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Preface

This book is the revised English edition of the Japanese book Introduction to
Quantum Information Theory, which systematically describes quantum infor-
mation theory and was originally published by Saiensu-sha, Tokyo, Japan in
May 2003. The study of information processing based on the physical princi-
ples of quantum mechanics was initiated in the 1960s. Recently, such quantum
information processing has demonstrated experimentally, and its theoretical
aspects have been examined more deeply and mathematically. The research
field addressing the relevant theory is called Quantum Information Theory,
and is now being studied by many researchers from various viewpoints.

However, only Holevo’s book Probabilistic and Statistical Aspects of Quan-
tum Theory, which was published back in 1980 (English version in 1982),
places a heavy emphasis on the mathematical foundation of quantum infor-
mation theory. Several books concerning quantum information science have
been published since the late 1990s. However, they treat quantum computa-
tion, the physical aspects of quantum information, or the whole of quantum
information science and are not mainly concerned with quantum information
theory. Therefore, it seemed to me that many researchers would benefit from
an English book on quantum information theory, and so I decided to publish
the English version of my book. I hope that it will make a contribution to
the field of quantum information theory.

This book was written as follows. First, the author translated the original
Japanese version in cooperation with Dr. Tim Barnes. Next, the book was
revised through the addition of many new results to Chaps. 8–10 and a his-
torical note to every chapter. Several exercises were also added, so that the
English version has more than 330 exercises. Hence, I take full responsibility
for the content of this English version. In this version, theorems and lemmas
are displayed along with the names of the reserchers who contributed them.
However, when the history of the theorems and lemmas is not so simple, they
are displayed without the contributing researchers’ names and their histories
are explained in a historical note at the end of the given chapter.



VIII Preface

I am indebeted to Prof. Masanao Ozawa and Dr. Tohya Hiroshima for
their feedback on the Japanese version, which been incorporated into the
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bella, Mr. Motohisa Fukuda, Prof. Richard Gill, Dr. Michael Horodecki, Dr.
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dreas Winter, for reviewing the technical aspects of the English version. Fur-
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Preface to Japanese Version

This textbook attempts to describe quantum information theory, which is a
presently evolving field. It is organized so that the reader can understand its
contents with very elementary prior knowledge. This research field has been
developed by many researchers from various backgrounds and has matured
rapidly in the last 5 years.

Recently, many people have considered that more interdisciplinary activ-
ities are needed in the academic world. Hence, education and research must
be performed and evaluated on a wide scope. However, since the extreme
segmentation of each research area has increased the difficulty of interdis-
ciplinary activities. On the other hand, quantum information theory can in
some sense form a bridge between several fields because it deals with topics
in a variety of disciplines including physics and information science. Hence,
it can be expected to contribute in some way to removing the segmentation
of its parent fields. In fact, information science consists of subfields such as
computer science, mathematical statistics, and Shannon’s information theory.
These subfields are studied in separate contexts.

However, in quantum information theory, we must return to the funda-
mentals of the topic, and there are fewer boundaries among the different
fields. Therefore, many researchers now transcend these boundaries.

Given such a starting point, the book was written to enable the reader to
efficiently attain the interdisciplinary knowledge necessary for understanding
quantum information theory. This book assumes only that the reader has
knowledge of linear algebra, differential and integral calculus, and probabil-
ity/statistics at the undergraduate level. No knowledge of quantum mechanics
is assumed.

Some of the exercises given in the text are rather difficult. It is recom-
mended that they be solved in order to acquire the skills necessary for tackling
research problems. Parts of the text contain original material that does not
appear elsewhere. Comments will be given for such parts.
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Prologue

Invitation to Quantum Information Theory

Understanding the implications of recognizing matter and extracting infor-
mation from it has been a long-standing issue in philosophy and religion.
However, recently this problem has become relevant to other disciplines such
as cognitive science, psychology, and neuroscience. Indeed, this problem is
directly relevant to quantum mechanics, which forms the foundation of mod-
ern physics. In the process of recognition, information cannot be obtained
directly from matter without any media. To obtain information, we use our
five senses; that is, a physical medium is always necessary to convey infor-
mation to us. For example, in vision, light works as the medium for receiving
information. Therefore, observations can be regarded as information process-
ing via a physical medium. Hence, this problem can be treated by physics. Of
course, to analyze this problem, the viewpoint of information science is also
indispensable because the problem involves, in part, information processing.

In the early 20th century, physicists encountered some unbelievable facts
regarding observations (measurements) in the microscopic world. They dis-
covered the contradictory properties of light, i.e., the fact that light has both
wave- and particlelike properties. Indeed, light behaves like a collection of
minimum energy particles called photons. In measurements using light, we
observe the light after interactions with the target. For example, when we
measure the position of the matter, we detect photons after interactions with
them. Since photons possess momentum and energy, the speed of the object
is inevitably disturbed.1 In particular, this disturbance cannot be ignored
when the mass of the measured object is small in comparison with the en-
ergy of the photon. Thus, even though we measure the velocity of an object
after the measurement of its position, we cannot know the velocity of an
object precisely because the original velocity has been disturbed by the first
1 The disturbance of measurement is treated in more detail in the formulation of

quantum mechanics in Chap. 7.



2 Prologue

measurement. For the same reason, when we measure the velocity first, its
position would be disturbed. Therefore, our naive concept of a “perfect mea-
surement” cannot be applied, even in principle. In the macroscopic world, the
mass of the objects is much larger than the momentum of the photons. We
may therefore effectively ignore the disturbance by the collisions of the pho-
tons. Although we consider that a “perfect measurement” is possible in this
macroscopic world, the same intuition cannot be applied to the microscopic
world.

In addition to the impossibility of “perfect measurements” in the micro-
scopic world, no microscopic particles have both a determined position and
a determined velocity. This fact is deeply connected to the wave-particle du-
ality in the microscopic world and can be regarded as the other side of the
nonexistence of “perfect measurements.”2 Thus it is impossible to completely
understand this microscopic world based on our macroscopic intuitions, but
it is possible to predict probabilistically its measured value based on the
mathematical formulation of quantum theory.

So far, the main emphasis of quantum mechanics has been on examining
the properties of matter itself, rather than the process of extracting informa-
tion. To discuss how the microscopic world is observed, we need a quantita-
tive consideration from the viewpoint of “information.” Thus, to formulate
this problem clearly, we need various theories and techniques concerning in-
formation. Therefore, the traditional approach to quantum mechanics is in-
sufficient. On the other hand, theories relating to information pay attention
only to the data-processing rather than the extraction process of information.
Therefore, in this quantum-mechanical context, we must take into account
the process of obtaining information from microscopic (quantum-mechanical)
particles. We must open ourselves to the new research field of quantum infor-
mation science. This field is to be broadly divided into two parts: (1) quantum
computer science, in which algorithms and complexity are analyzed using an
approach based on computer science, and (2) quantum information theory,
in which various protocols are examined from the viewpoint of information
theory and their properties and limits are studied. Specifically, since quan-
tum information theory focuses on the amount of accessible information, it
can be regarded as the theory for quantitative evaluation of the process of
extracting information, as mentioned above.

Since there have been few textbooks describing this field, the present
textbook attempts to provide comprehensive information ranging from the
fundamentals to current research. Quantum computer science is not treated
in this book because it has been addressed in many other textbooks. Since
quantum information theory forms a part of the basis of quantum computer
science, this textbook may be useful for not only researchers in quantum
information theory but also those in quantum computer science.

2 The relation between this fact and nonexistence can be mathematically formu-
lated by (7.27) and (7.30).
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History of Quantum Information Theory

Let us briefly discuss the history of quantum information theory. Quantum
mechanics was first formulated by Schrödinger (wave mechanics) and Heisen-
berg (matrix mechanics). However, their formulations described the dynam-
ics of microscopic systems, but they had several unsatisfactory aspects in
descriptions of measurements. Later, the equivalence between both formula-
tions were proved. To resolve this point, von Neumann [408] established the
formulation of quantum theory that describes measurements as well as dy-
namics based on operator algebra, whose essential features will be discussed in
Chap. 1. However, in studies of measurements following the above researches,
the philosophical aspect has been emphasized too much, and a quantitative
approach to extracting information via measurements has not been examined
in detail. This is probably because approaches to mathematical engineering
have not been adopted in the study of measurements.

In the latter half of the 1960s, a Russian researcher named Stratonovich,
who is one of the founders of stochastic differential equations, and two Amer-
ican researchers, Helstrom and Gordon, proposed a formulation of optical
communications using quantum mechanics. This was the first historical ap-
pearance of quantum information theory. Gordon [148, 149], Helstrom [201],
and Stratonovich [380] mainly studied error probabilities and channel ca-
pacities for communications. Meanwhile, Helstrom [381] examined the detec-
tion process of optical communication as parameter estimation. Later, many
American and Russian researchers such as Holevo [212, 214], Levitin [264],
Belavkin [34], Yuen [432], and Kennedy [431] also examined these problems.3

In particular, Holevo obtained the upper bound of the communication speed
in the transmission of a classical message via a quantum channel in his two pa-
pers [212,214] published in the 1970s. Further, Holevo [215,216], Yuen [432],
Belavkin, and their coworkers also analyzed many theoretically important
problems in quantum estimation.

Unfortunately, the number of researchers in this field rapidly decreased
in the early 1980s, and this line of research came to a standstill. Around this
time, Bennett and Brassard [35] proposed a quantum cryptographic protocol
(BB84) using a different approach to quantum mechanical systems. Around
the same time, Ozawa [327] gave a precise mathematical formulation of the
state reduction in the measurement process in quantum systems.

In the latter half of the 1980s, Nagaoka investigated quantum estimation
theory as a subfield of mathematical statistics. He developed the asymp-
totic theory of quantum-state estimation and quantum information geome-
3 Other researchers during this period include Grishanin, Mityugov, Kuriksha,

Liu, Personick, Lax, Lebedev, Forney [116] in the United States and Russia.
Many papers were published by these authors; however, an accurate review of
all of them is made difficult by their lack of availability. In particular, while
several Russian papers have been translated into English, some of them have
been overlooked despite their high quality. For details, see [202,216].
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try [304]. This research was continued by many Japanese researchers, includ-
ing Fujiwara, Matsumoto, and the present author in the 1990s [119,120,126,
127, 129, 165–168, 170, 171, 178, 182, 281, 282, 284–286]. For this history, see
Hayashi [194].

In the 1990s, in the United States and Europe several researchers started
investigating quantum information processing, e.g., quantum data compres-
sion, quantum teleportation, superdense coding, another quantum crypto-
graphic protocol (B92), etc. [36,38,39,43,245,360]. In the second half of the
1990s, the study of quantum information picked up speed. In the first half
of the 2000s, several information-theoretic approaches were developed, and
research has been advancing at a rapid pace.

We see that progress in quantum information theory has been achieved by
connecting various topics. This text clarifies these connections and discusses
current research topics starting with the basics.

Structure of the Book

Quantum information theory has been studied by researchers from various
backgrounds. Their approach can be broadly divided into two categories. The
first approach is based on information theory. In this approach, existing meth-
ods for information processing are translated (and extended) into quantum
systems. The second approach is based on quantum mechanics.

In this text, four chapters are dedicated to examining problems based on
the first approach, i.e., establishing information-theoretic problems. These
are Chap. 3, “Quantum Hypothesis Testing and Discrimination of Quantum
States,” Chap. 4, “Classical Quantum Channel Coding (Message Transmis-
sion),” Chap. 6, “Quantum Information Geometry and Quantum Estima-
tion,” and Chap. 10, “Source Coding in Quantum Systems.” Problems based
on the second approach is treated in three chapters: Chap. 5, “State evolution
and Trace-Preserving Completely Positive Maps,” Chap. 7, “Quantum mea-
surements and State Reduction,” and Chap. 8, “Entanglement and Locality
Restrictions.”

Advanced topics in quantum communication such as quantum teleporta-
tion, superdense coding, quantum-state transmission (quantum error correc-
tion), and quantum cryptography are often discussed in quantum information
theory. Both approaches are necessary for understanding these topics, which
are covered in Chap. 9, “Analysis of Quantum Communication Protocols.”

Some quantum-mechanical information quantities are needed to handle
these problems mathematically, and these problems are covered in Sects. 2.2,
5.4, 5.5, 8.2, and 8.3. This allows us to touch upon several important
information-theoretic problems using a minimum amount of mathematics.
The book also includes 330 exercises together with short solutions (for sim-
ple problems, the solutions are omitted for brevity). Solving these problems
should provide readers not only with knowledge of quantum information the-
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ory but also the necessary techniques for pursuing original research in the
field.

Chapter 1 covers the mathematical formulation of quantum mechanics
in the context of quantum information theory. It also gives a review of lin-
ear algebra. Chapter 2 summarizes classical information theory. This not only
provides an introduction to the later chapters but also serves as a brief survey
of classical information theory. Topics such as the large deviation principle
for entropy, Fisher information, and information geometry are covered here.
Quantum relative entropy, which is the quantum-theoretic measure of infor-
mation, is also briefly discussed. This concludes the preparatory part of the
text.

Chapter 3 covers quantum hypothesis testing and the discrimination of
quantum states. This chapter serves to answer the question: If there are two
states, which is the true state? The importance of this question may not at
first be apparent. However, this problem provides the foundation for other
problems in information theory and is therefore crucially important. Also, this
problem provides the basic methods for quantum algorithm theory. Many of
the results of this chapter will be used in subsequent chapters. In particular,
the quantum version of Stein’s lemma is discussed here; it can be used a basic
tool for other topics. Furthermore, many of the difficulties associated with
the noncommutativity of quantum theory can be seen here in their simplest
forms. This chapter can be read after Chap. 1 and Sects. 2.1, 2.2, and A.3.

Chapter 4 covers classical quantum channel coding (message transmis-
sion). That is, we treat the tradeoff between the transmission speed and the
error probability in the transmission of classical messages via quantum states.
In particular, we discuss the channel capacity, i.e., the theoretical bound of
the transmission rate when the error probability is 0, as well as its associated
formulas. This chapter can be read after Chap. 1 and Sects. 2.1, 2.2, 3.4, 3.6,
and 3.7.

Chapter 5 discusses the trace-preserving completely positive map, which
is the mathematical description of state evolution in quantum systems. Its
structure will be illustrated with examples in quantum two-level systems. We
also briefly discuss the relationship between the state evolution and informa-
tion quantities in quantum systems (the entropy and relative entropy). In par-
ticular, the part covering the formulation of quantum mechanics (Sects. 5.1
to 5.3) can be read after only Chap. 1.

Chapter 6 describes the relationship between quantum information ge-
ometry and quantum estimation. First, the inner product for the space of
quantum states is briefly discussed. Next, we discuss the geometric structure
naturally induced from the inner product. The theory of state estimation in
quantum systems is then discussed by emphasizing the Cramér–Rao inequal-
ity. Most of this chapter can be read after Chaps. 1 and 2 and Sect. 5.1.

Chapter 7 covers quantum measurement and state reduction. First, it
is shown that the state reduction due to a quantum measurement follows
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naturally from the axioms of the quantum systems discussed in Chap. 1.
Next, we discuss the relationship between quantum measurement and the
uncertainty relations. Finally, it is shown that under certain conditions it
is possible, in principle, to perform a measurement such that the required
information can be obtained while the state demolition is negligible. Readers
who only wish to read Sects. 7.1 and 7.3 can read them after Chap. 1 and
Sect. 5.1. Section 7.2 requires the additional background of Sect. 6.1.

Chapter 8 discusses the relationship between locality and entanglement,
which are fundamental topics in quantum mechanics. First, we examine state
operations when the condition of locality is imposed on quantum operations.
Next, the information quantities related to entanglement are considered. The
theory for distilling a completely entangled state from an incompletely en-
tangled state is discussed. Information-theoretic methods play a central role
in entanglement distillation. Further, quantification of entanglement is dis-
cussed from various viewpoints.

Chapter 9 delves deeply into topics in quantum channels such as quan-
tum teleportation, superdense coding, quantum-state transmission (quantum
error correction), and quantum key distribution based on the theory pre-
sented in previous chapters. These topics are very simple when noise is not
present. However, if noise is present in a channel, these problems require
the information-theoretic methods discussed in previous chapters. The rela-
tionship among these topics is also discussed. Further, the relation between
channel capacities and entanglement theory is also treated.

Finally, Chap. 10 discusses source coding in quantum systems. We treat
not only the theoretical bounds of quantum fixed-length source coding but
also universal quantum fixed-/variable-length source coding, which does not
depend on the form of the information source. The beginning part of this
chapter, excepting the purification scheme, requires only the contents of
Chapts. 1 and 2 and Sect. 5.1. In particular, in universal quantum variable-
length source coding, a measurement is essential for determining the coding
length. Hence this measurement causes the demolition of the state to be
sent, which makes this a more serious problem. However, it can be solved
by a measurement with negligible state demolition, which is described in
Chap. 7. Then we treat quantum-state compression with mixed states and
its several variants. The relations between these problems and entanglement
theory are also treated. Further, we treat the relationships between the re-
verse capacities (reverse Shannon theorem) and these problems. Excluding

Fig. 1. Example
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Fig. 2. Organization of this book

Sects. 10.6–10.9, this chapter can be read after Chap. 1 and Sects. 2.1, 2.2,
2.4, 4.1, and 5.1.

This text thus covers a wide variety of topics in quantum informa-
tion theory. Quantum hypothesis testing, quantum-state discrimination, and
quantum-channel coding (message transmission) have been discussed such
that only a minimal amount of mathematics is needed to convey the essence
of these topics. Prior to this text, these topics required the study of advanced
mathematical theories for quantum mechanics, such as those presented in
Chap. 5. Further, Chaps. 5 (“State Evolution and Trace Preserving Com-
pletely Positive Maps in Quantum Systems”) and 7 (“Quantum Measurement
and State Reduction”) have been written such that they can be understood
with only the background provided in Chap. 1. Therefore, this text should also
be suitable for readers who are interested in either the information-theoretic
aspects of quantum mechanics or the foundations of quantum mechanics.

Finally, the organization of this book is illustrated in Fig. 2. For example,
Fig. 1 implies that that section requires the contents of Chap. 1 and Sect. 2.1
or only that of Sect. 2.1.
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Mathematical Formulation
of Quantum Systems

Summary. In this chapter, we cover the fundamentals of linear algebra and pro-
vide a mathematical formulation of quantum mechanics for use in later chapters. It
is necessary to understand these topics since they form the foundation of quantum
information processing discussed later. In the first section, we cover the fundamen-
tals of linear algebra and introduce some notation. The next section describes the
formulation of quantum mechanics. Further, we examine a quantum two-level sys-
tem, which is the simplest example of a quantum-mechanical system. Finally, we
discuss the tensor product and matrix inequalities. More advanced discussions on
linear algebra are available in Appendix A.

Table 1.1. Denotations used in Chap. 1

x̄ Complex conjugate of given number x
S(H) Set of density matrices of given Hilbert space H
AT Transpose of given matrix A
A∗ Adjoint of given matrix A

[X, Y ] Communtator of given matrices A and B
X ◦ Y Symmetrized product of given matrices A and B
PM

ρ Probability distribution when measurement is M and state is ρ
ρmix Completely mixed state
TrA Partial trace concerning system HA

{X ≥ 0} Projection defined by (1.32)
κM Pinching of PVM M (1.11)
κX Pinching of Hermitian matrix X (1.12)
κM Pinching of POVM M (1.13)

Quantum two-level system
Si Pauli matrix (1.15)
ρx Stokes parameterization (1.16)
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1.1 Quantum Systems and Linear Algebra

In order to treat information processing in quantum systems, it is necessary
to mathematically formulate fundamental concepts such as quantum sys-
tems, measurements, and states. First, we consider the quantum system. It is
described by a Hilbert space H (a finite- or infinite-dimensional complex vec-
tor space with a Hermitian inner product), which is called a representation
space. Before considering other important concepts such as measurements
and states, we give a simple overview of linear algebra. This will be advanta-
geous because it is not only the underlying basis of quantum mechanics but is
also as helpful in introducing the special notation used for quantum mechan-
ics. In mathematics, a Hilbert space usually refers to an infinite-dimensional
complex vector space with a Hermitian inner product. In physics, however,
a Hilbert space also often includes finite-dimensional complex vector spaces
with Hermitian inner products. This is because in quantum mechanics, the
complex vector space with a Hermitian inner product becomes the crucial
structure. Since infinite-dimensional complex vector spaces with Hermitian
inner products can be dealt with analogously to the finite-dimensional case,
we will consider only the finite-dimensional case in this text. Unless specified,
the dimension will be labeled d.

The representation space of a given system is determined by a physical
observation. For example, spin-1

2 particles such as electrons possess, an inter-
nal degree of freedom corresponding to “spin” in addition to their motional
degree of freedom. The representation space of this degree of freedom is C

2.
The representation space of a one-particle system with no internal degrees of
freedom is the set of all square integrable functions from R

3 to C. In this case,
the representation space of the system is an infinite-dimensional space, which
is rather difficult to handle. Such cases will not be examined in this text.

Before discussing the states and measurements, we briefly summarize
some basic linear algebra with some emphasis on Hermitian matrices. This
will be important particularly for later analysis. The Hermitian product of
two vectors

u =

⎛
⎜⎜⎜⎝

u1

u2

...
ud

⎞
⎟⎟⎟⎠ , v =

⎛
⎜⎜⎜⎝

v1

v2

...
vd

⎞
⎟⎟⎟⎠ ∈ H

is given by

〈u|v〉 def= u1v1 + u2v2 + . . . + udvd ∈ C ,

where the complex conjugate of a complex number x is denoted by x. The
norm of the vector is given by ‖u‖ def=

√
〈u|u〉. The inner product of the

vectors satisfies the Schwarz inequality
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‖u‖‖v‖ ≥ |〈u|v〉| . (1.1)

When a matrix

X =

⎛
⎜⎜⎜⎝

x1,1 x1,2 . . . x1,d

x2,1 x2,2 . . . x2,d

...
...

. . .
...

xd,1 xd,2 . . . xd,d

⎞
⎟⎟⎟⎠ (1.2)

satisfies the following condition

X = X∗ def=

⎛
⎜⎜⎜⎝

x1,1 x2,1 . . . xd,1

x1,2 x2,2 . . . xd,2

...
...

. . .
...

x1,d x2,d . . . xd,d

⎞
⎟⎟⎟⎠ , (1.3)

it is called Hermitian. We also define the complex conjugate matrix X and
its transpose matrix XT as follows:

X
def=

⎛
⎜⎜⎜⎝

x1,1 x1,2 . . . x1,d

x2,1 x2,2 . . . x2,d

...
...

. . .
...

xd,1 xd,2 . . . xd,d

⎞
⎟⎟⎟⎠ , XT def=

⎛
⎜⎜⎜⎝

x1,1 x2,1 . . . xd,1

x1,2 x2,2 . . . xd,2

...
...

. . .
...

x1,d x2,d . . . xd,d

⎞
⎟⎟⎟⎠ .

Then, a Hermitian matrix X satisfies XT = X. If a Hermitian matrix X satis-
fies 〈u|Xu〉 ≥ 0 for an arbitrary vector u ∈ H, it is called positive semidefinite
and denoted by X ≥ 0. If 〈u|Xu〉 > 0 for nonzero vectors u, X is called pos-
itive definite. The condition of positive semidefiniteness is equivalent to all
the eigenvalues of a diagonalized Hermitian matrix X that are either zero or
positive. As shown later, the trace of the product of two positive semidefinite
matrices X and Y satisfies

Tr XY ≥ 0 . (1.4)

However, in general, the product XY is not a Hermitian matrix. Note that
although the matrix XY + Y X is Hermitian, it is generally not positive
semidefinite.

We can regard each element u ∈ H as an element of the dual space
H∗ according to the correspondence between H and H∗ given by the inner
product. We denote the corresponding element of the dual spaceH∗ by 〈u|, in
accordance with the conventional notation in physics. If we wish to emphasize
that u is an element not of H∗ but of H, we write |u〉. That is,

|u〉 =

⎛
⎜⎜⎜⎝

u1

u2

...
ud

⎞
⎟⎟⎟⎠ ∈ H, 〈u| =

(
u1 u2 · · ·ud

)
∈ H∗.
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The Hermitian inner product 〈u|v〉 can also be considered as the matrix
product of 〈u| and |v〉. Note that this notation is used in this text even if the
norm of v is not equal to 1. On the other hand, the opposite matrix product
|v〉〈u| is a d× d matrix:

|v〉〈u|=

⎛
⎜⎜⎜⎝

v1

v2

...
vd

⎞
⎟⎟⎟⎠
(
u1 u2 · · ·ud

)
=

⎛
⎜⎜⎜⎝

v1u1 v1u2 . . . v1ud

v2u1 v2u2 . . . v2ud

...
...

. . .
...

vdu1 vdu2 . . . vdud

⎞
⎟⎟⎟⎠ . (1.5)

Although |Xv〉 = X|v〉, 〈Xv| = 〈v|X∗. Evidently, if matrix X is Hermitian,
then 〈u|Xv〉 = 〈Xu|v〉. This also equals Tr |v〉〈u|X, which is often denoted
by 〈u|X|v〉. Using this notation, matrix X given by (1.2) may be written as
X =

∑
i,j xi,j |ui〉〈uj |, where ui is a unit vector whose ith element is 1 and

remaining elements are 0.
A Hermitian matrix X may be transformed into the diagonal form U∗XU

by choosing an appropriate unitary matrix U . Since X = U(U∗XU)U∗, we
may write

X =

⎛
⎜⎝ u1

1 . . . u1
d

...
. . .

...
ud

1 . . . ud
d

⎞
⎟⎠
⎛
⎜⎝ x1 O

. . .
O xd

⎞
⎟⎠
⎛
⎜⎝ u1

1 . . . ud
1

...
. . .

...
u1

d . . . ud
d

⎞
⎟⎠ . (1.6)

Define d vectors u1, u2, . . . , ud

ui =

⎛
⎜⎝u1

i
...

ud
i

⎞
⎟⎠ .

Then the unitarity of U implies that {u1, u2, . . . , ud} forms an orthonormal
basis. Using (1.5), the Hermitian matrix X may then be written as X =∑

i xi|ui〉〈ui|. This process is called diagonalization. If X and Y commute,
they may be written as X =

∑d
i=1 xi|ui〉〈ui|, Y =

∑d
i=1 yi|ui〉〈ui| using the

same orthonormal basis {u1, u2, . . . , ud}. If X and Y do not commute, they
cannot be diagonalized using the same orthonormal basis.

Furthermore, we can characterize positive semidefinite matrices using this
notation. A matrix X is positive semidefinite if and only if xi ≥ 0 for arbitrary
i. Thus, this equivalence yields inequality (1.4) as follows:

Tr XY = Tr
∑
i=1

xi|ui〉〈ui|Y =
∑
i=1

xi Tr |ui〉〈ui|Y =
∑
i=1

xi〈ui|Y |ui〉 ≥ 0 .
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We also define the commutator [X, Y ] and symmetrized product X ◦Y of
two matrices X and Y as1

[X, Y ] def= XY − Y X, X ◦ Y
def=

1
2
(XY + Y X) .

Exercises

1.1. Show Schwarz’s inequality (1.1) noting that 〈u+ rcv|u+ rcv〉 ≥ 0 for an
arbitrary real number r, where c = 〈v|u〉/|〈v|u〉|.

1.2. Suppose that k vectors u1, . . . , uk (uj = (uij)) satisfy 〈uj′ |uj〉 =∑d
i=1 uij′uij = δj′j(1 ≤ j, j′ ≤ k), where δj,j′ is defined as 1 when j = j′ and

as 0 otherwise. Show that there exist d − k vectors uk+1, . . . , ud such that
〈uj′ |uj〉 = δj′j , i.e., the matrix U = (uij) is unitary.

1.3. Let X =
∑

i,j xi,j |ui〉〈uj | be a Hermitian positive semidefinite matrix.
Show that the transpose matrix XT is also positive semidefinite.

1.4. Let Xθ,Yθ be functions that are matrix valued. Show that the derivative
of the product (XθYθ)′ can be written as (XθYθ)′ = XθY

′
θ + X ′

θYθ, where
X ′

θ, Y
′
θ are the derivatives of Xθ, Yθ, respectively. Show that the derivative of

Tr Xθ, i.e., (TrXθ)′, is equal to Tr(X ′
θ).

1.5. Let U be a unitary matrix and X be a matrix. Show that the equa-
tion (UXU∗)∗ = UX∗U∗ holds. Also give a counterexample of the equation
(UXU∗)T = UXT U∗.

1.2 State and Measurement in Quantum Systems

To discuss information processing in quantum systems, we must first be able
to determine the probability that every measurement value appears as an
outcome of the measurement. Few standard texts on quantum mechanics
give a concise and accurate description of the probability distribution of each
measurement value. Let us discuss the fundamental framework of quantum
theory so as to calculate the probability distribution of a measurement value.

In the spin-1
2 system discussed previously, when the direction of “spin”

changes, the condition of the particle also changes. In quantum systems, a
description of the current condition of a system, such as the direction of the
spin, is called a state. Any state is described by a Hermitian matrix ρ called
a density matrix or simply density:

Tr ρ = 1, ρ ≥ 0 . (1.7)
1 A vector space closed under commutation [X, Y ] is called a Lie algebra. A vector

space closed under the symmetrized product X ◦ Y is called a Jordan algebra.
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Since quantum systems are too microscopic for direct observation, we must
perform some measurement in order to extract information from the sys-
tem. Such a measurement is described by a set of Hermitian matrices
M

def= {Mω}ω∈Ω satisfying the following conditions:

Mω ≥ 0,
∑
ω∈Ω

Mω = I ,

where I denotes the identity matrix. The set M = {Mω}ω∈Ω is called a pos-
itive operator valued measure (POVM). For readers who have read standard
texts on quantum mechanics, note that Mω is not restricted to projection
matrices. When ω is continuous, the summation

∑
is replaced by an inte-

gration
∫

on Ω. Here we denote the set of the measurement values ω by Ω
and omit it if there is no risk of confusion. If ω takes values in a discrete set,
then the number of elements in Ω will be denoted by |M |.

Fig. 1.1. Measurement scheme

The density matrix ρ and the POVM M form the mathematical repre-
sentations of a state of the system and the measurement, respectively, in the
following sense. If a measurement corresponding to M = {Mω}ω∈Ω is per-
fomed on a system in a state corresponding to ρ, then the probability PM

ρ (ω)
of obtaining ω is2

PM
ρ (ω) := Tr ρMω . (1.8)

The above definition satisfies the axioms of a probability since Tr ρMω is
positive and its summation becomes 1, as follows. The inequality Tr ρMω ≥ 0
can be verified by the fact that ρ and Mω are both positive semidefinite.
Furthermore, since
2 In quantum mechanics, one often treats the state after the measurement rather

than before it. The state change due to a measurement is called state reduction,
and it requires more advanced topics than those described here. Therefore, we
postpone its discussion until Sect. 7.1.
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ω∈Ω

Tr ρMω = Tr ρ
∑
ω∈Ω

Mω = Tr ρI = Tr ρ = 1 ,

we see that this is indeed a probability distribution. In this formulation, it is
implicitly assumed that both the state and the measurement are reproducible
(otherwise, it would be virtually impossible to verify experimentally (1.8)).
For brevity, we shall henceforth refer to the system, state, and measurement
by H, ρ, and M , respectively.

Let us now discuss the structure of a set of density matrices that shall be
denoted by S(H). Consider a system that is in state ρ1 with a probability λ
and in state ρ2 with a probability 1− λ. Now, let us perform a measurement
M = {Mω} on the system. The probability of obtaining the measurement
value ω is given by

λ Tr ρ1Mω + (1− λ) Tr ρ2Mω = Tr[(λρ1 + (1− λ)ρ2)Mω] . (1.9)

The state of the system may be considered to be given by ρ′ = λρ1+(1−λ)ρ2.
Thus, even by using (1.8) with this state and calculating the probability
distributions of the measurement values, we will still be entirely consistent
with the experiment. Therefore, we may believe that the state of the system
is given by ρ′. This is called a probabilistic mixture (or incoherent mixture).

In quantum mechanics, a state |u〉〈u| ∈ S(H) represented by a vector
u ∈ H of norm 1 is called a pure state. This u is referred to as a state in the
sense of |u〉〈u|. The set of all vectors of norm 1 is written as H1. In contrast,
when a state is not a pure state, it is called a mixed state. A pure state cannot
be written as the probabilistic mixture of other states. However, all mixed
states may be written as the probabilistic mixture of other states, such as
pure states. For example, if the dimensionality of H is d, then 1

dI is a mixed
state. In fact, it is called a completely mixed state and is written as ρmix.

On the other hand, the vector |x〉 =
∑

i xi|ui〉 is a quantum-mechanical
superposition of u1, . . . , ud, where u1, . . . , ud are the orthonormal basis states
of H. Note that this is different from the probabilistic mixture discussed
above. The probabilistic mixture is independent of the choice of the orthonor-
mal basis. However, the quantum-mechanical superposition depends on the
choice of the basis, which depends on the physical properties of the system
under consideration.

When the operators Mω in a POVM M = {Mω} are projection matrices,
the POVM is called a projection valued measure (PVM) (only PVMs are
examined in elementary courses in quantum mechanics). This is equivalent
to MωMω′ = 0 for different ω, ω′. Hermitian matrices are sometimes referred
to as “observables” or “physical quantities.” We now explain why.

Let the eigenvalues of a Hermitian matrix X be xi, and the projection
matrices corresponding to this eigenspace be EX,i, i.e., X =

∑
i xiEX,i. The

right-hand side of this equation is called the spectral decomposition of X. The
decomposition EX = {EX,i} is then a PVM. When more than one eigenvector
corresponds to a single eigenvalue, the diagonalization X =

∑d
i=1 xi|ui〉〈ui|
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is not unique, while the spectral decomposition is unique. Using (1.8), we
may calculate the expectation value and variance of a PVM EX acting on a
state ρ as Tr ρX and Tr ρX2− (Tr ρX)2, respectively. Note that these are ex-
pressed completely in terms of X and ρ. Therefore, we identify the Hermitian
matrix X as PVM EX and refer to it as the measurement for the Hermitian
matrix X.

When two Hermitian matrices X, Y commute, we can use a common or-
thonormal basis u1, . . . , ud and two sets of real numbers {xi}, {yi} to diago-
nalize the matrices

X =
∑

i

xi|ui〉〈ui|, Y =
∑

i

yi|ui〉〈ui| . (1.10)

A measurement of X and Y may be performed simultaneously using the
PVM {|ui〉〈ui|}i. Evidently, if all X1, . . . , Xk commute, it is also possible to
diagonalize them using a common basis.

In general, the elements Mω of the PVM M = {Mω} and the state
ρ do not necessarily commute. This noncommutativity often causes many
difficulties in their mathematical treatment. To avoid these difficulties, we
sometimes use the pinching map κM defined by

κM (ρ) def=
∑
ω

MωρMω . (1.11)

This is because the pinching map κM modifies the state ρ such that the state
becomes commutative with Mω. Hence, the pinching map is an important tool
for overcoming the difficulties associated with noncommutativities. We often
treat the case when PVM M is expressed as the spectral decomposition of
a Hermitian matrix X. In such a case, we use the shorthand κX instead of
κEX

. That is,

κX
def= κEX

. (1.12)

For a general POVM M , we may define

κM (ρ) def=
∑
ω

√
Mωρ

√
Mω . (1.13)

Note that this operation does not necessarily have the same effect as making
the matrices commute. Further, to treat the data as well as the state, we
define

κ̂M (ρ) def=
∑
ω

√
Mωρ

√
Mω ⊗ |eω〉〈eω| , (1.14)

where {eω} is a CONS of another system.
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Exercises

1.6. Show that when one performs a PVM EX on a system in a state ρ, the
expectation value and the variance are given by Tr ρX and Tr ρX2−(Tr ρX)2,
respectively.

1.3 Quantum Two-Level Systems

A quantum system with a two-dimensional representation space is called a
quantum two-level system or a qubit, which is the abbreviation for quantum
bit. This is a particularly important special case for examining a general
quantum system. The spin- 1

2 system, which represents a particle with a total
angular momentum of 1

2 , is the archetypical quantum two-level system. The
electron is an example of such a spin-1

2 system. A spin- 1
2 system precisely

represents a specific case of angular momentum in a real system; however, it
is sometimes referred to as any quantum system with two levels. In particle
physics, one comes across a quantum system of isospin, which does not cor-
respond to the motional degrees of freedom but to purely internal degrees of
freedom.

Mathematically, they can be treated in the same way as spin- 1
2 systems. In

this text, since we are interested in the general structure of quantum systems,
we will use the term quantum two-level system to refer generically to all such
systems.

In particular, the Hermitian matrices S0, S1, S2, S3 given below are called
Pauli matrices:

S0 = I, S1 =
(

0 1
1 0

)
, S2 =

(
0 −i
i 0

)
, S3 =

(
1 0
0 −1

)
. (1.15)

They will help to simplify the expressions of matrices. The density matrix
can be parameterized by using the Pauli matrices:

ρx =
1
2

(
1 + x3 x1 − x2i

x1 + x2i 1− x3

)
=

1
2

(
S0 +

3∑
i=1

xiSi

)
, (1.16)

which is called Stokes parameterization.The range of x = (x1, x2, x3) is the
set {x|

∑3
i=1(x

i)2 ≤ 1}Ex. 1.7. We often focus on the basis

e0
def=

(
1
0

)
, e1

def=
(

0
1

)

in the space C
2. If there are several representation spaces HA, HB , etc. equiv-

alent to C
2, and we wish to specify the space of the basis e0, e1, we will write

eA
0 , eA

1 , etc. In this case, the Pauli matrix Si and the identity matrix will be
denoted by SA

i and IA, respectively.
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Next, we consider the measurements in a quantum two-level system. The
measurement of the observable S1 is given by the PVM ES1 = {E1, E−1},
where

E1 =
1
2

(
1 1
1 1

)
, E−1 =

1
2

(
1 −1
−1 1

)
.

Given a density matrix ρx, the probability PES1
ρx (1) of obtaining the mea-

surement value 1 is Tr ρE1 =
1 + x1

2
. Similarly, the probability PES1

ρx (−1) of

obtaining the measurement value −1 is
1− x1

2
. A more detailed treatment

of quantum two-level systems will be deferred until Sect. 5.3.

Exercises

1.7. Verify that the set x = (x1, x2, x3)|ρ ≥ 0} is equal to {x|
∑3

i=1(x
i)2 ≤ 1}

by showing det ρx = 1−‖x‖2

4 .

1.8. Verify that ρx is a pure state if and only if ‖x‖ = 1.

1.9. Show that all 2× 2 Hermitian matrices with trace 0 can be written as a
linear combination of S1, S2, S3.

1.4 Composite Systems and Tensor Products

A combined system composed of two systems HA and HB is called the com-
posite system of HA and HB . When the system HA (HB) has an orthonormal
basis {uA

1 , . . . , uA
d } ({uB

1 , . . . , uB
dB
}), respectively, the representation space of

the composite system is given by the Hilbert space HA ⊗ HB with the or-
thonormal basis {uA

1 ⊗ uB
1 , . . . , uA

1 ⊗ uB
dB

, uA
2 ⊗ uB

1 , . . . , uA
2 ⊗ uB

dB
, . . . , uA

dA
⊗

uB
1 , . . . , uA

dA
⊗ uB

dB
}. The space HA ⊗HB is called the tensor product space

of HA and HB ; its dimension is dA × dB . Using dA × dB complex numbers
(zi,j), the elements of HA ⊗ HB may be written as

∑
i,j zi,juA

i ⊗ uB
j . The

tensor product of two vectors uA =
∑

k xkuA
k and uB =

∑
j yjuB

j is defined

as uA ⊗ uB def=
∑

k

∑
j xkyjuA

k ⊗ uB
j . We simplify this notation by writing

|uA ⊗ uB〉 as |uA, uB〉.
The tensor product XA ⊗ XB of a matrix XA on HA and a matrix XB

on HB is defined as

XA ⊗XB(ui ⊗ vj)
def= XA(ui)⊗XB(vj) .

The trace of this tensor product satisfies the relation

Tr XA ⊗XB = TrXA · Tr XB .
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For two matrices XA and YA on HA and two matrices XB and YB on HB ,

(XA ⊗XB)(YA ⊗ YB) = (XAYA)⊗ (XBYB) .

Hence it follows that

Tr(XA ⊗XB)(YA ⊗ YB) = Tr(XAYA) · Tr(XBYB) .

If the states of systems HA and HB are independent and represented by the
densities ρA and ρB , respectively, then the state of the composite system may
be represented by the tensor product of the density matrices ρA ⊗ ρB . Such
a state is called a tensor product state.

When the density matrix ρ on the composite system HA ⊗ HB can be
written as a probabilistic mixture of tensor product states, it is called sepa-
rable:

ρ =
∑

i

piρ
i
A ⊗ ρi

B , pi ≥ 0,
∑

i

pi = 1, ρi
A ∈ S(HA), ρi

B ∈ S(HB).

(1.17)

Such separable states do not have any quantum-mechanical correlation (en-
tanglement). When a state ρ does not have the form (1.17), it is called an
entangled state.

When all the n systems are identical to H, their composite system is
written asH⊗ · · · ⊗ H︸ ︷︷ ︸

n

; this will be denoted byH⊗n for brevity. In particular,

if all the quantum systems are independent, and the state in each system is
given by ρ, the composite state on H⊗n is ρ⊗ · · · ⊗ ρ︸ ︷︷ ︸

n

, which is denoted by

ρ⊗n. Such states can be regarded as quantum versions of independent and
identical distributions (discussed later).

Let us now focus on the composite state of the quantum two-level sys-
tems HA and HB . By defining eA,B

0
def= 1√

2

(
eA
0 ⊗ eB

0 + eA
1 ⊗ eB

1
)
, we see that

|eA,B
0 〉〈eA,B

0 | is not separable, i.e., it is an entangled state. Other entangled
states include

eA,B
1

def= (SA
1 ⊗ IB)eA,B

0 =
1√
2

(
eA
1 ⊗ eB

0 + eA
0 ⊗ eB

1
)
,

eA,B
2

def= (SA
2 ⊗ IB)eA,B

0 =
i√
2

(
eA
1 ⊗ eB

0 − eA
0 ⊗ eB

1
)
,

eA,B
3

def= (SA
3 ⊗ IB)eA,B

0 =
1√
2

(
eA
0 ⊗ eB

0 − eA
1 ⊗ eB

1
)
.

They are mutually orthogonal, i.e.,

〈eA,B
k |eA,B

l 〉 = δk,l . (1.18)
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In general, any vector |x〉 onHA⊗HB can be expressed as |x〉 = |
∑

i,j xi,juA
i ⊗

uB
j 〉 = (X⊗ IB)|

∑dB

i=1 uB
i ⊗uB

i 〉 by a linear map X =
∑

i,j xi,j |uA
i 〉〈uB

j | from
HB to HA. When we describe this vector by |X〉,3 we obtain the following
properties:

(Y ⊗ ZT )|X〉 = |Y XZ〉, (1.19)
〈Y |X〉 = TrY ∗X . (1.20)

In particular, when
√

dX is a unitary matrix, |X〉〈X| is called a maximally
entangled state of size d. In this book, we denote the vector | 1√

d
I〉 by |Φd〉.

Next, let us consider the independent applications of the measurements
MA = {MA,ωA

}ωA∈ΩA
and MB = {MB,ωB

}ωB∈ΩB
on systems HA and HB ,

respectively. This is equivalent to performing a measurement MA ⊗MB
def=

{MA,ωA
⊗ MB,ωB

}(ωA,ωB)∈ΩA×ΩB
on the composite system. Such a mea-

surement is called an independent measurement. If a measurement M =
{Mω}ω∈Ω on the composite system HA ⊗HB has the form

Mω = MA,ω ⊗MB,ω, MA,ω ≥ 0, MB,ω ≥ 0 (1.21)

or the form

Mω =
∑

i

MA,ω,i ⊗MB,ω,i, MA,ω,i ≥ 0, MB,ω,i ≥ 0 ,

the measurement M is said to be separable. Otherwise, it is called collective.
Of course, independent measurements are always separable, but the converse
is not always true.

Since the vectors eA,B
0 , . . . , eA,B

3 defined previously form an orthonormal
basis in the composite system C

2⊗C
2, the set {|eA,B

0 〉〈eA,B
0 |, . . . , |eA,B

3 〉〈eA,B
3 |}

is a PVM. This measurement is a collective measurement because it does not
have the separable form (1.21).

On the other hand, adaptive measurements are known as a class of sep-
arable POVMs, and their definition is given as follows.4 Consider a case in
which we perform a measurement MA = {MA,ωA

}ωA∈ΩA
on system HA and

then another measurement MωA

B = {MωA

B,ωB
}ωB∈ΩB

on system HB accord-
ing to the measurement value ωA. The POVM of this measurement on the
composite system HA ⊗HB is given as

{MA,ωA
⊗MωA

B,ωB
}(ωA,ωB)∈ΩA×ΩB

. (1.22)

Such a measurement is called adaptive, and it satisfies the separable condition
(1.21).
3 A notation similar to |X〉 was introduced in [88]. However, the relations (1.19)

and (1.20) were essentially pointed out in [230].
4 Adaptive measurements are often called one-way LOCC measurements in entan-

glement theory. See Sect. 8.1.
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Presently, there is not enough information on how different the adaptive
condition (1.22) is from the separable condition (1.21). In Chaps. 3 and 4,
we focus on the restriction of our measurements to separable or adaptive
measurements and discuss the extent of its effects on the performance of
information processing.

Similarly, a separable measurement M = {Mω}ω∈Ω in a composite sys-
tem H1 ⊗ . . .⊗Hn of n systems H1, . . . ,Hn is given by

Mω = M1,ω ⊗ · · · ⊗Mn,ω, M1,ω ≥ 0, . . . , Mn,ω ≥ 0 .

An adaptive measurement may be written in terms of a POVM as

{M1,ω1 ⊗ · · · ⊗Mω1,... ,ωn−1
n,ωn

}(ω1,... ,ωn)∈Ω1×···×Ωn
.

We also denote n applications of the POVM M on the composite system
H⊗n by M⊗n.

Consider a composite systemHA⊗HB in a state ρ ∈ S(HA⊗HB). Assume
that we can directly access only system HA for performing measurements.
In this case, we would only be interested in the state of system HA, and the
density matrix onHA is given by the reduced density matrix TrHB

ρ ∈ S(HA),
which is defined to satisfy

Tr(TrHB
ρ)X = Tr(X ⊗ IHB

)ρ . (1.23)

Then, TrHB
can be regarded as a map from the density on the composite

system to the reduced density matrix and called a partial trace, often abbre-
viated to TrB . To specify the space on which the trace is acting, we denote
the trace by TrA even if it is a full trace. The partial trace can be calculated
according to

ρi,j =
d′∑

k=1

〈uA
i ⊗ uB

k |ρ|uA
j ⊗ uB

k 〉, TrB ρ =
∑
i,j

ρi,j |uA
i 〉〈uA

j | , (1.24)

where the orthonormal basis of HA (HB) is uA
1 , . . . , uA

d (uB
1 , . . . , uB

d′). This
may also be written as

TrB ρ =
∑
i,i′

(∑
j

ρ(i,j),(i′j)
)
|uA

i 〉〈uA
i′ | , (1.25)

where ρ =
∑

i,j,i′,j′ ρ(i,j),(i′j′)|uA
i , uA

j 〉〈uA
i′ , uB

j′ |. We may also write

TrB ρ =
d′∑

k=1

PkρPk , (1.26)

where Pk is a projection from HA ⊗HB to HA ⊗ uB
k .
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Exercises

1.10. Suppose that the spacesHA andHB also have other bases {vA
1 , . . . , vA

dA
}

and {vB
1 , . . . , vB

dB
} and that the unitary matrices VA = (vij

A ) and VB =
(vij

B ) satisfy vA
j =

∑
i vij

AuA
i and vB

j =
∑

i vij
BuB

i . Show that vA
j ⊗ vB

k =∑
i,l v

ij
Avlk

B uA
i ⊗ uB

l . Hence, the definition of the tensor product is indepen-
dent of the choice of the bases on HA and HB .

1.11. Prove (1.18).

1.12. Prove formulas (1.24)–(1.26), which calculate the partial trace.

1.13. Show that the following two conditions are equivalent, following the
steps below, for two Hermitian matrices ρA ≥ 0 and σA ≥ 0 on HA and
another two Hermitian matrices ρB ≥ 0 and σB ≥ 0 on HB .

◦ [ρA ⊗ ρB , σA ⊗ σB ] = 0. (1.27)
◦ (Tr σBρB)[ρA, σA] = 0 and (TrσAρA)[ρB , σB ] = 0. (1.28)

a Show that (1.27) holds when [ρA, σA] = [ρB , σB ] = 0.
b Show that (1.27) holds when Tr ρAσA = 0.
c Show that (1.28) ⇒ (1.27).
d Show that (1.27) ⇒ (1.28).

1.14. Show that TrB X(IA ⊗ Y ) = TrB(IA ⊗ Y )X, where X is a matrix on
HA ⊗HB and Y is a matrix on HB .

1.15. Further, show that the following formula is satisfied when ρ and ρ0 are
states on HA and HB :

TrB

√
ρ⊗ ρ0[X, Y ⊗ IB ]

√
ρ⊗ ρ0

=
√

ρ[TrB (IA ⊗
√

ρ0) X (IA ⊗
√

ρ0) , Y ]
√

ρ .

1.16. Let P be a projection from HA ⊗HB to the subspace {uA ⊗ uB |uB ∈
HB} for any elemenet uA ∈ HA. Show that

TrA(|uA〉〈uA| ⊗ IB)X = TrA PXP .

1.5 Matrix Inequalities and Matrix Monotone Functions

In later chapters, we will encounter quantities such as error probabilities
that require us to handle inequalities in various situations. Of course, prob-
abilities such as error probabilities are real numbers. However, in quantum
systems these probabilities are expressed in terms of matrices, as we show in
(1.8). Therefore, it is often helpful to use inequalities involving matrices when
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evaluating probabilities. By using the definition of positive semidefiniteness
defined in Sect. 1.1, we may define the order (matrix inequality)

X ≥ Y
def⇐⇒ X − Y ≥ 0

for two Hermitian matrices X and Y . Such an order requires some care as it
may involve some unexpected pitfalls arising from the noncommutativity of
X and Y . In order to examine this order in greater detail, let us first analyze
the properties of positive semidefiniteness again. Let X be a d × d positive
semidefinite ( ≥ 0) Hermitian matrix and Y be a d × d′ matrix. It follows
that Y ∗XY is a d′ × d′ positive semidefinite Hermitian matrix. This can be
verified from

〈v|Y ∗XY |v〉 = 〈Y v|X|Y v〉 ≥ 0 ,

where v is a vector of length d′. Furthermore, if X1 and X2 are two d × d
Hermitian matrices satisfying X1 ≥ X2, it follows that

Y ∗X1Y ≥ Y ∗X2Y . (1.29)

If the matrices commute, then some additional types of matrix inequalities
hold. For example, if d × d positive semidefinite Hermitian matrices X and
Y commute, then

X ◦ Y =
1
2

(XY + Y X) ≥ 0 . (1.30)

Inequality (1.30) does not hold unless X and Y commute. A simple coun-
terexample exists for the noncommuting case.

Let X1 and X2 be two d× d Hermitian matrices satisfying X1 ≥ X2 ≥ 0,
and Y be a d×d positive semidefinite Hermitian matrix. If all these matrices
commute, we have

X1Y X1 ≥ X2Y X2 . (1.31)

Inequality (1.31) does not hold unless all matrices commute. In general, when
noncommutativity is involved, matrix inequalities are more difficult to handle
and should therefore be treated with care.

Let us now define the projection {X ≥ 0} with respect to a Hermitian
matrix X with a spectral decomposition X =

∑
i xiEX,i [306]:

{X ≥ 0} def=
∑
xi≥0

EX,i . (1.32)

Consider the probability of the set {xi ≥ 0} containing the measurement
value for a measurement corresponding to the spectral decomposition {EX,i}
of X. This probability is

∑
xi≥0 Tr ρEX,i = Tr ρ{X ≥ 0} when the state is
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given as a density ρ. Therefore, this notation generalizes the concept of the
subset to the noncommuting case. In other words, the probability Tr ρ{X ≥
0} can be regarded as a generalization of the probability p{ω ∈ Ω|X(ω) ≥ 0},
where p is a probability distribution and X is a random variable. Similarly,
we may also define {X > 0}, {X ≤ 0}, {X < 0}, and {X �= 0}.

If two Hermitian matrices X and Y commute, we obtain the matrix in-
equality

{X ≥ 0}+ {Y ≥ 0} ≥ {X + Y ≥ 0} (1.33)

in the sense defined above. The range of the projection {X �= 0} is called the
support of X. If the support of {X �= 0} is not equal to I, then no inverse
exists. In this case, the Hermitian matrix Y satisfying XY = Y X = {X �= 0}
is called the generalized inverse matrix of a Hermitian matrix X.

We may verify (1.33) by noting that the LHS − RHS is equal to∑
xi,yi≥0 |ui〉〈ui|, for the matrices X =

∑
i xi|ui〉〈ui| and Y =

∑
i yi|ui〉〈ui|

and orthonormal basis {u1, . . . , ud}. It should be noted that this is not gen-
erally true unless X and Y commute. It is known that two noncummutative
Hermitian matrices X and Y cannot be diagonalized simultaneously. This
fact often causes many technical difficulities in the above method.

We now examinine matrix monotone functions, which are useful for deal-
ing with matrix inequalities. Given a function f , which maps a real number
to a real number, we denote the Hermitian matrix

∑
i f(xi)EX,i by f(X)

with respect to a Hermitian matrix X =
∑

i xiEX,i.
f is called a matrix monotone function in [0,∞) if f(X) ≥ f(Y ) for two

Hermitian matrices X and Y satisfying X ≥ Y with eigenvalues [0,∞). Some
known matrix monotone functions in [0,∞) are, for example, f(x) = xs (0 <
s ≤ 1), f(x) = log x, and f(x) = −1/x [49]. See Exercise A.7 for the s = 1/2
case. Since the function f(x) = −x−s (0 < s ≤ 1) is the composite function
of −1/x and xs, it is also a matrix monotone function. Note that the function
f(x) = xs (s > 1) (f(x) = x2, etc.) is not matrix monotone Ex. 1.21.

Exercises

1.17. Suppose that X and Y commute. Show inequalities (1.30) and (1.33)
using (1.10).

1.18. Verify inequality (1.31) when X1, X2, and Y commute.

1.19. Show that X =
(

1 0
0 0

)
, Y = 1

2

(
1 1
1 1

)
form a counterexample to (1.30).

1.20. Show that X1 = I, X2 =
(

1 0
0 0

)
, Y = 1

2

(
1 1
1 1

)
form a counterexample

to (1.31).
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1.21. Verify that the following X and Y provide a counterexample to f(x) =
x2 as a matrix monotone function:

X =
(

1 1
1 1

)
, Y =

(
2 1
1 1

)
.

1.22. Show that rank{X − xI ≥ 0} ≥ rankP when a Hermitian matrix X, a
projection P , and real number x satisfy X ≥ xP .

1.23. Show that TrX ≥ Tr |Y | for Hermitian matrices X and Y when X ≥ Y
and X ≥ −Y .



2

Information Quantities and Parameter
Estimation in Classical Systems

Summary. For the study of quantum information theory, we require fundamental
knowledge of information theory, mathematical statistics, and information geom-
etry, which are mainly examined in a nonquantum context. This chapter briefly
summarizes the fundamentals of these topics from a unified viewpoint. Since these
topics are usually treated individually, this chapter will be useful even for a non-
quantum applications.

Table 2.1. Denotations used in Chap. 2

Information quantities in classical system
H(p) Entropy of distribution p (2.1)
H(X) Entropy of random variable X
h(x) Binary entropy

H(X|Y ) Conditional entropy
D(p‖q) Relative entropy (2.8)
Df (p‖q) f -relative entropy
d2(p, q) Hellinger distance (2.13)
d1(p, q) Variational distance (2.16)
ψ(s|p) Rényi entropy (2.29)

φ(s|p‖q) Relative Rényi entropy
I(X : Y ) Mutual information (2.21)

I(X : Y |Z) Conditional mutual information (2.22)
I(p, Q) Transmission information (2.25)
pmix Uniform distribution

Ep(X) Expectation of X under distribution p
Vp(X) Variance of X under distribution p

Covp(X, Y ) Covariance between X and Y under distribution p
Jθ Fisher information (2.75)
Jθ Fisher information matrix

lθ(ω) Logarithmic derivative
µ(θ) Moment function (potential function) (2.83), (2.84)
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Table 2.1. Continued

Error criterion
V̂θ(θ̂) Mean square error of estimator θ̂ (2.94)

β({θ̂n}, θ, ε) Rate function of error probability (2.126)
α({θ̂n}, θ) First-order coefficient of rate function (2.127)

Information quantities in quantum systems
H(ρ) von Neumann entropy
ψ(s|ρ) Rényi entropy
D(ρ‖σ) Quantum relative entropy (2.53)
F (ρ, σ) Fidelity Tr |√ρ

√
σ|

b(ρ‖σ) Bures distance (2.55)
d1(ρ, σ) Trace norm distance (2.58)
φ(s|ρ‖σ) Relative Rényi entropy

2.1 Information Quantities in Classical Systems

When all the given density matrices ρ1, . . . , ρn commute, they may be si-
multaneously diagonalized using a common orthonormal basis {u1, . . . , ud}
according to ρ1 =

∑
i p1,i|ui〉〈ui|, . . . , ρn =

∑
i pn,i|ui〉〈ui|. In this case, it is

sufficient to treat only the diagonal elements, i.e., we discuss only the proba-
bility distributions p1, . . . , pn. Henceforth we will refer to such cases as classi-
cal because they do not exhibit any quantum properties. Let us now examine
various information quantities with respect to probability distributions.

2.1.1 Entropy

Shannon entropy is defined as

H(p) def=
k∑

i=1

−pi log pi (2.1)

with respect to a probability distribution p = {pi}ki=1.
1 It is often simply

called entropy. By denoting the probability distribution of a random variable
X by PX , we write the entropy of PX as H(X). For k = 2, the entropy of the
probability distribution (x, 1−x) is called a binary entropy, and it is given by
h(x) def= −x log x− (1−x) log(1−x). As shown later, we may use the number
of elements in the probability distribution p (i.e., k for the current case) to
prove that

H(p) ≤ log k . (2.2)

1 In this case, we consider 0 log 0 to be 0.
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The entropy H(PX,Y (x, y)) of the joint distribution PX,Y (x, y) for two ran-
dom variables X and Y is denoted by H(X, Y ). In particular, if Y can be
expressed as f(X), where f is some function, thenEx. 2.1

H(X, Y ) = H(X) . (2.3)

Given a conditional probability PX|Y =y = {PX|Y (x|y)}x, the entropy of X is

given by H(X|Y = y) def= H(PX|Y =y) when the random variable Y is known
to be y. The expectation value of this entropy with respect to the probability
distribution of Y is called the conditional entropy denoted by H(X|Y ). We
may write it as

H(X|Y ) def=
∑

y

∑
x

−PY (y)PX|Y (x|y) log PX|Y (x|y)

=−
∑
x,y

PX,Y (x, y) log
PX,Y (x, y)

PY (y)

=−
∑

PX,Y (x, y) log PX,Y (x, y) +
∑

y

PY (y) log PY (y)

= H(X, Y )−H(Y ) . (2.4)

Since (as will be shown later)

H(X) + H(Y )−H(X, Y ) ≥ 0 , (2.5)

we have

H(X) ≥ H(X|Y ) . (2.6)

If Y takes values in {0, 1}, (2.6) is equivalent to the concavity of the entropy
Ex. 2.2:

λH(p) + (1− λ)H(p′) ≤ H(λp + (1− λ)p′), 0 < ∀λ < 1 . (2.7)

2.1.2 Relative Entropy

We now consider a quantity that expresses the closeness between two proba-
bility distributions p = {px}kx=1 and q = {qx}kx=1. It is called an information
quantity because our access to information is closely related to the difference
between the distributions reflecting the information we are interested in. A
typical example is the relative entropy2 D(p‖q), which is defined as
2 The term relative entropy is commonly used in statistical physics. In information

theory, it is generally known as the Kullback–Leibler divergence, while in statistics
it is known as the Kullback–Leibler information.
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D(p‖q) def=
k∑

i=1

pi log
pi

qi
. (2.8)

This quantity is always no less than 0, and it is equal to 0 if and only if p = q.
This can be shown by applying the logarithmic inequalityEx. 2.5 “log x ≤ x− 1
for x > 0” to (2.8):

0−D(p‖q) =
k∑

i=1

pi

(
− qi

pi
+ 1 + log

qi

pi

)
≤

k∑
i=1

pi 0 = 0 .

Note that the equality of log x ≤ x−1 holds only when x = 1. We may obtain
(2.2) by using the positivity of the relative entropy for the case q = {1/k}.

Let us now consider possible information processes. When an information
process converts a set of data Nk

def= {1, . . . , k} to another set of data Nl

deterministically, we may denote the information processing by a function
from Nk to Nl. If it converts probabilistically, it is denoted by a real-valued
matrix {Qi

j} in which every element Qi
j represents the probability of the

output data j ∈ Nl when the input data are i ∈ Nk. This matrix Q = (Qi
j)

satisfies
∑l

j=1 Qi
j = 1 for each i. Such a matrix Q is called a stochastic transi-

tion matrix. When the input signal is generated according to the probability
distribution p, the output signal is generated according to the probability
distribution Q(p)j

def=
∑k

i=1 Qi
jpi. The stochastic transition matrix Q repre-

sents not only such probabilistic information processes but also probabilistic
fluctuations in the data due to noise. Furthermore, since it expresses the
probability distribution of the output system for each input signal, we can
also use it to model a channel transmitting information.

A fundamental property of a stochastic transition matrix Q is the inequal-
ity

D(p‖q) ≥ D(Q(p)‖Q(q)) , (2.9)

which is called an information-processing inequality. This property is often
called monotonicity.3 The inequality implies that the amount of information
should not increase via any information processing. This inequality will be
proved for the general case in Theorem 2.1. It may also be shown using a
logarithmic inequality.

For example, consider the stochastic transition matrix Q = (Qi
j) from

N2k to Nk, where Qi
j is 1 when i = j, j + k and 0 otherwise. We define the

probability distribution p̃ for N2k as

p̃i = λpi, p̃i+k = (1− λ)p′
i, 1 ≤ ∀i ≤ k

3 In this book, monotonicity refers to only the monotonicity regarding the change
in probability distributions or density matrices.
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for the probability distributions p, p′ in Nk, where 0 < λ < 1. Similarly, we
define q̃ for the probability distributions q, q′ in Nk. Then, it follows that

D(p̃‖q̃) = λD(p‖q) + (1− λ)D(p′‖q′) .

Since Q(p̃) = λp + (1 − λ)p′ and Q(q̃) = λq + (1 − λ)q′, the information-
processing inequality (2.9) yields the joint convexity of the relative entropy

λD(p‖q) + (1− λ)D(p′‖q′) ≥ D(λp + (1− λ)p′‖λq + (1− λ)q′). (2.10)

Next, let us consider other information quantities that express the differ-
ence between the two probability distributions p and q. In order to express the
amount of information, these quantities should satisfy the property given by
(2.9). This property can be satisfied by constructing the information quantity
in the following manner. First, we define convex functions. When a function
f satisfies

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2), 0 ≤ ∀λ ≤ 1,∀x1, x2 ∈ R ,

it is called a convex function. For a probability distribution p = {pi}, a convex
function f satisfies Jensen’s inequality:

∑
i

pif(xi) ≥ f

(∑
i

pixi

)
. (2.11)

Theorem 2.1 (Csiszár [84]) Let f be a convex function. The information
quantity Df (p‖q) def=

∑
i pif

(
qi

pi

)
then satisfies the monotonicity condition

Df (p‖q) ≥ Df (Q(p)‖Q(q)). (2.12)

Henceforth, Df (p‖q) will be called an f-relative entropy.4

For example, for f(x) = − log x we obtain the relative entropy. For f(x) =
1−
√

x,

Df (p‖q) = 1−
∑

i

√
pi
√

qi =
1
2

∑
i

(
√

pi −
√

qi)
2

. (2.13)

Its square root is called the Hellinger distance and is denoted by d2(p, q).
This satisfies the axioms of a distanceEx. 2.12. When f(x) = 4

1−α2 (1 −
x(1+α)/2)(−1 < α < 1), Df (p‖q) is equal to the α-divergence

4
1−α2

(
1−

∑
i p

(1−α)/2
i q

(1+α)/2
i

)
according to Amari and Nagaoka [11]. By

4 This quantity is more commonly used in information theory, where it is called
f -divergence. In this text, we prefer to use the term “relative entropy” for all
relative-entropy-like quantities.
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applying inequality (2.12) to the concave function x → xs (0 ≤ s ≤ 1) and
the convex function x→ xs (s ≤ 0), we obtain the inequalities∑

i

p1−s
i qs

i ≤
∑

j

Q(p)1−s
j Q(q)s

j for 0 ≤ s ≤ 1 ,

∑
i

p1−s
i qs

i ≥
∑

j

Q(p)1−s
j Q(q)s

j for s ≤ 0 .

Hence, the relative Rényi entropy φ(s|p‖q) def= log(
∑

i p1−s
i qs

i ) satisfies the
monotonicity

φ(s|p‖q) ≤ φ(s|Q(p)‖Q(q)) for 0 ≤ s ≤ 1 ,

φ(s|p‖q) ≥ φ(s|Q(p)‖Q(q)) for s ≤ 0 .

The relative entropy can be expressed as

φ′(0|p‖q) = −D(p‖q), φ′(1|p‖q) = D(q‖p). (2.14)

Since φ(s|p‖q) is a convex function of sEx. 2.14,

φ(s|p‖q)
s

=
φ(s|p‖q)− φ(0|p‖q)

s
(2.15)

is monotone increasing for s. A more precise analysis is given in Exercise
3.11 b. We will abbreviate it to φ(s) if it is not necessary to specify p and q
explicitly.

Proof of Theorem 2.1. Since f is a convex function, Jensen’s inequality
ensures that

∑
i

Qi
jpi∑

i′ Qi′
j pi′

f

(
qi

pi

)
≥ f

(∑
i

Qi
jpi∑

i′ Qi′
j pi′

qi

pi

)
= f

( ∑
i Qi

jqi∑
i′ Qi′

j pi′

)
.

Therefore,

Df (Q(p)‖Q(q)) =
∑

j

∑
i′′

Qi′′
j pi′′f

( (∑
i Qi

jqi

)(∑
i′ Qi′

j pi′
))

≤
∑

j

∑
i′′

Qi′′
j pi′′

∑
i

Qi
jpi∑

i′ Qi′
j pi′

f

(
qi

pi

)

=
∑

j

∑
i

Qi
jpif

(
qi

pi

)
=
∑

i

pif

(
qi

pi

)
= Df (p‖q).
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We consider the variational distance as another information quantity. It
is defined as

d1(p, q) def=
1
2

∑
i

|pi − qi| . (2.16)

It is not an f -relative entropy. However, it satisfies the monotonicity property
Ex. 2.8

d1(Q(p), Q(q)) ≤ d1(p, q) . (2.17)

The variational distance, Hellinger distance, and relative entropy are related
by the following formulas:

d1(p, q) ≥ d2
2(p, q) ≥ 1

2
d2
1(p, q) , (2.18)

D(p‖q) ≥ −2 log

(∑
i

√
pi
√

qi

)
≥ 2d2

2(p, q) . (2.19)

The last inequality may be deduced from the logarithmic inequality.
When a stochastic transition matrix Q = (Qi

j) satisfies
∑

i Qi
j = 1, i.e.,

its transpose is also a stochastic transition matrix, the stochastic transition
matrix Q = (Qi

j) is called a double stochastic transition matrix. When all
probabilities pi have the same value, the probability distribution p = (pi)
is called a uniform distribution and is denoted by pmix. If it is necessary to
denote the number of supports k explicitly, we will write pmix,k. Then, a
stochastic transition matrix Q is a double stochastic transition matrix if and
only if the output distribution Q(pmix) is a uniform distribution. As will be
shown in Sect. 8.4 by using majorization, the double stochastic transition
matrix Q and the probability distribution p satisfy

H(Q(p)) ≥ H(p) . (2.20)

2.1.3 Mutual Information

Let us say that we are given the joint probability distribution PX,Y of two
random variables X and Y . Then, the marginal distributions PX and PY of
PX,Y are given as

PX(x) def=
∑

y

PX,Y (x, y) and PY (y) def=
∑

x

PX,Y (x, y) .

Then, the conditional distribution is calculated as

PX|Y (x|y) =
PX,Y (x, y)

PY (y)
.
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When PX(x) = PX|Y (x|y), two random variables X and Y are indepen-
dent. In this case, the joint distribution PX,Y (x, y) is equal to the prod-
uct of marginal distributions PX(x)PY (y). That is, the relative entropy
D(PX,Y ‖PXPY ) is equal to zero. We now introduce mutual information
I(X : Y ), which expresses how different the joint distribution PX,Y (x, y) is
from the product of marginal distributions PX(x)PY (y). This quantity sat-
isfies the following relation:

I(X : Y ) def= D(PX,Y ‖PXPY ) =
∑
x,y

PX,Y (x, y) log
PX,Y (x, y)

PX(x)PY (y)

=H(X)−H(X|Y )=H(Y )−H(Y |X)=H(X)+H(Y )−H(X, Y ) . (2.21)

Hence, inequality (2.5) may be obtained from the above formula and the pos-
itivity of I(X : Y ). Further, we can define a conditional mutual information
in a manner similar to that of the entropy. This quantity involves another
random variable Z (in addition to X and Y ) and is defined as

I(X : Y |Z) def=
∑

z

PZ(z)I(X : Y |Z = z) (2.22)

=
∑
x,y,z

PX,Y,Z(x, y, z) log
PXY |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z)
≥ 0 ,

where I(X : Y |Z = z) is the mutual information of X and Y assuming that
Z = z is known. By applying (2.4) and (2.21) to the case Z = z, we obtain

I(X : Y |Z) =H(X|Z) + H(Y |Z)−H(XY |Z) = H(X|Z)−H(X|Y Z)
=− (H(X)−H(X|Z)) + (H(X)−H(X|Y Z))
=− I(X : Z) + I(X : Y Z) .

This equation is called the chain rule of mutual information, which may also
be written as

I(X : Y Z) = I(X : Z) + I(X : Y |Z) . (2.23)

Hence, it follows that

I(X : Y Z) ≥ I(X : Z) .

Note that (2.23) can be generalized as

I(X : Y Z|U) = I(X : Z|U) + I(X : Y |ZU) . (2.24)

Next, we apply the above argument to the case where the information chan-
nel is given by a stochastic transition matrix Q and the input distribution
is given by p. Let X and Y be, respectively, the random variables of an in-
put system and output system. Then, the mutual information I(X : Y ) can
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be regarded as the amount of information transmitted via channel Q when
the input signal is generated with the distribution p. This is called transmis-
sion information, and it is denoted by I(p, Q). Therefore, we can define the
transmission information by

I(p, Q) def= H(Q(p))−
∑

x

pxH(Qx) . (2.25)

We will now discuss Fano’s inequality, which is given by the following
theorem.

Theorem 2.2 (Fano [113]) Let X and Y be random variables that take val-
ues in the same data set Nk = {1, . . . , k}. Then, the following inequality
holds:

H(X|Y ) ≤ P{X �= Y } log(k − 1) + h(P{X �= Y }) (2.26)
≤ P{X �= Y } log k + log 2 .

Proof. We define the random variable Z
def=

{
0 X = Y
1 X �= Y

. Applying (2.4) to

X and Z under the condition Y = y, we obtain

H(X|Y = y) = H(X, Z|Y = y)

=
∑

z

PZ(z)H(X|Z = z, Y = y) + H(Z|Y = y).

The first equality follows from the fact that the random variable Z can be
uniquely obtained from X. Taking the expectation value with respect to y,
we get

H(X|Y ) =H(X|Z, Y ) + H(Z|Y ) ≤ H(X|Z, Y ) + H(Z)
=H(X|Z, Y ) + h(P{X �= Y }). (2.27)

Applying (2.2), we have

H(X|Y = y, Z = 0) = 0, H(X|Y = y, Z = 1) ≤ log(k − 1).

Therefore,

H(X|Y, Z) ≤ P{X �= Y } log(k − 1). (2.28)

Finally, combining (2.27) and (2.28), we obtain (2.26).
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2.1.4 The Independent and Identical Condition
and Rényi Entropy

Given a probability distribution p = {pi}ki=1, we can also construct the Rényi
entropy

ψ(s|p) def= log
∑

i

p1−s
i (2.29)

for a real number s in addition to the entropy H(p). We will abbreviate
the Rényi entropy to ψ(s) when there is no risk of ambiguity. When 0 <
s < 1, the Rényi entropy ψ(s) is a positive quantity that is larger when the
probability distribution is closer to the uniform distribution. In particular,
the Rényi entropy ψ(s) is equal to s log k when the distribution is the uniform
distribution pmix,k. When s < 0, the Rényi entropy ψ(s) is a negative quantity
that is smaller when the probability distribution is closer to the uniform
distribution. Finally, when s = 0, the Rényi entropy ψ(s) is equal to 0. The
derivative ψ′(0) of ψ(s) at s = 0 is equal to H(p). Further, similarly to (2.15),
the function ψ(s|p)

s is monotone increasing for s.
Now consider n data i1, . . . , in that are generated independently with the

same probability distribution p = {pi}ki=1. The probability of obtaining a
particular data sequence in = (i1, . . . , in) is given by pi1 , · · · , pin . This prob-
ability distribution is called an n-fold independent and identical distribution
(abbreviated as n-i.i.d.) and denoted by pn. When a sufficiently large number
n of data are generated according to the independent and identical condition,
the behavior of the distribution may be characterized by the entropy and the
Rényi entropy. Let us now discuss this in greater detail.

The probability of the likelihood being less than a ≥ 0 under the proba-
bility distribution p, i.e., the probability that {pi ≤ a}, is

p{pi ≤ a}=
∑

i:pi≤a

pi≤
∑

i:1≤ a
pi

(
a

pi

)s

pi≤
k∑

i=1

p1−s
i as =eψ(s)+s log a (2.30)

if 0 ≤ s. Accordingly,

pn{pn
in ≤ e−nR} ≤ en min0≤s≤1(ψ(s)−sR). (2.31)

Conversely, the probability of the likelihood being greater than a, i.e., the
probability that {pi > a}, is

p{pi > a} ≤
∑

i:1 > a
pi

(
a

pi

)s

pi ≤
k∑

i=1

p1−s
i as = eψ(s)+s log a (2.32)

if s ≤ 0. Similarly, we obtain

pn{pn
in > e−nR} ≤ en mins≤0(ψ(s)−sR). (2.33)
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The exponent on the right-hand side (RHS) of (2.31) is negative when
R > H(p). Hence, the probability pn{pn

in ≤ e−nR} approaches 0 exponen-
tially. In order to investigate this further, let us consider the following limit
by noting that ψ(0) = 0 and ψ′(0) = H(p):

lim
s→0

ψ(s)
s

= lim
s→0

ψ(s)− ψ(0)
s

= ψ′(0) = H(p) < R . (2.34)

By choosing a sufficiently small number 0 < s1, we have

ψ(s1) < s1R , (2.35)

and therefore

min
0≤s

(ψ(s)− sR) ≤ ψ(s1)− s1R < 0 .

We see that the exponent on the RHS of (2.31) is negative. Conversely, the
exponent on the RHS of (2.33) is negative when R < H(p), and the proba-
bility pn{pn

in ≤ e−nR} approaches 0 exponentially. This can be verified from
(2.34) by choosing s2 < 0 with a sufficiently small absolute value.

We may generalize this argument for the likelihood qn
in of a different prob-

ability distribution q as follows. Defining ψ̃(s) def= log
∑

i piq
−s
i , we can show

that

pn{qn
in ≤ e−nR} ≤ en min0≤s(ψ̃(s)−sR), (2.36)

pn{qn
in > e−nR} ≤ en mins≤0(ψ̃(s)−sR). (2.37)

The Rényi entropy ψ(s) and the entropy H(p) express the concentration of
probability under independent and identical distributions with a sufficiently
large number of data. To investigate this, let us consider the probability
P (p, L) of the most frequent L outcomes for a given probability distribution
p = (pi).5 This can be written as

P (p, L) =
L∑

i=1

p↓
i ,

where p↓
i are the elements of pi that are reordered according to size. Let us

analyze this by reexamining the set {pi > a}. The number of elements of the
set |{pi > a}| is evaluated as

|{pi > a}| ≤
∑

i:pi >a

(pi

a

)1−s

≤
k∑

i=1

p1−s
i a−1+s = eψ(s)−(1−s) log a (2.38)

5 If L is not an integer, we consider the largest integer that does not exceed L.
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when 0 < s < 1. By using (2.30) and defining b(s, R) def= ψ(s)−R
1−s for R and

0 ≤ s < 1, we have

|{pi > eb(s,R)}| ≤ eR, p{pi ≤ eb(s,R)} ≤ e
ψ(s)−sR

1−s .

We choose s0
def= argmin0≤s≤1

ψ(s)−sR
1−s

6 and define P c(p, eR) def= 1−P (p, eR);
hence,

P c(p, eR) ≤ e
ψ(s0)−s0R

1−s0 = emin0≤s≤1
ψ(s)−sR

1−s . (2.39)

Applying this argument to the n-i.i.d pn, we have

P c(pn, enR) ≤ en
ψ(s0)−s0R

1−s0 = en min0≤s≤1
ψ(s)−sR

1−s . (2.40)

Now, we let R > H(p) and choose a sufficiently small number 0 < s1 < 1.
Then, inequality (2.35) yields

min
0≤s<1

ψ(s)− sR

1− s
≤ ψ(s1)− s1R

1− s1
< 0 .

Hence, the probability P c(pn, enR) approaches 0 exponentially. That implies
that the probabilities are almost concentrated on the most frequent enR ele-
ments because 1−P c(pn, enR) equals the probability on the most frequent enR

elements. Since this holds when R > H(p), most of the probabilities are con-
centrated on enH(p) elements. Therefore, this can be interpreted as meaning
that the entropy H(p) asymptotically expresses the degree of concentration.
This will play an important role in problems such as source coding, which
will be discussed later.

On the other hand, when H(p) > R, P (pn, enR) approaches 0. To prove
this, let us consider the following inequality for an arbitrary subset A:

pA ≤ a|A|+ p{pi > a} . (2.41)

We can prove this inequality by considering the set A = (A∩{pi ≤ a})∪(A∩
{pi > a}). Defining R

def= log |A| and a
def= eb(s,R) and using (2.32), we obtain

pA ≤ 2e
ψ(s)−sR

1−s . Therefore, P (p, eR) ≤ 2emins≤0
ψ(s)−sR

1−s , and we obtain

P (pn, enR) ≤ 2en mins≤0
ψ(s)−sR

1−s . (2.42)

We also note that in order to avoid P (pn, enR) → 0, we require R ≥ H(p)
according to the condition mins≤0

ψ(s)−sR
1−s < 0.

6 argmin0≤s≤1 f(s) returns the value of s that yields min0≤s≤1 f(s). argmax is
similarly defined.
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Exercises

2.1. Verify (2.3) if the variable Y can be written f(X) for a function f .

2.2. Verify that (2.6) and (2.7) are equivalent.

2.3. Show that

H(pA) + H(pB) = H(pA × pB) (2.43)

for probability distributions pA in ΩA, pB in ΩB , and pA × pB(ωA, ωB) =
pA(ωA)pB(ωB) in ΩA ×ΩB .

2.4. Show that

D(pA‖qA) + D(pB‖qB) = D(pA × pB‖qA × qB) (2.44)

for probability distributions pA, qA in ΩA and pB , qB in ΩB .

2.5. Show the logarithmic inequality, i.e., the ineqaulity log x ≤ x− 1, holds
for x > 0 and the equality holds only for x = 1.

2.6. Show that the f -relative entropy Df (p‖q) of a convex function f satisfies
Df (p‖q) ≥ f(1).

2.7. Prove (2.13).

2.8. Show that the variational distance satisfies the monotonicity condition
(2.17).

2.9. Show that d1(p, q) ≥ d2
2(p, q) by first proving the inequality |x − y| ≥

(
√

x−√y)2.

2.10. Show that d2
2(p, q) ≥ 1

2d2
1(p, q) following the steps below.

a Prove (∑
i

|pi − qi|
)2

≤
(∑

i

|√pi −
√

qi|2
)(∑

i

|√pi +
√

qi|2
)

using the Schwarz inequality.
b Show that

∑
i |
√

pi +
√

qi|2 ≤ 4.
c Show that d2

2(p, q) ≥ 1
2d2

1(p, q) using the above results.

2.11. Show that D(p‖q) ≥ −2 log
(∑

i

√
pi
√

qi

)
.

2.12. Verify that the Hellinger distance satisfies the axioms of a distance by
following the steps below.
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a Prove the following for arbitrary vectors x and y

(‖x‖+ ‖y‖)2 ≥ ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2 .

b Prove the following for arbitrary vectors x and y:

‖x‖+ ‖y‖ ≥ ‖x + y‖ .

c Show the following for the three probability distributions p, q, and r:√∑
i

(
√

pi −
√

qi)
2 ≤

√∑
i

(
√

pi −
√

ri)
2 +

√∑
i

(
√

ri −
√

qi)
2
.

Note that this formula is equivalent to the axiom of a distance d2(p, q) ≤
d2(p, r) + d2(r, q) for the Hellinger distance.

2.13. Show (2.14).

2.14. Show that φ(s|p‖q) is convex for s.

2.15. Show the chain rule of conditional mutual information (2.24) based on
(2.23).

2.2 Extensions to Quantum Systems

The above-mentioned discussion on probability distributions may be ex-
tended to the density matrix ρ in quantum systems as follows. Let us first
consider the von Neumann entropy of the density matrix ρ with the spectral
decomposition ρ =

∑d
i=1 pi|ui〉〈ui| as its quantum extension of the entropy.7

The von Neumann entropy is defined as the entropy of the probability dis-
tribution p = {pi} of the eigenvalues of the density ρ, and it is denoted
by H(ρ). Applying the arguments of Sect. 1.5 to f(x) = log(x), we have
log ρ

def=
∑d

i=1(log pi)|ui〉〈ui|, and we can write H(ρ) as

H(ρ) = −Tr ρ log ρ .

The von Neumann entropy also satisfies the concavity, as proved in Sect. 5.5.
Similarly, the Rényi entropy is defined as ψ(s|ρ) def= log Tr ρ1−s. Henceforth,
we will use its abbreviation ψ(s) as mentioned previously. Regarding the
diagonal elements of the diagonalized matrix to be a probability distribution,
we can therefore interpret the tensor product ρ⊗n as the quantum-mechanical
7 Historically, the von Neumann entropy for a density matrix ρ was first defined by

von Neumann [408]. Following this definition, Shannon [366] defined the entropy
for a probability distribution.
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analog of the independent and identical distribution. In other words, the
eigenvalues of ρ⊗n are equal to the n-i.i.d. of the probability distribution
resulting from the eigenvalues of ρ.

Since {ρsa−s > 1}(ρsa−s − I) ≥ 0 for s ≥ 0, the inequalities

{ρ > a} = {ρsa−s > 1} ≤ {ρsa−s > 1}ρsa−s ≤ ρsa−s (2.45)

hold. Similarly,

{ρ ≤ a} ≤ ρ−sas.

Hence, we obtain

Tr {ρ > a} ≤ Tr ρsa−s , (2.46)

Tr ρ {ρ ≤ a} ≤ Tr ρ1−sas , (2.47)

for a > 0 and 0 ≤ s. Treating the independent and identical distribution in
a manner similar to (2.31) and (2.33), we obtain

Tr ρ⊗n
{
ρ⊗n ≤ e−nR

}
≤ en min0≤s(ψ(s)−sR) (2.48)

Tr ρ⊗n
{
ρ⊗n > e−nR

}
≤ en mins≤0(ψ(s)−sR) . (2.49)

Certainly, the relationship similar to the classical system holds concerning
ψ(s)−sR

1−s and H(ρ).

Replacing ρ by a different state σ in (2.45), and defining ψ̃(s) def=
log Tr ρσ−s, we have for s ≥ 0

Tr ρ {σ > a} ≤ Tr ρσsa−s. (2.50)

Based on an argument similar to that in Sect. 2.1.4, we can show that

Tr ρ⊗n
{
σ⊗n ≤ e−nR

}
≤ en min0≤s(ψ̃(s)−sR) , (2.51)

Tr ρ⊗n
{
σ⊗n > e−nR

}
≤ en mins≤0(ψ̃(s)−sR) . (2.52)

Therefore, the exponent on the RHS of (2.51) is negative when R >
−Tr ρ log σ, and that on the RHS of (2.52) is negative when R < −Tr ρ log σ.
This kind of argument can be applied to inequalities (2.48) and (2.49).

As an extension of the relative entropy, we define the quantum relative
entropy D(ρ‖σ) for two density matrices ρ and σ as

D(ρ‖σ) def= Tr ρ(log ρ− log σ) . (2.53)

The quantum relative entropy satisfies an inequality similar to (2.9), which
will be discussed in greater detail in Sect. 5.4. For the two quantum states ρ
and σ, we can also define a quantum extension of the relative Rényi entropy
φ(s|ρ‖σ) def= log(Tr ρ1−sσs) and obtain Ex. 2.19
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φ′(0|ρ‖σ) = −D(ρ‖σ) , φ′(1|ρ‖σ) = D(σ‖ρ) . (2.54)

When it is not necessary to explicitly specify ρ and σ, we will abbreviate this
value to φ(s). If ρ commutes with σ, φ(s) is equal to the classical relative
Rényi entropy φ(s) with probability distributions that consist of eigenvalues.

The quantum version of the Hellinger distance d2(p, q) is the Bures dis-
tance b(ρ, σ) defined as

b2(ρ, σ) def= min
U :unitary

1
2

Tr(
√

ρ−
√

σU)(
√

ρ−
√

σU)∗ . (2.55)

The Bures distance b(ρ, σ) also satisfies the axioms of a distance in a similar
way to the Hellinger distance Ex. 2.20. Using (A.13), this quantity may be
rewritten as

b2(ρ, σ) = 1− 1
2

max
U :unitary

Tr
(
U
√

ρ
√

σ + U∗(
√

ρ
√

σ)∗)
= 1− Tr |√ρ

√
σ| = 1− Tr

√√
ρσ
√

ρ .

Therefore, this value does not change when ρ and σ are interchanged. Later,
we will also see that this quantity also satisfies similar information inequalities
(Corollary 8.4). The quantity Tr |√ρ

√
σ| is called fidelity and is denoted by

F (ρ, σ). Then, it follows that

b2(ρ, σ) = 1− F (ρ, σ). (2.56)

If one of the states is a pure state, then

F (|u〉〈u|, ρ) =
√
〈u|ρ|u〉 . (2.57)

The square of this value corresponds to a probability. If both ρ and σ are
pure states |u〉〈u| and |v〉〈v|, respectively, then Tr

√√
ρσ
√

ρ = |〈u|v〉| and
the Bures distance is given by

b2(|u〉〈u|, |v〉〈v|) = 1− |〈u|v〉| .

We also define the trace norm distance d1(ρ, σ) as a quantum version of
the variational distance by

d1(ρ, σ) def=
1
2
‖ρ− σ‖1 , (2.58)

where ‖ · ‖1 denotes the trace norm (Sect. A.3). This also satisfies the mono-
tonicity [see (5.39) and Exercise 5.22].

If the states involved in the above quantities are pure states such as |u〉〈u|
and |v〉〈v|, we shall abbreviate the notation to label the states, i.e., b(ρ, σ)
will be written as b(u, v), and so on. The above information quantities satisfy
the monotonicity8 with respect to the measurement M as follows.
8 Here, the monotonicity concerns only the state evolution, not parameter s.
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D(ρ‖σ) ≥ D(PM
ρ ‖PM

σ ) , (2.59)

b(ρ, σ) ≥ d2(PM
ρ , PM

σ ) , (2.60)

d1(ρ, σ) ≥ d1(PM
ρ , PM

σ ) , (2.61)

φ(s|ρ‖σ) ≤ φ(s|PM
ρ ‖PM

σ ) for 0 ≤ s ≤ 1 , (2.62)

φ(s|ρ‖σ) ≥ φ(s|PM
ρ ‖PM

σ ) for s ≤ 0 . (2.63)

Proofs of (2.59) and (2.63) are given in Sect. 3.7, and (2.60), (2.61), and
(2.62) are proved in Exercise 2.25, Sect. 3.3, and Sect. A.4, respectively.
As is discussed in Exercises 2.26–2.28, the equalities of (2.60) and (2.61)
hold when the POVM M is chosen appropriately. In contrast, there exists a
POVM M satisfying the equality in (2.59) only when ρ and σ commute, as
shown in Theorem 3.5; however, there exists a sequence of POVMs attaining
the equality in (2.59) in an asymptotic sense, as mentioned in Exercise 5.44.
However, the equality in (2.63) for s ≤ −1 does not necessarily hold even in
an asymptotic sense, as verified from Exercises 3.18 and 5.25.

Exercises

2.16. Show that the information quantities D(p‖q), d2(p, q), and d1(p, q) be-
tween q and p are equal to their quantum versions D(ρ‖σ), b(ρ, σ), and
d1(ρ, σ) for commuting ρ and σ with diagonalizations ρ =

∑
i pi|ui〉〈ui| and

σ =
∑

i qi|ui〉〈ui|.

2.17. Show for density matrices ρA, σA in HA and density matrices ρB , σB

in HB

H(ρA) + H(ρB) = H(ρA ⊗ ρB) ,

D(ρA‖σA) + D(ρB‖σB) = D(ρA ⊗ ρB‖σA ⊗ σB) .

2.18. Show that

Tr ρf(X) ≥ f(Tr ρX) (2.64)

for a convex function f , a Hermitian matrix X, and a state ρ. This is a
quantum version of Jensen’s inequality.

2.19. Show (2.54) using Exercise 1.4.

2.20. Show that the Bures distance satisfies the axioms of a distance by
following the steps below.

a Show the following for arbitrary matrices X and Y :
√

Tr XX∗ +
√

Tr Y Y ∗ ≥
√

Tr(X − Y )(X − Y )∗ .
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b Show the following for density matrices ρ1, ρ2, ρ3 and unitary matrices
U1, U2:√

Tr (
√

ρ1 −
√

ρ2U1) (
√

ρ1 −
√

ρ2U1)
∗

≤
√

Tr(
√

ρ1−
√

ρ3U2)(
√

ρ1−
√

ρ3U2)
∗+
√

Tr(
√

ρ3−
√

ρ2U1U∗
2)(
√

ρ3−
√

ρ2U1U∗
2)

∗
.

c Show that b(ρ1, ρ2) ≤ b(ρ1, ρ3) + b(ρ3, ρ2) for density matrices ρ1, ρ2, and
ρ3.

2.21. Show that the square of the Bures distance satisfies

b2(ρ1, ρ2) ≤ 2b2(ρ1, ρ3) + 2b2(ρ3, ρ2) .

2.22. Show the following regarding the Bures distance for two different or-
thogonal bases {uk} and {vk}.

a Show that the vectors u =
∑d

k=1
√

pkeiθkuk and v =
∑d

k=1
√

pkeiθkvk

satisfy

〈u|v〉 =
∑

i

pi〈ui|vi〉 (2.65)

for 〈uk|vj〉 = 0, k �= j, an arbitrary real number θi, and a probability
distribution pi.

b Show that (2.65) still holds if θi is chosen appropriately, even if the above
conditions do not hold.

2.23. Show that d1(u, v) =
√

1− |〈u|v〉|2 using the result of Exercise A.3.

2.24. Show that φ(s|ρ‖σ) is convex by following the steps below [320].

a Show that φ′(s|ρ‖σ) =
Tr ρ1−sσs(log σ − log ρ)

Tr ρ1−sσs
by using Exercise 1.4.

b Show that
d Tr ρ1−sσs(log σ − log ρ)

ds
= Trρ1−s(log σ − log ρ)σs(log σ −

log ρ).

c Show that φ′′(s|ρ‖σ) =
Tr ρ1−s(log σ − log ρ)σs(log σ − log ρ)

Tr ρ1−sσs

− (Tr ρ1−sσs(log σ − log ρ))2

(Tr ρ1−sσs)2
.

d Show the convexity of φ(s|ρ‖σ) using Schwarz’s inequality.

2.25. Show that ∑
i

√
PM

ρ (i)
√

PM
σ (i) ≥ Tr |√ρ

√
σ| (2.66)

for a POVM M and ρ, σ following the steps below [118]. This is equivalent
to (2.60).
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a Show that
√

Tr X∗X
√

Tr Y ∗Y ≥ |Tr X∗Y | for two matrices X and Y .
b Show that

√
Tr Uρ1/2Miρ1/2U∗

√
Tr σ1/2Miσ1/2 ≥ |Tr Uρ1/2Miσ

1/2| for
a unitary matrix U .

c Show (2.66).

2.26. Suppose that the density matrix σ possesses the inverse. Show that
the equality in (2.66) holds if M = {Mi} is chosen to be the spectral de-
composition of ρ1/2U∗σ−1/2 = σ−1/2(σ1/2ρσ1/2)1/2σ−1/2, for U satisfying
|ρ1/2σ1/2| = Uρ1/2σ1/2 = σ1/2ρ1/2U∗ [118].

2.27. Suppose that the density matrix σ does not possess the inverse. Show
that there exists a POVM satisfying the equality in (2.66) by following the
steps below.

a Show that the support of matrix U is included in the support H1 of σ
when |ρ1/2σ1/2| = Uρ1/2σ1/2 = σ1/2ρ1/2U∗.

b Let M = {Mi} be the spectral decomposition of the matrix ρ1/2U∗σ−1/2

on H1 and let P be a projection onto H1. Show that the POVM {Mi} ∪
{I − P} in H satisfies the equality in (2.66).

2.28. Show that the equality in (2.61) holds when the POVM M is the
diagonalization of ρ− σ.

2.3 Geometry of Probability Distribution Family

2.3.1 Inner Product for Random Variables and Fisher Information

In Sect. 2.1, we introduced the mutual information I(X : Y ) as a quantity
that expresses the correlation between two random variables X and Y . How-
ever, for calculating this quantity, one must calculate the logarithm of each
probability, which is a rather tedious process. We now introduce the covari-
ance Covp(X, Y ) as a quantity that expresses the correlation between two
real random variables X and Y . Generally, calculations involving the covari-
ance are less tedious than those of mutual information. Given a probability
distribution p in a space Ω, the covariance is defined as

Covp(X, Y ) def=
∑
ω∈Ω

(X(ω)− Ep(X))(Y (ω)− Ep(Y ))p(ω),

Ep(X) def=
∑
ω∈Ω

X(ω)p(ω).

If X and Y are independent, the covariance Covp(X, Y ) is equal to 0 Ex. 2.3.2.
Thus far it has not been necessary to specify the probability distribution,
and therefore we had no difficulties in using notations such as H(X) and
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I(X : Y ). However, it is important to emphasize the probability distribution
treated in our discussion; hence, we will use the above notation without their
abbreviation. If X and Y are the same, the covariance Covp(X, Y ) coincides
with the variance Vp(X) of X. Given a set of random variables X1, . . . , Xd,
the matrix Covp(Xi, Xj) is called a covariance matrix. Now, starting from a
given probability distribution p, we define the inner product in the space of
random variables as9

〈A, B〉(e)p
def=

∑
ω

A(ω)B(ω)p(ω) . (2.67)

Then, the covariance Covp(X, Y ) is equal to the above inner product between
the two random variables (X(ω) − Ep(X)) and (Y (ω) − Ep(Y )) with a zero
expectation value. That is, the inner product (2.67) implies the correlation
between the two random variables with zero expectation value in classical
systems. This inner product is also deeply related to statistical inference in
another sense, as discussed below.

When we observe n independent random variables X1, . . . , Xn identical
to random variable X, the average value

Xn def=
n∑

i=1

X1 + . . . + Xn

n
(2.68)

converges to the expectation Ep(X) in probability. That is,

pn{|Xn − Ep(X)| > ε} → 0, ∀ε > 0 , (2.69)

which is called the law of large numbers. Further, the distribution of the
random variable

√
n(Xn − Ep(X)) (2.70)

goes to the Gaussian distribution with the variance V = Vp(X):

PG,V (x) =
1√
2πV

e− x2
2V , (2.71)

i.e.,

pn{a ≤
√

n(Xn − Ep(X)) ≤ b} →
∫ b

a

PG,V (x)dx , (2.72)

which is called the central limit theorem. Hence, the asymptotic behavior is
almost characterized by the expectation E(X) and the variance V(X).
9 The superscript (e) means “exponential.” This is because A corresponds to the

exponential representation, as discussed later.



2.3 Geometry of Probability Distribution Family 47

For n random variables X1, . . . , Xk, we can similarly define the random
variables Xn

1 , . . . ,Xn
k . These converge to their expectation in probability.

The distribution of the random variables

(
√

n(Xn
1 − Ep(X)), . . . ,

√
n(Xn

k − Ep(X))) (2.73)

converges the k-multirate Gaussian distribution and the covariance matrix
V = Covp(Xi, Xj):

PG,V (x) def=
1√

(2π)k det V
e〈x|V −1|x〉 . (2.74)

Therefore, the asymptotic behavior is almost described by the expectation
and the covariance matrix.

Consider the set of probability distributions pθ parameterized by a sin-
gle real number θ. For example, we can parameterize a binomial distribution
with the probability space {0, 1} by pθ(0) = θ, pθ(1) = 1−θ. When the set of
probability distributions is parameterized by a single parameter, it is called
a probability distribution family and is represented by {pθ|θ ∈ Θ ⊂ R}. Based
on a probability distribution family, we can define the logarithmic derivative
as lθ0(ω) def= d log pθ(ω)

dθ = dpθ(ω)
dθ

∣∣∣
θ=θ0

/pθ0(ω). Since it is a real-valued func-

tion of the probability space, it can be regarded as a random variable. We can
consider that this quantity expresses the sensitivity of the probability distri-
bution to the variations in the parameter θ around θ0. The Fisher metric
(Fisher information) is defined as the variance of the logarithmic derivative
lθ0 . Since the expectation of lθ0 with respect to pθ0 is 0, the Fisher information
can also be defined as

Jθ
def= 〈lθ, lθ〉(e)pθ

. (2.75)

Therefore, this quantity represents the amount of variation in the probability
distribution due to the variations in the parameter. Alternatively, it can indi-
cate how much the probability distribution family represents the information
related to the parameter. As discussed later, these ideas will be further re-
fined from the viewpoint of statistical inference. The Fisher information Jθ

may also be expressed as the limits of relative entropy and Hellinger distance
Ex. 2.31,2.32:

Jθ

2
= 4 lim

ε→0

d2
2(pθ, pθ+ε)

ε2
(2.76)

= lim
ε→0

D(pθ‖pθ+ε)
ε2

= lim
ε→0

D(pθ+ε‖pθ)
ε2

. (2.77)

The Fisher information Jθ is also characterized by the limit of relative Rényi
entropy Ex. 2.33:

Jθ

2
= lim

ε→0

−φ(s|pθ‖pθ+ε)
ε2s(1− s)

. (2.78)
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Next, let us consider the probability distribution family {pθ|θ ∈ Θ ⊂ R
d}

with multiple parameters. For each parameter, we define the logarithmic
derivative lθ0:i(ω) as

lθ0:i(ω) def=
∂ log pθ(ω)

∂θi

∣∣∣∣
θ=θ0

=
∂pθ(ω)

∂θi

∣∣∣∣
θ=θ0

/
pθ0(ω).

We use the covariance matrix 〈lθ:i, lθ:j〉(e)pθ for the logarithmic derivatives
lθ0:1, . . . , lθ0:d instead of the Fisher information. This matrix is called the
Fisher information matrix and will be denoted by Jθ = (Jθ:i,j). This matrix
takes the role of the Fisher information when there are multiple parameters;
we discuss this in greater detail below.

This inner product is useful for treating the conditional expectation as
follows. Suppose that we observe only the subsystem Ω1, although the total
system is given as Ω1 × Ω2. Let us consider the behavior of the random
variable X of the total system in the subsystem. This behavior depends on
the distribution p of the total system. It is described by the conditional
expectation κp(X), which is defined to satisfy

〈Y, κp(X)〉(e)p = 〈Y, X〉(e)p (2.79)

for any random variable Y on Ω1. In this case, we identify the random variable
Y on Ω1 with the random variable Ỹ on Ω1 ×Ω2 by

Ỹ (ω1, ω2) = Y (ω1), ∀(ω1, ω2) ∈ Ω1 ×Ω2 . (2.80)

Generally, when we focus on a subspace U of random variables for an arbitrary
random variable X, we can define the conditional expectation κU,p(X) ∈ U
as

〈Y, κU,p(X)〉(e)p = 〈Y, X〉(e)p , ∀Y ∈ U . (2.81)

This implies that the map κU,p( ) is the projection from the space of all
random variables to the subspace U with respect to the inner product 〈 , 〉p.

2.3.2 Exponential Family and Divergence

In Sect. 2.1, relative entropy D(p‖q) is defined. In this subsection, we char-
acterize it by a geometrical viewpoint.

Let p(ω) be a probability distribution and X(ω) be a random variable.
When the family {pθ|θ ∈ Θ} has the form

pθ(ω) = p(ω)eθX(ω)−µ(θ) , (2.82)

µ(θ) def= log
∑
ω

p(ω)eθX(ω) , (2.83)
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the logarithmic derivative at respective points equals the logarithmic deriva-
tive at a fixed point with the addition of a constant. In this case, the family is
called an exponential family, and µ(θ) is called the moment function of X. In
particular, since the logarithmic derivative is closely related to exponential
families, it is often called the exponential (e) representation of the deriva-
tive. Therefore, we use the superscript (e) in the inner product 〈 , 〉(e)p . The
function µ(θ) is often called a potential function in the context of information
geometry. Since the second derivative µ′′(θ) is the Fisher information Jθ ≥ 0,
the moment function µ(θ) is a convex function. Therefore, the first derivative
µ′(θ) =

∑
ω pθ(ω)X(ω) is monotone increasing. That is, we may regard it as

another parameter identifying the distribution pθ, and denote it by η. The
original parameter θ is called a natural parameter, and the other parameter
η is an expectation parameter. For example, in the binomial distribution, the
parameterization pθ(0) = 1/(1 + eθ), pθ(1) = eθ/(1 + eθ) is the natural pa-
rameter, and the parameterization pη(1) = η, pη(0) = 1−η is the expectation
parameter. Hence, the binomial distribution is an exponential family.

Further, let X1(ω), . . . , Xk(ω) be k random variables. We can define a
k-parameter exponential family

pθ(ω) def= p(ω)e
∑

i θiXi(ω)−µ(θ), µ(θ) def= log
∑
ω

p(ω)e
∑

i θiXi(ω) . (2.84)

The parameters θi are natural parameters, and the other parameters ηi
def=

∂µ
∂θi =

∑
ω pθ(ω)Xi(ω) are expectation parameters. Since the second deriva-

tive ∂2µ(θ)
∂θj∂θi is equal to the Fisher information matrix Jθ:i,j , the moment func-

tion µ(θ) is a convex function.
Let µ(θ) be a twice-differentiable and strictly convex function defined on

a subset of the d-dimensional real vector space R
d. The divergence concerning

the convex function µ is defined by

Dµ(θ̄‖θ) def=
∑

i

ηi(θ̄)(θ̄i − θi)− µ(θ̄) + µ(θ), ηi(θ)
def=

∂µ

∂θi
(θ) . (2.85)

This quantity has the following two characterizations:

Dµ(θ̄‖θ) = max
θ̃

∑
i

∂µ

∂θi
(θ̄)(θ̃i − θi)− µ(θ̃) + µ(θ) (2.86)

=
∫ 1

0

∑
i,j

(θ̄i − θi)(θ̄j − θj)
∂2µ

∂θi∂θj
(θ + (θ̄ − θ)t)tdt, (2.87)

where θ̃ = (θ̄ − θ)t + θ. In the one-parameter case, we obtain

Dµ(θ̄‖θ) =µ′(θ̄)(θ̄ − θ)− µ(θ̄) + µ(θ)

= max
θ̃

µ′(θ̄)(θ̃ − θ)− µ(θ̃) + µ(θ) =
∫ θ̄

θ

µ′′(θ̃)(θ̃ − θ)dθ̃ . (2.88)
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Since the function µ is strictly convex, the correspondence θi ↔ ηi =
∂µ
∂θi is one-to-one. Hence, the divergence Dµ(θ̄‖θ) can be expressed with the
parameter η. For this purpose, we define the Legendre transform ν of µ

ν(η) def= max
θ̃

∑
i

ηiθ̃
i − µ(θ̃).

Then, the function ν is a convex function, and we can recover the function µ
of θ as

µ(θ) = max
η̃

∑
i

θiη̃i − ν(η̃), θi =
∂ν

∂ηi
.

The second derivative matrix ∂2ν
∂ηi∂ηj

of ν is equal to the inverse of the matrix
∂2µ

∂θi∂θj .
In particular, when ηi = ∂µ

∂θi (θ),

ν(η) =
∑

i

ηiθ
i − µ(θ) = Dµ(θ‖0)− µ(0), (2.89)

µ(θ) =
∑

i

θiηi − ν(η) = Dν(η‖0)− ν(0). (2.90)

Using these relations, we can characterize the divergence concerning the con-
vex function µ by the divergence concerning the convex function ν as

Dµ(θ̄‖θ) = Dν(η‖η̄) =
∑

i

θi(ηi − η̄i)− ν(η) + ν(η̄). (2.91)

Now, we apply the discussion about the divergence to a multiparametric
exponential family {pθ|θ ∈ R} defined in (2.84) [11]. Then,

D(pθ̄‖pθ) = Dµ(θ̄‖θ) =
∑

i

ηi(θ̄)(θ̄i − θi)− µ(θ̄) + µ(θ).

In particular, applying (2.88) to a one-parameter exponential family (2.82),
we have

D(pθ̄‖pθ) =D(pη(θ)+ε‖pη(θ)) = (θ̄ − θ)η(θ̄)− µ(θ̄) + µ(θ)

=
∫ θ̄

θ

Jθ̃(θ̃ − θ)dθ̃ = max
θ̃:θ̃≥θ

(θ̃ − θ)(η(θ) + ε)− µ(θ̃) + µ(θ) . (2.92)

In what follows, we consider the case where p is the uniform distribution
pmix. Let the random variables X1(ω), . . . , Xk(ω) be a CONS of the space of
random variables with expectation 0 under the uniform distribution pmix, and
Y 1(ω), . . . , Y k(ω) be its dual basis satisfying

∑
ω Y i(ω)Xj(ω) = δi

j . Then,
any distribution can be parameterized by the expectation parameter as
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pη(θ)(ω) = pmix(ω) +
∑

i

ηi(θ)Y i(ω) .

From (2.91) and (2.89),

D(pη̄‖pη) = Dν(η‖η̄) =
∂ν

∂ηi
(ηi − η̄i)− ν(η) + ν(η̄) ,

ν(η) = D(pη‖pmix) = −H(pη) + H(pmix)

because µ(0) = 0. The second derivative matrix of ν is the inverse of the
second derivative matrix of µ, i.e., the Fisher information matrix concerning
the natural parameter θ. That is, the second derivative matrix of ν coincides
with the Fisher information matrix concerning the expectation parameter η.
Hence, applying (2.88) to the subspace {(1− t)p + tq|0 ≤ t ≤ 1}, we have

D(p‖q) =
∫ 1

0
Jttdt , (2.93)

where Jt is the Fisher information concerning parameter t.

Exercises

2.29. Show that Covp(X, Y ) = 0 for random variables X and Y if they are
independent.

2.30. Let Jθ be the Fisher information of a probability distribution family
{pθ|θ ∈ Θ}. Let pn

θ be the n-fold independent and identical distribution of
pθ. Show that the Fisher information of the probability distribution family
{pn

θ |θ ∈ Θ} at pθ is nJθ.

2.31. Prove (2.76) using the second equality in (2.13), and noting that√
1 + x ∼= 1 + 1

2x− 1
8x2 for small x.

2.32. Prove (2.77) following the steps below.

a Show the following approximation with the limit ε→ 0.

log pθ+ε(ω)− log pθ(ω) ∼=
d log pθ(ω)

dθ
ε +

1
2

d2 log pθ(ω)
d2θ

ε2.

b Prove the first equality in (2.77) using a.
c Show the following approximation with the limit ε→ 0.

pθ+ε(ω) ∼= pθ(ω) +
dpθ(ω)

dθ
ε +

1
2

d2pθ(ω)
d2θ

ε2.

d Prove the second equality in (2.77) using a and c.

2.33. Prove (2.78) using the approximation (1 + x)s ∼= 1 + sx + s(s−1)
2 x2 for

small x.
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2.4 Estimation in Classical Systems

An important problem in mathematical statistics is the estimation of the
parameter θ from some given data ω ∈ Ω for a probability distribution that
generates the data. To solve this problem, a mapping θ̂ called an estimator
from the probability space Ω to the parameter space Θ ⊂ R is required. The
accuracy of the estimator is most commonly evaluated by the mean square
error, which is the expectation value of the square of the difference θ̂ − θ:

V̂θ(θ̂)
def= Epθ

((θ̂ − θ)2), (2.94)

where θ is the true parameter. Note that sometimes the mean square error
is not the same as the variance Vpθ

(X). The estimator

Eθ(θ̂)
def= Epθ

(θ̂) = θ, ∀θ ∈ Θ (2.95)

is called an unbiased estimator, and such estimators form an important class
of estimators. The mean square error of the unbiased estimator θ̂ satisfies the
Cramér–Rao inequality

V̂θ(θ̂) ≥ J−1
θ . (2.96)

When an unbiased estimator attains the RHS of (2.96), it is called efficient.
This inequality can be proved from the relations

〈(θ̂ − θ), lθ0〉(e)p =
dEθ(θ̂ − θ0)

dθ

∣∣∣∣∣
θ=θ0

= 1

and

〈(θ̂ − θ0), (θ̂ − θ0)〉(e)p 〈lθ0 , lθ0〉(e)p ≥
∣∣∣〈(θ̂ − θ), lθ0〉(e)p

∣∣∣2 = 1 ,

which follows from Schwarz’s inequality. The equality of (2.96) holds for ev-
ery value of θ if and only if the probability distribution family is a one-
parameter exponential family (2.82) and the expectation parameter η(θ) =∑

ω X(ω)pθ(ω) is to be estimated. Hence, even in the estimation for an expo-
nential family, there is necessarily no estimator for the natural parameter θ
in (2.82) such that the equality of (2.96) holds for all θ. In this case, the effi-
cient estimator for the expected parameter is given as η̂(ω) = X(ω) (Exercise
2.34).

Let n data ωn = (ω1, . . . , ωn) ∈ Ωn be generated with the n-i.i.d. of
the probability distribution pθ. The estimator may then be given by the
mapping θ̂n from Ωn to Θ ⊂ R. In this case, the Fisher information of the
probability distribution family is nJθ, and the unbiased estimator θ̂n satisfies
the Cramér–Rao inequality
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V̂θ(θ̂n) ≥ 1
n

J−1
θ .

However, in general, it is not necessary to restrict our estimator to unbiased
estimators. In fact, rare estimators satisfy such conditions for finite n.

Therefore, in mathematical statistics, we often study problems in the
asymptotic limit n→∞ rather than those with a finite number of data ele-
ments. For this purpose, let us apply the asymptotic unbiasedness conditions

lim Eθ(θ̂n) = θ, lim
d

dθ
Eθ(θ̂n) = 1, ∀θ ∈ Θ

to a sequence of estimators {θ̂n}. Evaluating the accuracy with limnV̂θ(θ̂n),
we have the asymptotic Cramér–Rao inequality:10

limnV̂θ(θ̂n) ≥ J−1
θ . (2.97)

Then we obtain

nJθV̂θ(θ̂n) ≥
∣∣∣∣ d

dθ
Eθ(θ̂n)

∣∣∣∣2 ,

based on a derivation similar to (2.96). Inequality (2.97) may also be derived
from this inequality.

Now, we consider what estimator attains the lower bound of (2.97). The
maximum likelihood estimator θ̂n,ML(ωn)

θ̂n,ML(ωn) = argmax
θ∈Θ

pn
θ (ωn) (2.98)

achieves this lower bound, and the limit of its mean squared error is equal
to J−1

θ [396]. Indeed, in an exponential family with the expectation param-
eter, the maximum likelihood estimator is equal to the efficient estimator
Ex. 2.36. Hence, the maximum likelihood estimator plays an important role in
statistical inference.11

Indeed, we choose the mean square error as the criterion of estimation er-
ror because (1) its mathematical treatment is easy and (2) in the i.i.d. case,
the average random variable can be characterized by a Gaussian distribution.
Hence, we can expect that a suitable estimator will also approach a Gaus-
sian distribution asymptotically. That is, we can expect that its asymptotic
10 This inequality still holds even if the asymptotic unbiasedness condition is re-

placed by another weak condition. Indeed, it is a problem to choose a suit-
able condition to be assumed for the inequality (2.97). For details, see van der
Vaart [396].

11 This is generally true for all probability distribution families, although some
regularity conditions must be imposed. For example, consider the case in which
Ω consists of finite elements. These regularity conditions are satisfied when the
first and second derivatives with respect to θ are continuous. Generally, the
central limit theorem is used in the proof [396].
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behavior will be characterizable by the variance. In particular, the maximum
likelihood estimator θ̂n,ML obeys the Gaussian distribution asymptotically:

pn
θ {a ≤

√
n(θ̂n,ML − θ) ≤ b} →

∫ b

a

PG,1/Jθ
(x)dx, ∀a, b .

Let us now consider the probability distribution family {pθ|θ ∈ Θ ⊂ R
d}

with multiple parameters. We focus on the Fisher information matrix Jθ =
(Jθ:i,j), which was defined at the end of Sect. 2.3.1, instead of the Fisher
information. The estimator is given by the map θ̂ = (θ̂1, . . . , θ̂d) from the
probability space Ω to the parameter space Θ, similar to the one-parameter
case. The unbiasedness conditions are

Ei
θ(θ̂)

def= Epθ
(θ̂i) = θi, ∀θ ∈ Θ, 1 ≤ ∀i ≤ d .

The error can be calculated using the mean square error matrix V̂θ(θ̂) =
(V̂i,j

θ (θ̂)):

V̂i,j
θ (θ̂) def= Epθ

((θ̂i − θi)(θ̂j − θj)).

Then, we obtain the multiparameter Cramér–Rao inequality

V̂θ(θ̂) ≥ J−1
θ . (2.99)

Proof of (2.99). For the proof, let us assume that any vectors |b〉 =
(b1, . . . , bd)T ∈ C

d and |a〉 ∈ C
d satisfy

〈b|V̂θ(θ̂)b〉〈a|Jθ|a〉 ≥ |〈b|a〉|2 . (2.100)

By substituting a = (Jθ)−1b, inequality (2.100) becomes

〈b|V̂θ({θ̂n})|b〉 ≥ 〈b|(Jθ)−1|b〉

since (Jθ)−1 is a symmetric matrix. Therefore, we obtain (2.99) if (2.100)
holds. We prove (2.100) as follows. Since

δj
i =

dEj
θ(θ̂)− θj

0

dθi

∣∣∣∣∣
θ=θ0

=
〈
lθ:i, (θ̂j − θj

0)
〉(e)

θ
,

similarly to the proof of (2.96), the Schwarz inequality yields

〈b|V̂θ(θ̂)b〉 =

〈(
d∑

i=1

(θ̂i(ω)− θi)bi

)
,

(
d∑

i=1

(θ̂i(ω)− θi)bi

)〉(e)

θ

≥

∣∣∣∣〈(∑d
i=1 lθ:iai

)
,
(∑d

i=1(θ̂
i(ω)− θi)bi

)〉(e)

θ

∣∣∣∣2〈(∑d
i=1 lθ:iai

)
,
(∑d

i=1 lθ:iai

)〉(e)

θ

=
|〈a|b〉|2
〈a|Jθ|a〉

.
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Moreover, since the sequence of estimators {θ̂n = (θ̂1
n, . . . , θ̂d

n)} satisfies
the asymptotic unbiasedness condition

lim Ei
θ(θ̂n) = θi, lim

∂

∂θj
Ei

θ(θ̂n) = δi
j , ∀θ ∈ Θ, (2.101)

the asymptotic Cramér–Rao inequality for the multiparameter case

V̂θ({θ̂n}) ≥ J−1
θ (2.102)

holds if the limit V̂θ({θ̂n}) def= lim nV̂θ(θ̂n) exists. Next, we prove (2.102).
Defining Aj

n,i
def= ∂

∂θj Ei
θ(θ̂n), we have

n〈a|Jθ|a〉〈b|V̂θ(θ̂n)|b〉 ≥ |〈a|An|b〉|2

instead of (2.100). We then obtain

〈a|Jθ|a〉〈b|V̂θ({θ̂n})|b〉 ≥ |〈a|b〉|2 ,

from which (2.102) may be obtained in a manner similar to (2.99).
Similarly to the one-parameter case, the equality of (2.99) holds if and

only if the following conditions hold: (1) The probability distribution family
is a multiparameter exponential family. (2) The expectation parameter η is
to be estimated. (3) The estimator for η is given by

η̂i(ω) = Xi(ω) . (2.103)

In this case, this estimator (2.103) equals the maximum likelihood estimator
θ̂n,ML = (θ̂1

n,ML, . . . θ̂d
n,ML) defined by (2.98) Ex. 2.36, i.e.,

max
η

pη(ω) = pηi=Xi(ω)(ω) . (2.104)

A probability distribution family does not necessarily have such an estimator;
however, a maximum likelihood estimator θ̂n,ML can be defined by (2.98).
This satisfies the asymptotic unbiasedness property (2.101) in a similar way
to (2.98), and it satisfies the equality of (2.102). Moreover, it is known that
the maximum likelihood estimator θ̂n,ML satisfies [396]

V̂θ({θ̂n}) = J−1
θ .

