =
∑

a(0)m(0) ⊗K a(1)m(1).

A morphism between two Doi-Koppinen modules is a left A-linear and right
C-colinear map. Doi-Koppinen modules and their morphisms form the category
AM(H)C .

Consider the following K-map (Ao means the opposite ring of A)

ψ : C ⊗K Ao �� Ao ⊗K C, (c⊗K ao
 ��

∑
(a) a

o
(0) ⊗K a(1)c). (2.4)

It is easily seen that the map ψ satisfies all identities of equation (2.1). That is,
(Ao, C)ψ is an entwining structure over K. So, consider the associated Ao-coring
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C = Ao ⊗K C, the Ao-biactions are then given by

bo(ao⊗K c) = (ab)o⊗K c, and (bo⊗K c)ao = boψ(c⊗K ao) =
∑

(a(0)b)o⊗K a(1)c,

for every ao, bo ∈ Ao and c ∈ C. The convolution multiplication of HomK (C , Ao)
comes out from the general equation (2.2), as

f.g(c) =
∑

(c)

(
f(g(c(2))(1)c(1)) g(c(2))(0)

)o ∈ Ao,

f, g ∈ HomK (C , Ao) and c ∈ C.
(2.5)

This multiplication coincides with the generalized smash product of A by C, de-
noted by !(C,A) in [18, (2.1)].

Define the smash product A!C∗ whose underling K-module is the tensor
product A⊗K C∗ and internal multiplication is given by

(a!x).(b!y) =
∑

ab(0)!(xb(1))y,

for a⊗K x, b⊗K y ∈ A ⊗K C∗, and where the left H-action on C∗ is induced by
the right H-action on C. The unit of this multiplication is 1!εC . Moreover, it is
clear that the maps

−!εC : A �� A!C∗,

a  �� a!εC

1!− : C∗ �� A!C∗

x  �� 1!x

are K-algebra maps, and an easy computation shows that

αA : A!C∗ �� HomK (C , Ao) , (a!x  �� [c �→ aox(c)])

is also a K-algebra morphism where HomK (C , Ao) is endowed with the multipli-
cation of equation (2.5).

Proposition 2.2. [2, Proposition 3.21] Let H be a Hopf K-algebra, A a right H-
comodule K-algebra and C a left H-module K-coalgebra. Consider C = Ao ⊗K C
the Ao-coring associated to the entwining structure (Ao, C)ψ where ψ is defined by
(2.4), and let B = (A!C∗)o. Suppose that CK is a locally projective module. Then
T = (C, B, 〈−,−〉) is right rational pairing over Ao with the bilinear form 〈−,−〉
defined by

C×B �� Ao

(ao ⊗K c, (b!x)o)  �� 〈ao ⊗K c, (b!x)o〉 = aobox(c)

a, b ∈ A, c ∈ C, x ∈ C∗. Moreover, (Ao, C)ψ, T and ϕ = (1!−)o : C∗ → B
satisfy the conditions (1) and (2) stated in Proposition 2.1, and using restriction
of scalars, we obtain

RatT(MB) = RatrC(C∗M),

for every right B-module M .
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Proof. First we show that 〈−,−〉 is bilinear and balanced. For a, b, e ∈ A, x ∈ C∗

and c ∈ C, we compute

〈ao ⊗K c, (b!x)oeo〉 = 〈ao ⊗K c, ((e!εC)(b!x))o〉

=
∑

〈ao ⊗K c, (eb(0)!(εCb(1))x)o〉

=
∑

ao bo(0) e
o ((εC b(1))x)(c)

=
∑

ao bo(0) e
o εH(b(1))x(c)

= ao bo eo x(c)

= 〈ao ⊗K c, (b!x)o〉 eo,

which shows that 〈−,−〉 is right Ao-linear, and

〈(ao ⊗K c)eo, (b!x)o〉 = 〈aoψ(c⊗K eo), (b!x)o〉

=
∑

〈aoeo(0) ⊗K e(1)c, (b!x)o〉

=
∑

aoeo(0)b
ox(e(1)c)

=
∑

aoeo(0)b
o (xe(1))(c)

= 〈ao ⊗K c,
∑

(be(0))!xe(1)〉
= 〈ao ⊗K c, (b!x)(e!εC)〉
= 〈ao ⊗K c, eo (b!x)o〉,

which proves that 〈−,−〉 is Ao-balanced. The pairing 〈−,−〉 is clearly left Ao-
linear. Consider now the right natural transformation associated to 〈−,−〉:

αN : N ⊗Ao C �� HomAo (BAo , N)

n⊗Ao ao ⊗K c
 �� [(b!x)o �→ n〈ao ⊗K c, (b!x)o〉 = n(aobox(c))] .

We need to show that α− is injective. So let
∑

i ni ⊗Ao 1⊗K ci ∈ N ⊗Ao C whose
image by αN is zero. Since CK is locally projective, associated to the finite set
{ci}i there exists a finite set {(cl, xl)} ⊂ C × C∗ such that ci =

∑
l clxl(ci). The

condition

αN (
∑

i

ni ⊗Ao 1 ⊗K ci)((1!xl)o) =
∑

i

nixl(ci) = 0, for all the l′s,

implies that

∑

i

ni⊗Ao 1⊗K ci =
∑

i, l

ni⊗Ao 1⊗K xl(ci)cl =
∑

l

(
∑

i

nixl(ci)

)
⊗Ao 1⊗K cl = 0.

That is, αN is an injective map for every right Ao-module N . Therefore, T is a
right rational system. Lastly, the map β : B → ∗C sending (b!x)o �→ [ao ⊗K c �→
〈ao ⊗K c, (b!x)o〉] is an anti-homomorphism of K-algebras, and B is a K-algebra
extension of Ao, thus T is actually a right rational pairing.
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Let ao ∈ Ao, c ∈ C and x ∈ C∗, then

β(ϕ(x))(ao ⊗K c) = 〈ao ⊗K c, (1!x)o〉 = aox(c) = Φ(x)(ao ⊗K c)

which implies the condition (1) of Proposition 2.1. For the condition (2), it is
easily seen that the set {ao(0), xa(1)}, where ρA(a) =

∑
a(0) ⊗K a(1), satisfies this

condition for the pair (ao, x) ∈ Ao×C∗. The last stated assertion is a consequence
of Proposition 2.1, and this finishes the proof. �

Theorem 2.1. Let H be a Hopf K-algebra, A a right H-comodule K-algebra and C a
left H-module K-coalgebra. Consider C = Ao⊗K C the Ao-coring associated to the
entwining structure (Ao, C)ψ where ψ is defined by (2.4), and set B = (A!C∗)o.
Suppose that CK is a locally projective module and consider the right rational
pairing T = (C, B, 〈−,−〉) over Ao of Proposition 2.2, and put a = RatT(BB). If
AK is a flat module and RatrC(−) is an exact functor, then
(a) RatrC(C∗C∗) is a right H-submodule of C∗ and a = A⊗K RatrC(C∗C∗).
(b) For each right B-module M , the map

HomB (aB , M) �� HomC∗ (RatrC(C∗C∗) , M) (2.6)

sending f onto the morphism f̂ defined by f̂(c∗) = f(1 ⊗ c∗) for c∗ ∈ C∗ is
an isomorphism of K-modules.

(c) If, for every left A!C∗-module M , we endow HomC∗ (RatrC(C∗C∗) , M) with
the structure of a left A!C∗-module transferred from that of

HomA�C∗ (A�C∗a , M)

via the isomorphism (2.6), then we obtain a functor

HomC∗ (RatrC(C∗C∗) , −) : AM(H)C ��
A�C∗Mod,

which is right adjoint to the functor (see Proposition 2.2)

RatrC : A�C∗Mod ��
AM(H)C .

Proof. (a) Let y ∈ RatrC(C∗C∗) with rational system of parameters {(yi, ci)}i ⊂
C∗ × C. For any h ∈ H and x ∈ C∗, we obtain as in [10, Lemma 3.1]:

(x(yh))(c) =
∑

(c)

x(c(1))y(hc(2)) =
∑

(c),(h)

x(εH(h(1))c(1))y(h(2)c(2))

=
∑

(c),(h)

x(S(h(1))h(2)c(1))y(h(3)c(2)) =
∑

(h)

(xS(h(1))y)(h(2)c)

=
∑

(h),i

yi(h(2)c)(xS(h(1)))(ci) =
∑

(h),i

yi(h(2)c)x(S(h(1))ci),

for every c ∈ C, where S is the antipode of H. That is,

x(yh) =
∑

(h), i

(yih(2))x(S(h(1))ci).
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Hence, {(yih(2), S(h(1))ci)} ⊂ C∗ × C is a rational system of parameters for yh.
Thus yh ∈ RatrC(C∗C∗), and RatrC(C∗C∗) is a right H-submodule of C∗. Since
AK is a flat module, an easy computation shows now that A ⊗K RatrC(C∗C∗)
is a two-sided ideal of A!C∗. Let x ∈ C∗, a ⊗K y ∈ A ⊗K RatrC(C∗C∗), and
{(yi, ci)}i ⊂ C∗ × C a rational system of parameters for y. Applying the smash
product, we get

x(a⊗K y) =
∑

(a)

a(0) ⊗K ((xa(1))y) =
∑

(a), i

(a(0) ⊗K yi)x(a(1)ci);

this means that {(a(0) ⊗K yi, a(1)ci)}(a), i ⊂ (A ⊗K RatrC(C∗C∗)) × C is a ra-

tional system of parameters for a ⊗K y ∈ C∗
(
A⊗K RatrC(C∗C∗)

)
. Proposition

2.2, implies now that A ⊗K RatrC(C∗C∗) ⊆ a. Conversely, we know that a is
a right C-comodule, so the underlying K-module is a right C-comodule, and,
since RatrC is exact, a = RatrC(C∗C∗)a. From this equality, it is easy to see that
a ⊆ A⊗K RatrC(C∗C∗), and the desired equality is derived.

(b) We know that B = (A!C∗)o and, by (a), we have a = A ⊗K Ratr(C∗C∗).
Consider the homomorphism of algebras C∗ → A!C∗, which gives, as usual, the
induction functor (A!C∗) ⊗C∗ − : C∗Mod → A�C∗Mod which is left adjoint to the
restriction of scalars functor A�C∗Mod → C∗Mod. The mapping f �→ f̂ is then
defined as the composition

HomA�C∗ (A⊗K RatrC(C∗C∗) , M)
∼= HomA�C∗ ((A!C∗)⊗C∗ RatrC(C∗C∗) , M) ∼= HomC∗ (RatrC(C∗C∗) , M) ,

where the second is the adjointness isomorphism, and the first one comes from the
obvious isomorphism (A!C∗) ⊗C∗ RatrC(C∗C∗) ∼= A⊗K RatrC(C∗C∗).

(c) This is a consequence of (b) and Theorem 1.2. �

Keep, in the following corollary, the hypotheses of Theorem 2.1.

Corollary 2.1. If M is an object of AM(H)C , and E(AMC) denotes its injective
hull in the category AM(H)C , then

(a) The map

ζM : M → HomC∗
(
RatrC(C∗C∗) , E(AMC)

)

(m �→ ζM (m)(c∗) = c∗m, m ∈ M))

gives an injective envelope of M in A�C∗Mod.
(b) M is injective in A�C∗Mod if and only if M is injective in AM(H)C and ζM

is an isomorphism.
(c) Assume that the antipode of H is bijective, and that C∗ is flat as a K-

module. Let M be injective in AM(H)C . If M has finite support as a right
C-comodule, then M is injective as a left A-module.
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Proof. The two first statements follow from Proposition 1.4 and Theorem 2.1.
For the last statement, observe that BAo is a flat module. Now, the proof of [10,
Lemma 2.6] runs here to prove that AoB is flat. �

Remark 2.1. We have proved that, under suitable conditions,

RatT(MB) = RatrC(C∗M) = Ma = RatrC(C∗C∗)M, (2.7)

for every right B-module M . Therefore, equation (2.7) establishes a radical functor:
t : A�C∗Mod → AM(H)C which acts on objects by M → RatrC(C∗C∗)M . This
radical was used in [10, Lemma 2.9] for left and right semiperfect coalgebras over
a commutative field. In this way, if we apply our results and [17, Proposition 2.2]
to this setting, then most part of the results stated in [10] become consequences of
the results stated in this paper. In particular, let us mention that, for a semiperfect
coalgebra over a field, any comodule of finite support in the sense of [10] becomes
of finite support in the sense of Definition 1.1. Finally, let us note that the results
from [10] are only applicable to group-graded algebras over a field. This restriction
has been dropped by our approach, and we fully cover the case of graded rings
(take K = Z), since the Z-coalgebra ZG, where the elements of the group G are
all group-like, is easily shown to have an exact rational functor. Of course, the
category of comodules over this coalgebra is not semiperfect.
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[6] T. Brzeziński, The structure of corings. Induction functors, Maschke-type theorem,
and Frobenius and Galois-type properties, Alg. Rep. Theory 5 (2002), 389–410.
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Preradicals of Associative Algebras and their
Connections with Preradicals of Modules

M. Lúısa Galvão

Abstract. We study preradicals on an universal class D of algebras and we
present a process to construct preradicals over algebras from certain families
of preradicals over modules. We also define a torsion Plotkin radical on the
class of all associative algebras which satisfies dual properties of the Jacobson
radical.
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Let A be the class of all associative algebras (over a commutative ring R with 1)
not necessarily with identity and let D be an universal subclass (i.e., closed under
ideal and homomorphic images) of A. An assignment ρ : D → D is a preradical
on D if, for every A ∈ D, ρ(A) is an ideal of A and, for every homomorphism
f : A→ B, with A,B ∈ D, f(ρ(A)) ⊆ ρ(f(A)) [10]. Denoting by D-pr the class of
all preradicals on D, in D-pr we can define a partial order by: ρ1 ≤ ρ2 if ρ1(A) ⊆
ρ2(A), (A ∈ D) and, for this relation, the pair (D-pr,≤) behaves like a complete
lattice. Using this partial order we can define in D-pr the two associative binary
operations meet and join, and will consider another binary operation, the coproduct
denoted : which is defined by (ρ1 : ρ2)(A)/ρ1(A) = ρ2(A/ρ1(A)), (A ∈ D). The
composition of two preradicals, ρ1◦ρ2, defined in the usual way, in general, is not a
preradical. However, when possible, it can be considered the dual of the coproduct.

In Section 2 we analyze some properties of the class D-pr, in connection
with the partial order, the coproduct and the composition and in Section 3 we
present a process to construct preradicals on D from certain families of preradicals
over modules. In particular, supposing A ∈ A, in A-Mod, the category of right
A-modules, the concepts of radical and socle defined respectively by: for every

This work was developed within the Project POCTI-ISFL-1-143 “Fundamental and Applied

Algebra” of Centro de Álgebra da Universidade de Lisboa, financed by FCT and FEDER.
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M ∈ A-Mod,

J(M) =
⋂
{N : M/N ∈ Σ} and Soc(M) =

∑
{N : N ≤ M,N ∈ Σ}.

(where Σ is the class of all simple A-modules), are preradicals of module and
from the above construction we can conclude that the maps: Sr : A → Soc(AA),
Sl : A → Soc(AA), Jr : A → J(AA) and Jl : A → J(AA), (A ∈ A) are preradicals
on A such that Jr : Jl = Jl : Jr = (Jr ∨ Jl) : (Jr ∨ Jl) = J = the Jacobson
radical. Also, supposing β the prime (or Baer) radical, we prove that the maps
βr : A → P (AA) and βl : A → P (AA), (A ∈ A) where P (AA) and P (AA) are the
prime radical of AA and AA, respectively, are preradicals such that β = βr : βl =
βl : βr = (βr ∨ βl) : (βr ∨ βl).

One of our concerns in this paper is to define in (A-pr,≤) a preradical which
satisfies dual properties of the Jacobson radical. So, in Section 4 we define the
preradical Soc : A → A which in (A-pr,≤) satisfies dual properties of the radical
J , in particular, Soc = Sr ◦ Sl = Sl ◦ Sr = (Sr ∧ Sl) ◦ (Sr ∧ Sl). This preradical
Soc : A → Soc(A) is a torsion Plotkin radical but not a KA-radical. [See definitions
in Section 1.]

1. Preliminaries

Let A be the class of all associative algebras. We will denote I � A, (resp.
I � rA, I � lA) if I is an ideal (resp. right ideal, left ideal) of the algebra A ∈ A. A
subclass D of A is called abstract if it contains the algebra {0} and all isomorphic
copies of algebras from D. An abstract class is hereditary if it is closed under ideals
and it is universal if it is hereditary and closed under homomorphic images. In
the following, even if some results are valid under more general conditions, we will
suppose that D is an universal subclass of A and every subclass of D is abstract.

An assignment ρ : D → D is an ideal-mapping if, for every A ∈ D, ρ(A) �A.
With ρ we associate the classes,

Rρ = {A ∈ D : ρ(A) = A} Sρ = {A ∈ D : ρ(A) = 0}.
An ideal-mapping ρ is idempotent if, for every A ∈ D, ρ(ρ(A)) = ρ(A) and

is complete if I = ρ(I) � A implies I ⊆ ρ(A). We say that: ρ is hereditary if
I � A = ρ(A), implies ρ(I) = I, i.e., if Rρ is hereditary; ρ is torsion if, for every
I � A, ρ(I) = I ∩ ρ(A); ρ is ADS, (from Anderson-Divinsky-Sulinski) if, for every
I � A ∈ D, ρ(I) � A; ρ is isotone if, for every I � A ∈ D, ρ(I) ⊆ ρ(A).

In particular if ρ is torsion, ρ is ADS and isotone. If ρ is isotone then ρ
is complete and Sρ is hereditary [13, Prop. 4.3]. The following properties follow
directly from the respective definitions:

Proposition 1.1. Let ρ be an ideal-mapping on D. The following are equivalent:
a) ρ is torsion.
b) ρ is idempotent, isotone and hereditary.
c) ρ is isotone and, for every I � A ∈ D such that I ⊆ ρ(A), then ρ(I) = I.
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An ideal-mapping ρ is a preradical if for every homomorphism f : A → B,
with A,B ∈ D, f(ρ(A)) ⊆ ρ(f(A)). It is easily checked that, for every preradical
ρ, ρ(0) = 0 and that, if f : A → B is an isomorphism then f(ρ(A)) = ρ(B). The
null preradical denoted by 0, associates to each A ∈ D the zero ideal. The identity
preradical, denoted by 1, associates to each A ∈ D the ideal A. If ρ is a preradical
then Rρ is homomorphically closed and Sρ is closed under subdirect sums [13,
Prop. 1.1].

A preradical ρ is called an Hoehnke radical (H-radical, for short) if, for every
A ∈ D ρ(A/ρ(A)) = 0. A Kurosh-Amitzur radical (KA-radical, for short) is an H-
radical, idempotent and complete. An idempotent and complete preradical is called
a Plotkin radical. For more details about H-radicals, KA-radicals and Plotkin
radicals the reader is referred to [1], [7], [11] and [13].

Proposition 1.2. Let ρ be a preradical on D. For every A ∈ D and {Ai : i ∈ I} ⊆ D
a) If A =

∏
i∈I Ai then ρ(A) ⊆

∏
i∈I ρ(Ai).

b) If Ai � A, (i ∈ I) and A =
⊕

i∈I Ai then ρ(A) ⊆
⊕

i∈I ρ(Ai). If ρ is isotone
the equality holds.

c) For every I � A, ρ(A)+I
I ⊆ ρ(A/I). In particular,

i) ρ(A/I) = 0 implies ρ(A) ⊆ I.
ii) I ⊆ ρ(A) implies ρ(A)/I ⊆ ρ(A/I).

d) ρ is H-radical if and only if for every I�A such that I ⊆ ρ(A), then ρ(A/I) =
ρ(A)
I .

Proof. a) If pk :
∏
i∈I Ai → Ak, (k ∈ I) are the projections, then pk(ρ(A)) ⊆ ρ(Ak)

and ρ(A) ⊆
∏
i∈I pi(ρ(A)) ⊆

∏
i∈I ρ(Ai).

b) As in a), A =
⊕

i∈I Ai, implies ρ(A) ⊆
⊕

i∈I ρ(Ai). If ρ is isotone, as ρ(Ai) ⊆
ρ(A), (i ∈ I); then

⊕
i∈I ρ(Ai) ⊆ ρ(A).

c) Straightforward.
d) Let ρ be an H-radical and I � A such that I ⊆ ρ(A). By c), ρ(A/I) ⊆ ρ(A)

I

and, since ρ
(

A/I
ρ(A)/I

)

 ρ

(
A
ρ(A)

)
= 0, by c) i), ρ(A)

I ⊆ ρ(A/I). The converse
is clear. �

Proposition 1.3. Let ρ be an ideal-mapping.

a) If ρ is idempotent and ADS then ρ is isotone if and only if it is complete.
b) If ρ is an H-radical then ρ is isotone if and only if Sρ is hereditary.

Proof. a) Straightforward.

b) Let ρ be an H-radical such that Sρ is hereditary and I �A. If π : A→ A/ρ(A)
is the canonical epimorphism then

π(ρ(I)) =
ρ(I) + ρ(A)

ρ(A)
⊆ ρ(π(I)) = ρ

(
I + ρ(A)
ρ(A)

)
= 0.

So ρ(I) ⊆ ρ(A). The converse is clear. �
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2. The big lattice of preradicals

Let D-pr be the class of all preradicals on D. In D-pr we can define the partial
order: if ρ1, ρ2 ∈ D-pr, then ρ1 ≤ ρ2 if ρ1(A) ⊆ ρ2(A), (A ∈ D). For this relation
the pair (D-pr,≤) behaves like a complete lattice except that, in general, it is not
a set; hence it is called a big lattice. For every family (ρi)I of preradicals the meet
and the join are given by:

(
∧

i∈I
ρi

)
(A) =

⋂
ρi(A) and

(
∨

i∈I
ρi

)
(A) =

∑

i∈I
ρi(A), (A ∈ D).

Using this partial order we can define in D-pr the two associative binary
operations ∧ and ∨, and we will consider another binary operation, the coproduct
denoted : which is defined by: for every ρ1, ρ2 ∈ D-pr, (ρ1 : ρ2)(A)/ρ1(A) =
ρ2(A/ρ1(A)), (A ∈ D). It is clear that (ρ1 : ρ2)(A) � A. If f : A → B is a
homomorphism and f̄ : A/ρ1(A) → B/ρ1(f(A)) the canonical homomorphism
then

f̄(ρ2(A/ρ1(A))) = f [(ρ1:ρ2)(A)]+ρ1(f(A))
ρ1(f(A)) ⊆ ρ2[f(A)/ρ1(f(A))]

= (ρ1 : ρ2)(f(A))/ρ1(f(A))

so, f [(ρ1 : ρ2)(A)] ⊆ (ρ1 : ρ2)(f(A)). It is straightforward to see that this operation
is also associative.

For the composition of two preradicals, ρ1 ◦ ρ2 : D → D, defined in the usual
way, in general, ρ1◦ρ2 is not an ideal mapping and then, not a preradical. However,
if ρ1 is ADS and isotone then for every preradical ρ2, ρ1◦ρ2 is a preradical. Indeed,
for every A ∈ D, ρ1(ρ2(A)) � A and, if f : A→ B is a homomorphism, then

f(ρ1(ρ2(A))) ⊆ ρ1(f(ρ2(A))) ⊆ ρ1(ρ2(f(A))) = (ρ1 ◦ ρ2)(f(A)).

Remark 2.1.

I) For every ρ1, ρ2 ∈ D-pr, ρ1 ∧ ρ2 ≤ ρ1 ∨ ρ2 ≤ ρ1 : ρ2. The first inequality
is clear. Considering the canonical epimorphism π : A → A/ρ1(A) then
π(ρ2(A)) = ρ1(A)+ρ2(A)

ρ1(A) ⊆ ρ2(A/ρ1(A)) = (ρ1 : ρ2)(A)/ρ1(A).
II) If ρ1, ρ2 ∈ D-pr are such that ρ1 ◦ρ2 ∈ D-pr then ρ1 ◦ρ2 ≤ ρ2. If ρ1 is isotone,

then ρ1 ◦ ρ2 ≤ ρ1 ∧ ρ2.
III) 1 ◦ ρ = ρ ◦ 1 = ρ, 0 ◦ ρ = ρ ◦ 0 = 0, (ρ : 1) = (1 : ρ) = 1, (0 : ρ) = (ρ : 0) = ρ,

for every ρ ∈ D-pr.
IV) For every σ, τ, ρ ∈ D-pr.

1. σ is idempotent if and only if σ ◦ σ = σ.
2. σ is H-radical if and only if σ : σ = σ.
3. If σ ≤ τ then σ : ρ ≤ τ : ρ and ρ : σ ≤ ρ : τ . Indeed, if π : A/σ(A) →

A/τ(A), (A ∈ D), is the canonical epimorphism then

π[ρ(A/σ(A))] = (σ : ρ)(A)/τ(A) ⊆ ρ(A/τ(A)) = (τ : ρ)(A)/τ(A).

The second relation is clear.
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Proposition 2.1. Suppose ρ and θ preradicals such that ρ ≤ θ. Then
a) If ρ is idempotent, θ ◦ρ = ρ. If ρ is idempotent and isotone, θ ◦ρ = ρ = ρ◦ θ.
b) If θ is H-radical, ρ : θ = θ : ρ = θ.

Proof. a) If ρ is idempotent then θ(ρ(A)) ⊆ ρ(A) = ρ(ρ(A)) ⊆ θ(ρ(A)) = (θ◦ρ)(A),
(A ∈ D). If ρ is idempotent and isotone, then ρ(A) = ρ(ρ(A)) ⊆ ρ(θ(A)) ⊆ ρ(A).

b) If θ is H-radical, for every A ∈ A, (θ:ρ)(A)
θ(A) = ρ

(
A
θ(A)

)
⊆ θ

(
A
θ(A)

)
= 0, thus

θ(A) = (θ : ρ)(A). For the canonical epimorphism π : A/ρ(A) → A/θ(A) we have
π(θ(A/ρ(A))) ⊆ θ(A/θ(A)) = 0; therefore

θ(A/ρ(A)) =
(ρ : θ)(A)

ρ(A)
⊆ Ker(π) =

θ(A)
ρ(A)

hence (ρ : θ)(A) ⊆ θ(A). Since θ ≤ ρ : θ, the equality holds. �
Corollary 2.2.

a) If ρ and θ are ADS Plotkin radicals such that ρ ◦ θ = θ ◦ ρ, then ρ ◦ θ is the
greatest ADS Plotkin radical that is contained in ρ ∧ θ.

b) If ρ and θ are H-radicals such that ρ : θ = θ : ρ then ρ : θ is the least
H-radical that contains ρ ∨ θ.

Proof. a) By 1.3.a), ρ and θ are isotone and, ρ ◦ θ = θ ◦ ρ is a preradical. Also it
is easy to check that ρ ◦ θ is isotone and ADS. By other hand,

(ρ ◦ θ) ◦ (ρ ◦ θ) = (ρ ◦ ρ) ◦ (θ ◦ θ) = ρ ◦ θ.
Supposing τ an ADS Plotkin radical such that τ ≤ ρ∧θ, by 2.1.a), θ◦τ = ρ◦τ = τ ,
so (ρ ◦ θ) ◦ τ = ρ ◦ (θ ◦ τ) = ρ ◦ τ = τ . As ρ ◦ θ is isotone, by Remark 2.1.II),
τ ≤ ρ ◦ θ.
b) As (ρ : θ) : (ρ : θ) = (ρ : ρ) : (θ : θ) = ρ : θ then (ρ : θ) is H-radical. Supposing
τ is an H-radical such that ρ∨ θ ≤ τ , by 2.1.b), (ρ : θ) : τ = ρ : (θ : τ) = ρ : τ = τ
and ρ : θ ≤ τ . �

As for preradicals of modules [cf. 12] we can state the following properties
that relate the operations in D-pr.

Proposition 2.3. Let σ, τ, ρ ∈ D-pr and let {ρi}I ⊆ D-pr.
a) 1) (Modular law) σ ≤ ρ ⇒ σ ∨ (τ ∧ ρ) = (σ ∨ τ) ∧ ρ.

2) If {ρi}I is a directed set1, then τ ∧
(∨

i∈I ρi
)

=
∨
i∈I(τ ∧ ρi).

3)
(
τ :
∧
i∈I ρi

)
=
∧
i∈I(τ : ρi),

(
τ :
∨
i∈I ρi

)
=
∨
i∈I(τ : ρi).

b) When both sides of the following are defined,
1)
(∧

i∈I ρi
)
◦ τ =

∧
i∈I(ρi ◦ τ), (

∨
i∈I ρi) ◦ τ =

∨
i∈I(ρi ◦ τ).

2) If ρ is isotone, (τ : ρ) ◦ σ ≤ ((τ ◦ σ) : (ρ ◦ σ)) and σ is H-radical if and
only if, for every τ, ρ ∈ D-pr, the equality holds.

3) If σ is isotone, (σ : τ)◦ (σ : ρ) ≤ (σ : (τ ◦ρ)) and σ is idempotent if and
only if the equality holds, for every τ, ρ ∈ D-pr.

1{ρi}I is a directed set if for every i, j ∈ I there exists k ∈ I such that ρi ∨ ρj ≤ ρk.
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c) If, for every i ∈ I,
1) ρi is isotone, then

∨
i∈I ρi and

∧
i∈I ρi are isotone.

2) ρi is hereditary, then
∧
i∈I ρi is hereditary.

3) ρi is complete, then
∧
i∈I ρi is complete.

4) ρi is idempotent and isotone, then
∨
i∈I ρi is idempotent and isotone.

5) ρi is H-radical, then
∧
i∈I ρi is H-radical.

d) If ρ and σ are isotone, then ρ : σ is isotone.

Proof. a) and b). Similar to proofs for preradicals of modules in [12].
c) 1), 2) and 3). Clear.

4) By c) 1),
∨
i∈I ρi is isotone.

Since, ρj ≤
∨
i∈I ρi, (j ∈ I) and ρj is idempotent and isotone by 2.1.a), ρj ◦(∨

i∈I ρi
)

= ρj . Then, by b)1),
(∨

i∈I ρi
)
◦
(∨

i∈I ρi
)

=
∨
j∈I
[
ρj ◦

(∨
i∈I ρi

)]
=∨

j∈I ρj .
5) Since

∧
i∈I ρi ≤ ρj , (j ∈ I) and ρj is H-radical, by 2.1.b),

(∧
i∈I ρi :ρj

)
=ρj .

Thus, by 2),
(∧

i∈I ρi :
∧
i∈I ρi

)
=
∧
j∈I
(∧

i∈I ρi : ρj
)

=
∧
j∈I ρj .

d) Let I � A and π : I/ρ(I) → A/ρ(A) the canonical homomorphism. It follows
that

π(σ(I/ρ(I))) ⊆ σ(π(I/ρ(I))) = σ((I + ρ(A))/ρ(A))

(ρ : σ)(I) + ρ(A)
ρ(A)

⊆ σ

(
I + ρ(A)
ρ(A)

)
⊆ σ

(
A

ρ(A)

)
=

(ρ : σ)(A)
ρ(A)

.
�

In [13] a summable preradical (s-preradical, for short) is defined as an ideal-
mapping σ for which there exists a class C ⊆ D, homomorphically closed such that
σ(A) =

∑
{I � A : I ∈ C}, (A ∈ D) and it is proved that σ is an idempotent

preradical such that C ⊆ Rσ. It is also remarked that, in general, the class C is
not well determined [13, Props. 1.8 and 1.9]. Nevertheless we will denote it by sC .
Dually we can state

Proposition 2.4. For every abstract class C ⊆ D the ideal-mapping ρ defined by
ρ(A) :=

⋂
{I �A : A/I ∈ C}, (A ∈ D) is an H-radical, for which C ⊆ Sρ. We will

denote it by rC .

Proposition 2.5. Let ρ ∈ D-pr.
1) Suppose ρ̂ = sRρ . Then Rρ ⊆ Rρ̂ and ρ̂ is greater or equal to any idempotent

preradical τ ≤ ρ. If ρ is idempotent then ρ̂ ≥ ρ.
ρ̂ ≤ ρ if and only if ρ is complete. In this case, Rρ = Rρ̂, ρ̂ is a Plotkin
radical and it is the largest idempotent preradical contained in ρ. Thus the
equality ρ̂ =

∨
{τ ∈ D-pr : τ ≤ ρ and τ idempotent} holds.

2) Suppose ρ̄ = rSρ . Then ρ ≤ ρ̄ and Sρ = Sρ̄. ρ̄ is the least H-radical that
contains ρ, i.e., ρ̄ =

∧
{τ ∈ D-pr : ρ ≤ τ and τ is H-radical}.

Proof. 1) Since Rρ is homomorphically closed, we can consider the s-radical ρ̂ =
ρRρ and it is clear that Rρ ⊆ Rρ̂. Supposing τ an idempotent preradical such that



Preradicals of Associative Algebras 209

τ ≤ ρ, then τ(A) = τ(τ(A)) ⊆ ρ(τ(A)) ⊆ τ(A), (A ∈ D); thus ρ(τ(A)) = τ(A) ⊆
ρ̂(A). Therefore τ ≤ ρ̂ and

∨
{τ ∈D-pr :τ ≤ρandτ is idempotent}≤ ρ̂.

It is clear that ρ is complete, if and only if ρ̂(A) ⊆ ρ(A), (A ∈ D), or
equivalently, if and only if ρ̂ ≤ ρ. Therefore, in this case, since ρ̂ is idempotent,
ρ̂ ≤

∨
{τ ∈ D-pr : τ ≤ ρ and τ idempotent} and the equality holds. On the other

hand if A ∈ Rρ̂, then A = ρ̂(A) ⊆ ρ(A) ⊆ A, thus A ∈ Rρ and Rρ = Rρ̂. Supposing
I � A such that I = ρ̂(I), then I ∈ Rρ̂ = Rρ and therefore I ⊆ ρ̂(A) =

∑
{I � A :

ρ(I) = I}. Thus ρ̂ is complete and consequently a Plotkin radical.
2) [13, prop. 1.20]. �

Corollary 2.6. Let ρ ∈ D-pr
a) ρ is a Plotkin radical if and only if ρ = ρ̂.
b) ρ is an H-radical if and only if ρ = ρ̄.
c) ρ is a KA-radical if and only if ρ = ρ̂ = ρ̄.

Proof. a) [13, Prop. 1.12], b) clear, c) [13, Prop. 1.18]. �

With any abstract class C ⊆ D we associate the operator U defined by

UC = {A ∈ D : A/I /∈ C for all I � A, I �= A}
Clearly UC is homomorphically closed. The s-summable preradical sUC will

be called the upper preradical of the class C.

3. Modules and preradicals

Let A,B ∈ D and f : A→ B be an epimorphism. It is well known that if MB is a
right B-module, then M is a right A-module that will be denoted Mf−1

A (in short
MA) under the action xa = xf(a), for every x ∈ M and a ∈ A. MB and MA have
the same submodules, An(MA) = f−1(An(MB)) ⊇ Ker(f), (where An(MA) is the
annihilator of M) and if g : MB → TB is a B-homomorphism then g : MA → TA
is an A-homomorphism.

Conversely if MA is a right A-module, such that Ker(f) ⊆ An(MA), M is a
right B-module, that will be denoted Mf

B, (in short MB), under the action xb = xa,
if b = f(a), for every x ∈M and b ∈ B. The modules MB and MA have the same
submodules, An(MB) = f(An(MA)) and if g : MA → TA is an A-homomorphism,
then g : MB → TB is a B-homomorphism. One can also note, that, for every
B-module MB, Ker(f) ⊆ An(MA) and (MA)B = MB. In particular, if we consider
the regular modules AA and BB,

1) B is a right A-module under the action b ∗ a = bf(a) for every b ∈ B and
a ∈ A. One has Ker(f) ⊆ An(BA) and the map f : AA → BA is an A-module
epimorphism.

2) Supposing Ker(f) ⊆ An(AA), A is a right B-module, under the action a∗b =
aa′ if b = f(a′), for every a ∈ A and b ∈ A and the map f : AB → BB is a
B-epimorphism.
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For each A ∈ D, let A-Mod be the class of all right A-modules. Recall that
a preradical σ on A-Mod associates to each module M ∈ A-Mod a submodule
σ(M) such that for each homomorphism f : M → N , on has f(σ(M)) ⊆ σ(N)
and in the class A-pr of all preradicals in A-Mod we can consider also a binary
operation, called coproduct and denoted : and defined by: for every σ1, σ2 ∈ A-pr,
(σ1 : σ2)(M)/σ1(M) = σ2(M/σ1(M)), (M ∈ A-Mod).

A preradical σ : A-Mod → A-Mod is an idempotent (resp. radical) if, for
every M ∈ A-Mod, σ(σ(M)) = σ(M)(resp. σ(M/σ(M)) = 0). For every preradical
σ ∈ A-pr the following is valid:

1. If M ≤ T then σ(M) ≤ σ(T ).
2. If M =

⊕
i∈I Mi, with Mi ≤ M , (i ∈ I) then σ(M) =

⊕
i∈I σ(Mi).

3. σ(AA) � A.
4. σ is a radical if and only if σ : σ = σ.
5. σ is idempotent if and only if σ ◦ σ = σ.

For more details about preradical on A-Mod see [6].
Supposing (σA)D a family of assignments indexed in D, where σA ∈A-pr,

(a∈D), by 3. we can define an ideal-mapping σ :D→D by σ(A)=σA(AA), (A∈D),
that will be denoted σ=∆A∈DσA (the diagonal mapping of (σA)D). We say that:

(σA)D verifies the condition (P ) (resp. condition (P ∗)) if, for every A,B ∈ D
and every epimorphism f : A → B, σA(BA) ⊆ σB(BB) (resp. σA(BA) = σB(BB)).

It is easy to check that, if (σA)D verifies the condition (P ), then σ = ∆A∈DσA
is a preradical on D. In fact, if f : A → B is an algebra epimorphism for the
A-epimorphism, f : AA → BA, we have, f(σ(A)) = f(σA(AA)) ⊆ σA(BA) ⊆
σB(BB) = σ(B).

Proposition 3.1. Let (σA)D and (βA)D be families of maps, where σA, βA ∈ A-pr,
(A ∈ D). Supposing σ = ∆A∈DσA and β = ∆A∈DβA, if (σA)D and (βA)D verify
(P ∗) then

a) (σA : βA)D verifies (P ∗) and σ : β = ∆A∈D(σA : βA).
b) If, for every A ∈ D, σA is a radical in A-Mod, then σ = ∆A∈DσA is an

H-radical on D.
c) If A =

⊕
i∈I Bi, with Bi � A, (i ∈ I) then σ(A) =

⊕
i∈I σ(Bi).

Proof. a) Let f : A → B be an algebra epimorphism. Supposing I = σA(BA) =
σB(BB) � B, B π→ B/I the canonical epimorphism and g = πf : A → B/I, as
(βA)D verifies (P ∗), it follows, respectively, that

βB(BB/I) = βB(B/I)B = βB/I
[
(B/I)B/I

]

βA(BA/I) = βA(B/I)A = βB/I
[
(B/I)B/I

]

Then βA(BA/I) = βB(BB/I) and so

(σA : βA)(BA)
σA(BA)

= βA

(
BA

σA(BA)

)
= βB(BB/σB(BB)) =

(σB : βB)(BB)
σB(BB)

i.e., (σA : βA)(BA) = (σB : βB)(BB).
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On the other hand, for every A ∈ D, from the equality (σ:β)(A)
σ(A) = β(A/σ(A))

it follows:
(σ : β)(A)
σA(AA)

= βA/σ(A)

[
(A/σ(A))A/σ(A)

]
= βA(A/σA(AA)) =

(σA : βA)(AA)
σA(AA)

so (σ : β)(A) = (σA : βA)(AA).

b) Consequence of 3.1.a).

c) If A =
⊕

i∈I Bi with Bi � A also AA =
⊕

i∈I(Bi)A with (Bi)A ≤ AA. Then
σ(A) = σA(AA) =

⊕
i∈I σA((Bi)A). On the other hand one can easily check that,

for every i ∈ I, the action of A on Bi defined by the projection pi : A→ Bi (i ∈ I),
coincide with the multiplication on A, i.e., bi ∗ a = bipi(a) = bia, for every bi ∈ Bi
and a ∈ A. Thus, as (σA)D verifies (P ∗), we have σA((Bi)A) = σBi(Bi) = σ(Bi).
So, σ(A) =

⊕
i∈I σ(Bi). �

With the convention that the intersection and the sum of an empty family
of submodules of a module M is equal to M and {0}, respectively, for every class
C ⊆ A-Mod one can define the dual preradicals, Reject and Trace on A-Mod,
denoted, respectively, ReC and TrC as follows: ([4, 11-2.1.])

ReC(M) =
⋂
{Ker(f) : f ∈ HomA(M,C), C ∈ C}, (M ∈ A-Mod),

T rC(M) =
∑
{Im(f) : f ∈ HomA(C,M), C ∈ C}, (M ∈ A-Mod),

where the first is a radical and the second an idempotent.
It is easy to check that, if C is closed under non zero homomorphic image

then, for every M ∈ A-Mod, T rC(M) =
∑
{N : N ≤ M, N ∈ C}; if C is closed

under nonzero submodules, ReC(M) =
⋂
{N : M/N ∈ C}; in this case, supposing

K ≤M we have

ReC(M/K) =
⋂
{N ≤ M : K ⊆ N, M/N ∈ C}

K
.

Let (CA)D be a family of module classes indexed in D where, for every
A ∈ D, CA ⊆ A-Mod and let C =

⋃
A∈D CA. For every A we define Ker(CA) =⋂

M∈CA
An(M) and on C we will consider the two following conditions: For every

epimorphism f : A→ B, where A,B ∈ D
M1) MB ∈ CB implies MA ∈ CA
M2) MA ∈ CA and Ker(f) ⊆ An(MA) implies MB ∈ CB. See [7, page 118].

Proposition 3.2. Let C =
⋃
A∈D CA where (CA)D is a family of module classes

indexed in D with, CA ⊆ A-Mod, (A ∈ D)

1) If C satisfies M1) then the family of preradicals (ReCA)D verifies P ; so σ =
∆A∈DReCA is a preradical.

2) a) If, for every A ∈ D, CA is closed under non zero submodules and C
satisfies M1) and M2) then (ReCA)D verifies (P ∗); so σ = ∆A∈DReCA

is an H-radical.
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b) Let C such that, for every A ∈ D, CA is closed under non zero homo-
morphic images. If C satisfies M2), the family of preradicals (TrCA)D
verifies (P ); so σ = ∆A∈DTrCA is a preradical; if C satisfies M1) and
M2) then (TrCA)D verifies (P ∗).

Proof. 1) Clear.
2) Supposing f : A→ B an epimorphism where A,B ∈ D, since Ker(f) ⊆ An(BA)
also Ker(f) ⊆ An(BA/N) and Ker(f) ⊆ An(NA), for every N ≤ BA. So

a) If C satisfies M1) and M2), then {D ≤ BA : BA/D ∈ CA} = {T ≤ BB :
BB/T ∈ CB} and if, for every A ∈ D, CA is closed under non zero submodules
then ReCA(BA) = ReCB (BB).

b) Let C such that, for every A ∈ D, CA is closed under non zero homomorphic
images. If C satisfies M2), {N ≤ BA : NA ∈ CA} ⊆ {H ≤ BB : HB ∈ CB}
and TrCA(BA) = TrCB(BB). If C satisfies M1) and M2) then {N ≤ BA : N ∈
CA} = {N ≤ BB : N ∈ CB} and TrCA(BA) = TrCB (BB). �

Example 3.1. Supposing ΣrA the class of all simple right A-modules, (i.e., MA �= 0
and 0 and M are its only submodules) for every MA ∈ A-Mod, let J(MA) be
its radical defined by J(MA) = ReΣr

A
(MA) and dually let Soc(MA) be its socle

defined by Soc(MA) = TrΣr
A

(M) [4, 11-2.1.]. Since ΣrA is closed under non zero
submodules and non zero homomorphic image, then

J(MA) =
⋂
{N ≤ M : M/N ∈ ΣrA} and Soc(MA) =

∑
{N ≤M : N ∈ ΣrA}.

If we consider the family of module classes (ΣrA)A, then Σr =
⋃
A∈A ΣrA

satisfies M1) and M2). [7, Prop. 3.14.6.]. Thus the families of preradicals (TrΣr
A)A

and (ReΣr
AA

) where, for every A ∈ A, (TrΣr
A

)(MA) = Soc(MA) and ReΣr
A

(MA) =
J(MA), verify (P ∗); then, by 3.2, Sr = ∆A∈ATrΣr

A
where Sr : A → Soc(AA),

(A ∈ A) is a preradical and Jr = ∆A∈AReΣr
A

where Jr : A → J(AA), (A ∈ A)
is an H-radical. Analogously, Sl : A → Soc(AA) = Sl(A) (A ∈ A) and Jl : A →
J(AA) = Jl(A) (A ∈ A) are a preradical and an H-radical, respectively.

Recall that an ideal P of A is prime if P �= A and supposing I,K � A
such that IK ⊆ P then I ⊆ P or K ⊆ P . A module M ∈ A-Mod is a prime
module if MA �= 0, and xI = 0 implies x = 0 or MI = 0, for x ∈ M and I � A;
or, equivalently, xA �= 0 for every x ∈ M\0, and An(N) = An(M) for every
0 �= N ≤ M [7, p. 124]. It is clear that a non zero submodule of a prime module is
a prime module. In particular a simple module M is a prime module. In [7, Props.
3.14.16 and 3.14.17] it is proved that

Proposition 3.3. P is a prime ideal if and only if P is the annihilator of a
prime module. In particular if P is prime then AA/P is a prime module and
P = An(A/P ).

Supposing D � rA, it is easy to conclude that A/D is a prime module if and
only if A2 �⊆ D and aI ⊆ D implies a ∈ D or AI ⊆ D, for every a ∈ A and I �A.
In particular, if aA ⊆ D then a ∈ D. Such right ideal will be called a prime right
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ideal. Analogously, we define prime left ideal. From 3.3, it follows that every prime
ideal is a prime right and left ideal.

Proposition 3.4.

a) The annihilator of every non zero element of a prime right (resp. left) module
is a prime right (resp. left) ideal.

b) Every prime ideal is an intersection of prime right (or left) ideals.

Proof. a) Supposing M a prime module and 0 �= x ∈ M let ϕ : AA → xA be the
epimorphism defined by ϕ : a → xa, (a ∈ A). As xA �= 0, xA is a prime module
and so AA/Ker(ϕ) = AA/An(x) is a prime module.

b) Consequence of 3.3 and a). �

Theorem 3.5. Let σ be an ideal mapping on D and, for every A ∈ D, let CrA
(resp. ClA) be an abstract class of prime right (resp. left) A-modules such that
σ(A) = Ker(CrA) = Ker(ClA). Supposing Cr =

⋃
CrA and Cl =

⋃
ClA closed under

non zero submodules, then
a) If Cr and Cl satisfy the M1) condition, σr = ∆A∈DReCr

A
and σl = ∆A∈DReCl

A

are preradicals and σ = σr : σl = σl : σr = (σr ∨ σl) : (σr ∨ σl). If A has
identity then σ(A) = σr(A) = σl(A).

b) If Cr and Cl satisfy the M1) and M2) conditions then σr and σl are H-radicals
and σ = σr ∨ σl is the least H-radical which contains σr ∨ σl.

Proof. a) By 3.2.1) σr and σl are preradicals. As, for every A ∈ D.

σ(A) =
⋂
{AnA(M) : M ∈ CrA} =

⋂
{An(x) : 0 �= x ∈ M ∈ CrA} (1)

and, for every 0 �= x ∈M ∈ CrA, we have A/An(x) 
 xA ≤M then A/An(x) ∈ CrA
and σ(A) ⊇ σr(A) =

⋂
{D � rA : A/D ∈ CrA}. Analogously σ(A) ⊇ σl(A). On the

other hand, it is clear that σ(A) =
⋂
{D � rA : σ(A) ⊆ D,A/D ∈ CrA}; so

⋂
{D�rA : σl(A) ⊆ D,A/D ∈ CrA} ⊆

⋂
{D�rA : σ(A) ⊆ D,A/D ∈ CrA} = σ(A).

Conversely, since

σ(A) =
⋂
{An(M) : M ∈ ClA} ⊆

⋂
{An(A/E) : E � lA and A/E ∈ ClA}

it follows that

σ(A)A ⊆
⋂
{An(A/E)A : E � lA and A/E ∈ ClA}

⊆
⋂
{E � lA : A/E ∈ ClA} = σl(A).

