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Preface

The field of quantum information processing has reached a remarkable maturi-
ty in recent years with regard to experimental demonstrations. In particular, to-
wards an extension of optical communications from the classical into the quantum
realm, many proof-of-principle experiments were performed including the genera-
tion and distribution of photonic entangled states over free-space or fiber channels.
As an application, unconditionally secure quantum key distribution systems have
emerged and even developed into a commercially available technology.

Light systems, apart from their obvious usefulness for communication, have now
as well turned out to be a serious contender for approaches to quantum compu-
tation. A breakthrough in this context was the theoretical discovery of so-called
measurement-based models: quantum algorithms no longer depend on sequences
of reversible quantum gates, each enacted through well controlled interactions be-
tween, for instance, two or more qubits; instead, sequences of measurements on
parts of an entangled resource state prepared prior to the computation will do the
trick. In other words, quantum entanglement, already known to be a universal re-
source for quantum communication in conjunction with quantum teleportation,
represents a universal resource for quantum computation too – and again the ex-
ploitation of the entangled resource relies upon quantum teleportation which, in
its ultimate form, achieves arbitrary quantum state manipulations.

The aim of this book is to give a fairly general introduction to two com-
plementary approaches to quantum information processing: those based upon
discrete-variable “qubit” systems and those utilizing quantum oscillator systems
(“qumodes”) most naturally represented by continuous quantum variables such
as amplitude and phase. In quantum optics, the corresponding photonic sys-
tems would consist of just a few photons or they would correspond to fields with
extremely high mean photon numbers, respectively. The qubit may then be repre-
sented by the polarization of a single photon, while a qumode state is encoded into
an infinite-dimensional phase space. Entangled states can be defined, formulated,
and experimentally realized in either dimension, including their use for quantum
teleportation. Since either approach encounters somewhat different complications
when it comes to more sophisticated quantum information protocols, a recent
trend in optical quantum information is to combine the two approaches and to
exploit at the same time discrete and continuous degrees of freedom in a so-called
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X Preface

hybrid fashion. From a more physical point of view, one could say that in an optical
hybrid protocol both the wave and the particle properties of light are exploited si-
multaneously. Sometimes people would use a more general definition for “hybrid
systems”, namely any combined light-matter systems. In our quantum optical con-
text, the two definitions would coincide when the matter system consists of atomic
spin particles and the light system is described by continuous quantum variables
–- a fairly natural scenario.

In the first part of the book, an introduction to the basics of quantum information
processing is given independent of any specific realization, but with an emphasis
on the two complementary qubit and qumode descriptions. The second chapter
of part I then specifically refers to optical implementations. While this first part
of the book is mainly theoretical, parts II and III contain detailed descriptions of
various experiments. Those specific sections on experiments are each indicated by
“experiment:” throughout. One can easily infer from the table of contents that the
frequency of experimental sections increases with each chapter of the book. The
in some sense unifying formalism for the qubit and qumode approaches is the
so-called stabilizer formalism which is therefore used in various sections through-
out the book starting from the introductory sections. Summary boxes of the most
important formulas and definitions have been included throughout the first three
chapters of the book in order to make the introductory parts more comprehensible
to the reader.

We hope this book will convey some of the excitement triggered by recent quan-
tum information experiments and encourage both students and researchers to (fur-
ther) participate in the joint efforts of the quantum optics and quantum informa-
tion community.

November 2010 Akira Furusawa and

Peter van Loock
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1
Introduction to Quantum Information Processing

Quantum information is a relatively young area of interdisciplinary research. One
of its main goals is, from a more conceptual point of view, to combine the prin-
ciples of quantum physics with those of information theory. Information is phys-
ical is one of the key messages, and, on a fundamental level, it is quantum phys-
ical. Apart from its conceptual importance, however, quantum information may
also lead to real-world applications for communication (quantum communication)
and computation (quantum computation) by exploiting quantum properties such
as the superposition principle and entanglement. In recent years, especially en-
tanglement turned out to play the most prominent role, representing a universal
resource for both quantum computation and quantum communication. More pre-
cisely, multipartite entangled, so-called cluster states are a sufficient resource for
universal, measurement-based quantum computation [1]. Further, the sequential
distribution of many copies of entangled states in a quantum repeater allow for ex-
tending quantum communication to large distances, even when the physical quan-
tum channel is imperfect such as a lossy, optical fiber [2, 3].

In this introductory chapter, we shall give a brief, certainly incomplete, and in
some sense biased overview of quantum information. It will be incomplete, as the
focus of this book is on optical quantum information protocols, and their experi-
mental realizations, including many experiment-oriented details otherwise miss-
ing in textbooks on quantum information. Regarding the more abstract, mathe-
matical foundations of quantum information, there are various excellent sources
already existing [4–8].

Nonetheless, we do attempt to introduce some selected topics of quantum in-
formation theory, which then serve as the conceptual footing for our detailed de-
scriptions of the most recent quantum information experiments. In this sense, on
the one hand, we are biased concerning the chosen topics. On the other hand,
as our goal is to advertise a rather new concept for the realization of quantum
information protocols, namely, the combination of notions and techniques from
two complementary approaches, our presentation of the basics of quantum infor-
mation should also provide a new perspective on quantum information. The two
complementary approaches are the two most commonly used encodings of quan-
tum information: the one based upon discrete two-level systems (so-called qubits),
certainly by far the most popular and well-known approach, in analogy to classi-
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4 1 Introduction to Quantum Information Processing

cal digital encodings; the other approach relies on infinite-dimensional quantum
systems, especially quantized harmonic oscillators (so-called qumodes), more rem-
iniscent of classical analog encodings.

There are also approaches in between based on elementary systems that live
in more than two, but still finite dimensions. Such discrete multi-level systems
share many of their most distinct features with those of simple qubit systems. In
fact, we may simulate any d-level system (so-called qudit) by a set of log2 d qubits.
Therefore, one may expect to obtain qualitatively new features only when the lim-
it d ! 1 is taken. Schemes based on qubit and qudit encodings are commonly
referred to as discrete-variable (DV) approaches, whereas those exploiting infinite-
dimensional systems and the possibility of preparing and measuring quantum in-
formation in terms of variables with a continuous spectrum are called continuous-
variable (CV) schemes. Many fundamental results of quantum information theory,
however, would not even depend on a particular encoding or dimensionality. These
results based on fundamental elements of quantum theory such as linearity stay
solid even when the infinite-dimensional limit is taken.

Similar to a classical, digital/analog hybrid computer, one may also consider uti-
lizing discrete and continuous degrees of freedom at the same time for encoding,
logic gates, or measurements. Later, when we start discussing optical implementa-
tions of quantum information protocols in Chapter 2, we can give the motivation
as to why such a hybrid approach would be useful for processing quantum infor-
mation. The purpose of the present chapter is solely conceptual and independent
of potential implementations. We shall introduce some basic results and notions of
quantum information theory, and, in particular, apply these to both DV qubit and
CV qumode systems.

Starting with a short motivation for the interest in quantum information theory
in Section 1.1, we discuss the preparation and representation of quantum informa-
tion in the form of quantum states and observables (Section 1.2), its manipulation
using unitary gates and evolution (Section 1.3), and its behavior under non-unitary
evolution in the form of quantum channels and measurements (Section 1.4). The
latter scenario is very important, as an initialized quantum information carrier
would typically be subject to unwanted interactions with its environment, and such
a pure-into-mixed-state evolution is described by a channel map (Section 1.4.1).
Whenever the environment is replaced by an auxiliary system that can be mea-
sured, information about the original quantum system may be obtained, as we
discuss in Section 1.4.2.

Before concluding this chapter in Section 1.10 with a discussion of some non-
optical experimental realizations of quantum information processing, we briefly
introduce some basic notions, resources, subroutines, and full-scale applications
such as entanglement (Section 1.5), quantum teleportation (Section 1.6), quantum
communication (Section 1.7), quantum computation (Section 1.8), and quantum
error correction (Section 1.9). Since the remainder of this book is intended to de-
scribe and illustrate many of these protocols and applications, we shall postpone
such more detailed discussions until the respective chapters regarding optical im-
plementations.
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1.1
Why Quantum Information?

Quantum computers are designed to process information units which are no
longer just abstract mathematical entities according to Shannon’s theory, but rather
truly physical objects, adequately described by one of the two1) most fundamental
physical theories – quantum mechanics.

Classical information is typically encoded in digital form. A single basic infor-
mation unit, a bit, contains the information whether a “zero” or a “one” has been
chosen between only those two options, for example, depending on the electric cur-
rent in a computer wire exceeding a certain value or not. Quantum information is
encoded in quantum mechanical superpositions, most prominently, an arbitrary
superposition of “zero” and “one”, called a “qubit”.2) Because there is an infinite
number of possible superposition states, each giving the “zero” and the “one” par-
ticular weights within a continuous range, even just a single qubit requires, in
principle, an infinite amount of information to describe it.

We also know that classical information is not necessarily encoded in bits. Bits
may be tailor-made for handling by a computer. However, when we perform cal-
culations ourselves, we prefer the decimal to the binary system. In the decimal
system, a single digit informs us about a particular choice between ten discrete
options, not just two as in the binary system. Similarly, quantum information may
also be encoded into higher-dimensional systems instead of those qubit states de-
fined in a two-dimensional Hilbert space. By pushing the limits and extending
classical analog encoding to the quantum realm, quantum observables with a con-
tinuous spectrum may also serve as an infinite-dimensional basis for encoding and
processing quantum information. In this book, we shall attempt to use both the
discrete and the continuous approaches in order to formulate quantum informa-
tion protocols, to conceptually understand their meaning and significance, and to
recast them into a form most accessible to experimental implementations. We will
try to convey some answers as to why quantum information is such a fascinating
field that stimulates interdisciplinary research among physicists, mathematicians,
computer scientists, and others.

There is one answer we can offer in this introductory chapter straight away. In
most research areas of physics, normally a physicist has to make a choice. If she or
he is most interested in basic concepts and the most fundamental theories, she or
he may acquire sufficient skills in abstract mathematical formalisms and become
part of the joint effort of the physics community to fill some of the gaps in the basic
physical theories. Typically, this kind of research, though of undoubted importance
for the whole field of physics as such, is arbitrarily far from any real-world applica-
tions. Often, these research lines even remain completely disconnected from any
potential experimental realizations which could support or falsify the correspond-
ing theory. On the other hand, those physicists who are eager to contribute to the

1) The other, complementary, fundamental physical theory is well known to be general relativity.
2) The term qubit was coined by Schumacher [9].
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real world by using their knowledge of fundamental physical theories would typ-
ically have to sacrifice (at least to some extent)3) their deeper interest into those
theories and concepts, as day and life times are finite.

Thus, here is one of the most attractive features of the field of quantum infor-
mation: it is oriented towards both directions, namely, one that aims at a deeper
understanding of fundamental concepts and theories, and, at the same time, one
that may lead to new forms of communication and computation for real-world ap-
plications.4) Obviously, as quantum information has been an interdisciplinary field
from the beginning, the large diversity of quantum information scientists natu-
rally means that some of them would be mainly devoted to abstract, mathemati-
cal models, whereas others would spend most of their time attempting to bridge
the gaps between theoretical proposals, experimental proof-of-principle demonstra-
tions, and, possibly, real-world applications. However, and this is maybe one of the
most remarkable aspects of quantum information, new fundamental concepts and
insights may even emerge when the actual research effort is less ambitious and
mostly oriented towards potential applications. In fact, even without sophisticated
extensions of the existing mathematical formalisms, within the standard frame-
work of quantum mechanics, deep insights may be gained. A nice example of this
is the famous no-cloning theorem [14, 15] which is, historically, probably the first
fundamental law of quantum information.5)

The no-cloning theorem states that quantum information encoded in an arbi-
trary, potentially unknown quantum state cannot be copied with perfect accura-
cy. This theorem has no classical counterpart because no fundamental principle
prevents us from making arbitrarily many copies of classical information. The no-
cloning theorem was one of the first results on the more general concepts of quan-
tum theory that had the flavor of today’s quantum information theory (see Fig-
ure 1.1). Though only based upon the linearity of quantum mechanics, no-cloning
is of fundamental importance because it is a necessary precondition for physical
laws as fundamental as no-signaling (i.e., the impossibility of superluminal com-
munication) and the Heisenberg uncertainty relation.

3) A famous exception, of course, is Albert
Einstein who dealt with fridges during
his working hours in a patent office and
discovered general relativity during his spare
time.

4) Very recent examples for these two
complementary directions are, on the one
hand, the emerging subfield of relativistic
quantum information that is intended to
provide new insights into more complete
theories connecting quantum mechanics
with relativity [10, 11]; and, on the other
hand, the recent demonstration of a quantum
key distribution network in Vienna [12, 13].

5) There is a fascinating anecdote related
to the discovery of no-cloning in 1982.
The theorem was inspired by a proposal

for a “superluminal communicator”, the
so-called FLASH (an acronym for First Laser-
Amplified Superluminal Hookup) [16]. The
flaw in this proposal and the non-existence of
such a device was realized by both referees:
Asher Peres, who nonetheless accepted the
paper in order to stimulate further research
into this matter, and GianCarlo Ghirardi,
who even gave a no-cloning-based proof for
the incorrectness of the scheme in his report.
Eventually, the issue was settled through the
published works by Dieks, Wootters, and
Zurek [14, 15], proving that any such device
would be unphysical.
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Figure 1.1 A summary of concepts and appli-
cations linked to or originating from quantum
information. The upper part is devoted to fun-
damental physical laws, while the middle and

lower parts refer to elementary quantum pro-
tocols and the ultimate full-scale quantum
applications, respectively.

At the center of quantum information is the notion of entanglement, a necessary
resource for elementary quantum protocols such as quantum teleportation [17] (the
reliable transfer of quantum information using shared entanglement and classi-
cal communication) and quantum key distribution [18] (the secure transmission
of classical information using quantum communication);6) entanglement has also
been shown to be a sufficient resource for the ultimate applications, long-distance
quantum communication [2] and universal quantum computation [1]. Missing in
Figure 1.1 are important subroutines for quantum error correction [5, 21] in or-
der to distribute or reliably store entanglement; in quantum communication, such
a quantum error correction may be probabilistic (so-called entanglement distilla-
tion [22]), while for quantum computation, we need to measure and manipulate
entangled states fault-tolerantly in a deterministic fashion [5].

Without no-cloning, the following scenario appears to be possible [16]. Two par-
ties, “Alice” (subscript A) and “Bob” (subscript B), sharing a maximally entangled
two-qubit state,7)

1p
2

(j0iA ˝ j0iB C j1iA ˝ j1iB) D 1p
2

(jCiA ˝ jCiB C j�iA ˝ j�iB) ,

(1.1)

may use their resource to communicate faster than the speed of light. The essential
element for this to work would be the Einstein, Podolsky, and Rosen (EPR) [23]

6) The importance of entanglement as a
necessary precondition for secure key
distribution was shown by Curty et al. [19].
Even though entanglement may not be
physically distributed between the sender
and the receiver (as in [18], as opposed to, for
example, the Ekert protocol [20]), for secure
communication, the measured correlations
must not be consistent with classical
correlations described by an unentangled
state. Note that a possible eavesdropper
attack is always given by approximate cloning

of the quantum signals such that perfect
cloning would definitely prevent secure
quantum key distribution (Figure 1.1), and,
in a realistic scenario, approximate cloning
may as well.

7) The following discussion requires some
familiarity with basic quantum mechanical
notions such as state vectors, density
operators, and partial trace operations, a brief
introduction of which will be given in the
succeeding section.
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correlations of the entangled state which are stronger than classical correlations
as they are present at the same time in different, conjugate bases, fj0i, j1ig and
fjCi, j�ig with j˙i � (j0i ˙ j1i)/p2, corresponding to different, non-commuting
observables Z and X, respectively, where Z jki D (�1)k jki and X j˙i D ˙j˙i with
k D 0, 1. Physically, each of the two bases could correspond to two orthogonal
polarizations of a single photon; one basis for linear polarization and the other one
for circular polarization.

Alice could now choose to measure her half of the entangled state in the basis
fj0i, j1ig. Alternatively, she may as well project onto fjCi, j�ig. In the former case,
Bob’s half ends up in the corresponding eigenstate j0i or j1i and so would all copies
that he could generate from his half. In the latter case, copies of Bob’s half would all
be in the corresponding state jCi or j�i, and measurements in the basis fj0i, j1ig
would yield, on average, half of the copies in the state j0i and likewise half of them
in the state j1i. Therefore, the statistics of measurements on copies of Bob’s half
would enable him to find out which measurement basis Alice has chosen. Such
a scheme could be exploited for a deterministic, superluminal transfer of binary
information from Alice to Bob. However, the other crucial element here would
be Bob’s capability of producing many copies of the states fj0i, j1ig or fjCi, j�ig
without knowing what the actual states are. This is forbidden by the no-cloning
theorem.

Physically, no-cloning would become manifest in an optical implementation of
the above scheme through the impossibility of amplifying Bob’s photons in a noise-
less fashion; spontaneous emissions would add random photons and destroy the
supposed correlations. From a mathematical, more fundamental point of view, the
linearity of quantum mechanics alone suffices to negate the possibility of superlu-
minal communication using shared entanglement.

The crucial ingredient of the entanglement-assisted superluminal communica-
tion scenario above is the copying device that may be represented by an (initial)
state jAi. It must be capable of copying arbitrary quantum states jψi as

jψijAi �! jψijψijA0i . (1.2)

The final state of the copying apparatus is described by jA0i. More accurately, the
transformation should read

jψiaj0ibjAic �! jψiajψibjA0ic , (1.3)

where the original input a to be cloned is described by jψia and a second qubit b is
initially in the “blank” state j0ib. After the copying process, both qubits end up in
the original quantum state jψi.

Wootters and Zurek [15] (and similarly Dieks for his “multiplier” [14]) considered
a device that does clone the basis states fj0i, j1ig in the appropriate way according
to Eq. (1.2),

j0ijAi �! j0ij0ijA0i ,

j1ijAi �! j1ij1ijA1i . (1.4)
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Since this transformation must be unitary8) and linear, its application to an input
in the superposition state jψi D αj0i C �j1i leads to

jψijAi �! αj0ij0ijA0i C �j1ij1ijA1i . (1.5)

For identical output states of the copying apparatus, jA0i D jA1i, a and b are in the
pure state αj0ij0i C �j1ij1i which is not the desired output state jψijψi. With a
distinction between the apparatus states, that is, taking them to be orthonormal,
hA0jA0i D hA1jA1i D 1, hA0jA1i D 0, we obtain from the density operator of the
whole output system (for simplicity, assuming real α and �),

O�abc D α2j00A0iabch00A0j C �2j11A1iabch11A1j
C α�j00A0iabch11A1j C α�j11A1iabch00A0j , (1.6)

the density operator of the original-copy system ab by tracing out the apparatus,

Trc O�abc D α2j00iabh00j C �2j11iabh11j � O�ab . (1.7)

Finally, we can calculate the individual density operators of a and b,

Trb O�ab D α2j0iah0j C �2j1iah1j � O�a ,

Tra O�ab D α2j0ibh0j C �2j1ibh1j � O�b . (1.8)

The two outgoing states are identical, but significantly different from the desired
original density operator,

jψiahψj D α2j0iah0j C α�j0iah1j C α�j1iah0j C �2j1iah1j . (1.9)

In fact, any information about quantum coherence encoded in the off-diagonal
terms of jψi is eliminated in the output states of Eq. (1.8). The degree of similarity
between the actual output states and the original state, expressed by their overlap,
the so-called fidelity [9],

F D ahψj O�ajψia D bhψj O�bjψib D α4 C �4 D α4 C (1 � α2)2 , (1.10)

depends on the original input state. The basis states j0i or j1i are perfectly copied
with unit fidelity (α D 1 or α D 0), as we know from Eq. (1.4). However, coherent
superpositions are copied with non-unit fidelity, where the worst result is obtained
for the symmetric superposition α D 1/

p
2 with F D 1/2.

Is it inevitable to obtain such a bad result when copying a symmetric superposi-
tion? Of course, only when we insist on perfectly copying certain basis states such

8) It was pointed out by Werner [24] that the
“constructive” approach here, i.e, coupling
the input system with an apparatus or
“ancilla” through a unitary transformation
and then tracing out the ancilla, is equivalent
to a general quantum cloner described by

linear, completely positive trace-preserving
(CPTP) maps. General quantum operations,
channels, and CPTP maps as well as states
represented by density operators instead of
vectors in Hilbert space will be discussed in
more detail in the following sections.
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as fj0i, j1ig. A universal copying machine that “treats all input states equally well”
could be considered instead. For any input state jsi D αj0i C �j1i, it would always
yield the same optimal non-unit fidelity independent of α, namely, F D 5/6 [25].
This would correspond to the optimal, approximate, universal cloning of an un-
known qubit.

Since no-cloning only depends on the linearity of quantum theory, it applies to
quantum states of any dimensionality, not only to qubits. Optimal, approximate,
universal cloning may then be considered for all kinds of quantum states, from
DV d-level systems [24] to CV infinite-dimensional systems [26, 27], including ex-
tensions with certain given numbers of input and output copies.

1.2
States and Observables

A pure quantum state is given by a vector in Hilbert space jψi, and the vector may
be expanded in an arbitrary basis,

jψi D
X

m

hmjψijmi . (1.11)

The basis is complete and orthonormal,X
m

jmihmj D 1 , hmjm0i D δmm0 . (1.12)

The complex numbers hmjψi are the components of the Hilbert space vector jψi.
When measuring an observable OM , the probability for obtaining the measurement
result m (a real eigenvalue of OM with eigenstate jmi) is determined by the size of
the component of jψi in direction of jmi,

pm D jhmjψij2
hψjψi . (1.13)

Here,

hψjψi D
X

m

X
m0

hψjmihmjhm0jψijm0i D
X

m

jhmjψij2 (1.14)

ensures the proper normalization, with hmjψi� D hψjmi. Once the measurement
result m is obtained, the state vector jψi is reduced (“collapses”) onto the corre-
sponding eigenstate jmi. The overlap hψjψ0i is the scalar product of the vector
space, which is obviously independent of the basis choice in Eq. (1.11). The expec-
tation value of the observable OM in the state jψi is given by (with hψjψi D 1)

h OMi D
X

m

pm m D
X

m

mhψjmihmjψi

D hψj
X

m

mjmihmjψi D hψj OM jψi . (1.15)
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This equation reveals the spectral decomposition of the observable OM ,

OM D
X

m

mjmihmj , (1.16)

which is a Hermitian operator and so the eigenvalues m are real. Thus far, we have
considered observables with a discrete, countable spectrum, regardless of whether
the Hilbert space is finite or infinite-dimensional. In the infinite-dimensional case,
an observable OX may have a continuous spectrum. Its spectral decomposition be-
comes

OX D
Z

dx x jxihx j , (1.17)

with the continuous eigenbasis fjxig and the real, continuous eigenvalues x.
In contrast to pure states, mixed states cannot be described by Hilbert space vec-

tors, taking into account the case of incomplete knowledge about the state prepa-
ration. A mixed state is a statistical mixture of pure states given by the density
operator (with �k > 0 and

P
k �k D 1)

O� D
X

k

�k jψkihψk j . (1.18)

As opposed to the coherent superposition in Eq. (1.11), a mixed state is sometimes
called an incoherent superposition. According to this definition, we find for the
overall expectation value of the observable OM ,

h OMi D
X

k

�khψk j OM jψki D
X

m

X
k

�khψk j OM jmihmjψki

D
X

m

hmj
X

k

�k jψkihψk j OM jmi D Tr( O� OM ) , (1.19)

where we have introduced the trace operation Tr(� � � ) D P
mhmj � � � jmi with an

arbitrary basis fjmig. The density operator is a normalized Hermitian operator, so
Tr( O�) D 1, and it is non-negative (i.e., it has only non-negative eigenvalues) because

hφj O�jφi D
X

k

�k jhφjψkij2 � 0 (1.20)

for any jφi. Note that the states jψki in the mixture O� need not be orthogonal to
each other. Further, the mixed-state decomposition is not unique. However, when
the density operator of Eq. (1.18) is written in its eigenbasis, we find

Tr( O�2) D
X

k

�2
k �

X
k

�k D 1 , (1.21)

with �k now being the eigenvalues of O�. Equality, Tr( O�2) D 1, only holds for pure
states. Therefore, any state with Tr( O�2) < 1 is mixed. Alternatively, this becomes
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manifest in the von Neumann entropy of a state,

S( O�) � �Tr O� log O�

D �Tr

"X
k

�k jψkihψk j
X

l

(log �l )jψ lihψ l j
#

D �
X

k

�k log �k .

(1.22)

It becomes nonzero for any mixed state and vanishes for pure states.

1.2.1
Qubit

We shall now consider specific quantum states as they are typically used in quan-
tum information. In a two-dimensional Hilbert space, a general pure qubit state
can be written as

jψθ ,φi D cos(θ /2)j0i C sin(θ /2)eiφ j1i . (1.23)

This state can also be represented in terms of the Bloch vector representation,

O� D jψθ ,φihψθ ,φ j

D 1
2

1 C 1
2

�
cos θ sin θ e�iφ

sin θ eCiφ � cos θ

�

D 1
2

�
1 C s3 s1 � is2

s1 C is2 1 � s3

�
D 1

2
(1 C s � σ) , (1.24)

with σ D (σ1, σ2, σ3)T, the Pauli matrices

σ1 D
�

0 1
1 0

�
, σ2 D

�
0 �i
i 0

�
, σ3 D

�
1 0
0 �1

�
, (1.25)

and

s D (s1, s2, s3) D (sin θ cos φ, sin θ sin φ, cos θ ) . (1.26)

The Bloch vector s fully describes the qubit state. It points in the direction specified
by the spherical coordinates θ and φ. The vector’s tip lies on the surface of the
Bloch sphere, representing a pure state with jsj D 1. For mixed states, we would
have jsj < 1. Throughout, we will interchangeably use fσ1, σ2, σ3g, fσx , σ y , σzg,
and fX , Y, Zg, respectively, to express the Pauli matrices and operators (where Y D
iX Z ).

A particularly important set of pure qubit states are the six C1 eigenstates of
f˙X , ˙Y, ˙Zg, according to9)

˙X j˙i D j˙i , (�1)k Z jki D jki , (1.27)

9) For a definition of stabilizers, see the discussion and the box in Section 1.9.
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+Z

-Z

+X-X

+Y

-Y

Figure 1.2 The qubit Bloch sphere. There are six C1 eigenstates of the Pauli operators
f˙X, ˙Y, ˙Zg corresponding to three pairs of basis vectors on opposite sides of the Bloch
sphere.

and ˙Y(j0i ˙ ij1i)/p2 D (j0i ˙ ij1i)/p2, with k D 0, 1 and j˙i � (j0i ˙ j1i)/p2.
These are the so-called stabilizer states for one qubit, where each pair represents a
basis situated on opposite sides of the Bloch sphere (see Figure 1.2). Typically, the
Z eigenstates are chosen to be the computational basis, while the X eigenstates are
then obtained through Hadamard transformation, H jki D (j0i C (�1)k j1i)/p2.

1.2.2
Qumode

A natural way to encode quantum information is in terms of quantized harmonic
oscillators. In general, we shall refer to these quantum objects as qumodes. In this
case, the Hilbert space vectors live in an infinite-dimensional Hilbert space. The
observables are Hermitian operators with a discrete, countable or a continuous
spectrum such as occupation number or amplitude and phase of the oscillator,
respectively. These mathematical notions have their physical interpretation in the
complementary particle and wave properties of a quantum oscillator.

The well-known Hamiltonian of a single qumode is „ω( OnC1/2), with the Hermi-
tian occupation number operator On � Oa† Oa. The eigenstates of the number operator
are the number states jni,

Onjni D njni , (1.28)

where n D 0, 1, 2, . . . , 1 is the occupation or excitation number of the oscillator.
The ground state of the oscillator is defined by

Oaj0i D 0 . (1.29)

The energy „ω/2 corresponds to the ground-state or zero-point energy which is
still present when the qumode has an excitation number zero.

The non-Hermitian operators Oa and Oa† are the lowering and raising operators,
respectively,

Oajni D p
njn � 1i , Oa†jni D p

n C 1jn C 1i . (1.30)
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By successive application of the raising operator, all number states can be obtained
from the ground state,

jni D
� Oa†

�n

p
n!

j0i . (1.31)

The number states form an orthonormal,10)

hnjmi D δnm , (1.32)

and complete basis,

1X
nD0

jnihnj D 1 . (1.33)

The Hamiltonian of a single qumode, OH D „ω( Oa† Oa C 1/2), may be rewritten as,

OH D 1
2

� Op 2 C ω2 Ox2� , (1.34)

with

Oa D 1p
2„ω

(ω Ox C i Op ) , Oa† D 1p
2„ω

(ω Ox � i Op ) , (1.35)

or, conversely,

Ox D
r „

2ω

� Oa C Oa†� , Op D �i

r
„ω
2

� Oa � Oa†� , (1.36)

using the well-known commutation relation for “position” and “momentum”,

[ Ox , Op ] D i„ . (1.37)

These Hermitian operators are the position and momentum operators of an oscil-
lator with unit mass. The lowering and raising operators satisfy the commutator
[ Oa, Oa†] D 1. In Eq. (1.35), we see that up to some dimensional factors, the position
and momentum operators are the Hermitian real and imaginary parts of the low-
ering operator. It is then convenient to define the dimensionless pair of conjugate
quantum variables,

OX �
r

ω
2„ Ox D Re Oa , OP � 1p

2„ω
Op D Im Oa . (1.38)

Their commutation relation is given by

[ OX , OP ] D i
2

. (1.39)

10) The proper normalization is ensured by the prefactors in Eq. (1.30).
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In other words, the dimensionless “position” and “momentum” operators, OX and
OP , are defined as if we set „ D 1/2. Considering a classical oscillator, they would

correspond to the real and imaginary parts of the oscillator’s complex amplitude.
Throughout the text, we use Ox � OX and Op � OP to express the dimensionless
position and momentum operators so that Oa D Ox C i Op .

The Heisenberg uncertainty relation for the variances of two non-commuting
observables OA and OB in a given quantum state,

h(∆ OA)2i � h( OA � h OAi)2i D h OA2i � h OAi2 ,

h(∆ OB)2i � h( OB � h OBi)2i D h OB2i � h OBi2 , (1.40)

becomes

h(∆ OA)2ih(∆ OB)2i � 1
4

jh[ OA, OB]ij2 . (1.41)

Inserting Eq. (1.39) into Eq. (1.41) gives the uncertainty relation for a pair of con-
jugate phase-space variables of a single qumode,

Ox D ( Oa C Oa†)/2 , Op D ( Oa � Oa†)/2i , (1.42)

namely,

h(∆ Ox )2ih(∆ Op )2i � 1
4

jh[ Ox , Op ]ij2 D 1
16

. (1.43)

A single qumode has position and momentum eigenstates,

Ox jxi D x jxi , Op jp i D p jp i . (1.44)

These are orthogonal,

hx jx 0i D δ(x � x 0) , hp jp 0i D δ(p � p 0) , (1.45)

and complete,

1Z
�1

jxihx jdx D 1 ,

1Z
�1

jp ihp jdp D 1 , (1.46)

and they would correspond to lines in phase space, as shown in Figure 1.3.
As it is well-known from quantum mechanics, the position and momentum

eigenstates are related to each other by the Fourier transformation,

jxi D 1p
π

1Z
�1

e�2ix p jp idp , jp i D 1p
π

1Z
�1

eC2ix p jxidx . (1.47)

The Fourier transformation of a qumode is the analogue of the discrete Hadamard
gate for a qubit mentioned in the preceding section (see Figure 1.4). Similarly, jxi
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x

p

(a) (b)

x

px
p

Figure 1.3 Z and X stabilizer states of a qumode in phase space. (a) Computational position
basis, (b) conjugate momentum basis.

qumode qubit

x

p=x

10computational

+

Fourier Hadamard

basis

conjugate
basis

Figure 1.4 Basis state transformations for a qumode and a qubit. j˙i D (j0i ˙ j1i)/
p

2.

and jp i play the roles of the computational and the conjugate basis, respectively,
like fj0i, j1ig and fjCi, j�ig in the qubit case. They are the eigenstates of the Weyl–
Heisenberg (WH) operators,

X(s) � e�2is Op , Z(s) � eC2is Ox , (1.48)

with

eC2is p X(s)jp i D jp i , e�2isx Z(s)jxi D jxi , (1.49)

similar to Eq. (1.27) for a single qubit. The position and momentum states, be-
ing the above C1 WH eigenstates, are among the stabilizer states11) for a single
qumode. A more general set of stabilizer states would include rotated position
or momentum eigenstates. For instance, the rotated p-momentum states are C1
eigenstates of

eC2is p�is2 cos θ sin θ X(s cos θ )Z(�s sin θ ) � g
(θ )
p (s) , (1.50)

with a “clockwise” rotation angle θ . In particular, by using our convention, for
θ D �π/2, we recover the stabilizer of the position states (here with eigenvalue

11) For a definition of stabilizers, see the discussion and the box in Section 1.9.



1.2 States and Observables 17

�p) corresponding to a Fourier transformation of the p-momentum states. We shall
get back to these qumode stabilizers later in various contexts such as unitaries on
qumodes and optical Gaussian states of one or more qumodes.

A general pure qumode state jψi can be expanded in the position basis,

jψi D
Z

dx jxihx jψi D
Z

dx ψ(x )jxi , (1.51)

where hx jψi D ψ(x ) is the position wave function. Any mixed state may be written
as

O� D
Z

f (s, t)X(s)Z(t)ds dt , (1.52)

with a complex function f (s, t). In quantum optics, this would correspond to a
phase-space expansion in terms of the quantum optical displacement operator.

Encoding quantum informationJ
Qubit:

arbitrary pure states:

jψθ ,φi D cos(θ /2)j0i C sin(θ /2)eiφ j1i
arbitrary mixed states:

O� D 1
2

(1 C s � σ) , σ D (σ1, σ2, σ3)T , jsj � 1

stabilizer states as C1 eigenstates of f˙X � ˙σ1, ˙Y � ˙σ2, ˙Z � ˙σ3g:

˙X(j0i ˙ j1i)/p2 D (j0i ˙ j1i)/p2

˙Y(j0i ˙ ij1i)/p2 D (j0i ˙ ij1i)/p2

CZ j0i D j0i , � Z j1i D j1i
with qubit Pauli operators X, Y, Z

���� Qumode:
arbitrary pure states:

jψi D
Z

dx ψ(x )jxi

arbitrary mixed states:

O� D
Z

ds dt f (s, t)X(s)Z(t)

stabilizer states as C1 eigenstates of feC2is p X(s), e�2isx Z(s)g:

eC2is p X(s)jp i D jp i
e�2isx Z(s)jxi D jxi

with qumode Weyl–Heisenberg operators X(s) D e�2is Op and Z(s) D eC2is Ox
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A general physical operation on a density operator can be non-unitary, including
irreversible channels and measurements. However, reversibly mapping a normal-
ized density operator onto another normalized density operator is described by
unitaries which we briefly discuss in the following section.

1.3
Unitaries

Unitary transformations (unitaries) represented by unitary operators OU , with
OU† OU D OU OU† D 1, preserve the norms and overlaps of states. However, this

trace-preserving property is not the most distinct feature of unitaries. Rather, it is
reversibility.12) By acting on Hilbert space vectors, unitaries are used in order to
access any other vector in the same Hilbert space; an important tool for quantum
computation.13)

As it is well-known from standard quantum mechanics, the unitary evolution of
a quantum system can be described in the Schrödinger as well as the Heisenberg
representation. Assume the pure state jψ(t0)i is prepared at time t0. The unitarily
evolved state at time t > t0 can then be written in the Schrödinger representation
as

jψ(t)i D OU(t, t0)jψ(t0)i . (1.53)

For a closed system where the Hamiltonian is time independent, @ OH/@t D 0, the
unitary operator OU(t, t0) takes on the simple form

OU(t, t0) D exp
�
� i

„
OH(t � t0)

�
. (1.54)

The unitary evolution of a mixed state is easily found to be

O�(t) D OU(t, t0) O�(t0) OU†(t, t0) , (1.55)

using Eq. (1.18).
In the Heisenberg representation, the initial states remain unchanged during

the evolution, jψH(t)i � jψHi D jψ(t0)i. It follows jψHi D OU†(t, t0)jψ(t)i. Equiv-
alence of the expectation values in both representations means

hψHj OMH(t)jψHi D hψ(t)j OU(t, t0) OU†(t, t0) OM OU(t, t0) OU†(t, t0)jψ(t)i
D hψ(t)j OM jψ(t)i , (1.56)

for arbitrary jψHi. Thus, we obtain

OMH(t) D OU†(t, t0) OM OU(t, t0) . (1.57)

12) Which refers to physical reversibility; a notion stronger than just mathematical invertibility.
13) Later, however, we shall describe the one-way model of quantum computation which achieves this

universal accessibility of quantum states in an irreversible fashion through measurements on an
entangled resource state.
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This corresponds to the equation of motion

d
dt

OMH(t) D 1
i„

OU†[ OM , OH ] OU C OU† @ OM

@t
OU , (1.58)

or

i„ d
dt

OMH(t) D
h OMH, OHH

i
C i„@ OMH

@t
. (1.59)

Therefore, the action of an arbitrary unitary operator OU is described by either
OM ! OU† OM OU (Heisenberg) or O� ! OU O� OU† (Schrödinger). Here, we dropped the

time dependence, focusing on an input–output relation between states or observ-
ables.

1.3.1
Qubit

Consider a single qubit. According to the Bloch sphere representation in Figure 1.2,
it is convenient to think of single-qubit unitaries as rotations. In particular, finite
rotations around the coordinate axes are expressed by

ORs(θ ) D e�iθ s�σ/2 D cos(θ /2)1 � i sin(θ /2)s � σ , (1.60)

again with σ D (σ1, σ2, σ3)T for the Pauli operators fσ1, σ2, σ3g � fX , Y, Zg and
the real unit vector s (thus, strictly jsj D 1), using (s � σ)2 D 1. For example, a
rotation around the Z-axis corresponds to OR(0,0,1)(θ ) � ORZ (θ ) D e�iθ Z/2 � Zθ . In
the Heisenberg representation, it becomes clear that the rotation takes place in the
X Y -plane,

Z
†
θ X Zθ D Z�θ X Zθ D X cos θ � Y sin θ ,

Z
†
θ Y Zθ D Z�θ Y Zθ D X sin θ C Y cos θ ,

Z
†
θ Z Zθ D Z�θ Z Zθ D Z . (1.61)

Another thing becomes apparent here. Two different, though discrete choices of
the rotation angle, for instance, θ D π/2 and θ D π/4, lead to very distinct output
operators: while θ D π/2 transforms the Pauli operators into Pauli operators, the
choice of θ D π/4 results in linear combinations of Pauli operators.

The set of single-qubit unitaries that transform Pauli operators into Pauli opera-
tors, n OUj OU† σk

OU D ˙σ l

o
, (1.62)

forms a group, the so-called Clifford group. Clifford group elements map stabilizer
states jSi onto stabilizer states jS 0i.14) Assume g, g0 2 f˙X , ˙Y, ˙Zg such that

14) The corresponding stabilizer group S is an abelian subgroup of the one-qubit Pauli group,
f˙1, ˙i1, ˙X, ˙i X, ˙Y, ˙iY, ˙Z , ˙iZg. The prefactors (˙i) which ensure that the Pauli
group is closed under multiplication are not important for our purposes and will be omitted
throughout. For a detailed definition of stabilizers see Section 1.9.
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gjSi D jSi and g0jS 0i D jS 0i. Then, we obtain the Clifford transformed state

OUjSi D OU gjSi D OU g OU† OUjSi D OUg OU†jS 0i D g0jS 0i . (1.63)

Thus, the inverse Heisenberg evolution of the corresponding single-qubit stabiliz-
er, g 2 f˙X , ˙Y, ˙Zg ! g0 D OU g OU† 2 f˙X , ˙Y, ˙Zg, completely determines
the resulting state jS 0i. For example,

Zπ/2jCi D
�

e�iπ/4j0i C eCiπ/4j1i
�

/
p

2 D e�iπ/4(j0i C ij1i)/p2 , (1.64)

corresponds to

X ! Zπ/2 X Z�π/2 D Y , (1.65)

up to an irrelevant phase factor. The distinction between Clifford unitaries and
non-Clifford unitaries will be important regarding universality and nonclassical
speed-up in quantum computation (see Section 1.8).

1.3.2
Qumode

Now, consider a single qumode. In this case, the free evolution of the oscillator is a
rotation in phase space. Using the input–output formalism, such a phase rotation
of a single qumode with annihilation operator Oa can be expressed by

Oa ! OR†(θ ) Oa OR(θ ) D Oae�iθ , (1.66)

with

OR(θ ) D exp
��iθ Oa† Oa� . (1.67)

In terms of the position and momentum operators (recall that Oa D Ox C i Op ), we
obtain

OR†(θ ) Ox OR(θ ) D Ox cos θ C Op sin θ ,

OR†(θ ) Op OR(θ ) D � Ox sin θ C Op cos θ . (1.68)

In this case, the resulting operators are always linear combinations of the input op-
erators for any choice of θ . The phase-rotation unitary is an element of the Clifford
group which, for qumodes, may be defined similar to the qubit case asn OUj OU† Xk (s) OU / Xl(s)

o
. (1.69)

In this case, Xk (s) and Xl(s) stand for products of WH operators, that is, products of
elements of the WH group. Thus, the Clifford single-qumode unitaries transform
WH operators into products of WH operators. In terms of the WH group gen-
erators, that is, the momentum and position operators, Clifford transformations
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always lead to linear combinations of the generators. Non-Clifford transformations
result in nonlinear combinations of Ox and Op .

We observe that general single-qubit rotations on the Bloch sphere do contain
non-Clifford elements, whereas single-qumode rotations in phase space do not.15)

In the qubit case, the rotation angle determines whether a unitary is Clifford or
not. For qumodes, the Clifford or non-Clifford character of a unitary OU depends on
the order of the Hamiltonian that generates OU. We shall return to this discussion
later.

The above discussion on transforming stabilizer states through Clifford unitaries
applies as well to qumodes. Stabilizer states jSi are then mapped onto stabilizer
states jS 0i. The stabilizers this time, represented by g(s) and g0(s), are products
of WH operators. Again, the inverse Heisenberg evolution of the corresponding
single-qumode stabilizer, g(s) ! g0(s) D OU g(s) OU†, completely determines the re-
sulting state jS 0i. For example, the Fourier transform of a p-momentum eigenstate,
with OF � OR(�π/2) in our convention, leads to an x-position eigenstate with eigen-
value �p, OF jp i D jx D �p i. This corresponds to

eC2is p X(s) ! eC2is p OF X(s) OF † D eC2is p Z(s) , (1.70)

using OF Op OF† D � Ox . More generally, an arbitrary rotation OR(θ ) acting, for instance,
on a p-momentum eigenstate, gives the state OR(θ )jp i which is stabilized by

OR(θ )eC2is p X(s) OR†(θ ) D eC2is pe�2is( Op cos θC Ox sin θ)

D eC2is pe�2is Op cos θ e�2is Ox sin θ e�2[is Op cos θ ,is Ox sin θ ]

D g
(θ )
p (s) , (1.71)

as defined earlier in Eq. (1.50). Here, we used the well-known Baker–Campbell–
Hausdorff formula, e OAC OB D e OAe OBe�[ OA, OB]/2 for [ OA, [ OA, OB ]] D 0, and so on, and the
input–output relations in Eq. (1.68). General single-qumode Clifford unitaries also
include squeezers beside the phase rotations. Squeezing applied to an unphysical,
qumode stabilizer state corresponds to a rescaling of the eigenvalue. For instance,
for a squeezing operation OS(�r) acting on a p-momentum eigenstate, we obtain
the new stabilizer

OS(�r)eC2is p X(s) OS†(�r) D eC2is p X(seCr ) , (1.72)

using OS (�r) Op OS†(�r) D eCr Op [see Eq. (2.52) through Eq. (2.56)]. Therefore, the
new stabilizer state is je�r p i since we have eC2is p X(seCr )je�r p i D je�r p i.

15) This is a first hint that single-qubit non-Clifford unitaries might be optically easy to implement,
while those for a single qumode are hard to realize. This is, however, compensated by the
complication of making two photons interact for a two-qubit entangling gate, whereas entangling
two qumodes is relatively easy. The next chapter will provide additional details on this issue.
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Reversible quantum operations

state O� ! OU O� OU† (Schrödinger), observable OM ! OU† OM OU (Heisenberg)

h OMi D Tr( O� OM ) ! Tr[( OU O� OU†) OM ] D Tr[ O�( OU† OM OU)] and

OU OU† D OU† OU D 1

J
Qubit: arbitrary unitaries:

eiφ ORs(θ ) D eiφe�iθ s�σ/2 D eiφ 	cos(θ /2)1 � i sin(θ /2)s � σ



, jsj D 1

with σ D (σ1, σ2, σ3)T and the Pauli operators fX � σ1, Y � σ2, Z � σ3g
Clifford unitaries:

g 2 f˙X , ˙Y, ˙Zg ! g0 D OUg OU† 2 f˙X , ˙Y, ˙Zg

with gjSi D jSi and g0jS 0i D jS 0i for qubit stabilizer states jSi, jS 0i D OUjSi
���� Qumode: arbitrary unitaries:

OU D e�it H(Oa,Oa†), H( Oa, Oa†) is arbitrary Hamiltonian ,

Oa ! OU† Oa OU is nonlinear transformation

Clifford unitaries:n OUj OU† Xk (s) OU / Xl(s)
o

with Xk (s) and Xl(s) products of WH operators and

OU D e�it H(Oa,Oa†), H( Oa, Oa†) is quadratic Hamiltonian ,

Oa ! OU† Oa OU is linear transformation

The qumode Clifford unitaries, combining squeezing, rotations, and displace-
ments, are useful for defining a universal gate set (see later in Section 1.8).

Squeezing itself will become an important tool when we discuss physical
qumode stabilizer states, that is, Gaussian states, in the next chapter. While any
qumode Clifford unitary can be generated by a Hamiltonian which is a quadratic
polynomial of Ox , Op or Oa, Oa†, a general qumode unitary requires a Hamiltonian of
sufficiently high order. An at least cubic Hamiltonian suffices to realize arbitrary
qumode unitaries asymptotically (see Section 1.8).

In the next section, we will discuss quantum operations which do not belong to
the class of unitaries. These are the irreversible channels and measurements.
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1.4
Non-unitaries

A physical, generally non-unitary quantum operation corresponds to a linear map
between density operators, O� ! O�0 D E ( O�).

For this linear map to be physical, it must satisfy the mathematical notion of
complete positivity. Such a completely positive (CP) map can always be written in
the form of an operator sum,

E ( O�) D
X

k

OA k O� OA†
k

. (1.73)

The sum may be finite or go to infinity and the summation over k may also be re-
placed by an integral. The operators OA k are usually referred to as Kraus operators.
When the corresponding set of positive operators OA†

k
OA k sums up to the identi-

ty,
P

k
OA†

k
OA k D 1, we have a CP trace-preserving (CPTP) map. Otherwise, whenP

k
OA†

k
OA k < 1, the CP map is trace-decreasing (CPTD).

This distinction leads to an output density operator which is either normalized
or not. In the former case, the corresponding CPTP map describes an, in general,
irreversible channel. The case of an unnormalized output after a CPTD map rep-
resents situations where information is gained through measurements and hence
a certain output state is only obtained with non-unit probability. The following two
sections are devoted to this distinction of channels and measurements. In the next
section, we will also explain the important difference between positivity and com-
plete positivity.

1.4.1
Channels

Consider a signal system A in a state O�A. Now, suppose the signal interacts with an
ancilla system B in a state O�B through a global unitary OUAB (see Figure 1.5). When
the ancilla is traced over, the effect of this transformation on the signal is described
by

O�A ! O�0
A D TrB

h OUAB ( O�A ˝ O�B) OU†
AB

i

D
X

k

Bhkj OUAB

"
O�A ˝

 X
l

�l jliBhlj
!#

OU†
ABjkiB

D
X
k ,l

�
Bhkjp�l

OUABjliB

�
O�A

�
Bhljp�l

OU†
ABjkiB

�

�
X
k ,l

OA k l O�A OA†
k l

D E ( O�A) , (1.74)

where we used a diagonal basis fjliBg to express O�B and to trace over B. Note that
OA k l is an operator in the Hilbert space of the signal A. For the simple case of an
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A

B

A'
U

Figure 1.5 A signal system A in an initial state labeled by A
interacts with an ancilla system B in an initial state labeled by B
through a global unitary U. The resulting signal state is labeled
by A0 after tracing over system B.

ancilla starting in the state O�B D j0iBh0j, that is, �k D δk0, we obtain the operator
sum in Eq. (1.73) with OA k � Bhkj OUABj0iB and the signal density operators O� �
O�A.16)

The operator sum or Kraus representation in Eq. (1.73) represents a CPTP map.
The TP property is easily confirmed through

TrE ( O�) D Tr

 X
k

OA k O� OA†
k

!
D
X

k

Tr
� OA†

k
OA k O�

�

D Tr

" X
k

OA†
k

OA k

!
O�
#

D 1 , (1.75)

provided that
P

k
OA†

k
OA k D 1 holds. In the first line of Eq. (1.75), we used the in-

variance property of the trace operation under cyclic permutations. In order to see
that

P
k

OA†
k

OA k D 1 is not only sufficient, but also necessary for the TP property of
E , note that the last line in Eq. (1.75) must be satisfied for any normalized state O�.

Let us now explain the CP property of the map E . Clearly, for the output density
operator to represent a physical state we need E ( O�) � 0. However, there are oper-
ations that do satisfy this positivity constraint, but nonetheless are unphysical.17)

Hence, a stricter condition is required, assuming that the signal A is part of a larg-
er composite system A and B. In this case, the condition is $E O�A D O�0

A � 0 and

($E ˝ 1B) O�AB D O�0
AB � 0, where $E stands for the (super)operator that affects the

map E on system A.
In conclusion, a map E that describes a physical operation is CP and linear. Lin-

earity means that E [λ O�1 C (1 � λ) O�2] D λE ( O�1) C (1 � λ)E ( O�2). Whenever the ancilla
system B in Figure 1.5 is assumed to be inaccessible such that no information can
be gained from it (for instance, when it represents the uncontrollable environment
of the signal A), the trace over B gives a new normalized density operator for A;
thus, E is TP. The situation of an accessible ancilla system B that can be measured
and acts as a probe to the signal will be considered in the next section.

We introduced CPTP maps in the Schrödinger representation. Similar to the
unitary case, we may also describe the reduced dynamics of the signal system in

16) Note that the operators OA k are not unique
and can always be transformed into
new operators OA0

l D P
k u lk

OA k with a
unitary matrix u such that

P
l

OA0
l O� OA0†

l DP
l km u lk u�

lm
OA k O� OA†

m D P
k

OA k O� OA†
k sinceP

l u�
lm u lk D δmk .

17) An example for such an unphysical operation
is transposition. It is a positive, but not

completely positive TP map. This property
turns out to be useful for inseparability
checks of bipartite density matrices (see
Section 1.5).
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the Heisenberg representation,

E�( OM) D
X

k

OA†
k

OM OA k , (1.76)

where now the dual map E� is a completely positive unity-preserving (CPUP) map,
E�(1) D 1, when

P
k

OA†
k

OA k D 1, and OM is an observable. This map is uniquely
defined by requiring that the expectation values are independent of the representa-
tion, h OMi D Tr( O� OM ) ! Tr[E ( O�) OM ] D Tr[ O�E�( OM)].

In general, the dual map will change the commutators, that is, the algebra
is not preserved; a sign for non-unitary evolution. Only for reversible channels,
that is, unitaries, the algebra is invariant. For instance, for a single qumode,
we have [ Ox , Op ] ! OU†[ Ox , Op ] OU D [ OU† Ox OU, U† Op OU ], whereas, in general, [ Ox , Op ] !
E�([ Ox , Op ]) ¤ [E�( Ox ),E�( Op )]. Similarly, only for unitaries do we have f ( Ox , Op ) !
f ( OU† Ox OU , OU† Op OU) for arbitrary polynomials f ( Ox , Op ) (in fact, we used this earli-

er on). However, under a non-unitary map E�, in general, f ( Ox , Op ) evolves into
E�( f ( Ox , Op )) ¤ f (E�( Ox ), E�( Op )).18)

For a general qubit channel expressed by an operator sum, Eq. (1.73), the Kraus
operators can be expanded in terms of the Pauli basis. Thus, we have [5]

OA k D αk1 C �k X C γk Y C δk Z . (1.77)

Similarly, for a general qumode channel, we can use the WH operators as a com-
plete basis such that [28]

E ( O�) D
Z

dsdtds0dt0 f (s, t, s0, t0)X(s)Z(t) O�X(�s0)Z(�t0) . (1.78)

Finally, we note that also for non-unitary dynamics, similar to the case of reversible,
unitary dynamics, we may keep track of the continuous time evolution of the states
or observables. Such continuous, non-unitary, mixed-state evolutions are given by
the well-known master and Langevin equations, respectively [29].19)

18) We should at least mention that those dual
maps that map the generators Ox and Op to
linear combinations of Ox and Op (and WH
operators to products of WH operators)
correspond to the important Gaussian
channels in the Schrödinger representation.
These will be discussed later in Chapter 2.
This particular case of non-unitary reduced
dynamics is a kind of mixed-state extension
of the Clifford unitaries that transform
stabilizer states into stabilizer states, as
presented in the preceding section. A
mathematically more rigorous discussion
of channels, Schrödinger CPTP maps, and
Heisenberg CPUP dual maps and other
examples can be found in Chapter II.5 of [6].

19) However, the operator sum representation
is in some sense more general, as it even
allows one to describe non-Markovian
dynamics [5]. The continuous time evolution
of the master equation corresponds to the
quantum version of a continuous Markov
chain while the operator sum is the quantum
analogue of a probability map. In particular,
for the master equation, the signal A and
the ancilla/environment B must not be
entangled initially (so-called Markovian
approximation). The solution of the master
equation can always be written as well as
O�(t) D P

k
OA k (t) O�(0) OA†

k (t).
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Irreversible quantum operations, channels

state O� ! E ( O�) D P
k

OA k O� OA†
k (Schrödinger CPTP),

observable OM ! E�( OM ) D P
k

OA†
k

OM OA k (Heisenberg CPUP)

h OMi D Tr( O� OM) ! Tr

" X
k

OA k O� OA†
k

!
OM

#
D Tr

"
O�
 X

k

OA†
k

OM OA k

!#

and
P

k
OA†

k
OA k D 1J

Qubit: arbitrary channels:

OA k D αk1 C �k X C γk Y C δk Z

Pauli channels:

OA k / 1, X , Y, Z , 8k ,

amplitude damping channel:

OA 0 D
�

1 0
0

p
1 � γ

�
, OA 1 D

�
0

p
γ

0 0

�

���� Qumode: arbitrary channels:

E ( O�) D
Z

dsdtds0dt0 f (s, t, s0, t0)X(s)Z(t) O�X(�s0)Z(�t0)

WH channels:

E ( O�) D
Z

dsdt f (s, t)X(s)Z(t) O�X(�s)Z(�t)

amplitude damping channel:

E ( O�) D
1X

kD0

OA k O� OA†
k , OA k D

1X
nDk

" 
n

k

!
(1 � γ )n�k γ k

#1/2

jn � kihnj

Channel maps of density operators are trace-preserving and hence determinis-
tic. They are non-selective in the sense that none of the terms in the operator sum
are discarded. In the next section, we shall consider the nondeterministic, selective
case of trace-decreasing CP maps corresponding to situations that include mea-
surements.



1.4 Non-unitaries 27

1.4.2
Measurements

A reversible channel map as written in the form of the operator sum in Eq. (1.73)
only has one term left in the sum and the one remaining Kraus operator becomes
a unitary operator,

P
k

OA k O� OA†
k

D OU O� OU† with
P

k
OA†

k
OA k D OU† OU D 1.

Are there also irreversible, non-unitary operations that are described by a map
with only one term such that O� ! E ( O�) D OA 0 O� OA†

0? Since such a non-unitary map
must have OA†

0
OA 0 ¤ 1, we would obtain an output density operator with non-unit

trace, TrE ( O�) ¤ 1 [see Eq. (1.75)], and the map, in general, would not be trace-
preserving. Indeed, the corresponding probabilistic operation could describe, for
example, a measurement and the measurement-induced “state reduction” would
leave the signal system in a pure, conditional state depending on the measurement
result,

E ( O�)
TrE ( O�)

D
OA 0 O� OA†

0

Tr( OA†
0

OA 0 O�)
. (1.79)

Here, the measurement result is labeled by the subscript “0”. The state after the
measurement is renormalized to unit trace with the unnormalized condition-
al state divided by the probability for the measurement outcome, p (k D 0) D
Tr( OA†

0
OA 0 O�) < 1. Let us make this probabilistic interpretation in terms of measure-

ment-induced state evolution more plausible.
For this purpose, first we introduce a very useful and well-known extension of

the standard von Neumann, projection measurement to a generalized measure-
ment, a so-called positive-operator valued measure (POVM). Recall that the measure-
ment of an observable, that is, a Hermitian operator with real eigenvalues, leads to
an eigenstate from the observable’s orthogonal eigenbasis and the corresponding
eigenvalue is the measurement result. This is a projection measurement.

1.4.2.1 POVM
Let us now define the positive operator

OEk � OA†
k

OA k . (1.80)

The set of positive operators f OEkg is referred to as POVM. It determines a set of
probabilities given by p (k) D Tr( OEk O�). This probability distribution of measure-
ment outcomes should be normalized such that

P
k p (k) D P

k Tr( OA†
k

OA k O�) D 1.
This holds for

P
k

OA†
k

OA k D 1 and Tr O� D 1. In other words, any complete set of
positive operators f OEkg with

P
k

OEk D 1 defines a generalized measurement. The
POVM elements and the Kraus operators coincide if and only if the measurement
is a projection measurement so that OEk � OA k , OA†

k
D OA k , and OA k

OA l D δk l
OA k .

Note that the POVM formalism itself is only about probabilities and not about
state evolution. However, we can make statements about non-unitary state evolu-
tion as follows.
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Consider again the scheme in Figure 1.5. This time, we assume that a projective
POVM is applied to the output state of the ancilla after the unitary. This POVM
is given by the set of projectors f OEkg � fjkihkjg with an orthonormal basis fjkig
for the ancilla system. Similar to what we did before, we can write down the total
unitary state evolution of the composite system of signal A and ancilla B, where
we assume the ancilla starts in the state O�B D j0iBh0j. However, this time, we do
not simply trace over the ancilla system. Instead, we calculate the probabilities for
obtaining the measurement outcome k,

p (k) D TrAB

h OUAB ( O�A ˝ j0iBh0j) OU†
AB

�
1A ˝ OEk

�i

D TrA

"X
l

Bhlj OUAB ( O�A ˝ j0iBh0j) OU†
AB (1A ˝ jkiBhkj) jliB

#

D TrA

� OA k O�A OA†
k

�
D TrA

� OA†
k

OA k O�A

�
, (1.81)

using OA k � Bhkj OUABj0iB as before and BhkjliB D δk l . This defines the POVM
f OA†

k
OA kg on the signal system O�A. An additional new POVM, f OFlg, acting upon the

signal output state would result in the joint probabilities

p (k, l) D TrAB

h OUAB ( O�A ˝ j0iBh0j) OU†
AB

� OFl ˝ OEk

�i
D TrA

� OA k O�A OA†
k

OFl

�
. (1.82)

From this, we can immediately infer the probabilities for obtaining the POVM
element OFl when the initial state prior to the second POVM is O�(k )

A , namely,
TrA[ O�(k )

A
OFl ] D p (ljk) D p (k, l)/p (k) D TrAf[ OA k O�A OA†

k
/p (k)] OFlg. Thus, we must

have the conditional state of the first POVM,

O�(k )
A D

OA k O�A OA†
k

p (k)
D

OA k O�A OA†
k

TrA

� OA†
k

OA k O�A

� � E ( O�A)
TrAE ( O�A)

. (1.83)

Thus, the a-priori-state of the second POVM gives us the a-posteriori-state of the
first POVM and hence the state evolution consistent with the first measurement.
Here, the a-posteriori-state is pure (provided O�A is pure), as we have assumed per-
fect knowledge about the outcome k. More generally, a CP trace-decreasing (CPTD)
map can be written in the same way as Eq. (1.73), but with

P
k

OA†
k

OA k < 1. This
may lead to an unpure output state, but the trace is strictly decreasing, provided
some information is gained through the measurement. In the special case when
no information is gained or, equivalently, when the average is taken over all possi-
ble outcomes k, we obtain the ensemble output state,

O�0
A D

X
k

p (k) O�(k )
A D

X
k

p (k) OA k O�A OA†
k/p (k)

D
X

k

OA k O�A OA†
k

D E ( O�A) . (1.84)
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This is again a CPTP map and we see that there is a physical interpretation of such
a CPTP map. We can think of a channel as an ancilla system like the signal’s envi-
ronment which is monitoring the signal system with random outcomes k. As long
as we do not have access to these outcomes, we cannot use them for processing.
Therefore, effectively, the input state O�A is randomly replaced by O�(k )

A with probabil-
ity p (k). The ensemble state is then the same as before when we traced over the
environment using a complete, orthonormal basis.

To summarize, a channel is a CPTP map that non-selectively and deterministically

transforms density operators. It will always map pure states to mixed states, unless
it is a unitary channel. A CPTD map is then expressed by a selective and hence
nondeterministic Kraus evolution. It can map pure states to either pure or mixed
states, depending, for example, on the resolution of a measurement.

Finally, we shall discuss that there is an alternate way to formulate a generalized
measurement besides attaching an ancilla and considering measurements in the
product Hilbert space of signal and ancilla, as depicted in Figure 1.5.

1.4.2.2 Naimark Extension
Though maybe less physically motivated, but mathematically more systematic, the
alternate approach uses an extended Hilbert space from the original signal space
corresponding to the total Hilbert space H D K ˚ K?. Through this direct-sum
structure, the POVM is then described by a projection measurement onto the or-
thogonal set of vectors in the total space,

jwµi D ju µi C jNµi , (1.85)

with hwµjwνi D δµν. The vectors fju µig are unnormalized, possibly non-ortho-
gonal state vectors in the Hilbert space K. We may write

OEµ D ju µihu µ j . (1.86)

These are the POVM operators of an N-valued POVM with
PN

µD1
OEµ D 1. The

vectors fjNµig are defined in the complementary space K? orthogonal to K, with
the total Hilbert space H D K ˚ K?. If the dimension of the signal space is n,
with ju µi D Pn

iD1 bµ i jvii, some complex coefficients bµ i , and fjviign
iD1 as a ba-

sis in K, we have jNµi D PN
iDnC1 bµ i jvii with some complex coefficients bµ i ,

and fjviigN
iDnC1 as a basis in K?. The vectors fjNµig are referred to as a Naimark

extension.
Let us give an example for a POVM on a single qubit, n D 2. Consider a pair of

pure and non-orthogonal qubit states,20)

j�˙i D αjN0i ˙ �jN1i , (1.87)

where α > � are assumed to be real and fjN0i, jN1ig are two basis states. When we
are given a single copy of this qubit without knowing whether it is in the C or the �
20) Actually, any pair of pure states can be written this way up to a global phase. We use the notation

jN0i and so on in order to indicate that the basis states here are logical basis states. Later, in the
optical context, a logical basis state may be encoded into photonic states of several optical modes.
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state, there are various restrictions. We cannot perfectly discriminate the two states
and so we cannot unambiguously and deterministically decide in which quantum
state the qubit exists. In fact, if we were able to achieve perfect state discrimination,
we could also create more copies from a single copy of the unknown quantum state,
thus violating the no-cloning theorem; as a result, we could even communicate at
a speed faster than light (recall Section 1.1). The fundamental inability of perfect
state discrimination for non-orthogonal states is also the essence of quantum key
distribution (see Section 1.7).

However, there are measurement schemes that do achieve state discrimination
to some extent in an imperfect fashion, either unambiguously or deterministically,
or somewhere in between. The two extreme cases are the deterministic discrim-
ination with an ideally minimal error (so-called minimum error discrimination,
MED) and the error-free discrimination with an ideally minimal probability for ob-
taining an inconclusive result (so-called unambiguous state discrimination, USD).
In either case, the optimal performance can be derived from the laws of quantum
theory.

Now let us consider the USD for the two states in Eq. (1.87). The POVM for this
USD may have three elements, N D 3, two of which correspond to an error-free
identification of the C and � states. The third POVM element would express an
additional inconclusive measurement outcome. Thus, we have

P3
µD1

OEµ D 1 with
OEµ from Eq. (1.86). The elements OE1 and OE2 are conclusive, while OE3 is inconclusive.

Now, in order to make the first two POVM elements unambiguous, that is, error-
free, we must satisfy p (1j�) D Tr( OE1j��ih��j) D p (2jC) D Tr( OE2j�Cih�Cj) D 0,
where p (1j�) and p (2jC) are the probabilities for obtaining the 1 outcome for the �
state and the 2 outcome for the C state, respectively. Using the ansatz in Eq. (1.85),
a projection onto a three-dimensional basis fjwµig can be constructed that satisfies
the above constraints. More precisely, the choice of

ju1/2i D 1p
2

�
�
α

jN0i ˙ jN1i
�

, jN1/2i D 1p
2

r
1 � �2

α2 jN2i ,

ju3i D
r

1 � �2

α2 jN0i , jN3i D � �
α

jN2i , (1.88)

with hN2jN0i D hN2jN1i D 0, would even achieve the optimal USD with minimal fail-
ure probability, that is, minimal probability for obtaining an inconclusive result,
Probfail D jh�Cj��ij for equal a priori probabilities [30–32]. The optimality is easi-
ly confirmed through

Probsucc D Tr
� OE1j�Cih�Cj

�
/2 C Tr

� OE2j��ih��j
�

/2

D 1 � Probfail

D 1 � Tr
� OE3j�Cih�Cj

�
/2 � Tr

� OE3j��ih��j
�

/2

D 1 � (α2 � �2) D 1 � jh�Cj��ij D 2�2 . (1.89)

The factors 1/2 in lines one and three are the a priori probabilities. Examples of
projection measurements, POVMs, and USD on optically encoded quantum states,



1.5 Entanglement 31

both in the DV qubit and the CV qumode regime, will be presented in Chapter 2.
Such quantum measurements are highly relevant for many applications in optical
quantum information, especially quantum communication.

Irreversible quantum operations, measurements

generalized measurement, positive-operator valued measure (POVM):

OEk D OA†
k

OA k with
X

k

OEk D 1 and probabilities p (k) D Tr
� OEk O�

�

non-unitary state evolution, completely positive trace-decreasing (CPTD):

O� ! E ( O�)
TrE ( O�)

D
P

k
OA k O� OA†

k

Tr
�P

k
OA†

k
OA k O�

� with
X

k

OA†
k

OA k < 1

Besides those POVMs on a single qubit or qumode, an important extension are
collective, joint POVMs on many qubits or qumodes. An example is the projection
onto an entangled-state basis as needed for quantum teleportation. We shall now
proceed with an introduction to the notion of entanglement.

1.5
Entanglement

In this section, we will first introduce pure entangled states, focusing on qubit
and qumode states. Further, extending the discussion on quantum states for a sin-
gle qubit and a single qumode in Section 1.2, we shall now look at bipartite qubit
and qumode states from a point of view that is based on stabilizers (see the dis-
cussion and the box in Section 1.9). For the case of qumodes, the stabilizer states
introduced in this section are idealized, unphysical states. We will briefly introduce
inseparability criteria for mixed states and entanglement witnesses as well as a few
entanglement measures.

1.5.1
Pure States

For any pure state of two parties, for instance, a pure state of two qubits or two
qumodes, there is always an orthonormal basis for each subsystem, fju nig and
fjvnig, such that the total state vector can be written in the “Schmidt decomposi-
tion” [33] as

jψi D
X

n

cnju nijvni . (1.90)
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The summation goes over the smaller of the dimensionalities of the two subsys-
tems and would go to infinity for two qumodes. Therefore, for two qubits, there
are, in general, two terms. In order to write a bipartite pure state of a qubit and
a qumode, two terms are enough as well (see the notion of hybrid entanglement
introduced in Chapter 8).

The Schmidt coefficients cn are real and non-negative, and satisfy
P

n c2
n D 1.

The Schmidt decomposition may be obtained by writing an arbitrary pure bipartite
state as

jψi D
X
mk

amk jmijki D
X
nmk

u mn cnn vk njmijki

D
X

n

cn ju nijvni , (1.91)

with cnn � cn . In the first step, the matrix a with complex elements amk is diago-
nalized using singular-value decomposition, a D ucvT, where u and v are unitary
matrices and c is a diagonal matrix with real, non-negative elements. In the second
step, we defined ju ni � P

m u mnjmi and jvni � P
k vk njki which form orthonor-

mal sets due to the unitarity of u and v, and the orthonormality of jmi and jki.
A pure state of two finite-dimensional, d-level systems is maximally entangled

when the Schmidt coefficients of the total state vector are all equal. Since the eigen-
values of the reduced density operator after tracing out one half of a bipartite state
are the Schmidt coefficients squared,

O�1 D Tr2 O�12 D Tr2jψi12hψj D
X

n

c2
nju ni1hu n j , (1.92)

tracing out either subsystem of a maximally entangled state leaves the other half
in the maximally mixed state 1/d. In other words, if one party is discarded, the
remaining party is in a maximally noisy state with maximum entropy. Conversely,
a pure bipartite state is factorizable (not entangled) if and only if the number of
nonzero Schmidt coefficients, the so-called Schmidt rank, is one. In this case, the
reduced states are pure and have zero entropy.

A unique measure of bipartite entanglement for pure states is given by the partial
von Neumann entropy, that is, the von Neumann entropy as defined in Eq. (1.22)
for the remaining system after tracing out either subsystem [34], �Tr O�1 logd O�1 D
�Tr O�2 logd O�2 D �Pn c2

n logd c2
n , with Tr2 O�12 D O�1, Tr1 O�12 D O�2. This measure

ranges between zero and one, and for qubits (d D 2) its units are “ebits”. It can be
understood as the amount of maximum entanglement contained in a given pure
state.21) For example, an entropy of 0.4 means that asymptotically 1000 copies of the
state can be transformed into 400 maximally entangled states through determinis-
tic state transformations using local operations and classical communication [5].

21) For general bipartite qumode states, there are some complications of this entanglement entropy.
The entropy fails to be continuous in the sense that there are (rather artificial) states that
have arbitrarily large entanglement, though being arbitrarily close to a pure product state.
However, through restriction on bounded mean energies continuity of the entanglement can be
recovered [35].
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1.5.1.1 Qubits
For two qubits, a maximally entangled basis is given by the four “Bell states”,22)

jΦ ˙i D 1p
2

(j00i ˙ j11i) , jΨ ˙i D 1p
2

(j01i ˙ j10i) . (1.93)

These are stabilizer states with nonlocal stabilizer generators.23) For instance, the
jΦ Ci state has stabilizer generators hX ˝ X , Z ˝ Zi corresponding to a stabilizer
group f1 ˝ 1, X ˝ X , �Y ˝ Y, Z ˝ Zg. Any of these Pauli products has eigenvalue
C1 when applied upon jΦ Ci. The set of generators is sufficient to represent every
stabilizer since the products (X ˝ X )(Z ˝ Z ) D X Z ˝ X Z D �Y ˝ Y and
(X ˝ X )(X ˝ X ) D 1 ˝ 1 must have C1 eigenvalue as well.

Recall that a one-qubit stabilizer state has a single stabilizer generator, namely,
˙1 times one of the Pauli operators. The stabilizer group has two elements after
adding the unity operator. Two qubits require two stabilizer generators as a mini-
mal set to give a stabilizer group of four elements. For instance, a product state of
two qubits, j0i ˝ j0i, is a stabilizer state with stabilizer group f1 ˝ 1, 1 ˝ Z, Z ˝
1, Z ˝Zg and, in this case, local stabilizer generators24) h1˝Z, Z ˝1i. The nonlocal

stabilizer generators of the four Bell states in Eq. (1.93) are easily found to be

hX ˝ X , Z ˝ Zi , hX ˝ X , �Z ˝ Zi ,

h�X ˝ X , Z ˝ Zi , h�X ˝ X , �Z ˝ Zi , (1.94)

respectively. The two-qubit stabilizer states are either product states or maximally
entangled states. The two-qubit non-stabilizer states are the non-maximally (par-
tially) entangled states (or products of non-stabilizer states).

1.5.1.2 Qumodes
Now, consider the case of two qumodes. The “CV Bell states” for two qumodes may
be written as

jΨ (u, v )i D 1p
π

Z
dxe2ix v jxijx � ui . (1.95)

Although these states obey the completeness and orthogonality relationsZ
dudv jΨ (u, v )ihΨ (u, v )j D 1 ˝ 1 ,

hΨ (u, v )jΨ (u0, v 0)i D δ(u � u0)δ(v � v 0) , (1.96)

they are nonetheless unphysical since they exhibit an infinite degree of quantum
correlations. This is similar to the position and momentum eigenstates of a single
qumode with infinitely precise position and momentum eigenvalues as depicted
in Figure 1.3. Each of the CV Bell states is similarly determined through infinitely

22) We shall use the notations jΦ ˙i and jΦ (˙)i,
and so on, interchangeably throughout.

23) For a definition of stabilizers, see the
discussion and the box in Section 1.9.

24) Where, more precisely, “local” refers to the
local subgroup into which the total stabilizer
group of the state can be split together with

a nonlocal subgroup. The local subgroup
then contains stabilizer operators that act
exclusively upon either subsystem [36].
For the product state j0i ˝ j0i, the whole
stabilizer is given by the local subgroup
f1, Zg � f1, Zg.
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precise, continuous eigenvalues. However, for two qumodes, we need two such
eigenvalues, corresponding to two nonlocal observables with ( Ox1 � Ox2)jΨ (u, v )i D
ujΨ (u, v )i and ( Op1 C Op2)jΨ (u, v )i D v jΨ (u, v )i.

Expressed in terms of the WH shift operators, we can equivalently write for all t, s,

e�2it ueC2it ( Ox1� Ox2)jΨ (u, v )i D e�2it uZ(t) ˝ Z†(t)jΨ (u, v )i
D jΨ (u, v )i ,

eC2is v e�2is( Op1C Op2)jΨ (u, v )i D eC2is v X(s) ˝ X(s)jΨ (u, v )i
D jΨ (u, v )i . (1.97)

In other words, for the unphysical, infinitely correlated CV Bell states, we obtain
the nonlocal stabilizer generators

heC2is v X(s) ˝ X(s), e�2it uZ(t) ˝ Z†(t)i . (1.98)

Note that for v D 0, this would be a unique representation for the famous two-
particle state presented by Einstein, Podolsky, and Rosen (EPR) which is quan-
tum mechanically correlated in the positions (x1 � x2 D u) and the momenta
(p1 C p2 D 0) [23]. In the optical context, a physical version of the EPR state corre-
sponds to a Gaussian two-mode squeezed state in the limit of large squeezing (see
Chapter 3). Moreover, similar to the two-qubit stabilizers, the two-qumode stabiliz-
ers here are useful to construct so-called entanglement witnesses. These witnesses
would enable one to detect the entanglement of the physical, finitely correlated, and
possibly even noisy mixed-state approximations of the EPR state. How to find such
witnesses for qubits and qumodes will be discussed in Chapter 3. At this point, we
shall proceed by looking at the entanglement of mixed states, inseparability criteria,
and the definition of entanglement witnesses.

Given an arbitrary two-party (e.g., two-qubit or two-qumode) density operator,
how can we find out whether the bipartite state is entangled or not? For this pur-
pose, first of all, a definition of entanglement is needed which goes beyond that
of pure-state entanglement expressed by the Schmidt rank and so is applicable to
mixed states as well.

1.5.2
Mixed States and Inseparability Criteria

A mixed state of two parties is separable if its total density operator can be written as
a mixture (a convex sum) of product states,25)

O�12 D
X

i

η i O�i,1 ˝ O�i,2 . (1.99)

25) Corresponding to a classically correlated

state [37]. For instance, for the qubit or
the qumode Bell states, the nonclassical
character of entanglement is reflected by the
nonlocal stabilizer generators simultaneously
in terms of X and Z. However, note that
this notion of nonlocality is weaker than the

historically well-known notion of nonlocality
that refers to the inapplicability of local
realistic models. In fact, Werner’s [37]
original intention was to demonstrate that
quantum states exist which are inseparable
according to the convex-sum definition and
yet admit a local realistic description.
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Otherwise, it is inseparable and hence entangled. In general, it is a highly non-
trivial question whether a given density operator is separable or inseparable.

A very powerful method to test for inseparability is Peres’ partial transpose criteri-
on [38]. For a separable state as in Eq. (1.99), transposition of either density matrix
yields again a legitimate non-negative density operator with unit trace,

O�0
12 D

X
i

η i( O�i,1)T ˝ O�i,2 (1.100)

since ( O�i,1)T D ( O�i,1)� corresponds to a legitimate density matrix. This is a neces-
sary condition for a separable state, and hence a single negative eigenvalue of the
partially transposed density matrix is a sufficient condition for inseparability. Ap-
plied to one party entangled with another party, transposition may indeed lead to
an unphysical state because it is a positive but not a CP map. For inseparable states
of two qubits and of one qubit and one qutrit, partial transposition always leads to
an unphysical state [39]. The same holds true for any bipartite Gaussian state of
one qumode entangled with arbitrarily many other qumodes (see Chapter 3).

1.5.3
Entanglement Witnesses and Measures

Independent of partial transposition, an entanglement witness OW is an observable
whose expectation value is non-negative for all separable states O�sep, Tr( OW O�sep) � 0,
and negative for some inseparable state O�, Tr( OW O�) < 0 (see Figure 1.6).

A very important class of entanglement witnesses is given by the Bell-type in-
equalities imposed by local realistic theories [41]. For both qubits and qumodes, we
shall discuss the canonical and most commonly used entanglement witnesses in
Chapter 3. These witnesses are independent of local realism. Since the insepara-
bility criteria expressed in terms of expectation values of observables are directly
measurable, entanglement witnesses are of great significance for the experimental
verification of the presence of entanglement.

separable

1̂W 2Ŵ

0)ˆˆTr( 1 <ρW

0)ˆˆTr( 2 <ρW

0)ˆˆTr( 2 ≥ρW

0)ˆˆTr( 1 ≥ρW

3Ŵ

Figure 1.6 Entanglement witnesses are Her-
mitian operators that define hyperplanes in
the space of density operators (states), sepa-
rating some inseparable states from all sep-
arable states. The plane closer to the set of
separable states represents a “better” witness
OW1 than the other plane corresponding to OW2,

as the former detects more inseparable states.
An optimal linear witness would correspond
to a plane tangent on the set of separable
states. However, there are even better witness-
es like OW3 which are nonlinear and can detect
even more inseparable states [40].
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Besides those qualitative inseparability criteria, which we may call entanglement
qualifiers, a more ambitious task is to provide entanglement measures and to ob-
tain entanglement quantifiers for a given density operator, both theoretically and
experimentally. In general, the known measures for mixed-state entanglement are
not unique. In the summary box ‘Entanglement’, we included some of the most
commonly used and most convenient entanglement measures.

In the case of pure states, (most of) these measures would coincide. The naive
approach for extending pure-state quantifiers to mixed states would be to simply
apply a pure-state measure such as the reduced von Neumann entropy to every
term in a density operator decomposition. However, in general, a given decompo-
sition

P
k �k jψki12hψk j may then give a completely wrong result,X

k

�k S [Tr2 (jψki12hψk j)] . (1.101)

For instance, the maximally mixed state of two qubits, O�12 D 112/4, can be decom-
posed as

O�12 D (jΦ Ci12hΦ Cj C jΦ �i12hΦ �j C jΨ Ci12hΨ Cj C jΨ �i12hΨ �j)/4

(1.102)

using the two-qubit Bell basis in Eq. (1.93). In this case, every term corresponds
to a maximally entangled state with unit reduced entropy. So the average reduced
entropy as calculated by Eq. (1.101) also gives one ebit instead of the correct result
of zero ebits for a separable density operator written as

O�12 D (j0i1h0j ˝ j0i2h0j C j0i1h0j ˝ j1i2h1j
C j1i1h1j ˝ j0i2h0j C j1i1h1j ˝ j1i2h1j)/4 . (1.103)

Therefore, for a globally mixed state, we only obtain sensible results if we minimize

the average reduced entropy over all possible ensemble decompositions,

EF( O�12) � inf
�k ,ψk

X
k

�k S [Tr2 (jψki12hψk j)] . (1.104)

This is the so-called entanglement of formation. In general, the minimization over
all decompositions is hard to compute. However, for two qubits, the entanglement
of formation can be obtained through the concurrence [42]. Another important and
more practical (i.e., relatively easily computable) mixed-state entanglement quan-
tifier is the logarithmic negativity which is based upon the negativity after partial
transposition [43–45].

The logarithmic negativity is defined as follows,

EN( O�12) � log2

ˇ̌̌ˇ̌̌
O�T2
12

ˇ̌̌ˇ̌̌
, (1.105)

where jj OAjj � Tr
p OA† OA is the so-called trace norm and O�T2

12 is the partial trans-
pose of a given bipartite state O�12 with respect to subsystem 2. This measure is
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an entanglement monotone (i.e., it does not increase under local operations and
classical communication) and, in addition, it is additive.26) The trace norm of the
partial transpose corresponds to the sum of the modulus of its eigenvalues. For
instance, for a two-qubit Bell state O�12, we have jj O�T2

12 jj D 2, as the eigenvalues of
O�T2
12 are f�1/2, 1/2, 1/2, 1/2g. Conversely, for a separable state O�12, we always obtain

jj O�T2
12 jj D 1. Thus, the Bell state gives EN( O�12) D 1, whereas a separable state has

EN( O�12) D 0. In general, any entanglement measure should be an entanglement
monotone and should vanish for separable states.

Entanglement

bipartite pure states: separable iff Schmidt rank is one in Schmidt decompo-
sition jψi12 D P

n cnju ni1jvni2

bipartite mixed states: separable iff O�12 D P
i η i O�i,1 ˝ O�i,2

qualifiers, witnesses: 8 O�sepTr( OW O�sep) � 0 and 9 O� such that Tr( OW O�) < 0
quantifiers: reduced entropy for pure states: E(jψi12) � S [Tr2(jψi12hψj)]
entanglement of formation: EF( O�12) � inf�k ,ψk

P
k �k S [Tr2(jψki12hψk j)]

logarithmic negativity: EN( O�12) � log2 jj O�T2
12 jjJ

Qubits: maximally entangled two-qubit Bell states:

jΦ ˙i D (j00i ˙ j11i)/p2, jΨ ˙i D (j01i ˙ j10i)/p2

stabilized by

hX ˝X , Z˝Zi , hX ˝X , �Z˝Zi , h�X ˝X , Z˝Zi , h�X ˝X , �Z˝Zi

���� Qumodes: maximally entangled two-qumode Bell states:

jΨ (u, v )i D
Z

dxe2ix v jxijx � ui/pπ

stabilized by

heC2is v X(s) ˝ X(s), e�2it uZ(t) ˝ Z†(t)i

Since the trace norm of the partial transpose effectively expresses to what extent
O�T2
12 fails to represent a physical state, it can be considered a quantitative version of

the above qualitative partial transpose criterion.
This connection is easier to understand by looking at the so-called negativity,

defined as N( O�12) � (jj O�T2
12 jj � 1)/2. This quantity corresponds to the modulus of

the sum of the negative eigenvalues of O�T2
12 , and becomes N( O�12) D 1/2 for a two-

qubit Bell state and N( O�12) D 0 for any separable state. In this sense, N( O�12) is the

26) However, it is not convex, and, as an exception to what we said before, it does not reduce to the
entanglement entropy for all pure states.
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actual measure of negativity. However, though also being an entanglement mono-
tone, N( O�12) fails to be additive. Therefore, usually, the logarithmic negativity is
preferred.

A discussion of multipartite entangled states of many qubits or qumodes will be
postponed until Chapter 3. Such a generalization is important in order to define
and investigate qubit/qumode cluster and graph states.

1.6
Quantum Teleportation

Quantum teleportation [17] is the reliable transfer of quantum information through
a classical communication channel using shared entanglement. It works as follows
(see Figure 1.7). After an entangled state is generated and distributed between
two parties, an external system in an arbitrary, even completely unknown quantum
state is jointly measured together with one half of the entangled state. Finally, when
the measurement result is received at the other half of the entangled state, this half
is transformed by a basic operation (such as a bit or phase flip for qubits or a phase-
space displacement for qumodes) conditioned upon the measurement outcome.

When we think of entanglement as the universal resource for quantum informa-
tion processing, we may refer to quantum teleportation as the fundamental quan-
tum information protocol or subroutine. Quantum teleportation of states (as intro-
duced here and discussed in more detail in Chapter 4) has applications in quantum
communication (see the following section) as well as quantum computation. In the
latter case, it would enable one, in principle, to connect different quantum comput-
ers when every quantum computer performs only a part of the whole computation.

Besides transferring quantum information between quantum computers and
propagating it through quantum computers, there is an extended version of quan-
tum teleportation which incorporates a controlled unitary evolution of quantum
information into the teleportation protocol. This is quantum teleportation of gates

and using such gate teleportations for computation corresponds to a certain real-
ization of measurement-based quantum computation (see Chapter 6). The mea-
surements in this case are projections onto an entangled basis and so they are
not always easy to implement, for example, in an optical approach. Complete state
transfer or evolution is also possible by performing the corresponding entangling
operations offline with only local projection measurements performed online (see
Chapter 7).

entanglement
generation

joint
measurement

conditional
transformation

Figure 1.7 The fundamental protocol of quantum teleportation.
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1.6.1
Discrete Variables

Let us consider quantum teleportation in finite dimensions. How the original DV
quantum teleportation protocol [17] works can be understood from the following
decomposition,

jφiin ˝ jΨ0,0i12 D 1
d

d�1X
α,�D0

jΨα,�iin,1 OU†
2 (α, �)jφi2 . (1.106)

Here, we use α and � as discrete indices. The initial total state vector is a product
of an arbitrary quantum state jφiin for the input qudit (d-level system) and a partic-
ular maximally entangled state jΨ0,0i12 for qudits 1 and 2 (see below). A projection
measurement of the input qudit and qudit one onto the maximally entangled basis
of “qudit Bell states”,

jΨα,�i D 1p
d

d�1X
kD0

exp(2πik�/d)jkijk ˚ αi , (1.107)

reduces the above decomposition according to the measurement result (α0, �0).
The qudit Bell states are complete and orthonormal,

d�1X
α,�D0

jΨα,�ihΨα,� j D 1 ˝ 1 , hΨα,�jΨα0,�0i D δαα0 δ��0 . (1.108)

Finally, applying to qudit two the unitary transformation that corresponds to the
Bell measurement result (α0, �0) will correct the remaining OU†

2 (α0, �0) operation
in Eq. (1.106) and transform qudit two to the input state (the initial state of qudit
“in”). The unitary transformations are defined as

OU(α, �) D
d�1X
kD0

exp(2πik�/d)jkihk ˚ αj , (1.109)

and ˚ means addition modulo d.
Quantum teleportation of an arbitrary quantum state from qudit “in” to qudit

two is, in principle, independent of any spatial limitations. Suppose the two parties
Alice and Bob initially share the maximally entangled state of qudits one and two.
Alice is then capable of transferring an arbitrary quantum state from her location to
Bob’s. All she has to do is jointly measure the qudits “in” and one (“Bell measure-
ment”) and convey the measurement result to Bob through a classical communi-
cation channel. Finally, Bob has to apply the corresponding unitary transformation
to qudit two. There are now three aspects of quantum teleportation that are partic-
ularly worth pointing out:

1. An unknown input state remains unknown to both Alice and Bob throughout
the entire teleportation process. If Alice did gain some information through her
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H
H k

Xkl

l

ψ
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Figure 1.8 A quantum circuit description of
qubit quantum teleportation. The part of the
circuit in the light gray box is for entanglement
generation between the two ancilla qubits. The

part in the dark gray box is the circuit for the
Bell measurement of the signal state and one
half of the entangled pair.

Bell measurement, Bob would no longer obtain a perfect replica of the input
state.

2. The input system does not remain in its initial state because of the Bell mea-
surement. This fact ensures that no-cloning is not violated.

3. A contradiction to special relativity is avoided because the classical communi-
cation required between Alice and Bob is restricted by the speed of light.

