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Preface

This book is about Monte Carlo methods and close relatives thereof. It is about the application of

traditional and state-of-the-art sampling techniques to problems encountered in the world of modern

finance. The approach I take is to explain methods alongside actual examples that I encountered in my

professional working day. This is why there may be a bias towards applications to investment banking

and derivatives pricing in particular. However, many of the methods presented here equally apply to

similar mathematical problems that arise in market risk management, credit risk assessment, the insur-

ance businesses, strategic management consultancy, and other areas where the effect of many unknown

variables (in the sense that we can only make assumptions about their probability distributions) is to

be evaluated.

The purpose of this book is to be an introduction to the basic Monte Carlo techniques used nowadays

by expert practitioners in the field. There are so many areas of Monte Carlo methods in finance that any

attempt to try and provide a book on the subject that is both introductoryand comprehensive would

have meant many years of (part-time) writing. Instead, in order to fill the need for an introductory text

more timely, I decided to rather focus on the issues most pressing to any novice to financial Monte

Carlo simulations and to omit many of the more advanced topics. The subjects not covered include

the whole family of Markov Chain techniques, and almost all of the recent advances in Monte Carlo

methods tailored specifically for the pricing of American, Bermudan, or any other derivative contract

whose ideal value is given by the maximal (discounted) expected payoff over all possible exercise

strategy, i.e. by finding the truly optimal exercise strategy. An exception to this is perhaps the identi-

fication of a suitable exercise boundary optimisation for the purpose of Bermudan swaption pricing in

the Brace-Gatarek-Musiela/Jamshidian framework presented in chapter12. At the same time, though,

I have tried to include most of the presently used techniques that enable the practitioner to create rather

powerful Monte Carlo simulation applications indeed.

Whilst I always endeavour to explain the basic principles of the particular problem to which a tech-

nique is applied, this book is not meant to be an introduction to financial mathematics. I assume that the

reader either has background knowledge in the relevant areas, or could follow up the given references

for a deeper understanding of the financial and/or economical reasoning behind specific mathematical

assumptions. After all, this is not a book about the reasoning behind option pricing. This is a book

about mathematical and numerical techniques that may be used for the solution of the mathematical

equations that were derived by experts in financial theory and economics. I do not attempt to give a

justification for the assumption of complete markets, market efficiency, specific stochastic differential

ix



x Preface

equations, etc.; I leave this up to the authors of the excellent books on those issues subject in the lit-

erature [Hul97, Mer90, Reb98, Wil98]. Instead I have focussed on the implementational aspects of

Monte Carlo methods. Any Monte Carlo method will invariable have to run on a computing device,

and this means that numerical issues can be of paramount importance. In order for this book to be

of some practical value to the practitioner having to implement Monte Carlo methods, I made the at-

tempt to link the fundamental concepts of any one technique directly to the algorithm that has to be

programmed, and often explicitly in terms of the C++ language, often taking into account aspects of

numerical analysis such as round-off error propagation etc.

The nature of the subject of this book is strongly entwined with the concept ofconvergence. In gen-

eral, Monte Carlo methods give us at best a statistical error estimate. This is in contrast to various other

numerical methods. A Monte Carlo calculation is typically of the following structure: carry out the

same procedure many times, take into account all of the individual results, and summarise them into an

overall approximation to the problem in question. For most Monte Carlo methods (in particular those

providing serial decorrelation of the individual results), we can choose any subset of the individual

results and summarise them to obtain an estimate. The numerically exact solution will be approached

by the method only as we iterate the procedure more and more times, eventually converging at infin-

ity. Clearly, we are not just interested in a method to converge to the correct answer after an infinite

amount of calculation time, but rather we wish to have a good approximation quickly. Therefore, once

we are satisfied that a particular Monte Carlo method worksin the limit, we are naturally interested in

its convergence behaviour, or, more specifically, itsconvergence speed. A good part of this book is

dedicated to various techniques and tricks to improve the convergence speed of Monte Carlo methods

and their relatives. In order to present the reader not just with a description of the algorithms, but also

to foster an intuitive grasp of the potential benefit from the implementation of a specific technique,

we have attempted to include many diagrams of typical convergence behaviour: frequently these are

used to highlight the differences between the performances of different methods. In particular where

such comparisons are made, we often display the convergence behaviour as a function of cpu time

used by the different methods since the human user’s utility is much more closely related to the time

elapsed until a calculation of sufficient accuracy has been completed rather than to the number of actual

iterations carried out.

You may wonder why there is no explicit chapter on option pricing, considering that that’s one of

the most immediate applications of Monte Carlo methods in finance. As it happens, there isn’tone

chapter on option pricing, buteverychapter is written with option pricing in the mind. My foremost

use of Monte Carlo methods has been in the area of derivatives pricing. Since a lot of the examples I

give are directly with respect to option valuation, I considered it unnecessary to have a chapter on the

subject by itself, only to repeat what is written in other chapters already. I hope the reader will agree

with me.
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Disclaimer

In this book, I have tried to give an introductory overview of Monte Carlo methods in finance known

to expert practitioners, and, in places, I may not always have given due credit to all the pioneers who

contributed to this borderline area of mathematics and finance. Wherever I fail to give explicit reference

to the original inventor of any given method, this is not to mean I wish to pretend that it is my own

development, it is merely my own laxness about the whole issue of referencing and citations. In fact,

I may use phrases like ‘I present below’ etc. repeatedly, but they just stand for their literal meaning,

namely that I present, not that I claim having invented the particular method. I did consider it much

more important to focus on an as-good-as-possible explanation of the techniques and mathematics,

rather than spending the time on acribic research through a whole string of references to establish who

actually was the originator of the subject at hand. I include a rather-too-long list of references at the

end of the book, and I did try to reference and cite wherever I could see a direct link, but I may have

failed many great researchers in the field of Monte Carlo methods by not referencing them in the right

places, or not referencing them at all.Mea culpa, mea maxima culpa.



Mathematical Notation

int[x] the largest integer that is equal to or less thanx.

A ∧B A orB are true, or both.

mXORn bitwise exlusive OR operation on the binary representation of the two in-

tegersm andn, also known as binary addition without carry.

m⊕2 n the same as XOR.

∝ is proportional to.

f−1(x) the inverse of the functionf(x), i.e. the unique solution fory in f(y) = x,

if it exists.

∼ has distribution, i.e. meets the righ-hand-side probability density law.

Z the set of integers including 0.

N the set of natural numbers, i.e. the positive integers1, 2, . . .

R the set of real numbers.

:= is defined as.

≡ is identically equal to.

≈ is approximately.

x> transpose of the vectorx.

∂xf
∂f
∂x

.

∂2
xyf

∂2f
∂x∂y

.
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xiv Mathematical Notation

P [A] the probability of some event,A, occurring.

Eψ[X] the expectation of the random variableX with distribution densityψ.

〈X〉 the same asE[X].

Vψ[X] the variance of the random variableX with distribution densityψ.

Covψ[X, Y ] the covariance of the random variablesX andY under the joint distribution

densityψ(X, Y ).

Corrψ[X, Y ] the correlation of the random variablesX andY under the joint distribu-

tion densityψ(X,Y ).

||X||p theLp-norm ofX defined as||X||p := p
√

E[ |X|p].

U(a, b) the uniform distribution with equal probability density1
b−a everywhere on

the open interval(a, b).

N (µ, σ) the cumulative normal distribution with meanµ and standard deviationσ.

ϕ(z) the standard normal distribution density function, i.e.ϕ(z) = 1√
2π
e−

1
2
z2

N(z) the standard cumulative normal distribution probability function,

i.e.N(z) =
z∫

z′ =−∞
ϕ(z′) dz′.

N−1(p) the inverse cumulative normal probability function. i.e. N(z) = p =⇒

N−1(p) = z.

δij the Kronecker symbol which is1 if i = j, otherwise0.

δ(x− x0) the Dirac density whose singularity is located atx0.

h(x− x0) the Heaviside function whose discontinuity is located atx0.

The connection to the Dirac density ish(x− x0) =
x∫

x′=−∞
δ(x′ − x0) dx′.

1{expression} 1 if expression is true, otherwise0.

B
(
S,K, σ

√
T
)

the Black call option formula.
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B
(
S,K, σ

√
T
)

= S·N
(

ln (S/K)
σ
√
T

+ 1
2
σ
√
T

)
−K·N

(
ln (S/K)
σ
√
T

− 1
2
σ
√
T

)
.

σBlack(v, S,K, T ) the Black call option implied volatility, i.e.

B
(
S,K, σ

√
T
)

= v =⇒ σBlack(v, S,K, T ) = σ

σ(t) some kind of instantaneous volatility.

σ̂(T ) an implied volatility given by the root mean square of its instantaneous

counterpart, i.e.̂σ(T ) =
∫ 1

u=0
σ2(u · T ) du.

B(p, q) the Beta function, also known as Euler’s integral of the first kind, is defined

as B(p, q) :=
∫ 1

0
tp−1(1− t)q−1dt.

Bx(p, q) the incomplete Beta function, defined as Bx(p, q) :=
∫ x

0
tp−1(1− t)q−1dt.

Γ(x) the Gamma function, also known as Euler’s integral of the second kind, is

defined asΓ(x) :=
∫∞

0
e−ttx−1 dt.

Its relation to the Beta function is B(p, q) = Γ(p)Γ(q)
Γ(p+q)

.

Note thatΓ(n+ 1) = n! for n ∈ N.

Γ(x, y) the incomplete Gamma function, is defined asΓ(x, y) :=
∫∞
y

e−ttx−1 dt.

Ce Euler’s constant is defined as Ce := lim
n→∞

[(
n∑
k=1

1
k

)
− lnn

]
and is approx-

imately Ce ≈ 0.577215664901532.

ζ(s) Euler’s Zeta function defined asζ(s) := lim
n→∞

n∑
k=1

1
ks . It can also be repres-

ented as the following infinite productζ(s) ≡
∏

1
1−p−s wherep takes on

the values of all prime numbers.

∂( f(x) )
∂( x )

the Jacobian matrix of the transformationx→ f(x).

|A| the determinant of the matrixA.
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Chapter 1

Introduction

We are on the verge of a new era of financial computing. With the arrival of ever faster desktop

computers, clustering technology, and the tools to utilize spare cpu cycles from a variety of sources,

computer processing power has expanded dramatically. This expansion, coupled with the development

of new numerical methods is making techniques which were previously considered to be prohibitively

computationally expensive not only feasible but the method of choice. There are countless examples

of mathematical problems faced by the quantitative analyst which used to require employing either

analytical approximations or numerical truncations. This usually meant that the mathematical model

that was ideally desired could not be used given the constraints of having to integrate its implementation

into existing systems which would not tolerate long calculation times for individual models. Even

where integration into a corporate IT infrastructure was not required, the user of a model might have

limited patience or business needs that necessitate a comparatively speedy response. Whilst a front

office trader in a securities and derivatives house would usually not be concerned if a model built for

him by his quantitative support team were to take anything between a few seconds to possibly several

minutes in order to price a complex structure with calibration to market data, having to wait several

hours would make the model unviable.

This is the reason that to date, when the choice between a conceptually superior but numerically less

tractable model and one that lends itself to easy analytical evaluation has to be made, very often, the

easier model is chosen even though everyone agrees that it oversimplifies the matter at hand. With the

aid of ever faster computers and improved Monte Carlo techniques, however, we are nowadays more

often than not in the position to use the conceptually superior and more realistic modelling approach.

Even where we appear to have analytical solutions it is often desirable to have an alternative im-

plementation that is supposed to give the same answer. The reason for this is that very often the final

formulæ of the analytical solution, although mathematically of very elegant appeal, prove to be nu-

merically difficult to evaluate since they still involve one or two one-dimensional integrations, contour

integrals in the complex plane, back transformations from Laplace- or Fourier space, or simply the

evaluation of special functions that are numerically very difficult to produce, such as the confluent

hypergeometric functions or the modified Bessel function of the second kind for large parameters.

1



2 Introduction

Examples of the above include option pricing for generic distributions [CM99], stochastic volatility

models [Hes93], analytical approximations for Asian options [FMW98], Variance Gamma processes

[MS90, MM91, MCC98], or the Constant Elasticity of Variance process.

And finally, there are myriads of situations when we are very satisfied with a certain approximation

but would like to have a Monte Carlo simulation tool for comparison, just in case. A good example

for this is the difference betweencontinuously monitoredanddiscretely monitoredpayoff functions

such as barrier or American style digital options. There is an excellent approximation by Broadie,

Glassermann, and Kou [BGK99] that relates the priceV of all simple continuous barrier contracts in

a Black-Scholes framework of constant volatilityσ to their discretely monitored equivalent where the

period of time between monitoring points isτ as follows. Say the barrier level as it is specified on a

term sheet of a discretely monitored contract isHd and we have an analytical formula1 Vc = F (Hc) for

the continuously monitored equivalent contract in a Black-Scholes framework setting. Then, the value

of the discretely monitored contract is approximately

Vd ≈ F (e±
ζ( 1

2 )
√

2π
σ
√
τ ·Hd) . (1.1)

with

ζ(1
2
)

√
2π

= 0.5825971579390106702051771641876311547290938701987... (1.2)

In other words, the discretely monitored contract is approximated as a continuously monitored contract

with a shifted barrier level given by

Hc ≈ e±
ζ( 1

2 )
√

2π
σ
√
τ ·Hd . (1.3)

The sign in the exponent in equations (1.1) and (1.3) is selected according to whether the initial spot

level is above or below the threshold barrier. Barriers that are above the initial spot level need to be

upwards amended when we go from discrete to continuous monitoring, and so the positive sign is used.

For barriers that need to be crossed from above for an event to be triggered, the negative sign applies.

This approximation works extremely well as long asτ is significantly smaller than the remaining time

to maturity of the contract and as long as the current spot level is not too close to the barrier, and most

exotic derivatives traders are happy to use it under those circumstances. When a given contract comes

close to its expiry, though, or the spot level gets dangerously close to a barrier, traders frequently wish

to know to what extent would a different, not-so-approximative valuation differ. In a situation like this,

a fast-convergence Monte Carlo simulation that also provides the hedge parameters, can make all the

difference for the exotic derivative trader.

The concept of random sampling as a computational means has long been established. A well-

known example is the idea to calculate the circle numberπ by randomly placing points in a unit square

with an enclosed circle around the centre of that square. In the limit of many samples, the ratio of

1There are many good sources for exotic option formulæ. One of my favourites is [Hau97].
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points that happen to be inside the circle to the total number of samples approachesπ
4
. A way to

computeπ is thus to carry out this experiment for an ever increasing number of samples, take the

hit ratio, and multiply it by 4. An alternative method attributed to the French naturalist Comte de

Buffon [Hol59, CK85, Sch74, Ree01] is to draw parallel lines on a board at a distancel between each

adjacent pair of them, and to throw pins of lengthl randomly onto this board. The ratio of all the pins

crossing a line to all those that were thrown should converge to∫ π
2

0
cosα dα∫ π
2

0
dα

=
2

π
(1.4)

for large numbers of pins. Before the invention of fast computing machines, however, these approaches

were rather time-consuming and cumbersome.

The history of Monte Carlo methods as a computational method for the calculation of expectations

on potentially high-dimensional domains starts in the mid-1940s with the arrival of the first program-

mable computers. The main originators are considered to be the American mathematicians John von

Neumann, Stanislav Ulam, and Nicholas Metropolis [UvN47, MU49, Sob94]. The first published

mentioning of the name “Monte Carlo Method” is an article by Metropolis and Ulam in 1949 [MU49].

In this article, the authors explain how they view the calculation of multi-dimensional integrals res-

ulting from the analysis of the transport problem of radiation and energetic particles governed by the

Fokker-Planck equation as a statistical problem. Instead of attempting to directly carry out the high-

dimensional integrations involving the transition probabilities of many possible intermediate events

and states by the use of lattice methods, they sampled single chains of events. The name of the method

is only mentioned casually:

The idea of using a statistical approach at which we hinted in the preceding examples is some-

times referred to as the Monte Carlo method.

In fact, the term had been used before amongst those scientist in allusion to the principality of Monaco

that is so famous for its casinos and to the fact that the roulette wheel represented the archetypical

random number generator. Another reason why this allusion is rather appropriate is that some of the

early mathematicians who contributed greatly to the development of statistics and probability theory

did so in the pursuit of gaining riches at the gambling tables. In the same paper, the authors also

establish the result that the Monte Carlo method enables us to evaluate the expectations of functionals

of certain variables without the knowledge of the distribution of the variables themselves: all that is

needed is a description of the process that generates those variables, and off we go! What’s more,

in 1949, Metropolis and Ulam already point out that the Monte Carlo method is easily amenable to

parallelised computing. The only problem with that was, as one of my colleagues once put it, that

few people had more than one machine the size of a tennis court2 called “a computer” readily at their

disposal at the time.

2This is a joke, I don’t actually know what size the computer(s) used by von Neumann, Metropolis, and Ulam were. It

is probably safe to assume, though, that they were substantially larger than today’s desktop PCs, and they certainly were a

lot harder to come by.
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In 1947, a Monte Carlo simulation involved many problems, not only the sheer size of the machine.

Apart from the fact that the mathematical relations between the partial differential equations describing

the problems the scientists were investigating, the associated multi-dimensional integrals, and their

formulation as a stochastic process that can be readily simulated were only just being established, the

actual simulation was a rather formidable enterprise itself. In those days, a computer was a rather large

machine indeed, and to operate it involved severalmachine operators. The most advanced input/output

device available was a punch card reader and a card puncher. The generation of random numbers was

a huge problem and many different ways were explored. It may seem somewhat unreal when we think

about it now, but one of the approaches taken at the time was as follows: A special project codenamed

RAND was set up [Bro48, Bro51] whose aim, amongst others, was to accumulate a set of numbers that

were considered to be sufficiently random for Monte Carlo simulations. RAND devised an electronic

roulette wheel by combining a random frequency pulse source with a constant frequency pulse (≈1

Hz) which provided about 100,000 pulses per second. The regularised pulses were passed to a five-

place binary counter which effectively resulted in the equivalent of a roulette wheel with 32 positions.

After a binary to decimal conversion, these numbers were then fed to an IBM punch, thus generating

cards of random digits. Exhaustive tests on the so generated set of numbers revealed some slight bias

and they were later modified by shuffling and other further processing until they finally met the applied

statistical tests [Bro51]. However, let me just give you a feeling for how serious the whole business was

with the following quote taken from George Brown’s report [Bro51] on the RAND project published

in the National Bureau of Standard’s booklet [Mon51] on the Monte Carlo Method in 1951.

Production of random numbers really began on April 29, 1947, and by May 21 there were half

a million digits generated. [...] By July 7 there were a million digits available [...]. [...] At this

point we had our original million digits, 20,000 IBM cards with 50 digits to a card, [...].

Fortunately, computers, Monte Carlo methods, and algorithms for number generation have come a long

way since, and their application to the mathematical problems encountered in modern finance is what

this book is about.



Chapter 2

The mathematics behind Monte Carlo

methods

The theoretical understanding of Monte Carlo methods draws on various branches of mathematics. In

this chapter, a few useful facts and results from the areas of probability, statistics, calculus, and linear

algebra are summarised. Some of them are going to come in handy in the following chapters, and the

remainder is presented here for reference. Most readers will already be familiar with the contents of

this chapter, and may as well skip it...

2.1 A few basic terms in probability and statistics

A random experimentis a process or action subject to non-deterministic uncertainty. We call the

outcome of a random experiment adraw or avariate from a distribution. An example for this would

the flipping of a coin, or to be precise the face shown once the coin has come to rest. Adistribution

densityis a generalised function that assignslikelihood or probability densityto all possible results

of a random experiment. A synonym fordistribution densityis probability density function. For our

purposes, ageneralised functioncan be an ordinary function, or a linear combination of an ordinary

function and any finite number ofDirac densitiesδ(x − x0). TheDirac densityis the equivalent of

assigning a finite probability to a single number on a continuous interval. This means, the Dirac density

δ(x − x0) is zero everywhere where it is defined, and strictly speaking undefined atx0. However, its

integral is given by theHeaviside function, i.e.h(x−x0) =
x∫

x′=−∞
δ(x′−x0) dx′, which is zero forx < x0

and one forx > x0.

The relationship between the probability that the outcomeX of a random experiment is an element

of some setS and the distribution densityψ(x) of the random experiment is

Pr [x ∈ S] =

∫
S
ψ(x) dx . (2.1)

5



6 The mathematics behind Monte Carlo methods

We call the set of all attainable outcomesX of a random experiment thedomainD(X) of the

random experiment. WheneverD(X) is an ordered set, i.e. when we can decide whether any one

element is less than any of the other elements ofD(X), we define thecumulative probability function

or justcumulativefor short as

Ψ(x) =

x∫
x′=inf(D)

ψ(x′) dx′ = Pr [X < x] . (2.2)

All distribution densities are normalised, i.e.∫
D

ψ(x) dx = 1 . (2.3)

Note that in the probability sciences the cumulative is also referred to plainly as thedistribution func-

tion or simply thedistribution. Since this can lead to situations of ambiguity, I always explicitly state

whether I am talking about the distribution density or the cumulative.

The expected valueof a quantity subject to uncertainty is the probability weighted average. Our

notation for the expected value of a quantityf with respect to a probability densityψ is

Eψ[f ] : expected value off with respect toψ. (2.4)

Very often, there is no ambiguity about the relevant distribution. In this case we may just writeE[f ].

Alternatively, there may be a parametric description of the distribution off . This means thatf is

actually a function of some other uncertain variablex. Given the distribution density ofx, sayψ(x),

we would denote the expectation off asEψ(x)[f(x)]. This is just to say

Eψ(x)[f(x)] =

∫ ∞

−∞
f(x)ψ(x) dx . (2.5)

Analogously, we will need to make statements about the variance of a given uncertain quantityf —

intuitively this is the variablity of a quantity from its expected value. The variance off is denoted by

V[f ]. It is defined by

V[f ] = E
[
(f − E[f ])2] = E

[
f 2
]
− (E[f ])2 . (2.6)

Thestandard deviationof a random variate or distribution is defined as the square root of its variance.

Thecovarianceof two quantitiesf andg is defined as

Cov[f, g] = E[f · g]− E[f ] · E[g] (2.7)

and based on covariance is the concept of linear correlation

Corr[f, g] =
Cov[f, g]√
V[f ] V[g]

. (2.8)

The correlation coefficient is by construction always in the interval[−1, 1].

Then-th moment of a distributionis defined as

Eψ(x)[x
n] =

∫
xnψ(x) dx . (2.9)
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Jensen’s inequality

For any convex functiong(x) and any distribution densityψ(x) the following inequality holds:

Eψ[g(X)] ≥ g (Eψ[X]) (2.10)

Hölder’s inequality

For any two random variatesX andY ,

E[XY ] ≤ ‖X‖p · ‖Y ‖ p
p−1

(2.11)

for anyp > 1.

Minkowski’s inequality

For any two random variatesX andY ,

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p (2.12)

for anyp ≥ 1.

2.2 Monte Carlo simulations

The most common use of Monte Carlo simulations in finance is when we need to calculate an expected

value of a functionf(x) given a specified distribution densityψ(x) overx ∈ Rn,

v = Eψ(x)[f(x)] =

∫
f(x)ψ(x) dxn . (2.13)

In a strictly mathematical sense,Monte Carlo maximisation(i.e. the search for the maximum value of

f(x) for x in a given domainD) too, can be formulated as in equation (2.13). This can be seen as

follows. Provided thatf is non-negative everywhere inD, define

ms = s

√∫
D

[f(x)]s ψ(x) dxn . (2.14)

The maximum off in D is then given bylims→∞ms. Whilst in practice one would not use this limit

procedure1 to determine the actual maximum of a functionf in a domainD, it is a very useful formal

trick when the objective is to derive a partial differential equation for the value of a derivative contract

that depends on the maximum value of an underlying asset over a given time interval [Wil98].

The easiest form ofMonte Carlo integrationof integrals like equation (2.13) can be summarised as

follows.
1One would, of course, simply keep track of the maximum value off seen thus far as we iterate through more and more

samples.
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· Establish a procedure of drawing variatesx from the target distribution densityψ(x).

· Set up a running sum variabledouble RuningSum=0; , a running average variable

double RunningAverage; , and a counter variableunsigned long i=0; .

· Draw a variate vectorxi and evaluatefi := f(xi).

· Add the computed function value toRunningSum .

· Incrementi, i.e.++i; .

· Set the running average toRunningAverage = RunningSum/i; .

This gives us theMonte Carlo estimator

v̂N :=
1

N

N∑
i=1

f(xi) . (2.15)

· Keep iterating until either the required number of iterations has been carried out, or a specific

error estimate (see section2.7) has decreased below a predetermined threshold.

For more sophisticated methods when a procedure to draw variates exactly from the target distribution

ψ(x) is either not available or computationally too expensive, see chapter9.

2.2.1 Monte Carlo supremacy

The concept of Monte Carlo integration becomes ever more appealing as the dimensionality of the

domain increases. How this can be becomes clear as we look at the convergence behaviour of lattice

methods in comparison to Monte Carlo methods. For a givend-dimensional hypercube of volumeλd

the errorεLattice of approximating the integral of a given function over the hypercube’s interior by linear

approximation decreases likeO(λ2). In a regular grid over ad dimensional domainD, the number of

pointsN relates to the subdivision lengthλ like

N ∝ (1/λ)
d (2.16)

which implies

λ ∝ N
−1/d . (2.17)

Thus, for a fixed numberN of evaluations of the function which is to be integrated on ad-dimensional

domain, the relative error of a lattice method relates toN andd according to:

εLattice(N, d) ∝ N−2/d . (2.18)

Picking the sample points at random, however, the relative error relates toN andd according to

εMC(N, d) ∝ N−1/2 (2.19)



2.3 Some common distributions 9

and is thusindependent of the dimensionality. Note that equations (2.18) and (2.19) imply that in the

limit of many sampling points, the Monte Carlo method breaks even with lattice techniques as ofd = 4,

and outperforms regular grid methods ford > 4. For much higher dimensionalities, lattice methods

become utterly unusable whence the termcurse of dimensionality.

2.2.2 Multidimensional integration

This brings us to the question: whatis the total mathematical dimensionality of a Monte Carlo simula-

tion? Well, for simple problems such as the expected return from a portfolio given a multi-dimensional

joint distribution for the returns from all of the underlying assets out to a specific time horizon, it

would just be the number of those underlying assets. However, if we are carrying out a Monte Carlo

evaluation of an expectation of a function(al) of discretised paths of a set of financial assets over some

monitoring dates, then the state vectorx represents the realisations of all involved assets at all future

times of relevance, and the densityψ(x) is thejoint distribution densityof all those realisations. The

dimensionality of the integration domain is then

d = k · l . (2.20)

with k being the number of assets andl being the number of time horizons in the time discretisation of

the evolution paths.

2.3 Some common distributions

In general, most of the problems that we deal with when we resort to Monte Carlo methods are based

on a quantity whose distribution is more or less well known analytically from the mathematical for-

mulation of the chosen model. In this section, some of the more frequently used distributions are

listed.

Uniform

A random experiment that can have a continuum of outcomesX which are all equally likely orequi-

probableis said to have auniform distribution. Most uniform distributions that we encounter in finance

are either on a single closed interval[a, b] or a single open interval(a, b). In the former case, we say

X ∼ U [a, b] which means D(X) = [a, b] ,

and in the latter

X ∼ U(a, b) which means D(X) = [a, b] .

In either case, the probability density is given by

ψ(x) =

(
1

b− a

)
· 1{x∈D} .
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Normal

Very often, the quantity of interest depends on underlying variatesthat are normally distributed with

meanµ and standard deviationσ. In this case, we say that a variateX has the distributionN (µ, σ),

i.e.X ∼ N (µ, σ). The distribution density function is

ψ(x;µ, σ) =
1

σ
√

2π
e−

1
2

(x−µ)2

σ2 . (2.21)

Of particular common usage are standard normal variates. A variateZ is said to be astandard normal

variate if

Z ∼ N (0, 1) . (2.22)

I usually denote the standard normal distribution density function by

ϕ(x) =
1√
2π

e−
1
2
x2

. (2.23)

The standard normal distribution is symmetric around the origin and thus all odd moments vanish. For

even moments, we have

E
[
X2k

]
=

2k√
π

Γ(k + 1/2) =
k∏

m=1

(2m− 1) =
(2k − 1)!

2(k−1)(k − 1)!
for k > 0 . (2.24)

The standardcumulative normal probability functionis

N(x) =

∫ x

−∞
ϕ(x′) dx′ . (2.25)

The function N(x) relates to theerror functionvia

N(z) =
1

2

[
1 + erf

(
z√
2

)]
(2.26)

and

erf(x) = 2N(
√

2x)− 1 . (2.27)

At the time of this writing, most compiler systems provide a highly accurate and fast implementa-

tion of the error function. These implementations are usually based on rational Chebyshev interpolation

schemes for the error function which have been around for a long time, are well understood, highly

reliable, and very accurate [Cod69]. One such implementation is included on the accompanying CD,

just in case your compiler system and libraries lack it. Since the cumulative normal distribution func-

tion is very frequently used in financial calculations, it is advisable to implement it in terms of a highly

accurate and efficient error function by virtue of equation (2.26).

Equally, for the inverse cumulative normal functionz = N−1(p), there are several numerical imple-

mentations providing different degrees of accuracy and efficiency [MZM94]. A very fast and accurate
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approximation is the one given by Boris Moro in [Mor95]. The most accurate whilst still highly

efficient implementation currently freely available, however, is probably the algorithm by Peter Ack-

lam [Ack00]. When allowing for an additional evaluation of a machine-accurate cumulative normal

distribution function, Acklam’s procedure is able to produce the inverse cumulative normal function to

full machine accuracy by applying a second stage refinement using Halley’s method [ST95, Pic88]. A

C++ implementation of Acklam’s method is also included on the CD.

Bernoulli or dichotomic

A variateX is said to bedichotomicor Bernoulli distributed if it can take on only two discrete values,

sayA andB. Since the associated probabilities must add up to 1, we have

p := Pr [A] = 1− Pr [B] .

Binomial

Thebinomialdistribution is generated by repeating a Bernoulli experiment, say,n times. The Binomial

variate is then the number of times that one of the two states was attained. The probability thatA occurs

k times is inn repetitions of a Bernoulli experiment is

Pr [X = k] =

(
n

k

)
pk(1− p)n−k . (2.28)

Thus, the distribution density of the Binomial variateX is

ψ(x) =
n∑
k=0

(
n

k

)
pk(1− p)n−kδ(x− k) . (2.29)

The cumulative probability function results by integration to the same sum as in (2.29), only with the

Dirac densities replaced by Heaviside functions.

Geometric

The geometricdistribution describes the number of times one has to repeat a Bernoulli experiment

until stateB occurs for the first time. Since

Pr [X = k] = pk−1(1− p) , (2.30)

we have

ψ(x) =
∞∑
k=1

pk−1(1− p)δ(x− k) (2.31)

for the geometric distribution, and similarly with Heaviside instead of Dirac densities for the cumulat-

ive.
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Poisson

This distribution is closely related to the concept of point processes. Assume that there is a probability

intensityλ that in any one time interval dt, a certain event happens. In other words, the probability

of the said event occurring in any time interval dt is dp = λdt. The probability that this event has

occurredk times over a time span[0, T ] is given by

Pr [X = k] = e−λT
(λT )k

k!
. (2.32)

The density and cumulative result again by summing up probability-weighted Dirac densities and

Heaviside, respectively.

Exponential

Assume again that there is a probability of dp = λdt of an event occurring over any one time inter-

val. The probability density of the time one has to wait until the next event happens is given by the

exponentialdistribution density

ψ(t) = λe−λt . (2.33)

The cumulative probability is

Ψ(t) = 1− e−λt (2.34)

and the moments of the exponential distribution are

Etk [=]
k!

λk
. (2.35)

Beta

Betavariates are distributed according to

ψ(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 =

xα−1(1− x)β−1

B(α, β)
(2.36)

for x ∈ [0, 1] and someα, β > 0. It can be seen as a generalisation of the uniform distribution in

the sense that it is a smooth curve on the interval[0, 1], identically 0 at either end, and by a suitable

choice of the parametersα andβ it can be made very similar to the uniform distribution. Expectation,

variance, and moments of the beta distribution are

E[X] =
α

α+ β
, V[X] =

αβ

(α+ β + 1)(α+ β)2
, and E

[
Xk
]

=
Γ(α+ k)Γ(α+ β)

Γ(α+ β + k)Γ(α)
. (2.37)

The cumulative probability function of the beta distribution is

Ψ(x) =
Bx(α, β)

B(α, β)
. (2.38)
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Gamma

The density function of the gamma distribution reads

ψ(x) =
xα−1

Γ(α)βα
e−

x
β (2.39)

for x ≥ 0 and someα, β > 0. Forα = n andβ = 1
λ
, the waiting time untiln events have occurred

in a Poisson process is gamma distributed according to (2.39). Expectation and variance of the gamma

distribution are

E[X] = αβ (2.40)

V[X] = αβ2 . (2.41)

Its cumulative is

Ψ(x) = 1− Γ (α, x/β)

Γ(α)
. (2.42)

Chi-square

DefineX as the sum of the squares ofν independently drawn standard normal variates, i.e.

X :=
ν∑
k=1

z2
i with zi ∼ N (0, 1) . (2.43)

The variateX follows the law of theχ2 distribution density withν degrees of freedom

ψ(x) =
x

ν
2
−1

Γ(ν
2
)2

ν
2

e−
x
2 (2.44)

and has the cumulative probability function

Ψ(x) = 1− Γ (ν/2, x/2)

Γ(ν/2)
. (2.45)

In general,ν doesn’t need to be an integer. The expectation and variance are

E[X] = ν (2.46)

V[X] = 2ν . (2.47)

Theχ2 distribution is a special case of the gamma distribution withα = ν/2 andβ = 2.

Student’s t

Take two independent variatesY andZ. The first one,Y is a standard normal variateY ∼ N (0, 1),

and the second one is drawn from aχ2 distribution withν degrees of freedom, i.e.Z ∼ χ2
ν . Then, the

quotient

X :=
Y√
Z
ν

(2.48)
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satisfies Student’st distribution

ψ(x) =
Γ(ν+1

2
)

√
νπ Γ(ν

2
)

[
1 +

(
x2

ν

)]− ν+1
2

=

(
1 + x2

ν

)− ν+1
2

√
ν B(ν/2, 1/2)

. (2.49)

All the moments up to orderν exist. Since the distribution is symmetric around0, its expectation is 0.

Forν > 2, the variance and higher order even moments fork < ν are

V[X] =
ν

ν − 2
(2.50)

E
[
Xk
]

=
Γ(ν+1

2
)Γ(ν−k

2
)

√
π Γ(ν

2
)

. (2.51)

Forx ≤ 0, the cumulative probability function is

Ψ(x) =
B ν

ν+x2
(ν/2, 1/2)

2B(ν/2, 1/2)
(2.52)

and forx > 0 it is given by virtue of its symmetry asΨ(x) = 1−Ψ(−x).

Cauchy

The Cauchy (also known as Lorentz) distribution is defined by the density function

ψ(x) =
1

π

1

1 + x2
(2.53)

and its cumulative probability function is

Ψ(x) =
1

π
atan(x) +

1

2
. (2.54)

The Cauchy distribution is symmetric around zero and thus all of its odd moments are zero2. None of

the even moments exist.

Lognormal

Define

X := eσz (2.55)

with z being a standard normal variatez ∼ N (0, 1). The variateX follows thelognormaldistribution

ψ(x) =
e−

1
2

ln2 x
σ2

σx
√

2π
(2.56)

Ψ(x) = N

(
lnx

σ

)
. (2.57)

2 This is assuming that the moments are defined by Riemann integration. This is important since the half-sided integrals∫ ±∞
x=0

x2k+1ψ(x)dx for somek ∈ N0 diverge for the Cauchy distribution and thus Lebesgue integration would not result in

finite moments of odd order.
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The expectation, variance, and moments are

E[X] = e
1
2
σ2

(2.58)

V[X] = eσ
2
(

eσ
2 − 1

)
(2.59)

E
[
Xk
]

= e
1
2
k2σ2

(2.60)

The lognormal distribution is probably the most important function in computational finance since it

is the solution to the stochastic differential equation describing geometric Brownian motion, which

in turn is almost always the first easy choice when the evolution of non-negative quantities is to be

modelled.

Generalised beta 2

Thegeneralised beta distribution of the second kind[BM87, CDM90], or GB2 for short, is given by a

four-parameter density function

ψ(x) =
|a|xap−1

bapB(p, q)
[
1 +

(
x
b

)a]p+q (2.61)

for a, b, p, q, x > 0. The cumulative of the GB2 distribution can be written as

Ψ(x) =
B−(x

b )
a(p, 1− p− q)

(−1)p B(p, q)
. (2.62)

Note that

(−1)−c B−y(c, d) = (−1)−c−1

∫ −y

0

tc−1 (1− t)d−1 dt =

∫ y

0

sc−1 (1 + s)d−1 ds (2.63)

for c > 0 andd < (1 − c) is a real positive number and can be evalutated very efficiently, e.g., by the

aid of an adaptive Gauss-Lobatto method [GG00b, GG00a, Gan92].

The moments of the GB2 distribution are

E
[
Xk
]

= bk
B
(
p+ k

a
, q − k

a

)
B(p, q)

. (2.64)

One of the very useful features of the GB2 distribution is that it allows for a large variety of shapes

that arenearly lognormalwhich is desirable when density functions are used for the extrapolation of

volatility smiles of traded options.

Pareto

ThePareto distributionis skewed and heavy-tailed and frequently used to model rare events. Its density

function is

ψ(x) =
a

xa+1
(2.65)
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for x ≥ 1 anda > 0 and its cumulative probability function is

Ψ(x) = 1− 1

xa
. (2.66)

All moments of orderν with ν < a exist and are given by

E
[
Xk
]

=
a

a− k
. (2.67)

Generalised Pareto

As a generalisation of (2.65) we have

ψ(x) =
aba

xa+1
(2.68)

for x ≥ b anda > 0 and its cumulative probability function is

Ψ(x) = 1−
(
b

x

)a
. (2.69)

The moments are

E
[
Xk
]

=
abk

a− k
(2.70)

for k < a.

Weibull

This distribution density is given by

ψ(x) = γ
xγ−1

β
e−

xγ

β (2.71)

for x ≥ 0 andγ, β > 0 and its cumulative probability function is

Ψ(x) = 1− e−
xγ

β (2.72)

The moments are

E
[
Xk
]

= β
k/γ Γ(1 + k/γ) . (2.73)

The Weibull distribution is sometimes also referred to as theFrechetdistribution.
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Gumbel

TheGumbelprobability density is

ψ(x) = abe−(be−ax+ax) (2.74)

for a, b > 0 andx ∈ R. Its cumulative is

Ψ(x) = e−be
−ax

. (2.75)

The first three moments of the Gumbel distribution are

E[X] =
1

a
(ln b+ Ce) (2.76)

E
[
X2
]

=
1

a2

(
ln2 b+ 2Ce ln b+ C2

e +
π2

6

)
(2.77)

E
[
X3
]

=
1

a3

(
ln3 b+ 3Ce ln2 b+

(
3C2

e +
π2

2

)
ln b+ C3

e + Ce
π2

2
+ 2ζ(3)

)
. (2.78)

The numberζ(3) ≈ 1.2020569 is also known as Aṕery’s constant.

Generalised lambda

Thegeneralised lambda distributionis also known as theasymmetric lambda distribution. It exists in

two forms of parametrisation: the original form by Ramberg and Schmeiser [RS74, RDTM79] and a

later rewritten formulation [FMKL88, KDM96].

Unlike most other distributions, it is directly defined in terms of the inverse of the cumulative. In

the original parametrisation [RS74], this reads

Ψ−1(u) = λ1 +
1

λ2

(
uλ3 − (1− u)λ4

)
(2.79)

for u ∈ [0, 1]. Its density is parametrically given byx = Ψ−1(u) and

ψ(x) =

[
d

du
Ψ−1(u)

]−1

=

[
λ3

λ2

uλ3−1 +
λ4

λ2

(1− u)λ4−1

]−1

. (2.80)

The generalised lambda distribution is very popular for the fitting of data due to its tremendeous flex-

ibility. With the right choice of parameters it can be used to approximate almost all of the previously

mentioned distributions.

The moments of the generalised lambda distribution can be calculated directly as

E
[
Xk
]

=

∫ 1

0

(
Ψ−1(u)

)k
du. (2.81)
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The first three moments are

E[X] =
1

λ2

(
λ1λ2 +

1

λ3 + 1
− 1

λ4 + 1

)
(2.82)

E
[
X2
]

=
1

λ2
2

(
λ2

1λ
2
2 +

1

2λ3 + 1
+

1

2λ4 + 1
+

2λ1λ2

λ3 + 1
− 2λ1λ2

λ4 + 1
− 2 B(λ3 + 1, λ4 + 1)

)
(2.83)

E
[
X3
]

=
1

λ3
2

(
λ3

1λ
3
2 +

3λ2
1λ

2
2

1 + λ3

+
3λ1λ2

2λ3 + 1
+

1

3λ3 + 1
− 1

3λ4 + 1
− 3λ2

1λ
2
2

λ4 + 1
+

3λ1λ2

2λ4 + 1

− 3 B(2λ3 + 1, λ4 + 1)− 6λ1λ2B(λ3 + 1, λ4 + 1) + 3 B(λ3 + 1, 2λ4 + 1)
)
. (2.84)

2.4 Kolmogorov’s strong law

This fundamental result by Andrey Nikolaevich Kolmogorov was established in the 1920s and is the

main mathematical justification for the use of Monte Carlo simulations.

Convergence almost surely

Let X1, X2, X3, . . . be a sequence of random variates, such as, for instance, the running average of a

Monte Carlo simulation. If, given someξ, for all ε, η > 0 there exists ann0 such that

Pr [|Xn − ξ| > ε, ∀n > n0] < η , (2.85)

then we say that the sequence{Xn} converges almost surelyto ξ which is denoted as

Xn
a.s.−→ ξ . (2.86)

Kolmogorov’s strong law of large numbers

Given a sequence ofiid, i.e. independent identically distributed, variatesξi with expectation

E[ξi] = µ , (2.87)

define their running sum and average as

Sn :=
n∑
i=1

ξi (2.88)

Xn :=
1

n
Sn . (2.89)

Then,

Xn
a.s.−→ µ . (2.90)
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2.5 The central limit theorem

The central limit theorem is one of the cornerstones of statistics and probability theory. It was first

formulated by Laplace. Since then, many great mathematicians such as Chebyshev, Markov, Lyapunov,

Khinchin, Lindeberg, and Ĺevy have given extensions and variations of it. For the sake of brevity, only

a rather simplified form is outlined below.

Given a sequence of independent identically distributed variatesξi with expectation and variance

E[ξi] = µ (2.91)

V[ξi] = σ, (2.92)

define the running sumSn as in (2.88). Then, for increasingn, the composite variate

Xn :=
Sn − nµ

σ
√
n

(2.93)

converges in distributionto the standard normal distribution. We denote this as

Xn
i.d.−→ N (0, 1) . (2.94)

A practical example for this is the approximation of a Gaussian variate by summing up 12 uniform

(0, 1) variates. Since the variance of uniform variates amounts to1/12, the denominator in (2.93) equals

unity and the approximation is simply the sum of twelve uniforms minus 6. Note that this is not a

highly accurate approximation and should only be used to establish ballpark estimates. A diagram is

given in figure2.1for comparison3.

2.6 The continuous mapping theorem

Given a sequence(Xn, Yn) that converges in distribution to(X, Y ), i.e.

(Xn, Yn)
i.d.−→ (X, Y ) , (2.95)

and letφ(x, y) be a continuous map. Then

φ(Xn, Yn)
i.d.−→ φ(X,Y ) . (2.96)

2.7 Error estimation for Monte Carlo methods

Given a Monte Carlo estimator̂v as the average of many individual draws of the random variateV , i.e.

v̂N =
1

N

N∑
i=1

vi , (2.97)

3My thanks to Dr. Carl Seymour for carrying out the calculations for this diagram.
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Figure 2.1: Approximating a standard normal variate by taking twelveU(0, 1) variates and subtract-

ing 6. The uniform number generator used for this diagram is the Mersenne Twister (see section7.5).

we know that each individual evaluation of the estimator itself, for largeN , behaves approximately

like a normal variate by virtue of the central limit theorem. Assuming that the variance ofV is σ2, this

means

v̂N
i.d.−→ N

(
µ,

σ√
N

)
. (2.98)

Since v̂N approaches a normal distribution, a statistical measure for the uncertainty in any one

simulation result of̂vN is given by the standard deviation ofv̂N , namely√
V[v̂N ] =

σ√
N
. (2.99)

In general, we don’t actually know the varianceσ2 of the random variateV whose expectation we

are trying to estimate. However, by virtue of the combination of the central limit and the continuous

mapping theorem, we can use the variance of the simulation instead as an estimate forσ2:

σ̂N =

√√√√( 1

N

N∑
i=1

v2
i

)
−

(
1

N

N∑
i=1

vi

)2

(2.100)

This leads us to the definition of thestandard error:

εN =
σ̂N√
N

(2.101)
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Whenever the standard error is used as an error measure, it is important to remember that it is only

of statistical nature. Any single simulation can yield a result well outside the standard error. As a

matter of fact, since the total probability mass within one standard deviation either side of the centre

of the standard normal distribution is only around 68.3%, approximately every third simulation based

on random numbers will have a result outside the standard error margin around the correct solution! In

addition, the standard error itself is subject to a statistical error margin. It can be shown, however, that

the standard deviation of the standard error scales likeσ̂2
N/N and is thus much less significant than the

statistical nature of the standard error as a measure for expected accuracy.

2.8 The Feynman-Kac theorem

This theorem by R. Feynman and M. Kac [Fey48, Kac51] connects the solutions of a specific class

of partial differential equations to an expectation which establishes the mathematical link between the

PDE formulation of the diffusion problems we encounter in finance, and Monte Carlo simulations.

Given the set of stochastic processes

dXi = bidt+
n∑
j=1

aijdWj for i = 1..n , (2.102)

with formal solution

Xi(T ) = Xi(t) +

∫ T

t

bidt+

∫ T

t

n∑
j=1

aijdWj , (2.103)

any functionV (t,X) with boundary conditions

V (T,X) = f(X) (2.104)

that satisfies the partial differential equation

∂V

∂t
+ g +

1

2

n∑
i,j=1

cij
∂2V

∂Xi∂Xj

+
n∑
i=1

bi
∂V

∂Xi

= kV (2.105)

with

cij :=
n∑
k=1

aikajk (2.106)

can be represented as the expectation

V (t,X) = E
[
f(XT )e−

∫ T
t kdu +

∫ T

t

g e−
∫ s

t kduds

]
. (2.107)

Hereby, all of the coefficientsaij, bi, k, andg can be functions both of timet and the state vector

X(t). As with most mathematical theorems, there is a whole host of additional conditions for good

behaviour of all the coeffients and functions involved and the reader is referred to, e.g., Karatzas and

Shreve [KS91] (page 366).
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2.9 The Moore-Penrose pseudo-inverse

The Moore-Penrose pseudo-inverse [GK65, Alb72, PTVF92] of a matrixA ∈ Rm×n is a very robust

way of attempting to solve linear systems that for a variety of reasons may be singular or near-singular.

It is based on the method ofsingular value decompositionof A given by



A



=



U



·



λ1

λ2

...
...

λn


·


V >


. (2.108)

The entriesλi of the diagonal matrixΛ in the centre of the right hand side are called thesingular

values, and are guaranteed to be positive. The matricesU andV are each columnwise orthonormal.

Now, define the diagonal matrixΘ of the same dimensions asΛ by setting its diagonal entries to

θi :=


1
λi

for λi > ε

0 for λi ≤ ε
(2.109)

for some suitable round-off thresholdε (which can reasonably safely also be set to exactly zero). We

thus obtain the Moore-Penrose pseudo-inverse:

A−1
MP := V ·Θ · U> (2.110)

Using the Moore-Penrose pseudo-inverse to solve a linear systemAx = bwill result in a least-square fit

whenever the system is overdetermined and thus strictly speaking has no solution. For underdetermined

systems, it will find the one solution that has no projection onto the nullspace ofA. In other words, it

will find the solution of least norm and thus avoid the accidental amplification or contribution of noise.

The Moore-Penrose pseudo-inverse is the method of choice whenever our objective is to find a

vector (or matrix)x that best fits

Ax = b (2.111)

for some vector (or matrix)b with the least possibleL2 norm for x. In most situations when we

encounter a singular or ill-conditioned system of this nature, this is precisely what suits us best.

An excellent reference for further details and the numerical method to compute the singular value

decomposition of any matrix is [PTVF92].



Chapter 3

Stochastic dynamics

In all aspects of life, we face having to take into account the unknown future. In the world of finance

we very often want to quantify the uncertainty of the future, or at least the financial impact of the

universe’s possible evolutions we may incur. The mathematical way to describe that a quantity could

evolve in various ways with associated probabilities as time passes by is to say that it is subject to

stochastic dynamics. Great mathematicians have worked in this area and today we owe tremendeously

to Gauss, Wiener, Brown, Levy, Itô, and many others for path-breaking discoveries on stochastic pro-

cesses and stochastic calculus. In this chapter, I briefly summarise some of the more important ones

the quantitative analyst commonly encounters. This list is by far not comprehensive, it is merely a little

reminder of the whole zoology of stochastic processes that has been studied by mathematician.

