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Preface

Most life science researchers will agree that biology is not a truly theoretical branch of
science. The hype around computational biology and bioinformatics beginning in the
nineties of the 20th century was to be short lived (1, 2). When almost no value of
practical importance such as the optimal dose of a drug or the three-dimensional
structure of an orphan protein can be computed from fundamental principles, it is
still more straightforward to determine them experimentally. Thus, experiments and
observations do generate the overwhelming part of insights into biology and medicine.
The extrapolation depth and the prediction power of the theoretical argument in life
sciences still have a long way to go.

Yet, two trends have qualitatively changed the way how biological research is done
today. The number of researchers has dramatically grown and they, armed with the
same protocols, have produced lots of similarly structured data. Finally, high-through-
put technologies such as DNA sequencing or array-based expression profiling have
been around for just a decade. Nevertheless, with their high level of uniform data
generation, they reach the threshold of totally describing a living organism at the
biomolecular level for the first time in human history. Whereas getting exact data
about living systems and the sophistication of experimental procedures have primarily
absorbed the minds of researchers previously, the weight increasingly shifts to the
problem of interpreting accumulated data in terms of biological function and biomo-
lecular mechanisms. It is possible now that biological discoveries are the result of
computational work, for example, in the area of biomolecular sequence analysis and
gene function prediction (2, 3).

Electronically readable biomolecular databases are at the heart of this development.
Biological systems consist of a giant number of biomacromolecules, both nucleic acids
and proteins together with other compounds, organized in complexes pathways, sub-
cellular structures such as organelles, cells, and the like that is interpreted in a hier-
archical manner. Obviously, much remains unknown and not understood.
Nevertheless, electronic databases organize the existing body of knowledge and experi-
mental results about the building blocks, their relationships, and the corresponding
experimental evidence in a form that enables the retrieval, visualization, comparison,
and other sophisticated analyses. The significance of many of the pieces of information
might not be understood when they enter databases; yet, they do not get lost and
remain stored for the future.

Importantly, databases allow analyses of the data in a continuous workflow detached
from any further experimentation itself. In a formal, mathematical framework,
researchers can now develop theoretical approaches that may lead to new insights at a
meta-analytic level. Indeed, results from many independently planned and executed
experiments become coherently accessible with electronic databases. Together, they
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can provide an insight that might not be possible from the individual pieces of informa-
tion in isolation. It is also interesting to see this work in a human perspective: in the
framework of such meta-analyses, people of various backgrounds who have never met
essentially cooperate for the sake of scientific discoveries via database entries. From the
technical viewpoint, because the data are astronomically numerous and the algorithms
for their analysis are complex, the computer is the natural tool to help researchers in
their task; yet, it is just a tool and not the center of the intellectual concept. The ideas
and approaches selected by researchers driven by the goal to achieve biologically
relevant discoveries remain the most important factor. Due to the need of computer-
assisted data analysis, electronic availability of databases, the possibility of their down-
load for local processing, the uniform structure of all database entries as well as the
accuracy of all pieces of information including that for the level of experimental
evidence are of utmost importance. To allow curiosity-driven research for as many as
possible researchers and to enable the serendipity of discovery, the full public avail-
ability of the databases is critical.

Nucleic acid and protein sequence and structure databases were the first biological
data collections in this context; the emergence of the sequence homology concept and
the successes of gene function prediction are scientific outcomes of working with these
data (3). To emphasize, they would be impossible without prior existence of the
sequence databases. Thus, biological data mining is going to become the core of
biological and biomedical research work in the future, and every member of the
community is well advised to keep himself informed about the sources of information
and the techniques used for ‘‘mining’’ new insights out of databases. This book is
thought as a support for the reader in this endeavor.

The variety of biological databases reflects the complexity of and the hierarchical
interpretation we use for the living world as well as the different techniques that are
used to study them (4). The first section of the book is dedicated to describing concepts
and structures of important groups of databases for biomolecular mechanism research.
There are databases for sequences of genomes, nucleic acids such as RNAs and proteins,
and biomacromolecular structures. With regard to proteins, databases collect instances
of sequence architectural elements, thermodynamic properties, enzymes, complexes,
and pathway information. There are many more specialized databases that are beyond
the scope of this book; the reader is advised to consult the annual January database
supplement of the journal ‘‘Nucleic Acids Research’’ for more detail (5).

The second section of this book focuses on formal methods for analyzing biomole-
cular data. Obviously, biological data are very heterogeneous and there are specific
methodologies for the analysis of each type of data. The chapters of this book provide
information about approaches that are of general relevance. Most of all, these are
methods for comparison (measuring similarity of items and their classification) as well
as concepts and tools for automated learning. In all cases, the approaches are described
with the view of biological database mining.

The third section provides reviews on concepts for analyzing biomolecular sequence
data in context with other experimental results that can be mapped onto genomes. The
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topics range from gene structure detection in genomes and analyses of transcript
sequences over aspects of protein sequence studies such as conformational disorder,
2D, 3D, and 4D structure prediction, protein crystallizability, recognition of post-
translational modification sites or subcellular translocation signals to integrated protein
function prediction.

It should be noted that the biological and biomedical scientific literature is the largest
and possibly most important source of information. We do not analyze the issue here in
this book since there is a lot in the flow. Whereas sources such as PUBMED or the
Chemical Abstracts currently provide bibliographic information and abstracts, the
trend is towards full-text availability. With the help of the open access movement, this
goal might be practically achieved in a medium term. The processing of abstracts and
full articles for mining biological facts is an area of actively ongoing research and
exciting developments can be expected here.

Creating and maintaining a biological database requires considerable expertise and
generates an immense work load. Especially maintaining and updating are expensive.
Although future success of research in the life sciences depends on the completeness
and quality of the data in databases and of software tools for their usage, this issue does
not receive sufficient recognition within the community as well as from the funding
agencies. Unfortunately, the many academic groups feel unable to continue the main-
tenance of databases and software tools because funding might cover only the initial
development phase but not the continued maintenance. An exit into commercial
development is not a true remedy; typically, the access to the database becomes hidden
by a system of fees and its download for local processing is excluded. Likewise, it appears
important to assess before the creation of the database whether it will be useful for the
scientific community and whether the effort necessary for maintenance is commensu-
rate with the potential benefit for biological discovery (6). For example, maintaining
programs that update databases automatically is a vastly more efficient way than cases
where all entries need to be curated manually in an individual manner.

We hope that this book is of value for students and researchers in the life sciences who
wish to get a condensed introduction to the world of biological databases and their
applications. Thanks go to all authors of the chapters who have invested considerable
time for preparing their reviews. The support of the Austrian GENAU BIN programs
(2003–2009) for the editors of this book is gratefully acknowledged.

Oliviero Carugo
Frank Eisenhaber
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Chapter 1

Nucleic Acid Sequence and Structure Databases

Stefan Washietl and Ivo L. Hofacker

Abstract

This chapter gives an overview of the most commonly used biological databases of nucleic acid sequences
and their structures. We cover general sequence databases, databases for specific DNA features, noncoding
RNA sequences, and RNA secondary and tertiary structures.

Key words: Sequence repositories, nucleic acids databases, RNA structures.

1. Introduction

Both sequence and structure data have experienced exponen-
tial growth during the last two decades, a trend that is most
likely to continue in the foreseeable future. As a consequence,
there is also a growing number of database resources that try
to make these data accessible and help with their analysis.
Here we give an overview of existing resources for nucleic
acid sequences and structures. In addition to the well-known
sequence repositories like GenBank, we also cover databases
for various functional and other genomic DNA features. In the
second part, we describe databases collecting noncoding RNA
sequences and their secondary structures, a topic that has
received special attention in the past years. Finally, we cover
databases of RNA tertiary structures and motifs. Many of the
databases mentioned below were published in the database
issue of Nucleic Acids Research, which covers new and
updated databases every year.

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
DOI 10.1007/978-1-60327-241-4_1, ª Humana Press, a part of Springer Science+Business Media, LLC 2010
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2. Sequence
Databases

An overview including Web addresses for the databases discussed
in this section is given in Tables 1.1 and 1.2.

Table 1.1
General nucleotide sequence databases and DNA databases

Name URL Description References

General nucleotide databases

EMBL www.ebi.ac.uk/embl/ Central sequence
repository

(1)

GenBank http://
www.ncbi.nlm.nih.gov/
Genbank

Central sequence
repository

(2)

DNA databank of
Japan (DDBJ)

www.ddbj.nig.ac.jp Central sequence
repository

(3)

RefSeq http://
www.ncbi.nlm.nih.gov/
RefSeq/

Nonredundant and curated
sequences (DNA, RNA,
protein) from GenBank

(4)

Transcript structures and alternative splicing

Alternative splicing and
transcript diversity
database (ASTD)

www.ebi.ac.uk/astd Alternative splicing in
human, mouse and rat

(5)

Human-transcriptome
DataBase for
Alternative Splicing
(H-DBAS)

www.h-invitational.jp/h-dbas Alternative spliced human
full length cDNAs

(6)

Repeats and mobile elements

RepBase http://www.girinst.org/
server/RepBase

Eykaryotic repeat
sequences, registration
required

(53)

STRBase www.cstl.nist.gov/biotech/
strbase/

Short tandem repeats (7)

TIGR plant repeat
database

www.tigr.org/tdb/e2k1/
plant.repeats

Plant repeat sequences (8)

ACLAME aclame.ulb.ac.be Prokaryotic mobile genetic
elements

(9)

(continued)
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Table 1.1 (continued)

Name URL Description References

ISfinder http://www-is.biotoul.fr Insertion sequences from
eubacteria and archaea

(10)

MICdb http://www.cdfd.org.in/
micas

Prokaryotic microsatellites (11)

Islander http://www.indiana.edu/
�islander

Prokaryotic genomic
islands

(12)

Promoters and regulation

TRANSFAC http://www.gene-
regulation.com/

Transcription factor
binding sites

(13)

JASPAR Transcription factor
binding sites

(14)

SCPD Promoter sequences in S.
cerevisiae

(15)

PlantCARE http://
bioinformatics.psb.ugent.be
/webtools/plantcare/html

Plant regulatory elements (16)

RegulonDB http://www.cifn.unam.mx/
Computational_Genomics/
regulondb

Gene regulation in E. coli (17)

Table 1.2
RNA sequence databases

Name URL Description References

Noncoding RNA sequences

Rfam www.sanger.ac.uk/
Software/Rfam

Structural ncRNAs and
regulatory elements

(44)

NONCODE www.noncode.org ncRNAs from all species (19)

RNAdb research.imb.uq.edu.au/
rnadb

Mammalian ncRNAs (18)

fRNAdb www.ncrna.org ncRNA meta-database (20)

mRNA elements

UTRdb/UTRsite www.ba.itb.cnr.it/UTR Elements in untranslated
regions

(21)

ARED rc.kfshrc.edu.sa/ared AU-rich elements (22)

(continued)
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Table 1.2 (continued)

Name URL Description References

PolyA_DB polya.umdnj.edu Polyadenylation sites (23)

IRESdb www.rangueil.inserm.fr/
IRESdatabase

Internal ribosome entry
sites

(24)

RNA editing

REDIdb biologia.unical.it/py_script/
search.html

RNA editing sites (25)

dbRES bioinfo.au.tsinghua.edu.cn/
dbRES

RNA editing sites (26)

Specific RNA families

European Ribosomal
Database

bioinformatics.psb.ugent.be/
webtools/rRNA

Large and small subunit
rRNAs

(27)

Ribosomal Database
Project

rdp.cme.msu.edu Large and small subunit
rRNAs

(28)

5S ribosomal RNA
database

www.man.poznan.pl/5SData 5S rRNAs (28)

Sprinzl’s tRNA
compilation

www.tRNA.uni-bayreuth.de tRNAs (30)

Genomic tRNA
database (GtRDB)

Predicted tRNAs in
completely sequenced
genomes

–

SRPDB rnp.uthct.edu/rnp/SRPDB/
SRPDB.html

Signal recognition particle
RNA

(31)

tmRDB rnp.uthct.edu/rnp/
tmRDB/tmRDB.html

Transfer/messenger
(tm)RNAs

(33)

Group I intron
sequence and
structure Database
(GISSD)

http://
www.rna.whu.edu.cn/
gissd/

Group I self-splicing introns (34)

Group II intron
database

www.fp.ucalgary.ca/
group2introns

Group II self-splicing
introns

(35)

mirBase microrna.sanger.ac.uk Official miRNA repository (36)

Argonaute www.ma.uni-heidelberg.de/
apps/zmf/argonaute

miRNA resources (37)

miRNAmap mirnamap.mbc.nctu.edu.tw miRNA resources (38)

miRNApath lgmb.fmrp.usp.br/mirnapath miRNA resources (39)

miRGen www.diana.pcbi.upenn.edu/
miRGen.html

miRNA resources (40)

(continued)
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2.1. General Nucleotide

Sequence Databases

There are three general nucleotide sequence database resources of
outstanding importance: The EMBL Nucleotide Sequence Data-
base (1) maintained by the European Bioinformatics Institute,
GenBank (2) maintained by the US National Center for Biotech-
nology Information, and the DNA databank of Japan (DDBJ) (3).
All different types of nucleotide sequences are considered by
EMBL/GenBank/DDBJ. Entries are typically submitted indivi-
dually by researchers or come from large-scale genomic projects.
In close collaboration, the content of all three databases is syn-
chronized on a daily basis to provide one extensive global collec-
tion of nucleotide sequences. Database records submitted to one
of these databases are guaranteed to remain permanently accessible
through a unique accession number and journals generally require
all new sequence data to be deposited to EMBL, GenBank or
DDBJ. This explains the central importance of this sequence col-
lection and why many other databases described in this chapter
build on and refer to entries from EMBL/GenBank/DDBJ.

All three databases provide a Web interface for searching the
database as well as direct access to the data for downloading. The
most popular interface is probably provided by the NCBI.

When using EMBL/GenBank/DDBJ one has to bear in mind
that the entries directly come from thousandsof different researchers
worldwide and are not extensively reviewed. This results in many
redundant entries and variation in sequence quality. The entries
usually also contain annotation information of the sequences. Also
here, the quality of annotation can vary considerably and the infor-
mation given can be misleading or in many cases even simply wrong.

As an effort to provide nonredundant, high-quality sequences
and annotation for genomes and transcripts, NCBI has started the
RefSeq project (4). GenBank entries are systematically organized
and annotated using a combination of automatic procedures and
manual curation.

Table 1.2 (continued)

Name URL Description References

snoRNA-LBME-db www-snorna.biotoul.fr Human snoRNAs (41)

Plant snoRNA DB bioinf.scri.sari.ac.uk/
cgi-bin/plant_snorna/
home

Plant snoRNAs (42)

Artificially selected RNAs

Aptamer database aptamer.icmb.utexas.edu Artificial nucleic acid
aptamers from in vitro
selection experiments

(43)

Nucleic Acid Sequence and Structure Databases 7



2.2. DNA Databases

2.2.1. Transcript Structures

and Alternative Splicing

Annotation of coding regions and transcript structures may be
given in EMBL/GenBank/DDBJ entries. If available, RefSeq
sequences should be used since their annotation is more consis-
tent. Since alternative splicing is common, there may be several
entries of different transcripts for one locus. The Alternative Spli-
cing and Transcript Diversity database (ASTD, (5)) is designed to
specifically study alternative splicing in human, mouse, and rat. It
contains computationally detected and manually curated data sets
of splicing events, isoforms, and regulatory motifs associated with
alternative splicing. Also the Human-transcriptome DataBase for
Alternative Splicing (H-DBAS, (6)) is a database of alternatively
spliced transcripts. It provides alternatively spliced transcripts that
correspond to completely sequenced and carefully annotated
human full-length cDNAs.

2.2.2. Repeats and Mobile

Elements

Apart from genes and transcripts, repeats and mobile elements are also
important DNA features shaping eukaryotic and prokaryotic gen-
omes. Repbase is a database of prototypic sequences representing
repetitive DNA from various eukaryotic species. It is probably the
most commonly used repeat database, in particular for identifying
(and masking) repeats in genomes using RepeatMasker. Download-
ing RepBase requires registration and is only free for academic use.
STRBase (7) is a database of short tandem DNA repeats maintained
by the Institute of Standards and Technology and aimed specifically at
the forensic DNA typing community. The TIGR plant repeat data-
base classifies and provides sequences of repeats from numerous plant
genera (8). There are also databases for prokaryotic repeats:
ACLAME (9), ISfinder (10), MCdb (11), and Islander (12) provide
information and sequence data for transposons, insertion elements,
prophages, microsatellites, and pathogenicity islands.

2.2.3. Promoters and

Regulation

Regulation at the transcriptional level is crucial for understanding
gene function. There are many resources available that specifically
collect data of regulatory regions in particular transcription factor
binding sites (TFBSs). The most popular database resource for
transcriptional regulation is TRANSFAC (13). It provides
sequence information for transcription factors, experimentally
proven binding sites, and regulated genes. It also provides position
specific scoring matrices (PSSM) for prediction of TFBSs. A major
drawback of TRANSFAC is that only a limited version (reduced
functionality and data) is freely available for academic use. To get
full access or use it in a nonacademic environment a paid subscrip-
tion is required. An alternative resource with open data access is
JASPAR (14). It also features TFBSs and PSSMs. The data set is
much smaller and currently consists of 123 nonredundant and
hand-curated profiles. There are specialized TFBS databases for
yeast (SCPD, (15)) and plants (PlantCARE, (16)), which do not
seem to be updated any more but are still quite commonly used.
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Finally, we want to mention RegulonDB (17) that provides infor-
mation on prokaryotic transcriptional regulation specifically on
operons and regulons in Escherichia. coli.

2.3. RNA Databases

2.3.1. Noncoding RNA

Sequences

The most central resource for noncoding RNA sequences is the
Rfam database maintained at the Sanger Institute. It is specifically
designed for structured RNAs (including cis-acting elements, see
Sect. 3) and currently contains 607 families. It regularly scans
primary sequence databases (EMBL) for new sequences which
are added to the families. It also contains structure information
as well as annotation for all families.

In the past 3 years, three big database projects on noncoding
RNAs were started: RNAdb (18), NONCODE (19), and fRNAdb
(20). RNAdb and NONCODE manually collect GenBank entries
that correspond to noncoding RNAs. RNAdb is specialized to
mammalian noncoding RNAs and also provides additional high-
throughput datasets of noncoding transcripts as well as computa-
tional predictions. fRNAdb is part of the noncoding RNA portal
site www.ncrna.org and is basically a meta-database that collects
datasets from other databases (Rfam, NONCODE, RNAdb) and
high-throughput experiments.

2.3.2. mRNA Elements UTRdb/UTRsite (21) are database resources for untranslated
regions of mRNAs (UTRs). UTRdb contains curated 3’ and 5’
UTRs from the EMBL nucleotide database including annotation
of regulatory elements. A collection of such regulatory elements
(sequence or structural patterns) are available in the UTRsite
database. We want to mention three additional, more specialized
databases for mRNA elements. ARED (22) is specifically dedicated
to AU-rich elements which mediate mRNA turnover. PolyA_DB
(23) provides data on polyadenylation sites and their locations
with respect to the genomic structure of genes as well as cis-
elements surrounding polyadenylation sites. IRESdb (24) is a
database of internal ribosome entry sites which mediate internal
translational initiation in viral and some eukaryotic mRNAs.

2.3.3. RNA Editing RNA editing is a posttranscriptional modification of RNA that
changes the sequence of the transcript compared to the DNA
template. There are two dedicated databases gathering examples
and additional information on different types of RNA editing:
REDIdb (25) and dbRES (26).

2.3.4. Specific RNA

Families

Databases of ribosomal RNAs have a long tradition since rRNA
sequences have been generated already extensively in the early days
of nucleotide sequencing for the purpose of molecular phyloge-
netics. The European Ribosomal Database (27) collects small-
subunit and large-subunit sequences from the EMBL nucleotide
database. The entries contain both primary and secondary

Nucleic Acid Sequence and Structure Databases 9



structure information as well as other information about the
sequences such as literature references and taxonomic data. How-
ever, it does not seem to be updated regularly any longer. The
Ribosomal Database Project (28) is a novel up-to-date resource for
small and large-subunit rRNAs that also provides structure anno-
tation as well as online tools for phylogenetic analysis. The 5S
ribosomal RNA database (29) specifically contains the 5S rRNA
of the large ribosome subunit that is not covered in the other
databases. It also provides alignments and structure annotations.

In addition to rRNAs, there are databases for all well-known
‘‘classical’’ noncoding RNA families: Sprinzl and colleagues have
put together a widely used compilation of tRNA genes (30) which
was first published in 1980 and is still updated. Systematic com-
putational screens for tRNAs using tRNAscanSE are provided for
most available sequenced genomes by the genomic tRNA database
(GtRDB). Databases containing sequences and structure annota-
tions for the signal recognition particle RNA (SRPDB, (31)),
RNAse P (32), tmRNA (tmRNAdb, (33)) group I (GISSD,
(34)) and group II introns (35) are available as well.

In the past few years, abundant classes of small RNAs have been
detected, most prominently microRNAs (miRNAs). The official
database resource for miRNA sequences is mirBase (36). It stores
miRNA sequences and provides a systematic nomenclature for
novel miRNAs submitted by researchers. MirBase also features a
section for computational target predictions for microRNAs across
many species. In addition to mirBase, there are several other online
resources with similar features (miRNA sequences, target predic-
tions, genomic tools, pathways) including Argonaute (37), miR-
NAmap (38), miRNApath (39), and miRGen (40).

Also snoRNAs were found to be a class of small RNAs that is
more abundant than previously thought. snoRNAs are contained in
the general RNA databases like Rfam or NONCODE. In addition,
there are two specific databases for human snoRNAs (snoRNA-
LBME-db, (41)) and plants (plant snoRNA DB, (42)) including
both subfamilies of C/D box and H/ACA box snoRNAs.

2.3.5. Artificial Selected/

Designed RNAs

The aptamer database (43) is a comprehensive resource of artificially
selected nucleic acids from in vitro evolution experiments. It contains
RNA/DNAaptamersthatspecificallybindothernucleicacidsequences,
proteins, small organic compounds, or even entire organisms.

3. Secondary
Structures

The largest general collection of RNA secondary structures is
provided by the Rfam database (44). As mentioned above, it
collects families of ncRNAs and cis-acting regulatory elements.
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For each family, a so-called seed-alignment is manually cre-
ated. It contains a subset of sequences from different species
and a consensus secondary structure. The consensus secondary
structure is either derived from experimental data from litera-
ture or computationally predicted using various methods gen-
erally including covariance analysis. A relatively new database
of RNA secondary structure is the RNA Secondary STRucture
and statistical ANalysis Database (RNA SSTRAND). It collects
known secondary structures from different sources including
Rfam and many of the family-specific databases described in
Sect. 2.3.4. The secondary structures contained in all these
databases may contain pseudoknots and noncanonical base-
pairs. There are two specialized databases dealing with these
aspects of secondary structures. PseudoBase (45) collects
known RNA secondary structures with pseudo-knots. NCIR
(46) is a compilation of noncanonical interactions in known
secondary structures.

4. Tertiary
Structures

In spite of recent advances, the number of known nucleic acid
tertiary structures lags far behind protein structures. As with pro-
teins, most tertiary structures can be found in the PDB database
(47). For researchers interested in nucleic acids, however, the
primary resource for atomic resolution tertiary structures is the
Nucleic Acid Database, NDB (48) since it provides a more con-
venient repository that allows complex searches for structures
containing nucleic acid-specific features (such as a hairpin loop).
As of May 2008, the NDB contained about 3,800 structures
(compared to 51,000 structures in the PDB), about half of them
are protein nucleic acid complexes and most contain only relatively
short RNA or DNA sequences.

The SCOR (structural classification of RNA) database (49)
performs a hierarchical classification of RNA structure motifs
extracted from X-ray and NMR structures. It currently contains
579 RNA structures with over 500 internal loops and almost
3,000 hairpin loops. It can be browsed by structural classification
(loop types), functional classification (e.g., RNA family), as well as
tertiary interactions motifs (e.g., kissing hairpins).

In addition, there are a number of smaller databases dedi-
cated to particular tertiary structure motifs, usually extracted
from the known tertiary structures in PDB or NDB. The
MeRNA database (50), for example, lists all metal-ion binding
sites in known structures. The RNAjunction database (51) has
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extracted more than 12,000 multiloop structures and kissing
hairpin motifs for use in tertiary structure modelling. Similarly,
RNA FRAbase (52) allows to search for fragments of known
tertiary structures consistent with an input sequence and sec-
ondary structure.

All Web addresses for the databases on secondary and tertiary
structures can be found in Table 1.3.
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Table 1.3
Structure databases

Name URL Description References

Secondary structures

Rfam www.sanger.ac.uk/
Software/Rfam

Structural ncRNAs and
regulatory elements

(44)

RNA SSTRAND www.rnasoft.ca/sstrand Collection of RNA secondary
structures from various
databases

–

PseudoBase wwwbio.leidenuniv.nl/
�Batenburg/PKB.html

Known secondary structures
with pseudoknots

(45)

NCIR prion.bchs.uh.edu/
bp_type/

Noncanonical interactions in
RNAs

(46)

Tertiary structures

Nucleic Acid
Database (NDB)

ndbserver.rutgers.edu Atomic resolution tertiary
structures of nucleic acids

(48)

Structural
Classification of
RNA (SCOR)

scor.lbl.gov Three-dimensional motifs in
RNAs

(49)

MeRNA database http://merna.lbl.gov Metal ion binding sites in known
structures

(50)

RNAjunction rnajunction.abcc.ncifcrf.gov Multiloop structures and kissing
hairpin motifs

(51)

FRAbase Three-dimensional fragments of
RNA structures

(52)
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Chapter 2

Genomic Databases and Resources at the National Center
for Biotechnology Information

Tatiana Tatusova

Abstract

The National Center for Biotechnology Information (NCBI), as a primary public repository of genomic
sequence data, collects and maintains enormous amounts of heterogeneous data. Data for genomes, genes,
gene expressions, gene variation, gene families, proteins, and protein domains are integrated with the
analytical, search, and retrieval resources through the NCBI Web site. Entrez, a text-based search and
retrieval system, provides a fast and easy way to navigate across diverse biological databases.

Customized genomic BLAST enables sequence similarity searches against a special collection of organ-
ism-specific sequence data and viewing the resulting alignments within a genomic context using NCBI’s
genome browser, Map Viewer.

Comparative genome analysis tools lead to further understanding of evolutionary processes, quickening
the pace of discovery.

Key words: bioinformatics, genome, metagenome, database, data management system, sequence
analysis.

1. Introduction

Recent advances in biotechnology and bioinformatics led to a
flood of genomic data and tremendous growth in the number of
associated databases. As of February 2008, NCBI Genome Project
collection describes more than 2,000 genome sequencing pro-
jects: 1,500 Bacteria and Archaea (631 complete genomes, 462
draft assemblies, and 507 in progress) as listed at the NCBI
Genome Project site: http://www.ncbi.nlm.nih.gov/genomes/
lproks.cgi and almost 500 eukaryotic genomes (23 complete, 195
draft assemblies, and 221 in progress) as listed at http://
www.ncbi.nlm.nih.gov/genomes/leuks.cgi.

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
DOI 10.1007/978-1-60327-241-4_2, ª Humana Press, a part of Springer Science+Business Media, LLC 2010
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Information on complete and ongoing genome projects is also
available in Genomes OnLine Database (GOLD) (1), a commu-
nity-supported World Wide Web resource. Hundreds of thou-
sands of genomic sequences for viruses, organelles, and plasmids
are available in the three public databases of the International
Nucleotide Sequence Database Collaboration [INSDC,
www.insdc.org] – EMBL (2), GenBank (3), and the DNA Data
Bank of Japan (4). Additional information on biomedical data is
stored in an increasing number of various databases. As published
in the 15th annual edition of the journal Nucleic Acid Research
(NAR), also known as Database Issue, the number of databases in
2008 crossed the 1,000 landmark. This issue listed 1,078 data-
bases, 110 more than in the previous year (5). Navigating through
the large number of genomic and other related ‘‘omic’’ resources
becomes a great challenge to the average researcher. Understand-
ing the basics of data management systems developed for the
maintenance, search, and retrieval of the large volume of genomic
sequences will provide necessary assistance in traveling through
the information space.

This chapter is focused on the infrastructure developed by the
National Center for Biotechnology Information over the last 20
years. NCBI, as a primary public repository of genomic sequence
data, collects and maintains enormous amounts of heterogeneous
data. The databases vary in size, data types, design, and implemen-
tation. They cover most of the genomic biology data types includ-
ing the project description, project sequence data (genomic,
transcript, protein sequences), raw sequence reads, and related
bibliographical data (6). More recently, NCBI started to collect
the results of studies that have investigated the interaction of
genotype and phenotype. Such studies include genome-wide asso-
ciation studies, medical sequencing, molecular diagnostic assays, as
well as association between genotype and nonclinical traits (7). All
these databases are integrated in a single Entrez system and use a
common engine for data search and retrieval. This provides
researchers with a common interface and simplifies navigation
through the large information space.

There are many different ways of accessing genomic data at
NCBI. Depending on the focus and the goal of the research
project or the level of interest, the user would select a particular
route for accessing the genomic databases and resources. These are
(1) text searches, (2) direct genome browsing, and (3) searches by
sequence similarity. All of these search types enable navigation
through precomputed links to other NCBI resources.

This chapter describes the details of text searching and the
retrieval system of three major genomic databases, Entrez
Genome and Entrez Genome Project and Entrez Protein
Clusters, and also illustrates two other methods of accessing
the genomic data.
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2. Data Flow
and Processing

The National Center for Biotechnology Information was estab-
lished on November 4, 1988, as a division of the National Library
of Medicine (NLM) at the National Institutes of Health (NIH)
in order to develop computerized processing methods for bio-
medical research data. As a national resource for molecular biol-
ogy information, NCBI’s mission is to develop automated
systems for storing and analyzing knowledge about molecular
biology, biochemistry, and genetics; facilitate the use of such
databases and software by the research and medical community;
coordinate efforts to gather biotechnology information both
nationally and internationally; and perform research into
advanced methods of computer-based information processing
for analyzing the structure and function of biologically impor-
tant molecules.

The fundamental sequence data resources at NCBI consist of
both primary databases and derived or curated databases. Primary
databases such as GenBank (3) archive the original submissions
that come from large sequencing centers or individual experi-
mentalists. The database staff organizes the data but do not add
additional information. Curated databases such as Reference
Sequence Collection (8) provide a curated/expert view by com-
pilation and correction of the data. Records in the primary data-
base are analogous to research articles in a journal, and curated
databases to review articles. This difference is not always well
understood by the users of NCBI sequence data. In response to
the users’ inquiries, and more specifically to a request from
attendees at a 2006 workshop on microbial genomes held at
NCBI, the differences between GenBank, Ref Seq, and TPA
databases have been recently described in the May 2007 issue of
the American Society for Microbiology’s journal Microbe
(http://www.asm.org/microbe/index.asp?bid=50523).

In the same way as a review article can present an expert view or
provide a result of computational analysis, the databases can be
manually curated and/or computationally derived (Table 2.1).
For more detailed information on all NCBI and database resources
see also (6).

The biological sequence information that builds the founda-
tion of NCBI primary databases and curated resources comes from
many sources (Fig. 2.1).

This section discusses the flow of sequence data, from the
management of data submission to the generation of publicly
available data products. An information management system
that consists of two major components, the ID database and
the IQ database, underlies the submission, storage, and access of
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Table 2.1
Primary and derived databases at NCBI

Database type Database name Database description

Primary
databases

GenBank/EMBL/
DDBJ (core
nucleotide)

Author submissions of nucleotide (genomic and cDNA)
sequence with conceptual translations as appropriate

Primary GEO Gene expression experimental data sets

Primary dbGSS Genome Survey Sequences

Primary dbEST Expressed Sequence Tags

Primary dbMHC DNA and clinical data related to the human major
histocompatibility complex

Primary dbRBC A resource dedicated to the genetics of red blood cell
antigens

Primary dbSNP Single nucleotide polymorphism

Primary dbSTS Sequence tagged sites

Primary ProbeDB Registry of nucleic acid reagents

Primary Trace Archive Raw trace data from sequencers

Primary SRA Short Read Archive

Primary GenSAT Gene expression atlas of mouse central nervous system

Primary CancerChromosomes Molecular cytogenetic data in cancer

Primary dbGAP Phenotype and genometype database

Primary ProjectDB

Derived RefSeq Curated representative sequence for major molecules of
the central dogma

Derived Genome Complete and near-complete genomes, chromosomes,
and plasmids

Derived Gene Gene-centered information from curated RefSeq
transcripts, genome annotation

Derived Homologene Clusters of related genes from eukaryotic genomes

Derived Protein Clusters A collection of related protein sequences

Derived Protein Neighbors Database of precalculated protein BLAST hits

Derived CDD Conserved protein domains database

Derived UniGene Gene-oriented clusters of transcript sequences

Derived UniSTS Markers and mapping data
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GenBank (3), BLAST (9), and other curated data resources
[such as the Reference Sequences (8) or Entrez Gene (10)].
Whereas ID handles incoming sequences and feeds other data-
bases with subsets to suit different needs, IQ holds links between
sequences stored in ID and between these sequences and other
resources.

The data in ID system are stored in Abstract Syntax Notation
(ASN.1) format, a standard descriptive language for describing
structured information. NCBI has adopted ASN.1 language to
describe the biological sequence and all related information (tax-
onomical, bibliographical) in a structured way. Many NCBI users
think of the GenBank flatfile as the archetypal sequence data
format. However, within NCBI and especially within the ID
internal data flow system, ASN.1 is considered the original format
from which reports such as the GenBank flatfile can be generated.
As an object-oriented structured language, ASN.1 is easily trans-
formed to other high-level programming languages such as XML,
C, and C++. The NCBI Toolkit provides the converters between
the data structures. Entrez display options allow to view the data
in various text formats including ASN.1, XML, and GenBank
flatfiles.

The ID database is a group of standard relational databases
that holds both ASN.1 objects and sequence identifier-related
information. In the ID database, blobs (binary large objects) are
added into a single column of a relational database and are stored
and processed as a unit.

Fig. 2.1. Sources of primary sequence data available at NCBI. Rectangles represent data
providers; cylinders represent primary NCBI databases.
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Although the columns behave as in a relational database, the
information that makes each blob, such as biological features, raw
sequence data, and author information, is neither parsed nor split
out. In this sense, the ID database can be considered as a hybrid
database that stores complex objects.

The IQ database is a Sybase data-warehousing product that
preserves its SQL language interface, but which inverts its data by
storing them by column, not by row. Its strength is in its ability to
increase speed of searches based on anticipated indexing. This
nonrelational database holds links between many different objects.

3. Text Search
and Retrieval
System: Entrez

3.1. Organizing

Principles

Entrez is the text-based search and retrieval system used at NCBI
for all of the major databases, and it provides an organizing prin-
ciple for biomedical information. Entrez integrates data from a
large number of sources, formats, and databases into a uniform
information model and retrieval system. The actual databases from
which records are retrieved and on which the Entrez indexes are
based have different designs, based on the type of data, and reside
on different machines. These will be referred to as the ‘‘source
databases.’’ A common theme in the implementation of Entrez is
that some functions are unique to each source database, whereas
others are common to all Entrez databases.

An Entrez ‘‘node’’ is a collection of data that is grouped and
indexed together. Some of the common routines and formats for
every Entrez node include the term lists and posting files (i.e.,
the retrieval engine) used for Boolean queries, the links within
and between nodes, and the summary format used for listing
search results in which each record is called a DocSum. Gener-
ally, an Entrez query is a Boolean expression that is evaluated by
the common Entrez engine and yields a list of unique ID num-
bers (UIDs), which identify records in an Entrez node. Given
one or more UIDs, Entrez can retrieve the DocSum(s) very
quickly.

3.1.1. Query Examples Each Entrez database (‘‘node’’) can be searched independently by
selecting the database from the main Entrez Web page (http://
www.ncbi.nlm.nih.gov/sites/gquery) (see Fig. 2.2). Typing a
query into a text box provided at the top of the Web page and
clicking the ‘‘Go’’ button will return a list of DocSum records that
match the query in each Entrez category. These include nucleo-
tides, proteins, genomes, publications (PubMed), taxonomy, and
many other databases. The numbers of results returned in each
category are provided on a single summary page and provide the
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user with an easily visible view of the results in each of �35
databases. The results are presented differently in each database
but within the same framework, which includes the common
elements such as search bar, display options, page formatting,
and links.

In processing a query, Entrez parses the query string into a
series of tokens separated by spaces and Boolean operators (AND,
NOT, OR). An independent search is performed for each term,
and the results are then combined according to the Boolean
operators.

Query uses the following syntax: term [field] OPERATOR
term [field] where ‘‘term’’ refers to the search terms, ‘‘field’’ to the
search field defined by specific Entrez database, and ‘‘OPERA-
TOR’’ to the Boolean operators.

Fig. 2.2. Cross database search Web Entrez interface. The counts next to the database description show the number of the
records in each database matching the simple text query ‘‘mouse.’’
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More sophisticated searches can be performed by constructing
complex search strategies using Boolean operators and the various
functions listed below, provided in the Feature Bar:
‘‘Limits’’ restricts search terms to a specific search field.

‘‘Preview/Index’’ allows users to view and select terms from search
field indexes and to preview the number of search results before
displaying citations.

‘‘History’’ holds previous search strategies and results. The results
can be combined to make new searches.

‘‘Clipboard’’ allows users to save or view selected citations from
one search or several searches.

‘‘Details’’ displays the search strategy as it was translated by query
engine, including error messages.

More information about Entrez system can be found from NCBI
online Help Manual at http://www.ncbi.nlm.nih.gov/books/
bv.fcgi?rid=helpentrez.chapter.EntrezHelp.

The main goals of the information system are reliable data
storage and maintenance, and efficient access to the information.
The retrieval is considered reliable if the same information that was
deposited can be successfully retrieved. The Entrez system goes
beyond that by providing the links between the nodes and pre-
computing links within the nodes. The links made within or
between Entrez nodes from one or more UIDs (Unique IDenti-
fier) are also a function across all Entrez source databases. There
are three different linking mechanisms described below.

3.1.2. Links Between the

Nodes

The power of Entrez organization lies in the connections between
the individual nodes that increase the information space. These
links, created during indexing, are reciprocal and stored in a special
database, for example, links between genome sequence records
and the corresponding genome project. Links can also be provided
by the original submitters, for example, links between a nucleotide
sequence and a publication (PMID). Links between nucleotide
and protein sequences (conceptual translation) of the annotated
coding region can also be provided by the original submitters.
Figure 2.3 shows the diagram of the Entrez databases and the
connections between them.

3.1.3. Links Within the

Nodes

Entrez data can be also integrated by calculating the relationships
between the records in a single database. For example, nucleotide
and protein sequences can be linked by sequence similarity. The
similarity is calculated using BLAST (9), stored in a special data-
base, and made readily available in Entrez via the ‘‘Related
Sequences’’ link. In PubMed, the inter-database links are calcu-
lated by comparing the frequency terms of the document. The
similarity between two documents is based on the number of the
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weighted terms the two documents have in common. The highest
scoring documents can be viewed for each document by selecting
Related Articles from the Links menu.

3.1.4. Links Outside the

Nodes

Links to outside resources are available through LinkOut, a
special service of the Entrez system. It allows relevant outside
online resources to link directly to the records in Entrez system.
The outside users provide a URL, a resource name, the UID of
the record they wish to link to, and a brief description of their
Web site in a simple XML format. The request is processed
automatically and links are added to the corresponding records
in Entrez. This resource gives the end user a central place to look
for the information available at NCBI and easily explore the
relevant resources.

Fig. 2.3. The diagram of the Entrez databases and the connections between them. Each database is represented by a
colored circle, where the color indicates the approximate number of records in the database.
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3.2. Tools for Advanced

Users

The Entrez Programming Utilities (eUtils) are a set of eight server-
side programs that provide a stable interface to the Entrez query and
database system. The eUtils use a fixed URL syntax that translates a
standard set of input parameters into the values necessary for various
NCBI software components to search for and retrieve data and
represent a structured interface to the Entrez system databases.

To access these data, a piece of software first posts an eUtils
URL to NCBI, then retrieves the results of this posting, after
which it processes the data as required. The software can thus use
any computer language that can send a URL to the eUtils server
and interpret the XML response, such as Perl, Python, Java, and
C++. Combining eUtils components to form customized data
pipelines within these applications is a powerful approach to data
manipulation. More information and training on this process are
available through a course on NCBI Powerscripting: http://
www.ncbi.nlm.nih.gov/Class/PowerTools/eutils/course.html.

4. Genomic
Databases

The genome sequencing era that started about 20 years ago has
brought into being a range of genome resources. Genomic studies
of model organisms give insights into understanding of the biology
of humans enabling better prevention and treatment of human
diseases. Comparative genome analysis leads to further understand-
ing of fundamental concepts of evolutionary biology and genetics. A
review on genome resources (11) reports on a selection of genomes
of model species – from microbes to human. Species-specific geno-
mic databases comprise a lot of invaluable information on genome
biology, phenotype, and genetics. However, primary genomic
sequences for all the species are archived in public repositories that
provide reliable, free, and stable access to sequence information. In
addition, NCBI provides several genomic biology tools and online
resources, including group-specific and organism-specific pages
that contain links to many relevant Web sites and databases (see
Table 2.2 for the list of available resources and URLs).

4.1. Trace Repositories Most of the data generated in genome sequencing projects is
produced by whole genome shotgun sequencing, resulting in
random short fragments (traces).

For many years, the traces (raw sequence reads) remained out
of the public domain because the scientific community has focused
its attention primarily on the end product: the fully assembled final
genome sequence. As the analysis of genomic data progressed, it
became necessary to go back to the experimental evidence that
underlies the genome sequence to see if there is any ambiguity or
uncertainty about the sequence.
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4.1.1. Trace Archive To meet these needs, NCBI and The Wellcome Trust Genome
Campus in Hinxton, United Kingdom, created in 2001 a reposi-
tory of the raw sequence traces generated by large sequencing
projects that allows retrieval of both the sequence file and the
underlying data that generated the file, including the quality
scores. The Assembly Archive (12) created at NCBI in 2004
links the raw sequence information found in the Trace Archive
with consensus genomic sequence.

4.1.2. Short Read Archive

(SRA)

Trace Archive has successfully served as a repository for the data
produced by capillary-based sequencing technologies for many
years. New parallel sequencing technologies (e.g., 454, Solexa,
Illumina, ABI Solid, Helicos) have started to produce massive
amounts of short sequence reads (20–100 kb). Due to the

Table 2.2
Web genome resources at NCBI

Trace Archive http://www.ncbi.nlm.nih.gov/Traces/trace.cgi?

Assembly Archive http://www.ncbi.nlm.nih.gov/Traces/assembly/assmbrowser.cgi?

Short Read Archive (SRA) http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?

Entrez (cross-database
search)

http://www.ncbi.nlm.nih.gov/sites/gquery

Genomic Biology http://www.ncbi.nlm.nih.gov/Genomes/

Fungal Genome Central http://www.ncbi.nlm.nih.gov/projects/genome/guide/fungi/

Microbial genomes http://www.ncbi.nlm.nih.gov/genomes/MICROBES/
microbial_taxtree.html

Organelles http://www.ncbi.nlm.nih.gov/genomes/ORGANELLES/
organelles.html

Plant Genome Central http://www.ncbi.nlm.nih.gov/genomes/PLANTS/PlantList.html

Influenza Virus Resource http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html

Retrovirus Genomes http://www.ncbi.nlm.nih.gov/retroviruses/

Viral genomes http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/viruses.html

Genomic BLAST http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi

Concise BLAST http://www.ncbi.nlm.nih.gov/genomes/prokhits.cgi

gMap http://www.ncbi.nlm.nih.gov/sutils/gmap.cgi

Map Viewer http://www.ncbi.nlm.nih.gov/projects/mapview/

ProtMap http://www.ncbi.nlm.nih.gov/sutils/protmap.cgi

TaxPlot http://www.ncbi.nlm.nih.gov/sutils/taxik2.cgi
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structure and volume of this data, it is clear that it does not
efficiently and effectively fit in the current Trace Archive design,
so NCBI has constructed a more appropriate repository, the Short
Read Archive. The SRA project is well underway and is being built
in collaboration with Ensembl, sequencing centers, and the ven-
dors themselves. SRA Web site has been launched in January 2008:
http://www.ncbi.nlm.nih.gov/Traces/sra.

4.1.3. GenBank – Primary

Sequence Archive

GenBank is the NIH genetic sequence database, an archival collec-
tion of all publicly available DNA sequences (3). GenBank is part
of the International Nucleotide Sequence Database Collabora-
tion, which comprises the DNA DataBank of Japan (DDBJ) (4),
the European Molecular Biology Laboratory (EMBL) (2), and
GenBank at NCBI. These three organizations exchange data on
a daily basis. Many journals require submission of sequence infor-
mation to a database prior to publication to ensure an accession
number will be available to appear in the paper. As of February
2008 GenBank release 164.0 (ftp://ftp.ncbi.nih.gov/genbank/
release.notes/gb164.release.notes) contains more than 83 billion
bases in over 80 million sequence entries. The data come from the
large sequencing centers as well as from small experimentalists.
These sequences are accessible via Web interface by text queries
using Entrez or by sequence queries using BLAST. Quarterly
GenBank releases are also downloadable via FTP (see Section 8).

4.2. Entrez Databases A family of Entrez databases comprise an integrated information
system that links together heterogeneous information on biome-
dical and bibliographical data. The major concepts of Entrez
information system are described in Section 3. Below are three
examples of Entrez databases containing information on genome
projects, genomic sequences, and protein sequence encoded by
complete microbial genomes.

4.2.1. Entrez Genome Entrez Genome (13), the integrated database of genomic infor-
mation at the NCBI, includes the types of records and formats for
major taxonomic groups, as well as the precomputed data and
online analytical programs developed to aid investigation. The
database was created as part of Entrez in September 1995 for
large-scale genome sequencing projects. It was motivated by the
release of the first complete microbial genome of Haemophilus
influenzae sequenced at TIGR (14).

Entrez Genome displays data from small viral and organelle
genomes, complete and nearly complete genomes from bacteria,
and eukaryotes. An entry in Genomes database represents a single
replicon such as a chromosome, organelle, or plasmid. As of Feb-
ruary 2008 Entrez Genome houses a collection of 7,850 entries
organized in six large taxonomic groups: Archaea, Bacteria, Eukar-
yota, Viroids, Viruses, and Plasmids. It presents the tools and views
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at various levels of detail. For each record, Entrez Genome pro-
vides a graphical overview of the chromosome with genes color-
coded by COG (clusters of orthologous groups) (15) functional
categories (Fig. 2.4) as well as other types of text views including
flat file, ASN.1, XML, and many others that can be user-selected
from a menu. The table provides additional genome information
and access to analysis tools.

The available tools include multiple alignments of complete
genomes for viruses, precomputed protein clusters from microbial
genomes, GenePlot (a genome-scale dotplot generator), TaxPlot
(for three-way genome comparisons), gMap, and many others.
Some of these tools are described in Section 5 of this chapter.
More detailed description of microbial genome resources at NCBI
can be found in ‘‘In Silico Genomics and Proteomics’’ (16). Plant
genome resources at NCBI have been recently published in a
chapter of ‘‘Plant Bioinformatics’’ (17).

Microbial genome sequencing has come a long way since the
first H. influenzae project. As of February 2008 public collection
contains more than 600 complete genomes and close to 500 draft

Fig. 2.4. Haemophilus influenzae complete genome: single circular chromosome overview. Entrez provides a graphical
view of the chromosome with genes color-coded by COG functional categories.
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genome assemblies. The collection represents a very diverse set of
organisms; ranging from small (160 kb) endosymbiont Carsonella
(18) to the 13-Mb genome of myxobacterium Sorangium cellulo-
sum (19). There are organisms isolated from extreme environ-
ments such as Hyperthermus butylicus (20), an extreme
hyperthermophilic, anaerobic archeon, and bacterial species repre-
senting deeply branching taxa such as Rhodopirellula baltica (21).
On the other hand, many projects are aimed toward the compara-
tive analysis of pathogenic bacteria and sequencing multiple strains
and isolates of the same organism. For example, H. influenzae
bacterium is represented in the database by 16 entries including
chromosomes and plasmids from different isolated strains. Entrez
provides tools that facilitate comparative genome analysis leading
into new insights to be gained from genome sequences.

Query examples

Find all the chromosomes of Haemophilus influenzae:
Haemophilus influenzae[organism] AND chromosome[repli-
con type]

4.2.2. Entrez Genome

Project

The NCBI Genome Project database is a collection of complete and
incomplete (in-progress) large-scale sequencing, assembly, annota-
tion, and mapping projects for cellular organisms. A project is
defined by a unique combination of organism name (or metage-
nomic project name), sequencing center, and sequencing method.

Currently, the database is comprised of projects that have sub-
mitted data to NCBI, intend to submit data, or have received public
funding. A large eukaryotic genome project usually consists of
several components. In the database, projects are organized in a
hierarchical, parent–child relationship. A top-level project represents
an organism-specific overview and links together all relevant child
projects. Each project has its own unique identifier, the Project ID.

The International Nucleotide Sequence Databases Consor-
tium (INSDC) has acknowledged the need to organize genomic
and metagenomic data and to capture project metadata. Starting
from 2006, the submitters of genome sequence data are required
to register their project and obtain a unique project ID. As pre-
sented at EMBL guidelines Web site, http://www.ebi.ac.uk/
embl/Documentation/project_guidelines.html,

‘‘A project is defined as a collection of INSDC database
records originating from a single organization, or from a consor-
tium of coordinated organizations. The collective database records
from a project make up a complete genome or metagenome and
may contain genomic sequence, EST libraries and any other
sequences that contribute to the assembly and annotation of the
genome or metagenome. Projects group records either from single
organism studies or from metagenomic studies comprising com-
munities of organisms.’’
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NCBI has developed a SOAP (simple object access protocol)
compliant Web service, supporting the functions of inserting,
updating, deleting, and retrieving of the documents which are
used by INSDC collaborators to access/edit the Genome Project
database, which in turn controls ProjectIDs and Locus-tag prefixes
as well as other project information.

The NCBI Entrez Genome Project database (GenomePrj) is
organized into organism-specific overviews that function as portals
from which all projects pertaining to that organism can be browsed
and retrieved. Figure 2.5 shows a schematic diagram of a generic
eukaryotic genome project.

GenomePrj is integrated into the Entrez search and retrieval
system, enabling the use of the same search terms and query
structure used in other Entrez databases.