Note that this inequality holds independently of the choice of coordinate.
Hence, for a large amount of data, it is best to use the maximum likelihood
estimator. Its mean square error matrix is almost in inverse proportion to
the number of observations n. This coefficient of the optimal case is given by
the Fisher information matrix. Therefore, the Fisher information matrix can
be considered to yield the best accuracy of an estimator.
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Indeed, usually any statistical decision with the given probability distribu-
tion family {pθ|θ ∈ Θ} is based on the likelihood ratio log pθ(ω)− log pθ′(ω).
For example, the maximum likelihood estimator depends only on the like-
lihood ratio. If the probability distribution family {pθ|θ ∈ Θ} belongs to a
larger multiparameter exponential family {qθ|θ ∈ Θ}, the family is called a
curved exponential family. In this case, the likelihood ratio can be expressed
by the relative entropy

log pθ(ω)− log pθ′(ω) = D(qηi=Xi(ω)‖pθ′)−D(qηi=Xi(ω)‖pθ) . (2.105)

That is, our estimation procedure can be treated from the viewpoint of the
relative entropy geometry.

Exercises

2.34. Show that the following two conditions are equivalent for a probability
distribution family {pθ|θ ∈ R} and its estimator X by following the steps
below.

➀ The estimator X is an unbiased estimator and satisfies the equality of
(2.96) at all points.

➁ The probability distribution family {pθ|θ ∈ R} is an exponential family,
pθ(ω) is given by (2.82) using X, and the parameter to be estimated is
the expectation parameter η(θ).

a Show that the estimator X is an unbiased estimator if the parameter for
the exponential family (2.82) is given by the expectation parameter.

b Show that ➀ may be deduced from ➁.
c For the exponential family (2.82), show that the natural parameter θ is

given as a function of the expectation parameter η with the form θ =∫ η

0 Jη′ dη′.
d Show that µ(θ(η)) =

∫ η

0 η′Jη′ dη′.
e Show that lθ

Jθ
= X − θ if ➀ is true.

f Denote the parameter to be estimated by η. Show that dpη

dη = Jη(X−η)pη

if ➀ is true.
g Show that ➁ is true if ➀ is true.

2.35. Show that equation (2.105) holds.

2.36. Show equation (2.104) from (2.105).

2.37. Consider the probability distribution family {pθ|θ ∈ R} in the proba-
bility space {1, . . . , l} and the stochastic transition matrix Q = (Qi

j). Let the
Fisher information of pθ0 in the probability distribution family {pθ|θ ∈ R} be
Jθ0 . Let J ′

θ0
be the Fisher information of Q(pθ0) in the probability distribu-

tion family {Q(pθ)|θ ∈ R}. Show then that Jθ0 ≥ J ′
θ0

. This inequality is called
the monotonicity of the Fisher information. Similarly, define Jθ0 ,J

′
θ0

for the
multiple variable case, and show that the matrix inequality Jθ0 ≥ J ′

θ0
holds.
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2.5 Type Method and Large Deviation Evaluation

In this section, we analyze the case of a sufficiently large number of data
by using the following two methods. The first method involves an analysis
based on empirical distributions, and it is called the type method. In the
second method, we consider a particular random variable and examine its
exponential behavior.

2.5.1 Type Method and Sanov’s Theorem

Let n data be generated according to a probability distribution in a finite set
of events Nd = {1, . . . , d}. Then, we can perform the following analysis by
examining the empirical distribution of the data [85]. Let Tn be the set of
empirical distributions obtained from n observations. We call each element
of this set a type. For each type q ∈ Tn, let the subset Tn

q ⊂ N
n
d be a set of

data with the empirical distribution q. Since the probability pn(i) depends
only on the type q for each i ∈ Tn

q , we can denote this probability by pn(q).
Then, when the n data are generated according to the probability distri-
bution pn, the empirical distribution matches q ∈ Tn with the probability
pn(Tn

q )
(

def=
∑

i∈T n
q

pn(i)
)
.

Theorem 2.3 Any type p ∈ Tn and any data i ∈ Tn
q satisfy the following:

pn(Tn
q ) ≤ pn(Tn

p ) , (2.106)

pn(i) = e−n(H(q)+D(q‖p)). (2.107)

Denoting the number of elements of Tn and Tn
q by |Tn| and |Tn

q |, respectively,
we obtain the relations

|Tn| ≤ (n + 1)d−1, (2.108)
1

(n + 1)d
enH(q) ≤ |Tn

q | ≤ enH(q), (2.109)

1
(n + 1)d

e−nD(q‖p) ≤ pn(Tn
q ) ≤ e−nD(q‖p). (2.110)

Proof. Let p(i) = ni

n and q(i) = n′
i

n . Then,

pn(Tn
p ) = |Tn

p |
d∏

i=1

p(i)ni =
n!

n1! · · ·nd!

d∏
i=1

p(i)ni ,

pn(Tn
q ) = |Tn

q |
d∏

i=1

p(i)n′
i =

n!
n′

1! · · ·n′
d!

d∏
i=1

p(i)n′
i .
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Using the inequality Ex. 2.38

n!
m!
≤ nn−m, (2.111)

we have

pn(Tn
q )

pn(Tn
p )

=
d∏

i=1

(
ni!
n′

i!
p(i)n′

i−ni

)
≤

d∏
i=1

(
n

ni−n′
i

i

(ni

n

)n′
i−ni

)

=
d∏

i=1

(
1
n

)n′
i−ni

=
(

1
n

)∑d
i=1(n

′
i−ni)

= 1 .

Therefore, inequality (2.106) holds. For i ∈ Tn
q , we have

p(i) =
d∏

i=1

p(i)n′
i =

d∏
i=1

p(i)n
(

n′
i

n

)

=
d∏

i=1

en log p(i)
(

n′
i

n

)
= en

∑d
i=1 q(i) log p(i) = e−n(H(q)+D(q‖p)) ,

which implies (2.107).
Each element q of Tn may be written as a d-dimensional vector. Each

component of the vector then assumes one of the following n + 1 values:
0, 1/n, . . . , n/n. Since

∑d
i=1 qi = 1, the dth element is decided by the other

d − 1 elements. Therefore, inequality (2.108) follows from a combinatorial
observation. Applying inequality (2.107) to the case p = q, we have the
relation pn(Tn

q ) = e−nH(p)|Tn
p |. Since 1 =

∑
q∈Tn

pn(Tn
q ) ≥ pn(Tn

q ) for p ∈
Tn, we obtain the inequality on the RHS of (2.109). Conversely, inequality
(2.106) yields that 1 =

∑
q∈Tn

pn(Tn
q ) ≤

∑
q∈Tn

pn(Tn
p ) = e−nH(p)|Tn

p ||Tn|.
Combining this relation with (2.108), we obtain the inequality on the LHS of
(2.109). Inequality (2.110) may be obtained by combining (2.107) and (2.109).

We obtain Sanov’s Theorem using these inequalities.

Theorem 2.4 (Sanov [358]) The following holds for a subset R of distribu-
tions on Nd:

1
(n + 1)d

exp(−n min
q∈R∩Tn

D(q‖p)) ≤ pn(∪q∈R∩TnTn
q )

≤ (n + 1)d exp(−n inf
q∈R

D(q‖p)).

In particular, when the closure of the interior of R coincides with the closure
of R,12
12 The set is called the interior of a set X when it consists of the elements of X

without its boundary. For example, for a one-dimensional set, the interior of
[0, 0.5] ∪ {0.7} is (0, 0.5) and the closure of the interior is [0, 0.5]. Therefore, the
condition is not satisfied in this case.
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lim
−1
n

log pn
(
∪q∈R∩Tn

Tn
q

)
= inf

q∈R
D(q‖p)

in the limit n→∞.

Based on this theorem, we can analyze how different the true distribution
is from the empirical distribution. More precisely, the empirical distribu-
tion belongs to the neighborhood of the true distribution with a sufficiently
large probability, i.e., the probability of its complementary event approaches
0 exponentially. This exponent is then given by the relative entropy. The
discussion of this exponent is called a large deviation evaluation.

However, it is difficult to consider a quantum extension of Sanov’s the-
orem. This is because we cannot necessarily take the common eigenvectors
for plural densities. That is, this problem must be treated independently of
the choice of basis. One possible way to fulfill this requirement is the group
representation method. If we use this method, it is possible to treat the eigen-
values of density of the system instead of the classical probabilities [252,286].
Since eigenvalues do not identify the density matrix, they cannot be regarded
as the complete quantum extension of Sanov’s theorem. Indeed, a quantum
extension is available if we focus only on two densities; however, it should
be regarded as the quantum extension of Stein’s lemma given in Sect. 3.4.
Since the data are not given without our operation in the quantum case, it
is impossible to directly extend Sanov’s theorem to the quantum case.

In fact, the advantage of using the type method is the universality in
information theory [85]. However, if we apply the type method to quantum
systems independently of the basis, the universality is not available in the
quantum case. A group representation method is very effective for a treatment
independent of basis [169, 174, 175, 183–185, 252]. Indeed, several universal
protocols have been obtained by this method.

2.5.2 Cramér Theorem and Its Application to Estimation

Next, we consider the asymptotic behavior of a random variable X in the
case of independent and identical trials of the probability distribution p.

For this purpose, we first introduce two fundamental inequalities Ex. 2.39.
The Markov inequality states that for a random variable X where X ≥ 0,

Ep(X)
c

≥ p{X ≥ c} . (2.112)

Applying the Markov inequality to the variable |X − Ep(X)|, we obtain the
Chebyshev inequality:

p{|X − Ep(X)| ≥ a} ≤ Vp(X)
a2 . (2.113)
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Now, consider the random variable

Xn def=
n∑

i=1

1
n

Xi , (2.114)

where X1, . . . , Xn are n independent random variables that are identical
to the random variable X. When the variable Xn obeys the independent
and identical distribution pn of p, the expectation of Xn coincides with the
expectation Ep(X). Let Vp(X) be the variance of X. Then, its variance with
n observations equals Vp(X)/n.

Applying Chebyshev’s inequality (2.113), we have

pn{|Xn − Ep(X)| ≥ ε} ≤ Vp(X)
nε2

for arbitrary ε > 0. This inequality yields the (weak) law of large numbers

pn{|Xn − Ep(X)| ≥ ε} → 0, ∀ε > 0 . (2.115)

In general, if a sequence of pairs {(Xn, pn)} of a random variable and a
probability distribution satisfies

pn{|Xn − x| ≥ ε} → 0, ∀ε > 0 (2.116)

for a real number x, then the random variable Xn is said to converge in
probability to x.

Since the left-hand side (LHS) of (2.115) converges to 0, the next focus is
the speed of this convergence. Usually, this convergence is exponential. The
exponent of this convergence is characterized by Cramér’s Theorem below.

Theorem 2.5 (Cramér [83]) Define the moment function µ(θ) def=
log

(∑
ω p(ω)eθX(ω)

)
. Then

lim
−1
n

log pn{Xn ≥ x} ≥max
θ≥0

(θx− µ(θ)) , (2.117)

lim
−1
n

log pn{Xn ≥ x} ≤ lim
x′→x+0

max
θ≥0

(θx′ − µ(θ)) , (2.118)

lim
−1
n

log pn{Xn ≤ x} ≥max
θ≤0

(θx− µ(θ)) (2.119)

lim
−1
n

log pn{Xn ≤ x} ≤ lim
x′→x−0

max
θ≤0

(θx′ − µ(θ)) , . (2.120)

If we replace {Xn ≥ x} and {Xn ≤ x} with {Xn > x} and {Xn < x},
respectively, the same inequalities hold.

When the probability space consists of finite elements, the function
maxθ≥0 (θx− µ(θ)) is continuous, i.e., limx′→x+0 maxθ≥0 (θx′ − µ(θ)) =
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maxθ≥0 (θx− µ(θ)). Hence, the equalities of (2.117) and (2.119) hold. Con-
versely, if the probability space contains an infinite number of elements as
the set of real numbers R, we should treat the difference between the RHS
and LHS more carefully. Further, the inequalities of (2.117) and (2.119) hold
without limit, and they are equivalent to (2.36) and (2.37) when we replace
the random variable X(ω) with − log q(ω).

Proof. Inequality (2.119) is obtained by considering −X in (2.117). There-
fore, we prove only (2.117). Inequality (2.120) is also obtained by considering
−X in (2.118). Here we prove only inequality (2.117). Inequality (2.118) will
be proved at the end of this section.

For a random variable X with X(ω) for each ω,

Epn(enθXn

) = Epn(
n∏

i=1

eθXi) = (Epe
θX)n = enµ(θ) . (2.121)

Using the Markov inequality (2.112), we obtain

pn{Xn ≥ x} = pn{enθXn ≥ enθx} ≤ enµ(θ)

enθx
for θ ≥ 0 .

Taking the logarithm of both sides, we have

−1
n

log pn{Xn ≥ x} ≥ θx− µ(θ).

Let us take the maximum on the RHS with respect to θ ≥ 0 and then take
the limit on the LHS. We obtain inequality (2.117).

This theorem can be extended to the non-i.i.d. case as the Gärtner–Ellis
theorem.

Theorem 2.6 (Gärtner [141], Ellis [106]) Let {pn} be a general sequence of
the probabilities with the random variables Xn. Define the moment functions
µn(θ) def= 1

n log
(∑

ω pn(ω)eθnXn(ω)
)

and µ(θ) def= lim µn(θ) and the set G
def=

{µ′(θ)|θ}. Then

lim
−1
n

log pn{Xn ≥ x} ≥max
θ≥0

(θx− µ(θ)) , (2.122)

lim
−1
n

log pn{Xn ≥ x} ≤ inf
x̄∈G:x̄>x

max
θ≥0

(θx̄− µ(θ)) , (2.123)

lim
−1
n

log pn{Xn ≤ x} ≥max
θ≤0

(θx− µ(θ)) , (2.124)

lim
−1
n

log pn{Xn ≤ x} ≤ inf
x̄∈G:x̄<x

max
θ≤0

(θx̄− µ(θ)) . (2.125)

If we replace {Xn ≥ x} and {Xn ≤ x} by {Xn > x} and {Xn < x}, respec-
tively, the same inequalities hold.
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Inequalities (2.122) and (2.124) can be proved in a similar way to Theorem
2.5.

Next, we apply large deviation arguments to estimation theory. Our ar-
guments will focus not on the mean square error but on the decreasing
rate of the probability that the estimated parameter does not belong to
the ε-neighborhood of the true parameter. To treat the accuracy of a se-
quence of estimators {θ̂n} with a one-parameter probability distribution fam-
ily {pθ|θ ∈ R} from the viewpoint of a large deviation, we define

β({θ̂n}, θ, ε) def= lim
−1
n

log pn
θ {|θ̂n − θ| > ε}, (2.126)

α({θ̂n}, θ) def= lim ε→0
β({θ̂n}, θ, ε)

ε2
. (2.127)

As an approximation, we have

pn
θ {|θ̂n − θ| > ε} ∼= e−nε2α({θ̂n},θ).

Hence, an estimator functions better when it has larger values of β({θ̂n}, θ, ε)
and α({θ̂n}, θ).

Theorem 2.7 (Bahadur [23–25]) Let a sequence of estimators {θ̂n} satisfy
the weak consistency condition

pn
θ {|θ̂n − θ| > ε} → 0, ∀ε > 0, ∀θ ∈ R . (2.128)

Then, it follows that

β({θ̂n}, θ, ε) ≤ inf
θ′:|θ′−θ| >ε

D(pθ′‖pθ) . (2.129)

Further, if

D(pθ′‖pθ) = lim
θ̄→θ′

D(pθ̄‖pθ), (2.130)

the following also holds:

α({θ̂n}, θ) ≤
1
2
Jθ. (2.131)

If the probability space consists of finite elements, condition (2.130) holds.

Proof. Inequality (2.131) is obtained by combining (2.129) with (2.77). In-
equality (2.129) may be derived from monotonicity (2.9) as follows. From the
consistency condition (2.128), the sequence an

def= pn
θ {|θ̂n − θ| > ε} satis-

fies an → 0. Assume that |θ − θ′| > ε. Then, when |θ̂n − θ| ≤ ε, we have
|θ̂n − θ′| > 0. Hence, the other sequence bn

def= pn
θ′{|θ̂n − θ| > ε} satisfies
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bn → 1 because of the consistency condition (2.128). Thus, monotonicity
(2.9) implies that

D(pn
θ′‖pn

θ ) ≥ bn(log bn − log an) + (1− bn)(log(1− bn)− log(1− an)).

Since nD(pθ′‖pθ) = D(pn
θ′‖pn

θ ) follows from (2.44) and −(1−bn) log(1−an) ≥
0, we have nD(pθ′‖pθ) ≥ −h(bn)− bn log an, and therefore

−1
n

log an ≤
D(pθ′‖pθ)

bn
+

h(bn)
nbn

. (2.132)

As the convergence h(bn)→ 0 follows from the convergence bn → 1, we have

β({θ̂n}, θ, ε) ≤ D(pθ′‖pθ).

Considering infθ′:|θ′−θ| >ε, we obtain (2.129). In addition, this proof is valid
even if we replace {|θ̂n − θ| > ε} in (2.126) by {|θ̂n − θ| ≥ ε}.

If no estimator satisfies the equalities in inequalities (2.129) and (2.131),
these inequalities cannot be considered satisfactory. The equalities of (2.129)
and (2.131) are the subject of the following proposition.

Proposition 2.1 Suppose that the probability distribution family (2.82) is
exponential, and the parameter to be estimated is an expectation parameter.
If a sequence of estimators is given by Xn(ωn) (see (2.114)), then the equality
of (2.129) holds. The equality of (2.131) is also satisfied.

It is known that the maximum likelihood estimator θ̂n,ML satisfies (2.131)
if the probability distribution family satisfies some regularity conditions [25,
117].

Now, we prove Proposition 2.1 and its related formulas ((2.117) and
(2.118) in Theorem 2.5) as follows. Because of (2.92), Proposition 2.1 fol-
lows from the inequalities

lim
−1
n

log pn
η(θ){Xn(ωn) > η(θ) + ε})

≥max
θ′≥θ

(θ′ − θ)(η(θ) + ε)− (µ(θ′)− µ(θ)), (2.133)

lim
−1
n

log pn
η(θ){Xn(ωn) > η(θ) + ε} ≤ lim ε′→ε+0D(pη(θ)+ε′‖pη(θ))

(2.134)

for the expectation parameter η of the exponential family (2.82) and arbitrary
ε > 0. Certainly, these formulas are the same as (2.117) and (2.118) in
Theorem 2.5 for the case x = η(θ) + ε ≥ 0 and θ = 0.

Choose arbitrary ε̄ > ε and θ̄ such that µ′(θ̄) = η(θ) + ε̄. Based on the
proof of (2.122) in Theorem 2.5, we can show that
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−1
n

log pn
θ {Xn(ωn) > η(θ) + ε}

≥ max
θ′≥θ

(θ′ − θ)(η(θ) + ε)− (µ(θ′)− µ(θ)), (2.135)

−1
n

log pn
θ̄ {X

n(ωn) ≤ η(θ) + ε}

≥ max
θ′≤θ̄

(θ′ − θ̄)(η(θ) + ε)− (µ(θ′)− µ(θ̄)) = D(pη(θ)+ε‖pη(θ)+ε̄) > 0 ,

(2.136)

which implies (2.133). According to a discussion similar to the proof of (2.129)
in Theorem 2.7, we have

−1
n

log pn
η(θ){Xn(ωn) > η(θ) + ε} ≤

D(pη(θ)+ε′‖pη(θ))
bn

+
h(bn)
nbn

(2.137)

for ε′ > ε, where bn
def= pn

η(θ)+ε′{Xn(ωn) > η(θ) + ε}. From (2.136), bn → 1.
Hence, we obtain the last inequality in (2.134).

Finally, we prove inequality (2.123) in Theorem 2.6, i.e., we prove that

lim
−1
n

log pn{Xn(ω) ≥ x} ≤ max
θ≥0

(
θµ′(θ̄)− µ(θ)

)
(2.138)

for any θ̄ satisfying µ′(θ̄) > x. Define the exponential family pn,θ(ω) def=
pn(ω)enθXn(ω)−nµn(θ). Similarly to (2.137), we have

−1
n

log pn,0{Xn(ω) > x} ≤
D(pn,θ̄‖pn,0)

nbn
+

h(bn)
nbn

for ε′ > ε, where bn
def= pn,θ̄{Xn(ω) > x}. From (2.92), D(pn,θ̄‖pn,0)

n =
maxθ≥0

(
θµ′

n(θ̄)− µn(θ)
)
. Hence, if we show that bn → 1, we obtain (2.138).

Similarly to (2.136), the inequality

−1
n

log pn,θ̄{Xn(ω) ≤ x} ≥ max
θ≤θ̄

(θ − θ̄)x− µ(θ) + µ(θ̄)

holds. Since the set of differentiable points of µ is open and µ′ is monotone
increasing and continuous in this set, there exists a point θ′ in this set such
that

θ′ < θ̄, x < µ′(θ′).

Since µ′ is monotone increasing, we obtain

max
θ≤θ̄

(θ − θ̄)x− µ(θ) + µ(θ̄) ≥ (θ′ − θ̄)x− µ(θ′) + µ(θ̄)

≥(µ′(θ′)− x)(θ̄ − θ′) > 0 ,

which implies that bn → 1.
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Exercises

2.38. Prove (2.111) by considering the cases n ≥ m and n < m separately.

2.39. Prove Markov’s inequality by noting that it can be written
∑

i:xi≥c pixi

≥ c
∑

i:xi≥c pi.

2.40. Using Cramér’s theorem and (2.31) and (2.33), show the following equa-
tions below. Show analogous formulas for (2.36), (2.37), (2.48), (2.49), (2.51),
and (2.52).

lim
n→∞

−1
n

log pn{pn
in ≤ e−nR} = −min

0≤s
(ψ(s)− sR), (2.139)

lim
n→∞

−1
n

log pn{pn
in > e−nR} = −min

s≤0
(ψ(s)− sR). (2.140)

2.41. Show that

− min
0≤s≤1

ψ(s)− sR

1− s
= min

q:H(q)≥R
D(q‖p). (2.141)

following the steps below. This equation will play an important role in source
coding (Chap. 10).

a Show that ψ′′(s) > 0 i.e., ψ′(s) is strictly monotone increasing.
b Let pM

def= argmaxi pi. Show that if − log pM < S ≤ ψ′(1), the inverse
function s(S) of ψ′(s) can be uniquely defined.

c Let k be the number of is such that pM = pi. Show that the inverse
function S(R) of the function S �→ (1− s(S))S +ψ(s(S)) may be uniquely
found if log k < R < log d. Show that s(S(H(p))) = 0.

d Show that S(R) − R = S(R)s(S(R)) − ψ(s(S(R))) = s(S(R))R−ψ(s(S(R)))
1−s(S(R))

if log k < R < log d.
e Show that d

ds
sR−ψ(s)

1−s = R−(1−s)ψ′(s)−ψ(s)
(1−s)2 and d

ds (R−(1−s)ψ′(s)−ψ(s)) =
−(1− s)ψ′′(s).

f Show that max0≤s≤1
sR−ψ(s)

1−s = s(S(R))R−ψ(s(S(R)))
1−s(S(R)) if H(p) < R < log d.

g Show that H(p(s)) = (1 − s)ψ′(s) + ψ(s), (1 − s)
∑

i(qi − p(s)i) log pi =
−D(q‖p(s)) + H(p(s)) − H(q) and D(q‖p) − D(p(s)‖p) = D(q‖p(s)) −
s
∑

i(qi − p(s)i) log pi if p(s) = {p(s)i
def= p1−s

i∑
i p1−s

i

}.
h Show that D(q‖p)−D(p(s)‖p) = 1

1−sD(q‖p(s))− s
1−s (H(p(s))−H(q)).

i Show that H(p(s(S(R)))) = R and D(q‖p) − D(p(s(S(R)))‖p) ≥ 0 if
H(q) = R.

j Show that minq:H(q)=R D(q‖p) = S(R)−R.
k Show that d

dR (S(R)−R) = s(S(R))
1−s(S(R)) .

l Show that 0 < s(S(R)) < 1 and S(R) − R = minq:H(q)≥R D(q‖p) if
H(p) < R < log d.
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m Show (2.141).
n Show that

−min
s≤0

ψ(s)− sR

1− s
= min

q:H(q)≤R
D(q‖p). (2.142)

using steps similar to those above.
o Using steps similar to those above, show that

max
0≤s≤1

−sr − φ(s|p‖p′)
1− s

= min
q:D(q‖p′)≤r

D(q‖p), (2.143)

max
s≤0

−sr − φ(s|p‖p′)
1− s

= min
q:D(q‖p′)≥r

D(q‖p). (2.144)

2.42. Show that

lim
n→∞

−1
n

log P c(pn, enR) = − min
0≤s≤1

ψ(s)− sR

1− s
(2.145)

by first proving (2.146) and then combining this with (2.141). The ≥ part
may be obtained directly from (2.40)

P c(pn, enR) ≥ max
q∈Tn:|T n

q | >enR
(|Tn

q | − enR)e−n(H(p)+H(p‖q))

≥ max
q∈Tn: enH(q)

(n+1)d >enR

(
enH(q)

(n + 1)d
− enR

)
e−n(H(p)+H(p‖q))

= max
q∈Tn: enH(q)

(n+1)d >enR

e−nD(p‖q)
(

1− (n + 1)denR

enH(q)

)
. (2.146)

2.43. Show that

lim
n→∞

−1
n

log P (pn, enR) = −min
s≤0

ψ(s)− sR

1− s
(2.147)

by first proving (2.148) and then combining this with (2.142). The inequality
≥ may be obtained directly from (2.42)

P (pn, enR) ≥ max
q∈Tn:|T n

q |≤enR
pn(Tn

q ) ≥ max
q∈Tn:H(q)≤R

e−nD(q‖p)

(n + 1)d
. (2.148)

2.44. Consider the case where Ωn = {0, 1}, pn(0) = e−na, pn(1) = 1− e−na,
Xn(0) = a, Xn(1) = −b. Show that µ(θ) = −min{(1 − θ)a, θb} and the
following for −b < x < a:

max
θ>0

(xθ − µ(θ)) =
a(x + b)

a + b
< a, lim

1
n

log pn{Xn ≥ x} = a.

It gives a counterexample of Gärtner–Ellis Theorem in the nondifferentiable
case.
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2.6 Related Books

In this section, we treat several important topics in information science from the
probabilistic viewpoint. In Sect. 2.1, information quantities e.g., entropy, relative
entropy, mutual information, and Rényi entropy are discussed. Its discussion and
its historical notes appear in Chap. 2 of Cover and Thomas [82]. Section 2.2 reviews
its quantum extensions. This topic will be discussed in greater depth in Sects. 5.4
and 5.5. Ohya and Petz [323] is a good reference for this topic. Section 2.3 focuses on
information geometry. Amari and Nagaoka [11] is a textbook on this topic written
by the pioneers in the field. Section 2.4 briefly treats the estimation theory of
probability distribution families. Lehmann and Casella [263] is a good textbook
covering all of estimation theory. For a more in-depth discussion of its asymptotic
aspect, see van der Vaart [396]. Section 2.5.1 reviews the type method. It has been
formulated by Csiszár and Köner [85]. Section 2.5.2 treats the large deviation theory
including estimation theory. Its details are given in Dembo and Zeitouni [94] and
Bucklew [62]. In this book, we give a proof of Cramér’s theorem and the Gártner–
Ellis theorem. In fact, (2.117), (2.119), (2.122), and (2.124) follow from Markov’s
inequality. However, its opposite parts are not simple. Many papers and books give
their proof. In this book, we prove these inequalities by combining the estimation
of the exponential theory and the Legendre transform. This proof is given in this
book first and seems to be the simplest of known proofs.



3

Quantum Hypothesis Testing
and Discrimination of Quantum States

Summary. Various types of information processing occur in quantum systems.
The most fundamental processes are state discrimination and hypothesis testing.
These problems often form the basis for an analysis of other types of quantum infor-
mation processes. The difficulties associated with the noncommutativity of quantum
mechanics appear in the most evident way among these problems. Therefore, we
examine state discrimination and hypothesis testing before examining other types
of information processing in quantum systems in this text.

In two-state discrimination, we discriminate between two unknown candidate
states by performing a measurement and examining the measurement data. Note
that in this case, the two hypotheses for the unknown state are treated symmetri-
cally. In contrast, if the two hypotheses are treated asymmetrically, the process is
called hypothesis testing rather than state discrimination. Hypothesis testing is not
only interesting in itself but is also relevant to other topics in quantum information
theory. In particular, the quantum version of Stein’s lemma, which is the central
topic of this chapter, is closely related to quantum channel coding discussed in
Chap. 4. Moreover, Stein’s lemma is also connected to the distillation of maximally
entangled states, as discussed in Sect. 8.5, in addition to other topics discussed in
Chap. 9. The importance of Stein’s lemma may not be apparent at first sight since
it considers the tensor product states of identical states, which rarely appear in real
communications. However, the asymptotic analysis for these tensor product states
provides the key to the analysis of asymptotic problems in quantum communica-
tions. For these reasons, this topic is discussed in an earlier chapter in this text.

Table 3.1. Denotations used in Chap. 3

φ(s) Abbreviation of relative Rényi entropy φ(s|ρ‖σ)
φ(s|ρ‖σ) Relative Rényi entropy (def= log Tr ρ1−sσs)
φ̃(s|ρ‖σ) def= log Tr ρσs/2ρ−sσs/2

φ̄(s|ρ‖σ) def= lim 1
n
φ(s|κσ⊗n(ρ⊗n)‖σ⊗n)

|M | Number of POVM elements
βn

ε (ρ‖σ) Minimum value of second error probability
B(ρ‖σ) Maximun decreasing rate of second error probability

when first error probability goes to 0
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Table 3.1. Continued

B̃(ρ‖σ) Maximun decreasing rate of second error probability
when first error probability goes to 0
and measurment is separable

B†(ρ‖σ) Maximum decreasing rate of second error probability
when first error probability does not go to 1

B(r|ρ‖σ) Maximum decreasing rate of first error probability
when second error probability goes to 0 at rate r

B∗(r|ρ‖σ) Minimum decreasing rate of first error probability
when second error probability goes to 0 at rate r

3.1 Two-State Discrimination in Quantum Systems

Consider a quantum system H whose state is represented by the density ma-
trix ρ or σ. Let us consider the problem of determining the density matrix
that describes the true state of the quantum system by performing a measure-
ment. This procedure may be expressed as a Hermitian matrix T satisfying
I ≥ T ≥ 0 in H, and it is called state discrimination for the following reason.

Consider performing a measurement corresponding to a POVM M =
{Mω}ω∈Ω to determine whether the true state is ρ or σ. For this purpose, we
must first choose subsets of Ω that correspond to ρ and σ. That is, we first
choose a suitable subset A of Ω, and if ω ∈ A, we can then determine that
the state is ρ, and if ω ∈ Ac (where Ac is the complement of A), then the
state is σ. The Hermitian matrix T

def=
∑

ω∈A Mω then satisfies I ≥ T ≥ 0.
When the true state is ρ, we erroneously conclude that the state is σ with
the probability: ∑

ω∈Ac

Tr ρMω = Tr ρ
∑

ω∈Ac

Mω = Tr ρ(I − T ).

On the other hand, when the true state is σ, we erroneously conclude that
the state is ρ with the probability:∑

ω∈A

Tr σMω = Trσ
∑
ω∈A

Mω = TrσT.

Therefore, in order to treat state discrimination, it is sufficient to examine
the Hermitian matrix T . The two-valued POVM {T, I − T} for a Hermitian
matrix T satisfying I ≥ T ≥ 0 allows us to perform the discrimination.
Henceforth, T will be called a test.

The problem in state discrimination is to examine the tradeoff between the
two error probabilities TrσT and Tr ρ(I − T ). We then obtain the following
lemma by assigning a weight to the two error probabilities.

Lemma 3.1 (Holevo [211], Helstrom [203]) The following relation holds for
an arbitrary real number c > 0:
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min
I≥T≥0

(Tr ρ(I−T ) + c Tr σT )=Tr ρ{ρ−cσ≤0}+c Tr σ{ρ−cσ > 0}. (3.1)

The minimum value is attained when T = {ρ − cσ ≥ 0}. In particular, if
c = 1, relation (A.14) guarantees that

min
I≥T≥0

(Tr ρ(I − T ) + Tr σT ) = Tr ρ{ρ− σ ≤ 0}+ Tr σ{ρ− σ > 0} (3.2)

=1− 1
2
‖ρ− σ‖1. (3.3)

The optimal average probability of correct discrimination is

1
2

max
I≥T≥0

(Tr ρT + Tr σ(I−T )) =
1
2

Tr ρ{ρ−σ ≥ 0}+
1
2

Tr σ{ρ−σ < 0}

=
1
2

+
1
4
‖ρ− σ‖1. (3.4)

Therefore, the trace norm gives a measure for the discrimination of two
states.

Hence, for examining the tradeoff between the two error probabilities
Tr σT and Tr ρ(I − T ), it is sufficient to discuss the test T = {ρ − cσ ≥ 0}
alone. This kind of test is called a likelihood test.

If ρ and σ commute, they may be simultaneously diagonalized as ρ =∑
i pi|ui〉〈ui| and σ =

∑
i qi|ui〉〈ui| using a common orthonormal basis

{u1, . . . , ud}. Therefore, the problem reduces to the discrimination of the
probability distributions p = {pi} and q = {qi}, as discussed below. Hence-
forth, such cases wherein the states ρ and σ commute will be henceforth
called “classical.”

Now, we discriminate between the two probability distributions p = {pi}
and q = {qi} by the following process. When the datum i is observed, we
decide the true distribution is p with the probability ti. This discrimination
may therefore be represented by a map ti from {1, . . . , d} to the interval
[0, 1]. Defining the map ti

def= 〈ui|T |ui〉 from {1, . . . , d} to the interval [0, 1]
for an arbitrary discriminator T , we obtain∑

i

(1− ti)pi = Tr ρ(I − T ),
∑

i

tiqi = TrσT.

These are the two error probabilities for discriminating the probability dis-
tributions p = {pi}i and q = {qi}i. If the function ti is defined on the
data set of the measurement {|ui〉〈ui|}i such that it is equal to 1 on the
set {i|qi − cpi < 0} and 0 on the set {i|qi − cpi ≥ 0}, then the test T is
equal to {σ − cρ < 0}. Therefore, if ρ and σ commute, T = {σ − cρ < 0}
has a one-to-one correspondence with the subset of the data set. If these den-
sity matrices commute, the problem may be reduced to that of probability
distributions, which simplifies the situation considerably.
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Now, we compare two discrimination problems. One is the discrimination
between two states ρ and σ, and the other is that between two probability
distributions PM

ρ and PM
σ for a given POVM M . Their optimal average

correct probabilities are

max
I≥T≥0

(Tr ρT + Tr σ(I−T )) , max
ti:1≥ti≥0

∑
i

(
PM

ρ (i)ti + PM
σ (i)(1− ti)

)
.

Comparing them, we have ‖ρ−σ‖1 ≥ ‖PM
ρ −PM

σ ‖1 from (3.4), i.e., we obtain
(2.61).

Proof of Lemma 3.1. The quantity to be minimized can be rewritten as

Tr ρ(I − T ) + c Tr σT = 1 + Tr(cσ − ρ)T.

Now, we diagonalize cσ − ρ as cσ − ρ =
∑

i λi|ui〉〈ui|. Then,

Tr(cσ − ρ)T =
∑

i

λi Tr |ui〉〈ui|T.

The test T minimizing the above satisfies the following conditions: Tr |ui〉〈ui|T
= 0 when λi ≥ 0; Tr |ui〉〈ui|T = 1 when λi < 0. The test T satisfying these
conditions is nothing other than {cσ − ρ < 0}. Accordingly, we have

min
I≥T≥0

Tr(cσ − ρ)T = Tr(cσ − ρ){cσ − ρ < 0}. (3.5)

Equality (3.1) can be proved according to

min
I≥T≥0

Tr ρ(I − T ) + c Tr σT = 1 + Tr(cσ − ρ){cσ − ρ < 0}

= Tr ρ{ρ− cσ ≤ 0}+ c Tr σ{ρ− cσ > 0}.

Then, we can also obtain (3.2). See Exercise 3.2 for the derivation of (3.3).

Exercises

3.1. Show (A.14) referring to the proof of (3.5).

3.2. Show (3.3) using (A.14).

3.3. Show that ‖ρ− ρmix‖1 ≥ 2(1− rank ρ
d ).

3.2 Discrimination of Plural Quantum States

In this section, we extend the discussion of the previous section, where there
were only two hypothesis states, to the case of k hypothesis states ρ1, . . . , ρk.
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The state discrimination in this case is given by a POVM M = {Mi}ki=1 with
k measurement values. For a fixed i, the quality of the discrimination is given
by the error probability 1 − Tr ρiMi. We are then required to determine a
POVM M = {Mi}ki=1 that minimizes this error probability. However, since
it is impossible to reduce the error probability for all cases, some a priori
probability distribution pi is often assumed for the k hypotheses, and the
average error probability

∑k
i=1 pi(1 − Tr ρiMi) is minimized. Therefore, we

maximize the linear function

Λ(M1, . . . , Mk) def=
k∑

i=1

pi Tr ρiMi = Tr

(
k∑

i=1

piρiMi

)

with respect to the matrix-valued vector (M1, . . . , Mk) under the condition

Mi ≥ 0,

k∑
i=1

Mi = I.

For this maximization problem, we have the following equation1 [431]:

max

{
Λ(M1, . . . , Mk)

∣∣∣∣∣Mi ≥ 0,

k∑
i=1

Mi = I

}
=min{Tr F |F ≥ piρi}. (3.6)

When the matrix F and the POVM (M1, . . . , Mk) satisfy this constraint
condition, they satisfy TrF − Tr

(∑k
i=1 piρiMi

)
=
∑

i Tr Mi(F − piρi) ≥ 0.
Hence, the inequality LHS ≤ RHS in (3.6). The direct derivation of the re-
verse inequality is rather difficult; however, it can be treated by generalized
linear programming. Equation (3.6) may be immediately obtained from The-
orem 3.1, called the generalized duality theorem.

Theorem 3.1 Consider the real vector spaces V1, V2. Let L be a closed con-
vex cone of V1 (Sect. A.4). Assume that arbitrary a > 0 and x ∈ L satisfy
ax ∈ L. If A is a linear map from V1 to V2, then the following relation is
satisfied for b ∈ V2 and c ∈ V1

2:

max
x∈V1
{〈c, x〉|x ∈ L, A(x) = b} = min

y∈V2
{〈y, b〉|AT (y)− c ∈ LT }, (3.7)

where LT def= {x ∈ V1|〈x, x′〉 ≥ 0,∀x′ ∈ L}.

In our current problem, V1 is the space consisting of k Hermitian matrices
with an inner product 〈(M1, . . . , Mk), (M ′

1, . . . , M ′
k)〉 =

∑k
i=1 Tr MiM

′
i , V2 is

the space of Hermitian matrices with the usual product 〈X, Y 〉 = TrXY , L is
the subset in V1 such that all the matrices are positive semidefinite, A is the
1 max{a|b} denotes the maximum value of a satisfying condition b.
2 AT denotes the transpose of A.



74 Quantum Hypothesis Testing and Discrimination of Quantum States

map (M1, . . . , Mk) �→
∑k

i=1 Mi, and b and c are I and (p1ρ1, . . . , pkρk), re-
spectively. Applying Theorem 3.1, we obtain (3.6). Therefore, we have rewrit-
ten the multivariable maximization problem on the (left-hand side) LHS of
(3.6) into a single-variable minimization problem involving only one Hermi-
tian matrix on the (right-hand side) RHS of (3.6). In general it is difficult
to further analyze such optimization problems except for problems involving
special symmetries [27]. Due to the fundamental nature of this problem, it is
possible to reuse our results here in the context of other problems, as will be
discussed in later sections. In these problems, it is sufficient to evaluate only
the upper and lower bounds. Therefore, although it is generally difficult to
obtain the optimal values, their upper and lower bounds can be more readily
obtained.

In this section, the problem was formulated in terms of generalized linear
programming [397]. However, it is also possible to formulate the problem in
terms of semidefinite programming (SDP) [238]. The semidefinite program-
ming problem has been studied extensively, and many numerical packages
are available for this problem. Therefore, for numerical calculations it is con-
venient to recast the given problem in terms of SDP [48].

The generalized duality theorem given here may also be applied to other
problems such as the minimization problem appearing on the RHS of (6.92)
in Sect. 6.6 [165–167] and the problem involving the size and accuracy of the
maximally entangled state [353] that can be produced by class ➁ introduced
in Sect. 8.11. Therefore, this theorem is also interesting from the viewpoint
of several optimization problems in quantum information theory.3

Exercises

3.4. Show that the average correct probability
∑k

i=1
1
k Tr ρiMi with the uni-

form distribution is less than d
k . Furthermore, show that it is less than

d
k maxi ‖ρi‖.

3.3 Asymptotic Analysis of State Discrimination

It is generally very difficult to infer the density matrix of the state of a single
quantum system. Hence, it is possible that an incorrect result will be obtained
from a single measurement. To avoid this situation, one can develop many
independent systems in the same state and then perform measurements on
3 An example of a numerical solution of the maximization problem in quantum

information theory is discussed in Sect. 4.1.2, where we calculate the classical
capacity Cc(W ). Nagaoka’s quantum version of the Arimoto–Blahut algorithm
[13, 53], known from classical information theory [305, 311], and an application
of this algorithm to the verification of the addition law discussed in Sect. 9.2
are some examples of related works [311, 325]. The connection between these
quantities and linear programming has also been discussed widely [238,375].



3.3 Asymptotic Analysis of State Discrimination 75

these. In this case, we would perform individual measurements on each system
and analyze the obtained data statistically. However, it is also possible to
infer the unknown state via a single quantum measurement on the composite
state of these systems. There are many methods available for the second
approach as compared with the first. Therefore, it would be interesting to
determine if the difference between the two approaches becomes apparent in
their optimized forms.

Let us consider the problem of state discrimination for unknown states
given by the tensor product states such as ρ⊗n and σ⊗n. This may be re-
garded as a quantum-mechanical extension of an independent and identical
distribution. If arbitrary measurements on H⊗n are allowed to perform this
discrimination, we can identify the Hermitian matrix T satisfying I ≥ T ≥ 0
on H⊗n as the discriminator. If we restrict the allowable measurements per-
formed on H⊗n to be separable or adaptive, the problem becomes somewhat
more complicated.

Let us consider the first case. The minimum of the sum of the two error
probabilities is then given by minI≥T≥0 (Tr ρ⊗n(I − T ) + Tr σ⊗nT ), and it
asymptotically approaches 0 as n increases. Since this quantity approaches 0
exponentially with n, our problem is then to calculate this exponent.

Lemma 3.2 The minimum of the sum of the two error probabilities satisfies

min
I≥T≥0

(
Tr ρ⊗n(I − T ) + Tr σ⊗nT

)
≤ enφ(1/2),

where φ(s) = φ(s|ρ‖σ) was defined in Sect. 2.2.

Proof. Since
(√

ρ⊗n −
√

σ⊗n
)
{
√

ρ⊗n −
√

σ⊗n < 0} ≤ 0 and

{
√

ρ⊗n −
√

σ⊗n ≥ 0}(
√

σ⊗n −
√

ρ⊗n) ≤ 0, we have

Tr ρ⊗n{
√

ρ⊗n −
√

σ⊗n < 0} − Tr
√

ρ⊗n
√

σ⊗n{
√

ρ⊗n −
√

σ⊗n < 0}
= Tr

√
ρ⊗n(

√
ρ⊗n −

√
σ⊗n){

√
ρ⊗n −

√
σ⊗n < 0} ≤ 0

and

Tr σ⊗n{
√

ρ⊗n −
√

σ⊗n ≥ 0} − Tr
√

ρ⊗n
√

σ⊗n{
√

ρ⊗n −
√

σ⊗n ≥ 0}
= Tr(

√
σ⊗n −

√
ρ⊗n)

√
σ⊗n{

√
ρ⊗n −

√
σ⊗n ≥ 0}

= Tr{
√

ρ⊗n −
√

σ⊗n ≥ 0}(
√

σ⊗n −
√

ρ⊗n)
√

σ⊗n ≤ 0.

Therefore, considering a test T = {
√

ρ⊗n −
√

σ⊗n ≥ 0}, we obtain

min
I≥T≥0

(
Tr ρ⊗n(I − T ) + Tr σ⊗nT

)
≤ Tr ρ⊗n{

√
ρ⊗n −

√
σ⊗n < 0}+ Tr σ⊗n{

√
ρ⊗n −

√
σ⊗n ≥ 0}

≤ Tr
√

ρ⊗n
√

σ⊗n{
√

ρ⊗n−
√

σ⊗n <0}+Tr
√

ρ⊗n
√

σ⊗n{
√

ρ⊗n−
√

σ⊗n≥0}
= Tr

√
ρ⊗n
√

σ⊗n = enφ(1/2).
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If ρ and σ commute, the following lemma holds. However, it is an open
problem in the noncommutative case.

Lemma 3.3 (Chernoff [72]) Let ρ and σ commute. Then

min
I≥T≥0

(
Tr ρ⊗n(I − T ) + Tr σ⊗nT

)
≤ exp(n inf

1≥s≥0
φ(s)) (3.8)

and

lim
1
n

log min
I≥T≥0

(
Tr ρ⊗n(I − T ) + Tr σ⊗nT

)
= inf

1≥s≥0
φ(s). (3.9)

Equation (3.9) follows from (3.2) and Theorem 2.5 (Cramér’s Theorem) with
X = − log p(ω)

p̄(ω) , θ = s, x = 0, where p and p̄ are probability distributions that
consist of the eigenvalues of ρ and σ, respectively Ex. 3.5. Inequality (3.8) is
obtained in the same way, but we prove (3.8) here for the reader’s convenience.

Proof of (3.8). If ρ and σ commute, then {ρ⊗n − σ⊗n < 0} = {(ρ⊗n)s −
(σ⊗n)s < 0}. Therefore,

Tr ρ⊗n{ρ⊗n − σ⊗n < 0}
= Tr(ρ⊗n)1−s

(
(ρ⊗n)s − (σ⊗n)s

)
{ρ⊗n − σ⊗n < 0}

+ Tr(ρ⊗n)1−s(σ⊗n)s{ρ⊗n − σ⊗n < 0}
≤ Tr(ρ⊗n)1−s(σ⊗n)s{ρ⊗n − σ⊗n < 0}.

Similarly, we obtain

Tr σ⊗n{ρ⊗n − σ⊗n ≥ 0} ≤ Tr(σ⊗n)1−t(ρ⊗n)t{ρ⊗n − σ⊗n ≥ 0}.

Substituting t = 1− s,

min
I≥T≥0

(
Tr ρ⊗n(I − T ) + Tr σ⊗nT

)
≤ Tr ρ⊗n{ρ⊗n − σ⊗n < 0}+ Tr σ⊗n{ρ⊗n − σ⊗n ≥ 0}
≤ Tr(ρ⊗n)1−s(σ⊗n)s{ρ⊗n−σ⊗n <0}+Tr(σ⊗n)s(ρ⊗n)1−s{ρ⊗n−σ⊗n ≥ 0}
= Tr(σ⊗n)s(ρ⊗n)1−s = enφ(s),

from which we obtain (3.8).

Exercises

3.5. Show equation (3.9).

3.6. Show (3.8) when ρ is a pure state |u〉〈u| following the steps below.

a Show that inf1≥s≥0 φ(s) = log〈u|σ|u〉, i.e., inf1≥s≥0〈u|σs|u〉 = 〈u|σ|u〉.
b Show (3.8) when T = |u〉〈u|⊗n.
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3.7. Check that this bound can be attained by the test based on the multiple
application of the POVM {|u〉〈u|, I − |u〉〈u|} on the single system.

3.8. Show (3.9) when ρ and σ are pure states |u〉〈u| and |v〉〈v| following the
steps below.

a Show that minI≥T≥0 (Tr ρ⊗n(I − T ) + Tr σ⊗nT ) = 1−
√

1− |〈u|v〉|2n.
b Show that lim 1

n log 1−
√

1− |〈u|v〉|2n = log |〈u|v〉|2.
c Show (3.9).

3.9. Show that inf1≥s≥0 φ(s) = φ(1/2) when σ has the form σ = UρU∗.

3.10. Suppose that σ has the form σ = UρU∗ and φ′′(1/2) > 0, φ(1/2|ρ‖σ) <
F (ρ, σ). Show that φ(1/2|ρ‖σ) < minM inf1≥s≥0 φ(s|PM

ρ ‖PM
σ ) using (2.62)

and F (ρ, σ) ≤ φ(1/2|PM
ρ ‖PM

σ ), which is shown in Corollary 8.4 in a more gen-
eral form. Also show that φ(1/2|ρ‖σ) < lim 1

n minMn inf1≥s≥0 φ(s|PMn

ρ⊗n‖PMn

σ⊗n).

3.4 Hypothesis Testing and Stein’s Lemma

Up until now, the two hypotheses for the two unknown states have been
treated equally. However, there are situations where the objective is to dis-
prove one of the hypotheses (called the null hypothesis) and accept the other
(called the alternative hypothesis). This problem in this situation is called
hypothesis testing. In this case, our errors can be classified as follows. If the
null hypothesis is rejected despite being correct, it is called the error of the
first kind. Conversely, if the null hypothesis is accepted despite being incor-
rect, it is called the error of the second kind. Then, we make our decision
only when we support the alternative hypothesis and withhold our decision
when we support the null one. Hence, the probability that we make a wrong
decision is equal to the error probability of the first kind, i.e., the probability
that an error of the first kind is made (if the null hyppothesis consists of more
than one element, then it is defined as the maximum probability with respect
to these elements). Hence, we must guarantee that the error probability of
the first kind is restricted to below a particular threshold. This threshold
then represents the reliability, in a statistical sense, of our decision and is
called the level of significance. The usual procedure in hypothesis testing is
to fix the level of significance and maximize the probability of accepting the
alternative hypothesis when it is true; in other words, we minimize the error
probability of the second kind, which is defined as the probability of an error
of the second kind. For simplicity, we assume that these two hypotheses con-
sist of a single element, i.e., these are given by ρ and σ, respectively. Such
hypotheses are called simple and are often assumed for a theoretical analysis
because this assumption simplifies the mathematical treatment considerably.
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Fig. 3.1. Chernoff’s bound and quantum relative entropy

As before, we denote our decision by a test T where 0 ≤ T ≤ I, despite the
asymmetry of the situation (the event of rejecting the null hypothesis then
corresponds to I−T ). The error probability of the first kind is Tr ρ(I−T ), and
the error probability of the second kind is TrσT . The discussion in Sect. 3.1
comfirms that in order to optimize our test, it is sufficient to treat only the
tests of the form T = {σ−cρ < 0} [see RHS of (3.1)]. However, the analysis in
Sect. 3.3 cannot be reused due to the asymmetrical treatment of the problem
here and therefore another kind of formalism is required. Let us first examine
the asymptotic behavior of the error probability of the second kind when the
null and the alternative hypotheses are given by the tensor product states
ρ⊗n and σ⊗n on the tensor product space H⊗n with a level of significance of
ε > 0.

Theorem 3.2 (Hiai and Petz [206], Ogawa and Nagaoka [320]) The mini-
mum value of the error probability of the second kind βn

ε (ρ‖σ) satisfies

lim
−1
n

log βn
ε (ρ‖σ) = D(ρ‖σ), 1 > ∀ε > 0 (3.10)

βn
ε (ρ‖σ) def= min

I≥T≥0
{Tr σ⊗nT |Tr ρ⊗n(I − T ) ≤ ε}

when the error probability of the first kind is below ε > 0 (i.e., the level of
significance is equal to ε).

This theorem is called quantum Stein’s lemma, which is based on its clas-
sical counterpart of Stein’s lemma. Of course, if ρ and σ commute, we may
treat this testing problem by classical means according to the arguments given
after Lemma 3.1 in the previous section. From (2.54) the relation between
quantum relative entropy D(ρ‖σ) and Chernoff’s bound inf1≥s≥0 φ(s) is il-
lustrated as follows. In particular, when σ = UρU∗, D(ρ‖σ) ≥ −2φ(1/2) =
−2 inf1≥s≥0 φ(s).

Since the proof below also holds for commuting ρ and σ, it can be regarded
as a proof of the classical Stein’s lemma, although it is rather elaborate. The
proof of Theorem 3.2 is obtained by first showing Lemmas 3.4 and 3.5.
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Lemma 3.4 (Direct Part) (Hiai and Petz [206]) There exists a sequence
of Hermitian matrices {Tn} on H⊗n with I ≥ Tn ≥ 0 such that for arbitrary
δ > 0

lim
−1
n

log Tr σ⊗nTn ≥ D(ρ‖σ)− δ, (3.11)

lim Tr ρ⊗n(I − Tn) = 0. (3.12)

Lemma 3.5 (Converse Part) (Ogawa and Nagaoka [320]) If a sequence
of Hermitian matrices {Tn} (I ≥ Tn ≥ 0) on H⊗n satisfies

lim
−1
n

log Tr σ⊗nTn > D(ρ‖σ), (3.13)

then

lim Tr ρ⊗n(I − Tn) = 1. (3.14)

Proof of Theorem 3.2 using Lemmas 3.4 and 3.5: For 1 > ε > 0,
we take {Tn} to satisfy (3.11) and (3.12) according to Lemma 3.4. Taking a
sufficiently large N , we have Tr ρ⊗n(I−Tn) ≤ ε for n ≥ N from (3.12). There-
fore, βn

ε (ρ‖σ) ≤ Tr σ⊗nTn, and we see that lim −1
n log βn

ε (ρ‖σ) ≥ D(ρ‖σ)− δ.
Since δ > 0 is arbitrary, we obtain lim −1

n log βn
ε (ρ‖σ) ≥ D(ρ‖σ) by taking

the limit δ → 0.
Now, let lim −1

n log βn
ε (ρ‖σ) > D(ρ‖σ) for a particular 1 > ε > 0. Then,

we can take a sequence of Hermitian matrices {Tn} on H⊗n with I ≥ Tn ≥ 0
that satisfies

lim
−1
n

log Tr σ⊗nTn > D(ρ‖σ), Tr ρ⊗n(I − Tn) ≤ ε.

However, this contradicts Lemma 3.5, and hence it follows that lim −1
n

log βn
ε (ρ‖σ) ≤ D(ρ‖σ). This proves (3.10).

It is rather difficult to prove the above two lemmas at this point. Hence,
we will prove them after discussing several other lemmas forming the basis of
the asymptotic theory described in Sect. 3.7. In fact, combining Lemmas 3.4
and 3.5, we obtain the following theorem (Theorem 3.3), which implies The-
orem 3.2.

Theorem 3.3 Define

B(ρ‖σ) def= sup
{Tn}

{
lim
−1
n

log Tr σ⊗nTn

∣∣∣∣ lim Tr ρ⊗n(I − Tn) = 0
}

,

B†(ρ‖σ) def= sup
{Tn}

{
lim
−1
n

log Tr σ⊗nTn

∣∣∣∣ lim Tr ρ⊗n(I − Tn) < 1
}

.

Then,

B(ρ‖σ) = B†(ρ‖σ) = D(ρ‖σ).
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As a corollary, we can show the following.

Corollary 3.1

D(ρ‖σ) = lim
n→∞

1
n

max
M

D(PM
ρ⊗n‖PM

σ⊗n). (3.15)

Proof. Using classical Stein’s lemma, we can show that D(PM
ρ⊗n‖PM

σ⊗n) ≤
B(ρ⊗n‖σ⊗n) = nD(ρ‖σ). Then, we obtain the≥ part. Let {Tn} be a sequence
of tests achieving the optimal. Then, we can prove that
D(P{Tn,I−Tn}

ρ⊗n ‖P{Tn,I−Tn}
σ⊗n )→ B(ρ‖σ) = D(ρ‖σ).

For a further analysis of the direct part, we focus on the decreasing expo-
nent of the error probability of the first kind under an exponential constraint
for the error probability of the second kind. For details on the converse part,
we assume an exponential constraint of the error probability of the second
kind and optimize the decreasing exponent of the correct probability of the
first kind. In other words, we treat the following values:

B(r|ρ‖σ) def= sup
{Tn}

{
lim
−1
n

log Tr ρ⊗n(I − Tn)
∣∣∣∣ lim −1

n
log Tr σ⊗nTn ≥ r

}
,

B∗(r|ρ‖σ) def= inf
{Tn}

{
lim
−1
n

log Tr ρ⊗nTn

∣∣∣∣ lim −1
n

log Tr σ⊗nTn ≥ r

}
.

In the commutative case, i.e., in the classical case, the inequalities

B(r|p‖p̄) = sup
0≤s≤1

−sr − φ(s|p‖p̄)
1− s

= min
q:D(q‖p̄)≤r

D(q‖p), (3.16)

B∗(r|p‖p̄) = sup
s≤0

−sr − φ(s|p‖p̄)
1− s

= min
q:D(q‖p̄)≥r

D(q‖p) (3.17)

hold, where p and p̄ are the probability distributions. The former and the lat-
ter are shown by Hoeffding [210] and Han and Kobayashi [159], respectively.
Note that the second equations of (3.16) and (3.17) follow from (2.143) and
(2.144). In the quantum case, the relations

sup
0≤s≤1

−sr − φ̃(s|ρ‖σ)
1− s

≤ B(r|ρ‖σ) ≤ min
τ :D(τ‖σ)≤r

D(τ‖ρ), (3.18)

sup
s≤0

−sr − φ(s|ρ‖σ)
1− s

≤ B∗(r|ρ‖σ) = sup
s≤0

−sr − φ̄(s|ρ‖σ)
1− s

≤ min
τ :D(τ‖σ)≥r

D(τ‖ρ) (3.19)

hold, where φ̃(s|ρ‖σ) and φ̄(s|ρ‖σ) are the other quantum extensions of relative
Rényi entropy defined as φ̃(s|ρ‖σ) def= log Tr ρσs/2ρ−sσs/2 and φ̄(s|ρ‖σ) def=
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lim 1
n log φ(s|κσ⊗n(ρ⊗n)‖σ⊗n), respectively. See (3.40) and (3.43) and Exer-

cises 3.13, 3.14, 3.15, and 3.17. The equality on the first inequality in (3.19)
does not necessarily hold (Exercise 5.25).

We can also characterize the asymptotic optimal performance of quantum
simple hypothesis testing with a general sequence of two quantum states [306,
310]. In this general setting, the main problem is to determine the behavior
of Tr ρ{ρ− eaσ ≥ 0} as a function of a [308].

Exercises

3.11. Show the equations (3.16) and (3.17) following the steps below.

a Show the following equations for φ(s) = φ(s|p‖p̄) using Cramér’s theorem.

lim
−1
n

log pn

{
−1
n

log
(

pn(xn)
p̄n(xn)

)
≥ R

}
= max

s≥0
sR− φ(s), (3.20)

lim
−1
n

log pn

{
−1
n

log
(

pn(xn)
p̄n(xn)

)
≤ R

}
= max

s≤0
sR− φ(s), (3.21)

lim
−1
n

log p̄n

{
−1
n

log
(

pn(xn)
p̄n(xn)

)
≤ R

}
= max

s≤1
−(1− s)R− φ(s). (3.22)

b Define a
def= maxx

p(x)
p̄(x) . Show the following table except ∗1 and ∗2.

s −∞ 0 1
φ(s) +∞ ↘ 0 � 0
φ′(s) − log a ↗ −D(p‖p̄) ↗ D(p̄‖p)

sφ′(s)− φ(s) − log p̄
{

p(x)
p̄(x) = a

}∗1
↘ 0 ↗ D(p̄‖p)

(s− 1)φ′(s)−φ(s) − log p̄
{

p(x)
p̄(x) = a

}∗2
↘ D(p‖p̄) ↘ 0

c Show that

sφ′(s)− φ(s) =
{

maxs0≥0(s0φ
′(s)− φ(s0)) s ≥ 0,

maxs0≤0(s0φ
′(s)− φ(s0)) s ≤ 0,

(s− 1)φ′(s)− φ(s) = max
s0≤1

((s0 − 1)φ′(s)− φ(s0)).

d Show ∗1 and ∗2 in the above table using a and c.
e Assume that 0 ≤ r ≤ D(p‖p̄). Show that there exists a real number

1 ≥ sr ≥ 0 such that

r = (sr − 1)φ′(sr)− φ(sr), max
s′≥0

−s′r − φ(s′)
1− s′ = srφ

′(sr)− φ(sr).

Show equation (3.16).



82 Quantum Hypothesis Testing and Discrimination of Quantum States

f Assume that D(p‖p̄) < r < − log p̄{p(x)
p̄(x) = a}. Show that there exists a

real number s∗
r ≤ 0 such that

r = (s∗
r − 1)φ′(s∗

r)− φ(s∗
r), max

s′≤0

−s′r − φ(s′)
1− s′ = s∗

rφ
′(s∗

r)− φ(s∗
r).

Show equation (3.17) in this case.
g Assume that r ≥ − log p̄{p(x)

p̄(x) = a}. Show that

sup
s≤0

−sr−φ(s)
1− s

= lim
s→−∞

−sr−φ(s)
1− s

= lim
s→−∞

−sr+s log a

1− s
=r−log a.

Show equation (3.17) in this case.
h Show that

dB(r|p‖q)
dr

=
sr

sr − 1
,

d2B(r|p‖q)
dr2 =

−1
(sr − 1)3φ′′(sr)

≥ 0, (3.23)

dB∗(r|p‖q)
dr

=
s∗

r

s∗
r − 1

,
d2B∗(r|p‖q)

dr2 =
−1

(s∗
r − 1)3φ′′(s∗

r)
≥ 0, (3.24)

which implies the convexities of B(r|p‖q) and B∗(r|p‖q).

3.5 Hypothesis Testing by Separable Measurements

In the previous section, we performed the optimization with no restriction on
the measurements on H⊗n. In this section, we will restrict the possible mea-
surements to separable measurements. In other words, our test T is assumed
to have the separable form:

T = Mn
1,ωn
⊗ · · · ⊗Mn

n,ωn
, Mn

1,ωn
≥ 0, . . . , Mn

n,ωn
≥ 0 on H⊗n,

which is called a separable test. This class of tests includes cases such as mak-
ing identical measurements on every system H and analyzing measurement
data statistically. It also includes other methods such as adaptive improve-
ment of the measurements and statistical analysis of measurement data. The
following theorem evaluates the asymptotic performance of the tests based
on these measurements.

Theorem 3.4 Defining B̃(ρ‖σ) as

B̃(ρ‖σ) def= sup
{Tn}:separable

{
lim
−1
n

log Tr σ⊗nTn

∣∣∣∣ lim Tr ρ⊗n(I − Tn) = 0
}

,

we have
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B̃(ρ‖σ) = max
M

D
(
PM

ρ ‖PM
σ

)
. (3.25)

When the measurement Mmax
def= argmax

M
D
(
PM

ρ ‖PM
σ

)
is performed n times,

the bound maxM D
(
PM

ρ ‖PM
σ

)
can be asymptotically attained by suitable sta-

tistical processing of the n data.

This theorem shows that in terms of quantities such as B̃(ρ‖σ), there is no
asymptotic difference between the optimal classical data processing according
to identical measurements Mmax on each system and the optimal separable
test across systems.

Therefore, at least for this problem, we cannot take advantage of the
correlation between quantum systems unless a nonseparable measurement is
used. Since B̃(ρ‖σ) ≤ B(ρ‖σ), we have the monotonicity of quantum relative
entropy for a measurement

D
(
PM

ρ ‖PM
σ

)
≤ D(ρ‖σ). (3.26)

The following theorem discusses the equality condition of the above inequal-
ity.

Theorem 3.5 (Ohya and Petz [323], Nagaoka [302], Fujiwara [121]) The
following conditions are equivalent for two states ρ and σ and a PVM M =
{Mi}di=1 of rankMi = 1.

➀ The equality in (3.26) is satisfied.
➁ [σ, ρ] = 0 and there exists a set of real numbers {ai}di=1 satisfying

ρ = σ

(
d∑

i=1

aiMi

)
=

(
d∑

i=1

aiMi

)
σ. (3.27)

See Exercise 6.27 for the proof of this theorem.

Proof of Theorem 3.4. The fact that maxM D
(
PM

ρ ‖PM
σ

)
can be attained,

i.e., the “≥” sign in (3.25), follows from the classical Stein’s lemma. There-
fore, we show that B̃(ρ‖σ) does not exceed this value, i.e., the “≤” sign in
(3.25). It is sufficient to treat lim −1

n log PMn

σ⊗n(An) for the pair of separable
measurements Mn = {Mn

ωn
}ωn∈Ωn :

Mn
ωn

= Mn
1,ωn
⊗ · · · ⊗Mn

n,ωn
, Mn

1,ωn
≥ 0, . . . , Mn

n,ωn
≥ 0 on H⊗n

and a subset An of Ωn with PMn

ρ⊗n(Ac
n)→ 0. First, we show that

1
n

D
(

PMn

ρ⊗n

∥∥∥PMn

σ⊗n

)
≤ max

M
D
(
PM

ρ ‖PM
σ

)
. (3.28)

For this purpose, we define ak,ωn

def=
∏

j �=k Tr Mn
j,ωn

ρ and Mn,k
ωn

def= ak,ωnMn
k,ωn

.
Since an arbitrary state ρ′ on H satisfies
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Tr ρ′ ∑
ωn

Mn,k
ωn

= Tr
∑
ωn

ρ⊗(k−1) ⊗ ρ′ ⊗ ρ⊗(n−k)Mn,k
ωn

= Tr ρ⊗(k−1) ⊗ ρ′ ⊗ ρ⊗(n−k) = 1,

we see that
∑

ωn
Mn,k

ωn
= I; hence, we can verify that {Mn,k

ωn
} is a POVM.

Moreover, we can show Ex. 3.12 that

D
(

PMn

ρ⊗n

∥∥∥PMn

σ⊗n

)
=

n∑
k=1

D
(

PMn,k

ρ

∥∥∥PMn,k

σ

)
, (3.29)

and thus verify (3.28). Since the monotonicity of the relative entropy for a
probability distribution yields

PMn

ρ⊗n(An)
(
log PMn

ρ⊗n(An)− log PMn

σ⊗n(An)
)

+ PMn

ρ⊗n(Ac
n)
(
log PMn

ρ⊗n(Ac
n)− log PMn

σ⊗n(Ac
n)
)

≤ D
(
PMn

ρ⊗n

∥∥∥PMn

σ⊗n

)
≤ n max

M
D
(
PM

ρ

∥∥PM
σ

)
,

we obtain

− 1
n

log PMn

σ⊗n(An) ≤
maxM D

(
PM

ρ ‖PM
σ

)
+ 1

nh(PMn

ρ⊗n(An))

PMn

ρ⊗n(An)
, (3.30)

where we used the fact that −PMn

ρ⊗n(Ac
n) log PMn

σ⊗n(Ac
n) ≥ 0, and h(x) is a

binary entropy that is expressed as h(x) = −x log x − (1 − x) log(1 − x).
Noting that h(x) ≤ 2 and PMn

ρ⊗n(An)→ 1, we have

lim − 1
n

log PMn

σ⊗n(An) ≤ max
M

D
(
PM

ρ ‖PM
σ

)
,

from which we obtain (3.25).

Exercises

3.12. Prove (3.29).

3.6 Proof of Direct Part of Stein’s Lemma

In order to prove the direct part of Lemma 3.4, we must first prove Lemma 3.6
given below.

Lemma 3.6 Let ρ be a density matrix, and S and T be two Hermitian ma-
trices such that S and ρ commute and I ≥ T ≥ 0 and I ≥ S ≥ 0. The
following relation then holds:

Tr ρ(I − TST ) ≤ Tr ρ(I − S) + 2 Tr ρ(I − T ).
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Proof. Since S and ρ commute, (I − S)ρ = ρ(I − S) ≥ 0, which implies
Sρ + ρS ≤ 2ρ. Therefore,

Tr ρ(I − S) + 2 Tr ρ(I − T )− Tr ρ(I − TST )
= Tr ρTST − Tr ρS + Tr 2ρ(I − T )
≥ Tr ρTST − Tr ρS + Tr(Sρ + ρS)(I − T ) = Tr ρ(I − T )S(I − T ) ≥ 0,

completing the proof. In the last equality, we used the relation that (I −
T )S(I − T ) = TST − S + (I − T )S + S(I − T ).

For proving Lemma 3.4, we define the matrices τn and νn for arbitrary
δ > 0:

τn
def=

{
σ⊗n < en(Tr ρ log σ+δ)

}
, νn

def=
{

ρ⊗n > en(Tr ρ log ρ−δ)
}

.

The matrix Tn
def= τnνnτn satisfies 0 ≤ Tn = τnνnτn ≤ τ2

n = τn ≤ I. Hence,
(2.48) and (2.52) yield

1− lim Tr ρ⊗nνn = lim Tr ρ⊗n
{

ρ⊗n ≤ en(Tr ρ log ρ−δ)
}

= 0, (3.31)

1− lim Tr ρ⊗nτn = lim Tr ρ⊗n
{

σ⊗n ≥ en(Tr ρ log σ+δ)
}

= 0. (3.32)

Lemma 3.6 guarantees that

lim Tr ρ⊗nτnνnτn = 1, (3.33)

from which we obtain (3.12). Since τnσ⊗nτn ≤ en(Tr ρ log σ+δ) according to
(2.47) with s = 1 and νn ≤ ρ⊗ne−n(Tr ρ log ρ−δ), we have

Tr σ⊗nτnνnτn = Tr τnσ⊗nτnνn ≤ Tr en(Tr ρ log σ+δ)νn

≤ Tr en(Tr ρ log σ+δ)ρ⊗ne−n(Tr ρ log ρ−δ) = en(Tr ρ log σ−log ρ)+2δ)

= en(2δ−D(ρ‖σ), (3.34)

giving us (3.11).

Exercises

3.13. Show the following fact regarding B(r|ρ‖σ).

a Define Tn
def= {σ⊗n ≤ e−na} ρ⊗n {σ⊗n ≤ e−na} for a pure state ρ. Show

that

Tr ρ⊗n(I − Tn) ≤ 2en(φ(s)+sa), (3.35)

Tr σ⊗nTn ≤ en(φ(s)−(1−s)a) (3.36)

for 1 > s > 0.
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b Show that B(r|ρ‖σ) ≥ max
0≤s≤1

−sr − φ(s)
1− s

for a pure state ρ.

c Define Tn(a) def= {σ⊗n − e−naκσ⊗n(ρ⊗n) ≤ 0}. Show that

Tr ρ⊗n(I − Tn(a)) ≤ ensa Tr(κσ⊗n(ρ⊗n))1−s(σ⊗n)s

Tr σ⊗nTn(a) ≤ en(−1+s)a Tr(κσ⊗n(ρ⊗n))1−s(σ⊗n)s

for 1 > s > 0.
d Define φ̃(s) def= log Tr ρσs/2ρ−sσs/2 for when ρ has an inverse. Show that

Tr(κσ⊗n(ρ⊗n))1−s(σ⊗n)s ≤ (n + 1)denφ̃(s)

if 0 ≤ s ≤ 1 [322]. To show this it is necessary to use Lemmas 3.7 and 3.8
given in the next section and the fact that x �→ −x−s is a matrix monotone
function.

e Show that B(r|ρ‖σ) ≥ max
0≤s≤1

−sr − φ̃(s)
1− s

if ρ has an inverse [322].

3.7 Information Inequalities and Proof of Converse Part
of Stein’s Lemma

In this section, we first prove the converse part of Stein’s lemma based on
inequality (2.63). After this proof, we show the information inequalities (2.59)
and (2.63).

Proof of Theorem 3.5. Applying inequality (2.63) to the two-valued POVM
{Tn, I − Tn}, we have

(Tr ρ⊗nTn)1−s(Tr σ⊗nTn)s

≤ (Tr ρ⊗nTn)1−s(Tr σ⊗nTn)s + (Tr ρ⊗n(I − Tn))1−s(Tr σ⊗n(I − Tn))s

≤ enφ(s|ρ‖σ) (3.37)

for s ≤ 0. Hence,

1− s

n
log(Tr ρ⊗nTn) +

s

n
log(Trσ⊗nTn) ≤ φ(s|ρ‖σ). (3.38)

Assume that the second error probability Trσ⊗nTn tends to 0 with the ex-
ponent exceeding the relative entropy D(ρ‖σ), i.e.,

r
def= lim

−1
n

log Tr σ⊗nTn > D(ρ‖σ).

Since s ≤ 0, −(1− s) lim −1
n log(Tr ρ⊗nTn) ≤ φ(s|ρ‖σ) + sr, i.e.,
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lim
−1
n

log(Tr ρ⊗nTn) ≥ −φ(s|ρ‖σ)− sr

1− s
. (3.39)

Therefore,

B∗(r|ρ‖σ) ≥ sup
s≤0

−sr − φ(s)
1− s

. (3.40)

The equation −φ′(0) = D(ρ‖σ) implies φ(s0)
−s0

= φ(s0)−φ(0)
−s0

< r for an appro-

priate s0 < 0. Therefore, −φ(s0)−s0r
1−s0

= s0
1−s0

(
φ(s0)
−s0
− r

)
> 0, and we can say

that Tr ρ⊗nTn approaches 0 exponentially.

Next, we prove information inequalities (2.59), (2.62), and (2.63). For this
purpose, we require two lemmas (Lemmas 3.7 and 3.8).

Lemma 3.7 Let X be a Hermitian matrix in a d-dimensional space. The
Hermitian matrix X⊗n given by the tensor product of X has at most (n+1)d

distinct eigenvalues, i.e., |EX⊗n | ≤ (n + 1)d.

Proof. Let X =
∑d

i=1 xi|ui〉〈ui|. Then, the eigenvalues of X⊗n may be
written as (x1)j1 · · · (xd)jd (n ≥ ji ≥ 0). The possible values of (j1, . . . , jd)
are limited to at most (n + 1)d values.

Lemma 3.8 (Hayashi [174]) For a PVM M , any positive matrix ρ and the
pinching map κM defined in (1.11) satisfy

|M |κM (ρ) ≥ ρ. (3.41)

Proof. We first show (3.41) for when ρ is a pure state. Let us consider
the case where |M | = k, and its data set is {1, . . . , k}. Then, the Schwarz
inequality yields

k〈v|κM (|u〉〈u|)|v〉 =

(
k∑

i=1

1

)(
k∑

i=1

〈v|Mi|u〉〈u|Mi|v〉
)

≥
∣∣∣∣∣

k∑
i=1

〈v|Mi|u〉
∣∣∣∣∣
2

=

∣∣∣∣∣
〈

v

∣∣∣∣∣
k∑

i=1

Mi

∣∣∣∣∣u
〉∣∣∣∣∣

2

= |〈v |I|u〉|2 = 〈v|u〉〈u|v〉.

Therefore, we obtain |M |κM (|u〉〈u|) ≥ |u〉〈u|. Next, consider the case where
ρ =

∑
j ρj |uj〉〈uj |. Then,

|M |κM (ρ)− ρ =|M |κM (
∑

j

ρj |uj〉〈uj |)−
∑

j

ρj |uj〉〈uj |

=
∑

j

ρj (|M |κM (|uj〉〈uj |)− |uj〉〈uj |) ≥ 0,

from which we obtain (3.41).
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We are now ready to prove information inequalities (2.59), (2.62), and
(2.63). In what follows, these inequalities are proved only for densities ρ > 0
and σ > 0. This is sufficient for the general case due to the following reason.
First, we apply these inequalities to two densities ρε

def= (ρ+εI)(1+dε)−1 and
σε

def= (σ + εI)(1+dε)−1. Taking the limit ε→ 0, we obtain these inequalities
in the general case.

Proof of (2.59) and (2.63). Inequality (2.59) follows from (2.63) by taking

the limits lims→0
φ(s|ρ‖σ)

−s and lims→0
φ(s|PM

ρ ‖PM
σ )

−s . Hence, we prove (2.63).
Let σ =

∑
j σjEσ,j be the spectral decomposition of σ and Eσ,jρEσ,j =∑

k ρk,jEk,j be that of Eσ,jρEσ,j . Hence, κσ(ρ) =
∑

k,j ρk,jEk,j . Since

Ek,jρEk,j = ρk,jEk,j , it follows that Tr ρ
Ek,j

Tr ρEk,j
= ρk,j . For 0 ≤ s, we have

Tr σsκσ(ρ)1−s = Tr
∑
k,j

σs
jρ

1−s
k,j Ek,j =

∑
k,j

σs
j Tr Ek,jρ

1−s
k,j

=
∑
k,j

σs
j Tr Ek,j

(
Tr ρ

Ek,j

Tr ρEk,j

)1−s

≤
∑
k,j

σs
j Tr Ek,j

(
Tr ρ1−s Ek,j

Tr ρEk,j

)

=
∑
k,j

σs
j Tr ρ1−sEk,j = Trσsρ1−s,

where we applied inequality (2.64) (the quantum version of Jensen in-
equality) with the Hermite matrix ρ and the density Ek,j

Tr ρEk,j
. For any

POVM M = {Mi}, we define the POVMs M ′ = {M ′
i,j,k} and M ′′ =

{M ′′
i } by M ′

i,j,k
def= Ek,jMiEk,j and M ′′

i
def=

∑
k,j M ′

i,j,k, respectively. Then,
Tr σM ′

i,j,k = σj Tr Ek,jMiEk,j and Tr ρM ′
i,j,k = ρk,j Tr Ek,jMiEk,j . Thus,

Tr σsρ1−s ≥ Tr σsκσ(ρ)1−s =
∑
i,j,k

(Tr σM ′
i,j,k)s(Tr ρM ′

i,j,k)1−s

≥
∑

i

(Tr σM ′′
i )s(Tr ρM ′′

i )1−s,

where the last inequality follows from the monotonicity in the classical case.
In addition, TrσM ′′

i =
∑

k,j , Tr σjEk,jMiEk,j = TrσMi, and Tr ρM ′′
i =∑

k,j Tr ρk,jEk,jMiEk,j = Trκσ(ρ)Mi. Lemma 3.8 ensures that

|Eσ|1−s(Tr κσ(ρ)Mi)1−s ≥ (Tr ρMi)1−s.

Hence,

Tr σsρ1−s ≥ Tr σsκσ(ρ)1−s ≥ 1
|Eσ|1−s

∑
i

(Tr σMi)s(Tr ρMi)1−s,

i.e.,
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φ(s|ρ‖σ) ≥ φ(s|κσ(ρ)‖σ) ≥ φ(s|PM
ρ ‖PM

σ )− (1− s) log |Eσ|.

Next, we consider the tensor product case. Then,

φ(s|ρ⊗n‖σ⊗n) ≥φ(s|κσ⊗n(ρ⊗n)‖σ⊗n)

≥φ(s|PM⊗n

ρ⊗n ‖PM⊗n

σ⊗n )− (1− s) log |Eσ⊗n |.

Since φ(s|ρ⊗n‖σ⊗n) = nφ(s|ρ‖σ) and φ(s|PM⊗n

ρ⊗n ‖PM⊗n

σ⊗n ) = nφ(s|PM
ρ ‖PM

σ ),
the inequality

φ(s|ρ‖σ) ≥ φ(s|κσ⊗n(ρ⊗n)‖σ⊗n)
n

≥ φ(s|PM
ρ ‖PM

σ )− log |Eσ⊗n |
n

holds. The convergence log |Eσ⊗n |
n → 0 follows from Lemma 3.8. Thus, we

obtain

φ(s|ρ‖σ) ≥ φ̄(s|ρ‖σ)
(

def= lim
φ(s|κσ⊗n(ρ⊗n)‖σ⊗n)

n

)
≥ φ(s|PM

ρ ‖PM
σ ).

(3.42)

Note that the convergence lim φ(s|κσ⊗n (ρ⊗n)‖σ⊗n)
n is guaranteed by Lemma A.1

because φ(s|κσ⊗(n+m)(ρ⊗(n+m))‖σ⊗(n+m)) ≥ φ(s|κσ⊗m(ρ⊗m)‖σ⊗m)
+φ(s|κσ⊗n(ρ⊗n)‖σ⊗n) − d log |Eσ|. In addition, as is discussed in Exercise
5.25, the equality in φ(s|ρ‖σ) ≥ φ̄(s|ρ‖σ) does not necessarily hold for s ≤ −1.

Furthermore, applying the discussion at the beginning of this section to
φ̄(s|ρ‖σ), we obtain

B∗(r|ρ‖σ) ≥ sup
s≤0

−sr − φ̄(s|ρ‖σ)
1− s

. (3.43)

Exercises

3.14. Show the following inequality by following the steps below.

B∗(r|ρ‖σ) ≤ inf
τ :D(τ‖σ)>r

D(τ‖ρ) = min
τ :D(τ‖σ)≥r

D(τ‖ρ) (3.44)

a For any state τ , show that there exists a sequence {Tn} such that
lim Tr τ⊗n(I − Tn) = 1 and lim −1

n log Tr σ⊗nTn = r.
b Show that the above sequence {Tn} satisfies lim −1

n log Tr σ⊗nTn ≤ D(τ‖ρ).
c Show (3.44).

3.15. Let a sequence of tests {Tn} satisfy R = lim −1
n log Tr ρ⊗nTn and r ≤

lim −1
n log Tr σ⊗n(I − Tn). Show that R ≤ D(τ‖ρ) when D(τ‖σ) ≤ r using

Lemma 3.5 twice. That is, show that

B(r|ρ‖σ) ≤ inf
τ :D(τ‖σ) <r

D(τ‖ρ) = min
τ :D(τ‖σ)≤r

D(τ‖ρ).
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3.16. Show (2.63) from (3.40) by following the steps below.

a Show that

sup
s≤0

−sr − φ(s|PM
ρ ‖PM

σ )
1− s

≥ sup
s≤0

−sr − φ(s|ρ‖σ)
1− s

by considering the relationship between B∗(r|ρ‖σ) and B∗(r|PM
ρ ‖PM

σ ).
b Show that

sup
s′≤0

−s′rs − φ(s′|PM
ρ ‖PM

σ )
1− s′ =

−srs − φ(s|PM
ρ ‖PM

σ )
1− s

,

where rs
def= (s− 1)φ′(s|ρ‖σ)− φ(s|ρ‖σ).

c Show (2.63) using a and b.

3.17. Show the equation B∗(r|ρ‖σ) ≥ sups≤0
−sr−φ̄(s|ρ‖σ)

1−s following the steps
below.

a Show B∗(r|ρ‖σ) ≥ sups≤0
−sr− 1

n φ(s|κσ⊗n ρ⊗n‖σ⊗n)
1−s .

b Show lim sups≤0
−sr− 1

n φ(s|κσ⊗n ρ⊗n‖σ⊗n)
1−s = sups≤0

−sr−φ̄(s|ρ‖σ)
1−s .

c Show the desired equation.

3.18. Show φ̄(s|ρ‖σ) = lim 1
n maxM φ(s|PM

ρ⊗n‖PM
σ⊗n).

3.8 Historical Note

The problem of discriminating two states was treated by Holevo [211] and Helstrom
[203]. Its extension to multiple states was discussed by Yuen et al. [431]. If we
allowed any POVM, the possibility of perfect discrimination is trivial. That is, it is
possible only when the hypothesis states are orthogonal to each other. However, if
our measurement is restricted to LOCC, its possibility is not trivial. This problem
is called local discrimination and has been studied by many researchers recently
[70,71,107,147,191,326,405,406,409].

On the nonperfect discrimination, Chernoff’s lemma is essential in the asymp-
totic setting with two commutative states. However, no results were obtained con-
cerning the quantum case of Chernoff’s lemma. Hence, Theorem 3.2 is the first
attempt to obtain its quantum extension. Regarding the quantum case of Stein’s
lemma, many results were obtained, the first by Hiai and Petz [206]. They proved
that B(ρ‖σ) = D(ρ‖σ). The part B(ρ‖σ) ≤ D(ρ‖σ) essentially follows from the
same discussion as (3.30). They proved the other part B(ρ‖σ) ≥ D(ρ‖σ) by show-
ing the existence of the POVMs {Mn} such that

lim
1
n

DMn

(ρ⊗n‖σ⊗n) = D(ρ‖σ). (3.45)
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An impetus for this work was the first meeting between Hiai and Nagaoka in 1990
when they were at the same university (but in different departments). During their
discussion, Nagaoka asked about the possibility of extending Stein’s lemma to the
quantum case. After their achievement, Hayashi [169] proved that there exists a se-
quence of POVMs {Mn} that satisfies (3.15) and depends only on σ. Hayashi [174]
also proved that the asymptotically optimal condition for a measurement in terms of
quantum hypothesis testing depends only on σ. Moreover, Ogawa and Hayashi [322]
also derived a lower bound of the exponent of the second error probability (Exercise
3.13 e). Hayashi and Nagaoka [186] also proved B(ρ‖σ) ≥ D(ρ‖σ) in a simple form.
Since their proof does not require any advanced knowledge, we use their approach
in Sect. 3.6.

Regarding the strong converse part B†(ρ‖σ) ≤ D(ρ‖σ), Ogawa and Nagaoka
[320] proved it by deriving the lower bound of the exponent sup−1≤s≤0

−sr−φ(s)
1−s

,
which is equal to the RHS of (3.40) when s ≤ 0 is replaced by −1 ≤ s ≤ 0. Its
behavior is slightly worse for a large value r. After this, the same exponent was
obtained by Nagaoka [307] in a more simple way. However, these two approaches
are based on the monotonicity of the relative Rényi entropy φ(s|ρ‖σ) (−1 ≤ s ≤ 0),
and this kind of monotonicity has been proved by Petz [343] based on advanced
knowledge, i.e., matrix convex functions. In this text, we prove the monotonicity
of the relative Rényi entropy φ(s|ρ‖σ) (s ≤ 0) for a measurement based only on
elementary knowledge, and we apply this monotonicity to Nagaoka’s proof. Hence,
we derive the better bound sups≤0

−sr−φ(s)
1−s

, which was derived by Hayashi [173]
using a different method. In addition, the second inequality in (3.18) was first proved
in the Japanese version of this book. All relations in (3.19) were first proved in the
English version.

Furthermore, Nagaoka invented a quantum version of the information spectrum
method, and Nagaoka and Hayashi [310] applied it to the simple hypothesis testing
of a general sequence of quantum states.

Finally, we should remark that the formulation of hypothesis testing is based
on industrial demands. In particular, in order to guarantee product quality, we usu-
ally use test based on random sampling and statistically evaluate the quality. It is
natural to apply this method to check the quality of produced maximally entangled
states because maximally entangled states are used as resources of quantum infor-
mation processing. Tsuda et al. formulated this problem using statistical hypothesis
testing [389] and demonstrated its usefulness by applying it to maximally entan-
gled states that produced spontaneous parametric down conversion [390]. Further,
Hayashi [195] analyzed this problem more extensively from a theoretical viewpoint.
However, concerning quantum hypothesis testing, the research on the applied side
is not sufficient. Hence, such a study is strongly desired.



4

Classical-Quantum Channel Coding
(Message Transmission)

Summary. Communication systems such as the Internet have become part of our
daily lives. In any data-transmission system, data are always exposed to noise, and
therefore it might be expected that information will be transmitted incorrectly.
In practice, however, such problems can be avoided entirely. How is this possible?
For explaining this, let us say that we send some information that is either 0 or
1. Now, let us say that the sender and receiver agree that the former will send
“000” instead of “0” and “111” instead of “1.” If the receiver receives “010” or
“100,” he or she can deduce that the sender in fact sent 0. On the other hand,
if the receiver receives a “110” or “101,” he or she can deduce that a 1 was sent.
Therefore, we can reduce the chance of error by introducing redundancies into the
transmission. However, in order to further reduce the chance of an error in this
method, it is necessary to indefinitely increase the redundancy. Therefore, it had
been commonly believed that in order to reduce the error probability, one had
to increase the redundancy indefinitely. However, in 1948, Shannon [366] showed
that by using a certain type of encoding scheme,1 it is possible to reduce the error
probability indefinitely without increasing the redundancy beyond a fixed rate.
This was a very surprising result since it was contrary to naive expectations at
that time. The distinctive part of Shannon’s method was to treat communication
in the symbolic form of 0s and 1s and then to approach the problem of noise using
encoding. In practical communication systems such as optical fibers and electrical
wires, codes such as 0 and 1 are sent by transforming them into a physical medium.
In particular, in order to achieve the theoretical optimal communication speed, we
have to treat the physical medium of the communication as a microscopic object,
i.e., quantum-mechanical object. In this quantum-mechanical scenario, it is most
effective to treat the encoding process not as a transformation of the classical bits,
e.g., 0s, 1s, and so on, but as a transformation of the message into a quantum
state. Furthermore, the measurement and decoding process can be thought of as a
single step wherein the outcome of the quantum-mechanical measurement directly
becomes the recovered message.

1 This is the transformation rule for the message. More precisely, the transforma-
tion rule during message transmission is called encoding and the transformation
rule in the recovery process is called decoding.
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Table 4.1. Denotations used in Chap. 4

Φ Code (N, ϕ, Y )
Φ̃(n) Feedback-allowing coding
|Φ| Size of code (4.7)
ε[Φ] Average error probability of code (4.7)

I(p, W ) Transmission informaion (4.1)
I(M , p, W ) Classical transmission informaion when measurement is M

W (n) n-fold stationary memoryless channel
Wp Average state (4.2)

Cc(W ) C-q channel capacity (4.8)
C†

c (W ) Strong converse channel capacity (4.9)
C̃c(W ) Channel capacity with adaptive decoding and feedback (4.16)

Cc;c≤K(W ) Channel capacity with a cost function
B(R|W ) Reliability function (4.40)

J(p, σ, W )
∑

x∈X p(x)D(Wx‖σ)

4.1 Formulation of the Channel Coding Process
in Quantum Systems

There are two main processes involved in the transmission of classical infor-
mation through a quantum channel. The first is the conversion of the classical
message into a quantum state, which is called encoding. The second is the
decoding of the message via a quantum measurement on the output sys-
tem. For a reliable and economical communication, we should optimize these
processes. However, it is impossible to reduce the error probability below a
certain level in the single use of a quantum channel even with the optimal
encoding and decoding. This is similar to a single use of a classical chan-
nel with a nonnegligible bit-flip probability. However, when we use a given
channel repeatedly, it is possible in theory to reduce the error probability
to almost 0 by encoding and decoding. In this case, this reduction requires
that the transmission rate from the transmission bit size to the original mes-
sage bit size should be less than a fixed rate. This fixed rate is the bound of
the transmission rate of a reliable communication and is called the channel
capacity. This argument has been mathematically proved by Shannon [366]
and is called the channel coding theorem. Hence, it is possible to reduce the
error probability without reducing the transmission rate; however, complex
encoding and decoding processes are required. This implies that it is possible
to reduce the error probability to almost 0 while keeping a fixed communica-
tion speed if we group an n-bit transmission and then perform the encoding
and decoding on this group. More precisely, the logarithm of the decoding
error can then be decreased in proportion to the number n of transmissions,
and the number n can be considered as the level of complexity required by
the encoding and decoding processes. These facts are known in the quantum
case as well as in the classical case.
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In this chapter, we first give a mathematical formulation for the single use
of a quantum channel. Regarding n uses of the quantum channel as a single
quantum channel, we treat the asymptotic theory in which the number n of
the uses of the given channel is large.

In the transmission of classical information via a quantum channel, we
may denote the channel as a map from the alphabet (set of letters) X to the
set S(H) of quantum states on the output system H, i.e., a classical-quantum
channel (c-q channel) W : X → S(H).2 The relevance of this formulation may
be verified as follows. Let us consider the state transmission channel from the
input system to the output system described by the map Γ : S(H′)→ S(H),
where H′ denotes the Hilbert space of the input system. When the states to
be produced in the input system are given by the set {ρx}x∈X , the above
map W is given by Wx = Γ (ρx). That is, sending classical information via
the above channel reduces to the same problem as that with the c-q channel
W .

When all the densities Wx are simultaneously diagonalizable, the prob-
lem is reduced to a channel given by a stochastic transition matrix. As in
hypothesis testing, we may call such cases “classical.” Then, Theorem 4.1 (to
be discussed later) also gives the channel capacity for the classical channels
given by a stochastic transition matrix.

4.1.1 Transmission Information in C-Q Channels
and Its Properties

As in the classical case (2.25), the transmission information I(p, W ) and the
average state Wp for the c-q channel W are defined as3

I(p, W ) def=
∑
x∈X

p(x)D(Wx‖Wp) = H(Wp)−
∑
x∈X

p(x)H(Wx), (4.1)

Wp
def=

∑
x∈X

p(x)Wx . (4.2)

The transmission information I(p, W ) satisfies the following two properties:

➀ (Convexity) Any two distributions p1 and p2 satisfy

I(λp1 + (1− λ)p2, W ) ≤ λI(p1, W ) + (1− λ)I(p2, W ). (4.3)

See Exercise 5.28.

2 As discussed later, these types of channels are called c-q channels to distinguish
them from channels with quantum inputs and outputs.

3 In many papers, the quantity I(p, W ) is called the quantum mutual information.
In this text, it will be called the transmission information of the c-q channel, for
reasons given in Sect. 5.4. Occasionally we will denote this as I(px, Wx).
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➁ (Subadditivity) Given two c-q channels WA from XA to HA and WB

from XB to HB , we can naturally define the c-q channel WA⊗WB from
XA ×XB to HA ⊗HB as(

WA ⊗WB
)
xA,xB

def= WA
xA
⊗WB

xB
.

Let pA, pB be the marginal distributions in XA,XB for a probability dis-
tribution p in XA × XB , respectively. Then, we have the subadditivity
for

I(p, WA ⊗WB) ≤ I(pA, WA) + I(pB , WB) . (4.4)

This inequality can be shown as follows (Exercise 4.2):

I(pA, WA) + I(pB , WB)− I(p, WA ⊗WB)

= D
(
WA

pA
⊗WB

pB

∥∥∥(WA ⊗WB
)
p

)
≥ 0 . (4.5)

From this property (4.4), we can show that

max
p

I(p, WA ⊗WB) = max
pA

I(pA, WA) + max
pB

I(pB , WB) ,

which is closely connected to the additivity discussed later. Another property
of the transmission information is the inequality

I(p, W ) def=
∑
x∈X

p(x)D(Wx ‖Wp) ≤
∑
x∈X

p(x)D(Wx ‖σ), ∀σ ∈ S(H) . (4.6)

This inequality can be verified by noting that the LHS minus the RHS equals
D(Wp‖σ).

4.1.2 C-Q Channel Coding Theorem

Next, we consider the problem of sending a classical message using a c-q
channel W : X → S(H). For this purpose, we must mathematically define a
code, which is the combination of an encoder and a decoder. These are given
by the triplet (N, ϕ, Y ). The number N is a natural number corresponding
to the size of the encoder. ϕ is a map, ϕ : {1, . . . , N} → X , corresponding to
the encoder. The decoder is a quantum measurement taking values in the set
{1, . . . , N}. Mathematically, it is given by the set of N positive Hermitian
matrices Y = {Yi}Ni=1 with

∑
i Yi ≤ I. In this case, I −

∑
i Yi corresponds to

the undecodable decision.
For an arbitrary code Φ(N, ϕ, Y ), we define the size |Φ| and the average

error probability ε[Φ] as

|Φ| def= N, ε[Φ] def=
1
N

N∑
i=1

(1− Tr[Wϕ(i)Yi]) . (4.7)
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Fig. 4.1. Encoding and decoding

We then consider the encoding and decoding for n communications
grouped into one. For simplicity, let us assume that each communication
is independent and identical. That is, we discuss the case where the Hilbert
space of the output system is H⊗n, and the c-q channel is given by the map
W (n) : xn def= (x1, . . . , xn) �→W

(n)
xn

def= Wx1⊗· · ·⊗Wxn from the alphabet Xn

to S(H⊗n). Such a channel is called stationary memoryless. An encoder of
size Nn is given by the map ϕ(n) from {1, . . . , Nn} to Xn, and it is written as
ϕ(n)(i) = (ϕ(n)

1 (i), . . . , ϕ
(n)
n (i)). The decoder is also given by the POVM Y (n)

on H⊗n. Let us see how much information can be sent per transmission if
the error probability asymptotically approaches 0. For this purpose, we look
at the limit of the transmission rate R = lim n→∞ 1

n log |Φ(n)| (|Φ(n)| ∼= enR)
for the sequence of reliable codes {Φ(n) = (Nn, ϕ(n), Y (n))} and discuss its
bound, i.e., the c-q channel capacity Cc(W ):4

Cc(W ) def= sup
{Φ(n)}

{
lim

1
n

log |Φ(n)|
∣∣∣∣ lim ε[Φ(n)] = 0

}
, (4.8)

where Φ(n) denotes a code for the quantum channel W (n). We may also define
the dual capacity

C†
c (W ) def= sup

{Φ(n)}

{
lim

1
n

log |Φ(n)|
∣∣∣∣ lim ε[Φ(n)] < 1

}
, (4.9)

which clearly satisfies the inequality Cc(W ) ≤ C†
c (W ). We then have the

following theorem.

Theorem 4.1 (Holevo [212,214,217], Schumacher and Westmoreland [363],
Ogawa and Nagaoka [319]) Let P(X ) be the set of probability distributions
with a finite support in X . Then,

C†
c (W ) = Cc(W ) = sup

p∈P(X )
I(p, W ) = min

σ∈S(H)
sup
x∈X

D(Wx‖σ) (4.10)

holds.

Thus, this theorem connects the channel capacity Cc(W ) to the transmis-
sion information I(p, W ). Here, note that the former is operationally defined,
while the latter is formally defined. The additivity of the c-q channel capacity

Cc(WA) + Cc(WB) = Cc(WA ⊗WB)

also follows from inequality (4.4).
4 The subscript c of Cc indicates the sending of “classical” informaion.
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This theorem may be proved using the two lemmas given below in a
similar way to that of hypothesis testing.

Lemma 4.1 (Direct Part) (Holevo [217], Schumacher and Westmoreland
[363]) For an arbitrary real number δ > 0 and an arbitrary distribution p ∈
P(X ), there exists a sequence of codes {Φ(n)} for the stationary memoryless
quantum channel W (n) such that

lim
1
n

log |Φ(n)| ≥I(p, W )− δ , (4.11)

lim ε[Φ(n)] =0 . (4.12)

Lemma 4.2 (Converse Part) (Ogawa and Nagaoka [319]) If a sequence of
codes {Φ(n)} for the stationary memoryless quantum channel W (n) satisfies

lim
1
n

log |Φ(n)| > sup
p∈P(X )

I(p, W ) = min
σ∈S(H)

sup
x∈X

D(Wx‖σ), (4.13)

then the following holds:

lim ε[Φ(n)] = 1 . (4.14)

Indeed, this theorem can be generalized to the case of M -output channel
W 1, . . . , WM , with M output systems H1, . . . ,HM and a single input sys-
tem, where W i = (W i

x). In this case, the encoder is defined in the same way,
i.e., ϕ : {1, . . . , N} → X . However, the decoder is defined by M POVMs
Y 1, . . . , Y M . That is, the code is described by Φ

def= (N, ϕ, Y 1, . . . , Y M ).
In this case, the error of Φ is given as ε[Φ] def= 1

N max1≤i≤M
1
N

∑N
j=1(1 −

Tr W i
ϕ(i)Y

i
j ). Further, the capacity Cc(W 1, . . . , WM ) is defined in the same

way as (4.8).

Corollary 4.1

Cc(W 1, . . . , WM ) = max
p

min
1≤i≤M

I(p, W i). (4.15)

For a proof, see Exercises 4.13 and 4.16.

Exercises

4.1. Show that Cc(W ) = h
(

1+|〈v|u〉|
2

)
if {Wx} is composed of the two pure

states |u〉〈u| and |v〉〈v|.

4.2. Show (4.5).
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4.2 Coding Protocols with Adaptive Decoding
and Feedback

In the previous section there was no restriction on the measurements for
decoding. Now, we shall restrict these measurements to adaptive decoding,
and they have the following form:

Mn = {M1,y1 ⊗ · · · ⊗My1,... ,yn−1
n,yn

}(y1,... ,yn)∈Y1×···×Yn
.

Therefore, the decoder may be written as the POVM Mn and the mapping
τ (n) : Y1 × · · · × Yn → {1, . . . , Nn}.

We also allow feedback during the encoding process. That is, the receiver
is allowed to send his or her measurement values back to the sender, who
then performs the encoding based on these values. In the previous section,
we considered the encoder to be a map ϕ(n)(i) = (ϕ(n)

1 (i), . . . , ϕ
(n)
n (i)) from

{1, . . . , Nn} to Xn. If we allow feedback, the kth encoding element will be
given by a map ϕ̃

(n)
k from {1, . . . , Nn} ×Y1 × · · · × Yk−1 to X . Therefore, in

this case, we denote the encoder as ϕ̃(n) def= (ϕ̃(n)
1 , . . . , ϕ̃

(n)
n ).

Henceforth, we call Φ̃(n) = (Nn, ϕ̃(n),Mn, τ (n)) the code with adaptive
decoding and feedback and denote its size Nn by |Φ̃(n)|. The average error
probability of the code is denoted by ε[Φ̃(n)]. If the code has no feedback,
it belongs to the restricted subclass of codes given in the previous section.
However, if it has feedback, it does not belong to this subclass. That is, the
class of codes given in this section is not a subclass of codes given in the
previous section. This class of codes is the subject of the following theorem.

Theorem 4.2 (Fujiwara and Nagaoka [128]) Define the channel capacity
with adaptive decoding and feedback C̃c(W ) as

C̃c(W ) def= sup
{Φ̃(n)}

{
lim

1
n

log |Φ̃(n)|
∣∣∣∣ lim ε[Φ̃(n)] = 0

}
, (4.16)

where Φ̃(n) is a code with adaptive decoding and feedback. Then,

C̃c(W ) = max
M

sup
p∈P(X )

I(M , p, W ), (4.17)

where I(M , p, W ) def=
∑

x∈X p(x)D(PM
Wx
‖PM

Wp
).5

In this case, the capacity C̃c(W ) can be attained by performing the optimal
measurement MM

def= argmaxM supp∈P(X ) I(M , p, W ) on each output sys-
tem. Thus, there is no improvement if we use adaptive decoding and encoding
with feedback.
5 Since H is finite-dimensional, the existence of the maximum follows from the

compactness of the space of the POVM.



100 Classical-Quantum Channel Coding (Message Transmission)

Proof. When the receiver performs a measurement corresponding to the
POVM MM

def= argmaxM supp I(M , p, W ), the relation between the in-
put letter and the output measurement data is described by the stochas-
tic transition matrix x �→ PMM

Wx
. Applying Theorem 4.1 to the classical

channel x �→ PMM

Wx
, we see that a code attaining supp I(MM , p, W ) =

maxM supp I(M , p, W ) must exist.
Next, we show that there is no code with a rate exceeding the RHS of

(4.17). Consider a sequence of codes {Φ̃(n) = (Nn, ϕ̃(n),Mn, τ (n))} satisfying
lim ε[Φ̃(n)] = 0. Let X be a uniformly distributed random variable taking
values in the input messages {1, . . . , Nn} and Y k = (Y1, . . . , Yk) be the
random variable corresponding to yk = (y1, . . . , yk). Since ε[Φ̃(n)] = P{X �=
τ (n)(Y n)}, Fano’s inequality yields

log 2 + ε[Φ̃(n)] log Nn ≥ H(X)− I(X : τ (n)(Y n)) = H(X|τ (n)(Y n)).

Now we define PYk|X,Y k−1(yk|x, yk−1) def= PM
y1,... ,yk−1
n

W
ϕ̃
(n)
k

(x,yk−1)
(yk) = TrW

ϕ̃
(n)
k (x,yk−1)

M
y1,... ,yk−1
n,yk to evaluate I(W : τ (n)(Y n)). From the monotonicity of the clas-

sical relative entropy and the chain rule (2.23) for mutual information,

I(X : τ (n)(Y n)) ≤ I(X : Y n) =
n∑

k=1

I(X : Yk|Y k−1)

=
n∑

k=1

∑
yk−1

pY k−1(yk−1)
Nn∑
x=1

pX|Y k−1=yk−1(x)D
(

PM
y1,... ,yk−1
n

W
ϕ̃
(n)
k

(x,yk−1)

∥∥∥∥PM
y1,... ,yk−1
n

Wp
X|Y k−1=yk−1

)

=
n∑

k=1

∑
yk−1

pY k−1(yk−1)I(My1,... ,yk−1
n , pX|Y k−1=yk−1 , W )

≤ n max
M

sup
p∈P(X )

I(M , p, W ).

Noting that H(X) ≤ log Nn,

log 2 + ε[Φ̃(n)] log Nn ≥ log Nn − n max
M

sup
p∈P(X )

I(M , p, W ), (4.18)

which can be rewritten as

1
n

log Nn ≤
(log 2)/n + maxM supp∈P(X ) I(M , p, W )

1− ε[Φ̃(n)]
.

Since ε[Φ̃(n)]→ 0,

lim
1
n

log Nn ≤ max
M

sup
p∈P(X )

I(M , p, W ),

completing the proof.
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Therefore, if the decoder uses no correlation in the measuring apparatus,
the channel capacity is given by C̃c(W ). Next, we consider the channel ca-
pacity when correlations among n systems are allowed. In this assumption,
we can regard the n uses of the channel W as a single channel W (n) and
then reuse the arguments presented in this section. Therefore, the channel
capacity is given by C̃c(W (n))

n . Its limiting case is

lim
C̃c(W (n))

n
= Cc(W ), (4.19)

while C̃c(W ) < Cc(W ), except for special cases such as those given in
Sect. 4.7. An interesting question is whether it is possible to experimentally
realize a transmission rate exceeding C̃c(W ). This is indeed possible, and a
channel W and a measurement M have been experimentally constructed with
I(M, p, W (2)) > 2C̃c(W ) by Fujiwara et al. [137].

Exercises

4.3. Show (4.19) using Fano’s inequality in a similar way to the proof of
Theorem 4.2.

4.3 Channel Capacities Under Cost Constraint

Thus far, there have been no constraints on the encoding, and we have ex-
amined only the size of the code and error probabilities. However, it is not
unusual to impose a constraint that the cost, e.g., the energy required for com-
munication, should be less than some fixed value. In this situation, we define a
cost function and demand that the cost for each code should be less than some
fixed value. More precisely, a cost c(x) is defined for each state Wx used in
the communication. In the stationary memoryless case, the cost for the states
W

(n)
x is given by c(n)(x) def=

∑n
i=1 c(xi). The states W

(n)
x used for communica-

tion are then restricted to those that satisfy
∑

x c(xi) ≤ Kn. That is, any code
Φ(n) = (Nn, ϕ(n), Y (n)) must satisfy the restriction maxi c(n)(ϕ(n)(i)) ≤ Kn.
The following theorem can be proved in a similar way to Theorem 4.1.

Theorem 4.3 (Holevo [218], Hayashi and Nagaoka [186]) Define the chan-
nel capacities under the cost constraint

Cc;c≤K(W )def= sup
{Φ(n)}

{
lim

log |Φ(n)|
n

∣∣∣∣max
i

c(n)(ϕ(n)(i))
n

≤ K, lim ε[Φ(n)]=0
}

,

C†
c;c≤K(W )def= sup

{Φ(n)}

{
lim

log |Φ(n)|
n

∣∣∣∣max
i

c(n)(ϕ(n)(i))
n

≤ K, lim ε[Φ(n)]<1
}

.
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Then,

Cc;c≤K(W ) = C†
c;c ≤K(W )

= sup
p∈Pc≤K(X )

I(p, W ) = min
σ∈S(H)

sup
p∈Pc≤K(X )

∑
x

pxD(Wx‖σ), (4.20)

where Pc≤K(X ) def= {p ∈ P(X ) |
∑

x p(x)c(x) ≤ K }.
This theorem can be obtained from the following two lemmas in a similar
way to Theorem 4.1. These lemmas will be proved later in Sects. 4.5 and 4.6.

Lemma 4.3 (Direct Part) Given arbitrary δ > 0 and p ∈ Pc≤K(X ),
there exists a sequence {Φ(n)} of codes for quantum channels W (n) such that
maxi c(n)(ϕ(n)(i)) ≤ Kn and

lim
1
n

log |Φ(n)| ≥I(p, W )− δ , (4.21)

lim ε[Φ(n)] =0 . (4.22)

Lemma 4.4 (Converse Part) If a sequence {Φ(n)} of codes for quantum
channels W (n) satisfies

lim
log |Φ(n)|

n
> sup

p∈Pc≤K(X )
I(p, W ) (4.23)

and maxi c(n)(ϕ(n)(i)) ≤ Kn, then the following holds:

lim ε[Φ(n)] = 1 . (4.24)

Exercises

4.4. Let the set {Wx} consist entirely of pure states. Let the cost function c be
given by c(x) = TrWxE, where E is a positive semidefinite Hermitian matrix
in H. Show that Cc;E≤K(W ) def= Cc;c≤K(W ) = H(ρE,K), where ρE,K

def=
e−βKE/ Tr e−βKE and βK satisfies Tr(e−βKE/ Tr e−βKE)E = K.

4.4 A Fundamental Lemma

In this section, we will prove the lemma required for the proof of Theorem 4.1.

Lemma 4.5 (Hayashi and Nagaoka [186]) When two arbitrary Hermitian
matrices S and T satisfy I ≥ S ≥ 0 and T ≥ 0, the following inequality
holds:

I −
√

S + T
−1

S
√

S + T
−1 ≤ 2 (I − S) + 4 T , (4.25)

where
√

S + T
−1

is the generalized inverse matrix of
√

S + T given in
Sect. 1.5.
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Proof. Let P be a projection to the range of S +T . Since P commutes with
S and T , for proving (4.25), it is sufficient to show that

P
[
I −
√

S + T
−1

S
√

S + T
−1]

P ≤P [2(I − S) + 4T ] P,

P⊥
[
I −
√

S + T
−1

S
√

S + T
−1]

P⊥ ≤P⊥ [2(I − S) + 4T ] P⊥ ,

where we defined P⊥ = I − P . The second inequality follows from P⊥S =
P⊥T = P⊥√S + T

−1
= 0. Thus, for proving (4.25), it is sufficient to show

that (4.25) holds when the range of S + T is equal to H.
Since (A − B)∗(A − B) ≥ 0 for matrices, we obtain A∗B + B∗A ≤

A∗A + B∗B. Applying this inequality to the case of A =
√

T and B =√
T (
√

S + T
−1 − I), we obtain

T (
√

S + T
−1 − I) + (

√
S + T

−1 − I)T

≤ T + (
√

S + T
−1 − I)T (

√
S + T

−1 − I). (4.26)

Furthermore,
√

S + T ≥
√

S ≥ S (4.27)

since f(x) =
√

x is a matrix monotone function Ex. A.7 and 0 ≤ S ≤ I. Finally,

I −
√

S + T
−1

S
√

S + T
−1

=
√

S + T
−1

T
√

S + T
−1

= T +T (
√

S+T
−1−I)+(

√
S+T

−1−I)T +(
√

S+T
−1−I)T (

√
S+T

−1−I)

≤ 2T + 2(
√

S + T
−1 − I)T (

√
S + T

−1 − I)

≤ 2T + 2(
√

S + T
−1 − I)(S + T )(

√
S + T

−1 − I)

= 2T + 2(I + S + T − 2
√

S + T )
≤ 2T + 2(I + S + T − 2S) = 2(I − S) + 4T ,

where the first inequality follows from (4.26) and the third inequality follows
from (4.27). Thus, we obtain the matrix inequality (4.25).

Exercises

4.5. Show the generalized version of inequality (4.25) under the same condi-
tions as Lemma 4.5 [186]:

I −
√

S + T
−1

S
√

S + T
−1 ≤ (1 + c) (I − S) + (2 + c + c−1) T . (4.28)
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4.5 Proof of Direct Part
of C-Q Channel Coding Theorem

The arguments used for hypothesis testing in Chap. 3 may be reused for the
proof of the converse theorem (Lemma 4.1) using the following lemma.

Lemma 4.6 (Hayashi and Nagaoka [186]) Given a c-q channel x ∈ X �→
Wx, there exists a code Φ of size N such that

ε[Φ]≤
∑
x∈X

p(x) (2 TrWx {Wx−2NWp≤0}+4N Tr Wp {Wx−2NWp >0}) ,

(4.29)

where p is a probability distribution in X .

Proof of Lemma 4.1. Applying Lemma 4.6 to the pair of channels W (n) and
the n-fold independent and identical distribution of pM

def= argmaxp I(p, W ),
we can take a code of size Nn satisfying

ε[Φ(n)] ≤
∑

xn∈X n

pn(xn)
(
2 Tr W

(n)
xn {W (n)

xn − 2NnW
(n)
pn ≤ 0}

+4Nn Tr W
(n)
pn {W (n)

xn − 2NnW
(n)
pn > 0}

)
= 2 TrR⊗n{R⊗n − 2NnS⊗n ≤ 0}+ 4Nn Tr S⊗n{R⊗n − 2NnS⊗n > 0},

(4.30)

where Xp
def= {x1, . . . , xk} ⊂ X denotes the support of pM , and matrices R

and S are defined as

R
def=

⎛
⎜⎝ p(x1)Wx1 0

0
. . .

p(xk)Wxk

⎞
⎟⎠ , S

def=

⎛
⎜⎝ p(x1)Wp 0

0
. . .

p(xk)Wp

⎞
⎟⎠ .

(4.31)

Since D(R‖S) = I(p, W ), from Lemma 3.4 we have

Tr R⊗nTn → 0, lim
−1
n

log Tr S⊗n(I − Tn) ≥ I(p, W )− δ

2
, (4.32)

for a sequence {Tn} of Hermitian matrices satisfying I ≥ Tn ≥ 0. From
condition (4.32) we can show that

4en(I(p,W )−δ) Tr S⊗n(I − Tn)→ 0 .
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Using Lemma 3.1 we have

2 Tr R⊗n{R⊗n − 2NnS⊗n ≤ 0}+ 4Nn Tr S⊗n{R⊗n − 2NnS⊗n > 0}
≤ 2 Tr R⊗nTn + 4Nn Tr S⊗n(I − Tn)→ 0 ,

where Nn
def= [en(I(p,W )−δ)]. This implies that there exists a sequence of codes

of size [en(I(p,W )−δ)] whose error probability converges to 0. This completes
the proof of Lemma 4.1.

Proof of Lemma 4.6. We prove this lemma by employing the random coding
method in which we randomly generate a code (N, ϕ, Y ) of fixed size and prove
that the expectation of the average error probability is less than ε. Based on
the above strategy, we can show that there exists a code whose average error
probability is less than ε. For this purpose, we consider N random variables
X

def= (x1, . . . , xN ) independently obeying a probability distribution p in X ,
define the encoder ϕX(i) by ϕX(i) = xi, and denote the expectation value
by EX .

For a given encoder ϕ of size N , a decoder Y (ϕ) is defined

Y (ϕ)i
def=

(
N∑

j=1

πj

)− 1
2

πi

(
N∑

j=1

πj

)− 1
2

, (4.33)

πi
def=

{
Wϕ(i) − 2NWp > 0

}
. (4.34)

Then, the average error probability of the code Φ(ϕ) def= (N, ϕ, Y (ϕ)) is

ε[Φ(ϕ)]

=
1
N

N∑
i=1

Tr Wϕ(i)(I − Y (ϕ)i) ≤
1
N

N∑
i=1

Tr Wϕ(i)

⎛
⎝2(I − πi) + 4

∑
i �=j

πj

⎞
⎠

=
1
N

N∑
i=1

Tr 2Wϕ(i)(I − πi) + Tr

⎛
⎝4

∑
i �=j

Wϕ(j)

⎞
⎠πi . (4.35)

For evaluating the expectation EX [ε[Φ(ϕX)]], let us rewrite EX [TrWϕX(i)(I−
πi)] and EX [TrWϕX(j)πi] as

EX

[
Tr WϕX(i)(I − πi)

]
=
∑
x∈X

p(x) Tr Wx {Wx − 2NWp ≤ 0} ,

EX

[
Tr WϕX(j)πi

]
=

∑
x′∈X

p(x′)
∑
x∈X

p(x) Tr Wx′ {Wx − 2NWp > 0}

=
∑
x∈X

p(x) Tr Wp {Wx − 2NWp > 0} .



106 Classical-Quantum Channel Coding (Message Transmission)

EX [ε[Φ(ϕX)]] then becomes

EX [ε[Φ(ϕX)]] ≤EX

⎡
⎣ 1
N

N∑
i=1

⎛
⎝Tr 2WϕX(i)(I−πi)+Tr

⎛
⎝4

∑
i �=j

WϕX(j)

⎞
⎠πi

⎞
⎠
⎤
⎦

=
1
N

N∑
i=1

⎛
⎝2EX

[
Tr WϕX(i)(I−πi)

]
+4

∑
i �=j

EX

[
Tr WϕX(j)πi

]⎞⎠
=
∑
x∈X

p(x)
(
2 Tr Wx {Wx − 2NWp ≤ 0}

+ 4(N − 1) TrWp {Wx − 2NWp > 0}
)
. (4.36)

Since the RHS of this inequality is less than the RHS of (4.29), we see that
a code Φ(ϕ) that satisfies (4.29) exists.

Lemma 4.3 can be shown using Lemma 4.7 given below.

Lemma 4.7 (Hayashi and Nagaoka [186]) Consider the c-q channel x �→Wx

and its cost function c : x �→ c(x). There exists a code Φ = (N, ϕ, Y ) of size
N satisfying

ε[Φ]

≤ 2
C2

K

∑
x∈X

p(x)

(
Tr [Wx {Wx−2NWp≤ 0}]+2N Tr

[
Wp {Wx−2NWp > 0}

])

and ϕ(i) ≤ K, where CK
def= p{c(x) ≤ K}.

Proof of Lemma 4.3. First, choose an element p of Pc≤K(X ). According
to the central limit theorem, the probability p(n){c(n)(x) ≤ nK} approaches
1/2. Lemma 4.3 then follows from the arguments presented in the proof of
Lemma 4.1.

Proof of Lemma 4.7. We show this lemma using the random coding
method, as in Lemma 4.6. Consider a random coding for the probability
distribution p̂(x) def= p(x)/CK in the set X̂ def= {c(x) ≤ K}. Using the same
notation as that of Lemma 4.6, we obtain

EX [ε[Φ(ϕ)]] ≤
∑
x∈X̂

p̂(x)

(
2 Tr [Wx {Wx−2NWp≤0}]

+ 4N Tr
[(∑

x′∈X̂
p(x′)Wx′

)
{Wx−2NWp >0}

])
.
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By noting that p̂(x) = p(x)/CK and X̂ ⊂ X , we find

EX [ε[Φ(ϕ)]]

≤
∑
x∈X̂

2p(x)
CK

(
Tr [Wx {Wx−2NWp≤0}]+2N Tr

(Wp

CK

)
{Wx−2NWp >0}

)

≤ 2
C2

K

∑
x∈X

p(x)

(
Tr Wx {Wx−2NWp≤0}+2N Tr

[
Wp {Wx−2NWp >0}

])
.