Then, for every D� rA such that σl(A) ⊆ D and A/D ∈ CrA we have σ(A)A ⊆ D.
As A/D is a prime module, then σ(A) ⊆ D and the equality σ(A) =

⋂
{D � rA :

σl(A) ⊆ D,A/D ∈ CrA} holds. Then,

(σl : σr)(A)
σl(A)

= σr(A/σl(A)) =
⋂
{D � rA : σl(A) ⊆ D,A/D ∈ Cra}

σl(A)
=

σ(A)
σl(A)

and (σl : σr)(A) = σ(A). So σl : σr = σ. Analogously, σr : σl = σ.
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Since
⋂
{D � rA : (σr ∨ σl)(A) ⊆ D,A/D ∈ CrA}

=
⋂
{D � rA : σl(A) ⊆ D,A/D ∈ CrA}

then
(σr ∨ σl : σr)(A)

(σr : σl)(A)
= σr(A/(σr : σl)(A))

=
⋂
{D � rA : (σr ∨ σl)(A) ⊆ D,A/D ∈ CrA}

(σr : σl)(A)
=

σ(A)
(σr : σl)(A)

.

So (σr ∨ σl : σr) = σ and analogously (σr ∨ σl : σl) = σ. By 2.3.b), the equality
(σr ∨ σl : σr ∨ σl) = σ holds.

If A has identity then σ(A) = σ(A)A ⊆ σl(A) ⊆ σ(A); so, σ(A) = σl(A).
Analogously σ(A) = σr(A).

b) Consequence of 2.2.b), 2.5.2) and 3.2.1). �

It is well known that, for every A ∈ A, J(A) = Ker(ΣrA) = Ker(ΣlA) where ΣrA
and ΣlA are families of prime modules. As Σr and Σl are closed under submodules
and satisfy M1) and M2), by 3.5.

Corollary 3.6.

a) J = Jr : Jl = Jl : Jr = (Jr ∨ Jl) : (Jr ∨ Jl) = Jr ∨ Jl.
b) J is the least H-radical that contains Jr ∨ Jl.
c) If A has identity then J(A) = Jr(A) = Jl(A).

In [2], Andrunakievich defines a special class as a class E of prime algebras,
hereditary and closed under essential extensions (i.e., if 0 �= I � A is essential,
I ∈ E and A is a prime algebra then A ∈ E). By [7, Prop. 2.2.3], the upper
preradical of a special class in a KA-radical which will be called a special radical.
In particular, the prime and the Jacobson radical are special radicals [7, Props.
3.8.13 and 3.14.24].

If γ is a special radical, supposing CrA (resp. ClA) the class of the right (resp.
left) prime A-modules such that γ(A/An(M)) = 0 it is easy to check that CrA and
ClA are closed under submodules. From [7, Theorem 3.14.23] they satisfy the M1)
and M2) conditions and, for every A ∈ D, γ(A) = Ker(CrA) = Ker(ClA). Then from
3.5, it follows

Proposition 3.7. Let γ be a special radical and for every A ∈ A, let CrA (resp. ClA)
be the class of prime right A-modules (resp. left) such that γ(A/An(M)) = 0. Then

a) γr = ∆A∈DReCr
A

and γl = ∆A∈DReCl
A

are H-radicals,
b) the equalities γ = γr : γl = γl : γr = (γr ∨ γl) : (γr ∨ γl) = γr ∨ γl hold

and γ is the least H-radical that contains γr ∨ γl. If A has identity then
γ(A) = γr(A) = γl(A).
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About the prime radical β we can observe that, by 3.3, the class of the right
prime A-modules such that β(A/An(M)) = 0 coincide with the class PrA of all
prime right A-modules. As, for every M ∈ A-Mod, its prime radical P (M) is
defined by

P (M) = RePr
A

(M) =
⋂
{N ≤M : M/N ∈ PrA}

then, supposing βr = ∆A∈ARePr
A

, βr is an H-radical on A where, for every A ∈ A,
βr(A) = P (AA) =

⋂
i∈I{D � A : A/D ∈ PrA}. Analogously, βl : A → P (AA)(A ∈

A) is an H-radical. So, from 3.5,

Proposition 3.8. Let β be the Baer radical (or prime radical) on A. Then β = βr :
βl = βl : βr = (βr ∨ βl) : (βr ∨ βl) = βr ∨ βl and β is the least H-radical that
contains βr ∨ βl. If A has identity then β(A) = βr(A) = βl(A).

Proof. In fact, it is well known that if β is the prime radical then β(A) =
⋂
i∈I{P�

A : P is prime} and from 3.3 we have

β(A) =
⋂
{An(M) : M ∈ PrA} = Ker(PrA)

Analogously β(A) = Ker(P lA). �

Remark 3.1. If A =
⊕

i∈I Ai where (Ai)I is a family of ideals of A, by 3.1.c), it fol-
lows that Jr(A) =

⊕
i∈I Jr(Ai), Sr(A) =

⊕
i∈I Sr(Ai) and βr(A) =

⊕
i∈I βr(Ai).

Also if γ is any special radical and γr is defined as in 3.7, then γr(A) =
⊕

i∈I γr(Ai).
Analogously for Jl, Sl, βl and γl.

About the preradicals Jr and Jl we can state also the following properties:
Recall that an ideal or a subalgebra B of A is quasi-regular (q.r. for short)

if all its elements are quasi-regular (i.e., for every a ∈ B there exists a′ ∈ A such
that a + a′ − aa′ = 0 and a + a′ − a′a = 0). It is also well known that J(A)
is the maximum quasi-regular ideal of A. Then J(A) = A if and only if A is a
quasi-regular algebra. We will say that A is a semiprimitive algebra if J(A) = 0.

In [6, III.6,7] it has been proved that J(A) = A if and only if Jr(A) = Jl(A) =
A. J(A) = 0 if and only if Jr(A) = Jl(A) = 0. Then RJ = RJd

= RJe = {A ∈ A :
A is q.r.}, SJ = SJd

= SJe = {A ∈ A : A is semiprimitive}.

Proposition 3.9.

a) Jr is an H-radical, idempotent and hereditary.
b) Jr is not complete, nor isotone and SJr is not hereditary.

Proof. a) Since Jr(A) ⊆ J(A), Jr(A) is a quasi-regular ideal and thus Jr(Jr(A))
= Jr(A). If Jr(A) = A, A is quasi-regular; then every I � A is quasi-regular and
Jr(I) = I.
b) It is enough to notice that, since J(A) is a quasi-regular ideal, Jr(J(A)) =
J(A), but, in general, J(A) �⊆ Jr(A) [6, Example 2]. Therefore Jr is not complete
so it is not isotone. Since Jr is a non isotone H-radical, by 1.3.b), SJr is not
hereditary. �
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4. A Plotkin radical dual of the Jacobson radical

It is well known that in A-Mod, the concepts of radical and socle are considered
dual of each other. In 3.6, we proved that

1) in (A-pr,≤)the Jacobson radical J is related with the preradicals Jr and Jl
by the equalities J = Jr : Jl = Jl : Jr = (Jr ∨ Jl) : (Jr ∨ Jl) = Jr ∨ Jl, and

2) J is the least H-radical that contains Jr ∨ Jl.
In this section we are concerned to define in (A-pr,≤) a preradical which

may be consider dual of J . For that, we define a preradical of algebras, denoted
Soc which is related with the preradicals Sr and Sl (which may be consider dual
of Jr and Jl respectively) by dual equalities of 1) and satisfies a property dual of
2). This preradical is a torsion Plotkin radical, but not a KA-radical.

Supposing A ∈ A let S be a complete set of representatives of isomorphism
classes of simple A-modules. Recall that, if M ∈ A-Mod, the homogeneous compo-
nents of M are the submodules HT =

∑
{V : V ≤M,V 
 T } (T ∈ S), and

1. For every T ∈ S, HT is a complete invariant, i.e., for every endomorphism
ϕ ∈ EndA(M), ϕ(HT ) ⊆ HT [4, 11-1.9 and 11-1.10].

2. Soc(M) =
⊕

T∈S HT [4, 11-1.9 and 11-1.10].
3. Every complete invariant contained in Soc(M) is a direct sum of some of

its homogeneous components. Therefore, the homogeneous components are
the minimal complete invariants of Soc(M). [Proof similar in [3], §3, no4,
Prop. 11.]

4. M is a semisimple (or completely reducible) module if M = Soc(M) or, equiv-
alently, if MA = M and for every N ≤ M , there is T ≤ M such that
M = N ⊕ T . Then, if M is semisimple, N ≤ M is a minimal submodule if
and only if it is indecomposable. The equality MA = M is valid and every
submodule N of M is also semisimple. [4, 11-1.6].
Since, for every a ∈ A, the map εa : AA → AA defined by εa : b → ab,

(b ∈ A) is an A-endomorphism, every complete invariant of AA is an ideal of A.
Conversely, if I � A is such that AI = I then I is a complete invariant of AA. In
fact, supposing ϕ ∈ EndA(AA) we have ϕ(I) = ϕ(A)I ⊆ I. In particular if, for
every I � A, AI = IA = I, the following are equivalent:

1) I � A,
2) I is a complete invariant of AA,
3) I is a complete invariant of AA.

A right ideal of A is called a simple right ideal if it is a simple submodule
of AA. Supposing Σr(A) the set of all simple right ideals of A, the homogeneous
components HD of AA for some D ∈ Σr(A), will be called the right homogeneous
components of A. Since HD is a complete invariant of AA, HD is an ideal of A.
Thus, if {Dk : k ∈ K} is a complete set of representatives of the isomorphism
classes of Σr(A) and Hk = HDk

, (k ∈ K) we have Sr(A) = Soc(AA) =
⊕

k∈K Hk

(direct sum of algebras). Analogously one defines simple left ideal and left homo-
geneous components.
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A is a right semisimple algebra, (resp. left semisimple algebra) if AA (resp.
AA) is a semisimple module. A is a semisimple algebra if A is a right and left
semisimple algebra. Analogously, an ideal I of A is a semisimple ideal if I is a
semisimple algebra. It is clear that if A is semisimple, then, for every I � A,
IA = AI = I. In particular, A2 = A.

Remark 4.1. If T � rA is such that T 2 = 0 then for every simple right ideal D,
DT = 0. In fact if DT �= 0, then DT = D and therefore DT 2 = DT = 0.

Lemma 4.1. Let I � A.
a) Σr(I) = Σr(In) = {D ∈ Σr(A) : DI �= 0} ⊆ Σr(A), (n ∈ N).
b) Sr(I) = Sr(In) = Sr(A)I = (I ∩ Sr(A))I ⊆ Sr(A), (n ∈ N).
c) If I ⊆ Sr(A), then Sr(I) = I2 = In, for every n ≥ 2.
d) I is right semisimple if and only if I ⊆ Sr(A) and I2 = I. Sr(A)2 is the largest

semisimple right ideal of A. I is semisimple if and only if I ⊆ Sr(A) ∩ Sl(A)
and I2 = I. (Sr(A) ∩ Sl(A))2 is the largest semisimple ideal of A.

Proof. a) Let D ∈ Σr(I). Since DI = D �= 0, it follows that D � rA and DA �= 0.
Supposing 0 �= D′ � rA such that D′ ⊆ D, then D′ � rI and therefore D′ = D.
Conversely let D ∈ Σr(A) be with DI �= 0. Necessarily DI = D ⊆ I and D � rI.
As, for every 0 �= D′ � rI such that D′ ⊆ D, we have D′A = D then D = DI =
D′AI ⊆ D′I ⊆ D′ ⊆ D. So, D′ = D.

By the above, it is clear that Σr(In) ⊆ Σr(I). Conversely, supposing D ∈
Σr(A) such that DI �= 0, then DI = D and it follows that DIn = D �= 0, (n ∈ N).
b) The first equality is obvious. By a), Sr(I) = Sr(A)I ⊆ Sr(A) and since Sr(I) is a
semisimple right I-module then Sr(I) = Sr(I)I ⊆ (I ∩Sr(A))I ⊆ Sr(A)I = Sr(I).
c) Consequence of b).
d) By b) the first statement is clear. On the other hand, as Sr(Sr(A)2) = Sr(A)3 =
Sr(A)2, Sr(A)2 is right semisimple and, if I is a semisimple right ideal of A, then
I ⊆ Sr(A) and I = I2 ⊆ Sr(A)2. Analogously we prove the last statement. �
Remark 4.2.

I) By 4.2.b), Sr is an isotone, complete and ADS preradical. Nevertheless Sr
is not idempotent, neither hereditary. In fact, considering the commutative
Z-algebra Zp2 = Z/p2

Z, where p is a prime number, Zp2 has the only ideals
A ⊇ pZ/p2

Z ⊇ 0. Thus Sr(A) = pZ/p2
Z and (Sr ◦ Sr)(A) = Sr(A)2 =

(pZ/p2
Z)2 = 0 �= Sr(A). On the other hand, let K be a field and A = Kx+Ky

a two-dimensional algebra over K whose basis elements {x, y} satisfy the
following product

· x y
x x 0
y y 0

[5, Example 5]. As xA = Kx and yA = Ky are simple right ideals, Sr(A) =
xA+yA = A. However for the ideal I = (y) = Ky we have Sr(I) = Sr(A)I =
AI = 0 �= I. So, Sr is not hereditary.
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II) Sr commutes with sum and direct sum. Supposing B =
∑
i∈I Ai where Ai�A,

(i ∈ I). By 4.1.b) Sr(B) = Sr(A)
∑

I Ai =
∑

I Sr(A)Ai =
∑

K Sr(Ai). The
last statement is clear.

III) Sr ◦ Sl = Sl ◦ Sr is an isotone and ADS preradical. In fact, as Sr and Sl are
isotone and ADS preradicals, Sr ◦ Sl is a preradical (cf. beginning of Sec. 2)
and it is easy to see that it is also isotone and ADS.
By 4.1.b) and its left version, (Sr ◦ Sl)(A) = Sr(A)Sl(A) = (Sl ◦ Sr)(A).

In [13] a class B ⊆ A is called a Plotkin class if it is homomorphically closed
and every A ∈ A contains a largest B-ideal denoted B(A), i.e., if I � A where
I ∈ B then I ⊆ B(A). Also it is proved that if B is a Plotkin class then the
summand preradical sB is a Plotkin radical such that RsB = B and, for every
A ∈ A, sB(A) = B(A). [13, Prop. 1.14.]

In particular the classes RSr and RSl
are Plotkin classes. In fact, RSr is

homomorphically closed and, from 4.1.d), for every A ∈ A, there exist a largest
right semisimple ideal, the ideal Sr(A)2. Analogously for RSl

. Supposing CR the
class of all semisimple algebras, as CR = RSr ∩RSl

, also CR is a Plotkin class and
it is hereditary. Indeed, for every I �A ∈ CR, we have I = AI = IA thus Sr(I) =
Sr(A)I = AI = I and Sl(I) = ISl(A) = IA = I. Then the summand preradical
sCR is a hereditary Plotkin radical such that RsCR = CR. So, we introduce the
following definition:

Definition 4.2. For every A ∈ D, the socle of A, denoted Soc(A), is the sum of all
its semisimple ideals, if they exist. If they don’t, then Soc(A) = 0.

Remark 4.3.
I) From the definition it follows that Soc = sCR is an hereditary Plotkin radical,

such that RSoc = CR and, for every A, Soc(A) is the largest semisimple ideal
of A. Then, supposing S = Sr ∧ Sl, by 4.1.d), Soc(A) = S(A)2.

II) By 2.5.1), Soc is the largest idempotent preradical contained in S = Sr ∧ Sl.
In fact as RS = RSr ∩ RSl

= CR, then Soc = sCR = sRS = Ŝ and, since Sr
and Sl are complete, S is complete.

Lemma 4.3. Let I � A be such that I ⊆ Sr(A). Then
a) J(I) =

∑
{T ∈ Σr(A) : T ⊆ I, T 2 = 0} and IJ(I) = 0. Therefore J(I)2 = 0.

If I is semisimple then J(I) = 0.
b) I = Sr(I) + J(I) = I2 + J(I). In particular, Sr(A) = Sr(A)2 + J(Sr(A)).
c) If I ⊆ (Sr ∧ Sl)(A) then I2 is a semisimple ideal and I = I2 ⊕ J(I).
d) A is semisimple if and only if A is right (resp. left) semisimple and semiprim-

itive.

Proof. a) Since Sr(A)A is a semisimple A-module, we have I =
∑
{D ∈ Σr(A) :

D ⊆ I} and J(I) =
∑
{T ∈ Σr(A) : T ⊆ J(I)}. Let T ∈ Σr(A) be such that T ⊆

J(I). If T 2 �= 0, by the Brauer Lemma, [9, 10.22.], T = eA for some idempotent
e �= 0; thus e ∈ J(I) which is impossible. Therefore T 2 = 0. The converse is clear.
On the other hand, suppose D,T ∈ Σr(A) such that D ⊆ I and T ⊆ J(I). As
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T 2 = 0, by Remark 4.1, DT = 0, so IJ(I) = 0. If I is semisimple, as J(I) is a left
submodule of II, then J(I) = IJ(I) = 0.
b) The following relations hold:

I =
∑

{D ∈ Σr(A) : D ⊆ I,D2 �= 0} + {D ∈ Σr(A) : D ⊆ I,D2 = 0}

⊆
∑

{D ∈ Σr(A) : DI �= 0}+ J(I)

= Sr(I) + J(I) = I2 + J(I) ⊆ I.

c) Let I ⊆ (Sr ∧ Sl)(A). By 4.1.c) and its left version, Sr(I) = Sl(I) = I2 =
Sr(I2) = Sl(I2); so I2 is a semisimple ideal. By b), I = I2 + J(I) and as J(I2) =
0 = I2 ∩ J(I), we have I = I2 ⊕ J(I).
d) If A is right semisimple and J(A) = 0 there are no nilpotent right ideals. Thus
Sr(A) = Sl(A) by [8, IV, 3. Theo. 1] and A = Sr(A) = Sl(A). The converse is
clear. �

Remark 4.4. If A �= 0 is a semisimple algebra, the right and left homogeneous
components coincide and these are simple algebras (H is a simple algebra if H2 �= 0
and {0} and H are its only ideals). They also coincide with its minimal ideals.
Indeed, the first statement is a consequence of 4.3.d) and [8, IV, 3. Theo. 1]. On the
other hand as, for every I �A, AI = IA = I, its ideals are the complete invariants
of AA and AA; so, the minimal ideals are the minimal complete invariants of AA,
i.e., its homogeneous components. Since every ideal I of A is a complete invariant
of AA, I is a direct sum of some of its homogeneous components.

Theorem 4.4.

a) Soc = Sr ◦ Sl = Sl ◦ Sr = (Sr ∧ Sl) ◦ (Sr ∧ Sl) is a torsion Plotkin radical.
For every A ∈ A, Soc(A) = Sr(A)Sl(A) = Sr(A)2Sl(A)2.

b) Soc commutes with sum and direct sum.
c) Supposing S = Sr ∧ Sl, for every A ∈ A, S(A) = Soc(A) ⊕ J(S(A)).

Proof. a) By the left version of 4.3.b), Sl(A) = Sl(A)2 + J(Sl(A)), where
J(Sl(A))2 = 0. Then, by Remark 4.1., Sr(J(Sl(A))) = Sr(A)J(Sl(A)) = 0. Thus,

(Sr ◦ Sl)(A) = Sr(Sl(A)2 + J(Sl(A))) = Sr(A)Sl(A)2 = Sl[(Sr ◦ Sl)(A)].

Analogously, (Sr ◦Sl)(A) = Sr[(Sr ◦Sl)(A)] and (Sr ◦Sl)(A) is a semisimple ideal.
Then we have (Sr ◦ Sl)(A) ⊆ Soc(A) = S(A)2 ⊆ Sr(A)Sl(A) = (Sr ◦ Sl)(A). So,
Soc = Sr ◦Sl and, by Remark 4.2.III), Soc is isotone. Then, by 1.1, Soc is a torsion
preradical.

As (Sr ∧ Sl)(A) ⊆ Sr(A), Sl(A), by 4.1.c),

Sr((Sr ∧ Sl)(A)) = Sl((Sr ∧ Sl)(A)) = (Sr ∧ Sl)(A)2 = Soc(A)

then [(Sr ∧ Sl) ◦ (Sr ∧ Sl)](A) = Soc(A) and Soc = (Sr ∧ Sl) ◦ (Sr ∧ Sl).
Also we have,

(Sr ◦ Sl)(A) = (Sr(A)2 + J(Sr(A)))(Sl(A)2 + J(Sl(A))) = Sr(A)2Sl(A)2
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b) Let A=
∑

i∈IAi. Then Soc(A)=Sr(Sl(A))=Sr
(∑

i∈ISl(Ai)
)

=
∑
i∈ISoc(Ai).

c) Consequence of 4.3.c) �

Example 4.1. Let G = {gi : 1 ≤ i ≤ n} be a finite group of order n, K a field and
A = K[G] its group algebra. It is easy to check that the map h : A → K defined
by: for every z =

∑n
i=1 αigi ∈ A, h(z) =

∑n
i=1 αi is an algebra epimorphism,

such that Ker(h) = {z =
∑n
i=1 αigi :

∑n
i=1 αi = 0} is an ideal of dimension n− 1,

over K, and {1 − g : g ∈ G} is one of its basis. In particular for the element
v =

∑n
i=1 gi on has h(v) = n and for every z ∈ A the equalities vz = zv = h(z)v

are valid. Therefore Av = vA = Kv. Since dimK(vA) = 1 and A is an algebra
with identity, Kv is a simple right and left ideal, thus Kv ⊆ Sr(A) ∩ Sl(A). Also,
as A/Ker(h) 
 K, then J(A) ⊆ Ker(h).

Suppose c(K) = p and p divides n. Then h(v) = 0, therefore v2 = h(v)v = 0
and so (Kv)2 = 0. Thus Kv ⊆ J(A).

As, for every z ∈ Sr(A), zJ(A) = 0 one has zv = h(z)v = 0 therefore h(z) = 0
and Sr(A) ⊆ Ker(h). Analogously, Sl(A) ⊆ Ker(h).

In particular, let n = 6, G defined by G =< a, b : a2 = 1, b3 = 1, aba = b2 >
and suppose c(K) = 2. A = K[G] admits the basis {1, a, b, b2, ab, ba} and the right
ideals

D1 = (1 + a + b + ab)A = K(1 + a + b2 + ba) + K(b + b2 + ab + ba)

D2 = (1 + b2 + ab + ba)A = K(1 + b2 + ab + ba) + K(a + b + b2 + ab)

are simple of dimension 2. Then D1 + D2 + Kv ⊆ Sr(A) ⊆ Ker(h). Also the sum
is direct. Therefore dimK(D1 ⊕D2 ⊕Kv) = 5 = dimK(Ker(h)) and

Sr(A) = D1 ⊕D2 ⊕Kv =

{
z =

n∑

i=1

αigi :
n∑

i=1

αi = 0

}
.

Since z ∈ J(A) if and only if Sr(A)z = 0 and a + b, b + ab ∈ Sr(A), from the
equalities (a + b)z = (b + ab)z = 0, one obtains z ∈ Kv therefore J(A) = Kv.

On the other hand, since A is an artinian algebra with identity, by [6, IV.3.b)],
the equivalences hold

z ∈ Sl(A) ⇔ J(A)z = 0 ⇔ vz = h(z)v = 0 ⇔ h(z) = 0 ⇔ z ∈ Ker(h).

Thus Sl(A) = Sr(A) = D1 ⊕D2 ⊕ J(A) = Ker(h).
Since D1, D2 �⊆ J(A), necessarily D1 = D2

1 and D2 = D2
2. From D1 ⊕D2 ⊆

Sr(A) we get (D1 ⊕D2)J(A) = J(A)(D1 ⊕D2) = 0. Thus

Soc(A) = Sr(A)Sl(A) = (D1 ⊕D2 ⊕ J(A))2 = (D1 ⊕D2)2 = D1 ⊕D2.

Remark 4.5.
I) By the dual equalities J = Jr : Jl = Jl : Jr = (Jr ∨Jl) : (Jr ∨Jl) (3.6.a)) and

Soc = Sr ◦ Sl = Sl ◦ Sr = (Sr ∧ Sl) ◦ (Sr ∧ Sl) (4.4.a)) the preradicals J and
Soc can be considered dual in A-pr. Also 3.6.b) and Remark 4.3.II) are dual
statements.
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II) By Example 4.1 we can say that Soc = Sr ◦ Sl < Sr ∧ Sl. As by 4.4.c),
(Sr ∧ Sl)(A) = Soc(A) ⊕ J((Sr ∧ Sl)(A)), then (Sr ∧ Sl)(A) = SocA if and
only if J((Sr ∧ Sl)(A)) = 0.

III) As for every A ∈ A, J(Soc(A)) = 0 = SocA ∩ J(A) one has Soc ∧ J = 0.

Proposition 4.5. Let A ∈ A be such that Soc(A) �= 0.

a) Soc(A) is the direct sum of all minimal semisimple ideals of A and can be
written as a direct sum of simple and semisimple algebras in an unique way.

b) Every non zero semisimple ideal of A is a direct sum of some simple compo-
nents of Soc(A).

Proof. a) Since, if I � Soc(A), ISoc(A) = Soc(A)I = I then, I � Soc(A). Hence
a minimal ideal of Soc(A) is also a minimal ideal of A and, conversely, if H is
a minimal ideal of A semisimple, H is also a minimal ideal of Soc(A). So, since
Soc(A) is a semisimple algebra, Soc(A) is a direct sum of its minimal ideals, which
are the set of all minimal ideal of A semisimple.

b) From Remark 4.4 every I � Soc(A) is a direct sum of some of its homogeneous
components. �

Proposition 4.6. The following are equivalent:

a) Sr(A) = Soc(A).
b) There are no nilpotent simple right ideals.

Proof. a) ⇒ b) If Sr(A)=Soc(A), Sr(A) is semisimple and therefore J(Sr(A))=0.
By 4.3.a), there are no simple right ideals nilpotents.

b) ⇒ a) By 4.3.a),b) J(Sr(A)) = 0 and Sr(A) = Sr(A)2 = Sr(Sr(A)). So, by
4.3.d), Sr(A) is semisimple. Thus Sr(A) ⊆ Soc(A) and the equality is valid. �

Corollary 4.7.

1) The following are equivalent:
a) Soc(A) = Sr(A) = Sl(A).
b) There are no one-sided nilpotent simple ideals.

2) In particular, if A is a semiprime algebra then Soc(A) = Sr(A) = Sl(A).

Proof. Consequence of 4.6 and its left version. �

Recall that an idempotent e ∈ A is called primitive if eR is indecomposable
in AA. Then D is a simple right ideal such that D2 �= 0 if and only if it is generated
by a primitive idempotent e ∈ Sr(A). In fact if D2 �= 0, by the Brauer Lemma,
there is a idempotent e ∈ Sr(A) such that D = eR and as D is indecomposable,
e is primitive. Conversely, if D = eR where e ∈ Sr(A) is a primitive idempotent
then D is an indecomposable submodule of Sr(A), so a simple submodule.

Proposition 4.8. Soc(A) =
∑

i∈I,k∈K eiAfk where {ei : i ∈ I} and {fk : k ∈ K} are
the set of all primitive idempotents of A belonging to Sr(A) and Sl(A), respectively.
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In particular if Soc(A) = Sr(A) = Sl(A) then

Soc(A) =
∑

e∈P
eA =

∑

e∈P
Ae =

∑

ei,ek∈P
eiAek =

∑

e∈P
AeA

where P = {e ∈ Soc(A) : e primitive idempotent}.

Proof. Since for D ∈ Σr(A), D2 �= 0 if and only if D = eiA for some i ∈ I, by 4.3.a)
Sr(A) =

∑
i∈I eiA + J(Sr(A)) and, analogously, Sl(A) =

∑
k∈K Afk + J(Sl(A))

where J(Sr(A))2 = J(Sl(A))2 = 0 and J(Sl(A))
(∑

k∈K Afk
)

=
(∑

i∈I eiA
)

J(Sr(A)) = 0. Then,

Soc(A) = Sr(A).Sl(A) =
∑

i∈I,k∈K
eiAAfk ⊆

∑

i∈I,k∈K
eiAfk ⊆

∑

i∈I,k∈K
eiAfkfk

⊆
∑

i∈I,k∈K
eiAAfk = Soc(A).

If Soc(A) = Sr(A) = Sl(A), we obtain Soc(A) =
∑

e∈P eA =
∑
e∈P Ae =∑

ei,ek∈P eiAek. On the other hand, Soc(A) = ASoc(A) =
∑
e∈P AeA. �

Proposition 4.9. Let A be an artinian right algebra such that J(A) �= A. Then
Soc(A) = V ′V where V = {a ∈ A : J(A)a = 0} and V ′ = {a′ ∈ A : a′J(A) = 0}.

Proof. By [6, IV.3], supposing e2 = e ∈ A such that e + A = 1A/J , one has
Sl(A) = eV and Sr(A) = V ′e, where V = {a ∈ A : J(A)a = 0} and V ′ = {a′ ∈
A : a′J(A) = 0}. Thus Soc(A) = Sr(A)Sl(A) = V ′eV .

Since, for every a ∈ A, a−ae ∈ J(A), if b′ ∈ V ′ and b ∈ V , then b′e = b′ + q′,
with q′ ∈ J(A) and therefore b′eb = (b′ + q′)b = b′b + q′b = b′b ∈ V ′V . Thus
V ′eV = V ′V . �
Example 4.2. Let S = {a, b, c, d} be the semigroup defined by the multiplication
table

· a b c d
a a b a a
b a b a a
c a b a c
d a b a d

K a field and A = K[S] = {z = αa + βb + γc + δd : α, β, γ, δ ∈ K} its semigroup
algebra. It is easy to check that, for every z = αa+ βb + γc+ δd, z′ = α′a+ β′b+
γ′c + δ′d ∈ A,

zz′ = [(α+β + γ + δ)(α′ + γ′) + (α+β)δ′]a+ [(α+β + γ+ δ)β′]b+ (γδ′)c+ (δδ′)d.

In [6] it was shown that J(A) = {z = αa+ βb + γc ∈ A : α+ β + γ = 0} and
d + J(A) = 1A/J(A) where d2 = d. Let z = αa + βb + γc + δd ∈ A, V = {z ∈ A :
J(A)z = 0} and V ′ = {z ∈ A : zJ(A) = 0}. Then z ∈ V , if and only if, for every
z′ = α′a + β′b + γ′c ∈ J(A),

z′z = [(α′+β′+γ′)(α+γ)+(α′+β′)δ]a+[(α′+β′+γ′)β]b+(γ′δ)c = −γ′δa+γ′δc = 0,
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i.e., if and only if γ′δ(c − a) = 0. Since γ′ is arbitrary, necessarily, δ = 0.Thus,
V = Ka + Kb + Kc.

z ∈ V ′, if and only if, for every z′ = α′a + β′b + γ′c ∈ J(A),

zz′ = [(α + β + γ + δ)(−β′)]a + [(α + β + γ + δ)β′]b = 0

and, since β′ is arbitrary, necessarily, α + β + γ + δ = 0.
Therefore V ′ = {z = αa + βb + γc + δd : α + β + γ + δ = 0}.
Then Sr(A) = V ′d and Sl(A) = dV .
Since, for every z′ = αa + βb + γc + δd ∈ V ′, z′d = (−γ − δ)a + γc + δd one

has

Sr(A) = V ′d = {αa + γc + δd ∈ A : α + γ + δ = 0}
Sl(A) = dV = d(Ka + Kb + Kc) = K(da) + K(db) + K(dc) = Ka + Kb.

Finally, since, for every z′ = αa + βb + γc + δd ∈ V ′, z′a = z′b = z′c = 0 it
follows that z′V = z′(Ka + Kb + Kc) = 0. Therefore Soc(A) = V ′V = 0. In this
case,

S(A) = Sr(A) ∩ Sl(A) = {αa + γc + δd ∈ A : α + γ + δ = 0} ∩ (Ka + Kb) = 0

and Sr(A) ∩ Sl(A) = Soc(A), i.e., (Sr ∧ Sl)(A) = Soc(A).
It is well known that every semiprimitive right artinian algebra is semisimple,

has identity, and is artinian and noetherian. Supposing I �A such that I and A/I
are semiprimitive right artinian then A is semiprimitive and right artinian.

Proposition 4.10. Let A be a right artinian (or right noetherian) algebra. Then
a) Soc(A) is a semisimple artinian and noetherian algebra.
b) Soc(A/Soc(A)) = 0.

Proof. a) Let A be right artinian such that Soc(A) �= 0. Supposing D � rSoc(A),
as Soc(A) is semisimple one has DSoc(A) = D and therefore D � rA. So, if A is
right artinian also Soc(A) is right artinian. On the other side, J(Soc(A)) = 0. Then
Soc(A) is semiprimitive and right artinian; therefore it is artinian and noetherian
(on right and left).
b) Since A/Soc(A) is also right artinian, analogously one can deduce that
Soc(A/Soc(A)) = I/Soc(A) (where I � A), is a semiprimitive artinian algebra.
So, as Soc(A) and I/Soc(A) are semiprimitive right artinian, I is a semiprimitive
and artinian algebra and therefore a semisimple algebra. Thus I ⊆ Soc(A) and
Soc(A/Soc(A)) = 0.

Analogously if A is right noetherian also Soc(A) is right noetherian and there-
fore right artinian. The proof follows as above. �

Supposing D the class of all right (or left) artinian (or noetherian) algebras,
in general D is not hereditary and so it is not an universal class. However, by
4.10 we can consider the ideal mapping Soc|D : D → D which is also idempotent,
complete and satisfies, for every A ∈ D, Soc(A/Soc(A)) = 0. Therefore Soc|D can
be consider a Kurosh-Amitzur radical on D.
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Remark 4.6. One may notice that, if A is not right artinian, in general, 4.10.b)
is not valid, therefore Soc is not an H-radical and so it is not a Kurosh-Amitzur
radical. Indeed, in [8, II.6.3] one has the following example of a primitive ring, so
an Z-algebra (Kaplansky): if V is a left vector space over the division ring ∆ and
(ei)N is one of its basis, consider the subring of linear maps given by the following
matrices:

SA,d =





A 0 0 . . . . . .
0 d 0 . . . . . .
0 0 d . . . . . .

. . . . . .
. . . . . .





where A ∈ Mn(∆) is any finite matrix, and d is any element of ∆. This subring is
a primitive ring and therefore it is semiprime. Thus, the set A of all matrices SA,d
is also a semiprime ring; so Soc(A) = Sr(A) = Sl(A). By [8, IV, 9], Soc(A) is the
set of all matrices that represent finite rank endomorphisms (i.e., whose images
space has finite dimension), therefore the matrices of type SA,0. Since, for every
n ∈ N, A ∈ Mn(∆) and d ∈ ∆, SA,d − dI ∈ Soc(A), where dI is a scalar matrix,
one has A/Soc(A) = {dI + Soc(A) : d ∈ ∆} 
 ∆ and so

Soc(A/Soc(A)) 
 Soc(∆) = ∆ �= 0.
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Algèbre, Cap. 8, Hermann, Paris 1958).

[4] J. Dauns, Modules and Rings (Cambridge University Press, 1994).

[5] N.J. Divinski, Rings and Radicals (Mathematical Expositions No14, University of
Toronto Press, 1965).

[6] M.L. Galvão, M.T. Nogueira and J.A. Green, Radicals and Socles of an Algebra
without Identity, Commun. Algebra 31(6) (2003) 2883–2907.

[7] B.J. Gardner and R. Wiegandt, Radical Theory of Rings, Pure and Applied Math-
ematics. A series of Monographs and Textbooks 261 (2004) (New York, Marcel
Dekker).

[8] N. Jacoson, Structure of Rings, Amer. Math. Soc. Colloquium Publ. 37 (1956) (Prov-
idence).

[9] T.Y. Lam, A First Course in Noncommutative Rings, 2nd edition, Graduate Texts
in Mathematics 131 (1991) (Springer-Verlag, New York).



Preradicals of Associative Algebras 225

[10] G. Michler, Radikale und Sockel, Math. Annalen 167 (1966) (1–48).

[11] R. Mlitz and R. Wiegant, Radicals and subdirect decompositions of Ω-groups, J.
Austral. Math. Soc., Ser A 48 (1990) 171–198.

[12] F. Raggi, J.R. Montes, H. Rincón, R. Fernández-Alonso and C. Signoret, The lattice
structure of preradicals, Commun. Algebra 30(3) (2002) 1533–1544.

[13] B. de la Rosa, S. Veldsman and R. Wiegandt, On the theory of Plotkin Radicals,
Chinese J. Math. (Taiwan, R.O.C.) 21(1) (1993) 33–54.
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On the Construction of Separable Modules

P.A. Guil Asensio, M.C. Izurdiaga and B. Torrecillas

Dedicated to Robert Wisbauer on his 65th birthday

1. Introduction

Let R be an associative ring with identity and κ, an infinite regular cardinal. A
left R-module M is said to be κ≤-generated (resp. κ<-generated) if there exists a
generator set {mi}I of M of cardinality at most κ (resp. strictly smaller than κ).
And a module M is called κ-separable if any subset X of M of cardinality strictly
smaller than κ is contained in a κ<-generated direct summand of M . Let us note
that any direct sum of κ<-generated modules is clearly a κ-separable module that
we will call trivial. This notion of separability can be extended as follows. Given
an infinite regular cardinal κ and a non-empty class of modules C, we may say
that a module M is (κ, C)-separable if each subset X of M of cardinality strictly
smaller than κ is contained in a direct summand of M belonging to C. Again, we
will say that the (κ, C)-separable module M is non-trivial if it is not a direct sum
of elements in C. These modules present a pathological behavior in the sense that
they have enough direct summands belonging to C, but they are not direct sums
of modules in C.

Several authors have proved that, for some particular elections of κ and C,
the absence of non-trivial (κ, C)-separable modules characterizes the structure of
certain rings (see, e.g., [8, 10, 12, 16, 21]). These results are mainly based on the fact
that the construction of non-trivial (κ, C)-separable modules is closely related to
the decomposition properties of modules in C into direct summands. For instance,
if C is the class of all countably generated left modules, left perfect rings are
characterized in [12] as those rings for which there do not exist non-trivial (ℵ1, C)-
separable and torsionless left modules (in the sense that they are submodules of
direct products of copies of the ring). With the same notation, it is shown in
[21] that a ring R is left pure-semisimple if and only if any (ℵ1, C)-separable left

The first author was partially supported by the DGI and by the Fundación Séneca. Part of the
sources of both institutions come from the FEDER funds of the European Union.
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module is trivial. Other interesting case appears when we consider the class P of
all projective left modules. It is essentially proved in [21, Theorem 10] that the
ring is left perfect if and only if any (ℵ0,P)-separable left module is trivial.

In this paper we review some of the methods to construct κ-separable mo-
dules, with the aim of stressing the close relation between the lack of nice decom-
position properties for certain classes of modules and the existence of pathological
κ-separable modules, in the sense that they are not direct sums of κ<-generated
modules (i.e., they are non-trivial κ-separable modules). First, we will study the
construction of ℵ0-separable modules in Section 4. We will follow the approach
given in [13], which has its origin in the construction developed by Hill for Abelian
groups [16] (see also [21]). Let M be a module and let us denote by AddM the
class of all direct summands of arbitrary direct sums of copies of M . We will see
that, when M is a direct sum of finitely generated modules, the existence of a
cardinal number λ such that any (ℵ0, AddM)-separable module is a direct sum
of λ-generated modules implies that the module M has a perfect decomposition.
Where a module M has a perfect decomposition when any element of AddM has a
decomposition that complements direct summands (see for instance [4, 11]). More-
over, when M is a direct sum of finitely presented modules, the converse also holds.

The extension of this result to arbitrary R-modules has been made in [14] by
using techniques related to λ-presentable modules. Recall that, if λ is an infinite
regular cardinal number, a partially ordered set I is called λ-directed when every
subset of I of cardinality strictly smaller than λ has an upper bound in I. A
directed system of modules {Mi, fij}I is λ-directed when so is its index set I; and
its direct colimit is called a λ-directed colimit. A module M is λ-presentable if the
functor HomR(M,−) : R−Mod → Ab commutes with λ-directed colimits. Let us
note that, for any module M , there exists a regular cardinal λ ≤ |M |+ such that
M is λ-presentable (where |M |+ denotes the successor cardinal of the cardinal |M |
of M). We will devote Section 5 to explain one of the main results of [14]. Namely,
that if M is a λ-presentable module, then AddM = λ− lim

→
AddM precisely when

every (λ,Add M)-separable module is trivial (where λ − lim
→

AddM is the class

of all totally ordered λ-directed colimits of modules in AddM). The proof of this
general result requires the assumption of the Generalized Continuum Hypothesis
(GCH) and is based on an extension of the construction developed by Eklof in [8].
Let us point out that, when λ = ℵ0, the GCH is not required and, consequently,
we obtain a theorem in ZFC (see also [10]).

2. Preliminaries and notation

We start by recalling some known set-theoretic facts. Along this paper, the car-
dinality of a set I will be denoted by |I|, and the successor cardinal of a cardi-
nal number λ, by λ+. If λ is an infinite cardinal, we shall denote by Pλ(I) the
set {J ⊆ I : |J | < λ}. The cofinality of a limit ordinal α is the least cardinal
number, denoted cf(α), such that there exists an increasing sequence of ordinals
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{αν : αν < α}ν<cf(α) whose limit is α. An infinite cardinal κ is regular when
cf(κ) = κ. The symbol 
 will mean restriction.

Let κ be an uncountable regular cardinal. A subset C of κ is said to be closed
unbounded (club for short) if supC = κ and any C′ ⊆ C with supC′ < κ verifies
that supC′ ∈ C. A subset E of κ is stationary if E ∩C �= ∅ for every club C of κ.

Let E be a stationary subset of κ consisting of limit ordinals. For any e ∈ E,
a ladder on e is a strictly increasing sequence of successor ordinals, {ηe(α) : α <
cf(e)}, whose limit is e. A ladder system on E is a family, η = {ηe : e ∈ E},
where ηe is a ladder on e for each e ∈ E. The ladder system η on E is said to
be tree-like if verifies the following compatibility condition: for any e, f ∈ E and
any α ∈ cf(e) and µ ∈ cf(f) such that ηe(α) = ηf (µ), we have that α = µ and
ηe 
 α = ηf 
 α. Every stationary subset of any uncountable regular cardinal κ has
a ladder system. If κ = ℵ1, this ladder system can be constructed with the tree-like
property (see [9, Exercise XII.17]). However, if κ > ℵ1, the existence of tree-like
ladder systems has been only proved using additional set-theoretic hypotheses. For
instance, given a successor cardinal λ+, the existence of a tree-like ladder system
on some stationary subset of λ++ has been obtained in [8, Theorem 9] using the
hypothesis 2λ ≤ λ++. If, in addition, we assume the GCH, that is, that 2λ = λ+

for any infinite cardinal λ, a similar argument to that of [9, Exercise XII.17] gives
the existence of a tree-like ladder system on any stationary subset of λ+ consisting
of limit ordinals of cofinality λ.

Proposition 2.1. (see [14, Proposition 2.1]) Let us assume GCH and let λ be an
uncountable cardinal number and E, a stationary subset of λ+ consisting of limit
ordinals of cofinality λ. Then there exists a tree-like ladder system on E.

Recall that a ring T (possibly without identity) is said to have enough idem-
potents if there exists a family {ei : i ∈ I} of pairwise orthogonal idempotent
elements of T such that

T =
⊕

i∈I
Tei =

⊕

i∈I
eiT.

Let us fix a ring with enough idempotents T . Along this paper, the word module
will mean a unitary left T -module (in the sense that TM = M) and morphisms
will operate on the right. We will denote by T−Mod the category of all unitary
left T -modules. Given a T -module M , an index set I and an element x ∈M I , we
will denote by x(i) the i-entry of x, for each i ∈ I. The same notation will be used
to denote the components of a morphism f : N → M I . If N is isomorphic to a
direct summand of M , we shall write N �⊕ M . We will call Proj and PProj the
classes of all projective and all pure-projective unitary modules, respectively.

A non-empty class C of modules is said to be abstract when it is closed under
isomorphisms; every class considered in this paper will be of this type. Given an
abstract class C, we will call

AddRC =

{
N : N �⊕

⊕

i∈I
Ci for some family {Ci}I of objects in C

}
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Let κ be an infinite cardinal number. We will denote by Cκ the subclass of C
consisting of all κ<-generated modules of C. In particular, if κ is regular and all
modules in C are κ<-generated, then (AddRC)κ is precisely the class

AddκRC =

{
N : N �⊕

⊕

i∈I
Ci for some family {Ci}I

of objects in C with |I| < κ

}
.

Recall that a decomposition of the module M into direct summands, M =⊕
i∈I Mi, is said to complement direct summands when for any direct summand

S of M , there exists J ⊆ I such that M = S⊕
(⊕

j∈J Mj

)
(see, e.g., [2]). We will

say that a module M has a perfect decomposition if any module in AddM has a
decomposition that complement direct summands (see [4, 11]).

We refer to [2, 1, 9, 15, 20] for any undefined notion used along this text.

3. Separable modules

We begin this section by stating some basic properties of separable modules.

Definition 3.1. Let κ be an infinite regular cardinal and C, a nonempty class of
modules. We will say that a module Q is (κ, C)-separable if any subset of Q of
cardinality strictly smaller than κ is contained in a direct summand of Q that
belongs to C.

The next easy lemma characterizes separable modules in terms of the exis-
tence of certain special filtrations.

Lemma 3.2. [14, Lemma 3.2] Let κ be an infinite regular cardinal, Q, a κ≤-
generated module and C, a nonempty class of modules. Suppose that C is closed
under direct summands and that each module in C is a direct sum of κ<-generated
modules. The following assertions are equivalent:

i) Q is (κ, Cκ)-separable.
ii) Q is (κ, C)-separable.

iii) There exists a continuous chain {Qα : α < κ} of κ<-generated submodules
of Q such that Q =

⋃
α<κQα and for each successor ordinal α < κ, we have

that Qα is a direct summand of Q that belongs to C.

Let Q be a left R-module. A continuous ascending chain of κ<-generated
submodules {Qα : α < κ} of Q with Q =

⋃
α<κQα will be called a κ-filtration

of Q (see [9, Definition IV.1.3]). If, in addition, this chain verifies the equivalent
conditions of the above lemma, it will be called a strong (κ, C)-filtration. As we
will see along this paper, these filtrations are particularly useful for checking when
a separable module is trivial.

We now define what it is known as the Γ-invariant of a module (see [9, IV]).
Recall that the binary relation defined on the set P(κ) of all subsets of a regular
cardinal number κ by

X ∼ Y ⇔ ∃ a club C ⊆ κ such that X ∩ C = Y ∩ C
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is an equivalence relation. The equivalence class of any X ⊆ κ will be denoted by
X̃ (see [9, Definition 4.4]). Let us note that a subset E of κ is stationary if and
only if Ẽ �= ∅̃.

Notation 1. Let κ be a regular infinite cardinal, C a nonempty class of modules
and Q, a κ≤-generated module which is (κ, C)-separable. Suppose that C is closed
under direct summands and that each module in C is a direct sum of κ<-generated
modules. Let {Qα : α < κ} be a strong (κ, C)-filtration of Q and consider the set

E = {β < κ : Qβ is not a direct summand of Q}.

We will denote Ẽ by Γ(Q) and we will call it the Γ-invariant of the filtration.

Reasoning as in [9, p. 85], it is easy to check that Γ(Q) does not depend on
the selected strong filtration {Qα : α < κ} of Q. Our next proposition shows that
the Γ-invariant of the filtration characterizes when a separable module is trivial.

Proposition 3.3. [14, Proposition 3.5] Let κ be a regular infinite cardinal, C a
nonempty class of modules and Q, a κ≤-generated module which is (κ, C)-separable.
Suppose that C is closed under direct summands and arbitrary direct sums, and
that each module in C is a direct sum of κ<-generated modules. Then the following
assertions are equivalent:

i) Q ∈ C.
ii) Q is a direct sum of κ<-generated modules.
iii) Γ(Q) = ∅̃.

We are now going to focus our attention on the study of separable modules
over functor rings. Let R be a ring with identity and M , a left R-module. Let
us assume that M =

⊕
i∈I Mi for a family {Mi : i ∈ I} of finitely generated

modules. For any module L, let us denote by ĤomR(M,L) the following subgroup
of HomR(M,L):

ĤomR(M,L) = {f ∈ HomR(M,L) : ∃I ′ ⊆ I finite with (Mi)f = 0 ∀i ∈ I \ I ′}.

It is well known that ÊndR(M) is a (non necessarily unitary) ring with
enough idempotents, which we will denote by Ŝ (see, e.g., [20, Section 51]). And
ĤomR(M,−) is a functor from R−Mod to Ŝ−Mod which has as left adjoint
the tensor product M ⊗Ŝ −. The following easy lemma characterizes (ℵ1,Proj)-
separable left Ŝ-modules.