GenomePrj is a companion database to Entrez Genome.
Sequence data are stored in Entrez Genome (as complete chromo-
somes, plasmids, organelles, and viruses) and Entrez Nucleotide
(as chromosome or genomic fragments such as contigs). While

Fig. 2.5. Schematic diagram of a generic eukaryotic genome project. The main overview
page shows links to all subprojects, numbered 1–6. Various sequencing centers are
associated with each subproject (A–F). These various centers could actually be con-
sortiums consisting of multiple centers. A given center could produce more than one type
of project, and data for a given project type could be generated from multiple indepen-
dent centers. Some of the projects are complete with associated data present in various
forms in different Entrez databases at NCBI, while other projects are in progress with no
publicly available data at NCBI. A project could be converted over time from containing
preliminary data (e.g., WGS) to one where a complete data set is present. RefSeq
genomic data are associated with the overview project. Links to third-party sites
which contain information of interest regarding the organism are provided.
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Entrez Genome does not collect all data for a given organism,
GenomePrj provides an umbrella view of the status of each gen-
ome project, links to project data in the other Entrez databases and
a variety of other NCBI and external resources associated with a
given genome project. Sequences associated with a given organism
can also be retrieved in the taxonomy browser. However, no
distinction is made between GenBank (non-curated) and RefSeq
(curated) sequences. There is also no distinction based on which
sequencing center submitted the data. Entrez Genome Project
also lists projects that are in progress or for which NCBI has not
yet received any data. See Table 2.3 for a comparison of all three
databases.

As of January 2008 Genome Project database contains 80
metagenomics project. As shown in Fig. 2.6, the database entry
contains brief project description, listing of all related subprojects,
and project data which include links to genomic data, publication,
and Trace data. NCBI Resource Links include an option to BLAST
against this particular collection as well as an option to BLAST
against all available environmental sequences.

Query examples

Find all complete fungal genome projects.

fungi[ORGN] AND complete[SEQSTAT]

Find all projects that correspond to pathogens that can infect
humans.
human[HOST]

Find all metagenomic projects

type_environmental[All Fields]

4.2.3. Entrez Protein

Clusters

Protein Clusters database is a rich collection of related protein
sequences from complete prokaryotic and organelle Reference
Sequence (RefSeq) genomes.

Table 2.3
Comparison of entrez databases

Entrez
databases

Organism-
specific
sequences

Project-
specific
sequences

Submitter-
specific
sequences

Complete
and in
progress

GenBank and
RefSeq
sequences

Genome Yes No Yes No Separated

Taxonomy Yes No No No Together

Genome
project

Yes No Yes Yes Separated
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Proteins from all complete microbial genomes and plasmids (and
separately all chloroplasts) are compared using BLAST all-against-all.
Protein clusters are created using a modified BLAST score that takes
into account the length of the hit (alignment) versus both the query
and the subject. The modified score is then sorted, and all proteins
that are contained within the top hits are clustered together. Auto-
matically constructed clusters are then evaluated manually by cura-
tors. Based on the sequence alignment information and biological
expertise, curators can join or split clusters and add annotation infor-
mation (protein name, gene name, description) and publication links.

As of January 2008, the database contains 1.4 million proteins
that compose 6,043 curated clusters and more than 200,000
automatic clusters. The Entrez Protein Clusters database uses all
of the features of other Entrez databases. There are numerous ways
to query protein clusters, either with search terms in Entrez or with

Fig. 2.6. Mouse gut metagenome project in Entrez Genome Project database: comparisons of the distal gut microbiota of
genetically obese mice and their lean littermates.
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a protein or nucleotide sequence. The display for each cluster
provides information on cluster accession, cluster name, and
gene name, as well as links to protein display tools, external data-
bases, and publications (Fig. 2.7). Protein Clusters database can
be queried with a protein or nucleotide sequence by using Concise
Protein BLAST, a new Web resource developed at NCBI. Concise
BLAST is an efficient alternative to standard BLAST. The search-
able database is comprised of only one randomly chosen protein
from each cluster, and also proteins which are not included in any
cluster to assure completeness. This allows rapid searching of the
smaller database, but still assures an accurate identification of the
query while providing a broader taxonomic view.

Fig. 2.7. Shikimate 5-dehydrogenase overview in Entrez Protein Clusters database. The top part of the page presents text
description, some statistics (Cluster Info), direct access to Cluster Tools, cross-references to outside resources, and links
to other Entrez databases. The bottom part presents a colored table: clusters are organized into taxonomic groups; cluster
position neighbors are shown as well as a summary of alignments and conserved domains. Clicking on alignment
summary will open a detailed multiple alignment view (not shown).
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Query examples
Retrieve all clusters containing the protein beta galactosidase:

beta galactosidase [Protein Name]

Find all clusters associated with Escherichia coli:

Escherichia coli[Organism]

5. Analysis of
Prokaryotic
Genome Data

5.1. gMap – Compare

Genomes by Genomic

Sequence Similarity

gMap is one of the tools available in Entrez Genome that allows to
view and analyze the regions of similarity in closely related gen-
omes. Figure 2.8 shows closely related strains of H. influenzae.

Genomic sequences are compared using BLAST and the resul-
tant hits are filtered out to find the largest syntenic regions. Similar
regions are shown color-coded and numbered in each genome
with an arrow denoting the 50–30 direction of the hit with respect
to similar segments in other genomes. Additional sequences can be
added by inputting the accession number.

Fig. 2.8. gMap results for four closely related strains of Haemophilus influenzae at 25% coverage.
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The tool allows navigating from the general overview of
domains of life (e.g., bacteria or viruses) down to genome sets
with different degrees of mutual similarity. It allows more detailed
views of every similarity segment, including the ability to view
sequence alignment of two selected similarity regions. Zooming
in can be accomplished by clicking on a syntenic group to expand
all similar segments. Alternately, a user can click on a hit bar just
below the segments to zoom into the surrounding region of the
current sequence; this action also displays homologous syntenies
from other organisms. After zooming in, all segments are recalcu-
lated, recolored, and renumbered, providing a truly dynamic and
interactive system with each calculated view presented as a standa-
lone display which is visually easy to comprehend. Pairs of genomic
sequences can be selected for output to BLAST, GenePlot, or
HitPlot and any number of sequences can be removed from the
list by the user to customize the final view to be most appropriate
for the user’s project. HitPlot shows a dotplot of the two genomes
selected based on the magnification level. Precomputed results are
available for two categories, one for genomes from the same genus
and one for genomes based on the coverage of BLAST hits.
Genomes of two or more species from the same genus may not
display high levels of synteny, but similar segments in their two
genomes can be found at different levels of hit coverage. An
example of this would be the Mycoplasma genomes. The converse
is that organisms from different genera have large syntenic blocks
in their genomes such as is found in Escherichia, Salmonella, and
Shigella, which are all members of the Enterobacteriaceae family
(22). Genomes in both categories are grouped together based on
single linkage clustering of coverage level. For example, if genome
A has 75% coverage to genome B and genome B has 75% coverage
to genome C, then they will all be included in a cluster at the 75%
level even though the coverage between A and C may not reach the
75% level.

5.2. Genome ProtMap –

Compare Genomes by

Protein Sequence

Similarity

Genome ProtMap is a comparative display of the genome neigh-
borhoods linked by the orthologous protein sequences. It dis-
plays a 10-kb region surrounding either all the proteins in the
cluster or, alternately, all the proteins that have the same Cluster
of Orthologous Group – COG (15) – or in the case of viruses,
VOGs. In the Genome ProtMap display (Fig. 2.9), the organism
groups are collapsed; clicking the + will expand the group. Click-
ing the accession number will link to the RefSeq nucleotide
record. Mouse over the proteins gives detailed information such
as name, cluster ID, and genome location. Clicking on any pro-
tein brings up a pop-up menu with links to protein, gene, or
cluster. The list of taxa in the ProtMap can be collapsed or
expanded by clicking the + or � next to the taxon. ‘‘Show
Legends’’ gives the color-coded functional category for the
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proteins while ‘‘Show Cluster Colors’’ lists all the clusters in the
ProtMap colored by COG functional category and the name of
the cluster.

5.3. Concise BLAST Concise protein BLAST uses the BLAST engine to allow searching
of protein clusters’ data sets with a protein or nucleotide sequence
query. The database represents protein sequences from complete
microbial (prokaryotic) genomes. It uses precalculated clusters of
similar proteins at the genus level to represent proteins by groups
of related sequences. One representative from each cluster is cho-
sen in order to reduce the data set. The result is reduced search
times through the elimination of redundant proteins while provid-
ing a broader taxonomic view.

Fig. 2.9. Genome ProtMap shows local genomic neighborhood centered on a set of related genes (via the proteins
encoded by them). Related genes are defined by protein clustering algorithms (COG, VOG, or PRK). All proteins in the
surrounding area are color-coded by COG category (if applicable) or gray (proteins that do not belong to a COG). ProtMap
for PRK12550 – shikimate 5-dehydrogenase is displayed.
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6. Browsing
Eukaryotic Genome
Data

The main NCBI genome browser Map Viewer provides special
browsing capabilities for a subset of organisms in Entrez Genome.
The list of organisms available for Map Viewer browsing can be
found on the Map Viewer home page (http://www.ncbi.nlm.
nih.gov/projects/mapview/).

Map Viewer can display a collection of aligned genetic, physical,
or sequence-based maps, with an adjustable focus rangingfrom that
of a complete chromosome to that of a portion of a gene. The maps
displayed in Map Viewer may be derived from a single organism or
from multiple organisms; map alignments are performed on the
basis of shared markers. The availability of whole genome sequences
means that objects such as genes, markers, clones, sites of variation,
and clone boundaries can be positioned by aligning defining
sequences from these objects against the genomic sequence. This
positional information can then be compared to information on
order obtained by other means, such as genetic or physical mapping.
The results of sequence-based queries (e.g., BLAST) can also be
viewed in genomic context as described in the next section.

Any text search term can be used as a query at the top of the Map
Viewer home page. These include, but are not limited to, a GenBank
accession number or other sequence-based identifier, a gene symbol
or alias, or the name of a genetic marker. For more complex queries,
any query can be combined with one of three Boolean operator
terms (AND, OR, and NOT). Wild cards, which are denoted by
placing a * to the right of the search term, are also supported. Map
Viewer uses the Entrez query search engine, described in section 3,
to analyze a complex query and perform a search.

Anotherwayofgettingtoaparticularsectionofagenomeistousea
range of positions as a query. First it is necessary to select a particular
chromosome for display from a genome-specific Map Viewer page.
Once a single chromosome is displayed, position-based queries can be
defined by (1) entering a value into the Region Shown box. This could
be a numerical range (base pairs are the default if no units are entered),
the names of clones, genes, markers, SNPs, or any combination. The
screen will be refreshed with only that region shown.

Map Viewer provides an option to simultaneously search phy-
sical, genetic, and sequence maps for multiple organisms. This
option is currently available for plant and fungal genomes. Multi-
organism plant searching is available at http://www.ncbi.nlm.
nih.gov/projects/mapview/map_search.cgi?taxid=33090.

Since the early 1990s several researchers have shown that large-
scale genome structure is conserved in blocks across the grasses (23–
26). Locus nomenclature is organism-specific and is unreliable as a
query method between species; however, the regular nomenclature
of plasmids (27) is not influenced by how the plasmid or insert is
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used. The data for the plant maps available through Map Viewer
include the probe–locus relationship for each locus where the allelic
state is identified by the probe. This information enables the render-
ing of the visual connection between those mapped loci in adja-
cently displayed maps that were identified by the same probe. This
locus–probe relationship allows a cross-species text search using the
probe name as the query string. Figure 2.10 shows the result of the
search across all plants using ‘‘cdo718’’ as a query.

‘‘cdo718’’ is the name of a plasmid with an oat cDNA insert. This
probe was used to map loci in nine maps available in Map Viewer: the
AaXAh-92 map in Avena sativa, the Cons95 map in Hordeum vul-
gare, the RC94, RW99, R, RC00, and RC01 maps in Oryza sativa, the
E-01 map in Secale cereale, the S-0 map in Triticum aestivum, JKxC
map in Triticum turgidum, and the RW99 map in Zea mays. The dark
grey lines between each map connect the loci identified by the probe.
The light gray lines connect the other loci in adjacent maps that have
been identified by the same probe.

7. Searching Data
by Sequence
Similarity (BLAST)

The Basic Local Alignment Search Tool (BLAST) (28) finds
regions of local similarity between sequences. By finding simila-
rities between sequences, scientists can infer the function of newly
sequenced genes, predict new members of gene families, and
explore evolutionary relationships.

Fig. 2.10. Map Viewer Displays resulting from a search for marker ‘‘cdo718’’ showing aligned maps from several plants.
The marker ‘‘cdo718’’ is highlighted on each map with lines between maps connecting the highlighted markers.
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7.1. Organism-Specific

Genomic BLAST

Genome-specific BLAST pages that restrict a search to a specific
genome are provided for several organisms and allow the results of
the search to be displayed in a genomic context (provided by Map
Viewer).

Query sequence (protein or nucleotide) can be compared to
genomic, transcript, or protein coded by the genome. Table 2.4
provides the list of available databases. Not all databases are always
available; some projects provide additional data sets such as SNP,
traces, and alternative assemblies. If the reference genome (the
default) is selected as the database to be searched, the Genome
View button (Fig. 2.11B) will appear on a diagram showing the
chromosomal location of the hits (Fig. 2.11C). Each hit links to a
Map Viewer display of the region encompassing the sequence
alignment.

7.2. Multi-organism

Genomic BLAST

Microbial Genomic BLAST (29) provides access to complete gen-
omes and genome assemblies of 940 Bacteria and 48 Archaea and
162 Eukaryota (as of February 2008). Genomic BLAST has been
recently extended to include data sets for insects, fungi, nema-
todes, protozoa, and metagenomes. The genomes can be viewed

Table 2.4
Customized project-specific BLAST databases

DB name Description

Genome (all assemblies) Sequences from all available genome assemblies

Genome (reference only) Sequences from the reference assembly only

RefSeq RNA RefSeq transcript sequences (NM + XM)

RefSeq protein RefSeq protein sequences (NP + XP)

Non-RefSeq RNA GenBank transcript sequence

Non-RefSeq protein GenBank protein sequences

Build RNA Proteins generated in the annotation run

Build protein Proteins generated in the annotation run

Ab initio RNA Transcripts generated in the annotation run by Gnomon only

Ab initio protein Proteins generated in the annotation run by Gnomon only

EST EST sequences by organism

Clone end sequences Clone end sequences by organism

Traces WGS Raw sequence reads for genomic assemblies

Traces EST Raw sequence reads for EST

SNP Custom database of Single Nucleotide Polymorphism database
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in taxonomic groups or in alphabetical order. A flexible user-
friendly interface allows to construct virtual blast databases for
the specific searches.

For example, with many closely related microbial genomes
sequenced, one might want to exclude the close relatives from
consideration in order to reveal more evolutionary interesting
remote relationships.

8. FTP Resources
for Genome Data

The source genome records can be accessed from the Gen-
Bank directory; these are the records that were initially depos-
ited by the original submitters. The reference genomes,

Fig. 2.11. Genomic BLAST: BLAST Mouse Sequences. A Query mouse reference genome with mouse cDNA clone, accession
BC050818. B BLAST output page has an additional ‘‘Genome View’’ button that provides an option to show the hits in genome
environment via Map Viewer. C Genome overview of BLAST hits. The hits are represented by colored ticks providing the links to
zoomed-in view of the chromosome. D Positions of the BLAST hits on the chromosome. The maps shown include Model (NCBI
annotation pipeline prediction), RefSeq transcript, and mouse UniGene.Interesting to note that the first exon (hit 3548..1228) is
not included in the RefSeq model, although it is supported by UniGene and predicted by NCBI annotation pipeline.
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assemblies, and associated genes and proteins can be down-
loaded from the Genomes and RefSeq directories. Information
on the data content in these FTP directories is located in the
README files.
Download the full release database, daily updates, or WGS files:

ftp://ftp.ncbi.nih.gov/genbank/

Download complete genomes/chromosomes, contigs and refer-
ence sequence mRNAs and proteins:

ftp://ftp.ncbi.nih.gov/genomes/

Download the curated RefSeq full release or daily updates:

ftp://ftp.ncbi.nih.gov/refseq/

Download curated and non-curated protein clusters from micro-
bial and organelle genomes:

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/CLUSTERS

9. Conclusion

The tremendous increase in genomic data in the last 20 years has
greatly expanded our understanding of biology. Genome
sequencing projects now span from draft assemblies, complete
genomes, large-scale comparative genomic projects, to the new
field of metagenomics where genetic material is recovered
directly from environmental samples and the entire complement
of DNA from a given ecological niche is sequenced. Although
these provide an ever greater resource for studying biology,
there is still a long way to go from the initial submission of
sequence data to the understanding of biological processes. By
integrating different types of biological and bibliographical data,
NCBI is building a discovery system that enables the researcher
to discover more than would be possible from just the original
data. By making links between different databases and comput-
ing associations within the same database, Entrez is designed to
infer relationships between different data that may suggest
future experiments or assist in interpretation of the available
information. In addition, NCBI is developing the tools that
provide users with extra layers of information leading to further
discoveries.

Genomics is a very rapidly evolving field. The advance in
sequencing technologies has lead to new data types which
require different approaches to data management and presen-
tation. NCBI continues to add new databases and develop new
tools to address the issue of ever-increasing amounts of
information.
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Chapter 3

Protein Sequence Databases

Michael Rebhan

Abstract

Protein sequence databases do not contain just the sequence of the protein itself but also annotation that
reflects our knowledge of its function and contributing residues. In this chapter, we will discuss various
public protein sequence databases, with a focus on those that are generally applicable. Special attention is
paid to issues related to the reliability of both sequence and annotation, as those are fundamental to many
questions researchers will ask. Using both well-annotated and scarcely annotated human proteins as
examples, it will be shown what information about the targets can be collected from freely available
Internet resources and how this information can be used. The results are shown to be summarized in a
simple graphical model of the protein’s sequence architecture highlighting its structural and functional
modules.

Key words: proteins, protein sequence, protein annotation, protein function, databases,
knowledgebases, Web resources, expert review, sequence data curation.

1. Introduction

Since Fred Sanger’s work paved the way for obtaining the
sequences of proteins in the 1950s (1), we have been accumulating
information about proteins with an ever-increasing pace. By 1965,
10 years after the publication of the sequence of insulin (1), a few
dozen protein sequences were published. This triggered the inter-
est of scientists who started to wonder how this valuable informa-
tion can best be compared between species and how such
comparisons of sequences could help us to elucidate the evolution
of molecular mechanisms. Would such distant taxa as mammals,
insects, fungi, plants, and bacteria have much in common at the
level of sequence? And how would we be able to interpret such
similarity? At that time, Margaret Dayhoff (1925–1983), a

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
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scientist with a very interdisciplinary background and a lot of
foresight, decided that it is time to put all this information
together into a book that has since become the ancestor of all
protein collections (2). By providing well-organized information
on the 65 proteins sequences that were published at the time, she
wanted to make it easier for other scientists to join her in the quest
for developing an understanding of their biological meaning
through comparison. Soon it turned out that this work, indeed,
became one of the foundations of a new field, which is now
commonly referred to as ‘‘bioinformatics.’’

In the 1980s, in her last few years, one of Dr. Dayhoff’s major
efforts was to ensure the continuation of this work, by trying to
obtain adequate long-term funding to support the maintenance
and further development of the collection. Less than a week before
her death, she submitted a proposal to the Division of Research
Resources at NIH (3). Her vision was to develop an online system
of computer programs and databases which can be accessed by
scientists all over the world, for making predictions based on
sequences and for browsing the known information. After her
death, her colleagues were determined to see her vision realized,
by creating the PIR (Protein Information Resource) (4).

Inspired by Dr. Dayhoff ’s legacy, a Ph.D. student who was
busy writing one of the first software packages for sequence ana-
lysis in the mid 1980s encountered some problems with the data
from PIR. He decided to set up his own collection, to have the
freedom to develop it as he pleases. The result of this effort became
the Swiss-Prot database (5). Amos Bairoch, its founder, decided to
make a bold career move, that is to focus his work on the compu-
tational analysis of protein sequences (which, at that time, may not
have been an obvious choice to many colleagues). But his foresight
was rewarded as well: the EMBL in Heidelberg agreed to distri-
bute it, and as soon as the Internet was mature enough to allow
direct access by researchers anywhere in the world, the associated
Web site, ExPASy (6), quickly became one of the most fundamen-
tal electronic resources to any scientist working with proteins.

With the rise of the Internet in the mid-1990s, thousands of
small and large resources related to proteins and genes emerged as
well, created by scientists who wanted to share the collections they
were developing locally. But this also created increasing confusion,
as biologists found it difficult to find the information they were
interested in without spending the whole day on the Internet,
following an increasingly bewildering forest of hyperlinks between
Web sites that often did not last longer than the research project
itself due to lack of long-term funding. As a result, resources like
GeneCards were developed (7), with the goal of presenting a
structured overview of current knowledge on genes and their
products, and the ability to drill down into the information to
check sources and find additional information if needed. A similar
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goal was pursued by scientists at the NCBI, who wanted to create a
comprehensive resource for genes of all the main organisms,
including expert-reviewed, high-quality, full-length sequences
with annotation. This was the beginning of the RefSeq collection
of sequences, which is still one of the best sources for reliable
nucleotide and protein sequences (8, 9).

With the advent of genome sequencing projects, increasing
efforts were made to develop approaches for finding the correct
structures of protein-coding genes in those assembled sequences.
This led to a new generation of databases that include information
on protein sequences with various levels of evidence, such as
Ensembl (9) and many organism-specific resources. These gen-
ome resources complement the above ‘‘high confidence sets’’
(Swiss-Prot and RefSeq) and their associated large repositories of
as yet uncurated sequences that have at least transcript-level experi-
mental evidence – TREMBL (10), Genbank translations (11) –
with even more protein sequences. They take advantage of the
high reliability of mature genomic sequence and provide candidate
protein sequences even for cases where the experimental evidence
available at the transcript and protein level may be minimal or
absent. As a result, we now have many different protein sequence
databases with different strengths and limitations, and protein
sequences with many different levels of evidence at the genomic,
transcript, and protein levels. Unfortunately, those data are pre-
sented in diverse formats and ways of access, which can be a
challenge for users. Due to the flood of nucleotide sequences
that are likely to be translated into proteins, we now have millions
of proteins in the public databases; for example, a search at NCBI
Entrez’s Protein database (12) at the time of writing returns more
than 4.4 million proteins for eukaryotes, and more than 7.7 mil-
lion proteins for prokaryotes. To guide scientists who are not
familiar with the different databases through this complex land-
scape, we will attempt to discuss some of the key differences in
content and use. But, as anything that evolves, this database land-
scape itself will certainly change, so we will try to emphasize
fundamental issues that are likely to persist for some time.

2. The Foundation
Is the Sequence

Obviously, the most fundamental piece of information on proteins
is the amino acid sequence itself. Before we start to annotate it, we
need to be sure that the sequence is reliable enough for our
purposes. All kinds of artifacts may complicate further work, either
at the computer or in the lab: a small part of the sequence could be
wrong, some part may be missing, or the whole sequence may not
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even exist in nature as its mRNA is actually not translated. If we are
lucky enough that we can rely on the judgment of experts who can
assess the reliability of the sequence, such as the curators reviewing
sequences for Swiss-Prot and RefSeq, we will of course pick our
sequence from their reviewed sequence collections. But in the
unfortunate event that our protein of interest is not available in
those resources, we have to take what we can get and perform at
least some basic checks to make sure that the sequence has suffi-
cient quality. During this analysis, we will first compare our
sequence to the reviewed reference sequences and then check for
conserved regions.

For example, imagine that we picked up our sequence based
on a search for the gene name at NCBI’s Entrez query system. By
performing a BLAST at ExPASy against the Swiss-Prot database,
we can find out if there is clear local similarity to known proteins
(rule of thumb: the BLAST score should be at least about 100
using the default search parameters), and do the same using pro-
tein BLAST at NCBI against RefSeq (see Fig. 3.1 and Table 3.1).
Of course, if we can find a match in Swiss-Prot or Ref Seq that is
almost identical along the entire length (in the right organism), we
can use that one as our new reference sequence for further analysis,
instead of our original sequence. If we only get clear similarity for a
small region in our protein sequence, we can consider this area as
more likely to be reliable, but we cannot make a statement about
other regions. If we still have insufficient information about the
reliability of large regions in our sequence, we can submit the
query protein to InterproScan at EBI (13), which will allow us to
do a comprehensive search for conserved domains that are covered
in one of the many protein family databases. If all those searches fail
to result in convincing results for the whole sequence or for the
part of the sequence we are interested in, and if other curated

Fig. 3.1. How to estimate the reliability of a protein sequence (see text).
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resources such as the organism-specific ones listed in Table 3.1 do
not provide good hits either, it would be advisable to consult an
expert (especially if subsequent analysis depends heavily on the
quality of the sequence), or even to obtain experimental validation.

In a recent paper that brought the reliability of protein
sequences into the forefront again, Michele Clamp and her cow-
orkers performed an analysis of human genes, of which many were
so far considered to be protein-coding by default if they did not
look similar to known ncRNA genes (14). By carefully assessing
the evolutionary conservation of those sequences, they concluded
that only about 20,000 of those are showing conservation patterns

Table 3.1
Overview of key resources for protein sequences and annotations

Name(s) Relevance References URL

Swiss-Prot Find the (in general) most
reliable sequence and
annotations

5, 6, 10,
16, 19

http://www.expasy.org/
sprot/

RefSeq Also contains many reliable
protein sequences (search
the ‘‘Protein’’ database at
NCBI, use the ‘‘RefSeq’’
tab, and then check their
annotation to find out if
they have been reviewed!)

8, 12,
15, 17

http://www.ncbi.nlm.nih.gov/
RefSeq/

CCDS (Consensus
CDS protein set)

Human and mouse protein
sequences that experts in
different centers agree on

15 http://www.ncbi.nlm.nih.gov/
CCDS/

Mouse Genome
Informatics

Curated information on
mouse genes and
phenotypes

21 http://
www.informatics.jax.org

Flybase Curated information on
Drosophila genes

22 http://flybase.bio.indiana.edu

Wormbase Curated information on
nematode genes

23 http://www.wormbase.org

Ensembl Completed eukaryotic
genomes and their genes

9 http://www.ensembl.org

DisProt (database
of protein
disorder)

Experimentally verified
disordered regions in
proteins

24 http://www.disprot.org

PhosphoSite Extensive information on
known phosphorylation
sites

25 http://www.phosphosite.org
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typical for validated protein-coding genes, while the others could
as well be new types of noncoding RNA genes, in contrast to
common practice (to declare them protein-coding by default). In
other words, in the absence of evidence to the contrary, we have to
take into account the possibility that an ORF predicted in a tran-
script sequence does not necessarily translate into a real protein in
the cell under normal conditions. Fortunately, Swiss-Prot has
recently started to include information into their database entries
that clearly describes the type of evidence available for the exis-
tence of a particular protein.

An additional layer of complexity is provided by alternative
splicing, alternative promoter usage, and alternative start codon
usage during translation and other phenomena that result in dif-
ferent protein sequences being encoded by the same gene. In fact,
experts for deriving protein sequences from gene and transcript
data do not always agree on the protein sequence(s) for a particular
gene, which can be due to limited transcript data for a gene and a
number of experimental artifacts that pollute nucleotide sequence
data. An example for efforts that try to address those issues is the
CCDS initiative, which defines coding sequences, and therefore
encoded protein sequences that different curation teams at NCBI,
EBI, Sanger Institute, and UCSC can agree on (15). So, if your
protein sequence of interest is part of this collection, this can be
interpreted as a good sign (i.e., there is a good chance that this
protein exists with exactly this sequence in nature). A gene that
exemplifies this kind of complexity is the human form of the
microtubule-binding protein tau (approved gene symbol:
MAPT), which displays different numbers of protein isoforms,
depending on the resource you inspect (see Table 3.1). So how
should such complexity be represented in a protein database?
Should every unique sequence get its own entry? Swiss-Prot has
since its beginnings decided to try to represent all the isoforms
with one reference sequence that is annotated with features that
describe which parts of the sequence occur in which isoforms (see
the Swiss-Prot entry P10636, which currently contains nine iso-
forms). Based on this concept, all isoform sequences can then be
generated on demand, e.g., for comprehensive sequence similarity
searches, while a single reference sequence representing the key
properties of a large fraction of the protein molecules is available as
well. If an isoform is rare and contains sequence that does not
occur in other more common isoforms, it may not be represented
in the sequence given in the main entry, but instead in the annota-
tion and when querying specifically for this isoform. Therefore,
such areas may be missed in sequence searches that do not search
against all isoforms in Swiss-Prot. RefSeq, on the other hand,
sometimes provides more than one protein sequence per gene.
In any case it may be useful to align all available Swiss-Prot isoform
sequences and RefSeq protein sequences (and possibly sequences
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from organism-specific databases, see Table 3.1) for the gene of
interest to see where they differ, as there can be substantial differ-
ences that require careful examination.

3. What Is Known
About the Protein?

Once we can be sure that our protein sequence is reasonably
reliable, we can try to find out more about its biological meaning.
If it is a protein that has been well characterized, or if it is highly
similar to such a protein, we may want to turn to Swiss-Prot to get
an overview of the information that has accumulated in the litera-
ture. In addition, there can be useful annotation in other
resources, like RefSeq, and some organism-specific databases that
offer expert-reviewed information as well (see Table 3.1).

But, what exactly does it mean for a protein to be ‘‘well-
characterized’’? Do we really know all the functions of this protein
in all cell types and development stages, and which parts of the
sequence play which role in which function? Even in cases where
there are hundreds of publications on a particular protein, it is
possible that most of the work that has been done has looked at the
protein from a particular angle, while much less attention has been
paid to additional ‘‘moonlighting’’ functions, functions in other
cell types and stages, and some of the transient interactions it
engages in. In many cases, we know what particular regions of
the protein do, but we cannot make confident statements about
the function of the rest of the protein.

On c-myc, for example, an impressive amount of information is
available. A search in all databases at NCBI reveals more than
10,000 articles in Pubmed, more than 2,000 protein sequences,
and 20 macromolecular structures. Few proteins have been inves-
tigated so thoroughly. Therefore, one may easily think that almost
every interesting aspect of the function of this protein would have
been unearthed by now. Let us see what the protein databases
provide in such a case. First, we will examine the human entry in
Swiss-Prot (16). The human-friendly current ‘‘name’’ (or ‘‘ID’’) is
‘‘MYC_HUMAN,’’ but the more stable accession that is indepen-
dent of gene name changes (which do occur!) is ‘‘P01106.’’ In this
particular case, a gene name change is not expected, but in any case
it is a good habit if we use the stable accession for any type of
documentation, to be on the safe side. If you have a careful look at
the information in the entry, it shows that the protein was entered
into Swiss-Prot a long time ago (in 1986), so actually it may have
been one of the first proteins in the database. But since then
annotations have been added or modified, the last time quite
recently. Note also the ‘‘gene name’’ field, which lists the gene
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name or symbol that can be useful for searches in genome
resources. For this protein, there is evidence at the protein level,
as you can see in the respective field. Below the references, the
‘‘Comments’’ section provides an overview of the knowledge
about its biological function. Information on molecular interac-
tions is given as well, although at this point we do not know which
residues mediate which interaction. Further down, a list of key-
words is provided that can be very useful for obtaining a quick
impression about the protein and for finding other proteins that
have been annotated with the same keyword. Then, we can see
‘‘features,’’ i.e., annotations that can be localized to particular
residues or regions. This includes a helix-loop-helix motif, a
potential leucine zipper, and a basic motif (see Fig. 3.2, rectangles
marked HLH, LZ, and BM). There is also some information on
the 353 amino acids N-terminal of those C-terminal domains, but
they consist mostly of posttranslational modifications (e.g., T58,
which can be both phosphorylated and glycosylated), and areas
with compositional bias. So, what is actually the function of this
large area, and which residues are involved in which aspect of this
function? At the end of the features list, we can see the position of
secondary structure elements that are experimentally validated, in
this case three alpha-helices at the C-terminal end. But this still
leaves us wondering what is known about the N-terminal two
thirds of the protein. Being aware of the amount of literature
that is available, we may wonder if it would make a lot of sense to
try to locate this information in Pubmed, as such data are often not
obvious from the abstract of a paper.

At RefSeq, we can find the entry ‘‘NP_002458.2’’ (17), which
is version 2 of entry ‘‘NP_002458.’’ Note the comments on the
protein isoform created by the usage of downstream alternative
start codons, which seem to have some role in the cell. In the
‘‘FEATURES’’ section, we can again find details on the residues
involved in particular functions, in this case DNA binding and
dimerization (summarized as ovals in Fig. 3.2). But still we did
not find much new information on the N-terminal part. To see if
this lack of annotation of functional modules is due to a high

Fig. 3.2. Architecture of human c-myc, based on annotations in Swiss-Prot, RefSeq, and DisProt. From left to right: ‘‘iso’’ =
isoforms generated by alternative translation start sites differ in this region; ‘‘T58’’ = threonine 58 (according to Swiss-
Prot numbering), the residue that occurs in phosphorylated and glycolyslated forms; ‘‘BM’’ = basic motif; ‘‘DNA’’ =
residues involved in DNA binding; ‘‘HLH’’ = helix-loop-helix motif; ‘‘LZ’’ = leucine zipper. The double arrow marks the area
in the N-terminal which is known to be disordered. See the text for details.
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degree of structural and functional flexibility, a property of protein
sequences that can make their investigation more cumbersome, we
check DisProt, a database of protein sequences that offers annota-
tion of regions with experimentally validated intrinsic disorder (see
the dedicated chapter, and Table 3.1). Indeed, with a keyword
search for ‘‘c-myc,’’ we can find entry ‘‘DP00260,’’ which lists a
series of experiments that show the propensity for intrinsic disor-
der in the N-terminal part of the protein that includes the area
around T58, the residue we found to be sometimes phosphory-
lated and sometimes glycosylated (see the double arrow in Fig. 3.2
for the disordered area). As disordered regions often carry sites of
posttranslational modifications that modulate molecular interac-
tions, and as phosphorylation is usually the best understood, we
consult PhosphoSite, a resource specialized on organizing infor-
mation on posttranslational modifications of proteins (Table 3.1).
This resource can provide us with a nice overview of the role of
different phosphorylation sites, the experimental evidence for the
modification, and even the cell types it was found in. For example,
click on T58 to find out the various functions this intriguing site
has been associated with. Now, we are starting to understand a bit
better what this region is doing, although a detailed mapping of
residues involved in interactions seems nontrivial.

It can be useful as well to study the Swiss-Prot cross-refer-
ences, e.g., those linking to family and domain databases, as they
often contain information about the location of conserved mod-
ules that are for some reason not listed in the features section. For
example, go back to ‘‘MYC_HUMAN’’ in Swiss-Prot and see the
links to entries in Interpro, especially the ‘‘Graphical view,’’ which
displays their location in the sequence. In this particular case, the
Interpro results confirm only what we saw above.

So much for (relatively) well-characterized proteins, like c-
myc. But how is the situation for proteins for which only a few or
no papers on their biological function are available? For example,
in a search at NCBI you picked up the protein sequence
‘‘NP_444283’’ (can you find it?). Looking at the full entry, you
can see that it is supposed to belong to the superfamily of thioes-
terases, that there is some functional connection to the famous
Akt/PKB kinase, and also anti-apoptosis. In the section Com-
ments, you can see that the staff at NCBI have already reviewed
this protein, so we can find a nice summary of its known functions
right there, which at this time is based on only a handful of papers.
In the Features section, the C-terminal half of the protein is
annotated with ‘‘PaaI_thioesterase’’ (the location of the conserved
thioesterase domain), and a cross-reference to more information
about this domain is given. Even some binding sites in this area are
localized. Note that a link to CCDS is provided, which increases
our confidence in the sequence itself. But what is known about the
first 150 amino acids again? To find out if Swiss-Prot can tell us
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more about this N-terminal half, we can try to find the correspond-
ing entry in Swiss-Prot (should be easy, right?). Just use the RefSeq
sequence as a query on ExPASy BLAST against Swiss-Prot; follow-
ing the links at the NCBI page to Swiss-Prot is possible but can be
more complicated. Looking at their BLAST scores, you can see
how the hits at the top have very good scores of at least several
hundred. But in this case, we want an identical or almost identical
sequence from humans, to compare annotations, so click on the
score of the first hit and investigate the alignment between both
sequences. It should be 100% identical, or at least very close to
that. Therefore, the ID of this protein at Swiss-Prot is THEM4_
HUMAN, at least at the moment (for a relatively new gene, the
chance of name change is considerable). If we look at the entry of
this protein in our BLAST results, it provides a link to Uniprot for
the accession Q5T1C6, which is the more stable identifier for the
protein (see above). This brings us to Swiss-Prot, where we can
search for additional annotations for this protein. There is some
additional information in Comments, but the feature table unfor-
tunately does not give us more information on the N-terminal half.
Also, the link to the graphical view at Interpro only features the
conserved C-terminal domain again. Even DisProt and Phospho-
Site, at this time, do not contain annotations for this area. There-
fore, by analyzing the information in protein sequence databases,
we can at least make a statement about the likely function of the
conserved C-terminal domain, but would not be able to say much
about the N-terminal half. Of course, we could then apply a variety
of prediction methods, such as searches for conserved small linear
motifs or of course homology with proteins that have known
interactions, to come up with testable hypotheses on the possible
functions of particular areas (see other chapters).

For some proteins, there may not even be a conserved domain
with some functional information available in the resources discussed
above. An analysis with the resources described in Fig. 3.1 may then
help to find out if there are clear similarities to better-characterized
proteins in Swiss-Prot, RefSeq, or curated organism databases (see
Table 3.1). If we would like to find out more about such a protein,
we may have to leave the realm of the protein sequence databases and
look up information in gene expression databases like GEO Profiles
at NCBI (18) and other resources (see other chapters).

4. Lower Quality
Sequence
Databases

So far we have focused on scenarios in which the most reliable
sequence is the object of analysis and annotation. It can happen,
though, that a comprehensive assessment of all potentially relevant
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protein sequences is required, including those that do not have
much experimental evidence. Many methods that use protein
sequences as input, such as evolutionary analysis and function
prediction approaches, require as many protein sequences as pos-
sible, at least initially. Often, the basis of further analysis is a high-
quality, curated alignment that allows the distinction of conserved
regions, residues, and local properties. But how to obtain such a
high-quality alignment of protein sequences? One of the best ways
of generating such an alignment is by using the myHits server at
SIB (19). In addition to Swiss-Prot and RefSeq, many other
databases of protein sequences can be searched there, while redun-
dancy clustering can help to use the most representative sequences
for a cluster of highly similar sequences (using the rules described
above). This includes databases of protein sequences that have
some evidence at least at the transcript level (such as TREMBL
and most sequences in Ensembl), but also databases of lower
quality (20) that contain potential protein sequences that require
careful assessment through alignment visualization. In cases where
sequences with a certain evolutionary distance are needed to
improve the usefulness of an alignment, and where higher quality
sequences are not available to obtain informative conservation
patterns for the regions of interest, such databases can become
useful. Also, they can help to identify homologs of a known
protein in an additional organism. They basically provide candi-
date protein sequences created by methods that use EST evidence,
and even gene predictions solely based on genomic DNA. Usually,
careful inspection of the alignment by an experienced user can help
to decide if they could make useful contributions to the question at
hand or not. They should be used with caution due to the con-
siderable amount of artifacts in the sequences.

5. Navigating the
Labyrinth of
Resources

Although the resources discussed above may be sufficient to
answer many common questions about protein sequences and
their annotations, the challenge remains to navigate the labyrinth
of additional resources, of which many are extremely useful and
well-maintained. In this last paragraph, we will therefore provide
some tips on how to deal with this challenge, which are based on
personal experience and may therefore be highly biased.

If you have about an hour or two to spend on your protein of
interest, and if you would like to assemble as much information
about its functions and where they are localized in the sequence,
we would recommend to spend some time carefully analyzing all
sections of both the Swiss-Prot and the RefSeq entry, if available.
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This should include the inspection of most of the links available
there. To avoid getting lost on the Internet, make sure to note
useful information and its source, and if it can be assigned to a
particular location in the sequence (some may prefer to keep this in
a sequence analysis software, others may record it as text or gra-
phics, as in Fig. 3.2). If organism-specific resources are available
for highly similar sequences, check those as well (see Table 3.1). In
cases where such expert-reviewed entries are not available, focus
on similarity search with BLAST at ExPASy and RefSeq, and on
InterproScan, and take some time to carefully examine the hits.
Simply by studying the available information thoroughly, you will
already have an edge over your less ambitious academic competi-
tors who tend to lose their patience too quickly on such tasks. But
not you, of course.
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Chapter 4

Protein Structure Databases

Roman A. Laskowski

Abstract

Web-based protein structure databases come in a wide variety of types and levels of information content.
Those having the most general interest are the various atlases that describe each experimentally determined
protein structure and provide useful links, analyses, and schematic diagrams relating to its 3D structure and
biological function. Also of great interest are the databases that classify 3D structures by their folds as these
can reveal evolutionary relationships which may be hard to detect from sequence comparison alone.
Related to these are the numerous servers that compare folds – particularly useful for newly solved
structures, and especially those of unknown function. Beyond these there are a vast number of databases
for the more specialized user, dealing with specific families, diseases, structural features, and so on.

Key words: protein structure, Protein Data Bank (PDB), wwPDB, RCSB, JenaLib, OCA, PDBe,
PDBsum, ESD, CATH, SCOP, secondary structure, fold classification, protein–ligand interactions.

1. Introduction

Looking back to 1971, when the Protein Data Bank (PDB) was
founded (1), one cannot help feeling that the study of protein
structure must have been a lot simpler then. There were only
seven experimentally determined protein structures at the time,
and the data for each, including the proteins’ atomic coordinates,
were stored in simple, fixed-format text files. Admittedly, accessing
and displaying this information was more tricky and computers with
graphics capabilities tended to be bulky and expensive. These days,
access and display of the data over the Web are vastly easier, but with
this comes the problem, not so much of the huge increase in the
amount of information, but in the multiplicity of sources from
which it can be obtained. New servers and services continually
appear, while existing ones are modified and improved. Conversely,

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
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other servers are abandoned, switched off or neglected, becoming
more and more out of date with time. Thus it has become really
difficult to know where to go to get relevant answers most easily.
Various lists are available on the Web (for example the Nucleic Acids
Research (NAR) list at http://www3.oup.co.uk/nar/database/c).
However, this chapter aims to highlight some of the more useful,
and up-to-date (at time of writing), sources of information on
protein structure that are currently available.

2. Structures and
Structural Data

2.1. Terminology First, it is important to define what is meant by the term ‘‘protein
structure.’’ It is a term that tends to be somewhat loosely used. A
preferable term is ‘‘model,’’ as the 3D structures of large molecules
such as proteins are models of the atom types, atomic x-, y-, z-
coordinates and other parameters that best fit the experimental
data. The reason that the term ‘‘structure’’ is so commonly used for
experimentally determined models is to distinguish these from
‘‘theoretical,’’ or ‘‘homology-built,’’ models. Nevertheless, it is
important to remember both are models of reality and that only
the former type is actually based on experimental evidence.

Another loosely used term is ‘‘database.’’ Technically, the
databases mentioned here are not databases at all, but rather
‘‘data resources’’ – many of which rely on a database for storing
and serving up the data. However, the term ‘‘database’’ is becom-
ing common usage for the types of resources described here (e.g.,
the NAR Database issues), so it is the meaning we will adopt here.

2.2. The PDB and the

wwPDB

The primary repository of 3D structural data on proteins (and other
biological macromolecules, including RNA, fragments of DNA,
carbohydrates, and different complexes of these molecules) is the
PDB. As mentioned above, this was founded in 1971 and located at
Brookhaven National Laboratories. In October 1998, the manage-
ment of the archive was taken over by the Research Collaboratory for
Structural Bioinformatics (RCSB), a consortium consisting of
Rutgers University, the National Institute of Standards and
Technology (NIST), and the San Diego Supercomputer Center
(2). Since 2003 the archive has been managed by an international
consortium called the world-wide Protein Data Bank (wwPDB)
whose partners comprise the RSCB, the Macromolecular Structure
Database (MSD, now known as the PDBe) at the European Bioin-
formatics Institute (EBI), the Protein Data Bank Japan (PDBj) at
Osaka University and, more recently, the BioMagResBank (BMRB)
at the University of Wisconsin-Madison (3). Access to the primary
data is via the wwPDB’s web site: http://www.wwpdb.org. The
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data come in three different formats: old-style PDB-format files,
macro-molecular Crystallographic Information File (mmCIF)
format (4), and a XML-style format called PDBML/XML (5).
For many of the structures, the wwPDB also makes the original
experimental data available. Thus, for structural models solved by
X-ray crystallography, one can often download the structure fac-
tors from which the model was derived, while for structures solved
by nuclear magnetic resonance (NMR) spectroscopy, the original
distance and angle restraints can be obtained. As of May 2008, the
wwPDB contained nearly 50,000 structural models, each identi-
fied by a unique four-character reference code, or PDB identifier.

A key task that the wwPDB has performed is the remediation
of the legacy PDB archive to fix and make consistent the entire
PDB data, in particular relating to ligands and literature references.
Another key task, performed by the MSD in association with the
UniProt group at the EBI, has been the mapping of the sequences
in the PDB entries onto the appropriate sequences in UniProt.

2.3. Structural Data

and Analyses

Rather than download the raw data from the wwPDB for each
protein of interest, it is usually more convenient to obtain the
information of interest directly from one of the myriad protein
structure databases on the Web. These come in many shapes and
sizes, catering for a variety of needs and interests.

At the simplest level are the sites that provide ‘‘atlas’’ pages –
one for every PDB entry – each containing general information
obtained from the relevant PDB file. There are usually graphical
representations of the structural model together with links that
provide interactive 3D visualizations using Java-based, or other,
viewers. Each of the founding members of the wwPDB has their
own atlas pages: the RCSB, the PDBe, and PDBj. In addition,
there are several other sites that have much to recommend them,
and some of these will be mentioned below.

Beyond the atlases, there are a host of other types of sites and
servers. These include those that provide information on specific
structural motifs, focus on selected protein families, classify pro-
tein folds, compare protein structures, provide homology-built
models for proteins for which no structure has been determined,
and so on. This chapter will cherry–pick a few of the more inter-
esting and useful sites to visit.

3. Atlases

Table 4.1 lists the seven best-known and useful of the atlas sites.
All have been developed independently and, not unexpectedly, all
have much in common as the information comes from the same
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source: the PDB entry. So the protein name, authors, key refer-
ence, experimental methods, atomic coordinates, and so on are
obviously all identical. Also common to most of them are certain
derived data, including quality assessment of each structural
model, and information about the protein’s likely ‘‘biological
unit.’’

The first of these, quality assessment, is a crucial issue as not all
experimentally determined protein models are equally reliable.
Much has been written on this topic over the years (6–10). The
main problem is that the results of any experiment contain errors,
but with protein structure models it is difficult to estimate the
severity of those errors. Thus it is not obvious which models are
more reliable than others. For X-ray models, the resolution at
which the structure was solved and its R-factor can be a rough
guide, while for NMR models there is usually even less information
to go on. So it is important to have some sort of guide as to
whether a given structural model is a reliable one or not and
most atlases provide a rough guide.

The second important issue is the one of knowing what a given
protein’s biological unit is. This is not always obvious from the PDB
entry itself. The problem is that the deposited coordinates from an
X-ray crystal structure determination correspond to the molecule(s)
in the asymmetric unit. This may give a false impression of how the
protein operates in vivo. So, for example, what may look like a
monomer from the PDB entry is, in real life, a dimer, or a trimer,
etc. Conversely, the PDB entry might give the coordinates of a
dimer, yet the biological unit happens to be a monomer. For any
structural analysis, it is crucial to know what the true biological unit
is. For some proteins the biological unit has been determined
experimentally, and so is known with great confidence. In others

Table 4.1
Protein structure atlases

Server Location URL Ref

JenaLib Fritz Lipmann Institute, Jena,
Germany

http://www.fli-leibniz.de/IMAGE.html (28)

MMDB NCBI, USA http://www.ncbi.nlm.nih.gov/Structure/
MMDB/mmdb.shtml

(52)

PDBe EBI, Cambridge, UK http://www.ebi.ac.uk/pdbe (23)

OCA Weizmann Institute, Israel http://bip.weizmann.ac.il/oca-bin/ocamain

PDBj Osaka University, Japan http://www.pdbj.org

PDBsum EBI, Cambridge, UK http://www.ebi.ac.uk/pdbsum (29)

RCSB Rutgers and San Diego, USA http://www.rcsb.org/pdb (2)
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it has to be deduced computationally by analysis of the packing of the
individual chains in the crystal. Some interfaces are more substantial
than others and hence likely to represent genuine biological interac-
tions rather than happenstance crystal contacts. Most of the atlases
provide information on the known, or predicted, biological unit.
The most commonly used prediction methods are protein quatern-
ary structure (PQS) (11), and the method that has now superseded
it: protein interfaces, surfaces, and assemblies (PISA) (12).

Beyond these general similarities, the atlases differ in sufficient
respects to make them complement one another; they differ in
what additional information they pull in, the links they make to
external resources, and the analyses of the 3D structure that they
provide. Consequently, the atlas of choice can be either a matter of
personal preference or depend on the type of information one is
after.

A recent review compared these atlases, or ‘‘comprehensive
information resources’’ as it called them, and identified their
similarities and differences (13). Here we include only those
that have aspects that make them unique, useful, or interesting,
and we focus on those features. We start with the atlases provided
by the founding members of the wwPDB, and then discuss some
of the others.

3.1. The RCSB PDB The RCSB’s Web site is a very rich source of information about
each PDB entry and can be a little overwhelming for novices.
Hence a ‘‘Quick Tips’’ icon periodically offers a handy hint
about where to go for specific data. There are also various
tutorials, including a narrated one using Flash, to help users
get started.

3.1.1. Summary Page The design of each entry’s summary information page (Fig. 4.1)
aims to make clear which is the ‘‘primary’’ information, coming
from the experiment (and entered in the header records of the
original PDB file) and which information (shown in red) is sec-
ondary – i.e., derived from the primary – such as the SCOP (14)
and CATH (15) fold classifications, constituent Pfam domains
(16), and Gene Ontology (GO) functional annotation (17). Text
in bold blue initiates a search for all other PDB entries having that
text in common (e.g., other entries with the same author name, or
species, or protein classification, etc).

The thumbnail image of the structure has two modes, and you
can click between the two: one mode shows the asymmetric unit
and the other shows the biological unit, as described above
(although in many cases they are identical). For more recent
structures, the RCSB site uses the depositors’ information on the
likely biological unit. For older structures, where there is no
depositor information, the biological unit is as predicted by the
PQS algorithm.
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Below the thumbnail are links to no fewer than six Java-based 3D
viewers, which allow one to view the molecule interactively, rotating
and moving it about on screen. The viewers are KiNG, Jmol, WebMol,
MolecularBiologyToolkit(MBT)SimpleViewer,MBTProteinWork-
shop,andQuickPDB.Whichoftheseyouusesoonbecomesamatterof
personal preference (and patience when download times are long).