By using the same arguments as those in the random coding method, the
proof is completed.

Exercises

4.6. Let α and β be defined by the following. Show inequality (4.29) in
Lemma 4.6 with its RHS replaced by α + 2β +

√
β(α + β) using Exercise

4.5.

α
def=

∑
x∈X

p(x) Tr Wx {Wx − 2NWp ≤ 0} ,

β
def= N Tr Wp {Wx − 2NWp > 0} .

4.7. Show (4.29) with its RHS replaced by (4.37). The point here is to replace
the probability πi in (4.34) by that given in (4.38).

2
∑
x∈X

p(x) Tr Wx{Wx > eBx}+ 4N Tr Wp{Wp < eA}, (4.37)

πi
def= τνiτ, τ

def=
{
Wp ≥ eA

}
, (4.38)

νi
def=

{
Wϕ(i) > eBϕ(i)

}
. (4.39)

4.8. Give another proof of Lemma 4.1 letting Bx = (TrW
(n)
xn log W

(n)
ϕ(i)−nδ),

A = n(Tr Wp log Wp + δ) in (4.39).

4.9. Show that there exists a code with an average error probability less than
4N Tr Wp{Wp < eA} when all the states Wx are pure.

4.10. Modify the decoder Y (ϕ) given in (4.33), replacing πi by

πi
def=

⎧⎨
⎩W

(n)
ϕ(i) − 2

∑
j �=i

W
(n)
ϕ(j) > 0

⎫⎬
⎭ .

Show that the expectation of the average error with respect to the random
coding satisfies inequality (4.29) and its modified version with its RHS re-
placed by (4.37).
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4.11. Consider the sequence of codes {Φ(n)} for the stationary memoryless
channel of the c-q channel x �→ Wx. Let us focus on the optimal decreasing
exponential rate of the average error probability when the communication
rate of {Φ(n)} is greater than R:

B(R|W ) def= sup
{Φ(n)}

{
lim
−1
n

log ε[Φ(n)]
∣∣∣∣ lim 1

n
log |Φ(n)| ≥ R

}
, (4.40)

This optimal rate is called the reliability function as a function of the com-
munication rate R and is an important quantity in quantum information
theory.

a Assume that all states Wx are pure states. Show that there exists a code
of size [ena] with an average error probability less than 4en(ψ(s|Wp)+(1−s)a)

for an arbitrary s ≥ 0 using Exercise 4.9 with eA = N and (2.30). Based
on this fact, show the following inequality:

B(R|W ) ≥ max
s≥0
−ψ(s|Wp)− (1− s)R . (4.41)

b Show that

B(R|W ) ≥ max
p

max
0≤s≤1

−φ̃(s|W,p)− sR , (4.42)

where φ̃(s|W,p) def= log
∑

x p(x) Tr Wx(Wp)s/2(Wx)−s(Wp)s/2 [186].

4.12. Define another channel capacity by replacing the condition that the
average error probability goes to 0 by the alternative condition that the max-
imum error probability goes to 0. Show that the modified channel capacity
is equal to the original channel capacity.

4.13. Show the inequality Cc(W 1, . . . , WM ) ≥ maxp min1≤i≤M I(p, W i) fol-
lowing the steps below.

a Show that there exists a code Φ for M -output channel W 1, . . . , WM such
that

ε[Φ] ≤ max
1≤i≤M

M
∑
x∈X

p(x)
(
2 Tr W i

x

{
W i

x−2NW i
p≤0

}
+ 4N Tr W i

p

{
W i

x−2NW i
p >0

})
,

as an extension of (4.29).
b Show the desired inequality.
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4.6 Proof of Converse Part
of C-Q Channel Coding Theorem

In this section, we prove the converse parts of the c-q channel coding theorem,
i.e., Lemmas 4.2 and 4.4, using the information inequality (2.63) proved in
Sect. 3.7.

Proof of Lemma 4.2. Defining J(p, σ, W ) def=
∑

x∈X p(x)D(Wx‖σ), we
see that minσ∈S(H) J(p, σ, W ) = I(p, W ) since J(p, σ, W ) − I(p, W ) =
D(Wp‖σ) ≥ 0. From the joint convexity of the quantum relative entropy
(5.31) to be given later, we see that σ �→ D(Wx‖σ) is convex6 and Lemma A.7
can be applied. Therefore, we obtain [324,364]

sup
p∈P(X )

I(p, W ) = sup
p∈P(X )

min
σ∈S(H)

J(p, σ, W )

= min
σ∈S(H)

sup
p∈P(X )

J(p, σ, W ) = min
σ∈S(H)

sup
x∈X

D(Wx‖σ) . (4.43)

For Φ(n) = (Nn, ϕ(n), Y (n)) satisfying (4.13), we choose σ ∈ S(H) such
that

r
def= lim

1
n

log |Φ(n)| > sup
x∈X

D(Wx‖σ) (4.44)

and define density matrices Rn and Sn on H⊗n ⊗ C
Nn and a matrix Tn as

follows:

Sn
def=

1
Nn

⎛
⎜⎝σ⊗n

0

0
. . .

σ⊗n

⎞
⎟⎠ , Tn

def=

⎛
⎜⎜⎝

Y
(n)
1 0

0
. . .

Y
(n)
Nn

⎞
⎟⎟⎠ ,

Rn
def=

1
Nn

⎛
⎜⎜⎝

W
(n)
ϕ(n)(1) 0

0
. . .

W
(n)
ϕ(n)(Nn)

⎞
⎟⎟⎠ .

Since I ≥ Tn ≥ 0, we have

Tr RnTn =
Nn∑
i=1

1
Nn

Tr W
(n)
ϕ(n)(i)Y

(n)
i = 1− ε[Φ(n)]. (4.45)

On the other hand, since I =
∑Nn

i=1 Y
(n)
i , we have

6 The joint convexity (5.31) can be obtained from Theorem 5.5, but since the proof
of this theorem uses only the arguments of Chap. 3, there is no problem in using
this for the proof of Lemma 4.2.
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Tr SnTn =
Nn∑
i=1

1
Nn

Tr σ⊗nY
(n)
i =

1
Nn

Tr σ⊗n
Nn∑
i=1

Y
(n)
i =

1
Nn

Tr σ⊗n =
1

Nn
.

We define a channel version of the quantum relative Rényi entropy as
φ(s|W‖σ) def= supx∈X φ(s|Wx‖σ). Similarly to (3.37), the monotonicity of
the quantum relative Rényi entropy (2.63) yields

(1− ε[Φ(n)])1−sN−s
n = (TrRnTn)1−s(Tr SnTn)s ≤ Tr R1−s

n Ss
n

=
1

Nn

Nn∑
i=1

Tr
[
(W (n)

ϕ(n)(i))
1−s(σ⊗n)s

]
=

1
Nn

Nn∑
i=1

n∏
l=1

Tr
[
(W

ϕ
(n)
l (i))

1−sσs
]

≤ enφ(s|W‖σ) (4.46)

for s ≤ 0. Thus,

1
n

log(1− ε[Φ(n)]) ≤
φ(s|W‖σ) + s

n log Nn

1− s
.

Letting

r
def= lim

1
n

log Nn , (4.47)

we obtain

lim
−1
n

log(1− ε[Φ(n)]) ≥ −sr − φ(s|W‖σ)
1− s

. (4.48)

Reversing the order of the lims→0 and supx∈X , we obtain

φ′(0|W‖σ) = lim
s→0

sup
x∈X

log Tr W 1−s
x σs

−s
= sup

x∈X
lim
s→0

log Tr W 1−s
x σs

−s

= sup
x∈X

D(Wx‖σ). (4.49)

Since r > supx∈X D(Wx‖σ), we can choose a parameter s0 < 0 such that
φ(s0|W‖σ)−φ(0|W‖σ)

s0
< r. Hence, we can show that

−s0r − φ(s0|W‖σ)
1− s0

=
−s0

1− s0

(
r − φ(s0|W‖σ)

−s0

)
> 0 . (4.50)

Therefore, 1− ε[Φ(n)]→ 0, and we obtain (4.14) from (4.45).
One may worry about the validity of reversing the order of lims→0 and

supx∈X in (4.49). The validity of this step can be confirmed by showing that
the convergence is uniform with respect to x. Since the dimension of our
space is finite, {Wx}x∈X is included in a compact set. The convergence with
s→ 0, i.e., log Tr W 1+s

x σ−s

s → D(Wx‖σ), is uniform in any compact set, which
shows the uniformity of the convergence. Therefore, we obtain (4.49).
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Proof of Lemma 4.4. Similarly to (4.43), Lemma A.7 and the convexity of
σ �→ D(Wx‖σ) guarantee that

sup
p∈Pc≤K(X )

I(p, W ) = sup
p∈Pc≤K(X )

min
σ∈S(H)

J(p, σ, W )

= min
σ∈S(H)

sup
p∈Pc≤K(X )

J(p, σ, W ) = min
σ∈S(H)

sup
p∈Pc≤K(X )

∑
x

pxD(Wx‖σ).

(4.51)

Let a code Φ(n) = (Nn, ϕ(n), Y (n)) satisfy (4.23) and maxi
c(n)(ϕ(n)(i))

n ≤ K.
Now, we choose a density σ ∈ S(H) such that

lim
1
n

log |Φ(n)| ≥ sup
p∈Pc≤K(X )

J(p, σ, W ). (4.52)

We define the function φc(s|W‖σ) def= supp∈Pc≤K(X)
∑

x∈X p(x) log TrW 1−s
x σs.

Since
∑n

l=1
1
nc(ϕ(n)

l (i)) = c(n)(ϕ(n)(i))
n ≤ K, it follows from the definition of

Pc≤K(X ) that

log
n∏

l=1

Tr
[
(W (n)

ϕ
(n)
l (i)

)1−sσs

]
=n

n∑
l=1

1
n

log Tr
[
(W (n)

ϕ
(n)
l (i)

)1−sσs

]
≤nφc(s|W‖σ)

for arbitrary i and s ≤ 0. From (4.46) we have

(1− ε[Φ(n)])1−sN−s
n ≤ 1

Nn

Nn∑
i=1

n∏
l=1

Tr
[
(W (n)

ϕ
(n)
l (i)

)1−sσs

]
≤ enφc(s|W‖σ).

We define r according to (4.44). Similarly to (4.48), the relation

lim
−1
n

log
(
1− ε[Φ(n)]

)
≥ −sr − φc(s|W‖σ)

1− s
(4.53)

holds. Since

lim
s→0

φc(s|W‖σ)
−s

= sup
p

∑
x∈X

p(x) lim
s→0

log Tr W 1−s
x σs

−s

= sup
p

∑
x∈X

p(x)D(Wx‖σ), (4.54)

we may take a parameter s0 < 0 such that

−s0r − φc(s0|W‖σ)
1− s0

=
−s0

1− s0

(
r − φc(s0|W‖σ)

−s0

)
> 0,

in the same way as in the case of (4.50). Therefore, we obtain (4.24) from
(4.53).
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One may again be concerned about the validity of exchanging the order
of the limit and the supremum in (4.54). However, as in the case of (4.49),
this step may be safely performed due to the uniformity of the convergence
following from the compactness of X .

Exercises

4.14. Given that pM
def= argmaxp∈P(X ) I(p, W ) exists, show that

maxp∈P(X ) I(p, W ) ≥ minσ∈S(H) maxx∈P(X ) D(Wx‖σ) by proving that
maxx∈P(X ) D(Wx‖WpM

) = I(pM , W ) using the method of Lagrange mul-
tipliers. As the reverse inequality is trivial, this is an alternative proof of
(4.43).

4.15. Define another channel capacity under cost constraint by replacing the
condition that the maximum cost maxi

c(n)(ϕ(n)(i))
n is less than the given cost

K by the alternative condition that the average cost 1
N

∑
i

c(n)(ϕ(n)(i))
n is less

than the given cost K. Show that the modified channel capacity under cost
constraint is equal to the original channel capacity under cost constraint
following the steps below.

a First, assume that c(x0) = 0 or redefine the cost as c(x) − c(x0),
where x0

def= argminx∈X c(x). Let a code Φ(n) = (Nn, ϕ(n), Y (n)) satisfy

ε[Φ(n)] → 0 and 1
Nn

∑
i

c(n)(ϕ(n)(i))
n ≤ K. For arbitrary δ > 0, focus a

code Φ̃((1+δ)n) = (Ñ(1+δ)n, ϕ̃((1+δ)n), Ỹ ((1+δ)n)) satisfying Ñ(1+δ)n = Nn,
ϕ̃((1+δ)n)(i) = ϕ(n)(i)⊗W⊗δn

x0
, and Ỹ

((1+δ)n)
i = Y (n).

Show that there exist k
def= [(1 − 1

1+δ )Nn] messages i1, . . . , ik such that
c((1+δ)n)(ϕ̃((1+δ)n)(ik)) ≤ K.

b Examine the subcode of Φ̃(n) consisting of [(1 − 1
1+δ )Nn] messages,

and show that the rate of this subcode is asymptotically equal to 1
1+δ lim 1

n

log |Φ(n)|.
c Show that the modified capacity is equal to the original capacity. (Note

that this method gives the strong converse concerning the modified channel
capacity by combining the strong converse of the original capacity.)

4.16. Show the inequality Cc(W 1, . . . , WM ) ≤ maxp min1≤i≤M I(p, W i) fol-
lowing the steps below.

a Show that there exists a distribution p for any distribution p(n) on Xn

such that

nI(p, W i) ≥ I(p(n), (W i)(n)), i = 1, . . . , M

from (4.3) and (4.4).
b Show the desired inequality using inequality (4.18).
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4.17. Derive the capacity of L-list decoding: Define a decoder Φ of L-list
decoding with the size N by a

(
NL

)
-valued POVM M = {M(i1,... ,iL)} and

the average error probability

ε[ΦL] def=
1
N

N∑
i=1

⎛
⎝1−

∑
j1,... ,jL−1 �=i

Tr Wϕ(i)Mi,j1,... ,jL−1

⎞
⎠ ,

where (i1, . . . , iL) is the set of L different elements i1, . . . , iL.

a When we replace the definition of Y
(n)
i by

Y
(n)
i

def=
∑

j1,... ,jLn−1 �=i Mi,j1,..., jLn−1, show that LnI =
∑Nn

i=1 Y
(n)
i .

b Show that TrRnTn = 1− ε[Φ(n)
Ln

] in the notation of this section.
c Show that the strong converse part of L-list decoding when 1

n log Ln → 0
using the same discussion as this section. In this case, the capacity is equal
to supp∈P(X ) I(p, W ).

d Show that the strong converse part of L-list decoding with cost constraint
in the above condition.

4.7 Pseudoclassical Channels

Finally, we treat the capacity of a c-q channel when the quantum correlation
is not allowed in the measuring apparatus, again. In Sect. 4.2 we showed that
the channel capacity is not improved even when encoding with feedback and
adaptive decoding is used as long as the quantum correlation is not used in
the measuring apparatus. That is, the capacity can be attained when the op-
timal measurement with a single transmission is performed on each system.
Then, we may ask, when does the channel capacity C̃c(W ) with individual
measurements equal the channel capacity Cc(W ) with the quantum correla-
tion in the measuring apparatus? The answer to this question is the subject
of the following theorem.

Theorem 4.4 (Fujiwara and Nagaoka [128]) Suppose that Tr WxWx′ �= 0
for any x, x′ ∈ X . Then, the following three conditions with respect to the c-q
channel W are equivalent if X is compact.

➀ There exists a distribution p ∈ P(X ) such that each element of supp(p)
commutes and I(p, W ) = Cc(W ).

➁ C̃c(W ) = Cc(W ).
➂ There exists an integer n such that C̃c(W (n))

n = Cc(W ).

A quantum channel W is called pseudoclassical if it satisfies the above con-
ditions.

Proof. Since ➀⇒➁ and ➁⇒➂ by inspection, we show that ➂⇒➀. The
proof given below uses Theorems 3.5 and 4.5 (Nǎımark extension [315]). The
proofs for these theorems will be given later.
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Theorem 4.5 (Nǎımark [315]) Given a POVM M = {Mω}ω∈Ω on HA with
a finite data set Ω, there exist a space HB, a state ρ0 on HB, and a PVM
E = {Eω}ω∈Ω in HA ⊗HB such that

TrA ρMω = TrA,B(ρ⊗ ρ0)Eω, ∀ρ ∈ S(HA),∀ω ∈ Ω.

For the proof of Theorem 4.5, see Exercise 5.5 or the comments regarding
Theorem 7.1.

Using Condition ➂, we choose a measurement M (n) on H⊗n and a dis-
tribution p(n) on Xn such that I(p(n),M (n), W (n)) = C̃c(W (n)). Since

I(p(n),M (n), W (n)) ≤ I(p(n), W (n)), C̃(n)
c (W ) ≥ nCc(W ) ≥ I(p(n), W (n)),

we obtain I(p(n),M (n), W (n)) = I(p(n), W (n)). This is equivalent to∑
x∈supp(p(n))

p(n)(x)
(
DM(n)

(W (n)
x ‖W (n)

p(n))−D(W (n)
x ‖W (n)

p(n))
)

= 0,

and we have DM(n)
(W (n)

x ‖W (n)
p(n)) = D(W (n)

x ‖W (n)
p(n)) for x ∈ supp(p(n)),

where xn is simplified to x. Following Theorem 4.5, we choose an additional
system HA, a pure state ρA on HA, and a PVM E = {Ek} on the composite
system HA ⊗H such that

DE(W (n)
x ⊗ ρA‖W (n)

p(n) ⊗ ρA) = D(W (n)
x ⊗ ρA‖W (n)

p(n) ⊗ ρA).

According to Theorem 3.5, we take a real number ak(x) for every x ∈
supp(p(n)) such that the Hermitian matrix Xx =

∑
k ak(x)Ek satisfies

W
(n)
x ⊗ ρA =

(
W

(n)
p(n) ⊗ ρA

)
Xx. Since Xx is Hermitian, we obtain(

W (n)
x ⊗ ρA

)(
W

(n)
x′ ⊗ ρA

)
= (W (n)

p(n) ⊗ ρA)XxXx′(W (n)
p(n) ⊗ ρA)

=(W (n)
p(n) ⊗ ρA)Xx′Xx(W (n)

p(n) ⊗ ρA) =
(
W

(n)
x′ ⊗ ρA

)(
W (n)

x ⊗ ρA

)
for x,x′ ∈ supp(p(n)). Therefore, we obtain

W (n)
x W

(n)
x′ = W

(n)
x′ W (n)

x .

Defining p
(n)
i by p

(n)
i (x) def=

∑
x=(x1,... ,xn):xi=x

p(n)(x), from Exercise 1.13 we

find that Wx and Wy commute for x, y ∈ supp(p(n)
i ) because Tr WxWx′ �= 0

for any x, x′ ∈ X . Equation (4.4) yields

n∑
i=1

I(p(n)
i , W ) ≥ I(p(n), W (n)) = nCc(W ).

Therefore, I(p(n)
i , W ) = Cc(W ), and thus we obtain ➀.
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4.8 Historical Note

Here, we briefly mention the history of the c-q channel coding theorem. Since this
problem was independently formulated by several researchers, it is difficult to de-
termine who formulated it first. The first important achievement for this theorem
is the inequality

I(P, W ) ≥ I(M, P, W ), (4.55)

which was conjectured by Levitin [264] and proved by Holevo [212]. Indeed, this
inequality can be proved easily from the monotonicity of the quantum relative en-
tropy (5.30) [270,393]; however, at that time, it had not been proved. During that
period, a strong subadditivity of the von Neumann entropy (5.55) was proved by
Lieb and Ruskai [268,269]. Using the strong subadditivity, we can easily prove the
above inequality Ex. 5.45; however, this relation between the strong subadditivity
and inequality (4.55) was not known at that time. Combining inequality (4.55)
with Fano’s inequality, Holevo [214] showed that the weaker version of the con-
verse part, i.e., Cc(W ) ≤ supp∈P(X ) I(p, W ), held. Twenty years later, Ogawa and
Nagaoka [319] proved the strong converse part C†

c (W ) ≤ supp∈P(X ) I(p, W ). More-
over, Nagaoka [307] invented a more simple proof of the strong converse. His proof is
based on the monotonicity of the Rényi entropy (2.63). In this book, we prove (2.63)
using elementary knowledge in Sect. 3.7 and give a proof of the strong converse part
combining Nagaoka’s proof and (2.63).

Regarding the direct part, in the late 1970s, Stratonovich and Vantsjan [382]
treated the pure state case, i.e., the case in which all the states Wx are pure.
In this case, Cc(W ) is equal to supp H(Wp), but they found the lower bound
supp − log Tr W 2

p of Cc(W ), i.e., they proved that supp − log Tr W 2
p ≤ Cc(W ). Six-

teen years later, Hausladen et al. [164] proved the attainability of supp H(Wp) in
the pure-states case. This result was presented by Jozsa, who is a coauthor of this
paper, in the QCMC’96 conference held at Hakone. Holevo attended this confer-
ence and extended this proof to the mixed-state case during his stay at Tamagawa
University after this conference. Later, Schumacher and Westmoreland [363] inde-
pendently obtained the same result. Their method was based on the conditional
typical sequence, and its classical version appeared in Cover and Thomas [82].
Therefore, we can conclude that Holevo played a central role in the formulation of
the c-q channel coding theorem. Hence, some researchers call the capacity Cc(W )
the Holevo capacity, while Theorem 4.1 is called the HSW theorem.

In the classical case, Csiszár and Körner [85] have established the type method,
which is a unified method in classical information theory and is partially summa-
rized in Sect. 2.5.1. Applying it to its classical version, the researchers obtained
another proof of this theorem and examined channel coding in greater detail. Win-
ter [416,417] tried to apply the type method to c-q channels. He obtained another
proof of the c-q channel coding theorem but could not obtain an analysis of the er-
ror exponents as precise as that by Csiszár and Körner. Since there is an ambiguity
regarding the orthogonal basis in the quantum case, a simple application of the type
method to the c-q channel is not as powerful as the application to the classical case.

As another unified method in classical information theory, Han [158] established
the method of information spectrum. Verdú and Han [400] applied it to classical
channel coding and succeeded in obtaining the capacity of a general sequence of
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classical channels without any assumption, e.g., stationary memoryless, etc. As
a byproduct, they clarified the relation between channel coding and hypothesis
testing. Ogawa and Nagaoka [321] extended this method to the quantum case and
obtained another proof of the direct part of the c-q channel coding theorem. Further,
they clarified the relation between c-q channel coding and quantum hypothesis
testing. However, they could not obtain the capacity of the general sequence in the
quantum case. Hayashi and Nagaoka [186] were motivated by their proof. Based on
a quantum analog of the information spectrum method, they derived the capacity
for the general sequence of c-q channels without any condition. In consequence,
they obtained another proof of the stationary memoryless case.

All of the above methods except that of Ogawa and Nagaoka [321] are based on
the random coding method. In the classical case, Feinstein [114] showed the channel
coding theorem based not on the random coding method but on a greedy coding
method. Since the proof of Ogawa and Nagaoka [321] is based on the greedy coding
method, their method can be regarded as its quantum version.

Moreover, we sometimes discuss the error exponent in channel coding. Buruna-
shev and Holevo [63] first obtained the lower bound of the optimal error exponent in
the pure-state case, which is equal to (4.41). Their method differs from the method
of Exercise 4.11. In the mixed state case, Hayashi and Nagaoka [186] obtained the
lower bound (4.42) by the same method as Exercise 4.11.

In addition, Fujiwara and Nagaoka [128] discussed coding protocols with adap-
tive decoding and feedback and obtained Theorem 4.2. They also introduced pseu-
doclassical channels (Sect. 4.7) and obtained the equivalence of Conditions ➀ and ➁

in Theorem 4.4. This textbook slightly improves their proof and proves the equiv-
alence among the three Conditions ➀, ➁, and ➂. Recently, Bennett et al. [44] ob-
tained an interesting result regarding the classical capacity with feedback and quan-
tum correlation. The channel capacity with a cost constraint was first treated by
Holevo [218], and its strong converse part was shown by Hayashi and Nagaoka [186].

On the other hand, Stratonovich and Vantsjan [382] found the result of
− log Tr W 2

p and not H(Wp) due to some weak evaluations with respect to the error
probability for the pure-state case. It would be interesting to determine the differ-
ence between these two quantities. Fujiwara [123] considered an ensemble of pure
states generated randomly under the asymptotic setting. He focused on two types of
orthogonality relations and found that the two quantities H(Wp) and − log Tr W 2

p

correspond to their respective orthogonality relations.



5

State Evolution and Trace-Preserving
Completely Positive Maps

Summary. Until now, we have considered only quantum measurements among
operations on quantum systems. In order to perform effective information process-
ing with quantum systems, we should manipulate a wider class of state operations.
This chapter examines what kinds of operations are allowed on quantum systems.
The properties of these operations will also be examined.

Table 5.1. Denotations used in Chap. 5

K(κ) Matrix representation of κ (5.2)
κE TP-CP map to environment (5.5)

κM,W Entanglement-breaking channel
τ Transpose (5.11)

κd,λ Depolarizing channel (5.9)
κT

d,λ Transpose-depolarizing channel (5.15)
κGP

p Generalized Pauli channel (5.13)
κPD

D Phase-damping channel (5.16)
κpns

d,n→m PNS channel (5.18)
κera

d,p Erasure channel (5.19)
Hρ(A|B) Conditional entropy (5.60)
Iρ(A : B) Quantum mutual information (5.61)

Iρ(A : B|C) Quantum conditional mutual information (5.62)
η(x) −x log x
η0(x) See (5.63)

5.1 Description of State Evolution in Quantum Systems

The time evolution over a time t of a closed quantum-mechanical system H
is given by

ρ �→ eitHρe−itH ,
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where H is a Hermitian matrix in H called the Hamiltonian. However, this is
true only if there is no interaction between the system H and another system.
The state evolution in the presence of an interaction cannot be written in
the above way. Furthermore, the input system for information processing
(i.e., state evolution) is not necessarily the same as its output system. In
fact, in some processes it is crucial for the input and output systems to be
different. Hence, we will denote the input and output system by HA and HB ,
respectively, and investigate the map κ from the set S(HA) of densities on
the system HA to S(HB), which gives the relationship between the input
and the output (state evolution). First, we require the map κ to satisfy the
condition

κ(λρ1 + (1− λ)ρ2) = λκ(ρ1) + (1− λ)κ(ρ2)

for 1 > λ > 0 and arbitrary ρ1, ρ2 ∈ S(HA). Maps satisfying this property
are called affine maps. Since the space S(HA) is not a linear space, we cannot
claim that κ is linear; however, these two conditions are almost equivalent. In
fact, we may extend the map κ into a linear map κ̃ that maps from the linear
space T (HA) of Hermitian matrices on HA to the linear space T (HB) of the
Hermitian matrices on HB as follows. Since an arbitrary matrix X ∈ T (HA)
can be written as a linear sum

X =
∑

i

aiXi, ai ∈ R (5.1)

using elements X1, . . . , Xd2 of S(HA), κ̃ may be defined as

κ̃(X) def=
∑

i

aiκ(Xi).

The affine property guarantees that this definition does not depend on (5.1).
Henceforth, we shall identify κ̃ with κ. The linear combination of the elements
in T (HA) multiplied by complex constants gives the space M(HA) of the
matrices on HA. Therefore, κ may be extended to a map that takes us from
the space M(HA) of matrices on HA to the space M(HB) of matrices on
HB . It is often more convenient to regard κ as a linear map in discussions
on its properties; hence, we will often use κ as the linear map from T (HA)
to T (HB). Occasionally, it is even more convenient to treat κ as a map from
M(HA) toM(HB). We shall examine these cases explicitly.

In order to recover the map from S(HA) to S(HB) from the linear map κ
from T (HA) to T (HB), we assume that the linear map transforms positive
semidefinite matrices to positive semidefinite matrices. This map is called a
positive map. The trace also needs to be preserved.

However, there are still more conditions that the state evolution must
satisfy. In fact, we consider the state evolution κ occurring on the quantum
systemHA whose state is entangled with another system C

n. We also suppose
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that the additional system C
n is stationary and has no state evolution. Then,

any state on the composite system of C
n and HA obeys the state evolution

from HA ⊗ C
n to HB ⊗ C

n, which is given by the linear map κ ⊗ ιn from
T (HA ⊗ C

n) = T (HA) ⊗ T (Cn) to T (HB ⊗ C
n) = T (HB) ⊗ T (Cn), where

ιn denotes the identity operator from T (Cn) to itself. The map κ ⊗ ιn then
must satisfy positivity and trace-preserving properties, as discussed above. In
this case, the system C

n is called the reference system. The trace-preserving
property follows from the trace-preserving property of κ:

Tr(κ⊗ ιn)

(∑
i

Xi ⊗ Yi

)
=
∑

i

Tr (κ(Xi)⊗ ιn(Yi))

=
∑

i

Tr κ(Xi) · Tr ιn(Yi) =
∑

i

Tr Xi · Tr Yi = Tr

(∑
i

Xi ⊗ Yi

)
.

However, as shown by the counterexample given in Example 5.7 of Sect. 5.2,
it is not possible to deduce that κ ⊗ ιn is a positive map from the fact that
κ is a positive map. In a composite system involving an n-dimensional refer-
ence system C

n, the map κ is called an n-positive map if κ⊗ ιn is a positive
map. If κ is an n-positive map for arbitrary n, the map κ is called a com-
pletely positive map, which we abbreviate to CP map. Since the trace of a
density matrix is always 1, the state evolution of a quantum system is given
by a trace-preserving completely positive map, which is abbreviated to TP-CP
map. It is currently believed that it is, in principle, possible to produce state
evolutions corresponding to arbitrary TP-CP maps, as is shown by Theo-
rem 5.1 discussed later. If a channel has a quantum input system as well as
a quantum output system, it can be represented by a TP-CP map. Such
channels are called quantum-quantum channels to distinguish them from
classical-quantum channels. Strictly speaking, κ is a linear map from T (HA)
to T (HB); however, for simplicity, we will call it a TP-CP map from the
quantum system HA to the quantum system HB . In particular, since the
case with the pure input state is important, we abbreviate κ(|x〉〈x|) to κ(x).

We now give the matrix representation of the linear map from T (HA)
to T (HB) and the necessary and sufficient conditions for it to be a TP-CP
map. We denote the basis of the quantum systems HA and HB by eA

1 , . . . , eA
d

and eB
1 , . . . , eB

d′ , respectively. We define K(κ) as a matrix in HA ⊗HB for κ
according to

K(κ)(j,l),(i,k) def= 〈eB
k |κ(|eA

i 〉〈eA
j |)|eB

l 〉. (5.2)

Let X =
∑

i,j xi,j |eA
i 〉〈eA

j |, Y =
∑

k,l yk,l|eB
k 〉〈eB

l |. Then, we can write

Tr κ(X)Y =
∑

i,j,k,l

xi,jyk,l〈eB
k |κ(|eA

i 〉〈eA
j |)|eB

l 〉 = Tr(X ⊗ Y T )K(κ).
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Now, let HR be the space spanned by eR
1 , . . . , eR

d . Then, the maximally en-
tangled state |Φd〉 = 1√

d

∑
i eA

i ⊗ eR
i characterizes this matrix representation

of κ as

(κ⊗ ιR)(|Φd〉〈Φd|)

=
1
d

∑
i,j

κ(|eA
i 〉〈eA

j |)⊗ |eR
i 〉〈eR

j | =
1
d

∑
i,j,k,l

K(κ)(j,l),(i,k)|eB
k , eR

i 〉〈eB
l , eR

j |. (5.3)

The definition of K(κ) could be given here by naturally extending κ to
a map from M(HA) to M(HB), as discussed above. Note that d (d′) is the
dimension of HA (HB) above. K(κ) may be used to characterize the TP-CP
map as follows.

Theorem 5.1 The following conditions are equivalent [77,130,243,261,379].

➀ κ is a TP-CP map.
➁ Define the linear map κ∗ from T (HB) to T (HA) as the map satisfying

(5.4). The map κ∗ is a completely positive map and satisfies κ∗(IB) = IA.

Tr κ(X)Y = TrXκ∗(Y ), ∀X ∈ T (HA),∀Y ∈ T (HB). (5.4)

κ∗ can be regarded as a dual map with respect to the inner product
〈X, Y 〉 def= Tr XY .

➂ κ is a trace-preserving min{d, d′}-positive map.
➃ The matrix K(κ) in HA ⊗ HB is positive semidefinite and satisfies

TrB K(κ) = IA.
➄ (Stinespring representation) For a given map κ, it is possible to express

κ as κ(ρ) = TrA,C Uκ(ρ ⊗ ρ0)U∗
κ by choosing an identical Hilbert space

HC to HB, a pure state ρ0 ∈ S(HB ⊗HC), and a unitary matrix Uκ in
HA⊗HB ⊗HC . Note that the structure of HC depends only on HB, not
on κ. Only Uκ depends on κ itself.

➅ (Choi–Kraus representation) It is possible to express κ as κ(ρ)=
∑

i FiρF ∗
i

using
∑

i F ∗
i Fi = IHA

, where F1, . . . , Fdd′ are a set of dd′ linear maps
from HA to HB.

The above conditions are also equivalent to a modified Condition ➄ (which
we call Condition ➄′), where ρ0 is not necessarily a pure state, and the di-
mension of HC is arbitrary. Another equivalent condition is a modification of
Condition ➅ (which we call Condition ➅′), where the number of linear maps
{Fi} is arbitrary.

If the input system HA and the output system HB are identical to C
d,

the channel is called a d-dimensional channel. In this case, the Stinespring
representation can be rewritten as follows.

Corollary 5.1 The following conditions are equivalent for a linear map κ
from T (HA) to T (HA).
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➀ κ is a TP-CP linear map.
➁ κ(ρ) = TrE Vκ(ρ⊗ρ0)V ∗

κ for a quantum system HE, a state ρ0 ∈ S(HE),
and an appropriate unitary matrix Vκ in HA ⊗HE for κ.

It is possible to make the dimension of HE less than d2.

The triplet (HC , ρ0, Uκ) in ➄ of Theorem 5.1 is called the Stinespring
representation. The equivalence to ➀ has been proved by Stinespring for the
dual map κ∗ under general conditions.

The Stinespring representation is important not only as a mathematical
representation theorem, but also in terms of its physical meaning. When the
input system is identical to the output system, as in Corollary 5.1, we can
interpret it as a time evolution under an interaction with an external system
HE . The system HE is therefore called the environment. If the input and
output systems are different, we may regard HA ⊗ HC as the environment,
which we again denote by HE . We can then define the map κE transforming
the initial state in the input system to the final state in the environment as

κE def= TrB Uκ(ρ⊗ ρ0)U∗
κ . (5.5)

The final state in the environment of a Stinespring representation is unitarily
equivalent to that of another Stinespring representation as long as the initial
state of the environment ρ0 is chosen as a pure state. That is, the state κE(ρ)
essentially does not depend on the Stinespring representation.

In the next section, we will use this theorem to obtain a concrete example
of a TP-CP map. In fact, the partial trace and the map ρ �→ ρ⊗ρ0 are TP-CP
maps, as is easily verified from Theorem 5.1 above. Another representation is
the output state (5.3) of the channel κ for the maximally entangled state Φd

between the input system and the same-dimensional reference system. This
representation has not only mathematical meaning but also an estimation
theoretical importance because it is possible to identify the channel κ by
identifying this final state (5.3) [87, 136]. Further, using this notation, we
can describe the output state of any input pure state entangled with the
reference system as follows. Using (1.19), any pure entangled state |X〉 can
be described as IA ⊗ XT√

d
|Φd〉. Hence, we have

(κ⊗ ιR)(|X〉〈X|) = (κ⊗ ιR)((IA ⊗
XT

√
d

)|Φd〉〈Φd|(IA ⊗
X̄√
d
))

=
1
d
(IB ⊗XT )(κ⊗ ιR)(|Φd〉〈Φd|)(IB ⊗ X̄). (5.6)

In Condition ➅, another representation {Fi} of the completely positive map
is given and is called the Choi–Kraus representation. From (1.19) the state
(κ⊗ ιR)(|Φd〉〈Φd|) has the form

(κ⊗ ιR)(|Φd〉〈Φd|) =
1

dA

∑
i

|Fi〉〈Fi|. (5.7)
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Hence, when {F ′
i} is another Choi–Kraus representation of κ, F ′

i is repre-
sented as a linear sum of {Fi}. As is shown in Appendix A.5, the TP-CP
map κE can be characterized by a Choi–Kraus representation as follows.

Lemma 5.1 When {Fi}di=1 is a Choi–Kraus representation of κ, the envi-
ronment system is described by C

d and the matrix elements of κE(ρ) are given
as

κE(ρ)i,j = TrF ∗
j Fiρ. (5.8)

Using this representation we can characterize extremal points of TP-CP maps
from HA to HB as follows.

Lemma 5.2 (Choi [77]) A TP-CP map κ is an extremal point of TP-CP
maps from HA to HB if and only if κ has Choi–Kraus representation {Fi}
such that {F ∗

i Fj}i,j is a linearly independent set.

Proof. Suppose that κ is an extremal point. Let {Fi} be a Choi–Kraus
representation of κ such that Fi is linearly independent Ex. 5.3. Suppose∑

i,j λi,jF
∗
i Fj = 0 and the matrix norm ‖(λi,j)‖ is less than 1. Define κ±

as κ±(ρ) def=
∑

i FiρF ∗
i ±

∑
i,j λi,jFiρF ∗

j . Since I ± (λi,j) ≥ 0, κ± is a TP-CP
map. It also follows that κ = 1

2κ+ + 1
2κ−. Since κ is extremal, κ+ = κ. That

is, λi,j = 0. Therefore, {F ∗
i Fj}i,j is a linearly independent set.

Conversely, suppose that {F ∗
i Fj}i,j is a linearly independent set. We

choose TP-CP maps κ1 and κ2 and a real number 0 < λ < 1 such that
κ = λκ1 + (1− λ)κ2. Let {F k

i } be a Choi–Kraus representation of κk. Then,
κ has Choi–Kraus representation {

√
λF 1

i } ∪ {
√

1− λF 2
i }. Thus, F 1

i is writ-
ten as

∑
j λi,jFj . The condition

∑
i(F

1
i )∗F 1

i =
∑

j F ∗
j Fj and the linearly

independence of {F ∗
i Fj}i,j imply that

∑
i,i′ λi′,j′λi,j = δj′,j . That is, κ = κ1

(Exercise 5.2).

Corollary 5.2 When a TP-CP map κ from HA to HB is extremal, its Choi–
Kraus representation has only dA elements and any image is included in the
d2

A-dimensional space of HB at most. Hence, the dimension of the environ-
ment is less than dA.

A Stinespring representation guarantees that the state evolution corre-
sponding to the TP-CP map κ can be implemented by the following proce-
dure. The initial state ρ0 is first prepared on HB ⊗ HC ; then, the unitary
evolution Uκ is performed on HA⊗HB⊗HC . It is commonly believed that in
principle, state evolutions corresponding to an arbitrary unitary matrix Uκ

can be implemented, and hence state evolutions corresponding to arbitrary
TP-CP maps can also in principle be implemented.

Let us now consider the case where we are given two TP-CP maps κ and
κ′ that map from the quantum systems HA,H′

A to HB ,H′
B , respectively.

The state evolution of the composite system from HA ⊗ H′
A to HB ⊗ H′

B
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is given by κ ⊗ κ′. One may wonder whether the map κ ⊗ κ′ also satisfies
the condition for TP-CP maps. Indeed, this condition is guaranteed by the
following corollary.

Corollary 5.3 Given a linear map κ′ from T (H′
A) to T (H′

B), the following
two conditions are equivalent.

➀ κ′ is a TP-CP map.
➁ κ⊗ κ′ is a TP-CP map when κ is a TP-CP map from HA to HB.

As another condition for positive maps, we focus on the tensor product posi-
tivity. A positive map κ is called tensor product positive if κ⊗n is positive for
any integer n. It follows from the above corollary that any CP map is tensor
product positive.

Proof of Corollary 5.3. The proof will be shown based on Condition ➃
of Theorem 5.1. Condition ➁ is equivalent due to the fact that K(κ⊗ κ′) is
positive semidefinite, which is equal to K(κ)⊗K(κ′). Since K(κ) is positive
semidefinite, then K(κ′) is positive semidefinite. This is then equivalent to
Condition ➀.

The fact that the dimension of the space of ρ is d′2 is important in connec-
tion with quantum computation. One of the main issues in quantum compu-
tation theory is the classification of problems based on their computational
complexity. One particularly important class is the class of problems that are
solvable in polynomial time with respect to the input size. This class is called
the polynomial class. The classification depends on whether operations are
restricted to unitary time evolutions that use unitary gates such as C-NOT
gates or if TP-CP maps are allowed. However, as confirmed by Theorem
5.1, TP-CP maps can be simulated by d(d′2)-dimensional unitary evolutions.
Therefore, it has been shown that the class of problems that can be solved
in polynomial time is still the same [4].1

Remark 5.1 The discussion presented here can be extended to the more gen-
eral physical system, i.e., the case where the states are given as the duals of the
general operator algebra, e.g., C∗-algebra, von Neumann algebra, and CCR
algebra.

Exercises

5.1. Show Corollary 5.1 using Theorem 5.1.

5.2. Let {Fi} be a Choi–Kraus representation of the TP-CP map κ and
ui,j be a unitary matrix. Show that F ′

i
def=

∑
j ui,jFj is also its Choi–Kraus

representation.
1 More precisely, we can implement only a finite number of unitary matrices in a

finite amount of time. For a rigorous proof, we must approximate the respective
TP-CP maps by a finite number of unitary matrices and evaluate the level of
these approximations.
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5.3. Show that we can choose a Choi–Kraus representation {Fi} of any TP-
CP map κ such that matrices Fi are linearly independent.

5.2 Examples of Trace-Preserving Completely
Positive Maps

In addition to the above-mentioned partial trace, the following examples of
TP-CP maps exist.

Example 5.1 (Unitary evolutions) Let U be a unitary matrix on H. The
state evolution κU : ρ �→ κU (ρ) def= UρU∗ from S(H) to itself is a TP-CP
map. This can be easily verified from Condition ➅ in Theorem 5.1. Since an
arbitrary unitary matrix U has the form U = V eiθ, where eiθ is a complex
number with modulus 1 and V is a unitary matrix with determinant 1, we
can write UρU∗ = V ρV ∗. Therefore, we can restrict V to unitary matrices
with determinant 1. Such matrices are called special unitary matrices. How-
ever, there are no such unitary state evolutions when the dimension of HA

is smaller than the dimension of HB . In such a case, we consider isometric
matrices (i.e., matrices satisfying U∗U = I) from HA to HB . The TP-CP
map κU (ρ) def= UρU∗ is then called an isometric state evolution.

Example 5.2 (Partial trace) The partial trace ρ �→ TrH ρ can be regarded
as a state evolution from quantum system H⊗H′ to quantum system H′. It
is also a completely positive map because it is a special case of Condition ➄
of Theorem 5.1.

Example 5.3 (Depolarizing channels) For arbitrary 1 ≥ λ ≥ 0, a map

κd,λ(ρ) def= λρ + (1− λ)(Tr ρ)ρmix (5.9)

is a d-dimensional TP-CP map and is called a depolarizing channel. In par-
ticular, when d = 2, we have

κ2,λ(ρ) =
3λ + 1

4
ρ +

1− λ

4

3∑
i=1

SiρS∗
i . (5.10)

A depolarizing channel κd,λ satisfies κd,λ(UρU∗) = Uκd,λ(ρ)U∗ for all unitary
matrices U . Conversely, when a d-dimensional channel satisfies this property,
it is a depolarizing channel.

Example 5.4 (Entanglement-breaking channels) A TP-CP map from HA to
HB satisfying the following conditions is called an entanglement-breaking
channel. For an arbitrary reference system HC and an arbitrary state ρ ∈
S(HA⊗HC), the output state (κ⊗ιC)(ρ) on the space HB⊗HC is separable.
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The entanglement-breaking channel is the subject of the following theo-
rem Ex. 7.5.

Theorem 5.2 (Horodecki et al. [235]) The following two conditions are
equivalent for a TP-CP map κ from HA to HB.

➀ κ is an entanglement-breaking channel.
➁ κ can be written as

κ(ρ) = κM ,W (ρ) def=
∑
ω∈Ω

(Tr ρMω)Wω,

where M = {Mω}ω∈Ω is an arbitrary POVM on HA and W is a map
from Ω to S(HB).

If the Wω maps are mutually orthogonal pure states, then κM ,W (ρ) can be
identified with the probability distribution PM

ρ . A POVM M is not only
a map that gives the probability distribution PM

ρ from the quantum state
ρ, but it can also be regarded as an entanglement-breaking channel (and
therefore a TP-CP map).

Example 5.5 (Unital channels) A TP-CP map κ from HA to HB satisfying
κ
(
ρA
mix

)
= ρB

mix is called a unital channel. The depolarizing channel defined
previously is a unital channel.

Example 5.6 (Pinching) Recall that the pinching κM : ρ �→
∑

ω∈Ω MωρMω

is defined with respect to the PVM M = {Mω}ω∈Ω in Sect. 1.2. This satisfies
the conditions for a TP-CP map only when M is a PVM. For a general POVM
M , the map ρ �→

∑
ω∈Ω

√
Mωρ

√
Mω is a TP-CP map.

If all the Mω elements are one-dimensional, the pinching κM is an
entanglement-breaking channel. If the POVM has a non-one-dimensional el-
ement Mω, it is not an entanglement-breaking channel.

Example 5.7 (Transpose) For a quantum system HA, we define the trans-
pose operator τ with respect to its orthonormal basis u0, . . . , ud−1 as

ρ =
∑
i,j

ρi,j |ui〉〈uj | �→ τ(ρ) def= ρT =
∑
i,j

ρj,i|ui〉〈uj |. (5.11)

τ is then a positive map, but not a two-positive map. Therefore, it is not a
completely positive map. However, it is a tensor-product-positive map Ex. 5.11.

According to Exercise 1.3, any tensor product state ρA ⊗ ρB satisfies
(τA ⊗ ιB)(ρA ⊗ ρB) = τA(ρA) ⊗ ρB ≥ 0. Hence, any separable state ρ ∈
S(HA⊗HB) also satisfies (τ ⊗ ιB)(ρ) ≥ 0. The converse is the subject of the
following theorem.
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Theorem 5.3 (Horodecki [225]) Assign orthogonal bases for HA and HB.
Let τ be the transpose with respect to HA under these coordinates. If either
HA or HB is two-dimensional and the other is three-dimensional or less, then
the condition (τ ⊗ ιB)(ρ) ≥ 0 is the necessary and sufficient condition for the
density matrix ρ on the composite system HA ⊗HB to be separable.

Counterexamples are available for C
2⊗C

4 and C
3⊗C

3 [236]. If the input
and output systems of κ are both quantum two-level systems, we have the
following corollary.

Corollary 5.4 Let τ be a transpose under some set of coordinates. If κ is a
channel for a quantum two-level system (i.e., a TP-CP map), the following
two conditions are equivalent.

1. τ ◦ κ is a CP map.
2. κ is an entanglement-breaking channel.

Example 5.8 (Generalized Pauli channel) Define unitary matrices Xd and
Zd using the same basis as that in Example 5.7 for the quantum system HA

as follows:

Xd|uj〉 = |uj−1 mod d〉, Zd|uj〉 = wj |uj〉, (5.12)

where w is the dth root of 1. The generalized Pauli channel κGP
p is given by

κGP
p (ρ) def=

d−1∑
i=0

d−1∑
j=0

p(i, j)(Xi
dZ

j
d)

∗ρ(Xi
dZ

j
d) (5.13)

for the probability distribution p in {0, . . . , d − 1}×2. We often denote Xd

and Zd by XA and ZA respectively for indicating the space HA that these
act on. The above channel is also unital. For a quantum two-level system, we
can write this channel as

κ(ρ) =
3∑

i=0

piSiρS∗
i , (5.14)

where p is a probability distribution in {0, 1, 2, 3}, and the Pauli matrices Si

were defined in Sect. 1.3. This is called a Pauli channel and will be denoted
by κGP

p .

Example 5.9 (Antisymmetric channels(Werner–Holevo channels), Trans-
pose depolarizing channels) If and only if a real number λ belongs to
[ −1
d−1 , 1

d+1 ], is the map

κT
d,λ(ρ) def= λρT + (1− λ)ρmix (5.15)

a TP-CP map, and it is called a transpose depolarizing channel, where d is
the dimension of the system [90] (see Exercise 8.74 and Theorem 5.1). In
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particular, when λ = −1
d−1 , the channel κT

d, −1
d−1

is called an antisymmetric

channel [291] or a Werner–Holevo channel [413]. This channel satisfies the
anticovariance κT

d,λ(UρU∗) = UκT
d,λ(ρ)UT .

Example 5.10 (Phase-damping channels) Let D = (di,j) be a positive
semidefinite matrix satisfying di,i = 1. The following channel is called a
phase-damping channel:

κPD
D (ρ) def=

∑
i,j

di,jρi,j |ei〉〈ej |, (5.16)

where ρ =
∑

i,j ρi,j |ei〉〈ej |.

For example, any pinching κM with a PVM M is a phase-damping channel.
Since

κPD
D (

1
d

∑
k,l

|ek, eR
k 〉〈el, e

R
l |) =

1
d

∑
k,l

dk,l|ek, eR
k 〉〈el, e

R
l |,

Condition ➃ of Theorem 5.1 guarantees that any phase-damping channel κPD
D

is a TP-CP map.

Lemma 5.3 A phase-damping channel κPD
D is a generalized Pauli channel

κGP
p satisfying that the support of p belongs to the set {(0, 0), . . . , (0, d− 1)}

if and only if

di,j = di′,0 for i− j = i′mod d. (5.17)

See Exercise 5.12.

Example 5.11 (PNS channels) Define the n-fold symmetric space Hn
s,d of

C
d as the space spanned by {v⊗n|v ∈ C

d} ⊂ (Cd)⊗n. Let the input system
be the n-fold symmetric space Hn

s,d and the output system be the m-fold
symmetric space Hm

s,d (n ≥ m). The PNS (photon number splitting) channel
κpns

d,n→m is given by

κpns
d,n→m(ρ) def= Tr(Cd)⊗n−m ρ, (5.18)

where we regard ρ as a state on the n-fold tensor product space. In this case,
the support of the output state is contained by the m-fold symmetric space
Hm

s,d. Hence, we can check that it is a TP-CP map from the n-fold sym-
metric space Hn

s,d to the m-fold symmetric space Hm
s,d. Indeed, this channel

corresponds to photon number splitting in the quantum key distribution.

Example 5.12 (Erasure channels) Let the input system be C
d with the basis

u0, . . . , ud−1 and the input system be C
d with the basis u0, . . . , ud−1, ud. The

erasure channel κera
d,p with the probability is given as

κera
d,p(ρ) def= (1− p)ρ + p|ud〉〈ud|. (5.19)



128 5 State Evolution and Trace-Preserving Completely Positive Maps

Exercises

5.4. Show formula (5.10) for the depolarizing channel on the quantum two-
level system.

5.5. Prove Theorem 4.5 from Condition ➄ of Theorem 5.1.

5.6. Show that (Xj1
d Zk1

d )(Xj2
d Zk2

d ) = (−1)j1k2−k1j2(Xj2
d Zk2

d )(Xj1
d Zk1

d ) for
symbols defined as in Example 5.8.

5.7. Show that

1
d2

d−1∑
j=0

d−1∑
k=0

(Xj
dZ

k
d)∗X(Xj

dZ
k
d) = (TrX)ρmix (5.20)

for an arbitrary matrix X by following the steps below.

a Show that

(Xj′
d Zk′

d )∗

⎛
⎝ 1

d2

d−1∑
j=0

d−1∑
k=0

(Xj
dZ

k
d)∗X(Xj

dZ
k
d)

⎞
⎠ (Xj′

d Zk′
d )

=
1
d2

d−1∑
j=0

d−1∑
k=0

(Xj
dZ

k
d)∗X(Xj

dZ
k
d)

for arbitrary j′, k′.
b Show that the matrix A =

∑
j,k aj,k|uj〉〈uk| is diagonal if ZdA = AZd.

Show that its diagonal elements are all identical if XdA = AXd.
c Show (5.20) using the above.

5.8. Show that

1
d2

d−1∑
j=0

d−1∑
k=0

(Xj
AZk

A ⊗ IB)∗ρ(Xj
AZk

A ⊗ IB) = ρA
mix ⊗ TrA ρ

for a state ρ on HA ⊗HB using formula (1.25).

5.9. Let HA,HB be the spaces spanned by uA
0 , . . . , uA

d−1 and uB
0 , . . . , uB

d−1.
Define

uA,B
0,0

def=
1√
d

d∑
i=1

uA
i ⊗ uB

i , uA,B
i,j

def= (Xi
AZj

A ⊗ IB)uA,B
0,0 ,

and show that these vectors form a CONS of HA ⊗HB .
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5.10. Suppose that the classical-quantum channel Wρ is given by a depolar-

izing channel κd,λ according to Wρ
def= κd,λ(ρ). In this case, the set of states

S(HA) of the input system is regarded as the set of input alphabets X . Show
that the depolarizing channel κd,λ is pseudoclassical and its capacity is given
by

C = c(κd,λ) = C̃ = c(κd,λ)

=
1 + (d− 1)λ

d
log(1 + (d− 1)λ) +

(d− 1)(1− λ)
d

log(1− λ).

5.11. Show that the transpose τ is tensor product positive.

5.12. Show Lemma 5.3 following the steps below.

a Show that if a generalized Pauli channel κGP
p satisfies that the support of

p belongs to the set {(0, 0), . . . , (0, d − 1)}, κGP
p has the form (5.16) and

satisfies (5.17).
b Assume that a phase-damping channel κPD

D satisfies (5.17). Define

p(0, m) def= 1
d Tr DZm

d . Show that κGP
p = κPD

D .

5.13. Show that (κera
d,p)

E = κera
d,1−p.

5.14. Show that (κpns
d,n→m)E = κpns

d,n→n−m.

5.3 State Evolutions in Quantum Two-Level Systems

As mentioned in Sect. 1.3, the states in a quantum two-level system may be
parameterized by a three-dimensional vector x:

ρx =
1
2

(
S0 +

3∑
i=1

xiSi

)
. (5.21)

Let κ be an arbitrary TP-CP map from a quantum two-level system to an-
other quantum two-level system. We shall now investigate how this map κ can
be characterized under the parameterization (5.21). As discussed in Sect. 4.1,
this kind of map is characterized by a linear map from a Hermitian matrix
on C

2 to itself. Consider a state evolution of the unitary type given in Exam-
ple 5.1. The special unitary matrix V may then be diagonalized by a unitary
matrix. The two eigenvalues are complex numbers with an absolute value
1; their product yields 1. Therefore, we may represent the two eigenvalues
by eiθ and e−iθ and the two eigenvectors by u1 and u2. We can then write
V = eiθ|u1〉〈u1|+ e−iθ|u2〉〈u2| = exp(i(θ|u1〉〈u1| − θ|u2〉〈u2|)). V may there-
fore be written asexp(iX), where X is a Hermitian matrix with trace 0. We
will use this to examine the state evolution corresponding to a special unitary
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matrix operating on both sides of the density matrix of a quantum two-level
system.

For this purpose, let us examine some algebraic properties of the Pauli
matrices. Define εj,k,l to be 0 if any of j, k, and l are the same, ε1,2,3 =
ε3,1,2 = ε2,3,1 = 1, and ε3,2,1 = ε1,3,2 = ε2,1,3 = −1. Then,

[
Sj , Sk

]
=

−2i
∑3

l=1 εj,l,kSl. This is equivalent to⎡
⎣ 3∑

j=1

xjS
j ,

3∑
k=1

ykSk

⎤
⎦ = −2i

3∑
j=1

3∑
k=1

3∑
l=1

xjykεj,l,kSl.

Defining Rj
def= [εj,l,k]l,k, Sx

def=
∑3

j=1 xjS
j , and Rx

def=
∑3

j=1 xjR
j , we may

rewrite the above expression as[
i

2
Sx, Sy

]
= SRxy.

As shown later, this equation implies that

exp(
i

2
Sx)Sy exp(− i

2
Sx) = Sexp(Rx)y. (5.22)

Applying this equation to states, we obtain

exp(
i

2
Sx)ρy exp(− i

2
Sx) = ρexp(Rx)y. (5.23)

This shows that a 2×2 unitary matrix exp( i
2Sx) of determinant 1 corresponds

to a 3× 3 real orthogonal matrix exp(Rx).

Proof of (5.22). Since Sx is Hermitian, isSx can be diagonalized by a
unitary matrix with purely imaginary eigenvalues. Therefore, exp(iSx) is
a unitary matrix. Note that exp(iSx)∗ = exp(−iSx). Since exp(i s

2Sx)Sy

exp(−i s
2Sx) is a Hermitian matrix with trace 0 like Sy, it can be rewrit-

ten as Sy(s) according to Exercise 1.9. Let us write down the vector y(s).
Differentiating exp(i s

2Sx)Sy exp(−i s
2Sx) with respect to s, we obtain

Sy′(s) =
(
exp(i

s

2
Sx)Sy exp(−i

s

2
Sx)

)′

=
(
exp(i

s

2
Sx)

)′
Sy exp(−i

s

2
Sx) + exp(i

s

2
Sx)Sy

(
exp(−i

s

2
Sx)

)′

=
i

2
Sx exp(i

s

2
Sx)Sy exp(−i

s

2
Sx) + exp(i

s

2
Sx)Sy exp(−i

s

2
Sx)(− i

2
Sx)

=
[

i

2
Sx, exp(i

s

2
Sx)Sy exp(−i

s

2
Sx)

]
=
[

i

2
Sx, Sy(s)

]
= SRxy(s),

and we find that y(t) satisfies the differential equation
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y′(s) = Rxy(s). (5.24)

It can be verified that

y(s) = exp(sRx)y (5.25)

satisfies this differential equation. From the uniqueness of the solution of an
ordinary differential equation we see that only the function y(s) given in
(5.25) satisfies y(0) = y and (5.24). Applying this to when s = 1, we obtain
(5.22).

Next, we consider a general TP-CP map. Define K̃(κ)i,j def= 1
2 Tr Siκ(Sj).

The trace-preserving property guarantees that

K̃(κ)0,0 =
1
2

Tr κ(I) = 1, K̃(κ)0,i =
1
2

Tr κ(Si) = 0

for i �= 0. Now define t according to ti
def= K̃(κ)i,0. The vector t then gives

the image of the completely mixed state ρmix due to κ. Let T be a 3 × 3
matrix consisting only of the first, second, and third elements of K̃(κ). The
TP-CP map κ may then be denoted by a vector t and a matrix T [130]. For
example, when a unitary matrix operates on either side, then t = 0 and T
is an orthogonal matrix given by (5.23). To give a few more examples, let
us rewrite the examples given in the previous section using t and T for the
quantum two-level system. For a depolarizing channel, we have t = 0, and
therefore T = λI. The necessary and sufficient condition for the channel to
be unital is then t = 0. For the transpose, we have

t = 0, T =

⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠ .

Next, we consider the necessary and sufficient conditions for a map to be a
positive map, a completely positive map, an entanglement-breaking channel,
and a Pauli channel, respectively, by assuming that the channel is unital,
i.e., t = 0. Recall from the discussion in Sect. A.2 that special orthogonal
matrices O1, O2 may be chosen such that T ′ def= O∗

1TO2 is diagonal (i.e.,
a singular decomposition). Taking unitary matrices U1, U2 corresponding to
O1, O2 based on the correspondence (5.23), and letting κT be the TP-CP
map corresponding to T , we have κU1 ◦ κT ◦ κU2 = κT ′

. For the analysis
of the TP-CP map κT , it is sufficient to analyze the TP-CP map κT ′

. The
necessary and sufficient conditions for the various types of channels can then
be labeled by the eigenvalues λ1, λ2, and λ3 of T ′. Let us first consider the
necessary conditions for a positive map. It is positive if and only if the image
by T ′ of the unit sphere {x|‖x‖ ≤ 1} is contained by the unit sphere. Thus,
its necessary and sufficient condition is

|λ1|, |λ2|, |λ3| ≤ 1. (5.26)
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Next, we use Condition ➃ of Theorem 5.1 to examine the completely positive
map. In order to check this condition, we calculate K(κT ′

):

K(κT ′
) =

1
2

⎛
⎜⎜⎝

1 + λ3 0 0 λ1 + λ2
0 1− λ3 λ1 − λ2 0
0 λ1 − λ2 1− λ3 0

λ1 + λ2 0 0 1 + λ3

⎞
⎟⎟⎠ .

Swapping the second and fourth coordinates, we have⎛
⎜⎜⎝

1 + λ3 λ1 + λ2 0 0
λ1 + λ2 1 + λ3 0 0

0 0 1− λ3 λ1 − λ2
0 0 λ1 − λ2 1− λ3

⎞
⎟⎟⎠ .

Thus, the necessary and sufficient condition for K(κT ′
) ≥ 0 is [130,355]

(1 + λ3)2 ≥ (λ1 + λ2)2, (1− λ3)2 ≥ (λ1 − λ2)2.

This can be rewritten as

1 ≥ λ1 + λ2 − λ3, λ1 − λ2 + λ3,−λ1 + λ2 + λ3 (5.27)

from Condition (5.26). Applying Corollary 5.4 to the unital case, we obtain
the necessary and sufficient condition for a channel to be an entanglement-
breaking channel [356]:

1 ≥ |λ1|+ |λ2|+ |λ3|.

Next, we treat the necessary and sufficient condition for a channel to be
a Pauli channel. Since this condition depends on the coordinates of the input
and output systems, we cannot reduce T to its singular decomposition. The
orthogonal matrices corresponding to S1, S2, S3 in the sense of (5.23) are⎛

⎝1 0 0
0 −1 0
0 0 −1

⎞
⎠ ,

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠ ,

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠ .

Using pi in (5.14), the matrix T is given by⎛
⎝p0 + p1 − p2 − p3 0 0

0 p0 − p1 + p2 − p3 0
0 0 p0 − p1 − p2 + p3

⎞
⎠ . (5.28)

Finally, the following theorem holds regarding the pseudoclassical prop-
erty of channels examined in Sect. 4.7.

Theorem 5.4 (Fujiwara and Nagaoka [128]) Let H be two-dimensional, X
be given by S(C2), and W be given by the trace-preserving positive map κ
from C

2 to C
2. A necessary and sufficient condition for a channel to be

pseudoclassical is that one of the conditions given below should be satisfied.
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1. t = 0.
2. Let t be an eigenvector of TT ∗. Let r be one of its eigenvalues and r0 be

the larger of the other two eigenvalues. Then,

r0 ≤ r2 − ‖t‖r +
(‖t‖ − r)

(
h
(

1+‖t‖+r
2

)
− h

(
1+‖t‖−r

2

))
h′
(

1+‖t‖−r
2

) .

Exercises

5.15. Check Condition (5.27) in the Pauli channel case (5.28).

5.16. Show that the Pauli channel given by (5.28) is entanglement-breaking
if and only if pi ≤ 1

2 .

5.17. Show that the positive map Invλ :
(

a b
c d

)
�→ λ

(
d −b
−c a

)
+ (1 −

λ)
(

a b
c d

)
is completely positive if and only if 2

3 ≥ λ ≥ 0.

5.18. Show that

F (ρx, ρy) =
1 +

√
1− |x|2

√
1− |y|2 + 〈x,y〉
2

. (5.29)

5.4 Information-Processing Inequalities
in Quantum Systems

In this section, we will show that the quantum versions of the information
quantities introduced in Sect. 2.2 satisfy the information-processing inequal-
ities (i.e., the monotonicity) under the state evolutions given previously.

Theorem 5.5 (Lindblad [270], Uhlmann [393]) Let κ be a TP-CP map from
HA to HB. Then, the monotonicity of the quantum relative entropy

D(ρ‖σ) ≥ D(κ(ρ)‖κ(σ)) (5.30)

holds.

This theorem may be used to show many properties of the quantum rela-
tive entropy and the von Neumann entropy. For example, let ρ1, . . . , ρk and
σ1, . . . , σk be density matrices on H and let pi be a probability distribution
in {1, . . . , k}. Consider now the density matrix

R
def=

⎛
⎜⎝p1ρ1 O

. . .
O pkρk

⎞
⎟⎠ , S

def=

⎛
⎜⎝p1σ1 O

. . .
O pkσk

⎞
⎟⎠
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on H1 ⊗ C
k. Since the partial trace TrCk is a TP-CP map, the inequality

D

(
k∑

i=1

piρi

∥∥∥∥∥
k∑

i=1

piσi

)
≤ D(R‖S) =

k∑
i=1

piD(ρi‖σi) (5.31)

holds [271]. This inequality is called the joint convexity of the quantum rela-
tive entropy.

Proof of Theorem 5.5. Examine the connection with hypothesis testing.
Let κ be a TP-CP map from HA to HB . If a Hermitian matrix T on H⊗n

B

satisfies I ≥ T ≥ 0, then (κ⊗n)∗(T ) must also satisfy I ≥ (κ⊗n)∗(T ) ≥ 0.
Therefore, from Condition ➁ of Theorem 5.1 and Corollary 5.3, we deduce
that (κ⊗n)∗(T ) ≥ 0. On the other hand, we see that I ≥ (κ⊗n)∗(T ) from

I − (κ⊗n)∗(T ) = (κ⊗n)∗(I)− (κ⊗n)∗(T ) = (κ⊗n)∗(I − T ) ≥ 0.

Since a state ρ ∈ S(HA) satisfies

Tr(κ(ρ))⊗nT = Tr ρ⊗n(κ⊗n)∗(T ),

the test (κ⊗n)∗(T ) with the hypotheses ρ⊗n and σ⊗n has the same accuracy
as the test T with the hypotheses κ(ρ)⊗n and κ(σ)⊗n. That is, any test
with the hypotheses κ(ρ)⊗n and κ(σ)⊗n can be simulated by a test with the
hypotheses ρ⊗n and σ⊗n with the same performance. We therefore have

B(ρ‖σ) ≥ B(κ(ρ)‖κ(σ)).

Note that B(ρ‖σ) is defined in Theorem 3.4. Hence, applying Theorem 3.4
then completes the proof.

Indeed, this proof requires only the tensor product positivity. Hence, since
the transpose τ is tensor product positive, inequality (5.30) holds when κ is
the transpose τ . Uhlmann [393] showed this inequality only with the two-
positivity. Further, the equality condition of (5.30) can be characterized as
follows.

Theorem 5.6 (Petz [349]) Assume that κ(σ) > 0 for a state σ and a trace-
preserving two-positive map κ. Then, the equality of (5.30) holds for a state
ρ if and only if

ρ =
√

σκ∗(
√

κ(σ)
−1

κ(ρ)
√

κ(σ)
−1

)
√

σ. (5.32)

Indeed, there exist many quantum versions of relative entropy. A quantity
D̃(ρ‖σ) can be regarded as a quantum version of relative entropy if any
commutative states ρ and σ satisfy

D̃(ρ‖σ) = D(p‖p̄), (5.33)
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where p and p̄ are the probability distribution consisting of the eigenvalues
of ρ and σ. If a relative entropy D̃(ρ‖σ) satisfies the monotonicity for a
measurement M

D̃(ρ‖σ) ≥ D(PM
ρ ‖PM

σ ) (5.34)

and the additivity

D̃(ρ1 ⊗ ρ2‖σ1 ⊗ σ2) = D̃(ρ1‖σ1) + D̃(ρ2‖σ2), (5.35)

then the relation

D̃(ρ‖σ) ≥ D(ρ‖σ) (5.36)

holds. That is, the quantum relative entropy D(ρ‖σ) is the minimum quantum
analog of relative entropy with the monotonicity for measurement and the
additivity. This inequality can be easily checked by Corollary 3.1. Note that
Condition (5.34) is a weaker requirement than the monotonicity for TP-CP
map (5.30).

As will be shown in Corollary 8.4 of Sect. 8.2, the Bures distance b(ρ, σ)
also satisfies the monotonicity [29, 244,392]

b(ρ, σ) ≥ b(κ(ρ), κ(σ)) (5.37)

with respect to an arbitrary TP-CP map κ. This inequality may be derived
from Corollary 8.4 given later. From (5.37) we may also show its joint con-
vexity

b2

(
k∑

i=1

piρi,

k∑
i=1

piσi

)
≤ b2(R, S) =

k∑
i=1

pib
2(ρi, σi) (5.38)

in a similar way to (5.31). The variational distance d1(ρ, σ) also satisfies the
monotonicity

d1(ρ, σ) ≥ d1(κ(ρ), κ(σ)) (5.39)

for an arbitrary TP-CP map κ [354] Ex. 5.22. Furthermore, as extensions of
(2.62) and (2.63), the monotonicities of the relative Rényi entropy

φ(s|ρ‖σ) ≤ φ(s|κ(ρ)‖κ(σ)) for 0 ≤ s ≤ 1 (5.40)
φ(s|ρ‖σ) ≥ φ(s|κ(ρ)‖κ(σ)) for − 1 ≤ s ≤ 0. (5.41)

hold. These relations will be proved in Appendix A.4 by using matrix convex
or concave functions. Inequality (5.41) does not necessarily hold when s ≤ −1,
as is shown in Appendix A.4.

Considering the entanglement-breaking channel given in Example 5.4, we
can replace the probability distributions PM

ρ and PM
σ by the output states
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κ(ρ) and κ(σ). In this case, the inequalities similar to (2.59)–(2.62) hold, and
the inequality corresponding to (2.63) holds if the condition s ≤ 0 is replaced
by the condition −1 ≤ s ≤ 0.

Further, similarly to inequalities (2.18) and (2.19), the inequalities

d1(ρ, σ) ≥ b2(ρ, σ) ≥ 1
2
d2
1(ρ, σ) (5.42)

D(ρ‖σ) ≥ −2 log Tr |√ρ
√

σ| ≥ 2b2(ρ, σ) (5.43)

hold Ex. 5.19,5.20. From these inequalities we can see that the convergence of
d1(ρn, σn) to 0 is equivalent to the convergence of b(ρn, σn) to 0. In order to
express the difference between the two states ρ and σ, we sometimes focus
on the quantity 1− F 2(ρ, σ), which is related to the Bures distance and the
variational distance in the following way Ex. 5.21,8.2:

2b2(ρ, σ) ≥ 1− F 2(ρ, σ) ≥ b2(ρ, σ) (5.44)

1− F 2(ρ, σ) ≥ d2
1(ρ, σ). (5.45)

Exercises

5.19. Show that b2(ρ, σ) ≥ 1
2d2

1(ρ, σ) and (5.43).

5.20. Show that d1(ρ, σ) ≥ b2(ρ, σ) by choosing a POVM M satisfying the
equality in (2.60).

5.21. Show (5.44) by writing x = F (ρ, σ) = 1− b2(ρ, σ).

5.22. Show (5.39) using (3.3).

5.23. Show the quantum Pinsker inequality:

D(ρ‖σ) ≥ 2d2
1(ρ, σ) (5.46)

following the steps below. Note that this is a stronger requirement between
D(ρ‖σ) and d1(ρ, σ) than the combinaiton of (5.42) and (5.43).

a Show that binary relative entropy h(x, y) def= x log x
y + (1− x) log 1−x

1−y sat-
isfies 2(y − x)2 ≤ h(x, y) for 0 ≤ x ≤ y ≤ 1.

b Show that 2(TrσP −Tr ρP ) = Tr |σ− ρ| = Tr(σ− ρ)(P − (I −P )) ≥ 0 for
P = {σ − ρ > 0} or {σ − ρ ≥ 0}.

c Show (5.46).

5.24. Using Exercise 3.18, show

φ̄(s|ρ‖σ) ≥ φ̄(s|κ(ρ)‖κ(σ)) for s ≤ 0. (5.47)

5.25. Derive inequality (5.41) for s ≤ −1 assuming φ(s|ρ‖σ) = φ̄(s|ρ‖σ) for
s ≤ −1. Further, show that the equality in inequality (3.42): φ(s|ρ‖σ) ≥
φ̄(s|ρ‖σ) does not necessarily hold for s ≤ −1, by contradiction.
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5.26. Show the monotonicity of transmission information

I(p, W ) ≥ I(p, κ(W )) (5.48)

for any TP-CP map κ and any c-q channel: W = (Wx), where κ(W ) =
(κ(Wx)).

5.5 Entropy Inequalities in Quantum Systems

In this section, we will derive various inequalities related to the von Neumann
entropy from the properties of the quantum relative entropy.

Substituting σ = ρmix into the joint convexity of the quantum relative
entropy (5.31), we obtain the concavity of the von Neumann entropy as fol-
lows:

H

(
k∑

i=1

piρi

)
≥

k∑
i=1

piH (ρi) . (5.49)

Further, as shown in Sect. 8.4, when a state ρA,B on HA ⊗WB is separable,
the von Neumann entropy satisfies

H(ρA,B) ≥ H(ρA), H(ρB). (5.50)

We apply this inequality to the separable state R defined in Sect. 5.4. Since
the von Neumann entropy of R is equal to

∑k
i=1 piH (ρi) + H(p), we obtain

the reverse inequality of (5.49):

H

(
k∑

i=1

piρi

)
≤

k∑
i=1

piH (ρi) + H(p) ≤
k∑

i=1

piH (ρi) + log k. (5.51)

In particular, if the supports for the densities ρi are disjoint, the first inequal-
ity satisfies the equality.

Similar types of inequalities may also be obtained by examining the pinch-
ing κM of the PVM M . The quantum relative entropy satisfies

H(κM (ρ))−H(ρ) = D(ρ‖κM (ρ)) ≥ 0. (5.52)

Since the inequality

D(ρ‖κM (ρ)) ≤ log |M | (5.53)

holds [206] Ex. 5.29, we obtain

H(ρ) ≤ H(κM (ρ)) ≤ H(ρ) + log |M |. (5.54)
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Let ρA, ρB , ρA,B , and ρA,C be the reduced density matrices of the density
matrix ρ = ρA,B,C on HA⊗HB⊗HC . From the monotonicity of the quantum
relative entropy, we obtain

D(ρA,B,C‖ρA,C ⊗ ρB) ≥ D(ρA,B‖ρA ⊗ ρB).

Rewriting this inequality, we may derive the following theorem called the
strong subadditivity of the von Neumann entropy.

Theorem 5.7 (Lieb and Ruskai [268,269]) The inequality

H(ρA,B,C) + H(ρA) ≤ H(ρA,B) + H(ρA,C) (5.55)

holds.

Further, the equality condition of (5.55) is given as follows.

Theorem 5.8 (Hayden et al. [199]) The equality in (5.55) holds if and only
if there is a decomposition of the system HA as

HA =
⊕

j

HA−B,j ⊗HA−C,j (5.56)

into a direct (orthogonal) sum of tensor products such that

ρABC =
⊕

j

qjρ
AB
j ⊗ ρAC

j (5.57)

with states ρAB
j on HB ⊗HA−B,j and ρAC

j on HC ⊗HA−C,j, and probability
distribution qj.

In particular, when HA is one-dimensional,

H(ρB,C) ≤ H(ρB) + H(ρC), (5.58)

which is called the subadditivity. Let us change the notation slightly and write
H(ρA,B) as Hρ(A, B) in order to emphasize the quantum system rather than
the quantum state. The strong subadditivity is then written as

Hρ(A, B, C) + Hρ(A) ≤ Hρ(A, B) + Hρ(A, C). (5.59)

Now, using this notation, let us define the conditional entropy Hρ(A|B) def=
Hρ(A, B) −Hρ(B) using this notation. This quantity satisfies the following
concavity:

Hρ(A|B) ≥
k∑

i=1

piHρi(A|B), (5.60)

where ρ =
∑

i piρi.
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Similarly to Sect. 2.1.1, we can define the quantum mutual information
Iρ(A : B) and the quantum conditional mutual information Iρ(A : B|C) as

Iρ(A : B) def=Hρ(A) + Hρ(B)−Hρ(AB) (5.61)

Iρ(A : B|C) def=Hρ(AC) + Hρ(BC)−Hρ(ABC)−Hρ(C). (5.62)

The positivity of quantum mutual information is equivalent to the subaddi-
tivity, and that of quantum conditional mutual information is equivalent to
the strong subadditivity.

For the continuity of the above quantities, the Fannes inequality, defined
below, is particularly useful.

Theorem 5.9 (Fannes [111]) Define

η0(x) def=
{

η(x) 0 ≤ x ≤ 1/e
1/e 1/e < x,

(5.63)

where η(x) def= −x log x. Then, for two states ρ and σ on H (dimH = d), the
inequality

|H(ρ)−H(σ)| ≤ ε log d + η0(ε) (5.64)

holds for ε
def= ‖ρ− σ‖1.

Let us consider the following lemma before proving this theorem.

Lemma 5.4 Write the eigenvalues of the Hermitian matrices A and B in
decreasing order (largest first) including any degeneracies, i.e., a1, . . . , ad,
b1, . . . , bd. Then, ‖A−B‖1 ≥

∑d
i=1 |ai − bi|.

Proof. Let P
def= {A−B ≥ 0}, X

def= P (A−B), and Y
def= −(I−P )(A−B).

Then, X ≥ 0, Y ≥ 0, and A−B = X − Y . Let C
def= A + Y = B + X. Then,

C ≥ A, B. Now let ci be the eigenvalues of C arranged in decreasing order.
From Exercise A.12 we know that ci ≥ ai, bi. Therefore, if ai − bi ≥ 0, then
2ci−ai− bi− (ai− bi) = 2(ci−ai) ≥ 0, and we obtain 2ci−ai− bi ≥ |ai− bi|.
This also holds for ai − bi ≤ 0, and therefore∑

i

|ai − bi|≤
∑

i

(2ci−ai−bi)=Tr(2C−A−B)=Tr(X+Y )=Tr |A−B|.

Proof of Theorem 5.9. We only provide a proof for d1(ρ, σ) ≤ 1/e. See Ex-
ercise 5.36 for the reverse inequality. Let ai, bi be the eigenvalues of ρ, σ placed
in decreasing order. Define εi

def= |ai− bi|. Then, according to Lemma 5.4 and
the assumptions of the theorem, εi ≤ 1/e ≤ 1/2. From Exercise 5.35 we
obtain
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|H(ρ)−H(σ)| ≤
d∑

i=1

|η(ai)− η(bi)| ≤
d∑

i=1

η(εi).

Next, define ε
def=

∑d
i=1 εi. We find that

∑d
i=1 η(εi) = ε

∑d
i=1 η

(
εi

ε

)
+ η(ε).

Since
∑d

i=1 η
(

εi

ε

)
represents the entropy of the probability distribution

(ε1/ε, ε2/ε, . . . , εd/ε), we see that this must be less than log d. From Exer-
cise 5.35 b and ‖ρ−σ‖1 ≤ 1/e we obtain η(ε) ≤ η(‖ρ−σ‖1). Equation (5.64)
can then be obtained by combining the above results.

Exercises

5.27. Show (5.55) using the monotonicity of the relative entropy.

5.28. Show (4.3) from the concavity of von Neumann entropy.

5.29. Show (5.53) following the steps below.

a Show (5.53) holds for a pure state.
b Show (5.53) for the general case using the joint convexity of the quantum

relative entropy.

5.30. Show (5.60) using (5.59).

5.31. Show the Araki–Lieb inequality [12,266] below using the subadditivity
and the state purification introduced in Sect. 8.1

H(ρA,B) ≥ |H(ρA)−H(ρB)|. (5.65)

5.32. Show that the strong subadditivity is equivalent to the following in-
equality:

Hρ(AB|C) ≤ Hρ(A|C) + Hρ(B|C). (5.66)

5.33. Show the following inequality using the strong subadditivity (5.59):

H|u〉〈u|(A, C) + H|u〉〈u|(A, D) ≥ H|u〉〈u|(A) + H|u〉〈u|(B). (5.67)

5.34. Using (5.65), show that

|Hρ(A|B)| ≤ log dA. (5.68)

5.35. Show that

|η(x)− η(y)| ≤ η(|x− y|) (5.69)

if x and y satisfy |x− y| ≤ 1/2 following the steps below.

a Show that η(x + ε)− η(x) ≤ η(ε) for x ≥ 0 and ε ≥ 0.
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b Show that η(x) is strictly concave and has its maximum value when x =
1/e.

c Show that η(α− ε)− η(α) ≤ η(1− ε)− η(1) for ε < α < 1.
d Show that the function η(x)−η(1−x) is strictly concave and η(x)−η(1−

x) > 0 for 0 < x < 1/2.
e Show that η(x)− η(x + ε) ≤ η(ε) using c and d, and hence show (5.69).

5.36. Prove Theorem 5.9 for d1(ρ, σ) > 1/e following the steps below.

a Show (5.64) if ε1 ≤ 1/2, i.e., all the εi are less than 1/2.
b Show that

|H(ρ)−H(σ)| ≤ 1/e + ε′ log d + η0(ε′),

where ε′ def=
∑d

i=2 εi and if ε1 > 1/2.
c Show that ε1 log d− (ε′ log d + 1/e) ≥ 0 and hence show (5.64).

5.37. Show that I(p, W ) ≤ δ log d + η0(δ) using Theorem 5.9, where δ
def=∑

x p(x)‖Wx −Wp‖1.

5.38. Let ρ and ρ̃ be two arbitrary states. For any real 0 ≤ ε ≤ 1, show that

|Hρ(A|B)−Hγ(A|B)| ≤ 2ε log dA + h(ε), (5.70)

following the steps, where γ
def= (1− ε)ρ + ερ̃ [8].

a Using (5.60) and (5.68), show that Hρ(A|B) − Hγ(A|B) ≤ ε(Hρ(A|B) −
Hρ̃(A|B)) ≤ εdA.

b Using (5.49), show that H(γB) ≤ (1− ε)H(ρB) + εH(ρ̃B).
c Using the first inequality of (5.51), show that H(γ) ≤ (1−ε)H(ρ)+εH(ρ̃)+

h(ε).
d Using (5.68), show that Hρ(A|B)−Hγ(A|B) ≥ ε(Hρ(A|B)−Hρ̃(A|B))−

h(ε) ≥ −2ε log dA − h(ε).

5.39. Show that

|Hρ(A|B)−Hσ(A|B)| ≤ 4ε log dA + 2h(ε) (5.71)

for states ρ and σ on HA⊗HB and ε
def= ‖ρ−σ‖1 following the steps below [8].

a Define the states ρ̃
def= 1

ε |ρ − σ|, σ̃
def= 1−ε

ε (ρ − σ) + 1
ε |ρ − σ|, and γ

def=

(1− ε)ρ + ερ̃, where ε
def= ‖ρ− σ‖1. Show that γ = (1− ε)σ + εσ̃.

b Using (5.70), show that |Hρ(A|B)−Hσ(A|B)| ≤ |Hρ(A|B)−Hγ(A|B)|+
|Hσ(A|B)−Hγ(A|B)| ≤ 4ε log dA + 2h(ε).

5.40. Using the above inequality, show that

|Iρ(A : B)− Iσ(A : B)| ≤ 5ε log dA + η0(ε) + 2h(ε) (5.72)

for states ρ and σ on HA ⊗HB and ε
def= ‖ρ− σ‖1.
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5.41. Show that

|Iρ(A : B|C)− Iσ(A : B|C)| ≤ 8ε log dAdB + 6h(ε) (5.73)

for states ρ and σ onHA⊗HB and ε
def= ‖ρ−σ‖1 following the steps below [78].

a Show that |Iρ(A : B|C) − Iσ(A : B|C)| ≤ |Hρ(A|C) − Hσ(A|C)| +
|Hρ(B|C)−Hσ(B|C)|+ |Hρ(AB|C)−Hσ(AB|C)|.

b Show (5.73) using (5.71).

5.42. Show the chain rules of quantum mutual information and quantum
conditional mutual information:

Hρ(AB|C) = Hρ(B|C) + Hρ(A|BC) (5.74)
Iρ(A : BC) = Iρ(A : C) + Iρ(A : B|C) (5.75)

Iρ(A : BC|D) = Iρ(A : C|D) + Iρ(A : B|CD). (5.76)

5.43. Show that the monotonicity Iρ(A : B) ≥ IκA⊗κBρ(A : B) for local
TP-CP maps κA and κB .

5.44. Show the Hiai–Petz theorem [206] for two arbitrary states ρ, σ

lim
1
n

D(κσ⊗n(ρ⊗n)‖σ⊗n) = D(ρ‖σ),

where κσ⊗n represents the pinching of the measurement corresponding to
the spectral decomposition of σ⊗n. Hence, the equality in (2.59) holds in an
asymptotic sense when the POVM is the simultaneous spectral decomposition
of κσ⊗n(ρ⊗n) and σ⊗n. Combining this result with the classical Stein’s lemma
gives an alternate proof of Lemma 3.4.

5.45. Show Holevo’s inequality I(M, p, W ) ≤ I(p, W ) using the strong sub-
additivity of von Neumann entropy (5.55).

5.46. Given densities ρA
i and ρB

i on HA and HB , show the strong concavity
of von Neumann entropy:

H(
∑

i

piρ
A
i ⊗ ρB

i ) ≥ H(
∑

i

piρ
A
i ) +

∑
i

piH(ρB
i s) (5.77)

from the joint convexity of quantum relative entropy (5.38) for states ρA
i ⊗ρB

i

and ρA
mix ⊗ ρB

i [108].

5.47. Show that

H(ιA⊗κ)(ρ)(A|B) ≥ Hρ(A|B) (5.78)

for any TP-CP map κ on HB from the strong subadditivity (5.55).
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5.6 Historical Note

A completely positive map was initially introduced in the mathematical context;
Stinespring [379] gave its representation theorem in the observable form, i.e.,
κ∗(A) = PU∗

κ(A ⊗ I)UκP , where P is the projection from the extended space
to the original space. Holevo [212] proposed that any state evolution in the quan-
tum system could be described by a completely positive map based on the same
reason considered in this text. After this, Lindblad [270] translated Stinespring’s
representation theorem to the state form. Then, he clarified that any state evolu-
tion by a completely positive map could be regarded as the interaction between the
target system and the environment system.

Concerning other parts of Theorem 5.1, Jamio�lkowski [243] showed the one-to-
one correspondence between a CP map κ and a positive matrix K(κ), firstly. After
this study, Choi [77] obtained this correspondence. He also obtained the charac-
terization ➅ concerning CP maps. Kraus [261] also obtained this characterization.
Choi [77] also characterize the extremal points as Lemma 5.2.

In this book, we proved the monotonicity of the quantum relative entropy based
on the quantum Stein’s lemma. Using this property, we derived many inequalities
in Sects. 5.4 and 5.5. However, historically, these were proved by completely differ-
ent approaches. First, Lieb and Ruskai [268, 269] proved the strong subadditivity
of the von Neumann entropy (5.55) based on Lieb’s convex trace functions [267].
Using these functions, they derived the monotonicity of the quantum relative en-
tropy only concerning the partial trace. During that period, Lindblad [271] proved
the joint convexity of the quantum relative entropy (5.31). After this result, using
the Stinespring’s representation theorem in the state form, Lindblad [270] proved
the monotonicity of the quantum relative entropy (5.30) from that concerning the
partial trace. Later, Uhlmann [393] invented the interpolation theory, and proved
the monotonicity of the quantum relative entropy based on this approach. As an ex-
tension of the quantum relative entropy, Petz [343] defined a quantum f -divergence
for a matrix convex function f . Then, he proved the monotonicity in a more general
framework. His approach can be applied to that of the relative Rényi entropy (5.40)
and (5.41). As is explained in Appendix A.4, it requires knowledge of the matrix
convex or concave functions, which is advanced knowledge.

In this book, we prove the monotonicities of the relative Rényi entropy regard-
ing measurements (2.62) and (2.63) using only elementary knowledge. Moreover,
the monotonicity (2.63) holds with a larger parameter s ≤ 0 as compare with
monotonicity (5.41). This improvement enhances in the strong converse exponents
in both quantum hypothesis testing and classical-quantum channel coding.



6

Quantum Information Geometry
and Quantum Estimation

Summary. In Chap. 3 we examined the discrimination of two unknown quantum
states. This chapter will consider the estimation of a parameter θ, which labels an
unknown state parameterized by a continuous variable θ. It is a remarkable property
of quantum mechanics that a measurement inevitably leads to the state demolition.
Therefore, when one performs a measurement for state estimation, it is necessary
to choose the measurement that extracts as much information as possible. This
problem is called quantum estimation, and the optimization of the measurement is
an important topic in quantum information theory.

In the classical theory of estimation (of probability distributions) discussed in
Sect. 2.3, we saw that the estimation is intimately related to geometrical structures
such as the inner product. We can expect that such geometrical structures will also
play an important role in the quantum case. The study of geometrical structures
in the space of quantum states is called quantum information geometry and is
an important field in quantum information theory. This chapter will examine the
geometrical structure of quantum systems and discuss its applications to estimation
theory.

Table 6.1. Denotations used in Chap. 6

Eρ,s(X) See (6.1)
Eρ,b(X) See (6.2)
Eρ,r(X) See (6.3)
Eρ,p(X) See (6.4)
Eρ,λ(X) See (6.5)
〈Y, X〉(e)ρ,x See (6.7)
‖X‖(e)

ρ,x See (6.8)
〈A, B〉(m)

ρ,x See (6.12)
‖A‖(m)

ρ,x See (6.13)
κρ,x See (6.15)
Jθ,s SLD Fisher metric
Jθ,b Bogoljubov Fisher metric
Jθ,r RLD Fisher metric
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Table 6.1. Continued

Lθ,s SLD e representation
Lθ,b Bogoljubov e representation
Lθ,r RLD e representation

Πθ
L,sρ0 SLD e parallel transport

Πθ
L,bρ0 Bogoljubov e parallel transport

Πθ
L,rρ0 RLD e parallel transport

D
(e)
x (ρ‖σ) x-e-divergence (6.39)

D
(m)
x (ρ‖σ) x-m-divergence (6.49)
Jθ,s SLD Fisher matrix
Jθ,r RLD Fisher matrix
ReX Real part of matrix X
ImX Imaginary part of matrix X
Vθ(X) Matrix with elements (Tr ρθXiXj)

Error criterion
V̂θ(Mn, θ̂n) Mean square error (MSE) of estimator (Mn, θ̂n) (6.57)
V̂θ(Mn, θ̂n) Mean square error matrix (6.80)

V̂θ({Mn, θ̂n}) Matrix of elements V̂i,j
θ ({Mn, θ̂n}) def= lim nV̂i,j

θ (Mn, θ̂n)
β({(Mn, θ̂n)}, θ, ε) Rate function of error probability (6.71)
α({(Mn, θ̂n)}, θ) First-order coefficient of rate fucntion (6.72)

6.1 Inner Products in Quantum Systems

In any discussion about the geometry of quantum states, the metric plays
a central role. To start talking about the metric, we must first discuss the
quantum versions of the Fisher information and its associated inner product
(2.67) examined in Sect. 2.3. Let A, B, p in (2.67) be the diagonal elements of
the commuting Hermitian matrices Y, X, ρ, respectively. The inner product
(2.67) is then equal to TrY (Xρ). Although the trace of a product of two
matrices does not depend on the order of the multiplication, the trace of
the product for three or more matrices is dependent on the order. If these
matrices do not commute, then the inner product depends on the order of the
product Xρ. There exist at least three possible ways of defining the product
corresponding to Xρ:

Eρ,s(X) def= X ◦ ρ
def=

1
2

(ρX + Xρ) , (6.1)

Eρ,b(X) def=
∫ 1

0
ρλXρ1−λ dλ, (6.2)

Eρ,r(X) def= ρX. (6.3)
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Here, X is not necessarily Hermitian. These extensions are unified in the
general form [348]

Eρ,p(X) def=
∫ 1

0
Eρ,λ(X)p(dλ), (6.4)

Eρ,λ(X) def= ρλXρ1−λ, (6.5)

where p is an arbitrary probability distribution on [0, 1]. The case (6.1) cor-
responds to the case (6.4) with p(1) = p(0) = 1/2, and the case (6.3) corre-
sponds to the case (6.4) with p(1) = 1. In particular, the map Eρ,x is called
symmetric for x = s, b, r, λ, p when Eρ,x(X) is Hermitian if and only if X is
Hermitian. Hence, when the distribution p is symmetric, i.e., p(λ) = p(1−λ),
the map Eρ,p is symmetric. When ρ > 0, these maps possess inverses. More-
over, the maps Eρ,x satisfy

Eρ,x(U∗XU) = U∗EUρU∗,x(X)U (6.6)
Eρ,x(I)=ρ, Eρ⊗ρ′,x(X⊗X ′)=Eρ,x(X)⊗Eρ′,x(X ′), Tr Eρ,x(X)=Tr ρX

for x = s, b, r, λ, p, and in particular,

Eρ⊗ρ′,x(X ⊗ I) = Eρ,x(X)⊗ ρ′.

Accordingly, we may define the following types of inner products:

〈Y, X〉(e)ρ,x
def= Tr Y ∗Eρ,x(X) x = s, b, r, λ, p. (6.7)

If X, Y, ρ all commute, then these coincide with definition (2.67). These are
called the SLD, Bogoljubov,1 RLD, λ, and p inner products [11, 202, 203,
216,309,345,347,348], respectively (reasons for this will be given in the next
section). These inner products are positive semidefinite and Hermitian, i.e.,(

‖X‖(e)ρ,x

)2 def= 〈X, X〉(e)ρ,x ≥ 0, 〈Y, X〉(e)ρ,x = (〈X, Y 〉(e)ρ,x)∗. (6.8)

From property (6.6) we have

〈X ⊗X ′, Y ⊗ Y ′〉(e)ρ⊗ρ′,x = 〈X, Y 〉(e)ρ,x〈X ′, Y ′〉(e)ρ′,x, (6.9)

〈U∗XU, U∗Y U〉(e)ρ,x = 〈X, Y 〉(e)UρU∗,x, ‖I‖(e)ρ,x = 1.

In particular, the SLD inner product and the RLD inner product satisfy

‖X ⊗ IH′‖(e)ρ,x = ‖X‖(e)TrH′ ρ,x, x = s, r. (6.10)

1 The Bogoljubov inner product is also called the canonical correlation in statistical
mechanics. In linear response theory, it is often used to give an approximate
correlation between two different physical quantities.
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Generally, as is shown in Appendix A.4, we have

‖X ⊗ IH′‖(e)ρ,x ≤ ‖X‖
(e)
TrH′ ρ,x, x = b, λ, p. (6.11)

A dual inner product may be defined as

〈A, B〉(m)
ρ,x

def= Tr(E−1
ρ,x(A))∗B (6.12)

with respect to the correspondence A = Eρ,x(X). Denote the norm of these
inner products as (

‖A‖(m)
ρ,x

)2 def= 〈A, A〉(m)
ρ,x . (6.13)

Hence, the inner product 〈A, B〉(m)
ρ,x is positive semidefinite and Hermitian.

In particular, this inner product is called symmetric when 〈A, B〉(m)
ρ,x =

〈B,A〉(m)
ρ,x . This is equivalent to not only the symmetry of the dual inner

product 〈X, Y 〉(e)ρ,x, but also the symmetry of map Eρ,x. When the inner

product 〈A, B〉(m)
ρ,x is symmetric, it can be symmetrized as 〈A, B〉(m)

ρ,s(x)
def=

1
2

(
〈A, B〉(m)

ρ,x + 〈B,A〉(m)
ρ,x

)
, i.e., the symmetrized map Eρ,s(x) is defined as

E−1
ρ,s(x)(A) = 1

2

(
E−1

ρ,x(A) + (E−1
ρ,x(A))∗) for any Hermitian matrix A. Hence,

we call the inner product 〈A, B〉(m)
ρ,s(x) the symmetrized inner product of

〈A, B〉(m)
ρ,x . Note that the SLD inner product is not the symmetrized inner

product of the RLD inner product.
Similarly to (6.6), we have

〈X, Y 〉(m)
ρ,x = 〈UXU∗, UY U∗〉(m)

UρU∗,x (6.14)

for an arbitrary unitary matrix U . For an arbitrary TP-CP map κ, we also
define the map κρ,x associated with κ and ρ by the relation

κ(Eρ,x(X)) = Eκ(ρ),x(κρ,x(X)), x = s, b, r, λ, p, (6.15)

where for a non-Hermitian matrix A, κ(A) is defined as κ(A) def= κ((A +
A∗)/2)− iκ(i(A−A∗)/2). This map satisfies the associativity

(κ1 ◦ κ2)ρ,x(X) = κ1κ2(ρ),x ◦ κ2ρ,x(X), x = s, b, r, λ, p. (6.16)

Then, we have the following theorem.

Theorem 6.1 The inequality

‖A‖(m)
ρ,x ≥ ‖κ(A)‖(m)

κ(ρ),x, x = s, b, r, λ, p (6.17)

holds. This inequality (6.17) is also equivalent to

‖X‖(e)ρ,x ≥ ‖κρ,x(X)‖(e)κ(ρ),x, x = s, b, r, λ, p. (6.18)



6.1 Inner Products in Quantum Systems 149

When an inner product satisfies property (6.17), it is called a monotone met-
ric. Monotonicity implies that the amount of information does not increase
due to any operation. That is, if the inner product is to be considered as a
measure of information, this property should be satisfied because information
processing does not cause any increase in the amount of information. It is
also known that an arbitrary inner product ‖A‖(m)

ρ,x satisfying property (6.17)
as well as ‖ρ−1‖(m)

ρ,x = 1 satisfies ‖A‖(m)
ρ,s ≤ ‖A‖(m)

ρ,x ≤ ‖A‖(m)
ρ,r , i.e., the SLD

inner product is the minimum product and the RLD inner product is the
maximum product [345].

Proof. Here, we prove (6.18) for x = s, r. The general case of (6.18) is shown
assuming inequality (6.11); this will be proven in Appendix A.4.

These inner products are invariant for the operations ρ �→ ρ ⊗ ρ0 and
ρ �→ UρU∗. It is sufficient to show (6.18) in the case of partial trace because of
the Stinespring representation and associativity (6.16). First, using property
(6.10), we prove (6.18) for x = s, r. Letting κ be the partial trace from system
H⊗H′ to subsystem H′, we have

〈Y ⊗ I, κρ,x(X)⊗ I〉(e)ρ,x = 〈Y, κρ,x(X)〉TrH′ ρ,x = TrY ∗κ(Eρ,x(X))

= Tr(Y ⊗ I)∗Eρ,x(X) = 〈Y ⊗ I, X〉(e)ρ,x

for any matrix X on H⊗H′, any matrix Y on H, and any state ρ on H⊗H′.
Hence, the map κρ,x is the projection from the space of all matrices on H⊗H′

to the subspace of matrices {Y ⊗I} with respect to the inner product 〈 , 〉(e)ρ,x.
Therefore, ‖X‖(e)ρ,x ≥ ‖κρ,x(X)‖(e)κ(ρ),x. Hence, we obtain (6.18) for x = s, r.

Next, we proceed to the general case, i.e., the case of x = p, b. Let F be
the positive self adjoint map on the matrix space with respect to the inner
product 〈 , 〉(e)TrH′ ρ,x satisfying

〈Y ⊗ I, Y ′ ⊗ I〉(e)ρ,x = 〈Y,FY ′〉(e)TrH′ ρ,x. (6.19)

Since property (6.11) implies ‖Y ⊗ I‖(e)ρ,x = ‖F1/2Y ‖(e)TrH′ ρ,x ≤ ‖Y ‖
(e)
TrH′ ρ,x,

we have

‖(F−1Y )⊗ I‖(e)ρ,x = ‖F−1/2Y ‖(e)TrH′ ρ,x ≥ ‖Y ‖
(e)
TrH′ ρ,x.

Hence,

〈Y ⊗ I, (F−1κρ,x(X))⊗ I〉(e)ρ,x = 〈Y, κρ,x(X)〉TrH′ ρ,x = TrY ∗κ(Eρ,x(X))

= Tr(Y ⊗ I)∗Eρ,x(X) = 〈Y ⊗ I, X〉(e)ρ,x.

Similarly, we can show that ‖(F−1κρ,x(X))⊗ I‖(e)ρ,x ≤ ‖X‖(e)ρ,x. Therefore, we
obtain

‖κρ,x(X)‖(e)TrH′ ρ,x ≤ ‖X‖(e)ρ,x.
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From the discussion in the above proof, we can regard the map κρ,x as the
conditional expectation when κ is the partial trace for x = s, b.

Remark 6.1 If ρ > 0 does not hold, the situation is slightly more subtle.
When ρ > 0, then maps Eρ,x always possess their inverse maps, and the fact
‖X‖(e)ρ,x = 0 is equivalent to the fact X = 0. This is not true in general if
ρ > 0 is not satisfied, such as in the case when ρ is a pure state. Therefore,
although the inner product 〈X, Y 〉(e)ρ,x may be defined for all matrices, one must
note that ‖X‖(e)ρ,x can be 0 in cases other than X = 0. Hence, in this case,
the inner product 〈A, B〉(m)

ρ,x is then defined only for matrices in the range of
Eρ,x.

Exercises

6.1. Prove the following facts for a traceless Hermitian matrix A and a density
matrix ρ of the form ρ =

∑d
j=1 λjEj and rankEj = 1.

a Show that (x+y)/2 ≥ Lm(x, y), where Lm(x, y) is the logarithmic average
defined below.

Lm(x, y) def=
{ x−y

log x−log y if x �= y,

x if x = y.

Also show that the equality holds if and only if x = y.
b Show the following [345]:

‖A‖(m)
ρ,s =

d∑
j,k=1

2
λj + λk

Tr AEjAEk,

‖A‖(m)
ρ,b =

d∑
j,k=1

1
Lm(λj , λk)

Tr AEjAEk.

c Show that Tr (Aρ− ρA) (Aρ− ρA) =
∑d

j,k=1 (λj − λk)2 Tr AEjAEk.

d Show the inequality ‖A‖(m)
ρ,b ≥ ‖A‖

(m)
ρ,s . Also, show the equivalence of the

following.
➀ ‖A‖(m)

ρ,b = ‖A‖(m)
ρ,s .

➁ [ρ, A] = 0.

6.2. Show the following facts when κ is a pinching of a PVM M , i.e., κρ,s =
κM ,ρ,s(= (κM )ρ,s).

a For any matrix X, show that κM ,ρ,s(X) commutes with every element Mi.
b Show that if every Mi commutes with X, then κM ,ρ,s(X) = X. Show

that if ρ > 0, then the reverse relation also holds. Give the necessary and
sufficient conditions for κM ,ρ,s(X) = X if ρ > 0 is not true.
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c Show that κM ,ρ,s ◦ κM ,ρ,s = κM ,ρ,s, i.e., κM ,ρ,s can be regarded as a
projection.

d Show that 〈Y, X〉(e)ρ,s = 〈Y, κM ,ρ,s(X)〉(e)ρ,s if every matrix Mi commutes
with Y .

e Verify that the above is true for the RLD case.

6.3. Show that the following two conditions are equivalent for the Hermitian
matrix A, the state ρ, and the pinching κM corresponding to PVM M =
{Mi}.

➀ ‖A‖(m)
ρ,s = ‖κM (A)‖(m)

κM (ρ),s .
➁ There exists a Hermitian matrix X such that it commutes with every

matrix Mi and satisfies Eρ,s(X) = A.

6.4. Show the inequality ‖A‖(m)
ρ,b ≥ ‖κM (A)‖(m)

κM (ρ),s with the same assump-
tion as above. Also, show the equivalence of the following:

➀ ‖A‖(m)
ρ,b = ‖κM (A)‖(m)

κM (ρ),s.
➁ There exists a Hermitian matrix X such that it commutes with every Mi

and satisfies A = ρX = Xρ.

6.5. Show that ‖XρY ‖1 ≤
√

Tr ρY Y ∗√Tr ρX∗X by the Schwarz inequality
for the inner product 〈X, Y 〉(e)ρ,r

def= Tr ρY X∗, where X, Y are matrices and ρ
is a density matrix. Note that ‖ · ‖1 denotes the trace-norm (Sect. A.3).

6.6. Given a matrix X and a density matrix ρ, show that

‖X‖1 ≤
√

Tr ρ−1XX∗
√

Tr ρU∗U =
√

Tr ρ−1XX∗, (6.20)

where U is a unitary matrix satisfying ‖X‖1 = TrXU . Use the Schwarz
inequality for the inner product 〈X, Y 〉(e)ρ,r.

6.7. Let the distribution p has zero measure at λ = 1, 0. Let ρ = |y〉〈y|, and
show that equation (6.10) does not hold.

6.8. Let κ be the pinching κM of a PVM M = {Mi}. Show that the map
κρ,x can be regarded as the conditional expectation to the matrix space
{X|[X, Mi] = 0 ∀i} for x = s, r. (In general, the conditional expectation
can be defined by (2.81) when the map κ is the dual map of the inclusion of
a matrix subspace U.)

6.2 Metric-Induced Inner Products

In this section we treat the space of quantum states in a geometrical frame-
work. In particular, we will discuss the properties of the metric, which will be
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defined in terms of the inner product discussed in the previous section. Con-
sider a set of quantum states {ρθ|θ ∈ R} (a state family) parameterized by a
single real number θ. We also assume that θ �→ ρθ is continuous and differen-
tiable up to the second order. The metric then represents the distance between
two quantum states ρθ0 , ρθ0+ε separated by a small ε > 0. The difference in
this case is approximately equal to dρθ

dθ (θ0)ε. The SLD Fisher metric Jθ0,s is
defined as the square of the size of dρθ

dθ (θ0) based on the SLD inner product at

ρθ0 , i.e., Jθ0,s
def=

(∥∥∥ dρθ

dθ (θ0)
∥∥∥(m)

ρθ0 ,s

)2

. The norm of the difference between two

quantum states ρθ and ρθ+ε is then approximately
√

Jθ0,sε. We can obviously
define quantities such as the Bogoljubov Fisher metric Jθ0,b [11,345,347,348],
the RLD metric Jθ0,r [202, 216], and the p metric in a similar way for the
Bogoljubov, RLD, and p inner products, respectively. Therefore, if u1, . . . , uk

is an orthonormal basis in H, the SLD, Bogoljubov, RLD, and p Fisher met-
rics of the state family {ρθ

def=
∑k

i=1 pθ(i)|ui〉〈ui||θ ∈ R} are all equal to the
Fisher metric for the probability family {pθ}.

Thus, we have a theorem equivalent to Theorem 6.1 as given below.

Theorem 6.2 Let κ be a TP-CP map, and Jθ0,x,κ be the x = s, b, r, λ, p
Fisher metric for the state family {κ(ρθ)|θ ∈ R}. The following relation then
holds:

Jθ0,x ≥ Jθ0,x,κ, x = s, b, r, λ, p. (6.21)

When a metric satisfies (6.21), it is called a monotone metric. Since the
derivative dρθ

dθ (θ0) plays an important role in the definition of the metric,
dρθ

dθ (θ0) will be called the m representation of the derivative. We shall also
define an operator Lθ0,x by the relation

Eρθ0 ,x(Lθ0,x) =
dρθ

dθ
(θ0).

Such an operator is called the e representation of the derivative. If all the ρθs
commute, the e representation is the same as a logarithmic derivative. On
the other hand, if some of the ρθs do not commute, the logarithmic derivative
can be defined in several ways. The matrices Lθ0,s and Lθ0,r

dρθ

dθ
(θ0) =

1
2
(ρθ0Lθ0,s + Lθ0,sρθ0),

dρθ

dθ
(θ0) = ρθ0Lθ0,r

are called the symmetric logarithmic derivative (SLD) and the right loga-
rithmic derivative (RLD), respectively. These matrices coincide with the e
representations of the derivative concerning the SLD Fisher metric and the
RLD Fisher metric, which are abbreviated to SLD e representation and RLD e
representation, respectively.
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Since the equation∫ 1

0
ρλ

θ0

d log ρθ

dθ

∣∣∣∣
θ=θ0

ρ1−λ
θ0

dλ =
dρθ

dθ

∣∣∣∣
θ=θ0

(6.22)

holds [11] Ex. 6.13, the e representation of the derivative of the Bogoljubov
Fisher metric Lθ0,b is then equal to d log ρθ

dθ (θ0). Since Tr dρθ

dθ = 0, the e
representation Lθ,x satisfies Tr ρLθ,x = TrEρ(Lθ,x) = 0.

Theorem 6.3 For a quantum state family {ρθ|θ ∈ R}, the following rela-
tions hold [281,299,303,394]:

1
8
Jθ,s = lim

ε→0

b2(ρθ, ρθ+ε)
ε2

, (6.23)

1
2
Jθ,b = lim

ε→0

D(ρθ+ε‖ρθ)
ε2

. (6.24)

Hence, we obtain another proof of Theorem 6.1 (Theorem 6.2) for the SLD
(Bogoljubov) case by combining Theorem 6.3 and (5.37) ((5.30)).

Proof. Define Uε such that it satisfies

b2(ρθ, ρθ+ε) =
1
2

Tr(
√

ρθ −
√

ρθ+εUε)(
√

ρθ −
√

ρθ+εUε)∗.

This can be rewritten as

2b2(ρθ, ρθ+ε) = Tr(W (0)−W (ε))(W (0)−W (ε))∗

∼= Tr
(
− dW

dε
(0)ε

)(
− dW

dε
(0)ε

)∗
∼= Tr

dW

dε
(0)

dW

dε
(0)∗ε2,

where we defined W (ε) def= √
ρθ+εUε. As will be shown later, the SLD Lθ,s

satisfies

dW

dε
(0) =

1
2
LW (0). (6.25)

Therefore, b2(ρθ, ρθ+ε) ∼= Tr 1
8LW (0)W (0)∗Lε2 = 1

8 Tr L2ρθε, and we obtain
(6.23). Thus, showing (6.25) will complete the proof.

From the definition of the Bures distance, we have

2b2(ρθ, ρθ+ε) = min
U :unitary

Tr(
√

ρθ −
√

ρθ+εU)(
√

ρθ −
√

ρθ+εU)∗

=2− Tr
(√

ρθ
√

ρθ+εU(ε)∗ + U(ε)
√

ρθ+ε
√

ρθ

)
.

Therefore,
√

ρθ
√

ρθ+εU(ε)∗ = U(ε)√ρθ+ε
√

ρθ. Hence, W (0)W (ε)∗ = W (ε)
W (0)∗. Taking the derivative, we obtain W (0) dW

dε (0)∗ = dW
dε (0)W (0)∗. This

shows that there is a Hermitian matrix L satisfying dW
dε (0) = 1

2LW (0). Since
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ρθ+ε = W (ε)W (ε)∗, we have dρ
dθ (θ) = 1

2 (LW (0)W (0)∗ + W (0)W (0)∗L). We
therefore see that L is an SLD.

We now prove (6.24). Since Lθ,b is equal to d log ρθ

dθ (θ), we have

D(ρθ+ε‖ρθ)= Tr (ρθ+ε(log ρθ+ε − log ρθ))

∼= Tr
(

ρθ +
dρθ

dθ
ε

)(
d log ρθ

dθ
ε +

1
2

d2 log ρθ

dθ2 ε2
)

=Tr(ρθLθ,b)ε+
(
Tr
(

dρθ

dθ
Lθ,b

)
+

1
2
Tr
(
ρθ

d2 log ρθ

dθ2

))
ε2. (6.26)

The first term on the right-hand side (RHS) may be evaluated as

Tr (ρθLθ,b) =
∫ 1

0
Tr
(
ρt

θLθ,bρ
1−t
θ

)
dt = Tr

(
dρθ

dθ

)
= 0. (6.27)

Using this equation, we obtain

Tr
(

ρθ
d2 log ρθ

dθ2

)
=

d

dθ

(
Tr
(

ρθ
d log ρθ

dθ

))
− Tr

(
dρθ

dθ

d log ρθ

dθ

)

= −Tr
(

dρθ

dθ
Lθ,b

)
= −Jθ,b. (6.28)

Combining (6.26)–(6.28) we obtain D(ρθ+ε‖ρθ) ∼= 1
2Jθ,bε

2.

Next, let us consider a quantum state family {ρθ|θ ∈ R
d} with more than

one parameter. The derivative at the point θ0 = (θ1
0, . . . , θd

0) may be obtained
by considering the partial derivative ∂

∂θ1 |θ=θ0 , . . . , ∂
∂θd |θ=θ0 with respect to

each parameter. Since each partial derivative represents the size and direction
of an infinitesimal transport, it may be regarded as a vector. We then call the
vector space comprising these vectors the tangent vector space at θ0, and its
elements tangent vectors. The tangent vector ∂

∂θj |θ=θ0 can be represented as a
matrix ∂ρθ

∂θj (θ0). This kind of representation of a tangent vector will be called
an m representation. The matrix Lθ0,j,x satisfying Eρθ0 ,x(Lθ0,j,x) = ∂ρθ

∂θj (θ0)
will be called an e representation of the SLD (Bogoljubov, RLD) Fisher metric
of ∂

∂θj |θ=θ0 . The matrix Jθ0,x = [Jθ0,x;i,j ]i,j

Jθ0,x;i,j
def=

〈
∂ρθ

∂θi
(θ0),

∂ρθ

∂θj
(θ0)

〉(m)

ρ0,x

is called the SLD (Bogoljubov, RLD) Fisher information matrix [11,202,216],
where x = s, b, r corresponds to SLD, Bogoljubov, RLD, respectively. Note
that the tangent vector refers to an infinitesimal change with respect to θ0
and is different from the matrix represented by the m representation or e
representation. The m representation and the e representation are nothing
more than matrix representations of the infinitesimal change.
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In summary, in this section we have defined the metric from the inner
product given in Sect. 6.1 and investigated the relationship of this metric
to the quantum relative entropy D(ρ‖σ) and the Bures distance b(ρ, σ). We
also defined three types of Fisher information matrices for state families with
more than one parameter.

Exercises

6.9. Define φ̃θ
def= dφθ

dθ − 〈φθ| dφθ

dθ 〉φθ with respect to the pure state family

{ρθ
def= |φθ〉〈φθ|}. Show that the SLD Fisher information Jθ,s is equal to

〈φ̃θ|φ̃θ〉. Show that both the RLD Fisher information and the Bogoljubov
Fisher information diverge.

6.10. Let JM
θ be the Fisher information of the probability family {PM

ρθ
|θ ∈

R} (Sect. 1.2) for a one-parameter state family {ρθ|θ ∈ R} and a POVM
M = {Mi}. Show that

Jθ,x ≥ JM
θ for x = s, r, b, λ, p. (6.29)

6.11. Show that JM
θ =

∑
i

〈Mi, Lθ,s〉(e)ρθ,s〈Lθ,s, Mi〉(e)ρθ,s

〈Mi, I〉(e)ρθ,s

, with respect to the

POVM M = {Mi}.

6.12. Show the following facts with respect to the PVM M = {Mi} of
rankMi = 1.

a Show that Mi is an eigenvecotr of the linear map X �→ κM ,ρ,s(X) and
〈Mi,X〉(e)

ρ,s

〈Mi,I〉(e)
ρ,s

is the corresponding eigenvalue.

b Show that JM
θ =

(
‖κM ,ρθ,s(Lθ,s)‖(e)ρθ,s

)2
.

c Assume that ρθ > 0. Show that Jθ,s = JM
θ if and only if every Mi com-

mutes with Lθ,s.

6.13. Prove (6.22) following the steps below.

a Show that
∫ 1

0
λn(1− λ)m dλ =

n!m!
(n + m)!

.

b For a matrix valued function X(θ), show that∫ 1

0
exp(λX(θ))

dX(θ)
dθ

exp((1− λ)X(θ)) dλ =
d exp(X(θ))

dθ
.

This is nothing other than (6.22).
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6.14. Consider the state family {ρ⊗n
θ |θ ∈ R} consisting of the n-fold tensor

product state of the state ρθ. Show that the metric Jθ,x,n of this state family
{ρ⊗n

θ |θ ∈ R} is equal to n times the metric Jθ,x of the state family {ρθ|θ ∈ R},
i.e., Jθ,x,n = nJθ,x for x = s, r, b, λ, p.

6.15. Show that the Fisher information matrix Jθ,x is Hermitian.

6.16. Show that the Fisher information matrix Jθ,x is real symmetric for any
symmetric inner product 〈 , 〉(e)ρ,x.

6.17. Give an example of an RLD Fisher information matrix Jθ,r that is not
real symmetric.

6.18. For a Hermitian matrix Y and a quantum state family {ρθ = e−iθY ρeiθY |θ
∈ R}, show that the derivative at θ = 0 has the e representation i[log ρ, Y ]
with respect to the Bogoljubov metric.

6.19. Show that i[ρ, Y ] = Eρ,b(i[log ρ, Y ]) if Y is Hermitian.

6.20. Define the state family S =
{

ρθ = 1
2

(
I +

∑3
i=1 θiS

i
)∣∣∣ ‖θ‖ ≤ 1

}
on

the two-dimensional system H = C
2. Show that the three Fisher information

matrices Jθ,s,Jθ,b,Jθ,r can be written as

J−1
θ,s = I − |θ〉〈θ|, (6.30)

Jθ,b =
1

1− ‖θ‖2 |θ〉〈θ|+
1

2‖θ‖ log
1 + ‖θ‖
1− ‖θ‖

(
I − 1
‖θ‖2 |θ〉〈θ|

)
, (6.31)

J−1
θ,r = I − |θ〉〈θ|+ iRθ, (6.32)

where R is defined in Sect. 5.3, following the steps below.

a Show the following for θ = (0, 0, θ), and check (6.30)–(6.32) in this case
using them.

Lθ,s,1 = S1, Lθ,s,2 = S2, Lθ,r,1 = ρ−1
θ S1, Lθ,r,2 = ρ−1

θ S2,

Lθ,b,1 =
1
2θ

log
1+θ

1−θ
S1, Lθ,b,2 =

1
2θ

log
1 + θ

1− θ
S2,

Lθ,s,3 = Lθ,b,3 = Lθ,r,3 =
( 1

1+θ 0
0 − 1

1−θ

)
,

Jθ,s =

⎛
⎝ 1 0 0

0 1 0
0 0 1

1−θ2

⎞
⎠ , Jθ,r =

⎛
⎝ 1

1−θ2 i θ
1−θ2 0

−i θ
1−θ2

1
1−θ2 0

0 0 1
1−θ2

⎞
⎠ ,

Jθ,b =

⎛
⎝ 1

2θ log 1+θ
1−θ 0 0

0 1
2θ log 1+θ

1−θ 0
0 0 1

1−θ2

⎞
⎠ .
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b Show that OT JOθO = Jθ, where O is an orthogonal matrix.
c Show (6.30)–(6.32) for an arbitrary θ.