Proposition 3.4. Let R be a unitary ring and M =
⊕

i∈I Mi, a module which is a
direct sum of finitely presented modules. A unitary left Ŝ-module X is (ℵ1,Proj)-
separable if and only if there exists an (ℵ0, AddM)-separable module Q such that
X ∼= ĤomR(M,Q).

Idea of the proof. Suppose that Q is an (ℵ1, AddM)-separable left R-module and
choose g1, . . . , gn ∈ ĤomR(M,Q). Then

∑n
i=1 Imgi is finitely generated and there
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exists a decomposition Q = S ⊕ S′ with S ∈ AddM and
∑n

i=1 Imfi ⊆ S. As
ĤomR(M,−) preserves direct sums, this decomposition induces the decomposition
HomR(M,Q) = T ⊕ T ′ with {f1, . . . , fn} ⊆ T and T ∼= ĤomR(M,Q). By [20,
51.6.(4)]), T is projective.

In order to see the other implication, assume that X is (ℵ1,Proj)-separable
in Ŝ − Mod. Then X is flat since it is the direct limit of its projective direct
summands. By [20, 51.10], there exists a Q ∈ R −Mod with X ∼= Ĥom(M,Q).
But, by [20, 51.10(2)], S is a direct summand of Q which belongs to AddM if and
only if there exists a projective direct summand T of X such that S ∼= M⊗Ŝ .
As the tensor functor M⊗Ŝ commutes with direct limits, Q ∼= M⊗Ŝ is the direct
limit of its direct summands that belong to AddM . That is, Q is (ℵ1, AddM)-
separable. �

4. Separable modules associated to descending chains
of cyclic ideals

Let R be a unitary ring. It was proved in [2, Theorem 29.5] that a finitely ge-
nerated module M has a perfect decomposition (i.e., any object in AddM has a
decomposition that complements direct summands) if and only if its endomor-
phism ring is left perfect. A similar result can be shown when the module M is a
direct sum of finitely generated modules by replacing the endomorphism ring of
M by ÊndR(M). The proof can be obtained in a similar way as in [2, Theorem
29.5] but using [20, 51.6.(4)] and [5, Theorem 4.12].

Proposition 4.1. [13, Proposition 1.7] Let M be a module which is a direct sum
of finitely generated modules. The following assertions are equivalent:

i) M has a perfect decomposition.
ii) ÊndR(M) is left perfect.

On the other hand, Bass [7] constructed in his characterization of left perfect
rings, a flat module F (usually called the Bass factor module) associated to any
descending chain of cyclic right ideals of R. This flat module F is projective if and
only if the descending chain is stationary. Again, this construction can be easily
extended to rings with enough idempotents.

We are going to devote this section to show that we can associate to any Bass
factor module F , an ℵ0-separable module Q satisfying that it is trivial if and only
if the descending chain of cyclic right ideals in the construction of F is stationary.
More generally, if M is a direct sum of finitely generated modules, we are going
to associate to any descending chain of cyclic right ideals of ÊndR(M) and to any
infinite cardinal λ, a left (ℵ0, AddM)-separable R-module Q. And we will see that
Q cannot be a direct sum of λ≤-generated if the descending chain of cyclic ideals
is not stationary. Moreover, the converse is true when M is a direct sum of finitely
presented modules. The origin of this construction can be traced back to the work
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of Griffith and Hill on Abelian groups (see [12, 16]) and has lately been used, for
instance, in [13, 21] for constructing ℵ0-separable modules over non-perfect (or
non pure-semisimple) rings. We are going to follow the construction given in [13].

For this purpose, let us fix a module M which is a direct sum of finitely
generated modules, say M =

⊕
i∈I Mi, and denote by Ŝ the ring ÊndR(M). Let

N
∗ = N \ {0} and fix a subset {fn : n ∈ N

∗} of Ŝ. Consider the descending chain

f1Ŝ ≥ f1f2Ŝ ≥ f1f2f3Ŝ ≥ · · · . (1)

of cyclic right ideals of S. Choose a finite subset I0 ⊆ I such that

(Mi)f1 = 0 ∀i ∈ I \ I0,

and, for any k ∈ N
∗, let Ik ⊆ I be a finite subset containing Ik−1 such that

Imfk ≤
⊕

i∈Ik

Mi and (Mi)fk+1 = 0 ∀i ∈ I \ Ik.

Let Nk =
⊕

i∈Ik
Mi, for any k ∈ N, N =

⊕
k∈N∗ Nk and P =

∏
k∈N∗ Nk. Let us

choose, for any k ∈ N, an idempotent morphism ek ∈ Ŝ with Imek = Nk. Define,
for any n ∈ N

∗, the morphism Fn : M → P whose coordinates are

Fn(k) =






0 if k < n− 1
en−1 if k = n− 1
fn · · · fk if k > n− 1

when n > 1, and
F 1(k) = f1 · · · fk ∀k ∈ N

∗.

Let G : M (N∗) → P be the morphism induced in the direct sum by the
morphisms {Fn : n ∈ N

∗} and denote by L its image. Note that N ⊆ L since for
any k ∈ N

∗ and any xk ∈ Nk we have that

xk = (xk)F k+1 − ((xk)fk)F k+2.

Let λ be an infinite cardinal and denote by κ = λ+ the successor cardinal of
λ. Consider the subset E of κ consisting of all limit ordinals of cofinality ω. For
any β ∈ E let

〈σβ(k) : k ∈ N
∗〉

be an increasing sequence of ordinals converging to β, and denote by Jβ the set

{σβ(k) : k ∈ N
∗}.

Define, for any β ∈ E and any n ∈ N
∗, the morphism F (β,n) : M → Nκ whose

coordinates are

F (β,n)(α) =
{

Fn(k) if α = σβ(k),
0 if α /∈ Jβ .

Also, let F : M (E×N
∗) → Nκ be the morphisms induced by the F (β,n). For any

δ < κ, denote by Nδ the isomorphic copy of N in the δ-coordinate of Nκ.
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Definition 4.2. The module

Q =
⊕

α<κ

Nα + ImF

will be called the ((ℵ0, AddM)-separable) module associated to the chain (1).

It has been proved in [13, Section 2] that Q is the non-trivial separable module
that we can associate to the descending chain of right ideals of Ŝ. In other words,
it is possible to prove the following theorem.

Theorem 4.3. [13, Theorem 3.4] Let R be a unitary ring and M = ⊕IMi, a di-
rect sum of finitely generated left R-modules. Suppose that there exists an infinite
cardinal number λ such that any (ℵ0, AddM)-separable module is a direct sum of
λ-generated modules. Then M has a perfect decomposition.

We are going to close this section by giving some applications of this construc-
tion. Our first corollary gives new conditions equivalent to those of [3, Theorem
4.4], under the assumption that the module M is a direct sum of finitely presented
modules.

Corollary 4.4. (see [13, Corollary 3.5]) Let R be a unitary ring and M , a direct
sum of finitely presented left R-modules. The following conditions are equivalent:

i) M has a perfect decomposition.
ii) ÊndR(M) is left perfect.
iii) Every (ℵ0, AddM)-separable module belongs to AddM .
iv) Every (ℵ0, AddM)-separable module is a direct sum of countably generated

modules.
v) There exists an infinite cardinal number λ such that each (ℵ0, AddM)-separ-

able module is a direct sum of λ-generated modules.
vi) lim

→
AddM = AddM .

vii) Each countably direct colimit of modules in AddM belongs to AddM .

Idea of the proof. The equivalence of i) and ii) was established in Proposition 4.1.

ii) ⇒ iii) Let Q be a (ℵ0, AddM)-separable module. By Lemma 3.4, ĤomR(M,Q)
is (ℵ0,Proj)-separable in Ŝ-Mod and in particular flat, since it is the direct limit
of its projective direct summands. Then ii) says that ĤomR(M,Q) is projective
by [5, Theorem 41], and Q belongs, in fact, to AddM , since it is isomorphic to
M ⊗Ŝ ĤomR(M,Q) by [20, 51.10].
iii) ⇒ iv) Note that every module in AddM is a direct sum of countably generated
modules by Kaplansky’s Theorem (see [2, Theorem 26.1]).
iv) ⇒ v) Trivial.
v) ⇒ ii) This is Theorem 4.3.

vi) ⇔ vii) ⇔ ii). Functors ĤomR(M, ) and M ⊗Ŝ define an equivalence between
lim
→

AddM and the flat Ŝ-modules. Then each flat Ŝ-module is projective if and
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only if lim
→

AddM = AddM , which proves vi) ⇔ ii) (this has been proven in [3, The-

orem 4.4] too). Moreover, it is very easy to check that lim
→

AddM = lim
→

Addℵ0M ,

and each countable direct colimit of modules in Addℵ0M corresponds, under the
mentioned equivalence, with a countably generated flat Ŝ-module. But the proof of
[5, Theorem 4.1, 9 ⇒ 2] implies that Ŝ is left perfect if and only if each countably
generated flat module is projective, which proves vii) ⇒ ii). �

If we set M = R in this corollary, for some unitary ring R, we get new
characterizations of left perfect rings in terms of (ℵ0,Proj)-separable modules.
Indeed, we may assume that R is a (non-unitary) ring with enough idempotents,
since in this case the category T -Mod coincides with σ[T∗T ]. Where T ∗ is the
Dorroh overing of T (see [20, p. 465]). Moreover, the classes of all (ℵ0,Proj)-
separable and of all projective modules in T -Mod coincide with the class of all
(ℵ0, AddT )-separable and the class AddT constructed in T ∗-Mod, respectively. As
the rings T and ÊndR(T ) are isomorphic, we deduce from the above corollary:

Corollary 4.5. Let T be a ring with enough idempotents. The following assertions
are equivalent:

i) T is left perfect;
ii) Every (ℵ0,Proj)-separable unitary left T -module is projective.

iii) Every (ℵ0,Proj)-separable unitary left T -module is a direct sum of countably
generated modules.

iv) There exists an infinite cardinal number λ such that every (ℵ0,Proj)-separ-
able unitary left T -module is a direct sum of λ-generated modules.

Our last corollary characterizes left pure semisimple rings in terms of (ℵ0,PProj)-
separable modules.

Corollary 4.6. [13, Corollary 3.7] Let R be a ring with unit. The following condi-
tions are equivalent:

i) R is left pure semisimple.
ii) Every (ℵ0,PProj)-separable left module is pure projective.

iii) Every (ℵ0,PProj)-separable left module is a direct sum of countably genera-
ted modules.

iv) There exists an infinite cardinal number λ such that every (ℵ0,PProj)-
separable module is a direct sum of λ-generated modules.

Idea of the proof. Note that, if {Mi : i ∈ I} is a set of representatives of
the finitely presented modules and M =

⊕
i∈I Mi, AddM and the class of all

(ℵ0, AddM)-separable modules are precisely the classes of all pure projective and
all (ℵ0,PProj)-separable modules respectively. Then the result follows from Corol-
lary 4.4 and the fact that ÊndR(M) is left perfect if and only if R is left pure
semisimple (see, e.g., [20, 53.6]). �
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5. Construction of non-trivial κ-separable modules

We have developed in Section 4 a method for associating a non-trivial separable
module to any direct sum M = ⊕IMi of finitely generated modules which does not
have a perfect decomposition. Unfortunately, the assumption that M is a direct
sum of finitely generated modules is essential in this construction and therefore,
the above method cannot be extended to general modules. We will show in this
section a new way for constructing non-trivial separable modules that can be
applied to any module M . This method has been developed in [14] and it extends a
transfinite construction made by Eklof in [8] (see also [10]). This new construction
has, however, some disadvantages. It requires the assumption of the GCH and,
on the other hand, it only partially reflects the decomposition properties of the
module M into direct summands. Namely, those of them which can be expressed
in terms of totally ordered λ-directed colimits of objects in AddM , where λ is an
infinite regular cardinal such that M is a direct sum of λ-presentable modules.
When λ = ℵ0, we may drop these set-theoretic assumptions in our construction.
This will allows us to improve in Corollary 5.7 the results obtained in the previous
section.

An important tool in our construction will be the behavior of the so-called
λ-presentable modules. Recall from Section 1 that a module M is λ-presentable,
for a certain infinite regular cardinal λ, if the functor HomR(M,−) : R−Mod →
Ab commutes with λ-directed colimits. Note that any module M is trivially λ-
presentable for a sufficiently large regular cardinal λ. We summarize in the next
proposition some basic properties of these modules that will be needed in the
sequel.

Proposition 5.1. [14, Proposition 5.1] Let λ be an infinite regular cardinal.

i) A module M is λ-presentable if and only if it satisfies the following two
conditions:

a) M is λ<-generated;
b) For any exact sequence in R−Mod

0 → K → L→M → 0

with L λ<-generated, the module K is also λ<-generated.
ii) Let

0 → N1 → N2 → N3 → 0

be a short exact sequence in R-Mod.
a) If N2 is λ-presentable and N1 is λ<-generated, then N3 is also λ-

presentable.
b) If N1 and N3 are λ-presentable then so is N2.

iii) If I is a set with |I| < λ and {Mi : i ∈ I} is a family of λ-presentable modules
then

⊕
i∈I Mi is also λ-presentable.

iv) Any λ-presentable module is projective respect to λ-directed limits of splitting
epimorphisms in R-Mod.
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v) If {fij : Mi →Mj}I is a λ-directed system of morphisms in R-Mod, then the
canonical epimorphism

⊕

I

Mi −→ lim−→Mi → 0

is a λ-directed limit of splitting epimorphisms.

We remark that, as a consequence of i), for any infinite regular cardinal λ,
there exists a set Sλ of λ-presentable objects such that any other object in R−Mod
is a λ-direct limit of objects in this set (it suffices to choose Sλ to be the set of
all isomorphism classes of modules of cardinality strictly smaller than λ). In other
words, R−Mod is a λ-presentable category in the sense of [15, Definition 1.17].
For any non-empty class of modules S, we denote by λ− lim

→
S the class consisting

of all totally ordered λ-directed colimits of modules in S. If λ = ℵ0 we will simply
write lim

→
S.

Let us now develop our method for producing non-trivial (κ, C)-separable
modules. For this purpose we will need the following generalization of the concept
of λ-template (see [8, p. 81]).

Definition 5.2. Let λ be an infinite cardinal number. A λ-template is a pair of
modules N ⊆ L such that there exists a continuous chain {Nν : ν < λ} of direct
summands of L with

⋃
ν<λNν = N .

Let λ be an infinite regular cardinal, fix a λ-template N =
⋃
ν<λNν ⊆ L

with N0 = 0, and write, for each ν < λ, Nν+1 = Nν ⊕ N ′
ν and L = Nν ⊕Mν for

some modules N ′
ν and Mν . Let us denote by κ = λ+ the successor cardinal of λ.

Along this section, we will make the following assumption.

Assumption 1. There exists a tree-like ladder system η on a stationary subset E
of κ consisting of limit ordinals of cofinality λ.

Recall that this assumption is satisfied when λ = ℵ+ is a successor cardinal
number such that 2ℵ ≤ ℵ++ [8, Theorem 9] or when we assume the GCH, by
Proposition 2.1.

Our goal is to construct a new module Q, which will be called the module
associated to the subset E of κ and the template N ⊆ L. Q will be obtained as
the union of a continuous chain of modules {Qα : α < κ} that will be defined
recursively on all the ordinals α < κ. We shall use the following notation: for each
successor ordinal γ < κ and each ν < λ, let Nγ,ν be an isomorphic copy of Nν and
write Nγ,ν+1 = N∗

γ,ν ⊕N ′
γ,ν with N∗

γ,ν
∼= Nν and N ′

γ,ν
∼= N ′

ν ; moreover, denote by
sνγ : N ′

ν → N ′
γ,ν an isomorphism.

If α = 0, define Q0 = 0. Assume now that α > 0 and that Qγ has been defined
for any γ < α. If α is a limit ordinal, set Qα =

⋃
γ<αQγ . If α = γ+1 is a successor

with γ /∈ E, let us denote by Q′
γ =

⊕
ν<λNγ,ν, and define Qγ+1 = Qγ ⊕Q′

γ .
It remains to define Qα when α = e+1 with e ∈ E. Let us fix an ordinal α in

this situation. We begin by constructing a homomorphism from N to Qe, for which
it is sufficient to define a direct system {ινe : Nν → Qe}ν<λ of morphisms. We do
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this recursively on ν. For ν = 0 take ι0e = 0. Let now ν < λ be nonzero, and suppose
that ινe is defined. Then note that Nν+1 = Nν ⊕ N ′

ν and take ιν+1
e = ινe ⊕ sνηe(ν).

Finally, if ν is a limit ordinal, set ινe = lim−→
σ<ν

ισe .

Let now ιe :
⋃
ν<λNν → Qe be the colimit of this direct system. The map ιe

is in fact a monomorphism. Then take the push-out of the morphisms ιe and the
inclusion i : N → L to get the commutative diagram

0 � N i � L

ιe

� �

θe

0 � Qe
�

ie
P

. (2)

We set Qe+1 = P .

Definition 5.3. The module
Q =

⋃

α<κ

Qα

will be called the module associated to the subset E of κ and the template N ⊆ L.

The reason of our interest on this construction is that we have shown in [14]
that, when C is a non-empty class of modules that satisfies certain properties, and
the template N ⊆ L verifies that L ∈ C, the module Q is (κ, C)-separable. This is
proved in the following theorem.

Theorem 5.4. [14, Theorem 4.6] Let λ be an infinite regular cardinal, κ = λ+,
E, an stationary subset of κ which has a tree-like ladder system and N ⊆ L, a
λ-template. Let Q =

⋃
γ<κQγ be the module associated to E and N ⊆ L. Suppose

that C is a nonempty class of modules closed under direct summands and direct
sums such that L ∈ Cκ. Then Q is (κ, C)-separable.

We are going to close this survey by showing how to apply the above con-
struction to the study of the decomposition properties of modules into direct sum-
mands. Let us fix a module M and consider an infinite regular cardinal λ such
that M is a direct sum of λ-presentable modules. We are going to prove, under
the assumption of the GCH, an analogue to Theorem 4.4: there exist non-trivial
(λ,AddM)-separable modules precisely when AddM �= λ− lim

→
AddM . In order to

prove this theorem we will need the following technical result which states that,
under the assumption of GCH, any totally ordered λ-directed colimit is actually,
a well-ordered λ-directed colimit.

Lemma 5.5. [14, Lemma 5.14] Assume (GCH). Let λ be an infinite regular cardinal
and I, a totally ordered λ-directed set with |I| ≥ λ. Then there exists a regular
cardinal τ with λ ≤ τ ≤ |I|, and an ascending chain {Iα : α < τ} of λ-directed
subsets of I with |Iα| < |I| for any α < τ , such that I =

⋃
α<τ Iα.

We can now state the announced theorem.
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Theorem 5.6. (see [14, Corollary 5.17]) Assume (GCH). Let λ be an infinite regular
cardinal and M , a direct sum of λ-presentable modules.

The following conditions are equivalent.
i) λ− lim

→
AddM = AddM .

ii) For each regular cardinal number κ ≥ λ, any κ≤-generated and (κ,AddM)-
separable module belongs to AddM .

iii) For each regular cardinal number κ ≥ λ, any κ≤-generated and (κ,AddM)-
separable module is a direct sum of κ<-generated modules.

Idea of the proof. ii) ⇔ iii) and i) ⇒ iii) are straightforward consequences of
Proposition 5.1 and Kaplansky’s Theorem [2, Theorem 26.1]. Let us give an idea
of the proof of ii) ⇒ i). Suppose that ii) is true but λ− lim

→
AddM �= AddM . Let

(Xi, fij)I be a λ-directed system of objects in Add M whose direct colimit does
not belong to AddM . We may choose this directed colimit with |I| minimal, in
the sense that any λ-directed colimit of modules in AddM indexed in a set I ′ with
|I ′| < |I| belongs to AddM . We can use now the preceding lemma for showing
that it is possible to assume that the set I is well ordered. We can prove now that
the minimality of I implies that we may identify I with a regular cardinal τ ≥ λ.

Consider the canonical short exact sequence associated in R-Mod to this
directed colimit

0 → K −→
⊕

I

Xi −→ lim
−→

Xi → 0

This short exact sequence cannot split since we are assuming that lim
−→

Xi /∈
AddM . Write, using [11, Lemma 2.1], K =

⋃
I Ki for a convenient ascending chain

{Ki}I of direct summands of
⊕

I Xi. And define the family {Ni}I of submodules
of
⊕

I Xi by Ni = Ki if i is a successor in the linear order of I and Ni =
⋃
j<iNj

otherwise. Now note that {Ni}I is a strong (I, AddM)-filtration of K and that,
by Lemma 3.2, this module is (I, AddM)-separable. If K /∈ AddM then K is an
(I, AddM)-separable that does not belong to AddM and we are done since this
contradicts ii). So let us suppose that K belongs to AddM . Then Γ(K) = ∅̃ by
Proposition 3.3, and this means that there is a club C ⊆ I with the property
that K =

⋃
i∈C Ni with each Ni being a direct summand of

⊕
I Xi. Then, setting

N =
⋃
i∈C Ni and L =

⊕
i∈I Xi, we get an |I|-template N ⊆ L. The construction

made in the beginning of this section gives us an (|I|+, AddM)-separable module
Q for some stationary subset E of |I|+ consisting of limit ordinals of cofinality |I|.
Now we can prove that Q does not belong to AddM and get a contradiction. �

Our next corollary shows that, when λ = ℵ0, we may drop some hypothesis
in the above theorem (see also [10]).

Corollary 5.7. Let M be a direct sum of finitely generated modules. If every
(ℵ1, AddM)-separable module is a direct sum of countably generated modules, then
M has a perfect decomposition. If, moreover, M is a direct sum of finitely presented
modules, then the converse is also true.
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Idea of the proof. The proof is similar to i) ⇒ ii) in the above by noting the fol-
lowing facts:

• Assume that M = ⊕TMt is a direct sum of finitely generated modules.
Then M does not have a perfect decomposition if and only if its functor ring
S = ÊndR(M) is not left perfect by Proposition 4.1. This means that if M
does not have a perfect decomposition, then there exists a countable directed
system of morphisms among finitely generated unitary free S-modules, say
{gn : Fn → Fn+1}n∈N, whose direct limit is not projective. Consider the
canonical exact sequence associated in S-Mod to this direct limit (see, e.g.,
[20, 43.3])

0 →
⊕

I

Fn
g �

⊕

I

Fn � lim
−→

Fn → 0

As M is a direct sum of finitely generated modules, the functor ĤomR(M,−)
commutes with direct limits and therefore, it is easy to check that the induced
monomorphism 1M ⊗S g :

⊕
N

(M ⊗S Fn) →
⊕

N
(M ⊗S Fn) cannot split.

But 1M ⊗S g is a directed union of splitting monomorphisms by [20, 43.3].
This shows that, in this situation, we may assume that the set I appearing
in the proof of the above theorem is countable.

• When |I| = ℵ0, we do not need to assume the GCH in the construction of Q.
• Finally, it is easy to check that the proof of i) ⇒ ii) in Theorem 5.6 also

works if we assume that M is a direct sum of λ<-generated modules, instead
of a direct sum of λ-presentable modules. �

Let us finally apply our results to the whole category of modules. Recall
that the category R-Mod is pure-semisimple if and only is there exists a set S of
modules such that R-Mod = AddRS (see, e.g., [18, 20]). Therefore, we get the
following corollary (compare with [10, 13, 17, 19, 21]).

Corollary 5.8. [14, Corollary 5.18] Assume (GCH). Let R be a ring and λ, an
infinite regular cardinal. The following assertions are equivalent:

i) R-Mod is pure-semisimple.
ii) For each infinite regular cardinal κ ≥ λ, every κ-separable module is a direct

summand of a direct sum of λ-presentable modules.
In particular, if R-Mod is not pure-semisimple, there exist non-trivial λ-separable
modules for arbitrarily large regular cardinals λ.
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[11] J.L. Gómez Pardo and P.A. Guil Asensio, Big direct sums of copies of a module have
well behaved indecomposable decompositions. J. Algebra 232 (2000), 86–93.

[12] P. Griffith, A note on a theorem of Hill. Pacific J. Math. 29 (1969) 279–284.

[13] P.A. Guil Asensio, M.C. Izurdiaga and B. Torrecillas, Decomposition properties of
strict Mittag-Leffler modules, J. Algebra 310 (2007), 290–302.

[14] P.A. Guil Asensio, M.C. Izurdiaga and B. Torrecillas, Accessible subcategories of
modules and pathological objects, preprint.

[15] K. Hrbacek and T. Jech, Introduction to set theory. Third edition. Monographs and
Textbooks in Pure and Applied Mathematics, 220. Marcel Dekker, Inc., New York,
1999.

[16] P. Hill, On the decomposition of groups. Canad. J. Math. 21 (1969), 762–768.

[17] S. Shelah, Kaplansky test problem for R-modules. Israel J. Math. 74 (1991), no. 1,
91–127.

[18] D. Simson, On Corner type endo-wild algebras. J. Pure Appl. Algebra 202 (2005),
no. 1-3, 118–132.

[19] D. Simson, On large indecomposable modules, endo-wild representation type and
right pure semisimple rings. Algebra Discrete Math. 2003, no. 2, 93–118.

[20] R. Wisbauer, Foundations of module and ring theory. A handbook for study and
research. Algebra, Logic and Applications, 3. Gordon and Breach Science Publishers,
Philadelphia, PA, 1991.

[21] B. Zimmermann-Huisgen, On the abundance of ℵ1-separable modules. Abelian
groups and noncommutative rings. Contemp. Math. 130 (1992), 167–180.

P.A. Guil Asensio
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Abstract. It is shown that a semi-regular ring R with the property that each
essential extension of a direct sum of simple right R-modules is a direct sum
of quasi-injective right R-modules is right noetherian.
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1. Introduction

The question whether a von Neumann regular ring R with the property that every
essential extension of a direct sum of simple right R-modules is a direct sum of
quasi-injective right R-modules is noetherian was considered in [2]. This question
was answered in the affirmative under a stronger hypothesis. The purpose of this
note is to answer the question in the affirmative even for a more general class of
rings, namely, semi-regular, semi-perfect.

2. Definitions and notations

All rings considered in this paper have unity and all modules are right unital. Let
M be an R-module. We denote by Soc(M), the socle of M. We shall write N ⊆e M
whenever N is an essential submodule of M. A module M is called N -injective,
if every R-homomorphism from a submodule L of N to M can be lifted to an
R-homomorphism from N to M . A module M is said to be quasi-injective if it
is M -injective. A ring R is said to be right q.f.d. if every cyclic right R-module
has finite uniform (Goldie) dimension, that is, every direct sum of submodules of
a cyclic module has finite number of terms. We shall say that Goldie dimension of
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N with respect to U , GdimU (N), is less than or equal to n, if for any independent
family {Vj : j ∈ J } of nonzero submodules of N such that each Vj is isomorphic
to a submodule of U, we have that |J | ≤ n. Next, GdimU (N) < ∞ means that
GdimU (N) ≤ n for some positive integer n. The module N is said to be q.f.d.
relative to U if for any factor module N of N , GdimU (N) < ∞. A ring R is called
von Neumann regular if every principal right (left) ideal of R is generated by an
idempotent. A regular ring is called abelian if all its idempotents are central. A ring
R is called semiregular if R/J(R) is von Neumann regular. A ring R is said to be a
semilocal ring if R/J(R) is semisimple artinian. In a semilocal ring R every set of
orthogonal idempotents is finite, and R has only finitely many simple modules up
to isomorphism. A ring R is called a q-ring if every right ideal of R is quasi-injective
[4]. For any term not defined here, we refer the reader to Wisbauer [6].

3. Main results

Throughout, we will refer to the condition ‘every essential extension of a direct sum
of simple R-modules is a direct sum of quasi-injective R-modules’ as property (∗).

We note that the property (∗) is preserved under ring homomorphic images.
We first state some of the results that are used throughout the paper.

Lemma 3.1. [2] Let R be a ring which satisfies the property (∗) and let N be a
finitely generated R-module. Then there exists a positive integer n such that for
any simple R-module S, we have

GdimS(N) ≤ n.

Lemma 3.2. [2] Let R be a right nonsingular ring which satisfies the property (∗).
Then R has a bounded index of nilpotence.

The following lemma is a key to the proof of main results.

Lemma 3.3. Let R be an abelian regular ring with the property (∗). Then R is right
noetherian.

Proof. Recall that an abelian regular ring is duo. Assume R is not right noetherian.
Then there exists an infinite family {eiR : ei = e2

i , i ∈ I} of independent ideals
in R. Now for each i ∈ I, there exists a maximal right ideal Mi such that each
eiR � Mi, for otherwise eiR ⊆ J(R) which is not possible. Set A = ⊕i∈IeiR
and M = ⊕i∈IeiMi. Note M �= R and A/M = (⊕i∈IeiR)/(⊕i∈IeiMi). So, R/M
is a ring with nonzero socle of infinite Goldie dimension. Choose K/M ⊂ R/M
such that Soc(R/M) ⊕K/M ⊂e R/M . This implies that Soc(R/M) is essentially
embeddable in R/K and so Soc(R/M) ∼= Soc(R/K). Obviously, Soc(R/K) ⊂e
R/K. Set R = R/K. By (∗), R = e1R⊕· · ·⊕ekR, where each eiR is quasi-injective.
Since each ei is a central idempotent, eiR is ejR-injective. Hence, e1R⊕ · · ·⊕ ekR

is quasi-injective. Thus, R = R/K is a right self-injective duo ring and hence R/K
is a q-ring. Since R/K is a regular q-ring, R/K = S ⊕ T, where S is semisimple
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artinian and T has zero socle (see Theorem 2.18, [4]). But R/K has essential socle.
So T = 0 and hence R/K is semisimple artinian, which gives a contradiction to the
fact that R/K contains an infinite independent family of right ideals. Therefore,
R must be right noetherian. This completes the proof. �

Next we claim that if the matrix ring has the property (∗) then the base ring
also has the property (∗). This can be deduced from the following two lemmas
whose proofs are standard and given here only for the sake of completeness.

Lemma 3.4. If R is a ring with the property (∗) and ReR = R, then eRe is also a
ring with the property (∗).

Proof. We know that if ReR = R, then mod-R and mod-eRe are Morita equivalent
under the functors given by F : mod-R −→ mod-eRe, G : mod-eRe −→ mod-R
such that for any MR, F(M) = Me and for any module T over eRe, G(T ) =
T ⊗eRe eR.

Suppose R is a ring with the property (∗). Let N be an essential extension
of a direct sum of simple eRe-modules {Si : i ∈ I}. This gives, ⊕iSi ⊗eRe eR ⊂e
N ⊗eRe eR. By Morita equivalence each Si ⊗eRe eR is a simple R-module. Thus,
N⊗eRe eR is an essential extension of a direct sum of simple R-modules. But since
R is a ring with the property (∗), we have N ⊗eRe eR = ⊕iAi, where Ai’s are
quasi-injective R-modules. By Morita equivalence we get that each Aie is quasi-
injective as an eRe-module. Then N = NeRe = A1e ⊕ · · · ⊕ Ane is a direct sum
of quasi-injective eRe-modules. Hence eRe is a ring with the property (∗). �

As a consequence of the above lemma, we have the following:

Lemma 3.5. If Mn(R) is a ring with the property (∗), then R is also a ring with
the property (∗).

Proof. We have R ∼= e11Mn(R)e11 and Mn(R)e11Mn(R) = Mn(R), where e11 is a
matrix unit. Therefore, the result follows from the Lemma 3.4. �

Now we are ready to prove the result that answers the question raised in [2].

Theorem 3.6. Let R be a regular ring with the property (∗). Then R is right noe-
therian.

Proof. By Lemma 3.2, R has bounded index of nilpotence. Hence each primitive
factor ring of R is artinian. Therefore, R ∼= Mn(S) for some abelian regular ring
S (see Theorem 7.14, [3]). By Lemma 3.5, S has the property (∗). Therefore, by
Lemma 3.3, S is right noetherian. Hence, R is right noetherian. �

We next proceed to generalize the above theorem to semiregular rings. First
we prove the following:

Lemma 3.7. Let R be a semilocal ring with the property (∗). Then R is right
noetherian.
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Proof. We claim that RR is right q.f.d. Consider any cyclic module R/I. Suppose
there exists an infinite direct sum A1/I ⊕ A2/I ⊕ · · · ⊂ R/I, where Ai

I = aiR+I
I .

Let Mi/I be a maximal submodule of Ai/I for each i, and set M/I = ⊕Mi/I.
Then A1

M1
× A2

M2
× · · · ∼= A1⊕A2⊕···

M1⊕M2⊕··· ⊂ R/M . Each Ai/Mi is a simple module. Set
Si = Ai/Mi. Since the semilocal ring R/M has only finitely many simple modules
up to isomorphism, copies of at least one of the Ai/Mi must appear infinitely
many times, and so GdimSi(R/M) = ∞, for some i. This gives a contradiction to
Lemma 3.1. Therefore, R is right q.f.d. Hence, by (Theorem 2.2, [1]), R is right
noetherian. �
Corollary 3.8. A right self-injective ring with the property (∗) is Quasi-Frobenius.

Theorem 3.9. Let R be a semiregular ring with the property (∗). Then R is right
noetherian.

Proof. R/J(R) is a von Neumann regular ring with the property (∗). Therefore,
by Theorem 3.6, R/J(R) is a right noetherian and hence a semisimple artinian
ring. So, R is a semilocal ring. Finally, by Lemma 3.7, R is right noetherian. �
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Pseudo-Galois Extensions and Hopf Algebroids
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Abstract. A pseudo-Galois extension is shown to be a depth two extension.
Studying its left bialgebroid, we construct an enveloping Hopf algebroid for
the semi-direct product of groups, or more generally involutive Hopf algebras,
and their module algebras. It is a type of cofibered sum of two inclusions of
the Hopf algebra into the semi-direct product and its derived right crossed
product. Van Oystaeyen and Panaite observe that this Hopf algebroid is non-
trivially isomorphic to a Connes-Moscovici Hopf algebroid.
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1. Introduction

The analytic notion of finite depth for subfactors was widened to the algebraic
setting of Frobenius extensions in [11], the main theorem of which states that
a certain depth two Frobenius extension A |B with trivial centralizer is a Hopf-
Galois extension. The theorem and its proof is essentially a reconstruction theorem,
which uses an Ocneanu-Szymanski pairing of two centralizers on the tower of al-
gebras above A |B, isomorphic to the two main players in this paper EndBAB
and EndAA⊗B AA; then shows that the resulting algebra-coalgebra is a Hopf al-
gebra. In the paper [13] the notion of depth two was widened to arbitrary algebra
extensions whereby it was shown that the bimodule endomorphism ring EndBAB
of a depth two extension A |B has a bialgebroid structure as in Lu [15]. Inter-
esting classes of examples were noted such as finite-dimensional algebras, weak
Hopf-Galois extensions, H-separable extensions and various normal subobjects in
quantum algebra. Later in [10], the underlying fact emerged that any (including
infinite index) algebra extension A |B is right Galois w.r.t. a bialgebroid coaction
if and only if it is right depth two and the natural module AB is balanced. This is

The author thanks Caenepeel, Van Oystaeyen and Torrecillas for a pleasant stay in Belgium in
September 2005.
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in several respects analogous to the characterization of a Galois field extension as
normal and separable (the splitting field of separable polynomials).

A bialgebroid is in simplest terms a bialgebra over a noncommutative base,
which is of interest from the point of view of tensor categories [7] and mathematical
physics [2]. A depth two extension A |B has a Galois action machinery consisting
of a bialgebroid with base algebra the centralizer CA(B) of the extension. For
example, if A is a commutative ring, then this Galois bialgebroid specializes to
the Galois biring in Winter [25]. If A |B is Frobenius and CA(B) is semisimple
in all base field extensions, as with reducible subfactors, the extension is a weak
Hopf-Galois extension, where the Galois bialgebroid is a weak Hopf algebra [11, 5].
Bialgebroids equipped with antipodes are Hopf algebroids, a recent object of study
with competing definitions of what constitutes an antipode [3, 15, 14]. In Section 3,
we investigate the Galois bialgebroid of a new type of depth two extension called a
pseudo-Galois extension, which is a notion generalizing the notions of H-separable
extension (e.g., an Azumaya algebra) and group-Galois extension (e.g., a Galois
algebra) [18]. Its Galois bialgebroid is shown in Theorem 2.3 to be closely related
to a certain Hopf algebroid (in the sense of Böhm and Szlachányi [3]) we obtain
from a cofibered sum of a semi-direct product of an algebra with a group of au-
tomorphisms and its opposite right crossed product. This Hopf algebroid extends
Lu’s basic Hopf algebroid on the enveloping algebra over an algebra [15], to the
group action setting, and in Theorem 3.1 to the involutive Hopf algebra action
setting. In the last section of this paper we discuss Van Oystaeyen and Panaite’s
isomorphism of this “enveloping” Hopf algebroid given in the preprint QA/0508411
to this paper with a Hopf algebroid in Connes-Moscovici [6], which is known as
a para-Hopf algebroid in [14]. The isomorphism may be derived from a universal
condition in Proposition 3.4 or from the unit representation of a bialgebroid on its
base algebra. The isomorphism of bialgebroid invariants naturally raises the pos-
sibility of a relation between certain pseudo-Galois extensions, or a generalization
we propose, with Rankin-Cohen brackets [6].

2. Depth two and pseudo-Galois extensions

All algebras in this paper are unital associative algebras over a commutative
ground ring K. An algebra extension A |B is a unit-preserving algebra homo-
morphism B → A, a proper extension if this mapping is monic. The induced
bimodule BAB plays the main role below. Unadorned tensors, hom-groups and
endomorphism-groups (in a category of modules) between algebras are over the
ground ring unless otherwise stated. For example, EndA denotes the linear en-
domorphisms of an algebra A, but not the algebra endomorphisms of A; and
Hom (AB, BB) denotes the B-A-bimodule of right B-bimodule homomorphisms
from A into B. The default setting is the natural module structure unless other-
wise specified.
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An algebra extension A |B is left depth two (D2) if its tensor-square A⊗B A
as a natural B-A-bimodule is isomorphic to a direct summand of a finite direct
sum of the natural B-A-bimodule A: for some positive integer N , we have

A⊗B A⊕ ∗ ∼= AN (1)

An extension A |B is right D2 if Eq. (1) holds instead as natural A-B-bimodules.
Since condition (1) implies maps in two hom-groups satisfying

∑N
i=1 gi ◦ fi =

idA⊗BA, where gi ∈ Hom (BAA,BA⊗B AA) ∼= (A⊗B A)B (via g �→ g(1)) and

fi ∈ Hom (BA⊗B AA,BAA) ∼= EndBAB := S
via f �→ (a �→ f(a⊗B 1)), we obtain an equivalent condition for extension A |B to
be left D2: there is a positive integer N , β1, . . . , βN ∈ S and t1, . . . , tN ∈ (A⊗BA)B

(i.e., satisfying for each i = 1, . . . , N , bti = tib for every b ∈ B) such that
N∑

i=1

tiβi(x)y = x⊗B y (2)

for all x, y ∈ A.
Like dual bases for projective modules, this equation is useful. For example,

to show S finite projective as a left CA(B)-module (module action given by r ·α =
λr ◦ α), apply α ∈ S to the first tensorands of the equation, set y = 1 and apply
the multiplication mapping µ : A⊗B A→ A to obtain

α(x) =
∑

i

α(t1i )t
2
i βi(x), (3)

where we suppress a possible summation in ti ∈ A⊗BA using a Sweedler notation,
ti = t1i ⊗B t2i . But for each i = 1, . . . , N , we note that

Ti(α) := α(t1i )t
2
i ∈ CA(B) := R

defines a homomorphism Ti ∈ Hom (RS,RR), so that Eq. (3) shows that {Ti},
{βi} are finite dual bases for RS.

As another example, Eq. (2) is used in the explicit formula for coproduct in
Eq. (5), which in the case A is a commutative ring and B a subfield would give an
explicit formula for “preservations” in [25] in terms of dual bases and implying a
simpler proof for the Galois biring correspondence theorem [25, Theorem 6.1]. (We
note that the generalized Jacobson-Bourbaki correspondence theorem [25, Theo-
rem 2.1] may be extended with almost the same argument to any noncommutative
algebra A possessing algebra homomorphism into a division algebra.)

Similarly, an algebra extension A |B is right D2 if there is a positive integer
N , elements γj ∈ EndBAB and uj ∈ (A⊗B A)B such that

x⊗B y =
N∑

j=1

xγj(y)uj (4)

for all x, y ∈ A. We call the elements γj ∈ S and uj ∈ (A ⊗B A)B right D2 qua-
sibases for the extension A |B. Fix this notation and the corresponding notation
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βi ∈ S and ti ∈ (A ⊗B A)B for left D2 quasibases throughout this paper. An
algebra extension is of course D2 if it is both left and right D2.

Recall from [13] that a depth two extension A |B has left bialgebroid structure
on the algebra EndBAB with noncommutative base algebra CA(B). Again let R
denote CA(B) and S denote the bimodule endomorphism algebra EndBAB (under
composition). We sketch the left R-bialgebroid structure on S since we will need
it in the case of pseudo-Galois extensions.

Its R-R-bimodule structure RSR is generated by the algebra homomorphism
λ : R → S given by r �→ λr, left multiplication by r, and the algebra anti-
homomorphism ρ : R → S given by r �→ ρr, right multiplication by r. These are
sometimes called the source map λ and the target map ρ of the bialgebroid. These
two mappings commute within S at all values:

ρr ◦ λs = λs ◦ ρr, r, s ∈ R := CA(B),

whence we may define a bimodule by composing strictly from the left:

RSR : r · α · s = λr ◦ ρs ◦ α = rα(?)s, α ∈ S, r, s ∈ R.

Next we equip S with an R-coring structure (S, R,∆, ε) as follows. The co-
multiplication ∆ : S → S ⊗R S is an R-R-homomorphism given by

∆(α) :=
∑

i

α(?t1i )t
2
i ⊗R βi =

∑

j

γj ⊗R u1
jα(u2

j?) (5)

in terms of left D2 quasibases in the first equation or right D2 quasibases in the
second equation. There is a simplification that shows this comultiplication is a
generalization of the one in [15] (for the linear endomorphisms of an algebra):

φ : S ⊗R S
∼=−→ Hom (BA⊗B AB,BAB) φ(α ⊗R β)(x ⊗B y) = α(x)β(y) (6)

for all α, β ∈ S and x, y ∈ A. From a variant of Eq. (3) we obtain:

φ(∆(α))(x ⊗ y) = α(xy), (x, y ∈ A, α ∈ EndBAB). (7)

The counit ε : S → R is given by evaluation at the unity element, ε(α) = α(1A),
again an R-R-homomorphism. It is then apparent from Eq. (7) that

(ε⊗R idS)∆(α) = ε(α(1)) · α(2) = λα(1)(1)α(2) = α, (α ∈ S)

using a reduced Sweedler notation for the coproduct of an element, and a similar
equation corresponding to (idS ⊗R ε)∆ = idS .

Finally, the comultiplication and counit satisfy additional bialgebra-like ax-
ioms that make (S, R, λ, ρ,∆, ε) a left R-bialgebroid [13, p. 80]. These are:

ε(1S) = 1R, (8)

which is obvious,
∆(1S) = 1S ⊗R 1S , (9)

which follows from Eq. (7),

∀α ∈ S, α(1) ◦ ρr ⊗R α(2) = α(1) ⊗R α(2) ◦ λr (10)
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which follows from the equation defining φ (since both sides yield α(xry)),

∆(α ◦ β) = ∆(α)∆(β) = α(1) ◦ β(1) ⊗R α(2) ◦ β(2) (11)

where Eq. (10) justifies the use of a tensor algebra product in Im ∆ ⊆ S ⊗R S and
the equation follows again from equation defining φ (as both sides equal α(β(xy))),
and at last the easy

ε(α ◦ β) = ε(α ◦ λε(β)) = ε(α ◦ ρε(β)). (12)

On occasion the bialgebroid S is a Hopf algebroid [3, Def. 4.1], i.e., possesses
an antipode τ : S → S. This is anti-automorphism of the algebra S which satisfies:

1. τ ◦ ρ = λ,
2. τ−1(α(2))(1) ⊗R τ−1(α(2))(2)α(1) = τ−1(α) ⊗ 1S (∀α ∈ S);
3. τ(α(1))(1)α(2) ⊗R τ(α(1))(2) = 1S ⊗R τ(α) (∀α ∈ S).

Examples of Hopf algebroids are weak Hopf algebras [7] and Hopf algebras,
including group algebras and enveloping algebras of Lie algebras [21]. Lu [15]
provides the example A ⊗ Aop of a Hopf algebroid over any algebra A with twist
being the antipode, and another bialgebroid the linear endomorphisms EndA,
which is a particular case of the construction S.

A homomorphism of R-bialgebroids S ′ → S is an algebra homomorphism
which commutes with the source and target mappings, which additionally is an
R-coring homomorphism (so there are three commutative triangles and a com-
mutative square for such an algebra homomorphism to satisfy) [4, 9]. If S′ and
S additionally come equipped with antipodes τ ′ and τ , respectively, then the
homomorphism S′ → S is additionally a homomorphism of Hopf algebroids if it
commutes with the antipodes in an obvious square diagram.

2.1. Pseudo-Galois extensions

If σ is automorphism of the algebra A, we let Aσ denote the bimodule A twisted
on the right by σ, with module actions defined by x ·a · y = xaσ(y) for x, y, a ∈ A.
Two such bimodules Aσ and Aτ twisted by automorphisms σ, τ : A→ A are A-A-
bimodule isomorphic if and only if there is an invertible element u ∈ A such that
τ ◦ σ−1 is the inner automorphism by u (for send 1 �→ u).

Let B be a subalgebra of A. Recall the characterization of a group-Galois
extension A |B, where only two conditions need be met. First, there is a finite
group G of automorphisms of A such that B = AG, i.e., the elements of B are
fixed under each automorphism of G and each element of A in the complement of
B is moved by some automorphism of G. Second, there are elements ai, bi ∈ A,
i = 1, . . . , n such that

∑
i aibi = 1 and

∑
i aiσ(bi) = 0 if σ ∈ G and σ �= idA.

Since E : A → B defined by E(a) =
∑

σ∈G σ(a) is a Frobenius homomorph-
ism with dual bases ai, bi, it follows that there is an A-A-bimodule isomorphism
between the tensor-square and the semi-direct product of A and G:

h : A⊗B A −→ A � G, h(x⊗ y) :=
∑

σ∈G
xσy =

∑

σ∈G
xσ(y)σ (13)
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(For the inverse is given by h−1(aτ) =
∑

i aτ(ai)⊗B bi.) Thus A⊗BA is isomorphic
to ⊕σ∈GAσ as A-A-bimodules. Mewborn and McMahon [18] relax this condition
as follows:

Definition 2.1. The algebra A is a pseudo-Galois extension of a subalgebra B if
there is a finite set G of B-automorphisms (i.e., fixing elements of B) and a positive
integer N such that A ⊗B A is isomorphic to a direct summand of ⊕σ∈GA

N
σ : in

symbols this becomes

A⊗B A ⊕ ∗ ∼= ⊕σ∈GA
N
σ , (14)

in terms of A-A-bimodules. Assume with no loss of generality that G is minimal in
the group of B-automorphisms AutB(A) with respect to this property and Aσ �∼= Aτ
if σ �= τ in G.

It is clear that Galois extensions are pseudo-Galois. For example, let A be
a simple ring with finite group G of outer automorphisms of A, then A is Galois
over its fixed subring B = AG, cf. [20, 2.4]. Another example of a pseudo-Galois
extension is an H-separable extension A |B, which by definition satisfies A⊗BA⊕
∗ ∼= AN as A-A-bimodules, so we let G = {idA} in the definition above [8, 9, 18].
For example, if A is a simple ring, G a finite group of outer automorphisms of A
such that each nonidentity automorphism moves an element of the center of A,
then the skew group ring A � G is H-separable over A [19].

Note that the definition of pseudo-Galois extension A |B leaves open the
possibility that B is a proper subset of the invariant subalgebra AG : if B ⊂ C ⊂ AG

and C is a separable extension of B, then A |C is also a pseudo-Galois extension,
since one may show that A ⊗C A ⊕ ∗ ∼= A ⊗B A as natural A-A-bimodules via
the separability element. Conversely, if A |C is a pseudo-Galois extension and
C ⊃ B is H-separable, then A |B is pseudo-Galois by noting that A ⊗B A ∼=
A ⊗C C ⊗B C ⊗C A. For example, if E |F is a finite Galois extension of fields
where F is the quotient field of a domain R, then the ring extension E |R is
pseudo-Galois.

In the next proposition, we note that pseudo-Galois extensions are depth two
by means of a characterization of pseudo-Galois extensions using pseudo-Galois
elements.