For qubits (d D 2), the maximally entangled states jΨα,�i become the four Bell
states from Eq. (1.93). The unitary transformations in this case correspond to the
identity operator, OU(0, 0) D j0ih0j C j1ih1j D 1, and the three Pauli operators

OU(1, 0) D j0ih1j C j1ih0j D X ,

OU(1, 1) D j0ih1j � j1ih0j D iY ,

OU(0, 1) D j0ih0j � j1ih1j D Z . (1.110)

Therefore, Bob will accomplish quantum teleporation of the input qubit by either
flipping his qubit (X), flipping its phase (Z), doing both (Y), or doing nothing (1).
A quantum circuit description of qubit quantum teleportation is shown in Fig-
ure 1.8. The Bell measurement circuit is the inverse of the entanglement genera-
tion circuit, each consisting of Hadamard and CNOT gates (both belonging to the
Clifford group of qubit unitaries, see Sections 1.3 and 1.8).

1.6.2
Continuous Variables

The translation of the quantum circuit for quantum teleportation from qubits to
qumodes is straightforward. For this purpose, we need to replace the qubit gates
by their qumode analogues, that is, the Hadamard gate by the Fourier gate and
the two-qubit CNOT gate by a corresponding two-qumode entangling gate. We
postpone the details about such gate sets until Section 1.8. However, we should
mention that the two-qumode entangling gate can be effectively achieved through
a linear beam splitter transformation (see Chapters 2 and 4). As a consequence,
both the entanglement generation and the Bell measurement circuit become highly
accessible to optical implementations when one-qumode stabilizer states and one-
qumode projection measurements onto stabilizer states are available (and these are
available in the form of squeezed states and homodyne detections, see Chapters 2
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and 4). In this sense, quantum teleportation also serves as the prime example to
reveal the practical significance of the CV approaches.

In order to illustrate the analogy between the above protocol for finite-dimen-
sional, DV quantum teleportation and that for infinite-dimensional, CV quantum
teleportation, we may write the following decomposition for the CV case,

jφiin ˝ jΨ (0, 0)i12 D 1
π

Z
dudv jΨ (u, v )iin,1 OU†

2 (u, v )jφi2 , (1.111)

with the CV Bell states of Eq. (1.95) and the unitary transformations,

OU(u, v ) D
Z

dxe2ix v jxihx � uj . (1.112)

These unitaries are equivalent to WH shifts expressed by X(u) and Z(v ). The CV
protocol is then completely analogous to the DV case, except that the entangled
state used in the CV case is an unphysical, unnormalizable state. Only with this
idealization do we obtain perfect quantum state transfer similar to the qubit case,
with no information gain by Alice through her Bell measurement.

In a physical qumode quantum teleportation protocol using properly normal-
ized, finite-energy states, Alice does gain partial information and the quantum state
transfer to Bob becomes imperfect. This will be one of the subjects of Chapter 4,
including the discussion of several variations of optical CV quantum teleportation
experiments.

1.7
Quantum Communication

The goal of quantum communication is the reliable transfer of arbitrary quantum
states (drawn from an alphabet of states) between a sender, usually named Alice,
and a receiver, Bob. More colloquially, we can say that quantum communication is
“the art to transfer quantum states” [46]. This may then lead to various applications,
some of which are already emerging as an existing technology such as the secure
distribution of a classical key through quantum key distribution (QKD) [47–49].
Other applications appear farther away from realization such as the connection of
spatially separated quantum computers for distributed quantum computing and a
kind of quantum internet [50].

Related with the above concepts and applications are the following important
lines of current research efforts:

� search for practical QKD protocols,
� security proofs for unconditionally secure QKD,
� long-distance quantum communication beyond 200 km.

Another, more traditional branch of quantum communication deals with the fun-
damental limits that quantum theory imposes on classical communication. We
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Alice sends 

value 0         1          1          0          1          1         1          0          0

Bob
measures

result

Eve
measures

result

Figure 1.9 The concept of quantum key dis-
tribution [18]. Alice randomly prepares states
from two non-orthogonal bases, for instance,
corresponding to the qubit stabilizer states
˙Z and ˙X , where the sign denotes the bit
value 0 or 1. Bob, after receiving the states
from Alice, randomly performs measurements

in either basis. By postselecting those events
where the bases coincide, correlated data be-
tween Alice and Bob will be obtained. In the
presence of Eve, on average 25% of those oth-
erwise correlated data would contain errors
which can be detected by Alice and Bob on a
subsample of their data.

shall get back to this quantum extension of classical information theory at the end
of this section. The more recent approaches to quantum communication aim at
the exploitation of nonclassical quantum features such as non-orthogonality and
entanglement for quantum-enhanced communication. Let us briefly discuss the
concepts behind QKD as an example.

1.7.1
Key Distribution

Quantum key distribution (QKD) [18, 20, 51] allows, in principle, for uncondi-
tionally secure communication. It relies upon the inability of a potential eaves-
dropper (“Eve”) to discriminate non-orthogonal quantum states. Recall that Eve
would be able to perfectly distinguish non-orthogonal states if she was able to pro-
duce copies of such states (Section 1.1). So no-cloning is a necessary requirement
for quantum cryptography, and while perfect quantum cloning would prevent se-
cure QKD, an approximate cloning attack performed by Eve may still be a threat
to the security of a realistic QKD protocol, including imperfect channel transmis-
sions.

In the BB84 protocol [18], Alice randomly prepares states from two non-ortho-
gonal bases, for instance, corresponding to the qubit stabilizer states ˙Z and ˙X

where the sign denotes the bit value zero or one (see Figure 1.9). Bob, after receiv-
ing the states from Alice, randomly performs measurements in either basis. By
postselecting only those events where the bases coincide, correlated data between
Alice and Bob will be obtained.
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Now, Eve may, prior to Bob’s measurements, intercept the communication be-
tween Alice and Bob and randomly pick her own basis in order to retrieve Alice’s
key values. However, only in half of the cases would Eve’s basis coincide with that
of Alice. As a consequence for those events where Eve’s basis choice is wrong, she
would have to pass on a state to Bob for which he obtains a bit value differing from
Alice’s bit value in half of the cases. Therefore, in this scenario, 25% of those other-
wise correlated data would become contaminated with errors. Whenever Alice and
Bob detect such a high error rate for a subsample of their data, they would aban-
don their protocol and start from scratch. More generally, the tolerable error rate
depends on the quality of the quantum channel between Alice and Bob, and on the
most general quantum operations that are available to Eve.

Note that in order to prevent Eve from pretending to be Bob and so from even-
tually sharing the key herself with Alice, Alice and Bob need to start with an
initially shared key in order to utilize classical authentication techniques. The
QKD protocol will then enable them to grow a larger key. Finally, they can use a
sufficiently large key to exchange a message employing the well-known one-time
pad.

The BB84 protocol as described so far is a so-called prepare-and-measure scheme.
It does not directly depend on the physical distribution of entangled states; it re-
lies upon preparing and measuring non-orthogonal quantum states. In fact, just
any two non-orthogonal quantum states would suffice to do QKD [51]. As a con-
sequence, instead of qubit states, qumode states may serve as well as a carrier
for QKD. Especially, coherent states of light (see Chapter 2), forming an overcom-
plete, non-orthogonal set represent a convenient choice with regards to practical
implementations. A scheme based on coherent states was already implemented
experimentally [52].

In an entanglement-based QKD protocol [20], Alice and Bob would attempt to
generate correlated data by distributing and measuring entangled pairs. In this
case, one has to assume that Eve has total control over the whole three-party sys-
tem – effectively an arbitrarily powerful Eve may distribute any tripartite state
(see Chapter 3) among Alice, Bob, and herself. Now, whenever tracing over Eve’s
system (mimicking the situation where Eve corresponds to an untrusted, non-
cooperating third part or the inaccessible environmental degrees of freedom of
an imperfect channel) leads to a separable state between Alice and Bob, they can
no longer establish a secure key [19]. The reason for this is that the so-called in-
trinsic information (see later Section 1.7.3 for some words on classical informa-
tion measures) for Alice and Bob provides an upper bound on the secure key
rate [53] and it would strictly vanish for a separable, reduced state of Alice and
Bob.

A conceptually very important observation now is that any prepare-and-measure
scheme can also be rephrased such that the measured data for Alice and Bob (given
by a joint probability distribution for their POVMs) can be used as a secure key pro-
vided that these data are inconsistent with a separable state for Alice and Bob [19].
The additional step for proving this is that in this case, the reduced density operator
for Alice alone is known and controlled by Alice. It is basically given by the trace
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over a bipartite source state of the form,

j�iAB D
X

i

p
pi ju iiA ˝ jψ iiB , (1.113)

with an orthonormal basis fju iig and a non-orthogonal set of states fjψiig [54]. By
measuring in the basis fju iig, Alice effectively prepares the non-orthogonal signal
states fjψiig, for instance, the BB84 states stabilized by ˙Z and ˙X . However,
still, when Eve has access to Bob’s system, a reduced state for Alice and Bob which
is separable leads to a vanishing intrinsic information and so no secure key is avail-
able.

The bottom line is that in any secure QKD protocol, Alice and Bob must share
data that cannot be interpreted as coming from a separable state – the data have to
come from an effectively entangled state.

When a certain alphabet of qumode states is used for QKD, for instance, the
two non-orthogonal qumode states jψ0i and jψ1i, the interpretation of the corre-
sponding prepare-and-measure scheme in terms of effective entanglement leads to
a very special manifestation of entanglement, namely, that between a qubit and a
qumode in a kind of hybrid entangled state, (ju0iA ˝ jψ0iB C ju1iA ˝ jψ1iB)/

p
2.

We shall get back to this notion of hybrid entanglement in Chapter 8. Further, it is
useful to realize that the necessary precondition for secure QKD according to the
theorem of [19], namely, the presence of (effective) entanglement, can be satisfied
in the CV setting, in principle, for any channel losses: CV qumode entangled states
always remain entangled, although their entanglement decays exponentially in the
channel (see Chapters 2 and 3).

The preceding discussion highlights that entanglement (Section 1.5 and Chap-
ter 3) is the fundamental resource for quantum communication, even when it is not
directly used as a physical resource. Theoretical security proofs for unconditionally
secure QKD, both for qubits [55] and for qumodes [56], are also most conveniently
constructed with the help of entanglement distillation or quantum error correction
(Chapter 5).

There are, of course, many quantum communication protocols where physical
entangled states are used, the most prominent example of which is quantum tele-
portation (Section 1.6 and Chapter 4). In fact, quantum teleportation can be seen
as the fundamental protocol for quantum communication. This becomes particu-
larly clear when one attempts to extend quantum communication, including the
QKD schemes described above, to large distances, where, for instance, a physical
prepare-and-measure scheme over the entire channel distance would no longer be
feasible. In this case, physical entangled states should be distributed over smaller
channel segments and connected through teleportation. Eventually, quantum in-
formation can be teleported over the whole distance using the final, long-distance
entangled pair (see Figure 1.10). Such an approach to long-distance quantum
communication leads to the so-called quantum repeater which we shall discuss
now.
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classical channel

Figure 1.10 Transferring quantum information over large distances combining short-distance
entanglement distribution, entanglement distillation, entanglement swapping, and quantum
teleportation.

1.7.2
Repeaters and Relays

Light is an optimal information carrier for communication, and one may send
quantum states encoded into a stream of single photons or a multi-photon pulse
through an optical channel. However, quantum information encoded into fragile
superposition states, for example, using photonic qubits or qumodes (Chapter 2), is
very vulnerable against losses and other sources of excess noise along the channel
such that the fidelity of the state transfer will exponentially decay with the length
of the channel.

In long-distance, classical communication networks, signals that are gradually
distorted during their propagation in a channel are repeatedly recreated through
a chain of intermediate stations along the transmission line. For instance, optical
pulses traveling through a glass fiber and being subject to photon loss can be ream-
plified at each repeater station. Such an amplification is impossible, when the sig-
nal carries quantum information. If a quantum bit is encoded into a single photon,
its unknown quantum state cannot be copied along the line due to no-cloning; the
photon must travel the entire distance with an exponentially decreasing probability
to reach the end of the channel.

The solution to the problem of long-distance quantum communication is provid-
ed by the so-called quantum repeater [2, 3] (Figure 1.10). In this case, prior to the
actual quantum-state communication, a supply of known quantum states, name-
ly, standard entangled states, is generated and distributed among not too distant
nodes of the channel. If a sufficient number of these imperfect entangled states are
shared between the repeater stations, a combination of entanglement purification
and swapping extends this shared entanglement over the entire channel. Through
entanglement swapping [57] (Chapter 4), the entanglement of neighboring pairs
is connected, gradually increasing the distance of the shared entanglement. The
entanglement purification [22] (Chapter 5) enables one to distill (through local op-
erations) a high-fidelity entangled pair from a larger number of low-fidelity entan-
gled pairs, as they would emerge after a few rounds of entanglement swapping
with imperfect entangled states and at the very beginning after the initial, imper-
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fect entanglement generation and distribution between two neighboring repeater
stations.

The essence of long-distance quantum communication as realized through the
quantum repeater model [2, 3] can be summarized as follows: provided sufficient

local quantum memories are available and some form of quantum error detection is
applied, quantum communication over arbitrary distances is possible with an in-
crease of (spatial or temporal) resources scaling only subexponentially with dis-
tance.

Note that the naive approach of dividing the total channel into several segments
that are connected through quantum teleportation without incorporating any form
of quantum error detection and without using quantum memories is not enough
to render quantum communication efficient with regard to resource scaling. In
this case, for instance, the probabilistic distribution of entangled pairs over the in-
dividual segments of the channel (Figure 1.10) must succeed at once. The number
of pairs created over a total channel of length L per unit time interval (basically
given by L0/c with c, the speed of light in the channel and L0, the length of each
segment) is then proportional to

P
L/L0
distr � P

(L/L0)�1
swap , (1.114)

where Pdistr is the success probability for obtaining an entangled pair in one seg-
ment, Pswap is the probability for a successful entanglement connection (swap-
ping), L/L0 is the number of segments, and so (L/L0)�1 is the number of necessary
swapping events. When either the distribution or the swapping is probabilistic,27)

Pdistr < 1 or Pswap < 1, the pair creation rates will exponentially decay with the
total distance L; even when, quite unrealistically, the initially generated pairs are
perfectly entangled. Thus, in principle, if perfect local operations were available,
the final pairs would have unit fidelities too with no need for any quantum error
detection. This is the so-called quantum relay.28)

Once perfect quantum memories are available, the exponential decay of the pair
creation rate can be circumvented. For example, consider two neighboring seg-
ments. The time it takes in one segment to distribute a single pair is on average
(L0/c)/Pdistr � T0. Now, a simultaneous distribution attempt in two segments will
be successful in either one segment after approximately half that time period. The
pair that is created first can then be stored in a quantum memory until the oth-
er segment has an entangled pair as well, after another waiting time of about T0.
Thus, after a time of roughly 3T0/2, two pairs will be present next to each other
in the two neighboring segments [47] and one can proceed with the entanglement

27) Which is usually unavoidable, see the
discussions on the postselected generation
and swapping schemes for polarization-
encoded DV photonic qubits (Chapters 3
and 4). However, using CV qumode
entangled states, entanglement generation
and distribution (Chapter 3) as well as
entanglement swapping (Chapter 4) are
deterministic. In this case, the problem is

an exponentially decaying fidelity requiring
efficient quantum error detection techniques,
which are hard to obtain in the CV setting
(Chapter 5).

28) Which, in the optical context (Chapter 2),
may still help to enhance practicality of a
scheme, for instance, in order to resolve
single-photon signals against detector dark
counts [47, 58–60].
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swapping, with a total time of (3T0/2)/Pswap � T1 to obtain one pair over double
the elementary distance, 2L0.

In order to obtain two already swapped pairs (so each distributed over a distance
of 2L0) next two each other, it will then take roughly a time of 3T1/2, and the
corresponding next swapping step will lead to an entangled pair over distance 4L0

after a total average time of about (3T1/2)/Pswap. Therefore, recursively, we end
up having an average time of (3/2)n T0/P n

swap, with L/L0 D 2n , for obtaining one
pair over the total distance L. Compared with Eq. (1.114), this translates into a rate
(number or pairs per time unit) proportional to

Pdistr

�
2
3

Pswap

�n

D Pdistr

�
2
3

Pswap

�log2(L/L0)

/ (L/L0)log2( 2
3 Pswap) . (1.115)

This is the quantum repeater in its simplest manifestation (using ideal memories
and without purification), achieving a rate that scales only polynomially with the
total distance L. The above approximation on the rates is good for small probabili-
ties Pdistr and Pswap. In the limit of unit Pdistr and Pswap, of course, there is no need
for memories and the relay performs as well as the repeater.

1.7.3
Shannon Theory

Prior to those proposals for the above-mentioned applications through which Alice
and Bob take advantage of using quantum resources, earlier treatments of quan-
tum communication aimed at deriving the fundamental limits imposed by quan-
tum theory on the classical communication by means of quantum signals. A very
famous result in this context is that from Holevo [61], sometimes referred to as the
fundamental law of quantum communication [62]. It places an upper bound, the
so-called Holevo bound, on the mutual information of Alice and Bob,

I(A W B) � S( O�) �
X

a

pa S( O�a) � S( O�) , (1.116)

where S( O�) is the von Neumann entropy from Eq. (1.22), O� is the mean channel
state, and O�a are the signal states with a priori probabilities pa. In this relation,
equality is attained when Alice sends pure orthogonal signal states.29)

29) In classical information theory [63], the
information content of a message depends
on the probabilities pa for the occurrence
of a letter drawn from an alphabet A.
The less frequent a letter occurs, the
more information it carries. The average
information content per letter is then
I(A) D �P

a pa log2 pa in units of bits.
For two parties, a sender and a receiver
corresponding to two alphabets A and B,
the information in the communication

channel is quantified by the so-called mutual
information I(A W B) D I(A)C I(B)� I(A, B).
Here, the sum I(A) C I(B) contains joint
information in both alphabets, double
counting the part which is mutual to
both alphabets. By subtracting the actual
expression for the joint information
I(A, B) D �P

ab pab log2 pab , where
the joint alphabet AB has letters with
probabilities pab , the mutual information is
obtained.
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Even assuming an ideal (noiseless) channel, any attempt by Bob to retrieve the
classical information sent from Alice introduces noise when the signal states are
non-orthogonal. In fact, there is an optimal, accessible information, depending on
the measurement strategy that Bob employs. The most general measurement strat-
egy is described by a POVM f OEbg with

P
b

OEb D 1. The accessible information is
typically hard to compute.

When Bob is presented with a state O�a representing letter a from Alice’s alphabet,
he will instead find letter b from his own alphabet with a conditional probability
given by pbja D pab/pa D Tr( OEb O�a). From this, one may usually compute the
mutual information I(A W B) D I(A) C I(B) � I(A, B) D P

ab pab log2(pab/(pa pb)).
Now, the information-theoretic condition for secure communication, that is, for

enabling extraction of a secure key using privacy amplification [64] and error correc-
tion techniques [65], is given by the following relation for the mutual information
between the three participants, Alice, Bob, and Eve,

I(A W B) > maxfI(A W E), I(E W B)g . (1.117)

In other words, the mutual information between Alice and Bob, I(A W B), must
exceed the information that either of them shares with Eve.30)

Finally, there is another entanglement-based quantum communication scheme
which is kind of complementary to quantum teleportation. In this so-called super-

dense coding [67], the roles of the classical and quantum channels are interchanged
relative to those in quantum teleportation. Instead of reliably transferring quan-
tum information through a classical channel using entanglement as in quantum
teleportation, in a superdense coding scheme, the amount of classical information
transmitted from Alice to Bob is increased when Alice sends quantum informa-
tion, namely, her half of an entangled state shared with Bob through a quantum
channel to Bob.

For instance, two bits of classical information can be conveyed by sending just
one qubit. Superdense coding relies upon the remarkable feature that, for instance,
all four two-qubit Bell states in Eq. (1.93) can be transformed into each other
through local Pauli operations. Thus, Alice, similar to what Bob does in quantum
teleportation, applies one of four possible operations to her half of a shared Bell
pair, thereby encoding two classical bits. Finally, Bob, similar to what Alice does in
quantum teleportation, performs a Bell measurement on his half of the entangled
pair together with Alice’s half to retrieve the bit values. Therefore, Alice has to send
her half through a quantum channel to Bob. In general, superdense coding aims
at increasing the capacity (the maximal mutual information) of a communication
channel using entanglement.

30) In a CV QKD scheme based upon
coherent-state signals, initially, for losses in
the channel greater than 3 dB, the condition
I(A W B) > I(A W E) is always violated using
the classical standard techniques. However,
there are various methods to beat the 3 dB
loss limit. One method is using, in addition
to the classical techniques, entanglement

distillation and quantum memories, which
are both rather demanding in a realistic
implementation (see Chapter 5). Alternative
approaches include a “reverse reconciliation”
protocol [52] with Alice guessing what was
received by Bob instead of Bob guessing
what was sent by Alice, and another method
based upon postselection [66].
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Like quantum teleportation, superdense coding relies on preshared entangle-
ment. Thus, superdense coding is still in agreement with Holevo’s rule that, at
most, one classical bit can be transmitted by sending one qubit because, tak-
ing into account Bob’s half of the entangled state transmitted to him prior to
the actual communication (“offline”), in total, two qubits must be sent to Bob.
This entanglement-based superdense coding must not be confused with other
“quantum coding” schemes such as those introduced by Schumacher [68]. The
Schumacher protocols enable Alice and Bob to approach the Holevo bound even
for non-orthogonal or mixed signal states through appropriate encoding of the
classical information into these states. This type of quantum coding, including the
results of Holevo, may be considered as part of an extension of Shannon’s classical
information theory [69] to the quantum realm [4, 5].

Superdense coding, like quantum teleportation, can be similarly translated from
qubits to qumodes in a CV superdense coding protocol [70, 71].31)

Entanglement as a resource and quantum teleportation as a protocol are natural-
ly associated with quantum communication, as we attempted to illustrate in this
section. However, both are just as fundamental for quantum computation. This
subject is discussed in the next section and in more detail in Chapters 6 and 7.

1.8
Quantum Computation

The ultimate real-world application of quantum theory would be the quantum com-
puter. By processing quantum information encoded in a superposition of all possi-
ble classical inputs, a quantum computer is capable of simultaneously computing
each output value for every possible input – a notion called quantum parallelism.

This field of quantum computation was initiated through Deutsch’s work on
universal quantum computation from 1985 [72], based on earlier ideas of Feyn-
man [73]. Today, this field is divided into various subfields associated with comple-
mentary research efforts such as

� the search for quantum algorithms,
� proof-of-principle demonstrations of small-scale quantum circuits, and
� proofs of universality, fault-tolerance, and scalability.

Initially, quantum algorithms were only of interest to specialists in the field. How-
ever, when Shor discovered in 1994 how to factorize numbers into prime numbers
significantly faster than classically (in polynomial rather than exponential time) by
using a quantum algorithm [74], the possibility of realizing a quantum computer
became a security issue. Codes such as the famous RSA encryption, considered ef-

31) By utilizing the idealized, unphysical two-qumode entangled states of Eq. (1.95), similar to the
qubit case, CV superdense coding would approach, in this idealized limit, a capacity twice as big
as that theoretically attainable in the absence of entanglement [71].
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fectively secure based upon a mathematically unproven complexity assumption,32)

became suddenly vulnerable; no longer due to the nonexistence of a mathematical
proof, but rather because of a new type of computer whose existence is permitted
by the laws of physics.

Ironically, the solution to the problem of unconditional security was also offered
by quantum theory in form of quantum key distribution, as discussed in the pre-
ceding section. Even a quantum computer cannot render quantum cryptography
insecure.

The probably most well-known quantum algorithms, besides Shor’s, are Grover’s
algorithm of 1996 for searching a database [75] and the Deutsch–Jozsa algorithm
of 1992 [76] which inspired the works of Shor and Grover. All these ideas have in
common that they illustrate the potential of quantum information processing to
provide solutions for problems that are defined in purely classical terms and (most
likely) cannot be solved efficiently through classical information processing. Simi-
lar to what quantum cryptography achieves for classical communication, quantum
algorithmic offers potentially better ways to perform certain classical computations;
even though at intermediate stages, both the communications and computations
would rely upon quantum resources and processing.

There are basically two main categories of quantum algorithms, namely, those
based upon the quantum Fourier transform corresponding to general implementa-
tions of the so-called hidden subgroup problem and quantum search algorithms [5,
77]. The Shor and Deutsch–Josza algorithms belong to the former category, while
the latter one consists of variations of the Grover algorithm. An example of a class
of algorithms that fit in neither of these two categories is quantum simulation. In
this case, the quantum computation is used to simulate a quantum system, as it
was originally envisaged by Feynman [73]. The notion of simulating a Hamiltoni-
an is the most convenient starting point for defining quantum computation over
continuous quantum variables on qumodes. This will be discussed in Section 1.8.2.

Typically, however, a model of quantum computation or a specific algorithm will
be implemented on qubits. In this case, an algorithm for N qubits, computed in
a 2N -dimensional Hilbert space, will convert initially unentangled qubit product
states at some stages of the computation into a multi-party entangled state of many
qubits. It was already mentioned in Section 1.1 that entanglement can be a suffi-

cient resource for quantum computation, and the engineering and exploitation or
consumption of (multi-party) entangled states for quantum information process-
ing will be the central topic of the remainder of this book. However, we may as well
ask: is entanglement also a necessary resource for quantum computation?

Indeed, the answer to this question is neither a clear yes nor a clear no. First
of all, we may simply redefine the total physical system and replace the tensor-
product Hilbert space of the N qubits, ˝NH2 (where Hk denotes a Hilbert space
of dimension k), by an equivalent (isomorphic) Hilbert space for a single d D
2N -level qudit system, H2N . Eventually, we may argue that it is not some form

32) That is, assuming that these codes are too hard to break by a classical computer. For instance,
there is no classical algorithm known to factorize numbers in an efficient amount of time to break
the RSA encryption.
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of multi-party (multi-particle) entanglement, but rather the interference effect in
complicated superposition states of a single qudit (particle) which is responsible
for a quantum computational speed-up [78, 79]. However, should we always refer
to a single-particle state such as

1p
2

(j10i C j01i) � 1p
2

�jN0i C jN1i� (1.118)

as an unentangled state? More specifically, one physical manifestation of this kind
of state would be a path-entangled state of two single-rail qubits, obtainable by
splitting a single-photon wave-packet at a beam splitter (see Chapters 2 and 3; Fig-
ure 3.2), where j10i � j1i1 ˝ j0i2 represents a possible state of the two spatial
modes one and two at the two output ports of the beam splitter. Alternatively, this
state may as well be interpreted as a simple one-qubit CX -stabilizer state in polar-
ization encoding (see Chapter 2), where this time, j10i � j1iH ˝ j0iV � jHi � jN0i
stands for a possible state of two orthogonal polarization modes; in this case, the
horizontally polarized mode H is excited by a photon, while the vertically polarized
mode V is in the vacuum state. In either case, the single-photon system lives in a
(sub)space of two optical modes.

Regardless of whether the state in Eq. (1.118) is considered entangled or not,33)

extending the basis from two levels to 2N levels would clearly provide enough
(Hilbert) space to do quantum computation; either on a single 2N -level system or
on N two-level systems.34) However, there is a crucial difference in terms of physical
resources needed for realizing the quantum computations. For the N-qubit tensor-
product-based quantum computer, N physical qubits (for instance, N polarization-
encoded photons) will be needed, so that the physical resources scale linearly with
the number of qubits. In contrast, a 2N -level quantum computation in which,
by definition, the multi-party entangled states are disguised as single-particle su-
perposition states will always be at the expense of some exponential overhead in
terms of physical resources (for instance, exponentially many optical elements for
transforming 2N optical modes or an exponentially increasing measurement pre-
cision). One may then argue that it is actually the multi-particle entanglement in

33) For a nice discussion on this issue,
see [80–82]. In [80], a simple argument
explains why a single-particle two-mode
state like that in Eq. (1.118) should be
considered entangled, provided the two
modes are spatially separated, which is
the case for path-encoding, but not for
polarization encoding. The two modes
of the path-entangled state may then be
distributed among two spatially separated
two-level atoms and map the two atoms
onto the clearly entangled two-particle state�jegi C jgei� /

p
2 through local atom-light

interactions (here, the initial atomic ground
states jgi would only become excited, jei,
provided a photon is in the optical mode

that interacts with the respective atom).
Most importantly, in an optical state like
that in Eq. (1.118), the two field modes
are entangled and not the photon with
the vacuum. Similarly, a low-squeezing
two-mode squeezed state, j00i C rj11i with
r � 1, has a small amount of entanglement
which is not between the two photons and
the vacuum, but rather between the two
qumodes (see Chapters 2 and 3). Multi-party
entanglement between many qumodes will
be introduced in Chapter 3.

34) An example for the former type of quantum
computation will be presented in Section 2.8
using 2N optical modes for a single photon
and linear optical elements.
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the multi-qubit tensor-product approach that enables one to avoid the exponential
overhead [78, 79].35)

Compared to discrete qubit encodings, qumodes naturally offer any desirable
amount of space to process quantum information. However, it is not obvious
whether and how such analog quantum information can be exploited. Unphysi-
cal qumode stabilizer states such as the position eigenstates jxi are not available
as a computational basis. Instead, Gaussian states such as squeezed states (see
Chapter 2) would have to be employed. These physical states, though producible
in highly efficient ways, can then only be measured at a finite resolution or in
a probabilistic fashion. For example, in order to implement a CV version of the
Deutsch–Josza algorithm, there would be an uncertainty-based trade-off between
a position x-encoding and a p-measurement resolution; thus, preventing a com-
putational speed-up [83]. In this case, the exponential overhead can be thought of
as the requirement of an infinite measurement precision or the preparation of a
quantum state with infinite energy. In many cases, it is not even clear how to recast
a given computational problem and the corresponding quantum algorithm in the
CV setting.

Besides quantum algorithmic, as listed at the beginning of this section, the two
other main directions of current research on quantum computation are experimen-
tal demonstrations of small-scale quantum circuits, and theoretical proofs of uni-
versal (potentially scalable and fault-tolerant) models and approaches for quantum
computation. The former topic will be addressed to a great extent in the remainder
of this book. Universality, in the context of both qubit and qumode encodings and
processing, shall be considered in the section after next. Now, we briefly introduce
two equivalent, but conceptually very different models for quantum computation.

1.8.1
Models

There are various models to describe quantum computations of which the most
common one is the circuit model [5]. It uses sequences of reversible, unitary gates
in order to transform an input quantum state into any desired output quantum
state. Although, finally, the output state must be measured for read-out, the largest
part of the computation is conducted in a measurement-free fashion. The circuit
model provides a natural language to describe quantum algorithms. Important no-
tions such as universality can be conveniently expressed in the circuit model, as we
will discuss in the next section.

A conceptually very different model for quantum computation is that of measure-

ment-based quantum computing. As opposed to the standard circuit model, in
measurement-based quantum computation, the quantum gates are embedded in-
to an entangled state prior to the actual computation – the gates are performed
“offline” on the entangled-state resource. This turns out to be of great importance

35) However, there are specific examples of quantum algorithms which neither require multi-particle
entanglement nor depend on an exponential overhead of spatial or temporal resources [79].
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for experimental realizations because even highly probabilistic gate implementa-
tions can be useful, provided they are applied to the off-line state and a successfully
transformed resource state is kept intact until its consumption during the on-
line computation. In order to render measurement-based quantum computation
(near-)deterministic despite the randomness induced by the measurements, typi-
cally, some form of measurement-dependent feedforward operations will be need-
ed. Since an online, measurement-based computation is no longer reversible, such
approaches to quantum computation are sometimes referred to as one-way models.

There are various specifications to measurement-based quantum computing.
One approach is based upon a generalization of standard quantum teleporta-
tion [84]. In the qubit case, a single-qubit (multi-qubit) state is then teleported
through a modified, unitarily transformed two-qubit Bell (multi-qubit entangled)
state such that the desired gate operation is affected on the output state. This
extension of the usual communication scenario for quantum teleportation with
an ideally exact state transfer from Alice to Bob to gate teleportations for com-
putation with a teleported state unitarily transformed depending on the modified
resource state illustrates the general importance of quantum teleportation. Gate
teleportation will be further discussed in Chapter 6.

In the standard version of gate teleportation, a nonlocal two-party Bell measure-
ment projecting onto an entangled-state basis is still needed, which can be a severe
complication for experimental implementations. However, there is an ultimate re-
alization of measurement-based quantum computing in which all entangling op-
erations are performed offline and for the actual computation, only local measure-
ments are needed. In such a cluster-based one-way quantum computation [1], a
multi-party entangled state is first prepared offline and the actual computation is
then conducted solely through single-party projection measurements on the in-
dividual nodes of that resource state – the cluster state. By choosing appropriate
measurement bases in each step, possibly depending on earlier measurement out-
comes, any unitary gate can be applied to an input state which typically becomes
part of the cluster at the beginning of the computation, see Figure 1.11.

The essence of cluster computation can be summarized as follows: the cluster
state is independent of the computation; universality is achieved through choice of

ψÛ

+
+
+
+

ψ

Figure 1.11 One-way cluster computation for
qubits. Certain single-qubit stabilizer states
become pairwise entangled to form a multi-
qubit cluster state (see Section 3.1). Local
projection measurements on the individual
qubits, potentially including feedforward with
a measurement order going from left to right,
are then enough to realize (universal) quan-

tum computation. A multi-qubit input state
jψi attached to the left end of the cluster
could, in principle, be (universally) processed
with the output state occurring at the right
end of the cluster. The vertical edges allow for
two-qubit gates (more details can be found in
Section 7.1).
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measurement bases. A more detailed discussion of cluster computations on qubits
and qumodes can be found in Chapter 7. Next, we turn to the notion of universality.

1.8.2
Universality

The two models of quantum computation as introduced in the preceding section,
the circuit and the one-way model, are both known to be universal and in this sense,
they can be considered equivalent models. So what does universality mean? Usu-
ally, universality is associated with the ability to apply an arbitrary unitary operator
or matrix upon a given signal state, for instance, to an initial multi-qubit product
state. Under certain circumstances, in particular, in realistic situations including
experimental imperfections and errors, an exact implementation of a unitary ma-
trix is not achievable and hence the notion of approximate, asymptotic universality
becomes important. In this case, a universal set of elementary gates is considered
that allows for approaching any given unitary gate at any desired precision through
elementary-gate concatenations.

From a slightly different point of view, one may also think of universality as the
ability to simulate any given Hamiltonian. This Hamiltonian approach to univer-
sality turns out to be particularly useful for qumode systems where the available
transformations are naturally given in terms of interaction Hamiltonians which
are polynomials of the bosonic mode operators. One possible way to understand
this approach is to consider the following decomposition,36)

eiH2 t eiH1 t e�iH2 t e�iH1 t D e[H1,H2]t2 C O(t3) . (1.119)

Thus, by applying the Hamiltonians H1 and H2 for some short time, we can al-
so approximately implement the Hamiltonian �i[H1, H2], provided the interac-
tion times are sufficiently short. Once the simplest commutator can be simulated,
higher-order (nested) commutators are also available through further concatena-
tion. Provided nested commutation of a set of elementary Hamiltonians allows
one to generate an arbitrary Hamiltonian, the elementary set can be referred to as
a universal set. This type of asymptotic, approximate model for universal quantum
computation is applicable to both DV qubit [85] and CV qumode [86] systems on
their own as well as to hybrid systems combining qubits and qumodes (see Chap-
ter 8).

1.8.2.1 Qubits
Consider a single qubit and recall the discussion on single-qubit unitaries in Sec-
tion 1.3.1. In the box at the end of Section 1.3.2, it is shown that an arbitrary single-
qubit unitary can be expressed as eiφ ORs(θ ), depending on four real parameters

36) Using eAeB D eACBe[A,B]/2 C O([A, [A, B]], [[A, B], B]) and so e˙iH2 t e˙iH1 t D
e˙i(H1CH2 )t e�[H2 ,H1]t2 /2 C O(t3), which is one of the well-known Baker–Campbell–
Hausdorff (BCH) formulas, also commonly used in quantum optics (see Chapter 2). Here and in
Eq. (1.119), we omitted the operator hats on the Hamiltonians.
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determining φ, θ , and the real three-dimensional unit vector s. Now, we can de-
compose this arbitrary rotation into a sequence of rotations around two fixed axes,
for instance, the Z and Y axes,

eiφ ORZ (α) ORY (�) ORZ (γ ) D eiφ Zα Y� Zγ , (1.120)

using the definitions given after Eq. (1.60), with real parameters φ, α, �, and γ .
This can be easily seen by parameterizing an arbitrary, unitary 2 � 2 matrix with
orthonormal rows and columns and decomposing it into a product of matrices [5].

From the preceding discussion, we learn that the set fZθ , Yθ 0g represents a uni-
versal set for single-qubit unitaries; any single-qubit unitary can be constructed
from a small sequence of Z and Y rotations. Moreover, the ability to perform these
rotations precisely with angles α, �, and γ would mean that the set fZθ , Yθ 0g al-
lows for realizing any single-qubit unitary exactly. It can then be shown [5] that
arbitrary unitaries in a multi-qubit space can be exactly realized through this uni-
versal set for single-qubit unitaries, together with one fixed two-qubit entangling
gate such as the CNOT gate (see below). Hence, the set fZθ , Yθ 0g supplemented
by, for instance, the CNOT gate is universal for quantum computation in finite
dimensions.

So why would we have to consider asymptotic, approximate realizations of uni-
taries or Hamiltonians as, for example, described by Eq. (1.119)? The problem with
the set fZθ , Yθ 0g is that it is continuous and so an arbitrary single-qubit rotation re-
quires infinite precision for every rotation. This is hard to realize, especially in an
error-resistant fashion. Therefore, it is useful to define a discrete, finite set of fixed
elementary rotations which then can no longer achieve any multi-qubit unitary ex-
actly as the whole set of unitary gates is continuous, but instead in an approximate
fashion at arbitrary precision. In order to be efficient, a sufficiently good approxi-
mation must not require an exponential number of elementary gate applications.37)

A convenient universal set of gates is given by [5]

fH, Zπ/2, Zπ/4, CZ g . (1.121)

Here, H is the Hadamard gate, H jki D (j0i C (�1)k j1i)/p2, needed in order to
switch from gates diagonal in Z to gates diagonal in X. The two-qubit gate CZ acts
as an entangling gate, with

jki ˝ jli ! (�1)k ljki ˝ jli , k, l D 0, 1 . (1.122)

For convenience, we repeat the definition Zθ � e�iθ Z/2 for a single-qubit rota-
tion about the Z-axis by an angle θ with the computational Pauli operator Z acting
as Z jki D (�1)k jki; the conjugate Pauli operator X obtainable from Z through
Hadamard describes bit flip operations, X jki D jk ˚ 1i. Note that removing the

37) Indeed, there is the important issue here as to whether the number of elementary gate operations
for simulating a given multi-qubit unitary scales subexponentially with the size of the exact circuit
for any desired accuracy. Many multi-qubit unitaries cannot be efficiently simulated [5].

38) However, removing Zπ/2 from the elementary gate set would give the smaller set fH, Zπ/4, CZ g
which is still universal, as we have Zπ/4 Zπ/4 D Zπ/2.
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gate Zπ/4 from the elementary gate set means that only the Clifford unitaries (Sec-
tion 1.3.1) can be realized, which are known to be insufficient for a quantum com-
putational speed-up over classical computation.38) For both universality and speed-
up when computing with stabilizer states such as jCi˝N , the non-Clifford phase
gate Zπ/4 must be included; otherwise, if only using the Clifford set fH, Zπ/2, CZ g,
the stabilizer states remain stabilizer states at all times since Pauli operators are
only mapped back onto Pauli operators, see Eqs. (1.64) and (1.65). Obviously, this
no longer allows for universality including universal state preparations. However,
why does it also prevent a speed-up compared to classical computations?

We know that a single-qubit Pauli operator is Clifford-transformed into another
Pauli operator. Hence, the evolution of the ith N-qubit stabilizer generator39) corre-
sponding to an N-party tensor product of Pauli operators, gi D Xi1 ˝ Xi2 ˝ . . . Xi N ,
is specified through � N parameters. Here, Xi k can be any one of the single-qubit
Pauli operators or the unity operator for the corresponding slot, including a sign
choice ˙, with k D 1, 2, . . . , N . Therefore, one can keep track of the evolution of the
whole state by calculating the new stabilizer generators for every i D 1, 2, . . . , N .
As a result, � N 2 parameters have to be calculated at every step of the evolution,
which can be done efficiently using a classical computer. The crucial element here
is that during the entire Clifford evolution, every N-qubit stabilizer state is uniquely
determined through N stabilizer generators hg1, g2, . . . , gN i, even though the state’s
stabilizer group has 2N elements.

In general, any quantum computation solely using Pauli and Clifford gates
(which include the Hadamard and the CZ gates) on stabilizer states, measure-
ments in a Pauli basis, and classical feedforward can be efficiently simulated by a
classical computer. This is the so-called Gottesmann–Knill theorem.

Before we turn our attention to universal sets for qumodes, we give a few ad-
ditions to the preceding discussion. A more commonly used two-qubit entangling
gate is the CNOT gate acting on two computational basis (˙Z stabilizer) states as

jki ˝ jli ! jki ˝ jl ˚ ki , (1.123)

where, here again, ˚ denotes addition modulo 2. The CNOT gate can be obtained
from the CZ gate through local Hadamards,

(1 ˝ H )CZ (1 ˝ H ) D CNOT . (1.124)

We have used the CNOT gate already in the circuit of qubit quantum teleportation
of Figure 1.8, illustrating the usual convention for drawing this particular two-qubit
entangling gate.

While the Clifford gate Zπ/2 maps stabilizer states back onto stabilizer states, for
the non-Clifford gate Zπ/4, we obtain non-stabilizer states. In this case, for instance,
instead of Eq. (1.64), we have now

Zπ/4jCi D
�

e�iπ/8j0i C eCiπ/8j1i
�

/
p

2

D e�iπ/8
�
j0i C eCiπ/4j1i

�
/
p

2 . (1.125)

39) For a definition of stabilizers, see the discussion and the box in Section 1.9.
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The resulting non-stabilizer state (j0i C eCiπ/4j1i)/p2 is sometimes referred to as
the “magic state” [87]. Here, the Heisenberg evolution of the stabilizer X under the
non-Clifford π/8-phase gate Zπ/4, Z

†
π/4 X Zπ/4 D 1/

p
2(X � Y ), using Eq. (1.61), no

longer gives a Pauli operator.

1.8.2.2 Qumodes
Consider now a single qumode and recall the discussion on single-qumode uni-
taries in Section 1.3.2. An arbitrary single-qumode unitary can be written as OU D
e�it H(Oa,Oa†), with a general Hamiltonian H( Oa, Oa†) which is an arbitrary polynomial
of the mode operators. Decomposing such a general Hamiltonian evolution into a
set of elementary evolutions is a difficult task. In fact, for polynomials of arbitrary
order in the mode operators, when the unitary on the qumode becomes a non-
Clifford unitary, the Hamiltonian simulation will be, in general, only approximate
and asymptotic, as expressed, for instance, by Eq. (1.119).

However, in the case of a single-qumode quadratic Hamiltonian corresponding
to a Clifford unitary on the qumode, an exact decomposition similar to that in
Eq. (1.120) is possible,40) consisting of single-mode position-squeezers OS (r) and
phase rotations OR(θ ) [recall the definitions in Section 1.3.2 and see Eq. (2.52)
through Eq. (2.56)],

OR(φ) OS(r) OR(φ0) . (1.126)

More precisely, this decomposition only represents an arbitrary Clifford transfor-
mation up to displacements in phase space.41) Therefore, the set fX(s), OR(θ ), OS (r)g,
with the real parameters s, θ , and r, where we added the position-shift WH opera-
tor X(s), is universal for arbitrary single-qumode Clifford unitaries (or, equivalently,
Gaussian unitaries, see Chapter 2).

The three real parameters in Eq. (1.126) correspond to the three degrees of free-
dom needed for an arbitrary symplectic transformation on a single qumode. This
decomposition can be obtained through Bloch–Messiah reduction [89] and gener-
alized to an arbitrary number of qumodes (see Chapter 2). Note that the single-
qumode Clifford set fX(s), OR(θ ), OS(r)g, though consisting of a finite number of
elementary gates, is continuous, similar to the universal single-qubit set fZθ , Yθ 0g.
Therefore, again, an exact realization of a single-qumode Clifford unitary would
require infinite precision for implementing the parameters s, θ , and r, which cor-
respond to effective interaction and free evolution times in the quantum optical

40) Note that there are also exceptions of
cubic or higher-order Hamiltonians
which are exactly decomposable into
lower-order Hamiltonians. For instance,
e�i� Ox3

eit Op 2
ei� Ox3 D eit( OpC3� Ox2 /2)2 , where

the right-hand side has a fourth-order
Hamiltonian, while the left-hand side only
has second and cubic orders [88].

41) The qumode Clifford group is a group whose
generators are polynomials up to quadratic
order in position Ox and momentum Op . Its
group elements correspond to the unitary

Gaussian transformations (see Chapter 2).
For the general case of N qumodes, the
Clifford group Cl(N ) is a semidirect product
of the symplectic group and the WH
group, Cl(N ) D Sp(2N, R) Ë WH(N ).
According to our definition of the Clifford
group in Eq. (1.69), the group WH(N ) is a
homogeneous space under the adjoint action
of Cl(N ), and one can construct a group
representation of Cl(N ) on the vector space
of the Lie algebra wh(N ).
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context. Rather than attempting to get rid of this type of infiniteness, the purpose
of constructing a universal single-qumode set (including non-Clifford unitaries) is
primarily to simulate Hamiltonians of arbitrary order while still using a finite set of
gates. As opposed to an exact Clifford simulation expressed by the symplectic trans-
formation in Eq. (1.126) plus an additional complex phase-space displacement,42)

where each elementary gate may have arbitrary strength, the universal simulation
is no longer possible without asymptotic concatenations like those in Eq. (1.119),
requiring near-unity gates for each individual step.

Once arbitrary single-qumode Hamiltonians are available (in the asymptotic
sense), it can be shown that, similar to the qubit case, arbitrary multi-qumode uni-
taries can be realized through the corresponding universal set for single-qumode
unitaries, together with one fixed two-qumode Clifford gate [86, 90]. A two-qumode
gate serving this purpose is the Clifford CZ gate used below. Since the CZ gate
itself can be decomposed into a circuit of two two-qumode beam splitters and
two single-qumode squeezers [89], the only entangling interactions needed for
universal multi-qumode processing are provided by passive beam splitting trans-
formations (see Chapter 2 for more details).

As a finite, elementary gate set for asymptotic simulations of arbitrary multi-
qumode Hamiltonians, one may choose [90]

fF, Z(s), D2(t), D3(�), CZ g , (1.127)

with s, t, � 2 R. Now, F represents the Fourier transform operator that maps be-
tween the position and momentum basis states, F jxix D jxip . It is needed in
order to switch from gates diagonal in Ox to gates diagonal in Op since all the remain-
ing gates are chosen to be diagonal in Ox . The entangling gate CZ is an x-controlled
p-displacement, CZ D exp(2i Ox1 ˝ Ox2) D Z1( Ox2) D Z2( Ox1), with

CZ jxix jp ip D jxix jp C xip , (1.128)

or, C
†
Z Ox1,2 CZ D Ox1,2, C

†
Z Op1,2CZ D Op1,2 C Ox2,1. The other Ox -diagonal gates are the

WH momentum shift operator, Z(s) D exp(2is Ox ) with Z(s)jp ip D jp C sip , and
the phase gates Dk (t) D exp(it Ox k ). The quadratic phase gate (k D 2) incorporates
single-qumode squeezing (together with a rotation) and is sufficient in order to
exactly simulate any multi-qumode Clifford (Gaussian) transformation (together
with F, Z(s), and CZ ). In order to asymptotically achieve universal multi-qumode
processing including non-Clifford (non-Gaussian) unitaries, the additional cubic
phase gate (k D 3) is needed.43) in an efficient way.

42) Obtainable from X(s) through Fourier
rotations OR(�π/2).

43) Similar to the qubit case, while removing
the non-Clifford phase gate D3(t) renders
the remaining Clifford set non-universal,
removing the Clifford phase gate D2(t)
gives a smaller, but still universal set. For

example, in Eq. (1.131), the right-hand side
contains a quadratic squeezing gate; thus, we
can still obtain arbitrary Clifford gates [88].
From a practical point of view, however, it
is better to implement Clifford unitaries
whenever needed through Clifford gates (see
Chapter 2).



1.8 Quantum Computation 59

Similar to the qubit stabilizer evolution under the qubit Clifford phase gate in
Eq. (1.65), here, we obtain the qumode stabilizer evolution,44)

X(s) ! D2(t)X(s)D†
2 (t) D eit Ox2

X(s)e�it Ox2

D eit s2
X(s)Z(t s) . (1.129)

The conjugate stabilizer is invariant, Z(s) ! D2(t)Z(s)D†
2 (t) D Z(s). These equa-

tions correspond to the following linear Heisenberg evolution equations for the
position and momentum of a single qumode,

Ox ! D
†
2 (t) Ox D2(t) D Ox ,

Op ! D
†
2 (t) Op D2(t) D Op C t Ox . (1.130)

In contrast, the non-Clifford, cubic phase gate transforms the X stabilizer as45)

X(s) ! D3(t)X(s)D†
3 (t) D eit Ox3

X(s)e�it Ox3

D X(s)Z(3t s2/2)e3is t Ox2

D X(s)Z(3t s2/2)D2(3t s) . (1.131)

Instead of a multiple of WH operators, a product of quadratic and linear gates is
obtained. The stabilizer Z(s) remains unchanged. This is similar to what we found
for qubits after performing the π/8-phase gate Zπ/4 on the Pauli X operator, which
no longer gave a Pauli product. On the level of the WH generators, that is, in the
Heisenberg evolution of the position and momentum operators, the momentum
is no longer mapped onto a linear combination of the generators,

Ox ! D
†
3 (t) Ox D3(t) D Ox ,

Op ! D
†
3 (t) Op D3(t) D Op C 3

2
t Ox2 . (1.132)

The momentum transformation becomes nonlinear.46)

The Gottesmann–Knill theorem that we had introduced in the preceding section
for qubits applies to qumodes too [90]. In this case, the Clifford evolution of the sta-
bilizers is most conveniently expressed in terms of the linear evolution of the WH
generators Ox and Op . Similar to the discussion for qubits, the ith N-qumode stabi-
lizer generator is determined through � N parameters. For instance, the N posi-
tions of an initial product state of N position eigenstates are each transformed into
position-momentum linear combinations with 2N real coefficients. Hence, the to-

44) Which corresponds to the inverse
Heisenberg evolution, while the actual
Heisenberg evolution is D

†
2 (t)X(s)D2 (t) D

D
†
2 (t)e�2is Op D2(t) D e�2is( Op Ct Ox ) D

e�it s2
X(s)Z(�t s) using Eq. (1.130) and one

of the BCH formulas.
45) While the actual Heisenberg evolution

is D
†
3 (t)X(s)D3 (t) D e�it Ox3

e�2is Op eit Ox3 D
e�2is( Op C3t Ox2 /2) D X(s)Z(�3t s2/2)e�3it s Ox2

using one of the BCH formulas.

46) In these Heisenberg equations, we
use our usual convention of „ D 1/2.
In general, using the commutator
[ Ox , Op ] D i„, and so [ Ox2, Op ] D 2i„ Ox
and [ Ox3, Op ] D 3i„ Ox2, we obtain
D

†
2 (t) Op D2(t) D Op C[ Op , it Ox2] D Op C2„t Ox and

D
†
3 (t) Op D3(t) D Op C [ Op , it Ox3] D Op C 3„t Ox2,

using the BCH formula e�BAeB D A C
[A, B]C1/2![[A, B], B]C1/3![[[A, B], B], B]C . . .
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tal evolution is completely specified through 2N 2 real parameters. For the more
interesting case of physical stabilizer states corresponding to Gaussian states (see
Chapters 2 and 3), instead of the 2N 2 real coefficients, 2N 2 complex coefficients are
needed, corresponding to 4N 2 real parameters. The formalism of complex-valued
stabilizers for physical qumode stabilizer states and their Clifford evolution will
be discussed in Chapters 2 and 3. The Gottesmann–Knill theorem for qumodes
then states that Gaussian operations on Gaussian states can be efficiently simulat-
ed classically [90].

Similar to the qubit case, one may also consider a CNOT gate for qumodes. This
is defined as CNOT D exp(�2i Ox1 ˝ Op2) D X2( Ox1) D Z1(� Op2), corresponding to an
x-controlled x-displacement of mode 2 and a p-controlled p-displacement of mode
1: Ox2 ! Ox1 C Ox2, Op1 ! Op1 � Op2, Ox1 ! Ox1, and Op2 ! Op2. As opposed to the CZ gate,
CNOT is no longer symmetric under exchange of the two modes. The CNOT gate
can be obtained from the CZ gate through local Fourier transforms,

(1 ˝ F†) exp(2i Ox1 ˝ Ox2)(1 ˝ F ) D exp(�2i Ox1 ˝ Op2) . (1.133)

Universal setsJ
Qubits

fH, Zπ/2, Zπ/4, CZ g
single-qubit gates: Z-Pauli (phase flip):

Z j˙i D j	i , Z jki D (�1)k jki
general Z-rotation:

Zθ D exp(�iθ Z/2)

π/4-phase gate:

Z
†
π/2Z Zπ/2 D Z , Z

†
π/2 X Zπ/2 D �Y (Clifford)

π/8-phase gate:

Z
†
π/4Z Zπ/4 D Z , Z

†
π/4 X Zπ/4 D 1p

2
(X � Y ) (non-Clifford)

Hadamard:

H jki D j0i C (�1)k j1ip
2

, H X H D Z , H Z H D X (Clifford)

X-Pauli (bit flip):

X jki D jk ˚ 1i , X j˙i D ˙j˙i
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two-qubit gate:

CZ jki ˝ jli D (�1)k ljki ˝ jli (Clifford)

���� Qumodes

fF, Z(s), D2(t), D3(�), CZ g

single-mode gates: WH-momentum shift:

Z(s)jp i D jp C si , Z(s)jxi D e2isx jxi

general phase (momentum) gate:

D D exp[i f ( Ox )] , for example Dk (t) D exp(it Ox k )

quadratic gate:

D
†
2 (t) Ox D2(t) D Ox , D

†
2 (t) Op D2(t) D Op C t Ox (Clifford)

cubic gate:

D
†
3 (t) Ox D3(t) D Ox , D

†
3 (t) Op D3(t) D Op C 3

2
t Ox2 (non-Clifford)

Fourier:

F jxipos D
Z

dye2ix y jyipos D jximom ,

F† Op F D Ox , F † Ox F D � Op (Clifford)

WH-position shift:

X(s)jxi D jx C si , X(s)jp i D e�2is p jp i

two-mode gate:

CZ D exp(2i Ox ˝ Ox ) W CZ jxiposjp imom D jxiposjp C ximom ,

C
†
Z Ox1,2CZ D Ox1,2 , C

†
Z Op1,2CZ D Op1,2 C Ox2,1 (Clifford)

Again, similar to the qubit case, the “magic state” for qumodes is obtained by
applying the non-Clifford, cubic phase gate upon a zero-momentum eigenstate,

D3(t)jp D 0i D eit Ox3 1p
π

Z
dx jxi D 1p

π

Z
dxeit x3 jxi . (1.134)

This is the so-called cubic phase state [28].
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In the current section, we attempted to give an overview of various important no-
tions in quantum computation including those of universality and scalability in the
context of both qubit and qumode approaches. Universality in either approach will
require some form of nonlinearity which may only be indirectly incorporated into a
quantum computation through measurements or directly through some effective-
ly enhanced weak nonlinear interaction. In the former scenario, a measurement-
based model of quantum computation is applied, as we shall discuss in the context
of experimental implementations in Chapters 6 and 7. The idea of weak nonlin-
ear interactions is most intuitively realized in hybrid protocols in which both qubit
and qumode systems participate (see Chapter 8). Once universality is achieved, in-
cluding non-Clifford gates, in principle, a quantum computation can no longer be
simulated classically in an efficient way.

Even when universality can be attained in principle, scalability remains a subtle
issue. This issue will be part of the subsequent discussions on optical approaches
to quantum computation.

Another topic of great importance is fault tolerance. Without some form of (con-
catenated) quantum error correction, a quantum computer will remain a theoreti-
cal construct. As we discussed before, quantum communication too must rely upon
some form of quantum error detection when it is to be extended over larger dis-
tances. A complete treatment of fault tolerance for quantum information process-
ing and computation is beyond the scope of this introductory chapter on quantum
information. Nonetheless, in the next section, we shall at least mention the basic
concepts of quantum error correction.

1.9
Quantum Error Correction

Quantum information processing and computation became an area of practical
interest with potential real-world applications only after the discovery of quantum
error correction (QEC) codes [5, 21, 91, 92]. Shor’s code [21] was proposed at a
time when people believed that QEC unlike classical error correction would be
impossible. These initial doubts originated mainly from two supposed obstacles.

First, in classical error correction, the most natural way for protecting informa-
tion against errors is to use redundancy. However, to create redundancy in the quan-
tum case (by encoding qubits into multiple copies of the same qubits) appeared to
be forbidden even in principle by the quantum mechanical no-cloning theorem
(recall Section 1.1). Further, a second complication seemed to exist, following from
the fundamental nature of quantum information: encoded into complex-amplitude
superposition states, as opposed to classical digital information, quantum informa-
tion is inherently continuous. This even holds for just a single qubit.

Despite these initial doubts, Shor’s discovery and the many subsequent results
on QEC demonstrated that there are two specific solutions to the two main prob-
lems mentioned in the preceding paragraph. A kind of redundancy can be obtained
in the quantum case by encoding quantum information globally into entangled
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Figure 1.12 Basic elements of quantum error
correction. Most commonly, the signal state
jψi and a set of ancillae in some standard
initial state jAi are unitarily transformed into
an encoded state. After the effect of the errors,
typically assumed to occur individually and
independently on every subsystem, a unitary
decoding circuit and a subsequent syndrome

measurement of the ancillae reveal the type
and location (and, for example, for qumodes,
also the size) of the error. A final correction
operation on the signal system will then recov-
er the original state with a fidelity greater than
that for an unprotected signal state, depend-
ing on the correctable set of errors for the
specific code and on the actual error model.

states that are defined in a larger Hilbert space than the original signal space. These
encoded states do not correspond to multiple copies of the original state and so do
not violate no-cloning. For example, an arbitrary qubit state, jψi D aj0i C bj1i,
may be encoded into an entangled state of three physical qubits as47)

jψi ˝ j0i ˝ j0i ! aj000i C bj111i ¤ jψi ˝ jψi ˝ jψi . (1.135)

This encoding can be achieved by pairwise applying two CNOT gates upon the
signal qubit together with the first ancilla qubit as well as with the second one.
Eventually, local bit-flip errors occurring on exactly one of the three qubits can be
detected and corrected, as we shall discuss in more detail shortly. The detection
of the error will depend on some form of measurement, and it is this so-called
syndrome measurement step which enables one to correct arbitrary, even continu-
ous errors. This effect is called discretization of errors because a continuous error
is reduced to a finite, discrete set of Pauli errors. We will illuminate this essential
feature of QEC in the following section. Figure 1.12 shows the basic elements of
QEC as applicable to both qubits and qumodes.

1.9.1
Discretization

In the preceding section, we wrote universal sets for qubits and qumodes in terms
of single-variable gates, that is, gates diagonal in the computational variables Pauli
Z and position Ox , respectively. For universality, at least one diagonal gate needed to
have a rotation angle ¤ k π/2 on the Bloch sphere for qubits and a Hamiltonian of
> quadratic order for qumodes. In addition, the Hadamard and the Fourier gates
were required in order to affect multi-variable gates.

The simplest manifestation of a QEC code also works with single-variable gates.
However, quite remarkably, universality, that is, universal protection against ar-

bitrary single-variable errors (including non-Clifford-type errors) follows directly

47) Recall the discussion of the preceding section. The state in Eq. (1.135) may as well be interpreted
as a certain superposition state of an eight-level particle. However, in this case, encoding,
occurrence of local errors, and syndrome identification lack the nice physical and operational
meaning of the multi-particle scenario.
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from the ability of a code to correct the simplest single-variable errors, for instance,
Pauli X bit-flip errors for qubits and WH X(s) position shift errors for qumodes.
Let us see how this works.

Consider a single qubit in an arbitrary state, jψi D aj0i C bj1i. First, the error
model shall be described by a simple one-qubit bit flip Pauli channel, with E ( O�) D
(1 � p ) O� C p X O�X (see Section 1.4.1): with probability p a bit flip occurs; otherwise,
the state remains unchanged. So the error set is discrete and finite, consisting only
of Pauli X errors. Hence, the correctable error set should contain at least one-qubit
X errors. Using the encoded state in Eq. (1.135) and applying the channel map
upon every physical qubit independently gives the output density operator,

(1 � p )3 O�enc C p (1 � p )2
3X

kD1

Xk O�enc Xk

C p 2(1 � p )
3X

l<kD2

(Xl ˝ Xk ) O�enc(Xl ˝ Xk ) C p 3 X ˝3 O�enc X ˝3 , (1.136)

with O�enc � (aj000i C bj111i)(a�h000j C b�h111j). Now, if we were able to discrim-
inate the orthogonal subspaces spanned by fj000i, j111ig and fXk j000i, Xk j111ig
with k D 1, 2, 3, without changing the original amplitudes of the corresponding
terms, we could at least identify the errors up to O(p 2). In fact, the three-qubit code
achieves exactly this. It uses four orthogonal subspaces, each two-dimensional with
enough space to preserve the original qubit, which correspond to the four cases of
no error at all and a bit-flip error occurring on any one of the three qubits. As a
result, through the three-qubit repetition code, the effective error probability is re-
duced from p to p 2. Higher repetitions may lead to even better error suppression.

From this, it also becomes clear why two physical qubits are not enough for
such a bit-flip code: in the four-dimensional physical Hilbert space of two qubits,
there are only two possible orthogonal, two-dimensional subspaces; not enough
for obtaining and discriminating all the three cases of an error occurring on either
qubit (fXk j00i, Xk j11ig), with k D 1, 2, and no error happening at all (fj00i, j11ig),
which would require six physical dimensions. However, if we are satisfied with
only detecting whether an error occurred (without correcting it), two qubits would
be enough since the no-error subspace fj00i, j11ig can still be discriminated from
the error subspaces fXk j00i, Xk j11ig. In general, this dimensional argument tells
us how many physical qubits will be needed for a given error model and a desired
correctable error set.

Now, let us consider a channel which is more general than the bit-flip channel
and allow for an arbitrary X-error, that is, an arbitrary X-rotation Xθ D e�iθ X/2 D
cos(θ /2)1 � i sin(θ /2)X . In this case, using again the three-qubit code, we would
still be able to correct the dominating errors by discriminating the orthogonal sub-
spaces fj000i, j111ig and fXk j000i, Xk j111ig with k D 1, 2, 3. In fact, the syndrome
measurements that achieve this discrimination will reduce the total density oper-
ator again to terms which have no error at all or a bit flip on exactly one qubit in
the leading order. More precisely, only terms like p (1� p )2 cos2(θ /2) O�enc and p (1�
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p )2 sin2(θ /2)Xk O�enc Xk with k D 1, 2, 3 will remain after the syndrome detection,
and the off-diagonal terms like, for instance, p (1 � p )2i cos(θ /2) sin(θ /2)1 O�enc Xk

vanish. In other words, even though the original error is a continuous X-rotation,
due to the syndrome measurement, this error will become a simple Pauli X error or
result in no error at all. The final correction operation then works as before by just
unflipping the corrupted qubit.

Now, consider a single qumode in an arbitrary state, jψi D R
dx ψ(x )jxi. A

(perfectly) repetition-encoded three-qumode state in this case becomesZ
dx ψ(x )jxi ˝ jxi ˝ jxi . (1.137)

Now, whenever exactly one qumode is subject to an arbitrary Ox -error, acting as
ei f ( Op), the syndrome detection discriminating between the subspaces fXk (s)jx x xij
8x 2 Rg with k D 1, 2, 3 and s 2 R would result in a state where exactly one
qumode is corrupted by a simple position shift. Since the location and the size of
this position shift will be known from the syndrome measurement, the original,
uncorrupted state can be recovered through a simple displacement operation on
the corresponding qumode. For example, ei f ( Op) acting upon qumode 1 leads to

ei f ( Op1)
Z

dx ψ(x )jx x xi D ei f ( Op1)
Z

dx ψ(x )
1p
π

Z
dpe�2ix p jp x xi

D 1p
π

Z
dxdp ψ(x )e�2ix p ei f (p )jp x xi

D 1
π

Z
dxdydp ψ(x )e2i(y�x )pei f (p )jy x xi . (1.138)

The syndrome identification amounts to projecting qumodes 1 and 2 as well as
qumodes 2 and 3 onto the two-qumode projectors

R
dzjz, z � u kihz, z � u k j with

syndromes u1 and u2. In terms of the position operators, this corresponds to mea-
surements of the relative positions Ox1 � Ox2 and Ox2 � Ox3 with outcomes u1 and u2,
respectively. When the error ei f ( Op) occurred on qumode 1, we will always obtain
u2 D 0, whereas the other projector givesZ

dzjz, z � u1ihz, z � u1j 1
π

Z
dxdydp ψ(x )e2i(y�x )pei f (p )jy x xi

D 1
π

Z
dxdydp ψ(x )e2i(y�x )pei f (p )δ(y � u1 � x )jy , y � u1, xi

D 1
π

Z
dxdp ψ(x )e2iu1 p ei f (p )jx C u1, x , xi

D g(u1)
Z

dx ψ(x )jx C u1, x , xi . (1.139)

Though the function g(u1) � (1/π
R

dpe2iu1 p ei f (p )) is a measurement-dependent
prefactor, the conditional state for every syndrome u1 becomes

R
dx ψ(x )jx C

u1, x , xi which can be corrected as described above. Note that for simplicity,
we have used unnormalized states here and syndrome detections with infinite
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resolution. In the realistic case, the encoded state would correspond to a three-
mode Gaussian state48) producible with two squeezed-state ancillary qumodes
using beam splitters (see Chapters 2 and 5). The infinitely precise measurement
should be more realistically described by a finite syndrome window with projec-
tors

R
∆ du k

R
dzjz, z � u kihz, z � u k j. So when, for instance, g(u1) D δ(u1) for

the no-error case with ei f (p ) � 1, we would obtain
R ∆/2

�∆/2 du1g(u1)
R

dx ψ(x )jx C
u1, x , xi D R

dx ψ(x )jx , x , xi as the final state.
To summarize, the mechanism for correcting arbitrary single-variable errors is

very similar for qubits and for qumodes. In either case, even when an arbitrary er-
ror diagonal in, for example, X (qubits) and Op (qumodes) may disturb a quantum
state in infinitely many ways, the syndrome detection will map the original error
onto a simpler error from a smaller error set: for qubits, this would be a flip in the
Z basis; for qumodes, a shift in the Ox basis. Although this guarantees that even
non-Clifford-type single-variable errors can be corrected by simple means, it does
not yet allow for the correction of multi-variable errors including two or more non-
commuting variables such as X and Z for qubits, and Ox and Op for qumodes. Such
full QEC codes, however, can be constructed by concatenating a single-variable
code using Hadamard and Fourier gates. The first and certainly most famous full
QEC code is Shor’s nine-qubit code [21]. A qumode version of this code and its
experimental realization will be discussed in Chapter 5.

On the level of arbitrary channel (CPTP) maps, the effect of discretization in a
QEC protocol can be understood by expanding an arbitrary qubit Kraus operator
in the Pauli matrix basis as in Eq. (1.77). Similarly, the WH shift operators serve
as a complete basis for arbitrary qumode CPTP maps, see Eq. (1.78). In either
case, syndrome detections of Pauli and WH errors will then always remove the
offdiagonal terms of the channel output matrix and the remaining terms can be
easily corrected. In the qumode case, the reduced error set is, of course, not really
discrete. It is, nonetheless, smaller and simpler, containing only phase-space shift
errors.

Although universal QEC of arbitrary, multi-variable errors occurring on a subset
of the physical qubits or qumodes is possible, a subtlety remains when compar-
ing qubit and qumode QEC. This complication arises for the realistic scenario of
multi-channel errors. Typically, not only a single qubit or qumode will be subject to
an error. Usually, every subsystem will be corrupted, and so a hierarchy of errors
in terms of the frequency of their occurrence or their size will become important.
For instance, as we have seen for qubits, multiple-qubit bit-flip errors may simply
be neglected when their probability scales as p 2 compared to the single-qubit error
probability p. Similarly, an amplitude damping error may be corrected up to an or-
der O(γ 2) in the damping parameter (see Section 1.4.1 and Chapter 2) [5]. Howev-
er, for qumodes, amplitude damping becomes a Gaussian channel (see Chapter 2)
and, as such, it may simply no longer be correctable when the damping occurs
on every encoded qumode in every channel [93]. Nonetheless, whenever a stochas-
tic channel leads to a hierarchy of errors, arbitrary multi-variable, multi-channel

48) When the signal state jψi D R
dx ψ(x )jxi is a Gaussian state, which is not a requirement here.
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errors can be suppressed through the standard QEC codes, both for qubits and
qumodes [94]. In either case, whether a QEC code is useful at all and whether it
is efficient depends on the correctable error set (for instance, the set of arbitrary
single-channel errors) and the given channel error model. The only basic assump-
tion typically is that the errors act independently on the individual subsystems.

1.9.2
Stabilizer Codes

A particularly important class of QEC codes is that of so-called stabilizer codes [95,
96], the quantum analogue of classical additive codes. Stabilizer codes are general-
izations of stabilizer states. This shall become clear in the present section.

In the DV setting, through an [N, k] stabilizer code, k logical qubits are encod-
ed into N physical qubits. The stabilizer group S, an abelian subgroup of the N-
qubit Pauli group49) with (N � k) stabilizer generators hg1, g2, . . . , gN�ki, defines
the codespace which is spanned by the set of simultaneous C1 eigenvectors of S.
Measuring the N � k stabilizer generators, yielding 2N�k classical syndrome bit
values, reveals which orthogonal error subspace an encoded input state is mapped
onto. Signal recovery is then achieved by mapping the state back into the codespace
with stabilizer eigenvalues C1.

Let us illustrate these definitions and notions for the three-qubit code of the pre-
ceding section. This code represents a very simple example of a stabilizer code. In
this case, k D 1 logical qubit is encoded into N D 3 physical qubits. The corre-
sponding [3, 1] code is defined through the minimal set of N � k D 2 independent
stabilizer generators hg1 � Z ˝ Z ˝ 1, g2 � 1 ˝ Z ˝ Zi. This set uniquely defines
the stabilizer group S for the corresponding stabilizer code with a two-dimensional
codespace spanned by fj000i, j111ig. Since S is abelian, and we have [g1, g2] D 0,
the basis vectors j000i and j111i can be simultaneous eigenvectors of g1 and g2

with eigenvalue C1.
The effect of the bit-flip channel on the three physical qubits of the repetition

code, as described in the preceding section, can now be equivalently expressed in
terms of the stabilizers. Up to order O(p 2), including only linear terms in p, we
obtain the following stochastic transformations of the stabilizer generators,

hZ1Z2, Z2Z3i ! hZ1 Z2, Z2Z3i I with probability (1 � p )3 ,

hZ1Z2, Z2Z3i ! h�Z1Z2, Z2 Z3i I p (1 � p )2 ,

hZ1Z2, Z2Z3i ! h�Z1Z2, �Z2Z3i I p (1 � p )2 ,

hZ1Z2, Z2Z3i ! hZ1 Z2, �Z2Z3i I p (1 � p )2 . (1.140)

The first case in the top row corresponds to the no-error case; the encoded state
remains in the original codespace. In the other three cases, the encoded state is
subject to a bit flip on any one of the three qubits; hence, the encoded state is

49) Which itself is formed by a tensor product of the one-qubit Pauli group. Recall from footnote 14
on page 19 that we omit all unnecessary prefactors of Pauli operators such as (˙i).
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mapped into one of the orthogonal subspaces fXk j000i, Xk j111ig with k D 1, 2, 3.
These three error subspaces are each uniquely determined through the new sta-
bilizer generators, as shown in Eq. (1.140), and are each spanned by a new two-
dimensional set of simultaneous C1 eigenvectors. The syndrome measurement
will then reveal the change of the eigenvalues with respect to the original stabiliz-
ers, that is, those of the codespace, g1 and g2. There are four syndrome outcomes
corresponding to the four cases of no error at all (g1 D C1, g2 D C1), a bit flip on
qubit 1 (g1 D �1, g2 D C1), a bit flip on qubit 2 (g1 D �1, g2 D �1), and a bit
flip on qubit 3 (g1 D C1, g2 D �1). Thus, measuring the N � k D 2 stabilizers
of the code uniquely determines the error. Mapping the state from one of the or-
thogonal error subspaces back into the original codespace enables one to recover
an uncorrupted version of the encoded state. This is a general feature of stabilizer
codes.

The three-qumode repetition code can be similarly expressed in terms of sta-
bilizers. In this case, we need N � k D 2 products of WH operators, hg1(s) �
Z(s) ˝ Z(�s) ˝ 1, g2(s) � 1 ˝ Z(s) ˝ Z(�s)i, in order to represent the stabilizer
group and uniquely define a one-qumode codespace as a subspace of the whole
three-qumode space. This infinite-dimensional subspace is spanned by the basis
vectors fjx x xij8x 2 Rg, which are simultaneous C1 eigenvectors of the stabiliz-
ers g1(s) and g2(s). More conveniently expressed in terms of the WH generators Ox
and Op , we have N �k D 2 so-called nullifier conditions, Ox1 � Ox2 D 0 and Ox2 � Ox3 D 0
since these combinations must have fjx x xi j8x 2 Rg as their simultaneous zero-
eigenvectors. The syndrome information now becomes continuous, corresponding
to the eigenvalues of Ox1 � Ox2 D u1 and Ox2 � Ox3 D u2 after an error occurred on
any one of the three qumodes. Every pair of these eigenvalues uniquely determines
one of the orthogonal error subspaces, fXk (s)jx x xij8x 2 Rg with k D 1, 2, 3 and
s 2 R, into which the encoded state is mapped by the channel. Compared with the
qubit case in Eq. (1.140), the stabilizer map now becomes

hZ1(s)Z2(�s), Z2(s)Z3(�s)i
! ˝

e�2isu1 Z1(s)Z2(�s), e�2isu2 Z2(s)Z3(�s)
˛
, (1.141)

with the syndrome information contained in the phase factors e�2isu1 and e�2isu2 .
Though the syndrome is now continuous, the QEC mechanism is very similar to
the qubit case; however, the stochastic nature of the qubit channels, as illustrated
by Eq. (1.140), will be missing in the most important examples of qumode channels
(see Chapter 2).

We have used the notion of stabilizers and stabilizer states already at various
times. A stabilizer is a (not necessarily unitary) operator M that, for some vector
jψi, has the property M jψi D jψi. If there is a commuting set of such stabilizers
fMig such that Mi jψi D jψi, 8i , jψi may be a unique state vector or an arbitrary
vector in a uniquely defined subspace. In fact, the former case is a special case of
the latter one.

For instance, for N qubits, N � k Pauli generators will define a 2k -dimensional
subspace C of the 2N -dimensional N-qubit space. This subspace C represents a
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stabilizer code, and the stabilizer condition becomes Mi jψi D jψi, 8i and 8jψi 2
C. Now, the special case with k D 0 means that C is specified through N Pauli
generators. In this case, C has a dimension such that Mi jψi D jψi, 8i uniquely
defines the rank-1 projector jψihψj corresponding to a pure N-qubit state. These
definitions are similar for qumodes. Later, we shall use full sets of N Pauli and WH
stabilizers in order to define multi-party entangled N-qubit and N-qumode graph
states, respectively.

Stabilizers and stabilizer codes

stabilizer: any operator M such that M jψi D jψi
stabilizer code: any subspace defined by a commuting stabilizer set fMi g
stabilizer state: any such 1-dimensional subspace (pure-state projector)J

Qubits

stabilizer codes:
any 2k -dimensional subspace C of the 2N -dimensional N-qubit space de-
fined through N � k Pauli stabilizer generators hg1, g2, . . . , gN�ki such that
[gi , g j ] D 0 and gi jψi D jψi, 8i, j and 8jψi 2 C
stabilizer states:
any 20 D 1-dimensional subspace jψihψj of the 2N -dimensional N-qubit
space defined through N Pauli stabilizer generators hg1, g2, . . . , gN i such that
[gi , g j ] D 0 and gi jψi D jψi, 8i, j

���� Qumodes

stabilizer codes:
any k-qumode subspace C of the infinite-dimensional N-qumode space de-
fined through N � k WH stabilizers hg1(s), g2(s), . . . , gN�k (s)i such that
[gi (s), g j (s)] D 0 and gi (s)jψi D jψi, 8i, j ; s 2 R, and 8jψi 2 C
stabilizer states:
any 1-dimensional subspace jψihψj of the infinite-dimensional N-qumode
space defined through N WH stabilizers hg1(s), g2(s), . . . , gN (s)i such that
[gi (s), g j (s)] D 0 and gi (s)jψi D jψi, 8i, j ; s 2 R

A great advantage of QEC schemes is that they are deterministic which makes
them directly applicable to quantum computation. However, this comes at a price.
Encoding logical quantum information into a sufficiently large physical system
will require expensive resources. Alternatively, probabilistic quantum error detec-
tion and, in particular, entanglement purification schemes [22] may be employed
in order to reduce the (spatial) resource consumption and the complexity of the
quantum circuits for implementing the protocol. This would then be more useful
for quantum communication applications, as described in Section 1.7.2. We shall
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discuss some experimental realizations of QEC and entanglement distillation in
Chapter 5.

1.10
Experiment: Non-optical Implementations

Quantum teleportation and quantum information processing were demonstrated
in various non-optical implementations. Among these, probably the most promi-
nent and fundamental concept was introduced by Cirac and Zoller for trapped
ions [97]. This concept was later extended to other physical systems such as neutral
trapped atoms [98] and quantum dots in electromagnetic cavities [99].

The approach by Cirac and Zoller is conceptually related to some of those hybrid
protocols which we will discuss in the final chapter of this book. More specifically,
the entangling gates between two electronic spin qubits (each defined on two inter-
nal energy levels of the ion) are not accomplished through direct interaction, but
they are rather mediated by a third “system”. In the Cirac–Zoller scheme, this third
system is a phononic qubit (defined on two vibrational energy levels of the ion) and
it acts as a kind of quantum bus – a so-called qubus.

Later, in the quantum optical context, we shall present the notion of optical, hy-
brid qubus computation, where the qubus is represented by the continuous phase-
space variables of a photonic qumode instead of the qubit-subspace of a phonon-
ic qumode. An introduction to quantum optical encodings in terms of photonic
qubits and qumodes shall be postponed until the following chapter. The motiva-
tion of the current section is to at least mention that many of the concepts and
protocols discussed so far and applied to quantum optical implementations in the
remainder of this book have their counterparts and analogues in implementations
that employ non-optically encoded qubit, qumode, and qubus systems using, for
instance, nuclear magnetic resonance, superconducting materials, or ion traps.

In this section, we will first explain how to implement a CNOT gate using the
Cirac–Zoller scheme, for which we take Schmidt–Kaler’s experiment [100] as an
example. Then, we shall describe a teleportation experiment by Riebe et al. [101] as
an example for a possible application.

In Schmidt–Kaler’s CNOT-gate experiment, they used 40CaC ions in a lin-
ear Paul trap [100]. The quantum mechanical energy levels are shown in Fig-
ure 1.13 [100, 102]. The essence of this scheme is a conditional sign flip operation
Rphase of the single-ion “computational bases” (jD, 0i, jD, 1i, jS, 0i, jS, 1i). More
precisely, we have

RphasejD, 0i D jD, 0i ,

RphasejD, 1i D �jD, 1i ,

RphasejS, 0i D �jS, 0i ,

RphasejS, 1i D �jS, 1i , (1.142)
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Figure 1.13 Quantum mechanical energy lev-
els of a 40CaC ion for quantum information
processing [100, 102]. (a) The lower and up-
per electronic states S1/2 (m D �1/2) and
D5/2 (m D �1/2) of the narrow quadrupole
transition at 729 nm provide the two levels to

implement a qubit. (b) The lowest two num-
ber states, nz D 0z , 1z , of the axial vibrational
motion in the trap. (c) The combination of
electronic states. The notation is jelectronic
level, vibrational motion numberi.

where D and S denote the upper and lower electronic levels of a 40CaC ion, and 0,1
denotes the quantized number (phonon number) of the vibrational motion of the
trapped ions. This is the main trick for realizing the Cirac–Zoller scheme in this
system.

The operation Rphase can be realized with an effective 2π-pulse on the two-level
systems (jS, 0i$jD, 1i) and (jS, 1i$jD, 2i), changing the sign of all “computation-
al basis” states except for jD, 0i. Since the Rabi frequency depends on the number
of phonons of the trapped ions, we have to use a composite-pulse sequence [103]
instead of a single 2π-pulse. More precisely, the operation Rphase can be realized
through irradiation of four sequential pulses as follows:

Rphase D RC(π, 0)RC

�
πp
2

,
π
2

�
RC(π, 0)RC

�
πp
2

,
π
2

�
, (1.143)

where

RC(θ , φ) D exp
�

i
θ
2

�
eiφ σC Ob† C e�iφ σ� Ob

��
. (1.144)

The operator σC D jDihS j represents the transition from jSi to jDi, and, simi-
larly, σ� D jSihDj that from jDi to jSi. The annihilation and creation operators
Ob and Ob†, respectively, refer to the phonons in the ion trap and the parameter θ
corresponds to the strength and duration of the applied pulse. Finally, φ is the rel-
ative phase between the optical field and the atomic polarization [102]. Here, the
frequency of the optical field for RC is blue-shifted from the jSi � jDi transition
by a single phonon energy.

One can now verify Eq. (1.142) by using Eqs. (1.143) and (1.144). For example,

RphasejS, 0i D RC(π, 0)RC
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D RC(π, 0)RC
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D iRC(π, 0)jD, 1i
D �jS, 0i. (1.145)

By using the Rphase, we can build a CNOT gate RCNOT for the single-ion “compu-
tational bases”, that is,

RCNOT D R
� π

2
, � π

2

�
RphaseR

�π
2

,
π
2

�
, (1.146)

where

R(θ , φ) D exp
�

i
θ
2

�
eiφ σC C e�iφ σ�

��
, (1.147)

and the R(θ , φ) transformation can be realized with a pulse irradiation on res-
onance with the jSi � jDi transition. The CNOT gate transforms the single-ion
“computational bases” as follows:

RCNOTjS, 0i D �jD, 0i ,

RCNOTjS, 1i D �jS, 1i ,

RCNOTjD, 0i D �jS, 0i ,

RCNOTjD, 1i D �jD, 1i , (1.148)

where the phonon numbers n D 0 and n D 1 correspond to a logical bit of one and
zero, respectively. These relations can be checked using Eq. (1.147). For example,

RCNOTjS, 0i D R
� π

2
, � π

2

�
RphaseR

�π
2

,
π
2

�
jS, 0i

D R
� π

2
, � π

2

�
Rphase

�
cos

π
4

jS, 0i C sin
π
4

jD, 0i
�

D R
� π

2
, � π

2

��
� cos

π
4

jS, 0i � sin
π
4

jD, 0i
�

D � cos
π
4

�
cos

π
4

jS, 0i C sin
π
4

jD, 0i
�

� sin
π
4

�
cos

π
4

jD, 0i � sin
π
4

jS, 0i
�

D �jD, 0i . (1.149)

Finally, we can construct a CNOT gate for two ions jion1, ion2i D jcontrol, targeti,
where the logical zero and one are encoded into the S and D levels of the ions, re-
spectively. First, quantum information encoded into the electronic levels of the
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control ion is transferred onto the phonon levels (i.e., the vibrational qubit encoded
into the qubus mode) through the RC

c (π, 0) operation50) (pulse irradiation) as
follows:

RC
c (π, 0)(αjS, 0i C �jD, 0i) D iαjD, 1i C �jD, 0i

D jDi ˝ (iαj1i C �j0i) , (1.150)

where the phonon number is initially zero and we use the definition of RC in
Eq. (1.144). Then, the single-ion CNOT operation RCNOT is performed on the target

ion. When the target ion is in the jSi state, the CNOT operation transforms the
state as follows:

RCNOT(iαjS, 1i C �jS, 0i) D �iαjS, 1i � �jD, 0i , (1.151)

using Eq. (1.148). As a final step, the RC
c (π, 0) operation is applied to the control

ion again. With this operation, the state of the control ion, whose electronic state is
jDi as in Eq. (1.150), is transformed as follows:

RC
c (π, 0)(�iαjD, S, 1i � �jD, D, 0i) D �iα(�ijS, S, 0i) � �jD, D, 0i

D �(αjS, Si C �jD, Di) ˝ j0i ,

(1.152)

with the notation jcontrol, target, phonon numberi. Similarly, we obtain the result
for the case with jDi as the initial target-ion’s state. Overall we have the following
input-output relation for the CNOT gate acting on a two-ion state jcontrol, targeti:

jS, Si ! �jS, Si ,

jS, Di ! �jS, Di ,

jD, Si ! �jD, Di ,

jD, Di ! �jD, Si , (1.153)

corresponding to a CNOT operation for the logical states jSi D j0i and jDi D j1i.
Moreover, the result of Eq. (1.152) means that one can create an entangled state of
two ions using this CNOT operation.

Figure 1.14 shows the experimental results of the CNOT gate performed by
Schmidt–Kaler et al. [100]. From the results, one can see that Eq. (1.153) is very
well experimentally verified. Schmidt–Kaler et al. also performed the CNOT ex-
periment for a jS C D, Si input. Figure 1.15 shows the corresponding results. In
this case, only the states jS, Si and jD, Di are observed with a probability of about
0.5. Phase coherence was also verified by applying an additional π/2 pulse on the
jS, 0i � jD, 0i transition followed by a projective measurement [100].

Now, we will turn to a discussion of the experiments for quantum teleportation
between trapped ions performed by Riebe et al. [101].

50) The subscript c denotes the operation on the control ion.
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(a)

(b) (d)

(c) (e)

Figure 1.14 State evolution of jcontrol,
targeti D jion1, ion2i under the CNOT op-
eration [100]. First, the ions are initialized in
the states (b) jS, Si, (c) jS, Di, (d) jD, Si, or
(e) jD, Di (shaded area, t � 0). Then, the
quantum-gate pulse sequence (a) is applied:
(i) quantum information encoded in the elec-

tronic levels of the control ion is transferred
to the phonon levels (qubus mode) through
RC

c (π, 0), (ii) the single-ion CNOT operation
RCNOT is applied to the target ion, (iii) the
RC

c (π, 0) operation is performed on the con-
trol ion again.

Figure 1.16 shows the quantum circuit for teleportation from ion 1 to ion 3 [101].
This circuit is realized using the same system (40CaC) and techniques (pulse ir-
radiation) explained above for the CNOT gate. The pulse sequence for telepor-
tation is summarized in Table 1.1 [101]. First, ion 2 and ion 3 are prepared in
the Bell state jΨ Ci23 D (j0i2j1i3 C j1i2j0i3)/

p
2, the lifetime of which exceeds

100 ms.
Then, at any time within this lifetime, the actual teleportation step can be carried

out: ion 1 is prepared in an arbitrary input state through local rotations. In Riebe’s
experiment, the input state jψini was drawn from a set of four non-orthogonal
test states, fj1i, j0i, (j0i C j1i)/p2, (ij0i C j1i)/p2g. The Bell measurement is per-
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Figure 1.15 The CNOT operation for a jS C D, Si input [100].