6.21. Let J1
θ,s and J2

θ,s be the SLD Fisher metric of two state families {ρ1
θ|θ ∈

R} and {ρ2
θ|θ ∈ R}, respectively. Show that the SLD Fisher metric Jθ,s of the

state family {λρ1
θ +(1−λ)ρ2

θ|θ ∈ R} satisfies Jθ,s ≤ λJ1
θ,s +(1−λ)J2

θ,s. Show
that its equality holds when the space spanned by the supports of Lθ,1 ◦ ρ1

θ

and ρ1
θ is orthogonal to that of Lθ,2 ◦ ρ2

θ and ρ2
θ, where Lθ,i is the SLD of ρi

θ.

6.3 Geodesics and Divergences

In the previous section, we examined the inner product in the space of the
quantum state. In this section, we will examine more advanced geometrical
structures such as parallel transports, exponential family, and divergence.
To introduce the concept of a parallel transport, consider an infinitesimal
displacement in a one-parameter quantum state family {ρθ|θ ∈ R}. The dif-
ference between ρθ+ε and ρθ is approximately equal to dρθ

dθ (θ)ε. Hence, the
state ρθ+ε can be regarded as the state transported from the state ρθ in the
direction dρθ

dθ (θ) by an amount ε. However, the state ρθ+ε does not coincide
precisely with the state displaced from the state ρθ by ε in the direction of
dρθ

dθ (θ). For example, when the infinitesimal displacement at the intermediate
states ρθ+∆ (0 < ∆ < ε) is equal to the infinitesimal displacement dρθ

dθ (θ)∆
at θ, the state ρθ+ε coincides precisely with it. Then, the problem is to ascer-
tain which infinitesimal displacement at the point θ + ε′ corresponds to the
given infinitesimal displacement dρθ

dθ (θ)∆ at the initial point θ. The rule for
matching the infinitesimal displacement at one point to the infinitesimal dis-
placement at another point is called parallel transport. The coefficient dρθ

dθ (θ)
of the infinitesimal displacement at θ is called the tangent vector, as it rep-
resents the slope of the tangent line of the state family {ρθ|θ ∈ R} at θ. We
may therefore consider the parallel transport of a tangent vector instead of
the parallel transport of an infinitesimal displacement.

Commonly used parallel transports can be classified into those based on
the m representation (m parallel translation) and those based on the e rep-
resentation (e parallel translation). The m parallel translation Π

(m)
ρθ,ρθ′ moves

the tangent vector at one point ρθ to the tangent vector at another point ρθ′

with the same m representation. On the other hand, the e parallel translation
Π

(e)
x,ρθ,ρθ′ moves the tangent vector at one point ρθ with the e representa-

tion L to the tangent vector at another point ρθ′ with the e representation
L−Tr ρθ′L [11]. Of course, this definition requires a coincidence between the
set of e representations at the point θ and that at another point θ′. Hence, this
type of e parallel translation is defined only for the symmetric inner product
〈X, Y 〉(e)ρ,x, and its definition depends on the choice of the metric. Indeed, the
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e parallel translation can be regarded as the dual parallel translation of the
m parallel translation concerning the metric 〈X, Y 〉(e)ρ,x in the following sense:

Tr X∗Π(m)
ρθ,ρθ′ (A) = TrΠ(e)

x,ρθ′ ,ρθ
(X)∗A,

where X is the e representation of a tangent vector at ρθ′ and A is the
m representation of another tangent vector at ρθ.

Further, a one-parameter quantum state family is called a geodesic or an
autoparallel curve when the tangent vector (i.e., the derivative) at each point
is given as a parallel transport of a tangent vector at a fixed point. In particu-
lar, the e geodesic is called a one-parameter exponential family. For example,
in an e geodesic with respect to SLD {ρθ|θ ∈ R}, any state ρθ coincides with
the state transported from the state ρ0 along the autoparallel curve in the
direction L by an amount θ, where L denotes the SLD e representation of
the derivative at ρ0. We shall henceforth denote the state as Πθ

L,sρ0. Simi-
larly, Πθ

L,bρ0 denotes the state transported autoparallely with respect to the
Bogoljubov e representation from ρ0 in the direction L by an amount θ.

When the given metric is not symmetric, the e parallel translation moves
the tangent vector at one point θ under the e representation L̃ to the tangent
vector at another point θ′ with the e representation L̃′ − Tr ρθ′L̃′ with the
condition L̃ + L̃∗ = L̃′ + (L̃′)∗. That is, we require the same Hermitian part
in the e representation. Hence, the e parallel translation Π

(e)
x,ρθ,ρθ′ coincides

with the e parallel translation Π
(e)
s(x),ρθ,ρθ′ with regard to its symmetrized

inner product. Therefore, we can define the state transported from the state
ρ0 along the autoparallel curve in the direction with the Hermitian part L
by an amount θ with respect to RLD (λ, p), and we denote them by Πθ

L,rρ0

(Πθ
L,λρ0, Πθ

L,pρ0). However, only the SLD one-parameter exponential family
{Πθ

L,sρ0|s ∈ R} plays an important role in quantum estimation examined in
the next section.

Lemma 6.1 Πθ
L,sσ, Πθ

L,bσ, Πθ
L,rσ, and Πθ

L, 1
2
σ can be written in the follow-

ing form [11,300,304]:

Πθ
L,sσ = e−µs(θ)e

θ
2 Lσe

θ
2 L, (6.33)

Πθ
L,bσ = e−µb(θ)elog σ+θL, (6.34)

Πθ
L,rσ = e−µr(θ)√σeθLr

√
σ, (6.35)

Πθ
L, 1

2
σ = e

−µ 1
2
(θ)

σ
1
4 e

θ
2 L 1

2 σ
1
2 e

θ
2 L 1

2 σ
1
4 , (6.36)

where we choose Hermitian matrices Lr and L 1
2

as L = 1
2 (σ− 1

2 Lrσ
1
2 +

σ
1
2 Lrσ

− 1
2 ) and L = 1

2 (σ− 1
4 L 1

2
σ

1
4 + σ

1
4 L 1

2
σ− 1

4 ), respectively, and

µs(θ)
def= log Tr e

θ
2 Lσe

θ
2 L, µb(θ)

def= log Tr elog σ+θL, (6.37)

µr(θ)
def= log Tr

√
σeθLr

√
σ, µ1/2(θ)

def= log Tr σ
1
4 e

θ
2 L 1

2 σ
1
2 e

θ
2 L 1

2 σ
1
4 .
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Proof. By taking the derivative of the RHS of (6.33) and (6.34), we see that
the SLD (or Bogoljubov) e representation of the derivative at each point is
equal to the parallel transported e representation of the derivative L at σ
(use (6.22)). On the RHS of (6.35), the RLD e representation of the deriva-
tive at each point is equal to the parallel transported e representation of the
derivative

√
σ

−1
Lr
√

σ at σ. Further, on the RHS of (6.36), the 1
2 e represen-

tation of the derivative at each point is equal to the parallel transported e
representation of the derivative Lr at σ.

Conversely, from the definition of Πθ
L,xσ we have

dΠθ
L,xσ

dθ
= Eρθ,x(L− Tr Lρθ), x = s, r,

1
2
.

Since this has only one variable, this is actually an ordinary differential equa-
tion. From the uniqueness of the solution of an ordinary differential equation,
the only Πθ

L,xσ satisfying Π0
L,xσ = σ is the solution of the above differential

equation. Since any e representation σ has the form
√

σ
−1

L
√

σ with a Hermi-
tian matrix L, we only discuss ρθ = Πθ√

σ−1L
√

σ,r
σ. By taking its derivative,

we have

Πθ√
σ−1L

√
σ,r

σ

dθ
= ρθ(

√
σ

−1
L
√

σ − Tr ρθ

√
σ

−1
L
√

σ).

Similarly, from the uniqueness of the solution of an ordinary differential equa-
tion only the state family (6.35) satisfies this condition.

Now, using the concept of the exponential family, we extend the di-
vergence based on the first equation in (2.92). For any two states ρ and
σ, we choose the Hermitian matrix L such that the exponential family
{Πθ

L,xσ}θ∈[0,1] with regard to the inner product Jθ,x satisfies

Π1
L,xσ = ρ. (6.38)

Then, we define the x-e-divergences as follows:

D(e)
x (ρ‖σ) =

∫ 1

0
Jθ,xθdθ, (6.39)

where Jθ,x is the Fisher information concerning the exponential family Πθ
L,xσ.

Since Πθ
L1⊗I+I⊗L2,x(σ1 ⊗ σ2) equals (Πθ

L1,xσ1)⊗ (Πθ
L2,xσ2),

D(e)
x (ρ1 ⊗ ρ2‖σ1 ⊗ σ2) = D(e)

x (ρ1‖σ1) + D(e)
x (ρ2‖σ2), (6.40)

i.e., the e-divergence satisfies the additivity for any inner product.
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Theorem 6.4 When

L =

⎧⎪⎪⎨
⎪⎪⎩

2 log σ− 1
2 (σ

1
2 ρσ

1
2 )

1
2 σ− 1

2 for x = s,
log ρ− log σ for x = b,
1
2 (σ− 1

2 log(σ− 1
2 ρσ− 1

2 )σ
1
2 + σ

1
2 log(σ− 1

2 ρσ− 1
2 )σ− 1

2 ) for x = r,

σ− 1
4 log(σ− 1

4 ρ
1
2 σ− 1

4 )σ
1
4 + σ

1
4 log(σ− 1

4 ρ
1
2 σ− 1

4 )σ− 1
4 for x = 1

2 ,

(6.41)

condition (6.38) holds. Hence, we obtain

D(e)
s (ρ‖σ) = 2 Tr ρ log σ− 1

2 (σ
1
2 ρσ

1
2 )

1
2 σ− 1

2 , (6.42)

D
(e)
b (ρ‖σ) = Tr ρ(log ρ− log σ) = D(ρ‖σ), (6.43)

D(e)
r (ρ‖σ) = Tr ρ log(ρ

1
2 σ−1ρ

1
2 ), (6.44)

D
(e)
1
2

(ρ‖σ) = 2 Tr(σ
1
4 ρ

1
2 σ

1
4 )(σ− 1

4 ρ
1
2 σ− 1

4 ) log(σ− 1
4 ρ

1
2 σ− 1

4 ). (6.45)

Proof. When we substitute (6.41) into L, condition (6.38) can be checked by
using Lemma 6.1. In this case, Lr = log(σ− 1

2 ρσ− 1
2 ), L 1

2
= 2 log(σ− 1

4 ρ
1
2 σ− 1

4 ),
and we can show that

d2µx(θ)
dθ2 = Jθ,x. (6.46)

For x = b, see (6.22). Hence, from a discussion similar to (2.92), we can prove
that

D(e)
x (ρ‖σ) =

dµx(θ)
dθ

∣∣∣∣
θ=1

(1− 0)− µx(1) + µx(0) =
dµx(θ)

dθ

∣∣∣∣
θ=1

, (6.47)

where µx(θ) is defined in Theorem 6.1. Using this relation, we can check
(6.42), (6.43), and (6.45). Concering (6.44), we obtain

D(e)
r (ρ‖σ) = Trσσ− 1

2 ρσ− 1
2 log(σ− 1

2 ρσ− 1
2 ), = Tr ρ log(ρ

1
2 σ−1ρ

1
2 )

where the last equation follows from Exercise A.2.

Now we compare these quantum analogs of relative entropy given in (6.42)–
(6.45). As is easily checked, these satisfy condition (5.33) for quantum analogs
of relative entropy. From Exercise 6.25 and the monotonicity for measurement
concerning the quantum relative entropy D(ρ‖σ),

D(ρ‖σ) ≥ D(e)
s (ρ‖σ) = 2 Tr ρ log σ− 1

2 (σ
1
2 ρσ

1
2 )

1
2 σ− 1

2 . (6.48)

Hence, from inequality (5.36) and additivity (6.40), D
(e)
s (ρ‖σ) do not satisfy

the monotonicity even for measurements because the equality in (6.48) does
not always hold.

Further, we can extend the divergence based on equation (2.93). For any
two states ρ and σ, the family {(1 − t)ρ + tσ|0 ≤ t ≤ 1} is the m geodesic
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joining ρ and σ. Hence, as an extension of (2.93), we can define the x-m
divergences as

D(m)
x (ρ‖σ) def=

∫ 1

0
Jt,xtdt . (6.49)

Since the family {(1 − t)κ(ρ) + tκ(σ)|0 ≤ t ≤ 1} is the m geodesic joining
κ(ρ) and κ(σ) for any TP-CP map κ, we have

D(m)
x (ρ‖σ) ≥ D(m)

x (κ(ρ)‖κ(σ)), (6.50)

i.e., the m divergence satisfies the monotonicity. Since the RLD is the largest
inner product,

D(m)
r (ρ‖σ) ≥ D(m)

x (ρ‖σ). (6.51)

We can calculate the m divergences as Ex. 6.24

D
(m)
b (ρ‖σ) = Tr ρ(log ρ− log σ) = D(ρ‖σ), (6.52)

D(m)
r (ρ‖σ) = Tr ρ log(

√
ρσ−1√ρ). (6.53)

The Bogoljubov case follows from Theorem 6.5. Hence, Tr ρ log(
√

ρσ−1√ρ) =
D

(m)
r (ρ‖σ) satisfies the monotonicity for TP-CP maps. Further, from (6.51)

we obtain Tr ρ log(
√

ρσ−1√ρ) ≥ D(ρ‖σ) [206].
Not all x-m divergences necessarily satisfy additivity (6.40). At least when

the inner product Jx,θ is smaller than the Bogoljubov inner product Jb,θ, i.e.,
Jθ,x ≤ Jθ,b, we have D(ρ‖σ) ≥ D

(m)
x (ρ‖σ). From (5.36) and monotonicity

(6.50), D
(m)
x (ρ‖σ) does not satisfy additivity (6.40). For example, the SLD

m divergence does not satisfy additivity (6.40).
We can now verify whether it is possible in two-parameter-state families

to have states that are e autoparallel transported in the direction of L1 by
θ1 and in the direction L2 by θ2. In order to define such a state, we require
that the state that be e autoparallel transported first in the L1 direction by
θ1 from ρ0, then further e autoparallel transported in the L2 direction by θ2

so as to coincide with the state that is e autoparallel transported in the L2
direction by θ2 from ρ0, then e autoparallel transported in the L1 direction
by θ1. That is, if such a state were defined, the relation

Πθ2

L2,xΠθ1

L1,xσ = Πθ1

L1,xΠθ2

L2,xσ (6.54)

should hold. Otherwise, the torsion T (L1, L2)x is defined as follows:

T (L1, L2)ρ,x
def= lim

ε→0

Πε
L2,xΠε

L1,xρ−Πε
L1,xΠε

L2,xρ

ε2
.

Concerning condition (6.54), we have the following theorem.
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Fig. 6.1. Torsion

Theorem 6.5 (Amari and Nagaoka [11]) The following conditions for the
inner product Jθ,x are equivalent.

➀ Jθ,x is the Bogoljubov inner product, i.e., x = b.
➁ Condition (6.54) holds for any two Hermitian matrices L1 and L2 and

any state ρ0.
➂ D

(e)
x (ρθ̄‖ρθ) = Dµ(θ̄‖θ).

➃ D
(e)
x (ρ‖σ) = D(ρ‖σ).

➄ D
(m)
x (ρη̄‖ρη) = Dν(η‖η̄).

➅ D
(m)
x (ρ‖σ) = D(ρ‖σ).

Here, the convex functions µ(θ) and ν(η) and the states ρθ and ρη are defined
by

ρθ
def= exp(

∑
i

θiXi − µ(θ)), µ(θ) def= log Tr exp(
∑

i

θiXi), (6.55)

ρη
def= ρmix +

∑
j

ηjY
j , ν(η) def=D(m)

x (ρ0‖ρη) = −H(ρη) + H(ρmix),

where X1, . . . , Xk is a basis of the set of traceless Hermitian matrices, and
Y 1, . . . , Y k is its dual basis.

Proof. First, we prove ➀⇒➁. Theorem 6.1 guarantees that the Bogoljubov
e autoparallel transport satisfies

Πθ2

L2,bΠ
θ1

L1,bρ = Πθ1

L1,bΠ
θ2

L2,bρ = e−µb(θ1,θ2)elog ρ+θ1L1+θ2L2 ,

where µb(θ)
def= log Tr elog ρ+θ1L1+θ2L2 . Hence, we obtain ➁.

Next, we prove that ➁⇒➂. We define ρ̃θ
def= Πθk

Xk,x, · · · , Πθ1

X1,bρmix for
θ = (θ1, . . . , θk). Then, condition ➁ guarantees that ρ̃θ̄ = Π1∑

i(θ̄i−θi)Xi,x
ρ̃θ.
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In particular, when θ = 0, we obtain ρ̃θ̄ = Π1∑
i θ̄iXi,x

ρmix. Since
∑

i θ̄iXi is
commutative with ρmix, we can apply the classical observation to this case.
Hence, state ρ̃θ̄ coincides with state ρθ̄ defined in (6.55).

Let X̃j,θ be the x-e representation of the partial derivative concerning θj

at ρθ. It can be expressed as

X̃j,θ = Xj − Tr ρθXj + X̄θ,j ,

where X̄θ,j is the skew-Hermitian part. Thus,

∂ Tr ρθXj

∂θi
= Tr

(
∂ρθ

∂θi
Xj

)
= Tr

(
∂ρθ

∂θi
(Xj − Tr ρθXj)

)

=ReTr
(

∂ρθ

∂θi
(Xj − Tr ρθXj + X̄θ,j)

)
= ReJθ,x;i,j .

Note that the trace of the product of a Hermitian matrix and a skew-
Hermitian matrix is an imaginary number. Since ReJθ,x;i,j = ReJθ,x;j,i,
we have ∂ Tr ρθXj

∂θi = ∂ Tr ρθXi

∂θj . Thus, there exists a function µ̄(θ) such that
µ̄(0) = µ(0) and

∂µ̄(θ)
∂θi

= Tr ρθXi.

This function µ̄ satisfies the condition ➂.
Moreover, since Tr ρmixXi = 0, from definition (2.85), we have µ̄(θ) −

µ̄(0) = Dµ̄(0‖θ). Since state ρmix commutes with state ρθ, the relation
D(e)(ρmix‖ρθ) = µ(θ)− µ(0) holds. Hence, we obtain µ̄(θ) = µ(θ).

Further, we have Dµ(θ̄‖θ) = D(ρ‖θ). Thus, the equivalence between ➂
and ➃ is trivial since the limit of D(ρθ̄‖ρθ) equals the Bogoljubov inner
product Jb,θ. Hence, we obtain ➃⇒➀.

Now we proceed to the proof of ➀+➁+➂+➃⇒➄. In this case, the func-
tion ν(η) coincides with the Legendre transform of µ(θ), and ηi = ∂µ

∂θi (θ).
Hence, Dν(η‖η̄) = Dµ(θ̄‖θ) = D(ρη̄‖ρη). The second derivative matrix ∂2ν

∂ηi∂ηj

coincides with the inverse of the second derivative matrix ∂2µ
∂θi∂θj , which equals

the Bogoljubov Fisher information matrix concerning the parameter θ. Since
the Bogoljubov Fisher information matrix concerning the parameter η equals
the inverse of the Bogoljubov Fisher information matrix concerning the pa-
rameter θ, the Bogoljubov Fisher information matrix concerning the param-
eter η coincides with the second derivative matrix ∂2ν

∂ηi∂ηj . Hence, from (2.87)

we have Dν(η‖η̄) = D
(m)
b (ρθ̄‖ρθ).

Next, we prove ➄⇒➅. Since ρmix = ρ0 commutes with ρη, the m diver-
gence D

(m)
x (ρ0‖ρη) coincides with the Bogoljubov m divergence D

(m)
b (ρ0‖ρη),

which equals the Legendre transform of µ(θ) defined in (6.55). Thus,
D

(m)
x (ρη̄‖ρη) = Dν(η‖η̄) = D(ρη̄‖ρη). Finally, taking the limit η̄ → η, we

obtain Jx,η = Jb,η, i.e., ➅⇒➀.
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This theorem shows that the Bogoljubov inner product is most natural
from a geometrical point of view. However, from the viewpoint of estimation
theory the Bogoljubov metric is rather inconvenient, as will be shown in the
next section.

In summary, this section examined several geometrical structures that
may be derived from the inner product. In the next section, we will discuss
the connection between these structures and estimation theory.

Exercises

6.22. Define the SLD and the state as L = S1 and ρ0 = 1/2(I +
∑3

i=1 xiS
i)

in the two-dimensional system H = C
2. Show that the SLD e geodesic Πt

L,sρ0
is given by

Πt
L,sρ0 =

1
2
(I +

3∑
i=1

xi(t)Si), x1(t) =
et(1 + x1)− e−t(1− x1)
et(1 + x1) + e−t(1− x1)

,

x2(t) =
2x2

et(1 + x1) + e−t(1− x1)
, x3(t) =

2x3

et(1 + x1) + e−t(1− x1)
.

6.23. Show that an arbitrary SLD e geodesic on the two-dimensional system
H = C

2 is unitarily equivalent to Sα if a suitable α ∈ [0, 1] is chosen [119],

where Sα
def=

{
1
2

(
1 + α/ cosh t tanh t

tanh t 1− α/ cosh t

)∣∣∣∣ t ∈ R

}
.

6.24. Show equation (6.53) following the steps below.

a Show the equation
∫ 1
0 (X2t)(I + tX)−1dt = X − log(I + X) for any Her-

mitian matrix X.
b Show the equation

∫ 1
0 Tr(σ − ρ)2(ρ + t(σ − ρ))−1dt = Tr ρ log(

√
ρσ−1√ρ).

6.25. Let M be a measurement corresponding to the spectral decomposi-
tion of σ−1/2(σ1/2ρσ1/2)1/2σ−1/2. Show that D

(e)
s (ρ‖σ) = D(PM

ρ ‖PM
σ ) [304].

Show that D
(e)
s (ρ‖σ) ≥ −2 log Tr |√ρ

√
σ| from Exercise 2.26 and (2.19).

6.26. Show equation (6.52) following the steps below [121,302].

a Show that
∫ 1
0

d log ρt

dt
dρt

dt t dt

=
[
(log ρt) dρt

dt t
]1
0
−
∫ 1
0 (log ρt) d2ρt

d2t t dt− [(log ρt)ρt]
1
0 +

∫ 1
0

d log ρt

dt ρt dt.

b Show that Jt,b = Tr d log ρt

dt
dρt

dt for the Bogoljubov metric.
c Show that Tr d log ρt

dt ρt = 0.
d Show (6.52) for the m geodesic ρt = tσ + (1− t)ρ connecting two states ρ

and σ.

6.27. Show that the following three conditions are equivalent for two states
ρ and σ and a PVM M = {Mi} of rankMi = 1 [121, 302]. The equivalence
of ➀ and ➂ is nothing other than Theorem 3.5.
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➀ D(ρ‖σ) = DM (ρ‖σ).
➁ The m geodesic ρθ = θσ + (1− θ)ρ satisfies Jθ,b = JM

θ for θ ∈ [0, 1].
➂ [σ, ρ] = 0, and there exists a set of real numbers {ai}di=1 satisfying

ρ = σ

(
d∑

i=1

aiMi

)
=

(
d∑

i=1

aiMi

)
σ. (6.56)

6.28. Show that lim 1
nD

(m)
x (ρ⊗n‖σ⊗n) = D(ρ‖σ) when Jθ,x ≤ Jθ,b.

6.4 Quantum State Estimation

In Chap. 2, we only considered the case of two hypotheses existing for the
quantum states. In this section, we will consider the problem of efficiently
estimating an unknown quantum state that is included in a state family
{ρθ|θ ∈ R} by performing a measurement. The goal is to find θ. We will
assume that a system has been prepared with n identical states in a sim-
ilar manner to Chap. 2. In this case, the estimator is denoted by the pair
(Mn, θ̂n), where Mn is a POVM representing the measurement on the quan-
tum system H⊗n (with the measurement data set Ωn) and θ̂n is the map from
Ωn to the parameter space. In a similar way to the estimation of the proba-
bility distributions examined in Sect. 2.4, we assume the mean square error
to be the measure of the error. If the parameter space is one-dimensional, an
estimator with a smaller mean square error (MSE)

V̂θ(Mn, θ̂n) def=
∑
ω

(θ̂n(ω)− θ)2 Tr ρ⊗n
θ Mn(ω) (6.57)

results in a better estimation. We may then ask: what kind of estimator
is then most appropriate for estimating a given state? One method is to
choose a POVM M , perform it n times, and decide the final estimate to be
the maximum likelihood estimator θ̂n,ML with respect to the n trials of the
probability distribution {PM

θ |θ ∈ R}. The mean square error is approximately
1
n (JM

θ )−1 in the asymptotic limit according to the discussion in Sect. 2.4,
where JM

θ is the Fisher information at θ for the probability distribution
{PM

θ |θ ∈ R}.
According to this argument there exists some arbitrariness in the choice

of measurement M . The essential point of quantum estimation is therefore
to optimize this estimation procedure, including the choice of the POVM M .
It is evident that certain conditions must be imposed on the estimators. For
example, consider an estimator θ̂ that always gives the value 0. If the true
parameter is 0, the mean squared error is 0. On the other hand, if the true
parameter is not 0, the mean squared error will be large. Such an estimator
is clearly not useful; this indicates that the problem of the formulation of the
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optimization problem for our estimator must be considered more carefully. A
simple example of such a condition is the unbiasedness condition

Eθ(Mn, θ̂n) def=
∑
ω

θ̂n(ω) Tr ρ⊗n
θ Mn(ω) = θ, ∀θ ∈ Θ. (6.58)

However, in general, the unbiasedness condition is too restrictive. In order to
avoid this, we often consider the locally unbiased condition:

Eθ(Mn, θ̂n) = 0,
dEθ(Mn, θ̂n)

dθ
= 1 (6.59)

at a fixed point θ ∈ Θ. However, since it depends on the true parameter, it is
not so natural. As an intermediate condition, we often treat the asymptotic
case, i.e., the asymptotic behavior when the number n of prepared sample
spaces goes to infinity. In this case, the asymptotic unbiasedness condition:

lim Eθ(Mn, θ̂n) = θ, lim
d

dθ
Eθ(Mn, θ̂n) = 1, ∀θ ∈ Θ (6.60)

is often imposed for a sequence of estimators {(Mn, θ̂n)}∞n=1. The second
condition guarantees a kind of uniformity of the convergence of Eθ(Mn, θ̂n)
to θ. We are now ready for the following theorem.

Theorem 6.6 (Helstrom [202], Nagaoka [300]) If a sequence of estimators
{(Mn, θ̂n)} satisfies (6.60), then the following inequality holds:

limnV̂θ(Mn, θ̂n) ≥ J−1
θ,s . (6.61)

In the nonasymptotic case, when the locally unbiased condition (6.59) holds,
inequality (6.61) also holds without limit [202]. Its proof is similar to the
proof of Theorem 6.6.

In the above discussion, we focus on the asymptotic unbiasedness condi-
tion. Using the van Trees inequality [144,398], we can prove the same inequal-
ity almost everywhere without any assumption [143]. However, our methed
has the following advantage. Indeed, our method concerns one point. Hence,
by choosing a coordinate suitable for one point, we can treat the general er-
ror function in the asymptotic setting. However, the van Trees method can
be applied only to an error function with a quadratic form because the van
Trees method concerns a Bayes prior distribution, i.e., all points.

Proof.
Define O(Mn, θ̂n) def=

∑
ω(θ̂n(ω)−θ)Mn(ω). Since

∑
ω

(
θ̂n(ω)− θ

)
Mn(ω) =

O(Mn, θ̂n),

0 ≤
∑
ω

(
(θ̂n(ω)− θ)−O(Mn, θ̂n)

)
Mn(ω)

(
(θ̂n(ω)− θ)−O(Mn, θ̂n)

)
=
∑
ω

(
θ̂n(ω)− θ

)
Mn(ω)

(
θ̂n(ω)− θ

)
−O(Mn, θ̂n)2. (6.62)
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The Schwarz inequality for the metric 〈 , 〉(e)
ρ⊗n

θ ,s
yields

V̂θ(Mn, θ̂n) = Tr
∑
ω

(
θ̂n(ω)− θ

)
Mn(ω)

(
θ̂n(ω)− θ

)
ρ⊗n

θ

≥Tr O(Mn, θ̂n)2ρ⊗n
θ =

(∥∥∥O(Mn, θ̂n)
∥∥∥(e)

ρ⊗n
θ ,s

)2

(6.63)

≥

(
〈Lθ,s,n, O(Mn, θ̂n)〉(e)

ρ⊗n
θ ,s

)2

(
‖Lθ,s,n‖(e)ρ⊗n

θ ,s

)2 , (6.64)

where Lθ,s,n denotes the SLD e representation of the derivative of the state

family {ρ⊗n
θ |θ ∈ R}. Since Tr θ

dρ⊗n
θ

dθ = θ Tr dρ⊗n
θ

dθ = 0,

d

dθ
Eθ(Mn, θ̂n) = TrO(Mn, θ̂n)

dρ⊗n
θ

dθ
= Tr

(
O(Mn, θ̂n)− θ

) dρ⊗n
θ

dθ

= 〈Lθ,s,n, O(Mn, θ̂n)− θ〉(e)
ρ⊗n

θ ,s
(6.65)

from the definition of Eθ(Mn, θ̂n). Combining the above two formulas with
Exercise 6.14, we obtain

nV̂θ(Mn, θ̂n) ≥ n

(
d
dθ Eθ(Mn, θ̂n)

)2

nJθ,s
.

Taking the limit, we obtain (6.61).

According to the above proof, if equality (6.60) holds for a finite number n,
then inequality (6.61) also holds for the same number n. Conversely, given
a point θ0 ∈ R, we choose the function θ̂θ0,n and projections Eθ0,n(ω) such
that the following is the spectral decomposition of the matrix Lθ0,s,n

nJθ0,s
+ θ0:

Lθ0,s,n

nJθ0,s
+ θ =

∑
ω

Eθ0,n(ω)θ̂θ0,n(ω). (6.66)

Then, (Eθ0,n = {Eθ0,n(ω)}, θ̂θ0,n) gives an estimator satisfying

V̂θ0(Eθ0,n, θ̂n) =
1

nJθ0,s
, Eθ0(Eθ0,n, θ̂n) = θ0.

We may then show that

dEθ(Eθ0,n, θ̂θ0,n)
dθ

∣∣∣∣∣
θ=θ0

=〈Lθ0,s,n, O(Mn, θ̂n)− θ〉(e)
ρ⊗n

θ0
,s

=〈Lθ0,s,n,
1

nJθ0,s
Lθ0,s,n〉(e)ρ⊗n

θ0
,s

= 1, (6.67)
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in a similar way to (6.65). This guarantees the existence of an estimator
satisfying (6.61) under condition (6.60). However, it is crucial that the con-
struction of (Eθ0,n, θ̂n) depend on θ0. We may expect from (6.67) that if θ

is in the neighborhood of θ0, V̂θ(Eθ0,n, θ̂n) will not be very different from
V̂θ0(Eθ0,n, θ̂n). However, if θ is far away from θ0, it is impossible to estimate
V̂θ(Eθ0,n, θ̂n). The reason is that the SLD Lθ0,s,n depends on θ0. If the SLD
Lθ0,s,n did not depend on θ0, one would expect that an appropriate estimator
could be constructed independently of θ0. This is the subject of the following
theorem.

Theorem 6.7 (Nagaoka [298,300]) Assume that a distribution p(θ) satisfy-
ing ∫

ρθp(θ) dθ > 0 (6.68)

exists. Then, the following two conditions for the quantum state family ρθ

and the estimator (M , θ̂) are equivalent.

➀ The estimator (M , θ̂) satisfies the unbiasedness condition (6.58), and the
MSE V̂θ(M , θ̂) satisfies

V̂θ(M , θ̂) = J−1
θ,s . (6.69)

➁ The state family is an SLD e geodesic ρθ = Πθ
L,sρ0 given by (6.33);

further, the parameter to be estimated equals the expectation parameter
η = Tr Lρθ, and the estimator (M , θ̂) equals the spectral decomposition
of L.

See Exercises 6.31 and 6.32 for the proof of the above theorem.
Therefore, the bound 1

nJθ,s
is attained in the nonasymptotic case only for

the case (6.33), i.e., the SLD e geodesic curve. Another example is the case
when a POVM M exists such that

JM
θ = Jθ,s for ∀θ, (6.70)

where JM
θ is the Fisher information of the probability distribution {PM

ρθ
|θ ∈

R}. Then, if one performs the measurement M on n prepared systems and
chooses the maximum likelihood estimator of the n trials of the probabil-
ity distribution {PM

ρθ
|θ ∈ R}, the equality in inequality (6.61) is ensured

according to the discussion in Sect. 2.4. Therefore, J−1
θ,s is also attainable

asymptotically in this case. In general, a POVM M satisfying (6.70) rarely
exists; however, such a state family is called a quasiclassical POVM [429].

Besides the above rare examples, the equality of (6.61) is satisfied in the
limit n → ∞ at all points, provided a sequence of estimators {(Mn, θ̂n)}
is constructed according to the following two-step estimation procedure
[142, 182]. First, perform the measurement M satisfying JM

θ > 0 for the
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first
√

n systems. Next, perform the measurement Eθ̂ML,
√

n,n−√
n (defined

previously) for the remaining n−
√

n systems, based on the maximum likeli-
hood estimator θ̂ML,

√
n for the probability distribution {PM

ρθ
|θ ∈ R}. Finally,

choose the final estimate according to θ̂n
def= θ̂θ̂ML,

√
n,n−√

n, as given in (6.66).

If n is sufficiently large, θ̂ML,
√

n will be in the neighborhood of the true pa-
rameter θ with a high probability. Hence, the expectation value of (θ̂n − θ)2

is approximately equal to
1

(n−
√

n)Jθ,s
. Since limn

1
(n−

√
n)Jθ,s

=
1

Jθ,s
, we

can expect this estimator to satisfy the equality in (6.61). In fact, it is known
that such an estimator does satisfy the equality in (6.61) [142,182].

In summary, for the single-parameter case, it is the SLD Fisher metric
and not the Bogoljubov Fisher metric that gives the bound in estimation
theory. On the other hand, the Bogoljubov Fisher metric does play a role in
large deviation evaluation, although it appears in a rather restricted way.

Exercises

6.29. Show that the measurement Eθ,n defined in (6.66) satisfies nJθ,s =
J

Eθ,n

θ .

6.30. Using the above result, show that an arbitrary inner product ‖A‖(m)
ρ,x

satisfying property (6.17) and ‖ρ−1‖(m)
ρ,x = 1 satisfies ‖A‖(m)

ρ,s ≤ ‖A‖(m)
ρ,x .

6.31. Prove Theorem 6.7 for ρθ > 0 following the steps below [298,300].

a Assume that the estimator (M , θ̂) for the SLD e geodesic Πθ
L,sρ is given by

the spectral decomposition of L. Show that the estimator (M , θ̂) satisfies
the unbiasedness condition with respect to the expectation parameter.

b For an SLD e geodesic, show that dη
dθ = Jθ,s.

c For an SLD e geodesic, show that the SLD Fisher information Jη,s for an
expectation parameter η is equal to the inverse J−1

θ,s of the SLD Fisher
information for the natural parameter θ.

d Show that ➀ follows from ➁.
e Show that θ(η) =

∫ η

0 Jη′,s dη′ for an SLD e geodesic curve.
f Show that µs(θ(η)) =

∫ η

0 η′Jη′,s dη′ for an SLD e geodesic curve.
g Show that if ➀ is true, 1

Jθ,s
Lθ,s = O(M , θ̂)− θ.

h Show that if ➀ is true, then dρθ

dθ = Jη

2 ((O(M , θ̂)−η)ρθ +ρθ(O(M , θ̂)−η)),
where η is the parameter to be estimated.

i Show that if n = 1 and ρθ > 0, the equality in (6.63) is satisfied only if
the estimator (M , θ̂) is the spectral decomposition of O(M , θ̂).

j Show that if ➀ holds, then ➁ holds.

6.32. Show that Theorem 6.7 holds even if ρθ > 0 is not true, following the
steps below. The fact that ➁⇒➀ still follows from above.
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a Show that h in Exercise 6.31 still holds for ρθ > 0.
b Show that if ➀ holds, then the RHS of (6.62) is equal to 0.
c Show that if ➀ holds, then ➁ holds.

6.33. Similarly to (6.63), show

∑
ω

Tr
(
θ̂n(ω)− θ

)2
Mn(ω)ρ⊗n

θ ≥
(∥∥∥O(Mn, θ̂n)

∥∥∥(e)

ρ⊗n
θ ,r

)2

.

6.5 Large Deviation Evaluation

In Sect. 2.5.2, we discussed the large deviation type estimation of a probability
distribution for the case of a single parameter. In this section, we will examine
the theory for large deviation in the case of quantum state estimation. As
defined in (2.126) and (2.127), β({Mn, θ̂n}) and α({Mn, θ̂n}) are defined as
follows:

β({Mn, θ̂n}, θ, ε) def= lim
−1
n

log Tr ρ⊗nMn{|θ̂n − θ| ≥ ε}, (6.71)

α({Mn, θ̂n}, θ) def= lim ε→0
β({Mn, θ̂n}, θ, ε)

ε2
. (6.72)

The notation Mn{|θ̂n − θ| ≥ ε} requires some explanation. For the general
POVM M = {M(ω)} and the set B, let us define MB according to

MB
def=

∑
ω∈B

M(ω). (6.73)

Then, we have the following theorem in analogy to Theorem 2.7.

Theorem 6.8 (Nagaoka [303]) Let the sequence of estimators M =
{(Mn, θ̂n)} satisfy the weak consistency condition

Tr ρ⊗nMn{|θ̂n − θ| ≥ ε} → 0, ∀ε > 0,∀θ ∈ R. (6.74)

The following then holds:

β({Mn, θ̂n}, θ, ε) ≤ inf
θ′:|θ′−θ| >ε

D(ρθ′‖ρθ), (6.75)

α({Mn, θ̂n}, θ) ≤
1
2
Jθ,b. (6.76)

A different inequality that evaluates the performance of the estimator may
be obtained by employing a slight reformulation. That is, a relation similar
to (6.75) can be obtained as given by the following lemma.
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Lemma 6.2 (Hayashi [177]) Define β′(M , θ, δ) def= limε→+0 β(M , θ, δ − ε)
for the sequence of estimators M = {(Mn, θ̂n)}. The following inequality
then holds:

inf
{s|1≥s≥0}

(β′(M , θ, sδ) + β′(M , θ + δ, (1− s)δ)) ≤ −2 log Tr |√ρθ
√

ρθ+δ|.

(6.77)

The essential part in the proof of this lemma is that the information
− log Tr |√ρ

√
σ| satisfies the information-processing inequality Ex. 6.35.

The relation corresponding to (6.76) is then given by the following theo-
rem.

Theorem 6.9 (Hayashi [177]) Let the sequence of estimators M =
{(Mn, θ̂n)} satisfy the weak consistency condition and the uniformal con-
vergence on the RHS of (6.72) with respect to θ. Define α′(M , θ0)

def=
lim θ→θ0α(M , θ0). The following inequality then holds:

α′(M , θ) ≤ Jθ,s

2
. (6.78)

Hence, the bound Jθ,s

2 can be regarded as the bound under the condition for
the following sequence of estimators:

α(M , θ0) = lim θ→θ0α(M , θ0), β(M , θ, δ) = lim
ε→+0

β(M , θ, δ − ε). (6.79)

So far, we have discussed the upper bound of α(M , θ) in two ways. The
upper bound given here can be attained in both ways, as we now describe.
Let us first focus on the upper bound Jθ,s

2 given by (6.78), which is based
on the SLD Fisher information. This upper bound can be attained by a se-
quence of estimators M = {(Mn, θ̂n)} such that α′(M , θ0) = α(M , θ0) and
the RHS of (6.72) converges uniformly concerning θ. This kind of estimator
can be constructed according to the two-step estimator given in the previous
section [177]. Let us now examine the upper bound given by (6.76) using the
Bogoljubov Fisher information, which equals Jθ,b

2 in this case. This bound can
be attained by a sequence of estimators satisfying the weak coincidence con-
dition but not the uniform convergence on the RHS of (6.72). However, this
estimator can attain this only at a single point [177]. Although this method
of construction is rather obtuse, the method is similar to the construction of
the measurement that attains the bound D(ρ‖σ) given in Stein’s lemma for
hypothesis testing. Of course, such an estimator is extremely unnatural and
cannot be used in practice. Therefore, we see that the two bounds provide
the respective answers for two completely separate problems. In a classical
system, the bounds for these two problems are identical. This difference arises
due to the quantum nature of the problem.
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The above discussion indicates that geometrical characterization does not
connect to quantum state estimation. However, there are two different ap-
proaches from the geometrical viewpoint. For example, Hayashi [179] focused
on the scalar curvature of the Riemannian connection and clarified the re-
lation between the scalar curvature and the second-order asymptotics of es-
timation error only for specific state families. These approaches treat the
translation of the tangent bundle of state space. Matsumoto [283–285] fo-
cused on that of the line bundle and discovered the relation between the
curvature and the bound of estimation error for the pure-state family. He
pointed out that the difficulity of two parameters is closely related to the
curvature.

Exercises

6.34. Prove Theorem 6.8 referring to the proof of Theorem 2.7.

6.35. Prove Lemma 6.2 following the steps below.

a Show that log Tr |
√

ρ⊗n
√

σ⊗n| = n log Tr |√ρ
√

σ|.
b Show that

log Tr
∣∣∣∣√ρ⊗n

θ

√
ρ⊗n

θ+δ

∣∣∣∣
≤log

[(
Tr ρ⊗n

θ+δM
n

{
|θ̂−(θ+δ)| ≥ δ(m−1)

m

}) 1
2

+
(
Tr ρ⊗n

θ Mn
{
|θ̂−θ| ≥ δ

}) 1
2

+
m∑

i=1

(
Trρ⊗n

θ Mn

{
|θ̂−θ|> δ(i−1)

m

})1
2
(
Trρ⊗n

θ+δM
n

{
|θ̂−(θ+δ)|≥ δ(m−i−1)

m

})1
2
]

for an arbitrary integer m from the fact that the amount of informa-
tion − log Tr |√ρ

√
σ| satisfies the information-processing inequality.

c Choosing a sufficiently large integer N for a real number ε > 0 and an
integer m, we have

1
n

log Tr ρ⊗n
θ Mn

{
|θ̂ − θ| ≥ δi

m

}
≤ −β

(
M , θ,

δi

m

)
+ ε

1
n

log Tr ρ⊗n
θ+δM

n

{
|θ̂ − (θ + δ)| ≥ δ(m−i)

m

}
≤ −β

(
M , θ+δ,

δ(m−i)
m

)
+ε,

for ∀n ≥ N, 0 ≤ ∀i ≤ m. Show that

n log Tr |√ρθ
√

ρθ+δ|

≤ log(m+2)−n

2

(
min

0≤i≤m
β

(
M , θ,

δ(i−1)
m

)
+ β

(
M , θ+δ,

δ(m−i−1)
m

)
−2ε

)
.
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d Show the following for an arbitrary integer m:

− log Tr |√ρθ
√

ρθ+δ|

≥ 1
2

min
0≤i≤m

(
β

(
M , θ,

δ(i− 1)
m

)
+ β

(
M , θ + δ,

δ(m− i− 1)
m

)
− 2ε

)
.

e Prove (6.77) using d.

6.36. Prove Theorem 6.9 using Lemma 6.2.

6.6 Multiparameter Estimation

Let us now examine the case of a multidimensional parameter space Θ (di-
mension d). Assume that the unknown state lies in the multiparameter quan-
tum state family {ρθ|θ ∈ Θ ⊂ R

d}. A typical estimation procedure is as fol-
lows. An appropriate POVM M is chosen in a manner similar to the previous
one (excluding those for a Fisher matrix JM

θ with zero eigenvalues), and a
measurement corresponding to M is performed on each n quantum system
in unknown but identical states. The final estimate is then given by the maxi-
mum likelihood estimator for the probability distribution {PM

θ |θ ∈ Θ ⊂ R
d}.

According to Sect. 2.4, the mean square error asymptotically approaches
1
n (JM

θ )−1 in this case. The maximum likelihood estimator then approaches
the true parameter θ in probability. As mentioned in the previous section,
our problem is the optimization of the quantum measurement M for our
estimation. To this end, we need to find an estimator minimizing the mean
square error V̂i,j

θ (Mn, θ̂n) for the ith parameter θi or the mean square error
matrix V̂θ(Mn, θ̂n) = [V̂i,j

θ (Mn, θ̂n)] by taking into account the correlations
between the θi, where

V̂i,j
θ (Mn, θ̂n) def=

∑
ω

(θ̂i
n(ω)− θi)(θ̂j

n(ω)− θj) Tr ρ⊗n
θ Mn(ω). (6.80)

The unbiasedness condition is then given by

Ei
θ(M

n, θ̂n) def=
∑
ω

θ̂i
n(ω) Tr ρ⊗n

θ Mn(ω) = θi, ∀θ ∈ Θ.

In the asymptotic case, for a sequence of estimators {(Mn, θ̂n)}, we can also
write down the asymptotic unbiasedness condition

lim Ei
θ(M

n, θ̂n) = θi, lim
∂

∂θj
Ei

θ(M
n, θ̂n) = δi

j , ∀θ ∈ Θ. (6.81)

Theorem 6.10 Let the sequence of estimators {(Mn, θ̂n)} satisfy the asymp-
totic unbiasedness condition (6.81) and have the limit V̂i,j

θ ({Mn, θ̂n}) def=
limnV̂i,j

θ (Mn, θ̂n). The following matrix inequality then holds [202,216]:

limnV̂θ(Mn, θ̂n) ≥ (Jθ,x)−1, x = s, r. (6.82)
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Proof. First, assume that any two complex vectors |b〉 = (b1, . . . , bd)T ∈ C
d

and |a〉 ∈ C
d satisfy

〈b|V̂θ({Mn, θ̂n})|b〉〈a|Jθ,x|a〉 ≥ |〈b|a〉|2. (6.83)

Substituting a = (Jθ,x)−1b into (6.83), we have 〈b|V̂θ({Mn, θ̂n})|b〉 ≥
〈b|(Jθ,x)−1|b〉, since (Jθ,x)−1 is Hermitian. We therefore obtain (6.82).

We next show (6.83). Define On
def=

∑
ω

(∑
i(θ̂

i
n(ω)− θi)bi

)
Mn(ω) and

Ln
def=

∑
j Lθ,j,x,naj . Using (6.63) and Exercise 6.33, we can show that

〈b|V̂θ({Mn, θ̂n})|b〉 = limn
∑
ω

∣∣∣∣∣∑
i

(θ̂i
n(ω)− θi)bi

∣∣∣∣∣
2

Tr ρ⊗n
θ Mn(ω)

≥ limn
(
‖On‖(e)ρ⊗n

θ ,x

)2
,

in a manner similar to (6.62). Then

〈b|a〉 = lim
∑
i,j

bi
∂

∂θj
Ei

θ(M
n, θ̂n)aj = lim〈On, Ln〉(e)ρ⊗n

θ ,x
,

in a manner similar to (6.67). Using the Schwarz inequality, we can show that(
‖On‖(e)ρ⊗n

θ ,x

)2 (
‖Ln‖(e)ρ⊗n

θ ,x

)2
≥
∣∣∣〈On, Ln〉(e)ρ⊗n

θ ,x

∣∣∣2 .

Inequality (6.83) can be obtained on taking the limit because 〈a|Jθ,x|a〉 =

n
(
‖Ln‖(e)ρ⊗n

θ ,x

)2
.

In general, there is no sequence of estimators that satisfies the equality in
(6.82). Furthermore, as the matrix V̂i,j

θ (Mn, θ̂n) is a real symmetric matrix
and not a real number, there is no general minimum matrix V̂i,j

θ (Mn, θ̂n)
among the estimators satisfying (6.81). Instead, one can adopt the sum of
MSE, i.e., the trace of V̂i,j

θ (Mn, θ̂n) as our error criterion. It is therefore
necessary to consider the minimum of tr limnV̂θ(Mn, θ̂n) in the asymptotic
case.

From (6.82) the lower bound of the minimum value of this quantity can
be evaluated as

tr limnV̂θ(Mn, θ̂n) ≥ min{trV |V : real symmetric V ≥ (Jθ,x)−1} (6.84)

because V̂θ(Mn, θ̂n) is real symmetric. If (Jθ,x)−1 is real symmetric, the
RHS is equal to tr(Jθ,x)−1. If (Jθ,x)−1 is a Hermitian matrix but contains
imaginary elements, the RHS will be larger than tr(Jθ,x)−1. In this case, we
may calculate [216]
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Fig. 6.2. Fisher information matrices

min{trV |V : real symmetricV ≥ J−1
θ,x} = trRe(J−1

θ,x)+ tr | Im(J−1
θ,x)|.

(6.85)

For example, (Jθ,s)−1 and (Jθ,b)−1 are real symmetric matrices, as dis-
cussed in Exercise 6.17. However, since the RLD Fisher information matrix
(Jθ,r)−1 possesses imaginary components, the RHS of (6.85) in the RLD
case will be larger than tr(Jθ,r)−1. Moreover, in order to treat the set of
the limits of MSE matrices, we often minimize trGV̂θ({Mn, θ̂n}). From a
discussion similar to (6.85), it can be shown that the minimum is greater
than tr

√
GRe(J−1

θ,r )
√

G+tr |
√

G Im(J−1
θ,r )
√

G|. Its equality holds only when

V̂θ({Mn, θ̂n}) = Re(J−1
θ,r ) +

√
G

−1|
√

G Im(J−1
θ,r )
√

G|
√

G
−1

. When the fam-
ily in the two-dimensional space has the form {ρθ|‖θ‖ = r}, the set of MSE
matrices is restricted by the RLD Fisher information matrix, as shown in
Fig. 6.2.

In Fig. 6.2, we use the parameterization
(

x0 + x1 x2
x2 x0 − x1

)
and assume

that Jθ,s is a constant time of the identity matrix. In addition, it was shown
that these limits of MSE matrices can be attained [188]. The above figure
also illustrates that the set of MSE matrices can be realized by the adaptive
estimators. See Exercises 6.20 and 6.45.

The following theorem gives the asymptotic lower bound of tr V̂θ(Mn, θ̂n).

Theorem 6.11 Let the sequence of estimators {(Mn, θ̂n)} satisfy the same
conditions as Theorem 6.10. The following inequality then holds:

tr limnV̂θ(Mn, θ̂n) ≥ limn inf
Mn: POVM on H⊗n

tr(JMn

θ )−1. (6.86)

Conversely, we can construct the estimator attaining the bound
minM tr(JM

θ )−1 by using the adaptive method in a manner similar to the
one-parameter case. Moreover, applying this method to the n-fold tensor
product system H⊗n, we can construct an estimator attaining the bound
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Fig. 6.3. MSE matrices

n minMn tr(JMn

θ )−1. Hence, the set of realizable classical Fisher information
JM

θ and the set of 1
nJMn

θ characterize the bound of estimation performance.
When the family in the two-dimensional space has the form {ρθ|‖θ‖ = r},
they are as illustrated in Fig. 6.3. In Fig. 6.3, we assume that Jθ,s is a constant
time of the identity matrix.

Proof. Let us apply the same argument as in the proof of Theorem 6.10 to
the probability distribution {PMn

ρ⊗n
θ

|θ}. Then

〈b|V̂θ(Mn, θ̂n)|b〉〈a|JMn

θ |a〉 ≥

∣∣∣∣∣∣
∑
i,j

bi
∂

∂θj
Eθ(Mn, θ̂n)iaj

∣∣∣∣∣∣
2

for complex vectors |b〉 = (b1, . . . , bd)T ∈ C
d and |a〉 ∈ C

d. Define (An)i
j

def=
∂

∂θj Eθ(Mn, θ̂n)i and substitute a = (JMn

θ )−1Anb. Then 〈b|V̂θ(Mn, θ̂n)|b〉 ≥
〈b|A∗

n(JMn

θ )−1An|b〉. Therefore,

lim trnV̂θ(Mn, θ̂n) ≥ lim tr AnA∗
nn(JMn

θ )−1

≥ lim inf
Mn: POVM on H⊗n

trAnA∗
nn(JMn

θ )−1

= limn inf
Mn: POVM on H⊗n

tr(JMn

θ )−1,

which completes the proof.

More generally, under the same conditions as in the previous theorem, we
have [216]

tr limnV̂θ(Mn, θ̂n)

≥ min
X

{
trReVθ(X) + tr | ImVθ(X)|

∣∣∣∣δj
i = Tr

∂ρθ

∂θi
Xj

}
, (6.87)
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where X is a matrix, ReX is the matrix consisting of the real part of each
component of X, ImX is the matrix consisting of the imaginary part of
each component of X, and Vθ(X) def= (Tr ρθX

iXj) for a vector of matrices
X = (X1, · · · , Xd). It is known that there exists a sequence of estimators
satisfying the equality in (6.87) [178,286]. In the proof of this argument, the
quantum central limit theorem [145,344] plays an essential role [178].

Such an argument can be given for infinite-dimensional systems. In par-
ticular, the quantum Gaussian state family is known as the quantum ana-
log of the Gaussian distribution family and is a typical example in an
infinite-dimensional system. In the classical case, the Gaussian distribu-
tion family has been extensively investigated. Similarly, the quantum Gaus-
sian state family has been extensively investigated in the classical case
[119,170,171,178,188,213,216,432].

Another related topic to state estimation is approximate state cloning.
Of course, it is impossible to completely clone a given state. However, an
approximate cloning is possible by first estimating the state to be cloned,
then generating this estimated state twice. Although the initial state is de-
molished in this case, it can be approximately recovered from the knowledge
gained via the estimation. An approximate cloning is therefore possible via
state estimation. In fact, it is more straightforward to treat the cloning pro-
cess directly without performing the estimation. Then, the optimum cloning
method is strictly better than the method via estimation [61]. In particular,
the analysis for approximate state cloning is simplified for spaces having a
group symmetry, e.g., sets of pure states [251,412]. An investigation has also
been done in an attempt to find the interaction that realizes this [109]. The
analysis is more difficult for problems with less symmetry [110].

The probabilistic framework of mathematical statistics has been applied
to many fields where statistical methods are necessary. In many cases, this
probabilistic framework is merely a convenience for the applied field. That is,
the probabilistic description is often used to supplement the lack of knowl-
edge of the system of interest. Therefore, it is not uncommon for statistical
methods to be superceded by other methods during as the field advances due
to reasons such as increasing computer speed and improvements in analy-
sis. However, as discussed in Chap. 1, the probabilistic nature of quantum
mechanics is intrinsic to the theory itself. Therefore, in fact, the framework
of mathematical statistics can be naturally applied to quantum mechanics.
Unfortunately, at present, it is not possible to operate a large number of
quantum-mechanical particles as a single quantum system. Therefore, when
we measure the order of 1023 particles, we often obtain only the average of
the measured ensemble as the final data. The quantum-mechanical correla-
tions cannot be observed in this situation. Furthermore, quantum-mechanical
effects such as those given in this text cannot be realized. Additionally, when
an observable X is measured with respect to a system in the state ρ, the
measurement data coincide with Tr ρX with a probability nearly equal to 1.
Therefore, statistical methods are clearly not necessary in this case.
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We can expect an increase in the demand for individually operating a
large number of quantum-mechanical particles in proportion to experimen-
tal technology advances in microscopic systems. The measurement data will
behave probabilistically in this situation, and therefore mathematical statis-
tical methods will become more necessary. In fact, in several experiments,
statistical methods have already been used to determine the generated quan-
tum state [395]. Therefore, the theory presented here should become more
important with future experimental progress.

Exercises

6.37. Show the following facts when a separable POVM Mn = {Mn(ω)}ω∈Ωn

in H⊗n is written as Mn(ω) = Mn
1 (ω)⊗ · · · ⊗Mn

n (ω).

a Show that a POVM Mθ:n,i defined by (6.88) satisfies the conditions for a
POVM and satisfies (6.89):

Mθ:n,i(ω)
def=Mn

i (ω)TrρθM
n
1 (ω) · · ·TrρθM

n
i−1(ω) ·TrρθM

n
i+1(ω) · · ·TrρθM

n
n (ω),

(6.88)
d∑

i=1

J
Mθ:n,i

θ = JMn

θ . (6.89)

b Show that

tr limnV̂θ(Mn, θ̂n) ≥ inf
{

tr(JM
θ )−1

∣∣M POVM on H
}

. (6.90)

6.38. Show the following given a POVM M = {Mω} in H of rankM(ω) = 1
[142].

a Show that
∑
ω

〈M(ω), M(ω)〉(e)θ,s

〈M(ω), I〉(e)θ,s

= dimH.

b Show that trJ−1
θ,s JM

θ +1 =
∑
ω

d∑
j=0

〈M(ω), Lj
θ,s〉

(e)
θ,s〈Lθ,j,s, M(ω)〉(e)θ,s

〈M(ω), I〉(e)θ,s

, where

Lj
θ,s

def=
∑d

i=1(J
−1
θ,s )i,jLθ,j,s.

c Show that

trJ−1
θ,s JM

θ ≤ dimH− 1. (6.91)

When ρθ > 0, show that the equality holds if and only if every element
M(ω) can be written as a linear sum of I, Lθ,1,s, . . . , Lθ,d,s.

d Give the condition for the equality in (6.91) for cases other than ρθ > 0.
e Show that inequality (6.91) also holds if the POVM M = {Mω} is not of

rankM(ω) = 1.
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6.39. When an estimator (M , θ̂) for the state family {ρθ|θ ∈ R
d} in H sat-

isfies

∂

∂θj
Ei

θ(M
n, θ̂n)

∣∣∣∣
θ=θ0

= δi
j , Ei

θ0
(Mn, θ̂n) = θi

0,

it is called a locally unbiased estimator at θ0. Show that

inf
{

tr(JM
θ )−1

∣∣M POVM on H
}

= inf
{

tr V̂θ(M , θ̂)
∣∣∣ (M , θ̂) : a locally unbiased estimator

}
. (6.92)

6.40. Show the following equation and that J = (d−1)

tr J
− 1

2
θ,s

J
1
2
θ,s gives the mini-

mum value [142].

min
J : symmetric matrix

{
Tr(J−1)

∣∣∣Tr J−1
θ,s J = d− 1

}
=

(trJ
− 1

2
θ,s )2

d− 1
.

6.41. Let Mu be a measurement corresponding to the spectral decomposition
of L(u) def=

∑d
j=1 ujLθ,j,s, where ‖u = (u1, . . . , ud)‖ = 1. Show that the

Fisher information satisfies

JMu

θ ≥ 1
〈u|Jθ,s|u〉

Jθ,s|u〉〈u|Jθ,s. (6.93)

6.42. Let M and M ′ be POVMs with measurement sets Ω and Ω′, respec-
tively. Let M ′′ be a POVM that performs the measurements M ,M ′ with
probability λ, (1− λ). Show that λJM

θ + (1− λ)JM ′
θ = JM ′′

θ .

6.43. Consider the set of vectors u1, . . . , uk ∈ R
d with norm 1 in parameter

space. Let Mp be the POVM corresponding to the probabilistic mixture
of spectral decomposition L(ui) with probability pi. Show that the Fisher
information matrix satisfies

JMp

θ ≥
k∑

i=1

pi
1

〈ui|Jθ,s|ui〉
Jθ,s|ui〉〈ui|Jθ,s. (6.94)

6.44. Using the result of the preceding exercise, show the following for
dimH = 2 regardless of the number of parameters [142,165–167]:

inf
{

tr(JM
θ )−1

∣∣M POVM on H
}

=
(
trJ

− 1
2

θ,s

)2
.

6.45. Using the result of the preceding exercise, show the following under the
above assumption [142,165–167].

inf
{

trG(JM
θ )−1

∣∣M POVM on H
}

=
(

tr
(√

G
−1

Jθ,s

√
G

−1)− 1
2
)2

.

(6.95)
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6.46. Let {pθ(i)|θ = (θ1, . . . , θd) ∈ R
d} be a probability family and Ui(i =

1, . . . , k) be unitary matrices in H. Consider the estimation of the TP-CP
map κθ : ρ �→

∑k
i=1 pθ(i)UiρU∗

i with the following procedure. A state ρ is
input to the input system HA, a measurement M is performed at the output
system HB , and the parameter θ is estimated based on the obtained data.
Show that

Jθ ≥ Jθ,ρ,x, (6.96)

where Jθ,ρ,x is the Fisher information matrix of the quantum state family
{κθ(ρ)|θ ∈ R

d} for x = s, r, b, λ, p and Jθ is the Fisher information matrix of
the probability distribution family {pθ(i)|θ = (θ1, . . . , θd) ∈ R

d}.

6.47. Show that the equality in (6.96) holds if

Tr UiρU∗
i UjρU∗

j = 0 (6.97)

holds for i �= j. In addition, let Pi be the projection to the range of UiρU∗
i .

Show that the output distribution of the PVM {Pi} is equal to pθ(i), i.e., the
problem reduces to estimating this probability distribution.

6.48. Consider the problem of estimating the probability distribution θ with
the generalized Pauli channel κpθ

given in Example 5.8 as the estimation of
the channel κpθ

⊗ ιA. Show that (6.97) holds if ρ = |Φd〉〈Φd|, where |Φd〉 =
1
d

∑d
i=0 |ui〉 ⊗ |ui〉 and d = dimHA.

6.49. As in the preceding problem, show that no estimator can improve the
estimation accuracy of the estimator with the input state |Φd〉〈Φd|⊗n, even
though any entangled state is input to a channel (κpθ

⊗ ιA) defined with
respect to the generalized Pauli channel κpθ

.

6.50. Prove (6.85) following the steps below [216].

a Show that

max
X:real antisymmetric matrix

{Tr X|X − iY ≥ 0} = Tr |iY |. (6.98)

for the real 2× 2 antisymmetric matrix Y .
b Show that an arbitrary antisymmetric matrix Y may be rewritten as

V Y V t =

⎛
⎜⎜⎜⎜⎜⎝

0 α1
−α1 0

0 α2
−α2 0

. . .

⎞
⎟⎟⎟⎟⎟⎠

for a suitable real orthogonal matrix V .
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c Let Ej be a projection with only nonzero elements in the 2ith and
2j − 1th components. Show (6.98) for the general case. Note that TrX =∑

j Tr MjXMj and that if X − iY ≥ 0, then MjXMj − iMjY Mj ≥ 0,

where Mj
def= V tEjV .

d Show (6.85) using c.

6.51. Show inequality (6.87) following the steps below [119,216].

a Show that the RHS of (6.87) has the same value as the original when the
minimization is replaced by that with the condition Tr ρθX

i = 0.
b Assume that an estimator (M , θ̂) and a vector X = (Xi) of Hermitian

matrices satisfy Xi =
∑

i θ̂i(ω)Mω. Show that V̂θ(M , θ̂) ≥ Vθ(X) accord-
ing to a similar argument to (6.62) by replacing O(Mn, θ̂n) by

∑
i aiX

i,
where (ai) is an arbitrary complex-valued vector.

c Show that tr V̂θ(M , θ̂) ≥ tr(ReVθ(X) + | ImVθ(X)|) in a similar way to
Exercise 6.50.

d Show (6.87) using Exercise 6.39.

6.52. Show that the equality in (6.87) holds for a pure state following the
steps below [126,127,129,282].

a Let ρθ = |u〉〈u| and let X = (Xi) be a vector of Hermitian matrices
satisfying Tr ρθX

i = 0. Show that the vectors ui def= Xiu are orthogonal
to |u〉 and satisfy Vθ(X) = (〈ui, uj〉). Hence, when the derivative ∂ρθ

∂θi

has the form ∂ρθ

∂θi = (|xi〉〈u| + |u〉〈xi|)/2 with the condition 〈u|xi〉 = 0,
the RHS of (6.87) can be regarded as an optimization problem for the
case Vθ(X) = (〈ui, uj〉) with respect to the vectors u1, . . . , ud with the
condition 〈ui|xj〉 = δi

j .
b Consider the case where all 〈ui|uj〉 are real. Suppose that each element vk

of the POVM {|vk〉〈vk|} is a real linear sum of the vectors u, u1, . . . , ud, and
each 〈vi|u〉 is nonzero. Show that the estimator (M , θ̂)def= ({|vk〉〈vk|}, 〈vk|uj〉

〈vk|u〉 )

satisfies Ei
θ(M , θ̂)u = uj . Also, show that V̂θ(M , θ̂) = Vθ(X).

c Show that there exists a set of vectors w1, . . . , wd in a d-dimensional space
such that | ImVθ(X)| − ImVθ(X) = (〈wi|wj〉).

d Let u1, . . . , ud be a set of vectors such that 〈ui|uj〉 are not necessarily real.
Show that 〈yi|yj〉 are all real, where yi def= ui⊕wi and ⊕ denotes the direct
sum product.

e For a given set of vectors u1, . . . , ud, show that there exists an estima-
tor (M , θ̂) such that Ei

θ(M , θ̂)u = uj and V̂θ(M , θ̂) = Re(Vθ(X)) +
Im(Vθ(X)).

f Show that the equality in (6.87) holds for a pure state.
g Examine the state family consisting of pure states with 2l parameters,

where l is the dimension of the Hilbert space. Show that the RHS of (6.87)
is equal to tr(ReJ)−1 + tr |(ReJ)−1 Im J(ReJ)−1|, where J = (Ji,j

def=
〈xi|xj〉).
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6.7 Historical Note

Research on quantum state estimation was initiated by Helstrom [202] in 1967.
He derived the one-parameter Cramér–Rao inequality (6.61) for the nonasymptotic
version. He also proved the multiparameter SLD Cramér–Rao inequality (6.82)
for the nonasymptotic version [203]. Yuen and Lax [432] developed the RLD ver-
sion of the Cramér–Rao inequality for estimation with a complex multiparameter.
They applied it to the estimation of the complex amplitude of the Gaussian state.
Belavkin [34] derived a neccessary and sufficient condition for the achievement of
this bound. Further, Holevo [216] derived the RLD Cramér–Rao inequality (6.82)
with a real multiparameter and obtained the lower bound (6.87) with the locally
unbiased condition in the nonasymptotic case [216].

Young introduced the concept of quasiclassical POVM concerning the state
family [429]. Nagaoka [300] focused on equation (6.92) and derived the SLD one-
parameter Cramér–Rao inequality (6.61) with an asymptotic framework. He derived
its lower bound based on inequality (7.32) [312]. This bound is called the Nagaoka
bound. Applying it to the quantum two-level system, he obtained equation (6.95)
for the two-parameter case [301]. Hayashi [165, 167] applied the duality theorem
in infinite-dimensional linear programming to quantum state estimation and ob-
tained equation (6.95) in the three-parameter case as well as in the two-parameter
case. After these, Gill and Massar [142] derived the same equation by a simpler
method, which is explained in Exercise 6.45. Fujiwara and Nagaoka [129] defined
the coherent model as a special case of pure-state families and showed that bound
(6.87) can be attained with the locally unbiased and nonasymptotic framework in
this case. Following this result, Matsumoto [282, 284] extended it to the general
pure-state case. Further, Hayashi and Matsumoto [188] showed that bound (6.87)
can be attained with the asymptotic framework in the quantum two-level system
using the Cramér–Rao approach. The achievability of bound (6.87) is discussed in
Matsumoto [286] in a general framework using irreducible decompositions of group
representation. It has also been examined in Hayashi [178] using the quantum cen-
tral limit theorem.

As a nonasymptotic extension of the quantum Crámer–Rao inequality, Tsuda
and Matsumoto [388] treated its nondifferentiable extenstion (Hammersley–Chap-
man–Robbins–Kshiragar bound). They also derived the lower bound of mean square
errors of unbiased estimators based on higher-order derivatives (quantum Bhat-
tacharyya bound). The quantum Bhattacharyya bound has also been obtained by
Brody and Hughston [59] in the pure-state case. Using this bound, Tsuda [391]
derived an interesting bound for the estimation of polynomials of complex am-
plitude of quantum Gaussian states. Further, nonparametric estimation has been
researched by D’Ariano [86] and Artiles et al. [16].

The group covariant approach was initiated by Helstrom [204]. He treated the es-
timation problem of one-parameter covariant pure-state families. Holevo has estab-
lished the general framework of this approach [215] and applied it to several prob-
lems. Ozawa [339] and Bogomolov [55] extended it to the case of the noncompact
parameter space. Holevo applied it to the estimation of the shifted one-parameter
pure-state family [223]. Holevo [216] and Massar and Popescu [278] treated the es-
timation of a pure qubit state with n-i.i.d. samples using the Fidelity risk function.
Hayashi [168] extended it to an arbitrary dimensional case with the general invari-
ant risk function. Brußet al. [61] discussed its relation with approximate cloning.
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Further, Hayashi [192] applied this method to the estimation of the squeezed pa-
rameter with vacuum-squeezed-state families. Hayashi and Matsumoto [188] also
treated the estimation of the full-parameter model in quantum two-level systems
using this approach. Bagan et al. [20] treated the same problem by the covariant
and Bayesian approach.

Nagaoka [303] extended Bahadur’s large deviation approach to the quantum es-
timation and found that the estimation accuracy with condition (6.74) is bounded
by the Bogoljubov Fisher information in this approach. Hayashi [177] introduced
a more strict condition (6.79) and showed that the estimation accuracy with con-
dition (6.79) is bounded by the SLD Fisher information. Fujiwara [131] started
to treat the estimation of a quantum channel within the framework of quantum
state estimation. Sasaki et al. [359] discussed a similar estimation problem with the
Bayesian approach in a nonasymptotic setting. Fischer et al. [115] focused on the
use of the maximally entangled input state for the estimation of the Pauli channel.
Fujiwara and Imai [134] showed that in the estimation of the Pauli channel κθ,
the best estimation performance is obtained if and only if the input state is the
n-fold tensor product of the maximally entangled state |Φd〉〈Φd|⊗n. Exercise 6.49
treats the same problem using a different approach. After this result, Fujiwara [135]
and Tanaka [384] treated, independently, the estimation problem of the amplitude
damping channel. Especially, Fujiwara [135] proceeded to the estimation problem of
the generalized amplitude damping channel, which is the more general and difficult
part. De Martini et al. [279] implemented an experiment for the estimation of an
unknown unitary.

Concerning the estimation of unitary operations, Bužek et al. [65] focused on
estimating an unknown one-parameter unitary action first time. They showed that
the error goes to 0 with the order 1

n2 , where n is the number of applications of the
unknown operation. Aćın et al. [2] characterized the optimal input state for the
SU(d) estimation where the input state is entangled with the reference system.

On the other hand, Fujiwara [132] treats this problem using the Cramér–Rao
approach in the SU(2) case. This result was extended by Ballester [26]. Bagan et
al. [21] treated the estimation of the unknown n-identical SU(2) operations using
entanglement with the reference system. They also showed that the optimal error
goes to 0 at a rate of π2

n2 and effectively applied the Clebsch–Gordan coefficient
method to this problem. Hayashi [189, 190] treated the same problem using a dif-
ferent method. He derived a relation between this problem and that of Bužek et
al. [65] and applied the obtained relation to this problem. He also pointed out
that the multiplicity of the same irreducible representations can be regarded as
the reference system, i.e., the effect of “self-entanglement.” Indeed, independently
of Hayashi, Chiribella et al. [73] and Bagan et al. [22] also pointed out this effect
of the multiplicity based on the idea of Chiribella et al. [74]. That is, these three
groups proved that the error of the estimation of SU(2) goes to 0 at a rate of π2

n2 .
The role of this “self-entanglement” is widely discussed in Chiribella et al. [76].
Note that, as was mentioned by Hayashi [189], the Cramér–Rao approach does not
necessarily provide the optimal coefficient in the estimation of unitary operations
by the use of entanglement. Chiribella et al. [75] derived the optimal estimator in
the Bayesian setup.

The study of monotone metric in quantum state family was initiated by Mo-
rozowa and Chentsov [296]. Following this research, Petz [345] showed that every
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monotone metric is constructed from the matrix monotone function or the matrix
average. Nagaoka introduced an SLD one-parameter exponential family [300] and
a Bogoljubov one-parameter exponential family [304], characterized them as (6.33)
and (6.34), respectively, and calculated the corresponding divergences (6.42) and
(6.43) [304]. He also calculated the Bogoljubov m divergence as (6.52) [302]. Other
formulas (6.45), and (6.53) for divergences were first obtained by Hayashi [180].
Further, Matsumoto [289] obtained an interesting characterization of RLD (m)-
divergence. Moreover, he showed that an efficient estimator exists only in the SLD
one-parameter exponential family (Theorem 6.7) [298, 300]. However, before this
study, Belavkin [34] introduced a complex-parameterized exponential family and
showed that the RLD version of the Cramér–Rao bound with the complex multi-
parameter could be attained only in special cases. Theorem 6.7 coincides with its
real-one-parameter case. Following this result, Fujiwara [120] showed that any uni-
tary SLD one-parameter exponential family is generated by an observable satisfying
the canonical commutation relation.

In addition, Amari and Nagaoka [11] introduced the torsion concerning the e
parallel translation as the limit of the RHS–LHS in (6.54) and showed that the
torsion-free inner product is only a Bogoljubov metric. They proved that the tor-
sions of e-connection vanish only for a Bogoljubov inner product. They also showed
that the divergence can be defined by a convex function if and only if the torsions of
e-connection and m-connection vanish. Combining these facts, we can derive The-
orem 6.5. However, their proof is based on the calculation of Christoffel symbols.
In this textbook, Theorem 6.5 is proved without any use of Christoffel symbols.

Further, Nagaoka [299, 303] showed that the Bogoljubov metric is character-
ized by the limit of the quantum relative entropy as (6.24). Concerning the SLD
inner product, Uhlmann [394] showed that the SLD metric is the limit of the Bu-
res distance in the mixed-state case as (6.23). Matsumoto [281] extended it to the
general case. In addition, Ohya and Petz [323] characterized the existence of a mea-
surement attaining equality in the monotonicity of the relative entropy (2.59), and
Nagaoka [302] improved their discussion (Exercise 6.27). Fujiwara [121] improved
these discussions further.
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Quantum Measurements and State Reduction

Summary. In quantum mechanics, the state reduction due to a measurement is
called the collapse of a wavefunction. Its study is often perceived as a somewhat
mystical phenomenon because of the lack of proper understanding. As a result, the
formalism for the state reduction is often somewhat inadequately presented. How-
ever, as will be explained in Sect. 7.1, the state reduction due to a measurement
follows automatically from the formulation of quantum mechanics, as described in
Sect. 1.2. Starting with the formulation of quantum mechanics given in Sects. 1.2
and 1.4, we give a detailed formulation of the state reduction due to a measure-
ment. In Sect. 7.2, we discuss the relation with the uncertainty relation using these
concepts. Finally, in Sect. 7.3, we propose a measurement with negligible state
demolition.

Table 7.1. Denotations used in Chap. 7

κ instrument
I Indirect measurement (HD, V, ρ0, E)

O(M) Average matrix (7.14)
Covρ(X, Y ) Correlation between two Hermitian matrices X and Y (7.37)
∆1(X, ρ) Uncertainty of an observable (7.12)
∆2(M , ρ) Uncertainty of a measurement (7.13)

∆3(M , X, ρ) Deviation of POVM M from observable X (7.17)
∆4(κ, X, ρ) Disturbance of X caused by κ (7.23)
∆4(κ, X, ρ) Disturbance of X caused by κ (7.24)

ε(ρ, κ) Amount of state demolition (reduction) by κ (7.40)

7.1 State Reduction Due to Quantum Measurement

In previous chapters, we examined several issues related to quantum mea-
surement; these issues were concerned only with the probability distribution
of the measurement outcomes. However, if we want to examine multiple trials
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of measurements on a single system, we need to describe the state reduction
due to measurement. First, we discuss the state reduction due to a typical
measurement corresponding to a POVM M = {Mω}. Then, we give the gen-
eral conditions for state reduction from the axiomatic framework given in
Sect. 1.2.

Assume that we perform a measurement corresponding to the POVM
M = {Mω} leading to the observation of a measurement value ω. When the
state reduction has the typical form due to the POVM M = {Mω}, the final
state is

1
Tr ρMω

√
Mωρ

√
Mω, (7.1)

where 1
Tr ρMω

is the normalization factor.1 In particular, if M is a PVM, then
Mω is a projection and therefore the above state is [408]

1
Tr ρMω

MωρMω. (7.2)

Since (7.2) is sandwiched by projection operators, the above-mentioned state
reduction is called the projection hypothesis. In many books on quantum
mechanics, the state reduction due to a measurement is restricted only to
that satisfying the projection hypothesis. However, this is in fact incorrect,
and such a state reduction is merely typical. That is, it is not necessarily
true that any state reduction corresponding to the POVM M satisfies the
above equation (7.2). In fact, many state reductions can occur due to a single
POVM M , as will be described later. Let us say that we are given an initial
state ρ on a composite system HA⊗HB . Now, let us perform a measurement
corresponding to the POVM MB = {MB

ω }ω on the system HB and assume
that the measurement value ω is obtained. The final state of HA is then

1
Tr ρ(IA ⊗MB

ω )
TrB(IA ⊗

√
MB

ω )ρ(IA ⊗
√

MB
ω ), (7.3)

regardless of the type of state reduction on HB , as long as the measurement
value ω obeys the distribution TrB(TrA ρ)MB

ω .
To prove this, consider an arbitrary POVM MA = {MA

x }x∈X on HA.
Since (MA

x ⊗MB
ω ) = (IA ⊗

√
MB

ω )(MA
x ⊗ IB)(IA ⊗

√
MB

ω ), the joint distri-
bution of (x, ω) is given by

Tr ρ(MA
x ⊗MB

ω ) = Tr(IA ⊗
√

MB
ω )ρ(IA ⊗

√
MB

ω )(MA
x ⊗ IB)

= Tr[TrB(IA ⊗
√

MB
ω )ρ(IA ⊗

√
MB

ω )]MA
x ,

1 Normalization here implies the division of the matrix by its trace such that its
trace is equal to 1.
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according to the discussion of Sect. 1.4, e.g., (1.23). When the measurement
value ω is observed, the probability distribution of the other value x is

1
Tr ρ(IA ⊗MB

ω )
Tr[TrB(IA ⊗

√
MB

ω )ρ(IA ⊗
√

MB
ω )]MA

x ,

which is the conditional distribution of x when the the measurement value on
HA is ω. Since this condition holds for an arbitrary POVM MA = {MA

x }x∈X
on HA, equation (7.3) gives the final state of HA when ω is the measurement
value of the measurement MB on HB .

However, since this only describes the state reduction of a system that is
not directly measured, we still do not know anything about the kind of state
reduction that would occur on the system HB , e.g., (7.2). As shown from the
Nǎımark–Ozawa extension [315, 327] given below, it is theoretically possible
to perform a measurement such that the state reduction follows (7.1) or (7.2).

Theorem 7.1 (Nǎımark [315], Ozawa [327]) Consider an arbitrary POVM
M = {Mω}ω∈Ω on H and arbitrary ω0 ∈ Ω. Let H0 be the additional space
with the orthonormal basis {uω}ω, and let us define the PVM Eω = |uω〉〈uω|
on H0. There exists a unitary matrix U such that

Tr Mωρ = Tr(I ⊗ Eω)U(ρ⊗ ρ0)U∗, (7.4)√
Mωρ

√
Mω = TrH0(I ⊗ Eω)U(ρ⊗ ρ0)U∗(I ⊗ Eω), (7.5)

where ρ0 = |uω0〉〈uω0 |.
Theorem 4.5 can be obtained from this theorem by considering a PVM
{U∗(I ⊗ Eω)U}ω.

In the following section, we make several observations only concerning
the probabilities for the measurement values ω based on this theorem. As
described by (7.4), a measurement corresponding to an arbitrary POVM M
can be realized by a PVM E = {Eω} with an appropriate time evolution U
between H and H0. Furthermore, according to the above arguments, when a
measurement corresponding to the PVM E on the system H0 is performed,
the following gives the final state of H with the measurement value ω [327]:

1
Tr U(ρ⊗ ρ0)U∗(I ⊗ Eω)

TrH0(I ⊗ Eω)U(ρ⊗ ρ0)U∗(I ⊗ Eω).

Theorem 7.1 therefore shows that the above procedure produces a measure-
ment corresponding to the final state (7.1). This model of measurement is
called an indirect measurement model. The additional space H0 is called an
ancilla, which interacts directly with the macroscopic system. Hence, this
model does not reveal anything about the process whereby the measurement
value is obtained in the ancilla. However, it does give information about the
final state of system H (the system that we want to measure) when the
measurement value ω is obtained in the ancilla. Hence, there remains an
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undiscussed part in the process whereby the measurement value is obtained
via an ancilla. This is called the measurement problem.

In almost all real experiments, the target system H is not directly but
indirectly measured via the measurement on an ancilla. For example, consider
the Stern–Gerlach experiment, which involves the measurement of the spin
of silver atoms. In this case, the spin is measured indirectly by measuring the
momentum of the atom after the interaction between the spin system and
the system of the momentum of the atom. Therefore, in such experiments,
it is natural to apply the indirect measurement model to the measurement
process.

The above theorem can be regarded as the refinement of the Nǎımark
extension for the measurement of real quantum systems [327]. As this was
first carried out by Ozawa, the triple (H0, ρ0, U) given in Theorem 7.1 will
be called the Nǎımark–Ozawa extension.

Proof of Theorem 7.1. The proof will consider the case where Ω is
{1, . . . , n}, the orthonormal basis of H0 is given by {ui}ni=1, and ρ0 is given
by |u1〉〈u1|, for simplicity. First let us check that an arbitrary matrix U on
H⊗H0 can be written as (U i,j)i,j , using a matrix U i,j onH. This implies that
(I⊗|ui〉〈ui|)U(I⊗|uj〉〈uj |) = U i,j⊗|ui〉〈uj |. Accordingly, (7.5) is equivalent
to
√

Miρ
√

Mi = U i,1ρ(U i,1)∗ with ω = i. Choosing U i,1 =
√

Mi, we have∑n
i=1 U i,1(U i,1)∗ = I, and therefore, it is possible to choose the remaining

elements such that U = (U i,j)i,j is a unitary matrix, according to Exercise
1.2. This confirms the existence of a unitary matrix U that satisfies (7.5).
Taking the trace in (7.5) gives us (7.4).

We next consider the possible state reductions according to the framework
for a quantum measurement given in Sect. 1.2. Perform the measurement
corresponding to a POVM M on a quantum system in a state ρ. Then, using
the map κω, we describe the final state with a measurement value ω by

1
Tr ρMω

κω(ρ). (7.6)

The map κω can be restricted to a completely positive map as shown below.
In order to show this, we prove that

κω(λρ1 + (1− λ)ρ2) = λκω(ρ1) + (1− λ)κω(ρ2) (7.7)

for two arbitrary states ρ1 and ρ2 and an arbitrary real number λ satisfying
0 ≤ λ ≤ 1. Consider performing a measurement corresponding to another
arbitrary POVM {M ′

ω′}ω′∈Ω′ after the first measurement. This is equivalent
to performing a measurement within the data set Ω×Ω′ with respect to the
initial state. The joint probability distribution of ω and ω′ is then given by
Tr κω(ρ)M ′

ω′ (Exercise 7.3). Consider the convex combination of the density
matrix. Then, similarly to (1.9), the equation

Tr κω(λρ1 + (1− λ)ρ2)M ′
ω′ = λ Tr κω(ρ1)M ′

ω′ + (1− λ) Tr κω(ρ2)M ′
ω′
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should hold. Since {M ′
ω′}ω′∈Ω′ is an arbitrary POVM, it is also possible to

choose M ′
ω′ to be an arbitrary one-dimensional projection. Therefore, we

obtain (7.7). Physically, we then require κω to be a completely positive map.
This is achieved using arguments similar to that of Sect. 5.1. That is, it can
be verified by adding a reference system. Since (7.6) is a density matrix, we
obtain [330]

Tr κω(ρ) = Tr ρMω, ∀ρ, (7.8)

which is equivalent to Mω = κ∗
ω(I). Thus Tr

∑
ω κω(ρ) = 1. The measurement

with the state reduction is represented by the set of completely positive maps
κ = {κω}ω∈Ω , where the map

∑
ω κω preserves the trace [327]. Henceforth,

we shall call κ = {κω}ω∈Ω an instrument. In this framework, if ρ is the
initial state, the probability of obtaining a measurement value ω is given by
Tr κω(ρ). When a measurement value ω is obtained, the final state is given by

1
Tr κω(ρ)

κω(ρ). We can also regard the Choi–Kraus representation {Ai} of a

TP-CP map as an instrument {κi} with the correspondence κi(ρ) = AiρA∗
i .

The notation “an instrument {Ai}” then actually implies an instrument {κi}.
Therefore, the state evolution with a Choi–Kraus representation {Ai} can
be regarded as a state reduction given by the instrument {Ai} when the
measurement value is not recorded. (The measurement is performed, but the
experimenter does not read the outcome.)

When the instrument is in the form of the square roots {
√

Mω} of a POVM
M = {Mω}ω∈Ω , the final state is given by (7.1) and will be denoted by κM .
If the instrument κ = {κω}ω∈Ω and the POVM M = {Mω}ω∈Ω satisfy
condition (7.8), we shall call the instrument κ an instrument corresponding
to the POVM M . We can characterize the instrument corresponding to a
POVM M as follows.

Theorem 7.2 Let κ = {κω}ω∈Ω be an instrument corresponding to a POVM
M = {Mω} in a quantum system H. There exists a TP-CP map κ′

ω for each
measurement value ω such that

κω(ρ) = κ′
ω

(√
Mωρ

√
Mω

)
. (7.9)

According to this theorem, it is possible to represent any state reduction
κ due to a measurement as the state reduction given by the joint of the
typical state reduction (7.1) and the state evolution κ′

ω that depends on the
measurement value ω of the POVM M .2

2 It can also be understood as follows: the state reduction due to any measurement
by PVM can be characterized as the state reduction satisfying the projection
hypothesis, followed by the state evolution κω. Indeed, many texts state that the
state reduction due to any measurement is given by the projection hypothesis.
Therefore, it is correct in a sense.
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Proof. From Condition ➅ (the Choi–Kraus representation) of Theorem A.2,

there exists a set of matrices E1, . . . , Ek such that κω(ρ) =
k∑

i=1

EiρE∗
i .

Since Trκω(ρ) = Tr ρ

k∑
i=1

E∗
i Ei = Tr ρMω for an arbitrary state ρ, then

∑k
i=1 E∗

i Ei = Mω. Using the generalized inverse matrix
√

Mω
−1 defined in

Sect. 1.5, and letting P be the projection to the range of Mω (or
√

Mω), we
have

k∑
i=1

√
Mω

−1
E∗

i Ei

√
Mω

−1
= P.

This implies that the matrices E1
√

Mω
−1

, . . . , Ek

√
Mω

−1
, I−P are the Choi–

Kraus representations of the TP-CP map. Denoting this TP-CP map as κ′
ω,

we have

κ′
ω(
√

Mωρ
√

Mω)

= (I − P )
√

Mωρ
√

Mω(I − P ) +
k∑

i=1

Ei

√
Mω

−1√
Mωρ

√
Mω

√
Mω

−1
E∗

i

=
k∑

i=1

EiρE∗
i .

Therefore, we see that (7.9) holds.

Combining Theorems 7.1 and 7.2, we can construct a model of indirect
measurement in a manner similar to Theorem 7.1 for an arbitrary instrument
κ = {κω}.

Theorem 7.3 Let HA and HB be two quantum systems. The following two
conditions are equivalent for the set of linear maps κ = {κω}ω∈Ω from T (HA)
to T (HB).

➀ κ is an instrument.
➁ κ can be expressed as

κω(ρ) = TrA,C (IA,B ⊗ Eω) U (ρ⊗ ρ0) U∗ (IA,B ⊗ Eω) , (7.10)

where HC is a quantum system with the dimension dimHB× (Number of
elements in Ω), ρ0 is a pure state on HB ⊗HC , E = {Eω}ω is a PVM
on HC , and U is a unitary matrix on HA ⊗HB ⊗HC .

The above is also equivalent to Condition ➁ with arbitrary-dimensional space
HC , which is called Condition ➁′.

If HA = HB , the following corollary holds.
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Corollary 7.1 (Ozawa [327]) The following two conditions for the set of
linear maps κ = {κω}ω∈Ω from T (HA) to T (HA) are equivalent [327].

➀ κ is an instrument.
➁ κ can be expressed as

κω(ρ) = TrD (IA ⊗ Eω) V (ρ⊗ ρ0) V ∗ (IA ⊗ Eω) , (7.11)

where HD is a (dimHA)2×(Number of elements in Ω)-dimensional quan-
tum system, ρ0 is a pure state on HD, E = {Eω}ω is a PVM on HD,
and V is a unitary matrix on HA ⊗HD.

Therefore, a model of indirect measurement exists for an arbitrary instru-
ment κ = {κω}. Henceforth, we shall call (HD, V, ρ0,E) and (HC , U, ρ0,E)
indirect measurements and denote them by I. Let us now rewrite the above re-
lation among the three different notations for measurements M = {Mω},κ =
{κω}, and I = (HD, V, ρ0,E). The POVM M only describes the probabil-
ity distribution of the measurement values and contains the least amount of
information among the three notations. The instrument κ refers not only to
the measurement value itself, but also to the final state of the measurement.
Hence, a POVM M corresponds uniquely to an instrument κ; however, the
converse is not unique. Furthermore, the indirect measurement I denotes the
unitary evolution required to realize the measurement device as well as the
final state and the probability distribution of the observed data. This is the
most detailed of the three notations (i.e., it contains the most information).
Hence, a POVM M and an instrument κ = {κω} correspond uniquely to an
indirect measurement I, although the converse is not unique.

The proof of Theorem 7.3 is as follows: ➁′⇒➀ and ➁⇒➁′ follows from
inspection. See Exercise 7.1 for ➀⇒➁.

Exercises

7.1. Show that Condition ➁ in Theorem 7.3 may be derived from the
Nǎımark–Ozawa extension (H0, ρ1, U) and Condition ➀ using the Stinespring
representation (HC , ρ0, Uκω′ ) for the TP-CP map κ′

ω given in Theorem 7.2.

7.2. Prove Corollary 7.1 using Theorem 7.3.

7.3. Apply an instrument κ = {κω} to a quantum system H, followed
by a measurement M = {Mω′}. Define the POVM M ′ = {M ′

ω,ω′} by

M ′
ω,ω′

def= κ∗
ω(Mω′), where κ∗

ω is the dual map of κω. Show that Trκω(ρ)Mω′ =
Tr ρM ′

ω,ω′ for an arbitrary input state ρ.

7.4. Given an initial state given by a pure state x = (xk,i) ∈ HA ⊗ HB ,
perform a measurement given by the PVM {|ui〉〈ui|} (where ui = (uj

i ) ∈ HB)
onHB . Show that the final state onHA with the measurement value i is given
by vj

‖vj‖ , assuming that vj
def= (

∑
j uj

ix
k,i) ∈ HA.
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7.5. Prove Theorem 5.2 following the steps below.

a Using formula (7.3) for the state reduction due to a measurement, show
that ➁⇒➀.

b Consider a quantum system HC . When a maximally entangled state is
input to an entanglement-breaking channel κ, show that (i) the output is
a separable state and (ii) ➀⇒➁ using relationship (5.3).

7.2 Uncertainty and Measurement

The concept of uncertainty is often discussed in quantum mechanics in vari-
ous contexts. In fact, there are no less than four distinct implications of the
word uncertainty. Despite this, the differences between these implications are
rarely discussed, and consequently, “uncertainty” is often used in a somewhat
confused manner. In particular, there appears to be some confusion regard-
ing its implication in the context of the Heisenberg uncertainty principle.
We define the four meanings of uncertainty in the following and discuss the
Heisenberg uncertainty principle and related topics in some detail [see (7.27),
(7.30), and (7.32)].

First, let us define the uncertainty of an observable ∆1(X, ρ) for a Her-
mitian matrix X (this can be considered an observable) and the state ρ by

∆2
1(X, ρ) def= Tr ρX2 − (Tr ρX)2 = Tr ρ(X − Tr ρX)2. (7.12)

Next, let us define the uncertainty of a measurement ∆2(M , ρ) for a POVM
M = {(Mi, xi)} with real-valued measurement outcomes and a state ρ by

∆2
2(M , ρ) def=

∑
i

(xi − Eρ(M))2 Tr ρMi, Eρ(M) def=
∑

i

xi Tr ρMi. (7.13)

Defining the average matrix O(M) for the POVM M as below, the formula

∆2
1(O(M), ρ) = ∆2

2(M , ρ), O(M) def=
∑

i

xiMi (7.14)

holds. In particular, an indirect measurement I = (HD, V, ρ0,E) correspond-
ing to M satisfies

∆2(M , ρ) = ∆2(E, ρ⊗ ρ0) = ∆1(O(E), ρ⊗ ρ0) (7.15)

because E is a PVM. Similarly, the Nǎımark extension (HB ,E, ρ0) of the
POVM M satisfies

∆2(M , ρ) = ∆2(E, ρ⊗ ρ0) = ∆1(O(E), ρ⊗ ρ0). (7.16)

Let us define the deviation ∆3(M , X, ρ) of the POVM M from the observable
X for the state ρ by
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∆2
3(M , X, ρ) def=

∑
i

Tr(xi −X)Mi(xi −X)ρ. (7.17)

It then follows that the deviation of M from O(M) becomes zero if M is a
PVM. The square of the uncertainty ∆2

2(M , ρ) of the measurement M can
be decomposed into the sum of the square of the uncertainty of the average
matrix O(M) and the square of the deviation of M from O(M) as follows:

∆2
2(M , ρ) = ∆2

3(M , O(M), ρ) + ∆2
1(O(M), ρ). (7.18)

When the POVM M and the observable X do not necessarily satisfy O(M) =
X, the square of their deviation can be written as the sum of the square of
the uncertainty of the observable X −O(M) and the square of the deviation
of the POVM M from O(M) as follows:

∆2
3(M , X, ρ) = ∆2

3(M , O(M), ρ) + ∆2
1(O(M)−X, ρ). (7.19)

Now, consider the disturbance caused by the state evolution κ from
quantum system HA to quantum system HB . For this purpose, we exam-
ine how well the POVM M = {(Mi, xi)}i on the final system HB recov-
ers the observable X on HA. Its quality can be measured by the quantity
∆3(κ∗(M), X, ρ), where κ∗(M) denotes the POVM {(κ∗(Mi), xi)}i on the
initial system HA. Since κ∗ is the dual map of the map κ, the minimum value
∆4(κ, X, ρ) def= minM ∆3(κ∗(M), X, ρ) is thought to present the disturbance
with respect to the observable X caused by the state evolution κ. Using the
Stinespring representation, equation (7.18) yields

∆2
3(κ

∗(M), X, ρ) = ∆2
3(M , O(M), κ(ρ)) + ∆2

3(κ
∗(EO(M)), X, ρ). (7.20)

Thus, our minimization can be reduced to minY ∆3(κ∗(EY ), X, ρ). Interest-
ingly, using the Stinespring representation (HC , ρ0, Uκ) of κ, we can express
the quantity ∆3(κ∗(EY ), X, ρ) as Ex. 7.10

∆3(κ∗(EY ), X, ρ) = Tr (Uκ(X ⊗ IB,C)U∗
κ − (IA,C ⊗ Y ))2 Uκ(ρ⊗ ρ0)U∗

κ .
(7.21)

As discussed in Sect. 6.1, the matrix κρ,s(X) can be regarded as the image
of Uκ(X ⊗ IB,C)U∗

κ by the projection to the space {Y ⊗ I}. Hence, using
property (6.10), the above can be calculated as

Tr (Uκ(X ⊗ IB,C)U∗
κ − (IA,C ⊗ κρ,s(X)))2 Uκ(ρ⊗ ρ0)U∗

κ

+ Tr ((IA,C ⊗ κρ,s(X))− (IA,C ⊗ Y ))2 Uκ(ρ⊗ ρ0)U∗
κ

= TrX2ρ− Tr
(
(κρ,s(X))2 κ(ρ) + (Y − κρ,s(X))2 κ(ρ)

)
. (7.22)

Thus, this quantity gives the minimum when Y = κρ,s(X). That is, the ma-
trix κρ,s(X) on the output system gives the best approximation of the matrix
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X on the input system. In particular, since κρ,s can be regarded as the condi-
tional expectation in the partial trace case, this argument gives the quantum
version of conditional expectation an interesting meaning. Therefore, the dis-
turbance of X caused by κ has the form

∆4(κ, X, ρ) = min
M

∆3(κ∗(M), X, ρ) = min
Y

∆3(κ∗(EY ), X, ρ)

= ∆3(κ∗(Eκρ,s(X)), X, ρ) =

√(
‖X‖(e)ρ,s

)2
−
(
‖κρ,x(X)‖(e)κ(ρ),s

)2
. (7.23)

Hence, if X is the SLD e representation Lθ,s of the derivative, this can be
regarded as the loss of the SLD Fisher metric.

Furthermore, when an instrument κ = {κω} is used, the disturbance of
the observable X is defined as

∆4(κ, X, ρ) def= ∆4 (κ, X, ρ) , κ
def=

∑
ω

κω. (7.24)

Letting I = (HC , U, ρ0,E) be an indirect measurement corresponding to the
instrument κ, we can describe the disturbance of the observable X by

∆2
4(κ, X, ρ) = Tr((X ⊗ IB,C)− U∗(IA,C ⊗ κρ,s(X))U)2(ρ⊗ ρ0) (7.25)

=
(
‖X‖(e)ρ,s

)2
−
(
‖κρ,x(X)‖(e)κ(ρ),s

)2
,

which may be found in a manner similar to (7.22). The four uncertainties
given here are often confused and are often denoted by ∆2(X). Some care is
therefore necessary to ensure these quantities.

The most famous uncertainty relation is

∆1(X, |u〉〈u|)∆1(Y, |u〉〈u|) ≥ |〈u|[X, Y ]|u〉|
2

. (7.26)

This may be generalized to

∆1(X, ρ)∆1(Y, ρ) ≥
Tr |√ρ[X, Y ]

√
ρ|

2
. (7.27)

Indeed, the above inequality still holds if the right-hand side (RHS) is re-
placed by | Tr ρ[X,Y ]|

2 . However, if the state is not a pure state, inequality
(7.27) is a stronger requirement. For the rest of this section, we assume that
ρ is a density matrix, although the essential point is that ρ ≥ 0 and not that
its trace is equal to 1.

Now, let us prove (7.27). The problem is reduced to the case of Tr ρX = 0
by replacing X by X − Tr ρX. Since

0 ≤ (X ± iY )(X ± iY )∗ = (X ± iY )(X ∓ iY ) = X2 + Y 2 ∓ i[X, Y ],
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we have
√

ρ(X2 + Y 2)
√

ρ ≥ ±i
√

ρ[X, Y ]
√

ρ. From Exercise 1.23 we thus
obtain

∆2
1(X, ρ) + ∆2

1(Y, ρ) ≥ Tr |i√ρ[X, Y ]
√

ρ| = Tr |√ρ[X, Y ]
√

ρ|. (7.28)

Replacing X by tX, we see that

∆2
1(X, ρ)t2 − Tr |√ρ[X, Y ]

√
ρ|t + ∆2

2(Y, ρ) ≥ 0.

Equation (7.27) can then be obtained from the discriminant equation for t.
The original uncertainty relation proposed by Heisenberg [200] was ob-

tained through a gedanken experiment, and it relates the accuracy of mea-
surements to the disturbance of measurements. The implications of the accu-
racy and the disturbance due to the measurement are not neccesarily clear in
(7.27). At least, it is incorrect to call (7.27) the Heisenberg uncertainty rela-
tion because it does not involve quantities related to measurement [335,336].

One may think that Heisenberg’s arguments would be formulated as

∆3(M , X, ρ)∆4(κ, Y, ρ) ≥
Tr |√ρ[X, Y ]

√
ρ|

2
. (7.29)

However, this is in fact incorrect, for the following reason [335, 337, 338].
Consider the POVM M that always gives the measurement value 0 without
making any measurement. Then, ∆3(M , X, ρ) is finite while ∆4(κ, Y, ρ) is 0.
Therefore, this inequality does not hold in general. The primary reason for
this is that the RHS has two quantities having no connection to the POVM
M . Hence, we need to seek a more appropriate formulation. Indeed, since
Heisenberg’s gedanken experiment treats only the eigen state of the observ-
able X, the measurement error in his experiment coincides with ∆2(M , ρ) as
well as ∆3(M , X, ρ). When we apply his gedanken experiment to the noneigen
state, his gendanken experiment seems to hold even with ∆2(M , ρ). Hence,
it is more appropriate to treat ∆2(M , ρ) than ∆3(M , X, ρ) and write3

∆2(M , ρ)∆4(κ, Y, ρ) ≥
Tr |√ρ[O(M), Y ]

√
ρ|

2
. (7.30)

This inequality means that the product of the standard deviation ∆2(M , ρ)
of the measurement values and the disturbance ∆4(κ, Y, ρ) of the observable
Y due to the measurement κ is lower bounded by a quantity involving M and
Y . In particular, when Y is the SLD e representation Lθ,s of the derivative,
the information loss ∆4(κ, Lθ,s, ρ) satisfies
3 As discussed in Sect. 6.2, ∆4(κ, Y, ρ) also has the meaning of the amount of loss

of the SLD Fisher information. Therefore, this inequality is interesting from the
point of view of estimation theory. It indicates the naturalness of the SLD inner
product. This is in contrast to the naturalness of the Bogoljubov inner product
from a geometrical viewpoint.
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∆2(M , ρ)∆4(κ, Lθ,s, ρ) ≥
Tr |√ρ[O(M), Lθ,s]

√
ρ|

2
.

A proof of this relation will be given later. Equation (7.29) may be corrected
by changing the left-hand side (LHS) of the inequality. This is the subject of
the following theorem.

Theorem 7.4 (Ozawa [335,337,338]) Let κ be an instrument corresponding
to the POVM M . A state ρ on HA then satisfies

∆2(M , ρ)∆4(κ, Y, ρ) + ∆1(O(M)−X, ρ)∆1(Y, ρ) ≥
Tr |√ρ[X, Y ]

√
ρ|

2
.

(7.31)

Inequality (7.30) may then be shown by substituting X = O(M) into this
theorem.

Next consider trying to measure two observables simultaneously. For
this purpose, we denote a POVM with two measurement values by M =
({Mω}, {x1

ω}, {x2
ω}). Then, the two average matrices are given by

O1(M) def=
∑
ω

x1
ωMω, O2(M) def=

∑
ω

x2
ωMω.

Theorem 7.5 The POVM M = ({Mω}, {x1
ω}, {y2

ω}) satisfies4

∆3(M , O1(M), ρ)∆3(M , O2(M), ρ)

≥
Tr |√ρ[O1(M), O2(M)]

√
ρ|

2
. (7.32)

There have also been numerous discussions relating to uncertainties, including
its relation to quantum computation [337,338].

Proof of Theorem 7.4. The theorem is proven by considering an indirect
measurement I = (HC , U, ρ0,E) corresponding to the instrument κ. Let
Z = κρ,s(X). Then, from (7.25),

∆4(κ, Y, ρ) = ∆1(Y ⊗ IB,C − U∗(Z ⊗ IA,C)U, ρ⊗ ρ0). (7.33)

Since

0 = U∗[IA,B ⊗O(E), Z ⊗ IA,C ]U = [U∗(IA,B ⊗O(E))U, U∗(Z ⊗ IA,C)U ]
= [U∗(IA,B ⊗O(E))U, Y ⊗ IB,C ]

+ [U∗(IA,B ⊗O(E))U, U∗(Z ⊗ IA,C)U − Y ⊗ IB,C ]
= [U∗(IA,B ⊗O(E))U −X ⊗ IB,C , Y ⊗ IB,C ] + [X ⊗ IB,C , Y ⊗ IB,C ]

+ [U∗(IA,B ⊗O(E))U, U∗(Z ⊗ IA,C)U − Y ⊗ IB,C ],

4 The equality holds when an appropriate POVM M is performed in a quantum
two-level system [301]. For its more general equality condition, see Exercise 7.16.
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then

[X, Y ]⊗ IB,C = [X ⊗ IB,C − U∗(IA,B ⊗O(E))U, Y ⊗ IB,C ]
+ [U∗(IA,B ⊗O(E))U, Y ⊗ IB,C − U∗(Z ⊗ IA,C)U ].

Multiplying both sides by
√

ρ⊗ ρ0, taking the partial trace TrB,C , and ap-
plying the general formula Tr |X1 + X2| ≤ Tr |X1| + Tr |X2| to the matrices
on HA, we obtain

Tr |√ρ[X, Y ]
√

ρ|
≤ TrA |TrB,C

√
ρ⊗ ρ0[X ⊗ IB,C − U∗(IA,B ⊗O(E))U, Y ⊗ IB,C ]

√
ρ⊗ ρ0|

+TrA|TrB,C

√
ρ⊗ρ0[U∗(IA,B⊗O(E))U, Y ⊗IB,C−U∗(Z⊗IA,C)U ]

√
ρ⊗ρ0|.

Since the indirect measurement I = (HC , U, ρ0,E) corresponds to the
POVM M , we have TrB,C(I ⊗ √ρ0)U∗(IA,B ⊗ O(E))U(I ⊗ √ρ0) = O(M)
Ex. 7.18. Referring to Exercise 1.15, the first term is

TrA |TrB,C

√
ρ⊗ ρ0[X ⊗ IB,C − U∗(IA,B ⊗O(E))U, Y ⊗ IB,C ]

√
ρ⊗ ρ0|

= TrA |
√

ρ[X −O(M), Y ]
√

ρ| ≤ ∆1(X −O(M), ρ)∆1(Y, ρ).

The second term is

TrA |TrB,C

√
ρ⊗ρ0[U∗(IA,B⊗O(E))U, Y ⊗IB,C−U∗(Z⊗IA,C)U ]

√
ρ⊗ρ0|

≤ Tr |
√

ρ⊗ ρ0[U∗(IA,B ⊗O(E))U, Y ⊗ IB,C − U∗(Z ⊗ IA,C)U ]
√

ρ⊗ ρ0|
≤ ∆1(U∗(IA,B ⊗O(E))U, ρ⊗ ρ0)∆1(Y ⊗ IB,C − U∗(Z ⊗ IA,C)U, ρ⊗ ρ0).

Finally, from (7.15) we have ∆2(M , ρ) = ∆1(U∗(IA,B ⊗ O(E))U, ρ ⊗ ρ0).
Combining this with (7.33), we obtain (7.31).

In particular, inequality (7.30) with the state reduction κE and the spec-
tral decomposision E of X can be derived more simply as follows. In this
case, the indirect measurement is given as (HB , U, ρ = |u0〉〈u0|,E). From the
construction of indirect measurement, we have

U∗(IA ⊗XB)U |u〉 ⊗ |u0〉 = (X|u〉)⊗ |u0〉. (7.34)

Hence,
√

ρ⊗√ρ0[U∗(IA ⊗XB)U, Y ⊗ IB − U∗(Z ⊗ IB)U ]
√

ρ⊗√ρ0

=
√

ρ⊗√ρ0[U∗(IA ⊗XB)U, Y ⊗ IB ]
√

ρ⊗√ρ0 = (
√

ρ[X, Y ]
√

ρ)⊗ ρ0.

Thus, we have (7.30).
In addition, when the equality of (7.27) holds and TrρX = Tr ρY =

0, the relation (X ± iY )
√

ρ = 0 holds. From (7.34) this relation implies
(U∗(IA⊗XB)U ± iY ⊗ IB)

√
ρ⊗√ρ0 = 0. Hence, the equality of (7.30) holds

and κEρ,s(Y ) = 0.
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Proof of Theorem 7.5. We apply Exercise 5.5. Let us choose HB , a PVM
on H⊗HB , and a state ρ0 on HB such that

Tr ρMω = Tr(ρ⊗ ρ0)Eω,

with respect to an arbitrary state ρ on H. Let (HB ,E, ρ0) be the Nǎımark
extension of M . Then,

∆3(M , Oi(M), ρ) = ∆1(Oi(E)−Oi(M)⊗ IB , ρ⊗ ρ0).

Since [O1(E), O2(E)] = 0, we have

[O1(E)−O1(M)⊗ IB , O2(E)−O2(M)⊗ IB ]

= −[O1(E), O2(M)⊗ IB ]− [O1(M)⊗ IB , O2(E)−O2(M)⊗ IB ].

Accordingly,

∆1(O1(E)−O1(M)⊗ IB , ρ⊗ ρ0)∆1(O2(E)−O2(M)⊗ IB , ρ⊗ ρ0)

≥ Tr |
√

ρ⊗ ρ0[O1(E)−O1(M)⊗ IB , O2(E)−O2(M)⊗ IB ]
√

ρ⊗ ρ0|
≥TrA|TrB

√
ρ⊗ ρ0[O1(E)−O1(M)⊗ IB , O2(E)−O2(M)⊗ IB ]

√
ρ⊗ ρ0|

= TrA |TrB

√
ρ⊗ ρ0(−[O1(E), O2(M)⊗ IB ]

− [O1(M)⊗ IB , O2(E)−O2(M)⊗ IB ])
√

ρ⊗ ρ0|
= TrA |TrB

√
ρ⊗ ρ0[O1(E), O2(M)⊗ IB ]

√
ρ⊗ ρ0|.

This completes the proof. In the last equality, we used the fact that TrB(I ⊗√
ρ0)(O2(E)−O2(M)⊗ IB)(I ⊗√ρ0) = 0 and Exercise 1.15.

Exercises

7.6. Show (7.14) for the PVM M .

7.7. Show (7.18).

7.8. Show (7.19).

7.9. Show (7.20) using a Stinespring representation.

7.10. Show (7.21) following the steps below.

a Let (HC , ρ0, Uκ) be a Stinespring representation of κ. Show that

Tr(X ⊗ I − xU(I ⊗ E)U)2ρ = Tr(X − x)κ∗(E)(X − x)ρ.

b Show (7.21).

7.11. Show that ∆2
2(M , ρ) ≤ ∆2

3(M , X, ρ) + ∆2
1(X, ρ).
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7.12. Let (HB ,E, ρ0) be a Nǎımark extension Ex. 5.5 of M = ({Mω}, {xω}).
Show that ∆2

3(M , X, ρ) = ∆2
1(O(E)−X ⊗ IB , ρ⊗ ρ0).

7.13. Show the following using (7.31) [335].

∆3(M , X, ρ)∆4(κ, Y, ρ) + ∆1(X, ρ)∆4(κ, Y, ρ) + ∆3(M , X, ρ)∆1(Y, ρ)

≥
Tr |√ρ[X, Y ]

√
ρ|

2
. (7.35)

7.14. Show that

det
(

Covρ(X, X) Covρ(X, Y )
Covρ(X, Y ) Covρ(Y, Y )

)
≥
(

Tr |√ρ[X, Y ]
√

ρ|
2

)2

, (7.36)

which is a stronger inequality than (7.27), using (7.27). Note that we define
the correlation between two Hermitian matrices X and Y under the state ρ
as

Covρ(X, Y ) def= Tr(X − Tr Xρ) ◦ (Y − Tr Y ρ)ρ. (7.37)

7.15. Show that the equality in (7.36) always holds if H = C
2 [301] by

following the steps below. From this fact it follows that the equality in (7.27)
holds when Covρ(X, Y ) = 0 for H = C

2. In the next proof, we define X =∑3
i=1 xiSi, Y =

∑3
i=1 yiSi, ρ = 1

2 (I +
∑3

i=1 aiSi), and fist treat the case
where Tr X = TrY = 0. After this special case, we consider the general case.

a Show that Covρ(X, Y ) = 〈x,y〉 − 〈x,a〉〈a,y〉.
b Let z be the vector product (outer product) of x and y, i.e., z = x ×

y
def= (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1). Show that −i

2 [X, Y ] = Z
def=∑3

i=1 ziSi.
c Show that Tr |√ρZ

√
ρ| =

√
‖z‖2 − ‖z × a‖2.

d Show that (7.36) is equivalent to

(‖x‖2 − 〈x,a〉2)(‖y‖2 − 〈y,a〉2)− (〈x,y〉 − 〈x,a〉〈a,y〉)2

≥ ‖x× y‖2 − ‖(x× y)× a‖2 (7.38)

when Tr X = TrY = 0 in a quantum two-level system.
e Show (7.38) if 〈x,y〉 = 〈x,a〉 = 0.
f Show that a 2× 2 matrix (bi,j) with determinant 0 can be taken such that

〈x̃,a〉 = 0 and 〈x̃,a〉 = 0, where x̃
def= b1,1x+ b1,2y and ỹ

def= b2,1x+ b2,2y.
g Show (7.38) if TrX = TrY = 0.
h Show that (7.36) still holds even if TrX = TrY = 0 is not true.

7.16. Show that the POVM MX,Y,ρ below satisfies O1(M) = X, O2(M) =
Y , and the equality in (7.32), for X, Y, ρ satisfying the equality in (7.27).
Construction of the POVM MX,Y,ρ: Let the spectral decomposition of
X and Y be X =

∑
i xiEX,i and Y =

∑
j yjEY,j , respectively. Let p and
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q be two nonnegative real numbers such that p + q = 1. Define the POVM
MX,Y,ρ with the data set Ω = {i} ∪ {j} as follows. Let MX,Y,ρ,i = pEX,i

and MX,Y,ρ,j = qEY,j . Define x1
i

def= 1
p (xi − Tr ρX) + Tr ρX, x1

j
def= Tr ρX,

x2
i

def= Tr ρY , x2
j

def= 1
q (yi − Tr ρY ) + Tr ρY . The POVM is then defined as

MX,Y,ρ
def= {(MX,Y,ρ,i, x

1
i , x

2
i )} ∪ {(MX,Y,ρ,j , x

1
j , x

2
j )}.

7.17. Using (7.30), show that the following two conditions are equivalent for
two Hermitian matrices X and Y .

➀ [X, Y ] = 0.
➁ There exist an instrument κ = {κω} and a set {xω} such that the following

two conditions

Tr ρX =
∑
ω

xω Tr κω(ρ), ∆4(κ, Y, ρ) = 0

hold for an arbitrary state ρ. The first equation implies that the instru-
ment κ corresponds to the observable X. The second equation implies
that the instrument κ does not disturb the observable Y .

7.18. Show that

TrB,C ((IA ⊗
√

ρ0) U∗ (IA,B ⊗O(E)) U (IA ⊗
√

ρ0)) = O(M) (7.39)

for an indirect measurement I = (HC , U, ρ0,E) corresponding to M .

7.19. Given two state evolutions κ1 and κ2, show that ∆2
4(λκ1 + (1 −

λ)κ2, X, ρ) ≥ λ∆2
4(κ1, X, ρ) + (1 − λ)∆2

4(κ2, X, ρ). Show that the equality
holds when the space spanned by the supports of κ1(X ◦ ρ) and κ1(ρ) is
orthogonal to the space spanned by the supports of κ2(X ◦ ρ) and κ2(ρ).

7.20. Let two Hermitian matrices X and Y on H satisfy Covρ(X, X)

Covρ(Y, Y ) =
(

Tr |√ρ[X,Y ]
√

ρ|
2

)2
and Covρ(X, Y ) = 0. Let X =

∑k
i=1 xiEi,

and define the POVM M = {Mi, x̂i}ki=0 according to the condition x̂0 =
Tr Xρ, x̂i = TrXρ+ 1

p (xi−Tr Xρ), M0 = (1− p)I, and Mi = pEi. Now con-
sider equivalent another space H′ to H, and the unitary map U from H to H′.
Define κ = {κi} according to κ0(ρ) = (1− p)UρU∗ and κi(ρ) =

√
Miρ
√

Mi.
Show that O(M) = X and that the equality of (7.30) holds.

7.3 Measurements with Negligible State Demolition

As discussed previously, any measurement inevitably demolishes the mea-
sured state. In this section, we propose a method constructing a measure-
ment with negligible state demolition. When a measurement described by
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an instrument κ is made on a system in a state ρ, the amount of the state
demolition (reduction) is given by

ε(ρ,κ) def=
∑
ω

Tr κω(ρ)b2
(

ρ,
1

Tr κω(ρ)
κω(ρ)

)
, (7.40)

where b is the Bures distance. In the following discussion, we consider the
typical state reduction κM of a POVM M = {Mi}. Then, the amount of the
state demolition can be found to be [185]

ε(ρ,κM ) =
∑

i

Tr ρMi

⎛
⎝1− Tr

√
ρ1/2

√
Miρ
√

Mi

Tr ρMi
ρ1/2

⎞
⎠

= 1−
∑

i

√
Tr ρMi Tr

√
ρ1/2

√
Miρ

√
Miρ1/2

= 1−
∑

i

√
Tr ρMi Tr ρ1/2

√
Miρ

1/2

= 1−
∑

i

√
Tr ρMi Tr ρ

√
Mi ≤ 1−

∑
i

(
Tr ρ

√
Mi

)2
, (7.41)

where we used the quantum version of Jensen’s inequality Ex. 2.18 in the last
formula. Conversely, since Mi ≤ I, we have Mi ≤

√
Mi, and therefore

ε(ρ,κM ) ≥ 1 −
∑

i

(
Tr ρ
√

Mi

)3/2. When there is no scope of ambiguity, we
will use the abbreviation ε(ρ,κM ) for ε(ρ,M). In particular, if ρj is gener-
ated with a probability distribution p = {pj}, the average of ε(ρj ,κM ) can
be evaluated as

ε(p, κM ) def=
∑

j

pjε(ρj ,κM ) ≤ 1−
∑

j

pj

∑
i

(
Tr ρj

√
Mi

)2

≤ 1−
∑

i

(∑
j

pj Tr ρj

√
Mi

)2
= 1−

∑
i

(
Tr ρ̄p

√
Mi

)2
, (7.42)

where ρ̄p
def=

∑
j pjρj . Hence, the analysis of ε(p, κM ) is reduced to that of

1−
∑

i

(
Tr ρ̄p

√
Mi

)2.
Let us now consider which POVM M has a negligible state demolition.