3.1 Brownian motion

Brownian motion is ubiquitous in quantitative finance. Wherever we model the evolution of something

into the future, the simplest assumption is to say that over any one time step the outcome only depends

on the present value of the quantity (Markov property) and that all time steps are equal, i.e. that the

structure of the evolution process is the same at all times into the future (stationarity). If in addition to

that we demand that the quantity must evolve continuously (without jumps), we necessarily will have

to use a Brownian process as the underlying stochastic driver of the quantity we wish to model. The

reason for this is that the above set of propertiesalready defines Brownian motionwhich makes it a

beautifully simple concept. This is best summarised in the following theorem taken from [Har90].

Theorem 3.1.1

If Y is a continuous process with stationary independent increments, then Y is a Brownian

motion.

Harrison continues:

This beautiful theorem shows that Brownian motion can actually be defined by stationary in-

dependent increments and path continuity alone, with normality following as a consequence of

23
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these assumptions. This may do more than any other characterization to explain the significance of

Brownian motion for probabilistic modeling.

A standard Brownian motion is often also referred to as astandard Wiener processowing to the

fact that it was N. Wiener in the 1920s who started the mathematical analysis of Brownian motion. A

Wiener process is formally often represented by the differential increment dW or dWt (indicating that

this is the increment of the Wiener process happening at timet) and this notation is adopted throughout

this chapter. A standard Wiener process has the following properties:-

1. The expectation of the differential increment dWt at any one point in timet is zero:

E[dWt] = 0 (3.1)

2. The variance of the differential increment dWt at any one point in timet is equal to the associated

differential increment in time:

V[dWt] = E
[
dW 2

t

]
− (E[dWt])

2 = E
[
dW 2

t

]
= dt (3.2)

This means that the sum of increments, i.e. the value of the process variableWt, is normally

distributed with zero mean and a standard deviation of
√
t:

Wt =

∫ t

s=0

dWs ∼ N (0,
√
t) (3.3)

In the design of Monte Carlo algorithms we make frequently use of a more general formulation of the

second property of a Wiener process:∫ T

t=0

f(t) dWt ∼ N

0,

√∫ T

t=0

f(t)2dt

 (3.4)

This results immediately from the fact that variance of a Wiener process is linearly additive. Equation

(3.4) is of fundamental importance in many applications since it enables us to bypass the numerical

solution of the stochastic integral on the left hand side and directly draw variates that represent the

distribution of the entire expression.

3.2 Itô’s lemma

One of the most important mathematical tricks from stochastic calculus that we use for the purpose

of transforming stochastic differential equations isItô’s lemma. In crude terms, it is the direct con-

sequence of the variance of a Wiener process increment over any infinitesimal time step given by

equation (3.2). Itô’s lemma states that the total differential of any given functionf(X) depending on

a stochastic variableX ∈ Rn subject to the system of stochastic differential equations

dXi = bi(t,X) dt+
n∑
i=1

aik(t,X) dWk t (3.5)
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is given by

df =

(
n∑
i=1

(∂Xi
f)bi +

1

2

n∑
i,j,k,l=1

(∂2
XiXj

f)aikρklajl

)
dt+

n∑
i,k=1

(∂Xi
f)aik dWk , (3.6)

where

ρkl =
E[dWkdWl]

dt
(3.7)

is the instantaneous correlation of dWk t and dWl t.

3.3 Normal processes

Normal processes are of paramount importance in financial applications. This is not only due to the

fact that they are generally very amenable to analytical evaluations, but also that they very often are

considered to be a very good starting point for a realistic modelling of the problem at hand. An example

is the celebrated Vasicek model of a mean-reverting evolution of the short interest rate towards a long-

term equilibrium distribution [Vas77]. This model can be formulated by the stochastic differential

equation

dr = a(θ − r)dt+ σ dW (3.8)

with a, θ, andσ being constants. Given an initial value forr, i.e. r0 = r(0), the distribution ofr(t) can

be explicitly calculated. In order to do so, we utilise the so-called method ofvariation of constants.

The first step is to solve the homogeneous differential equation

drh = a(θ − rh)dt (3.9)

to obtain

rh(t) = θ + c · e−at (3.10)

for some constantc. We now assume that the solution of equation (3.8) is of the same form as (3.10),

only thatc is not a constant. In other words, we use the Ansatz

r = θ + c · e−at (3.11)

and then compare

dr = d
(
θ + c · e−at

)
= a(θ − r)dt+ e−atdc (3.12)

with the original equation (3.8) which gives us

dc = eatσ dW (3.13)
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and thus

r(t) = θ + (r0 − θ)e−at + e−atσ
∫ t

s=0

easdWs. (3.14)

By virtue of equation (3.4), we can immediately write down the distributional behaviour ofr(t) as

r(t) = θ + (r0 − θ)e−at + σ

√
1−e−2at

2a
z (3.15)

with z being a standard normal variate or, equivalently,

r(t) ∼ N

(
θ + (r0 − θ)e−at, σ

√
1−e−2at

2a

)
. (3.16)

For very small values of the mean reversion speeda, the Taylor expansion of the standard deviation

is σ
√
t. Thus, initially, the short rater appears to diffuse like a standard Wiener process, albeit with

a drift. For large values oft, however, the distribution converges to a stationary form ofN
(
θ, σ√

2a

)
.

This highlights that mean reverting processes of the type of equation (3.8) (also known as Ornstein-

Uhlenbeck processes) converge to an equilibrium state for the distribution over long time scales.

Equation (3.8) can be extended to allow fora, θ, andσ to be a function oft. The distribution result-

ing from a so generalised Ornstein-Uhlenbeck process is still Gaussian and can be derived analytically

as outlined above, i.e.

df = a(t) [θ(t)− f ] dt+ σ(t) dWt (3.17)

leads to

f(t) = e−A(t)

(
f0 +

∫ t

0

a(s)θ(s)eA(s)ds

)
+ e−A(t)

∫ t

0

σ(s)eA(s)dWs (3.18)

with A(s) :=
∫ s

0
a(u)du and the distribution reads

f(t) ∼ N

[e−A(t)

(
f0 +

∫ t

0

a(s)θ(s)eA(s)ds

)]
,

e−A(t)

√∫ t

0

σ2(s)e2A(s)ds

 . (3.19)

3.4 Lognormal processes

The immediately natural extension of normal processes are all those that can be mapped back to a

normal process. For instance, if we were interested in modelling a quantityS that is subject to a mean-

reversion effect, but cannot become negative, we could setf := lnS and describe the behaviour ofS

indirectly by saying thatf satisfies equation (3.17). If we are then still interested in the explicit form

of the stochastic differential equation governing the dynamics ofS, we can apply It̂o’s lemma to the

inverse transformationS = ef to derive dS. This is exactly how we obtain the following stochastic

differential equation for a mean-reverting lognormal process:

dS
S

=

(
a(t) [θ(t)− lnS] +

1

2
σ2(t)

)
dt+ σ(t)dWt (3.20)

The distribution oflnS is obviously given by (3.19).
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3.5 The Markovian Wiener process embedding dimension

Most systems of stochastic differential equations that we use for modelling of financial relevant quant-

ities are of the from

df = b(t,f)dt+ A(t,f) · dWt (3.21)

with f , b ∈ Rn,Wt ∈ Rm, A ∈ Rn×m, andm ≤ n. The functionb(t,f) is frequently called thedrift

of the stochastic process, and the matrixA(t,f) may be called thedriving matrix or, following the

nomenclature of Karatzas and Shreve [KS91], thedispersion matrix.

Clearly, when viewed as embedded in the full state space dimensionalityn, stochastic systems of

the kind (3.21) are by definitionMarkovian, since none of the terms depend on the past or the future.

Still, the reader may have come across the phrase that certain models arenot Markovian, even though

they can be described by an equation like (3.21). This slightly misleading notion usually arises when

it is intended to express the fact that it is not possible to construct a recombining tree forf in the

Wiener process dimensionalitym. Of course, for all processes of the form (3.21) it is theoretically

possible to construct a recombining tree when the embedding dimensionality of the tree is chosen to

ben. However, one cannot in general reduce the embedding dimension of the tree tom. Whenever

it is possible, though, the full system (3.21) may be calledMarkovian Wiener process embedding

dimension reducible, or simplyreducible. A process of the type of equation (3.21) is reducible if there

is a bijection

f(t) ⇐⇒Wt . (3.22)

In other words, given knowledge of the exact state of them-dimensional driving Wiener process at any

one time, it must be possible to identify exactly the values of all of the state variables in the vectorf .

This means that the process forf must not depend on the path thatW took to get to its state at timet.

Only then can we assign unique transition densities to each branch of them-dimensional recombining

tree1.

The above considerations arise naturally in the context of Heath-Jarrow-Morton models [HJM92a]

of the yield curve. It can be shown that HJM models for the instantaneous forward ratesf(t, T ) at

time t for timeT are reducible only for a very specific choice of the instantaneous volatility function

σ(t, T ), and the specific choice leads to what is sometimes referred to as thegeneralised Hull-White

model. Otherwise, the Markovian embedding dimension of any HJM forward rate model is infinite,

even though only a few driving Wiener processes may be involved! Another yield curve modelling

family that is not reducible is given by the Brace-Gatarek-Musiela/Jamshidian market models which

always require as many dimensions as there are market rates in the model due to the specific state

dependence of the BGM/J drift terms. For those problems, Monte Carlo methods are the numerical

technique of choice since the difficulties involved with high-dimensionality are negligible for Monte

Carlo methods, whilst for trees and lattice methods only a few dimensions are realistically tractable.
1The discussion can be equally adapted to cater for a PDE formulation of the solution technique. It is only for the sake

of clarity and convenience that we restrict the explanation to trees.
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3.6 Bessel processes

A BesselprocessRt of dimensionν is given by theL2-norm of aν-dimensional Wiener process and

probably owes its name to the sperical symmetry imposed by theL2-norm:

Rt := ‖Wt‖ =

√√√√ ν∑
i=1

W 2
i t (3.23)

It can be shown2 that a Bessel process of dimensionν satisfies the stochastic differential equation

dRt =
ν − 1

2

dt
Rt

+ dWt (3.24)

generated by a one-dimensional standard Wiener process dWt.

3.7 Constant elasticity of variance processes

Theconstant elasticity of varianceprocess [Bec80, Sch89] is given by

df = σfγdWt for γ ≥ 0 , (3.25)

whereby I have omitted any drift terms. It has been used extensively throughout all areas of financial

modelling, including equity, interest rates, commodities, and many other financial values. The reason

that the CEV process is very popular is that it can reproduce a slightly curved implied volatility skew

for plain vanilla options priced on the basis of it. Forγ < 1, the skew is negative with options at

low strikes having a higher implied volatility than those at high strikes. Forγ > 1, the skew resulting

from the CEV process is positive and describes the option prices observed in some commodity markets

reasonably well. The formal solutions for the SDE (3.25) can be found in [BS96]. Alternatively, in

the context of the BGM modelling framework for interest rates, a good summary of the properties of

the CEV process and simple Call and Put option pricing formulas resulting from it can also be found

in [AA00]. As for Monte Carlo simulations of the process (3.25), we will come back to the CEV

process in section4.3.

The CEV process has a direct relation to the Bessel process. The transformation

R :=
1

1− γ
f 1−γ (3.26)

turns the SDE of the CEV process into that of a Bessel process of dimension

ν =
1− 2β

1− β
. (3.27)

This means, that for0 ≤ β ≤ 1/2, the CEV process is equivalent to a Bessel process of a fractional

dimension between 0 and 1, and can thus be absorbed at zero. Forβ > 1/2, however, the CEV process

corresponds to a Bessel process ofnegative dimensionand cannot attain zero.

2See [KS91] page 159, equation (3.16).
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An interesting question in the context of section3.5 is if a system ofn equations of type (3.25) is

reducible to the dimensionalitym of the driving Wiener processWt ∈ Rm. Clearly forγ = 0 or γ = 1,

the process is reducible since we then have the standard normal or lognormal process, respectively. In

general, however, as we discussed in section3.5, for this to be the case, we must be able to write

f(t) = F (Wt, t) for f ∈ Rn and W ∈ Rm with m ≤ n (3.28)

for some functionF (Wt, t). The application of It̂o’s lemma toF then yields

dF = ∂WFdW +

(
∂tF +

1

2
∂2
WWF

)
dt = df = fγdW = F γdW . (3.29)

This means

∂WF = F γ (3.30)

whose solution is

F =
(
(1− γ)W + F

(1−γ)
0

) 1
1−γ

+ g(t) (3.31)

for some functiong(t) with γ 6= 1 which we had already excluded anyway. The second condition to

be satisfied byF that resulted from (3.28) is

∂tF +
1

2
∂WWF = 0 (3.32)

which, together with (3.31) implies

ġ(t) = −1

2
γF 2γ−1 . (3.33)

This last equation can only hold ifg is a constant andγ = 0 because otherwise we would have a pure

function of t on the left hand side, and a function oft andW on the right hand side which clearly

is a contradiction. In other words, the CEV process is path-dependent, and a multi-dimensional CEV

process driven by fewer Wiener processes than there are CEV state variables cannot be reduced.

3.8 Displaced diffusion

Another process formulation that also gives rise to an implied volatility skew, in fact very similar to

that of the CEV process, is thedisplaced diffusionprocess [Rub83]

dS = µS dt+ σdisplaced diffusion(S + θ) dW . (3.34)

If we use the map

θ = − log2(γ) · S0 , (3.35)
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the displaced diffusion process can be used as a very good numerical proxy for the skew one would

obtain from the CEV process, only with a somewhat more pronounced curvature (which is probably

desirable). Unlike the CEV process, though, the displaced diffusion process is extremely easy to solve

and numerically fast. Clearly we need to rescale the volatility similarly to how we translate from

relative to absolute volatilities:

S0 · σlognormal = (S0 + θ) · σdisplaced diffusion (3.36)

As can be seen from (3.35), for γ = 1, the displaced diffusion process becomes ordinary geometric

Brownian motion, i.e. a lognormal process. Forγ = 1
2

the skew of the displaced diffusion process is

approximately that of the square root process, and in the limitγ → 0, we arrive at the normal evolution,

similar to the CEV equation (3.25).

The evolution ofS subject to (3.34) out to a time horizonT is given by

ST = (S0 + θ) · e[(µ−
1
2
σ2

dd)T+σdd
√
Tz] − θ with z ∼ N (0, 1) . (3.37)

In the context of statistics, the distribution ofST is also known as aJohnson I distribution[JKB94,

Joh49, Whe80].



Chapter 4

Process driven sampling

In financial engineering and option pricing, we frequently wish to calculate the expectation of func-

tionals of the time evolution of one or more underlying assets. In order to do this, one typically has to

simulate a stochastic process and evaluate a pricing functional for each simulated path. In this chapter,

some of the key concepts involved in this task are explained. Also, I will demonstrate how different

methods work and recommend which technique is best for which class of problem.

4.1 Strong versus weak convergence

The numerical approximation of the solution of a stochastic differential equation amounts to a comput-

ing scheme that creates a sequence of numbers representing the time-discretisation of a specific sample

path of a mathematically defined stochastic process. For ordinary differential equations, there is a nat-

ural meaning to the concept ofconvergenceof a numerical method to the solution. For SDEs, the

situation is different. The concept ofstrongconvergence can be seen as the equivalent to convergence

for ODEs since it requires that the numerical approximation to a given path of the stochastic process

matches the truly exact solution at any point along the path. However, the solution to a stochastic

differential equation at any time horizon, unlike ODEs, is not a single number but a (possibly multi-

dimensional)distribution. And as for this distribution, we are often not interested in obtaining its exact

functional shape but rather in the expectation of some function (typically a payoff profile) over that

distribution.

A time-discretised approximationYδ of steps not larger thanδ is said to be of generalstrongcon-

vergence orderγ if for any time horizonT the approximationYδ(T ) is guaranteed to converge to the

exact solutionX(T ) in expectation by absolute difference like

E
[ ∣∣X(T )− Yδ(T )

∣∣ ] ≤ c δγ (4.1)

for all δ that are smaller than some positiveδ0 and some constantc.

In contrast to the strong convergence criterion by absolute difference,weakconvergence of order

β only requires that the numerically calculated expectation of any functiong(·) which is 2(β + 1)-

31
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times continuously differentiable and of polynomial growth converges to the exact equivalent. In other

words, for anyg ∈ C2(β+1)
P , ∣∣E[g (X(T ))]− E[g (Yδ(T ))]

∣∣ ≤ c δβ (4.2)

must hold for allδ that are smaller than some positiveδ0 and some constantc.

A consequence of the above definitions of strong and weak convergence is that many schemes of

a given strong convergence order are of a higher weak convergence order. An example of this is the

standard Euler scheme which, whilst being an order1/2 strong scheme, is also an order 1 weak scheme,

given suitable smoothness and growth conditions on the drift and diffusion coefficients. It is therefore

not surprising that in general any method that is of higher convergence order for the strong criterion,

also turns out to be of superior performance for the purpose of option pricing. Another point of interest

is that, for many schemes, the convergence order, weak or strong, which they are guaranteed to have for

any general SDE, may actually be exceeded for specific stochastic differential equations. In particular

for the kind of SDEs that we encounter in finance, this is often the case.

4.2 Numerical solutions

Whilst there are a great many different kinds of numerical schemes for the solution of stochastic dif-

ferential equations, and the best reference is almost certainly the book by Kloeden and Platen [KP99],

we now briefly introduce and discuss the Euler and the Milstein scheme. The starting point is in both

cases the following general form of a stochastic differential equation

dX = adt+ b dW . (4.3)

Note that botha andb can be functions of the process variableX and time. In the multi-dimensional

case ofm state variablesXi driven byd independent Wiener processes, we have

dXi = ai(t,X) dt+
d∑
j=1

bij(t,X) dWj . (4.4)

4.2.1 The Euler scheme

Denote the numerical approximation to the solution of (4.3) for a scheme over equal steps of size∆t

at timen·∆t asY (tn). The Euler scheme is then given by

Y (tn+1) = Y (tn) + a(tn, Y (tn)) ∆t+ b(tn, Y (tn)) ∆W . (4.5)

The Euler scheme is of strong convergence order1/2 which means we can always fall back to this

workhorse of a numerical procedure to test any other method.
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In financial applications, we are often interested to represent the evolution of an asset by a stochastic

process. The most common assumption is probably that of geometric Brownian motion:

dS
S

= (r − d)dt+ σdW . (4.6)

In this case, the Euler scheme becomes

S(tn+1) = S(tn) ·
{

1 + (r − d)∆t+ σ∆W
}

(4.7)

= S(tn) ·
{

1 + σz
√

∆t+ (r − d)∆t
}

with z ∼ N (0, 1) .

In the multidimensional case, the Euler scheme is

Yi(tn+1) = Yi(tn) + ai(tn,Y (tn)) ∆t+
d∑
j=1

bij(tn,Y (tn)) ∆Wj . (4.8)

4.2.2 The Milstein scheme

The Milstein scheme involves the addition of the next order terms of the Itô-Taylor expansion of equa-

tion (4.3). This gives

Y (tn+1) = Y (tn) + a(tn, Y (tn)) ∆t+ b(tn, Y (tn)) ∆W + 1
2
bb′
[
∆W 2 −∆t

]
. (4.9)

with

b′ =
∂b(t,X)

∂X
. (4.10)

For the case of geometric Brownian, this results in

S(tn+1) = S(tn) ·
{
1 + (r − d− 1

2
σ2)∆t+ σ∆W + 1

2
σ2(∆W )2

}
(4.11)

= S(tn) ·
{

1 + σz
√

∆t+
(
r − d+ 1

2
σ2
[
z2 − 1

])
∆t
}

Although the Milstein scheme is definitely manageable in the one-dimensional case, its general multi-

dimensional extension is not as straightforward as one may expect. It requieres not only the draw-

ing of standard normal variates for the simulation of the standard Wiener process increments∆W

for each dimension, but additional ones to account for the Itô integrals involving the mixing terms∑d
j=1 bij(t,X) dWj.

4.2.3 Transformations

Let us have a closer look at the difference the Milstein scheme made in comparison to the Euler scheme

for geometric Brownian motion. The additional terms of the Milstein scheme amount to adding

1
2
σ2
[
∆W 2 −∆t

]
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to the terms in the braces on the right hand side of (4.7). If we compare the two schemes for geometric

Brownian motion with the exact analytical solution

S(tn+1) = S(tn) · e(r−d−1
2
σ2)∆t+σ∆W , (4.12)

we find that the Milstein scheme essentially just added all the terms that make the scheme exact up to

orderO (∆t) in expectation and variance. We could have achieved almost the same effect by simply

transforming the original equation for geometric Brownian motion (4.6) to logarithmic coordinates by

application of It̂o’s lemma to obtain:

d lnS = (r − d− 1
2
σ2)dt+ σdW . (4.13)

This similarity is not coincidental. In fact, in particular for the equations we deal with in finance, it is

almost always preferable to transform the original SDE to a more amenable form and then simply use

the original Euler scheme.

Let us now demonstrate the similarity between the Milstein scheme and a suitably chosen trans-

formation using the example of a mean-reverting square-root process

dv = a(θ − v)dt+ λ
√
v dW . (4.14)

This is essentially the Cox-Ingersoll-Ross interest rate model [CIR85] if we interpretv as the short rate.

This kind of process is also popular to describe the behaviour of stochastic volatility, see, e.g. [Hes93].

The Milstein discretisation scheme of (4.14) is

∆v =
[
a(θ − v)− 1

4
λ2
]
∆t+ λ

√
v
√

∆t z + 1
4
λ2∆t z2 (4.15)

where we have substituted
√

∆t z with z ∼ N (0, 1) for the Wiener process increment∆W . Now, let

us consider a generic functionu of v, i.e. u = u(v). Itô’s lemma gives us the stochastic differential

equation foru:

du =

[
∂u

∂v
a(θ − v) + 1

2

∂2u

∂v2
λ2v

]
dt+

∂u

∂v
λ
√
v dW (4.16)

We should now make a fortuitous choice ofu(v) so that the new equation is better behaved. This

is done by ensuring that the term in front of the driving process becomes independent on the state

variable. In other words, we choose

∂u

∂v
∝
√
v
−1

or specifically u =
√
v . (4.17)

This gives us

du =
1

2u

[
a(θ − u2)− 1

4
λ2
]

dt+ 1
2
λdW (4.18)

and we finally have the following Euler scheme for the transformed SDE:

∆u =
1

2u

[
a(θ − u2)− 1

4
λ2
]
∆t+ 1

2
λ
√

∆t z (4.19)
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In order to compare the convergence order inv using the Euler scheme in the transformed equation and

the Milstein scheme in the original equation, we now calculate

(v(u+ ∆uEuler)− v(u))−∆vMilstein =
(
(u+ ∆uEuler)

2 − u2
)
−∆vMilstein (4.20)

= 2u∆uEuler + ∆u2 −∆vMilstein

= 0 +O(
√

∆t
3
) .

The above relationship between a transformation to an SDE whose stochastic term no longer contains

the state variable and the Milstein scheme holds in general. Given the general SDE

dv = a(t, v)dt+ b(t, v)dW , (4.21)

the Milstein scheme is

∆v =
[
a− 1

2
b ∂vb

]
∆t+ b

√
∆t z + 1

2
b ∂vb∆t z2 (4.22)

with z ∼ N (0, 1). For a general transformationu = F (v) to a new state variableu and the inverse

transformationv = G(u), the SDE (4.21) becomes

du =
[
F ′a+ 1

2
F ′′b2

]
dt+ F ′b dW (4.23)

by virtue of Itô’s lemma. Given the choice

F ′(v) =
1

b(t, v)
which leads to F ′′(v) = − 1

b2
∂vb , (4.24)

the Euler scheme in the transformed variable reads

∆u =
[
a
b
− 1

2
∂vb
]
∆t+

√
∆t z . (4.25)

In order to compare, we calculate the Taylor expansion of the inverse transformation

v(u+ ∆u) = v(u) +G′(u)∆u+ 1
2
G′′(u)∆u2 +O(∆u3) . (4.26)

Since

dv
du

=
1
du
dv

, i.e. G′(u) =
1

F ′(G(u))
= b(t, G(u)) (4.27)

and thus

G′′(u) = G′∂vb = b ∂vb , (4.28)

we have

v(u+ ∆u)− v(u) =
[
a− 1

2
b ∂vb

]
∆t+ b

√
∆t z + 1

2
b ∂vb∆t z2 +O(∆t

3
2 ) . (4.29)

As we can see, the Euler scheme in the transformed equation leads to a procedure that is equal in

convergence up to orderO(∆t) (inclusive) to the Milstein scheme in the original variable. An addi-

tional benefit of transformations that remove all dependence of the multiplicative factor in front of the
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driving Wiener process increments on the state variables is that the resulting equations become readily

amenable to a particularly simple predictor-corrector scheme. Since this predictor corrector scheme is

of weak convergence order 1 for the transformed variable, we typically obtain an integration scheme

of weak convergence order higher than 1 for the original state variable without the need for a complic-

ated integration algorithm that requires the draw of more normal variates than we have driving Wiener

processes over any one time step.

4.2.4 Predictor-Corrector

One way to describe the idea behind predictor-corrector methods for stochastic differential equations is

as follows. Given a time-discretised approximation to a general SDE such as equation (4.4), we know

that taking an Euler step as in (4.8) ignores the fact that the coefficientsai andbij actually change

along the path over the time step∆t. Now, if that is so, wouldn’t it be better to use an approximate

average value for those coefficients along the path over the finite time step∆t? Since the values of the

coefficients depend on the state variables themselves, which we don’t know, we need to approximate

those first. The simplest predictor-corrector scheme, which, incidentally is of weak convergence order

1, is thus as follows: First take an Euler step as in equation (4.8) to arrive at thepredictor

Ȳi(tn+1) = Yi(tn) + ai(tn,Y (tn)) ∆t+
d∑
j=1

bij(tn,Y (tn)) ∆Wj . (4.30)

Next, select two weighting coefficientsα andη in the interval[0, 1], usually near1/2, and calculate

thecorrector

Yi(tn+1) = Yi(tn) +
{
α āi(tn+1, Ȳ (tn+1); η) + (1− α)āi(tn,Y (tn); η)

}
∆t (4.31)

+
m∑
j=1

{
η bij(tn+1, Ȳ (tn+1)) + (1− η)bij(tn,Y (tn))

}√
∆t zj

with

āi(t,Y ; η) := ai(t,Y )− η

m∑
j=1

d∑
k=1

bkj(t,Y )∂Yk
bij(t,Y ) . (4.32)

Clearly, this scheme is very easy to implement, in particular for the special case that the coefficients

bij don’t depend on the state variables.

4.3 Spurious paths

Anyone who implements the straightforward Euler scheme (4.7) for geometric Brownian motion will

notice a strange thing to occur every now and then: Some paths cross zero! Clearly, geometric

Brownian motion should never even reach the point zero, let alone cross it. The reason why this

happens is simple. The scheme (4.7) is only an approximation and only guaranteed to converge to the
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mathematically consistent description of the geometric Wiener process in the limit of ever smaller time

steps∆t. In any simulation with a finite step size, it is only a matter of time until you draw a normal

variatez that satisfies

z < −1 + (r − d)∆t

σ
√

∆t
(4.33)

and thus makeS(tn+1) negative. For geometric Brownian motion, this phenomenon disappears when

we use an Euler discretisation of the transformed stochastic differential equation (4.13). However, for

other processes such as the Constant Elasticity of Variance (CEV) process

dS = µSdt+ SγdW , (4.34)

the transformation to a constant coefficient in front of the Wiener process does not solve the problem.

Setting

u =
1

1− γ
S1−γ (4.35)

results in the transformed SDE

du =

{
µ
[
(1− γ)u

] γ
γ−1 − 1

2

γ

(1− γ)

1

u

}
dt+ dW . (4.36)

For γ ∈ (0, 1), this gives an Euler scheme that for certain paths, specifically foru approaching zero,

can result inu crossing the zero line which is clearly inconsistent with the continuous description of

the CEV process (4.34). After all, for a generic real value ofγ, there is no real value ofS that satisfies

the inverse transformation

S =
[
(1− γ)u

] 1
1−γ

(4.37)

for u < 0. The solution to this puzzle is both unexpected and surprisingly simple: The CEV process

(4.34) with γ < 1/2 has a positive probability of absorption at zero1! Thus, the easiest way to fix the

Euler scheme for (4.36) is to assume that any path that reaches or crosses zero actually represents a

path that is absorbed at zero and treat it exactly in that way. In fact, numerical tests of this way of

handling the zero crossing show that they give the correct probability for absorption at zero for the

CEV process, which is known analytically.

4.4 Strong convergence for Euler and Milstein

In order to demonstrate the difference in strong convergence behaviour between the Euler and the

Milstein scheme, we begin by thinking about asingle path of a standard Wiener process. In any

numerical scheme, we can only ever handle a time-discretised version of a stochastic process. A

1 To be precise, it can be reflecting or absorbing at zero depending both on the parameterγ and the chosen boundary

conditions [BS96].
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practical criterion of the strong convergence behaviour of a numerical method is how finely we have

to discretise to achieve a satisfactory accuracy. A sequence of subsequently refined discretisations of

one and the same standard Wiener path starting atW (0) = 0 from t=0 to t=1 is shown in figure4.1.

The straight line in the front of the figure is effectively a single step discretisation. The second line
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Figure 4.1: Increasing refinement in the discretised representation of one specific standard Wiener path.

consists of two straight segments, the first one fromt=0 to t= 1/2, and the second fromt= 1/2 to t=1,

starting and ending in precisely the same points att= 0 andt= 1 as the previous line. The third line

then shares the exact same locations att=0, t= 1/2, andt=1 with the second line, but consists of four

straight segments, introducing new abscissas att= 1/4 andt= 3/4. This sequence of iterated refinement

to construct in the limit a path that is continuous but non differentiable everywhere is also known as

theBrownian bridgeand was, incidentally, used for the historically first ever constructive proof of the

existence of the mathematical concept of Brownian motion by N. Wiener in the 1920s. More details of

the constructive mathematics are given in section10.8.3.

Each of the discretisations depicted in figure4.1 can be seen as a sequence of Wiener path incre-

ments∆W for a given time step size∆t. The application of all of the discretisations in figure4.1

in the Euler scheme (4.7) then gives another sequence of increasingly refined approximations for the

idealised geometric Brownian motion corresponding to the driving Wiener path. This is shown in fig-

ure 4.2. Note that the paths of ever increasingly refined numerical approximations of the geometric

Brownian motion are no longer guaranteed to end in the same point att=1, or indeed at any point. It

is the convergence to the exact solution att=1 which we will later use as a criterion for convergence.

Equally to using the Wiener path increments in the Euler scheme, we can instead apply them to the

Milstein scheme (4.11). The result is shown in figure4.3. Again, none of the individual discretised

paths need to be in exactly the same place at any point along the paths. However, in the limit of ever

refining discretisations, the numerical scheme is guaranteed to converge to the exact solution. A real

test for the strong convergence behaviour would have to demonstrate the power law (4.1). However, at
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Figure 4.2: Increasing refinement of a geometric Brownian path integrated from the Wiener path shown

in figure4.1using the Euler scheme given by equation (4.7) with (r − d) = 1.1% andσ = 81.6%.
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Figure 4.3: Increasing refinement of a geometric Brownian path integrated from the Wiener path shown

in figure4.1using the Milstein scheme given by equation (4.11) with (r− d) = 1.1% andσ = 81.6%.

this point we only show what the improvement of the Milstein scheme over the Euler method means

for the convergence to the value of the geometric Brownian process at the time horizonT = 1 for the

increasingly refined discretisations in figure4.4. Clearly, the Milstein scheme appears to be the superior

method. Since we know the analytical solution of the SDE for geometric Brownian motion (4.6), we

can gain additional insight why this is so. The exact solution is

ST = S0 · e(r−d−1
2
σ2)T+σz

√
T . (4.38)
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Figure 4.4: Comparison of pathwise convergence behaviour in the terminal value of the spot (ST ) for

a geometric Brownian path integrated from the Wiener path shown in figure4.1 using the Euler and

Milstein scheme given by equations (4.7) and (4.11).

From this, we can immediately see that the Milstein scheme is, in expectation and variance, unlike the

Euler method, consistent with anO(∆t) Taylor expansion of the exact solution. Of course we would

in practice almost always use an exact solution when it is available. Exceptions may be cases where

the generation of sample paths from a numerical approximation is more efficient whilst sufficiently

accurate, or when we simply wish to test an analytical solution by different means.



Chapter 5

Correlation and co-movement

Correlation, or more generally co-movement, is one of the single greatest challenges facing quantit-

ative analysts and risk managers today. Its effects are present in many calculations that are widely

taken for granted. The pricing of many derivative contracts such as quantos, rainbows, options on

baskets, and many others depends on some kind of co-dependence assumptions. Also, any (invest-

ment) bank’s self-assessment of exposure, frequently calculated as the Value at Risk (VaR) quantile,

strongly depends on the assumptions about co-dependence between all of the involved market risk

factors. To model the co-movement of all the market observables constituting an entire organisation’s

risk in an adequate way is still deemed untractable, and most companies resort to the use of histor-

ical data in order to estimate their firm-wide capital needs. Since historical data can only ever show

you risk with respect to (co-)movements that already occurred in the past, but is oblivious to hitherto

unseen co-dependent market moves, and also doesn’t know about new developments in the markets,

scenario analysis is usually added to assess the riskyness of a company’s standing. The scenarios used

for these analyses in turn are almost never constructed anywhere nearly along the lines of approach

taken for derivatives pricing. Whilst the constructed scenarios virtually always represent the break-

down of linearly correlated (log-)normal evolution, correlated (geometric) Brownian motion is still the

default method for modelling the interdependence between the various underlyings affecting the value

of a derivative contract. This inconsistency becomes even more startling if we take into account that

only moves of a few standard deviations, rarely more than 2–3, are considered for scenario analyses

whose purpose is to complement a VaR calculation. On the other hand, the quoted volatility smile

and skew surfaces indicate that derivatives traders are sometimes concerned with moves in excess of

4 or sometimes even 5 standard deviations. The desire of exotic derivatives traders for their pricing

tools to realistically model the co-dependence of the financial observables that are the underlyings of

a given exotic deal is motivated by the fact that whilst hedging is possible with respect to moves in the

underlyings, correlation or co-dependence is still largely impossible to protect against1. A simple way

to summarise the problem of unhedgeable quantities is ‘If you can’t hedge it, you better guess it right.’.

The most prominent reason for the proliferation of the assumption of linear correlation for the pricing

1Some types of correlation are starting to become almost tradeable such as Nikkei/USD.

41
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of exotic derivatives is its ease of use and (approximate) tractability. In fact, there are few analytical

approximations for exotic derivatives of several underlyings that do not use the assumption of linear

correlation, if any. And when it comes to numerical solutions, the only methods that realistically and

in a feasible way allow the modelling of several underlyings that co-depend in any fashion other than

linear correlation are probably Monte Carlo methods, and this is what this chapter is about.

5.1 Measures for co-dependence

Marginal distributions

Given the joint distribution densityψ(x, y) of the two variablesx and y, the marginal distribution

density function ofx is defined as

ψx(x) =

∫
ψ(x, y) dy , (5.1)

and analogously,

ψy(y) =

∫
ψ(x, y) dx . (5.2)

The marginal distribution density of any one of the two variables is nothing other than the probability

density disregarding the value of the second variable.

Independence

Two variatesx andy are consideredindependentif their joint distribution density function separates

into the product of their individual distribution density functions, i.e.

ψ(x, y) = ψx(x)ψy(y) . (5.3)

Linear correlation

We recall from equation (2.8) that thelinear correlationρxy := Corr[x, y] of two variatesx andy is

defined as

ρxy =
Cov[x, y]√

V[x] V[y]
=

∫
xyψ(x, y)dxdy −

∫
xψx(x)dx

∫
yψy(y)dy√∫

x2ψx(x)dx−
[∫
xψx(x)dx

]2√∫
y2ψy(y)dy −

[∫
yψy(y)dy

]2 . (5.4)

Linear correlation is a good measure for the co-dependence of normal variates. For distributions that

are nearly normal, it still serves well to measure to what extent two marginal distributions depend

on each other. However, the further we go away from the normal distribution, the more misleading

the concept of linear correlation becomes. An extreme example is the case when the variate pair
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Figure 5.1: An example for a discrete distribution of two variates with zero correlation but strong

dependence.

(x, y) can take on the possible combinations{(0, 1), (0,−1), (1, 0), (−1, 0)} with equal probability
1/4, as is illustrated in figure5.1. The linear correlation of the co-dependent variatesx and y for

this discrete distribution is identically zero which clearly is misleading. In fact, they are strongly

dependent in this case. Given the variatex to be zero, we have two possible combinations fory: plus

or minus one. However, forx to be non-zero,y is fully determined: it has to be zero. In strongly non-

normal distributions like this example, linear correlation can actually conceal the strong co-dependence

information contained in the full joint distribution.

Another problem with linear correlation is that it misleads one to believe that given the marginal

distributions and the correlation of two variates, we have all there is to know about the joint distribution.

A special case when knowledge of the marginal distribution densitiesψx(x) andψy(y) of two random

variatesx and y, and their correlationρxy, is sufficient to reconstruct the joint distribution density

ψ(x, y) is when bothx andy are normal variates. In general, however, the inference

ψx(x), ψy(y), ρxy =⇒ ψ(x, y)

cannot be made. What’s more, for a given pairψx(x) andψy(y), there may not even be a joint dis-

tribution densityψ(x, y) for every possibleρxy ∈ [−1, 1]. And finally it should be mentioned that the

correlation coefficient of two variatesx andy is not invariant under non-linear transformations. An

explicit example for this will be given in section5.2.1. The linear correlation coefficient as defined

above in equation (5.4) is sometimes also referred to asPearson’s r.
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Spearman’s rho

Spearman’s rhois closely linked to the concept of linear correlation. It is, in fact, defined as the

linear correlation coefficient of the probability-transformed variates, i.e. of the variates transformed

by their own cumulative marginal distribution functions. In other words, given two variablesx ∈ R
andy ∈ R, their marginal distribution densitiesψx(x) andψy(y), their respective cumulative marginal

distributions

Ψx(x) :=

∫ x

−∞
ψx(x

′) dx′ (5.5)

Ψy(y) :=

∫ y

−∞
ψy(y

′) dy′ , (5.6)

and their joint distribution density functionψ(x, y), we have

ρS :=
∫∫

Ψx(x)Ψy(y)ψ(x,y)dxdy−
∫

Ψx(x)ψx(x)dx
∫

Ψy(y)ψy(y)dy√∫
Ψx(x)2ψx(x)dx−[

∫
Ψx(x)ψ(x)dx]

2
√∫

Ψy(y)2ψy(y)dy−[
∫

Ψy(y)ψ(y)dy]
2 (5.7)

Since ∫
Ψx(x)ψx(x)dx =

∫ 1

0

u du = 1/2 (5.8)

and ∫
Ψx(x)

2ψx(x)dx =

∫ 1

0

u2du = 1/3 , (5.9)

Spearman’s rho can be expressed as

ρS := 12

∫∫
Ψx(x)Ψy(y)ψ(x, y) dxdy − 3 . (5.10)

Since Spearman’s rho is defined on the cumulative probability functions of the individual variates, it is

independent with respect to variable transformations2, whether linear or not.

Kendall’s tau

Kendall’s tauis a co-dependence measure that focusses on the idea ofconcordanceanddiscordance.

Two separately drawn pairs(x, y) and(x′, y′) from the same joint distribution density are considered

to be concordant if both members of one pair are larger than their respective members of the other pair.

They are said to be discordant ifx > x′ ∧ y < y′ or x < x′ ∧ y > y′. Kendall’s tau is defined as the

difference between the probabilities of two such pairs being concordant and discordant, i.e.

τK := P [(x− x′)(y − y′) > 0]− P [(x− x′)(y − y′) < 0] . (5.11)

2provided they are not pathologically malicious
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Naturally, this means thatτK ∈ [−1, 1]. If we define the distributional densities and cumulative prob-

abilities ofx andy as in the previous section, and in addition

Ψ(x, y) :=

∫∫ x,y

x′,y′=−∞
ψ(x′, y′) dx′dy′ , (5.12)

it can be shown that an alternative formula for Kendall’s tau for continuous distribution densities is

τK = 4

∫∫
Ψ(x, y)ψ(x, y) dxdy − 1 . (5.13)

Since Kendall’s tau is defined on the joint cumulative probability, it is also invariant with respect to

transformations3.

Kendall’s tau and Spearman’s rho belong to the category ofrank correlations. Rank correlations

have the nice property that for any two marginal distribution densitiesψx(x) andψy(y), there always

exists a joint distribution densityψ(x, y) for every possible value in[−1, 1] of the rank correlation.

5.2 Copulæ

A copulaof two variablesx andy is a cu-

mulative probability function defined directly as

a function of the marginal cumulative probabil-

ities of x andy. A copula is thus a way to specify the co-dependence between two variates entirely

independently on their individual marginal distribution. By this definition, a copula ofn variables is a

functionC : [0, 1]n → [0, 1]. Reusing the definitions (5.5), (5.6), and (5.12) we can thus identify

Ψ(x, y) = C (Ψx(x),Ψy(y)) . (5.14)

For strictly increasing cumulative marginalsΨx(x) andΨy(y), we can also write

C(u, v) = Ψ
(
Ψ−1
x (u),Ψ−1

y (v)
)
. (5.15)

The copula of independent variables, not surprisingly, is given by

Cindependent(u, v) = u · v. (5.16)

By virtue of the definition on the cumulative marginal distribution functions, the copula of a set of

variables(x, y) is invariant with respect to a set of strictly increasing transformations(f(x), g(y)).

The differential of a copula is sometimes written by the notation dC(u, v) which is to mean

dC(u, v) = ψ
(
Ψ−1
x (u),Ψ−1

y (v)
) ∣∣∣∣∂(u, v)

∂(x, y)

∣∣∣∣ dudv (5.17)

3again: as long as they are reasonably benign
Here is a puzzle for you: What does the following piece of code do and how is it connected to the excerpt from a dictionary at the beginning of section5.2?

/d { rand 2147483647. div } def /r { d d d add add } def /normal { r r r r add add add 6 sub } def /T 415 def /dt 1 def /sigma .5 def

/a -.25 def 0 0 dt T { pop dup a mul dt mul sigma dt sqrt mul normal mul add dup dt exch rlineto add } for
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with u = Ψx(x) andv = Ψy(y). In this notation, Kendall’s tau appears as

τK = 4

∫∫
[0,1]2

C(u, v) dC(u, v)− 1 . (5.18)

Naturally, all of the above definitions extend to more than just two variables. Note that a sensible copula

must be a function of all the cumulative marginal probabilities, and some kind of control parameters

that determine the strength of co-dependence of the individual variables.

5.2.1 The Gaussian copula

The short explanation of the Gaussian copula mechanism is: Generate a vector of correlated nor-

mal variates, transform them back to uniform variates by the aid of the cumulative normal prob-

ability function, and then map the variates into their individual marginal distributions using their

respective inverse cumulative marginal probability functions. In other words, if we wish to con-

struct the variate vectorx subject to a vector of individual marginal distribution densitiesψx(x) =

(ψx1(x1), ψx2(x2), ..., ψxn(xn))
> and coupled by the Gaussian copula controlled by the correlation

matrixR, we need to proceed as follows:

· Find a suitable pseudo-square rootA of R such thatR = A · A>. More on this on page58 in

chapter6.

· Draw a vectorz ∈ Rn of uncorrelated standard normal variates.

· Computẽz := A · z.

· Map z̃ back to a vector of uniform variatesv ∈ [0, 1]n by settingvi = N(z̃i).

· Construct the variate vectorx by use of the inverse cumulative probability functionsxi :=

Ψ−1
xi

(vi).

It is important to remember that the correlation coefficient governing the Gaussian copula can be very

different from the linear correlation of the elements of the variate vectorx. I give below two specific

examples for this effect. First, however, there is one further point to mention. It can be shown [LMS01,

Kau01] that Kendall’s tau of two variables connected by a Gaussian copula with correlation coefficient

ρ is given by

τK =
2

π
arcsin ρ . (5.19)

Examples for the density of the Gaussian copula as defined in (5.17) are shown4 in figure5.2.

4 The colour code in this and the subsequent density diagrams, although only visible in the electronic version of this

book on the accompanying CD, is as follows: red signifies the lowest density, i.e. 0, and purple the highest density which

is usually only a tiny little speck in the diagram. In all figures, the colours are nonlinearly scaled with the density such that

centre point at(0.5, 0.5) always has the same turquois colour throughout all of the density figures.
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Figure 5.2: The Gaussian copula density as given by equation (5.17). Forρ = 0, the density is identic-

ally equal to 1 on the unit square. The density for negative values ofρ corresponds to the density for

the same absolute value by a rotation of90◦.

Two uniform variates under the Gaussian copula

Let us assume that for some purpose we would like to have two uniform variates that are correlated. Our

first thought of constructing correlated uniforms is to transform two uncorrelated uniform variatesu1

andu2 to the standard normal distribution by settingzi = N−1(ui), apply the conventional correlation

transformation

z̃1 = z1 (5.20)

z̃2 = ρz1 +
√

1− ρ2z2 (5.21)

for some correlation coefficientρ ∈ [−1, 1] and transform back to the unit square by the aid of

ũi = N(z̃i). Näıvely, we now expect the co-dependent uniform variates to have a linear correlation

coefficient in the range[−1, 1]. But little do we know...

The linear correlationη between the two dependent uniform variates can be calculated:

η(ρ) = 12

∫∫
N(z1)N(ρz1 +

√
1− ρ2z2)ϕ(z1)ϕ(z2) dz1dz2 − 3 . (5.22)

Straightforward calculus shows that

η ∈ [−1, 1] for ρ ∈ [−1, 1] .

Near the origin, we have

η(ρ) ≈ 3

π
ρ for |ρ| � 1 . (5.23)

A diagram ofη(ρ) is shown in figure5.3. Don’t be misled by the apparently straight line: there is a

little bit of curvature in there, although a straight line would certainly be a good approximation for it.
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Figure 5.3: The linear correlationη(ρ) of two uniform variates connected by a Gaussian copula of

correlation coefficientρ.

Two exponential variates under the Gaussian copula

In certain areas in finance, we are interested in the modelling of the time elapsed until a certain event

happens for the first time. When we model a given eventA using a Poisson process of intensityλA as

explained in section2.3we have the following distribution density for the timeTA until arrival:

TA ∼ λAe−λATA . (5.24)

Random draws forTA can be generated from a uniform variateuA by setting

TA = − ln(1− uA)

λA
. (5.25)

When we model the co-dependent arrival of two eventsA andB using a Gaussian copula with correl-

ation coefficientρ, we can calculate the linear correlationζ(ρ) for TA andTB as

ζ(ρ) =

∫∫
ln(1− N(z1)) ln(1− N(ρz1 +

√
1− ρ2z2))ϕ(z1)ϕ(z2) dz1dz2 − 1 . (5.26)

Again, we can evaluate analytically what intervalζ(ρ) is confined to:

ζ ∈ [1− π2

6
, 1] for ρ ∈ [−1, 1] ,

where1 − π2

6
≈ −0.6449341. However, as we can see in figure5.4, the correlation transformation is

not quite as nearly linear as it was for two uniform variates.
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Figure 5.4: The linear correlationζ(ρ) of two exponential variates connected by a Gaussian copula of

correlation coefficientρ.

5.2.2 Thet-copula

The t-copula is conceptually very similar to the Gaussian copula. It is given by the cumulative distri-

bution function of the marginals of correlatedt-variates. The simplest way to explain thet-copula is

probably by the aid of an algorithm that would create uniform variates under at-copula [ELM01].

· Select a standard correlation matrixR that is to govern the co-dependence of the copula.

· Find a suitable pseudo-square rootA of R such thatR = A · A>.

· Draw a vectorz ∈ Rn of uncorrelated standard normal variates.

· Computẽz := A · z.

· Draw an independentχ2
ν-variates. Forν being an integer, this can be done by drawingν inde-

pendent Gaussians, and summing their squares.

· Setx :=
√

ν
s
z̃.

· Mapx back to a vector of uniform variatesv ∈ [0, 1]n using the cumulative probability function

of Student’st distribution given in equation (2.52).
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The so generated uniform variates can then be transformed to any set of marginal distributions by use of

their respective inverse cumulative probability functions, just as for the Gaussian copula. Thet-copula

shares with the Gaussian copula the feature that two variates, which are connected using either of the

two copulæ with a given correlation coefficientρ, have a Kendall’s tau coefficient given by equation

(5.19). An example for the difference from both copulæ is shown in figure5.5Note how thet-copula
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Figure 5.5: Both figures show data that are marginally normally distributed. The figure on the left

depicts ordinary correlated normal variates withρ = 0.9, and the figure on the right was created from

data under at2-copula, also withρ = 0.9.

generates apparently higher correlation for large co-movements of equal sign, at the expense of giving

rise to a higher density near the origin, and a noticeable set of what looks like significant outliers.

5.2.3 Archimedean copulæ

All members of this class of copulæ have in common that they are generated by a strictly decreasing

convex functionφ(u) which maps the interval(0, 1] onto [0,∞) such thatlimε→0 φ(ε) = ∞ and

φ(1) = 0. An Archimedean copula is generated from a given functionφ(u) by

C(u, v) = φ−1 (φ(u) + φ(v)) . (5.27)

Two uniform variatesu andv under any Archimedean copula can be produced by the following al-

gorithm:

· Draw two independent uniform variatess andq.

