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Preface

This book is about Monte Carlo methods and close relatives thereof. It is about the application c
traditional and state-of-the-art sampling techniques to problems encountered in the world of mode
finance. The approach | take is to explain methods alongside actual examples that | encountered in
professional working day. This is why there may be a bias towards applications to investment bankir
and derivatives pricing in particular. However, many of the methods presented here equally apply 1
similar mathematical problems that arise in market risk management, credit risk assessment, the ins
ance businesses, strategic management consultancy, and other areas where the effect of many unkr
variables (in the sense that we can only make assumptions about their probability distributions) is
be evaluated.

The purpose of this book is to be an introduction to the basic Monte Carlo techniques used nowadz
by expert practitioners in the field. There are so many areas of Monte Carlo methods in finance that a
attempt to try and provide a book on the subject that is both introduetadycomprehensive would
have meant many years of (part-time) writing. Instead, in order to fill the need for an introductory tex
more timely, | decided to rather focus on the issues most pressing to any novice to financial Mont
Carlo simulations and to omit many of the more advanced topics. The subjects not covered incluc
the whole family of Markov Chain techniques, and almost all of the recent advances in Monte Carl
methods tailored specifically for the pricing of American, Bermudan, or any other derivative contrac
whose ideal value is given by the maximal (discounted) expected payoff over all possible exercis
strategy, i.e. by finding the truly optimal exercise strategy. An exception to this is perhaps the ident
fication of a suitable exercise boundary optimisation for the purpose of Bermudan swaption pricing i
the Brace-Gatarek-Musiela/Jamshidian framework presented in cli@ptét the same time, though,
| have tried to include most of the presently used techniques that enable the practitioner to create ratl
powerful Monte Carlo simulation applications indeed.

Whilst | always endeavour to explain the basic principles of the particular problem to which a tech
nique is applied, this book is not meant to be an introduction to financial mathematics. | assume that t
reader either has background knowledge in the relevant areas, or could follow up the given referenc
for a deeper understanding of the financial and/or economical reasoning behind specific mathemati
assumptions. After all, this is not a book about the reasoning behind option pricing. This is a boo
about mathematical and numerical techniques that may be used for the solution of the mathematit
equations that were derived by experts in financial theory and economics. | do not attempt to give
justification for the assumption of complete markets, market efficiency, specific stochastic differentic

iX



X Preface

equations, etc.; | leave this up to the authors of the excellent books on those issues subject in the lit-
erature Hul97, Mer90, Reb98 Wil98]. Instead | have focussed on the implementational aspects of
Monte Carlo methods. Any Monte Carlo method will invariable have to run on a computing device,
and this means that numerical issues can be of paramount importance. In order for this book to be
of some practical value to the practitioner having to implement Monte Carlo methods, | made the at-
tempt to link the fundamental concepts of any one technique directly to the algorithm that has to be
programmed, and often explicitly in terms of the C++ language, often taking into account aspects of
numerical analysis such as round-off error propagation etc.

The nature of the subject of this book is strongly entwined with the concepinviergenceln gen-
eral, Monte Carlo methods give us at best a statistical error estimate. This is in contrast to various other
numerical methods. A Monte Carlo calculation is typically of the following structure: carry out the
same procedure many times, take into account all of the individual results, and summarise them into an
overall approximation to the problem in question. For most Monte Carlo methods (in particular those
providing serial decorrelation of the individual results), we can choose any subset of the individual
results and summarise them to obtain an estimate. The numerically exact solution will be approached
by the method only as we iterate the procedure more and more times, eventually converging at infin-
ity. Clearly, we are not just interested in a method to converge to the correct answer after an infinite
amount of calculation time, but rather we wish to have a good approximation quickly. Therefore, once
we are satisfied that a particular Monte Carlo method workke limit, we are naturally interested in
its convergence behaviouor, more specifically, itsonvergence speed good part of this book is
dedicated to various techniques and tricks to improve the convergence speed of Monte Carlo methods
and their relatives. In order to present the reader not just with a description of the algorithms, but also
to foster an intuitive grasp of the potential benefit from the implementation of a specific technique,
we have attempted to include many diagrams of typical convergence behaviour: frequently these are
used to highlight the differences between the performances of different methods. In particular where
such comparisons are made, we often display the convergence behaviour as a function of cpu time
used by the different methods since the human user’s utility is much more closely related to the time
elapsed until a calculation of sufficient accuracy has been completed rather than to the number of actual
iterations carried out.

You may wonder why there is no explicit chapter on option pricing, considering that that’s one of
the most immediate applications of Monte Carlo methods in finance. As it happens, themesn'’t
chapter on option pricing, buverychapter is written with option pricing in the mind. My foremost
use of Monte Carlo methods has been in the area of derivatives pricing. Since a lot of the examples |
give are directly with respect to option valuation, | considered it unnecessary to have a chapter on the
subject by itself, only to repeat what is written in other chapters already. | hope the reader will agree
with me.
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Disclaimer

In this book, | have tried to give an introductory overview of Monte Carlo methods in finance known

to expert practitioners, and, in places, | may not always have given due credit to all the pioneers who
contributed to this borderline area of mathematics and finance. Wherever | fail to give explicit reference
to the original inventor of any given method, this is not to mean | wish to pretend that it is my own
development, it is merely my own laxness about the whole issue of referencing and citations. In fact,

I may use phrases like ‘I present below’ etc. repeatedly, but they just stand for their literal meaning,
namely that | present, not that | claim having invented the particular method. | did consider it much
more important to focus on an as-good-as-possible explanation of the techniques and mathematics,
rather than spending the time on acribic research through a whole string of references to establish who
actually was the originator of the subject at hand. | include a rather-too-long list of references at the
end of the book, and | did try to reference and cite wherever | could see a direct link, but I may have
failed many great researchers in the field of Monte Carlo methods by not referencing them in the right
places, or not referencing them at &flea culpa, mea maxima culpa



Mathematical Notation

int[x]
ANB

m XORn

0;yf

the largest integer that is equal to or less than

A or B are true, or both.

bitwise exlusive OR operation on the binary representation of the two in-
tegersn andn, also known as binary addition without carry.

the same as XOR.

is proportional to.

the inverse of the functioli(x), i.e. the unique solution farin f(y) = =,
If it exists.

has distribution, i.e. meets the righ-hand-side probability density law.
the set of integers including O.

the set of natural numbers, i.e. the positive integeps. . .

the set of real numbers.

is defined as.

is identically equal to.

Is approximately.

transpose of the vectar.
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Covy[X, Y]

Corry [ X, Y]

|1 X1

U(a,b)

1 {expression}

B(S, K, a\/T)

Mathematical Notation

the probability of some even#, occurring.

the expectation of the random variablewith distribution densityy.

the same ak [ X].

the variance of the random variablewith distribution densityy.

the covariance of the random variablésandY under the joint distribution
density)(X,Y).

the correlation of the random variabl@sandY under the joint distribu-
tion densityy) (X, Y).

the L,-norm of X defined as|X||, := ¢/E[|X]"].

the uniform distribution with equal probability densiﬁfg everywhere on
the open intervala, b).

the cumulative normal distribution with mearand standard deviatian

2

the standard normal distribution density function, @:6z) = \/%e_%z

the standard cumulative normal distribution probability function,

i.e. N(z) = jcp(z’) dz’.

the inverse cumulative normal probability function. i.g2=N=p —
N~'(p) = 2.

the Kronecker symbol which isif ¢ = j, otherwise).

the Dirac density whose singularity is located:gt

the Heaviside function whose discontinuity is locatedat

The connection to the Dirac density/i$e — zo) = [ 6(2/ — xp) do’.

x'=—o00

1if expression is true, otherwis®.

the Black call option formula.



Mathematical Notation XV

B(S, K, a\/T) — 5N (# + gaﬁ) KN (1“55/;) . %aﬁ).

Ok (0, S, K, T) the Black call option implied volatility, i.e.
B(S, K,a\/T) — 0 = Opealv, 8, K, T) =0

o(t) some kind of instantaneous volatility.

a(T) an implied volatility given by the root mean square of its instantaneous
counterpart, i.e6(T) = [ o(u-T) du.

B(p,q) the Beta function, also known as Euler’s integral of the first kind, is defined
as B(p,q) := [, ""1(1 — )4 \dt.

B.(p,q) the incomplete Beta function, defined ag(B q) := [, t*~'(1 — )7 'dt.

['(x) the Gamma function, also known as Euler’s integral of the second kind, is

defined ad’(z) := [~ e ft* ! dt.

Its relation to the Beta function is(B, ¢) = FF(ZES;)

Note thatl'(n + 1) = n! forn € N.

[(z,y) the incomplete Gamma function, is definedds, y) := [~ e "t" ' dt.
Ce Euler’s constant is defined ag & lim Kki %) —In n] and is approx-
n=oo =1
imately G ~ 0.577215664901532.

((s) Euler’s Zeta function defined &$s) := ,}L@oé =. Itcan also be repres-
ented as the following infinite produgts) = [] 1_;,5 wherep takes on
the values of all prime numbers.

8(3{ (;”))) the Jacobian matrix of the transformation— f(x).

| Al the determinant of the matrix.
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Chapter 1
Introduction

We are on the verge of a new era of financial computing. With the arrival of ever faster desktoj
computers, clustering technology, and the tools to utilize spare cpu cycles from a variety of source
computer processing power has expanded dramatically. This expansion, coupled with the developmi
of new numerical methods is making techniques which were previously considered to be prohibitivel
computationally expensive not only feasible but the method of choice. There are countless exampl
of mathematical problems faced by the quantitative analyst which used to require employing eithe
analytical approximations or numerical truncations. This usually meant that the mathematical mod
that was ideally desired could not be used given the constraints of having to integrate its implementati
into existing systems which would not tolerate long calculation times for individual models. Even
where integration into a corporate IT infrastructure was not required, the user of a model might hav
limited patience or business needs that necessitate a comparatively speedy response. Whilst a ft
office trader in a securities and derivatives house would usually not be concerned if a model built fc
him by his quantitative support team were to take anything between a few seconds to possibly seve
minutes in order to price a complex structure with calibration to market data, having to wait severe
hours would make the model unviable.

This is the reason that to date, when the choice between a conceptually superior but numerically le
tractable model and one that lends itself to easy analytical evaluation has to be made, very often, t
easier model is chosen even though everyone agrees that it oversimplifies the matter at hand. With-
aid of ever faster computers and improved Monte Carlo techniques, however, we are nowadays mc
often than not in the position to use the conceptually superior and more realistic modelling approach

Even where we appear to have analytical solutions it is often desirable to have an alternative in
plementation that is supposed to give the same answer. The reason for this is that very often the fi
formulee of the analytical solution, although mathematically of very elegant appeal, prove to be nt
merically difficult to evaluate since they still involve one or two one-dimensional integrations, contour
integrals in the complex plane, back transformations from Laplace- or Fourier space, or simply th
evaluation of special functions that are numerically very difficult to produce, such as the confluen
hypergeometric functions or the modified Bessel function of the second kind for large parameter:

1



2 Introduction

Examples of the above include option pricing for generic distributia@®d99], stochastic volatility
models Hes93, analytical approximations for Asian optionSNIW98], Variance Gamma processes
[MS90, MM91, MCC9§,, or the Constant Elasticity of Variance process.

And finally, there are myriads of situations when we are very satisfied with a certain approximation
but would like to have a Monte Carlo simulation tool for comparison, just in case. A good example
for this is the difference betweearontinuously monitore@nddiscretely monitoregayoff functions
such as barrier or American style digital options. There is an excellent approximation by Broadie,
Glassermann, and KoB{zK99] that relates the pric& of all simple continuous barrier contracts in
a Black-Scholes framework of constant volatilityto their discretely monitored equivalent where the
period of time between monitoring pointsisas follows. Say the barrier level as it is specified on a
term sheet of a discretely monitored contradt/isand we have an analytical formdl, = F(H.) for
the continuously monitored equivalent contract in a Black-Scholes framework setting. Then, the value
of the discretely monitored contract is approximately

«d)

Va ~ F(e"va="V" . Hy) . (1.1)
with
1
B) ) 5825071579300106702051 771641876311547290938701957... (1.2)

V271

In other words, the discretely monitored contract is approximated as a continuously monitored contract
with a shifted barrier level given by

¢«
H, ~ eV . [y . (1.3)

The sign in the exponent in equatiorisl) and (L.3) is selected according to whether the initial spot

level is above or below the threshold barrier. Barriers that are above the initial spot level need to be
upwards amended when we go from discrete to continuous monitoring, and so the positive sign is used.
For barriers that need to be crossed from above for an event to be triggered, the negative sign applies.
This approximation works extremely well as longras significantly smaller than the remaining time

to maturity of the contract and as long as the current spot level is not too close to the barrier, and most
exotic derivatives traders are happy to use it under those circumstances. When a given contract comes
close to its expiry, though, or the spot level gets dangerously close to a barrier, traders frequently wish
to know to what extent would a different, not-so-approximative valuation differ. In a situation like this,

a fast-convergence Monte Carlo simulation that also provides the hedge parameters, can make all the
difference for the exotic derivative trader.

The concept of random sampling as a computational means has long been established. A well-
known example is the idea to calculate the circle numbley randomly placing points in a unit square
with an enclosed circle around the centre of that square. In the limit of many samples, the ratio of

There are many good sources for exotic option formulze. One of my favouritedsi9.



3

points that happen to be inside the circle to the total number of samples apprdackesay to
computer is thus to carry out this experiment for an ever increasing number of samples, take thi
hit ratio, and multiply it by 4. An alternative method attributed to the French naturalist Comte de
Buffon [Hol59, CK85, Sch74 Ree0] is to draw parallel lines on a board at a distahbetween each
adjacent pair of them, and to throw pins of lengtiandomly onto this board. The ratio of all the pins
crossing a line to all those that were thrown should converge to

0
fog da
for large numbers of pins. Before the invention of fast computing machines, however, these approact
were rather time-consuming and cumbersome.

% cos o dav 2
f— - (1.4)

The history of Monte Carlo methods as a computational method for the calculation of expectation

on potentially high-dimensional domains starts in the mid-1940s with the arrival of the first program:
mable computers. The main originators are considered to be the American mathematicians John v
Neumann, Stanislav Ulam, and Nicholas Metropolis/iN47, MU49, Sob94. The first published
mentioning of the name “Monte Carlo Method” is an article by Metropolis and Ulam in 19481P].
In this article, the authors explain how they view the calculation of multi-dimensional integrals res-
ulting from the analysis of the transport problem of radiation and energetic particles governed by th
Fokker-Planck equation as a statistical problem. Instead of attempting to directly carry out the higk
dimensional integrations involving the transition probabilities of many possible intermediate event
and states by the use of lattice methods, they sampled single chains of events. The name of the met
is only mentioned casually:

The idea of using a statistical approach at which we hinted in the preceding examples is some-
times referred to as the Monte Carlo method.

In fact, the term had been used before amongst those scientist in allusion to the principality of Monac
that is so famous for its casinos and to the fact that the roulette wheel represented the archetypi
random number generator. Another reason why this allusion is rather appropriate is that some of t|
early mathematicians who contributed greatly to the development of statistics and probability theor
did so in the pursuit of gaining riches at the gambling tables. In the same paper, the authors al
establish the result that the Monte Carlo method enables us to evaluate the expectations of function
of certain variables without the knowledge of the distribution of the variables themselves: all that i
needed is a description of the process that generates those variables, and off we go! What's ma
in 1949 Metropolis and Ulam already point out that the Monte Carlo method is easily amenable tc
parallelised computing. The only problem with that was, as one of my colleagues once put it, the
few people had more than one machine the size of a tennisaalied “a computer” readily at their
disposal at the time.

2This is a joke, | don't actually know what size the computer(s) used by von Neumann, Metropolis, and Ulam were. |
is probably safe to assume, though, that they were substantially larger than today’s desktop PCs, and they certainly wel
lot harder to come by.



4 Introduction

In 1947, a Monte Carlo simulation involved many problems, not only the sheer size of the machine.
Apart from the fact that the mathematical relations between the partial differential equations describing
the problems the scientists were investigating, the associated multi-dimensional integrals, and their
formulation as a stochastic process that can be readily simulated were only just being established, the
actual simulation was a rather formidable enterprise itself. In those days, a computer was a rather large
machine indeed, and to operate it involved severathine operatorsThe most advanced input/output
device available was a punch card reader and a card puncher. The generation of random numbers was
a huge problem and many different ways were explored. It may seem somewhat unreal when we think
about it now, but one of the approaches taken at the time was as follows: A special project codenamed
RAND was set upBro48 Bro51] whose aim, amongst others, was to accumulate a set of numbers that
were considered to be sufficiently random for Monte Carlo simulations. RAND devised an electronic
roulette wheel by combining a random frequency pulse source with a constant frequencyxdulse (

Hz) which provided about 100,000 pulses per second. The regularised pulses were passed to a five-
place binary counter which effectively resulted in the equivalent of a roulette wheel with 32 positions.
After a binary to decimal conversion, these numbers were then fed to an IBM punch, thus generating
cards of random digits. Exhaustive tests on the so generated set of numbers revealed some slight bias
and they were later modified by shuffling and other further processing until they finally met the applied
statistical testsgro51]. However, let me just give you a feeling for how serious the whole business was
with the following quote taken from George Brown'’s repdt$51] on the RAND project published

in the National Bureau of Standard’s booklstdn51] on the Monte Carlo Method in 1951.

Production of random numbers really began on April 29, 1947, and by May 21 there were half
a million digits generated. [...] By July 7 there were a million digits available [...]. [...] At this
point we had our original million digits, 20,000 IBM cards with 50 digits to a card, [...].

Fortunately, computers, Monte Carlo methods, and algorithms for number generation have come a long
way since, and their application to the mathematical problems encountered in modern finance is what
this book is about.



Chapter 2

The mathematics behind Monte Carlo
methods

The theoretical understanding of Monte Carlo methods draws on various branches of mathematics.
this chapter, a few useful facts and results from the areas of probability, statistics, calculus, and line
algebra are summarised. Some of them are going to come in handy in the following chapters, and t
remainder is presented here for reference. Most readers will already be familiar with the contents «
this chapter, and may as well skip it...

2.1 Afew basic terms in probability and statistics

A random experimenis a process or action subject to non-deterministic uncertainty. We call the
outcome of a random experimentieaw or avariate from a distribution. An example for this would

the flipping of a coin, or to be precise the face shown once the coin has come to mistridution
densityis a generalised function that assidikelihood or probability densityto all possible results

of a random experiment. A synonym fdistribution densityis probability density functionFor our
purposes, generalised functiowan be an ordinary function, or a linear combination of an ordinary
function and any finite number d@irac densitiesi(x — z). The Dirac densityis the equivalent of
assigning a finite probability to a single number on a continuous interval. This means, the Dirac densi
d(z — xo) is zero everywhere where it is defined, and strictly speaking undefined &towever, its

integral is given by théleaviside functioni.e.h(z —z¢) = [ §(2' —x0) da’, which is zero for: < z

r/=—o00

and one forr > .

The relationship between the probability that the outcomef a random experiment is an element
of some se&S and the distribution density(z) of the random experiment is

Priz € §] = /Sw(x) dx . (2.1)

5
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We call the set of all attainable outcomé&sof a random experiment thdomainD(X) of the
random experiment WheneverD(X) is an ordered set, i.e. when we can decide whether any one
element is less than any of the other element®X ), we define theeumulative probability function
or justcumulativefor short as

W) — /w(:c’)dx’ — PriX <a] . 2.2)
z/=inf(D)

All distribution densities are normalised, i.e.

/w(x) dr=1. (2.3)
D

Note that in the probability sciences the cumulative is also referred to plainly asstnbution func-
tion or simply thedistribution Since this can lead to situations of ambiguity, | always explicitly state
whether | am talking about the distribution density or the cumulative.

The expected valuef a quantity subject to uncertainty is the probability weighted average. Our
notation for the expected value of a quantftyvith respect to a probability densityis

E,[f] : expected value of with respect ta). (2.4)

Very often, there is no ambiguity about the relevant distribution. In this case we may jusBjfjte
Alternatively, there may be a parametric description of the distributiofi. ofrhis means thaf is
actually a function of some other uncertain variabJeGiven the distribution density af, say(x),
we would denote the expectation pBSE () |. This is just to say

/f (2.5)

Analogously, we will need to make statements about the variance of a given uncertain gfiantity
intuitively this is the variablity of a quantity from its expected value. The variancgéisfdenoted by
V[f]. Itis defined by

VIf] = E[(f -El/)] = E[f*] - ELF)" . (2.6)
Thestandard deviatiomf a random variate or distribution is defined as the square root of its variance.

Thecovarianceof two quantitiesf andg is defined as

Cov(f,g] = E[f-g]—E[f]-Elg] (2.7)
and based on covariance is the concept of linear correlation
Cov(/f, d]
VIfIVIg]
The correlation coefficient is by construction always in the intejral 1].

Corr|f,g| = (2.8)

Then-th moment of a distributiors defined as

Ev@lz"] = /m”@b(m) dz . (2.9)
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Jensen’s inequality

For any convex functiog(x) and any distribution density(x) the following inequality holds:

Eulg(X)] > g (E4[X]) (2.10)
Holder’s inequality
For any two random variate’ andY’,
E[XY] < [IX]lp - IVl 2, (2.11)
foranyp > 1.
Minkowski’s inequality
For any two random variates andY’,
X + Yl < I XTlp + 1Yl (2.12)

foranyp > 1.

2.2 Monte Carlo simulations

The most common use of Monte Carlo simulations in finance is when we need to calculate an expect
value of a functionf () given a specified distribution density z) overxz € R,

v = Bulf@) = [fep@ . 213

In a strictly mathematical senddonte Carlo maximisatiofi.e. the search for the maximum value of
f(z) for z in a given domainD) too, can be formulated as in equatichl3d. This can be seen as
follows. Provided thaf is non-negative everywhere in, define

1y = \/ /D @) b(a)dom (2.14)

The maximum off in D is then given bylim,_ .., m,. Whilst in practice one would not use this limit
proceduréto determine the actual maximum of a functiim a domainD, it is a very useful formal

trick when the objective is to derive a partial differential equation for the value of a derivative contrac
that depends on the maximum value of an underlying asset over a given time inten@al] [

The easiest form dflonte Carlo integratiorof integrals like equation.13 can be summarised as
follows.

10ne would, of course, simply keep track of the maximum valug $éen thus far as we iterate through more and more
samples.
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- Establish a procedure of drawing variatefrom the target distribution density(x).

- Set up a running sum variabdeuble RuningSum=0; , a running average variable
double RunningAverage; , and a counter variablesigned long i=0;

- Draw a variate vectar; and evaluatg; := f(x;).
- Add the computed function value RunningSum .
- Incrementi, i.e. ++i; .

- Set the running average RunningAverage = RunningSuml/i;

This gives us thé&lonte Carlo estimator

N

iy =—> fl@) (2.15)

=1

- Keep iterating until either the required number of iterations has been carried out, or a specific
error estimate (see secti@r/) has decreased below a predetermined threshold.

For more sophisticated methods when a procedure to draw variates exactly from the target distribution
() is either not available or computationally too expensive, see ch@pter

2.2.1 Monte Carlo supremacy

The concept of Monte Carlo integration becomes ever more appealing as the dimensionality of the
domain increases. How this can be becomes clear as we look at the convergence behaviour of lattice
methods in comparison to Monte Carlo methods. For a givdimensional hypercube of volum¢

the errore | ahice Of @pproximating the integral of a given function over the hypercube’s interior by linear
approximation decreases lik&(\?). In a regular grid over d dimensional domai®, the number of
points N relates to the subdivision lengthlike

N o (1) (2.16)
which implies
Aox N (2.17)

Thus, for a fixed numbeW of evaluations of the function which is to be integrated ehdimensional
domain, the relative error of a lattice method related’tandd according to:

_2
ELatiice( N, d) oc N~ (2.18)
Picking the sample points at random, however, the relative error relatéstwd according to

emc(N, d) oc N~ 2 (2.19)
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and is thusndependent of the dimensionalitijote that equation2(18 and .19 imply that in the
limit of many sampling points, the Monte Carlo method breaks even with lattice techniques asdf
and outperforms regular grid methods tbr- 4. For much higher dimensionalities, lattice methods
become utterly unusable whence the teurse of dimensionality

2.2.2 Multidimensional integration

This brings us to the question: whathe total mathematical dimensionality of a Monte Carlo simula-
tion? Well, for simple problems such as the expected return from a portfolio given a multi-dimensiong
joint distribution for the returns from all of the underlying assets out to a specific time horizon, it
would just be the number of those underlying assets. However, if we are carrying out a Monte Carl
evaluation of an expectation of a function(al) of discretised paths of a set of financial assets over sor
monitoring dates, then the state veciorepresents the realisations of all involved assets at all future
times of relevance, and the densityx) is thejoint distribution densityof all those realisations. The
dimensionality of the integration domain is then

d=k-1. (2.20)

with £ being the number of assets anoking the number of time horizons in the time discretisation of
the evolution paths.

2.3 Some common distributions

In general, most of the problems that we deal with when we resort to Monte Carlo methods are bas
on a quantity whose distribution is more or less well known analytically from the mathematical for-
mulation of the chosen model. In this section, some of the more frequently used distributions ar
listed.

Uniform

A random experiment that can have a continuum of outcom&ghich are all equally likely oequi-
probableis said to have aniform distribution Most uniform distributions that we encounter in finance
are either on a single closed interyalb] or a single open intervdkl, b). In the former case, we say

X ~Ula,b] whichmeans D(X) = [a, ],

and in the latter
X ~U(a,b) whichmeans D(X) = [a, ] .

In either case, the probability density is given by

o) = (52 ) - Luenr
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Normal

Very often, the quantity of interest depends on underlying varidgisare normally distributed with
meany and standard deviatiom. In this case, we say that a variatehas the distributioo\V/(x, o),
i.e. X ~ N(u,0). The distribution density function is

U(x;p,0) = . S (2.21)

Of particular common usage are standard normal variates. A vafistsaid to be atandard normal
variateif

Z ~N(0,1) . (2.22)

| usually denote the standard normal distribution density function by

—_

QO(I') = \/—2_We7§x . (223)

The standard normal distribution is symmetric around the origin and thus all odd moments vanish. For
even moments, we have

E[X™] = 2 T(k+ 1 T (2m —1) —(%_1)! for k>0 2.24
[X°¥] NG +/2—J;[1 m— oo o k>0 (2.24)
The standardumulative normal probability functiois
N(z) —/ o(x')dx’ . (2.25)
The function Nx) relates to therror functionvia
N(z) = = {1 +erf (i)} (2.26)
=3 % :
and
erf(z) = 2N(V2z) — 1. (2.27)

At the time of this writing, most compiler systems provide a highly accurate and fast implementa-
tion of the error function. These implementations are usually based on rational Chebyshev interpolation
schemes for the error function which have been around for a long time, are well understood, highly
reliable, and very accurat€pd69. One such implementation is included on the accompanying CD,
just in case your compiler system and libraries lack it. Since the cumulative normal distribution func-
tion is very frequently used in financial calculations, it is advisable to implement it in terms of a highly
accurate and efficient error function by virtue of equati®r2€).

Equally, for the inverse cumulative normal functioa= N=!(p), there are several numerical imple-
mentations providing different degrees of accuracy and efficied@M94]. A very fast and accurate
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approximation is the one given by Boris Moro iM$r95. The most accurate whilst still highly
efficient implementation currently freely available, however, is probably the algorithm by Peter Ack-
lam [AckOO]. When allowing for an additional evaluation of a machine-accurate cumulative normal
distribution function, Acklam’s procedure is able to produce the inverse cumulative normal function tc
full machine accuracy by applying a second stage refinement using Halley’s m&theg Pic8g. A

C++ implementation of Acklam’s method is also included on the CD.

Bernoulli or dichotomic

A variate X is said to badichotomicor Bernoullidistributed if it can take on only two discrete values,
say A andB. Since the associated probabilities must add up to 1, we have

p:=Pr{Al=1—-Pr[B] .

Binomial

Thebinomialdistribution is generated by repeating a Bernoulli experiment;stiyes. The Binomial
variate is then the number of times that one of the two states was attained. The probabilitptiats
k times is inn repetitions of a Bernoulli experiment is

PriX = k] = (Z)pk(l — )k (2.28)

Thus, the distribution density of the Binomial variateis

o) =3 (1) =t - b). (229)

k=0

The cumulative probability function results by integration to the same sum 2s29),(only with the
Dirac densities replaced by Heaviside functions.

Geometric

The geometricdistribution describes the number of times one has to repeat a Bernoulli experimen
until stateB occurs for the first time. Since

PriX =kl =p"'(1-p), (2.30)

we have
Y(z) = P 1 —p)é(z — k) (2.31)
k=1

for the geometric distribution, and similarly with Heaviside instead of Dirac densities for the cumulat-
ive.
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Poisson

This distribution is closely related to the concept of point processes. Assume that there is a probability
intensity A that in any one time intervaltda certain event happens. In other words, the probability

of the said event occurring in any time intervalid dp = A\dt. The probability that this event has
occurredk times over a time spda, T is given by

L e AT
PriX=kl=e X

The density and cumulative result again by summing up probability-weighted Dirac densities and
Heaviside, respectively.

(2.32)

Exponential

Assume again that there is a probability of ¢ A\dt of an event occurring over any one time inter-
val. The probability density of the time one has to wait until the next event happens is given by the
exponentiabistribution density

Y(t) = re ™. (2.33)
The cumulative probability is
U(t)y=1—e™ (2.34)

and the moments of the exponential distribution are

Ep|=] ’;—L . (2.35)

Beta

Betavariates are distributed according to

['(a+ ) (1 — )Pt
D(«)L(8) B(a, 5)

for z € [0,1] and somex, 5 > 0. It can be seen as a generalisation of the uniform distribution in
the sense that it is a smooth curve on the intefwal], identically O at either end, and by a suitable
choice of the parametersandg it can be made very similar to the uniform distribution. Expectation,
variance, and moments of the beta distribution are

Y(z) = 71— 2)P 7t = (2.36)

__“ _ a v _ Lla+k)(a+f)
L e R R P N kil S Al v pvay sy s R L
The cumulative probability function of the beta distribution is
() = 2ol 0) (2.38)

B(a, §)
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Gamma

The density function of the gamma distribution reads

a—1

Y(r) = We_

forz > 0 and somey, 3 > 0. Fora = n andg = % the waiting time untiln events have occurred

8

(2.39)

in a Poisson process is gamma distributed according.89) Expectation and variance of the gamma

distribution are

EX] = op (2.40)
VIX] = aB*. (2.41)

Its cumulative is
V() =1- % . (2.42)

Chi-square

Define X as the sum of the squareswindependently drawn standard normal variates, i.e.

X =) 2z with z~N(0,1). (2.43)
k=1
The variateX follows the law of they? distribution density with, degrees of freedom
= et (2.44)
PY(x) = 7€ 2 44
[(5)22
and has the cumulative probability function
NG
U(x)=1— —12 = (2.45)
) T4

In generaly doesn’t need to be an integer. The expectation and variance are

E[X] = v (2.46)
VIX] = 2v. (2.47)

The x? distribution is a special case of the gamma distribution with v/~ andg = 2.

Student’st

Take two independent variat®ésand Z. The first oneY is a standard normal variaté ~ N (0, 1),
and the second one is drawn fromyadistribution with» degrees of freedom, i.¢Z ~ x2. Then, the
guotient

(2.48)

Sl
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satisfies Studentsdistribution

v+1

All the moments up to order exist. Since the distribution is symmetric aroundts expectation is 0.
Forv > 2, the variance and higher order even moments:fer v are

v

VIX] = (2.50)
E[X'] = % (2.51)

Forx < 0, the cumulative probability function is

B v (v, 1)

U(g) = w22 77 77 2.52
= B(h ) (252
and forz > 0 itis given by virtue of its symmetry a(z) = 1 — U(—x).
Cauchy
The Cauchy (also known as Lorentz) distribution is defined by the density function
1 1
V) =13 (2.53)
and its cumulative probability function is
1 1
U(x) = —atan(z) + = . (2.54)
s 2

The Cauchy distribution is symmetric around zero and thus all of its odd moments ateNene of
the even moments exist.

Lognormal

Define
X =¢e* (2.55)

with z being a standard normal variate- A (0, 1). The variateX follows thelognormaldistribution

1n?z

€2 o2
) = (2.56)
U(z) = N(%) (2.57)

2 This is assuming that the moments are defined by Riemann integration. This is important since the half-sided integrals
fj:; 22k 1y (z)dx for somek € N, diverge for the Cauchy distribution and thus Lebesgue integration would not result in
finite moments of odd order.
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The expectation, variance, and moments are

E[X] = e (2.58)
V[X] = e"Q(e"g—1> (2.59)
E[X'] = e (2.60)

The lognormal distribution is probably the most important function in computational finance since i
is the solution to the stochastic differential equation describing geometric Brownian motion, whict
in turn is almost always the first easy choice when the evolution of non-negative quantities is to b
modelled.

Generalised beta 2

Thegeneralised beta distribution of the second kj&d/187, CDM9(Q], or GB2 for short, is given by a
four-parameter density function

|a|l,ap71

U(x) = - (2.61)
brB(p,q) [1+ (5)"]"
fora,b, p,q,x > 0. The cumulative of the GB2 distribution can be written as
B_(s):(p:1-p—0)
U(x) = b (2.62)

(—1)"B(p, q)
Note that
- )

(1) "By(c,d) = (—1)_5_1/ R dt:/ s H(1+s)" ' ds (2.63)

0 0
for c > 0 andd < (1 — ¢) is a real positive number and can be evalutated very efficiently, e.g., by the
aid of an adaptive Gauss-Lobatto meth@dj00h GG00a Gan93.

The moments of the GB2 distribution are
B(p+sa—3)
B(p.q)
One of the very useful features of the GB2 distribution is that it allows for a large variety of shapes
that arenearly lognormalwhich is desirable when density functions are used for the extrapolation of

volatility smiles of traded options.

(2.64)

Pareto

ThePareto distributions skewed and heavy-tailed and frequently used to model rare events. Its densit
function is

bla) = — (2.65)
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for z > 1 anda > 0 and its cumulative probability function is

1
U(z)=1- —.
(z) —

All moments of order with v < a exist and are given by

a

E[X"] = —
Generalised Pareto
As a generalisation o2(65 we have
vie) = S

for z > b anda > 0 and its cumulative probability function is

The moments are

& ab®

E [X } Ca—k
for k < a.
Weibull
This distribution density is given by

A
xT) = e »
U(z) =7 5

for z > 0 and~, 5 > 0 and its cumulative probability function is

U(r)=1—€e 7
The moments are

E[X*] = 8"/ T(1+ k) .

The Weibull distribution is sometimes also referred to aditeehetdistribution.

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)
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Gumbel
The Gumbelprobability density is
() = abe (& " Faz) (2.74)
fora,b > 0 andz € R. Its cumulative is
U(r)=et"", (2.75)

The first three moments of the Gumbel distribution are

1
E[X] = —(nb+C) (2.76)

1 m?

E[X?] = = <ln2 b+ 2Celnb+ Cj + F) (2.77)
a
1 w2 m

E[X®] = = <ln3b+ 3CeInb + (3C§ + 7) Inb+Co+ Cory + 2<(3>> . (2798)
a

The number(3) ~ 1.2020569 is also known as Agry’s constant.

Generalised lambda

Thegeneralised lambda distributiais also known as thasymmetric lambda distributiorit exists in
two forms of parametrisation: the original form by Ramberg and Schmé#&&r4 RDTM79] and a
later rewritten formulationfMKL88, KDM96].

Unlike most other distributions, it is directly defined in terms of the inverse of the cumulative. In
the original parametrisatioriR[S74, this reads

U Hu) =\ + %2 (u — (1 —u)™) (2.79)

for u € [0, 1]. Its density is parametrically given hy= ¥~1() and

d

U() = {@\If—l(u)r _ B_zuxg—l LM -

\ (1—w) 1. (2.80)

The generalised lambda distribution is very popular for the fitting of data due to its tremendeous fle»
ibility. With the right choice of parameters it can be used to approximate almost all of the previously
mentioned distributions.

The moments of the generalised lambda distribution can be calculated directly as

E[X*] = /0 (U ()" du. (2.81)
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The first three moments are

1 1 1

s M - 2.82

X) AZ(MUBH Ml) -
1 1 1 202X\

E[x2?] = — [ A\2)\2 e 2MAr oy ) 83

[X°] /\3(12+2A3+1+2/\4+1 Nl ol (A3 +1, A+ 1) (2.83)
1 3N2)\2 3 A 1 1 IN2)\2 30\

ElX3] — — (3)3 112 1A2 _ ~ 3N 1o

(X7 >\§<12+1+)\3+2)\3+1+3)\3+1 YV e sy v

—3B(2As + 1, A4+ 1) — 6A0B(As + 1, A + 1) + 3B(Ag + 1,204 + 1)) . (2.84)

2.4 Kolmogorov's strong law

This fundamental result by Andrey Nikolaevich Kolmogorov was established in the 1920s and is the
main mathematical justification for the use of Monte Carlo simulations.

Convergence almost surely

Let X, X5, X3,... be a sequence of random variates, such as, for instance, the running average of a
Monte Carlo simulation. If, given sonte for all £, > 0 there exists an, such that

Pri|X, —¢&l>¢e Vn>no <n, (2.85)
then we say that the sequen{cE,,} converges almost suretg ¢ which is denoted as

X, 25¢. (2.86)

Kolmogorov’s strong law of large numbers
Given a sequence afl, i.e.independent identically distributeslariatesc; with expectation

define their running sum and average as

Sp = > & (2.88)
=1

X, — Lg, . (2.89)
n

Then,

X, 25, (2.90)
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2.5 The central limit theorem

The central limit theorem is one of the cornerstones of statistics and probability theory. It was firs
formulated by Laplace. Since then, many great mathematicians such as Chebyshev, Markov, Lyapun
Khinchin, Lindeberg, and &vy have given extensions and variations of it. For the sake of brevity, only
a rather simplified form is outlined below.

Given a sequence of independent identically distributed varfatggh expectation and variance

Ele] = & (2.91)
Vel = o (2.92)

define the running surfi,, as in .88. Then, for increasing, the composite variate

S —np
X, = 2.93
e (2.93)
converges in distributioto the standard normal distribution. We denote this as
X, 245 AN(0,1) . (2.94)

A practical example for this is the approximation of a Gaussian variate by summing up 12 uniforn
(0, 1) variates. Since the variance of uniform variates amountg 4othe denominator in.93 equals

unity and the approximation is simply the sum of twelve uniforms minus 6. Note that this is not a
highly accurate approximation and should only be used to establish ballpark estimates. A diagram
given in figure2.1for comparisop.

2.6 The continuous mapping theorem

Given a sequencgX,,, Y,,) that converges in distribution 10X, Y), i.e.
(X, Vo) 25 (X,Y) (2.95)
and lety(x, y) be a continuous map. Then

O( X, Vo) ~25 (X, V) . (2.96)

2.7 Error estimation for Monte Carlo methods

Given a Monte Carlo estimatoras the average of many individual draws of the random vaviaiee.

5 —iZN:u- (2.97)
N_Ni:1 ) .

3My thanks to Dr. Carl Seymour for carrying out the calculations for this diagram.
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Figure 2.1: Approximating a standard normal variate by taking tw&li@ 1) variates and subtract-
ing 6. The uniform number generator used for this diagram is the Mersenne Twister (see B&tion

we know that each individual evaluation of the estimator itself, for la¥gebehaves approximately
like a normal variate by virtue of the central limit theorem. Assuming that the variariéésof?, this

means

oy S N (u, %) . (2.98)

Sincevy approaches a normal distribution, a statistical measure for the uncertainty in any one
simulation result oby is given by the standard deviation@§, namely

V[iy] = Nk (2.99)

In general, we don’t actually know the varianeé of the random variaté” whose expectation we
are trying to estimate. However, by virtue of the combination of the central limit and the continuous
mapping theorem, we can use the variance of the simulation instead as an estimate for

1 < P
on = (szl?)—(ﬁzvi) (2.100)

This leads us to the definition of tlstandard error

(2.101)

EN —

sls
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Whenever the standard error is used as an error measure, it is important to remember that it is or
of statistical nature. Any single simulation can yield a result well outside the standard error. As :
matter of fact, since the total probability mass within one standard deviation either side of the centt
of the standard normal distribution is only around 68.3%, approximately every third simulation base
on random numbers will have a result outside the standard error margin around the correct solution!
addition, the standard error itself is subject to a statistical error margin. It can be shown, however, th
the standard deviation of the standard error scales’file and is thus much less significant than the
statistical nature of the standard error as a measure for expected accuracy.

2.8 The Feynman-Kac theorem

This theorem by R. Feynman and M. Kdeefy48 Kac5]] connects the solutions of a specific class
of partial differential equations to an expectation which establishes the mathematical link between tt
PDE formulation of the diffusion problems we encounter in finance, and Monte Carlo simulations.

Given the set of stochastic processes

dX; = bidt + Y aydW,; for i=1l.n, (2.102)
j=1
with formal solution
T T n
Xi(T) = Xi(t) + / bydt + / > aydw; (2.103)
t t o

any functionV' (¢, X') with boundary conditions
V(T, X) = f(X) (2.104)

that satisfies the partial differential equation

ov 1 < o*V "N OV
— — e —— = 2.1
> —I—g—l—zijZ:cUaXianjL;bzaXi kV (2.105)
with
Cij ‘= Z QifQjk (2106)
k=1
can be represented as the expectation
T 3
Vi(t,X) = E[f(XT)eft kd“—i—/gef;kd“ds] . (2.107)
t

Hereby, all of the coefficients,;, b;, £, andg can be functions both of timeand the state vector

X (t). As with most mathematical theorems, there is a whole host of additional conditions for gooc
behaviour of all the coeffients and functions involved and the reader is referred to, e.g., Karatzas al
Shreve KS9]] (page 366).
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2.9 The Moore-Penrose pseudo-inverse
The Moore-Penrose pseudo-inver&Kp5, Alb72, PTVF9Y of a matrix A € R™*™ is a very robust

way of attempting to solve linear systems that for a variety of reasons may be singular or near-singular.
It is based on the method eingular value decompositiaaf A given by

A - U - . al . (2.108)

The entries); of the diagonal matrix\ in the centre of the right hand side are called siregular
values and are guaranteed to be positive. The matricesdV are each columnwise orthonormal.
Now, define the diagonal matri® of the same dimensions Asby setting its diagonal entries to

+ for A\ >e
0; := ' (2.109)
0 for \;,<e
for some suitable round-off threshaiqwhich can reasonably safely also be set to exactly zero). We
thus obtain the Moore-Penrose pseudo-inverse:

Ayp=V-6.U" (2.110)

Using the Moore-Penrose pseudo-inverse to solve a linear systemb will result in a least-square fit
whenever the system is overdetermined and thus strictly speaking has no solution. For underdetermined
systems, it will find the one solution that has no projection onto the nullspade lof other words, it

will find the solution of least norm and thus avoid the accidental amplification or contribution of noise.

The Moore-Penrose pseudo-inverse is the method of choice whenever our objective is to find a
vector (or matrix)r that best fits

Az =b (2.111)

for some vector (or matrixp with the least possibld., norm for z. In most situations when we
encounter a singular or ill-conditioned system of this nature, this is precisely what suits us best.

An excellent reference for further details and the numerical method to compute the singular value
decomposition of any matrix i2[TVF93.



Chapter 3
Stochastic dynamics

In all aspects of life, we face having to take into account the unknown future. In the world of finance
we very often want to quantify the uncertainty of the future, or at least the financial impact of the
universe’s possible evolutions we may incur. The mathematical way to describe that a quantity cou
evolve in various ways with associated probabilities as time passes by is to say that it is subject
stochastic dynamicgGreat mathematicians have worked in this area and today we owe tremendeousl
to Gauss, Wiener, Brown, Levydt and many others for path-breaking discoveries on stochastic pro-
cesses and stochastic calculus. In this chapter, | briefly summarise some of the more important or
the quantitative analyst commonly encounters. This listis by far not comprehensive, it is merely a littl
reminder of the whole zoology of stochastic processes that has been studied by mathematician.

3.1 Brownian motion

Brownian motion is ubiquitous in quantitative finance. Wherever we model the evolution of something
into the future, the simplest assumption is to say that over any one time step the outcome only deper
on the present value of the quantity (Markov property) and that all time steps are equal, i.e. that tt
structure of the evolution process is the same at all times into the future (stationarity). If in addition t
that we demand that the quantity must evolve continuously (without jumps), we necessarily will hav
to use a Brownian process as the underlying stochastic driver of the quantity we wish to model. T¥f
reason for this is that the above set of properéiesady defines Brownian motiomhich makes it a
beautifully simple concept. This is best summarised in the following theorem takeniftara(.

Theorem 3.1.1
If Y is a continuous process with stationary independent increments, then Y is a Brownian
motion.

Harrison continues:

This beautiful theorem shows that Brownian motion can actually be defined by stationary in-
dependent increments and path continuity alone, with normality following as a consequence of

23
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these assumptions. This may do more than any other characterization to explain the significance of
Brownian motion for probabilistic modeling.

A standard Brownian motion is often also referred to ataendard Wiener processving to the
fact that it was N. Wiener in the 1920s who started the mathematical analysis of Brownian motion. A
Wiener process is formally often represented by the differential increm&nbiddiV; (indicating that
this is the increment of the Wiener process happening attjiized this notation is adopted throughout
this chapter. A standard Wiener process has the following properties:-

1. The expectation of the differential increment/dat any one point in time is zero:

E[dW,] =0 (3.1)

2. The variance of the differential incremeriigat any one point in timeis equal to the associated
differential increment in time:

V[dW;] = E[dW;?] — (E[dW;])* = E[dW}?] = dt (3.2)
This means that the sum of increments, i.e. the value of the process vafighik normally
distributed with zero mean and a standard deviatiog/of

W, = tdW; ~ N(0,/1) (3.3)

s=0

In the design of Monte Carlo algorithms we make frequently use of a more general formulation of the
second property of a Wiener process:

Tf(t) dan; ~ N |0, /Tf(t)2dt (3.4)
t=0 t=0
This results immediately from the fact that variance of a Wiener process is linearly additive. Equation
(3.9) is of fundamental importance in many applications since it enables us to bypass the numerical
solution of the stochastic integral on the left hand side and directly draw variates that represent the
distribution of the entire expression.

3.2 It0's lemma

One of the most important mathematical tricks from stochastic calculus that we use for the purpose
of transforming stochastic differential equationdt®s lemma In crude terms, it is the direct con-
sequence of the variance of a Wiener process increment over any infinitesimal time step given by
equation 8.2). 1td’s lemma states that the total differential of any given funcif¢éX ) depending on

a stochastic variabl&X € R”™ subject to the system of stochastic differential equations

dX; = bi(t, X)dt + ) an(t, X) dii, (3.5)

i=1
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is given by
n 1 n n
df = (Z(axif)bi + 5 Z (agcixjf)aikpklajl> dt + Z (Ox, f)aqg AV, (3.6)
i=1 4,9,k 0=1 i,k=1
where
E[dW.dW]
Pkl = —[ d]; ! (3.7)

is the instantaneous correlation o¥d, and d1j,.

3.3 Normal processes

Normal processes are of paramount importance in financial applications. This is not only due to tf
fact that they are generally very amenable to analytical evaluations, but also that they very often a
considered to be a very good starting point for a realistic modelling of the problem at hand. An exampl
is the celebrated Vasicek model of a mean-reverting evolution of the short interest rate towards a lon
term equilibrium distributionYas77. This model can be formulated by the stochastic differential
equation

dr =a(0 —r)dt + o diW (3.8)

with a, #, ando being constants. Given an initial value fgri.e. o = r(0), the distribution of-(¢) can
be explicitly calculated. In order to do so, we utilise the so-called metha@médtion of constants
The first step is to solve the homogeneous differential equation

dr, = a(6 — ry)dt (3.9)
to obtain
() =0+c-e™ (3.10)

for some constant. We now assume that the solution of equati8r8)is of the same form as3(10),
only thatc is not a constant. In other words, we use the Ansatz

R (3.11)
and then compare

dr=d(0+c-e ) =a(d—r)dt+e *dc (3.12)
with the original equation3.8) which gives us

de = o dW (3.13)
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and thus

t
r(t) =0+ (ro—0)e +e o [ e div.. (3.14)

s=0
By virtue of equation3.4), we can immediately write down the distributional behaviour (@§ as

P(t) = 0+ (ro — )& + oy ) = - (3.15)
2a
with z being a standard normal variate or, equivalently,
r(t) ~ N <9+ (ro —0)e ™ o 1_27 at) : (3.16)

For very small values of the mean reversion speethe Taylor expansion of the standard deviation
is ov/t. Thus, initially, the short rate appears to diffuse like a standard Wiener process, albeit with
a drift. For large values of, however, the distribution converges to a stationary formfo@, ﬁ)

This highlights that mean reverting processes of the type of equaién(élso known as Ornstein-
Uhlenbeck processes) converge to an equilibrium state for the distribution over long time scales.

Equation 8.8) can be extended to allow fat #, ando to be a function of. The distribution result-
ing from a so generalised Ornstein-Uhlenbeck process is still Gaussian and can be derived analytically
as outlined above, i.e.

df = a(t) [0(t) — fldt + o(t) dWW; (3.17)

leads to
t

t
f(t) =e AW <f0 + /a(s)@(s)eA(s)ds) + e 40 /a(s)eA(s)dVVs (3.18)
0 0
with A(s) := [ a(u)du and the distribution reads
t t
fit) ~ N {E_A(t) (fo + /a(s)@(s)eA(s)ds)] . e /02(5)62A(5)d8 : (3.19)
0 0
3.4 Lognormal processes
The immediately natural extension of normal processes are all those that can be mapped back to a
normal process. For instance, if we were interested in modelling a quarttitt is subject to a mean-
reversion effect, but cannot become negative, we could setin S and describe the behaviour 6f
indirectly by saying thay satisfies equatiorB(17). If we are then still interested in the explicit form
of the stochastic differential equation governing the dynamics,afie can apply fi’'s lemma to the
inverse transformatios’ = e’ to derive &5. This is exactly how we obtain the following stochastic
differential equation for a mean-reverting lognormal process:
ds

S
The distribution ofin S is obviously given by 3.19.

(a(t) [0(t) —In S| + %02(15)> dt + o (t)dW; (3.20)
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3.5 The Markovian Wiener process embedding dimension

Most systems of stochastic differential equations that we use for modelling of financial relevant quan
ities are of the from

df = b(t, £)dt + A(t, f) - dW, (3.21)

with f,b € R", W, € R™, A € R™™, andm < n. The functionb(t, f) is frequently called therift
of the stochastic process, and the mattix, f) may be called thelriving matrix or, following the
nomenclature of Karatzas and Shrek&p1], the dispersion matrix

Clearly, when viewed as embedded in the full state space dimensionasitpchastic systems of
the kind (3.21) are by definitiolMarkovian since none of the terms depend on the past or the future.
Still, the reader may have come across the phrase that certain modets Brarkovian, even though
they can be described by an equation liRe&(). This slightly misleading notion usually arises when
it is intended to express the fact that it is not possible to construct a recombining trgarfadhe
Wiener process dimensionality. Of course, for all processes of the for@Z4]) it is theoretically
possible to construct a recombining tree when the embedding dimensionality of the tree is chosen
ben. However, one cannot in general reduce the embedding dimension of the treeé\ithenever
it is possible, though, the full system3.21) may be calledViarkovian Wiener process embedding
dimension reducibleor simplyreducible A process of the type of equatio®.21) is reducible if there
IS a bijection

ft) <= WwW,. (3.22)

In other words, given knowledge of the exact state ofithdimensional driving Wiener process at any
one time, it must be possible to identify exactly the values of all of the state variables in the frector
This means that the process fpmust not depend on the path tH& took to get to its state at time
Only then can we assign unique transition densities to each branch-aftlmensional recombining
tree.