For this analysis, we focus on the number im
def= argmaxi Tr Miρ and the

probability PM ,max
ρ

def= Tr Mimρ. Then, we obtain

(1− PM ,max
ρ )(1 + PM ,max

ρ ) = 1− (PM ,max
ρ )2 ≥ 1−

(
Tr ρ

√
Mim

)2

≥ 1−
∑

i

(
Tr ρ

√
Mi

)2
≥ ε(ρ,M).

Therefore, we see that ε(ρ,M) will approach 0 if PM ,max
ρ approaches 1.
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Fig. 7.1. Measurement with negligible state demolition

However, a meaningful POVM does not necessarily have the above prop-
erty, but usually has the following property in the asymptotic case, i.e.,
in the case of n-fold tensor product state ρ⊗n on H⊗n. Let (M (n),xn) =
{(M (n),xn)} be a sequence of pairs of POVMs and functions to R

d. Hence,
the vector xn(i) = (xn,k(i)) is the measurement value following the probabil-
ity distribution PM(n)

ρ⊗n . Suppose that the measurement value xn(i) = (xn,k(i))
satisfies the weak law of large numbers as a random variable. That is, for a
given density ρ, there exists a vector a ∈ R

d such that

Tr ρ⊗nM (n){‖xn(i)− a‖ ≥ ε′} → 0, ∀ε′ > 0. (7.43)

For the definition of the notation M (n){‖xn(i)−a‖ ≥ ε′}, see (6.73). There-
fore, we propose a method producing a POVM with negligible state demoli-
tion from a POVM satisfying (7.43) as follows.

Theorem 7.6 For a given positive real number δ and a given positive in-
teger l, we define the modified POVM M (n),δ,l taking values in Z

d in the
following way. We also define the function xn

δ from the set Z
d to R

d as
xn

δ (j) = δj. If a sequence {δn} of real numbers and another sequence {ln} of
integers satisfy δn → 0, ln →∞, and

Tr ρ⊗nM (n){‖xn(i)− a‖ ≥ δn} → 0, (7.44)
lnδn → 0, (7.45)

we then have

ε(ρ⊗n,M (n),δn,ln)→ 0, (7.46)

Tr ρ⊗nM (n),δn,ln{‖xn
δn

(j)− a‖ ≥ ε′} → 0, ∀ε′ > 0. (7.47)
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Construction of M (n),δ,l: Define

Uy,ε
def=

{
x ∈ R

d

∣∣∣∣∀k, yk − 1
2
ε ≤ xk < yk +

1
2
ε

}
,

Ũy,ε
def=

{
x ∈ R

d

∣∣∣∣∀k, yk − 1
2
ε < xk ≤ yk +

1
2
ε

}

for y = (yk) ∈ R
d. Define M

(n)
y,δ

def=
∑

xn
i ∈Uy,δ

M
(n)
i . Then, {M (n)

δj,δ}j∈Zd is

a POVM since
∑
j∈Zd

M
(n)
δj,δ = I for arbitrary δ > 0. Moreover, we de-

fine M
(n),δ,l
j

def=
1
ld

Mn
δj,lδ. Using a similar discussion, we can check that∑

j∈Zd

M
(n)
δj,lδ = ldI, and then verify that M (n),δ,l = {M (n),δ,l

j }j∈Zd is a POVM

with measurement values in Z
d.

The existence of a sequence {δn} that satisfies condition (7.44) and δn → 0
can be verified from Lemma A.3 in the appendix. Note that the choice of
the POVM M (n),δ,l depends only on the choice of δ and not ρ⊗n. If the
convergence of (7.43) is uniform for every ε > 0, then the convergences of
(7.46) and (7.47) also are not dependent on ρ⊗n.

Proof of (7.46): Let δj ∈ Ũa,(l−1)δ ∩ δZ
d. Since {xn

i | ‖xn(i)− a‖ < δ} ⊂
Uδj,lδ, we obtain

1
ld

M (n){‖xn(i)− a‖ < δ} ≤M
(n),δ,l
j . (7.48)

From the matrix monotonicity of x �→
√

x and the fact that 0≤M (n){‖xn(i)−
a‖ < δ} ≤ I, we obtain

1
ld/2M

(n){‖xn(i)− a‖ < δ} ≤ 1
ld/2

√
M (n){‖xn(i)− a‖ < δ}≤

√
M

(n),δ,l
j .

Meanwhile, since #(Ũa,(l−1)δ ∩ δZ
d) = (l − 1)d, we have

ε(ρ⊗n,M (n),δ,l) ≤ 1−
∑
j∈Zd

(
Tr ρ⊗n

√
M

(n),δ,l
j

)2

≤ 1−
∑

δj∈Ũa,(l−1)δ

(
Tr ρ⊗n

√
M

(n),δ,l
j

)2

≤ 1−
∑

δj∈Ũa,(l−1)δ

(
1

ld/2 Tr ρ⊗nM (n){‖xn(i)− a‖ < δ}
)2

= 1− (l − 1)d

ld

(
Tr ρ⊗nM (n){‖xn(i)− a‖ < δ}

)2
.
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From (7.44) and the fact that ln → ∞, substituting δn and ln in δ and l,
respectively, we obtain ε(ρ⊗n,M (n),δn,ln)→ 0.

Proof of (7.47): If ‖δj − a‖ ≥ ε′ and xn(i) ∈ Uδj,lδ, then ‖bxn(i)− a‖ ≥
ε′ −
√

dlδ. It then follows that

M (n),δ,l{‖xn
δ (j)− a‖ ≥ ε′} ≤M (n){‖xn(i)− a‖ ≥ ε′ −

√
dlδ}.

Therefore, if δn and ln are chosen such that condition (7.45) is satisfied, then
(7.47) is satisfied.

Note that similarly we can show that ε(pn,κM(n),δn,ln ) → 0, which will
be used in Chap. 10.

As discussed in Chap. 6, the asymptotic performance of an estimator can
be treated with at least two criteria. One is large deviation, wherein we focus
on the decreasing exponential rate of the probability that the estimate does
not belong to the neighborhood of the true value with a fixed radius. The
other is small deviation, wherein we focus on the asymptotic behavior of
mean square error. In mathematical statistics, it is known that its discussion
is essentially equivalent to that of the probability that the estimate does not
belong to the the neighborhood of the true value with a radius proportional
to 1√

n
. That is, the difference between two criteria is essentially expressed by

the difference of the asymptotic behavior of the radius of the neighborhood
of interest.

As mentioned in Exercise 7.21, if the original POVM is optimal in the
sense of a large deviation, the deformed one is also optimal in the same
sense. However, even if the original estimator is optimal in the sense of a small
deviation, the estimator deformed by the presented method is not necessarily
optimal in the same sense. That is, lim ε(ρ⊗n,M (n),δn,ln) affects the accuracy
of the deformed estimator in the sense of the small deviation, but not in the
sense of the large deviation. Therefore, it is expected that there exists a
tradeoff relation between lim ε(ρ⊗n,M (n)) and the limit of the mean square
error of the estimator.

Moreover, since the measurement with negligible state demolition has not
been realized in the experiment, its realization is strongly desired.

Exercises

7.21. Consider the sequence M = {(Mn, θ̂n)} of estimators for the state
family with one parameter {ρθ|θ ∈ R}. Let β(M , θ, ε) be continuous with
respect to ε. Show that β(M , θ, ε) = β({(Mn,δn , xn

δn
)}, θ, ε) when lnδn → 0,

where Mn,δ,l is defined in a way similar to that in the above discussion.

7.4 Historical Note

The mathematical description of a measurement process was initiated by von Neu-
mann [408]. In his formulation, the measurement is described by a projection-
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valued measure. From the mathematical viewpoint, Nǎımark [315] showed that any
POVM can be characterized as the restriction of the projection-valued measure.
This projection-valued measure is called a Nǎımark extension. Holevo applied this
argument to quantum measurements [216].

Further, Davis and Lewis [92] formulated the state reduction as a positive-map-
valued measure. Following this research, Ozawa [327] proved that any measurement
reduction should be described by a CP-map-valued measure, i.e., an instrument. He
also proposed that the indirect measurement model as a description of the interac-
tion with the macroscopic system can be considered to occur after the time evolu-
tion U [333,334]. Indeed, a positive-map-valued measure {κω} is a CP-map-valued
measure if and only if it can be described by an indirect measurement model [327].
For any POVM, its indirect measurement model gives a Nǎımark extension of this
POVM (Theorem 7.1). For example, an indirect measurement model of the joint
measurement of the position Q and the momentum P is known (see Holevo [216]).
Further, Hayashi et al. [187] constructed indirect measurements for a meaningful
POVM for squeezed states. For a more precise description of state reduction, see
Holevo [221], who discusses state reductions due to continuous-variable measure-
ments using semigroup theory. Busch et al. [64] discuss the connection between
this formulation and experiments. In addition, Ozawa characterized the instrument
given by (7.1) as a minimal-disturbance measurement [332,334]. Furthermore, this
book treats state reductions where the input and output systems are different sys-
tems because such a reduction is not very uncommon in quantum information pro-
cessing. Hence, this book focuses on Theorem 7.3 as a generalization of Corollary 7.1
obtained by Ozawa [327].

The uncertainty relation between conjugate observables was discussed in the
context of gedanken experiments by Heisenberg [200]. It was first treated math-
ematically by Robertson [351], who was not, however, concerned with the effect
of measurement. Recently, Ozawa [334–338] formulated the disturbance by mea-
surement, and treated the uncertainty relation concerning measurement, mathe-
matically. These are undoubtably the first attempts at a mathematically rigorous
treatment of Heisenberg uncertainty. In this book, we mathematically formulate the
same problem, but in a different way. In particular, the definition of disturbance in
this text is different from that by Ozawa. Hence, the inequality given in this text is a
sightly stronger requirement than that of Ozawa. However, the methods of Ozawa’s
and our proofs are almost identical. For further discussion of the historical perspec-
tive of this topic, see Ozawa [338]. Indeed, Ozawa considered inequality (7.29) to be
the mathematical formulation of Heisenberg’s uncertainty relation, and he gave its
counterexample. He also proposed another type of uncertainty relation—(7.31) and
(7.35)—due to measurement. However, in this book, inequality (7.30) is treated as
the mathematical formulation of Heisenberg’s uncertainty relation. Therefore, the
discussion in this book is different from that of Ozawa.

Concerning the mixed-state case, Nagaoka [301] generalized inequality (7.26) to
inequality (7.27). [Indeed, the RHS of Nagaoka’s original inequality has a different
expression; however, it is equal to the RHS of (7.27).] This is a stronger inequality
than the trivial generalization ∆1(X, ρ)∆1(Y, ρ) ≥ | Tr ρ[X,Y ]|

2 . All inequalities in
Sect. 7.2 are based on the former, but Ozawa derived several inequalities based
on the latter. Hence, inequalities in this book are stronger than the corresponding
Ozawa inequality in the mixed-state case.
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Further, using inequality (7.27), Nagaoka [301] derived inequality (7.32) in
the mixed-state case. The same inequality with the RHS | Tr ρ[X,Y ]|

2 has been dis-
cussed by many researchers [14, 15, 239, 328]. Nagaoka applied this inequality to
the Cramér–Rao-type bound and obtained the bound (6.95) in the two-parameter
case, first. Hayashi [172] extended this inequality to the case with more than two
parameters.

The study of measurements with a negligible state demolition has been moti-
vated by quantum universal variable-length source coding because quantum uni-
versal variable-length source coding requires determination of the compression rate
with small state demolition (Sect. 10.5). Hayashi and Matsumoto [185] treated this
problem and obtained the main idea of Sect. 7.3. This method is useful for estimat-
ing the state of the system without serious state demolition. This method is often
called gentle tomography. Bennett et al. [46] considered the complexity of this kind
of measurement.
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Entanglement and Locality Restrictions

Summary. Quantum mechanics violates everyday intuition not only because
the measured data can only be predicted probabilistically but also because of a
quantum-specific correlation called entanglement. It is believed that this type of
correlation does not exist in macroscopic objects. Entanglement can be used to
cause nonlocal phenomena. States possessing such correlations are called entangled
states (or states that possess entanglement). Among these states, the states with
the highest degree of entanglement are called maximally entangled states or EPR
states. Historically, the idea of a nonlocal effect due to entanglement was pointed
out by Einstein, Podolsky, and Rosen; hence, the name EPR state.

In order to transport a quantum state over a long distance, we have to retain
its coherence during its transmission. However, it is often very difficult because
the transmitted system can be easily correlated with the environment system. If
the sender and receiver share an entangled state, the sender can transport his/her
quantum state to the receiver without transmitting it, as is mentioned in Chap. 9.
This protocol is called quantum teleportation and clearly explains the effect of
entanglement in quantum systems. Many other effects of entanglement have also
been examined, some of which are given in Chap. 9.

However, it is difficult to take advantage of entanglement if the shared state
is insufficiently entangled. Therefore, one topic of investigation will be to discuss
how much of a maximally entangled state can be extracted from a state with a
small amount of entanglement. Of course, if we allow quantum operations between
two systems, we can always produce maximally entangled states. Therefore, we
examine cases where only local quantum operations and classical communications
are allowed.

Table 8.1. Denotations used in Chap. 8

|ΦL〉〈ΦL| Maximally entangled state of size L
Hs Symmetric space
Ha Antisymmetric space
F Flip operator Ps − Pa

σα Maximally correlated state (8.113)
ρW,p Werner state (8.188)
ρI,p Isotropic state (8.191)
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Table 8.1. Continued

Characterizations of q-q channel κ

Fe(ρ, κ) Entanglement fidelity for TP-CP κ (8.17)
Fe(ρ, κ) Entanglement fidelity for an instrument (8.27)
I(ρ, κ) Transmission information of q-q channel κ (8.33)
Ic(ρ, κ) Coherent information (8.35)
Ĩc(ρ, κ) Pseudocoherent information (8.46)
He(κ, ρ) Entropy exchange H((κ ⊗ ιR)(|x〉〈x|))

Class of localized operations (C =)
∅ Only local operations

��� Local operations and zero-rate classical communications from A to B
→ Local operations and classical communications from A to B
← Local operations and classical communications from B to A
↔ Local operations and

two-way classical communications between A and B
S Separable operations

PPT Positive partial transpose (PPT) operations

Entanglement quantities
EC

d,1(ρ) Entanglement of distillation (8.69)
EC,†

d,1 (ρ) Strong converse entanglement of distillation (8.70)
EC

d,e(ρ) Entanglement of exact distillation (8.80)
EC

c (ρ) Entanglement of cost (8.93)
EC

c,e(ρ) Entanglement of exact cost (8.97)
Esq(ρ) Squashed entanglement (8.111)
E���

c (ρ) Entanglement of cost with zero-rate communication (8.124)
Ef (ρ) Entanglement of formation (8.83)

Er,S(ρ) Entanglement of relative entropy concerning separable states
(def= minσ:separable D(ρ‖σ))

Er,PPT(ρ) Entanglement of relative entropy concerning PPT states
(def= minσ:PPT D(ρ‖σ))

ESDP(ρ) SDP bound (def= minσ D(ρ‖σ) + log ‖τA(σ)‖1)
Ep(ρ) Entanglement of purification (8.127)
EC

m(ρ) Maximum of negative conditional entropy (8.104)
Esr(ρ) Logarithm of Schmidt rank (8.98)
Co(ρ) Concurrence (8.184)

EC
d,L(ρ) Conclusive teleportation fidelity (8.79)

Other types of correlation
Iρ(X : Y ) Quantum mutual information (8.32)
CA→B

d (ρ) See (8.133)
Cc(ρ) See (8.149)
C(ρ, δ) See (8.151)
C̃(ρ, δ) See (8.152)
C(ρ) def= C(ρ, 0) = C̃(ρ, 0)

CA→B−E
k (ρ) Optimal generation rate of secret key with

one-way communication (9.69)
CA→B−E

d (ρ) See (9.70)
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8.1 Entanglement and Local Quantum Operations

Using quantum teleportation, we can effectively transmit a quantum state
with only local quantum operations and classical communications if a max-
imally entangled state is shared between the two parties. We now consider
the reverse problem. What operations are possible on an entangled state if
only local quantum operations and classical communications are allowed?

As stated in Sect. 1.2, a pure state on HA can be represented by an
element u on HA with the norm ‖u‖ equal to 1. A pure entangled state in
the composite system is represented by an element x on HA⊗HB . Using the
basis u1, . . . , ud for HA and the basis v1, . . . , vd′ for HB , x can be written as
x =

∑
j,i xi,j |ui〉 ⊗ |vj〉. Let us define the matrix form of x as the linear map

Xx from HB to HA with respect to x by |x〉 = |Xx〉. Then,

Xx =
∑
j,i

xi,j |ui〉〈vj |. (8.1)

Therefore, the correspondence x �→ Xx gives a one-to-one relationship be-
tween these matrices and the elements of HA ⊗HB . From (1.20), any tensor
product u⊗ v satisfies

〈u⊗ v|x〉 = 〈u⊗ v|Xx〉 = Tr |u〉〈v̄|Xx = 〈v|Xx|u〉.

Now, let X ′
x be the same as Xx but defined in a different basis v′

j for B,

and define U
def=

∑
j,k,l〈v′

k|vj〉〈v′
k|vl〉|vj〉〈vl|. Since |vj〉 =

∑
k〈v′

k|vj〉|v′
k〉 and

〈v′
k| =

∑
l〈v′

k|vl〉〈vl|, we have

X ′
x =

∑
i,j,k

xi,j〈v′
k|vj〉|ui〉〈v′

k| =
∑

i,j,k,l

xi,j〈v′
k|vj〉〈v′

k|vl〉|ui〉〈vl| = XxU.

That is, the definition of Xx depends on the orthonormal basis of HB .
Further, we have

ρx
def= TrB |x〉〈x| =

∑
j

(∑
i

xi,j |ui〉
)(∑

i′
xi′,j〈ui′ |

)

=
∑
i′,i

⎛
⎝∑

j

xi′,jxi,j

⎞
⎠ |ui〉〈ui′ | (8.2)

=XxX∗
x . (8.3)

Now, let us denote the nonzero eigenvalues of ρx in (8.3) by λ1, . . . , λl. Then,
we can apply the arguments given in Sect. A.2 to the matrix xi,j . Choosing
sets of orthogonal vectors of length 1 as u′

1, . . . , u′
l and v′

1, . . . , v′
l, we obtain

x =
∑l

i=1

√
λi|u′

i〉⊗ |v′
i〉. The right-hand side (RHS) of this equation is often
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called the Schmidt decomposition, and
√

λi is called the Schmidt coefficient.
Of course,

TrB |x〉〈x| =
∑

i

λi|u′
i〉〈u′

i|, TrA |x〉〈x| =
∑

i

λi|v′
i〉〈v′

i|.

Hence, both have the same eigenvalues and entropies. However, the above is
true only if the state on the composite system is a pure state. The number
of nonzero Schmidt coefficients

√
λi is called the Schmidt rank and is equal

to the ranks of both TrB |x〉〈x| and Xx.
Conversely, for a general state ρA on HA, a pure state |u〉〈u| on HA⊗HR

satisfying ρA = TrR |u〉〈u| is called the purification of ρA. The quantum
system HR used for the purification is called the reference and is denoted R.

Lemma 8.1 For two pure states |x〉〈x| and |y〉〈y| on the composite system
HA ⊗HR, the following two conditions are equivalent.

➀ The Schmidt coefficients of |x〉〈x| and |y〉〈y| coincide, i.e.,

x =
l∑

i=1

√
λi|ui〉 ⊗ |vi〉, y =

l∑
i=1

√
λi|u′

i〉 ⊗ |v′
i〉.

➁ There exist unitary matrices UA, UR in A and R such that

x =
(
UA ⊗ UR

)
y. (8.4)

Furthermore, if

TrR |x〉〈x| = TrR |y〉〈y|, (8.5)

then

x =
(
I ⊗ UR

)
y (8.6)

for a suitable unitary matrix UR on R. Therefore, the purification of the
mixed state ρA on HA can be transferred by the operation of the unitary
matrix on R.

Proof. ➁⇒➀ by inspection. If unitary matrices UA and UR on HA and
HR, respectively, are chosen such that UA(ui) = u′

i and UR(vi) = v′
i, then

(8.4) is satisfied, and hence ➀⇒➁. From (8.5), XxX∗
x = XyX∗

y . From (A.8),
choosing appropriate unitary matrices Ux and Uy, we have Xx =

√
XxX∗

xUx

and Xy =
√

XxX∗
xUy. Therefore, Xx = XyU∗

y Ux. Then, (8.6) can be obtained
from (1.19).

Therefore, pure entangled states can be classified according to their
Schmidt coefficients. In particular, when all the Schmidt coefficients are equal
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Fig. 8.1. Two-way LOCC (or one-way LOCC)

to
√

1
L , the state is called a maximally entangled state of size L. Any maxi-

mally entangled state of size L may be transformed from a maximally entan-
gled state |ΦL〉〈ΦL| by local operations. Hence, we can examine the properties
of maximally entangled states of size L by treating a typical maximally entan-
gled state |ΦL〉〈ΦL|. A maximally entangled state is separated from separable
states as follows. We can relate this to the fidelity according to

max
σ:separable

〈ΦL|σ|ΦL〉 =
1
L

. (8.7)

For the proof of this relation, it is sufficient to show that 〈ΦL|σ|ΦL〉 ≤ 1
L for

a separable pure state |u⊗ v〉〈u⊗ v|. This inequality can be shown from the
monotonicity of the partial trace of the fidelity

〈ΦL|u⊗ v〉〈u⊗ v|ΦL〉 ≤ 〈u| (TrB |ΦL〉〈ΦL|) |u〉 = 〈u|ρmix|u〉 =
1
L

.

When u is equal to
√

LXΦL
v, 〈ΦL|u⊗ v〉 = 1√

L
, which implies (8.7).

Next, we discuss state operations consisting of local operations (LO) and
classical communications (CC). This can be classified into three classes: (i)
only classical communications from A to B are allowed (one-way LOCC sim-
ply →); (ii) classical communications from A to B and B to A are allowed
(two-way LOCC, simply ↔); and (iii) no classical communications are al-
lowed (only local quantum operations are allowed) (it is simply denoted by
∅). In terms of the Choi–Kraus representation of the TP-CP map given in ➅
of Theorem 5.1, the state evolutions may be written

κ(ρ) =
∑

i

(EA,i ⊗ EB,i) ρ
(
E∗

A,i ⊗ E∗
B,i

)
. (8.8)

If a TP-CP map can be written in the form (8.8), it is called a separable
TP-CP map (S-TP-CP map) [399]. A TP-CP map κ is an S-TP-CP map if
and only if the matrix K(κ) defined in (5.2) can be regarded as a separable
state in the composite system (HA ⊗HA′)⊗ (HB ⊗HB′), where we assume
that the map EA,i (EB,i) is a map from HA (HB) to HA′ (HB′).
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Theorem 8.1 (Lo and Popescu [276]) Let the initial state of a composite
system HA ⊗HB be a known pure state |x〉〈x|. LOCC state operations con-
sisting of two-way classical communications can be realized by state operations
consisting of one-way classical communications from A to B.

Proof. For the proof of this theorem, it is sufficient to show that any fi-
nal state realized by operation (1) can be realized by operation (2), where
operations (1) and (2) are given as follows. In operation (1), we (i) perform
a measurement in system B, (ii) transmit B’s measured data to system A,
and (iii) finally apply state evolutions to each system. In operation (2), we
(i) perform a measurement in system A, (ii) transmit A’s measured data to
system B, and (iii) finally apply state evolutions to each system.

From Theorem 7.2, any operation with class (1) can be described by the
the state reduction

IA ⊗
√

MB
i |x〉〈x|IA ⊗

√
MB

i , (8.9)

and local TP-CP maps on A and B depend on the measurement datum i.
Hence, it is sufficient to prove that the state reduction (8.9) can be realized
by a state reduction by a measurement on A and local TP-CP maps on A
and B depending on the measurement datum i.

Using (1.19) and (A.7), we have

IA ⊗
√

MB
i |Xx〉 = |Xx

√
MB

i

T

〉 = |Ui

√
MB

i (Xx)∗U〉

= |Ui

√
MB

i V ∗XxV ∗Ui〉 = UiV
∗
i (Vi

√
MB

i V ∗
i )⊗ (V ∗

i Ui)T |Xx〉,

where Ui and Vi are unitary matrices satsfying Xx

√
MB

i

T
= Ui|Xx

√
MB

i

T |
and Xx = V |Xx|. This equation implies that the state reduction (8.9) is
realized by the state reduction on A by the instrument {Vi

√
MB

i V ∗
i }i and

the local unitaries UiV
∗
i and (V ∗

i Ui)T depending on the datum i on A and
B, respectively.

Exercises

8.1. Let x be the purification of state ρ on HA.
Show that H(ρ) = H(TrA |x〉〈x|).

8.2 Fidelity and Entanglement

We can characterize the fidelity of two states on HA using the purification of
mixed states in the following way.
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Lemma 8.2 (Uhlmann [392]) Consider two mixed states ρ1 and ρ2 on HA.
Let |u1〉〈u1| and |u2〉〈u2| be their purifications, respectively. Then,

F (ρ1, ρ2)(
def= Tr |√ρ1

√
ρ2|) = max

u1,u2
|〈u1|u2〉|, (8.10)

where the max on the RHS is with respect to the purifications of ρ1 and ρ2.

Proof. First, we choose the matrix Xui according to (8.1) in the previous
section as a matrix from the reference system HR to the system HA. (Note
that the map u �→ Xu depends upon the basis of HR). Since ρi = Xui

X∗
ui

,
from (A.8) we obtain Xui =

√
ρiUi choosing an appropriate unitary matrix

Ui on HR. From (1.20) and (A.12) we have

|〈u1|u2〉| = |Tr Xu2X
∗
u1
| = |Tr

√
ρ2U2U

∗
1
√

ρ1|
= |Tr

√
ρ1
√

ρ2U2U
∗
1 | ≤ Tr |√ρ1

√
ρ2|, (8.11)

which proves the ≥ part of (8.10). The equality follows from the existence of
U2U

∗
1 satisfying the equality of (8.11).

From (8.6), for an arbitrary purification x of ρ1, there exists a purification
y of ρ2 such that

F (ρ1, ρ2) = |〈x|y〉| = 〈x|y〉, (8.12)

where the second equation follows from choosing suitable phase factor eiθ in
y. Vectors v1, . . . vn satisfying

∑n
i=1 |vi〉〈vi| = ρ are called a decomposition of

ρ. Using this fact, we obtain the following corollary regarding decompositions.

Corollary 8.1 Let ρ1 and ρ2 be two mixed states on HA. For an arbitrary
decomposition u1, . . . , ul of ρ1, there exists a decomposition v1, . . . vl of ρ2
such that F (ρ1, ρ2) =

∑l
i=1〈ui|vi〉.

Proof. Let w1, . . . , wl be an orthonormal basis for the space HR. Let x =∑l
i=1 ui ⊗ wi. Choose a purification y ∈ HA ⊗ HR of ρ2 satisfying (8.12).

Since w1, . . . , wl is an orthonormal basis, there exists an appropriate element
v1, . . . , vl of HA such that y =

∑l
i=1 vi⊗wi. Therefore, |〈x|y〉| =

∑l
i=1〈ui|vi〉.

Corollary 8.2 (Uhlmann [392]) Let ρ =
∑

i piρi for the states ρi and σ,
and the probability pi. The following concavity holds:

F 2(ρ, σ) ≥
∑

i

piF
2(ρi, σ). (8.13)

If σ is a pure state, then

F 2(ρ, |u〉〈u|) = 〈u|ρ|u〉, (8.14)

and the equality in (8.13) holds.
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Proof. The validity of (8.14) follows from the fact that F (ρ, |u〉〈u|) =
Tr
√
|u〉〈u|ρ|u〉〈u|. Let y be the purification of σ, and xi be the purification

of ρi satisfying 〈xi|y〉 = F (ρi, σ). Then,∑
i

piF
2(ρi, σ) =

∑
i

pi〈y|xi〉〈xi|y〉 = F 2(
∑

i

pi|xi〉〈xi|, |y〉〈y|) ≤ F 2(ρ, σ)

completes the proof. The last inequality can be proved by considering the
partial trace.

A stronger statement (strong concavity of the fidelity) holds regarding the
concavity of F (ρ, σ).

Corollary 8.3 (Nielsen and Chuang [316]) For states ρi and σi and proba-
bilities {pi} and {qi}, the following concavity property holds:

F

(∑
i

piρi,
∑

i

qiσi

)
≥
∑

i

√
piqiF (ρi, σi). (8.15)

Proof. Let xi and yi be the purifications of ρi and σi, respectively, satisfying
F (ρi, σi) = 〈xi|yi〉. Consider the space spanned by the orthonormal basis
{ui}. The purifications of

∑
i piρi and

∑
i qiσi are then x

def=
∑

i

√
pixi ⊗ ui

and y
def=

∑
i

√
qiyi ⊗ ui. Therefore,

F

(∑
i

piρi,
∑

i

qiσi

)
≥ |〈x|y〉| =

∑
i

√
piqi〈xi|yi〉,

completing the proof.

Monotonicity is the subject of the following corollary.

Corollary 8.4 For an arbitrary TP-CP map κ from HA to HA′ ,

F (ρ1, ρ2) ≤ F (κ(ρ1), κ(ρ2)). (8.16)

This corollary is called the monotonicity. Further, the monotonicity (5.37),
i.e., b(ρ, σ) ≥ b(κ(ρ), κ(σ)), can be derived from this.

Proof. Choose the Stinespring representation (HC , |u〉〈u|, U) of κ, i.e.,
choose (HC , |u〉〈u|, U), such that it satisfies κ(ρ) = TrA,C U(ρ ⊗ |u〉〈u|)U∗.
Let two pure states u1 and u2 be purifications of ρ1 and ρ2 on HA ⊗ HR

maximizing the RHS of (8.10). Since

κ(ρi) = TrA,C,R(U ⊗ IR)(|ui〉〈ui| ⊗ |u〉〈u|)(U ⊗ IR)∗,

(U⊗IR)(ui⊗u) is the purification of κ(ρi); therefore, it satisfies |〈u1⊗u|u2⊗
u〉| = |〈u1|u2〉| = F (ρ1, ρ2). Then, (8.16) can be obtained from (8.10).
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Let us next examine a quantity called the entanglement fidelity, which
expresses how much entanglement is preserved in a TP-CP map κ from HA

to HA [361]. Let R be the reference system with respect to the CP map κ
and the mixed state ρ on HA. The entanglement fidelity is then defined as

Fe(ρ, κ) def=
√
〈x|κ⊗ ιR(|x〉〈x|)|x〉, (8.17)

where x is the purification of ρ. At first glance, this definition seems to depend
on the choice of the purification x. Using the Choi–Kraus representation
{Ej}j of κ, we can show that Ex. 8.4 [31]

F 2
e (ρ, κ) = 〈x|κ⊗ ιR(|x〉〈x|)|x〉 =

∑
j

|Tr Ejρ|2. (8.18)

Hence, Fe(ρ, κ) is independent of the purification x and of the Choi–Kraus
representation {Ei}i. From the monotonicity of the fidelity, we have

Fe(ρ, κ) ≤ F (ρ, κ(ρ)). (8.19)

The equality holds if ρ is a pure state. The entanglement fidelity satisfies the
following properties,1 which will be applied in later sections.

➀ Let κ′ be a TP-CP map from HA to HB , and κ be a TP-CP map from
HB to HA with dimHA ≥ dimHB . Given a state ρ on HA, there exists
an isometric matrix U on HA such that [31]

F 2
e (ρ, κ ◦ κ′) ≤ Fe(ρ, κ ◦ κU ). (8.20)

➁ If ρ =
∑

i piρi, we have [31] Ex. 8.6

F 2
e (ρ, κ) ≤

∑
i

piF
2
e (ρi, κ). (8.21)

In particular, when all the ρi are pure states, the following holds [361]:

F 2
e (ρ, κ) ≤

∑
i

piF
2(ρi, κ(ρi)). (8.22)

➂ Let HB be a subspace of HA. Given a real number a such that 1 > a > 0,
there exists a subspace HC of HB with a dimension �(1−a) dimHB� such
that [31,154]

max
x∈HC

{
1− F 2(x, κ(x))

}
≤ 1− F 2

e (ρB
mix, κ)

a
. (8.23)

1 A large part of the discussion relating to entanglement fidelity and information
quantities relating to entanglement (to be discussed in later sections) was first
done by Schumacher [361].
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➃ Let the support of ρ be included in the subspaceHB of HA. The following
then holds [31]:

2
3
(
1− F 2

e (ρ, κ)
)
≤ max

x∈H1
B

{
1− F 2(x, κ(x))

}
, (8.24)

where H1
B is the set of normalized vectors of HB , i.e., {x ∈ HB |‖x‖ = 1}.

The completely mixed-state ρmix on H satisfies

d

d + 1
(
1− F 2

e (ρmix, κ)
)

= Ex

[
1− F 2(x, κ(x))

]
, (8.25)

where Ex denotes the expectation with respect to a uniform distribution
on H1 and d is the dimension of H.

From the definition, for a general CP map κi and a positive real number fi,
we have ∑

i

fiF
2
e (ρ, κi) = F 2

e (ρ,
∑

i

fiκi). (8.26)

Therefore, we can define the entanglement fidelity Fe(ρ,κ) as

F 2
e (ρ,κ) def=

∑
ω

F 2
e (ρ, κω)

(
= F 2

e (ρ,
∑
ω

κω)

)
(8.27)

for an instrument κ = {κω} with an input and output HA and a state ρ
on HA. Since ε(ρ,κ) ≤ 1− F 2

e (ρ,κ) from (8.22), combining these properties
gives (7.41) and (7.42).

In fact, the purification is useful only for treating a single state. In or-
der to analyze a mixed-state ρ on HA, we often focus on the probabilistic
decomposition of ρ; this is defined as the set {(pi, ρi)} satisfying

ρ =
∑

i

piρi,

where pi is a probability distribution and ρi is a state on HA ⊗ HB . In a
quantum system, the probabilistic decomposition is not uniqe for a given
mixed state ρ. Now, we let |X〉 be a purification of ρ with the reference
system HR. (Here, we choose the reference HR whose dimension is equal to
the rank of ρ.) When we perform a POVM M = {Mi} on the reference HR,
the outcome i is obtained with the probability:

pi
def= 〈X|(Mi ⊗ IA)|X〉 = TrMiρ = TrXMiX

∗. (8.28)

The final state on HA is given as

ρi
def=

1
pi

TrR(
√

Mi ⊗ IA)|x〉〈x|(
√

Mi ⊗ IA) =
1
pi

XMiX
∗. (8.29)
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Since ∑
i

piρi =
∑

i

XMiX
∗ = X(

∑
i

Mi)X∗ = XX∗ = ρ,

any POVM M onHR gives a probabilistic decomposition. Conversely, for any
probabilistic decomposition {(pi, ρi)} of ρ, the matrix Mi = X−1piρi(X∗)−1

on HR forms a POVM as∑
i

Mi =
∑

i

X−1piρi(X∗)−1 = X−1ρ(X∗)−1 = I.

Moreover, this POVM {Mi} satisfies (8.28) and (8.29). Hence, we obtain the
following lemma.

Lemma 8.3 Any probabilistic decomposition {(pi, ρi)} of ρ is given by a
POVM M on the reference system as (8.28) and (8.29).

Indeed, using this discussion, we can characterize the TP-CP map to
the environment based on the output state (κ ⊗ ιR)(|Φd〉〈Φd|) of the given
channel κ as follows. In this case, since the initial state of the total system
of the reference system, the output system, and environment system is pure,
its final state is also pure. That is, the final state of the total system is given
as the purification |u〉〈u| of (κ ⊗ ιR)(|Φd〉〈Φd|). Since any state ρ can be
described as dA TrR IA⊗ ρT |Φd〉〈Φd|, the output state with the input state ρ
on HA is given as

dA TrA,R(IA,E ⊗ ρT )|u〉〈u|. (8.30)

Exercises

8.2. Show that 1 −
(
Tr |√ρ

√
σ|
)2 ≥ d2

1(ρ, σ) using (8.10) and Exercise 2.23
for two mixed states ρ and σ.

8.3. Show that

F 2(ρ, σ) ≤ Tr
√

ρ
√

σ ≤ F (ρ, σ) (8.31)

using the purifications and the monotonicity of φ(1/2, ρ, σ).

8.4. Prove (8.18) noting that Tr(Ei ⊗ I)|x〉〈x| = TrE Eiρ.

8.5. Prove property ➀ of the entanglement fidelity by following the steps
below.

a Show that there exist Choi–Kraus representations {Ei}i and {Ai}j of κ
and κ′, respectively, such that the matrix {Tr EiAjρ}i,j can be written in
diagonal form with positive and real diagonal elements.
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b Using a and (8.18), show that there exists a Choi–Kraus representation
{Ei}i of κ and a matrix A such that TrAρA∗ = 1 and F 2

e (ρ, κ ◦ κ′) ≤
|Tr E1Aρ|2.

c Let E be a matrix from HB to HA. Let E∗E ≤ I and TrAρA∗ = Tr ρ = 1.
Take U∗ to be isometric under the polar decomposition E = U |E|. Show
that |Tr EAρ|2 ≤ Tr U |E|U∗ρ = TrEU∗ρ.

d Take the polar decomposition E1 = U |E1| such that U∗ is isometric on
HB . Show that Fe(ρ, κ ◦ κU∗) ≥ F 2

e (ρ, κ ◦ κ′).

8.6. Show ➁, using (8.18) and the fact that the function ρ �→ |Tr Aρ|2 is a
convex function.

8.7. Prove ➂ by following the steps below. As the first step, determine
the orthogonal basis x1, . . . , xd of HB inductively. Let x1 be the vec-
tor argmaxx∈H1

B

{
1− F 2(x, κ(x))

}
. Given x1, . . . , xj , let Hj be the or-

thogonal complement space to the space spanned by x1, . . . , xj . Let xj+1
be argmaxx∈H1

j

{
1− F 2(x, κ(x))

}
. Then, let HC be the space spanned by

xdB
, . . . , xdB−dC+1, where dC = �(1− a) dimHB�. Show that the space HC

satisfies (8.23) using Markov’s inequality and ➁.

8.8. Show (8.24) in ➃ by following the steps below.

a Show that F 2
e (ρ, κ) =

∑
i,j pipj〈ui|κ(|ui〉〈uj |)|uj〉 for ρ =

∑
i pi|ui〉〈ui|,

where p1 ≥ p2 ≥ . . . ≥ pd.
b Let φ = (φ1, . . . , φd). Define u(φ) def=

∑
j

√
pje

iφj uj . Show that F 2
e (ρ, κ) +∑

j �=k pjpk〈uk|κ(|uj〉〈uj |)|uk〉 is equal to the expectation of
F 2(u(φ), κ(u(φ))) under the uniform distribution with respect to φ =
(φ1, . . . , φd).

c Let δ be the RHS of (8.24). Show that

d∑
k=2

pk〈uk|κ(|u1〉〈u1|)|uk〉 ≤ p2δ,

d∑
j=2

∑
k �=j

pjpk〈uk|κ(|uj〉〈uj |)|uk〉 ≤
d∑

j=2

pkp1δ.

d Show (8.24) using a to c.

8.9. Show that the equality of (8.24) in ➃ holds when κ is a depolarizing
channel for a quantum two-level system and ρ is the completely mixed-state
ρmix.

8.10. Prove (8.25) following the steps below.

a Prove (8.25) when κ is a depolarizing channel.
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b Define a depolarizing channel κd,λ for any channel κ as

κd,λ(ρ) =
∫

SU(dA)
U∗κ(UρU∗)Uν(dU),

where ν(dU) is the uniform distribution. Show that ExF 2(x, κ(x)) =
ExF 2(x, κd,λ(x)), where Ex is the expectation concerning the uniform dis-
tribution.

c Show that Fe(ρmix, κ) = Fe(ρmix, κd,λ).
d Prove (8.25) for any channel κ.

8.11. Verify (8.26).

8.12. Prove inequalities (7.41) and (7.42) by combining the formulas given
in this section.

8.13. Show that the states ρi in (8.29) are pure and orthogonal to each other
if and only if the POVM M = {Mi} is a PVM and commutative with ρ and
rankMi = 1.

8.14. Let κ be a TP-CP map from C
d to C

d′
and κ′ be a TP-CP map from

C
d′

to C
d. Show that Fe(ρmix, κ

′ ◦ κ) ≤
√

d′
d .

8.3 Entanglement and Information Quantities

So far, we have examined the transmission information for a classical-
quantum channel, but not the quantum version of the mutual information
I(X : Y ), defined by (2.21) in Sect. 2.1.1. In Sect. 5.5, we defined the quantum
mutual information Iρ(A : B) as

Iρ(A : B) = Hρ(A) + Hρ(B)−Hρ(AB) = D(ρ‖ρA ⊗ ρB) (8.32)

with respect to a state ρ on HA,B for quantum systems HA and HB . We used
the notation introduced in Sect. 5.5 for the second expression above. Confus-
ingly, the transmission information I(p, W ) for classical-quantum channels
is also occasionally called the quantum mutual information. However, since
Iρ(A : B) is a more natural generalization of the mutual information defined
in (2.21), we shall call this the quantum mutual information in this text.

As discussed in Sect. 2.1.1, there is a precise relationship between the
mutual information and the transmission information for classical systems.
Similarly, there is a relationship between the classical-quantum transmission
information and the quantum mutual information. To see this relation, let
us consider a classical-quantum channel W with an input system X and an
output system HA. Let {ux} be the orthonormal basis states of the Hilbert
space HX . Let us consider a state on the composite system HX ⊗HA given
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by ρ =
∑

x px|ux〉〈ux| ⊗ Wx, where p is a probability distribution in X .
The quantum mutual information is then given by Iρ(X : A) = I(p, W ).
Therefore, this is equal to the transmission information of a classical-quantum
channel.

It is possible to find a connection between the transmission information
and the quantum mutual information of a classical-quantum channel by ap-
propriately defining the composite system. Let us now define the transmission
information of the quantum-quantum channel κ (which is a TP-CP map) from
the quantum mutual information using a similar method. Here it is necessary
to find the quantum-mechanical correlation between the input and output
systems. Therefore, we consider the purification x of the state ρ on the input
system HA. The transmission information I(ρ, κ) of the quantum-quantum
channel κ can then be defined using the quantum mutual information as [3]

I(ρ, κ) def= I(κ⊗ιR)(|x〉〈x|)(R : B), (8.33)

where R is the reference system and B is the output system. Since H(ρ) is
equal to the entropy of the reference system, this can also be written as

I(ρ, κ) = H(κ(ρ)) + H(ρ)−H(κ⊗ ιR(|x〉〈x|)). (8.34)

This quantity will play an important role in Sect. 9.3.
Let us now consider the following quantity called the coherent informa-

tion, which expresses how much coherence is preserved through a quantum-
quantum channel κ [362].

Ic(ρ, κ) def= H(κ(ρ))−H(κ⊗ ιR(|x〉〈x|)) = −Hκ⊗ιR(|x〉〈x|)(R|B) (8.35)

for a TP-CP map κ from HA to HB , a state ρ on HA, and a purification x
of ρ. Therefore, the coherent information is equal to the negative conditional
entropy. Of course, in the classical case, the conditional entropy can only take
either positive values or 0. Therefore, a negative conditional entropy indicates
the existence of some quantum features in the system. For example, in an
entanglement-breaking channel, the conditional entropy is nonnegative, as
can be seen in (8.59).

The coherent information can be related to the entanglement fidelity if√
2(1− Fe(ρ, κ)) ≤ 1/e as follows Ex. 8.15,8.16 [31]:

0≤H(ρ)−Ic(ρ, κ)≤2
√

2(1− Fe(ρ, κ))
(
logd−log

√
2(1−Fe(ρ, κ))

)
. (8.36)

The first inequality holds without any assumption. Therefore, we can expect
that the difference between H(ρ) and the coherent information Ic(ρ, κ) will
express how the TP-CP map κ preserves the coherence. This will be justified
in Sect. 9.6.
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The above information quantities also satisfy the monotonicity [3, 362]

Ic(ρ, κ′ ◦ κ) ≤ Ic(ρ, κ), (8.37)
I(ρ, κ′ ◦ κ) ≤ I(ρ, κ), (8.38)
I(ρ, κ ◦ κ′) ≤ I(κ′(ρ), κ). (8.39)

If U is an isometric matrix, then the coherent information satisfies [32,362]

Ic(ρ, κ ◦ κU ) = Ic(UρU∗, κ). (8.40)

If κ =
∑

i piκi, these quantities satisfy the convexity for channels [3, 32]

Ic(ρ, κ) ≤
∑

i

piIc(ρ, κi), (8.41)

I(ρ, κ) ≤
∑

i

piI(ρ, κi). (8.42)

The transmission information satisfies the concavity for states [3]

I
( k∑

i=1

piρi, κ
)
≥

k∑
i=1

piI(ρi, κ). (8.43)

Conversely, the following reverse inequality also holds:

I
( k∑

i=1

piρi, κ
)
≤

k∑
i=1

piI(ρi, κ) + 2 log k. (8.44)

Let κA (κB) be a TP-CP map from HA (HB) to HA′ (HB′). Let ρA,B be
a state on HA ⊗ HB . Let ρA and ρB be the partially traced state of ρA,B .
The transmission information of a quantum-quantum channel then satisfies

I(ρA,B , κA ⊗ κB) ≤ I(ρA, κA) + I(ρB , κB) (8.45)

in a similar way to (4.4) for the transmission information of a classical-
quantum channel [3].

In addition to the types of information defined up until now, we may also
define the pseudocoherent information

Ĩc(ρ, κ) def= H(ρ)−H(κ⊗ ιE(|x〉〈x|)). (8.46)

Although it is difficult to interpret the above quantity as information, it does
possess the following useful properties [220], which will be used in Sect. 9.3.

Ĩc(ρ, κ ◦ κ′) ≤ Ĩc(κ′(ρ), κ), (8.47)

Ĩc

(∑
j

pjρj , κ
)
≥
∑

j

pj Ĩc(ρj , κ). (8.48)
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The first property (8.47) is the monotonicity, and can be derived immedi-
ately from property (8.39) and definitions. The second inequality (8.48) is
the concavity with respect to a state. The following reverse inequality also
holds, i.e.,

Ĩc

( k∑
j=1

pjρj , κ
)
≤

k∑
j=1

pj Ĩc(ρj , κ) + log k. (8.49)

The derivations for (8.48) and (8.49) are rather difficult (Exercises 8.24 and
8.25). We can also obtain the following relationship by combining (8.47) and
(8.48):

Ĩc

(∑
j

pjκj(ρ), κ
)
≥
∑

j

pj Ĩc(ρ, κ ◦ κj). (8.50)

Finally, we focus on the entropy H((κ⊗ ιR)(|x〉〈x|)), which is called the
entropy exchange [361] and is denoted by He(κ, ρ). This is equal to the entropy
of the environment systemHE after the state ρ is transmitted. Its relationship
to the entanglement fidelity Fe(ρ, κ) is given by the quantum Fano inequality
as [361]2

He(ρ, κ) ≤ h(F 2
e (ρ, κ)) + (1− F 2

e (ρ, κ)) log(d2 − 1), (8.51)

where d is the dimension of H.

Exercises

8.15. Show the first inequality in (8.36) by considering the Stinespring rep-
resentation of κ and (5.58) with respect to the composite system of the en-
vironment system E and the reference system R.

8.16. Show the second inequality of (8.36) by considering the purification of
ρ and Fannes inequality (Theorem 5.9).

8.17. Prove (8.37) based on the Stinespring representation of κ′, the strong
subadditivity (5.55) of the von Neumann entropy.

8.18. Prove (8.38) using the fact that the RHS of (8.34) is equal to

D(κ⊗ ιE(|x〉〈x|)‖κ(ρ)⊗ TrA |x〉〈x|). (8.52)

8.19. Prove (8.41) and (8.42) using the concavity (5.60) of the conditional
entropy.
2 Since the form of this inequality is similar to the Fano inequality, it is called

quantum Fano inequality. However, it cannot be regarded as a quantum extension
of the Fano inequality (2.26). The relationship between the two formulas is still
unclear.
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8.20. Prove (8.39) based on (8.52) and the monotonicity of the quantum
relative entropy by considering the Stinespring representation of κ′.

8.21. Prove (8.40) based on the relationship between the purification of ρ
and the purification of UρU∗.

8.22. Let HE′ be the environment system after performing a state evolution
given by the TP-CP map κ from HA to HA′ . Let x be the purification of the
state ρ on HA. Let the reference system be HR. Show that

Ic(ρ, κ) = Hx′(A′)−Hx′(E′), (8.53)
I(ρ, κ) = Hx′(A′) + Hx′(A′E′)−Hx′(E′),

where x′ is the final state of x.

8.23. Let x be the purification of ρ with respect to the reference system HR.
Let HE′

A
and HE′

B
be the environment systems after the state evolutions κA

and κB . Let x′ be the final state of x. Show (8.45) by following the steps
below.

a Show the following, using Exercise 8.22.

I(ρA, κA) = Hx′(A′) + Hx′(A′E′
A)−Hx′(E′

A)

I(ρ, κA ⊗ κB) = Hx′(A′B′) + Hx′(A′B′E′
AE′

B)−Hx′(E′
AE′

B).

b Show that

I(ρA, κA) + I(ρB , κB)− I(ρ, κA ⊗ κB)
= Hx′(A′)+Hx′(B′)−Hx′(A′B′)−(Hx′(E′

A)+Hx′(E′
B)−Hx′(E′

AE′
B))

+ (Hx′(A′E′
A) + Hx′(B′E′

B)−Hx′(A′E′
AB′E′

B)) .

c Prove (8.45) by combining (8.32) and (5.75) with b.

8.24. Let κ be the state evolution from HA and from HA′ . Show (8.48)
following the steps below.

a Let xj be the purification of ρj with respect to the reference system HR.
Let {uj} be an orthonormal basis of another system HR′ . Show that the

pure state x
def=

∑
j

√
pjxj ⊗ uj on HA ⊗HR ⊗HR′ is the purification of

ρ
def=

∑
j pjρj .

b Show that the pinching κE of the measurement E = {|uj〉〈uj |} on HR′

satisfies

D((κE ⊗ ιA,R)(κ⊗ ιR,R′)(|x〉〈x|)‖(κE ⊗ ιA,R)(κ(ρ)⊗ TrA(|x〉〈x|)))

= H(κ(ρ)) +
∑

j

pjH(ρj)−
∑

j

pjH((κ⊗ ιR,R′)(|xj〉〈xj |)).
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c Prove (8.48) by considering the monotonicity of the quantum relative en-
tropy for the pinching κE .

8.25. Prove (8.49) using the same symbols as Exercise 8.24 by following the
steps below.

a Show that

k∑
j=1

pj Ĩc(ρj , κ)

= H(κE(TrA(|x〉〈x|)))−H(κE ⊗ ιA,R)(κ⊗ ιR,R′)(|x〉〈x|)).

b Verify that

Ĩc(ρ, κ)−
k∑

j=1

pj Ĩc(ρj , κ)

= H(TrA |x〉〈x|)−H(κE(TrA |x〉〈x|))−H(κ⊗ ιR,R′)(|x〉〈x|))
+ H(κE ⊗ ιA,R)(κ⊗ ιR,R′)(|x〉〈x|))
≤ H(κE ⊗ ιA,R)(κ⊗ ιR,R′)(|x〉〈x|))−H(κ⊗ ιR,R′)(|x〉〈x|)). (8.54)

c Prove (8.49) using (5.53) and the above results.

8.26. Prove (8.43) using (8.24) and (5.49).

8.27. Prove (8.44) using (8.49) and (5.51).

8.28. Show that

max{H(ρ)|〈u|ρ|u〉 = f} = h(f) + (1− f) log(d− 1)

for a pure state |u〉〈u| on H (dimH = d). Prove (8.51) using this result.

8.29. Show that

He(κ, ρmix) = H(p), He(κ, |e0〉〈e0|) = He(κ, |e1〉〈e1|) = h(p0 + p3)

for the entropy exchange of a Pauli channel κp.

8.4 Entanglement and Majorization

In this section we consider what kind of state evolutions are possible us-
ing only local quantum operations and classical communications given an
entangled state between two systems. Before tackling this problem, let us
first consider a partial ordering called majorization defined between two d-
dimensional vectors a = (ai), b = (bi) with positive real-number components.
This will be useful in the discussion that follows. If a and b satisfy
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k∑
j=1

a↓
j ≤

k∑
j=1

b↓
j , (1 ≤ k ≤ n),

n∑
j=1

a↓
j =

n∑
j=1

b↓
j ,

we say that b majorizes a, which we denote as a � b. In the above, (a↓
j ) and

(b↓
j ) are the reordered versions of the elements of a and b, respectively, largest

first. If x � y and y � x, we represent it as x ∼= y. If 1∑
i xi

x ∼= 1∑
i yi

y, we
write x ≈ y. If 1∑

i xi
x = 1∑

i yi
y, we represent it as x ∝ y. The following

theorem discusses the properties of this partial ordering. The relation with
entanglement will be discussed after this theorem.

Theorem 8.2 The following conditions for two d-dimensional vectors x =
(xi) and y = (yi) with positive real components are equivalent [49].

➀ x � y.
➁ There exists a finite number of T-transforms T1, . . . , Tn such that x =

Tn · · ·T1y. A T-transform is defined according to a matrix A = (ai,j)
satisfying ai1,i1 = ai2,i2 = 1 − t and ai1,i2 = ai2,i1 = t for some pair
i1 and i2, and ai,j = δi,j otherwise, where t is a real number between
0 ≤ t ≤ 1.

➂ There exists a double stochastic matrix A such that x = Ay.
➃ There exists a stochastic matrix B = (bi,j) such that (Bj)T ◦x ≈ y for all

integers j. (Bj)T is the column vector obtained by transposing Bj. The
product of the two vectors x and y is defined as (y ◦ x)i

def= yixi.

The product ◦ satisfies the associative law. A vector e with each of its com-
ponents equal to 1 satisfies e ◦ x = x and

∑
j(B

j)T = e.

From the concavity of the entropy, we can show that a T-transform T and
a probability distribution satisfy H(T (p)) ≥ H(p). Therefore, if q � p, then

H(q) ≥ H(p). (8.55)

Since a double stochastic matrix Q and a probability distribution p satisfy
Q(p) � p, we have

H(Q(p)) ≥ H(p), (8.56)

from which we obtain (2.20).
Further, any double stochastic matrix A can be written by a distribution p

on the permutations Sk as (Ax)i =
∑

s∈Sk
psxs−1(i). Thus, when two positive-

valued vectors x and y has decreasing ordered elements, we can show that

〈x, y〉 ≥ 〈x, Ay〉. (8.57)

Let us now consider how majorization can be defined for two density
matrices ρ and σ. The eigenvalues of ρ and σ form the respective vectors
with real-number components. Therefore, majorization can be defined with
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respect to these vectors. Letting ρ =
∑

i ai|ui〉〈ui| and σ =
∑

i bi|vi〉〈vi|, we
can write ρ � σ if a � b. If ρ and σ come from different Hilbert spaces, let
us define ρ � σ by adding zero eigenvalues to the smaller Hilbert space until
the size of the spaces are identical. The relations ρ ∼= σ and ρ ≈ σ can be
defined in a similar way.

As this is a partial ordering, if ρ � ρ′ and ρ′ � σ, then ρ � σ. Since the
entropy H(ρ) of a density matrix ρ depends only on its eigenvalues, if ρ � σ,
then H(ρ) ≥ H(σ) due to (8.55). Further, we can also show that for a unital
channel κ (e.g., pinching),

κ(ρ) � ρ. (8.58)

From this we find that H(κ(ρ)) ≥ H(ρ), and therefore the first inequality in
(5.54) is satisfied even if M is a general POVM. Thus, the following theorem
can be shown from Theorem 8.2.

Theorem 8.3 (Nielsen and Kempe [317]) Let ρA,B be a separable state on
HA ⊗HB. Then, ρA,B � ρA def= TrB ρA,B.

Combining (8.55) with this theorem, we find that H(ρA,B) ≥ H(ρA) [i.e.,
(5.50)] if ρA,B is separable. This shows that any separable state ρ satisfies [68]

Hρ(B|A) ≥ 0. (8.59)

The following theorem shows how two entangled states can be transformed
between each other.

Theorem 8.4 (Nielsen [313], Vidal [402]) Let |u〉〈u| and |vj〉〈vj | be pure
states on HA ⊗ HB. It is possible to transform the state |u〉〈u| into |vj〉〈vj |
using a two-way LOCC with probability pj if and only if the condition

k∑
i=1

λ↓
i ≤

k∑
i=1

∑
j

pjλ
j,↓
i , ∀k (8.60)

holds, where
√

λj
i is the Schmidt coefficient of |vj〉 and

√
λi is the Schmidt

coefficient of |u〉. This operation can be realized by performing a measurement
at A and then performing a unitary state evolution at B corresponding to the
measurement value i at A. Of course,

H(TrB |u〉〈u|) ≥
∑

j

pjH(TrB |vj〉〈vj |). (8.61)

In particular, it is possible to transform |u〉〈u| into |v〉〈v| using a two-way
LOCC with probability 1 if and only if the condition

TrB |u〉〈u| � TrB |v〉〈v| (8.62)

holds. These conditions still hold even if the two-way LOCC is restricted to
a one-way LOCC.
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Proof. First, we show that (8.60) holds if it is possible to transform the pure
state |u〉〈u| into |vj〉〈vj | with probability pj . According to the discussion
concerning instruments in Sect. 7.1, an arbitrary state evolution κ can be
regarded as an instrument given by the Choi–Kraus representation {Aj}j .
Therefore, we see that if the initial state is a pure state, the final state for
each measurement value i must also be a pure state.

Now, consider local operations and two-way communications from A to
B and from B to A. This operation consists of repetitions of the follow-
ing procedure. First, A performs a measurement {A′

j}j and then sends this
measurement value j to B. Then, B performs a measurement {Bj

i }i at B
corresponding to A’s measurement value j. Finally, B sends his or her mea-
surement value i to A. Since the final state after the measurement is also a
pure state, the measurement at B may be written as A’s measurement and a
unitary operation at B corresponding to A’s measurement value, according
to Theorem 8.1.

Therefore, we see that the whole operation is equivalent to performing a
measurement {Aj}j at A and then performing a unitary state operation at B,

corresponding to the measurement value at A. By defining ρu
def= TrB |u〉〈u|,

the probability of obtaining the measurement value i is then pj
def= Tr AjρuA∗

j .
The final state is a pure state, and the partially traced state is equal to

1
Tr AjρuA∗

j

AjρuA∗
j . Taking the unitary matrix Uj giving the polar decompo-

sition
√

ρuA∗
j = Uj

√
AjρuA∗

j , we obtain

UjAjρuA∗
jU

∗
j = Uj

√
AjρuA∗

j

√
AjρuA∗

jU
∗
j =
√

ρuA∗
jAj
√

ρu.

If P is a projection with rank k and satisfies the equation Tr ρuP =
k∑

i=1

λ↓
i ,

then

k∑
i=1

∑
j

pjλ
j,↓
i =

∑
j

max{Tr AjρuA∗
jPj |Pj is a projection of rank k}

≥
∑

j

Tr UjAjρuA∗
jU

∗
j P =

∑
j

√
ρuA∗

jAj
√

ρuP = Tr ρuP =
k∑

i=1

λ↓
i .

Therefore, we obtain (8.60).
Next, let us construct the operation that evolves |u〉〈u| into |v〉〈v| with

probability 1 when (8.62) is satisfied. Let the Schmidt coefficients of |u〉 and
|v〉 be

√
λi and

√
λ′

i, respectively. Let a stochastic matrix (bij) satisfy Con-
dition ➃ of Theorem 8.2 when x = λ = (λi) and y = λ′ = (λ′

i). Now, let us
define an orthonormal basis {ui} and Ej by



228 8 Entanglement and Locality Restrictions

ρu =
∑

i

λi|ui〉〈ui|, Ej
def=

∑
i

bi,j |ui〉〈ui|. (8.63)

Then, we have
∑

j Ej = I because B = (bi,j) is a stochastic matrix. The
probability of obtaining the measurement value j for the measurement {Ej}
is Tr ρuEi. The final state for this measurement value is a pure state, and the

partially traced state is
1

Tr ρuEi

√
Eiρu

√
Ei. From (Bj)T ◦ λ ≈ λ′ we have

1
Tr ρuEi

√
Eiρu

√
Ei
∼= TrB |v〉〈v|. Therefore, if an appropriate unitary state

evolution is applied corresponding to the measurement value j, the final state
will be |v〉〈v| for every measurement value i with probability 1.

Finally, we construct the operation that evolves the pure state |u〉〈u| on
HA ⊗HB into |vj〉〈vj | with probability pj when inequality (8.60) holds. Let
λ′ = (λ′

i) be a probability distribution such that

k∑
i=1

λ′
i =

k∑
i=1

∑
j

pjλ
j,↓
i , ∀k.

The above discussion guarantees that there exists an LOCC operation trans-
forming |u〉〈u| into |v〉〈v| with the Schmidt coefficient

√
xi. Therefore, it is

sufficient to construct the required operation when the equality of (8.62)
holds. Let us define bi,j def= pjλ

j,↓
i /λ↓

i . Then, B = (bi,j) is a stochastic matrix.
Defining Ej using (8.63), we have

pj = Tr ρuEj , TrB |vj〉〈vj | ∼=
∑

i

λj,↓
i |ui〉〈ui| ∼=

1
Tr ρuEj

√
Ejρu

√
Ej .

This completes the proof.

Using this theorem, we obtain the following characterization.

Lemma 8.4 (Vidal et al. [404]) Let v and u be entangled pure states with
Schmidt coefficient √pj and √qj in decreasing order. Then, we have

|〈u|v〉|2 ≤
(∑

j

√
pj
√

qj

)2
. (8.64)

The equality holds when vectors v and u have the Schmidt decompositions
v =

∑
i

√
pj |eA

i 〉 ⊗ |eB
i 〉 and u =

∑
i

√
qj |eA

i 〉 ⊗ |eB
i 〉 by the same Schmidt

basis. Further, we have

max
κ∈↔〈u|κ(|v〉〈v|)|u〉 = max

q�q′

(∑
j

√
pj

√
q′
j

)2
. (8.65)

Proof. Let ρ and σ be the reduced density matrix on HA of v and u. Then,
there exisis a unitary matrix U such that
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〈u|v〉 = Tr
√

ρ
√

σU.

Assume that σ is diagonalized as σ =
∑

j qj |ej〉〈ej |. Thus,

|Tr
√

ρ
√

σU |2 =
∣∣∣∑

j

√
qj〈ej |

√
ρU |ej〉

∣∣∣2 ≤ (∑
j

√
qj

∣∣∣〈ej |
√

ρU |ej〉
∣∣∣)2

≤
(∑

j

√√
qj〈ej |

√
ρ|ej〉

√√
qj〈ej |U∗√ρU |ej〉

)2

≤
(∑

j

√
qj〈ej |

√
ρ|ej〉

)(∑
j

√
qj〈ej |U∗√ρU |ej〉

)
.

Now, we diagonalize ρ as ρ =
∑

i pi|fi〉〈fi|. Hence,

∑
j

√
qj〈ej |

√
ρ|ej〉 =

∑
i,j

√
qj
√

pi|〈ej |fi〉|2.

Since |〈ej |fi〉|2 is a double stochastic matrix, (8.57) implies∑
i,j

√
qj
√

pi|〈ej |fi〉|2 ≤
∑

i

√
qi
√

pi. Thus,

∑
j

√
qj〈ej |

√
ρ|ej〉 ≤

∑
i

√
qi
√

pi.

Similarly, we have ∑
j

√
qj〈ej |U∗√ρU |ej〉 ≤

∑
i

√
qi
√

pi.

Therefore, we obtain (8.64).
Next, we prove (8.65). From the equality condition of (8.64) and Theo-

rem 8.4, we can easily verify the ≥ part of (8.65). Assume that the LOCC
operation κ generates the state vj with probability rj from the initial pure

state v. When the Schmidt coefficient of vj is (
√

pj
i )i, Corollary 8.2 and (8.64)

imply

〈u|κ(|v〉〈v|)|u〉 =
∑

j

rj |〈u|vj〉|2 ≤
∑

j

rj

(∑
i

√
pj

i

√
qi

)2

≤
(∑

i

√∑
j

rjp
j
i

√
qi

)2
.

Since Theorem 8.4 guarantees that (pi)i � (
∑

j rjp
j
i )i, we obtain the ≤ part

of (8.65).
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Fig. 8.2. Two partially entangled states (left) and one completely entangled state
(right)

Exercises

8.30. Prove (8.58) by diagonalizing ρ=
∑

i pi|ui〉〈ui| and κ(ρ)=
∑

j qj |vj〉〈vj |
and examining the map q = (qi) �→ (〈vi|κ(

∑
j qj |uj〉〈uj |)|vi〉).

8.31. Show that a maximally entangled state of size less than 1/λ↓
1 can be

produced with error probability 0 if the initial state is a pure entangled state
with Schmidt coefficients

√
λi.

8.5 Distillation of Maximally Entangled States

In order to use the merit of entanglement, we often require maximally entan-
gled states, not partially entangled states. Then, one encounters the distilla-
tion problem of maximally entangled states from partially entangled states.
Such an operation is called entanglement distillation and is one of the es-
tablished fields in quantum information theory. If the initial state is pure,
it is called entanglement concentration. It has also been verified experimen-
tally [342,428]. Other experimental models have also been proposed by com-
bining other protocols [410].

Consider the problem of creating a maximally entangled state |ΦL〉〈ΦL|
on C

L ⊗ C
L from a pure state |u〉〈u| on the composite system HA ⊗HB . If

the relation

TrB |u〉〈u| � TrB |ΦL〉〈ΦL|

does not hold, it is impossible to create |ΦL〉〈ΦL| with a probability 1.
Therefore, we must allow some failure probability in our scheme for creating
|ΦL〉〈ΦL|.

Theorem 8.5 (Hayashi [176]) Consider the two-way LOCC operation κ
converting the initial state |u〉〈u| to a maximally entangled state |ΦL〉〈ΦL|.
The optimal failure probability ε1(κ, |u〉〈u|) is less than f(x) def= Tr(ρu −
xI){ρu − xI ≥ 0} if and only if

L ≤ 1− f(x)
x

. (8.66)
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Proof. Since our operation has two outcomes “success” and “failure,” the
distribution of the outcome is described by the two-valued POVM {T, I−T}.
Hence, from Theorem 7.2 our operation is given by the combination of the
state evolution (7.1) due to a measurement {T, I − T} and the TP-CP map
depending on its outcome of “success” or “failure,” The final state |v〉〈v|
corresponding to “success” should satisfy ρv(def= TrB |v〉〈v|) � TrB |ΦL〉〈ΦL|
because of Theorem 8.4. Thus, Theorem 8.1 characterizes the minimum prob-
ability that the creation of |ΦL〉〈ΦL| fails as

min
T≥0 on HA

{
Tr ρu(I − T )

∣∣∣∣ 1
Tr ρuP

√
Tρu

√
T � TrB |ΦL〉〈ΦL|

}
= min

0≤T≤I: on HA

{Tr ρu(I − T ) |√ρuT
√

ρu ≤ x} ,

where we used (A.6) to rewrite the above equation: henceforth, we abbreviate
xI to x. Now, let L be the size of the maximally entangled state to be created
and the ratio Tr ρuP

L be fixed to x. Since Tr ρuP is the success probability, the
minimum failure probability can be calculated from the following equation:

min
0≤T≤I: on HA

{Tr ρu(I − T ) |√ρuT
√

ρu ≤ x}

= min
0≤S≤ρ: on HA

{1− Tr S |S ≤ x}

= min
S on H

{
1−

∑
i

〈ui|S|ui〉
∣∣∣∣∣ 〈ui|S|ui〉 ≤ λi, x

}

= 1−
∑

i:λi≤x

λi −
∑

i:λi >x

x = Tr(ρu − x){ρu − x ≥ 0} = f(x), (8.67)

where S =
√

ρuT
√

ρu. Therefore, if the failure probability is less than f(x),
the size L of the maximally entangled state satisfies

L ≤ max
x′

{
1
x′ (1− f(x′))

∣∣∣∣ f(x′) ≤ f(x)
}

=
1
x

(1− f(x)).

In the last equality, we used the fact that f(x) is strictly monotonically
increasing and continuous.

Conversely, if (8.66) is true, then by choosing a projection P that attains
the minimum value in (8.67) and performing a two-valued projective mea-
surement {P, I−P} on the system HA, the outcome corresponding to P will
be obtained with a probability 1− f(x). Since the final state u satisfies

1
1− f(x)

PρuP ≤ x

1− f(x)
≤ I

L
,

we may construct a maximally entangled state of size L according to Theo-
rem 8.4.
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On the other hand, Lo and Popescu [276] characterized the optimal suc-
cess probability P opt(u → |ΦL〉) for obtaining a maximally entangled state
|ΦL〉 as follows:

P opt(u→ |ΦL〉) = max
r:1≤r≤L

L

L− r − 1

L∑
i=r

λ↓
i . (8.68)

Next, we consider the problem of determining how large a maximally
entangled state we can distill from a tensor product state ρ⊗n of a partially
entangled state ρ on HA ⊗ HB , in the asymptotic case. Here, we formulate
this problem in the mixed-state case as well as in the pure-state case. In
such problems, we require that our operation κn be optimized for a given
partially entangled state ρ⊗n and hence treat the first type of entanglement
of distillation:

EC
d,1(ρ) def= sup

{κn}⊂C

{
lim

1
n

log L(κn)
∣∣∣∣ lim ε1(κn, ρ) = 0

}
(8.69)

EC,†
d,1 (ρ) def= sup

{κn}⊂C

{
lim

1
n

log L(κn)
∣∣∣∣ lim ε1(κn, ρ) < 1

}
, (8.70)

where C denotes the set of local operations, i.e., C =→, C = ∅, C =←,
C =↔, and C = S imply the set of one-way (HA → HB) LOCC oper-
ations, only local operations, one-way (HA ← HB) LOCC operations, two-
way LOCC operations, S-TP-CP maps, respectively. Here, we denote the size
of the maximally entangled state produced by the operation κ by L(κ). If
ρ is a mixed state, it is extremely difficult to produce a maximally entan-
gled state perfectly, even allowing some failure probability. Therefore, let us
relax our conditions and aim to produce a state close to the desired maxi-
mally entangled state. Hence, for our operation κ′, we will evaluate the error
ε2(κ′, ρ) def= 1−〈ΦL|κ′(ρ)|ΦL〉 between the final state κ′(ρ) and the maximally
entangled state |ΦL〉〈ΦL| of size L. When the initial state is a pure state v

with Schmidt coefficient
√

λ↓
i , Lemma 8.4 gives the optimum fidelity:

max
κ∈↔〈ΦL|κ(|v〉〈v|)|ΦL〉 =

(
max
p�p′

L∑
i=1

√
p′

i

L

)2
. (8.71)

In the asymptotic case, we optimize the operation κ′
n for a given ρ⊗n;

thus, we focus on the second type of entanglement of distillation:

EC
d,2(ρ) def= sup

{κn}⊂C

{
lim

1
n

log L(κn)
∣∣∣∣ lim ε2(κn, ρ) = 0

}
,

EC,†
d,2 (ρ) def= sup

{κn}⊂C

{
lim

1
n

log L(κn)
∣∣∣∣ lim ε2(κn, ρ) < 1

}
.
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The following trivial relations follow from their definitions:

EC
d,2(ρ) ≥ EC

d,1(ρ), EC,†
d,2 (ρ) ≥ EC,†

d,1 (ρ), EC,†
d,i (ρ) ≥ EC

d,i(ρ),

for i = 1, 2. The following theorem holds under these definitions.

Theorem 8.6 (Bennett et al. [38]) The two kinds of entanglement of dis-
tillation of any pure state |u〉〈u| in the composite system HA ⊗ HB can be
expressed by the reduced density ρu = TrB |u〉〈u| as

EC
d,i(|u〉〈u|) = EC,†

d,i (|u〉〈u|) = H(ρu),

for i = 1, 2 and C = ∅,→,←,↔, S.

The proof of this theorem will be given later, except for the case of C = ∅.
This case is proved in Exercise 8.33. This theorem states that the entropy of
the reduced density matrix ρu = TrB |u〉〈u| gives the degree of entanglement
when the state of the total system is a pure state. Further, as shown by
Hayashi and Matsumoto [183], there exists an LO protocol that attains this
bound without any knowledge about the pure state u, as long as the given
state is its tensor product state. That is, there exists a local operation protocol
(without any communication) that produces a maximally entangled state of
size enH(ρn) and is independent of u. This protocol is often called a universal
concentration protocol.

For a general mixed state ρ on the composite systemHA⊗HB , the entropy
of the reduced density does not have the same implication. Consider

Er,S(ρ) def= min{D(ρ‖σ)|σ : the separable state on HA ⊗HB}

as its generalization for a mixed state ρ. This is called the entanglement of
relative entropy. Any pure state |u〉〈u| satisfies

Er,S(|u〉〈u|) = H(TrB |u〉〈u|). (8.72)

Lemma 8.5 (Vedral and Plenio [399]) The entanglement of the relative en-
tropy satisfies the monotonicity property

Er,S(κ(ρ)) ≤ Er,S(ρ) (8.73)

for any S-TP-CP map κ. Hence, any LOCC operation satisfies the above
monotonicity because it is an S-TP-CP map.

Proof. Let σ be a separable state such that D(ρ‖σ) = Er(ρ), then κ(σ) is
separable. From the monotonicity of the relative entropy (5.30),

Er,S(κ(ρ)) ≤ D(κ(ρ)‖κ(σ)) ≤ D(ρ‖σ) = Er,S(ρ),

which gives (8.73).
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The following theorem may be proved by using the method in the proof
of Lemma 3.5.

Theorem 8.7 (Vedral and Plenio [399]) Any mixed state ρ on the composite
system HA ⊗HB and any separable state σ satisfy

ES,†
d,2 (ρ) ≤ D(ρ‖σ). (8.74)

Hence, we obtain

ES,†
d,2 (ρ) ≤ Er,S(ρ), (8.75)

ES,†
d,2 (ρ) ≤ E∞

r,S(ρ) def= lim
Er,S(ρ⊗n)

n
. (8.76)

Proof. Consider an S-TP-CP map κ′
n on HA ⊗ HB and a real number

r > D(ρ‖σ). Since κ′
n(σ⊗n) is also separable, equation (8.7) implies that

〈Φenr |κ′
n(σ⊗n)|Φenr 〉 ≤ e−nr. From I − |Φenr 〉〈Φenr | ≥ 0 we have

I − (κ′
n)∗(|Φenr 〉〈Φenr |) = (κ′

n)∗(I)− (κ′
n)∗(|Φenr 〉〈Φenr |)

= (κ′
n)∗(I − |Φenr 〉〈Φenr ||) ≥ 0,

where (κ′
n)∗ is the dual map of κ′

n (see ➃ of Theorem 5.1). Moreover,

(κ′
n)∗(|Φenr 〉〈Φenr |) ≥ 0,

Tr σ⊗n(κ′
n)∗(|Φenr 〉〈Φenr |) = 〈Φenr |κ′

n(σ⊗n)|Φenr 〉 ≤ e−nr.

Since the matrix (κ′
n)∗(|Φenr 〉〈Φenr |) satisfies the condition for the test 0 ≤

(κ′
n)∗(|Φenr 〉〈Φenr |) ≤ I, the inequality (3.38) in Sect. 3.7 yields

〈Φenr |κ′
n(ρ⊗n)|Φenr 〉 = Tr ρ⊗n(κ′

n)∗(|Φenr 〉〈Φenr |) ≤ en
−φ(s)−sr

1−s ,

for s ≤ 0, where φ(s) def= log Tr ρ1−sσs. Using arguments similar to those
used for the proof of Lemma 3.5, we have 〈Φenr |κ′

n(ρ⊗n)|Φenr 〉 → 0. We thus
obtain (8.74). Applying the same arguments to ρ⊗k, we have

ES,†
d,2 (ρ) ≤ Er,S(ρ⊗k)

k
.

Combining this relation with Lemma A.1 in Appendix A, we obtain (8.76).

Conversely, the following lemma holds for a pure state.

Lemma 8.6 Any pure state |u〉〈u| on the composite system HA⊗HB satisfies

E→
d,1(|u〉〈u|) ≥ H(ρu). (8.77)
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Proof. When R < H(ρu), according to Theorem 8.5, there exists an oper-
ation κn satisfying

L(κn) =
1− Tr(ρ⊗n

u − e−nR)
{
ρ⊗n

u − e−nR ≥ 0
}

e−nR
(8.78)

ε1(κn, |u〉〈u|⊗n) = Tr(ρ⊗n
u − e−nR)

{
ρ⊗n

u − e−nR ≥ 0
}

.

Define ψ(s) def= log Tr ρ1−s
u . The failure probability ε1(κn, |u〉〈u|⊗n) can then

be calculated as

ε1(κn, |u〉〈u|⊗n) ≤ Tr ρ⊗n
u

{
ρ⊗n

u − e−nR ≥ 0
}
≤ Tr

(
ρ⊗n

u

)1+s
esnR

= en(ψ(−s)+sR),

for s ≥ 0. Since R < H(ρu), we can show that ε(κn) → 0 using arguments
similar to those given in Sect. 2.1. Based on this relation, we can show that

1− Tr(ρ⊗n
u − e−nR)

{
ρ⊗n

u − e−nR ≥ 0
}
→ 1,

which proves that lim log L(κn)
n = R for L(κn). Hence, we obtain (8.77).

Proofs of Theorem 8.6 and equation (8.72). Let |u〉 =
∑

i

√
pi|ui⊗u′

i〉
and σ =

∑
i pi|ui ⊗ u′

i〉〈ui ⊗ u′
i|. Since ui and u′

i are orthogonal,

Er,S(|u〉〈u|) ≤ D(|u〉〈u|‖σ) = H(ρu).

Combining (8.75) and (8.77), we obtain

Er,S(|u〉〈u|) ≤ H(TrB |u〉〈u|) ≤ E→
d,1(|u〉〈u|) ≤ ES,†

d,2 (|u〉〈u|) ≤ Er,S(|u〉〈u|).

This proves Theorem 8.6 and (8.72).

When we treat the optimum outcome case, the following value is impor-
tant:

EC
d,L(ρ) def= max

κ={κω}∈C
max

ω

〈ΦL|κω(ρ)|ΦL〉
Tr κω(ρ)

.

It can easily be checked that

EC
d,L(ρ) = max

A,B

〈ΦL|(A⊗B)ρ(A⊗B)∗|ΦL〉
Tr ρ(A∗A⊗B∗B)

(8.79)

for C =→↔, S. This value is called conclusive teleportation fidelity and was
introduced by Horodecki et al. [230]; it describes the relation between this
value and the conclusive teleportation.
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Exercises

8.32. Define the entanglement of exact distillation

EC
d,e(ρ) def= lim

ẼC
d,e(ρ

⊗n)
n

, ẼC
d,e(ρ) def= max

κ∈C:
{ log L(κ)| ε2(κ, ρ) = 0} , (8.80)

and show [176,181]

E↔
d,e(|u〉〈u|) = − log λ↓

1.

(This bound can be attained by a tournamentlike method for d = 2, but such
a method is known to be impossible for d > 2 [294,295].)

8.33. Let u =
∑

i

√
λiu

A
i ⊗ uB

i be a Schmidt decomposition, and define the

POVM MX,n = {MX,n
q }q∈Tn

as MX,n
q

def=
∑

i∈T n
q
|uX

i 〉〈uX
i | for X = A, B.

Show that the final state with the measurement data q is a maximally entan-
gled state with the size |Tn

q |. Using this protocol, show E∅
d,1(|u〉〈u|) ≥ H(ρu).

This protocol is called a Procrustean method [38].

8.34. Define the generalized Bell states uA,B
i,j

def= (IA ⊗Xi
BZj

B)uA,B
0,0 , and the

generalized Bell diagonal states ρp
def=

∑
i,j pi,j |uA,B

i,j 〉〈u
A,B
i,j |, where uA,B

0,0
def=∑

i uA
i ⊗ uB

i . Show that Er,S(ρp) ≤ log d−H(p).

8.35. Define the quantity

EC
d,i(R|ρ) def= sup

{κn}⊂C

{
lim
−1
n

log εi(κn, ρ)
∣∣∣∣ lim −1

n
log L(κn) ≥ R

}
,

and show [176,181]

EC
d,1(R||u〉〈u|) = max

s≤0
−ψ(s) + sR for C =→,←,↔ .

8.36. Define the quantity

EC,∗
d,i (R|ρ) def= inf

{κn}⊂C

{
lim
−1
n

log(1− εi(κn, ρ))
∣∣∣∣ lim −1

n
log L(κn) ≥ R

}
,

and show [176,181]

ES,∗
d,2 (R||u〉〈u|) ≥ max

0≤t≤1

−ψ(t) + (1− t)R
t

.

8.37. Show the following equation:

ES
d,e(|u〉〈u|) = − log λ↓

1. (8.81)
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Fig. 8.3. Entanglement dilution

a Check the following relation:

max
κ∈S
{d|Tr κ(|u〉〈u|)|Φd〉〈Φd| = 1}

= max
κ∈S
{min

σ∈S
(Tr |Φd〉〈Φd|κ(σ))−1|Tr κ(|u〉〈u|)|Φd〉〈Φd| = 1}

= max
κ∈S
{min

σ∈S
(Tr κ∗(|Φd〉〈Φd|)σ)−1|Tr |u〉〈u|κ∗(|Φd〉〈Φd|) = 1}

≤ max
0≤T≤I

{min
σ∈S

(Tr Tσ)−1|Tr |u〉〈u|T = 1}

= min
σ∈S

(Tr |u〉〈u|σ)−1 = (λ↓
1)

−1. (8.82)

b Prove equation (8.81).

8.6 Dilution of Maximally Entangled States

In the previous section, we considered the problem of producing a maximally
entangled state from the tensor product of a particular entangled state. In this
section, we examine the converse problem, i.e., to produce a tensor product
state of a particular entangled state from a maximally entangled state in the
composite system HA⊗HB . In this book, we call this problem entanglement
dilution even if the required state is mixed while historically it has been called
this only for the pure-state case.

For an analysis of the mixed state ρ on the composite system HA ⊗HB ,
we define the entanglement of formation Ef (ρ) for a state ρ in the composite
system HA⊗HB based on the probabilistic decomposition {(pi, ρi)} of ρ [40]:

Ef (ρ) def= min
{(pi,ρi)}

∑
i

piH(TrB ρi). (8.83)

Since this minimum value is attained when all ρi are pure, this minimization
can be replaced by the minimization for probabilistic decompositions by pure
states. From the above definition, a state ρ1 on HA1 ⊗HB1 and a state ρ2 on
HA2 ⊗HB2 satisfy

Ef (ρ1) + Ef (ρ2) ≥ Ef (ρ1 ⊗ ρ2). (8.84)
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Theorem 8.8 Perform an operation corresponding to the S-TP-CP map κ
with respect to a maximally entangled state |ΦL〉〈ΦL| of size L (the initial
state). The fidelity between the final state and the target pure state |x〉〈x| on
HA ⊗HB then satisfies

max
κ∈S

F (κ(|ΦL〉〈ΦL|), |x〉〈x|)

= max
κ∈→ F (κ(|ΦL〉〈ΦL|), |x〉〈x|) =

√
P (x, L), (8.85)

where P (u, L) is defined using the Schmidt coefficients
√

λi of |u〉 as follows:

P (u, L) def=
L∑

i=1

λ↓
i . (8.86)

Note the similarity between P (u, L) and P (p, L) given in Sect. 2.1.4. Fur-
thermore, the fidelity between the final state and a general mixed state ρ on
HA ⊗HB satisfies

max
κ∈S

F (κ(|ΦL〉〈ΦL|), ρ) = max
{(pi,xi)}

√∑
i

piP (xi, L), (8.87)

where {(pi, xi)} is the probabilistic decomposition of ρ.

Using (2.39), we obtain

P c(x, [eR]) ≤ e
log Tr ρ1−s

x −sR

1−s , (8.88)

where 0 ≤ s ≤ 1 and ρx
def= TrB |x〉〈x|.

Proof. The proof only considers the case of a pure state |x〉〈x|. Let {EA,i⊗
EB,i}i be the Choi–Kraus representation of the S-TP-CP map κ. Then

κ(|ΦL〉〈ΦL|) =
∑

i

(EA,i ⊗ EB,i) |ΦL〉〈ΦL| (EA,i ⊗ EB,i)
∗
.

Taking the partial trace inside the summation
∑

i on the RHS, we have

TrB(EA,i ⊗ EB,i) |ΦL〉〈ΦL| (EA,i ⊗ EB,i)
∗

= (EA,iXΦL
ET

B,i)(EA,iXΦL
ET

B,i)
∗

from (1.19). Its rank is less than L. Let y be a pure state on the composite
system such that the rank of the reduced density of y is equal to L. Thus, by
proving that

|〈y|x〉| ≤
√

P (x, L), (8.89)
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the proof can be completed. To this end, we define the pure state |yi〉〈yi| as

qi|yi〉〈yi| = (EA,i ⊗ EB,i) |ΦL〉〈ΦL| (EA,i ⊗ EB,i)
∗
,

where qi is a normalized constant. Then,

F 2(κ(|ΦL〉〈ΦL|), |x〉〈x|) =
∑

i

qiF
2(|yi〉〈yi|, |x〉〈x|) ≤

∑
i

qiP (x, L).

We can use this relation to show that the fidelity does not exceed
√

P (x, L).

In a proof of (8.89), it is sufficient to show that F (ρx, σ) ≤
√

P (x, L) for ρx
def=

TrB |x〉〈x| and a density matrix σ of rank L. First, let σ
def=

∑L
i=1 pi|vi〉〈vi|

and let P be the projection to the range of σ. Since the rank of P is L,
choosing an appropriate unitary matrix U , we obtain the following relation:

Tr |√ρx

√
σ| = Tr

√
ρx

√
σU = Tr

√
ρx

(
L∑

i=1

√
pi|vi〉〈vi|U

)

=
L∑

i=1

√
pi〈vi|U

√
ρx|vi〉 ≤

√√√√ L∑
i=1

pi

√√√√ L∑
i=1

|〈vi|U
√

ρx|vi〉|2 (8.90)

=

√√√√ L∑
i=1

〈vi|
√

ρxU∗|vi〉〈vi|U
√

ρx|vi〉 ≤

√√√√ L∑
i=1

〈vi|
√

ρx
√

ρx|vi〉 (8.91)

=
√

Tr Pρx ≤
√

P (x, L). (8.92)

This evaluation can be checked as follows. Inequality (8.90) follows from the
Schwarz inequality. Inequality (8.91) follows from U∗|vi〉〈vi|U ≤ I. The final
inequality (8.92) can be derived from the fact that P is a projection of rank
L. Thus, we obtain

max
κ∈S

F (κ(|ΦL〉〈ΦL|), |x〉〈x|) ≤
√

P (x, L).

Conversely, we can verify the existence of an S-TP-CP map with a fidelity
of
√

P (x, L) by the following argument. There exists a pure state y satisfying
the equality in (8.89); this can be confirmed by considering the conditions
for equality in the above inequalities. Since the pure state |y〉〈y| satisfies
TrB |ΦL〉〈ΦL| � TrB |y〉〈y|, according to Theorem 8.4, there exists a one-way
LOCC that produces the pure state |y〉〈y| from the maximally entangled
state |ΦL〉〈ΦL|, i.e., it attains the RHS of (8.85). This proves the existence
of an S-TP-CP map with a fidelity of

√
P (x, L).

Next, let us consider how large a maximally entangled state is required
for producing n tensor products of the entangled state ρ. In order to examine
its asymptotic case, we focus on the S-TP-CP map κn to produce the state
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ρ⊗n. The following entanglement of cost EC
c (ρ) expresses the asymptotic

conversion rate

EC
c (ρ) def= inf

{κn}⊂C

{
lim

1
n

log Ln

∣∣∣∣ limF (ρ⊗n, κn(|ΦLn〉〈ΦLn |)) = 1
}

, (8.93)

which is the subject of the following theorem.

Theorem 8.9 (Bennett et al. [38], Hayden et al. [196]) For any state ρ on
the composite system HA ⊗HB,

EC
c (ρ) = lim

Ef (ρ⊗n)
n

= inf
n

Ef (ρ⊗n)
n

, (8.94)

for C =→,←,↔, S.

For a proof of the mixed-state case, see Appendix B.5. The above theorem
implies that the entanglement cost EC

c (ρ) has the same value for C =→, ←,
↔, S. Hence, we denote it by Ec(ρ).

Proof of Pure-State Case. We prove Theorem 8.9 by analyzing the pure
state |x〉〈x| in greater detail and by noting that ψ(s) = ψ(s|TrB |x〉〈x|). For
any R > H(x), we can calculate how fast the quantity (1−Optimal fidelity)
approaches 0 according to

lim
−1
n

log
(
1−

√
P (pn, enR)

)
= lim

−1
n

log
(
1− P (pn, enR)

)
= − min

0≤s≤1

ψ(s)− sR

1− s
,

where we used (2.145) for P (x⊗n, enR) and 1−
√

1− ε ∼= 1
2ε. If R < H(x), the

fidelity approaches zero for any LOCC (or separable) operation. The speed
of this approach is

lim
−1
n

log
√

P (pn, enR) = −1
2

min
s≤0

ψ(s)− sR

1− s
,

where we used (2.147). From these inequalities, we have EC
c (ρ) = H(ρu)

for C =→,←,↔, S using the relationship between H(p) and ψ(s) given in
Sect. 2.1.4. That is, we may also derive Theorem 8.9 in the pure-state case.

Since the additivity relation

Ef (ρ⊗n)
n

= Ef (ρ) (8.95)

holds in the pure-state case, the entanglement of cost has a simple expression:

EC
c (ρ) = Ef (ρ), (8.96)
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for C =→,←,↔, S. However, it is not known whether this formula holds for
mixed states, except in a few cases, which will be treated later. Certainly, this
problem is closely connected with other open problems, as will be discussed
in Sect. 9.2.

Similar to (8.80), we define the entanglement of exact cost

EC
c,e(ρ) def= lim

ẼC
c,e(ρ

⊗n)
n

, ẼC
c,e(ρ) def= min

κ∈C
{ log L|F (ρ, κ(|ΦL〉〈ΦL|)) = 1}

(8.97)

and the logarithm of the Schmidt rank for a mixed state ρ:

Esr(ρ) def= min
{(pi,ρi)}

max
i:pi>0

log rank ρi. (8.98)

From Theorem 8.4 we have ẼC
c,e(ρ) = Esr(ρ). Hence,

EC
c,e(ρ) = lim

Esr(ρ⊗n)
n

for C =→,←,↔, S. (8.99)

Any pure state |u〉〈u| satisfies the additivity Esr(|u〉〈u|⊗n) = nEsr(|u〉〈u|).
However, the quantity Esr(ρ) with a mixed state ρ does not necessarily satisfy
the additivity. Moreover, as is mentioned in Sect. 8.11, there exists an example
ρ such that Esr(ρ) = Esr(ρ⊗2) [385].

Exercises

8.38. Let HA = HB = C
3. Let the support of a state ρ on HA ⊗ HB be

{v ⊗ u− u⊗ v|u, v ∈ C
3}. Show that Ef (ρ) = log 2 [403].

8.39. Show that Ef satisfies the monotonicity for a two-way LOCC κ.

Ef (ρ) ≥ Ef (κ(ρ)). (8.100)

8.40. Verify the strong converse theorem concerning Theorem 8.9, i.e., show
that EC,†

c (|u〉〈u|) ≥ E(TrB |u〉〈u|)) for any pure state |u〉〈u| by defining
EC,†

c (ρ) in a similar way to Theorem 8.7.

8.7 Unified Approach to Distillation and Dilution

In this section, we derive the converse parts of distillation and dilution based
on the following unified method. In this method, for a class of local opera-
tions C, we focus on the function EC(ρ) of a state ρ ∈ S(HA ⊗ HB) that
satisfies the following conditions.

E1 (Normalization) EC(ρ) = log d when ρ is a maximally entangled state
of size d.
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E2C (Monotonicity) EC(κ(ρ)) ≤ EC(ρ) holds for any local operation κ in
class C.

E3 (Continuity) When any two states ρn and σn of system Hn satisfy
‖ρn − σn‖1 → 0, the convergence |EC(ρn)−EC(σn)|

log dim Hn
→ 0 holds.

E4 (Convergence) The quantity EC(ρ⊗n)
n converges as n→∞.

Based on the above conditions only, we can prove the following theorem.

Theorem 8.10 (Donald et al. [103]) When the quantity EC(ρ) satisfies the
above conditions,

EC
d,2(ρ) ≤ EC,∞(ρ)

(
def= lim

EC(ρ⊗n)
n

)
≤ EC

c (ρ). (8.101)

Proof. Let κn be a local operation κn in class C from (HA)⊗n ⊗ (HB)⊗n

to C
dn ⊗ C

dn such that3

‖ |Φdn〉〈Φdn | − κn(ρ⊗n)‖1 → 0, (8.102)

where log dn

n → EC
d,2(ρ). From Conditions E1 and E3 and (8.102), we have∣∣∣∣EC(κn(ρ⊗n))

n
− EC

d,2(ρ)
∣∣∣∣

≤ |E
C(κn(ρ⊗n))− EC(|Φdn

〉〈Φdn
|)|

n
+
∣∣∣∣ log dn

n
− EC

d,2(ρ)
∣∣∣∣→ 0.

Hence, Condition E2C guarantees that

lim
EC(ρ⊗n)

n
≥ lim

EC(κn(ρ⊗n))
n

= EC
d,2(ρ). (8.103)

We obtain the first inequality.
Next, we choose a local operation κn in class C from C

dn ⊗ C
dn to

(HA)⊗n ⊗ (HB)⊗n such that

‖κn(|Φdn
〉〈Φdn

|)− ρ⊗n‖1 → 0,

where log dn

n → EC
c (ρ). Similarly, we can show |E

C(κn(|Φdn 〉〈Φdn |))
n − EC(ρ⊗n)

n |
→ 0. Since EC(κn(|Φdn 〉〈Φdn |))

n ≤ log dn

n , we obtain

lim
EC(ρ⊗n)

n
≤ EC

c (ρ).

3 If the operation κn in C has a larger output system than C
dn ⊗C

dn , there exists
an operation κ′

n in C with the output system C
dn ⊗C

dn such that ‖ |Φdn〉〈Φdn |−
κn(ρ⊗n)‖1 ≥ ‖ |Φdn〉〈Φdn | − κ′

n(ρ⊗n)‖1.
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For example, the entanglement of formation Ef (ρ) satisfies Conditions
E1, E2↔(Exercise 8.39), E3 (Exercise 8.42), and E4 (Lemma A.1). The
entanglement of relative entropy Er,S(ρ) also satisfies Conditions E1, E2s
(Lemma 8.5), and E4 (Lemma A.1). Further, Donald and Horodecki [102]
showed Condition E3 for entanglement of relative entropy Er,S(ρ). In addi-
tion, the maximum of the negative conditional entropy

EC
m(ρ) def= max

κ∈C
−Hκ(ρ)(A|B) (8.104)

satisfies Conditions E1, E2C, E3 (Exercise 8.44), and E4 (LemmaA.1) for
C =→,↔, S. Thus,

EC
d,2(ρ) ≤ lim

EC
m(ρ⊗n)

n
≤ EC

c (ρ) (8.105)

for C =→,↔, S. Conversely, as will be proved in Sect. 9.6, the opposite
inequality (Hashing inequality)

E→
d,2(ρ) ≥ −Hρ(A|B) (8.106)

holds, i.e., there exists a sequence of one-way LOCC operations produc-
ing an approximate maximally entangled state of an approximate size of
e−nHρ(A|B). Performing the local operation κn in class C, we can prepare the
state κn(ρ⊗n). Applying this sequence of one-way LOCC operations to the
state κn(ρ⊗n), we can show that EC

d,2(ρ) ≥ EC
d,2(ρ

⊗n) ≥ −Hκn(ρ⊗n)(A|B),

which implies EC
d,2(ρ) ≥ EC

m(ρ⊗n)
n . Thus, we obtain

EC
d,2(ρ) = lim

EC
m(ρ⊗n)

n
. (8.107)

Therefore, since the relation Er,S(ρ) ≤ Ef (ρ) holds Ex. 8.41, we obtain

EC
d,2(ρ) = lim

EC
m(ρ⊗n)

n
≤ EC,†

d,2 (ρ) ≤ lim
Er,S(ρ⊗n)

n

≤ lim
Ef (ρ⊗n)

n
= EC

c (ρ).

We also have the following relations without the limiting forms:

−Hρ(A|B) ≤ EC
m(ρ) ≤ EC

d,2(ρ) ≤ EC,†
d,2 (ρ) ≤ Er,S(ρ) ≤ Ef (ρ). (8.108)

The above quantities are the same in the pure-state case. However, the equal-
ities do not necessarily hold in the mixed-state case.

Indeed, the expression of EC
m(ρ) can be slightly simplified as follows.

Consider a TP-CP κ with the Choi–Kraus representation {Fi}. This opera-
tion is realized by the following process. First, we perform the measurement
M = {Mi}ki=1 and obtain the datum i with probability pi = PM

ρ (i), where
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Fi = Ui

√
Mi. Next, we perform the isometry matrix Ui depending on i. All

data are sent to system B. Finally, we take the partial trace concerning the
data space on HB . Hence, inequality (5.78) yields

−Hκ(ρ)(A|B) ≤−H⊕k
i=1 Ui

√
Miρ

√
MiU∗

i
(A|B)

=−
∑

i

piHUi
√

Miρ
√

MiU∗
i

pi

(A|B).

Since operation κ is separable at least, the unitary Ui has the form UA
i ⊗UB

i .
Hence,

HUi
√

Miρ
√

MiU∗
i

pi

(A|B) = H√
Miρ

√
Mi

pi

(A|B).

Therefore,

EC
m(ρ) = max

M∈C
−
∑

i

piH√
Miρ

√
Mi

pi

(A|B) = max
M∈C

−Hκ̂M (ρ)(A|BE), (8.109)

where pi
def= PM

ρ (i), and HE is the space spanned by {eE
i } because

κ̂M (ρ) =
∑

i

pi

√
Miρ
√

Mi

pi
⊗ |eE

i 〉〈eE
i |. (8.110)

As another measure of entanglement, Christandl and Winter [78] intro-
duced squashed entanglement:

Esq(ρ) def= inf
{

1
2
IρA,B,E

(A : B|E)
∣∣∣∣ ρA,B,E : TrE ρA,B,E = ρ

}
. (8.111)

It satisfies Conditions E1, E2↔ (see [78]), E3 (Exercise 8.43), and E4 and
the additivity (Exercise 8.46)

Esq(ρ) + Esq(σ) = Esq(ρ⊗ σ). (8.112)

Hence, we obtain

E↔
d,2(ρ) = lim

E↔
m (ρ⊗n)

n
≤ Esq(ρ) ≤ lim

Ef (ρ⊗n)
n

= EC
c (ρ).

Next, a state on the composite system HA ⊗ HB is assumed to have
the form ρα

def=
∑

i,j αi,j |uA
i ⊗ uB

i 〉〈uA
j ⊗ uB

j |, where (αi,j) is a matrix and
{uA

i }({uB
i }) is an orthonormal basis of HA(HB). In this case, such a state

is called a maximally correlated state. A state ρ is maximally correlated if
and only if there exist CONSs {uA

i } and {uB
i } of HA and HB such that the

data of the measurement {|uA
i 〉〈uA

i |} coincide with those of {|uB
i 〉〈uB

i |}. The
separable state
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σα
def=

∑
i

αi,i|uA
i ⊗ uB

i 〉〈uA
i ⊗ uB

i | (8.113)

satisfies

Er,S(ρα) ≤ D(ρα‖σα) = H(σα)−H(ρα) = −Hρα
(A|B).

Hence, we obtain

−Hρα
(A|B) = EC

m(ρα) = EC
d,2(ρα) = EC,†

d,2 (ρα) = Er,S(ρα), (8.114)

for C =→,←,↔, S. Regarding the entanglement formation, the equation

Ef (ρα) + Ef (σ) = Ef (ρα ⊗ σ) (8.115)

holds for any maximally correlated state ρα on HA,1⊗HB,1 and any state σ
on HA,2⊗HB,2. Hence, any maximally correlated state ρα satisfies Ef (ρα) =
Ec(ρα). A state ρ is maximally correlated if and only if it has a probabilistic
decomposition of pure states (pi, |xi〉) such that all |xi〉 have the common
Schmidt bases on HA and HB . Its necessary and sufficient condition was
obtained by Hiroshima and Hayashi [209]. For example, any mixture of two
maximally entangled states is maximally correlated. We also have another
characterization of maximally correlated states.

Lemma 8.7 Let |x〉 be a pure state on the composite system HA⊗HB⊗HR.
Then, the following conditions are equivalent.

➀ ρAB def= TrR |x〉〈x| is maximally correlated.
➁ ρBR def= TrA |x〉〈x| has the following form

ρBR =
∑

i

pi|uB
i ⊗ xR

i 〉〈uB
i ⊗ xR

i |, (8.116)

where {uB
i } is a CONS of HB, but {xR

i } is not necessarily a CONS of
HR.

Proof of (8.115): Let x1 and x2 be the purifications of ρα and σ with
the reference systems HR,1 and HR,2, respectively. Then, any probabilistic
decomposition of ρα ⊗ σ is given by a POVM M = {Mi} on HR,1 ⊗ HR,2
(Lemma 8.3). From the definition of maximally correlated states, we have the
expression of the conditional state on system HB as follows:

TrR,A(
√

Mi ⊗ IA,B)|x1 ⊗ x2〉〈x1 ⊗ x2|(
√

Mi ⊗ IA,B)

= TrR

∑
i

IR,B ⊗ |uA
i 〉〈uA

i |(
√

Mi ⊗ IA,B)|x1 ⊗ x2〉〈x1 ⊗ x2|(
√

Mi ⊗ IA,B)

= pi

∑
j

Qi
j |uB

j 〉〈uB
j | ⊗ σi

j , (8.117)
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where pi = 〈x1 ⊗ x2|Mi ⊗ IA,B |x1 ⊗ x2〉, and σi
j is a density on HB,2. From

the strong concavity of von Neumann entropy (5.77),

H(
∑

j

Qi
j |uB

j 〉〈uB
j | ⊗ σi

j) ≥ H(
∑

j

Qi
j |uB

j 〉〈uB
j |) +

∑
j

Qi
jH(σi

j). (8.118)

Hence, the probabilistic decomposition by the POVM M yields the following
average entropy on HB,1 ⊗HB,2:∑

i

piH(
∑

j

Qi
j |uB

j 〉〈uB
j | ⊗ σi

j)

≥
∑

i

piH(
∑

j

Qi
j |uB

j 〉〈uB
j |) +

∑
i,j

piQ
i
jH(σi

j).

Next, we define the POVMs M1 = {M1
i } on HR,1 and M2 = {M2

i,j} on
HR,2 as

M1
i

def= TrHR,2

√
Mi(IHR,1 ⊗ σ)

√
Mi,

M2
i,j

def= TrHR,1

√
Mi(|uB

j 〉〈uB
j | ⊗ IHR,2)

√
Mi.

Then, the probabilistic decompositions by the POVMs M1 and M2 give the
average entropies

∑
i piH(

∑
j Qi

j |uB
j 〉〈uB

j |) and
∑

i,j piQ
i
jH(σi

j), respectively.

Proof of Lemma 8.7. Assume Condition ➀. Perform the POVM {|uA
i 〉〈uA

i |}.
The final state on HB ⊗HR is a pure state |uB

i ⊗xR
i 〉〈uB

i ⊗xR
i |. In this case,

{uB
i } is a CONS of HB . Since any measurement on HA gives a probabilistic

decomposition on HB ⊗HR (Lemma 8.3), we have (8.116).
Next, assume Condition ➁. There exists a CONS {uA

i } of HA such that

|x〉 =
∑

i

√
piu

A
i ⊗ uB

i ⊗ xR
i . (8.119)

Thus, when we perform the measurements {|uA
i 〉〈uA

i |} and {|uB
i 〉〈uB

i |}, we
obtain the same data. That is, ρA,B is maximally correlated.

Evidently, equation (8.117) is essential to the proof of (8.115) [403]. When
the vectors uA

1 , . . . , uA
dA

in equation (8.113) are orthogonal, the state ρα sat-
isfies equation (8.117). As is shown in Sect. 9.2, such a state is essentially
related to entanglement-breaking channels.

Further, we focus on the following condition for a state ρ on the system
HA⊗HB . Let |x〉 be a purification of ρ with the reference system HR. There
exists a TP-CP map from system HB to system HR such that the equation

κ(TrA,R(
√

Mi ⊗ IB,R)|x〉〈x|(
√

Mi ⊗ IB,R))

= TrA,B(
√

Mi ⊗ IB,R)|x〉〈x|(
√

Mi ⊗ IB,R) (8.120)
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holds for any POVM M = {Mi} on HA. In particular, any maximally cor-
related state satisfies this condition Ex. 8.45. If condition (8.120) holds, the
quantity E→

m (ρ) has the form

E→
m (ρ) = −Hρ(A|B). (8.121)

When the state ρ satisfies condition (8.120), the tensor product state ρ⊗n

also satisfies this condition. Hence, we obtain

−Hρ(A|B) = lim
E→

m (ρ⊗n)
n

= E→
d,2(ρ). (8.122)

Thus, condition (8.120) is satisfied in the following case. The system
HB can be decomposed as a composite system HB,1 ⊗ HB,2 such that the
system HB,1 is unitary equivalent to HR by a unitary U . Moreover, the
state TrHA,HB,2 |x〉〈x| commutes the projection to the symmetric subspace
of HR⊗HB,1, which is spanned by the set {U(x)⊗y+U(y)⊗x|x, y ∈ HB,1}.
In this case, any state ρs on the symmetric subspace and any state ρa on the
antisymmetric subspace satisfy U TrR ρiU

∗ = TrB,2 ρi for i = s, a. Note that
the antisymmetric subspace is spanned by the set {U(x)⊗y−U(y)⊗x|x, y ∈
HB,1}. Hence, the map κ satisfying (8.120) is given as the partial trace con-
cerning HB,2.

Proof of (8.122): For any one-way (HA → HB) LOCC operation κ′,
the local operation on HA can be described by the Choi–Kraus represen-
tation {Fi}, and the operation on HB can be described by a set of TP-
CP maps {κi} on HB . In this case, the measured datum i is obtained
with the probability pi = Tr Fi(TrB ρ)F ∗

i , and the final state with the mea-
sured datum i is the state ρi = 1

pi
TrA FiρF ∗

i . The entropy of ρi is equal to

H
(
TrA,B(

√
Mi ⊗ IB,R)|x〉〈x|(

√
Mi ⊗ IB,R)

)
, where Mi

def= F ∗
i Fi. The mono-

tonicity of transmission information (Exercise 5.26) and the relation (8.120)
imply

−Hρ(A|B)

= H(
∑

i

pi TrA,R(
√

Mi ⊗ IB,R)|x〉〈x|(
√

Mi ⊗ IB,R)

−H(
∑

i

pi TrA,B(
√

Mi ⊗ IB,R)|x〉〈x|(
√

Mi ⊗ IB,R)

≥
∑

i

piH(TrA,R(
√

Mi ⊗ IB,R)|x〉〈x|(
√

Mi ⊗ IB,R)

−
∑

i

piH(TrA,B(
√

Mi ⊗ IB,R)|x〉〈x|(
√

Mi ⊗ IB,R)

= −
∑

i

piHρi(A|B).
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Further, from inequality (5.78)

−Hκ′(ρ)(A|B) = −
∑

i

piH(ιA⊗κi)(ρi)(A|B) ≤ −
∑

i

piHρi(A|B).

Hence, we obtain −Hκ′(ρ)(A|B) ≤ −Hρ(A|B).

Exercises

8.41. Show that Er,S(ρ) ≤ Ef (ρ) using the joint convexity of the quantum
relative entropy.

8.42. Show that the entanglement of formation Ef (ρ) satisfies Condition E3
(continuity) (Nielsen [314]) following the steps below.

a Let states ρn and σn satisfy ‖ρn − σn‖1 → 0. Show that there exists a
probabilistic decomposition {pi

x, ρi
x} of ρn such that 1

n |
∑

x pi
xH(TrB ρi

x)−
Ef (σn)| → 0. Here, choose their purifications xn and yn based on
Lemma 8.2.

b Prove Condition E3 (continuity).

8.43. Show that the squashed entanglement Esq(ρ) satisfies Condition E3
following the steps below.

a Let states ρn and σn satisfy ‖ρn − σn‖1 → 0. Show that there exists an
extension ρABE

n of ρn such that 1
n |

1
2IρABE

n
(A : B|E)−Esq(σn)| → 0 using

(5.73).
b Show Condition E3 (continuity).

8.44. Show that EC
m(ρ) satisfies Condition E3 (continuity) for C =→,↔, S

using (8.109), (5.71), and the monotonicity of trace norm.

8.45. Let ρα =
∑

j pj |xj〉〈xj | be the spectral decomposition of the maximally
correlated state ρα, and

∑
j

√
pj |xj ⊗ x′

j〉 be a purification of ρα. Show that

the map ρ �→ κ(ρ) def=
∑

j,i pj |x′
j〉〈x′

j ||〈xj |ui ⊗ u′
i〉|2

〈u′
i|ρ|u′

i〉
αi,i

satisfies condition
(8.120).

8.46. Show the additivity of squashed entanglement (8.112) using chain rule
(5.76) for quantum conditional mutual information.

8.47. Let |x〉〈x| be a purification of ρ with the reference system HR. Assume
that the state TrB |x〉〈x| is separable betweenHA andHR. Prove the equation

Ef (ρ) + Ef (σ) = Ef (ρ⊗ σ) (8.123)

under the following assumption using a similar discussion to the proof of
(8.115) [403].

8.48. Show that the inequality EC
d,2(ρ) ≤ lim EC(ρ⊗n)

n holds even though we
replace Condition E3 in Theorem 8.10 by the following condition:

E3′ (Weak lower continuity) When the sequence of states ρn on C
dn ⊗ C

dn

satisfies ‖ρn − |Φdn
〉〈Φdn

|‖1 → 0, then lim EC(ρ⊗n)
n ≥ lim log dn

n .
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8.8 Dilution with Zero-Rate Communication

In this section, we treat entanglement dilution with small communication
costs. For this analysis, we focus on the entanglement of cost with zero-rate
communication:

E���
c (ρ) def= inf

{κn}⊂C

{
lim

log Ln

n

∣∣∣∣ limF (ρ⊗n, κn(|ΦLn〉〈ΦLn |)) = 1
log CC(κn)

n → 0

}
,

(8.124)

where CC(κ) is the size of classical communication. This value is calculated
in the pure-state case as follows.

Lemma 8.8 (Lo and Popescu [275])

E���
c (|u〉〈u|) = H(TrB |u〉〈u|)

Proof. To prove this, we first assume that there exist sets Ωn and Ω′
n and

a distribution p′
n on Ω′

n for a given distribution p on Ω and ε > 0 such that

d1((pn)↓, (pmix,Ωn × p′
n)↓)→ 0, lim

log |Ω′
n|

n
< ε, lim

log |Ωn|
n

≤ H(p).

(8.125)

Indeed, the pure state with the Schmidt coefficients
√

(pmix,Ωn × p′
n)↓

i can
be realized from the maximally entangled state with the size |Ωn| × |Ω′

n| by
classical communication with a size of at most |Ω′

n|. Therefore, if the state
|u〉〈u| has the Schmidt coefficients

√
pi, its n-fold tensor product |u〉〈u|⊗n can

be asymptotically realized from the maximally entangled state with asymp-
totically zero-rate classical communication.

It is sufficient to prove (8.125) by replacing a distribution p′
n on Ω′

n by
a positive measure p′

n on Ω′
n. Letting ln ≤ l′n be integers, we construct a

measure p̃n on Ωn as follows. For a type q ∈ Tn satisfying ln ≤ |Tn
q | ≤ l′n,

we choose a subset Tn
q

′ ⊂ Tn
q such that |Tn

q \ Tn
q

′| < ln. We define a measure

p̃n
def= pn1Ω′

n
, where Ω′

n
def= ∪q∈Tn:ln≤|T n

q |≤l′nTn
q

′. Then,

d(p̃n, pn) ≤
∑

q∈Tn:ln≤|T n
q |≤l′n

lnen
∑

ω qω log pω

+
∑

q∈Tn:|T n
q |<ln

pn(Tn
q ) +

∑
q∈Tn:|T n

q |>l′n

pn(Tn
q ). (8.126)

In this case, the measure p̃n has the form pmix,Ωn × p′
n with |Ωn| = ln

and |Ω′
n| = l′n

ln
|Tn|. When we choose ln = en(H(p)−ε) and l′n = en(H(p)+ε),

lim log |Ω′
n|

n = 2ε and lim log |Ωn|
n = H(p)−ε. From the discussion in Sect. 2.5.1,

the right-hand side (RHS) of (8.126) goes to 0.
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Next, we focus on the mixed state TrA2,B2 |u〉〈u|. Using this theorem, we
can check that

E���
c (TrA2,B2 |u〉〈u|) ≤ H(TrB |u〉〈u|).

Hence, defining the entanglement of purification for a state ρ on HA1 ⊗HB1 :

Ep(ρ) def= min
u:TrA2,B2 |u〉〈u|=ρ

H(TrB |u〉〈u|), (8.127)

we obtain

E���
c (ρ) ≤ lim

Ep(ρ⊗n)
n

.

Conversely, the opposite inequality follows from generalizing Theorem 8.10.
Hence, we have the following theorem.

Theorem 8.11 (Terhal et al. [387])

E���
c (ρ) = lim

Ep(ρ⊗n)
n

(8.128)

To generalize Theorem 8.10, we prepare the following condition.

E2′ (Weak monotonicity) Let κ be an operation containing quantum com-
munication with size d. Then,

E(κ(ρ)) ≤ E(ρ) + log d.

Lemma 8.9 When the quantity E(ρ) satisfies Conditions E1, E2′, E3, and
E4,

E∞(ρ)
(

def= lim
E(ρ⊗n)

n

)
≤ E���

c (ρ). (8.129)

This inequality holds even if we replace the one-way classical communication
in the definition of E���

c (ρ) with quantum communication.

In fact, the entanglement of purification Ep(ρ) satisfies Conditions E1, E2∅
(Exercise 8.49), E2′ (Exercise 8.49), E3 (Exercise 8.50), and E4. Hence,
equation (8.128) holds.

Further, using relation (8.128), we can slightly modify Lemma 8.9. For
this purpose, we introduce the following condition.

E1′ (Strong normalization)

E(|u〉〈u|) = H(TrB |u〉〈u|)
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Lemma 8.10 When the quantity E(ρ) satisfies Conditions E1′ and E2∅,

E(ρ) ≤ Ep(ρ). (8.130)

Hence,

E∞(ρ)
(

def= lim
E(ρ⊗n)

n

)
≤ lim

Ep(ρ⊗n)
n

= E���
c (ρ). (8.131)

Proof of Lemma 8.9. We choose a local operation κn with one-way classical
communication with a size ln such that

‖κn(|Φdn〉〈Φdn |)− ρ⊗n‖1 → 0,
log ln

n
→ 0,

where log dn

n → E���
c (ρ). Condition E3 guarantees that |E

���
c (κn(|Φdn 〉〈Φdn |))

n −
E���

c (ρ⊗n)
n | → 0. Combining Conditions E2∅ and E2′, we have

E(κn(|Φdn
〉〈Φdn

|)) ≤ log dn + log ln.

Therefore, we obtain (8.129).

Proof of Lemma 8.10. Let |u〉 be a purification of ρ attaining the minimum
of H(TrB |u〉〈u|). Hence, from Conditions E1′ and E2∅,

E(ρ) ≤ E(|u〉〈u|) = H(TrB |u〉〈u|) = Ep(ρ).

The entanglement of purification Ep(ρ) is expressed as follows.

Lemma 8.11 (Terhal et al. [387])

Ep(ρ)
(
= min

u
{H(TrB |u〉〈u|)|TrA2,B2 |u〉〈u| = ρ}

)
≤ min{H(ρA1), H(ρB1)}, (8.132)

where dimHA2 ≤ dA1dB1 , dimHB2 ≤ (dA1dB1)
2, and ρA1 = TrB1 ρ, ρB1 =

TrA1 ρ.

Proof. Let |u〉 be a purification of ρ and H′
B2

be its reference space. Then,
any purification is given by an isometry U from H′

B2
⊗HA2 to HB2 ⊗HA2 as

U ⊗ IA1,B1(|u〉〈u| ⊗ ρ0)(U ⊗ IA1,B1)
∗,

where ρ0 is a pure state on HA2 . Hence,

Ep(ρ) = min
κ

H(κ(TrA1 |u〉〈u|)),
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where κ is a TP-CP map from H′
B2

to HB2 . Since the minimum value is
attained with an extremal point, from Corollary 5.2 we can restrict HB2 to
a (dA1dB1)

2-dimensional space. Further, we can restrict HA2 to a dA1dB1-
dimensional space.

In addition, substituting κ = ι, we obtain Ep(ρ) ≤ H(ρA1). Similarly, the
inequality Ep(ρ) ≤ H(ρB1) holds.

Indeed, the quantum mutual information Iρ(A:B)
2 satisfies Conditions E1′

and E2′ (Exercise 5.43) and the additivity Iρ1 (A:B)
2 + Iρ2 (A:B)

2 = Iρ1⊗ρ2 (A:B)
2 .

Hence,

Iρ(A : B)
2

≤ E���
c (ρ).

As another quantity satisfying these two conditions, we focus on

CA→B
d (ρ) def= max

M
H(ρB)−

∑
i

PM
ρA(i)H(ρB

i )

= max
M

H(ρB)−HTrA κ̂M ⊗ιB(ρ)(B|E), (8.133)

ρB
i

def=
1

PM
ρA(i)

TrA(Mi ⊗ IB)ρ,

where M = {Mi} is a POVM on the system HA [205]. For the derivation of
this equation, see (8.110). It is easily checked that it satisfies Conditions E1′

(Exercise 8.52) and E2∅ (Exercise 8.52). Thus,

lim
CA→B

d (ρ⊗n)
n

≤ E���
c (ρ). (8.134)

In fact, CA→B
d (ρ) satisfies Condition E3 (continuity) (Exercise 8.54).

For example, when state ρ is a maximally correlated state, CA→B
d (ρ) is

calculated as

CA→B
d (ρ) = H(ρB)

because there exists a POVM M such that H(ρB
i ) = 0. Moreover,

CA→B
d (ρ⊗n) = nH(ρB).