· Solve

q = t− φ(t)

φ′(t)
(5.28)
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for t.

· Set

u := φ−1 (sφ(t)) (5.29)

v := φ−1 ((1− s)φ(t)) . (5.30)

For further details and a proof see [ELM01]. An example of a copula generator for which the above

algorithm can be applied directly is

φ(u) =
(
u−1 − 1

)θ
(5.31)

for θ ≥ 1 since then the solution to equation (5.28) is immediately given by

t =
1 + θ

2
−

√(
1 + θ

2

)2

− θq . (5.32)

It is possible to extend Archimedean copulæ to higher dimensions. However, these extensions are

rather restrictive with respect to the co-dependence structure since they do not allow for one parameter

per pair of variates, unlike the Gaussian and thet-copula. This is probably the major disadvantage

of Archimedean copulæ. For algorithms on the generation of variates under a higher dimensional

Archimedean copula see [ELM01, FV97].

The Gumbel copula

The Gumbel copula (sometimes also referred to as Gumbel-Hougaard copula) is controlled by a single

parameterθ ∈ [1,∞). It is generated by

φGumbel(u) = (− lnu)θ (5.33)

and thus defined as

CGumbel(u, v) = e−[(− lnu)θ+(− ln v)θ]
1
θ

. (5.34)

The Gumbel copula gives rise to a stronger dependence in the upper tail of the joint distribution density

as can be seen in figure5.6. Kendall’s tau of the Gumbel copula can be shown [GR00] to be

τGumbel = 1− 1

θ
. (5.35)

The Clayton copula

This copula is also known under the names Pareto, Cook-Johnson, or Oakes copula, and is generated

by the definition

φClayton(u) =
(u−θ − 1)

θ
(5.36)
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Figure 5.6: The Gumbel copula density as given by equation (5.17). Forθ = 1, the density is identic-

ally equal to 1 on the unit square.

fior θ ∈ [−1,∞) \ {0} and reads

CClayton(u, v) = max
([
u−θ + v−θ − 1

]− 1
θ , 0
)
. (5.37)

The Clayton copula gives rise to a stronger dependence in the lower tail of the joint distribution density

as can be seen in figure5.7. Kendall’s tau of the Clayton copula is

τClayton =
θ

θ + 2
. (5.38)

The Frank copula

The Frank copula is given by

φFrank(u) = − ln

[
(e−θu − 1)

(e−θ − 1)

]
(5.39)

and

CFrank(u, v) = −1

θ
ln

(
1 +

(
e−θu − 1

) (
e−θv − 1

)
(e−θ − 1)

)
(5.40)
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Figure 5.7: The Clayton copula density as given by equation (5.17). Forθ = 0, the density is identically

equal to 1 on the unit square.

for θ ∈ R \ {0}. The Frank copula enhances the upper and lower tail dependence equally as can

be seen in figure5.8. For negative values ofθ, this copula is able to produce negative codependence

similar to the Gaussian copula for negativeρ. Not only that, but it also displays the invariances with

respect to(u, v) → (1− u, 1− v) and(u, v; θ) → (1− u, v;−θ), as does the Gaussian copula, which

is demonstrated in figure5.8. For the Frank copula, Kendall’s tau is

τFrank = 1− 4
(1−D1(θ))

θ
(5.41)

with Dk(x) for some positive integerk being the Debye function [AS84, Mac96] defined as

Dk(x) =
k

xk

∫ x

0

sk

es − 1
ds . (5.42)

The Ali-Mikhail-Haq copula

This copula is generated by [AMH78]

φAli-Mikhail-Haq(u) = ln

(
1− θ(1− u)

u

)
(5.43)
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Figure 5.8: The Frank copula density as given by equation (5.17). Forθ → ±0, the density approaches

the uniform density on the unit square.

and has the form

CAli-Mikhail-Haq(u, v) =
uv

1− θ(1− u)(1− v)
(5.44)

for θ ∈ [−1, 1]. The Ali-Mikhail-Haq copula enhances lower tail dependence for positiveθ, and dis-

plays some strong negative codependence forθ < 0 as is shown in figure5.9. Kendall’s tau is [FV97]

τAli-Mikhail-Haq =

(
3θ − 2

θ

)
− 2

3

(
1− 1

θ

)2

· ln(1− θ) . (5.45)

A generalisation of the Ali-Mikhail-Haq copula to two parameters known as the Fang-Fang-Rosen

copula [GR00, FFvR00] is given by

φFang-Fang-Rosen(u) = ln

(
1− θ(1− u

1
κ )

u
1
κ

)
. (5.46)
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Figure 5.9: The Ali-Mikhail-Haq copula density as given by equation (5.17). Forθ = 0, the density is

uniformly 1 on the unit square.
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Chapter 6

Salvaging a linear correlation matrix

The problem of how to specify a correlation matrix occurs in several important areas of finance. A

few of the important applications are the specification of a (possibly time-dependent) instantaneous

correlation matrix in the context of the BGM interest-rate option models, stress-testing and scenario

analysis for market risk management purposes, or the specification of a correlation matrix amongst a

large number of obligors for credit-derivative pricing or credit risk management.

Ad-hoccorrelation matrices, those calculated from incomplete data, and those taken from news

services sometimes don’t comply with the requirement of symmetry and positive semi-definiteness.

Whilst it is easy to amend the symmetry requirement by manual intervention, it is not always straight-

forward to see how to adjust the given correlation matrix to become usable for factor analysis or

simulation purposes. What’s more, there are many situations when it is desirable to carry out a calcu-

lation not only for a single input matrix, but for a whole set of modified versions of the original matrix.

Examples for this include comparative pricing in order to ascertain the extent of correlation exposure

for multi-asset derivatives, but also the assessment of portfolio risk. In many of these cases, we end up

with a matrix that is no longer positive semi-definite, and often there is no clear way to remedy this.

In practice, the problem of an invalid correlation matrix, i.e. one that has negative eigenvalues,

can also very easily arise in the context of risk analysis for equity portfolios. This is because there

are frequently asynchronous gaps in the historical stock exchange time series. The chance that slight

inconsistencies in the data from which historical correlation coefficients are calculated can lead to

negative eigenvalues grows rapidly as the size of the correlation matrix increases. This has recently

been pointed out by Ju and Pearson [XP99]. Intuitively, it can be understood to be an effect of the

characteristic polynomial that determines the eigenvalues becoming of higher order as the dimension of

the correlation matrix grows, and thus displaying a stronger nonlinear response to slight changes in the

polynomial’s coefficients. Since equity index or portfolio analysis typically involves many underlying

assets, the risk of negative eigenvalues of the correlation matrix calculated from historical data is

particularly large.

In this chapter, I describe two methods based solely on mathematical grounds which can be used

to best-match an invalid correlation matrix given the constraint of positive-semidefiniteness. Not only
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are these guaranteed to give a solution, but in addition we also have a measure to what extent we are

matching the target matrix. Both methods are centered around the idea of decomposing a covariance

matrixC into itspseudo-square rootwhich is to mean any matrixA such thatC = A ·A>. For scalars,

A would be an actual square root ofC, but for matrices, the concept of a square root is ill defined

whence I use the termpseudo-square root.

6.1 Hypersphere decomposition

The starting point are the well known results from linear algebra that everyn× n matrixM given by

M = WW> (6.1)

for anyW ∈ Rn×n is positive-semidefinite and that, conversely, every positive-semidefinite matrix

M ∈ Rn×n can be decomposed as in equation (6.1).

Thehypersphere decompositionmethod for the construction of a valid correlation matrix

Ĉ = BB> (6.2)

that best-matches a given,not positive-semidefinite, target matrixC is to view the elements of the row

vectors of matrixB in equation (6.2) as coordinates lying on a unit hypersphere [RJ00]. If we denote

by bij the elements of the matrixB, the key is to obtain then × n coordinatesbij from n × (n − 1)

angular coordinatesθij according to

bij = cos θij ·
j−1∏
k=1

sin θik for j = 1 .. n− 1

and (6.3)

bij =

j−1∏
k=1

sin θik for j = n .

For an arbitrary set of angles{θij}, a matrixĈ formed fromB as in equation (6.2) satisfies all the given

constraints required of a correlation matrix by construction. In particular, thanks to the trigonometric

relationship (6.3) and to the fact that the radius of a unit hypersphere is always equal to one, the main

diagonal elements are guaranteed to be unity which is shown in section6.5.

In general, matrixĈ will bear no resemblance to the target matrixC. However, after using the

above transformation and after defining a suitable error measureε in the resulting approximate correl-

ation matrixĈ

ε = ‖C − Ĉ‖ , (6.4)

one can use an optimisation procedure over the anglesθij to find the best possible fit given the chosen

error measure. Sensible choices for the error measure are:-
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• the sum of squares of the elements of the difference matrix
(
C − Ĉ

)
,

χ2
Elements:=

∑
ij

(cij − ĉij)
2 . (6.5)

Since bothC andĈ have unit diagonal elements, this error norm is equal to twice the sum of

squares of errors in the free correlation coefficients.

• the elementwise sum of squares of errors in the sorted sets of eigenvalues ofC andĈ,

χ2
Eigenvalues:=

∑
i

(
λi − λ̂i

)2

. (6.6)

Naturally, the above suggestions are only examples and various other choices are conceivable. If,

in particular, a risk manager felt that certain portions of the target correlation matrixC should be

recovered with particularly high accuracy, then correspondingly large weights could be assigned to the

relative elements(cij − ĉij)
2.

The fundamental benefits of this method are twofold: first, when the underlying space over which

the optimisation is carried out is expressed in terms of angle vectors describing coordinates on a unit

hypersphere, no constraints have to be satisfied. Secondly, the approach presented in the next section

requires no iterations and provides a solution very similar to the one obtained using error metric (6.5).

It can therefore be used to provide the starting point for the search procedure.

6.2 Spectral decomposition

This method is based on the idea that the spectrum, i.e. the set of eigenvalues, is the most significant

criterion to be preserved in a matrix when we amend it to meet certain constraints1. It is a particu-

larly useful approach for the given problem since the violated constraint itself is that an eigenvalue is

negative.

Given the right-hand-side eigensystemS of the real and symmetric matrixC and its associated set

of eigenvalues2 {λi} such that

C · S = S ·Λ with Λ = diag(λi) , (6.7)

define the non-zero elements of the diagonal matrixΛ′ as

Λ′ : λ′i =

{
λi : λi ≥ 0

0 : λi < 0 .
(6.8)

1This method is also known as principal component analysis.
2The combination of Householder reduction to tridiagonal form and the QL algorithm with implicit shifts for tridiagonal

matrices provides a very efficient way of computing the eigenvalues and eigenvectors of real symmetric matrices. The Nu-

merical Recipes [PTVF92] routinestred2 , tqli , andeigsrt can be used in that order to carry out the decomposition.
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If the target matrixC is not positive-semidefinite, it has at least one negative eigenvalue whence at

least one of theλ′i will be zero.

Also, define the non-zero elements of the diagonal scaling matrixT with respect to the eigensystem

S by

T : ti =

[∑
m

s2
imλ

′
m

]−1

. (6.9)

Now, let3

B′ := S
√

Λ′ (6.10)

and

B :=
√
TB′ =

√
TS

√
Λ′ . (6.11)

For normalised row vectors ofS, the truncation of the negative eigenvalues results in row vectors of

B′ that are not of unit length. This is rectified in equation (6.11) by the aid of matrixT which contains

the required normalisation factors. By construction,

Ĉ := BB> (6.12)

is now both positive-semidefinite and has unit diagonal elements since its elements are

ĉij =
∑
klmnp

(
√
T )ik · skl · (

√
Λ′)lm · (

√
Λ′)mn · spn · (

√
T )pj

=
∑
l

√
ti · sil · λ′l · sjl ·

√
tj

=

∑
l

silsjlλ
′
l√∑

m

s2
imλ

′
m ·
∑
k

s2
jkλ

′
k

. (6.13)

A procedural description of the above method may clarify what actually has to be done:

· Calculate the eigenvaluesλi and the right-hand-side eigenvectorssi of C.

· Set all negativeλi to zero.

· Multiply the column vectorssi with the square roots of their associated corrected eigenvaluesλ′i

and arrange them as the columns ofB′.

· Finally,B results fromB′ by normalising therow vectorsofB′ to unit length.

3Please note that the notation
√
D for a diagonal matrixD with non-negative elements is a symbolic description of the

diagonal matrix whose non-zero elements are the positive roots of the diagonal elements ofD.
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By following this procedure we obtain an acceptable correlation matrix which is intuitively similar

to the target one (the more so, the fewer the eigenvalues which have to be set to zero). The crucial

point, however, is not so much the plausibility of the metric but the fact that empirically I have always

observed the results obtained using equations (6.7) to (6.12) to be very similar to those from the an-

gular method discussed in section6.1. How close the results are in practice is shown in section6.4.

This is significant because one can use the result of the method described here either as an accurate

approximation to the best (in aχ2
Elementssense) solution, or as the starting point for the optimisation

discussed in section6.1, thereby substantially reducing the computational burden of the hypersphere

decomposition approach.

6.3 Angular decomposition of lower triangular form

The form given in equation (6.3) is the most general decompositionB of any valid correlation matrix̂C

such thatĈ = BB>. However, any so derived matrixB can be transformed by a generic orthogonal

matrix O without any change of the effective correlation matrix given by the productBB>. The

group of all possible orthogonal matricesO ∈ Rn×n represents all possible rotations and reflections.

Ignoring the latter and just taking into account all possible rotation matrices, we end up withn×(n−1)
2

degrees of freedom in the rotation matrices given by the same number of rotation angles. By virtue

of these degrees of freedom, we can rotate every decomposition matrixB such that the transformed

decomposition matrixB′ := BO is of lower triangular form. We can thus, without loss of generality,

formulate the following reduced form for the hypersphere decompositionB′ of Ĉ:

b′11 = 1 ,

b′ij =

j−1∏
k=1

sin θik · cos θij for j = 1 .. (i− 1) ,

b′ij =

j−1∏
k=1

sin θik for j = i , (6.14)

and

b′ij = 0 for j = (i+ 1) .. n

The above reduced form is identical with (6.3) if we chooseθij = 0 for all j ≥ i. In matrix form, the

lower triangular decomposition (6.14) thus looks as follows:

B′ =



1 0 0 0 0 · · ·
cos θ21 sin θ21 0 0 0 · · ·
cos θ31 sin θ31 cos θ32 sin θ31 sin θ32 0 0 · · ·
cos θ41 sin θ41 cos θ42 sin θ41 sin θ42 cos θ43 sin θ41 sin θ42 sin θ43 0 · · ·

...
...

...
...

...
...


(6.15)
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One of the advantages of the completely general decomposition (6.3) was that the result of the spectral

decomposition and truncation (6.11) could directly be used in a bootstrapping procedure to calculate

good initial values for the anglesθij for the subsequent optimisation procedure. In order to start off

the optimisation in the case of the reduced form, the result of the spectral decomposition and trunca-

tion can still be used as follows. First, we re-constitute the effective correlation matrixĈ as given in

equation (6.12) from the spectrally truncated approximation (6.11). Then, we calculate the Cholesky

decomposition of̂C (which can be done very efficiently [PTVF92]). Since the Cholesky decompos-

ition is of lower triangular form, it can then be used directly to back out good initial guesses for the

reduced number ofn×(n−1)
2

angles that specify the matrixB′ as given in equations (6.14) and (6.15),

respectively. The advantage of the reduction of the number of free parameters in the optimisation pro-

cedure by 50% is obvious: halving the dimension of the optimisation domain decreases the number

of entries in any involved Jacobian or Hessian matrix by a factor of four which should give rise to a

speed-up factor of the same order of magnitude.

6.4 Examples

A risk manager retrieves from the middle office’s reporting system the following correlation matrix of

three world equity indices:

C̃ =

 1 0.9 0.7

0.9 1 0.4

0.7 0.4 1

 .

The eigenvalues of̃C are{ 2.35364, 0.616017, 0.0303474 } and the correlation matrix can be

split up as in

C̃ = B̃B̃
>

with

B̃ =

 0.98742 0.08718 −0.13192

0.88465 0.45536 0.10021

0.77203 −0.63329 0.05389

 .

The risk manager is aware of the Value at Risk calculated under the assumption of this correlation

between the three indices. In order to assess the change in Value at Risk resulting from a decrease in

correlation between two of the three underlying variables, the risk manager wishes to adjust the matrix

to

C =

 1 0.9 0.7

0.9 1 0.3

0.7 0.3 1

 .
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Unfortunately, the eigenvalues ofC ′ are now{ 2.29673, 0.710625,−0.00735244 }, and despite its

plausible appearance, matrixC ′ is no longer an acceptable correlation matrix. This highlights how a

minor change can lead to the violation of the requirement of positive-semidefiniteness of a correlation

matrix. The system will now fail when trying to construct a split-up matrixB for the purpose of Monte

Carlo simulations4 in order to calculate the Value at Risk under the new assumptions.

Using the method outlined in section6.1with the error measure chosen to beχ2
Elementsas given by

equation (6.5), we can calculate

B̂ =

 0.99804 0.06265 0

0.86482 0.50209 0

0.74020 −0.67239 0


with

Ĉ = B̂B̂
>

=

 1 0.89458 0.69662

0.89458 1 0.30254

0.69662 0.30254 1


and a total error ofχ2

Elements= 0.946 · 10−4.

In comparison, the method outlined in section6.2above, yields

B̂ =

 0.99805 0.06238 0

0.86434 0.50292 0

0.73974 −0.67290 0


to give us

Ĉ = B̂B̂
>

=

 1 0.89402 0.69632

0.89402 1 0.30100

0.69632 0.30100 1

 .

One can notice that not only the total error ofχ2
Elements = 1.0 · 10−4 but also the individual elements

are remarkably close to the values obtained by optimisation. Despite the fact that there is in general

no guarantee that the results of the two methods are as close together as in this example, I have always

found very good agreement between the two approaches.

6.5 Angular coordinates on a hypersphere of unit radius

Thei-th row vector ofB as specified by equation (6.3) is given by

(bi1, bi2, . . . , bi n−1, bin)

= (6.16)

(cos θi1, sin θi1 cos θi2, . . . ,
∏n−2

k=1 sin θik cos θi n−1,
∏n−2

k=1 sin θik sin θi n−1) .

4Recall that the construction of correlated normal variates from a vector of uncorrelated normal variatesz is done by

the transformationx = B · z with C = BB>.
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The sum of the squares
j=n∑
j=1

b2ij will definitely be unity if the recursive relation

k=n∑
k=j+1

b2ik = b2ij ·
sin2 θij
cos2 θij

(6.17)

holds since then

k=n∑
k=2

b2ik = b2i1 ·
sin2 θi1
cos2 θi1

= cos2 θi1 ·
sin2 θi1
cos2 θi1

= sin2 θi1 (6.18)

and thus

k=n∑
k=1

b2ik = b2i1 +
k=n∑
k=2

b2ik = cos2 θi1 + sin2 θi1 = 1 . (6.19)

To start the induction, we see that equation (6.17) is satisfied forj = n− 1 since then we have

n−2∏
k=1

sin2 θik sin2 θi n−1 =
n−2∏
k=1

sin2 θik cos2 θi n−1 ·
sin2 θi n−1

cos2 θi n−1

. (6.20)

It remains to be shown that

b2ij =
cos2 θij
sin2 θij

·
k=n∑
k=j+1

b2ik (6.21)

for j < n− 1. Using the recursion relation (6.17) itself, we obtain

b2ij =
cos2 θij
sin2 θij

·

(
b2i j+1 +

k=n∑
k=j+2

b2ik

)

=
cos2 θij
sin2 θij

·
(
b2i j+1 +

sin2 θi j+1

cos2 θi j+1

· b2i j+1

)
=

cos2 θij
sin2 θij cos2 θi j+1

· b2i j+1 ,

i.e.

bi j+1 = bij ·
sin θij
cos θij

cos θi j+1 (6.22)

which is identical to the construction description (6.3) for j < n − 1. Hence, all row vectors ofB

are of unit length. The elements of̂C = BB> are the pairwise scalar products of the row vectors

of B. Since the scalar product of two vectors of unit length is by definition∈ [−1, 1], Ĉ satisfies the

requirements of unit diagonal elements, symmetry, and all elements being∈ [−1, 1].



Chapter 7

Pseudo-random numbers

For all Monte Carlo methods, we need an underlying number generator. This driving engine has

to supply us with variate vectors which in the limit of infinitely many draws satisfy a given joint

multivariate distribution density function. This is typically done by transformation of draws from the

uniform distribution of equal probability for all numbers in the interval(0, 1). Note that, unlike most

textbook definitions of numerically generated uniform numbers, both0 and1 are explicitly excluded

since for most of the desired target distributions at least one of the two endpoints maps to either+∞
or−∞ which clearly poses a numerical problem.

Traditionally, Monte Carlo techniques used to depend on a number generation method that mimics

randomnessas well as possible and a great deal of effort has gone into number theoretical research

for this purpose. Generations of number theoreticians have focussed on ever more refined and in-

tricate ways of constructing random numbers whilst others devised ever more sophisticated tests for

randomness [Knu81]. The reason for all of this hard work is that a machine that is designed to follow

instructions in a deterministic way such as a computercannotproduce anything thatactually is ran-

dom. This was beautifully expressed by John von Neumann in his statement which has become known

as ‘the original sin of random number generation’:

Anyone who considers arithmetical methods of producing random digits

is, of course, in a state of sin.

John von Neumann, 1951 [vN51]

A more mathematical way to express this fundamental failure of randomness of computer-generated

digits is that due to the algebraic nature of their generation, there always exists a high-dimensional

embedding spaceRd such that vector drawsv whose elements are sequential draws from a one-

dimensional number generation engine can appear as systematically aligned in a lower dimensional

manifold. One example for such a high-dimensional embedding is clearly given by the periodicity of

the number generator which is why modern methods pay great attention to this feature and achieve

very long periodicities. However, this continuous chase for ever more random numbers is somehow
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doomed because for any new method that satisfies all known tests, one can always construe a new test

criterion for randomness which will prove it to be non-random:

Every random number generator will fail in at least one application.

Donald E. Knuth, 1969

It is for this reason that computer-generated random numbers are referred to aspseudo-randomnum-

bers [Sob94]. They simply cannot be random.

Recently, there have been several attempts to overcome the very last bit of non-randomness left

in modern pseudo-random number generators. Devices have been constructed that link the output

signal of radioactive decay processes or light intensities of so-called ‘lava lamps’ through encryption

algorithms and to digit scramblers. To some extent, these approaches ought to be taken with the

proverbial pinch of salt since the benefits that can be gained from the additional level of randomisation

can hardly be in any proportion to the extreme effort and thus cost involved. This is certainly true for

applications of Monte Carlo methods in finance but may be different when it comes to security critical

encryption uses of random numbers.

This chapter is not meant to be an exhaustive overview over available pseudo-random number

generation methods. There are many excellent books on this subject alone [Knu81, PTVF92, Tez95,

Nie92], and the reader is referred to them for details of individual number generators. Section7.1

is mainly for the entertainment of all those of always wondered about the difference between chaos

and randomness, but never dared to ask. In section7.2, a little historical detour to the beginnings of

computer generated pseudo-random numbers is taken. Then, in section7.3, I briefly outline the most

basic principle of pseudo-random number generation. Following that, I acknowledge the probably

most frequently used number generators around, namelyRan0to Ran3as denoted in [PTVF92].

7.1 Chaos

The general principle of pseudo-random number generation is as follows. Given the current value

of one or more (usually internally stored) state variables, apply a mathematical iteration algorithm to

obtain a new set of values for the state variables, and use a specific formula to obtain a new uniform

(0, 1) variate from the current values of all the state variables. This kind of process is mathematically

also known as adiscrete-time dynamical system.

A simple example of a one-dimensional discrete dynamical system is thelogistic map. It was

originally used by P. F. Verhulst in 1845 to model the development of a population in a limited en-

vironment [May76], and is known as a consequence of itsnon-linearityto produce chaotic dynamics

for certain choices of parameters. The logistic map gives rise to discrete dynamics by the following

algorithm. Given a numberxn ∈ (0, 1), we have

xn+1 = µxn(1− xn) (7.1)
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Figure 7.1: The logistic map forµ = 4.

for someµ ∈ (0, 4] which is shown in figure7.1. For any value ofµ andx0, the system (7.1) will

converge to a so-calledattractive invariant set. This means, skipping some initial transient behaviour,

the system (7.1) will only produce iterates that take on values from this invariant set. As long as the

invariant set is (finitely) piecewise continuous, we can remap it relatively easily to the interval(0, 1),

and thus obtain the desired uniform(0, 1) variates (whereby we have yet not ascertained to what extent

these meet the requirement of serial decorrelation etc.). The first question that arises is what value of

µ should we use. For this purpose, I plot in figure7.2the invariant set for values ofµ from 0 to 4. As

we can see in the figure, the most promising value forµ is 4 since then the entire interval(0, 1) appears

to be filled homogeneously. In fact, the valueµ = 4 can be shown to give rise to astrange attractor

for the dynamical system7.1, and to fill the uniform interval(0, 1) with Lebesgue measure 1 [GH83].

Does this mean we can use the logistic map as a pseudo-random number generator? Sadly, no. There

are two substantial problems with it and I shall now briefly look at them individually.

First, have a look at figure7.3. What you see are iterates from the logistic map forµ = 4. Admit-

tedly, they look rather random indeed, and it is this similarity between chaos and randomness which

gives rise to the common misunderstanding that chaotic systems behave randomly. Now, have a closer

look at the ordinate level of0.75. There is clearly some kind of structure. What happens is that any

iterate that comes very close to 0.75 is succeeded by more iterates very nearby. We see from equation

(7.1) thatx∗ = 3/4 is actually a fixed point under the logistic map forµ = 4. However, this fixed point

is not stable under the dynamics of (7.1). This means that any point in an arbitrarily small vicinity of

x∗ is gradually repelled from the fixed point, until it eventually starts orbiting all over the unit interval

again. As a consequence, a number generator based on the logistic map would never return the value

0.75, but instead, whenever it happens to come close to this value, there will be a number of variates

following with values very nearby, displaying a temporarynear-periodicity. What’s more, there are
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Figure 7.2: The attractive invariant set of the logistic map for values inµ from 0 to 4. Note that the

abscissa has been scaled according toµ→ − ln(4.25− µ).

actually uncountably infinitely many other values that are also excluded by the map. Firstly, there are

all of the predecessors of 0.75, i.e. all the values that would actually end up right on 0.75 under the

iteration rule (7.1). Going back fromx∗ = 3/4 one iteration we have{1/4, 3/4}. One more backwards

iteration gives us{1/2−
√

3/4, 3/4, 1/2+
√

3/4}. In each iteration that we look backwards out fromx∗,

we have from then on two new predecessors of the unstable fixed point for each one that we already

had. Therefore, there arelimi→∞ 2i many points excluded from the attractive invariant set of the lo-

gistic map forµ = 4. What we are left with after taking all of those points out of the unit interval

is what is known as aCantor set. It is impossible to map a Cantor set back to a continuous interval

with any sensible function that could be used on a computer. Also, the predecessors ofx∗ are not the

only points that are being avoided by the logistic map. In addition, there are also all the points that

represent short periodic orbits (i.e. fixed points of the iterated map), and they also have domains of

temporary near-periodicity in their vicinity. Take for instance the valuex0 = 1
8
(5 −

√
5). Its iterate

is x1 = 1
8
(5 +

√
5) which in turn leads back tox2 = 1

8
(5 −

√
5) = x0, and thus we have a period-2

orbit. This period-2 orbit is unstable and therefore we have another set of repelling points embedded

in the chaotic attractive invariant set forµ = 4. Equally, there are points forming short periodic orbits

for many other cycle lengths, and all of them are unstable atµ = 4. This is one of the most defining
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Figure 7.3: Iterates from the logistic map atµ = 4.

points of chaotic motion: embedded inside the attractive invariant set of chaotic dynamics, known as a

strange attractor, there is always an infinity of unstable periodic orbits.

The second problem with a nonlinear dynamical system such as the logistic map is that of the

nonuniformity of theinvariant measure. For a random number generator, the invariant measureψ(x)

is simply the probability density that the next draw will be in the interval[x, x+dx], and for a discretely

iterated system it is the long-term average of points arriving in that interval. The attentive reader may

have noticed that the points in figure7.3 are a lot denser at the top and at the bottom of the diagram.

This is a symptom of the fact that forµ = 4 the invariant measure of the logistic map is given by

ψµ=4(x) =
1

π
√
x(1− x)

(7.2)

[vN51, GH83], which is singular atx = 0 andx = 1. Nonetheless, if we transform fromx to the new

variableα by setting

x = sin2
(π

2
α
)

⇐⇒ α =
2

π
arcsin

√
x , (7.3)



70 Pseudo-random numbers

we can calculate the densityη(α) of the new variableα on (0, 1) according to

ψ(x) dx = η(α) dα (7.4)

η(α) = ψ(x(α))
dx
dα

η(α) =
π sin

(
π
2
α
)
cos
(
π
2
α
)

π
√
x(1− x)

η(α) = 1 . (7.5)

In other words, the transformed variableα is uniformly distributed on(0, 1), and thus we might be

able to use it as a generator for uniform(0, 1) pseudo-random numbers. Alternatively, we could use

the untransformed variatesx and correct the probality density associated with each draw as explained

in section9.2, and thus avoid the evaluation of an inverse trigonometric function1. However, the

issue of embedded unstable periodic orbits and all their pre-iterates, i.e. all the points that would map

onto them, cannot be removed in any way that we can implement on computers2. In the early days of

Monte Carlo simulations on electronic computers, these islands of regularity in the stream of generated

numbers were not considered a major issue, since they can be shown to be of Lebesgue measure zero,

and the very iteration formula (7.1) for µ = 4 was used [UvN47, vN51] as an alternative to the mid-

square method mentioned in section7.2. However, since the mid-1940s, a lot of progress has been

made in the area of nonlinear dynamics, and the phenomenon of temporary near-periodic behaviour in

the vicinity of unstable periodic orbits (also known asintermittency) is much better understood. For

financial simulations, we definitely don’t want to employ a sequence that displays features of such

obvious involuntary regularity as is shown in figure7.3.

7.2 The mid-square method

The first ever algorithm for the computer generation of pseudo-random numbers was proposed by John

von Neumann, and is known as themid-square method[Ham51]. The procedure is as follows. Take

a uniform(0, 1) numberx0 in a four-digit representation. The next variatexn+1 is calculated fromxn
by taking the square ofxn and extracting the middle four digits. In other words, fromx0 = 0.9876 we

obtain

x2
0 = 0.97 5353︸︷︷︸ 76

x1 = 0.5353

x2
1 = 0.28 6546︸︷︷︸ 09

x2 = 0.6546

1albeit that it may not be worth the trouble, see section14.6
2Mathematically, this may be possible by defining a function that is discontinuous everywhere but such a function

cannot easily be implemented on a computer.
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and so on. Unfortunately, this procedure is very likely to end up in a short periodic orbit or at 0,

depending on the initial valuex0, which was recognised early on [For51]. In fact, for the above starting

value it is absorbed at 0 after 50 iterations. Even when a starting value is used that does not enter a

short periodic orbit soon, and does not map into 0, this method tends to produce a disproportionate

frequency of small numbers [Sob94].

7.3 Congruential generation

The most commonly used pseudo-random number generation methods are essentially piecewise linear,

or piecewise affine, to be precise. The basic idea is to produce integer valuesmn on a given interval

[0,M−1], and to return a uniform(0, 1) variateun by rescaling3. The next integer variate is calculated

by

mn+1 = (amn + c) mod M . (7.6)

Note that equation (7.6) is piecewise affine with the same multiplier over all pieces. Thus, it preserves

the volume of any given subinterval of[0,M − 1] which is why it is called acongruential generator.

Unlike the nonlinear methods that were presented above, there is no absorption into a fixed point or

short periodic orbit for congruential generators. In fact, since all calculations are carried out using

integer arithmetics, and sincea andM must be chosen to be coprime, the system (7.6) cannot give

rise to fixed points at all. The constanta is typically chosen to be sufficiently large in order to have

any two close initial values very quickly wrap around the unit interval repeatedly and thus appear to be

decorrelated. This in turn means that the iteration map (7.6) consists of many nearly vertical lines. For

all the specific examples of the multipliera discussed below, the iteration map would actually appear

to be a completely filled unit square, unless the diagram is enlarged greatly, which is why I omit to

show it. Incidentally, the transformation (7.3) of the logistic map (7.1) for µ = 4 results in the iteration

scheme

αn+1 =

{
2αn for αn <

1
2

2− 2αn for 1
2
≤ αn ≤ 1

(7.7)

which has the same structural features as

αn+1 = (2αn) mod 1 . (7.8)

The small multiplier2 in this form makes it somewhat clearer that the logistic map displays the feature

of comparatively slow separation of two initial values near unstable periodic orbits or near the fixed

point atx∗ = 3/4 in figure7.3.

Frequently, the constantc in equation (7.6) is chosen to be zero, whence we commonly encounter

the namelinear congruential generator. There is a lot of literature on good choices fora andM , and

3The common method for rescaling is to setun = mn

M . Sincemn can, however, take on the value 0, which we usually

want to avoid, I recommend to rescale according toun = mn+1
M+1 .
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not all of it is trustworthy. In IBM’s early computing days, it used to deliver its mainframe systems

equipped with its infamousRANDUgenerator which usesa = 65539, M = 231 andm0 = 1. This

generator has meanwhile repeatedly been reported to be highly inadequate [PTVF92, Sob94, FMM77,

Tez95]4. Sadly, it has been copied to a variety of other computer systems, including even the Russian

ES system [Sob94]. Since it is well conceivable that other computer manufacturers have slipped up

similarly5, and since there is according to Murphy’s law a tendency for mistakes to proliferate, I advise

the reader never to rely on black box number generator that come with any one system and allegedly

have been tested. Note that this kind of mistake is extremely easy to make. Again, please don’t trust

any number generator that you can’t find a proper reference to, even if it looks sophisticated and similar

to the trustworthy ones given in, e.g. [PTVF92].

Not all is doom and gloom, however. A simple choice for the constructing multiplier and modulus

that does work isa = 517, M = 240, andm0 = 1, and has been used successfully in Russian 40-bit

computers [Sob94]. Its period is238.

7.4 Ran0 to Ran3

The seminal masterpiece by Press, Teukolsky, Vetterling, and Flannery [PTVF92] is a very good source

of reliable number generators that have been well tested and are well understood. The simplest of their

suggested number generators,Ran0, is given by equation (7.6) with a = 75 = 16807, c = 0, and

M = 231 − 1. This choice of parameters was proposed by Park and Miller [PM88] as a minimal

standard generator and goes back to IBM’sGGL generator[Tez95, LGM69] from 1969. There are

some technicalities involved with the issue of overcoming the roundoff problem in the multiplication

in (7.6) for the given parameters on 32-bit computers. This is typically done by the aid of Schrage’s

method, and the reader is referred to [PTVF92] for the details.

Ran1 is an enhancement of Ran0 using a careful shuffling algorithm. Note that any kind of en-

hancement of a pseudo-random number generator has to be done with utmost care, and should be left

to number theoreticians. The reason is that any non-linear alteration or modification of the numbers

given by one number generator is more than likely to result in disaster6. The message here is: Kids,

don’t do this at home!

4Sobol’ [Sob94] reports that IBM’s RANDU usesM = 229, whilst [PTVF92] and [Tez95] report it to useM = 231. I

don’t know which is accurate or whether it makes a difference. I simply advise the reader to avoid any number generator

that uses the multipliera = 65539.
5[PTVF92] report thatone popular 32-bit PC-compatible compilercomes with a severely flawed pseudo-random num-

ber generator. Apparently, a reasonable number generator has been used as the basis for the compiler vendor’s own design

which was to add a byte swapping mechanism. This kind of action is always a dangerous thing to do and in this case ruined

the number generator.
6You may, if you want, compare it to the problem of interaction of two individually chaotic systems (although ran-

domness isnot chaos, as was demonstrated in the previous sections) which in most cases gives rise to stable periodic

behaviour.
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Ran2 is based on the idea of coupling two linear congruential generators, to construct one of a much

longer period [L’E88]. And finally, there is Ran3 which is based on a subtractive method suggested by

Knuth [Knu81]. I won’t go into details for either of them because I don’t think I could explain them

any beter than it is already done in [PTVF92].

7.5 The Mersenne twister

Another random number generator technique that has become increasingly popular recently is theMer-

senne Twister. The name is to indicate that the period of the sequence is a Mersenne number, i.e. a

prime number that can be written like2n−1 for somen ∈ N, and that it belongs to the class of ‘Twisted

Generalized Feedback Shift Register’ sequence generators. The period of the Mersenne Twister as

published [MN98] and available [MN97] is 219937 − 1. In order to give you a feeling for this number,

imagine that we started at the time of creation of the universe a computer producing 1 billion numbers

per second7 from the Mersenne twister sequence. The fraction of the full period that this computer

would have produced by now is a decimal number with 5975 digits of zeros behind the decimal point,

prior to any non-zero digits. In other words, this computer could continue to draw numbers for many

thousand life cycles of your average solar system between its formation and collapse into a black hole

before beginning to repeat the sequence. Clearly, for all practical purposes, this number generator can

be assumed to have infinite periodicity.

The Mersenne twister sequence is guaranteed to have equidistribution properties in at least 623

dimensions. As George Marsaglia put it in 1968, ‘Random numbers fall mainly in the planes’, for all

random number sequences there exists an embedding dimensionality in which, in the right projection,

all sample points appear to lie in hyperplanes. This can have fatal consequences for a Monte Carlo

calculation if the problem that is evaluated just so happens to be susceptible to the used sequence’s

regularity. The higher the embedding dimension is which produces those patterns, the safer will be

the underlying number generator for general purpose use. I do not intend to go into details about the

internal mechanics of this particular generator; suffice it to say that it tries to utilise as much of the

existing number theory to produce a reliable number generator. To quote the authors themselves:

MT uses many existing ideas. In particular, we are thankful to the following persons. N.

Yoneda, P. L’Ecuyer, R. Couture, H. Niederreiter, P. Hellekalek, M. Fushimi, S. Tezuka, Y. Kurita,

D. Knuth, H. Leeb, S. Wegenkittl, T. Cooper, M. Rieffel, H. Enomoto, and many many persons

who gave us valuable comments, including the users of TT800, a previous twisted generator.

In all of my tests and experiences this sequence engine performed well. Since code is freely available

for it [MN97], and since it is no slower than any of the other pseudo-random number generators8, it is

7Even though at the time of this writing computers running at 1GHz CPU clock frequency are readily available, software

running on such fast hardware could only produce Mersenne twister numbers at a rate of less than one hundred million

draws per second.
8It is in fact faster than most other reliable pseudo-random number generators.
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recommended to integrate it into your general purpose library. It is certainly worth having it, and even

if only as a backup should you ever wish to cross-test results against a number generator whose code

base was not taken from the seminal reference ‘Numerical Recipes in C’ [PTVF92].

7.6 Which one to use?

All of them, or at least more than one of them. Sadly, many people who use Monte Carlo methods

underestimate the importance of the underlying number generator greatly, or have some kind of deep

trust in whoever built the number generator they are using from within a black box. This is not to

say that the sequence generator is the most difficult part of the design of a Monte Carlo procedure, on

the contrary. It is, however, one link in a chain of techniques that together comprise a Monte Carlo

simulation, and the nature of chains is that they are only as strong as their weakest link. And unlike

some add-on parts of the chain such as control variates etc. which are supposed to just add strength

but their weak performance does not break the fundamentals of the calculation, the reliability of the

number generator is crucial. I hope that by the end of this chapter the reader is sufficiently aware of

the basic principles that ensure that, as a matter of fact,all pseudo-random number generators are

flawed. How suitable they still are for any one application, depends on the very problem that is being

tackled, and it is virtually impossible to foresee where a number generator may break down. Therefore,

I advise any user of Monte Carlo methods to have a small library of number generators available, and

rather than re-running a calculation with a new seed for any one generator, flick a switch that makes

the simulation use a different number construction method altogether. That’s the way to do it.



Chapter 8

Low-discrepancy numbers

In the light of the fundamental difficulties involved in the generation of truly random numbers men-

tioned in chapter7, we may ask ourselves why do we need randomness? The answer lies with the

need of representing multi-dimensional joint distributions. As an easy example, let us consider the

incremental path construction of standard Brownian motion

W (ti+1) = W (ti) +
√

∆ti zi (8.1)

with zi ∼ N (0, 1) over the time interval[0, tn] for i = 0..n − 1. Evidently, any serial correlation

between the drawn normal variateszi will give rise to a bias or undesirable regularity in the constructed

path. If many paths constructed in this way are used as the basis for the valuation of a path-dependent

financial derivative, for instance, any serial correlation is likely to give rise to a mispricing. We can,

however, view this kind of problem from a different perspective. What we are really sampling here is a

function of a vector argumentz whose elements are to be taken from ann-dimensional standard normal

distribution. In this formulation, there is absolutely no reason why subsequent draws ofn-dimensional

vector variatesz would have to be serially uncorrelated. The need for perfect decorrelation and thus

randomness is merely an artefact of the custom to construct multi-dimensional vector variates from

one and the same underlying one-dimensional number generator. For number generation methods that

allow for a given dimensionality of the problem at hand, taking previous vector draws into account,

and thus making subsequent vector draws serially correlated in order to avoid the inevitable clusters

and gaps of (pseudo-)random numbers, can actually aid the equidistribution property of the number

sequence generator. This is the essential idea behind the concept of low-discrepancy numbers.

Unlike pseudo-random numbers,low-discrepancy numbersaimnot to be serially uncorrelated, but

instead to take into account which points in the domain to be sampled have already been probed.

The mathematical foundations of low-discrepancy sequences go back to H. Weyl in 1917 [Sob94] and

many number theoreticians have worked in this field although I name but a few of the better known

sequences: Halton, Faure, Haselgrove, Niederreiter, and Sobol’ [Sob67, Sob76, BF88, BFN94, Nie88,

Nie96, Nie92, Tez95]. Low-discrepancy numbers have become a popular tool for financial Monte

Carlo calculations since the early 1990s [BMW92].
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It has been shown that number sequences can be generated that enable us to do quasi-Monte Carlo

calculations which, given certain smoothness conditions of the function to be integrated, converge not

as one over the square root of the number of samples taken, i.e.∝ 1√
N

, but instead much more closely

to one overN , namely∝ c(d) (lnN)d

N
. This, even for a large dimensionalityd, is asymptotically much

faster than∝ 1√
N

. The only problem is that the coefficientc(d) can depend on the dimensionality and

thus for any one high-dimensional calculation we cannot know in advance if the use of low-discrepancy

numbers will be beneficial with respect to the accuracy required for the specific computation. At this

point, number-theoretical results alone no longer tell us if any particular low-discrepancy sequence will

give a speedup in convergence and we have to rely on empirical results.

In this chapter, I first explain the number-theoretical concept ofdiscrepancy. Then, we introduce the

Halton sequence which is probably the easiest low-discrepancy number generation method to describe.

Next, I discuss the Sobol’ sequence. Following that, we briefly discuss the Niederreiter (1988) method.

For further details and for other low-discrepancy number generation methods the reader is advised to

refer to the books by Tezuka [Tez95] and Niederreiter [Nie92]. Then, some empirical evidence will

be given that Sobol’ numbers, if adequately initialised, can be used in high dimensions, conversely

to common belief. I will also try to explain the origin to what I think is a misunderstanding in the

literature that they begin to fail as and when you start using dimensionalities above a few dozens.

8.1 Discrepancy

A measure for how inhomogeneous a set ofd-dimensional vectors{ri} is distributed in the unit hy-

percube is the so-calleddiscrepancy. A simple geometrical interpretation of the number-theoretical

definition is as follows. Generate a set ofN multivariate draws{ri} from a selected uniform number

generation method of dimensionalityd. All of theseN vectors describe the coordinates of points in

the d dimensional unit hypercube[0, 1]d. Now, select a sub-hypercubeS(y) by choosing a pointy

delimiting the upper right corner of the hyper-rectangular domain from0 to y. In other words, the

sub-hypercubeS can be written asS(y) = [0, y1)× · · · × [0, yd). Next, letnS(y) denote the number of

all of those draws that are inS(y), i.e.

nS(y) =
N∑
i=1

1{ri∈S(y)}

=
N∑
i=1

d∏
k=1

1{yk≥rik} . (8.2)

In the limit of N → ∞, we clearly require perfect homogeneity from the sequence generator which

means

lim
N→∞

nS(y)

N
=

d∏
i=1

yi (8.3)



8.2 Halton numbers 77

for all y ∈ [0, 1]d. The above equation simply results from the fact that for a perfectly homogeneous

and uniform distribution on a unit hypercube the probability to be in a subdomain is equal to the volume

of that subdomain, and the volumeV of S(y) is given by the right hand side of equation (8.3). With

these definitions, we can now comparenS(y)/N with V (S(y)) for any one giveny. In order to obtain

a measure for the global discrepancy of the number generator, we still need to choose an error norm

over all possibley in the unit hypercube. With respect to theL2-norm, this gives us

T
(d)
N =

∫
[0,1]d

(
nS(y)

N
−

d∏
k=1

yk

)2

dy

 1
2

. (8.4)

Another frequently used discrepancy measure is the one resulting from the above procedure involving

theL∞-norm:

D
(d)
N = sup

y∈[0,1]d

∣∣∣∣∣nS(y)

N
−

d∏
k=1

yk

∣∣∣∣∣ (8.5)

Clearly, by the nature of the underlying norms used for the respective definitions ofT
(d)
N andD(d)

N , we

have

D
(d)
N ≥ T

(d)
N . (8.6)

For numerical tests, theL∞ discrepancy is rather cumbersome to evaluate. However, as is demonstrated

in appendix8.8.1, the discrepancy with respect to theL2-norm can be evaluated to the explicit formula

(
T

(d)
N

)2

=
1

N2

N∑
i,j=1

d∏
k=1

(1−max(rik, rjk))−
21−d

N

N∑
i=1

d∏
k=1

(
1− r2

ik

)
+ 3−d , (8.7)

whererik is thek-th element ofri. In appendix8.8.2, I show that theexpectedsquared discrepancy

for truly random numbers is

E
[
T

(d)
N

2
]

=
1

N

(
2−d − 3−d

)
. (8.8)

We now arrive at the number-theoretical definition of low-discrepancy sequences. A sequence in

[0, 1]d is called alow-discrepancysequence if for allN > 1 the firstN points in the sequence satisfy

D
(d)
N ≤ c(d)

(lnN)d

N
(8.9)

for some constantc(d) that is only a function ofd.

8.2 Halton numbers

The idea behind Halton numbers is to use the representation of a givengeneratingintegerγ in a

different number base for each dimension. Of course, the mentioned integer has to be a different one
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for each new vector draw. An easy natural choice for this constructing integer is simply the number

n for thenth draw, γ(n) := n, but any other choice of using a new integer with each draw such as

the Gray codeG(n) discussed in section8.3.3would work, too. In order to prevent any asymptotic

pairwise periodicity, the number bases are chosen to be the prime numbers, of which one has to be

precalculated for each dimension. The algorithm to construct a new vector draw of Halton numbers is

as follows.

1. For each of the required dimensionsi = 1..d, find the representation ofγ(n) in the associated

prime number basepi, i.e. find the coefficientsak in

γ(n) =

mni∑
k=1

akip
k−1
i , (8.10)

with all of the aki < pi andmni chosen large enough to make sure that all non-zero digits of

γ(n) in the number basepi are accounted for.

2. To construct the coordinateuni for dimensioni of thenth uniform vector draw, the sequence of

calculated coefficients is now inverted and used as multipliers of fractions in the number basepi,

i.e.

uni =

mni∑
k=1

akip
−k
i . (8.11)

For instance, if we choose the prime numbers2, 3, 5, 7 as the basis in the four dimensions of a four-

dimensional Halton sequence, the37th draw is constructed as follows forγ(n) = n.

base n = 3710 in base uni

2 1001012 0.1010012 = 1 · 2−1 + 0 · 2−2 + 1 · 2−3 + 0 · 2−4 + 0 · 2−5 + 1 · 2−6 = 0.640625

3 11013 0.10113 = 1 · 3−1 + 0 · 3−2 + 1 · 3−3 + 1 · 3−4 = 0.382716

5 1225 0.2215 = 2 · 5−1 + 2 · 5−2 + 1 · 5−3 = 0.488000

7 527 0.257 = 2 · 7−1 + 5 · 7−2 = 0.387755

An actual implementation of the algorithm to create the next draw of the Halton sequence is given

in code example8.1. The variablesequenceCounter is the index of the next vector draw, i.e.

it representsn in the discussion above. The precalculated prime numbers are stored in the array

primeNumbers .

8.3 Sobol’ numbers

The construction of Sobol’ numbers [Sob67] is somewhat more involved. Again, a set of incommen-

surate basis numbers is used. This time, however, a different kind of multiplication determines the

meaning ofincommensurate. Whereas for Halton numbers, the basis numbers simply had to be incom-

mensurate with respect to ordinary multiplication, for Sobol’ numbers, the basis numbers are compared

with respect to binary multiplication modulo two.
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const vector<double>& Halton::nextUniformVector( void ) {

unsigned long b, i, k;

double f, h;

for (++sequenceCounter, i = 0; (i < dimensionality); ++i) {

for ( k = sequenceCounter, b = primeNumbers[i], f = 1., h = 0.; (k); k/=b ) {

f /= b;

h += (k%b)*f;

}

sequenceVector[i] = h;

}

return sequenceVector;

}

Code example 8.1: Code sample for the generation of the next vector draw of the Halton sequence.