Fig. 4.1. RCSB atlas page for PDB entry 1ayy, a glycosylasparaginase showing the summary information for this structural
model determined by X-ray crystallography at 2.32 Å resolution.
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3.1.2. Other Information Besides the summary information, further structural details are
presented on additional pages titled Biology & Chemistry, Mate-
rials & Methods, Sequence Details, and Geometry. Of most inter-
est on these pages is the schematic diagram of the protein’s
secondary structure (showing �- and p-helices, b-sheets, turns,
and disulphide bonds) on the Sequence Details page (see
Fig. 4.2). Indicated on the diagram are any SCOP structural
domains.

For ligands, there is the 3D Java-based Ligand Explorer,
which allows you to select and view different types of protein–
ligand interactions.

Fig. 4.2. The sequence details for chain A of entry 1ayy in the RCSB server, showing a schematic diagram of the secondary
structure assignments for this chain together with the SCOP structural domain.
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The advanced search option allows for quite complex queries,
and subqueries, on the data, telling you how many hits each set of
conditions returns as you refine your search.

3.1.3. Quality Assessment For assessing the quality of each protein model, the RCSB provides
a Ramachandran plot of the protein’s main chain ’ and c torsion
angles as generated by the MolProbity structure validation pro-
gram (18). The tightness of the clustering of points in the ‘‘core’’
regions of the plot can indicate that the structure is of good
quality; conversely, a large number of points lying outside these
regions can suggest that part, or all, of the structure may be of
dubious reliability. Another quality measure is provided by the
‘‘fold deviation score’’ (FDS), given for each chain on the Geome-
try page.

3.1.4. Molecule of the

Month

One particularly eye-catching feature of the RCSB site is the
‘‘Molecule of the Month’’ written by David S. Goodsell of The
Scripps Research Institute and illustrated with his beautiful plots.
Each month the structure and function of a different protein or
protein family are described, with specific references to the PDB
entries that have contributed to the understanding of how the
proteins achieve their biological roles. The collection of short
articles, which are suitable for specialists and nonspecialists alike,
dates back to the year 2000 and now numbers over 100 entries,
providing a nice reference and educational resource. Particularly
stunning is the poster available from the Molecule of the Month
home page. The RCSB also provides other educational material
and documents suitable for higher level schooling, which is a good
place to start when looking for teaching material.

3.1.5. Structural Genomics

Portal

There have been a number of worldwide initiatives to solve
protein structures in a high-throughput manner, targeting
those whose structures are unknown and which may be of parti-
cular interest, whether because they represent new families with
no structural representatives, or proteins expected to have a novel
fold, or proteins of relevance to disease (19). These Structural
Genomics projects now contribute nearly a fifth of all newly
released structural models each week, and the RCSB’s PDB site
has a special section devoted to the analysis of these at http://
www.sg.pdb.org. This section has its own ‘‘Structure of the
Month,’’ which features a recently solved structure of special
interest.

3.2. The MSD The MSD (20–23) is a relational database providing an extensive
set of search and analysis tools that allows one to explore and mine
the structural data in the PDB. The atlas pages for each entry show
the usual summary information describing the structure and the
experimental details used to obtain it. As well as this summary
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page, additional pages provide information on the Assembly (i.e.,
biological unit, based on PISA), Sequence, Citation, Similarity,
and Visualization.

3.2.1. Search Tools The MSD provides a bewilderingly large number of search tools,
both on the text data associated with the PDB entries and on
structural data. The full list can be found on the PDBe home
page (http://www.ebi.ac.uk/pdbe), but only a few will be men-
tioned here.

The simplest is PDBeLite, which is an easy-to-use Web form
for searching on text or sequence data. The form allows the user to
select additional data to be included in the results, such as various
identifiers (e.g., UniProt id).

MSDfold uses the secondary structure similarity matching
program SSM (24) to find structurally similar proteins for an
uploaded PDB file. This is a fold-matching server; others will be
mentioned later.

PDBeMotif, which now incorporates MSDsite (25), allows
searches for sequence and structural motifs as well as for ligands
and specific protein–ligand interactions. Structural motifs can be
defined in terms of patterns of secondary structure, ’/c and �
angles, and C� and side-chain positions. Searches are entered
either via a simple Web form or using a graphical query generator.
The hits from a search can be viewed in three dimensions, aligned
by ligand, PROSITE pattern, active site residues, or by environ-
ment. One can generate various statistics on protein–ligand inter-
actions (e.g., to compare the different distributions of residues
binding to ATP and GTP). Of particular use is an option to upload
a PDB file and scan its ligands and active sites against the MSD
data.

MSDpro is a graphical query builder, run as a Java applet,
which allows the construction of highly specific and fiendishly
complex search queries. Each search term is represented by a box
on the screen; the manner in which the boxes are laid out within
larger ‘‘operator’’ boxes defines the logic of the query.

PDBeAnalysis allows you to quickly analyze various structural
parameters in the data across the PDB. It shows the distribution of
the selected parameter as a pie chart or histogram (either 1D or
2D), which can then be explored by using click-and-drag to select
bins, or ranges of bins, and obtain, say, the list of PDB codes from
which the data come. It can be used to perform geometric valida-
tion of a given structure, select data based on various filters, or
perform statistical analyses of the data in the PDBe. One can even
submit one’s own SQL queries direct to the database.

3.2.2. The AstexViewerTM The PDBe’s primary visualization tool, which has been partly
developed by the MSD, is the AstexViewerTM@MSD-EBI (AV-
MSD) (26, 27). This is a powerful search, comparison, and display
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tool in its own right. It runs as a Java applet and aims to provide a
graphical interface for the data in the MSD. As some database
searches can return hits to multiple structures, so the viewer can
present these hits, structurally superposed, along with the corre-
sponding sequence alignments. Structural analyses are presented
in a variety of graphs such as histograms, pie charts, dendrograms,
and so on (see Fig. 4.3). These are dynamically linked to one
another as well as to the 3D structure and sequence views. Thus,
selection of data in a graph or view – either by a mouse-click or by
click-and-drag ‘‘data brushing’’ to select a region of data points – is
reflected by appropriate highlighting in all other graphs and views.
A nice feature, also found in some other structure viewers, is the
way the viewer ‘‘flies’’ between different views of the structure, say
to centre on a different residue selected from the sequence display
by the user. If the new residue is off-screen, the viewer first zooms
out to the whole molecule view before zooming in on the new
residue of interest (much like the flight in Google Earth). Other
nice features are the ‘‘hyperbolic’’ display of the protein sequence,
wherein the current region of interest is magnified relative to the

Fig. 4.3. The MSD’s Astex viewer showing PDB entry 2oig, tyrosine kinase c-Src, with the bound drug molecule imatinib.
Two pop-up windows are shown on the right, one giving the interactions between the ligand and protein residues and the
other a Ramachandran plot of the protein’s  –’ torsion angles.
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rest of the sequence, and a ‘‘magic lens’’ which, when passed over
the 3D structure with the mouse, displays additional structural
annotation of the macromolecule within the lens region.

3.3. JenaLib The Jena Library of Biological Macromolecules, JenaLib (28), was
one of the earliest sites offering atlas pages for each PDB entry, and it
specializes in hand-curated images of the structures showing func-
tionally informative views. Rather than split information across several
pages, JenaLib shows all the information on a single page but has a
collapse/expand mechanism for controlling what is shown and what
is hidden. In addition to several of the standard 3D viewers, the site
features its own: the JenLib Jmol viewer. This viewer is an extension
of Jmol, which has a number of options not found in other viewers,
such as highlighting of PROSITE motifs, single amino acid poly-
morphisms, and CATH or SCOP domain structures.

JenaLib has more links to external databases than the other
atlas sites and is particularly strong on its many visualizations of
each entry – both in terms of its interactive viewing options and
preprepared still images.

A particularly useful feature is a form for generating lists of PDB
entries according to a number of criteria. Additionally, there are a
number of precomputed lists of structures; for example, all nucleic
acid structures without protein, all carbohydrate structures, and so on.

3.4. OCA OCA’s main difference from the other atlases is its linkage between
proteins and the diseases associated with them. It differs also in
that its home page is a search form, much like that of PDBeLite,
but with a few additional search options. These include gene name,
function, disease, and membrane orientation (for membrane-
spanning proteins).

3.5. PDBsum The last of the atlases described here is PDBsum (29). This aims to
be more pictorial than the other sites, illustrating many of its struc-
tural analyses by schematic diagrams rather than as tables of num-
bers. Also, it allows users to upload their own PDB files and get a set
of password-protected PDBsum pages generated for them.

3.5.1. Pfam Domain

Diagrams

Each entry’s summary page has a few useful features not found in
the other atlas sites. One of these is a clickable schematic diagram
showing how much of the full-length protein sequence is actually
represented by the 3D structural model (Fig. 4.4a). Often, for
example, the 3D structure is only of a single domain. The diagram
shows the protein’s secondary structure and annotates it with any
Pfam sequence domains and CATH structural domains. Occasion-
ally crystallographers assign two separate chain identifiers to differ-
ent parts of a single protein sequence (perhaps because of a sequence
break), and these diagrams can show this immediately (see for
example PDB entry 1ayy). The orange ‘‘+’’ icon above the diagram
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identifies other PDB entries containing the same protein sequence.
From the list one can see if there any better or more complete
structural models of the given protein, as shown in Fig. 4.4b.

3.5.2. Quality Assessment The summary page also provides an at-a-glance guide to the
protein’s likely reliability by way of a thumbnail Ramachandran
plot. Hovering the mouse over the thumbnail pops up a full-size
version. As before, a more reliable model will have more points in
the core regions (here colored red). Residues in the yellow, dis-
allowed regions are labeled, so if a model has many labeled resi-
dues, it might be an idea to look for an alternative. Clicking on the
plot goes to a page showing the summary results from the PRO-
CHECK quality assessment program (30) and from this page you
can generate a full PROCHECK report.

3.5.3. Enzyme Reactions For enzymes, the relevant reaction catalyzed by the enzyme is
shown by a reaction diagram where possible. If any of the ligands
bound to the protein correspond to any of the reactants, cofactors,
or products, the corresponding molecule in the diagram is boxed in
red. If a ligand is merely similar to one of these, a blue box surrounds
the molecule instead and a percentage similarity is quoted.

3.5.4. Figures from Key

References

The majority of experimentally determined protein structures are
reported in the scientific literature, often in high-profile journals,
and each PDB file cites the ‘‘key’’ reference – i.e., the one describing

Fig. 4.4. Relationships in PDBsum between 3D structural models and their corresponding UniProt sequence. (a) A schematic
Pfam diagram taken from the PDBsum atlas page for PDB entry 2cgf, the N-terminal domain of the yeast HSP90 chaperone.
The extent of the 3D structural model is shown beneath the Pfam domains and shows that, indeed, the structural model
corresponds to only the N-terminal domain. Clicking on the ‘‘+’’ icon returns all other PDB entries for the given UniProt
sequence (HSP82_YEAST). (b) The top 10 PDB entries for this sequence, showing that the structures tend to be of either the N-
or C-terminal domains. However the top structure, PDB entry 2cg9, provides the most complete structural model of this protein,
albeit at very low resolution and, at the very least, can provide information on how the two domains pack together in 3D.
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the structure determination, analysis, and biological significance of
the protein. Like the other atlas sites, PDBsum cites this reference,
shows its abstract, and provides links to both the PubMed entry and
the online version of the article. Where PDBsum differs is that for
many of these references, it also gives one or two figures (plus figure
legends) taken directly from the key reference itself (31). This is
done with permission from the relevant publishers and is useful for
two reasons. First, a carefully selected figure can speak volumes
about an important aspect of the protein’s structure or function.
And second, each chapter’s lead author is requested to review which
figures have been selected by the automated process and, if need be,
suggest better choices. About one in six authors take the trouble to
do this. And some even add an additional comment to appear on the
entry’s summary page (e.g., PDB entry 1hz0).

3.5.5. Secondary Structure

and Topology Diagrams

From the summary page are various additional pages giving
schematic diagrams of different aspects of the 3D structure. The
‘‘Protein’’ page shows a diagram of the chain’s secondary structure
elements, much like the RCSB’s diagram shown in Fig. 4.2.
Additional features include the annotation of residues that are
catalytic – as defined in the Catalytic Site Atlas (CSA) (32) – or
are included in the SITE records of the PDB file, or interact with a
ligand, DNA/RNA, or metal, or belong to a PROSITE pattern
(33). CATH structural domains are marked on the sequence, in
contrast to the RCSB’s diagram which uses SCOP. Where there is
information on the conservation of each residue in the sequence –
obtained from the ConSurf-HSSP site (34) – the secondary struc-
ture plot can be redisplayed with the residues colored by their
conservation.

Next to the secondary structure plot is a topology diagram
either of the whole chain or, where it has been divided into its
constituent CATH domains, of each domain (Fig. 4.5). The dia-
gram shows the connectivity of the secondary structure elements
with the constituent b-strands of each b-sheet laid side-by-side,
parallel or antiparallel, to show how each sheet in the chain/domain
is formed, and where any helices are found relative to the sheets.

3.5.6. Intermolecular

Interactions

Some of the other pages for each PDB entry are devoted to sche-
matic representations of intermolecular interactions. Thus for each
ligand molecule or metal ion in the structure, there is a schematic
LIGPLOT diagram (35) of the hydrogen bonds and nonbonded
interactions between it and the residues of the protein to which it is
bound (see Fig. 4.6). Similarly, any DNA–protein interactions are
schematically depicted by a NUCPLOT diagram (36). Protein–
protein interactions at the interface between two or more chains
are shown by two plots: the first shows an overview of which chains
interact with which (Fig. 4.7b), while the second shows which
residues actually interact across the interface (Fig. 4.7c).
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4. Homology
Models and
Obsolete Entries

4.1. Homology

Modeling Servers

As mentioned above, there were nearly 50,000 structural models
in the wwPDB as of May 2008. However, some of these were not
of proteins and many were duplicates: that is the same protein
solved under different conditions, or with different ligands bound,
or with one or more point mutations. In terms of unique protein
sequences, as defined by the UniProt identifier, this 50,000 cor-
responded to only about 17,000 unique sequences. [Compare this
number with the 105 million sequences in EMBL-Bank (37).]
Moreover, for many of these, the 3D structure represents only a
part of the full sequence, say merely a fragment or a single domain.

Fig. 4.5. A topology diagram taken from PDBsum for the second domain of chain A in PDB
entry 2b6d: a bovine lactoferrin. The diagram illustrates how the b-strands, represented
by the block arrows, join up, side-by-side, to form the domain’s central b-sheet. The
diagram also shows the relative locations of the �-helices, here represented by
cylinders. The small arrow indicates the directionality of the protein chain, from the N-
to the C-terminus. The numbers within the secondary structural elements correspond to
the residue numbering given in the PDB file.
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Thus, if one is interested in a protein for which there are no 3D
coordinatesavailableor thecoordinatesareonlyofpartof theprotein, it
is common to build a homology model based on the 3D structural
model of a closely related protein (if there is one). The PDB used to
accepthomology-builtmodels togetherwith theexperimentallydeter-
mined ones but, as of 1 July 2002, moved its holding of theoretical
modelsoutofthestandardPDBarchivetoaseparateftpsiteandthen,as
ofOctober15,2006,stoppedacceptinganynewones.AsofMay2008,
there were only 1,358 models on the ftp site so, with such a small
number, it is unlikely thatone’s protein of interestwill be among them.

Fig. 4.6. LIGPLOT for PDB entry 2oig, tyrosine kinase c-Src, as given in PDBsum showing the interactions between the
bound molecule imatinib (a drug, brand name gleevec) with the residues of the protein. Hydrogen bonds are represented
by dashed lines. Residues that interact with the ligand via nonbonded contacts only are represented by the eyelashes.
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The alternative is to build a homology model oneself, and
there are various servers that will perform the process largely, or
completely, automatically. The best known is SWISS-MODEL
(38). This accepts a protein sequence and will return a 3D model
if it is able to build one. More advanced users can submit multiple
sequence alignments and manually refine the final model. It is
important to remember that any homology-built model will, at
best, be imperfect and at worst totally misleading – particularly if
one or more of the structural models that act as a template for the
model contain errors. So a key part of SWISS-MODEL is the
various validation checks applied to each model to provide the
user with an idea of its likely quality.

Table 4.2i shows a list of automated homology modeling
Web servers. These are regularly tested by the EVA server (39),
which produces statistics on accuracy and ranks the servers by
various criteria (Table 4.2ii).

Fig. 4.7. Extracts from the protein–protein interaction diagrams in PDBsum for PDB entry
1cow, bovine mitochondrial F1-ATPase. (a) Thumbnail image of the 3D structural model
which contains seven protein chains: three of ATPA1_BOVIN (chains A, B and C), three of
ATPB_BOVIN (chains D, E and F) and a fragment of ATPG_BOVIN (chain G). (b) Schematic
diagram showing the interactions between the chains. The area of each circle is
proportional to the surface area of the corresponding protein chain. The extent of the
interface region on each chain is represented by a coloured wedge whose colour
corresponds to the colour of the other chain and whose size signifies the interface
surface area. (c) A schematic diagram showing the residue–residue interactions across
one of the interfaces, namely that between chains D and G. Hydrogen bonds and salt
bridges are shown as solid lines while non-bonded contacts are represented by dashed
lines.

74 Laskowski



Aside from building a model yourself, it may be possible to
download a ready-built, off-the-shelf one. The SWISS-MODEL
Repository (40) contained over 1.3 million models in May 2008,
each accessible by its UniProt accession number or identifier.
Similarly, ModBase (41) contains a large number of precomputed
models for sequences in the SwissProt and TrEMBL databases –
4.3 million models for 1.3 million proteins in May 2008.
Table 4.2iii gives the URLs and references for these servers.

4.2. Threading Servers What about cases where there is no sufficiently similar protein of
known structure and thus no possibility of building a homology
model? In these cases, it is sometimes necessary to resort to despe-
rate measures such as secondary structure prediction and fold
recognition, or ‘‘threading.’’ The results from these methods
need to be treated with extreme care. Occasionally, these methods
approximate the right answer – usually for small, single-domain
proteins where they may produce topologically near correct mod-
els (42) – but generally, they are wildly wrong and so should be
used only as a last resort. A full list of these servers can be found on
the LiveBench Web site (http://www.bioinfo.pl/LiveBench),
which regularly evaluates these servers (43).

Table 4.2
Homology model servers

Server Location URL Ref

(i) Automatic homology modeling

3D-JIGSAW Imperial Cancer Research
Fund, UK

http://www.bmm.icnet.uk/servers/
3djigsaw

(53)

CPHmodels Technical University of
Denmark

http://www.cbs.dtu.dk/services/
CPHmodels

(54)

ESyPred3D University of Namur, Belgium http://www.fundp.ac.be/urbm/
bioinfo/esypred

(55)

SWISS-MODEL Biozentrum Basel, Switzerland http://swissmodel.expasy.org (38)

(ii) Evaluation of modeling servers

EVA Columbia University, USA http://cubic.bioc.columbia.edu/eva (39)

(iii) Precomputed homology models

SWISS-MODEL
Repository

Biozentrum Basel, Switzerland http://swissmodel.expasy.org/
repository

(40)

ModBase University of California San
Francisco, USA

http://modbase.compbio.ucsf.edu (56)

PDB archive RCSB, USA ftp://ftp.wwpdb.org/pub/pdb/
data/structures/models
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4.3. Obsolete Entries As experimental methods improve, better data sets are collected or
earlier errors are detected, so some structural models in the PDB
become obsolete. Many are replaced by improved structural mod-
els, whereas others are simply quietly withdrawn. None of these
obsolete entries disappear entirely, though. Some of the atlases
mentioned above include the obsolete entries together with the
current ones, and there used to be a special database devoted to
their memory: the Archive of Obsolete PDB Entries. Sadly, this,
too, is now obsolete. However, the original PDB files can still be
found on the wwPDB’s ftp servers.

5. Fold Databases

5.1. Classification

Schemes
There are currently around 900 known fold groups (44). Many
proteins comprise more than one structural domain, with each
domain being described by its own fold and often able to fold up

Table 4.3
Fold classification and comparison servers

Server Location URL Ref

(i) Fold classification

CATH University College London, UK http://www.cathdb.info (57)

SCOP University of Cambridge, UK http://scop.mrc-lmb.cam.ac.uk/scop (14)

(ii) Fold comparison

CE University of California San
Diego, USA

http://cl.sdsc.edu/ce.html (58)

Dali University of Helsinki, Finland http://ekhidna.biocenter.helsinki.fi/
dali_server

(59)

DBAli University of California San
Francisco, USA

http://www.salilab.org/DBAli (60)

FATCAT Burnham Institute, USA http://fatcat.burnham.org (61)

MATRAS Nara Institute of Science and
Technology, Japan

http://biunit.aist-nara.ac.jp/matras (62)

SSM European Bioinformatics
Institute, UK

http://www.ebi.ac.uk/msd-srv/ssm (24)

TOPSCAN University College London, UK http://www.bioinf.org.uk/topscan (63)

VAST NCBI, USA http://www.ncbi.nlm.nih.gov/Structure/
VAST/vastsearch.html

(64)
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independently of the rest of the protein. There have been a num-
ber of efforts to classify protein domains in a hierarchical manner.
The two current market leaders in this field are the SCOP and
CATH hierarchical classification systems (see Table 4.3i). In
CATH, protein structures are classified using a combination of
automated and manual procedures, with four major levels in the
hierarchy: Class, Architecture, Topology (fold family), and Homo-
logous superfamily (45). In SCOP, the classification is more man-
ual, although some automated methods are employed.
Comparisons between the two classification schemes have shown
there to be much in common, although there are differences,
primarily in how the structures are chopped into domains (46).

Recently, it has become apparent that protein folds are not the
discrete units that these classification schemes might imply, but
rather that protein structure space is a continuum (47). However,
the two databases are very valuable resources because they group
domains by their evolutionary relationships even where this is not
apparent from any similarities in the sequences.

5.2. Fold Comparison Often a given structural domain is associated with a specific bio-
logical function. However, the so-called superfolds, which are
more common than other folds, tend to be responsible for a
wide range of functions (48). There are a large number of Web
servers that can identify all proteins sharing a given protein’s fold.
The main problem is knowing which server to use. Each uses a
different algorithm or has a different way of assessing the signifi-
cance of a match. Table 4.3ii lists a selection of the more popular
servers. A fuller list, together with brief descriptions of the algo-
rithms and a comparison between them can be found in various
comparisons that have been made between them (49, 50).

6. Miscellaneous
Databases

6.1. Selection of Data

Sets

For any bioinformatics analysis involving 3D structural models, it
is important to get a valid and representative dataset of models of
as high a quality as possible. To help in this process there are
various servers that allow you to obtain such lists based on various
selection criteria. Table 4.4 lists several such servers.

6.2. Uppsala Electron

Density Server (EDS)

As has been mentioned a couple of times already, a key aspect
of any structural model is how reliably it represents the protein
in question. A poor-quality model limits what structural or
functional conclusions can be drawn from it. For X-ray models,
in addition to the geometrical checks mentioned above, the
most useful guide to reliability is how well the model agrees with
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the experimental data on which it was based. The Uppsala EDS
(51), displays the electron density maps for PDB entries for which
the experimental structure factors are available. The server also
provides various useful statistics about the models. For example,
the plots of the real-space R-factor (RSR) indicate how well each
residue fits its electron density; any tall red spikes are regions to be
wary of. Other useful plots include the occupancy-weighted aver-
age temperature factor and a Z-score associated with the residue’s
RSR for the given resolution.

Table 4.4
Selection of data sets

Server Location URL Ref

ASTRAL University of Berkeley, USA http://astral.berkeley.edu (65)

JenaLib
(Entry
Lists)

Fritz Lipmann Institute, Jena,
Germany

http://www.fli-leibniz.de/ImgLibPDB/
pages/entry_list-customize.html

PDBeSelect European Bioinformatics
Institute, UK

http://www.ebi.ac.uk/pdbe-as/
pdbeselect

PDBselect University of Applied Sciences,
Giessen, Germany

http://bioinfo.tg.fh-giessen.de/pdbselect (66)

PISCES Fox Chase Cancer Center,
Philadelphia, USA

http://dunbrack.fccc.edu/PISCES.php (67)

Table 4.5
Miscellaneous servers

Server Location URL Ref

3D Complex MRC, Cambridge, UK http://www.supfam.org/elevy/
3dcomplex/Home.cgi

Database of
macromolecular
movements

Yale, USA http://molmovdb.org (68)

Electron density server
(EDS)

Uppsala, Sweden http://eds.bmc.uu.se/eds (51)

Orientations of proteins in
membranes (OPM)

University of Michigan,
USA

http://opm.phar.umich.edu (69)

pKnot server National Chiao Tung
University, Taiwan

http://pknot.life.nctu.edu.tw (70)

Protein knots Massachusetts Institute of
Technology, USA

http://knots.mit.edu (71)
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6.3. Curiosities Finally, there are various sites which deal with slightly more offbeat
aspects of protein structure. Some are included in Table 4.5. A
couple detects knots in protein folds: Protein Knots and the pKnot
Web server. The former lists 44 PDB entries containing knotted
proteins, classified according to type of knot. Another interesting
site, which can while away part of an afternoon, is the Database of
Macromolecular Movement which holds many movies showing
proteins in motion. Also included is a ‘‘Morph Server’’ which will
produce 2D and 3D animations by interpolating between two
submitted protein conformations – very useful for producing ani-
mations for presentations or Web sites.

7. Summary

This chapter has described some of the more generally useful
protein structure databases. There are many, many more that
have not been mentioned. Some are very small and specialized,
such as the so-called hobby databases, created by a single
researcher and lovingly crafted and conscientiously updated –
until, that is, the funding runs out, or the researcher moves on to
another post and the database is abandoned and neglected. The
larger and more widely used databases have better resources to
keep them ticking over, but tend to suffer from a great deal of
duplication and overlap. This can be seen in the large numbers of
PDB atlases and fold comparison servers. Perhaps one day, a single
server of each type will emerge combining the finer aspects of all
others to make life a lot easier for the end users of the data.
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Chapter 5

Protein Domain Architectures

Nicola J. Mulder

Abstract

Proteins are composed of functional units, or domains, that can be found alone or in combination with
other domains. Analysis of protein domain architectures and the movement of protein domains within and
across different genomes provide clues about the evolution of protein function. The classification of
proteins into families and domains is provided through publicly available tools and databases that use
known protein domains to predict other members in new proteins sequences. Currently at least 80% of the
main protein sequence databases can be classified using these tools, thus providing a large data set to work
from for analyzing protein domain architectures. Each of the protein domain databases provide intuitive
web interfaces for viewing and analyzing their domain classifications and provide their data freely for
downloading. Some of the main protein family and domain databases are described here, along with their
Web-based tools for analyzing domain architectures.

Key words: protein domain, protein family, InterPro, Gene Ontology, domain architecture.

1. Introduction

A protein family is generally described as a group of evolutionarily
related protein sequences, which, by inference means they share
similarity in their protein sequences. However, the proteins may
not necessarily be conserved throughout the full length of the
sequence; they may only share conserved regions. These regions,
or mobile elements, that can be found alone or in combination
with other conserved regions are referred to as domains, and
usually form individual functional units. Domains are independent
evolutionary elements that tend to have their functions conserved
over time, although they are mobile and free to move and pair with
other domains. Protein domain arrangements arise from events
such as recombination, exon-shuffling, gene fusion, domain loss,
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etc. The representation of protein sequences as sets of ordered
functional domains provides a useful way of investigating the
evolution of protein functions and multidomain proteins (1).
One of the problems with domain analysis, however, is the defini-
tion and description of domains. In some cases, particularly where
3D structures are available in the Protein Data Bank (2), the
domain boundaries can be clearly defined, while in others, the
domain boundaries are estimated based on the beginning and
ending of conserved regions. There are different databases that
try to predict protein families and domains, and in some cases, the
distinction between these two is indistinct, so here I have included
information on databases providing protein families as well as
domains. In addition, domains can be grouped into domain
families, thus adding complexity to the use of this data for domain
architecture analysis.

In order to keep up with the task of classifying new protein
sequences into families and domains, several protein signature
methods have emerged. These are based on conserved regions
identified from sequence alignments. These conserved areas of a
protein family, domain, or functional site form the basis for devel-
oping a protein signature, or ‘‘description,’’ of the family using
several different methods, including regular expressions (for pat-
terns of conserved residues), profiles, and Hidden Markov Models
(HMMs). Regular expressions describe a group of amino acids
that constitute a usually short, but highly conserved region within
a protein sequence that is thought to be important for function.
The regular expression uses the alignment to determine and
describe the occurrence of amino acids at each position in the
motif. Regular expressions are usually quite specific and proficient
at identifying highly conserved functional sites, but, as a conse-
quence, also have low flexibility. There is either a match or no
match, with no in betweens. Profiles and HMMs overcome this
limitation as they are able to cover longer conserved regions and
tolerate mismatches. A profile is a table of position-specific amino
acid weights and gap costs and describes the probability of finding
an amino acid at a given position in the sequence (3). The scores at
each position are used to calculate the similarity between a profile
and a sequence based on an original alignment. HMMs (4) are
statistical models based on probabilities rather than on scores and
are represented by a series of states that can match symbols and
transitions between these states, and at each state a symbol is
matched with a certain probability. Each transition has a probabil-
ity associated with it that describes how likely it is to move between
any two states.

Regular expressions, profiles, and HMMs have been built by
different databases for thousands of known protein families and
domains. Examples of well-known databases in the public domain
that use these methods or protein sequence clustering for
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generating signatures include Pfam (5), PRINTS (6), PROSITE
(7), ProDom (8), SMART (9), TIGRFAMs (10), PIRSF (11),
SUPERFAMILY (12), Gene3D (13), PANTHER (14), CDD
(15), and Everest (16). These databases each have their own area
of focus and may differ in their coverage of sequence space; how-
ever, since most are based on the same protein sequence sets,
usually UniProt Knowledgebase (UniProtKB) (17), there is also
a lot of overlap in their families and domains. Each database usually
provides information on their families and domains and a search
algorithm for identifying new members. These enable researchers
to search the protein sequence databases and classify proteins into
families and predict the presence of domains. While the number of
protein sequences entering the databases is increasing at an expo-
nential rate, the number of new protein domains appearing is
tailing off (18).

The vast amount of protein sequence classification data pro-
vided by protein signature databases enables not only easier func-
tional annotation of sequences, but also provides the potential for
performing evolutionary analyses on the sequences. As mentioned
previously, protein domains are independent functional units that
have been maintained throughout evolution and moved within
and across different proteins and genomes. The combination and
order of domains on protein sequences can provide information
on the origin of proteins and new functions, as well as identify gene
fusion events leading to the formation of multifunctional proteins.
It is therefore useful to identify tools that enable in-depth investi-
gation of protein domain architectures. In general, such tools are
provided by the databases that generate the domain signatures in
the first place and thus are biased toward their own combination of
characterized domains; however, there are some tools that inte-
grate data from different databases and enable more comprehen-
sive analyses. Some of the main protein family and domain
databases are described here, along with some of the resources
for performing domain architecture analyses.

2. Protein Family
and Domain
Databases

2.1. CDD

The Conserved Domain Database (CDD) (15) (http://
www.ncbi. nlm.nih.gov/Structure/cdd/cdd.shtml) contains pro-
tein signatures from Pfam (5), SMART (9), and Conserved
Domains developed by the CDD group. Since many of these
databases describe overlapping domains, to remove redundancy,
the different HMMs are clustered based on overlaps in their protein
members. HMMs within clusters that do not add significantly to
the coverage of the cluster are removed to reduce redundancy, and

Protein Domain Architectures 85



where families need to be divided into subfamilies to increase
depth, new CDD models are developed. In the development of
new models, structural alignments are used to increase the accuracy
of domain boundary definition. Position-specific scoring matrices
are generated from sequence alignments and are then assembled for
searching against using reverse position-specific BLAST (RPS-
BLAST) (19). Results for all proteins in Entrez are precomputed,
but users can submit query sequences that will be matched against
all three libraries of HMMs, with additional matches to Clusters of
Orthologous groups (COGs) (20). The sequences are not actually
run through HMM-searching algorithms, but rather RPS-BLAST,
which is a quicker alternative. The data and tools are available via
the Entrez system, which also allows for linking to other Entrez
databases.

2.2. InterPro Instead of describing each of the major protein signature databases
individually, an amalgamated database, InterPro (21), is
described, as it integrates ten of the major protein signature data-
bases, Pfam, PRINTS, PROSITE, ProDom, SMART TIGR-
FAMs, PIRSF, SUPERFAMILY, Gene3D, and PANTHER, into
a single resource. InterPro (http://www.ebi.ac.uk/interpro) is an
integrated documentation resource for protein families, domains,
and functional sites. Integration of the protein signatures is done
manually to rationalize where signatures from different databases
are describing the same protein family or domain. Related signa-
tures are grouped into InterPro entries, which have high-quality
annotation and links to a number of different protein function,
specialized protein family, interaction, and literature databases.
Where possible, InterPro entries are mapped to Gene Ontology
(GO) (22) terms to enable large-scale annotation of the corre-
sponding proteins to GO terms. All matches of the signatures in
these databases against the UniProtKB database are precomputed
and are viewable in different graphical formats. Users can also
submit their own sequences for scanning by InterProScan (23),
where each sequence is run through all the different algorithms of
the member databases at once, with the results provided in a single
format.

Through its matches to corresponding protein signatures
from its member databases, InterPro classifies protein sequences
into families and domains. Currently, the signatures in InterPro
cover 80% of UniProtKB. Although not all of these matches are
domains (many are families and a few are small functional sites),
the matches provide enormous potential for investigating domain
architectures. InterPro, as well as some of its member databases,
provides facilities for identifying and retrieving proteins sharing
the same architectures or for finding proteins sharing a common
domain. Some of these methods are described in more detail in
Section 3 below.
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2.3. Everest EVolutionary Ensembles of REcurrent SegmenTs (EVEREST)
(http://www.everest.cs.huji.ac.il/) (16) is a database of domains,
described by automatically generated HMMs. The underlying
definition of a domain used by EVEREST is a ‘‘continuous
sequence of amino acids that recurs in protein space.’’ In their
methodology, a database of protein segments (putative domains)
is constructed from all-against-all pairwise sequence comparisons,
and these segments are then clustered. One or more HMMs are
generated for each cluster that obeys certain criteria for what a
domain should look like, given a set of known candidate domains.
The process goes through a number of iterations to result in a final
set of around 1 million domains covering over 80% of UniProtKB
(16). The EVEREST Web interface provides annotation given by
SCOP (24), CATH (25), and Pfam-A (curated part of Pfam), as
well as visualisation tools for viewing the domain organization of
proteins within a family.

3. Tools for
Analyzing Protein
Domain
Architectures Many of the protein family and domain databases provide intuitive

Web interfaces that enable analysis of proteins containing their
domains. Some of these are described below and their outputs
are illustrated for comparison using a single protein example, the
mouse Death domain-containing protein CRADD (UniProtKB
accession number O88843).

3.1. ProDom Domain

Architecture Viewer

ProDom (http://prodom.prabi.fr/) is a protein domain database
generated through automatic clustering of protein sequences (8)
and is one of the InterPro member databases. Its automated
methods enable ProDom to have high coverage of sequence
space, although it also calls into question the validity of the domain
boundaries. ProDom provides tools on its Web site for viewing
domain architectures, including listing of all proteins sharing a
common domain, as well as identifying all proteins with identical
domain architectures (see Fig. 5.1).

3.2. SMART The SMART HMM database (http://smart.embl-heidelberg.de)
of domains provides a Web site for the analysis of domain archi-
tectures (9). Users can search for all proteins with identical domain
architectures or can find the domain composition of a single
protein. From the single protein view (Fig. 5.2), links are provided
to display all proteins with the same domain composition (proteins
containing at least one copy of each of domains of the query
protein) or domain organization (proteins containing the same
domains as the query protein and in the same order). When the
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links are followed, the interface provides a taxonomic tree showing
how many proteins in the list are from the different taxonomic
groups, and the user can select which taxonomic groups to display
the domain architecture for. If the query domains are known, from
the search page it is possible to enter multiple domains with
‘‘AND’’ or ‘‘NOT’’ to find proteins containing these sets of
domains. Again, the search can be limited to specific taxonomic
groups.

Fig. 5.1. The ProDom Web interface showing a single protein domain architecture (a) and a graphical view of proteins
sharing a common domain with this protein (b).
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Fig. 5.2. The SMART Web interface view of a single protein (a) and the list of proteins
from a specific taxonomic subset sharing the same domain composition (b).
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3.3. CDART CDART (18), provided within the Entrez suite of tools, uses the
domains from CDD (see above) and RPS-BLAST (19) to enable
users to query the protein database by domains. The query page is
available from http://www.ncbi.nlm.nih.gov/Structure/lexing-
ton/lexington.cgi, where the user can input a query protein via its
accession number or sequence and retrieve its domain architec-
ture, as well as a list of proteins with similar architectures. As with
many domain architecture tools, the domain combinations are
represented as beads on a string, as this provides an easy way to
visualize results. For proteins with similar architectures, these are
ranked according to the number of domains in common with the
query sequence, and a single representative example is shown
where more than one protein shares the same architecture. The
list of domains is provided below the results with checkboxes for
the user to select a subset of results with specific domains only
(Fig. 5.3). The results can also be restricted by taxonomy, by
choosing the ‘‘Subset by Taxonomy’’ button at the bottom of
the page. This takes you to a taxonomic tree with the number of
proteins listed next to each organism and a checkbox to tick for
inclusion of that taxonomic group. In addition to queries by
protein sequences, it is also possible to query the Entrez Domains
Database with a domain to find all proteins containing this domain
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search
&DB=cdd). The user can get back to CDART from the results by
clicking on the ‘‘Proteins’’ link in the results page (18).

3.4. InterPro Domain

Architectures

The InterPro database (http://www.ebi.ac.uk/interpro) provides
a domain architecture view of its protein signatures (21). All
matches of all the signatures in InterPro against UniProtKB are
precomputed and available for viewing in different formats. In the
Architectures view, nonoverlapping domain matches are

Fig. 5.3. CDART results for a protein search (a), and ranked list of proteins sharing
common domains (b). The individual domains can be selected from the bottom of the
page to generate a new list.
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represented as oval shapes on the sequence (Fig. 5.4). All proteins
with the same domain architecture are collapsed into a single repre-
sentative example, with the number of proteins containing this
architecture listed and linked to. To search for a single domain

Fig. 5.3. (continued)

Fig. 5.4. InterPro single protein match view (a), and corresponding Architecture view (b),
showing a representative of each different domain composition.
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and find other proteins containing this domain, the user needs to
know the name or accession number of this domain, find the
corresponding InterPro entry, and then follow the ‘‘Architectures’’
link. Here, they will find a display of all architectures the domain is
found within and they can follow the links to find the proteins.

3.5. PRODOC The PROtein Domain Organization and Comparison (PRODOC)
tools (1) enable the searching and analysis of protein domains in
different genomes. PRODOC includes sequence data from the
NCBI, certain genome databases (e.g., ENSEMBL, FlyBase, etc.),
and UniProtKB (17), and protein domain data from Pfam-A (5).
The tools facilitate searching of a specified sequence of domains in
various genomes to identify proteins with conserved domain archi-
tectures or those containing the same domains without conserving
domain order. To achieve this, the user should input a series of
domains using the Pfam identifier (a list is available on the Web site).
These are then searched against the PRODOC data set to identify
proteins containing these domains in the same or a different order.

Fig. 5.4. (continued)
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The PRODOC data set includes a classification of the domains into
superfamilies using protein 3D structure information, so that the
search can detect not only identical domains, but also those belong-
ing to the same superfamily. This facility enables the identification of
domains that may have conserved order, but where one or more has
diverged beyond immediate recognition (1).

PRODOC also facilitates the identification of domain fusion
events by searching for domains that appear in separate proteins in
some genomes and in the same protein in others. Additional
genome comparison tools allow the user to compare domain
architectures between two genomes, providing an output listing
pairs of proteins with at least one domain in common. PRODOC
is available via the Web at http://hodgkin.mbu.iisc.ernet.in/
�prodoc/ (1).

4. Discussion

The analysis of protein domains has the potential to provide infor-
mation on the evolution of proteins and their functions. All those
domains that have been characterized experimentally serve as a valu-
able source of data for the prediction of functions in uncharacterized
proteins, and tools such as protein signatures and their correspond-
ing search algorithms enable this. Through these tools, we are able to
classify 80% of the UniProtKB proteins into families and domains,
thus providing a large data set for the analysis of protein domain
architectures. This data is provided in some form or another and in
varying degrees of completeness by a variety of different Web inter-
faces, as described here. Some, like InterPro, include more databases
in their data sets, but have more limited querying tools for domain
composition analysis, while others, such as CDD and the individual
databases of SMART and ProDom, have fewer domain descriptors,
but more advanced tools for filtering, viewing, and ranking proteins
sharing domains or domain compositions. The recommendation of
which resources to use depends on the user’s requirements, research
question, and preference for output display.

Most of these resources have a common way of viewing the
data, i.e., the beads on a string view, and enable the analysis of a
single or small set of domains at a time. If users want to do complex
domain architecture analysis across multiple unrelated domains
simultaneously, they will be required to download the data sets
with the protein sequence and domain boundary information and
do the data mining using their own scripts. However, as many of
these public databases move toward the provision of programma-
tic access to their data via Web services, this will enable researchers
to do more complex querying and mining of these public data
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without the need for large data downloads. This also ensures that
the data being used is up to date. As long as the protein domain
databases continue to keep up with the deluge of new sequence
data, they will continue to provide valuable resources to facilitate
new discoveries in protein function and evolution.
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Chapter 6

Thermodynamic Database for Proteins: Features
and Applications

M. Michael Gromiha and Akinori Sarai

Abstract

We have developed a thermodynamic database for proteins and mutants, ProTherm, which is a collection
of a large number of thermodynamic data on protein stability along with the sequence and structure
information, experimental methods and conditions, and literature information. This is a valuable resource
for understanding/predicting the stability of proteins, and it can be accessible at //gibk26.bse.kyute
ch.ac.jp/jouhou/Protherm/protherm.html. ProTherm has several features including various search,
display, and sorting options and visualization tools. We have analyzed the data in ProTherm to examine
the relationship among thermodynamics, structure, and function of proteins. We describe the progress
on the development of methods for understanding/predicting protein stability, such as (i) relationship
between the stability of protein mutants and amino acid properties, (ii) average assignment method, (iii)
empirical energy functions, (iv) torsion, distance, and contact potentials, and (v) machine learning
techniques. The list of online resources for predicting protein stability has also been provided.

Key words: thermodynamics, database, protein stability, prediction.

1. Introduction

Protein structures are stabilized with various noncovalent inter-
actions such as hydrophobic, electrostatic, van der Waals, and
hydrogen-bonded interactions (1–4). The importance of such
interactions for protein stability has been revealed by site-direc-
ted mutagenesis experiments (5–8). We have collected the stabi-
lity data reported in the literature and developed the
thermodynamic database for proteins and mutants, ProTherm,
which has more than 20,000 experimental data on protein stabi-
lity along with sequence and structure information of the protein,
experimental conditions, and literature information (9, 10).

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
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Currently, ProTherm is serving as a unique source for
understanding and predicting protein stability. It has been
used for developing several methods, such as relationship
between amino acid properties and protein stability (11–14),
empirical energy functions (15, 16), stability scale (17), con-
tact potentials (18), neural networks (19), support vector
machines (20, 21), relative importance of secondary structure
and solvent accessibility (22), average assignment (23), Baye-
sian networks (24), distance and torsion potentials (25), deci-
sion trees (26), physical force field with atomic modeling (27),
etc., for understanding and predicting the stability of proteins
upon mutations.

This review is broadly divided into two parts: the first part
focuses on the development of thermodynamic database for pro-
teins and mutants and the second part is devoted to analysis and
prediction of protein stability upon mutation.

2. Thermodynamic
Database for
Proteins and
Mutants, ProTherm

2.1. Contents of

ProTherm

ProTherm is a large collection of thermodynamic data on protein
stability, which has the following information (9, 10):

Sequence and Structure Information: Name, source, length,
and molecular weight of the protein, codes for Protein Infor-
mation Resource (PIR) (28), Swiss-Prot (29) and Protein
Data Bank (PDB) (30), enzyme commission number (31),
mutation details (wild and mutant residue names, residue
number and location of the mutant based on secondary struc-
ture and solvent accessibility), and number of transition states.
The secondary structure of each mutant was assigned using
the program, DSSP (32). The solvent accessible surface area
(ASA) of all the atoms and the residues were computed using
the program ASC (33).

Thermodynamic Data Obtained from Denaturant Denatura-
tion Experiments: Unfolding Gibbs free energy change (�GH2O),
difference in unfolding Gibbs free energy change for the mutants
[��GH2O ¼ �GH2OðmutantÞ ��GH2Oðwild typeÞ], midpoint of
denaturant concentration (Cm), slope of denaturation curve (m),
and reversibility of denaturation.

Thermodynamic Data Obtained from Thermal Denaturation
Experiments: Unfolding Gibbs free energy change (�G), differ-
ence in unfolding Gibbs free energy change for the mutants
(��G), transition temperature (Tm), transition temperature
change for the mutant (�Tm), calorimetric and van’t Hoff
enthalpy change (�H), heat capacity change (�Cp), and reversi-
bility of denaturation.
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Experimental Methods and Conditions: pH, temperature (T),
buffer and ions, and their concentrations, protein concentration,
measurement and method.

Functional Information: Enzyme activity, binding con-
stants, etc.

Literature Information: Keywords, reference, authors, and
remarks.

2.2. Search and Display

Options in ProTherm

We have implemented several search and display options for the
convenience to the users.

(i) Retrieving data for a specific protein and source. The search
options are also available with PDB code.

(ii) Specifying the type of mutation as single, double, multiple, or
wild type, and any mutant/mutated residue.

(iii) Specifying secondary structures having mutations in helix
(H), strand (S), turn (T), and coil (C) regions.

(iv) Searching data based on solvent accessibility/solvent ASA (in
% or Å2) of relevant residue. The mutations are classified into
buried (ASA<20%), partially buried (20%�ASA�50%) and
exposed (ASA>50%).

(v) Extracting data for a particular measurement (CD, DSC, Fl,
etc.) and a specific method (Thermal, GdnHCl, Urea, etc.).

(vi) Limiting data for a particular range of T, Tm, �Tm, �G,
��G, �GH2O, ��GH2O, �H, �Cp, and pH.

(vii) Obtaining the data reported with two- or three-state transi-
tions and reversible/irreversible denaturation.

(viii)Extracting data with authors, publication year, and key words.

(ix) Specifying output format by selecting various output items
and sorting with publication year, wild type residue, mutant
residue, residue number, secondary structure, solvent acces-
sibility, pH, T, Tm, �Tm, �G, ��G, �GH2O, ��GH2O, �H,
�Cp, and pH.

Detailed tutorials describing the usage of ProTherm are avail-
able at the home page. As an example, the necessary items to be
filled or selected to search data for mutations in buried regions by
denaturant denaturation and CD measurement at temperatures
between 15 and 25�C are shown in Fig. 6.1a. In Fig. 6.1b, we
show the items to be selected for the output and sorting options.
In the sorting procedure, the first item has the topmost priority. In
this figure, entry, protein, PDB wild, mutation, secondary struc-
ture, ASA, ��GH2O, T, pH, and reference are selected for the
output. The selected outputs are sorted with temperature as the
first priority and residue number as the second priority. The final
results obtained from the search conditions (Fig. 6.1a) and sort-
ing options of necessary items (Fig. 6.1b) are shown in Fig. 6.1c.
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Fig. 6.1. An example of searching conditions, display and sorting options, and results of ProTherm. (a) Main menu for the
search options of ProTherm. In this example, items, buried (accessibility), CD (measure), denaturant (method) are selected
from the menu and T (�Tm/Tm/T) is specified by filling the boxes for the values from 15 to 25�C. (b) Display and sorting
options of ProTherm. In this example, entry, protein, PDB wild, mutation, secondary structure, ASA, ��G H2O, T, pH, and
reference are selected for the output. T and residue number are chosen for sorting the results in the order of priority. (c)
Part of the results obtained from ProTherm.
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2.3. ProTherm

Statistics

We update ProTherm quite frequently and at present it has about
22,000 data, which is more than six-fold compared with the first
release. The data are obtained from 603 different proteins with
10,948 single and 1,549 double mutations. In terms of secondary
structures, 4,765 mutations are in helical segments, 3,682 in
strand, 1,828 in turn, and 2,838 in coil regions. According to
solvent accessibility, 5,583 mutations are at buried, 3,738 muta-
tions are at partially buried, and 3,357 are at exposed regions. The
frequency of mutations in different proteins is presented in Table
6.1. Most of the mutational experiments have been carried out
with hydrophobic substitutions (replacement of one hydrophobic
residue with another, e.g., Val to Ala) and the mutations from any
residue into Ala. Further, the aromatic mutations (Tyr to Phe) and
few polar mutations (Thr to Ser, Asp to Asn, Glu to Gln, etc.) are
dominant in ProTherm.

3. Factors
Influencing the
Stability of Proteins
and Mutants We have systematically analyzed the influence of specific amino

acid properties on the stability of proteins upon amino acid sub-
stitutions. We considered a set of 49 diverse amino acid properties,
which have been used in protein folding and stability studies (11,
34, 35). The amino acid properties were normalized between 0
and 1 using the expression, Pnorm(i) = [P(i) – Pmin]/[Pmax – Pmin],
where P(i), Pnorm(i) are, respectively, the original and normalized
values of amino acid i for a particular property, and Pmin and Pmax

are, respectively, the minimum and maximum values. The original
and normalized values for the selected 49 physico-chemical, ener-
getic, and conformational properties of the 20 amino acid residues
and their brief explanations are available at //www.cbrc.jp/
�gromiha/fold_rate/property.html.

3.1. Relationship

Between Amino Acid

Properties and Protein

Stability upon

Mutations

We computed the mutation-induced changes in property values,
�P(i), using the Eq. (11): �P(i) = Pmut(i) – Pwild(i), where Pmut (i)
and Pwild(i) are, respectively, the normalized property value of the
ith mutant and wild-type residue; i varies from 1 to N and N is the
total number of mutants. The computed differences in property
values (�P) were related to the changes in experimental stability
values (�Tm, ��G or ��GH2O) using correlation coefficient,
r = [N�XY – (�X�Y)]/{[N�X2 – (�X)2] [N�Y2 – (�Y)2]}1/2,
where N, X and Y are, respectively, the number of data, property
and experimental stability values, respectively.

In buried mutations, the properties reflecting hydrophobicity
showed a strong correlation with stability indicating the direct
relationship between hydrophobicity and stability (11, 12). In
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partially buried and exposed mutations, the whole set of data did
not show significant correlation with any of the properties. How-
ever, the classification of data based on the secondary structures
improved the correlation between amino acid properties and pro-
tein stability significantly (11, 13, 14). In partially buried helical
mutations, the stability is attributed mainly with thermodynamic
properties. The b-strand tendency (Pb) is the major factor for the
stability of mutations in b-strand segments. In exposed helical
mutations, the strongest correlation was observed for �ASA (sol-
vent accessible surface area change for unfolding). In turn seg-
ments, Pt (turn tendency), P�–� (backbone dihedral probability),
Bl (bulkiness), and Mw (molecular weight) showed significant
correlation with protein stability.