Proposition 2.2. An algebra extension A |B is pseudo-Galois iff there is a finite
set G of B-automorphisms and N elements ri,σ ∈ CA(B) and N elements ei,σ ∈
(σA⊗B A)A for each element σ ∈ G satisfying

1 ⊗B 1 =
∑

σ∈G

N∑

i=1

ri,σei,σ (15)

As a consequence, A |B is left and right D2 with left and right D2 quasibases
derived from the elements ri,σ and ei,σ ∈ (A⊗B A)B.
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Proof. (⇒) We note that the condition (14) implies the existence of N pairs of
mappings fi,σ and gi,σ for each B-automorphism σ ∈ G satisfying

N∑

i=1

∑

σ∈G
gi,σ ◦ fi,σ = idA⊗BA. (16)

The mappings simplify as

fi,σ ∈ Hom (AA⊗B AA,A(Aσ)A) ∼= CA(B),

via F �→ F (1 ⊗ 1) with inverse r �→ (a⊗ a′ �→ arσ(a′)), as well as mappings

gi,σ ∈ Hom (A(Aσ)A,AA⊗B AA) ∼= (σA⊗B A)A,

via f �→ f(1) with inverse e �→ (a �→ ae) where e ∈ (σA⊗B A)A iff ea = σ(a)e for
each a ∈ A.

If ri,σ corresponds via the isomorphism above with fi,σ, then fi,σ(x⊗B y) =
xri,σσ(y) for each x, y ∈ A. If ei,σ corresponds via the other isomorphism above
with gi,σ, then gi,σ(a) = aei,σ. We compute:

x⊗B y =
∑

i,σ∈G
(gi,σ ◦ fi,σ)(x ⊗ y) =

∑

σ∈G

N∑

i=1

xri,σσ(y)ei,σ , (17)

which shows that

λri,σ ◦ σ ∈ EndBAB , ei,σ ∈ (A⊗B A)B (18)

are right D2 quasibases. Setting x = y = 1 we obtain the Eq. (15). Finally use the
twisted centralizer property ea = σ(a)e for a ∈ A and e ∈ (σA⊗B A)A to obtain

x⊗B y =
∑

σ∈G

N∑

i=1

ei,σσ
−1(x)σ−1(ri,σ)y.

Hence, the following are left D2 quasibases for A |B:

ei,σ ∈ (A⊗B A)B , σ−1 ◦ ρri,σ ∈ EndBAB. (19)

(⇐) Conversely, suppose we are given a finite set G of B-automorphisms, and for
each σ ∈ G, N centralizer elements ri,σ ∈ CA(B), and N twisted A-central elements
ei,σ ∈ (σA ⊗B A)A for i = 1, . . . , N such that Eq. (15) holds. By multiplying the
equation from the left by x ∈ A and from the right by y ∈ A, we obtain Eq. (17)
and then Eq. (16) by defining fi,σ and gi,σ as before, which is of course equivalent
to the condition (14) for pseudo-Galois extension. �

We note that pseudo-Galois elements in Eq. (15) specialize to H-separability
elements in case G = {idA} [8, 2.5].

Recall that in homological algebra the enveloping algebra of an algebra A is
denoted by Ae := A⊗Aop.
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Theorem 2.3. Suppose A |B is pseudo-Galois extension satisfying condition (14)
with G the subgroup generated by G within AutBA and R the centralizer CA(B).
Then there is a Hopf algebroid denoted by Re �" G which maps epimorphically as
R-bialgebroids onto the left bialgebroid S = EndBAB .

Proof. Denote the identity in G by e and the canonical anti-isomorphism R → Rop

by r �→ r satisfying r s = sr for every r, s ∈ R. Note that the B-automorphisms of
G restrict to automorphisms of the centralizer R. The notation C for Re �" G is
adopted at times. The Hopf algebroid structure of Re �" G is given by

1. as a K-module (over the ground ring K) Re �" G = R ⊗ Rop ⊗K[G] where
K[G] is the group K-algebra of G;

2. multiplication given by

(r ⊗ s �" σ)(u ⊗ v �" τ) = rσ(u) ⊗ vτ−1(s) �" στ (20)

with unity element 1C = 1R ⊗ 1R �" e,
3. source map sL : R→ Re �" G given by sL(r) = r ⊗ 1 �" e,
4. target map tL : Rop → Re �" G given by tL(r) = 1 ⊗ r �" e,
5. counit εC : Re �" G→ R given by εC(r ⊗ s �" σ) = rσ(s),
6. comultiplication ∆C : C → C ⊗R C is given by

∆(r ⊗ s �" σ) = (r ⊗ 1 �" σ) ⊗R (1 ⊗ s �" σ), (21)

7. and the antipode τ : C → C by τ(r ⊗ s �" σ) = s⊗ r �" σ−1

We will postpone the proof that this defines a Hopf algebroid over R until the next
section where it is shown more generally for an involutive Hopf algebra H and its
H-module algebras.

The epimorphism of left R-bialgebroids Ψ : Re �" G → S is given by

Ψ(r ⊗ s �" σ) = λr ◦ σ ◦ ρs (22)

We note that Ψ is an algebra homomorphism by comparing Eq. (20) with

λr ◦ σ ◦ ρs ◦ λu ◦ τ ◦ ρv = λrσ(u) ◦ σ ◦ τ ◦ ρvτ−1(s),

and Ψ(1C) = 1S . The mapping Ψ is epimorphic since each β ∈ S may be expressed
as a sum of mappings of the form λr ◦ σ ◦ ρs where σ ∈ G and r, s ∈ R. To see
this, apply µ(idA ⊗ β) to Eq. (17) with x = 1, which yields

β(y) =
∑

i,σ∈G
ri,σσ(y)e1

i,σβ(e2
i,σ)

where e1
i,σβ(e2

i,σ) ∈ R for each i and σ.
Note next that Ψ commutes with source, target and counit maps. For

Ψ(sL(r)) = Ψ(r ⊗ 1 �" e) = λr and Ψ(tL(r)) = Ψ(1 ⊗ r �" e) = ρr for r ∈ R
(so Ψ : C → S is an R-R-bimodule map). The map Ψ is counital since

ε(Ψ(r ⊗ s �" σ)) = λr(σ(ρs(1))) = rσ(s) = εC(r ⊗ s �" σ).
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Using the isomorphism φ : S ⊗R S → Hom (BA ⊗B AB ,BAB) for a depth
two extension A |B defined as above by φ(α⊗R β)(x⊗B y) = α(x)β(y), note from
Eq. (21) that Ψ is comultiplicative:

φ((Ψ ⊗R Ψ)(∆C(r ⊗ s �" σ)))(x ⊗B y) = λr(σ(x))σ(ρs(y))

= φ(∆(λr ◦ σ ◦ ρs))(x ⊗B y) = φ(∆(Ψ(r ⊗ s �" σ)))(x ⊗B y)

since σ ∈ G is a group-like element satisfying σ(1)⊗Rσ(2) = σ⊗Rσ (corresponding
to the automorphism condition). �

Corollary 2.4. If the algebra extension A |B is H-separable, then G = {idA} and Ψ :
Re → S is an isomorphism of bialgebroids, whence S has the antipode Ψ◦ τ ◦Ψ−1.
If A |B is G-Galois, then Ψ : Re �" G → S is a split epimorphism of bialgebroids.

Proof. Note that Re is isomorphic as algebras to the subalgebra Re �" {e}. The
first statement follows from [9], since Ψ(r ⊗ s) = λr ◦ ρs is shown there to be an
isomorphism of bialgebroids.

If A |B is G-Galois, then A ⊗B A ∼= A � G via h above. Since each σ ∈ G
fixes elements of B, it follows that (A⊗B A)B ∼= R�G. Since A |B is a Frobenius
extension, EndAB ∼= A⊗BA via f �→

∑
i f(ai)⊗bi with inverse x⊗By �→ λx◦E◦λy.

This restricts to EndBAB ∼= (A⊗B A)B. Putting the two together yields

Φ : S
∼=−→ R � G, Φ(α) :=

∑

σ∈G

n∑

i=1

α(ai)σ(bi)σ

with inverse r�τ �→ λr◦τ . Then the algebra epimorphism Φ◦Ψ : Re �" G→ R�G
simplifies to

(Φ ◦ Ψ)(r ⊗ s �" σ) = Φ(λr ◦ σ ◦ ρs) =
∑

τ∈G

n∑

i=1

λrσ(aisτ(bi)) ◦ σ ◦ τ.

which is split by the monomorphism R�G→ Re �" G given by r�σ �→ r⊗1 �" σ,
an algebra homomorphism by an application of Eq. (20). �

3. An enveloping Hopf algebroid over algebras in certain
tensor categories

Let H be a Hopf algebra with bijective antipode S and A a left H-module al-
gebra, i.e., an algebra in the tensor category of H-modules. Motivated by the
left bialgebroid of a pseudo-Galois extension as studied in Section 3, we define a
type of enveloping algebra Ae �" H for the smash product algebra A � H . It is
a left bialgebroid over A, and a Hopf algebroid in case H is involutive such as a
group algebra or the enveloping algebra of Lie algebra. In terms of noncommuta-
tive algebra, it is the minimal algebra which contains subalgebras isomorphic to
the Hopf algebra H , the standard enveloping algebra Ae of an algebra A, and the
semi-direct or crossproduct algebra A�H as well as its derived right crossproduct
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algebra H �Aop. In terms of category theory, it is derived from the push-out con-
struction [16] of the inclusion H ↪→ A � H and its opposite via the isomorphism
S : H → Hcop, op.

Theorem 3.1. Suppose B := Ae �" H is the vector space A⊗Aop ⊗H with multi-
plication

(a⊗ b �" h)(c⊗ d �" k) := a(h(1) · c)⊗ d(S(k(2)) · b) �" h(2)k(1). (23)

Then B is a left bialgebroid over A with structure given in Eqs. (24) through (28).
If S2 = idH , then B is a Hopf algebroid with antipode Eq. (29).

Proof. Clearly the unity element 1B = 1A ⊗ 1A �" 1H . The multiplication is
associative, since

[(a⊗ b �" h)(c⊗ d �" k)](e⊗ f �" j)

= (a(h(1) · c) ⊗ d(S(k(2)) · b) �" h(2)k(1))(e⊗ f �" j)

= a(h(1) · c)(h(2)k(1) · e) ⊗ f(S(j(3)) · d)(S(k(3)j(2)) · b) �" h(3)k(2)j(1)

= (a⊗ b �" h)(c(k(1) · e) ⊗ f(S(j(2)) · d) �" k(2)j(1)

= (a⊗ b �" h)[(c⊗ d �" k)(e⊗ f �" j)].

It follows that B is an algebra.
Define a source map sL : A→ B and target map tL : A→ B by

sL(a) = a⊗ 1A �" 1H (24)

tL(a) = 1A ⊗ a �" 1H , (25)

an algebra homomorphism and anti-homomorphism, respectively. It is evident that
tL(x)sL(y) = sL(y)tL(x) for all x, y ∈ A. The A-A-bimodule structure induced
from x · b · y = sL(x)tL(y)b for b ∈ B is then given by (a, c ∈ A, h ∈ H)

x · (a⊗ c �" h) · y = xa⊗ c(S(h(2)) · y) �" h(1). (26)

The counit ε : B → A is defined by

ε(a⊗ c �" h) := a(h · c). (27)

Note that ε is an A-A-bimodule homomorphism via its application to the RHS of
Eq. (26):

ε(xa⊗c(S(h(2)) · y) �" h(1)) = xah(1) ·(c(S(h(2)) ·y)) = xa(h ·c)y = xε(a⊗c �" h)y,

since h · (xy) = (h(1) · x)(h(2) · y), the measuring axiom on A.
The comultiplication ∆ : B → B ⊗A B is defined by

∆(a⊗ c �" h) := (a⊗ 1A �" h(1))⊗A (1A ⊗ c �" h(2)). (28)

It is an A-A-homomorphism:

∆(xa⊗ c(S(h(2)) · y) �" h(1)) = (xa⊗ 1A �" h(1)) ⊗A (1A ⊗ c(S(h(3)) · y) �" h(2)

= x ·∆(a⊗ c �" h) · y
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by Eq. (26). The left counit equation (ε⊗A idB)∆ = idB follows from

ε(a⊗ 1 �" h(1)) · (1 ⊗ c �" h(2)) = a(h(1) · 1) · (1 ⊗ c �" h(2))
= a⊗ c �" h,

since h · 1A = ε(h)1A in the H-module algebra A. The right counit equation
(idB ⊗ ε)∆ = idB follows from

(a⊗ 1 �" h(1)) · ε(1 ⊗ c �" h(2)) = (a⊗ 1 �" h(1)) · (h(2) · c)
= a⊗ (S(h(2))h(3) · c) �" h(1) = a⊗ c �" h.

Hence (B,A,∆, ε) is an A-coring.
We check the remaining bialgebroid axioms:

∆(1B) = 1B ⊗ 1B, ε(1B) = 1A

are apparent from Eqs. (28) and (27). The axiom corresponding to Eq. (10) com-
putes as:

∆(a⊗ b �" h)(tL(c) ⊗A 1B) = (a⊗ 1 �" h(1))(1 ⊗ c �" 1H) ⊗A (1 ⊗ b �" h(2))

= (a⊗ c �" h(1)) ⊗A (1 ⊗ b �" h(2)),

and on the other hand

∆(a⊗ b �" h)(1B ⊗A sL(c)) = (a⊗ 1 �" h(1)) ⊗A (1 ⊗ b �" h(2))(c⊗ 1 �" 1H)

= (a⊗ 1 �" h(1)) ⊗A (h(2) · c⊗ b �" h(3))

= (a⊗ S(h(2))h(3) · c �" h(1))⊗A (1 ⊗ b �" h(4))

which equals the RHS expression for ∆(a⊗ b �" h)(tL(c) ⊗A 1B).
Next, the comultiplication is multiplicative:

∆((a⊗ b �" h)(c⊗ d �" k)) = ∆(a(h(1) · c) ⊗ d(S(k(2)) · b) �" h(2)k(1))

= (a(h(1) · c) ⊗ 1 �" h(2)k(1)) ⊗A (1A ⊗ d(S(k(3)) · b) �" h(3)k(2)

= (a⊗ 1 �" h(1))(c⊗ 1 �" k(1)) ⊗A (1 ⊗ b �" h(2))(1 ⊗ d �" k(2))

= ∆(a⊗ b �" h)∆(c⊗ d �" k).

The counit satisfies

ε((a⊗ b �" h)(c⊗ d �" k)) = ε(a(h(1) · c)⊗ d(S(k(2)) · b) �" h(2)k(1))

= a(h(1) · c)(h(2)k(1) · (d(S(k(2)) · b))) = a(h(1) · c)(h(2)k · d)(h(3) · b)
= ε((a⊗ b �" h)(c(k · d) ⊗ 1 �" 1H)) = ε((a⊗ b �" h)sL(ε(c⊗ d �" k))).

Similarly, ε((a ⊗ b �" h)(c ⊗ d �" k)) = ε((a ⊗ b �" h)tL(ε(c ⊗ d �" k))) for all
a, b, c, d ∈ A, h, k ∈ H . Thus B is a bialgebroid over A.

Suppose the antipode on H is bijective and satisfies S2 = idH . Define an
antipode on B by (a, b ∈ A, h ∈ H)

τ(a⊗ b �" h) = b⊗ a �" S(h) (29)
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Denote the compositional inverse of S by S. Then τ has inverse,

τ−1(a⊗ b �" h) = b⊗ a �" S(h).

Note that τ is an anti-automorphism of B:

τ(c⊗ d �" k)τ(a⊗ b �" h) = (d⊗ c �" S(k))(b ⊗ a �" S(h))

= d(S(k(2)) · b) ⊗ a(S2(h(1)) · c) �" S(k(1))S(h(2))

= τ(a(h(1) · c) ⊗ d(S(k(2)) · b) �" h(2)k(1)) = τ((a⊗ b �" h)(c⊗ d �" k)).

The antipode satisfies the three axioms (1)–(3):

τ(tL(a)) = τ(1 ⊗ a �" 1H) = a⊗ 1 �" 1H = sL(a),

for all a ∈ A. Next, for b := a⊗ c �" h ∈ B,

τ−1(b(2))(1) ⊗A τ−1(b(2))(2)b(1)
= τ−1(1 ⊗ c �" h(2))(1) ⊗A τ−1(1 ⊗ c �" h(2))(2)(a⊗ 1 �" h(1))

= (c⊗ 1 �" S(h(4))) ⊗A (S(h(3)) · a⊗ 1 �" S(h(2))h(1)

= c⊗ S(S(h(2))S(h(1)) · a �" S(h(3)) ⊗A 1B

= (c⊗ a �" S(h)) ⊗A 1B = τ−1(b) ⊗A 1B.

Continuing our notation b = a⊗ c �" h ∈ B, note too that

τ(b(1))(1)b(2) ⊗A τ(b(1))(2) = (1 ⊗ 1 �" S(h(2)))(1 ⊗ c �" h(3))⊗A (1 ⊗ a �" S(h(1)))

= (1 ⊗ c �" 1H)⊗A (1 ⊗ a �" S(h))

= 1B ⊗A (c⊗ a �" S(h)) = 1B ⊗A τ(b).

Hence, B is a Hopf algebroid. �
Given a group G, its group algebra K[G] over a commutative ring K is an

involutive Hopf algebra [21]. Moreover, if G acts by automorphisms on a K-algebra
A, then A is a left K[G]-module algebra and A�G is identical with the semidirect
product [21]. Thus the construction Re �" G (covering the left bialgebroid of
a pseudo-Galois extension in Section 3) is a Hopf algebroid, and we record the
following.

Corollary 3.2. Given a K-algebra A and a group G of algebra automorphisms of
A, the algebra Ae �" K[G] is a Hopf algebroid over A.

Recall that Lu [15] defines over an algebra A a Hopf algebroid Ae. This is a
Hopf subalgebroid of the construction in the theorem above.

Corollary 3.3. Let H be an involutive Hopf algebra and A a left H-module algebra.
Then the Hopf algebroid Ae �" H contains subalgebras isomorphic to

1. Lu’s Hopf algebroid A⊗Aop

2. the semidirect product A � H
3. its derived right crossproduct H � Aop

4. the Hopf algebra H
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Proof. It is easy to check from Eq. (23) that the following mappings

1. Ae ↪→ Ae �" H given by a⊗ b �→ a⊗ b �" 1H is an algebra monomorphism as
well as a homomorphism of Hopf algebroids over A (i.e., it commutes with the
source, target, counit, comultiplication and antipode maps above and those
given in [15]);

2. j1 : A � H ↪→ Ae �" H given by j1(a#h) := a ⊗ 1A �" h is an algebra
monomorphism, where we recall that the multiplication in A�H is given by

(a#h)(b#k) = a(h(1) · b)#h(2)k

3. j2 : H � Aop ↪→ Ae �" H given by j2(h#a) := 1 ⊗ a �" h is an algebra
monomorphism, where a · h := S(h) · a defines the derived right action of H
on Aop and the multiplication in H � Aop (cf. [17, p. 22]) is given by

(h#a)(k#b) = hk(1)#(a · k(2))b.

4. H ↪→ Ae �" H given by h �→ 1 ⊗ 1 �" h is an algebra monomorphism as
well as a Hopf algebra homomorphism (for it commutes with the counit,
comultiplication and antipode mappings of H and Ae �" H if A is a faithful
K-algebra and K is identified with K1A.). �

The construction Ae �" H for a Hopf algebra and a left H-module algebra is
a type of cofibered sum [23, p. 99] of the algebra monomorphisms ι1 : H ↪→ A�H
and ι2 : H ↪→ H � Aop defined by ι1(h) := 1A#h and ι2(h) := h#1A for each
h ∈ H . We note that j1 ◦ ι1 = j2 ◦ ι2, both sending h �→ 1A ⊗ 1A �" h. Also
define the algebra monomorphism k1 : A ↪→ A � H by k1(a) := a#1H and anti-
monomorphism k2 : A ↪→ H � Aop by k2(a) = 1H#a. Note that

j2(k2(a))j1(k1(b)) = (1A ⊗ a �" 1H)(b ⊗ 1A �" 1H)

= (b ⊗ 1A �" 1H)(1A ⊗ a �" 1H)

= j1(k1(b))j2(k2(a)),

for all a, b ∈ A.

Proposition 3.4. Suppose B is an algebra with monomorphisms f1 : A � H ↪→ B
and f2 : H � Aop ↪→ B such that f1 ◦ ι1 = f2 ◦ ι2 (i.e., satisfying the commutative
square in Figure 1) and f1(k1(a))f2(k2(b)) = f2(k2(b))f1(k1(a)) for all a, b ∈ A.
Then there is a uniquely defined algebra homomorphism F : Ae �" H → B such
that F ◦ ji = fi for i = 1, 2.

Proof. Define F : Ae �" H → B by

F (a⊗ b �" h) := f1(a#h)f2(1H#b) = f1(a#1H)f2(h#b). (30)

The second equality follows from a#h = (a#1H)(1A#h) and f1 ◦ ι1 = f2 ◦ ι2. It
follows that F ◦ ji = fi for i = 1, 2 since fi(1) = 1B. Then the uniqueness of F
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H
ι1 � A � H

H � Aop

ι2

�
f2 � B

f1

�

Figure 1. Ae �" H is the cofibered sum of ι1,2 : H ↪→ A�H ,
H � Aop such that Ae embeds homomorphically.

follows from noting a ⊗ b �" h = (a ⊗ 1A �" h)(1 ⊗ b �" 1H) and the homomor-
phic property of F . We compute that F is an algebra homomorphism by using
f1(k1(c))f2(k2(b)) = f2(k2(b))f1(k1(c)) in the third equality:

F (a⊗ b �" h)F (c⊗ d �" k) = f1(a#h)f2(1H#b)f1(c#1H)f2(k#d)

= f1(a#h)f1(c#1H)f2(1H#b)f2(k#d)

= f1(a(h(1) · c)#h(2))f2(k(1)#d(S(k(2)) · b)) = F ((a⊗ b �" h)(c⊗ d �" k)),

by comparing the last equation with Eq. (23). �

The homomorphism F may fail to be monic as for example when A is a
commutative algebra, H acts trivially on A and B = A⊗H .

Example 3.5. Enveloping algebras of Lie algebras are involutory Hopf algebras with
comultiplication defined via primitive elements and the antipode via sign change.
The Weyl algebra K[X,Z |XZ+1 = ZX ] is isomorphic to the semi-direct product
A�K[Z] of the one-dimensional Lie algebra K[Z] acting by Leibniz derivation on
the one-variable polynomial algebra A = K[X ] [21]. The enveloping Hopf algebroid
is then the push-out of the inclusion K[Z] ↪→ K[X,Z |XZ + 1 = ZX ] with itself:

K[X,Y ] �" K[Z] ∼= K[X,Y, Z |XZ + 1 = ZX, XY = Y X, Y Z + 1 = ZY ] (31)

with Hopf algebroid comultiplication given on monomials by (integers k ≥ p, q ≥ 0)

∆(XnY mZk) =
∑

p+q=k

(
k
p

)
XnZp ⊗A Y mZq (32)

counit by

ε(XnY mZk) =
{ m!

(m−k)!X
n+m−k if m ≥ k

0 if k > m
(33)

and antipode by

τ(XnY mZk) = (−1)kXmY nZk. (34)
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4. Discussion

Böhm and Brzeziński [2, A.1] generalize the construction Ae �" H in the previous
section to a certain module algebra A w.r.t. the action of a Hopf algebroid H
which is twisted by an A-valued cocycle on H .

Panaite and Van Oystaeyen [22] observe that the Hopf algebroid Ae �" H
constructed in the last section is isomorphic to the Hopf algebroid A *H * A in
Connes-Moscovici [6] with antipode given in [14], which arises in a quite different
context. The algebra A*H*A formed from a Hopf algebra H and a left H-module
algebra A is linearly just A⊗H ⊗A with multiplication given by

(a* h* b)(c* k * d) = a(h(1) · c) * h(2)k * (h(3) · d)b. (35)

Note the algebra homomorphism f1 : A � H → A *H * A given by f1(a#h) :=
a* h* 1A. Note that f2 : H � Aop → A*H *A given by

f2(k#b) := 1A * k(1) * k(2) · b (36)

is an algebra homomorphism satisfying with f1 the hypotheses of Prop. 3.4. This
leads to a mapping F : Ae �" H → A*H *A given by

a⊗ b �" h �−→ a* h(1) * h(2) · b, (37)

which is the isomorphism in [22, 2.4].
Comparing the two isomorphic Hopf algebroids (see [22] for details) we note

that the antipode in Ae �" H is given by a simpler formula, while the A-A-bimodule
structure in A *H * A is simpler. The multiplication in Ae �" H is closer to the
smash product of a Hopf algebra with a bimodule algebra, which is the method of
proof in [22].

It should also be noted that [22, 3.1, 3.2] provides an equivalent condition to
that in proposition 3.4 which shows Ae �" H is a certain universal bialgebroid.

The picture of universals for bialgebroids over a fixed base ring A is the
following. As observed in [15], for any (finite projective) algebra A there is a
homomorphism of bialgebroids Ae → EndA, where x ⊗ y �→ λx ◦ ρy, since EndA
is a terminal object in a category of A-bialgebroids (existence in [15, Prop. 3.7],
uniqueness: an easy argument). For similar reasons, Ae is an initial object in this
category. For A a left H-module algebra, this homomorphism factors through the
bialgebroids Ae �" H , A*H *A, or any bialgebroid over A as follows.

Let S be a bialgebroid over A with source, target mappings sL, tL : A → S
and counit ε : S → A. In addition to Lu’s mapping above, define bialgebroid
arrows Ae → S, a⊗ b �→ sL(a)tL(b) and the Xu anchor mapping S → EndA given
by x �→ ε(?sL(x)). P. Xu’s anchor map [24] corresponds to the action of S on A
via source and counit [15, 3.7], for which A becomes the unit module in the tensor
category of S-modules.
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Proposition 4.1. The natural arrows defined above form a commutative triangle of
bialgebroid homomorphisms.

Ae ��

���
��

��
��

� EndA

S

�����������

Proof. This follows readily from bialgebroid identities such as ε ◦ sL = idA =
ε ◦ tL. �

The anchor mapping Ae �" H → EndA is given by (a, b ∈ A, h ∈ H)

a⊗ b �" h �−→ λa ◦ λh� ◦ ρb (38)

where λh� denotes the endomorphism given by left action by h, x �→ h � x. (Note
that this is an algebra homomorphism since for a, b, c, d ∈ A, h, k ∈ H ,

λa ◦ λh� ◦ ρb ◦ λc ◦ λk� ◦ ρd = λa(h(1)�c) ◦ λh(2)k(1)� ◦ ρd(S(k(2))�b),

which is the Eq. (23) up to a simple re-writing.)
Xu’s anchor mapping for the Connes-Moscovici bialgebroid A*H *A is the

mapping A*H *A→ EndA given by sending a* h* b into the endomorphism

ε((a* h* b)(x* 1H * 1A)) = ε(a(h(1) � x) * h(2) * b) = a(h(1) � x)ε(h(2))b

= λa ◦ ρb ◦ λh�(x).

Note that in EndA we have

λa ◦ λh� ◦ ρb = λa ◦ ρh(2)�b ◦ λh(1)�, (39)

which lifts to the isomorphism (37) Ae �" H → A*H *A.
We propose a generalization of pseudo-Galois extension to pseudo-Hopf-

Galois extension as follows. Let H be a finite dimensional (or finite projective)
Hopf algebra acting from the left on an H-module algebra A, and B be a subal-
gebra contained in the subalgebra of invariants

AH = {b ∈ A : ∀h ∈ H, h � b = ε(h)b}.
With R := CA(B) denoting the centralizer as usual, note that H restricts to
an action on R. To be a pseudo-Hopf-Galois extension, we require the algebra
extension A |B be D2, and we require the bialgebroid homomorphism

Re �" H → EndBAB , r ⊗ s �" h �→ λr ◦ λh� ◦ ρs (40)

to be surjective. For example, if A |B is a Hopf-Galois extension (technically, right
H∗-Galois), it is pseudo-Hopf-Galois since it is D2 and by [13]

Ψ : R � H
∼=−→ EndBAB, Ψ(r#h) := λr ◦ λh�. (41)

In addition, if A |B is H-separable, it is pseudo-Hopf-Galois since it is D2 [13]
and Re ∼= EndBAB via r ⊗ s �→ λr ◦ ρs. These are the two examples we wish to
generalize at once.
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The following is a third class of example of a pseudo-Hopf-Galois extension.
Let A |B have a split injective Galois mapping β : A ⊗B A → A ⊗ H∗ as A-
B-bimodules and let its trace function A → B be (a non-surjective) Frobenius
homomorphism [21, chs. 4, 8]. Then A |B is D2 and the mapping in Eq. (41) is a
split epimorphism via the commutative square below.

A⊗B A
β� A⊗H∗

End (AB)

∼=

�
�Ψ A#H

∼=

�
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Abstract. A module N ∈ σ[M ] is called cohereditary in σ[M ] if every factor
module of N is injective in σ[M ]. This paper explores the properties and the
structure of some classes of cohereditary modules. Among others, we prove
that any cohereditary lifting semi-artinian module in σ[M ] is a direct sum
of Artinian uniserial modules. We show that over a commutative ring a lift-
ing module N with small radical is cohereditary in σ[M ] if and only if N is
semisimple M -injective. It is also shown that if E is an indecomposable in-
jective module over a commutative Noetherian ring R with associated prime
ideal p, then E is cohereditary lifting if and only if there is only one maximal
ideal m over p and the ring Rm is a discrete valuation ring.
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1. Introduction

Throughout this article, R denotes an associative ring with identity and all mod-
ules will be unitary right R-modules. Mod-R denotes the category of all right
R-modules. Let M be an R-module and A ≤ M . The notation A + M means
that A is a small submodule of M . Let EndR(M) denotes the endomorphism ring
of M . We will denote by σ[M ] the full subcategory of Mod-R whose objects are
isomorphic to a submodule of an M -generated module. A module N ∈ σ[M ] is
said to be M -small if N is small in its injective hull in σ[M ]. It is easy to see that
N is M -small if and only if there exists a module L ∈ σ[M ] such that N + L.
A module N ∈ σ[M ] is called cohereditary in σ[M ] if every factor module of N is
M -injective. The module N is called cohereditary if N is cohereditary in Mod-R
([5],[25]). Recall that a module M is called lifting if for every submodule A of M
there exists a direct summand B of M such that B ≤ A and A/B +M/B.
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In Section 2 some examples of cohereditary modules are given. In particular,
we show that a direct sum of cohereditary modules in σ[M ] need not be in general
cohereditary in σ[M ]. We also prove that if M is a generator in σ[M ], then M is
cohereditary in σ[M ] if and only if M is semisimple (Proposition 2.4).

Section 3 is devoted to the study of cohereditary lifting modules in σ[M ].
We prove that any cohereditary lifting semi-artinian module in σ[M ] is a direct
sum of Artinian uniserial modules (Corollary 3.8). It is also shown that over a
commutative ring a lifting module N ∈ σ[M ] with small radical is cohereditary
in σ[M ] if and only if N is semisimple M -injective (Corollary 3.12). We give
an example of a finitely generated cohereditary lifting right R-module M over a
noncommutative ring R such that M is not semisimple.

Section 4 deals with the cohereditary lifting modules over commutative Noe-
therian rings. Our main result shows that if E is an indecomposable injective
module over a commutative Noetherian ring R with associated prime ideal p, then
E is cohereditary lifting if and only if there is only one maximal ideal m over p
and the ring Rm is a discrete valuation ring (Corollary 4.13).

2. Cohereditary modules in σ[M ]

Recall that a module N ∈ σ[M ] is called cohereditary in σ[M ] if every factor mod-
ule of N is M -injective. The module N is called cohereditary if N is cohereditary
in Mod-R. Obviously factor modules of cohereditary modules in σ[M ] are again
cohereditary in σ[M ]. Of course, this property of N depend on the surrounding
category σ[M ]. For example, if M is a semisimple R-module, then for every module
N ∈ σ[M ], N is cohereditary in σ[M ] by [24, 20.3] but N need not be cohereditary
in Mod-R. The ring R is called right cohereditary if the module RR is cohered-
itary. In [19], Osofsky proved that the ring R is semisimple if and only if every
cyclic right R-module is injective. Therefore right cohereditary rings are precisely
the semisimple rings. On the other hand, it is clear from the next example that a
cohereditary module need not be semisimple and a semisimple module need not
be cohereditary.

Examples 2.1. (1) Let R be a Dedekind domain which is not a field. The quotient
field of R will be denoted by K. Let P denote the set of all non-zero prime ideals
of R. If P ∈ P, let R(P∞) denote the set of all x ∈ K

R such that Pnx = 0 for some
integer n ≥ 0. By [24, 39.16], a ring R is hereditary if and only if every injective
R-module is cohereditary. In particular, over a Dedekind domain R, it is clear that
a module M is cohereditary if and only if M is injective if and only if M is radical
if and only if M is a direct sum of copies of K and R(P∞), for various P ∈ P (see
[8, Lemma 2.1]). So a Z-module M is cohereditary if and only if M is a direct sum
of copies of Q and Z(p∞), for various primes p.
(2) It is clear that a semisimple module is cohereditary if and only if it is injective.

Proposition 2.1. Let M be an R-module and N a cohereditary module in σ[M ].
Then every submodule of an N -projective module in σ[M ] is N -projective.
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Proof. Let T be an N -projective module in σ[M ] and A ≤ T . Let f : A → K be
a homomorphism and π : N → K be an epimorphism, where K is any module.
Since K is injective in σ[M ], there exists a homomorphism g : T → K such that
gi = f , where i : A → T is the inclusion map. Since T is N -projective, there exists
a homomorphism h : T → N such that πh = g. hi is the desired homomorphism
and πhi = f . Hence A is N -projective. �
Theorem 2.2. Let M be a projective module in σ[M ]. Then the following are equiv-
alent for a module N in σ[M ]:
(1) N is cohereditary in σ[M ].
(2) Every submodule of an N -projective module in σ[M ] is N -projective and N

is injective in σ[M ].

Proof. (1) ⇒ (2). By Proposition 2.1.
(2) ⇒ (1). Since M is N -projective, every submodule of M is N -projective. Now
the result follows by [24, 39.2 (2)]. �

The following lemma is [25, Proposition 6.2(1)]. We give its proof for com-
pleteness.

Lemma 2.3. Let M be an R-module and {Ni}ni=1 be a family of modules in σ[M ].
Then N = ⊕ni=1Ni is cohereditary in σ[M ] if and only if all Ni are cohereditary
in σ[M ].

Proof. It is sufficient to show that the direct sum of two cohereditary modules
N1, N2 in σ[M ] is again cohereditary. Let N = N1 ⊕ N2 and K ≤ N . We will
show that N/K is M -injective. Since N1 is cohereditary in σ[M ], (N1 + K)/K
is M -injective. By [24, 16.3], (N1 + K)/K is a direct summand of N/K. There
exists a submodule T/K of N/K such that N/K = (N1 + K)/K ⊕ T/K. Then
T/K ∼= N2/[(N1 +K)∩N2]. Since N2 is cohereditary in σ[M ], T/K is M -injective.
Then N/K is M -injective. �

A module P ∈ σ[M ] is called hereditary in σ[M ] if every submodule of P
is projective in σ[M ]. A ring R is right hereditary if the module RR is hereditary
in Mod-R. It is well known that a ring R is right hereditary if and only if every
injective module is cohereditary [24, 39.16]. The following Remark shows that a
direct sum of cohereditary modules in σ[M ] need not be in general cohereditary
in σ[M ].

Remark 2.1. Let M be a projective hereditary module in σ[M ] which is not a
locally Noetherian R-module. By [24, 39.8], every injective module in σ[M ] is co-
hereditary in σ[M ]. By [24, 27.3], there exists a family of M -injective modules
(Ni)i∈I such that N = ⊕i∈INi is not M -injective. This proves that a direct sum
of cohereditary modules in σ[M ] need not be in general cohereditary in σ[M ]. In
particular, if R is a hereditary ring which is not Noetherian, then there exists a
family of cohereditary R-modules (Ni)i∈I such that N = ⊕i∈INi is not coheredi-
tary. As an example of hereditary non-Noetherian ring we can take the ring

[
Q R

0 Q

]
.
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In fact, by [2, Example 28.12], R is a hereditary semiprimary ring that is neither
left nor right Artinian. Therefore R is neither left nor right Noetherian by [2,
Theorem 15.20].

Proposition 2.4. Let M be an R-module such that M is a generator in σ[M ]. Then
M is cohereditary in σ[M ] if and only if M is semisimple.

Proof. Assume M is semisimple. Then M is cohereditary in σ[M ] by [24, 20.3].
Conversely, assume M is cohereditary in σ[M ]. Let X be a cyclic module in σ[M ].
Since M is a generator in σ[M ], there exist a finite index set I and an epimorphism
f : M (I) → X . By Lemma 2.3, M (I) is cohereditary in σ[M ]. Therefore X is
injective in σ[M ]. Since every cyclic module in σ[M ] is injective in σ[M ], M is
semisimple by [6, Corollary 7.14]. �
Corollary 2.5. Let M be a right R-module such that M is a generator in Mod−R.
Then M is cohereditary in Mod-R if and only if M is semisimple if and only if R
is semisimple.

Example 2.2. Consider the Z- module Q. It is well known that Q is an injective
module. Since Z is a Dedekind ring, Q is a cohereditary Z-module by [24, 40.5]. In
particular, Q is cohereditary in σ[Q]. On the other hand, it is clear that Q is not
semisimple. Thus by [24, 20.3], σ[Q] contains a module which is not cohereditary
in σ[Q]. Moreover, this example shows that the condition “M is a generator in
σ[M ]” is not superfluous in Proposition 2.4.

A module M has the summand sum property (SSP) (resp. summand inter-
section property (SIP)) if the sum (resp. intersection) of two direct summands of
M is a direct summand of M .

Theorem 2.6. (See [1, Theorem 8]). M has the SSP iff for every decomposition
M = A⊕B and every homomorphism f : A −→ B, Imf is a direct summand of B.

Recall that a module M is said to be a (D3)-module if for every two direct
summands U , V of M with U + V = M , the submodule U ∩ V is also a direct
summand of M . Note that every quasi-projective module is (D3).

Lemma 2.7. (See [1, Lemma 19]). If M has the SSP and M is a (D3)-module, then
M has the SIP.

Proposition 2.8.

(1) Let N be a cohereditary module in σ[M ]. Then N has the SSP.
(2) Let N be a quasi-projective cohereditary module in σ[M ]. Then N has the

SIP.

Proof. (1) Let N = A ⊕ B and let f : A −→ B be any homomorphism. Clearly,
N/Kerf = (A/Kerf)⊕ ((B + Kerf)/Kerf). Therefore A/Kerf ∼= Imf is injective
in σ[M ]. Thus Imf is a direct summand of B. Hence by Theorem 2.6, M has the
SSP.
(2) Clear by Lemma 2.7 and (1). �
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3. Cohereditary lifting modules in σ[M ]

Let M and N be right R-modules. In [22], Talebi and Vanaja define

Z̄M (N) = ∩{Kerg | g : N → L,L ∈ S}
where S denotes the class of all M -small modules. They call N an M -cosingular
(non-M-cosingular) module if Z̄M (N) = 0 (Z̄M (N) = N). It is easy to see that a
module N ∈ σ[M ] is non-M -cosingular if and only if every nonzero factor module
of N is not M -small. Note that if M = R, then we say that “M is non-cosingular”
instead of “M is non-R-cosingular”.

Lemma 3.1. Let N ∈ σ[M ]. If N is cohereditary in σ[M ], then N is non-M-
cosingular.

Proof. Straightforward. �

A module M is called discrete if M is a lifting module such that every sub-
module N of M with M/N isomorphic to a direct summand of M is itself a direct
summand of M . Note that every quasi-projective lifting module is discrete. A
nonzero module M is called hollow if every proper submodule of M is small in M .
The module M is called local if it is hollow and cyclic.

If every injective module in σ[M ] is lifting, then M is called a Harada mod-
ule. Note that if M is a non-M -cosingular Harada module in σ[M ], then M is
cohereditary in σ[M ] by [20, Theorem 2.2].

The following example shows that a non-M -cosingular module need not be
cohereditary in σ[M ].

Example 3.1. Let K be a field and let R =
∏
n≥1 Kn with Kn = K for all n ≥ 1.

Then the ring R is a von Neumann regular ring which is not semisimple (see [13,
p. 264]). Hence the R-module R is not cohereditary in Mod−R by Corollary 2.5.
On the other hand, by [22, Corollary 2.6], the R-module R is non-cosingular.

Proposition 3.2. Let M be an R-module. The following are equivalent for a module
N in σ[M ]:
(1) N is cohereditary in σ[M ].
(2) N is non-M-cosingular and every non-M-cosingular finitely N -generated mod-

ule in σ[M ] is injective in σ[M ].

Proof. (1) ⇒ (2). N is non-M-cosingular by Lemma 3.1. Let T be a non-M-
cosingular finitely N -generated module in σ[M ]. Then there exist a finite index
set I and an epimorphism f : N (I) → T . By Lemma 2.3, T is injective in σ[M ].
(2) ⇒ (1). Let K ≤ N . By [22, Proposition 2.4], N/K is non-M-cosingular. Since
N/K is a finitely N -generated non-M-cosingular module, N/K is injective in σ[M ].
Therefore N is cohereditary in σ[M ]. �

Lemma 3.3. Let N ∈ σ[M ]. If N is non-M-cosingular discrete, then EndR(N) is
von Neumann regular.
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Proof. By [17, Theorem 5.4], EndR(N)/J(EndR(N)) is von Neumann regular and
J(EndR(N)) = {f : N → N | Imf + N}. Let f ∈ J(EndR(N)). Then Imf is
M -small. On the other hand, N/Kerf ∼= Imf implies that Imf = 0 since N is non-
M-cosingular. Therefore J(EndR(N)) = 0 and hence EndR(N) is von Neumann
regular. �

Corollary 3.4. Let N be a cohereditary discrete module in σ[M ]. Then EndR(N)
is von Neumann regular.

Proof. By Lemma 3.1 and Lemma 3.3. �

Proposition 3.5.

(1) Let N be a self-injective lifting R-module. Then N has a decomposition N =
⊕i∈INi such that each Ni is hollow with local endomorphism ring.

(2) Let H be a hollow non-M -cosingular module in σ[M ]. Then H is discrete if
and only if EndR(H) is a division ring.

Proof. (1) By [5, 22.20], [24, 19.9] and [17, Corollary 4.9].

(2) Let 0 �= f : H → H be any homomorphism. Assume f(H) �= H . Then f(H) +
H . Therefore f = 0, a contradiction. Therefore f is epic. Now H/Kerf ∼= H implies
that Kerf is a direct summand of H since H is discrete. Therefore Kerf = 0. Thus
EndR(H) is a division ring. The converse is a consequence of [17, Lemma 5.1]. �

We say that a module M has the strong summand sum property, denoted by
SSSP, if the sum of any family of direct summands of M is a direct summand of M .

Proposition 3.6. Let N be a cohereditary module in σ[M ]. If N is lifting, then N
has SSSP.

Proof. By Proposition 2.8, N has the SSP. Therefore N has the SSSP by [7,
Proposition 4.9]. �

Theorem 3.7. Let N be a cohereditary module in σ[M ]. If N is lifting, then N is
a direct sum of uniserial modules.

Proof. By Proposition 3.5, N = ⊕i∈INi, where each Ni is hollow. Now we show
that each Ni is uniserial. Let i ∈ I. Assume that T is any submodule of Ni. Then
Ni/T is indecomposable injective in σ[M ]. Therefore every factor module of Ni is
uniform by [24, 19.9]. Thus for every factor module L of Ni, Soc(L) is simple or
zero. By [24, 55.1], each Ni is uniserial. �

Corollary 3.8. Let N be a cohereditary module in σ[M ]. If N is lifting semi-
artinian, then N is a direct sum of Artinian uniserial modules.

Proof. Let U be a uniserial semi-artinian module. By [24, 55.1], every factor mod-
ule of U has a simple essential socle. Therefore U is Artinian. The result follows
from Theorem 3.7. �
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Example 3.2. Let R be as in Example 2.1. Let M be an R-module. By [17,
Proposition A.7 and Proposition A.8], M is injective lifting if and only if M ∼=
⊕P∈P[R(P∞)]nP with for each P ∈ P, nP is a natural number which vary with P .
In particular, a Z-module N is injective lifting if and only if N ∼= ⊕p[Z(p∞)]mp

where all p are primes and for each prime p, mp is a natural number which vary
with p. It is clear that every p-primary component of N is Artinian and N is
cohereditary semi-artinian. In fact, let X be any proper submodule of N . Since X
is torsion, it is a direct sum of primary groups Xp (see, e.g., [12, Theorem 1]). It
is clear that Xp ≤ Np where Np is the p-component of N . Hence N

X
∼= ⊕p(Np

Xp
).

Let q be a prime such that Nq

Xq
�= 0. Since Nq is Artinian as a finite direct sum of

Z(q∞), we have Soc(Nq

Xq
) �= 0. Therefore N is semi-artinian.

Lemma 3.9. Any local module over a commutative ring is discrete.

Proof. By [17, Lemma 5.1] and [5, 4.27]. �

Lemma 3.10. Suppose that the ring R is commutative and let M be an R-module.
A local module L in σ[M ] is non-M -cosingular if and only if L is a simple M -
injective module.

Proof. Suppose that R is a commutative ring and let L be a local R-module. Let
I be an ideal of R such that L ∼= R

I . By Lemma 3.9, L is a discrete module. Since
L is non-M -cosingular, EndR(L) is a division ring by Proposition 3.5. But it is
not hard to see that the ring R

I is isomorphic to EndR(RI ). Therefore the ring R
I

is a division ring. Thus L is a simple R-module. By [16, Proposition 5.1.4], L is
M -injective. The converse is clear. �

Theorem 3.11. Suppose that the ring R is commutative and let M be an R-module.
The following are equivalent for a module N = ⊕i∈INi in σ[M ] which is a direct
sum of local submodules Ni:

(1) N is non-M -cosingular.
(2) For every i ∈ I, Ni is a simple M -injective module.

Proof. (1) ⇒ (2). By Lemma 3.10, each Ni is a simple M -injective module.

(2) ⇒ (1). Since N is semisimple, N is quasi-injective lifting. By Lemma 3.10,
every Ni is non-M -cosingular. Then N is non-M -cosingular by [22, Proposition
2.4]. �

Corollary 3.12. Suppose that the ring R is commutative and let M be an R-module.
The following are equivalent for a lifting R-module N in σ[M ] with Rad(N) + N :

(1) N is non-M -cosingular M -injective.
(2) N is cohereditary in σ[M ].
(3) N is semisimple M -injective.
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Proof. If N satisfies any of these three conditions, then N is a direct sum of
hollow submodules by Proposition 3.5. But Rad(N) + N . Then M is a direct
sum of local submodules. The equivalence of the three statements follows from
Theorem 3.11. �

Corollary 3.13. Suppose that the ring R is commutative and let M be an R-module.
The following are equivalent for a finitely generated lifting module N in σ[M ]:
(1) N is non-M -cosingular.
(2) N is cohereditary in σ[M ].
(3) N is semisimple M -injective.

Proof. It is a consequence of Theorem 3.11 and the fact that every finitely gener-
ated lifting module is a direct sum of local submodules. �

The following example shows that, when the ring R is not commutative, there
may exist cohereditary and lifting cyclic modules which are not semisimple. Thus
the commutativity of the ring R is necessary in Corollary 3.12.

Example 3.3. Let F be any field. Let R denote the ring of all upper triangular 2×2
matrices with entries in F . We know that R is a left and right hereditary Artinian
ring (see [6, Example 13.6]). Consider the right R-module M = [ F F

0 0 ]. It is easy
to see that M is cyclic Artinian. Clearly M is a direct summand of E(R) = [ F F

F F ].
Therefore M is an injective right R-module. Since R is right hereditary, M is
cohereditary by [24, 39.16]. Since R = [ F F

0 0 ] ⊕ [ 0 0
0 F ], M is projective. Since R is

a right perfect ring, M is a lifting right R-module by [17, Theorem 4.41]. It is not
hard to see that Soc(M) = [ 0 F

0 0 ]. Therefore M is not semisimple.

Let M and N be two modules. If for every module F , any epimorphism f :
M → F and any homomorphism h : N → F either there exists a homomorphism
ϕ : N → M with fϕ = h or there exist a nonzero direct summand M1 of M and
ϕ : M1 → N with hϕ = f |M1 , then N is called almost M-projective (see [3]).

Lemma 3.14. Let U be a simple module and N an indecomposable module. If U is
almost N -projective, then U is almost N/X-projective for every submodule X of N .