8.3.1 Primitive polynomials modulo two

The theory of Sobol’ numbers starts with modular integer arithmetic. Two integersi andj are called

congruent with respect to the modulusm, i.e.

i , j mod m (8.12)

if and only if the differencei − j is divisible bym. Clearly, the numbers0..m − 1 are sufficient

to represent the result of any multiplication or addition in the modulusm, due to the congruence

relation (8.12). Form being prime, the combination of addition and multiplication modulom, plus a

neutral element with respect to both, is also called afinite commutative ringwhich is isomorphicto a

Galois Field withm elements,GF [m].

A polynomialP (z) of degreeg,

P (z) =

g∑
j=0

akz
g−j , (8.13)

is considered to be an element of the ringGF [m, z] of polynomials over the finite fieldGF [m] if we

assume all of the coefficientsak to be∈ GF [m]. In other words, all algebra on the coefficientsak is to

be carried out modulom. This means, for instance, that

(z + 1)(z + 1)(z2 + z + 1) , z4 + z3 + z + 1 mod 2 . (8.14)

A polynomialP (z) of positive degree is considered to beirreducible modulom if there are no

other two polynomialsQ(z) andR(z) which are not constant or equal toP (z) itself such that

P (z) , Q(z)R(z) mod m . (8.15)

An irreducible polynomial modulom in GF [m, z] is the equivalent to a prime number in the set of

integers.

The order of a polynomialP (z) modulom is given by the smallest positive integerq for which

P (z) divideszq − 1, i.e.

q = inf
q′

{
q′
∣∣∣ zq′ − 1 , P (z)R(z) mod m

}
(8.16)
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for some non-constant polynomialR(z).

An irreducible polynomialP (z) of degreeg is also considered to beprimitivemodulom if its order

ismg− 1. Note that not all irreducible polynomials are also primitive, although (especially form = 2)

most of them are.

The importance of primitive polynomials modulo two is given by two separate facts. Firstly, al-

gebraic manipulations modulo two, i.e. binary algebra, is particularly well suited to implementation

on today’s digital computers. Secondly, for any primitive polynomial of degreeg there are recurrence

relations for obtaining a new random bit fromg preceding ones [PTVF92]. In other words, the use

of a distinct primitive polynomial modulo two for each of the required dimensions of the vector of

uniform numbers, makes it possible to generate a sequence of vectors in which the sampling happens

both uniformly over all of the dimensions, but in each dimension, we also have uniform use of all of

the binary digits. For further information on the distinction between irreducibility and primitivity, see,

e.g. [Tez95, Chi00]. The calculation of primitive polynomials can be rather involved. Whilst there are

limited tables of primitive polynomials available [Wat62, PTVF92, Jäc97], I provide a list of all primit-

ive polynomials modulo two up to degree 27 on the accompanying CD. This amounts to a total number

of 8 129 334 primitive polynomials which should be more than enough for all practical applications.

8.3.2 The construction of Sobol’ numbers

The generation of Sobol’ numbers is initially carried out on a set of integers in the interval from 1 to

a power of two minus one, say[1, 2b − 1]. As you may imagine,b simply represents the number of

bits in an unsigned integer on the given computer and should typically be 32, which amounts to the

set of attainable integers being given by all those in the range[1, 4 294 967 295]. We will denote the

nth draw of one such Sobol’ integer in dimensionk asxnk. The final conversion to a uniform variate

ynk ∈ (0, 1) is done by dividingxnk by 2b as a floating point operation, i.e.

ynk :=
xnk
2b

, ynk ∈ (0, 1) , xnk ∈ Z[1, 2b − 1] (8.17)

By construction, the only Sobol’ variate that could ever be exactly zero1 is the zeroth draw (more on

the meaning of this later), and this holds for all dimensions. Therefore, we can explicitly exclude the

possibility that any one of the drawn integers is actually zero by simply skipping the zeroth draw.

For each of thed dimensions, the basis of the number generation is given by a set of so-called

direction integers, of which there is one for each of theb bits in the binary integer representation. It is

conducive for the following to view all of the direction integers asb-wide bit fields. Let us denote the

lth direction integer for dimensionk asvkl. Additional constraints on the bit field representingvkl are

that only thel leftmost2 bits can be non-zero, and that thelth leftmost bit ofvkl must be set. The actual

1This is to mean for both the original Sobol’ algorithm as well as the Antonov-Saleev modification using the conven-

tional Gray code, but also for all other methods that choose the generating integerγ(n) such thatγ(0) = 0.
2The leftmost bits in a bit field representing an integer are the most significant ones. On standard contemporary com-

puters, the number of bits in an integer is 32. Thus, an unsigned integer with only the leftmost bit set would correspend to

the number231 = 2147483648, and all bits being 1 corresponds to 4294967295.
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number draws will later on be calculated by binary addition modulo two of some of these direction

integers, which makes it clear that eachvkl can only affect thel leftmost bits in the drawn integerxnk,

and that it definitely influences thelth leftmost bit ofxnk.

Binary addition of integers modulo two, which amounts to bitwise addition without carry, is a par-

ticularly fast operation on contemporary computers known asExclusive OR, and is usually abbreviated

as XOR. The key to the generation of Sobol’ numbers is the calculation of the direction integers. This

involves the binary coefficients of a selected primitive polynomial modulo two for each dimension. Let

the primitive polynomial modulo two for dimensionk bepk. Denote the degree of this polynomial as

gk. Let the coefficient of the highest monomial inpk beak0, and so forth down toak gk
, i.e.

pk(z) =

gk∑
j=0

akj z
gk−j . (8.18)

Note that the fact thatak0 ≡ 1 is a simple consequence ofpk(z) being of degreegk.

Now we come to the setting up of the direction integers. In each dimension with its associated

primitive polynomialpk, the firstgk direction integersvkl for l = 1..gk can be chosen freely, within the

above mentioned two constraints. All subsequent ones are constructed from the following recurrence

relation:

vkl =
vk (l−gk)

2gk
⊕2

gk∑
j=1

⊕2

akj vk (l−j) for l > gk (8.19)

Hereby, the operator⊕2 stands for the XOR operation3, and the notation
...∑
...

⊕2

indicates a whole se-

quence of XOR operations, or binary additions without carry, in analogy to the conventional sum

operator
∑

. In other words, the direction integervk (l−gk) is right-shifted bygk bits, and then XORed

with a selection of the (unshifted) direction integersvk (l−j) for j = 1..gk (controlled by which of the

coefficientsakj are set), to obtainvkl. Note that the highest order coefficientak0 is not actually used in

the recurrence relation (8.19), and that since the lowest order coefficientak gk
is always set, the direc-

tion integervk (l−gk) will always entervkl. This is the reason why the highest and lowest coefficient of

the polynomialpk is usually not included in its encoding, provided that its degree is known [PTVF92].

If you made it this far, and managed to follow the above explanations, you’ll be relieved to see how

simple theactualconstruction of the Sobol’ integersxnk turns out, given the above preliminaries. Just

like for the construction of Halton numbers, we need a new unique generating integerγ(n) for each

new draw. An easy choice of such an integer for thenth draw isn itself, i.e.γ(n) := n which amounts

to the original algorithm published by Sobol’ [Sob67]. However, any other method of ensuring a new

integer for each new draw such as the Gray code, i.e.γ(n) := G(n), is equally possible. Given the

generating integer of thenth draw, the Sobol’ integers for all of thed dimensions are given by

xnk :=
d∑
j=1

⊕2

vkj1{jth bit (counting from the right) ofγ(n) is set} . (8.20)

3Just in case you don’t know this already but still care: The “⊕2” operation’s equivalent in C is “ˆ ”.



82 Low-discrepancy numbers

In other words, depending on which of the bits in the binary representation ofγ(n) are set, the direction

integers are simply XORed, to produce the Sobol’ integerxnk. The final transformation to a uniform

floating point number in the interval was already given by the simple division in equation (8.17). It

may be clear from formula (8.20) that we need to ensure

γ(n) 6= 0 (8.21)

in order to prevent any of theynk being exactly zero. By the nature of the construction algorithm of

the direction integers, no other value forγ(n) can result in anyxnk and thusynk being zero, whence

condition (8.21) is sufficient to ensureynk 6= 0.

8.3.3 The Gray code

Antonov and Saleev contributed to Sobol’ numbers as we know them today by realising that instead

of using the binary representation of the sequence countern directly, any other unique representation

of the sequence countern can be used, too [AS79]. In particular, a bitwise representation ofn which

switches only one single bit for every increment inn, means that only one single XOR operation is to

be carried out for the generation of every integer representing the uniform coordinate of the next vector

draw. This kind of encoding of integers is known as a Gray codeG(n), named after the engineer Frank

Gray who patented this method for the use with shaft encoders in the 1950s. Gray codes are still used

with shaft encoders today, and in many communication applications. They are useful wherever a set

of parallel electrical wires are used to indicate a number by the individual voltage state of each line.

Frequently, such lines are used to transmit the current state of a counter variable, which would only ever

increase by one. In such an application, using any encoding whereby more than one bit can change

from one number to the next, the tiniest mistiming in the transition of the high-low states from one

number to the next will cause the recipient of the signal not to receive a clean increase, but a rapid and

spurious sequence of intermediate numbers. As an example, think of the transition from310 = 0112

to 410 = 1002. Due to the inevitably limited accuracy of mechanical or electronical components, the

receiver is likely to perceive one of the possible sequences from 3 to 4 given in table8.1. Clearly, none

310 = 0112 210 = 0102 010 = 0002 410 = 1002

310 = 0112 210 = 0102 610 = 1102 410 = 1002

310 = 0112 110 = 0012 010 = 0002 410 = 1002

310 = 0112 110 = 0012 510 = 1012 410 = 1002

310 = 0112 710 = 1112 610 = 1102 410 = 1002

310 = 0112 710 = 1112 510 = 1012 410 = 1002

Table 8.1: Possible transitions from 3 to 4 in standard binary representation.

of them are desirable. Using a Gray code in the representation of the integers surmounts this problem

because exactly one bit changes in any one increase. It turns out that there is no single unique Gray

code. The most commonly used choice for the Gray code is

G(n) = n ⊕2 [n/2] . (8.22)
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In table8.2, the Gray code of the integers 1 to 7 is given as an example. An interesting feature of the

n n in binary [n/2] in binary G(n) in binary G(n) in decimal

0 000 000 000 0

1 001 000 001 1

2 010 001 011 3

3 011 001 010 2

4 100 010 110 6

5 101 010 111 7

6 110 011 101 5

7 111 011 100 4

Table 8.2: Gray codes.

Gray code is that the single bit that changes fromG(n) toG(n+ 1) is always the rightmost zero bit of

the binary representation ofn itself. This can be readily verified analytically and is also easy to see in

table8.2.

As for the generation of Sobol’ numbers, they are clearly aided by the use ofG(n) instead ofn as

the constructing integer of thenth vector draw. Imagine we have already generated all of the vector

draws out to numbern − 1, and we have kept in memory the uniform integersx(n−1)· for all of the

required dimensions. Since the Gray codeG(n) differs from that of the preceding oneG(n−1) by just

a single, say thej th, bit (which is the rightmost zero bit ofn − 1), all that needs to be done is a single

XOR operation for each dimension in order to propagate all of thex(n−1) to xn, i.e.

xnk = x(n−1)k ⊕2 vjk . (8.23)

8.3.4 The initialisation of Sobol’ numbers

The attentive reader may have noticed that there is yet some freedom left in the construction of Sobol’

numbers, namely the specific choice of the free direction numbers. As we recall from section8.3.2,

given the primitive polynomialpk of degreegk associated with thekth dimension, the firstgk direction

integers can be chosen freely within certain constraints. All of the remaining direction integers are

then determined by the recurrence equation (8.19). Since the firstgk direction integers thus initialise

the entire construction of the sequence, I also call theminitialisation numbers. The constraints on the

lth initialisation numbervkl of dimensionk are that only thel leftmost bits can be non-zero, and that

thelth bit from the left hand side of theb-wide bit field representingvkl must be 1. Arguably the easiest

choice for the initialisation numbers is thus to just have thelth leftmost bit set, and all other bits to be

zero, which amounts to what I callunit initialisation, i.e.

vkl = 2b−l . (8.24)

The impact of the initialisation numbers on the homogeneity properties of the entire sequence is not

to be underestimated. In 1976, Sobol’ published algebraic conditions that link specific choices of
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initialisation numbers to certain uniformity properties [Sob76]. A low-discrepancy sequence is said to

satisfyproperty Aif for any binary segment (not an arbitrary subset) of thed-dimensional sequence

of length2d there is exactly one draw in each of the2d hypercubes that result from subdividing the

unit hypercube along each of its unit length extensions into half. In other words, assume that in each

dimension we divide the interval[0, 1) into the two sub-intervals[0, 1/2) and[1/2, 1). This will result in

a subdivision of thed-dimensional unit hypercube[0, 1)d into 2d sub-hypercubes. Given any sequential

sectionS of length2d of the low-discrepancy sequence ofd-dimensional uniform variates that starts at

some indexm = l2d for some integerl, i.e.Sl := (ul2d ,ul2d+1, . . . ,u(l+1)2d−1), there must be exactly

oneu ∈ Sl that lies in each and every one of the sub-hypercubes of volume2−d for the sequence

generator to satisfy property A. Property A’ is similar in its definition in that it refers to sections of

length4d being required to provide that a single element is contained in each and every sub-hypercube

resulting from the subdivision of the unit hypercube into four equal intervals in each dimension. Of

course, if we explicitly exclude the point at the originu ≡ 0 (as we would in order to prevent a

mapping to infinity when transforming to Gaussian variates), the segment of the sequence starting with

the first element will have no point in the sub-hypercube[0, 1/2)d and will be most uniform for a length

of 2d − 1.

The algebraic equations that guarantee properties A and A’ can be solved numerically, and there

are precalculated tables of initialisation numbers that provide properties A and A’ up to certain dimen-

sionalities in the literature. The original article [Sob76], for instance, provides initialisation numbers

up to dimension 16 for property A and up to dimension 6 for property A’, and some authors have gone

through some considerable effort for higher dimensions, namely Paskov and Traub calculated them up

until dimension 360 [PT95]. In finance, however, we often face problems that are of very high dimen-

sionalityd. In order to benefit from property A, we would need to carry out a Monte Carlo simulation

over a number of iterations that is to be of the order of magnitude of2d. The pricing of an Asian option

with daily monitoring and one year to maturity, for instance, represents a Monte Carlo integration in

250 dimensions, one for each trading day in the year. Since2250 ' 1075, we would have to iterate as

many times as is currently estimated to be the total number of particles in the universe, which is clearly

excessive, before we would benefit from property A, not to mention property A’.

However, as we will see in sections8.5 and8.6 this is not to say that for high-dimensional prob-

lems every set of initialisation numbers will work as well as any other. There is a clear benefit from

the choice of initialisation numbers that enables the low-discrepancy sequence to start exploring the

volume of the unit hypercube early on, rather than initially just focussing on certain areas. I therefore

recommend to use initialisation numbers that provide properties A and A’ for the lowest dimensions,

and for the higher dimensions, at least to ensure that any regularity in the initialisation set is broken up.

One choice of initialisation numbers that does the complete opposite is the aforementioned unit ini-

tialisation. Although strictly speaking a valid choice of initialisation numbers, unit initialisation leads

to surprisingly bad results for Sobol’ numbers, and should be avoided. A very simple way to generate

initialisation numbers that break the regularity, is to use a separate pseudo-random number generator

to draw uniform variates∈ (0, 1) from, and to initialise as follows. Drawu∗kl from a separate uniform
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k gk ak0 . . . akgk
vkl for l = 1..10

1 0 1 1 · 231 1 · 230 1 · 229 1 · 228 1 · 227 1 · 226 1 · 225 1 · 224 1 · 223 1 · 222

2 1 11 1 · 231 3 · 230 5 · 229 15 · 228 17 · 227 51 · 226 85 · 225 255 · 224 257 · 223 771 · 222

3 2 111 1 · 231 1 · 230 7 · 229 11 · 228 13 · 227 61 · 226 67 · 225 79 · 224 465 · 223 721 · 222

4 3 1011 1 · 231 3 · 230 7 · 229 5 · 228 7 · 227 43 · 226 49 · 225 147 · 224 439 · 223 1013 · 222

5 3 1101 1 · 231 1 · 230 5 · 229 3 · 228 15 · 227 51 · 226 125 · 225 141 · 224 177 · 223 759 · 222

6 4 10011 1 · 231 3 · 230 1 · 229 1 · 228 9 · 227 59 · 226 25 · 225 89 · 224 321 · 223 835 · 222

7 4 11001 1 · 231 1 · 230 3 · 229 7 · 228 31 · 227 47 · 226 109 · 225 173 · 224 181 · 223 949 · 222

8 5 100101 1 · 231 3 · 230 3 · 229 9 · 228 9 · 227 57 · 226 43 · 225 43 · 224 225 · 223 113 · 222

9 5 101001 1 · 231 3 · 230 7 · 229 7 · 228 21 · 227 61 · 226 55 · 225 19 · 224 59 · 223 761 · 222

10 5 101111 1 · 231 1 · 230 5 · 229 11 · 228 27 · 227 53 · 226 69 · 225 25 · 224 103 · 223 615 · 222

11 5 110111 1 · 231 1 · 230 7 · 229 3 · 228 29 · 227 51 · 226 47 · 225 97 · 224 233 · 223 39 · 222

12 5 111011 1 · 231 3 · 230 7 · 229 13 · 228 3 · 227 35 · 226 89 · 225 9 · 224 235 · 223 929 · 222

13 5 111101 1 · 231 3 · 230 5 · 229 1 · 228 15 · 227 19 · 226 113 · 225 115 · 224 411 · 223 157 · 222

14 6 1000011 1 · 231 1 · 230 1 · 229 9 · 228 23 · 227 37 · 226 97 · 225 97 · 224 353 · 223 169 · 222

15 6 1011011 1 · 231 1 · 230 3 · 229 13 · 228 11 · 227 7 · 226 37 · 225 101 · 224 463 · 223 657 · 222

16 6 1100001 1 · 231 3 · 230 3 · 229 5 · 228 19 · 227 33 · 226 3 · 225 197 · 224 329 · 223 983 · 222

17 6 1100111 1 · 231 1 · 230 7 · 229 13 · 228 25 · 227 5 · 226 27 · 225 71 · 224 377 · 223 719 · 222

18 6 1101101 1 · 231 1 · 230 1 · 229 3 · 228 13 · 227 39 · 226 7 · 225 23 · 224 391 · 223 389 · 222

19 6 1110011 1 · 231 3 · 230 5 · 229 11 · 228 7 · 227 11 · 226 43 · 225 25 · 224 187 · 223 825 · 222

20 7 10000011 1 · 231 3 · 230 1 · 229 7 · 228 3 · 227 23 · 226 79 · 225 65 · 224 451 · 223 321 · 222

21 7 10001001 1 · 231 3 · 230 1 · 229 15 · 228 17 · 227 63 · 226 13 · 225 113 · 224 147 · 223 881 · 222

22 7 10001111 1 · 231 3 · 230 3 · 229 3 · 228 25 · 227 17 · 226 115 · 225 17 · 224 179 · 223 883 · 222

23 7 10010001 1 · 231 3 · 230 7 · 229 9 · 228 31 · 227 29 · 226 17 · 225 121 · 224 363 · 223 783 · 222

24 7 10011101 1 · 231 1 · 230 3 · 229 15 · 228 29 · 227 15 · 226 41 · 225 249 · 224 201 · 223 923 · 222

25 7 10100111 1 · 231 3 · 230 1 · 229 9 · 228 5 · 227 21 · 226 119 · 225 53 · 224 319 · 223 693 · 222

26 7 10101011 1 · 231 1 · 230 5 · 229 5 · 228 1 · 227 27 · 226 33 · 225 253 · 224 341 · 223 385 · 222

27 7 10111001 1 · 231 1 · 230 3 · 229 1 · 228 23 · 227 13 · 226 75 · 225 29 · 224 181 · 223 895 · 222

28 7 10111111 1 · 231 1 · 230 7 · 229 7 · 228 19 · 227 25 · 226 105 · 225 173 · 224 509 · 223 75 · 222

29 7 11000001 1 · 231 3 · 230 5 · 229 5 · 228 21 · 227 9 · 226 7 · 225 143 · 224 157 · 223 959 · 222

30 7 11001011 1 · 231 1 · 230 1 · 229 15 · 228 5 · 227 49 · 226 59 · 225 71 · 224 31 · 223 111 · 222

31 7 11010011 1 · 231 3 · 230 5 · 229 15 · 228 17 · 227 19 · 226 21 · 225 227 · 224 413 · 223 727 · 222

32 7 11010101 1 · 231 1 · 230 7 · 229 11 · 228 13 · 227 29 · 226 3 · 225 15 · 224 279 · 223 17 · 222

Table 8.3: Initialisation numbers providing property A up to dimension 32.

random number generator such that

wkl := int
[
u∗kl · 2l−1

]
(8.25)

is odd (simply keep drawing until the condition is met), and set

vkl := wkl · 2b−l for l = 1..gk . (8.26)

To finish this section I give in table8.3a list of initialisation numbers that have been tested to give

property A up to dimension 32 and are guaranteed to provide property A’ up to dimension 6 [Sob76].

The columns are as follows:k is the dimension index,gk is the degree of the associated polyno-

mial, ak0 . . . akgk
are the coefficients of the polynomial as in equation (8.18), andvkl are the direction

numbers. The freely chosen direction numbers, i.e. the initialisation set are in normal black and those

derived from the recurrence relation (8.19) are shaded. Note that the polynomial associated with dimen-

sion 1 is not strictly a primitive polynomial, similar to the number 1 not strictly being a prime number.

This is also the reason why the direction numbers for dimension 1 are not given by the recurrence

relation (8.19) but are simplyv1l = 2b−l. Further details can be found in the original literature [Sob67].

As for readily available code to construct Sobol’, there is of course the algorithm in [PTVF92]. Using

that source code, and the table of primitive polynomials modulo two on the accompanying CD, and

the initialisation method described above for the free direction numbers, it shouldn’t be too difficult

to create your own high-dimensional Sobol’ number generator. Also, there is a commercial library

module available from an organisation called BRODA [KS] that can generate Sobol’ sequences in up
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to 370 dimensions. In a way, this module can claim to be agenuineSobol’ number generator since

Professor Sobol’ himself is behind the initialisation numbers that drive the sequence, and he is also

linked to the company distributing the library. Just before you get any wrong ideas: I am not affiliated

with BRODA in any way whatsoever.

8.4 Niederreiter (1988) numbers

H. Niederreiter devised a general framework for number-theoretically constructed sequences of low-

discrepancy [Nie92]. This contributed greatly to the analysis of the internal mechanisms and helped to

understand the similarities and differences of the various number sequences. He also devised several

sequence generation algorithms [Nie88, Nie96] of which only one has been implemented [BFN94].

We refer to these numbers as the Niederreiter (1988) sequence. They are from a constructional point

of view not too different from Sobol’ numbers. They, too, are based on polynomial arithmetic modulo

some basem, and the most frequently used base happens to be 2, not least due to the enormous speed

and ease to carry out binary calculations on a modern computer. However, Niederreiter (1988) numbers

employirreduciblerather thanprimitivepolynomials4. Despite the fact that they are theoretically sup-

posed to be superior to Sobol’ numbers in the limit, from an empirical point of view where the start-up

rather than the asymptotic performance5 is more relevant, Niederreiter (1988) numbers, in my experi-

ence, do not provide quite the same reliability in terms of rapid convergence for high dimensionalities

as Sobol’ numbers do.

8.5 Pairwise projections

The aim of low-discrepancy number generation methods is to provide a source of vector coordinates

that covers a given domain a homogeneously and uniformly as possible. The more homogeneous

the underlying number generator, the more accurate and rapidly converging will be a Monte Carlo

calculation based on it6.

It has been documented in the literature, that low-discrepancy number generators tend to lose

their quality of homogeneous coverage as the dimensionality increases. A particularly striking way

to demonstrate this is to plot the projection of a given number of vector coordinates drawn from a

number generator onto a two-dimensional projection of adjacent dimensions. In figure8.1, we show

4Clearly, since all primitive polynomials are also irreducible, one can just use primitive polynomials for the construction

of Niederreiter (1988) numbers, too. This does not, however, remedy the not-so-good performance of Niederreiter (1988)

numbers in high-dimensional applications.
5For practical applications, we are more interested in the realised convergence over the first ten thousand or even 500

million draws, and the question as to which number generator will provide a higher rate of convergence in the asymptotic

limit of actually infinitely many drawsis not really of great importance.
6A more mathematical form of this statement is known as the Koksma-Hlawka theorem, but since this relationship is

sufficiently plausible by sheer common sense, I won’t go into the details here.
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the projection of the first 2047 vector draws of various number generators on several two-dimensional

uniform intervals. In the first row, we have vector draws from the Mersenne twister as an example
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Figure 8.1: Two-dimensional projections of various number generators.

for a random pattern for reference. Rows 2 to 5 give the projections of the Sobol’ generator (regularity

breaking initialisation), Sobol’ (unit initialisation), Niederreiter, and Halton. In column 1, the projec-

tion onto the first two dimensions is shown, followed by dimension 8 versus 9, 29 and 30, 62 and 63,

and 93 against 94. The particular dimensions shown were selected randomly. These projections are a

first indicator that not all low-discrepancy number generators are reliable when fairly high dimensions

are required. For the last three low-discrepancy number generators there is clearly a trend towards
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clusters and gaps as the dimension increases. Sobol’ numbers with regularity breaking initialisation,

however, do not seem to suffer from this problem.

There have been reports in various publications that Sobol’ numbers, too, suffer the problem of

rapid breakdown of homogeneity in higher dimensions. I believe that this is due to an unfortunate

choice of the initialisation numbers used for their construction. In fact, I. Sobol’ himself has been

aware of the importance of careful initialisation at least since the early 1970s [Sob76]. Alas, when

the financial sector started using low-discrepancy numbers, this wasn’t picked up, whence there is the

notion that no low-discrepancy number generator is suitable for high dimensions.

8.6 Empirical discrepancies

A more thorough measure for the homogeneity properties of a low-discrepancy number generator than

visual inspection of projections is the discrepancy as defined in equations (8.4) or (8.5) in section8.1.

In order to provide even harder evidence that suitably initialised Sobol’ numbers are reliable indeed,

even in significantly high-dimensional applications, I show in figures8.2 to 8.9 the discrepancy with

respect to theL2-normT
(d)
N as defined in equation (8.4) for d = 2, 3, 5, 10, 15, 30, 50, 100 for various

number generators. Note that the line denoted as “expectation for truly random numbers” is actually√
E
[(
T

(d)
N

)2
]
, as calculated in appendix8.8.2.
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N as defined in equation (8.4).

It clearly can be seen in figures8.2 to 8.9 that for low dimensionalities, all of the tested low-

discrepancy number generators are considerably superior to pseudo-random numbers. However, as

the dimensionality increases, this advantage decreases, until aroundd = 15 the Halton method, the

Niederreiter sequence, and Sobol’ with unit initialisation, all appear to be significantly inferior to

pseudo-random number methods. This underperformance becomes so dramatic ford = 100 that there

are more than ten decimal orders of magnitude between the aforementioned three number methods and

plain pseudo-random methods. However, for suitably initialised Sobol’ numbers, there is no deteri-

oration to the extent that they appear inferior to pseudo-random number generator. It is true that the

total discrepancy over all of the equally weighted 100 dimensions as shown in figure8.9 makes well

initialised Sobol’ numbers appear as if it is hardly worth bothering. At this point, however, we should

bear in mind that in most applications in finance, we are dealing with problems that have a natural

ordering in the importance of all of the involved dimensions. A very good example of a simulation

problem that decomposes into dimensions of strongly varying importance is that of paths describing

Brownian motion. Clearly, if the terminal value of the Brownian motion determines the pay-off of a

derivative contract, it is of particular importance in the valuation problem. How the specific features of

Brownian motion can be exploited for optimally importance-ranked path construction is discussed in

section10.8and examples for the good convergence of Sobol’ numbers7 are given in section10.8.4.

The lesson to learn with respect to well initialised Sobol’ numbers is that they will provide a

substantial performance boost in the lower dimensions, and will still work at least as well as pseudo-

7well-initialised ones, of course
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random number generators in higher dimensions. Thus, we should always try to design the Monte

Carlo solution approach such that we can exploit the better convergence in the lower dimensions by

assigning them to the problem dimensions of most importance.

8.7 The number of iterations

As we know, for pseudo-random generators, the number of iterations only affects the expected variance

of the result by the central limit theorem, i.e. the more the better. For low-discrepancy numbers,

the situation is different. Sobol’ numbers, and other number generators based on integer arithmetics

modulo two, by construction provide additional equidistribution properties whenever the number of

iterations isN = 2n − 1 for some positive integern. This is easy to see on the unit interval in one

dimension where such a choice of draws always results in a perfectly regular distribution of points, and

can also be confirmed in the empirical discrepancy diagrams of section8.6up to dimension 5.

8.8 Appendix

8.8.1 Explicit formula for the L2-norm discrepancy on the unit hypercube

Substituting the formula (8.2) for nS(y) into the squared right hand side of equation (8.4), we obtain

T
(d)
N

2
=

1

N2

N∑
i,j=1

∫
y∈[0,1]d

d∏
k=1

1{yk≥rik}1{yk≥rjk}dy (8.27)

− 2
1

N

N∑
i=1

∫
y∈[0,1]d

d∏
k=1

1{yk≥rik}ykdy +

∫
y∈[0,1]d

d∏
k=1

y2
kdy

=
1

N2

N∑
i,j=1

d∏
k=1

1∫
max(rik,rjk)

dyk − 2
1

N

N∑
i=1

d∏
k=1

1∫
rik

ykdyk +
d∏

k=1

1∫
0

y2
kdyk (8.28)

=
1

N2

N∑
i,j=1

d∏
k=1

(1−max(rik, rjk)) − 2
1

N

N∑
i=1

d∏
k=1

1

2
(1− r2

ik) + 3−d , (8.29)

which is identical to equation (8.7).

�
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8.8.2 ExpectedL2-norm discrepancy of truly random numbers

In order to derive equation (8.8), the expectation of (8.7) for truly random numbers is calculated below.

E
[
T

(d)
N

2
]

=
1

N2

N∑
i,j=1

E

[
d∏

k=1

(1−max(rik, rjk))

]
− 21−d

N

N∑
i=1

E

[
d∏

k=1

(
1− r2

ik

)]
+ 3−d (8.30)

The expectations over products of terms involving random numbers can be replaced by products over

expectations when the random numbers are independent. For this to hold, the first sum has to be split

into the terms wheni = j and wheni 6= j. This gives

E
[
T

(d)
N

2
]

=
1

N2

{
N

d∏
k=1

E{xk∈[0,1]}[1− xk] (8.31)

+N(N − 1)
d∏

k=1

E{xk,yk∈[0,1]}[1−max (xk, yk)]

}

−21−d

N
N

d∏
k=1

E{xk∈[0,1]}
[
1− x2

k

]
+ 3−d

=
1

N

{
2−d + (N − 1)

[
2

∫ 1

y=0

∫ 1

x=y

(1− x) dxdy

]d}
(8.32)

−21−d
[∫ 1

x=0

(1− x) dx

]d
+ 3−d

=
1

N

2−d + (N − 1)

[
1−

∫ 1

y=0

2

[
x2

2

]1

x=y

dy

]d (8.33)

−21−d
(

2

3

)d
+ 3−d

=
1

N

{
2−d + (N − 1)

[
1− 1 +

∫ 1

y=0

y2dy

]d}
− 3−d (8.34)

=
1

N

{
2−d + (N − 1)3−d

}
− 3−d (8.35)

=
1

N

(
2−d − 3−d

)
. (8.36)
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Chapter 9

Non-uniform variates

Number generators tend to produce uniform variates on the unit interval. Whenever we wish to carry

out a Monte Carlo simulation that requires anything other than a uniform distribution, we have to

convert the raw uniform variates to our target distribution, or ensure otherwise that we are meeting our

distributional requirements. In this chapter, I discuss some of the known methods available for this

purpose.

9.1 Inversion of the cumulative probability function

The cumulative probability function of any distribution has the following useful feature: For any vari-

atex ∈ R from a given target distribution densityψ(x), the cumulative probability function forx,

i.e. Ψ(x) =
∫ x
−∞ ψ(x′) dx′, is a uniform variate on the unit interval. This is because the cumulative

probability function is by value just a probability measure, which is uniform by definition. So, if we

can invert the cumulative probability function, and take values of the inverse cumulative probability

from given uniform variates, we obtain variates of our target distribution!

Example: The Cauchy distribution density and probability were given in equations (2.53) and (2.54)

as

ψ(x) =
1

π

1

1 + x2

Ψ(x) =
1

π
atan(x) +

1

2
.

The inverse cumulative density can easily be given:

Ψ−1(u) = tan
(
π(u− 1/2)

)
. (9.1)

As for all distributions that are non-zero for allx ∈ R, the inverse cumulative probability function of

the Cauchy distribution diverges both atu→ 0 and atu→ 1. It is therefore of paramount importance

for numerical applications to ensure that the underlying uniform number generator never returns either

95
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Figure 9.1: Constructing Cauchy variates that are distributed according toψ(x) as given in equation

(2.53) from U(0, 1) variates is easy by virtue of its inverse cumulative probabilityΨ−1(u) in (9.1).

of those two limiting values. Unfortunately, almost all uniform number generators that I have come

across so far include at least 0 in their range, which must be intercepted in a Monte Carlo implementa-

tion.

The method of direct inversion of the cumulative probability function is definitely the preferred

method for non-uniform variate construction, whereverΨ−1(u) is readily available and can be com-

puted efficiently. Despite the alternative methods discussed below, for distributions whose inverse

cumulative probability function is not so easily computable, such as Student’st whose cumulative is

given in equation (2.52) or the GB2 distribution whose cumulative is (2.62), it may still be advisable to

use the inverse cumulative mapping method. However, in those cases, rather than root-search for the

inverse cumulative for each new draw, one should set up a (possibly multidimensional) interpolation

table using cubic splines, monotonicity preserving splines, or your favourite shape-preserving spline

method [PTVF92, Hym83, Kva00]. Fortunately, for most known distributions, we have at least the

cumulative probability function and can thus readily set up the required interpolation table.

9.2 Using a sampler density

There may be situations when the inverse cumulative probability function is either not available at all,

or would be computationally extremely expensive to evaluate. In this case, we can employ thesampler

density technique[Mac97]. Instead of drawing directly from the desired target densityψ(x), we choose

another, hopefully similar, densitỹψ from which we can readily draw variates. The simulation is then

carried out using variates from the sampler density, and each function evaluation is probability density

corrected according to the likelihood ratio of the target densityψ(x) and the sampler densitỹψ(x).

Mathematically, this corresponds to the density transformation∫
f(x)ψ(x) dx =

∫
f(x)

(
ψ(x)

ψ̃(x)

)
ψ̃(x) dx . (9.2)
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In other words, the Monte Carlo estimator that was given in equation (2.15) is replaced by thesampler

density Monte Carlo estimator

v̂N :=
1

N

N∑
i=1

f(xi)

(
ψ(xi)

ψ̃(xi)

)
. (9.3)

Equation (9.3) gives us an immediate condition on any choice of sampler density: The sampler density

ψ̃(x) must not be zero whereverf(x)ψ(x) is non-zero!

The attentive reader may have noticed that for any finite numberN of simulations, the sampler

density Monte Carlo estimator for a constant functionf(x) := c will, generically, not result in the

exact valuec, unlike equation (2.15). This can be remedied by re-normalisation, which gives us the

normalised sampler density Monte Carlo estimator:

v̂N :=

N∑
i=1

f(xi)
(
ψ(xi)

ψ̃(xi)

)
N∑
i=1

(
ψ(xi)

ψ̃(xi)

) (9.4)

However, by virtue of the continuous mapping theorem, both estimators are valid. In general, the

y

y

~
(x)

(x)

f (x)

x

Figure 9.2: The sampler density method uses variates from a different, but preferably similar density,

and corrects the average for the misrepresentation of the individual draws by multiplying each function

evaluation by the likelihood ratio of the target and the sampler density.

variance of any sampler density estimator will be different from a straight target density estimator,

and by virtue of Murphy’s law, if we selected the sampler density more or less randomly, we will end

up with an increased variance for our Monte Carlo estimator, i.e. a larger Monte Carlo error. What’s

more, this problem is geometrically compounded as the number of dimensions increases, and this is

the reason why drawing from the target distribution is to be preferred if it is readily available. For
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a more mathematical analysis of the problem of increased variance of the sampler density estimator,

see [Mac97].

To finish this section, I show in figure9.3 the convergence diagram for a standard plain vanilla

European call option in the Black-Scholes framework withS0 = 123, K = 134, r = 12%, d = 4%,

T = 3.33, andσ = 67% using the Cauchy density as the sampling distribution in comparison to the

direct use of standard normal variates. The first thing to notice is that there is not much between the
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Figure 9.3: Pricing an out-of-the-money call option using a Cauchy sampling density.

normalised and the un-normalised versions of the sampling density method in equations (9.4) and (9.3),

respectively. There is one surprising feature though: the Cauchy sampler density method appears to

convergefaster for this particular simulation! The explanation is rather simple. In the Black-Scholes

framework, the terminal value construction method forST givenS0 and a standard normal variatex is

ST = S0e
(r−d− 1

2
σ2)T+σ

√
Tx .

SolvingST = K for x, we have

xK =
ln(K/S0)− (r − d− 1

2
σ2)T

σ
√
T

.

For the parameters given above, the cumulative normal probability forxK is N(xK) = 67.85%. The

cumulative Cauchy probability forxK is, however, onlyΨCauchy(xK) = 63.82%. This means that
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approximately4% fewer of the constructedST values end up out of the money when we use the Cauchy

sampling density, which gives rise to an improved convergence. What’s more, since the Cauchy density

has much fatter tails than the normal distribution, the simulations that end up in the money tend to have

higher values and thus compensate the convexity adjustment, i.e. the Itô term−1
2
σ2T , more rapidly.

Both effects together amount to the improved convergence behaviour seen in figure9.3.

9.2.1 Importance sampling

Since we have a lot of liberty with respect to the choice of the sampler density, can we take advantage

of this freedom in order to reduce the variance of the Monte Carlo estimator? Consider the special

choice

ψ̃(x) :=
f(x)ψ(x)∫
f(x)ψ(x) dx

, (9.5)

ignoring for now the fact that we don’t actually know the value of the denominator. This particular

choice for the sampler density would enable us to calculate (9.2) with any single draw forx since we

obtain from equation (9.3)

v̂1 = f(x1)

(
ψ(x1)

ψ̃(x1)

)

= f(x1)ψ(x1)

∫
f(x)ψ(x) dx
f(x1)ψ(x1)

=

∫
f(x)ψ(x) dx .

Since we don’t know the solution of the problem that shows up in the denominator of the right hand

side of equation (9.5), we clearly can’t actually do this. However, we can choose a sampler density that

takes structural features of the productf(x)ψ(x) into account. A very simple choice that will already

provide a significant improvement is to choose a sampler density that is zero whereverf(x) is zero,

too. An example for an integrandf(x) that has regions of zero value is given with the piecewise affine

function in figure9.2, and in finance, functions with this feature are everywhere. Specific choices

of sampler densities that take thus advantage of the regions of importance of the integrandf(x) are

known asimportance sampling methods. The use of a heavy-tailed distribution for the pricing of an

out-of-the-money option as in the example in the previous section is one such application of importance

sampling. We will revisit the importance sampling method in sections10.5and11.4.

Incidentally, the example of the ideal sampler density in equation (9.5) highlights that for strongly

non-constant functionsf , it may be advantageous to carry out the importance sampling technique using

the non-normalised estimator given in equation (9.3).
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9.2.2 Rejection sampling

Rejection samplingis the stepsister of importance sampling. For this method, we need to select a

sampling densitỹψ(x) and a scaling constantc such thatcψ̃(x) ≥ ψ(x) for all x in the domain ofψ. In

order to compute a Monte Carlo estimator over many values forx with x ∼ ψ, we proced as follows:-

· Draw a variatex from the sampling densitỹψ(x).

· Compute the value of the sampling densityψ̃(x) at x, and also the value of the target density

ψ(x) atx.

· Draw a uniform variateu ∼ U(0, 1).

· If u·cψ̃(x) > ψ(x), reject this attempt to find a suitable variate and start again, otherwise accept

x as a variate withx ∼ ψ and evaluate the integrandf(x) in the usual manner.

x

c ~
y(x)

y(x)

u. c ~
y(x)

Figure 9.4: For rejection sampling choose a sampling densityψ̃ and establish a scaling constantc such

thatcψ̃(x) ≥ ψ(x)∀x. Then, take a drawx from the sampling densitỹψ and evaluatẽψ(x) andψ(x)

atx. Next, draw a uniform(0, 1) variateu. Use the drawn variatex if u·cψ̃(x) ≤ ψ(x), else reject it.

There are two main problems with the rejection method. The first one is, again, the geometric implo-

sion of the sampling yield as the number of dimensions increases1. The second problem is that they are

1This repeated occurrence of high numbers of dimensions causing problems with the evaluation of integrals gave rise

to the termcurse of dimensionality.
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rather difficult to amend to the efficient application of low-discrepancy numbers. Personally, I don’t

like rejection methods.

9.3 Normal variates

My favourite method for constructing standard normal variates is the highly sophisticated interpola-

tion formula by Peter Acklam [Ack00] for the inverse cumulative normal distribution as discussed in

section2.3 on page11. A very crude way to quickly construct (approximately) normally distributed

variates is to add up 12 uniform variates, and subtract 6, and I have given a diagram that shows the

difference to the exact normal distribution in figure2.1 on page20. For any reasonable application, I

would always use either Peter Acklam’s method, or Boris Moro’s interpolation formula [Mor95].

9.3.1 The Box-Muller method

There is, however, yet another method for the construction of standard normal variates that is still very

popular. It is based on the transformation(u, v) to (x, y) given by

x =
√
−2 lnu sin(2πv)

y =
√
−2 lnu cos(2πv)

. (9.6)

Foru andv being independent standard uniform in(0, 1)2, the joint distribution forx andy is given by

ψ(x, y) =

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ =

(
e−

1
2
x2

√
2π

)(
e−

1
2
y2

√
2π

)
, (9.7)

i.e. that of two independent standard normal variates! Techniques for the generation of standard nor-

mal variates based on the transformation (9.6) are known asBox-Mullermethods [BM58, Knu81]. The

classical application of the Box-Muller method is to draw two independent uniform variates, and trans-

form them according to equation (9.6), in order to obtain two independent standard normal variates.

Note that the trigonometric terms on the right hand side of equation (9.6) are the abscissa and

ordinate of a point on the perimeter of a unit circle. Another variant of the Box-Muller method is to

draw a random point from within a unit circle, and use its cartesian coordinates(s, t) as follows. First,

setu := s2 + t2. Then set

x := s
√
−2 lnu

u

y := t
√
−2 lnu

u

. (9.8)

The advantage of this procedure is that no evaluation of trigonometric functions is required, and it used

to be that those trigonometric functions were rather cpu-intensive in their evaluation (in comparison to

simpler functions such as the logarithm and the square root)2. The only question that remains is: how

2More recently available computing hardware provides substantial improvements for a variety of previously cpu-time

expensive functions, see section14.6.



102 Non-uniform variates

do we draw a cartesian coordinate pair that describes a point inside a unit circle? The commonly used

method for this purpose is a two-dimensional rejection procedure. We simply keep drawing uniform

(−1, 1) variate pairs (by drawing standard uniform numbers, multiplying them by two, and subtracting

1) until we find one that lies inside the unit circle. Since the area of a unit circle isπ, and the area of a

2× 2 square is 4, the yield of this rejection method isπ/4.

There are two main problems with the Box-Muller method. The first one is discussed in the next

section. The second problem is that rejection methods are highly dangereous (and should not be used,

really) in conjunction with low-discrepancy numbers. An example for this is shown in figure9.5.

In the top-left diagram of the figure, two-dimensional Gaussian variates constructed from Mersenne-
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Figure 9.5: The Box-Muller method(s) in comparison to the use of the inverse cumulative normal

function. All diagrams were constructed from 65535 pairs of variates.

Twister numbers using equation (9.6) are shown. Next to it, the same transformation method was

used with 2-dimensional Sobol’ numbers. Then, the distribution of 2-dimensional Sobol’ numbers

transformed by the Box-Muller rejection method (9.8) are shown. At the bottom-left, we have the

inverse cumulative normal function applied to Mersenne numbers, followed by the same method with

2-dimensional Sobol’ numbers. The last diagram highlights the danger of combining rejection methods

with low-discrepancy numbers: using a one-dimensional sequential generator with the Box-Muller

rejection method, as in this example, which is fine for pseudo-random numbers, goes horribly wrong

when the number generator is a low-discrepancy algorithm.



9.3 Normal variates 103

9.3.2 The Neave effect

A problem with highly sophisticated deterministic methods, such as pseudo-random number gener-

ators and the Box-Muller algorithm, is that it is often difficult to foresee when their interaction may

have undesirable side-effects. In 1973, H. R. Neave discovered one of these hard-to-imagine quirks of

undesirable interaction between nonlinear systems [Nea73]. When we use simple multiplicative con-

gruential pseudo-random number generators such as Ran0 (also known as GGL3) as given in equation

(7.6) and discussed in section7.4 in conjunction with the transformation version of the Box-Muller

method given in equation (9.6), there is a nasty surprise in store for us: over the whole period of the

number generator of231 − 1 = 2147483647 iterations, the smallest pseudo-normal variate that can be

drawn forx in equation (9.6) is -4.476239, and the largest we will get is 4.717016 [Tez95]. Strictly

speaking, there are two possible ranges forx depending on whether the pairwise transformation starts

on the cycle containing the local seed 1, or on the cycle containing the local seed 16807 in the iteration

mi = a ·mi−1 mod M

with a = 16807, M = 231 − 1, andmi−1 being the local seed for thei-th single variateui = mi

M
.

However, the variation in the lower bound and the upper bound between those two possible cycles is

beyond the first six decimal digits. According to the cumulative normal probability function, we would

expect to have approximately

231 − 1 · N(−4.476239) ≈ 8157

draws lower than -4.476239, and equally several thousand above 4.717016. So, the range forx isn’t

too good. The lower bound fory from equation (9.6), is -4.566210, again only showing variation

between the two possible cycles beyond the first 6 decimal digits. The upper bound fory, though, is

6.385757568918 for the cycle beginning withmi = 1, and 6.555541555803 for the cycle beginning

with 16807. In other words, the upper bound is somewhat better for they variate, but the lower bound

is still no good. What’s more, on either side of the distribution resulting from the combination of this

number generator with the trigonometric version of the Box-Muller method, there appear to be some

kind of wing formations in the tails of the distribution, as is shown in figure9.6. As you can see,

addition of a bitwise XOR mask as it is done for the proper Ran0 pseudo-random number method

doesn’t fix the problem. The Neave effect does fade away, though, when we use the rejection version

of the Box-Muller algorithm (9.8). However, there are reports that the rejection method also suffers

from problems due to the fact that two (or more) uniform variates are used together for the generation

of two normal variates [AW88, Rip87].

Of course, some may say that this is a small effect in the tails of the distribution, which is fair

enough. However, in finance we are frequently particularly concerned with the tails since they tend to

contain the most feared scenarios. But then, of course, you are probably not using the simple Ran0 aka

3The only difference between the two is that Ran0 uses a bitwise XOR mask on the seed before and after each iteration

mainly to prevent the accidental use of 0 as a seed, which would result in the fixed point 0.



104 Non-uniform variates

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -2 0 2 4

On a global scale, all combinations look pretty much the same

GGL : x
GGL : y

Ran0 (i.e. using a mask) : x
Ran0 (i.e. using a mask) : y

GGL with rejection method : x
GGL with rejection method : y

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

-4.6 -4.5 -4.4 -4.3 -4.2 -4.1 -4 -3.9 -3.8

GGL : x
GGL : y

Ran0 (i.e. using a mask) : x
Ran0 (i.e. using a mask) : y

GGL with rejection method : x
GGL with rejection method : y

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

3.8 4 4.2 4.4 4.6 4.8

GGL : x
GGL : y

Ran0 (i.e. using a mask) : x
Ran0 (i.e. using a mask) : y

GGL with rejection method : x
GGL with rejection method : y

Figure 9.6: The Neave effect is due to an interaction of pseudo-random number generation methods

and the trigonometric transformation version of the Box-Muller algorithm (9.6). In this figure, the

GGL generator given by equation (7.6) with a = 16807, c = 0, andM = 231 − 1 was used.

GGL generator, but one of the much more sophisticated ones that are readily available these days. Un-

fortunately, number theoreticians have begun to suspect that effects similar to the Neave phenomenon

may occur for other number generation classes4. The fundamental principle of the problem underlying

the Neave effect remains, thus: whenever you use a variate-mixing transformation in order to generate

variates from a specific target distribution, you run the risk of some kind of nonlinear interaction with

the number generation mechanism that may be very hard to foresee, or even very difficult to notice,

until something has gone wrong in a very big and unexpected way.