3.2. Influence of

Neighboring and

Surrounding Residues

to Protein Mutant

Stability

We have also analyzed the influence of neighboring residues of the
mutant residue in the amino acid sequence and surrounding resi-
dues that are close in the protein 3D structure. The local sequence
effect has been included using the Eq. (11):

PseqðiÞ ¼
Xj¼iþk

j¼i�k

Pj ðiÞ

2
4

3
5� PmutðiÞ;

where Pmut(i) is the property value of the ith mutant residue and
�Pj(i) is the total property value of a segment of (2k + 1) residues,
ranging from i – k to i + k about the ith wild-type residue. We used
windows of 3 and 9 (k = 1, 4) residues to include the influence of
short- and medium-range interactions (36).

The structural information, Pstr(i), was included using Eq. (11):

PstrðiÞ ¼
X

j

nij Pj

" #
� PmutðiÞ;

where nij is the total number of type j residues surrounding the ith
residue of the protein within the sphere of radius 8 Å (36), and Pj is
the property value of the type j residue.

In buried mutations, the inclusion of neighboring and sur-
rounding residues did not show any significant improvement in
the correlation between amino acid properties and protein stability
(11, 12). This might be due to the hydrophobic environment of
the mutant site, which is surrounded mainly by hydrophobic
residues and nonspecific interactions dominate in the interior of
proteins. In partially buried and exposed mutations, the inclusion
of neighboring and surrounding residues remarkably improved
the correlation in all the subgroups of mutations. This result
indicates that the information from nearby polar/charged residues
and/or the residues those are close in space are important for the
stability of partially buried and exposed mutations. Detailed
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analysis showed that more than 50% of the neighboring/sur-
rounding residues are polar and charged, and hence the stability
of partially buried/exposed mutations is influenced by hydropho-
bic, hydrogen bonding, and other polar interactions (11, 13, 14).

3.3. Stabilizing

Residues in Protein

Structures

We have proposed a consensus approach for detecting the stabiliz-
ing residues in protein structures based on long-range interac-
tions, hydrophobicity, and conservation of residues (37).

The surrounding hydrophobicity (Hp) of a given residue is
defined as the sum of experimental hydrophobic indices (38, 39)of
various residues, which appear within the sphere of radius 8 Å
radius limit from it (40):

HpðiÞ ¼
X20

j¼1

nij hj ;

where nij is the total number of surrounding residues of type j
around ith residue of the protein and hj is the experimental hydro-
phobic index of residue type j in kcal/mol (38, 39).

The long-range order (LRO) for a protein has been computed
from the knowledge of long-range contacts (contacts between two
residues that are close in space and far in the sequence) in protein
structure (41). LRO for a specific residue is calculated using the
number of long-range contacts for that residue:

LROi ¼
XN

j¼1

nij=N ; nij ¼ 1 if ji � j j412; nij ¼ 0 otherwise;

where i and j are two residues in which the C� distance between
them is �8 Å and N is the total number of residues in a protein.

Stabilization centers (SCs) in a protein are clusters of residues
involved in long-range interactions (42). Two residues are con-
sidered to be in long-range interaction if they are separated by at
least ten residues in the sequence and at least one of their heavy-
atom contact distance is less than the sum of their van der Waals
radii of the two atoms, plus 1 Å. Two residues are part of SCs if (i)
they are involved in long-range interactions and (ii) two support-
ing residues can be selected from both of their flanking tetrapep-
tides, which together with the central residues form at least seven
out of the possible nine contacts.

The conservation of residues in each protein has been computed
with the aid of the Consurf server (43) (//consurf.tau.ac.il/). This
server compares the sequence of a PDB chain with the proteins
deposited in Swiss-Prot (29) and finds the ones that are homologous
to the PDB sequence.

Based on these four parameters, we have proposed the follow-
ing conditions to predict the stabilizing residues: (i) Hp�20 kcal/
mol; (ii) LRO�0.02; (iii) SC�1, and (iv) Conservation score
�6. We have compared the stabilizing residues identified by our
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approach with experimental data deposited in ProTherm (10).
In triose phosphate isomerase, we have identified the residues
Gly229 and Cys126 as stabilizing ones and are shown in Fig. 6.2.
Interestingly, these residues play important roles to protein sta-
bility as observed from thermodynamic and kinetic experiments
(10, 44, 45). Further, we found that the replacement of residues
in the stabilizing segments (Phe22, Tyr175, Leu209, and
Ile232) of tryptophan synthase destabilized the protein with
the free-energy change of 1–5 kcal/mol, which showed a good
agreement with experiments (10). We set up a Web server for
identifying the stabilizing residues in protein structures and it is
freely available at //sride.enzim.hu/ (46).

4. Prediction
of Protein Mutant
Stability

Several methods have been proposed for predicting the stability
of proteins upon single amino acid substitutions. The online
severs available for predicting protein mutant stability are listed
in Table 6.2. The performance of these methods has been gen-
erally tested with such measures as accuracy, correlation, and

Fig. 6.2. Stabilizing residues in a typical TIM barrel protein, 1 btm. The �-helices are
shown as spiral ribbons and the b-strands are drawn as arrows from the amino end to
the carboxyl end of the b-strand. The stabilizing residues Gly229 and Cys126 identified
by our method and observed by thermodynamic and kinetic experiments are indicated.
The picture was generated using PyMOL program (50).
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mean-absolute error (MAE). The accuracy of distinguishing
the stability of mutants (stabilizing/destabilizing) has been
determined by using the following expression: Accuracy
(%) = p � 100.0/N, where p is the total number of correctly dis-
criminated residues and N is the total number of data used for
discrimination. The MAE is defined as the absolute difference
between predicted and experimental stability values:

MAE ¼ 1

N

X

i

jXi � Yij;

where Xi and Yi are the experimental and predicted stability values,
respectively, and i varies from 1 to N, N being the total number of
mutants.

4.1. Average

Assignment Method

Saraboji et al. (23) developed a method based on average assign-
ment for predicting the stability of protein mutants. In this
method, the data set has been classified into 380 possible amino
acid substitutions (20 amino acids and 19 substitutions for each of
the 20 amino acids). Considering the mutant Ala to Cys, we
calculated the average stability change of all Ala!Cys mutants
and assigned the same for this specific mutant. This calculation
was repeated for all the 380 pairs and the stability change values
were assigned. The assigned �Tm (��G and ��GH2O) values are
compared with experimental data to obtain the accuracy, correla-
tion, and MAE.

Table 6.2
Online resources for protein stability

Thermodynamic database for proteins and mutants

ProTherm //gibk26.bse.kyutech.ac.jp/jouhou/protherm/
protherm.html

Stabilizing residues in protein structures

SRide //sride.enzim.hu

Prediction of protein-mutant stability

FOLD-X //fold-x.embl-heidelberg.de

CUPSAT //cupsat.tu-bs.de/

I-Mutant2.0 //gpcr.biocomp.unibo.it/cgi/predictors/
I-Mutant2.0/I-Mutant2.0.cgi.

MUpro //www.igb.uci.edu/servers/servers.html

iPTREE-
STAB

//bioinformatics.myweb.hinet.net/iptree.htm

Eris //eris.dokhlab.org
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We observed that our method could distinguish the stabilizing
and destabilizing mutants to an accuracy of 70–80% at different
measures of stability (�Tm, ��G, or ��GH2O). Further, the
classification of mutants based on helix, strand, and coil distin-
guished the stabilizing/destabilizing mutants at an average accu-
racy of 82% and the correlation was 0.56; information about the
location of residues at the interior, partially buried, or surface of a
protein correctly identified the stabilizing/destabilizing residues
at an average accuracy of 81% and the correlation was 0.59. The
nine subclassifications based on three secondary structures and
solvent accessibilities improved the accuracy of assigning stabiliz-
ing/destabilizing mutants to an accuracy of 84–89% for the three
data sets.

4.2. Empirical Energy

Functions

Guerois et al. (15) developed a computer algorithm, FOLDEF, for
estimating the important interactions contributing to the stability
of proteins. The free energy of unfolding (�G) of a target protein
is calculated using the equation

�G¼Wvdw�GvdwþWsolvH�GsolvHþWsolvP�GsolvPþ�Gwb

þ�Ghbondþ�GelþWmcT �SmcþWscT �Ssc;

where �Gvdw is the sum of the van der Waals contributions of all
atoms. �GsolvH and �GsolvP are the difference in solvation energy
for apolar and polar groups, respectively, when going from the
unfolded to the folded state. �Ghbond is the free energy difference
for the formation of an intramolecular hydrogen bond with respect
to intermolecular hydrogen-bond formation (with solvent). �Gwb

is the extra stabilizing free energy provided by a water molecule
forming more than one hydrogen bond to the protein (water
bridges) that cannot be taken into account with nonexplicit solvent
approximations. �Gel is the electrostatic contribution of charged
groups interactions. �Smc is the entropy cost for fixing the back-
bone in the folded state. This term is dependent on the intrinsic
tendency of a particular amino acid to adopt certain dihedral angles.
�Ssc is the entropic cost of fixing a side chain in a particular con-
formation. The terms Wvdw, WsolvH, WsolvP, Wmc, and Wsc corre-
spond to the weighting factors applied to the raw energy terms and
these weights were obtained from an initial fitting procedure over a
database consisting of 339 single-point mutants.

The predictive power of the method was tested using a dataset
of 667 mutants. They reported that FOLDEF could predict the
stability of protein mutants within the average error of 0.81 kcal/
mol for the coverage of 95% of the mutants. The correlation
between the experimental and predicted protein free-energy
changes was 0.83. A Web server has been developed for predicting
the stability of protein mutants and it is available at //fold-x.embl-
heidelberg.de.
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Bordner and Abagyan (16) proposed an empirical energy
function, which included terms representing the energy contribu-
tions of the folded and denatured proteins for predicting the
stability of protein mutants. They trained the method using a
half of the diverse set of 1,816 experimental stability values for
single-point mutations in 81 different proteins. They reported that
after removing 22 (�2%) outliers, this method could predict the
stability of protein mutants within the standard deviation of
1.08 kcal/mol with a correlation coefficient of 0.82. Further, the
prediction method was tested on the remaining half of the experi-
mental data, which could predict the protein mutant stability
within the error of 1.10 kcal/mol.

4.3. Torsion, Distance

and Contact Potentials

Gilis and Rooman (47, 48)developed torsion and distance poten-
tials for predicting the stability of protein mutants. The torsion
potential is mainly based on the neighboring residues in a sequence
and hence at the protein surface, the local interactions along the
chain are more dominant than hydrophobic interactions. The
distance potentials are dominated by hydrophobic interactions,
which represent best the main interactions stabilizing the protein
core. They have analyzed a set of 106 surface mutations and
reported that the correlation coefficient between experimental
and computed free-energy change using backbone torsion poten-
tials is 0.67 for all the mutations and it rose up to 0.87 for a subset
of 96 mutations (47). Further, the buried and partially buried
mutations have been systematically analyzed with distance poten-
tials (48). They reported that for a set of completely buried muta-
tions, the combination of distance potential and torsion potential
weighted by a factor of 0.4 yielded the correlation coefficient of
0.80 between the computed and measured changes in folding free
energy. For mutations of partially buried residues, the best poten-
tial is a combination of torsion potential and a distance potential
weighted by a factor of 0.7 and the correlation coefficient is 0.82.

Khatun et al. (18) developed a methodology to determine the
contact potentials in proteins, which defines the effective free
energy of a protein conformation by a set of amino acid contacts
formed in this conformation, from experimental measurements of
changes in thermodynamic stability (��G) of proteins upon
mutations. They obtained a correlation of 0.66 and 0.46, respec-
tively, for training and split sample validation in a data set of 1,356
mutations. They suggested that the use of an atomistic form of
potentials may improve the prediction accuracy of protein mutant
stability.

Parthiban et al. (25) analyzed protein stability upon point
mutations using distance-dependant pair potential representing
mainly through-space interactions and torsion angle potential
representing mainly neighboring effects. They have developed
the potentials at various ranges of solvent accessibility and at
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different secondary structures. This method was trained and tested
with 1,538 mutations and contain 101 proteins that share a wide
range of sequence identity, which showed the maximum correla-
tion of 0.87 with a standard error of 0.71 kcal/mol between pre-
dicted and measured ��G values and a prediction accuracy of
85.3% for discriminating the stabilizing and destabilizing protein
mutants. For ��GH2O, they obtained a correlation of 0.78 (stan-
dard error 0.96 kcal/mol) with a prediction efficiency of 84.65%.
A Web server, CUPSAT, has been developed for predicting
the stability of protein mutants and it is available at //cupsat.
tu-bs.de/ (49).

4.4. Machine Learning

Techniques

Capriotti et al. (19) proposed a neural network-based method
to predict if a given mutation increases or decreases the pro-
tein thermodynamic stability with respect to the native struc-
ture. Using a data set of 1,615 mutations, this method
correctly classified >80% of the mutations in the database.
Further, when this method was coupled with energy-based
methods, the joint prediction accuracy increased up to 90%,
suggesting that it can be used to increase the performance of
pre-existing methods, and generally protein design strategies.
They have also developed a method based on support vector
machines for predicting the stability of protein mutants (20).
In this method, the stability of protein mutants has been
correctly assigned to an accuracy of 80% and the correlation
between experimental and computed stabilities is 0.71. A Web
server, I-Mutant2.0, has been developed for predicting protein
mutant stability and is available at //gpcr.bio comp.unibo.it/cgi/
predictors/I-Mutant2.0/I-Mutant2.0.cgi/.

Cheng et al. (21) used support vector machines to pre-
dict protein stability changes for single amino acid mutations
from both sequence and structural information. This method
could discriminate the stabilizing and destabilizing protein
mutants with an accuracy of 84%. They developed a Web
server for predicting protein stability changes upon mutations
and it is available at //www.igb.uci.edu/servers/servers.
html.

Huang et al. (26) developed a method based on interpre-
table decision tree coupled with adaptive boosting algorithm
and a classification and regression tool for predicting protein
stability upon amino acid substitutions. This method could
correctly discriminate the stabilizing and destabilizing protein
mutants at an accuracy of 82% for a data set of 1,859 single
mutants. Further, a correlation of 0.70 was obtained between
the predicted and experimental stabilities. A Web server,
iPTREE-STAB, has been set up for predicting the stability of
proteins and it is available at //bioinformatics.myweb.hinet.
net/iptree.htm (26).

Thermodynamic Database for Proteins: Features and Applications 109



5. Conclusions

We have developed a thermodynamic database for proteins and
mutants, which has several thermodynamic data along with
sequence and structure information, experimental methods and
conditions, and literature information. The analysis on protein
mutant stability revealed that the stability of buried mutations is
dominated by hydrophobic interactions whereas the partially bur-
ied and exposed mutations are influenced with hydrophobic,
hydrogen bonds, and other polar interactions. The information
about hydrophobicity, long-range interactions, and conservation
of amino acid residues has been used to identify the stabilizing
residues in protein structures. The classification of mutants based
on secondary structures and solvent accessibility could predict the
stability of protein mutants with high accuracy. Different methods
have been proposed for predicting protein stability upon amino
acid substitution using structural information, mutated and
mutant residues, and from amino acid sequence. Further, Web
servers have been set up for discriminating the stabilizing and
destabilizing mutants as well as predicting protein mutant stability,
which can be used for discriminating/predicting the stability of
new mutants.
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42. Dosztányi, Z., Fiser, A., Simon, I. (1997)
Stabilization centers in proteins: identifica-
tion, characterization and predictions. J Mol
Biol 272, 597–612.

43. Glaser, F., Pupko, T., Paz, I., Bell, R. E.,
Bechor, D., Martz, E., Ben-Tal, N. (2003)
ConSurf: identification of functional
regions in proteins by surface-mapping of
phylogenetic information. Bioinformatics
19, 163–164.

44. Kursula, I., Partanen, S., Lambeir, A. M.,
Wierenga, R. K. (2002) The importance of
the conserved Arg191-Asp227 salt bridge of
triosephosphate isomerase for folding, sta-
bility, and catalysis. FEBS Lett 518, 39–42.
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Chapter 7

Enzyme Databases

Dietmar Schomburg and Ida Schomburg

Abstract

Enzymes are catalysts for the chemical reactions in the metabolism of all organisms and play a key role in
the regulation of metabolic steps within the cells, as drug targets, and in a wide range of biotechnological
applications. With respect to reaction type, they are grouped into six classes, namely oxidoreductases,
transferases, hydrolases, lyases, and ligases. EC-Numbers are assigned by the IUBMB. Enzyme func-
tional databases cover a wide range of properties and functions, such as occurrence, kinetics of enzyme-
catalyzed reactions, structure, or metabolic function. BRENDA stores a large variety of different data for
all classified enzymes whereas KEGG, MEROPS, MetaCyc, REBASE, CAzy, ESTHER, PeroxiBase, and
KinBase specialize in either certain aspects of enzyme function or specific enzyme classes, organisms, or
metabolic pathways. Databases covering enzyme nomenclature are ExplorEnz, SIB-ENZYME, and
IntEnz.

Key words: enzyme, database, metabolism, enzyme kinetics, pathway, catalysis.

1. Introduction

Enzymes represent the largest and most diverse group of all pro-
teins, catalyzing all chemical reactions in the metabolism of all
organisms. They play a key role in the regulation of metabolic
steps within the cell. With respect to the rapid development and
progress in the fields of structural and functional genomics, meta-
bolomics, and systems biology, the systematic collection, accessi-
bility, and processing of enzyme data become even more
important in order to analyze and understand the complex net-
works of biological processes.

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
DOI 10.1007/978-1-60327-241-4_7, ª Humana Press, a part of Springer Science+Business Media, LLC 2010
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2. Classification
and Nomenclature

Although enzymes are the only protein family where names are
recommended by the IUBMB/IUPAC enzyme commission,
these recommendations are unfortunately often ignored in the
literature. In many cases, the same enzyme became known by
several different names, while conversely the same name was some-
times given to different enzymes. Many of the names conveyed
little or no idea of the nature of the reactions catalyzed and similar
names were sometimes given to enzymes of quite different types.
The International Commission on Enzymes was founded in 1956
by the International Union of Biochemistry. Since then the system
of enzyme code numbers (EC numbers) with systematic and
recommended names has been established (1). Currently, there
are 4,072 active EC numbers plus 795 inactive numbers for entries
that have been deleted or transferred to another class. The old
numbers have not been allotted to new enzymes; instead the place
has been left vacant with comments concerning the fate of the
enzyme (deletion or transfer). In the EC number system, an
enzyme is defined by the reaction it catalyses. In some cases
where this is not sufficient, additional criteria are employed such
as cofactor specificity of the reaction. The 4,072 active EC num-
bers currently account for �43,000 synonyms (taken from the
BRENDA enzyme resource). The number of classified enzymes
is increasing by about 100 each year.

The enzyme code numbers, prefixed by EC, which are now
widely in use, contain four elements separated by points, with the
following meaning:

1. the first number shows to which of the six main divisions
(classes) the enzyme belongs,

2. the second figure indicates the subclass,

3. the third figure gives the sub-subclass,

4. the fourth figure is the serial number of the enzyme in its sub-
subclass.

5. Table 7.1 gives an overview on the enzyme classes.
The accepted name is the most frequently used and recom-

mended, although it may not be the most reasonable name. The
systematic name consists of two parts. The first contains the name
of the substrate or, in the case of a bimolecular reaction, of the two
substrates separated by a colon. The second part, ending in -ase,
indicates the nature of the reaction. Thus, the enzyme class EC
2.1.1.12 with the systematic name S-adenosyl-L-methionine:L-
methionine S-methyltransferase transfers a methyl group from
S-adenosyl-L-methionine to L-methionine producing S-adenosyl-
L-homocysteine and S-methyl-L-methionine.
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All proteins found to catalyze the same reaction are summar-
ized under one EC number. The catalyzed reaction is written
according to the rules for a chemical reaction including the
stoichiometry. In the case of reversible reactions, the direction
is the same for all the enzymes in a given class, even if this
direction has not been demonstrated for all. Thus, the reaction
may be written in a defined direction, even though only the
reverse of this has been actually demonstrated experimentally.
For some enzyme subclasses, namely proteases which hydrolyze
peptide bonds in proteins or glycolases which hydrolyze glycosi-
dic linkages it is not possible to draft an equation, therefore the
reaction is replaced by a sentence, describing the specificity of the
enzyme.

Where available each entry is equipped with a link to a graphi-
cal representation of the reaction frequently also displaying the
enzyme in its metabolic context.

3. Enzyme
Information
Resources

The currently available enzyme databases can be grouped into
global databases which cover all hitherto classified enzymes with
or without their functional properties and databases for special
enzymes classes or special enzyme-catalyzed reactions.

3.1. General Enzyme

Databases

3.1.1. Enzyme

Nomenclature Web Sites

The classification of enzymes according to the rules of enzyme
nomenclature is the responsibility of the Enzyme Commission of
the International Union for Biochemistry and Molecular Biology
(IUBMB). The outcome of the decisions made by the commission
is deposited in the enzyme list, which is made accessible by several
Web sites (IUBMB website, ExplorEnz, SIB-ENZYME, IntEnz).

Table 7.1
Overview on enzyme classes defined by the NC-IUBMB

EC Class Enzyme type # of sub-sub-classes

1 Oxidoreductases 1,115

2 Transferases 1,178

3 Hydrolases 1,124

4 Lyses 369

5 Isomerases 163

6 Ligases 141
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They provide forms for searching the enzyme’s accepted name, the
systematic name, some synonyms, the reaction, cofactors, and
literature references.

3.1.1.1. IUBMB

Nomenclature and

ExplorEnz

The Enzyme Commission is the curator of the ExplorEnz database
(http://www.enzyme-database.org/) (Fig. 7.1).

Main topics are classification and nomenclature. In a concise
way it contains the basic data for all classified enzymes. Changes to
the enzyme list, e.g., corrections in names, references, or reactions
are displayed on a separate Web site (Fig. 7.2).

ExplorEnz also offers an input form for researchers to report
on enzymes which are currently not classified in the enzyme list
and also for requesting changes to existing entries.

Fig. 7.1. ExplorEnz, example.

Fig. 7.2. ChangeLog in ExplorEnz.
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The compilation of new enzyme classes issued by the NC-
IUBMB is followed by a period of public review. Enzymes under-
going this process are displayed on the ExplorEnz Web sites,
where scientists can add their comments or request changes.

The contents of the ExplorEnz database are also displayed,
often together with reaction diagrams, on the Enzyme Nomen-
clature pages of the IUBMB (http://www.chem.qmul.ac.uk/
iubmb/enzyme/) In addition, this site gives detailed information
on the rules for naming enzymes and on the nomenclature of
biochemical molecules.

3.1.1.2. SIB-ENZYME

Nomenclature Database

SIB-ENZYME (http://www.expasy.ch/enzyme/) connects the
nomenclature of enzymes (2) with sequence information as stored
in UNIPROT. A report form for an error or an update of existing
entries can be used to draw the attention of the editor to enzymes
and other catalytic entities missing from this list.

A special feature is the links for the protein sequences, which
are deposited in UniProt enabling a direct access to individual
enzyme proteins (see Fig. 7.3).

3.1.1.3. IntEnz IntEnz (http://www.ebi.ac.uk/intenz/) (3) also contains
enzyme data that are curated and approved by the Nomenclature
Committee. Enzyme names and reactions are taken from the
enzyme list of the NC-IUBMB (see above).

Fig. 7.3. Enzyme database at the SIB.
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Some enzyme data are connected to the ChEBI (4) database,
which provides a definitive dictionary of compounds to improve
the quality of the IntEnz vocabulary. ChEBI stands for dictionary
of Chemical Compounds of Biological Interest. The ChEBI data-
base is also hosted at the European Bioinformatics Institute (EBI).
IntEnz entries also provide links to the protein sequences stored in
the UniProt database (Fig. 7.4).

3.1.2. Enzyme-Functional

Databases

3.1.2.1. BRENDA

Unlike the above-mentioned databases, BRENDA (http://
www.brenda-enzymes.org/) covers the full range of enzyme prop-
erties such as

l Classification and nomenclature

l Reaction and specificity

l Functional parameters

l Organism-related information

l Enzyme structure

l Isolation and preparation

Fig. 7.4. IntEnz, the enzyme database at the European Informatics Institute.
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l Literature references

l Application and engineering

l Enzyme–disease relationships
The section on Classification and Nomenclature is based on

the enzyme names as defined by the NC-IUBMB and is supple-
mented with all synonyms found in the �79,000 literature refer-
ences, which have been manually annotated so far. In BRENDA,
all literature references are manually annotated and the data are
quality controlled by scientists ensuring a high standard. Reaction
and Specificity covers the complete range of natural and artificial
substrates accepted by a particular enzyme. Many enzymes may
have a wider substrate specificity and accept different substrates.
Additional sections provide lists of inhibitors, cofactors, metal
ions, and activating compounds. Since in biological sciences very
often trivial names are used instead of International Union of Pure
and Applied Chemistry (IUPAC) nomenclature, many com-
pounds are known with a variety of names. Thus even simple
molecules may have a dozen or more names. Brenda is equipped
with a thesaurus for ligand names based on the IUPAC Interna-
tional Chemical Identifier (INChI) codes for 66,000 different
compound names amounting to �46,000 different chemical
entities.

Enzyme-catalyzed reactions and compounds interacting
with the enzyme protein (cofactors, inhibitors, activating com-
pounds, etc.) can be viewed as graphical representations. A tool
for substructure searches can be used for drawing a molecule
and searching this or its more complex derivatives in the data-
base. The molecular structures are also stored as molfiles
enabling a wide range of bioinformatic and cheminformatic
usages.

The enzyme information system BRENDA was founded in
1987 at the German National Research Center for Biotechnology
(GBF) then was continued at the Cologne University Bioinfor-
matics Centre and is now curated since 2007 at the Technical
University (5). First, BRENDA was published as a series of
books. The second edition was started in 2001. About 39 volumes
are published so far, each containing about 500–600 pages
encompassing 50–150 EC classes (6).

All data are stored in a relational database system. The user can
choose from nine search modes:

l Quick search can be used for a direct search in one of the 54
data fields providing a fast and direct access, e.g., via enzyme
names or metabolites (Fig. 7.5).

l Fulltext search performs a search in all sections of the database,
including commentaries.

l Advanced search allows a combinatorial search for text or
numerical data fields.
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l Substructure search is a tool for drawing a molecule which
then is searched in the database. The results are exact
matches or any molecule containing the plotted structure
(see Fig. 7.6).

l TaxTree explorer allows to search for enzymes or organisms in
the taxonomic tree.

Fig. 7.5. BRENDA quick search.

Fig. 7.6. BRENDA substructure search.
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l EC explorer can be used to browse or search the hierarchical
tree of enzymes.

l Sequence search is useful for enzymes with a known protein
sequence.

l Genome explorer connects enzymes to genome sequences.
The location of classified enzymes is displayed in their geno-
mic context.

l Ontology explorer allows to simultaneously search in all bio-
chemically relevant ontologies, among them BrendaTis-
sueOntology (BTO).
About 1.4 million functional and property data describing

enzymes are stored in the database covering �50 datafields. A
summary of the amount of data is displayed in Table 7.2. All
data in BRENDA are linked to the original paper reference.

Functional data are often context-dependent. Since every
laboratory carries out their experiments on enzyme characteriza-
tions under individually defined conditions, and since they depend
on the given experimental know-how, methods, and technical
equipment available, raw data for the same enzyme are not com-
parable. In order to account for these differences, BRENDA very
often includes the experimental conditions together with the data.

Table 7.2
Overview on enzyme data in BRENDA

Data entries Literature links

Enzyme with functional data 49,972 116,012

Nomenclature and classification 60,445 107,033

Substrates/products 557,794 820,970

Natural substrate/products 119,390 199,205

Inhibitors 118,371 135,544

Cofactor/activating substances 57,850 84,557

Kinetic data 170,723 180,577

Organism/localization/tissue 79,682 113,915

Enzyme structure 73,278 96,218

pH and temperature optima 50,198 57,633

Purification and cloning 46,370 77,244

Application and Engineering 33,666 38,534
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Because until now there is no standardization for documenting
these, the experimental and other details are given as a commen-
tary directly linked to the functional data. Each entry is linked to a
literature reference, allowing the researcher to go back to the
original literature for further details.

Example: for aminobutyraldehyde dehydrogenase (EC-
Number 1.2.1.19) from rat, two different KM values, measured
at different conditions, are reported:
0.018 mM (aminobutyraldehyde) 250 mM phosphate buffer,

1 mM NAD+

0.081 mM (aminobutyraldehyde) 400 mM phosphate buffer,
1 mM NAD+

Kinetic data can be submitted directly to the database (http://
www.brenda-enzymes.org/strenda/).

All data in BRENDA are connected to the biological source of
the enzyme, that is, the organism, the tissue, the subcellular loca-
lization, and the protein sequence (if available); consequently data
for different isoenzymes can be identified. For the organisms in
BRENDA, the taxonomy-lineage is given if the respective organ-
ism can be found in the NCBI taxonomy database (National
Center for Biotechnology Information, USA). Using the TaxTree
search mode, the user can search for enzymes along the taxonomic
tree and move to higher or lower branches to get either an over-
view or restrict the search.

Different isoenzymes in different tissues may be found. Some-
times enzymes restricted to a single tissue or any organ may express
a specific isoenzyme. The BRENDA tissues grouped into a hier-
archical tissue ontology (Brenda Tissue Ontology, BTO), which
was developed by the BRENDA team, is available from OBO and
meanwhile used by a large number of different groups.

3.1.2.2. AMENDA/FRENDA AMENDA (Automatic Mining of ENzyme DAta) and FRENDA
(Full Reference ENzyme DAta) are supplements to BRENDA.
AMENDA contains a large amount of enzyme data which are
automatically extracted from �18 million PubMed abstracts (US
National Library of Medicine) using modern optimized text-mining
procedures. FRENDA aims at providing an exhaustive collection of
literature references containing organism-specific enzyme informa-
tion. The use of these databases is restricted to the academic com-
munity. As the development of AMENDA and FRENDA could not
financed by public money, the data are available for the academic
community free of charge but commercial users have to obtain a
license http://www.biobase-international.com/

3.1.2.3. KEGG In the KEGG database (Kyoto Encyclopedia of Genes and Gen-
omes, Fig. 7.7), enzyme information is stored as a part of the
LIGAND database (http://www.genome.jp/ligand/) (7). This is
a composite database currently consisting of
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l Compound

l Drug

l Glycan

l Reaction

l Repair

l Enzyme
KEGG-ENZYME is also derived from the IUBMB Enzyme

Nomenclature, but the other datasets like compound, drug,
glycan, reaction, repair are developed and maintained by the
Kanehisa Laboratories in the Bioinformatics Center of Kyoto
University and the Human Genome Center of the University of
Tokyo. In addition to the nomenclature enzyme data comprise
substrates, products, reactions, gene names, and links to chemical
structures of metabolites, reaction diagrams, and metabolic
pathways.

Enzyme-catalyzed reactions are stored in the KEGG
REACTION database containing all reactions from KEGG
ENZYME and additional reactions from the KEGG metabolic
pathways, the latter without an EC classification. Each reaction
is identified by the R number, such as R06466 for the iso-
merization of (S)-2,3-epoxysqualene to lupeol. Reactions are
linked to ortholog groups of enzymes as defined by the KEGG
ORTHOLOGY database, enabling integrated analysis of geno-
mic (enzyme genes) and chemical (compound pairs) informa-
tion. Figure 7.8 shows the entry for mannitol dehydrogenase
as an example.

Fig. 7.7. KEGG ligand database.
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3.2. Special Enzyme

Databases

Whereas the above-described databases cover all enzymes which
have been classified by the NC-IUBMB, there are some databases
which are specialized on certain enzyme classes.

3.2.1. MEROPS The MEROPS database is a manually curated information
resource for peptidases (also known as proteases, proteinases, or
proteolytic enzymes), their inhibitors, and substrates (8). The
database has been in existence since 1996 and can be found at
http://merops.sanger.ac.uk/. Releases are made quarterly. Pep-
tidases and protein inhibitors are arranged in the database accord-
ing to a hierarchical classification. The classification is based on
sequence comparisons of the domains known to be important for
activity (known as the peptidase or inhibitor unit). A protein that
has been sequenced and characterized biochemically is chosen as a
representative (‘‘holotype’’). All sequences that represent species
variants of the holotype are grouped into a ‘‘protein species.’’ The
sequences of statistically significant related protein species are
grouped into a ‘‘family.’’ Families that are believed to have had a
common ancestor, either because the tertiary structures of the
proteins are similar or (in the case of peptidases) active site residues
are in the same order in the sequence, are grouped into a ‘‘clan.’’

The substrate specificity is described in two ways:
1. For any peptidase with more than ten known cleavages, a

display is presented that gives an indication of the amino
acids preferred at its substrate binding sites. This display

Fig. 7.8. KEGG, entry of EC 1.1.1.255.
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uses the WebLogo software (9). Details of the amino acid
sequences around the cleavage sites are displayed in the ‘‘Spe-
cificity Matrix.’’

1. In addition to the logo, a text string describing the specificity
is also shown.

2. Artificial or model substrates are summarized in text-sheets,
including literature references (see Fig. 7.9 with the entry for
caspase).

3.2.2. MetaCyc MetaCyc (http://metacyc.org/) is a nonredundant reference
database of small-molecule metabolism that contains experimen-
tally verified metabolic pathway and enzyme information obtained
from the scientific literature (10). The metabolic pathways and
enzymes in MetaCyc are from a wide variety of organisms with an
emphasis on microbial and plant metabolism, although a signifi-
cant number of animal pathways are also included. Enzymes can be
searched via the IN-IUBMB EC number or via their names. They
are displayed within the various pathways or with a graphic reac-
tion diagram and links to the connected pathways (Fig. 7.10).

3.2.3. REBASE REBASE is a comprehensive database of information about restric-
tion enzymes, DNA methyltransferases, and related proteins
involved in the biological process of restriction-modification
(11). It contains fully referenced information about recognition
and cleavage sites, isoschizomers, neoschizomers, commercial
availability, methylation sensitivity, crystal and sequence data
(Fig. 7.11). Experimentally characterized homing endonucleases

Fig. 7.9. MEROPS, entry for caspase-1.

Enzyme Databases 125



are also included. All newly sequenced genomes are analyzed for
the presence of putative restriction systems and these data are
included within the REBASE. The contents or REBASE may be
browsed from the Web (http://rebase.neb.com/rebase/rebase.
ftp.html) and selected compilations can be downloaded by ftp
(ftp.neb.com).

3.2.4. Carbohydrate-Active

Enzymes (CAzy)

The CAzy database (http://www.cazy.org/index.html)
describes the families of structurally related catalytic and carbo-
hydrate-binding modules (or functional domains) of enzymes
that degrade, modify, or create glycosidic bonds (12). The NC-
IUBMB Enzyme nomenclature of glycoside hydrolases is based
on their substrate specificity and occasionally their molecular
mechanism. Such a classification does not reflect (and was not
intended to) the structural features of these enzymes. A

Fig. 7.10. MetaCyc display of EC 1.1.1.13, arabitol dehydrogenase.

Fig. 7.11. REBASE entry for Eco1051.
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classification of glycoside hydrolases in families based on amino
acid sequence similarities (example for glycoside hydrolase family
is shows in Fig. 7.12) has been proposed a few years ago.

The biosynthesis of disaccharides, oligosaccharides, and poly-
saccharides involves the action of hundreds of different glycosyl-
transferases (EC 2.4.x.y), enzymes which catalyze the transfer of
sugar moieties from activated donor molecules to specific acceptor
molecules, forming glycosidic bonds. In similar manners, classifi-
cations for polysaccharide lyases and carbohydrate esterases are
presented.

Because there is a direct relationship between sequence and
folding similarities, these classifications

l reflect the structural features of these enzymes better than
their sole substrate specificity

l help to reveal the evolutionary relationships between these
enzymes

l provide a convenient tool to derive mechanistic information

3.2.5. Databases Based on

Sequence Homologies

Numerous enzyme databases on the Web are specialized in the
analysis of protein and gene sequences for enzyme groups. Exam-
ples are

The ESTHER Database is dedicated to the analysis of protein
and nucleic acid sequences belonging to the superfamily of alpha/
beta hydrolases homologous to cholinesterases (http://bioweb.
ensam.inra.fr/ESTHER/definition) (13).

PeroxiBase is curated in collaboration with the Swiss Institute
of Bioinformatics (SIB). The goal of this peroxidase database is to
centralize most of the peroxidase superfamilies encoding
sequences, to follow the evolution of peroxidase among living

Fig. 7.12. CAzy, entry for gylcoside hydrolase family 1.
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organism and compile the information concerning putative func-
tions and transcription regulation (http://peroxibase.isb-sib.ch/
index.php) (14).

KinBase holds information on over 3,000 protein kinase
genes found in the genomes of human and many other sequenced
genomes. It explores the functions, evolution, and diversity of
protein kinases, the key controllers of cell behavior with a focus
on the kinome, the full complement of protein kinases in any
sequenced genome. This includes the extensive KinBase (http://
kinase.com/) database (15).
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Chapter 8

Biomolecular Pathway Databases

Hong Sain Ooi, Georg Schneider, Teng-Ting Lim, Ying-Leong Chan,
Birgit Eisenhaber, and Frank Eisenhaber

Abstract

From the database point of view, biomolecular pathways are sets of proteins and other biomacromolecules
that represent spatio-temporally organized cascades of interactions with the involvement of low-molecular
compounds and are responsible for achieving specific phenotypic biological outcomes. A pathway is usually
associated with certain subcellular compartments. In this chapter, we analyze the major public biomole-
cular pathway databases. Special attention is paid to database scope, completeness, issues of annotation
reliability, and pathway classification. In addition, systems for information retrieval, tools for mapping
user-defined gene sets onto the information in pathway databases, and their typical research applications
are reviewed. Whereas today, pathway databases contain almost exclusively qualitative information, the
desired trend is toward quantitative description of interactions and reactions in pathways, which will
gradually enable predictive modeling and transform the pathway databases into analytical workbenches.

Key words: biomolecular pathway database, pathway, KEGG.

1. Introduction

Recent years have shown a rapidly growing interest in biological
pathway analysis as can be deduced from the number of biological
pathway resources listed in Pathguide (1). Currently, Pathguide
contains almost 300 resources; this is an about 50% increment
compared to the situation 2 years ago (190 resources). On average,
one new resource was introduced every 2 weeks during the past 2
years. The explosive growth of interest in pathway analysis was
triggered by the availability of high-throughput methods invol-
ving complete sequencing of several model organisms, large-scale
expression studies, etc. It is the first time that one can study a
biological problem reasonably at the system level, at which various
types of biological information such as the functions of genes and

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
DOI 10.1007/978-1-60327-241-4_8, ª Humana Press, a part of Springer Science+Business Media, LLC 2010

129



proteins, molecular interaction networks, and biological pathways
need to be put together to form a computational working model
of a living cell (2). Such models have the ultimate potential to
become useful for better understanding the cellular behavior in
response to outside stimuli including drug treatment. There is
hope that, at the end, system-level studies might lead to more
successful rational design of effective therapeutic agents that are
free of undesired side effects, although we have to admit that there
is a long way to go. At present, pathway libraries mainly fulfill the
function of knowledge depositories. Sophisticated pathway mod-
eling and simulation are in their infancy and rarely accompanied by
an outcome of results with biological relevance due to the crude-
ness of assumptions and the incompleteness of the networks
known so far.

It must be emphasized that the category of a pathway is an
idealized human construct for dissecting the whole, very com-
plex network of interacting genes and proteins into more com-
prehensible smaller parts that can be associated with a certain
cellular or physiological function. It is assumed that the coordi-
nated action of this subgroup of genes and proteins is especially
important for the given function (or biological process) and that
their interaction with other parts of the network is relevant to a
lesser degree than within the subgroup. The three major types
of biological pathways are responsible for (i) gene regulation,
(ii) metabolic processes, and (iii) signal transduction. In gene
regulation pathways, transcription factors play a crucial role in
activating or inhibiting the expression of a set of genes, which in
turn, may trigger other pathways. Metabolic pathways consist of
a series of biochemical reactions governed by sets of enzymes
that convert low-molecular (typically organic) compounds into
one another. For example, in the glycolysis pathway, glucose is
processed to pyruvate with concomitant generation of free
energy equivalents for use in other cellular processes. Signal
transduction cascades, the cell’s communication mechanisms,
convey messages from one part of the cell to another through a
series of binding events, transmitter redistributions, and protein
modifications.

In the existing pathway databases, pathways are described
independently and the respective information is typically repre-
sented in isolation. However, in reality, all these pathways are
part of one complete interaction network. Over the past few
years, while many pathway databases have been created (see
Table 8.1 for a list of important public domain pathway
databases), some databases have focused on a particular type
of pathways. Hence, collecting the information about genes or
pathways of interest can be a daunting task for a researcher
who is not familiar with the scope and type of the existing
databases.
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From the technical point of view, pathway studies based on
database collections depend heavily on software tools and compu-
tational algorithms, database technologies, and the quality of
information provided by experimental methods. To date, there is
a plethora of pathway analysis tools, ranging from a simple visua-
lization device to a full-fledged commercial solution dedicated to
pathway analysis. For example, mapping of the gene expression
data to the collection of pathways allows the assessment of biolo-
gical processes involved in the experiment and expedites the
understanding of the interaction between genes, proteins, and
metabolites. Thus, pathway knowledge and understanding is a
crucial element of current attempts of biological data interpreta-
tion and many groups have dedicated enormous efforts to con-
structing and maintaining pathway databases. While a number of
problems still remain to be solved, pathway analysis has
advanced our understanding in several areas of biological
study. For example, studies in cancer analysis have suggested
that pathways rather than individual genes control the nature
of tumorigenesis (3, 4).

It must be emphasized that high-throughput data sets repre-
sent the smaller part of knowledge about pathways and most of the
information is buried in the scientific literature that is not easy to
digest for producing electronically readable pathway information.
In the end, this requires reading and abstracting of thousands of
articles in a formalized manner by specialized annotators. The long
breath (both in a time perspective and from the viewpoint of
funding) necessary for such an effort is frequently out of range
for academic teams and, thus, commercial efforts see an opportu-
nity to step in. Not surprisingly, companies like GeneGo (www.ge-
nego.com), BIOBASE (www.biobase-international.com),
Molecular Connections (www.molecularconnections.com), or
Ingenuity (www.ingenuity.com) hold the largest and best anno-
tated pathway databases (see Table 8.2 for a list of important
commercial pathway database systems); yet, they are not immedi-
ately accessible for the public domain. In this chapter, we review
some of the widely used publicly available pathways databases,
focusing on their scope, annotation quality, and tools.

2. Current
Development in
Pathway
Databases The diverseness of the pathway resources available today presents a

great challenge to researchers. Searching for the necessary infor-
mation in numerous databases and understanding the different
content structuring approaches are laborious. Furthermore, the
lack of uniform data models and data access methods renders data
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integration a Herculean task. While several efforts have been
developed to assist the exchange of pathway information, it is
still in a primitive state. These data standards are relatively recent
compared with traditions followed for several pathway databases
that have existed for more than a decade such as KEGG (5) and
EcoCyc (6). In some cases, these databases employ data represen-
tations that cannot be exactly represented in the exchange formats
and their curators may even decide not to adopt the exchange
formats at all. Currently, there is no quick solution to all these
issues. The worst of all possibilities is the representation of path-
ways just in graphics form that are almost impossible to parse
electronically, although this type of representation appears
useful for the human eye (e.g., the Science Database of Cell
Signaling at http://stke.sciencemag.org/cm.) Other attempts
result in encyclopedia-type compilations of pathway descriptions
(see Table 8.3).

In the following section, we discuss several of the most widely
used pathway databases that could serve as a starting point to find
genes or pathways of interest. Readers are advised to visit Path-
guide (http://www.pathguide.org) for a complete list of available
pathway databases. In Table 8.4, we list several important pathway
analysis tools.

2.1. Kyoto

Encyclopedia of Genes

and Genomes (KEGG)

KEGG (5, 7) is a suite of databases, which can be grouped into
four main classes of information, genes and proteins (KEGG
GENES), pathway information (KEGG PATHWAY), relationship
between various biological objects (KEGG BRITE), and chemical
compounds (KEGG LIGAND). KEGG was first introduced in
1995 and many significant improvements have been made since
then. KEGG PATHWAY currently contains more than 90,000
organism-specific pathways generated from 335 reference path-
ways. KEGG maintains pathway information concerning metabo-
lism, genetic information processing, environmental information
processing, cellular processes, human diseases, and drug
responses. The richness of pathway information stored makes
KEGG one of the most widely used pathway databases. The
KEGG data are available for academic users and may be down-
loaded from the KEGG FTP site at ftp://ftp.genome.jp/pub/
kegg.

In KEGG, each subdatabase can be browsed or searched. The
KEGG PATHWAY page lists all manually drawn pathway maps. A
particular pathway map or entry is retrievable by the corresponding
map number. The pathway is displayed as a reference pathway or
an organism-specific pathway. Users can switch between different
organisms using the dropdown menu. The pathway map is click-
able and navigation from one pathway to another is easily possible.
The pathway entry page provides a more detailed description of
the pathway and lists the corresponding literature references.
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The latest addition to KEGG is KEGG Atlas (8), which con-
sists of a global metabolism map and a viewer. The global map is
built by manually combining around 120 KEGG metabolic path-
ways. The KEGG Atlas allows users to align a set of genes or
compounds to the global map and user-specified entries will be
highlighted as colored lines or circles. This feature is especially
useful in determining which pathways are activated or depressed in
a particular gene expression experiment. Instead of downloading a
local copy of KEGG data, users can also assess the data through
KEGG-specific application program interfaces (APIs).

2.2. Reactome Reactome is a knowledgebase of biological processes where the
information is represented in a reaction-centered form (9). A
reaction is defined as a path of conversion of inputs into outputs.
Both inputs and outputs can be physical entities such as small
molecules, proteins, nucleotides, or complexes. This data repre-
sentation is flexible enough to encompass most biological interac-
tions. The reactions are then linked together to form a full
pathway. Reactome mainly concentrates on the curation of
human reactions, except when there are gaps in human data
(10). At the time of writing, 926 human pathways were available.
Pathways for other organisms can also be retrieved via orthology
relationships from the respective human pathways.

The database Reactome comes with an intuitive browsing
interface that allows users to easily locate the necessary informa-
tion. The reaction map displays all available pathways of a particu-
lar organism and an individual component can be selected for
further investigation. A list of available biological processes is also
provided under the reaction map (this is known as the Pathway
Topic List). The human reaction map is used by default; however,
alternative organisms can be selected from the dropdown menu.
The information is organized in a tree-like structure where a
particular biological process represents the root of the tree. Each
branch points to a more specific component of the biological
processes and eventually leads to a reaction. At each level, addi-
tional data such as equivalent events in other organisms, partici-
pating molecules, and descriptions are provided. The information
can be viewed or downloaded in several formats such as BioPAX
(http://www.biopax.org), SBML (11), or Cytospace (12). Basi-
cally, one can search for information in Reactome by reaction,
gene, and protein names as well as several other identifiers. But
an advanced search interface with a variety of options is also avail-
able which can limit the search to particular fields. PathFinder is a
useful tool for finding pathways connecting a compound or reac-
tion to one or more compounds or reactions. If several outputs are
specified, the shortest path is returned. Given a set of user-defined
genes, Skypainter can be used to identify the reactions or pathways
that are statistically overrepresented. Skypainter recognizes a
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variety of gene and protein identifiers including Affymetrix probe
sets. Reactome provides an extensive help guide and users are
encouraged to refer to it.

2.3. BioCyc BioCyc, a meta-database, is a collection of pathway/genome data-
bases (PGDB) (13). The databases in BioCyc can be classified into
three tiers, based on their annotation quality level. Tier 1 compo-
nents undergo intensive curation and contain EcoCyc (14) and
MetaCyc (13). EcoCyc is an organism-specific database and con-
tains extensive information about the metabolic and regulatory
network, genes and gene products of Escherichia coli K-12 col-
lected from the literature (from more than 17,000 publications) in
a systematic manner. On the other hand, MetaCyc stores more
than 1,100 metabolic pathways obtained from more than 1,500
different organisms through extensive literature curation. Tier 2
contains 20 network databases for organisms with fully sequenced
genome, but insufficient available experimental information about
gene function. These networks are inferred from MetaCyc with
moderate manual curation through the use of the PathoLogic
program, a part of the Pathway Tools software (15). The remain-
ing tier contains 354 databases predicted with PathoLogic without
any further curation. The data files can be obtained in two popular
formats, BioPAX and SBML.

BioCyc provides two search interfaces, a standard form and an
advanced query page. In the former, several types of queries are
listed together. The user first selects the database of interest and
then chooses a particular type of query to be performed. Only one
query can be executed per request. It is possible to select an entry
in the ‘‘Genome Browser’’ for visualization of a whole chromo-
some, display statistics and updates of the history of the database,
perform a text search using the ‘‘Query’’ field, browse through
ontologies, execute BLAST searches using protein or nucleotide
sequences or display the list of all pathways, proteins, genes, or
compounds. The advanced query page allows formulating requests
using a language known as BioVelo. There is no need to know this
syntax of BioVelo since the input form will translate the request
into BioVelo and execute it. The query language allows users to
create requests such as, for example, to find all human proteins
with the Gene Ontology (16) term ‘‘localized to cytoplasm.’’ For a
more detailed description of the query language, users are advised
to consult the online documentation. For users already familiar
with the query language BioVelo, a free form advanced query page
is also available.

2.4. Pathway

Interaction Database

(PID)

PID is a collaboration between the National Cancer Institute
(NCI) and the Nature Publishing Group to provide the cancer
research community with high-quality pathway information per-
taining to human molecular signaling and regulatory events (17).
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The data are curated from peer-reviewed literature and constantly
updated. PID also contains data directly imported from Reactome
and BioCarta. Currently, there are 88 human pathways (4,944
interactions) curated by NCI–Nature and 318 human pathways
(6,538 interactions) imported from BioCarta and Reactome. The
number of pathways listed excludes subnetworks. The data are
freely available in PID XML and BioPAX formats, without any
restriction on use.

A user can select a pathway of interest from the list of all
available pathways. Each pathway is displayed as a clickable static
image. Several popular file formats are supported, for example,
GIF, SVG, PID XML, and BioPAX. The ‘‘Molecule list’’ shows all
participating molecules and the complexes they form. The list of
references for the selected pathway is also available. PID provides a
simple search box to query the database. The search field supports
Entrez Gene identifiers, UniProt identifiers, HUGO gene sym-
bols, and Gene Ontology biological process terms or identifiers. A
more advanced search option is also available. For NCI–Nature
curated data, searches can be limited by evidence codes. The
‘‘Connected molecules’’ query allows users to construct a single
network containing all molecules with a minimal amount of inter-
action links.