Proof. Let U be almost N -projective and X ≤ N . Let f : U → (N/X)/(Y/X)
be any nonzero homomorphism and π : N/X → (N/X)/(Y/X) be the natural
epimorphism, where Y/X ≤ N/X . Consider the isomorphism α : (N/X)/(Y/X)
→ N/Y and the natural epimorphism ν : N → N/X . Now, we have the homo-
morphism αf : U → N/Y and the epimorphism απν : N → N/Y . Assume that
there exists a homomorphism g : U → N such that απνg = αf . Therefore νg
lifts f . Now, assume that there exists a nonzero direct summand N1 of N and a
homomorphism h : N1 → U such that αfh = απν |N1 . Since N is indecomposable,
N1 = N and hence h : N → U and αfh = απν. Since U is simple, h is epic and
f is monic. Therefore Kerh = Y . Define the homomorphism h̄ : N/X → U with
h̄(n + X) = h(n) where n ∈ N . It is easy to check that fh̄ = π. Thus U is almost
N/X-projective. �
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Theorem 3.15. Let N be a cohereditary lifting module in σ[M ] with the decompo-
sition N = ⊕i∈INi, where each Ni is hollow. Assume that every simple subfactor
S of Ni is almost Ni-projective (i ∈ I). Then N is a direct sum of Artinian hollow
modules with local endomorphism rings.

Proof. We want to show that every Ni is Artinian. As we saw in the proof of
Theorem 3.7, every factor module of each Ni (i ∈ I) is a uniform module with
zero or simple socle. Let i ∈ I. Let Ni/T be a nonzero factor of Ni. We will
prove that Ni/T has nonzero socle. Suppose that Ni/T is not simple. Then there
exists a nonzero element x + T ∈ Ni/T with x̄R = (x + T )R �= Ni/T . Let P/T
be a maximal submodule of x̄R. Now, U = (xR + T )/P is simple. Therefore by
hypothesis, Lemma 3.14 and [3, Theorem 1], U ⊕ Ni/T is lifting. Consider the
inclusion map f : U → Ni/P and the epimorphism α : Ni/T → Ni/P . By [14,
Lemma 1], there exists a homomorphism g : U → Ni/T with αg = f . Therefore
0 �= g(U) is the only simple submodule in Ni/T . Hence every Ni is Artinian. �

4. Cohereditary lifting modules over commutative
Noetherian rings

Throughout this section, R will be a commutative and Noetherian ring. The full
ring of quotients of R will be denoted by Q(R). If p is a prime ideal of R, we will
denote by Rp the localization of R at p. If M is an R-module, we will mean by M
is cohereditary that M is cohereditary in Mod−R.

Proposition 4.1. Let M be a cohereditary lifting R-module. Then M = ⊕i∈IHi is
a direct sum of uniserial modules Hi in which each Hi(i ∈ I) is either radical or
simple and isomorphic to E( Rpi

), for some prime ideal pi of R.

Proof. By [21, Corollary p. 53], Theorem 3.7 and Lemma 3.10. �

Lemma 4.2. (See [27, Folgerung 2.7]) Let I be an ideal of R. Then the following
are equivalent:
(1) R

I is non-cosingular.
(2) R

I is semisimple and I is a direct summand of R.

Remarks 4.1. (1) If R is a local ring which is not a field or R is a ring with
Soc(R) = 0 then, by Lemma 4.2, for every proper ideal I of R, the R-module R

I
is not non-cosingular and hence is not cohereditary. Therefore every cohereditary
lifting R-module is a direct sum of radical uniserial modules such that each of
them is isomorphic to E(Rpi

) for some prime ideal pi of R.

(2) If R is a local ring which is not a field, then every cohereditary lifting R-module
is a finite direct sum of radical uniserial modules (see [11, Proposition 2.2]).
(3) If R is a local Artinian ring with maximal ideal m, then E(Rm ) is cohereditary
hollow if and only if R is a field. In this case, we have E(Rm ) ∼= R (see [9, Remark
2] and Corollary 2.5).
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Now our purpose is to investigate the structure of hollow cohereditary R-
modules.

Lemma 4.3. (See [15, Theorem 3.72]) Let m be a maximal ideal in a commutative
ring R (not necessarily Noetherian). Then R

m is an injective R-module if and only
if Rm is a field.

Proposition 4.4. Suppose that R is a commutative ring (not necessarily Noether-
ian). Let p be a prime ideal of R. Then the following are equivalent:
(1) E(Rp ) is cohereditary local.
(2) p is maximal and Rp is a field.

In this case, we have E(Rp ) ∼= R
p .

Proof. (1) ⇒ (2). By Lemma 3.10, E(Rp ) is simple. Then E(Rp ) ∼= R
p and p is a

maximal ideal of R. Therefore Rp is a field by Lemma 4.3.

(2) ⇒ (1). By Lemma 4.3, E(Rp ) ∼= R
p is simple injective. This completes the

proof. �

Corollary 4.5. Suppose that R is a commutative local ring (not necessarily Noether-
ian) with maximal ideal m and let p be a prime ideal of R. Then the following are
equivalent:
(1) E(Rp ) is cohereditary local.
(2) R is a field.

Proof. (1) ⇒ (2). By Proposition 4.4, p = m and Rm is a field. But Rm ∼= R.
Then R is a field.
(2) ⇒ (1). Clear. �

Corollary 4.6. Suppose that R is a commutative ring (not necessarily Noetherian).
Then the following statements are equivalent:
(1) R is von Neumann regular.
(2) For every maximal ideal m of R, E(Rm ) is cohereditary local.

Proof. (1) ⇒ (2). By [15, Theorem 3.71] and Proposition 4.4.
(2) ⇒ (1). From Proposition 4.4 we conclude that for every maximal ideal m of
R, Rm is a field. Therefore R is von Neumann regular by [15, Theorem 3.71]. �

As in [23], we say that an R-module M is almost finitely generated (a.f.g.) if M
is not finitely generated but every proper R-submodule of M is finitely generated.

A ring R is almost DVR if R is a local Noetherian domain of Krull dimension
1 and the integral closure R′ of R in Q(R) is a discrete valuation ring which is
finitely generated as R-module [23, page 194].

Proposition 4.7. Let E be a cohereditary hollow radical R-module. Then E is al-
most finitely generated.
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Proof. Let F be any proper submodule of E. Then there exists an element x of E
such that x �∈ F . But E is uniserial (see Proposition 4.1). Thus F is contained in
Rx. Since Rx is a Noetherian R-module, F is a finitely generated R-module. �

Definitions 4.8. An element of R that is not a zero divisor in R will be called a
regular element of R. We shall say that an ideal of R is regular if it contains a
regular element of R.

We will say that a ring R is a 1-dimensional Cohen-Macaulay ring if it is a
commutative Noetherian ring of Krull dimension 1 such that every maximal ideal
of R contains a regular element. A Noetherian domain of Krull dimension 1 is a
1-dimensional Cohen-Macaulay ring.

Let R be a local, 1-dimensional Cohen-Macaulay ring. Let I be a regular ideal
of R. Then I is said to be a canonical ideal for R if Q(R)

I is an injective R-module.

Theorem 4.9. Suppose that R is local with maximal ideal m. Then the following
are equivalent:

(1) E = E(Rm ) is cohereditary hollow radical.
(2) R is a discrete valuation ring.

If these conditions hold, then E(Rm) ∼= Q(R)
R .

Proof. (1) ⇒ (2). Following [9, Proposition 4] and Proposition 4.7, R is an almost
DVR. By [9, Proposition 3], there exists a nonzero ideal I of R such that E ∼= Q(R)

I .
So Q(R)

R is cohereditary hollow. Let X be any proper nonzero R-submodule of
Q(R) and let x be a nonzero element in X . Then we have the exact sequence
Q(R)
Rx → Q(R)

X → 0. Since Q(R)
Rx

∼= Q(R)
R , Q(R)

X is indecomposable injective Artinian
(see [23, Proposition 1.4]). Therefore Q(R)

X
∼= E. Thus for every nonzero ideal I of

R, we have Q(R)
I

∼= E, and hence I is a canonical ideal. By [18, Theorem 15.8],
for every nonzero ideal I of R, we have I ∼= R. So R is a principal ideal ring. The
result follows.

(2) ⇒ (1). If R is a discrete valuation ring, it is well known that E(R
m ) ∼= Q(R)

R

and so E(Rm ) is cohereditary hollow. �

Let Ω be the set of all maximal ideals of R. As in [28, page 53], given an
m ∈ Ω and an R-module M , we will denote the m-local component of M by
Km(M) = {x ∈ M | x = 0 or the only maximal ideal over AnnR(x) is m}.

We call M m-local if Km(M) = M , or equivalently if m is the only maximal
ideal over each p ∈ Ass(M). In this case M is an Rm-module with the following
operation: ( rs )x := rx′ with x = sx′(r ∈ R, s ∈ R\m). The submodules of M over
R and over Rm are identical.

For K(M) = {x ∈ M | R

AnnR(x)
is semiperfect} we always have the decom-

position K(M) = ⊕m∈ΩKm(M) by [28, Satz 2.3].
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Lemma 4.10. ([28, Lemma 1.5(b)]) The following are equivalent for an R-
module M :
(1) M = K(M).
(2) R

p is a local ring for all p ∈ Ass(M).

Lemma 4.11. Let p be a prime ideal of R such that R
p is a local ring and let m be

the only maximal ideal over p. Then:
(1) E(Rp ) has the structure of an Rm-module.
(2) The submodules of E(Rp ) over R and over Rm are identical.

Moreover, as Rm-module, E(Rp ) is isomorphic to an injective envelope of Rm

S−1p

where S = R\m.

Proof. By Lemma 4.10, E(Rp ) is m-local. The rest of the proof runs as the proof
of [10, Proposition 5.9]. �
Remarks 4.2. By Theorem 4.9, Lemma 4.11 and [21, Proposition 5.5], we can
easily get the following results:
(1) Let p be a prime ideal of R such that R

p is a local ring and let m be the only
maximal ideal over p. Then E(Rp ) has the structure of an Rm-module such that
the submodules of E(Rp ) over R and over Rm are identical, and the following are
equivalent:

(i) E(Rp ) is cohereditary hollow as an R-module.
(ii) E(Rp ) is cohereditary hollow as an Rm-module.

(2) Let m be a maximal ideal of R. The following are equivalent:
(i) E(Rm ) is cohereditary hollow radical.

(ii) The ring Rm is a discrete valuation ring.

A principal ideal ring is called special if it has only one prime ideal p �= R
and p is nilpotent [26, page 245].

Theorem 4.12. Suppose that R is local with maximal ideal m and let p be a prime
ideal of R different from m. The following are equivalent:
(1) E(Rp ) is cohereditary hollow radical.
(2) R is a discrete valuation ring.

In this case we have p = 0 and E(R) ∼= Q(R).

Proof. (1) ⇒ (2). Since E(Rp ) is hollow, E(Rp ) ∼= Q(RI ) with I = AnnR(E(Rp )),
by [9, Proposition 5]. By Proposition 4.1, Q(RI ) is uniserial. Thus R

I is a uniserial
R-module. Therefore R

I is a uniserial ring. Since R
I is Noetherian, RI is a principal

ideal ring. By [26, Chapter IV, Section 15, Theorem 33], RI is a discrete valuation
ring or a special principal ideal ring. But E(Rp ) is radical. Then R

I is a discrete
valuation ring (see [2, Corollary 15.21]). Since p

I is the only minimal prime ideal
of R

I , by [9, Proposition 5], p = I and E(Rp ) ∼= Q(Rp ). By [23, Proposition 1.4],
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Q(Rp )/Rp is Artinian, as an (Rp )-module. So Q(Rp )/Rp is Artinian, as an R-module.
But Q(Rp ) is a cohereditary R-module. Then Q(Rp )/Rp is an Artinian injective R-
module. By [21, Corollary p. 53], Q(Rp )/Rp ∼= E(Rm ), as R-modules. It follows that
E(Rm ) is a cohereditary hollow radical R-module. By Theorem 4.9, R is a discrete
valuation ring. It is clear that p = 0.
(2) ⇒ (1). This is obvious. �

Corollary 4.13. Let p be a prime ideal of R. The following are equivalent:
(1) E(Rp ) is cohereditary hollow radical.
(2) There is only one maximal ideal m over p and the ring Rm is a discrete

valuation ring.

Proof. If p is maximal, then (1) ⇔ (2) by Remarks 4.2(2). Suppose that p is not
maximal.
(1) ⇒ (2). By [28, Satz 2.3 and Satz 2.5], E(Rp ) = K(E(Rp )). By Lemma 4.10,
R
p is a local ring. Therefore there is only one maximal ideal m over p. The result
follows from Lemma 4.11, Remarks 4.2(1) and Theorem 4.12.
(2) ⇒ (1). By Lemma 4.11, Remarks 4.2(1) and Theorem 4.12. �

Proposition 4.14. Let R be a commutative Noetherian domain which is not a field.
Then the following statements are equivalent:
(1) R is a Dedekind domain.
(2) For every maximal ideal m of R, E(R

m ) is cohereditary hollow radical.

Proof. By Remarks 4.2(2) and [4, Théorème 1 p. 217]. �
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[28] H. Zöschinger, Gelfandringe und Koabgeschlossene Untermoduln, Bayer. Akad. Wiss.
Math.-Natur. Kl., Sitzungsber., 3 (1982), 43–70.



Cohereditary Modules in σ[M ] 279

Derya Keskin Tütüncü
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When Maximal Linearly Independent Subsets
of a Free Module Have the Same Cardinality?

Farid Kourki

Dedicated to Robert Wisbauer

Abstract. We call a ring R right Lazarus if any two maximal linearly inde-
pendent subsets of a free right R-module have the same cardinality. We study
these rings via weakly right semi-Steinitz rings. As an application, several
classes of right Lazarus rings are given.

1. Introduction

Let R be a ring. Consider the two following properties on R:
(1) Any two maximal linearly independent subsets of a free right R-module have

the same cardinality.
(2) Any finite linearly independent subset of a free right R-module F can be

extended to a basis of F .
Commutative rings with property (1) were introduced and studied by Lazarus

[15] and a characterization is given by Bouanane and Kourki [3]. Rings with prop-
erty (2) are actually called weakly right semi-Steinitz. These rings were introduced
by Nashier and Nichols [17] and characterized as rings R that are right Hermite
(i.e., every stably free right R-module is free) and left self-associated (i.e., every
finitely generated proper left ideal of R has nonzero right annihilator). Although
properties (1) and (2) are obvious generalizations of properties satisfied by vector
spaces, the literature on this subject is quite meager. In this work we continue
our contribution to this subject. First we study weakly right semi-Steinitz endo-
morphism rings. When doing so, a condition related to continuous modules, called
C2-condition, arises. A right module M is called a C2-module if N is a summand
of M whenever N is a submodule of M isomorphic to a summand of M , and it is
called a strongly C2-module if every finite direct sum of copies of M is a C2-module.
A ring R is called a right C2-ring (strongly right C2-ring) [18] if RR is a C2-module
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(strongly C2-module). We see that, when M is a generator, S = End (M) is left
self-associated if and only if M is a strongly C2-module. Since there exist commu-
tative C2-rings that are not self-associated, the condition being “right C2-ring” is
not a Morita invariant and this answers in the negative a question of Nicholson
and Yousif [18]. Right continuous rings are shown to be left self-associated, and we
characterize when they are Hermite. As an application we see that every right and
left continuous ring is weakly right and left semi-Steinitz. We also show that if R is
a ring having finite right Goldie dimension or if R satisfies the ACC on right anni-
hilators, then R is weakly right semi-Steinitz if and only if it is left self-associated.
Thus, every left self-associated right noetherian ring is weakly right semi-Steinitz.
Let us call a ring R right Lazarus if it satisfies property (1), and let us call it right
strong stably finite if for every finitely generated free right R-module F having a
basis of n elements, any linearly independent subset of F having n elements is a
basis of F . We show that these two conditions are not left-right symmetric. We
also prove that, when R is right strong stably finite, R is weakly right semi-Steinitz
if and only if R is right Lazarus. In view of this last result and the study made on
weakly right semi-Steinitz rings, large classes of right Lazarus rings are deduced:
directly finite right continuous rings, right or left pseudo-Frobenius rings, unit reg-
ular rings, left self-associated rings having finite right Goldie dimension and left
self-associated rings satisfying the ACC on right annihilators.

Throughout this paper R is an associative ring with identity and modules
are right modules, on which homomorphisms act on the left. We write RadR for
the Jacobson radical of R and Mn(R) for the ring of n× n matrices over R. The
right (left) annihilator of a subset X of R is denoted by r(X) (l(X)).

The ring R is called right Hermite if P ⊕ RmR
∼= RnR (m ∈ N and n ∈ N)

implies P ∼= RrR for some r ∈ N. It is called right self-associated if l(I) �= 0 for
every finitely generated proper right ideal I of R. This is equivalent to saying
that any monomorphism RmR → RkR (m ∈ N

∗ and k ∈ N
∗) splits [2, Theorem

5.4]. Recall that R is said to be weakly right semi-Steinitz if any finite linearly
independent subset of a free right R-module F can be extended to a basis of F ,
and it is said to be right Lazarus if any two maximal linearly independent subsets
of a free right R-module have the same cardinality.

A module M is called directly finite if for every module N , the condition
N ⊕M ∼= M implies N = 0. A ring R is called directly finite if RR is directly
finite. R is called IBN if the condition RmR

∼= RnR implies m = n. We say that R
satisfies the rank condition if, for any positive integer n, any generating set of RnR
has cardinality≥ n. Equivalently, if there is an epimorphism of right free modules
Rk → Rn, then k ≥ n. R is said to satisfy the right strong rank condition if, for
any positive integer n, any linearly independent subset of RnR has cardinality≤ n.
Equivalently, if there is a monomorphism of right free modules Rm → Rn, then
m ≤ n. Call a ring R stably finite if for every free right R-module F having a basis
of n elements, any generating set for F of n elements is a basis of F . Equivalently,
any epimorphism RnR → RnR is an isomorphism (i.e., every f.g. free right R-module
is hopfian). Examples of stably finite rings include commutative rings, semilocal
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rings and rings having finite right (or left) Goldie dimension. If R is stably finite
then R is IBN; and we have the equivalence when R is Hermite. Unlike the directly
finite, IBN, rank condition and stably finite cases, the strong rank condition is not
left-right symmetric.
Consider the following conditions on a module M :

C1 Every submodule of M is essential in a summand of M .
C2 If a submodule N of M is isomorphic to a summand of M , then N is a

summand of M .
C3 If N and L are summands of M such that N ∩ L = 0, then N ⊕ L is a

summand of M .
A module M is called CS if it has C1, and M is called a C2-module if it has

C2. If M has both C1 and C2 then M is called continuous while if it has C1 and
C3 then it is called quasi-continuous. We have the following implications:

Injective ⇒ Quasi-injective ⇒ Continuous ⇒ Quasi-continuous ⇒ CS

2. Weakly right semi-Steinitz endomorphism rings

We begin by taking up the question of when an endomorphism ring is weakly right
semi-Steinitz. The following theorem is the key.

Theorem 2.1. [17, Theorem 2.2] A ring R is weakly right semi-Steinitz if and only
if R is right Hermite and left self-associated.

In a previous paper [12] we introduced the notion of Hermite modules: a
nonzero module M is said to be Hermite if N ⊕Mm ∼= Mn (m ∈ N and n ∈ N)
implies N ∼= M r for some r ∈ N. Hence, R is right Hermite means that RR is
Hermite. In the same paper we showed that being right Hermite is a left-right
symmetric condition, so there is no need to use the prefixes “right” or “left”.
Any semilocal ring is Hermite [12, Proposition 2.5]. The following proposition
characterizes Hermite endomorphism rings.

Proposition 2.2. [12, Theorem 2.1] Let M be a nonzero module and let S =
End (M). Then M is Hermite if and only if S is an Hermite ring.

Proposition 2.3. For a module M , the following conditions are equivalent:
(1) For every n in N

∗, Mn is a C2-module.
(2) For every m and k in N

∗, any monomorphism α : Mm →Mk splits.

Proof. By definition, a module M is a C2-module if and only if every monomor-
phism P →M , where P is a summand of M , splits.
(1) ⇒ (2). Let t in N such that t > m and t > k and let i be the natural
monomorphism Mk → M t. i ◦ α : Mm → M t is a monomorphism and Mm is a
summand of M t, so i ◦ α splits. Therefore α splits.
(2) ⇒ (1). Let β : P → Mn be a monomorphism where P is a summand of Mn.
There exists Q such that P ⊕ Q = Mn. To show that β splits it is enough to
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show that γ = β⊕ 1Q : Mn →Mn⊕Q splits. Since there exists a monomorphism
i : Mn ⊕Q → Mn ⊕Q⊕ P = M2n, then i ◦ γ : Mn → M2n is a monomorphism,
which splits by hypothesis. So γ splits. �

Call a module M a strongly C2-module if it satisfies the equivalent conditions
in Proposition 2.3. A ring R is called a right C2-ring (strongly right C2-ring) [18]
if RR is a C2-module (strongly C2-module). The equivalence (2) ⇔ (4) in the
following corollary was also obtained by Jianlong and Wenxi [10, Lemma 2.3].

Corollary 2.4. Let R be a ring. The following are equivalent:
(1) Every finitely generated free right R-module is a C2-module.
(2) R is a right strongly C2-ring.
(3) Mn(R) is a right C2-ring for every n ∈ N

∗.
(4) R is left self-associated.

Proof. (1) ⇔ (2). By definition.
(2) ⇔ (3). [18, Corollary 3.10].
(2) ⇔ (4). Proposition 2.3. �

By the preceding corollary, if M is a module and S = End (M), then S is left
self-associated if and only if EndR (Mn) is a right C2-ring for every n ∈ N

∗. An
R-module is called a generator if it generates the category of right R-modules.

Proposition 2.5. Let M be a module and let S = End (M).
(1) If S is left self-associated then M is a strongly C2-module.
(2) If M is a generator then: S is left self-associated ⇔ M is a strongly C2-

module.

Proof. Use the above remark and [18, Proposition 3.9]. �
What happens if we remove the condition “finitely generated” from (1)

of Corollary 2.4? The following proposition gives an answer. Let rFPD(R) =
{PdR(M)| M is a right R-module and PdR(M) < ∞} where PdR(M) is the
projective dimension of M .

Proposition 2.6. Let R be a ring. The following are equivalent:
(1) Every free right R-module is a C2-module.
(2) For every free right R-module F , S = End (F ) is left self-associated.
(3) R is right perfect and left self-associated.
(4) rFPD(R) = 0.

Proof. (1) ⇒ (2). Let F be a free right R-module. For every positive integer n, Fn

is a free module and so it is a C2-module. Since every free module is a generator,
S = End (F ) is left self-associated (Proposition 2.5).
(2) ⇒ (1). Let F be a free right R-module. Since S = End (F ) is left self-associated,
F is a strongly C2-module (Proposition 2.5) and therefore it is a C2-module.
(2) ⇔ (3). [4, Theorem 2]
(3) ⇔ (4). [2, Theorem 6.3] �
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Question [18]: Is “right C2-ring” a Morita invariant?

The answer is “no” as shown in the following example:

Let A be a commutative local UFD, but not a principal ideal domain (for
instance R can be the ring of power series in two variables over a field). Let M be
the direct sum of all A/pA, p ranging over the primes of A. Let R = AαM , the
trivial extension of A by M . Then R is not self-associated [11, Exercise 7, p. 63]
and so R is not a strongly C2-ring (Corollary 2.4). Since every regular element of
R is invertible and R is local, then R is a C2-ring [18, Corollary 3.5].

Proposition 2.7. Consider the following conditions on a module M �= 0:

(1) M is Hermite and a strongly C2-module.
(2) For all positive integers m and k, every exact sequence of the form 0 →

Mm →Mk → P → 0 splits and there exists t in N such that P ∼= M t.

(3) S = End (M) is weakly right semi-Steinitz.

Then (1) ⇔ (2) ⇒ (3). If M is a generator then these three conditions are equiv-
alent.

Proof. (1) ⇒ (2). The exact sequence in (2) splits since M is a strongly C2-module
(Proposition 2.3). But M is Hermite, so P ∼= M t for some t.

(2) ⇒ (1). By Proposition 2.3 M is a strongly C2-module. An isomorphism of the
form Mm ⊕ P ∼= Mk leads to an exact sequence:

0 →Mm →Mk → P → 0

By hypothesis P ∼= M t, hence M is Hermite.
Propositions 2.2 and 2.5 give either the implication (3) ⇒ (1) or the equiva-

lence when M is a generator. �

3. Classes of weakly right semi-Steinitz rings

A ring R is called right weakly continuous [18] if R is a right C2-ring and for every
element a of R the right annihilator of a is essential in a summand of RR. Clearly,
every right continuous ring is weakly right continuous. Every (von Neumann) reg-
ular ring is right and left weakly continuous. Being right weakly continuous is a
Morita invariant property ([18], Theorem 2.60), thus:

Proposition 3.1. If R is right weakly continuous then R is a strongly right C2-
ring and hence left self-associated. In particular every right continuous ring is left
self-associated.

Lemma 3.2. Let R be a right continuous ring. Then R is IBN if and only if
R2
R � RR.
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Proof. R = P ⊕ D, where P and D are right R-modules such that D is directly
finite and P 2 ∼= P and P and D are orthogonal [16, Theorem 2.29]. Let S = End(P )
and T = End(D). Then R/RadR ∼= S/RadS × T/RadT and R/RadR, S/RadS
and T/RadT are right continuous and regular [16, Lemma 3.3, Proposition 3.5
and Theorem 3.11]. The rings S and T also satisfy (SS/RadSS)2 ∼= SS/RadSS
and T/RadT is directly finite. If R is IBN then obviously R2

R � RR. Suppose
now that R2

R � RR. Then (RR/RadRR)2 � RR/RadRR. If T/RadT = 0 then
R/RadR ∼= S/RadS and so (RR/RadRR)2 ∼= RR/RadRR, a contradiction. It
follows that T/RadT is a nonzero right continuous directly finite ring, so it has
the cancellation property [16, Corollary 3.25]. In particular, it is an IBN ring and
so is R/RadR [9, Theorem 2.1]. Therefore R is IBN. �

Theorem 3.3. Let R be a right continuous ring. The following conditions are equiv-
alent:

(1) R is weakly right semi-Steinitz.
(2) If PR ⊕RR ∼= RR then P = 0 or PR ∼= RR.

Proof. Suppose that R2
R � RR.

(1) ⇒ (2). Since R is Hermite the condition PR ⊕RR ∼= RR implies PR ∼= RnR for
some n, and hence Rn+1

R
∼= RR. But R is IBN (Lemma 3.2), so n = 0 and then

P = 0.

(2) ⇒ (1). By Proposition 3.1 R is left self-associated. If PR ⊕ RR ∼= RR, then
P = 0 or PR ∼= RR. We cannot have PR ∼= RR because R2

R � RR, so P = 0
and hence R is directly finite. It follows from [16, Corollary 3.25] that R has the
cancellation property, so R is Hermite. Theorem 2.1 shows that R is weakly right
semi-Steinitz.

Now suppose that R2
R
∼= RR.

(1) ⇒ (2). If PR ⊕ RR ∼= RR, then P ∼= RnR for some n, since R is Hermite. If
n = 0 then P = 0. If n �= 0 then P ∼= RR since RnR

∼= RR.

(2) ⇒ (1). By Proposition 3.1 R is left self-associated. If PR ⊕ RR ∼= RmR then
PR ⊕ RR ∼= RR since RmR

∼= RR. Hence P ∼= 0 or PR ∼= RR. This means that P is
free, so R is Hermite. Now use Theorem 2.1. �

Corollary 3.4. Let R be a right quasi-continuous ring such that R2
R � RR. The

following are equivalent:

(1) R is weakly right semi-Steinitz.
(2) Every right regular element of R is invertible.
(3) R is directly finite and right continuous.

Proof. (1) ⇒ (3). R is left self-associated, so it is a right C2-ring and hence right
continuous. Since R2

R � RR, by the proof of Theorem 3.3, R is directly finite.

(3) ⇒ (2). R is left associated by Proposition 3.1, so every right regular element
of R is left invertible and hence invertible since R is directly finite.
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(2) ⇒ (3). Let f be a monomorphism from RR to RR. There exists a right regular
element a such that f(x) = ax for every x ∈ R. But a is invertible, hence f is
an isomorphism. This last condition plus the fact that R is right quasi-continuous
imply that R is right continuous [16, Lemma 3.14]. If xy = 1 then y is right regular
so invertible by hypothesis. Therefore R is directly finite.
(3) ⇒ (1). Theorem 3.3. �

Remark. If R is right and left continuous then R is directly finite [19, Lemma 5.3].
By Corollary 3.4 R is weakly right and left semi-Steinitz.

Recall that a module M is said to have finite Goldie dimension if there are no
infinite direct sums of non-zero submodules in M . If M is noetherian or artinian
then M has finite Goldie dimension.

Proposition 3.5. If M is a generator and a strongly C2-module having finite Goldie
dimension then End(M) is weakly right semi-Steinitz.

Proof. By [18, Proposition 3.7] End(M) is semilocal and hence Hermite. By Propo-
sition 2.5 End(M) is left self-associated and hence weakly right semi-Steinitz. �

Corollary 3.6. If R is a left self-associated ring having finite right Goldie dimension
then R is weakly right semi-Steinitz.

In particular, every right noetherian left self-associated ring is weakly right
semi-Steinitz.

Proposition 3.7. If R is a right self-associated ring satisfying the maximum con-
dition on left annihilators of elements of R then R is weakly left semi-Steinitz.

Proof. Since R satisfies the maximum condition on left annihilators of elements
of R, it is not hard to see that R does not contain an infinite set of pairwise
orthogonal idempotents. So R is directly finite [6, p. 85]. Let x be a non-invertible
element of R. x is neither right nor left invertible, hence xR �= R and so l(x) �= 0
since R is right self-associated. Therefore x is a right zerodivisor. By [5, Theorem
3] R is semilocal and hence Hermite. So R is weakly right semi-Steinitz. �

Corollary 3.8. If R is a right self-associated ring satisfying the ACC on left anni-
hilators then R is weakly left semi-Steinitz.

Remark. A ring R is said to be its own classical quotient ring if every non-unit
of R is a zerodivisor, that is, either a right zerodivisor or a left zerodivisor. If
R is a commutative ring which is its own classical ring of quotients having finite
Goldie dimension or satisfying the ACC on annihilators then R is weakly semi-
Steinitz [13, Corollary 2] and [3, Example (5), p. 135]. So Corollaries 3.6 and 3.8
generalize this last result to the noncommutative case. However, we cannot replace
the condition “R is left self-associated” or the condition “R is right self-associated”
by the condition “R is its own classical ring of quotients” as it is shown in the
following example:
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Let K be a field and R = (K 0
K K ), then R is right and left artinian so it is

its own classical ring of quotients and R has finite right and left Goldie dimension
and R satisfies the ACC on right and left annihilators. R is also left and right
hereditary. Suppose that R is left (right) self-associated, then every right (left)
finitely generated ideal is a summand of R and hence R is regular. But this cannot
happen since RadR = ( 0 0

K 0 ) �= 0. So R is neither weakly left nor weakly right
semi-Steinitz. Remark that dimRR = dimRR = 2 (the Goldie dimension). For
the Goldie dimension 1 we have:

Proposition 3.9. Let R be a ring. If dimRR = 1 and every non-unit element of R
is a left zerodivisor, then R is weakly right semi-Steinitz.

Proof. Let a1, a2, . . . , an be elements of R such that Ra1 + · · · + Ran �= R. We
have Rai �= R and so ai is not invertible. Each ai is then a left zerodivisor, that is,
r(ai) �= 0. Since dimRR = 1, r(a1)∩· · ·∩r(an) �= 0. Hence r(Ra1 + · · ·+Ran) �= 0,
implying that R is left self-associated. By Corollary 3.6 R is weakly right semi-
Steinitz. �

4. Rings over which every free right module has property (P)

We say that a free right R-module F satisfies property (P ) if any two maximal
linearly independent subsets of F have the same cardinality. Lazarus [15] showed
that, for a commutative ring R, if R is noetherian or if R is an integral domain
then every free R-module satisfies (P). Recall that a ring R is right Lazarus if
every free right R-module satisfies property (P).

Lemma 4.1. Let R be a ring.

(1) If R satisfies the right strong rank condition, then it satisfies the rank condi-
tion. If R is left self-associated then we have the equivalence.

(2) If every finitely generated free right R-module satisfies property (P) then R
satisfies the right strong rank condition.

Proof. (1) The first part of the assertion comes from the fact that every epimor-
phism RkR → RnR splits [14, Proposition 1.21], and the equivalence comes from the
fact that, for a left self-associated ring R, every monomorphism RmR → RnR splits
(Proposition 2.3).

(2) Let G be a finitely generated free submodule of a finitely generated free right
R-module F . Let B′ be a basis of G of m elements and let B be a basis of F of
n elements. B′ can be completed to a maximal linearly independent subset of F ,
say S. But F satisfies (P), so cardS = n. Hence m ≤ n. �

Proposition 4.2. Let R be a ring. The following conditions are equivalent:

(1) R is right Lazarus.
(2) every finitely generated free right R-module satisfies property (P).
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Proof. (1) ⇒ (2) Clear.
(2) ⇒ (1) By Lemma 4.1, R satisfies the right strong rank condition. In [15, 2.1],
Lazarus showed that if R is a commutative ring and if F is a free R-module
having an infinite basis, then F satisfies property (P). The proof of this result
shows that the only property of commutative rings used is the right strong rank
condition. �

Being right Lazarus is not a right-left symmetric property. To show this we
need the following theorem:

Theorem 4.3. Let R be a domain and Q = Qr
max(R), the maximal right ring of

quotients of R. The following are equivalent:
(1) R is right Lazarus.
(2) R has the right strong rank condition.
(3) R is right Ore.
(4) dim(RR) = 1 (Goldie dimension).
(5) dim(RR) < ∞ (Goldie dimension).
(6) Q is right Lazarus.
(7) Q is directly finite.
(8) Q is IBN.
(9) Q2

Q � QQ.
(10) Q is a division ring.
In this case Q = Qr

cl(R), the classical right ring of quotients of R.

Proof. (3) ⇔ (4) ⇔ (5). Goldie (see [14, Theorem 10.22]).
(2) ⇔ (3). [14, Exercise 21, p. 319].
(1) ⇒ (2). Lemma 4.1.
(5) ⇒ (1). By Proposition 4.2, it is enough to show that every finitely generated
free right R-module satisfies property (P). Let F be a finitely generated free right
R-module and let S be a maximal linearly independent subset of F . Let G be the
free right R-module spanned by S. Since R satisfies the right strong rank condition
then S is finite. Let 0 �= x ∈ F . By the maximality of S there exists 0 �= λ ∈ R
such that xλ ∈ G. Let {e1, . . . , en} be a basis of F and let x = e1a1 + · · · + enan
for some a1, . . . , an in R. Since x �= 0, there exists i such that ai �= 0. But R is a
domain, so aiλ �= 0. Therefore 0 �= xλ ∈ G, this means that G is essential in F
and hence m dimRR = dimG = dimF = n dimRR, where m is the cardinality of
S. So n = m. Consequently (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (5).

[14, Exercise 20, p. 382] gives (7) ⇒ (3) and [14, Corollary 13.43] gives (3)
⇔ (10). The implication (10) ⇒ (7) is clear. So (3) ⇔ (10) ⇔ (7).

We have (10) ⇒ (6) ⇒ (8) ⇒ (9).
(9) ⇒ (7). Since R is right nonsingular, Q is a right selfinjective regular ring [14,
Theorem 13.36]. Suppose that Q is not directly finite. Then Q has a nonzero right
ideal I which is a summand such that I2 ∼= I [8, Proposition 6.10]. But I ∼= QQ
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[14, Exercise 20, p. 382], so Q2
Q
∼= QQ, a contradiction. Hence (10) ⇔ (6) ⇔ (8)

⇔ (9) ⇔ (7). �

Remarks. (1) Let R be a right Ore domain which is not left Ore. By the preceding
theorem R is right Lazarus but it is not left Lazarus. For the existence of such a
domain, see [8, Exercise 1, p. 101].
(2) Let R be a domain and let Q = Qr

max(R). Q is a right selfinjective regular
ring. Let P be a nonzero finitely generated projective right Q-module. Since Q
is regular then P is a direct sum of submodules each of which is isomorphic to
nonzero principal right ideals of Q. These latter ideals are isomorphic to Q [14,
Exercise 20, p. 382]. Hence P is free and so R is Hermite. Q is regular, so Q is
right and left self-associated and hence Q is weakly right and left semi-Steinitz.
(3) In [3, Corollary 2] is it shown that if R is any commutative ring, then the poly-
nomial ring R[X ] is Lazarus. This result is no longer true in the noncommutative
case. By Shock’s Theorem [14, Theorem 6.65] dimRR = dimR[X ]R[X]. Therefore,
by Theorem 4.3, if R is a domain then R is right Lazarus if and only if R[X ] is
right Lazarus.

Let call a ring R right strong stably finite if for every finitely generated free
right R-module F having a basis of n elements, any linearly independent set in F
of n elements is a basis of F . Equivalently, any monomorphism RnR → RnR is an
isomorphism (i.e., every f.g. free right R-module is cohopfian). If R is right or left
perfect then every injective endomorphism of a finitely generated right (or left)
R-module is bijective [1]. So R is right and left strong stably finite. Every right
strong stably finite ring is stably finite; and we have the equivalence when the ring
is left self-associated. A ring R is right Johns if R is right noetherian and every
right ideal is an annihilator. Faith and Menal [7] gave an example of a right Johns
ring which is not right artinian. Let R be such a ring. Since every right ideal is an
annihilator then R is right self-associated. R is right noetherian so it is stably finite
and therefore left strong stably finite. Suppose that R is also right strong stably
finite. RR is cohopfian and therefore for every element a of R, r(a) = 0 implies
a is invertible, in particular aR = R. By [7, Proposition 3.3] R is right artinian,
a contradiction. So being right strong stably finite is not a left-right symmetric
property.

Theorem 4.4. Let R be a right strong stably finite ring. The following conditions
are equivalent:
(1) R is weakly right semi-Steinitz.
(2) R is right Lazarus.

Proof. (1) ⇒ (2). Let F be a free right R-module and let S be a maximal linearly
independent subset of F . By Proposition 4.2, we can assume that F is finitely
generated. R is stably finite and hence IBN. But R is weakly right semi-Steinitz,
hence R satisfies the right strong rank condition and so S is necessarily finite. S
can be completed to a basis of F and therefore S is itself a basis of F since it is
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maximal. R is IBN so all bases of F and hence all maximal linearly independent
subsets of F have the same cardinality.
(2) ⇒ (1). Let S be a finite linearly independent subset of a finitely generated free
right R-module F . By Zorn’s Lemma, S can be completed to a maximal linearly
independent subset S′ of F . Let n be the cardinality of a basis of F . Since R is
right Lazarus we have cardS′ = n. But R is right strong stably finite, so S′ is a
basis of F . �

By [3, Corollary 2.1], it is not difficult to see that a commutative ring R is
strong stably finite if and only if every regular element of R is invertible.

Corollary 4.5. [3, Proposition 3.1] Let R be a commutative ring where every regular
element is invertible. Then R is weakly semi-Steinitz if and only if R is Lazarus.

Corollary 4.6. Let R be a stably finite ring. The following are equivalent:
(1) R is weakly right semi-Steinitz.
(2) R is right Lazarus left self-associated.

Proof. Use Theorem 4.4 since a left self-associated stably finite ring is right strong
stably finite. �
Corollary 4.7. Let R be a right (or left) perfect ring. The following are equivalent:
(1) R is weakly right semi-Steinitz.
(2) R is right Lazarus.
(3) R is left self-associated.

Proof. R is right strong stably finite, by Theorem 4.4 we have the equivalence (1)
⇔ (2). R is semilocal so R is Hermite. Hence Theorem 2.1 gives the equivalence
(1) ⇔ (3). �
Remarks. (1) Let R = (K 0

K K ). Then R is left and right artinian which is neither
weakly right nor weakly left semi-Steinitz. By Corollary 4.7 R is neither left nor
right Lazarus.
(2) Let R be a domain which is not right Ore. Q = Qr

max(R) is weakly left and
right semi-Steinitz. Since Q is not IBN (Theorem 4.3) then Q is neither left nor
right Lazarus.
(3) If R is a commutative domain which is not a field. Then R is Lazarus but it is
not weakly semi-Steinitz.

The study made on weakly right semi-Steinitz rings and their connection
with right Lazarus rings enables us to provide examples of these latter rings. Some
of our examples are generalizations to the noncommutative case of the results of
Lazarus [15] and Bouanane and Kourki [3].

Examples. (1) If R is a directly finite right continuous ring, then R cancels from
direct sums and hence is stably finite. Since R is weakly right semi-Steinitz (Corol-
lary 3.4) then R is right Lazarus (Corollary 4.6). In particular any right and left
continuous ring is left and right Lazarus. If R is a commutative CS ring, then it is
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not difficult to see that T (R), the total ring of quotients of R, is continuous, and
hence T (R) is weakly semi-Steinitz. By [3, Corollary 3.2] R is Lazarus.
(2) If R is a right or left PF (pseudo-Frobenius) ring then R is semilocal and hence
stably finite. R is also weakly left and right semi-Steinitz [12, Proposition 4.9]. By
Corollary 3.4 R is left and right Lazarus.
(3) If R is a unit-regular ring then R is a stably finite weakly left and right semi-
Steinitz ring [12, Proposition 4.10]. By Corollary 3.4 R is left and right Lazarus.
(4) If R is a left self-associated ring having finite right Goldie dimension, then R
is stably finite and weakly right semi-Steinitz (Corollary 3.6). By Corollary 3.4 R
is right Lazarus. In particular any left self-associated right noetherian ring is right
Lazarus.
(5) If R is a left self-associated ring satisfying the ACC on right annihilators, then
R is semilocal and so stably finite. It is also weakly right semi-Steinitz (Corollary
3.6). By Corollary 3.4 R is right Lazarus.
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The main result of this paper is

Theorem 1. Let G be a group and let K be a field of characteristic zero. Then KG
can be embedded into a finite self-injective von Neumann ∗-regular ring.

This result has been stated in [8, p. 217]. However the proof there depends on
a result of [5]. The proof presented here will not use that result, and will also give
a result related to the Atiyah conjecture [9, §10]. We shall apply the techniques of
ultrafilters and ultralimits, as used in [4].

Let G be a group and let U(G) denote the algebra of unbounded operators
on �2(G) affiliated to the group von Neumann algebra N (G) of G [9, §8.1]. Then
U(G) is a finite von Neumann regular ∗-ring that is left and right self-injective,
and also unit-regular [1, §2,3]. For α, β ∈ U(G), we have α∗α+β∗β = 0 if and only
if α = β = 0 [1, p. 151]. Furthermore there is a unique projection e ∈ N (G) (so
e = e2 = e∗) such that αU(G) = eU(G) and we have the following useful result.

Lemma 2. Let G be a group and let α, β ∈ U(G). Then (αα∗+ββ∗)U(G) ⊇ αU(G).

Proof. Write U = U(G) and let e ∈ U be the unique projection such that αU = eU .
Then (1−e)U = {u ∈ U | α∗u = 0}. Let f ∈ U be the unique projection such that
(αα∗ + ββ∗)U = fU . Then (1 − f)U = {u ∈ U | (αα∗ + ββ∗)u = 0}. Therefore if
u ∈ (1 − f)U , we have (αα∗ + ββ∗)u = 0, hence

0 = u∗αα∗u + u∗ββ∗u = (α∗u)∗(α∗u) + (β∗u)∗(β∗u)
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and we deduce that α∗u = 0. Thus u ∈ (1− e)U and we conclude that (1− f)U ⊆
(1−e)U . Therefore we may write 1−f = (1−e)v for some v ∈ U . Then if w ∈ eU ,
we find that (1− f)w = v∗(1− e)w = 0, consequently w = fw and hence w ∈ fU .
Thus eU ⊆ fU and the result follows. �

Now given α ∈ N (G), we may write α =
∑

g∈G αgg with αg ∈ C, and then
trα = α1 is the trace of α. Moreover for α ∈ U(G), there is a unique projection
e ∈ N (G) such that αU(G) = eU(G), and then we set rkα = tre, the rank of α.
Then rk: U(G) → [0, 1] is a rank function [6, Definition, p. 226, §16]. This means
that rk satisfies (a)–(d) of Property 3 below; it also satisfies Properties 3(e),(f).

Property 3.

(a) rk(1) = 1.
(b) rk(αβ) ≤ rk(α), rk(β) for all α, β ∈ U(G).
(c) rk(e + f) = rk(e) + rk(f) for all orthogonal idempotents e, f ∈ U(G).
(d) rk(α) > 0 for all nonzero α ∈ U(G).
(e) rk(α∗α) = rk(αα∗) = rk(α) for all α ∈ U(G).
(f) If G ≤ H and α ∈ U(G), then rk(α) is the same whether we view α ∈ U(G)

or α ∈ U(H).

There is also a well-defined dimension dimU(G) for U(G)-modules [9, Theorem
8.29] which satisfies dimU(G) αU(G) = rk(α).

We need the following result for generating units in U(G). Recall that an ICC
group is a group in which all conjugacy classes except the identity are infinite, and
that a unitary element is an element u of U(G) such that u∗u = 1 (equivalently
uu∗ = 1, because U(G) is a finite von Neumann algebra).

Lemma 4. Let G be an ICC group, let α ∈ U(G), and let n be a positive integer.
Suppose rk(α) ≥ 1/n. Then there exist unitary elements τ1, . . . , τn ∈ U(G) such
that

∑n
i=1 τiαα

∗τ−1
i is a unit in U(G).

Proof. Suppose e and f are projections in U(G) such that eU(G) ∼= fU(G). Since
U(G) is a unit-regular ring, we see that (1−e)U(G) ∼= (1−f)U(G) by [6, Theorem
4.5]. Therefore e and f , and also 1 − e and 1 − f , are algebraically equivalent
projections and hence equivalent [1, §5]. We deduce that e and f are unitarily
equivalent [2, p. 69 and Exercise 17.12]; this means that there is a unitary element
u ∈ U(G) such that ueu−1 = f .

Suppose now that e, f are projections in U(G) with tr(e) ≤ tr(f). Since G is
an ICC group, the center of N (G) is C. Therefore by [9, Theorem 8.22 and Theorem
9.13(1)], two finitely generated projective U(G)-modules P,Q are isomorphic if and
only if dimU(G)(P ) = dimU(G)(Q). Using [7, Theorem 8.4.4(ii)], we see that there is
a finitely generated projective U(G)-module P such that dimU(G) P = tr(f)−tr(e)
and then eU(G)⊕P ∼= fU(G). From the previous paragraph, we deduce that there
is a unitary element u ∈ U(G) such that ueu−1U(G) ⊆ fU(G).



Embedding Group Algebras into Regular Rings 297

Set β = αα∗. Then rkβ = rkαα∗ ≥ 1/n by Property 3(e). Suppose 0 ≤ r ≤
1/rkβ − 1 and we have chosen unitary elements τ1, . . . , τr ∈ U(G) such that

rk(τ1βτ−1
1 + · · · + τrβτ

−1
r ) = rrk(β);

certainly we can do this for r = 0. Since U(G) is a regular von Neumann ∗-algebra,
there is a unique projection f ∈ U(G) such that (τ1βτ−1

1 + · · · + τrβτ
−1
r )U(G) =

fU(G). Also rk(1 − f) ≥ rkβ, hence there is a unitary element τr+1 ∈ U(G) such
that τr+1βτ

−1
r+1 ∈ (1 − f)U(G), and then

rk(τ1βτ−1
1 + · · ·+ τr+1βτ

−1
r+1) = (r + 1)rk(β)

by Lemma 2.
Now suppose r > 1/rk(β)−1 and we have chosen unitary elements τ1, . . . , τr ∈

U(G) such that
rk(τ1βτ−1

1 + · · ·+ τrβτ
−1
r ) ≥ 1 − rk(β);

by the previous paragraph, we can certainly do this if r ≤ 1/rk(β). Again, let
f ∈ U(G) be the unique projection such that (τ1βτ−1

1 + · · · + τrβτ
−1
r )U(G) =

fU(G). Then rk(β) ≥ tr(1 − f) and therefore there is a projection e ∈ U(G) such
that 1 − f ∈ eU(G) and tr(e) = rk(β). Then we may choose a unitary element
τr+1 ∈ U(G) such that τr+1βτ

−1
r+1U(G) = eU(G). Applying Lemma 2, we see that

rk(τ1βτ−1
1 + · · ·+ τr+1βτ

−1
r+1) = 1,

which tells us that τ1βτ
−1
1 + · · · + τr+1βτ

−1
r+1 is a unit in U(G). We deduce that

τ1βτ
−1
1 + · · ·+ τnβτ

−1
n is a unit in U(G) as required. �

Proof of Theorem 1. We shall use the techniques of [4, §2]. By [10, Theorem 1], we
may embed G in a group which is algebraically closed, so we may assume that G
is algebraically closed. It now follows from [3, Corollary 1] that the augmentation
ideal ω(KG) is the only proper two-sided ideal of KG. Let F denote the set of all
finitely generated subfields of K. For each F ∈ F , let C(F ) denote the set of all
finitely generated subfields containing F : this is a subset of F . Now let

C = {X ⊆ F | X ⊇ C(F ) for some F ∈ F}.