The above considerations arise naturally in the context of Heath-Jarrow-Morton made1824
of the yield curve. It can be shown that HIM models for the instantaneous forwardf(atéy at
time ¢ for time T" are reducible only for a very specific choice of the instantaneous volatility function
o(t,T), and the specific choice leads to what is sometimes referred to getleealised Hull-White
model. Otherwise, the Markovian embedding dimension of any HIM forward rate model is infinite,
even though only a few driving Wiener processes may be involved! Another yield curve modelling
family that is not reducible is given by the Brace-Gatarek-Musiela/Jamshidian market models whic
always require as many dimensions as there are market rates in the model due to the specific st
dependence of the BGM/J drift terms. For those problems, Monte Carlo methods are the numeric
technique of choice since the difficulties involved with high-dimensionality are negligible for Monte
Carlo methods, whilst for trees and lattice methods only a few dimensions are realistically tractable.

1The discussion can be equally adapted to cater for a PDE formulation of the solution technique. It is only for the sak
of clarity and convenience that we restrict the explanation to trees.
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3.6 Bessel processes

A BessebrocessR; of dimensionv is given by theL,-norm of ar-dimensional Wiener process and
probably owes its name to the sperical symmetry imposed by.4hreorm:

v

2
> W2,
i=1

It can be showhthat a Bessel process of dimensiopatisfies the stochastic differential equation

v—1dt
— 4+ dW¥, 3.24
> R + t ( )

generated by a one-dimensional standard Wiener pro¢€ss d

Ry = Wi = (3.23)

th —

3.7 Constant elasticity of variance processes

The constant elasticity of variangerocess Bec8Q Sch89 is given by
df =of7dW; for >0, (3.25)

whereby | have omitted any drift terms. It has been used extensively throughout all areas of financial
modelling, including equity, interest rates, commodities, and many other financial values. The reason
that the CEV process is very popular is that it can reproduce a slightly curved implied volatility skew
for plain vanilla options priced on the basis of it. Fpr< 1, the skew is negative with options at

low strikes having a higher implied volatility than those at high strikes.HFor 1, the skew resulting

from the CEV process is positive and describes the option prices observed in some commodity markets
reasonably well. The formal solutions for the SDEZ5H can be found inBBS9q. Alternatively, in

the context of the BGM modelling framework for interest rates, a good summary of the properties of
the CEV process and simple Call and Put option pricing formulas resulting from it can also be found
in [AAOO]. As for Monte Carlo simulations of the processzZ5, we will come back to the CEV
process in sectiod.3.

The CEV process has a direct relation to the Bessel process. The transformation
1
R:=—f' (3.26)
1=y

turns the SDE of the CEV process into that of a Bessel process of dimension
1—20
vV = 1_ 5
This means, that fob < g < 1/, the CEV process is equivalent to a Bessel process of a fractional
dimension between 0 and 1, and can thus be absorbed at zer®.>Féf, however, the CEV process
corresponds to a Bessel processefative dimensioand cannot attain zero.

, (3.27)

2See KS91] page 159, equation (3.16).
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An interesting question in the context of secti® s if a system ofn equations of type3.25 is
reducible to the dimensionality. of the driving Wiener procesd; € R™. Clearly fory =0orvy =1,
the process is reducible since we then have the standard normal or lognormal process, respectively
general, however, as we discussed in sed@iénfor this to be the case, we must be able to write

ft)y=FW,t) for feR" and W eR™ with m<n (3.28)
for some function”'(W,, t). The application of &’s lemma toF' then yields
dF = oy FdW + (&F + %a&VWF) dt =df = fdW = F7div . (3.29)
This means
owF =F7 (3.30)
whose solution is
F= ((1 — W + Fél‘”)) = g(t) (3.31)

for some functiory(¢) with v # 1 which we had already excluded anyway. The second condition to
be satisfied by that resulted from3.29) is

1
O F + §6WWF =0 (3.32)
which, together with3.31) implies
g(t) = —%sz’” . (3.33)

This last equation can only hold 4§fis a constant angl = 0 because otherwise we would have a pure
function of¢ on the left hand side, and a function ©o&nd W on the right hand side which clearly

is a contradiction. In other words, the CEV process is path-dependent, and a multi-dimensional CE
process driven by fewer Wiener processes than there are CEV state variables cannot be reduced.

3.8 Displaced diffusion

Another process formulation that also gives rise to an implied volatility skew, in fact very similar to
that of the CEV process, is tlisplaced diffusioprocessRub83

dS = puSdt + Odisplaced diffusio,GS + 9) div . (3.34)
If we use the map

0= —logy(7) - So . (3.35)
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the displaced diffusion process can be used as a very good numerical proxy for the skew one would
obtain from the CEV process, only with a somewhat more pronounced curvature (which is probably
desirable). Unlike the CEV process, though, the displaced diffusion process is extremely easy to solve
and numerically fast. Clearly we need to rescale the volatility similarly to how we translate from
relative to absolute volatilities:

So - Olognormal = (SO + 0) * Odisplaced diffusion (3.36)

As can be seen fronB8(39), for v = 1, the displaced diffusion process becomes ordinary geometric
Brownian motion, i.e. a lognormal process. Fo& % the skew of the displaced diffusion process is
approximately that of the square root process, and in thedimit 0, we arrive at the normal evolution,
similar to the CEV equatior3(25.

The evolution ofS subject to 8.34) out to a time horizof1” is given by
Sy = (S +0) - elr=2o8)TroavT=] g \ith 2 ~ A7(0,1). (3.37)

In the context of statistics, the distribution 6% is also known as dohnson | distributiorf JKB94,
Joh49 Whe8q.



Chapter 4
Process driven sampling

In financial engineering and option pricing, we frequently wish to calculate the expectation of func:
tionals of the time evolution of one or more underlying assets. In order to do this, one typically has t
simulate a stochastic process and evaluate a pricing functional for each simulated path. In this chapi
some of the key concepts involved in this task are explained. Also, | will demonstrate how differen
methods work and recommend which technique is best for which class of problem.

4.1 Strong versus weak convergence

The numerical approximation of the solution of a stochastic differential equation amounts to a compu
ing scheme that creates a sequence of numbers representing the time-discretisation of a specific sar
path of a mathematically defined stochastic process. For ordinary differential equations, there is a n.
ural meaning to the concept abnvergencef a numerical method to the solution. For SDEs, the
situation is different. The concept sfrongconvergence can be seen as the equivalent to convergence
for ODEs since it requires that the numerical approximation to a given path of the stochastic proce:
matches the truly exact solution at any point along the path. However, the solution to a stochast
differential equation at any time horizon, unlike ODESs, is not a single number but a (possibly multi-
dimensionalyistribution And as for this distribution, we are often not interested in obtaining its exact
functional shape but rather in the expectation of some function (typically a payoff profile) over tha
distribution.

A time-discretised approximatioyy; of steps not larger thahis said to be of generatrongcon-
vergence ordey if for any time horizonI" the approximatiory;(7’) is guaranteed to converge to the
exact solutionX (7') in expectation by absolute difference like

E[| X(T) - Ys(T)|] <co” (4.1)

for all y that are smaller than some positigeand some constant

In contrast to the strong convergence criterion by absolute differevesgsconvergence of order
3 only requires that the numerically calculated expectation of any fungtionwhich is2(3 + 1)-
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times continuously differentiable and of polynomial growth converges to the exact equivalent. In other

words, for anyy € ¢+,

| Elg (X(T)] — Elg (Ys(T)] | < c6” (4.2)

must hold for ally that are smaller than some positieand some constant

A consequence of the above definitions of strong and weak convergence is that many schemes of
a given strong convergence order are of a higher weak convergence order. An example of this is the
standard Euler scheme which, whilst being an ofgdestrong scheme, is also an order 1 weak scheme,
given suitable smoothness and growth conditions on the drift and diffusion coefficients. It is therefore
not surprising that in general any method that is of higher convergence order for the strong criterion,
also turns out to be of superior performance for the purpose of option pricing. Another point of interest
is that, for many schemes, the convergence order, weak or strong, which they are guaranteed to have for
any general SDE, may actually be exceeded for specific stochastic differential equations. In particular
for the kind of SDEs that we encounter in finance, this is often the case.

4.2 Numerical solutions

Whilst there are a great many different kinds of numerical schemes for the solution of stochastic dif-
ferential equations, and the best reference is almost certainly the book by Kloeden andKi#&@n [

we now briefly introduce and discuss the Euler and the Milstein scheme. The starting point is in both
cases the following general form of a stochastic differential equation

dX = adt + bdiv . (4.3)

Note that bothz andb can be functions of the process variableand time. In the multi-dimensional
case ofmn state variables(; driven byd independent Wiener processes, we have

d
dX; = a;(t, X)dt + Y by(t, X)dIW; . (4.4)

=1

4.2.1 The Euler scheme

Denote the numerical approximation to the solution48) for a scheme over equal steps of sixe
attimen-At asY (t,,). The Euler scheme is then given by

Y (tui) = Y(t) + altn, Y (t2)) At + b(t,, Y (1)) AW . (4.5)

The Euler scheme is of strong convergence orgewhich means we can always fall back to this
workhorse of a numerical procedure to test any other method.
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In financial applications, we are often interested to represent the evolution of an asset by a stochas
process. The most common assumption is probably that of geometric Brownian motion:

ds _
5

In this case, the Euler scheme becomes

(r—d)dt + ocdi¥V . (4.6)

S(tus1) = S(tn)~{1+(r—d)At+aAW} (4.7)
- S(tn>-{1+azx/ﬂ+(r—d)m} with 2 ~ N(0,1) .

In the multidimensional case, the Euler scheme is

d
Yiltner) = Yiltn) + ailta, Y (tn)) At + Y byt Y (£,)) AW, . (4.8)

j=1

4.2.2 The Milstein scheme

The Milstein scheme involves the addition of the next order terms of gh&dylor expansion of equa-
tion (4.3). This gives

Y (tns1) =Y () + altn, Y (tn)) At + b(tn, Y (t,)) AW + 100" [AW? — At] . (4.9)
with
, Ob(t, X)
V=—5%"" (4.10)

For the case of geometric Brownian, this results in
Stnp1) = Stn) - {1+ (r—d—30*)At + o AW + Jo*(AW)?} (4.11)
= S(ta) - {1 +ozVAL+ (r—d+ 30” [2* —1]) At}

Although the Milstein scheme is definitely manageable in the one-dimensional case, its general mul
dimensional extension is not as straightforward as one may expect. It requieres not only the dra\
ing of standard normal variates for the simulation of the standard Wiener process incréxgnts
for each dimension, but additional ones to account for thdntegrals involving the mixing terms

S by (t, X) dW;.

J=1

4.2.3 Transformations

Let us have a closer look at the difference the Milstein scheme made in comparison to the Euler schel
for geometric Brownian motion. The additional terms of the Milstein scheme amount to adding

Lo? [AW? - Al]
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to the terms in the braces on the right hand sidetof)( If we compare the two schemes for geometric
Brownian motion with the exact analytical solution

1
S(tni1) = S(t,) - €I 2 IAIToAW (4.12)

we find that the Milstein scheme essentially just added all the terms that make the scheme exact up to
orderO (At) in expectation and variance. We could have achieved almost the same effect by simply
transforming the original equation for geometric Brownian motis)(to logarithmic coordinates by
application of I16's lemma to obtain:

dlnS = (r—d—1o%)dt + odiW . (4.13)

This similarity is not coincidental. In fact, in particular for the equations we deal with in finance, it is
almost always preferable to transform the original SDE to a more amenable form and then simply use
the original Euler scheme.

Let us now demonstrate the similarity between the Milstein scheme and a suitably chosen trans-
formation using the example of a mean-reverting square-root process

dv = a(f — v)dt + \y/odiV . (4.14)

This is essentially the Cox-Ingersoll-Ross interest rate ma&l 35 if we interpretv as the short rate.
This kind of process is also popular to describe the behaviour of stochastic volatility, seeles®3.
The Milstein discretisation scheme @f.14) is

Av = [a(0—v) — IN] AL+ AWoVALz + LNAL 22 (4.15)

where we have substitutedAt » with z ~ A(0, 1) for the Wiener process incremen?’. Now, let
us consider a generic functianof v, i.e.u = u(v). 1td’s lemma gives us the stochastic differential
equation foru:

_ [Ou L 0%u
du = %CL<9 — U) + 5@

M| dt + ?A\/ﬁ diww (4.16)
v

We should now make a fortuitous choice wfv) so that the new equation is better behaved. This
is done by ensuring that the term in front of the driving process becomes independent on the state
variable. In other words, we choose

ou

35 & Vo' orspecifically u= /. (4.17)
(%
This gives us
1
du = o [a(0 — ) — IN?] dt + IAdW (4.18)

and we finally have the following Euler scheme for the transformed SDE:

1
Au = o [a(0 — u?) — IN?] At + IV ALz (4.19)
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In order to compare the convergence ordar using the Euler scheme in the transformed equation and
the Milstein scheme in the original equation, we now calculate

(U<u + AUEuIer) - U(u)) - AfUMiIstein = ((U + AuEuler)2 - U2) B A/UMiIstein (420)
= QUAU,Emer + AUQ - AvMiIstein
= 0+0(V Atg) .

The above relationship between a transformation to an SDE whose stochastic term no longer conta
the state variable and the Milstein scheme holds in general. Given the general SDE

dv = a(t,v)dt + b(t,v)dWV | (4.21)
the Milstein scheme is
Av = [a — %b 8vb} At + bV ALz + %b b At 2* (4.22)

with z ~ N(0,1). For a general transformatian= F(v) to a new state variable and the inverse
transformationy = G(u), the SDE 4.21) becomes

du = [F'a + 1F"0?] dt + F'bdW (4.23)

by virtue of I1tH’s lemma. Given the choice

1
/ __ hich | F"(v) = —— 4.24
(v) bt ) which leads to F"(v) 7 Oyb , (4.24)
the Euler scheme in the transformed variable reads
Au = [% — %&,b} At + VAt z . (4.25)

In order to compare, we calculate the Taylor expansion of the inverse transformation

v(u+Au) = v(u) + G (u)Au+ 3G" (u)Au® + O(Au?) . (4.26)
Since
dv 1 . by 1 B
and thus
G"(u) = G'O,b = bdyb (4.28)
we have
v(u+ Au) —v(u) = [a—L108,b] At +bVALz + 3bOb AL + O(AL2) . (4.29)

As we can see, the Euler scheme in the transformed equation leads to a procedure that is equa
convergence up to ord€?(At) (inclusive) to the Milstein scheme in the original variable. An addi-
tional benefit of transformations that remove all dependence of the multiplicative factor in front of the
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driving Wiener process increments on the state variables is that the resulting equations become readily
amenable to a particularly simple predictor-corrector scheme. Since this predictor corrector scheme is
of weak convergence order 1 for the transformed variable, we typically obtain an integration scheme
of weak convergence order higher than 1 for the original state variable without the need for a complic-
ated integration algorithm that requires the draw of more normal variates than we have driving Wiener
processes over any one time step.

4.2.4 Predictor-Corrector

One way to describe the idea behind predictor-corrector methods for stochastic differential equations is
as follows. Given a time-discretised approximation to a general SDE such as eqdafjpwé know
that taking an Euler step as i4.8) ignores the fact that the coefficienisandb,; actually change
along the path over the time stéx. Now, if that is so, wouldn't it be better to use an approximate
average value for those coefficients along the path over the finite timés®fince the values of the
coefficients depend on the state variables themselves, which we don’t know, we need to approximate
those first. The simplest predictor-corrector scheme, which, incidentally is of weak convergence order
1, is thus as follows: First take an Euler step as in equa®) (o arrive at theoredictor
d

Yiltng1) = Yi(tn) + ai(tn, Y (t2) At + > bij(tn, Y (£,)) AW, . (4.30)

j=1
Next, select two weighting coefficients and» in the interval(0, 1], usually nearl/,, and calculate
thecorrector

Y;'(tn-&-l) = Y;(tn) + {aai(tn-&-b 1_f(tn-i-l); 77) + (1 - a)al(tn, Y }At (431)

+ > {0 bij(tnsr, Y (tagr)) + (1= )by (ta, Y (8)) } VAL 2
j=1

with
m d

a(tY;n) =a(t,Y) =0 > byt Y) oy by(t,Y) . (4.32)
j=1 k=1
Clearly, this scheme is very easy to implement, in particular for the special case that the coefficients
b;; don’t depend on the state variables.

4.3 Spurious paths

Anyone who implements the straightforward Euler schei® for geometric Brownian motion will

notice a strange thing to occur every now and then: Some paths cross zero! Clearly, geometric
Brownian motion should never even reach the point zero, let alone cross it. The reason why this
happens is simple. The schende?) is only an approximation and only guaranteed to converge to the
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mathematically consistent description of the geometric Wiener process in the limit of ever smaller tim
stepsAt. In any simulation with a finite step size, it is only a matter of time until you draw a normal
variatez that satisfies

1+ (r—d)At
z < —O'\/E (4.33)

and thus maké(¢,,.1) negative. For geometric Brownian motion, this phenomenon disappears wher
we use an Euler discretisation of the transformed stochastic differential equati@ However, for
other processes such as the Constant Elasticity of Variance (CEV) process

dS = uSdt + SYdW | (4.34)

the transformation to a constant coefficient in front of the Wiener process does not solve the probler
Setting

w= L g1 (4.35)
L —v

results in the transformed SDE

y—1 1 Y 1
du:{u[(l—v)u} _5(1—7)E}dt+dw' (4.36)

For~ € (0,1), this gives an Euler scheme that for certain paths, specifically &gyproaching zero,

can result inu crossing the zero line which is clearly inconsistent with the continuous description of
the CEV process4(.34). After all, for a generic real value of, there is no real value &f that satisfies

the inverse transformation

1

S = [(1 . 'y)u] = (4.37)

for u < 0. The solution to this puzzle is both unexpected and surprisingly simple: The CEV proces:
(4.39 with v < 1/, has a positive probability of absorption at zérdhus, the easiest way to fix the
Euler scheme for4.36) is to assume that any path that reaches or crosses zero actually represents
path that is absorbed at zero and treat it exactly in that way. In fact, numerical tests of this way c
handling the zero crossing show that they give the correct probability for absorption at zero for th
CEV process, which is known analytically.

4.4 Strong convergence for Euler and Milstein

In order to demonstrate the difference in strong convergence behaviour between the Euler and t
Milstein scheme, we begin by thinking aboutsimgle path of a standard Wiener process. In any
numerical scheme, we can only ever handle a time-discretised version of a stochastic process.

1 To be precise, it can be reflecting or absorbing at zero depending both on the paraamedethe chosen boundary
conditions BS94.
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practical criterion of the strong convergence behaviour of a numerical method is how finely we have
to discretise to achieve a satisfactory accuracy. A sequence of subsequently refined discretisations of
one and the same standard Wiener path startifi @) = 0 from¢=0to¢=1 is shown in figuret.1

The straight line in the front of the figure is effectively a single step discretisation. The second line

Figure 4.1: Increasing refinement in the discretised representation of one specific standard Wiener path.

consists of two straight segments, the first one frenf to ¢t = 1/, and the second from= 14 tot=1,
starting and ending in precisely the same points=at and¢ =1 as the previous line. The third line
then shares the exact same locations=ald, ¢t = 15, andt =1 with the second line, but consists of four
straight segments, introducing new abscissas-af, andt = 3/,. This sequence of iterated refinement

to construct in the limit a path that is continuous but non differentiable everywhere is also known as
the Brownian bridgeand was, incidentally, used for the historically first ever constructive proof of the
existence of the mathematical concept of Brownian motion by N. Wiener in the 1920s. More details of
the constructive mathematics are given in secli0r8.3

Each of the discretisations depicted in figdr& can be seen as a sequence of Wiener path incre-
mentsAW for a given time step sizé&t. The application of all of the discretisations in figutel
in the Euler scheme4(7) then gives another sequence of increasingly refined approximations for the
idealised geometric Brownian motion corresponding to the driving Wiener path. This is shown in fig-
ure4.2 Note that the paths of ever increasingly refined numerical approximations of the geometric
Brownian motion are no longer guaranteed to end in the same pdirt Btor indeed at any point. It
is the convergence to the exact solutiom-atl which we will later use as a criterion for convergence.

Equally to using the Wiener path increments in the Euler scheme, we can instead apply them to the
Milstein scheme4.11). The result is shown in figuré.3. Again, none of the individual discretised
paths need to be in exactly the same place at any point along the paths. However, in the limit of ever
refining discretisations, the numerical scheme is guaranteed to converge to the exact solution. A real
test for the strong convergence behaviour would have to demonstrate the powérl)aw¢wever, at
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Figure 4.2: Increasing refinement of a geometric Brownian path integrated from the Wiener path show
in figure4.1using the Euler scheme given by equatidrv\ with (r — d) = 1.1% ando = 81.6%.

Figure 4.3: Increasing refinement of a geometric Brownian path integrated from the Wiener path show
in figure4.1using the Milstein scheme given by equatidnl(l) with (r — d) = 1.1% ando = 81.6%.

this point we only show what the improvement of the Milstein scheme over the Euler method mean
for the convergence to the value of the geometric Brownian process at the time Hbezbrior the
increasingly refined discretisations in figdrd. Clearly, the Milstein scheme appears to be the superior
method. Since we know the analytical solution of the SDE for geometric Brownian mdtion \ye

can gain additional insight why this is so. The exact solution is

1
Sp =S, - e ) THoVT (4.38)
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Figure 4.4: Comparison of pathwise convergence behaviour in the terminal value of th& gpiatr (
a geometric Brownian path integrated from the Wiener path shown in figanesing the Euler and
Milstein scheme given by equation$.7) and @.11).

From this, we can immediately see that the Milstein scheme is, in expectation and variance, unlike the
Euler method, consistent with &h(At) Taylor expansion of the exact solution. Of course we would

in practice almost always use an exact solution when it is available. Exceptions may be cases where
the generation of sample paths from a numerical approximation is more efficient whilst sufficiently
accurate, or when we simply wish to test an analytical solution by different means.



Chapter 5
Correlation and co-movement

Correlation, or more generally co-movement, is one of the single greatest challenges facing quant
ative analysts and risk managers today. Its effects are present in many calculations that are wide
taken for granted. The pricing of many derivative contracts such as quantos, rainbows, options ¢
baskets, and many others depends on some kind of co-dependence assumptions. Also, any (inv
ment) bank’s self-assessment of exposure, frequently calculated as the Value at Risk (VaR) quanti
strongly depends on the assumptions about co-dependence between all of the involved market r
factors. To model the co-movement of all the market observables constituting an entire organisatior
risk in an adequate way is still deemed untractable, and most companies resort to the use of hist
ical data in order to estimate their firm-wide capital needs. Since historical data can only ever sho
you risk with respect to (co-)movements that already occurred in the past, but is oblivious to hithert
unseen co-dependent market moves, and also doesn’t know about new developments in the mark
scenario analysis is usually added to assess the riskyness of a company'’s standing. The scenarios |
for these analyses in turn are almost never constructed anywhere nearly along the lines of appros
taken for derivatives pricing. Whilst the constructed scenarios virtually always represent the breal
down of linearly correlated (log-)normal evolution, correlated (geometric) Brownian motion is still the
default method for modelling the interdependence between the various underlyings affecting the vali
of a derivative contract. This inconsistency becomes even more startling if we take into account th,
only moves of a few standard deviations, rarely more than 2—3, are considered for scenario analys
whose purpose is to complement a VaR calculation. On the other hand, the quoted volatility smil
and skew surfaces indicate that derivatives traders are sometimes concerned with moves in exces:
4 or sometimes even 5 standard deviations. The desire of exotic derivatives traders for their pricir
tools to realistically model the co-dependence of the financial observables that are the underlyings
a given exotic deal is motivated by the fact that whilst hedging is possible with respect to moves in th
underlyings, correlation or co-dependence is still largely impossible to protect dgairssinple way

to summarise the problem of unhedgeable quantitidéysti can’t hedge it, you better guess it right.

The most prominent reason for the proliferation of the assumption of linear correlation for the pricing

1Some types of correlation are starting to become almost tradeable such as Nikkei/USD.

41
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of exotic derivatives is its ease of use and (approximate) tractability. In fact, there are few analytical
approximations for exotic derivatives of several underlyings that do not use the assumption of linear
correlation, if any. And when it comes to numerical solutions, the only methods that realistically and

in a feasible way allow the modelling of several underlyings that co-depend in any fashion other than
linear correlation are probably Monte Carlo methods, and this is what this chapter is about.

5.1 Measures for co-dependence

Marginal distributions

Given the joint distribution density(z,y) of the two variablest andy, the marginal distribution
density function ofr is defined as

() = /wu-,y) dy . 5.1)

and analogously,

vy(y) = /w@c,y) dz . (5.2)

The marginal distribution density of any one of the two variables is nothing other than the probability
density disregarding the value of the second variable.

Independence

Two variatesr andy are considerethdependenif their joint distribution density function separates
into the product of their individual distribution density functions, i.e.

V(x,y) = Yo () (y) - (5.3)

Linear correlation

We recall from equation2(8) that thelinear correlationp,, := Corr[z, y] of two variatesr andy is
defined as

Coviz,y] _ Jayy (@, y)dedy — [z, ()dz [y, (y)dy
VVEIVIL a2y, (a)de — [f 20 (0)de] ) [ y20, (0)dy — [y, (4)dy)”

Linear correlation is a good measure for the co-dependence of normal variates. For distributions that
are nearly normal, it still serves well to measure to what extent two marginal distributions depend
on each other. However, the further we go away from the normal distribution, the more misleading
the concept of linear correlation becomes. An extreme example is the case when the variate pair

Pzy = . (5.4)
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Figure 5.1: An example for a discrete distribution of two variates with zero correlation but strong
dependence.

(x,y) can take on the possible combinatiof(®, 1), (0,—1),(1,0),(—1,0)} with equal probability

1/, as is illustrated in figuré&.1L The linear correlation of the co-dependent variatesnd y for

this discrete distribution is identically zero which clearly is misleading. In fact, they are strongly
dependent in this case. Given the variat® be zero, we have two possible combinationsyfoplus

or minus one. However, far to be non-zeroy is fully determined: it has to be zero. In strongly non-
normal distributions like this example, linear correlation can actually conceal the strong co-dependen
information contained in the full joint distribution.

Another problem with linear correlation is that it misleads one to believe that given the margina
distributions and the correlation of two variates, we have all there is to know about the joint distribution
A special case when knowledge of the marginal distribution densities) and, (y) of two random
variatesz andy, and their correlation,,, is sufficient to reconstruct the joint distribution density
Y (x,y) is when bothz andy are normal variates. In general, however, the inference

Ve (), Yy (Y), Py = (1, y)

cannot be made. What's more, for a given paifz) andi,(y), there may not even be a joint dis-
tribution density)(x, y) for every possibley,, € [—1,1]. And finally it should be mentioned that the
correlation coefficient of two variates andy is not invariant under non-linear transformations. An
explicit example for this will be given in sectioh2.1 The linear correlation coefficient as defined
above in equationy(4) is sometimes also referred toBsarson’s r
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Spearman’s rho

Spearman’s rhas closely linked to the concept of linear correlation. It is, in fact, defined as the
linear correlation coefficient of the probability-transformed variates, i.e. of the variates transformed
by their own cumulative marginal distribution functions. In other words, given two variablesR

andy € R, their marginal distribution densities, (=) and,(y), their respective cumulative marginal
distributions

V(o) i= [l dr (5.5)
Yy
Uy (y) == / vy(y') dy' (5.6)
and their joint distribution density function(z, ), we have
ps = JS Vo (2) Wy () (@) dody— | Vo (2)a (x)dz [ Wy (y)1by (y)dy (5.7)
Vo (@)2 e (@)de— [ [ Wa(@)b(e)dz]*\/ [ 0y ()20 (0)dy—[ [ 2y (9)(w)dy)”
Since
1
/\Ifx(x)wx(a:)dx = /udu =1/ (5.8)
0
and
1
/\Px(m)wa(x)dac = / widu = 13, (5.9)
0

Spearman’s rho can be expressed as

ps = 12//\11m(:c)\11y(y)1/1(x,y) dxdy — 3. (5.10)

Since Spearman’s rho is defined on the cumulative probability functions of the individual variates, it is
independent with respect to variable transformafipwhether linear or not.

Kendall's tau

Kendall’s tauis a co-dependence measure that focusses on the idemodrdanceanddiscordance

Two separately drawn pai(s;, y) and(z’, ¢') from the same joint distribution density are considered

to be concordant if both members of one pair are larger than their respective members of the other pair.
They are said to be discordantif> 2’ Ay <y orz < 2’ Ay > ¢/. Kendall's tau is defined as the
difference between the probabilities of two such pairs being concordant and discordant, i.e.

T« :=Pllx—2)(y—¢) >0 -Pllx—2)(y—y)<0]. (5.11)

2provided they are not pathologically malicious
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Naturally, this means thak € [—1, 1]. If we define the distributional densities and cumulative prob-
abilities of z andy as in the previous section, and in addition

U(z,y) //wa; y')da'dy’ | (5.12)
it can be shown that an alternative formula for Kendall's tau for continuous distribution densities is
Tk = 4//‘If(x,y)1p(x,y) dxdy — 1. (5.13)

Since Kendall’s tau is defined on the joint cumulative probability, it is also invariant with respect to
transformation’

Kendall’s tau and Spearman’s rho belong to the categorami correlations Rank correlations
have the nice property that for any two marginal distribution densiti¢s) and,(y), there always
exists a joint distribution density(z, y) for every possible value i1, 1] of the rank correlation.

5.2 Copulee

copula /'kopjula/ n. (pl. copulas) Logic & Gram. a connecting word, esp. A COpU|a0f two variablesz andy is a cu-

a part of the verb be connecting a subject and predicate. O copular

adj. [L (as co-, apere fasten)] mulative probability function defined directly as
copulate /'kopiju lert/ vintr (often foll. by with) have sexual intercourse.

i iy o ey Al iy Sl a function of the marginal cumulative probabil-
ities of z andy. A copula is thus a way to specify the co-dependence between two variates entirel:
independently on their individual marginal distribution. By this definition, a coputa@riables is a
functionC' : [0, 1]™ — [0, 1]. Reusing the definition$(5), (5.6), and 6.12 we can thus identify

U(z,y) = C(Valz), ¥y(y)) - (5.14)
For strictly increasing cumulative marginals (z) and¥,(y), we can also write

Clu,v) =¥ (U (u), ¥, ' (v)) . (5.15)

z Yy
The copula of independent variables, not surprisingly, is given by
C’independerﬁzh 7)) =Uu-v. (516)

By virtue of the definition on the cumulative marginal distribution functions, the copula of a set of
variables(z, y) is invariant with respect to a set of strictly increasing transformatigtis), g(v)).
The differential of a copula is sometimes written by the notatiottd v) which is to mean

dC (u,v) = ¢ (¥, (u), U, (v)) ’ dudv (5.17)

3again: as long as they are reasonably benign

Here is a puzzle for you: What does the following piece of code do and how is it connected to the excerpt from a dictionary at the beginningsa2 8ection
/d { rand 2147483647. div } def r { ddd add add } def /normal {rrrradd add add 6 sub } def /T 415 def /dt 1 def /sigma .5 def
/a -25 def 0 O dt T { pop dup a mul dt mul sigma dt sqrt mul normal mul add dup dt exch rlineto add } for
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with v = ¥, (z) andv = ¥, (y). In this notation, Kendall's tau appears as

TK = 4//C(u, v)dC(u,v) — 1. (5.18)

[0,1]2

Naturally, all of the above definitions extend to more than just two variables. Note that a sensible copula
must be a function of all the cumulative marginal probabilities, and some kind of control parameters
that determine the strength of co-dependence of the individual variables.

5.2.1 The Gaussian copula

The short explanation of the Gaussian copula mechanism is: Generate a vector of correlated nor-
mal variates, transform them back to uniform variates by the aid of the cumulative normal prob-
ability function, and then map the variates into their individual marginal distributions using their
respective inverse cumulative marginal probability functions. In other words, if we wish to con-
struct the variate vectar subject to a vector of individual marginal distribution densitieg(x) =

(g, (1), Yy (22), ..., by, ()T and coupled by the Gaussian copula controlled by the correlation
matrix R, we need to proceed as follows:

- Find a suitable pseudo-square rebof R such that? = A - AT. More on this on pagé8in
chapter6.

- Draw a vectorz € R" of uncorrelated standard normal variates.
- Computez := A - z.
- Map z back to a vector of uniform variatese [0, 1] by settingv; = N(Z%;).

- Construct the variate vectatr by use of the inverse cumulative probability functians :=
W2t (v).

It is important to remember that the correlation coefficient governing the Gaussian copula can be very
different from the linear correlation of the elements of the variate veectdrgive below two specific
examples for this effect. First, however, there is one further point to mention. It can be dhd®A],

Kau01]] that Kendall's tau of two variables connected by a Gaussian copula with correlation coefficient
p IS given by

2
TK = —arcsin p . (5.19)
™

Examples for the density of the Gaussian copula as defineéd i) @are showrf in figure5.2

4 The colour code in this and the subsequent density diagrams, although only visible in the electronic version of this
book on the accompanying CD, is as follows: red signifies the lowest density, i.e. 0, and purple the highest density which
is usually only a tiny little speck in the diagram. In all figures, the colours are nonlinearly scaled with the density such that
centre point af0.5, 0.5) always has the same turquois colour throughout all of the density figures.
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Density of Gaussian copula for p=0.2 Density of Gaussian copula for p=0.7 Density of Gaussian copula for p=0.99

Figure 5.2: The Gaussian copula density as given by equdiiai)( Forp = 0, the density is identic-
ally equal to 1 on the unit square. The density for negative valupscofresponds to the density for
the same absolute value by a rotatior9of.

Two uniform variates under the Gaussian copula

Let us assume that for some purpose we would like to have two uniform variates that are correlated. C
first thought of constructing correlated uniforms is to transform two uncorrelated uniform varjates
andus to the standard normal distribution by setting= N~!(u;), apply the conventional correlation
transformation

21 =21 (520)

Zo = pz1+ /1 —pPz (5.21)

for some correlation coefficient € [—1,1] and transform back to the unit square by the aid of
u; = N(Z;). Naively, we now expect the co-dependent uniform variates to have a linear correlatior
coefficient in the rangé-1, 1]. But little do we know...

The linear correlatiom between the two dependent uniform variates can be calculated:
) =12 [ [ NGOGz + VT pPae(er)(en) dad — 3. (5.22)
Straightforward calculus shows that
nel-1,1 for pel[-1,1].
Near the origin, we have
3
n(p) ~ o for |p| < 1. (5.23)

A diagram ofn(p) is shown in figures.3. Don’t be misled by the apparently straight line: there is a
little bit of curvature in there, although a straight line would certainly be a good approximation for it.
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n(e)
o

Figure 5.3: The linear correlation(p) of two uniform variates connected by a Gaussian copula of
correlation coefficienp.

Two exponential variates under the Gaussian copula

In certain areas in finance, we are interested in the modelling of the time elapsed until a certain event
happens for the first time. When we model a given evensing a Poisson process of intensity as
explained in sectio@.3we have the following distribution density for the tiridig until arrival:

Ty ~ A& T (5.24)

Random draws fo¥’4 can be generated from a uniform variateby setting

In(1—
e _In(1 —ua) . (5.25)
Aa
When we model the co-dependent arrival of two evehend B using a Gaussian copula with correl-

ation coefficienip, we can calculate the linear correlatiofp) for 7’4 and7s as

C(p) = // In(1 —N(z1))In(1 — N(pz1 + /1 — p?22))p(21)p(22) dz1dzy — 1 . (5.26)

Again, we can evaluate analytically what intergap) is confined to:

7T2

Cell=T1) for pel-11],

wherel — %2 ~ —0.6449341. However, as we can see in figusel, the correlation transformation is
not quite as nearly linear as it was for two uniform variates.
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{(p)

-1 -0.5 0 0.5 1

Figure 5.4: The linear correlatiaf{p) of two exponential variates connected by a Gaussian copula of
correlation coefficienp.

5.2.2 Thet-copula

Thet-copula is conceptually very similar to the Gaussian copula. It is given by the cumulative distri-
bution function of the marginals of correlatédariates. The simplest way to explain theopula is
probably by the aid of an algorithm that would create uniform variates undeopula ELMO1].

- Select a standard correlation matfxhat is to govern the co-dependence of the copula.
- Find a suitable pseudo-square robof R suchthat?R = A- AT,

- Draw a vectorz € R" of uncorrelated standard normal variates.

- Computez := A - z.

- Draw an independeng?-variates. Forv being an integer, this can be done by drawinigide-
pendent Gaussians, and summing their squares.

. Setx := \/g,%

- Map x back to a vector of uniform variatese [0, 1]" using the cumulative probability function
of Student’st distribution given in equatior2(52).
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The so generated uniform variates can then be transformed to any set of marginal distributions by use of
their respective inverse cumulative probability functions, just as for the Gaussian coputacdjnda

shares with the Gaussian copula the feature that two variates, which are connected using either of the
two copulee with a given correlation coefficienthave a Kendall’s tau coefficient given by equation
(5.19. An example for the difference from both copulae is shown in figusNote how thet-copula

4 T T T T T T T 4 T T T T T T T

3 F

Figure 5.5: Both figures show data that are marginally normally distributed. The figure on the left
depicts ordinary correlated normal variates witk= 0.9, and the figure on the right was created from
data under &,-copula, also withp = 0.9.

generates apparently higher correlation for large co-movements of equal sign, at the expense of giving
rise to a higher density near the origin, and a noticeable set of what looks like significant outliers.

5.2.3 Archimedean copulee

All members of this class of copulae have in common that they are generated by a strictly decreasing
convex functiong(u) which maps the interva(0, 1] onto [0, 00) such thatlim. .o ¢(¢) = oo and
#(1) = 0. An Archimedean copula is generated from a given function by

Clu,v) = ¢~ (¢(u) + ¢(v)) . (5.27)

Two uniform variates: andv under any Archimedean copula can be produced by the following al-
gorithm:

- Draw two independent uniform variategindg.

- Solve

g=t ;f((?) (5.28)
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for t.

- Set

(Y
(VN

¢ (so(t)) (5.29)
¢ (1= s)g(t)) - (5.30)

For further details and a proof seel{M01]. An example of a copula generator for which the above
algorithm can be applied directly is

du) = (u ' =1’ (5.31)

for & > 1 since then the solution to equatidnZ8) is immediately given by

1+6 1+0\2
t—T—\/(T> —4q. (5.32)

It is possible to extend Archimedean copulee to higher dimensions. However, these extensions &
rather restrictive with respect to the co-dependence structure since they do not allow for one parame
per pair of variates, unlike the Gaussian and #fe®pula. This is probably the major disadvantage
of Archimedean copulee. For algorithms on the generation of variates under a higher dimension
Archimedean copula se&[[MO01, FV97].

The Gumbel copula

The Gumbel copula (sometimes also referred to as Gumbel-Hougaard copula) is controlled by a sing
parametep € [1,00). Itis generated by

¢Gumbel(u) = (— In U)e (533)

and thus defined as

=

CGumbel(% U) = e_[(_lnu)0+(_lnv)9] . (5.34)

The Gumbel copula gives rise to a stronger dependence in the upper tail of the joint distribution densi
as can be seen in figuke6. Kendall’s tau of the Gumbel copula can be sho@iRP( to be

1
TGumbel = 1 — 5 . (5.35)

The Clayton copula

This copula is also known under the names Pareto, Cook-Johnson, or Oakes copula, and is gener:
by the definition

u? —
¢Clayton(u) = (fol) (5.36)
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Density of Gumbel copula for §=1.1 Density of Gumbel copula for 6=1.5 Density of Gumbel copula for =2
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Density of Gumbel copula for 6=3 Densty of Gumbe| oopula for 6= 5 Density of Gumbel copula for 6=10
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Figure 5.6: The Gumbel copula density as given by equabdti’(. Forf = 1, the density is identic-
ally equal to 1 on the unit square.

fior 6 € [-1,00) \ {0} and reads
Cclayton(u, v) = max ([u“’ +0v?—1] 0 ,0) : (5.37)

The Clayton copula gives rise to a stronger dependence in the lower tail of the joint distribution density
as can be seen in figuke7. Kendall's tau of the Clayton copula is

0
TClayton = 9+—2 . (5.38)
The Frank copula
The Frank copula is given by
(e 1)
¢Frank(U) = — ln [m (539)

and

1 (e —1) (e —1)
Crranku, v) = ~3 In (1 + e/ — 1) (5.40)
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Density of Clayton copula for 6=0.1 Density of Clayton copula for =1 Density of Clayton copula for =2

0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Density of Clayton copula for 6=3 Density of Clayton copula for 6=5 Density of Clayton copula for 6=10

Figure 5.7: The Clayton copula density as given by equabdii). Forf = 0, the density is identically
equal to 1 on the unit square.

for ¢ € R\ {0}. The Frank copula enhances the upper and lower tail dependence equally as cz
be seen in figur®.8. For negative values df, this copula is able to produce negative codependence

similar to the Gaussian copula for negatpueNot only that, but it also displays the invariances with
respect tqu,v) — (1 —u,1 —v) and(u,v;0) — (1 — u,v; —6), as does the Gaussian copula, which
is demonstrated in figure.8. For the Frank copula, Kendall’s tau is

(1—D1(9))

Trrank = 1 — 4 9 (5.41)
with Dy (x) for some positive integet being the Debye function\[S84, Mac9q defined as
ko[ s
Dy(z) = E/o o 1ds . (5.42)

The Ali-Mikhail-Haq copula

This copula is generated bjMH78]

GAli-Mikhail-Hag () = In (M) (5.43)

u
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Density of Frank copula for =-1 Density of Frank copulafor 6=-5 Density of Frank copulafor 6=—10

0 0.2 0.4 0.6 0.8 1 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Density of Frank copula for 6=1 Density of Frank copula for 8=5 Density of Frank copula for 6=10

o

Figure 5.8: The Frank copula density as given by equadah/(. Ford — +0, the density approaches
the uniform density on the unit square.

and has the form

uv

Cali-Mikhail-Hag (U, V) = =00 = w1 =) (5.44)

for 6 € [—1, 1]. The Ali-Mikhail-Haqg copula enhances lower tail dependence for poditiand dis-
plays some strong negative codependencé far0 as is shown in figuré.9. Kendall’s tau is FV97]

30 — 2 2 1

TAli-Mikhail-Haq = <T) —3 (1 — 5) -In(1—-190) . (5.45)

A generalisation of the Ali-Mikhail-Haq copula to two parameters known as the Fang-Fang-Rosen
copula [GR0OQ FFvRO(Q is given by

X[

¢Fang-Fang-Ros&ru) =In (M) . (5.46)

Ur
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Density of Ali-Mikhail-Haq copula for =—1 Density of Ali-Mikhail-Hag copula for 6=-0.3 Density of Ali-Mikhail-Haq copula for §=0.001

] l ]
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0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Density of Ali-Mikhail-Haq copula for 6=0.3 Density of Ali-Mikhail-Hag copula for 6=0.6 Density of Ali-Mikhail-Hag copula for 6=0.99

Figure 5.9: The Ali-Mikhail-Haq copula density as given by equati®AdT). Foré = 0, the density is
uniformly 1 on the unit square.
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Chapter 6
Salvaging a linear correlation matrix

The problem of how to specify a correlation matrix occurs in several important areas of finance. /
few of the important applications are the specification of a (possibly time-dependent) instantaneol
correlation matrix in the context of the BGM interest-rate option models, stress-testing and scenar
analysis for market risk management purposes, or the specification of a correlation matrix amongs!
large number of obligors for credit-derivative pricing or credit risk management.

Ad-hoccorrelation matrices, those calculated from incomplete data, and those taken from new
services sometimes don’'t comply with the requirement of symmetry and positive semi-definitenes
Whilst it is easy to amend the symmetry requirement by manual intervention, it is not always straight
forward to see how to adjust the given correlation matrix to become usable for factor analysis c
simulation purposes. What's more, there are many situations when it is desirable to carry out a calc
lation not only for a single input matrix, but for a whole set of modified versions of the original matrix.
Examples for this include comparative pricing in order to ascertain the extent of correlation exposur
for multi-asset derivatives, but also the assessment of portfolio risk. In many of these cases, we end
with a matrix that is no longer positive semi-definite, and often there is no clear way to remedy this.

In practice, the problem of an invalid correlation matrix, i.e. one that has negative eigenvalues
can also very easily arise in the context of risk analysis for equity portfolios. This is because ther
are frequently asynchronous gaps in the historical stock exchange time series. The chance that sli
inconsistencies in the data from which historical correlation coefficients are calculated can lead t
negative eigenvalues grows rapidly as the size of the correlation matrix increases. This has recen
been pointed out by Ju and Pearse® 9. Intuitively, it can be understood to be an effect of the
characteristic polynomial that determines the eigenvalues becoming of higher order as the dimension
the correlation matrix grows, and thus displaying a stronger nonlinear response to slight changes in t
polynomial’s coefficients. Since equity index or portfolio analysis typically involves many underlying
assets, the risk of negative eigenvalues of the correlation matrix calculated from historical data
particularly large.

In this chapter, | describe two methods based solely on mathematical grounds which can be us
to best-match an invalid correlation matrix given the constraint of positive-semidefiniteness. Not onl
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are these guaranteed to give a solution, but in addition we also have a measure to what extent we are
matching the target matrix. Both methods are centered around the idea of decomposing a covariance
matrix C' into its pseudo-square roathich is to mean any matrid such thatC' = A- A'. For scalars,

A would be an actual square root ©6f but for matrices, the concept of a square root is ill defined
whence | use the terpseudo-square root

6.1 Hypersphere decomposition

The starting point are the well known results from linear algebra that every. matrix M given by
M=ww' (6.1)

forany W € R™ " is positive-semidefinite and that, conversely, every positive-semidefinite matrix
M € R™" can be decomposed as in equati6éri)

Thehypersphere decompositiamethod for the construction of a valid correlation matrix
C =BB' (6.2)

that best-matches a givemt positive-semidefinite, target matr is to view the elements of the row
vectors of matrixB in equation 6.2) as coordinates lying on a unit hyperspherd(q. If we denote
by b;; the elements of the matriB, the key is to obtain the x n coordinates,; fromn x (n — 1)
angular coordinate; according to

j—1
bij = COs 91']' . H sin 6, for j=1.n-1
k=1
and (6.3)
j-1
bij = H sin Hlk for j =N
k=1

For an arbitrary set of angld$,,}, a matrixC formed fromB as in equationd.2) satisfies all the given
constraints required of a correlation matrix by construction. In particular, thanks to the trigonometric
relationship 6.3) and to the fact that the radius of a unit hypersphere is always equal to one, the main
diagonal elements are guaranteed to be unity which is shown in séckion

In general, matrixC will bear no resemblance to the target maifix However, after using the
above transformation and after defining a suitable error measuorthe resulting approximate correl-
ation matrixC

e=llc-cC| , (6.4)

one can use an optimisation procedure over the arglés find the best possible fit given the chosen
error measure. Sensible choices for the error measure are:-
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¢ the sum of squares of the elements of the difference mé(ﬁbe C’),

A \2
X%Iements:: Z (cij —C)™ (6.5)
ij
Since bothC andC' have unit diagonal elements, this error norm is equal to twice the sum of
squares of errors in the free correlation coefficients.

e the elementwise sum of squares of errors in the sorted sets of eigenvatlendiC,

X%igenvalues:: Z <)‘i - 5‘2>2 . (6.6)

7

Naturally, the above suggestions are only examples and various other choices are conceivable.
in particular, a risk manager felt that certain portions of the target correlation n@tskould be
recovered with particularly high accuracy, then correspondingly large weights could be assigned to tl
relative elementéc;; — ¢;;)°

The fundamental benefits of this method are twofold: first, when the underlying space over whic
the optimisation is carried out is expressed in terms of angle vectors describing coordinates on a u
hypersphere, no constraints have to be satisfied. Secondly, the approach presented in the next sec
requires no iterations and provides a solution very similar to the one obtained using error &Byric (
It can therefore be used to provide the starting point for the search procedure.

6.2 Spectral decomposition

This method is based on the idea that the spectrum, i.e. the set of eigenvalues, is the most signific
criterion to be preserved in a matrix when we amend it to meet certain constrdinis a particu-

larly useful approach for the given problem since the violated constraint itself is that an eigenvalue |
negative.

Given the right-hand-side eigensystéhof the real and symmetric matrix' and its associated set
of eigenvalues{)\;} such that

C-S=S-A with A=dag(\) |, (6.7)

define the non-zero elements of the diagonal matfias

A N = (6.8)
0 : N<O0

1This method is also known as principal component analysis.
2The combination of Householder reduction to tridiagonal form and the QL algorithm with implicit shifts for tridiagonal

matrices provides a very efficient way of computing the eigenvalues and eigenvectors of real symmetric matrices. The N
merical RecipesHTVF9] routinestred2 ,tqgli , andeigsrt can be used in that order to carry out the decomposition.
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If the target matrixC' is not positive-semidefinite, it has at least one negative eigenvalue whence at
least one of the\; will be zero.

Also, define the non-zero elements of the diagonal scaling niAtwith respect to the eigensystem
S by

T ti:[Zs?m)\;n] . (6.9)

Now, lef
B = SVA’ (6.10)
and
B:=\VTB =VTSVA' . (6.11)

For normalised row vectors &, the truncation of the negative eigenvalues results in row vectors of
B’ that are not of unit length. This is rectified in equatiéni(l) by the aid of matrix” which contains
the required normalisation factors. By construction,

C = BB' (6.12)
is now both positive-semidefinite and has unit diagonal elements since its elements are

Cij = Z (\/T)zk Skl (\/E)lm : (\/F%nn " Spn (\/T>pj

klmnp
/
C VR s N s
l
/
>SS

= ! . (6.13)
VIS DA,

A procedural description of the above method may clarify what actually has to be done:

- Calculate the eigenvalues and the right-hand-side eigenvectsfof C.
- Set all negative\; to zero.

- Multiply the column vectors; with the square roots of their associated corrected eigenvajues
and arrange them as the columnsijt

- Finally, B results fromB’ by normalising theow vectorsof B’ to unit length.