Hence, from (8.132),

E���
c (ρ) = H(ρB) = CA→B

d (ρ).

Indeed, when HA = HB , we can define the flip operator F as F (u⊗ v) def=
v⊗ u. Operator F has the form F = Ps−Pa, where Ps(Pa) is the projection
to the symmetric space Hs (the antisymmetric space Ha), which is spanned
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by {u⊗ v + v ⊗ u} ({u⊗ v − v ⊗ u}). If the support supp(ρ) is contained by
Hs or Ha, the equation

Ep(ρ) = H(ρB) = H(ρA) (8.135)

holds as follows [79]. Since ρ⊗n also satisfies this condition, we have

E���
c (ρ) = Ep(ρ) = H(ρB) = H(ρA). (8.136)

Proof of (8.135). Let |u〉 be a purification of ρ with the reference systems
A2 and B2. Then, F |u〉〈u|F ∗ = |u〉〈u|. H|u〉〈u|(B1B2) = HF |u〉〈u|F (B1B2) =
H|u〉〈u|(A1B2) = H|u〉〈u|(B1A2). Hence, from inequality (5.67) we have

H|u〉〈u|(A1A2) + H|u〉〈u|(B1B2) = H|u〉〈u|(A1A2) + H|u〉〈u|(B1A2)
≥H|u〉〈u|(A1) + H|u〉〈u|(B1).

Since H|u〉〈u|(A1A2) = H|u〉〈u|(B1B2) and H|u〉〈u|(A1) = H|u〉〈u|(B1), we ob-
tain

H|u〉〈u|(A1A2) ≥ H|u〉〈u|(A1),

which implies (8.135).

In what follows, we calculate E���
c (ρ) and Ep(ρ) in another case by treat-

ing CA→B
d (ρ). Using the monotonicity of quantum relative entropy for the

measurement, we can show that

CA→B
d (ρ) ≤ Iρ(A : B). (8.137)

In particular, any separable state ρ satisfies (Exercise 8.53)

Iρ(A : B) ≤ Ep(ρ). (8.138)

Using this inequality, we can calculate CA→B
d (ρ) in the following case. Con-

sider the case where ρ has the following specific separable form:

ρ =
∑

i

pi|uA
i 〉〈uA

i | ⊗ ρB
i , (8.139)

where {uA
i } is a CONS on HA. In this case, the optimal POVM M on HA

is |uA
i 〉〈uA

i | because H(ρB)−
∑

i piH(ρB
i ) = Iρ(A : B). Thus,

CA→B
d (ρ) = H(ρB)−

∑
i

piH(ρB
i ). (8.140)

In particular, when ρB
i is pure, we have CA→B

d (ρ) = H(ρB). In this case, we
also have CA→B

d (ρ⊗n) = nH(ρB). Hence,
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E���
c (ρ) = CA→B

d (ρ) = H(ρB) ≤ H(ρA). (8.141)

Since E���
c (ρ) ≤ Ep(ρ) ≤ H(ρB), we have

Ep(ρ) = H(ρB).

Further, an interesting characterization of CA→B
d (ρ) holds when |x〉 is

a purification of ρ with the reference system HR. Since any probabilistic
decomposition of the state on HB ⊗ HR can be given by a POVM on HA

[Lemmas (8.3) and (8.29)], the relation

CA→B
d (ρ) = H(ρB)− Ef (ρB,R) (8.142)

holds, where ρB,R def= TrA |x〉〈x| [259]. As is mentioned in Sect. 9.5, this
quantity is different from the usual entanglement measure in representing not
only the amount of entanglement but also the amount of classical correlation.

Finally, we consider the equality condition of (8.137).

Lemma 8.12 The equality of (8.137) holds if and only if ρ has the specific
separable form of (8.139).

Proof. It is trivial that a state with the form of (8.139) satisfies the equality
in (8.137). Hence, we will prove (8.139) from the equality in (8.137). From
the equality in (8.137), there exists a POVM M = {Mi} such that

H(ρB)−
∑

i

PM
ρA(i)H(ρB

i ) = Iρ(A : B). (8.143)

In what follows, we can assume ρA > 0 without loss of generality. Now, we
focus on the entanglement-breaking channel κ̃M from system HA to system
C

k for a POVM M = {Mi}ki=1 on HA:

κ̃M (ρ) def=
∑

i

(Tr ρMi)|ui〉〈ui|,

where {ui} is a CONS of C
k. Then, the left-hand side (LHS) of (8.143) is

equal to I(κ̃M ⊗ιB)(ρ)(A : B), i.e.,

D((κ̃M ⊗ ιB)(ρ)‖(κ̃M ⊗ ιB)(ρA ⊗ ρB)) = D(ρ‖ρA ⊗ ρB),

where ρA = TrB ρ, ρB = TrA ρ. Applying Theorem 5.6, we have

ρ =
∑

i

(TrA ρ(Mi ⊗ IB))⊗
√

Miρ
A
√

Mi

Tr MiρA
. (8.144)
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Now, we define map W from a pure state on HA to a state on HB as follows.

Wx
def=

1
px

TrA ρ(|x〉〈x| ⊗ IB), px
def= 〈x|ρA|x〉.

Let Wx′ be an extremal point of the convex hull of {Wx}. Let HA,x′ be the
space spanned by the set {x|Wx = Wx′}. From (8.144),

Wx′ =
∑

i

(TrA ρ(Mi ⊗ IB))
〈x′|
√

Miρ
A
√

Mi|x′〉
Tr MiρA

.

From the above discussion,
√

Mi|x〉 belongs to HA,x′ . Thus, ρ is commutative
with |x′〉〈x′| ⊗ IB . Hence, the support of ρ − px′ |x′〉〈x′| ⊗ Wx′ is included
by H⊥

A,x′ ⊗HB , where H⊥
A,x′ is the orthogonal space of |x′〉. Repeating this

discussion, we obtain (8.139). Note that we must redefine HB such that ρB >
0 before repeating this.

Exercises

8.49. Show that the entanglement of purification Ep(ρ) satisfies Condi-
tions E2∅ and E2′.

8.50. Show that the entanglement of purification Ep(ρ) satisfies Condi-
tion E3 based on the discussion in the proof of Lemma 8.11.

8.51. Show that

CA→B
d (ρ) + CA→B

d (σ) = CA→B
d (ρ⊗ σ) (8.145)

for a separable state ρ using Exercise 8.47.

8.52. Show that the quantity CA→B
d (ρ) satisfies Conditions E1′ and E2∅.

8.53. Prove inequality (8.138) following the steps below.

a Let |X〉〈X| be a pure entangled state on HA ⊗ HB and M = {Mi} be
a rank-one PVM on HA. Show that H(TrA |u〉〈u|) = Iρ(A : B), where
ρ =

∑
Mi ⊗XMT

i X∗.
b Show inequality (8.138) using Theorem 8.1.

8.54. Show that the quantity CA→B
d (ρ) satisfies Condition E3 using (8.133)

and (5.71).

8.9 State Generation from Shared Randomness

In this section, we treat in an asymptotic formulation the state generation
from minimum shared random numbers. If desired state ρ is nonseparable
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between HA and HB , it is impossible to generate state ρ only from shared
random numbers. Hence, we treat a separable state:

ρ =
∑

i

piρ
A
i ⊗ ρB

i . (8.146)

In particular, when the conditions

[ρA
i , ρA

j ] = 0 ∀i, j, (8.147)

[ρB
i , ρB

j ] = 0 ∀i, j (8.148)

hold, the problem is essentially classical. In this problem, our operation is
described by the size of shared random numbers M and the local states σA

i

and σB
i depending on the shared random number i = 1, . . . , M , i.e., we

focus on our operation Φ
def= {σA

i ⊗ σB
i }Mi=1 for approximating state ρ. Its

performance is characterized by the size |Φ| def= M and the quality of the
approximation

∥∥∥ 1
|Φ|

∑|Φ|
i=1 σA

i ⊗ σB
i − ρ

∥∥∥
1
. Hence, the minimum size of shared

random numbers is asymptotically characterized by Cc(ρ)4

Cc(ρ) def= inf
{Φn}

⎧⎨
⎩lim

1
n

log |Φn|

∣∣∣∣∣∣lim
∥∥∥∥∥∥ 1
|Φn|

|Φn|∑
i=1

ρA
n,i ⊗ ρB

n,i − ρ⊗n

∥∥∥∥∥∥
1

= 0

⎫⎬
⎭ ,

(8.149)

where Φn = {σA
n,i ⊗ σB

n,i}. Since a shared random number with size M can
be simulated by a maximally entangled state with size M , we have

Cc(ρ) ≥ E���
c (ρ). (8.150)

For this analysis, we define the quantities

C(ρ, δ) def= inf
{

IρABE
(AB : E)

∣∣∣∣TrE ρABE = ρ, IρABE
(A : B|E) ≤ δ

ρABE =
∑

x pxρA,B
x ⊗ |uE

x 〉〈uE
x |

}
,

(8.151)

C̃(ρ, δ) def= inf {IρABE
(AB : E) |TrE ρABE = ρ, IρABE

(A : B|E) ≤ δ } ,
(8.152)

where {uE
x } is a CONS on HE . From the definitions, the inequality

C(ρ, δ) ≥ C̃(ρ, δ) (8.153)

holds. In particular, we can prove Ex. 8.57

C(ρ, 0) = C̃(ρ, 0) (8.154)

and denote it by C(ρ). Further, this quantity satisfies the following properties.
4 The subscript c denotes “common randomness.”
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➀ (Monotonicity) The operations κA and κB on HA and HB satisfy the
monotonicity Ex. 8.55

C(ρ, δ) ≥ C((κA ⊗ κB)(ρ), δ), C̃(ρ, δ) ≥ C̃((κA ⊗ κB)(ρ), δ). (8.155)

➁ (Additivity) The quantity C(ρ) satisfies the additivity Ex. 8.56:

C(ρ⊗ σ) = C(ρ) + C(σ) (8.156)

➂ (Continuity) The former quantity C(ρ, δ) satisfies two kinds of continuity,
i.e., if ρn is separable and ρn → ρ, then

lim
n→∞ C(ρn) = C(ρ), (8.157)

lim
δ→0

C(ρ, δ) = C(ρ, 0). (8.158)

In particular, the convergence in (8.158) is locally uniform concerning ρ.
➃ (Asymptotic weak-lower-continuity) When ‖ρn−ρ⊗n‖1 → 0, the inequal-

ity

lim
C(ρn)

n
≥ C(ρ) (8.159)

holds.
➄ C(ρ) satisfies

C(ρ) ≥ Iρ(A : B) (8.160)

because

IρABE (AB : E) ≥ IρABE (A : E) = IρABE (A : E) + IρABE (A : B|E)
=IρABE (A : BE) ≥ IρABE (A : B)

for any extension ρABE of ρ satisfying IρABE (A : B|E) = 0.
➅ When condition (8.147) holds, C(ρ) is upper bounded as

C(ρ) ≤ Hρ(A). (8.161)

This can be checked by substituting HA into HE in the definition of
C̃(ρ, 0).

Using the quantity C(ρ), we can characterize Cc(ρ) as follows.

Theorem 8.12 (Wyner [426]) When ρ is separable, then

Cc(ρ) = C(ρ). (8.162)
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Hence, from (8.150),

E���
c (ρ) ≤ C(ρ). (8.163)

Further, there exists an example of separable states ρ such that conditions
(8.147) and (8.148) hold and Cc(ρ) > E���

c (ρ) [421].

Proof. Since the direct part follows from the discussion in Sect. 9.4, its
proof will be given in Sect. 9.4. Hence, we only prove the converse part here.
Now, we choose the state ρn

def= 1
|Φn|

∑|Φn|
i=1 σA

n,i ⊗ σB
n,i ⊗ |uE

i 〉〈uE
i | such that

‖TrE ρn − ρ⊗n‖1 → 0. Then, we have

log |Φn| ≥ Iρn(AB : E) ≥ C(TrE ρn). (8.164)

Hence, combining (8.159), we obtain

lim
1
n

log |Φn| ≥ C(ρ).

Proof of (8.158). We first characterize the quantity C(ρ) as follows. Since
the state ρ(AB)E is restricted to a separable state between AB and E, the
state ρ(AB)E is given by a probabilistic decomposition (piρi) of ρ. Now, recall
that any probabilistic decomposition of ρ on HA⊗HB is given by POVM M
on the reference system as (8.28) and (8.29). In order to satisfy the condition
IρABE (A : B|E) = 0, any component ρi has a tensor product form. Hence,

C(ρ) = inf
M

{
IρABE

M
(AB : E)

∣∣∣IρABE
M

(A : B|E) = 0
}

,

where

ρABE
M

def=
∑

i

TrR(
√

Mi ⊗ I)|x〉〈x|(
√

Mi ⊗ I)⊗ |uE
i 〉〈uE

i |.

Therefore, from Lemma A.9 we can restrict the range of the above infimum
to the POVM M with at most 2(dimHA,B)2 elememnts. Since the set of
POVMs with at most 2(dimHA,B)2 elements is compact, the above infimum
can be replaced by the maximum. Further, we define

C(ρ, δ) = inf
M

{
IρABE

M
(AB : E)

∣∣∣IρABE
M

(A : B|E) = δ
}

. (8.165)

Since IρABE
M

(A : B|E) is written as

IρABE
M

(A : B|E) =
∑

i

piIρ(Mi), pi
def= Tr(Mi ⊗ I)|x〉〈x|

Iρ(Mi)
def= ITrR(

√
Mi⊗I)|x〉〈x|(

√
Mi⊗I)

pi

(A : B),
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from Lemma A.9 we can restrict the range of the infimum in (8.165) to the
POVMs M such that |M | ≤ 2(dimHA,B)2. Since the set of POVMs with at
most 2(dimHA,B)2 elements is compact, from Lemma A.4 we have

lim
δ→0

C(ρ, δ) = C(ρ). (8.166)

Indeed, the above convergence is locally uniform for ρ. From (5.73), the func-
tions IρABE

M
(AB : E) and IρABE

M
(A : B|E) satisfy

|IρABE
M

(AB : E)− IσABE
M

(AB : E)| ≤ 5ε log dimHA,B + η0(ε) + 2h(ε)

|IρABE
M

(A : B|E)− IσABE
M

(A : B|E)| ≤ 8ε log dimHA,B + 6h(ε),

where ε = ‖σ − ρ‖1. Hence, the local uniformality follows by checking the
discussion in the proof of Lemma A.4.

Proof of (8.157). Now, we prove equation (8.157). Let |xn〉 (|x〉) be a
purification of ρn (ρ) such that |〈x|xn〉| = F (ρ, ρn). From (5.42),

‖ |x〉〈x| − |xn〉〈xn| ‖1 → 0. (8.167)

We choose a POVM Mn with at most 2(dimHA,B)2 elememnts such that

IρABE
n,Mn

(AB : E) = C(ρn), IρABE
n,Mn

(A : B|E) = 0.

From (8.167), (5.72), and (5.73),

δn
def= IρABE

Mn
(A : B|E)→ 0,

δ′
n

def= |IρABE
n,Mn

(AB : E)− IρABE
Mn

(AB : E)| → 0.

Hence,

C(ρn) + δ′
n ≥ C(ρ, δn).

From (8.166) we obtain the inequality limC(ρn) ≥ C(ρ).
Conversely, we choose a POVM M with at most 2(dimHA,B)2 elememnts

such that

IρABE
Mn

(AB : E) = C(ρ), IρABE
Mn

(A : B|E) = 0.

From (8.167), (5.72), and (5.73),

εn
def= IρABE

n,M
(A : B|E)→ 0,

ε′
n

def= |IρABE
n,M

(AB : E)− IρABE
M

(AB : E)| → 0.

Hence,

C(ρ) + ε′
n ≥ C(ρn, εn).

Since the convergence of (8.166) is locally uniform, we obtain the opposite
inequality limC(ρn) ≤ C(ρ).
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Proof of (8.159). Let ρABE
n be a state satisfying TrE ρABE

n = ρn, IρABE
n

(A :
B|E) = 0, and IρABE

n
(AB : E) = C(ρn). From (5.66), the state ρABE

n satisfies
HρABE

n
(AB|E) ≤

∑
i HρABE

n
(AiBi|E). Hence,

C(ρn) = HρABE
n

(AB)−HρABE
n

(AB|E)

≥ HρABE
n

(AB)−
∑

i

HρABE
n

(AiBi|E)

= Hρn(AB)−
∑

i

HρABE
n

(AiBi) +
∑

i

(Hρn(AiBi)−HρABE
n

(AiBi|E))

≥ Hρn(AB)−
∑

i

Hρn(AiBi) +
∑

i

C(ρn,i),

where ρn,i is the reduced density matrix on AiBi. The final inequality follows
from the definition of C(ρn,i). Since ρn,i approaches ρ, properties (8.157) and
(5.64) yield

lim
C(ρn)

n
≥ C(ρ).

Exercises

8.55. Prove inequality (8.155).

8.56. Prove equation (8.156) following the steps below.

a Assume that an extension ρABE of ρA1B1 ⊗ ρA2B2 satisfies IρABE (A1A2 :
B1B2|E) = 0. Show that IρABE (A1 : B1|E) = IρABE (A2 : B2|A1B1E) = 0
using (5.76).

b Prove equation (8.156) using a.

8.57. Prove equation (8.154) following the steps below.

a Assume that an extension ρABE of ρ satisfies IρABE (A : B|E) = 0. Show
that I(κM ⊗ιAB)(ρABE)(A : B|E) = 0 for any PVM M on HE .

b Prove equation (8.154) using a.

8.10 Positive Partial Transpose (PPT) Operations

In this section, we treat the class of positive partial transpose (PPT) maps
(operations) as a wider class of local operations than the class of S-TP-CP
maps. Remember that τA is defined as a transpose concerning the system
HA with the basis {u1, . . . , ud}, as defined in Example 5.7 in Sect. 5.2. As
was mentioned in Sect. 5.2, any separable state ρ satisfies τA(ρ) = (τA ⊗
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ιB)(ρ) ≥ 0. These states are called positive partial transpose (PPT) states.
Note that the PPT condition τA(ρ) ≥ 0 does not depend on the choice of the
basis ofHA

Ex. 8.58. A TP-CP map κ from a systemHA⊗HB to another system
HA′ ⊗HB′ is called a positive partial transpose (PPT) map (operation) if the
map τA′ ◦ κ ◦ τA is a TP-CP map. As is easily checked, any PPT map κ can
transform a PPT state into another PPT state. This condition is equivalent
to the condition that the matrix K(κ) defined in (5.2) has a PPT state form
similar to a state on the composite system (HA⊗HA′)⊗ (HB⊗HB′). Hence,
any PPT state can be produced by a PPT operation without any entangled
state. Note that S-TP-CP maps also have a similar characterization. Since
any separable state on the composite system (HA ⊗HA′)⊗ (HB ⊗HB′) is a
PPT state on the composite system (HA⊗HA′)⊗ (HB ⊗HB′), all S-TP-CP
maps are PPT maps [353]. Hence, the class of PPT maps C = PPT is the
largest class of local operations among C = ∅,→,←,↔, S, PPT. Further, the
definition of PPT maps does not depend on the choice of the basis Ex. 8.59. In
addition, Cirac et al. [80] showed that any PPT operation could be realized
by a bound entangled state and an LOCC operation.

As an entanglement measure related to PPT maps, we often focus on the
log negativity log ‖τA(ρ)‖1, which does not depend on the choice of the basis
Ex. 8.60. For a pure state u =

∑
i

√
λiu

A
i ⊗ uB

i ,

τA(|u〉〈u|) =
∑
i,j

√
λi

√
λj |uA

j ⊗ uB
i 〉〈uA

i ⊗ uB
j |.

Then,

|τA(|u〉〈u|)| =
√

τA(|u〉〈u|)∗τA(|u〉〈u|)

=
∑
i,j

√
λi

√
λj |uA

i ⊗ uB
j 〉〈uA

i ⊗ uB
j | = (

∑
i

√
λi|ui〉〈ui|)⊗2. (8.168)

Therefore, ‖τA(|u〉〈u|)‖1 = (
∑

i

√
λi)2. In particular,

τA(|ΦL〉〈ΦL|) =
1
L

F, |τA(|ΦL〉〈ΦL|)| =
1
L

, (8.169)

where F is the flip operator Ps − Pa. Moreover, the log negativity satisfies
the additivity log ‖τA(ρ⊗σ)‖1 = log ‖τA(ρ)‖1 +log ‖τA(σ)‖1 and the mono-
tonicity regarding the PPT operations κ

‖τA(κ(ρ))‖1 ≤ ‖τA(ρ)‖1, (8.170)

i.e.,

log ‖τA(κ(ρ))‖1 ≤ log ‖τA(ρ)‖1. (8.171)
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Using (8.169), we can generalize relation (8.7) as

〈ΦL|ρ|ΦL〉 = Tr ρ|ΦL〉〈ΦL| = Tr τA(ρ)τA(|ΦL〉〈ΦL|)

≤‖τA(ρ)‖1‖τA(|ΦL〉〈ΦL|)‖ =
‖τA(ρ)‖1

L
. (8.172)

This relation implies that

EPPT,†
d,2 (ρ) ≤ D(ρ‖σ) + log ‖τA(σ)‖1. (8.173)

The RHS is called an SDP (semidefinite programming) bound [353] and sat-
isfies the monotonicity, i.e.,

D(ρ‖σ) + log ‖τA(σ)‖1 ≥ D(κ(ρ)‖κ(σ)) + log ‖τA(κ(σ))‖1

for a PPT operation κ. It implies inequality (8.170). As a consequence, we
have

EPPT,†
d,2 (ρ) ≤ log ‖τA(ρ)‖1, (8.174)

EPPT,†
d,2 (ρ) ≤ D(ρ‖σ), for a PPT state σ. (8.175)

Hence, the information quantities ESDP(ρ) def= minσ D(ρ‖σ) + log ‖τA(σ)‖1
and Er,PPT(ρ) def= minσ:PPT D(ρ‖σ) do not increase for a PPT operation, i.e.,
satisfy the monotonicity. Further, from (8.173) we obtain

EPPT,†
d,2 (ρ) ≤ lim

ESDP(ρ⊗n)
n

≤ lim
Er,PPT(ρ⊗n)

n
.

Regarding the direct part, since the quantity EPPT
d,2 (ρ) satisfies Condition E3’

(weak lower continuity) because of Fannes’ inequality (5.64), from Exercise
8.48 and the Hashing inequality (8.106) we can show

EPPT
d,2 (ρ) = lim

EPPT
m (ρ⊗n)

n
. (8.176)

Proof of (8.173). Consider a PPT operation κ′
n on HA ⊗ HB and a real

number r > D(ρ‖σ) + log ‖τA(σ)‖1. Inequalities (8.172) and (8.170) imply
that 〈Φenr |κ′

n(σ⊗n)|Φenr 〉 ≤ e−nr‖τA(κ′
n(σ⊗n))‖1 ≤ e−nr‖τA(σ)‖n1 . From

I − |Φenr 〉〈Φenr | ≥ 0 we have

I − (κ′
n)∗(|Φenr 〉〈Φenr |) = (κ′

n)∗(I)− (κ′
n)∗(|Φenr 〉〈Φenr |)

= (κ′
n)∗(I − |Φenr 〉〈Φenr |) ≥ 0,

where (κ′
n)∗ is the dual map of κ′

n (see ➃ of Theorem 5.1). Moreover,

(κ′
n)∗(|Φenr 〉〈Φenr |) ≥ 0,

Tr σ⊗n(κ′
n)∗(|Φenr 〉〈Φenr |) = 〈Φenr |κ′

n(σ⊗n)|Φenr 〉 ≤ e−n(r−log ‖τA(σ)‖1).
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Since the matrix (κ′
n)∗(|Φenr 〉〈Φenr |) satisfies the condition of test 0 ≤

(κ′
n)∗(|Φenr 〉〈Φenr |) ≤ I, inequality (3.38) in Sect. 3.7 yields

〈Φenr |κ′
n(ρ⊗n)|Φenr 〉 = Tr ρ⊗n(κ′

n)∗(|Φenr 〉〈Φenr |) ≤ en
−φ(s)−s(r−log ‖τA(σ)‖1)

1−s

for s ≤ 0, where φ(s) def= log Tr ρ1−sσs. Using arguments similar to those used
for the proof of Lemma 3.5, the condition r− log ‖τA(σ)‖1 > D(ρ‖σ) implies
〈Φenr |κ′

n(ρ⊗n)|Φenr 〉 → 0. We thus obtain (8.173).

Further, using the log negativity, Rains [353] showed that

EPPT
d,2 (ρ1) + EPPT

d,2 (ρ2) ≤ EPPT
d,2 (ρ1 ⊗ ρ2) ≤ EPPT

d,2 (ρ1) + log ‖τA(ρ2)‖1.
(8.177)

Indeed, Donald and Horodecki [102] proved Condition E3 for Er,PPT(ρ).
Therefore, since Er,PPT(ρ) satisfies Conditions E1, E2PPT, and E4 in a
manner similar to Er,S(ρ), Theorem 8.10 guarantees the inequality

lim
Er,PPT(ρ⊗n)

n
≤ EPPT

c (ρ). (8.178)

In inequality (8.174), the log negativity gives the upper bound of the entangle-
ment of distillation; however, it does not give the lower bound of the entangle-
ment of cost because log ‖τA(|u〉〈u|)‖1 = 2 log(

∑
i

√
λi) > −

∑
i λi log λi =

ES
c (|u〉〈u|). Thus, it does not satisfy Condition E3 (continuity) because The-

orem 8.10 leads to a contradiction if it holds (Exercise 8.63). In this case, we
can show the following lemma as its alternative.

Lemma 8.13 When the quantity ẼC(ρ) satisfies Conditions E1 and E2C,
the entanglement of exact distillation and the entanglement of exact cost are
evaluated as

ẼC
d,e(ρ) ≤ ẼC(ρ) ≤ ẼC

c,e(ρ).

Further, if it satisfies Condition E4 also, their limits are evaluated as

EC
d,e(ρ) ≤ lim

ẼC(ρ⊗n)
n

≤ EC
c,e(ρ).

Hence, from (8.171) we have the following formula for the exact cost with
PPT operations [19]:

log ‖τA(ρ)‖1 ≤ EPPT
c,e (ρ). (8.179)

Further, Audenaert et al. [19] showed the opposite inequality

EPPT
c,e (ρ) ≤ log(‖τA(ρ)‖1 + dAdB max(0,−λmin(τA(|τA(ρ)|))),



264 8 Entanglement and Locality Restrictions

where λmin(X) denotes the minimum eigenvalue of X. Hence, when

τA(|τA(ρ)|) ≥ 0, (8.180)

we obtain

log ‖τA(ρ)‖1 = EPPT
c,e (ρ).

For example, from (8.168) any pure state satisfies condition (8.180). Further,
Ishizaka [241] proved that all states on the system C

2 ⊗ C
2 satisfy this con-

dition. Therefore, the entanglement measures for a pure state ρ = |u〉〈u| are
summarized as follows. Let λ be a probability distribution of the eigenvalues
of the reduced density TrB ρ. Then, each entanglement measure is described
by the Rényi entropy ψ(s|λ) = log

∑
i λ1−s as Ex. 8.32,8.62

EC1
d,e(ρ) ≤ EC2

d,i (ρ) = EC3
c (ρ) ≤ EPPT

c,e (ρ) ≤ EC4
c,e(ρ)

‖ ‖ ‖ ‖
lim

s→−∞
ψ(s|λ)

s
≤ lim

s→0

ψ(s|λ)
s

≤ ψ(1/2|λ)
1/2

≤ lim
s→1−0

ψ(s|λ)
s

,

(8.181)

where i = 1, 2, C1 =→,↔, S, PPT, C2 = ∅,→,↔, S, PPT, C3 =���,→,↔,
S, PPT, and C4 =→, ↔, S. Remember that the quantity ψ(s|λ)

s is monotone
increasing for s (Sect. 2.1.4).

To conclude this section, we briefly discuss the relationship between
EC

d,2(ρ
A,B) and Theorem 8.3 [233]. In Theorem 8.3, we derived ρA,B � ρA

from the fact that ρA,B is separable. In fact, there exist several other condi-
tions regarding separability:

➀ ρA,B is separable.
➁ τA ⊗ ιB(ρA,B) ≥ 0. (PPT state)
➂ E↔

d,2(ρ
A,B) = 0. (nondistillable state)

➃ ρA ⊗ IB ≥ ρA,B and IA ⊗ ρB ≥ ρA,B .
➄ ρA,B � ρA and ρA,B � ρB .

The relations between these conditions can be summarized as follows:

Horodecki [227] Horodecki [229] Hiroshima [208]
➀ ⇒ ➁ ⇒ ➂ ⇒ ➃ ⇒ ➄

In particular, a nondistillable state is called a bound entangled state when it
is not separable. The relation ➁⇒➀ (Theorem 5.3) has been shown only for
C

2⊗C
2 and C

2⊗C
3. Hence, there is no bound entangled state on the C

2⊗C
2

system. However, a counterexample, i.e., a bound entangled state, exists for
➀⇐➁ on C

2⊗C
4 and C

3⊗C
3 [236]. Since any PPT state can be produced by

a PPT operation without any entangled state, this counterexample provides
an interesting insight. That is, there exists a separable state ρ′ and PPT



8.10 Positive Partial Transpose (PPT) Operations 265

operation κ′ such that κ′(ρ′) is not separable. Further, it is known that the
relation ➁⇐➃ holds for C

2 ⊗ C
nEx. 8.64 [69, 101,229].

As is easily checked, Condition ➀ is equivalent to the conditions Ẽs
c,e(ρ) =

0 and Ef (ρ) = 0. Since Ef (κ′(ρ′)) is not 0, Ef is not monotone for PPT op-
erations. Further, examining the quantity CA→B

d (ρ), Yang et al. [430] showed
that if the entanglement of cost Ec(ρ) is zero, ρ is separable. That is, a non-
separable state has nonzero entanglement of cost. Hence, Ec is not monotone
for PPT operations.

Further, for any nonseparable state σ, there exists a state ρ and an integer
L such that [280]

EC
d,L(ρ) < EC

d,L(ρ⊗ σ),

which implies that Ec(σ) > 0.
In addition, a counterexample also exists for ➃⇐➄ when C

2 ⊗ C
2 [240].

However, it is an open problem whether the opposite relation ➁⇐➂ holds.
To discuss it in greater detail, we focus on the following relation:

E↔
d,2(ρ) ≤ ES

d,2(ρ) ≤ EPPT
d,2 (ρ) ≤ lim

ESDP(ρ⊗n)
n

≤ lim
Er,PPT(ρ⊗n)

n

≤ EPPT
c (ρ) ≤ EPPT

c,e (ρ) ≤ ẼPPT
c,e (ρ).

Since any PPT state can be produced by a PPT operation without any
entangled state, Condition ➁ is equivalent to the condition ẼPPT

c,e (ρ) = 0.
From (8.179) it is also equivalent to the condition EPPT

c,e (ρ) = 0. Therefore, if
Condition ➁ is equivalent to Condition ➂, these conditions hold if and only
if one of the above values is equal to zero.

Exercises

8.58. Let τ̃A be a partial transpose concerning another (the second) basis,
and U be a unitary matrix mapping every base of the first basis to every base
of the second basis. Show that τ̃A = UτAU∗.

8.59. Show that τA′ ◦ κ ◦ τA is TP-CP if and only if τ̃A′ ◦ κ ◦ τ̃A is TP-CP in
the above assumption.

8.60. Show that ‖τ̃A(ρ)‖1 = ‖τA(ρ)‖1 in the above assumption.

8.61. Show

EPPT,∗
d,2 (R||u〉〈u|) ≥ max

0≤t≤1

−ψ(t) + (1− t)R
t

.

8.62. Prove the following equation:

EPPT
d,e (|u〉〈u|) = − log λ↓

1. (8.182)
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a Prove the following inequality as a generalization of (8.172):

Tr σρ ≤ ‖τA(σ)‖1‖τA(ρ)‖. (8.183)

b Prove equation (8.182) by combining (8.183), (8.168), and an inequality
similar to (8.82).

8.63. Check the following counterexample of the continuity of
2 log ‖τA(|u〉〈u|)‖1 as follows [273].

a Show that ‖ρ⊗n − ρn‖1 → 0, i.e., F (ρ⊗n, ρn)→ 1, where
ρn

def= {e−n(H(ρ)+ε)≤ρ⊗n≤e−n(H(ρ)−ε)}ρ⊗n

Tr{e−n(H(ρ)+ε)≤ρ⊗n≤e−n(H(ρ)−ε)}ρ⊗n .
b Show that H(ρ)− ε ≤ 1

snψ(s|ρn) ≤ H(ρ) + ε.
b Check that the purifications xn, yn of ρ⊗n, ρn give a counterexample of the

continuity of 2 log ‖τA(|u〉〈u|)‖1.

8.64. Let A, B, and C be n × n matrices. Show that
(

A B∗

B C

)
≥ 0 when(

A + C 0
0 A + C

)
≥
(

A B
B∗ C

)
≥ 0 [69].

8.11 Examples

In this section, we summarize the preceding calculation of entanglement mea-
sures using several examples in the mixed-state case.

8.11.1 2 × 2 System

In the case of C
2⊗C

2, Wootters [424] calculated the entanglement of forma-
tion as

Ef (ρ) = h

(
1 +

√
1− Co(ρ)2

2

)
, Co(ρ) def= max{0, λ1 − λ2 − λ3 − λ4},

(8.184)

where λi is the square root of the eigenvalue of ρ(S2 ⊗ S2)ρ̄(S2 ⊗ S2) in
decreasing order. The function Co(ρ) is called concurrence. When we perform
an instrument {κω}ω with the separable form κω(ρ) = (Aω⊗Bω)ρ(Aω⊗Bω)∗,
the final state (Aω⊗Bω)ρ(Aω⊗Bω)∗

Tr(Aω⊗Bω)ρ(Aω⊗Bω)∗ has the following concurrence [272, 401]
Ex. 8.65:

Co

(
(Aω ⊗Bω)ρ(Aω ⊗Bω)∗

Tr(Aω ⊗Bω)ρ(Aω ⊗Bω)∗

)
= Co(ρ)

det Aω det Bω

Tr(Aω ⊗Bω)ρ(Aω ⊗Bω)∗ .

(8.185)
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For example, the concurrence of the Bell diagonal state
ρBell,p

def=
∑3

i=0 pi|eA,B
i 〉〈eA,B

i | is calculated as Ex. 8.66

Co(ρBell,p) = 2 max
i

pi − 1, (8.186)

and it does not increase by any stochastic operation [250]Ex. 8.67:

Co(ρBell,p) ≥ Co

(
(Aω ⊗Bω)ρBell,p(Aω ⊗Bω)∗

Tr(Aω ⊗Bω)ρBell,p(Aω ⊗Bω)∗

)
. (8.187)

This state satisfies

−HρBell,p(A|B) = log 2−H(p), IρBell,p(A : B) = 2 log 2−H(p).

Further, the maximally correlated state ρa,b
def= a|00〉〈00| + b|00〉〈11| +

b|11〉〈00|+ (1− a)|11〉〈11|Ex. 8.68 has the concurrence 2b Ex. 8.69. Hence,

Ec(ρa,b) = Ef (ρa,b) = h

(
1 +
√

1− 4b2

2

)
.

Regarding distillation, from (8.114) and (8.173) we have Ex. 8.70

EC,†
d,2 (ρa,b) = EC

d,2(ρa,b) = Er,S(ρa,b) = Er,PPT(ρa,b) = −Hρa,b
(A|B)

=h(a)− h

(
1 +

√
(2a− 1)2 + 4b2

2

)
,

for C =→,←,↔, S, and PPT. Further,

Iρa,b
(A : B) =2h(a)− h

(
1 +

√
(2a− 1)2 + 4b2

2

)

CA→B
d (ρa,b) =E���

c (ρa,b) = h(a).

Since Ishizaka [241] proved τA(|τA(ρ)|) ≥ 0 for the 2× 2 case, the relation

EPPT
c,e (ρ) = log ‖τA(ρa,b)‖1 = log (1 + 2b)

holds. Hence, comparing these values, we obtain the inequality

log(1 + 2b) ≥ h

(
1 +
√

1− 4b2

2

)
≥ h(a)− h

(
1 +

√
(2a− 1)2 + 4b2

2

)

for
√

a(1− a) ≥ b. In particular, the second equality holds only when√
a(1− a) = b, i.e., the state ρa,b is pure.
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8.11.2 Werner State

Next, we consider the Werner state:

ρW,p
def= (1− p)ρs

mix + pρa
mix =

p

d(d− 1)
(I − F ) +

1− p

d(d + 1)
(I + F ), (8.188)

where ρs
mix (ρa

mix) is the completely mixed state on the symmetric space
(antisymmetric space). We can easily check that

−HρW,p
(A|B) = log d + p log

2p

d(d− 1)
+ (1− p) log

2(1− p)
d(d + 1)

IρW,p
(A : B) =2 log d + p log

2p

d(d− 1)
+ (1− p) log

2(1− p)
d(d + 1)

. (8.189)

Further, any pure state |u〉〈u| on HA satisfies

TrA(|u〉〈u| ⊗ IB)ρa
mix =

IB−|u〉〈u|
d− 1

, TrA(|u〉〈u| ⊗ IB)ρs
mix =

IB+|u〉〈u|
d + 1

.

Thus,

TrA(|u〉〈u| ⊗ IB)ρW,p = p
IB − |u〉〈u|

d− 1
+ (1− p)

IB + |u〉〈u|
d + 1

,

which has entropy− (d+1)p+(d−1)(1−p)
d+1 log (d+1)p+(d−1)(1−p)

d2−1 − 2(1−p)
d+1 log 2(1−p)

d+1 .
Since this entropy is independent of |u〉,

CA→B
d (ρW,p) = log d +

2(1− p)
d + 1

log
2(1− p)
d + 1

+
(d + 1)p + (d− 1)(1− p)

d + 1
log

(d + 1)p + (d− 1)(1− p)
d2 − 1

.

Using the symmetry of this state, Vollbrecht and Werner [407] showed
that

Ef (ρW,p) =

⎧⎨
⎩h

(
1+2
√

p(1−p)
2

)
if p ≥ 1

2

0 if p < 1
2 .

Rains [352] showed

Er,S(ρW,p) = Er,PPT(ρW,p) = log 2− h(p).

Rains [353] and Audenaert et al. [18] proved

lim
1
n

Er,S((ρW,p)⊗n) = ESDP(ρW,p) =

⎧⎨
⎩

0 if p ≤ 1
2

log 2− h(p) if 1
2 < p ≤ 1

2 + 1
d

log d−2
d + p log d+2

d−2 if 1
2 + 1

d < p ≤ 1,
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where d is the dimension of the local system. Note that 1
2 + 1

d = 1 when
d = 2. Hence, Er,S(ρ) does not satisfy the additivity. This also implies
lim 1

nEr,PPT((ρW,p)⊗n) = ESDP(ρW,p).
Further, Rains [353] also showed that

EPPT
d,2 (ρW,1) = log

d + 2
d

.

Since τA(|τA(ρW,p)|) ≥ 0Ex. 8.72 [19], we obtain

EPPT
c,e (ρW,p) = log ‖τA(ρW,p)‖1 = log

(
2(2p− 1)

d
+ 1

)
.

In particular,

EPPT
d,2 (ρW,1) = EPPT,†

d,2 (ρW,1) = ESDP(ρW,1) = EPPT
c (ρW,1)

= EPPT
c,e (ρW,1) = log

d + 2
d
≤ log 2 = Ef (ρW,1).

The equality of the inequality log d+2
d ≤ log 2 holds only when d = 2. From

(8.177) the entanglement of distillation of the state ρW,1 satisfies the addi-
tivity

EPPT
d,2 (ρW,1) + EPPT

d,2 (ρ) = EPPT
d,2 (ρW,1 ⊗ ρ)

for any state ρ.
On the other hand, Yura [433] calculated the entanglement of cost of any

state ρ in the antisymmetric space of the system C
3 ⊗ C

3 as

Ec(ρ) = log 2,

which is equal to its entanglement of formation Ef (ρ)Ex. 8.38. Hence, in this
case,

EPPT
c (ρW,1) = EPPT

c,e (ρW,1) = log
5
3

< log 2 = Ec(ρW,1).

Further, Matsumoto and Yura [291] focused on ρB,R
W,1

def= TrA |x〉〈x|, where |x〉
is a purification of ρW,1 with the reference system HR, and showed that

Ec(ρ
B,R
W,1 ) =

Ef ((ρB,R
W,1 )⊗n)
n

= Ef (ρB,R
W,1 ) = log(d− 1).

Hence, using (8.142), we have

CA→B
d (ρ⊗n

W,1) = log
d

d− 1
.

Since ρW,1 and ρW,0 satisfy the condition for (8.135), the relation (8.136)holds,
i.e.,

E���
c (ρW,1) = E���

c (ρW,0) = log d. (8.190)

The entanglement purification Ep(ρW,p) of the other cases has been numeri-
cally calculated by Terhal et al. [387].
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8.11.3 Isotropic State

Next, we consider the isotropic state

ρI,p
def=(1− p)

I − |Φd〉〈Φd|
d2 − 1

+ p|Φd〉〈Φd| (8.191)

=
(1− p)d2

d2 − 1
ρmix +

d2p− 1
d2 − 1

|Φd〉〈Φd|,

where |Φd〉 = 1√
d

∑
i ui ⊗ ui. We can easily check that

−HρI,p
(A|B) = log d + p log p + (1− p) log

1− p

d2 − 1

IρI,p
(A : B) =2 log d + p log p + (1− p) log

1− p

d2 − 1
. (8.192)

Further, any pure state |u〉〈u| on HA satisfies

TrA |u〉〈u| ⊗ IBρI,p =
(1− p)d2

d2 − 1
ρB
mix +

d2p− 1
d2 − 1

|u〉〈u|

=
(1− p)d
d2 − 1

(I − |u〉〈u|) +
dp + 1
d + 1

|u〉〈u|,

which has entropy − (1−p)d
d2−1 log (1−p)d

d+1 − dp+1
d+1 log dp+1

d+1 . Since this entropy is
independent of |u〉,

CA→B
d (ρW,p) = log d +

(1− p)d
d2 − 1

log
(1− p)d
d + 1

+
dp + 1
d + 1

log
dp + 1
d + 1

.

Further, King [254] showed that

CA→B
d ((ρW,p)⊗n) = nCA→B

d (ρW,p).

Define ρB,R
I,p

def= TrA |x〉〈x|, where |x〉 is a purification of ρI,p with the reference
system HR. Then, using (8.142), we have

Ec(ρ
B,R
I,p ) =

Ef ((ρB,R
I,p )⊗n)
n

= Ef (ρB,R
I,p )

=− (1− p)d
d2 − 1

log
(1− p)d
d + 1

− dp + 1
d + 1

log
dp + 1
d + 1

.

Using the symmetry of this state, Terhal and Vollbrecht [386] showed that

Ef (ρI,p) = min
x,y,p≥0

p(h(γ(x)) + (1− γ(x)) log(d− 1))

+ (1− p)(h(γ(y)) + (1− γ(y)) log(d− 1)),

where we take the minimum with the condition p = px + (1− p)y, and
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γ(p) =
1
d
(
√

p +
√

(d− 1)(1− p))2.

They also showed the following relation for the d = 3 case and conjectured
it in the d > 3 case as follows:

Ef (ρI,p) =

⎧⎪⎨
⎪⎩

0 if p ≤ 1
d

h(γ(p)) + (1− γ(p)) log(d− 1)) if 1
d < p ≤ 4(d−1)

d2
(p−1)d

d−2 log(d− 1) + log d if 4(d−1)
d2 < p ≤ 1.

Note that the isotropic state is locally unitary equivalent to the Werner state
when d = 2.

Further, Rains [352] showed that

Er,S(ρI,p) = Er,PPT(ρI,p) =
{

log d− (1− p) log(d− 1)− h(p) if p ≥ 1
d

0 if p < 1
d .

Rains [353] also proved

EPPT
d,2 (ρI,p) ≥ log d− (1− p) log(d + 1)− h(p).

Since τA(|τA(ρI,p)|) ≥ 0Ex. 8.73, we obtain

EPPT
c,e (ρI,p) = log ‖τA(ρI,p)‖1 =

{
log dp if p ≥ 1

d
0 if p < 1

d .
(8.193)

In the system C
2 ⊗ C

2, Terhal and Horodecki [385] proved

Esr(ρI, 1√
2
) = log 2, Esr(ρ⊗2

I, 1√
2
) = log 2.

Since EPPT
c,e (ρI,p) ≤ ES

c,e(ρI,p), from (8.193) and (8.99) we obtain

EC
c,e(ρI, 1√

2
) = log

√
2 for C =→,←,↔, S, PPT .

Exercises

8.65. Prove equation (8.185) following the steps below.

a Show that AT S2A = S2 det A.
b Show that (A ⊗ B)ρ(A ⊗ B)∗(S2 ⊗ S2) ¯(A⊗B)ρ(A⊗B)∗(S2 ⊗ S2) =
|det A|2|det B|2ρ(S2 ⊗ S2)ρ̄(S2 ⊗ S2).

c Show that Co(
(A⊗B)ρ(A⊗B)∗

Tr(A⊗B)ρ(A⊗B)∗) ) = (det A)(det B)Co(ρ)
Tr(A⊗B)ρ(A⊗B)∗) .

d Prove (8.185).

8.66. Prove (8.186) following the steps below.

a Show that ρBell,p = ρBell,p.
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b Show that (S2 ⊗ S2)ρBell,p(S2 ⊗ S2) = ρBell,p.
c Prove (8.186).

8.67. Prove equation (8.187) following the steps below.

a Show that Tr(Aω ⊗Bω)ρBell,p(Aω ⊗Bω)∗) =
∑3

i=0
pi

2 Tr A∗AST
i BT B̄ST

i .
b Show that TrA∗AST

i BT B̄ST
i ≥ |det A|2|det B|2.

c Prove (8.187).

8.68. Show that any maximally entangled state can be written as ρa,b
def=

a|00〉〈00|+b|00〉〈11|+b|11〉〈00|+(1−a)|11〉〈11| in a 2×2 system by choosing
suitable bases.

8.69. Show that Co(ρa,b) = 2b following the steps below.

a Show that (S2 ⊗ S2)ρa,b(S2 ⊗ S2) = ρ1−a,b.
b Show that ρa,b(S2⊗S2)ρa,b(S2⊗S2) = (a(1−a)+b2)|00〉〈00|+2ab|00〉〈11|+

2(1− a)b|11〉〈00|+ (a(1− a) + b2)|11〉〈11|.
c Show that Co(ρa,b) = 2b.

8.70. Show that H(ρa,b) = h

(
1+
√

(2a−1)2+4b2

2

)
.

8.71. Assume that the input state is the maximally entangled state |Φd〉〈Φd|
with the reference system. Show that the output state of depolarizing chan-
nel κd,λ (transpose depolarizing channel κT

d,λ) is equal to the isotropic state
(Werner state) as

(κd,λ ⊗ ιR)(|Φd〉〈Φd|) = ρ
I,

1−λ(d2−1)
d2

(8.194)

(κT
d,λ ⊗ ιR)(|Φd〉〈Φd|) = ρ

W,
(1−(d+1)λ)(d−1)

2d
. (8.195)

8.72. Show that τA(|τA(ρ)|) ≥ 0 following the steps below.

a Show that ρW,p = qI + rτA(Φd〉〈Φd|), where q = 1−p
d(d+1) + p

d(d−1) , r =
1−p
d+1 −

p
d−1 .

b Show that τA(ρW,p) = q(I − |Φd〉〈Φd|) + (q + r)|Φd〉〈Φd|.
c Show that τA(|τA(ρW,p)|) = q(I − 1

dF ) + q+r
d F .

8.73. Show that τA(|τA(ρI,p)|) ≥ 0 for p > 1
d following the steps below. (This

inequality is trivial when p ≤ 1
d because τA(ρI,p) ≥ 0.)

a Show that τA(ρI,p) = 1−p
d2−1I + d2p−1

d(d2−1)F = 1−p
d2−1 (I + F ) + dp−1

d(d−1)F .

b Show that |τA(ρI,p)| = 1−p
d2−1 (I + F ) + dp−1

d(d−1)I.

c Show that τA(|τA(ρI,p)|) = 1−p
d2−1 (I + d|Φd〉〈Φd|) + dp−1

d(d−1)I.

8.74. Show that (1−λ)ρmix+λτA(|Φd〉〈Φd|) ≥ 0 if and only if −1
d−1 ≤ λ ≤ 1

d+1 ,
where HA = HB = C

d.
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8.12 Historical Note

The study of conversion among entangled states in an asymptotic setting was initi-
ated by Bennett et al. [38]. These researchers derived the direct and converse parts
of Theorem 8.6 in the pure-state case (Exercise 8.33). After this research, Lo and
Popescu [276] considered convertibility among two pure states with LOCC. They
found that the two-way LOCC could be simulated by the one-way LOCC (Theo-
rem 8.1) in the finite regime when the initial state was pure. They also obtained
the optimal value of the probability that we will succeed in converting a given
pure partially entangled state into a desired maximally entangled state by LOCC
(8.68). Following this research, Nielsen [313] completely characterized the LOCC
convertibility between two pure states by use of majorization (pure-state case of
Theorem 8.4). Vidal [402] extended this result to the mixed-state case, i.e., he
showed the mixed-state case of Theorem 8.4. Using Nielsen’s condition, Morikoshi
and Koashi [295] proved that the optimal deterministic distillation with an initial
pure state can be realized only by two-pair collective manipulations in each step.
Applying the method of type to the optimal failure probability (the optimal suc-
cessful probability) for distillation with an initial pure state, Hayashi et al. [181]
derived the optimal generation rate with an exponential constraint for the failure
probability (for the successful probability). They also treated this problem with the
fidelity criteria. Further, Hayashi [176] extended this result to the non-i.i.d. case.
Regarding the mixed-state case, Bennett et al. [40] discussed the relation between
distillation and quantum error correction, which will be mentioned in Sect. 9.6.
They derived several characterizations of the two-way LOCC distillation as well
as of the one-way LOCC distillation. They also conjectured the Hashing inequality
(8.106). Rains [352] showed this inequality in the maximally correlated case and the
relation (8.114). Horodecki et al. [232] showed that equation (8.107) holds if this
inequality holds. They also initiated a unified approach, which has been established
by Donald et al. [103] as Theorem 8.10. Modifying the discussion by Devetak [95],
Devetak and Winter [98] proved the inequality for any mixed state.

Concerning the converse part, Bennett et al. [38] proved the converse part of
the pure-state case by constructing the dilution protocol attaining the entropy
rate. Then, proposing the entanglement of relative entropy Er(ρ), Vedral and Ple-
nio [399] proved the inequality ES

d,2(ρ) ≤ Er(ρ). In this book, its improved version
(Theorem 8.7) is derived by combining their idea and the strong converse of quan-
tum Stein’s lemma. Horodecki et al. [232] obtained the first inequality in (8.105).
Further, establishing a unified approach, Donald et al. [103] simplified its proof.

Christandl and Winter [78] introduced squashed entanglement and proved the
inequality E↔

d,2(ρ) ≤ Esq(ρ). Concerning PPT operations, Rains [353] proved in-
equality (8.173).

Regarding the dilution, as mentioned above, Bennett et al. [38] proved The-
orem 8.9 in the pure-state case. Bennett et al. [40] introduced the entanglement
formation. Following these results, Hayden et al. [196] proved Theorem 8.9. In this
book, we prove Theorem 8.9 in a little different way to that given in [196]. In Ap-
pendix B.5.2, we rigorously optimize the fidelity with the finite regime and prove
Theorem 8.9 by taking its limit.

Further, Lo and Popescu [275] showed that the bound can be attained by clas-
sical communication with the square root of n bits in the pure-state case. Further,
Hayden and Winter [198] and Harrow and Lo [163] proved the optimality of Lo and



274 8 Entanglement and Locality Restrictions

Popescu’s protocol. Using their results, Terhal et al. [387] showed that the optimal
rate of dilution with zero-rate communication can be characterized by the entan-
glement of purification. They also showed that it is lower bounded by the quantity
CA→B

d (ρ), which was introduced by Henderson and Vedral [205]. As a problem
related to dilution with zero-rate communication, we may consider the problem
generating a given separable state from common randomness. This problem with
the classical setting has been solved by Wyner [426]. Theorem 8.12 is its quantum
extension.

Concerning entanglement of exact cost for PPT operations, Audenaert et al.
[19] derived its lower bound. Concerning entanglement of exact cost for LOCC
operations, Terhal and Horodecki [385] focused on the Schmidt rank and calculated
it for the two-tensor product of the two-dimensional isotropic state. Joining these,
we derived the entanglement of exact cost for these settings in this example.

As a related problem, we often consider how to characterize a pure entangled
state producing a given state with nonzero probability by LOCC. This problem is
called stochastic convertibility. Owari et al. [340] treated this problem in infinite-
dimensional systems using the partial order. Miyake [293] treated this problem
in tripartite systems using a hyperdeterminant. Ishizaka [242] focused on PPT
operations and showed that any pure entangled state can be stochastically converted
from another pure entangled state by PPT operations.



9

Analysis of Quantum Communication
Protocols

Summary. The problems of transmitting a classical message via a quantum chan-
nel (Chap. 4) and estimating a quantum state (Chaps. 3 and 6) have a classical ana-
log. These are not intrinsically quantum-specific problems but quantum extenstions
of classical problems. These problems are difficult due to the noncommutativity of
quantum mechanics.

However, quantum information processing is not merely a noncommuting ver-
sion of classical information processing. There exist many quantum protocols with-
out any classical analog. In this context, quantum information theory covers a
greater field than a noncommutative analog of classical information theory. The
key to these additional effects is the advantage of using entanglement treated in
Chap. 8, where we examined only the quantification of entanglement. In this chap-
ter, we will introduce several quantum communication protocols that are possible
only by using entanglement and are therefore classically impossible. (Some of pro-
tocols introduced in this section have classical analogs.) We also examine problems
such as the transmission of quantum states (quantum error correction), communi-
cation in the presence of eavesdroppers, and several other types of communication
that we could not handle in Chap. 4. As seen in this chapter, the transmission of a
quantum state is closely retated to communication with no information leakage to
eavesdroppers. The noise in the transmission of a quantum state clearly corresponds
to the eavesdropper in a quantum communication.

Table 9.1. Denotations used in Chap. 9

χκ(ρ) Holevo information (9.4)
Hκ(ρ) Minimum average output entropy (9.5)

Chanel capacities
Cc(κ) Channel capacity for when no entanglement is used in input
Ce

c (κ) Channel capacity for when entanglement is used in input (9.1)
Ca(ρA,B) Amount of assistance for sending information by state ρA,B (9.32)
Ce

c,e(κ) Entanglement-assisted channel capacity (9.37)
Cr(W, σ) Quantum-channel resolvability capacity (9.50)
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Table 9.1. Continued

Chanel capacities

CB,E
c (W ) Wiretap channel capacity (9.60)
Cq,1 Capacity for quantum-state transmission in worst case (9.81)
Cq,2 Capacity for quantum-state transmission with entanglement fidelity

(9.81)

9.1 Quantum Teleportation

The strange properties of entangled states were first examined by Einstein
et al. [104] in an attempt to show that quantum mechanics was incomplete.
Recently, the entangled states have been treated in a manner rather different
than when it was first introduced. For example, by regarding these states as
the source of a quantum advantage, Bennett et al. [36] proposed quantum
teleportation. Since this topic can be understood without any complicated
mathematics, we introduce it in this section.

In quantum teleportation, an entangled state is first shared between two
parties. Then, by sending a classical message from one party to the other,
it is possible to transmit a quantum state without directly sending it. Let
us look at this protocol in more detail. First, we prepare an entangled state
eA,B
0 = 1√

2
(uA

0 ⊗uB
0 +uA

1 ⊗uB
1 ) on the composite system HA⊗HB comprising

two qubits HA and HB spanned by uA
0 , uA

1 and uB
0 , uB

1 , respectively. The
sender possesses a qubitHC spanned by uC

0 , uC
1 as well as the quantum system

HA. The sender sends qubit HC to the receiver. The receiver possesses the
other qubit HB . Then, we have the following theorem.

Theorem 9.1 (BBCJPW [36]) Let the sender perform a measurement cor-
responding to the CONS eA,C

i
def= (IA ⊗ SC

i )eA,C
0 (i = 0, 1, 2, 3) on the com-

posite system HA⊗HC and its result be sent to the receiver. [From (1.18), it
satisfies the conditions for a PVM.] Let the receiver perform a unitary time
evolution corresponding to SB

i on the quantum system HB. Then, the final
state on HB is the same state as the initial state on HC .

This argument holds irrespective of the initial state on HC and measure-
ment value i, as proved below.

Proof. Let us first consider the case where the measurement data are 0.
Let the initial state on HC be the pure state x =

∑
i xiuC

i . Then, the state
on the composite system HA ⊗ HB ⊗ HC is 1√

2

∑
i,j,k xiδj,kuA

j ⊗ uB
k ⊗ uC

i .
Therefore, the final state on HB is

∑
k

∑
i,j

1√
2
xiδj,k 1√

2
δi,juB

k =
∑

k
1
2xkuB

k ,
following Exercise 7.4. Normalizing this vector, we can prove that the final
state on HB equals

∑
k xkuB

k , which is the same state as the initial state on
HC .

Now, consider the case in which the measurement datum i is obtained.
Since (SC

i )∗ = SC
i ,
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TrA,C

(
|eA,C

i 〉〈eA,C
i | ⊗ IB

)
|x⊗ eA,B

0 〉〈x⊗ eA,B
0 |

= TrA,C(SC
i ⊗ IA,B)

(
|eA,C

0 〉〈eA,C
0 | ⊗ IB

)
(SC

i ⊗ IA,B)|x⊗ eA,B
0 〉〈x⊗ eA,B

0 |

= TrA,C

(
|eA,C

0 〉〈eA,C
0 | ⊗ IB

)
|(Six)⊗ eA,B

0 〉〈(Six)⊗ eA,B
0 | = 1

4
|Six〉〈Six|.

Operating Si on HB (Si is its own inverse), the final state on HB is x.

It is noteworthy that this protocol has been experimentally demonstrated [57,
139, 341]. Other protocols that combine quantum teleportation with cloning
have also been proposed [297] and demonstrated.

Exercises

9.1. Show that quantum teleportation in any dimension is also possible
by following the steps below. Let HA,HB ,HC be the spaces spanned by
uA

1 , . . . , uA
d , uB

1 , . . . , uB
d , uC

1 , . . . , uC
d , respectively. Prepare an entangled state

uA,B
0,0

def= 1√
d

∑d
i=1 uA

i ⊗ uB
i in HA ⊗HB . Now perform a measurement corre-

sponding to {uA,C
i,j

def= (IA ⊗Xi
CZj

C)uA,C
0,0 }i,j , and then an operation Xi

BZj
B

depending on the measurement data (i, j). Show that the final state on HB

is the same as the initial state on HC .

9.2 C-Q Channel Coding with Entangled Inputs

In this section, we treat classical message transmission via a quantum channel
κ from HA to HB . When we use only tensor product states in S(H⊗n

A ), the
problem becomes that of classical-quantum (c-q) channel coding discussed
in Chap. 4 by setting X to S(HA) and Wρ

def= κ(ρ). However, when we are
allowed to use any state in S(H⊗n

A ) as input state, our problem cannot be
regarded as a special case of Chap. 4. In this case, the channel capacity is
given by

Cc(κ) = max
p∈P(S(HA))

I(p, κ).

When we are allowed to send any state entangled between n systems of
the input, the channel capacity is Cc(κ⊗n)/n. When any entangled state is
available as an input state, the code Φ̂(n) = (Nn, ϕ̂(n), Y (n)) is expressed by
the triplet of the size Nn, the encoder ϕ̂(n) mapping from {1, . . . , Nn} to
S(H⊗n

A ), and the POVM Y (n) = {Y (n)
i }Nn

i=1 taking values in {1, . . . , Nn} on
the output space H⊗n

B . The error probability is given by

ε[Φ̂(n)] def=
1

Nn

Nn∑
i=1

(
1− Tr Y

(n)
i κ⊗n(ϕ̂(n)(i))

)
.
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Theorem 9.2 Define the capacity Ce
c (κ):1

Ce
c (κ) def= sup

{Φ̂(n)}

{
lim

1
n

log |Φ̂(n)|
∣∣∣∣ lim ε[Φ̂(n)] = 0

}
(9.1)

for a quantum channel κ from HA to HB. Then, we have

Ce
c (κ) = sup

n

Cc(κ⊗n)
n

= lim
Cc(κ⊗n)

n
.

The definition implies that Ce
c (κ) ≥ Cc(κ). To date, however, no example of

Ce
c (κ) > Cc(κ) has been found. Therefore it is currently conjectured that

Ce
c (κ) = Cc(κ). To prove this we must show that

nCc(κ) = Cc(κ⊗n). (9.2)

Equation (9.2) may be derived from the additivity of the channel capacity for
two arbitrary TP-CP maps κ1 and κ2:

Cc(κ1) + Cc(κ2) = Cc(κ1 ⊗ κ2). (9.3)

Here, remember the relation (8.142). This relation indicates the relation be-
tween the classical capacity and entanglement formation. Indeed, the classical
capacity Cc(κ) is described by

Cc(κ) = max
ρ

χκ(ρ),

where Holevo information χκ(ρ) and minimum average output entropy Hκ(ρ)
are defined by

χκ(ρ) def= H(κ(ρ))−Hκ(ρ), (9.4)

Hκ(ρ) def= min
(px,ρx):

∑
x pxρx=ρ

∑
x

pxH(κ(ρx)). (9.5)

When κ is the partial trace from the system HA ⊗ HB to HB , the relation
(MSW correspondence [290])

Hκ(ρ) = Ef (ρ) (9.6)

holds, i.e.,

χTrA
(ρ) = H(TrA ρ)− Ef (ρ). (9.7)

Indeed, the additivity of Cc(κ) is equivalent to many other conditions, e.g.,
the additivity of entanglement of formation.
1 The superscript e of Ce

c indicates that “entangled” input is allowed.
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Theorem 9.3 (Matsumoto et al. [290], Shor [374], Pomeransky [350]) The
following 14 conditions are equivalent.

HM Additivity of classical capacity of q-q channel (additivity of maximum
Holevo information):

max
ρ1

χκ1(ρ1) + max
ρ2

χκ2(ρ2) = max
ρ1,2

χκ1⊗κ2(ρ1,2) (9.8)

holds for arbitrary channels κ1 and κ2.
HA Additivity of Holevo information:

χκ1(ρ1) + χκ2(ρ2) = χκ1⊗κ2(ρ1 ⊗ ρ2) (9.9)

holds for arbitrary channels κ1 and κ2 and arbitrary states ρ1 and ρ2.
HL Additivity of classical capacity of q-q channel with linear cost con-

straint (additivity of maximum Holevo information with linear cost
constraint):

max
λ

CX1≤λK(κ1) + CX2≤(1−λ)K(κ2) = CX1+X1≤K(κ1 ⊗ κ2), (9.10)

i.e.,

max
λ

max
ρ1:Tr ρ1X1≤λK

χκ1(ρ1) + max
ρ2:Tr ρ2X2≤(1−λ)K

χκ2(ρ2)

= max
ρ1,2:Tr ρ1,2(X1+X2)≤K

χκ1⊗κ2(ρ1,2) (9.11)

holds for arbitrary channels κ1 and κ2, arbitrary Hermitian matrices
X1 and X2 on the respective input system, and an arbitrary constant
K. Here we identify X1 (X2) with X1 ⊗ I2 (I1 ⊗X2). Note that the
classical capacity of a q-q channel with linear cost constraint has the
form CX≤λK(κ) = maxρ:Tr ρX≤K χκ(ρ).

HC Additivity of conjugate Holevo information:

χ∗
κ1(X1) + χ∗

κ2(X2) = χ∗
κ1⊗κ2(X1 + X2) (9.12)

holds for Hermitian matrices X1 and X2 on systems H1 and H2, where
conjugate Holevo information χ∗

κ(X) is defined as the Legendre trans-
form of χκ(ρ) as

χ∗
κ(X) def= max

ρ
Tr Xρ + χκ(ρ).

HS Subadditivity of Holevo information:

χκ1(ρ1) + χκ2(ρ2) ≤ χκ1⊗κ2(ρ1,2) (9.13)

holds for arbitrary channels κ1 and κ2 and arbitrary states ρ1,2, where
ρ1 = Tr2 ρ1,2 and ρ2 = Tr1 ρ1,2.
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EM Additivity of minimum output entropy:

min
ρ1

H(κ1(ρ1)) + min
ρ2

H(κ2(ρ2)) = min
ρ1,2

H(κ1 ⊗ κ2(ρ1,2)), (9.14)

i.e.,

min
ρ1

Hκ1(ρ1) + min
ρ2

Hκ2(ρ2) = min
ρ1,2

Hκ1⊗κ2(ρ1,2) (9.15)

holds for arbitrary channels κ1 and κ2. Note that the minimum output
entropy has the form minρ H(κ(ρ)) = minρ Hκ(ρ).

EA Additivity of minimum average output entropy:

Hκ1(ρ1) + Hκ2(ρ2) = Hκ1⊗κ2(ρ1 ⊗ ρ2) (9.16)

holds for arbitrary channels κ1 and κ2 and arbitrary states ρ1 and ρ2.
EL Additivity of minimum average output entropy with linear cost con-

straint):

min
λ

min
ρ1:Tr ρ1X1≤λK

Hκ1(ρ1) + min
ρ2:Tr ρ2X2≤(1−λ)K

Hκ2(ρ2)

= min
ρ1,2:Tr ρ1,2(X1+X2)≤K

Hκ1⊗κ2(ρ1,2) (9.17)

holds for arbitrary channels κ1 and κ2, arbitrary Hermitian matrices
X1 and X2 on the respective input system, and an arbitrary constant
K.

EC Additivity of conjugate minimum average output entropy:

H∗
κ1(X1) + H∗

κ2(X2) = H∗
κ1⊗κ2(X1 + X2) (9.18)

holds for Hermitian matrices X1 and X2 on systems H1 and H2, where
the conjugate minimum average output entropy H∗

κ(X) is defined as the
Legendre transform of Hκ(ρ) as

H∗
κ(X) def= max

ρ
Tr Xρ−Hκ(ρ).

ES Superadditivity of minimum average output entropy:

Hκ1(ρ1) + Hκ2(ρ2) ≥ Hκ1⊗κ2(ρ1,2) (9.19)

holds for arbitrary channels κ1, κ2 and arbitrary states ρ1,2.
FA Additivity of entanglement of formation:

Ef (ρ1) + Ef (ρ2) = Ef (ρ1 ⊗ ρ2) (9.20)

holds for a state ρ1 on H1
def= HA1 ⊗ HB1 and a state ρ2 on H2

def=
HA2 ⊗HB2 .
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FL Additivity of minimum entanglement of formation with linear cost con-
straint:

min
λ

min
ρ1:Tr ρ1X1≤λK

Ef (ρ1) + min
ρ2:Tr ρ2X2≤(1−λ)K

Ef (ρ2)

= min
ρ1,2:Tr ρ1,2(X1+X2)≤K

Ef (ρ1,2) (9.21)

holds for arbitrary Hermitian matrices X1 and X2 and an arbitrary
constant K.

FC Additivity of conjugate entanglement of formation:

E∗
f (X1) + E∗

f (X2) = E∗
f (X1 + X2) (9.22)

holds for Hermitian matrices X1 and X2 on systems H1 and H2, where
the conjugate entanglement of formation E∗

f (X) is defined as the Leg-
endre transform of Ef (ρ) as

E∗
f (X) def= max

ρ
Tr Xρ− Ef (ρ).

FS Superadditivity of entanglement of formation:

Ef (ρ1) + Ef (ρ2) ≤ Ef (ρ1,2) (9.23)

holds for a state ρ1,2 on (HA1 ⊗HA2)⊗ (HB1 ⊗HB2).

However, whether all these conditions hold remains an open problem. Some
numerical verifications of HM [193,325] and FS [369] have been performed.
No counterexample has been found yet. Concerning the additivity of the
channel capacity, only the following cases have been proved.

a When Cc(κ) is equal to the dimension of the output system, additivity
(9.2) holds (trivial case).

b Any entanglement-breaking channel κ1 (Example 5.4) satisfies additivity
(9.3) with an arbitrary channel κ2 [372].

c Any depolarizing channel κd,λ (Example 5.3) satisfies additivity (9.3)
with κ1 = κd,λ and an arbitrary channel κ2 [254].

d Any unital qubit channel κ1 satisfies additivity (9.3) with an arbitrary
channel κ2 [253].

e Any antisymmetric channel κT
d, −1

d−1
(Werner–Holevo channels, Exam-

ple 5.9) satisfies additivity (9.2) with κ = κT
d, −1

d−1
[291].

f All transpose-depolarizing channels κT
d,λ and κT

d′,λ satisfy additivity (9.3)
with κ1 = κT

d,λ and κ2 = κT
d′,λ [90, 112].

g1 Channels κd,λ ◦ κPD
D satisfy additivity (9.3) with κ1 = κd,λ ◦ κPD

D and an
arbitrary channel κ2 [91, 138].

g2 Channels κT
d, −1

d−1
◦ κPD

D and κPD
D ◦ κT

d, −1
d−1

satisfy additivity (9.2) with κ =

κT
d, −1

d−1
◦ κPD

D or κPD
D ◦ κT

d, −1
d−1

[138,423].
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g3 Channels κT
d,λ ◦ κPD

D and κPD
D ◦ κT

d,λ satisfy additivity (9.3) with κ1 =
κT

d,λ ◦ κPD
D or κPD

D ◦ κT
d,λ and κ2 = κT

d′,λ ◦ κPD
D′ or κPD

D′ ◦ κT
d′,λ [138,423].

Therefore, we obtain Ce
c (κ) = Cc(κ) in the cases a, b, c, d, e, g1, and g2.

Indeed, since Cc(κd,λ ◦ κPD
D ) = Cc(κd,λ), c yields that Cc(κd,λ ◦ κPD

D ⊗ κ2) ≤
Cc(κd,λ ⊗ κ2) = Cc(κd,λ) + Cc(κ2) = Cc(κd,λ ◦ κPD

D ) + Cc(κ2), which implies
g1. Similarly, we can show g2 and g3 from e and f.

Moreover, the additivity of minimum output entropy holds not only in
the above cases but also in the more extended cases of c, e, and f as opposed
to g1, g2, and g3 [138,423]. As a stronger condition than EM, we often focus
on the following condition.

RM The multiplicativity of the maximal output Rényi entropy (p-norm):

ψmax(s|κ1 ⊗ κ2) = ψmax(s|κ1) + ψmax(s|κ2) for − 1 ≤ s ≤ 0 (9.24)

holds, where ψmax(s|κ) def= maxρ ψ(s|κ(ρ)).

This is because the above multiplicativity is sometimes easier to check than
the additivity of minimum output entropy. Indeed, condition (9.24) implies
EM; however, the converse is not true. In particular, Werner and Holevo
[413] showed that (9.24) does not hold for s ≤ −3.79 when κ1 and κ2 are
antisymmetric channels (Werner–Holevo channels).

Among the above conditions, the relations HC⇒HM and EC⇒EM are
trivial. From MSW correspondence (9.6) we obtain HA⇒FA and EA⇒FA.
Next, we focus on the Stinespring representation (HC , ρ0, Uκ) of κ mapping
from a system HA to another system HB . In this case, the MSW correspon-
dence (9.6) can be generalized as

Hκ(ρ) = min
(pi,ρi):

∑
i piρi=ρ

∑
i

piH(TrA,C Uκ(ρi ⊗ ρ0)U∗
κ) = Ef (κ̄(ρ)),

κ̄(ρ) def= Uκ(ρ⊗ ρ0)U∗
κ ,

i.e.,

χκ(ρ) = H(κ(ρ))− Ef (κ̄(ρ)), (9.25)

where we use the notation Ef as the entanglement of formation between the
output system HB and the environment HA ⊗ HC . Hence, if Condition FS
holds, for ρ1,2, we have

χκ1⊗κ2(ρ1,2) = H(κ1 ⊗ κ2(ρ1,2))− Ef (κ1 ⊗ κ2(ρ1,2))

≤ H(κ1(ρ1)) + H(κ2(ρ2))− Ef (κ1 ⊗ κ2(ρ1,2))

≤ H(κ1(ρ1)) + H(κ2(ρ2))− (Ef (κ1(ρ1)) + Ef (κ2(ρ2)))

= χκ1(ρ1) + χκ2(ρ2).

Hence, we have FS⇒HS. Similarly, the relation FS⇒MS holds.
The following lemma is useful for proofs of the remaining relations.
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Lemma 9.1 Let f i be a convex function defined on S(Hi) (i = 1, 2) and
f1,2 be a convex function defined on S(H1 ⊗H2) satisfying

f1(ρ1) + f2(ρ2) ≥ f1,2(ρ1 ⊗ ρ2). (9.26)

The relations L⇔C⇔S⇒A hold among the following conditions.

S Superadditivity:

f1(ρ1) + f2(ρ2) ≤ f1,2(ρ1,2) (9.27)

holds for a state ρ1,2 on (HA1 ⊗HA2)⊗ (HB1 ⊗HB2).
C Additivity of conjugate function:

f1∗(X1) + f2∗(X2) = f1,2∗(X1 + X2) (9.28)

holds for Hermitian matrices X1 and X2 on the systems H1 and H2,
where conjugate entanglement of formation f∗(X) is defined as the Leg-
endre transform of f(ρ) as

f∗(X) def= max
ρ

Tr Xρ− f(ρ).

L Additivity of minimum value with linear cost constraint:

min
λ

min
ρ1:Tr ρ1X1≤λK

f1(ρ1) + min
ρ2:Tr ρ2X2≤(1−λ)K

f2(ρ2)

= min
ρ1,2:Tr ρ1,2(X1+X2)≤K

f1,2(ρ1,2) (9.29)

holds for arbitrary Hermitian matrices X1 and X2 and an arbitrary con-
stant K.

A Additivity:

f1(ρ1) + f2(ρ2) = f1,2(ρ1 ⊗ ρ2) (9.30)

holds for a state ρ1 on H1
def= HA1 ⊗ HB1 and a state ρ2 on H2

def=
HA2 ⊗HB2 .

Lemma 9.1 yields the relations HL⇔HC⇔HS⇒HA, EL⇔EC⇔ES⇒EA,
and FL⇔FC⇔FS⇒FA.

Hence, if we prove the relations HM⇒HC, EM⇒EC, and FA⇒FS,
we obtain the equivalence among the above 14 conditions. These proofs will
be given in Sect. B.6. The relations are summarized as follows.

Finally, we prove the additivity for the channel capacity for entangle-
ment-breaking channels using inequality (5.77). From the definition, any
entanglement-breaking channel κ1 has the form of the output state for any
input state ρx as

(κ1 ⊗ ι)(ρx) =
∑

y

Qx
yρ1

x,y ⊗ ρ2
x,y.
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HL FL EL
� � �

HM ���
=⇒ HC FC EC ���

⇐= EM
� � �

HS � FS � ES
↓ ↓⇑ ↓

HA � FA � EA

Fig. 9.1. →: Lemma 9.1, ���: easy, � : MSW correspondence, =⇒: hard

Hence, using (5.77) and (5.58), we have

Cc(κ1 ⊗ κ2)

= max
ρ

H((κ1 ⊗ κ2)(ρ))− min
(px,ρx):

∑
x pxρx=ρ

∑
x

pxH((κ1 ⊗ κ2)(ρx))

= max
ρ

H((κ1 ⊗ κ2)(ρ))

− min
(px,ρx):

∑
x pxρx=ρ

∑
x

pxH
(∑

y

Qx
yρ1

x,y ⊗ κ2(ρ1
x,y)

)
≤ H(Tr2(κ1 ⊗ κ2)(ρ)) + H(Tr1(κ1 ⊗ κ2)(ρ))

− min
(px,ρx):

∑
x pxρx=ρ

∑
x

px

(∑
y

Qx
yH(κ2(ρ2

x,y)) + H
(∑

y

Qx
yρ1

x,y

))

= H(κ1(Tr2 ρ))− min
(px,ρx):

∑
x pxρx=ρ

∑
x

pxH
(∑

y

Qx
yρ1

x,y

)
+ H(κ2(Tr1 ρ))− min

(px,ρx):
∑

x pxρx=ρ

∑
x

px

∑
y

Qx
yH(κ2(ρ2

x,y))

≤ Cc(κ1) + Cc(κ2), (9.31)

which implies (9.3) for entanglement channel κ1 and arbitrary channel κ2.

Exercises

9.2. Using a discussion similar to (9.31), show that the additivity of minimum
output entropy when κ1 is entanglement breaking.

9.3. Prove Theorem 9.2 by referring to the proof of Theorem 4.1.

9.3 C-Q Channel Coding with Shared Entanglement

In the preceding section, we considered the effectiveness of using the input
state entangled between systems that are to be sent. In this section, we
will consider the usefulness of entangled states ρA,B on a composite system
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HA ⊗HB that is a priori shared between the sender and the receiver. If the
sender wishes to send some information corresponding to an element i of
{1, . . . , N}, he or she must perform an operation ϕe(i) on the system HA

according to the element i, then send the system HA to the receiver using
the quantum channel κ. Then, the receiver performs a measurement (POVM)
Y = {Yi}Ni=1 on the composite system HA′⊗HB . Note that this measurement
is performed not only on the output system HA′ of the quantum channel κ
but also on the composite system HA′ ⊗HB .

Consider the simple case in which the systems HA, HA′ , and HB are
all quantum two-level systems. Let the initial state ρA,B be a pure state
1√
2

(
|uA

0 ⊗ uB
0 〉+ |uA

1 ⊗ uB
1 〉
)
. Assume that there is no noise in the quantum

channel, which enables the perfect transmission of the quantum state. In
this case, we send the message i ∈ {0, . . . , 3} by applying the unitary trans-
formation SA

i on system HA. Then, the receiver possesses the transmitted
system as well as the initially shared system. The state of the composite sys-
tem (C2)⊗2 of the receiver is given by (SA

i ⊗IB) 1√
2

(
|uA

0 ⊗ uB
0 〉+ |uA

1 ⊗ uB
1 〉
)
.

Since the vectors form an orthogonal basis with i = 0, 1, 2, 3, we can perform
a measurement Y comprising this basis. Hence, this measurement provides
error-free decoding. According to this protocol, two bits of information may
be sent through only one qubit channel. We observe that by sharing an en-
tangled state between two parties a priori, more information can be sent
than simply by sending a quantum state [43]. This protocol is often called
superdense coding.

However, the initially shared entangled state is not necessarily a maxi-
mally entangled state such as 1√

2

(
|uA

0 ⊗ uB
0 〉+ |uA

1 ⊗uB
1 〉
)

in general. Hence,
it is an important question to determine how much sharing a partially en-
tangled state improves the channel capacity. This will give a quantitative
measure of the utilizable entanglement of a partially entangled state.

Assume that the sender and the receiver share the partially entan-
gled state (ρA,B)⊗n on H⊗n

A ⊗ H⊗n
B . The code is then given by the set

Φ
(n)
e = (Nn,HA′

n
, ϕ

(n)
e , Y (n)) consisting of its size Nn, the quantum system

HA′
n

transmitted by the sender to the receiver, the operation ϕ
(n)
e (i) from

the quantum system H⊗n
A to HA′

n
depending on each message i, and the

measurement Y (n) on the composite system HA′
n
⊗H⊗n

B .
Further, the effectiveness of an entangled state ρ, i.e., the increase of the

transmitted message, is given by

|Φ(n)
e |

def=
Nn

dimHA′
n

,

and the error probability is given by

ε[Φ(n)
e ] def=

1
Nn

Nn∑
i=1

(
1− Tr

[
ϕ(n)

e (i)⊗ ι⊗n
B ((ρA,B)⊗n)

])
.
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Hence, the amount of assistance for sending information by the state ρA,B

can be quantified as2

Ca(ρA,B) def= sup
{

lim
1
n

log |Φ(n)
e |

∣∣∣lim ε[Φ(n)
e ] = 0

}
. (9.32)

Then, we obtain the following theorem.

Theorem 9.4 The quantity 1
n minκ Hκ⊗ιB((ρA,B)⊗n)(A|B) converges as n→

∞ and

Ca(ρA,B) = − lim
1
n

min
κ

Hκ⊗ιB((ρA,B)⊗n)(A|B), (9.33)

where κ is a TP-CP map from H⊗n
A to HA′

n
[56,58,234,237,419]. We assume

that the output system HA′
n

can be chosen depending on κ.

When the initial state ρA,B is a maximally correlated state,
minκ Hκ⊗ιB((ρA,B)⊗n)(A|B) = nHρA,B (A|B), i.e., Ca(ρA,B) = −HρA,B (A|B).
Certainly, this equation holds when condition (8.120) is satisfied. In particu-
lar, if ρA,B is a pure state, we have Ca(ρA,B) = H(ρB).

Proof. We first show that

Ca(ρA,B) ≥ H(ρB)−min
κ

H((κ⊗ ιB)(ρA,B)) (9.34)

in order to obtain the ≥ part of (9.33). Let κm be the channel argminκ H((κ⊗
ιB)(ρA,B)). We denote the output system of κm and its dimension by HA′

and d, respectively. Now, we focus on the c-q channel (i, j) �→ W(i,j)
def=

(Xi
A′Zj

A′ ⊗ IB)∗(κ ⊗ ιB)(ρA,B)(Xi
A′Zj

A′ ⊗ IB) with the set of input signals

X def= {(i, j)}1≤i,j≤d. Using Theorem 4.1 and Exercise 5.8, we see that the
capacity of this channel is larger than

H

⎛
⎝∑

(i,j)

1
d2 (Xi

A′Zj
A′ ⊗ IB)∗(κ⊗ ιB)(ρA,B)(Xi

A′Zj
A′ ⊗ IB)

⎞
⎠

−
∑
(i,j)

1
d2 H

(
(Xi

A′Zj
A′ ⊗ IB)∗(κ⊗ ιB)(ρA,B)(Xi

A′Zj
A′ ⊗ IB)

)

= H
(
ρA′
mix ⊗ (TrA′(κ⊗ ιB)(ρA,B))

)
−
∑
(i,j)

1
d2 H

(
(κ⊗ ιB)(ρA,B)

)
= H

(
ρA′
mix ⊗ TrA ρA,B

)
−H

(
(κ⊗ ιB)(ρA,B)

)
= log d + H

(
TrA ρA,B

)
−H

(
(κ⊗ ιB)(ρA,B)

)
.

2 The subscript a expresses “assistance.”
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From the definition of |Φ(n)
e |, we immediately obtain (9.34). Fixing n and

applying the same argument to κn
def= argminκ H((κ ⊗ ι⊗n

B )((ρA,B)⊗n)), we
obtain Ca(ρA,B) ≥ H(TrA ρA,B)− 1

n minκ H((κ⊗ι⊗n
B )((ρA,B)⊗n)). Therefore,

we have Ca(ρA,B) ≥ H(TrA ρA,B) − infn
1
n minκ H((κ ⊗ ι⊗n

B )((ρA,B)⊗n)).
Since nH(TrA ρA,B)−minκ H((κ⊗ι⊗n

B )((ρA,B)⊗n)) satisfies the assumptions
of Lemma A.1, this converges with n→∞. We therefore obtain (9.33) with
the ≥ sign.

Next, we prove the ≤ part of (9.33). Let X be a random variable taking
values in {1, . . . , Nn} and following a uniform distribution. Let Y be the
decoded message at the receiver as the random variable taking values in
{1, . . . , Nn}. Since H(X) = log Nn,

I(X : Y ) ≥ H(X)− log 2− ε[Φ(n)] log Nn

= − log 2 + log Nn(1−ε[Φ(n)
e ]), (9.35)

from the Fano inequality. Using the monotonicity of the quantum relative
entropy and (5.58), it can be shown that Ex. 9.4

I(X : Y ) ≤ nH
(
TrA ρA,B

)
+ log dimHA′

n
−min

κ
H((κ⊗ ι⊗n

B )((ρA,B)⊗n)).

(9.36)

Combining this inequality with (9.35), we obtain

H
(
TrA ρA,B

)
− 1

n
min

κ
H((κ⊗ ι⊗n

B )((ρA,B)⊗n)) +
log 2

n

≥ log Nn

n
(1− ε[Φ(n)

e ])−
log dimH′

A,n

n
.

Taking the limit n→∞, we have

H
(
TrA ρA,B

)
− lim

1
n

min
κ

H((κ⊗ι⊗n
B )((ρA,B)⊗n))

≥ lim
log Nn−log dimHA′

n

n
,

which gives the ≤ part of (9.33).

We assumed above that there was no noise in the quantum channel. Since
real quantum channels always contain some noise, we must often restrict our
channel to a given TP-CP map κ. Now, consider the case in which the quan-
tum channel κ has some noise, but the sender and the receiver are allowed
access to any entangled state. Let us also say that the quantum channel κ
can be used n times (i.e., κ⊗n), as considered previously.

First, we prepare an entangled pure state x(n) on the composite system
HA′

n
⊗ HRn , comprising quantum system HA′

n
at the sender and quantum

system HRn at the receiver. Let the size of the code be Nn, and let an element
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i ∈ {1, . . . , Nn} be transmitted. Next, the sender performs the operation
ϕ

(n)
e (i) from the system HA′

n
to the other system H⊗n

A depending on i =
1, . . . , Nn. Then, the state onH⊗n

A is transmitted to the receiver via the given
quantum channel κ⊗n. The receiver performs a measurement Y (n) on the
composite system H⊗n

B ⊗HRn, thereby recovering the original signal i. In this
case, our code can be described by the set (HA′

n
,HRn

, x(n), Nn, ϕ
(n)
e , Y (n)),

and is denoted by Φ
(n),2
e . Hence, the size of the code and its error probability

are given by

|Φ(n),2
e | def= Nn, ε[Φ(n),2

e ] def=
1

Nn

Nn∑
i=1

(
1− Tr

[
ϕ(n)

e (i)⊗ ιR,n((ρA,B)⊗n)
])

.

The entanglement-assisted channel capacity Ce
c,e(κ)3 is given by

Ce
c,e(κ) def= sup

{
lim

1
n

log |Φ(n),2
e |

∣∣∣lim ε[Φ(n),2
e ] = 0

}
. (9.37)

Theorem 9.5 (Bennett et al. [41, 42], Holevo [220]) The entanglement-
assisted channel capacity Ce

c,e(κ) of a quantum-quantum channel κ from HA

to HB is

Ce
c,e(κ) = max

ρ
I(ρ, κ), (9.38)

where I(ρ, κ) is the transmission information of a quantum-quantum channel
defined in (8.34).

In a manner similar to J(p, σ, W ), we define J(ρ, σ, κ) as

J(ρ, σ, κ) def= Tr(κ⊗ ιR)(|x〉〈x|)(log(κ⊗ ιR)(|x〉〈x|))− log ρ⊗ σ)

= H(ρ)− Tr κ(ρ) log σ −He(ρ, κ) = Ĩc(ρ, κ)− Tr κ(ρ) log σ,

where x is a purification of ρ. Then, J(ρ, σ, κ) is concave for ρ because of
(8.48) and convex for σ. Since

J(ρ, σ, κ) = I(ρ, κ) + D(κ(ρ)‖σ), (9.39)

in a manner similar to (4.43), Lemma A.7 guarantess that

Ce
c,e(κ) = max

ρ
I(ρ, κ) = max

ρ
min

σ
J(ρ, σ, κ) = min

σ
max

ρ
J(ρ, σ, κ). (9.40)

Proof. We first construct a code attaining the right-hand side (RHS) of
(9.38), i.e., we prove the ≥ part in (9.38) for argmaxρ I(ρ, κ) = ρA

mix. Let
3 The second subscript, e, of Ce

c,e indicates the shared “entanglement.” The su-
perscript e indicates “entangled” operations between sending systems.
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ρA,R be the purification of ρA
mix. Perform the encoding operation using the

operation ρA,R �→ ρA,R
(i,j)

def= (Xi
AZj

A ⊗ I)(ρA,R)(Xi
AZj

A ⊗ I)∗ at A, as in the
case of a noise-free channel. Since∑

i,j

1
d2 (κ⊗ ιR)(ρA,R

(i,j)) = (κ⊗ ιR)
(∑

i,j

1
d2 (ρA,R

(i,j))
)

= (κ⊗ ιR)(ρA
mix ⊗ ρR

mix) = κ(ρA
mix)⊗ ρR

mix,

we obtain∑
i,j

1
d2 D

(
(κ⊗ ιR)(ρA,R

(i,j))
∥∥∥∑

i,j

1
d2 (κ⊗ ιR)(ρA,R

(i,j))
)

=
∑
i,j

1
d2 D((κ⊗ ιR)(ρA,R

(i,j))‖κ(ρA
mix)⊗ ρR

mix) = I(ρA
mix, κ).

Combining this equation with the argument given in Theorem 4.1, we find a
code attaining I(ρA

mix, κ).
Now, consider the case in which I(ρA

mix, κ) = maxρ I(ρ, κ) is not true. Let
ρKn

mix be a completely mixed state on a subspace Kn of H⊗n. If we can take
the state ρKn

mix such that

lim
1
n

I(ρKn

mix, κ
⊗n) = max

ρ
I(ρ, κ), (9.41)

we can construct a code satisfying maxρ I(ρ, κ). To choose such a subspace

Kn, let ρM
def= argmaxρ I(ρ, κ), and we take the spectral decomposition

ρ⊗n
M =

∑vn

j=1 λj,nEj,n, where vn represents the number of eigenvalues of
ρ⊗n

M . Let ρj,n
mix be a completely mixed state in the range of Ej,n, and let

pj,n
def= λj,n rankEj,n. Then, we have ρ⊗n

M =
∑vn

j=1 pj,nρj,n
mix; therefore, pj,n is

a probability distribution. Applying (8.44), we have

vn∑
j=1

pj,nI(ρj,n
mix, κ

⊗n) + 2 log vn ≥ I(ρ⊗n
M , κ⊗n).

Thus, there exists an integer jn ∈ [1, vn] such that

I(ρjn,n
mix , κ⊗n) + 2 log vn ≥ I(ρ⊗n

M , κ⊗n).

From Lemma 3.7, since 2
n log vn → 0, we obtain (9.41). This shows the exis-

tence of a code attaining the bound.
Next, we show that there is no code that exceeds the RHS of (9.38). Any

pure state ρA′,R on HA′ ⊗ HR, a set of TP-CP maps {ϕe(j)} from HA′ to
HA, and a probability distribution pj satisfy
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j

pjD((κ◦ϕe(j)⊗ιR)(ρA′,R)‖
∑

j

pj(κ◦ϕe(j)⊗ιR)(ρA′,R))

≤ max
ρ

I(ρ, κ), (9.42)

where we used (4.6) and (8.50). From (8.45) we obtain

max
ρ

I(ρ, κ⊗n) = n max
ρ

I(ρ, κ). (9.43)

Using the Fano inequality appropriately as in (9.35), we show the ≤ part in
(9.38).

Next, we examine the relation between the entanglement-assisted capacity
Ce

c,e(κ) and the capacity Cc(κ). Let HB be the output system of κ, HR be the
input system of κ, andHR be a reference system of HA. From relation (8.142)
the channel capacity Cc(κ) can be expressed by the quantity CR→B

d (ρ) as

Cc(κ) = sup
|x〉〈x|

CR→B
d ((κ⊗ ιR)(|x〉〈x|)).

Hence, from (8.137)

CR→B
d ((κ⊗ ιR)(|x〉〈x|)) ≤ I(κ⊗ιR)(|x〉〈x|)(R : B), (9.44)

i.e.,

Cc(κ) ≤ Ce
c,e(κ). (9.45)

Concerning the equality condition, the following lemma holds.

Theorem 9.6 When channel κ is entanglement breaking and is written by
a CONS {uA

i } on HA as

κ(ρ) =
∑

i

〈uA
i |ρ|uA

i 〉ρB
i , (9.46)

the equality of (9.45) holds. Conversely, when the equality of (9.45) holds,
the channel essentially has the form of (9.46), i.e., there exists a state ρmax
such that I(ρmax, κ) = Ce

c,e(κ) and κ|supp(ρmax) has the form of (9.46), where
supp(ρmax) is the support of ρmax. Further, in the case of (9.46), the capacity
is calculated as

Ce
c,e(κ) = max

p
H(

∑
i

piρi)−
∑

i

piH(ρi). (9.47)

There exists a counterexample that does not satisfy (9.46) while satisfying
the equality of (9.45) (Exercise 9.8). From the above lemma we see that even
if channel κ is entanglement breaking, the equality does not necessarily hold,
i.e., it is advantageous to use shared entanglement. For example, channel κ
is assumed to have the form
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κ(ρ) =
∑

i

(Tr Miρ)|uB
i 〉〈uB

i |, (9.48)

where {uB
i } is a CONS on HB and M = {Mi} is a POVM one rank on HA.

Then, the capacity Ce
c,e(κ) is calculated as

Ce
c,e(κ) = sup

ρ
H(ρ) + H(

∑
i

(Tr Miρ)|uB
i 〉〈uB

i |)

−H(
∑

i

TrA(Mi ⊗ IR|x〉〈x|)⊗ |uB
i 〉〈uB

i |)

= sup
ρ

H(ρ) = log dA,

where |x〉〈x| is a purification of ρ. However, when the POVM M is given as

M0 =
1
2
|0〉〈0|, M1 =

1
2
|1〉〈1|, M2 =

1
2
|+〉〈+|, M3 =

1
2
|−〉〈−|,

the capacity without shared entanglement is calculated as Ex. 9.7

Cc(κ) = Ce
c (κ) =

1
2

log 2. (9.49)

Proof of Theorem 9.6. Assume that condition (9.46) holds. Let Uθ1,... ,θdA

be defined by Uθ
def=

∑
j eiθj |uA

i 〉〈uA
i |, θ = (θ1, . . . , θdA

). Then, channel κ
has the invariance κ(ρ) = κ(UθρU∗

θ ). Hence, I(ρ, κ) = I(UθρU∗
θ , κ). From

(8.43)

I(ρ, κ) ≤ I(
∫

UθρU∗
θ dθ, κ).

Since
∫

UθρU∗
θ dθ has eigenvectors {uA

j }, we have

Ce
c,e(κ) = sup

p
H
(∑

j

pj |uA
j 〉〈uA

j |
)

+ H
(∑

i

〈uA
i |(

∑
j

pj |uA
j 〉〈uA

j |)|uA
i 〉ρi

)
−H

(∑
i

(TrA |uA
i 〉〈uA

i | ⊗ IR|x〉〈x|)⊗ ρi

)
= sup

p
H(p) + H

(∑
i

piρi

)
−H

(∑
i

pi|uR
i 〉〈uR

i | ⊗ ρi

)
= sup

p
H(p) + H

(∑
i

piρi

)
−H(p)−

∑
i

piH(ρi)

= sup
p

H
(∑

i

piρi

)
−
∑

i

piH(ρi),

where |x〉 is a purification of
∑

j pj |uA
j 〉〈uA

j |. Hence, we obtain (9.47). In
particular, the capacity is equal to Cc(κ). That is, the equality of inequality
(9.45) holds.
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Next, we assume that the equality of (9.45) holds. Then, there exists a
state ρmax such that I(ρmax, κ) = Ce

c,e(κ) and its purification |x〉 satisfies the
equality in (9.44). Lemma 8.12 guarantees that there exist a CONS {uR

i } on
HR, states ρi on HB , and a probability distribution p such that

∑
i

pi|uR
i 〉〈uR

i | ⊗ ρB
i = (κ⊗ ιR)(|x〉〈x|).

Now, we let ρR be the reduced density of |x〉〈x|. Using relation (5.6),

(κ|supp(ρmax) ⊗ ιR)(|Φd〉〈Φd|) =
∑

i

dpi

(√
ρR

−1
|uR

i 〉〈uR
i |
√

ρR
−1)
⊗ ρB

i ,

where d is the dimension of supp(ρmax). Since
∑

i dpi

√
ρR

−1
|uR

i 〉〈uR
i |
√

ρR
−1

is the completely mixed state on supp(ρmax), each uR
i is an eigenvector of ρR

with the eigenvalue qi. Hence,

(κ|supp(ρmax) ⊗ ιR)(|Φd〉〈Φd|) =
∑

i

dpi

qi
|uR

i 〉〈uR
i | ⊗ ρB

i .

From the discussion in Theorem 5.1 we can conclude that channel κ has the
form (9.46).

Exercises

9.4. Show (9.36) using (5.58) and the monotonicity of the quantum relative
entropy.

9.5. Show (9.42) using (8.50) and the inequality
D(

∑
j pj(κ ◦ ϕe(j)⊗ ιR)(ρA′,R)‖

∑
j pj(κ ◦ ϕe(j)(ρA′

)⊗ ρR) ≥ 0.

9.6. Show that the ≤ part of (9.38) by combining (9.42) and (9.43) with the
Fano inequality.

9.7. Show equation (9.49) following the steps below.

a Show that Cc(κ) = log 4−minθ f(θ), where f(θ) def= − 1+cos θ
4 log 1+cos θ

4 −
1−cos θ

4 log 1−cos θ
4 − 1+sin θ

4 log 1+sin θ
4 − 1−sin θ

4 log 1−sin θ
4 .

b Show that df
dθ (θ) = sin θ

4 log 1+cos θ
1−cos θ + cos θ

4 log 1−sin θ
1+sin θ and d2f

dθ2 (θ) =
cos θ

4 log 1+cos θ
1−cos θ + sin θ

4 log 1+sin θ
1−sin θ − 1.
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c Show the following table.

θ 0 π
4

π
2

f(θ) 3
2 log 2 ↗ ∗ ↘ 3

2 log 2
df
dθ (θ) 0 � 0 � 0
d2f
dθ2 (θ) +∞ ↘ − ↗ +∞

9.8. Let κ1 and κ2 be channels from systems HA,1 and HA,2 to system HB ,

respectively. Assume that the states ρmax,1
def= argmaxρ I(ρ, κ1) and ρmax,2

def=
argmaxρ I(ρ, κ2) satisfy that κ1(ρmax,1) = κ2(ρmax,2). Define channel κ from
system HA,1 ⊕ HA,2 (HA,i

∼= HA) to system HB as κ(ρ) = κ1(P1ρP1) +
κ2(P2ρP2), where Pi is the projection to HA,i. Show that Ce

c,e(κ1) = Ce
c,e(κ)

using (9.40).
Further, show the equality of (9.45), i.e., Cc(κ) = Ce

c,e(κ), even though
κ2 does not satisfy (9.46) if κ1 satisfies (9.46).

9.4 Quantum Channel Resolvability

In this section, we examine the problem of approximating a given quantum
state on the output of a c-q channel. In this problem, we choose a finite num-
ber of input signals and approximate a desired quantum state by the average
output state with the uniform distribution on the chosen input signals. Then,
the task of this problem is to choose the support of the uniform distribution
at the input system as small as possible while approximating the desired state
by the average output state as accurately as possible.

The classical version of this problem is called channel resolvability. It
was proposed by Han and Verdú [161] in order to examine another problem
called the identification code given by Ahlswede and Dueck [5]. The problem
of approximating a quantum state at the output system of a c-q channel
is analogously called quantum-channel resolvability. Hence, quantum-channel
resolvability is expected to be useful for examining identification codes [6]
for (classical-) quantum channels. Indeed, this problem essentially has been
treated by Wyner [425] in order to evaluate the information of the eavesdrop-
per. Hence, it is also a fundamental tool for the discussion of communications
in the presence of an eavesdropper for the following reason. Regarding the
channel connecting the sender to the eavesdropper, approximating two states
on the output system is almost equivalent to making these two states in-
distinguishable for the eavesdropper. Its detail will be discussed in the next
section.

Quantum-channel resolvability may be formulated as follows. Consider a
c-q channel W : X → S(H) and a quantum state σ ∈W (P(X )), and prepare
a map ϕ from {1, . . . , M} to the alphabet set X . Now, the sender chooses an
element i of {1, . . . , M} according to the uniform distribution and sends the
state Wϕ(i). The problem is then to detrmine how many (M) elements are
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required for sufficienltly approximating the quantum state σ by the output
average state Wϕ

def= 1
M

∑M
j=1 Wϕ(j) of the c-q channel W . (Here, we are

allowed to use input elements duplicately.) The quality of the approximation
is evaluated by the trace norm ‖Wϕ−σ‖1. Here, we choose the trace norm as
the criterion of the approximation because it represents how well two states
can be discriminated, as seen in Lemma 3.1. If the number M is sufficiently
large, we can easily approximate the state Wp = σ by the output average
state Wϕ. However, our aim is to approximate the state Wp = σ with a
small number M . One of the features of this problem is that even when the
distribution pϕ(x) = #{ϕ−1{x}}/M at the input system is not close to p,
the state σ = Wp can be approximated by Wpϕ = Wϕ using the noise of

channel W . In this case, our protocol is represented by Φ
def= (M, ϕ), and its

performance by M = |Φ| and ε[Φ] def=
∥∥∥( 1

M

∑M
j=1 Wϕ(j)

)
− σ

∥∥∥
1
. Let Φ(n) be

a protocol producing approximately the tensor product state σ⊗n for a given
state σ ∈W (P(X )) by using the n-fold stationary memoryless channel W (n)

of W . The asymptotic bound of its performance is given as the quantum-
channel resolvability capacity;4

Cr(W,σ) def= inf
{Φ(n)}

{
lim

1
n

log |Φ(n)|
∣∣∣∣ lim ε[Φ(n)] = 0

}
. (9.50)

Theorem 9.7 The quantum-channel resolvability capacity Cr(W,σ) satisfies

Cr(W,Wp) ≤ I(p, W ). (9.51)

We first prove the following lemma in order to prove this theorem.5

Lemma 9.2 There exists a map ϕ from {1, . . . , M} to X satisfying∥∥∥∥∥
(

1
M

M∑
i=1

Wϕ(i)

)
−Wp

∥∥∥∥∥
1

≤ 2
√∑

x

p(x) Tr Wx{κWp(Wx)− CWp ≥ 0}+

√
Cv

M
, (9.52)

where v is the number of eigenvalues of Wp. Furthermore, for s ≤ 0,∑
x

p(x) Tr Wx{κWp(Wx)− CWp ≥ 0} ≤ Cs exp(φ(s|W,p)) (9.53)

φ(s|W,p) def= log

(∑
x

p(x) Tr W 1−s
x W s

p

)
,

4 The subscript r indicates “resolvability”.
5 This theorem was first derived in this text. Lemma 9.2 is also a new result for

the classical case.
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where κσ is the pinching map concerning the matrix σ, which is defined in
(1.12).

Proof. We prove (9.52) by emplying the random coding method. Let X
def=

(x1, . . . , xM ) be M independent random variables subject to a probability
distribution p in X . Consider a protocol (M, ϕ) such that ϕ(i) = xi. Denoting
the expectation value by EX , we obtain

EX

∥∥∥∥∥
(

1
M

M∑
i=1

Wxi

)
−Wp

∥∥∥∥∥
1

≤ 2
√∑

x

p(x) Tr Wx{κWp
(Wx)− CWp ≥ 0}+

√
Cv

M
, (9.54)

which will be shown in what follows. Now, define Px
def= {κWp(Wx)−CWp ≥

0}, P c
x

def= I−Px, and W ′
p

def=
∑

x p(x)P c
xWx. Since W ′

p−Wp =
∑

x p(x)PxWx,
we have

EX

∥∥∥∥∥
(

1
M

M∑
i=1

Wxi

)
−Wp

∥∥∥∥∥
1

= EX

∥∥∥∥∥
(

1
M

M∑
i=1

Pxi
Wxi

)
+ (W ′

p −Wp) +
(

1
M

M∑
i=1

P c
xi

Wxi

)
−W ′

p

∥∥∥∥∥
1

≤ EX

∥∥∥∥∥ 1
M

M∑
i=1

(
P c

xi
Wxi
−W ′

p

)∥∥∥∥∥
1

+ Ex‖PxWx‖1

+ EX

[
1
M

M∑
i=1

‖Pxi
Wxi
‖1

]
, (9.55)

where Ex denotes the expectation value for a random variable x. Hence,
Exercise 6.5 implies

‖PxWx‖1 ≤
√

Tr WxPx. (9.56)

Thus, Exercise 6.6 yields∥∥∥∥∥ 1
M

M∑
i=1

(
P c

xi
WxiP

c
xi
−W ′

p

)∥∥∥∥∥
1

≤

√∑
i,j Tr W−1

p

(
P c

xi
Wxi −W ′

p

) (
Wxj P

c
xj
−W ′

p
∗
)

M
.
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Using these relations as well as Jensen’s inequality for x �→ −
√

x, we obtain

EX

∥∥∥∥∥ 1
M

M∑
i=1

(
P c

xi
Wxi −W ′

p

)∥∥∥∥∥
1

+ Ex‖PxWx‖1

+ EX

(
1
M

M∑
i=1

‖Pxi
Wxi
‖1

)

≤

√
EX

∑
i,j Tr Wp

−1 (P c
xi

Wxi
−W ′

p

) (
Wxj

P c
xj
−W ′

p
∗
)

M

+

√√√√EX

(
1
M

M∑
i=1

Tr WxiPxi

)
+
√

Ex Tr WxPx

=

√
Ex Tr Wp

−1 (P c
xWx −W ′

p

) (
WxP c

x −W ′
p
∗)

M

+ 2
√

Ex Tr WxPx. (9.57)

The last equality follows from the fact that xi and xj for different i and j
are independent and the expectation value of

(
P c

xWx −W ′
p

)
is a zero matrix.

From the definition of W ′
p,∑

x

p(x) Tr Wp
−1 (P c

xWx −W ′
p

) (
WxP c

x −W ′
p
∗)

=
∑

x

p(x) Tr
√

Wp
−1

P c
xW 2

xP c
x − Tr Wp

−1W ′
pW

′
p
∗

≤
∑

x

p(x) Tr Wp
−1P c

xW 2
xP c

x =
∑

x

p(x) Tr WxW
1
2

x P c
xWp

−1P c
xW

1
2

x

≤
∑

x

p(x) Tr Wx‖W
1
2

x P c
xWp

−1P c
xW

1
2

x ‖ =
∑

x

p(x)‖W
1
2

x P c
xWp

−1P c
xW

1
2

x ‖.

(9.58)

Since Wp and κWp
(Wx) commute, Wp and P c

x = {κWp
(Wx)−CWp < 0} also

commute. Therefore, we obtain

P c
xWxP c

x ≤ vP c
xκWp

(Wx)P c
x ≤ vPxCWpPx ≤ CvWp.

Hence,

‖W
1
2

x P c
xWp

−1P c
xW

1
2

x ‖ = ‖W
1
2

x P c
xWp

− 1
2 Wp

− 1
2 P c

xW
1
2

x ‖

= ‖Wp
− 1

2 P c
xW

1
2

x W
1
2

x P c
xWp

− 1
2 ‖ = ‖Wp

− 1
2 P c

xWxP c
xWp

− 1
2 ‖

≤ ‖Wp
− 1

2 CvWpWp
− 1

2 ‖ = Cv.
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Thus, (9.54) may be shown using (9.58), (9.57), and (9.55). Then, inequality
(9.52) follows from (9.54). In addition, (9.53) may be shown using Exercises
3.16 and 9.9.

Proof of Theorem 9.7. Let C = en(R−r) and M = enR, and apply Lemma
3.7, (9.52), and (9.53) to W (n) and pn. Therefore, there exists a protocol Φ(n)

such that

|Φ(n)| = enRε[Φ(n)] ≤ 2en(φ(s|W,p)+s(R−r))/2 + (n + 1)d/2e−nr/2,

where φ(s|W (n), pn) = nφ(s|W,p), and s is a real negative number. Now, let
R < I(p, W ). Then, there exist real numbers s < 0 and r > 0 such that
φ(s|W,p) + s(R − r) < 0 because lims→0

φ(s|W,p)
s = I(p, W ). Since ε[Φ(n)]

approaches 0, we obtain (9.51).

It has been shown that if channel W is a classical channel, then
maxp Cr(W,Wp) is equal to maxp I(p, W ). This is done by examining the
connection with the problem of identification codes [6]. The same fact seems
to hold for a c-q channel W using a similar method.

Here, we prove the direct part of Theorem 8.12 by using quantum-channel
resolvability.

Proof of Direct Part of Theorem 8.12: Choose a probabilistic decom-
position (px, ρA

x ⊗ ρB
x )x∈X of the separable state ρ as

C(ρ) = IρABE (AB : E), ρABE def=
∑

i

piρ
A
i ⊗ ρB

i ⊗ |uE
i 〉〈uE

i |. (9.59)

For any ε > 0, we let Mn = en(C(ρ)+ε). Hence, we can choose Mn indexes
ϕ(1), . . . , ϕ(Mn) in Xn such that∥∥∥∥∥ 1

Mn

Mn∑
i=1

ρ
A,(n)
ϕ(i) ⊗ ρ

B,(n)
ϕ(i) − ρ⊗n

∥∥∥∥∥
0

→ 0,

which implies the direct part of Theorem 8.12.

Exercises

9.9. Prove (9.53) by applying the monotonicity of relative Rényi entropy
(2.63) to the two-valued POVM {{κWp

(Wx)−CWp ≥ 0}, {κWp
(Wx)−CWp <

0}}.

9.10. Show that

sup
{Φ(n)}

{
lim
− log ε[Φ(n)]

n

∣∣∣∣ lim log |Φ(n)|
n

≤ R

}
≥ max

s≤0

−φ(s|W,p)− sR

2(1− s)
,

referring to the proof of Theorem 9.7.
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9.11. Assume that all the Wx output states commute. Show that∥∥∥∥∥
(

1
M

M∑
i=1

Wϕ(i)

)
−Wp

∥∥∥∥∥
1

≤ 2
∑

x

p(x) Tr Wx{κWp(Wx)− CWp ≥ 0}+

√
C

M

as a modification of (9.52) of Lemma 9.2.

9.5 Quantum-Channel Communications
with an Eavesdropper

9.5.1 C-Q Wiretap Channel

The BB84 protocol [35] enables us to securely distribute a secret key using
a quantum system. Experiments realizing this protocol have been performed
[255, 383], with successful transmissions over 150 km [260, 368] via optical
fibers. Therefore, the protocol is almost at a practically usable stage. In the
original proposal of the BB84 protocol, it was assumed that there was no noise
in the channel. However, a real channel always has some noise. In the presence
of noise, the noise can be used by an eavesdropper to mask his/her presence
while obtaining information from the channel. Therefore, it is necessary to
communicate on the assumption that an eavesdropper may obtain a certain
amount of information.

This type of communication is called a wiretap channel and was first
considered by Wyner [425] for the classical case. Its quantum-mechanical
extension, i.e., a classical-quantum wiretap channel (c-q wiretap channel )
was examined by Devetak [95]. In this communication, we require a code
such that the normal receiver can accurately recover the original message
and the eavesdropper cannot obtain any information concerning the original
message. Hence, one of the main problems in this communication is to find
the bound of the communication rate of the code. Although this problem is
not the same problem as the BB84 protocol itself, it will lead us to a proof
of its security even in the presence of noise.

Let HB be the system received by the normal receiver, HE the sys-
tem received by the eavesdropper, and Wx an output state on the com-
posite system HB ⊗ HE when the sender sends an alphabet x ∈ X .
Hence, the normal receiver receives the state WB

x
def= TrE Wx, and the

eavesdropper receives the state WE
x

def= TrB Wx. In this case, we use a
probabilistic code as follows. When the sender wishes to send a message
m ∈ {1, . . . , M}, he or she transmits the alphabet x ∈ X according to
the probability distribution Qm in X depending on message m. That is,
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the encoding process is described by a stochastic transition matrix Q from
{1, . . . , M} to X . Then, the normal receiver performs the M -valued POVM
Y = {Ym′}Mm′=1 and receives signal m′. Therefore, our protocol is described
by Φ = (M, Q, Y ) and evaluated by the following three quantities. The
first quantity is the size of the protocol |Φ| def= M , and the second is the
upper bound of the eavesdropper’s information IE(Φ) def= I(pM

mix, W
EQ),

where (WEQ)m
def=

∑
x∈X WE

x Qm
x . The third quantity is the error prob-

ability of the normal receiver ε[Φ] def= 1
M

∑M
m=1

(
1− Tr(WBQ)mYm

)
, where

(WBQ)m
def=

∑
x∈X WB

x Qm
x . Let us now examine the capacity, i.e., the bound

of the communication rate 1
n log |Φ(n)|, for the asymptotically reliable proto-

col {Φ(n)} with the stationary memoryless channel W (n), i.e., n times use of
W . This is given by

CB,E
c (W ) def= sup

{Φ(n)}

{
lim

1
n

log |Φ(n)|
∣∣∣∣ ε[Φ(n)]→ 0, IE(Φ(n))→ 0

}
. (9.60)

Theorem 9.8 (Devetak [95]) The capacity CB,E
c (W ) satisfies

CB,E
c (W ) = lim

1
n

sup
Q

sup
p

(
I(p, W

(n)
B Q)− I(p, W

(n)
E Q)

)
. (9.61)

If every WE
x can be written as WE

x = κ(WB
x ), using a completely positive

map κ fromHB toHE , it is called a quantum degraded channel, and it satisfies

CB,E
c (W ) = sup

p

(
I(p, WB)− I(p, WE)

)
. (9.62)

It is also proved in Sect. 9.5.6. Further, a quantum degraded channel
(WB , WE) satisfies Ex. 9.19

I(Qp, WB)− I(Qp, WE) ≥
∑

i

pi(I(Qi, WB)− I(Qi, WE)). (9.63)

That is, I(p, WB)− I(p, WE) satisfies the concavity in this case.
Let us suppose that WB is given by a TP-CP map κ from HA to HB , and

the channel to the eavesdropper WE is given by a channel κE to the environ-
ment of κ. Under this assumption, the eavesdropper’s state is always a state
reduced from the state on the environment. That is, he/she has less infor-
mation than the environment system. Hence, the eavesdropper’s information
can be sufficiently estimated by treating the case where the eavesdropper’s
state is equal to the state on the environment. Now, we consider the set of
input signals X given as the set of pure states on the input system. Then,
for any input pure state |x〉, the states W

B,(n)
x and W

E,(n)
x are given by

κ⊗n(|x〉〈x|) and (κE)⊗n(|x〉〈x|), respectively. In this scheme, any entangled
state is allowed as the input state. From H(WB

x ) = H(WE
x ) and (8.53), any

state ρ =
∑

i pi|ui〉〈ui| satisfies
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I(p, WB)− I(p, WE)

= H(κ(ρ))−
∑

x

pxH(WB
x )−

(
H(TrB(UκρU∗

κ))−
∑

x

pxH(WE
x )

)

= H(κ(ρ))−H(TrB(UκρU∗
κ)) = Ic(ρ, κ). (9.64)

Hence, letting Ce,B,E
c (κ) be the asymptotic bound of the communication rate

when entangled states are used, we can show that

Ce,B,E
c (κ) ≥ lim

1
n

max
ρ∈S(H⊗n

A )
Ic(ρ, κ⊗n). (9.65)

In addition, the following monotonicity also holds with respect to the eaves-
dropper’s information:

I({pi}, {κ′
E ◦ κ(ρi)}) ≤ I({pi}, {(κ′ ◦ κ)E(ρi)}), (9.66)

I({pi}, {κE(ρi)}) ≤ I({pi}, {(κ′ ◦ κ)E(ρi)}). (9.67)

9.5.2 Relation to BB84 Protocol

Let us now relate these arguments to the BB84 protocol discussed earlier.
In the BB84 protocol, the sender A transmits a state chosen from e0, e1,
e+

def= 1√
2
(e0 + e1), and e−

def= 1√
2
(e0 − e1) with an equal probability. The

receiver B then chooses one of the two measurement bases {|e0〉〈e0|, |e1〉〈e1|}
and {|e+〉〈e+|, |e−〉〈e−|} with an equal probability and performs this mea-
surement on the received quantum system. Then, the normal receiver B sends
his/her measurement data to the sender A via a public channel. The sender
A tells the normal receiver B whether the original state belongs to the set
{e0, e1} or {e+, e−} via a public channel. This determines whether the ba-
sis used by the sender A coincides with the basis by the normal receiver
B. The bases should agree for approximately half number of the transmit-
ted states, which is numbered by n. They choose εn bits randomly among
these obtained n bits and announce the information of these εn bits using
the public channel in order to verify whether these bits coincide with each
other (ε is a suitably chosen positive real number). When they find a bit
with disagreement, the sender A and the normal receiver B conclude that
an eavesdropper was present. Otherwise, both parties can conclude that they
succeeded in sharing a secret key X without divulging information to any
third party. Finally, the sender encrypts the information YA that he or she
wishes to send according to Z = X + YA (mod 2). This may be decrypted
according to YB = Z + X, thereby obtaining secure communication.

In reality, the bits held by A and B may not agree due to noise even
if an eavesdropper is not present. In this case, we must estimate the quan-
tum channel κ connecting the sender to the receiver based on εn bits of
information. Consider a case in which the sender sends bits based on the
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basis {e0, e1}, and the receiver detects the bits through the measurement
E = {|ei〉〈ei|}1i=0. Now, let XA and XB be the random bits sent by the
sender and by the normal receiver through the measurement, respectively.
When the sender transmits bit i, the normal receiver obtains his/her data
subject to the distribution PE

κ(ei). By performing the communication steps
as described above, the stochastic transition matrix Q joining YA and YB is
given by

Q0
0 =Q1

1 =
1
2
PE

κ(e0)(0) +
1
2
PE

κ(e1)(1), Q0
1 =Q1

0 =
1
2
PE

κ(e0)(1) +
1
2
PE

κ(e1)(0),

which is the same as that for a noisy classical channel. Using a suitable coding
protocol, the sender and the normal receiver can communicate with almost
no error and almost no information leakage.

Let us now estimate the amount of information leaked to the eavesdrop-
per. In this case, it is impossible to distinguish the eavesdropping from the
noise in the channel. For this reason, we assume that any information lost has
been caused by the interception by the eavesdropper. Consider the case in
which each bit is independently eavesdropped, i.e., the quantum channel from
the state inputted by the sender to the state intercepted by the eavesdropper
is assumed to be stationary memoryless. Therefore, if the sender transmits
the state ei, the eavesdropper obtains the state κE(ei), where κE was defined
in (5.5). Since the eavesdropper knows Z, he/she possesses the state on the
composite system HE ⊗ C

2 consisting of the quantum system HE and the
classical system C

2 corresponding to Z. For example, if YA = i, the state WE
i

obtained by the eavesdropper is

WE
0 =

( 1
2κE(e0) 0

0 1
2κE(e1)

)
, WE

1 =
( 1

2κE(e1) 0
0 1

2κE(e0)

)
.