The following are clear:

• C �= ∅.
• If A ⊆ B ⊆ F and A ∈ C, then B ∈ C (if C(F ) ⊆ A, then C(F ) ⊆ B).
• If A,B ∈ C, then A ∩ B ∈ C (if C(E) ⊆ A and C(F ) ⊆ B, then C(〈E,F 〉) ⊆
A ∩B).

This means that the sets C form a filter, and hence they are contained in an
ultrafilter D, that is a maximal filter. Thus D has the properties of C listed above,
and the additional property

• If X ⊆ F , then either X or F \X is in D.
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Now set R =
∏
f∈F U(G), the Cartesian product of the U(G) (so infinitely

many coordinates of an element of R may be nonzero). Since the Cartesian product
of self-injective von Neumann unit-regular rings is also self-injective von Neumann
unit-regular, we see that R is also a self-injective von Neumann unit-regular ring.
The general element of α ∈ R has coordinates αf for f ∈ F , and we define ρ(α) =
limD ρ(αf ), where lim indicates the limit of ρ(αf ) associated to the ultrafilter D.
Thus ρ(α) has the property that it is the unique number which is in the closure
of {rk(αd) | d ∈ X} for all X ∈ D. It is easy to check that ρ is a pseudo-rank
function [6, Definition, p. 226, §16]; thus ρ satisfies Properties 3(a)–(c), but not
Property 3(d), because we can have ρ(α) = 0 with α �= 0.

Let I = {r ∈ R | ρ(r) = 0}. Using [6, Proposition 16.7], we see that I is a two-
sided ideal of R and ρ induces a rank function on R/I. Of course, R/I will also be a
von Neumann unit-regular ∗-ring. Next we show that R/I is self injective. In view
of [6, Theorem 9.32], we need to prove that I is a maximal ideal of R; of course this
will also show that R/I is a simple ring. Suppose α ∈ R \ I. Then we may choose
a real number ε such that 0 < ε < ρ(α). Set S = {s ∈ F | rk(αs) < ε}. Then ρ(α)
is not in the closure of {rk(αs) | s ∈ S} and therefore S /∈ D. Let T = F \ S, so
T ∈ D and choose a positive integer n such that n > 1/ε. Since G is an ICC group,
for each t ∈ T there exist by Lemma 4 units τ(t)1, . . . , τ(t)n ∈ U(G) such that

τ(t)1αtτ(t)−1
1 + · · ·+ τ(t)nαtτ(t)−1

n

is a unit in U(G) (the important thing here is that n is independent of t). Now for
r = 1, . . . , n, define τr ∈ R by (τr)t = τ(t)r for t ∈ T and (τr)s = 1 for s ∈ S. Then

(τ1ατ−1
1 + · · · + τnατ

−1
n )t

is a unit for all t ∈ T and it follows that its image in R/I is a unit. This proves
that R/I is a simple ring.

Now we want to embed KG into R/I. For each f ∈ F , choose an embedding
of f into C. This will in turn induce an embedding θf of fG into U(G).

For α ∈ KG and f ∈ F , we define αf = θf (α) if α ∈ fG, and αf = 0 other-
wise. This yields a well-defined map (not a homomorphism) φ : KG→ R which in
turn induces a map ψ : KG → R/I. Let α, β ∈ KG and let F denote the subfield
of K generated by the supports of α and β, so F ∈ F . Since

αf + βf − (α + β)f = 0 = αfβf − (αβ)f

for all f ∈ C(F ), we see that

rk(αf + βf − (α + β)f ) = 0 = rk(αfβf − (αβ)f )

for all f ∈ C(F ). Since C(F ) ∈ D, we deduce that ψ(α) + ψ(β) − ψ(α + β) = 0 =
ψ(α)ψ(β) − ψ(αβ) and hence ψ is a ring homomorphism.

Finally we show that kerψ = 0. Since ω(KG) is the only proper ideal of KG,
we see that if kerψ �= 0, then g−1 ∈ kerψ for 1 �= g ∈ G. But rk((g−1)f) is a con-
stant positive number for f ∈ F . Therefore ρ(g − 1) �= 0 and hence g − 1 /∈ kerψ.
We conclude that kerψ = 0 and the proof is complete. �
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If K is a field, G is a group and θ is an automorphism of K, then θ induces
an automorphism θ∗ of KG by setting θ∗(

∑
g agg) =

∑
g θ(ag)g. It is not difficult

to deduce from the proof of Theorem 1 the following result related to the Atiyah
conjecture [9, §10].

Proposition 5. Let G be a group, let K be a subfield of C and let 0 �= α ∈ KG.
Then there exists ε > 0 such that rk(θ∗α) > ε for every automorphism θ of K.

However we shall give an independent proof. It ought to be true that
rk(θ∗α) = rk(α) for every automorphism θ of K.

Proof of Proposition 5. Using [10, Theorem 1], we may embed G in a group which
is algebraically closed and has an element of infinite order. Thus by Property
3(f), we may assume that G is algebraically closed and contains an element x
of infinite order. Consider the two-sided ideal generated by α(x − 1). Since 0 �=
α(x − 1) ∈ ω(KG) and ω(KG) is the only proper two-sided ideal of KG by [3,
Corollary 1], we see that there exists a positive integer n and βi, γi ∈ KG such
that

∑n
i=1 βiαγi = x− 1. Then

n∑

i=1

θ∗(βi)θ∗(α)θ∗(γi) = x− 1.

Since rk(x − 1) = 1 and rk(θ∗(βi)θ∗(α)θ∗(γi)) ≤ rk(θ∗α) for all i, we see that
rk(θ∗α) ≥ 1/n and the result follows. �
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Abstract. We discuss some basic features of the local multiplier algebra of a
C*-algebra, the analytic analogue of the well-known Kharchenko–Martindale
symmetric ring of quotients, and also the more recent maximal C*-algebra of
quotients, which is the analytic companion to the Utumi–Lanning maximal
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1. Introduction

Rings of quotients are a widely used concept in noncommutative ring theory and
intimately connected with the important technique of localisation; see, e.g., [9].
Various ‘breeds’ have been developed depending on the kind of application one
had in mind: for instance, the Kharchenko–Martindale symmetric ring of quo-
tients of a semiprime ring serves particularly well in Galois theory [10] and in
extending Herstein’s programme on nonassociative derivations and isomorphisms
from the simple case [6]. To a lesser extent analogous constructs have appeared in
analysis, mainly due to the additional difficulties that arise from the need of com-
plete spaces (closed ideals) and continuous mappings (bounded homomorphisms).
In the early 1990’s, together with Pere Ara, we started a systematic study of an

This paper is part of a research project supported by the Royal Society.
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analogue of the symmetric ring of quotients in the context of C*-algebras, the
local multiplier algebra, and more recently extended this to a more comprehen-
sive treatment of C*-algebras of quotients. Important precursors were papers by
Elliott [7] and Pedersen [18] aiming at the structure of automorphisms and deriva-
tions of C*-algebras; and, in fact, many of the uses of the local multiplier algebra
are found in operator theory on C*-algebras.

While this is documented in detail in our monograph [3], the purpose of the
present article is to underline the similarities between the purely algebraic theory
and its C*-algebraic companion and to point out where modifications must be
made. We shall also discuss briefly some of the applications of local multipliers to
the structure theory of various classes of operators between C*-algebras.

2. C*-algebras of quotients

For basic terminology and facts in C*-algebra theory, we refer the reader to Sec-
tion 1.2 of [3], where many further references can be found.

We begin by recalling the definition of a two-sided ring of quotients in a form
which is especially well suited for our setting.

Definition 2.1. Let R be a semiprime ring with involution *. A unital ring S is
called a two-sided ring of quotients of R if

(i) R ⊆ S;
(ii) ∀ b ∈ S: bJ + J∗b ⊆ R for some J ∈ I;
(iii) ∀ b ∈ S, J ∈ I: bJ = 0 =⇒ b = 0;
where I is a ‘good’ set of (right) ideals in R.

We shall not pause to spell out in detail the requirements on the ‘good’ set
of ideals (since we will mainly be interested in two examples) nor discuss the
properties the involution is supposed to have (such as positive-definiteness, e.g.),
since in a moment all our rings will be C*-algebras anyway.

Here are our main examples.

Examples 2.2. Let R be a semiprime ring with involution *.
1. If we choose I = {R} then we obtain S = M(R), the multiplier ring of R.
2. If we choose I = Ie, the set of all essential two-sided ideals of R, then we

obtain S = Qs(R), the Kharchenko–Martindale symmetric ring of quotients
of R.

3. If we choose I = Ier, the set of all essential right ideals of R, then we obtain
S = Qs

max(R), the Utumi–Lanning maximal symmetric ring of quotients of R.

Each of the above enjoys a universal property with respect to the prescribed
set of ideals. Example 3 was already implicitly contained in Utumi’s work in the
1950’s but it was Lanning who started a systematic study [11]. Some explicit
computations of Qs

max(R) are carried out, e.g., in [16].
Following the above pattern we now introduce the concept of a C*-algebra

of quotients.
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Definition 2.3. Let A be a C*-algebra. A unital C*-algebra B is called a C*-algebra
of quotients of A if

(i) A ⊆ B;
(ii) {b ∈ B | bJ + J∗b ⊆ A for some J ∈ I} is dense in B;
(iii) ∀ b ∈ B, J ∈ I: bJ = 0 =⇒ b = 0;

where I is a ‘good’ set of closed (right) ideals in A.

Evidently the main difference in the two concepts lies in condition (ii); the
necessity of completeness forces us to make the adjustment in Definition 2.3.

As before we have three main examples in mind.

Examples 2.4. Let A be a C*-algebra.

1. If we choose I = {A} then we obtain B = M(A), the multiplier algebra of A.
This is a well-studied C*-algebra and the maximal unitization of A. It has
found manifold applications in various areas of C*-algebra theory.

2. If we choose I = Ice, the set of all closed essential two-sided ideals of A,
then we obtain B = Mloc(A), the local multiplier algebra of A. This C*-
algebra first came up in work by Elliott [7] and Pedersen [18] in the mid
1970s but seems to have lain dormant until the author and Pere Ara started
a systematic investigation from 1990 onwards. Nowadays, its structure is
fairly well understood and many uses have been found, see [3] and Section 4
below.

3. If we choose I = Icer, the set of all closed essential right ideals of A, then we
obtain B = Qmax(A), the maximal C*-algebra of quotients of A. This algebra
was first introduced in [1] and is now the topic of an ongoing research project
by Ara and the author, see [5].

At this point we want to stress a subtle difference between Examples 2 and 3
in (2.4). For a two-sided ideal in a C*-algebra, the concepts “closed essential” and
“essential closed” coincide; that is to say if I ⊆ A is a closed two-sided ideal which
is essential as a closed ideal – I ∩ J �= 0 for every non-zero closed two-sided ideal
J ⊆ A – then it is algebraically essential, that is, essential in A-Mod-A. The reason
is that, in this case, “essential” can be expressed by an annihilator condition. This
is not the case for one-sided, say right, ideals in general. So, a priori, a closed right
ideal in a C*-algebra which is essential in Ban-A, the category of Banach A-right
modules, need not be essential in Mod-A. But, fortunately, it turns out that these
concepts agree nevertheless. For this, and a comprehensive discussion of various
notions of essentiality for one-sided ideals, see [5].

We use the chart below to discuss the interrelations between the purely al-
gebraic and the analytic constructs.

Mloc(A) Qmax(A)

Qs(A) Qs
max(A)

Qb(A) Qs
max(A)b
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The symmetric algebra of quotients Qs(A) of A of Definition 2.1 is endowed with
a positive-definite involution, inherited from A, and a good order structure, thus
allowing us to define bounded elements in the sense of Handelman–Vidav:

q ∈ Qs(A) is bounded if q∗q ≤ λ 1 for some λ ∈ R+; (1)

in this case, the norm ||q|| of q is defined to be
√
λ for the least λ in (1) above. With

this norm, the set of all bounded elements in Qs(A) – the bounded part Qb(A) of
Qs(A) – becomes a pre-C*-algebra, and its completion is Mloc(A). Consequently,
Qs(A) and Mloc(A) contain a common *-subalgebra Qb(A); the latter is dense in
Mloc(A), and Qs(A) can be reconstructed from Qb(A) by central localisation. For
more details on this, see [3, Section 2.2].

We call Qb(A) the bounded symmetric algebra of quotients of A.
A similar, if slightly more complicated mechanism creates a bounded part

Qs
max(A)b in Qs

max(A) and the completion of this pre-C*-algebra is the maximal
C*-algebra of quotients Qmax(A) of A, see [1], [5]. Since we shall devote most of
our attention to the local multiplier algebra, we will not discuss any further details
at this point.

One way to construct the symmetric algebra of quotients Qs(A) is to employ
(equivalence classes of) essentially defined double centralisers; that is, pairs of left
and right module homomorphisms defined on essential ideals. These may not be
continuous and hence may not be defined on closed ideals. The elements in Qb(A)
correspond precisely to those which are defined via continuous (i.e., bounded)
module homomorphisms, and, in general, Qb(A) is strictly smaller than Qs(A);
see [3, Proposition 2.2.13].

The reader will also note that the two examples 2.2 (1) and 2.4 (1) agree with
each other. This is a consequence of the fact that a right A-module homomorphism
from A into A (or, more generally, from I ∈ Ice into A) is automatically continuous.

Since closed two-sided ideals in C*-algebras are particularly well behaved,
the above constructions can be performed in alternative ways; the one discussed
in the next section is of fundamental importance for the applications.

3. The local multiplier algebra

Suppose I and J are closed essential two-sided ideals in a C*-algebra A. Then I∩J
also belongs to Ice and, moreover, I∩J is an essential ideal in both M(I) and M(J).
(This uses the property of closed ideals in a C*-algebra to be idempotent.) By the
universal property of the multiplier algebra, we obtain injective *-homomorphisms
M(I) → M(I ∩ J) and M(J) → M(I ∩ J). These are given by “restricting the
multipliers” to the smaller ideal. Since injective *-homomorphisms between C*-
algebras are isometries, we thus obtain a directed family of C*-algebras

{
M(I) |

I ∈ (Ice, ⊇)
}

and *-monomorphisms
{
ρJI | I, J ∈ (Ice, ⊇)

}
, where ρJI : M(I) →

M(J) is the above restriction homomorphism, if J ⊆ I. Taking the direct limit in
the category of C*-algebras yields the local multiplier algebra.
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Definition 3.1. For a C*-algebra A, Mloc(A) = lim−→ Ice
M(I) is the local multiplier

algebra of A.

One of the basic achievements of our work with Ara was to show that this
definition of the local multiplier algebra – which was first used in [7] and [18], but
under a different name – agrees with the one presented in Section 2, thus providing
the link between the algebraic and the analytic theory. See [3, Section 2.3].

In the case of C*-algebras we can moreover describe the symmetric algebra
of quotients in an alternative way.

Proposition 3.2. For every C*-algebra A, we have Qs(A) = alg lim
−→ Ice

M(KI),
where KI denotes the Pedersen ideal of an ideal I ∈ Ice.

The Pedersen ideal of a closed two-sided ideal I in a C*-algebra is the smallest
two-sided ideal which is dense in I. If I, J ∈ Ice and J ⊆ I then KJ ⊆ KI

and KI = K2
I is essential too. This enables us to prove the above result in [3,

Proposition 2.2.4].

Examples 3.3. Let us look at some examples of local multiplier algebras.
(1) Let A be a commutative unital C*-algebra; then A = C(X), the complex-

valued continuous functions on a compact Hausdorff space X . In this case,
Mloc(A) = B(X), the algebra of all bounded Borel functions modulo the
ideal of those functions that vanish off a rare subset of X . This algebra is
sometimes called the Dixmier algebra, since in Dixmier’s work it provided the
first example of an AW*-algebra which is not a von Neumann algebra (for
X = [0, 1]). See [3, Proposition 3.4.5].

(2) A C*-algebra A is called simple if it does not contain any closed two-sided
ideal other than 0 and A. Evidently, for a simple C*-algebra A, we have
Mloc(A) = M(A). In [2] we gave examples of unital non-simple C*-algebras
A such that Mloc(A) is simple; hence A �= Mloc(A) = Mloc(Mloc(A)) in this
case.

(3) A C*-algebra A is said to be an AW*-algebra if the left annihilator of every
subset of A is principal, that is, of the form Ap for a projection p ∈ A. If A
is an AW*-algebra then Mloc(A) = A; see, e.g., [3, Theorem 2.3.8]. Note that
this in particular applies to every von Neumann algebra, that is, weakly closed
unital C*-subalgebra of the algebra B(H) of all bounded linear operators on
a Hilbert space H .

(4) Let A = C(X) ⊗ B(H) be the C*-tensor product of C(X), for a compact
Hausdorff space X , and B(H). (In this case, there is only one C*-tensor norm
on the algebraic tensor product.) Then

Mloc(A) = lim−→ U∈D Cb(U,B(H)s),

where D is the filter of dense open subsets of X and Cb(U,B(H)s) denotes the
C*-algebra of all bounded continuous functions from U into B(H) endowed
with the strict topology. This result is proved in [5, Corollary 5.3].
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The theory of the local multiplier algebra bears some similarity with the one
of the symmetric ring of quotients but generally the additional analytic structure
leads to complications. For instance, it is well known that Qs is not a closure
operation. For some time, it was an open problem, first raised in [18], whether
Mloc is a closure operation or not, that is, whether there can be a C*-algebra
A such that Mloc(A) is different from Mloc(Mloc(A)). This question was recently
settled in [4].

Theorem 3.4. There is a unital separable primitive approximately finite-dimen-
sional C*-algebra A such that Mloc(Mloc(A)) �= Mloc(A).

The proof of this result uses non-stable K-theory, Elliott’s classification of
AF-algebras and a detailed study of strict limits of sequences of projections in the
local multiplier algebra, among others.

4. Applications of local multipliers

In this section we shall discuss some typical applications of local multipliers of
C*-algebras. The symmetric ring of quotients has been put to good use in the
study of a number of classes of additive mappings on semiprime rings, notably
automorphisms and derivations; see [6] and [10], for example. It is thus no surprise
that the local multiplier algebra has too been exploited for this purpose.

One of Pedersen’s original motivations to investigate multipliers of closed es-
sential ideals of a C*-algebra in [18] was to find a bigger C*-algebra in which every
derivation of the original C*-algebra becomes inner, that is, is implemented as a
commutator. A derivation d on a C*-algebra A is a linear mapping d : A → A sat-
isfying the usual Leibniz product rule; such a mapping is automatically bounded,
as was first shown by Sakai. If there is an element a such that dx = xa − ax for
all x ∈ A, the derivation is called inner. In most cases such an element does not
exist within A; therefore one tries to extend the derivation d to a bigger C*-algebra
which may contain an implementing element. Whether the local multiplier algebra
has this property for every C*-algebra is still unknown, though there have been
some advances in this direction; see, e.g., [13] and [20]. Pedersen proved in [18]
that the answer is positive if A is separable.

Once one knows that d is inner, one has a better chance to estimate its norm,
which, of course, is important from the analytic point of view. It is easy to see that,
if dx = xa − ax for all x ∈ A, then ||d|| ≤ 2 dist(a, Z(A)), where Z(A) stands for
the centre of A. In general, this estimate is strict and, in fact, a lower estimate is
related to cohomological properties of A. Various kinds of C*-algebras are known
to have the property that the above inequality is indeed an equality for every
inner derivation, such as von Neumann algebras, e.g., (a result by Zsido). We were
able to show that this is true for local multiplier algebras and, more generally, for
boundedly centrally closed C*-algebras (see below for the definition). Moreover,
Somerset proved that the distance dist(a, Z(A)) from any element a to the centre
is always attained, regardless of the nature of the C*-algebra A [19].
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Putting all this together one obtains full information on derivations on sep-
arable C*-algebras with the aid of local multipliers; the details of the argument
take up the major part of Sections 4.1 and 4.2 in [3].

Theorem 4.1 (Theorem 4.2.20 in [3]). For every derivation d on a separable C*-
algebra A there exists a ∈ Mloc(A) such that dx = xa − ax for all x ∈ A and
||d|| = 2 ||a||.

In the background of the above arguments to calculate the norm of an inner
derivation works another category, the category of operator spaces together with
completely bounded mappings (we shall briefly review this category in the next
section), and the fact that the norm and the completely bounded norm of an inner
derivation agree. The interplay with local multipliers becomes even more apparent
when we now turn our attention to elementary operators.

Already in the mid 1950’s Grothendieck proposed to use tensor products
of Banach spaces to study operators defined between them. In the case of a C*-
algebra A, a very natural class arising in this way is the one consisting of elementary
operators. Define

θ : M(A) ⊗M(A) −→ B(A), a⊗ b �−→Ma,b,

where Ma,bx = axb for x ∈ A, a, b ∈ M(A) and B(A) denotes the Banach algebra of
all bounded linear operators on the C*-algebra A with the operator norm. Elements
in the image of θ are operators of the form S : x �→

∑n
j=1 ajxbj , aj , bj ∈ M(A)

and are called elementary operators on A.
Once again it is easy to give upper estimates for the norm of an elementary

operator S in terms of the norms of aj and bj but hard to give a precise description.
To this end, Haagerup introduced a new norm on the tensor product of two C*-
algebras which is no longer a C*-tensor norm but a good norm in the category
of operator spaces. This so-called Haagerup norm is defined as follows. For u ∈
M(A) ⊗M(A) put

||u||h = inf
u=
∑

j aj⊗bj
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,

the Haagerup norm of u. Then the following result holds.

Theorem 4.2. For every infinite-dimensional simple unital C*-algebra A, the map-
ping θ is an isometry on A ⊗h A, the completion of the algebraic tensor product
with respect to the Haagerup norm.

This theorem is a special case of [3, Corollary 5.4.35] and rests heavily on
results by Haagerup and Magajna. It is a prime example of a result in operator
theory on C*-algebras in the formulation of which local multipliers are absent – but
in the proof of which they are essential. First of all we note that the assumption
that A is unital is vital; otherwise the compact operators provide a counterexam-
ple. Under the hypothesis of Theorem 4.2, Mloc(A) = A and Z(Mloc(A)) = C;
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this is already important for the injectivity of θ ! (As was first noticed in [12].)
Furthermore the assumption entails that A is antiliminal and hence the operator
norm of S and the completely bounded norm coincide ([3, Corollary 5.4.36]).

Once we move beyond a trivial ideal space, local multipliers become fully
visible.

For a general C*-algebra A with multiplier algebra M(A) let cA = AZ and
cM(A) = M(A)Z denote the bounded central closure of A and of M(A), respec-
tively, where Z = Z(Mloc(A)) is the centre of the local multiplier algebra. (See
also Section 5 below.) Both cA and cM(A) are modules over Z, and θ induces a
mapping θZ on the module tensor product over Z. This module tensor product
can be endowed with a central version of the Haagerup norm and will thus be
denoted by cM(A) ⊗Z,h cM(A). Instead of B(A) we now have to use CB(cA) on
the right-hand side, the Banach algebra of all completely bounded operators on cA
with the completely bounded norm (which, in general, is bigger than the operator
norm). With this notation, the general result reads as follows.

Theorem 4.3 (Theorem 5.4.30 in [3]). For every C*-algebra A, the mapping θZ is
an isometry from cM(A) ⊗Z,h cM(A) into CB(cA).

Other classes of operators that were studied in [3] with the help of local
multipliers include generalised derivations, automorphisms, Jordan and Lie iso-
morphisms and centralising mappings, and results that use, but do not show, local
multiplier theory (in the same vein as Theorem 4.2 above) are found, for instance,
in the structure theory of Lie derivations on C*-algebras; see [14].

5. Multipliers and the injective envelope

Lately, categories of operator spaces and completely bounded mappings have
gained in importance in the study of C*-algebras but also many other branches of
infinite-dimensional analysis. One reason for this is the existence of injective hulls
(which is not guaranteed in the category of C*-algebras), which will lead us to a
third picture of the local multiplier algebra in this section.

Just as the most general Banach space is C(X), where X is a compact Haus-
dorff space, – since, by the Banach–Alaoglu theorem, every Banach space is iso-
metrically isomorphic to a closed subspace of some space C(X) – the most general
operator space is B(H), the space of all bounded linear operators from H into
itself, where H is a complex Hilbert space. Already in the early work by von
Neumann in the 1920s it emerged that it is vital to consider matrices of opera-
tors as well; that is, matrices whose entries are from B(H). Since such a matrix
space Mn(B(H)) is isomorphic to B(Hn), where Hn is the n-fold direct sum of
H , n ∈ N, there is a natural choice of a norm on Mn(B(H)); incidentally, the only
one turning it into a C*-algebra.

An abstract definition of operator spaces is provided by Ruan’s axioms; see
[17, Chapter 13]. However, as every C*-algebra can be regarded as a concrete
algebra of bounded linear operators on Hilbert space by the Gelfand–Naimark–
Segal theorem, we can content ourselves with a concrete picture here.
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Definition 5.1. An operator space E is a linear subspace of B(H), for some Hilbert
space H , such that, for each n ∈ N, the space of matrices Mn(E) is complete with
respect to the canonical norm on Mn(B(H)) = B(Hn).

The morphisms are given as follows.

Definition 5.2. For a linear mapping T : E → F between operator spaces E and F
we denote by Tn : Mn(E) →Mn(F ) the n-fold ampliation given by

Tn
(
(xij)1≤i,j≤n

)
=
(
Txij

)
1≤i,j≤n.

The operator T is called completely bounded if ||T ||cb = supn∈N
||Tn|| <∞, where

||Tn|| denotes the operator norm of each Tn. For a completely bounded operator
the quantity ||T ||cb is called the cb-norm of T .

In the case where each Tn is an isometry, the operator T is called a complete
isometry. If ||Tn|| ≤ 1 for all n ∈ N then T is said to be a complete contraction.

The two categories thus arising in a natural way are O∞, consisting of op-
erator spaces as the objects and completely bounded operators as the morphisms
(“isomorphism” in this case means the existence of a bijective completely bounded
linear mapping), and O1, consisting of operator spaces together with complete con-
tractions; in this case, “isomorphism” is completely isometric linear isomorphism.
We will work in the latter category, since two unital C*-algebras are completely
isometric if and only if they are isomorphic as C*-algebras.

The notion of ‘injective envelope’ now is the usual one in a category.

Definition 5.3. An operator space I is called injective if, whenever h : E → F is a
complete isometry between operator spaces E and F and f0 : E → I is a complete
contraction, there exists f : F → I, a complete contraction, such that f ◦ h = f0.

Definition 5.4. Let E be an operator space.
(i) A complete isometry h : E → F into another operator space F is said to be

essential if, whenever g : F → G is a complete contraction into an operator
space G such that g ◦h is a complete isometry, then g is a complete isometry.

(ii) An injective operator space I(E) together with an essential complete isometry
ι : E → I(E) is called an injective envelope of E.

Since, as usual, injective envelopes are unique up to isomorphism in O1, we
will speak of the injective envelope of an operator space E and denote it by I(E).

Wittstock was the first to show that B(H) is injective in the above sense, and
Hamana established the existence of the injective envelope and studied injective
envelopes of C*-algebras in great detail. For a nice exposition, see [17].

Theorem 5.5 (Hamana). For every C*-algebra A, there is an injective envelope
I(A) which is a unital C*-algebra containing A as a C*-subalgebra. Moreover,

(i) I(A) is monotone complete, hence an AW*-algebra;
(ii) if A is prime then I(A) is prime, hence an AW*-factor;

(iii) if A is unital and simple then I(A) is simple.
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The injective envelope of a C*-algebra is, in general, a fairly big C*-algebra,
big enough to contain both the local multiplier algebra and the maximal C*-algebra
of quotients. For a C*-algebra A, the *-subalgebra of I(A)

{x ∈ I(A) | xI + Ix ⊆ A for some ideal I ∈ Ice}
is isomorphic to Qb(A). This was first observed by Frank and Paulsen [8]; see also
[5, Section 3]. Under this isomorphism we can, and will, identify Mloc(A) with a
C*-subalgebra of I(A).

Additionally, the same kind of identification establishes an isomorphism be-
tween

{y ∈ I(A) | yJ + J∗y ⊆ A for some right ideal J ∈ Icer}
and Qs

max(A)b. As Qmax(A) = Qs
max(A)b, we can also consider Qmax(A) as a C*-

subalgebra of I(A).
This leads to the following result; see Theorems 3.8 and 3.12 of [5].

Theorem 5.6. For every C*-algebra A, we have

A ⊆M(A) ⊆ Mloc(A) ⊆ Qmax(A) ⊆ A ⊆ I(A)

and
Z(Mloc(A)) = Z(Qmax(A)) = Z(A) = Z(I(A)).

The C*-algebra A appearing in the above theorem is the regular monotone
completion of A, defined as the smallest monotone complete C*-subalgebra of I(A)
which contains A as an order-dense C*-subalgebra. An immediate consequence of
Theorem 5.6 is that Qmax(A) = A for every monotone complete C*-algebra A, in
particular, every von Neumann algebra.

The equality of all the centres of the C*-algebras from Mloc(A) upward in
Theorem 5.6 is very interesting in itself. The local Dauns–Hofmann theorem [3,
Theorem 3.1.1] describes the centre Z = Z(Mloc(A)) as a direct limit:

Z(Mloc(A)) = lim−→ Ice
Z(M(I))

and combining this with Theorem 5.6, we obtain a new concrete description of the
centre of the injective envelope.

A C*-algebra A is called boundedly centrally closed if Z(M(A)) = Z; equiv-
alently, cA = A and cM(A) = M(A) [3, Proposition 3.2.3]. As a consequence
of the local Dauns–Hofmann theorem, Mloc(A) and, more generally, every C*-
subalgebra of Mloc(A) containing both A and Z is boundedly centrally closed
[3, Theorem 3.2.8]. Boundedly centrally closed C*-algebras behave analogously to
centrally closed semiprime rings (where the extended centroid agrees with the cen-
troid of the ring R, that is, Z(Qs(R)) = Z(M(R)). As a result many statements in
operator theory on C*-algebras become much simpler for this class of C*-algebras.

It follows from the above that, for a unital boundedly centrally closed C*-
algebra A, Z(A) = Z(I(A)) although the injective envelope itself might be much
bigger than A.
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6. The maximal C*-algebra of quotients

Despite the fact that the maximal C*-algebra of quotients Qmax(A) of a C*-algebra
A contains all the multiplier algebras of essential hereditary C*-subalgebras of A,
there does not seem to be a way to describe Qmax(A) as a direct limit of C*-
algebras, in contrast to the direct limit description of the local multiplier algebra;
see Section 3. This makes the study of its properties much harder.

Fortunately there is at least a direct limit construction in the category of
operator modules, which we will briefly indicate; for more details, see [5].

Given a unital C*-algebra A we denote by CBA(E,F ) the space of all com-
pletely bounded right A-module maps between the operator right A-modules E
and F . If F is even an operator A-bimodule, this is an operator left A-module,
where the operator space structure is given by Mn(CBA(E,F )) = CBA(E,Mn(F )),
n ∈ N and the A-module structure on CBA(E,F ) is defined by (ag)(x) = ag(x),
a ∈ A, x ∈ E and g ∈ CBA(E,F ).

For I, J ∈ Icer, J ⊆ I, denote by ρJI : CBA(I, A) → CBA(J,A) the restriction
map, which turns out to be a complete isometry. Letting

Eb(A) = alg lim
−→ Icer

CBA(I, A)

we obtain an (uncompleted) direct limit in the category of operator left A-modules,
which in fact is an (incomplete) unital operator algebra. The relation with the
maximal C*-algebra of quotients is given by the following result.

Theorem 6.1 ([5]). For every C*-algebra A, we can consider Eb(A) as an operator
subalgebra of I(A). Under this identification, Eb(A) ∩ Eb(A)∗ = Qs

max(A)b.

At this stage, there are several basic questions still open for the maximal
C*-algebra of quotients.

Open Questions. 1. Is it true that Qmax(A) = A whenever A is an AW*-algebra?
We know that the answer is positive if A is finite; if A is σ-finite (countably
decomposable); or if A is monotone complete [5], but not yet in general.
2. Is Qmax(A) always an AW*-algebra? We expect the answer to be “no” but do
not have a counterexample yet.
3. We know of examples such that Mloc(Mloc(A)) �= Mloc(A), but is it possible
that Qmax(Qmax(A)) = Qmax(A) for every C*-algebra A?

New ways to obtain the maximal symmetric ring of quotients, as outlined
in [15], e.g., may be useful to tackle these problems.
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On Some Injective Modules In σ[M ]

A.Ç. Özcan, D.K. Tütüncü and M.F. Yousif

Dedicated to Professor Robert Wisbauer on his 65th birthday

Abstract. In this paper, we study the notions (strongly) soc-injective, (strong-
ly) simple-injective and (strongly) mininjective modules in σ[M ]. For any
module N in σ[M ], N is strongly mininjective in σ[M ] if and only if it is
strongly simple-injective in σ[M ]. A module M is locally Noetherian if and
only if every strongly simple-injective module in σ[M ] is strongly soc-injective.
We also characterize Noetherian QF-modules.

1. Introduction

Let M be any R-module. Any R-module N is generated by M or M -generated if
there exists an epimorphism M (Λ) −→ N for some index set Λ. An R-module N is
said to be subgenerated by M if N is isomorphic to a submodule of an M -generated
module. We denote by σ[M ] the full subcategory of the right R-modules whose
objects are all right R-modules subgenerated by M .

Let M be a module and let N and T be in σ[M ]. N is called soc-T -injective
if any R-homomorphism f : Soc(T ) → N extends to T . Equivalently, for any
semisimple submodule K of T , any homomorphism f : K → N extends to T . A
module N ∈ σ[M ] is called soc-quasi-injective in σ[M ] if N is soc-N -injective. N
is called soc-injective in σ[M ] if N is soc-M -injective. N is called strongly soc-
injective in σ[M ] if N is soc-T -injective for all T ∈ σ[M ].

According to Harada [7], if M and N are modules, M is called simple-N -
injective if, for every submodule L of N , every homomorphism γ : L −→ M with
γ(L) simple extends to N . If N = R, M is called simple-injective, and if M = N ,
M is called simple-quasi-injective. Dually, M is called min-N -injective if, for every
simple submodule L of N , every homomorphism γ : L → M extends to N . If
N = R, M is called mininjective, and if M = N , M is called min-quasi-injective.
Let T ∈ σ[M ]. T is called strongly simple-injective in σ[M ] if T is simple-N -
injective for all N ∈ σ[M ], and T is called strongly mininjective in σ[M ], if T is
min-N -injective for all N ∈ σ[M ] (see [2]).
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Throughout this article, all rings are associative and have an identity, and
all modules are unitary right R-modules. Let M be an R-module. For a direct
summand N of M we write N ≤d M and for an essential submodule N of M ,
N ≤e M . Let N̂ be the M -injective hull of N in σ[M ]. A module N in σ[M ] is
called M -singular (or singular in σ[M ]) if N ∼= L/K for an L ∈ σ[M ] and K ≤e L
(see [6]). Every module N ∈ σ[M ] contains a largest M -singular submodule which
is denoted by ZM (N). If ZM (N) = 0, then N is called non-M -singular. We will
use Soc(K) to indicate the socle of any module K.

In Section 2, we prove that, for any finitely generated module T in σ[M ],
direct sums of soc-T -injective modules in σ[M ] is soc-T -injective if and only if
Soc(T ) is finitely generated. Also it is proven that if N ∈ σ[M ] is soc(N)-lifting,
then any module K in σ[M ] is soc-N -injective if and only if K is N -injective.

In Section 3, we consider the strongly soc-injective modules in σ[M ]. Semi-
artinian and Noetherian QF-modules are characterized in terms of strongly soc-
injective modules in σ[M ]. For example, any module M is semiartinian if and
only if every strongly soc-injective module in σ[M ] is injective in σ[M ] (quasi-
continuous). Let M be a finitely generated self-projective module. Then M is a
Noetherian QF-module if and only if every strongly soc-injective module in σ[M ] is
projective in σ[M ] if and only if M is a self-generator, Soc(M) ≤e M and every pro-
jective module in σ[M ] is strongly soc-injective in σ[M ] if and only if M/Soc(M)
has finite length and M is a self-generator strongly soc-injective in σ[M ]. In this
section we also characterize GCO-modules and cosemisimple modules in terms of
strongly soc-injective modules in σ[M ].

In Section 4, we consider soc-injective modules. Let S and R be any rings
and let M be a left S-, a right R-bimodule. We prove that if MR is soc-injective,
then lS(T1 ∩ T2) = lS(T1) + lS(T2) for all semisimple submodules T1 and T2 of
MR while lS(A ∩ B) = lS(A) + lS(B) for all semisimple submodules A and all
submodules B of MR in the case where S = EndR(M).

In the last section, it is shown that the notions of strongly mininjective and
strongly simple-injective coincide. We also prove that any module M is locally Noe-
therian if and only if every strongly simple-injective module in σ[M ] is strongly
soc-injective, and that if M is finitely generated self-projective, then M is a Noe-
therian QF-module if and only if every strongly simple-injective module in σ[M ]
is projective in σ[M ].

2. Soc-Injective Modules in σ[M ]

Theorem 2.1. Let M be a module.
(1) Let N ∈ σ[M ] and {Mi : i ∈ I} a family of right R-modules in σ[M ]. Then the

direct product
∏
i∈I Mi is soc-N -injective if and only if Mi is soc-N -injective

for all i ∈ I.
(2) Let T , N and K ∈ σ[M ] with K ≤ N . If T is soc-N -injective, then T is

soc-K-injective.
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(3) Let T,N and K ∈ σ[M ] with T ∼= N . If T is soc-K-injective, then N is
soc-K-injective.

(4) Let N ∈ σ[M ] and {Ai : i ∈ I} a family of right R-modules in σ[M ]. Then
N is soc-⊕i∈IAi-injective if and only if N is soc-Ai-injective for all i ∈ I.

(5) Let M be a projective module in σ[M ]. Any module N ∈ σ[M ] is soc-injective
if and only if N is soc-P -injective for every M -generated projective module
P in σ[M ].

(6) Let T,N and K ∈ σ[M ] with N ≤d T . If T is soc-K-injective, then N is
soc-K-injective.

(7) If A,B and N ∈ σ[M ], A ∼= B and N is soc-A-injective, then N is soc-B-
injective.

Proof. Clear. �

The next corollary is an immediate consequence of Theorem 2.1.

Corollary 2.2.

(1) If N ∈ σ[M ], then a finite direct sum of soc-N -injective modules in σ[M ]
is again soc-N -injective. In particular, a finite direct sum of soc-injective
(strongly soc-injective) modules in σ[M ] is again soc-injective (strongly soc-
injective).

(2) A direct summand of soc-quasi-injective (soc-injective, strongly soc-injective)
module in σ[M ] is again soc-quasi-injective (soc-injective, strongly soc-inject-
ive).

Proposition 2.3. Suppose N ∈ σ[M ] is a soc-quasi-injective module.

(1) (Soc-C2) If K and L are semisimple submodules of N , K ∼= L and K ≤d N ,
then L ≤d N .

(2) (Soc-C3) Let K and L be semisimple submodules of N with K ∩ L = 0. If
K ≤d N and L ≤d N , then K ⊕ L ≤d N .

Proof. (1) Since K ∼= L, and K is soc-N -injective, being a direct summand of the
soc-quasi-injective module N , L is soc-N -injective . If i : L → N is the inclusion
map, the identity map idL : L → L has an extension η : N → L such that ηi = idL,
and so L ≤d N .

(2) Then both K and L are soc-N -injective. Thus the semisimple module K ⊕ L
is soc-N -injective, and so a direct summand of N . �

Proposition 2.4. For N ∈ σ[M ], the following are equivalent:

(1) Every module in σ[M ] is soc-N -injective.
(2) Every semisimple module in σ[M ] is soc-N -injective.
(3) Soc(N) ≤d N .

Proof. Straightforward. �
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Theorem 2.5. For a projective module N ∈ σ[M ], the following are equivalent:

(1) Every quotient of a soc-N -injective module in σ[M ] is soc-N -injective.
(2) Every quotient of an injective module in σ[M ] is soc-N -injective.
(3) Soc(N) is projective in σ[M ].

Proof. (1) ⇒ (2) Clear.

(2) ⇒ (3) Consider the following diagram

E
η �� K �� 0

Soc(N)

f

��

where E and K are in σ[M ], η is an epimorphism and f any homomorphism. By
Cartan and Eilenberg [4], we may assume that E is injective in σ[M ]. Since K is
soc-N -injective, f can be extended to g : N → K. Since N is projective in σ[M ],
g can be lifted to g̃ : N → E such that ηg̃ = g. Now define f̃ : Soc(N) → E by
f̃ = g̃|Soc(N). Clearly, ηf̃ = f . Hence Soc(N) is projective in σ[M ].

(3) ⇒ (1) Let K ∈ σ[M ] be soc-N -injective. Assume η : K → L is an epimorphism.
We want to show that L is soc-N -injective. Consider the following diagram

0 �� Soc(N)

f

��

inc. �� N

K
η �� L �� 0

Since Soc(N) is projective, f can be lifted to g : Soc(N) → K. Since K is soc-
injective, g can be extended to g̃ : N → K. Clearly ηg̃ : N → L extends f . �

Corollary 2.6. The following are equivalent for a projective module M in σ[M ]:

(1) Every quotient of a soc-injective module in σ[M ] is soc-injective in σ[M ].
(2) Every quotient of an injective module in σ[M ] is soc-injective in σ[M ].
(3) Every semisimple submodule of a projective module in σ[M ] is projective in

σ[M ].
(4) Soc(M) is projective in σ[M ].

Proof. (1) ⇔ (2) ⇔ (4) By Theorem 2.5.

(3) ⇒ (4) Since M is projective in σ[M ], Soc(M) is projective in σ[M ].

(4) ⇒ (3) If P is a projective module in σ[M ], then it is a direct summand of a
direct sum of finitely generated submodules of M (N) by [9, 18.4]. Then Soc(P ) is a
direct summand of a direct sum of socles of finitely generated submodules of M (N).
Since Soc(M) is projective in σ[M ], then Soc(P ) is projective in σ[M ]. Hence (3)
follows. �
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Theorem 2.7. Let T ∈ σ[M ] be finitely generated. Then the following are equiva-
lent:
(1) Direct sums of soc-T -injective modules in σ[M ] is soc-T -injective.
(2) Soc(T ) is finitely generated.

Proof. (1) ⇒ (2) Let Soc(T ) = ⊕i∈ISi where each Si is a simple submodule of
T . Let Ŝi be the injective hull of Si in σ[M ], i ∈ I, and ι : ⊕i∈ISi → ⊕i∈I Ŝi
be the inclusion map. Since ⊕i∈I Ŝi is soc-T -injective, ι can be extended to an R-
homomorphism ι̂ : T → ⊕i∈I Ŝi. Since T is finitely generated, ι̂(T ) ≤ ⊕ni=1Ŝi, for
some positive integer n. Therefore Soc(T ) ≤ ⊕ni=1Ŝi implies that Soc(T ) is finitely
generated.
(2) ⇒ (1) Let E = ⊕i∈IEi be a direct sum of soc-T -injective modules in σ[M ]
and f : Soc(T ) → E be an R-homomorphism. Since Soc(T ) is finitely generated,
f(Soc(T )) ≤ ⊕ni=1Ei, for some positive integer n. Since ⊕ni=1Ei is soc-T -injective,
f can be extended to an R-homomorphism f̂ : T → T . �
Corollary 2.8. Let M be finitely generated. Then the following are equivalent:
(1) Direct sums of soc-injective modules in σ[M ] are soc-injective.
(2) Soc(M) is finitely generated.

Corollary 2.9. The following are equivalent:
(1) Direct sums of soc-T -injective modules in σ[M ] are soc-T -injective for every

cyclic R-module T in σ[M ].
(2) Finitely generated R-modules in σ[M ] are finite dimensional.

Definition 2.10. Let X be a submodule of a module M . We say that Soc(M)
respects X if there exists a direct summand A of M contained in X such that
X = A⊕B and B ≤ Soc(M). M is called Soc(M)-lifting if Soc(M) respects every
submodule of M .

Proposition 2.11. Let N ∈ σ[M ]. If N is Soc(N)-lifting, then any module K in
σ[M ] is soc-N -injective if and only if K is N -injective.

Proof. Assume that a module K ∈ σ[M ] is soc-N -injective. Let L be any sub-
module of N , i2 : L → N the inclusion map and f : L → K any homomorphism.
By hypothesis, L has a decomposition L = A ⊕ B such that A is a direct sum-
mand of N and B ≤ Soc(N). N = A ⊕ A′ for some submodule A′ of N . Then
L = A ⊕ (L ∩ A′) and L ∩ A′ is semisimple. Let i1 : L ∩ A′ → L be the inclu-
sion map and f |L∩A′ : L ∩ A′ → K. Since K is soc-N -injective, there exists a
homomorphism g : N → K such that gi2i1 = f |L∩A′. Now define h : N → K by
h(a + a′) = f(a) + g(a′) (a ∈ A, a′ ∈ A′). Then hi2 = f . �
Corollary 2.12. [11, Lemma 2.14] If R/Soc(RR) is semisimple, then a right R-
module M is soc-injective in Mod-R if and only if M is injective.

Proof. R/Soc(RR) is semisimple if and only if Soc(RR) respects every right ideal
of R [11, Theorem 2.3]. Hence by Proposition 2.11, the result holds. �
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Clearly if Soc(M) respects every submodule of M , then M/Soc(M) is semi-
simple. We don’t know if the converse is true or not.

3. Strongly soc-injective modules in σ[M ]

Theorem 3.1. Let N ∈ σ[M ]. The following are equivalent:
(1) N is strongly soc-injective in σ[M ].
(2) N is soc-N̂-injective.
(3) N = E ⊕ T , where E is injective in σ[M ] and T has zero socle.

Moreover, if N has a nonzero socle, then E can be taken to have essential socle.

Proof. (1) ⇒ (2) Clear.
(2) ⇒ (3) If Soc(N) = 0, we are done. Assume that Soc(N) �= 0, and consider the
following diagram

0

��
0 �� Soc(N)

ι

��

i �� Ŝoc(N)

N

where ι and i are inclusion maps. Since N is soc-N̂ -injective, N is soc-Ŝoc(N)-
injective. So, there exists an R-homomorphism σ : Ŝoc(N) → N , which extends
ι. Since Soc(N) ≤e Ŝoc(N), σ is an embedding of Ŝoc(N) in N . If we write
E = σ(Ŝoc(N)), then N = E ⊕ T for some submodule T of N . Clearly, E is
injective and T has zero socle.
(3) ⇒ (1) This is clear, since modules with zero socle are strongly soc-injective
in σ[M ] and finite direct sum of strongly soc-injective modules are strongly soc-
injective in σ[M ].

For the last statement of the theorem, then σ(Soc(N)) ≤e E. On the other
hand, Soc(E) = Soc(N) = σ(Soc(N)) ≤e E implies that Soc(E) ≤e E. �
Corollary 3.2. Let N ∈ σ[M ] be a module with essential socle. Then the following
are equivalent:
(1) N is strongly soc-injective in σ[M ].
(2) N is injective in σ[M ].

A module M is called locally Noetherian if every finitely generated submodule
of M is Noetherian. It is well known that M is locally Noetherian if and only if
every direct sum of M -injective modules is M -injective [9, 27.3], if and only if
every (countable) direct sum of M -injective hulls of simple modules (in σ[M ]) is
M -injective ([9, 27.3] and [6, 2.5]).
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Theorem 3.3. The following are equivalent for a module M :
(1) M is locally Noetherian.
(2) Every direct sum of strongly soc-injective modules in σ[M ] is strongly soc-

injective in σ[M ].