3Please note that the notatighD for a diagonal matrixD with non-negative elements is a symbolic description of the
diagonal matrix whose non-zero elements are the positive roots of the diagonal elemPnts of
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By following this procedure we obtain an acceptable correlation matrix which is intuitively similar
to the target one (the more so, the fewer the eigenvalues which have to be set to zero). The cruc
point, however, is not so much the plausibility of the metric but the fact that empirically | have always
observed the results obtained using equati@ng (o (6.12 to be very similar to those from the an-
gular method discussed in secti6rl. How close the results are in practice is shown in sedidn

This is significant because one can use the result of the method described here either as an accu
approximation to the best (in 8 menis SENSE) SOlUtion, or as the starting point for the optimisation
discussed in sectioB.1, thereby substantially reducing the computational burden of the hypersphere
decomposition approach.

6.3 Angular decomposition of lower triangular form

The form given in equatior(3) is the most general decompositi#hof any valid correlation matri€’

such thatC = BB'. However, any so derived matri® can be transformed by a generic orthogonal
matrix O without any change of the effective correlation matrix given by the pro®B'. The
group of all possible orthogonal matricés € R"*" represents all possible rotations and reflections.
Ignoring the latter and just taking into account all possible rotation matrices, we end u@i@%ﬁl
degrees of freedom in the rotation matrices given by the same number of rotation angles. By virtL
of these degrees of freedom, we can rotate every decomposition masuch that the transformed
decomposition matrixB’ := BO is of lower triangular form. We can thus, without loss of generality,
formulate the following reduced form for the hypersphere decomposiioof C:

b, = 1,
7j—1

b;j = Hsin@ik -cosb;; for j=1.(i—-1),
k=1
7j—1

b, = ]]sin6u for j=1i, (6.14)
k=1

and
b;j = 0 for j=(G+1)..n

The above reduced form is identical with.§) if we choose’;; = 0 for all 7 > 4. In matrix form, the
lower triangular decompositiors (14) thus looks as follows:

1 0 0
cos B9 sin 091 0

B’ = | cosfs; sinfs; cosfsg sin 057 sin fs 0 0o --- (6.15)
cosfy sinfy cosbyy  sin by sin 49 cosbyz  sin by sinfypsinfys 0
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One of the advantages of the completely general decompositi8nias that the result of the spectral
decomposition and truncatio6.@1) could directly be used in a bootstrapping procedure to calculate
good initial values for the angles; for the subsequent optimisation procedure. In order to start off
the optimisation in the case of the reduced form, the result of the spectral decomposition and trunca-
tion can still be used as follows. First, we re-constitute the effective correlation nGatsis given in
equation 6.12 from the spectrally truncated approximatidhX1). Then, we calculate the Cholesky
decomposition o' (which can be done very efficientlP'VF94). Since the Cholesky decompos-

ition is of lower triangular form, it can then be used directly to back out good initial guesses for the
reduced number ow angles that specify the matri8’ as given in equation$(14) and 6.15,
respectively. The advantage of the reduction of the number of free parameters in the optimisation pro-
cedure by 50% is obvious: halving the dimension of the optimisation domain decreases the number
of entries in any involved Jacobian or Hessian matrix by a factor of four which should give rise to a
speed-up factor of the same order of magnitude.

6.4 Examples

A risk manager retrieves from the middle office’s reporting system the following correlation matrix of
three world equity indices:

1 09 07
C=109 1 04
0.7 04 1

The eigenvalues of® are{ 2.35364, 0.616017, 0.0303474 } and the correlation matrix can be
splitup as in

with

0.98742  0.08718 —0.13192
B=1| 088465 0.45536  0.10021
0.77203 —0.63329  0.05389

The risk manager is aware of the Value at Risk calculated under the assumption of this correlation
between the three indices. In order to assess the change in Value at Risk resulting from a decrease in
correlation between two of the three underlying variables, the risk manager wishes to adjust the matrix
to

1 09 07
C=(09 1 03
0.7 03 1
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Unfortunately, the eigenvalues 6f are now{ 2.29673, 0.710625, —0.00735244 }, and despite its
plausible appearance, matiiX is no longer an acceptable correlation matrix. This highlights how a
minor change can lead to the violation of the requirement of positive-semidefiniteness of a correlatic
matrix. The system will now fail when trying to construct a split-up mafifor the purpose of Monte
Carlo simulation$in order to calculate the Value at Risk under the new assumptions.

Using the method outlined in secti@nl with the error measure chosen to 8, mens2S given by
equation 6.5), we can calculate

0.99804  0.06265
B=| 086482 0.50209
0.74020 —0.67239

with
1 0.89458  0.69662
~ Ao~ T
C=BB = 0.89458 1 0.30254
0.69662  0.30254 1
and a total error ofZ,ements= 0.946 - 1074

In comparison, the method outlined in sectth@ above, yields

0.99805  0.06238 0
B=| 086434 0.50292 0
0.73974 —0.67290 0

to give us
1 0.89402  0.69632

C=BB =| 089402 1 0.30100
0.69632  0.30100 1

One can notice that not only the total errorgf. o= 1.0 - 107* but also the individual elements

are remarkably close to the values obtained by optimisation. Despite the fact that there is in genel
no guarantee that the results of the two methods are as close together as in this example, | have alw
found very good agreement between the two approaches.

6.5 Angular coordinates on a hypersphere of unit radius

Thei-th row vector ofB as specified by equatioB.Q) is given by
(bila bi2; R bin717 bm)
= (6.16)

. _9 . _9 . .
(cosb;1, sinby cosbis, ..., [[i—;sinby cosb;,_1, [[,—; sinbysinb;,_1)

“Recall that the construction of correlated normal variates from a vector of uncorrelated normal vaisatiesie by
the transformatiom = B - z with C = BB
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j=n
The sum of the squareys, b;; will definitely be unity if the recursive relation
j=1

an = 17 S (6.17)
3 kg C082 9” )
k=j+1
holds since then
k=n .. 9 . 9
0; 0; .
Z b?k _ 5?1 . sm2 L — cog? 0, - Sln2 L2 0:1 (6.18)
P cos? 0;1 cos? 0;1
and thus
k=n k=n
Z by, = b} + Z by, = cos® 01 +sin’6;; =1 . (6.19)
k=1 k=2

To start the induction, we see that equatiéri{) is satisfied for; = n — 1 since then we have

n2 n2 sin? 6,
H sin? 0, sin®6;,_1 = H sin? 0, cos® 0;,,_1 - 2—m_1 (6.20)
iy Pl c0s? 0; 1
It remains to be shown that
2 k=n
cos® 0;;
b = 9. b? 6.21
ij SiIl2 eij Z ik ( )
k=j+1
for j < n — 1. Using the recursion relatio® (17) itself, we obtain
2 k=n
bij ~ sin? 0 . (bijﬂ - Z bik)
k=742
_ cos” 0 b2 +%-b?
Sirl2 Qij gt cos? 97;]'_;,_1 AR
B cos? 0, 2
N sin2 Hij cos? eij+1 AR
le.
sin 0,
bi i = bz : *J COS 91 i 6.22
J+1 I os 0, j+1 ( )

which is identical to the construction descriptidh3) for ; < n — 1. Hence, all row vectors oB

are of unit length. The elements 6 = BB are the pairwise scalar products of the row vectors
of B. Since the scalar product of two vectors of unit length is by definiéidn-1, 1], C satisfies the
requirements of unit diagonal elements, symmetry, and all elements béindy, 1].



Chapter 7
Pseudo-random numbers

For all Monte Carlo methods, we need an underlying number generator. This driving engine he
to supply us with variate vectors which in the limit of infinitely many draws satisfy a given joint
multivariate distribution density function. This is typically done by transformation of draws from the
uniform distribution of equal probability for all numbers in the inter{@l1). Note that, unlike most
textbook definitions of numerically generated uniform numbers, bahd1 are explicitly excluded
since for most of the desired target distributions at least one of the two endpoints maps te-either

or —oo which clearly poses a numerical problem.

Traditionally, Monte Carlo techniques used to depend on a number generation method that mimi
randomnesss well as possible and a great deal of effort has gone into number theoretical researc
for this purpose. Generations of number theoreticians have focussed on ever more refined and
tricate ways of constructing random numbers whilst others devised ever more sophisticated tests
randomnessi{nu81]. The reason for all of this hard work is that a machine that is designed to follow
instructions in a deterministic way such as a compuatmotproduce anything thactually is ran-
dom This was beautifully expressed by John von Neumann in his statement which has become knov
as ‘the original sin of random number generation’:

Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.

John von Neumann, 195¢§I51]

A more mathematical way to express this fundamental failure of randomness of computer-generat
digits is that due to the algebraic nature of their generation, there always exists a high-dimension
embedding spac&? such that vector draws whose elements are sequential draws from a one-

dimensional number generation engine can appear as systematically aligned in a lower dimensiol
manifold. One example for such a high-dimensional embedding is clearly given by the periodicity o
the number generator which is why modern methods pay great attention to this feature and achie
very long periodicities. However, this continuous chase for ever more random numbers is somehc
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doomed because for any new method that satisfies all known tests, one can always construe a new test
criterion for randomness which will prove it to be non-random:

Every random number generator will fail in at least one application.
Donald E. Knuth, 1969

It is for this reason that computer-generated random numbers are referrepseua®-randomum-
bers Fob94. They simply cannot be random.

Recently, there have been several attempts to overcome the very last bit of non-randomness left
in modern pseudo-random number generators. Devices have been constructed that link the output
signal of radioactive decay processes or light intensities of so-called ‘lava lamps’ through encryption
algorithms and to digit scramblers. To some extent, these approaches ought to be taken with the
proverbial pinch of salt since the benefits that can be gained from the additional level of randomisation
can hardly be in any proportion to the extreme effort and thus cost involved. This is certainly true for
applications of Monte Carlo methods in finance but may be different when it comes to security critical
encryption uses of random numbers.

This chapter is not meant to be an exhaustive overview over available pseudo-random number
generation methods. There are many excellent books on this subject Elor&l] PTVF92 Tez95
Nie9Z, and the reader is referred to them for details of individual number generators. Seédtion
is mainly for the entertainment of all those of always wondered about the difference between chaos
and randomness, but never dared to ask. In se@tigm little historical detour to the beginnings of
computer generated pseudo-random numbers is taken. Then, in sé8tibbriefly outline the most
basic principle of pseudo-random number generation. Following that, | acknowledge the probably
most frequently used number generators around, naRedto Ran3as denoted infTVF93.

7.1 Chaos

The general principle of pseudo-random number generation is as follows. Given the current value
of one or more (usually internally stored) state variables, apply a mathematical iteration algorithm to
obtain a new set of values for the state variables, and use a specific formula to obtain a new uniform
(0, 1) variate from the current values of all the state variables. This kind of process is mathematically
also known as discrete-time dynamical system

A simple example of a one-dimensional discrete dynamical system ikgic map It was
originally used by P. F. Verhulst in 1845 to model the development of a population in a limited en-
vironment May76¢, and is known as a consequence offits1-linearityto produce chaotic dynamics
for certain choices of parameters. The logistic map gives rise to discrete dynamics by the following
algorithm. Given a number,, € (0, 1), we have

Tp1 = pTn(l —xy) (7.1)
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Figure 7.1: The logistic map fqgr = 4.

for someyn € (0, 4] which is shown in figure.1  For any value ofx andx, the system¥.2) will
converge to a so-calleattractive invariant setThis means, skipping some initial transient behaviour,
the system¥.1) will only produce iterates that take on values from this invariant set. As long as the
invariant set is (finitely) piecewise continuous, we can remap it relatively easily to the interva

and thus obtain the desired unifofi 1) variates (whereby we have yet not ascertained to what extent
these meet the requirement of serial decorrelation etc.). The first question that arises is what value
1 should we use. For this purpose, | plot in figur@ the invariant set for values @ffrom 0 to 4. As

we can see in the figure, the most promising value:fizr4 since then the entire intervdl, 1) appears

to be filled homogeneously. In fact, the value= 4 can be shown to give rise tosdrange attractor

for the dynamical system.1, and to fill the uniform interval0, 1) with Lebesgue measure GH83.

Does this mean we can use the logistic map as a pseudo-random number generator? Sadly, no. Ti
are two substantial problems with it and | shall now briefly look at them individually.

First, have a look at figuré.3. What you see are iterates from the logistic mapi/fee 4. Admit-
tedly, they look rather random indeed, and it is this similarity between chaos and randomness whi
gives rise to the common misunderstanding that chaotic systems behave randomly. Now, have a clo
look at the ordinate level di.75. There is clearly some kind of structure. What happens is that any
iterate that comes very close to 0.75 is succeeded by more iterates very nearby. We see from equa
(7.1 thatz* = 3/, is actually a fixed point under the logistic map for= 4. However, this fixed point
is not stable under the dynamics @fJ). This means that any point in an arbitrarily small vicinity of
x* is gradually repelled from the fixed point, until it eventually starts orbiting all over the unit interval
again. As a consequence, a number generator based on the logistic map would never return the ve
0.75, but instead, whenever it happens to come close to this value, there will be a number of variat
following with values very nearby, displaying a temporamar-periodicity What's more, there are
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Figure 7.2: The attractive invariant set of the logistic map for valugs fiom O to 4. Note that the
abscissa has been scaled according te —In(4.25 — ).

actually uncountably infinitely many other values that are also excluded by the map. Firstly, there are
all of the predecessors of 0.75, i.e. all the values that would actually end up right on 0.75 under the
iteration rule 7.1). Going back fromz* = 3/, one iteration we havél/,, 3/s}. One more backwards
iteration gives ug 1o — v3/y, 3/, 1L+ V3/i}. In each iteration that we look backwards out frain

we have from then on two new predecessors of the unstable fixed point for each one that we already
had. Therefore, there atan;_... 2 many points excluded from the attractive invariant set of the lo-
gistic map foru = 4. What we are left with after taking all of those points out of the unit interval

Is what is known as &antor set It is impossible to map a Cantor set back to a continuous interval
with any sensible function that could be used on a computer. Also, the predecessbes®hot the

only points that are being avoided by the logistic map. In addition, there are also all the points that
represent short periodic orbits (i.e. fixed points of the iterated map), and they also have domains of
temporary near-periodicity in their vicinity. Take for instance the valye- %(5 —+/5). lts iterate

is z; = 1(5 + /5) which in turn leads back to, = %(5 — v/5) = o, and thus we have a period-2
orbit. This period-2 orbit is unstable and therefore we have another set of repelling points embedded
in the chaotic attractive invariant set for= 4. Equally, there are points forming short periodic orbits

for many other cycle lengths, and all of them are unstabje at4. This is one of the most defining
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Figure 7.3: Iterates from the logistic mapat= 4.

points of chaotic motion: embedded inside the attractive invariant set of chaotic dynamics, known as
strange attractoythere is always an infinity of unstable periodic orbits.

The second problem with a nonlinear dynamical system such as the logistic map is that of th
nonuniformity of theinvariant measureFor a random number generator, the invariant measg(re
is simply the probability density that the next draw will be in the intefvak +dz|, and for a discretely
iterated system it is the long-term average of points arriving in that interval. The attentive reader ma
have noticed that the points in figure3 are a lot denser at the top and at the bottom of the diagram.

This is a symptom of the fact that far= 4 the invariant measure of the logistic map is given by
1
() = ——— 7.2
Yumal®) mz(l —x) (72)
[VN51, GH83, which is singular at: = 0 andx = 1. Nonetheless, if we transform fromto the new
variablea by setting

2
r = sin® (ga) < o= —arcsin\z, (7.3)
7r
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we can calculate the density«) of the new variablex on (0, 1) according to

Y(zr)dr = n(a)da (7.4)

we) = la(e)s

™

: s
7TSlIl(2Oé) COS(2O./)

o) = T/ z(l — )

n(a) = 1. (7.5)

In other words, the transformed variahleis uniformly distributed on(0, 1), and thus we might be

able to use it as a generator for unifoffh 1) pseudo-random numbers. Alternatively, we could use

the untransformed variatesand correct the probality density associated with each draw as explained

in section9.2, and thus avoid the evaluation of an inverse trigonometric funttiddowever, the

issue of embedded unstable periodic orbits and all their pre-iterates, i.e. all the points that would map
onto them, cannot be removed in any way that we can implement on confpuietise early days of

Monte Carlo simulations on electronic computers, these islands of regularity in the stream of generated
numbers were not considered a major issue, since they can be shown to be of Lebesgue measure zero,
and the very iteration formula/(2) for ;» = 4 was usedJvN47, vN51] as an alternative to the mid-
square method mentioned in sectibr2z However, since the mid-1940s, a lot of progress has been
made in the area of nonlinear dynamics, and the phenomenon of temporary near-periodic behaviour in
the vicinity of unstable periodic orbits (also knowniagermittency is much better understood. For
financial simulations, we definitely don’t want to employ a sequence that displays features of such
obvious involuntary regularity as is shown in figuts.

7.2 The mid-square method

The first ever algorithm for the computer generation of pseudo-random numbers was proposed by John
von Neumann, and is known as thed-square methofHam51. The procedure is as follows. Take

a uniform(0, 1) numberz, in a four-digit representation. The next variate ; is calculated from:,,

by taking the square af,, and extracting the middle four digits. In other words, frogn= 0.9876 we

obtain

z; = 0.97535376

r; =  0.5353

2 = 0.28654609
—~—~

Ty =  0.6546

lalbeit that it may not be worth the trouble, see sectidré
2Mathematically, this may be possible by defining a function that is discontinuous everywhere but such a function

cannot easily be implemented on a computer.
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and so on. Unfortunately, this procedure is very likely to end up in a short periodic orbit or at O,
depending on the initial valug), which was recognised early oRdr51]. In fact, for the above starting
value it is absorbed at O after 50 iterations. Even when a starting value is used that does not ente
short periodic orbit soon, and does not map into 0, this method tends to produce a disproportione
frequency of small number§pb94.

7.3 Congruential generation

The most commonly used pseudo-random number generation methods are essentially piecewise lin
or piecewise affine, to be precise. The basic idea is to produce integer valuas a given interval
[0, M — 1], and to return a unifornf0, 1) variateu,, by rescaling. The next integer variate is calculated

by
Myt = (am, +¢) mod M . (7.6)

Note that equation/(6) is piecewise affine with the same multiplier over all pieces. Thus, it preserves
the volume of any given subinterval @f, M — 1] which is why it is called aongruential generator
Unlike the nonlinear methods that were presented above, there is no absorption into a fixed point
short periodic orbit for congruential generators. In fact, since all calculations are carried out usin
integer arithmetics, and sineeand M must be chosen to be coprime, the syst@mg)(cannot give

rise to fixed points at all. The constanis typically chosen to be sufficiently large in order to have
any two close initial values very quickly wrap around the unit interval repeatedly and thus appear to b
decorrelated. This in turn means that the iteration n7af) consists of many nearly vertical lines. For

all the specific examples of the multiplierdiscussed below, the iteration map would actually appear
to be a completely filled unit square, unless the diagram is enlarged greatly, which is why | omit tc
show it. Incidentally, the transformatiofi.@) of the logistic mapT.1) for i = 4 results in the iteration
scheme

200 for a, < i
iy = n n 2 7.7
o {2—2% for l<a,<1 -
which has the same structural features as
ani1 = (2a,) mod 1. (7.8)

The small multiplier2 in this form makes it somewhat clearer that the logistic map displays the feature
of comparatively slow separation of two initial values near unstable periodic orbits or near the fixe
point atz* = 3/4in figure7.3.

Frequently, the constantin equation 7.6) is chosen to be zero, whence we commonly encounter
the namdinear congruential generatorThere is a lot of literature on good choices foand M, and

3The common method for rescaling is to sgt= . Sincem,, can, however, take on the value 0, which we usually

want to avoid, | recommend to rescale according.to= 7}\’;;“11.
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not all of it is trustworthy. In IBM’'s early computing days, it used to deliver its mainframe systems
equipped with its infamouRANDU generator which uses = 65539, M = 23! andm, = 1. This
generator has meanwhile repeatedly been reported to be highly inaddejiated2 Sob94 FMM77,

Tez99*. Sadly, it has been copied to a variety of other computer systems, including even the Russian
ES system$0b94. Since it is well conceivable that other computer manufacturers have slipped up
similarly®, and since there is according to Murphy’s law a tendency for mistakes to proliferate, | advise
the reader never to rely on black box number generator that come with any one system and allegedly
have been tested. Note that this kind of mistake is extremely easy to make. Again, please don't trust
any number generator that you can’t find a proper reference to, even if it looks sophisticated and similar
to the trustworthy ones given in, e.¢eTVF93.

Not all is doom and gloom, however. A simple choice for the constructing multiplier and modulus
that does work iss = 5'7, M = 2% andm, = 1, and has been used successfully in Russian 40-bit
computers $ob94. Its period is238.

7.4 Ran0 to Ran3

The seminal masterpiece by Press, Teukolsky, Vetterling, and FlariiEH9] is a very good source

of reliable number generators that have been well tested and are well understood. The simplest of their
suggested number generatdran(Q is given by equation7.6) with a« = 7° = 16807, ¢ = 0, and

M = 231 — 1. This choice of parameters was proposed by Park and Miflétdg as a minimal
standard generator and goes back to IBBGL generatof Tez95 LGM69] from 1969. There are

some technicalities involved with the issue of overcoming the roundoff problem in the multiplication

in (7.6) for the given parameters on 32-bit computers. This is typically done by the aid of Schrage’s
method, and the reader is referred BRI VF97 for the details.

Ranl is an enhancement of Ran0 using a careful shuffling algorithm. Note that any kind of en-
hancement of a pseudo-random number generator has to be done with utmost care, and should be left
to number theoreticians. The reason is that any non-linear alteration or modification of the numbers
given by one number generator is more than likely to result in diSastére message here is: Kids,
don’t do this at home!

4Sobol’ [Sob94 reports that IBM’s RANDU used/ = 229, whilst [PTVF9 and [Tez99 report it to useM = 231, |
don’t know which is accurate or whether it makes a difference. | simply advise the reader to avoid any number generator

that uses the multiplier = 65539.
S[PTVF97 report thatone popular 32-bit PC-compatible compileomes with a severely flawed pseudo-random num-

ber generator. Apparently, a reasonable number generator has been used as the basis for the compiler vendor’s own design
which was to add a byte swapping mechanism. This kind of action is always a dangerous thing to do and in this case ruined

the number generator.
5You may, if you want, compare it to the problem of interaction of two individually chaotic systems (although ran-

domness iot chaos, as was demonstrated in the previous sections) which in most cases gives rise to stable periodic
behaviour.
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Ran2 is based on the idea of coupling two linear congruential generators, to construct one of a mu
longer period [E88]. And finally, there is Ran3 which is based on a subtractive method suggested by
Knuth [Knu81]. I won't go into details for either of them because | don't think | could explain them
any beter than it is already done IRTVF93.

7.5 The Mersenne twister

Another random number generator technique that has become increasingly popular recentiers the
senne Twister The name is to indicate that the period of the sequence is a Mersenne number, i.e.
prime number that can be written likR& — 1 for somen € N, and that it belongs to the class of ‘Twisted
Generalized Feedback Shift Register’ sequence generators. The period of the Mersenne Twister
published MN98] and available [IN97] is 2'937 — 1. In order to give you a feeling for this number,
imagine that we started at the time of creation of the universe a computer producing 1 billion numbel
per secontifrom the Mersenne twister sequence. The fraction of the full period that this computer
would have produced by now is a decimal number with 5975 digits of zeros behind the decimal poin
prior to any non-zero digits. In other words, this computer could continue to draw numbers for man
thousand life cycles of your average solar system between its formation and collapse into a black hc
before beginning to repeat the sequence. Clearly, for all practical purposes, this number generator ¢
be assumed to have infinite periodicity.

The Mersenne twister sequence is guaranteed to have equidistribution properties in at least 6
dimensions. As George Marsaglia put it in 1968, ‘Random numbers fall mainly in the planes’, for all
random number sequences there exists an embedding dimensionality in which, in the right projectic
all sample points appear to lie in hyperplanes. This can have fatal consequences for a Monte Ca
calculation if the problem that is evaluated just so happens to be susceptible to the used sequenc
regularity. The higher the embedding dimension is which produces those patterns, the safer will &
the underlying number generator for general purpose use. | do not intend to go into details about tl
internal mechanics of this particular generator; suffice it to say that it tries to utilise as much of the
existing number theory to produce a reliable number generator. To quote the authors themselves:

MT uses many existing ideas. In particular, we are thankful to the following persons. N.
Yoneda, P. LEcuyer, R. Couture, H. Niederreiter, P. Hellekalek, M. Fushimi, S. Tezuka, Y. Kurita,
D. Knuth, H. Leeb, S. Wegenkittl, T. Cooper, M. Rieffel, H. Enomoto, and many many persons
who gave us valuable comments, including the users of TT800, a previous twisted generator.

In all of my tests and experiences this sequence engine performed well. Since code is freely availat
for it [MN97], and since it is no slower than any of the other pseudo-random number gerfeiaiters

"Even though at the time of this writing computers running at 1GHz CPU clock frequency are readily available, softwar
running on such fast hardware could only produce Mersenne twister numbers at a rate of less than one hundred milli

draws per second.
8|t is in fact faster than most other reliable pseudo-random number generators.
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recommended to integrate it into your general purpose library. It is certainly worth having it, and even
if only as a backup should you ever wish to cross-test results against a number generator whose code
base was not taken from the seminal reference ‘Numerical Recipes RI@H97J.

7.6 Which one to use?

All of them, or at least more than one of them. Sadly, many people who use Monte Carlo methods
underestimate the importance of the underlying number generator greatly, or have some kind of deep
trust in whoever built the number generator they are using from within a black box. This is not to
say that the sequence generator is the most difficult part of the design of a Monte Carlo procedure, on
the contrary. It is, however, one link in a chain of techniques that together comprise a Monte Carlo
simulation, and the nature of chains is that they are only as strong as their weakest link. And unlike
some add-on parts of the chain such as control variates etc. which are supposed to just add strength
but their weak performance does not break the fundamentals of the calculation, the reliability of the
number generator is crucial. | hope that by the end of this chapter the reader is sufficiently aware of
the basic principles that ensure that, as a matter of &édkcpseudo-random number generators are
flawed How suitable they still are for any one application, depends on the very problem that is being
tackled, and it is virtually impossible to foresee where a number generator may break down. Therefore,
| advise any user of Monte Carlo methods to have a small library of number generators available, and
rather than re-running a calculation with a new seed for any one generator, flick a switch that makes
the simulation use a different number construction method altogether. That’s the way to do it.



Chapter 8
Low-discrepancy numbers

In the light of the fundamental difficulties involved in the generation of truly random numbers men-
tioned in chaptei7, we may ask ourselves why do we need randomness? The answer lies with th
need of representing multi-dimensional joint distributions. As an easy example, let us consider tr
incremental path construction of standard Brownian motion

W(tia) = W(t:) + VAL 2 (8.1)

with z; ~ N(0, 1) over the time intervalo,¢,] for i = 0..n — 1. Evidently, any serial correlation
between the drawn normal variateswill give rise to a bias or undesirable regularity in the constructed
path. If many paths constructed in this way are used as the basis for the valuation of a path-depend
financial derivative, for instance, any serial correlation is likely to give rise to a mispricing. We can,
however, view this kind of problem from a different perspective. What we are really sampling here is
function of a vector argumentwhose elements are to be taken fronmagimensional standard normal
distribution. In this formulation, there is absolutely no reason why subsequent draxndiroensional
vector variate would have to be serially uncorrelated. The need for perfect decorrelation and thu:
randomness is merely an artefact of the custom to construct multi-dimensional vector variates fro
one and the same underlying one-dimensional number generator. For number generation methods
allow for a given dimensionality of the problem at hand, taking previous vector draws into account
and thus making subsequent vector draws serially correlated in order to avoid the inevitable cluste
and gaps of (pseudo-)random numbers, can actually aid the equidistribution property of the numb
sequence generator. This is the essential idea behind the concept of low-discrepancy numbers.

Unlike pseudo-random numbefsy-discrepancy numbeemnotto be serially uncorrelated, but
instead to take into account which points in the domain to be sampled have already been probe
The mathematical foundations of low-discrepancy sequences go back to H. Weyl inSk8iP4[and
many number theoreticians have worked in this field although | name but a few of the better know
sequences: Halton, Faure, Haselgrove, Niederreiter, and S&loal6[] Sob76 BF88 BFN94, Nie88
Nie96, Nie92 Tez93. Low-discrepancy numbers have become a popular tool for financial Monte
Carlo calculations since the early 199@9[W92].

75
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It has been shown that number sequences can be generated that enable us to do quasi-Monte Carlo
calculations which, given certain smoothness conditions of the function to be integrated, converge not
as one over the square root of the number of samples takets, 1?% but instead much more closely
to one overN, namelyx c(d)%. This, even for a large dimensionalidy is asymptotically much
faster thanx \/LN The only problem is that the coefficieri(td) can depend on the dimensionality and
thus for any one high-dimensional calculation we cannot know in advance if the use of low-discrepancy
numbers will be beneficial with respect to the accuracy required for the specific computation. At this
point, number-theoretical results alone no longer tell us if any particular low-discrepancy sequence will

give a speedup in convergence and we have to rely on empirical results.

In this chapter, I first explain the number-theoretical concegisairepancy Then, we introduce the
Halton sequence which is probably the easiest low-discrepancy number generation method to describe.
Next, | discuss the Sobol’ sequence. Following that, we briefly discuss the Niederreiter (1988) method.
For further details and for other low-discrepancy number generation methods the reader is advised to
refer to the books by Tezukd¢z99 and NiederreiterIflie92. Then, some empirical evidence will
be given that Sobol’ numbers, if adequately initialised, can be used in high dimensions, conversely
to common belief. | will also try to explain the origin to what | think is a misunderstanding in the
literature that they begin to fail as and when you start using dimensionalities above a few dozens.

8.1 Discrepancy

A measure for how inhomogeneous a setlafimensional vectorgr; } is distributed in the unit hy-
percube is the so-callediscrepancy A simple geometrical interpretation of the number-theoretical
definition is as follows. Generate a set/@fmultivariate drawgr;} from a selected uniform number
generation method of dimensionality All of these V vectors describe the coordinates of points in
the d dimensional unit hypercub@®, 1]. Now, select a sub-hyperculi§y) by choosing a poiny
delimiting the upper right corner of the hyper-rectangular domain féoto y. In other words, the
sub-hypercubé& can be written as'(y) = [0,y1) x - - x [0,yq). Next, letng,, denote the number of
all of those draws that are ifi(y), i.e.

NS(y) = Zl{nesw)}
=1
N

d
= Z H 1{yk27“ik-} : (8.2)

=1 k=1

In the limit of N — oo, we clearly require perfect homogeneity from the sequence generator which
means

. NSy
%5 - T =
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for all y € [0,1]¢. The above equation simply results from the fact that for a perfectly homogeneous
and uniform distribution on a unit hypercube the probability to be in a subdomain is equal to the volum
of that subdomain, and the voluméof S(y) is given by the right hand side of equatidhd). With

these definitions, we can now compare,)/y with V' (S(y)) for any one givery. In order to obtain

a measure for the global discrepancy of the number generator, we still need to choose an error no
over all possibley in the unit hypercube. With respect to the-norm, this gives us

N
7@ — / 5w Ty dy| (8.4)
N [O,I]d N g

Another frequently used discrepancy measure is the one resulting from the above procedure involvi
the L ..-norm:

d
nS(y)
~ Uw

k=1

D\ = sup (8.5)

ye[o,1]4

Clearly, by the nature of the underlying norms used for the respective definitidf)(\é) casfndDgC,l), we
have

DY =1y (8.6)

For numerical tests, thie,, discrepancy is rather cumbersome to evaluate. However, as is demonstrate
in appendix8.8.1 the discrepancy with respect to the-norm can be evaluated to the explicit formula

d

T(d)—lNd1 2Nd1 3~ 8.7
(1) - e S w5 S0t e

=1 k=1

wherer;;, is the k-th element ofr;. In appendix8.8.2 | show that theexpectedsquared discrepancy
for truly random numbers is

E[7{""] = % (24— 374 . (8.8)

We now arrive at the number-theoretical definition of low-discrepancy sequences. A sequence
[0, 1] is called dow-discrepancysequence if for allv > 1 the firstV points in the sequence satisfy

(In V)4
N

DY < ¢(d) (8.9)

for some constant(d) that is only a function ofl.

8.2 Halton numbers

The idea behind Halton numbers is to use the representation of a garmratinginteger~ in a
different number base for each dimension. Of course, the mentioned integer has to be a different o
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for each new vector draw. An easy natural choice for this constructing integer is simply the number
n for the n™ draw, v(n) := n, but any other choice of using a new integer with each draw such as
the Gray code~(n) discussed in sectio8.3.3would work, too. In order to prevent any asymptotic
pairwise periodicity, the number bases are chosen to be the prime numbers, of which one has to be
precalculated for each dimension. The algorithm to construct a new vector draw of Halton numbers is
as follows.

1. For each of the required dimensions- 1..d, find the representation of(n) in the associated
prime number basg,, i.e. find the coefficients in

Mg

y(n) =Y awpf" (8.10)

k=1
with all of thea,; < p;, andm,,; chosen large enough to make sure that all non-zero digits of
~(n) in the number basg, are accounted for.

2. To construct the coordinate,; for dimensioni of the »" uniform vector draw, the sequence of
calculated coefficients is now inverted and used as multipliers of fractions in the numbey,base
le.

M4

i = > ap (8.11)

k=1

For instance, if we choose the prime numb&r3, 5,7 as the basis in the four dimensions of a four-
dimensional Halton sequence, tig" draw is constructed as follows fa(n) = n.

base| n = 37,9 in base Ui
2 1001015 0.101001, = 1-27'40-27241-27340-27%4+0-27°+1-27% = 0.640625
3 11015 0.10113 = 1-37'40-32+1-3341-374 = 0.382716
5 1225 0.2215 = 2.5 142.57241.573 = 0.488000
7 527 0.257 = 2.7 1 45.772 = 0.387755

An actual implementation of the algorithm to create the next draw of the Halton sequence is given
in code examplé8.1 The variablesequenceCounter s the index of the next vector draw, i.e.

it represents: in the discussion above. The precalculated prime numbers are stored in the array
primeNumbers .

8.3 Sobol’ numbers

The construction of Sobol’ numberS$b67 is somewhat more involved. Again, a set of incommen-
surate basis numbers is used. This time, however, a different kind of multiplication determines the
meaning oincommensuraté/Vhereas for Halton numbers, the basis numbers simply had to be incom-
mensurate with respect to ordinary multiplication, for Sobol’ numbers, the basis numbers are compared
with respect to binary multiplication modulo two.



8.3 Sobol’ numbers 79

const vector<double>& Halton::nextUniformVector( void ) {
unsigned long b, i, k;

double f, h;
for (++sequenceCounter, i = 0; (i < dimensionality); ++i) {
for ( k = sequenceCounter, b = primeNumbers[i], f = 1., h = 0,; (k); k/i=b ) {
f /= b;
h += (k%b)*f;
}
sequenceVector[i] = h;

}

return sequenceVector;

}

Code example 8.1: Code sample for the generation of the next vector draw of the Halton sequence

8.3.1 Primitive polynomials modulo two

The theory of Sobol' numbers starts with modular integer arithmetic. Two intégard; are called
congruent with respect to the modulws i.e.

i245 modm (8.12)

if and only if the difference — j is divisible by m. Clearly, the numbers..m — 1 are sufficient
to represent the result of any multiplication or addition in the modutysdue to the congruence
relation 8.12. Form being prime, the combination of addition and multiplication moduloplus a
neutral element with respect to both, is also calldthidee commutative ringvhich isisomorphicto a
Galois Field withm elementsGF[m).

A polynomial P(z) of degreey,

g

P(z) = Zakzg_j : (8.13)
j=0
is considered to be an element of the ridf[m, z] of polynomials over the finite field:F'[m] if we
assume all of the coefficients to bec GF[m]. In other words, all algebra on the coefficientsis to
be carried out module:. This means, for instance, that

(z+DE+DEP+2+1) 2 224224 24+1 mod 2. (8.14)
A polynomial P(z) of positive degree is considered to ipeeducible modulom if there are no
other two polynomialg)(z) and R(z) which are not constant or equal i ) itself such that

P(z) £ Q(2)R(z) mod m . (8.15)

An irreducible polynomial modulen in GF'[m, z] is the equivalent to a prime number in the set of
integers.

The order of a polynomiaP(z) modulom is given by the smallest positive integgifor which
P(z) dividesz? — 1, i.e.

q = in/f{ ¢ |27 —1 2 P(2)R(z) mod m} (8.16)

q
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for some non-constant polynomia&l z).

An irreducible polynomialP(z) of degregy is also considered to hgimitive modulom if its order
ism? — 1. Note that not all irreducible polynomials are also primitive, although (especialty fer2)
most of them are.

The importance of primitive polynomials modulo two is given by two separate facts. Firstly, al-
gebraic manipulations modulo two, i.e. binary algebra, is particularly well suited to implementation
on today’s digital computers. Secondly, for any primitive polynomial of degrébere are recurrence
relations for obtaining a new random bit frognpreceding onesHTVF97. In other words, the use
of a distinct primitive polynomial modulo two for each of the required dimensions of the vector of
uniform numbers, makes it possible to generate a sequence of vectors in which the sampling happens
both uniformly over all of the dimensions, but in each dimension, we also have uniform use of all of
the binary digits. For further information on the distinction between irreducibility and primitivity, see,
e.g. [Tez95 Chi0Q. The calculation of primitive polynomials can be rather involved. Whilst there are
limited tables of primitive polynomials availablé/ft62 PTVF92 Jac97, | provide a list of all primit-
ive polynomials modulo two up to degree 27 on the accompanying CD. This amounts to a total number
of 8 129 334 primitive polynomials which should be more than enough for all practical applications.

8.3.2 The construction of Sobol’ numbers

The generation of Sobol’ numbers is initially carried out on a set of integers in the interval from 1 to
a power of two minus one, sdy, 2° — 1]. As you may imagine) simply represents the number of

bits in an unsigned integer on the given computer and should typically be 32, which amounts to the
set of attainable integers being given by all those in the rahg€294 967 295]. We will denote the

n" draw of one such Sobol’ integer in dimensibrasz,,. The final conversion to a uniform variate

ynk € (0,1) is done by dividingr,,, by 2° as a floating point operation, i.e.

Tnk
20 7
By construction, the only Sobol’ variate that could ever be exactly'zerthe zer8' draw (more on

the meaning of this later), and this holds for all dimensions. Therefore, we can explicitly exclude the
possibility that any one of the drawn integers is actually zero by simply skipping thé deawy.

Yk 1= Yo € (0,1), 21 € Z[1,2° — 1] (8.17)

For each of thel dimensions, the basis of the number generation is given by a set of so-called
direction integersof which there is one for each of tlheits in the binary integer representation. It is
conducive for the following to view all of the direction integersbaside bit fields. Let us denote the
[ direction integer for dimensioh asv,;. Additional constraints on the bit field representingare
that only thel leftmos® bits can be non-zero, and that tffeleftmost bit ofv,; must be set. The actual

1This is to mean for both the original Sobol’ algorithm as well as the Antonov-Saleev modification using the conven-

tional Gray code, but also for all other methods that choose the generating imtegauch thaty(0) = 0.
2The leftmost bits in a bit field representing an integer are the most significant ones. On standard contemporary com-

puters, the number of bits in an integer is 32. Thus, an unsigned integer with only the leftmost bit set would correspend to
the numbep3! = 2147483648, and all bits being 1 corresponds to 4294967295.
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number draws will later on be calculated by binary addition modulo two of some of these directior
integers, which makes it clear that eaghcan only affect theé leftmost bits in the drawn integet,;.,
and that it definitely influences tH# leftmost bit ofx,,;,.

Binary addition of integers modulo two, which amounts to bitwise addition without carry, is a par-
ticularly fast operation on contemporary computers knowBadusive ORand is usually abbreviated
as XOR. The key to the generation of Sobol’ numbers is the calculation of the direction integers. Thi
involves the binary coefficients of a selected primitive polynomial modulo two for each dimension. Let
the primitive polynomial modulo two for dimensidnbe p,. Denote the degree of this polynomial as
gi- Let the coefficient of the highest monomialipbea,, and so forth down tay, , i.e.

9k
pr(z) = Z agj 2% . (8.18)
=0

Note that the fact that,, = 1 is a simple consequence pf(z) being of degreey..

Now we come to the setting up of the direction integers. In each dimension with its associate
primitive polynomialpy, the firstg, direction integersy, for [ = 1..g;, can be chosen freely, within the
above mentioned two constraints. All subsequent ones are constructed from the following recurren
relation:

gk D2

Vk (1—
Vil = % Do Z Qkj Vk (1—7) for [ > gk (819)
j=1

.. D
Hereby, the operatap, stands for the XOR operatidnand the notatior) *indicates a whole se-

quence of XOR operations, or binary additions without carry, in analogy to the conventional sun
operatory _. In other words, the direction integeg ;_,,) is right-shifted byg, bits, and then XORed
with a selection of the (unshifted) direction integers;,—; for j = 1..g;, (controlled by which of the
coefficientsa,; are set), to obtain,;. Note that the highest order coefficieny is not actually used in

the recurrence relatior8(19, and that since the lowest order coefficienf, is always set, the direc-
tion integerv;, ;) Will always enterv,;. This is the reason why the highest and lowest coefficient of
the polynomialp, is usually not included in its encoding, provided that its degree is knéWiv[F97.

If you made it this far, and managed to follow the above explanations, you'll be relieved to see hov
simple theactualconstruction of the Sobol’ integess,. turns out, given the above preliminaries. Just
like for the construction of Halton numbers, we need a new unique generating integefor each
new draw. An easy choice of such an integer for/tfedraw isn itself, i.e.~(n) := n which amounts
to the original algorithm published by SoboB§b67]. However, any other method of ensuring a new
integer for each new draw such as the Gray codejyi®) := G(n), is equally possible. Given the
generating integer of the" draw, the Sobol’ integers for all of thedimensions are given by

d@Q

Tnk = Z Ukjl{j‘h bit (counting from the right) ofy(n) is set} : (8.20)
j=1

3Just in case you don’t know this already but still care: Tie™operation’s equivalent in C is™.
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In other words, depending on which of the bits in the binary representatipmofre set, the direction
integers are simply XORed, to produce the Sobol integgr The final transformation to a uniform
floating point number in the interval was already given by the simple division in equatid®.( It
may be clear from formulag(20 that we need to ensure

v(n) #0 (8.21)

in order to prevent any of thg,, being exactly zero. By the nature of the construction algorithm of
the direction integers, no other value fgfn) can result in any:,,;, and thusy,, being zero, whence
condition @.21]) is sufficient to ensureg,; # 0.

8.3.3 The Gray code

Antonov and Saleev contributed to Sobol’ numbers as we know them today by realising that instead
of using the binary representation of the sequence counti@ectly, any other unique representation

of the sequence countercan be used, tocAS79. In particular, a bitwise representationofwhich
switches only one single bit for every incrementinmeans that only one single XOR operation is to

be carried out for the generation of every integer representing the uniform coordinate of the next vector
draw. This kind of encoding of integers is known as a Gray c@@e), named after the engineer Frank

Gray who patented this method for the use with shaft encoders in the 1950s. Gray codes are still used
with shaft encoders today, and in many communication applications. They are useful wherever a set
of parallel electrical wires are used to indicate a number by the individual voltage state of each line.
Frequently, such lines are used to transmit the current state of a counter variable, which would only ever
increase by one. In such an application, using any encoding whereby more than one bit can change
from one number to the next, the tiniest mistiming in the transition of the high-low states from one
number to the next will cause the recipient of the signal not to receive a clean increase, but a rapid and
spurious sequence of intermediate numbers. As an example, think of the transitiosy fren011,

to 4,0 = 100,. Due to the inevitably limited accuracy of mechanical or electronical components, the
receiver is likely to perceive one of the possible sequences from 3 to 4 given ir8tab&early, none

310 = 0115 | 2990 = 0102 | 019 = 0002 | 419 = 1002
310 = 0115 | 2990 = 0102 | 619 = 1102 | 419 = 1002
310 = 0115 | 110 = 0012 | 0190 = 0002 | 419 = 1002
310 =0115 | 110 = 0012 | 519 = 1015 | 419 = 1002
310 =011 | 719 = 1115 | 619 = 1102 | 419 = 1002
310 =0115 | 719 = 1115 | 519 = 1015 | 419 = 1009

Table 8.1: Possible transitions from 3 to 4 in standard binary representation.

of them are desirable. Using a Gray code in the representation of the integers surmounts this problem
because exactly one bit changes in any one increase. It turns out that there is no single unique Gray
code. The most commonly used choice for the Gray code is

G(n)=n @3 [n/2]. (8.22)



8.3 Sobol’ numbers 83

In table8.2, the Gray code of the integers 1 to 7 is given as an example. An interesting feature of th

n | ninbinary | [n/2]inbinary | G(n) in binary | G(n) in decimal
0 000 000 000 0
1 001 000 001 1
2 010 001 011 3
3 011 001 010 2
4 100 010 110 6
5 101 010 111 7
6 110 011 101 5
7 111 011 100 4

Table 8.2: Gray codes.

Gray code is that the single bit that changes fiGtn) to G(n + 1) is always the rightmost zero bit of
the binary representation ofitself. This can be readily verified analytically and is also easy to see in
table8.2

As for the generation of Sobol’ numbers, they are clearly aided by the uséxfinstead ofn as
the constructing integer of thé" vector draw. Imagine we have already generated all of the vector
draws out to number — 1, and we have kept in memory the uniform integers_,). for all of the
required dimensions. Since the Gray cade) differs from that of the preceding ord&n — 1) by just
a single, say thg™", bit (which is the rightmost zero bit of — 1), all that needs to be done is a single
XOR operation for each dimension in order to propagate all ofthe to z,,, i.e.

Tnk = T(n-1)k D2 Vjk - (823)

8.3.4 The initialisation of Sobol’ numbers

The attentive reader may have noticed that there is yet some freedom left in the construction of Sob
numbers, namely the specific choice of the free direction numbers. As we recall from $8t@n
given the primitive polynomiap,, of degreey, associated with the"" dimension, the firsy;, direction
integers can be chosen freely within certain constraints. All of the remaining direction integers ar
then determined by the recurrence equat®i9. Since the firsy, direction integers thus initialise

the entire construction of the sequence, | also call timtialisation numbers The constraints on the

™ initialisation numbemy,; of dimensionk are that only thé leftmost bits can be non-zero, and that
the!" bit from the left hand side of thiewide bit field representing,; must be 1. Arguably the easiest
choice for the initialisation numbers is thus to just havelthkftmost bit set, and all other bits to be
zero, which amounts to what | calhit initialisation, i.e.

v = 2071 (8.24)

The impact of the initialisation numbers on the homogeneity properties of the entire sequence is n
to be underestimated. In 1976, Sobol’ published algebraic conditions that link specific choices c
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initialisation numbers to certain uniformity properti€xop7§. A low-discrepancy sequence is said to
satisfy property Aif for any binary segment (not an arbitrary subset) of thdimensional sequence

of length2¢ there is exactly one draw in each of tb&hypercubes that result from subdividing the

unit hypercube along each of its unit length extensions into half. In other words, assume that in each
dimension we divide the intervé), 1) into the two sub-intervalf), 1/2) and['/, 1). This will result in

a subdivision of the-dimensional unit hypercule, 1)¢ into 2¢ sub-hypercubes. Given any sequential
sectionsS of length2? of the low-discrepancy sequencedsélimensional uniform variates that starts at
some indexn = (2¢ for some integet, i.e..S) := (Ujoa, Uyoa 1, . - . , W(t1)2d-1), there must be exactly
onew € S, that lies in each and every one of the sub-hypercubes of volurfidor the sequence
generator to satisfy property A. Property A’ is similar in its definition in that it refers to sections of
length4? being required to provide that a single element is contained in each and every sub-hypercube
resulting from the subdivision of the unit hypercube into four equal intervals in each dimension. Of
course, if we explicitly exclude the point at the origin = 0 (as we would in order to prevent a
mapping to infinity when transforming to Gaussian variates), the segment of the sequence starting with
the first element will have no point in the sub-hypercithe /)¢ and will be most uniform for a length

of 2¢ — 1.

The algebraic equations that guarantee properties A and A can be solved numerically, and there
are precalculated tables of initialisation numbers that provide properties A and A up to certain dimen-
sionalities in the literature. The original articl&qb7§, for instance, provides initialisation numbers
up to dimension 16 for property A and up to dimension 6 for property A, and some authors have gone
through some considerable effort for higher dimensions, namely Paskov and Traub calculated them up
until dimension 360PT93. In finance, however, we often face problems that are of very high dimen-
sionalityd. In order to benefit from property A, we would need to carry out a Monte Carlo simulation
over a number of iterations that is to be of the order of magnitu@é.ofhe pricing of an Asian option
with daily monitoring and one year to maturity, for instance, represents a Monte Carlo integration in
250 dimensions, one for each trading day in the year. Sifite~ 10, we would have to iterate as
many times as is currently estimated to be the total number of particles in the universe, which is clearly
excessive, before we would benefit from property A, not to mention property A.