3. Problems
Associated with
Pathway Analysis
Based on Public
Databases

A pathway, by itself, is a human construction that represents the
current understanding of a particular biological process, which is
partially complete and subject to changes when new knowledge
emerges. Pathway analysis depends heavily on the completeness of
the pathway information and, obviously, incomplete information
may lead to misinterpretation of sets of target genes obtained from
an experimental screen. In a particular case, it has been shown that
the existing pathway databases do not even contain all pathway
information presented in the public literature (18). In the study,
the authors argue that many parts of the fatty acid metabolism
pathway are missing or incomplete in four widely used pathway
databases (KEGG, Reactome, GenMAPP (19), and BioCarta
(http://www.biocarta.com)). Furthermore, some records have
not been updated for years, even for KEGG. This has raised con-
cerns about pathway analysis, which highly depends on the quality
of the pathway information.

Therefore, there is a clear need to consolidate pathway infor-
mation by integrating the data from different pathway sources.
This approach provides several advantages such as filling in gaps in
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pathways and enabling the cross-validation of existing pathway
components. It might sound relatively easy to integrate all
information of a particular pathway from various sources to
create one complete pathway. However, in reality, researchers
are often discouraged to do so. One of the main issues is that
each pathway database provider has special preferences in
choosing the data model and conventions in representing the
pathway knowledge and it is laborious to squeeze the available
data of a given database into a more general data model. Various
data exchange standards have been developed to overcome this
issue.

Currently, the two most widely used exchange formats for
pathways are BioPAX (http://www.biopax.org) and SBML
(11). SBML is mainly used for mathematical modeling and simu-
lations of pathways. On the other hand, BioPAX is more flexible
and the data model can represent molecular interactions and is
capable of accommodating additional information such as chemi-
cal structures and mathematical models. While it is generally pos-
sible to convert the pathway data from one format to another, the
level of information may differ or the same information cannot be
fully presented at all. The problem is further complicated if the
database providers employ data models that are not fully compa-
tible with the exchange format. In this case, while the syntax for
the pathway data in a particular exchange format is correctly fol-
lowed, the semantics of the data might not be the same. For
example, in Reactome, an EntitySet, a set of physical entities
with their functions interchangeable in a given situation, is
encoded as a ‘‘generalized’’ protein with several external references
to different proteins in the BioPAX file format. It should be
emphasized that, following the syntax of BioPAX, a protein entry
has to link to a single sequence, possibly with several external
reference points to entries in other databases, instead of to differ-
ent proteins.

We performed a study of the proteins in human pathways in a
variety of pathway databases. Tables 8.5 and 8.6 show the con-
tents of pathways based on the BioPAX Level 2 specification
(http://www.biopax.org/release/biopax-level2.owl). Table 8.5
lists the number of pathways together with the biomolecules in
them. Following Table 8.6, only Reactome contains so-called
physical entities. While the physical entity entry can be used to
represent an entity with physical structure, instances of a physical
entity should never be created based on the BioPAX specification.
These entries were removed in the Reactome data set in PID (PID
Reactome), which suggests that some curation was performed
during the import stage, although there is some ambiguity as a
result. We observed that the number of proteins in Reactome
is lower than the corresponding number in PID Reactome.
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Table 8.5
The number of human pathways and biomolecules available in PID, Reactome, and
BioCyc

PID PID Reactome PID BioCarta Reactome BioCyc

Pathways 141 823 254 926 327

Physical entities 0 0 0 519 0

Proteins 2,527 2,795 2,392 2,410 2,239

Complexes 2,038 1,701 880 2361 24

Small molecules 132 624 205 737 1,262

DNA 0 0 0 0 0

RNA 6 23 14 31 0

For PID, the data imported from Reactome and BioCara are also provided. Only Reactome contains the
data type ‘‘physical entity,’’ which is a super class of biological molecules (proteins, complexes, etc). An
example of such a physical entity is the Fatty Acid anion ‘‘head-in’’ in the human fatty acid cycling model.
There is no physical entity in PID Reactome, which may suggest that the entities were removed or refined
to other biological molecules.

Table 8.6
The number of interactions available in the same databases

PID PID Reactome PID BioCarta Reactome BioCyc

Interaction 931 839 412 0 0

Physical interaction 0 0 0 0 0

Control 4,383 1,766 2,642 0 0

Conversion 0 0 0 0 0

Catalysis 0 0 0 1,716 3,155

Modulation 0 0 0 30 54

Complex assembly 1,447 909 646 0 0

Biochemical reaction 2,077 1,401 1,699 3,034 1,325

Transport 196 267 245 0 1

Transport with biochemical reaction 111 9 1 0 7

The type of interactions is based on the BioPax Level 2 specification. The data show that the level of
information provided by various databases differs drastically. For example, PID has the tendency to
represent the regulation and modulation events as control events. On the other hand, Reactome and
BioCyc further refine the processes into catalysis or modulation events. PID also uses the most general class
‘‘Interaction’’ to represent molecular interactions; yet, such instances should not be created based on the
BioPax specification.
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Table 8.6 shows the diversity of interaction types used to describe
pathways in different databases. For example, PID encodes all
regulation or modification events as a control. However, Reac-
tome and BioCyc further classify a control event into catalysis or a
modulation event.

4. Conclusions and
Outlook

While there are many pathway databases, even an idealized unified
version of them is still far from being comprehensive. Most of the
database providers are focused on a particular type of biological
processes, reflecting the research interest and expertise of a specific
group. The databases vary greatly in their content, quality, and
completeness. Furthermore, the lack of resources limits the ability
of most database providers to offer up-to-date pathway knowledge
since the scientific literature to digest is very large and constantly
accumulating. Currently, the information stored in pathway data-
bases still falls behind the knowledge presented in scientific articles.
An integrative approach seems to be a natural solution to the
problems; yet, it is hindered by issues such as heterogeneous data
models and lack of standardized data access methods. Various data
exchange standards have been developed to assist the storage, orga-
nization, and exchange of pathway information. However, they are
still in an early developmental stage. To overcome the issues men-
tioned above, a unified data model and data access method must be
used to minimize the issues in data exchange. Furthermore, an
automatic workflow for inferring and updating the pathway infor-
mation from experimental data such as molecular interactions or
gene expression data would greatly advance pathway analysis.

At the end, pathway databases will ultimately evolve into work-
benches for modeling and predicting the influence of metabolic
pathways, signaling and gene activity regulatory cascades on cellular

Table 8.7
List of platforms for cell reconstruction and modeling

Repository Web URL

Virtual cell http://www.nrcam.uchc.edu

E-cell http://www.e-cell.org

Silicon cell http://homepages.cwi.nl/�gollum/SiC

CyberCell http://redpoll.pharmacy.ualberta.ca/CCDB

WebCell http://webcell.org
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reactions. As ambitious as this goal might sound and as little biolo-
gical insight has come out of so-called in silico cell projects (see
Table 8.7 for examples) so far, this is, nevertheless, the final goal
of biomolecular mechanism-focused life science research.
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Chapter 9

Databases of Protein–Protein Interactions and Complexes

Hong Sain Ooi, Georg Schneider, Ying-Leong Chan, Teng-Ting Lim,
Birgit Eisenhaber, and Frank Eisenhaber

Abstract

In the current understanding, translation of genomic sequences into proteins is the most important path
for realization of genome information. In exercising their intended function, proteins work together
through various forms of direct (physical) or indirect interaction mechanisms. For a variety of basic
functions, many proteins form a large complex representing a molecular machine or a macromolecular
super-structural building block. After several high-throughput techniques for detection of protein–protein
interactions had matured, protein interaction data became available in a large scale and curated databases
for protein–protein interactions (PPIs) are a new necessity for efficient research. Here, their scope,
annotation quality, and retrieval tools are reviewed. In addition, attention is paid to portals that provide
unified access to a variety of such databases with added annotation value.

Key words: protein–protein interaction, protein-complex database, PPI database.

1. Introduction

Protein–protein interactions (PPIs) are a critical attribute of most
cellular processes. Protein interactions can either be direct (physi-
cal) via the formation of an interaction complex (with varying
affinity of interaction and duration of complex formation) or
they can be indirect (just functional) via a variety of genetic
dependencies, transcriptional regulation mechanisms, or bio-
chemical pathways. Traditionally, instances of PPI have been stu-
died by genetic, biophysical, and biochemical techniques. Until
less than a decade ago, their experimental detection was cumber-
some; the cost of such a laborious effort restricted the number of
known complexes and the main information source about PPI was
scientific journal articles that, typically, described one or a handful
of interactions only.
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The first high-throughput PPI detection technology was pro-
vided with the yeast two-hybrid technology (1) followed by several
others, among which tag-based mass-spectrometric techniques (2)
have recently become the state of the art. Other major sources are
correlated expression profiles (3, 4) and genetic interaction data
(5) (e.g., on synthetic lethality) but theoretical, in silico computed
approaches based on interaction predictions from gene context
studies (gene fusion events (6–9), gene neighborhood (10–13),
and gene co-occurrences/absences, also called the method of
phylogenetic profiles (14–18)) increasingly contribute to our
understanding of protein networks.

It is evident that, at present, we know only a fraction of the
interaction network in cellular systems (and, of course, only in a
qualitative manner). Nevertheless, the sheer size of the available
data about interactions requires their collection in electronically
readable databases. Currently, there are a number of competing
database projects that vary in their scope, annotation quality, and
availability to the public. Some of these databases are ambitious
projects that try to collect all possible known interactions between
proteins of every organism. The Biomolecular Interaction Net-
work Database (BIND) (19, 20) (it was recently renamed Biomo-
lecular Object Network Databank – BOND – and commercialized)
is one of the most comprehensive databases of protein–protein
interactions and complexes. Among its many features, it not only
has an interactive Web portal for searching and browsing through
the records, but also provides standardized application interfaces
(APIs) for various computer languages like Perl, Java, C, and Cþþ
to allow another avenue to access its data. Other databases on the
other hand can be specific for certain diseases or organisms only. For
example, NCBI’s HIV-1, Human Protein Interaction Database
(http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions)
attempts to collect all known interacting proteins between
the various HIV-1 viral proteins and human proteins. Such
databases are very specific and therefore, usually contain less
data and have less functionality than the general interaction
databases.

Protein interaction databases, in turn, will become useful only
with respective retrieval tools and, most importantly, with their
integration into annotation pipelines that enables them to become
means for discovery of new biomolecular mechanisms. For exam-
ple, there is a recent publication that describes the use of informa-
tion about protein complexes in yeast to predict the phenotypic
effect of gene mutation (21) and that this approach can possibly be
extended to predicting and investigating the genes of Mendelian
or complex diseases. We need to admit that, at this front, there are
still many open issues and the qualitative change in biological
theory aimed at more system biological understanding is still a
matter of the future.
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2. Recent Status
of Protein–Protein
Interaction and
Complex
Databases

Entry items in PPI databases are interactions or complexes. A
protein–protein interaction usually refers to a binary relationship
between one protein and another. On the other hand, protein
complexes consist of several subunits and, thus, refer to a set of
proteins. Each protein pair in this set forms an interaction and some
pairs even interact physically in a direct manner. More generally, a
protein complex can be viewed as a special case of a set of proteins
with a common functional description. Other examples are the set
of proteins in a pathway or the set of coexpressed targets under
specific biological conditions. The amount of interactions measured
with a specific method depends on the degree of interaction (e.g., its
affinity) and the duration of this interaction. The duration of the
interaction may be long term and with high affinity (so that the
complex can survive the harsh purification procedures); it may also
be rather transient as in enzyme substrate complexes.

In the following section, we mention the most important
sources of PPIs currently available. We classify the protein–protein
interaction databases into three main categories, based on the
methods used to collect or generate the data. A majority of these
databases are repositories of experimental data, which were col-
lected either through manual curation, computational extraction,
or direct deposit by the authors, such as DIP (22), MINT (23),
and IntAct (24). The second type of databases stores predicted
protein–protein interactions. Examples of these are PIPs (25),
OPHID (26), and HomoMINT (27). Finally, the last category is
a portal that provides unified access to a variety of protein interac-
tion databases. The most advanced example of this category is
STRING (28, 29). A comparison of primary databases for PPIs is
provided by Mathivanan et al. (30). There are also databases for
PPI in bacteria (31, 32). For a more complete list of protein–
protein interaction databases, readers can refer to Pathguide
(33), which contains information about 290 biological pathway
and interaction resources.

2.1. Database

of Interacting Proteins

(DIP)

The main aim of DIP (22) is to provide the scientific community
with a single, user-friendly online database by integrating the
existing experimentally determined protein–protein interactions
from various sources. It mainly records binary protein–protein
interactions that were manually curated by experts. In recent
years, DIP has been extended to include interactions between
protein ligands and protein receptors (DLRP) (34). The database
is consistently updated and the interaction data together with the
protein sequences can be downloaded in several formats including
tab-delimited and PSI-MI (35–37).
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Access to DIP requires registration and is free for academic
users. An extensive help page and a search guide are provided. A
search for proteins can be performed in a number of ways such as
by node identifiers (a node is a protein in DIP), descriptions,
keywords, BLAST query of a protein sequence, sequence motifs,
or literature articles. The search returns a list of proteins that
matched the search criteria. The ‘‘Links’’ field lists all the interac-
tions of a particular protein. The link under the ‘‘Interaction’’ field
provides the experimental evidence and the corresponding pub-
lication support for the interaction. The detailed description of a
protein is also given and can be viewed by selecting the ‘‘Inter-
actor(s)’’ field. The ‘‘graph’’ link opens the interaction map for the
current protein. To provide a reasonable visualization, only nodes
up to two edges from the root node are displayed. The width of the
edges reflects the number of independent experiments supporting
this interaction and is useful to identify highly confident interac-
tions. The interaction maps generated have links to all nodes and
this allows navigation from one protein to another.

2.2. Molecular

INTeraction database

(MINT)

The Molecular INTeraction database (MINT) (23) is an endea-
vor to document experimentally verified protein–protein inter-
actions, which are mined from the scientific literature by expert
curators. While the main focus of the team is on protein–protein
interactions, other interaction data such as enzymatic modifica-
tions of the interacting partners are also recorded. Although most
of the interactions come from high-throughput experiments, the
main value of MINT resides in the high number of curated
articles. The data can be freely downloaded and are available in
several formats.

The search interface presents several query options. The user
can retrieve the list of proteins from an article based on
PUBMED ID or authors. The query might also be based on
protein or gene names, protein accession numbers, keywords
and limited to specific data sets (all taxa, mammalian, yeast,
worm, fly, or viruses). Finally, a BLAST search can be performed
to find proteins which are homologous to the query protein. The
search returns a list of proteins with information such as a brief
description of protein function, Uniprot AC, taxonomy, and
domains. The detailed page of the protein shows a summary of
the protein features in the left panel while the set of the interact-
ing partners of the query protein is given in the right panel. The
type of evidence support from the literature is also specified
together with their respective scores. The interaction network is
visualized with the MINT Viewer. The viewer provides advanced
features such as filtering the network based on scores as well as
expanding and collapsing network sections. The result can be
exported in several formats, for example, flat file, Osprey (38),
and PSI-MI (36).
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2.3. IntAct IntAct (24), by itself, is an open source database and software
framework. The system provides a flexible data model which can
accommodate a high level of experimental details. It also contains a
suite of tools that can be used to visualize and analyze the interac-
tion data. The interaction data are manually extracted from public
literature and annotated to a high level of detail through the
extensive use of controlled vocabulary. Most of the interaction
data come from protein–protein interactions, but IntAct also cap-
tures nonprotein molecular interactors such as DNA, RNA, and
small molecules. IntAct is updated weekly and can be downloaded
in the PSI-MI format (36). Both the IntAct software Rintact (39)
and the data are freely available to all users.

A simple, yet flexible search engine is provided. Users can
search for a broad range of identifiers, accession numbers,
names, and aliases. The search results may also be filtered with
criteria such as publication ID, first author, experiment type, and
interaction type. The search result is displayed in tabular form for
easy browsing and can be downloaded in the PSI-MI format. To
visualize the interactions for a particular protein, the link with
IntAct accession instead of that of the Uniprot accession has to
be selected. The new page displays basic information about the
selected protein and a number of interactions involving the current
protein. Then, one can select the protein and click on the ‘‘Graph’’
link. The interactive viewer provides a number of unique features
such as highlighting the node based on the molecule type, Gene
Ontology (40), InterPro (41) annotation, experimental and bio-
logical role or species. Similar to the MINT viewer, the interaction
network can also be expanded or refocused to a new protein. The
result of the navigation can be immediately exported in PSI-MI
format (36).

2.4. BioGRID The Biological General Repository for Interaction Data sets (Bio-
GRID) (42, 43) is an effort developed to collect both protein and
genetic interactions from major model organisms. BioGRID pro-
vides the most up-to-date and virtually complete set of interaction
data reported in the published literatures for both the budding
yeast Saccharomyces cerevisiae and the fission yeast Schizosacchar-
omyces pombe (42). The database contains data from both high-
throughput and conventional studies. It is updated monthly. The
data can be downloaded freely in several formats such as PSI-MI
(36), tab-delimited, and Osprey. The data can also be downloaded
ordered by gene, publication, organism, or experimental system.

A search can be performed with a wide variety of identifiers, for
example, cDNA accession and GI numbers as well as with Ensembl,
Entrez gene and Uniprot accessions (see their Help page for full
descriptions). The result page contains a list of matched items with
and without associations. The description page of a selected protein
shows the standard annotations, links to external databases, Gene
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Ontology, the number of both protein and genetic interactions.
Subsequently, a list of interacting partners is displayed and so are
the experimental support and the corresponding publications. The
interaction type can be recognized via the color code of the experi-
ments. It is possible to download the data for each interaction or
publication in the supported formats. Currently, no visualization is
available; however, Osprey can be used (38).

2.5. Human Protein

Reference Database

(HPRD)

The main purpose of HPRD (44) is to build a complete catalogue
of human proteins pertaining to health and disease. While HPRD
is not a protein–protein interaction database, it contains an exten-
sive list of interaction data of human proteins. All data in HPRD
are manually extracted from public literature and curated by a team
of trained biologists. The data are freely available for academic
users and can be downloaded in either tab-delimited or XML
formats. Users can download the whole database or only pro-
tein–protein interaction data without annotations in a tab-delim-
ited or PSI-MI format (36).

The database can be searched by keywords or by sequences.
The ‘‘Query’’ page provides various keyword fields; these include
protein names, accession numbers, gene symbols, chromosome
locations, molecular classes, domains or motifs, and posttransla-
tional modifications. The ‘‘Browse’’ page organizes the list of
proteins into different categories for easy browsing. It is a unique
feature of HPRD that the annotations for a particular protein are
organized in tabs. The ‘‘Interactions’’ tab provides the list of
protein interactors together with the experiment type. Nonprotein
interactors are also listed on the same page. No interaction visua-
lizer is provided. The ‘‘Pathways’’ tab leads to the corresponding
protein entry in NetPath (www.nethpath.org), which contains a
number of immune- and cancer-signaling pathways. From Net-
Path, users can download the corresponding pathway in popular
file formats.

2.6. MPact MPact (45) is an organism-specific database focusing on manually
curated protein–protein interactions and complexes from S. cere-
visiae and acts as an access point to PPI resources available in
CYGD (46). As the database is part of CYGD, the rich set of
information in CYGD is directly accessible from MPact. Due to
its quality, the data set has been used in numerous studies and is
widely considered as a gold standard for yeast protein–protein
interactions (47–49). The latest version of data is available for
download in PSI-MI format (36).

A ‘‘Quick Search’’ box is provided for quick access to the
interaction data by protein ID and gene name. More specific
queries can be performed by using the ‘‘Query by Protein’’ search
page. Here, protein attributes such as names or aliases, functional
categories, cellular localization, and EC numbers can be specified.
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Additional criteria such as evidence and interaction type, publication
ID, and an option to exclude high-throughput experiments are
available. This feature is useful to select interaction data based on
the strength of the detection methods. The results can be viewed in
two formats. In the short format, only protein ID, gene name, a
simple description, and the link to CYGD are listed. The long
format provides additional information such as the type of experi-
mental evidence, the publication ID, the full function description,
and the type of the interaction. The search result can be downloaded
in PSI-MI format (36). A simple visualizer is available for illustrating
the interaction network. The nodes are colored based on functional
categories and the color of the edges reflects the level of supporting
evidence for the corresponding interactions. The network can also
be downloaded in PDF format for offline use.

2.7. STRING STRING was first introduced in the year 2000 (50) and evolved
from a Web server of predicted functional association between
proteins into a comprehensive Web portal of protein–protein inter-
actions (28, 51). It integrates data from numerous sources, not only
from experimental repositories, but also includes computational
prediction methods, and automated text mining of public text
collections such as PUBMED. To facilitate the integration of multi-
ple data sets, the interactions are mapped onto a consistent set of
proteins and identifiers. During the integration, isoforms are
reduced to a single representative protein sequence. While this
approach enables unique comparison and efficient storage, the
interaction information may lead to misinterpretation of the result
in later stages as some interactions only occur for a particular iso-
form of the protein. While STRING data can be freely downloaded
mostly in flat file or as a database dump, the complete data set is only
available under a license agreement, which is free for academic users.

The interaction networks can be searched by protein names and
accessions and a variety of accession types is supported. The search
returns a list of proteins that match the term and the user can select
the best candidate. A similar search can also be performed using the
protein sequence with the best-matched protein selected automati-
cally. STRING provides a powerful network visualizer together with
a rich set of annotations. Several visualization tools are available for
analysis and facilitate navigation within the interaction network.
Users are encouraged to refer to the online help page for more
information. STRING also provides a search interface for querying
the interaction network with a protein list that tries to connect all or
most of them via interactions in the STRING database.

2.8. Unified Human

Interactome (UniHI)

Unified Human Interactome (UniHI) (52) provides unified access
to human protein interaction data from various sources includ-
ing both computational and experimental repositories. The
aim of UniHI is to be the most comprehensive platform to
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study the human interactome. Currently, it contains interac-
tion data extracted from six public experimental repositories,
and large-scale Y2H screenings, and computational extraction
through text-mining and orthologue transfer. The integration
of proteins was performed using information from Ensmart
(PMID: 14707178) and HGNC (PMID: 11810281).

Users can query UniHI using the UniHI search tool. A variety of
protein identifiers are supported and users can submit a set of proteins
to obtain their functional information and interacting partners. The
search returns a list of matched proteins together with the original
source database names. UniHI provides an interactive viewer to
visualize the interaction networks. This software offers several options
to refine the network. In addition, UniHI provides two powerful
tools to analyze the human interactome. The first one is UniHI
Express, which can be used to identify tissue-specific interaction net-
works. Users can refine the interaction networks based on gene
expression in selected tissues to construct a tissue-specific network.
While an interaction network is of great help, pathway information
provides more detail about the information flow in the biological
process. Thus, it is useful to compare an interaction network with a
known pathway. This can be done with the help of UniHI Scanner,
the second tool. UniHI Scanner compares the extracted networks
with the pathways from KEGG (53) and, thus, enables the detection
of new components in existing pathways. It also allows identifying
proteins that are involved in multiple pathways, which might be
useful for disease-related studies. UniHI provides detailed help
pages about the available tools. Users are strongly recommended to
read the documentation before starting their search.

3. Comparison
of Protein–Protein
Interaction and
Complex
Databases

Storage of protein–protein interaction and complex data including
information about experimental and theoretical evidence for the
interaction and functional annotations of the proteins involved
requires a complex data structure. Standardization is a necessary
requirement to allow electronic access to various data sources by
programs and exchange of data sets among research teams. There
are currently two major data formats available to represent pro-
tein–protein interaction and protein complex data. The first for-
mat known as the Proteomics Standard Initiative-Molecular
Interactions (PSI-MI) (36) is clearly advocated and has been
adopted by many major existing databases. This XML-based for-
mat allows the user to further analyze the data with existing tools
[e.g., Cytoscape (54)] as these tools are usually PSI-MI compatible.
BioPAX, an acronym for Biological Pathways Exchange, is an
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alternative, concurrently used format. It is defined in terms of
OWL-XML (http://www.w3.org/TR/owl-ref/) and the current
version (55) includes definitions for molecular interactions. The
relative merits of various standards have been reviewed (37, 56). It
should be noted that, although databases might use the same for-
mat, the level of information provided (especially of the annotation)
might differ considerably.

The amount and completeness of the data in PPI databases are
of major concern. As can be seen in Tables 9.1 and 9.2, there is a
considerable overlap between the major general interaction data-
bases with regard to the representation of interacting proteins as
well as with regard to interactions described; yet, any applied effort
for network creation in context with a biological research task
needs to draw information from essentially all primary databases if
one wishes not to omit essential interactions. Not surprisingly, some
fusion of primary databases is the first benefit that is provided by
portals such as STRING (28) or UNIHI (52) for access to interac-
tions. There is no overlap between MPact (45), a yeast database, with
the resources for human protein interactions, GNP (http://genome
network.nig.ac.jp/public/sys/gnppub/portal.do) and HPRD (44).

Our in-house effort to integrate the interaction data from mul-
tiple databases using the PSI-MI format (36) showed several further
issues exist. First, not all proteins can be associated with unique
UniProt entries (see Table 9.2), mostly in context with obsolete
entries and identifiers that can be mapped to multiple entries. While
other identifiers can be introduced, the rich set of annotation pro-
vided by the UniProt Knowledgebase cannot be used at a later
stage. Second, not all information is presented in the same level of
detail. For example, some experiments are annotated using the term
‘‘experimental interaction detection’’ instead of describing the real
experiment method. This not only hinders the analysis based on
experiment type, it also produces wrong statistics. A more severe
issue occurs when the same laxness is applied to the taxonomy. For
example, proteins can be assigned to mammals instead of to human.

Finally, the quality of the data with regard to the significance of
the interaction in the biological context is problematic. PPI data-
bases contain lots of interactions of proteins with chaperones, ribo-
somal proteins, and other similarly sticky proteins, interactions that
are not informative about biological functions. It can be expected
that the experimental conditions for interaction registration have
created a substantial number of interactions that will not occur
under physiological conditions. It is difficult to assess this fraction
of data. The quality of high-throughput experiments has been long
criticized with high false-positive rates of 50–70% (57). While the
rate is high, there is a belief that the experiments might produce the
correct physical interaction data, even though the interactions
might not be biological meaningful. Von Mering et al. (29, 48)
and others (58–60) have also provided some criteria for the
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assessment of this part of the data and they arrive at similar fractions
of most primary interaction data sets that are apparently spurious.
The lower accuracy is associated with mRNA synexpression and the
better value is given to mass-spectrometric methods of tag-purified

Table 9.1
Overlap among proteins described as interactors in protein interaction databases

IntAct MINT BioGRID DIP HPRD MPact GNP MPPI

IntAct 38,085

MINT 21,669 27,109

BioGRID 16,578 15,323 26,015

DIP 15,188 15,283 13,335 18,808

HPRD 5,526 4,759 3,773 1,057 9,496

MPact 4,629 4,567 4,328 4,528 0 4,787

GNP 663 591 366 151 771 0 1,014

MPPI 564 542 219 256 432 0 81 863

IntAct 38,085

MINT 79.93% 27,109

BioGRID 63.72% 58.90% 26,015

DIP 80.75% 81.26% 70.90% 18,808

HPRD 58.19% 50.12% 39.73% 11.13% 9,496

MPact 96.70% 95.40% 90.41% 94.59% 0.00% 4,787

GNP 65.38% 58.28% 36.09% 14.89% 76.04% 0.00% 1,014

MPPI 65.35% 62.80% 25.38% 29.66% 50.06% 0.00% 9.39% 863

Total 40,010 28,322 26,668 19,795 9,550 4,835 1,071 926

With Uniprot ID 38,085 27,109 26,015 18,808 9,496 4,787 1,014 863

With Uniprot ID (%) 95.19 95.72 97.55 95.01 99.43 99.01 94.68 93.20

With sequence 39,705 27,993 26,015 18,863 9,550 4,787 1,014 863

With sequence (%) 99.24 98.84 97.55 95.29 100.00 99.01 94.68 93.20

This table provides information about the sets of proteins described as interactors in interactions (as of
January 2009) enlisted in the respective databases IntAct (24), MINT (23), BioGRID (42,43), DIP (22),
HPRD (44), MPact (45), GNP (http://genomenetwork.nig.ac.jp/public/sys/gnppub/portal.do), and
MPPI (69). In the upper part, the absolute overlap among proteins in the database is listed (the diagonal
shows the number of proteins with Uniprot ID in each database). The middle section shows the overlap as
a percentage of the total protein number of the database in each column. The bottom part of the table
provides information about the total number of protein entries, the absolute and relative (in %) numbers of
proteins with Uniprot IDs and with explicit sequence information.
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complexes (61). The accuracy can be enhanced by combining
methods; yet, the coverage does go down hand in hand with the
improvement of reliability. On the other hand, it remains unclear
which segments (domains) of the two proteins really interact with
each other.

4. Conclusions
and Future
Developments

The analysis of interaction data from the biological viewpoint is
ongoing and appears to be most advanced in yeast and human. For

Table 9.2
Overlap among binary interactions described in protein interaction databases

INTACT MINT BIOGRID DIP HPRD MPACT GNP MPPI

INTACT 82,712

MINT 36,796 68,071

BIOGRID 22,652 32,312 138,383

DIP 23,111 30,336 30,161 49,730

HPRD 8,078 7,102 5,615 794 36,899

MPACT 5,095 5,621 6,983 6,027 0 12,207

GNP 13 20 18 7 67 0 1,292

MPPI 82 106 64 30 299 0 0 833

INTACT 82,712

MINT 54.06% 68,071

BIOGRID 16.37% 23.35% 138,383

DIP 46.47% 61.00% 60.65% 49,730

HPRD 21.89% 19.25% 15.22% 2.15% 36,899

MPACT 41.74% 46.05% 57.20% 49.37% 0.00% 12,207

GNP 1.01% 1.55% 1.39% 0.54% 5.19% 0.00% 1,292

MPPI 9.84% 12.73% 7.68% 3.60% 35.89% 0.00% 0.00% 833

This table provides information about the sets of binary interactions (as of January 2009) enlisted in the
respective databases IntAct (24), MINT (23), BioGRID (42, 43), DIP (22), HPRD (44), MPact (45),
GNP (http://genomenetwork.nig.ac.jp/public/sys/gnppub/portal.do), and MPPI (69). In the upper
part, the absolute overlap among proteins in the database is listed (the diagonal shows the number of
proteins in each database). The bottom section shows the overlap as a percentage of the total protein
number of the database in each column.
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example, Schwikowski et al. (62) did a global analysis of the inter-
actions in yeast and registered 2,358 interactions among 1,548
proteins. They found that 63% of the interactions occurred in
proteins with common functionality and 76% in proteins with
common subcellular localization. Fraser and Plotkin (21) mana-
ged to use functional genomic data from the yeast S. cerevisia to
show that it is possible to best predict the phenotype of a protein
knockout by using the phenotype of the knockout of other pro-
teins that form complexes with it. This result can be explained by
considering protein complexes as a form of functional interaction
that is especially tightly knit. Jensen et al. (63, 64) showed that by
comparing large-scale datasets of protein complexes, the periodi-
city of expression of the regulated subunits of each protein com-
plex differs greatly between organisms (63, 64). The data in
protein–protein interaction databases can be used to build a
macromolecular biological network by combining the known
interactions with pathway information. These networks can then
be used to predict and study possible novel signaling or metabolic
pathways within the organism (60). These networks can also be
systematically analyzed to aid the interpretation of high-through-
put experimental data for the purpose of identifying, validating,
and prioritizing potential drug targets (65–67).

Despite all efforts, the availability of protein interaction data
has, so far, not had a great impact on biological theory and did not
create the desired system-wide understanding. Possibly, we just
know too small a part of the total network and it might also be
required that a higher resolution is necessary with regard to the
quality of the interactions (activation/inactivation, etc.). Noort
et al. (68) proposed a method to combine all sources of evidence
for adding quality labels to protein–protein interactions for S.
cerevisiae and they use this information to predict the nature
(metabolic or physical interactions) of newly discovered protein–
protein interactions.
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Chapter 10

Proximity Measures for Cluster Analysis

Oliviero Carugo

Abstract

The present chapter provides the basic information about the measures of proximity between two subjects
or groups of subjects. It is obvious that these concepts must be clear in order to apply them to any pattern
recognition analysis, both supervised and unsupervised.

Key words: cluster analysis, distance, proximity, similarity.

1. Introduction

The cluster analysis is probably the most widely used technique of
unsupervised pattern recognition. Its fundamental objective is to
look for clusters in a given population of subjects, each character-
ized by a certain number of variables. In other words, the cluster
analysis is performed in order to see if the subjects can be classified
in different groups. The applications of cluster analyses are very
numerous in very different scientific fields. A typical example, in
biology, is the study of the taxonomy of the species or the delinea-
tion of evolutionary trees on the basis of protein sequence align-
ments. The present chapter will provide some basic information
about the measures of proximity (distance or similarity) between
subjects that must be classified with cluster analysis. Clustering
techniques will be described in the next chapter.

The cluster analysis, like many other statistical tools, may give
different results depending on how it is used. For example, if we
take a frog, a cat, a salmon, and an eagle, we can classify them in
different ways as a function of the classification criterion we adopt.
If we decide to group the subjects on the basis of the place where
they live, we can get three groups, or clusters, one containing the
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salmon and the chicken, which live outside water, one containing
the salmon, which lives in water, and the last containing the frog,
which can live both inside and outside the water. On the contrary,
we get only two clusters if we focus the attention on the ability to
fly, since only the eagle is a subject able to fly, while the other
subjects, the frog, the dog, and the salmon are unable to fly. This
trivial example clearly shows how the results of the unsupervised
pattern recognition methods can be fragile, since they strongly
depend on the variables that are associated with the statistical units
and on the criteria with which the statistical units are grouped into
discrete clusters. Nevertheless, these statistical techniques are very
precious in the real life of data miners. When little is known about
the structure of the data, the cluster analysis can provide a starting
point for further investigations.

The definition of cluster is, per se, a rather ambiguous exercise.
Certainly, the classification of entities is a very ancient human
ability, deeply inserted into the human nature. Anybody possesses
the ability to recognize a dog and to put into the dog group a
newly observed associated with the basic features a dog must
possess. Nevertheless, the theoretical definition of cluster, the
cluster of the dogs, is very ambiguous. Several definitions have
been proposed and the most close to the human perception is that
of natural clusters. They are defined as a continuous region in the
space, containing a high density of subjects, and separated from
other clusters by regions containing a low density of subjects. The
exact separation between two clusters is therefore defined in a
rather arbitrary way. Natural clusters are also termed hard, or
crisp, since each single subject may belong to one and only one
cluster. Alternatively, it is possible to use the concept of fuzzy
cluster and allow the subjects to belong to more than a single
cluster, proportionally to their degree of similarity with each clus-
ter. Although this second approach may be extremely useful in
various disciplines, from neurobiology to economics, we prefer to
concentrate here on the concept of natural clusters. From an
operational point of view, this means that similar statistical units
must be grouped together while dissimilar units must be put in
different clusters.

Given its intrinsic ambiguities, it is necessary to examine accu-
rately all steps of cluster analysis.

First at all, the statistical variables must be carefully selected.
On the one hand, the inclusion of too many variables may have
two major drawbacks: the overall analysis lacks elegance and the
computations can become very expensive. On the other hand,
some redundancy may be tolerated if this ensures better results.
The selection of the right set of variables depends on the data
mining objective and, consequently, it must be performed or, at
least, checked by experts in the field in which the data miner
operates.
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Second, it is necessary to define the proximity measure
between subject pairs. The proximity may be evaluated by distance
measures or by similarity measures. Although these are concep-
tually alternatives, there is little difference in practice. Many differ-
ent possibilities have been explored and proposed.

Third, the clustering criterion must be defined. In other
words, it is necessary to decide under which conditions two
statistical units must be grouped together and also if two
clusters, each containing more than one unit, must be fused
into a single group. Different clustering criteria may produce
different results because of the structure of the data. For
example, it is obvious that compact clusters (Fig. 10.1a)
should be compared in a different way than elongated clusters
(Fig. 10.1b). It is nevertheless nearly impossible to select a
priori the optimal clustering criterion in pattern recognition,
especially when each statistical unit is associated with a high
number of variables. In this case, in fact, each unit corre-
sponds to a point in a high-dimensional space and the data
structure can hardly be perceived by the common methods of
human perception.

Fourth, a very large variety of clustering algorithms is available.
Also at this point, the results of a cluster analysis markedly depend
on the choice of an algorithm over another. We will nevertheless
concentrate the attention on a particular type of algorithms, the
hierarchical ones, which are mostly used in molecular biology. It
must, however, be remembered that often the results may change
considerably by changing the strategy with which the clustering is
carrier out.

Eventually, it is necessary to validate and interpret the results
of the cluster analysis. The latter point, like the selection of the
variables, strictly depends on the reason why the cluster analysis is
performed and consequently relies on the scientific experience of

(a) (b)

Fig. 10.1. Example of data that show a different clustering tendency. In (a) the points tend
to cluster in a compact manner while in (b) the clusters are rather elongated.
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the data miner. On the contrary, the result validation is an objec-
tive procedure intended to verify the correctness of the cluster
analysis output and it is usually performed through appropriate
tests.

In conclusion, it appears that cluster analysis starts and ends
with two steps that need the advice of people experienced in the
field that is investigated (the selection of the variables and the
interpretation of the results). In between the initial and the final
steps, it is necessary to define and apply four computational steps
that may be common to analyses performed in different fields, like
sociology, economics, or biology (definition of proximity mea-
sures, clustering criteria, clustering algorithms, and result
validation).

2. Proximity
Measures

The proximity between statistical units can be measured by a
distance or by a similarity. This is nevertheless a trivial problem,
though the difference between distance and similarity must be
kept in mind, especially during computations. On the contrary, it
is not trivial to consider the fundamental properties of the proxi-
mity measures. They can be divided into two classes: those that are
metric and those that are not. For both types of measures, given
the statistical units X and Y, it must be true that

d X;Xð Þ ¼ dmin (1)

where dmin is the minimal, possible distance, which can be encoun-
tered when the statistical unit X is compared to itself. It must be,
moreover, always true that

�15 dmin � d X;Yð Þ5 þ 1 (2)

which means that the statistical units X and Y may be identical, if
their distance is equal to dmin, or different if their distance is higher
than dmin. Any type of distance is moreover always commutative,
since

d X;Yð Þ ¼ d Y;Xð Þ (3)

Exactly the same properties hold also if the proximity is eval-
uated by means of similarity measures. In this case it is always true
that

s X;Xð Þ ¼ smax (4)

�14 s X;Yð Þ � smax � þ1 (5)

s X;Yð Þ ¼ s Y;Xð Þ (6)
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Distances and similarities are metric, in the mathematical
sense, only if the triangular inequality holds. This implies that
given the statistical units X, Y, and Z

d X;Zð Þ � d X;Yð Þ þ d Y;Zð Þ (7)

s X;Zð Þ � s X;Yð Þs Y;Zð Þ½ �= s X;Yð Þ þ s Y;Zð Þ½ � (8)

This inequality is of fundamental importance in data mining,
when the data must be examined by means of unsupervised pattern
recognition methods. Nevertheless, we must be aware of the fact
that many measures of distance or similarity, which are used in
molecular biology, are not metric. For example, the proximity
between protein three-dimensional structures is very often esti-
mated by means of the root-mean-square distance between
equivalent and optimally superposed pairs of atoms. Well, this
very popular proximity measure is metric only for very similar
subjects (e.g., apo and holo metallo-proteins or different single
point mutants), but it is not a metric when the data include
proteins with very different shapes and sizes.

Beside these theoretical considerations, there are three types of
proximities that one might handle: the proximity between indivi-
dual units, that between a single unit and a group of units, and that
between two clusters, each containing more than one statistical unit.

2.1. Proximity Between

Two Statistical Units

The most commonly used distance measure is the Minkowski metric.
Given two units, X¼ {x1, x2, . . ., xn} and Y¼ {y1, y2, . . ., yn}, it is
defined as

dM p ¼
Xn

i¼1

wi xi � yij jp
 !1=p

(9)

where the weights 0 � wi � 1 can be equal to 1 in the case of un-
weighted distances, or not in the case of weighted distances. The
parameter p can assume any positive, integer value. If p¼1, the
distance is also known as the Manhattan norm:

dMN ¼
Xn

i¼1

wi xi � yij j (10)

and if p¼2, the distance is also known as the Euclidean distance:

dE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

wi xi � yið Þ2
s

(11)

Several other distance measures have been used in various
applications. For example, the dmax norm is defined as

dmax ¼ max wi xi � yij jð Þ
1�i�n

(12)
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The dG distance includes some information about all the
statistical units that are examined since it is defined as

dG ¼ � log10 1� 1

n

Xn

i¼1

xi � yij j
Mi �mi

 !
(13)

where Mi and mi are the maximal and minimal values of the ith
statistical variable within the ensemble of all the statistical units
that are examined. Consequently, the distance dG between the
units X and Y may vary if it is computed when X and Y are part
of a certain ensemble of units or part of another ensemble of units.
An alternative is the dQ distance, defined as

dQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

xi � yi

xi þ yi

� �2

vuut (14)

All the above distances can be applied to real-type variables.
In the case of qualitative variables, nominal or ordinal, the dis-
tance between two statistical units must be defined in different
ways. The most popular of them is certainly the Hamming dis-
tance, defined as the number of places where two vectors differ.
From a formal point of view, this can be expressed by means of
the contingency table. If the variables of the units X¼ {x1, x2, . . .,
xn} and Y¼ {y1, y2, . . ., yn} can assume m states, the contingency
table is a square m � m matrix A, the elements aij of which are
the number of times the ith possible value present in X has been
substituted by the jth possible value in Y. For example, if m¼3
and the possible values, or states, of the variables are 1, 2, and 3,
the contingency table that compares the unit X¼ {2, 1, 2, 3, 1, 2}
with Y¼ {2, 2, 3, 1, 2, 3} is

0 2 0

0 1 2

1 0 0

0
B@

1
CA (15)

As an example, the element a1,2 is equal to 2 since it happens
twice that a variable x¼1 is associated with a variable y¼2 (x2¼1
and y2¼2; x5¼1 and y5¼2).

The Hamming distance dH can be therefore defined as

dH ¼
Xm

i¼1

Xm

j¼1;i 6¼j

aij (16)

given that the elements aij, with i 6¼ j, of the contingency table
indicate the number of times xi 6¼ yi. In the case of X¼ {2, 1, 2, 3,
1, 2} and Y¼ {2, 2, 3, 1, 2, 3}, therefore, dH¼5 because only the
first variables of X and Y have the same status, x1¼ y1¼2, while for
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all the other 5 values of i, xi 6¼ yi. The computation of the Ham-
ming distance by means of the contingency table is certainly not
necessary in simple cases, like that presented above, in which both
the number of possible statuses of the variables (m¼3) and the
number of variables associated with each statistical unit (n¼6) are
small. In other instances, where both m and n can be very large, the
use of the contingency table makes the computations of the Ham-
ming distance much easier.

A different distance definition for discrete variables is

dD ¼
Xn

i¼1

xi � yij j (17)

which is obviously equivalent to the Hamming distance when the
data are binary, that is, when each variable may assume only two
values, for example, 1 and 2.

If the statistical units are characterized by different types of
variables, some of which may assume real number values and
some others may assume only discrete values, the distance
between two units cannot be measured with the methods
described above and other definitions of distance must be used.
Various solutions of this problem have been proposed, the most
widely used of which is based on the discretization of the real
variables. If, for example, the ith variable assumes real values in
the closed interval (a,b), which means that a and b are the mini-
mal and maximal values that the ith variable assumes within the
statistical units under exam or in an absolute scale, where the ith
variable cannot be minor than a or major than b, the xi values can
be described by a histogram. The interval (a,b) is divided into m
subintervals and if the variable xi falls into the jth subinterval, it is
transformed into j � 1.

As mentioned in the introductory paragraph of this section,
the degree of proximity between two statistical units can be mea-
sured not only with distance measures, like those described above,
but also with similarity measures.

Two similarity measures are used very often. One is the corre-
lation coefficient. Given two vectors X¼ {x1, x2, . . ., xn} and
Y¼ {y1, y2, . . ., yn}, it is defined as

scc ¼

Pn

i¼1

ðxi � xavÞðyi � yavÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ðxi � xavÞ2
Pn

i¼1

ðyi � yavÞ2
s (18)

and it ranges between�1 and +1, being 0 if the two statistical units
X and Y are totally independent from each other. The maximal
value of +1 is encountered if X and Y are identical, i.e. perfectly
correlated, and the minimal value of �1 indicates that X and Y are
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perfectly anticorrelated, i.e. X¼�Y. The second measure of simi-
larity that is used very often is the inner product. Given the
statistical units described above, it is defined as

sin ¼ XT Y ¼
Xn

i¼1

xiyi (19)

Generally, the inner product is computed after normaliza-
tion of the vectors X and Y, so that both have unit length, by
means of

x 0i ¼
xiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

x2
i

s (20)

In this way, the inner product lies in the interval (�1,+1) and
depends on the angle between X and Y. Identical statistical units
are associated with the inner product equal to +1 while a value
equal to �1 indicates that the units are opposite, i.e., X¼�Y.

Other measures of similarity can also be used to compare
statistical units characterized by variables that can assume real
values. A widely used similarity measure is, for example, the Tani-
moto similarity sT, defined as

sT ¼

Pn

i¼1

xiyi

Pn

i¼1

xiyi þ
Pn

i¼1

ðxi � yiÞ2
(21)

and, if the vectors X and Y have been normalized to unit length,
can be rewritten as

sT ¼

Pn

i¼1

xiyi

2�
Pn

i¼1

xiyi

(22)

and may range between �0.33 and +1 for opposite or identical
vectors, respectively.

If the variables do not assume real values but can be associated
with discrete values or statuses, the Tanimoto measure of similarity
between the vectors X and Y is defined as the ratio between the
number of elements they have in common and the number of
elements they do not have in common. By using the contingency
table described above, the Tanimoto measure can be defined as

sT ¼

Pm

i¼1

aii

Pm

i¼1

Pm

j¼1;j 6¼i

aij

(23)
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Alternatively, it is possible to define a similarity that is based on
the ratio between the number of elements that X and Y have in
common and the number of variables that characterize each unit.
Such a similarity measure can be computed as

sA ¼

Pm

i¼1

aii

n
(24)

Like for the distance measures, when the variables are of
different types, the definitions of similarity described above cannot
be used. In these cases, it is necessary to measure the degree of
similarity by other means. Like for the distance measures, a possi-
ble solution of this problem is based on the discretization of the
real variables by means of histograms. The similarity between the
statistical units X¼ {x1, x2, . . ., xn} and Y¼ {y1, y2, . . ., yn} can be
measured as the sum of the similarity between each pair of variables
xi and yi

sQ ¼
Xn

i¼1

si (25)

The si is the similarity between the ith pair of variables and it
can be differently computed depending on the type of variable. If
the latter is a real number, si may be defined as

si ¼ 1� xi � yij j
ri

(26)

where ri is the interval of values that is possible or is observed
within the ith variable. Thus, if xi¼ yi, si reaches its maximal value
equal to 1, while if the absolute difference between xi and yi is equal
to ri, si assumes its minimal value equal to 0. On the contrary, if the
ith variable is not a real variable, si is equal to 1 if xi¼ yi and it is
equal to 0 if xi 6¼ yi. Independently of the type of variable, each
individual similarity si may have values ranging from 0 and 1, and
the sQ measure of proximity has a minimal value of 0 and a maximal
value equal to n, the number of variables associated with each
statistical unit.

2.2. Proximity Between

a Single Unit and a

Group of Units

The proximity between a single statistical unit and a group of
several (two or more than two) units must be measured with
techniques that are different from those that are used to measure
the proximity between two statistical units. It is necessary to
compute the proximity between a unit and a group of units in
several circumstances, in both supervised and unsupervised pattern
recognition methods.

There are two types of proximity measures between a single
statistical unit and a group of various units: the single subject can
be compared to all the members of the group or it can be com-
pared to a profile of the group, which summarizes the most
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important features of the group. In the first case, the problem can
be handled with the definitions of proximity between pairs of
units, though it is necessary to solve the problem of how to handle
the n proximities between the single subject and the n units
belonging to a group. In the second case, the problem is the
definition of the profile that summarizes all the elements of the
group, and the proximity between a single unit and a group of
units is measured by the proximity between the single unit and the
summarizing profile.

If the proximity between a single unit and a group of units is
measured as a function of the individual proximities between the
single unit and each of the elements of the group, three extreme
possibilities exist. The distance can be defined as the maximal
distance between the single subject and the group members, as
the minimal distance between the individual unit and the elements
of the group, or as the average distance between the single unit and
the members of the group. Analogously, the similarity between a
single unit and a group of units can be defined as the maximal,
minimal, or average similarity between the single subject and the
elements of the group. From a formal point of view, this can be
described as follows. Given a single unit X¼ {x1, x2, . . ., xn} and
the group Y of m units Y1¼ {y11, y12, . . ., y1n}, Y2¼ {y21, y22, . . .,
y2n}, . . ., and Ym¼ {ym1, ym2, . . ., ymn}, the proximity P(X,Y)
between X and Y can be measured as

PðX;YÞ ¼ max PðX;YiÞð Þ
1�i�m

(27)

PðX;YÞ ¼ min PðX;YiÞð Þ
1�i�m

(28)

PðX;YÞ ¼

Pm

i¼1

PðX;YiÞ

m
(29)

where P (X,Yi) is the proximity between the single unit X and the
ith elements Yi of the group Y.

A number of intermediate definitions are also possible. For
example, the proximity between the single unit and a group of
units may be estimated as the average proximity between it and the
n members of the cluster that are more similar to it or most
dissimilar to it.

A completely different approach to estimate the proximity
between a single subject and a cluster of units is based on the definition
of a profile of the group. The simplest way to do it is to define the
average or centroid Yav of the group, the elements of which are

yav;i ¼

Pm

i¼1

yi

m
(30)
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The proximity between the single unit X and the group Y is
then measured by the proximity between X and Yav. Alternatively, it
is possible to select one of the members of the group, measure the
proximity between the individual subject and such a representative
element, and assume that such a proximity measures the proximity
between the single unit and the group. There are various strategies
to select an element that can be considered as a representative of the
group of elements. Given a group Y of elements Yi, with Y1¼ {y11,
y12, . . ., y1n}, Y2¼ {y21, y22, . . ., y2n}, etc., the most common proce-
dure consists in summing for each Yi, the distances between Yi and
all the other elements Yj (i 6¼ j). The minimum value of these sums is
associated with the element that is the most representative of the
group. This is in fact the element that is, on average, most close to
the other elements of the group. Alternatively, the distances
between each element Yi and all the other elements Yj (i 6¼ j) are
computed and their median value Mi is stored. The minimal value of
all the Mi values, M¼min(Mi), is than searched for and it is asso-
ciated with the element most representative of the group.