In summary, since there are nowadays highly accurate and efficient interpolation algorithms avail-

able for the inverse cumulative normal probability function, it is generally safer to use those rather than

to employ the Box-Muller method. It was an invention of great ingenuity and insight at the time, but

now it has had its days.

9.4 Simulating multi-variate copula draws

The problem of non-uniform variate generation is, of course, not limited to one dimension, or several

dimensions of independent variates. The copula approach of creating multidimensional variate draws

with co-dependence was explained in section5.2. To conclude this chapter, I give in figure9.7 an

example for the kind of codependence that can be constructed by the use of copulæ. The Archimedean

copula generating functionφ(u) = (u−1 − 1)θ as given in equation (5.31) in section5.2.3was used

with θ = 3/2. The Weibull variates were generated from the inverse cumulative Weibull probability

function

Ψ−1(u) = [−β ln(1− u)]
1
γ , (9.9)

4Tezuka states on page 152 in [Tez95] that the Neave effect ‘... possibly occurs not only with linear congruential

sequences but also withLS(2) sequences.’
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Figure 9.7: 131071 Weibull variates forβ = 1 andγ = 4 under the Archimedean copula generated by

φ given in equation (5.31) with θ = 3/2.

which can be calculated from (2.72), usingβ = 1 andγ = 4. A rather interesting shape, don’t you

think?
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Chapter 10

Variance reduction techniques

As we have seen in chapter2, the error estimate for the result of a Monte Carlo simulation is given by

the standard deviation of the result (i.e. the average of all samples for a standard Monte Carlo integ-

ration) which is known as the standard error and usually estimated as the realised standard deviation

of the simulation divided by the square root of the number of iterations. The smaller the variance

(and thus the standard deviation) of the calculation, the more accurate will be the result. When I talk

about variance here, I don’t mean the variance associated with any one individual sample of our Monte

Carlo simulation, but with the variance associated with repeating the whole simulation many times. A

number of techniques have been developed [BBG97], that help to reduce the variance of the result, and

thus to reduce the number of simulations required for a given accuracy. Some of these methods can be

combined to achieve even higher accuracy as we will see.

10.1 Antithetic sampling

Whenever we use Gaussian variates to drive a Monte Carlo calculation, or wish to simulate Brownian

motion by constructing sample paths of standard Wiener processes, we can make use of the fact that

for any one drawn path its mirror image has equal probability. In other words, if a single evaluation

driven by a Gaussian variate vector drawzi is given byvi = v(zi), we also usẽvi = v(−zi) .

The standard error for antithetic sampling requires some consideration. This is because the central

limit theorem underpinning the idea that the standard error can be estimated as the square root of the

realised variance divided by the square root of the number of samples requiresindependentdraws.

However, if instead of viewing bothvi = v(zi) andṽi = v(−zi) as individual samples, we only count

the pairwise averagēvi = 1
2
(v(zi) + v(−zi)) as an individual sample, all is well again, because the

pairwise averages̄vi are independent, and a standard error can be calculated from them in the ordinary

fashion.

Taking into account that each evaluation ofv̄i requires two calculations (albeit only one Gaussian

107
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vector draw generation), the antithetic sampling procedure provides a variance reduction if

V
[
1

2
(vi + ṽi)

]
<

1

2
V[vi] (10.1)

which is equivalent to

Cov[vi, ṽi] < 0 . (10.2)

This is always the case ifv(z) is monotonic inz. Whenever the first realised moment of the underlying

variate draws{zi} has a strong impact on the result of the overall simulation, antithetic sampling is an

easy way of improving the accuracy of the calculation since it corrects the first moment. Of course,

if we use Monte Carlo simulation to calculate the value of derivatives contracts that mainly (or only)

depend on higher moments, antithetic sampling will not help.

Low-discrepancy numbers, or more specifically, Sobol’ numbers, unlike pseudo-random numbers,

have the antithetic feature built into them, but only approximately. This is to say, whenever we use a

recommended number of draws such as2n−1 for somen as advocated in section8.7, the first moment

of {z} is correct to within the numerical accuracy of the conversion from uniform(0, 1) to Gaussian

variates. Also, it is worth remembering that low-discrepancy numbers are very carefully designed and

tinkering with them can result in unexpected and rather undesirable effects. Therefore, even when we

are not using2n − 1 draws with low-discrepancy numbers, adding the antithetic method to the use of

low-discrepancy numbers is unlikely to improve the accuracy, and instead can lead to erroneous results.

10.2 Variate recycling

This method applies when the quantity to be calculated is essentially a re-evaluation of a functional

of a (possibly multidimensional) discretised stochastic process, or any other re-evaluation using many

draws. An example for this is the calculation of the Greeks of options by finite differencing. LetWi

be the discretised representation of our Monte Carlo approximation of a particular standard Wiener

process path. Also, letv(p) = F [p, {Wi}i=1...N ] be the approximation of the value of an option by

averaging the evaluation functional over theN sampling paths{Wi}i=1...N , depending on the parameter

p. The simplest approach to estimate the sensitivity ofv with respect to the parameterp is to run a

separate Monte Carlo calculation using a slightly larger value forp, namelyp+∆p to obtainv(p+∆p)

and set

∂v

∂p
≈ v(p+ ∆p)− v(p)

δp
. (10.3)

In fact, for specific Greeks such asVega, the dependence with respect to implied volatility, market

practitioners may insist that it is mandatory to use forward differencing as in equation (10.3), and to

use a particular increment∆p (usually one absolute percentage point) for the calculation. Other Greeks

where an absolute shift is commonly used areRho, the sensitivity of FX and equity options with respect

to domestic interest rates, and also the sensitivity with respect to forecast dividend yields.
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Naturally, we are interested in an accurate estimate of the Greeks when using the approach defined

by equation (10.3). The standard measure for the accuracy of a Monte Carlo method is the variance

of the resulting numerical approximaton. The variance of the sensitivity as given by equation (10.3) is

thus

V
[
∂v

∂p

]
≈ 1

∆p
·
{

E
[
(v(p+ ∆p)− v(p))2]− (E[(v(p+ ∆p)− v(p))])2} (10.4)

=
1

∆p
·
{

E
[
v(p+ ∆p)2

]
− 2E[v(p+ ∆p)v(p)] + E

[
v(p)2

]
− (E[v(p+ ∆p)])2 + 2E[v(p+ ∆p)] E[v(p)]− (E[v(p)])2}

=
1

∆p
· {V[v(p+ ∆p)] + V[v(p)]− 2Cov[v(p+ ∆p), v(p)]}

=
1

∆p
· {V[v(p+ ∆p)] + V[v(p)]

−2
√

V[v(p+ ∆p)] V[v(p)]Corr[v(p+ ∆p), v(p)]
}

≈ 2

∆p
· V[v(p)] {1− Corr[v(p+ ∆p), v(p)]} (10.5)

where I usedV[v(p+ ∆p)] ≈ V[v(p)] in the last step. As equation (10.5) indicates, it is desirable

to maximise the correlation of the two separate calculationsv(p + ∆p) and v(p). For monotonic

functionsv(p), one can show [BBG97] that positive correlation is given if we use the same sample

path set{Wi}i=1...N for both calculations whence one may call this methodvariateor path recycling.

The above analysis easiliy transfers to other calculations of similar nature. Another example is the

repeated Monte Carlo evaluation of the same problem with slightly varying parameters in the process

of optimisation or within a nonlinear solver routine. Naturally, it is advisable to re-use (and wherever

possible precalculate all quantities derived from them!) the sample paths, or simply the drawn variates

if the problem doesn’t involve the concept of discretised stochastic processes.

10.3 Control variates

Many Monte Carlo calculations are carried out for problems that we can almost solve analytically, or

that are very similar to other problems for which we have closed form solutions. In this case, the use

of control variatescan be very beneficial indeed. The idea is as follows. Let’s assume that we wish to

calculate the expectationE[v] of a functionv(u) for some underlying vector drawu, and that there is

a related functiong(u) whose expectationg∗ := E[g] we know exactly. Then, we have

E

[
1

n

n∑
i=1

v(ui)

]
= E

[
1

n

n∑
i=1

v(ui) + β

(
g∗ − 1

n

n∑
i=1

g(ui)

)]
(10.6)
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for any givenβ ∈ R and thus we can replace the ordinary Monte Carlo estimator

v̂ =
1

n

n∑
i=1

v(ui) (10.7)

by

v̂CV =
1

n

n∑
i=1

[v(ui) + β (g∗ − g(ui))] . (10.8)

The optimal choice ofβ is

β∗ =
Cov[v, g]

V[g]
(10.9)

which minimises the variance of of̂vCV. Note that the functiong(ui) does not have to be the payoff

of an analytically known option. It could also be the profit from a self-financing dynamic hedging

strategy, i.e. a strategy that start with zero investment capital. For risk-neutral measures, the expected

profit from any such strategy is zero which means that the control variate is simply the payoff from the

dynamic hedging strategy along any one path. An intuitive understanding of the control variate method

is to consider the case whenv andg are positively correlated. For any drawv(ui) that overestimates

the result,g(ui) is likely to overestimateg∗. As a result, the term multiplied byβ in equation (10.8) is

likely to correct the result by subtracting the aberration.

The precise value ofβ∗ is, of course, not known but can be estimated from the same simulation

that is used to calculatêvCV. As in all the situations when the parameters determining the result are

calculated from the same simulation, this can introduce a bias that is difficult to estimate. In the

limit of very large numbers of iterations, this bias vanishes, but the whole point of variance reduction

techniques is to requirefewersimulations and thus shorter run time. A remedy to the problem of bias

due to a correlated estimate of the control parameterβ is to use an initial simulation, possibly with

fewer iterates than the main run, to estimateβ∗ in isolation. Fortunately, the control variate technique

does usually provide such a substantial speedup in convergence that this initial parameter estimation

simulation is affordable. However, for many applications, the magnitude of the bias is negligible.

The easiest way to ascertain that there is no bias present that would be relevant for derivatives pricing

purposes is to look at a convergence diagram of the simulation method, rather than a single result.

The control variate method can be generalised to take advantage of more than one related closed

form solution. However, this necessitates the estimation of more control parameters, and makes the

method more susceptible to errors in their estimate. It is generally considered to be wiser to have

one reasonable control variate than several mediocre ones. For instance, an option on a geometric

average, which can be priced analytically for geometric Brownian motion, works exceedingly well as

a control variate for arithmetic average options, whilst the use of both a standard European option and

the underlying asset as joint control variates is only about as effective as the European option used as

a control variate by itself [BG97b].
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10.4 Stratified sampling

The idea here is to subdivide the sampling domain into smaller areas for each of which a representative

value of the function is selected. This can be particularly useful if a good approximation for the

Figure 10.1: An example for stratification with representative values for each segment.

average over small subdomains is available. Stratified sampling is conceptually akin to fixed lattice

methods. It can also be of advantage when an assessment of the total probability of a small subdomain

is difficult, and each evaluation in this domain is rather cpu time expensive, but it is known that the

function which is being sampled varies very little in any one given subdomain. Whenever the probab-

ility associated with each segment of the stratification can be well approximated, stratified sampling

can be used to evaluate the Monte Carlo integral by simpling calculating the weighted sum over the

representative values, which makes it essentially some kind of (possibly irregular) lattice method. The

segments into which the subdomain is partitioned don’t have to be of equal size. A better choice of

stratification is to make the subdomains have approximately equal probability associated with them.

However, the biggest problem with stratified sampling is that it is very difficult to obtain any kind

of error estimate. Clearly, a statistical error estimate like the conventional standard error for pseudo-

random sampling can be very misleading since the individual function values resulting from each draw

are not independent variates in the usual meaning of the word. Also, the accuracy of any one calcu-

lation is limited by the stratification whence taking more and more samples will not make the result

eventually converge to the exact answer as it would for a conventional Monte Carlo method following

Kolmogorov’s strong law. In other words, the very technique that is supposed to increase convergence,

i.e. the stratification itself, can introduce a finite bias of unknown sign.
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10.5 Importance sampling

The concept ofimportance samplingis to focus on those regions which contribute most to the aver-

age of a Monte Carlo integration procedure. The most common use of this method in finance is to

ensure that all drawn samples are in regions where the function to be evaluated is non-zero. This is the

particular difficulty of out-of-the money option pricing. The standard procedure of generating paths

would result in most evaluations resulting in zero payoff and are thus effectively a waste of cpu time.

The main drawback of importance sampling is that it requires additional knowledge of the underlying

problem. However, for very specific calculations, it can make a tremendeous difference in the con-

vergence speed. Take for instance the functionf(X,Y ) of two independent standard normal variates

X andY in figure 10.2. A Monte Carlo integration of such a function will converge substantially
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Figure 10.2: The integration of localised functions can be accelerated by the use of importance

sampling.

faster if we restrict the normal variate draws to be in the subdomain wheref is non-zero, in this case

(X, Y ) ∈ [0, 1]2. For the specific example here, this is easily done by the use of our knowledge of the

probabilityp associated with the domain(X, Y ) ∈ [0, 1]2, namely

p = (N(1)− N(0))2 ,
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by which the result of the conditioned Monte Carlo integration simply has to be multiplied. The

construction of variates conditioned on the domain of importance is for the given example achieved

by first drawing a vector of two uniform(0, 1) variatesuX anduY , and constructing the importance

sampling variatesXis andYis according to

Xis = N−1 [N(0) + (N(1)− N(0)) · uX ]

and respectively forYis. Another, more detailed, example for the potential of the importance sampling

method is discussed in section11.4.

10.6 Moment matching

Moment matchingused to be a very popular method before efficient and reliable low-discrepancy

numbers became available. This method does usually give more accurate results for calculations that

use pseudo-random numbers, although it is not guaranteed to do so.

Assume a Monte Carlo simulation is to be carried out using a total ofN variate vectorsv of

dimensionalityd of a known joint distribution densityψ(v). Then, we can calculate the moments

actually realised by the drawn variate vector setV := {vij} with i = 1..N andj = 1..d. The first

moment for dimensionj is given by

〈v〉j =
1

N

N∑
i=1

vij , j = 1..d . (10.10)

Using (10.10), we can construct a set of first-moment-corrected variatesṼ by subtraction of the average

in each dimension, i.e.

ṽij = vij − 〈v〉j . (10.11)

The realised covariance of the mean-corrected variate set can be concisely represented as

C̃ = Ṽ >Ṽ (10.12)

if we view Ṽ as a matrix whose rows comprise the individuald-dimensional mean-corrected vector

draws. Using the same pseudo-square root decomposition approach as discussed in chapter6, we can

construct a new matrix̂V whose entries will meet the desired covarianceC of the target distribution

densityψ exactly. Define the elements of the desired covariance matrixC as

cjk =

∫
vjvkψ(v)dvjdvk . (10.13)

Also, define the pseudo-square roots of bothC andC̃ by

C̃ = Ã · Ã> and C = A · A> . (10.14)
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The correction matrixK that transforms̃V to V̂ can be computed by solving the linear system

Ã> ·K = A> , (10.15)

i.e.

K = Ã>
−1 · A> . (10.16)

It is easily possible for a covariance matrix not to be of full rank. This is the case whenever there are

fewer driving factors than financial assets, for instance. This means that, whilst the original vector

drawsv ared-dimensional, the target covariance matrix may beC ∈ Rd′×d′ with d′ > d, albeit that

the rank ofC is d. As a consequence, the matrixA will then haved′ rows, but onlyd columns,

i.e.A ∈ Rd′×d. However,Ã will be of dimensionsd × d, andK ∈ Rd×d′. It is advisable to use a

failsafe method for the solution of the linear system (10.15) such as the Moore-Penrose pseudo-inverse

explained in section2.9 in order to avoid problems due to the fact that there may be fewer dimensions

in the vectorv than there are variates in the target distribution. Another situation that may give rise

to problems is when the numberN of drawn vector variates is comparatively small, and the resulting

realised covariancẽC of the mean-corrected variate set is nearly singular. Then, the linear system

(10.15) is ill-conditioned which can lead to rather unexpected results. In other words, I recommend

always to use the Moore-Penrose pseudo-inverse forÃ>
−1

in equation (10.16).

Putting all of the above linear algebra together, we can convince ourselves that the covariance-

corrected variate matrix

V̂ = Ṽ ·K (10.17)

does indeed satisfy

V̂ > · V̂ = C . (10.18)

Note that when using this method to correct the first and the second moment of a set of drawn

variates it should be applied to the variatesafter having transformed them from the uniform(0, 1)

distribution to whatever distribution is actually used, e.g. a joint normal distribution. This is because

the nonlinearity in the transformation will have the effect that whilst you may have a set of uniform

(0, 1) variates that have exactly the same mean and covariance matrix as in the continuous limit, the

normal variates resulting from them after transformation willnotmeet the desired mean and covariance

matrix of the joint normal distribution. As a simple example, take the very small set of only two one-

dimensional uniform(0, 1) variates{u1, u2} = {1/2 −
√

1/12, 1/2 +
√

1/12}. The first and second

moment of this set meet the moment of the continuous uniform(0, 1) distribution 1/2 and 1/3 exactly.

Transforming(u1, u2) to normal variates by the aid of the inverse cumulative normal distribution gives

{z1, z2} = {N−1(u1),N−1(u2)} = {−0.801832717, 0.801832717} which does have the desired first

moment of exactly zero. However, the second moment of the transformed set is0.64293571 which is

very different from 1 as it should be for a standard normal variate.



10.6 Moment matching 115

The above example of an extremely small set of variates may appear somewhat construed. It does,

however, highlight the dangers associated with moment matching. Correcting the first and second

moment, or even higher moments for that matter, of a set of drawn variates that are to undergo further

transformation, does not mean that the final distribution meets those moments equally. This cautioning

note applies particularly to the common use of standard normal variates in the construction of geometric

Brownian motion. The sheer fact that a discrete set of variates{z} has the same first and second

moment as the continuous Gaussian distribution, does not mean that lognormal variates constructed

according toST = S0eσ̂·
√
T ·z have a first and second moment in perfect agreement with the continuous

lognormal distribution. What’s more, even if we manage to correct the first few moments of the variate

set representing the ultimate target distribution, the effects we inflict upon the higher moments are

quite unpredictable. Most calculations are affected by more than just the first few moments: even

comparatively simple problems such as the pricing of an option with a fairly vanilla payoff depend

quite strongly on the third moment, for instance. These considerations bear particular relevance when

we actually need to represent a distribution by a very small sample set such as in a stratification method,

or in a tree. A discussion of the differences caused by first and second moment matching in the

underlying normal variate space or the target lognormal variate space is given in section13.7 and

13.6in the context of non-recombining trees for the pricing of interest rate derivatives in the BGM/J

framework.

As for the standard error estimate when we use pseudo-random numbers in conjunction with

moment-matching, this is somewhat problematic since the variates can no longer be considered in-

dependent. This directly affects another nice feature of Monte Carlo simulations: with ordinary Monte

Carlo simulations, it is possible to continue drawing variates and monitor the running error estimate

until the latter has dropped below a specified level of required accuracy. Not only is it no longer jus-

tified to use the running standard error as a statistical error measure since any new draw is no longer

strictly independent (since we would have to re-match the moments), but since this would also involve

re-computing the correction matrixK from equation (10.16) in each step, it would clearly become

computationally prohibitively expensive. As a matter of fact, the one-off calculation of the realised

covariance matrix (10.12) can easily be extremely cpu intensive since it grows like the square of the

total dimensionality of the problem, and linearly in the number of vector draws (i.e. paths for option

pricing) that are used. Should you ever use the moment matching method, you’d be well advised to

monitor the cpu time that is actually being spent in total in the correction step, in comparison to the

time spent in the main Monte Carlo simulation. For example, for multi-asset options of Asian style,

the total dimensionality (which is the product of the number of time steps and the number of underly-

ings) can easily be moderately large. Since the computing effort grows like the square ofd, it is not

uncommon for such calculations to spend 90% or more of the total calculation time just in the moment

matching part of the simulation, in particular since those multi-asset calculations frequently involve

the evaluation of a very simple payoff function. In comparison to the use of low-discrepancy numbers,

the moment matching method with pseudo-random numbers rarely provides a substantial speedup in

convergence as a function of the number of simulations which means that the same accuracy could be
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achieved by slightly increasing the number of iterations using, e.g., Sobol’ numbers. It is important

to remember that any user’s perception of Monte Carlo simulation convergence is mainly a function

of the time spent waiting for the result. Therefore, the moment matching method can easily make the

Monte Carlo method appear slower for multi-asset, multi-time-stepped simulations.

Finally, I ought to mention that moment matchingshould notbe combined with the use of low-

discrepancy methods. This is because their careful construction from number theoretical principles

already tries to match all the moments in a well-balanced way and interfering with them can have

unexpected effects. A simple way to ensure that the first moment is exactly met when using Sobol’

numbers, for instance, is to useN = (2n − 1) vector draws for some positive integern, as explained

in section8.7. You will also find that the second moments are almost exactly met, especially when

comparing to pseudo-random numbers. Since Sobol’ numbers are particularly fast to construct, I never

found a situation when just using a few more draws with straightforward Sobol’ numbers did not out-

perform the use of moment matching with pseudo-random numbers, even for very low-dimensional

problems. For high-dimensional, i.e. multi-asset simulation problems, importance-aware path con-

struction as outlined in section10.8in order to achieve an effective dimensionality reduction ensures

that Sobol’ numbers still give a convergence improvement over pseudo-random numbers when meas-

ured just in terms of the number of iterations required until a certain accuracy is met. As discussed

above, though, when measured in terms of cpu time (which is a much better measure), moment match-

ing becomes prohibitively cpu time expensive for high-dimensional problems. Just in case the message

is still not clear:Use the moment matching method at your own peril.

10.7 Latin hypercube sampling

Latin hypercube samplingisn’t actually a Monte Carlo method. Latin hypercube sampling is a way

to crash cars. Seriously. This technique is used when probing the sampling space is (quite literally)

extremely expensive. Basically, a Latin hypercube sampling scheme is the attempt to place sampling

points in a multi-dimensional stratification with as little overlap in all one-dimensional projections

as possible. Imagine that you wish to evaluate the effect of four control parameters on the safety

of the driver of a car measured by the impact forces experienced in a frontal collision. The control

parameters could be, for instance, the angle of the steering wheel column, the elasticity of the back

rest of the drivers seat, the rigidity of the front of the vehicle’s chassis, and the amount of leg space in

front of the driver’s seat. For each of those parameters, you have chosen seven possible settings, which

represents a four-dimensional stratification. Clearly, it is desirable not having to crash74 = 2401 cars

to get an idea what the optimal combination of settings would be. The Latin hypercube scheme is a

systematic method to sample the stratified layer in each control parameter (at least) once. An example

for such an arrangement is shown in figure10.3in all of the possible two-dimensional projections of

the four-dimensional domain. Incidentally, the points shown in figure10.3were taken as the first seven

points of a four-dimensional Sobol’ sequence which highlights another advantage of that particular

number generation method: Sobol’ numbers have the Latin hypercube property built-in.
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Figure 10.3: The Latin hypercube arrangement of sampling points.

10.8 Path construction

In many applications, we need to construct a simulated discretised path of a standard Wiener process

over a set{ti}, i = 1..n, points in time. We can view the valueswi := W (ti) of the Wiener process

at those points in time as a vector of random variates. Since we are talking about a standard Wiener

process starting atW (0) = 0, the global expectation of all of thewi as averaged over many simulated

paths must be zero. The elements of their covariance matrixC, however, are given by

cij = Cov[W (ti),W (tj)] = min(ti, tj) . (10.19)

Given a vectorz of independent Gaussian variates, we can transform them into a vectorw representing

a single simulated Wiener process path according to

w = A · z , (10.20)

provided that the matrixA satisfies

A · A> = C (10.21)

with the elementscij of C given by (10.19). The decomposition ofC as in equation (10.21) is not

unique and for Monte Carlo simulations driven by pseudo-random numbers, it is also completely irrel-

evant which method is used. The specific path construction technique employed does not directly have
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an impact on the variance of the result of any Monte Carlo simulation. However, as I will elaborate

below, a fortunate choice of the path construction method can aid in the reduction of what is called

the effective dimensionalitywhich is the key to unleashing the full potential of Sobol’ numbers, and

can lead to a significantly improved convergence behaviour when compared with ordinary pseudo-

random numbers. It is because of the effect that the choice of the path construction method has on the

convergence behaviour of simulations using Sobol’ numbers that I discuss them in this chapter.

10.8.1 Incremental

Probably the simplest way to construct a Wiener process path is theincremental path construction. It

can be seen as a direct application of the Markov property of a Wiener process. The construction is

carried out by simply adding a new increment that is scaled according to the time step:

wi+1 = wi +
√

∆ti+1 · zi, with zi ∼ N (0, 1) . (10.22)

The construction matrix of the incremental method is given by the Cholesky decomposition of the

covariance matrix:

Aincremental =



√
∆t1 0 0 0 · · · 0

√
∆t1

√
∆t2 0 0 · · · 0

√
∆t1

√
∆t2

√
∆t3 0 · · · 0

...
...

...
... · · · ...

...
...

...
...

...
...

√
∆t1

√
∆t2

√
∆t3 · · · · · ·

√
∆tn


(10.23)

As you can see from equation (10.22), the incremental construction is an extremely fast way to convert

a vector ofn Gaussian variates into a standard Wiener path overn steps in time. Since all of the square

roots can be precalculated, all that is involved for each path is a total ofn multiplications, andn − 1

additions. It is because of this speed advantage that incremental path construction is the method of

choice when pseudo-random numbers are used.

10.8.2 Spectral

In section6.2, I explained how any symmetric positive definite matrix can be split into its spectral

pseudo-square root. The same method can be used here to compute a spectral path construction matrix

Aspectralthat satisfies (10.21).

It is also possible to use an approximation for the spectral discrete path construction matrix. This

approximation is given by the spectral decomposition of a continuous Wiener path over the time in-

terval (0, T ] into an orthogonal Hilbert basis. In order to construct a fully continuous Wiener path

over any time interval, we would need an infinite number of driving Gaussian variates. The Gaussian
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variates are the coefficients{zk} of the decomposition ofW (t) in

W (t) =

√
2

T

∞∑
k=1

zk
sinωkt

ωk
with ωk =

(
2k − 1

2

)
π

T
. (10.24)

The approximation of the elementakl of the spectral construction matrixAspectralis to be calculated as

follows. First, populate an initial stage approximation that is simply given by the continuous counter-

part for the path fromt0 = 0 to tn = T :

a′ik =

√
2

T

sinωkti
ωk

(10.25)

Now, the most important part of the path construction is that the variance ofwi = W (ti) must be equal

to ti, i.e.

V[wi] = ti . (10.26)

The initial stage approximationA′ does not satisfy this. This deficit can be rectified by definingτi as

the sum of the squares of all of the entries of thei-th row ofA′:

τi :=
n∑
k=1

(a′ik)
2 (10.27)

The elements̃aik of the approximation for the discrete spectral path construction matrixÃ are then

given by

ãik =

√
ti
τi
a′ik =

√
ti

sinωkti
2k−1√

n∑
l=1

(
sinωlti
2l−1

)2 . (10.28)

The approximate spectral split calculated in this way for a 12-step discretisation of a Wiener process

path fromt = 0 to t = 3 is shown below.

Ãspectral=



0.2142 0.2094 0.1998 0.1860 0.1685 0.1479 0.1252 0.1011 0.0766 0.0526 0.0299 0.0093

0.4141 0.3771 0.3091 0.2208 0.1257 0.0376 −0.0319 −0.0754 −0.0909 −0.0813 −0.0539 −0.0180

0.6070 0.4885 0.2931 0.0867 −0.0674 −0.1332 −0.1127 −0.0405 0.0357 0.0771 0.0698 0.0264

0.7897 0.5265 0.1579 −0.1128 −0.1755 −0.0718 0.0607 0.1053 0.0465 −0.0416 −0.0752 −0.0343

0.9591 0.4852 −0.0411 −0.2231 −0.0670 0.1136 0.0961 −0.0402 −0.0919 −0.0108 0.0693 0.0417

1.1121 0.3707 −0.2224 −0.1589 0.1236 0.1011 −0.0855 −0.0741 0.0654 0.0585 −0.0530 −0.0484

1.2462 0.2004 −0.3115 0.0293 0.1612 −0.0869 −0.0736 0.0967 0.0121 −0.0820 0.0286 0.0542

1.3591 0.0000 −0.2718 0.1942 0.0000 −0.1236 0.1045 0.0000 −0.0799 0.0715 0.0000 −0.0591

1.4489 −0.2001 −0.1200 0.2070 −0.1610 0.0546 0.0462 −0.0966 0.0852 −0.0316 −0.0286 0.0630

1.5140 −0.3694 0.0811 0.0580 −0.1231 0.1376 −0.1165 0.0739 −0.0239 −0.0214 0.0528 −0.0658

1.5535 −0.4825 0.2486 −0.1363 0.0666 −0.0186 −0.0157 0.0400 −0.0561 0.0654 −0.0689 0.0675

1.5727 −0.5242 0.3145 −0.2247 0.1747 −0.1430 0.1210 −0.1048 0.0925 −0.0828 0.0749 −0.0684



(10.29)

This is to be compared with an exact spectral split:

Aspectral=



0.1996 0.1965 0.1902 0.1810 0.1689 0.1541 0.1369 0.1176 0.0964 0.0736 0.0497 0.0251

0.3961 0.3653 0.3078 0.2307 0.1438 0.0578 −0.0172 −0.0727 −0.1033 −0.1073 −0.0872 −0.0486

0.5863 0.4829 0.3078 0.1131 −0.0464 −0.1325 −0.1348 −0.0727 0.0143 0.0829 0.1030 0.0690

0.7672 0.5326 0.1902 −0.0865 −0.1833 −0.1074 0.0341 0.1176 0.0879 −0.0135 −0.0934 −0.0851

0.9361 0.5076 0.0000 −0.2234 −0.1097 0.0922 0.1305 0.0000 −0.1085 −0.0632 0.0607 0.0959

1.0902 0.4112 −0.1902 −0.1983 0.0899 0.1420 −0.0505 −0.1176 0.0284 0.1056 −0.0129 −0.1006

1.2271 0.2571 −0.3078 −0.0294 0.1863 −0.0390 −0.1241 0.0727 0.0781 −0.0908 −0.0380 0.0990

1.3447 0.0669 −0.3078 0.1608 0.0687 −0.1566 0.0661 0.0727 −0.1121 0.0267 0.0796 −0.0912

1.4410 −0.1327 −0.1902 0.2344 −0.1278 −0.0197 0.1158 −0.1176 0.0420 0.0518 −0.1014 0.0777

1.5146 −0.3137 0.0000 0.1380 −0.1775 0.1492 −0.0806 0.0000 0.0671 −0.1023 0.0982 −0.0592

1.5644 −0.4506 0.1902 −0.0584 −0.0234 0.0756 −0.1057 0.1176 −0.1139 0.0973 −0.0707 0.0371

1.5895 −0.5242 0.3078 −0.2125 0.1576 −0.1209 0.0939 −0.0727 0.0550 −0.0396 0.0257 −0.0126



(10.30)
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The effective covariance of the approximate spectral construction matrix (10.29) is:

Ãspectral· Ã>spectral=



0.2500 0.2726 0.2669 0.2668 0.2656 0.2655 0.2650 0.2648 0.2646 0.2645 0.2644 0.2654

0.2726 0.5000 0.5247 0.5187 0.5187 0.5172 0.5169 0.5162 0.5160 0.5156 0.5155 0.5173

0.2669 0.5247 0.7500 0.7757 0.7698 0.7699 0.7682 0.7680 0.7672 0.7670 0.7665 0.7695

0.2668 0.5187 0.7757 1.0000 1.0263 1.0205 1.0208 1.0191 1.0188 1.0180 1.0179 1.0214

0.2656 0.5187 0.7698 1.0263 1.2500 1.2766 1.2710 1.2714 1.2697 1.2696 1.2688 1.2738

0.2655 0.5172 0.7699 1.0205 1.2766 1.5000 1.5269 1.5214 1.5220 1.5203 1.5204 1.5255

0.2650 0.5169 0.7682 1.0208 1.2710 1.5269 1.7500 1.7771 1.7718 1.7725 1.7709 1.7782

0.2648 0.5162 0.7680 1.0191 1.2714 1.5214 1.7771 2.0000 2.0273 2.0220 2.0232 2.0294

0.2646 0.5160 0.7672 1.0188 1.2697 1.5220 1.7718 2.0273 2.2500 2.2777 2.2724 2.2832

0.2645 0.5156 0.7670 1.0180 1.2696 1.5203 1.7725 2.0220 2.2777 2.5000 2.5285 2.5323

0.2644 0.5155 0.7665 1.0179 1.2688 1.5204 1.7709 2.0232 2.2724 2.5285 2.7500 2.7928

0.2654 0.5173 0.7695 1.0214 1.2738 1.5255 1.7782 2.0294 2.2832 2.5323 2.7928 3.0000



(10.31)

As you can see, the diagonal elements meet the requirements exactly. The off-diagonal elements, how-

ever, indicate that a simulation based on this approximate spectral split would effectively simulate the

realisations of the standard Wiener process to have a somewhat exaggerated correlation. Considering

that we spend significant effort elsewhere to ensure that the realised variances and covariances of all

our random variates meet the specifications given by any financial model as closely as possible, the

approximate spectral path construction may seem a little bit too inaccurate.

There is, however, another important lesson we can learn from the approximate spectral decompos-

ition. The eigenvalues of the spectral decomposition are given by

λk =
1

ω2
k

, (10.32)

and thus decay∝ O
(

1
k2

)
. Since the eigenvalues of a discrete path covariance matrix are well approx-

imated by those of the continuous counterpart, we can conclude that these, too, decay very quickly.

As a matter of fact, for a completely uniform spacing of monitoring times such as the one used above

with ∆t = 1/4, both eigenvalues and eigenvectors can be derived analytically, which is shown in ap-

pendix10.9.1.

The importance of the eigenvalues is given by the fact that they directly represent the amount of

variance that can be reproduced by only using a smaller subset of the orthogonal eigenvectors and thus

to attempt to mimic an effectivelyn-dimensional variate draw (namely the standard Wiener process

path overn points) by only usingm Gaussian variates, withm < n. In statistics, there is the notion

of the variability explainedby just using the firstm column vectors in a complete path construction

matrix. It is given by the sum of all of the squares of the elements of the vectors used. For the

spectral decomposition, this is just the sum of the eigenvalues as given in (10.32). In this sense, the

spectral decomposition (given that the eigenvectors are sorted by decreasing size of their associated

eigenvalues) is the optimal way to assign most importance to the first Gaussian variates in any given

vector drawz. As it happens, this kind ofeffective dimensionality reductionis precisely what makes

low-discrepancy numbers converge the fastest, so this might be the best path construction method of

choice in conjunction with Sobol’ numbers. If only there wasn’t always some catch. In this case the

problem is as follows. The spectral path construction method may provide the fastest convergence

in conjunction with Sobol’ numbers as a function of the number of iterations that are carried out.

However, more important than that is the amount of time spent in the simulation. Apart from the fact

that the calculation of the (accurate) spectral path construction matrix is effectively a task involving
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O (n3) mathematical operations, the actual use of the matrixAspectralduring the simulation involvesn2

multiplications andn(n − 1) additions for the construction of each and every path. Whenn is in the

hundreds, this means that for a simulation involving possibly several tens of thousands of iterations we

end up spending most of our time just in the transformation from standard normal variates to Wiener

path coordinates. In the next section, I discuss my favourite path construction method which gives

almost the same effective dimensionality reduction as the spectral method, but at the expense of only

about3n multiplications and2n additions for each constructed path!

10.8.3 The Brownian bridge

Similar to the spectral path construction method, theBrownian bridgeis a way to construct a discretised

Wiener process path by using the first Gaussian variates in a vector drawz to shape the overall features

of the path, and then add more and more of the fine structure. The very first variatez1 is used to

determine the realisation of the Wiener path at the final timetn of ourn-point discretisation of the path

by settingWtn =
√
tnz1. The next variate is then used to determine the value of the Wiener process as

it was realised at an intermediate timesteptj conditional on the realisation attn (and att0 = 0 which

is, of course, zero). The procedure is then repeated to gradually fill in all of the realisations of the

Wiener process at all intermediate points, in an ever refining algorithm. In each step of the refinement

procedure to determineWtj given that we have already establishedWti andWtk with ti < tj < tk, we

make use of the fact that the conditional distribution ofWtj is Gaussian with mean

E
[
Wtj

]
=

(
tk − tj
tk − ti

)
Wti +

(
tj − ti
tk − ti

)
Wtk (10.33)

and variance

V
[
Wtj

]
=

(tj − ti) (tk − tj)

(tk − ti)
. (10.34)

A proof of equations (10.33) and (10.34) is sketched in appendix10.9.2.

Since all of the weighting coefficients can be precalculated, we only need to carry out three mul-

tiplications and two additions for each point in the Brownian bridge. Exceptions are, of course, the

terminal point for which only a multiplication is required, and all those whose left hand side condition-

ing point is the beginning of the path at zero.

The Brownian bridge is particularly easy to construct if the number of steps is a power of two

because then each interval divides into two intervals containing the same number of steps. In general,

we can construct the Brownian bridge by always subdividing the interval from the last point that was

set to the next one that is already set, and halve this interval into two parts containing approximately

the same number of points. An example for this procedure is illustrated in figure10.4. The algorithm

for the construction of a Brownian bridge over an arbitrary number of steps can be separated into two

parts. The first part is the calculation of the indices determining the order of the point construction, the

weighting coefficients, and the conditional variances, or their square roots, respectively. The second
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Figure 10.4: The construction of a Brownian bridge over 14 steps.

part is the mapping of a vector of standard Gaussian variates to a single Wiener path at run time of

the Monte Carlo simulation. I give in code example10.1a concrete implementation of a C++ class

providing these two stages. The constructor of the class carries out all of the initial calculations. The

buildPath method is then to be called in the main loop of the Monte Carlo simulation. Each time

the procedurebuildPath is executed, it transforms a vector of uncorrelated standard normal variates

given by the input vectornormalVariates into a standard Wiener path with equal time steps of

size∆t = 1 and stores it in the output vectorpath .

When we wish to construct paths that represent Brownian motion over points in timeti for i = 1..m,

and the realisation of the Brownian path at each time horizonti is to be consistent with an implied

volatility coefficient σ̂i, we need to take into account the resulting term structure of instantaneous

volatility and variance. Given that we have a Brownian processB that is generated from a standard

Wiener processW by the multiplication with a deterministic volatility functionσ(t) according to

dB = σ(t) dW , (10.35)

the conditional mean and variance for the realisation ofB(tj) given that we have knowledge ofB(ti)

andB(tk) with ti < tj < tk is

E
[
Btj

]
=

(
vk − vj
vk − vi

)
Bti +

(
vj − vi
vk − vi

)
Btk (10.36)

and

V
[
Btj

]
=

(vj − vi) (vk − vj)

(vk − vi)
(10.37)

with

vq =

tq∫
s=0

σ(s)2 ds . (10.38)



10.8 Path construction 123

#include <vector>

#include <assert.h>

class BrownianBridge { // Builds Wiener process paths of equal time steps of delta t = 1.

public:

BrownianBridge( unsigned long numberOfSteps );

void buildPath( vector <double> &theWienerProcessPath, const vector <double> &gaussianVariates );

private:

unsigned long numberOfSteps;

vector <unsigned long> leftIndex, rightIndex, bridgeIndex;

vector <double> leftWeight, rightWeight, stddev;

};

BrownianBridge::BrownianBridge( unsigned long numberOfSteps_ ) : numberOfSteps(numberOfSteps_),

leftIndex(numberOfSteps), rightIndex(numberOfSteps), bridgeIndex(numberOfSteps),

leftWeight(numberOfSteps), rightWeight(numberOfSteps), stddev(numberOfSteps)

{

assert(numberOfSteps); // There must be at least one step.

vector <unsigned long> map(numberOfSteps);

// map is used to indicate which points are already constructed. If map[i] is zero, path point i

// is yet unconstructed. map[i]-1 is the index of the variate that constructs the path point # i.

unsigned long i,j,k,l;

map[numberOfSteps-1] = 1; // The first point in the construction is the global step.

bridgeIndex[0] = numberOfSteps-1; // The global step is constructed from the first variate.

stddev[0] = sqrt(numberOfSteps); // The variance of the global step is numberOfSteps*1.0.

leftWeight[0] = rightWeight[0] = 0.; // The global step to the last point in time is special.

for (j=0,i=1;i<numberOfSteps;++i){

while (map[j]) ++j; // Find the next unpopulated entry in the map.

k=j;

while ((!map[k])) ++k; // Find the next populated entry in the map from there.

l=j+((k-1-j)>>1); // l is now the index of the point to be constructed next.

map[l]=i;

bridgeIndex[i] = l; // The i-th Gaussian variate will be used to set point l.

leftIndex[i] = j; // Point j-1 is the left strut of the bridge for point l.

rightIndex[i] = k; // Point k is the right strut of the bridge for point l.

leftWeight[i] = (k-l)/(k+1.-j);

rightWeight[i] = (l+1.-j)/(k+1.-j);

stddev[i] = sqrt(((l+1.-j)*(k-l))/(k+1.-j));

j=k+1;

if (j>=numberOfSteps) j=0; // Wrap around.

}

}

void BrownianBridge::buildPath( vector <double> &path, const vector <double> &normalVariates ){

assert( normalVariates.size() == numberOfSteps && path.size() == numberOfSteps );

unsigned long i,j,k,l;

path[numberOfSteps-1] = stddev[0]*normalVariates[0]; // The global step.

for (i=1;i<numberOfSteps;i++){

j = leftIndex[i];

k = rightIndex[i];

l = bridgeIndex[i];

if (j) path[l] = leftWeight[i]*path[j-1] + rightWeight[i]*path[k] + stddev[i]*normalVariates[i];

else path[l] = rightWeight[i]*path[k] + stddev[i]*normalVariates[i];

}

}

Code example 10.1: The Brownian bridge algorithm in a C++ class.

Of course, the relationship between the variancesvi and the implied volatilitieŝσi is vi = σ̂2
i ti. In other

words, it is easy to write another constructor for the classBrownianBridge in code example10.1

that takes into account a given implied volatility vector and a vector whose elements are the associ-

ated time horizons, and precomputes the necessary weighting and scaling coefficientsleftWeight ,
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rightWeight , andstddev . In fact, once we have added a temporary vectorv in the body of

the constructor and populated it such thatv[ j] = σ̂2
j tj, all that needs to be done is to replace the

corresponding statements with:
stddev[0] = sqrt(v[numberOfSteps-1]);

...

leftWeight[i] = (v[k]-v[l])/(v[k]-v[j-1]);

rightWeight[i] = (v[l]-v[j-1])/(v[k]-v[j-1]);

stddev[i] = sqrt((v[l]-v[j-1])*(v[k]-v[l])/(v[k]-v[j-1]));

Another application of the normalised path vector as constructed directly bybuildPath in code

example10.1may actually require individual increments, for instance in order to carry out an Euler

or Milstein integration of a stochastic differential equation driven by an underlying Wiener process.

In this case, one would take the constructed normalised path stored in the vectorpath , and back out

the path increments by taking the differences∆Wi = path[ i] − path[ i − 1] (apart from the first

entry stored inpath[0] , of course, which is directly equal to∆W0). Each of the so constructed∆Wi

is then a standard normal variate (with unit variance). In order to transform the so resulting standard

Wiener increments of variance 1 to a desired time step∆t, we simply multiply them with
√

∆t. The

reader might wonder why one would want to jump through all these hoops only to arrive at another

set of standard normal variates. Empirically, I found that the use of Wiener increments backed out of

a path constructed with the Brownian bridge method driven by Sobol’ sequences shows better con-

vergence properties for the numerical integration of stochastic differential equations. In particular, so

constructed increments typically perform better than standard normal variates computed directly from

pseudo-random numbers, or Sobol’ numbers for that matter, for most financial applications where the

overall path skeleton structure has the biggest impact on the convergence of the calculation. Also, this

apparently somewhat convoluted method of constructing standard increments from a given Sobol’ vec-

tor draw is still faster than the calculation of standard normal variates by the aid of most pseudo-random

number generators of high grade since the construction of a single Sobol’ vector is so exceptionally

fast.

10.8.4 A comparison of path construction methods

As was already mentioned, the Brownian bridge requires approximately three multiplications and two

additions per dimension for each constructed path. For most Monte Carlo simulations based on the

construction of Wiener paths, the cpu time required for the evaluation of the function(al) dependent

on the constructed sample path grows at least linearly with the dimensionality of the problem. Thus,

the relative run time requirement of the path construction does at worst level out to a constant ratio

with increasing dimensionality when the Brownian bridge is used, and usually actually decreases for

higher dimensions. This is in stark contrast to the cpu time used by the spectral path construction

which increases like the square of the dimensionality. On the other hand, when compared with the

incremental path construction, the Brownian bridge manages to explain a much higher percentage of

the total variability when only the first few variates are taken into account. In fact, as is shown in

table10.1, the first four dimensions, if ordered using the Brownian bridge path construction method,
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suffice to explain over 93% of the total variability for the previous example of a 12-step construction

from t = 0 to T = 3. This is to be compared with 95.6% from the spectral method, but only 53.9%

ordered dimension # 1 2 3 4 5 6 7 8 9 10 11 12

Incremental 15.4% 29.5% 42.3% 53.9% 64.1% 73.1% 80.8% 87.2% 92.3% 96.2% 98.7% 100%

Spectral 81.3% 90.4% 93.8% 95.6% 96.7% 97.5% 98.1% 98.5% 99.0% 99.3% 99.7% 100%

Brownian bridge 69.4% 85.0% 89.1% 93.2% 94.2% 95.3% 96.4% 97.4% 98.1% 98.7% 99.4% 100%

Table 10.1: The cumulative variability explained by an increasing number of dimensions for three path

construction methods.

when we construct paths incrementally. Of course, if we actually carry out a factor truncation at, say,

the level of 4 driving Gaussian draws for any one path, the spectral method will still be superior to

the Brownian bridge. However, if there is an advantage in ordering the dimensions according to their

importance, as there is for low-discrepancy numbers, the Brownian bridge method offers the benefit

of almost optimal ordering (in the sense of maximal variability explained) whilst only requiring 3

multiplications per dimension. In order to give a more visual argument to the similarity of the spectral

path construction and the Brownian bridge, I give the first four column vectors of the constructing

matrix A for the three discussed methods in figure10.5 for a path constructed over 64 equal steps

in time. As we can see, the coefficients of the Brownian bridge path construction matrix appear

0 10 20 30 40 50 60

First column vectors of the construction matrices

Spectral
Brownian bridge
Incremental

0 10 20 30 40 50 60

Second column vectors of the construction matrices

Spectral
Brownian bridge
Incremental

0 10 20 30 40 50 60

Third column vectors of the construction matrices

Spectral
Brownian bridge
Incremental

0 10 20 30 40 50 60

Fourth column vectors of the construction matrices

Spectral
Brownian bridge
Incremental

Figure 10.5: The first four column vectors of the path construction matrices.

almost like a piecewise-affine mimic of the sinusoidal waves of the spectral path construction vectors.

In the continous description of the decomposition of Brownian motion into basis functions, there are
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many more possibilities to choose a set of basis functions than the spectral analysis given by equation

(10.24). The basis functions that produce the continuous time equivalent of the Brownian bridge are

known asSchauderfunctions, which in turn are the primitives ofHaar functions [ABG97]. Looking

at the diagrams in figure10.5, we can intuitively understand the similar performance of the spectral

method and the Brownian bridge. In contrast, the incremental method has no similarity with the other

two methods at all.

The right path construction method can make a substantial difference to the performance of Monte

Carlo implementation for many applications. In figure10.6, I show the convergence of the Monte

Carlo simulation for the pricing of a standard at-the-money Asian call option. The maturity of the
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Figure 10.6: Convergence diagrams over the number of iterations for the pricing simulation for an

Asian call option.

option was 1 year with 252 monitoring days over that period. The weights were all equal. Both spot

and strike were set 100, and neither interest rates nor yields on the underlying asset were taken into

account. The number of iterations taken are shown along the abscissa in figure10.6. Compare this

to the convergence behaviour as a function of the cpu time taken1 by the simulation, which is shown

in figure10.7. When we compare the spectral method with the Brownian bridge as a function of the

number of iterations, there doesn’t appear to be much between them. However, when viewed as a

function of the cpu time needed for the simulation, we will probably prefer the Brownian bridge since

it appears to converge within a few seconds for this problem.

10.8.5 Multivariate path construction

When we need to construct paths of correlated Wiener processes, we can combine different techniques

in order to tailor the right method for the particular problem at hand. For instance, if we wish to carry

out Monte Carlo simulations for a pricing problem that is most significantly influenced by the joint

distribution of a set of strongly correlated underlying Wiener processes at the first time horizon along a

discretised path, we might want to use incremental path construction, but at each time horizon use the

1The cpu time shown was measured on an AMD K6-III processor running at 400MHz.
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Figure 10.7: Convergence diagrams over the cpu time taken for the pricing simulation for an Asian call

option.

spectral decomposition in order to incorporate the correlation. Given the dimensiond of the Wiener

process, and the number of time horizonsm over which the correlated path ought to be constructed,

we need to draw standard normal variate vectors of dimensiond · m. Each of those vector draws is

then used to construct all of the realisations of all of thed Wiener processes over all of the relevantm

time horizons for one iteration in the Monte Carlo simulation. Let us define the covariance matrixC(t)

whose elements are given by

ckl(t) =

∫ t

0

σk(s)σl(s)ρkl(s) ds . (10.39)

For incremental path construction with spectral decomposition of the correlation information, one

would take the firstd elements of a given standard normal variate vector drawz ∈ Rd·m. These

first d elements would then be multiplied with the spectral split, i.e. the spectral pseudo-square root of

C(t1) in order to construct the vectorx1 of realisations of correlated Wiener processes at timet1. The

realisations at time horizont2 are then obtained by takingx1 and adding to it the product of the second

set ofd variates (out of the vector drawz) with a pseudo-square root of the stepwise covariance matrix

from time t1 to t2 which I denote by
√
C(t2)− C(t1). This gives usx2, and all of the realisations at

the subsequent time horizons are computed accordingly. Of course, if you have reason to believe that

the decomposition of any of the stepwise covariances is better exploited by the use of the Cholesky

algorithm, you can just use that instead (albeit that I couldn’t think of an example when the Cholesky

method for the stepwise covariance split would be more appropriate).