However, as we will see in sectioBs5 and8.6 this is not to say that for high-dimensional prob-
lems every set of initialisation numbers will work as well as any other. There is a clear benefit from
the choice of initialisation numbers that enables the low-discrepancy sequence to start exploring the
volume of the unit hypercube early on, rather than initially just focussing on certain areas. | therefore
recommend to use initialisation numbers that provide properties A and A for the lowest dimensions,
and for the higher dimensions, at least to ensure that any regularity in the initialisation set is broken up.
One choice of initialisation numbers that does the complete opposite is the aforementioned unit ini-
tialisation. Although strictly speaking a valid choice of initialisation numbers, unit initialisation leads
to surprisingly bad results for Sobol’ numbers, and should be avoided. A very simple way to generate
initialisation numbers that break the regularity, is to use a separate pseudo-random number generator
to draw uniform variates (0, 1) from, and to initialise as follows. Draw;, from a separate uniform
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k Ik Ao - - Olgy vy forl = 1..10

1 0 1 1.251 1. 230 1.229 1.228 1.227 1.226 1.225 1. 224 1.223 1. 222
2 1 11 1-231 | 3.230 5.229 15 - 228 17 - 227 51 - 226 85 - 225 255 . 224 257 . 223 771 - 222
3 2 111 1.231 1.230 [ 7.229 11 - 228 13 . 227 61 - 226 67 - 22° 79 . 224 465 - 223 721 - 222
4 3 1011 1.231 3.230 7.229 5.228 7. 227 43 .2%6 49 . 225 147 - 224 439 . 223 1013 - 222
5 | 3 1101 | 1-231 | 1.230 | 5.229 3.2%8 : 51226 | 125.22° | 141224 | 177.2%3 759 - 222
6 4 10011 1237 3.250 1229 1.228 59 . 220 25 . 22 89 . 224 321 - 223 835 . 222
7 4 11001 1231 1.230 | 3.229 7.228 | 31.227 | 47.2%6 109 - 225 173 - 224 181 - 223 949 - 222
8 5 100101 1237 3.2%0 [ 3.229 9.228 9.227 | 57.2%C 43 . 225 43 . 224 225 - 223 113 - 222
9 5 101001 1.231 3.230 7.229 7.228 21227 | 61.2%6 55 .22 19 . 224 59 . 223 761 - 222
10 5 101111 1.281 1.230 5. 229 11 - 228 27.227 | 53.2%6 69 - 225 25 . 224 103 - 223 615 - 222
11 5 110111 1.231 1.230 | 7.229 3.228 | 29.227 | 51.2%0 a7 . 225 97 . 224 233 . 223 39 . 222
12 5 111011 1.231 3.230 7.229 13 . 228 3.227 | 35.2%0 89 . 225 9. 224 235 . 223 929 . 222
13 5 111101 1.281 3.230 5. 229 1.228 15227 | 19.2%0 113 .22° 115 - 224 411 - 223 157 - 222
14 6 1000011 1.25T 1.230 1.22° 9.228 23 . 227 37 . 226 97 . 225 97 . 224 353 . 223 169 - 222
15 6 1011011 1.231 1.230 | 3.229 13228 11227 7.226 37.2%5 101 - 224 463 - 223 657 - 222
16 6 1100001 1.231 3.230 | 3.229 5.228 19.227 | 33.226 3.225 197 - 224 329 . 223 983 - 222
17 6 1100111 1.2%1 1.230 7.22%9 13 . 228 25 . 227 5. 226 27 . 22° 71224 377 . 223 719 - 222
18 6 1101101 1.231 1.230 1-229 3.228 13.227 | 39.2%6 7220 23 . 224 391 - 223 389 - 222
19 6 1110011 1.231 3.230 5.229 11 - 228 7.227 11 - 226 43 . 225 25 . 224 187 - 223 825 . 222
20 7 10000011 1.231 3.230 1-229 7.22%8 3.227 23 . 226 79 . 22° 65 - 224 451 - 223 321 . 222
21 7 10001001 1.231 3.230 1.229 15 - 228 17 - 227 63 - 226 13225 | 113.2%% 147 - 223 881 - 222
22 7 10001111 1.231 3.230 | 3.229 3.228 | 25.227 17 . 226 115 - 225 17 . 224 179 - 223 883 . 222
23 7 10010001 1.231 3.230 7.229 9.228 31227 29 . 226 17 -225 | 121 .2%% 363 - 223 783 . 222
24 7 10011101 1.251 1.230 3.229 15 . 228 29 . 227 15 . 226 41.225 | 249.2%4 201 - 223 923 . 222
25 7 10100111 1.231 3.230 1.229 9.228 5.227 | 21.226 119 . 225 53 . 224 319 - 223 693 - 222
26 7 10101011 1.2%1 1.230 5. 229 5.228 1.227 27 . 226 33.22% | 253.22% 341 . 223 385 . 222
27 7 10111001 1.251 1.230 3.229 1.228 23 . 227 13 . 226 75 . 225 29 . 224 181 - 223 895 . 222
28 7 10111111 1.231 1230 7.229 7.228 19227 | 25.2%6 105 -225 | 173.2%4 509 - 223 75 . 222
29 7 11000001 1.2%1 3.230 5. 229 5.228 21 . 227 9.22%6 7.225 | 143.2%4 157 - 223 959 - 222
30 7 11001011 1.251 1.230 1.229 15 . 228 5. 227 49 . 226 59 . 225 71 . 224 31.223 111222
31 7 11010011 1.231 3.230 | 5.229 15 . 228 17227 19 - 226 21.225 | 227.22% | 413.2%8 727 - 222
32 7 11010101 1.281 1.230 7.229 11 - 228 13227 29 . 226 3.22° 15 . 224 279 . 223 17 . 222

Table 8.3: Initialisation numbers providing property A up to dimension 32.

random number generator such that
Wl = int [u}zl . 21_1} (825)
is odd (simply keep drawing until the condition is met), and set

Vil = Wy * Qb_l for [ = 1.9k . (826)

To finish this section | give in tabl®.3a list of initialisation numbers that have been tested to give

property A up to dimension 32 and are guaranteed to provide property A" up to dimenstari B4

The columns are as follows: is the dimension indexg;, is the degree of the associated polyno-
mial, ay . . . axg, are the coefficients of the polynomial as in equati®ri§, andv,; are the direction
numbers. The freely chosen direction numbers, i.e. the initialisation set are in normal black and tho:
derived from the recurrence relatidh 19 are shaded. Note that the polynomial associated with dimen-
sion 1 is not strictly a primitive polynomial, similar to the number 1 not strictly being a prime number.
This is also the reason why the direction numbers for dimension 1 are not given by the recurrenc
relation §.19 but are simply,; = 2°~!. Further details can be found in the original literatugelp67.
As for readily available code to construct Sobol’, there is of course the algorithRTivif93. Using
that source code, and the table of primitive polynomials modulo two on the accompanying CD, an
the initialisation method described above for the free direction numbers, it shouldn’t be too difficul
to create your own high-dimensional Sobol' number generator. Also, there is a commercial librar
module available from an organisation called BROD#S] that can generate Sobol’ sequences in up
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to 370 dimensions. In a way, this module can claim to lgeauineSobol’ number generator since
Professor Sobol’ himself is behind the initialisation numbers that drive the sequence, and he is also
linked to the company distributing the library. Just before you get any wrong ideas: | am not affiliated
with BRODA in any way whatsoever.

8.4 Niederreiter (1988) numbers

H. Niederreiter devised a general framework for number-theoretically constructed sequences of low-
discrepancylflie97. This contributed greatly to the analysis of the internal mechanisms and helped to
understand the similarities and differences of the various number sequences. He also devised several
sequence generation algorithniéig¢88 Nie96 of which only one has been implementdsiHN94].

We refer to these numbers as the Niederreiter (1988) sequence. They are from a constructional point
of view not too different from Sobol’ numbers. They, too, are based on polynomial arithmetic modulo
some basen, and the most frequently used base happens to be 2, not least due to the enormous speed
and ease to carry out binary calculations on a modern computer. However, Niederreiter (1988) numbers
employirreduciblerather tharprimitive polynomialg. Despite the fact that they are theoretically sup-
posed to be superior to Sobol’ numbers in the limit, from an empirical point of view where the start-up
rather than the asymptotic performahéemore relevant, Niederreiter (1988) numbers, in my experi-
ence, do not provide quite the same reliability in terms of rapid convergence for high dimensionalities
as Sobol’ numbers do.

8.5 Pairwise projections

The aim of low-discrepancy number generation methods is to provide a source of vector coordinates
that covers a given domain a homogeneously and uniformly as possible. The more homogeneous
the underlying number generator, the more accurate and rapidly converging will be a Monte Carlo
calculation based onfit

It has been documented in the literature, that low-discrepancy number generators tend to lose
their quality of homogeneous coverage as the dimensionality increases. A particularly striking way
to demonstrate this is to plot the projection of a given number of vector coordinates drawn from a
number generator onto a two-dimensional projection of adjacent dimensions. In8iguvee show

4Clearly, since all primitive polynomials are also irreducible, one can just use primitive polynomials for the construction
of Niederreiter (1988) numbers, too. This does not, however, remedy the not-so-good performance of Niederreiter (1988)

numbers in high-dimensional applications.
SFor practical applications, we are more interested in the realised convergence over the first ten thousand or even 500

million draws, and the question as to which number generator will provide a higher rate of convergence in the asymptotic

limit of actually infinitely many drawss not really of great importance.
6A more mathematical form of this statement is known as the Koksma-Hlawka theorem, but since this relationship is

sufficiently plausible by sheer common sense, | won’t go into the details here.
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the projection of the first 2047 vector draws of various number generators on several two-dimension
uniform intervals. In the first row, we have vector draws from the Mersenne twister as an exampl.

Mersenne twister Mersenne twister Mersenne twister Mersenne twister Mersenne twister
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Figure 8.1: Two-dimensional projections of various number generators.

for a random pattern for reference. Rows 2 to 5 give the projections of the Sobol’ generator (regularit
breaking initialisation), Sobol’ (unit initialisation), Niederreiter, and Halton. In column 1, the projec-

tion onto the first two dimensions is shown, followed by dimension 8 versus 9, 29 and 30, 62 and 6:
and 93 against 94. The particular dimensions shown were selected randomly. These projections ar
first indicator that not all low-discrepancy number generators are reliable when fairly high dimension
are required. For the last three low-discrepancy number generators there is clearly a trend towat
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clusters and gaps as the dimension increases. Sobol' numbers with regularity breaking initialisation,
however, do not seem to suffer from this problem.

There have been reports in various publications that Sobol’ numbers, too, suffer the problem of
rapid breakdown of homogeneity in higher dimensions. | believe that this is due to an unfortunate
choice of the initialisation numbers used for their construction. In fact, I. Sobol’ himself has been
aware of the importance of careful initialisation at least since the early 1%&0s/ff. Alas, when
the financial sector started using low-discrepancy numbers, this wasn'’t picked up, whence there is the
notion that no low-discrepancy number generator is suitable for high dimensions.

8.6 Empirical discrepancies

A more thorough measure for the homogeneity properties of a low-discrepancy number generator than
visual inspection of projections is the discrepancy as defined in equaBigh®( (8.5 in section8.1

In order to provide even harder evidence that suitably initialised Sobol’ numbers are reliable indeed,
even in significantly high-dimensional applications, | show in figl8&so 8.9 the discrepancy with
respect to theﬁg-normT}\f) as defined in equatio8(4) for d = 2, 3, 5, 10, 15, 30, 50, 100 for various
number generators. Note that the line denoted as “expectation for truly random numbers” is actually

@) -
E (TN> , as calculated in append#8.2
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Figure 8.2:TJ(V2) as defined in equatior8(4).
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0.001

10 dimensions
—— RAN1
—— RAN2
—— RAN3
—— Mersenne twister

0.0001

—— Sobol’ (unit initialisation)
—— Niederreiter (1988)
— Sobol; (regularity brealking initialisatioq)

1024 2048 4096 8192 16384 32768 65536
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Figure 8.9:7"” as defined in equatioB(4).

It clearly can be seen in figurés2 to 8.9 that for low dimensionalities, all of the tested low-
discrepancy number generators are considerably superior to pseudo-random numbers. However, as
the dimensionality increases, this advantage decreases, until afoanth the Halton method, the
Niederreiter sequence, and Sobol’ with unit initialisation, all appear to be significantly inferior to
pseudo-random number methods. This underperformance becomes so dramaticlia that there
are more than ten decimal orders of magnitude between the aforementioned three number methods and
plain pseudo-random methods. However, for suitably initialised Sobol' numbers, there is no deteri-
oration to the extent that they appear inferior to pseudo-random number generator. It is true that the
total discrepancy over all of the equally weighted 100 dimensions as shown in 8dumeakes well
initialised Sobol’ numbers appear as if it is hardly worth bothering. At this point, however, we should
bear in mind that in most applications in finance, we are dealing with problems that have a natural
ordering in the importance of all of the involved dimensions. A very good example of a simulation
problem that decomposes into dimensions of strongly varying importance is that of paths describing
Brownian motion. Clearly, if the terminal value of the Brownian motion determines the pay-off of a
derivative contract, it is of particular importance in the valuation problem. How the specific features of
Brownian motion can be exploited for optimally importance-ranked path construction is discussed in
section10.8and examples for the good convergence of Sobol’ nunilaeesgiven in section0.8.4

The lesson to learn with respect to well initialised Sobol’ numbers is that they will provide a
substantial performance boost in the lower dimensions, and will still work at least as well as pseudo-

"well-initialised ones, of course
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random number generators in higher dimensions. Thus, we should always try to design the Mon
Carlo solution approach such that we can exploit the better convergence in the lower dimensions |
assigning them to the problem dimensions of most importance.

8.7 The number of iterations

As we know, for pseudo-random generators, the number of iterations only affects the expected varian
of the result by the central limit theorem, i.e. the more the better. For low-discrepancy numbers
the situation is different. Sobol’ numbers, and other number generators based on integer arithmet
modulo two, by construction provide additional equidistribution properties whenever the number o
iterations isN = 2" — 1 for some positive integet. This is easy to see on the unit interval in one
dimension where such a choice of draws always results in a perfectly regular distribution of points, ar
can also be confirmed in the empirical discrepancy diagrams of se&t6ap to dimension 5.

8.8 Appendix

8.8.1 Explicit formula for the L,-norm discrepancy on the unit hypercube

Substituting the formula8(2) for ng(,, into the squared right hand side of equati8nd), we obtain

N d
d)2 1
TJS/) = N2 Z / H 1{yk27'ik}1{yk27'jk}dy (8.27)

—2—2 / Hl{ykm}ykdy + / Hyidy

yeo1dkl yE[Ol]dkl

N d L N d
_ %ZH /dyk— %Zﬂ/ykdyﬁn/ykdyk (8.28)

= i=1 k:l k=1 0
max(7;k, k)

N d

| N 1 1
= —221_[1 1 — max(rig, 7jk)) _2N2H21_T ) + 374, (8.29)

i=1 k=1

which is identical to equatior8(7).
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8.8.2 ExpectedL,-norm discrepancy of truly random numbers

In order to derive equatior8(8), the expectation of§.7) for truly random numbers is calculated below.

N d a4 N d
E [T](\;i)z} _ % ZE [H (1 — max(ry, rjk))] - 2T E [H (1—r3)

ij=1 Lk=1 i=1  Lk=1

+37(8.30)

The expectations over products of terms involving random numbers can be replaced by products over
expectations when the random numbers are independent. For this to hold, the first sum has to be split
into the terms when = j and wheni # j. This gives

k=1

d
2 1
E [Tz(\;l) ] = N2 {N HE{xke[O,l}}[l — x] (8.31)

d
+N(N = 1) [ [Eappnenn [l — max (y, yk”}
k=1

217d d

- N IHE{xkem,u} [1—af] +371

_ %{Q‘dJr(N—l) {z/yio/;y(l—x) dxdyr} (8.32)

—g1—d [/;51 — ) dx]d+3—d

d
1 B L2l
= F T @- [1‘/y:3 de] (639
d
—ol—d <§> 437
1 ! ’
— N{Q—M(N—U {1—1+/ dey] }—S‘d (8.34)
SRR ORI R S R (8.35)
1 —d —d
= (@ -3) (8.36)



Chapter 9
Non-uniform variates

Number generators tend to produce uniform variates on the unit interval. Whenever we wish to cari
out a Monte Carlo simulation that requires anything other than a uniform distribution, we have ftc
convert the raw uniform variates to our target distribution, or ensure otherwise that we are meeting ol
distributional requirements. In this chapter, | discuss some of the known methods available for thi
purpose.

9.1 Inversion of the cumulative probability function

The cumulative probability function of any distribution has the following useful feature: For any vari-
atex € R from a given target distribution density(x), the cumulative probability function far,

i.e. U(z) = [7 _4(2')de’, is a uniform variate on the unit interval. This is because the cumulative

probability function is by value just a probability measure, which is uniform by definition. So, if we

can invert the cumulative probability function, and take values of the inverse cumulative probability
from given uniform variates, we obtain variates of our target distribution!

Example: The Cauchy distribution density and probability were given in equa2obd @nd .54
as

1 1
U(z) = —at -
(7) 7Taan(m)—l—z

The inverse cumulative density can easily be given:
U (u) = tan <7r(u - 1/2)) : (9.1)

As for all distributions that are non-zero for alle R, the inverse cumulative probability function of
the Cauchy distribution diverges bothat— 0 and atu — 1. It is therefore of paramount importance
for numerical applications to ensure that the underlying uniform number generator never returns eith

95
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Figure 9.1: Constructing Cauchy variates that are distributed accordingroas given in equation
(2.53 from 14(0, 1) variates is easy by virtue of its inverse cumulative probability (u) in (9.2).

of those two limiting values. Unfortunately, almost all uniform number generators that | have come
across so far include at least O in their range, which must be intercepted in a Monte Carlo implementa-
tion.

The method of direct inversion of the cumulative probability function is definitely the preferred
method for non-uniform variate construction, wherewer! (u) is readily available and can be com-
puted efficiently. Despite the alternative methods discussed below, for distributions whose inverse
cumulative probability function is not so easily computable, such as Studemtisse cumulative is
given in equationZ.52 or the GB2 distribution whose cumulative B §2), it may still be advisable to
use the inverse cumulative mapping method. However, in those cases, rather than root-search for the
inverse cumulative for each new draw, one should set up a (possibly multidimensional) interpolation
table using cubic splines, monotonicity preserving splines, or your favourite shape-preserving spline
method PTVF92 Hym83 Kva0(. Fortunately, for most known distributions, we have at least the
cumulative probability function and can thus readily set up the required interpolation table.

9.2 Using a sampler density

There may be situations when the inverse cumulative probability function is either not available at all,
or would be computationally extremely expensive to evaluate. In this case, we can em=aynibler
density techniqupViac97. Instead of drawing directly from the desired target density), we choose
another, hopefully similar, densitgf from which we can readily draw variates. The simulation is then
carried out using variates from the sampler density, and each function evaluation is probability density
corrected according to the likelihood ratio of the target dengity) and the sampler densi@(x).
Mathematically, this corresponds to the density transformation

Jr@w@ = [f@ (

T

lﬁ() () d . 9.2
o >)w<> (9.2)

X
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In other words, the Monte Carlo estimator that was given in equaidi(is replaced by theampler
density Monte Carlo estimator

2

b ‘:iN . P ()
N N;f( J(W)) : 9:3)

Equation 0.3) gives us an immediate condition on any choice of sampler density: The sampler densit

Y(x) must not be zero wherevé(z)y(x) is non-zero!

The attentive reader may have noticed that for any finite numberff simulations, the sampler
density Monte Carlo estimator for a constant functiti) := ¢ will, generically, not result in the
exact valuer, unlike equationZ.15. This can be remedied by re-normalisation, which gives us the
normalised sampler density Monte Carlo estimator

oy = | (9.4)

However, by virtue of the continuous mapping theorem, both estimators are valid. In general, th

AL
RN

V(¥

Figure 9.2: The sampler density method uses variates from a different, but preferably similar densit
and corrects the average for the misrepresentation of the individual draws by multiplying each functia
evaluation by the likelihood ratio of the target and the sampler density.

variance of any sampler density estimator will be different from a straight target density estimatol
and by virtue of Murphy’s law, if we selected the sampler density more or less randomly, we will enc
up with an increased variance for our Monte Carlo estimator, i.e. a larger Monte Carlo error. What'
more, this problem is geometrically compounded as the number of dimensions increases, and this
the reason why drawing from the target distribution is to be preferred if it is readily available. For
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a more mathematical analysis of the problem of increased variance of the sampler density estimator,
see Mac97).

To finish this section, | show in figur@.3 the convergence diagram for a standard plain vanilla
European call option in the Black-Scholes framework with= 123, K = 134, r = 12%, d = 4%,
T = 3.33, ando = 67% using the Cauchy density as the sampling distribution in comparison to the
direct use of standard normal variates. The first thing to notice is that there is not much between the

55.4 T T T T T
Black-Scholes price ——
i Cauchy sampling density, not normalised —— |
B2 o Cauchy sampling density, normalised —— [
i standard normal sampling density ——— |
|
55 N T ] e
i
® \ | | |
2 : : :
; '
o 548 Wl N W i T i —
£ D D RN WA, | |
: ‘ h ‘WW ! AM "\ 3 3
= 3 W%W
I 1
54,6 [l  ——— —
aLat
542 | 1 1 1 1 1
0 1000000 2000000 3000000 4000000 5000000

# of iterations
Figure 9.3: Pricing an out-of-the-money call option using a Cauchy sampling density.

normalised and the un-normalised versions of the sampling density method in equatipasd ©.3),
respectively. There is one surprising feature though: the Cauchy sampler density method appears to
convergefasterfor this particular simulation! The explanation is rather simple. In the Black-Scholes
framework, the terminal value construction method$ergiven S, and a standard normal variates

Sp — Syar-i- TV

Solving S = K for x, we have
In(K/Sy) — (r —d — 26*)T
T = .
“ oVT
For the parameters given above, the cumulative normal probabilityfds N(xx) = 67.85%. The
cumulative Cauchy probability far is, however, onlyWecauen(zx) = 63.82%. This means that
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approximatelyt% fewer of the constructei; values end up out of the money when we use the Cauchy
sampling density, which gives rise to an improved convergence. What’'s more, since the Cauchy dens
has much fatter tails than the normal distribution, the simulations that end up in the money tend to ha
higher values and thus compensate the convexity adjustment, i.eéﬂwm—%UQT, more rapidly.

Both effects together amount to the improved convergence behaviour seen irbfigure

9.2.1 Importance sampling

Since we have a lot of liberty with respect to the choice of the sampler density, can we take advanta
of this freedom in order to reduce the variance of the Monte Carlo estimator? Consider the speci
choice

S
Y T )

ignoring for now the fact that we don’t actually know the value of the denominator. This particular
choice for the sampler density would enable us to calcuat® (ith any single draw for: since we
obtain from equation9.3)

Since we don’t know the solution of the problem that shows up in the denominator of the right hant
side of equationd.5), we clearly can’t actually do this. However, we can choose a sampler density tha
takes structural features of the prodyi¢t):)(x) into account. A very simple choice that will already
provide a significant improvement is to choose a sampler density that is zero whéteyés zero,

too. An example for an integranf(x) that has regions of zero value is given with the piecewise affine
function in figure9.2, and in finance, functions with this feature are everywhere. Specific choices
of sampler densities that take thus advantage of the regions of importance of the intégraade
known asimportance sampling methad3he use of a heavy-tailed distribution for the pricing of an
out-of-the-money option as in the example in the previous section is one such application of importanc
sampling. We will revisit the importance sampling method in sectidhSand11.4

Incidentally, the example of the ideal sampler density in equafds) highlights that for strongly
non-constant functiong, it may be advantageous to carry out the importance sampling technique using
the non-normalised estimator given in equatidrsy.
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9.2.2 Rejection sampling

Rejection samplings the stepsister of importance sampling. For this method, we need to select a
sampling density(z) and a scaling constanasuch that(z) > v(z) for all z in the domain of). In
order to compute a Monte Carlo estimator over many values foith = ~ 1), we proced as follows:-

- Draw a variater from the sampling densit@(:z:).

- Compute the value of the sampling denaﬁyx) at z, and also the value of the target density

Y(z) atz.
- Draw a uniform variate: ~ 2£/(0, 1).

- f u'c&(x) > 1)(x), reject this attempt to find a suitable variate and start again, otherwise accept
x as a variate with: ~ ) and evaluate the integrarfdx) in the usual manner.

cy(X) —
/

X

Figure 9.4: For rejection sampling choose a sampling deﬂsﬂa:yd establish a scaling constarsuch
thatey(z) > (z) V. Then, take a draw from the sampling density and evaluate)(z) andu (x)
atz. Next, draw a uniforn{0, 1) variateu. Use the drawn variate if u-ci)(z) < ¢ (z), else reject it.

There are two main problems with the rejection method. The first one is, again, the geometric implo-
sion of the sampling yield as the number of dimensions incréasae second problem is that they are

1This repeated occurrence of high numbers of dimensions causing problems with the evaluation of integrals gave rise
to the termcurse of dimensionality
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rather difficult to amend to the efficient application of low-discrepancy numbers. Personally, | don't
like rejection methods.

9.3 Normal variates

My favourite method for constructing standard normal variates is the highly sophisticated interpola
tion formula by Peter AcklamAckOQ] for the inverse cumulative normal distribution as discussed in
section2.30on pagell. A very crude way to quickly construct (approximately) normally distributed
variates is to add up 12 uniform variates, and subtract 6, and | have given a diagram that shows t
difference to the exact normal distribution in figuitd on page20. For any reasonable application, |
would always use either Peter Acklam’s method, or Boris Moro’s interpolation forrvidads.

9.3.1 The Box-Muller method

There is, however, yet another method for the construction of standard normal variates that is still ve
popular. It is based on the transformatienv) to (z, y) given by

r =+/—2Inu sin(27v)
y =+v—2Ilnu cos(2mv)

Foru andv being independent standard uniform(ih 1)2, the joint distribution forr andy is given by

o, y)| e 2"’ e 2V’
- (w—) (w—) | o

0(u,v)
i.e. that of two independent standard normal variates! Techniques for the generation of standard n«
mal variates based on the transformati®r)l are known ag8ox-Mullermethods BM58, Knu81]. The
classical application of the Box-Muller method is to draw two independent uniform variates, and trans

(9.6)

U(z,y) = ‘

form them according to equatiof.g), in order to obtain two independent standard normal variates.

Note that the trigonometric terms on the right hand side of equafi®) ére the abscissa and
ordinate of a point on the perimeter of a unit circle. Another variant of the Box-Muller method is to
draw a random point from within a unit circle, and use its cartesian coordifiatgsas follows. First,

setu := s + t2. Then set
xr = S\/—QIHTU
. (9.8)

The advantage of this procedure is that no evaluation of trigonometric functions is required, and it use
to be that those trigonometric functions were rather cpu-intensive in their evaluation (in comparison t
simpler functions such as the logarithm and the square?cbhtle only question that remains is: how

2More recently available computing hardware provides substantial improvements for a variety of previously cpu-time
expensive functions, see sectibh.6
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do we draw a cartesian coordinate pair that describes a point inside a unit circle? The commonly used
method for this purpose is a two-dimensional rejection procedure. We simply keep drawing uniform
(—1,1) variate pairs (by drawing standard uniform numbers, multiplying them by two, and subtracting
1) until we find one that lies inside the unit circle. Since the area of a unit cireleand the area of a

2 x 2 square is 4, the yield of this rejection methodris

There are two main problems with the Box-Muller method. The first one is discussed in the next
section. The second problem is that rejection methods are highly dangereous (and should not be used,
really) in conjunction with low-discrepancy numbers. An example for this is shown in figuse
In the top-left diagram of the figure, two-dimensional Gaussian variates constructed from Mersenne-

Box-Muller method by trigonometric transformation Box-Muller method by trigonometric transformation
4 using Mersenne-Twister numbers.

using Sobol’ numbers.

Box-Muller method by rejection
using 2-dimensional Sobol’ numbers.

43 2 1 0 1 2
Inverse cumulative method

3

3

32 1 0 1 2 3
Inverse cumulative method

4

!

32 1 0 1 2 3
Box-Muller method by rejection

4

4 using Mersenne-Twister numbers. using 2-dimensional Sobol’ numbers. using 1-dimensional Sobol’ numbers.
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Figure 9.5: The Box-Muller method(s) in comparison to the use of the inverse cumulative normal
function. All diagrams were constructed from 65535 pairs of variates.

Twister numbers using equatiof.§) are shown. Next to it, the same transformation method was
used with 2-dimensional Sobol' numbers. Then, the distribution of 2-dimensional Sobol’ numbers
transformed by the Box-Muller rejection metho@l&) are shown. At the bottom-left, we have the
inverse cumulative normal function applied to Mersenne numbers, followed by the same method with
2-dimensional Sobol’ numbers. The last diagram highlights the danger of combining rejection methods
with low-discrepancy numbers: using a one-dimensional sequential generator with the Box-Muller
rejection method, as in this example, which is fine for pseudo-random numbers, goes horribly wrong
when the number generator is a low-discrepancy algorithm.
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9.3.2 The Neave effect

A problem with highly sophisticated deterministic methods, such as pseudo-random number gene
ators and the Box-Muller algorithm, is that it is often difficult to foresee when their interaction may
have undesirable side-effects. In 1973, H. R. Neave discovered one of these hard-to-imagine quirks
undesirable interaction between nonlinear systeéxwesaf3. When we use simple multiplicative con-
gruential pseudo-random number generators such as Ran0 (also known §sa&@iven in equation
(7.6) and discussed in sectioh4 in conjunction with the transformation version of the Box-Muller
method given in equatior®(6), there is a nasty surprise in store for us: over the whole period of the
number generator &' — 1 = 2147483647 iterations, the smallest pseudo-normal variate that can be
drawn forx in equation 9.6) is -4.476239, and the largest we will get is 4.717016zPg. Strictly
speaking, there are two possible rangesifdepending on whether the pairwise transformation starts
on the cycle containing the local seed 1, or on the cycle containing the local seed 16807 in the iteratic

m; =a-m;—; mod M

with = 16807, M = 2°! — 1, andm,_, being the local seed for theth single variateu;, = 7.
However, the variation in the lower bound and the upper bound between those two possible cycles
beyond the first six decimal digits. According to the cumulative normal probability function, we would

expect to have approximately
231 — 1. N(—4.476239) ~ 8157

draws lower than -4.476239, and equally several thousand above 4.717016. So, the ranga’for

too good. The lower bound fay from equation 9.6), is -4.566210, again only showing variation
between the two possible cycles beyond the first 6 decimal digits. The upper boundHough, is
6.385757568918 for the cycle beginning with = 1, and 6.555541555803 for the cycle beginning
with 16807. In other words, the upper bound is somewhat better foy viaeiate, but the lower bound

is still no good. What's more, on either side of the distribution resulting from the combination of this
number generator with the trigonometric version of the Box-Muller method, there appear to be som
kind of wing formations in the tails of the distribution, as is shown in figdi@ As you can see,
addition of a bitwise XOR mask as it is done for the proper Ran0 pseudo-random number methc
doesn't fix the problem. The Neave effect does fade away, though, when we use the rejection versi
of the Box-Muller algorithm 9.8). However, there are reports that the rejection method also suffers
from problems due to the fact that two (or more) uniform variates are used together for the generatic
of two normal variatesAW88, Rip87).

Of course, some may say that this is a small effect in the tails of the distribution, which is fair
enough. However, in finance we are frequently particularly concerned with the tails since they tend 1
contain the most feared scenarios. But then, of course, you are probably not using the simple Ran0 ¢

3The only difference between the two is that Ran0 uses a bitwise XOR mask on the seed before and after each iterat
mainly to prevent the accidental use of 0 as a seed, which would result in the fixed point O.
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On aglobal scale, all combinationslook pretty much the same
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Figure 9.6: The Neave effect is due to an interaction of pseudo-random number generation methods
and the trigonometric transformation version of the Box-Muller algorit®m®)( In this figure, the
GGL generator given by equatioi.6) with a = 16807, ¢ = 0, andM = 23! — 1 was used.

GGL generator, but one of the much more sophisticated ones that are readily available these days. Un-
fortunately, number theoreticians have begun to suspect that effects similar to the Neave phenomenon
may occur for other number generation clags&se fundamental principle of the problem underlying

the Neave effect remains, thus: whenever you use a variate-mixing transformation in order to generate
variates from a specific target distribution, you run the risk of some kind of nonlinear interaction with
the number generation mechanism that may be very hard to foresee, or even very difficult to notice,
until something has gone wrong in a very big and unexpected way.

In summary, since there are nowadays highly accurate and efficient interpolation algorithms avail-
able for the inverse cumulative normal probability function, it is generally safer to use those rather than
to employ the Box-Muller method. It was an invention of great ingenuity and insight at the time, but
now it has had its days.

9.4 Simulating multi-variate copula draws

The problem of non-uniform variate generation is, of course, not limited to one dimension, or several
dimensions of independent variates. The copula approach of creating multidimensional variate draws
with co-dependence was explained in secttoh To conclude this chapter, | give in figuBe7 an
example for the kind of codependence that can be constructed by the use of copulae. The Archimedean
copula generating function(u) = (u=! — 1) as given in equations(31) in section5.2.3was used

with § = 3/. The Weibull variates were generated from the inverse cumulative Weibull probability
function

U (u) = [-Bln(l —w)] (9.9)

4Tezuka states on page 152 ifep99 that the Neave effect ‘... possibly occurs not only with linear congruential
sequences but also wifhS(2) sequences.’
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Figure 9.7: 131071 Weibull variates fér= 1 and~ = 4 under the Archimedean copula generated by
¢ given in equationg.31) with 6 = 3/.

which can be calculated fron2(72, using3 = 1 andy = 4. A rather interesting shape, don't you
think?
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Chapter 10
Variance reduction techniques

As we have seen in chapt2rthe error estimate for the result of a Monte Carlo simulation is given by
the standard deviation of the result (i.e. the average of all samples for a standard Monte Carlo inte
ration) which is known as the standard error and usually estimated as the realised standard deviat
of the simulation divided by the square root of the number of iterations. The smaller the varianc
(and thus the standard deviation) of the calculation, the more accurate will be the result. When | ta
about variance here, | don’t mean the variance associated with any one individual sample of our Mon
Carlo simulation, but with the variance associated with repeating the whole simulation many times. ;
number of techniques have been develo#i}G97], that help to reduce the variance of the result, and
thus to reduce the number of simulations required for a given accuracy. Some of these methods can
combined to achieve even higher accuracy as we will see.

10.1 Antithetic sampling

Whenever we use Gaussian variates to drive a Monte Carlo calculation, or wish to simulate Brownie
motion by constructing sample paths of standard Wiener processes, we can make use of the fact t
for any one drawn path its mirror image has equal probability. In other words, if a single evaluatior
driven by a Gaussian variate vector drayis given byv; = v(z;), we also use; = v(—z;) .

The standard error for antithetic sampling requires some consideration. This is because the cent
limit theorem underpinning the idea that the standard error can be estimated as the square root of
realised variance divided by the square root of the number of samples renuiegendentraws.
However, if instead of viewing both, = v(z;) and?; = v(—z;) as individual samples, we only count
the pairwise average = ;(v(z;) + v(—z;)) as an individual sample, all is well again, because the
pairwise averages are independent, and a standard error can be calculated from them in the ordinar
fashion.

Taking into account that each evaluationvpfequires two calculations (albeit only one Gaussian

107
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vector draw generation), the antithetic sampling procedure provides a variance reduction if

v [%(vi + @-)} < %V[vi] (10.1)
which is equivalent to
Cov[v;, 0;] < 0. (10.2)

This is always the caseif(z) is monotonic inz. Whenever the first realised moment of the underlying
variate drawq z; } has a strong impact on the result of the overall simulation, antithetic sampling is an
easy way of improving the accuracy of the calculation since it corrects the first moment. Of course,
if we use Monte Carlo simulation to calculate the value of derivatives contracts that mainly (or only)
depend on higher moments, antithetic sampling will not help.

Low-discrepancy numbers, or more specifically, Sobol’ numbers, unlike pseudo-random numbers,
have the antithetic feature built into them, but only approximately. This is to say, whenever we use a
recommended number of draws sucl2as- 1 for somen as advocated in secti@?, the first moment
of {z} is correct to within the numerical accuracy of the conversion from unif@n) to Gaussian
variates. Also, it is worth remembering that low-discrepancy numbers are very carefully designed and
tinkering with them can result in unexpected and rather undesirable effects. Therefore, even when we
are not usin@"™ — 1 draws with low-discrepancy numbers, adding the antithetic method to the use of
low-discrepancy numbers is unlikely to improve the accuracy, and instead can lead to erroneous results.

10.2 Variate recycling

This method applies when the quantity to be calculated is essentially a re-evaluation of a functional
of a (possibly multidimensional) discretised stochastic process, or any other re-evaluation using many
draws. An example for this is the calculation of the Greeks of options by finite differencingdLet
be the discretised representation of our Monte Carlo approximation of a particular standard Wiener
process path. Also, let(p) = F[p,{W;}:,=1.. n| be the approximation of the value of an option by
averaging the evaluation functional over tNesampling path§ W },—,.. n, depending on the parameter
p. The simplest approach to estimate the sensitivity @fith respect to the parametgris to run a
separate Monte Carlo calculation using a slightly larger valug,foamelyp + Ap to obtainv(p+ Ap)
and set
v vlp+Ap) —v(p)
dp op '
In fact, for specific Greeks such &&ga the dependence with respect to implied volatility, market
practitioners may insist that it is mandatory to use forward differencing as in equatd), (@nd to
use a particular incremernXp (usually one absolute percentage point) for the calculation. Other Greeks
where an absolute shift is commonly usedRb& the sensitivity of FX and equity options with respect
to domestic interest rates, and also the sensitivity with respect to forecast dividend yields.

(10.3)
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Naturally, we are interested in an accurate estimate of the Greeks when using the approach defir
by equation {0.3. The standard measure for the accuracy of a Monte Carlo method is the varianci
of the resulting numerical approximaton. The variance of the sensitivity as given by equ&tigng

thus
v [g_p] ~ a4 {E[0+ 89) — o)) = Ell0(p + A9) ~ vp))’) (10.4)
_ Aip {E[v(p+ Ap)?] = 2E[v(p + Ap)v(p)] + E [v(p)?]
— (Efo(p + Ap)))* + 2E[v(p + Ap)| E[v(p)] — (E[v(p)])?}
_ Aip AVv(p + Ap)] + V]v(p)] — 2Cov]v(p + Ap),v(p)]}
= 2 VI + ) + Vi)
~2yV[o(p + Ap) VIo(p)ICoru(p + Ap), v(p)] |
~ & Vi) {1~ Corro(p+ Ap), v(p)]} (105)

where | usedv[v(p + Ap)] = V[v(p)] in the last step. As equatiorl@.5 indicates, it is desirable
to maximise the correlation of the two separate calculatigips+ Ap) andv(p). For monotonic
functionswv(p), one can showgBG97] that positive correlation is given if we use the same sample
path set{IW;},—_,. n for both calculations whence one may call this metliadate or path recycling

The above analysis easiliy transfers to other calculations of similar nature. Another example is tr
repeated Monte Carlo evaluation of the same problem with slightly varying parameters in the proce:
of optimisation or within a nonlinear solver routine. Naturally, it is advisable to re-use (and wherevel
possible precalculate all quantities derived from them!) the sample paths, or simply the drawn variat:
if the problem doesn’t involve the concept of discretised stochastic processes.

10.3 Control variates

Many Monte Carlo calculations are carried out for problems that we can almost solve analytically, o
that are very similar to other problems for which we have closed form solutions. In this case, the us
of control variatescan be very beneficial indeed. The idea is as follows. Let’'s assume that we wish tc
calculate the expectatida[v] of a functionv(u) for some underlying vector draw, and that there is

a related functiory(u) whose expectation® := E|[g] we know exactly. Then, we have

n n

E [% Zv(u")] =E [% ZU(W) +0 (g* — %Zg(w))] (10.6)

i=1 i=1
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for any givens € R and thus we can replace the ordinary Monte Carlo estimator

o= 13 o) (10.7)
by
ov = 3" [olaw) + 5 (g" — glw)] (10.8)
The optimal choice of is
. _ Cov[v,g]
g* = it (10.9)

which minimises the variance of éty. Note that the functiog(w;) does not have to be the payoff

of an analytically known option. It could also be the profit from a self-financing dynamic hedging
strategy, i.e. a strategy that start with zero investment capital. For risk-neutral measures, the expected
profit from any such strategy is zero which means that the control variate is simply the payoff from the
dynamic hedging strategy along any one path. An intuitive understanding of the control variate method
is to consider the case wherandg are positively correlated. For any drau;) that overestimates

the resultg(u;) is likely to overestimatg*. As a result, the term multiplied by in equation 10.8) is

likely to correct the result by subtracting the aberration.

The precise value of* is, of course, not known but can be estimated from the same simulation
that is used to calculat&y. As in all the situations when the parameters determining the result are
calculated from the same simulation, this can introduce a bias that is difficult to estimate. In the
limit of very large numbers of iterations, this bias vanishes, but the whole point of variance reduction
techniques is to requifewersimulations and thus shorter run time. A remedy to the problem of bias
due to a correlated estimate of the control paraméterto use an initial simulation, possibly with
fewer iterates than the main run, to estimatean isolation. Fortunately, the control variate technique
does usually provide such a substantial speedup in convergence that this initial parameter estimation
simulation is affordable. However, for many applications, the magnitude of the bias is negligible.
The easiest way to ascertain that there is no bias present that would be relevant for derivatives pricing
purposes is to look at a convergence diagram of the simulation method, rather than a single result.

The control variate method can be generalised to take advantage of more than one related closed
form solution. However, this necessitates the estimation of more control parameters, and makes the
method more susceptible to errors in their estimate. It is generally considered to be wiser to have
one reasonable control variate than several mediocre ones. For instance, an option on a geometric
average, which can be priced analytically for geometric Brownian motion, works exceedingly well as
a control variate for arithmetic average options, whilst the use of both a standard European option and
the underlying asset as joint control variates is only about as effective as the European option used as
a control variate by itself§G974.
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10.4 Stratified sampling

The idea here is to subdivide the sampling domain into smaller areas for each of which a representat
value of the function is selected. This can be particularly useful if a good approximation for the

Figure 10.1: An example for stratification with representative values for each segment.

average over small subdomains is available. Stratified sampling is conceptually akin to fixed lattic
methods. It can also be of advantage when an assessment of the total probability of a small subdom
is difficult, and each evaluation in this domain is rather cpu time expensive, but it is known that the
function which is being sampled varies very little in any one given subdomain. Whenever the probat
ility associated with each segment of the stratification can be well approximated, stratified samplin
can be used to evaluate the Monte Carlo integral by simpling calculating the weighted sum over tt
representative values, which makes it essentially some kind of (possibly irregular) lattice method. Tt
segments into which the subdomain is partitioned don’t have to be of equal size. A better choice «
stratification is to make the subdomains have approximately equal probability associated with ther
However, the biggest problem with stratified sampling is that it is very difficult to obtain any kind

of error estimate. Clearly, a statistical error estimate like the conventional standard error for pseud
random sampling can be very misleading since the individual function values resulting from each dra
are not independent variates in the usual meaning of the word. Also, the accuracy of any one calc
lation is limited by the stratification whence taking more and more samples will not make the resul
eventually converge to the exact answer as it would for a conventional Monte Carlo method followin
Kolmogorov’s strong law. In other words, the very technique that is supposed to increase convergenc
I.e. the stratification itself, can introduce a finite bias of unknown sign.
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10.5 Importance sampling

The concept ofmportance samplings to focus on those regions which contribute most to the aver-
age of a Monte Carlo integration procedure. The most common use of this method in finance is to
ensure that all drawn samples are in regions where the function to be evaluated is non-zero. This is the
particular difficulty of out-of-the money option pricing. The standard procedure of generating paths
would result in most evaluations resulting in zero payoff and are thus effectively a waste of cpu time.
The main drawback of importance sampling is that it requires additional knowledge of the underlying
problem. However, for very specific calculations, it can make a tremendeous difference in the con-
vergence speed. Take for instance the funcfioN, Y') of two independent standard normal variates

X andY in figure10.2 A Monte Carlo integration of such a function will converge substantially

fX.Y)

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

X

Figure 10.2: The integration of localised functions can be accelerated by the use of importance
sampling.

faster if we restrict the normal variate draws to be in the subdomain whieraon-zero, in this case
(X,Y) € [0,1]2. For the specific example here, this is easily done by the use of our knowledge of the
probability p associated with the domaiX, Y) € [0, 1]?, namely

p=(N(1) = N(0))* ,
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by which the result of the conditioned Monte Carlo integration simply has to be multiplied. The
construction of variates conditioned on the domain of importance is for the given example achieve
by first drawing a vector of two unifornf0, 1) variatesux anduy, and constructing the importance
sampling variates(js andYjs according to

Xis = N7 [N(0) + (N(1) = N(0)) - ux]

and respectively fo¥is. Another, more detailed, example for the potential of the importance sampling
method is discussed in sectitft.4

10.6 Moment matching

Moment matchingised to be a very popular method before efficient and reliable low-discrepancy
numbers became available. This method does usually give more accurate results for calculations t|
use pseudo-random numbers, although it is not guaranteed to do so.

Assume a Monte Carlo simulation is to be carried out using a total ofariate vectorsy of
dimensionalityd of a known joint distribution density)(v). Then, we can calculate the moments
actually realised by the drawn variate vector Bet= {v;;} withi = 1..N andj = 1..d. The first
moment for dimensiorn is given by

N
1 Z :
i=1

Using (10.10, we can construct a set of first-moment-corrected varidteg subtraction of the average
in each dimension, i.e.

1~)l'j = Vij — <’U>j . (1011)

The realised covariance of the mean-corrected variate set can be concisely represented as
C=vV'Vv (10.12)

if we view V' as a matrix whose rows comprise the individdadimensional mean-corrected vector
draws. Using the same pseudo-square root decomposition approach as discussed i6,chafian
construct a new matri¥’ whose entries will meet the desired covariagtef the target distribution
density:) exactly. Define the elements of the desired covariance mates

Cjk = /vjvkw(v)dvjdvk ) (10.13)
Also, define the pseudo-square roots of b6tandC' by

C=A-A" and C=A4-A4". (10.14)
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The correction matri¥s that transforms’ to V can be computed by solving the linear system

AT K =AT, (10.15)

K=AT AT, (10.16)

It is easily possible for a covariance matrix not to be of full rank. This is the case whenever there are
fewer driving factors than financial assets, for instance. This means that, whilst the original vector
drawswv ared-dimensional, the target covariance matrix maybe R *¢ with &' > d, albeit that

the rank ofC' is d. As a consequence, the matuk will then haved' rows, but onlyd columns,

i.e. A € RY*4 However, A will be of dimensions! x d, and K € R%?, |t is advisable to use a
failsafe method for the solution of the linear systelfd.(9 such as the Moore-Penrose pseudo-inverse
explained in sectio@.9in order to avoid problems due to the fact that there may be fewer dimensions
in the vectorv than there are variates in the target distribution. Another situation that may give rise
to problems is when the numbé@r of drawn vector variates is comparatively small, and the resulting
realised covariancé€’ of the mean-corrected variate set is nearly singular. Then, the linear system
(10.19 is ill-conditioned which can lead to rather unexpected results. In other words, | recommend
always to use the Moore-Penrose pseudo-inverséﬁro_r1 in equation 10.19.

Putting all of the above linear algebra together, we can convince ourselves that the covariance-
corrected variate matrix

V=V-K (10.17)
does indeed satisfy

vi.v=cC. (10.18)

Note that when using this method to correct the first and the second moment of a set of drawn
variates it should be applied to the variatdter having transformed them from the uniforgf, 1)
distribution to whatever distribution is actually used, e.g. a joint normal distribution. This is because
the nonlinearity in the transformation will have the effect that whilst you may have a set of uniform
(0,1) variates that have exactly the same mean and covariance matrix as in the continuous limit, the
normal variates resulting from them after transformation melimeet the desired mean and covariance
matrix of the joint normal distribution. As a simple example, take the very small set of only two one-
dimensional uniform(0, 1) variates{u;,us} = {1 — /T2, 1o + y/T12}. The first and second
moment of this set meet the moment of the continuous unif@rm) distribution !/» and 1/5 exactly.
Transforming(u,, us) to normal variates by the aid of the inverse cumulative normal distribution gives
{z1,20} = {N"*(u1),N7 (uy)} = {—0.801832717,0.801832717} which does have the desired first
moment of exactly zero. However, the second moment of the transformed)s&t283571 which is
very different from 1 as it should be for a standard normal variate.
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The above example of an extremely small set of variates may appear somewhat construed. It do
however, highlight the dangers associated with moment matching. Correcting the first and secotl
moment, or even higher moments for that matter, of a set of drawn variates that are to undergo furth
transformation, does not mean that the final distribution meets those moments equally. This cautioni
note applies particularly to the common use of standard normal variates in the construction of geomet
Brownian motion. The sheer fact that a discrete set of varigiéshas the same first and second
moment as the continuous Gaussian distribution, does not mean that lognormal variates construc
according toS; = S,e’VT# have a first and second moment in perfect agreement with the continuous
lognormal distribution. What's more, even if we manage to correct the first few moments of the variati
set representing the ultimate target distribution, the effects we inflict upon the higher moments al
quite unpredictable. Most calculations are affected by more than just the first few moments: eve
comparatively simple problems such as the pricing of an option with a fairly vanilla payoff depend
quite strongly on the third moment, for instance. These considerations bear particular relevance wh
we actually need to represent a distribution by a very small sample set such as in a stratification meth
or in a tree. A discussion of the differences caused by first and second moment matching in tt
underlying normal variate space or the target lognormal variate space is given in sEfand
13.6in the context of non-recombining trees for the pricing of interest rate derivatives in the BGM/J
framework.

As for the standard error estimate when we use pseudo-random numbers in conjunction wi
moment-matching, this is somewhat problematic since the variates can no longer be considered
dependent. This directly affects another nice feature of Monte Carlo simulations: with ordinary Mont
Carlo simulations, it is possible to continue drawing variates and monitor the running error estimat
until the latter has dropped below a specified level of required accuracy. Not only is it no longer jus
tified to use the running standard error as a statistical error measure since any new draw is no long
strictly independent (since we would have to re-match the moments), but since this would also involv
re-computing the correction matriX” from equation 10.19 in each step, it would clearly become
computationally prohibitively expensive. As a matter of fact, the one-off calculation of the realised
covariance matrixX0.12 can easily be extremely cpu intensive since it grows like the square of the
total dimensionality of the problem, and linearly in the number of vector draws (i.e. paths for option
pricing) that are used. Should you ever use the moment matching method, you'd be well advised
monitor the cpu time that is actually being spent in total in the correction step, in comparison to thi
time spent in the main Monte Carlo simulation. For example, for multi-asset options of Asian style
the total dimensionality (which is the product of the number of time steps and the number of underly
ings) can easily be moderately large. Since the computing effort grows like the squari¢ isfnot
uncommon for such calculations to spend 90% or more of the total calculation time just in the momer
matching part of the simulation, in particular since those multi-asset calculations frequently involve
the evaluation of a very simple payoff function. In comparison to the use of low-discrepancy number:
the moment matching method with pseudo-random numbers rarely provides a substantial speeduy
convergence as a function of the number of simulations which means that the same accuracy could
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achieved by slightly increasing the number of iterations using, e.g., Sobol’ numbers. It is important
to remember that any user’s perception of Monte Carlo simulation convergence is mainly a function
of the time spent waiting for the result. Therefore, the moment matching method can easily make the
Monte Carlo method appear slower for multi-asset, multi-time-stepped simulations.

Finally, 1 ought to mention that moment matchisgould notbe combined with the use of low-
discrepancy methods. This is because their careful construction from number theoretical principles
already tries to match all the moments in a well-balanced way and interfering with them can have
unexpected effects. A simple way to ensure that the first moment is exactly met when using Sobol’
numbers, for instance, is to usé = (2" — 1) vector draws for some positive integeras explained
in section8.7. You will also find that the second moments are almost exactly met, especially when
comparing to pseudo-random numbers. Since Sobol’ numbers are particularly fast to construct, | never
found a situation when just using a few more draws with straightforward Sobol’ numbers did not out-
perform the use of moment matching with pseudo-random numbers, even for very low-dimensional
problems. For high-dimensional, i.e. multi-asset simulation problems, importance-aware path con-
struction as outlined in sectidtD.8in order to achieve an effective dimensionality reduction ensures
that Sobol' numbers still give a convergence improvement over pseudo-random numbers when meas-
ured just in terms of the number of iterations required until a certain accuracy is met. As discussed
above, though, when measured in terms of cpu time (which is a much better measure), moment match-
ing becomes prohibitively cpu time expensive for high-dimensional problems. Just in case the message
is still not clear:Use the moment matching method at your own peril.