Proof. (1) ⇒ (2) Let {Mi}i∈I be a family of strongly soc-injective modules in
σ[M ]. By Theorem 3.1, for each i ∈ I, write Mi = Ei ⊕ Ti where Ei is injective
in σ[M ] and Soc(Ti) = 0. If E = ⊕i∈IEi and T = ⊕i∈ITi, then ⊕i∈IMi = E ⊕ T
with Soc(T ) = 0. Since M is locally Noetherian, E is M -injective, that is injective
in σ[M ], and by Theorem 3.1, ⊕i∈IMi is strongly soc-injective in σ[M ].
(2) ⇒ (1) In order to prove that M is locally Noetherian, we only need to show
that if K1,K2, . . . are simple modules (in σ[M ]), then ⊕∞

i=1K̂i is injective in σ[M ],
where K̂i is the M -injective hull of Ki. Since ⊕∞

i=1K̂i is strongly soc-injective in
σ[M ] with essential socle, by Corollary 3.2, ⊕∞

i=1K̂i is injective in σ[M ]. �
Proposition 3.4. If N ∈ σ[M ] is strongly soc-injective in σ[M ], then every semisim-
ple submodule K of N is essential in a direct summand of N .

Proof. This is clear if Soc(N) = 0. If Soc(N) �= 0, then by Theorem 3.1,
N = Ŝoc(N) ⊕ T with Soc(T ) = 0. Then K ≤e L ≤d Ŝoc(N) for some submodule
L of N . �

M is called CESS if every closure of every semisimple submodule of M is a
direct summand of M . By Theorem 3.1, if N ∈ σ[M ] is strongly soc-injective in
σ[M ], then N = E ⊕ T with E = Ŝoc(N) and Soc(T ) = 0, and by [5], if T is
E-injective, then N is a CESS-module. In particular, if T is non-M -singular, then
T is E-injective and so N is a CESS-module.

Proposition 3.5. Let N ∈ σ[M ] be N = E ⊕ T with E = Ŝoc(N), Soc(T ) = 0 and
T is E-injective. If S is a semisimple submodule of N , then every closure in N ,
of S is injective in σ[M ].

Proof. By the above remark, if K is a closure of S in N , then K is a direct
summand of N , and by Corollary 2.2 (2), K is strongly soc-injective in σ[M ]. Let
K ′ be a closure of S in E. Then K ′ is a direct summand of E and so is injective
in σ[M ]. Now we consider the following diagram

0

��
0 �� S

ι

��

i �� K ′

K

where ι and i are inclusion maps. Since K is strongly soc-injective in σ[M ], there
exists a homomorphism σ : K ′ → K which extends ι. Since S ≤e K ′, σ is an
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embedding of K ′ in K, and so S ≤e σ(K ′) ≤e K, since σ(K ′) is injective in σ[M ],
it is a direct summand of K, and so σ(K ′) = K is injective in σ[M ]. �

A module M is called semiartinian if every nonzero homomorphic image of M
has essential socle. Equivalently, every nonzero homomorphic image of M has non-
zero socle. M is semiartinian if and only if every module in σ[M ] is semiartinian
(see [6, 3.12]).

Theorem 3.6. The following are equivalent for a module M :
(1) M is semiartinian.
(2) Every strongly soc-injective module in σ[M ] is injective in σ[M ].
(3) Every strongly soc-injective module in σ[M ] is quasi-continuous.

Proof. (1) ⇒ (2) Since M is semiartinian, Soc(N) ≤e N for every module N ∈
σ[M ]. By Corollary 3.1, (2) holds.
(2) ⇒ (3) Clear.
(3) ⇒ (1) Let N be a proper submodule of M . We claim that Soc(M/N) �= 0.
If Soc(M/N) = 0, let X/N be an arbitrary nonzero submodule of M/N . By
hypothesis, (X/N) ⊕ (M/N) is quasi-continuous. By [8, Corollary 2.14], X/N is
M/N -injective and hence X/N ≤d M/N . This means that M/N is semisimple, a
contradiction. Hence M is semiartinian. �

If M is a Noetherian injective cogenerator in σ[M ], then it is called a Noe-
therian Quasi-Frobenius (QF)-module. For a finitely generated quasi-projective
module M , M is Noetherian QF-module if and only if every injective module in
σ[M ] is projective in σ[M ] if and only if M is a self-generator and every projective
module in σ[M ] is injective in σ[M ] by [9, 48.14].

Proposition 3.7. Let M be a finitely generated self-projective module. Then the
following are equivalent:
(1) M is a Noetherian QF-module.
(2) Every strongly soc-injective module in σ[M ] is projective in σ[M ].

Proof. (1) ⇒ (2) If M is a Noetherian QF-module, then M is Artinian by [9,
48.14]. By Theorem 3.6, every strongly soc-injective module in σ[M ] is injective
in σ[M ], and hence projective in σ[M ] by [9, 48.14].
(2) ⇒ (1) Clear. �

Observe that if Soc(M) = 0, then every projective module in σ[M ] has zero
socle by [9, 18.4(1)], and hence strongly soc-injective in σ[M ]. On the other hand
we have the following result by Corollary 3.2 and the above remark.

Proposition 3.8. Let M be a finitely generated self-projective module. Then the
following are equivalent:
(1) M is a Noetherian QF-module.
(2) M is a self-generator, Soc(M) ≤e M and every projective module in σ[M ] is

strongly soc-injective in σ[M ].
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Proof. (1) ⇒ (2) Clear.
(2) ⇒ (1) Let P be a nonzero projective module in σ[M ]. Then P is strongly
soc-injective in σ[M ]. By Theorem 3.1, P = E ⊕ T with E injective in σ[M ] and
Soc(T ) = 0. On the other hand, P is a direct summand of a direct sum of nonzero
finitely generated submodules Mi of M (N). Since every Mi has essential socle,
Soc(P ) ≤e P . Therefore P = E, and hence P is injective in σ[M ]. Since M is a
self-generator, the proof is completed by [9, 48.14]. �

Any module M is called
∑

-injective if the direct sum of any number of copies
of M is injective.

Proposition 3.9. Let M be a projective module in σ[M ]. Then the following are
equivalent:
(1) Every projective M -generated module in σ[M ] is strongly soc-injective in

σ[M ].
(2) M = E ⊕ T where E is

∑
-injective in σ[M ] and Soc(T ) = 0.

Proof. (1) ⇒ (2) If Soc(M) = 0, we are done. Assume Soc(M) is nonzero. Since M
is projective, it follows from Theorem 3.1 that M = E ⊕ T where E is injective in
σ[M ] with essential socle and Soc(T ) = 0. Since for any ordinal number α, E(α) is
projective in σ[M ] and M -generated, E(α) is strongly soc-injective with essential
socle. Therefore by Corollary 3.2, E(α) is injective in σ[M ]. Hence E is

∑
-injective

in σ[M ].

(2) ⇒ (1) By (2), M (Λ) = E(Λ)⊕T (Λ) for any ordinal number Λ. Since E(Λ) is injec-
tive in σ[M ], M (Λ) is strongly soc-injective in σ[M ] by Theorem 3.1. Let P be a pro-
jective M -generated module in σ[M ]. Then P is isomorphic to a direct summand
of M (Λ) for some Λ. Since every direct summand of strongly soc-injective module
in σ[M ] is strongly soc-injective in σ[M ], P is strongly soc-injective in σ[M ]. �

Proposition 3.10. Let N ∈ σ[M ] be a strongly soc-injective module. If N/Soc(N)
is finite dimensional (Noetherian, Artinian, respectively), then N = T ⊕ S, where
T is finite dimensional (Noetherian, Artinian, respectively) and S is semisimple
injective in σ[M ].

Proof. By Theorem 3.1, N = E ⊕K with E is injective in σ[M ] and Soc(K) = 0.
Now, N/Soc(N) ∼= E/Soc(E)⊕K. So both E/Soc(E) and K are finite dimensional
(Noetherian, Artinian, respectively). By [3, Corollary 3], E = L⊕ S with L finite
dimensional and S semisimple. If E/Soc(E) is Noetherian (Artinian), then by [3,
Lemma 4 and Proposition 5], E = L⊕ S where L is Noetherian (Artinian) and S
is semisimple. Consequently, N = T ⊕ S with S semisimple injective in σ[M ] and
T = K ⊕ L finite dimensional (Noetherian, Artinian, respectively). �

Corollary 3.11. Let M be a finitely generated self-projective module in σ[M ]. Then
the following are equivalent:
(1) M is a Noetherian QF-module.
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(2) M/Soc(M) has finite length and M is a self-generator strongly soc-injective
in σ[M ].

Proof. (2) ⇒ (1) By Proposition 3.10, Soc(M) ≤e M . Then by Corollary 3.2, M
is injective in σ[M ]. Again by Proposition 3.10, M is Noetherian. By [9, 48.14], M
is a Noetherian QF-module.
(1) ⇒ (2) By [9, 48.14], M/Soc(M) has finite length and M is a self-generator.
Since M is projective in σ[M ], by [9, 48.14], M is injective in σ[M ] and hence M
is strongly soc-injective in σ[M ]. �
Lemma 3.12. Let N ∈ σ[M ] be semisimple. The following are equivalent:
(1) N is injective in σ[M ].
(2) N is strongly soc-injective in σ[M ].
(3) N is soc-K-injective for every factor module K of M .

Proof. (1) ⇔ (2) By Corollary 3.2.
(1) ⇒ (3) Clear.
(3) ⇒ (1) Consider the following diagram

0 �� L

f

��

i �� M

N

where L ≤M and f : L −→ N is any homomorphism. Then we have the diagram

0 �� L/kerf

α

��

i �� M/kerf

f(L)

ι

��
N

where α is an isomorphism and ι is the inclusion map.
Since N is soc-M/Kerf -injective and L/Kerf is semisimple, there exists a

homomorphism g : M/Kerf −→ N such that gi = ια. Then the homomorphism
h = gπ extends f where π : M −→M/Kerf is the natural epimorphism. �

A module M is called cosemisimple (or a V-module) if every simple module
(in σ[M ]) is M -injective. Clearly, M is cosemisimple if and only if every simple
module is strongly soc-injective in σ[M ].

Proposition 3.13. The following are equivalent for a module M :
(1) Every semisimple module in σ[M ] is strongly soc-injective in σ[M ].
(2) Every semisimple module in σ[M ] is soc-K-injective for every factor module

K of M .
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(3) Every module in σ[M ] is strongly soc-injective in σ[M ].
(4) Every module in σ[M ] is soc-K-injective for every factor module K of M .
(5) Every semisimple module in σ[M ] is injective in σ[M ].
(6) M is locally Noetherian and cosemisimple.

Proof. (5) ⇔ (6) by [6, 15.5].

(1) ⇔ (3) By Proposition 2.4.

(1) ⇔ (2) ⇔ (5) By Lemma 3.12.

(4) ⇒ (2) Clear.

(2) ⇒ (4) By (2) ⇔ (3). �

A module M is called generalized cosemisimple (or a GCO-module) if every
simple singular module is M -injective or M -projective. Equivalently, every M -
singular simple module is M -injective by [6, 16.4].

By adopting the above proof we have the following proposition. Note that
(5) ⇔ (6) of Proposition 3.14 is well known from [6, 16.16].

Proposition 3.14. The following are equivalent for a module M :

(1) Every semisimple M -singular module is strongly soc-injective in σ[M ].
(2) Every semisimple M -singular module in σ[M ] is soc-K-injective for every

factor module K of M .
(3) Every M -singular module in σ[M ] is strongly soc-injective in σ[M ].
(4) Every M -singular module in σ[M ] is a direct sum of an injective module in

σ[M ] and a module with zero socle.
(5) Every M -singular semisimple module in σ[M ] is injective in σ[M ].

If M is self-projective, then they are equivalent to

(6) M is a GCO-module and M/Soc(M) is locally Noetherian.

4. When M is soc-injective

Proposition 4.1. Let M be a module. The following are equivalent:

(1) M is soc-injective.
(2) If Soc(M) = X ⊕ Y and γ : X −→ M is an R-homomorphism, then there

exists c : M −→M such that γ(x) = c(x) for all x ∈ X and c(Y ) = 0.
(3) If X ⊆ Soc(M) and γ : X −→ M is an R-homomorphism, then there exists

c : M −→ M such that γ(x) = c(x) for all x ∈ X.

If M is finitely generated and self-projective in σ[M ], then (1)–(3) are equivalent to

(4) If K is semisimple, P is projective M -generated in σ[M ], Q is a finitely
generated projective M -generated in σ[M ], ι : K −→ P is a monomorphism
and f : K −→ Q is an R-homomorphism, then f can be extended to an
R-homomorphism f̃ : P −→ Q.
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Proof. (1) ⇒ (2) Let Soc(M) = X⊕Y and γ : X −→M be an R-homomorphism.
Define the homomorphism γ̃ : X⊕Y −→M by x+y �→ γ(x) (x ∈ X, y ∈ Y ). Since
M is soc-M -injective, γ̃ can be extended to the homomorphism c : M −→M . Let
x ∈ X . Then c(x) = γ̃(x) = γ(x). Let y ∈ Y . Then c(y) = γ̃(y) = γ(0) = 0. Thus
c(Y ) = 0.
(2) ⇒ (3) ⇒ (1) and (4) ⇒ (1) are clear.

(1) ⇒ (4) Since M is soc-injective, M is soc-P -injective. Clearly, Q is isomorphic
to a direct summand of M (n), for some positive integer n. Therefore Q is soc-P -
injective by Theorem 2.1. Thus f can be extended to f̃ : P −→ Q. �

Proposition 4.2. Let M be a soc-injective module. Then the following holds.

(1) M satisfies (Soc-C2),
(2) M satisfies (Soc-C3).

Proof. Take N = M in Proposition 2.3. �

Let R and S be rings with identity and M a left S-, a right R-bimodule. For
any X ⊆ M and any T ⊆ S denote lS(X) = {s ∈ S | sX = 0} and rM (T ) = {m ∈
M | Tm = 0}.

Note that if M is a right R-module then M is a left EndR(M)-module.
If lS(A ∩ B) = lS(A) + lS(B) for all submodules A and B of MR, where S =
EndR(M), M is called an Ikeda-Nakayama module [10]. Note that every quasi-
injective module is an Ikeda-Nakayama module [10, Lemma 1]. For a soc-injective
module we have the following result.

Proposition 4.3. Let S and R be any rings and M a left S-, a right R-bimodule.
If MR is soc-injective, then
(1) lS(T1 ∩ T2) = lS(T1) + lS(T2) for all semisimple submodules T1, T2 of MR.
(2) If Sk is a simple left S-module (k ∈ M), then Soc(kR) is zero or simple.
(3) rM lS(Soc(M)) = Soc(M) ⇔ rM lS(K) = K for all semisimple submodule K

of MR.

Proof. (1) By [10, Lemma 1].
(2) Assume Sk (k ∈ M) is a simple left S-module and Soc(kR) is nonzero. Let y1R
and y2R be simple submodules of MR with yi ∈ kR, 1 ≤ i ≤ 2. If y1R ∩ y2R = 0,
then by (1), lS(y1) + lS(y2) = S and so lS(y1) = lS(y2) = lS(k), since yi ∈ kR and
lS(k) is a maximal left ideal of S. Thus lS(k) = S, a contradiction, hence Soc(kR)
is simple.
(3) Assume that rM lS(Soc(M)) = Soc(M) and let K be a semisimple submodule
of MR. We claim that K is essential in rM lS(K). If K ∩ xR = 0 for some x ∈
rM lS(K) , then by (1), lS(K ∩ xR) = lS(K) + lS(xR) = S = lS(xR) since x ∈
rM lS(K) ≤ rM lS(Soc(M)) = Soc(M) and lS(K) ≤ lS(xR). Then x = 0. Hence
K ≤e rM lS(K) ≤ rM lS(Soc(M)) = Soc(M). It follows that K = rM lS(K). The
converse is clear. �
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Proposition 4.4. Let M be a right R-module and S = EndR(M). Then the follow-
ing are equivalent:

(1) rM lS(K) = K for all semisimple submodules K of MR.
(2) rM [lS(K) ∩ Sa] = K + rM (a) for all semisimple submodules K of MR and

all a ∈ S.

Proof. (1) ⇒ (2) Clearly, K + rM (a) ≤ rM [lS(K) ∩ Sa]. Let x ∈ rM [lS(K) ∩ Sa]
and y ∈ lS(aK). Then yaK = 0 and ya ∈ Sa ∩ lS(K), so yax = 0 and y ∈ lS(ax).
Thus lS(aK) ≤ lS(ax), and so ax ∈ rM lS(ax) ≤ rM lS(aK). Since Soc(M) is fully
invariant, aK is a semisimple submodule of MR. By (1), ax ∈ aK. Hence ax = ak
for some k ∈ K and so x− k ∈ rM (a). This means that x ∈ rM (a) + K.

(2) ⇒ (1) The case when a = 1S. �

Proposition 4.5. Let M be a right R-module and S = EndR(M). If MR is strongly
soc-injective in σ[M ], then lS(A∩B) = lS(A)+lS(B) for all semisimple submodules
A and all submodules B of MR.

Proof. Let x ∈ lS(A ∩ B) and define ψ : A + B −→ MR by ψ(a + b) = xa for all
a ∈ A and b ∈ B. This induces an R-homomorphism ψ̃ : (A + B)/B −→ MR in
the obvious way. Since (A+B)/B is semisimple and MR is strongly soc-injective
in σ[M ], ψ̃ can be extended to an R-homomorphism ϕ : M/B −→ M . Now let
π : M −→ M/B be the natural epimorphism. Let denote s = ϕπ ∈ S. Let b ∈ B.
Then sb = ϕπ(b) = ϕ(b+B) = 0. For any a ∈ A, (x−s)a = xa−sa = xa−ϕπ(a) =
0. It follows that x = (x− s) + s ∈ lS(A) + lS(B). �

5. Strongly simple-injective modules in σ[M ]

Theorem 5.1. The following are equivalent for N ∈ σ[M ]:

(1) N is strongly mininjective in σ[M ].
(2) N is strongly simple-injective in σ[M ].
(3) Every homomorphism from a finitely generated semisimple submodule K of

any module T ∈ σ[M ] into N extends to T .
(4) Every homomorphism γ from a submodule K of any module T ∈ σ[M ] into

N , with γ(K) finitely generated semisimple, extends to T .

Proof. (4) ⇒ (3) ⇒ (1) Clear.

(1) ⇒ (2) Let L be a submodule of N and γ : L −→ K a homomorphism with
γ(L) simple. If T = Kerγ, then γ induces an embedding γ̃ : L/T −→ K defined
by γ̃(x + T ) = γ(x) for all x ∈ L. Since K is strongly mininjective and L/T is
simple, γ̃ extends to a homomorphism γ : N/T −→ K. If η : N −→ N/T is the
natural epimorphism, the homomorphism γη : N −→ K is an extension of γ, for
if x ∈ L, (γη)(x) = γ(x + T ) = γ̃(x + T ) = γ(x), as required.
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(2) ⇒ (4) Let T be any module in σ[M ], K a submodule of T , γ : K → N a
homomorphism with γ(K) finitely generated semisimple and consider the following
diagram

0 �� K

γ

��

i �� T

N

Write γ(K) = ⊕ni=1Si where each Si is simple. Let πi⊕ni=1Si → Si be the canonical
projection, 1 ≤ i ≤ n, and consider the following diagram

0 �� K

πiγ

��

i �� T

N

Since N is strongly simple-injective in σ[M ], for each i, 1 ≤ i ≤ n, there exists a
homomorphism γi : T → N such that γi(x) = πiγ(x), for all x ∈ K. Now, define
the map γ̂ : T → N by γ̂(x) =

∑n
i=1 γi(x). Then γ̂(x) = γ(x) for all x ∈ K. �

Hence we have the following implications:

soc-N -injective =⇒ min-N -injective
simple-N -injective =⇒ min-N -injective

strongly mininjective ⇐⇒ strongly simple-injective

Min-N -injective modules need not be soc-N -injective (see [1, Example 4.5]
and [1, Example 4.15]), and strongly simple-injective modules need not be strongly
soc-injective (see [2, Remark 2.4] and [1]).

Proposition 5.2. (1) Let N ∈ σ[M ] and {Mi : i ∈ I} be a family of modules
in σ[M ]. Then the direct product

∏
i∈I Mi is min-N -injective if and only if

each Mi is min-N -injective, i ∈ I. In particular,
∏
i∈I Mi is strongly simple-

injective if and only if each Mi is strongly simple-injective, i ∈ I.
(2) If {Mi : i ∈ I} is a family of modules in σ[M ], then the direct sum ⊕i∈IMi

is strongly simple-injective if and only if each Mi is strongly simple-injective,
i ∈ I.

(3) A direct summand of a strongly simple-injective module is strongly simple-
injective.

(4) Let M be projective. M is strongly simple-injective if and only if every M -
generated projective module N ∈ σ[M ] is strongly simple-injective.

Proof. Routine. �

Note 5.3. As in Corollary 2.6, for a projective module M , every quotient of a
simple-injective module in σ[M ] is simple-injective if and only if Soc(M) is pro-
jective in σ[M ].
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Corollary 5.4. Let N ∈ σ[M ] such that Soc(N) is finitely generated (in particular,
if M is finite dimensional), then the following are equivalent:
(1) N is strongly mininjective in σ[M ].
(2) N is strongly simple-injective in σ[M ].
(3) N is strongly soc-injective in σ[M ].

Moreover, if in addition Soc(N) ≤e N , then each of the above conditions is equiv-
alent to
(4) M is injective.

Proof. By Theorem 5.1 and Corollary 3.2. �

Theorem 5.5. The following are equivalent for N ∈ σ[M ]:
(1) N is strongly simple-injective in σ[M ].
(2) N is min-M̂-injective.
(3) N is min-Ŝ-injective for every simple module S ∈ σ[M ].
(4) N is min-Ŝ-injective for every simple submodule S of N .

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) Clear.
(4) ⇒ (1) Let T ∈ σ[M ], γ : K → N a non-zero homomorphism with γ(K) simple,
and consider the following diagram

0 �� γ(K)

i

��

i �� γ̂(K)

N

where i is the inclusion map. Since N is min-γ̂(K)-injective, there exists an em-
bedding σ : γ̂(K) → N such that σγ(x) = γ(x) for every x ∈ K. Now, the map γ
may be viewed as a map from K into an M -injective submodule of N , and hence
has an extension γ̂ : T → N . �

Corollary 5.6. If N ∈ σ[M ] is strongly simple-injective, then every simple submod-
ule of N is essential in an M -injective direct summand of N .

Proof. Let S be a simple submodule of N and consider the following diagram

0 �� S

i

��

i �� Ŝ

N

where i is the inclusion map. Since N is min-Ŝ-injective and S ≤e Ŝ, there exists
an embedding σ of Ŝ in N such that σ(x) = x for all x ∈ S. If E = σ(Ŝ) ∼= Ŝ,
then S ≤e E ≤d N . �
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Proposition 5.7. The following are equivalent for M :
(1) M is locally Noetherian.
(2) Every strongly simple-injective module in σ[M ] is strongly soc-injective.

Proof. (1) ⇒ (2) Suppose M is locally Noetherian, and N is strongly simple-
injective in σ[M ]. Write Soc(N) = ⊕i∈ISi, where each Si is simple, i ∈ I. By
Corollary 5.6, each Si ≤e Ei ≤d N , where Ei is M -injective, i ∈ I. Since M is
locally Noetherian, E = ⊕i∈IEi is M -injective and hence E is a direct summand
of N , and so N = E ⊕ T , with Soc(T ) = 0. By Theorem 3.1, N is strongly
soc-injective in σ[M ].

(2) ⇒ (1) Let {Ki}i∈I be a family of simple modules in σ[M ]. Consider K̂i for
each i ∈ I. Therefore every K̂i is strongly simple-injective in σ[M ]. Then by
Proposition 5.2(2), E = ⊕∞

i=1K̂i is strongly simple-injective in σ[M ], and hence
strongly soc-injective in σ[M ]. Since E has essential socle, by Corollary 3.2, E is
injective in σ[M ]. Therefore M is locally Noetherian by [9, 27.3]. �

Proposition 5.8. Let M be a finitely generated self-projective module. Then the
following are equivalent:
(1) M is a Noetherian QF-module.
(2) Every strongly simple-injective module in σ[M ] is projective in σ[M ].

Proof. (1) ⇒ (2) By Proposition 5.7 and Proposition 3.7.
(2) ⇒ (1) By Proposition 3.7. �
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Biproducts and Two-cocycle Twists
of Hopf Algebras

David E. Radford and Hans Jürgen Schneider

Abstract. Let H be a Hopf algebra with bijective antipode over a field k
and suppose that R#H is a bi-product. Then R is a bialgebra in the Yetter-
Drinfel’d category H

HYD. We describe the bialgebras (R#H)op and (R#H)o

explicitly as bi-products Rop#Hop and Ro#Ho respectively where Rop is a
bialgebra in Hop

HopYD and Ro is a bialgebra in Ho

HoYD. We use our results to
describe two-cocycle twist bialgebra structures on the tensor product of bi-
products.

Introduction

In [11] the irreducible representations of a certain class of pointed Hopf algebras
over a field k are parameterized by pairs of characters, or by characters. These Hopf
algebras are twists H = (U⊗A)σ of the tensor product of pointed Hopf algebras
or quotients of them. The twist structures are in one-one correspondence with
bialgebra maps U −→ Aop o. In many cases the pointed Hopf algebras U and A are
bi-products. We are thus led to consider the multiplicative opposite (R#H)op and
the dual (R#H)o of a bi-product R#H . Generally the multiplicative opposite and
dual of a bi-product is a bi-product. One purpose of this paper is to characterize
(R#H)op and (R#H)o as bi-products when H has bijective antipode. Recall that
pointed Hopf algebras have bijective antipodes.

Let H be a Hopf algebra over k with bijective antipode and suppose that
R#H is a bi-product. Then R is a bialgebra in the category of Yetter-Drinfel’d
modules H

HYD. We construct a bialgebra Rop in the Yetter-Drinfel’d category
Hop

HopYD such that (R#H)op 
 Rop#Hop. Likewise we construct a bialgebra Ro in
the Yetter-Drinfel’d category Ho

HoYD such that (R#H)o 
 Ro#Ho. These bialge-
bra constructions are based on more general procedures: the construction of an
algebra (respectively a coalgebra) Aop in Hop

HopYD from an algebra (respectively a

Research by the first author partially supported by NSA Grant H98230-04-1-0061.
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coalgebra) A in H
HYD and the construction of an algebra (respectively a coalge-

bra) Ao in Ho

HoYD from an algebra (respectively a coalgebra) A in H
HYD. We note

that the Aop construction is described more generally in the context of braided
categories [7].

Important to us is the case U = B(W )#k[Γ] and A = B(V )#k[Λ], where
Γ and Λ are abelian groups and B(W ), B(V ) are Nichols algebras in the cate-
gories k[Γ]

k[Γ]YD, k[Λ]
k[Λ]YD respectively. These are of primary interest in [11]. For these

Hopf algebras an extensive class of bialgebra maps U −→ Aop o can be given
in terms of two linear forms τ : k[Λ]⊗k[Γ] −→ k and β : V⊗W −→ k. The
forms can easily be produced and thus, in particular, our results provide a way
of generating a large number of two-cocycles twist bialgebras, that is bialgebra
maps B(W )#k[Λ] −→ (B(V )#k[Γ])op o without checking the relations of B(W )
or B(V ) which are unknown in general.

For finite abelian groups Γ, V ∈ k[Γ]
k[Γ]YD and finite-dimensional Nichols alge-

bras B(V ), the dual of B(V )#k[Γ] was already computed in [4, Theorem 2.2]. The
two-cocycles in Corollary 9.1 were determined in [2] for finite-dimensional Nichols
algebras with known relations by explicitly checking the relations. However, in
[2] the more general case when U is not coradically graded, that is of the form
B(W )#k[Λ], was considered.

This paper is organized as follows. In Section 1 we deal with the somewhat
extensive prerequisites for the paper. First we discuss notations for algebras, coal-
gebras, and their representations, and then review algebraic objects in the Yetter-
Drinfel’d category H

HYD of a Hopf algebra H with bijective antipode in detail for
the reader’s convenience. This discussion is important for Sections 2 and 3 where
we describe algebra, coalgebra, and bialgebra constructions in the Yetter-Drinfel’d
categories and Hop

HopYD and Ho

HoYD based on the their counterparts in H
HYD. These

constructions are basic ingredients in the realization of the multiplicative opposite
and dual of a bi-product as a bi-product.

Certain bilinear forms on objects in Yetter-Drinfel’d categories which play
a role in our construction of our two-cocycle twist Hopf algebras are introduced
and studied in Section 4. In Section 5 we consider morphisms of bi-products. The
multiplicative opposite of a bi-product is characterized as a bi-product in Section
6 and the dual of a bi-product is characterized as a bi-product in Section 7.

We apply the main results of Sections 6 and 7 to describe certain two-cocycle
twists on the tensor product (T#K)⊗(R#H) of bi-products in Section 8. Here K
and H are Hopf algebras with bijective antipodes over k. We focus on the basic case
when T = B(W ) and R = B(V ) are Nichols algebras on finite-dimensional Yetter-
Drinfel’d modules. In the last section we consider our basic case when K = k[Λ]
and H = k[Γ] are group algebras of abelian groups. Results here fit nicely into
the discussion of [11]. In Corollary 9.2 we describe the reduction to the case when
β : V ⊗ W → k is non-singular. In work in progress we show that the bilinear
form in the non-singular case for braidings of finite Cartan type defines a Quasi-
R-matrix.
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We denote the antipode of a Hopf algebra H over k by S. Any one of [1,
6, 8, 12] will serve as a Hopf algebra reference for this paper. Throughout k is a
field and all vector spaces are over k. For vector spaces U and V we will drop the
subscript k from Endk(V ), Homk(U, V ), and U⊗kV . We denote the identity map
of V by IV . For a non-empty subset S of the dual space V ∗ we let S⊥ denote the
subspace of V consisting of the common zeros of the functionals in S. For p ∈ U∗

and u ∈ U we denote the evaluation of p on u by p(u) or 〈p, u〉.

1. Preliminaries

A good deal of prerequisite material is needed for this paper. We discuss general
notation first then review specific topics in detail.

For a group G we let Ĝ denote the group of characters of G with values in k
and k[G] the group algebra of G over k. For a Hopf algebra H over k we denote
the group of grouplike elements of H by G(H) as usual.

Let (A,m, η) be an algebra over k, which we shall usually denote by A. Gen-
erally we represent algebraic objects defined on a vector space by their underlying
vector space. Observe that (A,mop, η) is an algebra over k, where mop = m◦τA,A.
We denote A with this algebra structure by Aop and write aop = a for elements
of Aop. Thus aopbop = (ba)op for all a, b ∈ A. This notation is very useful for com-
putations in Yetter-Drinfel’d categories discussed below involving certain algebra
constructions. We denote the category of left (respectively right) A-modules and
module maps by AM (respectively MA). If C is a category, by abuse of notation
we will write C ∈ C to indicate that C is an object of C.

Let M be a left A-module. Then M∗ is a right A-module under the transpose
action which is given by (m∗·a)(m) = m∗(a·m) for all m∗ ∈ M∗, a ∈ A, and
m ∈ M . Likewise if M is a right A-module then M∗ is a left A-module where
(a·m∗)(m) = m∗(m·a) for all a ∈ A, m∗ ∈M∗, and m ∈M .

Suppose B is an algebra also over k, let N be a left B-module, and suppose
that ϕ : A −→ B is an algebra map. Then a linear map f : M −→ N is ϕ-linear
if f(a·m) = ϕ(a)·f(m) for all a ∈ A and m ∈ M . There is a way of expressing
the last equation in terms of A-module maps. Note that N is a left A-module by
pullback along ϕ. Thus f is ϕ-linear if and only if f is a map of left A-modules.

Let (C,∆, ε) be a coalgebra over k, which we usually denote by C. At times
it is convenient to denote the coproduct ∆ by ∆C . Generally we use a variant on
the Heyneman-Sweedler notation for the coproduct and write ∆(c) = c(1)⊗c(2)
to denote ∆(c) ∈ C⊗C for c ∈ C. Note that (C,∆cop, ε) is a coalgebra over k,
where ∆cop = τC,C◦∆. We let Ccop denote the vector space C with this coalgebra
structure and sometimes write ccop = c for elements of Ccop. With this notation
ccop(1)⊗c

cop
(2) = c(2)⊗c(1) for all c ∈ Ccop.

Suppose that (M, δ) is a left C-comodule. For m ∈ M we use the notation
δ(m) = m(−1)⊗m(0) to denote δ(m) ∈ C⊗M . If (M, δ) is a right C-comodule
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we denote δ(m) ∈ M⊗C by δ(m) = m(0)⊗m(1). Observe that our coproduct and
comodule notations do not conflict.

We make an exception to our coproduct notation described above for coal-
gebras in Yetter-Drinfel’d categories, in which case we write ∆(c) = c(1)⊗c(2) for
c ∈ C. See Section 1.2.

Suppose that M is a left C-comodule, D is a coalgebra over k, N is a left
D-comodule, and ϕ : C −→ D is a coalgebra map. Then a linear map f : M −→ N
is left ϕ-colinear if ϕ(m(−1))⊗f(m(0)) = f(m)(−1)⊗f(m)(0) for all m ∈ M . There
is a way of expressing the last equation in terms of D-comodule maps. Note that
M is a left D-comodule by push-out along ϕ. Thus f is ϕ-colinear if and only if
f is a map of left D-modules. We use the terminology ϕ-linear and colinear as
shorthand for ϕ-linear and ϕ-colinear.

Bilinear forms play an important role in this paper. We will think of them
in terms of linear forms β : U⊗V −→ k and will often write β(u, v) for β(u⊗v).
Note that β determines linear maps β� : U −→ V ∗ and βr : V −→ U∗ where
β�(u)(v) = β(u, v) = βr(v)(u) for all u ∈ U and v ∈ V . The form β is left
(respectively right) non-singular if β� (respectively βr) is one-one and β is non-
singular if it is both left and right non-singular.

For subspaces X ⊆ U and Y ⊆ V we define subspaces X⊥ ⊆ V and
Y ⊥ ⊆ U by

X⊥ = {v ∈ V |β(X, v) = (0) } and Y ⊥ = {u ∈ U |β(u, Y ) = (0) }.
Note that there is a form β : U/V ⊥⊗V/U⊥ −→ k uniquely determined by
β◦(πV ⊥⊗πU⊥) = β, where πV ⊥ : U −→ U/V ⊥ and πU⊥ : U −→ V/U⊥ are the
projections. Observe that V ⊥ = Kerβ�, U⊥ = Kerβr, and that β is non-singular.

1.1. Two-cocycle twist bialgebras

Let A be a bialgebra over k. A two-cocycle for A is a convolution invertible linear
form σ : A⊗A −→ k which satisfies

σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(1), z(1))σ(x, y(2)z(2))

for all x, y, z ∈ A. If σ is a two-cocycle for A then Aσ is a bialgebra, where Aσ = A
as a coalgebra and multiplication mσ : A⊗A −→ A is given by

mσ(x⊗y) = σ(x(1), y(1))x(2)y(2)σ
−1(x(3), y(3))

for all x, y ∈ A.
Let U and A be bialgebras over k and suppose that τ : U⊗A −→ k is a linear

form. Consider the axioms:
(A.1) τ(u, aa′) = τ(u(2), a)τ(u(1), a

′) for all u ∈ U and a, a′ ∈ A;
(A.2) τ(1, a) = ε(a) for all a ∈ A;
(A.3) τ(uu′, a) = τ(u, a(1))τ(u′, a(2)) for all u, u′ ∈ U and a ∈ A;
(A.4) τ(u, 1) = ε(u) for all u ∈ U .

Axioms (A.1)–(A.4) are equivalent to

τ�(U) ⊆ Ao and τ� : U −→ Ao cop = Aop o is a bialgebra map (1)



Biproducts and Two-cocycle Twists 335

and they are also equivalent to

τr(A) ⊆ Uo and τr : A −→ Uo op is a bialgebra map. (2)

Observe that (A.1)–(A.4) merely describe a bialgebra braiding between U and Aop

[5], [7].
Suppose that (A.1)–(A.4) hold, τ is convolution invertible, and define a linear

form σ : (U⊗A)⊗(U⊗A) −→ k by σ(u⊗a, u′⊗a′) = ε(a)τ(u′, a)ε(a′) for all u, u′ ∈
U and a, a′ ∈ A. Then σ is a two-cocycle. We denote the two-cocycle twist bialgebra
structure on the tensor product bialgebra U⊗A by H = (U⊗A)σ . Observe that

(u⊗a)(u′⊗a′) = uτ(u′
(1), a(1))u′

(2)⊗a(2)τ
−1(u′

(3), a(3))a′

for all u, u′ ∈ U and a, a′ ∈ A.
Suppose that (A.1)–(A.4) hold for the linear form τ : U⊗A −→ k. Then τ

is invertible if U has an antipode S or if Aop has an antipode ς. In the first case
τ−1(u, a) = τ(S(u), a), and in the second τ−1(u, a) = τ(u, ς(a)), for all u ∈ U and
a ∈ A. See [11, Lemma 1.2].

As noted in [11, Section 1], the quantum double provides an important ex-
ample of a two-cocycle twist bialgebra. This example is described in [5] where
two-cocycle twist bialgebras are defined and discussed.

Let U , U and A, A be algebras over k. Suppose further that τ : U⊗A −→ k
and τ : U⊗A −→ k are convolution invertible linear forms satisfying (A.1)–(A.4).
Set H = (U⊗A)σ and H = (U⊗A)σ. Suppose that f : U −→ U and g : A −→ A
are bialgebra maps such that τ (f(u), g(a)) = τ(u, a) for all u ∈ U and a ∈ A.
Then f⊗g : H −→ H is a bialgebra map.

1.2. Yetter-Drinfel’d categories and their algebras, coalgebras, and bialgebras

Here we organize well-known material for the reader’s convenience and for our use
in later sections. See [3] in particular.

Let H be a bialgebra over k and let H
HYD be the category whose objects

are triples (M, ·, δ), where (M, ·) is a left H-module, (M, δ) is a left H-comodule,
compatible in the sense that

h(1)m(−1)⊗h(2)·m(0) = (h(1)·m)(−1)h(2)⊗(h(1)·m)(0) (3)

for all h ∈ H and m ∈ M , and whose morphisms (M, ·, δ) −→ (M ′, ·′, δ′) are
maps f : M −→ M ′ simultaneously of left H-modules and of left H-comodules.
We follow the convention of referring to an object of HHYD as a Yetter-Drinfel’d
module [3]. If H has an antipode S then (3) is equivalent to

δ(h·m) = h(1)m(−1)S(h(3))⊗h(2)·m(0) (4)

for all h ∈ H and m ∈M , in practice a very useful formulation of the compatibility
condition (3).

The category H
HYD has a monoidal structure, where k is given the left H-

module structure h·1k = ε(h) for all h ∈ H and left H-comodule structure deter-
mined by δ(1k) = 1H⊗1k, and the tensor product of objects M,N ∈ H

HYD is M⊗N
as a vector space with left H-module structure given by h·(m⊗n) = h(1)·m⊗h(2)·n



336 D.E. Radford and H.J. Schneider

and left H-comodule structure given by δ(m⊗n) = m(−1)n(−1)⊗(m(0)⊗n(0)) for all
h ∈ H , m ∈ M , and n ∈ N . When H is a Hopf algebra H

HYD is a braided monoidal
category with braiding σM,N : M⊗N −→ N⊗M for objects M,N ∈ H

HYD deter-
mined by σM,N (m⊗n) = m(−1)·n⊗m(0) for all m ∈ M and n ∈ N .

Let (A,m, η) be an algebra in H
HYD. Then (A,mop, η) is as well, where mop =

m◦σA,A. Thus aopbop = (a(−1)·b)a(0) for all a, b ∈ A. We denote the object A with
this algebra structure by Aop. If B is also an algebra in H

HYD then A⊗B is an
algebra in H

HYD, where ηA⊗B = ηA⊗ηB and mA⊗B = (mA⊗mB)◦(IA⊗σA,B⊗IB).
We write A⊗B for A⊗B with this algebra structure and a⊗b = a⊗b for tensors.
By definition

(a⊗b)(a′⊗b′) = a(b(−1)·a′)⊗b(0)b
′

for all a, a′ ∈ A and b, b′ ∈ B. Observe that the object k with its usual k-algebra
structure is an algebra in H

HYD.
Suppose (C,∆, ε) is a coalgebra in H

HYD. We shall write ∆(c) = c(1)⊗c(2)

for c ∈ C. Observe that (C,∆cop, ε) is a coalgebra in H
HYD, where ∆cop =

σC,C◦∆, or equivalently ∆cop(c) = c
(1)

(−1)·c(2)⊗c
(1)

(0) for all c ∈ C. We denote
the object C with this coalgebra structure by Ccop. If D is a coalgebra in H

HYD
also then C⊗D is a coalgebra in H

HYD, where εC⊗D = εC⊗εD and ∆C⊗D =
(IC⊗σC,D⊗ID)◦(∆C⊗∆D). We write C⊗D for C⊗D with this coalgebra struc-
ture. By definition

∆(c⊗d) = (c(1)⊗c
(2)

(−1)·d
(1))⊗(c(2)(0)⊗d

(2))

for all c ∈ C and d ∈ D. Observe that the object k with its usual k-coalgebra
structure is a coalgebra in H

HYD.
Let R ∈ H

HYD be an algebra and a coalgebra in the category. Then ∆ :
R −→ R⊗R and ε : R −→ k are algebra maps if and only if m : R⊗R −→ R and
η : k −→ R are coalgebra maps in which case we say that R with its algebra and
coalgebra structure is a bialgebra in H

HYD. If R is a bialgebra in H
HYD then Rop,

Rcop, and therefore Rop cop, are bialgebras in H
HYD. Observe that the object k with

its usual k-algebra and k-coalgebra structure is a bialgebra in H
HYD. If R and T

are bialgebras in H
HYD then the object R⊗T with its algebra structure R⊗T and

coalgebra structure R⊗T is a bialgebra in H
HYD.

The most important bialgebra in H
HYD for us is the Nichols algebra. Let

M ∈ H
HYD and consider the tensor k-algebra T (M) = k⊕M⊕(M⊗M)⊕ · · · =⊕∞

�=0 M
⊗ � on the vector space M . Regard T (M) as an object of HHYD, where

h·(m1⊗ · · ·⊗mr) = h(1)·m1⊗ · · · ⊗h(r)·mr

for all h ∈ H and m1, . . ., mr ∈M and

δ(m1⊗ · · · ⊗mr) = m1 (−1) · · ·mr (−1)⊗(m1 (0)⊗ · · · ⊗mr (0))

for all m1, . . ., mr ∈M , describe the left H-module and left H-comodule structures
respectively. Let i : M −→ T (M) be the inclusion. Then the pair (i, T (M)) satisfies
the obvious analog in H

HYD of the universal mapping property of the tensor algebra
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of a vector space as a k-algebra. Observe that T (M) =
⊕∞

�=0M
⊗ � is a graded

bialgebra (indeed Hopf algebra) in H
HYD.

The algebra T (M) of HHYD is a bialgebra in the category just as the tensor
algebra of a vector space is a k-bialgebra. The linear maps d : M −→ T (M)⊗T (M)
and e : M −→ k defined by d(m) = 1⊗m+m⊗1 and e(m) = 0 respectively for all
m ∈M lift to algebra morphisms ∆ : T (M) −→ T (M)⊗T (M) and ε : T (M) −→ k
uniquely determined by ∆◦i = d and ε◦i = e. The structure (T (M),∆, ε) is a
coalgebra in H

HYD and T (M) with its algebra and coalgebra structure is a bialgebra
in H

HYD. The pair (i, T (M)) satisfies the following universal mapping property:
If A is a bialgebra in H

HYD and f : M −→ A is a morphism such that Imf ⊆
P (A), the space of primitive elements of A, then there is a bialgebra morphism
F : T (M) −→ A uniquely determined by F◦i = f .

The Nichols algebra B(M) has a very simple theoretical description. Among
the graded subobjects J of T (M) which are coideals and satisfy J∩M = (0),
there is a unique maximal one I. It is easy to see that I is an ideal of T (M);
thus the subobject I is a bi-ideal. Consequently the quotient B(M) = T (M)/I
is a connected graded bialgebra in the category H

HYD. Observe that B(M) is
generated as an algebra by B(M)(1) = M , which is also the space of primitive
elements of B(M). Since I∩B(M) = (0) we may think of M as a subspace of
B(M). The pair (M, (B(M)) satisfies the following universal mapping property:

Theorem 1.1. Let H be a Hopf algebra and M ∈ H
HYD. Then:

a) B(M) is a connected graded bialgebra in H
HYD and M = B(1) is a subobject

which generates B(M) as an algebra.
b) If A is a connected graded bialgebra in H

HYD generated as an algebra by A(1)
and f : A(1) −→ M is a morphism, then there is a bialgebra morphism
F : A −→ B(M) determined by F |A(1) = f .

Proof. We need only show part b). By the universal mapping property of the bial-
gebra (T (A(1)), i) there is a bialgebra morphism F : T (A(1)) −→ A determined
by F |A(1) = i. Since T (A(1)) is generated by A(1) as an algebra, F is an onto
morphism of graded bialgebras. Let J = KerF . Then J is a sub-object of T (A(1))
which is a graded bi-ideal of T (A(1)) satisfying J∩A(1) = (0). Using the universal
mapping property again we see that the morphism f : A(1) −→ M induces a
bialgebra morphism T (f) : T (A(1)) −→ T (M) determined by T (f)|A(1) = f |A(1).
Observe that T (f)(J) is a subobject of T (M) which is a graded bi-ideal of T (M)
whose intersection with M is (0). This means T (f)(J) ⊆ I, where the latter is
defined above. The composite A 
 T (A(1))/J −→ T (M)/I = B(M), where the
second map is defined by x + J �→ T (f)(x) + I, is our desired bialgebra mor-
phism F . �

We have noted that B(M)(1) is the subspace of primitive elements of B(M).
Thus B(M) is a connected graded primitively generated bialgebra in H

HYD with
subspace of primitive elements B(M)(1). These are defining properties.



338 D.E. Radford and H.J. Schneider

Corollary 1.2. Let H be a Hopf algebra over the field k and suppose that A is a
connected graded primitively generated bialgebra in H

HYD with subspace of primitive
elements A(1). Then there is an isomorphism of bialgebras A 
 B(A(1)) which
extends the identity map IA(1).

Proof. Let F : A −→ B(A(1)) be the bialgebra morphism of part b) of Theorem
1.1 which extends IA(1). Since A(1) generates B(A(1)) the map F is onto. Now
KerF∩P (A) = KerF∩A(1) = (0). Generally if C is a connected coalgebra and
f : C −→ C′ is a coalgebra map which satisfies Ker f∩P (C) = (0) then f is
one-one [12, Lemma 11.0.1]. Thus the onto map F is one-one. �

We leave the reader with the exercise of verifying the following corollary to
the theorem above.

Corollary 1.3. Let K and H be Hopf algebras with bijective antipodes and let
ϕ : K −→ H be a bialgebra map. Suppose that W ∈ K

KYD, V ∈ H
HYD, and

f : W −→ V is ϕ-linear and colinear. Then:
a) There is a map of algebras and coalgebras B(f) : B(W ) −→ B(V ) deter-

mined by B(f)|W = f . Furthermore B(f) is ϕ-linear and colinear.
b) If f is one-one (respectively onto) then B(f) is one-one (respectively onto).

�

2. Associated constructions in Hop

HopYD

Throughout this section H has bijective antipode S. Starting with objects, al-
gebras, coalgebras, and bialgebras in H

HYD we construct counterparts in Hop

HopYD
which are important for the analysis of bi-products in Section 8. First we start
with objects.

Let (M, ·, δ) ∈ H
HYD. Then (M, ·op, δ) ∈ Hop

HopYD, where

h·opm = S−1(h)·m (5)

for all h ∈ H and m ∈M . We denote (M, ·op, δ) by Mop. If N is also an object of
H
HYD and f : M −→ N is a morphism, then fop : Mop −→ Nop is a morphism,
where fop = f .