For most Monte Carlo simulations in finance that involve multidimensional correlated Wiener pro-

cesses, I use the Brownian bridge in conjunction with stepwise spectral decomposition, though. The

reason is that we rarely have hundreds and thousands of correlated Wiener processes, the most I have

encountered is a few dozen, not more than five dozen or so. In contrast, however, it is well possible to

have hundreds or even thousands of monitoring times of relevance, and the spectral path construction

becomes very expensive indeed when we are dealing with thousands of time steps. The construction

of multivariate correlated Wiener processes by the aid of the Brownian bridge and spectral decomposi-

tion at each time horizon in order to incoporate the correlation information can thus be done as follows.
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First, we constructd uncorrelated normalised Wiener process pathsW (t) ∈ Rd from the given vector

drawz ∈ Rd·m using the Brownian bridge. For this, we take the firstd entries inz in order to con-

struct the realisations of all of the uncorrelated Wiener processes at the final time horizontm. Next, we

take the second set ofd variates fromz in order to construct the realisations of all of the uncorrelated

Wiener processes at an intermediate time steptk with k ' m/2, and so forth, following the Brownian

bridge algorithm outlined in section10.8.3(see code example10.1). From this set ofd uncorrelated

Wiener process path realisations over them time horizons of interest, one then obtains Wiener process

increments in the obvious fashion. Next, each set of uncorrelated increments is transformed to a set of

correlated and volatility-scaled Wiener increments by setting

∆Bk = Ak ·∆W k . (10.40)

with Ak being the spectral pseudo-square root of the covariance matrix incrementC(tk) − C(tk−1)

whose elements are defined in equation (10.39). Note thatAk contains both the scaling for the actual

size of the time step (all of the uncorrelated incrementsWk were constructed assuming that all time

steps are of size∆t = 1) and the volatility scaling. And finally, the correlated Wiener process path

increments are added up again, as if we had constructed the correlated paths in an incremental fashion

right from the start.

Whenever the correlation between the Wiener processes is constant for all time steps and each of

the processes has constant volatility, it is possible to simplify this procedure somewhat. In this case,

one can avoid the construction from stepwise covariance increments. Let us denote the volatility of

thej-th process asσj, and letR be the time-constant correlation matrix. Now, setQ to be the spectral

pseudo-square root ofR such that

R = QQ> . (10.41)

In other words, we have the following relationship amongst the elements ofR andQ:

rkl =
∑
j

qkjqlj (10.42)

The procedure to construct correlated Wiener processes using a Brownian bridge when volatilities and

correlations are constant is thus as follows. First, construct uncorrelated standard Wiener processes

for the correct monitoring times as outlined in section10.8.3by settingvj = tj for all j = 1..m and

assuming unit volatility (i.e. 100%). Thus, we will have constructed paths such that the variance of

Wjk, i.e. the variance of the realisation of thej-th Wiener process at timek, is tk, and the covariance

of any pair ofwjk andwih is

Cov[wjk, wih] = δij min(tk, th) . (10.43)

Then, set

bjk = σj
∑
l

qjlwlk . (10.44)
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Due to the property (10.43), it is straightforward to show that

Cov[bjk, bih] = σiσjrij min(tk, th) (10.45)

as it should be for correlated Wiener processes with constant volatility and correlation.

10.9 Appendix

10.9.1 Eigenvalues and eigenvectors of a discrete-time covariance matrix

The covariance matrix of the realisations of a one-dimensional Wiener processWi at a set of discrete

times chosen to be homogeneously stepped such thatti = i for i = 1..n is given by

Cn =



1 1 1 · · · 1

1 2 2 · · · 2

1 2 3 · · · 3
...

...
...

...
...

1 2 3 · · · n


. (10.46)

The eigenvalues are given by

Dn(λ) = 0 (10.47)

with

Dn(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ 1 1 · · · 1

1 2− λ 2 · · · 2

1 2 3− λ · · · 3
...

...
...

...
...

1 2 3 · · · n− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (10.48)

Subtracting the first row of the matrix inside the determinant operator| · | from all subsequent ones

gives

Dn(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ 1 1 · · · 1

λ 1− λ 1 · · · 1

λ 1 2− λ · · · 2
...

...
...

.. .
...

λ 1 2 · · · n− 1− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
(10.49)

and then subtracting the second row from the first, we obtain

Dn(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1− 2λ λ 0 · · · 0

λ 1− λ 1 · · · 1

λ 1 2− λ · · · 2
...

...
...

...
...

λ 1 2 · · · n− 1− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (10.50)
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An expansion by the first row yields

Dn(λ) = (1− 2λ)Dn−1(λ)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 1 1 · · · 0

λ 2− λ 2 · · · 2

λ 2 3− λ · · · 3
...

...
...

...
...

λ 2 3 · · · n− 1− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (10.51)

Factorisingλ out of the column of the explicit determinant on the right hand side, and repeating the

procedure of subtracting the first row from all subsequent ones, followed by a subtraction of the second

row from the first, we get

Dn(λ) = (1− 2λ)Dn−1(λ)− λ2

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ 0 · · · 0

0 1− λ 1 · · · 1

0 1 2− λ · · · 2
...

...
...

...
...

0 1 2 · · · n− 2− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (10.52)

An expansion of the explicit determinant on the right hand side now gives us the recursion formula

Dn(λ) = (1− 2λ)Dn−1(λ)− λ2Dn−2(λ) (10.53)

with the initial conditions

D0(λ) = 1

D1(λ) = 1− λ
. (10.54)

Using the Ansatz

Dn(λ) ∝ [α(λ)]n (10.55)

we obtain

α2 − (1− 2λ)α+ λ2 = 0 (10.56)

and thus

α± =
1

2

(
1− 2λ±

√
1− 4λ

)
. (10.57)

Since the determinantsDn, Dn−1, andDn−2 all appear linearly in equation10.53, we substitute the

linear combination

Dn(λ) = κ+α
n
+ + κ−α

n
− (10.58)

into (10.54), solve forκ+ andκ− and obtain

Dn(λ) =

(
1− λ− α−
α+ − α−

)
αn+ −

(
1− λ− α+

α+ − α−

)
α−n− . (10.59)
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Making use of the fact thatα+α− = λ2 which can be seen from equation (10.56), we now get

Dn(λ) =
λn

2
√

1− 4λ

[(
1 +

√
1− 4λ

)(α+

λ

)n
−
(
1−

√
1− 4λ

)(α+

λ

)−n]
. (10.60)

Let us now define

u :=
α+(λ)

λ
(10.61)

which means

λ =
u

(u+ 1)2
. (10.62)

The eigenvalues ofCn are given byDn(λ) = 0 which, together with the above definitions, reduces to

u2n+1 = 1 (10.63)

whence

u = eiπ
2m

2n+1 for m = 1..n . (10.64)

This, in conjunction with (10.62) finally simplifies to

λ =
1

4 cos2
(
mπ

2n+1

) . (10.65)

A simple analysis of equation (10.65) shows that asn increases, the smallest eigenvalue ofDn con-

verges to1/4 from above, whilst the largest eigenvalue grows liken2. Thus, the importance of the

smaller eigenvalues decreases like1/n2.

Given the definition

ωnj :=

(
2j − 1

2n+ 1

)
· π
2

(10.66)

we can re-express (10.65) as

λnj :=
1

4 sin2 ωnj
. (10.67)

The ordering is now such thatλn1 is the largest eigenvalue ofCn, andλnn is the smallest eigenvalue.

As for the eigenvectors, which are the column vectors of the matrixS in the decomposition

Cn = Sn · Λn · S>N (10.68)

with Λn being diagonal, we have for the elementssnkl of Sn:

snkl =
sin (2kωnl)√
n∑
j=1

sin2 (2jωnl)

(10.69)
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Since

sin2 x =
1

2
− 1

2
cos (2x) (10.70)

and

n∑
j=1

cos

[
2π

(
2j − 1

2n+ 1

)]
= −1

2
, (10.71)

equation (10.69) simplifies to

snkl =
2√

2n+ 1
sin (2kωnl) . (10.72)

This means that the elementsankl of the spectral pseudo-square rootAn of Cn satisfying

Cn = An · A>n

are given by

ankl =
1√

2n+ 1
·

sin
(
kπ 2l−1

2n+1

)
sin
(

2l−1
2n+1

· π
2

) . (10.73)

For a homogeneous time discretisation over time steps of an arbitrary∆t instead of 1, the elements

of the covariance matrixCn simply need to be multiplied by∆t, and the elements of the spectral

pseudo-square root are given as in (10.73), only that they require multiplication with
√

∆t. Sadly, for

inhomogeneous time steps, the best approximation available is the one from the continuous case as in

equation (10.28).

10.9.2 The conditional distribution of the Brownian bridge

Let us start off by assuming that the Wiener path fromti to tj, and then totk has been constructed

incrementally from two independent standard Gaussian variatesx, andy :-

Wtj = Wti +
√
tj − ti x (10.74)

Wtk = Wtj +
√
tk − tj y = Wti +

√
tj − ti x+

√
tk − tj y (10.75)

The joint probability density of a vector draw(x, y) is the product of the densities of the variatesx and

y, i.e.ϕ(x) · ϕ(y). As we know, the density of a weighted sum of Gaussians is also a Gaussian, and

thus we can rewrite (10.75) as

Wtk = Wtj +
√
tk − ti z . (10.76)

The variate

z :=

√
tj − ti x+

√
tk − tj y√

tk − ti
=

1√
tk − ti

(Wtk −Wti) (10.77)
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is, of course,not independent fromx andy, but its probability density is again that of a standard normal

variate.

Theconditional densityof a vector draw(x, y) that satisfies (10.77) is given by its unconditional

density divided by the probability density of (10.77) holding, which isϕ(z). In other words, if we view

y(x, z) =

√
tk − ti z −

√
tj − ti x√

tk − ti
(10.78)

as a dependent variate in the path construction conditional onx and z, we obtain the conditional

Brownian bridge density

ψBrownian bridge(x|z) =
ϕ(x)ϕ(y(x, z))

ϕ(z)
(10.79)

=
1√
2π

e−
1
2(x2+y(x,z)2−z2)

=
1√
2π

e
− 1

2

 x−
√

tj−ti
tk−ti

z

tk−tj
tk−ti

2

.

In other words,x is a normal variate with mean

E[x] =

√
tj − ti
tk − ti

z =

√
tj − ti
tk − ti

(Wtk −Wti) (10.80)

and variance

V[x] =
tk − tj
tk − ti

. (10.81)

Substituting this into equation (10.74), we obtain

Wtj = Wti +
tj − ti
tk − ti

(Wtk −Wti) +

√
(tj − ti)(tk − tj)

(tk − ti)
v (10.82)

=

(
tk − tj
tk − ti

)
Wti +

(
tj − ti
tk − ti

)
Wtk +

√
(tj − ti)(tk − tj)

(tk − ti)
v (10.83)

with v ∼ N (0, 1) which completes the proof for equations (10.33) and (10.34).
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Chapter 11

Greeks

11.1 Importance of Greeks

The fundamental key to option pricing is to calculate the cost of replication of the sold derivative

contract. For some options, we can construct a static replication strategy. The price that we need to

charge for them is then given by the cost of setting up the initial hedge. Having done that,we may forget

about this position1, since we are hedged, whence some people call this strategyhedge-and-forget. For

most options, though, there is no static replication, and we need to use the strategy of dynamic hedging

in order to protect us from the market risk posed by our short position in the option. The choice of

a model process for the underlying securities, establishing the risk-neutral measure, and solving the

mathematics and numerics of the numéraire-denominated2 expectation then gives us the value of the

deal. In some sense, for the quantitative analyst, the job finishes there, whilst for the trader who has to

manage the position, the fun only just starts. The position now has to be re-hedged dynamically, which

requires knowledge of the various hedge parameters known as theGreeksowing to the market practice

to use the names of Greek letters (real and invented) to represent these risk parameters. This means, we

not only need to be able to value the option but also calculate how its value depends on changes of the

model parameters and the traded price of the underlying asset. In the following sections, I will outline

some Monte Carlo methods that are available for this purpose and discuss their respective benefits

and disadvantages. In doing so, we will focus on the calculation ofDelta, i.e. the first derivative with

respect to the underlying security, andGamma, i.e. the second derivative with respect to the underlying

asset.Mutatis mutandis, the methods presented here transfer readily to other Greeks such asVega, the

volatility sensitivity, cross-Gammas for multi asset options, etc.

1Strictly speaking, only about the market risk presented by this option. There may still be settlement risk and credit risk

since the source of our hedging contracts will be a different counterparty than the client to whom we sold the option.
2We know, by virtue of the path-breaking theorem by Harrison and Pliska [HP81], that we may use any traded asset as a

numéraire. For the calculation of the value of many equity and FX options we use a zero coupon bond as numéraire, which

means that we have to calculate an expectation and then discount it by the chosen discount factor. In general, though, the

numéraire can be a very different asset such as a cash annuity when we calculate swaptions, or even another equity asset as

in the case of max-options as shown by Margrabe [Mar78].
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11.2 An Up-Out-Call option

Before starting the discussion of different techniques to calculate Greeks with Monte Carlo, let me

briefly define the test scenario that I have chosen as an illustrative example for the performance of the

individual methods. We are looking at an option of the type that is actually quite common in the equity

derivatives world, although in its accurate analysis highly untractable: a discretely monitored Up-Out-

Call option. The option is of European type and has the same payoff as a plain-vanilla call option,

provided that the underlying asset is never on or above the predefined knock-out level on any of the

monitoring dates (which usually includes maturity), else the payoff is zero. This product can be priced

approximately using the continuous barrier formula with an adjusted knock-out level according to the

approximation by Broadieet al. [BGK99] given in equation (1.3). However, when the monitoring

frequency is comparatively low, or when the spot value is near the actual barrier level, the error of

the approximation can be considerable. I won’t even start the discussion on how to handle the smile

properly, but instead assume a standard Black-Scholes process of geometric Brownian motion with a

constant volatility ofσ = 30%. Since neither a deterministic interest rate nor a continuous dividend

yield alter the fundamentals of the discussion3, we simply set them to be zero which corresponds to the

assumption that the contract is actually written with the forward value as the underlying quantity. The

value of the underlying asset is modelled to evolve lognormally as in

S(t) = S(0)e−
1
2
σ2t+σW (t) (11.1)

with Wt being a standard Wiener process. Since we only need to monitor the spot at then monitoring

times, we can view one path of the evolution of the underlying asset from inception to maturity as a

vector ofn valuesS1 to Sn, i.e.

S = (S1, S2, . . . , Sn) .

Any one path can thus be constructed from a set ofn standard normal variatesz1, z2, . . . , zn with

zi ∼ N (0, 1). The reader is most certainly aware that the equation coupling them is

Si = Si−1e
− 1

2
σ2∆ti+σ

√
∆tizi = S0e

− 1
2
σ2ti+σ

i∑
k=1

√
∆tkzk

. (11.2)

Naturally, in order to price this option, we generate a set of, saym, pathsS1,S1, . . . ,Sm, and each of

those paths inS is actually constructed by ann-dimensional vector of standard normal variateszj, i.e.

we can express it as an-valued function of the drawn vectorz and the given parameters

Sj = S(zj;S0, H,K, σ, T, n) . (11.3)

For each of those path vectorsSj, we then evaluate the simulated payoffπ(Sj) conditional on no

knock-out occurring for the path, and average to obtain anm-samples Monte Carlo approximation. In

a general sense, we can express the Monte Carlo pricev̂ as

v̂(S0, H,K, σ, T, n) =
1

m

m∑
j=1

π(Sj) . (11.4)

3The examples in the Excel workbookGreeksWithMonteCarlo.xls on the accompanying CD do not make this

assumption and allow for the specification of a non-zero risk-free interest and dividend rate.
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11.3 Finite differencing with path recycling

Like with other option valuation methods, there is one fallback technique for the calculation of the

Greeks. We can always re-do the entire valuation with varied inputs reflecting the potential change

in the underlying asset, and use an explicit finite-differencing approach to compute the Greek we are

after. For Delta, we can just recalculate once with an up-shift in the underlying asset,S0 → S0 + ∆S0,

resulting in a new valuev(S0 + ∆S0), and take

Delta=
∂v

∂S0

≈ v(S0 + ∆S0)− v(S0)

∆S0

. (11.5)

Alternatively to the forward differencing approach above, we can re-calculate twice, once for an up-

shift and once for a down-shift, and approximate the desired Delta to

Delta=
∂v

∂S0

≈ v(S0 + ∆S0)− v(S0 −∆S0)

2∆S0

. (11.6)

Using the centre-differencing approach in equation (11.6) has the added advantage that we can then

directly approximate Gamma as

Gamma=
∂2v

∂S2
0

≈ v(S0 + ∆S0)− 2v(S0) + v(S0 −∆S0)

∆S2
0

. (11.7)

Whilst this is in itself all self-explanatory and straightforward, one important question is often not

addressed in textbooks outlining the above procedure. The question is: how do we choose∆S0? In

order to answer it, let us consider the consequences of using a∆S0 that is either far too large or far

too small. The centre-differencing approach is accurate up until (including) second order terms in the

Taylor expansion, i.e. Gamma has no effect on the estimate (11.6) for Delta. However, when we choose

a∆S0 that is far too large, we may start to see the effect of the third order in the Taylor expansion, and

our approximation for Delta will be inaccurate. Also, since we should re-use the same variates for the

path construction in each of the calculations forv(S0), v(S0 + ∆S0), andv(S0 − ∆S0) as explained

in section10.2, the variance of our estimate will increase because the correlation of the individual

calculations decreases the larger∆S0 is, see equation (10.5). On the other hand, if we choose∆S0

too small, the fact that most derivative contracts have a final payoff function that is at best continuous

but rarely differentiable everywhere comes into play. If we choose a very small∆S0, say the smallest

that can be handled on our computer, even for a contract as benign as a plain-vanilla call option, we

are essentially averaging over a sequence of zeros and ones4. For a far-out-of-the-money option, the

convergence diagram of the Monte Carlo Delta then looks like a hyperbolic decay over the number of

paths used with an occasional up jump whenever a single path pair terminated in the money and thus

contributed to the sensitivity calculation. For Gamma, the situation is even worse. In this case, we are

essentially averaging over a sequence of zeros and terms of magnitudeO
(
∆S−1

0

)
, only this time they

are not resulting from the path pair or trio terminating in the money or out of the money (i.e. as if we

sampled a Heaviside function), but instead a non-zero value is only returned if the terminating spot

4The precise value is actually the Delta of the forward contract which is e−dT .
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levels of the path trio straddle the strike of the option. In other words, the calculation of Gamma by

explicit finite differencing for options with payoff functions that exhibit a kink anywhere is equivalent

to carrying out a Monte Carlo sampling computation over a Dirac spike, i.e. a non-zero value is only

ever obtained if the spot value at maturity is right at the strike. The situation becomes even worse if the

payoff function is not even continuous, as one can imagine. What’s more, and this is the starting point

for the following analysis, for very small∆S0, the inevitable numerical roundoff error will taint the

result. In order to obtain a reasonable rule of thumb for the numerical magnitude of∆S0 one should

use, let us recall that for finite differencing approximations of the derivative of a numerically defined

function one should optimally use a number determined by an equation balancing the error due to

numerical roundoff in the calculation of the function itself, and the error due to the higher order Taylor

expansion. For the approximate Gamma to be by expectation as close to the exact value as possible,

one should ideally use a finite differencing width of

∆S0 = 4
√

12
v

v′′′′
· ε (11.8)

with ε being a suitable representation of the machine precision5. To see this, we start from a Taylor

expansion of the valuev, taking into account that any numerical representation suffers a round-off

error:

v(S0 + ∆S0) ≈ v + v′∆S0 +
1

2
v′′∆S2

0 +
1

6
v′′′∆S3

0 +
1

24
v′′′′∆S4

0 +O(∆S5
0) + εv (11.9)

The last term represents the numerically inevitable inaccuracy which is of the same order of magnitude

as the left hand side. Using equation (11.7) to obtain an estimatêΓ(S0; ∆S0, ε) for Gamma which will

clearly depend on both the chosen finite differencing width and the machine precision, we again have

to take into account that all numerical operations are subject to round-off errors:

Γ̂(S0; ∆S0, ε) = v′′ +
1

12
v′′′′∆S2

0 +
εv

∆S2
0

+ ε2v
′′ (11.10)

Herein, the last term represents the newly introduced round-off error incurred when carrying out the

operations given by equation (11.7). It is now evident in equation (11.10) that for very large∆S0,

the term 1
12
v′′′′∆S2

0 will give rise to an error in our estimate of Gamma, and for very small∆S0, the

numerical round-off error due toεv
∆S2

0
will dominate. Thus, ideally, these two terms shoud be balanced

which leads to equation (11.8).

Clearly, in practice, we don’t have enough information to evaluate expression (11.8). Without

prejudice, we can only make assumptions. An arguably sensible assumption is that all terms in the

Taylor expansion are of equal magnitude, i.e.O(v) ≈ O(v′′′′S4
0) which leads to

∆S0 ≈ 4√ε · S0 . (11.11)

5One commonly used proxy for the abstract concept ofmachine precisionis the smallest positive numberε such that

1 and1 + ε are still distinct numbers in the machine’s representation. In C/C++, the preprocessor directive#include

<float.h> provides the macroDBL EPSILONwhich is defined in this way for floating point numbers of typedouble .
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Using the above value for∆S0, we can now calculate the Monte Carlo finite differencing approxima-

tions for Delta and Gamma:

D̂elta =
v̂(S0+∆S0)− v̂(S0−∆S0)

2∆S0

(11.12)

=
1

2m∆S0

m∑
j=1

[
π
(
S(zj;S0+∆S0)

)
− π

(
S(zj;S0−∆S0)

)]
and analogously

Ĝamma =
v̂(S0+∆S0)− 2v̂(S0) + v̂(S0−∆S0)

∆S2
0

(11.13)

=
1

m∆S2
0

m∑
j=1

[
π
(
S(zj;S0+∆S0)

)
− 2 · π

(
S(zj;S0)

)
+ π
(
S(zj;S0−∆S0)

)]
Of course, the assumptions made above are utterly unjustifiable when we know that we are trying to

calculate the Gamma of derivatives such as Up-Out-Call options that have a particularly nasty double

Gamma singularity at the barrier level. In practice, the explicit finite differencing method, even when

we recycle the used variates as in the above equations (11.12) and (11.13) for reasons explained in sec-

tion 10.2, for any options of sufficient complexity that we might want to use a Monte Carlo technique,

performs so badly that it is virtually unusable. I will demonstrate this in some of the figures towards

the end of this chapter. First, though, we will explain alternatives to the straightforward explicit finite-

differencing approach.

11.4 Finite differencing with importance sampling

It was explained in section11.3 how the calculation of Delta and other Greeks is hindered by the

discontinuity of the payoff profile or its slope. In mathematical terms, the calculation of Gamma using

Monte Carlo methods is so difficult because the payoff function is not element of the classC2 of all

functions that are twice differentiable in all of their variables. In fact, for an Up-Out-Call option, the

payoff profile is not even continuous in all of its variables, i.e.π(S) /∈ C0.

Sometimes, though, life is good to us. For the chosen test case, we can restrict our Monte Carlo

sampling domain to just the region where the payoff function is∈ C∞. The way to do this is to

construct only paths thatdo not knock out and end up in the money. In more general terms, we only

sample the domain where the function to be evaluated is non-zero. This method belongs to the general

class ofimportance samplingtechniques. How we do this, is explained below.

First, let us recall that we generate the required standard normal variates by drawing uniform(0, 1)

variates and map them into Gaussians by the aid of an inverse cumulative normal function, i.e.:

zi = N−1(ui) and ui = N(zi) . (11.14)
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Now, let us assume that we have constructed a single path up toSi−1 and wish to construct the next

monitoring variableSi from equation (11.2) but ensure that the path is not knocked out. Using

hi := N

(
ln H

Si−1
+ 1

2
σ2∆ti

σ
√

∆ti

)
(11.15)

we can do this by constructingzi to be applied in equation (11.2) not as usual simply from the under-

lying uniform variateui as in equation (11.14) but instead to do

zi = N−1 (ui · hi) . (11.16)

Furthermore, we have to ensure that the path ends up in the money at maturity. This means that the last

normal variatezn for this path has to be constructed as in

zn = N−1 (un · (hn − k) + k) (11.17)

where

k := N

(
ln K

Sn−1
+ 1

2
σ2∆tn

σ
√

∆tn

)
. (11.18)

In addition to the careful path construction outlined above, we also need to take into account that we

are sampling only from a subdomain of the space of all possible path evolutions. Fortunately, we

did calculate the corrective factor needed on the fly as we built the importance sampled pathSIS .

We simply need to multiply the payoff associated with the constructed path by the product of all the

limiting factorsp := (hn − k) ·
n−1∏
i=1

hi :

v̂IS =
1

m

m∑
j=1

p(SjIS) · π
(
SjIS
)
. (11.19)

The importance sampling Monte Carlo technique is very useful in its own right to calculate expecta-

tions for the purpose of option pricing, in particular for far out of the money options. Furthermore,

it can be a very powerful enhancement technique to the finite differencing method for the calculation

of Greeks. And of course, it can be used in conjunction with variate recycling and/or pathwise differ-

entiation. How well this works will be demonstrated in various figures further on, but first I want to

explain the two remaining methods to be presented in this chapter.

11.5 Pathwise differentiation

Let’s have a closer look at what we are really trying to calculate for the example of Delta in equation

(11.6). All occurences of the true pricev in that equation are numerically evaluated as a Monte Carlo

approximation to it. Thus,

D̂elta=
∂v̂

∂S0

=
∂

∂S0

[
1

m

m∑
j=1

π
(
S(zj;S0)

)]
. (11.20)



11.6 The likelihood ratio method 141

In the true sense of the partial derivative in the above equation, an infinitesimal change of the initial spot

levelS0 can only give rise to infinitesimal changes of the spot level at any of the monitoring dates. It

can be shown that for Lipschitz-continuous payoff functions, i.e. those that are continuous6 in all of the

elements of the vectorS and have a finite partial derivative
∣∣∣ ∂π∂Si

∣∣∣ <∞, the order of differentiation and

expectation can be interchanged. For such payoff functions, it is perfectly consistent to assign a Delta

of zero to all paths that terminate out of the money, and a Delta equal to∂ST

∂S0
with ST as constructed by

equation (11.2).

This method is calledpathwise differentiationor infinitesimal perturbation analysisand can easily

be transferred to other Greeks such as Vega [BG96, Cur98]. However, for the calculation of Gamma,

we still have to implement a finite differencing scheme for two individually calculated Deltas for an up

and a down shift, and both of these can individually be computed using pathwise differentiation.

Alas, for the chosen example of a discretely monitored Up-Out-Call option, this method cannot be

readiliy applied since the payoff function is not even continuous, let alone Lipschitz-continuous due to

the knockout feature. However, it is possible to apply the pathwise differentiation technique to paths

constructed using the importance sampling method presented in the previous section. This is because

the construction of paths using equations (11.15) to (11.18) represents a transformation of variables

into an integral over the unit hypercube(0, 1)n such that the integrand is actually Lipschitz-continuous

everywhere. In other words, equation (11.19) is to be seen as

vIS =

∫
(0,1)n

p(SIS(u)) · π(SIS(u)) dun . (11.21)

When we calculate∂vIS
∂S0

from this equation, we can readily change the order of differentiation and in-

tegration. However, we then have to observe carefully the precise dependencies of the individual terms

with respect to the parameter that corresponds to the Greek we wish to calculate. As a consequence, we

end up with a sum of terms representing the possibility of knock-out on each of the monitoring dates

which makes this approach somewhat cumbersome. In the next section, I present another method that,

too, utilises the idea of transformation. Conversely to the pathwise differentiation, though, it does not

require any kind of continuity of the payoff function, and even results in surprisingly simple equations.

11.6 The likelihood ratio method

The option pricing problem by Monte Carlo is a numerical approximation to an integration:

v =

∫
π(S) ψ(S) dS (11.22)

Numerically, we construct evolutions of the underlying assets represented byS given a risk-neutral

distribution densityψ(S). As in equation (11.2) we hereby typically construct the paths by the aid of a

6This is a handwaving definition of Lipschitz-continuous but well sufficient for the discussion here.
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set of standard normal variates which corresponds to

v =

∫
π(S(z;α)) ϕ(z) dz , (11.23)

and all dependence on further pricing parameters (herein represented byα) such as the spot level

at inception, volatility, time to maturity, etc., is absorbed into the path constructionS(z;α). Any

derivative with respect to any of the parameters will thus suffer from any discontinuities ofπ in S:

∂v

∂α
=

∫
∂

∂α
π(S(z;α)) ϕ(z) dz . (11.24)

The key insight behind thelikelihood ratio method [BG96] is to shift the dependence on any of the

parameters over into the density function. In other words, a transformation of the density is required to

look at the pricing problem in the form of equation (11.22). This way, the Greek evaluation problem

becomes

∂v

∂α
=

∫
π(S)

∂

∂α
ψ(S;α) dS =

∫
π(S)

∂ψ(S;α)
∂α

ψ(S;α)
ψ(S;α) dS . (11.25)

The calculation of the desired Greek now looks exactly like the original pricing problem, only with a

new payoff function

χ(S;α) := π(S) · ω(S;α) (11.26)

with

ω(S;α) :=
∂ψ(S;α)
∂α

ψ(S;α)
. (11.27)

The termω(S;α) may be interpreted as alikelihood ratiosince it is the quotient of two density func-

tions, whence the name of the method. Using this definition, the Greek calculation becomes

∂v

∂α
=

∫
χ(S;α)ψ(S;α) dS . (11.28)

The beauty of this idea is that for the probability density functions that we typically use such as the

one corresponding to geometric Brownian motion, the functionχ(S;α) is ∈ C∞ in the parameterα

and thus doesn’t cause the trouble that we have when we approach the Greek calculation problem in

the form of equation (11.23). The application is now straightforward. Alongside the calculation of

the option price, for each constructed path, apart from calculating the payoffπ(S), also calculate the

likelihood ratioω(S;α). The approximation for Delta, for instance, thus becomes

D̂elta=
1

m

m∑
j=1

[
π
(
Sj;S0)

)
· ωD̂elta

(
Sj;S0)

)]
. (11.29)

The likelihood ratio method can actually be viewed as a special case of a more general class of ap-

plications ofMalliavin calculusto the problem of the calculation of Greeks using Monte Carlo meth-

ods [FLL+99, FLLL01]. In the framework of Malliavin calculus, the transformation of integrals con-

taining derivatives such as equation (11.24) to the form given in equation (11.25) is seen as a partial
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integration of an integral involving stochastic processes. It can be shown that there is usually more than

one way to choose a weighting functionω for the payoff in order to calculate any one given parametric

derivative, i.e. Greek. However, and this is in general the biggest problem of Malliavin calculus, not

all of them provide a faster convergence than, say, plain finite differencing. For geometric Brownian

motion, the choice ofω that provides the least variance of the result is the one that can be derived

directly as a likelihood ratio calculation as is done here. For other processes, this may be different,

and the full-blown Malliavin calculus may then lead to superior weighting functionsω. However, the

stochastic calculus involved can be quite daunting and the highly complicated analytical computations

required make this method somewhat error prone when applied to more sophisticated process assump-

tions and more complex derivatives contracts. For our test case of a discretely monitore Up-Out-Call

option, though, the calculation is straightforward, and, leaving it up to the reader to go through the

involved calculus and algebra in his own time, I just present the results here. Starting from the path

construction description (11.2), we arrive at

ωD̂elta =
z1

S0σ
√

∆t1
(11.30)

ωĜamma =
z2
1 − z1σ

√
∆t1 − 1

S2
0σ

2∆t1
(11.31)

which may look surprisingly simple considering all of the above discussion. It is worth noting that

only the variatez1 responsible for the very first step enters. Also, if a piecewise constant term structure

of instantaneous volatility is used, it is the volatility coefficient for the first time step that applies. A

similar formula can be derived for Vega, i.e. the price sensitivity with respect to the volatility coeffi-

cient, which is done in appendix11.9.1, and also for the sensitivities with respect to interest rates and

dividend yields (see appendix11.9.2). As for the limitations of the method, I should mention that since

the likelihood ratiosωD̂elta andωĜamma in equations (11.30) and (11.31) are inversely proportional to

σ
√

∆t1, andσ2∆t1 respectively, the variance incurred by this calculation of Delta and Gamma may

increase dramatically for low volatilities or very short time intervals in between monitoring dates.

As a side note, I would like to point out that the method presented in this section did not specifically

depend on the payoff being an Up-Out-Call option. In fact, the resulting decomposition into payoff

π times likelihood ratioω remains the same for any payoff, be it a discretely monitored lookback,

hindsight, Asian, or whichever option. It can also be extended to more challenging model processes

such as the BGM/J framework for interest rates which involve stochastic drift coefficients [GZ99].

11.7 Comparative figures

In order to demonstrate the usefulness of the methods discussed in the previous sections, I selected two

test scenarios. Both are on the same Up-Out-Call option. Scenario a) represents the case that there is

exactlyT = 1 year to maturity, the current spot level is 100, the strike is at 100, and the barrier at 150.

The underlying asset evolves lognormally with constant volatility ofσ = 30% and monitoring happens
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at the end of each month. In scenario b), there is onlyT = 0.52 left until expiry, the spot has risen to

a level of 160, and we are 5 trading days (out of 250 per year) away from an end of month monitoring

date. Since the different methods involve varying amounts of computational effort, all convergence

diagrams are with respect to CPU time required on an AMD K6-III processor running at 400MHz. It

should be mentioned, though, that all of the presented calculations were carried out using the Sobol’

low-discrepancy sequence in conjunction with a Brownian bridge which provides a major convergence

enhancement.

The purpose of figure11.1 is thus to demonstrate that the calculation of both Delta and Gamma

along with the actual price does not impose a prohibitive burden for any of the methods. The reader
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Figure 11.1: The value of the Up-Out-Call option for scenarios a) and b).

may notice that the line for the analytical approximation is missing from the graph for scenario b)

in this and the following figures. This is because the analytical approximation, by virtue of using an

adjusted barrier level in a continuous barrier option formula, results in a value that is identically zero

since the spot level of 160 is outside the adjusted barrier level of 157.8. Also, it is worth noticing

that in scenario b), similarly to a far out-of-the money option, the importance sampling method very

significantly enhances the convergence behaviour for the value itself.

Next, in figure11.2, the convergence behaviour for Delta is shown. Since the differences in per-

formance are difficult to show on one scale, I also show an enlargement in figure11.3. Finally, the

convergence diagrams for Gamma are given in figures11.4and11.5.

Overall, it is probably fair to say that, whilst straightforward finite differencing is virtually use-

less for the calculation of Gamma (we estimate that several CPU months would be required before

satisfactory convergence could be achieved), both the importance sampling and the likelihood ratio

enhancement work remarkably well, and can also be combined.
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Figure 11.2: Delta of the Up-Out-Call option for scenarios a) and b).
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Figure 11.3: Enlargement for Delta of the Up-Out-Call option for scenarios a) and b).

11.8 Summary

Combine et impera !There are various methods out there, and you can pick and choose. Also, the

methods outlined in this chapter can be readily adapted to some of the process decriptions that generate

a skew and/or smile introduced in chapter3. In many cases, we can combine two or more of the

presented techniques for even greater convergence speed. As I have demonstrated, nothing stops you to

use finite differencing in conjunction with importance sampling. Also, one can combine the likelihood



146 Greeks

-10

-8

-6

-4

-2

0

2

4

0 10 20 30 40 50 60

G
am

m
a

�

CPU time [seconds]

Scenario a)

Analytical approximation

straight forward finite differencing

finite differencing with importance sampling

straight forward likelihood ratio

likelihood ratio with importance sampling

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 10 20 30 40 50 60
G

am
m

a

�

CPU time [seconds]

Scenario b)

straight forward finite differencing

finite differencing with importance sampling

straight forward likelihood ratio

likelihood ratio with importance sampling

Figure 11.4: Gamma of the Up-Out-Call option for scenarios a) and b).
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Figure 11.5: Enlargements for Gamma of the Up-Out-Call option for scenarios a) and b).

ratio method with importance sampling.The world is your oyster.
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11.9 Appendix

11.9.1 The likelihood ratio formula for Vega

In a Black-Scholes setting with constant volatility etc., and a single time horizon of interest, i.e. the

maturityT itself, the likelihood ratio for the calculation of Vega is7

ωV̂ega =
z2 − 1

σ
− z

√
T . (11.32)

The variatez is hereby the standard normal variate used for the construction of the terminal spot value

draw

ST = S0 · e(r−d−
1
2
σ2)T+σ

√
Tz . (11.33)

Of more interest is the case when we have a payoff function that depends not only on the value of an

underlying asset at the final maturity, but also on the realisations at intermediate timesti for i = 1, .., n

with tn := T andt0 := 0. In the standard Black-Scholes framework fashion I assume that paths can be

seen as being constructed incrementally8 by

Si ≡ S(ti) = S0 · e
∑i

k=1[(µk− 1
2
σ2

k)∆tk+σ
√

∆tk zk] (11.34)

with ∆ti := ti − ti−1. The cost-of-carry coefficientsµi are given byµi := ri − di with ri representing

a continuously compounded risk-free (funding/lending) forward interest rate for the time interval from

ti−1 to ti, and similarlydi denoting a continuously compounded dividend yield. In (11.34), I have

also allowed for a piecewise constant term structure of instantaneous (or forward implied) volatility.

In a trading environment, we are usually most interested in hedge parameters with respect to market

quoted implied volatilities, i.e. implied volatility coefficients that apply to a time interval from today

to a certain time horizon. I will now first derive the likelihood ratio that enables us to compute the

sensitivity of a given payoff function with respect to all of the individual forward volatility coefficients

in equation (11.34), and then transform them to the conventional format of implied volatilities ‘out of

today’.

Forward volatility exposure for multiple time steps

The joint distribution densityφ of a vector ofn independent standard normal variates is given by

φ(z) =
n∏
k=1

ϕ(zk) . (11.35)

7The formula for the Vega likelihood ratio given in [FLLL01], unfortunately, is slightly in error. However, the same

formula is correct in the preceding article by the same authors (third equation on page 405) in [FLL+99].
8This means that if you actually use a different method for the path construction such as the Brownian bridge (see

section10.8.3), you need to back out the set ofz variables such that you can identify with equation (11.34).
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This density can be transformed to the density of the vectorS of realisations of the underlying asset

along the path by the aid of the Jacobian determinant of the transformationz → S, i.e.

ψ(S) = φ(z) ·
∣∣∣∣ ∂(z)

∂(S)

∣∣∣∣ . (11.36)

Solving (11.34) for the dependence ofz onS, we obtain

zj =
1

σj
√

∆tj

(
lnSj − lnSj−1 − (µj −

1

2
σ2
j )∆tj

)
, (11.37)

and consequently

∂zj
∂Sk

=
1

σj
√

∆tj

(
δjk

1

Sj
− δj−1 k

1

Sj−1

)
. (11.38)

This means that the Jacobian matrix
(
∂(z)
∂(S)

)
is triangular9 and we obtain the following expression for

the density

ψ(S) =
n∏
j=1

ϕ(zj)

Sjσj
√

∆tj
(11.39)

whereinzj is to be seen as an explicit function ofSj, Sj−1, and the parameters according to (11.37).

The likelihood ratio for the sensitivity with respect to any of theσj is given by

ωσk
=

∂ψ(S)
∂σk
ψ(S)

. (11.40)

Combining this with (11.39), we can calculate

ωσk
=

n∑
j=1

 ∂ϕ(zj)

∂zj

ϕ(zj)

 ∂zj
∂σk

− 1

σk
. (11.41)

Recall thatϕ(z) is the standard normal distribution density given in (2.23) and thus

∂ϕ(zj)

∂zj
= −zjϕ(zj) . (11.42)

From (11.37), we can compute

∂zj
∂σk

= δjk

(
− zj
σk

+
√

∆tj

)
. (11.43)

Putting all of this together, we arrive at

ωσk
=

z2
k − 1

σk
− zk

√
∆tk . (11.44)

The likelihood ratio Monte Carlo estimator for the sensitivity of a derivative contract with valuev with

respect to the forward volatility coefficientσk from a simulation withm paths is thus

∂v

∂σk
' 1

m

m∑
j=1

[
π
(
Sj;S0,σ

)
· ωσk

]
(11.45)

with ωσk
as given above.

9Actually, it is just the diagonal and the upper off-diagonal.
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Implied volatility exposure for multiple time steps

Given a vector of volatility coefficientsσ representing a piecewise constant term structure of instant-

aneous volatility, we can calculate the equivalent Black-Scholes implied volatilityσ̂k from t0 = 0 to tk
according to

σ̂2
ktk =

tk∫
t=0

σ(t)2 dt =
k∑
j=1

σ2
j∆tj . (11.46)

Thus,

∂σ̂k
∂σj

=
σj∆tj
σ̂ktk

· 1{j≤k} . (11.47)

Now,

∂v

∂σj
=

n∑
k=1

∂v

∂σ̂k

∂σ̂k
∂σj

=
n∑
k=1

∂v

∂σ̂k

σj∆tj
σ̂ktk

1{j≤k}

=
n∑
k=j

∂v

∂σ̂k

σj∆tj
σ̂ktk

(11.48)

which gives us

1

σj∆tj

∂v

∂σj
− 1{j<n}

1

σj+1∆tj+1

∂v

∂σj+1

=
1

σ̂jtj

∂v

∂σ̂j
, (11.49)

and thus

∂v

∂σ̂j
=

σ̂jtj
σj∆tj

∂v

∂σj
− 1{j<n}

σ̂jtj
σj+1∆tj+1

∂v

∂σj+1

. (11.50)

The likelihood ratio Monte Carlo estimator for the sensitivity with respect to the implied volatilityσ̂k

from a simulation withm paths is therefore

∂v

∂σ̂k
' 1

m

m∑
j=1

[
π
(
Sj;S0,σ

)
· ωσ̂k

]
(11.51)

with

ωσ̂k
=

(
σ̂ktk
σk∆tk

)
ωσk

− 1{k<n}

(
σ̂ktk

σk+1∆tk+1

)
ωσk+1

. (11.52)

11.9.2 The likelihood ratio formula for Rho

Given the same setting as in the previous section

Si ≡ S(ti) = S0 · e
∑i

k=1[((rk−dk)− 1
2
σ2

k)∆tk+σ
√

∆tk zk] (11.53)
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with ri denoting the continuously compounded forward interest that is assumed to be constant from

ti−1 to ti, we can calculate the likelihood ratio for the calculation of the sensitivity with respect to the

forward interest rates. We have to be careful though: the interest rate appears not only in the path

construction but also in the discount factor that has to be applied to each payoff. In the following, I

assume that the only cashflow constituting the payoff of the (path-dependent) derivative contract whose

value isv, is paid at the final maturityT = tn. Taking this into account, we arrive at

ωrk =

(
zk

σk
√

∆tk
− 1

)
∆tk . (11.54)

Just as for Vega, for real hedging purposes the exposure with respect to zero-coupon rates out of today

is more relevant. Denoting the spot rate associated with today’s discount factor for a cashflow that is

payable at timetk asr̂k we can equate

e−r̂ktk = e−
∑k

j=1 rj∆tj . (11.55)

Then, following a transformation analysis similar to the one for Vega, we obtain

ωr̂k =

(
zk

σk
√

∆tk
− 1

)
tk − 1{k<n}

(
zk+1

σk+1

√
∆tk+1

− 1

)
tk . (11.56)

At this point, I am sure you believe me without further ado that the equivalent sensitivities with respect

to the respective dividend yield coefficients can be calculated by virtue of the following likelihood

ratios:

ωdk
= −zk

√
∆tk
σk

(11.57)

ωd̂k
= − zktk

σk
√

∆tk
+ 1{k<n}

zk+1tk
σk+1

√
∆tk+1

(11.58)



Chapter 12

Monte Carlo in the BGM/J framework

12.1 The Brace-Gatarek-Musiela/Jamshidian market model

The pricing of options in the interest rate market has been the subject of many publications in the fin-

ancial literature. Whilst most of the earlier models allowed short rates to evolve according to a normal

distribution [Vas77, HL86, HW90], later developments avoided the possibility of (in principle unlim-

ited) negative interest rates by modelling the short rate lognormally [BDT90, BK91]. With the arrival

of the general no-arbitrage conditions linking the drift of short or forward rates to the term structure

of their instantaneous volatility function [HJM92b], practitioners now had a general framework for the

calibration of interest rate models to the implied volatilities of options that are liquid enough in the

market to serve as hedging instruments. When options on a discrete forward rate or a swap rate are

used for hedging the volatility exposure of exotic interest rate derivatives, it is intuitively appealing

to view the same discrete rates as the fundamental stochastic quantity underlying the contract. Rather

than to model the behaviour of an instantaneous short rate, Brace-Gatarek-Musiela and Jamshidian

(BGM/J) and several other authors [MSS97, BGM97, Jam97, MR97] described the evolution of the

forward rates themselves to be given by a lognormal stochastic differential equation. This formulation,

however, leads to fully state-dependent drift terms for the individual forward rates and thus makes it

impossible to build recombining tree lattices [Hul97, Reb98, Reb99]. As long as the exotic interest

rate derivative contract that is to be priced is of European style, i.e. involves no exercise decision by

the holder of the option, Monte Carlo methods can be readily applied since they are not affected by the

high-dimensionality of the problem1.

Unfortunately, though, one of the most important derivatives in the interest rate market is the con-

tract known as aBermudan swaptionwhich gives the holder the right to enter into a swap of a fixed

terminal maturity date on a set of prespecified exercise opportunity dates. Even though several articles

on the issue of early exercise opportunities in the context of Monte Carlo simulations for the pricing

1This is to say that Monte Carlo methods do not suffer from ‘the curse of dimensionality’ whereby the number of

evaluations explodes exponentially with the number of time steps or exercise opportunities. At worst, the computational

effort grows lineraly with the dimensionality and number of time steps for Monte Carlo techniques.

151
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of derivatives have been published in the past (see, e.g., [BG97a] for an excellent overview), all of

them are only approximate and one has little certainty about the error actually incurred when applying

any of the general-purpose American Monte Carlo methods to a specific problem. The nature of the

Bermudan swaption contract makes it possible though to devise bespoke Monte Carlo techniques that

exploit the specifics of this derivative contract particularly well as was recently demonstrated by Long-

staff and Schwarz [LS98] and Andersen [And00]. Whilst the new method presented here is structurally

somewhat similar to the latter which is in turn superior to the former, it does not require approximat-

ive evaluations of option values during the simulation itself. Instead, an exercise decision strategy is

based on a parametric exercise decision function chosen to match observed heuristics in two carefully

selected coordinates. The free parameters are then optimised for each individual pricing calculation.

In theory, one can always use a non-recombining tree method such as the one explained in chapter

13 to price Bermudan swaptions. In practice, however, this technique can only be applied to contracts

of rather limited duration, or more precisely, of a rather limited number of cashflows and exercise

opportunities. In this chapter, I present a Monte Carlo method that overcomes this limitation and yet

manages to produce prices remarkably close those given by a non-recombining tree wherever the latter

can be applied. The new technique is based on the functional parametrisation of the exercise boundary

in a suitable coordinate system carefully selected by the aid of a non-recombining tree.

It is well known by interest rate derivatives practitioners that the main benefits of using the BGM/J

framework are not so important when it comes to products such as European or even Bermudan swap-

tions since these types of contracts are most sensitive to changes in the yield curve that are well rep-

resented by the lowest principal vectors of the decomposition of the yield curve’s covariance matrix.

Derivatives that are accurately priced by adequate modelling the changes of the level, and possibly

the slope, of the yield curve, can usually be safely priced using a one- or two-factor short rate model.

However, for other interest rate derivatives such as trigger swaps, ratchet and flexicaps, the story is very

different. For trigger swaps, for instance, it is inherently difficult to model appropriately the correla-

tion behaviour of any one forward rate (being the index rate determining whether the swap is triggered

in) to the forward swap rate starting with the very same forward rate simultaneously for all forward

rate/forward swap rate pairs unless a full factorisation is allowed, i.e. there is one model factor for each

forward rate comprising the yield curve of interest. For those products whose price strongly depends on

the effective correlation between adjacent forward rates and forward swap rates, the BGM/J framework

not only provides a way of more adequately allowing for all possible evolutions of the yield curve that

could affect the value of the derivative, but in doing so, also enables the practitioner to obtain a better

understanding of the financial mechanisms behind the value of the optionality with greater ease. In this

light, we can say that the BGM/J framework is particularly useful and beneficial where path depend-

ence plays an important rôle or where the value strongly depends on the high frequency components of

the changes of the yield curve, i.e. the eigenvectors of the yield curve’s covariance matrix associated

with the higher modes and thus lower eigenvalues. Despite this, I have chosen to explain the intricacies

of the BGM/J Monte Carlo simulation approach with the example of Bermudan swaptions for the fol-

lowing two reasons. Firstly it is one of the (if notthe) most important interest rate derivatives around
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and any new approach must provide ways of pricing this contract. Secondly, pricing Bermudan swap-

tions in the BGM/J setup immediately forces the practitioner to tackle the most difficult problem in the

market model world, namely the existence of early exercise opportunities. The generic description of

the Monte Carlo BGM/J model in this chapter is easily applied to all path-dependent products and thus

any product serves equally well as an example. The approach I take here for the design of a Monte

Carlo method in order to price an early exercise strategy dependent contract such as the Bermudan

swaption is, however, general enough to be readily transferred to other derivatives such as flexicaps

and others involving early exercise opportunities.