Figure 1.16 Quantum circuit for teleporta-
tion from ion 1 to ion 3 [101]. The state to be
teleported (input state) is encoded in ion 1 by
the operation Ux . The Bell measurement is
performed through a controlled Z-gate (phase
gate) followed by π/2 rotations and state de-
tections of ions 1 and 2. This implementation
uses a Bell basis rotated by π/4 with respect
to the standard convention. Therefore, a π/2
rotation on ion 3 is required before the final

reconstruction operations Z and X. Grey lines
indicate qubits that are protected against light
scattering. Ions 1 and 2 are detected by ob-
serving their fluorescence on a photomultipli-
er tube (PMT). For the fidelity analysis, U�1

x is
applied to ion 3 and its quantum state is mea-
sured by resonance fluorescence using a CCD
camera. Here, the initial state is j1i D jSi
(different from the CNOT-gate experiment
where the initial state is j0i).

formed by means of a controlled Z-gate (phase gate) followed by π/2 rotations and
state detections of ions 1 and 2, where the state detection is achieved by fluores-
cence detection from the S1/2 state (logical j1i) with a photomultiplier tube (PMT).
Conditioned upon the measurement results, if necessary, an appropriate unitary
qubit rotation, �iσ y , �iσz , iσx , is applied in order to recreate the input state in
ion 3.

Figure 1.17 shows the results of the teleportation experiment. Here, the fidelities
between the input and the output hψinj O�outjψini are shown. Whenever the fidelity
exceeds the classical boundary of 2/3, quantum teleportation is successful. The
fidelities of Figure 1.17 are clearly higher than 2/3 for any inputs, thus confirming
successful quantum teleportation. The fidelities for the output state without the
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Table 1.1 Pulse sequence for teleportation
from ion 1 to ion 3 [101]. Here, the super-
script C denotes the carrier transition with no
change of the motional states (phonon num-
bers). The corresponding operations are the

same as before without the superscript for the
CNOT gate. The superscript H denotes the
carrier transition from the S1/2 (m D �1/2)
to the D5/2 (m D �5/2) level in the Zeeman
manifold.

Action Comment

1 Light at 397 nm Doppler preparation
2 Light at 729 nm Sideband cooling

3 Light at 397 nm Optical pumping

Entangle
4 R

C
3 (π/2, 3π/2) Entangle ion 3 with motional qubit

5 RC
2 (π, 3π/2) Prepare ion 2 for entanglement

6 R
C
2 (π, π/2) Entangle ion 2 with ion 3

7 Wait for 1 µS–10 000 µS Standby for teleportation

8 RH
3 (π, 0) Hide target ion

9 RC
1 (#x , 'x ) Prepare source ion 1 in state x

Rotate into Bell basis

10 R
C
2 (π, 3π/2) Get motional qubit from ion 2

11 R
C
1 (π/

p
2, π/2) Composite pulse for phase gate

12 R
C
1 (π, 0) Composite pulse for phase gate

13 R
C
1 (π/

p
2, π/2) Composite pulse for phase gate

14 R
C
1 (π, 0) Composite pulse for phase gate

15 RC
1 (π, π/2) Spin echo on ion 1

16 RH
3 (π, π) Unhide ion 3 for spin echo

17 RC
3 (π, π/2) Spin echo on ion 3

18 RH
3 (π, 0) Hide ion 3 again

19 R
C
2 (π, π/2) Write motional qubit back to ion 2

20 RC
1 (π/2, 3π/2) Part of rotation into Bell basis

21 RC
2 (π/2, π/2) Finalize rotation into Bell basis

Read out

22 RH
2 (π, 0) Hide ion 2

23 PM Detection for 250 µs Read out of ion 1 with photomultiplier
24 RH

1 (π, 0) Hide ion 1

25 RH
2 (π, π) Unhide ion 2

26 PM Detection for 250 µs Read out of ion 2 with photomultiplier

27 RH
2 (π, 0) Hide ion 2

28 Wait 300 µs Let system rephase; part of spin echo
29 RH

3 (π, π) Unhide ion 3

30 RC
3 (π/2, 3π/2 C φ) Change basis

Reconstruction
31 RC

3 (π, φ) iσx D �iσz conditioned on PM detection 1

32 RC
3 (π, π/2 C φ) �iσ y D �iσz conditioned on PM detection 1

33 RC
3 (π, φ) iσx conditioned on PM detection 2

34 RC
3 (#x , 'x C π C φ) Inverse of preparation of x with offset φ

35 Light at 397 nm Read out of ion 3 with camera
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Figure 1.17 Results of the teleportation ex-
periment [100]. The classical boundary of the
teleportation fidelity (2/3) is shown by the
dashed line. The gray bars correspond to the

results obtained in quantum teleportation
and the white bars are the results when the
reconstruction operations are omitted.

final reconstruction operations are also shown in Figure 1.17. In this case, no more
than 1/2 should be obtained for the fidelity and indeed the experimental value was
49.6%.

In the following chapter, an introduction to optical quantum information pro-
cessing is presented. Most of those concepts, tools, and protocols presented thus
far will turn out to have their specific manifestation in the language of quantum
optics.
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2
Introduction to Optical Quantum Information Processing

Many, if not most experiments related to quantum information are conducted with
quantum optical systems. This includes the preparation, manipulation, and mea-
surement of interesting and useful quantum optical states, in particular, entangled
states; possibly supplemented by additional atomic systems for storing and pro-
cessing quantum states.

Why is quantum optics the preferred approach to quantum information demon-
strations? Based on mature techniques from nonlinear optics for state preparation
such as parametric down conversion, together with the most accessible means for
manipulating optical states with linear elements such as beam splitters, there is
a long list of optical proof-of-principle demonstrations of various quantum infor-
mation processing tasks. Some of these experiments are performed with single-
photon states, leading to a discrete-variable (DV) encoding of quantum informa-
tion where, for instance, a qubit space is spanned by two orthogonal polariza-
tions (“photonic qubits”). In other experiments, continuous-variable (CV) states de-
fined in an infinite-dimensional Hilbert space are utilized, for example, expressed
in terms of the quadrature amplitudes of an optical, bosonic mode (“photonic
qumodes”).

Typically, the DV experiments involve some heralding mechanism, render-
ing them conditional, and hence less efficient; nonetheless, fidelities in the DV
schemes are fairly high [104]. Conversely, in the CV regime, unconditional oper-
ations and high efficiencies are at the expense of lower fidelities [105]. These two
complementary ways of measuring quantized optical fields correspond to the two
complementary manifestations of light – in terms of photons that, in a kind of
particle-like behavior, trigger discrete detection events; and in terms of light waves

whose continuous amplitude and phase properties are measured similar to the
standard detection techniques of classical coherent optics.

In the current chapter, after giving a brief motivation for employing optical
schemes in quantum information (Section 2.1), we shall give an introduction to
some basic elements and notions of quantum optics in Section 2.2, including the
most important quantum optical states, their representations, and their exploita-
tion for photonic qubit and qumode encodings. In the qumode case, Gaussian
states, being the most readily available sources in the laboratory, play an excep-
tional and important role. We shall identify pure Gaussian states as the physical
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versions of the CV qumode stabilizer states, as they were introduced in the preced-
ing chapter.

Sections 2.3 and 2.4 are devoted to general quantum optical unitaries and the
special case of Gaussian unitary transformations, respectively. Similarly, in Sec-
tions 2.5 and 2.6, respectively, we shall discuss non-unitary maps within a general
quantum optical framework and in the Gaussian regime, including the important
Gaussian channels. Finally, we conclude this chapter with a few remarks on the
possibilities of linear optical schemes for quantum information (Section 2.7) and
general optical approaches to quantum computation (Section 2.8).

2.1
Why Optics?

For communication, it is obvious that light is the ideal carrier of information at a
maximum speed for any signal transfer. However, is there also an advantage of us-
ing light for computation? Before talking about quantum information processing,
let us start with ordinary electronics. As a typical example, consider AM and FM
radio. It is well-known that a signal is encoded as amplitude modulation of a carri-
er wave in AM radio, as shown in Figure 2.1. Similarly, in FM radio, the signal is
encoded as frequency (phase) modulation of a carrier wave, as shown in Figure 2.2.

We can then extract or demodulate the encoded signal through homodyning.
This means essentially multiplication between the received modulated wave and
an output of a local oscillator with the same frequency as the carrier wave at the
receiver. More precisely, when the received wave is A(t) sin ω t (A(t): amplitude
modulation, AM signal, ω: carrier-wave frequency) and the local oscillator output
is B sin ω t, we obtain

A(t) sin ω t � B sin ω t D A(t)B � 1 � cos 2ω t

2
, (2.1)

after the mixing (multiplication) with a mixing circuit. This signal then passes
through a low-pass filter, and we get A(t)B/2 for the homodyne output. By means
of this homodyning, we can tune the frequency (channel) and have the gain B by
using the local oscillator. Similarly, we can demodulate the FM signal by changing
the local oscillator phase.

The regime discussed here is classical because the frequencies of the carrier
waves of AM and FM radio are at most 100 MHz and so we can neglect the photon
energy hν, which is much smaller than the thermal energy kBT . However, the
situation totally changes for optical frequencies. These are around 100 THz and
the photon energy hν is much higher than the thermal energy kB T .

Therefore, in the regime of optical frequencies, we can no longer neglect the
occurrence of photons in a quantum mechanical description. In particular, there
will be an uncertainty relation between the AM and FM signals of the carrier light
and as a result, we cannot determine the AM and FM signals of the carrier light simul-

taneously. Here, in the quantum mechanical description, the AM and FM signals
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Carrier wave

Modulation signal (AM)

Maximum amplitude

Minimum amplitude Amplitude-modulated carrier wave

Figure 2.1 Amplitude modulation for AM radio.

Carrier wave

Modulation signal (FM)

Maximum frequency

Minimum frequency
Frequency-modulated carrier wave

Figure 2.2 Frequency (phase) modulation for FM radio.

would correspond to the quadrature components Ox and Op defined for a qumode
(see Sections 1.2 and 2.2).

We can now perform homodyne detection for optical frequencies. In this case,
the laser corresponds to a local oscillator and the beam splitter corresponds to
a mixing circuit for optical frequencies. We may then demodulate the AM and
FM signals of the carrier light through homodyne detection by changing the
phase of the optical local-oscillator beam. Eventually, in this type of measurement,
quantum mechanics and the presence of photons becomes manifest as a shot

noise.
Although the shot noise or quantum fluctuations of the AM and FM signals is

inevitable, the signals can become correlated on a nonclassical level for the multi-
beam case. For example, with two optical beams A and B, it is possible to have

OxA � OxB ! 0 ,

OpA C OpB ! 0 , (2.2)
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where OxA and OxB are the AM signals for the optical beams A and B, while OpA and
OpB are the corresponding FM signals. Most importantly, OxA and OpA cannot simulta-

neously take on certain values according to the uncertainty relation, and the same
applies to OxB and OpB. However, for combinations of the AM and FM signals, si-
multaneous values such as zero in Eq. (2.2) are possible because the uncertainty
relation only prohibits the occurrence of a simultaneous eigenstate of two non-
commuting observables of one optical beam, but not for two commuting observ-
ables of two optical beams. This type of nonclassical correlation is a manifestation
of entanglement (see Chapter 3).

To conclude this section, we state that optics is a natural extension of electronics
from the classical to the quantum domain and therefore well suited for quantum
information processing.

2.2
Quantum Optical States and Encodings

The distinct quantum features of light have been known much longer than the rel-
atively new ideas of quantum information theory. The famous papers by Glauber
from 1963 [106–108] based on a rigorous quantum formulation of optical coher-
ence represent milestones of a quantum theory of light. Thanks to the invention
of the laser, a lot of progress has been made in experimental quantum optics as
well.

What are the consequences of a quantum description of light? Put in simple
terms, not only must the position and momentum of massive particles such as
electrons obey the Heisenberg uncertainty relation, but also electromagnetic field
observables such as the “quadrature amplitudes”. In its simplest form, this be-
comes manifest in an uncertainty relation for a single qumode, as expressed by
Eq. (1.43). Effectively, the quantized field represents a collection of quantum os-
cillators, that is, in our terminology, a collection of qumodes. As a consequence,
light fields emitted from a laser source not only exhibit thermal fluctuations that
in principle might be entirely suppressed, but also intrinsic unavoidable quantum
fluctuations. The quantum state of the electromagnetic field closest to a well de-
termined classical state is the so-called coherent state, with minimum uncertainty
symmetrically distributed in phase space. Any decrease of, for example, the ampli-
tude uncertainty (“amplitude squeezing”) must be accompanied by an increase of
the phase uncertainty (“phase antisqueezing”) because otherwise the Heisenberg
uncertainty relation is violated.

Originally, squeezing was considered as a means to enhance the sensitivity of
optical measurements near the standard quantum limit (for example, in the inter-
ferometric detection of gravitational radiation [109] or for low-noise communica-
tions [110]). Later, we shall see that squeezed light represents a readily available
resource to produce entanglement (Chapter 3). Let us now start by describing the
quantization of the free electromagnetic field.
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2.2.1
Field Quantization

In quantum optics textbooks, the electromagnetic field is usually quantized with-
out a rigorous quantum field theoretical approach based on a more heuristic sub-
stitution of operators for c numbers. This approach is sufficient to identify modes
of the electromagnetic field as quantum mechanical harmonic oscillators. It ulti-
mately reveals that the number of photons in a mode corresponds to the degree of
excitation of a quantum oscillator. Thus, in this sense, photons have a much more
abstract and mathematical meaning than the “light particles” that Einstein’s 1905
papers referred to for interpreting the photoelectric effect.

The starting point now shall be the Maxwell equations of classical electrodynam-
ics,

r � E D �@B
@t

, (2.3)

r � H D j C @D
@t

, (2.4)

r � D D � , (2.5)

r � B D 0 , (2.6)

with D D ε0E C P and B D µ0H C M . Here, ε0 is the electric permittivity of free
space and µ0 is the magnetic permeability (with ε0µ0 D c�2, c the vacuum speed
of light). Considering the free electromagnetic field allows us to remove all charges
and currents (� D 0, j D 0), and also any electric polarization and magnetization
(P D 0, M D 0).

By inserting Eq. (2.4) with H D B/µ0 into Eq. (2.3), with D D ε0E , and with
r � r � E D r(r � E ) � r2E and Eq. (2.5), one obtains the wave equation for the
electric field

r2E � 1
c2

@2 E
@t2 D 0 , (2.7)

and likewise for the magnetic field.
In his quantum treatment of optical coherence, Glauber regarded the electric and

magnetic field as a pair of Hermitian operators, OE (r , t) and OB(r , t), both obeying
the wave equation [107]. Written as a Fourier integral, Hermiticity of the electric
field operator,

OE (r, t) D 1p
2π

1Z
�1

dω OE(r , ω)e�iω t , (2.8)

is ensured through OE (r, �ω) D OE†
(r , ω). The positive-frequency part,

OE (C)
(r , t) D 1p

2π

1Z
0

dω OE (r, ω)e�iω t , (2.9)
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and the negative-frequency part,

OE (�)
(r , t) D 1p

2π

0Z
�1

dω OE (r, ω)e�iω t

D 1p
2π

1Z
0

dω OE†
(r, ω)eCiω t , (2.10)

regarded separately, are non-Hermitian operators with OE (r , t) D OE (C)
(r, t) C

OE (�)
(r , t). They are mutually adjoint, that is, OE (�)

(r, t) D OE (C)†
(r , t). In fact,

Glauber realized that OE (�)
(r, t) and OE (C)

(r, t) must represent photon creation and
annihilation operators, respectively [107].

However, we will find it more convenient to describe the electromagnetic field by
a discrete set of “mode variables” rather than the whole continuum of frequencies.
We will now deal with this discretization according to Walls and Milburn [29] whose
approach is based on Glauber [108].

2.2.1.1 Discrete Modes
The free electromagnetic field vectors may both be determined from a vector po-
tential A(r , t) as

B D r � A , E D �@A
@t

, (2.11)

where we have taken the Coulomb gauge condition r � A D 0. Using these equa-
tions for the vector potential and the free Maxwell equations, we can also derive the
wave equation for A(r , t),

r2A � 1
c2

@2A
@t2 D 0 . (2.12)

The vector potential can also be written as A(r, t) D A(C)(r, t) C A(�)(r , t), where
again A(C)(r , t) contains all amplitudes which vary as e�iω t for ω > 0 and A(�)(r , t)
contains all amplitudes which vary as eCiω t [the positive and negative frequency
parts here are still c numbers, A(�) D (A(C))�]. In order to discretize the field
variables, we assume that the field is confined within a spatial volume of finite size.
Now, we can expand the vector potential in terms of a discrete set of orthogonal
mode functions,

A(C)(r, t) D
X

k

ck uk (r)e�iωk t . (2.13)

The Fourier coefficients ck are constant because the field is free. If the volume con-
tains no refracting materials, every vector mode function uk (r) corresponding to
the frequency ωk satisfies the wave equation [as the mode functions must inde-
pendently satisfy Eq. (2.12)] 

r2 C ω2
k

c2

!
uk (r) D 0 . (2.14)
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More generally, the mode functions are required to obey the transversality condi-
tion,

r � uk (r) D 0 , (2.15)

and they shall form a complete orthonormal set,Z
u�

k (r)uk 0 (r)d3r D δk k 0 . (2.16)

The plane wave mode functions appropriate to a cubical volume of side L may now
be written as

uk (r) D L�3/2e(λ)eik�r , (2.17)

with e(λ) being a unit polarization vector [perpendicular to k due to transversality
Eq. (2.15)]. We can verify that this choice leads with the wave equation (Eq. (2.14)) to
the correct linear dispersion relation jkj D ωk /c. The polarization index (λ D 1, 2)
and the three components of the wave vector k are all labeled by the mode index
k. The permissible values of the components of k are determined in a familiar way
by means of periodic boundary conditions,

kx D 2π nx

L
, ky D 2π ny

L
, kz D 2π nz

L
,

nx , ny , nz D 0, ˙1, ˙2, . . . (2.18)

The vector potential then takes the quantized form [29, 108, 111]

OA(r, t) D
X

k

� „
2ωk ε0

�1/2 h
Oak uk (r)e�iωk t C Oa†

k u�
k (r)eCiωk t

i

D
X

k

� „
2ωk ε0L3

�1/2

e(λ)
h

Oakei(k�r�ωk t ) C Oa†
k
e�i(k�r�ωk t )

i
, (2.19)

where now the Fourier amplitudes ck from Eq. (2.13) (complex numbers in the clas-
sical theory) are replaced by the operators Oak times a normalization factor. Quan-
tization of the electromagnetic field is accomplished by choosing Oak and Oa†

k to be
mutually adjoint operators. The normalization factor renders the pair of operators
Oak and Oa†

k
dimensionless. According to Eq. (2.11), the electric field operator be-

comes

OE (r, t) D i
X

k

�„ωk

2ε0

�1/2 h
Oak uk (r)e�iωk t � Oa†

k
u�

k (r)eCiωk t
i

, (2.20)

and, likewise, the magnetic field operator,

OB(r , t) D i
X

k

� „
2ωk ε0

�1/2 h
Oak k � uk (r)e�iωk t � Oa†

k
k � u�

k (r)eCiωk t
i

.

(2.21)
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Inserting these field operators into the Hamiltonian of the electromagnetic field,

OH D 1
2

Z �
ε0 OE2 C µ�1

0
OB2
�

d3r , (2.22)

using Eqs. (2.15) and (2.16), the Hamiltonian may be reduced to

OH D 1
2

X
k

„ωk

�
Oa†

k
Oak C Oak Oa†

k

�
. (2.23)

With the appropriate commutation relations for the operators Oak and Oa†
k
, the boson-

ic commutation relations

[ Oak , Oak 0 ] D
h

Oa†
k
, Oa†

k 0

i
D 0 ,

h
Oak , Oa†

k 0

i
D δk k 0 , (2.24)

we recognize the Hamiltonian of an ensemble of independent quantum harmonic
oscillators,

OH D
X

k

„ωk

�
Oa†

k
Oak C 1

2

�
. (2.25)

The entire electromagnetic field therefore may be described by the tensor product
state of all these quantum harmonic oscillators of which each represents a single

electromagnetic mode. The operator Oa†
k Oak stands for the excitation number (photon

number) of mode k, Oak itself is a photon annihilation, Oa†
k

a photon creation opera-
tor of mode k. For most quantum optical calculations, in particular with regard to a
compact description of protocols in quantum information theory, it is very conve-
nient to use this discrete single-mode picture. However, we will also encounter the
situation where we are explicitly interested in the continuous frequency spectrum
of “modes” that are distinct from each other in a discrete sense only with respect to
spatial separation and/or polarization. Let us briefly consider such a decomposition
of the electromagnetic field into a continuous set of frequency “modes”.

Quantized electromagnetic field

electric field:

OE (r , t) D i
X

k

�„ωk

2ε0

�1/2 h
Oak uk (r)e�iωk t � Oa†

k
u�

k (r)eCiωk t
i

magnetic field:

OB(r , t) D i
X

k

� „
2ωk ε0

�1/2 h
Oak k � uk (r)e�iωk t � Oa†

k
k � u�

k (r)eCiωk t
i

Hamiltonian:

OH D 1
2

Z �
ε0 OE2 C µ�1

0
OB2
�

d3r D
X

k

„ωk

�
Oa†

k
Oak C 1

2

�
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bosonic commutators:

[ Oak , Oak 0 ] D
h

Oa†
k
, Oa†

k 0

i
D 0 ,

h
Oak , Oa†

k 0

i
D δk k 0

2.2.1.2 Continuous Modes
It seems in some ways more natural to describe the electromagnetic field vectors
by Fourier integrals rather than by Fourier series, although the continuous formal-
ism is less compact. The discrete mode expansion of the electric field in Eq. (2.20)
becomes, in the continuous limit [111],

OE (r, t) D i
(2π)3/2

X
λ

Z
d3k

�„ω
2ε0

�1/2

e(λ)

�
h

Oa(k, λ)ei(k�r�ω t ) � Oa†(k, λ)e�i(k�r�ω t )
i

, (2.26)

where the mode index k has been replaced by the discrete polarization index λ and
the three continuous wave vector components. This corresponds to the limit of a
very large cube of size L ! 1. The discrete expansion of the magnetic field from
Eq. (2.21) now becomes [111]

OB(r, t) D i
(2π)3/2

X
λ

Z
d3k

� „
2ωε0

�1/2

k � e(λ)

�
h

Oa(k, λ)ei(k�r�ω t ) � Oa†(k, λ)e�i(k�r�ω t )
i

. (2.27)

The commutation relations in this continuous representation take the form

[ Oa(k, λ), Oa(k0, λ0)] D [ Oa†(k, λ), Oa†(k0, λ0)] D 0 , (2.28)

[ Oa(k, λ), Oa†(k0, λ0)] D δ3(k � k0) δλλ0 . (2.29)

Note that now the photon number operator must be defined within a finite wave
vector range, Oa†(k) Oa(k)d3k, which means the operator Oa(k) has the dimension
of L3/2.

Finally, in terms of Glauber’s continuous Fourier integral representation from
Eq. (2.9), we can also write, for example, the electric field as

OE (C)(z, t) D [ OE (�)(z, t)]† D 1p
2π

1Z
0

dω
�

u„ω
2cA tr

�1/2

Oa(ω)e�iω(t�z/c) ,

(2.30)

with OE (z, t) D OE (C)(z, t) C OE (�)(z, t), traveling in the positive-z direction (jkj D
ω/c) and describing a single unspecified polarization. The parameter A tr rep-
resents the transverse structure of the field (dimension of L2) and u is a units-
dependent constant [ for the units we have used in the Maxwell equations (SI
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units), u D ε�1
0 , for Gaussian units, u D 4π]. Here, the photon number operator

must be defined within a finite frequency range, Oa†(ω) Oa(ω)dω, which means the
operator Oa(ω) has the dimension of time1/2. Compared to the discrete expansion,
a phase shift of exp(iπ/2) has been absorbed by the amplitude operator Oa(ω). The
correct commutation relations are now

[ Oa(ω), Oa(ω0)] D [ Oa†(ω), Oa†(ω0)] D 0 , [ Oa(ω), Oa†(ω0)] D δ(ω � ω0) . (2.31)

2.2.2
Quadratures

Let us introduce the so-called quadratures by looking at a single mode taken from
the electric field in Eq. (2.20) for a single polarization [the phase shift of exp(iπ/2)
is absorbed into Oak ],

OEk (r , t) D E0

h
Oak ei(k�r�ωk t ) C Oa†

ke�i(k�r�ωk t )
i

. (2.32)

The constant E0 contains all the dimensional prefactors. By using Eq. (1.42), we
can rewrite the mode as

OEk (r , t) D 2E0
� Oxk cos(ωk t � k � r) C Opk sin(ωk t � k � r)

�
. (2.33)

Apparently, the “position” and “momentum” operators Oxk and Opk represent the
in-phase and the out-of-phase components of the electric field amplitude of the
qumode k with respect to a (classical) reference wave / cos(ωk t � k � r). The choice
of the phase of this wave is arbitrary, of course, and a more general reference wave
would lead us to the single-mode description,

OEk (r , t) D 2E0

h
Ox (Θ )

k
cos(ωk t � k � r � Θ ) C Op (Θ )

k
sin(ωk t � k � r � Θ )

i
,

(2.34)

with the “more general” quadratures

Ox (Θ )
k

D
�

Oak e�iΘ C Oa†
k
eCiΘ

�ı
2 , Op (Θ )

k
D
�

Oake�iΘ � Oa†
k
eCiΘ

�ı
2i .

(2.35)

These “new” quadratures can be obtained from Oxk and Opk through the rotation 
Ox (Θ )

k

Op (Θ )
k

!
D
�

cos Θ sin Θ
� sin Θ cos Θ

�� Oxk

Opk

�
. (2.36)

Since this is a unitary transformation, we again end up with a pair of conjugate ob-
servables fulfilling the commutation relation in Eq. (1.39). Furthermore, because
Op (Θ )

k
D Ox (ΘCπ/2)

k
, the whole continuum of quadratures is covered by Ox (Θ )

k
with

Θ 2 [0, π). This continuum of observables can be directly measured by homodyne
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detection, where the phase of the so-called local-oscillator field enables one to tune
between the rotated quadrature bases (see Section 2.6). The corresponding quadra-
ture eigenstates are the (unphysical) CV qumode stabilizer states, as introduced in
Section 1.3.2. A continuous set of rotated stabilizers is given by Eq. (1.71).

We shall mostly refer to the conjugate pair of quadratures Oxk and Opk as the po-
sition and momentum of qumode k, corresponding to Θ D 0 and Θ D π/2. In
terms of these quadratures, the number operator becomes

Onk D Oa†
k Oak D Ox2

k C Op 2
k � 1

2
, (2.37)

using Eq. (1.39).

2.2.3
Coherent States

We have seen that the qumode states of the electromagnetic field can be expressed
in terms of the Fock basis, describing the photon or excitation number of the cor-
responding quantum harmonic oscillator. Another useful basis for representing
optical fields are the coherent states. As opposed to the Fock states, the coherent
states’ photon number and phase exhibit equal, minimal Heisenberg uncertainties.
In this sense, coherent states are the quantum states closest to a classical descrip-
tion of the field. They also correspond to the output states that are ideally produced
from a laser source.

Coherent states are the eigenstates of the annihilation operator Oa,

Oajαi D αjαi , (2.38)

with complex eigenvalues α since Oa is a non-Hermitian operator. Their mean pho-
ton number is given by

hαj Onjαi D hαj Oa† Oajαi D jαj2 . (2.39)

The quantum optical displacement operator is given by

OD(α) D exp(α Oa† � α� Oa) D exp(2ipα Ox � 2ixα Op ) , (2.40)

with α D xα C ipα and again Oa D Ox C i Op . The displacement operator acting on Oa
in the Heisenberg picture yields a displacement by the complex number α,

OD†(α) Oa OD(α) D Oa C α . (2.41)

Coherent states are now displaced vacuum states,

jαi D OD(α)j0i . (2.42)

The Fock basis expansion for coherent states is

jαi D exp
�

�jαj2
2

� 1X
nD0

αn

p
n!

jni , (2.43)
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using the polynomial expansion of exp(α Oa†) with Eq. (1.31) and the fact that
exp(�α� Oa) leaves the vacuum state j0i unchanged. Apparently, the photon statis-
tics of coherent states obeys a Poissonian distribution with mean photon number
jαj2,

jhnjαij2 D jαj2n

n!
exp(�jαj2) . (2.44)

Though being non-orthogonal, coherent states represent a very useful basis for
representing optical fields with the completeness relation, [where the integration
is over the whole complex plane with d2α � d(Reα)d(Imα) � dxαdpα ],

1
π

Z
jαihαjd2α D 1 , (2.45)

which can be proven using Eq. (2.43) and polar coordinates in the complex
plane [29].

In fact, coherent states are actually overcomplete (a consequence of their lack of
orthogonality) because any coherent state can be expanded in terms of the others,

jαi D 1
π

Z
d2�j�ih�jαi D 1

π

Z
d2�j�i exp(�jαj2/2 � j�j2/2 C α��) .

(2.46)

Always, when we consider a coherent state of the electromagnetic field as a whole
(e.g., for a broadband field), what we mean is a tensor product of coherent states
for the individual modes jα1i ˝ jα2i ˝ � � � .

2.2.4
Squeezed States

In general, squeezing refers to the reduction of quantum fluctuations in one vari-
able below the standard quantum limit (the minimal noise level of the vacuum
state) at the expense of an increased uncertainty of the conjugate variable. Nonlin-
ear optical interactions enable one to achieve this experimentally. There are various
schemes for generating squeezed states of light, differing, especially, in the opti-
cal nonlinearity they use. The most common approach is to use a so-called 	(2)

nonlinearity,1) where in an optical parametric amplifier (OPA), a pump beam pro-
duces signal and idler beams. Depending on the pump strength, one obtains multi-
photon states with high squeezing or a state with very small numbers of photons

1) Describing the relation between the polariza-
tion P , i.e., the response of a nonmagnetic
medium to an external light field, and
the external light field, Pi (r , t) D P

(0)
i CP

j 	(1)
i j E j (r , t) CP

j k 	(2)
i j k E j (r , t)Ek (r , t) CP

j k l 	(3)
i j k l E j (r , t)Ek (r , t)El (r , t) C � � � . The

nth order susceptibilities 	(n) are then given

by tensors of rank n C 1. Typically, the
linear susceptibility 	(1) is the dominant
contribution, assuming P

(0)
i D 0. If the

electric field is linearly polarized and the
induced polarization of the medium has
only one nonzero component, say P1, the
susceptibility tensors can be replaced by
scalars, 	(1)

11 � 	(1), 	(2)
111 � 	(2) , etc.
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in the low-squeezing regime. Higher nonlinearities such as 	(3) are typically rather
weak and hence require larger field intensities for their effective enhancement.

The output state of degenerate parametric amplification where the signal and
idler frequencies each are half the pump frequency corresponds to a single-mode
squeezed state. This single-mode squeezing can be calculated with an interaction
Hamiltonian quadratic in the creation and annihilation operators,

OHint D i„�

2

� Oa†2eiΘ � Oa2e�iΘ� . (2.47)

It describes the amplification of the signal mode Oa at half the pump frequency in
an interaction picture. The coherent pump mode is assumed to be classical (the
so-called parametric approximation), its real amplitude jαpumpj is absorbed in �,
and the pump phase is Θ . The parameter � also contains the susceptibility, � /
	(2)jαpumpj.2)

In the interaction picture, we can insert OHint into the Heisenberg equation of
motion Eq. (1.59) for the annihilation operator, and obtain (taking zero pump phase
Θ D 0)

d
dt

Oa(t) D 1
i„
h

Oa(t), OHint

i
D � Oa†(t) . (2.48)

This equation is solved by

Oa(t) D Oa(0) cosh(� t) C Oa†(0) sinh(� t) . (2.49)

The quadrature operators evolve correspondingly into

Ox (t) D eC� t Ox (0) , Op (t) D e�� t Op (0) . (2.50)

The uncertainty of the p quadrature decreases, whereas that of the x quadrature
grows, D�

∆ Ox (t)
�2E D eC2� t

D�
∆ Ox (0)�2

E
,

D�
∆ Op (t)

�2E D e�2� t
D�

∆ Op (0)�2E . (2.51)

For initial quadratures corresponding to a coherent-state or vacuum-state input la-
beled by a superscript “(0)”, the evolved states remain minimum uncertainty states
with p fluctuations below and x fluctuations above the vacuum uncertainty. They
have become quadrature squeezed states.

According to Eq. (1.54) with the Hamiltonian from Eq. (2.47) and t0 D 0, we
may introduce the unitary squeezing or squeeze operator OS (
 ) by defining 
 �
r exp(iΘ ) with the squeezing parameter r � �� t (a dimensionless effective inter-
action time; the minus sign is the usual phase convention),

OU(t, 0) D exp
h�

2

� Oa†2eiΘ � Oa2e�iΘ� t
i

� OS (
 ) D exp
�


�

2
Oa2 � 


2
Oa†2
�

.

(2.52)

2) The fully quantum mechanical Hamiltonian is OHint / Oa†2 Oapump � Oa2 Oa†
pump, and with the

parametric approximation we assume Oapump ! αpump D jαpumpjeiΘ .
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The squeezing operator obviously satisfies OS†(
 ) D OS�1(
 ) D OS(�
 ). Applying it
to an arbitrary initial operator Oa(0) � Oa yields the transformation [Eq. (1.57)]

OS†(
 ) Oa OS (
 ) D Oa cosh r � Oa†eiΘ sinh r . (2.53)

For the rotated mode

Ox (Θ/2) C i Op (Θ/2) D ( Ox C i Op )e�iΘ/2 D Oae�iΘ/2 , (2.54)

the squeezing transformation results in

OS†(
 )
� Ox (Θ/2) C i Op (Θ/2)� OS (
 ) D Oae�iΘ/2 cosh r � Oa†eCiΘ/2 sinh r

D e�r Ox (Θ/2) C ieCr Op (Θ/2) . (2.55)

Thus, the effect of the squeezing operator on an arbitrary pair of quadratures, as
generally defined in Eq. (2.35), is the attenuation of one quadrature and the amplifi-
cation of the other. We have seen that the squeezing operator effectively represents
the unitary evolution due to the OPA Hamiltonian. The corresponding expressions
for the resulting Heisenberg quadrature operators (with Θ D 0 and vacuum in-
puts) are3)

Ox (r) D e�r Ox (0) , Op (r) D eCr Op (0) . (2.56)

The Heisenberg equations in Eq. (2.56) lead to a squeezed vacuum state (see Fig-
ures 2.3 and 2.4) in the Schrödinger picture given by the vector OS (
 )j0i D OS(r, Θ D
0)j0i � OS (r)j0i. More generally, all single-qumode minimum uncertainty states are
displaced squeezed vacua (see Figures 2.5 and 2.6),

jα, 
i D OD(α) OS(
 )j0i , (2.57)

for which the position wave function becomes (with Θ D 0)

ψ(x ) D
�

2
π

�1/4

er/2 exp
��e2r (x � xα)2 C 2ipα x � ixα pα

�
. (2.58)

The corresponding Wigner function4) is (with Θ D 0)

W(x , p ) D 2
π

exp
h
�2eC2r (x � xα )2 � 2e�2r (p � pα)2

i
. (2.59)

x

p

Figure 2.3 A position-squeezed vacuum state in phase space.

3) Comparing Eq. (2.50) with Eq. (2.56), note that the time reversal due to the sign convention in
r � �� t just swaps the squeezed and the antisqueezed quadrature.

4) The Wigner function together with other quasi-probability distributions will be introduced in the
next section.
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x

p

x

p

Fourier transformation

Figure 2.4 A momentum-squeezed vacuum state obtained by Fourier-transforming the
position-squeezed vacuum state.

x

p

x

p

Displacement
D(x)^

Figure 2.5 A position-displaced position-squeezed vacuum in phase space.

x

p

D(x)^

x

p

D(x)^

r ∞

x

Figure 2.6 Position-displaced position-
squeezed vacuum, exp(�2ix Op ) OS(r)j0i, ap-
proaching the CV position stabilizer state
jxix for r ! 1. Note that the squeez-
ing operation and the position shift do not

commute such that OS(r) exp(�2ix Op )j0i D
OS(r) exp(�2ix Op ) OS(�r) OS (r)j0i D
exp(�2ixe�r Op) OS (r)j0i will result in the zero-
position stabilizer state j0ix for r ! 1.

The quadrature variances here are σx D e�2r/4 and σ p D eC2r/4. In the limit of
infinite squeezing r ! 1, the position probability density, jψ(x )j2 D p

2/πer �
exp[�2e2r (x � xα )2] becomes a delta function lim�!0 exp[�(x � xα )2/�2]/�

p
π D

δ(x � xα ) with � D e�r/
p

2. The squeezed-vacuum wave function in that limit,
ψ(x ) / δ(x ), describes a zero-position eigenstate,

R
dx ψ(x )jxix / j0ix , not to be

confused with the vacuum state j0i, for which the wave function is that of Eq. (2.58)
with r D xα D pα D 0.

The mean photon number of an infinitely squeezed state becomes infinite be-
cause for the displaced squeezed vacuum, we have

h Oni D h Ox2i C h Op 2i � 1
2

D jαj2 C sinh2 r , (2.60)

using Eq. (2.37).
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In the following section, we shall now briefly discuss an alternative way to rep-
resent quantum states, complementary to the Heisenberg and Schrödinger repre-
sentations. Among these so-called quasi-probability distributions, the Wigner rep-
resentation turns out to be particularly convenient in order to describe qumode
states and to compute expectation values of phase-space variables.

Quantum optical states

coherent states:

� as eigenstates of the annihilation operator:

Oajαi D αjαi

� as displaced vacuum states:

jαi D OD(α)j0i

with displacement operator OD(α) D exp(α Oa†�α� Oa) D e�ixα pα Z(pα)X(xα)

� as number superposition states:

jαi D e�jαj2/2
1X

nD0

αn

p
n!

jni

squeezed states: position-squeezed:

OS†(r) Ox OS (r) D e�r Ox , OS†(r) Op OS(r) D eCr Op

with squeezing operator

OS (
 ) D exp
�


�

2
Oa2 � 


2
Oa†2
�

and

 � r exp(iΘ ) , OS (r) � OS (r, Θ D 0) D er (Oa2�Oa†2)/2 D eir ( Ox OpC Op Ox )

displaced squeezed vacuum states:

jα, 
i D OD(α) OS(
 )j0i

2.2.5
Phase-Space Representations

The Wigner function was originally proposed by Wigner in his 1932 paper “On the
quantum correction for thermodynamic equilibrium” [112]. Wigner introduced the
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following expression,5)

W(x , p ) D 2
π

Z
dyeC4iy p hx � y j O�jx C yi . (2.61)

This is the Wigner function for one qumode. Wigner’s original formula applies to
many particles or, in our case, qumodes. However, this extension to an N-mode
Wigner function is straightforward.

The function W(x , p ) is normalized,Z
W(α)d2α D 1 , (2.62)

and it gives the correct marginal distributions,Z
W(x , p )dx D hp j O�jp i ,

Z
W(x , p )dp D hx j O�jxi . (2.63)

It resembles a classical probability distribution in the sense that expectation values
of a certain class of operators OA in a given quantum state O� can be calculated as,

h OAi D Tr( O� OA) D
Z

W(α)A(α)d2α , (2.64)

with a function A(α) related to the operator OA. Here, d2 α D d(Reα)d(Imα) D
dxdp with W(α D x C ip ) � W(x , p ), and we may use d2α and dxdp inter-
changeably. The operator OA represents a particular class of functions of Oa and Oa†

or Ox and Op . The marginal distribution for p, hp j O�jp i, is obtained by changing the
integration variables (x � y D u, x C y D v ) and using (1.47), that for x, hx j O�jxi,
by using

R
exp(C4iy p )dp D (π/2)δ(y ). The normalization of the Wigner function

then follows from Tr( O�) D 1.
In order to derive an equation of the form of Eq. (2.64), we can write the Wigner

function from Eq. (2.61) as

W(x , p ) D 2
π

Z
dydx 0eC4iy p δ(x � x 0)hx 0 � y j O�jx 0 C yi

D 1
π2

Z
dx 0dudveC2iu(x�x 0)C2iv p

D
x 0 � v

2

ˇ̌̌
O�
ˇ̌̌
x 0 C v

2

E

D 1
π2

Z
	W (u, v )eC2iuxC2iv p dudv , (2.65)

with the Fourier transform of the Wigner function, called the characteristic func-
tion,

	W (u, v ) D
Z

W(x , p )e�2iux�2iv p dxdp (2.66)

D
Z

e�2iux 0
D
x 0 � v

2

ˇ̌̌
O�
ˇ̌̌
x 0 C v

2

E
dx 0 . (2.67)

5) As throughout, without specified integration limits, the integration goes from �1 to 1.



96 2 Introduction to Optical Quantum Information Processing

With the substitution x D x 0 � v/2 in Eq. (2.67), we now obtain

	W (u, v ) D exp(�iuv )
Z

exp(�2iux )hx j O�jx C vidx

D
Z

hx j O� exp(�2iu Ox � 2iv Op )jxidx , (2.68)

where in the last line we have used a Baker–Campbell–Hausdorff (BCH) formula,
and exp(�2iv Op )jxi D jx C vi, and exp(�2iu Ox )jx C vi D exp[�2iu(x C v )]jx C vi.
With Eq. (2.68), we have found a compact formula for the characteristic function,

	W (u, v ) D Tr[ O� exp(�2iu Ox � 2iv Op )] . (2.69)

Let us now calculate the expectation value [113],

Tr
h

O�(λ Ox C µ Op)k
i

D
�

i
2

�k
@k

@ k
	W (λ , µ )

ˇ̌̌
ˇ̌

D0

D
Z

W(x , p )(λx C µ p )kdxdp , (2.70)

according to Eqs. (2.69) (in the first line) and (2.66) (in the second line). By com-
parison of the powers of λ and µ, we find [113]

Tr[ O�S( Ox n Op m)] D
Z

W(x , p )x n p mdxdp , (2.71)

where S( Ox n Op m) denotes symmetrization. For example, S( Ox2 Op ) D ( Ox2 Op C Ox Op Ox C
Op Ox2)/3 corresponds to x2 p [113]. This is the so-called Weyl correspondence [114].

It provides a rule as how to calculate quantum mechanical expectation values in
a classical-like fashion as in Eq. (2.64). Apparently, any symmetrized operator be-
longs to the particular class of operators OA in Eq. (2.64) for which the classical-like
averaging procedure works. In terms of creation and annihilation operators, we
have

Tr[ O�S( Oa†n Oam )] D
Z

W(α)α�n αmd2α . (2.72)

This correspondence can be similarly derived as above through Fourier transform,
expressing the characteristic function in terms of complex variables,

	W (�) D
Z

W(α) exp(�i�α� � i��α)d2α � FfW g
D Tr

� O� exp(�i� Oa† � i�� Oa)
�

, (2.73)

with � D u C iv .
Such a classical-like formulation of quantum optics in terms of quasi-probability

distributions is not unique. In fact, there is a whole family of distributions P(α, s)
of which each member corresponds to a particular value of a real parameter s,

P(α, s) D 1
π2

Z
	(�, s) exp(i�α� C i��α)d2� , (2.74)
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with the s-parameterized characteristic functions

	(�, s) D Tr
� O� exp

��i� Oa† � i�� Oa�� exp(sj�j2/2) . (2.75)

The expectation values of operators normally and antinormally ordered in Oa and Oa†

may then be calculated through the so-called P function (s D 1) and Q function
(s D �1), respectively, as can be seen using a BCH formula in Eq. (2.75). The
corresponding characteristic functions are 	P (�) � 	(�, 1) and 	Q(�) � 	(�, �1),
respectively.

The Wigner function (s D 0) and its characteristic function 	W (�) � 	(�, 0)
directly provide expectation values of quantities symmetric in Oa and Oa† such as the
position Ox D ( Oa C Oa†)/2 and the momentum Op D ( Oa � Oa†)/2i. Note that the
Wigner function is not always positive definite,6) and neither is the P function.
The Q function is an exception, being always non-negative. Though negativity of
the Wigner function is clearly a sign of nonclassicality (see Chapter 8), it is not
a necessary requirement to obtain nonclassical states. Pure states with a positive
Wigner function, including those being entangled, are always Gaussian states (see
Section 2.2.8.2 and Chapter 3).

Quantum optical phase-space representations

P function:

O� D
Z

P(α)jαihαjd2 α , Tr( O� Oa†n Oam ) D
Z

P(α)α�nαmd2α

	P (�) D FfPg D Tr
� O� exp(�i� Oa†) exp(�i�� Oa)

�
Wigner function:

W(α) D 2
π

Z
d2�P(�)e�2jα��j2

D W(x , p ) D 2
π

Z
dyeC4iy p hx � y j O�jx C yi

Tr
� O�S � Oa†n Oam

�� D
Z

W(α)α�n αmd2 α

Tr [ O�S ( Ox n Op m)] D
Z

W(x , p )x n p mdxdp (Weyl correspondence)

	W (�) D FfW g D Tr
�

O�e�i� Oa†�i�� Oa
�

D 	W (u, v ) D Tr
�

O�e�2iu Ox�2iv Op
�

6) Wigner called W(x , p ) “the probability function of the simultaneous values of x and p” [112].
Since position and momentum cannot simultaneously take on precise values, W(x , p ) must
exhibit some odd properties compared with classical probability distributions. In fact, the overlap
formula [113], jhψ1jψ2ij2 D π

R
W1(x , p )W2(x , p )dxdp , shows that either W1(x , p ) or W2(x , p )

must become negative for orthogonal states hψ1jψ2i D 0.
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Q function:

Q(α) D 2
π

Z
d2� W(�)e�2jα��j2 D 1

π

Z
d2�P(�)e�jα��j2 D 1

π
hαj O�jαi

Tr
� O� Oan Oa†m

� D
Z

Q(α)αnα�md2α

	Q(�) D FfQg D Tr
� O� exp(�i�� Oa) exp(�i� Oa†)

�
P function: can be negative and singular
Wigner function: can be negative but always regular
Q function: always non-negative

Finally, we note that any mixed quantum state O�, for which Tr( O�2) < 1, satisfies
the following condition for the Wigner function,

Tr( O�2) D π
Z

[W(x , p )]2dxdp < 1 . (2.76)

Here, W(x , p ) is the Wigner function corresponding to a single-qumode state O�.
Next, we shall now start discussing photonic encodings for quantum information
processing.

2.2.6
Photonic Qubits

Using the photon number Fock basis, there are various ways to encode an opti-
cal qubit. One possible encoding is called “single-rail” (or “occupation number”)
encoding, as it is based upon just a single optical mode,

cos(θ /2)j0i C eiφ sin(θ /2)j1i . (2.77)

This encoding, however, is rather inconvenient because even simple single-qubit
rotations would require nonlinear interactions. For example, the Hadamard gate,
acting as jki ! (j0iC(�1)k j1i)/p2, transforms a Gaussian state (the vacuum) into
a non-Gaussian state (a superposition of vacuum and one-photon Fock state) which
cannot be achieved through Gaussian unitaries (see Sections 2.2.8.2 and 2.4).

In contrast, for the so-called “dual-rail” encoding,

cos(θ /2)j10i C eiφ sin(θ /2)j01i , (2.78)

single-qubit rotations become an easy task (see Figure 2.7). A 50 : 50 beam splitter,
for instance, would turn j10i D Oa†

1 j00i into (1/
p

2)( Oa†
1 C Oa†

2 )j00i D (1/
p

2)(j10i C
j01i), and similarly for the other basis state. The two modes in this case are spatial
modes. The linear beam-splitter transformation here is a simple, special case of
a general passive (number-preserving) linear transformation introduced later in
Eq. (2.105).
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Figure 2.7 Using a beam splitter to switch between the computational
and the Hadamard transformed, conjugate basis. Here, measuring the
photons at the output of the beam splitter would project the input state
onto the conjugate basis.

The most common dual-rail encoded, photonic qubit is a polarization encoded
qubit,

cos(θ /2)jHi C eiφ sin(θ /2)jVi , (2.79)

for two polarization modes, where one is horizontally polarized while the other
is vertically polarized. Hence, polarization encoding is a specific manifestation of
dual-rail encoding. Single-qubit rotations are then particularly simple, correspond-
ing to polarization rotations.

The drawback of the dual-rail encoding is that for realizing two-qubit entangling
gates, it is necessary to make two photons (each representing a dual-rail qubit)
“talk” to each other. This kind of interaction between two photons would require
some form of nonlinearity. In Chapters 6–8, we shall discuss various possibilities
for realizing such two-photon entangling gates. Already in Section 2.8, we will dis-
cuss an extension of dual-rail to multiple-rail encoding, where every logical basis
state is represented by a single photon that can occupy any one of sufficiently many,
different modes (not just two as for dual-rail encoding).

Despite the difficulty for realizing a two-photon entangling gate, there is a clear
advantage of the single-photon encoding. Single photons are fairly robust against
noise. Therefore, typically, processing single-photon states can be achieved with
high fidelity, though, in most cases, only conditional operations are possible at
very low success probabilities. As additional resources for processing DV quantum
information in a hybrid light-matter system, the atomic counterpart of the photonic
polarization (spin) states are the electronic spin states (see Chapter 8).

2.2.7
Experiment: Polarization Qubits

A qubit can be conveniently encoded into the polarization of a single photon
wavepacket. This polarization encoding is referred to as a polarization qubit. It
corresponds to a specific manifestation of the dual-rail encoding introduced in the
preceding section. In this case, the two spatial modes that may be originally used
to obtain a dual-rail qubit are replaced by two orthogonal polarization modes.

Figure 2.8 shows the schematic for encoding and manipulating a polarization
qubit αjHi C �jVi � αj$i C �jli. An arbitrary qubit state can be represent-
ed on the Bloch sphere (see Figure 1.2) known as the Poincaré sphere in optics
(Figure 2.8b). A half-waveplate (λ/2) can be used to perform a Hadamard gate
(Figure 2.8c). Moreover, a polarization qubit can be converted into a spatial (path-
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Figure 2.8 Representing and manipulating a
polarization qubit encoded in a single photon
wavepacket [115]. (a) H and V denote hori-
zontal and vertical polarization, respectively.
(b) An arbitrary qubit state can be represented
on the Bloch sphere (known as the Poincaré
sphere in optics). Examples of diagonal (D),

anti-diagonal (A), right circular (R), and left
circular (L) polarization states are shown.
(c) A half-waveplate (λ/2) can be used to
perform a Hadamard transformation. (d) A
polarization qubit can be converted into a
spatial (path-encoded) qubit by means of a
polarization beam splitter (PBS).

encoded) qubit αj0, 1i C �j1, 0i (jupper photon number, lower photon numberi)
through a polarization beam splitter (PBS) (Figure 2.8d).

Typically, in the language of quantum information, H and V are chosen as the
computational basis, corresponding to the ˙1 eigenstates of the Pauli Z operator.
In this case, the other two bases on the equatorial circle which are superposition
states of H and V correspond to the ˙1 eigenstates of the Pauli X and Y opera-
tors. These are the one-qubit stabilizer states (Section 1.2) in polarization encod-
ing.

2.2.8
Photonic Qumodes

Apart from discrete photon numbers, an optical state may be described by its am-
plitude and phase. The corresponding quantum phase-space variables could be
considered the quantum analogues of classical, analog encoding. Such qumode
encoding, that is, CV quantum information encoded into optical modes, leads to
states which are rather sensitive to noise, but can be processed in an unconditional
fashion; even entangling gates can be accomplished through deterministic, linear
optics (see Chapter 3).

In the linear, CV Gaussian regime, the optical encoding into qumodes is achieved
either through approximate x/p -eigenstates (largely squeezed states), for which
projection measurements are well approximated by homodyne detections (see Sec-
tion 2.6); alternatively, the overcomplete and non-orthogonal set of coherent states
may serve as a basis for qumodes. Perfectly projecting onto this basis is only possi-
ble for sufficiently large amplitudes jαj, for which the coherent states become near-
orthogonal. Nonetheless, two coherent states can also be unambiguously discrimi-
nated in the regime of small amplitudes using a beam splitter, an ancilla coherent
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Figure 2.9 Optimal unambiguous state discrimination of
equally occurring, binary coherent states fj˙αig using a beam
splitter, an ancilla coherent state, and on/off detectors. The
inconclusive event here corresponds to the detection of the
two-mode vacuum e�α2 j00i for the two output modes with
probability e�2α2

(α 2 R). Another discussion related with this
measurement is presented in Section 2.5.2.

state, and on/off detectors (see Figure 2.9 and Section 2.5.2). This unambiguous
state discrimination (USD) is probabilistic, but, in principle, error free.

In the following two sections, we shall start establishing a connection between
properly normalized qumode stabilizer states, that is, the physical CV analogues of
the DV stabilizer states, and CV Gaussian pure states.

2.2.8.1 Stabilizer States
Consider a single qumode. In Section 1.2, we found that the stabilizers7) in
Eq. (1.50) represent an infinite set of rotated quadrature eigenstates obtained
by phase-rotating an unphysical momentum eigenstate, OR(θ )jp i. Now, we wish to
generalize the CV qumode stabilizer states to properly normalized, physical states.
It will turn out that the Gaussian pure states play this role, and hence for a sin-
gle qumode, the stabilizer must uniquely represent a displaced squeezed vacuum
state, jα, 
i D OD(α) OS(
 )j0i.8)

Let us start by introducing the stabilizer operator of the vacuum state of a single
qumode with mode operator Oa. We obtain

exp(α Oa)j0i D exp[α( Ox C i Op )]j0i D j0i . (2.80)

Note that, although the mode operator Oa is non-Hermitian and exp(α Oa) non-
unitary, the exponentiated Oa operator does behave like a stabilizer, uniquely rep-
resenting the vacuum state as the only eigenstate with +1 eigenvalue. From this,
we get the stabilizer for a single-mode squeezed vacuum state, with squeezing
parameter r > 0 for an x-squeezing operation OS (r) D exp[ir( Ox Op C Op Ox )], through
inverse Heisenberg evolution,

OS(r) exp[α( Ox C i Op )] OS†(r) D exp
h

α(eCr Ox C ie�r Op )
i

. (2.81)

In the case of momentum squeezing, with OS (�r), we have

OS(�r) exp[α( Ox C i Op )] OS†(�r) D exp
h

α(e�r Ox C ieCr Op )
i

. (2.82)

Let us rewrite this as9)

exp
��α2/4

�
X(�αeCr/2)Z [αe�r/(2i)]. (2.83)

7) For a definition and a discussion of stabilizers, see Section 1.9.
8) The standard formalism to describe Gaussian states will be introduced in the following section.
9) All of these expressions are convention-dependent; recall that our convention is „ D 1/2.
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Now, we define α � �2e�r s such that the momentum-squeezed stabilizer be-
comes

exp
��e�2r s2� X(s)Z

�
ie�2r s

�
. (2.84)

In the limit of infinite p-squeezing r ! 1, this operator approaches X(s), which
stabilizes the zero-eigenstate jp D 0i, X(s)jp D 0i D jp D 0i, 8s 2 R, as expected.

In order to represent not only squeezed states like OS (r)j0i, but also the rotated
states OS (
 )j0i, we use the rotated momentum-squeezed-vacuum stabilizer,

e�e�2r s2 OR(θ )X(s) OR†(θ ) OR(θ )Z
�
ie�2r s

� OR†(θ )

D e�e�2r s2(1�ie�2r cos θ sin θ )g
(θ )
pD0(s)Z

�
ie�2r s cos θ

�
X
�
ie�2r s sin θ

�
� g

(θ )
pD0(s, r) , (2.85)

which becomes the rotated-zero-momentum stabilizer in the limit r ! 1, with
g

(θ )
p (s) from Eq. (1.50) and Eq. (1.71). Finally, we only have to express a complex

phase-space displacement affected by OD(α) through stabilizers (which we implicit-
ly did already for defining the unphysical qumode stabilizer x and p eigenstates in
Section 1.2). While the stabilizer for a displaced vacuum state, OD(α)j0i, is simply

OD(α)e�s2
X(s)Z(is) OD†(α) D e�s2

e2sα X(s)Z(is) , (2.86)

using Eq. (2.84) with r D 0, we obtain the following general stabilizer for a single-
qumode Gaussian pure state,

OD(α)g(θ )
pD0(s, r) OD†(α)

D eC2s cos θ(e�2r xαCipα)�2is sin θ(xαCie�2r pα)g
(θ )
pD0(s, r) , (2.87)

using Eq. (2.85). This is the stabilizer for an arbitrary displaced squeezed vacuum
state, OD(α) OS(
 )j0i, depending on four real parameters, xα , pα , r, and θ , with α D
xα C ipα. In Section 3.2, we shall utilize stabilizers for Gaussian multi-mode pure
states in order to define and represent multipartite entangled qumode cluster and
graph states.

2.2.8.2 Gaussian States
Consider the Wigner function of a displaced position-squeezed vacuum state for a
single qumode in Eq. (2.59). It may be rewritten in the following way,

W(x , p ) D 2
π

exp
	
� 1

2
(x � xα , p � pα)

�
4eC2r 0

0 4e�2r

��
x � xα

p � pα

�

,

(2.88)

or, using a more compact notation,

W( ) D 1

(2π)N
p

det V (N )
exp

�
� 1

2
( � 0)

�
V (N )��1

( � 0)T
�

, (2.89)
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with N D 1, the 2-dimensional vectors  D (x , p ), 0 D (xα , pα), and the 2 � 2
matrix

V (1) D 1
4

�
e�2r 0

0 eC2r

�
. (2.90)

This matrix contains the (co-)variances of the displaced position-squeezed vacuum
state, namely, h(∆ Ox )2i D h Ox2i � x2

α D e�2r/4, h(∆ Op )2i D h Op 2i � p 2
α D eC2r/4,

using Eq. (1.40), and h( Ox Op C Op Ox )i/2 � xα pα D 0.
More generally, Eq. (2.89) for N D 1, with a real, symmetric 2 � 2 covariance

matrix V (1), represents an arbitrary displaced squeezed thermal state and therefore
an arbitrary single-qumode Gaussian state. Such a state is determined through
five parameters; three for the displaced position-squeezed state, xα , pα, and r; an
extra phase rotation θ and a thermal excitation number (see below). Compared to
the stabilizer states presented in the preceding section, here, a general Gaussian
state for a single qumode can be pure or mixed.10) The Wigner function for a
general multi-mode Gaussian state is also expressed by Eq. (2.89), in this general
case with a 2N -dimensional vector  having the quadrature pairs of all N modes as
its components,

 D (x1, p1, x2, p2, . . . , xN , pN ) , O D ( Ox1, Op1, Ox2, Op2, . . . , OxN , OpN ) , (2.91)

and similarly for the first moments, 0 D (h Ox1i, h Op1i, h Ox2i, h Op2i, . . . , h OxN i, h OpNi). In
general, the covariance matrix is then given by V

(N )
i j D h( Oi

O j C O j
Oi )/2i�h Oiih O j i.

However, many important properties in the multi-mode case, such as entangle-
ment, are independent of the first moments, as these can always be locally adjusted
through phase-space displacements. We may therefore assume zero first moments
and define the 2N � 2N correlation matrix V (N ), having as its elements the second
moments symmetrized according to the Weyl correspondence in Eq. (2.71),

Tr
h

O�
�

∆ Oi ∆ O j C ∆ O j ∆ Oi

�
/2
i

D
D� Oi

O j C O j
Oi

�
/2
E

D
Z

W( )i  j d
2N  � V

(N )
i j , (2.92)

where ∆ Oi D Oi � h Oii D Oi for zero first moments. For (zero-mean) Gaussian
states of the form in Eq. (2.89), the Wigner function is completely determined
by the second-moment correlation matrix. In order to represent a physical state
(Gaussian or non-Gaussian), the correlation matrix must be real, symmetric, and
positive; in addition, it must be consistent with the commutation relation from
Eq. (1.39) [116, 117],

[ Ok , Ol ] D i

2
Λk l , k, l D 1, 2, 3, . . . , 2N . (2.93)

10) As discussed in Section 1.9, stabilizer states can be generalized in terms of stabilizer codes, which
gives an interesting recipe for extending the qumode stabilizer formalism from Gaussian pure to
Gaussian mixed states.
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Here, the 2N � 2N “symplectic matrix” Λ is block diagonal and contains the 2 � 2
matrix J as the diagonal entries for each quadrature pair,

Λ D
NM

kD1

J , J D
�

0 1
�1 0

�
. (2.94)

A direct consequence of this commutation relation and the non-negativity of the
density operator O� is then the following N-mode uncertainty relation,

V (N ) C i
4

Λ � 0 . (2.95)

This matrix equation means that the matrix sum on the left-hand side only has non-
negative eigenvalues. The N-mode uncertainty relation is a necessary condition on
any physical state. For Gaussian states, however, it is also a sufficient condition that
guarantees the positivity of O� [117]. In the simplest case of a single qumode, N D 1,
Eq. (2.95) is reduced to the statement h Ox2ih Op 2i�1/4h Ox Op C Op Oxi2 D det V (1) � 1/16,
which is a stronger version of the Heisenberg uncertainty relation in Eq. (1.43).11)

For any N, (2.95) becomes exactly the Heisenberg uncertainty relation of Eq. (1.43)
for each individual mode, if V (N ) is diagonal.

Gaussian states

one qumode: pure state is displaced squeezed vacuum state:

OD(α) OS(
 )j0i (2 parameters α, 
 2 C � 4 parameters xα , pα, r, θ 2 R)

pure state is stabilized by eC2s cos θ (e�2r xαCipα )�2is sin θ (xαCie�2r p α )g
(θ )
pD0(s, r)

mixed state is displaced squeezed thermal state:

1
1 C Nn

OD(α) OS(
 )
� Nn

1 C Nn
�Oa† Oa

OS†(
 ) OD†(α) (5 parameters xα , pα, r, θ , Nn)

N qumodes: zero-mean Gaussian-state Wigner function:

W( ) D 1

(2π)N
p

det V (N )
exp

�
� 1

2

�
V (N )��1

 T
�

real, symmetric, positive correlation matrix:

V
(N )
i j D

D� Oi
O j C O j

Oi

�ı
2
E

D
Z

W( )i  j d
2N  , V (N ) C i

4
Λ � 0

Λ D
NM

kD1

J , J D
�

0 1
�1 0

�
,
h Ok , Ol

i
D i

2
Λk l , k, l D 1, 2, 3, . . . , 2N

11) That is, det V (1) � 1/16 implies h Ox2ih Op2i � 1/16, but the converse is not generally true.
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N real, positive, symplectic eigenvalues:

ˇ̌
eigenvalues of iΛV (N )

ˇ̌
uncertainty relation:

νk � 1
4

, 8k D 1, 2, . . . , N , V (N ) C i
4

Λ � 0

pure states:

νk D 1
4

, 8k D 1, 2, . . . , N

mixed states:

9k 2 f1, 2, . . . , Ng such that νk >
1
4

We should also mention here that there is an equivalent representation of the
uncertainty relation in Eq. (2.95) using the so-called symplectic eigenvalues. There
are N real, positive, symplectic eigenvalues and these are obtained for any N-mode
Gaussian state through Williamson diagonalization [118] of its correlation matrix
into normal modes,

V (N ) D ST NV (N )S , (2.96)

where the matrix S 2 Sp(2N, R) describes a global symplectic transformation.12)

The resulting diagonal matrix NV (N ) contains the N symplectic eigenvalues νk ,

NV (N ) D
NM

kD1

�
νk 0
0 νk

�
. (2.97)

The uncertainty relation in Eq. (2.95) can then be recast as (S�1)TV (N )S�1 C
i/4(S�1)TΛS�1 D NV (N ) C i/4Λ � 0, which corresponds to

νk � 1
4

, 8k D 1, 2, . . . , N . (2.98)

The effect of the Williamson diagonalization is that any correlations between the
quadratures and between the modes are eliminated such that the resulting corre-
lation matrix represents an N-mode product state with every qumode in a thermal
state,

NV (N ) D
NM

kD1

V
(1)
k , V

(1)
k D 1

4

�
1 C 2 Nnk 0

0 1 C 2 Nnk

�
. (2.99)

12) The linear, symplectic transformations S on the 2N -dimensional phase space form the symplectic
group Sp(2N, R), where ST ΛS D Λ and hence det S D 1, 8S 2 Sp(2N, R). The symplectic
transformations correspond to the Gaussian unitaries up to displacements (see Section 2.4).
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The parameters Nnk D (4νk � 1)/2 are the mean thermal excitation numbers for
every one of the N qumodes after diagonalization. The corresponding density op-
erator is a tensor product state of thermal states for qumode k,13)

O�k D 2
4νk C 1

1X
nD0

�
4νk � 1
4νk C 1

�n

jnihnj D 1
1 C Nnk

1X
nD0

� Nnk

1 C Nnk

�n

jnihnj.

(2.100)

As a result, the symplectic eigenvalues contain the entire information about the
physicality, purity, and mixedness of the N-mode Gaussian state. Any physical state
must satisfy Eq. (2.98). The structure and the size of the thermal noise that makes
the state a mixed state is determined by the number of symplectic eigenvalues with
νk > 1/4 and by the extent to which the minimum-uncertainty vacuum bound
νk D 1/4 is exceeded, respectively.14)

Compared to the position-squeezed vacuum state in Eq. (2.90), the position-
squeezed thermal state for a single qumode has the following correlation matrix,

V (1) D 1
4

�
e�2r (1 C 2 Nn) 0

0 eC2r(1 C 2 Nn)

�
. (2.101)

Compared with the mean photon number as given in Eq. (2.60), we obtain for the
displaced squeezed thermal state,

h Oni D h Ox2i C h Op 2i � 1
2

D jαj2 C sinh2 r C Nn cosh 2r , (2.102)

using Eq. (2.37). This is the mean photon number for an arbitrary single-qumode
Gaussian state. It depends on three parameters: the size of the coherent amplitude
jαj, the amount of squeezing r, and the mean thermal number Nn. This photon
number is independent of the phases in α and 
 for a general displaced squeezed
thermal state. Further, the purity for an N-mode Gaussian state depends on15)

Tr O�2 D 1/4N

p
det V (N )

D 1/4NQN
kD1 νk

, (2.103)

13) Where the mean excitation numbers can be
associated with a temperature according to
Nn D 1/(e� � 1) with the usual parameter
� D „ω

kB T
. Note that, while the uncertainty

relation bound and the symplectic
eigenvalues are convention-dependent (in
our case with „ D 1/2), the mean thermal
number, of course, is not.

14) One may define the number of symplectic
eigenvalues different from 1/4, i.e., the
number of non-vacuum normal modes as
the symplectic rank [119], in analogy to the
standard rank R of a finite-dimensional
density operator corresponding to the
number of its nonzero eigenvalues.
For example, a d-dimensional state has

R D 1 when it is pure and R D d

when it corresponds to an incoherent
mixture with d terms. However, a full rank
R D d-state, though having a complex
noise structure, may still have low noise
with most eigenvalues almost vanishing.
In the Gaussian case, a pure state has zero
symplectic rank, whereas a mixed state
has a noise structure given by a symplectic
rank between one and N, and a size of the
noises given by the respective values of the
symplectic eigenvalues between 1/4 and
infinity.

15) Which can be derived using Tr O�2 D
πN

R
d2N  W 2( ) for Gaussian Wigner

functions W( ) from Eq. (2.89).
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according to Eq. (1.21). A pure state has det V (N ) D 1/16N , for instance, det V (1) D
1/16 for one qumode, which is the minimal bound of the one-mode uncertainty
relation, as mentioned before.

Finally, let us mention that there is an easy way to compute the symplectic eigen-
values directly from the correlation matrix. First, one has to calculate the ordinary
eigenvalues of the Hermitian matrix iΛV (N ). The modulus of each of the resulting
2N real eigenvalues then gives the N real and positive values νk , k D 1, 2, . . . , N .

In this section, we defined multi-mode Gaussian states using Wigner functions
and correlation matrices. A general Gaussian state of a single qumode is a displaced
squeezed thermal state; a Gaussian pure state of a single qumode is a displaced
squeezed vacuum state as well as a physical, properly normalized qumode stabiliz-
er state. Physical stabilizer states for many qumodes, corresponding to (entangled)
multi-mode Gaussian pure states, will be discussed in Section 3.2.

2.2.9
Experiment: Broadband Qumodes

In quantum optical CV experiments, we have to define the qumodes as some physi-
cal modes of light, for example, temporal, frequency, spatial, or polarization modes.
In any case, they will represent wavepackets of the electromagnetic field with vari-
ous time duration. One extreme is infinite time duration as shown in Figure 2.10a –
a continuous wave or a frequency single mode. Usually, a frequency single mode is
realized as a sideband of the fundamental carrier light. In this case, each sideband
corresponds to a qumode. Two sidebands i, j have no overlap in frequency domain
and satisfy the commutators [ Oai , Oa†

j ] D δ i j and [ Oai , Oa j ] D 0. Another extreme is
very short time duration as shown in Figure 2.10b – pulsed light. In this case, each
pulse corresponds to a qumode. Two pulses i, j do not have any overlap and would
then also satisfy the commutators [ Oai , Oa†

j ] D δ i j and [ Oai , Oa j ] D 0.
However, the mode operators for pulsed light represent temporal modes at times

ti of which each mode contains a finite bandwidth of frequency modes, Oati
DR

dωg(ω) Oaω , with some spectral function g(ω) that is almost flat in this limit. The
other limit of a frequency single mode is then approached for g(ω) ! δ(ω i). In
the experiment, the realistic situation will be between these two extremes.

As mentioned above, a frequency sideband of a carrier light beam is often used
for a frequency single mode. The bandwidth ∆ f is usually very narrow compared
to the sideband frequency f (∆ f � f ). So the wavepacket of the qumode has
time duration of 1/∆ f which is extremely long, and thus the spatial size of the
wavepacket is very long (c/∆ f , c: speed of light). From this point of view, the
wavepacket exhibits wave nature. For example, in the case of f D 1 MHz and
∆ f D 1 kHz, the time duration is 1 ms and the spatial length is 300 km! This
is a very long wave! However, this frequency mode may even contain only a single
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Figure 2.10 Two extremes of wavepackets, (a) a frequency single mode and (b) pulsed light.
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Figure 2.11 A temporal mode i with the temporal function of exp(�γ jt � ti j) can be extracted
from broadband continuous-wave light and defined as a qumode when the continuous light is
very weak.

photon – usually associated with a particle – which then corresponds to a 300 km
long single photon.16)

Nonetheless, pulsed light shows particle nature of the wavepacket which is intu-
itively understandable. However, in the real situation, this is not always the case.
Pulsed light or, more precisely, a pulsed qumode can be defined even in terms of
broadband (frequency-multimode) continuous-wave light. For example, a temporal
mode i with the temporal function of exp(�γ jt � ti j) can be extracted from broad-
band continuous-wave light and defined as a qumode, as shown in Figure 2.11,
when the continuous light is very weak (see Section 8.2).

16) Recall the discussion at the beginning of this chapter, where the occupation number of a qumode,
i.e., its photon number, and hence the photons themselves are a mathematical construct (to
represent the energy levels of a qumode) rather than a physical entity.
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Figure 2.12 Optical interactions and transformations in terms of the annihilation and creation
operators representing a discrete set of qumodes for the optical field.

2.3
Quantum Optical Unitaries

We shall now turn to unitary, linear and nonlinear optical manipulations of quan-
tum optical states. The discussion in this section is a continuation of the more ab-
stract introduction to unitaries and quantum computation in Sections 1.3 and 1.8,
though here, it is applied to optical systems.

In Figure 2.12, a table is shown summarizing possible optical interactions and
transformations for state preparation and manipulation. The most accessible and
practical interactions are those described by linear and quadratic Hamiltonians,
where as before, quadratic refers to the order of a polynomial of the qumode oper-
ators Oak .

In Section 2.2.8.2, we learned that an arbitrary single-qumode Gaussian pure
state is a displaced squeezed vacuum state, OD(α) OS(
 )j0i. Similarly, an arbitrary
single-qumode Gaussian unitary that transforms a Gaussian state into a Gaussian
state is given by Eq. (1.126), supplemented by a complex phase-space displacement
OD(α). When Eq. (1.126) is applied upon a single-mode vacuum state, the first phase

rotation OR(φ0) has no effect. The remaining position-squeezing OS (r) can be com-
bined with the second phase rotation OR(φ) into the general, complex squeezing
operation OS(
 ). Therefore, an arbitrary, single-qumode Gaussian pure state is ob-
tained through an arbitrary single-qumode Gaussian unitary acting on the vacuum
state. However, a single-qumode Gaussian unitary may as well act upon an arbi-
trary single-qumode state. In this case, the exact decomposition from Eq. (1.126)
should be used, including the first phase rotation OR(φ0), together with OD(α).

We will shortly see that the decomposition of Eq. (1.126) corresponds to the
single-qumode case of a more general decomposition for any multi-qumode Gaus-
sian unitary. These unitary multi-mode transformations are linear and generated
from quadratic Hamiltonians. An arbitrary quadratic Hamiltonian then transforms
the optical mode operators as

Oa0
k D

X
l

A k l Oal C Bk l Oa†
l C γk . (2.104)
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Here, the matrices A and B satisfy the conditions ABT D (ABT)T and AA† D
B B† C 1 according to the bosonic commutation relations. This transformation is
also referred to as the linear unitary Bogoliubov (LUBO) transformation [120]. It
combines passive (photon-number preserving) and active elements, that is, beam

splitters and squeezers, respectively; the γk ’s in Eq. (2.104) describe the phase-space
displacements.

As an example, for a single-mode position squeezer, we have Oa0 D Oa cosh r �
Oa† sinh r such that the x-quadrature would become Ox 0 D e�r Ox , and the p-
quadrature Op 0 D eCr Op , similar to Eqs. (2.53) and (2.56).

By comparing the LUBO transformation to a purely passive, linear transforma-
tion,

Oa0
k D

X
l

Uk l Oal , (2.105)

with an arbitrary unitary matrix U, we observe that there is no mixing between
the annihilation and creation operators in the passive transformation. Despite this
difference, also the active, more general LUBO transformation is only linear in
the mode operators. Therefore, general linear optical transformations are referred
to here as LUBO transformations, including squeezers. As squeezing, however,
typically involves a nonlinear optical interaction (see Section 2.2.4), it may as well be
excluded from the “linear-optics” toolbox (see Figure 2.12). Our more mathematical
than physical definition of linear optical transformations is motivated by the special
character of the Clifford and symplectic transformations (see Section 1.8 and next
section) with regard to quantum information processing.

As an example for Eq. (2.105), consider a general two-mode beam splitter trans-
formation in the Heisenberg picture,

( Oa0
1 Oa0

2)T D U(2)( Oa1 Oa2)T , (2.106)

with a unitary matrix

U(2) D
�

e�i(φCδ) sin θ e�iδ cos θ
e�i(φCδ0) cos θ �e�iδ0

sin θ

�
. (2.107)

An ideal phase-free beam splitter operation is then simply given by the linear trans-
formation� Oa0

1
Oa0

2

�
D
�

sin θ cos θ
cos θ � sin θ

�� Oa1

Oa2

�
, (2.108)

with the transmittance and reflectivity parameters sin θ and cos θ . Thus, the gen-
eral unitary matrix U(2) corresponds to two phase shifts and one phase-free beam
splitter,

U(2) D
�

e�iδ 0
0 e�iδ0

��
sin θ cos θ
cos θ � sin θ

��
e�iφ 0

0 1

�
. (2.109)
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The link between elementary quantum optical devices such as phase shifters, beam
splitters, and single-mode squeezers on one side and an arbitrary LUBO transfor-
mation as in Eq. (2.104) on the other side is provided through two important re-
sults:

� any active, multi-mode LUBO transformation as in Eq. (2.104) can be decom-
posed into a three-step circuit consisting of a passive, linear optical multi-mode
transformation as in Eq. (2.105), single-mode squeezers, and another passive,
linear optical multi-mode transformation [89], and

� any passive, linear optical multi-mode transformation described by an arbitrary
unitary matrix as in Eq. (2.105) can be realized through a sequence of two-mode
beam splitters and single-mode phase shifters [121].

The former result is on the so-called Bloch–Messiah reduction. It can be derived
through singular value decomposition with A D U A DV † and B D U BDV T, a
unitary matrix U that simultaneously diagonalizes the two commuting Hermitian
operators AA† and B B† such that U†(AA†)U D A2

D and U†(B B†)U D B2
D, a

unitary matrix V that simultaneously diagonalizes the two commuting Hermitian
operators A†A and (B†B)T such that V †(A†A)V D A2

D and V †(B†B)TV D B2
D,

and non-negative, real, diagonal matrices A D and BD, A2
D D B2

D C 1 [89]. Then,
Eq. (2.104) becomes (γk � 0)

Oa0
k D

X
l

A k l Oal C Bk l Oa†
l

D
X
l, j

h
Uk j (A D) j j (V †) j l Oal C Uk j (BD) j j (V T) j l Oa†

l

i

D
X

j

Uk j

h
(A D) j j

Ob j C (BD) j j
Ob†

j

i
D
X

j

Uk j Oc j . (2.110)

Here, Ob j D P
l (V

†) j l Oal are the mode operators after the first passive transforma-
tion according to Eq. (2.105) and Oc j D (A D) j j

Ob j C (BD) j j
Ob†

j are the squeezed
mode operators after the N single-mode squeezing transformations on every out-
put mode j of the first circuit. The final step is another passive transformation, this
time with matrix U.

The above two results together imply that any multi-mode LUBO transformation,
that is, any linear multi-mode transformation as in Eq. (2.104), can be implemented
with single-mode phase shifters, single-mode squeezers, and two-mode beam split-
ters. The displacements in Eq. (2.104) (the γk ’s) can be also realized using highly
reflective beam splitters. An example for a three-mode LUBO transformation is
shown in Figure 2.13.

The decomposability of the passive parts in the LUBO transformation follows
from the fact that any N � N unitary matrix may be expressed as [121],

U(N ) D (BN�1N BN�2N � � � B1N

� BN�2N�1BN�3N�1 � � � B12D)�1 . (2.111)
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Figure 2.13 Bloch–Messiah reduction and
“tree structure” for a general three-mode
LUBO transformation (without phase-space
displacements). Bloch–Messiah leads to a de-
composition into three blocks: a middle-block
with three single-mode squeezers (parame-
terized by three real squeezing parameters
fr1, r2, r3g) and two passive linear-optics
blocks, one at the beginning and one at the
end of the circuit. The tree structure for each

passive block consists of three beam splitters
with one reflectivity parameter and one phase
per beam splitter. Three extra phases in each
passive block (omitted in the figure) give nine
parameters for each passive circuit and, to-
gether with the three squeezers, a total of 21
parameters for the entire LUBO circuit. Note
that this decomposition is independent of the
input state.
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Figure 2.14 Examples of single-mode states generated through highly nonlinear interactions.
Shown is the Q function Q(x , p ) for a Gaussian coherent state evolving into various non-
Gaussian states subject to a quartic self-Kerr interaction with OH / Oa† Oa( Oa† Oa � 1).

Here, the N(N � 1)/2 beam splitter operations each depend on two parameters,
the reflectivity/transmittance parameter and one phase, Bk l � Bk l(θk l , φk l). The
Bk l do not represent matrix elements, but N-dimensional identity matrices with
the entries Ik k , Ik l , Il k , and Il l replaced by

eiφk l sin θk l , eiφk l cos θk l , cos θk l , and � sin θk l , (2.112)

respectively. Extra phase shifts are included through the diagonal matrix D with
elements eiδ1 , eiδ2 , . . . , eiδN . For example, the unitary 2 � 2 matrix in Eq. (2.107)
corresponds to U(2) D (B12D)�1, with φ � φ12, θ � θ12, δ � δ1, and δ0 � δ2.

A general LUBO transformation on N qumodes is then parameterized by 2N 2

real parameters for the two passive networks and N real squeezing parameters,
apart from the phase-space displacements. When acting upon an N-mode vacuum
state, the first passive network has no effect, and hence N 2 C N parameters suffice
to represent any (zero-mean) N-mode Gaussian pure state.

As shown in Figure 2.12, going beyond the regime of linear resources and oper-
ations means to include cubic or higher-order interactions leading to nonlinear trans-

formations. Such a nonlinear interaction would normally map a Gaussian state on-
to a non-Gaussian state described by non-Gaussian Q and Wigner functions, see
Figure 2.14. These interactions are typically very weak; an example would be the
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extremely weak Kerr effect in an optical fiber. Therefore, for sufficiently long in-
teraction times, unwanted photon losses will normally dominate over the desired
nonlinear transformation.

In the following section on Gaussian unitaries in form of phase-space displace-
ments and symplectic transformations, we shall see that the transformation rules
for the Wigner function are particularly simple for Gaussian unitaries.

2.4
Gaussian Unitaries

In the preceding section, we showed that a multi-qumode LUBO transformation
is a linear transformation of the mode operators, as described by Eq. (2.104), de-
composable into phase-shift, beam-splitter, and squeezing transformations supple-
mented by phase-space displacements. Such Gaussian unitaries, omitting the local
shifts of the first quadrature moments, can be most conveniently expressed on
the level of the correlation matrices. In this case, they correspond to the symplectic

transformations,

V (N ) �! V (N )0 D S V (N )ST , (2.113)

with the 2N�2N real matrices S 2 Sp(2N, R). For unitarity and in order to preserve
the commutators, we have the condition S ΛST D Λ, as

h O 0
k , O 0

l

i
D
2
4X

i

Sk i
Oi ,
X

j

Sl j
O j

3
5 D

X
i, j

Sk i Sl j

h Oi , O j

i

D
X
i, j

Sk i Sl j

i
2

Λ i j D i
2

�
S ΛST�

k l
D i

2
Λk l , (2.114)

using the linear transformation of the phase-space operators, O T0 D S O T with
O from Eq. (2.91). Similar to the LUBO transformations, the symplectic transfor-
mations depend on 2N 2 C N real parameters. Those transformations which are
both symplectic, O ΛOT D Λ, and orthogonal, O OT D 1, belong to the class of
passive transformations,17) as described by Eq. (2.105) in terms of the evolution
of the mode operator. Recall that these transformations, realizable through beam
splitters and phase shifters alone, are photon-number preserving, leaving TrV (N )

invariant.
Important examples of symplectic transformations are the passive 50/50 two-

qumode beam splitter,

OBS D 1p
2

0
BB@

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

1
CCA , (2.115)

17) They form a compact subgroup of Sp(2N, R) with elements O 2 Sp(2N, R) \ O(2N ).
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and the active single-qumode x and p squeezers,

SXSQ D
�

e�r 0
0 eCr

�
, SPSQ D

�
eCr 0

0 e�r

�
, (2.116)

respectively. Similar to the Bloch–Messiah reduction of arbitrary LUBO transfor-
mations, as derived in Eq. (2.110), an arbitrary S 2 Sp(2N, R) can be decomposed
as

S D O

NM
kD1

�
e�rk 0

0 eCrk

�
O 0 , (2.117)

with orthogonal N-mode transformations O, O 0 and single-mode position squeez-
ing rk for every qumode. This is sometimes referred to as Euler decomposi-

tion of symplectic transformations. Next, we shall now turn to quantum optical
non-unitaries, that is, channels and measurements in the quantum optical set-
ting.

2.5
Quantum Optical Non-unitaries

We are now in a position to apply the general irreversible quantum operations as
introduced in Section 1.4 to quantum optical systems. We shall first consider CPTP
maps, that is, quantum optical channels, and then quantum optical measurements
(CPTD maps). Finally, we will discuss the important Gaussian channels and mea-
surements.

2.5.1
Channels

Consider again the scenario illustrated in Figure 1.5. The signal and ancilla systems
are now supposed to be represented by some quantum optical states, and the global
unitary OUAB will be a certain optical interaction generated by some Hamiltonian
polynomial of the qumode operators. The trace over the ancilla then gives the signal
state subject to the corresponding reduced dynamics.

For example, a one-photon signal state j1iA D Oa†
Aj0iA would partially leak into

a vacuum ancilla mode ( O�B D j0iBh0j) through a beam splitter unitary, Oa†
Aj0iA ˝

j0iB ! p
ηj10iAB C p

1 � ηj01iAB, using the definitions cos2 θ � η and sin2 θ �
1 � η, similar to Eq. (2.108). Tracing over the ancilla mode leads to the final signal
state ηj1iAh1jC(1� η)j0iAh0j. This simple model describes, for instance, the trans-
mission of a single photon through a lossy channel with transmission parameter
η D exp(�L/Latt) and the channel attenuation length Latt.

A general photonic single-rail qubit together with a vacuum ancilla, (α C
� Oa†

A)j0iA ˝ j0iB, is transformed into αj00iAB C �
p

ηj10iAB C �
p

1 � ηj01iAB.
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This can be recast in terms of Kraus operators as

O�A ! O�0
A D

1X
kD0

OA k O�A OA†
k

D OA 0

� jαj2 α��

α�� j�j2
�

OA†
0 C OA 1

� jαj2 α��

α�� j�j2
�

OA†
1

D
� jαj2 p

1 � γ α��

p
1 � γ α�� (1 � γ )j�j2

�
C
�

γ j�j2 0
0 0

�

D �
αj0iA C �

p
ηj1iA

� �
α�

Ah0j C ��p
ηAh1j�

C j�j2(1 � η)j0iAh0j , (2.118)

with

OA 0 D
�

1 0
0

p
1 � γ

�
, OA 1 D

�
0

p
γ

0 0

�
, (2.119)

using OA k � Bhkj OUABj0iB in the Fock basis, γ � sin2 θ D 1 � η, and the beam

splitter unitary OUAB D eθ (Oa
†
A OaB�OaA Oa

†
B). The amplitude of the one-photon component

is always attenuated and as the photon can be absorbed by the ancilla, we obtain
for the signal output state an incoherent mixture of the attenuated input state and
a vacuum noise term.

Consider now for the signal system a single qumode in an initial coherent state
jαiA. Importantly, as the only optical state, the coherent state remains a pure
coherent state after the action of the generalized amplitude damping channel,P1

kD0
OA k O�A OA†

k
, with Kraus operators

OA k D
1X

nDk

vuut 
n

k

!q
ηn�k (1 � η)k jn � kihnj , (2.120)

for which we obtain

OA kjαiA D αk

p
k!

p
1 � η

k
e�(1�η)jαj2/2jpηαiA , (2.121)

using Eq. (2.43). Eventually, we have

1X
kD0

OA k jαiAhαj OA†
k

D jpηαiAhpηαj . (2.122)

This is the expected result according to the beam splitter transformation jαiA ˝
j0iB ! jpηαiA ˝ jp1 � ηαiB, corresponding to the signal map jαiA ! jpηαiA.
Although the coherent state remains pure, its amplitude gets attenuated exponen-
tially with η D exp(�L/Latt) in the case of a channel transmission.

The lossy beam splitter channel discussed so far, describing the effect of photon
losses in a very simple way, is certainly the most important imperfection in optical
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quantum information processing. As it corresponds to a quadratic interaction (the
beam splitter) together with a Gaussian ancilla state (the vacuum, or, more general-
ly, any Gaussian ancilla state), it will always map Gaussian signal states to Gaussian
signal states – it is a Gaussian channel (see Section 2.6).

In the Heisenberg picture, the reduced dynamics may be calculated using the
dual, CPUP map, as introduced in Section 1.4.1 in Eq. (1.76), with the Kraus op-
erators depending on the global unitary and the initial ancilla state. For the above
example of the beam splitter model, we obtain

E�( OaA) D
X

k

OA†
k OaA OA k D

X
k

Bh0j OU†
ABjkiB OaABhkj OUABj0iB

D Bh0j OU†
AB OaA OUABj0iB D Bh0j

�p
η OaA Cp

1 � η OaB

�
j0iB

D p
η OaA , (2.123)

using OaBj0iB D 0. Note that now [E�( OaA), E�( Oa†
A)] D η, indicating the non-unitarity

of the evolution. The reduced dynamics here, corresponding to a Gaussian chan-
nel, map the generators Ox and Op , and linear combinations of them such as Oa, into
another linear combination of Ox and Op . In Section 2.6, we will see how to recast
this using the covariance formalism. Channels with global unitaries generated by
Hamiltonians with an order higher than quadratic or those with non-Gaussian an-
cilla states will, in general, lead to nonlinear evolution equations.

2.5.2
Measurements

Now, for the case of CPTD maps in form of photon measurements on optical states,
we shall again first consider a photonic qubit (qudit) and later a photonic qumode.
The photon measurements will either project onto the Fock basis jnihnj (using
photon-number resolving detectors) or, more realistically, they will only discrim-
inate between the vacuum and the non-vacuum state which is described by the
binary POVM OE1 D j0ih0j and OE2 D 1 � j0ih0j.