We may therefore reduce this problem to the c-q wiretap channel problem
discussed previously [98]. In particular, if κ is a Pauli channel κGP

p ,

I(pmix, Q)− I(pmix, W
E) = 1−H(p), (9.68)

which is a known quantity in quantum key distribution [274].
In practice, it is not possible to estimate κ completely using commu-

nications that use only e0, e1, e+, e−. However, it is possible to estimate
I(p, WE).6 Since the encoding constructed in the proof of Theorem 9.8 de-
pends on the form of WE , it is desirable to construct a protocol that depends
only on the value of I(p, WE).

6 By adding the states e∗
+

def= 1√
2
(e0 + ie1) and e∗

−
def= 1√

2
(e0 − ie1) in the trans-

mission, and by adding the measurement {|e∗
+〉〈e∗

+|, |e∗
−〉〈e∗

−|}, it is possible to
estimate κ. This is called the six-state method [33,60,146].
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9.5.3 Secret Sharing

Let us consider an application of the above discussion to a protocol called
secret sharing. In secret sharing, there are m receivers, and the encoded in-
formation sent by the sender can be recovered only by combining the infor-
mation of m receivers. Therefore, a single receiver cannot obtain the encoded
information [54,365].

Denote the channel from the sender to each receiver by W [81, 151]. The
transmission information possessed by one receiver is equal to I(p, W ). The
transmission information possessed by m receivers is therefore mI(p, W ).
Theorem 9.8 guarantees that performing the communication n times, the
sender can transmit almost n(m − 1)I(p, W ) bits of information with no
leakage to each receiver. That is, the problem is to ensure that the infor-
mation possessed by an individual receiver approaches zero asymptotically.
The random coding method used in the proof of Lemma 9.3 may be used to
show the existence of such a code. Let Ii(ΦX) be the information possessed
by the ith receiver for the code ΦX . Let ε[ΦX ] be the average decoding error
probability of combining the m receivers. Then, EX [ε[ΦX ]] satisfies (9.78),
and it can be shown that

∑m
i=1 EX [Ii(ΦX)] ≤ m(ε2 log d+η0(ε2)). Therefore,

EX [ε[ΦX ]] satisfies (9.78), and we can show that there exists a code Φ such
that ε[Φ] +

∑m
i=1 Ii(ΦX) ≤ ε1 + m(ε2 log d + η0(ε2)). Therefore, it is possi-

ble to securely transmit n(m− 1)I(p, W ) bits of information asymptotically.
Further, we can consider the capacity with the following requirement: There
are m receivers, and the information can be recovered from composite quan-
tum states by any n1 receivers. However, it can be recovered not only by n2
receivers. In this case, the capacity is (n1−n2)C(W ). It can be shown by the
combination of the proofs of Corollary 4.1 and Theorem 9.8.

9.5.4 Distillation of Classical Secret Key

In addition, this approach can be applied to the distillation of a classical
secret key from shared state ρ on the the composite system HA ⊗HB ⊗HE .
In the distillation of a classical secret key, it is our task to generate a secret
uniform random number shared by the two systems HA and HB . That is, it
is required that the eavesdropper’s system HE cannot hold any information
concerning the distilled random number. Then, the optimal key rate with
one-way (A→ B) communication is defined by

CA→B−E
k (ρ) def= sup

κn

{
lim

log Ln

n

∣∣∣∣ ‖TrE κn(ρn)− ρmix,Ln
‖1 → 0

Iκn(ρn)(AB : E)→ 0

}
, (9.69)

where ρmix,L = 1
L

∑L
i=1 |eA

i 〉〈eA
i |. For this analysis, we define the quantity

CA→(ρ):



9.5 Quantum-Channel Communications with an Eavesdropper 303

CA→B−E
d (ρ)

def= max
M

(H(ρB)−
∑

i

PM
ρA(i)H(ρB

i )−H(ρE) +
∑

i

PM
ρA(i)H(ρE

i )). (9.70)

From this definition, the quantity CA→B−E
d (ρ) satisfies the monotonicity con-

cerning the one-way A → B operation. Further, we can show Condition E2
(continuity) similarly to CA→B

d (ρ).
Using Theorem 9.8 and a discussion similar to that concerning Theo-

rem 8.10, we obtain the following theorem.

Theorem 9.9 (Devetak and Winter [97])

CA→B−E
k (ρ) = lim

CA→B−E
d (ρ⊗n)

n
. (9.71)

Further, if there exists a TP-CP map κ from HB to HE such that

TrAB ρ(M ⊗ IBE) = κ(TrAE ρ(M ⊗ IBE)), ∀M ≥ 0, (9.72)

we have

CA→B−E
k (ρ) = CA→B−E

d (ρ). (9.73)

In particular, when ρ has the form ρAB ⊗ ρE ,

CA→B−E
k (ρ) = CA→B

d (ρAB). (9.74)

Proof. First, we prove the direct part:

CA→B−E
k (ρ) ≥ lim

CA→B−E
d (ρ⊗n)

n
. (9.75)

For this purpose, we consider the following operation. Let M be a POVM on
HA attaining its maximum on (9.70), and {1, . . . , l} be its data set. First, we
define the channel WB , WE as the sender prepares the classical information
j ∈ {1, . . . , l} and perform the measurement M on HA. Hence, the sender
obtains the datum i as its outcome. He sends the classical information k =
i + j mod l. Then, systems B and E receive this information k. Since the
channel WB , WE is described as

WB
j =

∑
i

PM
ρA(i)ρB

i ⊗ |ei+j〉〈ei+j |, WE
j =

∑
i

PM
ρA(i)ρE

i ⊗ |ei+j〉〈ei+j |,

we obtain

I(pmix, W
B) = I(PM

ρA , ρB
· ) + H(pmix)−H(PM

ρA),

I(pmix, W
E) = I(PM

ρA , ρE
· ) + H(pmix)−H(PM

ρA).
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Hence, Theorem 9.8 yields

CA→B−E
k (ρ) ≥ CA→B−E

d (ρ).

Thus, we obtain (9.75).
Next, we prove the converse part:

CA→B−E
k (ρ) ≤ lim

CA→B−E
d (ρ⊗n)

n
. (9.76)

As was mentioned above, the quantity CA→B−E
d (ρ) satisfies the monotonic-

ity and the continuity. Hence, from a discussion similar to that concerning
Theorem 8.10, we can show inequality (9.76). Further, we can prove (9.73)
based on a similar derivation as for (9.62).

9.5.5 Proof of Direct Part
of C-Q Wiretap Channel Coding Theorem

In order to show that it is possible to attain the RHS of (9.61), let us first
examine the following lemma.

Lemma 9.3 Let v be the number of eigenvalues of Wp. Define

ε1
def=4

∑
x

p(x)
[
Tr WB

x {WB
x − 2MLWB

p < 0}

+ 2ML Tr WB
p {WB

x − 2MLWB
p ≥ 0}

]
,

ε2
def=2

√∑
x

p(x) Tr WE
x {κW E

p
(WE

x )− CWE
p ≥ 0}+

√
Cv

L
,

for integers M , L, and C > 0. There exists a protocol Φ = (M, Q, Y ) such
that

ε[Φ] + IE(Φ) ≤ ε1 + ε2 log d + η0(ε2), |Φ| = M. (9.77)

Proof. Consider the map ϕ(m, l) from (m, l) ∈ {1, . . . , M} × {1, . . . , L} to
X . Define Qm such that (WQ)m =

∑L
l=1

1
LWϕ(m,l), where Φ = (M, Q, Y ).

Now, apply the random coding method. That is, for each pair (m, l), let
ϕ(m, l) be given by the independent and identical random variables xm,l

subject to the probability distribution p. Using the random variable X =
(xm,l), we denote ϕ = (ϕ(m, l)) by ϕX . Hence, this protocol is determined
by X and is denoted by ΦX = (M, QX , YX). Denoting the expectation value
by EX , we assume that

EX [ε[ΦX ]] ≤ε1, (9.78)

EX

[
M∑

m=1

1
M

D((WEQX)m‖WE
p )

]
≤ε2 log d + η0(ε2) (9.79)
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and prove the theorem. Using the above two formulas, we find that

EX [IE(ΦX)]=EX

[
H

(
M∑

m′=1

1
M

(WEQX)m′

)
−

M∑
m=1

1
M

H((WEQX)m)

]

=EX

[
M∑

m=1

1
M

D((WEQX)m‖WE
p )

]
−EX

[
D

(
M∑

m=1

1
M

(WEQX)m

∥∥∥∥∥WE
p

)]

≤ ε2 log d + η0(ε2)

and therefore

EX [ε[ΦX ] + IE(ΦX)] ≤ ε1 + ε2 log d + η0(ε2).

This proves the existence of a protocol Φ satisfying (9.77).
Next, we prove (9.79). Applying Exercise 5.37 to (9.54), we immediately

obtain

EX [
1
M

D((WEQX)m‖WE
p )] ≤ ε2 log d + η0(ε2),

which verifies (9.79). From (4.36) the RHS of (9.78) gives an upper bound of
the mean value of the average error probability in the random coding when
ML messages {Wϕ(m,l)}(m,l) are transmitted. In this case, since only M mes-
sages {

∑L
l=1 Wϕ(m,l)}m are transmitted and decoded, the error probability

can be reduced further. This consideration yields (9.78).

We now prove the direct part by applying Lemma 9.3 to WB,(n), WE,(n),
and pn. First, we define R

def= I(p, WB) − I(p, WE) and R1
def= I(p, WE).

Let M = Mn
def= en(R−3δ), C = Cn

def= en(R1+δ), and L = Ln
def= en(R1+2δ)

for arbitrary δ > 0. In this case, we denote the ε1, ε2, d by ε
(n)
1 , ε

(n)
2 , dn,

respectively.
We show that the RHS of (9.77) converges to zero under the above

conditions. Since MnLn = enI(p,W B−δ), the discussion in Sect. 3.6 guar-
antees that ε

(n)
1 converges to zero. Using an argument similar to that in

Sect. 9.4, we observe that ε
(n)
2 approaches zero exponentially. Since dn is

the dimension, the equations log dn = log dimH⊗n = n log dimH hold.
Hence, the quantity ε

(n)
2 log dimH⊗n + η0(ε

(n)
2 ) converges to zero. We can

therefore show that CB,E
c (W ) ≥ I(p, WB) − I(p, WE). Finally, replac-

ing WB and WE with WB,(n)Q and WE,(n)Q, respectively, we can show
that CB,E

c (W ) ≥ 1
n

(
I(p, WB,(n)Q)− I(p, WE,(n)Q)

)
. Therefore, the RHS of

(9.61) ≥ the LHS of (9.61).

9.5.6 Proof of Converse Part
of C-Q Wiretap Channel Coding Theorem

We prove the converse part of the theorem following Devetak [95]. Consider
the sequence of protocols Φ(n) = (Mn, Qn, Yn). Let Xn be the random vari-
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ables taking values in {1, . . . , Mn} subject to the uniform distributions pn
mix.

Let Zn be the random variable corresponding to the message decoded by the
receiver.

Then, the equations log Mn = H(Xn) = I(Xn : Zn) + H(Xn : Zn) hold.
The Fano inequality yields H(Xn : Zn) ≤ ε[Φ(n)] log Mn + log 2. We can
evaluate I(Xn : Zn) to be

I(Xn : Zn) = I(Yn, pn
mix, (W

B,(n)Qn)) ≤ I(pn
mix, (W

B,(n)Qn))

=I(pn
mix, (W

B,(n)Qn))− I(pn
mix, (W

E,(n)Qn)) + IE(Φ(n))

≤ sup
Q

sup
p

I(p, (WB,(n)Q))− I(p, (WE,(n)Q)) + IE(Φ(n)).

Therefore,

1
n

log Mn ≤
1
n

sup
Q

sup
p

I(p, (WB,(n)Q))− I(p, (WE,(n)Q)) +
1
n

IE(Φ(n))

+ ε[Φ(n)]
1
n

log Mn +
1
n

log 2.

Since IE(Φ(n))→ 0 and ε[Φ(n)]→ 0, the ≤ part of (9.61) can be shown.

Proof of (9.62). In what follows, we prove (9.62). If we can write WE
x =

κ(WB
x ) using a completely positive map κ, then I(Qm, WB,(n)) ≥

I(Qm, WE,(n)). Defining (Qp)x
def=

∑
m p(m)Qm

x , we have

I(p, (WB,(n)Q))− I(p, (WE,(n)Q))

= H(
∑

x

(Qp)xWB,(n)
x )−

∑
m

p(m)H((WB,(n)Q)m)

−H(
∑

x

(Qp)xWE,(n)
x ) +

∑
m

p(m)H((WE,(n)Q)m)

= H(
∑

x

(Qp)xWB,(n)
x )−

∑
m

p(m)Qm
x H(WB,(n)

x )

−
∑
m

p(m)I(Qm, WB,(n))−H(
∑

x

(Qp)xWE,(n)
x )

+
∑
m

p(m)Qm
x H(WE,(n)

x ) +
∑
m

p(m)I(Qm, WE,(n))

≤ I(Qp, WB,(n))− I(Qp, WE,(n)). (9.80)

Using Exercise 9.13, we can obtain 1
n supp I(p, WB,(n)) − I(p, WE,(n)) ≤

supp I(p, WB)− I(p, WE), from which we obtain (9.62).
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Exercises

9.12. Show (9.68) using Exercise 8.29.

9.13. Consider two c-q channels WB and WB ′ defined in X and X ′, two TP-
CP maps κ and κ′, and two quantum-classical channels WE

x = κ(WB
x ) and

WE
x

′ = κ′(WB
x′

′). Consider an arbitrary probability distribution q in X ×X ′,
and let p and p′ be marginal distributions in X and X ′, respectively. Show
that

I(q, WB ⊗WB ′
)− I(q, WE ⊗WE ′

)

≤I(p, WB)− I(p, WE) + I(p′, WB ′
)− I(p′, WE ′

).

9.14. Prove (9.65) referring to the discussions in Sects. 9.5.5 and 9.5.6.

9.15. Deform the condition IE(Φ(n))→ 0 to another condition IE(Φ(n))
n → 0

in the definitions of CB,E
c (W ) and Ce,B,E

c (κ). Show that the capacity is the
same as the original one.
9.16. Prove (9.66) and (9.67) by expressing the environment of the composite
map κ′ ◦ κ in terms of the environment systems of the maps κ′ and κ.
9.17. Show that the capacity is equal to the original one even though the
condition IE(Φ(n)) → 0 in the definition is replaced by another condition
εE,a[Φ(n)] def=

∑
i

∑
j �=i

d1((W EQ)i,(W EQ)j)
M(M−1) → 0. Here, use the Fannes inequal-

ity (5.64).
9.18. Show that the capacity is equal to the original one even though the
above condition is replaced with another condition εE,w[Φ] def=
supi supj d1((WEQ)i, (WEQ)j), which converges to 0.

(From a comparision of the sizes of εE,w[Φ] and εE,a[Φ], it is sufficient to
prove the direct part of Exercise 9.18 and the converse part of Exercise 9.17.)
9.19. Show that I(Qp, WB)−I(Qp, WE)−

∑
i pi(I(Qi, WB)−I(Qi, WE)) =

I(p, (WBQ)) − I(p, (WEQ)) for a quantum degraded channel κ. Also show
(9.63).

9.6 Channel Capacity for Quantum-State Transmission

Let us consider the problem of finding how a large quantum system can be
transmitted with negligible error via a given noisy quantum channel κ us-
ing encoding and decoding quantum operations. This problem is important
for preventing noise from affecting a quantum state for a reliable quantum
computation. Hence, this problem is a crucial one for realizing quantum com-
puters and is called quantum error correction.

It is a standard approach in this problem to algebraically construct partic-
ular codes [66,67,150,155,256,371,378]. However, the achievability of the opti-
mal rate is shown only by employing the random coding method [95,273,373].
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Although this method is not directly applicable in a practical sense, it is still
nevertheless an important theoretical result. In the discussion below, we will
not discuss the former algebraic approach and concentrate only on the theo-
retical bounds.

Let us now formally state the problem of transmitting quantum sys-
tems accurately via a quantum channel κ from an input quantum system
HA to an output quantum system HB . When the quantum system H is to
be sent, the encoding and decoding operations are given as TP-CP maps
τ and ν from H to HA and from HB to H, respetively. By combining
these operations, it is possible to protect the quantum state from noise dur-
ing transmission. We may therefore express our protocol by Φ = (H, τ, ν).
The quality of our protocol may be measured by the size |Φ| def= dimH
of the system to be sent. The accuracy of transmission is measured by
ε1[Φ] def= maxu∈H1

[
1− F 2(u, ν ◦ κ ◦ τ(u))

]
(H1 def= {u ∈ H|‖u‖ = 1}). We

often focus on ε2[Φ] def=
[
1− F 2

e (ρmix, ν ◦ κ ◦ τ)
]

as another criterion of ac-
curacy. Let us now examine how a large communication rate 1

n log |Φ(n)| of
our code Φ(n) is possible for a given channel κ⊗n under the condition that
ε1[Φ(n)] or ε2[Φ(n)] approaches zero asymptotically. Then, two kinds of chan-
nel capacities Cq,1 and Cq,2

7 are defined as

Cq,i(κ) def= sup
{Φ(n)}

{
lim

1
n

log |Φ(n)|
∣∣∣∣ lim εi[Φ(n)] = 0

}
, i = 1, 2. (9.81)

Theorem 9.10 Two channel capacities Cq,1 and Cq,2 are calculated as

Cq,1(κ) = Cq,2(κ) = lim
1
n

max
ρ∈S(H⊗n

A )
Ic(ρ, κ⊗n). (9.82)

We now give a proof of the above theorem. Our strategy will be to re-
late this theorem to the problem of transmitting classical information in the

Fig. 9.2. A quantum channel with an eavesdropper and a quantum channel with
noise

7 The subscript q indicates that “quantum” states are to be sent.
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presence of an eavesdropper, as examined in Sect. 9.5. In this approach, as
shown in the proof of the theorem, protecting a quantum state from noise
is equivalent in a sense to sending classical information without wiretapping
when regarding the noise as the wiretapper. To this end, consider (HC , ρ0 =
|u0〉〈u0|, Uκ) of κ, a channel WB

u
def= κ(|u〉〈u|) to the intended receiver using

this κ, and a c-q wiretap channel given by WE
u

def= κE(|u〉〈u|), where κE is
the channel to the environment (eavesdropper) defined in (5.5). Then, the
following lemma holds; its proof will be given in Appendix B.7.

Lemma 9.4 Diagonalize ρ according to ρ =
∑

x px|ũx〉〈ũx|. Let M and L
be arbitrary integers. Let v be the number of eigenvalues of WE

p . There exists
an isometric map V from C

M to HA and a TP-CP map ν from HB to C
M

such that

1− Fe(ρmix, ν ◦ κ ◦ κV )

≤
∑

x

p(x)
(
24 TrWB

x {WB
x − 2MLWB

p < 0}

+ 12ML Tr WB
p {WB

x − 2MLWB
p ≥ 0}

)
+ 2

√∑
x

p(x) Tr WE
x {κW E

p
(WE

x )− CWE
p ≥ 0}+

√
Cv

L
. (9.83)

We are now ready to prove the direct part of the theorem, i.e., Cq,2(κ) ≥
(RHS of (9.82)). Using Lemma 9.4 and arguments similar to those in the
proof of of the direct part of Theorem 9.8, we obtain Cq,2(κ) ≥ I(p, WB) −
I(p, WE). Since I(p, WB)−I(p, WE) = Ic(ρ, κ) from (9.80), we may apply the
same argument to κ⊗n to obtain Cq,2(κ) ≥ (RHS of (9.82)), which completes
the proof. The proof of Cq,2(κ) = Cq,1(κ) is left as Exercises 9.20 and 9.21.

Next, we give a proof of the converse part by a method similar to that in
Theorem 8.10, i.e., we show that

Cq,2(κ) ≤ lim
1
n

max
ρ

Ic(ρ, κ⊗n). (9.84)

In this method, for any class of local operations C, we focus on the function
C(κ) of a channel κ from HA to HB that satisfies the following conditions.

C1 (Normalization) C(ιd) = log d for an identical map ιd with a size d.
C2 (Monotonicity) C(κ′ ◦ κ ◦ κU ) ≤ C(κ) holds for any TP-CP map κ′ and

any isometry U .
C3 (Continuity) When any two channels κ1,n and κ2,n from a system Hn

to another system H′
n satisfy maxx 1 − F 2((κ1,n ⊗ ιR)(|x〉〈x|), (κ2,n ⊗

ιR)(|x〉〈x|)) → 0, |C(κ1,n)−C(κ2,n)|
log(dim Hn

˙dimH′
n)
→ 0, where the system HR is the

reference system of Hn.
C4 (Convergence) The quantity C(κ⊗n)

n converges as n→∞.

Based on only the above conditions, we can prove the following theorem.
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Lemma 9.5

Cq,2(κ) ≤ C∞(κ)
(

def= lim
C(κ⊗n)

n

)
. (9.85)

Since maxρ Ic(ρ, κ) satisfies Conditions C1, C2 (8.37), C3 (Exercise 9.22),
and C4 (Lemma A.1), we obtain (9.84).

Proof. According to Condition ➃ in Sect. 8.2, we can choose an encoding
τn and a decoding νn with dn-dimensional space Kn such that

1− F 2
e (ρmix, νn ◦ κ⊗n ◦ τn)→ 0

and lim log dn

n = Cq,2(κ). Condition ➀ in Sect. 8.2 guarantees that there exists
isometry Un such that F 2

e (ρmix, νn◦κ⊗n◦τn) ≤ Fe(ρmix, νn◦κ⊗n◦κUn
). From

Condition ➂ in Sect. 8.2 there exists a subspace K′
n ⊂ Kn with the dimension

dn

2 such that

max
x∈K′

n

1− F 2(x, νn ◦ κ⊗n ◦ κUn
(x)) ≤ 1− F 2

e (ρmix, νn ◦ κ⊗n ◦ κUn)
2

.

Therefore, from Condition ➃ in Sect. 8.2 we have

2
3

max
ρ∈S(K′

n)

(
1− F 2(ρ, νn ◦ κ⊗n ◦ κUn)

)
→ 0.

Letting κ2,n be a noiseless channel, we have maxx 1− F 2((νn ◦ κ⊗n ◦ κUn ⊗
ιR)(|x〉〈x|), (κ2,n ⊗ ιR)(|x〉〈x|))→ 0. Thus, Condition C3 implies

|C(νn ◦ κ⊗n ◦ κUn)− C(ιdn)|
n

→ 0.

From Condition C1 we have∣∣∣∣C(νn ◦ κ⊗n ◦ κUn)
n

− Cq,2(κ)
∣∣∣∣

≤
|C(νn ◦ κ⊗n ◦ κUn)− C(ι dn

2
)|

n
+
∣∣∣∣ log dn − log 2

n
− C(κ)

∣∣∣∣→ 0.

Hence, Condition C2 guarantees that

lim
C(κ⊗n)

n
≥ lim

C(νn ◦ κ⊗n ◦ κUn
)

n
= Cq,2(κ). (9.86)

We obtain the desired inequality.

Moreover, using Exercise 9.13, we can simplify the RHS of (9.82) in the
following special case.
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Lemma 9.6 When there exists another channel κ′ from the output system
HB of channel κ to its environment system HE such that

κ′(κ(ρ)) = κE(ρ) for ∀ρ ∈ S(HA), (9.87)

then

max
ρ∈S(HA)

Ic(ρ, κ) = lim
1
n

max
ρ∈S(H⊗n

A )
Ic(ρ, κ⊗n). (9.88)

Further, when (9.87) holds, (9.63) implies the concavity∑
i

piIc(ρi, κ) ≤ Ic(
∑

i

piρi, κ). (9.89)

For example, the following case satisfies the above condition. Suppose that
there exist a basis {u1, . . . , ud} of the input system HA of channel κ and the
POVM M = {Mi}di=1 on the output system HB such that

Tr κ(|ui〉〈ui|)Mj = δi,j . (9.90)

As checked as follows, this channel satisfies the condition (9.87). For example,
the phase-damping channel κPD

D satisfies condition (9.90).
Now, consider the Nǎımark–Ozawa extension (H0, ρ0, U) with the ancilla

HD given in Theorem 7.1. Note that we measure the system H0 with the
measurement basis {v1, . . . , vd}. We also use the Stinespring representation
(HC , ρ′

0, Uκ) of κ. Since for any input pure state ρ, the state (U⊗IE)((Uκ(ρ⊗
ρ′
0)U

∗
κ)⊗ ρ0)(U ⊗ IE)∗ is pure, there exists a basis {v′

1, . . . , v′
d} on the space

HD ⊗ HE , where HE = HA ⊗ HC . This is ensured by (9.90). Hence, the
unitary U ′ def=

∑d
i=1 |v′

i〉〈vi| satisfies

TrH0(U ⊗ IE)((Uκ(ρ⊗ ρ′
0)U

∗
κ)⊗ ρ0)(U ⊗ IE)∗

= U ′ TrD,E(U ⊗ IE)((Uκ(ρ⊗ ρ′
0)U

∗
κ)⊗ ρ0)(U ⊗ IE)∗U ′∗.

Therefore,

κE(ρ) = TrD TrH0(U ⊗ IE)((Uκ(ρ⊗ ρ′
0)U

∗
κ)⊗ ρ0)(U ⊗ IE)∗

= TrD U ′ TrD,E(U ⊗ IE)((Uκ(ρ⊗ ρ′
0)U

∗
κ)⊗ ρ0)(U ⊗ IE)∗U ′∗,

which implies condition (9.87).

Proof of (8.106). Finally, we prove the Hashing inequality (8.106) based
on a remarkable relation between the transmission of the quantum state and
the distillation of a partially entangled state. Given a channel κ, we can de-
fine the partially entangled state κ ⊗ ιA′(|uA,A′

0,0 〉〈u
A,A′
0,0 |), where HA′ is the

reference system of the input system HA and uA,A′
0,0 is a maximally entangled

state between HA and HA′ . Conversely, given a partially entangled state ρ
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on the composite system HA ⊗HB , we can define channel κρ with the same
dimensional input system HA′ as the system HA (with the dimension d) via
quantum teleportation as follows [40]. Perform the generalized Bell measure-
ment {|uA,A′

i,j 〉〈u
A,A′
i,j |} on the composite system HA ⊗HA′ and transmit the

data (i, j), where uA,A′
i,j

def= (IA′ ⊗Xi
AZj

A)uA,A′
0,0 . In this channel, the output

system is given by HB ⊗ C
d2

. Hence, considering the quantum state trans-
mission via channel κρ, we obtain Cq,2(κρ) ≤ E→

d,2(ρ). Further, noting the
teleportation form A to A′′, we have

κρ ⊗ ιA′′(|uA′′,A′
0,0 〉〈uA′′,A′

0,0 |)

=
⊕
i,j

(Xi
A′′Zj

A′′ ⊗ IB)ρ(Xi
A′′Zj

A′′ ⊗ IB)∗,

which implies Ic(ρmix, κρ) = −Hρ(A|B). Thus, we obtain (8.106).

Exercises

9.20. Show that Cq,2(κ) ≤ Cq,1(κ) using (8.23).

9.21. Show that Cq,1(κ) ≥ Cq,2(κ) using (8.24).

9.22. Show that maxρ Ic(ρ, κ) satisfies Condition C3 similarly to Exercise
8.44. Here, use Fannes inequality (Theorem 5.9) for two states (κ1,n ⊗
ιR)(|x〉〈x|) and (κ2,n ⊗ ιR)(|x〉〈x|).

9.23. Give an alternative proof of Cq,2(κ) ≤ (RHS of (9.82)) following the
steps below [31].

a Let Φ be a code for a channel κ with an inputHA, satisfying |Φ| ≥ dimHA.
Show that a code Φ′ such that |Φ′| = dimHA and ε1[Φ′] ≤ ε1[Φ] exists,
using property ➁ of Sect. 8.2.

b Let Φ = (H, κU , ν) be a code that has an isometric encoding for channel
κ (U is isometric). Let ρmix be a completely mixed state in H. Define
δ

def=
√

2(1− Fe(ρmix, ν ◦ κ ◦ κU )). Show that

max
ρ∈S(HA)

Ic(ρ, κ) ≥ Ic(UρmixU
∗, κ) ≥ Ic(ρmix, ν ◦ κ ◦ κU )

≥ log |Φ| − 2δ (log dA − log δ)

using (8.37), (8.40), and (8.36).
c Given that a sequence of codes Φ(n) = (H⊗n, τ (n), ν(n)) satisfies ε2[Φ(n)]→

0, show that there exists an isometric matrix U (n) such that

lim
1
n

max
ρ∈S(H⊗n

A )
Ic(ρ, κ⊗n) ≥ lim

1
n

log min{|Φ(n)|, dn
A},

using (8.20). This completes the alternate proof for the case (LHS of above)
< log dA.
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d Give an alternate proof for the case lim 1
n maxρ∈S(H⊗n

A ) Ic(ρ, κ⊗n) = log dA

by considering source coding.

9.7 Examples

In this section, we calculate the capacities C̃c(κ), Cc(κ), Ce
c (κ), Ce

c,e(κ), and
Cq,1(κ) in several cases.

9.7.1 Group Covariance Formulas

For this purpose, we derive forlumas for Cc(κ), Ce
c (κ), Ce

c,e(κ), and Cq,1(κ)
with the group covariance. Let κ be a TP-CP map from system HA to HB .
Assume that there exists an irreducible (projective) representation UA of
a group G on the space HA satisfying the following. There exist unitary
matrices (not necessarily a representation) {UB(g)}g∈G on HB such that

κ(UA(g)ρUA(g)∗) = UB(g)κ(ρ)UB(g)∗ (9.91)

for any density ρ and element g ∈ G. In what follows, we derive useful
formulas in the above assumption. Then,

I(p, κ) = I(pUA(g), κ),

where pU (ρ) def= p(UρU∗). Hence,

I(p, κ) =
∫

G

I(pUA(g), κ)ν(dg) ≤ I
(∫

G

pUA(g)ν(dg), κ
)

=H(κ(ρmix))−
∫

G

∑
x

pxH(κ(UA(g)∗ρxUA(g)))ν(dg)

≤H(κ(ρmix))−min
ρ

H(κ(ρ)).

This upper bound is attained by the distribution (ν(g.), UA(g)∗ρminUA(g)).
Thus,

Cc(κ) = H(κ(ρmix))−min
ρ

H(κ(ρ)). (9.92)

Next, we define the representation U
(n)
A of the group Gn def= G×G× · · · ×G︸ ︷︷ ︸

n

on the n-fold tensor product system H⊗n
A as

U
(n)
A (g1, . . . , gn) def= UA(g1)⊗ · · · ⊗ UA(gn).
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Then, the set of unitary matrices

U
(n)
B (g1, . . . , gn) def= UB(g1)⊗ · · · ⊗ UB(gn)

satisfies

κ⊗n(U (n)
A (g1, . . . , gn)ρ(U (n)

A (g1, . . . , gn))∗)

= U
(n)
B (g1, . . . , gn)κ⊗n(ρ)(U (n)

B (g1, . . . , gn))∗

for any density ρ on the n-fold tensor product system H⊗n
A . If UA is irre-

ducible, then U
(n)
A is also irreducible. Hence, we have the formula

Cc(κ⊗n) = nH(κ(ρmix))−min
ρ

H(κ⊗n(ρ)).

Thus,

Ce
c (κ) = H(κ(ρmix))− lim

minρ H(κ⊗n(ρ))
n

. (9.93)

Further, relation (9.91) yields that

(κ⊗ ιR)((UA(g)⊗ IR)|u〉〈u|(UA(g)∗ ⊗ IR))
= (UB(g)⊗ IR)(κ⊗ ιR)(|u〉〈u|)(UB(g)∗ ⊗ IR)).

Hence, we have

I(ρ, κ) = I(UA(g)ρUA(g)∗, κ), Ic(ρ, κ) = Ic(UA(g)ρUA(g)∗, κ). (9.94)

Concavity (8.43) of the transmission information guarantees that

I(ρ, κ) =
∫

G

I(UA(g)ρUA(g)∗, κ)ν(dg)

≤ I
(∫

G

UA(g)ρUA(g)∗ν(dg), κ
)

= I(ρmix, κ), (9.95)

which implies

Ce
c,e(κ) = I(ρmix, κ) = log dA + log dB −H(κ⊗ ι(|Φd〉〈Φd|)),

where |Φd〉〈Φd| is the maximally entangled state.
Next, we consider the quantum capacity C1,q(κ) when the wiretap channel

(κ, κE) is a degraded channel. In this case, concavity (9.89) holds. Hence,
using the second relation in (9.94), we have

C1,q(κ) = max
ρ

Ic(ρ, κ) = Ic(ρmix, κ) = log dB −H((κ⊗ ιR)(|Φd〉〈Φd|)).
(9.96)
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9.7.2 d-Dimensional Depolarizing Channel

When κ is the d-dimensional depolarizing channel κd,λ, the natural represen-
tation of SU(d) satifies the above condition. Hence, using (9.92), we have

Cc(κd,λ) = H(ρmix)−H(λ|u〉〈u|+ (1− λ)ρmix)

=
λd + (1− λ)

d
log(λd + (1− λ)) +

(1− λ)(d− 1)
d

log(1− λ).

Indeed, we can easily check that this bound is attained by commutative input
states. Thus,

C̃c(κd,λ) =
λd + (1− λ)

d
log(λd + (1− λ)) +

(1− λ)(d− 1)
d

log(1− λ).

Concerning entangled input states, King [254] showed that

min
ρ

H(κ⊗n
d,λ(ρ)) = nH(λ|u〉〈u|+ (1− λ)ρmix). (9.97)

Thus, formula (9.93) yields [254]

Ce
c (κd,λ) = Cc(κd,λ).

Further, from (8.194) and (8.192),

Ce
c,e(κd,λ) = I(ρmix, κd,λ) = 2 log d−H(ρ

I,
1−λ(d2−1)

d2
)

= 2 log d +
1− λ(d2 − 1)

d2 log
1− λ(d2 − 1)

d2 +
(1− λ)(d2 − 1)

d2 log
1− λ

d2 .

9.7.3 Transpose-Depolarizing Channel

In the transpose-depolarizing channel κT
d,λ, the natural representation of

SU(d) satisfies the above condition. However, UB is not a representation.
As with a depolarizing channel, using (9.92), we have

Cc(κT
d,λ) = C̃c(κd,λ)

=
λd + (1− λ)

d
log(λd + (1− λ)) +

(1− λ)(d− 1)
d

log(1− λ).

Further, relation (9.97) yields

min
ρ

H((κT
d,λ)⊗n(ρ)) = min

ρ
H((κd,λ)⊗n(ρT )) = min

ρT
H((κd,λ)⊗n(ρ))

= nH(λ|u〉〈u|+ (1− λ)ρmix)

for λ ≥ 0. Hence,
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Ce
c (κT

d,λ) = Cc(κT
d,λ)

for λ ≥ 0. Matsumoto and Yura [291] proved this relation for λ = − 1
1−d .

Further, from (8.195) and (8.189), its entanglement-assisted capacity is

Ce
c,e(κ

T
d,λ) = I(ρmix, κ

T
d,λ) = 2 log d−H(ρ

W,
(1−(d+1)λ)(d−1)

2d
)

= 2 log d +
(1− (d + 1)λ)(d− 1)

2d
log

1− (d + 1)λ
d2

+
(1 + (d− 1)λ)(d + 1)

2d
log

1 + (d− 1)λ
d2 .

9.7.4 Generalized Pauli Channel

In the generalized Pauli channel κGP
p , the representation of the group (i, j) ∈

Zd×Zd �→ Xi
dZ

j
d satisfies condition (9.91). Its entanglement-assisted capacity

can be calculated as

Ce
c,e(κ

GP
p ) = I(ρmix, κ

GP
p ) = 2 log d−H(p).

When the dimension d is equal to 2, using (5.28), we can check

C̃c(κGP
p ) = Cc(κGP

p ) = log 2−min
i �=j

h(pi + pj).

In this case, as is mentioned in d in Sect. 9.2, King [253] showed that

Cc(κGP
p ) = C̃c(κGP

p ) = Ce
c (κGP

p ).

When the distribution p = (pi,j) satisfies pi,j = 0 for j �= 0 in the d-
dimensional system, we have

Cc(κGP
p ) = C̃c(κGP

p ) = Ce
c (κGP

p ) = log d.

In this case, the channel κGP
p is a phase-damping channel. As is proved in

Sect. 9.7.7, it satisfies condition (9.87). Hence, (9.96) yields

Cq,1(κGP
p ) = Ic(ρmix, κ

GP
p ) = log d−H(p).

9.7.5 PNS Channel

The PNS channel satisfies condition (9.91). Hence, using (9.92), we have

Cc(κ
pns
d,n→m) = H(κpns

d,n→m(ρmix))−min
ρ

H(κpns
d,n→m(ρ)) = log

(
m + d− 1

d− 1

)
.

Since Ce
c (κpns

d,n→m) is less than the dimension of the input system, Ce
c (κpns

d,n→m)
= Cc(κ

pns
d,n→m). Its entanglement-assisted capacity is calculated as
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Ce
c,e(κ

pns
d,n→m) = I(ρmix, κ

pns
d,n→m)

= log
(

m + d− 1
d− 1

)
+ log

(
n + d− 1

d− 1

)
− log

(
(n−m) + d− 1

d− 1

)
.

From Exercise 5.14, the wiretap channel (κpns
d,n→m, (κpns

d,n→m)E) is a de-
graded channel. Hence, from (9.96), its quantum capacity is calculated as

Cq,1(κ
pns
d,n→m) = Ic(ρmix, κ

pns
d,n→m)

= − log
(

(n−m) + d− 1
d− 1

)
+ log

(
m + d− 1

d− 1

)
. (9.98)

9.7.6 Erasure Channel

The erasure channel also satisfies condition (9.91). Hence, using (9.92), we
have

Cc(κera
d,p) = Ic(ρmix, κ

era
d,p) = H(κera

d,p(ρmix))−min
ρ

H(κera
d,p(ρ))

= −(1− p) log
1− p

d
− p log p− h(p) = (1− p) log d.

Since it is attained by commutative input states, Cc(κera
d,p) = C̃c(κera

d,p).
Next, we consider the capacity Ce

c (κera
d,p). Because

(κera
d,p)

⊗n(ρ) =
⊕

{i1,... ,ik}⊂{1,... ,n}
(1− p)kpn−k Tri1,... ,ik

ρ⊗ |ud〉〈ud|⊗(n−k),

the minimum entropy minρ H((κera
d,p)

⊗n(ρ)) is calculated as

min
ρ

H((κera
d,p)

⊗n(ρ))

= min
ρ

∑
{i1,... ,ik}⊂{1,... ,n}

(1− p)kpn−k(− log(1− p)kpn−k + H(Tri1,... ,ik
ρ))

= nh(p) + min
ρ

∑
{i1,... ,ik}⊂{1,... ,n}

(1− p)kpn−kH(Tri1,... ,ik
ρ) = nh(p).

Hence, from (9.93),

Ce
c (κera

d,p) = Cc(κera
d,p) = C̃c(κera

d,p) = (1− p) log d.

The entanglement-assisted capacity is calculated as

Ce
c,e(κ

era
d,p) = I(ρmix, κ

era
d,p)

= log d + (1− p) log
d

1− p
− p log p− p log

d

p
+ (1− p) log(1− p) (9.99)

= 2(1− p) log d,

where we used Exercise 5.13 in (9.99).
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From Exercise 5.13, the wiretap channel (κera
d,p, (κ

era
d,p)

E) is a degraded chan-
nel. Hence, from (9.96), its quantum capacity is calculated as [45]

Cq,1(κera
d,p) = Ic(ρmix, κ

era
d,p) = (1− 2p) log d for p ≤ 1/2.

9.7.7 Phase-Damping Channel

Any phase-damping channel κPD
D clearly satisfies

Cc(κPD
D ) = C̃c(κPD

D ) = Ce
c (κPD

D ) = log d.

Indeed, we can show that the wiretap channel (κPD
D , (κPD

D )E) is a degraded
channel as follows. The purification of the output state

∑
k,l dk,l|ek, eR

k 〉〈el, e
R
l |

of the maximally entangled state 1
d

∑
k,l |ek, eR

k 〉〈el, e
R
l | is given as

1
dA

∑
k,k,′,l,l′

yk,k′yl,l′ |ek, eR
k , eE

k′〉〈el, e
R
l , eE

l′ |,

where Y = (yk,k′) satisfies Y ∗Y = D. From the condition Xk,k = 1, the posi-

tive semidefinite matrix ρE
k

def=
∑

k′l′ yk,k′yk,l′ |eE
k′〉〈eE

l′ | satisfies the condition
of states Tr ρE

k = 1. Then, by applying (8.30), the channel (κPD
D )E to the

environment is described as

(κPD
D )E(ρ) = TrR,A(IA,E ⊗ ρT )

∑
k,k,′,l,l′

yk,k′yl,l′ |ek, eR
k , eE

k′〉〈el, e
R
l , eE

l′ |

=
∑

k

ρk,kyk,k′yk,l′ |eE
k′〉〈eE

l′ | =
∑

k

〈ek|κPD
D (ρ)|ek〉yk,k′yk,l′ |eE

k′〉〈eE
l′ |

=
∑

k

〈ek|κPD
D (ρ)|ek〉ρE

k .

Hence, the wiretap channel (κPD
D , (κPD

D )E) is a degraded channel. Further,
the phase-damping channel κPD

D satisfies the invariance

Ic(UθρU∗
θ , κPD

D ) = Ic(ρ, κPD
D ), Uθ

def=
∑

k

eiθk |ek〉〈ek|.

Hence, using concavity (9.89), we have

Cq,1(κPD
D ) = max

ρ
Ic(ρ, κPD

D ) = max
p

Ic(
∑

k

pk|ek〉〈ek|, κPD
D )

= max
p

H(p)−H(
∑

k

pkρE
k ) ≥ log d−H(

1
d
D).
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9.8 Historical Note

Bennett et al. [37] considered the transmission of classical information by using en-
tangled states as input states. After this research, in order to consider the additivity
of the classical channel capacity, Nagaoka [305] proposed quantum analogs of the
Arimoto–Blahut algorithms [13,53], and Nagaoka and Osawa [311] numerically an-
alyzed two-tensor product channels in the qubit case with quantum analogs based
on this algorithms. In this numerical analysis, all the examined channels κ satisfy
C(κ⊗2) = 2C(κ). This numerical analysis strongly suggests Conjecture HM. This
research was published by Osawa and Nagaoka [325]. Independently, King proved
Conditions HM, EM, and RM with κ1 as a unital channel in the qubit system and
κ2 as an arbitrary channel [253]. Following this result, Fujiwara and Hashizume [133]
showed HM and EM with κ1 and κ2 as depolarizing channels. Further, King [254]
proved HM, EM, and RM with only κ1 as a depolarizing channel. Shor [372] also
proved HM with only κ1 as an entanglement-breaking channel.

On the other hand, Vidal et al. [403] pointed out that the entanglement of
formation is log 2 when the support of the state is contained by the antisymmetric
space of C

3. Following this research, Shimono [370] proved FA when the supports
of ρ1 and ρ2 are contained by the antisymmetric space of C

3; Yura [433] proved
that Ef (ρ) = Ec(ρ) for this case. Further, using the idea in Vidal et al. [403],
Matsumoto et al. [290] introduced the MSW correspondence (9.6) or (9.25). Using
this correspondence, they proved FS⇒HM and FS⇒HL.

Following this result, Shor [374] proved HL⇒FA and HM⇒HL. Audenaert
and Braunstein [17] pointed out the importance of the conjugate function in this
problem. Further, Pomeransky [350] proved the equivalence among FA, FC, and
FS by employing the idea by Audenaert and Braunstein [17]. Shor also showed
FA⇒FS independently. He also proved EM⇒FA and (HM or FA) ⇒EM. Fur-
ther, applying this idea, Koashi and Winter [259] obtained relation (8.142). Re-
cently, Matsumoto [287] found short proofs of EM⇒EL and EL⇔ML. In this
textbook, based on his idea, we analyze the structure of equivalence among these
conditions and derive 14 conditions (Theorem 9.3). Matsumoto [288] also introduced
another measure of entanglement and showed that its additivity is equivalent to the
additivity of entanglement of formation.

Further, Matsumoto and Yura [291] showed Ef (ρ) = Ec(ρ) for antisymmet-
ric states. Applying the concept of channel states to antisymmetric states, they
proved that C(κ⊗n) = C(κ) for antisymmetric channels. Indeed, this channel has
been proposed by Werner and Holevo [413] as a candidate for a counterexample
of Additivity HM or EM because they showed that it does not satisfy Condi-
tion RM for sufficiently large s. Vidal et al. implicitly applied the same concept
to entanglement-breaking channels and proved FA when only ρ1 satisfies condi-
tion (8.117). Following discovery of this equivalence, Datta et al. [90] and Fannes et
al. [112] showed HM and EM when κ1 and κ2 are transpose-depolarizing channels.
Wolf and Eisert [423], Fukuda [138], and Datta and Ruskai [91] extended the above
results to larger classes of channels. Further, Matsumoto [288] obtained further
equivalent conditions.

Concerning the channel coding with shared entanglement, Bennett and Wies-
ner [43] found the effectiveness of shared entanglement. Assuming Theorem 4.1
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in the nonorthogonal two-pure-state case,8 Barenco and Ekert [28] proved the di-
rect part of Theorem 9.4 in the two-dimensional pure-state case. Hausladen et
al. [164] independently proved the unitary coding version of Theorem 9.4 in the two-
dimensional pure-state case. Bose et al. [56] showed the direct part of Theorem 9.4
in the two-dimensional mixed-state case. Hiroshima [237] showed the unitary coding
version of Theorem 9.4 in the general mixed-state case. Bowen [58] independently
showed the same fact in the two-dimensional case. Finally, Horodecki et al. [234]
and Winter [419] independently proved Theorem 9.4 in the form presented in this
book. When the channel has noise, Bennett et al. [41] showed the direct part of
Theorem 9.5 in the general case and its converse part in the generalized Pauli case.
In this converse part, they introduced the reverse Shannon theorem. Following this
result, Bennett et al. [42] and Holevo [220] completed the proof of Theorem 9.5. In
this book, we proved this theorem in a way similar to Holevo [220].

Many researchers have treated the capacity of quantum-state transmission via
a noisy quantum channel by algebraic methods first [66, 67, 150, 155, 256, 371, 378].
This approach is called quantum error correction. Using these results, Bennett et
al. [40] discussed the relation between quantum error correction and entanglement
of distillation. Following these studies, Schumacher [361] introduced many infor-
mation quantities for noisy channels (Sect. 8.2). Barnum et al. [32] showed that
a capacity with the error ε2[Φ(n)] is less than lim 1

n
max

ρ∈S(H⊗n
A

) Ic(ρ, κ⊗n) if the
encoding is restricted to being isometry. Barnum et al. [31] proved the coincidence
with two capacities C1(κ) and C2(κ). They also showed that these capacities are
less than lim 1

n
max

ρ∈S(H⊗n
A

) Ic(ρ, κ⊗n). On the other hand, Lloyd [273] predicted
that the bound Ic(ρ, κ) could be achieved without a detailed proof, and Shor [373]
showed its achievability. Then, the capacity theorem for quantum-state transmis-
sion (Theorem 9.10) was obtained. Further, Devetak [95] formulated a capacity
theorem for quantum wiretap channels (Theorem 9.8). Applying this discussion, he
gave an alternative proof of Theorem 9.10. Here, the bit error of state transmission
corresponds to the error of normal receiver in wiretap channels, and the phase error
of state transmission corresponds to information obtained by the eavesdropper in
a wiretap channel. Indeed, the analysis of information obtained by the eavesdrop-
per is closely related to the channel resolvability. Hence, in this book, we analyze
quantum-channel resolvability first. Then we proceed to quantum wiretap channels
and quantum-state transmission. Indeed, Devetak [95] also essentially showed the
direct part of quantum-channel resolvability (Theorem 9.7) in the tensor product
case; however, our proof of it is slightly different from the proof by Devetak. Further,
Devetak and Shor [96] studied the asymptotic tradeoff between the transmission
rates of transmissions of quantum-state and classical information.

When a channel is degraded, the wiretap capacity can be single-letterized as
(9.62). This formula was obtained independently in the original Japanese version
of this book and by Devetak and Shor [96]. By applying this relation to quantum
capacity, the single-letterized capacity is derived independently in several examples
in this English version and Yard [427].

8 In their paper, it is mentioned that Levitin [265] showed the direct part of The-
orem 4.1 in this special case.
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Source Coding in Quantum Systems

Summary. Recently, compression software used in computers to compress data
has become an indispensable computational tool. Why is this compression possible
in the first place? Information commonly possesses redundancies. In other words,
information possesses some regularity. If one randomly types letters of the alphabet,
it is highly unlikely that these will form a meaningful sentence or program. Imagine
that we are assigned a task of communicating a sequence of 1000 binary digits
via telephone. Assume that the 2nth and (2n + 1)th digits of this sequence are
the same. Naturally, we would not read out all 1000 digits of the sequence; we
would first say that the 2nth and (2n+1)th digits are the same, and then read out
the even-numbered (or odd-numbered) digits. We may even check whether there is
any further structure in the sequence. In this way, compression software works by
changing the input sequence of letters (or numbers) into another sequence of letters
that can reproduce the original sequence, thereby reducing the necessary storage.
The compression process may therefore be regarded as an encoding. This procedure
is called source coding in order to distinguish it from the channel coding examined
in Chap. 4.

Applying this idea to the quantum scenario, the presence of any redundant
information in a quantum system may be similarly compressed to a smaller quantum
memory for storage or communication. However, in contrast to the classical case,
we may identify at least two distinct cases.

The task of the first case is saving memory in a quantum computer. This will
be relevant when quantum computers are used in practice. In this case, a given
quantum state is converted into a state on a system of lower size (dimension).
The original state must then be recoverable from the compressed state. Note that
the state to be compressed is unknown. The task of the second case is to save the
quantum system to be sent for quantum cryptography. In this case, the sender knows
what state to send. This provides the encoder with more options for compression. In
the decompression stage, there is no difference between the first and second cases,
since they are conversions from one quantum system to another. In this chapter,
the two types of compression outlined above are discussed in detail.
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Table 10.1. Denotations used in Chap. 10

Minimum compression rates
RB,q(W, p) Minimum compression rate in the blind and ensemble setting (10.2)
RV,q(W, p) Minimum compression rate in visble and ensemble setting (10.3)

RP,q(ρ) Minimum compression rate in purification setting (10.13)
R†

B,q(W, p) Strong converse compression rate in blind and
ensemble setting (10.4)

R†
V,q(W, p) Strong converse compression rate in visible and

ensemble setting (10.5)
R†

P,q(ρ) Strong converse compression rate in purification setting (10.14)
RV,c(W, p) Minimum visible compression rate with classical memory (10.42)

RV,q,r(W, p) Minimum visible compression rate with quantum memory and
shared randomness (10.44)

RV,c,r(W, p) Minimum visible compression rate with classical memory and
shared randomness (10.45)

Codes
Ψ Blind code
Ψ Visible code
Ψc Visible code by classical memory
Ψr Visible code with common randomness
Ψc,r Visible code with common randomness by classical memory

Chanel capacities
Cc,r(W ) Channel capacity for sending classical information with

shared randomness (10.55)
CR

c,r(W ) Reverse channel capacity for sending classical information
with shared randomness (10.54)

Cc,e(W ) Channel capacity for sending classical information with
shared entanglement

CR
c,e(W ) Reverse channel capacity for sending classical information

with shared entanglement
Ce

c,e(κ) Channel capacity for sending classical information with
shared entanglement and entangled input

Ce,R
c,e (κ) Reverse channel capacity for sending classical information

with shared entanglement and entangled input
Ce

q,e(κ) Channel capacity for sending quantum states with
shared entanglement and entangled input

Ce,R
q,e (κ) Reverse channel capacity for sending quantum states

with shared entanglement and entangled input

10.1 Four Kinds of Source Coding Schemes
in Quantum Systems

As discussed above, source coding can be formulated in two ways. In the
encoding process of the first scheme, we perform a state evolution from an
original quantum system to a system of lower dimension. In that of the second,
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the encoder prepares a state in a system of lower dimension depending on the
input signal. In the first case, the state is unknown since only the quantum
system is given. Hence, the first scheme is called blind. In the second case,
the state is known, and this scheme is called visible. The quality of the com-
pression is evaluated by its compression rate. Of course, a lower dimension
of the compressed quantum system produces a better encoding in terms of
its compression rate. We may choose the compression rate to be either fixed
or dependent on the input state. Coding with a fixed compression rate is
called fixed-length coding, while that with a compression rate that depends
on the input state is called variable-length coding. Therefore, there exist four
schemes for the problem, i.e., fixed-/variable-length and visible/blind coding.

Let us summarize the known results on fixed- and variable-length com-
pression in classical systems. In fixed-length compression, it is not possible to
completely recover all input signals. Decoders can erroneously recover some
input signals. However, by assuming that the state on the input system fol-
lows some probability distribution, a code can be obtained such that the
probability of erroneously encoding a state is sufficiently close to zero for a
compression rate below a thereshold [160, 366]. This thereshold is called the
minimum admissible rate. In order to treat this problem precisely, we often
assume that input data generate subject to the n-fold independent and iden-
tical distribution of a given probability distribution with sufficiently large n.

In variable-length compression, it is always possible to construct a code
recovering all input signals perfectly. This is an advantage of variable-length
encoding over fixed-length encoding. In this case, since there is no occurrence
of errorly decoding, we measure the quality of the variable-length encoding
by the coding length. The worst-case scenario in this type of coding occurs
when the coding length is greater than the input information. However, if we
assume some probability with respect to the input, the average coding length
will be shorter than the number of bits in the input. For an independent and
identical distribution, it has been shown that the average coding length is
equal to its entropy in the optimal case [160,366].

Let us now turn to quantum systems. As for the classical case, for fixed-
length coding, it is possible to construct a coding protocol with an error of
sufficiently small size for both visible and blind cases, provided the compres-
sion rate is below a certain value [245, 360]. This will be examined in more
detail later. In fact such an encoding has already been realized experimen-
tally [292]. For variable-length coding, in many cases there does not exist a
code with zero error of a smaller coding length than the size of the input
information [258]. However, when we replace the condition “zero error” by
“almost zero error,” it is possible to construct codes with the admissible com-
pression rate. Therefore, if the information source is a quantum state that is
generated by an n-fold independent and identical distribution of a “known”
distribution, variable-length encoding does not offer any advantage.
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On the other hand, if the probability distribution that generates the quan-
tum state is unknown, the situation is entirely different. In fixed-length cod-
ing, since the compression rate is fixed a priori, it is impossible to recover
the input state with a small error when the compression rate is less than the
minimum admissible rate. In this case, it is preferable to use variable-length
encoding wherein the compression rate depends on the input state [93, 277].
However, as a measurement is necessary to determine the compression rate,
this will demolish the state after the measurement due to the quantum me-
chanical nature of the problem. Consider a method in which the encoding
method and the compression rate are determined by an approximate estima-
tion of an input state. If the initial state is demolished at a nonnegligible
degree, clearly we cannot expect a decoding error that is close to zero. It
is therefore necessary to examine the tradeoff between the degree to which
the state is demolished due to this measurement and the estimation error
of the distribution of the input state, which is required for determining the
encoding method. As will be discussed later, both this estimation error and
the degree of state demolition can be made to approach zero simultaneously
and asymptotically. Therefore, even when the probability distribution of the
quantum state is unknown, we can asymptotically construct a variable-length
code such that the minimum admissible rate is achieved with a probability
close to 1 and the decoding error is almost 0 [184,185]. Hence, when a given
coding protocol is effective for all probability distributions, it is called univer-
sality; this is an important topic in information theory. Various other types
of source compression problems have also been studied [97,197].

10.2 Quantum Fixed-Length Source Coding

The source of quantum system H is denoted by

W : X → S(H) (x �→Wx) (10.1)

(which is the same notation as that in a quantum channel) and a probability
distribution p in X . That is, the quantum information source is described
by the ensemble (px, Wx)x∈X . Let K be the compressed quantum system.
For the blind case, the encoder is represented by the TP-CP map τ from
S(H) to S(K). The decoder is represented by a TP-CP map ν from S(K) to
S(H). The triplet Ψ

def= (K, τ, ν) is then called a blind code. In the visible
case, the encoder is not as restricted as in the blind case. In this case, the
encoder is given by a map T from X to S(K). Any blind encoder τ can be
converted into a visible encoder according to τ ◦W . The triplet Ψ def= (K, T, ν)
is then called a visible code. That is, the information is stored by a quantum
memory. The errors εp(Ψ) and εp(Ψ) and sizes |Ψ | and |Ψ| of the codes Ψ
and Ψ, respectively, are defined as follows:
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εp(Ψ) def=
∑
x∈X

px

(
1− F 2(Wx, ν ◦ τ(Wx))

)
, |Ψ | def= dimK

εp(Ψ) def=
∑
x∈X

px

(
1− F 2(Wx, ν ◦ T (x))

)
, |Ψ| def= dimK.

We used 1− F 2(·, ·) in our definition of the decoding error.
Now, let the source be given by the quantum system H⊗n and its can-

didate states be given by W (n) : X (n) → S(H⊗n) (xn = (x1, . . . , xn) �→
W

(n)
xn

def= Wx1 ⊗ · · ·⊗Wxn). Further, let the probability distribution for these
states be given by the nth-order independent and identical distribution of the
probability distribution p in X . Denote the blind and visible codes by Ψ (n)

and Ψ(n), respectively. Define1

RB,q(W,p) def= inf
{Ψ(n)}

{
lim

1
n

log |Ψ (n)|
∣∣∣∣ εpn(Ψ (n))→ 0

}
, (10.2)

RV,q(W,p) def= inf
{Ψ(n)}

{
lim

1
n

log |Ψ(n)|
∣∣∣∣ εpn(Ψ(n))→ 0

}
, (10.3)

R†
B,q(W,p) def= inf

{Ψ(n)}

{
lim

1
n

log |Ψ (n)|
∣∣∣∣ lim εpn(Ψ (n)) < 1

}
, (10.4)

R†
V,q(W,p) def= inf

{Ψ(n)}

{
lim

1
n

log |Ψ(n)|
∣∣∣∣ lim εpn(Ψ(n)) < 1

}
. (10.5)

Since a blind code Ψ (n) can be regarded as a visible code, we have

RB,q(W,p) ≥ RV,q(W,p), R†
B,q(W,p) ≥ R†

V,q(W,p). (10.6)

From the definitions it is also clear that

RB,q(W,p) ≥ R†
B,q(W,p), RV,q(W,p) ≥ R†

V,q(W,p). (10.7)

The following theorem holds with respect to the above.

Theorem 10.1 If all Wxs are pure states, then the quantities defined above
are equal. We have

RB,q(W,p) = R†
B,q(W,p) = RV,q(W,p) = R†

V,q(W,p) = H(Wp). (10.8)

This theorem can be proved by combining the following two lemmas.

Lemma 10.1 (Direct Part) There exists a sequence of blind codes {Ψ (n)}
satisfying

1
n

log |Ψ (n)| ≤ H(Wp)− δ (10.9)

εpn(Ψ (n))→ 0 (10.10)

for arbitrary real number δ > 0.
1 The subscript q indicates the “quantum” memory.
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Lemma 10.2 (Converse Part) If all Wxs are pure states and the sequence
of visible codes {Ψ(n)} satisfies

lim
1
n

log |Ψ(n)| < H(Wp), (10.11)

then

εpn(Ψ(n))→ 1. (10.12)

Lemma 10.1 tells us that RB,q(W,p) ≤ H(Wp), and Lemma 10.2 tells us that
R†

V,q(W,p) ≥ H(Wp). Using (10.6) and (10.7), we thus obtain (10.8).
Further, we have another fixed-length coding scheme. In this scheme, the

state is given as a pure state |x〉〈x| on the composite system HA ⊗HR, and
encoder and decoder can treat only the local system HA. Then, our task is
recovering the state |x〉〈x| on the composite system HA ⊗ HR. Hence, the
code of this scheme is the triplet Ψ

def= (K, τ, ν), which is the same as that of
the blind scheme. The error is given as

ε′
ρ(Ψ) def= 1− 〈x|(ν ⊗ ι) ◦ (τ ⊗ ι)(|x〉〈x|)|x〉 = 1− F 2

e (ρ, ν ◦ τ),

where ρ = TrR |x〉〈x|. Recall the definition of the entanglement fidelity (8.18).
Hence, the quality depends only on the reduced density ρ. This scheme is
called the purification scheme, while the former scheme with the visible case
and the blind case is called the ensemble scheme. Hence, we define the mini-
mum compression rate as

RP,q(ρ) def= inf
{Ψ(n)}

{
lim

1
n

log |Ψ (n)|
∣∣∣∣ ε′

ρ⊗n(Ψ (n))→ 0
}

, (10.13)

R†
P,q(ρ) def= inf

{Ψ(n)}

{
lim

1
n

log |Ψ (n)|
∣∣∣∣ lim ε′

ρ⊗n(Ψ (n)) < 1
}

. (10.14)

From inequality (8.22) we have RP,q(ρ)≤RP,q(W,p) and R†
P,q(ρ)≤R†

P,q(W,p)
when all Wx states are pure and ρ = Wp. The following theorem also holds
(Exercise 10.2).

Theorem 10.2

RP,q(ρ) = R†
P,q(ρ) = H(ρ). (10.15)

Exercises

10.1. Show that
∑

x∈X n pn
xF (W (n)

x , νn(T (x)))→ 1 is equivalent to∑
x∈X n pn

xF (W (n)
x , νn(T (x)))→ 1.
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10.3 Construction of a Quantum Fixed-Length
Source Code

Let us construct a blind fixed-length code that attains the minimum com-
pression rate H(Wp) when the quantum state is generated subject to the in-
dependent and identical distribution of the probability distribution p. (Since
any blind code can be regarded as a visible code, it is sufficient to construct
a blind code.) Since formula (8.22) guarantees that

εp(Ψ) =
∑
x∈X

p(x)(1− F 2(Wx, ν ◦ τ(Wx))) ≤ 1− F 2
e (Wp, ν ◦ τ) = ε′

Wp
(Ψ),

it is sufficient to treat the purification scheme.
Now define ρP

mix
def= P

Tr P . Let the encoder τP : S(H) → S(RanP ), using
the projection P in H, be given by

τP (ρ) def= PρP + Tr[(I − P )ρ]ρP
mix. (10.16)

Define the encoder νP as the natural embedding from S(RanP ) to S(H),
where Ran A is the range of A.

Let x be the purification of ρ. Then,

F 2
e (ρ, νP ◦ τP )
= 〈x|(I ⊗ P )|x〉〈x|(I ⊗ P )|x〉

+ 〈x|ρP
mix ⊗ TrH [(I ⊗ (I − P ))|x〉〈x|(I ⊗ (I − P ))] |x〉

≤ 〈x|(I ⊗ P )|x〉〈x|(I ⊗ P )|x〉 = (TrPρ)2

= (1− (1− Tr Pρ))2 ≤ 1− 2(1− Tr Pρ). (10.17)

We now define b(s, R) def= R−ψ(s)
1−s , ψ(s) = ψ(s|ρ), s0

def= argmax0 <s <1
sR−ψ(s)

1−s

for R > H(ρ) and 0 < s < 1. We choose P such that

Pn
def=

{
W⊗n

p − e−nb(s0,R) > 0
}

. (10.18)

Then, from (2.45) and (2.47), the code Φ(n) = (Kn, τPn , νPn) satisfies

dimKn
def= Ran Pn = Tr

{
ρ⊗n − e−nb(s,R) > 0

}
≤ enR

ε′
ρ⊗n(Φ(n)) ≤ 2 Tr ρ⊗n

{
ρ⊗n − e−nb(s0,R) ≤ 0

}
≤ 2e−n

s0R−ψ(s0)
1−s0 . (10.19)

Thus, (10.9) and (10.10) hold. This proves the existence of a code that at-
tains the compression rate H(ρ) + δ for arbitrary δ > 0. Note that the code
constructed here depends only on the state ρ and the rate R. In order to
emphasize this dependence, we denote this encoding and decoding as τn,ρ,R

and νn,ρ,R, respectively.
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We next show that the code given above still works even when the true
density ρ′ is slightly different from the predicted density ρ. This property is
called robustness and is important for practical applications.

Let us consider the case where the true density ρ′ is close to the predicted
one ρ. Choosing a real number α > 0, we have

ρ′ ≤ ρeα. (10.20)

Hence,

Tr ρ′⊗n ≤ enα Tr ρ⊗n.

Using the same argument as that in the derivation of (10.19), we obtain

ε′
ρ′⊗n(Φ(n)) ≤ 2 Tr ρ′⊗n{ρ⊗n − e−na < 0}

≤2enα Tr ρ⊗n{ρ⊗n − e−na < 0} ≤ 2en(α+ ψ(s0)−s0R
1−s0

). (10.21)

Therefore, if α < max0≤s≤1
sR−ψ(s)

1−s , then ε′
ρ′⊗n(Φ(n))→ 0.

Let us now prove the converse part of the theorem, i.e., Lemma 10.2. For
a proof of Lemma 10.2, we prepare the following lemma, which is proved in
Appendix B.8.

Lemma 10.3 (Hayashi [175]) Any visible code Ψ = (K, T, ν) satisfies

1− ε(Ψ) ≤ a|Ψ|+ Tr Wp{Wp − a ≥ 0} (10.22)

for ∀a > 0.

Proof of Lemma 10.2. The above inequality (10.22) can be regarded as
the “dual” inequality of inequality (10.19) given in the proof of the direct
part of the theorem. Inequality (10.22) shows that the quality of any code is
evaluated by use of Tr Wp{Wp − eλ ≥ 0}. Inequality (10.22) plays the same
role as (2.41) in Sect. 2.1.4, and thus any sequence of codes {Ψ(n)} satisfies

1− ε(Ψ(n)) ≤ 2en
ψ(s)−sR

1−s . (10.23)

Choosing an appropriate s0 < 0, we have ψ(s0)−s0R
1−s0

< 0. Therefore, we
obtain (10.12), which gives us Lemma 10.2.

In order to construct a code with the compression rate H(Wp), we replace
R by H(Wp)− 1

n1/4 in (10.23). Approximating ψ(s) as H(Wp)s + 1
2ψ′′(0)s2,

we obtain

min
s<0

ψ(s)− s(H(Wp)− 1
n1/4 )

1− s
∼= −

C2

ψ′′(0)
√

n
. (10.24)
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Hence,

εpn(Ψ(n)) ≤ 2e
−√

n C2

ψ′′(0) → 0. (10.25)

Finally, let us focus on the property of the state on the compressed system
when the asymptotic compression rate is H(Wp).

Theorem 10.3 (Han [162]) When a sequence of codes {Ψn = (Kn, Tn, νn)}
satisfies

εpn(Ψn)→ 0,
1
n

log |Ψn| → H(Wp), (10.26)

we obtain

1
n

D(
∑

x

pn
xTn(x)‖ρKn

mix)→ 0. (10.27)

That is, the compressed state is almost completely mixed in the sense of the
normalized quantum relative entropy 1

nD(ρn‖σn). However, the compressed
state is different from the completely mixed state if we focus on the Bures
distance, trace norm, or quantum relative entropy. This fact has been shown
in the classical case [179].

Proof. From the monotonicity of the transmission information (5.48) we
have

log |Φn| ≥ H
(∑

x

pn
xTn(x)

)
≥ H

(∑
x

pn
xTn(x)

)
−
∑

x

pn
xH(Tn(x))

≥ H
(∑

x

pn
xν(Tn(x))

)
−
∑

x

pn
xH(ν(Tn(x))).

From condition (10.26) the two conditions in (5.72) yield

lim
1
n

(
H
(∑

x

pn
xν(Tn(x))

)
−
∑

x

pn
xH(ν(Tn(x))

)
= H(Wp).

Hence, we obtain

lim
1
n

H
(∑

x

pn
xTn(x)

)
= H(Wp).

Since Tr
∑

x pn
xTn(x) log ρKn

mix = − log |Φn|, relation (10.27) holds.

Exercises

10.2. Prove equation (10.15) using the inequality R†
P,q(ρ) ≤ R†

P,q(W,p) and
(10.17).
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10.4 Universal Quantum Fixed-Length Source Codes

The code given in Sect. 10.3 depends on the quantum state Wp. For the
classical case, there exists a code that depends on the value H(p) and works
when the data are generated subject to the independent and identical in-
formation source of p. Such codes are called universal codes. To construct
such universal codes, we often use the method of types, which is discussed
in Sect. 2.5.1 [85]. Similarly, for the quantum case, there exists a code that
depends only on the entropy H(Wp) of the average state Wp and works well
provided the states are generated according to an independent and identical
distribution of p [247]. For this purpose, the projection Pn given by (10.18)
should depend only on the compression rate. That is, we have to construct a
subspace Υn(R) of H⊗n depending only on the compression rate R. As the
first step, we construct a code depending only on the compression rate and
the basis B = (u1, . . . , ud) comprising the eigenvectors of Wp. Let us con-
sider a set of types Tn with the probability space Nd = {1, . . . , d}. Define the
subspace Υn(R, B) of the n-fold tensor product space H⊗n to be the space
spanned by ∪q∈T n:H(q)≤R{u(in)}in∈T n

q
, where u(in) def= ui1⊗· · ·⊗uin

∈ H⊗n

and in = (i1, . . . , in). Let Pn,R,B be a projection to Υn(R, B). Then, accord-
ing to the discussion in Sect. 2.5.1,

dimΥn(R, B) ≤ (n + 1)denR,

Tr(I − Pn,R,B)W⊗n
p ≤ (n + 1)l exp(−n inf

q:H(q) >R
D(q‖r)).

Hence, the code {(Υn(R, B), νn, τPn,R,B
)} almost has the compression rate

R. Since min0≤s≤1
ψ(s)−sR

1−s = minq:H(q)≥R D(q‖r), its entanglement fidelity
Fe(W⊗n

p , νn ◦ τPn,R,B
) asymptotically approaches 1. This code is effective

when the basis B = {u1, . . . , ud} is known. However, when the basis B is
unknown, it is suitable to use the code constructed from the space Υn(R)
spanned by ∪BΥn(R, B). The space Υn(R) and the projection Pn,R to Υn(R)
satisfy

dimΥn(R) ≤ (n + 1)d+d2
enR, (10.28)

Tr(I − Pn,R)W⊗n
p ≤ (n + 1)d exp(−n inf

q:H(q) >R
D(q‖r)). (10.29)

Hence, there exists a code attaining the entropy rate in a manner similar to
that for a fixed basis. Since (10.29) follows immediately from Pn,R ≥ Pn,R,B ,
we prove inequality (10.28) as follows. For simplicity, we consider the case of
d = 2, but this discussion may be easily extended to the general case. First,
we fix the basis B = {u1, u2}. Then, an arbitrary basis B′ = {u′

1, u
′
2} may

be written as u′
1 = au1 + bu2, u

′
2 = cu1 + du2 using d2 = 4 complex numbers

a, b, c, d. Thus,

u′
1 ⊗ u′

2 ⊗ · · · ⊗ u′
1 = (au1 + bu2)⊗ (cu1 + du2)⊗ · · · ⊗ (au1 + bu2).
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Choosing an appropriate vector vn1,n2,n3,n4 ∈ H⊗n, we have

u′
1 ⊗ u′

2 ⊗ · · · ⊗ u′
1 =

∑
n1,n2,n3,n4

an1bn2cn3dn4vn1,n2,n3,n4 .

The vector vn1,n2,n3,n4 does not depend on a, b, c, and d. Hence, the vector
u′

1⊗u′
2⊗· · ·⊗u′

1 belongs to the subspace spanned by the vectors vn1,n2,n3,n4

with the condition n1 + n2 + n3 + n4 = n. The dimension of this subspace is
at most (n+1)2

2−1 = (n+1)d2−1. Since the dimension of the space Υn(R) is
at most this number multiplied by the dimension of the space Υn(R, B) with
a fixed basis, we obtain (10.28).

Moreover, combining (10.28) with (2.42) and (2.142), we obtain

Tr Pn,RW⊗n
p ≤ 2 exp

(
min
s≤0

nψ(s)− s log dimΥn(R)
1− s

)

≤ 2 exp
(

n
ψ(s0)− s0R

1− s0
+
−s0

1− s0
(d + d2) log(n + 1)

)
= 2(n + 1)

−s0
1−s0

(d+d2) exp(−n inf
q:H(q)≤R

D(q‖r)), (10.30)

where s0
def= argmins≤0

ψ(s)−sR
1−s .

10.5 Universal Quantum Variable-Length Source Codes

Let us construct a code that has a sufficiently small error and achieves the
entropy rate H(Wp), even though it is unknown, provided the source follows
an independent and identical distribution of p. Such codes are called univer-
sal quantum variable-length source codes. For these codes, it is essential to
determine the compression ratio depending on the input state.2 If nonorthog-
onal states are included in the source, then state demolition inevitably occurs
during the determination of the compression ratio. Hence, the main problem
is to reduce as much state demolition as possible [184,185].

Let us first construct a measurement that determines the compression
ratio using the projection Pn,R constructed in the previous section. Consider

the projection En,R
def= limε→+0(Pn,R − Pn,R−ε). Let Ωn = {H(p)}p∈T n be a

set of R such that En,R is nonzero. Then,
∑

R∈Ωn
En,R = I. The probability

distribution by the measurement En = {En,Ri}i satisfies

2 Even though the error of universal quantum variable-length source code con-
verges to 0, its convergence rate is not exponential [184].
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PEn

W ⊗n
p
{|H(Wp)−Ri| ≥ ε}

≤ 2 max
{

(n + 1)d+d2
exp(−n inf

q:H(q)≤R−ε
D(q‖r)),

(n + 1)d exp(−n inf
q:H(q)≥R+ε

D(q‖r))
}

.

We may therefore apply the arguments of Sect. 7.3. Choosing ln, δn so that
they satisfy (7.44) and (7.45), and constructing M (n),δn,ln from En, we have

F 2
e (W⊗n

p ,κM(n),δn,ln )→ 1.

Since the measurement M (n),δn,ln takes values in [0, log d] with spacing δn,
the number of its measurement data is ( log d

δn
+ 1). Hence, we choose δn such

that 1
n log δn → 0.

We now construct a universal variable-length code based on this mea-
surement. In the encoding step, we perform a measurement correspond-
ing to the instrument κM(n),δn,ln . When the measurement data are Ri,
the resulting state is a state in RanM

(n),δn,ln
i . The state in the space

Ran M
(n),δn,ln
i is sent with the measurement data Ri. Then, the coding length

is log dim RanM
(n),δn,ln
i + log( log d

δn
+ 1). The compression ratio is this value

divided by n. Since the second term converges to zero after the division by
n, we only consider the first term. From

dimM
(n),δn,ln
R =

∑
R−δn<R′<R+δn

rankEn,R′

≤ dimΥn(R + δn) ≤ (n + 1)d+d2
en(R+δn)

we obtain

1
n

{
log dim RanM

(n),δn,ln
i + log

(
log d

δn
+ 1

)}
≤ R.

Therefore, in this protocol, the compression ratio is asymptotically less than
the entropy H(Wp) with a probability of approximately 1 [more precisely the
compression ratio converges to the entropy H(Wp) in probability]; the error
also approaches zero asymptotically.

10.6 Mixed-State Case

So far, we have treated quantum data compression when Wx is pure. That
is, in this case, the optimal compression rate in the blind case coincides with
that in the visible case. However, when Wx is not pure, these are different. In
this problem, one may think that the quantity H(Wp) or I(p, W ) is a good
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candidate for the optimal rate. This intuition is not entirely inaccurate. In
the blind scheme, if the ensemble (px, Wx) has no trivial redundancy, the
optimal compression rate is given as follows [257]:

RB,q(W,p) = H(Wp). (10.31)

On the other hand, in the visible scheme, the inequality

RB,q(W,p) ≥ I(p, W ) (10.32)

holdsEx. 10.5 [228]. However, it does not give the optimal rate in general:

Theorem 10.4

RV,q(W,p) = E���
c (W̃p) = lim

1
n

Ep(W̃⊗n
p ), W̃p

def=
∑

x

px|eA
x 〉〈eA

x | ⊗Wx.

(10.33)

In fact, Horodecki [231] focused on the quantity

Hext(W,p) def= inf
W ext

x :purification of Wx

H(
∑

x

pxW ext
x )

and proved

RV,q(W,p) = lim
Hext(W (n), pn)

n
. (10.34)

From the definition of Ep(W̃p), we can easily check that Ep(W̃p) ≤ Hext(W,p).
When all Wxs are pure, RV,q(W,p) = H(WP ). This fact fits into (8.141).

The direct part essentially is obtained by the following lemma.

Lemma 10.4 Let κ be a one-way LOCC operation. There exists a code Ψ
such that

1
2
εp(Ψ) ≤ ε(W̃p, κ, L) +

1
2
‖W̃p − κ(|ΦL〉〈ΦL|)‖1, (10.35)

|Ψ| = L · CC(κ), (10.36)

where CC(κ) is the size of the classical communication of κ.

(Note that any two-way LOCC operation can be simulated by one-way LOCC
when the initial state is pure [276].)

Proof of Theorem 10.4. First, we prove the direct part. Using this lemma,
we obtain the direct part as follows. Let κn be a one-way LOCC operation
satisfying

limF (W̃⊗n
p , κn(|ΦLn〉〈ΦLn |)) = 1,

log CC(κn)
n

→ 0,

lim
log Ln

n
≤ E���

c (W̃p) + ε
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for any ε > 0. Thus, the application of this lemma indicates that there exists
a sequence of codes {Ψn} such that

εpn(Ψn)→ 0, lim
log |Ψn|

n
≤ E���

c (W̃p) + ε.

Therefore, we obtain

R(W,p) ≤ E���
c (W̃p).

Next, we prove the converse part. For any ε > 0, we choose a sequence of
codes Ψn = (Kn, Tn, νn) such that

R
def= lim

1
n

log |Ψn| ≤ RV,q(W,p) + ε, εpn(Ψn)→ 0.

Since W̃⊗n
p =

∑
x∈X n pn

x|eA
x 〉〈eA

x |⊗W
(n)
x , the state ρ̃n

def=
∑

x∈X n pn
x|eA

x 〉〈eA
x |⊗

Tn(x) satisfies

F (W̃⊗n
p , ιA ⊗ νn(ρ̃n)) =

∑
x∈X n

pn
xF (W (n)

x , νn ◦ Tn(x))

≥
∑

x∈X n

pn
xF 2(W (n)

x , νn ◦ Tn(x))→ 1.

From Lemma 8.11 and Condition E2′ we have

log |Ψn| ≥ H(TrA ρ̃n) ≥ Ep(ρ̃n) ≥ Ep(ιA ⊗ νn(ρ̃n)).

Since Ep satisfies Condition E3 (Exercise 8.50), we have

lim
1
n

log |Ψn| ≥ lim
1
n

Ep(W̃⊗n
p ).

Hence, using Theorem 8.11, we obtain

RV,q(W,p) ≥ E���
c (W̃p) = lim

1
n

Ep(W̃⊗n
p ).

Proof of Lemma 10.4.
Construction of code Ψ satisfying (10.35) and (10.36): Assume that oper-
ation κ has the form κ =

∑
i κA,i ⊗ κB,i, where {κA,i}lni=1 is an instrument

(a TP-CP-map-valued measure) on HA and κB,i is a TP-CP map on HB for
each i. Define the probability qx

qx
def= Tr |eA

x 〉〈eA
x | ⊗ IB

∑
i

κA,i ⊗ κB,i(|ΦL〉〈ΦL|)) (10.37)

=
∑

i

Tr κ∗
A,i(|eA

x 〉〈eA
x |)⊗ IB(|ΦL〉〈ΦL|),
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the probability pi,x, and the state ρi,x as

pi,x
def=

Tr κ∗
A,i(|eA

x 〉〈eA
x |)⊗ IB(|ΦL〉〈ΦL|)

qx

ρi,x
def=

TrA κ∗
A,i(|eA

x 〉〈eA
x |)⊗ IB(|ΦL〉〈ΦL|)

qxpi,x
.

Now we construct the coding protocol Ψ. When the encoder receives the
input signal x, he sends the state ρi,x with the probability pi,x and sends
the classical information i. The decoder performs the TP-CP map κB,i de-
pending on the classical signal i. Then, inequality (10.36) follows from this
construction.

Proof of (10.35): First, we have the following inequality:

F 2(
∑

x

px|eA
x 〉〈eA

x | ⊗Wx,
∑

i

κA,i ⊗ κB,i(|ΦL〉〈ΦL|))

≤ Tr
√∑

x

px|eA
x 〉〈eA

x | ⊗Wx

√∑
i

κA,i ⊗ κB,i(|ΦL〉〈ΦL|))

= Tr
∑

x

√
px|eA

x 〉〈eA
x | ⊗

√
Wx

√∑
i

κA,i ⊗ κB,i(|ΦL〉〈ΦL|)

=
∑

x

√
px TrB

√
Wx(TrA |eA

x 〉〈eA
x | ⊗ IB

√∑
i

κA,i ⊗ κB,i(|ΦL〉〈ΦL|))

≤
∑

x

√
px TrB

√
Wx

√
(TrA |eA

x 〉〈eA
x | ⊗ IB

∑
i

κA,i ⊗ κB,i(|ΦL〉〈ΦL|))

=
∑

x

√
pxqx TrB

√
Wx

√∑
i

pi,xκB,i(ρi,x) (10.38)

=
∑

x

px TrB

√
Wx

√∑
i

pi,xκB,i(ρi,x)

+
∑

x

(
√

pxqx − px) TrB

√
Wx

√∑
i

pi,xκB,i(ρi,x). (10.39)

The above relations can be checked as follows: (i) The first inequality fol-
lows from a basic inequality F 2(ρ, σ) ≤ Tr

√
ρ
√

σ. (ii) The second inequality
follows from Exercise 1.16 and Condition ➁ of Theorem A.1 because

√
t is

matrix concave. (iii) Equation (10.38) follows from
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qx

∑
i

pi,xκB,i(ρi,x)

=
∑

i

κB,i(TrA(κ∗
A,i(|eA

x 〉〈eA
x |)⊗ IB)|ΦL〉〈ΦL|)

=
∑

i

κB,i(TrA(|eA
x 〉〈eA

x | ⊗ IB)(κA,i ⊗ ιB)(|ΦL〉〈ΦL|))

= TrA |eA
x 〉〈eA

x | ⊗ IB

∑
i

κA,i ⊗ κB,i(|ΦL〉〈ΦL|).

Further, the second term of (10.39) is evaluated by

∑
x

(
√

pxqx − px) TrB

√
Wx

√∑
i

pi,xκB,i(ρi,x)

≤
∑

x

(
√

pxqx − px)+ =
∑

x

(√ qx

px
− 1

)
+px ≤

∑
x

(
qx

px
− 1)+px

=
∑

x

(qx − px)+ =
1
2
‖q − p‖1 ≤

1
2
‖W̃p − κ(|ΦL〉〈ΦL|)‖1, (10.40)

where (t)+ is t when t is positive and 0 otherwise. The final inequality follows
from the definition of distribution q (10.37).

Concerning the first term of (10.39), the inequality

1
2
(1− F 2(Wx,

∑
i

pi,xκB,i(ρi,x))) ≤ 1− F (Wx,
∑

i

pi,xκB,i(ρi,x))

≤ 1− TrB

√
Wx

√∑
i

pi,xκB,i(ρi,x) (10.41)

holds. Hence, (10.35) follows from (10.39), (10.40), and (10.41).

10.7 Compression by Classical Memory

In the previous section, we treated visible compression by quantum memory.
In this section, we consider the compression rate by classical memory. This
problem was first discussed by Hayden et al. [197]. In this problem, when
the state Wx is to be sent to the decoder, the encoder is given by stochastic
transition matrix Q with input system X and output system {1, . . . , M}.
The decoder is represented by a c-q channel {W ′

i}Mi=1 with output system
H. Hence, our code in this problem is given by triplet Ψc

def= (M, Q, W ′),
which can be regarded as a code in the visible scheme. Then, the optimal
compression rate is defined as3

3 The subscript c denotes classical memory.
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RV,c(W,p) def= inf
{Ψ(n)

c }

{
lim

1
n

log |Ψ(n)
c |

∣∣∣∣ ε(Ψ(n)
c )→ 0

}
. (10.42)

Clearly, the inequality

RV,c(W,p) ≥ RV,q(W,p)

holds.

Theorem 10.5

RV,c(W,p) = C(W̃p) = Cc(W̃p). (10.43)

Note that the quantities C(W̃p) and Cc(W̃p) are defined in Sect. 8.9.

Proof. First, for ε > 0, we choose local states ρA
n,i and ρB

n,i such that∥∥∥∥∥ 1
Mn

Mn∑
i=1

ρA
n,i ⊗ ρB

n,i − W̃⊗n
p

∥∥∥∥∥
1

→ 0, lim
1
n

log Mn ≤ Cc(W̃p) + ε.

Next, we define the distribution qn on Xn and two states ρn and ρ′
n as

qn,x
def=

Mn∑
i=1

1
Mn
〈eA

x |ρA
n,i|eA

x 〉,

ρn
def=

∑
x∈X n

pn
x|eA

x 〉〈eA
x | ⊗

Mn∑
i=1

1
Mn

〈eA
x |ρA

n,i|eA
x 〉

qn,x
ρB

n,i,

ρ′
n

def=
∑

x∈X n

qn,x|eA
x 〉〈eA

x | ⊗
Mn∑
i=1

1
Mn

〈eA
x |ρA

n,i|eA
x 〉

qn,x
ρB

n,i.

Then, applying the monotonicity of a trace norm to a partial trace and the
pinching of PVM {|eA

x 〉〈eA
x |}, we have

‖qn − pn‖1 ≤
∥∥∥ρ′

n − W̃⊗n
p

∥∥∥
1
≤
∥∥∥∥∥ 1

Mn

Mn∑
i=1

ρA
n,i ⊗ ρB

n,i − W̃⊗n
p

∥∥∥∥∥
1

→ 0.

Hence, ∥∥∥ρn − W̃⊗n
p

∥∥∥
1
≤ ‖ρn − ρ′

n‖1 +
∥∥∥ρ′

n − W̃⊗n
p

∥∥∥
1

= ‖qn − pn‖1 +
∥∥∥ρ′

n − W̃⊗n
p

∥∥∥
1
→ 0.

That is,

∑
x∈X n

pn
xF

(Mn∑
i=1

1
Mn

〈eA
x |ρA

n,i|eA
x 〉

qn,x
ρB

n,i, W
(n)
x

)
= F (ρn, W̃⊗n

p )→ 1.
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Now, we define a code Ψ(n) = (Mn, Q(n), W ′(n)) as

(Q(n))x
i

def=
1

Mn

〈eA
x |ρA

n,i|eA
x 〉

qn,x
, W ′(n)

i
def= ρB

n,i.

Then, its error is calculated by

εpn(Ψ(n)) =
∑

x∈X n

pn
xF

(Mn∑
i=1

1
Mn

〈eA
x |ρA

n,i|eA
x 〉

qn,x
ρB

n,i, W
(n)
x

)
→ 1.

Hence, from Exercise 10.1 we obtain

RV,c(W,p) ≤ Cc(W̃p).

Now we prove the converse inequality. For any ε > 0, we choose a sequence
of codes Ψ(n)

c = (Mn, Q(n), W ′(n)) such that

lim
1
n

log |Ψ(n)
c | ≤ RV,c(W,p) + ε,

∑
x∈X n

pn
xF

(Mn∑
i=1

(Q(n))x
i W ′(n)

i , W (n)
x

)
→ 0.

Hence, the state ρ′′
n

def=
∑

x∈X n |eA
x 〉〈eA

x | ⊗
∑Mn

i=1(Q
(n))x

i W ′(n)
i satisfies

F (ρ′′
n, W̃⊗n

p ) =
∑

x∈X n

pn
xF

(Mn∑
i=1

(Q(n))x
i W ′(n)

i , W (n)
x

)
→ 1.

From (8.161) and (8.155),

log Mn ≥ C
( ∑

x∈X n

|eA
x 〉〈eA

x | ⊗
Mn∑
i=1

(Q(n))x
i |eB

i 〉〈eB
i |
)
≥ C(ρ′′

n).

Therefore, from (8.159),

lim
log Mn

n
≥ C(W̃p),

which implies

RV,c(W,p) ≥ C(W̃p).

Thus, combining Theorem 8.12, we obtain (10.43).
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10.8 Compression by Shared Randomness

Next, we consider the case when the sender and decoder share a common
random number a priori. In this problem, the encoder is given by a c-q chan-
nel TX with input system X and output system K, where TX depends on the
common random number X. The decoder is represented by a TP-CP map νX

from K toH. The TP-CP map TX also depends on the common random num-
ber X. Hence, our code in this problem is given by triplet Ψr

def= (K, TX , νX).
Further, when storage is a classical system, the problem is modified as follows.
That is, the encoder is given by stochastic transition matrix QX with input
system X and output system {1, . . . , M}, where QX depends on the common
random number. The decoder is represented by a c-q channel {W ′

X,i}Mi=1 with
output system H. C-q channel W ′

X also depends on the common random

number. Hence, our code is given by triplet Ψc,r
def= (M, QX , W ′

X).4 Then,
these optimal compression rates are defined as

RV,q,r(W,p) def= inf
{Ψ(n)

r }

{
lim

1
n

log |Ψ(n)
r |

∣∣∣∣ ε(Ψ(n)
r )→ 0

}
, (10.44)

RV,c,r(W,p) def= inf
{Ψ(n)

c,r }

{
lim

1
n

log |Ψ(n)
c,r |

∣∣∣∣ ε(Ψ(n)
c,r )→ 0

}
. (10.45)

Clearly, we have

RV,c(W,p) ≥ RV,c,r(W,p) ≥ RV,q,r(W,p), RV,q(W,p) ≥ RV,q,r(W,p).
(10.46)

Lemma 10.5

RV,q,r(W,p) ≥ I(p, W ) = IW̃p
(A : B) = CA→B

d (W̃p). (10.47)

Proof. Let Ψ(n)
r

def= (Kn, T
(n)
X , ν

(n)
X ) be a sequence of codes achieving the op-

timal rate RV,q,r(W,p). From monotonicity (5.30) and joint convexity (5.31)
of quantum relative entropy,

log |Ψ(n)
r | ≥ EX

∑
x∈X n

pn
xD

(
T

(n)
X (x)

∥∥∥ ∑
x∈X n

pn
xT

(n)
X (x)

)
≥ EX

∑
x∈X n

pn
xD

(
νXT

(n)
X (x)

∥∥∥ ∑
x∈X n

pn
xνXT

(n)
X (x)

)
≥

∑
x∈X n

pn
xD

(
EXνXT

(n)
X (x)

∥∥∥EX

∑
x∈X n

pn
xνXT

(n)
X (x)

)
= H(

∑
x∈X n

pn
xEXνXT

(n)
X (x))−

∑
x∈X n

pn
xH(EXνXT

(n)
X (x)) = Iρn(A : B),

4 The last subscript r denotes shared “randomness.”
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where ρn
def=

∑
x∈X n pn

x|eA
x 〉〈eA

x | ⊗ (EXνXT
(n)
X (x)). From the choice of our

code we can check that F (ρn, W̃p)→ 0. Hence, using Fannes inequality (The-
orem 5.9), we have

log |Ψ(n)
r | ≥ IW̃p

(A : B) = I(p, W ).

In fact, these optimal rates are calculated in the classical case.

Theorem 10.6 (Bennett et al. [41], Dür et al. [100]) If all Wxs are com-
mutative, we have

RV,q,r(W,p) = RV,c,r(W,p) = I(p, W ) = CA→B
d (W̃p). (10.48)

Hence, from (10.46) we have

RV,c(W,p) ≥ RV,q(W,p) ≥ RV,q,r(W,p) = RV,c,r(W,p). (10.49)

Proof. From Theorem 10.5 it is sufficient to show the inequality RV,c,r(W,p)
≤ I(p, W ). Now we construct a protocol achieving the rate R = I(p, W ) + ε
for any ε > 0.

First, we take the the expectation of the right-hand side (RHS) of (10.51)
in Lemma 10.6 with M = enR, C = e−nr, with a distribution pn(x). Applying
(2.121) to X = log p(y|x)

p(y) , we can show that this expectation is less than

2(en(φ(s|R‖S)−R+r) + e−nr), for ∀s ≤ 0, (10.50)

where R and S are as given in (4.31). Note that R is commutative with S.
Hence, we obtain (10.48).

Lemma 10.6 For any classical source {(PX(x), PY |X(y|x))}, there exists a

code Ψc,r
def= (M, QX , Q′

X) such that

1
2

∑
y

∣∣∣EX

M∑
i=1

(Q′
X)i

y(QX)x
i − p(y|x)

∣∣∣ ≤ δ +
∑

y: 1
M

PY |X (y|x)

PY (y) ≥δ

PY |X(y|x)

(10.51)

for 1 > ∀δ > 0, where PY (y) def=
∑

x PX(x)PY |X(y|x).

Proof of Lemma 10.6. First, the encoder and the decoder prepare the M

i.i.d. common random numbers Y1, . . . , YM subject to PY (y) def=∑
x PY |X(y|x)PX(x). When the encoder receives the original message x, he

sends the signal i obeying the distribution P (i) def= PX|Y (x|Yi)
PX|Y (x|Y1)+...+PX|Y (x|YM ) ,
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where PX|Y (x|y) def= PY |X(y|x)PX(x)
PY (y) . The receiver recovers y = Yi when he

receives i.
In this protocol, when the original message is x, the probability of i = 1

and y = Y1 is given as

EY1,... ,YM

PY (y)PX|Y (x|y)
PX|Y (x|y) + PX|Y (x|Y2) + . . . + PX|Y (x|YM )

.

Hence, the recovered signal is equal to y with the probability

EY1,... ,YM

MPY (y)PX|Y (x|y)
PX|Y (x|y) + PX|Y (x|Y2) + . . . + PX|Y (x|YM )

.

Thus, since 1
x is concave,

1
2

∑
y

∣∣∣PY |X(y|x)− EY1,... ,YM

Mp(y)PX|Y (x|y)

PX|Y (x|y) +
∑M

i=2 PX|Y (x|Yi)

∣∣∣
=
∑

y

(
PY |X(y|x)− EY1,... ,YM

MPY (y)PX|Y (x|y)

PX|Y (x|y) +
∑M

i=2 PX|Y (x|Yi)

)
+

≤
∑

y

(
PY |X(y|x)−

MPY (y)PX|Y (x|y)
PX|Y (x|y) + (M − 1)PX(x)

)
+

=
∑

y

PY |X(y|x)
( 1

M (PY |X(y|x)
PY (y) − 1)

1 + 1
M (PY |X(y|x)

PY (y) − 1)

)
+

(10.52)

≤ δ +
∑

x,y: 1
M (

PY |X (y|x)

PY (y) −1)≥δ

PX(x)PY |X(y|x) (10.53)

≤ δ +
∑

y: 1
M

PY |X (y|x)

PY (y) ≥δ

PY |X(y|x),

where (10.52) and (10.53) follow from Exercise 10.4 and Exercise 10.3, re-
spectively.

Exercises

10.3. Prove the inequality x
1+x ≤ min{x, 1} for any real number x > −1.

10.4. Show that

PY |X(y|x)−
MPY (y)PX|Y (x|y)

PX|Y (x|y) + (M − 1)PX(x)
=

1
M (PY |X(y|x)

PY (y) − 1)

1 + 1
M (PY |X(y|x)

PY (y) − 1)
.

10.5. Using a discussion similar to the proof of Lemma 10.5, prove (10.32).



342 Source Coding in Quantum Systems

10.9 Relation to Channel Capacities

In the above discussion, we consider the average error concerning the prior
distribution on the input system. Sometimes it is suitable to treat the worst
error concerning the input signal as follows:

CR
c,r(W ) def= inf

{Ψ(n)
c,r }

{
lim

1
n

log |Ψ(n)
c,r |

∣∣∣∣ ε̃(Ψ(n)
c,r )→ 0

}
, (10.54)

ε̃(Ψc,r)
def= max

x∈X
1− F 2(Wx, EX(W ′

X)i(QX)x
i ).

This problem is called reverse Shannon theorem and is closely related to the
following modification of channel coding, i.e., channel capacity with shared
randomness:

Cc,r(W ) def= inf
{Φ

(n)
c,r }

{
lim

1
n

log |Φ(n)
c,r |

∣∣∣∣ ε̃(Φ(n)
c,r )→ 0

}
, (10.55)

ε(Φc,r)
def= max

1≤i≤M
1− EX Tr(YX)iWϕX(i),

where Φc,r is a code with shared randomness, i.e., it is written as the triplet
(M, ϕX , YX) with shared randomness X. In the above two problems, one is
allowed to prepare any amount of shared random numbers. Indeed, the re-
lation between these two problems is similar to that between entanglement
distillation and dilution, in which dilution corresponds to CR

c,r(W ), distilla-
tion corresponds to Cc,r(W ), and maximally entangled states correspond to
noiseless channels. Hence, we can show

Cc(W ) ≤ Cc,r(W ) ≤ CR
c,r(W ).

The first inequality above follows from the comparison between the definitions
of Cc(W ) and Cc,r(W ). From the discussion in Chap. 4 we have

max
p

I(p, W ) = Cc(W ).

Further, the following theorem holds.

Theorem 10.7 (Bennett et al. [41]) When all Wxs are commutative,

Cc(W ) = Cc,r(W ) = CR
c,r(W ) = max

p
I(p, W ).

It is sufficient to show CR
c,r(W ) ≤ maxp I(p, W ) for this theorem. This in-

equality follows from the proof of Theorem 10.6 with the distribution p =
argmaxp I(p, W ). In this proof, (10.50) is replaced by 2(en(φ(s|Wx‖Wp)−R+r)+
e−nr).
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Further, we can define Cc,e(W ) and CR
c,e(W ) by replacing the shared

randomness by the shared entanglement.5 Since the shared randomness can
be generated from the shared entanglement,

Cc(W ) ≤ Cc,r(W ) ≤ Cc,e(W ) ≤ CR
c,e(W ) ≤ CR

c,r(W ).

Hence, when all Wxs are commutative,

C(W ) = Cc,r(W ) = Cc,e(W ) = CR
c,e(W ) = CR

c,r(W ) = max
p

I(p, W ).

When W is a q-q channel κ, we must simulate entangled inputs. Con-
sidering this requirement, we can define the capacity Ce,R

c,e (κ) as the reverse
capacity of Ce

c,e(κ) [41,42]. This capacity can be regarded as the capacity of
teleportation through a noisy channel κ. Similarly, we have

Ce
c,e(κ) ≤ Ce,R

c,e (κ).

Recall our treatment of Ce
c,e(κ) in Sect. 9.3. Originally, the reverse capacities

CR
c,e(W ) and Ce,R

c,e (κ) were introduced for proving the converse part of Ce
c,e(κ)

by Bennett et al. [41]. They proved the equation Ce
c,e(κ

GP
p ) = maxρ I(ρ, κGP

p )
for the generalized Pauli channel κGP

p by showing the two inequalities

Ce
c,e(κ

GP
p ) ≥ max

ρ
I(ρ, κGP

p ),

Ce,R
c,e (κGP

p ) ≤ max
ρ

I(ρ, κGP
p ) = log d−H(p), (10.56)

where d is the dimension of the system. They also conjectured [42]

Ce
c,e(κ) = Ce,R

c,e (κ) = max
ρ

I(ρ, κ).

In addition, when W is a q-c channel, i.e., a POVM, this problem was
solved as the compression of POVM by Winter [420] and Massar and Winter
[418].

Moreover, replacing the classical noiseless channel by the quantum noise-
less channel, we can define the capacities Ce

q,e(κ), Ce
q,r(κ), Ce,R

q,e (κ), and
Ce,R

q,r (κ). Then, the relations

Ce
q,r(κ) ≤ Ce

q,e(κ) ≤ Ce,R
q,r (κ), Ce

q,r(κ) ≤ Ce,R
q,e (κ)

hold.

Proof of (10.56). Here, we give a proof for inequality (10.56). Assume that
the sender and the receiver share the maximally entangled state |Φd〉〈Φd|
on the tensor product HB ⊗HC . When the sender performs the generalized
5 The last subscript e denotes the shared “entanglement” while the superscript e

denotes entangled input.
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Bell measurement {|uA,C
i,j 〉〈u

A,C
i,j |}(i,j) on the composite system between the

input system HA and the sender’s local system HC , he obtains the data (i, j)
subject to the uniform distribution pmix,d2 . In this case, the generalized Pauli
channel κGP

p can be written as

κGP
p (ρ) =

∑
(i,j)

∑
(i′,j′)

p(i′ − i, j′ − j)Xi′
BZj′

B

· TrA,C(I ⊗ |uA,C
i,j 〉〈u

A,C
i,j |)(|Φd〉〈Φd| ⊗ ρ)Xi′

BZj′
B

∗
.

Hence, if the classical channel Q
(i,j)
(i′,j′)

def= p(i′ − i, j′ − j) is simulated with
the shared randomness, the generalized Pauli channel κGP

p can be simulated

with the shared entanglement. Since CR
c,r(Q

(i,j)
(i′,j′)) = log d−H(κGP

p ), we have
(10.56).

10.10 Historical Note

First, we briefly treat the pure-state case. The source coding problem in the quan-
tum case was initiated by Schumacher [360]. In this paper, he formulated the blind
scheme and derived the direct part and the strong converse part assuming only
unitary coding. Jozsa and Schumacher [245] improved this discussion. Barnum et
al. [29] introduced the purification scheme and proved the strong converse part
without assuming unitary coding. Further, Horodecki [228] introduced the visible
scheme as an arbitrary coding scheme and showed the weak converse part. Further,
Barnum et al. [30] pointed out that the previous proof by Barnum et al. [29] could
be used as the proof of the strong converse part even in the visible scheme. In this
book, Lemma 10.3 plays a central role in the proof of the strong converse part. This
lemma was proved by Hayashi [175]. Winter [415] also proved the strong converse
part using a related lemma. Using this formula, Hayashi [175] derived the optimal
rate with an exponential error constraint. When the probability of the information
source is unknown, we cannot use the coding protocol based on the prior distribu-
tion p. Using the type method, Jozsa et al. [247] constructed a fixed-length universal
code achieving the optimal rate. In addition, In the classical case, Han [162] showed
that compressed states that achieve the minimum rate are almost uniformly ran-
dom in the fixed-length scheme. In this book, part of the quantum extension of the
above Han’s result is proved in as Theorem 10.3.

In the variable-length scheme, the problem is not so easy. In the classical case,
we can compress classical data without any loss. However, Koashi and Imoto [258]
proved that if all information sources cannot be diagonalized simultaneously, com-
pression without any loss is impossible. Of course, using Schumacher’s [360] com-
pression, we can compress quantum information sources with a small error. Fur-
ther, using Jozsa et al.’s [247] compression, we can compress quantum information
sources with a small error based only on the knowledge of the entropy rate H(Wp)
if the information is generated by an independent and identical distribution of the
distribution p. Hence, universal variable-length compression with a small error is
possible if we can estimate the entropy rate H(Wp) with a small state demolition.
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For this estimation, the estimation method in Sect. 7.3 can be applied. Using this
idea, a variable-length universal compression theorem is constructed in this book.
This construction is slightly different from the original construction by Hayashi
and Matsumoto [184]. The modified construction by Hayashi and Matsumoto [185]
is closer to the construction of this book. Further, Hayashi and Matsumoto [184]
showed that the average error of variable-length compression does not approach 0
exponentially in the two-level systemwhen the compression scheme has group co-
variance and achieves the entropy rate H(Wp). Jozsa and Presnell [248] applied
this idea to the Lempel–Ziv method. Bennett et al. [46] considered the complexity
of universal variable-length compression.

In the analysis presented in this book, we have only considered probability
distributions that satisfy the independent and identical condition for the source.
Petz and Mosonyi [346] showed that the optimal compression rate is lim H(Wpn )

n

when the information source pn is stationary. Bjelaković and Szko�la [51] extended
this result to the ergodic case. Datta and Suhov [89] treated nonstationary quantum
spin systems. Further, Bjelaković et al. [50] extended Bjelaković and Szko�la’s result
to the quantum lattice system. Nagaoka and Hayashi [310] derived the optimal
compression rate without any assumption of the information source based on the
quantum information spectrum method. Using Lemma 10.3, they reduced quantum
source coding to quantum hypothesis testing. Indeed, it is expected that the above
results will be derived based on the asymptotic general formula by Nagaoka and
Hayashi [310]. Kaltchenko and Yang [249] showed that this optimal rate can be
attained by fixed-length source coding in the ergodic case.

Concerning the mixed-state case, Jozsa’s talk [246] was the first study to focus
on this problem. Horodecki derived the lower bound I(p, W ) (10.32) [228] and
derived the optimal rate (10.34) [231] in the visible case. However, our optimal rate
(10.33) has a slightly different form. Koashi and Imoto also derived the optimal
rate in the blind case (10.31).

When the memory is classical, Bennett and Winter [47] pointed out that the
compression problem with commutative mixed states is essentially equivalent to
Wyner’s [426] problem (Theorem 8.12). Theorem 10.5 can be regarded as its quan-
tum extension. Further, Hayden et al. [197] treated the tradeoff between the sizes
of classical memory and quantum memory with the visible scheme in the pure-state
case.

Next, let us proceed to compression with shared randomness. Bennett et al. [41]
introduced a reverse Shannon theorem (Theorem 10.7) and proved Theorem 10.6
as its corollary. Dür et al. [100] also proved Theorem 10.6 independently. In this
book, we prove it via Lemma 10.6. Since this lemma has a general form, it can be
extended to a general sequence of channels.

Further, we can consider the tradeoff between the sizes of the classical noise-
less channel and the shared randomness as an intermediate problem between
RV,c,r(W, p) and RV,c(W, p). Bennett and Winter [47] treated this problem in the
commutative case.

In the classical case, Slepian and Wolf [377] considered the compression problem
when the information source lies in the composite system and has a correlation. In
their problem, the encoder in each system is is divided into two players, who can only
perform local operations. However, the decoder is allowed to treat any information
processing. Devetak and Winter [97] treated the quantum extension of this problem
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in the special case with an ensemble scheme. Ahn et al. [7] treated a more general
case with the ensemble scheme. Further, Abeyesinghe et al. [1] treated this problem
with a purification scheme.



A

Limits and Linear Algebra

A.1 Limits

In this text, frequently we discuss the asymptotic behaviors in several prob-
lems when the number n of prepared systems is sufficiently large. In this
situation, we often take the limit n → ∞. In this section, we give a brief
summary of the fundamental properties of limits. Given a general sequence
{an}, the limit lim an does not necessarily exist. For example, a sequence an

is a counterexample when an diverges to +∞ or −∞. In such a case, it is
possible to at least denote these limits as lim an = +∞ or lim an = −∞.
However, the sequence an has no limit as n→ infinity, even allowing possi-
bilities such as +∞ or −∞, when an is defined to be 0 when n is even and 1
when it is odd. This is caused by its oscillatory behavior. In this case, we can
consider the upper limit lim an and the lower limit lim an, which are given as
lim an = 0 and lim an = 1. More precisely, lim an and lim an are defined as
follows:

lim an
def= sup{a|∀ε > 0,∃N, ∀n ≥ N, a ≤ an + ε},

lim an
def= inf{a|∀ε > 0,∃N, ∀n ≥ N, a ≥ an − ε}.

When lim an = lim an, the limit lim an exists and is equal to lim an = lim an.
The following three lemmas hold concerning limits.

Lemma A.1 Let sequences {an}∞n=1 and {bn}∞n=1 satisfy

an + am ≤ an+m + bn+m, sup
n

an

n
<∞, lim

n

bn

n
= 0.

Then, the limit lim an

n exists and satisfies

lim
an

n
= lim

an

n
= sup

n

an

n
. (A.1)

If an + am ≥ an+m − bn+m and infn
an

n > ∞, bn → 0, then similarly
lim an

n = lim an

n = infn
an

n , as shown by considering −an.

Proof. Fix the integer m. Then, for any integer n, there uniquely exist
integers ln and rn such that 0 ≤ rn ≤ m − 1 and n = lnm + rn for each n.
Thus, we have
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an

n
=

alnm+r

lnm + r
≥ alnm

lnm + r
+

ar − bn

lnm + r
≥ lnam

lnm + r
+

ar − bn − blnm

lnm + r
.

Since ln →∞ as n→∞, taking the limit n→∞, we have lim an

n ≥
am

m for
arbitrary m. Next, taking the limit m → ∞, we have lim an

n ≥ supm
am

m ≥
lim m→∞ am

m . Since lim an

n ≥ lim an

n , we obtain (A.1).

Lemma A.2 Let {an} and {bn} be two sequences of positive real numbers.
Then,

lim
1
n

log(an + bn) = max
{

lim
1
n

log an, lim
1
n

log bn

}
.

Proof. Since (an + bn) ≥ an, bn and

lim
1
n

log(an + bn) ≥ lim
1
n

log an, lim
1
n

log bn,

we obtain the ≥ part of the proof. Since 2 max {an, bn} ≥ (an + bn), we have

max
{

lim
1
n

log an, lim
1
n

log bn

}
= lim

1
n

log max {an, bn}

= lim
1
n

log 2 max {an, bn} ≥ lim
1
n

log(an + bn),

which gives the reverse inequality. This completes the proof.

Lemma A.3 Let {fn(x)} be a sequence of functions such that fn(x) ≤ fn(y)
if x ≥ y, and fn(x) → 0 if x > 0. There exists a sequence {εn} of positive
real numbers converging to zero such that fn(x)→ 0.

Proof. Let N be a positive integer. Choose positive integers n(N) such that
n(N) < n(N + 1) and fn( 1

N ) ≤ 1
N for n ≥ n(N). We also define εn

def= 1
N

for n(N) ≤ n < n(N + 1). Then, εn → 0. If n ≥ n(N), then fn(εn) ≤ 1
N .

Therefore, fn(εn)→ 0.

For any two continuous functions f and g on an open subset X ⊂ R
d, we

define

[f, g](a) def= min
x∈V
{f(x)|g(x) ≤ a} . (A.2)

Lemma A.4 When X is closed and bounded, i.e., compact,

[f, g](a) = lim
ε↓0

[f, g](a + ε). (A.3)

Proof. From the definition for ε > 0, [f, g](a) ≥ [f, g](a + ε). Hence,
[f, g](a) ≥ limε↓0[f, g](a + ε). From the compactness, for any ε1 > 0 there
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exists ε2 > 0 such that ‖x − x′‖ < ε2 ⇒ |f(x) − f(x′)| < ε1. Further,
from the compactness of X we can choose a small number ε3 > 0 such that
{x|g(x) ≤ a + ε3} ⊂ ∪x′:g(x)≤aUx′,ε2 . Hence,

min
x|g(x)≤a+ε3

f(x) ≥ min
x∈∪x′:g(x)≤aUx′,ε2

f(x) ≥ min
x|g(x)≤a

f(x)− ε1, (A.4)

which implies (A.3).

A.2 Singular Value Decomposition
and Polar Decomposition

Any d× d′ complex-valued matrix X has the form

X = U1X
′U∗

2

with isometric matrices U1 and U2 and a diagonal matrix X ′. This is called
a singular value decomposition (the matrix U is an isometric matrix if U∗U
is the identity matrix; U is a partially isometric matrix for the partial space
K if it is a projection onto the partial space K). Choosing a d × d′ partially
isometric matrix U in the range {X∗Xv|v ∈ C

d} of X∗X, we have

X = U |X|, |X| def=
√

X∗X, (A.5)

which is called a polar decomposition. If X is Hermitian and is diagonalizable
according to X =

∑
i λi|ui〉〈ui|, then |X| =

∑
i |λi||ui〉〈ui|. Since X∗ =

|X|U∗,

XX∗ = U |X||X|U∗ = UX∗XU∗,
√

XX∗ = U
√

X∗XU∗, (A.6)
UX∗U = X. (A.7)

Therefore,

X =
√

XX∗U. (A.8)

If X is a square matrix (i.e., d = d′), then U is unitary. If d ≥ d′, then U
can be chosen as an isometric. If d ≤ d′, U can be chosen such that U∗ is
isometric. We now show that these two decompositions exist.

Since X∗X is Hermitian, we may choose a set of mutually orthogonal
vectors u1, . . . , ul of norm 1 such that

X∗X =
l∑

i=1

λi|ui〉〈ui|.

In the above, we choose {λk}lk=1 such that λi ≥ λi+1 > 0. Hence, l is not
necessarily equal to the dimension of the space because there may exist zero
eigenvalues. Defining vi

def=
√

1
λi

Xui, we have
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〈vi|vj〉 =
√

1
λi

√
1
λj
〈Xui|Xuj〉 =

√
1
λi

√
1
λj
〈ui|X∗X|uj〉

=
√

1
λi

√
1
λj

δi,jλj = δi,j .

Furthermore, from the relation

〈vi|X|uj〉 =
√

1
λi
〈Xui|X|uj〉 =

√
1
λi
〈Xui|X|uj〉

=
√

1
λi
〈ui|X∗X|uj〉 =

√
λiδi,j

we can show that∑
i

√
λi|vi〉〈ui| =

∑
i

|vi〉〈vi|X
∑

j

|uj〉〈uj | = X.

One may be concerned about the validity of the second equality if X∗X has
some eigenvectors u with zero eigenvalue. However, since 〈u|X∗X|u〉 = 0, we
have Xu = 0. Hence, both sides of the image of vector u coincide with the
0 vector. We define U2

def= (uj
i ) and U1

def= (vj
i ), which are l × d and l × d′

isometric matrices, respectively. Let X ′ be an l× l diagonal matrix (
√

λiδi,j).
This gives us (A.5).

Using the above, we obtain the following lemma.

Lemma A.5 Let a density matrix ρ be written as

ρ =
d′∑

j=1

|vj〉〈vj |, (A.9)

where {vi} is a set of vectors that are not necessarily orthogonal. Let its diago-
nalization be given by ρ =

∑l
i=1 λi|ui〉〈ui|. Since λi > 0, l is not necessarily

equal to the dimension of the space. Then, the vector vj can be written as
vj =

∑l
i=1 wj,i

√
λiui by using an l × d′ isometric matrix W = (wj,i) [316].

The set of vectors {vi} satisfying (A.9) is called the decomposition of the
density matrix ρ.

Proof. Let Y be a j × d matrix given by (vi
i). Then,

ρ =
l∑

i=1

λi|ui〉〈ui| = Y Y ∗.

Define wi
def=

√
1
λi

Y ∗ui. Then, Y ∗ =
∑l

i=1

√
λi|wi〉〈ui|. Taking its conjugate,

we obtain Y =
∑l

i=1

√
λi|ui〉〈wi|. Looking at the jth row, we obtain |vj〉 =∑l

i=1(w
j
i )

∗√λi|ui〉. Since
∑

j(w
j
i )

∗(wj
i′) = δi,i′ , (wj

i )
∗ is an isometric matrix.

The proof is complete.
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Next, we consider the case where X is a real d × d matrix. Since a real
symmetric matrix can be diagonalized by an orthogonal matrix, the unitary
matrices U1 and U2 may be replaced by orthogonal matrices O1 and O2. In
fact, we may further restrict the orthogonal matrices to orthogonal matrices
with determinant 1 (these are called special orthogonal matrices). However,
the following problem occurs. Assume that the determinant of Oi (i = 1, 2)
is −1. Then, Oi may be redefined by multiplying it by a diagonal matrix
with diagonal elements −1, 1, . . . , 1. The redefined matrix is then a special
orthogonal matrix, and O∗

1XO2 is diagonal. Choosing O1 and O2 in a suitable
way, all the diagonal elements of O∗

1XO2 will be positive if detX > 0. On
the other hand, if detX < 0, then it is not possible to make all the diagonal
elements of O∗

1XO2 positive for special orthogonal matrices O1, O2.

Exercises

A.1. Define Ji,j
def= 〈ui|uj〉 for a set of linearly independent vectors u1, . . . , uk

in H. Show that∑
i,j

(J−1)j,i|ui〉〈uj | =
∑
i,j

((J−1)j,i)∗|ui〉〈uj |.

Show that this is a projection to the subspace of H spanned by u1, . . . , uk.

A.2. Using relation (A.5), show that

AA∗f(AA∗) = Af(A∗A) = A∗. (A.10)

A.3 Norms of Matrices

We often focus on the norm between two matrices as a measure of the differ-
ence between them. There are two types of norms, the matrix norm and the
trace norm. The matrix norm ‖A‖ of a matrix A is defined as

‖A‖ def= max
‖x‖=1

‖Ax‖.

Since ‖x‖ = max‖y‖=1 |〈y, x〉|, we have ‖A‖ = max‖y‖=‖x‖=1 |〈y, Ax〉|; there-
fore, ‖A‖ = ‖A∗‖. From the definition we have ‖U1AU2‖ = ‖A‖ for unitary
matrices U1 and U2. Defining

w(A) def= max
‖x‖=1

|〈x, Ax〉|, spr(A) def= max{|λ| : λ is the eigenvalue of A},

we obtain

spr(A) ≤ w(A) ≤ ‖A‖. (A.11)



352 A Limits and Linear Algebra

Assume that A is a Hermitian matrix. Then, it may be diagonalized as A =∑d
i=1 λi|ui〉〈ui|. Thus,

|〈y, Ax〉| =
d∑

i=1

|λi||〈y|ui〉〈ui|x〉| ≤ max
i
|λi|

d∑
i=1

|〈y|ui〉||〈ui|x〉|

≤ max
i
|λi|

√√√√ d∑
i=1

|〈y|ui〉|2

√√√√ d∑
i=1

|〈ui|x〉|2 = max
i
|λi| = spr(A).