10.7 Latin hypercube sampling

Latin hypercube samplingn’t actually a Monte Carlo method. Latin hypercube sampling is a way

to crash cars. Seriously. This technique is used when probing the sampling space is (quite literally)
extremely expensive. Basically, a Latin hypercube sampling scheme is the attempt to place sampling
points in a multi-dimensional stratification with as little overlap in all one-dimensional projections
as possible. Imagine that you wish to evaluate the effect of four control parameters on the safety
of the driver of a car measured by the impact forces experienced in a frontal collision. The control
parameters could be, for instance, the angle of the steering wheel column, the elasticity of the back
rest of the drivers seat, the rigidity of the front of the vehicle’s chassis, and the amount of leg space in
front of the driver’s seat. For each of those parameters, you have chosen seven possible settings, which
represents a four-dimensional stratification. Clearly, it is desirable not having to@rasb401 cars

to get an idea what the optimal combination of settings would be. The Latin hypercube scheme is a
systematic method to sample the stratified layer in each control parameter (at least) once. An example
for such an arrangement is shown in fig@3in all of the possible two-dimensional projections of

the four-dimensional domain. Incidentally, the points shown in fidix@were taken as the first seven
points of a four-dimensional Sobol’ sequence which highlights another advantage of that particular
number generation method: Sobol’ numbers have the Latin hypercube property built-in.
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Figure 10.3: The Latin hypercube arrangement of sampling points.

10.8 Path construction

In many applications, we need to construct a simulated discretised path of a standard Wiener proce
over a sef{t;},i = 1..n, points in time. We can view the values := W (¢;) of the Wiener process

at those points in time as a vector of random variates. Since we are talking about a standard Wier
process starting at’(0) = 0, the global expectation of all of the; as averaged over many simulated
paths must be zero. The elements of their covariance m@irirowever, are given by

Cij = COV[W(I&J, W(t])] = min(ti, t]) . (1019)

Given a vector of independent Gaussian variates, we can transform them into a vectpresenting
a single simulated Wiener process path according to

w=A-z, (10.20)
provided that the matrix satisfies
A-AT=C (10.21)

with the elements;; of C' given by (10.19. The decomposition of' as in equation0.2]) is not
unique and for Monte Carlo simulations driven by pseudo-random numbers, it is also completely irrel
evant which method is used. The specific path construction technique employed does not directly ha
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an impact on the variance of the result of any Monte Carlo simulation. However, as | will elaborate
below, a fortunate choice of the path construction method can aid in the reduction of what is called
the effective dimensionalitwhich is the key to unleashing the full potential of Sobol' numbers, and

can lead to a significantly improved convergence behaviour when compared with ordinary pseudo-
random numbers. It is because of the effect that the choice of the path construction method has on the
convergence behaviour of simulations using Sobol’ numbers that | discuss them in this chapter.

10.8.1 Incremental

Probably the simplest way to construct a Wiener process path isd¢remental path constructiorit
can be seen as a direct application of the Markov property of a Wiener process. The construction is
carried out by simply adding a new increment that is scaled according to the time step:

The construction matrix of the incremental method is given by the Cholesky decomposition of the
covariance matrix:

Aty 0 0 0
VAt At 0 0
VAL Aty JAt3 0

(10.23)

Aincremental =

VAL VAL VAL - - /A,

As you can see from equatioh.22), the incremental construction is an extremely fast way to convert

a vector ofn Gaussian variates into a standard Wiener path owteps in time. Since all of the square

roots can be precalculated, all that is involved for each path is a totahailtiplications, and: — 1
additions. It is because of this speed advantage that incremental path construction is the method of
choice when pseudo-random numbers are used.

10.8.2 Spectral

In section6.2, | explained how any symmetric positive definite matrix can be split into its spectral
pseudo-square root. The same method can be used here to compute a spectral path construction matrix
Aspectra|that S&tleleS:Ko.Z:l).

It is also possible to use an approximation for the spectral discrete path construction matrix. This
approximation is given by the spectral decomposition of a continuous Wiener path over the time in-
terval (0, 7] into an orthogonal Hilbert basis. In order to construct a fully continuous Wiener path
over any time interval, we would need an infinite number of driving Gaussian variates. The Gaussian
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variates are the coefficien{s;. } of the decomposition dfl’(¢) in

2 o  sinwyt _ 2k —1
Wt =/ 7 sz”;% with  wy = (T) - (10.24)
k=1

The approximation of the elemean; of the spectral construction matriks,ecraiiS to be calculated as
follows. First, populate an initial stage approximation that is simply given by the continuous counter

part for the path fromty = 0tot, =T
2 sin wyt;
L= = 10.25
7 T Wi ( )

Now, the most important part of the path construction is that the varianecg-efiV (¢;) must be equal
tot,, i.e.

The initial stage approximatiod’ does not satisfy this. This deficit can be rectified by defininas
the sum of the squares of all of the entries of #tl row of A"

T = Z (al).)” (10.27)
k=1
The elements:;, of the approximation for the discrete spectral path construction mataxe then
given by
sinwyt;

t; —
Ak = (| —ag = Vi 2b1 : (10.28)

T n .
1 C=ok

The approximate spectral split calculated in this way for a 12-step discretisation of a Wiener proce:
path from¢ = 0 to ¢ = 3 is shown below.

0.2142 0.2094 0.1998 0.1860 0.1685 0.1479 0.1252 0.1011 0.0766 0.0526 0.0299 0.0093
0.4141 0.3771 0.3091 0.2208 0.1257 0.0376 —0.0319 —0.0754 —0.0909 —0.0813 —0.0539 —0.0180
0.6070 0.4885 0.2931 0.0867 —0.0674 —0.1332 —0.1127 —0.0405 0.0357 0.0771 0.0698 0.0264
0.7897 0.5265 0.1579 —0.1128 —0.1755 —0.0718 0.0607 0.1053 0.0465 —0.0416 —0.0752 —0.0343
0.9591 0.4852 —0.0411 —0.2231 —0.0670 0.1136 0.0961 —0.0402 —0.0919 —0.0108 0.0693 0.0417
1.1121  0.3707 —0.2224 —0.1589 0.1236 0.1011 —0.0855 —0.0741 0.0654 0.0585 —0.0530 —0.0484 (1029)
1.2462 0.2004 —0.3115 0.0293 0.1612 —0.0869 —0.0736 0.0967 0.0121 —0.0820 0.0286 0.0542
1.3591 0.0000 —0.2718 0.1942 0.0000 —0.1236 0.1045 0.0000 —0.0799 0.0715 0.0000 —0.0591
1.4489 —0.2001 —0.1200 0.2070 —0.1610 0.0546 0.0462 —0.0966 0.0852 —0.0316 —0.0286 0.0630
1.5140 —0.3694 0.0811 0.0580 —0.1231 0.1376 —0.1165 0.0739 —0.0239 —0.0214 0.0528 —0.0658
1.5535 —0.4825 0.2486 —0.1363 0.0666 —0.0186 —0.0157 0.0400 —0.0561 0.0654 —0.0689 0.0675
1.5727 —0.5242 0.3145 —0.2247 0.1747 —0.1430 0.1210 —0.1048 0.0925 —0.0828 0.0749 —0.0684

Aspectral =

This is to be compared with an exact spectral split:

0.1996 0.1965 0.1902 0.1810 0.1689 0.1541 0.1369 0.1176 0.0964 0.0736 0.0497 0.0251
0.3961 0.3653 0.3078 0.2307 0.1438 0.0578 —0.0172 —0.0727 —0.1033 —0.1073 —0.0872 —0.0486
0.5863 0.4829 0.3078 0.1131 —0.0464 —0.1325 —0.1348 —0.0727 0.0143 0.0829 0.1030 0.0690
0.7672 0.5326 0.1902 —0.0865 —0.1833 —0.1074 0.0341 0.1176 0.0879 —0.0135 —0.0934 —0.0851
0.9361 0.5076 0.0000 —0.2234 —0.1097 0.0922 0.1305 0.0000 —0.1085 —0.0632 0.0607 0.0959
1.0902 0.4112 —0.1902 —0.1983 0.0899 0.1420 —0.0505 —0.1176 0.0284 0.1056 —0.0129 —0.1006 (1030)
1.2271 0.2571 —0.3078 —0.0294 0.1863 —0.0390 —0.1241 0.0727 0.0781 —0.0908 —0.0380 0.0990
1.3447 0.0669 —0.3078 0.1608 0.0687 —0.1566 0.0661 0.0727 —0.1121 0.0267 0.0796 —0.0912
1.4410 —0.1327 —0.1902 0.2344 —0.1278 —0.0197 0.1158 —0.1176 0.0420 0.0518 —0.1014 0.0777
1.5146 —0.3137 0.0000 0.1380 —0.1775 0.1492 —0.0806 0.0000 0.0671 —0.1023 0.0982 —0.0592
1.5644 —0.4506 0.1902 —0.0584 —0.0234 0.0756 —0.1057 0.1176 —0.1139 0.0973 —0.0707 0.0371
1.5895 —0.5242 0.3078 —0.2125 0.1576 —0.1209 0.0939 —0.0727 0.0550 —0.0396 0.0257 —0.0126

Aspectral =
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The effective covariance of the approximate spectral construction maig9 is:

0.2500 0.2726 0.2669 0.2668 0.2656 0.2655 0.2650 0.2648 0.2646 0.2645 0.2644 0.2654
0.2726 0.5000 0.5247 0.5187 0.5187 0.5172 0.5169 0.5162 0.5160 0.5156 0.5155 0.5173
0.2669 0.5247 0.7500 0.7757 0.7698 0.7699 0.7682 0.7680 0.7672 0.7670 0.7665 0.7695
0.2668 0.5187 0.7757 1.0000 1.0263 1.0205 1.0208 1.0191 1.0188 1.0180 1.0179 1.0214
0.2656 0.5187 0.7698 1.0263 1.2500 1.2766 1.2710 1.2714 1.2697 1.2696 1.2688 1.2738
0.2655 0.5172 0.7699 1.0205 1.2766 1.5000 1.5269 1.5214 1.5220 1.5203 1.5204 1.5255 (1031)
0.2650 0.5169 0.7682 1.0208 1.2710 1.5269 1.7500 1.7771 1.7718 1.7725 1.7709 1.7782

0.2648 0.5162 0.7680 1.0191 1.2714 1.5214 1.7771 2.0000 2.0273 2.0220 2.0232 2.0294
0.2646 0.5160 0.7672 1.0188 1.2697 1.5220 1.7718 2.0273 2.2500 2.2777 2.2724 2.2832
0.2645 0.5156 0.7670 1.0180 1.2696 1.5203 1.7725 2.0220 2.2777 2.5000 2.5285 2.5323
0.2644 0.5155 0.7665 1.0179 1.2688 1.5204 1.7709 2.0232 2.2724 2.5285 2.7500 2.7928
0.2654 0.5173 0.7695 1.0214 1.2738 1.5255 1.7782 2.0294 2.2832 2.5323 2.7928 3.0000

T _
ASpethal' Aspectral -

As you can see, the diagonal elements meet the requirements exactly. The off-diagonal elements, how-
ever, indicate that a simulation based on this approximate spectral split would effectively simulate the
realisations of the standard Wiener process to have a somewhat exaggerated correlation. Considering
that we spend significant effort elsewhere to ensure that the realised variances and covariances of all
our random variates meet the specifications given by any financial model as closely as possible, the
approximate spectral path construction may seem a little bit too inaccurate.

There is, however, another important lesson we can learn from the approximate spectral decompos-
ition. The eigenvalues of the spectral decomposition are given by

e =— (10.32)

and thus decayx O (k%) Since the eigenvalues of a discrete path covariance matrix are well approx-
imated by those of the continuous counterpart, we can conclude that these, too, decay very quickly.
As a matter of fact, for a completely uniform spacing of monitoring times such as the one used above
with At = 1/4, both eigenvalues and eigenvectors can be derived analytically, which is shown in ap-
pendix10.9.1

The importance of the eigenvalues is given by the fact that they directly represent the amount of
variance that can be reproduced by only using a smaller subset of the orthogonal eigenvectors and thus
to attempt to mimic an effectively-dimensional variate draw (namely the standard Wiener process
path overn points) by only usingn Gaussian variates, witlh. < n. In statistics, there is the notion
of the variability explainedby just using the firsin column vectors in a complete path construction
matrix. It is given by the sum of all of the squares of the elements of the vectors used. For the
spectral decomposition, this is just the sum of the eigenvalues as giv&0.B89( In this sense, the
spectral decomposition (given that the eigenvectors are sorted by decreasing size of their associated
eigenvalues) is the optimal way to assign most importance to the first Gaussian variates in any given
vector drawz. As it happens, this kind aéffective dimensionality reductios precisely what makes
low-discrepancy numbers converge the fastest, so this might be the best path construction method of
choice in conjunction with Sobol’ numbers. If only there wasn't always some catch. In this case the
problem is as follows. The spectral path construction method may provide the fastest convergence
in conjunction with Sobol’ numbers as a function of the number of iterations that are carried out.
However, more important than that is the amount of time spent in the simulation. Apart from the fact
that the calculation of the (accurate) spectral path construction matrix is effectively a task involving
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O (n*) mathematical operations, the actual use of the maltgix.raduring the simulation involves?
multiplications andu(n — 1) additions for the construction of each and every path. Whéenin the
hundreds, this means that for a simulation involving possibly several tens of thousands of iterations v
end up spending most of our time just in the transformation from standard normal variates to Wiene
path coordinates. In the next section, | discuss my favourite path construction method which give
almost the same effective dimensionality reduction as the spectral method, but at the expense of ol
about3n multiplications andn additions for each constructed path!

10.8.3 The Brownian bridge

Similar to the spectral path construction method Bh@wvnian bridgas a way to construct a discretised
Wiener process path by using the first Gaussian variates in a vectoedmshape the overall features

of the path, and then add more and more of the fine structure. The very first variateised to
determine the realisation of the Wiener path at the final tifr&f our n-point discretisation of the path

by settingiW;, = /t,z1. The next variate is then used to determine the value of the Wiener process a
it was realised at an intermediate timestepgonditional on the realisation &t (and att, = 0 which

is, of course, zero). The procedure is then repeated to gradually fill in all of the realisations of th:
Wiener process at all intermediate points, in an ever refining algorithm. In each step of the refineme
procedure to determinié’;, given that we have already establishiéd andV;, with ¢; < t; < t;, we
make use of the fact that the conditional distributioriof is Gaussian with mean

te —t; ti —t
E(W,] = (ﬁ) Wi, + (ti — ti) W, (10.33)
and variance
V[, = ; _(fk)_(tf; iy (10.34)

A proof of equations10.33 and (0.34 is sketched in append0.9.2

Since all of the weighting coefficients can be precalculated, we only need to carry out three mul
tiplications and two additions for each point in the Brownian bridge. Exceptions are, of course, thi
terminal point for which only a multiplication is required, and all those whose left hand side condition-
ing point is the beginning of the path at zero.

The Brownian bridge is particularly easy to construct if the number of steps is a power of twa
because then each interval divides into two intervals containing the same number of steps. In genel
we can construct the Brownian bridge by always subdividing the interval from the last point that wa
set to the next one that is already set, and halve this interval into two parts containing approximate
the same number of points. An example for this procedure is illustrated in fiude The algorithm
for the construction of a Brownian bridge over an arbitrary number of steps can be separated into tv
parts. The first part is the calculation of the indices determining the order of the point construction, th
weighting coefficients, and the conditional variances, or their square roots, respectively. The seco
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Figure 10.4: The construction of a Brownian bridge over 14 steps.

part is the mapping of a vector of standard Gaussian variates to a single Wiener path at run time of
the Monte Carlo simulation. | give in code exampl@.1a concrete implementation of a C++ class
providing these two stages. The constructor of the class carries out all of the initial calculations. The
buildPath  method is then to be called in the main loop of the Monte Carlo simulation. Each time
the proceduréuildPath is executed, it transforms a vector of uncorrelated standard normal variates
given by the input vectonormalVariates into a standard Wiener path with equal time steps of
sizeAt = 1 and stores it in the output vectpath .

When we wish to construct paths that represent Brownian motion over points it} fone = 1..m,
and the realisation of the Brownian path at each time horizos to be consistent with an implied
volatility coefficients;, we need to take into account the resulting term structure of instantaneous
volatility and variance. Given that we have a Brownian prodegbat is generated from a standard
Wiener proces$l’ by the multiplication with a deterministic volatility function(¢) according to

dB = o(t) dW (10.35)

the conditional mean and variance for the realisatiofs (f;) given that we have knowledge &f{(¢;)
andB(t,) with t; < t; <t is

E[B,] = (Uk — Uj) By, + (vj — Ui) B, (10.36)
Vi — U; V. — U;

and

v[B,] = L v b~ v) (10.37)

(Uk - Uz)
with
tq
Vg = / o(s)*ds . (10.38)
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#include <vector>
#include <assert.h>
class BrownianBridge { n Builds Wiener process paths of equal time steps of delta t = 1.
public:

BrownianBridge( unsigned long numberOfSteps );

void buildPath( vector <double> &theWienerProcessPath, const vector <double> &gaussianVariates );
private:

unsigned long numberOfSteps;

vector <unsigned long> leftindex, rightindex, bridgelndex;

vector <double> leftWeight, rightWeight, stddev;
h

BrownianBridge::BrownianBridge( unsigned long numberOfSteps_ ) : numberOfSteps(numberOfSteps_),
leftindex(numberOfSteps), rightindex(numberOfSteps), bridgelndex(numberOfSteps),
leftWeight(numberOfSteps), rightWeight(numberOfSteps), stddev(numberOfSteps)

assert(numberOfSteps); /I There must be at least one step.

vector <unsigned long> map(numberOfSteps);

/I map is used to indicate which points are already constructed. If mapli] is zero, path point i
/I is yet unconstructed. map[i]-1 is the index of the variate that constructs the path point # i.
unsigned long ikl

map[humberOfSteps-1] = 1, /I The first point in the construction is the global step.
bridgelndex[0] = numberOfSteps-1; /I The global step is constructed from the first variate.
stddev[0] = sqrt(numberOfSteps); /I The variance of the global step is numberOfSteps*1.0.

leftWeight[0] = rightWeight[0] = 0.; // The global step to the last point in time is special.
for (j=0,i=1;i<numberOfSteps;++i){

while (map[j]) ++j; /[ Find the next unpopulated entry in the map.
k=j;
while ((!map[Kk])) ++k; /Il Find the next populated entry in the map from there.
I=j+((k-1-))>>1); /I 1 is now the index of the point to be constructed next.
mapl[l]=i;
bridgelndex[i] = I; /I The i-th Gaussian variate will be used to set point I.
leftindex([i] =j; /I Point j-1 is the left strut of the bridge for point I.
rightindex[i] = k; /I Point k is the right strut of the bridge for point I.
leftweight[i] = (k-1)/(k+1.-);
rightWeight[i] = (I+1.-)/(k+1.));
stddev/[i] = sqrt(((I+1.-))*(k-D))/(k+1.-)));
j=k+1;
if (j>=numberOfSteps) j=0; // Wrap around.

}

}
void BrownianBridge::buildPath( vector <double> &path, const vector <double> &normalVariates )}

assert( normalVariates.size() == numberOfSteps && path.size() == numberOfSteps );

unsigned long i,j,k,l;

path[numberOfSteps-1] = stddev[0]*normalVariates|[O]; /I The global step.

for (i=1;i<numberOfSteps;i++){
j = leftindex]i];

k = rightindex]i];

| = bridgelndex]i];

if () path[l] = leftWeight[i]*path[j-1] + rightWeight[i]*path[k] + stddev[i]*normalVariates]i];
else path[l] = rightWeight[i]*path[k] + stddev[ij*normalVariates][i];

Code example 10.1: The Brownian bridge algorithm in a C++ class.

Of course, the relationship between the variangesd the implied volatilities; is v; = 62¢;. In other
words, it is easy to write another constructor for the cBssvnianBridge  in code exampld 0.1
that takes into account a given implied volatility vector and a vector whose elements are the asso
ated time horizons, and precomputes the necessary weighting and scaling coefeétidraght
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rightWeight , andstddev . In fact, once we have added a temporary veston the body of
the constructor and populated it such thftj] = A?tj, all that needs to be done is to replace the
corresponding statements with:

stddev[0] = sqrt(v[numberOfSteps-1]);

I.é-ftWeight[i] (VIK]-V[ID/(VK]-V[i-1]);
rightWeight[i] (vI-v[j-1])/(vK]-V[j-1]);
stddev(i] = sqrt((v[1-v{-1])*(vIKI-vI/(vIK]-vi-1D);

Another application of the normalised path vector as constructed directvilgPath  in code
examplel0.1 may actually require individual increments, for instance in order to carry out an Euler
or Milstein integration of a stochastic differential equation driven by an underlying Wiener process.
In this case, one would take the constructed normalised path stored in the pagttgrand back out
the path increments by taking the differenced’; = path[ i] — path[ i — 1] (apart from the first
entry stored irpath[0] , of course, which is directly equal id1V,,). Each of the so constructeXiV;
is then a standard normal variate (with unit variance). In order to transform the so resulting standard
Wiener increments of variance 1 to a desired time gtepwe simply multiply them withy/At. The
reader might wonder why one would want to jump through all these hoops only to arrive at another
set of standard normal variates. Empirically, | found that the use of Wiener increments backed out of
a path constructed with the Brownian bridge method driven by Sobol’ sequences shows better con-
vergence properties for the numerical integration of stochastic differential equations. In particular, so
constructed increments typically perform better than standard normal variates computed directly from
pseudo-random numbers, or Sobol’ numbers for that matter, for most financial applications where the
overall path skeleton structure has the biggest impact on the convergence of the calculation. Also, this
apparently somewhat convoluted method of constructing standard increments from a given Sobol’ vec-
tor draw is still faster than the calculation of standard normal variates by the aid of most pseudo-random
number generators of high grade since the construction of a single Sobol’ vector is so exceptionally
fast.

10.8.4 A comparison of path construction methods

As was already mentioned, the Brownian bridge requires approximately three multiplications and two
additions per dimension for each constructed path. For most Monte Carlo simulations based on the
construction of Wiener paths, the cpu time required for the evaluation of the function(al) dependent
on the constructed sample path grows at least linearly with the dimensionality of the problem. Thus,
the relative run time requirement of the path construction does at worst level out to a constant ratio
with increasing dimensionality when the Brownian bridge is used, and usually actually decreases for
higher dimensions. This is in stark contrast to the cpu time used by the spectral path construction
which increases like the square of the dimensionality. On the other hand, when compared with the
incremental path construction, the Brownian bridge manages to explain a much higher percentage of
the total variability when only the first few variates are taken into account. In fact, as is shown in
table10.], the first four dimensions, if ordered using the Brownian bridge path construction method,
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suffice to explain over 93% of the total variability for the previous example of a 12-step constructior
fromt = 0toT = 3. This is to be compared with 95.6% from the spectral method, but only 53.9%

ordered dimension# 1 2 3 4 5 6 7 8 9 10 11 12
Incremental 15.4% | 29.5% | 42.3% | 53.9% | 64.1% | 73.1% | 80.8% | 87.2% | 92.3% | 96.2% | 98.7% | 100%
Spectral 81.3% | 90.4% | 93.8% | 95.6% | 96.7% | 97.5% | 98.1% | 98.5% | 99.0% | 99.3% | 99.7% | 100%
Brownian bridge 69.4% | 85.0% | 89.1% | 93.2% | 94.2% | 95.3% | 96.4% | 97.4% | 98.1% | 98.7% | 99.4% | 100%

Table 10.1: The cumulative variability explained by an increasing number of dimensions for three pat
construction methods.

when we construct paths incrementally. Of course, if we actually carry out a factor truncation at, sa
the level of 4 driving Gaussian draws for any one path, the spectral method will still be superior tc
the Brownian bridge. However, if there is an advantage in ordering the dimensions according to the
importance, as there is for low-discrepancy numbers, the Brownian bridge method offers the bene
of almost optimal ordering (in the sense of maximal variability explained) whilst only requiring 3
multiplications per dimension. In order to give a more visual argument to the similarity of the spectra
path construction and the Brownian bridge, | give the first four column vectors of the constructing
matrix A for the three discussed methods in figdi@5 for a path constructed over 64 equal steps

in time.  As we can see, the coefficients of the Brownian bridge path construction matrix appee

First column vectors of the construction matrices Second column vectors of the construction matrices

—— Spectrd ! !
= Brownian bridge
[[ == Incremental

— Speélral
= Brownian bridge
— Incremental

Fourth column vectors of the construction matrices

‘ 1 : ‘ ‘ —— Spectral ‘ ! j ! T
: : L = Brownian bridge
Incremental

Figure 10.5: The first four column vectors of the path construction matrices.

almost like a piecewise-affine mimic of the sinusoidal waves of the spectral path construction vector
In the continous description of the decomposition of Brownian motion into basis functions, there ar
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many more possibilities to choose a set of basis functions than the spectral analysis given by equation
(10.29. The basis functions that produce the continuous time equivalent of the Brownian bridge are
known asSchauderfunctions, which in turn are the primitives bfaar functions ABG97]. Looking

at the diagrams in figur&0.5 we can intuitively understand the similar performance of the spectral
method and the Brownian bridge. In contrast, the incremental method has no similarity with the other
two methods at all.

The right path construction method can make a substantial difference to the performance of Monte
Carlo implementation for many applications. In figur@.6 | show the convergence of the Monte
Carlo simulation for the pricing of a standard at-the-money Asian call option. The maturity of the

value
=
=
@

value

B g
AT SN

|
I J“WMW
I o

0 16384 32768 49152 65536 0 16384 32768 49152 65536 0 16384 32768 49152 65536
#of iterations. #0of iterations #of iterations.

Figure 10.6: Convergence diagrams over the number of iterations for the pricing simulation for an
Asian call option.

option was 1 year with 252 monitoring days over that period. The weights were all equal. Both spot
and strike were set 100, and neither interest rates nor yields on the underlying asset were taken into
account. The number of iterations taken are shown along the abscissa inlftgreCompare this

to the convergence behaviour as a function of the cpu time takethe simulation, which is shown

in figure 10.7. When we compare the spectral method with the Brownian bridge as a function of the
number of iterations, there doesn’t appear to be much between them. However, when viewed as a
function of the cpu time needed for the simulation, we will probably prefer the Brownian bridge since

it appears to converge within a few seconds for this problem.

10.8.5 Multivariate path construction

When we need to construct paths of correlated Wiener processes, we can combine different techniques
in order to tailor the right method for the particular problem at hand. For instance, if we wish to carry
out Monte Carlo simulations for a pricing problem that is most significantly influenced by the joint
distribution of a set of strongly correlated underlying Wiener processes at the first time horizon along a
discretised path, we might want to use incremental path construction, but at each time horizon use the

1The cpu time shown was measured on an AMD K6-l1I processor running at 400MHz.
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Figure 10.7: Convergence diagrams over the cpu time taken for the pricing simulation for an Asian ca
option.

spectral decomposition in order to incorporate the correlation. Given the dimehsiotne Wiener
process, and the number of time horizensover which the correlated path ought to be constructed,
we need to draw standard normal variate vectors of dimension. Each of those vector draws is
then used to construct all of the realisations of all of dN&iener processes over all of the relevant
time horizons for one iteration in the Monte Carlo simulation. Let us define the covariance @trix
whose elements are given by

cu(t) = /Ot ok(s)ou(s)pr(s)ds . (10.39)

For incremental path construction with spectral decomposition of the correlation information, one
would take the firsti elements of a given standard normal variate vector deaw R?™. These

first d elements would then be multiplied with the spectral split, i.e. the spectral pseudo-square root «
C'(t1) in order to construct the vectar, of realisations of correlated Wiener processes at tim&he
realisations at time horizom are then obtained by taking, and adding to it the product of the second
set ofd variates (out of the vector draw) with a pseudo-square root of the stepwise covariance matrix
from timet, to ¢, which | denote by,/C(t,) — C(t,). This gives use,, and all of the realisations at

the subsequent time horizons are computed accordingly. Of course, if you have reason to believe tl
the decomposition of any of the stepwise covariances is better exploited by the use of the Choles
algorithm, you can just use that instead (albeit that | couldn’t think of an example when the Cholesk
method for the stepwise covariance split would be more appropriate).

For most Monte Carlo simulations in finance that involve multidimensional correlated Wiener pro-
cesses, | use the Brownian bridge in conjunction with stepwise spectral decomposition, though. Tt
reason is that we rarely have hundreds and thousands of correlated Wiener processes, the most | |
encountered is a few dozen, not more than five dozen or so. In contrast, however, it is well possible
have hundreds or even thousands of monitoring times of relevance, and the spectral path construct
becomes very expensive indeed when we are dealing with thousands of time steps. The construct
of multivariate correlated Wiener processes by the aid of the Brownian bridge and spectral decompo
tion at each time horizon in order to incoporate the correlation information can thus be done as follow
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First, we construct uncorrelated normalised Wiener process pahg&) € R? from the given vector

draw z € R%™ using the Brownian bridge. For this, we take the fitsintries inz in order to con-

struct the realisations of all of the uncorrelated Wiener processes at the final time higri2oext, we

take the second set dfvariates fromz in order to construct the realisations of all of the uncorrelated
Wiener processes at an intermediate time gtepith k£ ~ ™/, and so forth, following the Brownian

bridge algorithm outlined in sectioh0.8.3(see code exampl®0.1). From this set ofl uncorrelated
Wiener process path realisations overthé&me horizons of interest, one then obtains Wiener process
increments in the obvious fashion. Next, each set of uncorrelated increments is transformed to a set of
correlated and volatility-scaled Wiener increments by setting

AB; = A, - AW, . (10.40)

with A, being the spectral pseudo-square root of the covariance matrix incréngnt— C'(t,_1)

whose elements are defined in equatid®.89. Note thatA, contains both the scaling for the actual

size of the time step (all of the uncorrelated incremdi¥s were constructed assuming that all time

steps are of sizé\¢ = 1) and the volatility scaling. And finally, the correlated Wiener process path
increments are added up again, as if we had constructed the correlated paths in an incremental fashion
right from the start.

Whenever the correlation between the Wiener processes is constant for all time steps and each of
the processes has constant volatility, it is possible to simplify this procedure somewhat. In this case,
one can avoid the construction from stepwise covariance increments. Let us denote the volatility of
the j-th process as;, and letR be the time-constant correlation matrix. Now, §eto be the spectral
pseudo-square root @t such that

R=QQ". (10.41)
In other words, we have the following relationship amongst the elemeitsaodQ:

Tkl = Z qk;4i5 (10-42)
J

The procedure to construct correlated Wiener processes using a Brownian bridge when volatilities and
correlations are constant is thus as follows. First, construct uncorrelated standard Wiener processes
for the correct monitoring times as outlined in sectidh8.3by settingv; = ¢, for all 7 = 1..m and
assuming unit volatility (i.e. 100%). Thus, we will have constructed paths such that the variance of
Wi, 1.e. the variance of the realisation of tii¢h Wiener process at timk, is ¢, and the covariance

of any pair ofw,; andw;y, is

COV[U)jk, wih] = 51’]’ min(tk, th) . (1043)
Then, set

bjk: = O'j Z lewlk . (1044)
!
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Due to the propertyl(0.43, it is straightforward to show that

COV[bjk, bzh] = 0;0,Ti; min(tk, th)

as it should be for correlated Wiener processes with constant volatility and correlation.

10.9 Appendix
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(10.45)

10.9.1 Eigenvalues and eigenvectors of a discrete-time covariance matrix

The covariance matrix of the realisations of a one-dimensional Wiener pridGestsa set of discrete
times chosen to be homogeneously stepped such;that for i = 1..n is given by

C, =
The eigenvalues are given by
with
1—A
1
D, () = 1
1

1
1
1

2 3 o= A

(10.46)

(10.47)

(10.48)

Subtracting the first row of the matrix inside the determinant opetatpfrom all subsequent ones

gives
1—A 1 1 1
A 1—A 1
D,(\) = A I 2—-A 2
A 1 2 n—1—2A
and then subtracting the second row from the first, we obtain
1—-2Xx A o .- 0
A 1-Xx 1
D,(A)=| A 1 2-) - 2
A 1 2 n—1—A\

(10.49)

(10.50)
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An expansion by the first row yields

A
A2 2

Dy(A) =(1=20)D, 1(A) = Al A 2 3—X - 3 . (10.51)
A2 3 . on—1-2)

Factorising) out of the column of the explicit determinant on the right hand side, and repeating the
procedure of subtracting the first row from all subsequent ones, followed by a subtraction of the second
row from the first, we get

A 0 0
0 1-X 1

Dy(N) =(1=2X)D, 1(A) =X 0 1 2-X - 2 _ (10.52)
0 1 2 . om—2-2)

An expansion of the explicit determinant on the right hand side now gives us the recursion formula

D,(N) = (1 =2\ Dp1(A) — A2D,_o(N) (10.53)
with the initial conditions
gigi; : : i ) (10.54)
Using the Ansatz
D, (N) o [a(N)]" (10.55)
we obtain
= (1-2\)a+ X =0 (10.56)
and thus
ay = % (1 oA+ m) . (10.57)

Since the determinant®,,, D,_,, andD,,_, all appear linearly in equatioh0.53 we substitute the
linear combination

Dy(X) = sepaly + " (10.58)

into (10.59, solve forsc, ands_ and obtain

Dy()) = <H—_°“> alt — (H—_O‘*> a" . (10.59)

ay — o ay — o
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Making use of the fact that,a_ = \? which can be seen from equatiatD(56, we now get

A" AL\ g\ "
DAV = 5 [(1 + VI 4>\) <T+) - (1 V1o 4>\) (f) 1 . (10.60)
Let us now define
= “*A(A) (10.61)
which means
u
A= T (10.62)

The eigenvalues df’, are given byD,,(\) = 0 which, together with the above definitions, reduces to
Wt =1 (10.63)
whence
=g for m=1.n. (10.64)

This, in conjunction with 10.62 finally simplifies to

1

~deos? (g)

(10.65)

A simple analysis of equatiorL(.65 shows that as increases, the smallest eigenvalue/pf con-
verges to!/, from above, whilst the largest eigenvalue grows like Thus, the importance of the
smaller eigenvalues decreases like.

Given the definition

2j—1\ =«
= = 10.66
“ng <2n n 1) > (10.66)
we can re-expresd4.0.69 as
1
Anj i= ————— . 10.67
J 4 sin? Wi ( )

The ordering is now such that,; is the largest eigenvalue 6f,, and )\, is the smallest eigenvalue.
As for the eigenvectors, which are the column vectors of the matnxthe decomposition

Co=5S,-A,- Sk (10.68)

with A,, being diagonal, we have for the elemesngtg of .S,,:

sin (2kwy;)

\/ 3 sin? (2w
Jj=1

Snkl =

(10.69)
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Since
sin“x = = — = cos (2x) (10.70)

and

- 25 —1 1
Y cos {% (sz 1)} =3 (10.71)

equation 10.69 simplifies to
sin (2kwy) - (10.72)
This means that the elements,; of the spectral pseudo-square robtof C, satisfying

Con=A, A’

are given by

1 sin (k‘ﬂ%)

T VT sin (35, - 5)
For a homogeneous time discretisation over time steps of an arbilvianystead of 1, the elements
of the covariance matrix’,, simply need to be multiplied byA¢, and the elements of the spectral
pseudo-square root are given asi0.(3, only that they require multiplication wit/A¢. Sadly, for
inhomogeneous time steps, the best approximation available is the one from the continuous case as in
equation 10.28.

(10.73)

10.9.2 The conditional distribution of the Brownian bridge

Let us start off by assuming that the Wiener path froro ¢;, and then ta;, has been constructed
incrementally from two independent standard Gaussian variagsdy :-

Wtj = Wti + \/t]‘ - ti i (1074)
Wtk:Wtj+ tk—tjy:Wti—i‘\/tj—tiZE—F tk—tjy (1075)

The joint probability density of a vector drajx, i) is the product of the densities of the variatesnd
y, .e.o(x) - p(y). As we know, the density of a weighted sum of Gaussians is also a Gaussian, and
thus we can rewritel(0.79 as

Wtk = Wt]. + tk — tl z . (1076)
The variate
t:, —t; tr —t; 1
L= VU TLT VT LY (Wi, — W,) (10.77)

Vit Vh&
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is, of coursenotindependent from andy, but its probability density is again that of a standard normal
variate.

The conditional densityof a vector draw(z, y) that satisfies¥0.77) is given by its unconditional
density divided by the probability density df@.77) holding, which isp(z). In other words, if we view

Vi —tZZ— t—tzx
y(z,z) = Y~ =t th (10.78)
k— U

as a dependent variate in the path construction conditional and z, we obtain the conditional
Brownian bridge density

o(x)o(y(z,2))
o - 10.79
wBrownlan bndge(x | Z) QO(Z) ( )
_ 1 7%($2+y($7z)2722)
V2T
1 e (,ﬁ )
— e tp—1t;
V2T
In other wordsy is a normal variate with mean
Ef] = /2=, VBTl gy gy (10.80)
t, — t; t — 1
and variance
tr — t
Vz] = 24 (10.81)
t — 1;

Substituting this into equatiori (.74, we obtain

t—t; t— )ty — t;
W, =W, +2—2(W,, — W, + = t)te=t) (10.82)
! t — t; (te — t;)
bk — 1 b=t (t; —t:) (s — 1))
_ | —b 10.83
(tk—ti>th+(tk—tz‘) Wtk+\/ (ti—t) (10-89)

with v ~ A/(0, 1) which completes the proof for equatiori$)(33 and (L0.34.
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Chapter 11

Greeks

11.1 Importance of Greeks

The fundamental key to option pricing is to calculate the cost of replication of the sold derivative
contract. For some options, we can construct a static replication strategy. The price that we need
charge for them is then given by the cost of setting up the initial hedge. Having donsetragy forget
about this positioh, since we are hedged, whence some people call this striasetge-and-forget-or

most options, though, there is no static replication, and we need to use the strategy of dynamic hedgi
in order to protect us from the market risk posed by our short position in the option. The choice o
a model process for the underlying securities, establishing the risk-neutral measure, and solving t
mathematics and numerics of the nemnaire-denominatécexpectation then gives us the value of the
deal. In some sense, for the quantitative analyst, the job finishes there, whilst for the trader who has
manage the position, the fun only just starts. The position now has to be re-hedged dynamically, whic
requires knowledge of the various hedge parameters known & d¢le&sowing to the market practice

to use the names of Greek letters (real and invented) to represent these risk parameters. This means
not only need to be able to value the option but also calculate how its value depends on changes of 1
model parameters and the traded price of the underlying asset. In the following sections, | will outlin:
some Monte Carlo methods that are available for this purpose and discuss their respective bene
and disadvantages. In doing so, we will focus on the calculatiddett, i.e. the first derivative with
respect to the underlying security, a@dmmai.e. the second derivative with respect to the underlying
assetMutatis mutandisthe methods presented here transfer readily to other Greeks suebathe
volatility sensitivity, cross-Gammas for multi asset options, etc.

IStrictly speaking, only about the market risk presented by this option. There may still be settlement risk and credit ris

since the source of our hedging contracts will be a different counterparty than the client to whom we sold the option.
2We know, by virtue of the path-breaking theorem by Harrison and PIliSR&]], that we may use any traded asset as a

numéraire. For the calculation of the value of many equity and FX options we use a zero coupon boné@wsreumhich
means that we have to calculate an expectation and then discount it by the chosen discount factor. In general, though,
nunméraire can be a very different asset such as a cash annuity when we calculate swaptions, or even another equity ass
in the case of max-options as shown by Margrader/§.
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11.2 An Up-Out-Call option

Before starting the discussion of different techniques to calculate Greeks with Monte Carlo, let me
briefly define the test scenario that | have chosen as an illustrative example for the performance of the
individual methods. We are looking at an option of the type that is actually quite common in the equity
derivatives world, although in its accurate analysis highly untractable: a discretely monitored Up-Out-
Call option. The option is of European type and has the same payoff as a plain-vanilla call option,
provided that the underlying asset is never on or above the predefined knock-out level on any of the
monitoring dates (which usually includes maturity), else the payoff is zero. This product can be priced
approximately using the continuous barrier formula with an adjusted knock-out level according to the
approximation by Broadiet al. [BGK99] given in equation 1.3). However, when the monitoring
frequency is comparatively low, or when the spot value is near the actual barrier level, the error of
the approximation can be considerable. | won'’t even start the discussion on how to handle the smile
properly, but instead assume a standard Black-Scholes process of geometric Brownian motion with a
constant volatility ofr = 30%. Since neither a deterministic interest rate nor a continuous dividend
yield alter the fundamentals of the discussijome simply set them to be zero which corresponds to the
assumption that the contract is actually written with the forward value as the underlying quantity. The
value of the underlying asset is modelled to evolve lognormally as in

S(t) = S(0)e 27 W) (11.1)

with W, being a standard Wiener process. Since we only need to monitor the spohantha@toring
times, we can view one path of the evolution of the underlying asset from inception to maturity as a
vector ofn valuessS; to S,,, i.e.
S =(51,5,...,5) .
Any one path can thus be constructed from a set gtandard normal variates, z,, ... , z, with
z; ~ N (0,1). The reader is most certainly aware that the equation coupling them is

7
7%0‘2ti+0‘ >V Atz
k=1

S; = S;_ e 20 MitoVALz g (11.2)
Naturally, in order to price this option, we generate a set ofysagathsS*, S*,... , 8™, and each of

those paths ii$ is actually constructed by andimensional vector of standard normal variatési.e.
we can express it asravalued function of the drawn vecterand the given parameters

S’ = 8(27; Sy, H K,0,T,n) . (11.3)

For each of those path vecto&, we then evaluate the simulated payefiS’) conditional on no
knock-out occurring for the path, and average to obtaimasamples Monte Carlo approximation. In
a general sense, we can express the Monte Carlo pase

X 1 « ;
0(So, H, K, 0,T,n) = EZW(SJ). (11.4)
7=1
3The examples in the Excel workbo@reeksWithMonteCarlo.xIs on the accompanying CD do not make this

assumption and allow for the specification of a non-zero risk-free interest and dividend rate.
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11.3 Finite differencing with path recycling

Like with other option valuation methods, there is one fallback technique for the calculation of the
Greeks. We can always re-do the entire valuation with varied inputs reflecting the potential chanc
in the underlying asset, and use an explicit finite-differencing approach to compute the Greek we a
after. For Delta, we can just recalculate once with an up-shift in the underlying 8gset,S, + ASo,
resulting in a new value(S, + ASp), and take

o ov _ U(S@ + AS()) - U(S())
Delta= a5, "~ AS, . (11.5)

Alternatively to the forward differencing approach above, we can re-calculate twice, once for an ug
shift and once for a down-shift, and approximate the desired Delta to

ov U(So + ASO) — U(SO — ASQ)
Delta= ~ . 11.
o= 9% 2AS, (11.6)

Using the centre-differencing approach in equatibh.§) has the added advantage that we can then
directly approximate Gamma as

Gamma= O ~ v(So + ASp) — 2v(So) + v(So — ASo) .

11.7
252 AS? (117

Whilst this is in itself all self-explanatory and straightforward, one important question is often not
addressed in textbooks outlining the above procedure. The question is: how do we Ay@sén

order to answer it, let us consider the consequences of usix§,ahat is either far too large or far

too small. The centre-differencing approach is accurate up until (including) second order terms in tf
Taylor expansion, i.e. Gamma has no effect on the estinaté)for Delta. However, when we choose
aAS, that is far too large, we may start to see the effect of the third order in the Taylor expansion, an
our approximation for Delta will be inaccurate. Also, since we should re-use the same variates for tr
path construction in each of the calculations #06,), v(Sy + ASp), andv (S, — ASy) as explained

in section10.2 the variance of our estimate will increase because the correlation of the individual
calculations decreases the largesf, is, see equationl(Q.5. On the other hand, if we choogeS,

too small, the fact that most derivative contracts have a final payoff function that is at best continuot
but rarely differentiable everywhere comes into play. If we choose a very sxusgllsay the smallest

that can be handled on our computer, even for a contract as benign as a plain-vanilla call option, v
are essentially averaging over a sequence of zeros anfl. drmsa far-out-of-the-money option, the
convergence diagram of the Monte Carlo Delta then looks like a hyperbolic decay over the number ¢
paths used with an occasional up jump whenever a single path pair terminated in the money and tr
contributed to the sensitivity calculation. For Gamma, the situation is even worse. In this case, we a
essentially averaging over a sequence of zeros and terms of mag@it(utslso‘l), only this time they

are not resulting from the path pair or trio terminating in the money or out of the money (i.e. as if we
sampled a Heaviside function), but instead a non-zero value is only returned if the terminating sp

4The precise value is actually the Delta of the forward contract which4$ e



138 Greeks

levels of the path trio straddle the strike of the option. In other words, the calculation of Gamma by
explicit finite differencing for options with payoff functions that exhibit a kink anywhere is equivalent

to carrying out a Monte Carlo sampling computation over a Dirac spike, i.e. a non-zero value is only
ever obtained if the spot value at maturity is right at the strike. The situation becomes even worse if the
payoff function is not even continuous, as one can imagine. What's more, and this is the starting point
for the following analysis, for very smal\S,, the inevitable numerical roundoff error will taint the
result. In order to obtain a reasonable rule of thumb for the numerical magnitui§,obne should

use, let us recall that for finite differencing approximations of the derivative of a numerically defined
function one should optimally use a number determined by an equation balancing the error due to
numerical roundoff in the calculation of the function itself, and the error due to the higher order Taylor
expansion. For the approximate Gamma to be by expectation as close to the exact value as possible,
one should ideally use a finite differencing width of

_ 4[5 Y

with € being a suitable representation of the machine predisi®a see this, we start from a Taylor
expansion of the value, taking into account that any numerical representation suffers a round-off
error:

1 1 1
v(So + ASy) = v+ v'ASy + §v”AS§ + év’”ASS’ + ﬂv””AS{)‘ + O(AS]) + ev (11.9)

The last term represents the numerically inevitable inaccuracy which is of the same order of magnitude
as the left hand side. Using equatidi (7) to obtain an estimatE‘(So; ASp, €) for Gamma which will

clearly depend on both the chosen finite differencing width and the machine precision, we again have
to take into account that all numerical operations are subject to round-off errors:

[ 1
F(SO§ ASy, e) ="+ _U,WASS n

B + egv” (11.10)

€V
AS?
Herein, the last term represents the newly introduced round-off error incurred when carrying out the
operations given by equatiodX.7). It is now evident in equationl.10 that for very largeAS,
the terml—gv’”’Asg will give rise to an error in our estimate of Gamma, and for very smdlj, the
numerical round-off error due tgg—g will dominate. Thus, ideally, these two terms shoud be balanced
which leads to equatiori(.8).

Clearly, in practice, we don’t have enough information to evaluate exprestiog.( Without
prejudice, we can only make assumptions. An arguably sensible assumption is that all terms in the
Taylor expansion are of equal magnitude, @¥v) ~ O(v"”Sy) which leads to

ASy ~ 4/ 8, . (11.11)

S0One commonly used proxy for the abstract concephathine precisioris the smallest positive numbersuch that
1 and1 + ¢ are still distinct numbers in the machine’s representation. In C/C++, the preprocessor diteutlvee
<float.h> provides the macr®DBL EPSILONwhich is defined in this way for floating point numbers of tyjmible .
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Using the above value fak S,, we can now calculate the Monte Carlo finite differencing approxima-
tions for Delta and Gamma:

——  0(Sp+ASy) — 0(So—ASy)

Delta = A5, (11.12)
= ! i[ (8(27; So+ASy)) — m(S(27; So—ASp))]
N 2mASOj:17T Z7500 0 n 27500 0

and analogously
Gamma — 0(So+ASy) — 20(Sy) + v(So—ASp) (1113)
AS?2

1 & . , |

- mA%E:hw@%&+A%»_Zﬂw@%%»+ﬂw@%&—A&m

j=1

Of course, the assumptions made above are utterly unjustifiable when we know that we are trying
calculate the Gamma of derivatives such as Up-Out-Call options that have a particularly nasty doub
Gamma singularity at the barrier level. In practice, the explicit finite differencing method, even wher
we recycle the used variates as in the above equatidn$d and (L1.13 for reasons explained in sec-
tion 10.2 for any options of sufficient complexity that we might want to use a Monte Carlo technique,
performs so badly that it is virtually unusable. | will demonstrate this in some of the figures towards
the end of this chapter. First, though, we will explain alternatives to the straightforward explicit finite-
differencing approach.

11.4 Finite differencing with importance sampling

It was explained in sectiohl.3 how the calculation of Delta and other Greeks is hindered by the
discontinuity of the payoff profile or its slope. In mathematical terms, the calculation of Gamma using
Monte Carlo methods is so difficult because the payoff function is not element of theCélasll
functions that are twice differentiable in all of their variables. In fact, for an Up-Out-Call option, the
payoff profile is not even continuous in all of its variables, &€S) ¢ C°.

Sometimes, though, life is good to us. For the chosen test case, we can restrict our Monte Cat
sampling domain to just the region where the payoff functios i€>°. The way to do this is to
construct only paths thato not knock out and end up in the monéy more general terms, we only
sample the domain where the function to be evaluated is non-zero. This method belongs to the gene
class ofimportance samplingechniques. How we do this, is explained below.

First, let us recall that we generate the required standard normal variates by drawing Wfjfoym
variates and map them into Gaussians by the aid of an inverse cumulative normal function, i.e.:

z=N"1w) and u;=N(z). (11.14)
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Now, let us assume that we have constructed a single path 8jp t@and wish to construct the next
monitoring variableS; from equation {1.2 but ensure that the path is not knocked out. Using

we can do this by constructing to be applied in equatiorl{.2 not as usual simply from the under-
lying uniform variateu; as in equationX1.14 but instead to do

Furthermore, we have to ensure that the path ends up in the money at maturity. This means that the last
normal variatez,, for this path has to be constructed as in

20 =N (uy - (hy — k) + k) (11.17)

where

In g5 + t02At,
k:=N . (11.18)
At,,

In addition to the careful path construction outlined above, we also need to take into account that we
are sampling only from a subdomain of the space of all possible path evolutions. Fortunately, we
did calculate the corrective factor needed on the fly as we built the importance sample$ipath

We simply need to multiply the payoff associated with the constructed path by the product of all the

n—1
limiting factorsp := (h,, — k) - [] hi:
i=1

g = — Z (Sts) - 7(S%s) - (11.19)

The importance sampling Monte Carlo technlque is very useful in its own right to calculate expecta-
tions for the purpose of option pricing, in particular for far out of the money options. Furthermore,
it can be a very powerful enhancement technique to the finite differencing method for the calculation
of Greeks. And of course, it can be used in conjunction with variate recycling and/or pathwise differ-
entiation. How well this works will be demonstrated in various figures further on, but first | want to
explain the two remaining methods to be presented in this chapter.

11.5 Pathwise differentiation

Let’s have a closer look at what we are really trying to calculate for the example of Delta in equation
(11.6. All occurences of the true priaein that equation are numerically evaluated as a Monte Carlo
approximation to it. Thus,

m

00 1 —
Delta_a = [—Zw S(27;S,) ] . (11.20)

Jj=1
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In the true sense of the partial derivative in the above equation, an infinitesimal change of the initial sp
level S, can only give rise to infinitesimal changes of the spot level at any of the monitoring dates. It
can be shown that for Lipschitz-continuous payoff functions, i.e. those that are confiluali®f the
elements of the vectd® and have a finite partial derivati\@é,li < o0, the order of differentiation and
expectation can be interchanged. For such payoff functions, it is perfectly consistent to assign a De
of zero to all paths that terminate out of the money, and a Delta eq%é%twith St as constructed by
equation {1.2.