Let us consider the very general case of all those POVMs where the signal states
only contain one photon. In this case, any unitary operation (gate) can be accom-
plished with linear optics [121]. This statement applies to arbitrary qudit states
where each basis vector of the qudit is described by one photon occupying one
of d modes, Oa†

i j0i, i D 1 . . . d (so-called “multiple-rail encoding”). It can be under-
stood by looking at the corresponding Naimark extension of the POVM introduced
in Section 1.4.2. The POVM is then described by a von Neumann measurement
onto the orthogonal set

jwµi D ju µi C jNµi , (2.124)

in a Hilbert space larger than the original signal space.
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In the multiple-rail encoding, this leads to an orthogonal set of vectors

jwµi D
NX

j D1

Uµ j Oa†
j j0i , (2.125)

with a unitary N � N matrix U having elements Uµ j . The application of a linear-
optics transformation V to this set (in order to project onto it) can be written as

jwµi �! jw 0
µi D

NX
j,kD1

Uµ j V �
k j Oa†

k
j0i D

NX
kD1

δµk Oa†
k
j0i D Oa†

µj0i , (2.126)

choosing V � U . As a result, when detecting the outgoing state, for every one-
photon click in mode µ, one can unambiguously identify the input state jwµi.

As an example, the linear-optics implementation of the POVM for the optimal
USD of the non-orthogonal states in Eq. (1.87), using one-photon signal states and
multiple-rail encoding, jN0i � j100i, jN1i � j010i, jN2i � j001i, can be directly ob-
tained. In this case, the output states after the linear-optics circuit, j100i, j010i, and
j001i, uniquely refer to one of the three orthogonal states jwµi, and hence identify
the signal states j	Ci and j	�i with the best possible probability.

For states other than one-photon states, it is generally not obvious whether a
given POVM can be implemented with linear optics. There are important examples
for which the exact POVM cannot be implemented by linear optics such as the Bell
measurement on two dual-rail encoded photonic qubits [122].

Now, considering a single qumode, remarkably, there is also a very simple linear
optical scheme for the USD of two arbitrary coherent states such as fj˙αig (see Fig-
ure 2.9 at the beginning of Section 2.2.8) that achieves the quantum mechanically
optimal USD for two pure non-orthogonal states fjψ1i, jψ2ig [123]. In this case, the
success probability for a conclusive result equals 1 � jhψ1jψ2ij D 1 � jhαj � αij D
1 � exp(�2α2) (assuming α real) [30–32]. The detectors only have to discriminate
between the vacuum and non-vacuum components at the output ports of the beam
splitter, where the two possible states are either jp2α, 0i or j0, �p

2αi, and only the
term j0, 0i is ambiguous. This scheme can also be formulated using the Naimark
extension, however, in this case, the signal and Naimark vectors must be expressed
in terms of more complicated superpositions of coherent states (see Chapter 8).

2.6
Gaussian Non-unitaries

Gaussian channels (Gaussian CPTP maps) may be most conveniently expressed
in terms of covariance (correlation) matrices. One can show that a general multi-
qumode Gaussian channel acts on the level of the covariance matrices as [124]

V (N )0 D F V (N )F T C G , (2.127)
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where for the channel to be physical, the 2N � 2N matrices F and G must satisfy
the condition

16 det G � (det F � 1)2 . (2.128)

The special case of reversible, unitary, symplectic transformations is again obtained
when G D 0 (the zero matrix) and F D S 2 Sp(2N, R) with det S D 1.

Let us again consider the effect of a lossy channel, as described by the beam split-
ter model in Section 2.5.1. Since the signal mode operator transforms as OaA !p

η OaA C p
1 � η OaB through the beam splitter and, similarly, OxA ! p

η OxA Cp
1 � η OxB and OpA ! p

η OpA C p
1 � η OpB, we obtain

V
(1)

A ! V
(1)0

A D ηV
(1)

A C (1 � η)
1
4

1

D
�p

η 0
0

p
η

�
V

(1)
A

�p
η 0

0
p

η

�
C (1 � η)

1
4

1 , (2.129)

assuming that the ancilla mode started in the vacuum state. Note that, in gener-
al, the excess noise matrix G depends on the initial ancilla state. We can read off
the F and G matrices and obtain det G D (1 � η)2/16 and det F D η, such that
16 det G D (1 � η)2 D (det F � 1)2. We finally note that in the covariance formal-
ism, the reduced dynamics are expressed simply by the corresponding signal sub-
matrix of the globally transformed signal-ancilla covariance matrix after discarding
the ancilla submatrix. The signal submatrix is a valid covariance matrix since the
global transformation such as, for instance, OxA ! p

η OxA C p
1 � η OxB, is unitary

and hence preserves the commutators. This is different from the non-unitary, dual
map OxA ! E�( OxA) D p

η OxA.
Let us now briefly discuss the important linear, Gaussian measurements which

are well approximated by means of so-called homodyne detectors. In this case, in-
stead of the discrete photon numbers, the rotated quadrature observables are mea-
sured. A photodetector measuring an electromagnetic mode converts the photons
into electrons and hence into an electric current called the “photocurrent” Oi. We
may then assume Oi / On D Oa† Oa or Oi D q Oa† Oa with q a constant. In order to detect
a quadrature of the mode Oa, the mode must be combined with an intense “local
oscillator” at a 50/50 beam splitter. The local oscillator is assumed to be in a co-
herent state with large photon number, jαLOi. It is therefore reasonable to describe
this oscillator by a classical complex amplitude αLO rather than by an annihila-
tion operator OaLO. The two output modes of the beam splitter, ( OaLO C Oa)/

p
2 and

( OaLO � Oa)/
p

2, may then be approximated by

Oa1 D (αLO C Oa)/
p

2 , Oa2 D (αLO � Oa)/
p

2 . (2.130)

This yields the photocurrents

Oi1 D q Oa†
1 Oa1 D q

�
α�

LO C Oa†� (αLO C Oa)/2 ,

Oi2 D q Oa†
2 Oa2 D q

�
α�

LO � Oa†� (αLO � Oa)/2 . (2.131)
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The actual quantity to be measured is the difference photocurrent

δOi � Oi1 � Oi2 D q
�
α�

LO Oa C αLO Oa†� . (2.132)

By introducing the phase Θ of the local oscillator, αLO D jαLOj exp(iΘ ), we can see
that any quadrature Ox (Θ ) from Eq. (2.35) can be measured when the local oscilla-
tor’s phase Θ 2 [0, π] is adjusted accordingly. A possible way to realize quantum
tomography [113] by reconstructing the Wigner function relies on this measure-
ment.

Gaussian operations

Gaussian channels:

V (N )0 D F V (N )FT C G , 16 det G � (det F � 1)2

Gaussian unitaries:

LUBO transformation: Oa0
k D

X
l

A k l Oal C Bk l Oa†
l (Cγk )

Bloch–Messiah reduction:

A D U A DV † , B D U BDV T , U†U D 1 , V †V D 1

Oa0
k D

X
l, j

h
Uk j (A D) j j (V †) j l Oal C Uk j (BD) j j (V T) j l Oa†

l

i
(Cγk )

passive linear transformation:

A ! U , U†U D 1 , B ! 0 W
Oa0

k D
X

l

Uk l Oal

symplectic transformation:

F ! S , G ! 0 W
V (N )0 D S V (N )ST , S ΛST D Λ , det S D 1 , 8S 2 Sp(2N, R)

Euler decomposition:

S D O

 
NM

kD1

SXSQ

!
O 0

passive, orthogonal, symplectic transformation:

O ΛOT D Λ , O OT D 1
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2.7
Linear Optics: Possibilities and Impossibilities

CV Gaussian resources can be unconditionally prepared in the laboratory and
Gaussian operations are deterministic and experimentally efficient. Nonetheless,
there are various, highly advanced tasks in quantum information which would
require a non-Gaussian element:

� quantum error detection and correction for qumodes are impossible in the
Gaussian regime [93, 125–127],

� universal quantum computation on qumodes and quantum computational
speed-up through it are impossible in the Gaussian regime [86, 90].

The former of these two important results can be understood by realizing that
Gaussian channels (e.g., the lossy channel described in the preceding sections)
typically lack the stochastic nature of those channels for which the standard quan-
tum error correction codes are designed (recall Section 1.9). Amplitude damping
is an error that will occur in every optical transmission line of an encoded state. In
this case, although for photonic qubits, stabilizer codes help, for photonic qumodes
encoded into Gaussian states, the CV stabilizer codes have no effect.18) The latter
result above is related with the Gottesmann–Knill theorem for CV qumode sys-
tems. It fully applies to physical, Gaussian stabilizer states (see Sections 1.8, 2.2.8.1,
and 3.2.2) and their manipulation through Gaussian operations.

The necessary non-Gaussian element may be provided in form of a DV measure-
ment such as photon counting. There are also a few simpler tasks which can be
performed better with some non-Gaussian element compared to a fully Gaussian
approach, for instance, quantum teleportation [128] or optimal cloning [129, 130]
of coherent states.

Similarly, in the DV regime, (efficient) universal quantum computation on pho-
tonic qubits would depend on some nonlinear element, either directly implement-
ed through nonlinear optics or induced by photon measurements (see next section
and Chapters 7 and 8). In addition, there are even supposedly simpler tasks which
are impossible, using only quadratic interactions (linear transformations) and stan-
dard DV measurements such as photon counting. The prime example for this is
a complete photonic Bell measurement (see Sections 1.5 and 1.6) on two photonic
dual-rail qubits [122, 131].

In contrast, in the CV regime, a photonic Bell measurement onto the CV Bell
basis of two qumodes as given by Eq. (1.95) is very simple: measuring the two
stabilizer eigenvalues u D Ox1 � Ox2 and v D Op1 C Op2 only requires a 50/50 beam
splitter and two homodyne detectors. Now, recall that any POVM is effectively a von
Neumann, projection measurement in a higher-dimensional Hilbert space (com-
pared to the signal space, see Section 1.4.2). The CV Bell measurement turns out

18) Nonetheless, in Chapter 5, an experiment will be described in which a nine-qumode stabilizer
code was realized; this code can still be useful for protecting a qumode against non-Gaussian
error channels different from the Gaussian amplitude-damping photon-loss channel.
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to be a two-qumode projection measurement that corresponds to a single-qumode
POVM, namely, OEα D (1/π)jαihαj with α D u C iv . This is also the POVM for the
optimal coherent-state estimation, equivalent to a so-called Arthurs–Kelly measure-
ment [132]. An Arthurs–Kelly measurement is effectively an attempt to simultane-
ously detect position and momentum; and optically this can be realized by splitting
the mode of interest at a 50/50 beam splitter and detecting the position at one out-
put and the momentum at the other output. The input mode of the “unused port”
of the beam splitter, playing the role of an ancilla, would (ideally) start in a vacu-
um state. The signal POVM OEα is then equivalent to the signal-ancilla projectors
jΨ (u, v )ihΨ (u, v )j with the CV Bell states of Eq. (1.95) [133].

It is worth pointing out that the above restrictions and no-go results apply even
when linear elements and photon detectors are available that operate with 100%
efficiency (i.e., every photon is counted) and 100% reliability (i.e., every photon is
counted correctly). In other words, the imposed constraints are of fundamental
nature and cannot be circumvented by improving the experimental performance
of the linear elements, for example, by further increasing the squeezing levels.

2.8
Optical Quantum Computation

A necessary criterion for a quantum computer to give a true advantage over classi-
cal computers is that its realization does not require exponential resources. In oth-
er words, the exponential “speed-up” quantum computation it is usually associated
with must not be at the expense of an exponential increase of physical resources
(see Section 1.8). The exponentially large dimension of the Hilbert space of N logi-
cal qubits, 2N , should be exploited with a number of physical resources scaling as
� N (or a polynomial of N) rather than � 2N .

Both for qubit and qumode computations, there is always at least one universal
gate of those gates discussed in Section 1.8 which is not realizable through linear
transformations alone. In single-photon single-rail encoding, even a single-qubit
Hadamard gate, transforming a Gaussian vacuum state into a non-Gaussian su-
perposition of vacuum and one-photon Fock state would be highly nonlinear. The
hardest part of universally processing dual-rail encoded qubits would be the en-
tangling gate which has to act upon at least two photons. Ultimately, the universal
processing of even a single qumode requires some form of nonlinearity.

The most obvious approach now to optically implement an entire set of universal
quantum gates would be directly through nonlinear interactions. The two-qubit CZ

gate from Section 1.8 is accomplished by applying a quartic cross-Kerr interaction
on two photonic occupation number qubits,

exp
�

iπ Oa†
1 Oa1 ˝ Oa†

2 Oa2

�
jki ˝ jli D (�1)k ljki ˝ jli . (2.133)

The same interaction leads to a CZ gate for two photonic dual-rail qubits, with the
cross-Kerr interaction acting on the second rail (mode) of each qubit such that only
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Figure 2.15 Implementing a controlled sign
gate (CZ ) on two single-rail qubits using
cross-Kerr (CK) or self-Kerr (SK) nonlineari-
ties. The first beam splitter (BS) transforms
the term j11i into (j20i � j02i)/

p
2, while

the other terms stay in the vacuum and one-
photon space. As the SK interactions affect
sign flips only for the two-photon compo-
nents, only the term j11i acquires a sign flip.

the term j01i ˝ j01i acquires a sign flip. This is the conceptually simplest and,
in theory, most efficient method to complete the set of universal gates in dual-rail
encoding. In the low-photon number subspace here, we may even decompose the
cross-Kerr two-mode unitary into a beam splitter, two self-Kerr one-mode unitaries,

exp
h
i
π
2

Oa†
1 Oa1

�
Oa†

1 Oa1 � 1
�i

˝ exp
h
i
π
2

Oa†
2 Oa2

�
Oa†

2 Oa2 � 1
�i

, (2.134)

and another beam splitter (see Figure 2.15). Thus, a sufficiently strong one-mode
self-Kerr interaction would be enough to fulfill the criteria for DV universality
on the finite-dimensional multi-qubit subspace of the infinite-dimensional, multi-
mode optical Fock space. At the same time, the quartic one-mode self-Kerr in-
teraction together with Gaussian, linear transformations (LUBO transformations)
would also be sufficient for the strong notion of full (asymptotically arbitrarily pre-
cise) CV universality, as expressed by Eq. (1.119).

The problem of this approach, however, is that an effective coupling strength of
� π for the self/cross-Kerr interactions is totally infeasible on the level of single
photons. Therefore, it is worth examining carefully if there is a way to implement
universal quantum gates through linear optical elements, ideally just using beam
splitters and phase shifters. A very early proposal for linear-optics-based quantum

computation indeed does work with only linear elements [134]. It is based upon
multiple-rail encoding, as introduced earlier in the context of optical POVMs. The
multiple-rail scheme encodes a d-level system into a single photon and d optical
modes, with the basis states Oa†

k
j00 � � � 0i, k D 1, 2, . . . , d. Any unitary operator can

be realized in the space spanned by this basis as we only need

OU Oa†
k
j00 � � � 0i D

dX
lD1

Uk l Oa†
l
j00 � � � 0i , 8k D 1, 2, . . . , d . (2.135)

This linear transformation, as in Eq. (2.105), is easily achieved through a sequence
of beam splitters and phase shifters [121]. The realizability of any POVM is then
an obvious consequence of the implementability of any unitary operator on one-
photon states.

As a result, universal quantum computation is, in principle, possible using a
single photon and linear optics. This kind of realization would be clearly efficient
from an experimental point of view. In fact, implementing a universal two-qubit
gate in a d D 22 D 4-dimensional Hilbert space would only require the modest
set of resources of an optical “ququart”, in “quad-rail” encoding corresponding to
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a single photon and four optical modes. In fact, for small quantum applications,
by adding to the polarization of the photons (their spin angular momenta) extra
degrees of freedom such as orbital angular momenta, this kind of approach can be
useful [135].

Nonetheless, the drawback of the multiple-rail-based linear-optics quantum com-
puter [134] is its bad scaling. Even in theory, this type of quantum computer is
inefficient. Scaling it up to computations involving N qubits, we need 2N basis
states and hence 2N optical modes. All these modes have to be controlled and pro-
cessed in a linear optical circuit with an exponentially increasing number of optical
elements. For example, a 10-qubit circuit would only require 10 photons and 20
modes in dual-rail encoding, while it consumes 210 D 1024 modes (for just a sin-
gle photon), and at least as many optical elements in multiple-rail encoding.

More recently, there are now conceptually very different approaches to obtain the
necessary nonlinear elements. One such approach uses measurement-induced
nonlinearities and can be incorporated into quantum information protocols
through gate teleportation (see Chapter 6) or, ultimately, in the form of one-way
cluster computations (see Chapter 7). Another important and promising concept is
that of using weak nonlinear interactions which are experimentally accessible and
still, in principle, sufficient for universal quantum information processing (see
Chapter 8).





Part Two Fundamental Resources and Protocols
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3
Entanglement

Entanglement is an essential resource for quantum information processing. In
quantum optics, typically, nonlinear optical interactions such as parametric down
conversion (PDC) are employed to create photonic entangled states. In the para-
metric approximation, the signal-idler twin beam generation is described by a
quadratic Hamiltonian, which, according to our definition, corresponds to a linear
transformation.

Hence, linear transformations, though insufficient for universal quantum infor-
mation processing on qubits or qumodes, are enough to prepare entangled states of
light. Then, typically, the creation of photonic qubit entanglement relies upon some
heralding mechanism, that is, the entangled states can be prepared only condition-
ally. In contrast, the Gaussian entangled states of optical qumodes can emerge un-
conditionally from linear optical transformations. In this case, the PDC interaction
can be used to directly obtain entangled two-mode squeezed states. Alternatively,
individually squeezed qumodes may be entangled through beam splitter transfor-
mations.

From a theoretical point of view, it turns out that there is a link between the sta-
bilizers (Section 1.9) that uniquely determine an entangled state and the witnesses
(Section 1.5) that may be used to unambiguously verify the presence of entangle-
ment in that state. This link can be established both for qubits and qumodes.

In this chapter, we shall first focus on qubit entanglement (Section 3.1), includ-
ing an overview of various types of entanglement such as bipartite and multipar-
tite entanglement, and some explicit entanglement witnesses for qubit entangled
states (Section 3.1.1). Further, we will define qubit cluster states and qubit graph
states as a rather general notion of multi-party entanglement (Section 3.1.2). In
Section 3.1.3, we will then describe a selection of experiments in which qubit EPR,
GHZ, and cluster states were realized.

The CV qumode counterparts of the qubit entangled states will be discussed in
Section 3.2, including a few distinct features of graph states in the CV regime;
in particular, the connection between complex-valued stabilizers/nullifiers for
qumodes, complex-weighted qumode graph states, and multi-mode Gaussian pure
states (Section 3.2.2). A selection of experiments is presented in Section 3.2.3.

Quantum Teleportation and Entanglement. Akira Furusawa, Peter van Loock
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40930-3
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3.1
Qubit Entanglement

3.1.1
Characterization and Witnesses

In a realistic experiment, the entangled states will be always imperfect, correspond-
ing to noisy, mixed entangled states. In this case, it is useful to measure entangle-
ment witnesses which may still be able to detect entanglement for not too noisy
states. There are various references, for instance, [136–138], which provide good
reviews on general entanglement theory, including the bipartite (two-party) and
multipartite (N-party with N > 2) cases, and covering important notions such as
inseparability, witnesses, and distillability, with a focus on finite-dimensional DV
systems and qubit states.

3.1.1.1 Two Parties
In Section 1.5, we introduced the maximally entangled Bell basis for two qubits as
well as for two qumodes, general pure and mixed entangled states, inseparability
criteria, entanglement witnesses, and some examples of entanglement measures.
The discussion there was restricted to the bipartite case of two entangled subsys-
tems.

Let us now continue the discussion on entanglement witnesses for two-qubit
density operators. Recall that the partial transpose criterion (Section 1.5) is neces-
sary and sufficient for detecting the entanglement of two-qubit states. Therefore,
any inseparable state O�AB of two qubits A and B has at least one negative eigenvalue
λ� such that Tr( O�TB

ABjφihφj) D λ� < 0, where the superscript TB denotes partial
transposition on qubit B and jφi is the corresponding eigenvector with eigenvalue
λ�. Then, since for any pair of matrices C and D, Tr(C TB D) D Tr(C D TB), we also
have Tr( O�ABjφihφjTB ) D λ� < 0. Thus, by defining

W � jφihφjTB , (3.1)

we immediately obtain a valid entanglement witness W that detects the insepa-
rability of O�AB, Tr( O�AB W ) D λ� < 0 and correctly gives Tr( OσAB W ) � 0 for any
separable state OσAB since OσAB must have positive partial transposition and hence
Tr( OσAB W ) D hφj OσTB

ABjφi � 0. The witness W detects every entangled state of two
qubits as partial transposition is necessary and sufficient in this case.

An example for the witness in Eq. (3.1) is given by

W D 1
2

0
BB@

0 0 0 �1
0 1 0 0
0 0 1 0

�1 0 0 0

1
CCA , W TB D 1

2

0
BB@

0 0 0 0
0 1 �1 0
0 �1 1 0
0 0 0 0

1
CCA , (3.2)

where jφi D (j10i � j01i)/p2 is the eigenvector for the partially transposed Bell
state jΦ Ci from Eq. (1.93) with Tr(jΦ CihΦ CjTB jφihφj) D hφj(jΦ CihΦ CjTB)jφi
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D �1/2 < 0 and hence also Tr(jΦ CihΦ CjjφihφjTB ) D �1/2 < 0. This witness
clearly detects the entanglement of the Bell state jΦ Ci. An alternative way to write
the witness W in Eq. (3.2) is W D 1/2 � jΦ CihΦ Cj, from which one can see that
W also detects the presence of entanglement for states that deviate from jΦ Ci such
as O� D (1 � p )jΦ CihΦ Cj C p1/4. The term 1/2 in W comes from the maximal
squared overlap between jΦ Ci and all pure separable states.

For our discussion here, it is useful to understand the connection of the entan-
glement witnesses with the stabilizers of an entangled state. Now, the projector of
any N-qubit stabilizer state jψi can be written as [5]

jψihψj D 1
2N

X
g2S

g D
NY

kD1

(1 C gk )/2 , (3.3)

where the sum goes over all the 2N elements of the state’s stabilizer group S, while
the product only goes over all of its N generators. Thus, for N D 2, the witness
W D 1/2 � jΦ CihΦ Cj can be expressed in terms of local Pauli operators, that is,
the stabilizers of jΦ Ci, S D hX X , Z Zi (see Section 1.5). For N D 2, this is fine,
but for larger N (see next section), the number of terms in the sum in Eq. (3.3)
grows exponentially; and the product may also be an unnecessarily complicated
function of the stabilizer generators.

However, there are simpler ways to write an entanglement witness in terms of
stabilizers [139]. For instance, the following witness,

W D 1 � X ˝ X � Z ˝ Z , (3.4)

detects entangled states in the vicinity of jΦ Ci because we have

Tr
hˇ̌̌

Φ C
E D

Φ C
ˇ̌̌
(X X C Z Z )

i
D
D
Φ C

ˇ̌̌
X X

ˇ̌̌
Φ C

E
C
D
Φ C

ˇ̌̌
Z Z

ˇ̌̌
Φ C

E
D 2 ,

(3.5)

such that Tr(jΦ CihΦ CjW ) D �1. This is the simplest linear witness, and nonlin-
ear refinements (i.e., additional nonlinear correction terms) may lead to even better
witnesses [40] (see Figure 1.6). Note that the stabilizers that uniquely define the en-
tangled Bell state can also be used to detect its entanglement as their expectation
values indicate the quantum correlations for two non-commuting Pauli operators
inherent in that state. Next, we shall now consider multipartite entangled states of
more than two qubits.

3.1.1.2 Three or More Parties
First, we must consider pure states. In general, there is no Schmidt decomposi-
tion for the case of more than two parties directly obtainable as for the two-party
case. Nonetheless, there is one important representative of multipartite entangle-
ment which is reminiscent of a Schmidt decomposition, namely, the Greenberger–
Horne–Zeilinger (GHZ) state [140]

jGHZi D 1p
2

(j000i C j111i) , (3.6)
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here written as a three-qubit state. Although there is no rigorous definition of
maximally entangled multi-party states, the form of the GHZ state with identi-
cal Schmidt coefficients suggests that it exhibits maximum multipartite entangle-
ment.1) In fact, the N-qubit GHZ states, (j000 � � � 000i C j111 � � � 111i)/p2, yield
maximum violations of multi-party inequalities imposed by local realistic theo-
ries [143]. Further, their entanglement relies on all qubits as they become separable
states when one qubit is traced out, for example, for N D 3,

Tr1jGHZihGHZj D 1
2

(j0ih0j ˝ j0ih0j C j1ih1j ˝ j1ih1j) . (3.7)

Turning now to multi-qubit mixed states, there are, for instance, five classes
of three-qubit states of which the extreme cases are the fully separable states,P

i η i O�i,1 ˝ O�i,2 ˝ O�i,3, and the genuinely tripartite inseparable states [144]. The en-
tanglement witnesses introduced in the preceding section can be, to some extent,
straightforwardly generalized to the multi-qubit case. For example, the canonical
witness for states close to the three-qubit GHZ state is

W D 1/2 � jGHZihGHZj , (3.8)

where the first term again corresponds to the maximal squared overlap between
the GHZ state and all pure biseparable states (being separable with respect to a
certain bipartite splitting). This ensures that states with only a pair of qubits being
entangled and with the remaining qubit factoring out will not be detected as mul-
tipartite entangled states. In this sense, this witness detects genuine multipartite
entanglement. Now, notice that for three qubits, the linear witness

W D 1 � X ˝ X ˝ X � Z ˝ Z ˝ 1 , (3.9)

though sufficient to rule out fully separable states, is not enough to negate certain
biseparable states [139]. Therefore, in order to faithfully detect genuine tripartite
entanglement around the three-qubit GHZ state, we must incorporate the full set
of stabilizer generators for the GHZ state

S D hZ Z I, X X X , I Z Zi , (3.10)

1) For the case of three qubits, any pure and fully
entangled state can be transformed to either
the GHZ state or the so-called W state [141],
jWi D 1/

p
3 (j100i C j010i C j001i), via

stochastic local operations and classical
communication. In this sense, there
are two inequivalent classes of genuine
tripartite entanglement represented by
the GHZ and the W state. Genuinely or
fully tripartite entangled means that the
entanglement of the three-qubit state is
not just present between two parties while
the remaining party can be separated by
a tensor product. The W state is fully

tripartite inseparable and, in contrast to
the GHZ state, after tracing out one qubit,
Tr1jWihWj D 1/3(j00ih00j C j10ih10j C
j01ih01j C j01ih10j C j10ih01j), the W state
remains inseparable which can be verified by
taking the partial transpose [the eigenvalues
are 1/3, 1/3, (1˙p

5)/6]. More quantitatively,
there is no “residual entanglement” in the
W state which solely stems from tripartite
correlations; the total entanglement of one
qubit with the rest is composed of pairwise
bipartite entanglement. In contrast, the GHZ
state has zero pairwise entanglement and
maximal residual entanglement [142].
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into the witness [139],

W D 21 � X ˝ X ˝ X � Z ˝ Z ˝ 1 � 1 ˝ Z ˝ Z . (3.11)

Hence, similar to the two-qubit case, for three qubits (and also for more qubits), the
stabilizer generators that define the entangled state in question can also be used to
detect the presence of genuine multipartite entanglement around that state. This
method also works for qubit cluster and graph states which we will introduce next.

3.1.2
Cluster and Graph States

Let us consider again the two-qubit Bell state jΦ Ci from Eq. (1.93) and its stabilizer
hX ˝ X , Z ˝ Zi. By applying a local Hadamard gate upon either qubit, we obtain
the state with stabilizer hX ˝ H X H, Z ˝ H Z Hi D hX ˝ Z, Z ˝ X i. This is the
stabilizer of the simplest cluster or graph state, namely, that of just two qubits. It is
equivalent to the Bell state jΦ Ci up to a local Hadamard gate.

Operationally, the two-mode cluster state is obtained by applying the CZ gate (see
Section 1.8) upon two qubits each initially in the state jCi,

CZ (jCi ˝ jCi) D (j0ijCi C j1ij�i) /
p

2 D (jCij0i C j�ij1i) /
p

2 ID
CZ (X ˝ 1) C

†
Z , CZ (1 ˝ X ) C

†
Z

E
D hX ˝ Z, Z ˝ X i , (3.12)

with the stabilizer of the initial product state hX ˝ 1, 1 ˝ X i.
This operational definition can be generalized to graph states of N qubits, most

conveniently expressed in terms of the evolution of the stabilizer generators,

OU �
Xk ˝ 1N�1� OU† D Xk

Y
l2N(k )

Zl D Xk

Y
l¤k

Z
A kl

l

� Kk , 8k 2 G , (3.13)

where OU describes all the CZ gates pairwise acting upon all qubits of the graph
G according to the adjacency matrix elements A k l D A l k which are one when
the qubits become connected and zero otherwise. The product above is a tensor
product and whenever there are less than N Pauli operators in this product, the
remaining operators are the unity operators.

Important examples of graph states (see Figure 3.1) are the N-qubit GHZ state,
corresponding to a star graph (up to local Hadamards), and the 2D lattice graph,
which is known to be a universal resource for quantum computation [1] (see Sec-
tion 1.8 and Chapter 7). For example, the three-qubit GHZ state with the stabilizer
in Eq. (3.10) corresponds to a linear three-qubit cluster/graph state, (jCij0ijCi C
j�ij1ij�i)/p2, with stabilizer hX Z I, Z X Z, I Z X i, up to Hadamard gates on the
first and third qubit. Note that the linear four-qubit cluster state is no more a GHZ-
type state.

Graph states are a subset of the set of stabilizer states (with every stabilizer state
locally unitarily transformable into a graph state) and the strength (weight) of each
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(a) (b)

Figure 3.1 Examples of graph states; (a) linear four-qubit cluster state, nonlinear six-qubit clus-
ter state; (b) “Bell/GHZ-type” graphs: linear two- and three-mode clusters, star graphs.

CZ -type gate, expressed by the elements of the adjacency matrix of the graph, must
be zero or one. Otherwise, a so-called weighted graph state is no longer a stabilizer
state. This will turn out to be dramatically different for the case of qumode graph
states (see Section 3.2.2), for which weighted CZ interactions still belong to the CV
Clifford group describing Gaussian transformations.

Finally, we give the corresponding entanglement witness for qubit graph states
expressed in terms of the stabilizer generators [139],

W D (N � 1)1 �
X
k2G

Kk , (3.14)

with the definition of Eq. (3.13). This witness would detect genuine N-qubit multi-
partite entanglement by verifying the quantum correlations in all stabilizer gener-
ators that define the corresponding graph state.

3.1.3
Experiment: Entangled Photonic Qubits

3.1.3.1 EPR/Bell State
Entanglement between two qubits is one of the most important resources for quan-
tum information processing. There are various ways to create such two-qubit en-
tanglement experimentally.

One of the simplest ways might be to employ a single-photon Fock state j1i and a
symmetric beam splitter, as shown in Figure 3.2, in order to obtain a single-photon
state which is path-entangled between two single-rail encoded qubits. Let us now
discuss how this state can be used for the creation of a polarization-entangled state
of two photons (i.e., a polarization-entangled state between two dual-rail encoded
qubits),

ˇ̌
Ψ (C)˛ D 1p

2
(j$iA ˝ jliB C jliA ˝ j$iB) , (3.15)

where j$i and jli denote horizontally and vertically polarized photons, respective-
ly.

A neat way to create this type of two-photon polarization entanglement was in-
vented by Kwiat et al. [145]. A schematic is shown in Figure 3.3. First, a pump
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Figure 3.2 Quantum entanglement generated from a single-photon state j1i using a half beam
splitter (HBS). The vacuum state j0i “enters” the unused port of the beam splitter.
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Figure 3.3 Quantum entanglement created through parametric
down conversion (PDC) [145]. The parameter �(2) denotes the
second order nonlinear process of PDC; Ep(2ω): pump light,
HBS: half beam splitter, HWP: half wave plate, PBS: polariza-
tion beam splitter.

photon of angular frequency 2ω hits a half beam splitter (HBS). The output state
is then the same as the one shown in Figure 3.2, corresponding to a superposi-
tion state of one pump photon arriving at either one of two second order nonlinear
crystals 1,2 (�(2)),

1p
2

(j0i2ω,1 ˝ j1i2ω,2 C j1i2ω,1 ˝ j0i2ω,2) . (3.16)

In that nonlinear crystal that does interact with a pump photon, parametric down
conversion will occur, and a photon pair j$ijli is created. Thus, the state before
the polarization beam splitter (PBS) in Figure 3.3 can be written as:

1p
2

(j0i2ω,1 ˝ j$iω,2jliω,2 C j$iω,1jliω,1 ˝ j0i2ω,2) . (3.17)

Now, for the case when the half wave plate (HWP) before the PBS has no effect
on the beam, the output state of the PBS becomes,

1p
2

(j$iω,A ˝ jliω,B C jliω,A ˝ j$iω,B) , (3.18)

where the pump light 2ω is omitted. This state is equivalent to that in Eq. (3.15).
Moreover, by suitably rotating the HWP, one can create any one of the four Bell

states using this scheme,ˇ̌̌
Ψ (˙)

E
D 1p

2
(j$iA ˝ jliB ˙ jliA ˝ j$iB) ,

ˇ̌̌
Φ (˙)

E
D 1p

2
(j$iA ˝ j$iB ˙ jliA ˝ jliB) , (3.19)
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Figure 3.4 Experimental results of Kwiat et al.
for the creation of polarization entangled pho-
tons [146]. Those photons emitted at the inter-
section of the two rings are entangled in po-

larization. (a) Spontaneous down-conversion
cones present with type-II phase matching;
(b) a photograph of the down-conversion pho-
tons.

where these are realization of Eq. (1.93) with polarized single photons. So this
scheme is very versatile. However, a disadvantage of this scheme is its very low
probability for successful entangled-photon pair creation, because the parametric
down conversion of a single pump photon occurs very rarely and most of the time
nothing will happen. Therefore, the present scheme has to rely upon “postselect-
ing” successful creation events. Thus, the whole protocol becomes highly condi-
tional and must be heralded by photon detection.

A modification of the scheme exploits certain crystal angle and phase-matching
conditions, as it was realized by Kwiat et al. [146]. Figure 3.4 shows the experimental
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Figure 3.5 Coincidence fringes for verify-
ing photonic Bell states (Eq. (3.19)) [146].
The photons emitted at the intersection
of the two rings are detected by means

of polarizers and the coincidences are
plotted as a function of relative angle.
(a) j$iAjliB ˙ jliAj$iB(HV ˙ VH);
(b) j$iAj$iB ˙ jliAjliB(HH ˙ VV).

results for the creation of polarization entangled photons. Those photons emitted
at the intersection of the two rings are entangled in polarization.

By using the HWP trick explained above, Kwiat et al. demonstrated the genera-
tion of all four Bell pairs experimentally verified through coincidence fringes of the
photons, as shown in Figure 3.5.

3.1.3.2 GHZ State
A three-qubit GHZ state as in Eq. (3.6) can also be created through postselection
for polarization qubits. The corresponding experimental scheme was proposed by
Zeilinger et al. [147] and eventually implemented by Pan et al. [148]. Let us now
discuss this scheme in detail.

Figure 3.6 shows the experimental scheme for the creation of a GHZ state using
two pairs of polarization entangled photons [147]. A and B in Figure 3.6 denote
photon-pair sources, as described in the preceding section, generating states like
(1/

p
2)(j$ijliCjlij$i). In total, four photons will be emitted from the sources A

and B. For the case that photons are simultaneously detected in modes 1, 2, 3, and
DT, the photons in modes 1, 2, and 3 are in the state j$i1j$i2jli3 or jli1jli2j$i3.
The reason for this is as follows. A polarization beam splitter (PBS) always reflects
$-photons and transmits l-photons. If photons are simultaneously detected in
modes 1, 2, 3, and DT, only one $-photon has arrived at DT. However, we do not
know from which PBS the $-photon comes. If the $-photon comes from the
left PBS, the polarization of a photon in mode 1 as well as that of a photon in
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Figure 3.6 Scheme for the creation of a GHZ
state using two pairs of polarization entan-
gled photons [147]. BS: half beam splitter,
PBS: polarization beam splitter, H: horizontal

polarization $, V: vertical polarization l, F:
narrow bandwidth filter, λ/2: half wave plate.
The half wave plate switches V to H.

mode 2 must be l. Then, it follows from the entanglement of the photons that the
polarization of a photon in mode 3 must be $. Similarly, for the case that the $-
photon comes from the right PBS, the polarization of a photon in mode 1 must be
$ and that of a photon in mode 2 as well. As a consequence, the polarization of a
photon in mode 3 has to be l.

From the above discussion, we can conclude that whenever the photons are si-
multaneously detected in modes 1, 2, 3, and DT, the photons in modes 1, 2, and 3
are in a superposition state of j$i1j$i2jli3 and jli1jli2j$i3, namely,

jGHZ0i D 1p
2

(j$i1j$i2jli3 C jli1jli2j$i3) . (3.20)

Now, by putting a half wave plate in the path of mode 3 in order to switch $ to l
and l to $, we can convert jGHZ0i into jGHZi,

jGHZi D 1p
2

(j$i1j$i2j$i3 C jli1jli2jli3) . (3.21)

Figure 3.7 shows the experimental realization of Figure 3.6, as done by Pan
et al. [148]. For the case of simultaneous photon detection events at detectors T,
D1, D2, and D3 in Figure 3.7, the state jGHZ0i of Eq. (3.20) is obtained. The main
difference between Figures 3.6 and 3.7 appears to be that two sources are present
in Figure 3.6, whereas only one source (BBO) is used in the scheme of Figure 3.7.
However, since the source of Figure 3.7 actually creates two pairs of polarization
entangled photons simultaneously, the two supposedly different schemes are es-
sentially the same.

Pan et al. checked for nonclassical correlations of polarization measurement re-
sults between two of the three modes (D1, D2, and D3) and the remaining one. For
example, if one performs polarization measurements on modes 1 and 2 and ob-
tains a click in both detectors, one can automatically determine the polarization of
mode 3 owing to the GHZ entanglement. In particular, Pan et al. made polarization
measurements using the following two bases,

jH 0i D 1p
2

(j$i C jli) , jV 0i D 1p
2

(j$i � jli) ,

jRi D 1p
2

(j$i C ijli) , jLi D 1p
2

(j$i � ijli) , (3.22)
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Figure 3.7 Experimental setup for the creation
of a GHZ state using two pairs of polarization
entangled photons [148]. BBO: second-order
nonlinear crystal, BS: half beam splitter, PBS:
polarization beam splitter, POL: polarizer, λ/4:
quarter wave plate, F: narrow bandwidth fil-

ter, λ/2: half wave plate. The half wave plate
switches jli to (1/

p
2) (j$i C jli). Quar-

ter wave plates and polarizers just before the
detectors are used for correlation measure-
ments.

corresponding to ˙45ı rotated linear polarizations and right/left circular polar-
izations, respectively (representing the ˙X and ˙Y one-qubit stabilizer states of
Section 1.2, respectively).

With the bases of Eq. (3.22), jGHZi of Eq. (3.21) can be rearranged as follows,

jGHZi D 1
2

�jRi1jLi2jH 0i3 C jLi1jRi2jH 0i3

CjRi1jRi2jV 0i3 C jLi1jLi2jV 0i3
�

. (3.23)

Now, for polarization measurements in the L/R basis, the photons in modes 1
and 2 have equal probability for the combinations R L, LR , R R , and LL. If R R is
obtained, the photon in mode 3 has to be in the state V 0 according to Eq. (3.23).
Figure 3.8 shows the experimental results for this correlation measurement [148].
Quarter wave plates and polarizers just before detectors D1, D2, and D3 in Fig-
ure 3.7 are set to R RV 0 or R R H 0. The results clearly confirm the strong correla-
tions of R RV 0 in comparison to R R H 0.

Pan et al. also checked the other tripartite correlations according to Eq. (3.23)
illustrated in Figure 3.9. In this case, polarization measurements are performed
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Figure 3.8 A typical result of correlation measurements for GHZ entanglement [148]. RRV’
correlation signals are clearly bigger than those of RRH’.

in the L/R basis with two photons in modes 1 and 2 (a), modes 1 and 3 (b), and
modes 2 and 3 (c). The polarization of the photon in the remaining mode was then
checked in order to verify GHZ entanglement.

3.1.3.3 Cluster States
Cluster states of polarization qubits can be also created through postselection. The
first experimental demonstration for this was reported by Walther et al. [149]. They
created linear four-qubit and square cluster states using the setup shown in Fig-
ure 3.10. In this setup, two pairs of polarization entangled photons are generated
by parametric down conversion as explained in the previous section. These polar-
ization entangled photons pass through half wave plates (HWPs) and polarization
beam splitters (PBSs), and are then converted into cluster states when all photode-
tectors detect photons for the right quarter wave plate (QWP) and polarizer (Pol)
settings.
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Figure 3.9 Correlation measurement re-
sults for GHZ entanglement according to
Eq. (3.23) [148]. Polarization measurements in
the L/R basis with two photons in (a); modes

1 and 2, (b); modes 1 and 3, (c); modes 2 and
3. The polarization of the photon in the re-
maining mode was checked to confirm the
GHZ entanglement.

The cluster state jΦclusteri obtained after the two polarization beam splitters (PB-
Ss) in Figure 3.10 is

jΦclusteri D 1
2

(j$i1j$i2j$i3j$i4 C j$i1j$i2jli3jli4

Cjli1jli2j$i3j$i4 � jli1jli2jli3jli4) , (3.24)

where subscripts 1–4 label the mode numbers of the PBS outputs.
When the polarizers before the detectors in modes 1 and 4 in Figure 3.10 are

rotated by 45ı , then in these modes, j$i is transformed into jCi D (1/
p

2)(j$i C
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Figure 3.10 Experimental setup for the creation of four-qubit linear and square cluster
states [149]. Comp: birefringence compensator, PBS: polarization beam splitter, HWP: half wave
plate, QWP: quarter wave plate, and Pol: polarizer.

jli), while jli is converted to j�i D (1/
p

2)(j$i � jli). This corresponds to lo-
cal Hadamard transformations on the polarization qubits in modes 1 and 4. The
postselected state becomes a linear four-qubit cluster state jΦlin-clusteri as expressed
by

jΦlin-clusteri D 1
2

(jCi1j$i2j$i3jCi4 C jCi1j$i2jli3j�i4

Cj�i1jli2j$i3jCi4 � j�i1jli2jli3j�i4) . (3.25)

This state is equivalent to the following state when we replace j$i by j0i and jli
by j1i and rearrange the terms,

jΦlin-clusteri D 1
2

(j0i1jCi2j0i3jCi4 C j0i1j�i2j1i3j�i4

Cj1i1j�i2j0i3jCi4 C j1i1jCi2j1i3j�i4) . (3.26)
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(a) (b)

Figure 3.11 Experimental results of quantum-
state tomography for a four-qubit cluster state
jΦclusteri [149]. “H” corresponds to j$i and
“V” corresponds to jli. (a) ideal case; (b) ex-

perimental density matrices, where the top
and the bottom represent the real and imagi-
nary parts, respectively.

Similarly, when the polarizers before the detectors in modes 1–4 are all rotated
by 45ı and modes 2 and 3 are swapped, the postselected state becomes a square
four-qubit cluster state jΦsqu-clusteri. This state can be written as

jΦsqu-clusteri D 1
2

(j0i1jCi2j0i3jCi4 C j0i1j�i2j1i3j�i4

Cj1i1j�i2j0i3j�i4 C j1i1jCi2j1i3jCi4) . (3.27)

Walther et al. characterized the output state using quantum-state tomogra-
phy [149] achievable by tuning the quarter wave plates (QWPs) and polarizers
(Pols) in front of the photodetectors. The results are shown in Figure 3.11. From
these results, a fidelity of F D hΦclusterj O�jΦclusteri D 0.63 ˙ 0.02 was obtained.
This value is greater than the maximum overlap of 0.5 between any bi-separable
four-qubit state and the target cluster state jΦclusteri.

Similar to the simpler case of bipartite polarization-entangled photon pairs, those
experimental generalizations to more complex, multipartite states such as cluster
states always rely upon postselection. Therefore, the scaling of the efficiency in
building polarization-entangled graph states depends to a large extent on the post-
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selection efficiency at which the elementary polarization-entangled pairs are pro-
duced. Moreover, once a sufficiently large supply of such pairs is available, further
conditional fusion operations are needed in order to grow clusters and graphs of a
desirable size [104, 150, 151]. Even though there are theoretical proposals for opti-
mizing these fusions of subclusters and hence minimizing the temporal costs in
building single-photon-based graph states [152, 153], the creation of polarization-
entangled cluster states will remain highly conditional.

In the next section, we shall discuss a complementary way of building compli-
cated, multipartite entangled states. In this alternative approach, the whole Hilbert
space of photonic qumodes is exploited, and infinite-dimensional, CV graph states
can be prepared in an unconditional, though intrinsically imperfect fashion.

3.2
Qumode Entanglement

3.2.1
Characterization and Witnesses

Optical CV entangled states on qumodes rely upon resources of squeezed light
(see Section 2.2.4). This type of entanglement is therefore intrinsically and fun-
damentally imperfect since energies are always bounded and hence squeezing is
always finite. However, CV Gaussian entangled states can be unconditionally pre-
pared with extremely high efficiencies. Entanglement witnesses (see Section 1.5.3)
in this case are typically based on variance measurements of certain multi-mode
quadrature linear combinations, confirming the corresponding quantum correla-
tions. These combinations will turn out to be related with the qumode stabilizers
(see Section 1.9) that define the corresponding Gaussian entangled state. Reviews
on the theory of Gaussian entangled states can be found in various articles, in par-
ticular, in [119, 154].

3.2.1.1 Two Parties
Recall the unphysical, maximally entangled CV Bell states introduced in Sec-
tion 1.5.1. These CV stabilizer states are defined through their relative-position
(x1 � x2 D u) and total-momentum (p1 C p2 D v ) eigenvalues. The CV Bell state
with u D v D 0 is the famous EPR state [23]. Although the EPR state is unnor-
malizable and unphysical, it can be thought of as the limiting case of a regularized
version where the positions and momenta are correlated only to some finite extent
given by a Gaussian width. A regularized EPR state is, for example, given by a
two-mode squeezed state. The position and momentum wave functions for the
two-mode squeezed vacuum state are

ψTMSS(x1, x2) D
r

2
π

exp
h
�e�2r (x1 C x2)2/2 � eC2r(x1 � x2)2/2

i
,

NψTMSS(p1, p2) D
r

2
π

exp
h
�e�2r (p1 � p2)2/2 � eC2r (p1 C p2)2/2

i
, (3.28)
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approaching / δ(x1 � x2) and / δ(p1 C p2), respectively, in the limit of infinite
squeezing r ! 1.

Instead of the position or momentum basis, the two-mode squeezed vacuum
state may also be written in the Fock basis,

jTMSSi D
p

1 � λ2
1X

nD0

λn jnijni , (3.29)

where λ D tanh r . The form in Eq. (3.29) reveals that the two modes of the two-
mode squeezed vacuum state are also quantum correlated in photon number and
phase. The form in Eq. (3.29) is the Schmidt decomposition (see Section 1.5.1)
for the two-mode squeezed vacuum state. Since tanh r ! 1 for r ! 1, and hence
cnC1/cn ! 1 in this limit, we can see that the state jTMSSi in Eq. (3.29) approaches
a maximally entangled state for infinite squeezing.

In this Schmidt form, we can quantify the entanglement of the two-mode
squeezed vacuum state via the partial von Neumann entropy (recall the discus-
sion in Section 1.5.1),

E (jTMSSi) D � log(1 � λ) � λ log λ/(1 � λ)

D cosh2 r log(cosh2 r) � sinh2 r log(sinh2 r) . (3.30)

Note that any pure two-mode Gaussian state can be transformed into the canonical
two-mode squeezed state form through local LUBO transformations and hence its
entanglement can be quantified as in Eq. (3.30). More generally, any bipartite pure
multi-mode Gaussian state corresponds to a product of two-mode squeezed states
up to local LUBO transformations [155].

The two-mode squeezed vacuum state is represented by a Gaussian Wigner func-
tion,

WTMSS(� ) D 4
π2

exp
˚�e�2r

�
(x1 C x2)2 C (p1 � p2)2�

�eC2r
�
(x1 � x2)2 C (p1 C p2)2�o . (3.31)

This Wigner function approaches / δ(x1 � x2)δ(p1 C p2) in the limit of infinite
squeezing r ! 1, corresponding to the original EPR-state Wigner function.

Upon tracing (integrating) out either mode of the Wigner function in Eq. (3.31),
we obtain the (undisplaced) thermal state

1Z
�1

WTMSS(� )dx1dp1 D 2
π(1 C 2 Nn)

exp

"
� 2

�
x2

2 C p 2
2

�
1 C 2 Nn

#
, (3.32)

with mean photon number Nn D sinh2 r . As the two-mode squeezed state is the
maximally entangled state at a given energy, the thermal state corresponds to the
maximally mixed state at this energy. This is analogous to the finite-dimensional
discrete case, where tracing out one party of a maximally entangled state yields the
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Figure 3.12 Creation of an EPR-type state using squeezed
vacua and a beam splitter; ellipses represent squeezed vacua.

A

B

Ŝ(r)

Ŝ(-r)0

0 Figure 3.13 Operator description of Figure 3.12; j0i represents vacuum
states and OS (r) is the single-mode x-squeezing operator.

maximally mixed state. The correlation matrix of the two-mode squeezed state is
given by

V
(2)

TMSS D 1
4

0
BB@

cosh 2r 0 sinh 2r 0
0 cosh 2r 0 � sinh 2r

sinh 2r 0 cosh 2r 0
0 � sinh 2r 0 cosh 2r

1
CCA , (3.33)

according to Eqs. (3.31) and (2.89). By extracting the second moments from the
correlation matrix in Eq. (3.33), we can verify that the individual quadratures be-
come very noisy for large squeezing r, whereas the relative position and the total
momentum become very quiet,

h( Ox1 � Ox2)2i D ˝ Ox2
1

˛C ˝ Ox2
2

˛ � 2
˝ Ox1 Ox2

˛ D e�2r/2 ,˝
( Op1 C Op2)2˛ D ˝ Op 2

1

˛C ˝ Op 2
2

˛C 2
˝ Op1 Op2

˛ D e�2r/2 . (3.34)

The two-mode squeezed vacuum state can be directly obtained from a so-
called nondegenerate optical parametric amplifier or oscillator (NOPO) in a single
quadratic interaction [156]. However, towards scaling up qumode bipartite entan-
glement to qumode multipartite entanglement (see the following sections), it is
very instructive to see that an entangled two-mode squeezed vacuum state is cre-
ated equivalently by combining two independent single-mode squeezed vacuum
states (each obtainable from a degenerate OPO [156, 157]) at a symmetric beam
splitter, see Figures 3.12 and 3.13.

Let us see how this works. A single-mode vacuum state squeezed in p, as de-
scribed by Eq. (2.53) with Θ D π,

Oa1 D Oa(0)
1 cosh r C Oa(0)†

1 sinh r , (3.35)
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and another one squeezed in x, as given by Eq. (2.53) with Θ D 0,

Oa2 D Oa(0)
2 cosh r � Oa(0)†

2 sinh r , (3.36)

are combined at a 50 : 50 beam splitter,

Ob1 D ( Oa1 C Oa2)/
p

2 D Ob(0)
1 cosh r C Ob(0)†

2 sinh r ,

Ob2 D ( Oa1 � Oa2)/
p

2 D Ob(0)
2 cosh r C Ob(0)†

1 sinh r , (3.37)

where Ob(0)
1 D ( Oa(0)

1 C Oa(0)
2 )/

p
2 and b

(0)
2 D ( Oa(0)

1 � Oa(0)
2 )/

p
2 are again two vacuum

modes. The resulting state is a two-mode squeezed vacuum state with quadrature
operators given by

Ox1 D
�

eCr Ox (0)
1 C e�r Ox (0)

2

�.p
2 ,

Op1 D
�

e�r Op (0)
1 C eCr Op (0)

2

�.p
2 ,

Ox2 D
�

eCr Ox (0)
1 � e�r Ox (0)

2

�.p
2 ,

Op2 D
�

e�r Op (0)
1 � eCr Op (0)

2

�.p
2 , (3.38)

where Obk D Oxk C i Opk and Oa(0)
k

D Ox (0)
k

C i Op (0)
k

. While the individual quadratures Oxk

and Opk become very noisy for large squeezing r, the relative position and the total
momentum,

Ox1 � Ox2 D p
2e�r Ox (0)

2 ,

Op1 C Op2 D p
2e�r Op (0)

1 , (3.39)

become quiet, h( Ox1 � Ox2)2i D e�2r/2 and h( Op1 C Op2)2i D e�2r/2, as in Eq. (3.34).
The creation of two-mode squeezing and entanglement from single-mode

squeezing through beam splitter interference can also be described in the lan-
guage of correlation matrices. In this case, the correlation matrix of the two-mode
input state to the beam splitter, a product state of two single-mode squeezed states
with the first one squeezed in p and the second one squeezed in x, is given by
V (2) D V

(1)
�r ˚ V

(1)
r , using V

(1)
r � V (1) from Eq. (2.90). Now, applying the beam

splitter operation of Eq. (2.115) to V (2) leads to the following transformation,

V (2) �! V (2)0 D OBSV (2)OT
BS D V

(2)
TMSS , (3.40)

with the correlation matrix of a two-mode squeezed state in Eq. (3.33).
Besides the direct way of quantifying the entanglement of a two-mode squeezed

state written in the Schmidt–Fock basis through the partial von Neumann entropy
[Eq. (3.30)], one may also calculate the entropy with the help of the symplectic
eigenvalues, as introduced in Section 2.2.8.2. As mentioned there, in general, these
eigenvalues contain complete information about the structure and size of thermal
noise in Gaussian mixed states. More explicitly, the von Neumann entropy S( O�)
from Eq. (1.22) for the case of an N-mode Gaussian state is a function of its N
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symplectic eigenvalues,

S( O�) D
NX

kD1

�
4νk C 1

2
log

4νk C 1
2

� 4νk � 1
2

log
4νk � 1

2

�
. (3.41)

Hence, for any pure bipartite Gaussian state of N C M modes, the N symplectic
eigenvalues of the reduced N-mode state immediately give the entanglement with
respect to the splitting between the N and M modes. Correspondingly, the reduced
entropy of a two-mode squeezed state is determined by a single symplectic eigen-
value for the reduced thermal state, with ν D (2 Nn C 1)/4 D (2 sinh2 r C 1)/4,
reproducing the entanglement calculated in Eq. (3.30).

For bipartite entangled Gaussian mixed states, the entanglement is no longer
given by the reduced entropy. In this more general case, one has to consider alter-
nate measures, as discussed in Section 1.5. In particular, the logarithmic negativity
turns out to be very useful in this case. Similar to the reduced entropy, for pure
two-mode states, the logarithmic negativity can be computed directly from the
Schmidt–Fock coefficients. For example, using jj (jTMSSi12hTMSSj)T2 jj D (1� λ2)
(
P1

nD0 λn)2, we obtain EN (jTMSSi12hTMSSj) D log2[jj(jTMSSi12hTMSSj)T2 jj]
D log2

1Cλ
1�λ . Though this approach would work for any pure two-mode state in

Schmidt–Fock form (including non-Gaussian ones), for mixed states, an analytic
expression independent of the assumption of Gaussian states is rather hard to
obtain [158].

If one does have Gaussian states, one may once again employ the symplectic
eigenvalues. Entanglement can then be quantified by checking to what extent the
symplectic eigenvalues indicate unphysicality of the partially transposed state, Qνk <

1/4 (recall Section 2.2.8.2), where Qν1, Qν2, . . . , QνN are the symplectic eigenvalues of
the partially transposed correlation matrix.2) In fact, in this case, we obtain

EN D �
NX

kD1

log2 [min (1, 4 Qνk )] . (3.42)

For two-mode Gaussian states with only two (partially transposed) symplectic
eigenvalues Qν1 and Qν2, EN only depends on the smallest symplectic eigenvalue
� Qν�, EN D max[0, � ln(4 Qν�)]. For example, for the two-mode squeezed state, we
have EN D max[0, � ln(e�2r)] D 2r .3)

The mixed-state case corresponds to the realistic scenario encountered in an ex-
periment. When the full correlation matrix of the bipartite, quantum optical state
in question is available, inseparability criteria such as the CV version of the partial
transpose criterion (Section 1.5.2) may be applied; and even be used for quantifica-
tion when the state is Gaussian, as described above. Otherwise, a sufficient, small
number of suitable observables, the so-called entanglement witnesses, may be uti-
lized as entanglement qualifiers (Section 1.5.3).

2) What partial transposition (see Section 1.5.2) actually means in the CV case and in terms of
correlation matrices shall be discussed shortly.

3) In order to obtain this simple expression, one has to use suitable units which depend on the base
of the logarithm, log2 ! ln.
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Let us discuss an important class of CV entanglement witnesses. For verifying
the inseparability of a given two-mode CV state, Duan et al. derived an inequality
in terms of the variances of position and momentum linear combinations [159],
similar to those in Eq. (3.34). This inequality is satisfied by any separable state and
is only violated by inseparable states. Thus, its violation is a sufficient (but, in gen-
eral, not a necessary) condition for the inseparability of arbitrary states, including
non-Gaussian states.

Duan et al. proved that, for example, the sum of the variances of Ou � Ox1 � Ox2 and
Ov � Op1 C Op2 can never drop below some nonzero bound for any separable state
O�12. However, for an inseparable state, this total variance may drop to zero. This is
possible, because the observables Ou and Ov have a vanishing commutator,

[ Ox1 � Ox2, Op1 C Op2] D 0 , (3.43)

and hence they may simultaneously take on arbitrarily well defined values; ul-
timately, they have a common eigenbasis, namely, the CV Bell basis (see Sec-
tion 1.5.1). Recalling the discussions in Sections 1.5.1 and 1.9, we see that there
is a link between the CV Bell-state stabilizers and the entanglement witnesses
proposed by Duan et al.

The proof of Duan’s criterion works as follows. Assume that a given state O�12

is separable and hence can be written as in Eq. (1.99). Now, calculating the total
variance of the operators Ou � Ox1 � Ox2 and Ov � Op1 C Op2 for this state (labeled by �)
gives

h(∆ Ou)2i� C h(∆ Ov)2i� D
X

i

η i

�h Ou2ii C h Ov2ii

� � h Oui2
� � h Ovi2

�

D
X

i

η i

�h Ox2
1 ii C h Ox2

2 ii � 2h Ox1iih Ox2ii C h Op 2
1ii C h Op 2

2ii C 2h Op1ii h Op2ii

�
� h Oui2

� � h Ovi2
�

D
X

i

η i

�˝
(∆ Ox1)2˛

i
C ˝

(∆ Ox2)2˛
i
C ˝

(∆ Op1)2˛
i
C ˝

(∆ Op2)2˛
i

�

C
X

i

η i h Oui2
i �

 X
i

η i h Ouii

!2

C
X

i

η i h Ovi2
i �

 X
i

η ih Ovii

!2

,

(3.44)

where h� � � ii represents the expectation value in the product state O�i,1 ˝ O�i,2. Using
the Cauchy–Schwarz inequality

P
i η ih Oui2

i � �P
i η i jh Ouii j

�2, one can see that the
last line in Eq. (3.44) is bounded below by zero. By also considering the sum uncer-
tainty relation h(∆ Ox j )2ii C h(∆ Op j )2ii � j[ Ox j , Op j ]j D 1/2 ( j D 1, 2, 8i), we find that
the total variance itself is bounded below by one. Thus, the inequality˝

[∆( Ox1 � Ox2)]2
˛C ˝

[∆( Op1 C Op2)]2
˛ � 1 , (3.45)

is a necessary condition for any separable state. A violation of it proves inseparability
of the state in question. For example, the position and momentum correlations of
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Eq. (3.34) confirm that the two-mode squeezed vacuum state is entangled for any
nonzero squeezing r > 0.

A generalization of the above condition may be based upon the general linear
combinations

Ou � h1 Ox1 C h2 Ox2 , Ov � g1 Op1 C g2 Op2 . (3.46)

For any separable state, we have

h(∆ Ou)2i� C h(∆ Ov )2i� � (jh1g1j C jh2g2j)/2 , (3.47)

whereas for a potentially entangled state, this bound is changed to

h(∆ Ou)2i� C h(∆ Ov )2i� � (jh1g1 C h2g2j)/2 . (3.48)

The hl and g l are arbitrary real parameters. When choosing, for instance, h1 D
�h2 D g1 D g2 D 1, the bound for a separable state becomes one, whereas that for
an entangled state drops to zero.

The derivation of Eq. (3.45) does not depend on the assumption of Gaussian
states. However, for two-mode Gaussian states in a particular standard form, a
condition similar to that in Eq. (3.45) turns out to be necessary and sufficient for
separability [159]. This standard form can be obtained for any two-mode Gaus-
sian state via local Gaussian unitary transformations. As opposed to those qubit
entanglement witnesses introduced in Section 3.1.1, the second-moment-based,
CV Duan witness is a nonlinear entanglement witness (see Section 1.5.3). Even
though it appears to be independent of partial transposition (which we did not use
for its derivation), it can be shown to be a special case from the family of partial-
transpose-based criteria (see Section 8.3). We shall now briefly discuss a particular
manifestation [116] of the CV partial transpose criterion.

As discussed in detail in Section 1.5.2, transposition is a positive, but not com-
pletely positive map, which means its application to a subsystem may yield an un-
physical state when the subsystem is entangled to other subsystems. The class of
(1 � N )-mode Gaussian states belongs to those states for which negative partial
transpose (npt) is necessary and sufficient for inseparability [116, 117].

Recall that due to the Hermiticity of a density operator, transposition corresponds
to complex conjugation. Moreover, for the time evolution of a quantum system de-
scribed by the Schrödinger equation, complex conjugation is equivalent to time
reversal, i„@/@t ! �i„@/@t. Hence, intuitively, transposition of a density oper-
ator means time reversal, or, expressed in terms of continuous variables, sign
change of the momenta. Thus, in phase space, transposition is described by � T �!
Γ � T D (x1, �p1, x2, �p2, . . . , xN , �pN )T, that is, by transforming the Wigner func-
tion as [116]

W(x1, p1, x2, p2, . . . , xN , pN ) �! W(x1, �p1, x2, �p2, . . . , xN , �pN ) .

(3.49)
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This general transposition rule is, in the case of N-mode Gaussian states, reduced
to the transformation

V (N ) �! V (N )0 D Γ V (N )Γ (3.50)

for the second-moment correlation matrix (where, again, the first moments do not
affect the entanglement). Now, the partial transposition of a bipartite Gaussian sys-
tem can be expressed by Γa � Γ ˚ 1. Here, again, A ˚ B means the block-diagonal
matrix with the matrices A and B as diagonal entries, and A and B are respectively
2N �2N and 2M �2M square matrices for N modes at a’s side and M modes at b’s
side. According to Eq. (2.95), the condition that the partially transposed Gaussian
state described by ΓaV (NCM)Γa is unphysical,

ΓaV (NCM)Γa � i
4

Λ , (3.51)

is sufficient for the inseparability between a and b [116, 117]. For Gaussian states
with N D M D 1 [116] and for those with N D 1 and arbitrary M [117], this condi-
tion is necessary and sufficient. For two-mode Gaussian states, it can be compactly
expressed in terms of the blocks of any given correlation matrix [116]. By consid-
ering other, operational inseparability criteria independent of the NPT criterion,
in principle, the separability problem for bipartite Gaussian states with arbitrarily
many modes at each side is completely solved [160]. Recent efforts are therefore
aiming at extending the theory of CV entanglement criteria and witnesses to the
realm of non-Gaussian states (see Section 8.3).

3.2.1.2 Three or More Parties
Consider the unphysical, infinitely correlated, entangled states of N qumodes,

jΨ (v , u1, u2, . . . , u N�1)iD 1p
π

1Z
�1

dxe2iv x jxi ˝ jx � u1i ˝ jx � u1 � u2i

˝ � � � ˝ jx � u1 � u2 � � � � � u N�1i .

(3.52)

Since
R1

�1 dx jxihx j D 1 and hx jx 0i D δ(x � x 0), they form a complete,

1Z
�1

dvdu1du2 � � � du N�1

� jΨ (v , u1, u2, . . . , u N�1)ihΨ (v , u1, u2, . . . , u N�1)j D 1˝N , (3.53)

and orthogonal,

˝
Ψ (v , u1, u2, . . . , u N�1)

ˇ̌
Ψ
�
v 0, u0

1, u0
2, . . . , u0

N�1

�˛
D δ

�
v � v 0

�
δ
�
u1 � u0

1

�
δ
�
u2 � u0

2

� � � � δ
�
u N�1 � u0

N�1

�
, (3.54)
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set of basis states for N qumodes. Note that for two qumodes, N D 2, this basis
is just the CV Bell basis of Eq. (1.95). For the case with N D 3 qumodes, v �
p1 C p2 C p3 D 0, u1 � x1 � x2 D 0, and u2 � x2 � x3 D 0, we obtain the state

jΨ (0, 0, 0)i D 1p
π

1Z
�1

dx jxi ˝ jxi ˝ jxi . (3.55)

This is the CV version of the three-qubit GHZ state in Eq. (3.6) with stabilizer
generators given by Eq. (3.10). Correspondingly, the CV stabilizer for this state,
expressed in terms of WH operators, is

S D ˝
Z(s) ˝ Z†(s) ˝ 1 , X(s) ˝ X(s) ˝ X(s) , 1 ˝ Z(s) ˝ Z†(s)

˛
. (3.56)

Generalizing the two-mode CV Bell-basis stabilizer derived in Section 1.5.1.2 to a
three-mode CV GHZ-basis stabilizer gives the nonlocal stabilizer generators˝

e�2isu1 Z(s) ˝ Z†(s) ˝ 1 , eC2is v X(s) ˝ X(s) ˝ X(s) ,

e�2isu21 ˝ Z(s) ˝ Z†(s)
˛

. (3.57)

Because this constitutes a full set of stabilizer generators for three qumodes (recall
Section 1.9), the eigenvalues v, u1, and u2 completely and uniquely determine a
particular GHZ basis state. Instead of the WH stabilizers, again, the qumode states
are more conveniently expressed in terms of x and p linear combinations.

In an N-qumode “CV GHZ-state analyzer”, determining the stabilizer eigenval-
ues v � p1 C p2 C� � �C pN , u1 � x1 � x2, u2 � x2 � x3, . . ., and u N�1 � xN�1 � xN

means projecting onto the CV GHZ basis fjΨ (v , u1, u2, . . . , u N�1)ig. Similar to the
two-party two-mode case from the preceding section, these stabilizers correspond
to a set of observables that can be used as a multi-party multi-mode entanglement
witness. Before discussing such a witness in more detail, let us first explain how to
actually generate an approximate version of a CV GHZ state using squeezed light
and beam splitters [161].

The simplest way to generate a tripartite entangled state of three qumodes is
to split a single-mode squeezed vacuum state jx � 0i (idealized by an x zero-
eigenstate) subsequently at two beam splitters, as shown in Figure 3.14 [161]. In
this case, the inputs of the two unused ports of the beam splitters are vacuum
states. This is practically easy to implement, but when applied to a quantum pro-
tocol, the performance would be of only limited quality due to the vacuum input
states. For example, in the qumode teleportation network described in Chapter 4,
the maximum fidelity between any pair will be only 1/

p
2, even in the limit of

infinite squeezing.4)

However, the CV GHZ state in Eq. (3.55) can be generated by sending a
momentum-squeezed vacuum state, jp � 0i1, and two position-squeezed vacuum
states, jx � 0i2 and jx � 0i3, into a “tritter”, consisting of two beam splitters with
transmissivity/reflectivity of 1/2 and 1/1, as shown in Figure 3.15. Applying first

4) Excluding additional local squeezers [162] by means of which the one-squeezer GHZ-type state
can be locally converted into a three-squeezer GHZ-type state.
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1

2 3

x

p *

Figure 3.14 Creation of a CV tripartite en-
tangled state with a single-mode squeezed
vacuum state, jx � 0i. The ellipse represents
the squeezed vacuum and the circles corre-

spond to the vacua. The beam splitter labeled
by � is a 1/2 beam splitter and the other one
is a half (1/1) beam splitter.

1

2 3

x

p *

Figure 3.15 Creation of a CV GHZ-type state
by combining a momentum-squeezed vacuum
state jp � 0i1 and two position-squeezed
vacuum states jx � 0i2 and jx � 0i3 at two
beam splitters with transmissivity/reflectivity

of 1/2 and 1/1. The ellipses represent the
squeezed vacua. The beam splitter labeled by
� is a 1/2 beam splitter and the other one is a
half (1/1) beam splitter.

OB12(cos�1 1/
p

3) and then OB23(π/4) to the input state jp D 0i1jx D 0i2jx D 0i3

yields the state in Eq. (3.55), using phase-free beam splitting operators OBk l(θ )
corresponding to the linear transformations in Eq. (2.108). The realistic finite-
squeezing case will be described in Section 3.2.3.3.

Let us now see how one can find entanglement witnesses for states with three
parties and three qumodes [165]. The goal is to extend the simple two-party two-
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mode entanglement check of the preceding section to a simple test for genuine
three-party three-mode entanglement. The criteria are to be expressed in terms of
variances of quadrature linear combinations for those qumodes involved. Defining

Ou � h1 Ox1 C h2 Ox2 C h3 Ox3 , Ov � g1 Op1 C g2 Op2 C g3 Op3 , (3.58)

a fairly general ansatz is

h(∆ Ou)2i� C h(∆ Ov )2i� � f (h1, h2, h3, g1, g2, g3) , (3.59)

as a potential necessary condition for an at least partially separable state. The posi-
tion and momentum variables Oxl and Op l are the quadratures of the three qumodes.
The hl and g l are arbitrary real parameters. We will prove the following state-
ment(s) for (at least partially) separable states,

O� D
X

i

η i O�i,k m ˝ O�i,n

) f (h1, h2, h3, g1, g2, g3) (3.60)

D (jhn gn j C jhk gk C hm gmj)/2 . (3.61)

Here, O�i,k m ˝ O�i,n indicates that the three-party density operator is a mixture of
states i where parties (qumodes) k and m may be entangled or not, but party n is
not entangled with the rest, and where (k, m , n) is any triple of (1, 2, 3). Hence, also
the fully separable state is included in the above statements. In fact, for the fully
separable state, we have

O� D
X

i

η i O�i,1 ˝ O�i,2 ˝ O�i,3

) f (h1, h2, h3, g1, g2, g3) (3.62)

D (jh1g1j C jh2g2j C jh3g3j)/2 , (3.63)

which is always greater or equal than any of the boundaries in Eq. (3.61). For the
proof, let us assume that the relevant state can be written as in Eq. (3.60). For the
combinations in Eq. (3.58), we find˝
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, (3.64)

where h� � � ii represents the expectation value in the state O�i,k m ˝ O�i,n . Note that in
the derivation so far, we have not used the particular form in Eq. (3.60) yet. Exploit-
ing this form of the state, we obtain h Oxk Oxnii D h Oxkiih Oxnii , h Oxm Oxnii D h Oxmii h Oxnii ,
and similarly for the terms involving p. Because modes k and m may be entangled
in the states i, we cannot replace h Oxk Oxmii by h Oxkiih Oxmii , and so on. By applying the
Cauchy–Schwarz inequality as in the two-party derivation of [159],

P
i Pih Oui2

i �
(
P

i Pi jh Ouii j)2, we see that the last two lines in Eq. (3.64) are bounded below by
zero. Hence, in order to prove h(∆ Ou)2i� C h(∆ Ov )2i� � (jhn gn j C jhk gk C hm gmj)/2,
it remains to be shown that for any i [recall that the mixture in Eq. (3.60) is a convex
sum with

P
i η i D 1],

h2
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i
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(∆ Opk )2˛

i
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(∆ Opm)2˛

i
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˝
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C 2hk hm

�h Oxk Oxmii � h Oxkii h Oxmii

�
C 2gk gm

�h Opk Opmii � h Opkii h Opmii

�
� (jhn gnj C jhk gk C hm gmj)/2 . (3.65)

By rewriting the left-hand side of Eq. (3.65) in terms of variances only, indeed we
find

h2
nh(∆ Oxn)2ii C g2

nh(∆ Opn)2ii

C
D
[∆ (hk Oxk C hm Oxm)]2

E
i
C
D�

∆ (gk Opk C gm Opm)
�2E

i

� ˇ̌˝�
hn Oxn , gn Opn

�˛ˇ̌C ˇ̌˝�
hk Oxk C hm Oxm , gk Opk C gm Opm

�˛ˇ̌
D (jhn gn j C jhk gk C hm gmj)/2 , (3.66)

using the sum uncertainty relation h(∆ OA)2i C h(∆ OB)2i � jh[ OA, OB ]ij and [ Oxl , Op j ] D
i δ l j /2. Hence, the statements in Eq. (3.61) with Eq. (3.60) are proven for all per-
mutations of (k, m , n) D (1, 2, 3). The inequalities Eq. (3.59) with Eqs. (3.61) and
(3.60) represent necessary conditions for all kinds of (partial) separability in a tri-
partite three-mode state. One may then prove the presence of genuine tripartite
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entanglement through violations of these inequalities, thus ruling out any (partial-
ly) separable form.

A particularly useful example for these conditions is the GHZ-type witness [165]
as expressed by the inequalities in Eq. (3.86), directly related with the CV GHZ
stabilizers discussed above. Since the three-mode GHZ state is determined by three
stabilizer combinations, the witness also only requires three such combinations
and hence it is sufficient (as well as it is necessary) to consider only (at least) two of
the three inequalities in Eq. (3.86).

Besides the above entanglement witnesses, the CV partial transpose criterion
can be utilized to decide on the separability properties of three-party three-mode
Gaussian states [166], provided the correlation matrix of the state in question is
available. For three-party three-mode Gaussian states, the only partially separable
forms are those with a bipartite splitting of 1 � 2 modes. In this case, the NPT
criterion is necessary and sufficient.

In Section 3.2.3.3, we shall describe an experiment in which tripartite CV entan-
glement was created and verified. Moreover, in another recent experiment, tripar-
tite Gaussian states with entanglement between three qumodes of three different
frequencies (colors) was demonstrated [167]. In other more recent experiments, as
we will also discuss below, entanglement between more than three parties was pro-
duced and detected in multi-mode CV graph and cluster states. In the next section,
we shall define and discuss such CV qumode graph states.

3.2.2
Cluster and Graph States

Similar to the operational definition of qubit graph states in terms of CZ -gate edges
pairwise acting upon jCi-state nodes (Section 3.1.2), we may define CV graph states
on qumodes (see Figure 3.16). For this purpose, we use the CV analogues for the
basis states, stabilizers, and gates as presented in Chapter 1, especially, in Sec-
tions 1.8 and 1.9.

ψÛ

0≈p
p

x
p

x

p
x

p
x

p
x

0≈p

0≈p

0≈p

xxie ˆˆ2 ⊗

ψ

Figure 3.16 An approximate, Gaussian CV
cluster state built from momentum-squeezed
states of light and Gaussian, CV versions of
the CZ gate, e2iOx˝Ox . In Chapter 7, we shall
see that such a cluster state becomes a re-
source for universal quantum computing on
qumodes in the limit of infinite squeezing.

In this case, an arbitrary multi-mode state
jψi attached from the left can be universally
transformed into the output state OUjψi ap-
pearing on the most right column when all
the remaining qumodes are measured out in
suitable bases.
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Let us start with every qumode representing a single node of the graph in an
infinitely squeezed zero-momentum eigenstate jp D 0i. The initial N-qumode
product state, jp D 0i˝N , is stabilized by hXk (s)i, with the WH operators Xk (s) for
qumode k D 1, . . . , N and s 2 R. The canonical generation of CV cluster states
in terms of CV CZ gates, e2i Ox˝ Ox , pairwise acting upon the input qumodes in state
jp D 0i, leads to the following evolution of the stabilizer generators,

OU �
Xk (s) ˝ 1N�1� OU† D Xk (s)

Y
l2N(k )

Zl (s) D Xk (s)
Y
l¤k

Z
A kl

l (s)

� Kk (s) , 8k 2 G , 8s 2 R , (3.67)

where OU describes all the CZ gates pairwise acting upon all qumodes of the graph
G according to the adjacency matrix elements A k l D A l k which are one when the
qumodes become connected and zero otherwise. This set of stabilizer generators
can be rewritten as

Xk (s)
Y

l2N(k )

Zl (s) D e�2is Opk

Y
l2N(k )

e2is Oxl

D e�2is
h

Opk�
P

l2N(k) Oxl

i
. (3.68)

Now, applying the stabilizer conditions to a given graph state jGi,

e�2is
h

Opk �
P

l2N(k) Oxl

i
jGi D jGi , 8s 2 R , 8k 2 G , (3.69)

immediately leads to the definition2
4 Opk �

X
l2N(k )

Oxl

3
5 ! 0 , 8k 2 G . (3.70)

Hence, we define cluster-type (graph-type) states as those multi-mode Gaussian
states for which certain quadrature correlations, as expressed by Eq. (3.70), become
perfect in the limit of infinite squeezing. More precisely, in this limit, the N-mode
graph state becomes a simultaneous zero-eigenstate of the N linear combinations
in Eq. (3.70). We therefore name these combinations nullifiers, uniquely defining
the corresponding CV graph state.

This definition covers all Gaussian states which, in the infinite-squeezing lim-
it, become zero-eigenstates of all those quadrature combinations that generate the
stabilizer group of the corresponding graph. Here, the zero-eigenstates are the rep-
resentatives for a given graph. More generally, one may define CV graph states
as common eigenstates of the corresponding quadrature combinations. Howev-
er, eigenvalues other than zero correspond to simple phase-space displacements
which have no effect on the entanglement properties of the graph states. This def-
inition then still means that the variance of the quadrature combinations vanishes
in the limit of infinite squeezing, Var[ Opk �P

l2N(k ) Oxl ] ! 0, 8k 2 G .
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A simple example for a CV graph state is the tripartite GHZ-type state defined
in the preceding section corresponding to a linear three-mode graph up to local
Fourier transforms. The graph stabilizer in this case is

S D hX(s) ˝ Z(s) ˝ 1 , Z(s) ˝ X(s) ˝ Z(s) , 1 ˝ Z(s) ˝ X(s)i , (3.71)

differing from that in Eq. (3.56) only by local Fourier rotations on qumodes 1 and 3.
More generally, GHZ-type graph states correspond to star graphs, as illustrated in
Figure 3.1b, differing from standard GHZ-type states only by local Fourier rotations
acting upon all nodes except the central one.

The CV graph states discussed so far are only defined in the unphysical limit of
infinite squeezing as expressed by Eq. (3.70), which we may rewrite as

Op � A Ox ! 0 . (3.72)

Here, Op � ( Op1, Op2, . . . , OpN )T and Ox � ( Ox1, Ox2, . . . , OxN )T are the vectors of position
and momentum operators, and A is the corresponding adjacency matrix of the
graph. Thus, Eq. (3.72) represents the entire set of N stabilizer/nullifier conditions
from Eq. (3.70). Any multi-mode Gaussian state satisfying this set of nullifier rela-
tions in the limit of infinite squeezing belongs to the same class of CV graph states
with matrix A. This matrix is symmetric (so the graph is “undirected”), has all di-
agonal entries zero (so the graph has no “self-loops”), and whenever the graph has
an edge, the corresponding element of A is one, otherwise it is zero.

There is now one straightforward and conceptually distinct generalization of the
notion of CV graph states as defined above. First, we may consider arbitrary real
elements in A instead of only zeros and ones. This gives rise to the notion of weight-

ed CV graph states. In this case, one can think of a network of “weighted” CV CZ

gates, e2igkl Oxk ˝ Oxl , again, pairwise acting upon the input qumodes in state jp D 0i
with real-valued “gains” A k l � gk l 2 R for each quadratic interaction. This leads to
a set of more general nullifiers which still satisfy Eq. (3.72) in the unphysical limit
of infinite squeezing. Thus, these weighted graph states remain stabilizer states
which are defined through idealized stabilizer conditions. We note that for qubits,
weighted graph states are no longer stabilizer states. While the additional coeffi-
cients in the CV nullifier conditions still give quadrature linear combinations, an
extra weight in the qubit CZ gates would result in non-stabilizer states.

The most general manifestation of a CV graph state, however, allows for complex-

weighted edges of the graph and correspondingly complex nullifier conditions [168].
In this case, the complex adjacency matrix shall be denoted by Z , this time with
nonzero diagonal entries including self-loops in the graph. We define the complex
nullifier conditions

Op � Z Ox D 0 , (3.73)

now representing a set of exact eigenvalue equations satisfied by the corresponding
complex-weighted graph state jGi, ( Op � Z Ox )jGi D 0. What are these generalized
graph states? One can show that every N-mode Gaussian pure state can be uniquely
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represented as a graph state with complex adjacency matrix Z , up to phase-space
displacements. In this case, finite squeezing and phase rotations such as Fourier
transforms are incorporated into Z . In other words, the complex-weighted graph
states are the physical, properly normalized versions of CV graph states.

In Section 1.8, we implicitly used the fact that all Gaussian pure states are stabi-
lizer states in order to show that their manipulation through Gaussian operations
can be efficiently classically simulated. For this CV Gottesman–Knill theorem to
hold in the regime of physical states, we needed to keep track of complex eigen-
values of non-Hermitian operators. Similarly, in Section 2.2.8.1, we used complex-
valued stabilizers (nullifiers) to uniquely represent arbitrary single-qumode Gaus-
sian pure states. Here, in the context of CV graph states, we may generalize these
results to the multi-mode case (for which we shall omit representing phase-space
displacements).

Let us see how the canonical CV cluster states, operationally defined and cre-
ated by pairwise applying the controlled Z gates, Ck l (where we define CZ � C

here), are represented when the stabilizers for physical squeezed states are used
from the beginning (see Section 2.2.8.1). The N stabilizers of the initial N momen-
tum-squeezed modes as derived in Eq. (2.84), e�e�2rk s2

Xk (s)Zk (ie�2rk s), k D
1, 2, . . . , N , are then transformed for each interaction with neighbor l as

e�e�2rk s2
Ck l Xk (s)C†

k l
Ck l Zk (ie�2rk s)C†

k l

D e�e�2rk s2
Xk (s)Zl (s)Zk (ie�2rk s) . (3.74)

Eventually, by collecting all these interactions, we obtain the N new stabilizers

e�e�2rk s2
Xk (s)Zk (ie�2rk s)

Y
l2N(k )

Zl (s) . (3.75)

In the limit of infinite squeezing rk ! 1, we get back the ideal CV cluster sta-
bilizers from Eq. (3.68). However, this time, the above stabilizers also do the job
for finite squeezing and uniquely represent the corresponding approximate cluster
state. The nullifiers can be derived from

e�e�2rk s2
Xk (s)Zk (ie�2rk s)

Y
l2N(k )

Zl (s)

D e�e�2rk s2
e�2is( Opk �ie�2rk Oxk)eCe�2rk s2 Y

l2N(k )

e2is Oxl

D e�2is( Opk�ie�2rk Oxk �
P

l Oxl) ,

8k D 1, 2, . . . , N , 8s 2 R , (3.76)

and become

Opk � ie�2rk Oxk �
X

l2N(k )

Oxl D 0 , 8k . (3.77)

This result corresponds to the complex nullifier conditions in Eq. (3.73), with a
complex adjacency matrix Z having imaginary diagonal entries ie�2rk and the re-
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maining entries being either zero or one depending on the particular graph state
with unweighted edges.

Now, we also know that any pure N-mode Gaussian state can be built from N

squeezed vacua through passive linear optics (modulo phase-space displacements,
see Chapter 2). In terms of stabilizers, this means that without loss of generality,
the stabilizers of N momentum-squeezed states are transformed as

e�e�2rk s2
U Xk(s)U†U Zk (ie�2rk s)U† D e�2is( Op 0

k �ie�2rk Ox 0
k
) . (3.78)

Here, the Op 0
k and Oq0

k are the linearly transformed momentum and position op-
erators after the corresponding (inverse) unitary transformation U. Provided this
U represents a Gaussian (Clifford) transformation, we will always obtain linear
combinations in terms of the generators on the right-hand side of Eq. (3.78). This
would include the canonical CZ interactions, as discussed before. However, now
we shall restrict ourselves to only passive, number-preserving unitaries U, without
loss of generality (recall the Bloch–Messiah decomposition discussed in Chapter 2).
The canonical case would then require that the squeezing parts of the CZ gates be
absorbed into the offline momentum squeezers corresponding to Bloch–Messiah
reduction [169].

For the case of a passive linear transformation, we can write Oa0
k

D P
l Uk l Oal , and

so Ox 0
k D P

l (ReUk l Oxl � ImUk l Op l ) and Op 0
k D P

l (ImUk l Oxl � ReUk l Op l), with some
unitary N � N matrix U , (U)k l � Uk l . Finally, through Eq. (3.78), we arrive at the
new stabilizers

e�2is
P

l [(ImUkl �ie�2rk ReUkl ) Oxl C(ReUkl Cie�2rk ImUkl ) Op l ] . (3.79)

For the nullifiers, we then obtain

(A Op C B Ox ) jGi D 0 , (3.80)

which we may rewrite as�
A�1A Op C A�1B Ox� jGi D ( Op � Z Ox ) jGi D 0 , (3.81)

with Z � �A�1 B, (A)k l � ReUk l C ie�2rk ImUk l , and (B)k l � ImUk l �
ie�2rk ReUk l . This gives us the complex adjacency matrix for an arbitrary pure
Gaussian N-mode state. We note that there are at most 4N 2 parameters to deter-
mine the stabilizer/nullifier (see Section 1.8). These, however, are not independent,
as U must be unitary and B follows from A. A general LUBO transformation has
2N 2 C N free parameters without displacements, which is the same number for
representing a symplectic transformation from Sp(2N, R). For representing pure
Gaussian N-mode states (modulo displacements), it is enough to apply a general
LUBO transformation to an N-mode vacuum state where after Bloch–Messiah re-
duction, the first passive transformation has no effect on the vacuum [169]. Thus,
N real squeezing parameters rk and N 2 parameters for the remaining passive
transformation U suffice to uniquely determine the matrices A and B, and hence
the state through Z .
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Stabilizer and graph statesJ
Qubits

unweighted graph state � any stabilizer state: (up to local Cliffords)

Xk

Y
l2N(k )

Zl jGi D Xk

Y
l¤k

Z
A kl

l
jGi D jGi , 8k 2 G , A k l D 0, 1

���� Qumodes
real-weighted graph state � any unphysical 1-squeezing stabilizer state: (up
to local Gaussian unitaries)

Op � A Ox ! 0 ,

2
4 Opk �

X
l2N(k )

gk l Oxl

3
5 ! 0 , 8k 2 G

complex-weighted graph state � any Gaussian pure state:
(up to local WH unitaries)

Op � Z Ox D 0 ,

canonical graph:

Opk � ie�2rk Oxk �
X

l2N(k )

Oxl D 0 , 8k 2 G

Even though every Gaussian pure state is effectively a graph state, these would
include trivial graphs such as products of vacuum states with an imaginary, diago-
nal Z matrix only describing self-loops. Note that, for universal quantum informa-
tion processing, not even GHZ-type star graphs would suffice as a resource. Other
nontrivial, highly entangled, two-dimensional CV graphs would be needed.

Before we start describing various experiments in which optical qumode en-
tanglement was generated, including various CV Gaussian graph states, let us
mention that there are currently five distinct proposals for preparing CV graph
states optically. The canonical generation method [171] is in one-to-one corre-
spondence with the operational definition of CV cluster states and uses CV CZ

gates for every link of the cluster. These gates are rather hard to achieve online,
that is, upon non-vacuum states such as the initial squeezed-state cluster nodes.
A second, more practical scheme would shift every squeezer to the very begin-
ning of the cluster generation circuit such that only offline, single-mode vacuum
squeezing is required and the rest is just interferometry with a suitable network of
beam splitters [169]. This works for arbitrary graph states and hence is the chosen
technique for all those experiments conducted so far, including those described
below.
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A conceptually different method for creating CV graph states is based upon a
single, quadratic OPO interaction [172]. This very compact approach is a multi-
mode extension of the method for creating a two-mode squeezed state from a sin-
gle NOPO instead of using two single-mode squeezed states from two OPOs. The
sufficient degree of nondegeneracy in order to obtain many qumodes for the de-
sired graph state can be achieved within a so-called frequency comb. Finally, there
are two more, very recent proposals for making arbitrarily large CV cluster states.
The first one would employ just a single squeezer and a single CZ gate which is
achieved through a temporal encoding where the OPO-squeezer and the CZ gate
can be reused after each measurement step [173]. A drawback of this scheme is that
the CZ gate again requires online squeezing and the need for sufficient delay lines.
The former complication, however, was eliminated very recently in a variation that
uses only four offline squeezers and six beam splitters [174].