The above inequality implies the equality sign in (A.11). Since ‖A‖2 =
max‖x‖=1〈x|A∗A|x〉 = spr(A∗A) = (spr(

√
A∗A))2, then ‖A‖ = ‖

√
A∗A‖ =

‖A∗‖ = ‖
√

AA∗‖.
On the other hand, the trace norm ‖X‖1 of a matrix X is defined as

‖X‖1 = max
U :unitary

Tr UX. (A.12)

Choosing a unitary matrix UX such that X = UX |X| (i.e., a polar decompo-
sition), we obtain Ex. A.8

‖X‖1 = max
U :unitary

Tr UX = TrU∗
XX = Tr |X|. (A.13)

Hence, we also have

‖X∗‖1 = max
U :unitary

Tr U∗X∗ = TrUXX∗ = Tr |X∗|.

If X is Hermitian, then

‖X‖1 = max
T :−I≤T≤I

Tr XT =TrX({X≥0}−{X <0})=TrX(I−2{X < 0}).

(A.14)

Exercises

A.3. Show that the trace norm of a Hermitian matrix
(
−a b
b∗ a

)
is equal to

2
√
|b|2 + a2.

A.4. Show that

‖X‖1 ≥ ‖TrB X‖1. (A.15)

for a matrix X in HA ⊗HB .

A.5. Let A and B be square matrices of dimension d. Show that the eigen-
values of BA are the same as the eigenvalues of AB including degeneracies if
A or B possesses the inverse.
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A.6. Show that spr(AB) = spr(BA).

A.7. Show that the function t �→ t1/2 is a matrix monotone function following
the steps below.

a Show that ‖A1/2B−1/2‖ ≤ 1 when the Hermitian matrices B and A satisfy
B ≥ A ≥ 0 and B possesses the inverse.

b Show that 1 ≤ spr(B−1/4A1/2B−1/4) under the same conditions as a.
c Show that

B1/2 ≥ A1/2 (A.16)

under the same conditions as a.
d Show that (A.16) holds even if B does not possess the inverse.

A.8. Prove (A.13) following the steps below.

a Show that maxv:‖v‖=1〈v| |X| |ui〉 = 〈ui| |X| |ui〉 for eigenvectors ui of |X|
of length 1.

b Show that maxU :unitary〈ui|UX|ui〉 = 〈ui|U∗
XX|ui〉 = 〈ui||X||ui〉.

c Prove (A.13).

A.9. Show that ‖XY ‖1 ≤ ‖X‖‖Y ‖1 for two matrices X and Y .

A.10. (Poincaré inequality) Let A be a d×d Hermitian matrix. Let ai be the
eigenvalues of A ordered from largest to smallest. Show that min

x∈K,‖x‖=1
〈x|A|x〉

≤ ak for any k-dimensional subspace K.

A.11. Show that max
P :rank P=k

min
x

〈x|PAP |x〉
〈x|P |x〉 = ak under the same conditions

as above.

A.12. Let A and B be Hermitian matrices, and let ai and bi be their ordered
eigenvalues from largest to smallest. Show that ai ≥ bi if A ≥ B.

A.4 Convex Functions and Matrix Convex Functions

Linear functions are often used in linear algebra. On the other hand, functions
such as x2 and exp(x) do not satisfy the linearity property. If we denote such
functions by f , then they instead satisfy

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2), 0 ≤ ∀λ ≤ 1,∀x1, x2 ∈ R.

A function is called a convex function when it satisfies the above inequality. If
−f is a convex function, then f is called a concave function. In the above, its
domain is restricted to real numbers. However, this restriction is not necessary
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and may be defined in a more general way. For example, for a vector space,
we may define the convex combination λv1 + (1 − λ)v2 for two vectors v1
and v2 with 0 < λ < 1. More generally, a set is called a convex set when
the convex combination of any two elements is defined. Further, a convex
set L is called a convex cone if v ∈ L and λ > 0 imply λv ∈ L. Therefore,
it is possible to define convex and concave functions for functions with a
vector space domain and a real number range. Similarly, convex and concave
functions may be defined with a convex set domain. Examples of convex sets
are the set of probability distributions and the set of density matrices. In
particular, an element v of the convex set V is called an extremal point if
vi ∈ V and v = λv1 + (1− λ)v2, (0 < λ < 1) imply λ = 1 or 0. For example,
a pure state is an extremal point in the set of density matrices.

Lemma A.6 Let f be a convex function on the convex set V . For any ele-
ment v0 of V , there exists a linear function g such that

g(v0)− f(v0) = max
v∈V

g(v)− f(v).

When f is differentiable, g coincides with the derivative of f at v0. Further,
for any linear function g and a constant C0 ≥ 0, there exists the Lagrange
multiplier λ such that

max
v∈V

f(v) + λg(v) = max
v∈V :g(v)≤C0

f(v) + λg(v).

In this case, λg coincides with the derivative of f at argmaxv∈V :g(v)≤C0
f(v).

Lemma A.7 Consider two vector spaces V1 and V2 and consider a real-
valued function f(v1, v2) with the domain V1×V2. If f is convex with respect
to v2 and concave with respect to v1, then (Chap. VI Prop. 2.3 of [105])1

sup
v1∈S1

min
v2∈S2

f(v1, v2) = min
v2∈S2

sup
v1∈S1

f(v1, v2),

where S1 and S2 are convex subsets of V1 and V2.
Next, we focus on the set of probability distributions on S(H) and denote

it by P(S(H)). In particular, we consider extremal points of the set S(H):

P(ρ,S(H)) def=

{
p ∈ P(S(H))

∣∣∣∣∣∑
i

piρi = ρ

}
.

Such extremal points of the above set are characterized as follows.

Lemma A.8 (Fujiwara and Nagaoka [128]) Let p ∈ P(ρ,S(H)) be an ex-
tremal point and {ρ1, . . . , ρk} be the support of p. Then, ρ1, . . . , ρk are lin-
early independent. Hence, the number of supports of p is less than dim T (H) =
(dimH)2.
1 This relation holds even if V1 is infinite dimensional, as long as S2 is a closed

and bounded set.
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Note that we obtain the same result when we replace P(ρ,S(H)) by P(S(H)).
Proof. Assume that ρ1, . . . , ρk are linearly dependent. That is, we choose

real numbers λ1, . . . , λk such that
∑k

i=1 λiρi = 0 and
∑

i λi = 0. Define two
distributions q+ and q− with the same support by

q±
i

def= pi ± ελi. (A.17)

Then, we have p = 1
2q+ + 1

2q− and q+ �= q−. It is a contradiction.

Indeed, applying this lemma to ρmix, we can see that any extremal POVM
has at most (dimH)2 elements. Further, we focus on the cost functions
f1, . . . , fl on S(H) and treat the following sets:

P=(≤)c(ρ, f,S(H)) def=

{
p ∈ P(ρ,S(H))

∣∣∣∣∣∑
i

pifj(ρi) = (≤)c∀j = 1, . . . , l

}

P=(≤)c(f,S(H)) def=

{
p ∈ P(S(H))

∣∣∣∣∣∑
i

pifj(ρi) = (≤)c∀j = 1, . . . , l

}
.

Lemma A.9 (Fujiwara and Nagaoka [128]) Let p be an extremal point of
one of the above sets. Then, the number of supports of p is less than (l +
1)(dimH)2.

The concept of “convex function” can be extended to functions of matri-
ces. If a function f with the range [0,∞] satisfies

λf(A) + (1− λ)f(B) ≥ f(λA + (1− λ)B),

for arbitrary Hermitian matrices A, B with eigenvalues in [0,∞], it is called
a matrix convex function. See Sect. 1.5 for the definition of f(A). Also, the
function f is called a matrix concave function when the function −f is a
matrix convex function. The following equivalences are known [49]:

➀ f(t) is matrix monotone.
➁ t/f(t) is matrix monotone.
➂ f(t) is matrix concave.

Furthermore, it is known that if the function f satisfies one of the above con-
ditions, 1/f(t) is matrix convex [49]. Hence, since the functions ts,−t−s(s ∈
[0, 1]), and log t are matrix monotone, the functions ts (s ∈ [−1, 0] ∪ [1, 2]),
−ts (s ∈ [0, 1]), − log t, and t log t are matrix convex functions.

Theorem A.1 The following conditions are equivalent for a function f [49].

➀ f(t) is matrix convex.
➁ When a matrix C satisfies C∗C = I, any Hermitian matrix A with eigen-

values in [0,∞] satisfies f(C∗AC) ≤ C∗f(A)C.
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➂ When matrices C1, . . . , Ck satisfy
∑

i C∗
i Ci = I, any Hermitian ma-

trices A1, . . . , Ak with eigenvalues in [0,∞] satisfy f(
∑

i C∗
i AiCi) ≤∑

i C∗
i f(Ai)Ci.

Now, we prove important inequalities.

Proof of (6.11), (5.40), and (5.41). In what follows, we focus on the
linear spaceMA of matrices on HA and the linear spaceMA of matrices on
HA. For a given density ρ on HA, we also define the map Lρ and Rρ as a
linear map on the matrix spaceMA:

Lρ(A) def= ρA, Rρ(A) def= Aρ.

The map Lρ is positive Hermitian under the inner product 〈Y, X〉 = TrY ∗X
because

〈Y, LρX〉(e)ρ,r = Tr Y ∗ρρX = Tr(ρY )∗ρX = 〈LρY, X〉(e)ρ,r,

〈X, LρX〉 = Tr X∗ρ2X ≥ 0.

For another state σ, the map Rσ is positive Hermitian under the inner product
〈Y, X〉(e)ρ,r. It is checked as follows:

〈Y, RσX〉(e)ρ,r = Tr Y ∗ρXσ = Tr(Y σ)∗ρX = 〈RσY, X〉(e)ρ,r,

〈X, RσX〉(e)ρ,r = Tr X∗ρXσ ≥ 0.

Since Lρ and Rσ are commutative, L−1
ρ Rσ is also positive Hermitian. Now,

for any state ρA,B on HA ⊗HB , and the TP-CP map κ = TrB , we focus on
the map κρA,B ,r from MA,B to HA (this map is defined in Sect. 6.1). The
dual map κ∗

ρA,B ,r is written as κ∗
ρA,B ,r(Y ) = Y ⊗ I because

〈κ∗
ρA,B ,r(Y ), X〉(e)

ρA,B ,r
= 〈Y, κρA,B ,r(X)〉(e)TrB ρA,B ,r

= TrA Y ∗(TrB ρA,B)κρA,B ,r(X) = TrA Y ∗ TrB(ρA,BX)

= TrA,B Y ∗ ⊗ IBρA,BX = 〈Y ⊗ IB , X〉(e)
ρA,B ,r

.

Hence, κρA,B ,rκ
∗
ρA,B ,r(Y ) = Y . Now, let f be a matrix convex function. Ap-

plying Condition ➁ in Theorem A.1, we obtain

Tr X∗f(κρA,B ,rL
−1
ρA,BRσA,Bκ∗

ρA,B ,r)(TrB ρA,B)X

=〈X, f(κρA,B ,rL
−1
ρA,BRσA,Bκ∗

ρA,B ,r)X〉
(e)
TrB ρA,B ,r

≤〈X, κρA,B ,rf(L−1
ρA,BRσA,B )κ∗

ρA,B ,rX〉
(e)
TrB ρA,B ,r

= Tr(X ⊗ I)∗f(L−1
ρA,BRσA,B )ρA,B(X ⊗ I).

Thus, substituting ρA,B (−xλ) into σA,B (f(x)), we have
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− TrA X∗(TrB ρA,B)1−λX(TrB ρA,B)λ

≤− TrA,B(X ⊗ IB)∗(ρA,B)1−λ(X ⊗ IB)(ρA,B)λ

because f(L−1
ρA,BRσA,B )X = (ρA,B)−λX(σA,B)λ. Hence, we obtain (6.11).

Further, substituting X (−xλ) into I (f(x)), we obtain

−TrA(TrB ρA,B)1−λ(TrB σA,B)λ ≤ −TrA,B(ρA,B)1−λ(σA,B)λ

for ≤ λ ≤ 1, which implies (5.40) in the partial trace case. From the Stine-
spring representation we obtain (5.40) in the general case. Also, substituting
X (xλ) into I (f(x)), we obtain

TrA(TrB ρA,B)1−λ(TrB σA,B)λ ≤ TrA,B(ρA,B)1−λ(σA,B)λ, −1 ≤ λ ≤ 0,

which implies (5.41) in the partial trace case. Therefore, we obtain (5.41) in
the general case.

Exercises

A.13. Show the concavity of the von Neumann entropy (5.49) using the ma-
trix convexity of x log x.

A.14. Show the joint convexity of (5.31) using the matrix convexity of − log x
and x log x.

A.5 Proof and Construction of Stinespring
and Choi–Kraus Representations

In this section, we will prove Theorem 5.1 and construct the Stinespring and
Choi–Kraus representations. First, let us consider the following theorem for
completely positive maps, without the trace-preserving condition.

Theorem A.2 Given a linear map κ from the set of Hermitian matrices on
the d-dimensional system HA to that on the d′-dimensional system HB, the
following conditions are equivalent.

➀ κ is a completely positive map.
➁ κ∗ is a completely positive map.
➂ κ is a min{d, d′}-positive map.
➃ The matrix K(κ) on HA ⊗HB is positive semidefinite.
➄ (Stinespring representation) There exist a Hilbert space HC with the same

dimension as HB, a pure state ρ0 ∈ S(HB ⊗ HC), and a matrix W in
HA ⊗HB ⊗HC such that κ(X) = TrA,C W (X ⊗ ρ0)W ∗.

➅ (Choi–Kraus representation) There exist dd′ linear maps F1, . . . , Fdd′

from HA to HB such that κ(X) =
∑

i FiXF ∗
i .
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We also define Conditions ➄′ and ➅′ by deforming Conditions ➄ and ➅ as:

➄′ There exist Hilbert spaces HC and H′
C , a positive semidefinite state ρ′

0 ∈
S(HC), and a linear map W from HAHC to HAH′

C such that κ(X) =
TrC′ W (X ⊗ ρ′

0)W
∗.

➅′ There exist linear maps F1, . . . , Fk from HA to HB such that κ(X) =∑
i FiXF ∗

i .

Proof. We now show that ➁⇔ ➀⇒➂⇒➃⇒ ➄⇒➅⇒➅′⇒ ➀ and
➄⇒➄′⇒➀. Since ➀⇒➂, ➄⇒➄′, and ➅⇒➅′ by inspection, we prove the
remaining relations.

We first prove ➀⇔➁. The n-positivity of κ is equivalent to

Tr κ⊗ ιn(X) ≥ 0 (A.18)

for any positive semidefinite Hermitian matrix X on HA⊗C
n, which is equiv-

alent to

Tr κ⊗ ιn(X)Y ≥ 0

for any positive semidefinite Hermitian matrix X (Y ) on HA ⊗ C
n (HB ⊗

C
n). Since (κ ⊗ ιn)∗ = κ∗ ⊗ ιn, we have Tr κ ⊗ ιn(X)Y = TrXκ∗ ⊗ ιn(Y ).

Therefore, the n-positivity of κ is equivalent to the n-positivity of κ∗. Hence,
the complete positivity of κ is equivalent to the complete positivity of κ∗.

Next, we derive ➂⇒➃. We show ➃ for d′ ≤ d. Since κ is a d-positive
map, κ ⊗ ιB is a positive map (ιB is the identity map in T (HB)). Let X
be a positive semidefinite Hermitian matrix on HA ⊗HB . Assume that X =∑

i,k,j,l, x
(i,k),(j,l)|eA

i ⊗ eB
k 〉〈eA

j ⊗ eB
l |. Since (κ⊗ ιB)(X) ≥ 0, we have

0 ≤ 〈IB |(κ⊗ ιB)(X)|IB〉

=
∑

i,j,k,l

x(i,k),(j,l)〈IB |
(
κ(|eA

i 〉〈eA
j |)⊗ |eB

k 〉〈eB
l |
)
|IB〉

=
∑

i,j,k,l

x(i,k),(j,l)〈eB
k |κ(|eA

i 〉〈eA
j |)|eB

l 〉 (A.19)

=
∑

i,j,k,l

x(i,k),(j,l)K(κ)(j,l),(i,k) = TrXK(κ).

Therefore, K(κ) ≥ 0, and we obtain ➃. In the above, we denote the vector∑d′

k=1 eB
k ⊗ eB

k in the space HB ⊗HB by IB . In the derivation of (A.19), we
used the fact that

〈IB |
(
|eB

k 〉〈eB
l | ⊗ |eB

s 〉〈eB
t |
)
|IB〉 = 〈IB |

(
|eB

k ⊗ eB
s 〉〈eB

l ⊗ eB
t |
)
|IB〉 = δk,sδl,t.

Using a discussion in the proof of ➀⇔➁, we can show that Condition ➂
implies that κ∗ is a d-positive map if d ≤ d′. From this fact we can derive
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Condition ➃ for κ∗. This gives us K(κ∗) ≥ 0, which is equivalent to K(κ) ≥ 0.
Thus, we obtain ➃ for κ.

We now derive ➃⇒➄. Since K(κ) ≥ 0,
√

K(κ) exists. In what follows,
we consider a space HC with a basis eC

1 , . . . , eC
d′ . Note that the space HC is

isometric to the space HB . Defining UC,B
def=

∑d′

k=1 eC
k ⊗ eB

k , we have

Tr |eA
i′ 〉〈eA

j′ | ⊗ (|UC,B〉〈UC,B |) |eA
j ⊗ eC

k ⊗ eB
s 〉〈eA

i ⊗ eC
l ⊗ eB

t |
=δj′,jδi′,iδl,tδk,s, (A.20)

where the order of the tensor product is HA ⊗HC ⊗HB . Although K(κ) is
originally a Hermitian matrix on HA⊗HB , we often regard it as a Hermitian
matrix on HA ⊗HC because HC is isometric to HB . Using (A.20), we have

Tr κ(X)Y = Tr(X ⊗ Y )K(κ) = Tr (X ⊗ |UC,B〉〈UC,B |) K(κ)⊗ Y

= Tr (X ⊗ |UC,B〉〈UC,B |)
(√

K(κ)⊗ IB

)
(IA,C ⊗ Y )

(√
K(κ)⊗ IB

)
= TrB TrA,C

((√
K(κ)⊗ IB

)
(X ⊗ |UC,B〉〈UC,B |)

(√
K(κ)⊗ IB

))
Y

for ∀X ∈ T (HA),∀Y ∈ T (HB). Therefore, we can show that

κ(X)=TrA,C

[(√
d′K(κ)⊗IB

)(
X⊗ |UC,B〉〈UC,B |

d′

)(√
d′K(κ)⊗IB

)]
.

(A.21)

Letting ρ0 = |UC,B〉〈UC,B |
d′ and W =

√
d′K(κ)⊗ IB , we obtain ➄.

Next, we show that ➄⇒➅. Let ρ0 be |x〉〈x|, P be a projection from
HA ⊗HB ⊗HC to HA ⊗ |x〉, and Pi,k be a projection from HA ⊗HB ⊗HC

to HB ⊗ |eA
i ⊗ eC

k〉. Using formula (1.26) of the partial trace, we have

κ(X) = TrA,C W (X ⊗ ρ0)W ∗ =
d∑

i=1

d′∑
k=1

Pi,kWPXPW ∗Pi,k

=
d∑

i=1

d′∑
k=1

(Pi,kWP )X(Pi,kWP )∗.

We thus obtain ➅.
Finally, we show ➄′⇒➀. From Condition ➄′ any positive semidefinite

Hermitian matrix X on HA ⊗ C
n satisfies

κ⊗ ιn(X) = TrHA⊗HC
(W ⊗ In)(X ⊗ ρ′

0)(W
∗ ⊗ In) ≥ 0,

where In is an identity matrix in C
n. From condition (A.18), therefore, κ is

an n-positive map for arbitrary n. It follows that κ is a completely positive
map from which we obtain ➀.
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Concerning a proof of ➅′⇒➀, we have

κ⊗ ιn(X) =
∑

i

(Fi ⊗ In)X(F ∗
i ⊗ In) ≥ 0,

for a semipositive definite Hermitian matrix X on HA⊗C
n. Thus, we obtain

➀.

Next, we prove Theorem 5.1. Thanks to Theorem A.2, it is sufficient to
show the equivalence of Conditions ➀ to ➅′ in Theorem 5.1 when κ is a
completely positive map. Indeed, ➀⇒➂, ➄⇒➄′, and ➅⇒➅′ by inspection.
Concerning ➄′⇒➀ and ➅′⇒➀, it is sufficient to show the trace-preserving
property because of Theorem A.2. Therefore, we only show ➂⇒➃⇒➄⇒➅
as follows.

We first show ➂⇒➃. From definition (1.23) of the partial trace we obtain

TrA ρ = TrB κ(ρ) = TrA,B(ρ⊗ IB)K(κ) = TrA ρ (TrB K(κ))

for arbitrary ρ ∈ S(HA). Hence, TrB K(κ) = IA, and thus we obtain ➃.
Next, we show ➃⇒➄. Employing the notation used in the proof of ➃⇒➄

in Theorem A.2, we let P be the projection from HA ⊗ HB ⊗ HC to HA ⊗
|UC,B〉. Since any ρ ∈ S(HA) satisfies

Tr ρ = TrB TrA,C

((√
d′K(κ)⊗ IB

)
PρP

(√
d′K(κ)⊗ IB

))
= TrA,C,B

((√
d′K(κ)⊗ IB

)
PρP

(√
d′K(κ)⊗ IB

))
,

we obtain

TrA,C,B

((√
d′K(κ)⊗ IB

)
P
)∗ (√

d′K(κ)⊗ IB

)
P = P.

Let HR be the range of
(√

d′K(κ)⊗ IB

)
P for HA ⊗ |UC,B〉. Then, the

dimension of HR is equal to that of HA.
(√

d′K(κ)⊗ IB

)
P can be regarded

as a map from HA ⊗ |UC,B〉 to HR.
LetHR

⊥ be the orthogonal complementary space ofHR inHA⊗HB⊗HC ,
and HA

⊥ be the orthogonal complementary space of HA ⊗ |UC,B〉. Since
the dimension of HR

⊥ is equal to that of HA
⊥, there exists a unitary (i.e.,

metric-preserving) linear mapping U ′ from HR
⊥ to HA

⊥. Then, Uκ
def=(√

d′K(κ)⊗ IB

)
P ⊕ U ′ is a unitary linear map from HA ⊗ HB ⊗ HC =

(HA ⊗ |UC,B〉) ⊕ HA
⊥ to HA ⊗ HB ⊗ HC = HR ⊕ HR

⊥. Therefore, from
(A.21) we have κ(ρ) = TrA,C Uκρ⊗ |UC,B〉〈UC,B |

d′ Uκ, which gives Condition ➄.
Next, we show ➄⇒➅ by employing the notation used in the proof of

➄⇒➅ in Theorem A.2. Since
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Tr ρ=Trκ(ρ)=TrB TrA,C Uκ(ρ⊗ ρ0)U∗
κ =

d∑
i=1

d′∑
k=1

TrB Pi,kWPρPW ∗Pi,k

=
d∑

i=1

d′∑
k=1

TrB(Pi,kWP )ρ(Pi,kWP )∗ = TrA

d∑
i=1

d′∑
k=1

(Pi,kWP )∗(Pi,kWP )ρ,

we obtain
∑d

i=1
∑d′

k=1(Pi,kWP )∗(Pi,kWP ) = IA. Therefore, we obtain ➅.
Further, from the proof ➄⇒➅, we obtain (5.1).

Finally, we directly construct Stinespring representation ➄′ from Choi–
Kraus representation ➅′. Define the map W from HA to HB ⊗ C

k as

W (x) def=
k∑

i=1

Fi(x)⊗ ei.

Then, W satisfies

TrCk WρW ∗ =
k∑

i=1

FiρF ∗
i .

We obtain Condition ➄′ from ➅′ in Theorem A.2. In Theorem 5.1, we have to
check the unitarity. From the condition

∑k
i=1 F ∗

i Fi = I, we obtain W ∗W = I,
i.e., W is an isometry map. Hence, it is possible to deform map W to a unitary
map by extending the input space. In this case, the state in the environment
κE(ρ) equals TrB WρW ∗ = (TrF ∗

j Fiρ)i,j . Thus, we obtain Lemma 5.1.



B

Proofs of Theorems and Lemmas

B.1 Proof of Theorem 3.1

In this proof, we only consider the case in which there exists an element
x ∈ L such that A(x) = b.1 Otherwise, since both sides are equal to −∞, the
theorem holds.

When x ∈ L satisfies A(x) = b and y satisfies AT (y) − c ∈ LT , we have
0 ≤ 〈AT (y)− c, x〉 = 〈y, A(y)〉 − 〈c, x〉 = 〈y, b〉 − 〈c, x〉. Hence, we can check
that

max
x∈V1
{〈c, x〉|x ∈ L, A(x) = b} ≤ min

y∈V2
{〈y, b〉|AT (y)− c ∈ LT }. (B.1)

Furthermore,

min
y∈V2
{〈y, b〉|AT (y)− c ∈ LT }

= min
(µ,y)∈R×V2

{µ|∃y ∈ V2,∀x ∈ L, 〈y, b〉 − 〈AT (y)− c, x〉 ≤ µ}.

This equation can be checked as follows. When y ∈ V2 satisfies AT (y)− c ∈
LT , the real number µ = 〈y, b〉 satisfies the condition on the right-hand side
(RHS). Hence, we obtain the ≥ part. Next, we consider a pair (µ, y) satisfying
the condition on the RHS. Then, we can show that 〈AT (y)− c, x〉 is greater
than zero for all x ∈ L, by reduction to absurdity. Assume that there exists an
element x ∈ L such that 〈AT (y)− c, x〉 is negative. By choosing a sufficiently
large number t > 0, tx ∈ L, but 〈y, b〉 − 〈AT (y) − c, tx〉 ≤ µ does not hold.
It is a contradiction. This proves the ≤ part.

Let η0
def= maxx∈V1{〈c, x〉|x ∈ L, A(x) = b}. Then (η0, 0) is a point that

lies on the boundary of the convex set {(〈c, x〉, A(x) − b)}x∈L ⊂ R × V2.
Choosing an appropriate y0 ∈ V2 and noting that (1,−y0) ∈ R× V2, we have

1 Our proof follows [397].
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η0 = η0 − 〈y, 0〉 ≥ 〈c, x〉 − 〈y0, A(x)− b〉, ∀x ∈ L.

From this fact we have

η0 ≥ min
(µ,y)∈R×V2

{µ|∃y ∈ V2,∀x ∈ L, 〈y, b〉 − 〈AT (y)− c, x〉 ≤ µ}.

This proves the reverse inequality of (B.1) and completes the proof.

B.2 Proof of Theorem 8.2

We prove this theorem in the following steps: ➀⇒➁ ⇒➂ ⇒➀, ➁⇒➃ ⇒➀.
The proof given here follows from Bhatia [49].

We first show ➀⇒➁ for dimension d by induction. Let t
def= (y1−x1)/(y1−

y2) = (x2 − y2)/(y1 − y2) for d = 2. Since x � y, we have 0 ≤ t ≤ 1. Further,
the relation (

x1
x2

)
=
(

1− t t
t 1− t

)(
y1
y2

)
(B.2)

proves the case for d = 2. In the following proof, assuming that the result
holds for d ≤ n−1, we prove the case for d = n. Any permutation is expressed
by by a product of T transforms. Hence, it is sufficient to show ➁ when
x1 ≥ x2 ≥ . . . ≥ xn and y1 ≥ y2 ≥ . . . ≥ yn. Since x � y, we have
yn ≤ x1 ≤ y1. Choosing an appropriate k, we have yk ≤ x1 ≤ yk−1. When t
satisfies x1 = ty1 + (1 − t)yk, the relation 0 ≤ t ≤ 1 holds. Let T1 be the T
transform among the first and kth elements defined by t. Define

x′ def= (x2, . . . , xn)T , (B.3)

y′ def= (y2, . . . , yk−1, (1− t)y1 + tyk, yk+1, . . . , yn)T . (B.4)

Then, T1y = (x1, y
′). Since x′ � y′ (as shown below), from the assumptions of

the induction there exist T transforms Tf , . . . , T2 such that Tf · · ·T2y
′ = x′.

Therefore, Tf · · ·T2T1y = Tf · · ·T2(x1, y
′) = (x1, x

′) = x, which completes
the proof for this part. We now show that x′ � y′. For an integer m satisfying
2 ≤ m ≤ k − 1, we have

m∑
j=2

xj ≤
m∑

j=2

yj . (B.5)

If k ≤ m ≤ n, then

m∑
j=2

y′
j =

⎛
⎝k−1∑

j=2

yj

⎞
⎠+ (1− t)y1 + tyk +

⎛
⎝ m∑

j=k+1

yj

⎞
⎠

=

⎛
⎝ m∑

j=1

yj

⎞
⎠− ty1 + (t− 1)yk =

m∑
j=1

yj − x1 ≥
m∑

j=1

xj − x1 =
m∑

j=2

xj ,

which shows that x′ � y′.
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Next, we show ➁⇒➂. The product of two double stochastic transition
matrices A1 and A2 is also a double stochastic transition matrix A1A2. Since
a T transform is a double stochastic transition matrix, we obtain ➂.

For proving ➂⇒➀, it is sufficient to show that

k∑
t=1

d∑
j=1

xit,jaj ≤
k∑

j=1

a↓
j

for an arbitrary integer k and a set of k arbitrary integers i1, . . . , ik from
1 to d. This can be shown from the fact that

∑d
j=1

∑k
t=1 xit,j = k and∑k

t=1 xit,j ≤ 1 for each j.
We now show ➁⇒➃. For simplicity, we consider d = 2 and let

B =

(
(y1/y2)2−(x2/x1)(y1/y2)

(y1/y2)2−1
(y1/y2)(x1/x2)−1

(y1/y2)2−1
(x2/x1)(y1/y2)−1

(y1/y2)2−1
(y1/y2)2−(y1/y2)(x1/x2)

(y1/y2)2−1

)
. (B.6)

It can be verified that this is a stochastic transition matrix. Since(
(y1/y2)2−(x2/x1)(y1/y2)

(y1/y2)2−1 x1
(y1/y2)(x1/x2)−1

(y1/y2)2−1 x2

)
=

(y1/y2)x1 − x2

(y1/y2)2 − 1

(
(y1/y2)

1

)
( (x2/x1)(y1/y2)−1

(y1/y2)2−1 x1
(y1/y2)2−(y1/y2)(x1/x2)

(y1/y2)2−1 x2

)
=

(y1/y2)x2 − x1

(y1/y2)2 − 1

(
1

(y1/y2)

)
,

we observe that B1 ◦ x ≈ B2 ◦ x ≈ y.
Let T0 be a T transform defined with respect to t between kth and lth

elements (k < l), and define B1 and B2 as(
b1,k b1,l

b2,k b2,l

)
=

(
(yk/yl)2−(xl/xk)(yk/yl)

(yk/yl)2−1
(yk/yl)(xk/xl)−1

(yk/yl)2−1
(xl/xk)(yk/yl)−1

(yk/yl)2−1
(yk/yl)2−(yk/yl)(xk/xl)

(yk/yl)2−1

)

b1,i =
(yk/yl)xk − xl

(yk/yl)− 1
, b2,i =

(yk/yl)xl − xk

(yk/yl)− 1
if i �= k, l.

Then, B1 ◦ x ≈ B2 ◦ x ≈ y, if x = T0y.
Further, if two stochastic transition matrices B,C satisfy y ≈ (Bj)∗◦x and

z ≈ (Ci)∗ ◦ y for arbitrary integers i and j, then there exists an appropriate
substitution s(j) such that

y ∝ s(j)((Bj)∗ ◦ x),

where we identify the permutation s(j) and the matrix that represents it.
Since s(j)∗ = (s(j))−1,

z ≈ (Ci)∗ ◦ y = s(j)
(
((s(j))−1(Ci)∗) ◦ (s(j))−1y

)
∝ s(j)

(
((s(j))−1(Ci)∗) ◦ (Bj)∗ ◦ x

)
= s(j)

(
(Cis(j))∗ ◦ (Bj)∗ ◦ x

)
= s(j)

(
(Cis(j))∗ ◦ (Bj)∗ ◦ x

)
≈ (Cis(j))∗ ◦ (Bj)∗ ◦ x.
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Therefore,∑
i,j

(Cis(j))∗ ◦ (Bj)∗ =
∑

j

(
∑

i

Cis(j))∗ ◦ (Bj)∗

=
∑

j

(e∗s(j))∗ ◦ (Bj)∗ =
∑

j

e ◦ (Bj)∗ =
∑

j

(Bj)∗ = e.

When we define the matrix D by (Di,j)∗ def= (Cis(j))∗ ◦ (Bj)∗ (note that the
pair i, j refers to one column), this matrix is a stochastic transition matrix
and satisfies

(Di,j)∗ ◦ x = z. (B.7)

Using this and the previous facts, we obtain ➁⇒➃.
Finally, we show ➃⇒➀. It is sufficient to show the existence of a d-

dimensional vector c = (ci) with positive real elements such that

ci ≤ 1,

d∑
i=1

ci = k,

k∑
j=1

yij
≥

k∑
j=1

x↓
j (B.8)

for arbitrary k. For this purpose, we choose k different integers i1, . . . , ik such
that

k∑
j=1

x↓
j =

k∑
j=1

xij
.

For each j, we choose the permutation s(j) and the positive real number dj

such that (Bj)∗ ◦ x = djs(j)y. Note that
∑d

j=1 dj = 1. Since

d∑
j=1

bj,ixi = xi,

we have
k∑

j=1

xij =
d∑

t=1

k∑
j=1

bt,ij xij =
d∑

t=1

k∑
j=1

dt(s(t)y)ij =
d∑

t=1

k∑
j=1

d∑
l=1

dts(t)ij ,lyl.

Since
k∑

j=1

s(t)ij ,l ≤ 1,

d∑
l=1

k∑
j=1

s(t)ij ,l = k,

we obtain ∑
t

k∑
j=1

dts(t)ij ,l ≤ 1,

d∑
l=1

∑
t

k∑
j=1

s(t)ij ,l = k

where we used
∑

t dt = 1. This shows the existence of a vector c = (ci)
satisfying (B.8).
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B.3 Proof of Theorem 8.3

Let ρ be a separable state on HA ⊗ HB . We can choose an appropriate set
of vectors {ui}i in HA and {vi}i in HB such that ρ =

∑
i |ui ⊗ vi〉〈ui ⊗

vi| =
∑

j λj |ej〉〈ej |, where the RHS is the diagonalized form of ρ. From
Lemma A.5 we can take an isometric matrix W = (wi,j) such that ui ⊗ vi =∑

j wi,j

√
λjej . Since W ∗W = I, we have∑

i

w∗
i,jui ⊗ vi =

√
λjej . (B.9)

Similarly, we diagonalize TrB ρ such that TrB ρ =
∑

k λ′
k|fk〉〈fk|. Then, we

can take an isometric matrix W ′ = (w′
i,k) such that ui =

∑
k w′

i,k

√
λ′

kfk.
Substituting this into (B.9), we obtain√

λjej =
∑

i

∑
k

w′
i,kw∗

i,j

√
λ′

kfk ⊗ vi.

Taking the norm on both sides, we have

λj =
∑

k

Dj,kλ′
k, Dj,k

def=

⎛
⎝∑

i,i′
w′

i,kw∗
i,j(w

′
i′,k)∗wi′,j〈vi′ |vi〉

⎞
⎠ .

If we can show that Dj,k is a double stochastic transition matrix, Condition ➂
in Theorem 8.2 implies (λ′

k) � (λj). Since⎛
⎝∑

i,i′
w′

i,kw∗
i,j(w

′
i′,k)∗wi′,j〈vi′ |vi〉

⎞
⎠ =

〈∑
i′

w′
i′,kw∗

i′,jvi′

∣∣∣∣∣∑
i

w′
i,kw∗

i,jvi

〉
≥ 0

and W ′∗W ′ = I, W ∗W = I, we obtain

∑
k

⎛
⎝∑

i,i′
w′

i,kw∗
i,j(w

′
i′,k)∗wi′,j〈vi′ |vi〉

⎞
⎠ =

∑
i,i′

δi,i′w∗
i,jwi′,j〈vi′ |vi〉

=
∑

i

w∗
i,jwi,j = 1.

We may similarly show that
∑

j Dj,k = 1. Hence, Dj,k is a double stochastic
transition matrix.

B.4 Proof of Theorem 8.8 for Mixed States

We show the ≤ part of (8.87) for a general state ρ. Let {EA,i⊗EB,i}i be the
Choi–Kraus representation of an S-TP-CP map κ. Then,
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κ(|ΦL〉〈ΦL|) =
∑

i

(EA,i ⊗ EB,i) |ΦL〉〈ΦL| (EA,i ⊗ EB,i)
∗
.

Now, choose yi such that

p′
i

def= Tr (EA,i ⊗ EB,i) |ΦL〉〈ΦL| (EA,i ⊗ EB,i)
∗

p′
i|yi〉〈yi| = (EA,i ⊗ EB,i) |ΦL〉〈ΦL| (EA,i ⊗ EB,i)

∗
.

From Corollary 8.1 there exists a probabilistic decomposition {(pi, xi)} of ρ
such that

F (κ(|ΦL〉〈ΦL|), ρ) =
∑

i

√
pip′

i|〈xi|yi〉|.

Since the Schmidt rank of yi is at most L,

|〈xi|yi〉| ≤
√

P (xi, L). (B.10)

From the Schwarz inequality,

F (κ(|ΦL〉〈ΦL|), ρ) ≤
∑

i

√
pip′

i

√
P (xi, L)

≤
√∑

i

p′
i

√∑
i

piP (xi, L) =
√∑

i

piP (xi, L). (B.11)

Thus, we obtain the ≤ part of (8.87).
Conversely, if there exists a vector yi with a Schmidt rank of at most L

that satisfies the equality in (B.10) and

p′
i =

piP (xi, L)∑
j pjP (xj , L)

,

the equality in (B.11) holds. Therefore, according to Theorem 8.4, there exists
a one-way LOCC satisfying the RHS of (8.85).

B.5 Proof of Theorem 8.9 for Mixed States

B.5.1 Proof of Direct Part

The second equality in (8.94) holds according to (8.84) and Lemma A.1. We
therefore show the ≤ part of the first equality. Let us first show that

min
(pi,xi)

{∑
i

pi(1− P (xi, [enR]))

∣∣∣∣∣∑
i

pi|xi〉〈xi| = ρ⊗n

}
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converges to zero exponentially for R > Ef (ρ). The convergence of this
expression to zero is equivalent to that of the value inside the √ on the RHS
of (8.87) to one. Hence, we consider the latter quantity, i.e., the value inside
the √ . Choose a decomposition {(pi, xi)} such that R >

∑
i piE(|xi〉〈xi|).

Let ρi
def= TrB |xi〉〈xi|. From (8.88),

∑
i

piP (xi, [eR]) ≤
∑

i

pie
log Tr ρ

1−s
i

−sR

1−s .

In particular, since log Tr(ρi⊗ρj)1−s−2sR
1−s = log Tr ρ1−s

i −sR

1−s +
log Tr ρ1−s

j −sR

1−s , we
obtain ∑

in

pn
inP (xn

in , [enR]) ≤
∑
in

pn
ine

log Tr(ρn
in )1−s−snR

1−s

=
(∑

i

pie
log Tr ρ

1−s
i

−sR

1−s

)n

, (B.12)

where we define xn
in

def= xi1 ⊗ · · · ⊗ xin , ρn
in

def= ρi1 ⊗ · · · ⊗ ρin with respect to
in

def= (i1, . . . , in), and pn is the independent and identical distribution of p.
Further, we obtain

lim
s→0

1
s

log
(∑

i

pie
log Tr ρ

1−s
i

−sR

1−s

)
=

d

ds
log

(∑
i

pie
log Tr ρ

1−s
i

−sR

1−s

)∣∣∣∣∣
s=0

=
∑

i

pi(H(ρi)−R) < 0.

Note that the inside of the logarithmic on the left-hand side (LHS) of the
above equation is equal to 1 when s = 0. Taking an appropriate 1 > s0 > 0,

we have log
(∑

i pie
log Tr ρ

1−s0
i

−s0R

1−s0

)
< 0. Thus, the RHS of (B.12) exponen-

tially converges to zero. Therefore, we obtain E→
c (ρ) ≤ Ef (ρ). Similarly,

E→
c (ρ⊗k) ≤ Ef (ρ⊗k).

Next, we choose a sequence {mn} such that (mn − 1)k ≤ n ≤ mnk with
respect to n. Denote the partial trace of (HA ⊗HB)⊗mnk−n by Cn. Then,

F(ρ⊗mnk, κmn(|ΦLmn
〉〈ΦLmn

|))≥F(ρ⊗n, Cn◦κmn(|ΦLmn
〉〈ΦLmn

|)) (B.13)

for κm, Lm. Therefore, if the LHS of (B.13) converges to zero, then the RHS
also converges to zero. Since

lim
1
n

log Lmn =
1
k

lim m→∞
1
m

log Lm,

Cn is a local quantum operation, and E→
c (ρ⊗k) ≤ Ef (ρ⊗k), and we have
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E→
c (ρ) ≤ E→

c (ρ⊗k)
k

≤ Ef (ρ⊗k)
k

.

Considering infk, we obtain the ≤ part of (8.94).

B.5.2 Proof of Converse Part

Let us first consider the following lemma as a preparation.

Lemma B.1 Let p be a probability distribution p = {pi}di=1. Then,
d∑

i=L+1

p↓
i ≥

H(p)− log L− log 2
log(d− L)− log L

. (B.14)

Proof. By defining the double stochastic transition matrix A = (ai,j)

ai,j
def=

⎧⎨
⎩

1
L if i, j ≤ L
1

d−L if i, j > L

0 otherwise,

the image Ap satisfies (Ap)i =

{
P (p,L)

L if i ≤ L
1−P (p,L)

d−L if i > L
. From Condition ➂ in

Theorem 8.2 we have Ap � p. Therefore,

H(p) ≥ H(Ap) = −P (p, L) log
P (p, L)

L
− (1− P (p, L)) log

1− P (p, L)
d− L

.

Since the binary entropy h(x) is less than log 2, we have

P c(p, L)(log(d− L)− log L) + log 2
≥P c(p, L)(log(d− L)− log L) + h(P (p, L)) ≥ H(p)− log L.

We thus obtain (B.14).

We now show the ≥ part of Theorem 8.9 by using Lemma B.1. Consider
the sequence of S-TP-CP maps {κn} and the sequence of maximally entangled
states {|ΦLn〉} satisfying

F (κn(|ΦLn
〉〈ΦLn

|), ρ⊗n)→ 1. (B.15)

Combining (8.86) and (8.87) in Theorem 8.8 and Lemma B.1, we have

1− F 2(κn(|ΦLn〉〈ΦLn‖), ρ⊗n)

≥ min
(pi,xi)

{∑
i

piP
c(xi, Ln)

∣∣∣∣∣∑
i

pi|xi〉〈xi| = ρ⊗n

}

≥ min
(pi,xi)

{∑
i

pi
E(|xi〉〈xi|)− log Ln − log 2

log(dn − Ln)− log Ln

∣∣∣∣∣∑
i

pi|xi〉〈xi| = ρ⊗n

}

=
Ef (ρ⊗n)− log Ln − log 2
log(dn − Ln)− log Ln

=
Ef (ρ⊗n)

n − log Ln

n − log 2
n

log(dn−Ln)
n − log Ln

n

.
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Using (B.15) and Lemma A.1, we obtain

0 = lim
(

log(dn − Ln)
n

− log Ln

n

)(
1−

(
F (κn(|ΦLn

〉〈ΦLn
|), ρ⊗n)

)2)
≥ lim

(
Ef (ρ⊗n)

n
− log Ln

n
− log 2

n

)
= lim

Ef(ρ⊗n)
n

−lim
log Ln

n
.

Thus, we obtain

lim
Ef (ρ⊗n)

n
≤ lim

log Ln

n
≤ lim

log Ln

n
≤ Ec(ρ),

which completes the proof of Theorem 8.9.

B.6 Proof of Theorem 9.3

First we prove Lemma 9.1.

Proof of Lemma 9.1.
S⇒A: From (9.26), S implies (9.30), i.e., A.
S⇒L: From (9.27),

min
ρ1,2:Tr ρ1,2(X1+X2)≤K

f1,2(ρ1,2)

≥ min
ρ1,2:Tr ρ1,2(X1+X2)≤K

f1(ρ1) + f2(ρ2)

= min
ρ1,ρ2:Tr ρ1X1+Tr ρ2X2≤K

f1(ρ1) + f2(ρ2)

= min
0≤λ≤1

min
ρ1:Tr ρ1X1≤λK

f1(ρ1) + min
ρ2:Tr ρ2X2≤(1−λ)K

f2(ρ2).

On the other hand, since f1(ρ1) + f2(ρ2) ≥ f1,2(ρ1 ⊗ ρ2), we have

min
ρ1,ρ2:Tr ρ1X1+Tr ρ2X2≤K

f1(ρ1) + f2(ρ2)

≥ min
ρ1,ρ2:Tr ρ1X1+Tr ρ2X2≤K

f1,2(ρ1 ⊗ ρ2)

≥ min
ρ1,2:Tr ρ1,2(X1+X2)≤K

f1,2(ρ1,2).

Hence, we obtain (9.29).
L⇒C: Choose ρ1,2

0 such that Tr ρ1,2
0 (X1 + X2) − f1,2(ρ1,2

0 ) =
maxρ1,2 Tr ρ1,2(X1+X2)−f1,2(ρ1,2). Then, the real number K

def= Tr ρ1,2
0 (X1+

X2) satisfies
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max
ρ1,2

Tr ρ1,2(X1 + X2)− f1,2(ρ1,2)

= max
ρ1,2:Tr ρ1,2(X1+X2)≥K

Tr ρ1,2(X1 + X2)− f1,2(ρ1,2)

= K + max
ρ1,2:Tr ρ1,2(X1+X2)≥K

−f1,2(ρ1,2)

= K + max
ρ1,ρ2:Tr ρ1X1+Tr ρ2X2≥K

−f1(ρ1)− f2(ρ2)

= max
ρ1,ρ2:Tr ρ1X1+Tr ρ2X2≥K

Tr ρ1X1 − f1(ρ1) + Tr ρ2X2 − f2(ρ2)

≤ max
ρ1,ρ2

Tr ρ1X1 − f1(ρ1) + Tr ρ2X2 − f2(ρ2).

Conversely, from (9.26),

max
ρ1,2

Tr ρ1,2(X1 + X2)− f1,2(ρ1,2)

≥ max
ρ1,ρ2

Tr ρ1,2(X1 + X2)− f1,2(ρ1 ⊗ ρ2)

≥ max
ρ1,ρ2

Tr ρ1X1 − f1(ρ1) + Tr ρ2X2 − f2(ρ2).

Hence, we obtain (9.28).
C⇒S: For any ρ1,2

0 , from Lemma A.6, we choose Hermitian matrices X1

and X2 such that Tr ρi
0X

i − f i(ρi
0) = maxρi Tr ρiXi − f i(ρi). Hence,

2∑
i=1

Tr ρi
0X

i − f i(ρi
0) =

2∑
i=1

max
ρi

Tr ρiXi − f i(ρi)

= max
ρ1,2

Tr ρ1,2(X1 + X2)− f1,2(ρ1,2) ≥ Tr ρ1,2
0 (X1 + X2)− f1,2(ρ1,2

0 ).

Since Tr ρ1,2
0 (X1 + X2) = Tr ρ1

0X
1 + Tr ρ2

0X
2, we have (9.27).

Proof of HM⇒HC. First, we assume that there exists a channel κX,p for
any channel κ, any positive semi-definite Hermitian matrix X on the input
system HA, and any probability p, such that

Cc(κX,p) = max
ρ

(1− p)(χκ(ρ)) + p Tr Hρ, (B.16)

and

Cc(κ1
X1,p ⊗ κ2

X2,p)

= max
ρ

(
(1− p)2χκ1⊗κ2(ρ) + (1− p)p(χκ1(ρ1) + Tr X2ρ2)

+ (1− p)p(χκ2(ρ2) + Tr X1ρ1) + p2(Tr X1ρ1 + Tr X2ρ2)
)
. (B.17)

The channel κX,p is called Shor Extension [374] of κ. Apply Condition HM
to the channel κ1

1
p X1,p

⊗ κ2
1
p X2,p

, then we have
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max
ρ1,2

(
(1− p)2χκ1⊗κ2(ρ1,2) + (1− p)p(χκ1(ρ1) + Tr

1
p
X2ρ2)

+ (1− p)p(χκ2(ρ2) + Tr
1
p
X1ρ1) + p2(Tr

1
p
X1ρ1 + Tr

1
p
X2ρ2)

)
≤ max

ρ1
(1− p)(χκ1(ρ1) + Tr

1
p
X1ρ1) + max

ρ2
(1− p)(χκ2(ρ2) + Tr

1
p
X2ρ2).

Taking the limit p→ 0, we obtain

max
ρ1,2

χκ1⊗κ2(ρ1,2) + Tr(X1 + X2)ρ1,2

≤ max
ρ1

(χκ1(ρ1) + Tr X1ρ1) + max
ρ2

(χκ2(ρ2) + Tr X2ρ2),

which implies Condition HC.
Next, we define the channel κX,p with the input system HA ⊗ C

k, where
k ≥ ‖X‖, and check (B.17). First, we generate one-bit random number X
with probability P0 = 1 − p and P1 = p. When X = 0, the output state is
κ(TrCk ρ) for the input state ρ. Otherwise, we perform the measurement of
the spectral decomposition of X, and send the receiver the state κ̃y(TrA ρ)
depending on its measured data y, which is eigenvalue of X. Here, we defined
the channel κ̃y and the stochastic transition matrix Qj

l such that

κ̃y(σ) =
∑

l

∑
j

Qj
l |ul〉〈ul|〈uj |σ|uj〉, y = Cc(Q) = I(pmix, Q).

In this case, we assume that the receiver received the information X and y.
Then, the relation (B.16) holds. From these discussions, we can check the
equation (B.17).

Proof of EM⇒EC. We define the channel κ̃H,p with the input system HA

as follows First, we generate one-bit random number X with probabilities
P0 = 1 − p and P1 = p. When X = 0, the output state is κ(TrCk ρ) for the
input state ρ. When X = 1, we perform the measurement of the spectral
decomposition of H, and obtain the eigenvalue y of H. Then, the output
state is ρy, where ρy satisfies H(ρy) = y. In this case, the receiver is assumed
to receive the information X and y. Then, the output entropy of the channel
κ̃H,p can be calculated as

H(κ̃X,p(ρ)) = (1− p)H(κ(ρ)) + p Tr Xρ + h(p)− pH(PEX
ρ ).

Further,

H(κ̃1
X1,p ⊗ κ̃2

X2,p(ρ))

= (1− p)2(H(κ1 ⊗ κ2(ρ))) + p(1− p)(TrX1ρ1 + H(κ2(ρ2)))

+ p(1− p)(TrX2ρ2 + H(κ1(ρ1))) + p2(Tr X1ρ1 + Tr X2ρ2) + 2h(p)

− pH(PEX1

ρ1 )− pH(PEX2

ρ2 ).
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Condition EM implies

min
ρ1,2

Hκ̃1
1
p

X1,p
⊗κ̃2

1
p

X2,p

(ρ1,2) = min
ρ1

Hκ̃1
1
p

X1,p

(ρ1) + min
ρ2

Hκ̃2
1
p

X2,p

(ρ2).

Since H(PEX2

ρ2 ) ≤ log dAdB , taking the limit p→ 0, we have

H(κ̃ 1
p X,p, ρ)→ Hκ(ρ) + Tr Xρ

Hκ̃1
λ
p

X1,p
⊗κ̃2

1
p

X2,p

(ρ)→ Hκ1⊗κ2(ρ) + (TrX1ρ1 + Tr X2ρ2).

Since the set of density matrices is compact, we obtain

min
ρ1,2

Hκ1⊗κ2(ρ1,2) + Tr(X1 + X2)ρ1,2

= min
ρ1,ρ2

(Hκ1(ρ1) + Hκ2(ρ2) + Tr X1ρ1 + Tr X2ρ2,

which implies EC.

Proof of FA⇒FS. See Pomeransky [350].

B.7 Proof of Lemma 9.4

In this section, we prove Lemma 9.4 from Lemma B.2 given below. For this
proof, we use arguments similar to that in the proof of Theorem 9.7.

Following these arguments, we can choose ML elements
{xm,l}(m,l)∈{1,... ,M}×{1,... ,L} of X and a POVM {Ym,l} (the elements xm,l

are not necessarily different from each other) such that

8
ML

∑
m,l

εB,m,l +
1
M

M∑
m=1

εE,m ≤ (RHS of (9.83))

εB,m,l
def= 1− Tr WB,xm,j Ym,l, εE,m

def=

∥∥∥∥∥ 1
L

L∑
l=1

WE,xm,l
−
∑

x

pxWE,x

∥∥∥∥∥ .

(B.18)

In what follows, we prove Lemma 9.4 using the above argument and
Lemma B.2. The chosen element xm,l may in general contain some degen-
eracies. However, to apply Lemma B.2, no degeneracies should be present.
In order to resolve this problem, we define new ML elements x′

m,l satisfy-
ing the following conditions: (1) the elements x′

m,l have no degeneracies. (2)
{xm,l} ⊂ {x′

m,l}. (3) For any element xm,l, there exits an index (m1, l1) such
that xm1,l1 = x′

m1,l1
among indices (m1, l1) satisfying xm1,l1 = xm,l. The

POVM {Ym,l} is also rewritten such that
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Y ′
m,l

def=

{∑
xm′,l′=xm,l

Ym′,l′ xm,l = x′
m,l

0 xm,l �= x′
m,l.

Denoting the error probability by ε′
B,m,l in a manner similar to (B.18), we

have ∑
m,l

εB,m,l =
∑
m,l

ε′
B,m,l.

The number of elements in {xm,l �= x′
m,l} is less than

∑
m,l ε

′
B,m,l. Therefore,

1
M

M∑
m=1

∥∥∥∥∥ 1
L

L∑
l=1

WE
xm,l
− 1

L

L∑
l=1

WE
x′

m,l

∥∥∥∥∥ ≤ 2
ML

∑
m,l

εB,m,l.

Define ε′
E,m with respect to the pair {x′

m,l} in a manner similar to (B.18).
Then, we have

6
ML

∑
m,l

ε′
B,m,l +

1
M

M∑
m=1

ε′
E,m ≤

8
ML

∑
m,l

εB,m,l +
1
M

M∑
m=1

εE,m

≤ (RHS of (9.83)).

Hence, Lemma 9.4 can be obtained by applying Lemma B.2 to ux′
m,l

.

Lemma B.2 Let {uA
m,l}(m,l)∈{1,... ,M}×{1,... ,L} be ML mutually orthogonal

normalized vectors in HA, UB,E
A be an isometric map from HA to HB ⊗HE,

Y = {Ym,l}(m,l)∈{1,... ,M}×{1,... ,L} be a POVM in HB, and κ be a TP-CP
map from HA to HB defined according to UB,E

A . We define

εB
m,l

def= 1− Tr UB,E
A |uA

m,l〉〈uA
m,l|(U

B,E
A )∗(Ym,l ⊗ IE)

εE
m

def=

∥∥∥∥∥
(

1
L

L∑
l=1

WE
m,l

)
−WE

∥∥∥∥∥
1

, WE
m,l

def= TrB UB,E
A |uA

m,l〉〈uA
m,l|(U

B,E
A )∗

with respect to a state WE in HE.
Now let HC

def= 〈uC
1 , . . . , uC

M 〉 and HD
def= 〈uD

1 , . . . , uD
M 〉 be spaces with

a dimension of M . When we choose an encoding τα from HC to HA and
a decoding να from HB to HD, depending on the random variable α =
(α1, . . . , αM ) by following the method below, we have

1− EαFe(ρmix,C , να ◦ κ ◦ τα) ≤ 6
ML

∑
m,l

εB
m,l +

1
M

∑
M

εE
m, (B.19)

where αm (m = 1, . . . , M) are independent random variables subject to the
uniform distribution on the integers 0, . . . , L− 1, and HC and HD are iden-
tified due to the natural correspondence uC

m �→ uD
m.
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The encoder τα and the decoder να are constructed as follows. Define the
isometric map UA

C,α from HC to HA by

UA
C,αuC

m
def=

(
uA

m,α
def=

L∑
l=1

e(2lαmπi)/LuA
m,l

)
.

We also define τα according to τα(ρ) def= UA
C,αρ(UA

C,α)∗. Next, we choose the
space HB′ , containing HB, to be sufficiently large such that the purification û
of WE can be taken as an element of HE⊗HB′ . We also choose the isometric
map UB,D

B from HB to HB ⊗HD, the unitary matrix UB′
m,α in HB′ , and the

unitary matrix UB′,D
α in HB′ ⊗HD such that

Tr ρYm = 〈uD
m|U

B,D
B ρ(UB,D

B )∗|uD
m〉, Ym

def=
L∑

l=1

Ym,l, (B.20)

UB′
m,α

def= argmax
U

|〈uD
m ⊗ (U∗ ⊗ IE)û|UB,D

B UB,E
A uA

m,α〉|,

UB′,D
α

def=
M∑

m=1

|uD
m〉〈uD

m| ⊗ UB′
m,α.

The first condition (B.20) is the condition that UB,D
B gives a Nǎımark

extension of {Ym}Mm=1. We choose UB′
m,α such that 〈uD

m ⊗ ((UB′
m,α)∗⊗

IE)û|UB,D
B UB,E

A uA
m,α〉 is a nonnegative real number. Let να be given by

να(ρ) def= TrB′ UB′,D
α UB,D

B ρ(UB,D
B )∗(UB′,D

α )∗. (B.21)

This discussion gives the construction of the encoder τα and the decoder να.

Proof. Let HR
def= 〈uR

1 , . . . , uR
M 〉 be the environment of HC . Then,

EαFe(ρmix,C , να ◦ κ ◦ τα)

= EαF

(
1√
M

M∑
m=1

uR
m ⊗ uC

m, να ◦ κ ◦ τα

(
1√
M

M∑
m=1

uR
m ⊗ uC

m

))

≤ F

((
1√
M

M∑
m=1

uR
m ⊗ uC

m

)
⊗ û,

1√
M

M∑
m=1

uR
m ⊗ UB′,D

α UB,D
B UB,E

A uA
m,α

)

=

∣∣∣∣∣
〈

1√
M

M∑
m′=1

uR
m′ ⊗ uC

m′ ⊗ û

∣∣∣∣∣ 1√
M

M∑
m=1

uR
m ⊗ UB′,D

α UB,D
B UB,E

A uA
m,α

〉∣∣∣∣∣
=

∣∣∣∣∣ 1
M

M∑
m=1

〈
uC

m ⊗ û
∣∣∣UB′,D

α UB,D
B UB,E

A uA
m,α

〉∣∣∣∣∣
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=
1
M

M∑
m=1

〈
uC

m ⊗ û
∣∣∣UB′,D

α UB,D
B UB,E

A uA
m,α

〉

=
1
M

M∑
m=1

F (UB,D
B UB,E

A uA
m,α, uC

m ⊗ (UB′
m,α)∗û). (B.22)

Next, we evaluate 1− F (UB,D
B UB,E

A uA
m,α, uC

m ⊗ (UB′
m,α)∗û). Note that the re-

lation b2(ρ, σ) = 1− F (ρ, σ) will be used frequently in what follows. For this
evaluation, we choose a sufficiently large space HB′′ containing HB′ and a
PVM Em = {Em

l }Ll=1 on HB′′ such that

Tr ρYm,l(= Tr
√

Ymρ
√

Ym(
√

Ym)−1ρYm,l(
√

Ym)−1)

= Tr(|uD
m〉〈uD

m| ⊗ Em
l )UB,D

B ρ(UB,D
B )∗(

= Tr(ID ⊗ Em
l )(|uD

m〉〈uD
m| ⊗ IB)UB,D

B ρ(UB,D
B )∗(|uD

m〉〈uD
m| ⊗ IB)

)
.

Define a normalized vector uB′′,E
m,l in HB′′,E by

uD
m ⊗ uB′′,E

m,l
def=

1√
1− εE

m,l

(|uD
m〉〈uD

m| ⊗ Em
l )UB,D

B UB,E
A uA

m,l

and a unitary UB′′
m,α by

UB′′
m,α

def= argmax
U

F

(
1√
L

L∑
l=1

e(2lαmπi)/LuD
m ⊗ uB′′,E

m,l , uC
m ⊗ (U)∗û

)
.

Then,

b2(UB,D
B UB,E

A uA
m,α, uC

m ⊗ (UB′
m,α)∗û)

≤ b2(UB,D
B UB,E

A uA
m,α, uC

m ⊗ (UB′′
m,α)∗û)

≤ 2b2

(
1√
L

L∑
l=1

e(2lαmπi)/LuD
m ⊗ uB′′,E

m,l , uC
m ⊗ (UB′′

m,α)∗û

)

+ 2b2

(
UB,D

B UB,E
A uA

m,α,
1√
L

L∑
l=1

e(2lαmπi)/LuD
m ⊗ uB′′,E

m,l

)
. (B.23)
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Now we evaluate the first term in (B.23). Since

TrB′′

∣∣∣∣∣ 1√
L

L∑
l=1

e(2lαmπi)/LuB′′,E
m,l

〉〈
1√
L

L∑
l′=1

e(2l′αmπi)/LuB′′,E
m,l′

∣∣∣∣∣
= TrB′′

L∑
l′′=1

(Em
l′′ ⊗ IE)

(
1
L

L∑
l=1

L∑
l′=1

e(2(l−l′)αmπi)/L
∣∣∣uB′′,E

m,l a
〉〈

uB′′,E
m,l′

∣∣∣
)

(Em
l′′ ⊗ IE)

= TrB′′

L∑
l=1

1
L

∣∣∣uB′′,E
m,l

〉〈
uB′′,E

m,l

∣∣∣ ,
from the definition of UB′′

m,α, we obtain

b2

(
1√
L

L∑
l=1

e(2lαmπi)/LuD
m ⊗ uB′′,E

m,l , uC
m ⊗ (UB′′

m,α)∗û

)

= b2

(
1√
L

L∑
l=1

e(2lαmπi)/LuB′′,E
m,l , (UB′′

m,α)∗û

)

= b2

(
TrB′′

L∑
l=1

1
L

∣∣∣uB′′,E
m,l

〉〈
uB′′,E

m,l

∣∣∣ , WE

)

≤ 2b2
(
TrB′′

L∑
l=1

1
L

∣∣∣uB′′,E
m,l

〉〈
uB′′,E

m,l

∣∣∣ ,
L∑

l=1

1
L

TrB,D

∣∣∣UB,D
B UB,E

A uA
m,l

〉〈
UB,D

B UB,E
A uA

m,l

∣∣∣)

+ 2b2

(
L∑

l=1

1
L

WE
m,l, WE

)
, (B.24)

where we use Lemma 8.2 and the fact that TrB,D

∣∣∣UB,D
B UB,E

A uA
m,l

〉
〈
UB,D

B UB,E
A uA

m,l

∣∣∣ = WE
m,l. For the second term in (B.24), inequality (5.42)

yields

b2

(
L∑

l=1

1
L

WE
m,l, WE

)
≤ 1

2

∥∥∥∥∥
L∑

l=1

1
L

WE
m,l −WE

∥∥∥∥∥
1

≤ 1
2
εE
m. (B.25)
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The first term in (B.24) is evaluated as

b2
(
TrB′′

L∑
l=1

1
L

∣∣∣uB′′,E
m,l

〉〈
uB′′,E

m,l

∣∣∣ ,
L∑

l=1

1
L

TrB,D

∣∣∣UB,D
B UB,E

A uA
m,l

〉〈
UB,D

B UB,E
A uA

m,l

∣∣∣)

≤
L∑

l=1

1
L

b2
(
TrB′′

∣∣∣uB′′,E
m,l

〉〈
uB′′,E

m,l

∣∣∣ ,
TrB′′,D

∣∣∣UB,D
B UB,E

A uA
m,l

〉〈
UB,D

B UB,E
A uA

m,l

∣∣∣)
≤

L∑
l=1

1
L

b2
(
uD

m ⊗ uB′′,E
m,l , UB,D

B UB,E
A uA

m,l

)

=
L∑

l=1

1
L

(
1−

√
1− εB

m,l

)
≤

L∑
l=1

1
L

εB
m,l, (B.26)

where we use the fact that TrB′′

∣∣∣uB′′,E
m,l

〉〈
uB′′,E

m,l

∣∣∣ = TrB′′,D

∣∣∣uD
m ⊗ uB′′,E

m,l

〉
〈
uD

m ⊗ uB′′,E
m,l

∣∣∣. The second term of (B.23) can be evaluated as

EαF

(
UB,D

B UB,E
A uA

m,α,

L∑
l=1

e(2lαmπi)/L

√
L

uD
m ⊗ uB′′,E

m,l

)

= Eα

〈
L∑

l=1

e(2lαmπi)/L

√
L

UB,D
B UB,E

A uA
m,l,

L∑
l=1

e(2lαmπi)/L

√
L

uD
m ⊗ uB′′,E

m,l

〉

=
1
L

L∑
l=1

L∑
l′=1

(Eαe(2(l−l′)αmπi)/L)
〈
UB,D

B UB,E
A uA

m,l′ , u
D
m ⊗ uB′′,E

m,l

〉

=
1
L

L∑
l=1

〈UB,D
B UB,E

A uA
m,l, u

D
m ⊗ uB′′,E

m,l 〉

=
1
L

L∑
l=1

〈
UB,D

B UB,E
A uA

m,l,
1√

1− εE
m,l

(|uD
m〉〈uD

m| ⊗ Em
l )UB,D

B UB,E
A uA

m,α

〉

=
1
L

L∑
l=1

√
1− εE

m,l ≥
1
L

L∑
l=1

(1− εE
m,l). (B.27)

Combining (B.23)–(B.27) with (B.22), we obtain (B.19).
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B.8 Proof of Lemma 10.3

We first prove the following lemma.

Lemma B.3 A visible encoder may be represented by a map from X to S(K).
Consider the convex combination of codes T and T ′:

(λT + (1− λ)T ′)(x) def= λT (x) + (1− λ)T ′(x), 0 < ∀λ < 1.

Then, the set of visible encoders is a convex set, and the set of extremal points
(see Sect. A.4 for the definition of an extremal point) is equal to

{T |T (x) is a pure state ∀x ∈ X } . (B.28)

Proof. When T (x) is a pure state for every input x, T is therefore an
extremal point because it is impossible to represent the encoder T as a convex
combination of other encoders. Hence, to complete the proof, it is sufficient
to show that an arbitrary visible encoder T (x) =

∑
jx

sjx |φjx〉〈φjx | can be
represented as a convex combination of encoders satisfying the condition in
(B.28). Define a visible encoder T (j1, j2, . . . , jn) by

T (j1, j2, . . . , jn|i) = |φjx〉〈φjx |.

Then, this encoder belongs to the set (B.28). Since T =
∑

j1,j2,... ,jn
sj1sj2 · · · sjn

T (j1, j2, · · · , jn), the proof is completed.

We also require the following lemma for the proof of Lemma 10.3. This
lemma is equivalent to Theorem 8.3, which was shown from the viewpoint of
entanglement in Sect. 8.4.

Lemma B.4 Let ρ ∈ S(HA ⊗HB) be separable. Then,

max{Tr PρA|P : Projection in HA with rank k}
≥ max{Tr Pρ|P : Projection in HA ⊗HB with rank k}

holds for any integer k.

Proof of Lemma 10.3. According to Lemma B.3, it is sufficient to show
(10.22) for a visible encoder T in (B.28). From Condition ➅ in Theorem 5.1,
there exist a spaceH′ with the same dimension ofH, a pure state ρ0 inH′⊗H,
and a unitary matrix U in K⊗H′⊗H such that ν(ρ) = TrK,H′ U(ρ⊗ ρ0)U∗,
and the state

ρx
def=

(Wx ⊗ I) U (T (x)⊗ ρ0) U∗ (Wx ⊗ I)
Tr U (T (x)⊗ ρ0) U∗ (Wx ⊗ I)

∈ S(K ⊗H⊗H′)

is a pure state. Since UT (x)⊗ ρ0U
∗ is a pure state and (Wx ⊗ I) is a projec-

tion, we have



B.8 Proof of Lemma 10.3 381

Tr ν(T (x))Wx =TrUT (x)⊗ρ0U
∗ (Wx ⊗ I)=TrU(T (x)⊗ρ0) U∗ρx. (B.29)

Since TrK,H′ ρx = Wx, we may write ρx = Wx ⊗ σx by choosing an appro-

priate pure state σx ∈ S(K ⊗ H′). Hence, the state ρp
def=

∑
i∈X p(x)ρx =∑

x∈X p(x)Wx ⊗ σx is separable and satisfies Wp = TrH,K′ ρp. Since IK ≥
T (x), we have U (IK ⊗ ρ0) U∗ ≥ U (T (x)⊗ ρ0) U∗. Thus, from (B.29) we
have ∑

x∈X
p(x) Tr ν(T (x))Wx =

∑
x∈X

p(x) TrH TrK⊗H′ U (T (x)⊗ ρ0) U∗ρx

≤
∑
x∈X

p(x) Tr U (IK ⊗ ρ0) U∗ρx = TrU (IK ⊗ ρ0) U∗ρp. (B.30)

According to I ≥ U (IK ⊗ ρ0) U∗ ≥ 0 and TrU (IK ⊗ ρ0) U∗ = Tr IK =
dimK, we obtain

Tr U (IK ⊗ ρ0) U∗ρp ≤ max
{

Tr Pρp

∣∣∣∣P : Projection in K ⊗H⊗H′,
rankP = dimK

}
≤ max{Tr PWp|P : Projection in H, rankP = dimK}. (B.31)

(B.31) may be obtained from Lemma B.4 and the separability of ρp. The
projection P on H satisfies

Tr(Wp − a)P ≤ Tr(Wp − a){Wp − a ≥ 0}.

If the rank of P is dimK (i.e., if TrP = dimK), then

Tr WpP ≤ a dimK + Tr Wp{Wp − a ≥ 0}. (B.32)

From (B.30)–(B.32),

1− ε(Ψ) =
∑
x∈X

p(x) Tr ν(T (x))Wx

≤ max{Tr PWp|P : Projection in H, rankP = dimK}
≤ a dimK + Tr Wp{Wp − a ≥ 0}.

We therefore obtain (10.22).
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Hints and Brief Solutions to Exercises

Exercise 1.1. Use the fact that the discriminant of 〈u + rcv|u + rcv〉
concerning r is negative.
Exercise 1.3. Note that XT =

∑
i,j xi,j |ui〉〈uj |. Show that 〈x|Xx〉 =

〈x|XT x〉 ≥ 0, where x =
∑

i xiui and x =
∑

i xiui.
Exercise 1.4. Consider the derivative of the product of the matrix ele-
ments.
Exercise 1.13. d: Take the partial trace on A or B.
Exercise 1.19. A matrix cannot be semipositive definite if its determinant
is negative.
Exercise 1.23. Show Tr{Y ≥ 0}X{Y ≥ 0} ≥ Tr{Y ≥ 0}Y {Y ≥ 0} and
Tr{Y < 0}X{Y < 0} ≥ −Tr{Y < 0}Y {Y < 0}.
Exercise 2.2. Consider the case PY (1) = λ, PY (0) = 1 − λ, PX|Y =1 =
p, PX|Y =0 = p′.
Exercise 2.6. Apply a stochastic transition matrix of rank 1 to Theo-
rem 2.1.
Exercise 2.8. Use the fact that

∑
j

∑
i Qi

j |pi− qi| ≥
∑

j |
∑

i Qi
j(pi− qi)|.

Exercise 2.9. Consider the x ≥ y and x < y cases separately.
Exercise 2.10. a: Use |pi−qi| = |

√
pi−
√

qi||
√

pi +
√

qi|. b: Use pi +qi ≥
2
√

pi
√

qi.
Exercise 2.11. Assume that the datum i generates with the probability
distribution pi. Apply Jensen’s inequality to the random variable

√
qi/pi and

the convex function − log x.

Exercise 2.13. Check that φ′(s|p‖q) =
∑

i p1−s
i qs

i (log qi − log pi)∑
i p1−s

i qs
i

.

Exercise 2.14. Check that φ′′(s|p‖q) =

(
∑

i p1−s
i qs

i )(
∑

i p1−s
i qs

i (log qi − log pi)2)− (
∑

i p1−s
i qs

i (log qi − log pi))2

(
∑

i p1−s
i qs

i )2
.

Next, use Schwarz’s inequality between two vectors 1 and (− log pi + log qi).
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Exercise 2.18. Consider the spectral decomposition M of X and apply
Jensen’s inequality to PM

ρ .

Exercise 2.21. Note that 2(x2 + y2) ≥ (x + y)2.

Exercise 2.22. b: Take the average by integrating between [0, 2π] for
each θi. Note that 〈u|v〉 is continuous for each θi.

Exercise 2.24. d: Use Schwarz’s inequality with respect to the inner
product TrXY ∗ with two vectors ρ(1−s)/2(log σ−log ρ)σs/2 and ρ(1−s)/2σs/2.

Exercise 2.25. a: Use the Schwarz inequality. c: Choose U such that
|ρ1/2σ1/2| = Uρ1/2σ1/2. Note that |Tr Uρ1/2Miσ

1/2| ≥ Tr Uρ1/2Miσ
1/2.

Exercise 2.26. Note that the spectral decomposition
∑

i λMi of ρ1/2U∗σ−1/2

satisfies M
1/2
i σ1/2 = λiM

1/2
i ρ1/2U∗.

Exercise 2.27. b: See the hint for Exercise 2.26.

Exercise 2.31. Use the approximation√
pθ+ε(ω) ∼=

√
pθ(ω)

√
1 + lθ(ω)ε + 1

2
d2pθ(ω)

dθ2 ε2.

Exercise 2.34. c: Use dθ
dη = Jη. g: Use the uniqueness of the solution of

the differential equation.

Exercise 2.35. D(qηj=Xj(ω)‖pθ′)−D(qηj=Xj(ω)‖pθ)
=
∑

ω′ qηj=Xj(ω)(ω′)
((

log qηj=Xj(ω)(ω′)− log pθ′(ω′)
)

−
(
log qηj=Xj(ω)(ω′)− log pθ(ω′)

))
=
∑

ω′ qηj=Xj(ω)(ω′) (log pθ(ω′)− log pθ′(ω′))

=
∑

ω′ qηj=Xj(ω)(ω′)
(∑

i(θ
i − θ′i)Xi(ω′) + µ(θ′)− µ(θ′)

)
=
(∑

i(θ
i − θ′i)Xi(ω) + µ(θ′)− µ(θ′)

)
= log pθ(ω)− log pθ′(ω).

Exercise 2.36. Show that pθ(ω)
dθ = 0 if and only if η(θ) = X(ω).

Exercise 2.37. Combine (2.9) and (2.77).

Exercise 2.38. The case of n ≥ m can be obtained from n, n−1, . . . , m+
1 ≥ m. The n < m case may be obtained from 1

m , 1
m−1 , . . . , 1

n+1 ≤
1
n .

Exercise 2.41. o: Replace H(p) and ψ(s) with −D(q‖p′) and φ(s|p‖p′),
respectively.

Exercise 3.1. Note that Tr |X| is equal to the sum of the absolute values
of the eigenvalues of X.

Exercise 3.3. ‖ρmix − ρ‖1 = 2 Tr(ρmix − ρ){ρmix − ρ ≥ 0}. Hence, 2 −
‖ρmix − ρ‖1 = 2 − 2 Tr(ρmix − ρ){ρmix − ρ ≥ 0} ≤ 2 − 2 Tr ρmix{ρmix − ρ ≥
0} = 2 Tr ρmix{ρmix − ρ < 0} ≤ 2 Tr ρmix{0 < ρ} = 2 rank ρ

d .

Exercise 3.4.
∑k

i=1
1
k Tr ρiMi ≤

∑k
i=1

1
k Tr Mi = 1

k Tr
∑k

i=1 Mi

= 1
k Tr I = d

k . Further,
∑k

i=1
1
k Tr ρiMi ≤

∑k
i=1

1
k‖Mi‖1‖ρi‖ = 1

k maxi′

‖ρi′‖
∑k

i=1 ‖Mi‖1 = 1
k maxi′ ‖ρi′‖

∑k
i=1 Tr Mi = d

k maxi ‖ρi‖.
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Exercise 3.5. Use Cramér’s theorem with X = − log p(ω)
p̄(ω) , θ = s, x =

0, and show that lim −1
n log pn

{
−1
n log

(
pn(xn)
p̄n(xn)

)
≥ 0

}
= maxs≥0−φ(s) and

lim −1
n log p̄n

{
−1
n log

(
pn(xn)
p̄n(xn)

)
≤ R

}
= maxs≤1−φ(s).

Exercise 3.9. Use the convexity of φ(s) and the symmetry φ(s) = φ(1−s).

Exercise 3.11. a: For the derivations of (3.20) and (3.21), substitute θ = s

and X = − log
(

p(x)
p̄(x)

)
in (2.117) and (2.119), respectively. For the derivation

of (3.22), substitute θ = s − 1 X = − log
(

p(x)
p̄(x)

)
in (2.119). e: Lemma 3.1

guarantees that the optimal test is always a likelihood test. When R ≤ φ′(sr),
(3.22) ≥ r, and when R = φ′(sr), (3.20) = sup0≤s≤1

−sr−φ(s|p‖p̄)
1−s .

Exercise 3.12.

D
(

PMn

ρ⊗n

∥∥∥PMn

σ⊗n

)
=
∑
ωn

(
n∏

k=1

Tr Mn
k,ωn

ρ

)
log

(
n∏

k=1

Tr Mn
k,ωn

ρ

)
− log

(
n∏

k=1

Tr Mn
k,ωn

σ

)

=
∑
ωn

(
n∏

k=1

Tr Mn
k,ωn

ρ

)
n∑

k=1

(
log Tr Mn

k,ωn
ρ− log Tr Mn

k,ωn
σ
)

=
∑
ωn

n∑
k=1

Tr ak,ωn
Mn

k,ωn
ρ
(
log Tr ak,ωn

Mn
k,ωn

ρ− log Tr ak,ωn
Mn

k,ωn
σ
)

=
n∑

k=1

∑
ωn

Tr ak,ωnMn
k,ωn

ρ
(
log Tr ak,ωnMn

k,ωn
ρ− log Tr ak,ωnMn

k,ωn
σ
)

=
n∑

k=1

D
(

PMn,k

ρ

∥∥∥PMn,k

σ

)
.

Exercise 3.13. a: Use the fact that {σ⊗n ≤ e−na}σ⊗n {σ⊗n ≤ e−na} ≤
{σ⊗n ≤ e−na} (σ⊗n)se−n(1−s)a {σ⊗n ≤ e−na} for (3.36). Apply Lemma 3.6
for (3.35). b: Use the fact that −sr−φ(s)

1−s = −(φ(s)+ sa) if r = −(φ(s)− (1−
s)a). d: Show that (κσ⊗n(ρ⊗n))−s ≤ (n + 1)d(ρ⊗n)−s. e: See the hint for b.

Exercise 3.15. Lemma 3.5 guarantees that lim Tr τ⊗n(I−Tn) = 1 because
D(τ‖σ) ≤ lim −1

n log Tr σ⊗n(I − Tn). Hence, applying Lemma 3.5 again, we
have lim −1

n log Tr ρ⊗nTn ≤ D(τ‖ρ).

Exercise 3.16. a: Join equation (3.17) and inequality (3.40). c: Consider
the case r = rs in a.

Exercise 3.17. a: Use (3.17) with κσ⊗n and σ⊗n. b: Show that the func-
tion s �→ −sr−φ(s|p‖p̄)

1−s is monotone increasing in (−∞, sr) and is monotone
decreasing in (sr,∞). c: Use (3.43).
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Exercise 4.1. Since H(p|u〉〈u|+(1−p)|v〉〈v|) = H((1−p)|u〉〈u|+p|v〉〈v|),
the concavity implies H(1/2|u〉〈u|+ 1/2|v〉〈v|) ≥ H((1− p)|u〉〈u|+ p|v〉〈v|).
Show that the larger eigenvalue of 1/2|u〉〈u|+ 1/2|v〉〈v| is 1+|〈v|u〉|

2 .

Exercise 4.2.

I(pA, WA) + I(pB , WB)− I(p, WA ⊗WB)

=
∑

xA,xB

pA(xA)pB(xB)D(WA
xA
⊗WB

xB
‖WA

pA
⊗WB

pB
)

−
∑

xA,xB

p(xA, xB)D(WA
xA
⊗WB

xB
‖WA

pA
⊗WB

pB
)

+
∑

xA,xB

p(xA, xB)D(WA
xA
⊗WB

xB
‖WA

pA
⊗WB

pB
)

−
∑

xA,xB

p(xA, xB)D(WA
xA
⊗WB

xB
‖
(
WA ⊗WB

)
p
)

=
∑

xA,xB

(pA(xA)pB(xB)− p(xA, xB))
(
D(WA

xA
‖WA

pA
) + D(WB

xB
‖WB

pB
)
)

+
∑

xA,xB

p(xA, xB)

(
−Tr

(
WA

xA
⊗WB

xB

)
log

(
WA

pA
⊗WB

pB

)

+ Tr
(
WA

xA
⊗WB

xB

)
log

(
WA ⊗WB

)
p

)

= D
(
WA

pA
⊗WB

pB

∥∥∥(WA ⊗WB
)
p

)
≥ 0.

Exercise 4.3. The ≤ part in (4.19) follows from I(M , p, W ) ≤ I(p, W ).
Use the Fano inequality noting the definition of C(W ) for the proof of the ≥
part.

Exercise 4.4. Use the method of Lagrange multipliers.

Exercise 4.5. From (A − cB)∗(A − cB) ≥ 0 we have A∗B + B∗A ≤
c−1 A∗A + c B∗B.

Exercise 4.6. Consider the case of c =
√

β/(α + β).

Exercise 4.7. Apply Lemma 3.6 to the first term on the RHS of (4.35).

Exercise 4.9. Let νi = Wϕ(i) in (4.39).

Exercise 4.10. Apply lemma 3.1 to the RHS of (4.35).

Exercise 4.11. a: Define A = −nR. b: Define Tn = {κS⊗n(R⊗n) −
NnS⊗n ≥ 0} in (4.30) and use the arguments in c,d of Exercise 3.13.

Exercise 4.12. Order the Nn signals from smallest to largest, and note
that the error probability of the first Nn/2 signals is less than twice the
average error probability.
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Exercise 4.13. First, show that

PX

{
ε[ΦX ] > M

∑
x∈X

p(x)
(
2 Tr W i

x

{
W i

x − 2NW i
p ≤ 0

}
+ 4N Tr W i

p

{
W i

x − 2NW i
p > 0

})}
<

1
M

.

Use this inequality.

Exercise 4.15. a: Apply the Markov inequality to the uniform distribution
on the message set {1, . . . , Nn}.
Exercise 5.1. Let HD be HC ⊗ HB , and consider the unitary matrix
corresponding to the replacement W : u⊗ v �→ v⊗u in HA⊗HB , and define
V

def= (W ⊗ IC)U .

Exercise 5.3. Use Exercise 5.2.

Exercise 5.5. Consider the Hilbert space HB produced by |ω〉, and apply
Condition ➄ of Theorem 5.1 to the entanglement-breaking channel Wω =
|ω〉〈ω|. Finally, consider the measurement {|ω〉〈ω| ⊗ IC}.
Exercise 5.17. When we choose the coordinate u1 = uA

1 ⊗ uB
1 , u2 =

uA
1 ⊗ uB

2 , u3 = uA
2 ⊗ uB

1 , u4 = uA
2 ⊗ uB

2 , we have Invλ ⊗ ιC2(|Φ2〉〈Φ2|) =⎛
⎜⎜⎝

1− λ 0 0 1− 2λ
0 λ 0 0
0 0 λ 0

1− 2λ 0 0 1− λ

⎞
⎟⎟⎠ . This matrix is positive if and only if (1− λ)2 − (1−

2λ)2 ≥ 0, i.e., 2
3 ≥ λ ≥ 0.

Exercise 5.19. See the proof of d1(ρ, σ) ≥ b2(ρ, σ).

Exercise 5.20. Let M be a POVM that satisfies the equality in (2.60).
Applying (2.18) to PM

ρ and PM
σ , we obtain d1(PM

ρ , PM
σ ) ≥ b2(PM

ρ , PM
σ ).

Finally, adding (2.61), we obtain d1(ρ, σ) ≥ b2(ρ, σ).

Exercise 5.23. c: Apply the information-processing inequality of the
quantum relative entropy to the two-valued measurement {P, I − P}.
Exercise 5.24. For any POVM M = {Mi} on H⊗n, {(κ⊗n)∗(Mi)} is also
a POVM. Using this fact, show that B∗(r|ρ‖σ) ≤ B∗(r|κ(ρ)‖κ(σ)). Next,
choose r such that B∗(r|κ(ρ)‖κ(σ)) = −sr−φ̄(s|κ(ρ)‖κ(σ))

1−s for any s ≤ 0.

Exercise 5.27. Let ρmix be a completely mixed state in HB . Consider the
relative entropy D(ρA,B,C‖ρmix ⊗ ρA,C) and the partial trace of HC .

Exercise 5.30. Consider the state

⎛
⎜⎝p1ρ1 0

0
. . .

pkρk

⎞
⎟⎠ in HA ⊗HB ⊗HC .
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Exercise 5.31. Let the purification of ρA,B be ρA,B,C for a reference state
HR. From the subadditivity (5.58),

H(ρA,B)−H(ρA) + H(ρB) = H(ρC)−H(ρB,C) + H(ρB) ≥ 0.

Exercise 5.29. a: Use (5.52).
Exercise 5.35. a: Differentiate both sides with respect to ε.
Exercise 5.36. a: Use b of Exercise 5.35. b: Note that |η(a1)− η(b1)| ≤
η(1/e) = 1/e. c: Use 1

2 log 2 = 0.34658 < 1/e = 0.36792.
Exercise 5.37. Note that I(p, W ) =

∑
x p(x)(H(Wp)−H(Wx)) and η0 is

concave.
Exercise 5.43. Show this inequality when κA and κB are partial traces
using (5.75). Next, show it in the general case.
Exercise 5.44. Use (8.47) and Lemma 3.7.
Exercise 6.4. Assume Condition ➀. Since d of Exercise 6.1 implies
[ρ, A] = 0, we have A = ρX ′ = X ′ρ for a suitable X ′. We can choose A = ρ◦X
for a Hermitian matrix X that commutes with each Mi. Since ρ◦(X−X ′) = 0,
ρ(X −X ′) = (X −X ′)ρ = 0. Therefore, A = ρX = Xρ.
Exercise 6.5. Note that there exists a unitary matrix Um such that
‖XρY ‖1 = TrXρY Um.

Exercise 6.7. Letting σ = TrH′ |y〉〈y|, we have (‖X ⊗ IH′‖(e)|y〉〈y|,b)
2 =

|Tr Xσ|2 = |〈I, X〉(e)σ,b|2 ≤ (‖X‖(e)σ,b)
2. The equality holds only when X = I.

Exercise 6.10. Apply Theorem 6.2 to the entanglement-breaking channel
ρ �→

∑
i(Tr Miρ)|ui〉〈ui| with the CONS {ui}.

Exercise 6.12. a: Combine a and d of Exercise 6.2. b: Combine
Exercise 6.11 and a. c: Use the fact that κM ,ρθ,s is a projection, as shown
in Exercise 6.2.
Exercise 6.13. b: Use exp(X(θ)) =

∑∞
n=0

X(θ)n

n! and a.

Exercise 6.14. First, show that dρ⊗n
θ

dθ =
√

n
(

dρθ

dθ

)(n)
. Use this and (6.9).

Exercise 6.16. Use the fact that Jθ,s;i,j = TrL∗
θ,i,s

∂ρθ

∂θj .

Exercise 6.18. Use Lθ,b = d log ρθ

dθ .
Exercise 6.19. Compare the e and m representations of the derivative of
the quantum state family {ρθ = e−iθY ρeiθY } in Exercise 6.18.
Exercise 6.20. b: Use (6.14) and (5.23).
Exercise 6.21. Consider the TP-CP map λρ1

θ⊕(1−λ)ρ2
θ → λρ1

θ+(1−λ)ρ2
θ.

Exercise 6.23. First, for a given SLD geodesic Πθ
L,sσ, choose a unitary

matrix U1 such that ULU∗ is equal to the constant times of S1. Then, the
SLD geodesic UΠθ

L,sσU∗ has the form given in Exercise 6.21. Next, choose
another unitary matrix U2 such that
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U2S1U
∗
2 = S1, U2(x2S2 + x3S3)U∗

2 =
√

x2
2 + x2

3S3. (C.1)

Exercise 6.24. b:
∫ 1
0 Tr(σ − ρ)2(ρ + t(σ − ρ))−1dt

=
∫ 1
0 Tr ρ(

√
ρ−1σ

√
ρ−1 − I)(I + t(

√
ρ−1σ

√
ρ−1 − I))−1(

√
ρ−1σ

√
ρ−1 − I)dt

= Tr ρ
(
(
√

ρ−1σ
√

ρ−1 − I)− log(I + (
√

ρ−1σ
√

ρ−1 − I))
)

= −Tr ρ log(
√

ρ−1σ
√

ρ−1) = Tr ρ log(
√

ρσ−1√ρ).
Exercise 6.26. a: Use the partial integration formula twice. c: Use (6.22).
d: Use a,b,c and the fact that d2ρθ

dθ2 = 0.
Exercise 6.27. Show the equivalence of ➁ and ➂ based on Exercise 6.4.

Exercise 6.28. Show that lim 1
nD

(m)
x ((ρ1 ⊗ ρ2)⊗n‖(σ1 ⊗ σ2)⊗n) =

lim 1
nD

(m)
x (ρ⊗n

1 ‖σ⊗n
1 ) + lim 1

nD
(m)
x (ρ⊗n

2 ‖σ⊗n
2 ). Use (6.50) and (5.36).

Exercise 6.30. Consider a state family where A = dρθ

dθ and ρθ0 = ρ, and
let κ be given by a POVM M . From property (6.17) and ‖ρ−1‖(m)

ρ,x = 1, we
have JM

θ0
= ‖κ(A)‖(m)

κ(ρ),x ≤ ‖A‖
(m)
ρ,x . Then, use Exercise 6.29.

Exercise 6.31. See the hint for Exercise 2.34.
Exercise 6.32. a: Let K be the difference K between O(M , θ̂) − θ and

1
Jθ,s

Lθ,s. Then, Kρ + ρK = 0 when Condition ➀ holds. b: Use Condi-
tion (6.68).

Exercise 6.35. b: Define B0
def=

{
θ̂ ≤ θ

}
, Bi

def=
{

θ + δ(i−1)
m ≤ θ̂≤θ + δi

m

}
,

(i = 1, . . . , m), and Bm+1
def=

{
θ + δ ≤ θ̂

}
, and consider a POVM Mi

def=
MBi comprising m + 1 measurements.

Exercise 6.38. a: Show that
〈M(ω),M(ω)〉(e)

ρθ,s

〈M(ω),I〉(e)
θ,s

= TrM(ω). c: Use Exercise

A.1. d: Use Exercise 2.37.
Exercise 6.39. If (M , θ̂) is a locally unbiased estimator, then show that
Vθ(M , θ̂) ≥ (JM

θ )−1. Then, show that for each POVM M there exists a
function θ̂ such that (M , θ̂) is a locally unbiased estimator and Vθ(M , θ̂) =
(JM

θ )−1.
Exercise 6.40. Use the method of Lagrange multipliers.

Exercise 6.41. Show that
(
‖L(u)‖(e)ρθ,s

)2
= 〈u|Jθ,s|u〉. Then, show that

〈x|JMu

θ |x〉 = 〈L(x)|κM ,ρθ,s|L(x)〉(e)ρθ,s ≥ 〈L(x)| |L(u)〉(e)
ρθ,s〈L(u)|

〈u|Jθ,s|u〉 |L(x)〉(e)ρθ,s for
x ∈ R

d.
Exercise 6.44. Let u1, . . . , ud be the eigenvectors of Jθ,s, and let pi be

the eigenvalues of 1

tr J
− 1

2
θ,s

J
− 1

2
θ,s . Then, the RHS of (6.94) is equal to 1

tr J
− 1

2
θ,s

J
1
2
θ,s.

Exercise 6.45. Choose the new coordinate such that the SLD Fisher
information matrix is

√
G

−1
Jθ,s

√
G

−1
.
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Exercise 6.52. c: See b of Exercise 6.50. e: Consider the estimator (M , θ̂)
in the extended system given in b for the set of vectors (yi). Let P be the
projection to the original space. Consider the POVM {PMkP} for M =
{Mk}. g: Note that the set of vectors (ui) satisfying 〈ui|xj〉 = δi

j is restricted
to ui = ((ReJ)−1)i,jxj .
Exercise 7.1. Consider the unitary matrix

(∑
ω |uω〉〈uω| ⊗ Uκ′

ω

)
(IB,C ⊗ U)

and ρ1 ⊗ ρ0.
Exercise 7.2. Let HD be HC ⊗ HB , consider the unitary matrix corre-
sponding to the replacement W : u ⊗ v �→ v ⊗ u in HA ⊗ HB , and define
V

def= (W ⊗ IC)U .
Exercise 7.3. Equation (5.4) yields that Tr ρM ′

ω,ω = Tr ρκ∗
ω(Mω′) =

Tr κ∗
ω(ρ)Mω′ .

Exercise 7.5. b: Let
∑

i piρ
A
i ⊗ ρB

i = (κ ⊗ ιA′)(|xM 〉〈xM |). Then,
K(κ) = d

∑
i piρ

A
i ⊗ ρB

i from (5.3). From the definition of K(κ), we have
Tr κ(ρ)σ = TrK(κ)ρ ⊗ σ = d

∑
i pi(Tr ρρA

i )(TrσρB
i ). Thus, we obtain

κ(ρ) = d
∑

i pi(Tr ρρA
i )ρB

i .
Exercise 7.7. Expand the RHS of (7.17) and rearrange.
Exercise 7.8. Similarly, expand the RHS of (7.17) and rearrange.
Exercise 7.13. Use the fact that ∆1(O(M)−X, ρ) ≤ ∆3(M , X, ρ), prob-
lem 7.11, and

√
x2 + y2 ≤ x + y for x, y ≥ 0.

Exercise 7.14. Choose a 2× 2 orthogonal matrix (ai,j) such that the two

matrices X̃
def= a1,1X+a1,2Y and Ỹ

def= a2,1X+a2,2Y satisfy Covρ(X̃, Ỹ ) = 0.
Show (7.36) for X̃, Ỹ . Finally, use the fact that both sides of (7.36) are
invariant under the orthogonal matrix transformation (X, Y ) �→ (X̃, Ỹ ).
Exercise 7.15. g: Note that both sides of (7.38) become their det(bi,j)
times value when we perform the transformation (x,y) �→ (x̃, ỹ).
Exercise 7.16. Show that ∆3(MX,Y,ρ, O

1(MX,Y,ρ), ρ) = 1−p
p ∆1(X, ρ),

∆3(MX,Y,ρ, O
2(MX,Y,ρ), ρ) = 1−q

q ∆1(Y, ρ), and note that 1−p
p

1−q
q = 1.

Exercise 7.19. Use Exercise 6.21.
Exercise 7.20. Note that the case of p = 1 has been shown in the main
body. Use Exercise 7.19.
Exercise 8.2. Note that d1 is monotone concerning the partial trace.
Exercise 8.3. Let u and v be purifications of ρ and σ such that F (ρ, σ) =
F (|u〉〈u|, |v〉〈v|) = Tr

√
|u〉〈u|

√
|v〉〈v| = |〈u|v〉|2 = F 2(|u〉〈u|, |v〉〈v|). Using

the monotonicity of φ(1/2, ρ, σ), we have F 2(ρ, σ) ≤ Tr
√

ρ
√

σ.
In addition, F 2(ρ, σ) = Tr |√ρ

√
σ| ≥ Tr

√
ρ
√

σ.
Exercise 8.4. F 2

e (ρ, κ) =
∑

i〈x|Ei ⊗ I|x〉〈x|Ei ⊗ I|x〉.
Exercise 8.5. a: Consider the singular value decomposition of the matrix
{Tr EiAjρ}i,j , and retake the Choi–Kraus representation. Use Exercise 5.2.

b: Applying a and defining pi
def= Tr AiρAi, A′

i
def= Ai/

√
pi, we have F 2

e (ρ, κ◦
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κ′) =
∑

i pi|Tr EiA
′
iρ|2. c: Note that EA = (U |E|1/2)(|E|1/2A), and use the

Schwarz inequality for the inner product TrX∗Y ρ. d: Note that F 2
e (ρ, κ ◦

κU ) ≥ |Tr E1U
∗ρ|2.

Exercise 8.6. Show that |Tr(A1+A2i)ρ|2 = (TrA1ρ)2+(TrA2ρ)2, where
A1 and A2 are Hermitian matrices.
Exercise 8.12. Use ➁ or (8.19).
Exercise 8.14. Denote the input and output system of κ by HA and
HB , respectively. Let |x〉〈x| be a purification of ρmix. Choose the probalistic
decomposition as κ ⊗ ιR(|x〉〈x|) =

∑
i pi|yi〉〈yi|. Then, the Schmidt rank of

|yi〉 is less than d′. That is, the rank of TrB |yi〉〈yi| is less than d′ Therefore,
TrR

√
TrA |yi〉〈yi| ≤

√
d′. Thus,

〈x|(κ′ ◦ κ)⊗ ιR(|x〉〈x|)|x〉 = 〈x|
∑

i

pi(κ′ ⊗ ιR)(|yi〉〈yi|)|x〉

≤
∑

i

piF
2(TrA(κ′ ⊗ ιR)(|yi〉〈yi|), TrA |x〉〈x|)

=
∑

i

piF
2(TrA |yi〉〈yi|, ρmix,R) =

∑
i

pi(TrR |
√

TrA |yi〉〈yi|
√

ρmix,R|)2

=
∑

i

pi
(TrR

√
TrA |yi〉〈yi|)2

d
≤ d′

d
.

Exercise 8.15. Since the final state on HR ⊗ HE ⊗ HB is a pure state,
H(ρ) is equal to the entropy of the final state on the reference system HR.
H(κ(ρ)) is equal to the entropy of the final state on HR ⊗ HE . He(ρ, κ) is
therefore equal to the entropy of the final state on the environment HE .
Exercise 8.16. Note the second inequality in (5.42) and the monotonicity
of the trace norm concerning the partial trace on the reference system.
Exercise 8.17. Note that the entropy of U(ρ ⊗ |u〉〈u|)U is equal to the
entropy of ρ.
Exercise 8.20. Consider the Stinespring represntation of κ′, and con-
sider the partial trace with respect to the environment of κ′ after the state
evolution.
Exercise 8.22. Since x′ is a pure state on HA′ ⊗HE′ ⊗HR, Hx′(A′R) =
Hx′(E′), Hx′(R) = Hx′(A′E′).
Exercise 8.25. b: Use (5.52) for the last inequality in (8.54).
Exercise 8.28. Use the concavity of the entropy and (5.52) for the pinch-
ing of a PVM that commutes with |u〉〈u|.
Exercise 8.29. Consider the unitary matrix⎛

⎜⎜⎝
S0 0 0 0
0 S1 0 0
0 0 S2 0
0 0 0 S3

⎞
⎟⎟⎠
⎛
⎜⎜⎝
√

p0I ∗ ∗ ∗√
p1I ∗ ∗ ∗√
p2I ∗ ∗ ∗√
p3I ∗ ∗ ∗

⎞
⎟⎟⎠
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as a Stinespring representation in C
2⊗C

4, where the elements ∗ of the second
matrix are choosen appropriately to preserve unitarity.
Exercise 8.30. Note that this map is a double stochastic matrix.
Exercise 8.32. This follows immediately from Exercise 8.31.
Exercise 8.33. Use Theorem 2.3.
Exercise 8.35. Use inequality (2.140). Note that −1

n log L(κn) = R in
(8.78).
Exercise 8.36. Put 1 − t = s and σ =

∑
i λi|uA

i ⊗ uB
i 〉〈uA

i ⊗ uB
i | in the

proof of Theorem 8.7.
Exercise 8.38. First, consider the case of a pure state in {v⊗u−u⊗v|u, v ∈
C

3}.
Exercise 8.39. Show the pure-state case using Theorem 8.4. Next, extend
this fact to the mixed-state case.
Exercise 8.40. Show that the RHS of (8.85) in Theorem 8.8 approaches
0 exponentially when R > E(ρ), L = [enR].
Exercise 8.41. Let ρ =

∑
i pi|xi〉〈xi|, and consider a separable state σi,

where Ef (|xi〉〈xi|) = D(|xi〉〈xi|‖σi). Use the joint convexity of the relative
entropy.
Exercise 8.42. a: First, show that ‖|xn〉〈xn|−|yn〉〈yn|‖1 → 0 when ‖ρn−
σn‖1 → 0. Next, give a probabilistic decomposition using a POVM Mn =
{Mn

i } on the reference system HR (Lemma 8.3). Let M be the POVM giv-
ing the decomposition minimizing the average entropy of σn. Then, the aver-
age entropy

∑
x pi

xH(TrB ρi
x) on HA is equal to Hκ̂Mn ⊗ιA(TrB |xn〉〈xn|)(A|R).

From monotonicity, show that ‖κ̂Mn ⊗ ιA(TrB |xn〉〈xn|) − κ̂Mn⊗
ιA(TrB |yn〉〈yn|)‖1 ≤ ‖ρn − σn‖1. Finally, use (5.71).
Exercise 8.43. a: First, show that ‖|xn〉〈xn|−|yn〉〈yn|‖1 → 0 when ‖ρn−
σn‖1 → 0. Next, choose a system HE as a subsystem of an extended space
of the reference system HR. Note that extenstions of ρn and σn can be given
as the reduced densities on HA ⊗HB ⊗HE . Now, we choose the subsystem
HE giving Esq(σn). Finally, use (5.73).
Exercise 8.46.

I(AA′ : BB′|E) = I(A : BB′|E) + I(A : BB′|EA)
= I(A : B|E) + I(A : B′|BE) + I(A : B′|EA) + I(A : B|EAB′)
≥ I(A : B|E) + I(A : B′|BE).

Exercise 8.52. First, show that IA→B(|u〉〈u|) ≤ H(TrA |u〉〈u|). Next,
show its equality.
Exercise 8.57. a: Use Theorem 5.8. b: I(κM ⊗ιAB)(ρABE)(AB : E) ≤
IρABE (AB : E).
Exercise 9.3. Refer to the proof of Theorem 4.2, and use Fano’s inequality
for the converse part of the theorem.
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Exercise 9.4. Using the monotonicity of the quantum relative entropy
and (5.58), we obtain

I(X : Y ) ≤ 1
Nn

Nn∑
i=1

D

((
ϕ(n)

e (i)⊗ ι⊗n
B

)
(ρ⊗n

A,B)
∥∥∥∥ 1

Nn

Nn∑
i=1

(
ϕ(n)

e (i)⊗ ι⊗n
B

)
(ρ⊗n

A,B)
)

= H

(
1

Nn

Nn∑
i=1

(
ϕ(n)

e (i)⊗ ι⊗n
B

)
(ρ⊗n

A,B)
)
− 1

Nn

Nn∑
i=1

H
((

ϕ(n)
e (i)⊗ ι⊗n

B

)
(ρ⊗n

A,B)
)

≤ H

(
TrA′

n

1
Nn

Nn∑
i=1

(
ϕ(n)

e (i)⊗ ι⊗n
B

)
(ρ⊗n

A,B)
)

+ H

(
TrB

1
Nn

Nn∑
i=1

(
ϕ(n)

e (i)⊗ ι⊗n
B

)
(ρ⊗n

A,B)
)
−min

κ
H((κ⊗ ι⊗n

B )(ρ⊗n
A,B)).

Using

TrA′
n

(
ϕ(n)

e (i)⊗ ι⊗n
B

)
(ρ⊗n

A,B) = TrA ρ⊗n
A,B

H

(
TrB

1
Nn

Nn∑
i=1

(
ϕ(n)

e (i)⊗ ι⊗n
B

)
(ρ⊗n

A,B)
)
≤ log dimHA′

n
,

we obtain

I(X : Y ) ≤H
(
TrA ρ⊗n

A,B

)
+ log dimHA′

n
−min

κ
H((κ⊗ ι⊗n

B )(ρ⊗n
A,B))

=nH (TrA ρA,B) + log dimHA′
n
−min

κ
H((κ⊗ ι⊗n

B )(ρ⊗n
A,B)).

Exercise 9.5. The LHS of (9.42) can be rewritten as∑
j

pjD((κ ◦ ϕe(j)⊗ ιR)(ρA′,R)‖
∑

j

pj(κ ◦ ϕe(j)⊗ ιR)(ρA′,R))

≤
∑

j

pjD((κ ◦ ϕe(j)⊗ ιR)(ρA′,R)‖(
∑

j

pj(κ ◦ ϕe(j))ρA′)⊗ ρR)

= H(
∑

j

pj(κ ◦ ϕe(j))ρA′) + H(ρR)−
∑

j

pjH((κ ◦ ϕe(j)⊗ ιR)ρA′,R)

= H(κ(
∑

j

pjϕe(j)(ρA′)) +
∑

j

pj Ĩc(ρA′ , κ ◦ ϕe(j))

≤ H(κ(
∑

j

pjϕe(j)(ρA′))) + Ĩc(
∑

j

pjϕe(j)(ρA′), κ)

= I(
∑

j

pjϕe(j)(ρA′), κ),
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from (4.6) and (8.50). Since ρA′,R is a pure state, we may write H(ρA′) =
H(ρR).
Exercise 9.8. First, show that

J(ρ, σ, κ) ≤ J
(∫

θ

UθρU∗
θ dθ, σ, κ

)
= J(P1ρP1 + P2ρP2, σ, κ),

where Uθ = P1 + eiθP2.
Next, show that

J(λρ1 ⊕ (1− λ)ρ2, σ, κ) = λJ(ρ1, σ, κ) + (1− λ)J(ρ2, σ, κ).

Finaly, using (9.40), we obtain

max
ρ

I(ρ, κ) = max
ρ

min
σ

J(ρ, σ, κ) = min
σ

max
ρ

J(ρ, σ, κ)

= min
σ

max
λ,ρ1,ρ2

J(λρ1 ⊕ (1− λ)ρ2, σ, κ)

= min
σ

max
λ,ρ1,ρ2

λJ(ρ1, σ, κ) + (1− λ)J(ρ2, σ, κ)

≤ max
λ,ρ1,ρ2

λJ(ρ1, κ1(ρmax,1), κ) + (1− λ)J(ρ2, κ1(ρmax,1), κ)

= max
λ

λCe
c,e(κ1) + (1− λ)Ce

c,e(κ2).

Exercise 9.9. Applying (2.63) to the two-valued POVM {{κWp
(Wx) −

CWp ≥ 0}, {κWp(Wx)− CWp < 0}}, we obtain(
Tr Wx{κWp

(Wx)− CWp ≥ 0}
)1−s (Tr Wp{κWp

(Wx)− CWp ≥ 0}
)s

+
(
Tr Wx{κWp

(Wx)− CWp < 0}
)1−s (Tr Wp{κWp

(Wx)− CWp < 0}
)s

≤ Tr W 1−s
x W s

p

for 0 ≥ s. Since TrWx{κWp(Wx) − CWp ≥ 0} = Tr κWp(Wx){κWp(Wx) −
CWp ≥ 0} ≥ C Tr Wp{κWp(Wx)− CWp ≥ 0}, we have

Tr Wx{κWp(Wx)− CWp ≥ 0}
≤ Cs

(
Tr Wx{κWp

(Wx)− CWp ≥ 0}
)1−s (Tr Wp{κWp(Wx)− CWp ≥ 0}

)s
,

and thus we obtain (9.53).

Exercise 9.10. Solve −φ(s)+s(R−r)
2 = r

2 with respect to r.
Exercise 9.11. In this case, we can replace (9.56) by ‖PxWx‖1 ≤
Tr WxPx.
Exercise 9.13. Use the fact that

I(p, WB) + I(p′, W ′
B)− I(q, WB ⊗W ′

B)

= D

⎛
⎝∑

x,x′
q(x, x′)WB,x ⊗W ′

B,x′

∥∥∥∥∥∥
(∑

x

p(x)WB,x

)
⊗
(∑

x′
p′(x′)W ′

B,x′

)⎞⎠ .
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Exercise 9.17. First, note that

εE,a[Φ] =
∑

i

∑
j �=i

1
M(M − 1)

d1((WEQ)i, (WEQ)j)

≥ 1
M

∑
i

d1((WEQ)i,
1
M

∑
j=1

(WEQ)j).

From Fannes’ inequality (5.64) and the concavity and monotonicity (Exercise
5.35) of η0, we have

IE(Φ) =
1
M

M∑
i=1

H(
1
M

∑
j=1

(WEQ)j))−H(WEQ)i)

≤ 1
M

M∑
i=1

|H(
1
M

∑
j=1

(WEQ)j))−H(WEQ)i)|

≤ 1
M

M∑
i=1

d1

⎛
⎝(WEQ)i,

1
M

∑
j=1

(WEQ)j

⎞
⎠ log d

+ η0

⎛
⎝d1

⎛
⎝(WEQ)i,

1
M

∑
j=1

(WEQ)j

⎞
⎠
⎞
⎠

≤εE,a[Φ] log d + η0(εE,a[Φ]).

Exercise 9.18. First, show that there exists a code such that∑
i

1
M d1((WEQ)i,

1
M

∑
j=1(W

EQ)j) converges to 0. Next, choose the small-
est M/2 values i1, . . . , iM/2 concerning d1((WEQ)i,

1
M

∑
j=1(W

EQ)j). Fi-
nally, show this exercise based on the fact that

sup
i

sup
j

d1((WEQ)i, (WEQ)j) ≤ 2 sup
i

d1((WEQ)i,
1
M

∑
j=1

(WEQ)j).

Exercise 9.20. Consider, for example, a = 1/2.
Exercise A.4. Compare the maximizations in definition (A.13) of ‖X‖1
and ‖TrB X‖1.
Exercise A.6. If A possesses the inverse, use Exercise A.5. If A does not
possess the inverse, choose an invertible matrix approximating A.
Exercise A.7. a: Use B−1/2AB−1/2 = (A1/2B−1/2)∗(A1/2B−1/2) and
(1.29). d: Consider B + εI and take the limit ε→ 0.
Exercise A.10. Consider the (d−k+1)-dimensional subspace K′ spanned
by the eigenvectors according to the eigenvalues ak, . . . , ad. Evaluate 〈x|A|x〉
when ‖x‖ = 1 and x ∈ K ∩ K′.
Exercise A.11. Apply Exercise A.10.
Exercise A.12. Apply Exercise A.11.



Postface to Japanese Version

My research on quantum information theory started in October of 1994, when
I was a first year master’s student. At that time, although Shor’s paper on
factorization had already been published, I was still unaware of his work.
Nor was the field of quantum information theory very well known at that
time. The following is a brief summary of how I began working in the field
of quantum information theory. Although this is merely a personal account
of my experiences, it might be of some interest to those thinking of starting
postgraduate studies and pursuing a career in research.

I began my university studies at Kyoto University by studying both math-
ematics and physics, thanks to their policy that allows students to complete
their graduation without electing their major. Although I was mainly inter-
ested in physics, I decided to study both physics and mathematics because I
was not entirely comfortable with the common thinking manner in physics;
I was more naturally inclined towards a mathematical way of thought. As a
result, during my undergraduate years although I had a reasonable under-
standing of mathematics, I could not understand physics sufficiently. Particu-
larly, I could not catch the essence of statistical mechanics, in which “physics
thinking” appears most prominently, more seriously. In my fourth year of my
undergraduate degree, I realized that based on my understanding of physics
at the time, I would probably not pass the entrance exams for a postgraduate
course in physics. Therefore, I decided to apply for a postgraduate course in
mathematics (which I just barely passed). In particular, while I elected the
early universe in the cosmology group to my main research in the undergrad-
uate course, its outcome was rather hopeless due to my poor knowledge of
statistical mechanics. In fact, when I told a professor of physics that I would
work as a casual teacher of cram school for high school physics in the next
year, he said to me “I would never let you teach physics to anyone.” Indeed,
my physics knowledge was lacking in such a extent at that time. This was a
particularly depressing event for me. Although I was still able to graduate,
it had hardly felt like a time for celebration.
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The following April, I began my postgraduate studies in twistor the-
ory [411]1 under Professor Ueno, who is a professor in mathematics in Kyoto
University. I chose this topic because it is related to relativity theory, which
I was interested in at that time. However, as is the case with many topics in
mathematical physics, although its basic is rooted in physics, it was essen-
tially mathematical. I also found it very difficult to understand the physics
behind this mathematical concepts. Ultimately, I realized that it did not suit
my interests, and therefore I searched for another topic. Although I was ca-
pable of thinking in a mathematical way, I was not interested in mathematics
itself. Therefore it was impossible for me to concentrate the research only of
pure mathematics. Meanwhile, by teaching high school physics as a casual
teacher in cram school during my postgraduate years, I felt that I could truly
understand physics for the first time. Since I usually concerned difficult math-
ematical structure in physics, I realized for the first time that it is important
to understand physics based on fundamental concepts.

When I searched for my new research topic, I met Dr. Akio Fujiwara,
who came to Osaka University as an assistant professor at that time. He ad-
vised me to study Holevo’s textbook [216], and I decided that I would start
research in quantum information theory. Until this point, I had mainly stud-
ied abstract mathematics with little physical connection. I was particularly
impressed by the way Holevo’s textbook expressed the fundamental concepts
of quantum mechanics without high levels of abstraction. although Holevo’s
textbook is not a particularly easy book to read from the current viewpoint,
it was not so difficult for me to read because I had read more difficult books
on mathematics.

In retrospect, it might be fortunate that I did not proceed to a postgrad-
uate course in physics because physics community had an implicit strong
stress to never try the measurement problem in quantum mechanics due to
its philosophical aspect in Japan at that time. Therefore, while I appeared
to take a rather indirect path during my years for my undergraduate and
master courses, my career may have been the most direct path.

However, I faced a problem at starting my research. Since I had only stud-
ied physics and mathematics until this point, I was completely ignorant of
subjects in information science such as mathematical statistics. In particular,
despite having the opportunity to take these subjects, I had not studied these
at all. During my undergraduate years, I regarded statistics to be a rather
lightweight subject, as compared with physics, which examines the true na-
ture of reality. I considered statistics to be only a convenient subject not an
essential subject. This perception has been changed on reading Holevo’s text.
The reason is that it is impossible to quantitatively evaluate the information
obtained by an observer without a statistical viewpoint because the measure-
ment data is inherently probabilistic under the mathematical formulation of
quantum mechanics. Ultimately, I was forced to study subjects such as math-

1 Professor Richard Jozsa also studied twistor theory in his graduate course.
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ematical statistics and information theory, which should be studied during
the undergraduate course. In the end, the research for my master’s thesis
has been completed with a rather insufficient knowledge of mathematical
statistics.

Further, as another problem, I lacked researchers to discuss my research,
nearby, due to my choose of this research area. Hence, I had to arrange the
chance to discuss with researchers located long distances away. Moreover,
since I was also financially quite unstable during the first half of my doc-
tor course, I had kept my research time only between casual teaching work
at high school and cram school at that time. In particular, in the first six
months of my doctoral course, my research progress was rather slow due to
little opportunity for discussion about my research interest. Henceforth, the
Quantum Computation Society in Kansai opened in November 1996, and it
gave me a chance to talk about topics closely related to my interest. Hence,
I could continue my research. During this period, I also had many helpful
discussions via telephone with Keiji Matsumoto, who was a research asso-
ciate at University of Tokyo at that time. Thus, I could learn statistics, and I
am deeply indebted to him. I am also grateful to Professor Kenji Ueno, who
accepted me as a graduate student until my employment at RIKEN.

In retrospect, in less than 10 years, the situation around quantum in-
formation theory has changed completely in Japan. The following are my
thoughts and opinions on the future of quantum information theory.

Recently, sophisticated quantum operations have become a reality, and
some quantum protocols have been realized. I believe that it is necessary to
propose protocols that are relatively easy to implement. This is important
not only to motivate further research, but also to have some feedback for the
foundations of physics. In particular, I believe that the techniques developed
in information theory via quantum information theory will be useful to the
foundations of physics.

Thanks to the efforts of many researchers, the field of quantum informa-
tion theory has become a quite well-known field. However, I feel that many
universities in Japan have a trouble to internalize quantum information the-
ory in the current organization of disciplines. Of course, scientific study should
have no boundaries in themselves. Hence, It is my presumption that we can
construct a more constructive research and educational environment through
the treatment for fields such as quantum information theory, which transcend
the current framework of disciplines.

My hope is that this book will make those unsatisfied with existing fields
to be interested in quantum information theory and inspire them to become
active researchers in this or any of its associated fields.
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200. W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik,” Z. Phys., 43, 172–198 (1927).

201. C. W. Helstrom, “Detection theory and quantum mechanics,” Inf. Contr.,
10, 254–291 (1967).

202. C. W. Helstrom, “Minimum mean-square error estimation in quantum statis-
tics,” Phys. Lett., 25A, 101–102 (1976).

203. C. W. Helstrom, Quantum Detection and Estimation Theory, (Academic,
New York, 1976).

204. C. W. Helstrom, Int. J. Theor. Phys., 11, 357 (1974).
205. L. Henderson, V. Vedral, “Classical, quantum and total correlations,” J. Phys.

A Math. Gen., 34, 6899 (2001); quant-ph/0105028 (2001).
206. F. Hiai, D. Petz, “The proper formula for relative entropy and its asymptotics

in quantum probability,” Comm. Math. Phys., 143, 99–114 (1991).
207. F. Hiai, D. Petz, “The golden-thompson trace inequality is complemented,”

Lin. Alg. Appl., 181, 153–185 (1993).
208. T. Hiroshima, “Majorization criterion for distillability of a bipartite quantum

state,” Phys. Rev. Lett., 91, 057902 (2003); quant-ph/0303057 (2003).
209. T. Hiroshima, M. Hayashi, “Finding a maximally correlated state-

Simultaneous Schmidt decomposition of bipartite pure states,” Phys. Rev.
A, 70, 030302(R) (2004).

210. W. Hoeffding, “Asymptotically optimal test for multinomial distributions,”
Ann. Math. Stat., 36, 369–400 (1965).

211. A. S. Holevo, “An analog of the theory of statistical decisions in noncommu-
tative theory of probability,” Trudy Moskov. Mat. Obšč., 26, 133–149 (1972)
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