This method is callegathwise differentiatior infinitesimal perturbation analys@nd can easily
be transferred to other Greeks such as V&faqde, Cur9g. However, for the calculation of Gamma,
we still have to implement a finite differencing scheme for two individually calculated Deltas for an up
and a down shift, and both of these can individually be computed using pathwise differentiation.

Alas, for the chosen example of a discretely monitored Up-Out-Call option, this method cannot b
readiliy applied since the payoff function is not even continuous, let alone Lipschitz-continuous due t
the knockout feature. However, it is possible to apply the pathwise differentiation technique to path
constructed using the importance sampling method presented in the previous section. This is beca
the construction of paths using equatio®d.(5 to (11.18 represents a transformation of variables
into an integral over the unit hyperculie 1)” such that the integrand is actually Lipschitz-continuous
everywhere. In other words, equatidi(19 is to be seen as

s = /( S w(Sisw) (11.21)

When we calculatgg—'s from this equation, we can readily change the order of differentiation and in-

tegration. However, we then have to observe carefully the precise dependencies of the individual tert
with respect to the parameter that corresponds to the Greek we wish to calculate. As a consequence,
end up with a sum of terms representing the possibility of knock-out on each of the monitoring date
which makes this approach somewhat cumbersome. In the next section, | present another method tl
too, utilises the idea of transformation. Conversely to the pathwise differentiation, though, it does nc
require any kind of continuity of the payoff function, and even results in surprisingly simple equations

11.6 The likelihood ratio method
The option pricing problem by Monte Carlo is a numerical approximation to an integration:

v = /7‘(‘(5) »(9)dS (11.22)

Numerically, we construct evolutions of the underlying assets represent8dgimen a risk-neutral
distribution density)(.S). As in equation11.2 we hereby typically construct the paths by the aid of a

6This is a handwaving definition of Lipschitz-continuous but well sufficient for the discussion here.
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set of standard normal variates which corresponds to

v = /W(S(Z; a)) p(z)dz, (11.23)

and all dependence on further pricing parameters (herein representeddogh as the spot level
at inception, volatility, time to maturity, etc., is absorbed into the path construétienx). Any
derivative with respect to any of the parameters will thus suffer from any discontinuitieBof:

ov 0
o = [ gem(SEia)) pl) e (11.24)

The key insight behind thikelihood ratio method BG9q is to shift the dependence on any of the
parameters over into the density function. In other words, a transformation of the density is required to
look at the pricing problem in the form of equatiohl(22. This way, the Greek evaluation problem
becomes

v 9 81/1(5;04) .
P /F(S) %1/1(5; a)dS = /7‘(‘(5) mgb(& a)ds . (11.25)

The calculation of the desired Greek now looks exactly like the original pricing problem, only with a
new payoff function

X(S;a) :=m(S) - w(S; ) (11.26)
with
Gwés;a)
w(S;a) = 5(S:a) (11.27)

The termw(S; o) may be interpreted aslikelihood ratiosince it is the quotient of two density func-
tions, whence the name of the method. Using this definition, the Greek calculation becomes
ov
dax
The beauty of this idea is that for the probability density functions that we typically use such as the
one corresponding to geometric Brownian motion, the funciiofi; o) is € C* in the parametet
and thus doesn’t cause the trouble that we have when we approach the Greek calculation problem in
the form of equationX1.23. The application is now straightforward. Alongside the calculation of
the option price, for each constructed path, apart from calculating the pay®ff also calculate the
likelihood ratiow(.S; ). The approximation for Delta, for instance, thus becomes

= /X(S;a) P(S;a)dS . (11.28)

m

Delta—= %Z [7(87; 50)) - weam (5%550))] - (11.29)

The likelihood ratio method can actually be viewed as a special case of a more general class of ap-
plications ofMalliavin calculusto the problem of the calculation of Greeks using Monte Carlo meth-

ods [FLL™99, FLLLO1]. In the framework of Malliavin calculus, the transformation of integrals con-
taining derivatives such as equatidii (24 to the form given in equatioril(.29 is seen as a partial
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integration of an integral involving stochastic processes. It can be shown that there is usually more th;
one way to choose a weighting functierfor the payoff in order to calculate any one given parametric
derivative, i.e. Greek. However, and this is in general the biggest problem of Malliavin calculus, no
all of them provide a faster convergence than, say, plain finite differencing. For geometric Brownial
motion, the choice ofu that provides the least variance of the result is the one that can be derivec
directly as a likelihood ratio calculation as is done here. For other processes, this may be differer
and the full-blown Malliavin calculus may then lead to superior weighting functiondowever, the
stochastic calculus involved can be quite daunting and the highly complicated analytical computatior
required make this method somewhat error prone when applied to more sophisticated process assul
tions and more complex derivatives contracts. For our test case of a discretely monitore Up-Out-Cz
option, though, the calculation is straightforward, and, leaving it up to the reader to go through th
involved calculus and algebra in his own time, | just present the results here. Starting from the pat
construction descriptiorl(.2, we arrive at

21
= 11.30
u)Delta S()O' /_Atl ( )
2
2i — 210 At — 1
= 11.31
wGamma 5302 Atl ( )

which may look surprisingly simple considering all of the above discussion. It is worth noting that
only the variatez; responsible for the very first step enters. Also, if a piecewise constant term structure
of instantaneous volatility is used, it is the volatility coefficient for the first time step that applies. A
similar formula can be derived for Vega, i.e. the price sensitivity with respect to the volatility coeffi-
cient, which is done in appendixl.9.1 and also for the sensitivities with respect to interest rates and
dividend yields (see appendl®.9.9. As for the limitations of the method, | should mention that since
the likelihood ratiosvsg; andws_—_in equations 11.30Q and (11.3]) are inversely proportional to

ov/Aty, ando?At; respectively, the variance incurred by this calculation of Delta and Gamma may
increase dramatically for low volatilities or very short time intervals in between monitoring dates.

As a side note, | would like to point out that the method presented in this section did not specificall
depend on the payoff being an Up-Out-Call option. In fact, the resulting decomposition into payof
7 times likelihood ratiow remains the same for any payoff, be it a discretely monitored lookback,
hindsight, Asian, or whichever option. It can also be extended to more challenging model process
such as the BGM/J framework for interest rates which involve stochastic drift coefficieAgs].

11.7 Comparative figures

In order to demonstrate the usefulness of the methods discussed in the previous sections, | selected
test scenarios. Both are on the same Up-Out-Call option. Scenario a) represents the case that thel
exactlyT = 1 year to maturity, the current spot level is 100, the strike is at 100, and the barrier at 150
The underlying asset evolves lognormally with constant volatility ef 30% and monitoring happens
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at the end of each month. In scenario b), there is dhky 0.52 left until expiry, the spot has risen to

a level of 160, and we are 5 trading days (out of 250 per year) away from an end of month monitoring
date. Since the different methods involve varying amounts of computational effort, all convergence
diagrams are with respect to CPU time required on an AMD K6-Ill processor running at 400MHz. It
should be mentioned, though, that all of the presented calculations were carried out using the Sobol’
low-discrepancy sequence in conjunction with a Brownian bridge which provides a major convergence
enhancement.

The purpose of figurd1.1lis thus to demonstrate that the calculation of both Delta and Gamma
along with the actual price does not impose a prohibitive burden for any of the methods. The reader
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Figure 11.1: The value of the Up-Out-Call option for scenarios a) and b).

may notice that the line for the analytical approximation is missing from the graph for scenario b)
in this and the following figures. This is because the analytical approximation, by virtue of using an
adjusted barrier level in a continuous barrier option formula, results in a value that is identically zero
since the spot level of 160 is outside the adjusted barrier level of 157.8. Also, it is worth noticing
that in scenario b), similarly to a far out-of-the money option, the importance sampling method very
significantly enhances the convergence behaviour for the value itself.

Next, in figurell.2 the convergence behaviour for Delta is shown. Since the differences in per-
formance are difficult to show on one scale, | also show an enlargement in fifjlgeFinally, the
convergence diagrams for Gamma are given in figiledand11.5

Overall, it is probably fair to say that, whilst straightforward finite differencing is virtually use-
less for the calculation of Gamma (we estimate that several CPU months would be required before
satisfactory convergence could be achieved), both the importance sampling and the likelihood ratio
enhancement work remarkably well, and can also be combined.
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Figure 11.2: Delta of the Up-Out-Call option for scenarios a) and b).
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Figure 11.3: Enlargement for Delta of the Up-Out-Call option for scenarios a) and b).
11.8 Summary

Combine et impera There are various methods out there, and you can pick and choose. Also, tht
methods outlined in this chapter can be readily adapted to some of the process decriptions that genel
a skew and/or smile introduced in chapgr In many cases, we can combine two or more of the

presented techniques for even greater convergence speed. As | have demonstrated, nothing stops yz
use finite differencing in conjunction with importance sampling. Also, one can combine the likelihood
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ratio method with importance samplinghe world is your oyster.
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11.9 Appendix

11.9.1 The likelihood ratio formula for Vega

In a Black-Scholes setting with constant volatility etc., and a single time horizon of interest, i.e. the
maturity T itself, the likelihood ratio for the calculation of Vegd is

22 -1 JT
Wiega = —z2VT. (11.32)

g

The variatez is hereby the standard normal variate used for the construction of the terminal spot valu
draw

Sy = S, - elr=t-30%)THoVTz (11.33)

Of more interest is the case when we have a payoff function that depends not only on the value of :
underlying asset at the final maturity, but also on the realisations at intermediaté tioves= 1, ..,n
with ¢, := T andt, := 0. In the standard Black-Scholes framework fashion | assume that paths can b
seen as being constructed incremengatly

S; = S(t;) = So - ekt [(mim30d) Atito AT ] (11.34)

with At; :=t; — t;_1. The cost-of-carry coefficienis; are given byu,; := r; — d; with r; representing

a continuously compounded risk-free (funding/lending) forward interest rate for the time interval fromr
t,_1 to t;, and similarlyd; denoting a continuously compounded dividend yield. 14.84, | have

also allowed for a piecewise constant term structure of instantaneous (or forward implied) volatility
In a trading environment, we are usually most interested in hedge parameters with respect to marl
guoted implied volatilities, i.e. implied volatility coefficients that apply to a time interval from today
to a certain time horizon. | will now first derive the likelihood ratio that enables us to compute the
sensitivity of a given payoff function with respect to all of the individual forward volatility coefficients
in equation {1.34, and then transform them to the conventional format of implied volatilities ‘out of
today’.

Forward volatility exposure for multiple time steps

The joint distribution density of a vector ofn independent standard normal variates is given by

n

o(z) = [ [ e(z) - (11.35)

k=1

"The formula for the Vega likelihood ratio given iifI[LLO1], unfortunately, is slightly in error. However, the same

formula is correct in the preceding article by the same authors (third equation on page 403) 9.
8This means that if you actually use a different method for the path construction such as the Brownian bridge (se

section10.8.3, you need to back out the setof/ariables such that you can identify with equatidi.G4.
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This density can be transformed to the density of the veStof realisations of the underlying asset
along the path by the aid of the Jacobian determinant of the transformatiers, i.e.

9(z)

— : 11.
U(S) =02 | 505, (11.36)
Solving (11.39 for the dependence efon S, we obtain
1 1
and consequently
0zj 1 1 1
= Ojp— —0i 1p—— | - 11.38
o Ujm(]ksj g ) (11.38)

This means that the Jacobian mat(i%%) is triangulaf and we obtain the following expression for
the density

n

LG (11.39)

i S aj\/At

whereinz; is to be seen as an explicit function 8f, S;_,, and the parameters according 1d 37.
The likelihood ratio for the sensitivity with respect to any of thes given by
OY(8S)

We, = % . (11.40)

Combining this with £1.39, we can calculate

- L 0z; 1
o 8z] Oz L
W, = Z oy | dor| "o (11.41)

J=1

Recall thatp(z) is the standard normal distribution density given2r2@ and thus
d¢(z))

azj J J
From (11.37, we can compute
9% g, (_Z_ﬂ © JAT > ' (11.43)
80’k (%
Putting all of this together, we arrive at
2
—1
Woy, = & — 2k Aty (11.44)
Ok

The likelihood ratio Monte Carlo estimator for the sensitivity of a derivative contract with vahith
respect to the forward voIatiIity coefficient, from a simulation withm paths is thus

8714 ~ —Z (875 S0, ) - o, | (11.45)

with w,, as given above.

9Actually, it is just the diagonal and the upper off-diagonal.
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Implied volatility exposure for multiple time steps

Given a vector of volatility coefficients representing a piecewise constant term structure of instant-
aneous volatility, we can calculate the equivalent Black-Scholes implied volatjlityom ¢, = 0 to z;,
according to

tr E
6ty = /a(t)th = > oAt (11.46)
t=0 j=1
Thus,
007y, o;At;
= -1 11.47
80’j O'ktk {isk} - ( )
Now,
a’U . ﬂaak
0o N 8&k 0o
. Z ov O'JAt
N 8ak O'ktk j<k}
ov o;At;
= 11.48
Z Gak Uktk ( )
which gives us
1 ov 1 v 1 ov
LI - : 11.49
O'jAtj aO'j < }Uj+1Atj+1 80j+1 6jtj 0@ ( )
and thus
ov (S'jtj ov C}jtj ov
= — — 1 . 11.50
86j O'jAtj an U< }0_j+1Atj+1 80’j+1 ( )

The likelihood ratio Monte Carlo estimator for the sensitivity with respect to the implied volatility
from a simulation withn paths is therefore

v 1 — .
36, ~ E; [W(SJ;SO,O') -w(}k} (11.51)
with
o 6ktk &ktk
= (i) o~ e (780 ) o (1152

11.9.2 The likelihood ratio formula for Rho

Given the same setting as in the previous section

Sy = S(t;) = Sp - €k (=)= 5ob) Mtictov/Bti z] (11.53)
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with r; denoting the continuously compounded forward interest that is assumed to be constant from
t,_1 tot;, we can calculate the likelihood ratio for the calculation of the sensitivity with respect to the
forward interest rates. We have to be careful though: the interest rate appears not only in the path
construction but also in the discount factor that has to be applied to each payoff. In the following, |
assume that the only cashflow constituting the payoff of the (path-dependent) derivative contract whose
value isv, is paid at the final maturity’ = ¢,,. Taking this into account, we arrive at

2k
= | ———1) Aty . 11.54
o (Uk\/ Aty ) ¢ ( )
Just as for Vega, for real hedging purposes the exposure with respect to zero-coupon rates out of today

is more relevant. Denoting the spot rate associated with today’s discount factor for a cashflow that is
payable at time, asr;, we can equate

e TRtk e—Z?:NjAtj. (11.55)

Then, following a transformation analysis similar to the one for Vega, we obtain

2k Zk+1
p = |————1th—1gey | ———1 ) ts . 11.56
Wy, (Uk —Atk ) k {k<n} (Uk:-H rtk—&-l ) k ( )

At this point, | am sure you believe me without further ado that the equivalent sensitivities with respect
to the respective dividend yield coefficients can be calculated by virtue of the following likelihood
ratios:

VAL

Wy, = —-* ~ k (11.57)
t t

w; = _ Gkt 4 o L (11.58)

+ k<n
r oV Aty ke }0k+1\/ Atyiq



Chapter 12

Monte Carlo in the BGM/J framework

12.1 The Brace-Gatarek-Musiela/Jamshidian market model

The pricing of options in the interest rate market has been the subject of many publications in the fir
ancial literature. Whilst most of the earlier models allowed short rates to evolve according to a norm:e
distribution [Vas77 HL86, HW9(Q], later developments avoided the possibility of (in principle unlim-
ited) negative interest rates by modelling the short rate lognormalyT PO, BK91]. With the arrival

of the general no-arbitrage conditions linking the drift of short or forward rates to the term structure
of their instantaneous volatility functiofpM921, practitioners now had a general framework for the
calibration of interest rate models to the implied volatilities of options that are liquid enough in the
market to serve as hedging instruments. When options on a discrete forward rate or a swap rate .
used for hedging the volatility exposure of exotic interest rate derivatives, it is intuitively appealing
to view the same discrete rates as the fundamental stochastic quantity underlying the contract. Rat
than to model the behaviour of an instantaneous short rate, Brace-Gatarek-Musiela and Jamshid
(BGM/J) and several other authogl$S97 BGM97, Jam97 MR97] described the evolution of the
forward rates themselves to be given by a lognormal stochastic differential equation. This formulatior
however, leads to fully state-dependent drift terms for the individual forward rates and thus makes
impossible to build recombining tree lattices|97, Reb98 Reb99. As long as the exotic interest
rate derivative contract that is to be priced is of European style, i.e. involves no exercise decision
the holder of the option, Monte Carlo methods can be readily applied since they are not affected by tl
high-dimensionality of the problen

Unfortunately, though, one of the most important derivatives in the interest rate market is the cor
tract known as 8ermudan swaptiowhich gives the holder the right to enter into a swap of a fixed
terminal maturity date on a set of prespecified exercise opportunity dates. Even though several artic
on the issue of early exercise opportunities in the context of Monte Carlo simulations for the pricing

1This is to say that Monte Carlo methods do not suffer from ‘the curse of dimensionality’ whereby the number of
evaluations explodes exponentially with the number of time steps or exercise opportunities. At worst, the computation
effort grows lineraly with the dimensionality and number of time steps for Monte Carlo techniques.

151
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of derivatives have been published in the past (see, G974 for an excellent overview), all of

them are only approximate and one has little certainty about the error actually incurred when applying
any of the general-purpose American Monte Carlo methods to a specific problem. The nature of the
Bermudan swaption contract makes it possible though to devise bespoke Monte Carlo techniques that
exploit the specifics of this derivative contract particularly well as was recently demonstrated by Long-
staff and Schwar2[S9g and Andersen4nd0(. Whilst the new method presented here is structurally
somewhat similar to the latter which is in turn superior to the former, it does not require approximat-
ive evaluations of option values during the simulation itself. Instead, an exercise decision strategy is
based on a parametric exercise decision function chosen to match observed heuristics in two carefully
selected coordinates. The free parameters are then optimised for each individual pricing calculation.

In theory, one can always use a hon-recombining tree method such as the one explained in chapter
13to price Bermudan swaptions. In practice, however, this technique can only be applied to contracts
of rather limited duration, or more precisely, of a rather limited number of cashflows and exercise
opportunities. In this chapter, | present a Monte Carlo method that overcomes this limitation and yet
manages to produce prices remarkably close those given by a non-recombining tree wherever the latter
can be applied. The new technique is based on the functional parametrisation of the exercise boundary
in a suitable coordinate system carefully selected by the aid of a non-recombining tree.

It is well known by interest rate derivatives practitioners that the main benefits of using the BGM/J
framework are not so important when it comes to products such as European or even Bermudan swap-
tions since these types of contracts are most sensitive to changes in the yield curve that are well rep-
resented by the lowest principal vectors of the decomposition of the yield curve’s covariance matrix.
Derivatives that are accurately priced by adequate modelling the changes of the level, and possibly
the slope, of the yield curve, can usually be safely priced using a one- or two-factor short rate model.
However, for other interest rate derivatives such as trigger swaps, ratchet and flexicaps, the story is very
different. For trigger swaps, for instance, it is inherently difficult to model appropriately the correla-
tion behaviour of any one forward rate (being the index rate determining whether the swap is triggered
in) to the forward swap rate starting with the very same forward rate simultaneously for all forward
rate/forward swap rate pairs unless a full factorisation is allowed, i.e. there is one model factor for each
forward rate comprising the yield curve of interest. For those products whose price strongly depends on
the effective correlation between adjacent forward rates and forward swap rates, the BGM/J framework
not only provides a way of more adequately allowing for all possible evolutions of the yield curve that
could affect the value of the derivative, but in doing so, also enables the practitioner to obtain a better
understanding of the financial mechanisms behind the value of the optionality with greater ease. In this
light, we can say that the BGM/J framework is particularly useful and beneficial where path depend-
ence plays an importanble or where the value strongly depends on the high frequency components of
the changes of the yield curve, i.e. the eigenvectors of the yield curve’s covariance matrix associated
with the higher modes and thus lower eigenvalues. Despite this, | have chosen to explain the intricacies
of the BGM/J Monte Carlo simulation approach with the example of Bermudan swaptions for the fol-
lowing two reasons. Firstly it is one of the (if ntite) most important interest rate derivatives around
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and any new approach must provide ways of pricing this contract. Secondly, pricing Bermudan swa|
tions in the BGM/J setup immediately forces the practitioner to tackle the most difficult problem in the
market model world, namely the existence of early exercise opportunities. The generic description
the Monte Carlo BGM/J model in this chapter is easily applied to all path-dependent products and tht
any product serves equally well as an example. The approach | take here for the design of a Mor
Carlo method in order to price an early exercise strategy dependent contract such as the Bermuc
swaption is, however, general enough to be readily transferred to other derivatives such as flexica
and others involving early exercise opportunities.

In this chapter, | outline how Monte Carlo simulations can be used for the pricing of interest rate
derivatives in the Libor market model. The nature of the so-called market model is that any set of rate
that completely determines the present value of a single certain cashflow at all of the points of intere
on the yield curve can be used as the basic set of modelled quantities. The driving stochastic proce
for those state variables of the yield curve can then be chosen at will and the drifts follow by virtue o
the martingale conditions resulting from the choice of guaire. The most common ways of building
the yield curve are to use a complete set of coterminal or coinitial swap rates, or a complete set
spanning FRAs. In this chapter, | use the latter approach whereby the modelled state variables :
forward Libor rates. The reason that | don’t even touch on the swap rate based approach is that in r
practical experience the available approximations for discrete time step drift terms and approxima
prices of options on composites of the state varigdes all unsatisfactory. In contrast to that, there
are highly accurate approximations for European swaptions in the FRA based BGM/J framework, ar
very reliable drift stepping techniques.

This chapter is structured as follows. In sectitih2 | give a brief introduction to the BGM/J
Libor market model framework and explain how the number of driving factors can be reduced shoul
one wish to do so in order to compare with short rate models of a lower factorisation. In sE&@on
| briefly state the Bermudan swaption pricing problem in my notation and in set#igha formula
is given that provides a remarkably accurate price for European swaptions for most major intere
rate markets at the time of this writing, without the need for simulations. The handling of the state
dependent drift term arising in the BGM/J framework is then addressed in sé2ti®hen, | demon-
strate thaeal exercise boundary of the Bermudan swaption for a specific example in sé2tienA
suitable parametrisation for this boundary is suggested in set®on In the following two sections,
| explain the actual Monte Carlo algorithm and present numerical results for various examples. In th
end of the chapter, a summary is given.

2Recall that if the yield curve is fully described by a set of either coterminal or coinitial swap rates, all bar one caple
actually become options on a payoff function that involves more than one of the basic state variables, i.e. the swap rates
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12.2 Factorisation

In the BGM/J Libor market model, it is assumed that each &fpanning forward rateg; evolves
lognormally according to the stochastic differential equation

dfi _
fi

Correlation is incorporated by the fact that thetandard Wiener processes in equatib ) satisfy

;£ t)dt + o (£)dW; . (12.1)

E AW, diV; | = oijct (12.2)
The elements of the instantaneous covariance méftx of then forward rates are thus
¢ij(t) = oi(t)o;(t)oij - (12.3)
Using a decomposition af (¢) into a pseudo-square réot such that
C=AAT, (12.4)

we can transform equatiod?.1) to

dfi
fi

= pidt + Y aydW; (12.5)
J

with di¥; beingn independent standard Wiener processes where dependence on time has been omitted
for clarity.

It is also possible to drive the evolution of theforward rates with fewer underlying independent
standard Wiener processes than there are forward rates, say. ofithem. In this case, the coefficient
matrix A € R"*" is to be replaced byt € R"*" which must satisfy

m

> al =i (12.6)

J=1

in order to retain the calibration of the options on the FRAs, i.e. the caplets. In practice, this can be done
very easily by calculating the decomposition as in equatl@¥f as before and rescaling according to

Aij = Qij

Cii
> dg,
k=1
The effect of this procedure is that the individual variances of each of the rates are still correct, even
if we have reduced the number of driving factors to one, but the effective covariances will differ. For

(12.7)

instance, for a single factor model, all of the correlation coefficients will be unity and the covariances
just the products of the pairs of associated volatilities. The procedure described above is to ensure

3Convenient procedures are the Cholesky method or spectral decomposition. A description of the latter is given in
section6.2
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consistent calibration to caplet prices. There are many other choices one can make such as to calibi
against European swaptions, etc. The subject of calibration is a very delicate one indeed and | w
explain how one can calibrate to European swaptions without the need for Monte Carlo simulations |
the next section. Here, | only meant to indicate one of the simplest calibration approaches preservi
the desired calibration independent on the number of factors used in the evolution of the yield curve

If the forward yield curve is given by spanning forward ratef, whereby the payoff of forward
rate agreementis f;7; and paid at time; . ;, and a zero coupon bond that pays one currency unit at
ty is used as nuéraire as schematically illustrated in figur2. ], then the driftg.; in equations12.1)

f f f
0 i n-1
s A A TE—
tO ti tN tn 1 tn
i
|
' Zero coupon bond as numeraire

Figure 12.1: The yield curve is specified by a set of spanning forward rates.

and (2.5 can be calculated by the aid 0bl lemma to be:

( N—-1

— 0 Z 14]:]}:5()5]:% oroi for i< N —1
=i+l
pi(f(t),t) = 0 for i=N—1 (12.8)
oi > 1f}it()5';k orow  for 1> N
\ k=N

12.3 Bermudan swaptions

A Bermudan swaption contract denoted by-hon-callY” gives the holder the right to enter into a
swap at a prespecified strike rateon a number of exercise opportunities. The first exercise oppor-
tunity in this case would b&" years after inception. The swap that can be entered into has always
the same terminal maturity date, namély independent on when exercise takes place. A Bermudan
swaption that entitles the holder to enter into a swap in which he pays the fixed rate is krmayegs
otherwise aseceiver’s

For the owner of a payer’s Bermudan swaption, the present value of exercising af tswgven
by the intrinsic valud (¢;) of the swap to be entered into at that time

I(t) = _} [Prs1(ty) - (fe(ty) — K) 7] = _‘ [(H [1+ fz(tj)ﬂ]_l> - (fu(ty) — K) Tk] . (12.9)

l=j
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Hereby and in the following, | assume a constant notional @ind that the contract is a payer’s
Bermudan swaption to simplify the notatiof., (¢;) indicates the ;-present value of a zero coupon
bond payingl att;., or, in other words, the;-realised discount factor from) to ¢ .

In order to decide optimally about early exercise at timéhe holder compares the present intrinsic
value with the expected profit to be made by not exercising at that time. Thus;-th&e of the
Bermudan swaptiofir (¢,) is given by

max {I(t;),E;,[V(t;11)]} for j=1...n—2

V(t;) = . (12.10)
max {I(t;),0} for j=n—-1

It should be mentioned that the above specifications describe fairly plain vanilla Bermudan swap-
tions. In the marketplace, many variations are common such as differing payment frequencies between
fixed and floating leg, margins on top of the floating payment, varying notionaller(coasteror
amortizingswaptions are not uncommon), time-varying strike of the swap to enter into, cross-currency
payoff (quanto), and many more. The method that presented below, however, is general enough to be
amenable to almost all of these special cases.

12.4 Calibration to European swaptions

Alternatively to the definition of the yield curve by a set of spanning forward rates, it is also possible
to choose a set afoterminal forward swap rateas depicted in figuré2.2 Jamshidian used this set

Figure 12.2: The yield curve can also be defined by a set of coterminal forward swap rates.

of yield curve coordinates for a swap based market matehpPT. Using the annuity associated with

a specific forward swap as the naraire asset for the evolution out to the reset time of the same swap,
we can model model the swap rates as perfectly lognormal and thus obtain the calibration to European
swaptions by construction. However, there are a number of drawbacks to this approach. Firstly, it is
not particularly easy to come up with a parametrisation of the swap rates’ instantaneous volatilities that
allows for some degree of time-homogeneity. Essentially, one needs a functional form that amongst
all other parameters also caters for the intrinsic differences between the different forward swap rates.
This is because whilst forward rates are all equally associated with a single cash payment of the same
order of magnitude, the annuities associated with all the forward swap rates vary considerably with the
residual maturity or duration of the individual forward swap rate. Secondly, it is not easy to conjure
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up a parametrisation of the swap rates’ correlation that is equally satisfactory and simple which is als
due to the intrinsic differences between the natural assets associated with the forward swap rates,
the annuities. Thirdly, the drift terms resulting from the no-arbitrage martingale conditions are mucl
more cumbersome than for a FRA based market model.

Today’s exotic interest rate derivatives are rarely purely based on only forwardoratersvard

swap rates just by themselves. A classic example for this are trigger swaps where the fixing valt
of a specific forward rate determines whether a swap starting there and then comes to life. Eve
for Bermudan swaptions, the exercise decision depends on not only the next resetting swap rate, |
also the shape (and primarily the slope) of the yield curve as best seen by looking at the variatiol
between all of the forward rates. Thus, when we value Bermudan swaptions, we may wish to represe
the overall stochastic dynamics of the forward rates reasonably well, and in particular account for the
correlation in an econometrically sound fashion, but also to calibrate such that we reproduce the mar}
given prices of European swaptions.

I will now outline one possible approach to calibrate a FRA based BGM/J model to Europear
swaptions. First, we have to decide on a suitable instantaneous volatility function for the forward rat
and | use the one suggested by RebongathP9:

oi(t) = ki [(a+bt; —)e ™ +d] - Lpery (12.11)

The common parameteish, ¢, andd determine the overall shape of the term structure of instantaneous
volatility. The FRA-specific parametés; allows to scale the volatility curve for each forward rate to
match the market given implied volatility for the associated caplet. This functional form appears tc
give good fits to the main volatility structure for most major markets for which there is an example in
figure12.3 The next function to choose is the FRA/FRA correlation. One suitable choice is

0ij(t) = e A== 1 i)y (12.12)

with 4 = 0.35 andvy = 0.5. However, choosingg = 1 and = 0.1 (which results in very similar
initial values for the correlation elements and makes no noticeable difference to the price of Bermude
swaptions), we can evaluate the pairwise covariance integréds?’) = ftT oi(u)oj(u)oi;(u)du with

t < T < min(¢;,t;) analytically since we can take the correlation term out of the integral. The
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Figure 12.3: Market given implied volatilities for caplets and the best fit using
equation £2.10) with all £; = 1.

primitive, i.e. the indefinite integral, of;(¢)o;(t)o;; becomes then:

1
/Qijo'i<t)0'j(t)dt — g flti—tl, keik - R
c
- <4a02d [edt—ta') + ec@—ti)} + 4P (12.13)

— dbedeftt) [c(t ) — 1] — Abedeftt) [c(t 1) — 1]
4 gttizt) (2&202 + 2abc [1 +c(ti+t; — 275)]

+ b2 [1 + 22t — i) (t — 1))+t +t; — Qt)])>

)

of any one caplet consistent with the parametrisatidh(]). In practice, one can use this formula to
calculate the:; such that;(¢;) equals a market given Black volatility.

Clearly, we can always use formuld2.13 to calculate the implied volatility; (¢;) = fot oZ(t)dt/t;

In order to establish a link between forward rate and forward swap rate volatilities for the purpose
of calibration to European swaptions, we remind ourselves that a forward swafhxgiarting with
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the reset time of the forward rafg) can be written as the ratio

SR; = %z (12.14)
of the floating leg value
A; = Z o f;miN; for i=0...n—1 (12.15)
and the annuity
B; = Z 417 N, i=0...n—1. (12.16)

N; is the notional associated with accrual perigd Since the market convention of price quotation
for European swaptions uses the concept of implied Black volatilities for the forward swap rate, i
seems appropriate to think of the swap rates’ covariance matrix in relative terms just as much as f
the forward rates themselves. The elements of the swap rate covariance @4tdan therefore be
written as

dSR; dSR
S _
o5 = ()

SR; SR
" SR,
n—1 OSR;
_ ZM i <dfkdfz>
= SR; - S fe i
=0
n—1
n—1
OSRi fi pma i OSR,
= . 12.17
g of, Sk, M SR, o (12.17)
=0
Defining the elements of the matrix’™—5E py
ziasn _ O5Hi T (12.18)

Ofr SR;’

the mapping from the FRA covariance matfi¥™4 to the swap rate covariance mat¥” can be
seen as a matrix multiplication:

(SR — 7FRA—SR | ~FRA & 7FRA—SRT (12.19)
Using
3B+1 Tk
- = P ———— 1oy, 12.20
8fk 1 1 + fka {k=i} ( )

wherely,-; is one ifk > i and zero otherwise, and equatiot2.(9, (12.19, and (12.14, we have

6SRZ { Pk+lTka Tk Ak Tk Asz }
= - ks
O fk

(12.21)

B, 1+fk7'k.§i+1+fk7'k. B
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This enables us to calculate the elements of the forward rate to swap rate covariance transformation
matrix Z =5 to obtain the expression

ZFRA=SR - _ AL TRIRTR ! : N T 12.22
& A; tABt fm) | e @222
constant weights approximation shape‘c,orrection

The second term inside the square brackets of equath22 is called theshape correctionRewrit-
ing it as

k—1 n—1

(AiBy — Ay Bi) [y SuTh Z Z Pt P A NNt (fL = fin) (12.23)
=i m=k

AiBi(l—i-fka) AB 1+fk7'k

highlights that it is a weighted average over inhomogeneities of the yield curve. In fact, for a flat yield
curve, all of the termsf, — f,,) are identically zero and the mapping mat#x™—5f is equivalent

to the constant-weights approximation (11.7)Rep99. As things stand at this point, we have a map
between the instantaneous FRA/FRA covariance matrix and the instantaneous swap/swap covariance
matrix. Unfortunately, though, the map involves the state of the yield curve at any one given point
in time via the matrixZ. The price of a European swaption, however, does not just depend on one
single realised state or even path of instantaneous volatility. It is much more appropriate to think about
some kind ofpath integral average volatility Using arguments of factor decomposition and equal
probability of up and down moves (in log space), Rebonato showslif( that the specific structure

of the map allows us to approximate the effective implied swaption volatilities by simply using today’s
state of the yield curve for the calculation of the mapping matrix

n—1
Osr; (8, T) = Z Z}H=51(0) ftak O;t/ pud - Z5RA5R(0) (12.24)
k=i,l=i

This approximate equivalent implied volatility can now be substituted into the Black swaption formula
to produce a pricevithout the need for a single simulationh practice, the formulal2.29 works
remarkably well. This is demonstrated for a whole sequence of coterminal European swaptions out in
figure12.4 An explanation for the remarkable accuracy of approximatiéhZ4 is beyond the scope
of this section but can be found iaR0Q.

Using the above preliminaries, | now outline the calibration procedure in detail. For a given time
step fromt¢ to T, populate a time-unscaled FRA/FRA covariance matrix

oA _ ft o () o (t') o (t')dt!

71 (12.25)

Next, map this matrix into a time-unscaled swap/swap covariance matrix usizgtiarix calculated
from the initial state of the yield curve

CR=gz.ctA. 77 (12.26)



12.4 Calibration to European swaptions 161

Vega

| _

weights

Ma uri y

Figure 12.4: The pricing error from equatiat?(24 using only the constant weights approximation in
the formula (2.22 or when including the shape correction for a GBP yield curve for Augut2@00.

and calculate from it the swap/swap correlation maiik given by

CoR
R = —— . (12.27)
JCSECSR
W g
Now, we compute the spectral pseudo square Bof R°% which satisifies
RSR — pSR pSRT (12.28)

At this point, we take into account the market given swaption prices. Denote the market impliec
volatility of the swaption expiring at timg, by agﬁ;"e‘and define the diagonal matriby

- ~ market a-SRh (taT)

Zoh = ey e ) 12.29

gh USRh &SRh (0’ th) gh ( )

with 6,4, being the Kronecker symbol (which is zero unlgss » when it is one) and bothgg, (¢, 7')
andagg, (0,1,) calculated from the FRA instantaneous volatility parametrisation through equation
(12.24. The final step is now to construct the FRA driveratrix A™ by scaling up the swap/swap
correlation driver matrix3°F and mapping back to FRA coordinates:

AFFA — 7-1 .= B3R (12.30)

4Karatzas and Shreve call this matrix ttispersion matri{KS91] (page 284).
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The effective (time-unscaled) FRA/FRA covariance matrix is finally
Ceffectlve = A AFBAT . (12.31)

In order to use the matricesf. . and AT for the evolution over the time step— T from a set

of standard normal variates, we still need to multiply them(by— ¢) and \/7—t ), respectively.

Within the limits of the approximationl@.29, using these matrices wherever we have expressions
involving a;; andc;; in the following sections, will provide calibration to European swaption prices
whilst retaining as much calibration to the caplets as is possible without violating the overall FRA/FRA
correlation structure too much which is typically exactly what a practitioner wants for the pricing

of Bermudan swaptions. As a side note, it should be mentioned that various other combinations of
carrying out the split int@Zf.; . and AFf" are possible, whilst still preserving calibration to European
swaptions. In my experience, however, the above approach represents the best method to preserve as
much of the overall FRA/FRA correlation structure in the calibration as possible.

12.5 The Predictor-Corrector scheme

In order to price a Bermudan swaption in a Monte Carlo framework, we need to evolve the set of
forward ratesf from its present values into the future according to the stochastic differential equation

dfz(t> = fz(t) ’ ,uz(f( ) dt + fz Z az]dW (1232)

driven by anm-dimensional standard Wiener procdds. The drift terms given by equatiori2.9

are clearly state-dependent and thus indirectly stochastic which forces us to use a numerical scheme to
solve equationX2.32 along any one path. Ideally, we would want to evolve the forward yield curve

f only over the points in time which we actually need to monitor, i.e. the possible exercise dates. The
simplest numerical scheme for the integration of stochastic differential equaisahe Euler method

JESTF (), 8+ A1) = filt) + filt) - (£ (). )AL+ fi(t) Z aij(£)2 VAt (12.33)

with z; beingm independent normal variates. This would imply that we approximate the drift as con-
stant over the time step — ¢ + At. Moreover, this scheme effectively means that we are using a
normal distribution for the evolution of the forward rates over this time step. Whilst we may agree to
the approximation of a piecewise constant (in time) drift coefficienthe normal distribution may

be undesirable, especially if we envisage to use large time atefs reasons of computational effi-
ciency. However, when we assume piecewise constant drift, we might as well carry out the integration
over the time step\¢ analytically and use the scheme

. i (F(£),6) At—Leii+ f aijZ;
FES IR P (1), ¢ 4 At) = filt) - € (12.34)

5See KP99 for a whole variety of methods for the integration of stochastic differential equations.
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whereby the time step scaling hyAt for A and byAt for C' has been absorbed into the respective
matrices. In other words, | have sét:= A-+/ At andC’ := C - At and dropped the primes. Equation
(12.39 can also be viewed as the Euler scheme in logarithmic coordinates.

The above procedure works very well as long as the time si¢me not too long and is widely
used and also referred to in publicatioAsil00, GZ99. Since the drift term appearing in the exponen-
tial function in equation12.34 is in some sense a stochastic quantity itself, we will begin to notice that
we are ignoring Jensen’s inequality when the termAt becomes large enough. This happens when
we choose a big stefdt, or the forward rates themselves or their volatility are large. Therefore, we
should use a predictor-corrector method which models the drift as indirectly stochékiiz] In the
notation of Kloeden and PlateKP99, depending on the time dependence of the instantaneous volat-
ility function, this is an explicit order 2.0 weak scheme or order 1.0 weak predictor-corrector rhethod
This combination of the Euler scheme in logarithmic space with the predictor-corrector method for th
drift results in a remarkable accuracy and is used throughout all of the calculations reported in th
chapter. The method is as follows. First, given a current evolution of the yield curve denagféd) by
we calculate the predicted solutigif®"s™ 4 £(z), + + At) using onen-dimensional normal variate
draw z following equation {2.34. Next, we recalculate the drift using this evolved yield curve. The
predictor-corrector approximatiqiy for the drift is then given by the average of these two calculated
drifts, i.e.

Ai(F(),t — ¢+ A1) = th {pu(F(0),8) + (L INE (@), t+ AL, 1) (12.35)
Finally, the predictor-corrector evolution is given by

m
ﬂi(f(t),t — t+At)At—%C“'+ Zl Q4524
J=

Predictor-corectar ¢4y ¢+ 4 Af) = £,(¢) - e (12.36)

wherein we re-use the same normal variate degw.e. we only correct the drift of the predicted
solution.

A hand-waving reasoning for the above approximation goes as follows. If we had to choose, for th
calculation of a constant drift approximation, for any one time step, whether we use the initial forwart
ratesf(t), or those at the end of the time stgp + At), neither of them appears to be superior over
the other for the job. This is equivalent to the considerations about explicit and implicit methods fo
the numerical solution of both ordinary and partial differential equations. We don’t actually know the
drift at the end of a desired time step, and solving for it as we would in an implicit method would

5To be precise, a hybrid method is used here. In the approach presented here, | integrate in d@u28dhe volatility
functions indepently over the time step to obtain an equivalent discrete time step covariance matrix, and then treat the
covariance matrices as if they had been given by a process of volatility functions that are constant in time. Therefore, neitt
is the explicit order 2.0 weak scheme given by equation (15.1.4m9§ used, nor the order 1.0 weak predictor-corrector
method as in equation (15.5.4P99. In the case of constant, i.e. time-independent volatility, however, these two schemes
are identical. Thus, following the general notion that it is always beneficial to use as many explicit analytical solutions a
possible in any numerical scheme, one can say that we are using a predictor-corrector@tlgeiorethe drift term not
for the entire stochastic differential equation driving the evolution.
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require solving a high-dimensional non-linear systsgch and every timeHowever, we can approx-
imate the drift term at the end of the time step, and then take the average of the two individual drift
approximations, in analogy to the predictor-corrector method used in other areas of numerical analysis.

A number of numerical experiments confirmed that this method is very robust and works very
well (the error is never more than a fraction of the bid-offer spread which is typically around one
vega of the option) for the prevailing interest rates and volatility levels for all of the major markets,
even for very long dated (tens of years) options when only a single step to maturity is used. In order
to demonstrate this, it is shown in figur&8.5and 12.6 how the predictor-corrector drift approach
performs for a Libor-in-arrears scenario in comparison to the piecewise constant drift approach where
the drift term over any one time step is given by the state of the yield curve at the beginning of the step.

In both figures, the error in the expectation of the Libor-in-arrears contract for both stepping methods

e Constant drift
_ T=30y ; =8%,1=3
e Predictor-corrector

ATM caplet vega

0.50%

0.40%

0.30%

0.20%

0.10% / /
0.00% *J —— T 1/

0 20 2 0 0

Absolute error n <f> (not d scounted)

-0.10%

Implied volatility

Figure 12.5: The stability of the predictor-corrector drift method as a function of volatility level.

for a single step to maturitis compared with a measure for the bid-offer spread, namely the price
difference resulting from a 1% move in implied volatility. As you can see, the method is remarkably
accurate, even for very long time steps. When we price Bermudan swaptions, however, we never have
such long individual steps since we need to model the evolution at each exercise date. This means
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Figure 12.6: The stability of the predictor-corrector drift method as a function of time to expiry.

that the predictor-corrector drift approximation is highly accurate in the context of Bermudan swaptiol
modelling.

12.6 Heuristics of the exercise boundary

At any reset timé; as sketched in figurg2.], the residual yield curve of interest is fully described by
the vectorf(¢;) whose elements are tlje — i) remaining forward rates in the yield curve out to the
last payment time of the Bermudan swaption. Amongst many other possible ways to describe the yie
curve at timet; out tot,, are the vectoP(¢;) whose elements are thgpresent values of zero coupon
bonds maturing ot . .. t,, and the vectos(t;) consisting of the swap rates of all coterminal swaps
out tot,. All of these determine the yield curve unambiguously. Since it is in general a good idea tc
exploit the specific structure of the particular problem one wishes to solve using simulation technique
it is conducive to first of all look at the geometry of the exercise domain of the Bermudan swaptior
problem. Strictly speaking, the exercise boundary at tinean(n — ¢ — 1)-dimensional hypersurface
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in an(n—1)-dimensional space. Using the non-recombining tree procedure explained in d&pter

can produce diagrams of two-dimensional projections of exercise decisions. If we find a coordinate pair
in whose projection the domain of exercise decision events appears to be reasonably separated from
the domain where exercise was not optimal, we may be able to reduce the early exercise decision to the
evaluation of a parametric function in those two coordinates. To demonstrate that this is possible, the
exercise decisions were evaluated using a four-factor non-recombining tree for a 6-non-call-2 annual
Bermudan swaption. The tree was constructed with 5 branches out of each node representing five
different possible evolutions of the yield curve, and bothahernating simplex directioandoptimal

simplex alignmentechnique presented in secti@8.3were applied to improve homogeneity of the
distribution of the evolved yield curve and enhance convergence. All discrete forward rates were set
to 10% annually compounded, volatilities were assumed to be 30%, and the corrgjati@ween

forward ratesf; and f; was modelled as before by

0y = e Pltil (12.37)

with 5 = 0.1. The strike was set to be at the money, i.e. at 10%. The tree was constructed with 10 steps
to the first exercise decision@at= 1, and then one in between each subsequent exercise opportunities

In figure 12.7, thet;-evolved yield curve is represented by the first two forward rdtesd f;., ;.
Next, in figure12.8 the evolved yield curve is projected onto the first two of the set of residual co-
terminal swap rates; ands;, ;. The diagram in figurd2.7illustrates that using the first two forward
rates to project onto will make the domain of exercise appear to overlap with the domain where not
exercising is optimal. Using the projection onto the first two residual coterminal swap rates results
in a projection where all points are very near the diagonal which will make it numerically difficult to
determine the exercise boundary. Also, the very nature of the swap rate is that both an upward and a
downward sloping yield curve can result in the very same value for the swap rate, but it is much more
likely to be optimal to exercise a payer’'s Bermudan early in a downward sloping than in an upward
sloping yield curve environment.

Another choice of coordinates could include the annuity of the residual si&egosd B; , ; respect-
ively, making the new variables the valugsB;) and(s; 1 B;.1) of the respective floating legs. This
does not appear to improve on the above selection of projections though, as can be seenl.figure
However, using the projection onto the first forward rtand the forward swap rate, ; starting from
the reset time off;,; going out to the terminal maturity results in a reasonable separation of exercise
and non-exercise decisions with very little overlap as can be seen in figur@ Ideally, we could use
a principal component decomposition of the dynamics of the yield curve and project onto the first two
modes. In order to retain a direct financial intuition as to the meaning of the coordinate system, the

"Many other calculations with different distributions of the steps between the relevant monitoring times were conducted
and all lead to the same shape of the exercise boundary. This particular one was chosen for the generation of the diagrams
since it highlights the location of the boundary and the overlapping versus non-overlapping feature in the different projec-
tions best. The total number 6f° = 9765625 points resulting from this calculation was reduced by sorting along the
abscissa and retaining only every seventh point in order to make the volume of data somewhat manageable.
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method was developed using tfies; ;1 projection, in particular since the short rate and the long swap
rate are in practice very good proxies for the first two fundamental modes of the yield curve.
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12.7 EXxercise boundary parametrisation

Taking into account all of the heuristic observations about the shape of the exercise boundary in various
projections for many different shapes of the yield curve and volatility structures, the following function
was chosen as the basis for the subsequent exercise decision strategy in the Monte Carlo simulation:

B ) = (400 = [ 00 ] { + Tor payers swaptions } 12.38)

siv1(ti) + pia —1 for receiver's swaptions
This function is hyperbolic in; . ; and depends on three coefficients, the initial (i.e. at the calendar time
of evaluation or inception of the derivative contract) valuef@f) ands; ;(0), and their respective
evolved values as given by the simulation procedure. Since we have to make an exercise decision at
each exercise opportunity timg we allow for a new set of exercise function coefficients for each
such time slice. For non-standard Bermudan swaptions that have payments in between exercise dates,
we use the shortest swap rate fronto the next exercise time instead ff The parametric exercise

decision given an evolved yield curve is then simply to exercige it 0.

At the very last exercise opportunity at timg ; we have exact knowledge if exercise is optimal,
namely when the residual swap is in the money. This easily integrates into the parametric description
given by equation¥2.38 by settingp(,—1) 1 andp(,_1) » to zero and,,_) 3 to the strike:

Pn-1)1
(12.39)

NOO

Pn-12 =
Pn-1)3 =

12.8 The algorithm

The Monte Carlo method for the pricing of Bermudan swaptions can now be described. First, for a
training setP™anng of Nrraining €volutions of the yield curve into the future out to the last exercise time
t,_1 is precalculated and stored:

PTraining: {fjk} 5 ] — 1 . .NTraining,k’ - O. on— 1 (12'40)

Also, for each evolution of the yield curve, the residual intrinsic vdlyen the chosen nuéraire as
seen at time,, is pre-calculated and stored.

Then, a set of. — 1 optimisations is carried out, one for each exercise opportungtgart from the
last oné in order to determine the best values to use for the coefficigntdlaturally, the optimisations
are done in reverse order, starting with the penultimate exercise timePrior to each optimisation,
we assign a path-valug, ;7 = 1... Ntaining to €ach evolution path in the training deltaining which
represents the value of the Bermudan swaption on this path if no exercise occurs up until and including
t;. This path-value vectow is initialised to be zero in all its elements before we enter the following
loop which counts down in the time index variablgom (n — 2) to O:

80n the very last exercise opportunity, the optimal exercise parameters are given by ediza8§mhence no optim-
isation is required for them.
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1. For each patlyf; ., in P9, if (E;i(f;;) > 0) and (I; 41y > 0) , re-assigny; := I 1),
elseleavev,; unchanged.

2. Optimise the average of the exercise-decision dependent value

NTraining -
Ui(p;) = d (Eilfsi:p0) > 0) (12.41)
NTraining = V; else

over the three parameters, p;», andp;s. Specifically, one can use the Broyden-Fletcher-Gold-
farb-Shanno multi-dimensional variable metric method for this optimisaiGivF93.

It is worth noting at this point that, sin@bsolutely all values are precalculated and stqrdte
function to be optimised given by equatioh2(4]) requires merelyVyraining €valuations of the
exercise decision functiof;(f;;; p;) and the same number of additions and is thwosar in

the number of training paths and independent on the dimensionality or maturity of the problem

3. Decremeni by 1 andif (: > 0) continue with stefd.

The final valuely(p,) gives then an estimate of the value of the Bermudan swaption with a slight up-
ward bias. Therefore, we finally re-run the simulation with a new sétf,ningyield curve evolutions
using the established exercise strategy parametrisation given by the:sstatise decision functions

E;. Typically, | find Nsampiing >~ 2Ntraining t0 be well sufficient, especially when the driving number
generator method was a low-discrepancy sequence.