3.2.3
Experiment: Entangled Photonic Qumodes

3.2.3.1 Frequency-Domain EPR-Type State
Nonclassical, so-called Einstein–Podolsky–Rosen (EPR) correlations were origi-
nally associated with two canonically conjugate, continuous quantum variables
such as particle position and momentum, as described in the seminal paper from
1935 [23]. Ou et al. were the first to realize these EPR correlations experimentally
in the optical setting by employing a two-mode squeezed state [156, 157]. Here, the
two-mode squeezed state can be built from two squeezed vacua using a half beam
splitter, as mentioned before. It is equivalent to the state obtainable from type-II
phase matching of a second order nonlinear crystal (�(2)) for two orthogonally
polarized (signal and idler) modes, as shown in Figure 3.17. Figure 3.18 shows the
results of the experiment in Figure 3.17.

Note that frequency sidebands at ˙Ω were used for the quadrature field ampli-
tudes in this experiment. More precisely, in accordance to the discussion on broad-
band qumodes in Section 2.2.9, the relevant state corresponds to the electromagnet-
ic field at frequency offset ˙Ω � ˙2π f within a finite bandwidth ∆Ω � 2π∆ f

about the carrier ωL (laser frequency); in other words, we have AM and FM side-
bands (recall the discussion in Section 2.1 and see Figure 2.10a).

In Figure 3.18, we have ∆2
inf X � h( NXs � gx

NXi)2i and ∆2
inf Y � h( NYs � gy

NYi )2i
with NA � A � hAi, and these values were obtained from the measurement of
the photocurrent difference Φ in Figure 3.17 [156]. Here, X and Y represent the
amplitude and phase quadratures.5) In Figure 3.18, the noise in Φ is plotted in
dB, and so Ψ0s corresponds to unity noise (with 1 D ∆2 XΨ0s

∆2YΨ0s
). Then, the

results show that ∆2
inf X ∆2

infY < 1, which is a sufficient condition for entangle-
ment.

5) More precisely, these are rescaled position and momentum variables, X � p
2 Ox and Y � p

2 Op ,
using our convention as introduced in Section 1.2.
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Figure 3.17 Scheme for creating an EPR-type
entangled state [156]. (a) Parametric cou-
pling through a second order nonlinear crystal
(�(2)) between two orthogonally polarized

modes (Signal and Idler), (b) the experimental
setup. KTP: KTiOPO4, LO: local oscillator for
homodyne detection, i: photocurrent, g: gain,
Ψ and Φ : variances of photocurrents.

Since this significant milestone, there have been further experimental demon-
strations of this type of EPR correlations [175–181].

3.2.3.2 Time-Domain EPR-Type State
Complementary to those experiments demonstrating EPR correlations in the fre-
quency domain, a more recent approach considers this type of CV entanglement
in the time domain. In order to incorporate those DV encodings and techniques
inherited from single-photon-based quantum protocols into a CV scheme and to



162 3 Entanglement

Figure 3.18 Results of the experiment in Figure 3.17 [156]; ∆2
inf X � h( NXs � gx NXi )2i and

∆2
inf Y � h( NYs � gy NYi )2i with NA � A � hAi. Subscripts s and i denote Signal and Idler. Ψ0s

corresponds to the variance without quantum correlations (entanglement).

obtain those hybrid protocols discussed in detail later, it will actually be necessary
to switch from the frequency to the time domain.

As a result, quantum correlations will no longer become manifest only in sta-
tistical form. Instead, the entanglement will be resolved, in principle, down to the
level of single shots. This corresponds to a new generation of experiments that
come along with a paradigm shift from frequency to time and from statistics to single

shots. For example, as a crucial step towards CV quantum teleportation of non-
Gaussian states such as a superposition of coherent states, a time-domain two-
mode squeezed vacuum state must be employed. The shift from frequency to time
therefore starts with the entanglement resources. These will then correspond to a
kind of “fast entanglement” as opposed to the “slow entanglement” in the frequen-
cy domain and would, in principle, allow for detecting true causal EPR correlations.

In this section, the generation and characterization of a two-mode squeezed vacu-
um state in the time domain will be explained in detail according to the experiment
of Takei et al. [182]. The EPR resource is created using two squeezed vacuum states
of continuous-wave (CW) light beams from two independent subthreshold optical
parametric oscillators (OPOs). Hence, the resource state to start with is the same as
before for the creation of frequency-domain entanglement. The two squeezed vac-
uum states have well-defined frequency and spatial modes, and almost the whole
frequency bandwidth of the OPO cavities is used in order to define a quantum state
in a temporal mode. So this time, using the broad bandwidth allows one to make
time-resolved measurements such as photon counting, as described below.

The time-domain experiment is rather different from the schemes in the fre-
quency domain [156, 175–180], including the experiment of Ou et al. which we had
discussed in the preceding section [156]. As those frequency-domain experiments
only deal with frequency sidebands a few MHz apart from the optical carrier fre-
quency, they are simply not compatible with photon counting measurements.
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The two-mode squeezed vacuum generated by subthreshold OPOs has EPR cor-
relations within the variance spectra Sx (Ω ), Sp (Ω ), as usually measured in the
frequency-domain experiments.6) In this case, Ω is a sideband frequency around
the fundamental wavelength (laser frequency). Now, for measuring the CW beams
through time-gated detection, we need to specify two temporal modes for which
the entangled quantum state is defined. Because of the broadband correlations of
the CW beams, there is a large degree of freedom for choosing these modes. For
instance, in a teleportation experiment, the temporal modes should be chosen such
that they match the temporal mode of the input state.

A simple choice of temporal mode is a square filter of duration T. Let us define
the filtered quadrature operators,

Ox f D 1p
T

TZ
0

Ox (t)dt , (3.82)

and similarly for Op f , still satisfying the usual commutation relation, [ Ox f , Op f ] D
i/2. The EPR variances for two such wavepackets corresponding to two temporal
modes will be given by [183],

	h
∆
�

Ox f

A � Ox f
B

�i2



D T

2π

C1Z
�1

Sx (Ω )
sin2 �Ω T

2

�
�Ω T

2

�2 dΩ , (3.83)

	h
∆
�

Op f

A C Op f
B

�i2



D T

2π

C1Z
�1

Sp (Ω )
sin2 �Ω T

2

�
�Ω T

2

�2 dΩ . (3.84)

The variances are thus filtered by a sinc function, and by adjusting the integration
time T, the frequency range that contributes to the integrated correlations can be
selected. The square temporal filter is simple, but not necessarily the most suitable
choice for a given application of time-domain entanglement. Theoretical investi-
gations concerning the shape of the filter combined with photon counting experi-
ments can be found in [183, 184].

A schematic diagram of the experiment is shown in Figure 3.19 [182]. The pri-
mary source of the experiment is a CW Ti:sapphire laser at 860 nm. About 90%
of this laser light is frequency doubled in an external cavity. The output beam at
430 nm is divided into two beams in order to pump two OPOs.

A two-mode squeezed vacuum is produced by combining two squeezed vacua at
a half beam splitter (HBS). Each squeezed vacuum is generated from a subthresh-
old OPO with a 10 mm long KNbO3 crystal. The crystal is temperature-tuned for
type-I noncritical phase matching. Each OPO cavity is a bow-tie-type ring cavity
consisting of two spherical mirrors (radius of curvature 50 mm) and two flat mir-
rors. The round trip length is about 500 mm and the waist size in the crystal is
20 µm. An output coupler has transmissivity of 12.7%, while the other mirrors

6) Sx (Ω ) and Sp (Ω ) correspond to ∆2
inf X and ∆2

inf Y of Ou et al. [156], respectively.
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 OPO2

OPO1

ALICE

BOB

PCLO

LO
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PZT

PZT
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shutter

shutter
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Figure 3.19 Setup of the time-domain EPR
experiment [182]. OPOs: sub-threshold optical
parametric oscillators, HBS: a half beam-
splitter, PZTs: piezo-electric transducers, LOs:
local oscillators, ADC: an analogue-to-digital
converter. The ADC is an ingredient specific to

the time-domain experiment and would not be
used in a frequency-domain experiment. The
measured quantities here are amplitudes and
no more intensities, as they would be mea-
sured in a spectrum analyzer of a frequency-
domain experiment.

have a coating with extremely high reflectivity at 860 nm. They also have a high
transmittivity for 430 nm so that the pump beam passes the crystal only once. The
pump power is about 70 mW for each OPO. The total intracavity losses are around
2%, giving a cavity bandwidth of 7 MHz HWHM. The resonant frequency of the
OPO is locked via the FM sideband locking method [185] by introducing a lock
beam which counterpropagates against the squeezed vacuum beam in order to
avoid any interference between the two beams.

The two output beams A and B from the HBS are measured using homodyne de-
tectors with a bandwidth of 8.4 MHz. The relative phases between the EPR beams
and the local oscillators (LOs), that is, the x and p quadratures are locked in the
following way. First, weak coherent beams that propagate along the same paths as
the squeezed states are injected into the OPOs from one of the flat mirrors. These
are then used for the conventional dither and lock method. The relative phases
between the weak coherent beams and the squeezed vacua at the HBS are actively
controlled by applying feedback voltages to piezo-actuators (PZTs). The quadratures
to be detected by the homodyne detectors are also adjusted by locking the phases
between the LOs and the injected coherent beams. However, the weak beams and
the modulation on them will contaminate the EPR correlations in some frequen-
cy ranges. Therefore, eventually we need to remove these beams and achieve the
phase locking without them.

For this purpose, an electronic circuit is introduced that holds the feedback volt-
age and keeps the phase relation for some time. Within 2 ms, the beams are blocked
using mechanical shutters before the OPOs and the EPR beams are measured
by the homodyne detectors. Each output from the detectors is sampled with an
analogue-to-digital converter (ADC) at a rate of 5 � 107 samples per second and
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is then filtered on a computer to yield a certain number of measured quadrature
values.

Before observing the EPR correlations through time-gated measurements, the
frequency bandwidth of the OPOs was estimated in order to determine the effective
time interval of a temporal mode. Figure 3.20 shows the frequency spectra Sx (Ω )
and Sp (Ω ) for the measured EPR beams calculated by digital Fourier analysis on
the 50 M-sampled raw data. The EPR correlations are observed over the full band-
width of the OPOs. In particular, they are present at frequencies as low as 5 kHz
(a high pass filter with a cut-off of 5 kHz is used to eliminate noise at frequen-
cies close to DC). Such correlations at sufficiently low frequencies are essential
for the non-Gaussian photon subtraction experiments discussed later.7) From these
results, one can determine a quantum state within the time interval that corre-
sponds to the inverse of the cavity bandwidth (7 MHz). Since the EPR correlations
degrade at higher frequencies, the temporal filter of Eq. (3.82) with an integration
time of T D 0.2 µs was used, yielding 10 000 points in every measurement round.
It follows from the frequency filters expressed by the sinc functions in Eqs. (3.83)
and (3.84) that we mainly select a frequency range below 5 MHz.

Now, one can explicitly compare the time-resolved quadrature values measured
for the beams A and B in every 0.2 µs time interval instead of measuring the
variances h[∆( Ox f

A � Ox f
B )]2i and h[∆( Op f

A C Op f
B )]2i, as done in the frequency-domain

experiments [156, 175–177]. This approach also differs from the pulsed scheme
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Figure 3.20 Fourier analysis of the 50M-sampled raw data without averaging. (a) Sx (Ω ) for

h[∆( Ox f
A � Ox f

B )]2i. (b) Sp (Ω ) for h[∆( Op f
A C Op f

B )]2i. Each trace is normalized to the corresponding
vacuum level.

7) In principle, it would be better to have access to even lower frequencies near zero Hz. In practice,
however, those very low frequency components below 5 kHz are often neglected, for instance, in
non-Gaussian state creation through photon subtraction [186]. Therefore, for practical purposes,
very low frequency components are not required in the EPR source, for example, when teleporting
such non-Gaussian states.
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of [181] where the EPR beams are recombined at a beam splitter, yielding two
unentangled squeezed vacua of which one is measured by homodyne detec-
tion.

Figure 3.21 shows a typical example for the measured quadrature values with-
in a time interval of T D 0.2 µs. In this example, only 50 points are picked up.
As mentioned above, the measured values behave in such a way that the x and p

quadratures are correlated (x f

A ' x
f

B ) and anticorrelated (p
f

A ' �p
f

B ), respectively.
Hence, EPR-type correlations are verified in the time domain.

The quality of the EPR correlations can be estimated by using correlation di-
agrams like those with 10 000 points shown in Figure 3.22. When repeating the
same measurement ten times, correlations, compared to the vacuum level, corre-
sponding to h[∆( Ox f

A � Ox f
B )]2i D �3.30 ˙ 0.28 dB and h[∆( Op f

A C Op f
B )]2i D �3.74 ˙

0.32 dB are obtained. Accordingly, the sufficient entanglement criteria of Duan
et al. are satisfied: h[∆( Ox f

A � Ox f
B )]2i C h[∆( Op f

A C Op f
B )]2i D 0.45 ˙ 0.02 < 1.

As a result, the generated state is entangled for two temporal modes defined over
the time interval T D 0.2 µs. While it is, in principle, possible to further reduce
the integration time T for faster data acquisition and hence potentially faster (quan-
tum) information processing, the EPR correlations would degrade in this case due
to the contribution of higher frequencies. Alternatively, it is also possible to obtain
correlations over a broader bandwidth by using OPOs of smaller size correspond-
ing to shorter round-trip length, or by employing waveguide crystals, for example,
periodically poled lithium niobate waveguides [187].
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Figure 3.21 Typical measured correlations.
Only 50 points are used to generate this plot.
(a) and (b) are measured quadrature values
within a time interval of T D 0.2 µs for the x
and p quadratures, respectively. In each figure,
trace (i) is for beam A, while (ii) is for beam
B. In the frequency-domain experiments, none
of these single-shot points would be actually

recorded; in order to reveal the frequency EPR
correlations, the Fourier-transformed power
spectrum is directly detected. In contrast, here
the EPR correlations are much “faster” and
can be resolved by recording a small number
of points. In principle, true causal EPR corre-
lations would even be present for every single
shot.
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Figure 3.22 Correlation diagrams of 10 000 measured values for (a) x and (b) p quadratures.

3.2.3.3 GHZ-Type State
We shall describe the experiment of Aoki et al. [188] in detail. In the real experi-
ment, only finite squeezing is available. Thus, the output state is no longer the ideal
CV GHZ state – it is rather GHZ-type. Accordingly, total momentum and relative
positions have finite variances: h[∆( Op1 C Op2 C Op3)]2i > 0 and h[∆( Oxi � Ox j )]2i > 0.
This becomes clear when we express the operators for the output mode i in the
Heisenberg picture [161]:

Ox1 D 1p
3

eCr1 Ox (0)
1 C

r
2
3

e�r2 Ox (0)
2 ,

Op1 D 1p
3

e�r1 Op (0)
1 C

r
2
3

eCr2 Op (0)
2 ,

Ox2 D 1p
3

eCr1 Ox (0)
1 � 1p

6
e�r2 Ox (0)

2 C 1p
2

e�r3 Ox (0)
3 ,

Op2 D 1p
3

e�r1 Op (0)
1 � 1p

6
eCr2 Op (0)

2 C 1p
2

eCr3 Op (0)
3 ,

Ox3 D 1p
3

eCr1 Ox (0)
1 � 1p

6
e�r2 Ox (0)

2 � 1p
2

e�r3 Ox (0)
3 ,

Op3 D 1p
3

e�r1 Op (0)
1 � 1p

6
eCr2 Op (0)

2 � 1p
2

eCr3 Op (0)
3 . (3.85)

Here, a superscript (0) denotes initial vacuum modes, and r1, r2, and r3 are the
squeezing parameters. In addition to the finite squeezing, the inevitable losses in
the experiment further degrade the entanglement. It is important to stabilize the
relative phase of the three input modes in order to properly adjust the squeezing
directions. The phase fluctuations in this stabilization lead to an extra degradation
of the entanglement. As a result, the output state does not necessarily exhibit gen-
uine tripartite entanglement: it may be fully or partially separable. Therefore, we
need to experimentally verify the full inseparability of the state.
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A feasible scheme for this purpose is to check the following set of inequali-
ties [165] (see Section 3.2.1.2):

I.
D�

∆( Ox1 � Ox2)
�2EC

D�
∆( Op1 C Op2 C g3 Op3)

�2E � 1 ,

II.
D�

∆( Ox2 � Ox3)
�2EC

D�
∆(g1 Op1 C Op2 C Op3)

�2E � 1 ,

III.
D�

∆( Ox3 � Ox1)
�2EC

D�
∆( Op1 C g2 Op2 C Op3)

�2E � 1 . (3.86)

Here, the gi are arbitrary real parameters. Note that the variances of the vacuum
state are h(∆ Ox (0)

i )2i D h(∆ Op (0)
i )2i D 1/4.

The violation of inequality I. is a sufficient condition for the inseparability of
modes 1 and 2, and is a criterion for the success of a quantum protocol between
parties 1 and 2. Note that inequality I. alone does not impose any restriction on the
separability of mode 3 from the others. In other words, the success of a quantum
protocol between parties 1 and 2 with the help of party 3 (by conveying classical
information about a measurement of Op3 [161]) does not prove the inseparability of
the third party from the rest. Thus, we need to check the violation of at least two
of the three inequalities Eq. (3.86) to verify the full inseparability of the tripartite
entangled state.

From Eq. (3.85), we find that the optimum gain g
opt
i to minimize the l.h.s. of the

inequalities in Eq. (3.86) depends on the squeezing parameters, namely,

g
opt
i D eC2r2 � e�2r1

eC2r2 C 1
2 e�2r1

, (3.87)

where r2 D r3 (which makes the three-mode state totally symmetric and hence g
opt
i

independent of i). In the case of infinite squeezing (CV GHZ state), the optimum
gain g

opt
i is one, while it is less than one for finite squeezing. Although the smallest

values of the l.h.s. of the inequalities in Eq. (3.86) are observed when we experi-
mentally adjust g

opt
i , Aoki et al. employed gi D 1 for all i [188]. This makes the

experimental verification simpler. Moreover, the measured variances then directly
correspond to those of the eigenvalues of the ideal CV GHZ state. Figure 3.23
shows the schematic of the experimental setup to generate three independent
squeezed vacuum states [188].

Figure 3.24 shows the noise-power measurement results on output mode 1 as an
example of noise-power measurements on each output mode. The minimum noise
of 1.14 ˙ 0.25 dB compared to the corresponding vacuum noise level is observed
for the x quadrature, while the maximum noise of 4.69 ˙ 0.26 dB is observed for
the p quadrature. Similarly, the minimum noise of 0.75 ˙ 0.27 and 1.21 ˙ 0.29 dB
for the x quadrature and the maximum noise of 4.12 ˙ 0.27 and 4.69 ˙ 0.21 dB for
p are observed for output modes 2 and 3, respectively.

The variances of the relative positions and the total momentum are measured
to check the inequalities in Eq. (3.86). Figure 3.25a shows the schematic of the
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Figure 3.23 Schematic of the generation of three independent squeezed vacuum states [188].
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Figure 3.24 Noise measurement results
on output mode 1 alone [188]. (i) repre-
sents the corresponding vacuum noise
h(∆ Ox (0)

1 )2i D 1/4; (ii) the noise of the x
quadrature h(∆ Ox1)2i; (iii) the noise of the p

quadrature h(∆ Op1)2i; (iv) the noise of the
scanned phase. The measurement frequency
is centered at 900 kHz, resolution bandwidth
is 30 kHz, video bandwidth is 300 Hz. Except
for (iv) traces are averaged ten times.

measurement of the variances h[∆( Ox1 � Ox2)]2i and h[∆( Ox2 � Ox3)]2i. The outputs
of the homodyne detection are electronically subtracted, and the noise power is
measured by spectrum analyzers. The variance h[∆( Ox3 � Ox1)]2i is measured in a
similar manner. In the case of the variance h[∆( Op1 C Op2 C Op3)]2i, the noise power
of the electronical sum of the homodyne detection outputs is measured as shown
in Figure 3.25b.
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Figure 3.25 Schematic of the measurements
of the variances (a) h[∆( Ox1 � Ox2)]2i and
h[∆( Ox2 � Ox3)]2i and (b) h[∆( Op1 C Op2 C Op3)]2i.
BS1 and BS2 are beam splitters with t/ r ratios
of 1/2 and 1/1, respectively [188]. The ellipses

illustrate the squeezed quadrature of each
beam. LOi x ,p denote local oscillator beams for
homodyne detector i with their phases locked
at the x and p quadratures, respectively.

Figure 3.26 shows a series of measurement results of (a) h[∆( Ox1 � Ox2)]2i,
(b) h[∆( Ox2 � Ox3)]2i, (c) h[∆( Ox3 � Ox1)]2i, and (d) h[∆( Op1 C Op2 C Op3)]2i, which have the
average noise power of �1.95, �2.04, �1.78, and �1.75 dB, respectively, compared
to the corresponding vacuum noise level. These results clearly show the nonclas-
sical correlations among the three modes. After repeating the measurement series
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Figure 3.26 Noise measurement results
corresponding to the variances of the l.h.s.
of Eq. (3.86) [188]. (a) (i) is h[∆( Ox (0)

1 �
Ox (0)
2 )]2i D 1/2 and (ii) is h[∆( Ox1 � Ox2)]2i;

(b) (i) h[∆( Ox (0)
2 � Ox (0)

3 )]2i D 1/2 and

(ii) h[∆( Ox2 � Ox3)]2i; (c) (i) h[∆( Ox (0)
3 �

Ox (0)
1 )]2i D 1/2 and (ii) h[∆( Ox3 � Ox1)]2i;

(d) (i) h[∆( Op (0)
1 C Op (0)

2 C Op (0)
3 )]2i D 3/4 and

(ii) h[∆( Op1 C Op2 C Op3)]2i. The measurement
conditions are the same as for Figure 3.24
with ten times averages.

ten times, the following values are measured for the l.h.s. of Eq. (3.86),

I.
D�

∆( Ox1 � Ox2)
�2EC

D�
∆( Op1 C Op2 C Op3)

�2E
D 0.851 ˙ 0.062 < 1 ,

II.
D�

∆( Ox2 � Ox3)
�2EC

D�
∆( Op1 C Op2 C Op3)

�2E
D 0.840 ˙ 0.065 < 1 ,

III.
D�

∆( Ox3 � Ox1)
�2EC

D�
∆( Op1 C Op2 C Op3)

�2E
D 0.867 ˙ 0.062 < 1 . (3.88)
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Since violations of all the inequalities are shown, the full inseparability of the gen-
erated tripartite entangled state is proved.

3.2.3.4 Cluster-Type States
Similar to GHZ states, one can create CV cluster states with squeezed vacua and
beam splitters. In this section, we explain the creation of four-mode cluster states
in detail according to the experiment of Yukawa et al. [189].

The quadrature correlations of cluster-type states are such that in the limit of
infinite squeezing, the states become zero eigenstates of a set of quadrature com-
binations,0

@ Opa �
X

b2Na

Oxb

1
A ! 0 , 8a 2 G , (3.89)

as explained in Section 3.2.2.
A possible way to obtain CV cluster states is to entangle a corresponding number

of optical modes, each initially in a squeezed state through quantum nondemoli-
tion, in analogy to the creation of qubit cluster states via controlled sign gates. We
may refer to this specific type of cluster states as canonical cluster states [169]. Ex-
perimentally, the optical CV QND gates for every single link of the cluster state can
be realized with two beam splitters and two on-line squeezers [89] for each link.
Alternatively, the initial squeezing transformations can be absorbed into the entire
QND network; after Bloch–Messiah reduction [89], only off-line squeezed states
and linear optics are effectively needed to produce a canonical cluster state [169].

In another approach for building CV cluster-type states from squeezed light us-
ing linear optics [169], the beam splitter network is carefully chosen such that, by
construction, all antisqueezing components are completely eliminated in the out-
put operator combinations, Opa � Σb2Na

Oxb ; hence, these combinations, being pro-
portional to the squeezing factor, Opa�Σb2Na

Oxb / e�r , automatically satisfy the con-
ditions of Eq. (3.89) in the limit of infinite squeezing r ! 1. Moreover, generat-
ing cluster-type states in this way requires smaller degrees of input squeezing than
needed for making the canonical states with the same quality of correlations [169].

The complete removal of antisqueezing components is particularly beneficial,
as in the actual experiment, the antisqueezing levels are typically greater than the
squeezing levels due to experimental imperfections such as losses and fluctuations
in the phase locking. By employing the above-mentioned method for eliminating
the antisqueezing components in the experiment being explained here, we can ob-
serve that the single-mode squeezing levels of the input states before the generation
of the cluster states are effectively reproduced in the multi-mode squeezing levels
of the resulting cluster states. This is in contrast to the experiments of [190, 191],
where the antisqueezing components are not completely suppressed. Another ad-
vantage of the approach here is that the resulting quadrature correlations are pre-
cisely those occurring in the excess noise terms when quantum information prop-
agates through a CV Gaussian cluster state [171]. Suppressing this excess noise
efficiently means reducing the errors in cluster-based quantum computations.
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According to the efficient method proposed in [169], Yukawa et al. created three
kinds of four-mode CV cluster states in this experiment, including a linear cluster
state, a square cluster state, and a T-shape cluster state (see Figure 3.27) [189].

In general, four-mode CV graph states can be built from four off-line squeezed
states using up to six beam splitters [121, 169]. For the linear four-mode cluster
state, three beam splitters have been shown to be sufficient [169]. Similarly, on-
ly three beam splitters are needed to produce the square and the T-shape cluster
states. The optical setups are illustrated in detail below.

In order to create these cluster states, four p-squeezed states with mode opera-
tors Oai D eCri Ox (0)

i C ie�ri Op (0)
i (i D 1, . . . , 4) are prepared first. A superscript (0)

denotes initial vacuum modes and ri is the squeezing parameter of the ith mode.
For a unitary matrix U representing a sequence of beam splitters, the output mode
operators Oa0

i can be obtained according to Oa0
i D Σ j Ui j Oa j .

A possible solution for the matrix UL giving the linear cluster state is [169]

UL D

0
BBBBB@

1p
2

1p
10

2ip
10

0
ip
2

� ip
10

2p
10

0

0 � 2p
10

ip
10

ip
2

0 � 2ip
10

� 1p
10

1p
2

1
CCCCCA . (3.90)

With this matrix, the quadrature quantum correlations of the output state be-
come

OpL1 � OxL2 D p
2e�r1 Op (0)

1 ,

OpL2 � OxL1 � OxL3 D
r

5
2

e�r3 Op (0)
3 C 1p

2
e�r4 Op (0)

4 ,

OpL3 � OxL2 � OxL4 D 1p
2

e�r1 Op (0)
1 �

r
5
2

e�r2 Op (0)
2 ,

OpL4 � OxL3 D p
2e�r4 Op (0)

4 . (3.91)

All these linear combinations are proportional to the squeezing factors approach-
ing zero in the limit of infinite squeezing. Hence, the output state is a linear four-
mode cluster state in agreement with Eq. (3.89).

The matrix UL can be decomposed into UL D F4S12F
†
1 BC

34 (1/
p

2)BC
21 (1/

p
2) �

B�
23(1/

p
5)F3F4. Here, Fk denotes the Fourier transform (90ı rotation in phase

space) of mode k, Oak ! i Oak . B˙
i j (t) corresponds to a beam splitter transformation

of modes i and j with transmittance parameter t; it is equivalent to the four-mode

Figure 3.27 The created four-mode cluster states. Each cluster node, corresponding to an opti-
cal mode, is represented by a circle. Neighboring nodes are connected by lines.
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identity matrix except for (B˙
i j )i i D t, (B˙

i j )i j D p
1 � t2, (B˙

i j ) j i D ˙p
1 � t2 and

(B˙
i j ) j j D 	t. Si j is the swapping operation of modes i and j. As a result, two

symmetric beam splitters and one 1 : 4 beam splitter can be used.
Let us now consider the square cluster state. A possible solution for the unitary

matrix US is

US D

0
BBBBB@

� 1p
2

� 1p
10

� 2ip
10

0
1p

2
� 1p

10
� 2ip

10
0

0 � 2ip
10

� 1p
10

� 1p
2

0 � 2ip
10

� 1p
10

1p
2

1
CCCCCA . (3.92)

The correlations of the output state are

OpS1 � OxS3 � OxS4 D � 1p
2

e�r1 Op (0)
1 �

r
5
2

e�r2 Op (0)
2 ,

OpS2 � OxS3 � OxS4 D 1p
2

e�r1 Op (0)
1 �

r
5
2

e�r2 Op (0)
2 ,

OpS3 � OxS1 � OxS2 D �
r

5
2

e�r3 Op (0)
3 � 1p

2
e�r4 Op (0)

4 ,

OpS4 � OxS1 � OxS2 D �
r

5
2

e�r3 Op (0)
3 C 1p

2
e�r4 Op (0)

4 , (3.93)

all of which approach zero in the limit of infinite squeezing.
We find that the matrix US is equal to UaddUL, with Uadd D diag (�1, �i, i, 1).

Thus, the square cluster state can be obtained from the linear cluster state via local
Fourier transforms. In the experiment, the local Fourier transforms can be easily
achieved by changing the locking phase of the local oscillator beams. Therefore,
the optical setup for the square cluster state is more or less identical to that for the
linear cluster state. Using the identities, OpS1 � OxS3 � OxS4 D � OpL1 C OpL3 � OxL4, OpS2 �
OxS3 � OxS4 D � OxL2 C OpL3 � OxL4, OpS3 � OxS1 � OxS2 D OxL1 � OpL2 C OxL3, OpS4 � OxS1 � OxS2 D
OxL1 � OpL2 C OpL4, the measurement of the correlations of the linear cluster state and
the square cluster state can be performed in a single experiment.

Finally, the T-shape cluster state can be obtained from four p-squeezed states
followed by a unitary transform,

UT D

0
BBBB@

ip
2

1
2

i
2 0

1p
2

i
2 � 1

2 0

0 i
2

1
2

1p
2

0 i
2

1
2 � 1p

2

1
CCCCA . (3.94)

This can also be decomposed into UT D F
†
1 BC

34 (1/
p

2)BC
21 (1/

p
2)B�

32(1/
p

2)F2.
Thus, this time, the optical setup has to be modified, but three beam splitters are
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still sufficient. The quantum correlations of the output state are

OpT1 � OxT2 � OxT3 � OxT4 D 2e�r2 Op (0)
2 ,

OpT2 � OxT1 D p
2e�r1 Op (0)

1 ,

OpT3 � OxT1 D 1p
2

e�r2 Op (0)
2 C e�r3 Op (0)

3 C 1p
2

e�r4 Op (0)
4 ,

OpT4 � OxT1 D 1p
2

e�r2 Op (0)
2 C e�r3 Op (0)

3 � 1p
2

e�r4 Op (0)
4 . (3.95)

They all approach zero in the limit of infinite squeezing. Hence, the output state is
a T-shape cluster state according to Eq. (3.89). Note that up to local Fourier trans-
forms, the T-shape cluster state is equivalent to a four-mode GHZ-type state [161].

From here, we explain the experimental implementation in detail. The schemat-
ic of the optical setups is shown in Figure 3.28 [189]. They used a continuous-wave
Ti:sapphire laser (Coherent MBR110, λ D 860 nm) as a light source. In order to
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Figure 3.28 The schematic of the optical se-
tups to create the linear cluster state (a) and
T-shape cluster state (b) [189]. Four squeezed
states are generated by OPOs (optical para-
metric oscillators). HBS is half beam splitter

and 20% is 1 : 4 beam splitter. Boxes includ-
ing i are Fourier transforms (90ı rotations in
phase space), and �i is a �90ı rotation. LO
is local oscillator for homodyne detection of
the output states.
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generate squeezed states, optical parametric oscillators (OPOs) were used via opti-
cal degenerate parametric downconversion. Periodically poled KTiOPO4 (PPKTP)
crystals were employed as nonlinear optical media. Each OPO is pumped by a sec-
ond harmonic beam obtained from a cavity which contains a potassium niobate
(KNbO3) crystal for second harmonic generation. The pump powers ranged from
76 to 96 mW.

Weak coherent beams are also injected into the OPOs and the emitted beams
are set to 2 µW. On each beam, phase modulations are applied for locking, with
140 kHz for OPO2, 210 kHz for OPO3, and 98 kHz for OPO1 and OPO4. In this
experiment, a 1 MHz sideband is chosen for the measurements so the phase mod-
ulations do not affect these measurements.

An output state is measured via homodyne detection with a strong beam around
5mW used as a local oscillator. The homodyne detector gives a voltage signal of the
measurement result. After electronically combining the outputs of the homodyne
detectors, the signals of the correlations can be obtained. The signals are sent to a
spectrum analyzer in order to get the measurement data.

Figures 3.29 and 3.30 show the results of the measurements. Theoretically, the
correlations should be proportional to the squeezing levels. Every graph shows the
results with squeezing and without squeezing. For the linear cluster state and the
square cluster state, h[∆( OpL1 � OxL2)]2i D �5.4 ˙ 0.2 dB, h[∆( OpL2 � OxL1 � OxL3)]2i D
h[∆( OpS3 � OxS1 � OxS2)]2i D �5.8 ˙ 0.2 dB, h[∆( OpL3 � OxL2 � OxL4)]2i D h[∆( OpS2 � OxS3 �
OxS4)]2i D �5.3˙0.2 dB, h[∆( OpL4 � OxL3)]2i D �5.8˙0.2 dB, h[∆( OpS1 � OxS3 � OxS4)]2i D
�5.2 ˙ 0.2 dB, h[∆( OpS4 � OxS1 � OxS2)]2i D �5.9 ˙ 0.2 dB are obtained. We point out
again that only six measurements are sufficient to detect the eight correlations of
these two states.

For the T-shape cluster state, the results of the measurements are h[∆( OpT1 � OxT2 �
OxT3 � OxT4)]2i D �6.0˙0.2 dB, h[∆( OpT2 � OxT1)]2i D �5.2˙0.2 dB, h[∆( OpT3 � OxT1)]2i D
�4.9 ˙ 0.2 dB and h[∆( OpT4 � OxT1)]2i D �5.2 ˙ 0.2 dB.

Various ways for constructing multi-party entanglement witnesses (i.e., observ-
ables for detecting the presence of multi-party entanglement) are known in the
regime of CV multi-mode states [165, 192]. We employ the method of [165] using
a set of sufficient conditions for the full inseparability of a multi-mode state which
can be easily tested with our experimental results. The corresponding inequalities
to be satisfied are shown below. Recall that if the linear cluster state is confirmed
to be fully inseparable, the full inseparability of the square cluster state is verified
at the same time as the square and linear cluster states are locally equivalent up to
local Fourier transforms. For the linear cluster state, we obtainD�

∆( OpL1 � OxL2)
�2EC

D�
∆( OpL2 � OxL1 � OxL3)

�2E
< 1 ,D�

∆( OpL3 � OxL2 � OxL4)
�2EC

D�
∆( OpL2 � OxL1 � OxL3)

�2E
< 1 ,D�

∆( OpL3 � OxL2 � OxL4)
�2EC

D�
∆( OpL4 � OxL3)

�2E
< 1 . (3.96)
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Figure 3.29 In all graphs, the measurement
variances without squeezing (a) and with
squeezing (c) are shown [189]. The graphs
in (a) are the results of h[∆( OpL1 � OxL2)]2i
and h[∆( OpL2 � OxL1 � OxL3)]2i D h[∆( OpS3 �
OxS1 � OxS2)]2i. The ones in (b) are for
h[∆( OpL3�OxL2�OxL4)]2i D h[∆( OpS2�OxS3�OxS4)]2i

and h[∆( OpL4 � OxL3)]2i. The ones in (c)
are for h[∆( OpS1 � OxS3 � OxS4)]2i and
h[∆( OpS4 � OxS1 � OxS2)]2i. The measurement
frequency is 1 MHz, resolution bandwidth is
30 kHz, and video bandwidth is 300 Hz. All
results are obtained with 20 times averaging.

For the T-shape cluster state, we haveD�
∆( OpT2 � OxT1)

�2EC
D�

∆( OpT1 � OxT2 � OxT3 � OxT4)
�2E

< 1 ,D�
∆( OpT3 � OxT1)

�2EC
D�

∆( OpT1 � OxT2 � OxT3 � OxT4)
�2E

< 1 ,D�
∆( OpT4 � OxT1)

�2EC
D�

∆( OpT1 � OxT2 � OxT3 � OxT4)
�2E

< 1 . (3.97)

Note that the variances of a vacuum state are h[∆ Oxvac]2i D h[∆ Opvac]2i D 1/4.
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Figure 3.30 The graphs in (a) h[∆( OpT1 � OxT2 � OxT3 � OxT4)]2i and h[∆( OpT2 � OxT1)]2i. The graphs in
(b) h[∆( OpT3 � OxT1)]2i and h[∆( OpT4 � OxT1)]2i. The conditions of the measurements are the same
as in Figure 3.29.

The values of the left-hand sides of the inequalities are 0.34 ˙ 0.02, 0.42 ˙ 0.02,
and 0.35 ˙ 0.02 for Eq. (3.96), respectively, and 0.42 ˙ 0.02, 0.43 ˙ 0.02, and 0.42 ˙
0.02 for Eq. (3.97), respectively. Thus, all inequalities are simultaneously satisfied
and hence the full inseparability of the created cluster states is verified [165].

Besides confirming the inseparability of the cluster states, Yukawa et al. also
verified that the measured correlations correspond to the squeezing levels of the
input states [189]. It is possible to detect the squeezing levels by removing the
beam splitters. The measured squeezing levels range from �5.5 to �6.3 dB and
the antisqueezing levels are between C9.1 and C11.9 dB. After removing the beam
splitters needed for generating the cluster states, the signal at this stage of the
experiment is free of fluctuations in phase locking. Therefore, the squeezing lev-
els are slightly better than the measured correlations. Nonetheless, these results
demonstrate the efficient generation of the desired quadrature quantum correla-
tions through cancellation of all antisqueezing components of the light fields in-
volved.
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4
Quantum Teleportation

In this chapter, we will describe various experiments in detail in which photonic
quantum states encoded into qubits or qumodes were teleported using optical re-
sources of entanglement. In Section 1.6, we introduced the concept of quantum
teleportation and specific protocols for it in the DV and CV regime. In this case,
ideally, the input states will be transferred from the sender to the receiver with unit
fidelity. Quantum state manipulation is not wanted in standard quantum telepor-
tation, only quantum state transfer as faithfully as possible.

The teleportation experiments described here include, respectively for qubits and
qumodes, quantum teleportation of a qubit and a coherent state from one sender
to one receiver (Sections 4.1.1 and 4.2.1) and from one sender to two receivers in-
volving an approximate form of quantum state cloning (Sections 4.1.2 and 4.2.2);
quantum teleportation of halves of entangled states, so-called entanglement swap-
ping (Sections 4.1.3 and 4.2.4); and for qumodes, in Section 4.2.3, we will describe
an experiment of a quantum teleportation network which achieves the nonclassi-
cal transfer of coherent states between any two parties in a small network of three
nodes and participants.

In these experiments, all or at least one or two of the following three criteria were
fulfilled:

1. An “unknown” quantum state enters the sending station for teleportation.
2. A teleported state emerges from the receiving station for subsequent evaluation

or exploitation.
3. The degree of overlap between the input and the teleported states is higher

than that which could be achieved if the sending and the receiving stations
were linked only by a classical channel.

Especially, the third criterion becomes important in a realistic experimental situa-
tion when the entangled resource and the quantum operations are not ideal as it
is the case, for instance, in CV quantum teleportation using imperfect squeezed-
light resources. In contrast, in the DV quantum teleportation experiments, most
subtle are the first two criteria. In this case, since typically some form of postselec-
tion is employed, the physical occurrence of actual input and output states to the
teleporter is not automatically guaranteed.

Quantum Teleportation and Entanglement. Akira Furusawa, Peter van Loock
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40930-3
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4.1
Qubit Quantum Teleportation

As we explained in Section 1.6, through DV quantum teleportation, an arbitrary,
unknown qubit state can be transferred using shared entanglement and classical
communication. If instead, without using shared entanglement, Alice and Bob at-
tempted to transfer the qubit state, Alice would have to measure the state in order
to gain as much information as possible and to convey this classical information
to Bob who would eventually prepare a quantum state according to that informa-
tion. This classical teleportation of an unknown qubit state achieves a fidelity of
F D 2/3 at most. This value represents the boundary between classical and quan-
tum teleportation when unknown qubit states are to be transmitted [193]. Let us
now discuss various qubit teleportation experiments.

4.1.1
Experiment: Qubit Quantum Teleportation

One of the most famous experiments of qubit teleportation was performed by
Bouwmeester et al. [194]. In this section, we shall explain it in detail.

Figure 4.1 shows the scheme of qubit teleportation as done by Bouwmeester
et al. [194]. First, Alice and Bob share a polarization entangled photon pair,

jΨ (�)i D 1p
2

(j$iA ˝ jliB � jliA ˝ j$iB) , (4.1)

which can be created by the method shown in Section 3.1.3.1.
Alice now performs a Bell measurement on the input c0j$iin C c1jliin and her

entangled photon. This Bell measurement can be understood from the following
decomposition (recall Section 1.6),

(c0j$iin C c1jliin) ˝ ˇ̌
Ψ (�)˛

AB

D 1
2

h ˇ̌
Ψ (�)˛

inA ˝ (�c0 j$iB � c1 jliB)

C
ˇ̌̌
Ψ (C)

E
inA

˝ (�c0 j$iB C c1 jliB)

C ˇ̌
Φ (�)˛

inA ˝ (c0 jliB C c1 j$iB)

C
ˇ̌̌
Φ (C)

E
inA

˝ (c0 jliB � c1 j$iB)
i

, (4.2)

where jΨ (˙)i and jΦ (˙)i are the Bell states defined in Eq. (3.19).
In the experiment of Bouwmeester et al., only the case of jΨ (�)iinA can be detect-

ed. This is because their scheme of Bell measurement corresponds to simultaneous
detection of photons at detectors f1 and f2 as follows.

Simultaneous detection of photons at detectors f1 and f2 may be represented by
h0j Oa j

f1 Oak
f2 [195], where j, k D $, l and,

Oa j

f1 D 1p
2

�
Oa j

in C Oa j

A

�
, Oa j

f2 D 1p
2

�
Oa j

in � Oa j

A

�
. (4.3)
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Figure 4.1 Scheme of qubit quantum teleportation demonstrated by Bouwmeester et al. [194].
(a) the concept, (b) the experimental setup.

Here, the relations of Eq. (4.3) come from a half beam splitter at Alice. Therefore,
h0j Oa j

f1 Oak
f2 becomes

h0j Oa j

f1 Oak
f2 D 1

2
h0j
�

Oa j

in Oak
in C Oa j

A Oak
in � Oa j

in Oak
A � Oa j

A Oak
A

�
. (4.4)

If we neglect the probability of two photons in the input and Alice’s mode, we can
omit Oa j

in Oak
in and Oa j

A Oak
A in Eq. (4.4). Thus, the final expression of h0j Oa j

f1 Oak
f2 becomes

h0j Oa j

f1 Oak
f2 D

(
˙ 1p

2 inA
˝
Ψ (�)

ˇ̌
j ¤ k

0 j D k .
(4.5)
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From this consideration, simultaneous detection of photons at detectors f1 and f2
is physically equivalent to projection onto jΨ (�)iinA.

With the scheme of Bell measurement, one can detect the case of jΨ (�)iinA in
Eq. (4.2). So when detectors f1 and f2 have simultaneous “clicks”, the overall state
of the input and an entangled photon pair of Alice and Bob in Eq. (4.2) shrinks into

jΨ (�)iinA ˝ (�c0j$iB � c1jliB)

D �jΨ (�)iinA ˝ (c0j$iB C c1jliB) . (4.6)

Since we can neglect overall phase, Bob can recover the input state at his place
(mode).

Note that this scheme depends on post-selection and only the case of jΨ (�)iinA

can be determined from the four Bell states jΨ (˙)iinA and jΦ (˙)iinA. This means
that 3/4 of events are discarded and so the success probability is 1/4.1)

Figure 4.2 shows the experimental results for teleportation of (j$iin C jliin)/
p

2
and jliin demonstrated by Bouwmeester et al. [194]. It was checked with four-fold
coincidence of detection of photons at detector p, f1, f2, and d1 (d2), where “click”
at detector p shows the existence of input photon, simultaneous “clicks” at detec-
tors f1 and f2 correspond to projection onto jΨ (�)iinA, and “click” at detector d1

Figure 4.2 Experimental results of qubit
quantum teleportation demonstrated by
Bouwmeester et al. [194]. They checked four-
fold coincidence of detection of photons at de-
tector p, f1, f2, and d1 (d2). (a) and (b) reflect

the case of 45ı input ((1/
p

2)(j$iinCjliin)),
(c) and (d) reflect the case of 90ı input
(jliin). (a) and (c) are the reference experi-
ments.

1) Which is only half as big as the maximal success probability of 1/2 for a Bell measurement using
linear optics without ancilla photons and feedforward [196] (see Chapter 2).
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(d2) shows the proper output. Thus, four-fold coincidences around zero delay in
Figure 4.2 mean the success of teleportation (Figure 4.2a and c are references).

Braunstein and Kimble pointed out the disadvantage of this scheme [197]. It
comes from the indistinguishability between a single photon and two photons in
the input using an on-off detector without resolving photon numbers. In the case
of two photons in the input, simultaneous detection of photons at detectors p, f1
and f2 occurs as the case of success of teleportation without entangled photons of
Alice and Bob. It is because we cannot neglect Oa j

in Oak
in in Eq. (4.4) and then simulta-

neous detection of photons at detectors f1 and f2 no longer means projection onto
jΨ (�)iinA. Therefore, one must detect a photon at the output (detector d1 or d2) to
verify the success of teleportation. In other words, four-fold coincidence is a neces-
sary condition here for the success of teleportation. However, in the teleportation
scheme described here, a survival and a potentially further exploitation of the tele-
ported state by avoiding post-selection is possible when photon-number resolving
detectors are used.

4.1.2
Experiment: Qubit Telecloning

Telecloning is a generalized version of teleportation where n senders send the
same quantum information to m receivers (n-to-m telecloning) [198]. Since the no-
cloning theorem [14, 15] prohibits the receivers to have perfect clones of the input
state, the clones are approximate ones which have higher fidelities to the original
than the classical limit [25]. Although complete telecloning for qubits is not re-
alized so far, “partial” telecloning is proposed by Filip [199] and demonstrated by
Zhao et al. [200]. In this section, we will explain the experiment in detail. Again,
this is also a post-selection experiment with polarization qubits (single photons).

Figure 4.3 shows the proposed scheme of “partial” telecloning by Filip [199]
which was actually proposed as “partial teleportation”. Zhao et al. used an anti-
clone in Figure 4.3 as a trigger, and demonstrated the “partial” telecloning with the
scheme shown in Figure 4.4 [200]. In these schemes, an input is cloned to two,
one is a local clone and the other is distant one (teleclone). In any case, the scheme
is very similar to the one for qubit teleportation explained in the previous section.
The only difference is that a half beam splitter for Alice’s Bell measurement in
Figure 4.1 is replaced by an asymmetrical (unbalanced) beam splitter as shown in
Figures 4.3 and 4.4.

Figure 4.5 shows the experimental setup of “partial” telecloning demonstrated
by Zhao et al. [200]. In Figure 4.5, an asymmetric beam splitter is realized by a
Mach–Zehnder interferometer [201].

The asymmetric beam splitter transforms modes b and c to modes e and f as
follows,2)

b ! t � e C ir � f , c ! ir � e C t � f , (4.7)

2) Here, we drop the hats on annihilation operators and use “mode” and “mode operator”
synonymously.
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Figure 4.3 Proposed scheme of “partial” telecloning as partial teleportation by Filip [199]. S, S 0

are clones, I is an anti-clone. R: reflectivity of beam splitter.

Figure 4.4 Experimental scheme of “partial” telecloning demonstrated by Zhao et al. [200].

where R D r2, 1� R D t2, and R is the reflectivity of the asymmetric beam splitter.
If an input to the cloner is in the state jψi D αjli C �j$i and the outputs from
the asymmetric beam are single photons in modes e and f, the overall state jΨ iall

can be written as follows [199],

jΨ iall D α(1 � 2R)jlie jli f j$id � �(1 � 2R)j$iej$i f jlid

� α(1 � R)jliej$i f jlid C αRj$ie jli f jlid

C �(1 � R)j$iejli f j$id � �Rjlie j$i f j$id , (4.8)

where modes c and d are originally in the entangled state jΨ (�)icd defined in
Eq. (3.19).

When detectors D2 and D4 detect photons as j$i f jlid , the state of mode e be-
comes α(1�R)jlie C�(1�2R)j$ie , whose fidelity to the input jψi D αjliC�j$i
is [199],

Flocal clone D 1
2P(R)

�
(1 � 2R)2 C (1 � R)2� , (4.9)

where P(R) D 1�3R C3R2. Similarly, when detectors D2 and D4 detect photons as
jli f j$id , the state of mode e (local clone) becomes α(1� 2R)jlie C �(1� R)j$ie ,
whose fidelity is the same as Eq. (4.9).
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Figure 4.5 Experimental setup of “partial”
telecloning demonstrated by Zhao et al. [200].
P: polarizer, F: bandpath filter, DL: delay line,
BBO: second-order nonlinear crystal (beta-
barium borate), BS: beam splitter, D: photon

detector, λ/4: quarter wave plate. The Mach–
Zehnder interferometer acts as a variable
beam splitter. C is compensator to equalize
the path length of orthogonal polarizations.

When detectors D2 and D3 detect photons as jlie j$i f , the state of mode d (dis-
tant clone or teleclone) becomes α(1�R)jlid ��Rj$id , whose fidelity to the input
jψi D αjli C �j$i is [199]

Fteleclone D 1
2P(R)

�
R2 C (1 � R)2� . (4.10)

Similarly, when detectors D2 and D3 detect photons as j$iejli f , the state of mode
d (distant clone or teleclone) becomes αRjlid C �(1 � R)j$id , whose fidelity is
the same as in Eq. (4.10).

Here, classical limit of the fidelity for one-to-two cloning is 2/3. From Eqs. (4.9)
and (4.10), one can obtain the fidelity of 5/6 for both clones with R D 1/3, which is
higher than the classical limit and thus shows the success of “partial” telecloning.

Zhao et al. checked the fidelities as a function of reflectivity R of the asymmetric
beam splitter as shown in Figure 4.6. Theoretical curves are calculated by Eqs. (4.9)
and (4.10). The experimental results agree well with the theoretical prediction and
show the higher fidelities than the classical limit of 2/3 with R D 1/3. Thus “par-
tial” telecloning is successfully demonstrated.

4.1.3
Experiment: Qubit Entanglement Swapping

With post-selection illustrated in the previous sections, entanglement swapping –
teleportation of entanglement – can be performed for polarization qubits. Pan et al.

implemented this for the first time [202]. Here, we will explain their experiment in
detail.
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Figure 4.7 Principle of entanglement swap-
ping [202]. Two EPR sources produce two
pairs of entangled photons, pair 1–2 and pair
3–4. One photon from each pair (photons 2

and 3) is subjected to a Bell measurement.
This results in projecting the other two outgo-
ing photons 1 and 4 onto an entangled state.

Figure 4.7 shows the principle of entanglement swapping [202]. First, two EPR
sources each simultaneously emit a pair of entangled photons, pair 1–2 and pair
3–4. The overall state of photons 1–4 jΨ i1234 is represented as follows:

jΨ i1234 D ˇ̌
Ψ (�)˛

12 ˝ ˇ̌
Ψ (�)˛

34

D 1
2

(j$i1jli2 � jli1j$i2) ˝ (j$i3jli4 � jli3j$i4) , (4.11)

with jΨ (�)i from Eq. (3.19). Next, a Bell measurement is performed on photons
2 and 3. After the Bell measurement, photons 2 and 3 are projected onto one of
the four Bell states jΨ (˙)i and jΦ (˙)i described in Eq. (3.19), and the overall state
jΨ i1234 gets “rearranged” to

jΨ i1234 D 1
2

�ˇ̌̌
Ψ (C)

E
14

ˇ̌̌
Ψ (C)

E
23

C
ˇ̌̌
Ψ (�)

E
14

ˇ̌̌
Ψ (�)

E
23

C
ˇ̌̌
Φ (C)

E
14

ˇ̌̌
Φ (C)

E
23

C
ˇ̌̌
Φ (�)

E
14

ˇ̌̌
Φ (�)

E
23

�
. (4.12)

When we know the result of Bell measurement, the overall state shrinks to one of
the four cases as shown in Eq. (4.12). For example, in the case of jΨ (�)i23 obtained
in the Bell measurement, the overall state shrinks to jΨ (�)i14jΨ (�)i23. In this state,
photons 1 and 4 are entangled and photons 2 and 3 are entangled. The situation is
similar for the other results of the Bell measurement, that means photons 1 and 4
are entangled and photons 2 and 3 are entangled in all cases. Thus, entanglements
in 1–2 and 3–4 are swapped, and 1–4 and 2–3 become entangled.

Figure 4.8 shows the experimental setup of entanglement swapping demonstrat-
ed by Pan et al. [202], which is very similar to the one shown in Figure 4.1 [194].
EPR sources are the same ones illustrated in Section 3.1.3.1. The trick for the Bell
measurement is the same as the one in teleportation, which is explained in Sec-
tion 4.1.1. With this trick, one can detect only jΨ (�)i23 with simultaneous detec-
tion of photons at detectors D2 and D3. Moreover, as the case of the teleportation
experiment by Bouwmeester et al. [194], simultaneous detection of four photons
at detectors D1–D4 is the necessary condition for success of the experiment. To
check the entanglement between photons 1 and 4, correlation measurement was
performed by changing the polarizer angle Θ before detector D4 in Figure 4.1.

Figure 4.9 shows the experimental results. Counting rates of four-fold coinci-
dence are shown as a function of polarizer angle Θ before detector D4. Since the
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Figure 4.8 Experimental setup of entanglement swapping demonstrated by Pan et al. [202].
The half wave plate (λ/2) just before a polarization beam splitter was set at 22.5ı. The polarizer
angle before detector D4 was scanned.

Figure 4.9 Results of the correlation measurement to check the entanglement between photons
1 and 4 [202].

angle of the half wave plate before the polarization beam splitter was set at 22.5ı ,
detector DC

1 detects a C45ı-polarized photon and detector D�
1 detects a �45ı-

polarized photon. From Figure 4.9, we can clearly see the correlation between
detectors DC

1 and D4 and between detectors D�
1 and D4, which are the proof of

jΨ (�)i-type entanglement between photons 1 and 4. Since four-fold coincidence al-
so guarantees jΨ (�)i23, we can conclude that the overall state is jΨ (�)i14jΨ (�)i23,
meaning success of entanglement swapping.

4.2
Qumode Quantum Teleportation

By using an optical field, qumode quantum teleportation has been experimental-
ly realized for Gaussian input states – a coherent state [177, 203–205], a squeezed
state [206], and an EPR state, for so-called entanglement swapping [205, 207]. All
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these experiments are based on the well-developed techniques of optical Gaussian
operations consisting of beam splitter, phase shifting, and squeezing transforma-
tions as well as phase-space displacements and homodyne detection. Those CV
quantum protocols implemented so far operated only with Gaussian states and op-
erations. However, non-Gaussian states or non-Gaussian operations are needed to
potentially achieve universal CV quantum information processing (see Chapters 6
and 7). Quantum teleportation of a non-Gaussian state would become the next im-
portant challenge (see Chapter 8).

In Section 1.6, we presented an idealized version of CV quantum teleportation
using unphysical, infinitely squeezed states. In the following reports on experimen-
tal implementations of CV quantum teleportation, of course, a realistic, physical
description must be employed. For this purpose, it is most convenient to use the
Heisenberg representation for the quadrature operators. Alternative formalisms
for CV quantum teleportation include using the Wigner [163] and the Fock repre-
sentations [208, 209]. These are also both useful to describe quantum teleportation
of non-Gaussian states (see Chapter 8).

Note that unlike the discussion in Section 1.6 on idealized CV quantum telepor-
tation, Alice does gain partial information about the input state through her Bell
measurement on the input state and one half of the finitely squeezed EPR state, and
as a consequence, perfect state transfer is no longer achievable. Criteria in order to
assess the nonclassicality of CV quantum teleportation were derived in [210–212].

4.2.1
Experiment: Qumode Quantum Teleportation

In this section, we first explain the CV teleportation experiment demonstrated by
Furusawa et al. [203] in detail.

Figure 4.10 shows the experimental setup of CV teleportation demonstrated by
Furusawa et al. [203]. First, Alice and Bob share the EPR beams that are created
with the technique explained in Section 3.2.3.1 where two squeezed vacua with
squeezing parameter r are combined at a half beam splitter. The state of the elec-
tromagnetic field to be teleported ( Oxin, Op in) is created by Victor, which for the exper-
iment here, is more precisely a particular set of modulation sidebands (coherent
state). The beam to be teleported is combined with Alice’s EPR beam ( OxA, OpA) by
using a half beam splitter. This process creates states described by the quadrature
amplitudes ( Oxu, Opu) and ( Oxv , Opv ) where3)

Oxu D 1p
2

Oxin � 1p
2

OxA , Opu D 1p
2

Op in � 1p
2

OpA ,

Oxv D 1p
2

Oxin C 1p
2

OxA , Opv D 1p
2

Op in C 1p
2

OpA . (4.13)

Alice measures both quadratures Oxu and Opv using two homodyne detectors and
obtains the classical results xu and pv . This measurement corresponds to a CV

3) Compared to Eq. (3.38), the number subscripts for the two EPR modes are replaced by “A” and
“B”, indicating that those beams are in Alice’s and Bob’s possession, respectively.
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Figure 4.10 Experimental setup for continuous-variable quantum teleportation [203].

Bell-state measurement. In the ideal case (r ! 1), Alice cannot gain any informa-
tion on the input state because the amount of quantum noise � eC2r in ( OxA, OpA)
will render the amplitude information of the state to be teleported inaccessible. If,
by contrast, she attempted to directly measure both quadrature-phase amplitudes
of the state to be teleported simultaneously without using shared entanglement,
she may indeed gain partial information [213], and in this process, demolish the
state.

Figure 4.11 shows the outputs of one of Alice’s homodyne detectors. The hori-
zontal axis corresponds to the phase of Alice’s local oscillator θAx which is being
swept in time. The vertical axis Ψ (Ω )Alice

x corresponds to spectral density of pho-
tocurrent fluctuations associated with the quadrature amplitude Oxu(Ω , θAx ) where
the maxima in Ψ (Ω )Alice

x give the power (relative to the vacuum state) for the am-
plitude Oxu(Ω , θAx D 0) � Oxu(Ω ). In this experiment, Victor generates a coher-
ent state which consists of a classical phase-space displacement and one unit of
vacuum noise. The peak value in the periodic modulation of Ψ (Ω )Alice

x in the fig-
ure corresponds to the power associated with 1/

p
2 of the coherent displacement

(�3 dB) which is 22 dB higher than the vacuum noise level in this particular case.
The reduction by 3 dB arises because the intensity of the unknown state is reduced
by half by the beam splitter for mixing the unknown state and Alice’s EPR beam.
The minima in the periodic variation of Ψ (Ω )Alice

x are equivalent to the level of
the corresponding flat trace ΛAlice

x which is the quantum noise level with Alice’s
EPR beam present. The associated level without Alice’s EPR beam is Φ Alice

0,x (with
a vacuum-state input). The figure shows the quantum noise level with her EPR
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Figure 4.11 (a) Output of one of Alice’s homodyne detectors (Dx ). Ω/2π D 2.9 MHz and
∆Ω/2π D 30 kHz. The part (b) is the expanded view with a ten-trace average for the input state
which has no displacements, namely, vacuum state [203].

beam is higher than the level without her EPR beam, namely, ΛAlice
x > Φ Alice

0,x , in
correspondence to a loss of information by Alice for quantum teleportation. Note
that the quantum noise level with her EPR beam would diverge in the ideal case
(r ! 1).

With Eqs. (4.13) and (3.38), for subscripts 1 ! A and 2 ! B, Bob’s beam
has [161],

OxB D Oxin � p
2e�r Ox (0)

B � p
2 Oxu ,

OpB D Op in C p
2e�r Op (0)

A � p
2 Opv . (4.14)

Alice’s generalized Bell-state measurement results effectively in the quantum vari-
ables Oxu and Opv being transformed into the classical variables xu and pv in the
Eq. (4.14). When the quantum efficiency of the homodyne detectors (η) is less than
unity, the xu and pv fluctuate under the influence of the invasion of vacuum noise.
In this case, Oxu and Opv in the Eq. (4.14) are replaced by η Oxu C p

1 � η2 Ox (0)
u and

η Opv Cp
1 � η2 Op (0)

v , respectively, where Ox (0)
u and Op (0)

v are the quadrature amplitudes
of the respective invading vacua.

Alice sends the measurement results xu and pv to Bob. He uses this informa-
tion to modulate a (coherent) light beam in both amplitude and phase, with some
overall gain g [203]. This modulated beam is then combined coherently at the high-
ly reflecting mirror mBob shown in Figure 4.10 to interfere with his component
of the entangled EPR beam ( OxB, OpB), thereby creating the teleported output state
( Oxtel, Optel). This procedure corresponds to a simple phase-space displacement of
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Bob’s EPR beam as follows:

Oxtel D OxB C g
p

2xu ,

Op tel D OpB C g
p

2pv . (4.15)

In the absence of losses (η D 1) and for unity gain (g D 1), the quadrature opera-
tors associated with the teleported state become

Oxtel D Oxin � p
2e�r Ox (0)

B ,

Op tel D Op in C p
2e�r Op (0)

A . (4.16)

For r ! 1, Oxtel ! Oxin, Op tel ! Op in, corresponding to perfect teleportation.
Of course, in an actual experiment, the gain g must be determined operational-

ly. For the particular case of Figure 4.11, the displacement of the input coherent
state determined by Alice’s homodyne detectors (22 dB above the vacuum-state
limit) corresponds to half of the input signal power. If Bob’s output (as verified
by Victor) carries twice the power specified by Alice’s output (namely, 25 dB in
the case at hand), the gain g is then determined to be unity, namely, 0 dB. Pre-
cisely speaking, the g should be corrected by the detection efficiency � associated
with Alice’s homodyne detection (propagation, homodyne efficiency, and detector
quantum efficiency). However, since � � 0.97 is almost unity in the experiment,
the aforementioned procedure for fixing g D 1 (0 dB) can be used with small
error.

In somewhat more global terms, the actual procedure for determining g D 1
(0 dB) is illustrated by Figure 4.12. This figure gives the variation of the coher-
ent amplitude and of the variance with power gain g2 without EPR beams. Since
these two dependences are different and both agree with theory without adjustable
parameters, we can conclude that the setup functions are in agreement with our
simple model. When A out is equal to A in (here, A in D A out D 21 dB), we can de-
termine g D 1. From the Figure 4.12, we can see σW D 4.8 dB for g D 1, whose
meaning will be presented later.

Moving then to the case of teleportation in the presence of entangled EPR beams,
Bob combines his modulated beam with his EPR beam and reconstructs the state to
be teleported. In this process, the “noise” arising from the EPR beam is effectively
“subtracted” from Bob’s modulated beam by destructive interference at mBob.

Experimental results from this protocol are shown in Figure 4.13. The horizon-
tal axis corresponds to the phase of Victor’s local oscillator, which is being swept in
time. The vertical axis Ψ Victor corresponds to the spectral density of photocurrent
fluctuations associated with the quadrature amplitudes Oxtel(Ω ) and Op tel(Ω ) mea-
sured by Victor for a fixed (but arbitrary) phase for the input state. The maximum
value of the periodic curve corresponds to a coherent amplitude for the output state
approximately 25 dB above the vacuum-state level Φ Victor

0 ; here, the gain has been
set to be g � 1 as in the previous discussion. This result shows the classical phase-
space displacement is successfully reconstructed.

The minima of the trace for Ψ Victor correspond to the variance of the output
state for the quadrature orthogonal to that of the coherent amplitude, and are
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Figure 4.12 The variation of the coherent amplitude Aout and of the variance σW with gain g2

without EPR beams. The input amplitude A in is C21 dB above the vacuum-state limit in this
particular case. The solid lines are the theoretical curves for � D 1.

equivalent to the level ΛVictor shown by the labeled flat trace. The various phase-
independent traces in the figure correspond to the quantum noise levels with the
EPR beams present for Alice and Bob (ΛVictor), without these EPR beams at both
locations (� Victor

0 ), and with a vacuum-state input to Victor’s homodyne detector
(Φ Victor

0 ). Of course, “without the EPR beams” means that vacuum noise (r D 0)
invades Alice and Bob’s stations, leading to a degradation of the “quality” of tele-
portation.

Indeed, for teleportation of coherent states in the absence of shared entangle-
ment between Alice and Bob (no EPR beams), Eq. (4.16) shows that the quantum
noise for Bob’s output becomes three units of vacuum noise (in either quadrature,
h∆ Ox2

teli, h∆ Op 2
teli). One unit comes from the original quantum noise of the input co-

herent state, and the other two units correspond to successive “quantum duties”,
the first being to cross the boundary from the quantum to classical world (Alice’s
attempt to detect both quadrature amplitudes) and the second from the classical
to quantum (Bob’s generation of a coherent displacement) [163]. The experimental
result � Victor

0 � 4.8 dB in correspondence to a factor of three above the vacuum-
state limit in Figures 4.12 and 4.13 indicates almost perfect performance of the
“classical” teleportation with near unity detection efficiency (recall � D 0.97). As
discussed in more detail in [210, 211], � Victor

0 is the limit of “classical” teleportation,
where we explicitly mean teleportation without shared entanglement.

From Figure 4.13 and similar measurements, we determine that ΛVictor lies
1.1 dB-lower than � Victor

0 . This means that quantum teleportation is successfully
performed beyond the classical limit, as clarified by the following discussion. To
quantify the “quality” of the teleportation for a pure state jψini, we calculate the
teleportation fidelity F � hψinj O�out jψini [210, 211]. For the case of teleportation
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Figure 4.13 (a) Bob’s output verified by Victor. The part (b) is the expanded view with a ten-
trace average for the vacuum input for Alice [203].

of coherent states, the boundary between classical and quantum teleportation has
been shown to be fidelity F D 0.50 [210–212]. We stress that this limit applies
to the specific case of coherent states and to the distinction between what Alice
and Bob can accomplish with and without shared entanglement. Teleportation to
accomplish other tasks in quantum information science requires yet higher values
for the fidelity.

Nonetheless, when the input state is a coherent state, the fidelity F of the tele-
ported output can be represented as follows [214]:

F D 1

2
q

σx
Qσ p

Q

exp

"
�(1 � g)2

 
x2

in

2σx
Q

C p 2
in

2σ p

Q

!#
, (4.17)

where σx
Q and σ p

Q are the variances of the Q function of the teleported field for
the corresponding quadratures. The relevant variances σx

Q and σ p

Q can be deter-
mined from the measured efficiency factors in the experiment and are given by the
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following equation [203]:

σx ,p
Q D 1

4

�
1 C g2�C e2rx ,p

8
(g�A � �B)2 C e�2rx ,p

8
(g�A C �B)2

C 1
4

�
1 � � 2

A

�
g2 C 1

4

�
1 � � 2

B

�C g2

2

�
1
η2 � 1

�
, (4.18)

where rx ,p are the squeezing parameters for the respective quadrature compo-
nents, �A,B characterize the (amplitude) efficiency with which the EPR beams are
propagated and detected along paths (A,B), and η gives the (amplitude) efficien-
cy for detection of the unknown input state by Alice. We stress that all of these
quantities can be directly measured so that the comparison of theory as in the
above equation and the experimentally recorded variances can be made with no
adjustable parameters.

Following such a procedure, we show in Figure 4.14 the experimental results
for the variances σx ,p

W as well as the theoretical prediction of Eq. (4.18), again with
no adjustable parameters. By using these measured values of σx

Q and σ p

Q together
with the independently measured values for the gain g, we can use Eq. (4.17) to
arrive at an experimental estimate of the fidelity Fexp with the results shown by
the points in Figure 4.14 for the cases with and without the EPR beams present.
We can also calculate Ftheory by way of Eqs. (4.17) and (4.18), with this theoretical
prediction shown by the curves in Figure 4.15. The agreement between theory and
experiment is evidently quite good.

From Figure 4.15, we see that the fidelity Fexp for the case with EPR beams ex-
ceeds the classical limit F0 D 0.50 for g D 1 (0 dB), with the maximum value
Fexp D 0.58 ˙ 0.02 obtained. Fexp > F0 is an unambiguous demonstration of the
quantum character of the teleportation protocol.
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After this achievement, qumode or CV teleportation has often been demonstrat-
ed [177, 204, 205, 215, 216]. The fidelity of teleportation is getting better and better,
now reaching F D 0.83 [216], which is much higher than the no-cloning limit of
F D 2/3 [217]. It is owing to the high level of experimentally available squeezing
where �9 dB [218] and �10 dB [219] of squeezing are demonstrated. Theoretically,
it should be possible to have the fidelity of F D 0.9 with current technology.

4.2.2
Experiment: Qumode Telecloning

CV quantum telecloning was demonstrated by Koike et al. for a coherent-state in-
put [220]. In this section, we will explain the experiment in detail.

Quantum telecloning can be regarded as generalized quantum teleportation with
multiple receivers as mentioned in Section 4.1.2 [198]. In quantum teleportation,
bipartite entanglement shared by two parties (Alice and Bob) enables them to tele-
port an unknown quantum state from Alice to Bob only by communicating through
classical channels [17]. If three parties (Alice, Bob, and Claire) share an appropriate
type of tripartite entanglement, Alice is now able to teleport an unknown quantum
state to Bob and Claire simultaneously. This is called “1 ! 2 quantum telecloning”.
Since the no-cloning theorem [14, 15] prohibits the receivers to have perfect clones
of the input state, the clones are approximate ones [25]. However, the tripartite
entanglement makes the quality of the clones better than that attainable with any
classical method. In a similar way, quantum telecloning to an arbitrary number of
receivers (1 ! n quantum telecloning) can be performed by using multipartite
entanglement.
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The heart of quantum telecloning is the multipartite entanglement shared
among the sender and the receivers. Even without multipartite entanglement,
it is still possible to perform an equivalent protocol: first the sender makes clones
locally, and then sends them to each receiver with bipartite quantum teleportation.
In quantum telecloning, these two steps are processed simultaneously. In other
words, the use of multipartite entanglement reduces the number of steps in this
protocol. Moreover, in the case of coherent state telecloning, the optimum requires
only finite entanglement [221], while the local cloning followed by teleportation
requires maximal bipartite entanglement.

Let us concentrate on 1 ! 2 quantum telecloning of a coherent state input [221].
This process requires tripartite entanglement, which is the minimum unit of mul-
tipartite entanglement. Tripartite entanglement for CV can be generated by using
squeezed vacua and two beam splitters [161]. Even when the level of squeezing is
infinitesimal, we obtain a fully inseparable tripartite state [165], which means any
of the three parties cannot be separated. The generated state can be classified by
the separability of the reduced bipartite state after tracing out one of the three sub-
systems. In the qubit regime, this classification is well established. For example,
the Greenberger–Horne–Zeilinger (GHZ) state [140] does not have bipartite en-
tanglement after the trace-out, while the W state [141] does. In the CV regime, it
is possible to generate various types of tripartite entanglement by choosing prop-
er transmittances/reflectivities of beam splitters and the levels of squeezing. For
example, in the quantum teleportation network, which is one of the successful ex-
amples of manipulations of tripartite entanglement [161, 222] and will be explained
in the next section, we use the CV analogue of the GHZ state. The CV GHZ state
can be created by combining three squeezed vacua with a high level of squeezing
on two beam splitters, and is a tripartite maximally entangled state in the limit of
infinite squeezing as shown in Section 3.2.3.3. In this case, there is no bipartite en-
tanglement between any pairs of three parties and the quantum teleportation does
not work between a sender and a receiver without the help of the third member.

On the other hand, the tripartite entanglement required for quantum telecloning
has a nature of both bipartite and tripartite entanglement like the W state, although
it is not a maximally entangled state. This type of tripartite entanglement can be
generated by using two squeezed vacua with a modest level of squeezing and two
half beam splitters. In the case of telecloning of a coherent state, the level of squeez-
ing required to perform the optimal quantum telecloning [221] is finite and within
reach of current technology [218, 219]. This is in contrast to the quantum teleporta-
tion which requires an infinite level of squeezing for perfect teleportation. Experi-
mental quantum telecloning will provide us with another method of manipulation
of multipartite entanglement which plays an essential role in quantum computa-
tion and multipartite quantum communication.

The scheme for creating the tripartite entanglement for quantum telecloning
is shown in the center of Figure 4.16 [221]. Two optical parametric oscillators
(OPOi , OPOi i) pumped below oscillation threshold create two individual squeezed
vacuum modes ( Oxi , Opi) and ( Oxi i , Opi i). These beams are first combined with a half
beam splitter with a π/2 phase shift and then one of the output beams is divided
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Figure 4.16 The experimental set-up for quantum telecloning from Alice to Bob and Claire to
produce Clones 1 and 2 [220].

into two beams (B, C) with another half beam splitter. The three output modes
( Ox j , Op j ) ( j D A, B, C) (abbreviated as ( OxA,B,C, OpA,B,C) hereafter) are entangled with
arbitrary levels of squeezing. Here, modes A and B, and modes A and C are bipar-
titely entangled and modes A, B, and C are tripartitely entangled while each mode
alone is in a thermal state and show excess noises. This can be verified by applying
the sufficient inseparability criteria for a bipartite case [116, 159] and a tripartite
case [165]. In the present situation, the criteria areD�

∆( OxA � OxB,C)
�2EC

D�
∆( OpA C OpB,C)

�2E

D
 

1 � p
2

2

!2 hD
(∆ Oxi )

2
E

C
D
(∆ Op i i)

2
Ei

C
 

1 C p
2

2

!2 hD
(∆ Oxi i)

2
E

C
D
(∆ Opi )

2
Ei

C 1
4

< 1 , (4.19)

where h(∆ Ox (0))2i D h(∆ Op (0))2i D 1/4 and superscript (0) denotes a vacuum. The
left-hand side of the inequality can be minimized when ( Oxi , Opi ) D (er Ox (0)

i , e�r Op (0)
i ),

( Oxi i , Opi i) D (e�r Ox (0)
i i , er Op (0)

i i ), and e�2r D (
p

2 � 1)/(
p

2 C 1) (7.7 dB squeezing).
By using these tripartitely entangled modes, sender Alice can perform quantum
telecloning of a coherent state input to two receivers Bob and Claire to produce
Clone 1 and 2 at their sites. In other words, success of quantum telecloning is a
sufficient condition for the existence of this type of entanglement.

For quantum telecloning, Alice first performs a joint measurement or a so-called
“Bell measurement" on her entangled mode ( OxA, OpA) and an unknown input mode
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( Oxin, Op in). In the experiment presented here, the input state is a coherent state and
a sideband of continuous wave 860 nm carrier light. The Bell measurement instru-
ment consists of a half beam splitter and two homodyne detectors as shown in Fig-
ure 4.16, which is the same as the one shown in Section 4.2.1. Two outputs of the
input half beam splitter are labeled as Oxu D ( Oxin � OxA)/

p
2 and Opv D ( Op in C OpA)/

p
2

for the relevant quadratures. Before Alice’s measurement, the initial modes of Bob
and Claire are, respectively,

OxB,C D Oxin � ( OxA � OxB,C) � p
2 Oxu ,

OpB,C D Op in C ( OpA C OpB,C) � p
2 Opv . (4.20)

Note that in this step, Bob’s and Claire’s modes remain unchanged. After Alice’s
measurement on Oxu and Opv , these operators collapse and reduce to certain values.
Receiving these measurement results from Alice, Bob and Claire displace their
modes as OxB,C ! Ox1,2 D OxB,C C p

2xu, OpB,C ! Op1,2 D OpB,C C p
2pv and accom-

plish the telecloning. Note that the values of xu and pv are classical information
and can be duplicated. In our experiment, displacement is performed by applying
electro-optical modulations. Bob and Claire modulate beams by using amplitude
and phase modulators (AM and PM in Figure 4.16). The amplitude and phase mod-
ulations correspond to the displacement of p and x quadratures, respectively. The
modulated beams are combined with Bob’s and Claire’s initial modes ( OxB,C, OpB,C)
at 1/99 beam splitters.

The output modes produced by the telecloning process are represented as [221]

Ox1,2 D Oxin � ( OxA � OxB,C)

D Oxin C 1 � p
2

2
Oxi � 1 C p

2
2

Oxi i ˙ 1p
2

Ox (0)
i i i , (4.21)

Op1,2 D Op in C ( OpA C OpB,C)

D Op in C 1 C p
2

2
Op i � 1 � p

2
2

Opi i ˙ 1p
2

Op (0)
i i i , (4.22)

where subscript i i i denotes a vacuum input to the second beam splitter in the
tripartite entanglement source, and C of ˙ for Clone 1 and � for Clone 2. From
these equations, we can see that the telecloned states have additional noise terms
to the input mode ( Oxin, Op in). The additional noise can be minimized by tuning
the squeezing levels of the two output modes of OPOs. This corresponds to the
minimization of the left-hand of the inequalities in Eq. (4.19). In the ideal case
with 7.7 dB squeezing, the additional noise is minimized and we obtain Ox1,2 D
Oxin �1/2( Ox (0)

i C Ox (0)
i i )˙1/

p
2 Ox (0)

i i i and Op1,2 D Op in C1/2( Op (0)
i C Op (0)

i i )˙1/
p

2 Op (0)
i i i. These

are the optimal clones of coherent state inputs [221]. In contrast to quantum tele-
portation, these optimal clones are degraded from the original input by one unit of
vacuum noise. In the classical case, where no quantum entanglement is used, two
units of vacuum noise will be added. This is called quduty and has to be paid for
crossing the boarder between quantum and classical domains [163].
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In the real experiment, however, the OPO output modes suffer from inevitable
losses and hence deviate from the ideal case. In particular, the mixedness of the
states renders the experimental procedure more complicated than for the above
discussion based on pure states. Now, the states are no longer minimum uncer-
tainty states, having the uncertainty product h(∆ Oxi,i i)2i � h(∆ Opi,i i)2i > 1/16. This
gives rise to the asymmetry between squeezing and antisqueezing and leads us
to optimize two parameters of squeezing and antisqueezing for minimization of
the additional noise. This is again in contrast to quantum teleportation: in princi-
ple, the antisqueezing terms are canceled out and the asymmetry never affects the
performance of teleportation.

To evaluate the performance of telecloning, we use a fidelity which is defined
as F D hψinj O�outjψini [210, 211]. The classical limit for the case of coherent state
inputs is derived by averaging the fidelity for a randomly chosen coherent input;
the classical limit of the averaged fidelity Fav is 1/2 [210, 212]. In a real experiment,
it is impossible to take an average over the entire phase space. However, if the
gains of the classical channels that are defined as gx1,x2 D h Ox1,2i/h Oxini and g p1,p 2 D
h Op1,2i/h Op ini are unity gx1,x2 D g p1,p 2 D 1, the averaged fidelity is identical to the
fidelity for a particular coherent state input (Fav D F ). This is because the fidelity
with unity gains can be determined by only the variances of the telecloned states,
which is independent of the amplitude of the coherent state input. Experimental
adjustments of gx D g p D 1 is performed in the manner of [204]. The fidelity for a
coherent state input and gx D g p D 1 can be written as [203]

F D 2
.rh

1 C 4
D
(∆ Ox1,2)2

Ei h
1 C 4

D
(∆ Op1,2)2

Ei
. (4.23)

From the above discussion, if we measure h(∆ Ox1,2)2i and h(∆ Op1,2)2i of the outputs
for a coherent state input and get F > 1/2, then we can declare the success of
telecloning of coherent state inputs. Note that the fidelity of the optimal telecloning
of coherent state inputs is 2/3 [221], which can be calculated from the parameters
of the ideal case mentioned above.

By using Eq. (4.23) and experimental results of squeezing/antisqueezing, we can
calculate the expected fidelities of the telecloning experiments. Figure 4.17a shows
the typical pump power dependence of squeezing and antisqueezing of the out-
put of the OPOs. Here, the OPO cavities contain potassium niobate crystals inside
as nonlinear mediums and are pumped with frequency doubled outputs of con-
tinuous wave Ti:sapphire laser at 860 nm. In order to minimize the asymmetry
of squeezing without sacrificing the level of squeezing, Koike et al. selected mir-
rors with a reflectivity of 12% for the output couplers of the OPOs [220]. With
Eqs. (4.21)–(4.23) and these experimental results, the expected fidelities of the tele-
cloning experiments were calculated and are plotted in Figure 4.17b. From these
calculations, Koike et al. set the pump power at 60 mW, at which they expected the
best fidelity to be around 0.6.

Figure 4.18 shows the results of quantum telecloning from Alice to Bob and
Claire. The experiments for two types of input states were performed. One is a vac-
uum and the other is a coherent state that is created by applying electro-optic mod-
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Figure 4.17 (a) Pump power dependence of
squeezing and antisqueezing of the output of
OPOi [220]. The squeezing and antisqueez-
ing are measured at 1 MHz. Visibility at a half
beam splitter for homodyne measurement

is about 0.95 and quantum efficiency of the
detector is more than 99%. (b) Calculated
fidelities from the squeezing and antisqueez-
ing [220].

ulation to a very weak carrier beam. In Figure 4.18a, trace ii shows the result of Al-
ice’s p-quadrature measurement for a vacuum input which corresponds to h( Op 0

v )2i
where Op 0

v D ( Op (0)
in C OpA)/

p
2. Note that h Op (0)

in i D h OpAi D 0; thus h( Op 0
v )2i D h(∆ Op 0

v )2i,
and the variance of a coherent state input h(∆ Opv )2i is equivalent to h( Op 0

v )2i because
a vacuum state is a coherent state with zero amplitude. The noise level is 2.1 dB
higher compared to the vacuum noise level h(∆ Op (0))2i D 1/4. This additional noise
comes from “entangled noise” OpA. The noise will be canceled to some extent with
the entanglement between Alice and Bob, and between Alice and Claire. Trace iii
in Figure 4.18a shows the case for a coherent state input with the phase scanned.
The bottom of the trace shows the same level as that of trace ii within the experi-
mental accuracy. This fact is consistent with the above discussion on the variance
of a coherent state input. The top of trace iii corresponds to the amplitude of the
measured state and is 3 dB lower than that of the input state because of the input
half beam splitter. Figure 4.18b,c shows the measurement results of the telecloned
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Figure 4.18 Quantum telecloning from Al-
ice to Bob and Claire [220]. All traces are
normalized to the corresponding vacuum
noise levels. (a) Alice’s measurement re-
sults for p quadrature (x quadrature is not
shown). Trace i, the corresponding vacu-
um noise level h(∆ Op (0))2i D 1/4. Trace
ii, the measurement result of a vacuum in-
put h( Op 0

v )2i where Op 0
v D ( Op (0)

in C OpA)/
p

2.
Trace iii, the measurement result of a co-
herent state input h( Opv )2i with the phase
scanned. (b, c) The measurement results of

the telecloned states at Bob (b) and Claire (c)
for p quadratures (x quadratures are not
shown). Trace i, the corresponding vacuum
noise levels. Trace ii, the telecloned states
for a vacuum input h(∆ Op1,2)2i. Trace iii, the
telecloned states for a coherent state input.
The measurement frequency is centered at
1 MHz, and the resolution and video band-
widths are 30 kHz and 300 Hz, respectively. All
traces except for trace iii are averaged twenty
times.

states. Traces ii in the figures show the results for a vacuum input which corre-
spond to h(∆ Op1,2)2i. The noise level for Clone 1 is 4.06˙0.17 dB and that for Clone
2 is 4.03 ˙ 0.15 dB. The x quadratures were also measured, which correspond to
h(∆ Ox1,2)2i and were 3.74 ˙ 0.15 dB for Clone 1 and 3.79 ˙ 0.15 dB for Clone 2 (not
shown in the figures). Note that the telecloned states have the same mean ampli-
tude as that of the input inferred from Alice’s measurement, which is consistent
with the unity gains of classical channels.

By using the measurement results of h(∆ Ox1,2)2i and h(∆ Op1,2)2i, the fidelity of
Eq. (4.23) was calculated. Both of the values were 0.58 ˙ 0.01 and greater than the
classical limit of 0.5. Thus, one can declare the success of 1 ! 2 telecloning of
coherent states. Moreover, these results are operational evidences of the existence
of the tripartite entanglement. The slight discrepancies from the expected fidelities
are attributed to the fluctuation of phase locking of the system.
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4.2.3
Experiment: Qumode Teleportation Network

Quantum teleportation [17] is one of the remarkable manifestations of quantum
physics as mentioned before. In the scheme of quantum teleportation, one can
transport an unknown quantum state from one location to another without send-
ing the quantum state itself. So far, several experiments of quantum teleportation
have been demonstrated [177, 194, 203, 204, 215, 223–225]. Quantum teleportation
is, of course, a bipartite quantum protocol, but the scheme of quantum teleporta-
tion is extendable to a multipartite quantum protocol which is called a quantum
teleportation network [161]. In the quantum teleportation network, more than two
parties are connected on the network, and a member in the network can transport a
quantum state to the other members. Multipartite quantum protocols like this will
be fundamental components for larger-scale quantum communication and quan-
tum computation.

In this section, we will illustrate an experiment of a tripartite quantum teleporta-
tion network for continuous variables demonstrated by Yonezawa et al. [222]. Quan-
tum entanglement shared by three parties enables teleportation between any two
of the three parties with the help of the other. In the experiment, Yonezawa et al.

demonstrated teleportation of a coherent state between three different pairs in the
tripartite network.

A quantum teleportation network is a quantum communication network linked
by quantum teleportation. For example, in a tripartite network, three parties (we
call Alice, Bob and Claire) are connected on the network in which they are spa-
tially separated and previously share GHZ-type tripartite entanglement. They can
only use local operations and classical channels to communicate with each other.
In principle, they need not even know where the others are as long as they can
communicate through the classical channels. On these conditions, they exchange
a quantum state. Here, the quantum state to be teleported is that of an electromag-
netic field mode. We use the Heisenberg picture to describe an evolution of the
quantum state in this section as well.

In some respects, a quantum teleportation network is similar to bipartite quan-
tum teleportation. In both schemes, the parties share quantum entanglement, and
send a quantum state using local operations and the classical channels. However,
the properties of tripartite entanglement make it different from the bipartite tele-
portation in other respects.

If Alice sends a quantum state to Bob, what role does Claire play? Recall that the
three parties are in the tripartite entangled state. The third party Claire also has a
quantum correlation with the other parties. Thus, Alice and Bob need Claire’s infor-
mation to succeed in teleportation. In other words, Claire can control the transfer of
the quantum state from Alice to Bob by restricting their access to her information.
This is a clear manifestation of GHZ-type tripartite entanglement.

GHZ-type tripartite entanglement for continuous variables can be generated
by using three squeezed vacuum states and two beam splitters as shown in Sec-
tion 3.2.3.3 [161, 188]. In the limit of infinite squeezing, the state is the CV ana-
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logue [161, 188] of Greenberger–Horne–Zeilinger (GHZ) state [140]. The CV GHZ
state is a maximally entangled state and a simultaneous eigenstate of zero total mo-
mentum (p1C p2 C p3 D 0) and zero relative positions (xi �x j D 0 i, j D 1, 2, 3).
The entanglement properties of the GHZ state are very fragile under partial losses
of a state. For example, if one of the three subsystems is traced out, the remain-
ing state ( O�AB, O�AC, O�BC) is completely unentangled [141]. Thus, without Claire’s
information, the quantum entanglement between Alice and Bob vanishes, and
quantum teleportation is no longer possible.

In a real experiment, a maximally entangled state is not available because of
finite squeezing and inevitable losses. We can still obtain, however, a fully insepa-
rable tripartite entangled state (a state none of whose subsystems can be separated)
as shown in Section 3.2.3.3 [188]. An entangled state generated by three highly-
squeezed vacuum states still behaves like the GHZ state. The properties of the
state are fragile under partial losses of the state. In this case, Claire can completely
determine success or failure of quantum teleportation between Alice and Bob.