2.3. Proximity Between

Two Groups

The proximity between two groups of statistical units can be
evaluated by measuring the proximity between pairs of units or
by comparing the profiles of the two clusters. In the first case, the
proximity P between two groups X and Y, with mX and mY

elements, respectively, can be defined as

P ¼ min pij

� �

1�i�mX ;1�j�mY

(31)

where pij is the proximity between the elements Xi and Yj. This is
known as the nearest neighbour criterion of proximity. Alterna-
tively, P can be measured as

P ¼ max
1�i�mX ;1�j�m

Y

ðpij Þ (32)

or as

P ¼

PmX

i¼1

PmY

j¼1

pij

mX mY
(33)

Of course, it is also possible to tune the above definitions, for
example, by defining P as the average value of the n highest or lowest
pij, with n � 2. All these definitions are based on the comparison of
all the mX members of the group X with all the mY elements of the
group Y. If on the contrary, one prefers to build a profile for both X
and Y, the proximity P becomes the proximity P(RX,RY) between
two points RX and RY, which are representative of X and Y, respec-
tively. Two formulations are widely used. One is simply

P ¼ P RX ;RYð Þ (34)
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and the other considers explicitly the possibility that the number of
elements in X may by different from the number of units in Y and is
thus

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mX mY

mX þmY

r
P RX ;RYð Þ (35)

In both cases, the selection of the representative points can be
performed in various ways, like those described in the section
dealing with the measure of proximity between a single unit and
a cluster. It is thus possible to select the centroid of the group or
one member, which is the most representative.

An interesting property of the proximities P between two sets
of statistical units is that they are only seldom metrics, in the
mathematical sense. For example, if pij is a distance, P¼max(pij)
cannot have the minimal, possible value when a cluster is compared
to itself. If, on the contrary, pij is a similarity, P is not a metric, in
the mathematical sense, because the triangular inequality is not
satisfied. It appears, therefore, that different choices of proximity
estimators may produce completely different results and that only
an expert in the field of application can decide, on a rational basis,
which choice is preferable.
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Chapter 11

Clustering Criteria and Algorithms

Oliviero Carugo

Abstract

Cluster analysis is an unsupervised pattern recognition frequently used in biology, where large amounts of
data must often be classified. Hierarchical agglomerative approaches, the most commonly used techniques
in biology, are described in this chapter. Particular attention is put on techniques for validating the optimal
cluster number and the clustering quality.

Key words: cluster analysis, agglomerative hierarchical clustering, clustering tendency.

1. Introduction

A number of clustering criteria and clustering algorithms have
been proposed and used in various scientific fields. A common
and somehow mysterious question is: how many clusters of
statistical units do exist within a certain population of subjects?
Several answers can be given to this question. Several techniques
can be applied to solve this problem. In molecular biology,
nevertheless, a family of techniques found a wide popularity.
This family of techniques is known as the family of the agglom-
erative, hierarchical methodologies. They are, for example, the
basis of any taxonomical classification, when phenotypes of
molecular features are considered. Any phylogenetic tree, from
the Darwinist approaches to the socio-biological applications, is
basically built through an agglomerative, hierarchical cluster
analysis.

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
DOI 10.1007/978-1-60327-241-4_11, ª Humana Press, a part of Springer Science+Business Media, LLC 2010

175



2. Hierarchical
Agglomerative
Clustering

The agglomerative cluster analysis of a set of m statistical units Xi,
with 1� i�m, starts with a clustering C0, in which there are m
clusters, each containing a single unit Xi. The first step is to merge
into a unique cluster the two units Xi and Xj, which are most
similar. This produces a new clustering C1, in which there are
m – 1 clusters. All of them are occupied by a single element of the
examined set with the exception of the cluster that contains Xi and
Xj. The second step produces a new clustering C2, in which there
are m – 2 clusters. Two possibilities exist for C2. In the one hand,
one of the m – 2 clusters contains three elements (Xi, Xj, and Xk if
Xk is merged in the cluster of C1 that contains Xi and Xj). On the
other hand, C2 could be formed by one cluster containing Xi and
Xj, the elements of which were already clustered together in C1,
one cluster containing Xk and Xl, and m – 4 clusters containing
only one statistical unit. The second possibility occurs if the ele-
ments Xk and Xl are the most similar clusters found at the C1 level.
The first possibility, on the contrary, occurs if the best proximity
is found by comparing Xk with the cluster of C1 that contains Xi

and Xj.
An agglomerative clustering algorithm implies therefore m – 1

sequential steps. At the beginning, level¼0, there are m singly
occupied clusters, and at the end, level¼m – 1, there is only one
cluster, which contains all the m statistical units of the ensemble
that is examined. At each intermediate step, level¼L, the two
most similar clusters formed in the previous step, level¼L – 1,
are grouped together. At each step L, a new clustering CL is
produced. CL contains one cluster less than the clustering CL – 1.
From a formal point of view, the clustering CL – 1 is nested into the
clustering CL.

There are two important considerations that must be made
about agglomerative clustering algorithms: the overall clustering
process can be summarized by a dendrogram and the algorithm
does not provide a unique answer. A dendrogram is depicted, for
example, in Fig. 11.1. The set of units that are examined includes
five subjects. A dendrogram is a simple, pictorial representation of
the agglomerative procedure. The scale provides a visual percep-
tion of the proximity between the units and between the clusters.
Consequently, the dendrogram shown in the figure indicates that
the subjects X1 and X2 cluster together first, because they are very
similar to each other. The initial clustering C0, which contains five
groups, each with a single unit, evolves into the clustering C1 that
contains four clusters. One of them is formed by two clusters of
C0, the subjects X1 and X2. The other three are occupied by single
units. The subsequent clustering C2 results in three clusters. One
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of them, containing X1 and X2, was already present in C1. Also
another cluster of C2, containing the single unit X3, was already
present in C1. On the contrary, the cluster of C2 containing the
units X4 and X5 was not present on C1, where these elements were
segregated in different groups. While there are five clusters in C0,
four in C1, and three in C2, there are only two groups in the
clustering C3. At this clustering level, the element X3 merges
into the cluster of X1 and X2. Consequently, at the C3 level, one
cluster with three members (X1, X2, and X3) and one cluster with
two elements (X4 and X5) are present. Further on, the clustering
C4 includes all the five statistical units into a unique cluster, the
final one, which contains all the elements that are examined. It is
important to observe that the lengths of the branches of the
dendrogram, i.e., the horizontal lines in the figure, are propor-
tional to the proximity between the clusters that are progressively
merged. For example, the proximity between X1 and X2 is higher
than the proximity between X4 and X5.

The second-important consideration about the agglomerative
clustering algorithms is that they do not provide a unique cluster-
ing. In the general case in which little or nothing is known about the
distribution of the data, it is impossible to predict a priori if one or
more clusters are present within the elements that are examined and
it is consequently impossible to know how many clusters exist. The
results of an agglomerative cluster analysis can therefore be ambig-
uous. In the example described above, for instance, it is possible to
hypothesize that the data are structured into three clusters if the
clustering C2 is considered although five clusters are observed at the
C0 level or one cluster is obtained at the C4 level. Sometimes, a
visual inspection of the dendrograms may help in taking a decision
on the optimal number of clusters in which a certain data set can be
divided. For example, the dendrogram of Fig. 11.2a could suggest
the presence of two clusters, one containing X1, X2, X3, and X4, and
the other with X5 and X6. On the contrary three clusters, one with
X1 and X2, the second with X3 and X4, and the third with X5 and
X6, can be easily identified by visual inspection of the dendrogram of

scale

X1
X2

X3

X4

X5

C0 C1 C2 C3 C4

X1
X2

X3

X5
X4

Fig. 11.1. Example of dendrogram that summarizes the clustering of five statistical units.
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Fig. 11.2b. Nevertheless, in general, the identification of the num-
ber of clusters in which the data can be optimally divided is not
obvious. Various techniques have been developed to determine the
optimal number of groups in which the data can be partitioned. All
of them are rather arbitrary. It must be remembered, therefore, that
a careful analysis of the dendrograms, especially if the help of expert
scientists is available, is essential.

The general agglomerative clustering algorithm can be sum-
marized by means of the following scheme.
(a) At the level 0, the clustering C0 consists of m clusters, each of

which contains a single subject.

(b) Go to the next level L, by searching amongst the clusters of
CL – 1 the two clusters that have the maximal proximity.

(c) This results in the new clustering CL that consists of a number
of clusters equal to the number of clusters of CL – 1 minus one.

(d) Go to point (b), unless all the elements that are examined are
clustered together.
Of course, if two clusters of CL – 1 merge into a single cluster in

CL, they continue to be merged for all the subsequent clustering
CL+k, with k�1.

In practice, most of the agglomerative algorithms use the
matrix approach. This means that an ensemble of m subjects,
each characterized by n variables, is represented by a m � n data
matrix D, each row of which is associated with a statistical unit and
each column of which is associated with a statistical variable. The
data matrix D is translated into an m � m pattern (or proximity)
matrix P. Each element pij of P indicates the proximity between
the ith and the jth element. Such a square matrix P is symmetrical
with respect to the main diagonal. Any type of proximity measure
can be used to go from D to P. This means that more than a matrix
P can be obtained from a single matrix D and that it is impossible
to know the matrix D by knowing the matrix P. Nevertheless, at
the clustering level 0, the P matrix is uniquely determined by the
measure of proximity between the elements of the set that must be
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X5
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Fig. 11.2. Examples of dendrograms that indicate two very different clusterings of the
statistical units.
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analyzed. As an example, the following data matrix D has 12 rows
and 2 columns. It represents a data set of 12 statistical units, each
characterized by 2 variables (see Table 11.1).

These 12 subjects are plotted on a bi-dimensional space in
Fig. 11.3. It clearly appears that the 12 subjects tend to cluster
into two distinct groups, one at low values of both the first and the

Table 11.1
List of 12 statistical units, each characterized
by two variables

Subject Variable 1 Variable 2

1 1.0 1.0

2 2.0 1.0

3 1.5 1.5

4 2.5 1.5

5 2.0 2.0

6 1.5 2.5

7 2.0 3.0

8 5.0 4.0

9 5.5 3.5

10 5.5 4.5

11 6.0 4.0

12 6.5 4.5

Fig. 11.3. Scatter plot of the 12 statistical units defined in Table 1.

Clustering Criteria and Algorithms 179



second variable, and the other at higher values of both the first and
the second variable. The proximity matrix P, associated with the
data matrix reported above, can be obtained by using the Eucli-
dean distance. It is reported in Table 11.2. A different proximity
matrix P is obtained by measuring the proximity though the City
Block distances and is reported in Table 11.3.

In going from the clustering level 0 to the level 1, it is neces-
sary to find the pair of units Xi and Xi, the proximity of which is
maximal. The subjects Xi and Xj are then clustered together and
m – 1 clusters are present in C1. While m clusters are observed at
the level 0, m – 1 clusters are present at the level 1. The m � m
matrix P of the C0 level is therefore substituted by an m – 1 � m –
1 matrix, by deleting the ith and the jth rows and columns, and by
substituting them with a single row and a single column. The latter
contains the measures of proximity between the newly formed
cluster and all the other statistical units. At each clustering step,
therefore, the proximity matrix leaves a row and a column. Con-
sequently, the number of operations that must be performed is

m � 1ð Þm m þ 1ð Þ
6

(1)

given a set of m statistical units. To appreciate the computational
complexity of an agglomerative clustering procedure, it is neces-
sary to think that if m¼10, that is, if there are only 10 subjects, it is

Table 11.2
Euclidean distances between the 12 statistical units reported in Table 1

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0 1.0 0.7 1.6 1.4 1.6 2.2 5.0 5.1 5.7 5.8 6.5

2 1.0 0.0 0.7 0.7 1.0 1.6 2.0 4.2 4.3 4.9 5.0 5.7

3 0.7 0.7 0.0 1.0 0.7 1.0 1.6 4.3 4.5 5.0 5.1 5.8

4 1.6 0.7 1.0 0.0 0.7 1.4 1.6 3.5 3.6 4.2 4.3 5.0

5 1.4 1.0 0.7 0.7 0.0 0.7 1.0 3.6 3.8 4.3 4.5 5.1

6 1.6 1.6 1.0 1.4 0.7 0.0 0.7 3.8 4.1 4.5 4.7 5.4

7 2.2 2.0 1.6 1.6 1.0 0.7 0.0 3.2 3.5 3.8 4.1 4.7

8 5.0 4.2 4.3 3.5 3.6 3.8 3.2 0.0 0.7 0.7 1.0 1.6

9 5.1 4.3 4.5 3.6 3.8 4.1 3.5 0.7 0.0 1.0 0.7 1.4

10 5.7 4.9 5.0 4.2 4.3 4.5 3.8 0.7 1.0 0.0 0.7 1.0

11 5.8 5.0 5.1 4.3 4.5 4.7 4.1 1.0 0.7 0.7 0.0 0.7

12 6.5 5.7 5.8 5.0 5.1 5.4 4.7 1.6 1.4 1.0 0.7 0.0
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necessary to perform 165 operations. If the number of units is
considerably larger, for example, if m¼500, it is necessary to
perform more than 20 millions of operations. Figure 11.4
shows the increase of complexity of an agglomerative clustering
algorithm as a function of the number of statistical units that must
be analyzed. Apparently, the cluster analyses are rather expensive.

Table 11.3
City Block distances between the 12 statistical units reported in Table 1

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0 1.0 1.0 2.0 2.0 2.0 3.0 7.0 7.0 8.0 8.0 9.0

2 1.0 0.0 1.0 1.0 1.0 2.0 2.0 6.0 6.0 7.0 7.0 8.0

3 1.0 1.0 0.0 1.0 1.0 1.0 2.0 6.0 6.0 7.0 7.0 8.0

4 2.0 1.0 1.0 0.0 1.0 2.0 2.0 5.0 5.0 6.0 6.0 7.0

5 2.0 1.0 1.0 1.0 0.0 1.0 1.0 5.0 5.0 6.0 6.0 7.0

6 2.0 2.0 1.0 2.0 1.0 0.0 1.0 5.0 5.0 6.0 6.0 7.0

7 3.0 2.0 2.0 2.0 1.0 1.0 0.0 4.0 4.0 5.0 5.0 6.0

8 7.0 6.0 6.0 5.0 5.0 5.0 4.0 0.0 1.0 1.0 1.0 2.0

9 7.0 6.0 6.0 5.0 5.0 5.0 4.0 1.0 0.0 1.0 1.0 2.0

10 8.0 7.0 7.0 6.0 6.0 6.0 5.0 1.0 1.0 0.0 1.0 1.0

11 8.0 7.0 7.0 6.0 6.0 6.0 5.0 1.0 1.0 1.0 0.0 1.0

12 9.0 8.0 8.0 7.0 7.0 7.0 6.0 2.0 2.0 1.0 1.0 0.0

Fig. 11.4. Increase of the complexity of an agglomerative-clustering algorithm as a
function of the number of statistical units m that must be clustered.
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There is a simple equation that allows one to define each type
of hierarchical, agglomerative clustering procedure. The central
question is the definition of the proximity between two clusters.
Such a definition is of fundamental importance in order to build, at
each clustering step, the new proximity matrix P. This simple
equation that defines the proximity between two clusters C1 and
C2 depends on the clusters Ci and Cj that have been merged, in the
last clustering step, into the new cluster C1 (Fig. 11.5).

Thereinafter, the proximity is assumed to be a distance,
although similar considerations can be done if the proximity is
estimated by means of a similarity measure. The distance between
the newly formed cluster C1 and an existing cluster C2 can be
measured as

dðC1;C2Þ ¼ a1dðCi;C2Þ þ a2dðCj ;C2Þþ
a3dðCi;Cj Þ þ a4 dðCi;C2Þ � dðCj ;C2Þ

�� �� (2)

With such an equation it is possible to define all the possible
clustering strategies, as a function of the values of the parameters
ai, with 1� i�4. For example, if a1¼ a2¼1/2, a3¼0, and
a4¼�1/2, d(C1,C2) assumes the minimal value of the distances
between Ci and C2 and between Cj and C2. From a formal point of
view, this can be written as

dðC1;C2Þ ¼ min dðCi;C2Þ; dðCj ;C2Þ
� �

(3)

and it is usually referred to as the single-link clustering criterion.
Alternatively, if a1¼ a2¼ a4¼1/2 and a3¼0, the distance
d(C1,C2) assumes the minimal value of the distances between Ci

and Cj and C2. This is usually known as the complete-link cluster-
ing criterion and, from a formal point of view, it can be written as

dðC1;C2Þ ¼ max dðCi;C2Þ; dðCj ;C2Þ
� �

(4)

Cj

Ci
C1

C2

d(C1,C2)

clustering direction

Fig. 11.5. The cluster C1 has just been formed by merging the clusters Ci and Cj. The
distance d (C1,C2) must be measured in order to decide if the newly formed cluster C1 has
to be merged with the cluster C2 in the next clustering step.
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Obviously, if the proximity between the clusters is estimated
by means of a similarity measure, instead of a distance measure, the
operators min and max must be permuted.

The single-link and the complete-link clustering criteria
adopt two extreme definitions of distance between the clusters
C1 and C2. An infinite number of intermediate criteria are
possible. Here only the most commonly used are described.

An intermediate clustering criterion, which is very popular in
molecular biology, is the unweighted pair group method average
(UPMGA) algorithm. It is defined by a1¼mi/(mi + mj),
a2¼mj/(mi + mj), and a3¼ a4¼0, where mi and mj are the
number of statistical units contained in the clusters Ci and Cj.
In this case, the distance between the clusters C1 and C2 is
defined as

dðC1;C2Þ ¼
mi

mi þmj
dðCi;C2Þ þ

mj

mi þmj
dðCj ;C2Þ (5)

Alternatively, the unweighted pair group method centroid
(UPGMC) criterion can be used. In this case, a1¼mi/(mi + mj),
a2¼mj/(mi + mj), a3¼�mimj/(mi + mj)

2, and a4¼0.
Therefore,

dðC1;C2Þ ¼ mi

miþmj
dðCi;C2Þþ

mj

miþmj
dðCj ;C2Þ�

mimj

miþmjð Þ2 dðCi;Cj Þ
(6)

The weighted pair group method average (WPGMA) cluster-
ing criterion is a further possibility, where a1¼ a2¼1/2 and a3¼
a4¼0. Consequently,

dðC1;C2Þ ¼
dðCi;C2Þ þ dðCj ;C2Þ

2
(7)

The weighted pair group method centroid (WPGMC) criter-
ion is defined by a1¼ a2¼1/2 and a3¼�1/4, and a4¼0 and
therefore

dðC1;C2Þ ¼
dðCi;C2Þ þ dðCj ;C2Þ

2
� dðCi;Cj Þ

4
(8)

Another clustering criterion that is often employed is the
Ward (or minimum variance) algorithm. This estimates the
proximity between two clusters CA and CB by means of the
Euclidean distance between their centroids. Such a distance is
then weighted as

dðCA;CBÞ0 ¼
mAmB

mA þmB
dðCA;CBÞ (9)
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where mA and mB are the number of subjects contained in cluster
CA and cluster CB, respectively. The weighted distance between
the clusters C1 and C2 is thus computed as

dðC1;C2Þ0 ¼ miþm2

miþmjþm2
dðCi;C2Þ0þ

mjþm2

miþmjþm2
dðCj ;C2Þ0�

m2

miþmjþm2
dðCi;Cj Þ0

(10)

Several clustering criteria are therefore possible within a hier-
archical, agglomerative clustering procedure. Different results can
be obtained by changing the clustering criteria. This is not, how-
ever, the only problem. Another problem is that, as anticipated
above, a hierarchical clustering algorithm does not provide the
optimal clustering. It gives only a series of possible clusterings,
where the clustering CL – 1, at the step L – 1, is nested in the
clustering CL, at the step L. A series of possible clusterings is
thus provided and there is not a unique and definitive answer to
the question of how many clusters exist in a certain population of
statistical units. It is, nevertheless, very important, in general, to
know how many clusters can be found within an ensemble of
subjects. A simple answer to such a question cannot be given by
the agglomerative clustering algorithms. Several heuristic
approaches have thus been developed in order to decide, on an
objective way, the optimal number of partitions in which an
ensemble of statistical units can be subdivided. These can be
classified into two types, the extrinsic and the intrinsic approaches.
The intrinsic approaches require the analysis of the specific struc-
ture of the data. On the contrary, the extrinsic approaches imply
the comparison between the clustering and some specific, a priori
information.

The simplest example of the intrinsic method is summarized
here. The best clustering Cl is that in which the proximity between
the members of a cluster is higher that the proximity between the
subjects that belong to different clusters. From a formal point of
view, if the proximity is measured with a distance d, this means that
an optimal clustering is characterized by the following relationship

dðCi;Cj Þ4max dðCi;CiÞ; dðCj ;Cj Þ
� �

(11)

for any i and j belonging to the data set, which is analyzed, and
where d(Ci,Cj) is the distance between clusters Ci and Cj, and
where d(Ci,Ci) is the distance between the elements belonging to
the same cluster Ci. Figure 11.6 depicts such a condition. The
distance d(Ci,Ci) is the maximal distance between any pair of
members of cluster Ci. d(CjCj) is the maximal distance between
any pair of members of cluster Cj. And d(Ci,Cj) is the minimal
distance between a member of cluster Ci and a member of cluster
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Cj. The condition that d(CiCj) must be larger than any distance
d(Ci,Ci) or d(Cj,Cj) implies that the intracluster similarity is max-
imized relative to the intercluster similarity.

Contrary to the intrinsic approaches, the extrinsic ones imply
some a priori information. The simplest extrinsic approach is
described here. If the proximity between the members of cluster
Ci is measured with the distance d(Ci,Ci), the clustering level CL,
in which Ci is obtained, can be an optimal clustering level if

dðCi;CiÞ � # (12)

where y is an arbitrary threshold. The distance d(Ci,Ci) can be
defined in various ways, like it has been described in the previous
sections. For example, d(Ci,Ci) can be measured as

dðCi;CiÞ ¼

Pm

i¼1

Pm

j¼1

dðXi;Xj Þ

2m
(13)

where m is the number of statistical units that the cluster Ci

contains, and Xi and Xj are members of the cluster Ci. In this
way, d(Ci,Ci) is simply the average distances between the pairs of
members of the cluster. Alternatively, d(Ci,Ci) can be defined as
the maximal distance between the elements of Ci

dðCi;CiÞ ¼ max
1�i�m;1�j�m

dðXi;Xj Þ
� �

(14)

or as the minimal distances between the elements of Ci

dðCi;CiÞ ¼ min
1�i�m;1�j�m;i 6¼j

dðXi;Xj Þ
� �

(15)

The condition that d(Ci,Ci) must be smaller than or equal to a
threshold value y means that the self-similarity, between members
of each cluster, must not be smaller than a threshold, over which the
clusters are no more compact enough. The value of y is of course ill
defined. Any arbitrary threshold can be used. A simple way to reduce
the degree of arbitrariness is to select a y value that depends on the
data that are analyzed. For example, it is possible to define y as

y ¼ �þ l� (16)

Ci

Cj

d(Ci,Cj)
d(Cj,Cj)

d(Ci,Ci)

Fig. 11.6. Intrinsic method to evaluate the clustering quality.
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where � and � are the mean value and the associated standard
deviation of the distribution of the distances between all statis-
tical units that are analyzed. According to this approach, the only
a priori parameter, the value of which must be defined, is l.
Usually, l is set to be 3, though any other value can be selected.
The value of l indicates, anyway, to which extent the intracluster
proximity must exceed the intercluster proximity. In other
words, the value of l indicates the extent to which the proximity
between the members of a cluster can be widened. Over the
threshold y, the cluster is considered unreliable, because it is
too inhomogeneous.

3. Clustering
Validation

The final procedure of any cluster analysis is the critical assessment
of the results. This does not mean the interpretation of the results,
which is possible only for scientists that are expert in the specific
field in which the cluster analysis is performed. This means, on the
contrary, the evaluation of the clustering reliability, from a strictly
statistical point of view.

In general, two types of validations may be needed. On the
one hand, it may be necessary to determine how reasonable an
individual cluster is. A well-formed cluster must obviously be
compact and isolated from other clusters. On the other hand, it
may be necessary to determine if a clustering reflects well the
structure of the data. A good clustering must of course be a
‘‘good’’ translation of the proximity matrix P. Besides these
two types of validation, it is also sometimes necessary to compare
two clusterings, Ca and Cb, obtained by alternative procedures,
and several statistical tests have been developed to solve such a
task.

3.1. Validation of an

Individual Cluster

A general definition of what a good cluster is depends on the shape
of the cluster, that is, on how its members, each characterized by n
statistical variables, are distributed in the n-dimensional space.
Nevertheless, the main feature that a cluster must possess is the
compactness. The m points must be close to each other and well
separated from the other subjects, classified in different clusters.
Such a feature may be monitored in many different ways, some of
which have already been discussed in the sections devoted to the
methods that can be used to determine the optimal number of
clusters in the hierarchical, agglomerative clustering algorithms.
Many other statistical tools have been developed to estimate the
quality of an individual cluster. One of them, despite its simplicity,
is nearly independent of the cluster shape and deserves particular
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attention because of its versatility. It is known as the Lind index
and it is based on the clustering lifetime, L. Such a quantity is
defined as

L ¼ e � b (17)

where b is the clustering level at which the cluster is formed and e is
the clustering level at which the cluster is absorbed by a larger
cluster. In Fig. 11.7, for example, the cluster containing the
statistical units X1 and X2 is formed at the clustering level 1 and
it disappears at the clustering level 3, when it is fused with the
cluster containing the statistical units X3 and X4, which were
merged into a cluster at the clustering level 2. The lifetime of the
cluster containing the subjects X1 and X2 is therefore L¼3 – 1¼2.
On the contrary, the cluster of X3 and X4 has a lifetime L¼1, since
it appears at the clustering level 2 and it disappears at the clustering
level 3. This means that the cluster formed by the statistical units
X1 and X2 is better than the cluster formed by X3 and X4, since its
lifetime is larger (L¼2>L¼1).

The Lind index, nevertheless, requires some standardization.
If it is used as it is described above, it can just allow one to rank the
quality of various individual clusters. This is certainly important
but it does not allow one to decide if the cluster is good or not. The
only way to accomplish such a task is to perform a series of cluster
analyses on randomized subjects. By using, for instance, the exam-
ple of Fig. 11.7, it is necessary to build up a large number u of
ensembles of statistical units Xi (1� i�4), randomly generated. A
number u of cluster analyses of the randomized statistical units is
then performed. The lifetime of the cluster formed by the subjects
X1 and X2 must be compared with the lifetimes of the randomized
X1 and X2. If it exceeds a statistical threshold, the cluster formed
by X1 and X2 is considered good. There are therefore two pro-
blems. On the one hand, it is necessary to design a randomization
procedure and, on the other hand, it is necessary to design a
statistics that is able to compare the real clustering with the rando-
mizations. The first problem can be solved by a random number

X1

X2

X3

X4

0 1 2 3
scale

Fig. 11.7. Example of dendrogram used to compute the Lind index.
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generator. The second problem can be solved by using a standard
statistical test, like, for example, the t-test. So, once a high number
of random data sets have been clustered, a high number of cluster-
ings is obtained and the distribution of these clusterings allows one
to estimate the statistical significance of the analysis of the genuine,
real data set.

3.2. Validation of a

Clustering Level

Beside the validation of an individual cluster, it may be necessary to
examine the entire partition, produced by a cluster analysis, in
order to verify if it reproduces with sufficient fidelity the real
structure of the statistical units. The real structure of m data is
efficiently summarized by the m � m proximity matrix P, each
element pij of which is the proximity between the ith and the jth
statistical units. A similar matrix, the cophenetic matrix C, is able
to efficiently summarize a hierarchical, agglomerative clustering
process. Its elements indicate the level at which two statistical units
are grouped, for the first time, into the same cluster. For example,
given the dendrogram of Fig. 11.8, it is possible to build the
following cophenetic matrix C

C ¼

0 1 2 5 5

1 0 2 5 5

2 2 0 5 5

5 5 5 0 3

5 5 5 3 0

0
BBBBBB@

1
CCCCCCA

(18)

Obviously, it is symmetric relative to the main diagonal and all
the elements cii are equal to 0. The element c1,2 is equal to 1
because the units X1 and X2 meet at a proximity equal to 1. The
element c4,5 is equal to 3 because the units X4 and X5 are merged
into the same cluster at a proximity equal to 3. And so on.

X4

X1

X2

X3

X5

0 1 2 3 4 5 6

proximity

Fig. 11.8. Example of dendrogram used to compute the cophenetic matrix.
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The comparison between the real structure of the data and the
agglomerative clustering, produced by a cluster analysis, can be
performed by comparing the proximity matrix P and the cophe-
netic matrix C.

The most popular statistical index used for this task is the
cophenetic correlation coefficient. Given that both P and C are
symmetric and have the elements along the diagonal equal to 0 (it
is assumed that the proximity is measured by means of a distance
measure), it is sufficient to consider only the upper diagonal ele-
ments. If P and C contain m rows and m columns, u¼m(m – 1)/
2¼ (mm – m)/2. The cophenetic correlation coefficient CCC is
defined as

CCC ¼

Pm�1

i¼1

Pm
j¼iþ1

pij cij��P�Cð Þ
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pm�1

i¼1

Pm
j¼iþ1

p2
ij
��2

P

� �� 	
Pm�1

i¼1

Pm
j¼iþ1

c2
ij
��2

C

� �� 	

u2

vuut
(19)

where pij and cij are the elements of P and C, respectively, and �P

and �C are their mean values, computed as

�P ¼

Pm�1

i¼1

Pm

j¼iþ1

pij

u
(20)

�C ¼

Pm�1

i¼1

Pm

j¼iþ1

cij

u
(21)

The values of the cophenetic correlation coefficient may range
between �1 and +1. High values indicate a good agreement
between the proximity matrix P and the cophenetic matrix C.
This happens if the real structure of the data is well translated
into the hierarchical clustering. A major problem of CCC is that
its value depends markedly on u, that is, on the number of statis-
tical units that are analyzed. As usual, this kind of problems can be
solved by determining, empirically, the distribution of the values
that the quantity, in which we are interested in, can assume. In
practice, it is necessary to build a large number of random data sets,
make cluster analyses of them, and compute the cophenetic corre-
lation coefficients. In this way, it is possible to give a statistical
interpretation of the cophenetic correlation coefficient that has
been computed on the basis of the ensemble of real statistical units.

A statistical index, different from the cophenetic correlation
coefficient, is also widely used. It is usually known as the � index.
Again, since both the proximity matrix P and the cophenetic
matrix C are symmetrical, it is enough to consider their upper
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diagonal elements. Taken two pairs of elements of P and C, for
example, pij and cij, on the one hand, and pkl and ckl, on the other;
four possibilities can be encountered:

(a) pij> cij and pkl> ckl,

(b) pij< cij and pkl< ck,

(c) pij> cij and pkl< ck,

(d) pij< cij and pkl> ck.

In the first two cases, the matrices P and C are said to be con-
cordant. In the last two cases, they are said to be discordant. The �
statistical index is defined as

� ¼ Np �Nm

Np þNm
(22)

where Np the number of times in which the P and C matrices are
concordant, and Nm is the number of times in which they are
discordant. By definition, the values of the � index may range
from �1 to +1, and high values indicate a good agreement
between the data structure, monitored by the proximity matrix
P, and the derived hierarchical clustering, monitored by the
cophenetic matrix C. Unfortunately, like for the cophenetic cor-
relation coefficient, also in the case of the � index, the statistical
significance of an observed � value cannot be estimated with
certainty. Again, it is therefore necessary to simulate a large num-
ber of data sets and perform many cluster analyses, in order to get
the distribution of the possible � values and assign an accurate,
statistical meaning to the � index computed in the cluster analysis
of the real data.

3.3. Comparison

Between Alternative

Clusterings

It may be necessary to compare two partitions of the data obtained
by two different clustering procedures. In some cases, one of the
two partitions can be known a priori. The comparison between the
results of a cluster analysis and an a priori known partition may be
needed to assess the performance of a certain cluster-analysis
method.

The simplest approach to compare two partitions is based on
the analysis of all pairs of statistical units. Two subjects can be
grouped together in both partitions; they can be grouped together
in the first partition and not in the second; they can be grouped
together in the second partition and not in the first; or they can be
classified in different groups in both partitions. In the example of
Fig. 11.9, the cluster analysis of an ensemble of four statistical
units results in two clusters, one with three subjects and one with a
single element, by using a certain clustering method (first parti-
tion). By means of a different algorithm, a different partition
(second partition) is obtained, where two clusters contain two
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statistical units each. Each pair of statistical units can therefore be
classified into one of following four types: tt (together–together),
ts (together–separated), st (separated–together), and ss (sepa-
rated–separated), as a function of their relationships in the two
partitions that are examined. In the example of Fig. 11.9, for
instance, the pair of subjects X1 and X2 are classified in the same
cluster in both partitions and it is therefore of type tt. An example
of pair of type ss is made by X1 and X4, which are classified in
different clusters in both partitions. The statistical units X1 and X3

are of type ts since they are grouped together in the first partition
and are separated in the second partition. An example of pair of
type st is given by X3 and X4, which are separated in the first
partition while they are grouped together in the second. A com-
plete classification of the six unique pairs of subjects of Fig. 11.9 is
given in Table 11.4.

X1

X2

X3

X4

X1

X2

X3

X4

first

partition

second

partition

clusters

Fig. 11.9. Example of alternative clusterings of four statistical units.

Table 11.4
Classification of the six unique pairs of Fig. 11.9

Subject X1 X2 X3 X4

X1 — tt ts ss

X2 — — ts ts

X3 — — — st

X4 — — — —
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Once all pairs have been classified as tt, ts, st, or ss, it is possible
to define different statistical indices. For example, the Fowlkes and
Mallows index, FM, is defined as

FM ¼ ttffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ttþ tsð Þ ttþ stð Þ

p (23)

Alternatively, it is possible to use the Rand coefficient R,
defined as

R ¼ ttþ ss

ttþ stþ tsþ ss
(24)

or the Jaccard statistic, J, define as

J ¼ tt

ttþ tsþ st
(25)

The three coefficients range between 0, if the two partitions
that are compared are completely different, and 1, if the two
partitions that are compared are statistically identical.

A more complex index is the Hubert statistic, H, defined as

H ¼ M � tt� ttþ tsð Þ ttþ stð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ttþ tsð Þ ttþ stð Þ M � ttþ tsð Þð Þ½ � M � ttþ stð Þ½ �

p (26)

where M¼ tt + ts + st + ss. In all these statistics, the exact meaning
of what is computed is nevertheless unclear. In other words, only a
simulation, consisting of a very large number of cluster analyses of
randomized data sets, allows one to evaluate the statistical signifi-
cance of the observed coefficients.

4. Clustering
Tendency

The term clustering tendency refers to the problem of deciding
whether a set of subjects has an intrinsic predisposition to cluster
into distinct groups. This is also referred to as the spatial ran-
domness problem. In formal terms, there are two extreme
hypotheses;
(a) the data are intrinsically aggregated (mutual attraction),

(b) the data are randomly arranged (mutual repulsion).
There are two prominent approaches to test these hypotheses,

the Hopkins and the Cox–Lewis statistics. Given m subjects, in a n-
dimensional space, k<<m random geometrical points and sub-
jects are selected. If ui is the distance between theith random point
and its closest subject (see Fig. 11.10) and if wi is the distance
between the ith subject randomly selected and its closest subject
(see Fig. 11.10), it is possible to define
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U ¼
Xk

i¼1

ui (27)

and

W ¼
Xk

i¼1

wi (28)

and the Hopkins coefficient H is defined as

H ¼ U

U þW
(29)

Values of H around 0.5 are expected for randomly distributed
data sets (extreme hypothesis b), because U�W. Values close to 1 are
expected for a well-clustered data set (extreme hypothesis a), because
W will be close to 0. It is in general accepted that the statistical units
can be considered to be naturally clustered if H�0.75.

The Cox–Lewis coefficient is defined in a very similar way. Given
m statistical units, each characterized by n variables, k<<m geome-
trical points are randomly selected in the n-dimensional space. The
lowest distance ui between the ith point and one of the m units is
then recorded together with the minimal distance wi between such a
subject and another unit (see Fig. 11.11). The ratio Ri

Ri ¼
ui

wi
(30)

is then computed and the average values R of the k Ri values

R ¼

Pk

i¼1

Ri

k
(31)

are the Cox–Lewis coefficient. R values close to 1 are expected for
uniformly distributed data, because wi�ui (extreme hypothesis
b). Values much larger than 1 are on the contrary expected to arise
if the subjects tend to cluster into well-defined groups (extreme
hypothesis a).

ui

wi

a

b

c

d

Fig. 11.10. Example of Hopkins statistic. Filled circles represent subjects in a bidimen-
sional space. Open circles represent geometrical points. ui is the minimal distance
between a geometrical point (a) and a subject (b). wi is the minimal distance between a
subject (c) and another subject (d). Both a and c are randomly selected.
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A completely different approach, useful especially for spherical
or nearly-spherical clusters, is followed by the Lacey-Cole statistic.
Given an ensemble of m statistical units, the m(m – 1)/2 distances
between each unique pair of subjects are computed and their
distribution is analyzed (see Fig. 11.12). If the statistical units
tend to be grouped in clusters, such a distribution is bi-modal
and the minimum intercalated between the two picks indicates
roughly the cluster dimension.

A more sophisticated and computationally expensive statistic is
the IndexMST, which is based on graph theory. An ensemble of m
subjects can be considered a graph, in which each unit is a vertex
and each pair of units defines an edge, characterized by the dis-
tance between the two subjects. It is thus possible to build the
minimum spanning tree, which is a tree where m – 1 edges connect
all the m vertices and where the overall sum of the distances
between connected vertices is minimal. A practical approach to
build a minimum spanning tree is provided by the Prism’s algo-
rithm. An object X1 is randomly selected amongst the m units. Its
closest subject, X2, is searched for and the units X1 and X2 are
considered to be connected by an edge of the minimum spanning

ui

wi

a

b

c

Fig. 11.11. Example of Cox–Lewis statistic. Filled circles represent subjects in a
bidimensional space. Open circles represent geometrical points. ui is the minimal
distance between a geometrical point (a) and a subject (b). wi is the minimal distance
between the same subject (b) and another subject (c). The geometrical point a is
randomly selected.

distance

fr
eq

ue
nc

y

pick 1

pick 2
minimum

Fig. 11.12. Example of Lacey-Cole statistic. The distribution of the distances between
pairs of subjects is bimodal, with an evident minimum of frequency of observations.
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tree. Then, the subjects X3, which is the element closest to X1, and
X4, which is the subject closest to X2 are searched amongst the
remaining m – 2 statistical units. If the distance between X1 and X3

is lower than the distance between X2 and X4, the element X3 is
included into the minimum spanning tree, which is therefore
constituted by the three vertices X1, X2, and X3 an by two edges,
one between X1 and X2 and one between X1 and X3. On the
contrary, if the distance between X1 and X3 is larger that that
between X2 and X4, the latter subject is included into the mini-
mum spanning tree, which consists of the three vertices X1, X2,
and X4 and by two edges, one between X1 and X2 and one between
X2 and X4. The problem is then iterated until all the statistical units
have been included into the minimum spanning tree.

The distribution of the lengths of the edges of the minimum
spanning tree is then analyzed in order to determine the distance
dcrit, over which there are only 5% of the edge lengths. The cluster-
ing tendency is then estimated with the IndexMST, defined as

IndexMST ¼
X

d4dcrit

d

dcrit
� 1


 �
(32)

where d are the edge lengths larger than dcrit. For well-clustered
data sets (extreme hypothesis a), it is very probable that a consider-
able fraction of the d values will be much higher than dcrit. The
IndexMST will therefore be higher than 1. On the contrary, in
uniformly distributed data (extreme hypothesis b), the d values
will not be much higher than dcrit and consequently, the IndexMST

will approach 0.

5. Monotonicity
and Crossover

The agglomerative, hierarchical clustering algorithms do not pro-
vide automatically the optimal partition of an ensemble of statis-
tical units. They rather result in dendrograms that summarize the
progressive grouping on the subjects. An insidious phenomenon
that sometimes occurs is the crossover. In principle, the series of
partitions that are produced, sequentially, by such algorithms must
be monotonous. Such a condition, called monotonicity, implies
that each cluster is formed at a higher dissimilarity level than any
one of its components. For example, if cluster A, formed in a
previous step of the procedure by merging of clusters A1 and A2,
and cluster B, formed previously by fusion of clusters B1 and B2, are
grouped together into cluster C¼AþB, the distance between A
and B must be higher than the distance between A1 and A2, on the
one hand, and the distance between B1 and B2, on the other hand.
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Because of the variability of definitions of proximity between two
groups of statistical units, the contrary may happen. In other
words, it is possible that d(A,B)� d(A1,A2) or that d(A,B)�
d(B1,B2), where d(X,Y) is the distance between cluster X and
cluster Y. This undesirable phenomenon is called crossover. A
dendrogram with a crossover is shown in Fig. 11.13, where the
cluster formed by X1 and X2 is merged into the cluster containing
the elements X3 and X4 at a distance minor than that at which the
units X3 and X4 merge together. The algorithms UPGMC and
WPGMC are particularly prone to lead to dendrograms with cross-
overs, though this is absolutely not the rule. It is nevertheless
always necessary to pay some attention and verify that the mono-
tonicity rule is not violated.
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Fig. 11.13. Example of a dendrogram that summarizes a clustering with crossover.
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Chapter 12

Neural Networks

Zheng Rong Yang

Abstract

Neural networks are a class of intelligent learning machines establishing the relationships between descrip-
tors of real-world objects. As optimisation tools they are also a class of computational algorithms imple-
mented using statistical/numerical techniques for parameter estimate, model selection, and generalisation
enhancement. In bioinformatics applications, neural networks have played an important role for classifica-
tion, function approximation, knowledge discovery, and data visualisation. This chapter will focus on
supervised neural networks and discuss their applications to bioinformatics.

Key Words: Neural networks, learning rule, learning algorithm, regression, classification, evaluation,
generalization, cross-validation, bioinformatics.

1. Introduction

Neural networks are a class of computational algorithms mimick-
ing human brain with the support of modern fast and sometimes
parallel computational facility. In terms of this, neural networks are
regarded as a class of information processing systems as well. The
interpretation of this is that neural networks can reconstruct an
unknown function using the available data without any prior
knowledge about function structures and parameters. Information
processing has two meanings. The first is that neural networks can
help to estimate function structures and parameters without
domain experts involved. This is perhaps the most important
reason for neural networks being so popular in many areas. The
second is that neural networks are a class of intelligent learning
machines, which can store knowledge through learning as human
brain for pattern recognition, decision making, novelty detection

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
DOI 10.1007/978-1-60327-241-4_12, ª Humana Press, a part of Springer Science+Business Media, LLC 2010
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and prediction. Combining these two important factors, neural
networks then become a powerful computational approach for
handling data for various learning problems.

Neural network studies and applications have experienced sev-
eral important stages. In the early days, neural network studies only
focused on theoretical subjects, i.e. investigating if a machine can
replace human for decision-making and pattern recognition. The
pioneer researchers are Warren McCulloch and Walter Pitts (1)
where they showed the possibility of constructing a net of neurons
which can interact to each other. The net was based on symbolic
logic relations. Table 12.1 shows one of McCulloch and Pitts OR
logic, where the output is a logic OR function of two inputs.

This earlier idea of McCulloch and Pitts was not based on
rigorous development as indicated by Fitch (2) that ‘‘in any case
there is no rigorous construction of a logical calculus’’. However,
the study on neural networks was continuing. For instance, Hebb in
his book published in 1949 gave the evidence that the McCulloch–
Pitts model certainly works (3). He showed how neural pathways
can be strengthened whenever it is activated. In his book, he indi-
cated that ‘‘when an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in firing it, some growth
process or metabolite change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased’’. In 1954,
Marvin Minsky completed his doctorial study on neural networks.
His dissertation was titled as ‘‘Theory of Neural-Analog Reinforce-
ment Systems and its Application to Brain-Model Problem’’. Later
he published a paper about this work in a book (4). This triggered a
wide scale of neural network research. In 1958, Frank Rosenblatt
built a computer at Cornell University called the Perceptron (later
being called single-layer perceptron), which can learn new skills by
trial and error through mimicking human thought process. How-
ever, this work was evaluated by Minsky in 1969 (5) showing its
incapability in dealing with complicated data. Minsky’s book then
blocked the further study of neural networks for many years.

Table 12.1
McCulloch and Pitts OR logic

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 1
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In the period of 1970s and 1980s, neural network research was
in fact not completely ceased. For instance, the self-organising
map (6) and the Hopfiled net were intensively studied (7). In
1974, Paul Werbos conducted his doctorial study at Harvard
University and studied the training process called back propaga-
tion of errors. The work was published later in his book (8). This
important contribution led to the work of David Rumelhart and
his colleagues in the 1980s. In 1986, the back propagation algo-
rithm was introduced by Rumelhart and his colleagues with the
implementation called the delta rule for supervised learning pro-
blems (9). From this, neural networks became very popular for
data mining or machine learning in both theoretical studies and
practical exercises.

The most important contribution of Rumelhart and his col-
leagues’ work is that a simple training or learning algorithm based
on trial-and-error principle has been implemented and has demon-
strated its powerfulness in dealing with problems which were
declared impossible by Minsky in 1969. In contrast to Rosenblatt’s
single-layer perceptron (SLP), Rumelhart’s model is called multi-
layer perceptron (MLP) where the most important difference is the
introduction of hidden neurons.

Shown in Fig. 12.1 (a) is a structure of an SLP, where there
are three input neurons named as x1, x2, and x3 with a single
output neuron named as y. In contrast, a structure of an MLP is
shown on the right panel in Fig. 12.1, where in addition to three
input neurons and an output neuron, three hidden neurons named
as z1, z2, and z3 are inserted between the input and output
neurons. Generally, x1, x2, and x3 represent observed values for

(a) SLP (b) MLP

Fig. 12.1. SLP and MLP structure.
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three independent variables (or the input variables) while y corre-
sponds to observed values for a dependent variable (or the output
variable). The hidden neurons represent variables which are not
observed. We will see later in this chapter that the introduction of
hidden neurons makes it possible to model nonlinear data.

Practically, there are three related subjects in using neural
networks for any applications. They are model construction,
model selection, and model evaluation. Before discussing these
three related practical issues, we need to know other three theore-
tical issues. They are parameter estimate, learning rule, and learn-
ing algorithms. Parameter estimate is a learning process by which
knowledge in data is extracted and expressed quantitatively in a
neural network model. The extracted knowledge is ultimately used
for making predictions on unseen data. The requirements for this
are the accuracy and the robustness of the parameters. In most
cases, we have no idea what values should be assigned to model
parameters when we have data only. This means that the data
obtained are the only source for us to estimate model parameters.
Besides we need to determine an optimised model structure to
represent true knowledge hidden in data. This involves neural
learning. For different supervised learning projects, different learn-
ing algorithms are needed. Moreover, there might be many var-
iants in one type of supervised learning. For instance, in
classification analysis, we may have simple or complicated data
distribution. For these two kinds of applications, different neural
learning algorithms may be employed. Even for complicated clas-
sification projects, we may have a data set where the number of
data points is much larger than the number of variables or we may
have a data set where the number of data points is much less than
the number of variables. For these two kinds of applications,
different treatments are then needed for applying a proper super-
vised learning algorithm. There are various learning rules for use.
Some are based on numerical methods and some are based on
statistical approaches. Some are fast for some types of data and
some are accurate for some types of data. We will focus on numer-
ical approaches for deriving neural network learning rules.

2. Learning Theory

2.1. Parameterisation

of a Neural Network
A neural network without parameters will have no capability of
associative memory. In particular, a neural network whenever its
structure has been determined must possess the power for predic-
tion in a supervised learning project. In order to make a neural
network capable of prediction, it must have parameters which
represent processed information. We explain this by a simple
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example. Suppose we are interested in studying if a metabolite in a
specific pathway is related with its upstream genes. We first denote
this metabolite as y. Meanwhile, we denote three upstream genes
for the metabolite y as x1, x2, and x3. Suppose we have had some
observations for x1, x2, x3, and y. Our objective is to construct a
model which can establish the relationship between x1, x2, x3, and y
as a predictive function y ¼ f ðx1; x2; x3Þ. If f ðx1; x2; x3Þ is properly
parameterised, say y ¼ f ðw0 þ w1x1 þ w2x2 þ w3x3Þ, where w0 is a
bias term, w1, w2 and w3 are parameters for three upstream genes,
we can make a prediction whenever we have new values for x1, x2,
and x3, respectively.

It is normally believed that parameters in a neural network
model represent the knowledge in data. For instance, if a neural
network model is expressed as y¼�(0.1þ0.03x1þ5.1x2þ0.002
x3), all three input variables have the same magnitude and �ðzÞ is a
monotonic linear function of z, i.e. �ðzÞ / z, we can believe that x2

plays a key role for y. In other words, x2 is the dominant factor for y
and ignoring the other two input variables will not lead to loss of
much precision in prediction whilst making a predictive system less
loaded.

2.2. Learning Rules Before discussing learning rules, we need to establish a proper
objective function. There are normally two types of objective
functions for supervised learning. They are the square error func-
tion and the cross-entropy function. The former is used for
regression analysis, which addresses a type of problems of con-
tinuous function approximation. The latter is used for classifica-
tion analysis, which addresses a class of applications of data
partitioning.

2.2.1. Regression Analysis We normally denote a regression function as

yn ¼ f ðxn;wÞ (1)

Here w 2 <H is a numerical parameter vector of H dimensions and
xn 2 <D is a numerical input vector of D dimensions describing
the nth object in a data set, where < is the real number set.
Correspondently, yn 2 < is the model output for xn. H is heavily
depending on a model’s structure, which will be discussed later in
this chapter. For xn, we normally have its observed phenotypic
property called target tn 2 <. Note that tn does not represent a
true value in most cases. Normally, it is called a corrupted function
value. For instance, a true function is a sin function 5 sinðxÞ. We
may have observed corrupted values from a noise added sin func-
tion 5 sinðxÞ þ Gð0;1Þ, where Gð0; 1Þ is called a white noise. The
existence of noise is normally unavoidable in many experiments.
Many factors can result in noise. In order to estimate the parameter
vector w, we need to make the distance between yn and tn tn � ynð Þ
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as small as possible during learning. Based on this, we have com-
monly used the square error function (mean square error function)
for regression analysis as below

" ¼ 1

‘

X‘

n¼1

ðtn � ynÞ2 (2)

Here ‘ is the number of observed pairs (xn,tn). A learning rule must
ensure the model parameter vector satisfying

~w ¼ min
arg

1

‘

X‘

n¼1

ðtn � f ðxn; ŵÞÞ2
( )

8ŵ 2 <H (3)

Here ŵ is a vector (a point) in a H-dimensional space (called a
parameter space) and ~w is the optimal vector among many (nor-
mally infinite) ŵs.