12.9 Numerical results

In order to highlight the outcome of the training procedure described in the previous section, the p:
rametrised exercise boundary as resuftiingm Ntraining = 32768, Nraining = 131072, and Nvraining =
1048576 is superimposed on the exercise decisions given by the non-recombining tree (which wer
already shown in figur&2.10 in figure12.11 The resulting prices were 5.062% ¥ ajning = 32768

(total run time was 5.1 secondy 5.066% for Ntraining = 131072 (26.5 seconds), and 5.069% for
Ntraining = 1048576 (211 seconds). The most accurate price estimate | could obtain from the non-
recombining tree is 5.084%0.015% which demonstrates the remarkable accuracy of this new Monte
Carlo method. This example also highlights that the Monte Carlo approximation farug@rice
(defined by the absolutely optimal exercise strategy), in the vicinity of the optimal exercise strategy

9All of the reported results are from calculations with a high-dimensional Sobol’ sequence. Using this sequence gene
ator, European option prices are typically highly stable and accurate with 1024 paths, in most cases even 512 paths wo
have sufficed for the same accuracy. The Bermudan swaption prices are typically sufficiently accurate and robustly stal
with around 16384 training paths (and twice that for the final evaluation) but in order to make the diagrams appear eve

smoother somewhat larger numbers of paths were used.
1°Run times are given for a Pentium Il @ 300MHz with the number of sampling points always being double the numbe

of training points.
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Figure 12.11: The exercise domain in tlies;,; projection of the evolved yield curve &t = 2,
together with the parametrised exercise boundary resulting from training with different sizes of the
training set.

only weakly depends on slight changes to the boundary. After all, if we view the price approximation
as a function of the location of a given exercise boundary, theretildBermudan option price is the

one resulting from an optimisation over all possible exericse boundary locations. As it happens with
the value of a function at its maximum, the first derivative with respect to its argument must be zero
at the extremum, and thus the price approximation depends only weakly (i.e. as of second order) on
minor changes of the exercise boundary location near the optimal point.

Now, the results for a 6-non-call-2 semi-annual payer’s Bermudan swaption for a typical Ster-
ling yield curve and volatility environment are presented. This means the yield curve was slightly
downward sloping, and the implied swaption volatilities increased from 19.53% for the first one up to
22.46% for the last one (which is a caplet). The forward rates were again assumed to have piecewise
constant instantaneous volatility but calibration was in this case done such that the entailed European
swaptions’ prices are to be independent on the number of used factors. The option was again at the
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money! with a strike of 6.63%. In figur&2.12 a diagram of the Bermudan swaption price calculated
using the presented Monte Carlo method in comparison to the values obtained from a non-recombini
tree model is shown. For reference, the prices obtained from both models for the most expensi

2.70%
263% 2.63% 2.64% 2.64% 2.64% =#—Bermudan,
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Figure 12.12: Bermudan swaption prices from the Monte Carlo model in comparison to those obtaine
from a non-recombining tree model for a 6-non-call-2 semi-annual payer’s swaption.

European are also included. Since the non-recombining tree model must by construction conver
to the same value as the Monte Carlo model for European contracts, including both European pric
gives a good indication for the residual error of the non-recombining tree model. As can be seen, tf
Monte Carlo model returns prices that are within the error margin of the non-recombining tree mode
The upwards trend of the prices with increasing numbers of factors is very typical for calibration tc
European swaptions when no attempt is made to keep the prices of caps constant at the same time.
non-recombining tree calculation time required to obtain sufficient accuracy for the curves in figure
12.12to look reasonably smooth was approximately 8 hours on a Pentium Il @ 300MHz parallelises
over two CPUs using multi-threading whilst the total calculation time for the Monte Carlo results was
92 seconds (without multi-threading).

Next, in figuresl2.13and12.14 examples are shown for longer dated contracts, namely a 15-non-
call-5 annual Bermudan payer’s and receiver's swaption with a flat yield curve at 10% and calibratio
to European swaption implied volatilities taken from the GBP market. Forward rate volatilities were
again modelled as piecewise constant in time. In this case, prices from the non-recombining tree we

Hn all my tests, at the money Bermudan swaptions are always the most difficult ones to price using a Monte Carl
method since they contain the most relative optionality.
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Figure 12.13: 15-non-call-5 annual payer’s Figure 12.14: 15-non-call-5 annual receiver’s

only calculated up to two factors. The points shown for the non-recombining trees indicate by how
much the price varies if the number of steps is slightly increased, thus giving and indication for the
error margin from the tree. Again, the Monte Carlo model is very accurately in agreement with the
non-recombining tree.

In figure 12.15the results are shown for the same 15-non-call-5 annual payer’'s swaption, only
this time the yield curve was assumed to be steeply upwards sloping from initially 2.5% up to 9% for
the last FRA. Finally, in figurd2.16 the results for a 20-non-call-10 semi-annual payer’s swaption
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Figure 12.15: 15-non-call-5 annual payer’s féiigure 12.16: 20-non-call-10 semi-annual payer’s in
steeply upwards sloping yield curve comparison to Andersen’s methodArid0Q
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are shown. Here, | used a slightly upwards sloping yield curve taken from the USD market, ani
market-typical European swaption implied volatilities beginning at 14.56% for the longest swaptior
and ending in 22.50% for the last one. In this case, the forward rates were modelled to follow
slightly humped instantaneous volatility curve as is believed by practitioners to be the most realisti
representation of econometric observatioRel)99. Also, the results as obtained from the model
(method 1) published by AnderseAfid0(] were added for comparison. For this contract, due to the
sheer number of payment and exercise times, only single factor calculations were completed with tl
non-recombining tree model.

12.10 Summary

In this chapter, a number of separate issues relating to the pricing of Bermudan swaptions in the BGV
framework have been addressed. The state dependence of the drift coefficients poses a problem
Monte Carlo simulations whenever we wish to avoid using a small-step Euler scheme. The propost
predictor-corrector log-Euler BGM/Monte Carlo scheme is very stable and allows us to use single
steps over any time horizon that may be encountered in the pricing of Bermudan swaptions. Then,
new Monte Carlo method tailor-made specifically for the pricing of Bermudan swaptions was preser
ted. The main idea behind the new approach is to exploit the heuristics obtained from a different b
numerically not widely applicable method, namely a non-recombining multi-factor tree. This know-
ledge is then used to devise a suitable parametric exercise decision function in fewer dimensions th
the state space is embedded in. Also, the importance of a careful selection of the coordinate syst
used for the projection of the exercise boundary was demonstrated. This approach was compared to
method suggested by Andersexn0Q which relied solely on a financial intuition of what variables
should be most indicative. The new method was tested with a large number of yield curve and volatilit
scenarios and iall of them proved to be remarkably accurate. A small selection of the test results are
presented in this document. | have also given examples of the calculation time involved on a comput
which, at the time of this writing, can be considered to be at least a factor of five slower than what i
readily available to practitioners on a trading floor. The remarkable speed, stability, and accuracy ¢
the developed model is partly due to the use of high-dimensional Sobol’ numbers but also due to tt
careful design of the optimisation algorithm and the detailed attention to pre-calculation and storage
all involved quantities wherever possible.

In general, it cannot be expected that the technique of projecting the exercise domain onto ju
two dimensions will result in a single simple curve delineating the exercise boundary. Examples fc
this are American max-options where the higher of two asset values minus a strike level determin
the intrinsic value BG974. Still, out of all the mathematical problems one may conceivably subject
to a Monte Carlo simulation evaluation, the very nature of financial derivatives makes them appe:
comparatively benign. In other words, | believe that for most exercise strategy dependent derivative
contracts invented thus far, a suitable projection of the exercise domain can be found to make tl
boundary amenable to a description by only one or a few reasonably simple functions in two variable
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Whenever this is possible, a multi-dimensional optimisation over a small set of free parameters using a
training set of paths can be carried out resulting in a highly accurate price estimate. | therefore believe
that the presented approach of using a non-recombining tree (which is very flexible with respect to
pay-off specifications but very limited with respect to deal maturity and the number of involved time
slices) to devise a bespoke Monte Carlo exercise strategy parametrisation for a specific product can be
applied to a wide class of American or Bermudan style derivatives.



Chapter 13

Non-recombining trees

13.1 Introduction

Traditionally, implementations of option pricing models tended to use some form of lattice method
In most cases, this meant an explicit finite-differencing approach was chosen. In fact, many of th
early quantitative analysts would describe this as ‘having been brought trpesh This tendency
towards the use of tree methods is also reflected in the option pricing literature. Cox, Ross and R
binstein CRR79 described the option pricing procedure on a binomial tree in 1979. And some of
the breakthrough publications in derivatives modelling were first formulated as an algorithm for ¢
tree node construction matching a market given set of security prices and Black implied volatilities
These include the Ho-Lee model whose continuous counterpart is that of an Ornstein-Uhlenbeck pr
cess HL86, Jam9§, the lognormal interest rate model by Black, Derman, and BayT90] and the de-
terministic but spot dependent instantaneous volatility model by Derman, Kani, an®@Ea@9§¢]. The

great advantages of recombining tree methods are their comparative ease of implementation, equi
easy applicability to the calculation of Greeks, and fast performance.

Alas, we cannot always use recombining tree methods. This is typically so when the stochastic pr
cess chosen to model the evolution of the underlying quantities is strongly state-dependent. The sta
dependence of the drift term of forward rates in the Brace-Gatarek-Musiela/Jamshidian framework
one such case. This makes it a prime application of Monte Carlo methods. However, when we wis
to price options of American style, we really need to compare the expected payoff as seen from al
one node with the intrinsic value. This means, the only method that can in principle give an unbiase
result is a non-recombining tree. Whilst there are many publications on recombining tree methods al
how to construct them for optimal performance, very little is in the literature on the construction of
non-recombining trees. What's more, the few descriptions of the construction of non-recombining tre
methods and analysis of their performand&/pQ MW99, Rad98aRad98l focus on no more than
three factors. In this chapter, | present a generic method to construct a non-recombining tree for a
given number of factors and provide the algebraic equations needed to calculate the coefficients tt
determine the branches.

175
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Before we start the explanation of a generic method to construct a non-recombining tree with the
minimal number of branches out of each node required, let us briefly compare non-recombining tree
methods with Monte Carlo techniques. The two approaches share several features. For both of them,
an evaluation is always done along a specific evolution path such that they could both allow for a
non-Markovian stochastic process (within the limits of the time discretisation). The two most crucial
guantities that determine the evolution over one time step are in both cases the expectation conditions
(i.e. drift terms or martingale conditions) and the covariance matrix of all of the state variables, and
it is those that tell us how we have to construct the paths. Both techniques are traditionally perceived
to be very slow, and rightly the non-recombining trees are considered to be so slow as to be not a
viable method in front office systems although, as we will see, to some extent they can be useful
for benchmarking purposes. For both methods, paying particular attention to implementation details
can make tremendous differences to the performance, i.e. calculation time required. And both ap-
proaches are designed to generate a representative sample set of all possible evolutions. It is for those
similarities that | include a chapter on non-recombining tree methods in this book. The main differ-
ences betweeen non-recombining tree methods and Monte Carlo techniques entail the following points.
Non-recombining tree methods, by their very nature, are a recursive representation of the option pri-
cing problem and thus suggest and easily support a recursive implementation. The very same feature
allows for easy integration of free boundary conditions, i.e. early exercise decisions as we have them
for Bermudan or American options. Non-recombining trees are susceptible to pathological problems
where they may fail systematically because of the very selective path construction method. And finally,
the convergence behaviour of non-recombining trees depends very strongly on the dimensionality of
the problem, i.e. the number of driving factors. Despite their differences, from a constructional point
of view, the similarities are remarkable. And in common with Monte Carlo methods, using simple
techniques, it is possible to implement them such that they perform orders of magnitudes better than is
frequently thought.

The remainder of this chapter is organised as follows. First, | briefly summarise the setting of the
BGM/J model and discuss its factorisation in sectl@? and also explain how the evolution of for-
ward rates can be modelled in a non-recombining tree method. Next, we discuss in more detail some of
the aspects of the high-dimensional geometry of the branching scheme in $&:80Rollowing this,
| elaborate a few points on the efficient implementation of the algorithm. The main results on the per-
formance and applicability of the method are then presented in sd@idnNext, we explain possible
improvements that can be done to match the variance as it would result from a continuous description
in sectionl13.6 Furthermore, | discuss a different technique to account for the state-dependent drift of
the underlying forward rates in sectid3.7 such that all martingale conditions are met exactly. Fol-
lowing that, we demonstrate how the clustering effect that can be observed for flat volatility structures
is broken up by the use of a time-varying term structure of instantaneous volatility in s&&ti®n
For those of us who like a visual demonstration of how things work, | give a simple examp8an
Finally, a summary of this chapter is given.
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13.2 Evolving the forward rates

Let us reiterate some of the basic setup of the BGM/J Libor market model which was already explaine
in sectionl2.2 The state of the yield curve is represented by a setspfanning forward rateg which
evolve lognormally according to the stochastic differential equation

df; —

7 wi(f,t)dt + o, (t)dv; . (13.1)
As in section12.2 we construct from this starting point a (possibhyfactor truncated) covariance
matrix C'(¢,t+ At) for the time steg — t+ At and its pseudo square rodt taking into account
our correlation function of choice as in equatiof2.Q) to (12.7). Clearly, equation¥2.8 means that
the drifts are state-dependent and thus indirectly stochastic. For the purpose of derivatives pricing, \
need to sample the space of all possible evolutions of the yield curve into the future. If we approximal
the drift coefficientss; as constant over a small time stép, we can represent the evolved forward
rates by

m
/_1,1' (t,t—‘,—At) At— %C“—l- Z AijZ5
j=1

filt + At)=f;-e (13.2)

with z; being independent normal variates. The coefficientsire the elements of the (possibty
factor truncated) pseudo square ragbbf the covariance matrix”’ which contains the integrals over
the small time step\¢:

t+At
¢y = / oi(t')o;(t) 0y dt! (13.3)
t'=t
To summarise, the steps that have to be carried out for the constructionesolved forward rates as
in equation 13.2 are as follows:-

1. Populate the marginal covariance matfiXt, t + At) using equationi3.3).
2. Decompose (e.g. using the Cholesky method or by spectral decomposition) such that

AAT=C". (13.4)

3. Form them-factor truncated coefficient matrix in analogy to equatioril@.?), i.e. using

c.

aij = a’ij — o (13.5)
Z a’x
k=1

4. Build them-factor approximation covariance matiix

C=AAT (13.6)

which will in general, form < n not be identical ta”” but by construction we preserved the
diagonal elements; = ¢,.
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Given the above definitions, we can now spegifyn equation 13.2):

(

- Z 1+f(t o (tt+At) for i< N —1
fii(t,t + At)At = 0 for i=N-—1 (13.7)

Z 1+fk t)Tk ca(t,t+At)  for >N

\
In a Monte Carlo framework, we would now construtst-forward yield curves by drawing many
independentn-dimensional normal variate vectotsand applying them to equatiof3.2). In order to

build a tree for the pricing of derivatives that require the comparison between expectation and intrinsic
value such as Bermudan swaptions, we now wish to use the minimal number of such vectors necessary.
In order to see how to construct variate vector getsfor any givenm, it is conducive to state clearly

the requirements on the elements of the matrix R™ ™ whose rows comprise the vectordo be

used for each realisation of the evolved yield curve as given by equdi®8.( Assuming that we

wish to assign equal probability to each of thérealisations, we thus hate

Y sy =0 (Mean) (13.8)
1 — .
WZSU‘SZ”C — 05  (Covariance) (13.9)
o m for i=k
ijSkj = Equal probabilit 13.10
Zs]sk] {_1 for ik (Equal p y) ( )

The smallestn’ for which it is possible to construct satisfying the above equationis + 1. In
other words, for ann-factor tree model, we need a minimum-af+ 1 branches out of each node.
For any discrete seftz} satisfying the above conditiond3.9 to (13.10, it can be shown that the
At-step evolution equatiorlB.2 produces a set of evolved forward rates that is accurate up to order
((a\/_) > (inclusive) both in the expected value and in variance.
In the case of a 1-factor model, we can simply use thg sgt= {+1, —1} and thus construct a
non-recombining binomial tree. In this case, we can change equaBod {o

m
_ 1 1 1 17
,ui(t,t—l—At)At—Ecii—&—ﬁc?i—40 “—&—2020 ct "+ Z aijzj

filt +At) = fi-e (13.11)

which corrects the expected value up to ordb((a\/ t) ) (inclusive) and reduce the coefficient
in front of the orderO <(0\/ t) ) for the variance from-5/s to —2/5. For a trinomial setup with

{z} = {+/3/,0,—+/3/}, the terms that correct the expectation umﬂt(é(a\/At)*’) (inclusive) are
given by

- 13 123
i (£t A8 At =G i+ 15 €5 — 555 ¢4+ 35840 Chi Z @ijZj

filt + At)=f;-e . (13.12)

1This set of equations is not strictly independent. Stating all of them, however, aids the clarification of the simplex
concept.
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Note that the coefficients of the corrective terms are smaller in the trinomial case which is as one wou
expect it from the fact that no corrections are required in the limit of infinitely many branches out of
each node (provided that, at least asymptotically, we match more moments as we add more branchs
In practice, though, there is very little difference in the convergence behaviour when replacing equatic
(13.2 with equation {3.1]) for a binomial scheme 04.8.12 in the trinomial case. This indicates that

other factors such as the coarse sampling of the payoff horizon dominate the convergence behaviou

The elements of the matriX defined by equationd.8.8 to (13.10 describe the Cartesian coordin-
ates of a perfect simplex im dimensions. EquatioriB.10 can best be understood by the geometrical
interpretation that in order to define equally probable tree branches, all the angles in the simplex mt
be equal (which makes it a perfect simplex). Note that we have made no statements about the alignm
of this simplex in our coordinate system yet.

13.3 Optimal simplex alignment

Given a Cartesian coordinate system, we can write the coordinates of the corner points defining
perfect simplex inn dimensions as:-

s’ =9/ for j—i-1 (13.13)
0 for j<i—1

Examples:

) _ (‘11) (13.14)

S = 3 (13.15)
0
9 _./2 _ /L
SB) = V2 \/g 3 (13.16)
R
0 0 V3
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S = %@ _ _ (13.17)
0 —
0 V4
Using the definition of5, we can now specify a branch coefficient matbhas
B=A-ST. (13.18)

The tree construction algorithm is thus as follows. At each node with its associated yield curve given
by the set of: forward rateq f;(¢)}, construct a set of - (m + 1) forward rates to represent all possible
evolutions over a time intervalt according to

fin(t+ A = fi(t) - @O =zea®Fbu®) G — 1 k=1..m+1. (13.19)

There may be situations when we would like to have more thah 1 branches. An example is

the pricing of a path-dependent derivative on a single FRA. In this case, we only need one factor, i.e.
m = 1, and thus only two branches out of each node, but we might want to construct a non-recombining
trinomial tree because of the inherently higher convergence rate and stability in comparison to the
binomial tree. Examples are not only standard payoff derivatives like a caplet but also barrier options,
trigger derivatives, etc. This can be achieved very easily in the above framework by using only the
first m columns of the matrix describing a perfect simpleX M, .......— 1) dimensions instead & in
equation 13.18, i.e.

S(maNBrancheQ — S(NBranches—l) . lm (1320)
O(NBrancheflfm)Xm
with
1m E ]Rme

being them-dimensional identity matrix, and

Ni 1—
O(NBrancheflfm)Xm c R( Branches™ m)Xm

being a matrix whose elements are all zero.

In general, there are no limitations to how many branches one may use out of each node. In
fact, many recombining tree-like methods or PDE solvers use effectimadye than three nodes for
improved convergence. Examples include fast convolution methods such as the ones using Four-
ier [CM99] or Laplace transformationd=MW298] but also the willow tree methodJur9q. How-
ever, using the simplex coordinates as given by equafi8ril@ will quickly result in redundant, i.e.

2In a general sense, even implicit finite differencing methods can be seen as a technique to use many nodes at a future
time slice to infer the values at an earlier time slice.
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identical branch coefficients. For instance, if we were to choose a 4-branch construction for a sing
factor model, we would probably want the four branches to end in four different realisations of the
evolved forward rate. As we can see in equatib8.19, however, two of the branch coefficients in
the first column are identical, namely 0. In fact, if we look at the branch coefficients of the first mode:
in the higher dimensional simplices, i.e. the entries in the first columns dthmatrices, we realise

that there are never more than three different values. In geometrical terms, this is a consequence of
particular choice of alignment of the simplex as specified by equati®ri8. In order to obtain the
maximum benefit out of the additional effort in using more branches, we may want them to spread ¢
much and as evenly as possible. In each column, we may wish to have the entries to be symmetrice
distributed around zero, to whatever extent this can be achieved. It turns out, for-dmgensional
perfect simplex, it is possible to find a rotati&™ of the simplexs R, such that

i mis—i; for m even and j=1...%

2

(13.21)

(m)
m+2—i j

1(m)

. for m odd and j=1... 7

/
S —S 5

An appropriate rotation for the:-dimensional simplex can be found by specifying a rotation matrix

l=m
k=m—1

R™ = T R (6w) (13.22)

k=1

I=k+1
with R,(Jl”)(&kl) € R™ ™ being the rotation matrix in thék, ) plane by an angléy,, i.e. R,(CT)(QM)
is equal to then-dimensional identity matrix apart from the elemenﬁ;;éf) = rl(lm) = cosfy; and

ri™ = —r(™ — sin 6. The rotated simplex is then given by

S'=58-RM (13.23)

Allowing all of the w angles to vary, a simple iterative fitting procedure then very quickly finds
a suitable rotation to minimise the?-error in the conditions given by equatioh3(21). To give a
specific example, one alignment of the simplex#or= 4 that satisfies equatiod8.2]) is given by:

—1.1588 —0.91287 —0.6455 —0.5 —1.1306 —1.1053 0 1.22474
1.1588 —0.91287 —0.6455 —0.5 1.1053 —1.1306 0.91287 —0.8165
4 R(m) (4
S( ) == 0 1.8257 —0.6455 —0.5 —— S( ) == 0 0 —1.8257 —0.8165
0 0 1.9365 —0.5 —1.1053 1.1306 0.91287 —0.8165
0 0 0 2 1.1306 1.1053 0 1.22474
(13.24)

Once we have identified a suitable alignment of the simplex, there is yet another easy method
improve the convergence behaviour of the non-recombining multi-nomial tree method. This techniqu
is calledAlternating Simplex Directiomnd entails simply switching the signs of all of the simplex
coordinates in every step. How this improves convergence by increasing the overall symmetry of tt
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Figure 13.1: The placement ©f;, ;) nodes with (bottom) and without (top) the use of Aleernating
Simplex Directionrmethod. In this example, 3 branches emanate out of each node in each step to
account for two stochastic factors. In the top row, the three new nodes that are centered around each of
the previous nodes always form an upwards pointing triangle. In the bottom row, the triangle formed
by the three new nodes (shown as crosses) in step 1 (leftmost diagram) points upwards. In the second
step, the three new nodes around each cross form a downwards pointing triangle. Next, the triangles
formed by the new nodes (hollow squares) around the previous nodes all point upwards. Finally, in
the rightmost figure of the bottom row, each triangle formed by filled squares around a hollow square
can be seen to point downwards, again. Note the effectively increased symmetry when the simplex
direction is alternated in each step.

procedure can be seen if we visualise the points generated by subsequent branchifg jathplane

for a 2-factor, 3-branch model. This is shown in figdi®1 Since we are merely adding up the co-
ordinates of subsequent steps, the branching evolution appears to recombine. The moment we actually
use the state dependent drift terms in a forward rate based yield curve model as in eduiatign (

this will no longer be the case. However, as we will find justified later, it is not unreasonable to expect
that the added near-symmetry, in general, improves convergence.

13.4 Implementation

It is worth noting that neither the variance coefficieatsnor the branch evolution coefficienis. in

equation 13.19 depend on the current yield curve given by he). Therefore, they can be precalcu-

lated for all of the time steps. The only thing that needs to be calculated immediately prior to looping
through all of the branches is the current set of drift tefmg. These, in turn, are the same for all of

the branches out of each node. Taking all of the above considerations into account, we see that the non-
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recombining tree calculation can be implemented extremely efficiently using a recursive method sinc
none of the evolved yield curves need to be reused after all of the branches out of any one node he
been evaluated. The only storage we need to allocate is a full §gtjofor each time step, a full yield
curve specifying FRA seff;} for each time step, and of course, theandb;; for each time step. In

the code snippet shown in figut8.1, the array elementogShiftOfBranch[h][K][i] contains

—%cﬁ + b, for the time step from, to ¢, .1, the array elemer@[h][i][K] holds the associated co-
variance matrix entry;, for the time step, and all the other variable names should be self-explanatory
After the initial setting up, a call to the functidBushyNFactorFraBGMTree::Recurse(0)

double BushyNFactorFraBGMTree::Recurse(unsigned long h){
if (h==NSteps)
return Intrinsic(h); // Termination of the recursion.
unsigned long ik;
for (i=0;i<NRates;i++){ // Calculate the drift for all rates and store them.
mu_dT[i] = 0,
for (k=Numerairelndex;k<=i;k++)
mu_dT[i] += C[h][illk] * EvolvedFralh][k] * Taulk] / ( 1. + EvolvedFralh][k] * Taulk] );
for (k=i+1;k<Numerairelndex;k++)
mu_dT[i] -= CI[h][i][k] * EvolvedFralh][k] * Taulk] / ( 1. + EvolvedFralh][k] * Taulk] );
}
double tmp=0;
for (k=0;k<NBranches;k++){ // Loop over all branches.
for (i=0;i<NRates;i++){
EvolvedFra[h+1][i] = EvolvedFra[h][i] * exp( mu_dT[i] + LogShiftOfBranch[h][K][i] );
}
tmp += Recurse(h+1); // Sum up the results from all of the branches.
}
/I Average, unless the intrinsic value is higher.
return CheckForEarlyExercise(h,tmp/NBranches);

Code example 13.1: The recursive implementation of the non-recombining tree.

returns with the expected value as given by the payoff specified in the furi8tishyNFactor-
FraBGMTree::Intrinsic() , taking into account possible early exercises. The return value of
the BushyNFactorFraBGMTree::Recurse(0) call still has to be discounted by multiplying
with the present value of the zero coupon bond chosen agrair.

13.5 Convergence performance

In order to give the reader a feeling for the effectiveness of the methods suggested in the previous s
tions, | carried out a set of numerical calculations for a 4-year payer’s option on a two year semiannu
European swaption. | used the yield curve and caplet implied volatilities for GBP interested rates ¢
tabulated in tablé 3.1, and assumed an instantaneous volatility of the individual forward rate$ as in

oi(t) = [a+ b(t; — t)] et 1 4 (13.25)

3c.f. [Reb99, equation (11.4).
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~.

t; | discount facton  f; 0, = \/ ﬁf;o o (t)2dt! /t;

0] 4 | 0.762757096 | 6.652% 21.43%
1|4.5]| 0.739640975| 6.251% 20.67%
2| 5 | 0.717225412| 6.044% 19.98%
3|55] 0.696187117| 6.044% 19.35%
4| 6 | 0.675765937

Table 13.1: The yield curve for GBP interest rates and the caplet implied volatilities used in the ex-
amples.

with a« = —2%, b = 0.5, ¢ = 1, andd = 10%, which is consistent with the given caplet implied
volatilities. The correlation between forward rafeandf; as given by;; in equation {2.2 and (L3.3
was assumed to be

0y = el (13.26)

with 5 = 0.1. The strike for the swaption was set at 7.50%. Since the forward swap rate results
to 6.15% for this particular yield curve, the option under consideration is out-of-the money. | also
calculated the results for the equivalent Bermudan contract, i.e. a 6-non-call-4 semiannual Bermudan
swaption. In figurel3.2 | show how the non-recombining tree model converges as a function of
the number of steps to maturity for the pricing of European swaptions, and, more interestingly, in
figure 13.3the convergence behaviour for Bermudan swaptions is shown. Note how the Alternating
Simplex Direction method improves convergence most for two or three factors, and how the optimal
alignment technique ensures convergence consistently for as little as five steps for three or more factors,
especially when used in conjunction with the ASD method.

13.6 Variance matching

Given an enumeratiofy . . . ¢y, Of the discrete points in time over which the tree algorithm is con-
structed, and defining,,; to represent all drift and &t terms over the time stefp, — .1, i.e.
i 1= €Riltn) i —tn)=3ei(tn) \we can rewrite equatiori8.19 as

fn+1yik = fri Vhi ik (13.27)

Let us now recall that the coefficientg;, were constructed such that their discrete average over all
emerging branches is zero and their discrete covariances equal the elements of the given covariance
matrix of the logarithms of the forward rates over the specified time step. Alas, matching the dis-
crete covariances of logarithms means that the covariances of the forward rates themselves are not
exactly matched due to the convexity of the exponential function as is known from Jensen’s inequality.
However, the variance of any random variateith a continuous lognormal distribution such as

r=¢&e* with 2z~ N(0,1) (13.28)
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Figure 13.2: The convergence behaviour of the non-recombining tree for European swaptions.
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Figure 13.3: The convergence behaviour of the non-recombining tree for Bermudan swaptions.
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can be calculated as
V[z] = e (" — 1) . (13.29)

In other words, if we wish to construct the tree such that the variances of the forward rates themselv
have the correct value as it would result from the continuous description, we can introduce a volatilit
scale parameter,; to be used in the branch construction as in

fn+1)ik = fri Vhi gPhibhik (13.30)
such that
1 Ngranches Neranches
~ Z g2Phibnik _ ( Z ePhLbhzk> — g (gfhii — 1) = (). (13.31)
Branches k—1 Branches

In order to meet this nonlinear condition fpy;, define¢,;(py;) as the left hand side of equation
(13.3]). Given the initial guess Qfg? = 1 and the partial derivative

aqsh ‘ (ph ) 1 Ngranches , NBranches , Npranches \
7 i z : b z : b
— Qbh,kezphz hik __ ephz hik bhkéjhl hik ,
ap hi N, Branches ’ ; '

k=1 Branches
(13.32)

a Newton iteration converges to the solutionsggf(pn;) = 0 very fast indeed. The nonlinear root
solving has to be done for each forward rate and for each time step separately. This can be done dur
the startup period of the tree algorithm, though, and in my tests took no measurable computing tin
whatsoeve.

The above procedure does indeed result in an exact match of the variances as given by the contil
ous description. | would like to remark at this point that this may not be generally desirable, though
To see this, let us consider a call option of a quantity with a standard normal distribution, and let u
ignore discounting effects. For a strike of zero, the value of the option is

1.2

s e ds = L :
V2r V2r

A single step binomial tree discretisation of this distribution that matches both the expectation and tt
variance of the continuous counterpart exactly is th¢ $ét —1} of equiprobable values far Clearly,
the latter results in an option of 0.5 while the continous description gives us a value around 0.398
We therefore expect that products with some kind of convexity in the payoff profile will be slighty
overvalued by the discretised tree when continuous variances are matched. Therefore, comparing
values as they result from the variance matched tree construd®8Q and the original scheme
(13.19 could provide some comfort about the possible mispricing due to the approximate volatility
representation in the discretised scheme. In general, we would only expect the variance match
construction to provide faster convergence for directly volatility related products such as variance c
volatility swaps.

(13.33)

4The granularity of the computation time measuring function was approximétglyseconds.
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13.7 Exact martingale conditioning

In the recursion procedure of calculating all yield curve branches emanating out of one yield curve
node, we always need to calculate the discrete time step drift approximation for each forward rate. As
we know from sectiorl3.2 the stepwise constant drift approximatidi3(7) guarantees the martingale
conditions that the expected value of any asset divided by the choseéraiterasset equals its initial

value only in the limit of small time steps. Choosing the rauaire to be the longest involved zero
coupon bond, i.eN := n such that the payment time of the chosen zero coupon bonénainm asset

is the payment time of the last forward rate that is to be modelled, it is possible to meet the martingale
conditions in each step exactly without any computational overhead. This can be seen as follows. For
N = n, the martingale conditions are that for any time siep- t,., we have

N-1 N-1
Elforv [ O+ mifosns)| = fu [ Q+7i) - (13.34)
Jj=i+1 Jj=i+1

Following equations)3.19 and (3.30, | denote the realisation of forward rateon thek-th branch
at timet;, ., i.e. thek-th possible evolution of; in the time step;, — t,.1 as fu;x and factorise it
according to

Fnrnyie = Yni€mk f (13.35)

Hereby, f,; is the realisation off; at timet,, i.e. at the current node. By virtue of equatidiB(39,
we can calculate the expectation correcting factgysecursively starting with the last forward rate at

1=n—1:
N-1
Neanenes [T (14 75 fnj)
Thi = Noranches N:HI (13.36)
Z €Phibhik H (1 + ijhj’th ephjbhjk)
k=1 j=i+1

Note that whilst we have;,; on the left hand side, the right hand side only involygsfor j > .
Clearly, it makes sense to precalculate the branching coefficignts:= e”i®i+ and store thefn

The above described algorithm does now exactly meet all martingale conditions. A side effect of this
procedure is that it obviates the evaluation of arg() function calls in the recursion procedure. For
simple products, it can be easily about half of the actual computing time that is spent in the evaluation
of this particular functioh As the above expectation correctiat8(36 calculation does not require
significantly many more floating point operations than the drift approximati@a/); it is thus not
surprising that the procedure presented in this section not only makes all calculations, even those with
very few steps, meet the martingale conditiemactlybut also provides a speedup by factors ranging
from 1.7 to 2.8 for the tests that | conducted, depending on product type, maturities, length of the
modelled yield curve, etc.

°For calculations without variance matching, the scaling coefficigntare, of course, all identically 1.
8Even though for newer processor models the cpu time for a single evaluatzpf takes only as long as a moderate

number ¢ 10 — —20) of floating point multiplications, substantial speedups can still be achieved if a single multiplication
is carried out instead of an evaluationeofp() .
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13.8 Clustering

For most major interest rate markets, as a consequence of the prevailing rates and volatilities, the d
terms in equation12.8 are comparatively small. This means that any one interest rate undergoing
first an upwards and then a downwards move in two subsequent steps through the tree, appear:
almost recombine at its initial level. Choosing any two forward rates on the yield curve for a two-
dimensional projection on a given time slice, this produces the effedtisfering This phenomenon

is widely known and various methods to avoid it have been discussed in publications. McCarthy an
Webber MW99] and RadhakrishnanRad984& discuss the question of the clustering of nodes and
suggest methods to overcome it such as varying the step size, for instance in a linearly increasing
decreasing fashion, or changing both the length of some of the branches and their associated prob
ilities. For realistic applications, however, one tends to use a noticeably time-varying term structur
of volatility which effectively changes the width of the branches over different time steps sufficiently
to remove most of the harmful effect of clustering, and therefore | don’t consider this issue of majo
importance. Still, since an actual demonstration is often more convincing than an off-hand reasoning
display in this section how much the clustering effect is automatically suppressed simply by the choic
of an appropriate term structure of volatility.

An example of the clustering effect is given in figur®8.4 Each point in the figure represents an
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Figure 13.4: The clustering effect for flat volatilities.

evolved yield curve 2 years into the future. The 12-months Libor rate resetting at year 2 is along th
abscissa whilst the 12-months Libor rate resetting at year 3 is given by the ordinate. In total, 4 annu
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forward rates were included in the modelling of the yield curve for a 6-non-call-2 annual Bermudan
swaption. Using 4 factors and 6 steps uhti 2, there were 5 branches out of each node in the tree
and a total ofs® = 15625 evolved yield curves in that time slice. The initial yield curve was set at

fi = 10% for all 7, and the instantaneous volatility was assumed t&0beflat for all forward rates. As

can be seen, there are only a comparatively small number of significantly diff¢sefit) pairs that are
realised in the non-recombining tree. For the sake of brevity, | don’t show any of the other projections
but the reader may rest assured that the effect is just as pronounced for the remaining forward rates on
the modelled yield curve.

However, if we use a more market-realistic shape for the term structure of volatility such as
oi(t) = ki (Ja + b(t; — t)] e 7D 4 q) (13.37)
witha = —10%,b=1,c = 1.5,d = 10%, and
i k;
0| 1.179013859
111.319725423
2

1.458673516
3| 1.57970272

(the k; ensure that all caplets still have the same implied volatilitgt as before), we obtain a very
different diagram for the/,- f; projection at = 2 as can be seen in figui.5 Therefore, for realistic

25% . . T ——

20% |

15%

f1

10% f

5%

O% 1 1 1 1 1
0% 5% 10% 15% 20% 25% 30%

fo

Figure 13.5: The clustering effect disappears for non-flat volatilities.

applications, | don't envisage the clustering phenomenon to be an issue of foremost importance.
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13.9 A simple example

Starting from a flat yield curve of annual forward rates that are all equal to 6.18365% (which cor-
responds to a constant continuously compounded interest rate of 6%), and given that we assume
covariance matrix of the forward rates to be determined by equatiéhd,((13.29, and (3.2, we
will now evolve the yield curve according o= —2%, b = 0.125, ¢ = 1, d = 20%, and = 0.1.
In figure 13.6 the evolution of the interest rates between year 2 from now and year 10 from now are
shown as they evolve by two one-year steps into the future, whereby a 5-branch non-recombining evi
ution was carried out in each step using the simplex described by equa8d¥( In figure 13.7,
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1% N B .
° —— 2" highest swap rate 7

10%

9%

8%

7%

forward rate

6%

5%

4%

3%

Figure 13.6: The evolution of a flat yield curve over two one-year steps in a 4-factor model. In this

case, out of each forward yield curve, there are 5 evolved yield curves indicated by the connectir

branches. The branches are labelled by the order of the associated (forward) swap rate over the
yield curve to which the evolution out of the respective yield curve leads.

| then show the associated swap rates resulting from each of the yield curves consisting of 8 annt
forward rates.

13.10 Summary

| have demonstrated how comparatively simple geometrical considerations can aid the construction
the branches of a non-recombining multi-factor tree model. The results show that particularly whe
several factors are desirable, the use ofAhlernating Simplex Directiomethod in conjunction with

optimal simplex alignment provides substantial benefits. In this case, the model easily converges wi
5 fewer steps than needed in a plain branch construction approach. Since the computing time gro
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Figure 13.7: The swap rates associated with the yield curves in figuée

exponentially at leask (Npcrors+ 1)Vsrs, this means a speed up of, for instance, a factor of 3125 when
four factors are required, 5 branches are used, and 5 fewer steps are needed due to the use of optimal
alignment + ASD.

In addition to the detailed explanations of a constructive algorithm for multi-factor non-recombin-
ing trees, we also presented how the effective variance implied by the tree model can be adjusted to
meet that of the analytical continuous description. Furthermore, | presented a method that guarantees
that the martingale conditions are met exactly by construction. A side effect, or an added bonus, as it
were, of the latter technique is an additional computation time saving of around 50%.

It should be mentioned that the methods described in this chapter do not resolve the problem of
geometric explosion of the computational effort required for the pricing of contracts involving many
exercise decisions and cashflows. However, using the techniques outlined above, one can calculate
the values of moderately short exercise strategy dependent contracts such as 6-non-call-2 semiannual
Bermudan swaptions using many factors and achieve a comfortable level of accuracy. In fact, using
multi-threading programming techniques to which the non-recombining tree algorithm is particularly
amenable, | have been able to carry out overnight runs of up to ten steps for ten factors on average com-
puting hardware (dual Pll @ 300MHz). This means one can now produce benchmark results against
which other numerical approximations such as exercise-strategy-parametrised Monte Carlo methods
(see, e.g., chaptdr?) can be compared. It is mainly for this purpose that the methods presented here
have been developed, and for this purpose only | envisage them to be useful.



Chapter 14
Miscellanea

Finally, there are a few additional thoughts that don't fit into any of the other chapters, and thus
present them here.

14.1 Interpolation of the term structure of implied volatility

When we value an exotic derivative contract, we will hardly ever have market information about im-
plied volatility for all of the relevant time horizons. As a consequence, we have to use an interpolatio
rule to constructs paths for a Monte Carlo simulation. When practitioners require a Black-Schole
implied volatility at a point in time that is in between two maturities for which there are traded op-
tions, they frequently use linear interpolation in implied volatility over maturity. As long as all of the

ordinate entries in the interpolation table are positive, this will lead to positive implied volatilities at
the intermediate time horizons and thus plain vanilla option prices can be calculated. However, th
alone is not sufficient to ensure that Monte Carlo paths can be constructed. Inlf#giyreshow two

given term structures of volatility, together with linear interpolation in between the given points, anc
the monthly forward variance implied by the respective term structures and interpolation rule. Just t
remind ourselves: the forward variance given by the implied volatiliiieassociated with maturity

T, andag, associated with maturitys, is

v(Ty, Ty) = 63T, — 62T . (14.1)

The implied volatilities used to construct the linear interpolations are tabulated inlldleAs you

can readily verify, the forward variance inbetween each of the original data points is positive and thu
there should, in principle, be no problem with the construction of Monte Carlo paths. However, if
you look closely at the monthly forward variance of curve #2 over the last three months of year 3 ii
figure 14.1, you may notice that the forward variance dips below zero and thus we’d need imaginan
forward volatility! Of course, you may attribute this problem to the particularly steep (albeit not
unrealistic) term structure of implied volatility. In practice, though, we sometimes need to deal with
such steep term structures of implied volatility, and therefore we have to be able to handle them.

193
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Figure 14.1: Two term structures of implied volatility and their monthly forward variance determined
by the use of linear interpolation in implied volatility.

T curve #1| curve #2
0.25 35% 45%
0.5 32% 38%

1 29% 31%
1.5 27% 28%

2 25% 25%

3 22% 21%

4 20% 20%

Table 14.1: The implied volatilities used for the interpolation in figidel

The cause of the problem lies with the choice of the interpolation method. Whilst being concep-
tually simple and easy to use, linear interpolation in implied volatility can, sadly, give rise to periods
of negative forward variance even though the original data points are perfectly self-consistent. The
problem will not occur if instead of interpolating directly in implied volatility, we tabulatedbeu-
lative variancev(0, T') as a function off” and choose a monotonicity preserving interpolation method.
The simplest such interpolation method is, of course, linear interpolation, but other methods such as
monotonicity preserving cubic interpolatiok\jJaO( can also be implemented easily. Figurkt?2
andl14.3are examples for this. As you can see, both of these interpolation methods avoid the problem
of negative forward variance. Linear interpolation in cumulative variance, as one would expect, results
In piecewise constant interpolation in instantaneous forward variance, and thus in piecewise constant
interpolation in instantaneous volatility. 1t may be arguable if this is the ideal choice of interpolation
since the sudden very abrupt changes in instantaneous volatility, whilst being as risk-neutral as any
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Figure 14.2: The same two term structures of implied volatility as in figurd and their monthly
forward variance as resulting from linear interpolation in variance.
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Figure 14.3: The same two term structures of implied volatility as in fig4rd and their monthly
forward variance as resulting from monotone cubic interpolation in variance.

other choice, may appear rather arbitrary indeed. Monotone cubic interpolation in cumulative varianc
in contrast, leads to a continuous instantaneous volatility curve, albeit at the price of some (possib
equally questionable) undulations. However, on balance, as can be seen iddiglinsonotone cubic

interpolation in variance might deliver the best compromise between smooth forward volatility and th
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Figure 14.4: Forward volatilities for curve #2 for different interpolation types. Note that the forward
volatility between 2.75 and 3 is not defined for linear interpolation in implied volatility.

requirement of non-negative forward variance.

14.2 Watch your cpu usage

A Monte Carlo method comes to life the moment we run it on a computer. At that point, once we have
devised our techniques of the underlying maths and numerical analysis to the best of our knowledge, we
feel that our job is done and now the machine has to do all the work. However, it can be useful to keep
an eye on the box, to see how it is doing. In other words, it may be a good idea to have some kind of
information about the resources that were required by any one Monte Carlo simulation. Whilst keeping
an eye on the memory usage in order to avoid bottlenecks caused by unnecessary swapping of memory
pages at run time is only due diligence, more importantly, make sure that along with the result(s) of
everyMonte Carlo simulation you run you also get an estimate of the cpu time that was required for
the calculation. Not only will this be a very good early warning system to indicate something went
wrong after you made some changes you thought should not affect the performance, it can sometimes
also show that there is a fundamental flaw with the executable wddel) may not even be your fault

At some point in the past, for instance, it was necessary to explicitly provide a particular compile time
flag to tell the Sun compiler to change the way it handled the numerical evaluation of expressions
like €719, Clearly, for the purpose of our financial Monte Carlo simulation, this number can just be
rounded down to zero. By default, however, the Sun compiler produced code such that the floating
point unit would at this point cause a hardware interrupt which in turn invoked an operating system
handling mechanism. As a consequence, for parameter settings such that certain conditions would have
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an extremely low probability, the code would appear to run several times slower, even though it we
carrying out the same number of arithmetical operations. Once we had identified the problem, it we
easy to fix: the Sun compiler manual gave us information on how to avoid this problem. This kind o
situation can give rise to tremendeous amounts of frustration if you jumped through several hoops
make your Monte Carlo method converge several times faster, only to find out that an equal amount
speedup can result from a more fortuitous choice of compile time flags.

The above example is not specific to Sun compilers. Similar situations can arise on almost a
hardware with various different compilers. With newer processor models and newer, adapted, compil
versions, it is well worth experimenting a little with the compile time flags to find out what makes your
code run fastest. Also, if you manage to run some kind of profiling analysis on your Monte Carlc
engine and identify where most of the time is spent, remember the goodrelgister  keyword.
Identify the iterator or addition variables that are being used most inside the innermost loop and stic
register  in front of them, and compare the run time. Itis not unheard of that in lucky circumstances
this may lead up to 20% performance improvement, or at least a few percent, and all just for as mu
work as experimenting with theegister ~ keyword for an hour. At this level of fine-tuning, there is
no reason why the compiler’s optimisation stage should be able to guess correctly which variables
provide with the most optimisation boost, simply because the compiler cannot know how many time
you will be going around that innermost loop.

14.3 Numerical overflow and underflow

For most financial modelling problems, there are combinations of parameters that can lead to numeri
over- or underflow. Your best case scenario (which is bad enough) is that at this point the final result
the whole calculation is completely invalidated and you just\gtl i.e. the IEEE floating point value
indicating ‘not a number’. Worse, though, is the situation when instead the computation does retur
with an apparently meaningful answer, only that it is very wrong, and usually very wrong indeed. I
is because of these nasty little accidents that | recommend to always ensure that over- and underfl
is handled correctly in your numerical routines, and the mathematical functions handle extreme cas
graciously. An example of this is our insisting in chaptémmsnd9 that pseudo- and low-discrepancy
number generators based on the unit interval from 0 to 1 should always ensure that they do not actue
return the numbed or 1, just to make sure that any routine using those numbers such as the invers
cumulative normal distribution never incur those extreme events which would have to be mapped f

—+00 Or —o0.

This kind of numerical over- and underflow can happen in many situations, though. Most imple:
mentations for the second modified Bessel functigfx), for instance, don't handle the case of large
v very well. They either end up iterating far too long, rettdaNor even a seriously wrong number.
This situation can be avoided by choosing a suitable threshold when to switch over to one of the high
accurate asymptotic expansiornsja4].



198 Miscellanea

14.4 A single number or a convergence diagram?

For many applications where the practitioner has to resort to a Monte Carlo technique, one ideally
wishes to obtain a single number e answer And there are many situations, where due to the
embedding of the calculation engine one can only afford to return a single number from a calculat-
ing subroutine due to application programming interface restrictions, automation of daily reports, etc.
However, in most applications, and here | speak from experience, itis possible to have a slight paradigm
shift with respect to the concept of ‘the numerical solution to a mathematical problem’. Reality is that
every single calculation comes with an inevitable inaccuracy, and in most cases, we have at best some
idea about the order of magnitude of the error. This is particularly true for Monte Carlo methods,
ironically especially for those that utilise high performance variance reduction techniques such as low-
discrepancy numbers. In my professional life it has therefore proved to be invaluaidedo just

return a single number from a Monte Carlo calculation, even if accompanied with an estimate of the
standard error When we use Excel as our user interface, it is very little additional effort to return an
entire convergence diagram in an array back into the spreadsheet, rather than just a single number. The
human eye, or in other words the experience and intuition of the practitioner, can judge surprisingly
well from the convergence diagram whether a Monte Carlo simulation has converged, especially for
methods that appear to converge mainly from one side as low-discrepancy numbers very often do. It
is, alas, wishful thinking to hope for a certain number of samples to always be sufficient for a specific
type of problem given certain convergence enhancement techniques, and, unfortunately, many practi-
tioners still think this way. Very often this is realised and the Monte Carlo number is accompanied by

a standard error estimate. That'’s fair enough for methods whose convergence enhancement is reflected
in the standard error measure. The most powerful ones that are independent on problem specific en-
hancements, though, are low-discrepancy numbers, and for those, the standard error is typically hugely
overestimating the residual error in the calculation. Since no better reliable error estimates are available
for those methods, and also because the standard error only give a probability measure of the error, it
has always proved to be invaluable to see the convergence behaviour.

Implementation of a convergence diagram is straightforward for most Monte Carlo techniques.
Instead of iterating over all of the samples to be drawn and average over, and then eventually only
returning a single quotient, we calculate a running estimate at certain sampling intervals, and return an
array of the running estimates next to the number of samples to the calling application. In Excel or other
spreadsheet programs such as Applix, the user then has the choice of either displaying and graphing
the convergence diagram, or to just use a single element of the return array. For stantldje
programs, the situation is even better. One can easily design the program such that it prints running
estimates at certain intervals and direct this output to a file. Using standard Unix and GNU ‘tilities
and thegnuplot plotting program, one can even monitor live on the screen how the simulation

1The GNU family of utilities is available for many operating systems. All major Linux distributions come with it, they
are available for all Unix-like systems, and for NT there is the Cyg\Wing] set of utilities which is readily installed on
an inter-networked computer, although the Excel interface is certainly preferable on the Windows platform.
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progresses by the aid of a little shell program such asPlbe script in code examplé4.1 To

#l/bin/bash
x=1
y=2
case "$1" in
%) a=${1#-}; x=${a%%:*}; a=%{a#*:}; y=${a%%:*}; shift;
esac
{
echo "set parametric ; set xlabel '$x’ ; set ylabel '$y™
echo -en "plot "
{
for i; do
echo -n "$i" u $x:$y,"
done
echo
} | sed s/, $iI
echo
while : ; do
echo 'replot’
sleep 1
done
} | gnuplot -geometry 900x600

Code example 14.1: Thelot script for the live monitoring of a file which is the output destination
of a running Monte Carlo calculation.

use it is quite simple: once you have started your calculation agin --myargumentlist >

outputfile & , you simply monitor it withPlot outputfile . If the data you wish to have
graphed is not in column 1 and 2, but, say, 5 and 3, you start it ugPlide -5:3 outputfile

Itis, of course, possible to extend this for the display of surfaces from a live updated file and you ca
find a correspondinplot script on the accompanying CD.