In contrast, even if three weakly-squeezed vacuum states are used, the state is a
fully inseparable tripartite entangled state, but the remaining bipartite state after
tracing out one of the three subsystems is still entangled [165], which is similar to
the case of telecloning in the previous section. In this case, after tracing out one
subsystem (e.g., mode 3), the variance h[∆( Ox1 � Ox2)]2iCh[∆( Op1 C Op2)]2i is still below
unity [165] and shows the presence of bipartite entanglement between modes 1
and 2. If we use such a state, we will succeed in teleportation even without Claire’s
information, although teleportation fidelity is lower than the case with her infor-
mation which is again similar to the case of telecloning. In order to control success
or failure of teleportation, we need to use three highly-squeezed vacuum states.

There is another important point to be made when we develop bipartite quantum
teleportation into a tripartite quantum teleportation network. Only if we use a fully
inseparable tripartite entangled state, can we succeed in teleportation between an
arbitrary pair in the network. Namely, each party can play any of the three roles: a
sender, a receiver and a controller. Note that if we use a partially entangled state,
we may succeed in teleportation for a particular combination of the sender, the re-
ceiver and the controller, but may fail for other combinations. From this point of
view, a truly tripartite quantum protocol is defined as a protocol that succeeds only
if a fully inseparable (GHZ-type) tripartite entanglement is used. In order to verify
success of a truly tripartite quantum protocol, we need to succeed in teleportation
for at least two different combinations [165, 188]. For example, the experiment by
Jing et al. [226], a controlled dense coding for a particular combination, only shows
partial success and is not sufficient for the demonstration of a truly tripartite quan-
tum protocol. In the experiment presented here, quantum teleportation for three
different combinations are demonstrated.

Here, we illustrate the procedure of our quantum teleportation network experi-
ment. Figure 4.19 shows the schematic of the experimental setup. Tripartite entan-
gled states [188] are distributed to Alice, Bob and Claire. We represent the operators
for each mode as ( Oxi , Opi) (i D A, B, C) in the Heisenberg representation. We first
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Figure 4.19 The experimental setup for the
quantum teleportation from Alice to Bob un-
der the control of Claire [222]. In order to gen-
erate quadrature squeezed vacuum states, we
use subthreshold optical parametric oscilla-
tors (OPOs) with a potassium niobate crystal.
An output of CW Ti:sapphire laser at 860 nm
is frequency doubled in an external cavity. The
output beam at 430 nm is divided into three

beams to pump three OPOs. The pump pow-
ers are about 50 mW. Three squeezed vacuum
states are combined at two beam splitters
with relative phases locked. Three outputs of
the two beam splitters are in a tripartite entan-
gled state and sent to three parties, Alice, Bob
and Claire. The input state is a coherent state
and an optical sideband at 1 MHz.

consider the teleportation with the combination of sender Alice, receiver Bob, and
controller Claire.

First, Alice performs a joint measurement or so-called “Bell measurement” on
her entangled mode ( OxA, OpA) and an unknown input mode ( Oxin, Op in). In the exper-
iment, the input state is a coherent state and an optical sideband of CW 860 nm
carrier light. The Bell measurement instrument consists of a half beam splitter
and two optical homodyne detectors, which is the same as the case of teleporta-
tion. Two outputs of the half beam splitter are labeled as Oxu D ( Oxin � OxA)/

p
2 and

Opv D ( Op in C OpA)/
p

2 for relevant quadratures. The output powers of homodyne
detectors are measured with a spectrum analyzer.

Figure 4.20a shows the measurement result of
˝
( Opv )2

˛
at Alice (

˝
( Oxu)2

˛
is not

shown). The visibility between the input modes and the local oscillators of Alice’s
homodyne detectors are both 0.99. The visibilities between the other modes are
about 0.97. The quantum efficiency of the photodiode is 0.998 at 860 nm. In Fig-
ure 4.20a, the noise level of a vacuum input

˝
(∆ Opv )2

˛
(the variance of Opv ) is 3.7 dB

compared to the corresponding vacuum noise level
˝
(∆ Op (0))2

˛
while the noise lev-

el for x quadrature is 2.1 dB (not shown). The measured noise levels for x and
p quadratures are asymmetric. This is because tripartite entanglement is gener-
ated by two x and one p quadrature squeezed vacuum states. For example, the
variances of the mode A are described

˝
(∆ OxA)2

˛ D (2e�2r C e2r )/12,
˝
(∆ OpA)2

˛ D
(e�2r C 2e2r )/12, respectively [188] (here, r is a squeezing parameter for the same
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Figure 4.20 Quantum teleportation from Alice
to Bob under the control of Claire [222]. All
traces are normalized to the corresponding
vacuum noise levels. (a) Alice’s measure-
ment results for p quadrature (x quadrature
is not shown). (i) The corresponding vacuum
noise level

˝
(∆ Op (0))2

˛ D 1/4. (ii) The mea-
surement result of a vacuum input

˝
( Op 0

v )2
˛

where Op 0
v D ( Op (0)

in C OpA)/
p

2. Note thatD
Op (0)

in

E
D h OpAi D 0 thus

˝
( Op 0

v )2
˛ D ˝

(∆ Op 0
v )2
˛
,

and the variance of a coherent state input˝
(∆ Opv )2

˛
is equivalent to

˝
(∆ Op 0

v )2
˛

because
a vacuum state is a coherent state with ze-
ro amplitude. The noise level is 3.7 dB, while
the noise level for x quadrature is 2.1 dB (not
shown). (iii) The measurement result of a
coherent state input

˝
( Opv )2

˛
with the phase

scanned. The measured amplitude of the in-
put beam is about 15 dB which is 3 dB lower
than the actual input because of the input half
beam splitter. (b) Claire’s measurement re-
sults for p quadrature. (i) The corresponding

vacuum noise level. (ii) The measurement re-
sult of

˝
( OpC)2

˛ D ˝
(∆ OpC)2

˛
. The noise level

is 5.7 dB. (c) The measurement results of the
teleported states for p quadrature (x quadra-
ture is not shown). (i) The corresponding
vacuum noise level. (ii) The teleported state
for a vacuum input

˝
(∆ Optel)2

˛
. Note that the

variance of the teleported state for a vacuum
input corresponds to that for a coherent state
input. The noise level is 3.3 dB for p quadra-
ture, while the noise level for x quadrature is
3.5 dB (not shown). (iii) The teleported state
for a coherent state input. The measured am-
plitude of the teleported state is about 18 dB
which is 3 dB higher than that of the input at
Alice. It assures that the classical channel’s
gains are almost unity. The measurement fre-
quency is centered at 1 MHz, the resolution
and video bandwidths are 30 kHz, 300 Hz, re-
spectively. All traces except for trace (iii) are
averaged ten times.

degree of three squeezing r D r1 D r2 D r3). Thus, the measured noise levels at
Alice (

˝
(∆ Opv )2

˛
and

˝
(∆ Oxu)2

˛
) are asymmetric.

The measured values xu and pv for Oxu and Opv are sent through the classical chan-
nels with gain gx and g p , respectively. The third party Claire measures OpC of her
entangled mode. Note that Claire does not measure the x quadrature. Figure 4.20b
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shows her measurement result
˝
(∆ OpC)2

˛
. Claire also observes a noise and sends it

to Bob through the classical channel with gain gC.
The classical channel’s gains are adjusted as in the manner of [204]. The nor-

malized gains of Alice’s classical channels gx D h Oxouti/h Oxini, g p D h Opouti/h Op ini are
adjusted to gx D 0.99 ˙ 0.04 and g p D 1.00 ˙ 0.03, respectively. For simplicity,
these gains are fixed through the experiment and treated as unity.

Let us write Bob’s initial mode before the measurement of Alice and Claire as

OxB D Oxin � ( OxA � OxB) � p
2 Oxu ,

OpB D Op in C ( OpA C OpB C gC OpC) � p
2 Opv � gC OpC . (4.24)

Note that in this step, Bob’s mode remains unchanged. After measuring Oxu, Opv and
OpC, these operators collapse and reduce to certain values. Receiving these measure-

ment results, Bob displaces his mode as OxB ! Oxtel D OxB C p
2xu, OpB ! Op tel D

OpB C p
2pv C gC pC and accomplishes the teleportation. In our experiment, dis-

placement is performed by applying electro-optical modulations. Bob modulates
a beam by using amplitude and phase modulators (AM and PM in Figure 4.19).
The amplitude and phase modulations correspond to the displacement of p and
x quadratures, respectively. The modulated beam is combined with Bob’s mode
( OxB, OpB) at a 1/99 beam splitter, which is also the same procedure as in the telepor-
tation experiment.

The teleported mode becomes

Oxtel D Oxin � ( OxA � OxB) ,

Op tel D Op in C ( OpA C OpB C gC OpC) . (4.25)

In the ideal case, total momentum OpA C OpB C OpC and relative position OxA � OxB

have zero-eigenvalues pA C pB C pC D 0 and xA � xB D 0 simultaneously, and
the teleported state is identical to the input state (gC D 1). In a real experiment,
however, the teleported state has additional fluctuations. Without entanglement,
at least two units of a vacuum fluctuation are added (gC D 0). These additional
vacuum fluctuations are called two quduties [163] which must be paid for crossing
the boundary between classical and quantum domains, as mentioned before.

Figure 4.20c shows the measurement result of the teleported mode for p quadra-
ture with the gain gC D 1.02 ˙ 0.03.

The noise level of a vacuum input h(∆ Op tel)2i is 3.3 dB compared to the corre-
sponding vacuum noise level for p quadrature, while the noise level for x quadra-
ture is 3.5 dB (not shown). In the classical limit, the teleported state has three units
of a vacuum fluctuation (one unit for the input state, the other two for quduties),
and the variances of the teleported state become 4.77 dB compared to the corre-
sponding vacuum noise level. The observed noise reduction from the classical limit
shows success of teleportation.

To evaluate the performance of teleportation, we use a fidelity which is defined
as F D hψinj�outjψini [210, 211]. Although the classical limit of teleportation is
derived for the case of two parties in [212] and previous sections, it can be ap-
plied to the case of three parties [161]. In a classical case, three parties have no
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quantum correlation with each other. Thus, the third party can not improve the
performance of teleportation beyond the classical limit. The classical limit of tele-
portation is derived by averaging the fidelity for randomly chosen coherent state
input [212]. The classical limit of the averaged fidelity Fav is 1/2. In a real exper-
iment, however, it is impossible to take an average upon the entire phase space.
However, if the gains of the classical channels are unity gx D g p D 1 (not included
gC), the averaged fidelity is identical to the fidelity for a particular coherent state
input (Fav D F ) as shown in the previous section. The fidelity for a coherent state
input can be written as F D 2/

p
1 C 4σx

p
1 C 4σ p where σx D h(∆ Oxtel)2i and

σ p D h(∆ Op tel)2i [161]. Note that a coherent state is a minimum uncertain state
whose variances are h(∆ Ox (0))2i D h(∆ Op (0))2i D 1/4. In the experiment presented
here, the gains were set as gx D g p D 1, and the teleportation apparatus was
examined for a particular coherent state input.

Although the gains were set as gx D g p D 1 to estimate fidelity, the third party’s
gain gC was changed. The best fidelity should be obtained at the optimum gain gC

is determined by the degree of the squeezing [161]. Here, the fidelity is measured,
and the gain gC dependence of the fidelity is examined.

The fidelity calculated from the variances of the teleported state is plotted as a
function of gC in Figure 4.21a.

Without entanglement, the fidelity is lower than 1/2. Quantum teleportation fails
and optimum gC is zero because Claire has no correlation with the other parties.
With tripartite entanglement, F D 0.63 ˙ 0.02 (gC ' 0.9) is obtained, which clear-
ly shows success of quantum teleportation between Alice and Bob. At gC D 0,
however, quantum teleportation fails. This is because the tripartite entanglement
used in this experiment behaves like the GHZ state. To succeed in teleportation,
Alice and Bob need Claire’s information. If Claire does not send her information to
them, the fidelity becomes even lower than that without entanglement. This clearly
shows that Claire controls success or failure of the teleportation.

Thus far, we have illustrated the experiment for the particular combination,
sender Alice, receiver Bob, and controller Claire. Note that again, one needs to
perform experiments for at least two different combinations to verify success of a
truly tripartite quantum protocol. Teleportation experiments were performed for
the other two combinations. The one combination is sender Alice, receiver Claire,
and controller Bob. The other is sender Claire, receiver Bob, and controller Alice.
The configuration of the experimental setup was changed only locally while the
global configuration remains unchanged. Namely, the paths distributing the tripar-
tite entangled states remain unchanged throughout the experiment. On the other
hand, each party changes his or her setup locally according to their roles.

The gain dependence of the teleportation fidelity from Alice to Claire and from
Claire to Bob are shown in Figure 4.21b and c, respectively. Both figure parts show
almost the same dependence as Figure 4.21a. This ensures that the tripartite en-
tanglement source have the same capability to perform teleportation for different
combinations. The best fidelities are 0.63 ˙ 0.02 and 0.64 ˙ 0.02 (gB ' gA ' 0.9),
respectively, which are greater than the classical limit F D 1/2 and show success
of teleportation for these two combinations. In total, three different combinations
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Figure 4.21 The controller’s gain depen-
dences of the fidelities [222]. (a) The fidelity
of the teleportation from Alice to Bob under
the control of Claire. (i) The teleportation
without entanglement. (ii) The teleportation
with tripartite entanglement. The best fidelity
0.63 ˙ 0.02 is obtained at gC ' 0.9 and the
fidelity is better than 1/2 in the broad range
of gC. The solid lines represent the theoreti-
cal curves calculated from the experimental
conditions. (b) The fidelity of the teleportation

from Alice to Claire under the control of Bob.
The best fidelity 0.63 ˙ 0.02 is obtained at
gB ' 0.9. (c) The fidelity of the teleportation
from Claire to Bob under the control of Alice.
The best fidelity 0.64 ˙ 0.02 is obtained at
gA ' 0.9. In Figure 2, each trace contains 401
measurement points, and the measurement
series are repeated 3 times. The error bars are
derived by the 1 sigma which are calculated by
401 measurement points and averaged over
three times measurements.

were demonstrated. These results show success of a quantum teleportation net-
work, that is, a truly tripartite quantum protocol.
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4.2.4
Experiment: Qumode Entanglement Swapping

Quantum teleportation can also be combined with other operations to construct
advanced quantum circuits in quantum information processing. The teleported
state will be manipulated in subsequent operations, some of which may rely on the
nonclassicality contained in the state. Therefore, it is desirable to realize a high-
quality teleporter which preserves the nonclassicality throughout the process.

In a continuous-variable (CV) system [161, 163], a required quality to accom-
plish the transfer of nonclassicality is as follows: the fidelity Fc of a coherent state
input exceeds 2/3 at unity gains of classical channels [228]. Here, the fidelity is
a measure that quantifies the overlap between the input and the output states:
F D hψinj O�outjψini [210]. Quantum teleportation succeeds when the fidelity ex-
ceeds the classical limit (Fc D 1/2 for a coherent state input) which is the best
achievable value without the use of entanglement. The value of 2/3 is referred to
as the no-cloning limit because surpassing this limit warrants that the teleported
state is the best remaining copy of the input state [217]. As mentioned in previous
sections, the essence of teleportation is the transfer of an arbitrary quantum state.
To achieve it, the gains of classical channels must be set to unity. Otherwise, the
displacement of the teleported state does not match that of the input state, and the
fidelity drops to zero when it is averaged over the whole phase space [214]. Note
that the concept of gain is peculiar to a CV system and there is no counterpart in a
qubit system.

A teleporter surpassing the no-cloning limit enables the transfer of the following
nonclassicality in an input quantum state. It is possible to transfer a negative part of
the Wigner function of a quantum state like the Schrödinger-cat state / jαi˙j� αi
and a single photon state [228] (see Chapter 8). The negative part is the signature
of the nonclassicality [113]. Moreover, two resources of quantum entanglement for
teleporters surpassing the no-cloning limit allows one to perform entanglement
swapping [202, 229]: one resource of entanglement can be teleported by the use of
the other, which is the title of this section. Here, the teleported entanglement is
still capable of bipartite quantum protocols (e.g., quantum teleportation).

In terms of the transfer of nonclassicality, entanglement swapping was demon-
strated by Jia et al. [207]. However, the gains of classical channels were tuned to
optimal values (non-unity) for the transfer of the particular entanglement. At such
non-unity gains, one would fail in teleportation of other input states such as a co-
herent state.

In this section, we will illustrate unity-gain entanglement swapping demonstrat-
ed by Takei et al. [205] in detail. The reason why we stick to unity gain is that it is
very important for quantum information processing as mentioned above. First, we
will show high-fidelity teleportation beyond the no-cloning limit of 2/3, and then
will show unity-gain entanglement swapping with the high-fidelity teleporter.

The fidelity Fc is mainly limited by the degree of correlation of shared quantum
entanglement between sender Alice and receiver Bob. For CVs such as quadrature-
phase amplitudes, the ideal EPR (Einstein–Podolsky–Rosen) entangled state shows
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Figure 4.22 The experimental set-up for tele-
portation of quantum entanglement [205].
OPOs are optical parametric oscillators. All
beam splitters except 99/1 BSs are 50/50
beam splitters. LOs are local oscillators for

homodyne detection. SA is a spectrum analyz-
er. The ellipses illustrate the squeezed quadra-
ture of each beam. Symbols and abbreviations
are defined in the text.

entanglement of Oxi � Ox j ! 0 and Opi C Op j ! 0, where subscripts i and j de-
note two relevant modes of the state. The existence of entanglement between the
relevant modes can be checked by the inseparability criterion [116, 159] as men-
tioned before: ∆ i, j � h[∆( Oxi � Ox j )]2i C h[∆( Op i C Op j )]2i < 1, where the variances
of a vacuum state are h(∆ Ox (0))2i D h(∆ Op (0))2i D 1/4 and a superscript (0) de-
notes the vacuum state. If this inequality holds, the relevant modes are entangled.
In the case in which Alice (mode A) and Bob (mode B) share entanglement of
h[∆( OxA � OxB)]2i ' h[∆( OpA C OpB)]2i, the inseparability criterion ∆A,B < 1 corre-
sponds to the fidelity Fc > 1/2 for a teleporter without losses [211]. Furthermore,
∆A,B < 1/2 corresponds to the fidelity Fc > 2/3. Therefore, in order to achieve
Fc > 2/3, we need quantum entanglement with at least ∆A,B < 1/2.

When Fc > 2/3 is achieved, it is possible to perform entanglement swapping
with the teleporter and an entanglement resource with ∆ref,in < 1/2, where we as-
sume that the entangled state consists of two sub-systems: “reference” and “input”.
While the reference is kept during a teleportation process, the input is teleported to
an output station. After the process, the success of this protocol is verified by exam-
ining quantum entanglement between the reference and the output: ∆ref,out < 1.
Note that to accomplish this protocol, we need two pairs of entangled states with
∆ i, j < 1/2.

The scheme for entanglement swapping is illustrated in Figure 4.22. Two pairs of
entangled beams denoted by EPR1 and EPR2 are generated by combining squeezed
vacuum states at half beam splitters. One of the EPR1 beams is used as a reference.
The other is used as an input and teleported to the output mode. The EPR2 beams
consist of mode A and B, and they are utilized as a resource of teleportation. In the
case of a coherent state input, a modulated beam is put into the input mode instead
of the EPR1 beam.
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Each squeezed vacuum state is generated from a subthreshold optical parametric
oscillator (OPO) with a potassium niobate crystal (length 10 mm). The crystal is
temperature-tuned for type-I noncritical phase matching. Each OPO cavity is a bow-
tie-type ring cavity which consists of two spherical mirrors (radius of curvature
50 mm) and two flat mirrors. The round trip length is 500 mm and the waist size
in the crystal is 20 µm. The output of a continuous wave Ti:sapphire laser at 860 nm
is frequency doubled in an external cavity with the same configuration as the OPOs.
The output beam at 430 nm is divided into four beams to pump four OPOs. The
pump power is about 80 mW for each OPO.

Here, we will describe a teleportation process in the Heisenberg picture as simi-
lar to previous sections. First Alice and Bob share entangled EPR2 beams of mode
A and B. Alice performs a “Bell measurement” on her entangled mode ( OxA, OpA)
and an unknown input mode ( Oxin, Op in). She combines these modes at a half beam
splitter and measures Oxu D ( Oxin � OxA)/

p
2 and Opv D ( Op in C OpA)/

p
2 with two optical

homodyne detectors. These measured values xu and pv for Oxu and Opv are sent to
Bob through classical channels with gains gx and g p , respectively.

The gains are adjusted in the manner of [204] as similar to previous sections.
The normalized gains are defined as gx D h Oxouti/h Oxini and g p D h Opouti/h Op ini. We
obtain the measured gains of gx D 1.00 ˙ 0.02 and g p D 0.99 ˙ 0.02, respectively.
For simplicity, these gains are fixed throughout the experiment and treated as unity.

Let us write Bob’s initial mode before the measurement of Alice as: OxB D Oxin �
( OxA � OxB) � p

2 Oxu and OpB D Op in C ( OpA C OpB) � p
2 Opv . Note that in this step,

Bob’s mode remains unchanged. After measuring Oxu and Opv at Alice, these op-
erators collapse and reduce to certain values. Receiving her measurement results,
Bob displaces his mode as OxB ! Oxout D OxB C p

2gx xu, OpB ! Opout D OpB Cp
2g p pv and accomplishes the teleportation. Here, we explicitly write the gains

gx and g p to show the meaning of them, but they are treated as unity as men-
tioned before. In the experiment, displacement operation is performed by using
electro-optical modulators (EOMs) and highly reflecting mirrors (99/1 beam split-
ters) as shown in the previous sections. Bob modulates two beams by using ampli-
tude and phase modulators (AM and PM in Figure 4.22). Two beams are used to
avoid the mixing of amplitude and phase modulations. The amplitude and phase
modulations correspond to the displacement of p and x quadratures, respective-
ly. The modulated beams are combined with Bob’s mode ( OxB, OpB) at 99/1 beam
splitters.

The teleported mode becomes

Oxout D Oxin � ( OxA � OxB) ,

Opout D Op in C ( OpA C OpB) . (4.26)

In the ideal case, the EPR2 state is the state for which OxA� OxB ! 0 and OpAC OpB ! 0.
Then the teleported state is identical to the input state. In real experiments, howev-
er, the teleported state has additional fluctuations. Without entanglement, at least
two units of vacuum noise are added [163] as similar to previous sections. In oth-
er words, the noise h[∆( OxA � OxB)]2i � 2 � 1/4 is added in x quadrature (similarly
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in p quadrature). These variances correspond to ∆A,B � 1, resulting in the fidelity
Fc � 1/2. On the other hand, with entanglement, added noise is less than two units
of vacuum noise. In the case with entanglement of ∆A,B < 1/2 which is necessary
to accomplish Fc > 2/3, the added noise is less than a unit of vacuum noise.

We first explain a coherent-state teleportation experiment to quantify the quality
of the teleporter with the fidelity Fc. In the experiment, frequency sidebands at
˙1 MHz of an optical carrier beam is used as a quantum state, which is the same
as the experiment illustrated in the previous sections. Thus, a coherent state can
be generated by applying phase modulation with EOM to the carrier beam. This
modulated beam is put into the input mode instead of the EPR1 beam.

Figure 4.23 shows measurement results of the teleported mode. The measured
amplitude of the coherent state is 20.7 ˙ 0.2 dB compared to the corresponding
vacuum noise level. The measured values of the variances are h(∆ Oxout)2i D 2.82 ˙
0.09 dB and h(∆ Opout)2i D 2.64 ˙ 0.08 dB (not shown). The fidelity for a coherent
state input can be written as Fc D 2/

p
(1 C 4σx )(1 C 4σ p ), where σx D ˝

(∆ Oxout)2
˛

and σ p D ˝
(∆ Opout)2

˛
[203, 211]. The fidelity obtained from the measured variances

is Fc D 0.70 ˙ 0.02. This result clearly shows the success of teleportation of a
coherent state beyond the no-cloning limit. Moreover, the correlation of the EPR2
beams is examined and the entanglement of ∆A,B D 0.42 ˙ 0.01 is obtained, from
which the expected fidelity of Fc D 0.70 ˙ 0.01 is calculated. The experimental re-
sult is in good agreement with the calculation. Such good agreement indicates that
the phase-locking system is very stable and that the fidelity is mainly limited by
the degree of entanglement of the resource. As discussed in [204], residual phase

Figure 4.23 The measurement results of the
teleported state for a coherent state input in x
quadrature [205]. Each trace is normalized to
the corresponding vacuum noise level. Trace i
shows the corresponding vacuum noise level
h(∆ Ox (0)

out)
2i D 1/4. Traces ii shows the tele-

ported state for a vacuum input. Note that
the variance of the teleported state for a vac-
uum input corresponds to that for a coherent

state input. Trace iii shows the teleported
state for a coherent state input with the phase
scanned. At the top (bottom) of the trace, the
relative phase between the input and the LO
is 0 or π (π/2 or 3π/2). The measurement
frequency is centered at 1 MHz, and the reso-
lution and video bandwidths are 30 kHz and
300 Hz, respectively. Traces i and ii are aver-
aged 20 times.
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fluctuation in a locking system affects an achievable fidelity, and probably has pre-
vented previous works from surpassing the no-cloning limit. A highly stabilized
phase-locking system (both mechanically and electronically) allows one to achieve
the fidelity of 0.70.

Next, we illustrate the entanglement swapping experiment. For the reference, the
noise power of each mode for EPR1 beams and the initial correlation between the
modes are measured with homodyne detection before the experiment. The noise
levels of 5.23 ˙ 0.14 dB and 4.44 ˙ 0.14 dB are obtained for x and p quadratures
for the reference mode, respectively (Figure 4.24a). Similarly, the noise levels of
5.19 ˙ 0.13 dB and 4.37 ˙ 0.14 dB are obtained for x and p quadratures for the
input mode (not shown). By making electrical subtraction or summation of the ho-
modyne detection outputs, the noise levels of �3.19˙0.13 dB for x quadrature and
�4.19 ˙ 0.14 dB for p quadrature are observed (Figure 4.24b). From these values,
one obtains the measured variances of ∆ref,in D 0.43 ˙ 0.01 < 1. This result shows
the existence of the quantum entanglement between the input and the reference,
and also indicates that we can transfer this entanglement with the teleporter.

We then proceed to illustrate the experiment of entanglement swapping and the
measurement of the correlation between the output and the reference in a similar
way. The state in the reference mode does not change in the process. For the output
mode, the noise levels of 6.06˙0.12 dB and 5.47˙0.14 dB are obtained for x and p

quadratures, respectively, as shown in Figure 4.25a. Because of the imperfect tele-
portation, some noises are added to the teleported state, resulting in the larger vari-
ances than that of the reference. Figure 4.25b shows the results of the correlation
measurement. The noise levels of �0.25˙0.13 dB and �0.60˙0.13 dB are observed
for x and p quadratures, respectively, yielding ∆ref,out D 0.91˙0.02 < 1. This result

Figure 4.24 Correlation measurement for
EPR1 beams [205]. (a) The measurement
result of the reference mode alone. Trace i
shows the corresponding vacuum noise level
h(∆ Ox (0)

ref )2i D h(∆ Op (0)
ref )2i D 1/4. Traces ii and

iii are the measurement results of h(∆ Oxref)2i
and h(∆ Opref)2i, respectively. (b) The measure-
ment result of the correlation between the

input mode and the reference mode. Trace i
shows the corresponding vacuum noise level
h[∆( Ox (0)

ref �Ox (0)
in )]2i D h[∆( Op (0)

ref C Op (0)
in )]2i D 1/2.

Traces ii and iii are the measurement results
of h[∆( Oxref � Oxin)]2i and h[∆( Opref C Op in)]2i,
respectively. The measurement condition is
the same as that of Figure 4.23.
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Figure 4.25 Correlation measurement re-
sults of the teleportation of quantum en-
tanglement. (a) The measurement result
of the output mode alone. Trace i shows
the corresponding vacuum noise level
h(∆ Ox (0)

out)
2i D h(∆ Op (0)

out)
2i D 1/4. Traces

ii and iii are the measurement results of
h(∆ Oxout)2i and h(∆ Opout)2i, respectively.
(b) The measurement result of the correla-

tion between the output mode and the refer-
ence mode. Trace i shows the corresponding
vacuum noise level h[∆( Ox (0)

ref � Ox (0)
out)]

2i D
h[∆( Op (0)

ref C Op (0)
out)]

2i D 1/2. Traces ii and iii are
the measurement results of h[∆( Oxref � Oxout)]2i
and h[∆( Opref C Opout)]2i, respectively. The
measurement condition is the same as that of
Figure 4.23.

clearly shows the existence of quantum entanglement between the output and the
reference. Thus unity-gain entanglement swapping is successfully demonstrated.





217

5
Quantum Error Correction

In Section 1.9, we gave a brief introduction to the general concept of quantum error
correction (QEC) and its specific application to DV qubit and CV qumode systems.
Though being one of the most important elements for the implementation of any
advanced quantum information protocol, QEC has been demonstrated so far only
in a few experiments. Full QEC codes that provide universal protection against all
types of errors are, in general, fairly hard to implement. However, depending on
the system used for quantum information processing, it is often not necessary to
achieve such a universal QEC. For example, in the optical context, photon loss is
the primary source of errors and other kinds of errors such as depolarizing noise
channels as usually modeled in quantum information theory (see Section 1.4.1)
would only occur in very specific optical protocols.

As discussed in Section 1.7, also for quantum communication, especially over
long distances, there is a need to deal with transmission errors/noises and photon
losses. However, as opposed to quantum computation, in the communication sce-
nario, quantum protocols for detecting and avoiding errors can be probabilistic. In
particular, in a quantum repeater (Section 1.7), usually entanglement distillation
protocols are used. Nonetheless, in any such probabilistic scheme, quantum infor-
mation has to be stored reliably and hence the qubits or qumodes are again subject
to errors due to realistically imperfect memories. Therefore, some form of QEC
will always be required in any quantum protocol that is intended to achieve a true
advantage over any classical approach. A full-scale implementation would then be
based on a fully fault-tolerant protocol [5]. This may use concatenations of standard
QEC codes or, as envisaged in more recent approaches, some form of topological
protection against errors [230]. This latter technique may even be combined with
the more recent, measurement-based approaches to quantum computation [231–
236] (see Section 1.8 and Chapter 7).

There are just a few experiments on optical QEC, and in this chapter, we shall
describe one such experiment for qubits (Section 5.3.1) and one for qumodes (Sec-
tion 5.3.2); after a brief theoretical discussion on the simplest and oldest, full QEC
codes for protecting a qubit (Section 5.1) and a qumode (Section 5.2) against arbi-
trary single-qubit and single-qumode errors, respectively. This brief discussion will
especially provide the link with the stabilizer formalism introduced in Section 1.9.
Finally, we will talk about an optical approach to entanglement distillation in Sec-
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tion 5.4 and a few optical experiments of entanglement distillation, both for qubits
(Section 5.5.1) and for qumodes (Section 5.5.2).

5.1
The Nine-Qubit Code

Shor [21] proposed a concatenated quantum code to protect an arbitrary single-
qubit state, jψi D αj0i C �j1i, against arbitrary single-qubit errors by encoding
the logical qubit state into nine physical qubits,

jψencodei D αj C C Ci C �j � � �i , (5.1)

with j˙i D (j000i ˙ j111i)/p2. This code is basically a concatenation of the three-
qubit bit-flip repetition code, as discussed in Section 1.9, with the analogous three-
qubit phase-flip repetition code. While the former protects against X errors, that
is, flips in the computational basis, the latter allows one to suppress the effect
of Z errors corresponding to flips in the conjugate, Hadamard-transformed ba-
sis. Accordingly, the phase-flip code is based on a codesubspace spanned by the
Hadamard-transformed bit-flip codespace, fj C C Ci, j � � �ig. Since Shor’s con-
catenated version can correct both Z and X errors, it can also correct arbitrary su-
perpositions of Z and X errors, and thus any error that occurs on a single physical
qubit (Section 1.9).

Though again reminiscent of the redundant encoding in classical error correc-
tion, the full quantum code exhibits some highly nonclassical features of which
the most significant is the presence of multi-party entanglement. It is the concate-
nation of the three-party entangled states j˙i into nine-party states that enables
one to correct both bit-flip and phase-flip errors. Moreover, the phase-flip errors on
their own only occur in the quantum regime and do not exist classically.

As described in Section 1.9 for a three-qubit code, suitable error syndrome mea-
surements would collapse an arbitrary error including coherent superpositions of
bit-flip and phase-flip errors into the discrete set of only bit-flip and/or phase-flip
errors. These discrete Pauli errors can then be easily reversed to recover the original
state. Note that even though Shor’s code was the first full QEC code and its con-
catenated structure appears particularly instructive, there are cheaper QEC codes
which are nonetheless universal, protecting a given logical subspace against arbi-
trary errors on one or even more of the physical subsystems. The minimal number
of physical qubits in a full QEC code is five. For certain restricted sets of errors,
there are channel-adapted codes which require even less physical resources. For
example, a four-qubit QEC code is known to correct amplitude damping errors.

In the stabilizer formalism, the Shor code corresponds to a [N D 9, k D 1]
stabilizer code, encoding one logical qubit into nine physical qubits. Its N � k D 8
stabilizer generators are

S D hZ1 ˝ Z2, Z2 ˝ Z3, Z4 ˝ Z5, Z5 ˝ Z6, Z7 ˝ Z8, Z8 ˝ Z9,

X1 ˝ X2 ˝ X3 ˝ X4 ˝ X5 ˝ X6, X4 ˝ X5 ˝ X6 ˝ X7 ˝ X8 ˝ X9i . (5.2)
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Again, the codespace is spanned by the set of simultaneous C1 eigenvectors of S.
Measuring the eight stabilizer generators, yielding 28 classical syndrome bit values,
reveals which orthogonal error subspace an encoded input state is mapped. As be-
fore, signal recovery is then achieved by mapping the state back into the codespace
with stabilizer eigenvalues C1.

5.2
The Nine-Qumode Code

The CV qumode version [237, 238] of Shor’s nine-qubit code is based on the fol-
lowing encoded nine-qumode state,

jψencodei D
Z

dP ψ(P )jP, P, Pi , (5.3)

with jPi D 1/
p

π
R

dxe2ix P jx , x , xi. Through this code, an arbitrary single-
qumode state, jψi D R

dx ψ(x )jxi, is encoded into nine optical modes. Similar to
its qubit counterpart, the qumode version corrects both WH X(s) and Z(s) shift
errors in phase space as well as any superpositions of such shift errors. As a con-
sequence, an arbitrary single-qumode error can be corrected. Note that compared
with the incomplete three-mode code against arbitrary ei f ( Op)-errors discussed in
Section 1.9, the full CV Shor code is really capable of correcting arbitrary errors
including those on non-commuting variables. The stabilizer of the CV nine-mode
code is

S D
D
Z1 ˝ Z

†
2 , Z2 ˝ Z

†
3 , Z4 ˝ Z

†
5 , Z5 ˝ Z

†
6 , Z7 ˝ Z

†
8 , Z8 ˝ Z

†
9 ,

X1 ˝ X2 ˝ X3 ˝ X
†
4 ˝ X

†
5 ˝ X

†
6 , X4 ˝ X5 ˝ X6 ˝ X

†
7 ˝ X

†
8 ˝ X

†
9

E
,

(5.4)

corresponding to the following nullifier conditions,

Ox1 � Ox2 D 0 , Ox2 � Ox3 D 0 , Ox4 � Ox5 D 0 ,

Ox5 � Ox6 D 0 , Ox7 � Ox8 D 0 , Ox8 � Ox9 D 0 ,

Op1 C Op2 C Op3 � Op4 � Op5 � Op6 D 0 ,

Op4 C Op5 C Op6 � Op7 � Op8 � Op9 D 0 . (5.5)

Note that these quantum correlations hold for any signal-qumode input state, as
the stabilizer code encodes the full, infinite-dimensional Hilbert space of a single
qumode. In order to obtain a sufficient set of entanglement witnesses for verify-
ing a fully inseparable nine-party state, recall that we need a full set of stabiliz-
er generators (see Chapter 3). Hence, in this case, we need nine generators for
nine qumodes, uniquely defining an unphysical nine-qumode stabilizer state (a
one-dimensional subspace of the nine-qumode Hilbert space) instead of defining
a one-qumode subspace of the nine-qumode Hilbert space (see Section 1.9).
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Therefore, additional quadrature correlations must be considered and these extra
correlations are expressed in terms of the “logical” quadratures in the codespace
which also depend on the signal state. The missing correlations depend on the
combinations OX � Ox1 C Ox4 C Ox7 and OP � Op1 C Op2 C Op3. These linear combina-
tions correspond to the logical quadratures in the codespace and are given by the
quadratures of the signal input state, OX D Oxin and OP D Op in. For a finitely squeezed,
imperfect encoded state (see Section 5.3.2), there will be excess noises in all these
correlations and the variance-based entanglement witnesses of Section 3.2 can be
used to verify inseparabilities (see supplemental material of [239]).

5.3
Experiment: Quantum Error Correction

5.3.1
Qubits

There are several demonstrations of qubit quantum error correction in NMR [240,
241, 243, 244],1) ion-trap [245], and single-photons [246–248]. In this section, we
concentrate on optical approaches especially on the demonstration of Pittman
et al. [248]. This is because one of the most important essences of error corrections
is feedforward, and Pittman et al. demonstrated error correction with feedforward.

Figure 5.1 shows the quantum circuit of qubit error correction demonstrated by
Pittman et al. [248]. First, the input qubit jψi D αj0i C �j1i is encoded in the
circuit as follows:

αj0i C �j1i ! α
j00i C j11ip

2
C �

j01i C j10ip
2

. (5.6)

Then, one of the two qubits is measured on fj0i, j1ig basis, which corresponds to
an error to be corrected in the experiment. To recover the input state, one makes

Figure 5.1 Quantum circuit of qubit error correction demonstrated by Pittman et al. [248]. X
denotes σx operation (bit flip).

1) Input coherent states should be selected randomly from the entire phase space. In the real
experiments, however, we cannot do so. We usually measure averaged fidelity in real experiments,
which is only determined by variances for Gaussian states..
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a feedforward of the measurement result to the other untouched qubit and makes
a σx operation (bit flip) on it. For example, if one makes the measurement on the
first qubit and gets j0i, the second qubit becomes αj0i C �j1i. In this case, there
is no need for feedforward. On the other hand, if one gets j1i, then the second
qubit becomes αj1i C �j0i. In this case, one has to make a feedforward (bit flip) to
recover the input.

Figure 5.2 shows the experimental setup of the qubit error correction demon-
strated by Pittman et al. [248]. A pair of photons in the state j$i ˝ j$i is prepared
by parametric down conversion. One of the pair photons passes through a half wave
plate (HWP1) to create an input state. Here, the input qubit jψi D αj0i C �j1i is
described by a logical qubit as follow:

j0Li D j$i C jlip
2

,

j1Li D j$i � jlip
2

, (5.7)

where they correspond to ˙45ı-linear polarization, respectively. Thus, the input
state is

jψi D α
j$i C jlip

2
C �

j$i � jlip
2

. (5.8)

The other photon of the pair passes through another half wave plate (HWP2) to
prepare j0Li D (j$i C jli)/p2. After the half wave plates, these two photons are
combined by a polarization beam splitter (PBS). The PBS acts as a Hadamard gate
and controlled NOT gate in which the trick is following. At a PBS, each photon
goes to different directions (both photons are reflected or transmitted) for the case
of same polarization, and each photon goes to the same direction for the case of
orthogonal polarization. By post-selection, the former case will be selected in the
experiment. Therefore, the state after combining these two photons by a polariza-

Figure 5.2 Experimental setup for qubit
error correction demonstrated by Pittman
et al. [248]. PDC: parametric down conversion,
HWP: half wave plate, PBS: polarization beam

splitter, fpc: fiber polarization controller, PC:
Pockels cell, Z-measurement: measurement
on the basis of fj0Li, j1Lig.
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tion beam splitter can be described as

jψencodei D α
j$i ˝ j$i C jli ˝ jlip

2
C �

j$i ˝ j$i � jli ˝ jlip
2

D p
2

�
α

� j$i C jlip
2

˝ j$i C jlip
2

C j$i � jlip
2

˝ j$i � jlip
2

�

C�
� j$i C jlip

2
˝ j$i � jlip

2
C j$i � jlip

2
˝ j$i C jlip

2

��

D p
2

�
α

j0L0Li C j1L1Lip
2

C �
j0L1Li C j1L0Lip

2

�
, (5.9)

where the factor
p

2 in front of the right-hand side means that the success proba-
bility of post-selection is 50%. Thus, the input state is encoded.

As an error, a measurement on the basis of fj0Li, j1Lig, physically it can be re-
alized by photon detection in ˙45ı-linearly polarization with a fiber polarization
controller and a PBS. In the case of j1Li obtained, polarization of the photon is ro-
tated with a Pockels cell to make a bit-flip, where a fiber delay is used to compensate
the time delay of measurement and feedforward. Finally, the output is analyzed.
For eliminating the false events at the encoding stage described above, coincidence
logic for detectors 1–3 is used. Of course, this also works as usual post-selection.

Figure 5.3 Experimental results of qubit
error correction demonstrated by Pittman
et al. [248]. Input is (a)–(c) j0Li, (d) j1Li
(e) (j0Li C j1Li)/

p
2. Only in the case of (b),

the input photon was delayed compared to
ancilla photon by roughly twice its coherence
length. Z: measurement result.
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Figure 5.3 shows results of the experiments. The quantum error correction was
successful for various inputs. Note that Figure 5.3b shows the results for the case of
the input photon delayed compared to ancilla photon by roughly twice its coherence
length. The disappearance of interference in Figure 5.3b shows nonclassical nature
of the encoding operation.

5.3.2
Qumodes

In this section, we will describe the experimental implementation of a CV QEC
code based upon an entangled state of nine optical beams [164]. This experiment
was performed by Aoki et al. [239]. It is the nine-wavepacket adaptation of Shor’s
original nine-qubit scheme [21], as introduced in Section 5.2. In principle, this
scheme allows for full quantum error correction against an arbitrary single-beam
(single-party) error.

The CV version of Shor’s nine-qubit code [21, 164] is the only code to date which
can be deterministically (unconditionally) implemented using only linear optics
and sources of entanglement. Like the discrete Shor code, it can correct arbitrary
errors on single channels; however, more sophisticated codes would be required to
correct some important forms of error such as loss on all channels simultaneous-
ly [93, 249]. The experiment explained here is the first implementation of a Shor-
type code, as the preparation of nine-party entanglement is still beyond the scope of
existing non-optical approaches and single-photon-based, optical schemes. Indeed,
previous implementations of QEC were based on qubit codes, either in liquid-state
NMR (using up to five qubits) [240, 241, 243, 244], linear ion trap hardware config-
urations (using up to three qubits) [245], or single-photon linear optics (using up to
four qubits) [246, 247]. Here, continuous-variable QEC [237, 238] utilizes squeezed
states of light and networks of beam splitters [164] which are extensively explained
in the previous sections. Even this optical approach requires an optical network
three times the size as that used in teleportation network experiments explained
in Section 4.2.3 to achieve the large-scale multi-partite entanglement for a nine-
wavepacket code.

In the scheme presented here, as for the simplest QEC codes (whether for
qubits or for continuous variables), a single, arbitrary error can be corrected. Such
schemes typically assume errors occur stochastically and therefore rely on the low
frequency of multiple errors. Stochastic error models may describe, for example,
stochastic, depolarizing channels for qubits, or in the CV regime [94], free-space
channels with atmospheric fluctuations causing beam jitter, as considered recently
for various nondeterministic distillation protocols [250–253] (see Figure 5.4 for a
three-mode QEC scheme with such a stochastic error model).

The overall performance of this family of QEC codes is only limited by the ac-
curacy with which ancilla state preparation, encoding and decoding circuits, and
syndrome extraction and recovery operations can be achieved. In the continuous-
variable scheme, all these ingredients can be efficiently implemented. In the ab-
sence of squeezing, the fidelity is limited by the vacuum noise. We dub this case
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Figure 5.4 Protecting an arbitrary input state
Win against stochastic position shift errors
using two squeezed ancilla modes and two
beam splitters for encoding, two beam split-
ters for decoding, and two homodyne de-
tectors for syndrome identification [94]. The

final correction step is accomplished through
phase-space displacements of the signal
mode conditioned upon the syndrome results
for the ancilla modes. The syndromes are po-
sition shifts of the ancilla modes in either C
or � direction.

quantum-limited error correction. Squeezing of the auxiliary modes is linked with
the presence of entanglement and thus determines whether the transfer fidelities
exceed those of the quantum-limited error correction.

In the limit of infinite ancilla squeezing, the encoded state would be given by
Eq. (5.3). Figure 5.5 shows a schematic of our linear-optics realization of the nine-
wavepacket code using finite-squeezing resources. In the encoding stage, an input
state is entangled with eight squeezed ancillae, each corresponding to an approxi-
mate “0” (“blank”) state. After an error is introduced, the states are decoded simply
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Figure 5.5 Schematic for nine-wavepacket
quantum error correction code [164] opera-
tion; for correcting an arbitrary error occurring
in any one of the nine channels [239]. The

dotted lines represent the classical informa-
tion that is used to compute the necessary
syndrome recovery operations.
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by inverting the encoding. The eight ancilla modes are then measured (with
x-quadrature measurements performed in detectors 1 and 4 and p-quadrature
measurements in six other detectors), and the results of the measurements are
used for error syndrome recognition. More precisely, these are the results of
homodyne detection applied to the ancilla modes along their initial squeezing
direction.

The encoding stage consists of two steps in order to realize the concatenation of
position and momentum codes [164]. First, position-encoding is achieved via a trit-

ter Tin,an1,an4 that is two beam splitters (33%R and 50%R in Figure 5.5) acting upon
the input mode and two x-squeezed ancilla modes (an1 and an4 in Figure 5.5). The
second step provides the momentum-encoding via three more tritters, with six ad-
ditional p-squeezed ancilla modes (an2, an3, an5, an6, an7 and an8 in Figure 5.5).
The overall encoding circuit becomes

Tan4,an7,an8Tan1,an5,an6Tin,an2,an3 Tin,an1,an4 . (5.10)

In the experiment, a code state was generated with position x and momentum p

interchanged. This alternate encoding (and the corresponding QEC protocol) only
involves a change of basis with no drop in performance. Quantum optically, this
change corresponds to a 90-degree rotation of the quadrature amplitudes, requiring
local oscillator phases to be shifted by 90 degrees for homodyne detection.

The finitely squeezed, encoded state exhibits the following quadrature quantum
correlations,

Ox1 C Ox2 C Ox3 � ( Ox4 C Ox5 C Ox6) D 3p
2

Ox (0)
an1e�r1 �

r
3
2

Ox (0)
an4e�r4 ,

Ox4 C Ox5 C Ox6 � ( Ox7 C Ox8 C Ox9) D p
6 Ox (0)

an4e�r4 ,

Op1 � Op2 D
r

3
2

Op (0)
an2e�r2 � 1p

2
Op (0)

an3e�r3 ,

Op2 � Op3 D p
2 Op (0)

an3e�r3 ,

Op4 � Op5 D
r

3
2

Op (0)
an5e�r5 � 1p

2
Op (0)

an6e�r6 ,

Op5 � Op6 D p
2 Op (0)

an6e�r6 ,

Op7 � Op8 D
r

3
2

Op (0)
an7e�r7 � 1p

2
Op (0)

an8e�r8 ,

Op8 � Op9 D p
2 Op (0)

an8e�r8 . (5.11)

In the limit r1�8 ! 1, the quadrature operators become perfectly correlated and
we obtain the ideal stabilizer/nullifier conditions of Eq. (5.5) (with Ox and Op inter-
changed throughout).

As the decoding stage merely inverts the encoding, the eight ancilla modes will
remain all “0” in the absence of errors. In the presence of an error in any one of the
nine channels, the measurement results of the decoded ancillae will lead to nonze-
ro components containing a sufficient amount of information for identifying and
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Table 5.1 Error syndrome measurements [239]. LO phase: quadrature at which the local oscilla-
tor phase of the homodyne detector is locked, ES: equal signs, DS: different signs.

Channel with Detectors with LO

an error nonzero outputs phase

1 1 x

2 p

2 1 x

2,3 (DS) p

3 1 x

2,3 (ES) p

4 1,4 (DS) x

5 p

5 1,4 (DS) x

5,6 (DS) p

6 1,4 (DS) x

5,6 (ES) p

7 1,4 (ES) x

7 p

8 1,4 (ES) x

7,8 (DS) p

9 1,4 (ES) x

7,8 (ES) p

hence correcting the error (see Table 5.1 for an error-syndrome map). Similar to the
qubit QEC scheme where the conditional state after the syndrome measurements
becomes the original input state up to some discrete Pauli errors, the condition-
al state of the present scheme coincides with the input state up to some simple
phase-space displacements. Thus, it only remains to apply the appropriate (inverse)
displacement operations in order to correct the errors.

The detailed experimental setup for the nine-wavepacket QEC scheme is shown
in Figure 5.6. Eight squeezed vacua are created by four optical parametric oscilla-
tors (OPOs) which have two counter-propagating modes; thus, every OPO creates
two individual squeezed vacua. The squeezing level of each single-mode squeezed
vacuum state corresponds to roughly 1 dB below shot noise. For pumping the
OPOs, the second harmonic of a cw Ti:sapphire laser output is used. The syndrome
measurements are performed via homodyne detection with near-unit efficiency.

To apply a single error, a coherent modulation is first generated in a so-called er-
ror beam using an electro-optic modulator (EOM) (“modulated mode”). This beam
is then superimposed onto the selected mode or channel (“target mode”) through
a high-reflectivity beam splitter [203] with independently swept phase, resulting in
a quasi-random displacement error. The error-correcting displacement operations
(as determined by decoding and measurement) are then similarly performed via
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Figure 5.6 Experimental setup of the nine-
wavepacket quantum error correction [239];
PBS: polarization beam splitter, PPKTP: peri-
odically poled KTiOPO4, HBS: half (symmet-
ric) beam splitter, HWP: half wave plate, ND:
neutral density filter, PZT: piezoelectric trans-

ducer, BHD: balanced homodyning, SHD:
self-homodyning, OPO: optical parametric
oscillator, MCC: mode-cleaning cavity, LO:
local oscillator, ISO: optical isolator, EOM:
electro-optic modulator.

an EOM and a high-reflectivity beam splitter, but now with phase locking between
the modulated and target modes along either the x or p axis as appropriate.

Figure 5.7 shows some examples for error syndrome measurement results.
Here, the input state is chosen to be a vacuum state. A random displacement error
in phase space is imposed on channel 1 (Figure 5.7(I)) and on channel 9 (Fig-
ure 5.7(II)). A two-channel oscilloscope is used to measure the outputs of pairs of
detectors
(1, 4), (2, 3), (5, 6), and (7, 8). Comparing the results of Figure 5.7(I) with Ta-
ble 5.1, one can identify an error occurring in channel 1 since only detectors 1 and
2 have nonzero outputs. The outputs from detectors 1 and 2 correspond to the
desired x and p displacements, respectively. Similarly, from Figure 5.7(II), we can
recognize that an error has occurred in channel 9. Here, detectors 1, 4, 7, and 8
have nonzero outputs and the outputs of detectors 1 and 4, as well as 7 and 8 have
equal signs (distinguishing it from the case of an error in channel 8, for which
outcomes 7 and 8 have different signs).

Figure 5.8 shows two examples of QEC results, comparing output states with and
without error correction, and with and without squeezing of the ancilla modes.
In Figure 5.8(I), an error was introduced in channel 1. The local oscillator (LO)
phase of the homodyne detector was tuned to detect the x quadrature of channel
1. Similarly, in Figure 5.8(II), the error was introduced in channel 9 and the LO
phase is locked to the p quadrature. For ease of experimental implementation, only
the measurement outcomes of detectors 4 and 8 were fed forward to the error
correction step. In principle, using the combined outputs of detectors 1 and 4 for x

and detectors 7 and 8 for p would yield even higher fidelities.
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Figure 5.7 Error syndrome measurement
results [239]. (I) A random displacement er-
ror is imposed on channel 1. (II) A random
displacement error is imposed on channel
9. A two-channel oscilloscope is used mea-

suring the outputs of detectors 1 and 4, 2
and 3, 5 and 6 and 7 and 8. (a) output signal
of detector 1, (b) detector 2, (c) detector 3,
(d) detector 4, (e) detector 5, (f) detector 6,
(g) detector 7, (h) detector 8.
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(a)

(b)

(a)

(b)

Figure 5.8 Results of quantum error correc-
tion [239]. (I) A random phase-space displace-
ment error is imposed on channel 1. The LO
phase of the homodyne detector is locked to
the x quadrature. (II) A random displacement
error is imposed on channel 9. The LO phase
of the homodyne detector is locked to the p
quadrature. In each case, four traces are com-
pared: (i) Homodyne detector output without

error correction (no feed forward step). (ii) Er-
ror correction output without squeezing. (iii)
Error correction output with squeezing. (iv)
Shot noise level. (a) Single scan of a spectrum
analyzer with zero span mode. 2 MHz center
frequency, 30 kHz resolution band width and
300 Hz video band width. (b) 30 times average
of traces (ii–iv) above.
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The quality of the error correction can be assessed via the fidelity F D
hψinj O�outjψini, where jψini represents the input state and O�out corresponds to
the output state of the error correction circuit [203, 211, 212]. Here, the fidelity is
calculated as

F D 2r�
1 C 4

D
(∆ Oxout)

2
E� �

1 C 4
D
(∆ Opout)

2
E� , (5.12)

where Oxout and Opout are quadrature operators of the output field. For example, in
the case of an error in channel 1, the output quadrature operators become

Oxout D Oxin � 1p
2

Ox (0)
an1e�r1

Opout D Op in � 1p
6

Op (0)
an2e�r2 , (5.13)

where Oxin, Op in, Ox (0)
an1, and Op (0)

an2 are quadrature operators of the input field and the
ancilla vacuum modes, and ri are squeezing parameters for ancilla i. In the ideal
case of ri ! 1, unit fidelity is obtained with output states approaching the input
states. For zero squeezing, Eq. (5.13) yields an excess noise of 1/2 and 1/6 for the x

and p quadratures corresponding to 1.76 and 0.67 dB of output powers, respectively
(see Table 5.2 and all the experimental results are summarized in the table).

Equation (5.12) can be used to translate the measured noise level values from
Table 5.2 into fidelity values. Indeed, for every possible error introduced (in any
of the channels), the fidelity after error correction exceeds the maximum values
achievable for the scheme in the absence of ancilla squeezing. For example, for an
error in mode 1, a fidelity of 0.88 ˙ 0.01 was achieved (exceeding the “classical”
cutoff of 0.86). Similarly, for an error in channel 9, we obtain a fidelity of 0.86 ˙
0.01, exceeding a cutoff of 0.82 (The lower cutoff takes into consideration that only
two of the four nonzero components are used.). The improvement over quantum-
limited fidelities for errors in any one of the nine channels is the key demonstration
of this experiment, providing indirect evidence of entanglement-enhanced error
correction. By comparison, in complete absence of any error correction, that is,
without reversing displacement errors (including the zero-squeezing case; for an
application of such quantum-limited error correction), fidelity values under 0.007˙
0.001 were obtained. Nonetheless, instead of this absolute improvement, it is the
extent to which the classical cutoff is exceeded which quantifies the effectiveness
of the nonclassical resources.

In the experiment of [239], evidence is obtained for an entanglement-enhanced
correction of displacement errors; a further increase of the small enhancement of
that implementation would only require higher squeezing levels of the resource
states. The scheme could be useful for applications where stochastic errors occur
such as free-space communication with fluctuating losses and beam pointing er-
rors [250–253].
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Table 5.2 Output noise power of QEC circuit in dB, relative to the shot noise level. Perfect error
correction therefore corresponds to 0 dB. SQ: squeezing.

Error Quadrature Output power Output power Output power

on of output without SQ without SQ with SQ
mode (theory) (experiment) (experiment)

1 x 1.76 1.84 ˙ 0.12 1.46 ˙ 0.13

p 0.67 0.68 ˙ 0.12 0.57 ˙ 0.12
2 x 1.76 1.75 ˙ 0.12 1.42 ˙ 0.13

p 0.87 0.97 ˙ 0.12 0.72 ˙ 0.12
3 x 1.76 1.83 ˙ 0.12 1.41 ˙ 0.12

p 0.87 0.92 ˙ 0.12 0.70 ˙ 0.12

4 x 2.22 2.26 ˙ 0.12 1.67 ˙ 0.12
p 0.67 0.73 ˙ 0.12 0.50 ˙ 0.12

5 x 2.22 2.33 ˙ 0.12 1.79 ˙ 0.12

p 0.87 0.88 ˙ 0.12 0.73 ˙ 0.13
6 x 2.22 2.34 ˙ 0.12 1.77 ˙ 0.12

p 0.87 0.87 ˙ 0.13 0.73 ˙ 0.13
7 x 2.22 2.30 ˙ 0.13 1.72 ˙ 0.12

p 0.67 0.69 ˙ 0.12 0.57 ˙ 0.12

8 x 2.22 2.18 ˙ 0.13 1.79 ˙ 0.13
p 0.87 0.84 ˙ 0.12 0.65 ˙ 0.12

9 x 2.22 2.18 ˙ 0.14 1.82 ˙ 0.13

p 0.87 0.94 ˙ 0.12 0.61 ˙ 0.12

5.4
Entanglement Distillation

The entanglement of a composite quantum state is distillable if a sufficiently large
number of copies of that state can be converted into a pure maximally entangled
state (or arbitrarily close to it) through local operations and classical communica-
tion. This entanglement distillation is typically (but not necessarily) probabilistic.2)

Although various experiments for distilling pure and even mixed entangled qubit
states have been performed [255–258], the situation for CV entangled states is quite
different. The need for a non-Gaussian element in CV distillation3) led to a few
distinct approaches. One such approach is to induce non-Gaussian noise such that
the resulting mixed entangled state is no longer a Gaussian state [250–252, 259,
260], in which case distillation is possible with Gaussian operations. Along these

2) In general, the overall entanglement cannot
be increased deterministically through local
operations and classical communication.
However, this still allows, for instance, to
transform two equally entangled copies into

one more and one less entangled copy in a
deterministic fashion [254].

3) Recall that Gaussian entangled states cannot
be distilled through Gaussian operations
alone (see Chapter 2).
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lines, channels with random phase fluctuations [252] and random attenuation [251]
have been experimentally demonstrated.

An example of probabilistic entanglement distillation (concentration) of a single
copy of a pure Gaussian two-mode squeezed state (TMSS) into a higher entangled
non-Gaussian (but still infinite-dimensional) state through non-Gaussian opera-
tions, namely, by subtracting photons, was presented in [261]. The original version
of this protocol required photon number resolving (PNR) detectors. Nonetheless,
simple on/off detectors work as well [262]. The entanglement before and after the
distillation can be generally quantified in a numerical fashion [263] as well as ana-
lytically to some extent [158].

More important and more realistic, however, is the distillation of mixed Gaus-
sian TMSSs because a TMSS will be subject to losses and noise in a channel when
used for communication, and in most experiments, the TMSS is not entirely pure
when the antisqueezing exceeds the squeezing level (see below). An extended theo-
retical analysis of photon-subtraction-based distillation techniques including Gaus-
sian mixed states as resources can be found in [158]. This type of distillation was
recently demonstrated experimentally [264].

In order to understand single-copy distillation through photon subtraction, con-
sider a TMSS in the Fock basis (see Chapter 3),

jΨ i D
1X

nD0

p
1 � λ2λn jn, ni , (5.14)

giving at the same time the Schmidt decomposition (see Section 1.5) with Schmidt
coefficient

p
1 � λ2 λn . These decrease exponentially with photon number n. Intu-

itively, the photon subtraction can be described by applying the photon annihilation
operator Oa upon the TMSS, corresponding to the asymptotic case of a beam splitter
with transmittance T ! 1. After photon subtraction, ( Oa˝ Oa)jn, ni D njn�1, n�1i,
the renormalized state is

jΨ 0i D
1X

nD0

(1 � λ2)3/2

λ
p

1 C λ2
(n C 1)λnC1jn, ni , (5.15)

whose Schmidt coefficients now decrease more slowly with increasing photon
number n. Quantifying the entanglement of the states in Eqs. (5.14) and (5.15)
using the logarithmic negativity (see Section 1.5) gives

EN (jΨ i) D log2
1 C λ
1 � λ

, (5.16)

EN (jΨ 0i) D log2
(1 C λ)3

(1 � λ)(1 C λ2)
. (5.17)

For any squeezing 0 < λ < 1, the entanglement of the TMSS state can be en-
hanced through a perfect photon annihilation operation. However, this is no longer
so straightforward, though similar conclusions can still be drawn when we replace
the pure TMSS by a mixed state corresponding to the realistic situation in the exper-
iment described below or after a lossy-channel transmission for communication;
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or when we use a beam splitter and photon detectors instead of the ideal photon
annihilation operator (see [158] for more details).

5.5
Experiment: Entanglement Distillation

5.5.1
Qubits

Although there are several experimental demonstrations of qubit entanglement
distillation [255, 257, 265], we will explain the experiment of Pan et al. [265] in de-
tail in this section. This is because the error model used in this experiment is rather
general and instructive. The original proposal for this type of entanglement distilla-
tion was made by Bennett et al. [22] and a scheme realizable with linear optics was
proposed by Pan et al. [256]. Based on that scheme, Pan et al. demonstrated qubit
entanglement distillation [265].

Figure 5.9 shows qubit entanglement distillation as proposed and demonstrated
by Pan et al. [256, 265]. In this experiment, the polarization entangled state jΦ (C)i
[see Eq. (3.19)] is distilled. First, Alice and Bob share two mixed entangled pairs
a1–b1 and a2–b2 whose density operators are

O�aibi D F
ˇ̌̌
Φ (C)

E
aibi

D
Φ (C)

ˇ̌̌
C (1 � F )

ˇ̌
Ψ (�)˛

aibi

˝
Ψ (�)

ˇ̌
, (5.18)

where i D 1, 2 denotes pair 1 or 2, jΨ (�)i is defined in Eq. (3.19), and F D
hΦ (C)j O�aibi jΦ (C)i is the fidelity to the desired state jΦ (C)i. Then, Alice combines
photons a1 and a2 with a polarization beam splitter (PBS) and gets photons a3 and
a4. Similarly, Bob combines photons b1 and b2 with a PBS and gets photons b3
and b4. Here, only the case with photons simultaneously at a3, a4, b3, and b4 is
post-selected.

From the nature of PBS shown in Figure 5.10, photons a3 and a4 and pho-
tons b3 and b4 have to have the same polarization in the case of photons being

Figure 5.9 Scheme for qubit entanglement distillation proposed and demonstrated by Pan
et al. [256, 265]. Photons a4 and b4 are measured with fjCi, j�ig basis, where j˙i D (j$i ˙
jli)/

p
2.
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(a) (b)

Figure 5.10 Nature of a PBS used in the experiment [256, 265].
Two photons with horizontal (H) or vertical (V) polarization
are combined by a PBS. (a) Two photons have the same polar-
ization and (b) different polarization.

simultaneously present at a3, a4, b3, and b4. From the constraint, only the cases of
jΦ (C)ia1b1 ˝jΦ (C)ia2b2 and jΨ (�)ia1b1 ˝jΨ (�)ia2b2 can survive with the probability
F 2/2 and (1 � F )2/2, respectively. More explicitly,

ˇ̌̌
Φ (C)

E
a1b1

˝
ˇ̌̌
Φ (C)

E
a2b2

D 1p
2

(j$ia1 ˝ j$ib1 C jlia1 ˝ jlib1)

˝ (j$ia2 ˝ j$ib2 C jlia2 ˝ jlib2)

D 1
2

(j$ia1 ˝ j$ia2 ˝ j$ib1 ˝ j$ib2

C j$ia1 ˝ jlia2 ˝ j$ib1 ˝ jlib2

C jlia1 ˝ j$ia2 ˝ jlib1 ˝ j$ib2

Cjlia1 ˝ jlia2 ˝ jlib1 ˝ jlib2)

! 1
2

(j$ia3 ˝ j$ia4 ˝ j$ib3 ˝ j$ib4

Cjlia3 ˝ jlia4 ˝ jlib3 ˝ jlib4) , (5.19)

and

ˇ̌
Ψ (�)˛

a1b1 ˝ ˇ̌
Ψ (�)˛

a2b2 D 1p
2

(j$ia1 ˝ jlib1 � jlia1 ˝ j$ib1)

˝ (j$ia2 ˝ jlib2 � jlia2 ˝ j$ib2)

D 1
2

(j$ia1 ˝ j$ia2 ˝ jlib1 ˝ jlib2

� j$ia1 ˝ jlia2 ˝ jlib1 ˝ j$ib2

� jlia1 ˝ j$ia2 ˝ j$ib1 ˝ jlib2

Cjlia1 ˝ jlia2 ˝ j$ib1 ˝ j$ib2)

! 1
2

(j$ia3 ˝ j$ia4 ˝ jlib3 ˝ jlib4

Cjlia3 ˝ jlia4 ˝ j$ib3 ˝ j$ib4) . (5.20)

As a final step, Alice and Bob make a polarization measurement with fjCi, j�ig
basis for photons a4 and b4 where jCi D (j$iCjli)/p2 and j�i D (j$i�jli)/p2.
Then, Alice and Bob make a classical communication to compare the measurement
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results and finish the distillation. Here, they use the following relations:

j$ia3 ˝ j$ia4 ˝ j$ib3 ˝ j$ib4

D j$ia3 ˝ jCia4 C j�ia4p
2

˝ j$ib3 ˝ jCib4 C j�ib4p
2

,

j$ia3 ˝ j$ia4 ˝ jlib3 ˝ jlib4

D j$ia3 ˝ jCia4 C j�ia4p
2

˝ jlib3 ˝ jCib4 � j�ib4p
2

,

jlia3 ˝ jlia4 ˝ j$ib3 ˝ j$ib4

D jlia3 ˝ jCia4 � j�ia4p
2

˝ j$ib3 ˝ jCib4 C j�ib4p
2

,

jlia3 ˝ jlia4 ˝ jlib3 ˝ jlib4

D jlia3 ˝ jCia4 � j�ia4p
2

˝ jlib3 ˝ jCib4 � j�ib4p
2

. (5.21)

For example, if both Alice and Bob get C and make it sure with classical commu-
nication, the state of photons a3 and a4 becomes the mixed state of jΦ (C)ia3b3 and
jΨ (C)ia3b3 with the density operator

O�a3b4 D F 0
ˇ̌̌
Φ (C)

E
aibi

D
Φ (C)

ˇ̌̌
C �

1 � F 0
� ˇ̌̌

Ψ (C)
E

aibi

D
Ψ (C)

ˇ̌̌
, (5.22)

where F 0 D F 2/(F 2 C (1 � F )2). In the case of F > 0.5, which means the fidelity
to jΦ (C)i is not bad at the very beginning, F 0 > F and the distillation is accom-
plished.

For the case of the other measurement results like ��, �C, and C�, Alice and
Bob can make a distillation in principle, but they have to make a feedforward like
teleportation and quantum error correction [22, 256]. In the experiment of Pan
et al., they just post-selected the case of CC for eliminating feedforward [265].

Figure 5.11 shows the experimental setup for qubit entanglement distillation
demonstrated by Pan et al. [265]. By using the method explained in Section 3.1.3.1,
they created two pairs of polarization entangled photons a1–b1 and a2–b2 in the
state jΦ (C)i. Both pairs suffer from decoherence or error which is imposed with
half wave plates shown in Figure 5.11.

Figure 5.12 shows the experimental results. In the cases of Figure 5.12a,b, the
half-wave-plate axis was oriented at 14ı which corresponds to the initial fidelity
F D 0.75, and the results were consistent with the theory explained above. Here,
we can check it with the following relations:ˇ̌̌

Φ (C)
E

D 1p
2

(j$iA ˝ j$iB C jliA ˝ jliB)

D 1p
2

(jCiA ˝ jCiB C j�iA ˝ j�iB) , (5.23)

ˇ̌̌
Ψ (�)

E
D 1p

2
(j$iA ˝ jliB � jliA ˝ j$iB)

D 1p
2

(jCiA ˝ j�iB � j�iA ˝ jCiB) . (5.24)
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Figure 5.11 Experimental setup for qubit entanglement distillation demonstrated by Pan
et al. [265]. λ/2: half wave plate for imposing an error.

Figure 5.12c,d shows the results of entanglement distillation (integration time
was about 0.5 h). We can check the success of distillation with Eqs. (5.23) and (5.24)
again.

5.5.2
Qumodes

Although there are several experimental demonstrations of CV entanglement
distillation [250–252, 259], we will explain the experiment performed by Hage
et al. [252] in detail. This is because this CV experiment is very similar to qubit
entanglement distillation explained in Section 5.5.1.

As shown in Section 3.2.3.1, a CV (two-party) entangled state can be created with
two squeezed vacua and a half beam splitter. More precisely, one can create a CV
entangled state with only one squeezed vacuum and a half beam splitter which can
be regarded as an asymmetric state with squeezing parameters with r1 > 0 and
r2 D 0. In the experiment of Hage et al., this type of entangled state is distilled
when phase noise is present in each beam.
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(a)

(d)(c)

(b)

Figure 5.12 Experimental results for qubit
entanglement distillation demonstrated by
Pan et al. [265]. H: $, V: l. (a, b) before dis-
tillation (a) fj$i, jlig basis measurement,

(b) fjCi, j�ig basis measurement. (c, d) after
distillation (c) fj$i, jlig basis measurement,
(d) fjCi, j�ig basis measurement.

Figure 5.13 shows the experimental setup for CV entanglement distillation
demonstrated by Hage et al. [252]. Two optical parametric amplifiers (subthreshold
optical parametric oscillators) create two independent squeezed light beams. These
two beams are divided into two beams by half beam splitters BSE,1 and BSE,2, re-
spectively, and two pairs of entangled light beams are created. The two pairs of
entangled light beams are shared by Alice and Bob. Phase noises are imposed on
the entangled light beams as decoherence.

For distillation, first, Alice and Bob locally combine their parts of entangled pairs
with half beam splitters BSD,A and BSD,B. Then, they make local measurements on
amplitude quadratures XT,A and XT,B respectively for one of the output of the beam
splitters with balanced homodyne detectors BHDT,A and BHDT,B. Alice and Bob
make a classical communication to chose trigger condition for distillation which
satisfies

jXT,A C XT,Bj < Q , (5.25)

where Q is a certain threshold selected in the experiment. Here, we should recall
that a sufficient condition for entanglement isD	

∆
� OxA C OxB

�
2
E

C
D	

∆
� OpA � OpB

�
2
E

< 1 . (5.26)

This condition would be satisfied with a certain value of Q in Eq. (5.25) [266]. Note
that this procedure is very similar to the qubit distillation protocol explained in
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Figure 5.13 Experimental setup for CV entanglement distillation demonstrated by Hage
et al. [252]. δLi : fluctuation of path length, BHD: balanced homodyne detector, OPA: optical
parametric oscillator (squeezer), BS: half beam splitter.

Section 5.5.1 where Alice and Bob make local measurement and classical commu-
nication.

As a final step of distillation, Alice and Bob select those times when Eq. (5.25)
is satisfied and so the other outputs of the half beam splitters BSD,A and BSD,B be-
come a distilled pair. The outputs are measured with balanced homodyne detectors
BHDV,A and BHDV,B to verify distillation.

Figure 5.14 shows the results of distillation [252]. The results show the success
of entanglement distillation with a certain threshold value Q when the phase fluc-
tuation is up to σ D 0.545. Here, total variance of (XV,A C XV,B) and (PV,A � PV,B)
below unity means the existence of entanglement according to the inequality in
Eq. (5.26).

In the remainder of this section, we will describe another example of a CV en-
tanglement distillation experiment which was performed by Takahashi et al. [264].
In this experiment, Gaussian entangled states are distilled through non-Gaussian
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Figure 5.14 Experimental results for CV en-
tanglement distillation demonstrated by Hage
et al. [252]. (a) Variance of (XV,A C XV,B) and
corresponding success rates versus thresh-
old value Q for different strengths of the

phase fluctuation σ. (b) The total variance of
(XV,A C XV,B) and (PV,A � PV,B) plotted against
the success rate. The total variance below one
means the existence of entanglement.

operations. Therefore, we have the converse situation compared with Hage’s ex-
periment described above, where non-Gaussian entangled states were distilled by
means of Gaussian operations.

In order to apply an appropriate non-Gaussian measurement such as photon
counting upon a Gaussian state, we need to be able to perform the whole experi-
ment in the time domain. This is different from the more traditional CV experi-
ments which were mainly conducted in the frequency domain; recall our discus-
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Figure 5.15 Experimental setup for for CV
entanglement distillation demonstrated by
Takahashi et al. [264]. OPO: optical parametric
oscillator for creation of squeezed vacuum,
HBS: half beam splitter, BS: beam splitter, R:

Reflectivity of beam splitter, BHD: balanced
homodyne detector, LO: local oscillator, θ :
local oscillator phase, FC: filtering cavity, APD:
avalanche photodiode, PZT: piezo electric
transducer.

sion on the necessary paradigm shift from frequency to time in Section 3.2.3. The
DV-type photon-subtraction-based distillation of CV entanglement represents an
important example of a protocol whose realization relies upon such a new genera-
tion of experiments. According to our definition, it is an example of a hybrid pro-
tocol, exploiting at the same time unconditionally producible, Gaussian resource
states and DV measurements. In this sense, the experiment described below could
as well be listed among those hybrid schemes that we shall discuss in Chapter 8.

Figure 5.15 shows the experimental setup for CV entanglement distillation
demonstrated by Takahashi et al. [264]. The scheme itself was proposed by Opatrný
for improvement of CV teleportation fidelities [261]. In this scheme, two-mode
EPR-like state created by two squeezed vacua and a beam splitter is distilled
by using “photon subtraction” technique which is also used for creation of a
“Schrödinger kitten” and will be explained in more detail in Section 8.2.

In Figure 5.15, first, two entangled light beams are created with a squeezed vac-
uum and a half beam splitter. Then, a single photon is subtracted from one of
the beams, or single photons are subtracted from both beams with avalanche pho-
todiodes (APDs). More precisely, the outputs of the balanced homodyne detectors
(BHDs) are recorded by a digital oscilloscope triggered by either logical OR or AND
of the click signals from the two APDs. Here, filtering cavities (FCs) before the
APDs correspond to frequency-mode filters which only select the same frequency-
mode as local oscillators (LOs) for BHDs. For the state verification, a set of the
homodyne outcomes are numerically converted into the “C/�” basis which corre-
spond to two outputs from a virtual half beam splitter. If the experiment succeeds,
the outputs from the virtual half beam splitter should be an “odd” Schrödinger kit-
ten (jαi � j � αi, jαj � 1) and a vacuum for single photon subtraction from one
of the beams or OR case of the click signals from APDs, and should be an “even”
Schrödinger kitten (jαi C j � αi, jαj � 1) and a vacuum for single photon subtrac-
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Figure 5.16 Experimental results for for
CV entanglement distillation demonstrat-
ed by Takahashi et al. [264]. Experimentally
reconstructed Wigner functions and con-
tour plots of the “�” mode states for the
distilled state via single photon subtraction
with R D 5% (a), distilled state via two-
photon subtraction with R D 10% (b), and
the undistilled initial state (squeezed vacuum

with R D 0%) (c), all with initial squeez-
ing of �3.2 dB. (d) Experimental logarithmic
negativities as functions of the initial squeez-
ing. Single-photon: single-photon subtracted
states, Two-photon: two-photon subtracted
state. (e) Photon number distributions of
the experimentally reconstructed “C” mode
states corresponding to (a) and (b).

tion from both beams or AND case of the click signals from APDs. Here, the “odd”
Schrödinger kitten will be explained in Section 8.2 and the “even” Schrödinger kit-
ten is just the extension of single photon subtraction for “odd” kitten creation to
two photon subtraction [267].

Figure 5.16 shows the experimental results for the CV entanglement distillation
demonstrated by Takahashi et al. [264]. From Figure 5.16, we can see the Wigner
function of an “odd” Schrödinger kitten for single photon subtraction and the one
of an “even” Schrödinger kitten for single photon subtraction from both beams
or two photon subtraction. It is clear from the results that the distillation is suc-
cessfully performed for both single photon subtraction from one of the beams and
single photon subtractions from both beams. Moreover, the values of the logarith-
mic negativity show that the entanglement increases through distillation.
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6
Quantum Teleportation of Gates

In Section 1.6, we introduced quantum teleportation as a protocol to reliably trans-
fer arbitrary, “unknown” quantum states using shared entanglement and classical
communication. In the ideal case, an unknown qubit state can be perfectly restored
at the receiving station while the ideal scenario for a perfect transfer of an infinite-
dimensional qumode state is unphysical and corresponds to the limiting case of
quantum teleportation using two-mode squeezed states (see Section 3.2) with in-
finite squeezing and energy. Real experiments in which optical qubit or qumode
states were teleported using physical resources, such as polarization-entangled
photon pairs or finitely squeezed two-mode squeezed states, were discussed in
Chapter 4.

In this chapter, we shall now explain various experiments in which the true
power of quantum teleportation was revealed, namely, as a primitive for quan-
tum information processing and computing. The initial quantum states in such
teleportation-based approaches are to be manipulated and processed through tele-
portation, and not simply transferred from a sender to a receiver – entanglement-
assisted communication becomes entanglement-assisted computation. This gener-
alization of quantum teleportation may be referred to as gate teleportation extend-
ing the original notion of state teleportation.

This gate teleportation [84] is the simplest manifestation of measurement-based

quantum information processing: as opposed to standard quantum teleportation,
a suitably modified entangled-state resource is employed with the corresponding
gate applied upon that resource state offline prior to the actual computation. The
computation itself is then conducted in the same manner as in state teleportation
by performing a Bell measurement jointly on the input state for the desired gate and
one half of the entangled resource state. This joint measurement contains an en-
tangling element as it projects onto an entangled-state basis. For a different gate,
the entangled resource state has an accordingly different gate applied on it and
hence must vary depending on the algorithm to be computed. In contrast, in an
ultimate manifestation of measurement-based quantum information processing,
the offline resource state would always remain fixed during the entire computation
and the measurements on it would be local single-party projections whose orthog-
onal measurement bases can be adjusted depending on the individual gates of the
algorithm to be computed. All entangling gates would be performed offline in this

Quantum Teleportation and Entanglement. Akira Furusawa, Peter van Loock
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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case. This so-called cluster-state computation (recall also Section 1.8) and the cor-
responding experiments will be discussed in Chapter 7.

It turned out that the offline-resource-based and measurement-based approaches
offer a distinct advantage over those schemes with every single gate performed di-
rectly and unitarily online: the offline gates may be implemented in a probabilistic
fashion until they succeed; only for these successful events are the offline states de-
livered for consumption during the online computation. This feature is particularly
useful for DV qubit processing with single photons where entangling gates (or the
essential elements of it) cannot be achieved with near-unit, but with a reasonable,
nonzero success probability. In this approach, the measurement itself is used to in-
duce the required nonlinearity to achieve the universal gate (see Section 1.8). The
seminal theoretical work by Knill, Laflamme, and Milburn (“KLM”) [242], which
initiated linear-optics measurement-based quantum information processing, and
experiments related with this proposal will be discussed in Sections 6.1.1 and 6.1.2,
respectively.

In the CV qumode case, experimentally inefficient interactions such as non-
Gaussian operations can be implemented offline. Moreover, even Gaussian squeez-
ing gates, otherwise hard to apply upon arbitrary quantum optical states, that is,
states other than the vacuum, can be enacted in an offline fashion. Experiments
along these lines will be described in Section 6.2.1, including a universal squeez-
er (Section 6.2.1.1) and a Quantum Non-Demolition (QND) gate (Section 6.2.1.2).
Finally, in Section 6.2.2, we briefly discuss alternate protocols for realizing univer-
sal quantum gates including a kind of CV version of KLM, namely, the CV gate
teleporter by Bartlett and Munro [268].

6.1
Teleporting Qubit Gates

6.1.1
KLM

In Section 2.8, we explained that, besides a direct implementation of universal
gates through nonlinear optical interactions (which are hard to obtain efficient-
ly), one may use the so-called multiple-rail encoding for which arbitrary quantum
gates are realizable through linear optics alone [134]. However, this very first linear-
optics quantum computer proposal is not scalable. A breakthrough towards an in-
principle efficient, scalable quantum computer based upon linear optics came with
the KLM proposal [242].

The KLM scheme is a fully DV-based protocol, demonstrating that, in princi-
ple, passive linear optics and DV photonic auxiliary states are sufficient for (the-
oretically) efficient, universal DV quantum computation. Inducing nonlinearity
through photon counting measurements renders the KLM scheme nondetermin-
istic. However, the probabilistic quantum gates can be made asymptotically near-
deterministic by adding to the toolbox feedforward and complicated, multi-photon
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Figure 6.1 Implementing a probabilistic controlled sign gate (CSIGN � CZ ) on two single-rail
qubits using two nondeterministic NSS gates. The resulting two-qubit gate works in a similar
way to the deterministic implementation described in Figure 2.15 using Kerr nonlinearities.

entangled auxiliary states with sufficiently high photon numbers, and by employ-
ing quantum teleportation [84]. KLM is “in-principle efficient”, as the number of
the ancillary photons grows only polynomially with the success rate. Fidelities are
always, in principle, perfect in the KLM approach.

The essential ingredient for the nondeterministic realization of a two-photon
two-qubit entangling gate (in dual-rail encoding) is the one-mode nonlinear sign
shift (NSS) gate. It acts on the qutrit subspace fj0i, j1i, j2ig of the optical Fock space
as jki ! (�1)k(k�1)/2jki. Placing two such NSS gates in the middle between two
beam splitters will then act as a controlled sign gate, jki ˝ jli ! (�1)k ljki ˝ jli,
on two single-rail as well as two dual-rail qubits. In fact, we may replace the de-
terministic Kerr-based circuit of Figure 2.15 by the equivalent circuit depicted in
Figure 6.1. The latter, however, becomes nondeterministic with NSS gates operat-
ing only probabilistically.

In the original KLM proposal, the NSS gate can be realized with 1/4 success
probability, corresponding to a success probability of 1/16 for the full controlled
sign gate as shown in Figure 6.1. In subsequent works, this efficiency was slightly
improved [269]. There are also various, more general treatments of these nondeter-
ministic linear-optics gates deriving bounds on their efficiencies [270–272].

Probabilistic quantum gates cannot be used directly for quantum computation.
The essence of KLM (see Figure 6.2) is that near-unit success probabilities are at-
tainable by combining nondeterministic gates on offline entangled states with the
concept of quantum gate teleportation [84]. As the necessary Bell measurements
for quantum teleportation succeed at most with 1/2 probability, if only fixed arrays

U

Φ

10 βα +

U(k)
10 βα +

U

Φ

10 βα +

U(k)
10 βα +

Figure 6.2 Making nondeterministic gates
near-deterministic through single-rail quan-
tum teleportation. The Bell measurement is
performed by means of the linear-optics cir-
cuit U plus photon counting. For an entangled
two-mode state jΦi / j10i C j01i with one
ancilla photon, teleportation only succeeds in

one half of the cases. For larger ancillae with
sufficiently many photons, teleportation can
be made almost perfect. In order to teleport
a gate near-deterministically onto an input
state, the corresponding gate must be first
applied offline and probabilistically to the
multi-photon entangled ancilla state.



248 6 Quantum Teleportation of Gates

of beam splitters are used [196], entangled ancilla states and feedforward must be
added to boost efficiencies beyond 1/2 to near 1.

To sum up, the efficiency of KLM comes from mainly two facts: (1) they use
dual-rail encoding (instead of multiple-rail encoding which scales exponentially)
using only one photon per qubit; (2) they achieve near-unit gate efficiencies (near-
deterministic gate operations) with auxiliary photons scaling only polynomially
with any desired efficiency.

Even though KLM is “in-principle efficient”, it is still highly impractical as near-
deterministic operations would require ancilla states too complicated to engineer
with current experimental capabilities. It is therefore extremely important to fur-
ther enhance the efficiencies of linear-optics quantum computation with regard to
the resource scaling. Steps into this direction have been made already by merging
the teleportation-based KLM approach with the fairly recent concept of one-way
(cluster) computation [1] (see Chapter 7).

6.1.2
Experiment: Qubit Gates

As shown in the previous section and in Figure 6.3, the essence of the KLM scheme
is that the CPhase gate is reduced to state preparation and teleportation. Although
there is no report of full implementation of the KLM scheme at the moment,
there is some reports for conditional CPhase or CNOT gate for the state prepa-

State preparation

Teleportation

Figure 6.3 Conditional CPhase gate with success probability 1/4 proposed by Knill et al. [242].
The essence of this protocol is that the CPhase gate is reduced to state preparation and telepor-
tation.
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Figure 6.4 A schematic of the CNOT gate re-
alized by O’Brien et al. [273]. The theoretical
success probability is 1/9. (a) A conceptual
description of the gate. (b) A polarization en-
coded photonic qubit can be converted into
a spatially encoded qubit suitable for the gate
shown in (a) using a polarization beam split-

ter (PBS) and a half wave plate (HWP) set to
rotate the polarization of one of the outputs
by 90ı. The reverse process converts the spa-
tial encoding back to polarization encoding.
(c) A schematic of the experimental CNOT
gate.

ration [273]. In this section, we will explain the experiment performed by O’Brien
et al. [273] in detail as a typical example.

Figure 6.4 shows a schematic of conditional CNOT gate with linear optics
and post-selection demonstrated by O’Brien et al. [273]. This conditional CNOT
gate can be used for the state preparation for the KLM scheme as mentioned
above.

The main trick is shown in Figure 6.4a. This trick was proposed by Ralph
et al. [274], which is illustrated in Figure 6.5. We first use the Heisenberg picture
and will derivate the operator input–output relation of the beam splitter network
shown in Figure 6.5.

A beam splitter input–output relation is (see Chapter 2)

Oa1 out D p
η Oa1 in Cp

1 � η Oa2 in ,

Oa2 out D p
1 � η Oa1 in � p

η Oa2 in , (6.1)

where η is the reflectivity of the beam splitter. By using this beam-splitter relation,
we can get the input–output relation of the beam splitter network in Figure 6.5 as
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Figure 6.5 A schematic of conditional CNOT
gate proposed by Ralph et al. [274]. Bi is a
beam splitter whose reflectivity is η i . The con-
trol qubit is represented by modes CH and

CV with the dual-rail fashion, and the target
qubit is represented by modes tH and tV. The
modes vc and vt are ancillary vacuum inputs.

follows [274],

OaCHout D 1p
3

�p
2 Oavcin C OaCHin

�
,

OaCVout D 1p
3

�� OaCVin C OatH in C OatVin
�

,

OatHout D 1p
3

� OaCVin C OatHin C Oavtin
�

,

OatVout D 1p
3

� OaCVin C OatVin � Oavtin
�

,

Oavcout D 1p
3

�
� Oavcin C p

2 OaCHin

�
,

Oavtout D 1p
3

� OatHin � OatVin � Oavtin
�

, (6.2)

where the control qubit is represented by modes CH and CV with the dual-rail
fashion, and the target qubit is represented by modes tH and tV. The modes vc and
vt are ancillary vacuum inputs.

The general input state to the gate (the control and target qubits) can be described
in the Schrödinger picture as

jψiin D (αjH Hi C �jH V i C γ jV Hi C δjV V i) j00i
D
�

α Oa†
CHin Oa†

tHin C � Oa†
CHin Oa†

tVin C γ Oa†
CVin Oa†

tHin

Cδ Oa†
CVin Oa†

tVin

�
j0000ij00i , (6.3)

where the ordering in the kets is jnCHin nCVin ntHin ntVinijnvcin nvt ini with OnCHin D
Oa†

CHin OaCHin, and so on, and we use j1010i D jH Hi, and so on, where appropriate.
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Thus, we can derive the output state of the beam splitter network by using
Eqs. (6.2) and (6.3),

jψiout D
�

α Oa†
CHout Oa†

tHout C � Oa†
CHout Oa†

tVout C γ Oa†
CVout Oa†

tHout

Cδ Oa†
CVout Oa†

tVout

�
j0000ij00i

D 1
3

n
[αjH Hi C �jH Vi C γ jV V i C δjV Hi] j00i

C p
2(α C �)j0100ij10i C p

2(α � �)j0000ij11i
C (α C �)j1100ij00i C (α � �)j1000ij01i
C p

2αj0010ij10i C p
2�j0001ij10i

� p
2(γ C δ)j0200ij00i � (γ � δ)j0100ij01i

C p
2γ j0020ij00i C (γ � δ)j0010ij01i

C (γ C δ)j0011ij00i C (γ � δ)j0001ij01i
Cp

2δj0002ij00i
o

. (6.4)

From this result, we obtain (after renormalization)

jψipost-select D αjH Hi C �jH Vi C γ jV V i C δjV Hi , (6.5)

by measuring jnvcout nvtouti D j00i, exactly one photon in total for fnCHout, nCVoutg,
and the same for fntHout, ntVoutg. These patterns can be postselected in the experi-
ment and they occur with a success probability of 1/9. The state of Eq. (6.5) is the
CNOT output for the input of Eq. (6.3); the target qubit only flips when the control
qubit is V.