When M has the structure of an algebra, coalgebra, or bialgebra, then Mop ∈
Hop

HopYD does as well. If (A,m, η) is an algebra in H
HYD then (Aop,mop, η) is an

algebra in Hop

HopYD, where
mop(a⊗b) = ba (6)

for all a, b ∈ A. If A is also an algebra in H
HYD and f : A −→ A is an algebra

morphism then f : Aop −→ A
op

is an algebra morphism. If (C,∆, ε) is a coalgebra
in H

HYD then (Cop,∆op, ε) is a coalgebra in Hop

HopYD, where

∆op(c) = c
(2)

(−1)·opc
(1)⊗c

(2)
(0) (7)

for all c ∈ C. If C′ is also a coalgebra in H
HYD and f : C −→ C is a coalgebra

morphism then f : Cop −→ C
op

is a coalgebra morphism. If (R,m, η,∆, ε) is a
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bialgebra in H
HYD then (Rop,mop, η,∆op, ε) is a bialgebra in Hop

HopYD. If R is also a
bialgebra in H

HYD and f : R −→ R is a bialgebra morphism, then f : Rop −→ R
op

is a bialgebra morphism.
Our assertions about Aop, Cop, and Rop can be shown directly with a good

deal of effort. For this the aop and ccop notations are strongly recommended.
A more illuminating approach which yields much easier proofs is to recognize
that there is an isomorphism (F, ϑ) of the monoidal categories HHYD and Hop

HopYD.
The functor F : H

HYD −→ Hop

HopYD is defined by F (M) = Mop for objects M
and F (f) = f for morphisms f . The morphism of left Hop-modules ϑM,N :
F (M⊗N) −→ F (M)⊗F (N) is defined by ϑM,N (m⊗n) = S−1(n(−1))·m⊗n(0) for
all m ∈ M and n ∈ N . Observe that ϑ−1

M,N : F (M)⊗F (N) −→ F (M⊗N) is given
by ϑ−1

M,N (m⊗n) = n(−1)·m⊗n(0) for all m ∈M and n ∈ N .
Let (A,m, η) be an algebra in H

HYD. Then (F (A), F (m)◦ϑ−1
A,A, F (η)) is an

algebra of H
op

HopYD. Since mop = (F (m)◦ϑ−1
A,A)op it follows that Aop is an algebra in

Hop

HopYD as well. Let (C,∆, ε) be a coalgebra of HHYD. Then (F (C),ϑC,C◦F (∆),F (ε))
is a coalgebra of H

op

HopYD which is Cop. If R is a bialgebra in H
HYD then the object

Rop with its algebra and coalgebra structures Rop is a bialgebra in Hop

HopYD. Our
assertions about Aop, Cop, and Rop also follow by the diagrammatic formalism of
[7] as well.

Suppose that H has bijective antipode and let V be an object of HHYD. Using
Corollary 1.2 we are able to relate B(V )op to a Nichols algebra.

Observe that the grading of B(V ) is a bialgebra grading for B(V )op. It is
not hard to see that B(V )(1) generates B(V )op and is also the space of primitives
of B(V )op. As a subobject of B(V )op note that B(V )op(1) = V op. Thus

B(V op) = B(V )op (8)

by Corollary 1.2.

3. Associated constructions in Ho

HoYD

We now turn to constructions in Ho

HoYD. As in the previous section H has bijective
antipode S. Starting with objects, algebras, coalgebras, and bialgebras in H

HYD
we construct counterparts in Ho

HoYD which are important for the analysis of bi-
products in Section 8.

First we consider the objects. Let (M,η, δ) ∈ H
HYD. We construct an object

(M r, δo, ηo) of Ho

HoYD. Regard H∗⊗M∗ as a subspace of (H⊗M)∗ in the usual
way. Recall that M r, the subspace of all m∗ ∈M∗ which vanish on I·M for some
cofinite ideal I of H , can be characterized as M r = (η∗)−1(H∗⊗M∗). Furthermore
η∗(M r) ⊆ Ho⊗M r and (M r, ηo) is a left Ho-comodule, where ηo = η∗|Mr . Thus
the comodule action ηo(m∗) = m∗

(−1)⊗m∗
(0) of ηo on m∗ ∈M r is determined by

m∗
(−1)(h)m∗

(0)(m) = m∗(h·m) (9)

for all h ∈ H and m ∈M . See [9] for example.
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The left H-comodule structure (M, δ) induces a (rational) right H∗-module
action in M which in turn induces a left H∗-module structure (M∗, ·) on M∗

under the transpose action. It is easy to see that (M∗, ·) = (M∗, δ∗|H∗⊗M∗). By
restriction of the H∗-action M∗ is a left Ho-module. A straightforward calculation
yields

η∗(ho·m∗) = ho(1)m
∗
(−1)S(ho(3))⊗ho(2)·m∗

(0)

for all ho ∈ Ho and m∗ ∈M r, where S is the antipode of Ho. Let δo = δ∗|Ho⊗Mr .
Thus Ho·M r ⊆ M r; hence (M r, δo) is an Ho-submodule of M∗ which we denote
(M r, ·). The equivalence of (3) and (4) imply that (M r, ·, ηo) ∈ Ho

HoYD. The left
Ho-module action on M r is given explicitly by

(ho·m∗)(m) = m∗(m↼ho) = ho(m(−1))m∗(m(0)) (10)

for all ho ∈ Ho, m∗ ∈ M r, and m ∈ M . Note that (Mop)r = M r as vector
spaces. If N is also an object of H

HYD and f : M −→ N is a morphism then
f∗(N r) ⊆ M r and the restriction f r = f∗|Nr is a morphism f r : N r −→M r since
f∗(n∗)(h·m) = n∗

(−1)(h)f∗(n∗
(0))(m) for all n∗ ∈ N r, h ∈ H , and m ∈M .

Suppose that (C,∆, ε) is a coalgebra in H
HYD. Then the object Cr ∈ Ho

HoYD
has the structure of an algebra in the category; as a k-algebra it is a subalgebra
of the dual algebra C∗. We show that Cr is a subalgebra of C∗ and leave the
remaining details of the proof that Cr is an algebra in Ho

HoYD to the reader.
Since ε : C −→ k is a morphism Ker ε is a left H-submodule of C. Therefore

ε ∈ Cr . Suppose that a, b ∈ Cr. Then a(I·C) = (0) = b(J ·C) for some cofinite
ideals I and J of H . Since ∆H is an algebra map, K = ∆−1

H (I⊗H + H⊗J) is an
ideal of H which is cofinite since I and J are cofinite ideals of H . Since ∆ = ∆C is
a map of left H-modules it follows that ∆(h·c) = h(1)·c(1)⊗h(2)·c(2) for all h ∈ H
and c ∈ C. Thus

(ab)(K·C) ⊆ (a⊗b)(∆(K·C)) ⊆ (a⊗b)(I·C⊗H ·C + H ·C⊗J ·C) = (0)

from which ab ∈ Cr follows. Also note that if C is another coalgebra in H
HYD

and if f : C −→ C is a coalgebra morphism then f r : C
r −→ Cr is an algebra

morphism.
One can think of Cr as the counterpart in Ho

HoYD of the dual k-algebra C∗.
Suppose A is an algebra in H

HYD. There is a counterpart Ao in Ho

HoYD to the dual
k-coalgebra Ao which arises very naturally in Section 7. As a vector space Ao is
the set of all functionals in A∗ which vanish on a cofinite subspace I of A which
is both an ideal of A and also a left H-submodule of A.

Now I⊥ is a subcoalgebra of the dual k-coalgebra Ao and is also a left H-
submodule of Ar. Since the intersection of two cofinite subspaces of A which are
both ideals of A and left H-submodules of A has the same properties, it follows
that Ao is a subcoalgebra of Ao and also a subobject of Ar. At this point is not
hard to see that Ao is a coalgebra in Ho

HoYD. Let A be an algebra in H
HYD also

and suppose that f : A −→ A is an algebra morphism. Then f r(A
o
) ⊆ Ao and the

restriction fo = f r|Ao is a coalgebra morphism fo : A
o −→ Ao.
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Suppose that R is a bialgebra in H
HYD. Then the object Ro of H

o

HoYD is a
bialgebra in Ho

HoYD with the subalgebra structure of the k-algebra R∗ and the
subcoalgebra structure of the k-coalgebra Ro. Furthermore, if R is also a bialgebra
in H

HYD and f : R −→ R is a bialgebra morphism, then fo : R
o −→ Ro is a

bialgebra morphism.
Let V be an object of HHYD. There is a natural relationship between B(V )o

and a Nichols algebra. Consider the one-one map

i : V r −→ B(V )∗

defined for v∗ ∈ V o by

i(v∗)(x) =
{

v∗(x) : x ∈ B(V )(1) = V
0 : x ∈ B(V )(n), n �= 1 .

Then Imi ⊆ B(V )o and i : V r −→ B(V )o is a one-one morphism. Let I :
B(V r) −→ B(V )o be the bialgebra morphism of Corollary 1.2 which extends i.
Since KerI∩P (B(V r)) = KerI∩V r = (0) it follows that I is one-one by [12,
Lemma 11.0.1] again. We have shown

I : B(V r) −→ B(V )o is a one-one bialgebra morphism (11)

When V is finite-dimensional B(V r) is identified with the graded dual of B(V ) via
the map I. In the special case of a Yetter-Drinfel’d module over the group algebra
of a finite group with finite-dimensional B(V ), the dual of B(V ) was determined
in [4, Theorem 2.2].

4. Bilinear forms in the Yetter-Drinfel’d context

Let H be a Hopf algebra with bijective antipode. Let R, T be bialgebras in H
HYD

and suppose that β : T⊗R −→ k is a linear form. We will find the following analogs
to (A.1)–(A.4) useful:

(B.1) β(tt′, r) = β(t, S−1(r(2)
(−1))·r(1))β(t′, r(2)

(0)) for all t, t′ ∈ T and r ∈ R;
(B.2) β(1, r) = ε(r) for all r ∈ R;
(B.3) β(t, rr′) = β(t(2), r)β(t(1), r′) for all t ∈ T and r, r′ ∈ R;
(B.4) β(t, 1) = ε(t) for all t ∈ T .

We leave the reader with the exercise of establishing the equivalence of (B.1)–(B.4)
with analogs of (1) and (2) :

Lemma 4.1. Let H be a Hopf algebra with bijective antipode, let T and R be bial-
gebras in H

HYD, and suppose β : T⊗R −→ k is a linear form. Then the following
are equivalent:

a) (B.1)–(B.4) hold.
b) β�(T ) ⊆ Rop o and β� : T −→ Rop o is a bialgebra map.
c) βr(R) ⊆ T o op and βr : R −→ T o op is a bialgebra map. �
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Let K and H be bialgebras over k and suppose H has bijective antipode S.
Let W ∈ K

KYD, V ∈ H
HYD, and let τ : K⊗H −→ k, β : W⊗V −→ k be linear

forms. Two conditions relating τ and β will play an important part in this paper:
(C.1) β(k·w, v) = β(w, v↼τ�(k)) for all k ∈ K, w ∈ W , and v ∈ V ;
(C.2) β(w↼τr(h), v) = β(w, S−1(h)·v) for all w ∈ W , h ∈ H , and v ∈ V .
The first (C.1) implies V ⊥ = Kerβ� is a K-submodule of W and the second (C.2)
implies W⊥ = Kerβr is an H-submodule of V . These conditions have formulations
in terms of linear and colinear maps.

Proposition 4.2. Let K and H be Hopf algebras with bijective antipodes. Suppose
that τ : K⊗H −→ k satisfies (A.1)–(A.4), let W ∈ K

KYD, V ∈ H
HYD, and let

β : W⊗V −→ k is a linear form. Then the following are equivalent:
a) (C.1) and (C.2) hold.
b) β�(W ) ⊆ (V op)r and β� : W −→ (V op)r is τ�-linear and colinear.
c) βr(V ) ⊆ W r and βr : V −→W r is τr-linear and colinear.

Proof. We show that parts a) and b) are equivalent and leave the reader with the
exercise of adapting our proof to establish the equivalence of parts a) and c). In
the latter the roles of (C.1) and (C.2) are reversed.

Suppose that β�(W ) ⊆ (V op)r and consider the linear map β� : W −→
(V op)r. Using (10) it follows that β� is τ�-linear if and only if (C.1) holds. Using
(9), where S−1(h)·v = h·opv replaces h·v, it follows that β� is τ�-colinear if and
only if (C.2) holds.

Suppose that (C.2) holds. Now W is a right K∗-module under the rational
action arising from (M, δ). Now τr : H −→ (Ko)op is an algebra map by (2). Thus
W is left H-module by pullback along τ�. Let w ∈ W . Then H ·w = w↼τr(H) is
finite-dimensional, there is a cofinite ideal I of H such that (0) = I·w = w↼τr(I).
Thus

β�(w)(I·opV ) = β(w, S−1(I)·V ) = β(w↼τr(I), V ) = (0)
which means that β�(w) ∈ (V op)r . �
Corollary 4.3. Suppose that K and H are Hopf algebras with bijective antipodes
and suppose that τ : K⊗H −→ k satisfies (A.1)–(A.4). Let W ∈ K

KYD, V ∈ H
HYD,

and τ and β : W⊗V −→ k satisfy (C.1) and (C.2). Then:
a) There is a form B(β) : B(W )⊗B(V ) −→ k determined by the properties that

it satisfies (B.1)–(B.4) and B(β)|W⊗V = β. Furthermore τ and B(β) satisfy
(C.1) and (C.2).

b) Suppose that K and H are also Hopf algebras with bijective antipodes over
k, τ : K⊗H −→ k satisfies (A.1)–(A.4), W ∈ K

K
YD, V ∈ H

H
YD, and

τ and β : W⊗V −→ k satisfy (C.1) and (C.2). If β◦(f⊗g) = β then
B(β)◦(B(f)⊗B(g)) = B(β). �

Proof. By Proposition 4.2 b), β� : W −→ (V op)r is τ�-linear and colinear, and by
Corollary 1.3

B(β�) : B(W ) −→ B((V op)r)
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is a bialgebra map. Then we define B(β)� as the composition of B(β�) with the
maps

B((V op)r) −→ B(V op)o = B(V )op o

in (11) and (8). This proves part a), and part b) can be checked easily. �

5. Bi-products revisited

Let H be a Hopf algebra with antipode S and suppose R ∈ H
HYD is a bialgebra in

the category. The biproduct R#H of R and H is a bialgebra over k described as
follows. As a vector space R#H = R⊗H and r#h stands for the tensor r⊗h. As
a bialgebra R#H has the smash product and smash coproduct structures. Thus
1R#H = 1R#1H ,

(r#h)(r′#h′) = r(h(1)·r′)#h(2)h
′

for all r, r′ ∈ R and h, h′ ∈ H ,

∆(r#h) = (r(1)#r
(2)

(−1)h(1))⊗(r(2)
(0)#h(2)), and ε(r#h) = ε(r)ε(h)

for all r ∈ R and h ∈ H .
The map j : H −→ R#H defined by j(h) = 1#h for h ∈ H is a bialgebra

map and the map π : R#H −→ H defined by π(r) = r#1 for r ∈ R is an algebra
map which satisfies π◦j = IH . Starting with the bialgebras A = R#H , H and
the maps j, π one can recover R = R#1 as a bialgebra in H

HYD. Consider the
convolution product

Π = IA∗(j◦S◦π) (12)

which as an endomorphism of A given by Π(a) = a(1)j(S(π(a(2)))) for all a ∈ A.
Observe that Π(r#h) = (r#1)ε(h) for all r ∈ R and h ∈ H . In particular R =
ImΠ. As a k-algebra R is merely a subalgebra of A. As a k-coalgebra

∆R(r) = Π(r(1))⊗r(2) and εR(r) = ε(r) (13)

for all r ∈ R. As an object of HHYD the left H-module action on R is given by

h·r = j(h(1))rj(S(h(2)) (14)

for all h ∈ H and r ∈ R and as a left H-comodule action is given by

δ(r) = π(r(1))⊗r(2) (15)

for all r ∈ R.
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We are in now in a position to look at biproducts in more abstract terms.
Let A be a bialgebra over k and suppose that j : H −→ A, π : A −→ H are
bialgebra maps which satisfy π◦j = IH . Let Π : A −→ A be defined by (12)
and set R = ImΠ. The mapping Π has many important properties which are
basic for what follows and which we use without particular reference in Section 8;
see [10] for example. First of all Π◦Π = Π and π◦Π = ηH◦εA. Since ∆(Π(a)) =
a(1)(j◦S◦π)(a(3))⊗Π(a(2)) for all a ∈ A it now follows that ∆(R) ⊆ R⊗A and

R = ImΠ = {a ∈ A | a(1)⊗π(a(2)) = a⊗1} = Aco π.

The last equation is definition. In particular R is a subalgebra of A. Since ∆(R) ⊆
A⊗R then map ∆R : A −→ A⊗A defined by (13) satisfies ∆R(R) ⊆ R⊗R. Using
the fact that Π(aj(h)) = Π(a)ε(h) for all a ∈ A and h ∈ H it follows by direct
calculation that (R,∆R, ε|R) is a k-coalgebra.

Note that (A, ·j , δπ) ∈ H
HYD, where h·ja = j(h(1))aj(S(h(2))) for all h ∈ H

and a ∈ A and δπ(a) = π(a(1))⊗a(2) for all a ∈ A. Since ∆(R) ⊆ A⊗R it follows
that R is a left H-subcomodule of (A, δπ). Since h·jΠ(a) = Π(j(h)a) for all h ∈ H
and a ∈ A we see that R is a left H-submodule of (A, ·j). Therefore R is a
subobject of (A, ·j , δπ) and the actions are those described in (14) and (15). In
fact R with these structures is a bialgebra in H

HYD and the map R#H −→ A
determined by r#h �→ rj(h) is an isomorphism of k-bialgebras which we call the
canonical isomorphism. We refer to R with these structures as the bialgebra in
H
HYD associated to (A,H, j, π).

The preceding discussion has been based on a bialgebra A over k with bial-
gebra maps j : H −→ A and π : A −→ H satisfying π◦j = IH . We have the
same context for Aop, Acop, thus for Aop cop, and Ao too. For j : Hop −→ Aop

and π : Aop −→ Hop, as well as j : Hcop −→ Acop and π : Acop −→ Hcop, are
bialgebra maps which satisfy π◦j = IH , and πo : Ho −→ Ao and jo : Ao −→ Ho

are bialgebra maps which satisfy jo◦πo = (π◦j)o = IHo . It will be important to us
to understand Aop and Ao as biproducts. The analysis is rather detailed and will
be carried out in Section 8. We do not need to deal with Acop.

We now turn our attention to maps of biproducts. The result we need follows
directly from definitions.

Proposition 5.1. Let H, H be Hopf algebras over the field k and let R ∈ H
HYD,

R ∈ H
H
YD be bialgebras in their respective categories. Suppose ϕ : H −→ H is a

bialgebra map and ψ : R −→ R is a map of k-algebras and coalgebras which is
also ϕ-linear and colinear. Then the linear map ψ#ϕ : R#H −→ R#H defined by
(ψ#ϕ)(r#h) = ψ(r)#ϕ(h) for all r ∈ R and h ∈ H is a map of bialgebras over k.

�
Continuing with the statement of the proposition, note that

(ψ#ϕ)◦j = j◦(ψ#ϕ) and π◦(ψ#ϕ) = (ψ#ϕ)◦π.
Suppose that A, A are bialgebras over k. Let j : H −→ A, π : A −→ H and
j : H −→ A, π : A −→ H be bialgebra maps which satisfy π◦j = IA, π◦j = IA
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respectively. In light of the proposition a natural requirement for bialgebra maps
f : A −→ A is π◦f = f◦π and f◦j = j◦f . When this is the case f(Imj) ⊆ Imj

and ϕ : H −→ H determined by j◦ϕ = f◦j is a bialgebra map, f(Aco π) ⊆ A
co π

,
and the restriction fr = f |R is a map fr : R −→ R of k-algebras, k-coalgebras,
and is ϕ-linear and colinear. Furthermore the diagram

A

R#H

A

R#H

�

�

� �
f

fr#ϕ

commutes, where the vertical maps are the k-bialgebra isomorphisms determined
by r#h �→ rj(h) and r#h �→ r j(h) respectively.

6. (R#H)op as a bi-product

Throughout this section H is a Hopf algebra with bijective antipode S, A is a
bialgebra over k, and j : H −→ A, π : A −→ H are bialgebra maps which
satisfy π◦j = IH . We will use the results of Section 5 rather freely and in most
cases without particular reference. As we noted in Section 1.2 the multiplicative
opposite of a bi-product is a bi-product.

Let R = Aco π, let (R, ·, δ) be the structure of R as an object of HHYD, and
let (R,m, η,∆, ε) the bialgebra in H

HYD associated to (A,H, j, π). We recall that
h·r = j(h(1))rj(S(h(2))) for all h ∈ H and r ∈ R by (14), and δ(r) = π(r(1))⊗r(2)
for all r ∈ R by (15).

As noted in Section 5 the maps j : Hop −→ Aop, π : Aop −→ Hop are bialge-
bra maps which satisfy π◦j = IHop . We first observe that R = Aco π = (Aop)co π.
Let (R, ·′, δ′) be the structure of R = (Aop)co π as an object in the category
Hop

HopYD and let (R,m′, η′,∆′, ε′) be the bialgebra in the category associated with
(Aop, Hop, j, π). The calculation

hop·′r = j(hop(1))
opropj(Sop(hop(2)))

op

= j(S−1(h(2)))rj(h(1))

= j(S−1(h(2)))rj(S(S−1(h(1))))

= j(S−1(h)(1))rj(S(S−1(h)(2)))

= S−1(h)·r
for all hop = h ∈ Hop and r ∈ R shows that ·′ = ·op. Since δ′ = δ it follows that
(R, ·′, δ′) = (R, ·op, δ). Thus R = Rop as an object of H

op

HopYD.
It is clear that m′ = mop, η′ = η, and ε′ = ε. To calculate ∆′ we work from the

definition Πop = IAop ∗op (j◦Sop◦π) and compute Πop(a) = ((j◦S−1◦π)(a(2)))a(1)

for all a = aop ∈ Aop. Now Π(R) ⊆ A⊗R and Π acts as the identity on R, which
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thus hold for Πop as well. Since Π(j(h)a) = h·jΠ(a) for all h ∈ H and a ∈ A, the
calculation

∆′(r) = Πop(rop(1))⊗r
op

(2)

= ((j◦S−1◦π)(r(2)))r(1)⊗r(3)
= Π(j(S−1(π(r(2))))r(1))⊗r(3)

= S−1(π(r(2)))·jΠ(r(1))⊗r(3)

= S−1(r(2)
(−1))·r

(1)⊗r
(2)

(0)

for all r ∈ R shows that ∆′ = ∆op. We have shown that the bialgebra in Hop

HopYD
which is associated to (Aop, Hop, j, π) is Rop.

Proposition 6.1. Let H be a Hopf algebra with bijective antipode, let A be a bialgebra
over k, and suppose that j : H −→ A, π : A −→ H are bialgebra maps which satisfy
π◦j = IH . Let R = Aco π and let (R,m, η,∆, ε) be the bialgebra in H

HYD associated
to (A,H, j, π). Then:

a) j : Hop −→ Aop and π : Aop −→ Hop are bialgebra maps which satisfy π◦j =
IHop , Rop = R as a vector space, and the bialgebra in Hop

HopYD associated to
(Aop, Hop, j, π) is (Rop,mop, η,∆op, ε).

b) The map ϕ : Rop#Hop −→ (R#H)op given by ϕ(r#h) = (1#h)(r#1) for all
r ∈ R and h ∈ H is an isomorphism of bialgebras. Furthermore the diagram

�

�

	
	

	
	

	
	


Rop#Hop (R#H)op

Aop

ϕ

f
g

commutes, where f : R#H −→ A and g : Rop#Hop −→ Aop are the canoni-
cal isomorphisms.

Proof. We have established part a). As for part b), we first note that f(r#h) =
rj(h) and g(r#h) = ropj(h)op = j(h)r for all r ∈ R and h ∈ H . Therefore
f◦ϕ = g. This means the diagram commutes and ϕ = f−1◦g is an isomorphism of
bialgebras. �

Observe that ϕ−1(r#h) = h(1)·opr#h(2) = S−1(h(1))·r#h(2) for all r ∈ R
and h ∈ H .

7. (R#H)o as a bi-product

As in the preceding section, H is a Hopf algebra with bijective antipode S, A is a
bialgebra over k, and j : H −→ A, π : A −→ H are bialgebra maps which satisfy
π◦j = IH . Again we will use the results of Section 5 rather freely and in most
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cases without particular reference. We observed in Section 1.2 that the dual of a
bi-product is a bi-product.

As noted in Section 5 the maps πo : Ho −→ Ao, jo : Ao −→ Ho are bialgebra
maps which satisfy jo◦πo = IHo . We will show that (Ao)co j

o

can be identified with
Ro, find the structure of Ro as an object of H

o

HoYD, and then find its structure as
the bialgebra in Ho

HoYD associated to (Ao, Ho, πo, jo).
Let R′ = (Ao)co j

o

and ao ∈ Ao. Then ao ∈ R′ if and only if ao(1)⊗jo(ao(2)) =
ao⊗ε, or equivalently ao(aj(h)) = ao(a)ε(h) for all a ∈ A and h ∈ H . Recall from
Section 5 that the map R#H −→ A determined by r#h �→ rj(h) for all r ∈ R and
h ∈ H is an isomorphism of bialgebras. Since A = Rj(H) it follows that ao ∈ R′

if and only if ao(rj(h)) = ao(r)ε(h) for all r ∈ R and h ∈ H . The isomorphism
gives rise to a linear embedding i : R∗ −→ A∗, where i(r∗)(rj(h)) = r∗(r)ε(h) for
all r∗ ∈ R∗, r ∈ R, and h ∈ H . Observe that R′ ⊆ Imi. Thus we can understand
R′ in terms of R∗ via the embedding.

Our first claim is that i(Ro) = R′. A consequence of the claim is that the
restriction

i|Ro : Ro −→ R′ (16)

is a linear isomorphism.
To prove our claim, first of all suppose that ro ∈ Ro. To show that i(ro) ∈ R′

we need only show that i(ro) ∈ Ao. Since ro ∈ Ro, by definition ro(J) = (0) for
some cofinite subspace J of R which is an ideal and a left H-submodule of R. We
will use the commutation relations

j(h)r = (h(1)·jr)j(h(2)) and rj(S(h)) = j(S(h(1)))(h(2)·jr)
for all h ∈ H and r ∈ R. Since S is onto and J is a left H-subcomodule of R it
follows from the commutations relations that j(H)J = Jj(H). Thus Jj(H) is a
left ideal of A. Now i(ro) vanishes on Jj(H) and Rj(H)+ = R(j(H)∩Ker ε) as
well. Since H ·jR ⊆ R and j(H)+ is a left ideal of j(H), by the first commutation
relation Rj(H)+ is a left ideal of A. Since Jj(H) + Rj(H)+ is a cofinite left ideal
of A on which i(ro) vanishes, it follows that i(ro) vanishes on a cofinite ideal of A.
Thus i(ro) ∈ Ao as required.

Now suppose that ao ∈ R′. Since R′ ⊆ Imi it follows that ao = i(r∗) for
some r∗ ∈ R∗. By definition ao(I) = (0) for some cofinite ideal I of A. Since ideals
of A are also left H-submodules of A, and the subalgebra R of A is also a left
H-submodule, J = R∩I is a cofinite ideal of R which is also a left H-submodule
of R. As (0) = ao(J) = i(r∗)(J) = r∗(J) we conclude that r∗ ∈ Ro. We have
completed the proof of the claim.

Thus Ro and R′ can be identified as vector spaces by the map of (16). Ac-
cordingly we will think of R′ as Ro and show that R′ is Ro as an object of H

o

HoYD
and R′ is Ro as the bialgebra in the category associated to (Ao, Ho, πo, jo).

Let ho ∈ Ho and ro ∈ Ro. The left Ho-module structure on R′ is given by
ho·πoi(ro) = πo(ho(1))i(r

o)πo(So(ho(2))). We evaluate both sides of this equation
at r ∈ R. Since r(1)⊗π(r(2)) = r⊗1 we have π(r(1))⊗r(2)⊗π(r(3)) = π(r(1))⊗r(2)⊗1
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from which

π(r(1))S(π(r(3)))⊗r(2) = π(r(1))⊗r(2) = r(−1)⊗r(0)

follows. Thus

(ho·πoi(ro)) (r) =
(
πo(ho(1))(r(1))

) (
i(ro)(r(2))

) (
πo(So(ho(2)))(r(3))

)

=
(
ho(1)(π(r(1)))

) (
i(ro)(r(2))

) (
ho(2)(S(π(r(3))))

)

= ho
(
π(r(1))S(π(r(3)))

)
i(ro)(r(2))

= ho(r(−1))ro(r(0)).

We have shown that (ho·πoi(ro)) (r) = ho(r(−1))ro(r(0)) for all ho ∈ Ho, ro ∈ Ro,
and r ∈ R.

The left Ho-comodule structure on R′ is the subcomodule structure afforded
by (Ao, δjo). Now δjo (i(ro)) = jo(i(ro)(1))⊗i(ro)(2). Using the first commutation
relation above we calculate

δjo(i(ro))(h⊗r) = i(ro)(1)(j(h))i(ro)(2)(r)

= i(ro)(j(h)r)

= i(ro)((h(1)·jr)j(h(2)))

= ro(h(1)·jr)ε(h(2))

= ro(h·jr)

for all h ∈ H and r ∈ R. We have shown that R′ = Ro as an object in Ho

HoYD.
Next we consider the product in R′. Let ro, r′o ∈ Ro. Since A = Rj(H) it is

easy to see that i(ro) is determined on R. Thus for r ∈ R the calculation

i(ro)(r(1))i(r′o)(r(2)) = i(ro)(Π(r(1)))i(r′o)(r(2))

= i(ro)
(
r(1)j((S◦π)(r(2)))

)
i(r′o)(r(3))

= i(ro)(r(1))ε((S◦π)(r(2)))i(r′o)(r(3))

= i(ro)(r(1))i(r′o)(r(2))

= (i(ro)i(r′o))(r)

shows that the product ror′o is derived from the dual algebra of (Ro,∆o).
Finally we consider the coproduct of R′. First we calculate ΠAo in terms of

ΠA = Π. Let p ∈ Ao and a ∈ A. Then

(ΠAo(p)) (a) =
(
p(1)((πo◦So◦jo)(p(2)))

)
(a)

= p(1)(a(1))p(2)((j◦S◦π)(a(2)))

= p(a(1)((j◦S◦π)(a(2))))

= p(Π(a))

implies ΠAo = (ΠA)o. Let ro ∈ Ro. By definition

∆R′(i(ro)) = ΠAo(i(ro)(1))⊗i(ro)(2).
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Thus for r, r′ ∈ R we compute

∆R′(i(ro))(r⊗r′) =
(
ΠAo(i(ro)(1))(r)

) (
i(ro)(2)(r′)

)

=
(
i(ro)(1)(Π(r))

) (
i(ro)(2)(r′)

)
= i(ro)(Π(r)r′) = i(ro)(rr′)

since Π acts as the identity on R. Thus the coproduct for R′ = Ro is that of the
dual coalgebra arising from the subalgebra R of A. Therefore the bialgebra R′ in
the category Ho

HoYD associated to (Ao, Ho, πo, jo) is Ro. We regard R∗⊗H∗ as a
subspace of the vector space (R#H)∗ = (R⊗H)∗ in the natural way.

Proposition 7.1. Let H be a Hopf algebra with bijective antipode, let A be a bialgebra
and suppose that j : H −→ A, π : A −→ H are bialgebra maps which satisfy
π◦j = IH . Let R = Aco π and let (R,m, η,∆, ε) be the bialgebra in H

HYD associated
to (A,H, j, π). Then:

a) πo : Ho −→ Ao and jo : Ao −→ Ho are bialgebra maps which satisfy jo◦πo =
IHo , Ro = Ao co j

o

as a vector space under the identification ro(rj(h)) =
ro(r)ε(h) for all r ∈ R and h ∈ H, and (Ro,∆o, ε,mo, η) is the bialgebra in
Ho

HoYD associated to (Ao, Ho, πo, jo).
b) The map ϑ : Ro#Ho −→ (R#H)o given by ϑ(ro#ho) = ro⊗ho for all ro ∈

Ro and ho ∈ Ho is an isomorphism of bialgebras. Furthermore the diagram

R′#Ho

Ro#Ho

Ao

(R#H)o

�

�

� �
g

ϑ

i|Ro#IHo (f−1)o

commutes, where R′ = Ao co j
o

, i|Ro is the linear isomorphism of (16), and the
maps f : R#H −→ A, g : R′#Ho −→ Ao are the canonical isomorphisms.

Proof. We have established part a). As for part b), we first note that the struc-
tures on Ro are due to the identification i|Ro : Ro −→ R′. Thus i|Ro#IHo is
an isomorphism of bialgebras by Proposition 5.1. Now g and (f−1)o are bialge-
bra isomorphisms also. Thus part b) will follow once we show that the diagram
commutes.

Let ro ∈ Ro, ho ∈ Ho, r ∈ R, h ∈ H , and set a = rj(h). Then
((

(f−1)o◦ϑ
)

(ro#ho)
)

(a) = ϑ(ro#ho)(f−1(a)) = (ro⊗ho)(r#h) = ro(r)ho(h).

On the other hand
((

g◦(i|Ro#IHo )
)

(ro#ho)
)

(a) =
(
g(i(ro)#ho)

)
(a) =

(
i(ro)πo(ho)

)
(rj(h))

= i(ro)(r(1)j(h(1)))πo(ho)(r(2)j(h(2))) = i(ro)(r(1)j(h(1)))ho(π(r(2)j(h(2))))

= ro(r(1))ε(h(1))ho(π(r(2))(π◦j)(h(2))) = ro(r(1))ho(π(r(2))h))

= ro(r)ho(1h)) = ro(r)ho(h).

Since A = Rj(H) our calculations show that the diagram of part b) commutes. �
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8. Bialgebras H = (U⊗A)σ when U ,A are bi-products

Let K and H be Hopf algebras with bijective antipodes over the field k and suppose
that U = T#K, A = R#H are bi-products. We describe an extensive class of
linear forms (T#K)⊗(R#H) −→ k which satisfy (A.1)–(A.4). All such forms
are in bijective correspondence with the bialgebra maps T#K −→ (R#H)o cop =
(R#H)op o. Our forms are derived from certain bialgebra maps and determine
two-cocycles σ.

8.1. The linear form β#τ : (T#K)⊗(R#H) −→ k

We use the isomorphisms of the two preceding sections to construct bialgebra maps

T#K −→ (R#H)op o ∼= Rop o#Hop o

which determine linear forms β#τ : (T#K)⊗(R#H) −→ k satisfying (A.1)–(A.4).
In the subsequent section we will investigate the special case when K and H are
group algebras of abelian groups. These are fundamental, interesting in their own
right, and arise in representations theory of pointed Hopf algebras [3, 11].

Theorem 8.1. Let K and H be Hopf algebras with bijective antipodes. Suppose
that T and R are bialgebras in the categories K

KYD and H
HYD respectively and

that τ : K⊗H −→ k and β : T⊗R −→ k are linear forms, where τ satisfies
(A.1)–(A.4), β satisfies (B.1)–(B.4), and τ and β satisfy (C.1)–(C.2). Let

β#τ : (T#K)⊗(R#H) −→ k

be the linear form determined by

(β#τ)(t#k, r#h) = β(t, S−1(h(1))·r)τ(k, h(2))

for all t ∈ T , k ∈ K, r ∈ R, and h ∈ H. Then:

a) (β#τ)� is the composite

T#K
β�#τ�−→ Rop o#Hop o ϑ−→ (Rop#Hop)o

(ϕ−1)o

−→ (R#H)op o,

where ϑ and ϕ are defined in part b) of Propositions 7.1 and 6.1 respectively.
Thus β#τ satisfies (A.1)–(A.4).

b) (β#τ)� = (ϕ−1)∗◦(β�⊗τ�) and (β#τ)r = (βr⊗τr)◦ϕ−1.
c) β#τ is left (respectively right) non-singular if and only if β and τ are left

(respectively right) non-singular.

Proof. Since τ satisfies (A.1)–(A.4), its equivalent (1), which is Imτ� ⊆ Hop o

and τ� : K −→ Hop o is a bialgebra map, holds. Likewise, since β satisfies (B.1)–
(B.4), by Lemma 4.1 it follows that Imβ� ⊆ Rop o and β� : T −→ Rop o is a
map of algebras and a map of coalgebras. Now β� is τ�-linear and colinear since
τ and β satisfy (C.1)–(C.2) by Proposition 4.2. Therefore β�#τ� : T#K −→
(Rop)o#(Hop)o is a bialgebra map by Proposition 5.1. At this point part a) follows
by Propositions 6.1 and 7.1.
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Part b) is a direct consequence of definitions. As for part c) we first note
that the tensor product of two linear maps is one-one if and only if each tenso-
rand is. Since ϕ−1 and (ϕ−1)∗ are linear isomorphisms, part c) now follows from
part b). �

Apropos of the theorem, requiring that β#τ be left or right non-singular
seems to be a rather stringent condition. We will find it very natural, and desirable,
for β to be non-singular in connection with representation theory. See Section 9.

We shall call a tuple (K,H, τ, T,R, β) which satisfies the hypothesis of the
preceding theorem twist datum. In applications morphisms of algebras of the type
((T#K)⊗(R#H))σ, where σ is the two-cocycle given by β#τ , will be of interest
to us. As an immediate consequence of Theorem 8.1 and Proposition 5.1:

Corollary 8.2. Let K and H be Hopf algebras with bijective antipodes and let
(K,H, τ, T,R, β) and (K,H, τ, T ,R, β) be twist data. Suppose that ϕ : K −→
K and ν : H −→ H are bialgebra maps, f : T −→ T and g : R −→ R
are algebra and coalgebra maps, where f is ϕ-linear and colinear and g is ν-
linear and colinear. Assume further that τ◦(ϕ⊗ν) = τ and β◦(f⊗g) = β. Then
(β#τ )◦((f#ϕ)⊗(g#ν)) = β#τ . In particular

(f#ϕ)⊗(g#ν) :
(

(T#K)⊗(R#H)
)
σ
−→

(
(T#K)⊗(R#H)

)
σ

is a bialgebra map. �

8.2. The fundamental case U = B(W )#K and A = B(V )#H

We specialize the results of the preceding section to the case of most interest to
us: when U = B(W )#K and A = B(V )#H are biproducts of Nichols algebras
with Hopf algebras having bijective antipodes. We are able to express assumptions
involving B(W ) and B(V ) in terms of W and V .

Theorem 8.3. Let K and H be Hopf algebras with bijective antipodes and let τ :
K⊗H −→ k be a linear form which satisfies (A.1)–(A.4). Suppose W ∈ K

KYD,
V ∈ H

HYD, β : W⊗V −→ k is a linear form, and τ and β satisfy (C.1)–(C.2).
Then:

a) (K,H, τ,B(W ),B(V ),B(β)) is a twist datum.
b) The linear form B(β)#τ : (B(W )#K)⊗(B(V )#H) −→ k satisfies (A.1)–

(A.4).

Proof. The form B(β) : B(W )⊗B(V ) −→ k of Corollary 4.3 satisfies the hypoth-
esis of Theorem 8.1. �

We shall call a tuple (K,H, τ,W, V, β) which satisfies the hypothesis of
the preceding theorem Yetter-Drinfel’d twist datum. By the preceding theorem
if (K,H, τ,W, V, β) is a Yetter-Drinfel’d twist datum then

(K,H, τ,B(W ),B(V ),B(β))

is a twist datum. We now turn our attention to morphisms.
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Proposition 8.4. Let K, H be Hopf algebras with bijective antipodes and

(K,H, τ,W, V, β) and (K,H, τ,W, V , β)

be Yetter-Drinfel’d twist data. Suppose that ϕ : K −→ K and ν : H −→ H are
bialgebra maps which satisfy τ◦(ϕ⊗ν) = τ . Let f : W −→ W be ϕ-linear and
colinear, let g : V −→ V be ν-linear and colinear, and suppose that β◦(f⊗g) = β.
Then

F :
(

(B(W )#K)⊗(B(V )#H)
)
σ
−→

(
(B(W )#K)⊗(B(V )#H)

)
σ

is a bialgebra map, where F = (B(f)#ϕ)⊗(B(g)#ν).

Proof. First of all we observe that

(K,H, τ,B(W ),B(V ),B(β)) and (K,H, τ,B(W ),B(V ),B(β))

are twist data by part a) of Theorem 8.3. By assumption τ◦(ϕ⊗ν) = τ . Since
β◦(f⊗g) = β, it follows by Corollary 4.3 that B(β)◦(B(f)⊗B(g)) = B(β). At
this point we apply Corollary 8.2 to complete the proof. �

Let (K,H, τ,W, V, β) be a Yetter-Drinfel’d twist datum. Axiom (C.1) implies
that V ⊥ is a left K-submodule of W and axiom (C.2) implies that W⊥ is a left H-
submodule of V . Thus the projections πW : W −→W/V ⊥ and πV : V −→ V/W⊥

are module maps. If V ⊥ is a left K-subcomodule of W then πW is also a left
K-comodule map and likewise if W⊥ is a left H-subcomodule of V then πV is also
a left H-comodule map.

Suppose that V ⊥ and W⊥ are subcomodules. By part b) of Corollary 1.3
note that B(πW ) : B(W ) −→ B(W/V ⊥) and B(πV ) : B(V ) −→ B(V/W⊥) are
onto since πW and πV are. Recall that the linear form β : W/V ⊥⊗V/W⊥ −→ k
determined by β◦(πW⊗πV ) = β is non-singular. With ϕ, ν the identity, f = πW ,
and g = πV , the preceding proposition gives:

Corollary 8.5. Let K, H be Hopf algebras with bijective antipodes and let
(K,H, τ,W, V, β) be a Yetter-Drinfel’d twist datum. Suppose that V ⊥ and W⊥ are
subcomodules of W and V respectively. Let πW : W −→ W/V ⊥ and πV : V −→
V/W⊥ be the projections. Then (K,H, τ,W/V ⊥, V/W⊥, β) is a Yetter-Drinfel’d
twist datum and

(
(B(W )#K)⊗(B(V )#H)

)
σ

F−→
(

(B(W/V ⊥)#K)⊗(B(V/W⊥)#H)
)
σ

is a surjective bialgebra map, where F = (B(πW )#IK)⊗(B(πV )#IH). �

The preceding corollary can be used in our study of a class of irreducible
representations of an extensive class of examples of two-cocycle twists in [11]. We
will be able to replace the domain of F by its image and thus assume that β is
non-singular. The non-singularity of β has very interesting consequences.
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9. The case when K and H are group algebras of abelian groups

Here we specialize the results of Section 8.2 to a very typical case. Let Γ be an
abelian group. We set k[Γ]

k[Γ]YD = Γ
ΓYD. Suppose that V ∈ Γ

ΓYD, g ∈ Γ, and χ ∈ Γ̂.
We set

Vg = {v ∈ V | δ(v) = g⊗v}
and

V χ
g = {v ∈ Vg | h·v = χ(h)v for all h ∈ Γ}.

A Yetter-Drinfel’d module in Γ
ΓYD can be described as a Γ-graded vector space

which is a Γ-module such that all g-homogeneous components g ∈ Γ are stable
under the Γ-action.

In this section we fix abelian groups Λ and Γ, positive integers n and m,
elements z1, . . . , zm ∈ Λ and g1, . . . , gn ∈ Γ, and nontrivial characters η1, . . . , ηm ∈
Λ̂ and χ1, . . . , χn ∈ Γ̂. Suppose W ∈ Λ

ΛYD has basis ui ∈ W ηi
zi
, 1 ≤ i ≤ m, and

that V ∈ Γ
ΓYD has basis aj ∈ V

χj
gj , 1 ≤ j ≤ n.

For any character Ψ ∈ Γ̂ we define the algebra map

Ψ̃ : B(V )#k[Γ] → k

by Ψ̃(aj#1) = 0, Ψ̃(1#g) = Ψ(g) for all 1 ≤ j ≤ n and g ∈ Γ.
The following corollaries will play a useful role in [11, Lemma 3.1].

Corollary 9.1. In addition to the above, let ϕ : Λ −→ Γ̂ be a group homomorphism,
l1, . . . , lm ∈ k, and s : {1, . . . ,m} −→ {1, . . . , n} be a function.

Let τ : k[Λ]⊗ k[Γ] −→ k and β : W⊗V −→ k be the linear forms defined by

τ(z ⊗ g) = ϕ(z)(g) and β(ui⊗aj) = liδs(i),j (17)

for all z ∈ Λ, g ∈ Γ, 1 ≤ i ≤ m and 1 ≤ j ≤ n. Assume further that for all
1 ≤ i ≤ m with λi �= 0 and z ∈ Λ

ϕ(zi) = χ−1
s(i) and ηi(z) = ϕ(z)(gs(i)). (18)

Then (k[Λ], k[Γ], τ,W, V, β) is a Yetter-Drinfel’d twist datum, and the correspond-
ing Hopf algebra map

Φ = (B(β)#τ)� : B(W )#k[Λ] −→ (B(V )#k[Γ])o cop

can be described as follows:
For all 1 ≤ i ≤ m let γi = ϕ̃(zi), and let δi : B(V )#k[Γ] −→ k be the unique

(ε, γi)-derivation with δi(aj#1) = β(ui ⊗ aj), δi(1#g) = 0 for all 1 ≤ j ≤ n and
g ∈ Γ. The algebra map Φ is determined by

Φ(1#z) = ϕ̃(z), Φ(ui#1) = δi

for all z ∈ Λ and 1 ≤ i ≤ m.
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Proof. We first show that (k[Λ], k[Γ], τ,W, V, β) is a Yetter-Drinfel’d twist datum.
Since ϕ is a group homomorphism τ satisfies (1), an equivalent of (A.1)–(A.4).
Note that (C.2) holds for τ and β if and only if for all 1 ≤ i ≤ m and 1 ≤ j ≤ n
the equation β(ui↼τr(g), aj) = β(ui, S−1(g)·aj) holds for all g ∈ Γ. The lat-
ter is τr(g)(zi)β(ui, aj) = β(ui, χj(g−1)aj), or τ�(zi)(g)liδs(i),j = χj(g−1)liδs(i),j ,
an equivalent of the first equation of (18). Next we note that (C.1) is equiv-
alent to β(z·ui, aj) = β(ui, aj↼τ�(z)) which is the same as β(ηi(z)ui, aj) =
β(ui, τ�(z)(gj)aj), or ηi(z)liδs(i),j = ϕ(z)(gj)liδs(i),j , for all z ∈ Λ, 1 ≤ i ≤ m,
and 1 ≤ j ≤ n. The latter is equivalent to the second equation of (18).

We have shown that (k[Λ], k[Γ], τ,W, V, β) is a Yetter-Drinfel’d twist datum,
and the corollary follows by Theorem 8.3 and Theorem 8.1. �

Corollary 9.2. Assume the situation of Corollary 9.1. Let I ′ = {1 ≤ i ≤ m | li �=
0}, and assume that the restriction of s to I ′ is injective. Let V ′ ⊆ V and W ′ ⊆ W
be the Yetter-Drinfel’d submodules with bases as(i), i ∈ I ′, and ui, i ∈ I ′.

Then
a) (k[Λ], k[Γ], τ,W ′, V ′, β′) is a Yetter-Drinfel’d twist datum. V ⊥ ⊆ W and

W⊥ ⊆ V are Yetter-Drinfel’d submodules, and the inclusion maps W ′ ⊆ W
and V ′ ⊆ V define isomorphisms W ′ ∼= W/V ⊥ and V ′ ∼= V/W⊥. The re-
striction

β′ : W ′ ⊗ V ′ → k

of β is nondegenerate.
b) The projections πW : W → W ′, πV : V → V ′ define a surjective bialgebra

map
(

(B(W )#k[Λ])⊗(B(V )#k[Γ])
)
σ

F→
(

(B(W ′)#k[Λ])⊗(B(V ′)#k[Γ])
)
σ′

given by
F = (B(πW )#id)⊗(B(πV )#id).

Proof. By Corollary 9.1 (k[Λ], k[Γ], τ,W, V, β) is a Yetter-Drinfel’d twist datum.
Thus (k[Λ], k[Γ], τ,W ′, V ′, β′) is a Yetter-Drinfel’d twist datum as well.

To show that β′ is non-singular we compute W⊥ and V ⊥. Suppose that
a ∈ V and write a =

∑n
j=1 xjaj , where x1, . . . , xn ∈ k. Then a ∈ W⊥ if and only

if β(ui,
∑n

j=1 xjaj) = 0, or
∑n

j=1 xj liδs(i),j = 0, for all 1 ≤ i ≤ m. Therefore W⊥

has basis {aj | j ∈ {1, . . . , n}\s(I ′)}. We have shown that W⊥⊕V ′ = V .
Let u ∈ W and write u =

∑m
i=1 yiui where y1, . . . , ym ∈ k. Then u ∈ V ⊥

if and only if β(
∑m

i=1 yiui, aj) = 0, or
∑m

i=1 yiliδs(i),j = 0, for all 1 ≤ j ≤ n.
Since s is one-one we conclude that u ∈ V ⊥ if and only if yili = 0 for all i ∈ I ′.
Thus V ⊥ has basis {ui | i ∈ {1, . . . ,m}\I ′}. Thus β′ is non-singular, and part a)
is established.

Note that the maps πW : W −→ W ′ and πV : V −→ V ′ of Yetter-Drinfel’d
modules can be identified with the projections W −→ W/V ⊥ and V −→ V/W⊥

respectively. At this point we apply Corollary 8.5 to complete the proof. �
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