14.5 Embedded path creation

Assuming you have a number generator class which at the time of instantiation of an object of this cla
accepts a covariance matrix such that the vector variates subsequently produced by the new obj
satisfy the given covariances, you can have the construction of paths done for you with great ea:
The path construction is then done by whatever covariance matrix splitting method is used insic
your vector generator class. Typically, this will be the spectral pseudo square root method outlined
section6.2, and consequently, the path construction will implicitly be carried out using the spectral
method which is optimal for low-discrepancy numbers as was explained in sé&tiér2

14.6 How slow isexp() ?

The most frequently used non-trivial mathematical operation in most financial Monte Carlo simula
tions is almost certainly the evaluation of the exponential function. Of course, it is always advisable t
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precalculate as many formulae or parts of them as we can in order to avoid their re-evaluation inside the
heavily iterated inner loops of our simulation code. However, there are almost always some evaluations
of theexp() function required inside the fast loops where performance matters most. The first timing
experiments that | ever carried out on Pentium processors with very tightly wound Monte Carlo loops
did indeed reveal that about 90% of the total run time of any Monte Carlo simulation for derivatives
pricing was spent in the evaluaionekp() . Gladly, though, the calculation of the exponential func-

tion can nowadays be carried out not only faster by virtue of the increase in raw cpu clock speed but
also due to the way in which it can be computed. When the most sophisticated commodity pfocessor
available was the Pentium chip, it still seemed well worth while to implement a purpose-built replace-
ment for the system given call #xp() . The replacment could be made much faster by the use of
large lookup tables and linear interpolation, whilst sacrificing no noticeable accuracy. However, as of
the Pentium Pro processor, the optimised versioexpf{) makes use of the set of raw floating point

unit (formerly known as the maths coprocessor) instructions given in fiab® It makes use of the

fldi2e load the base-2 logarithm of e into the main calculation register

fmul qword ptr[x] multiply the calculation register with the variahte

f2xm1 calculate2(”) — 1 wherer is the current content of the calculation register and
store the result in the calculation registemust be in the range 1..1

frndin round a double to an int. Needed becatsenl requires an argument in
the range-1..1

fld1 push the value 1.0 onto the calculation register stack

faddp add the value previously pushed onto the stack to the value beneath on the
stack

fscale multiply the result by a power of two which was scaled out earlier because

f2xm1 requires an argument in the range..1

Table 14.2: The instructions used on a Pentium Pro and higher for the evaluaé®p(pf .

following basic equality:
e = [20wlom®) 1] 41 (14.2)

The instructions used in this optimised decomposition can not be expected to be executed by the cpu
in a single clock cycle. In fact most of them take more than a single cycle. The most cpu intensive
instruction among them is probald®xm1 which can take several tens of cpu cycles, even on Pentium

Il processors. However, along with the ever increasing sophistication of the newer cpu models, not
only does their raw clock rate increase, but they also require fewer cycles for the more complex floating
point unit instructions such dxm1 . Since the introduction of the Pentium Il model, even the fastest
implementation of a lookup table basexp() replacement does no longer provide any speedup when
compared with the optimised system given code for this funcidrhe total cpu time spent in the

2In this discusssion, | focus on Intel and similar x86 processors.
3My thanks go to Carl Seymour for providing the disassembly of the optinége@) function on Pentium Pro (and

higher) processors, and for having carried out the comparative tests with respect to the run time required.



14.7 Parallel computing and multi-threading 201

evaluation of the exponential function does indeed only comprise a few percent of an average optic
pricing simulation. What's more, at the time of this writing, the Pentium IV model is being introduced
to the marketplace. Whilst | have no timing information for this new type available yet, | am confident
that in the future thexp() function will no longer be the cause of any execution bottlenecks and the
Monte Carlo method will become ever more acceptable in the world of financial modelling.

Despite all the improvements in the newer processor models, it remains a matter of expedien
to avoid unnecessary calculations inside the innermost loops of any Monte Carlo simulation. Even
one day the ratio of the average execution times of a floating point multiplication and an evaluatio
of exp() drops to a small number, maybe even three or two, by replacing the computation of the
exponential function by a single multiplication, if pre-calculation is somehow possible, your Monte
Carlo simulation could run two to three times faster if this evaluation is the main bottleNegkr let
the continuous progress of cpu speeds and processing power be an excuse for ill-thought out algoritt
design.

14.7 Parallel computing and multi-threading

Most financial institutions’ large scale middle- and back-office computing servers have been equippe
with multi-processor technnology for quite some time now, and more and more desktop computel
nowadays also feature multiple central processor units, especially in the trading environment of inves
ment banks. Sadly, in particular the desktop’s multiple cpu power remains largely unused for mo:t
applications. With respect to financial calculations, this is to some extent due to the fact that mar
numerical methods are very difficult to adapt to parallel computing techniques. Monte Carlo (and nor
recombining tree) methods, however, are particularly well amenable to parallelisation. Conceptually
clearly makes sense to start a sesob-processesr threadsto evaluate independently a subset of all

of the individual function evaluations that constitute the Monte Carlo estimator

1 N
N ;:ﬁz flx) . (14.3)

Of course, we must ensure that there are no duplicates among the vectorglitaken by the various
sub-processes if we wish to avoid the possibility of a biased result. For pseudo-random numbers, o
might think that this can be done by initialising a new number generation engine with a different see
for each sub-process. This simplistic approach is a fallacy, though. If we initialise each pseudo-rando
generator with a different seed, we have absolutely no knowledge over which part of the overall cycl
of the number generator we end up using. A worst case scenario could be that one of the sub-proces
uses almost the same sequence as another one, only with a little offset just to cause a severe bias o
Monte Carlo estimator. We therefore need to shift each of the sub-processes number generators tc
offset such that we are certain not to suffer any risk of overlap in the number sequence.

In contrast to pseudo-random number generators, the Sobol’ sequence (and other low-discrepat
methods), is wonderfully easy to shift to an offsetf iterations by calculating the Gray code of the
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shiftn (which isG(n) = n @, [n/2]) as given in equatior8(22) and using it as the generating integer

~v(n) := G(n) in the (re-)initialisation equatiorB(20 of the internal integer variables of the Sobol’
sequence. This means that the shift of the Sobol’ sequence generator can be done in practically no time
at all, very much unlike pseudo-random number generators for which we have to loop through a total
of n-d one-dimensional draws (withrepresenting the dimensionality of the vector sequence) in order

to achieve an offset of vector draws from the beginning of the sequence.

The first decision that has to be made when we multi-thread a Monte Carlo simulation is what
parallelisation paradigm we are going to use. Personally, | recommend to keep it as simple as possible
(KISS, right?), and to go for the straight-forward master-slave method. This means, our Monte Carlo
evaluation engine is given a parameteof the number of threads to use. If this number is zero, it will
ignore any parallelisation issues and just carry out the simulatidh®faluations itself. Fom > 0, it
will set up an array of the number of iterations that each of the slaves has to do, and an array of shifts
in the sequence of the selected number generation method. Denote the shiftjfbtitread as;, and
the number of iterations to be evaluated by this thread,awith "7 _ n;, = s; and > in; = N.

An example how to set up these numbers is given in code saM@eGiven areunsigned long

vector <unsigned long> IterationsToBeSkipped(NumberOfThreads), NumberOflterations(NumberOfThreads);
unsigned long j, n = 0O;
for(j=0; j<NumberOfThreads; ++j) {

NumberOflterations[j] = TotalNumberOflterations / ( NumberOfThreads - j );

IterationsToBeSkipped[j] = n;

n += NumberOflterations]j];

TotalNumberOflterations -= NumberOflterationsyj];

Code example 14.2: Setting up the shift and number of iterations for each sub-process.

NumberOfThreads (which is the number of threads) andTotalNumberOflterations (the
total number of iterationsV). The code sample will then set up = NumberOflterations[j]
ands; = IterationsToBeSkipped][j]

The Monte Carlo estimator is then effectively decomposed into

m Ny

by = %ZZ f(@o4i) - (14.4)
j=1 i=1

An open question is still as to how many sub-processes we wish to employ. For systems that have many
processors and are being shared by many applications, this is a rather difficult decision and requires
a judgement call. For computers that are dedicated to this Monte Carlo simulation, we would ideally
wish to use as many sub-processes as there are cpus on the machine. For most operating systems,
it is possible to enquire about this at run time. For instance, the Linux operating system provides
a globally readable fil&proc/cpuinfo whose output can be parsed for the lines beginning with
‘processor . ". The cpus are enumerated from 0, so we can simply take the last of those
lines and add 1 to the integer following the colon. For Windows NT, we can enquire about the number
of processors on the machine using the funchlmberOfCPUs given in code exampl&4.3
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#include <windows.h>
unsigned long NumberOfCPUs(void) {
SYSTEM_INFO sysinfo;
GetSysteminfo(&syslinfo);
return static_cast<unsigned long>(sysinfo.dwNumberOfProcessors);

}
Code example 14.3: Enquiry about the number of CPUs under Windows NT.

Finally, 1 would like to comment on the resource multiplication requirements for multi-threaded
Monte Carlo simulations. Clearly, each slave needs to have a clone of the master’'s number generat
object since all number generation methods use internal state variables that must not be shared by
slaves. It is paramount for all multi-threaded applications that no functions that are possibly involve
in a multi-threaded task contain asgatic  variables for obvious reasons. The simultaneous attempt
of more than one thread to write to the same memory space will invariably lead to a hardware exceptic
which may be intercepted by the application but will certainly invalidate the simulation’s result. Unlike
simultaneous writing, the attempt to simultaneously read from the same memory is perfectly tolerab
by conventional symmetric multi-processing (SMP) hardware. This means that, at least in theory, ¢
of the slave processes may be allowed to read-access variables and parameters stored in the m:
process’s memory space. Doing so, alas, can lead to rather unexpected bottlenecks that are not ¢
to explain. | personally suffered from this misconception when | once implemented a multi-threade
Monte Carlo engine such that each of the slaves would carry out the copy construction of all of th
global objects they needed for their private write-access themselves. Since a lot of complex data h
to be copied, creating a single copy of all of the required objects took a noticeable fraction of a secon
Asking the master process to copy of all of the objects for each of the slaves prior to invoking ther
thus took the number of threads times that fraction of a second. Thinking that read-access leads
no problems, | designed the multi-threaded algorithm such that each thread takes its own copies
parallel, in order to reduce the overhead in the copying stage. Little did | know. Suddenly, taking twc
complete copies of all required objects in parallel on two cpus did not take only the time it takes tc
copy one, bualmost ten times as lonthus producing an additional overhead of several seconds where
| had thought | would end up with a faster start-up period. The best explanation | could come up witl
is that, whilst being a perfectly valid thing to do, the simultaneous read-access to the same mema
area by both cpus leads to a hardware contention that causes the SMP architecture to serialise th
access requests, and execute them in turns, involving hardware interrupt handling, hardware wait loc
on individual cpus, and probably a whole load of other unpleasant hardware actions. The moral of th
story is:the master process ought to create a whole set of copies of all variables and objects require
for the simulation both for write- and for read-access for each individual slave process, before starting
the slave processeslote that this does not mean that two threads cannot simultaneously execute th
same function at the same time: this is handled by the operating system since each cpu has a local ¢
of the program code loaded into its level-1 cache before executing it. Automatic variables in a functio
are also not subject to these considerations since they are created on the individual cpu’s local sta
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In other words, if you only invoke static member functions of a class, there is no need to create and
copy an object of this class. However, even the call of a virtual function that does not use an object’s
member variables can lead to a hardware contention. After all, a virtual function call is resolved by
looking up a pointer-to-a-function variable in the objeattable  which is effectively the same as
accessing a member variable at assembler level. So, have the master copy everything before invoking
the slaves to do all the hard work's only fair.



Bibliography

[AAQO]

[ABG97]

[Ack00]

[AIb72]

[Ale98a]

[Ale98b]

[Amd67]

[AMH78]

[And00]

[AS79]

[AS84]

[AWSS]

[BBGO7]

L. Andersen and J. Andreasen. Volatility Skews and Extensions of the Libor Market Model.
Applied Mathematical Finan¢é& (1), 2000.

P. Acworth, M. Broadie, and P. Glassermann. A comparison of some Monte Carlo and Quasi
Monte Carlo techniques for option pricing. In Niederreiter etldH[Z97], pages 1-18.

P. J. Acklam. An algorithm for computing the inverse normal cumulative distribution function.
http://mww.math.uio.netjacklam/notes/invnorgdune 2000. University of Oslo, Statistics
Division.

A. Albert. Regression and the Moore-Penrose Pseudo-Inveéksademic Press, 1972.

C. AlexanderRisk Management and Analysis: Volume 1: Measuring and Modeling Financial
Risk John Wiley and Sons, 1998.

C. Alexander.Risk Management and Analysis: Volume 2: New Markets and Pradimits
Wiley and Sons, 1998.

G. M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale Computing
Capabilities. INPAFIPS Conference Proceedingmges 483—-485, Reston, VA, 1967.

M. M. Ali, N. N. Mikhail, and M. S. Haq. A class of bivariate distributions including the bivariate
logistic. Journal of Multivariate Analysis8:405-412, 1978.

L. Andersen. A simple approach to the pricing of Bermudan swaptions in the multifactor LIBOR
market model.The Journal of Computational Financg(2):5-32, Winter 1999/2000.

I. A. Antonov and V. M. Saleev. An economic method of computing Ip-sequett8SR
Computational Mathematics and Mathematical Physi®1):252—-256, 1979.

M. Abramowitz and I. A. StegunPocketbook of Mathematical Functionidarri Deutsch, 1984.
ISBN 3-87144-818-4.

L. Afflerbach and K. Wenzel. Normal Random Numbers Lying on Spirals and Chitiaistische
Hefte 29:237-244, 1988.

P. Boyle, M. Broadie, and P. Glassermann. Monte Carlo Methods for Security Pricingal of
Economic Dynamics and Contyd1(8-9):1267-1322, 1997.

205


http://www.math.uio.no/~jacklam/notes/invnorm

206 BIBLIOGRAPHY
[BDTOO0] F. Black, E. Derman, and W. Toy. A one-factor model of interest rates and its apllication to
treasury bond optiondzinancial Analysts Journabages 33-39, Jan.—Feb. 1990.

[Bec80] S. Beckers. The constant elasticity of variance model and its implications for option pridiag.
Journal of Finance XXXV(3):661-673, June 1980.

[BF88] P. Bratley and B. L. Fox. Algorithm 659: Implementing Sobol's Quasirandom Sequence
Generator ACM Transactions of Mathematical Softwatel:88—100, 1988.

[BFN94] P. Bratley, B. L. Fox, and H. Niederreiter. Algorithm 738: Programs to generate Niederreiter’s
low-discrepancy sequence&CM Transactions of Mathematical Softwag®(4):494—-495,
December 1994.

[BFS83] P. Bratley, B. L. Fox, and E. L. Schrag@.Guide to SimulationSpringer, 1983.

[BG96] M. Broadie and P. Glassermann. Estimating Security Price Derivatives Using Simulation.
Management Sciencé2(2):269-285, 1996.

[BG974a] M. Broadie and P. Glassermann. Monte Carlo methods for pricing high-dimensional American
options: An overviewNet Exposure: The Electronic Journal of Financial Ri$k3):15-37,
1997.

[BG97b] M. Broadie and P. Glassermann. Variance reduction techniqué&obral Derivatives 971997.

[BG98] M. Broadie and P. Glasserman. Monte Carlo Methods in Option Pricing and Risk Management.
In Risk Management and Analysis: Volume 1: Measuring and Modeling Financia[ Rs&84,
pages 173-208.

[BGK99] M. Broadie, P. Glassermann, and S. Kou. Connecting discrete and continuous path-dependent
options.Finance and Stochastic8:55-82, 1999.

[BGM97]  A. Brace, D. Gatarek, and M. Musiela. The market model of interest rate dynamics.
Mathematical Financg7:127-155, 1997.

[BK91] F. Black and P. Karasinski. Bond and option pricing when short rates are logndfimahcial
Analysts Journalpages 52-59, July/August 1991.

[BM58] G. E. P. Box and M. E. Muller. A note on the generation of random normal deviaterls
Math. Statist.29:610-611, 1958.

[BM87] R. M. Bookstaber and J. B. McDonald. A General Distribution for Describing Security Price
Returns.Journal of Busines$0(3):401-424, July 1987. University of Chicago Press.

[BMW92]  J.W. Barrett, G. Moore, and P. Wilmott. Inelegant efficienRySK Magazing5(9):82—-84, 1992.

[Boy77] P. Boyle. Options: a Monte Carlo approadlournal of Financial Economicgl:323—338, May
1977.

[Bro48] B. Brown. Some Tests of the Randomness of a Million Digits. Technical Report RAOP-44, The
RAND corporation, Santa Monica, California, October 19 1948.



BIBLIOGRAPHY 207

[Bro51] G. Brown. History of RAND’s Random Digits — Summary. In Monte Carlo Methbtbp57],
chapter 13, pages 31-32. A 42-page booklet on number generation methods and applications of
the Monte Carlo method.

[BS96] A. N. Borodin and P. SalminerHandbook of Brownian Motion — Facts and Formulae
Birkhauser, 1996. ISBN 3-7643-5463-1.

[CDM90]  J.D. Cummins, G. Dionne, and J. B. McDonald. Application of the GB2 family of distributions in
modeling insurance loss processksurance: Mathematics and Economi@s257-272, 1990.

[Chi00] L. N. Childs. A concrete introduction to Higher Algehr&pringer Verlag, 2 edition, 2000. ISBN
0387989994.

[CHS81] S. Cambanis, S. Huang, and G. Simons. On the theory of elliptically contoured distributions.
Journal of Multivariate Analysis11:368-385, 1981.

[CIR85] J. C. Cox, J. E. Ingersoll, and S. A. Ross. A theory of the term structure of interest rates.
Econometrica53:385—-408, 1985.

[CK85] W. Cheney and D. KincaidNumerical Mathematics and Computing, 2nd editi®ace Grove,
California: Brooks/Cole Publishing Company, page 354, 1985.

[CM99] P. Carr and D.B. Madan. Option valuation using the fast Fourier transfoh@.Journal of
Computational Finance2(4):61-73, 1999.

[Cod69] W. J. Cody. Rational Chebyshev approximations for the error functtathematics of
Computationpages 631-638, 1969.

[Cox75] J. C. Cox. Notes on option pricing I: Constant elasticity of variance diffusions. Working paper,
Stanford University, 1975.

[CRR79] J.C.Cox, S. A. Ross, and M. Rubinstein. Option Pricing: A Simplified Approdctrnal of
Financial Economics7:229-263, September 1979.

[Cur94] M. Curran. Strata gem®ISK MagazingMarch 1994.

[Cur96] M. Curran. Willow power. Technical report, Quantin’ Leap working paper, 1996.
http://www.quantinleap.com

[Cur98] M. Curran. Greeks in Monte Carlo. In DupirB(ip9g.
[Cyg] Cygnus. GNU utilities for Windowshttp://www.cygwin.com
[Dev86] L. Devroye.Non-Uniform Random Variate Generatio8pringer, 1986.

[DKZ96] E. Derman, |. Kani, and J. Zou. The Local Volatility Surface: Unlocking the Information in
Option PricesFinancial Analysts Journalpages 25-36, July/August 1996.

[Dup98] B. Dupire, editor.Monte Carlo: Methodologies and Applications for Pricing and Risk
ManagementRisk Publications, 1998.


http://www.quantinleap.com
http://www.cygwin.com

208

[ELMO1]

[EM82]

[Fey48]

[FFVROO]

[FLL+99]

[FLLLO1]

[FMKL8S]

[FMM77]

[FMWOS8]

[For51]

[FV97]

[Gan92]

[GG00a]

[GGOOb]

BIBLIOGRAPHY

P. Embrechts, F. Lindskog, and A. McNeil. Modelling Dependence with Copulas and
Applications to Risk Management. Working paper, Department of Mathematics, ETHZ CH-8092,
Zirich, Switzerland, 2001http://www.risklab.ch/ftp/papers/DependenceWithCopulas.pdf

D. C. Emmanuel and J. D. MacBeth. Further results on the constant elasticity of variance call
option pricing model.Journal of Financial and Quantitative Analysisages 533-554, 1982.

R. Feynman. Space-time approach to non-relativistic guantum mechReiesMod. Phys.
20:367-387, 1948.

K. Fang, H. Fang, and D. von Rosen. A family of bivariate distributions with non-elliptical
contours.Communications in Statistics - Theory and Methqugyes 1885-1898, 2000.

E. Fourng, J. M. Lasry, J. Lebuchoux, P. L. Lions, and N. Touzi. Applications of Malliavin
calculus to Monte Carlo methods in finané¢&nance & Stochastics3(4):391-412, 1999.

E. Fourng, J. M. Lasry, J. Lebuchoux, and P. L. Lions. Applications of Malliavin calculus to
Monte Carlo methods in finance kinance & Stochastig$H(2):201-236, 2001.

M. Freimer, G. S. Mudholkar, G. Kollia, and C. T. Lin. A study of the generalized Tukey lambda
family. Communications in Statistics — Theory and Methdds3547-3567, 1988. A web

applet showing the distribution for different parameters can be found at
http://www.ens.gu.edu.au/robertk/gld/

G. E. Forsythe, M. A. Malcolm, and C. B. Mole€omputer Methods for Mathematical
Computations Prentice-Hall, Englewood Cliffs, NJ, 1977.

M. C. Fu, D. B. Madan, and T. Wang. Pricing continuous Asian options: a comparison of Monte
Carlo and Laplace transform inversion methot@lse Journal of Computational Finance
2(2):49-74, 1998.

G. E. Forsythe. Generation and Testing of Random Digits at the National Bureau of Standards,
Los Angeles. In Monte Carlo Methodon51], chapter 12, pages 34—-35. A 42-page booklet on
number generation methods and applications of the Monte Carlo method.

E. W. Frees and E. A. Valdez. Understanding Relationships using CopulagndhActuarial
Research Conferenc€algary, Alberta, Canada, August 6—8 1997. School of Business,

University of Wisconsin, Madison, 975 University Avenue, Madison, Wisconsin 53706.

http://www.soa.org/library/naaj/1997-09/naaj98D.pdf.

W. Gander.ComputermathematikBirkhuser Verlag, 1992. ISBN 3764327650.

W. Gander and W. Gautschi. Adaptive Gauss-Lobatto Quadrature.
http://www.inf.ethz.ch/personal/gander/adaptloR2000.

W. Gander and W. Gautschi. Adaptive Quadrature — RevisBdd@, 40(1):84-101, March 2000.
CS technical reportitp://ftp.inf.ethz.ch/pub/publications/tech-reports/3xx/306.ps.gz


http://www.risklab.ch/ftp/papers/DependenceWithCopulas.pdf
http://www.ens.gu.edu.au/robertk/gld/
http://www.soa.org/library/naaj/1997-09/naaj9801_1.pdf
http://www.inf.ethz.ch/personal/gander/adaptlob.m
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/3xx/306.ps.gz

BIBLIOGRAPHY 209

[GH83]

[GK65]

[GROO]

[Gus88]

[GZ99]

[Ham5b1]

[Har90]

[Hau97]

[Hes93]

[HJJ01]

[HIM92a]

[HIM92b]

[HL86]

[HLOS]

[Hol59]

[HP81]

J. Guckenheimer and P. Holmdsonlinear Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields volume 42 ofApplied Mathematical ScienceSpringer Verlag, 1983.

G. H. Golub and W. Kahan. Calculating The Singular Values and Pseudo-Inverse of a Matrix.
SIAM. Numer. Anal. ser B, pages 205-224, 1965.

C. Genest and L. Rivest. On the multivariate probality integral transformation. Technical report,
Département de matmatiques et de statistique, Univegditaval, Québec, Canada, G1K 7P4,
July 2000.http://www.mat.ulaval.ca/pages/genest/k.pdf

J. L. Gustafson. Re-evaluating Amdahl’'s La@ommunications of the ACN1(5):532-533,
May 1988.

P. Glassermann and X. Zhao. Fast greeks by simulation in forward Libor mddwedslournal of
Computational Finance3(1):5-39, Fall 1999.

P. C. Hammer. The Mid-Square Method of Generating Digits. In Monte Carlo Metfiod41],
chapter 11, page 33. A 42-page booklet on number generation methods and applications of the
Monte Carlo method.

J. Michael HarrisonBrownian motion and stochastic flow systeMéley, Krieger, 1985, 1990.
ISBN 0-89464-455-6.

E. G. Haug.The Complete Guide to Option Pricing FormuladdcGraw-Hill, October 1997.
ISBN 0786312408.

S. L. Heston. A closed-form solution for options with stochastic volatility with applications to
bond and currency option§he Review of Financial Studie&:327-343, 1993.

C. Hunter, P. dckel, and M. Joshi. Getting the DrifRISK MagazingJuly 2001.
http://www.rebonato.com/MarketModelPredictorCorrector. pdf

D. Heath, R. Jarrow, and A. Morton. Bond pricing and the term structure of interest rates.
Econometrica61(1):77-105, 1992.

D. Heath, R. Jarrow, and A. Morton. Bond pricing and the term structure of interest rates: A new
methodology Econometrica60(1):77-105, 1992.

T.S.Y. Ho and S.-B. Lee. Term structure movements and pricing interest rate contingent claims.
Journal of finance4l, December 1986.

P. Hellekalek and G. Larcher, editolRandom and Quasi-Random Point Setdume 138 of
Lecture Notes in StatisticSpringer, 1998. ISBN 0387985549.

S. H. Hollingdale.High Speed Computing: Methods and Applicatiofike English Univerisity
Press LTD, 102 Newgate Street, London EC1, 1959.

J. M. Harrison and S. Pliska. Martingales and stochastic integrals in the theory of continuous
trading. Stochastic processes and their applicatichs:215-260, 1981.


http://www.mat.ulaval.ca/pages/genest/k.pdf
http://www.rebonato.com/MarketModelPredictorCorrector.pdf

210

[Hug96]
[Hul97]

[HW90]

[Hym83]

[Jac97]

[Jam96]

[Jam97]

[JKB94]

[Joh49]

[JROO]

[JW00]

[Kac51]

[Kau01]

[KDM96]

[Knu81]

[KP99]

BIBLIOGRAPHY

L. Hughston, editorVasicek and beyondRISK publications, 1996.
John Hull. Options, Futures, and Other DerivativeBrentice Hall, 1989,1993,1997.

J. Hull and A. White. Pricing interest rate derivative securitiReview of Financial Studies
3(4):573-592, 1990.

J. M. Hyman. Accurate Monotonicity Preserving Cubic Interpolati®AM Journal on Scientific
and Statistical Computingt(4):645-653, 1983.

P. Jckel. Maple V routine for the calculation of a static table of primitive polynomials modulo 2.
http://www.nr.com/contrih/1997.

F. Jamshidian. Pricing of Contingent Claims in the One-Factor Term Structure Model. In
Hughston Hug94, chapter 7, pages 111-127.

F. Jamshidian. Libor and swap market models and measkiremnce and Stochastics
1:293-330, 1997.

N. L. Johnson, S. Kotz, and N. Balakrishna@ontinuous Univariate Distributionsvolume | and
II. John Wiley and Sons, 1994.

N. L. Johnson. Systems of frequency curves generated by methods of trandatioretrikg
36:14-76, 1949. A fitting algorithm for Johnson distributions can be found in: ALGORITHM AS
99 APPL. STATIST. (1976) VOL.25, P.180itp://lib.stat.cmu.edu/apstat/99

P. Ackel and R. Rebonato. Linking Caplet and Swaption Volatilities in a BGM/J Framework:
Approximate Solutions. Technical report, 200Qtp://www.rebonato.com/capletswaption.pdf

J. James and N. Webbénterest rate modellingFinancial Engineering. John Wiley and Sons,
May 2000.

M. Kac. On some connections between probability theory and differential and integral equations.
In Proc. 2nd Berkeley Symposium on Math. Stat. & Probabitiages 189-215, 1951.

R. Kaufmann. Copulas as an Integrated Risk Management Tool. Risk 2001 europe conference,
april 10-11, paris, RiskLab, Departement Mathematik, ETiHi&h, Switzerland, 2001.

Z. E. Karian, E. J. Dudewicz, and P. McDonald. The extended generalized lambda distribution
system for fitting distributions to data: history, completion of theory, tables, applications, the
“Final Word” on Moment fits.Communications in Statistics — Simulation and Computation
25:611-642, 1996.

D. Knuth. The Art of Computer Programming: Seminumerical Algorithunodume 2.
Addison-Wesley, 1969,1981.

P. E. Kloeden and E. Platehumerical Solution of Stochastic Differential Equatio&gpringer
Verlag, 1992, 1995, 1999.


http://www.nr.com/contrib/
http://lib.stat.cmu.edu/apstat/99
http://www.rebonato.com/capletswaption.pdf

BIBLIOGRAPHY 211

[KS]

[KS91]

[Kva00]

[LESS]

[LGM69]

[LMSO01]

[LS98]

[LY0Oa]

[LYOOD]

[Mac96]

[Mac97]

[Mar78]

[May76]

[MCC98]

[Mer90]

[MMO1]

S. Kucherenko and I. M. Sobol'. BRODA : British-Russian Offshore Development Agency.
http://www.broda.co.uk

|. Karatzas and S. E. ShrevBrownian motion and Stochastic CalculuSpringer Verlag, 1991.

B. Kvasov.Methods of Shape-Preserving Spline Approximatiorld Scientific Publishing,
2000. ISBN 9810240104.

P. L'Ecuyer. Efficient and Portable Combined Random Number Gener&oramunications of
the ACM 31:742-749,774, 1988.

P. A. W. Lewis, A. S. Goodman, and J. M. Miller. A pseudorandom number generator for the
System/3601BM System JournaB:136-146, 1969.

F. Lindskog, A. McNeil, and U. Schmock. Kendall's Tau for Elliptical Distributions. Working
paper, RiskLab, Departement Mathematik, ET#tigh, Switzerland, 2001.

F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation: A simple least
squares approach. Working paper, The Anderson school, UCLA, 1998.

C. F. Lo and P. H. Yuen. Constant Elasticity Of Variance Option Pricing Model with
Time-Dependent Parametetaternational Journal of Theoretical and Applied Finance
3(4):661-674, 2000ttp://www.phy.cuhk.edu.hk/cflo/papers/ CEMJITAF.pdf.

C. F. Lo and P. H. Yuen. Option Risk Measurement with Time-Dependent Parameters.
International Journal of Theoretical and Applied Finan&3):581-589, 2000.
http://mww.phy.cuhk.edu.hk/cflo/papers/optionriskJ TAF.pdf.

A. MacLead. ACM Algorithm 757 ACM Transactions of Mathematical Software
22(3):288-301, 1996&ttp://www.netlib.org/toms/757

D. J. C. MacKay. Introduction to Monte Carlo Methods. Technical report, Department of
Physics, Cambridge University, CB3 OHE, England, 1997.
ftp://wol.ra.phy.cam.ac.uk/pub/mackay/erice.pogz
http://I3www.cern.ch/homepages/susinnog/finance/Articles4/erice.ps.gz

W. Margrabe. The value of an option to exchange one asset for andthenal of Finance
33:177-186, 1978.

R. M. May. Simple mathematical models with very complicated dynanheture 26:459-467,
1976.

D. B. Madan, P. Carr, and E. C. Chang. The Variance Gamma process and option pricing.
Working paper, University of Maryland, College park, MD 20742, June 1998.

R. C. Merton.Continuous-Time Financalackwell Publishers Ltd., 1990.

D. B. Madan and F. Milne. Option pricing with Variance Gamma martingale components.
Mathematical Financgl(4):39-55, 1991.


http://www.broda.co.uk
http://www.phy.cuhk.edu.hk/~cflo/papers/CEV_IJTAF.pdf
http://www.phy.cuhk.edu.hk/~cflo/papers/optionrisk_IJTAF.pdf
http://www.netlib.org/toms/757
ftp://wol.ra.phy.cam.ac.uk/pub/mackay/erice.ps.gz
http://l3www.cern.ch/homepages/susinnog/finance/Articles4/erice.ps.gz

212

[MN97]

[MNOS]

[Mon51]

[Mor95]

[MR97]

[MS90]

[MSS97]

[MU49]

[MWO9]

[MWCMO8]

[MZM94]

[Nat94]

[Nea73]

[NHLZ97]

[Niess]

[Nie92]

BIBLIOGRAPHY

M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudorandom number generatatp://www.math.keio.ac.jp/matumoto/emt.html
1997.

M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudorandom number generat®€M Trans. on Modeling and Computer Simulation
8(1):3-30, January 1998.

Monte carlo method. U.S. Department of Commerce, National Bureau of Standards, Applied
Mathematics Series 12, June 1951. A 42-page booklet on number generation methods and
applications of the Monte Carlo method.

B. Moro. The Full Monte Risk Magazing8(2):57-58, February 1995.

M. Musiela and M. Rutkowski. Continuous-time term structure models: Forward measure
approachFinance and Stochastic$:261-292, 1997.

D. B. Madan and E. Seneta. The Variance Gamma model for share market réaumsl of
Business63(4):511-524, 1990.

K. R. Miltersen, K. Sandmann, and D. Sondermann. Closed-form solutions for term structure
derivatives with lognormal interest ratekurnal of Finance52:409-430, 1997.

N. Metropolis and S. Ulam. The Monte Carlo methddurnal of the American Statistical
Association44(247):335-341, September 1949.

L. A. McCarthy and N. J. Webber. An Icosahedral Lattice Method for Three-Factor Models.
Working paper, University of Warwick, 199%9ittp://www.warwick.ac.uk

D. J. Medeiros, E. F. Watson, J. S. Carson, and M. S. Manivannan, editoceedings of the
1998 Winter Simulation ConferencE98. D.J. Medeiros, E.F. Watson, J.S. Carson and M.S.
Manivannan, eds.

G. Marsaglia, A. Zaman, and J. Marsaglia. Rapid evaluation of the inverse of the normal
distribution function.Statistics and Probability Letterpages 259-266, 1994.

S. NatenbergOption Volatility & Pricing: Advanced Trading Strategies and Techniqu&®bus
Publishing Co., July 1994. ISBN 155738486X.

H. R. Neave. On using the Box-Muller transformation with multiplicative congruential
pseudo-random number generatdkpplied Statistics22:92-97, 1973.

H. Niederreiter, P. Hellekalek, G. Larcher, and P. Zinterhof, editiiente Carlo and
Quasi-Monte Carlo Methodsolume 127 ol ecture Notes in StatisticSpringer Verlag, 1997.

H. Niederreiter. Low-Discrepancy and Low-Dispersion Sequenimsnal of Number Theory
30:51-70, 1988.

H. NiederreiterRandom Number Generation and Quasi-Monte Carlo Meth&8dsiety for
Industrial and Applied Mathematics (SIAM), 1992.


http://www.math.keio.ac.jp/~matumoto/emt.html
http://www.warwick.ac.uk

BIBLIOGRAPHY 213

[Nie96]

[Pks98]

[Owe98]

[Pic8s]

[PM88]

[PTO5]

[PTVF92]

[Rad98a]

[Rad98b]

[RDTM79]

[Reb98]
[Reb99]

[Ree01]

[Rip87]

[RJOO]

[RS74]

H. Niederreiter. Low-discrepancy sequences and global function fields with many rational places
Finite Fields and their Application®:241-273, 1996.

B. @ksendal Stochastic Differential Equation$pringer, 5th edition, 1998. ISBN 3540637206.

A. B. Owen. Monte Carlo extension of quasi-Monte Carlo. In Medeiros eNMalvCM98].
http://www.informs-cs.org/wsc98papers/076.PDF

C. A. Pickover. A note on chaos and Halley’s meth@bmmunications of the ACM
31(11):1326-1329, November 1988.

S. K. Park and K. W. Miller. Random Number Generators: Good Ones Are Hard to Find.
Communications of the ACN1(10):1192-1201, October 1988.

S. H. Paskov and J. F. Traub. Faster Valuation of Financial Derivatdeegnal of Portfolio
Management22(1):113-120, 1995. There are also several Columbia University technical reports
on the subject.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannblymerical Recipes in C
Cambridge University Press, 1992.

A. R. Radhakrishnan. An Empirical Study of the Convergence Properties of the Non-recombining
HJM Forward Rate Tree in Pricing Interest Rate Derivatives. Working paper, Department of
Finance, Stern School of Business, New York University, 9-190 P, 44 West 4th Street, New York,
NY 10012-1126, 1998http://www.stern.nyu.edw/aradhakr

A. R. Radhakrishnan. Does Correlation Matter in Pricing Caps and Swaptions? Working paper,
Department of Finance, Stern School of Business, New York University, 9-190 P, 44 West 4th
Street, New York, NY 10012-1126, 199Bttp://www.stern.nyu.edw/aradhakr

J. S. Ramberg, E. J. Dudewicz, P. R. Tadikamalla, and E. F. Mykytka. A Probability Distribution
and Its Uses in Fitting Datalechnometrics21(2), May 1979.

R. Rebonatolnterest Rate Option Modelgdohn Wiley and Sons, 1998.
R. RebonatoVolatility and Correlation John Wiley and Sons, 1999.

G. Reese. Buffon’s Needle: An Analysis and Simulation.
http://www.mste.uiuc.edu/reese/buffon/buffon.nt2001. (a nice web application for
demonstration).

B. D. Ripley. Stochastic SimulationJohn Wiley and Sons, 1987.

R. Rebonato and Padkel. The most general methodology to create a valid correlation matrix for
risk management and option pricing purposEise Journal of Risk2(2), Winter 1999/2000.
http://www.rebonato.com/correlationmatrix.pdf

J. S. Ramberg and B. W. Schmeiser. An approximate method for generating asymmetric randorm
variables.Communications of the ACM7:78-82, 1974.


http://www.informs-cs.org/wsc98papers/076.PDF
http://www.stern.nyu.edu/~aradhakr
http://www.stern.nyu.edu/~aradhakr
http://www.mste.uiuc.edu/reese/buffon/buffon.html
http://www.rebonato.com/correlationmatrix.pdf

214

[Rub83]

[Sch74]

[Sch89]

[Shrog]

[Sob67]

[Sob76]

[Sob94]

[ST95]

[Tez95]

[UVN47]

[Vas77]

[VN51]

[Wat62]

[Whe80]
[Wilog]
[Wil0O]

[XP99]

BIBLIOGRAPHY

M. Rubinstein. Displaced diffusion option pricingournal of Finance38:213-217, March 1983.

L. Schroeder. Buffon’s needle problem: An exciting application of many mathematical concepts.
Mathematics Teache67(2):183-186, 1974.

M. Schroder. Computing the Constant Elasticity of Variance Option Pricing Formoianal of
Finance 44(1):211-219, 1989.

S. E. Shreve. Stochastic calculus lecture natés..//www.math.cmu.edu/users/shret998.

I. M. Sobol’. On the Distribution of Points in a Cube and the Approximate Evaluation of
Integrals.USSR Computational Mathematics and Mathematical Phygi86—112, 1967.

I. M. Sobol’. Uniformly Distributed Sequences with an Additional Uniform Properti¢SSR
Computational Mathematics and Mathematical Physi€¥5):236—-242, 1976.

I. M. Sobol'. A Primer for the Monte Carlo MethodCRC press, 1994. ISBN 084938673X128.

T. R. Scavo and J. B. Thoo. On the Geometry of Halley’'s Methader. Math. Monthly
102:417-426, 1995.

S. TezukaUniform Random Numbers: Theory and Practigduwer Academic Publishers,
1995.

S. M. Ulam and J. von Neumann. On combinations of stochastic and deterministic processes.
Bulletin of the American Mathematical Sociehg(11):1120, November 1947. Preliminary report
from the summer meeting in New Haven.

O. A. Vasicek. An equilibrium characterisation of the term structdoeirnal of Financial
Economics5:177-188, 1977.

J. von Neumann. Various Techniques Used in Connection With Random Digits. In Monte Carlo
Method Mon51], chapter 13, pages 36—38. A 42-page booklet on number generation methods
and applications of the Monte Carlo method.

E. J. Watson. Primitive polynomials (mod Nlathematics of Computatiod6(79):368-369,
July 1962.

R. E. Wheeler. Quantile estimators of Johnson curve param@&iensetrikg 67:725-8, 1980.
P. Wilmott. Derivatives John Wiley and Sons, 1998.
P. Wilmott. Quantitative FinanceJohn Wiley and Sons, 2000.

J. Xiongwei and N. Pearson. Using Value-at-Risk to Control Risk Taking: How wrong can you
be? Journal of Risk1(2):5-36, Winter 1999.


http://www.math.cmu.edu/users/shreve

Index

Ali-Mikhail-Haq copula,53
Alternating Simplex Direction]81
alternating simplex directiori,66
antithetic sampling107
Archimedea copula®0
asymmetric lambda distributiod,/
attractive invariant se§7

Bermudan swaptior,51, 155
Monte Carlo algorithm for the pricing 01,68
Bernoulli, 11
Bessel28
Beta,12
BGM/J market modell51
binomial,11
Box-Muller, 101
BRODA, 85
Brownian bridge38, 121
Brownian motion23
bushy treeseenon-recombining tree

calibration of BGM/J to European swaptioif6
Cantor set68

Cauchy distribution14

central limit theorem19

chaos66

x? distribution,13

Clayton copulabl

clustering of non-recombining tre&89
concordance44

congruential generatiofi,l
congruential generator,l

constant elasticity of varianc28
continuous mapping theorerh9
continuously monitored?
control variates109
convergence
strong,31
convergence almost surely8
convergence behaviow,
convergence diagram98
generation of198
convergence speex,
converges in distributiorl,9
copula,45
Ali-Mikhail-Haq, 53
Archimedean50
Clayton,51
Frank,52
Gaussiand6
Gumbel,51
t, 49
correlation and co-movementl
correlation matrix decomposition
hypersphere;8
lower triangular formg1
spectral 59
covariancef
cpu time,x, 196
cpu time cost of transcendental and trigonometric
function evaluations]1 99
cumulative 6
cumulative normal probability functior0

215



216

cumulative probability functiorn
curse of dimensionality9

decomposition
hypersphere;8
lower triangular formg1
spectral 59

Delta, 135

dichotomic,11

Dirac densityxiv, 5

discordance44

discrepancy76

INDEX

Weibull, 16
distribution conversiorQ5
distribution densityb
distributions,9
domainD(X) of the random experimens,
draw,5
drift, 27
driving matrix, 27

effective dimensionality] 18
effective dimensionality reductiod20 121
embedded path generati@gepath generation

expectedL,-norm discrepancy of truly ran-equiprobable9

dom numbers94

equivalent swaption volatility] 60

explicit formula for theL,-norm discrepancy, error estimation19

93

discrete-time dynamical syste®6

discretely monitored?
dispersion matrix27, 161
displaced diffusion29
distribution
Bernoulli, 11
Beta,12
binomial,11
Cauchy,14
x?, 13
dichotomic,11
exponentiall2
Gamma,l3
generalised Beta 4,5
generalised lambda,7
generalised Paret@p
geometric,11
Gumbel, 17
lognormal,14
normal,10
Pareto,15
Poisson12
Student’st, 13
uniform, 9

error function,10
Euler scheme32
exact expectation matching of non-recombining
tree,seeexact martingale conditioning of
non-recombining tree
exact martingale conditioning of non-recombining
tree,188
exercise boundary
heuristics of 165
Monte Carlo algorithm based on parametrisa-
tion of, 168
paramatrisation of].52
parametrisation ofl 68
exp(),199
expected valueg
exponential 12

factorisation of the BGM/J model54
Feynman-Kac theoren21
finite differencing for Greeks calculatioh37
forward rates

evolution of under the BGM/J modell54,

177

Frank copula52
Frechet16



INDEX

Gamma,135

Gaussian copulai6
two exponential variates unde@
two uniform variates unded?

generalised beta distribution of the second kind,

15
generalised functiorg
generalised lambda distributioh?
generalised Parett6
GGL generatory2
Gray code82
Greeks 135
Gumbel,17
Gumbel copulab1

Holder’s inequality,7

Haar functions126

Halton numbersy7
Heaviside functionb
hedge-and-forgef,35
hypersphere decompositids

iid, 18

implied volatility interpolation,193
importance sampling,12

importance sampling for Greeks calculatioh39
importance sampling method39
independent42

independent identically distributeti8
infinitesimal perturbation analysi$41
intermittency,70

interpolation of implied volatility193
invariant measure§9

inverse cumulative probabilit@5

[td’s lemma,24

Jensen’s inequality,
Johnson | distributior30

Kendall's tau44
for Gaussian copula6

217

Latin hypercube samplind,16
likelihood, 5
likelihood ratio for rho,149
likelihood ratio for sensitivity with respect to di-
videne yield, 150
likelihood ratio for Vega,147
likelihood ratio method for Greeks calculation,
141
linear congruential generatatl
linear correlation42
logistic map,66
lognormal,14
Lorentz distribution14
low-discrepancy numbergs
empirical discrepancie83
Halton, 77
Niederreiter36
pairwise projections36
Sobol’, 78
lower triangular form decompositiof;1

Malliavin calculus,142

marginal distribution42

Markovian,27

Markovian Wiener process embedding dimension,
27

measures for co-dependendg,

Mersenne Twistef73

mid-square method,0

Milstein scheme33

Minkowski’s inequality,7

mirrored pathsseeantithetic sampling

moment matching (variance
niques),113

moment of a distributiong

Monte Carlo

superior to lattice methods for higher dimen-

sionalities 8

Monte Carlo estimatoB

Monte Carlo integration/

reduction tech-



218

Monte Carlo maximisation/
Monte Carlo simulation?
Moore-Penrose pseudo-inverge,
multi-threading 201

Multivariate Brownian bridgel27
mutidimensional integratior§,

near-periodicity67
nearly lognormall5
Neave effect103
Niederreiter number86
non-linearity,66
non-recombining tree, 75
clustering of,189
convergence 0f] 83

exact expectation matching df88

preactical examplel 91

recursive implementation 01,82

variance matching of,84
non-uniform variate95
normal variates]0

INDEX

spectral 118
path generation
embedded] 99
path recycling,109
pathwise differentiation for Greeks calculation,
140
Pearson’s 143
Plot script,199
Poisson
correlation of arrival times under Gaussian
copula,48
distribution,12
predictor-corrector36, 162
primitive polynomials modulo two/9
probability density function$
pseudo square rodi9
truncated59
pseudo-inversel2
pseudo-randon§6
pseudo-square rodi8

normalised sampler density Monte Carlo estirp{-ano 72

ator,97
number generator
ideal choice of/74
number generators
low-discrepancyy5
pseudo randon§5
numerical over- and underflod97

Optimal Simplex Alignment]179
optimal simplex alignmentl.66
original sin,65
Ornstein-Uhlenbeck procesz6

parallelisation201

Pareto distributionl5

path constructionl 17
Brownian bridge121
incremental 118
multivariate,126

Ran0 to Ran366

Ranl,72

Ran2,73

Ran3,73

random experimeng

random number generator
ideal choice of74

randomnes$5

RANDU, 72

rank correlations45

recursive implementation of non-recombining

tree,182

reducible 27

Rejection samplingl00

Rho,108 143 149

running estimatel 98

sampler density Monte Carlo estimatfy,



INDEX

sampler density techniqu@6

Schauder function4,26
shape correctior,60

singular value decompositiod2

singular values22
Sobol’ numbers78
commercial softwareg5
construction of80
initialisation, 83, 85
Spearman’s rho}4
spectral decompositio®9
Splot script,199
standard deviatiorg, 10
standard erro20
error estimate of21
standard normal variaté0D
strange attractofy7, 69
stratified samplingl11
strong convergenc8l
strong law,18
Student’st distribution,13
sub-processeg01

219
swaption volatility,160

t-copula,49

threads201

training set,168
transformations of SDES3
truly random number£6

uniform distribution 9

variability explained120

variance explainedseevariability explained

variance matching for a non-recombining tree,
184

variance reductiorl,07

variate,5

variate recycling108 109

Vega,108 135 143 147

weak convergencgl

Weibull, 16

Wiener,24
process24



	Contents
	Preface
	Mathematical Notation
	Introduction
	The mathematics behind Monte Carlo methods
	A few basic terms in probability and statistics
	Monte Carlo simulations
	Monte Carlo supremacy
	Multidimensional integration

	Some common distributions
	Kolmogorov's strong law
	The central limit theorem
	The continuous mapping theorem
	Error estimation for Monte Carlo methods
	The Feynman-Kac theorem
	The Moore-Penrose pseudo-inverse

	Stochastic dynamics
	Brownian motion
	Itô's lemma
	Normal processes
	Lognormal processes
	The Markovian Wiener process embedding dimension
	Bessel processes
	Constant elasticity of variance processes
	Displaced diffusion

	Process driven sampling
	Strong versus weak convergence
	Numerical solutions
	The Euler scheme
	The Milstein scheme
	Transformations
	Predictor-Corrector

	Spurious paths
	Strong convergence for Euler and Milstein

	Correlation and co-movement
	Measures for co-dependence
	Copulæ
	The Gaussian copula
	The t-copula
	Archimedean copulæ


	Salvaging a linear correlation matrix
	Hypersphere decomposition
	Spectral decomposition
	Angular decomposition of lower triangular form
	Examples
	Angular coordinates on a hypersphere of unit radius

	Pseudo-random numbers
	Chaos
	The mid-square method
	Congruential generation
	Ran0 to Ran3
	The Mersenne twister
	Which one to use?

	Low-discrepancy numbers
	Discrepancy
	Halton numbers
	Sobol' numbers
	Primitive polynomials modulo two
	The construction of Sobol' numbers
	The Gray code
	The initialisation of Sobol' numbers

	Niederreiter (1988) numbers
	Pairwise projections
	Empirical discrepancies
	The number of iterations
	Appendix
	Explicit formula for the L2-norm discrepancy on the unit hypercube
	Expected L2-norm discrepancy of truly random numbers


	Non-uniform variates
	Inversion of the cumulative probability function
	Using a sampler density
	Importance sampling
	Rejection sampling

	Normal variates
	The Box-Muller method
	The Neave effect

	Simulating multi-variate copula draws

	Variance reduction techniques
	Antithetic sampling
	Variate recycling
	Control variates
	Stratified sampling
	Importance sampling
	Moment matching
	Latin hypercube sampling
	Path construction
	Incremental
	Spectral
	The Brownian bridge
	A comparison of path construction methods
	Multivariate path construction

	Appendix
	Eigenvalues and eigenvectors of a discrete-time covariance matrix
	The conditional distribution of the Brownian bridge


	Greeks
	Importance of Greeks
	An Up-Out-Call option
	Finite differencing with path recycling
	Finite differencing with importance sampling
	Pathwise differentiation
	The likelihood ratio method
	Comparative figures
	Summary
	Appendix
	The likelihood ratio formula for Vega
	The likelihood ratio formula for Rho


	Monte Carlo in the BGM/J framework
	The Brace-Gatarek-Musiela/Jamshidian market model
	Factorisation
	Bermudan swaptions
	Calibration to European swaptions
	The Predictor-Corrector scheme
	Heuristics of the exercise boundary
	Exercise boundary parametrisation
	The algorithm
	Numerical results
	Summary

	Non-recombining trees
	Introduction
	Evolving the forward rates
	Optimal simplex alignment
	Implementation
	Convergence performance
	Variance matching
	Exact martingale conditioning
	Clustering
	A simple example
	Summary

	Miscellanea
	Interpolation of the term structure of implied volatility
	Watch your cpu usage
	Numerical overflow and underflow
	A single number or a convergence diagram?
	Embedded path creation
	How slow is exp()?
	Parallel computing and multi-threading

	Bibliography
	Index