O’Brien et al. realized this postselected gate as shown in Figure 6.4c. The two
input polarization qubits are converted to spatial dual-rail qubits using the trick
shown in Figure 6.4b. Then, the dual-rail qubits enter a beam splitter network, as
depicted in Figure 6.4a (Figure 6.5), which is implemented with half wave plates
(HWPs) and polarization beam splitters (PBSs). Especially, a 1/2-beam splitter is
realized through a polarization rotation by 45ı (HWP rotation by 22.5ı) and a 1/3-
beam splitter is realized by means of a polarization rotation by 125ı (HWP rotation
by 62.5ı), where �p1/3 ' cos 125ı.

Figure 6.6 shows the experimental results for the CNOT gate operation as it was
demonstrated by O’Brien et al. [273]. The results agree well with the ideal opera-
tion of the gate. Note that postselection was a crucial part of this experiment. In
particular, the protocol for this gate implementation (achieving a gate efficiency of
1/9) relies upon a final step that includes destroying the two-qubit output state of
the gate. More precisely, it is absolutely necessary to detect (and hence destroy) the
photon number states of all six modes in Eq. (6.4) in order to accomplish the gate
operation; including postselection in the gate output ports themselves.

In this sense, the current CNOT gate is a destructive gate, conceptually different
from, for example, those gates obtainable in the KLM scheme. There, the output
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(a) (b)

Figure 6.6 Experimental results for the CNOT gate operation demonstrated by O’Brien
et al. [273]. (a) Ideal logical basis operation of a CNOT gate. (b) Measured operation of the gate.

ports need not be detected and the two-qubit output state of the gate can be further
exploited in subsequent quantum circuits, potentially leading to a fully scalable
quantum computation.

However, the KLM two-qubit entangling gate is much harder to implement ex-
perimentally; and, again from a conceptual point of view, the KLM gates represent-
ing non-destructive gates are fundamentally limited in their efficiencies depending
on the resources employed. Here, the bounds on the nondestructive gates are nat-
urally lower than those on the destructive gates. For instance, the nondeterministic
implementation of a non-destructive CNOT gate according to KLM achieves an ef-
ficiency of 1/16, and this value is near 2/27, which is conjectured to be the theoreti-
cal optimum when no feedforward operations are permitted (like in the destructive
gate protocol described above).

6.2
Teleporting Qumode Gates

6.2.1
Experiment: Gaussian Qumode Gates

6.2.1.1 Universal Squeezer
In this section, we will describe a universal squeezer as an example for off-line
Gaussian quantum information processing on qumodes, focusing on the experi-
ment demonstrated by Yoshikawa et al. [275] based upon the theoretical proposal
by Filip et al. [276].

The implementation of a direct nonlinear quantum operation is often hampered
by decoherence due to inevitable practical imperfections in physical systems. Be-
cause of the necessity of invoking such unitary transformations in a fault-tolerant
quantum information processor, the future of developing such units was not too
bright. However, new optimism arose from the introduction of the so-called off-line
schemes where a nonlinear transformation is executed on a quantum state through
simple linear interference with some off-line prepared ancillas followed by detec-



6.2 Teleporting Qumode Gates 253

tion and feedforward [84, 170, 242, 249, 268]. The significance of that approach is
that the nonlinear transformation need not be performed directly onto the fragile
quantum state, but is accomplished by tailoring the off-line resource states that can
be prepared at anytime.

The first simple example of such an off-line scheme is teleportation which
demonstrates the implementation of the most trivial unitary quantum opera-
tion [17, 163, 277], namely, the identity operation: The off-line resource is a bipar-
tite entangled state which is detected jointly with the fragile quantum information
in a Bell measurement and the classical outcomes are fed forward to achieve the
identity (or teleportation) operation. Remarkably, it was found that by manipulat-
ing the off-line entangled state in the teleporter, it is possible to implement any
unitary transformation through teleportation. This was first realized for qubits [84]
and subsequently used in the linear optical quantum computer [242], and later
extended to continuous variables (CVs) which benefit from the practical CV Bell
measurement [268].

Such a teleportation-based off-line scheme can, for example, be used for the im-
plementation of a squeezing operation. It was however proposed in [276] that a
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much simpler off-line scheme relying only on a single vacuum squeezed ancilla
suffices to implement the squeezing operation (see Figure 6.7a). In essence, this
simple setup allows for the experimentally feasible and noise-resistant squeezing
transformation of optical quantum states, and it can be seen as the CV analog to
the one-qubit teleportation approach in [278].

The single-mode squeezer is ideally described by a single-mode LUBO trans-
formation (see Chapter 2) which maps the input Wigner function W(x , p ) on-
to W 0(x , p ) D W(xer , pe�r ) where x and p represent the amplitude and phase
quadrature of the field and r is the squeezing factor. Although this simple trans-
formation is standard in any text book on quantum optics, its experimental re-
alization for arbitrary inputs (that is quantum information) remained extremely
challenging. Previously demonstrated squeezing transformations either were suf-
fering from large decoherence (as is the case for fiber or cavity implementations),
thus corrupting the fragile quantum information of a quantum state, or were using
an input dependent nondeterministic approach [279]. In contrast to previous im-
plementations, the squeezing transformation explained here is deterministic and
it processes quantum information with very high fidelity.

The scheme is illustrated in Figure 6.7 and goes as follows. The input state under
interrogation is combined with a squeezed vacuum at a beam splitter. A quadrature
to be anti-squeezed is measured using homodyne detection, and after appropriate
rescaling of the outcomes the remaining field is displaced accordingly. Mathemat-
ically, the transformation can be easily derived in the Heisenberg picture. First, we
consider the input–output relations for the beam splitter:

Ox 0
i D p

T Oxi C p
1 � T Oxa , (6.6)

Op 0
i D

p
T Op i C

p
1 � T Opa , (6.7)

Ox 0
a D

p
T Oxa �

p
1 � T Oxi , (6.8)

Op 0
a D p

T Opa � p
1 � T Op i , (6.9)

where Ox and Op represent the quadratures to be squeezed and anti-squeezed, the
indices “i” and “a” refer to the input and ancillary mode, respectively, and T is the
transmittance of the beam splitter. The quadratures of the ancilla are written as
( Oxa, Opa) D ( Ox (0)

a e�ra , Op (0)
a era ) where ra is the squeezing parameter and Ox (0)

a and Op (0)
a

represent vacuum fluctuations. In the reflected part, the quadrature Op 0
a is measured

using homodyne detection. The measurement outcomes are subsequently rescaled
by a factor denoted by g and finally used to displace the remaining part of the
system which is equivalent to the transformation Ox 0

i ! Ox 00
i D Ox 0

i and Op 0
i ! Op 00

i D
Op 0

i C g Op 0
a. By choosing g D �p(1 � T )/T , we arrive at the following input–output

relations

Ox 00
i D p

T Oxi C p
1 � T Ox (0)

a e�ra , (6.10)

Op 00
i D 1p

T
Op i . (6.11)
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In the limit of the infinitely squeezed ancilla corresponding to ra ! 1, the
transformation coincides with perfect unitary squeezing operation with the actual
squeezing parameter r D � ln

p
T which is directly controlled by the transmit-

tance of the beam splitter. Furthermore, the quadrature being squeezed can also
be easily controlled through adjustment of the relative phase between the signal
and the squeezed ancilla and correspondingly the measured quadrature in the
feedforward loop [276]. Therefore, full control of the squeezing process is accessed
through simple operations on linear passive devices. Let us note that by changing
some of the settings of the setup (such as the local oscillator phase, the feedfor-
ward gain and the ancilla state), the setup can function as a non-unitary noiseless
amplifier [280], a non-unitary quantum nondemolition measurement device [281]
or as a squeezed state purifier [282].

In a realistic situation, the ancilla state is not infinitely squeezed and some extra
quantum noise will inevitably be added to the squeezed quadrature as indicated
by the second term in Eq. (6.10). Note that the noise suppression performance
never goes further than that of the ancilla. In contrast, the imperfections of the
ancilla state do not degrade the quality of the transformation of the anti-squeezed
quadrature as well as the mean values: The excess noise of the ancilla is not coupled
into the mode nor does it disturb the mean value transformation.

The operation described above is universal and thus squeezes all input states.
In the following experimental investigation, however, the squeezing of particular
states is considered, namely, coherent states. To ensure that the coherent states
are truly pure, they are defined as a sideband at a radio-frequency relative to the
carrier of a laser beam. This beam as well as other auxiliary beams are delivered by
a Ti:sapphire laser operating at 860 nm. The experiment is divided in three parts;
preparation, processing and verification which will now be discussed.

Preparation: In the preparation stage, the input coherent state and the squeezed
ancilla state are generated. The coherent state is prepared by traversing a part of
the laser beam through an electro-optic modulator operating at 1 MHz and set to
modulate the amplitude and phase simultaneously. As a result, a true coherent
state is generated at a 1 MHz sideband and the bandwidth is assumed to be 30 kHz.
The power of the optical carrier is about 3 µW, whereas the power of the sideband is
about 15 dB above the corresponding shot noise level. The ancillary squeezed state
is produced in an optical parametric oscillator (OPO). It is a 500 mm long bow-
tie shaped cavity consisting of two plane mirrors and two mirrors with a 50 mm
radius of curvature. The nonlinear crystal is a 10 mm periodically-poled KTiOPO4

(PPKTP) crystal (see [283] for details). The OPO is pumped with light at 430 nm,
stemming from a second harmonic generator with the same configuration as the
OPO cavity but with a KNbO3 crystal. The second harmonic generator is pumped
with the light from the Ti:sapphire laser. To monitor and lock the squeezing phase,
we inject a weak coherent beam to the OPO. The output from the OPO and the
coherent state are then directed to the processing part. They have 97 and 143 kHz
modulation sidebands for phase locking.

Processing: At this stage the actual squeezing transformation is implemented.
First, the two states from the preparation stage merge at a variable beam splitter
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composed of a half wave plate (HWP) sandwiched between two polarizing beam
splitters (PBS). The beam splitting ratio is thus easily controlled via a wave plate
rotation. One output of the beam splitter is directed to a homodyne detector which
measures the p quadrature. The visibility between the output and a local oscilla-
tor is 96% and the quantum efficiency of the detectors is more than 99%. The
measurement outcomes are amplified electrically in a low-noise amplifier and sub-
sequently used to drive a phase modulator which displaces an auxiliary beam in
phase space. Finally, the displacement of the signal is achieved by combining it
with the displaced auxiliary field using a highly asymmetric beam splitter (99/1).

Verification: In the final stage of the experiment, the protocol is verified by mea-
suring the input states as well as the squeezed output states. The states are fully
characterized by balanced homodyne detection. The visibility between the squeezed
output beam and a local oscillator is 96% and the total propagation efficiency is
96%. The electronic noise is always 19 dB smaller than the optical noise. After de-
tection, the photocurrents are used to reconstruct the quantum states: The 1 MHz
component of the measured output signal is extracted by means of a lock-in detec-
tion scheme. The signal is mixed with a 1 MHz sine-wave signal from a function
generator, low pass filtered (30 kHz) and finally digitized and fed into a computer
with the sampling rate of 300 kHz.

Figure 6.8 shows the raw data of the time resolved measurements of the input
states and the output states. The time series for the input coherent states (Fig-
ure 6.8a) and the vacuum squeezed states (Figure 6.8e) are measured by adjust-
ing the beam splitter transmittance to unity and zero, respectively (and blocking
the displacement beam). Then, the squeezing transformation is activated and the
time series for three different transmittances, namely, 0.75, 0.50, and 0.25, are
measured, the results of which are shown in Figure 6.8b–d respectively. It is ev-
ident from the plots that the input coherent states become more and more de-
formed as the transmittance decreases (and thus the squeezing degree increases).
In Figure 6.8f, the reconstructed Wigner function of the transformed states with
T D 0.25 is presented.

As indicated by the reconstructed Wigner function, the involved states are Gaus-
sian. With this a priori information, the states are completely characterized by the
first two moments. Due to the symmetry of the states (squeezed in x and anti-
squeezed in p), it suffices to evaluate the mean values and variances of x and p.
Results of such evaluations are shown in Figures 6.9 and 6.10.

In Figure 6.9, the phase space diagrams of the input coherent states as well as
the output states are shown by ellipses which correspond to the cross sections of
their respective Wigner functions. When a coherent state is unitarily squeezed, the
amplitude is transformed along a hyperbolic curve, as shown by the dotted line. The
four ellipses correspond to (from the right) the input coherent states, the squeezed
outputs with T D 0.75, T D 0.50, T D 0.25, respectively, and their centers, marked
by dots, represent the measured averages. The circles represent the data obtained
without the feedforward. The lengths of the major and minor axes of the ellipses
are the measured standard deviations of x and p. Obviously, the mean values are
transformed almost ideally.
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Figure 6.8 Results of the homodyne measurements [275]. (a)–(e) are the raw quadrature data
as a function of the phase of the local oscillator and (f) is the reconstructed Wigner function
(using inverse radon transformation [113]) for one realization of the experiment.

In Figure 6.10, the noise powers of the squeezed and anti-squeezed quadratures
are plotted as a function of the transmittance. The three curves represent theo-
retical predictions for the noise power of the anti-squeezed quadrature (curve i),
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the squeezed quadrature with the ancilla 5.1 dB squeezed (curve ii) and infinitely
squeezed (curve iii). Note again that the anti-squeezed noise does not depend on
the ancilla. Experimental data taken with and without the feedforward in place are
also shown in Figure 6.10: The noise powers of x (p ) with feedforward are indicated
by dots (filled diamonds), and without feedforward by circles (open diamonds). We
see that the anti-squeezed noise of the ancilla is canceled and the transformation
in p becomes almost ideal after the feedforward. The noise powers of the squeezed
quadrature, however, deviate from the ideal operation due to the finite squeezing
in the ancilla states. Furthermore we observe a small degradation of the noise sup-
pression due to some imperfections of the feedforward, such as phase fluctuation.

Now, the fidelities [68] of these transformations are calculated. For the case of
Gaussian states, the fidelity between the ideal squeezed state, jψidi, and the actual
obtained mixed state, O�out, is given by (in the unit of „ D 1/2)

F D hψidj O�outjψidi
D 1

2
q�

V x
out C V x

id

� �
V

p
out C V

p

id

�
� exp

"
� (hxouti � hxidi)2

2
�
V x

out C V x
id

� � (hpouti � hp idi)2

2
�
V

p
out C V

p

id

�
#

, (6.12)

where the subscripts “id” and “out” denote the ideal squeezing and the experimen-
tal output, respectively, and V denotes the variance. Actually, due to small propaga-
tion and detection losses in the experiment, the fidelity ultimately depends on the
input state. We therefore quantify the individual single shot fidelities for the inputs
considered in the experiment, though the average fidelity will be found by inte-
grating the fidelity in Eq. (6.12) over all possible input states. From the measured
means and variances, the fidelities between the ideally squeezed states of the in-
ferred inputs (accounting for losses) and the directly measured squeezed states are
computed, and 94%˙1% for T D 0.75 (1.2 dB squeezing), 89%˙1% for T D 0.50
(3.0 dB squeezing), and 78%˙2% for T D 0.25 (6.0 dB squeezing) are found. Note
that the fidelity between the measured input states and the inferred ones is found
to be 97% ˙ 1%. For comparison, the theoretically calculated fidelities with vacu-
um ancilla states (which correspond to the classical limits) are 93, 82, 63%, for the
transformations corresponding to 1.2, 3.0, 6.0 dB squeezing, respectively.

6.2.1.2 Quantum Non-demolition (QND) Sum Gate
In this section, we explain the demonstration of quantum non-demolition (QND)
sum gate by Yoshikawa et al. [284] by using two universal squeezers explained in
the previous section. Here, the proposal was made by Filip et al. [276] in the same
paper as the universal squeezer.

The analogue of a two-qubit C-NOT gate when continuous quantum variables
are considered is the so-called sum gate. It represents the canonical version of a
two-mode entangling gate for universal quantum computation in the regime of
continuous variables [90] (see Section 1.8). When applied to two optical, bosonic
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modes, as opposed to a simple beam splitter transformation, the sum gate is even
capable of entangling two modes each initially in a coherent state, that is, a close-
to-classical state.

Apart from representing a universal two-mode gate, the sum gate also describes a
quantum nondemolition (QND) interaction. The concept of a QND measurement
has been known for almost 30 years. Initially, it was proposed to allow for better
accuracies in the detection of gravitational waves [285, 286]. A QND measurement
is a projection measurement onto the basis of a QND observable which is basi-
cally a constant of motion. The QND measurement should preserve the measured
observable, but still gain sufficient information about its value; the back action is
confined to the conjugate observable.

Various demonstrations of QND or back-action evading measurements have
been reported [287]. The interest in the realization of a full QND gate only grew
recently, mainly in the context of continuous-variable (CV) quantum information
processing [105]. In particular, the QND sum gate is (up to local phase rotations)
the canonical entangling gate for building up Gaussian cluster states [288], a suffi-
cient resource for universal quantum computation [171]. Other applications of the
sum gate are CV quantum error correction [237, 238] and CV coherent communi-
cation [289].

In this section, the experimental demonstration of a full QND sum gate by
Yoshikawa et al. [284] is extensively explained. The gate leads to quantum correla-
tions in both conjugate variables consistent with an entangled state and allowing for
a QND measurement of either variable with signal and probe interchanged. While
previous works focused on fulfilling the criteria for a QND measurement [290]
of one fixed variable, here, the experiment of Yoshikawa et al. satisfies the QND
criteria for two non-commuting observables, verifying entanglement at the same
time. As the implementation is very efficient and controllable, the scheme can be
used to process arbitrary optical quantum states, including fragile non-Gaussian
states. Similar to the measurement-based implementation of single-mode squeez-
ing gates [275, 276] explained in the previous section, realization of the QND gate
only requires two offline squeezed ancilla modes [89, 276].

Let us write the QND-gate Hamiltonian as OHQND D Ox1 Op2 with a suitable choice
of the absolute phase for each mode. Here, Ox/2 and Op/2 are the real and imaginary
parts of each mode’s annihilation operator, Oa D ( Ox C i Op )/2, and the subscripts “1”
and “2” denote two independent modes. Note that we use „ D 2 in this section.
The ideal QND input–output relations then become

Oxout
1 D Ox in

1 ,

Oxout
2 D Ox in

2 C G Ox in
1 ,

Op out
1 D Op in

1 � G Op in
2 ,

Op out
2 D Op in

2 , (6.13)

where G is the gain of the interaction.
Through this ideal QND interaction, the “signal” QND variable Ox1 ( Op2) is pre-

served in the output state and its value is added to the “probe” variable Ox2 ( Op1).
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This allows for a QND measurement of either Ox1 or Op2, with a back action con-
fined to the conjugate variable. The usual criteria for QND measurements (in the
linearized, Gaussian regime) are [290],

1 < TS C TP � 2 ,

VSjP < 1 , (6.14)

where TS and TP are the transfer coefficients from signal input to signal output
(“signal preservation”) and from signal input to probe output (“information gain”),
respectively; VSjP is the conditional variance of the signal output when the probe
output is measured (“quantum state preparation”).

The implementation of the QND gate based on offline resources is shown in
Figure 6.11. The interaction gain G in Eq. (6.13) is related to the reflectivities of
the four beam splitters via one free parameter R, with G D (1/

p
R) � p

R , taking
arbitrary values for 0 < R � 1. The full scheme is described by the input–output
relations [276],

Oxout
1 D Ox in

1 �
r

1 � R

1 C R
Ox (0)

A e�rA , (6.15)

Oxout
2 D Ox in

2 C 1 � Rp
R

Ox in
1 C

r
R

1 � R

1 C R
Ox (0)

A e�rA , (6.16)

Op out
1 D Op in

1 � 1 � Rp
R

Op in
2 C

r
R

1 � R

1 C R
Op (0)

B e�rB , (6.17)

Op out
2 D Op in

2 C
r

1 � R

1 C R
Op (0)

B e�rB , (6.18)

where Ox (0)
A e�rA and Op (0)

B e�rB are the squeezed quadratures of the ancillas (the sub-
scripts “A” and “B” denote two independent ancilla modes), leading to some excess
noise for finite squeezing. The gate operation becomes ideal in the limit of infinite
squeezing (rA, rB ! 1). Note that here precise control of active squeezing arising
from an unstable process of parametric down conversion is not needed; instead,
the gate is completely controlled via passive optical devices. For sufficiently large
squeezing of the ancilla modes, this transformation also allows for QND measure-
ments. Using variable beam splitters, two interaction gains, G D 1.0 and 1.5, were
experimentally realized. In particular, the unit gain interaction is significant for
quantum information processing. Nonetheless, a better performance in the QND
measurements using higher gain could be observed. Note that a non-unitary and
single quadrature QND measurement based on squeezed vacuum and feedforward
has been demonstrated in [281].

Experimental setup. A schematic of the experimental setup is illustrated in Fig-
ure 6.11. It basically consists of a Mach–Zehnder interferometer with a single-
mode squeezing gate in each arm. To implement fine-tunable and lossless squeez-
ing operations, the measurement-induced squeezing approach or off-line squeez-
ing explained in the previous section is used which is illustrated inside the dashed
boxes of Figure 6.11.
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Figure 6.11 Schematic of the experimental
setup [284]. The parameter R determines the
reflectivities of the four beam splitters which
are R/(1 C R), R, R, and 1/(1 C R). We em-
ploy optical parametric oscillators (OPO) to

produce squeezed vacuum modes, local os-
cillators (LO) for homodyne detection, and
electro-optic modulators (EOM) combined
with beam splitters (99 : 1) for signal displace-
ment.

The quantum information is encoded at frequency sidebands of 1.25 MHz rela-
tive to the optical carrier of the bright continuous wave light beam at a wavelength
of 860 nm from a Ti:sapphire laser. The powers in each of the two input modes and
the squeezed modes are 10 and 2 µW, respectively. These powers are considerably
smaller than the powers (3 mW) of the local oscillators (LOs) used for homodyne
detection. All the interferences at the beam splitters are actively phase locked us-
ing modulation sidebands of 77, 106 kHz, and their beat in 29 kHz. Subthreshold
optical parametric oscillators (OPOs) generate the squeezed vacuum ancillas. To
control the beam splitting ratios of the four beam splitters in the squeezing opera-
tions and the Mach–Zehnder interferometer, they are composed of two polarizing
beam splitters and a half wave plate [275] which are the same as the ones explained
in the previous section.

The OPOs are bow-tie shaped cavities of 500 mm in length, containing a
periodically-poled KTiOPO4 (PPKTP) crystal of 10 mm in length. The pump beams
for the OPOs (with wavelengths of 430 nm and powers of about 100 mW) are the
second harmonic of the output of the Ti:sapphire laser. The frequency doubling
cavity (not shown in the figure) has the same configuration as the OPOs, but con-
tains a KNbO3 crystal. For details of a squeezed vacuum generation, see [283]. Each
OPO enables a squeezing degree of about �5 dB relative to the shot noise level.

The outcomes of the homodyne detection in the QND gate are fed forward to the
remaining part. After low-noise electric amplification, they drive an electro-optical
modulator (EOM) traversed by an auxiliary beam with the power of 150 µW, which
is subsequently mixed with the signal beam by an asymmetric beam splitter (99 : 1).

The QND scheme is characterized by measuring the two input modes as well
as the two output modes using homodyne detection. The detector’s quantum effi-
ciencies are higher than 99%, the interference visibilities to the LOs are on average
98%, and the dark noise of each homodyne detector is about 17 dB below the opti-
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cal shot noise level produced by the local oscillator. The propagation losses in each
of the two main modes through the QND apparatus were about 7%.

Experimental results. The three measures in Eq. (6.14) are used to quantify the
performance of our QND system. To estimate them, measurements of second mo-
ments of the input fields and the output fields are performed, employing a spec-
trum analyzer with a center frequency of 1.25 MHz, resolution and video band-
widths of 30 kHz and 300 Hz, respectively, a sweep time set to 0.1 s and further
averaging of 20 traces. In Figures 6.12–6.14, the results for G D 1.0 are shown;
in Table 6.1, the performance of the QND device is listed for both G D 1.0 and
G D 1.5.

In the first series of measurements, we determine the variances of conjugate
quadratures of the output states when the input states are pure vacua. The results
corresponding to G D 1.0 are presented in Figure 6.12. The variances of the two
input states are at the vacuum noise level as illustrated in the figure. As a result
of the QND interaction, in the ideal case (infinite ancilla squeezing), the noise of
the signal variables ( Ox1 and Op2) is added to the probe variables ( Ox2 and Op1) while
the signal variables are preserved. The deviation from the ideal performance is due
to the finite amount of squeezing for the ancillas. For comparison, the variances
of the output states are also measured when no squeezing is used. The expected
variances for finite squeezing or without squeezing are calculated and marked by
lines.

In the second series of measurements, in order to test the universality of the
QND gate, the input vacuum states are replaced by a pair of coherent states. The
coherent amplitude in each quadrature of the two input modes is generated by
modulating the amplitude or phase of their carriers using an EOM operating at
1.25 MHz. Four different input states, each corresponding to a coherent excita-
tion in, respectively, (a) x in

1 , (b) x in
2 , (c) p in

1 and (d) p in
2 , are investigated. The mea-
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Table 6.1 Evaluation of the QND interaction [284]. Shown are the quadrature transfer coeffi-
cients TS and TP and the conditional variance VSjP for two different gains G.

G 1.0 1.5

Quadrature x p x p

TS 0.79 ˙ 0.03 0.71 ˙ 0.03 0.80 ˙ 0.03 0.71 ˙ 0.03

TP 0.41 ˙ 0.02 0.39 ˙ 0.02 0.62 ˙ 0.03 0.56 ˙ 0.02

TS C TP 1.20 ˙ 0.05 1.10 ˙ 0.05 1.42 ˙ 0.06 1.27 ˙ 0.05
VSjP 0.75 ˙ 0.01 0.78 ˙ 0.01 0.61 ˙ 0.01 0.63 ˙ 0.01

surement results of the second moments of the input and output quadratures for
G D 1.0 are shown in Figure 6.13. The excitations of the input states are mea-
sured by setting the reflectivities of the four beam splitters to unity and blocking
the auxiliary displacement beams in the feedforward construction. We observe that
the amplitude of the input states is preserved in the same quadrature with almost
unity gain. Furthermore, it is clearly seen that the expected feature that the infor-
mation in a signal variable, Ox in

1 or Op in
2 , is coupled into the probe variable Oxout

2 or
Op out

1 (see Figure 6.13a,d), whereas the amplitude in the probe variables Ox in
2 and Op in

1
does not couple to any of the other quadratures (see Figure 6.13b,c). These results
verify the interaction in Eq. (6.13). From these measurements, we determine the
transfer coefficients TS and TP using the method outlined in [291]. The results are
summarized in Table 6.1. Note that the experimentally determined values of TS and
TP are degraded by propagation and detection losses compared to the ideal scheme
described by Eqs. (6.15)–(6.18).

Finally, the conditional variance using the setup shown in Figure 6.14a is mea-
sured. The outcomes from one of the homodyne detectors are rescaled by a gain
g, subtracted from (or added to) the outcomes of the other homodyne detector and
subsequently directed to a spectrum analyzer. The resulting normalized noise pow-
ers are shown in Figure 6.14b,c as a function of the rescaling gain g. The minima
of these plots correspond to the conditional variances for the various realizations:
curves (i) represent ideal performance, curves (ii) are associated with our system
with finitely squeezed ancillas, and curves (iii) are the performance of the system
without squeezing of ancilla states. The parabolic curves are theoretical calcula-
tions, and the dots with vertical error bars along the curves (ii) and (iii) are the
experimental results. The experimental results for VSjP are shown in Table 6.1. No
compensation of losses is carried out for these results.

The experiment presented here demonstrates the canonical two-mode entan-
gling gate. From the noise correlations in Figure 6.14, we verify entanglement be-
tween the two output modes. According to Duan and Simon [116, 159], a sufficient
condition for an entangled state is (see also Chapter 3)D� Oxout

1 � g Oxout
2

�2
E

C
D� Op out

2 C g Op out
1

�2
E

< 4jgj , (6.19)
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Figure 6.13 Second moments of the quadrature components of the input and output states
with respect to four different input states for G D 1.0 [284]. One of the input quadratures is
excited (with amplitude). We add traces without excitation for references.

where g is the rescaling gain. Thus, if the parabolic curves in Figure 6.14b,c go
below the lines (iv) simultaneously for both quadratures, the two output modes are
entangled, which is the case for curves (ii) with squeezed ancillas.1) Note that the

1) We can standardize Eq. (6.19) and eliminate dependence on g by considering fictive local
squeezings. The standard form of the inseparability criterion is h( Oxout

1 � Oxout
2 )2i C h( Opout

1 C
Opout

2 )2i < 4. Experimentally obtained values are 2.57 ˙ 0.03 for G D 1.0 and 2.33 ˙ 0.03 for
G D 1.5, which are smaller than 4.
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Figure 6.14 Noise Correlations between out-
put quadratures determining the conditional
variances and verifying entanglement [284].
(a) Experimental setup. The measured probe
quadrature is rescaled with a variable gain g,
added (subtracted) (˙) to (from) the signal
quadrature detector output, and analyzed with
an electronic spectrum analyzer (S.A.). Vari-
ances of Oxout

1 � g Oxout
2 and of Op out

2 C g Op out
1 are

shown in (b) and (c), respectively: theoretical
prediction for an ideal QND interaction (i), a
QND interaction with finite degrees of squeez-
ing of the ancilla modes (ii), and with vacuum
ancilla modes (iii). By entering the areas be-
low the lines (iv) entanglement is verified. The
vertical axes are variances normalized to the
shot noise power of the signal variable.

two-mode gate here has been applied to two coherent input states which, without
the squeezed ancillas, would not become entangled via any linear optical transfor-
mation alone (see, e.g., curve (iii)).

From the above description, we see that a close-to-unitary quantum nondemoli-
tion sum gate can be created by using only linear optics and offline squeezed vacu-
um states. The gate operates in the quantum regime since even two input coherent
states become entangled through it.

6.2.2
Universal Qumode Gates

There is a CV scheme which could be interpreted as the analogue of KLM because
it is also teleportation-based and uses CV Bell measurements on non-Gaussian re-
source states [268]. Consider the quantum circuit in Figure 6.15 and assume that
the entangling CZ gate acting on the second and third rails of the circuit is per-
formed offline prior to the CZ that acts on the first and second rails. In this way,
the CZ on the upper two rails together with the two homodyne detections can be



6.2 Teleporting Qumode Gates 267

ψ

κ

κ

1
ˆ sp=

0
3ˆ

≈pxie
ZC

0≈p
ZC

2
ˆ sp=

3ˆ
),( 21

piessC −

ψ

Figure 6.15 Teleporting the cubic phase gate
e�i� Op3

onto an arbitrary input state jψi by
first applying it offline upon an effective two-
mode squeezed EPR state and then doing
standard CV quantum teleportation using
a CV Bell measurement. The advantage of
this realization is that only linear, Gaussian
operations are performed online and the of-
fline cubic gate could be implemented by any

scheme, even in a probabilistic fashion. The
final, Gaussian correction step to undo the
operator C(s1, s2) depending on the homo-
dyne results s1 and s2 involves displacements,
rotations, and squeezers because of the com-
muting properties of the cubic gate which is
non-Gaussian/non-Clifford (see Section 1.8)
and so does not preserve the WH group under
conjugation [268].

interpreted as a collective, homodyne-based CV two-mode Bell measurement on an
input state jψi and one half of a non-Gaussian entangled resource state which is
the so-called cubic phase state (see Chapter 8) coupled to a momentum-squeezed
state through a CV CZ gate. This resource then is actually equivalent to a two-mode
squeezed state with one mode subject to a cubic phase gate (see Section 1.8) up to
a local Fourier transform as the CZ gate and the cubic gate D3(�) commute.

Eventually, we may describe the protocol in terms of standard CV quantum tele-
portation (compare with Figure 1.8) where a nonlinearly transformed offline two-
mode squeezed state is used as an EPR channel for CV quantum teleportation. In
the case of a cubic offline resource, the online correction operations during the
teleportation process will be quadratic containing squeezers and displacements; a
quartic offline resource such as a self-Kerr transformed two-mode squeezed state
leads to cubic corrections [268].

However, there are various ways how to incorporate a desired gate operation into
a CV quantum teleportation scheme (see Figure 6.16). As long as only linear (but
collective two-mode), homodyne-based measurements on an input mode and one
mode of a nonlinear, non-Gaussian resource state are permitted, the degree of the
correction operations is always one order less than the order of the desired gate.
As a result, only the cubic gate can realized using cubic resources and Gaussian
measurements and corrections; a quartic gate requires linear measurements, but
cubic corrections which, of course, may also be implemented using cubic offline
resources.

Once a quartic self-Kerr-type gate can be implemented using CV quantum tele-
portation (e.g., as in Figure 6.16b or c), such a scheme could be applied to two
qubits, as shown in Figure 2.15. Together with the two beam splitters (and taking
into account the finiteness of the resource squeezing for teleportation), this results
in an approximate, unconditional, and thus deterministic realization of a two-qubit
CZ gate as opposed to the perfect, nondeterministic implementation of KLM [242].
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Figure 6.16 Teleportation-based implementa-
tion of a nonlinear, unitary gate U such as the
cubic phase gate or a quartic Kerr-type gate. In
all schemes, the online operations are: a two-
mode, homodyne-based CV Bell measurement
“CV BM” and the measurement-dependent
corrections using displacements D(�) or dis-
placements and additional operations C(�)
with a Hamiltonian degree of one order low-
er that the nonlinearity order of U; the offline
resource state is a nonlinearly transformed,
Gaussian two-mode squeezed “EPR” state, ex-
cept in the trivial, teleportation-based scheme
(a) where the input state jψini is first trans-
formed according to the desired gate U and

then teleported; as jψini may be arbitrary
and unknown, the scheme (a) is not a valid
offline-scheme and would require an online
gate U acting upon jψini. The schemes (b)
and (c) are similar, only differing in the par-
ticular EPR-mode to which the nonlinear gate
U is applied offline. The nonlinear resources
are always indicated by a gray circle; only for
the case of a cubic gate U are all online opera-
tions Gaussian. Up to local Fourier transforms
and squeezers, the scheme of Figure 6.15 is a
special example of that in (b). Of course, we
may also consider combinations of (a), (b),
and (c).

However, note that the correction operations before the second beam splitter are
still cubic and so would require further nonlinear processing.

The scheme of Figure 6.15 is a special example of Figure 6.16b. In the gen-
eral case of Figure 6.16b, the gate U to be implemented can be arbitrary and
need not be diagonal in the x-basis. For the cluster-type circuit (see Chapter 7)
in Figure 6.15, however, it is useful that the entangling gates CZ and the de-
sired cubic gate operation D3 are all diagonal in x and hence commute.2) Start-

2) In the scheme of Figure 6.16c, an arbitrary
gate U, instead of applying it at the very end
of CV quantum teleportation, can just be
commuted through the final teleportation
displacement operation, U D(�) D C(�)U ,
with C(�) a correction operation of one order
lower than the order of U and U applied

offline to the EPR state [268]. Similarly, the
scheme of Figure 6.16b may be understood
by rewriting the offline transformed,
maximally entangled EPR state of (c),
(1 ˝ U)jEPRi D (UT ˝ 1)jEPRi, in the limit
of infinite squeezing; for the finite-squeezing
case, see main text.
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ing with a two-mode squeezed state
P1

nD0 cnjn, ni1,2 with cn � tanhn r/ cosh r

for a squeezing parameter r, we may apply the transfer formalism for standard
CV quantum teleportation [208] and extend it to the present case of gate telepor-
tation. Then, we obtain the conditional state after the Bell projection of the in-
put qumode and qumode 1 onto OΠ (�) � jΦ (�)ihΦ (�)j for the CV Bell basis
jΦ (�)i � [ OD(�) ˝ 1]

P1
mD0 jm , mi/pπ,

OΠin,1(�)

(
jψini ˝

"�
UT

1 ˝ 12
� 1X

nD0

cnjn, ni1,2

#)
, (6.20)

corresponding to a conditional state of qumode 2 alone,

X
n

cnp
π

jni
X

m

UT
mnhmj OD†(�)jψini D DU OD†(�)jψini , (6.21)

with the “distortion operator" D � P
n cn jnihnj/pπ and the matrix elements

UT
mn � hmjUTjni D hnjUjmi. After a suitable correction operation C(�), the

input state is “transferred” onto the output state OTU(�)jψini with

C(�)DU OD†(�) � C(�)DC†(�)U � OTU(�) , (6.22)

where the first equality defines the right correction operation C(�) depending
on the gate U and its commuting properties with the displacement operator,
U OD†(�) D C†(�)U . The degree of C†(�) will always be one order lower than
the order of U [268]. In the limit of infinite squeezing, we obtain the desired
gate teleportation. For finite squeezing r, there will be a distortion resulting in a
non-unit-fidelity gate, F D R

d2 �jhψinjU† OTU(�)jψinij2 < 1.

(a)
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Figure 6.17 Gate teleportation using collec-
tive nonlinear projection measurements on
an input state jψini and one half of a Gaus-
sian two-mode squeezed state that serves as
an EPR source; (a) compared to Figure 6.16a,
the nonlinear gate U is absorbed into the Bell

measurement; similarly, (b) compared to Fig-
ure 6.16b, the nonlinear gate UT is absorbed
into the Bell measurement. The nonlinear ele-
ments are again indicated by the gray circles,
this time corresponding to suitable projective
measurements.
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Formally, we may also interpret some of the schemes in Figure 6.16 as gate tele-
portations for arbitrary qumode gates U using nonlinear operations on linear re-
sources, where a Gaussian two-mode squeezed state is used as an EPR source and a
nonlinearly modified, two-mode Bell measurement is employed (see Figure 6.17).
For example, the scheme in Figure 6.17a can be formally described as

OΠ (U)
in,1 (�)

 
jψini ˝

1X
nD0

cnjn, ni1,2

!
D DD†(�)Ujψini , (6.23)

using the definitions given earlier in this section and OΠ (U)(�) � (U† ˝ 1) OΠ (�)
(U ˝ 1), describing a projection onto the basis f(U† ˝ 1)jΦ (�)ig for a fixed U.
As such collective nonlinear measurements are not known to be experimentally
available, there seems to be no advantage of the schemes in Figure 6.17 besides
the conceptual insights they provide. The scheme in Figure 6.17a does not require
any correction operations other than displacements because it is equivalent to that
in Figure 6.16a where the gate U is trivially applied through teleportation by first
performing U on jψini and then teleporting Ujψini using standard CV quantum
teleportation.
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7
Cluster-Based Quantum Information Processing

In the preceding chapter, we introduced the concept of gate teleportation as an ex-
tension of state teleportation, and we presented various experiments that realized
gates through teleportation on qubits or qumodes. Similar to these gate telepor-
tations, the cluster-based schemes and experiments described in this chapter are
again manifestations of the paradigm of measurement-based quantum computa-
tion where the unitary gates of the standard circuit model [5] are replaced by irre-
versible sequences of measurements [1] on an offline prepared resource state (see
Section 1.8 and Figure 1.11).

However, as mentioned before in the introduction to Chapter 6, cluster-based
quantum computing represents the ultimate form of measurement-based quan-
tum information processing: measurements are performed locally on the smallest
subsystems of the cluster resource state, that is, the individual qubits or qumodes
that form the cluster; the cluster itself embodies the maximal offline resource need-
ed because once it has been prepared, it remains fixed during the computation with
measurements on it still offering sufficient freedom to realize universal and hence
arbitrary quantum gates.

The locality of the measurements means that every entangling gate required for a
multi-qubit or multi-qumode computation is already embedded in the cluster state.
This is particularly useful when such entangling gates can only be probabilistically
implemented as in the single-photon-based approaches.

In this chapter, we will first explain cluster computation on qubits (Section 7.1),
including the elementary teleportation steps needed (Section 7.1.1), their use for
Clifford and for universal quantum computing, and an experimental demon-
stration of a small cluster computation (Section 7.1.2). The analogous qumode
schemes are presented in Section 7.2, similarly divided into Section 7.2.1 on el-
ementary qumode teleportations, Section 7.2.2 on Gaussian computations, and
Section 7.2.3 describing various experiments in the CV Gaussian regime of cluster-
based quantum information processing. Gaussian regime here means that all
these experiments so far have demonstrated only Gaussian transformations using
cluster states.

An experiment that incorporates a non-Gaussian measurement into the cluster
computation and thereby leaves the regime of Gaussian gates as required for uni-
versal quantum computation is yet to be performed. Nonetheless, the experiment

Quantum Teleportation and Entanglement. Akira Furusawa, Peter van Loock
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40930-3
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presented in Section 7.2.3.2 can be seen as an almost ultimate demonstration of
single-mode Gaussian cluster computation as it implements Fourier and squeez-
ing gates on independent, single-qumode optical states through a linear four-mode
cluster state which is universal for arbitrary single-qumode LUBO transformations.

7.1
Qubits

A multi-qubit cluster state is illustrated in Figure 1.11. Let us see how an elemen-
tary teleportation step between two adjacent qubits works.

7.1.1
Elementary Qubit Teleportations

Consider the qubit circuit in Figure 7.1. The output state of that circuit is

X m H Zθ jψi (7.1)

for an arbitrary input state jψi. In other words, up to a Pauli correction operation
depending on the measurement result m for the measurement on the upper qubit
and up to a Hadamard gate, the resulting state is Zθ jψi. For arbitrary angles θ,
arbitrary Z rotations are applied upon the input state.

Now the crucial point is that, instead of the unitary circuit shown in Figure 7.1a,
the unitary operator that describes the desired Z-rotation gate can be absorbed in-
to the measurement apparatus as shown in Figure 7.1b. This way any Z rotation
can be enacted by choosing a suitably rotated measurement basis. By concatenat-

+ ψθZHX m

m

ZC

±θZ
†

HθZ HHθZθZ

++ ψθZHX m

m

ZC

(a)

(b)

ψ

ψ

Figure 7.1 Elementary “one-bit” teleportation
circuit for qubit cluster computation. (b) the
CZ gate represents a horizontal edge connect-
ing two nodes of the cluster state. An input
state jψi is teleported into the left node, and
a subsequent, local single-qubit measurement
in the binary basis fZ †

θ j˙ig leaves the second
node, up to a Hadamard gate H and a Pauli

correction X depending on result m D 0, 1,
in the unitarily evolved state Zθ jψi, with the
rotation angle θ for a Z-rotation exp(�iθ Z/2)
controlled by the actual choice θ for the mea-
surement basis. (a) shows the equivalent
circuit in which the measurement is decom-
posed into unitary gates and a computational
basis measurement.
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Figure 7.2 Two cascading elementary qubit teleportations.

ing these elementary teleportation steps, one can apply sequences of single-qubit
rotations such as for two steps (see Figure 7.2)

X m2 H Zθ2 X m1 H Zθ1 jψi . (7.2)

Now, it depends on the commuting properties of the rotation gate (if it is Clifford
or not, see Section 1.8) as to whether and how the Pauli corrections can be applied.

Assume the first measurement result is m1 D 1. In this case, we have

Z�θ2 X D X Zθ2 (7.3)

such that the desired gate Zθ2 ends up in front of the state vector jψi only provided
the actual measurement basis was chosen different from Zθ2 , namely, according
to a rotated basis with Z�θ2 . Whether or not this basis change is necessary in the
second teleportation step depends on the measurement outcome of the first step.
Therefore, in general, feedforward is required, where the later measurement bases
must be adjusted according to the earlier measurement outcomes. However, there
is an exception. Whenever the rotations are Clifford rotations, they would simply
commute through the Pauli correction operators; in which case only the required
Pauli correction would change and no more the subsequent measurement bases
(see Chapter 1). In this case, no feedforward is needed, and all measurements can
be performed at any time and in any order, even in parallel – a notion known as
Clifford parallelism.

7.1.2
Experiment: Qubit Cluster Computation

One of the most famous experiments of qubit cluster computation would be the
one performed by Walther et al. [149] which uses the cluster states explained in Sec-
tion 3.1.3.3. Since the cluster states are created by post-selection, this experiment
also works with post-selection. Moreover, there is no feedforward in the experi-
ment. Only those events with no need for feedforward are post-selected as shown
later. In this sense, it is a partial demonstration of cluster computation because
feedfoward is one of the most important features of cluster computation. In this
section, we will first explain this experiment in detail.

Walther et al. performed two types of experiments which are cascaded single-
qubit operations and two-qubit quantum logic gates [149]. For the cascaded opera-
tion experiment, they performed two or three cascaded operations with a four-mode
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linear cluster state. These states are given in Eq. (3.25) in polarization qubit repre-
sentation and in Eq. (3.26) in the computational basis.

For two cascaded operations, they first made a polarization measurement of the
photon in mode 1 in the fjCi1, j�i1g basis (˙45ı-linearly polarization) to pre-
pare a three-mode linear cluster state of modes 2–4. Of course, one should make
a measurement in the fj0i, j1ig basis (computational basis) to make the first qubit
of the linear four-mode cluster state disentangled and the rest intact. However, in
this particular experiment, they used “lab basis” which needs an extra Hadamard
transformation (jCi • j$i D jHi, j�i • jli D jV i) with quarter wave plates.
Thus, the measurement on fjCi1, j�i1g basis here corresponds to a measurement
on the computational basis. They only took the case of jCi1 and discarded the case
of j�i1. This action eliminates the need for feedforward.

To make two cascaded operations, polarization measurements on B j (α) basis are
made in modes 2 and 3 where B j (α) D fjαCi j , jα�i j g and jα˙i j D (eiα/2j0i j ˙
e�iα/2j1i j )/

p
2.1) Here, only the cases of j C αi j were post-selected in the exper-

iment to obtain the input jCi2 and to eliminate the feedforwards. The B j (α)-
basis measurement corresponds to single-qubit rotation around z-axis (j0i–j1i axis)
Rz (α) D exp(�iασz/2) followed by a Hadamard operation H D (σx C σz )/

p
2,

where fσx , σ y , σzg are the Pauli matrices.2) Thus, the post-selected state of mode 4
(qubit 4) jψouti4 after the measurements becomes

jψouti4 D H Rz (α3)H Rz (α2)jCi
D Rx (α3)Rz (α2)jCi , (7.4)

where Rx (α) D H Rz (α)H D exp(�iασx/2). This sequence of two elementary
teleportations is an example of the general concatenation shown in Figure 7.2.
Again, in the experimental scenario, feedforward was not needed because those
cases without feedforward were post-selected.

Walther et al. performed the experiment with α2 D π/2, π/4, 0 and α3 D π/2,
which was realized by tuning of quarter wave plates and polarization angles of
polarizers just before the detectors in modes 1–4 (Figure 3.10). The results are
shown in Figure 7.3. The fidelity of operations with the ideal cases were 0.86˙0.03,
0.85 ˙ 0.04, and 0.83 ˙ 0.03 for α2 D π/2, π, and /4, 0, respectively [149].

Two-qubit-gate experiments were performed as follows. As explained in Sec-
tion 3.1.3.3, a four-qubit square cluster state can be created using post-selection.
Walther et al. performed a two-qubit gate operation with the four-mode square clus-
ter state where the gate operation is shown in Figure 7.4.

In this experiment, the input state is jCi1 ˝ jCi4 which is automatically post-
selected in the experiment. The two-qubit gate operation performed by polarization
measurements of photons (qubits) in modes 1 and 4 of the square cluster state is

1) In [149], the definitions of B j (α) and j ˙ αi j are B j (α) D fj C αi j , j � αi j g and

j ˙ αi j D (j0i j ˙ eiα j1i j )/
p

2.
2) Identical to fX, Y, Zg according to the alternate notation used throughout this book. Similarly,

Rz (α) � Zα , etc. because here we choose to use the same notation as in [149].
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(a) (b)

Figure 7.3 The state of qubit 4 in mode 4 af-
ter the measurements of qubits in modes 1–
3 [149]. Here, “lab basis” is used for mode 4,
which makes additional Hadamard operation
on the state of Eq. (7.4). The states of qubit 4

with α2 D π/2, π/4, 0 are labeled 1, 2, and
3 in this figure, respectively, and α3 D π/2.
(a) depicts the ideal case, and (b) depicts the
experimental results.

1

4

Controlled-phase gate

Figure 7.4 Scheme of two-qubit gate operation with a four-mode square cluster state demon-
strated by Walther et al. [149]. Polarization measurements were performed in modes 1 and 4.

the following:

jψouti23 D CPhase(H ˝ H )[Rz (α1) ˝ Rz (α4)]CPhasejCi ˝ jCi , (7.5)

where CPhase is the controlled-phase-gate operation (identical to CZ , see Sec-
tion 1.8),

CPhasejxi ˝ jyi D (�1)x y jxi ˝ jyi , (x , y D 0, 1) . (7.6)

Note that the CPhase acts as an entangling gate in the first operation for separable
inputs, but it acts as a disentangling gate in the second operation as in Figure 7.4
and Eq. (7.5). Experimentally, the case of α1 D π and α4 D 0 should result in the
operation jCi1 ˝jCi4 ! jCi2 ˝j�i3. The corresponding results are shown in Fig-
ure 7.5a. Note the “lab basis” was used and jCi2 ˝j�i3 corresponds to jV i2 ˝jHi3

where jV i D jli and jHi D j$i because modes 2 and 3 are switched in the “lab
basis” of this experiment. In Figure 7.5a, only the diagonal element of V H ap-
pears, consistent with the theoretical predictions and showing that the experiment
is successful depending on postselection.

Similar to the case of the square cluster state, a two-qubit gate operation can be
performed with a four-mode linear cluster state. In this case, we make measure-
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(a) (b)

Figure 7.5 Experimental density matrices
of two-qubit gate operation with four-mode
square and horseshoe cluster states demon-
strated by Walther et al. [149]. The “lab basis”
is used. (a) results for the four-mode square
cluster state, (b) for the four-mode horseshoe

cluster state. Upper charts are for the real
parts of density matrices and lower charts are
for imaginary parts. The outputs for (a) and
(b) are a separable and entangled states, re-
spectively, and it is consistent with the theory.

12

3 4 Figure 7.6 Graph representation of a four-qubit horseshoe cluster
state.

ments of qubits 2 and 3 and the four-mode linear cluster state is regarded as a
horseshoe cluster state shown in Figure 7.6. Here, the expression of the operation
with this state is

jψouti14 D (H ˝ H )[Rz (α2) ˝ Rz (α3)]CPhasejCi ˝ jCi , (7.7)

as shown in Figure 7.7.
The important thing here is that the output state jψi14 is an entangled state

while the output state jψi23 from the operation in Eq. (7.5) is not an entangled
state. Experimentally, they tried the case of α2 D α3 D 0 (both measurement
results are jCi D C45ı linear polarization) which should make the operation
jCi2 ˝ jCi3 ! (j$i1 ˝ jCi4 C jli1 ˝ j�i4)/

p
2 D (j0i1 ˝ jCi4 C j1i1 ˝ j�i4)/

p
2.

The experimental results are shown in Figure 7.5b. Note again that the “lab basis”
was employed, requiring extra Hadamard operations in modes 1 and 4. The exper-
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Controlled-phase gate

2

3

Figure 7.7 Scheme of two-qubit gate operation with a four-mode horseshoe cluster state
demonstrated by Walther et al. [149]. Polarization measurements were performed in modes 2
and 3.
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Figure 7.8 Experimental setup for cluster computation with feedforward [292].

imental results are again consistent with the theoretical predictions and confirm
that the experiment is successful based on postselection.

Thus far, we have described an experiment for qubit cluster computation with-
out the use of feedforward because such an experimental situation is much easier.
However, since feedforward is a crucial ingredient of universal cluster computa-
tion, we shall now discuss an example for this kind of advanced cluster experiment
including feedforward. The corresponding experiment of cluster computation with
feedforward was performed by Prevedel et al. [292].

Figure 7.8 shows the experimental setup where the cluster state used in this
experiment is the same as the ones used in Walther’s experiment explained up
to here (post-selection). In this sense, this experiment corresponds to Walther’s
experiment with feedforward.

First, Prevedel et al. performed the operation described in Eq. (7.4) with a
four-mode linear cluster state. This is very similar to the experiment explained
above. They first made a polarization measurement of the photon in mode 1 on
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Figure 7.9 Elementary-teleportation picture
for the experiment of Prevedel et al. similar to
Figure 7.2 (in the figure here and in the main
text of this section we use the same notation

as in the article of Prevedel et al. differing
from the notation used mostly throughout
this book); s j D 0, 1 correspond to the mea-
surement results jαCi j , jα�i j , respectively.

fjCi1, j�i1g basis (˙45ı-linearly polarization) and took the case of jCi1 to prepare
a three-mode linear cluster state of modes 2–4. Then, they made consecutive po-
larization measurements of the photons in modes 2 and 3 with α2 and α3 to make
consecutive operations.

Figure 7.9 illustrates the operations according to the elementary-teleportation
picture. The output state of the photon in mode 4 can be written as

jψouti4 D σ s3
x H Rz (α3)σ s2

x H Rz(α2)jψi , (7.8)

corresponding to two cascaded elementary teleportations (see Figure 7.2). Here,
s j D 0, 1 correspond to the measurement results jαCi j , jα�i j , respectively.
In this experiment, they wanted to have the output of H Rz(α3)H Rz(α2)jψi D
Rx (α3)Rz (α2)jψi irrespective of the measurement results. Therefore, they used
feedforward.

In the case of s2 D s3 D 0, the output state of mode 4 is Rx (α3)Rz(α2)jψi and
thus feedforwad is not needed. In the case of s2 D 1 and s3 D 0, the output state of
mode 4 becomes

jψouti4 D H Rz (α3)σx H Rz (α2)jψi
D H Rz (α3)H H σx H Rz (α2)jψi
D Rx (α3)σz Rz (α2)jψi
D σz σz Rx (α3)σz Rz (α2)jψi
D σz Rx (�α3)Rz (α2)jψi . (7.9)

From the equation, one needs to switch the measurement basis of mode 3 from
B3(α3) to B3(�α3) and make σz operation for the output state jψouti4 to get
Rx (α3)Rz (α2)jψi. In the case of s2 D 0 and s3 D 1, the output state of mode 4
becomes

jψouti4 D σx H Rz (α3)H Rz (α2)jψi
D σx Rx (α3)Rz (α2)jψi . (7.10)

Therefore, one needs to make a σx operation for the output state jψouti4 to get
Rx (α3)Rz (α2)jψi. In the case of s2 D s3 D 1, one needs to switch the measure-
ment basis of mode 3 from B3(α3) to B3(�α3) and make a σz and σx operation.
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Figure 7.10 Experimental results of one-way
quantum computation with three-mode linear
cluster with and without feedforward [292].
“C”, “�” denote S j D 0, 1, respectively.

The linear qubit cluster state and the cir-
cuit it implements; (b) α2 D α3 D �π/2,
(c) α2 D π/4 and α3 D π/12.

Thus, the output state including feedforward can be described as

jψouti4 D σ s3
x σ s2

z Rx ((�1)s2 α3)Rz (α2)jψi , (7.11)

where the switching table of feedforward is shown in Figure 7.8 as an inset.
The experiment was realized as shown in Figure 7.8. The most important thing

here is that there are delay lines to compensate the time delay of photodetectors
and logic circuits. By using the delay lines, the consecutive measurements and
feedforwards were performed.

Experimental results of one-way quantum computation with three-mode linear
cluster with feedforward are shown in Figure 7.10. Here, the input state is jCi2.
The results are consistent with theory, confirming success of the experiments de-
pendence on post-selection.

Prevedel et al. also tried to perform a two-qubit-gate operation with feedforward
with the same experimental setup shown in Figure 7.8. They used a four-mode lin-
ear cluster as a horseshoe cluster state. Similar to the single-qubit-gate operations
of Eq. (7.11), the performed two-qubit-gate operation can be described as

jψouti14 D (σ s2
x ˝ σ s3

x )(H ˝ H )[Rz (α2)˝ Rz (α3)]CPhasejψ2i˝jψ3i . (7.12)

Figure 7.11 shows the experimental results. In this figure, the results for S2 D
S3 D 1 and the input jCi2 ˝ jCi3 are shown. In the case with feedforward, the
output should be (j$i1 ˝ jCi4 C jli1 ˝ j�i4/

p
2, which is of course the same as

the one of Walther’s experiment mentioned before. On the other hand, in the case
without feedforward, the output should become (jCi1 ˝ jli4 C j�i1 ˝ j$i4/

p
2 in

the case of S2 D S3 D 1. The experimental results presented in Figure 7.11 agree
well with the theoretical prediction. However, we note again that a crucial ingredi-
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Figure 7.11 (a) Experimental results of one-
way quantum computation with a four-mode
linear cluster (horseshoe) with and without
feedforward [292]. Two-qubit-gate operation
of Figure 7.7 (α2 D α3 D 0) for the input

state of jCi2 ˝ jCi3 was performed with
and without feedforward. Only the case of
S2 D S3 D 1 is shown in this figure. (b) The
ideal case, (c) with feedforward and (d) with-
out feedforward. jHi D j$i, jV i D jli.

ent of the experiment is postselection. The readout in Figure 7.10a is part of the
cluster computation protocol. Thus, the output state must be destroyed and is not
directly available for further exploitation. Nevertheless, the principal mechanism of
cluster computation with qubits was clearly demonstrated in this experiment.

7.2
Qumodes

A canonical version of a Gaussian (approximate) CV cluster state is shown in Fig-
ure 3.16. The cluster computation proceeds from left to right through measure-
ments on the individual qumodes of the cluster state. Similar to the qubit case,
quantum information propagates along the horizontal wires with single-qumode
gates depending on the measurement bases. Two-qumode couplings are achieved
because the cluster is two-dimensional such that the information effectively prop-
agates along the whole lattice. Let us again consider an elementary teleportation
circuit, this time on two qumodes.
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7.2.1
Elementary Qumode Teleportations

Consider just one horizontal link between two adjacent qumodes in the cluster.
The corresponding elementary qumode teleportation is shown in Figure 7.12.

Similar to the elementary qubit circuit, the gates in front of the computational
x-homodyne detector in the circuit of Figure 7.12 can be absorbed into the measure-
ment apparatus such that instead of measuring the observable Ox , the projection is
onto the rotated p-basis fD†jp ig measuring the observable D† Op D .

The output state of the elementary CV circuit is

X(s)F Djψi (7.13)

for an arbitrary input state jψi. This time, up to a WH correction operation de-
pending on the measurement result s for the measurement on the upper qumode
and up to a Fourier transform, the resulting state is D jψi. This way we can apply
any gate D D ei f ( Ox) to an arbitrary input state teleported into the upper rail, that is,
into one or, in the multi-mode case, several qumodes of the far left column in Fig-
ure 3.16. Further application of such elementary steps by measuring out the other
qumodes in the CV cluster state beginning from the left in Figure 3.16 may lead
to, in principle, universal quantum computation on multi-qumode states in the ap-
proximate, asymptotic sense [171]. This can be understood by concatenating the
elementary teleportation steps such that for two steps (see Figure 7.13), we obtain
the state

X(s2)F D 0
2(s1)X(s1)F D1jψi . (7.14)

Now, again it depends on the commuting properties of the D gate (if it is Clifford or
not, see Section 1.8) whether and how the WH corrections can be applied. In case
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Figure 7.12 Elementary teleportation of a CV
cluster computation. (b) the desired gate op-
eration D D ei f (Ox ) and the inverse Fourier
transform F † can be absorbed into the mea-
surement apparatus such that a projection of
the upper qumode onto the basis fD† jpig
with result s leaves the lower qumode in the

desired output state up to a Fourier trans-
form and a WH correction X(s). (a) shows the
equivalent circuit in which the measurement
is decomposed into unitary gates and a com-
putational basis measurement. Compare this
with the analogous qubit circuit in Figure 7.1.
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Figure 7.13 Two cascading elementary qumode teleportations.

D is a non-Gaussian unitary, one has to choose the second measurement basis such
that

D 0
2(s1)X(s1) D X(s1)D2 (7.15)

with the desired gate operation D2 in front of the state vector. Therefore, for gen-
eral qumode gates, feedforward is required where the later measurement bases
must be adjusted according to the earlier measurement outcomes. However, when
the gates are Gaussian, they would simply commute through the WH correction
operators; in which case only the required WH correction would change and not
the subsequent measurement bases (see Chapter 1). In this case, no feedforward is
needed and all measurements can be performed at any time and in any order (see
next section). The particular observables to be measured at each step, D† Op D , can
be chosen to be, for example, linear for D quadratic and quadratic for D cubic, see
the universal qumode gates introduced in Section 1.8.

The Fourier transform is performed through the cluster at any step in order to
switch between Ox and Op gates. To complete the universal set in Eq. (1.127), the
two-qumode gate CZ is obtainable through the vertical wires in Figure 3.16 so
the cluster must be at least two-dimensional. The total evolution of the input is
completely controlled by the measurements with the cluster state prepared offline
prior to the computation.

It is important to understand that in the realistic case of finitely squeezed cluster
states, there will be errors accumulating during the cluster computation. In fact,
it appears that there is no simple way (for instance, via a clever way of encoding
quantum information that propagates through the cluster) to suppress these er-
rors [293]. As a consequence, quantum error correction and fault tolerance have to
be taken into account from the start, and this will require complicated nonlinear,
non-Gaussian approaches (see Chapters 2 and 5).

7.2.2
Gaussian Computation

Any multi-mode LUBO as described by Eq. (2.104) can be performed on an arbi-
trary multi-mode state through homodyne detections alone. An additional nonlin-
ear measurement such as photon counting is needed in order to be able to realize
gates of cubic or higher order. In this case, the basis choice of a measurement in
one step would typically depend on the outcomes of the measurements in the pre-
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Figure 7.14 Universal single-mode LUBO.
After attaching an arbitrary single-qumode
input state to a linear four-mode cluster state
(qumodes 2–5) appearing in qumode 1, four
elementary steps involving four quadrature
homodyne detections on qumodes 1–4 with
suitably chosen local-oscillator quadrature an-
gles are sufficient to obtain approximately any
LUBO-transformed output state in qumode
5, provided the squeezing in the linear cluster
state is sufficiently large. The CZ -attachment

of the input state and the two homodyne
detections on qumodes 1 and 2 can be re-
placed by a CV Bell measurement on the input
mode and the far left mode, qumode 2, of the
cluster [294]. The input state is depicted as a
Gaussian coherent state only for illustration.
Most significantly, the CV Bell measurement
can also be used to teleport non-Gaussian
input states into the four-mode cluster for
universal, linear processing.

vious steps. In contrast, in the all-homodyne-based scenario for LUBOs, no such
feedforward is required and all measurements may be conducted in parallel – this
is the CV qumode version of Clifford parallelism.

It has been proven that a linear four-mode cluster state is sufficient to achieve
an arbitrary single-mode LUBO (see Figure 7.14); an arbitrary N-mode LUBO is
possible using a finite, two-dimensional CV cluster state of � N 2 qumodes [294].
In this case, no more asymptotic evolutions with infinitesimal, elementary steps
must be considered, but rather combinations of beam splitter and single-mode
squeezing gates of appropriate strength. Such cluster-based LUBOs circumvent the
complication of online squeezing of, especially, fragile non-Gaussian states since
all squeezing gates are performed offline on the Gaussian cluster state. Provided
enough squeezing is available to create the cluster states [169, 295–297], this ap-
proach may also be used to realize the necessary squeezing corrections for nonlin-
ear gate implementations as discussed in the preceding section. The single-mode
LUBO scheme was recently implemented experimentally [298, 299] (see the follow-
ing sections on experimental schemes).

7.2.3
Experiment: Gaussian Qumode Cluster Computation

7.2.3.1 Quadratic Phase Gate
In this section, we will explain a quadratic phase gate demonstrated by Miwa
et al. [299] in detail. It was realized by using a QND sum gate explained in Sec-
tion 6.2.1.2, which is an example of off-line quantum information processing.



284 7 Cluster-Based Quantum Information Processing

Measurement-based one-way quantum computation [1] using an off-line pre-
pared, multi-party entangled cluster state is a conceptually interesting alternative
to the standard unitary circuit model of quantum computation [5]. In the cluster-
model, universality is achieved through different choices of measurement bases,
while the cluster state remains fixed. Unitary gates are effectively applied at each
measurement step corresponding to elementary teleportations [278, 300] for prop-
agating and manipulating a quantum state through the cluster. The cluster model
also turned out to provide new, potentially more efficient approaches to the ex-
perimental realization of quantum logical gates, especially in the quantum optical
setting [150, 151].

A translation of the circuit model for quantum computation over continuous
variables (CV) [86] to universal cluster computation with CV was given in [171]. The
canonical, universal gate set for CV is f OU3(λ), Cg, where C D f OZ (s), OU2(�), OF , CZ g
with the momentum shift operator OZ (s) D exp(2is Ox ), the phase gates OUl (�l ) D
exp(i�l Ox l ), the Fourier transform operator OF , and the controlled-Z gate CZ D
exp(2i Ox ˝ Ox ) [170]. Through concatenation, the full set enables one to simulate
any Hamiltonian in terms of arbitrary polynomials of the position Ox and the mo-
mentum Op to any precision [86].3)

The same set without the cubic gate OU3, that is, the set C, is still universal for
realizing any quadratic Hamiltonian, that is, the whole group of Gaussian unitary
transformations, the analogue to the Clifford group for discrete variables (DV).
In the case of DV, for example, single-qubit Clifford transformations are fully
covered by the Hadamard gate OH and the “π/4”-phase gate OUπ/4 acting upon the
qubit Pauli operators as OU†

π/4Z OUπ/4 D Z and OU†
π/4 X OUπ/4 D �iX Z D �Y ; full

universality for single-qubit transformations would then require, in addition, the
well-known “π/8”-phase gate [5], the analogue to the cubic phase gate OU3 for CV
(see Section 1.8). Focusing on CV, the quadratic gate from the universal set C for
all Gaussian transformations maps the Weyl–Heisenberg displacement operators
OZ(s) and OX (s) D exp(�2is Op ) into

OU†
2 (�) OZ(s) OU2(�) D OZ (s)

OU†
2 (�) OX (s) OU2(�) D e�i� s2 OX (s) OZ(�� s) , (7.16)

in analogy to the qubit “π/4”-phase gate OUπ/4. The effect of the phase gate may be
more conveniently expressed in terms of the generators of the Weyl–Heisenberg
group, OU†

2 (�) Ox OU2(�) D Ox , OU†
2 (�) Op OU2(�) D Op C � Ox .

From Section 2.3 we know that there is an exact, finite decomposition of any
quadratic unitary into single-mode squeezers and beam splitters [89, 121]. In this
quantum optical language, the quadratic phase gate being explained in this section
OU2 together with the Fourier transform OF provides single-mode squeezing, and the

two-mode gate CZ involves beam splitting modulo single-mode squeezing.
In the cluster-based one-way model, the quadratic gate can be fully controlled

through the local oscillator phase of the homodyne detector [171]. Here, we will

3) Compared to Section 1.8, we are using a slightly modified notation in this section, consistent
with [299]



7.2 Qumodes 285

explain the experimental demonstration of this controllability by Miwa et al. [299],
with a fixed, off-line two-mode cluster state. In the demonstration, a large set of
squeezing transformations was achieved by means of this one-way phase gate;
sequential application of the gate would lead to universal single-mode Gaussian
transformations (where changes of the first moments in phase space require,
in addition, p-displacements OZ (s), trivially realizable through a cluster state for
CV [171]).

The output states of the elementary cluster computations exhibit sub-shot-noise
quadrature variance; thus, nonclassical states are created deterministically through
cluster computation with the degree of nonclassicality fully controlled by the mea-
surement apparatus. Therefore, the demonstration differs from previous imple-
mentations of universal offline squeezing [275, 276] explained in Section 6.2.1.1 in
which different squeezing transformations require different beam splitter transfor-
mations to achieve universality.

The elementary teleportation step for the case of CV [171] is described as fol-
lows. First, in the ideal scheme (Figure 7.15a), an arbitrary input state is cou-
pled to a single-mode, infinitely squeezed state (a position eigenstate jx D 0i),
OUQNDjψiinjx D 0iA. This results in e�2i Oxin OpA

R
dx ψ(x )jxiin

R
dp jp iA/

p
π DR

dx ψ(x )jxiinjxiA, where the subscripts “in” and “A” denote the input and ancilla
modes, respectively. Up to local Fourier rotations, the resulting state corresponds
to a perfect two-mode cluster state already carrying the quantum information to be
processed through the cluster (i.e., the quantum state jψiin).

Next, we measure the observable OU†( Ox) Op OU( Ox ) of mode 1 where OU( Ox) �
exp[i f ( Ox )] is diagonal in the position basis and Op is the conjugate momentum
to Ox ([ Ox , Op ] D i/2). The quantum state after the measurement with outcome p0 is

p
πinhp0j OU( Oxin)

Z
ψ(x )jxiinjxiAdx D p

π
Z

inhp0jxiinU(x )ψ(x )jxiAdx

D OZ (�p0) OU( OxA)jψiA . (7.17)

After correcting the displacement OZ (�p0), we obtain the desired state OU( Ox )jψi in
the ancilla mode. Through this scheme, in principle, we can apply an arbitrary uni-
tary operator OU( Ox ) to jψiin; for nonlinear gates such as the cubic gate OU3, however,
this would require measuring a nonlinear observable. Here, we consider detection
of the whole range of rotated quadratures (all linear combinations of Ox and Op ),
effectively applying the quadratic phase gate OU2(�) D exp

�
i� Ox2

�
to jψiin, up to a

phase-space displacement depending on the measurement result p0.
In the optical realization, Ox and Op are quadrature operators for the mode oper-

ator Oa D Ox C i Op . The quadratic gate OU2(�) corresponds to a sequence of rotation,
squeezing, and rotation [89] with (see Section 1.8)

Oxout D Oxin

Opout D Op in C � Oxin . (7.18)

Thus, the required measurement corresponds to measuring [171]

Op C � Ox D
p

1 C tan2 θ ( Op cos θ C Ox sin θ ) , (7.19)
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Figure 7.15 Schematic of a one-way quantum gate (a) and the experimental setup (b) [299].
OPO: optical parametric oscillator, LO: optical local oscillator, and EOM: electro-optic modula-
tor.

with � D tan θ . Using homodyne detection and setting the phase of the local os-
cillator (LO) to θ , we can measure ( Op cos θ C Ox sin θ ). Appropriate electric am-
plification of the homodyne results with gain (1 C tan2 θ )1/2 leads to the desired
measurement of OU† Op OU . Miwa et al. showed this for several values of �: 0, ˙1.0,
˙1.5, ˙2.0, with coherent-state inputs [299]. The corresponding LO phases are 0ı,
˙45ı, ˙56.3ı , and ˙63.4ı , respectively.

In this optical demonstration, three squeezed-vacuum ancillae are used. One
ancilla is coupled to the input via a QND gate (denoted by subscript A). The QND
gate itself requires two additional squeezed vacuum states (denoted by subscripts
B, C) as explained in Section 6.2.1.2. The full input-output relations of the scheme
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including finite-squeezing resources are

Oxout D Oxin C Ox (0)
A e�rA �

p
5 � 1

2 4
p

5
Ox (0)

B e�rB ,

Opout D Op in C � Oxin C 1
4

p
5

� Ox (0)
B e�rB C

p
5 C 1

2 4
p

5
Op (0)

C e�rC . (7.20)

Even with the excess noise from the finite squeezing of the ancillae, we are able to
observe sub-shot-noise quadrature squeezing for sufficiently large �.

Experimental setup. – A schematic of the experimental setup is illustrated in Fig-
ure 7.15b. The original source of light is a continuous wave (CW) Ti:sapphire laser
whose output is 860 nm in wavelength and 1.5 W in power. Quantum states at the
1.34 MHz sideband are used in our demonstration.

The experimental setup consists of the following parts: preparation of the input
and ancilla states, the QND coupling gate, measurement, feedforward, and, finally,
the verification measurement.

The input state, a coherent state at the 1.34 MHz sideband, is generated by mod-
ulating a weak laser beam of about 10 µW using electro-optic modulators (EOMs).
Three types of coherent states jαi are prepared: α D xin, α D ip in, and α D 0
corresponding to phase modulation, amplitude modulation, and no modulation of
the laser beam, respectively.

In order to prepare the ancilla states, there are three sub-threshold optical para-
metric oscillators (OPOs), each generating a single-mode squeezed state, whose
squeezing level is �4.3, �4.9, and �5.2 dB. An OPO is a bow-tie shaped cavity of
500 mm in length containing a PPKTP crystal [283]. The second harmonic (430 nm
in wavelength) of Ti:sapphire output is divided into three beams in order to pump
the OPOs.

The QND gate basically consists of a Mach–Zehnder interferometer with a
single-mode squeezing gate in each arm [284]. Each single-mode squeezing
gate contains a squeezed vacuum ancilla, homodyne detection, and feedfor-
ward [275, 276]. The variable beam splitters in the QND gate are composed of
two polarizing beam splitters and a half-wave plate as explained in Section 6.2.1.1.
One can eliminate the QND gate and just measure the input states by setting the
transmittances of the variable beam splitters to unity. At each beam splitter, the
relative phase of the two input beams is locked by means of active feedback to a
piezoelectric transducer. For this purpose, two modulation sidebands of 154 and
107 kHz are used as phase references. For the homodyne detection, the LO phase
is adjusted in accordance to the desired � value; the feedforward displacement is
carried out with the right gain depending on �.

To verify the output state, another homodyne detection is employed. As is well
known from optical homodyne tomography, we can reconstruct the quantum state
from the marginal distributions for various phases [301]. The LO phase is slowly
scanned and a series of homodyne measurements are performed. The 1.34 MHz
component of the homodyne signal is extracted by means of lock-in detection: it
is mixed with a reference signal and then sent through a 30 kHz low pass filter.
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Finally, it is analog-to-digital converted where the sampling rate is 300 000 samples
per second.

The powers of the LOs are about 3 mW. The detector’s quantum efficiencies are
greater than 99%, the interference visibilities to the LOs are on average 98%, and
the dark noise of each homodyne detector is about 17 dB below the optical shot
noise level produced by the LO. Propagation losses of our whole setup are about
7%.

Experimental results. – As mentioned earlier, Miwa et al. carried out the experi-
ment with three types of input coherent states jαi: α D xin (xin D 1.4), α D ip in

(p in D 1.3), and α D 0. For each input state, the gate for seven different � values:
0, ˙1.0, ˙1.5, and ˙2.0 were demonstrated.

Figure 7.16 shows the raw data of marginal distributions and the Wigner func-
tions reconstructed via the maximum-likelihood method [302]. We show the results
for the input state with the amplitude in x as an example. Each scan contains about
80 000 data points which are uniformly distributed in phase from 0 to 2π, and
every 20 points are plotted in the figure (about 4000 data points). For � D 0 (Fig-
ure 7.16b), the input state is regenerated at the output except for some excess noise.
For nonzero � (Figure 7.16c,d), we can see that the distribution of the p variable is
shifted proportional to x with a proportionality factor �. As a result, the output
states are squeezed and rotated.

In Figure 7.17, the elliptic output Wigner functions for � D 0, ˙1.0, ˙2.0 are
shown where the position, size, and shape of each ellipse correspond to the aver-
aged amplitudes and variances. Figure 7.17a,b are for the case of α D xin: (a) ex-
perimental results and (b) theoretical, ideal operation. They agree well in positions
and inclinations of ellipses, although the ellipses in Figure 7.17a are thermalized
because of the finite squeezing of the ancilla states. Experimentally estimated �

is obtained via �act D h Opouti/h Oxini, and the values obtained are �act D 0.00, 0.95,
�1.04, 1.94, and �2.02 for theoretical values �th D 0, ˙1.0, and ˙2.0, respectively.
The differences in inclinations between experimental and ideal Wigner functions
are less than 3ı. The experimental results for the other input states are shown in
Figure 7.17c,d. The change of the amplitude in the input states only affects the po-
sitions of the ellipses; the shapes and inclinations of the ellipses remain the same.
We can see in Fig 7.17d that the input amplitude in the p quadrature (p in) is simply
reproduced at the output and is otherwise not affected for any �. All of these results
are in good agreement with the theoretical input–output relations.

In Figure 7.18a, the fidelities of the experimental output states compared to
the ideal pure output states (i.e., without excess noise) are plotted. The fideli-
ty quantifies the overlap between two quantum states and it can be calculated
as inhψj OU† O�out OUjψiin. In the case of infinitely squeezed ancillae, unit fidelity is
achieved. In the experiment, excess noises due to finitely squeezed ancillae lead to
non-unit fidelities. Without quantum resources (i.e., using vacuum states for an-
cillary inputs), the experimental fidelity is 0.62 ˙ 0.01 for � D 0, which agrees with
the theoretical result 0.63 derived from Eq. (7.20). With squeezed-vacuum ancillae,
the experimental fidelity is 0.81 ˙ 0.01 for � D 0, which is much better than the
case without nonclassical resources. For nonzero �, the fidelities decrease as j�j
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Figure 7.16 Input and output states with
several � [299]. Left figures show raw da-
ta of marginal distributions and right ones
show the Wigner functions reconstructed via

maximum-likelihood method [302]. (a) In-
put coherent state; (b) output for � D 0; (c)
output for � D 1.0; (d) output for � D 2.0.

increases because the squeezing of the ideal output state grows compared to that
used in the ancillary states. Experimental results are very close to the theoretical
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Figure 7.17 Input coherent state (center
circle) and output states for several � [299].
Gaussian distributions are assumed and
averaged amplitudes variances are shown.
(a, c, d) Experimental results for three types of

input coherent state jαi, where α is the com-
plex amplitude ( Oa D Oa(0) C α). (b) Theoretical
prediction with infinite squeezed ancillae for
the same input state as (a).
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Figure 7.18 (a) Fidelities of output states
and variances of squeezed quadrature [299].
(i) experimental results with squeezed an-
cillae and their theoretical curves derived
from Eq. (7.20). (ii) experimental results with

vacuum-state ancillae and their theoretical
curves. (iii) theoretical results with infinite
squeezing ancillae. (iv) shot-noise limit. The
vertical axis in (b) is normalized to the shot-
noise limit.

curves which are calculated from the experimentally obtained squeezing levels of
the ancillae.
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In Figure 7.18b, the quadrature squeezing of our setup is plotted. Note that
the squeezed quadratures are fragile and easily degraded by excess noise. In the
case of infinitely squeezed ancillae, squeezing is obtained for any nonzero �; for
� D 0, on the other hand, the variance of the input coherent state is preserved. With
finitely squeezed ancillae, the excess noises are added to the variances of the ide-
al outputs. Without nonclassical resources, squeezing below the SNL is, of course,
not obtained for any �. In the case of a squeezing level of the ancillae below �2.9 dB
relative to the SNL, the output state is squeezed for sufficiently large j�j. We can ob-
serve a noise suppression below the SNL by 0.3 ˙ 0.1 dB for � D ˙1.0, 0.8 ˙ 0.1 dB
for � D ˙1.5, and 1.0 ˙ 0.1 dB for � D ˙2.0.

7.2.3.2 Fourier and Squeezing Gates
In this section, we will explain an experiment of CV cluster computation performed
by Ukai et al. where the Fourier transformation and squeezing operation were
demonstrated with a linear four-mode cluster state [298].

All demonstrations of qubit cluster computation so far work in a probabilistic
way since the resource cluster is generated only when the photons that compose
the cluster are produced and, at the same time, detected. In other words, creation
of the cluster state and consumption of the cluster photons for computation must
go hand in hand, rendering the cluster computation highly probabilistic. Moreover,
the probabilities of success decrease exponentially with respect to the number of
photons and so scalability is unattainable. Another typical feature of the single-
photon-based cluster computation experiments is that the usual input states, jCi,
are prepared as part of the initial cluster states. Although this approach is sufficient
for proof-of-principle demonstrations of cluster state computation, it would pose
severe limitations when unitary gates are to be deterministically applied online to
an unknown input state which is prepared independently of the cluster state, for
instance, as the output of a preceding computation. In contrast, Ukai et al. reported
on unconditional CV cluster computation experiments conducted on independently

prepared input states [294, 298].
Ukai et al. demonstrated unconditional realizations of linear gates, necessary for

universal processing of an optical mode, utilizing a continuous-variable (CV) four-
mode cluster state [169, 189, 190] as a resource independent of the input state to be
processed. This scheme represents a module for arbitrary linear, Clifford or Gaus-
sian, or linear unitary Bogoliubov (LUBO) transformations which can be directly
incorporated into a full, universal cluster-based QC together with photon counting
measurements [297]. Though it requires no postselection, a realistic extension of
our scheme would increasingly suffer from errors induced by the finite squeez-
ing of the cluster state. Nonetheless, for a given accuracy of the cluster state, the
squeezing required per node of the cluster would not grow with the size of the
cluster [297].

Ukai et al. used the following CV four-mode linear cluster state [294] defined as

1
π

Z
dadbe2iabjp1 D aijx2 D aijx3 D bijp4 D bi , (7.21)
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where jx D ci and jp D ci D OF jx D ci (with the Fourier transformation OF D
e(iπ)/2( Ox2C Op 2)) are eigenstates of the canonical conjugate position and momentum
operators, respectively Ox and Op , with eigenvalues c 2 R; the subscripts label the
corresponding modes. Here, jxi is the computational basis for our CV system. An
approximate version of this cluster state can be obtained deterministically by com-
bining four squeezed vacuum states on an 80%-transmissivity beam splitter and
two half beam splitters (HBSs) [169, 189, 190]. In the limit of infinite squeezing,
we obtain the state in Eq. (7.21).

Recently, it was shown that the complete set of one-mode LUBO transformations
can be implemented using a four-mode linear cluster state as a resource [294].
In this case, a one-mode LUBO transformation can be expressed by an operator
OU2 D ei OH2 with Hamiltonian OH2 quadratic in Ox and Op . It can then be decom-

posed into three steps, a φ-rotation, squeezing, and a '-rotation in phase space:
OR(') OS(r) OR(φ) ( OR(θ ) D eiθ ( Ox2C Op 2), OS (r) D eir ( Ox OpC Op Ox )) [89] (see Section 1.8). The

measurements required to achieve these operations are efficient homodyne detec-
tions with quadrature angles θi which are easily controllable by adjusting the local
oscillator phases in the homodyne detectors, as shown in the previous section. Now,
an unknown input state can be coupled with the cluster state using a half beam
splitter, effectively employing CV quantum teleportation [163, 203, 277]. The total
procedure then consists of the teleportation-based coupling OMtele(θin, θ1) with two
degrees of freedom, followed by two elementary, measurement-based, one-mode
operations OM (θi) with one degree of freedom for each [297, 299, 304]. As a result,
the output state becomes

jψouti D OM (θ3) OM (θ2) OMtele(θin, θ1)jψini. (7.22)

Note that OMtele(θin, θ1) cannot be decomposed into OM1(θ1) OMin(θin) because the
measurements on modes in and 1 are nonlocal measurements. We have OMtele(θin,
θ1) D OR(�θC/2) OS (r) OR(�θC/2) with r D log tan(θ�/2) and θ˙ D θin ˙ θ1,

while OM(θi ) D OR(φ i) OS (ri) OR(φ i ) with ri D log(
q

k2
i C 4 C ki )/2, φ i D π/2 �

tan�1(
q

k2
i C 4� ki )/2, and ki D 1/ tan θi . The operations OMtele(θin, θ1) and OM (θi )

are each elements of the one-mode LUBO transformations.
In Ukai’s experiment, they demonstrated four types of LUBO transformations:

the Fourier transformation OF D OR(π/2) (90ı rotation); and three different x-
squeezing operations OS (r) with r D ln 10x/20, x D 3, 6, 10 [dB]; all realized through
the same four-mode linear cluster state. Together with phase-space displacements
and rotations such as the Fourier transformation, the set of x-squeezing operations
gives us, in principle, access to any kind of single-mode LUBO transformation.
Realizability of the entire set of linear gates with the same, fixed cluster state
shows that the application of any linear gate to an arbitrary input state can be fully
controlled by the (homodyne) detectors, the essential feature of one-way quantum
computation.

Figure 7.19a illustrates how to perform one-mode LUBO transformations using
a four-mode linear cluster state as a resource. The experimental setup is shown
in Figure 7.19c. Following the above discussion, regarding the experimental pro-
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(a) (c)

(b)

Figure 7.19 (a) Abstract illustration and (c)
experimental setup of one-mode LUBO trans-
formations using a four-mode linear cluster
state [298]. There is a 1-to-1 correspondence
between (a) and (c). Squeezed vacuum states
are generated by subthreshold optical para-
metric oscillators containing periodically

poled KTiOPO4 crystals as nonlinear media.
(b) phase space representations of quantum
states in each step of the Fourier transforma-
tion (b-i) and the 10dB x-squeezing operation
(b-ii), starting with a vacuum state input (dark
gray) and a x-coherent state input (light gray).
Tele.: teleportation, Op: operation.

cedure, the scheme is divided into four parts: (1) generation of a four-mode lin-
ear cluster state and an input state; (2) coupling of these two states; (3) measure-
ments on modes in, 1–3 and feed-forward; (4) verification of the output state in
mode 4. None of these processes are probabilistic; no postselection is required and
the whole experiment is deterministic.

The Fourier transformation is achieved by choosing for step (3) measurement
quadrature angles (θin, θ1, θ2, θ3) as (90ı, 0ı, 90ı, 90ı). The quality of the imple-
mented Fourier transformation can be evaluated in a similar way to standard quan-
tum teleportation (corresponding to a 0ı phase-space rotation); the Fourier trans-
formation is then just a 90ı rotation in phase space.

The measurement results for the Fourier transformation of a coherent state in-
put are shown in Figure 7.20. As clearly shown in Figure 7.20a, the input is a coher-
ent state with amplitude 17.7 ˙ 0.2 dB. The output state is shown in Figure 7.20b.
The peak level of trace Figure 7.20b(ii) is 17.5 ˙ 0.2 dB higher than the shot noise
level (SNL), which is the same level as the input within the error bar, confirming
successful implementation of the desired quantum operation.

The quality of the operation can be quantified by using the fidelity defined as
F D hΨidealj O�outjΨideali. Theoretically, the expected fidelity of our experiment can
be derived as F D 1/(1 C 3/2e�2r ), where r is the squeezing parameter of the
squeezing resources for the cluster state. The four squeezed vacuum states used
as resources have an average squeezing level of �5.5 dB; this gives a theoretical
fidelity of F D 0.71.
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(a) (b)

Figure 7.20 Fourier transformation opera-
tion [298]; (a) Measurement results of the
input state. Trace (a-i) shows the shot noise
level (SNL) and (a-ii) shows the phase scan
of the input state. (b) Measurement results of
the output state. Trace (b-i) shows the SNL,
(B-ii) shows the phase scan of the output

state, and (b-iii) shows the measurement re-
sult of the x quadrature with a vacuum input.
The measurement frequency is 1 MHz and the
resolution and video bandwidths are 30 kHz
and 300 Hz, respectively. Traces (a-i), (b-i),
and (b-iii) are averaged 20 times.

In the specific case of our experiment, the fidelity for a coherent input state as

given above is F D 2/
q

(1 C 4σx
out)(1 C 4σ p

out), where σx
out and σ p

out are the vari-
ances of the position and momentum operators in the output state, respectively
as similar to quantum teleportation [211]. The measured variances with a vacuum
input are used to determine the fidelity. Ukai et al. obtained σx

out D 2.9 ˙ 0.2 dB
(Figure 7.20b(iii)), and σ p

out D 2.8˙0.2 dB (not shown) above the SNL, correspond-
ing to a fidelity of F D 0.68 ˙ 0.02. This is in good agreement with the theoretical
result.