2.2.2. Classification

Analysis

In classification, we will use a different objective function if the
model output yn is constrained in the interval ½0; 1�. We will see
later in this chapter that neural networks employing the sigmoid
function can easily fulfil this requirement. The cross-entropy func-
tion is normally employed for classification analysis suppose there
are only two classes, where tn 2 f0; 1g

O ¼
Y‘

n¼1

ytn
n ð1� ynÞ1�tn (4)

In most cases, negative logarithm is applied to this objective func-
tion leading to

O ¼ �
X‘

n¼1

tn log yn þ ð1� tnÞ logð1� ynÞ (5)

A learning process is aiming to minimise this objective function so
that

~w ¼min
arg

�
X‘

n¼1

tn log f ðxn; ŵÞ þ ð1� tnÞ logð1� f ðxn; ŵÞÞ
( )

8ŵ 2 <H

(6)

It is then obvious that we have to analyse the function f (x,w)
before discussing the learning rule. In neural networks, the sig-
moid function is normally used for f (x,w) because it has two
advantages, i.e. being derivable and parallelism. The former
makes it possible to apply conventional numerical approximation
approaches which heavily depend on derivatives to parameter esti-
mate and the latter makes it possible to use parallel computing
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techniques because the calculation of each neuron output is com-
pletely independent from the calculations of other neuron’s out-
puts in the same layer. The sigmoid function is defined as below

f ðzÞ ¼ 1

1þ expð�zÞ (7)

It is not very difficult to see that the sigmoid function squashes the
value of z into the interval (0,1) as

lim
z!�1

1

1þ expð�zÞ ¼ 0 (8)

and

lim
z!þ1

1

1þ expð�zÞ ¼ 1 (9)

In addition, the other advantage of the sigmoid function is that its
derivative is easily calculated as the entropy as below

df ðzÞ
dz
¼ f ðzÞð1� f ðzÞÞ (10)

Wenowuseregressionanalysis as anexample for theanalysisof the
learning rule. In most cases, we will have no knowledge of what values
should be assigned to model parameters. Like statistical learning,
neural learning also starts from a random guess, i.e. assigning random
values to model parameters (called initialisation) and based on these
random parameters, we start to search the way by which an objective
function can be decreased, hence bringing the current model para-
meters (ŵ) more closer to the optimal solution (~w). As we know the
regression analysis adopts a quadratic-like objective (error) function.
Inaquadratic function, therewillbealways somerelationshipbetween
the derivatives and the optimal solution. Figure 12.2 shows such a
relationship for a case where there is only one model parameter. Two
filled dots are the possible random guesses. It can be seen that the
optimal model parameter must sit in the bottom of the valley of the

Fig. 12.2. The relationship between a model output using the current model parameter
and the direction of the optimal model parameter.
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quadratic objective function. The slop (first derivative) denoted by a
straight lineof therandomguessonthe left sideof theoptimal solution
shows a negative sign while the slop denoted by another straight line
of the random guess on the right side of the optimal solution shows
a positive sign. The negative sign means that when the value of
w increases, the error O decreases. The positive sign means that
when the value of w increases, the error O increases. From this, it can
be seen that we must increase the model parameter when the slop of
the model output based on the current model parameter shows a
negative sign. We must decrease the model parameter when the slop
of the model output based on the current model parameter shows
a positive sign. The slop of model output is mathematically defined
as the first derivative of the objective function with respect to the
model parameter as below

rO ¼ dO

dw
(11)

Before defining the quantitative learning rule which will be used to
update model parameters stochastically, we need to analyse the
qualitative relationship between parameter change and the slop.
The next thing is to determine the learning rule quantitatively.

If the change (increase or decrease) on w is denoted by �w, we
then have a qualitative relationship from Fig. 12.3 that if the
absolute value of the slop is larger, the current position is more

Fig. 12.3. The quantitative relationship between slop and the magnitude of model
parameter change.
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departed from the optimal solution and if the absolute value of the
slop is smaller, the current position is closer to the optimal solu-
tion. When w is closer to the optimal solution, we must have a
smaller change on w so that we will not miss the optimal solution.
When w is more departed from the optimal solution, we can have a
larger change of w. From this, we then have a qualitative learning
rule defined as below

j�wj / jrOj (12)

Quantitatively, the learning rule (also called the delta rule) is
defined as below

�w ¼ ��rO (13)

Here � 2 ð0; 1Þ is called the learning rate.
The delta rule may not be always working properly. It is quite

often that a new solution of w may miss the optimal solution. For
instance, the new solution w1 generated using the delta rule from
w0 misses the optimal solution, i.e. the valley of the quadratic curve
as seen in Fig. 12.4. From w1 the delta rule will lead to wA

2 which
again misses the optimal solution. However, we have noticed that
the first derivatives at w0 and w1 have different signs meaning that
they have a complementary function. If the first derivative at wtþ1

has a different sign as the one at wt, it means that wt and wtþ1 are
sitting on the opposite sites of the optimal solution; see Fig. 12.2.
The move from wtþ1 to wt+2 may miss the optimal solution again.
If we can correct the move from wt+1 to wt+2 using a momentum

Fig. 12.4. The illustration of the use of the momentum factor for fast learning.
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which has a different first derivative sign as the one at wt+1, such
risk can be possibly reduced. Remember that the first derivative at
wt is different as the one at wt+1, we can design a revised delta rule
for this purpose

�wtþ1 ¼ ��rOt þ ��wt (14)

Here �wtþ1 is the update of w at time t+1, �wt is the update of w
at time t,rOt is the first derivative of O with respect to w at time t
and � 2 ð0; 1Þ is a positive number called the momentum factor.
In Fig. 12.4, we can see that this revised delta rule can reduce this
risk. This time, the move from w1 is to wB

2 rather than wA
2 .

According to Equation [14], we can see that

�wtþ1 ¼ �� rOt þ �rOt�1
� �

þ �2�wt�1 (15)

From the above equation, we can conclude two aspects. First, if
rOt and rOt�1 have the same sign, the previous update instruc-
tion (rOt�1) will enhance the new update instruction (rOt)
otherwise rOt�1 will reduce the impact of rOt . Second, if
�wtþ1 and �wt�1 have the same sign, �wt�1 will enhance
�wtþ1. Otherwise, �wt�1 will reduce the impact of �wtþ1.

In using the delta rule or the revised delta rule, the user needs
to tune the learning rate and the momentum factor to proper
values. This is not an easy job. There is another numerical method
which uses second derivative information for weight update,
where we normally do not need the learning rate and the momen-
tum factor. Shown in Fig. 12.5 , we can see that the weight update
amount for the case in the left panel should be smaller than that for
the case in the right panel. If we use the same amount of weight
update for both cases, the left panel case may have missed the
optimal solution while the right panel may not. This is because
the right panel case shows a small curvature while the left case
demonstrates a large curvature. A point located in a large curvature
area means that it is close to the optimal solution. A point located

Fig. 12.5. Illustration of using second-derivative information for weight update.
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in a small curvature area means that it may be far away from the
optimal solution. As we know the second derivative can be used to
quantify function curvatures. This means that

j�wj / jrOjj�wj / 1

jrrOj (16)

Here rO and rrO are the first and second derivatives with
respect to w, respectively. The update rule using the second deri-
vative information is called the Newton–Raphson method. In
application to neural network parameters, it is illustrated as below

�w ¼ � rO

rrO
(17)

or

�w ¼ �H�1rO (18)

Here w is a weight vector and H is called a Hessian matrix of
second derivatives as below

H ¼

@2O
@w1@w1

@2O
@w1@w2

� � � @2O
@w1@wm

@2O
@w2@w1

@2O
@w2@w2

� � � @2O
@w2@wm

..

. ..
. ..

. ..
.

@2O
@wm@w1

@2O
@wm@w2

� � � @2O
@wm@wm

0
BBBBBB@

1
CCCCCCA

(19)

where @2O
@wi@wj

is the second derivative of O with respect to wi

and wj .

2.3. Learning

Algorithms

In this subsection, we discuss two learning algorithms for regres-
sion and classification analyses respectively, where different objec-
tive functions are used.

2.3.1. Regression In regression analysis, the target variable is commonly a numer-
ical variable tn 2 < (or tn 2 ½0; 1�). In this case, the least mean
square error function is used as the objective function as seen in
equation [2]. Using the revised delta rule (Equation [14]), we
then have two update rules as below. First, the update rule for the
weights between hidden neurons and an output neuron (for
instance, between output neuron y and hidden neurons z1, z2,
z3 in Fig. 12.1) is

�wtþ1
0 ¼ �ZT Beþ ��wt

0 (20)

Here w0 ¼ ðw01;w02; � � � ;w0H ÞT is the hidden weight vector with
w0 h connecting the hth hidden neuron to the output neuron,

e ¼ ðe1; e2; � � � ; e‘ÞT is the error vector with en ¼ tn � yn,
B ¼ diagfynð1� ynÞg is the diagonal entropy matrix of outputs
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with ‘ rows and ‘ columns, and Z is the matrix recording the
outputs from all the hidden neurons with ‘ rows and H columns
(H hidden neurons). Second, the update rule for the weights
between input neurons and the hth hidden neuron (for instance,
between the hidden neuron z1 and input neurons in Fig. 12.1) is
shown as below

�wtþ1
h ¼ w0 h�X

T BQheþ ��wt
h (21)

Here wh ¼ ðwh1;wh2; � � � ;whDÞT is the input weight vector with
whd connecting the hth hidden neuron to the dth input neuron,
Qh ¼ diagfznhð1� znhÞg is the diagonal entropy matrix for the
hth hidden neuron with ‘ rows and ‘ columns, and X is the matrix
recording all the input vectors, i.e. having ‘ rows and D columns (‘
input vectors and D input variables).

2.3.2. Classification For a classification problem, the target variable is commonly a
discrete variable tn 2 I with I1 meaning integers. We study discri-
mination problems where tn 2 f0;1g in this chapter. The cross-
entropy function is commonly used as the objective function for
classification projects as seen in equation [4]. Applying the revised
delta rule to equation [5], we will also have two update rules. First,
the update rule for the weights between hidden neurons and the
output neuron if we have one output neuron (for instance, between
the output neuron y and hidden neurons z1, z2, z3 in Fig. 12.1) is

�wtþ1
0 ¼ �ZT eþ ��wt

0 (22)

Second, the update rule for the weights between input neurons
and the hth hidden neuron (for instance, between hidden neuron
z1 and input neurons in Fig. 12.1) is

�wtþ1
h ¼ w0 h�X

T Qheþ ��wt
h (23)

2.3.3. Procedure During learning, the above equations [20, 21, 22, 23] will be used
iteratively until some criteria are satisfied. The learning procedure
will be

l Step 1, Initialisation: assigning random values to all network
parameters;

l Step 2, Estimation: estimate model outputs and errors by
feeding input vectors;

l Step 3, Update: update all the model parameters using the
above update rules;

l Step 4, Check: check if the desired criteria are satisfied, if so
stop, otherwise go to Step 2.

There are commonly three stop criteria for use. They are the
maximum learning cycle, the error threshold, and the stability. If
the learning cycle has exceeded the maximum learning cycle, a
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learning process will be terminated. In some situations, if the
training error has already been below the desired error threshold,
a learning process will also be halted. For some complicated
learning problems, we may not be interested to reach the max-
imum learning cycle and may not be able to set a proper error
threshold. In this case, we can check if the change of weights is
small enough. There can be two reasons when there is nearly no
change on weights. First, a model has been well trained whilst
the desired error threshold is too small and the maximum learn-
ing cycle is too long. Second, an inappropriate setting of the
learning parameters (the learning rate, the momentum factor,
and the number of hidden neurons) leads to bad learning. If
this happens, a learning process must be stopped manually for
seeking new settings of learning parameters. In most cases, a large
learning rate may end up with pre-matured learning process
where the change of weights will diminish much early than
what it should be.

Due to page limit, the learning algorithms using the second
derivatives are omitted in this chapter. Readers can refer to
Bishop’s book for details (10).

3. Neural Networks
in Action

3.1. Model Evaluation Every model must be as accurate, appropriate, efficient, effective,
and fast as possible in application. Much like many engineering
projects, where there is always a problem of careful evaluation and
selection of the available tools. Without a careful evaluation and
selection, a built neural network model may have a limited usage.
In addition to model parameter optimisation using the delta rule
(or the Newton–Raphson method) as discussed above, we have to
consider how to evaluate a model and select the most appropriate
model from many candidates. There are two important issues in
neural network model construction. The first is how to evaluate a
neural network model. Different neural network models (regres-
sion or classification projects) need different evaluation standards.
During model evaluation, there is also an issue that which part of
the model should be evaluated. Do we need to evaluate weights or
do we need to evaluate how the predictions are close to the targets
or to evaluate how the predictions are well separated? Moreover,
what method can be recognised as an un-biased evaluation
method? The second is how to select the most appropriate
model based on the evaluation. There are always some hyper-
parameters which are normally not updatable using a quantitative
rule like the delta rule in most machine learning models. For
instance, the number of hidden neurons in neural networks cannot

Neural Networks 209



be updated using any quantitative rule like the delta rule. We
therefore must employ a proper learning procedure to determine
the optimal number of hidden neurons.

Suppose there are two data sets generated from the same
application, i.e. they have the same physical background,
DA ¼ ðx1; x2; � � � ; x‘AÞ and DB ¼ ðx1; x2; � � � ; x‘B Þ, where ‘A and
‘B are the number of input vectors in two data sets. DA and DB

are used to train two neural network models (A and B) using two
different model structures separately. Both models are trained
until the same minimum error is satisfied, i.e. "A5"o and "B5"o,
where "o, "A, and "B are the error threshold, the error occurred to
model A, and the error occurred to model B. If we use DA and DB

to evaluate model A and model B, respectively, two models may
have the same error, i.e. "Aðdata AÞ ¼ "Bðdata BÞ, where
"X ðdata YÞmeans the test error for model X using data Y. Because
two models are with two different model structures, it is very likely
that "Aðdata BÞ 6¼ "Aðdata AÞ and "Bðdata AÞ 6¼ "Bðdata BÞ. This
means that using the training data to evaluate a model is inap-
propriate as it does not provide rigorous evidence for model
selection. As we will discuss below, a built model can very likely
over fit to data noise, hence an independent test using a separate
data must be followed as an appropriate methodology for any
neural network model evaluation.

In most cases, there is no separate test data available when a
user starts to build a new neural network model. We then need to
consider how to use the available data for proper model construc-
tion, in particular, model evaluation and selection. This means
that we need to reserve part of the available data for model
evaluation. The basic principle is that the reserved data must
not involve model parameter estimate. There are three com-
monly used methods for this purpose. They are cross-validation,
re-sampling, and Jackknife. All these methods are using the same
principle in that the evaluation data must not involve any process
of model parameter estimation. This means that the available data
must be divided into two parts. One is for model parameter
estimation, which is commonly referred to as training. The
other is for model evaluation and selection. The difference
between these three methods is the strategy used for the division
of a given data set.

3.2. Evaluation

Statistics

3.2.1. Regression Analysis

For regression analysis problems, we normally have two evaluation
statistics. They are the normalised error and the prediction corre-
lation. The former measures the error degree compared with data
noise while the second measures how predictions fit observations.
The normalised error is defined as below:

~" ¼ "

�
(24)

210 Yang



Here " is defined in equation [2] and

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

‘

X‘

n¼1

ðyn � �yÞ2
vuut (25)

with �y as the mean of the observations (target values). It should be
noted that simply presenting " may mislead because a sample with
a large variance very unlikely has a smaller " . Using ~" , different
systems can be comparable. The prediction correlation is defined
as below:

� ¼
P‘

n¼1 ðtn � �tÞðyn � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP‘
n¼1 ðtn � �tÞ2

P‘
n¼1 ðyn � �yÞ2

q (26)

If �! 1 , the prediction is perfect. If �! 0 , the predictions have
no correlation with the target values and if �! �1 the predictions
are negatively correlated with the target values.

3.2.2. Classification

Analysis

In classification analysis projects, we normally have three evalua-
tion statistics. The first is called the confusion matrix, the second is
called the Mathew correlation coefficient, and the last is called the
receiver operating characteristics. The confusion matrix is as
shown in Table 12.2. In Table 12.2, the true negatives and the
true positives are correctly classified input vectors of the negative
and the positive classes, respectively. The false positives are mis-
classified negative input vectors. The false negatives are misclassi-
fied positive input vectors. The specificity is the fraction of
correctly predicted negative input vectors over the total negative
input vectors meaning the prediction accuracy of negative input
vectors. It also indicates the probability for a known negative input
vector being correctly classified. The sensitivity is the fraction of
correctly predicted positive input vectors over the total positive
input vectors meaning the probability that a known positive input
vector can be correctly classified. The negative prediction power is
the fraction of the true negatives over the sum of the true negatives
and the false negatives. It is the probability that a negative predic-
tion is a true negative input vector. The positive prediction power

Table 12.2
Confusion matrix

Negative Positive

Negative True negatives False positives Specificity

Positive False negatives True positives Sensitivity

Negative prediction power Positive prediction power Total accuracy
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is the fraction of the true positives over the sum of the true
positives and the false positives. It is the probability that a positive
prediction is a true positive input vector. Finally, the total accuracy
is the fraction of all correctly classified input vectors over the total
number of input vectors.

The Matthew correlation coefficient (11) is used to measure
the prediction accuracy when data are unbalanced for both positive
and negative input vectors. Let TN, TP, FN, FP denote true
negatives, true positives, false negatives, and false positives, respec-
tively. The definition of the Matthews correlation coefficient
(MCC) is

MCC ¼ TN� TP � FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTNþ FNÞðTNþ FPÞðTPþ FNÞðTPþ FPÞ

p (27)

The larger the Matthews correlation coefficient, the better the
model fits the target. If the value of the Matthews correlation
coefficient is one, it represents a complete correlation. If the
value is zero, the prediction is completely random. If the value is
negative, the prediction is on the opposite side of the target.

Both the confusion matrix and MCC evaluations are a point
estimate approach, i.e. the evaluation statistics only depends on a
single pre-defined threshold used for discrimination. In practice,
a built model may be used using different thresholds by different
users. For instance, a low threshold is commonly used in medical
diagnosis because a false negative (cancers are wrongly diagnosed
as noncancers) will undertake a much larger cost compared with a
false positive (non-cancers are wrongly diagnosed as cancers).
The problem is if the model still shows good performance when
we change the threshold. This is certainly not a single point
estimate problem. It is a problem that if a built model is robust.
The receiver operating characteristics (ROC) analysis provides a
good way to analyse system robustness when we change the
threshold (12). In ROC analysis, we normally use the false posi-
tive fraction as the horizontal axis and the true positive fraction as
the vertical axis to collectively present these two evaluation sta-
tistics for all available thresholds. This means that each point in
this two-dimensional space represents these two evaluation sta-
tistics for a specific threshold used for discrimination. When we
connect all the points in this two-dimensional space, we then
form a curve which is called the ROC curve. Such a curve should
be as close to the top-left corner as possible to demonstrate good
robustness. Any system showing a curve near the diagonal line in
this two-dimensional space shows a completely random system.
On the left panel of Fig. 12.6, we have two probabilistic density
functions for two classes of input vectors. There are five thresh-
olds, named by A, B, C, D, and E, respectively. A is supposed to
be the threshold generating the best separation between two
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classes of input vectors. Based on these five thresholds, the values
of the false positive rate and the true positive rate will certainly
vary. If the threshold is moving towards left from A, for instance
to B or D, both the false positive rate and the true positive rate
will be increased. These new false positive and true positive rates
will be mapped to two points in the two-dimensional ROC space
shown on the right panel of Fig. 12.6. When the threshold is
moving towards right from A, for instance to C or E, two new
points are mapped to the two-dimensional ROC space as seen on
the right panel of Fig. 12.6 (points C and E). Connecting these
five points in the two-dimensional ROC space will generate a
curve referred to as a ROC curve shown on the right panel of
Fig. 12.6.

If two probabilistic density functions are far away from each
other, changing threshold will not make a big difference in chan-
ging the false positive rate and the true positive rate. In this case,
we refer to such a model as a robust one and the ROC curve will be
very close to the top-left corner in the two-dimensional ROC
space.

If there are a number of models built on different data sets or
using different algorithms or different model structures, different
ROC curves will be generated. In this situation, we can certainly
compare these models by visualising these ROC curves. The closer
a ROC curve is to the top-left corner in the two-dimensional ROC
space, the more robust the model is. In Fig.12.7, there are three
ROC curves for three models. It can be seen that model A is the
worst one while model C is the best one. A quantitative measure of
model robustness can be derived using the area under an ROC
curve (AUR). In Fig. 12.7, it is obvious that curve C has the
largest AUR while curve A has the smallest AUR (the value is 0.5).

Fig. 12.6. ROC curves.
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3.3. Generalisation

Issue

3.3.1. Over-Training

In the above discussion, we have been familiar with the delta rule.
It is not very difficult to find out the relationship between �" (or
�O), r" (or rO), and �w from Fig. 12.2 as shown below

r" ¼ �"

�w
(28)

Using the delta rule, we can derive the following relationship:

�" ¼ �wr" ¼ ��r"250 (29)

This means that the use of the delta rule can always reduce the
error until the minimum theoretically. The question is then
whether this continuous reduction of the training error is a good
thing in model construction. If two data sets are randomly drawn
from the same sample, each will contain a different distribution of
noise. Suppose the sample noise is a Gaussian Gð�0; �

2
0Þ and noise

distributions in two data sets are Gð�1; �
2
1Þ and Gð�2; �

2
2Þ. A model

(M1) generated on the first data set may not be able to generalise
well on the second data set. If �15�0, it can be expected that the
predictions (or generalisations) on the second data set using M1

will be generally under-estimated. If �14�0, an over-estimate of

Fig. 12.7. ROC curves for model comparison.
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predictions may happen. We refer to the first data set as the train-
ing data set, i.e. all the input vectors in the first data set will be used
for optimising model parameters using the delta rule. We refer to
the second data set as validation (evaluation) data set, i.e. all the
input vectors in this data set will not be used for optimising model
parameters using the delta rule. Rather, they will be used for
checking if a training process is biased. Such a bias is commonly
called over-training or over-fitting. Figure 12.8 shows such a case,
where the training errors are continuously decreasing while the
validation errors show a V-shape. After passing a point (called the
early stop point), the validation errors have reached the minimum
and start to increase continuously. A proper training of neural
network then needs to identify this early stop point. The way of
finding such an early stop point is based on the principle we have
discussed, i.e. randomly dividing a sample into training and valida-
tion data sets.

3.3.2. Over-Sized Bad models not only result from over-training, but also from over-
size. A model with a fewer parameters is always preferred compared
with a model with more parameters when both have a similar
training error. The first reason is the consideration of data signifi-
cance, which is expressed as the ratio of the number of data points
over the number of model parameters. The ratio should be as large
as possible. In applications, it is not easy to have this condition
satisfied. In most bioinformatics applications, it is very difficult to
have large data. It is then very important to reduce model para-
meters to raise the data significance. The larger the data

Fig. 12.8. Demonstration of over-training.
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significance, the more robust the model is. The second reason is
that redundant model parameters are very often used for data
noise. Removing these redundant model parameters can prevent
possible over-fitting, which is closely related with the model gen-
eralisation capability.

3.4. Data Organisation

for Model Evaluation

We now discuss how to organise data for proper model validation
(evaluation). There are three approaches, re-sampling (or re-sub-
stitution), cross-validation, and Jackknife.

With the re-sampling method, we randomly sample a certain
percentage of data for training and the rest for validation. Such a
process is repeated many times. Suppose there are ‘ data points and
we repeat the sampling process for m times. There will be m
alidation models, each of which has different training and valida-
tion data with some possible overlapped data points. Note that all
m validation models use the same hyper-parameters, for instance,
they all use H hidden neurons. The parameters of the ith model
are first estimated using the ith training data set with ki5‘ data
points. The ith model is then validated on the ith validation data
set with ‘� ki data points. Because we use different training data
sets at each time, it is then expected that the parameters of the ith
model will be different from those of the jth model. The validation
performance of the ith model is certainly different from that of the
jth model as well. We denote by "#i (# ¼ h implying neural net-
works with different hidden neurons) the validation error for the
ith model. The evaluation statistic of the model with designed
hyper-parameters # can follow

�# ¼
1

m

Xm

i¼1

"#i and �2
# ¼

1

m

Xm

i¼1

ð"#i � �#Þ
2 (30)

In order to determine the proper values for the hyper-parameters
so that we can select a proper model, we can vary the values
assigned to the hyper-parameters. If we have g hyper-parameters
for selection, the selection will be taken in a g-dimensional space
where each grid is a combination of hyper-parameters. Suppose we
only need to determine the number of hidden neurons, we then
have a series of �# and �2

#. The best model can be selected through

H ¼ arg maxf�#g � arg minf�2
#g (31)

It should be noted that for the re-sampling method, some data
points may be used for multiple times in training or validation.

In cross-validation, we normally randomly divide a data set
into m folds. Each fold contains distinctive data points. If we
denote by �i as the set of data points in the ith fold, we will have
�i

T
�j ¼ � meaning that two sets have no elements in common.

Every time, we select one fold as the validation set and the remain-
ing m-1 folds are used as the training set for model parameters
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estimate. Such a process is repeated for m times until each fold has
been used for validation once. This means that there are m models.
Again, all these models use the same hyper-parameters, for
instance, the same number of hidden neurons. The ith model is
trained using the folds except for the ith fold and validated on the
ith fold. The parameters of the ith model will also be different from
those of the jth model and the validation performance of different
models will vary. Note that each data point will be validated only
once. Equations [30] and [31] can be used for whole system
evaluation.

When data size is not too large, one commonly prefers to use
the Jackknife (often called leave-one-out cross-validation)
method. In using the Jackknife method, we normally pick up one
data point for validation and use the remaining data points for
training. Such a process is repeated for ‘ times until each data point
has been exhausted for validation. This means that there are ‘
models for ‘ data points. Obviously all these models use the same
hyper-parameters. The ith model is trained using all the data
points except for the ith data point and validated on the ith data
point. Equations [30] and [31] can also be used for whole system
evaluation, but m is replaced by ‘.

4. Applications to
Bioinformatics

We will discuss some applications of neural networks to bioinfor-
matics projects in this section.

4.1. Bio-chemical Data

Analysis

Quantitative structure–activity relationship (QSAR) models are a
class of bio-chemical models and normally involved with binary
input variables for chemical properties with a very large dimension-
ality. The use of neural networks is normally for relational study or
dimensionality reduction. Each input vector in these applications
therefore represents a binary vector, i.e. x 2 f0; 1gD. Each input
vector is associated with a target value indicating compound prop-
erty. In order to find the mapping function relating the chemical
properties with the compound property, classification analysis
approaches can be used. Neural networks can be used in these
tasks for nonlinear modelling. For instance, a recent study using
neural networks was studying the inhibition function of mutant
PfDHFR (13). In microbiological research, Bacillus species identi-
fication is not an easy task. The application of neural networks on
1,071 fatty acid profiles is proved as a power tool for the identifica-
tion (14). The neural networks have also been applied to the study
of the relationship between compound chemical structures and
human oestrogen receptor (� and �) binding affinity, where the
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inputs are the molecular descriptors calculated from docking meth-
ods (15). Heparanase inhibitors’ activity was also predicted using
neural networks based on QSAR data (16).

4.2. Gene Expression

Data Analysis

Gene expression data have been widely studied for understanding
how genes are responding to external environmental cues. Gene
expression data are normally numerical inputs with also a large
dimensionality, but a few number of samples. In this case, data
significance is a very serious problem in applying neural networks
for data analysis. In recent studies, gene expression data have been
used for disease diagnosis. In these applications, the expressions of
genes are commonly sitting in a high-dimensional space (x 2 <D,
where D is the number of genes and x is a vector of the expression
values for D genes). Each expression vector (x) has an associated
target value, declaring the corresponding sample is disease-free or
not. It can be seen that this is then a classification problem. If the
relation between expression vector and target is nonlinear, neural
network is one of the candidates for model construction and
prediction. For instance, neural networks were used for the inves-
tigation of the distinguishing power of childhood acute lympho-
blastic leukaemia (ALL) diagnostic bone marrow (17), for
influenza identification based on microarray data (18). Neural
networks have also been used for gene network re-construction
(19) and cancer-related regulatory modelling (20).

4.3. Protein Structure

Data Analysis

Protein structures are always an important subject for studying
how proteins are interacting with each other forming complexes
for cellular signalling responding to environmental cues. Wagner
et al. applied neural networks to the function prediction of inhibi-
tory activity of serotonin and NF-kappaB (21). It was found that
the relationship between structure and activity is essential to cel-
lular signalling for the inhibitory function of serotonin and NF-
kappaB. In the study of the detection of drug-induced idiosyn-
cratic liver toxicity using QSAR data, it was reported that a neural
network model is able to achieve 84% (22).

4.4. Bio-marker

Identification

In bioinformatics research, the identification of bio-markers has a
great importance in bio-medical applications. The major purpose
in these applications is to identify the most important identities
which can be genes, compounds, chemicals, proteins, or metabo-
lites for predictive usages. This means that we need to combine
classification analysis approaches with feature selection approaches
to identify a minimum subset of input variables which can achieve
maximum discrimination capability between disease and disease-
free samples. For instance, surface-enhanced laser desorption/
ionisation time-of-flight mass spectrometry was used to detect
proteomic patterns in the serum of women with endometriosis
(23). Neural networks have been used for detecting early stage
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epithelial ovarian cancer using multiple serum markers from four
institutes (24). Sixty-six Chinese patients with hepatocellular car-
cinoma was used to generate proteomic profiling study by two-
dimensional gel electrophoresis analysis and neural networks are
used to analyse the profiling data for delineating significant pat-
terns for discriminating hepatocellular carcinoma from nonmalig-
nant liver tissues (25).

4.5. Sequence Data

Analysis

Sequence data analysis is one of the most important subjects in
bioinformatics. Its main objective is to predict structures or func-
tions based on sequence compositions. Neural networks have been
recently applied to the prediction of transcription start sites (26).
In discriminating mesophilic and thermophilic proteins, neural
networks have been used to build a classifier achieving 91% accu-
racy (27), where amino acid frequency was used as feature or input
variable. Neural networks have also been used to predict phos-
phorylation sites (28), disorder proteins (29), and secondary struc-
tures (30–32). In recent studies, a new function called bio-basis
function was proposed (33) for protein functional site prediction.
The neural network built based on the bio-basis function is then
called the bio-basis function neural network. Denote by si and sj

two sequences with D residues (amino acids). The similarity
between these two sequences using a mutation matrix (34–36) is
defined as below:

�ðsi; sj Þ ¼
XD

d¼1

M ðsid ; sjdÞ (32)

Here M ðsid ; sjdÞ can be obtained from a mutation matrix through
the table-loop-up method. The bio-basis function is then
defined as

�ðsi; sj Þ ¼ exp
�ðsi; sj Þ � �ðsj ; sj Þ

�ðsj ; sj Þ

� �
(33)

It can be seen that if si and sj are identical, �ðsi; sj Þ ¼ 1 while
�ðsi; sj Þ will be small if si and sj are very different. We treat sj as a
training sequence and si as a testing sequence. Suppose we have ‘
training sequences, the model of bio-basis function neural net-
work is defined as a linear combination of the bio-basis functions as
below:

yi ¼
X‘

n¼1

wn�ðsi; snÞ (34)

This bio-basis function neural network can then be used for
regression analysis or classification analysis. The bio-basis function
neural network has been successfully applied to the prediction of
trypsin cleavage sites (33), HIV protease cleavage sites (33), (37),
disorder proteins (38), phosphorylation sites (39–41), O-linkage
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sites (42), factor X cleavage sites (43), caspase sites (44), SARS
cleavage sites (45), T-cell epitopes (46), and HCV protease clea-
vage sites (47).

5. Summary

This chapter has discussed the basic principle of neural networks,
specifically supervised neural networks, the learning rule (delta
rule), the learning algorithms, and their applications to bioinfor-
matics. We have discussed in detail how the delta rule is developed,
its property, and the revised delta rule. In discussing the learning
algorithms, we have discussed in detail how the delta rule is spe-
cialised to regression and classification learning tasks. After this, we
have discussed the important subjects in using neural networks for
bioinformatics research and applications, namely data organisation
for model construction and model selection. We have discussed
three approaches, namely Jackknife, cross-validation, and re-sub-
stitution. Meanwhile, some model evaluation criteria and their
properties are discussed for both regression and classification
applications.

It must be noted that like many other machine learning algo-
rithms, neural networks have the difficulty of potential over-fitting
or biased learning. We normally do not have any prior knowledge
about how parameters should be distributed. Because of this, a
model with its parameters estimated at one point in a parameter
space as discussed in this chapter may not represent the true
knowledge. Taking all the points in the parameter space into the
consideration, on the other hand, is not an easy job. This is why a
Bayesian chapter has been included in this book, where the Baye-
sian approach, particularly Bayesian learning and Bayesian infer-
ence approaches, are detailed and are fundamental to increase
generalisation capability of neural network models.
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Chapter 13

A User’s Guide to Support Vector Machines

Asa Ben-Hur and Jason Weston

Abstract

The Support Vector Machine (SVM) is a widely used classifier in bioinformatics. Obtaining the best results
with SVMs requires an understanding of their workings and the various ways a user can influence their
accuracy. We provide the user with a basic understanding of the theory behind SVMs and focus on their use
in practice. We describe the effect of the SVM parameters on the resulting classifier, how to select good
values for those parameters, data normalization, factors that affect training time, and software for training
SVMs.

Key words: Kernel methods, Support Vector Machines (SVM).

1. Introduction

The Support Vector Machine (SVM) is a state-of-the-art classifica-
tion method introduced in 1992 by Boser, Guyon, and Vapnik
(1). The SVM classifier is widely used in bioinformatics due to its
high accuracy, ability to deal with high-dimensional data such as
gene expression, and flexibility in modeling diverse sources of data
(2). See also a recent paper in Nature Biotechnology titled ‘‘What
is a support vector machine?’’ (3).

SVMs belong to the general category of kernel methods (4, 5).
A kernel method is an algorithm that depends on the data only
through dot-products. When this is the case, the dot product can
be replaced by a kernel function which computes a dot product in
some possibly high-dimensional feature space. This has two advan-
tages: First, the ability to generate nonlinear decision boundaries
using methods designed for linear classifiers. Second, the use of
kernel functions allows the user to apply a classifier to data that

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
DOI 10.1007/978-1-60327-241-4_13, ª Humana Press, a part of Springer Science+Business Media, LLC 2010
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have no obvious fixed-dimensional vector space representation.
The prime example of such data in bioinformatics are sequence,
either DNA or protein, and protein structure.

Using SVMs effectively requires an understanding of how they
work. When training an SVM, the practitioner needs to make a
number of decisions: how to preprocess the data, what kernel to
use, and finally, setting the parameters of the SVM and the kernel.
Uninformed choices may result in severely reduced performance
(6). In this chapter, we aim to provide the user with an intuitive
understanding of these choices and provide general usage guide-
lines. All the examples shown in this chapter were generated using
the PyML machine learning environment, which focuses on kernel
methods and SVMs, and is available at http://pyml.sourcefor
ge.net. PyML is just one of several software packages that provide
SVM training methods; an incomplete listing of these is provided
in Section 9. More information is found on the Machine Learning
Open Source Software Web site http://mloss.org and a related
paper (7).

This chapter is organized as follows: we begin by defining the
notion of a linear classifier (Section 2); we then introduce kernels as
a way of generating nonlinear boundaries while still using the
machinery of a linear classifier (Section3); the concept of the margin
and SVMs for maximum margin classification are introduced next
(Section 4). We then discuss the use of SVMs in practice: the effect
of the SVM and kernel parameters (Section 5), how to select SVM
parameters and normalization (Sections 6 and 8), and how to use
SVMs for unbalanced data (Section 7). We close with a discussion
of SVM training and software (Section 9) and a list of topics for
further reading (Section 10). For a more complete discussion of
SVMs and kernel methods, we refer the reader to recent books on
the subject (5, 8).

2. Preliminaries:
Linear Classifiers

Support vector machines are an example of a linear two-class
classifier. This section explains what that means. The data for a
two-class learning problem consist of objects labeled with one of
two labels corresponding to the two classes; for convenience we
assume the labels are +1 (positive examples) or �1 (negative
examples). In what follows, boldface x denotes a vector with
components xi. The notation xi will denote the ith vector in a
dataset composed of n labeled examples (xi,yi) where yi is the
label associated with xi. The objects xi are called patterns or
inputs. We assume the inputs belong to some set X. Initially we
assume the inputs are vectors, but once we introduce kernels this
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assumption will be relaxed, at which point they could be any
continuous/discrete object (e.g., a protein/DNA sequence or
protein structure).

A key concept required for defining a linear classifier is the dot
product between two vectors, also referred to as an inner product or
scalar product, defined as wT x ¼

P
i wixi: A linear classifier is

based on a linear discriminant function of the form

f xð Þ ¼ wT x þ b: ½1�

The vector w is known as the weight vector, and b is called the
bias. Consider the case b = 0 first. The set of points x such that
wT x ¼ 0 are all points that are perpendicular to w and go through
the origin – a line in two dimensions, a plane in three dimensions,
and more generally, a hyperplane. The bias b translates the hyper-
plane away from the origin. The hyperplane divides the space into
two according to the sign of the discriminant function f(x) defined
in Equation [1] – see Fig. 13.1 for an illustration. The boundary
between regions classified as positive and negative is called the
decision boundary of the classifier. The decision boundary defined
by a hyperplane is said to be linear because it is linear in the input
examples (cf. Equation [1]). A classifier with a linear decision
boundary is called a linear classifier. Conversely, when the decision
boundary of a classifier depends on the data in a nonlinear way
(see Fig. 13.4 for example), the classifier is said to be nonlinear.

w

wTx + b < 0

wTx + b > 0
– 

– 

– – 

Fig. 13.1. A linear classifier. The hyper-plane (line in 2-d) is the classifier’s decision
boundary. A point is classified according to which side of the hyper-plane it falls on,
which is determined by the sign of the discriminant function.
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3. Kernels: from
Linear to Nonlinear
Classifiers

In many applications a nonlinear classifier provides better accuracy.
And yet, linear classifiers have advantages, one of them being that
they often have simple training algorithms that scale well with the
number of examples (9, 10). This begs the question: can the
machinery of linear classifiers be extended to generate nonlinear
decision boundaries? Furthermore, can we handle domains such as
protein sequences or structures where a representation in a fixed-
dimensional vector space is not available?

The naive way of making a nonlinear classifier out of a linear
classifier is to map our data from the input space X to a feature space F
usinganonlinear function�. InthespaceF, thediscriminantfunctionis

f xð Þ ¼ wT� xð Þ þ b ½2�
Example 1 Consider the case of a two-dimensional input-space

with the mapping � xð Þ ¼ x2
1 ;

ffiffiffi
2
p

x1x2; x2
2

� �T
, which represents a

vector in terms of all degree-2 monomials. In this case

wT� xð Þ ¼ w1x2
1 þ w2

ffiffiffi
2
p

x1x2 þ w3x2
2 ;

resulting in a decision boundary for the classifier which is a conic
section (e.g., an ellipse or hyperbola). The added flexibility of
considering degree-2 monomials is illustrated in Fig. 13.4 in the
context of SVMs.

The approach of explicitly computing nonlinear features does not
scalewell with thenumberof input features: when applying a mapping
analogous to the one from the above example to inputs which are
vectors in a d-dimensional space, the dimensionality of the feature
space F is quadratic in d. This results in a quadratic increase in memory
usage for storing the features and a quadratic increase in the time
required to compute the discriminant function of the classifier. This
quadratic complexity is feasible for low-dimensional data; but when
handling gene expression data that can have thousands of dimensions,
quadratic complexity in the number of dimensions is not acceptable.
The situation is even worse when monomials of a higher degree are
used. Kernel methods solve this issue by avoiding the step of explicitly
mapping the data to a high-dimensional feature space. Suppose the
weight vector can be expressed as a linear combination of the training
examples, i.e., w ¼

Pn
i¼1 �ixi. Then

f xð Þ ¼
Xn

i¼1

�ix
T
i xþ b

In the feature space, F, this expression takes the form

f xð Þ ¼
Xn

i¼1

�i� xið ÞT� xð Þ þ b
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The representation in terms of the variables �i is known as the
dual representation of the decision boundary. As indicated above,
the feature space F may be high dimensional, making this trick
impractical unless the kernel function k(x,x0) defined as

k x; x0ð Þ ¼ � xð ÞT� x0ð Þ
can be computed efficiently. In terms of the kernel function, the
discriminant function is

f xð Þ ¼
Xn

i¼1

k x; xið Þ þ b: ½3�

Example 2 Let us go back to the example of the mapping

� xð Þ ¼ x2
1 ;

ffiffiffi
2
p

x1x2; x
2
2

� �T
. An easy calculation shows that the

kernel associated with this mapping is given by

k x; x0ð Þ ¼ � xð ÞT� x0ð Þ ¼ xT x0
� �2

, which shows that the kernel can

be computed without explicitly computing the mapping �.
The above example leads us to the definition of the degree-d

polynomial kernel

k x; x0ð Þ ¼ xT x0 þ 1
� �d

: ½4�

The feature space for this kernel consists of all monomials
whose degree is less or equal to d. The kernel with d = 1 is the
linear kernel, and in that case the additive constant in Equation [4]
is usually omitted. The increasing flexibility of the classifier as the
degree of the polynomial is increased is illustrated in Fig. 13.4.
The other widely used kernel is the Gaussian kernel defined by

k x; x0ð Þ ¼ exp �� x� x0k k2
� �

; ½5�

where g> 0 is a parameter that controls the width of Gaussian, and
||x|| is the norm of x and is given by

ffiffiffiffiffiffiffiffi
xTx
p

. The parameter g plays a
similar role as the degree of the polynomial kernel in controlling
the flexibility of the resulting classifier (see Fig. 13.5).

We saw that a linear decision boundary can be ‘‘kernelized,’’
i.e. its dependence on the data is only through dot products. In
order for this to be useful, the training algorithm needs to be
kernelizable as well. It turns out that a large number of machine
learning algorithms can be expressed using kernels – including
ridge regression, the perceptron algorithm, and SVMs (5, 8).

4. Large-Margin
Classification

In what follows, we use the term linearly separable to denote data
for which there exists a linear decision boundary that separates
positive from negative examples (see Fig. 13.2). Initially, we will
assume linearly separable data and later show how to handle data
that are not linearly separable.
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4.1. The Geometric

Margin

In this section, we define the notion of a margin. For a given
hyperplane, we denote by xþ(x�) the closest point to the
hyperplane among the positive (negative) examples. From
simple geometric considerations, the margin of a hyperplane
defined by a weight vector w with respect to a dataset D can
be seen to be

mD wð Þ ¼ 1

2
ŵT xþ � x�ð Þ; ½6�

where ŵ is a unit vector in the direction of w, and we assume that
xþ and x� are equidistant from the decision boundary, i.e.,

f x þð Þ ¼ wT xþ þ b ¼ a

f x þð Þ ¼ wT xþ þ b ¼ �a ½7�

for some constant a40. Note that multiplying the data points by a
fixed number will increase the margin by the same amount,
whereas in reality, the margin has not really changed – we just

margin

Fig. 13.2. A linear SVM. The circled data points are the support vectors – the examples that are closest to the decision
boundary. They determine the margin with which the two classes are separated.
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changed the ‘‘units’’ with which it is measured. To make the
geometric margin meaningful, we fix the value of the discriminant
function at the points closest to the hyperplane, and set a = 1 in
Equation [7]. Adding the two equations and dividing by ||w||, we
obtain the following expression for the margin:

mD wð Þ ¼ 1

2
ŵT xþ � x�ð Þ ¼ 1

wk k : ½8�

4.2. Support Vector

Machines

Now that we have the concept of a margin, we can formulate the
maximum margin classifier. We will first define the hard-margin
SVM, applicable to a linearly separable dataset, and then modify it
to handle nonseparable data.

The maximum-margin classifier is the discriminant function
that maximizes the geometric margin 1/||w||, which is equivalent
to minimizing ||w||2. This leads to the following constrained
optimization problem:

minimize
w;b

1

2
wk k2

subject to: yi wTxi þ b
� �

� 1 i ¼ 1; ::: ;n: ½9�

The constraints in this formulation ensure that the maximum-
margin classifier classifies each example correctly, which is possible
since we assumed that the data are linearly separable. In practice,
data are often not linearly separable; and even if they are, a greater
margin can be achieved by allowing the classifier to misclassify
some points. To allow errors we replace the inequality constraints
in Equation [9] with

yi wT xi þ b
� �

� 1� �i;

where �i are slack variables that allow an example to be in the
margin (1 � �i � 0, also called a margin error) or misclassified
(�i � 1). Since an example is misclassified if the value of its
slack variable is greater than 1, the sum of the slack variables
is a bound on the number of misclassified examples. Our
objective of maximizing the margin, i.e., minimizing ||w||2

will be augmented with a term C
P

i �i to penalize misclassi-
fication and margin errors. The optimization problem now
becomes

minimize
w;b

1

2
wk k2 þ C

X

i

�i

subject to: yi wTxi þ b
� �

� 1� �i �i � 0: ½10�

The constant C40 sets the relative importance of maximizing
the margin and minimizing the amount of slack. This formulation
is called the soft-margin SVM and was introduced by Cortes and
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Vapnik (11). Using the method of Lagrange multipliers, we can
obtain the dual formulation, which is expressed in terms of vari-
ables �i (11, 5, 8):

maximize
�

Xn

i¼1
�i �

1

2

Xn

i¼1

Xn

j¼1
yiyj�i�jx

T
i xj

subject to
Xn

i¼1
yi�i ¼ 0; 0 � �i � C :

½11�

The dual formulation leads to an expansion of the weight
vector in terms of the input examples

w ¼
Xn

i¼1
yi�ixi: ½12�

The examples for which �i40 are those points that are on the
margin, or within the margin when a soft-margin SVM is used.
These are the so-called support vectors. The expansion in terms of
the support vectors is often sparse, and the level of sparsity (frac-
tion of the data serving as support vectors) is an upper bound on
the error rate of the classifier (5).

The dual formulation of the SVM optimization problem
depends on the data only through dot products. The dot product
can therefore be replaced with a nonlinear kernel function, thereby
performing large-margin separation in the feature space of the
kernel (see Figs. 13.4 and 13.5). The SVM optimization problem
was traditionally solved in the dual formulation, and only recently
it was shown that the primal formulation, Equation [10], can lead
to efficient kernel-based learning (12). Details on software for
training SVMs is provided in Section 9.

5. Understanding
the Effects of SVM
and Kernel
Parameters Training an SVM finds the large-margin hyperplane, i.e., sets the

values of the parameters �i and b (c.f. Equation [3]). The SVM
has another set of parameters called hyperparameters: the soft-mar-
gin constant, C, and any parameters the kernel function may depend
on (width of a Gaussian kernel or degree of a polynomial kernel). In
this section, we illustrate the effect of the hyperparameters on the
decision boundary of an SVM using two-dimensional examples.

We begin our discussion of hyperparameters with the soft-
margin constant, whose role is illustrated in Fig. 13.3. For a
large value of C, a large penalty is assigned to errors/margin errors.
This is seen in the left panel of Fig. 13.3, where the two points
closest to the hyperplane affect its orientation, resulting in a hyper-
plane that comes close to several other data points. When C is
decreased (right panel of the figure), those points become margin
errors; the hyperplane’s orientation is changed, providing a much
larger margin for the rest of the data.
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Kernel parameters also have a significant effect on the decision
boundary. The degree of the polynomial kernel and the width
parameter of the Gaussian kernel control the flexibility of the result-
ing classifier (Figs. 13.4 and 13.5). The lowest degree polynomial
is the linear kernel, which is not sufficient when a nonlinear relation-
ship between features exists. For the data in Fig. 13.4 a degree-2
polynomial is already flexible enough to discriminate between the
two classes with a sizable margin. The degree-5 polynomial yields a
similar decision boundary, albeit with greater curvature.

Next we turn our attention to the Gaussian kernel defined as

k x; x0ð Þ ¼ exp �� x� x0k k2
� �

. This expression is essentially zero if

the distance between x and x0 is much larger than 1=
ffiffiffi
�
p

; i.e., for a

fixed x0 it is localized to a region around x0. The support vector
expansion, Equation [3] is thus a sum of Gaussian ‘‘bumps’’ cen-
tered around each support vector. When g is small (top left panel in
Fig. 13.5) a given data point x has a nonzero kernel value relative

- -––––
–

–

Fig. 13.4. The effect of the degree of a polynomial kernel. Higher degree polynomial
kernels allow a more flexible decision boundary. The style follows that of Fig. 13.3.

– 

– – 
– – – 

Fig. 13.3. The effect of the soft-margin constant, C, on the decision boundary. A smaller
value of C (right) allows to ignore points close to the boundary and increases the margin.
The decision boundary between negative examples (circles) and positive examples
(crosses) is shown as a thick line. The lighter lines are on the margin (discriminant
value equal to –1 or +1). The grayscale level represents the value of the discriminant
function, dark for low values and a light shade for high values.
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to any example in the set of support vectors. Therefore, the whole
set of support vectors affects the value of the discriminant function
at x, resulting in a smooth decision boundary. As g is increased, the
locality of the support vector expansion increases, leading to
greater curvature of the decision boundary. When g is large, the
value of the discriminant function is essentially constant outside
the close proximity of the region where the data are concentrated
(see bottom right panel in Fig. 13.5). In this regime of the g
parameter, the classifier is clearly overfitting the data.

As seen from the examples in Figs. 13.4 and 13.5, the para-
meter g of the Gaussian kernel and the degree of polynomial kernel
determine the flexibility of the resulting SVM in fitting the data. If
this complexity parameter is too large, overfitting will occur (bot-
tom panels in Fig. 13.5).

A question frequently posed by practitioners is ‘‘which kernel
should I use for my data?’’ There are several answers to this ques-
tion. The first is that it is, like most practical questions in machine
learning, data dependent, so several kernels should be tried. That
being said, we typically follow the following procedure: try a linear
kernel first, and then see if you can improve on its performance
using a nonlinear kernel. The linear kernel provides a useful baseline,
and in many bioinformatics applications provides the best results:

– 

– 

– 
– – – – 

Fig. 13.5. The effect of the inverse-width parameter of the Gaussian kernel (g) for a fixed
value of the soft-margin constant. For small values of g (upper left) the decision boundary
is nearly linear. As g increases the flexibility of the decision boundary increases. Large
values of g lead to overfitting (bottom). The figure style follows that of Fig. 13.3.
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the flexibility of the Gaussian and polynomial kernels often leads to
overfitting in high-dimensional datasets with a small number of
examples, microarray datasets being a good example. Furthermore,
an SVM with a linear kernel is easier to tune since the only parameter
that affects performance is the soft-margin constant. Once a result
using a linear kernel is available, it can serve as a baseline that you can
try to improve upon using a nonlinear kernel. Between the Gaussian
and polynomial kernels, our experience shows that the Gaussian
kernel usually outperforms the polynomial kernel in both accuracy
and convergence time if the data are normalized correctly and a
good value of the width parameter is chosen. These issues are
discussed in the next sections.