In this chapter, I outline how Monte Carlo simulations can be used for the pricing of interest rate

derivatives in the Libor market model. The nature of the so-called market model is that any set of rates

that completely determines the present value of a single certain cashflow at all of the points of interest

on the yield curve can be used as the basic set of modelled quantities. The driving stochastic process

for those state variables of the yield curve can then be chosen at will and the drifts follow by virtue of

the martingale conditions resulting from the choice of numéraire. The most common ways of building

the yield curve are to use a complete set of coterminal or coinitial swap rates, or a complete set of

spanning FRAs. In this chapter, I use the latter approach whereby the modelled state variables are

forward Libor rates. The reason that I don’t even touch on the swap rate based approach is that in my

practical experience the available approximations for discrete time step drift terms and approximate

prices of options on composites of the state variables2 are all unsatisfactory. In contrast to that, there

are highly accurate approximations for European swaptions in the FRA based BGM/J framework, and

very reliable drift stepping techniques.

This chapter is structured as follows. In section12.2, I give a brief introduction to the BGM/J

Libor market model framework and explain how the number of driving factors can be reduced should

one wish to do so in order to compare with short rate models of a lower factorisation. In section12.3,

I briefly state the Bermudan swaption pricing problem in my notation and in section12.4, a formula

is given that provides a remarkably accurate price for European swaptions for most major interest

rate markets at the time of this writing, without the need for simulations. The handling of the state-

dependent drift term arising in the BGM/J framework is then addressed in section12.5. Then, I demon-

strate thereal exercise boundary of the Bermudan swaption for a specific example in section12.6. A

suitable parametrisation for this boundary is suggested in section12.7. In the following two sections,

I explain the actual Monte Carlo algorithm and present numerical results for various examples. In the

end of the chapter, a summary is given.

2Recall that if the yield curve is fully described by a set of either coterminal or coinitial swap rates, all bar one caplet

actually become options on a payoff function that involves more than one of the basic state variables, i.e. the swap rates.
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12.2 Factorisation

In the BGM/J Libor market model, it is assumed that each ofn spanning forward ratesfi evolves

lognormally according to the stochastic differential equation

dfi
fi

= µi(f , t)dt+ σi(t)dW̃i . (12.1)

Correlation is incorporated by the fact that then standard Wiener processes in equation (12.1) satisfy

E
[
dW̃i dW̃j

]
= %ijdt . (12.2)

The elements of the instantaneous covariance matrixC(t) of then forward rates are thus

cij(t) = σi(t)σj(t)%ij . (12.3)

Using a decomposition ofC(t) into a pseudo-square root3 Ã such that

C = ÃÃ> , (12.4)

we can transform equation (12.1) to

dfi
fi

= µidt+
∑
j

ãijdWj (12.5)

with dWj beingn independent standard Wiener processes where dependence on time has been omitted

for clarity.

It is also possible to drive the evolution of then forward rates with fewer underlying independent

standard Wiener processes than there are forward rates, say onlym of them. In this case, the coefficient

matrix Ã ∈ Rn×n
is to be replaced byA ∈ Rn×m

which must satisfy

m∑
j=1

a2
ij = cii (12.6)

in order to retain the calibration of the options on the FRAs, i.e. the caplets. In practice, this can be done

very easily by calculating the decomposition as in equation (12.4) as before and rescaling according to

aij = ãij

√
cii

m∑
k=1

ã2
ik

. (12.7)

The effect of this procedure is that the individual variances of each of the rates are still correct, even

if we have reduced the number of driving factors to one, but the effective covariances will differ. For

instance, for a single factor model, all of the correlation coefficients will be unity and the covariances

just the products of the pairs of associated volatilities. The procedure described above is to ensure

3Convenient procedures are the Cholesky method or spectral decomposition. A description of the latter is given in

section6.2.
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consistent calibration to caplet prices. There are many other choices one can make such as to calibrate

against European swaptions, etc. The subject of calibration is a very delicate one indeed and I will

explain how one can calibrate to European swaptions without the need for Monte Carlo simulations in

the next section. Here, I only meant to indicate one of the simplest calibration approaches preserving

the desired calibration independent on the number of factors used in the evolution of the yield curve.

If the forward yield curve is given byn spanning forward ratesfi, whereby the payoff of forward

rate agreementi is fiτi and paid at timeti+1, and a zero coupon bond that pays one currency unit at

tN is used as nuḿeraire as schematically illustrated in figure12.1, then the driftsµi in equations (12.1)

t
0

t
i

t
N

t
n-1

t
n

iτ

f
0

f
i

f
today

Zero coupon bond as numeraire

n-1

Figure 12.1: The yield curve is specified by a set of spanning forward rates.

and (12.5) can be calculated by the aid of Itô’s lemma to be:

µi(f(t), t) =


−σi

N−1∑
k=i+1

fk(t)τk
1+fk(t)τk

σk%ik for i < N − 1

0 for i = N − 1

σi
i∑

k=N

fk(t)τk
1+fk(t)τk

σk%ik for i ≥ N

(12.8)

12.3 Bermudan swaptions

A Bermudan swaption contract denoted by ’X-non-call-Y ’ gives the holder the right to enter into a

swap at a prespecified strike rateK on a number of exercise opportunities. The first exercise oppor-

tunity in this case would beY years after inception. The swap that can be entered into has always

the same terminal maturity date, namelyX, independent on when exercise takes place. A Bermudan

swaption that entitles the holder to enter into a swap in which he pays the fixed rate is known aspayer’s,

otherwise asreceiver’s.

For the owner of a payer’s Bermudan swaption, the present value of exercising at timetj is given

by the intrinsic valueI(tj) of the swap to be entered into at that time

I(tj) =
n−1∑
k=j

[Pk+1(tj) · (fk(tj)−K) τk] =
n−1∑
k=j

[(
k∏
l=j

[1 + fl(tj)τl]
−1

)
· (fk(tj)−K) τk

]
. (12.9)
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Hereby and in the following, I assume a constant notional of1 and that the contract is a payer’s

Bermudan swaption to simplify the notation.Pk+1(tj) indicates thetj-present value of a zero coupon

bond paying1 at tk+1, or, in other words, thetj-realised discount factor fromtj to tk+1.

In order to decide optimally about early exercise at timetj, the holder compares the present intrinsic

value with the expected profit to be made by not exercising at that time. Thus, thetj-value of the

Bermudan swaptionV (tj) is given by

V (tj) =

 max
{
I(tj),Etj [V (tj+1)]

}
for j = 1 . . . n− 2

max {I(tj), 0} for j = n− 1
. (12.10)

It should be mentioned that the above specifications describe fairly plain vanilla Bermudan swap-

tions. In the marketplace, many variations are common such as differing payment frequencies between

fixed and floating leg, margins on top of the floating payment, varying notionals (roller coasteror

amortizingswaptions are not uncommon), time-varying strike of the swap to enter into, cross-currency

payoff (quanto), and many more. The method that presented below, however, is general enough to be

amenable to almost all of these special cases.

12.4 Calibration to European swaptions

Alternatively to the definition of the yield curve by a set of spanning forward rates, it is also possible

to choose a set ofcoterminal forward swap ratesas depicted in figure12.2. Jamshidian used this set
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Figure 12.2: The yield curve can also be defined by a set of coterminal forward swap rates.

of yield curve coordinates for a swap based market model [Jam97]. Using the annuity associated with

a specific forward swap as the numéraire asset for the evolution out to the reset time of the same swap,

we can model model the swap rates as perfectly lognormal and thus obtain the calibration to European

swaptions by construction. However, there are a number of drawbacks to this approach. Firstly, it is

not particularly easy to come up with a parametrisation of the swap rates’ instantaneous volatilities that

allows for some degree of time-homogeneity. Essentially, one needs a functional form that amongst

all other parameters also caters for the intrinsic differences between the different forward swap rates.

This is because whilst forward rates are all equally associated with a single cash payment of the same

order of magnitude, the annuities associated with all the forward swap rates vary considerably with the

residual maturity or duration of the individual forward swap rate. Secondly, it is not easy to conjure
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up a parametrisation of the swap rates’ correlation that is equally satisfactory and simple which is also

due to the intrinsic differences between the natural assets associated with the forward swap rates, i.e.

the annuities. Thirdly, the drift terms resulting from the no-arbitrage martingale conditions are much

more cumbersome than for a FRA based market model.

Today’s exotic interest rate derivatives are rarely purely based on only forward ratesor forward

swap rates just by themselves. A classic example for this are trigger swaps where the fixing value

of a specific forward rate determines whether a swap starting there and then comes to life. Even

for Bermudan swaptions, the exercise decision depends on not only the next resetting swap rate, but

also the shape (and primarily the slope) of the yield curve as best seen by looking at the variations

between all of the forward rates. Thus, when we value Bermudan swaptions, we may wish to represent

the overall stochastic dynamics of the forward rates reasonably well, and in particular account for their

correlation in an econometrically sound fashion, but also to calibrate such that we reproduce the market

given prices of European swaptions.

I will now outline one possible approach to calibrate a FRA based BGM/J model to European

swaptions. First, we have to decide on a suitable instantaneous volatility function for the forward rate

and I use the one suggested by Rebonato [Reb99]:

σi(t) = ki
[
(a+ b(ti − t))e−c(ti−t) + d

]
· 1{t≤ti} . (12.11)

The common parametersa, b, c, andd determine the overall shape of the term structure of instantaneous

volatility. The FRA-specific parameterki allows to scale the volatility curve for each forward rate to

match the market given implied volatility for the associated caplet. This functional form appears to

give good fits to the main volatility structure for most major markets for which there is an example in

figure12.3. The next function to choose is the FRA/FRA correlation. One suitable choice is

%ij(t) = e−β|(ti−t)
γ−(tj−t)γ | · 1{t≤min(ti,tj)} (12.12)

with β = 0.35 andγ = 0.5. However, choosingγ = 1 andβ = 0.1 (which results in very similar

initial values for the correlation elements and makes no noticeable difference to the price of Bermudan

swaptions), we can evaluate the pairwise covariance integralscij(t, T ) =
∫ T
t
σi(u)σj(u)%ij(u)du with

t ≤ T ≤ min(ti, tj) analytically since we can take the correlation term out of the integral. The
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Figure 12.3: Market given implied volatilities for caplets and the best fit using

equation (12.11) with all ki ≡ 1.

primitive, i.e. the indefinite integral, ofσi(t)σj(t)%ij becomes then:∫
%ijσi(t)σj(t)dt = e−β|ti−tj | · kikj ·

1

4c3
·

·

(
4ac2d

[
ec(t−tj) + ec(t−ti)

]
+ 4c3d2t (12.13)

− 4bcdec(t−ti)
[
c(t− ti)− 1

]
− 4bcdec(t−tj)

[
c(t− tj)− 1

]
+ ec(2t−ti−tj)

(
2a2c2 + 2abc

[
1 + c(ti + tj − 2t)

]
+ b2

[
1 + 2c2(t− ti)(t− tj) + c(ti + tj − 2t)

]))

Clearly, we can always use formula (12.13) to calculate the implied volatilitŷσi(ti) =
∫ ti

0
σ2
i (t)dt/ti

of any one caplet consistent with the parametrisation (12.11). In practice, one can use this formula to

calculate theki such that̂σi(ti) equals a market given Black volatility.

In order to establish a link between forward rate and forward swap rate volatilities for the purpose

of calibration to European swaptions, we remind ourselves that a forward swap rateSRi (starting with
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the reset time of the forward ratefi) can be written as the ratio

SRi =
Ai
Bi

(12.14)

of the floating leg value

Ai =
n−1∑
j=i

Pj+1fjτjNj for i = 0 . . . n− 1 (12.15)

and the annuity

Bi =
n−1∑
j=i

Pj+1τjNj for i = 0 . . . n− 1 . (12.16)

Nj is the notional associated with accrual periodτj. Since the market convention of price quotation

for European swaptions uses the concept of implied Black volatilities for the forward swap rate, it

seems appropriate to think of the swap rates’ covariance matrix in relative terms just as much as for

the forward rates themselves. The elements of the swap rate covariance matrixCSR can therefore be

written as

CSR
ij =

〈
dSRi

SRi

· dSRj

SRj

〉

=

n−1
n−1∑
k=0
l=0

∂SRi

∂fk
· ∂SRj

∂fl

SRi · SRj

· fkfl ·
〈

dfk
fk

dfl
fl

〉

=

n−1
n−1∑
k=0
l=0

∂SRi

∂fk

fk
SRi

· CFRA
kl · fl

SRj

∂SRj

∂fl
. (12.17)

Defining the elements of the matrixZFRA→SR by

ZFRA→SR
ik =

∂SRi

∂fk

fk
SRi

, (12.18)

the mapping from the FRA covariance matrixCFRA to the swap rate covariance matrixCSR can be

seen as a matrix multiplication:

CSR = ZFRA→SR · CFRA · ZFRA→SR> . (12.19)

Using

∂Pi+1

∂fk
= −Pi+1

τk
1 + fkτk

· 1{k≥i} , (12.20)

where1{k≥i} is one ifk ≥ i and zero otherwise, and equations (12.15), (12.16), and (12.14), we have

∂SRi

∂fk
=

{
Pk+1τkNk

Bi

− τk
1 + fkτk

· Ak
Bi

+
τk

1 + fkτk
· AiBk

B2
i

}
· 1{k≥i} . (12.21)
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This enables us to calculate the elements of the forward rate to swap rate covariance transformation

matrixZFRA→SR to obtain the expression

ZFRA→SR
ik =

 Pk+1Nkfkτk
Ai︸ ︷︷ ︸

constant weights approximation

+
(AiBk − AkBi)fkτk
AiBi(1 + fkτk)︸ ︷︷ ︸

shape correction

 · 1{k≥i} . (12.22)

The second term inside the square brackets of equation (12.22) is called theshape correction. Rewrit-

ing it as

(AiBk − AkBi)fkτk
AiBi(1 + fkτk)

=
fkτk

AiBi(1 + fkτk)
·
k−1∑
l=i

n−1∑
m=k

Pl+1Pm+1NlNmτlτm(fl − fm) (12.23)

highlights that it is a weighted average over inhomogeneities of the yield curve. In fact, for a flat yield

curve, all of the terms(fl − fm) are identically zero and the mapping matrixZFRA→SR is equivalent

to the constant-weights approximation (11.7) in [Reb99]. As things stand at this point, we have a map

between the instantaneous FRA/FRA covariance matrix and the instantaneous swap/swap covariance

matrix. Unfortunately, though, the map involves the state of the yield curve at any one given point

in time via the matrixZ. The price of a European swaption, however, does not just depend on one

single realised state or even path of instantaneous volatility. It is much more appropriate to think about

some kind ofpath integral average volatility. Using arguments of factor decomposition and equal

probability of up and down moves (in log space), Rebonato shows in [JR00] that the specific structure

of the map allows us to approximate the effective implied swaption volatilities by simply using today’s

state of the yield curve for the calculation of the mapping matrixZ:

σ̂SRi
(t, T ) =

√√√√ n−1∑
k=i,l=i

ZFRA→SR
ik (0) ·

∫ T
t
σk(t′)σl(t′)ρkldt′

T
· ZFRA→SR

il (0) (12.24)

This approximate equivalent implied volatility can now be substituted into the Black swaption formula

to produce a pricewithout the need for a single simulation!In practice, the formula (12.24) works

remarkably well. This is demonstrated for a whole sequence of coterminal European swaptions out in

figure12.4. An explanation for the remarkable accuracy of approximation (12.24) is beyond the scope

of this section but can be found in [JR00].

Using the above preliminaries, I now outline the calibration procedure in detail. For a given time

step fromt to T , populate a time-unscaled FRA/FRA covariance matrix

CFRA
kl =

∫ T
t
σk(t

′)σl(t
′)%kl(t

′)dt′

(T − t)
. (12.25)

Next, map this matrix into a time-unscaled swap/swap covariance matrix using theZ matrix calculated

from the initial state of the yield curve

CSR = Z · CFRA · Z> (12.26)
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Figure 12.4: The pricing error from equation (12.24) using only the constant weights approximation in

the formula (12.22) or when including the shape correction for a GBP yield curve for August 10th, 2000.

and calculate from it the swap/swap correlation matrixRSR given by

RSR
ij =

CSR
ij√

CSR
ii C

SR
jj

. (12.27)

Now, we compute the spectral pseudo square rootB of RSR which satisifies

RSR = BSR BSR> . (12.28)

At this point, we take into account the market given swaption prices. Denote the market implied

volatility of the swaption expiring at timeth by σmarket
SRh

and define the diagonal matrixΞ by

Ξgh = σ̂market
SRh

· σ̂SRh
(t, T )

σ̂SRh
(0, th)

· δgh (12.29)

with δgh being the Kronecker symbol (which is zero unlessg = h when it is one) and botĥσSRh
(t, T )

and σ̂SRh
(0, th) calculated from the FRA instantaneous volatility parametrisation through equation

(12.24). The final step is now to construct the FRA driver4 matrixAFRA by scaling up the swap/swap

correlation driver matrixBSR and mapping back to FRA coordinates:

AFRA = Z−1 · Ξ ·BSR . (12.30)

4Karatzas and Shreve call this matrix thedispersion matrix[KS91] (page 284).
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The effective (time-unscaled) FRA/FRA covariance matrix is finally

CFRA
effective = AFRA AFRA

>
. (12.31)

In order to use the matricesCFRA
effective andAFRA for the evolution over the time stept → T from a set

of standard normal variates, we still need to multiply them by(T − t) and
√

(T − t), respectively.

Within the limits of the approximation (12.24), using these matrices wherever we have expressions

involving aij andcii in the following sections, will provide calibration to European swaption prices

whilst retaining as much calibration to the caplets as is possible without violating the overall FRA/FRA

correlation structure too much which is typically exactly what a practitioner wants for the pricing

of Bermudan swaptions. As a side note, it should be mentioned that various other combinations of

carrying out the split intoCFRA
effectiveandAFRA are possible, whilst still preserving calibration to European

swaptions. In my experience, however, the above approach represents the best method to preserve as

much of the overall FRA/FRA correlation structure in the calibration as possible.

12.5 The Predictor-Corrector scheme

In order to price a Bermudan swaption in a Monte Carlo framework, we need to evolve the set of

forward ratesf from its present values into the future according to the stochastic differential equation

dfi(t) = fi(t) · µi(f(t), t)dt+ fi(t) ·
m∑
j=1

aijdWj (12.32)

driven by anm-dimensional standard Wiener processW . The drift terms given by equation (12.8)

are clearly state-dependent and thus indirectly stochastic which forces us to use a numerical scheme to

solve equation (12.32) along any one path. Ideally, we would want to evolve the forward yield curve

f only over the points in time which we actually need to monitor, i.e. the possible exercise dates. The

simplest numerical scheme for the integration of stochastic differential equations5 is the Euler method

fEuler
i (f(t), t+ ∆t) = fi(t) + fi(t) · µi(f(t), t)∆t+ fi(t) ·

m∑
j=1

aij(t)zj
√

∆t (12.33)

with zj beingm independent normal variates. This would imply that we approximate the drift as con-

stant over the time stept → t + ∆t. Moreover, this scheme effectively means that we are using a

normal distribution for the evolution of the forward rates over this time step. Whilst we may agree to

the approximation of a piecewise constant (in time) drift coefficientµi, the normal distribution may

be undesirable, especially if we envisage to use large time steps∆t for reasons of computational effi-

ciency. However, when we assume piecewise constant drift, we might as well carry out the integration

over the time step∆t analytically and use the scheme

fConstant drift
i (f(t), t+ ∆t) = fi(t) · e

µi(f(t),t)∆t− 1
2
cii+

m∑
j=1

aijzj

(12.34)

5See [KP99] for a whole variety of methods for the integration of stochastic differential equations.
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whereby the time step scaling by
√

∆t for A and by∆t for C has been absorbed into the respective

matrices. In other words, I have setA′ := A ·
√

∆t andC ′ := C ·∆t and dropped the primes. Equation

(12.34) can also be viewed as the Euler scheme in logarithmic coordinates.

The above procedure works very well as long as the time steps∆t are not too long and is widely

used and also referred to in publications [And00, GZ99]. Since the drift term appearing in the exponen-

tial function in equation (12.34) is in some sense a stochastic quantity itself, we will begin to notice that

we are ignoring Jensen’s inequality when the termµi∆t becomes large enough. This happens when

we choose a big step∆t, or the forward rates themselves or their volatility are large. Therefore, we

should use a predictor-corrector method which models the drift as indirectly stochastic [HJJ01]. In the

notation of Kloeden and Platen [KP99], depending on the time dependence of the instantaneous volat-

ility function, this is an explicit order 2.0 weak scheme or order 1.0 weak predictor-corrector method6.

This combination of the Euler scheme in logarithmic space with the predictor-corrector method for the

drift results in a remarkable accuracy and is used throughout all of the calculations reported in this

chapter. The method is as follows. First, given a current evolution of the yield curve denoted byf(t),

we calculate the predicted solutionfConstant drift(f(t), t+ ∆t) using onem-dimensional normal variate

drawz following equation (12.34). Next, we recalculate the drift using this evolved yield curve. The

predictor-corrector approximatioñµi for the drift is then given by the average of these two calculated

drifts, i.e.

µ̃i(f(t), t → t+ ∆t) = 1/2
{
µi(f(t), t) + µi(f

Constant drift(f(t), t+ ∆t), t)
}
. (12.35)

Finally, the predictor-corrector evolution is given by

fPredictor-corrector
i (f(t), t+ ∆t) = fi(t) · e

µ̃i(f(t),t→ t+∆t)∆t− 1
2
cii+

m∑
j=1

aijzj

(12.36)

wherein we re-use the same normal variate drawz, i.e. we only correct the drift of the predicted

solution.

A hand-waving reasoning for the above approximation goes as follows. If we had to choose, for the

calculation of a constant drift approximation, for any one time step, whether we use the initial forward

ratesf(t), or those at the end of the time stepf(t + ∆t), neither of them appears to be superior over

the other for the job. This is equivalent to the considerations about explicit and implicit methods for

the numerical solution of both ordinary and partial differential equations. We don’t actually know the

drift at the end of a desired time step, and solving for it as we would in an implicit method would

6To be precise, a hybrid method is used here. In the approach presented here, I integrate in equation (12.25) the volatility

functions indepently over the time step to obtain an equivalent discrete time step covariance matrix, and then treat these

covariance matrices as if they had been given by a process of volatility functions that are constant in time. Therefore, neither

is the explicit order 2.0 weak scheme given by equation (15.1.4) in [KP99] used, nor the order 1.0 weak predictor-corrector

method as in equation (15.5.4) [KP99]. In the case of constant, i.e. time-independent volatility, however, these two schemes

are identical. Thus, following the general notion that it is always beneficial to use as many explicit analytical solutions as

possible in any numerical scheme, one can say that we are using a predictor-corrector schemeonly for the drift term, not

for the entire stochastic differential equation driving the evolution.
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require solving a high-dimensional non-linear systemeach and every time. However, we can approx-

imate the drift term at the end of the time step, and then take the average of the two individual drift

approximations, in analogy to the predictor-corrector method used in other areas of numerical analysis.

A number of numerical experiments confirmed that this method is very robust and works very

well (the error is never more than a fraction of the bid-offer spread which is typically around one

vega of the option) for the prevailing interest rates and volatility levels for all of the major markets,

even for very long dated (tens of years) options when only a single step to maturity is used. In order

to demonstrate this, it is shown in figures12.5 and12.6 how the predictor-corrector drift approach

performs for a Libor-in-arrears scenario in comparison to the piecewise constant drift approach where

the drift term over any one time step is given by the state of the yield curve at the beginning of the step.

In both figures, the error in the expectation of the Libor-in-arrears contract for both stepping methods
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Figure 12.5: The stability of the predictor-corrector drift method as a function of volatility level.

for a single step to maturityis compared with a measure for the bid-offer spread, namely the price

difference resulting from a 1% move in implied volatility. As you can see, the method is remarkably

accurate, even for very long time steps. When we price Bermudan swaptions, however, we never have

such long individual steps since we need to model the evolution at each exercise date. This means
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Figure 12.6: The stability of the predictor-corrector drift method as a function of time to expiry.

that the predictor-corrector drift approximation is highly accurate in the context of Bermudan swaption

modelling.

12.6 Heuristics of the exercise boundary

At any reset timeti as sketched in figure12.1, the residual yield curve of interest is fully described by

the vectorf(ti) whose elements are the(n − i) remaining forward rates in the yield curve out to the

last payment time of the Bermudan swaption. Amongst many other possible ways to describe the yield

curve at timeti out totn are the vectorP (ti) whose elements are theti-present values of zero coupon

bonds maturing onti+1 . . . tn, and the vectors(ti) consisting of the swap rates of all coterminal swaps

out to tn. All of these determine the yield curve unambiguously. Since it is in general a good idea to

exploit the specific structure of the particular problem one wishes to solve using simulation techniques,

it is conducive to first of all look at the geometry of the exercise domain of the Bermudan swaption

problem. Strictly speaking, the exercise boundary at timeti is an(n− i−1)-dimensional hypersurface
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in an(n−i)-dimensional space. Using the non-recombining tree procedure explained in chapter13, we

can produce diagrams of two-dimensional projections of exercise decisions. If we find a coordinate pair

in whose projection the domain of exercise decision events appears to be reasonably separated from

the domain where exercise was not optimal, we may be able to reduce the early exercise decision to the

evaluation of a parametric function in those two coordinates. To demonstrate that this is possible, the

exercise decisions were evaluated using a four-factor non-recombining tree for a 6-non-call-2 annual

Bermudan swaption. The tree was constructed with 5 branches out of each node representing five

different possible evolutions of the yield curve, and both thealternating simplex directionandoptimal

simplex alignmenttechnique presented in section13.3 were applied to improve homogeneity of the

distribution of the evolved yield curve and enhance convergence. All discrete forward rates were set

to 10% annually compounded, volatilities were assumed to be 30%, and the correlation%ij between

forward ratesfi andfj was modelled as before by

%ij = e−β|ti−tj | . (12.37)

with β = 0.1. The strike was set to be at the money, i.e. at 10%. The tree was constructed with 10 steps

to the first exercise decision att = 1, and then one in between each subsequent exercise opportunities7.

In figure12.7, theti-evolved yield curve is represented by the first two forward ratesfi andfi+1.

Next, in figure12.8, the evolved yield curve is projected onto the first two of the set of residual co-

terminal swap ratessi andsi+1. The diagram in figure12.7illustrates that using the first two forward

rates to project onto will make the domain of exercise appear to overlap with the domain where not

exercising is optimal. Using the projection onto the first two residual coterminal swap rates results

in a projection where all points are very near the diagonal which will make it numerically difficult to

determine the exercise boundary. Also, the very nature of the swap rate is that both an upward and a

downward sloping yield curve can result in the very same value for the swap rate, but it is much more

likely to be optimal to exercise a payer’s Bermudan early in a downward sloping than in an upward

sloping yield curve environment.

Another choice of coordinates could include the annuity of the residual swapsBi andBi+1 respect-

ively, making the new variables the values(siBi) and(si+1Bi+1) of the respective floating legs. This

does not appear to improve on the above selection of projections though, as can be seen in figure12.9.

However, using the projection onto the first forward ratefi and the forward swap ratesi+1 starting from

the reset time offi+1 going out to the terminal maturity results in a reasonable separation of exercise

and non-exercise decisions with very little overlap as can be seen in figure12.10. Ideally, we could use

a principal component decomposition of the dynamics of the yield curve and project onto the first two

modes. In order to retain a direct financial intuition as to the meaning of the coordinate system, the

7Many other calculations with different distributions of the steps between the relevant monitoring times were conducted

and all lead to the same shape of the exercise boundary. This particular one was chosen for the generation of the diagrams

since it highlights the location of the boundary and the overlapping versus non-overlapping feature in the different projec-

tions best. The total number of510 = 9765625 points resulting from this calculation was reduced by sorting along the

abscissa and retaining only every seventh point in order to make the volume of data somewhat manageable.
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Figure 12.7: The exercise domain in thefi-fi+1 pro-

jection of the evolved yield curve atti = 2.
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projection of the evolved yield curve atti = 2.
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ti = 2.
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Figure 12.10: The exercise domain in thefi-si+1

projection of the evolved yield curve atti = 2.

method was developed using thefi-si+1 projection, in particular since the short rate and the long swap

rate are in practice very good proxies for the first two fundamental modes of the yield curve.
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12.7 Exercise boundary parametrisation

Taking into account all of the heuristic observations about the shape of the exercise boundary in various

projections for many different shapes of the yield curve and volatility structures, the following function

was chosen as the basis for the subsequent exercise decision strategy in the Monte Carlo simulation:

Ei(f(ti)) =

(
fi(ti)−

[
pi1 ·

si+1(0)

si+1(ti) + pi2
+ pi3

])
·

{
+1 for payer’s swaptions

−1 for receiver’s swaptions

}
(12.38)

This function is hyperbolic insi+1 and depends on three coefficients, the initial (i.e. at the calendar time

of evaluation or inception of the derivative contract) value offi(0) andsi+1(0), and their respective

evolved values as given by the simulation procedure. Since we have to make an exercise decision at

each exercise opportunity timeti, we allow for a new set of exercise function coefficients for each

such time slice. For non-standard Bermudan swaptions that have payments in between exercise dates,

we use the shortest swap rate fromti to the next exercise time instead offi. The parametric exercise

decision given an evolved yield curve is then simply to exercise ifEi > 0.

At the very last exercise opportunity at timetn−1 we have exact knowledge if exercise is optimal,

namely when the residual swap is in the money. This easily integrates into the parametric description

given by equation (12.38) by settingp(n−1) 1 andp(n−1) 2 to zero andp(n−1) 3 to the strike:

p(n−1) 1 = 0

p(n−1) 2 = 0

p(n−1) 3 = K

(12.39)

12.8 The algorithm

The Monte Carlo method for the pricing of Bermudan swaptions can now be described. First, for a

training setPTraining of NTraining evolutions of the yield curve into the future out to the last exercise time

tn−1 is precalculated and stored:

PTraining =
{
f jk
}
, j = 1 . . . NTraining , k = 0 . . . n− 1 (12.40)

Also, for each evolution of the yield curve, the residual intrinsic valueIjk in the chosen nuḿeraire as

seen at timetk is pre-calculated and stored.

Then, a set ofn− 1 optimisations is carried out, one for each exercise opportunityti apart from the

last one8 in order to determine the best values to use for the coefficientspij. Naturally, the optimisations

are done in reverse order, starting with the penultimate exercise timetn−2. Prior to each optimisation,

we assign a path-valuevj, j = 1 . . . NTraining to each evolution path in the training setPTraining which

represents the value of the Bermudan swaption on this path if no exercise occurs up until and including

ti. This path-value vectorv is initialised to be zero in all its elements before we enter the following

loop which counts down in the time index variablei from (n− 2) to 0:

8On the very last exercise opportunity, the optimal exercise parameters are given by equation (12.39) whence no optim-

isation is required for them.
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1. For each pathf j (·) in PTraining, if (Ei+1(f ji) > 0) and (Ij (i+1) > 0) , re-assignvj := Ij (i+1),

elseleavevj unchanged.

2. Optimise the average of the exercise-decision dependent value

Ui(pi) =
1

NTraining

NTraining∑
j=1

{
Iji if (Ei(f ji ; pi) > 0)

vj else

}
(12.41)

over the three parameterspi1, pi2, andpi3. Specifically, one can use the Broyden-Fletcher-Gold-

farb-Shanno multi-dimensional variable metric method for this optimisation [PTVF92].

It is worth noting at this point that, sinceabsolutely all values are precalculated and stored, the

function to be optimised given by equation (12.41) requires merelyNTraining evaluations of the

exercise decision functionEi(f ji ; pi) and the same number of additions and is thuslinear in

the number of training paths and independent on the dimensionality or maturity of the problem.

3. Decrementi by 1 andif (i ≥ 0) continue with step1.

The final valueU0(p0) gives then an estimate of the value of the Bermudan swaption with a slight up-

ward bias. Therefore, we finally re-run the simulation with a new set ofNSamplingyield curve evolutions

using the established exercise strategy parametrisation given by the set ofn exercise decision functions

Ei. Typically, I findNSampling ' 2NTraining to be well sufficient, especially when the driving number

generator method was a low-discrepancy sequence.

12.9 Numerical results

In order to highlight the outcome of the training procedure described in the previous section, the pa-

rametrised exercise boundary as resulting9 fromNTraining = 32768, NTraining = 131072, andNTraining =

1048576 is superimposed on the exercise decisions given by the non-recombining tree (which were

already shown in figure12.10) in figure12.11. The resulting prices were 5.062% forNTraining = 32768

(total run time was 5.1 seconds10), 5.066% forNTraining = 131072 (26.5 seconds), and 5.069% for

NTraining = 1048576 (211 seconds). The most accurate price estimate I could obtain from the non-

recombining tree is 5.084%±0.015% which demonstrates the remarkable accuracy of this new Monte

Carlo method. This example also highlights that the Monte Carlo approximation for thetrue price

(defined by the absolutely optimal exercise strategy), in the vicinity of the optimal exercise strategy,

9All of the reported results are from calculations with a high-dimensional Sobol’ sequence. Using this sequence gener-

ator, European option prices are typically highly stable and accurate with 1024 paths, in most cases even 512 paths would

have sufficed for the same accuracy. The Bermudan swaption prices are typically sufficiently accurate and robustly stable

with around 16384 training paths (and twice that for the final evaluation) but in order to make the diagrams appear even

smoother somewhat larger numbers of paths were used.
10Run times are given for a Pentium II @ 300MHz with the number of sampling points always being double the number

of training points.
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Figure 12.11: The exercise domain in thefi-si+1 projection of the evolved yield curve atti = 2,

together with the parametrised exercise boundary resulting from training with different sizes of the

training set.

only weakly depends on slight changes to the boundary. After all, if we view the price approximation

as a function of the location of a given exercise boundary, then thereal Bermudan option price is the

one resulting from an optimisation over all possible exericse boundary locations. As it happens with

the value of a function at its maximum, the first derivative with respect to its argument must be zero

at the extremum, and thus the price approximation depends only weakly (i.e. as of second order) on

minor changes of the exercise boundary location near the optimal point.

Now, the results for a 6-non-call-2 semi-annual payer’s Bermudan swaption for a typical Ster-

ling yield curve and volatility environment are presented. This means the yield curve was slightly

downward sloping, and the implied swaption volatilities increased from 19.53% for the first one up to

22.46% for the last one (which is a caplet). The forward rates were again assumed to have piecewise

constant instantaneous volatility but calibration was in this case done such that the entailed European

swaptions’ prices are to be independent on the number of used factors. The option was again at the
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money11 with a strike of 6.63%. In figure12.12, a diagram of the Bermudan swaption price calculated

using the presented Monte Carlo method in comparison to the values obtained from a non-recombining

tree model is shown. For reference, the prices obtained from both models for the most expensive
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Figure 12.12: Bermudan swaption prices from the Monte Carlo model in comparison to those obtained

from a non-recombining tree model for a 6-non-call-2 semi-annual payer’s swaption.

European are also included. Since the non-recombining tree model must by construction converge

to the same value as the Monte Carlo model for European contracts, including both European prices

gives a good indication for the residual error of the non-recombining tree model. As can be seen, the

Monte Carlo model returns prices that are within the error margin of the non-recombining tree model.

The upwards trend of the prices with increasing numbers of factors is very typical for calibration to

European swaptions when no attempt is made to keep the prices of caps constant at the same time. The

non-recombining tree calculation time required to obtain sufficient accuracy for the curves in figure

12.12to look reasonably smooth was approximately 8 hours on a Pentium II @ 300MHz parallelised

over two CPUs using multi-threading whilst the total calculation time for the Monte Carlo results was

92 seconds (without multi-threading).

Next, in figures12.13and12.14, examples are shown for longer dated contracts, namely a 15-non-

call-5 annual Bermudan payer’s and receiver’s swaption with a flat yield curve at 10% and calibration

to European swaption implied volatilities taken from the GBP market. Forward rate volatilities were

again modelled as piecewise constant in time. In this case, prices from the non-recombining tree were

11In all my tests, at the money Bermudan swaptions are always the most difficult ones to price using a Monte Carlo

method since they contain the most relative optionality.
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Figure 12.13: 15-non-call-5 annual payer’s
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Figure 12.14: 15-non-call-5 annual receiver’s

only calculated up to two factors. The points shown for the non-recombining trees indicate by how

much the price varies if the number of steps is slightly increased, thus giving and indication for the

error margin from the tree. Again, the Monte Carlo model is very accurately in agreement with the

non-recombining tree.

In figure 12.15the results are shown for the same 15-non-call-5 annual payer’s swaption, only

this time the yield curve was assumed to be steeply upwards sloping from initially 2.5% up to 9% for

the last FRA. Finally, in figure12.16, the results for a 20-non-call-10 semi-annual payer’s swaption
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Figure 12.15: 15-non-call-5 annual payer’s for

steeply upwards sloping yield curve
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Figure 12.16: 20-non-call-10 semi-annual payer’s in

comparison to Andersen’s method I [And00]
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are shown. Here, I used a slightly upwards sloping yield curve taken from the USD market, and

market-typical European swaption implied volatilities beginning at 14.56% for the longest swaption

and ending in 22.50% for the last one. In this case, the forward rates were modelled to follow a

slightly humped instantaneous volatility curve as is believed by practitioners to be the most realistic

representation of econometric observations [Reb99]. Also, the results as obtained from the model

(method I) published by Andersen [And00] were added for comparison. For this contract, due to the

sheer number of payment and exercise times, only single factor calculations were completed with the

non-recombining tree model.

12.10 Summary

In this chapter, a number of separate issues relating to the pricing of Bermudan swaptions in the BGM/J

framework have been addressed. The state dependence of the drift coefficients poses a problem for

Monte Carlo simulations whenever we wish to avoid using a small-step Euler scheme. The proposed

predictor-corrector log-Euler BGM/JMonte Carlo scheme is very stable and allows us to use single

steps over any time horizon that may be encountered in the pricing of Bermudan swaptions. Then, a

new Monte Carlo method tailor-made specifically for the pricing of Bermudan swaptions was presen-

ted. The main idea behind the new approach is to exploit the heuristics obtained from a different but

numerically not widely applicable method, namely a non-recombining multi-factor tree. This know-

ledge is then used to devise a suitable parametric exercise decision function in fewer dimensions than

the state space is embedded in. Also, the importance of a careful selection of the coordinate system

used for the projection of the exercise boundary was demonstrated. This approach was compared to the

method suggested by Andersen [And00] which relied solely on a financial intuition of what variables

should be most indicative. The new method was tested with a large number of yield curve and volatility

scenarios and inall of them proved to be remarkably accurate. A small selection of the test results are

presented in this document. I have also given examples of the calculation time involved on a computer

which, at the time of this writing, can be considered to be at least a factor of five slower than what is

readily available to practitioners on a trading floor. The remarkable speed, stability, and accuracy of

the developed model is partly due to the use of high-dimensional Sobol’ numbers but also due to the

careful design of the optimisation algorithm and the detailed attention to pre-calculation and storage of

all involved quantities wherever possible.

In general, it cannot be expected that the technique of projecting the exercise domain onto just

two dimensions will result in a single simple curve delineating the exercise boundary. Examples for

this are American max-options where the higher of two asset values minus a strike level determines

the intrinsic value [BG97a]. Still, out of all the mathematical problems one may conceivably subject

to a Monte Carlo simulation evaluation, the very nature of financial derivatives makes them appear

comparatively benign. In other words, I believe that for most exercise strategy dependent derivatives

contracts invented thus far, a suitable projection of the exercise domain can be found to make the

boundary amenable to a description by only one or a few reasonably simple functions in two variables.
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Whenever this is possible, a multi-dimensional optimisation over a small set of free parameters using a

training set of paths can be carried out resulting in a highly accurate price estimate. I therefore believe

that the presented approach of using a non-recombining tree (which is very flexible with respect to

pay-off specifications but very limited with respect to deal maturity and the number of involved time

slices) to devise a bespoke Monte Carlo exercise strategy parametrisation for a specific product can be

applied to a wide class of American or Bermudan style derivatives.



Chapter 13

Non-recombining trees

13.1 Introduction

Traditionally, implementations of option pricing models tended to use some form of lattice method.

In most cases, this meant an explicit finite-differencing approach was chosen. In fact, many of the

early quantitative analysts would describe this as ‘having been brought up ontrees’. This tendency

towards the use of tree methods is also reflected in the option pricing literature. Cox, Ross and Ru-

binstein [CRR79] described the option pricing procedure on a binomial tree in 1979. And some of

the breakthrough publications in derivatives modelling were first formulated as an algorithm for a

tree node construction matching a market given set of security prices and Black implied volatilities.

These include the Ho-Lee model whose continuous counterpart is that of an Ornstein-Uhlenbeck pro-

cess [HL86, Jam96], the lognormal interest rate model by Black, Derman, and Toy [BDT90] and the de-

terministic but spot dependent instantaneous volatility model by Derman, Kani, and Zou [DKZ96]. The

great advantages of recombining tree methods are their comparative ease of implementation, equally

easy applicability to the calculation of Greeks, and fast performance.

Alas, we cannot always use recombining tree methods. This is typically so when the stochastic pro-

cess chosen to model the evolution of the underlying quantities is strongly state-dependent. The state-

dependence of the drift term of forward rates in the Brace-Gatarek-Musiela/Jamshidian framework is

one such case. This makes it a prime application of Monte Carlo methods. However, when we wish

to price options of American style, we really need to compare the expected payoff as seen from any

one node with the intrinsic value. This means, the only method that can in principle give an unbiased

result is a non-recombining tree. Whilst there are many publications on recombining tree methods and

how to construct them for optimal performance, very little is in the literature on the construction of

non-recombining trees. What’s more, the few descriptions of the construction of non-recombining tree

methods and analysis of their performance [JW00, MW99, Rad98a, Rad98b] focus on no more than

three factors. In this chapter, I present a generic method to construct a non-recombining tree for any

given number of factors and provide the algebraic equations needed to calculate the coefficients that

determine the branches.

175
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Before we start the explanation of a generic method to construct a non-recombining tree with the

minimal number of branches out of each node required, let us briefly compare non-recombining tree

methods with Monte Carlo techniques. The two approaches share several features. For both of them,

an evaluation is always done along a specific evolution path such that they could both allow for a

non-Markovian stochastic process (within the limits of the time discretisation). The two most crucial

quantities that determine the evolution over one time step are in both cases the expectation conditions

(i.e. drift terms or martingale conditions) and the covariance matrix of all of the state variables, and

it is those that tell us how we have to construct the paths. Both techniques are traditionally perceived

to be very slow, and rightly the non-recombining trees are considered to be so slow as to be not a

viable method in front office systems although, as we will see, to some extent they can be useful

for benchmarking purposes. For both methods, paying particular attention to implementation details

can make tremendous differences to the performance, i.e. calculation time required. And both ap-

proaches are designed to generate a representative sample set of all possible evolutions. It is for those

similarities that I include a chapter on non-recombining tree methods in this book. The main differ-

ences betweeen non-recombining tree methods and Monte Carlo techniques entail the following points.

Non-recombining tree methods, by their very nature, are a recursive representation of the option pri-

cing problem and thus suggest and easily support a recursive implementation. The very same feature

allows for easy integration of free boundary conditions, i.e. early exercise decisions as we have them

for Bermudan or American options. Non-recombining trees are susceptible to pathological problems

where they may fail systematically because of the very selective path construction method. And finally,

the convergence behaviour of non-recombining trees depends very strongly on the dimensionality of

the problem, i.e. the number of driving factors. Despite their differences, from a constructional point

of view, the similarities are remarkable. And in common with Monte Carlo methods, using simple

techniques, it is possible to implement them such that they perform orders of magnitudes better than is

frequently thought.

The remainder of this chapter is organised as follows. First, I briefly summarise the setting of the

BGM/J model and discuss its factorisation in section13.2, and also explain how the evolution of for-

ward rates can be modelled in a non-recombining tree method. Next, we discuss in more detail some of

the aspects of the high-dimensional geometry of the branching scheme in section13.3. Following this,

I elaborate a few points on the efficient implementation of the algorithm. The main results on the per-

formance and applicability of the method are then presented in section13.5. Next, we explain possible

improvements that can be done to match the variance as it would result from a continuous description

in section13.6. Furthermore, I discuss a different technique to account for the state-dependent drift of

the underlying forward rates in section13.7such that all martingale conditions are met exactly. Fol-

lowing that, we demonstrate how the clustering effect that can be observed for flat volatility structures

is broken up by the use of a time-varying term structure of instantaneous volatility in section13.8.

For those of us who like a visual demonstration of how things work, I give a simple example in13.9.

Finally, a summary of this chapter is given.
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13.2 Evolving the forward rates

Let us reiterate some of the basic setup of the BGM/J Libor market model which was already explained

in section12.2. The state of the yield curve is represented by a set ofn spanning forward ratesfi which

evolve lognormally according to the stochastic differential equation

dfi
fi

= µi(f , t)dt+ σi(t)dW̃i . (13.1)

As in section12.2, we construct from this starting point a (possiblym-factor truncated) covariance

matrix C(t, t+∆t) for the time stept → t+∆t and its pseudo square rootA, taking into account

our correlation function of choice as in equations (12.1) to (12.7). Clearly, equation (12.8) means that

the drifts are state-dependent and thus indirectly stochastic. For the purpose of derivatives pricing, we

need to sample the space of all possible evolutions of the yield curve into the future. If we approximate

the drift coefficientsµi as constant over a small time step∆t, we can represent the evolved forward

rates by

fi(t+ ∆t) = fi · e
µ̄i(t,t+∆t)∆t− 1

2
cii+

m∑
j=1

aijzj

(13.2)

with zj being independent normal variates. The coefficientsaij are the elements of the (possiblym-

factor truncated) pseudo square rootA of the covariance matrixC ′ which contains the integrals over

the small time step∆t:

c′ij =

t+∆t∫
t′=t

σi(t
′)σj(t

′)%ijdt
′ (13.3)

To summarise, the steps that have to be carried out for the construction of∆t-evolved forward rates as

in equation (13.2) are as follows:-

1. Populate the marginal covariance matrixC ′(t, t+ ∆t) using equation (13.3).

2. Decompose (e.g. using the Cholesky method or by spectral decomposition) such that

A′ A′
T

= C ′ . (13.4)

3. Form them-factor truncated coefficient matrixA in analogy to equation (12.7), i.e. using

aij = a′ij

√
c′ii

m∑
k=1

a′ 2ik

. (13.5)

4. Build them-factor approximation covariance matrixC:

C = AAT (13.6)

which will in general, form < n not be identical toC ′ but by construction we preserved the

diagonal elementscii = c′ii.
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Given the above definitions, we can now specifyµ̄i in equation (13.2):

µ̄i(t, t+ ∆t)∆t =


−

N−1∑
k=i+1

fk(t)τk
1+fk(t)τk

cik(t, t+ ∆t) for i < N − 1

0 for i = N − 1
i∑

k=N

fk(t)τk
1+fk(t)τk

cik(t, t+ ∆t) for i ≥ N

(13.7)

In a Monte Carlo framework, we would now construct∆t-forward yield curves by drawing many

independentm-dimensional normal variate vectorsz and applying them to equation (13.2). In order to

build a tree for the pricing of derivatives that require the comparison between expectation and intrinsic

value such as Bermudan swaptions, we now wish to use the minimal number of such vectors necessary.

In order to see how to construct variate vector sets{z} for any givenm, it is conducive to state clearly

the requirements on the elements of the matrixS ∈ Rm′×m
whose rows comprise the vectorsz to be

used for each realisation of the evolved yield curve as given by equation (13.2). Assuming that we

wish to assign equal probability to each of them′ realisations, we thus have1:

m′∑
i=1

sij = 0 (Mean) (13.8)

1

m′

m′∑
i=1

sijsik = δjk (Covariance) (13.9)

m∑
j=1

sijskj =

{
m for i = k

−1 for i 6= k
(Equal probability) (13.10)

The smallestm′ for which it is possible to constructS satisfying the above equation ism + 1. In

other words, for anm-factor tree model, we need a minimum ofm + 1 branches out of each node.

For any discrete set{z} satisfying the above conditions (13.8) to (13.10), it can be shown that the

∆t-step evolution equation (13.2) produces a set of evolved forward rates that is accurate up to order

O
(
(σ
√

∆t)3
)

(inclusive) both in the expected value and in variance.