It is possible to observe the peak of the scanning trace (Figure 7.20a(ii)) by mea-
suring the x quadrature of the input, while the peak can be detected in p quadrature
at the output. Therefore, the canonical conjugate variables x and p have swapped
at the output, and this swapping corresponds to a 90ı rotation in phase space. The
measurement results thus confirm that the Fourier transformation is applied to
the input coherent state.

Another fundamental element of the LUBO transformations is squeezing. We
note that ordinary squeezing without rotations cannot be achieved only through
teleportation coupling OMtele(θin, θ1); neither can it be performed by an elementary
one-mode one-way operation OM(θi ). This is because OMtele(θin, θ1) and OM(θi ) are
decomposed as OR('i ) OS (ri) OR(φ i), and 'i D φ i D 0 are not achievable when ri ¤ 0.
Therefore, a sequence of these operations is required in order to extract squeezing
without rotations (see Figure 7.19b(ii)). Note that the state of mode in is transferred
to mode 2 through the nonlocal measurement on modes in and 1.

Three different squeezing operations are implemented in the experiment corre-
sponding to three different sets of quadrature measurement angles (θin, θ1, θ2, θ3):

(�42.5ı, 62.4ı , 63.5ı , 76.0ı) ,

(�41.4ı, 72.2ı , 41.9ı , 74.4ı) ,

and (�47.7ı, 79.2ı , 25.9ı , 78.4ı) , (7.23)
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resulting in 3, 6, and 10 dB x-squeezing operations, respectively [298]. In all these
squeezing gates, the inputs are chosen to be coherent states with a nonzero ampli-
tude in x (x-coherent) or in p (p-coherent), and these amplitudes are 14.7 ˙ 0.2 dB.

Figure 7.21a shows the measurement results of the 10 dB x-squeezing operation
on the x-coherent state. In this figure, the extra dotted lines are plotted for compar-
ison in order to show the levels of the input state: x quadrature with the (iii)-line
(14.7 dB) and p quadrature with the (iv)-line (SNL). Signal levels of 5.1 ˙ 0.2 dB
and 11.5 ˙ 0.2 dB above the SNL are obtained for the measurement of the x and p

quadratures of the output, respectively. The level of the x quadrature of the output
(Figure 7.21a(iii)) is about 10 dB lower than that of the input (the dashed line in Fig-
ure 7.21a), while the variance of the p quadrature of the output (Figure 7.21a(iv))
increases by about 10 dB compared to that of the input (the dotted line in Fig-
ure 7.21a). These observations are consistent with a 10 dB x-squeezing operation
(see Figure 7.21c). Note that the x and p quadratures of the output have addition-
al noises. These are caused by the finite squeezing of the cluster state and would
vanish in the limit of infinite cluster squeezing.

It is evident from the traces in Figure 7.21a that the operation experimentally
performed consists only of squeezing and does not include any rotations. This is
verified by noting that the minimum level (Figure 7.21a(iii)) of the scanning trace
(Figure 7.21a(ii)) is obtained by measuring the x quadrature while the maximum
level (Figure 7.21a(iv)) is obtained by the p measurement.

In order to show the nonclassical nature of the output state, we also use a vacuum
state as the input. The measurement results of the 10 dB x-squeezing operation on
a vacuum state are shown in Figure 7.21b. The measured variance of the x quadra-
ture is �0.5˙0.2 dB which is below the SNL, thus confirming nonclassicality. Note
again that the output has additional noise caused by the finitely squeezed resources
which would vanish in the limit of infinite squeezing.

Finally, the controllability of the one-way quantum computations is demonstrat-
ed. Both theoretical curves and measured results for the three levels (3, 6, and
10 dB) of x-squeezing are plotted in Figure 7.21d. In theory, the effect of the finitely
squeezed resources (�5.5 dB) for the cluster is taken into account. Three kinds of
input states are used here: a vacuum state; an x-coherent state; and a p-coherent
state. As can be seen in Figure 7.21d, the measurement results agree well with the
theoretical curves, and all the operations are indeed controlled by the measurement
bases for the four homodyne detections.

In summary, Ukai et al. have experimentally demonstrated CV cluster comput-
ing. All operations were perfectly controllable through an appropriate choice of
measurement bases for the homodyne detections. In the scheme, arbitrary linear
one-mode transformations can be applied to arbitrary input states coming indepen-
dently from the outside. This result means no less than the possibility for extending
arbitrary linear transformations including arbitrary squeezing, as obtainable from
optical parametric oscillators, beyond the realm of offline optical quantum state
engineering towards online universal linear processing of optical states with di-
rect applications for optical quantum information processing, including discrete
qubit-type as well as continuous infinite-dimensional encodings. The accuracy of



296 7 Cluster-Based Quantum Information Processing

(a) (b)

(d)(c)

Figure 7.21 Squeezing operations [298];
(a, b) 10 dB x-squeezing operation with an
x-coherent input (a) and a vacuum input (b).
(i) shot noise level; (ii) phase scan of the out-
put state; (iii) measurement of x; and (iv)
measurement of p. The dotted lines show the
levels of x (iii) and p (iv) for the input, and the
arrows correspond to the squeezing opera-
tion. The measurement frequency is 1 MHz
and the resolution and video bandwidths are
30 kHz and 300 Hz, respectively. Traces (i),
(iii), and (iv) are averaged 20 times. (c) phase
space representation of the 10 dB x-squeezing
operation with an x-coherent input (a part

of Figure 7.19b(ii)). The light gray circle and
ellipse correspond to the input and output,
respectively. The x component is squeezed
while the p component is anti-squeezed. The
measurement results (a) correspond to the
phase representation (c). (d) experimental re-
sults (dots) and theoretical calculation (solid
curves) of 3, 6, and 10 dB x-squeezing opera-
tions. Traces (i) and (ii) traces correspond to
a p measurement with p-coherent input, and
x measurement with x-coherent input, respec-
tively; traces (iii) and (iv) traces correspond
to a p measurement with vacuum input, and x
measurement with vacuum input, respectively.

our one-way quantum computations only depends on the squeezing levels used
to create the resource cluster state. Although in the experiment squeezing levels
were sufficient to verify the nonclassical nature of the output states, even higher
levels of squeezing, as reported recently [218, 219], may lead to increased accura-
cies and cluster computations of potentially larger size in the near future. In order
to achieve quantum operations other than linear unitary mode transformations,
nonlinear measurements besides homodyne detections would be required. Howev-
er, the demonstration of the experimental capability of implementing an arbitrary
linear single-mode transformation through continuous-variable cluster states, as
explained here, represents a crucial step toward universal one-way quantum com-
putation.
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Concluding this section, we can say that it depends to a large extent on the ex-
perimental implementability of nonlinear measurements such as photon num-
ber resolving detections whether more advanced or ultimately universal, optical
quantum information protocols can be realized in the laboratory. If, similar to
the quantum-state tunability between offline Gaussian and non-Gaussian resource
states [305], also the online operations for measurement-based approaches, that is,
the quantum-state measurements, could be tuned over a sufficient range of lin-
ear CV and nonlinear DV POVMs [306], efficient experimental realizations may
then be possible in the near future. In this case, the offline resource states may
be, for example, Gaussian CV cluster states which can be built unconditionally
from squeezed light using beam splitters. However, finite-squeezing-induced im-
perfections will then require some additional nonlinear element for quantum error
correction. Alternatively, instead of attempting to perform full computations over
CV cluster states at a precision that decreases linearly with the size of the compu-
tation (number of measurement steps) for a given initial squeezing variance [297],
one may just use Gaussian ancilla states, nonlinearly measured online or offline,
for implementing particularly difficult gates such as the NSS gate on DV photonic
states and do the simple gates on dual-rail encoded qubits directly in the standard
circuit approach.
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8
Hybrid Quantum Information Processing

Inspired by practical as well as fundamental limitations of those optical quantum
information schemes which are solely based upon either discrete or continuous
degrees of freedom, a hybrid scheme, similar to a classical, digital/analog hybrid
computer would simultaneously exploit both DV and CV states, encodings, gates,
measurements, and techniques in order to circumvent those limitations.

In the quantum optical setting, this includes, in particular, those approaches that
utilize light for communication and employ matter systems for storage (and pro-
cessing) of quantum information, as the optical qumodes are most naturally repre-
sented by their quantized position and momentum (amplitude and phase quadra-
ture) variables, whereas the atomic spins or any two-level structures in a solid-state
system provide the natural realization of qubits. An important ingredient of such
hybrid schemes may then be a particularly intriguing form of entanglement – hy-
brid entanglement, that is, an inseparable state of two systems of different dimen-
sionality, for example, between a qubit and a qumode.

However, an effective two-qubit entangled state can also be obtained even when
the two individual subsystems are infinite-dimensional, especially, when they are
two optical qumodes. We shall encounter such quasi-Bell states in this chapter.
These states are qualitatively different from the standard form of photonic two-
qubit entanglement expressed in Fock or polarization subspaces.

For our purposes here, the combined DV-CV approach of hybrid schemes falls
into two possible categories: those schemes based upon nonlinear resources using
linear operations and those based on linear resources using nonlinear operations.
In the latter case, for instance, DV photon number measurements may be applied
to CV Gaussian resources. The former type of implementations would utilize, for
example, CV homodyne measurements and apply them to DV photonic qubit or
other non-Gaussian states.

The pioneering “hybrid” work is the experiment of Lvovsky et al. in which CV,
homodyne-based quantum tomography is performed for the discrete one-photon
Fock state [307]. The reconstructed Wigner function in this experiment has a
strongly non-Gaussian shape including negative values around the origin in phase
space.

It is important to notice that for an experimental implementation of a hybrid
scheme in which DV and CV techniques and resources are to be combined (for
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example, for CV quantum teleportation of DV states), the standard way of apply-
ing such methods has to be generalized. In particular, frequency-resolved homo-
dyne detection, as used, for instance, in CV quantum teleportation of coherent
states [203], must be extended to time-resolved homodyning in order to synchro-
nize the CV operations with DV photon counting events. CV operations must act
on a faster scale: while the standard CV experiments used single-mode cw light
sources with narrow sidebands of �30 kHz, the new generation of hybrid experi-
ments relies upon bandwidths of at least �100 MHz, corresponding to time scales
of �100 ns.

For example, in order to teleport a coherent-state superposition (a so-called cat
state) using a CV Gaussian EPR resource, the successful photon events that indi-
cate the presence of a cat state at the input of the teleporter must be synchronized
with those shots that define successful quantum teleportation events. For this pur-
pose, time-domain EPR correlations are needed (see Section 3.2.3.2). This new gen-
eration of experiments is accompanied by a paradigm shift, which is necessary in
order to combine the complementary wave and particle properties of light. Thus
far, experiments have focused either on the particle aspect, using photon coun-
ters and postselection, or on the wave aspect, measuring quadratures in phase
space. The former type of experiments were always conditional and hence high-
ly inefficient; even worse, in many schemes, there was no way to actually obtain
a physical state at the output for further exploitation. The CV quadrature-based
experiments were typically performed in the frequency-domain with no time res-
olution. For those new hybrid approaches to work, the domain must be shifted
from frequency to time, and measurements from (power) statistics to (amplitude) single

shots.
In this chapter, we shall first discuss a couple of protocols for the optical en-

gineering of non-Gaussian cat states (Section 8.1). Subsequently, we describe an
experiment in which such a cat state was optically generated from squeezed light
through photon subtraction techniques (Section 8.2). In Section 8.3, we introduce
some examples of hybrid entangled states, and in Section 8.4, we describe two (hy-
brid) teleportation experiments: one in which a cat state is prepared and then, to
some extent, transferred through quantum teleportation (Section 8.4.1); and an-
other one where a DV polarization-encoded photonic qubit is teleported using CV
EPR resources and CV Gaussian operations (Section 8.4.2). Finally, we present a
few specific hybrid approaches to quantum computing (Section 8.5), including the
notion of hybrid Hamiltonians (Section 8.5.1), specific ways to encode qubits into
qumodes (Section 8.5.2), and, in Section 8.5.3, the famous proposal by Gottesman,
Kitaev, and Preskill (GKP).

8.1
How to Create Non-Gaussian States, Cat States

Coherent states may be used to encode a photonic qubit state in a qualitative-
ly different way compared to the photon number and polarization encodings of
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Chapter 2,

(ajαi C bj�αi) /
p

N(α) , (8.1)

with N(α) D jaj2 C jbj2 C 2e�2jαj2
Re(ab�). A proof-of-principle proposal of such

cat states for fault-tolerant, universal quantum computation was presented in [308].
This proposal describes an all-optical scheme using photon number resolving de-
tectors. Although in theory, cat states can be produced directly from �(3) nonlin-
ear optical interactions, their generation becomes more feasible when conditional
state preparation is allowed. A drawback of the cat-type qubit encoding is that these
states are fairly sensitive to losses and noise. Below, we shall describe a protocol for
cat-state engineering that is not all-optical and uses light-atom interactions.

In the all-optical approaches, there are currently various schemes which often re-
ly upon the resemblance of squeezed Fock states and photon-subtracted, squeezed
vacuum states with a cat state,

jαi � j�αi � OS (r)j1i � Oa OS(r)j0i . (8.2)

This is the so-called odd cat state that only has odd photon-number terms, as one
can easily understand from the Fock expansion of the coherent states. In fact, we
may approximately write

OS(r)j1i D
1X

nD0

tanhn r

cosh3/2 r

p
(2n C 1)!

2n n!
j2n C 1i . (8.3)

The above approximation holds with near-unit fidelity for near-unit or smaller am-
plitudes α. The even cat state is correspondingly / jαi C j�αi, with only even
number terms.

A beautiful example of a typical hybrid scheme according to our definition is
the “offline squeezing” protocol from [279] for cat-state engineering, experimental-
ly demonstrated in [309], see Figure 8.1. In this scheme, approximate cat states are
built using linear CV measurements with outcomes within a finite postselection
window, linear CV squeezed-state, and nonlinear DV Fock-state resources. The pro-
tocol works by squeezing the input Fock state, j1i ! OS (r)j1i � jαi � j�αi. This
squeezing would be hard to achieve “online” directly on the Fock state using the
standard squeezing techniques such as optical parametric amplification.1)

Let us discuss yet another way to create cat states, this time using light-atom
interactions [310]. In Chapter 1, we introduced the qubit Pauli operator basis X, Y,
and Z as elementary gates, and rotations along their respective axes, Zθ , and so
on, to describe and realize arbitrary single-qubit unitaries. In analogy, we used a
similar notation for the qumode WH operator basis, X(τ) and Z(τ). Here, in the
hybrid context, we shall exploit interactions and operations involving combinations

1) In the experiment of [309], a two-photon state jn D 2i was simply split at a beam splitter;
therefore, the squeezed vacuum in Figure 8.1 was just a vacuum state. Postselection through
time-resolved homodyne detection led to an output cat state which was squeezed by 3.5 dB.
Theoretically, the fidelity of the cat state would approach unity for input Fock states jni with
n ! 1 [309].
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Figure 8.1 Conditional preparation of an odd (even) cat state using DV
one-photon (two-photon) Fock states, jψini D j1i (jψini D j2i) and
CV squeezed vacuum resources, OS (r)j0i, together with CV homodyne
detection and postselection [279].

of DV qubit and CV qumode operators and therefore we prefer to use unambiguous
notations: for qumodes, still X(τ) D exp(�2iτ Op ) and Z(τ) D exp(2iτ Ox ) for the WH
group elements, and Ox and Op for the Lie group generators with Oa D Ox C i Op ; for
qubits, now σx � X , σ y � Y , and σz � Z for the Pauli basis.

Now, consider the effective interaction obtainable from the fundamental Jaynes–
Cummings Hamiltonian, „g( Oa† σ� C OaσC), in the dispersive limit [311],

OHint D „�σz Oa† Oa . (8.4)

Here, Oa ( Oa†) refers to the annihilation (creation) operator of the electromagnetic
field qumode in a cavity and σz D j0ih0j�j1ih1j is the corresponding Pauli operator
for a two-level atom in the cavity (with ground state j0i and excited state j1i). The
atomic system may as well be an effective two-level system with an auxiliary level
(a so-called Λ-system).

The operators σC and (σ�) are the raising (lowering) operators of the qubit. The
atom-light coupling strength is determined by the parameter � D g2/∆, where 2g

is the vacuum Rabi splitting for the dipole transition and ∆ is the detuning between
the dipole transition and the cavity field. The Hamiltonian in Eq. (8.4) generates a
controlled phase-rotation of the field mode depending on the state of the atomic
qubit. This can be written as (θ D � t)

OR(θ σz) D exp
��iθ σz Oa† Oa�

, (8.5)

which describes a unitary operator that acts in the combined Hilbert space of a
single qubit and a single qumode. We may apply this operator upon a qumode in a
coherent state, and may formally write

OR(θ σz)jαi D jα exp(�iθ σz)i . (8.6)

The qumode acquires a phase rotation depending on the state of the qubit, see
Figure 8.2. As the eigenvalues of σz are ˙1, applying OR(θ σz) to the initial qubit–
qumode state jαi ˝ (j0i C j1i) /

p
2 results in

jα exp(�iθ σz)i ˝ (j0i C j1i) /
p

2

D �ˇ̌
αe�iθ ˛ j0i C ˇ̌

αeiθ ˛ j1i� /
p

2 , (8.7)

a hybrid entangled state between the qubit and the qumode.
The observation that this hybrid entangled state can be used for creating a macro-

scopic superposition state of a qumode, a cat state, by measuring the microscopic
system, the qubit, is about 20 years old [310]. A suitable measurement is a pro-
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α

Figure 8.2 Controlled phase rotation of a qumode in a coherent state,
α real. Depending on the qubit state, σz D ˙1, the phase angle of the
controlled rotation will be �θ . When the qubit starts in a superposition
state, / j0i C j1i, we obtain a hybrid entangled state between the qubit
and the qumode.

jection onto the conjugate σx qubit basis, fj˙ig, equivalent to a Hadamard gate
applied to the qubit,

�ˇ̌
αe�iθ ˛ jCi C ˇ̌

αeiθ ˛ j�i� /
p

2 , (8.8)

followed by a qubit computational σz measurement. Depending on the result, we
obtain / jαe�iθ i ˙ jαeiθ i for the qumode. The size of this cat state depends on
the distance between the rotated states in phase space, see Figure 8.2, scaling as
�αθ for typically small θ values. However, sufficiently large initial amplitudes α
still lead to arbitrarily “large” cat states (while at the same time increasing their
vulnerability against photon losses).

In the next section, we will describe a cat-state engineering experiment using
photon subtraction. Let us mention that another method using photon counting,
namely, “photon-addition”, that is, in the ideal case, applying the photon creation
operator, serves a similar role in recent hybrid experiments [312].

8.2
Experiment: Creation of Non-Gaussian States, Cat States

In this section, we shall describe the creation of Schrödinger kitten states as experi-
mentally demonstrated by Wakui et al. [313]. This experiment is a hybrid scheme in
the sense that an exotic, non-Gaussian CV qumode state is conditionally prepared
from an unconditional source of Gaussian squeezed vacuum using DV photon sub-
traction measurements. Such heralded qumode states are interesting candidates
for testing the power of CV processing of DV encoded quantum information, for
instance, through CV quantum teleportation using the broadband (time-domain)
entangled states presented in Section 3.2.3.2.

As we have encountered throughout this book, with regards to universal pro-
cessing and so also for conditional state preparation, a sufficiently strong nonlin-
earity can be induced even on the single-photon level by suitable measurements.
Various nonclassical states can be generated, for instance, through photon count-
ing on a subsystem of an entangled state produced by parametric down conver-
sion [314, 315]. States produced this way could be, for example, photon number
states or Schrödinger-cat states. The nonclassicality of such states is related with
negative regions of a phase-space distribution function such as the Wigner func-
tion. This is in contrast to the Wigner function of a squeezed state, which is Gaus-
sian and thus non-negative. Here, for the present discussion of the experiment of
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Wakui et al. [313], we recall that the Wigner function can be directly reconstructed
by optical homodyne tomography [113].

Various nonclassical, non-Gaussian optical quantum states with negative values
of W(x , p ) have been generated. Those states can be categorized into two fam-
ilies. One family is the Fock states and their variants combined with coherent
states [312, 316–319], created in a non-collinear PDC configuration of the signal
and idler photons. The other is the photon-subtracted squeezed states, where a
small fraction of a squeezed vacuum beam is beam-split and guided into a photon
counter as trigger photons, and the remaining beam is conditioned by the detection
of the trigger photons [315]. In the ideal case, a squeezed vacuum is a superposi-
tion of even photon-number states where the signal and idler photons are collinear,
thus, one-photon-subtracted squeezed states must be a particular superposition of
odd photon-number states. These states are close to optical Schrödinger-cat states
with small coherent amplitudes, and thereby referred to as optical “Schrödinger kit-

tens” [186, 320].
In the previous works of Schrödinger kittens, potassium niobate (KNbO3)

crystals are used as nonlinear optical media for an optical parametric amplifi-
er (OPA) [320], or in an optical parametric oscillator (OPO) far below thresh-
old [186]. In the case of experiments with KNbO3, however, it is known that there
is a big source of loss referred to as pump (blue) light induced infrared absorption
(BLIIRA) [321]. The big loss caused by BLIIRA weakens the even-photon nature
of a squeezed vacuum, that is, it weakens entanglement between two modes into
which the squeezed vacuum is beam-split, and yields uncorrelated trigger pho-
tons. They induce false clicks in state preparation and consequently degrade the
output conditioned states. The most negative value observed with KNbO3 thus far
is �0.026 without any corrections of experimental imperfections [320].

On the other hand, periodically-poled KTiOPO4 (PPKTP) has turned out not
to have the BLIIRA effect in continuous-wave squeezing experiments [283, 322].
Therefore, a squeezing level at 860 nm has been significantly improved [283].
Thanks to its almost BLIIRA-free property, one can obtain squeezing with high-
er purity (even-photon nature) than that in the case of using KNbO3. Purity of
squeezing depends on how big the portion of a squeezed vacuum can escape from
an OPO cavity. The cavity escape efficiency, which can be calculated by a trans-
mittance of an OPO output coupler and all intracavity losses [323] is �97% with
PPKTP, while that of KNbO3 is �80% at most.

Let us now explain the generation of a wide range of photon-subtracted squeezed
states, including the single-photon state and a Schrödinger kitten state with very
deep negative dips of the Wigner functions [313]. A single-photon state can be
realized to subtract one photon from a squeezed vacuum with a weakly pumped
OPO [184], but it could not be created in photon-subtraction experiments with
KNbO3. This is because the squeezed states from KNbO3 are too impure. In con-
trast, the usage of PPKTP results in low pump-induced losses and hence high
squeezing at high purity. This enables one to generate various states from single-
photon to Schrödinger kitten states by simply tuning the squeezing level which can
be directly controlled by the pump power for the squeezer.



8.2 Experiment: Creation of Non-Gaussian States, Cat States 305

Figure 8.3 Schematic of experimental set-
up [313]. OC: output coupler, HWP: half-wave
plate, PBS: polarizing beam splitter, BS: beam
splitter (consisting of HWP and PBS, variable

splitting ratio), Triangle: triangle cavity, QWP:
quarter-wave plate, FP1 & FP2: Fabry–Perot
cavities, HBS: 50:50 beam-splitter.

A schematic of the experimental setup is shown in Figure 8.3. A continuous-
wave Ti:sapphire laser (Coherent MBR-110) is used as a primary source of the fun-
damental beam at 860 nm, which is mainly used to generate a second harmonic
(430 nm) of about 200 mW by a frequency doubler (a bow-tie cavity with KNbO3). It
is also used as a local oscillator (LO) for homodyne detection, and as probe beams
for various control purposes. The second harmonic beam is used to pump the OPO
with a 10 mm long PPKTP crystal (Raicol Crystals) as a nonlinear medium in an
optical cavity (a bow-tie configuration with a round-trip length of about 523 mm).
The output coupler (OC) of this squeezer cavity has a transmittance of 10.3%. The
intracavity loss is about 0.2�0.3%, which is nearly independent from the pump
power and much better than that with KNbO3 in our case (2�3%). The FWHM of
the cavity is about 9.3 MHz.

A small fraction (5%) of the squeezed vacuum beam in path A is split at a
beam splitter (BS), guided into a commercial Si-APD (Perkin Elmer SPCM-AQR-
16) through three optical filtering cavities in path B, and is used as trigger signals
for conditional photon subtraction. The finesses of the filtering cavities are about
60 (Triangle), 600 (FP1), and 1500 (FP2), respectively. All the filtering cavities have
5�10 times wider bandwidths than that of the OPO. The spectrum of the trig-
ger photons through these filters consists of a single peak around 860 nm at the
degenerate mode with a bandwidth of 8.6 MHz (FWHM). Other irrelevant, nonde-
generate, modes from the OPO, peaking at every free spectral range of 573 MHz
apart from the degenerate frequency, are sufficiently well suppressed. The total
transfer efficiency after the BS for the mode of interest is about 30% just in front
of the Si-APD. The trigger counting rate varies from less than 1 up to 50 kcps,
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changing with the pump power of OPO from 1 up to 160 mW and splitting ratios.
These trigger counting rates are mostly much greater than the Si-APD dark counts
(100 cps).

Reducing background light is crucial for using an Si-APD because bright back-
ground light easily degrades signal-to-noise ratio of trigger photons. Usually, weak
coherent beams are used as references to lock optical cavities [283], but they directly
yield vast amounts of counts. Therefore, one has to contrive ways to count photons
and lock optical cavities in the same experimental setup.

For that purpose, Wakui et al. applied a time sharing control of the system by a
“sample-and-hold locking” technique which enables us to alternatively switch the
system from a “locking time-bin” to a “measurement time-bin” [313]. In the locking
time-bin, the resonant frequencies of the filtering cavities are locked in a conven-
tional manner (FM-sideband locking technique [185]). Servo amplifiers keep the
filtering cavities in resonance by piezo actuators via demodulating the modulation
applied to a “locking beam” (Figure 8.3). In the measurement time-bin, the locking
beam is completely blocked for photon counting and servo amplifiers hold the sys-
tem in the same state as right before the locking beam is blocked. To perform this
periodically, the locking beam first passes through an optical chopper (the chop-
ping frequency is 500 Hz), is guided into the filtering cavities, and then returning
to the same chopper again after passing them through (Figure 8.3). When the lock-
ing beam passes through at one side of the optical chopper, it is blocked at the other
side, and vice versa, and thus one realizes the time sharing control. Wakui et al. al-
so made the servo amplifiers accept external timing signals in order to be able to
be synchronized to the optical chopper’s driver. A different experimental approach
other than the method presented here can be found in [186].

The generated nonclassical states of light are combined with the LO at a 50 : 50
beam-splitter (HBS) and detected by a balanced homodyne detector with Si pho-
todiodes (Hamamatsu S3759, anti-reflective coated at 860 nm, 99.6% quantum ef-
ficiency). In order to improve the homodyne efficiency, the LO beam is spatially
filtered by a mode cleaning cavity which yields the same spatial mode as the OPO
output. The propagation loss mainly comes from the pickup of a squeezed vacuum
itself (5% at BS), and the homodyne efficiency is 98%.

For every trigger signal from the Si-APD, a digital oscilloscope (LeCroy WaveRun-
ner 6050A) samples homodyne signals around the time when trigger photons are
detected. Recall the discussion in Section 3.2.3.2; the spectroscope and power mea-
surements of the more conventional frequency-domain CV experiments are here in
the time-domain approach replaced by the digital oscilloscope and amplitude mea-
surements. Now, each segment of data contains homodyne signals over a period
�0.5 µs [see Eq. (3.82)]. These are piled one after another until �10 000 segments
fill up the oscilloscope’s memory in a single run of the experiment. Each segment
of the homodyne signals are sent to a PC, and then time-integrated after being
multiplied by a particular temporal mode function Ψ0(t). Each Wigner function is
reconstructed using the iterative maximum-likelihood estimation algorithm [302]
from about 50 000 data points of quadrature amplitude.
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The temporal mode function Ψ0(t) should be chosen such that it defines the
signal mode which shares the maximal entanglement with the trigger photon
mode. The trigger photon mode is well localized in the time domain at least within
T � 1 ns. This depends on the single-photon timing resolution of SPCM and is
much shorter than the inverse bandwidth of the squeezed vacua. The bandwidth of
the squeezed vacua are typically 2B � 10 MHz and can be characterized by the
bandwidth of the OPO cavity. For such a small BT , a single mode description is
valid [183] (see Figure 2.11). In a good approximation, one can consider Ψ0(t) in a
form [184] Ψ0(t) D p


0e�
0jtj, assuming a trigger signal detected at t D 0 where

0 � (γT C γL)/2 determines the characteristic bandwidth 
0/2π � 4.6 MHz.
Here, the leakage rate of the output coupler is γT � 57 MHz and the cavity loss
rate is γL � 1.2 MHz.

Figure 8.4 shows experimental Wigner functions (top panels) and its contour
plots (insets in top panels), raw data of quadrature distributions over half a pe-
riod (middle panels), and photon-number distributions (bottom panels) of the
photon-subtracted squeezed states. First, experimental density matrices in the
Fock (photon-number state) basis are obtained from the raw data in the middle

Figure 8.4 Experimental Wigner functions
(top panels) constructed from raw data with-
out any correction of measurement imper-
fections in the case of 5% splitting ratio. (a)
The single-photon state generated by �0.7 dB
squeezed input. (b) and (c) Schrödinger kit-
tens generated by �2.6 and �3.7 dB squeezed
inputs, respectively. The values of the Wign-
er function at the origin are (a) W(0, 0) D

�0.049, (b) W(0, 0) D �0.083, and (c)
W(0, 0) D �0.048. The insets in the top
panels are the contours of the Wigner func-
tions. The middle panels are quadrature dis-
tributions obtained by homodyne detection.
The bottom panels are photon-number distri-
butions obtained by the iterative maximum-
likelihood estimation. In the calculations in
this section, units of „ D 1 are used.
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panels by using the iterative maximum-likelihood estimation. Then, the Wigner
functions in the top panels can be directly calculated from the density matrices.
Here, any corrections for measurement imperfections are not applied. The bottom
panels are diagonal elements of the density matrices in the Fock basis.

The negativity of the photon-subtracted squeezed states tightly depends on a
signal-to-noise (S/N) ratio of trigger photons because one cannot distinguish trig-
ger (signal) clicks and false (noise) clicks in state preparation. False clicks just yield
vacuum contributions to the generated states. A vacuum state has a Gaussian dis-
tribution of the Wigner function and a positive peak at its origin. Therefore, the
negative dips of the generated states become shallow when the S/N ratio gets worse
and worse, that is, the vacuum contributions increase more and more.

Figure 8.4a corresponds to a single-photon state generated by �0.7 dB squeezed
input. In such a low level of squeezing, the counting rate of trigger photons is
extremely low (less than 1 kcps) and become comparable to Si-APD’s dark-count
rate (100 cps). Thus, the negativity in the single-photon state easily disappears even
with a small amount of false clicks rather than that in the Schrödinger-kitten states.
Therefore, the single-photon state particularly requires a nearly pure squeezed state
generated with PPKTP, as mentioned above.

Figure 8.4b and c are for Schrödinger kittens with two kinds of amplitudes gener-
ated by �2.6 and �3.7 dB squeezed inputs, respectively. The odd-number enhanced
distributions of photon numbers are illustrated in the bottom panels. Furthermore,
these two states can be seen as superpositions of mesoscopically distinct compo-
nents. The large negativity is obtained in a wide range of squeezing levels.

The experimental values of the Wigner functions at their origins are Fig-
ure 8.4a: W(0, 0) D �0.049, Figure 8.4b: W(0, 0) D �0.083, and Figure 8.4c:
W(0, 0) D �0.048.2) These values are significantly improved, compared to the
values with KNbO3.

By using a similar technology, Neergaard-Nielsen et al. succeeded in creating a
single photon state [324], which fits CV experiments.

Figure 8.5 shows the setup for creation of a single photon state for CV QIP [324].
This setup is very similar to Figure 8.3, except for frequency shifts to ωC and ω�

from the fundamental frequency ω0 of the laser where jω0 � ω˙j corresponds to
the free spectral range (FSR) of the OPO cavity. Since the filtering cavities are all
resonant with ω�, the ω� component of the output of the OPO passes through
the cavities and hits a single-photon detector (APD: avalanche photodiode). On the
other hand, the ωC component is reflected and goes to a homodyne measurement
setup. Here, ωC and ω� components have EPR-type entanglement.

When there is a click at the APD, a single photon state appears at frequency ωC,
which is detected by using the local oscillator of frequency ωC of the homodyne
measurement. Note that the difference between the previously described single-
photon subtraction scheme and the scheme introduced in the preceding paragraph
is that single-photon subtraction uses the ω0 component which has even-photon

2) Note that here, in order to compute the measured negativities, the convention „ D 1 was used,
differing from our usual convention of „ D 1/2 throughout this book.
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Figure 8.5 Experimental setup for single-
photon creation for CV QIP demonstrated by
Neergaard-Nielsen et al. [324]. SHG: second
harmonic generator for pumping the OPO,

AOM: acousto optic modulator to shift the
fundamental frequency ω0, LO: local oscilla-
tor, APD: avalanche photo diode.
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Figure 8.6 Experimental results for single-
photon creation for CV QIP demonstrated by
Neergaard-Nielsen et al. [324]. (a) Part of the
recorded quadrature data set with correspond-
ing phases. (b) Histogram of distribution of
conditional quadrature points and vacuum

points. The dashed curve is the ideal single
photon distribution. (c) The density matrix of
the state reconstructed via the maximum like-
lihood method. (d) The corresponding Wigner
function.

nature and not EPR-type entanglement. Figure 8.6 shows the experimental re-
sults [324].
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8.3
Hybrid Entanglement

In the preceding section, we encountered the example of an entangled state be-
tween a qubit and a qumode. This state, though defined in a combined qubit–
qumode, hence an infinite-dimensional Hilbert space, can be formally written in
a two-qubit Hilbert space as we shall explain in this section. One consequence of
this is that the entanglement of this state can be conveniently quantified.

Consider the following bipartite state,

(jψ0ij0i C jψ1ij1i) /
p

2 , (8.9)

with an orthogonal qubit basis fj0i, j1ig and a pair of linearly independent qumode
states jψ0i and jψ1i. A specific example of such a state and a possible way to build
it was presented in Eq. (8.7) and the preceding discussion.

Clearly, the state in Eq. (8.9) becomes a maximally entangled, effective two-qubit
Bell state when hψ0jψ1i ! 0. For 0 < jhψ0jψ1ij < 1, the state is nonmaximally
entangled, but still can be expressed effectively as a two-qubit state. This can be
seen by writing the two pure, non-orthogonal qumode states in an orthogonal, two-
dimensional basis, fjui, jvig,

jψ0i D µjui C νjvi ,

jψ1i D (µjui � νjvi)eiφ , (8.10)

where ν D p
1 � µ2 with µ D [1 C e�iφhψ0jψ1i]1/2/

p
2. Then, using this orthogo-

nal basis,

jui D �jψ0i C e�iφjψ1i� /(2µ) ,

jvi D �jψ0i � e�iφjψ1i� /(2ν) , (8.11)

the hybrid entangled state of Eq. (8.9) becomes

µjuij0i C
p

1 � µ2jvij1i , (8.12)

a nonmaximally entangled two-qubit state with Schmidt coefficients µ andp
1 � µ2, where 1 ebit is obtained only for µ ! 1/

p
2 and hψ0jψ1i ! 0. Quan-

tifying the entanglement is straightforward, as the entropy of the reduced density
matrix is a function of the Schmidt coefficients (see Section 1.5).

It is interesting to compare the state of Eq. (8.9) with a bipartite qumode–qumode
entangled state of the form

(jψ0ijψ0i ˙ jψ1ijψ1i) /
p

N˙ , (8.13)

assuming the overlap hψ0jψ1i is real [325]. First of all, in this case, a normalization
constant N˙ is needed, depending on hψ0jψ1i. Secondly, and quite remarkably,
such a state may always represent a maximally entangled two-qubit state (in the
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subspaces spanned by jψ0i and jψ1i), independent of hψ0jψ1i, but depending on
the relative phase [325–327], that is, the sign in Eq. (8.13).

The prime example for such qumode–qumode entangled states are two of the
so-called quasi-Bell states,

jΨ ˙i � (jαijαi ˙ j � αij � αi) /
p

N˙ , (8.14)

with N˙ � 2 ˙ 2e�4jαj2
. The state jΨ �i is identical to the two-qubit Bell state

(juijvi C jvijui)/p2 when 2µ D
p

2 C 2e�2jαj2 , 2ν D
p

2 � 2e�2jαj2 , and N� D
8µ2ν2, which is maximally entangled with exactly 1 ebit of entanglement for any

α ¤ 0. In contrast, the state jΨ Ci only equals the one-ebit Bell state (juijui C
jvijvi)/p2 in the limit of orthogonal coherent states, hαj�αi ! 0 for α ! 1.3)

The amount of entanglement in the qubit–qumode and qumode–qumode states
of Eqs. (8.9) and (8.13), respectively, is bounded above by one ebit, corresponding
to a maximally entangled two-qubit Bell state. This is different from a “genuine”
CV qumode–qumode entangled state such as a Gaussian two-mode squeezed state
which contains an arbitrary amount of entanglement for sufficiently high levels of
squeezing.

Let us finally consider entanglement witnesses (see Section 1.5) in the hybrid
context. Qumode-qumode entangled states like those in Eq. (8.13) may be identi-
fied through the partial transposition criteria (Section 1.5) adapted to the case of
arbitrary CV states [328, 329]. As a result, all known CV inseparability criteria, in-
cluding those especially intended for Gaussian states and expressed in terms of
second moments (see Section 3.2.1), can be derived from a hierarchy of condi-
tions for all moments of the mode operators Oa and Oa†. Moreover, for non-Gaussian
entangled states for which the second-moment criteria may fail to detect entangle-
ment, the higher-moment conditions would work. The concept for these criteria is
as follows.

It is known that for any positive operator OP � 0, we can write OP D Of † Of such
that Tr(� Of † Of ) is non-negative for any operator Of and any physical state �. Then,
we may choose the bipartite decomposition Of D P

i j c i j
OA i ˝ OB j , for which

0 � Tr
�
� Of † Of

�
D

X
i j,k l

c�
i j Tr

�
� OA†

i
OA k ˝ OB†

j
OBl

�
ck l

�
X
i j,k l

c�
i j [M(�)]i j,k l ck l , (8.15)

for any coefficients c i j . Hence, the matrix M(�) is positive-semidefinite for any
physical state �. Now, any separable state � remains a physical state after partial
transposition of either subsystem such that M(�TA ) and M(�TB ) remain positive-
semidefinite matrices, where TA and TB denote partial transposition for subsys-

3) Similarly, for the other two (quasi-)Bell states, we then have jαij� αi�j� αijαi / juijvi�jvijui
for any value of α, but jαij � αi C j � αijαi / juijui � jvijvi only when α ! 1.



312 8 Hybrid Quantum Information Processing

tem A and B, respectively. Then, negativity of M(�TA ) or M(�TB), and hence nega-
tivity of any subdeterminant of M(�TA ) or M(�TB ) is a sufficient criterion for entan-
glement from which sets of inequalities can be derived with convenient choices for
the local operators OA i and OB j [328].

One such choice for a qumode–qumode state would be each qumode’s position
and momentum operators, eventually reproducing Simon’s criteria in terms of
second-moment correlation matrices. Another choice, adapted to a qubit–qumode
state of the form in Eq. (8.9), is given by f OA ig D fjφih0j, jφih1jg and f OB j g D
f1, Ox , Opg, with some generic qubit state jφi [330]. The resulting expectation val-
ue matrix M(�) then serves again, using partial transposition, as a tool to detect
entanglement, this time for hybrid qubit–qumode states. This can be particularly
useful for verifying the presence of effective entanglement in a binary coherent-
state-based quantum key distribution protocol [331, 332] as a necessary security
requirement (see Section 1.7).

The choices for the local operators OA i and OB j discussed so far all only lead to
second-moment conditions. These are experimentally most accessible, but may fail
to detect some form of non-Gaussian entanglement. For qumode–qumode states, a
more general choice is the normally ordered form for Of , Of D P

nmk l cnmk l Oa†n Oam

Ob†k Obl , with mode operators Oa and Ob for the two qumodes A and B, respectively.
Inserting this into Tr(�TA Of † Of ) � 0 or Tr(�TB Of † Of ) � 0 yields a hierarchy of sepa-
rability conditions in terms of the moments of the mode operators. For example,
the quasi-Bell state jΨ �i of Eq. (8.14) leads to a subdeterminant of the matrix
of moments with a sufficient order of the moments such as h Oa† Oa Ob† Obi, which be-
comes �α6(coth(2α2))/(sinh2(2α2)) � s for real α [328, 329]. This subdeterminant
is negative for any nonzero α, proving the entanglement of the state jΨ �i for any
α ¤ 0.4)

To conclude this section, let us summarize that it is straightforward to quanti-
fy the entanglement of hybrid qubit–qumode and non-Gaussian qumode–qumode
states, provided these states can be represented in two-dimensional subspaces. Oth-
erwise, in order to detect the inseparability of such states, the partial transposition
criteria expressed in terms of matrices of moments can be used. In a recent experi-
ment, employing CV quantum information encoded into the spatial wavefunction
of single photons, fourth-order-moment entanglement was detected [333].

8.4
Hybrid Quantum Teleportation

Since photon counting events are defined in the time domain, conventional CV
teleportation schemes with a sideband of an optical carrier [203] cannot be used for
the teleportation of states conditionally prepared through photon counting. There-

4) Note that s ! 0 for α ! ˙1 and that s is maximally negative, s � �0.125, for jαj < 0.4, even
though we know that jΨ �i has constant entanglement of one ebit for any nonzero α.
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Figure 8.7 (a) Frequency mode of the Schrödinger kitten. (b) Frequency mode for conventional
teleportation experiments.

fore, in order to realize CV teleportation of such non-Gaussian states, one needs to
generate EPR correlations in the time domain (see Section 3.2).

8.4.1
Experiment: Broadband Qumode Teleportation of a Non-Gaussian Wavepacket

The conditionally prepared, non-Gaussian state of Section 8.2 can be teleported
through a time-domain teleporter using a truly broadband entanglement resource
as introduced in Section 3.2.3.2. Since conventional teleportation experiments were
performed with a frequency sideband of a laser carrier as shown in Section 4.2.1
and Figure 8.7b, this broadband and time-domain teleportation is the next big chal-
lenge.

The “Schrödinger kitten” created by photon subtraction only appears when a
photon is detected at the APD in Figure 8.3. In this sense, the Schrödinger kit-
ten is defined as a wavepacket in the time domain. Moreover, as is shown in Sec-
tion 8.2, the frequency mode should be defined by the OPO resonant band which
is illustrated in Figure 8.7a. To teleport this type of broadband mode, we can use
broadband and time-domain EPR entanglement explained in Section 3.2.3.2 (see
Figure 3.20).

Figure 8.8 shows the experimental setup for broadband and time-domain telepor-
tation. The broadband entangled EPR beams are created with the method explained
in Section 3.2.3.1 and they are shared between Alice and Bob. Alice makes a Bell
measurement for the input kitten and Alice’s EPR beam and sends the result to
Bob. Since Alice’s homodyne detectors for the Bell measurement and Bob’s phase
modulators for the displacement operations have limited bandwidth, it makes a
time delay from the corresponding fraction of Bob’s EPR beam. By using an op-
tical delay line in Bob’s EPR beam path, Bob can compensate the time delay and
can keep the EPR correlation. This is conceptually very different from the neces-
sary phase adjustments in conventional narrow-bandwidth CV teleportation. Bob
makes a displacement operation on his EPR beam with high-reflectivity beam split-
ters (T D 1%) and phase modulators (PM), and restores the input kitten at his
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Figure 8.8 Setup for teleportation of a Schrödinger kitten. OPO: optical parametric oscillator for
creation of squeezed vacuum, APD: avalanche photodiode, PD: photodiode, PM: phase modula-
tor.

place. Here, the input kitten is created with photon subtraction as explained in Sec-
tion 8.2, which is conditioned by a click at APD. Therefore, the output is examined
only at the click with quantum tomography.

Concluding this section, we should emphasize that the setup described above
can be used for teleporting arbitrary wavepackets which can be defined in a broad-
band fashion. Even though the input state to the teleporter may be conditionally
prepared, the whole process of quantum teleportation itself remains determinis-
tic, requiring sufficiently high time resolution and synchronization between the
various components (such as Alice’s finite-bandwidth Bell measurement and the
finite-bandwidth classical communication between Alice and Bob). Such a syn-
chronization was not needed in standard frequency-domain teleportation where
just the phases between Alice’s and Bob’s large wavepackets (each corresponding
to a single frequency mode) had to be adjusted.

Another important example for hybrid, broadband quantum teleportation would
be the teleportation of a single photon, which then can be extended to the telepor-
tation of a polarization qubit. This shall be discussed in the next section.

8.4.2
Experiment: Broadband Qumode Teleportation of a Polarization Qubit

A polarization qubit c0j$i C c1jli can be teleported with two broadband CV tele-
porters which are explained in Section 8.4.1. This protocol was proposed by Ide
et al. [334]. The key is the conversion from a polarization qubit to a dual-rail spatial
qubit with the following relation:

c0j$i C c1jli ! c0j1i$ ˝ j0il C c1j0i$ ˝ j1il , (8.16)
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Figure 8.9 Schematic for teleportation of a polarization qubit with two broadband CV tele-
porters. PBS: polarization beam splitter.

where jni$,l (n D 0, 1) denotes a vacuum or single photon state in channel $
or l. This conversion can be realized with a polarization beam splitter (PBS) as
shown in Figure 8.9.

The dual-rail spatial qubit can be teleported with two broadband CV teleporters
also shown in Figure 8.9. In this process, superpositions of a vacuum and a single
photon are teleported in each CV teleporter. As the final step, the teleported dual-
rail spatial qubit is converted back to a polarization qubit with another PBS, to
obtain the output of teleportation.

Ide et al. calculated the teleportation fidelity as a function of the resource squeez-
ing level [334]. From the calculation, it is found that one needs around 10dB of
squeezing for the resource of CV teleportation to exceed the classical limit of qubit
teleportation of 2/3 [335], which is available with current technology [218, 219].

8.5
Hybrid Quantum Computing

In this section, we shall now discuss a few explicit examples for hybrid quantum
processing, the most prominent of which is the GKP scheme [249]. This scheme, in
principle, achieves fault-tolerant quantum computing on logical qubits embedded
into physical qumodes. We will discuss it in detail in Section 8.5.3 and, in particular,
we shall expose its relation with CV cluster computation. Before discussing the
GKP proposal, we will introduce the notion of hybrid Hamiltonians in Section 8.5.1
and some natural qubit-into-qumode encodings in Section 8.5.2.

8.5.1
Hybrid Hamiltonians

One particularly interesting hybrid approach is based upon unitary evolutions, that
is, Hamiltonians which are hybrid. These Hamiltonians contain DV qubit and CV
qumode operator combinations such as, for instance, the controlled rotation in
Eq. (8.5) corresponding to a dispersive light-matter interaction Hamiltonian. More
generally, we may consider a unitary gate of the form,

OU D exp
�
iλ f (σx , σz ) ˝ g( Ox , Op )

�
, (8.17)
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acting on the composite system of a qubit and a qumode. In fact, in the context of
combining the DV and CV approaches, it has been pointed out [336] that a suitable
set of elementary Hamiltonians, including the controlled rotations and additional
uncontrolled displacements,˚

σx Oa† Oa, σz Oa† Oa, Ox�
, (8.18)

is, in principle, sufficient for universal quantum computation on qubits.5) Even
earlier, Lloyd considered a universal set containing only controlled displace-
ments [337],

f˙σx Ox , ˙σz Ox , ˙σz Opg . (8.19)

Typically, in quantum optics, controlled rotations are easier to achieve than con-
trolled displacements. Recall, for instance, the cat engineering scheme of Sec-
tion 8.1.

There are two ways to understand the universality of the above Hamiltonian sets.
One approach is based upon the decomposition of Eq. (1.119). Recall from that de-
composition in Section 1.8 that by applying the Hamiltonians H1 and H2 for some
short time, we can also approximately implement the Hamiltonian �i[H1, H2], pro-
vided the interaction times are sufficiently short.6) Now, first of all, it can be shown
that by using Eq. (1.119) and the elementary Hamiltonians of Eq. (8.19), one can
generate any single-qubit, any single-qumode as well as any qubit–qumode uni-
tary [337] through commutation. The extra two-qubit and two-qumode entangling
gates in order to complete the universal sets for DV and CV universality, respec-
tively, are then achieved through the following commutators,

�i
h

σ(1)
z Ox , σ(2)

z Op
i

D σ(1)
z σ(2)

z /2 , (8.20)

�i [σz Ox1, σx Ox2] D 2σ y Ox1 Ox2 , (8.21)

respectively. Here, the superscripts and subscripts denote operators acting upon
one of the two qubits or qumodes. In other words, the CZ -gates of the sets in
Eqs. (1.121) and (1.127) can be enacted approximately by applying some of the el-
ementary Hamiltonians in Eq. (8.19). However, there is a crucial difference be-
tween the above two commutators. The commutator in Eq. (8.20) commutes with
the elementary Hamiltonians from which it is built, whereas the commutator in
Eq. (8.21) does not. As a consequence, in the latter case, the decomposition for-
mula in Eq. (1.119) is indeed only an approximation that requires infinitesimally
small interaction periods. However, since �i[σ(1)

z Ox , σ(2)
z Op ] commutes with σ(1)

z Ox and
σ(2)

z Op , and all higher-order commutators vanish as well, the two-qubit CZ -gate ac-
cording to Eq. (1.119) with Eq. (8.20) no longer depends on small interaction times.

5) Note that compared to the discussion on universal sets for DV and CV quantum computation in
Section 1.8, we are now writing a universal set in terms of elementary Hamiltonians instead of
elementary gates.

6) So this is the same asymptotic, approximate model for universal quantum computation as it was
used for discrete [85] and continuous [86] variables on their own, see Section 1.8.
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Figure 8.10 A quantum optical illustration of the qubus principle. A CV probe pulse (qumode)
subsequently interacts with two matter qubits. After a sequence of interactions, an entangling
gate between the two qubits can be mediated through the qubus.

Instead, we obtain the exact formula

eiσ
(2)
z Op t eiσ

(1)
z Ox t e�iσ

(2)
z Op t e�iσ

(1)
z Ox t D eiσ

(1)
z σ

(2)
z t2/2 . (8.22)

This observation leads us to an alternative way of understanding how the hybrid
gates of Eq. (8.19) can be used to achieve universal quantum computation on
qubits. In particular, a two-qubit entangling gate of sufficient strength (i.e., t2 �
2π) is then possible without direct interaction between the two qubits; a single
qumode subsequently interacting with each qubit would rather mediate the qubit–
qubit coupling – as a kind of quantum bus (so-called qubus [338, 339], see Fig-
ure 8.10). The sudden exactness of the gate sequence can be explained by interpret-
ing it as a controlled geometric phase gate [336, 340].

Therefore, even though the original hybrid scheme of Lloyd [337] achieves uni-
versality using a finite gate set, it appears unrealistic to switch between the ele-
mentary Hamiltonians over an arbitrarily short time. Accomplishing the univer-
sal gates and hence the Hamiltonian simulation exactly over a finite number of
steps, as described by Eq. (8.22), is thus an essential extension of these hybrid
approaches.

Let us finally note that the two-qumode CZ gate, as discussed in Section 1.8, of
course, can be implemented directly using beam splitters and squeezers (through
Bloch–Messiah reduction, see Chapter 2), independent of a supposed asymptotic
scheme based on Eq. (1.119) with Eq. (8.21). Such a simple realization, however, is
not available for qubits.

8.5.2
Encoding Qubits into Qumodes

There are various ways to encode a photonic qubit into optical modes such as po-
larization or spatial modes, as we discussed in Chapter 2. In particular, the photon
occupation number in a single-rail, single-mode Fock state may serve as a qubit or
a more general DV basis. In dual-rail or, more generally, multiple-rail encoding, a
single photon encoded into multi-mode states can even be universally processed
through linear optical elements; though, in an unscalable fashion, unless compli-
cated ancilla states and feedforward are employed [242].

Another natural way to encode a logical DV state into a physical, optical multi-
mode state would be based upon at least two qumodes and a constant number of
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photons distributed over the physical qumodes such that, for example, a logical,
2 J C 1-dimensional spin-J state, j J, m j i, m j D � J, � J C 1, . . . , J � 1, J , can be
represented by two physical qumodes in the two-mode Fock state,

j J � (n1 C n2)/2, m j � (n1 � n2)/2i , (8.23)

where n1 and n2 denote the photon numbers of the two modes.7) In fact, for n1 C
n2 D 1, we obtain a dual-rail encoded spin-1/2 qubit: fj J D 1/2, m j D �1/2i, j J D
1/2, m j D C1/2ig � fjn1 D 0, n2 D 1i, jn1 D 1, n2 D 0ig. Similarly, a spin-1
qutrit, fj J D 1, m j D �1i, j J D 1, m j D 0i, j J D 1, m j D 1ig corresponds to
fj0, 2i, j1, 1i, j2, 0ig in the Fock basis.

These natural encodings may even automatically provide some resilience against
certain errors such as photon losses. For instance, the dual-rail encoding directly
serves as an error detection code [5, 242]. However, for the purpose of fault-tolerant,
universal quantum information processing, other encodings could be preferable,
though they might be much harder to realize. One example is the fault-tolerant
quantum computation proposal based upon cat states such as the qubit-type states
in Eq. (8.1) [308]. Although some universal DV gates such as the Hadamard gate
(possibly using auxiliary hybrid entangled states of the form in Eq. (8.14) for a
teleportation-based realization) are hard to implement for this encoding, the effect
of photon losses on these cat-type states corresponds to random phase flips in the
coherent-state basis such that repetition codes known from DV qubit quantum
error correction can be directly applied [341]. Nonetheless, these codes would still
require Hadamard gates for encoding and decoding.

8.5.3
GKP

The proposal by Gottesman, Kitaev, and Preskill (GKP) [249] may be referred to as
a hybrid scheme for the following reason. It achieves universal quantum comput-
ing with logical qubits which are embedded in physical qumodes. This qubit-into-
qumode encoding, however, is conceptually different from those that we have con-
sidered so far. It is not naturally given in a subspace of the optical Fock space, but
would require a rather complicated, highly non-Gaussian encoding step. Nonethe-
less, physical operations on the qumodes eventually correspond to universal, log-
ical gates on the encoded qubits. Moreover, this can be, in principle, done in a
fault-tolerant fashion, as the GKP scheme includes, at the same time, a quantum
error correction encoding of the qubit into the qumode.

7) The choice of constant total number

On1 C On2 � OS0 and varying number
differences On1 � On2 � OS3 corresponds to
a specific basis in the so-called Schwinger
representation. For example, in order to
faithfully represent the SU(2) algebra by
the Lie algebras of two infinite-dimensional
oscillators, i.e., two qumodes Oa1 and Oa2,

one may replace the usual Pauli matrices
σ0 � 1, σ1 � σx , σ2 � σ y , and σ3 � σz

by the so-called quantum Stokes operators
OSi D ( Oa†

1 , Oa†
2 )σ i ( Oa1, Oa2)T, i D 0, 1, 2, 3,

satisfying the SU(2) Lie algebra commutators
[ OS1, OS2] D 2i OS3 , while [ OS0, OS j ] D 0, for
j D 1, 2, 3.
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Figure 8.11 Encoding a qubit into a qumode according to
GKP [249]. The logical, computational qubit basis states with
NZ j Nki D (�1)k j Nki, k D 0, 1 are infinite superpositions of delta
peaks in position space. This encoding is particularly suited to
protect the qubit against small, diffusive shift errors as arising
from, for instance, weak amplitude damping of the qumode.
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Figure 8.12 The GKP encoding of a logical qubit into a physical qumode to protect the logical
qubit against small shift errors on the physical qumode. Such small shift errors would include
Gaussian errors such as amplitude damping.

The GKP encoding (see Figure 8.11) is primarily intended to protect a logical
qubit against small errors such as small shifts of the physical qumode in phase
space (see Figure 8.12). Direct translations of standard qubit quantum error cor-
rection codes against rarely occurring Pauli errors into the CV regime, as dis-
cussed in Section 1.9 and in Chapter 5, fail to provide any protection against such
small, diffusive, typically Gaussian errors [93]. Provided the error shifts are suf-
ficiently small, that is, smaller than ∆/4 with ∆ the distance between the delta
peaks in Figure 8.11, the encoded states remain sufficiently intact, and suitable
syndrome measurements enable one, in principle, to detect the errors and correct
the states.

Besides having this special error correction capability, the GKP scheme also in-
cludes universal gate operations. The link between logical and physical gate op-
erations can be easily understood from Figure 8.11.8) A logical Pauli operator U 2
f NX , NY , NZg is transformed under conjugation by a logical qubit Clifford unitary C in-
to a different logical Pauli operator, C†U C D U 0 2 f˙ NX , ˙ NY , ˙ NZg. Thus, as the
logical Pauli gates correspond to WH shifts of the physical qumode, any physical
Gaussian operation (since it preserves such WH gates under conjugation) can only
lead to a logical Clifford operation. Therefore, a physical non-Gaussian operation is

needed in order to achieve logical non-Clifford qubit gates and hence DV qubit universali-

ty. GKP demonstrate two such non-Clifford gates of which one uses a controlled ro-
tation through a dispersive atom-light interaction as in Eq. (8.5), whereas the other
one is based upon a cubic phase gate on the physical qumode, D3(�3) D exp(i�3 Ox3).

8) In Figure 8.11, we do not show the logical
eigenstates of the logical NX Pauli operator.
Similar to the logical eigenstates of the logical
NZ Pauli operator, which are superpositions

of delta peaks along the position axis as
shown, the NX eigenstates are delta-peak
superpositions along the momentum axis
in the physical qumode’s phase space. The

small shift errors can then be shifts along x

and p, and as these WH errors form a basis,
any sufficiently small error may be corrected.
This reasoning is similar to that for the
standard CV qumode codes (see Section 1.9
and Chapter 5) against sufficiently large,
stochastic shift errors in a single channel.
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Figure 8.13 The GKP approach for creating
a cubic phase state using linear Gaussian
resources and DV photon counting measure-
ments. The Gaussian resource state emerg-
ing from two momentum-squeezed states
and the CV version of the controlled Z gate,
CZ D e2iOx1˝Ox2 , is a two-mode squeezed state
up to a local Fourier rotation; X(r) D e�2ir Op is

a WH operator with fixed and sufficiently large
r (much larger than the resource squeezing
parameter). The illustrated circuit is remi-
niscent of an elementary step in a CV clus-
ter computation involving a nonlinear mea-
surement onto the displaced number basis
fX †(r)jnig [297].

Recall that this gate can also be used to complete the universal set for full CV uni-
versality in Eq. (1.127), in the spirit of [86].

In optical quantum information processing, it is pretty natural to encode DV
quantum information into an appropriate subspace of the full infinite-dimensional
qumode space. However, in order to realize the most advanced optical quan-
tum processors which achieve both universality and fault tolerance, the qubit-
into-qumode encodings, though conceptually highly interesting, may still be far
from being implementable. In this sense, the cat-type encoding [308] and the
position/momentum-eigenstate superposition encoding à la GKP [249] are very
similar. In both schemes, fault tolerance and universality require complicated
non-Gaussian operations or resources. Nonetheless, they do both incorporate the
necessary non-Gaussian quantum error correction steps into a DV qubit processor
embedded in the physical space of an optical qumode.

In order to obtain the necessary non-Clifford gate on the logical qubit through a
non-Gaussian operation on the physical qumode (recall the discussion around Fig-
ure 8.11), GKP propose to produce an approximate version of the cubic phase state
offline, D3(�)jp D 0i D ei� Ox3 jp D 0i D R

dxei�x3 jxi, using Gaussian two-mode
squeezed state resources and photon number measurements (see Figure 8.13). The
resulting cubic phase state is then sufficient to accomplish the cubic phase gate
D3(�) and to apply it to an arbitrary input state jψi through linear operations in-
cluding homodyne detections (see Figure 8.14). The circuit in Figure 8.14 with all
gates performed offline can be interpreted as a CV cluster computation on a non-
Gaussian cluster state, in which case homodyne detections are sufficient for univer-
sality [297]. Though the original GKP scheme was not presented as a cluster-based
scheme, it can be recast correspondingly [297].

The approximate cubic phase state in Figure 8.13 will depend on the measure-
ment result n, eiγ (n) Ox3 jp D 0i, and so for the desired cubic phase state, phase-
free squeezing corrections are needed, OS†[t(n)]eiγ (n) Ox3 OS [t(n)] D ei� Ox3

with t(n) D
[�/γ (n)]1/3 [297].

In the cluster version of GKP, the offline resource state remains Gaussian and
thus unconditionally producible, while some of the online operations must then
become nonlinear (see Figure 8.14). In order to obtain a desired cubic gate of any
given strength �, as before, additional squeezing corrections are needed. However,
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p̂

ψ
3p̂ie−

ψ

Figure 8.14 Incorporating the GKP scheme
into a CV cluster computation. The resource
state remains Gaussian, the measurements
are CV homodyne detections and DV photon
number measurements to teleport the cubic
phase state into the middle rail. The initial cu-
bic phase state depends on the measurement
outcome n and extra squeezing corrections S

are needed to obtain a cubic gate of any de-
sired strength �. Compared to Figure 6.15, the
n-dependent squeezing corrections S are here
to be done through the cluster; the additional
p-dependent squeezing and WH corrections
C(s1, s2) can also be incorporated into the
cluster computation and are not shown for
simplicity.

κ

)(ˆ)( rXnrX †

ψ ψ3x̂ie

p̂p̂

Figure 8.15 Full CV cluster implementation
of a cubic phase gate. The extra linear clus-
ter states are needed to realize the necessary
squeezing corrections which depend on the
photon number measurement result. As the
desired cubic gate is non-Gaussian, the order
of the measurements matters and the number

measurement has to be done first. This im-
plementation using linear and nonlinear mea-
surements on a Gaussian state is conceptually
different from that illustrated in Figure 6.15
where the resource state is non-Gaussian and
all online operations are linear.

this time, also the squeezing corrections are performed through cluster computa-
tion since any squeezing gate is available by propagating the relevant state through
a horizontal, linear four-mode wire (see Figure 8.15).

Further refinements and proposals related with GKP can be found in [342, 343].
An alternative approach to implementing a cubic phase gate relies upon potentially
more accessible non-Gaussian resources such as Fock-state ancillae [344].
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Baker-Campbell-Hausdorff (BCH) formula
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– unitary 25, 28, 29, 38, 53, 115, 116, 122,

272, 281, 282
BB84 protocol 42, 43
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boundary condition
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BS, see beam splitter

c
cascade 273, 274, 278
cat state 210, 300–309, 318
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– Hamiltonian 302
– input-output relation 254
– mode function 306, 307
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– depolarizing 217, 223
– discrete 3, 4, 64, 66, 218, 223, 225
– noiseless 48
– product 25, 29, 68, 200

characteristic function 95–97
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cluster state 3, 53, 127, 131, 132, 138–142,
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271–285, 291–297, 320–322
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248–252

code
– quantum 218
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– stabilizer 67–69, 103, 120, 218, 219

coherence 9, 73, 82, 83, 222
coherent state

– mean photon number 90
– nonlinear 112, 120, 200, 255, 293, 301,

304
– P function 192

coherent superposition 9, 11, 218
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commutation relation 14, 86–88, 103, 104,
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– bosonic 109

commutator 14, 25, 54, 59, 87, 107, 113, 118,
147, 316, 318

complete positivity 23
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– Gaussian 148
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map 23, 28, 29, 31, 114, 116
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map 9, 23–26, 29, 66, 114, 117
completely positive unity-preserving (CPUP)

map 25, 26, 116
completeness relation 90
complexity 50, 69
composability 111
composite system 24, 28, 316
computational basis 13, 16, 52, 56, 71, 100,
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concurrence 36

conditional probability 48
conditional variance 261, 264, 266
configuration

– space 208, 223
– state 208, 211, 223, 255, 304

connection 37, 41, 46, 101, 127, 129
continuous variables 40, 148, 203, 204, 223,

253, 259, 284
continuous wave 87, 107, 199, 200, 211, 262,

287, 305
control qubit 250, 251
convex sum 34
cooling 76
coordinate

– orthogonal 90
– spherical 12

correlation
– degree of 33, 163, 208, 211, 214
– matrix 103–107, 144–146, 149, 154

Coulomb gauge 84
coupling

– deterministic 292
– effective 122, 280, 292, 302
– mode 122, 280, 287, 292, 294, 302, 317
– strong 122

covariance matrix 103, 118
CPTD, see completely positive

trace-decreasing
CPTP, see completely positive

trace-preserving
CPUP, see completely positive

unity-preserving
creation operator 71, 109, 110, 303
criterion 35, 37, 121, 128, 146–149, 154, 167,

179, 211, 265, 312
– negative partial transpose (npt) 148,

149, 154
– partial transpose 35–37, 128, 146, 148,

149, 154
cross-Kerr nonlinearity 122
cryptography 42, 50
CSIGN 247
current fluctuations 190, 192
CV experiment 107, 236, 239, 300, 306, 308
CV graph state 142, 154–157, 159, 172
CW, see continuous wave

d
decoherence 235, 237, 252, 254

– independent 237
decomposition

– orthogonal 11, 114, 311
– polar 86
– spectral 11



Index 335

degeneracy 160
dense coding 48, 49, 204
density matrix 35, 309, 310

– reduced 310
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– thermal 106
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distillation protocol 217, 223, 237
distribution, Gaussian 290, 303, 308, 312
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Ekert protocol 7
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– Hamiltonian 86
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– vibrational 70
– zero-point 13

entanglement 31–38, 127–178
– bipartite 31, 32, 34, 36, 37, 127, 128,

130, 143, 144, 146, 149, 154, 196–198,
203, 204, 210, 310, 311

– partial transposition 35, 36, 128, 148,
149, 311, 312

– two-party 34, 128, 129, 150, 151, 236
– witness 31, 34–37, 127–130, 132, 142,

146–151, 154, 176, 219, 220, 311
entanglement distillation 7, 44, 45, 69, 217,

218, 231–233, 235–241
entropy

– classical 32
– von Neumann 12, 32, 36, 47, 143, 145

EOM, see electro-optic modulator
EPR, see Einstein-Podolsky-Rosen
error, bit-flip 63, 64, 66, 67, 218, 221
excitation

– energy 13
– thermal 103, 105, 106

f
Fourier transform

– discrete 15, 284
– quantum 15, 17, 50, 96, 267, 281, 282,

284, 292, 293
function

– balanced 256, 306
– constant 84

g
Gaussian computation 271, 282
Gaussian qumode gates 252
Gaussian unitaries 57, 98, 105, 113, 119, 159
GHZ, see Greenberger-Horne-Zeilinger
GKP (Gottesman, Kitaev, and Preskill) 300,

315, 318–321
Gottesmann-Knill theorem 56, 59, 60, 120
graph state 38, 69, 102, 127, 131, 132, 141,

142, 154–157, 159, 172
Greenberger-Horne-Zeilinger (GHZ) state

130, 131, 135–137, 150, 154, 167, 168, 170,
197, 204, 208

h
Hadamard

– beam splitter 40, 66, 99, 100, 221
– gate 15, 40, 55, 98, 99, 121, 131, 221,

272, 284, 303, 318
– transformation 13, 100, 140, 274
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half beam splitter 133, 136, 137, 151, 160,
163, 164, 175, 181, 183, 189, 197–199, 201,
202, 205, 206, 211, 212, 227, 236–238, 240,
292, 305, 306

half wave plate 133, 135–138, 140, 188,
220–222, 227, 235, 236, 249, 251, 253, 256,
262, 277, 305

Hamiltonian
– approximate 54, 55, 57, 292, 316
– decomposition 54, 57, 109, 316
– electromagnetic field 86
– Hermitian 13
– hybrid 300, 315
– interaction 54, 91, 109, 315
– light-matter interaction 315
– matrix 54, 55

harmonic oscillator 4, 13, 83, 86, 89
– coherent state 89
– number state 13
– quantum 4, 13, 83, 86, 89

HBS, see half beam splitter
homodyne detection

– beam splitter 40, 81, 100, 165, 175, 189,
226, 254, 256, 262, 287, 292, 301, 305

– local oscillator 81, 161, 175, 192, 225,
256, 262, 286, 292, 305

– quadrature 81, 165, 169, 189, 192, 212,
214, 224, 225, 254, 256, 283, 287, 292,
295, 300, 307

– squeezed light 300
horseshoe cluster 276, 277, 279
HWP, see half wave plate
hybrid entanglement 32, 44, 299, 310, 311
hybrid Hamiltonian 300, 315
hybrid quantum computing 315–322

i
inequality, Schwarz 147, 153
input-output relation

– beam splitter 249, 254, 261
– cavity 254

interaction Hamiltonian 54, 91, 109, 315
– approximate 54

interaction, two-particle 51
ion

– motional state 76
– phase gate 56–59, 75, 76, 248, 267, 268,

283–285, 317, 319–321
– trap 70, 71, 223
– two-qubit gate 53, 247, 274–277
– wavefunction 312

j
joint measurement 38, 199, 205, 245
joint probability 43

k
Kerr effect 109, 112
Kerr nonlinearities 247
key 3, 6, 7, 30, 41–44, 48, 50, 230, 312, 314

– exchange 43
– transmission 7, 42

Kraus operator 23, 25, 27, 66, 115, 116

l
Langevin equation 25
laser

– control 205, 255, 262, 305
– field 82, 89, 160
– single-mode 226, 287

leakage 307
Lie algebra 57, 318
light

– frequency of 163, 223
– polarization 51, 79, 83, 90, 99, 107, 133,

300
– speed of 7, 40, 46, 83, 107
– wavelength of 262

light source 174, 300
linear ion trap 223
linear optical element 51, 122, 317
linear optics 79, 100, 112, 116, 117, 120, 122,

158, 172, 182, 223, 233, 246, 249, 266
linear unitary Bogoliubov (LUBO)

transformation 110–114, 119, 122, 143,
158, 254, 272, 292–294

local measurement 53, 237, 238, 292, 294
local observable 34
local operation 32, 37, 45, 46, 130, 203, 231
local oscillator 80, 81, 118, 119, 161, 164,

170, 174, 175, 190, 192, 205, 212, 225–227,
240, 253, 255–257, 262, 263, 284, 286, 292,
305, 308, 309

logic circuit 279
logic gate 4, 273
lossy channel 114, 118, 120
LUBO, see linear unitary Bogoliubov

transformation

m
Mach-Zehnder interferometer 183, 185, 261,

262, 287
macroscopic superposition 302
magnetic field 82–87, 89, 90, 107, 160, 189,

203
magnetic resonance 70
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magnetization 83
map, completely positive 9, 23–25, 148
Markovian approximation 25
master equation 25
matrix

– density 32, 35, 309, 310
– generator 132, 155, 158
– Pauli 12, 274, 318
– reduced density 32, 310
– rotation 55, 103, 157, 173

Maxwell equation 83, 84, 87
measurement

– exchange 43
– minimal 30, 218
– non-selective 26, 29
– selective 26, 29

measurement-induced nonlinearities 123
measurement outcome 27, 28, 30, 38, 53,

227, 254, 256, 273, 282, 321
message 3, 43, 47
mixing 80, 81, 110, 190, 212
mixture 11, 34, 106, 115, 152, 153

– separable 34, 152
– statistical 11

mode
– bosonic 79, 259
– cavity 163, 174, 211, 227, 254, 255, 262,

287, 302, 304–307
– expansion 87
– function 84, 85, 306, 307

model
– measurement-based 52, 53, 217, 271,

284
momentum

– conjugate 14, 16, 59, 89, 160, 285, 291
– electron 82, 169

multipartite entanglement 127, 129–132,
144, 196, 197

mutual information 47, 48

n
Naimark extension 29, 116, 117
negative-frequency part 84
negativity 36–38, 97, 104, 146, 232, 241, 308,

312
network 6, 45, 112, 150, 156, 159, 172, 179,

197, 203, 204, 209, 223, 249, 251
nine-qubit code 66, 218, 219, 223
no-cloning theorem 6, 8, 30, 62, 196
nonclassical

– characteristic function 97
– entanglement 34, 42, 82, 136, 179, 210,

218, 230, 304
– state 97, 303, 306

nondegenerate optical parametric amplifier or
oscillator 144, 160

nonlinear optics 79, 120
nonlocality 34
NOPO, see nondegenerate optical parametric

amplifier or oscillator
normalization 10, 14, 85, 95, 251, 310
NOT gate 40, 55, 56, 60, 63, 70, 72–74, 76,

221, 248–252, 259
NSS gate 247, 297, 322
nuclear magnetic resonance 70
number operator 13, 87–89
number state 13, 14, 71, 251, 303, 304, 307

– Wigner function 303, 304, 307

o
observable 4, 5, 8, 10–17, 19, 22, 25–27, 34,

35, 82, 88, 118, 146, 147, 150, 176, 260, 281,
282, 285
– classical 4, 5, 8, 15, 82, 118, 260, 285

one-time pad 43
one-way quantum computation 53, 279, 284,

292, 295, 296
OPA, see optical parametric amplifier
operator

– annihilation 20, 71, 84, 86, 89, 91, 94,
96, 109, 110, 183, 232, 233, 260, 302

– computation 16, 18, 54, 56, 100, 109,
131, 172, 282, 284

– creation 71, 84, 86, 91, 96, 109, 110,
302, 303

– density 7, 9, 11, 18, 23, 24, 26, 27, 29,
32, 34–36, 43, 64, 104, 106, 128, 148, 152,
192, 233, 235

– expansion 17, 88, 89, 301
– function 17, 95–97, 107, 129, 148, 192,

312
– Hamilton 13, 18, 21, 54, 57, 86, 91, 92,

109, 114, 260, 284, 292, 302, 315, 316
– Hermitian 11, 13, 14, 27, 35, 83, 84, 89,

101, 111, 157
– position 20, 65
– projection 27
– symmetrized 96
– unitary 18, 19, 27, 54, 122, 272, 302

OPO, see optical parametric oscillator
optical experiments 218
optical fiber 3, 45, 112, 254
optical parametric amplifier (OPA) 90, 92,

238, 301, 304
optical parametric oscillator (OPO) 144, 159,

160, 162–164, 174, 175, 190, 197, 200, 201,
205, 211, 212, 226, 227, 237, 238, 240, 241,
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253, 255, 262, 286, 287, 293, 295, 304–309,
313, 314

optical QEC 217
optical quantum computation 121–123
oscillator, harmonic 4, 13, 83, 86, 89

p
parametric amplifiers 237
parametric down conversion (PDC) 79, 127,

133, 134, 138, 220, 222, 261, 303, 304
partial trace 7
partial transpose 35–37, 128, 146, 148, 149,

154, 311, 312
passive transformation 110, 111, 113, 158
Paul trap 70
Pauli

– channel 26, 64
– group 67
– matrices 12, 274, 318
– operator 13, 17, 19, 22, 33, 40, 55–57,

129, 131, 301, 302, 319
PBS, see polarization beam splitter
PDC, see parametric down conversion
periodic boundary condition 85
periodically-poled KTiOPO_4 (PPKTP) 174,

227, 255, 262, 287, 304, 305, 308
permittivity 83
phase

– commutation relation 88
– Hermitian 13, 111, 157
– operational 157, 192
– reconstruction 76
– transition 71, 73, 302
– uncertainty 15, 80, 82, 91, 106, 200

phase flip 38, 60, 318
phase gate 56–61, 75, 76, 109, 248, 267, 268,

275, 277, 283–285, 317, 319–321
phase quadrature 160, 254, 299
phase shifter 110, 111, 113, 122
phase space

– displacements 103, 110, 112, 113, 155,
157, 158, 189, 224, 225, 292

– representation 94, 97
– P function 97
– Wigner function 97

– variables 15, 66, 94, 100, 191
phase state 61, 267, 320, 321
phonon 70–74, 76
photoelectric effect 83
photomultiplier tube (PMT) 75
photon

– cavity 163, 165, 304–308
– coherent state 89, 90, 100, 115, 117,

118, 120, 162, 179, 210, 300, 301, 304

– number operator 87, 88
– number state 251, 303

photon number resolving (PNR) detection
232, 296, 301, 321

PMT, see photomultiplier tube
PNR, see photon number resolving
Pockels cell 221, 222
Poissonian distribution 90
polarization beam splitter 100, 133, 135–140,

188, 221, 227, 233, 251, 315
polarization entanglement 132
polarization qubit 99, 100, 135, 138, 140,

183, 185, 251, 274, 314, 315
positive-frequency part 83
positive map 148
positive operator 23, 27, 311
positive-operator valued measure (POVM)

27–31, 43, 48, 116, 117, 121, 122, 297, 322
– element 27, 28, 30, 121, 122, 297, 322
– measurement 27–31, 43, 48, 116, 117,

121, 297, 322
positive partial transposition 128
postselection 48, 135, 138, 141, 179, 251,

275, 277, 280, 291, 293, 300–302
POVM, see positive-operator valued measure
PPKTP, see periodically-poled KTiOPO_4
privacy amplification 48
probability

– classical 95–97
– conditional 48
– density 23, 29, 43, 64, 93

projective measurement 73, 269
projector 28, 65, 69, 121, 129
pure quantum state 10
purification 45, 47, 69, 238

q
QEC, see quantum error correction
QKD, see quantum key distribution
QND, see quantum nondemolition
quadratic interactions 120
quadrature

– eigenstate 89, 93, 101, 155, 171, 285
quadrature components 81, 195, 263, 265
quadrature distribution

– measurement 307
– sum 307

quadrature operators 91, 92, 145, 163, 189,
192, 225, 230, 285

quadrature-phase amplitudes 190
quadrupole 71
quantum

– harmonic oscillator 4, 13, 83, 86, 89
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quantum algorithm 49, 50, 52
quantum channel 3, 4, 43, 48, 224
quantum circuit 40, 49, 52, 69, 74, 75, 210,

220, 221, 252, 266
quantum cloning 42
quantum code 218
quantum coherence 9
quantum communication 3, 4, 7, 31, 38,

41–49, 62, 69, 197, 203, 210, 217
quantum computation 3, 4, 7, 18, 20, 38,

49–62, 69, 80, 109, 120–123, 131, 172, 197,
203, 217, 246–248, 252, 259, 260, 271,
279–281, 284, 292, 295, 296, 301, 316–318
– Heisenberg picture 203
– linear optical 51, 80, 122, 246, 301
– measurement-based 3, 38, 52, 53, 217,

260, 271, 284
– one-way 18, 53, 54, 248, 279, 284, 292,

295, 296
quantum computer 5, 38, 41, 49–51, 62, 121,

123, 246, 253
quantum correlation 33, 129, 132, 142, 161,

162, 173, 174, 178, 203, 208, 219, 225, 260
quantum cryptography 42, 50
quantum dot 70
quantum efficiency 191, 192, 201, 205, 256,

306
quantum error correction (QEC) 62–69,

217–231
quantum error correction code 120, 224, 319
quantum fluctuations 81, 82, 90
quantum Fourier transform 50
quantum gate 52, 121, 122, 246, 247, 271

– local 271, 286
– universal 52, 121, 122, 246, 271

quantum information theory 3, 4, 6, 82, 86,
217

quantum key distribution (QKD) 6, 7, 30,
41–44, 48, 50, 312

quantum logic 273, 284
– circuit 284
– gate 273, 284

quantum measurement 31
quantum memories 46, 48
quantum noise 190, 191, 193, 255
quantum nondemolition (QND) 246, 259

– interaction 260, 263, 264, 266
– measurement 255
– sum gate 260, 283

quantum objects 13

quantum operation 9, 22, 23, 26, 31, 43, 114,
179, 252, 253, 293, 296
– complete 9, 23, 43
– reversible 22, 26, 31, 114

quantum parallelism 49
quantum repeater 3, 44–47, 217
quantum search algorithm 50
quantum simulation 50
quantum state

– cloning of 10
– coherent 43, 79, 82, 89, 162, 179, 196,

203, 210, 213, 256, 260, 287, 288, 293,
295, 304

– entangled 8, 18, 31, 38, 39, 41, 43, 45,
52, 79, 163, 165, 179, 203, 231, 245, 253,
260, 284

– EPR 4, 8, 43, 79, 82, 89, 94, 95, 162,
165, 180, 213, 254, 256, 260, 288, 293

– number 10, 45, 89, 196, 231, 304
– phase 38, 79, 82, 89, 94, 210, 213, 254,

256, 260, 284, 285, 287, 288, 293
– pure 10
– quadrature 79, 82, 163, 165, 213, 254,

256, 285, 287, 288, 295
– squeezed 52, 82, 162, 165, 245, 254,

256, 260, 285, 287, 288, 295, 304
– thermal 82, 288

quantum system 4, 18, 50, 148
quantum teleportation 38–41, 179–215,

245–270
quarter wave plate (QWP) 137, 138, 140, 141,

185, 186, 274, 277, 305
qubit

– atomic 79, 99, 210, 299, 302
– logical 67, 121, 218, 220, 315, 318–320
– photonic 45, 46, 70, 79, 98, 99, 114, 116,

117, 120–122, 127, 132, 179, 210, 249,
297, 299, 300, 317, 322

– physical 51, 63, 64, 66, 67, 218
qumode 13–17, 20–22, 33, 57–62, 236–241,

280–297
– entanglement swapping 210
– telecloning 196
– teleportation network 150, 203

QWP, see quarter wave plate

r
Rabi frequency 71
Radon transformation 257

– inverse 257
read-out 52
receiver 7, 41, 47, 80, 179, 183, 196–198, 204,

205, 208, 211, 245
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reduced density operator 32, 43
reduction 27, 57, 90, 111, 112, 114, 119, 158,

172, 190, 207, 317
redundancy 62
relative phase 71, 164, 167, 205, 213, 255,

287, 311
remainder 4, 50, 52, 70, 238
repeater 3, 44–47, 217
repetition code 64, 67, 68, 218, 318
resonance fluorescence 75
reversibility 18
RSA encryption 49, 50

s
sampling 256, 288
scalability 49, 62, 291
Schmidt

– bases 70
– coefficients 32, 130, 146, 232, 310
– decomposition 31, 32, 129, 143, 232
– number 32, 143, 232
– rank 32, 34, 37

Schrödinger equation 148
Schrödinger kitten 240, 241, 303, 304, 307,

308, 313, 314
Schrödinger picture 92, 250
Schwarz inequality 147, 153
self-homodyning 227
self-Kerr nonlinearity 122
separability 24, 31, 34–36, 128, 146–149, 153,

154, 167, 168, 170, 176–178, 197, 198, 211,
239, 265, 311, 312
– criterion 35, 128, 146, 148, 149, 154,

167, 211, 265, 312
separability problem 149
separable 34–37, 43, 44, 128–130, 141, 147,

148, 152, 154, 167, 177, 197, 204, 219, 275,
276, 299, 311

separable state 35, 37, 43, 44, 128–130, 147,
148, 152, 299, 311

Shannon theory 47
sideband cooling 76
sidebands 107, 160, 162, 189, 213, 255, 262,

287, 300
signal state 24, 40, 44, 47–49, 54, 63, 66, 114,

116, 117, 220
signal transfer 80
simulation 50, 57, 58, 317
single-ion 70, 72–74
single-mode squeezer 110–112, 254, 284
single photons 45, 99, 122, 183, 184, 240,

246, 312
single-qubit gate 60

singular value decomposition 111
SK, see self-Kerr
spectra 11, 107, 162, 164, 190, 192, 305, 308

– electron 164
– time-resolved 162

spectral function 107
spin 70, 76, 99, 123, 299, 318

– electron 70, 99
– nuclear 70

spin-1/2 318
spontaneous emission 8
squeezed light 82, 142, 150, 172, 237, 297,

300, 322
– condition 142, 237, 297, 300, 322
– homodyne detection 300
– optical parametric oscillator 237

squeezed state
– coherent 91, 100, 164, 174, 188, 255,

256, 287, 304, 311
– minimum uncertainty 91
– quadrature squeezing 287
– quadrature variance 93, 285
– squeeze operator 91
– two-mode 34, 51, 127, 142–146, 159,

160, 232, 245, 267, 269, 270, 285, 311, 320
– two-mode squeezed vacuum 142, 143
– vacuum 51, 90, 91, 93, 102, 103, 142,

143, 159, 164, 172, 223, 256, 259, 287,
303, 304, 308

– Wigner function 103, 143, 256, 303,
304, 307, 308

squeezed vacuum state 92–94, 101, 102, 104,
106, 107, 109, 142–145, 148, 150, 151, 162,
168, 197, 204, 205, 211, 226, 266, 286, 292,
293, 301

squeezing gates 246, 260, 272, 283, 291, 294
stabilizer code 67–69, 103, 120, 218, 219
stabilizer formalism 103, 217, 218
stabilizer group 33, 56, 67, 68, 129, 155
standard deviation 256, 258
standard form 101, 148, 265, 299
state

– cat 210, 300–309, 318
– correlated 34
– estimation 121
– maximally entangled 32, 33, 36, 39, 40,

143, 197, 204, 231
– mixed 11, 12, 17, 18, 29, 31, 32, 34, 36,

37, 103–106, 130, 143–146, 232, 235, 259
– nonclassical 97, 303, 306
– product 32–34, 50, 54, 59, 86, 105, 106,

131, 145, 147, 155
– reduction 27
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– separable 34–37, 43, 44, 128–130, 141,
147, 148, 152, 154, 167, 177, 197, 204,
219, 275, 276, 299, 311

– transformation 16, 32
– vector 7, 10, 29, 31, 32, 39, 68, 273, 282
– Werner 9, 34

statistical mixture 11
subsystem 31–33, 36, 63, 66, 67, 128, 148,

197, 204, 218, 271, 299, 303, 311
success probability 46, 117, 182, 221,

246–249, 251
superconducting 70
symplectic matrix 104
system

– closed 18
– composite 24, 28, 71, 76, 316

t
T-shape cluster 172, 174–177
target qubit 250, 251
telecloning 183–186, 196–202, 204
theory

– classical 4–6, 41, 42, 47, 49, 50, 82, 85,
192, 195, 217, 295

– physical 3, 5, 6, 50
thermal state 103–107, 143, 146, 198
Ti:sapphire laser 163, 174, 200, 205, 211,

226, 255, 262, 287, 305
time resolution 300, 313, 314
TMSS, see two-mode squeezed state
transformation

– active 110
– Gaussian unitary 80, 109, 148, 284
– orthogonal 67, 113, 114, 119
– passive 58, 110–113
– symplectic 57, 58, 105, 110, 113, 114,

118
– unitary 9, 18, 39–41, 80, 88, 109, 148,

158, 252, 253, 284
transposition 24, 35, 36, 128, 146, 148, 149,

311, 312
trap 70, 71, 73, 220, 223

– configurations 223
trapped atom 70

– Paul trap 70
trapped ion 70, 71, 73
tree 112
tripartite entanglement 130, 167, 196, 197,

199, 203–205, 208, 209
two-level system 3, 51, 71, 302

two-mode squeezed state (TMSS) 34, 51,
127, 142–146, 159, 160, 232, 245, 267, 269,
270, 311, 320

two-mode squeezed vacuum 142–145, 148,
162, 163, 195

two-mode squeezing 145
two-qubit gate 53, 55, 61, 247, 274–277

u
uncertainty relation 6, 15, 80, 82, 104–106,

147, 153
– Heisenberg 6, 15, 82, 104
– N-mode 104, 105

unconditional security 50
unitary operator 18, 19, 27, 54, 122, 272, 302
universal cloning 10
universal gate 22, 121, 122, 246, 284, 317,

319
universal gate set 22, 284
universal quantum gates 121, 122, 246

– criterion 121
universal squeezer 246, 252, 259

v
vacuum

– Rabi splitting 302
variance matrix 103, 118
vibrational

– levels 70, 73
– mode 70, 73
– motion 70, 71

visibility 201, 205, 256
von Neumann entropy 12, 32, 36, 47, 143,

145

w
wave equation 83–85
wave function 17, 92, 93, 142
waveplate 99, 100, 235
Weyl correspondence 96, 97, 103
Weyl-Heisenberg operator 16, 17, 284
Wigner function 92, 94, 95, 97, 98, 102–104,

106, 107, 112, 113, 119, 143, 148, 210, 241,
254, 256, 257, 288, 289, 299, 303, 304,
306–309

witness 31, 34, 35, 37, 127–132, 142,
146–151, 154, 176, 219, 220, 311

z
zero-point energy 13
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