In the case of a 1-factor model, we can simply use the set{z} = {+1,−1} and thus construct a

non-recombining binomial tree. In this case, we can change equation (13.2) to

fi(t+ ∆t) = fi · e
µ̄i(t,t+∆t)∆t− 1

2
cii+

1
12
c2ii−

1
45
c3ii+

17
2520

c4ii+
m∑

j=1
aijzj

(13.11)

which corrects the expected value up to orderO
(
(σ
√

∆t)9
)

(inclusive) and reduce the coefficient

in front of the orderO
(
(σ
√

∆t)4
)

for the variance from−5/6 to −2/3. For a trinomial setup with

{z} = {+
√

3/2, 0,−
√

3/2}, the terms that correct the expectation up toO
(
(σ
√

∆t)9
)

(inclusive) are

given by

fi(t+ ∆t) = fi · e
µ̄i(t,t+∆t)∆t− 1

2
cii+

1
16
c2ii−

13
960

c3ii+
123

35840
c4ii+

m∑
j=1

aijzj

. (13.12)

1This set of equations is not strictly independent. Stating all of them, however, aids the clarification of the simplex

concept.
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Note that the coefficients of the corrective terms are smaller in the trinomial case which is as one would

expect it from the fact that no corrections are required in the limit of infinitely many branches out of

each node (provided that, at least asymptotically, we match more moments as we add more branches).

In practice, though, there is very little difference in the convergence behaviour when replacing equation

(13.2) with equation (13.11) for a binomial scheme or (13.12) in the trinomial case. This indicates that

other factors such as the coarse sampling of the payoff horizon dominate the convergence behaviour.

The elements of the matrixS defined by equations (13.8) to (13.10) describe the Cartesian coordin-

ates of a perfect simplex inm dimensions. Equation (13.10) can best be understood by the geometrical

interpretation that in order to define equally probable tree branches, all the angles in the simplex must

be equal (which makes it a perfect simplex). Note that we have made no statements about the alignment

of this simplex in our coordinate system yet.

13.3 Optimal simplex alignment

Given a Cartesian coordinate system, we can write the coordinates of the corner points defining a

perfect simplex inm dimensions as:-

s
(m)
ij =


−
√

m+1
(j+1)j

for j ≥ i√
(m+1)j
j+1

for j = i− 1

0 for j < i− 1

(13.13)

Examples:

S(1) =

(
−1

1

)
(13.14)

S(2) =


−
√

3
2
−
√

1
2√

3
2

−
√

1
2

0
√

2

 (13.15)

S(3) =


−
√

2 −
√

2
3
−
√

1
3√

2 −
√

2
3
−
√

1
3

0
√

8
3

−
√

1
3

0 0
√

3

 (13.16)
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S(4) =



−
√

5
2
−
√

5
6
−
√

5
12

−
√

1
4√

5
2

−
√

5
6
−
√

5
12

−
√

1
4

0
√

10
3

−
√

5
12

−
√

1
4

0 0
√

15
4

−
√

1
4

0 0 0
√

4


(13.17)

Using the definition ofS, we can now specify a branch coefficient matrixB as

B = A · ST . (13.18)

The tree construction algorithm is thus as follows. At each node with its associated yield curve given

by the set ofn forward rates{fi(t)}, construct a set ofn ·(m+1) forward rates to represent all possible

evolutions over a time interval∆t according to

fik(t+ ∆t) = fi(t) · eµ̄i(t)∆t− 1
2
cii(t)+bik(t) i = 1 . . . n, k = 1 . . .m+ 1 . (13.19)

There may be situations when we would like to have more thanm + 1 branches. An example is

the pricing of a path-dependent derivative on a single FRA. In this case, we only need one factor, i.e.

m = 1, and thus only two branches out of each node, but we might want to construct a non-recombining

trinomial tree because of the inherently higher convergence rate and stability in comparison to the

binomial tree. Examples are not only standard payoff derivatives like a caplet but also barrier options,

trigger derivatives, etc. This can be achieved very easily in the above framework by using only the

firstm columns of the matrix describing a perfect simplex in(NBranches− 1) dimensions instead ofS in

equation (13.18), i.e.

S(m,NBranches) = S(NBranches−1) ·

(
1m

0(NBranches−1−m)×m

)
(13.20)

with

1m ∈ Rm×m

being them-dimensional identity matrix, and

0(NBranches−1−m)×m ∈ R(NBranches−1−m)×m

being a matrix whose elements are all zero.

In general, there are no limitations to how many branches one may use out of each node. In

fact, many recombining tree-like methods or PDE solvers use effectively2 more than three nodes for

improved convergence. Examples include fast convolution methods such as the ones using Four-

ier [CM99] or Laplace transformations [FMW98] but also the willow tree method [Cur96]. How-

ever, using the simplex coordinates as given by equation (13.13) will quickly result in redundant, i.e.

2In a general sense, even implicit finite differencing methods can be seen as a technique to use many nodes at a future

time slice to infer the values at an earlier time slice.
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identical branch coefficients. For instance, if we were to choose a 4-branch construction for a single

factor model, we would probably want the four branches to end in four different realisations of the

evolved forward rate. As we can see in equation (13.16), however, two of the branch coefficients in

the first column are identical, namely 0. In fact, if we look at the branch coefficients of the first modes

in the higher dimensional simplices, i.e. the entries in the first columns of theS(·) matrices, we realise

that there are never more than three different values. In geometrical terms, this is a consequence of our

particular choice of alignment of the simplex as specified by equation (13.13). In order to obtain the

maximum benefit out of the additional effort in using more branches, we may want them to spread as

much and as evenly as possible. In each column, we may wish to have the entries to be symmetrically

distributed around zero, to whatever extent this can be achieved. It turns out, for anym-dimensional

perfect simplex, it is possible to find a rotationR(m) of the simplexS
R(m)

−−→ S ′ such that

s′
(m)
i j = −s′(m)

m+2−i j for m even and j = 1 . . . m
2

s′
(m)
i j = −s′(m)

m+2−i j for m odd and j = 1 . . . m+1
2

.

(13.21)

An appropriate rotation for them-dimensional simplex can be found by specifying a rotation matrix

R(m) =

l=m
k=m−1∏
k=1
l=k+1

R
(m)
kl (θkl) (13.22)

with R
(m)
kl (θkl) ∈ Rm×m being the rotation matrix in the(k, l) plane by an angleθkl, i.e.R(m)

kl (θkl)

is equal to them-dimensional identity matrix apart from the elementsr(m)
kk = r

(m)
ll = cos θkl and

r
(m)
kl = −r(m)

lk = sin θkl. The rotated simplex is then given by

S ′ = S ·R(m) . (13.23)

Allowing all of the m(m−1)
2

angles to vary, a simple iterative fitting procedure then very quickly finds

a suitable rotation to minimise theχ2-error in the conditions given by equation (13.21). To give a

specific example, one alignment of the simplex form = 4 that satisfies equation (13.21) is given by:

S(4) =


−1.1588 −0.91287 −0.6455 −0.5

1.1588 −0.91287 −0.6455 −0.5

0 1.8257 −0.6455 −0.5

0 0 1.9365 −0.5

0 0 0 2


R(m)

−−→ S ′
(4)

=


−1.1306 −1.1053 0 1.22474

1.1053 −1.1306 0.91287 −0.8165

0 0 −1.8257 −0.8165

−1.1053 1.1306 0.91287 −0.8165

1.1306 1.1053 0 1.22474

 .

(13.24)

Once we have identified a suitable alignment of the simplex, there is yet another easy method to

improve the convergence behaviour of the non-recombining multi-nomial tree method. This technique

is calledAlternating Simplex Directionand entails simply switching the signs of all of the simplex

coordinates in every step. How this improves convergence by increasing the overall symmetry of the
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Figure 13.1: The placement of(z1, z2) nodes with (bottom) and without (top) the use of theAlternating

Simplex Directionmethod. In this example, 3 branches emanate out of each node in each step to

account for two stochastic factors. In the top row, the three new nodes that are centered around each of

the previous nodes always form an upwards pointing triangle. In the bottom row, the triangle formed

by the three new nodes (shown as crosses) in step 1 (leftmost diagram) points upwards. In the second

step, the three new nodes around each cross form a downwards pointing triangle. Next, the triangles

formed by the new nodes (hollow squares) around the previous nodes all point upwards. Finally, in

the rightmost figure of the bottom row, each triangle formed by filled squares around a hollow square

can be seen to point downwards, again. Note the effectively increased symmetry when the simplex

direction is alternated in each step.

procedure can be seen if we visualise the points generated by subsequent branching in the(z1, z2)-plane

for a 2-factor, 3-branch model. This is shown in figure13.1. Since we are merely adding up the co-

ordinates of subsequent steps, the branching evolution appears to recombine. The moment we actually

use the state dependent drift terms in a forward rate based yield curve model as in equation (13.19),

this will no longer be the case. However, as we will find justified later, it is not unreasonable to expect

that the added near-symmetry, in general, improves convergence.

13.4 Implementation

It is worth noting that neither the variance coefficientscii nor the branch evolution coefficientsbik in

equation (13.19) depend on the current yield curve given by thefi(t). Therefore, they can be precalcu-

lated for all of the time steps. The only thing that needs to be calculated immediately prior to looping

through all of the branches is the current set of drift terms{µ̄i}. These, in turn, are the same for all of

the branches out of each node. Taking all of the above considerations into account, we see that the non-
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recombining tree calculation can be implemented extremely efficiently using a recursive method since

none of the evolved yield curves need to be reused after all of the branches out of any one node have

been evaluated. The only storage we need to allocate is a full set of{µ̄i} for each time step, a full yield

curve specifying FRA set{fi} for each time step, and of course, thecii andbik for each time step. In

the code snippet shown in figure13.1, the array elementLogShiftOfBranch[h][k][i] contains

−1
2
cii + bik for the time step fromth to th+1, the array elementC[h][i][k] holds the associated co-

variance matrix entrycik for the time step, and all the other variable names should be self-explanatory.

After the initial setting up, a call to the functionBushyNFactorFraBGMTree::Recurse(0)

double BushyNFactorFraBGMTree::Recurse(unsigned long h){

if (h==NSteps)

return Intrinsic(h); // Termination of the recursion.

unsigned long i,k;

for (i=0;i<NRates;i++){ // Calculate the drift for all rates and store them.

mu_dT[i] = 0.;

for (k=NumeraireIndex;k<=i;k++)

mu_dT[i] += C[h][i][k] * EvolvedFra[h][k] * Tau[k] / ( 1. + EvolvedFra[h][k] * Tau[k] );

for (k=i+1;k<NumeraireIndex;k++)

mu_dT[i] -= C[h][i][k] * EvolvedFra[h][k] * Tau[k] / ( 1. + EvolvedFra[h][k] * Tau[k] );

}

double tmp=0;

for (k=0;k<NBranches;k++){ // Loop over all branches.

for (i=0;i<NRates;i++){

EvolvedFra[h+1][i] = EvolvedFra[h][i] * exp( mu_dT[i] + LogShiftOfBranch[h][k][i] );

}

tmp += Recurse(h+1); // Sum up the results from all of the branches.

}

// Average, unless the intrinsic value is higher.

return CheckForEarlyExercise(h,tmp/NBranches);

}

Code example 13.1: The recursive implementation of the non-recombining tree.

returns with the expected value as given by the payoff specified in the functionBushyNFactor-

FraBGMTree::Intrinsic() , taking into account possible early exercises. The return value of

the BushyNFactorFraBGMTree::Recurse(0) call still has to be discounted by multiplying

with the present value of the zero coupon bond chosen as numéraire.

13.5 Convergence performance

In order to give the reader a feeling for the effectiveness of the methods suggested in the previous sec-

tions, I carried out a set of numerical calculations for a 4-year payer’s option on a two year semiannual

European swaption. I used the yield curve and caplet implied volatilities for GBP interested rates as

tabulated in table13.1, and assumed an instantaneous volatility of the individual forward rates as in3

σi(t) = [a+ b(ti − t)] e−c(ti−t) + d (13.25)

3c.f. [Reb99], equation (11.4).
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i ti discount factor fi σ̂i =
√∫ ti

t′=0
σi(t′)2dt′/ti

0 4 0.762757096 6.652% 21.43%

1 4.5 0.739640975 6.251% 20.67%

2 5 0.717225412 6.044% 19.98%

3 5.5 0.696187117 6.044% 19.35%

4 6 0.675765937

Table 13.1: The yield curve for GBP interest rates and the caplet implied volatilities used in the ex-

amples.

with a = −2%, b = 0.5, c = 1, andd = 10%, which is consistent with the given caplet implied

volatilities. The correlation between forward ratesfi andfj as given by%ij in equation (12.2) and (13.3)

was assumed to be

%ij = e−β|ti−tj | (13.26)

with β = 0.1. The strike for the swaption was set at 7.50%. Since the forward swap rate results

to 6.15% for this particular yield curve, the option under consideration is out-of-the money. I also

calculated the results for the equivalent Bermudan contract, i.e. a 6-non-call-4 semiannual Bermudan

swaption. In figure13.2, I show how the non-recombining tree model converges as a function of

the number of steps to maturity for the pricing of European swaptions, and, more interestingly, in

figure 13.3 the convergence behaviour for Bermudan swaptions is shown. Note how the Alternating

Simplex Direction method improves convergence most for two or three factors, and how the optimal

alignment technique ensures convergence consistently for as little as five steps for three or more factors,

especially when used in conjunction with the ASD method.

13.6 Variance matching

Given an enumerationt1 . . . tNsteps of the discrete points in time over which the tree algorithm is con-

structed, and definingγhi to represent all drift and Itô terms over the time stepth → th+1, i.e.

γhi := eµ̄i(th)(th+1−th)− 1
2
cii(th), we can rewrite equation (13.19) as

f(h+1)ik = fhi γhi e
bhik . (13.27)

Let us now recall that the coefficientsbhik were constructed such that their discrete average over all

emerging branches is zero and their discrete covariances equal the elements of the given covariance

matrix of the logarithms of the forward rates over the specified time step. Alas, matching the dis-

crete covariances of logarithms means that the covariances of the forward rates themselves are not

exactly matched due to the convexity of the exponential function as is known from Jensen’s inequality.

However, the variance of any random variatex with a continuous lognormal distribution such as

x = ξeωz with z ∼ N(0, 1) (13.28)
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Figure 13.2: The convergence behaviour of the non-recombining tree for European swaptions.
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Figure 13.3: The convergence behaviour of the non-recombining tree for Bermudan swaptions.
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can be calculated as

V[x] = ξ2eω
2

(eω
2 − 1) . (13.29)

In other words, if we wish to construct the tree such that the variances of the forward rates themselves

have the correct value as it would result from the continuous description, we can introduce a volatility

scale parameterphi to be used in the branch construction as in

f(h+1)ik = fhi γhi e
phibhik (13.30)

such that

1

NBranches

NBranches∑
k=1

e2phibhik − 1

NBranches

(
NBranches∑
k=1

ephibhik

)2
− echii (echii − 1) = 0 . (13.31)

In order to meet this nonlinear condition forphi, defineφhi(phi) as the left hand side of equation

(13.31). Given the initial guess ofp(0)
hi = 1 and the partial derivative

∂φhi(phi)

∂phi
=

1

NBranches

[
NBranches∑
k=1

2bhike
2phibhik − 2

NBranches

(
NBranches∑
k=1

ephibhik

)(
NBranches∑
k=1

bhike
phibhik

)]
,

(13.32)

a Newton iteration converges to the solutions ofφhi(phi) = 0 very fast indeed. The nonlinear root

solving has to be done for each forward rate and for each time step separately. This can be done during

the startup period of the tree algorithm, though, and in my tests took no measurable computing time

whatsoever4.

The above procedure does indeed result in an exact match of the variances as given by the continu-

ous description. I would like to remark at this point that this may not be generally desirable, though.

To see this, let us consider a call option of a quantity with a standard normal distribution, and let us

ignore discounting effects. For a strike of zero, the value of the option is∫ ∞

0

s
e−

1
2
s2

√
2π

ds =
1√
2π

. (13.33)

A single step binomial tree discretisation of this distribution that matches both the expectation and the

variance of the continuous counterpart exactly is the set{+1,−1} of equiprobable values fors. Clearly,

the latter results in an option of 0.5 while the continous description gives us a value around 0.3989.

We therefore expect that products with some kind of convexity in the payoff profile will be slighty

overvalued by the discretised tree when continuous variances are matched. Therefore, comparing the

values as they result from the variance matched tree construction (13.30) and the original scheme

(13.19) could provide some comfort about the possible mispricing due to the approximate volatility

representation in the discretised scheme. In general, we would only expect the variance matched

construction to provide faster convergence for directly volatility related products such as variance or

volatility swaps.

4The granularity of the computation time measuring function was approximately1/100 seconds.
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13.7 Exact martingale conditioning

In the recursion procedure of calculating all yield curve branches emanating out of one yield curve

node, we always need to calculate the discrete time step drift approximation for each forward rate. As

we know from section13.2, the stepwise constant drift approximation (13.7) guarantees the martingale

conditions that the expected value of any asset divided by the chosen numéraire asset equals its initial

value only in the limit of small time steps. Choosing the numéraire to be the longest involved zero

coupon bond, i.e.N := n such that the payment time of the chosen zero coupon bond numéraire asset

is the payment time of the last forward rate that is to be modelled, it is possible to meet the martingale

conditions in each step exactly without any computational overhead. This can be seen as follows. For

N = n, the martingale conditions are that for any time stepth → th+1 we have

E

[
f(h+1)i

N−1∏
j=i+1

(
1 + τjf(h+1)j

)]
= fhi

N−1∏
j=i+1

(1 + τjfhj) . (13.34)

Following equations (13.19) and (13.30), I denote the realisation of forward ratefi on thek-th branch

at timeth+1, i.e. thek-th possible evolution offi in the time stepth → th+1 asfhik and factorise it

according to

f(h+1)ik = γhie
phibhikfhi . (13.35)

Hereby,fhi is the realisation offi at timeth, i.e. at the current node. By virtue of equation (13.34),

we can calculate the expectation correcting factorsγhi recursively starting with the last forward rate at

i = n− 1:

γhi =

NBranches

N−1∏
j=i+1

(1 + τjfhj)

NBranches∑
k=1

ephibhik

N−1∏
j=i+1

(1 + τjfhjγhj ephjbhjk)

(13.36)

Note that whilst we haveγhi on the left hand side, the right hand side only involvesγhj for j > i.

Clearly, it makes sense to precalculate the branching coefficientsηhjk := ephjbhjk and store them5.

The above described algorithm does now exactly meet all martingale conditions. A side effect of this

procedure is that it obviates the evaluation of anyexp() function calls in the recursion procedure. For

simple products, it can be easily about half of the actual computing time that is spent in the evaluation

of this particular function6. As the above expectation correction (13.36) calculation does not require

significantly many more floating point operations than the drift approximation (13.7), it is thus not

surprising that the procedure presented in this section not only makes all calculations, even those with

very few steps, meet the martingale conditionsexactlybut also provides a speedup by factors ranging

from 1.7 to 2.8 for the tests that I conducted, depending on product type, maturities, length of the

modelled yield curve, etc.
5For calculations without variance matching, the scaling coefficientsphj are, of course, all identically 1.
6Even though for newer processor models the cpu time for a single evaluation ofexp() takes only as long as a moderate

number (∼ 10−−20) of floating point multiplications, substantial speedups can still be achieved if a single multiplication

is carried out instead of an evaluation ofexp() .
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13.8 Clustering

For most major interest rate markets, as a consequence of the prevailing rates and volatilities, the drift

terms in equation (12.8) are comparatively small. This means that any one interest rate undergoing

first an upwards and then a downwards move in two subsequent steps through the tree, appears to

almost recombine at its initial level. Choosing any two forward rates on the yield curve for a two-

dimensional projection on a given time slice, this produces the effect ofclustering. This phenomenon

is widely known and various methods to avoid it have been discussed in publications. McCarthy and

Webber [MW99] and Radhakrishnan [Rad98a] discuss the question of the clustering of nodes and

suggest methods to overcome it such as varying the step size, for instance in a linearly increasing or

decreasing fashion, or changing both the length of some of the branches and their associated probab-

ilities. For realistic applications, however, one tends to use a noticeably time-varying term structure

of volatility which effectively changes the width of the branches over different time steps sufficiently

to remove most of the harmful effect of clustering, and therefore I don’t consider this issue of major

importance. Still, since an actual demonstration is often more convincing than an off-hand reasoning, I

display in this section how much the clustering effect is automatically suppressed simply by the choice

of an appropriate term structure of volatility.

An example of the clustering effect is given in figure13.4. Each point in the figure represents an
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Figure 13.4: The clustering effect for flat volatilities.

evolved yield curve 2 years into the future. The 12-months Libor rate resetting at year 2 is along the

abscissa whilst the 12-months Libor rate resetting at year 3 is given by the ordinate. In total, 4 annual
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forward rates were included in the modelling of the yield curve for a 6-non-call-2 annual Bermudan

swaption. Using 4 factors and 6 steps untilt = 2, there were 5 branches out of each node in the tree

and a total of56 = 15625 evolved yield curves in that time slice. The initial yield curve was set at

fi = 10% for all i, and the instantaneous volatility was assumed to be30% flat for all forward rates. As

can be seen, there are only a comparatively small number of significantly different(f0, f1) pairs that are

realised in the non-recombining tree. For the sake of brevity, I don’t show any of the other projections

but the reader may rest assured that the effect is just as pronounced for the remaining forward rates on

the modelled yield curve.

However, if we use a more market-realistic shape for the term structure of volatility such as

σi(t) = ki
(
[a+ b(ti − t)] e−c(ti−t) + d

)
(13.37)

with a = −10%, b = 1, c = 1.5, d = 10%, and

i ki

0 1.179013859

1 1.319725423

2 1.458673516

3 1.57970272

(theki ensure that all caplets still have the same implied volatility of30% as before), we obtain a very

different diagram for thef0-f1 projection att = 2 as can be seen in figure13.5. Therefore, for realistic
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Figure 13.5: The clustering effect disappears for non-flat volatilities.

applications, I don’t envisage the clustering phenomenon to be an issue of foremost importance.
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13.9 A simple example

Starting from a flat yield curve of annual forward rates that are all equal to 6.18365% (which cor-

responds to a constant continuously compounded interest rate of 6%), and given that we assume the

covariance matrix of the forward rates to be determined by equations (13.3), (13.25), and (13.26), we

will now evolve the yield curve according toa = −2%, b = 0.125, c = 1, d = 20%, andβ = 0.1.

In figure13.6, the evolution of the interest rates between year 2 from now and year 10 from now are

shown as they evolve by two one-year steps into the future, whereby a 5-branch non-recombining evol-

ution was carried out in each step using the simplex described by equation (13.24). In figure 13.7,
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Figure 13.6: The evolution of a flat yield curve over two one-year steps in a 4-factor model. In this

case, out of each forward yield curve, there are 5 evolved yield curves indicated by the connecting

branches. The branches are labelled by the order of the associated (forward) swap rate over the full

yield curve to which the evolution out of the respective yield curve leads.

I then show the associated swap rates resulting from each of the yield curves consisting of 8 annual

forward rates.

13.10 Summary

I have demonstrated how comparatively simple geometrical considerations can aid the construction of

the branches of a non-recombining multi-factor tree model. The results show that particularly when

several factors are desirable, the use of theAlternating Simplex Directionmethod in conjunction with

optimal simplex alignment provides substantial benefits. In this case, the model easily converges with

5 fewer steps than needed in a plain branch construction approach. Since the computing time grows
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Figure 13.7: The swap rates associated with the yield curves in figure13.6.

exponentially at least∝ (Nfactors+1)Nsteps, this means a speed up of, for instance, a factor of 3125 when

four factors are required, 5 branches are used, and 5 fewer steps are needed due to the use of optimal

alignment + ASD.

In addition to the detailed explanations of a constructive algorithm for multi-factor non-recombin-

ing trees, we also presented how the effective variance implied by the tree model can be adjusted to

meet that of the analytical continuous description. Furthermore, I presented a method that guarantees

that the martingale conditions are met exactly by construction. A side effect, or an added bonus, as it

were, of the latter technique is an additional computation time saving of around 50%.

It should be mentioned that the methods described in this chapter do not resolve the problem of

geometric explosion of the computational effort required for the pricing of contracts involving many

exercise decisions and cashflows. However, using the techniques outlined above, one can calculate

the values of moderately short exercise strategy dependent contracts such as 6-non-call-2 semiannual

Bermudan swaptions using many factors and achieve a comfortable level of accuracy. In fact, using

multi-threading programming techniques to which the non-recombining tree algorithm is particularly

amenable, I have been able to carry out overnight runs of up to ten steps for ten factors on average com-

puting hardware (dual PII @ 300MHz). This means one can now produce benchmark results against

which other numerical approximations such as exercise-strategy-parametrised Monte Carlo methods

(see, e.g., chapter12) can be compared. It is mainly for this purpose that the methods presented here

have been developed, and for this purpose only I envisage them to be useful.



Chapter 14

Miscellanea

Finally, there are a few additional thoughts that don’t fit into any of the other chapters, and thus I

present them here.

14.1 Interpolation of the term structure of implied volatility

When we value an exotic derivative contract, we will hardly ever have market information about im-

plied volatility for all of the relevant time horizons. As a consequence, we have to use an interpolation

rule to constructs paths for a Monte Carlo simulation. When practitioners require a Black-Scholes

implied volatility at a point in time that is in between two maturities for which there are traded op-

tions, they frequently use linear interpolation in implied volatility over maturity. As long as all of the

ordinate entries in the interpolation table are positive, this will lead to positive implied volatilities at

the intermediate time horizons and thus plain vanilla option prices can be calculated. However, this

alone is not sufficient to ensure that Monte Carlo paths can be constructed. In figure14.1, I show two

given term structures of volatility, together with linear interpolation in between the given points, and

the monthly forward variance implied by the respective term structures and interpolation rule. Just to

remind ourselves: the forward variance given by the implied volatilitiesσ̂1 associated with maturity

T1, andσ̂2 associated with maturityT2, is

v(T1, T2) = σ̂2
2T2 − σ̂2

1T1 . (14.1)

The implied volatilities used to construct the linear interpolations are tabulated in table14.1. As you

can readily verify, the forward variance inbetween each of the original data points is positive and thus

there should, in principle, be no problem with the construction of Monte Carlo paths. However, if

you look closely at the monthly forward variance of curve #2 over the last three months of year 3 in

figure14.1, you may notice that the forward variance dips below zero and thus we’d need imaginary

forward volatility! Of course, you may attribute this problem to the particularly steep (albeit not

unrealistic) term structure of implied volatility. In practice, though, we sometimes need to deal with

such steep term structures of implied volatility, and therefore we have to be able to handle them.

193
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Figure 14.1: Two term structures of implied volatility and their monthly forward variance determined

by the use of linear interpolation in implied volatility.

T curve #1 curve #2

0.25 35% 45%

0.5 32% 38%

1 29% 31%

1.5 27% 28%

2 25% 25%

3 22% 21%

4 20% 20%

Table 14.1: The implied volatilities used for the interpolation in figure14.1.

The cause of the problem lies with the choice of the interpolation method. Whilst being concep-

tually simple and easy to use, linear interpolation in implied volatility can, sadly, give rise to periods

of negative forward variance even though the original data points are perfectly self-consistent. The

problem will not occur if instead of interpolating directly in implied volatility, we tabulate thecumu-

lative variancev(0, T ) as a function ofT and choose a monotonicity preserving interpolation method.

The simplest such interpolation method is, of course, linear interpolation, but other methods such as

monotonicity preserving cubic interpolation [Kva00] can also be implemented easily. Figures14.2

and14.3are examples for this. As you can see, both of these interpolation methods avoid the problem

of negative forward variance. Linear interpolation in cumulative variance, as one would expect, results

in piecewise constant interpolation in instantaneous forward variance, and thus in piecewise constant

interpolation in instantaneous volatility. It may be arguable if this is the ideal choice of interpolation

since the sudden very abrupt changes in instantaneous volatility, whilst being as risk-neutral as any
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Figure 14.2: The same two term structures of implied volatility as in figure14.1 and their monthly

forward variance as resulting from linear interpolation in variance.
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Figure 14.3: The same two term structures of implied volatility as in figure14.1 and their monthly

forward variance as resulting from monotone cubic interpolation in variance.

other choice, may appear rather arbitrary indeed. Monotone cubic interpolation in cumulative variance,

in contrast, leads to a continuous instantaneous volatility curve, albeit at the price of some (possibly

equally questionable) undulations. However, on balance, as can be seen in figure14.4, monotone cubic

interpolation in variance might deliver the best compromise between smooth forward volatility and the
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Figure 14.4: Forward volatilities for curve #2 for different interpolation types. Note that the forward

volatility between 2.75 and 3 is not defined for linear interpolation in implied volatility.

requirement of non-negative forward variance.

14.2 Watch your cpu usage

A Monte Carlo method comes to life the moment we run it on a computer. At that point, once we have

devised our techniques of the underlying maths and numerical analysis to the best of our knowledge, we

feel that our job is done and now the machine has to do all the work. However, it can be useful to keep

an eye on the box, to see how it is doing. In other words, it may be a good idea to have some kind of

information about the resources that were required by any one Monte Carlo simulation. Whilst keeping

an eye on the memory usage in order to avoid bottlenecks caused by unnecessary swapping of memory

pages at run time is only due diligence, more importantly, make sure that along with the result(s) of

everyMonte Carlo simulation you run you also get an estimate of the cpu time that was required for

the calculation. Not only will this be a very good early warning system to indicate something went

wrong after you made some changes you thought should not affect the performance, it can sometimes

also show that there is a fundamental flaw with the executable code,which may not even be your fault.

At some point in the past, for instance, it was necessary to explicitly provide a particular compile time

flag to tell the Sun compiler to change the way it handled the numerical evaluation of expressions

like e−1000. Clearly, for the purpose of our financial Monte Carlo simulation, this number can just be

rounded down to zero. By default, however, the Sun compiler produced code such that the floating

point unit would at this point cause a hardware interrupt which in turn invoked an operating system

handling mechanism. As a consequence, for parameter settings such that certain conditions would have
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an extremely low probability, the code would appear to run several times slower, even though it was

carrying out the same number of arithmetical operations. Once we had identified the problem, it was

easy to fix: the Sun compiler manual gave us information on how to avoid this problem. This kind of

situation can give rise to tremendeous amounts of frustration if you jumped through several hoops to

make your Monte Carlo method converge several times faster, only to find out that an equal amount of

speedup can result from a more fortuitous choice of compile time flags.

The above example is not specific to Sun compilers. Similar situations can arise on almost all

hardware with various different compilers. With newer processor models and newer, adapted, compiler

versions, it is well worth experimenting a little with the compile time flags to find out what makes your

code run fastest. Also, if you manage to run some kind of profiling analysis on your Monte Carlo

engine and identify where most of the time is spent, remember the good old Cregister keyword.

Identify the iterator or addition variables that are being used most inside the innermost loop and stick

register in front of them, and compare the run time. It is not unheard of that in lucky circumstances

this may lead up to 20% performance improvement, or at least a few percent, and all just for as much

work as experimenting with theregister keyword for an hour. At this level of fine-tuning, there is

no reason why the compiler’s optimisation stage should be able to guess correctly which variables to

provide with the most optimisation boost, simply because the compiler cannot know how many times

you will be going around that innermost loop.

14.3 Numerical overflow and underflow

For most financial modelling problems, there are combinations of parameters that can lead to numerical

over- or underflow. Your best case scenario (which is bad enough) is that at this point the final result of

the whole calculation is completely invalidated and you just getNaN, i.e. the IEEE floating point value

indicating ‘not a number’. Worse, though, is the situation when instead the computation does return

with an apparently meaningful answer, only that it is very wrong, and usually very wrong indeed. It

is because of these nasty little accidents that I recommend to always ensure that over- and underflow

is handled correctly in your numerical routines, and the mathematical functions handle extreme cases

graciously. An example of this is our insisting in chapters7 and9 that pseudo- and low-discrepancy

number generators based on the unit interval from 0 to 1 should always ensure that they do not actually

return the number0 or 1, just to make sure that any routine using those numbers such as the inverse

cumulative normal distribution never incur those extreme events which would have to be mapped to

+∞ or−∞.

This kind of numerical over- and underflow can happen in many situations, though. Most imple-

mentations for the second modified Bessel functionIν(x), for instance, don’t handle the case of large

ν very well. They either end up iterating far too long, returnNaNor even a seriously wrong number.

This situation can be avoided by choosing a suitable threshold when to switch over to one of the highly

accurate asymptotic expansions [AS84].
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14.4 A single number or a convergence diagram?

For many applications where the practitioner has to resort to a Monte Carlo technique, one ideally

wishes to obtain a single number asthe answer. And there are many situations, where due to the

embedding of the calculation engine one can only afford to return a single number from a calculat-

ing subroutine due to application programming interface restrictions, automation of daily reports, etc.

However, in most applications, and here I speak from experience, it is possible to have a slight paradigm

shift with respect to the concept of ‘the numerical solution to a mathematical problem’. Reality is that

every single calculation comes with an inevitable inaccuracy, and in most cases, we have at best some

idea about the order of magnitude of the error. This is particularly true for Monte Carlo methods,

ironically especially for those that utilise high performance variance reduction techniques such as low-

discrepancy numbers. In my professional life it has therefore proved to be invaluable tonever just

return a single number from a Monte Carlo calculation, even if accompanied with an estimate of the

standard error. When we use Excel as our user interface, it is very little additional effort to return an

entire convergence diagram in an array back into the spreadsheet, rather than just a single number. The

human eye, or in other words the experience and intuition of the practitioner, can judge surprisingly

well from the convergence diagram whether a Monte Carlo simulation has converged, especially for

methods that appear to converge mainly from one side as low-discrepancy numbers very often do. It

is, alas, wishful thinking to hope for a certain number of samples to always be sufficient for a specific

type of problem given certain convergence enhancement techniques, and, unfortunately, many practi-

tioners still think this way. Very often this is realised and the Monte Carlo number is accompanied by

a standard error estimate. That’s fair enough for methods whose convergence enhancement is reflected

in the standard error measure. The most powerful ones that are independent on problem specific en-

hancements, though, are low-discrepancy numbers, and for those, the standard error is typically hugely

overestimating the residual error in the calculation. Since no better reliable error estimates are available

for those methods, and also because the standard error only give a probability measure of the error, it

has always proved to be invaluable to see the convergence behaviour.

Implementation of a convergence diagram is straightforward for most Monte Carlo techniques.

Instead of iterating over all of the samples to be drawn and average over, and then eventually only

returning a single quotient, we calculate a running estimate at certain sampling intervals, and return an

array of the running estimates next to the number of samples to the calling application. In Excel or other

spreadsheet programs such as Applix, the user then has the choice of either displaying and graphing

the convergence diagram, or to just use a single element of the return array. For standalonemain()

programs, the situation is even better. One can easily design the program such that it prints running

estimates at certain intervals and direct this output to a file. Using standard Unix and GNU utilities1

and thegnuplot plotting program, one can even monitor live on the screen how the simulation

1The GNU family of utilities is available for many operating systems. All major Linux distributions come with it, they

are available for all Unix-like systems, and for NT there is the CygWin [Cyg] set of utilities which is readily installed on

an inter-networked computer, although the Excel interface is certainly preferable on the Windows platform.
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progresses by the aid of a little shell program such as thePlot script in code example14.1. To

#!/bin/bash

x=1

y=2

case "$1" in

-*) a=${1#-}; x=${a%%:*}; a=${a#*:}; y=${a%%:*}; shift;

esac

{

echo "set parametric ; set xlabel ’$x’ ; set ylabel ’$y’"

echo -en "plot "

{

for i; do

echo -n "’$i’ u $x:$y,"

done

echo

} | sed ’s/,$//’

echo

while : ; do

echo ’replot’

sleep 1

done

} | gnuplot -geometry 900x600

Code example 14.1: ThePlot script for the live monitoring of a file which is the output destination
of a running Monte Carlo calculation.

use it is quite simple: once you have started your calculation as inmain --myargumentlist >

outputfile & , you simply monitor it withPlot outputfile . If the data you wish to have

graphed is not in column 1 and 2, but, say, 5 and 3, you start it up likePlot -5:3 outputfile .

It is, of course, possible to extend this for the display of surfaces from a live updated file and you can

find a correspondingSplot script on the accompanying CD.

14.5 Embedded path creation

Assuming you have a number generator class which at the time of instantiation of an object of this class

accepts a covariance matrix such that the vector variates subsequently produced by the new object

satisfy the given covariances, you can have the construction of paths done for you with great ease.

The path construction is then done by whatever covariance matrix splitting method is used inside

your vector generator class. Typically, this will be the spectral pseudo square root method outlined in

section6.2, and consequently, the path construction will implicitly be carried out using the spectral

method which is optimal for low-discrepancy numbers as was explained in section10.8.2.

14.6 How slow isexp() ?

The most frequently used non-trivial mathematical operation in most financial Monte Carlo simula-

tions is almost certainly the evaluation of the exponential function. Of course, it is always advisable to
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precalculate as many formulæ or parts of them as we can in order to avoid their re-evaluation inside the

heavily iterated inner loops of our simulation code. However, there are almost always some evaluations

of theexp() function required inside the fast loops where performance matters most. The first timing

experiments that I ever carried out on Pentium processors with very tightly wound Monte Carlo loops

did indeed reveal that about 90% of the total run time of any Monte Carlo simulation for derivatives

pricing was spent in the evaluaion ofexp() . Gladly, though, the calculation of the exponential func-

tion can nowadays be carried out not only faster by virtue of the increase in raw cpu clock speed but

also due to the way in which it can be computed. When the most sophisticated commodity processor2

available was the Pentium chip, it still seemed well worth while to implement a purpose-built replace-

ment for the system given call toexp() . The replacment could be made much faster by the use of

large lookup tables and linear interpolation, whilst sacrificing no noticeable accuracy. However, as of

the Pentium Pro processor, the optimised version ofexp() makes use of the set of raw floating point

unit (formerly known as the maths coprocessor) instructions given in table14.2. It makes use of the

fldl2e load the base-2 logarithm of e into the main calculation register

fmul qword ptr[x] multiply the calculation register with the variablex

f2xm1 calculate2(r)−1 wherer is the current content of the calculation register and

store the result in the calculation register.r must be in the range−1..1

frndin round a double to an int. Needed becausef2xm1 requires an argument in

the range−1..1

fld1 push the value 1.0 onto the calculation register stack

faddp add the value previously pushed onto the stack to the value beneath on the

stack

fscale multiply the result by a power of two which was scaled out earlier because

f2xm1 requires an argument in the range−1..1

Table 14.2: The instructions used on a Pentium Pro and higher for the evaluation ofexp() .

following basic equality:

ex =
[
2(x·log2e) − 1

]
+ 1 (14.2)

The instructions used in this optimised decomposition can not be expected to be executed by the cpu

in a single clock cycle. In fact most of them take more than a single cycle. The most cpu intensive

instruction among them is probablyf2xm1 which can take several tens of cpu cycles, even on Pentium

II processors. However, along with the ever increasing sophistication of the newer cpu models, not

only does their raw clock rate increase, but they also require fewer cycles for the more complex floating

point unit instructions such asf2xm1 . Since the introduction of the Pentium III model, even the fastest

implementation of a lookup table basedexp() replacement does no longer provide any speedup when

compared with the optimised system given code for this function.3 The total cpu time spent in the
2In this discusssion, I focus on Intel and similar x86 processors.
3My thanks go to Carl Seymour for providing the disassembly of the optimisedexp() function on Pentium Pro (and

higher) processors, and for having carried out the comparative tests with respect to the run time required.
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evaluation of the exponential function does indeed only comprise a few percent of an average option

pricing simulation. What’s more, at the time of this writing, the Pentium IV model is being introduced

to the marketplace. Whilst I have no timing information for this new type available yet, I am confident

that in the future theexp() function will no longer be the cause of any execution bottlenecks and the

Monte Carlo method will become ever more acceptable in the world of financial modelling.

Despite all the improvements in the newer processor models, it remains a matter of expedience

to avoid unnecessary calculations inside the innermost loops of any Monte Carlo simulation. Even if

one day the ratio of the average execution times of a floating point multiplication and an evaluation

of exp() drops to a small number, maybe even three or two, by replacing the computation of the

exponential function by a single multiplication, if pre-calculation is somehow possible, your Monte

Carlo simulation could run two to three times faster if this evaluation is the main bottleneck.Never let

the continuous progress of cpu speeds and processing power be an excuse for ill-thought out algorithm

design.

14.7 Parallel computing and multi-threading

Most financial institutions’ large scale middle- and back-office computing servers have been equipped

with multi-processor technnology for quite some time now, and more and more desktop computers

nowadays also feature multiple central processor units, especially in the trading environment of invest-

ment banks. Sadly, in particular the desktop’s multiple cpu power remains largely unused for most

applications. With respect to financial calculations, this is to some extent due to the fact that many

numerical methods are very difficult to adapt to parallel computing techniques. Monte Carlo (and non-

recombining tree) methods, however, are particularly well amenable to parallelisation. Conceptually it

clearly makes sense to start a set ofsub-processesor threadsto evaluate independently a subset of all

of the individual function evaluations that constitute the Monte Carlo estimator

v̂N :=
1

N

N∑
i=1

f(xi) . (14.3)

Of course, we must ensure that there are no duplicates among the vector drawsxi taken by the various

sub-processes if we wish to avoid the possibility of a biased result. For pseudo-random numbers, one

might think that this can be done by initialising a new number generation engine with a different seed

for each sub-process. This simplistic approach is a fallacy, though. If we initialise each pseudo-random

generator with a different seed, we have absolutely no knowledge over which part of the overall cycle

of the number generator we end up using. A worst case scenario could be that one of the sub-processes

uses almost the same sequence as another one, only with a little offset just to cause a severe bias of the

Monte Carlo estimator. We therefore need to shift each of the sub-processes number generators to an

offset such that we are certain not to suffer any risk of overlap in the number sequence.

In contrast to pseudo-random number generators, the Sobol’ sequence (and other low-discrepancy

methods), is wonderfully easy to shift to an offsetn of iterations by calculating the Gray code of the
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shift n (which isG(n) = n ⊕2 [n/2]) as given in equation (8.22) and using it as the generating integer

γ(n) := G(n) in the (re-)initialisation equation (8.20) of the internal integer variables of the Sobol’

sequence. This means that the shift of the Sobol’ sequence generator can be done in practically no time

at all, very much unlike pseudo-random number generators for which we have to loop through a total

of n ·d one-dimensional draws (withd representing the dimensionality of the vector sequence) in order

to achieve an offset ofn vector draws from the beginning of the sequence.

The first decision that has to be made when we multi-thread a Monte Carlo simulation is what

parallelisation paradigm we are going to use. Personally, I recommend to keep it as simple as possible

(KISS, right?), and to go for the straight-forward master-slave method. This means, our Monte Carlo

evaluation engine is given a parameterm of the number of threads to use. If this number is zero, it will

ignore any parallelisation issues and just carry out the simulation ofN evaluations itself. Form > 0, it

will set up an array of the number of iterations that each of the slaves has to do, and an array of shifts

in the sequence of the selected number generation method. Denote the shift for thej th thread assj, and

the number of iterations to be evaluated by this thread asnj, with
∑j

k=1 nk = sj and
∑m

j=1 nj = N .

An example how to set up these numbers is given in code sample14.2. Given areunsigned long

vector <unsigned long> IterationsToBeSkipped(NumberOfThreads), NumberOfIterations(NumberOfThreads);

unsigned long j, n = 0;

for(j=0; j<NumberOfThreads; ++j) {

NumberOfIterations[j] = TotalNumberOfIterations / ( NumberOfThreads - j );

IterationsToBeSkipped[j] = n;

n += NumberOfIterations[j];

TotalNumberOfIterations -= NumberOfIterations[j];

}

Code example 14.2: Setting up the shift and number of iterations for each sub-process.

NumberOfThreads (which is the number of threadsm) andTotalNumberOfIterations (the

total number of iterationsN ). The code sample will then set upnj = NumberOfIterations[j]

andsj = IterationsToBeSkipped[j] .

The Monte Carlo estimator is then effectively decomposed into

v̂N :=
1

N

m∑
j=1

nj∑
i=1

f(xsj+i) . (14.4)

An open question is still as to how many sub-processes we wish to employ. For systems that have many

processors and are being shared by many applications, this is a rather difficult decision and requires

a judgement call. For computers that are dedicated to this Monte Carlo simulation, we would ideally

wish to use as many sub-processes as there are cpus on the machine. For most operating systems,

it is possible to enquire about this at run time. For instance, the Linux operating system provides

a globally readable file/proc/cpuinfo whose output can be parsed for the lines beginning with

‘processor : ’. The cpus are enumerated from 0, so we can simply take the last of those

lines and add 1 to the integer following the colon. For Windows NT, we can enquire about the number

of processors on the machine using the functionNumberOfCPUs given in code example14.3.
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#include <windows.h>

unsigned long NumberOfCPUs(void) {

SYSTEM_INFO sysInfo;

GetSystemInfo(&sysInfo);

return static_cast<unsigned long>(sysInfo.dwNumberOfProcessors);

}

Code example 14.3: Enquiry about the number of CPUs under Windows NT.

Finally, I would like to comment on the resource multiplication requirements for multi-threaded

Monte Carlo simulations. Clearly, each slave needs to have a clone of the master’s number generation

object since all number generation methods use internal state variables that must not be shared by the

slaves. It is paramount for all multi-threaded applications that no functions that are possibly involved

in a multi-threaded task contain anystatic variables for obvious reasons. The simultaneous attempt

of more than one thread to write to the same memory space will invariably lead to a hardware exception

which may be intercepted by the application but will certainly invalidate the simulation’s result. Unlike

simultaneous writing, the attempt to simultaneously read from the same memory is perfectly tolerable

by conventional symmetric multi-processing (SMP) hardware. This means that, at least in theory, all

of the slave processes may be allowed to read-access variables and parameters stored in the master

process’s memory space. Doing so, alas, can lead to rather unexpected bottlenecks that are not easy

to explain. I personally suffered from this misconception when I once implemented a multi-threaded

Monte Carlo engine such that each of the slaves would carry out the copy construction of all of the

global objects they needed for their private write-access themselves. Since a lot of complex data had

to be copied, creating a single copy of all of the required objects took a noticeable fraction of a second.

Asking the master process to copy of all of the objects for each of the slaves prior to invoking them

thus took the number of threads times that fraction of a second. Thinking that read-access leads to

no problems, I designed the multi-threaded algorithm such that each thread takes its own copies in

parallel, in order to reduce the overhead in the copying stage. Little did I know. Suddenly, taking two

complete copies of all required objects in parallel on two cpus did not take only the time it takes to

copy one, butalmost ten times as long, thus producing an additional overhead of several seconds where

I had thought I would end up with a faster start-up period. The best explanation I could come up with

is that, whilst being a perfectly valid thing to do, the simultaneous read-access to the same memory

area by both cpus leads to a hardware contention that causes the SMP architecture to serialise those

access requests, and execute them in turns, involving hardware interrupt handling, hardware wait locks

on individual cpus, and probably a whole load of other unpleasant hardware actions. The moral of this

story is: the master process ought to create a whole set of copies of all variables and objects required

for the simulation both for write- and for read-access for each individual slave process, before starting

the slave processes.Note that this does not mean that two threads cannot simultaneously execute the

same function at the same time: this is handled by the operating system since each cpu has a local copy

of the program code loaded into its level-1 cache before executing it. Automatic variables in a function

are also not subject to these considerations since they are created on the individual cpu’s local stack.
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In other words, if you only invoke static member functions of a class, there is no need to create and

copy an object of this class. However, even the call of a virtual function that does not use an object’s

member variables can lead to a hardware contention. After all, a virtual function call is resolved by

looking up a pointer-to-a-function variable in the object’svtable which is effectively the same as

accessing a member variable at assembler level. So, have the master copy everything before invoking

the slaves to do all the hard work:it’s only fair.
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[Jäc97] P. J̈ackel. Maple V routine for the calculation of a static table of primitive polynomials modulo 2.

http://www.nr.com/contrib/, 1997.

[Jam96] F. Jamshidian. Pricing of Contingent Claims in the One-Factor Term Structure Model. In

Hughston [Hug96], chapter 7, pages 111–127.

[Jam97] F. Jamshidian. Libor and swap market models and measures.Finance and Stochastics,

1:293–330, 1997.

[JKB94] N. L. Johnson, S. Kotz, and N. Balakrishnan.Continuous Univariate Distributions, volume I and

II. John Wiley and Sons, 1994.

[Joh49] N. L. Johnson. Systems of frequency curves generated by methods of translation.Biometrika,

36:14–76, 1949. A fitting algorithm for Johnson distributions can be found in: ALGORITHM AS

99 APPL. STATIST. (1976) VOL.25, P.180,http://lib.stat.cmu.edu/apstat/99.

[JR00] P. J̈ackel and R. Rebonato. Linking Caplet and Swaption Volatilities in a BGM/J Framework:

Approximate Solutions. Technical report, 2000.http://www.rebonato.com/capletswaption.pdf.

[JW00] J. James and N. Webber.Interest rate modelling. Financial Engineering. John Wiley and Sons,

May 2000.

[Kac51] M. Kac. On some connections between probability theory and differential and integral equations.

In Proc. 2nd Berkeley Symposium on Math. Stat. & Probability, pages 189–215, 1951.

[Kau01] R. Kaufmann. Copulas as an Integrated Risk Management Tool. Risk 2001 europe conference,

april 10-11, paris, RiskLab, Departement Mathematik, ETH Zürich, Switzerland, 2001.
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