6. Model Selection

The dependence of the SVM decision boundary on the SVM
hyperparameters translates into a dependence of classifier accuracy
on the hyperparameters. When working with a linear classifier,
the only hyperparameter that needs to be tuned is the SVM soft-
margin constant. For the polynomial and Gaussian kernels, the
search space is two-dimensional. The standard method of explor-
ing this two-dimensional space is via grid-search; the grid points
are generally chosen on a logarithmic scale and classifier accuracy
is estimated for each point on the grid. This is illustrated in
Fig. 13.6. A classifier is then trained using the hyperparameters
that yield the best accuracy on the grid.

Fig. 13.6. SVM accuracy on a grid of parameter values.
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The accuracy landscape in Fig. 13.6 has an interesting prop-
erty: there is a range of parameter values that yield optimal classifier
performance; furthermore, these equivalent points in parameter
space fall along a ‘‘ridge’’ in parameter space. This phenomenon
can be understood as follows. Consider a particular value of (g,C).
If we decrease the value of g, this decreases the curvature of the
decision boundary; if we then increase the value of C the decision
boundary is forced to curve to accommodate the larger penalty for
errors/margin errors. This is illustrated in Fig. 13.7 for two-
dimensional data.

7. SVMs for
Unbalanced Data

Many datasets encountered in bioinformatics and other areas of
application are unbalanced, i.e., one class contains a lot more exam-
ples than the other. Unbalanced datasets can present a challenge
when training a classifier and SVMs are no exception – see (13) for a
general overview of the issue. A good strategy for producing a high-
accuracy classifier on imbalanced data is to classify any example as
belonging to the majority class; this is called the majority-class
classifier. While highly accurate under the standard measure of
accuracy such a classifier is not very useful. When presented with
an unbalanced dataset that is not linearly separable, an SVM that
follows the formulation Equation [10] will often produce a classifier
that behaves similarly to the majority-class classifier. An illustration
of this phenomenon is provided in Fig. 13.8.

The crux of the problem is that the standard notion of accuracy
(the success rate or fraction of correctly classified examples) is not a
good way to measure the success of a classifier applied to unba-
lanced data, as is evident by the fact that the majority-class classifier
performs well under it. The problem with the success rate is that it
assigns equal importance to errors made on examples belonging to
the majority class and the minority class. To correct for the

– 

– 
– – – – – – 

Fig. 13.7. Similar decision boundaries can be obtained using different combinations of SVM hyperparameters. The values
of C and g are indicated on each panel and the figure style follows Fig. 13.3.
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imbalance in the data, we need to assign different costs for mis-
classification to each class. Before introducing the balanced success
rate, we note that the success rate can be expressed as

P successjþð ÞP þð Þ þ P successj�ð ÞP �ð Þ;

where P (success|þ) (P (success|�)) is an estimate of the prob-
ability of success in classifying positive (negative) examples, and
P(þ) (P (�)) is the fraction of positive (negative) examples. The
balanced success rate modifies this expression to

BSR ¼ P successjþð Þ þ P successj�ð Þð Þ=2;

which averages the success rates in each class. The majority-class
classifier will have a balanced-success-rate of 0.5. A balanced error-
rate is defined as 1�BSR. The BSR, as opposed to the standard
success rate, gives equal overall weight to each class in measuring
performance. A similar effect is obtained in training SVMs by
assigning different misclassification costs (SVM soft-margin
constants) to each class. The total misclassification cost, C

P
i �i

is replaced with two terms, one for each class:

C
Xn

i¼1

�i ! Cþ
X

i2Iþ

�iþC�
X

i2I�

�i

where Cþ(C�) is the soft-margin constant for the positive (nega-
tive) examples and Iþ(I�) are the sets of positive (negative) exam-
ples. To give equal overall weight to each class, we want the total
penalty for each class to be equal. Assuming that the number of
misclassified examples from each class is proportional to the num-
ber of examples in each class, we choose Cþ and C� such that

Cþnþ ¼ C�n�;

Fig. 13.8. When data are unbalanced and a single soft-margin is used, the resulting classifier (left) will tend to classify any
example to the majority class. The solution (right panel ) is to assign a different soft-margin constant to each class (see
text for details). The figure style follows that of Fig. 13.3.
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where nþ(n�) is the number of positive (negative) examples. Or in
other words

Cþ=C� ¼ nþ=n�:

This provides a method for setting the ratio between the soft-
margin constants of the two classes, leaving one parameter that
needs to be adjusted. This method for handling unbalanced data is
implemented in several SVM software packages, e.g., LIBSVM
(14) and PyML.

8. Normalization

Linear classifiers are known to be sensitive to the way features are
scaled (see e.g. (14) in the context of SVMs). Therefore, it is
essential to normalize either the data or the kernel itself. This
observation carries over to kernel-based classifiers that use non-
linear kernel functions: the accuracy of an SVM can severely
degrade if the data are not normalized (14). Some sources of
data, e.g., microarray or mass-spectrometry data require normal-
ization methods that are technology-specific. In what follows, we
only consider normalization methods that are applicable regardless
of the method that generated the data.

Normalization can be performed at the level of the input
features or at the level of the kernel (normalization in feature
space). In many applications, the available features are continuous
values, where each feature is measured in a different scale and has a
different range of possible values. In such cases, it is often bene-
ficial to scale all features to a common range, e.g., by standardizing
the data (for each feature, subtracting its mean and dividing by its
standard deviation). Standardization is not appropriate when the
data are sparse since it destroys sparsity since each feature will
typically have a different normalization constant. Another way to
handle features with different ranges is to bin each feature and
replace it with indicator variables that indicate which bin it falls in.

An alternative to normalizing each feature separately is to
normalize each example to be a unit vector. If the data are explicitly
represented as vectors, you can normalize the data by dividing each
vector by its norm such that ||x||¼1 after normalization. Normal-
ization can also be performed at the level of the kernel, i.e.,
normalizing in feature space, leading to ||�(x)||¼1 (or equiva-
lently k(x,x)¼1). This is accomplished using the cosine kernel,
which normalizes a kernel k(x,x0) to

kcosine x; x0ð Þ ¼ k x; x0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k x; xð Þk x0; x0ð Þ

p : ½13�
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Note that for the linear kernel, cosine normalization is
equivalent to division by the norm. The use of the cosine
kernel is redundant for the Gaussian kernel since it already
satisfies k(x,x)¼1. This does not mean that normalization of
the input features to unit vectors is redundant: our experience
shows that the Gaussian kernel often benefits from it. Normal-
izing data to unit vectors reduces the dimensionality of the
data by one since the data are projected to the unit sphere.
Therefore, this may not be a good idea for low-dimensional
data.

9. SVM Training
Algorithms
and Software

The popularity of SVMs has led to the development of a large
number of special purpose solvers for the SVM optimization
problem (15). One of the most common SVM solvers is
LIBSVM (14). The complexity of training of nonlinear SVMs
with solvers such as LIBSVM has been estimated to be quadratic
in the number of training examples (15), which can be prohibi-
tive for datasets with hundreds of thousands of examples.
Researchers have therefore explored ways to achieve faster train-
ing times. For linear SVMs, very efficient solvers are available
which converge in a time which is linear in the number of
examples (16, 17, 15). Approximate solvers that can be trained
in linear time without a significant loss of accuracy were also
developed (18).

There are two types of software that provide SVM training
algorithms. The first type is specialized software whose main
objective is to provide an SVM solver. LIBSVM (14) and
SVMlight (19) are two popular examples of this class of software.
The other class of software is machine learning libraries that
provide a variety of classification methods and other facilities
such as methods for feature selection, preprocessing, etc. The
user has a large number of choices, and the following is an
incomplete list of environments that provide an SVM classifier:
Orange (20), The Spider (http://www.kyb.tuebingen.mpg.de/
bs/people/spider/), Elefant (21), Plearn (http://plearn.ber
lios.de/), Weka (22), Lush (23), Shogun (24), RapidMiner (25),
and PyML (http://pyml.sourcefor ge.net). The SVM implementa-
tion in several of these are wrappers for the LIBSVM library.
A repository of machine learning open source software is avail-
able at http://mloss.org as part of a movement advocating
distribution of machine learning algorithms as open source
software (7).
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10. Further Reading

This chapter focused on the practical issues in using support vector
machines to classify data that are already provided as features in
some fixed-dimensional vector-space. In bioinformatics, we often
encounter data that have no obvious explicit embedding in a fixed-
dimensional vector space, e.g., protein or DNA sequences, protein
structures, protein interaction networks, etc. Researchers have
developed a variety of ways in which to model such data with
kernel methods. See (2, 8) for more details. The design of a good
kernel, i.e., defining a set of features that make the classification
task easy, is where most of the gains in classification accuracy can be
obtained.

After having defined a set of features, it is instructive to
perform feature selection: remove features that do not contri-
bute to the accuracy of the classifier (26, 27). In our experi-
ence, feature selection does not usually improve the accuracy
of SVMs. Its importance is mainly in obtaining better under-
standing of the data – SVMs, like many other classifiers, are
‘‘black boxes’’ that do not provide the user much information
on why a particular prediction was made. Reducing the set of
features to a small salient set can help in this regard. Several
successful feature selection methods have been developed spe-
cifically for SVMs and kernel methods. The Recursive Feature
Elimination (RFE) method, for example, iteratively removes
features that correspond to components of the SVM weight
vector that are smallest in absolute value; such features have
less of a contribution to the classification and are therefore
removed (28).

SVMs are two-class classifiers. Solving multiclass problems can
be done with multiclass extensions of SVMs (29). These are com-
putationally expensive, so the practical alternative is to convert a
two-class classifier to a multiclass. The standard method for doing
so is the so-called one-vs-the-rest approach, where for each class a
classifier is trained for that class against the rest of the classes; an
input is classified according to which classifier produces the largest
discriminant function value. Despite its simplicity, it remains the
method of choice (30).
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Chapter 14

Hidden Markov Models in Biology

Claus Vogl and Andreas Futschik

Abstract

Markov and Hidden Markov models (HMMs) are introduced using examples from linkage mapping and
sequence analysis. In the course, the forward–backward, the Viterbi, the Baum-Welch (EM) algorithm,
and a Metropolis sampling scheme are presented.

Key words: Markov models, Hidden Markov models, linkage mapping, sequence analysis, Viterbi
algorithm, forward–backward algorithm, Baum-Welch (EM) algorithm, metropolis sampling.

1. Introduction

Markov models and especially Hidden Markov models (HMMs)
have become very important tools in sequence analysis, linkage
mapping, population genetics, and generally in bioinformatics.
They promise relatively simple probabilistic approaches to many
phenomena at computational costs only marginally above those
for ad-hoc models, such as sliding windows.

In biological modeling, Markov processes appear naturally in
many contexts. Evolution, in particular, can be modeled as a
Markov process, such that the probability distribution of indivi-
duals in the next generation depends only on individuals in the
current generation. Unfortunately, we usually only have current
data, but not from earlier times, when events actually happened.
This may lead to rather thorny inference problems. Markov
models are often used in evolutionary biology, and especially
population genetics, but the literature is older than the one on
sequence analysis and narrow-sense bioinformatics and often relies
on diffusion approximations (e.g., 1). This will not be covered in
this chapter.

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
DOI 10.1007/978-1-60327-241-4_14, ª Humana Press, a part of Springer Science+Business Media, LLC 2010
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Generally, modeling of states along a chromosome or a section
of a chromosome, such as a gene, has become the most prominent
application of Markov and Hidden Markov models especially in
linkage mapping (2, 3) and sequence analysis. In sequence analysis,
the book by Durbin and colleagues (4) has been enormously
influential and seems to have helped to transform the field of
bioinformatics from using ad-hoc methods to probabilistic
modeling.

In the following, definitions of Markov and Hidden Markov
models are given. Markov chains will then be illustrated using
linkage mapping. There the sequence of events along the chromo-
some is modeled as a Markov chain as it is done in the following
example, a very simple model for detecting CpG islands. In the
context of this second example, HMMs and some basic analysis
methods will be discussed. Finally, applications of HMMs in bioin-
formatics are pointed out.

1.1. Definitions A (homogeneous) Markov chain is a sequence of random
variables

�1 ! �2 ! � � � ! �i�1 ! �i ! �iþ1 ! � � � �N�1 ! �N

with the following properties:
l Markov property: The future depends on the past only via the

most recently observed state, i.e.,

Pr �iþ1 �1; . . . ; �ijð Þ ¼ Pr �iþ1 �ijð Þ: ½1�

l Time homogeneity: The transition probabilities do not change
over time, i.e., the probability Pð�iþ1 ¼ s j�i ¼ s�Þ ¼ pðs ; s�Þ
does not depend on i:

We will assume that the random variables �i have a finite number of
possible values, also called states.

A hidden Markov process is a Markov process where the
random variables �i cannot be observed directly, but influence a
sequence of observable variables ðy1; ; yN Þ. (We will try to follow
the convention that observable variables or data are denoted by
Latin symbols and unobservable variables or parameters are
denoted by Greek symbols). We can summarize a canonical hidden
Markov model as follows:

hidden states

emit

observed states

� � � ! �i�1 ! �i ! �iþ1 ! � � �
# # #

� � � yi�1 yi yiþ1 � � �

�������

With hidden Markov models, the probability of the data yi, at the
ith step, only depends on the parameter �i, i.e.,

Pr yi �1; . . . ; �Njð Þ ¼ Pr yi �ijð Þ: ½2�
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(More general models, where the dependence between y i-1 and y i

is not only over �, are called Markov switching models.) For each i,
the probability of the emitted data given the hidden states can then
be represented as a vector. If the � have, e.g., two possible states,
then Pr yi �jð Þ ¼ Pr yi �ij ¼ 0ð Þ;Pr yi �ij ¼ 1ð Þð Þ. This probability is
also called the emission probability, because the hidden states are
thought to emit the observable data.

2. A Markov Chain
in Linkage
Mapping

In the following, basic concepts of Markov chains will be intro-
duced using linkage mapping because there the transition prob-
abilities often have a very simple form.

The most basic model in this context is for a backcross design,
where two diploid inbred parental lines (P1 and P2) are crossed
with each other to produce a genetically homogenous filial gen-
eration F1, which has one chromosome from P1 and the other
from P2 and is therefore heterozygous at every locus segregating
between the parental lines. This F1 is then backcrossed to one or
the other parental line, e.g., to P1. Then, only the meiosis in the F1
needs to be considered, because the other one produces only
chromosomes of the line P1. According to Mendelian rules, the
probability of a heterozygous state in the backcross, e.g., one allele
from P1 and the other from P2 at a segregating locus l, is 1=2 and
that of a homozygous P1 genotype is also 1=2. Let us denote the
heterozygous state (which we can only observe at segregating loci)
with �l ¼ 1 and the homozygous stae with �l ¼ 0, such that we
have Prð�l ¼ 0Þ ¼ Prð�l ¼ 1Þ ¼ 1=2. At the next segregating
locus, e.g., at position l þ 1, we again have two possible events
and again their probabilities are equal. In general, the events at the
neighboring loci will be correlated, such that the probability of
observing the same configuration at both loci is higher than obser-
ving different ones.

Instead of going from one segregating locus to the next, let us
consider the molecular level, and model sites, i.e., base pairs.
Extending the above definition, we now set the hidden state to
be �i ¼ 1, if the homologous nucleotides at a site come from
different parental lines; otherwise, we set �i ¼ 0. If we start at the
ith site, we expect Mendelian proportions of states of parental
origin, as anywhere else in the genome, which we will denote
with Prð�i ¼ 0Þ ¼ Prð�i ¼ 1Þ ¼ 1=2. Let us proceed to the next
site i þ 1. Obviously the probability of going from state 0 to state 1
must be the same as going from state 1 to state 0–otherwise the
Mendelian rules would not hold at the next site. Hence the transi-
tion matrix is as follows:
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Ti;iþ1 ¼
Pr �iþ1 ¼ 0 �i ¼ 0jð ÞPr �iþ1 ¼ 1 �i ¼ 0jð Þ
Pr �iþ1 ¼ 0 �i ¼ 1jð ÞPr �iþ1 ¼ 1 �i ¼ 1jð Þ

� �

¼
1� � �

� 1� �

� �
;

½3�

where � is the, generally unknown, recombination rate per base. If
we assume that the recombination rate does not vary along the
chromosome, we can leave away the subscript of the transition
matrix T and obtain a homogeneous Markov chain. Proceeding
along the chromosome we thus have a Markov chain satisfying:

Pr �Nð Þ ¼ 1=2;1=2ð ÞT � � �T
¼ 1=2;1=2ð ÞTN

¼ 1=2; 1=2ð Þ ¼ P �1ð Þ:
½4�

(Prð�N Þ ¼ Prð�1Þ ¼ ð1=2;1=2Þ is the so-called stationary distribu-
tion of the Markov chain. If molecular markers are available at a
segregating locus yi, we can usually determine the site’s state
unequivocally in this simple cross.

Haldane’s mapping function. It can be rather inconvenient
to multiply the matrix T many times as markers may often be
separated by several megabases. Diagonalizing T leads to the
following approximate formula which is easy to evaluate:

TN ¼ 1=2
1 �1

1 1

� �
1 0

0 1� 2�ð ÞN
� �

1 1

�1 1

� �

� 1=2
1 �1

1 1

� �
1 0

0 e�2�N

� �
1 1

�1 1

� �

¼
1� r r

r 1� r

� �
;

½5�

where r ¼ ð1� e�2�N Þ=2. Illuminating its connection with Mar-
kov chains, this leads to the well-known Haldane mapping func-
tion (5), if recombination rates along a stretch of chromosome are
approximately constant.

3. Hidden Markov
Models

In more complex crossing designs, the data do not allow us to infer
a unique state anymore. This more complicated situation occurs
when more than one meiosis contributes to the next generation,
e.g., when mating occurs within the F1 generation. In such an
intercross design, the probability of the four ordered genotypes
(AA, Aa, aA, aa) is 1/4th, according to Mendel’s rules and the
independence of the two meioses. With bi-allelic codominant
markers, the two homozygous genotypes can be distinguished

244 Vogl and Futschik



from the unordered heterozygote genotype. Thus, three of the
four states can be distinguished by their phenotype. If markers are
dominant, the heterozygote phenotype cannot be distinguished
from one or the other homozygote phenotype.

Quantitative traits may also differ between the two lines. Such
traits are, e.g., milk or meat yield in animals, or the number of leaf
hairs per unit area in plants. If these traits are modeled as normally
distributed, which is very common, the same continuum of pheno-
types is possible for all genotypes, albeit with different probabilities.

Since there are four possible states (AA, Aa, aA, aa, from left to
right), the transition matrix will be 4� 4:

Tðl; lþ 1Þ ¼

ð1� rÞ2 ð1� rÞr rð1� rÞ r2

ð1� rÞr ð1� rÞ2 r2 rð1� rÞ
ð1� rÞr r2 ð1� rÞ2 rð1� rÞ

r2 ð1� rÞr rð1� rÞ ð1� rÞ2

0

BBBB@

1

CCCCA
½6�

In this general case, the exact sequence of states ( i.e., geno-
types along the chromosome) is usually unknown, even with codo-
minant markers, and we could thus use this example to illustrate the
analysis techniques for HMMs. We will however use an even
simpler model that is no more than a caricature of the underlying
biological situation.

3.1. A Simple CpG

Island Model

In mammalian genomes, GC or CG dinucleotides (usually written as
CpG to distinguish them from the C–G base pair) are underrepre-
sented. This is because the C nucleotide in CpG arrangements is often
methylated, which in turn increases the probability of a C mutating
into a T. In some relatively short regions of the genome (about a
megabase or so) methylation is suppressed. In these regions, many
more CpG dinucleotides are seen than elsewhere in the genome. We
will model such ‘‘CpG islands’’ very simply below. (For a more
realistic but also more complex model of CpG islands see, e.g., (4)).

The distinguishing feature of a CpG island is the relative rich-
ness in CpG dinucleotides. Hence we look at pairs of nucleotides
sliding along the sequence and determine the number of CpG
dinucleotides, which we contrast with all other dinucleotides. At
each position i, the data can be in one of two states: yi ¼ 1 if the
dinucleotide is CpG and yi ¼ 0 otherwise. The hidden variable �i

indicates whether the ith dinucleotide is in a CpG island, i.e., �i ¼ 1
if it is, and �i ¼ 0 otherwise. By our model assumptions, the prob-
ability of yi ¼ 1, i.e., the emission probability of a CpG dinucleotide
is greater if �i ¼ 1 than if �i ¼ 0. To be specific, we assume that
Pr yi ¼ 1 �i ¼ 1jð Þ ¼ 0:25 and that Pr yi ¼ 1 �i ¼ 0jð Þ ¼ 0:01.
Furthermore assume that the prior probability of the two states is
1/2 and that the probability of transition between the hidden states
is 0.01, i.e., the transition matrix is:
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T ¼
0:99 0:01

0:01 0:99

� �
½7�

With these assumptions, we simulated a sequence of length 2000,
which we use for the subsequent analysis. In the following, three
commonly used algorithms and a Metropolis sampler will be
introduced, which serve (i) to determine the most probable path
of hidden states through the sequence given the transition
and emission probabilities (the Viterbi algorithm); (ii) to calculate
the probability of the data given the transition and emission prob-
abilities, thereby ‘‘summing out’’ the hidden parameters, which
leads to the likelihood (the forward–backward algorithm); (iii) to
calculate a (local) maximum likelihood estimate of the transition
and emission probabilities (the Baum-Welch algorithm); and
(iv) to provide a sample from the posterior distribution of the
transition and emission probabilities using a Metropolis
algorithm.

3.2. The Viterbi

Algorithm

The Viterbi algorithm provides an efficient way to obtain the most
probable path of hidden states

�� ¼ argmax� Pr y; �ð Þ; ½8�

assuming that all transition and emission probabilities are known.
This dynamic programming algorithm proceeds as follows. First,
one calculates recursively the quantities vkðiÞ, which give the max-
imum probability of ending in the hidden state k at step i when
observing y1; . . . ; yi. Obviously, maxk vkðN Þ is then the probability
of the most likely path and arg maxk �k Nð Þ is the value of the last
hidden state ��N for the most likely path. The previous hidden
states ��i (i5n) are obtained by backtracking.

Let plk denote the probability of switching from hidden state l
to the hidden state k. The Viterbi algorithm can be summarized as
follows:

l Initialization (i=1): Set �k 1ð Þ ¼ Pr y1 �1 ¼ kjð Þpk for all k,
where pk denotes the probability that the hidden Markov
chain starts in state k.

l Recursion (i ¼ 2; . . . ;N ): Calculate for all k : �k ið Þ ¼
Pr yi �i ¼ kjð Þmaxl �l i � 1ð Þplkð Þ and ptri kð Þ ¼ arg maxl �lð
i � 1ð ÞplkÞ.

l Termination: Prðyj��Þ ¼ maxkðvkðN ÞÞ; ��N ¼ arg maxk �k Nð Þð Þ
l Traceback (i ¼ N ; . . . ;1): ��i�1 ¼ ptri �

�
i

� �

Numerical instabilities may occur. This can be avoided by tak-
ing the logarithm of the probabilities and summing. We note that
the maximum will remain unaffected by the log-transformation.

In Fig. 14.1, we show an example of a data set simulated
assuming the simple CpG model described above, the true hidden
states and those inferred by the Viterbi algorithm.
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3.3. The Forward–

Backward algorithm

With the forward–backward algorithm, the probability of the data
(y) given the transition and emission probabilities can be found.
For this, the forward part of the forward–backward algorithm is
sufficient. Furthermore, at each i, the probability of each hidden
state can be calculated, for which the backward algorithm is
necessary.

The algorithm is similar to the Viterbi algorithm. Again, we
define ðplÞ to be the probabilities of starting in state l.

The forward algorithm provides a recursive way of calculating
flði þ 1Þ ¼ Prðy1; . . . ; yi; �iþ1 ¼ lÞ: By introducing (for technical
reasons) a hidden end state �Nþ1 for which no observed state is
available, one finally obtains the probability of the whole observed
sequence as PrðyÞ ¼

P
k fkðN þ 1Þ: The algorithm can be sum-

marized as follows:

l Initialization (i=1): flð1Þ ¼ pl

Recursion (i ¼ 1; ;N );

fl i þ 1ð Þ ¼
P

k fk ið Þpkl Pr yi �i ¼ kjð Þ
l Termination: PrðyÞ ¼

P
k fkðN þ 1Þ
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Fig. 14.1. Plot of the data, the true hidden values �, and the hidden states inferred by the
Viterbi algorithm. The black bars denote true (resp. estimated) positions of CpG islands.
There is generally good agreement between the true and inferred hidden states.
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We note that the probability actually depends on the transition and
emission probabilities, which may be abbreviated with T and E,
respectively, such that Pr y T;Ejð Þ is preferable. However, the prob-
ability does not anymore depend on the hidden states, which have
been ‘‘summed out.’’

The backward algorithm provides a recursion for calculating
bl ið Þ ¼ Pr yi; . . . ; yN �i ¼ ljð Þ. Together with the forward algorithm,
this permits to obtain the posterior probability for a hidden state at any
position i, i.e.,Pr �i ¼ k yjð Þ (whichagaindependsonT andE). Indeed

Pr �i ¼ k yjð Þ ¼ fk ið Þbk ið Þ
Pr yð Þ ; ½9�

where PrðyÞ can be obtained either as PrðyÞ ¼
P

k fkðiÞ bkðiÞ, or via
the forward algorithm.

The algorithm can be summarized as follows.
l Initialization (i ¼ N þ 1): bkðN þ 1Þ ¼ 1 for all k

l Recursion (i ¼ N ; ; 1): bk ið Þ ¼
P

l pklbl i þ 1ð ÞPr yi �ij ¼ kð Þ
Both the forward and the backward algorithms may suffer

from numerical instability, which is addressed, e.g., in (4).
In Fig. 14.2, we show the simulated CpG model data, the true

hidden states and the posterior probabilities of the states inferred
from the CpG algorithm.

Compared to the Viterbi algorithm, this way of calculating
probable states is particularly useful, if many paths are about as
likely as the most probable path. In addition, the forward–back-
ward algorithm is an integral part of the Baum-Welch algorithm
presented below.

3.4. The Baum-Welch

or Expectation-

Maximization

algorithm

The Baum-Welch algorithm (6) is a special case of the Expecta-
tion-Maximization or EM algorithm (see (7), for more information
on the EM algorithm). Hereby, the marginal likelihood (or poster-
ior distribution) of the transition and emission probabilities is
maximized. Contrary to the earlier assertions of always using
Greek letters for unknown variables, we will continue using T
and E, for the now assumed unknown matrices, to not confuse
the reader. The Baum-Welch algorithm can be used to obtain the
maximizers both of the likelihood Pr y T;Ejð Þ and of the posterior
Pr T;E yjð Þ.

To motivate the Baum-Welch algorithm, we first assume that
the path through the sequence of states is known, i.e., a known
sequence of �is. For estimating the emission probabilities in the
two states, we find in state � ¼ 0 that a CpG dinucleotide is
emitted in 6 out of 851 cases, such that the maximum likelihood
estimate of Pr y ¼ 1 � ¼ 0jð Þ � 0:007 (compared to the true value
of 0.01); in state � ¼ 1 we observe the emission of a CpG dinu-
cleotide in 293 out of 1,149 cases, such that the maximum like-
lihood estimate of Pr y ¼ 1 � ¼ 1jð Þ � 0:26 (compared to the true
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value of 0.25). Obviously, the error will get smaller, if more cases
are observed. If only very few cases are expected, counts of 0 will be
likely. It is then customary to add ‘‘pseudo-counts’’ to avoid
estimates of 0. These pseudo-counts can be given an interpretation
as Bayesian priors.

Generally, we do not know the true paths. We may then start by
supplying initial guesses of transition and emission probabilities.
Based on these probabilities and conditional on the observed data,
we can calculate the expected number of transitions for each pair of
hidden states. Furthermore, the expected number of emissions of a
particular observed state can be obtained for each hidden state.
Finally, one can obtain the expected frequency of each of the hidden
states. Using these expectations, it is easy to re-estimate the
unknown parameters. With these parameters, the above-mentioned
expected values are recalculated and the process is iterated until
convergence. Notice that all expected values are conditional on the
data and therefore random.

The Baum-Welch algorithm may be summarized as follows:

l Initialization: Supply initial guesses for the transition prob-
abilities, i.e., T0 and E0
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Fig. 14.2. Plot of the data (a vertical bar at the bottom denotes a CpG position in the data),
the true hidden states �i (the black bars on top indicate CpG island positions), and the
posterior probabilities of the CpG hidden state inferred by the forward–backward
algorithm. It can be seen that the posterior probability for CpG tends to be high at the
true CpG island positions, although the probabilities fluctuate considerably.
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l Iteration, E-step: Based on the forward and backward prob-
abilities and given the old Tt and Et , calculate the expected
number of transitions between the hidden states �i and �j as
Fkl=Fk where

Fkl ¼
X

i

Prð�i ¼ k; �iþ1 ¼ l jyÞ

with

Prð�i ¼ k; �iþ1 ¼ l jyÞ ¼ fkðiÞblði þ 1Þpkl Prðyij�i ¼ kÞ
PrðyÞ :

Using (9), calculate furthermore the expected number of times
the hidden state k is visited as Fk

P
i Pr �i ¼ k yjð Þ: Finally calcu-

late the expected number of times being in state k and observing
~y as Ok ~yð Þ ¼

P
i I yi ¼ ~yð ÞPr �i ¼ k yjð Þ:

l Iteration, Estimation-step:

For all k and l, set ðTtþ1Þk;l ¼ Fkl=Fk: For all k and ~y, set
ðEtþ1Þk~y ¼ Okð~yÞ=Fk:

l Termination: Terminate when the change from t to t+1 in the log
likelihood or log posterior remains below a preset small value.
This sequence of E- and M-steps converges to a local maximum

of the marginal likelihood Pr y T;Ejð Þ. If the process converges to
the same local optimum from different initial values, this may
provide empirical support for the global optimality of this point.

In our example, the sequence was started from the true values
and only the emission probabilities (instead of additionally the
transition probabilities) were updated. After 50 iterations, the
emission probabilities were 0.009 and 0.313 for the no CpG and
the CpG state, respectively.

3.5. The Metropolis

Sampler

The Baum-Welch algorithm provides the (local) maximum-likeli-
hood (or posterior) estimator of the transition and emission prob-
abilities. Yet it would also be interesting to gauge the reliability of
the so-obtained estimates. With the Metropolis sampler and related
Markov-chain Monte Carlo methods, (see, (7, 8, 9)), we can, in
principle, sample from the posterior distribution of an estimator
and thus obtain additional information on its precision.

The longer a Markov-chain Monte Carlo sampler runs, the
better it will approximate the posterior distribution. For checking
convergence, starting conditions should be overdispersed. Con-
vergence can then be monitored by either visually inspecting the
sequence of log-posterior values or with criteria in (7). The initially
sampled items before convergence is reached – the so-called burn-
in phase–should be discarded.

A Metropolis sampling scheme can be summarized as follows:
l Initialization: Supply guesses for the transition probabilities,

i.e., T0 and E0 and calculate Pr y T0;E0jð Þ using the forward
algorithm.

250 Vogl and Futschik



l Iteration, proposal: Suggest new randomly chosen transition
and emission matrices Tp and Ep according to some proposal
distribution.

l Iteration, acceptance: Calculate Pr y Tp;Ep

��� �
and determine

the ratio:

a ¼
Pr y Tp;Ep

��� �

Pr y Tt ;Etjð Þ ½10�

This formula is for the case of a uniform prior where the poster-
ior is proportional to the likelihood. For other priors, one uses
the product prior � likelihood (i.e., p T;Eð ÞPr y T;Ejð Þ) both in
the numerator and denominator instead. Accept the proposal if
a41; if a51 accept with probability a.

l Termination: The more iterations the better the simulation
approximates the posterior.
(Notice that there is a variant of the Metropolis algorithm

known as the Gibbs sampler where the proposal distribution is
identical to the conditional distribution of the parameter or
parameters.)

In Fig. 14.3, we show results from the first 500 iterations of a
Metropolis sampler started from the true values. Only the emission
probabilities E were updated. In addition to estimates of the mean
or median of the emission probabilities, we get an approximate
sample from the posterior probability.

4. Discussion

A classical introduction to Hidden Markov models focussing
on speech recognition is the paper by Rabiner (10). The use
of Hidden Markov models has been proposed for the analysis
of genome structure by Churchill (11). A more recent, but
already classical reference on Hidden Markov models for bio-
logical sequence analysis is the book by Durbin and colleagues
(4). The book by Koski (12) provides a mathematically more
rigorous introduction to HMMs with applications to bioinfor-
matics. They also discuss the use of profile HMMs for multiple
(protein) sequence alignment. The use of HMMs for gene
finding goes back to the work of Haussler and colleagues
(13). A paper dealing with gene finding for eukaryotes
is Burge and Carlin’s (14). Hidden Markov models with con-
tinuous responses have been used for ion-channel modeling
(e.g., 15). A large bibliography (period 1991–2000) on the
use of HMMs in the biosciences, as well as in many other
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fields can be found at the Webpage by Cappé ‘‘http://
www.tsi.enst.fr/cappe/docs/hmmbib.html’’. A matlab tool-
box for HMMs, pointers to other software, as well as to
further online introductory material can be found at the Mur-
phy’s Webpage ‘‘http://www.cs.ubc.ca/murphyk/Software/
HMM/hmm.html’’.

Furthermore, with the Bayesian approach (7) probabilistic
submodels may be combined to provide comprehensive and, pre-
sumably, realistic models. With the computer intensive analysis
methods presented herein, the posterior distribution of such mod-
els may be calculated or their modes approximated.
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Chapter 15

Integrated Tools for Biomolecular Sequence-Based Function
Prediction as Exemplified by the ANNOTATOR Software
Environment

Georg Schneider, Michael Wildpaner, Fernanda L. Sirota,
Sebastian Maurer-Stroh, Birgit Eisenhaber, and Frank Eisenhaber

Abstract

Given the amount of sequence data available today, in silico function prediction, which often includes
detecting distant evolutionary relationships, requires sophisticated bioinformatic workflows. The algo-
rithms behind these workflows exhibit complex data structures; they need the ability to spawn subtasks and
tend to demand large amounts of resources. Performing sequence analytic tasks by manually invoking
individual function prediction algorithms having to transform between differing input and output formats
has become increasingly obsolete. After a period of linking individual predictors using ad hoc scripts, a
number of integrated platforms are finally emerging. We present the ANNOTATOR software environ-
ment as an advanced example of such a platform.

Key words: sequence analysis, function prediction, visualization.

1. Introduction

Advances in sequencing technology have taken the number of
sequences available in databases to unprecedented levels. Between
the years 2000 and 2008, the number of sequences in Genbank has
increased almost tenfold (1). Nevertheless, this apparent increase in
the quantity of raw data has not been matched by a corresponding
improvement in the ability to gain insights into the actual biological
functions. Of the more than 6,000 sequences in the yeast Sacchar-
omyces cerevisae which have been available since 1997 (2), there are
still over 1,000 with uncharacterized function (3). In human, the
situation is even worse, with more than half of the genes being
functionally characterized only incompletely or not at all.

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
DOI 10.1007/978-1-60327-241-4_15, ª Humana Press, a part of Springer Science+Business Media, LLC 2010
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The reason for this widening gap is that the classical route to
functional characterization involving experimental methods from
the genetic and biochemical toolbox like specific knock-outs, tar-
geted mutations, and a battery of biochemical assays is laborious,
time consuming, and expensive. There is clearly a need for in silico
methods that can be used for functional hypothesis generation to
direct the subsequent experimental planning in the laboratory.

2. Integrated
Sequence Analytic
Tools

Recent years have seen a large number of new sequence analytic
methods being added to the toolbox of the computational biolo-
gist. They are usually the offspring of an individual research project
but, unfortunately, most of these tools do not have a standardized
interface. Analyzing a particular sequence will, therefore, involve
the invocation of a few command-line tools each of which with its
own set of parameters, input formats, and result presentation.
There are a number of Web-Services that have to be consulted,
some of them requiring registration. Input and result formats are
again not standardized, and it is difficult to further process data
which is presented on an HTML page. The more advanced steps in
sequence analysis typically involve the construction of a multiple
alignment using a combination of an alignment program and a
visual editor.

Putting everything together means handling numerous file
formats, invocation parameters, and in the end sifting through
Megabytes of textual (ASCII-type) information to come up with
a functional characterization. A lot of time is lost converting from
one sequence format to another or organizing result files.

Another concern is the issue of comparing results from differ-
ent methods. As an example, a number of different approaches
have been developed for the prediction of transmembrane regions
(4–7). Having simultaneous access to the results of diverse algo-
rithms can improve the sequence analysts’ confidence in a certain
prediction. Nevertheless, automatically applying rules for integrat-
ing results from various methods is only possible if the original
results have been parsed into a standardized data model.

While the situation is tedious but can still be remedied by
expanding a fair amount of time on an individual sequence, the
process does not scale and it is impossible for a single expert to go
beyond the analysis of a few sequences. In addition, the availability
of sequence data from a wide range of organisms makes evolu-
tionary relationships more traceable since previously ‘‘missing
links’’ can serve as bridges between hitherto unconnected parts
of the sequence universe. However, no researcher can ‘‘build’’
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these bridges manually. Many analysis protocols require the pro-
cessing of an extended workflow with iterative steps (8). They
collect large protein families and involve the repeated invocation
of homology searches (9) as well as filtering for low-complexity
(10) and coiled-coil regions (11). Handling these algorithms
manually is out of the question since large families might require
thousands of individual steps.

There are two basic approaches to automating sequence ana-
lytic tasks. The first one involves the creation of task-specific scripts
with limited scope for reuse while a more advanced form of auto-
mation makes use of integrated frameworks to build complex
workflows.

2.1. Ad Hoc Scripting One step up from manually handling different programs and their
outputs is the use of scripting languages like Perl or Python. These
allow to stitch together individual tools into some form of a work-
flow. The task has been made easier by libraries like bioperl (12,
13) and its corresponding implementation for other programming
languages (14), which encapsulate some fairly common operations
like format conversion or result parsing.

The simplest approach to the development of a sequence
analytic workflow, and the one overwhelmingly taken, is to look
at the requirements of a specific project, define the input data,
write a script that implements a certain heuristic, and output the
results in some form of text file or maybe an HTML page.

This ad hoc approach confers a few undeniable advantages.
First of all, it is fast and speed can be an issue when most of the
sequence data is publicly available, since other researchers might
make the same findings and publish them earlier. Second, scripting
languages can be learned and deployed to a satisfactory degree in a
fraction of the time it takes to grasp the intricacies of programming
languages that allow to build more complicated but robust systems
(Java, C++, Lisp, etc.). Flexibility to fast changing requirements
might also be perceived as being higher, although this often turns
out to be an illusion since it is traded for maintainability in the
medium or long term.

The downside of this quick and dirty way is nevertheless con-
siderable. The probability of having to reinvent the wheel for each
sequence analytic project is quite high. Issues like internal repre-
sentation, persistence, and user-interface have to be addressed over
and over again. The format in which results are finally stored will
also vary from project to project. The most common solution is to
have a collection of flat files linger around in a folder hidden in the
home directory of the researcher, gathering dust after the project
terminated and a paper was published.

This means, a big opportunity for synergy is lost. Methods of
data analysis developed for one project are often interesting in the
context of another one, but the respective scripts might not run on
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the current system setup, the input and output formats are incom-
patible and require complicated transformation steps or in the
worst case, knowledge of the existence of the specific script has
vanished with the departure of a researcher from the group.

The data itself could also be of interest in a new research
context. A specific sequence showing up as the result of a candidate
gene approach might have already formed part of the result of a
search for orthologues run for another project by a different
researcher. Nevertheless, this kind of reuse cannot be achieved
with ad hoc scripts and requires the development of integrated
frameworks.

2.2. Integrated

Frameworks for

Bioinformatic

Workflows

Several strategies exist for the combination of distinct tools and
algorithms into workflows using integrated frameworks. The most
basic approach is to run individual command-line tools and link
the respective inputs and outputs either manually or by writing a
script. The EMBOSS Software Suite (15) is such an example.

Very large genome sequencing and annotation projects tend
to build specialized systems that stitch together individual tools
using a scripting language such as Perl. As an example, the annota-
tion of the Drosophila melanogaster genome (16) was supported by
an integrated computational pipeline (17). The pipeline consists of
a database, a Perl module, and a job-management system. Analysis
to be performed on the data sources is specified in a configuration
file and progress monitored via an interactive command-line Perl
interpreter or a Web front end. The results of the automatic
analysis are presented to the curators, who then generate annota-
tions manually.

GenDB (18) takes the concept a step further. Although it is
still a genome annotation system that sequentially processes
sequence data, there are a few features that set it apart from the
previous two applications. Repetitive tasks can be handed over to
so-called wizards, which are described as software agents that
require complex and synchronized changes to several data objects.
GenDB allows for the integration of arbitrary tools that create
‘‘observations’’ for a specific kind of region. Only a limited set of
data about a specific result is actually stored in the database, with
the rest being recomputed on demand.

A different approach is to design a system that initially serves
no specific task at all, but presents a standardized data model and
interface to the user. Tools are then incorporated by specifying
their input parameters in a configuration file. Pise (19) is an early
representative of such a system. A configuration file describing the
command-line parameters of the available executables is used to
automatically generate a (Web)–user-interface. After running a
program, a menu appears showing all tools that would be able to
operate on the result of the first one. This allows for the manual
execution of a workflow.
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Individual programs still run at the system’s installation site,
though. Soaplab (20) on the other hand goes beyond that by
providing wrappers for command-line programs that allow them
to be installed as Web-Services anywhere on the Internet. Com-
munication between a client consuming the service and the server
is via the standardized SOAP protocol (21). In this way, it is
possible to programmatically build a pipeline with individual pro-
cessing steps taking place on the Internet in a distributed manner.

Taverna (22) uses these Web-Services to build more elaborate
workflows. It hides the complexities of calling the programs
wrapped by Soaplab and chaining their respective inputs and out-
puts by providing a graphical user interface for the composition of
workflows.

The problem of discovering which Web-Services are available
in the first place and what data-types they require for input and in
which format they produce their outputs, still remains though.
BioMOBY (23) tries to remedy this by using a central registry for
Web-Services. Service providers have to adhere to an ontology-
based messaging structure that allows the client and server to
look-up data types in the ontology and interpret and parse them
correctly. This functionality was made available as an extension to
the Taverna software system (24).

Orchestrating a workflow from distributed components
nevertheless carries some serious disadvantages. Connectivity to
the Web-Service can be problematic, as well as reliability of a
service provided by somebody else (the service might even be
discontinued at some point). On top of that, there could be
concerns about sending sensitive data to an external entity. While
simple workflows are well suited for this model, more complicated
ones that include several iterative steps might run into difficulties
regarding performance.

There are a number of software systems that offer workflow
orchestration for components which are not implemented as Web-
Services. Pegasys (25) is a Client-Server application where a ‘‘fat
client’’ provides a graphical user-interface to create a workflow.
The workflow is then sent to the server in an XML-representation,
where it is converted into a directed acyclic graph. The application
traverses the graph and schedules individual analysis on a compute-
cluster, the results of which are then inserted into a relational
database. Adapters are used to export the data for human inter-
pretation or import into other applications.

Wildfire (26) is similar in that it also offers a graphical user-
interface for workflow construction. It uses GEL (Grid Execution
Language) (27) which runs the workflow directly or over the
compute nodes of a cluster.

It remains to be seen if the composition of workflows from
components in a graphical user-interface by nonprogrammers will
be used extensively. It might be feasible to realize simple pipelines
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in this way, but the implementation of sophisticated heuristics
requiring access to internal data structures or performance opti-
mization by multithreading is more likely to remain encapsulated
in a plugin-style manner, offering all the advantages of a general
purpose programming language.

3. The ANNOTATOR,
an Example of an
Integrated
Sequence Analytic
Tool

The ANNOTATOR software environment, which is being actively
developed at the Bioinformatics Institute, A*Star (http://
www.annotator.org), implements many of the features discussed
above. Biological objects are represented in a unified data model
and long-term persistence in a relational database is supplied by an
object-relational mapping layer (see Fig. 15.1). Data to be ana-
lyzed can be provided in different formats ranging from Web-
based forms, FASTA formatted flat files to remote import over a
SOAP interface.

3.1. Algorithm

Integration

Currently over 30 external sequence analytic algorithms are inte-
grated using a plugin-style mechanism (see Fig. 15.2) and can be
applied to uploaded sets of sequences. The display of applicable
algorithms is such that it closely follows the standard procedure for
segment based sequence analysis, which is based on the assump-
tion that proteins are chains of functional units that can be ana-
lyzed independently with the overall function of the protein arising
from the synthesis of the functions predicted for each individual
module (28). The initial steps are aimed at finding (i) nonglobular
regions and (ii) known globular domains. Available algorithms
range among others from methods for identifying regions without
intrinsically preferred structure or of low sequence complexity

Fig. 15.1. Architecture of the ANNOTATOR software environment.
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(29–31), sites of posttranslational modifications (32–37), target-
ing signals (7, 38), short sequence motif and globular domain
pattern searches (39–44) to tools for detecting homology relation-
ships (9, 45).

The last step of segment-based sequence analysis involves the
identification of distantly related homologues to query sequence
segments that remain without match in the preceding two analysis
steps. While tools like PSI-BLAST (9) exist that provide a standard
form of iterative family collection, it is often necessary to imple-
ment a more sophisticated heuristic to detect weaker links
throughout the sequence space. The implementation of such a
heuristic might require, among other tasks, the spawning of
numerous external algorithms, the manipulation of alignments as
well as the persistence of intermediate results.

It should be obvious that the mechanism of wrapping an exter-
nal algorithm will not be sufficient in this case. While the logic of the
heuristic could be implemented externally, it would still need access
to internal data objects, as well as the ability to submit jobs to a
compute-cluster. For this reason, an extension mechanism for the
ANNOTATOR was devised which allows for the integration of
algorithms that need access to internal mechanisms and data.

A typical example for using this extension mechanism to
implement a sophisticated search heuristic is the FAMILY-
SEARCHER, an integrated algorithm that is used to uncover
homology relationships within large superfamilies of protein
sequences. Applying this algorithm, the evolutionary relationship
between classical mammalian lipases and the human adipose tri-
glyceride lipase (ATGL) was established (8).

For large families, the amount of data produced when starting
with one particular sequence as a seed can easily cross the Terabyte
barrier. At the same time, the iterative procedure will spawn the
execution of tens of thousands of individual homology searches. It
is clearly necessary to have access to a cluster of compute nodes for

Fig. 15.2. Plugin mechanism for integrating external algorithms.
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the heuristic and to have sophisticated software tools for the
analysis of the vast output to terminate the task in a reasonable
timeframe.

3.2. Visualization The visualization of results is an important aspect of a sequence
analysis system because it allows an expert to gain an immediate
condensed overview of possible functional assignments. The
ANNOTATOR offers specific visualizers both at the individual
sequence as well as at the set level.

The visualizer for an individual sequence projects all regions
that have been found to be functionally relevant onto the original
sequence. The regions are grouped into panes and color-coded
which makes it easy to spot consensus among a number of pre-
dictors for the same kind of feature (e.g., transmembrane regions).
Zooming capabilities as well as rulers facilitate the exact localiza-
tion of relevant amino acids.

The ability to analyze potentially large sets of sequences marks
a qualitative step up from the focus on individual proteins. Alter-
native views of sets of proteins make it possible to find features that
are conspicuously more frequent pointing to some interesting
property of the sequence set in question. The histogram view in
the ANNOTATOR is an example of such a view. It displays a
diagram where individual features (e.g., domains) are ordered by
their abundance within a set of sequences.

Another example is the taxonomy view. It shows the taxonomic
distribution of sequences within a particular sequence set. It is then
possible to apply certain operators that will extract a portion of the
set that corresponds to a branch of the taxonomic tree which can
then be further analyzed. One has to keep in mind that a set of
sequences is not only created when a user uploads one but also
when a particular result returns more than one sequence. Align-
ments from homology searches are treated in a similar manner and
the same operators can be applied to them.

4. Conclusions

The enormous amount of sequence data available to biomolecular
researchers makes the development of applications that can orga-
nize and detect patterns that relate sequences and functions an
absolute necessity. At the same time, algorithms for predicting a
particular function or uncovering distant evolutionary relation-
ships (which ultimately allows transferring functional annotations)
have become ever more demanding on resources. The output as
well as intermediate results can no longer be assessed or reused
manually and require sophisticated integrated frameworks.
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The ANNOTATOR software provides crucial support for
these tasks by supplying an infrastructure capable of applying a
large array of sequence analytic methods to protein sequences,
presenting the user with a condensed overview of possible func-
tional assignments and, at the same time, allowing drill down to
raw data from intermediate results for validation purposes.
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Chapter 16

Computational Methods for Ab Initio and Comparative
Gene Finding

Ernesto Picardi and Graziano Pesole

Abstract

High-throughput DNA sequencing is increasing the amount of public complete genomes even though a
precise gene catalogue for each organism is not yet available. In this context, computational gene finders
play a key role in producing a first and cost-effective annotation. Nowadays a compilation of gene
prediction tools has been made available to the scientific community and, despite the high number, they
can be divided into two main categories: (1) ab initio and (2) evidence based. In the following, we will
provide an overview of main methodologies to predict correct exon–intron structures of eukaryotic genes
falling in such categories. We will take into account also new strategies that commonly refine ab initio
predictions employing comparative genomics or other evidence such as expression data. Finally, we will
briefly introduce metrics to in house evaluation of gene predictions in terms of sensitivity and specificity at
nucleotide, exon, and gene levels as well.

Key words: gene prediction, gene finder, ab initio prediction, hidden Markov models, similarity
searches, expression data, gene prediction accuracy.

1. Introduction

Technological improvements in high-throughput DNA sequencing
are tremendously increasing the public availability of prokaryotic
and eukaryotic genomes. Model organisms have been sequenced in
both the plant and animal kingdoms and numerous new genomic
sequences are daily added to the main primary databases. This
growing amount of nucleotide sequence data requires also a con-
current development of adequate bioinformatics tools for a com-
prehensive understanding of the genetic information they encode as
well as of their underlying biology. The genome sequence is in fact
generally indicated a blueprint of an organism but deciphering all
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instructions needed to express all typical biological traits is not a
trivial issue. The complete sequence of the human genome, for
instance, is freely available since the year 2001, but the entire set
of encoded genes is not yet known with precision (1, 2). Computa-
tional gene finding, thus, represents a fertile field to develop ever
better and more accurate tools and pipelines to get automatic
annotation of uncharacterized DNA sequences.

Automatic gene prediction, however, raises the enigmatic
question of what a gene in reality is. Insights from the human
ENCODE project strongly support a new idea of gene that is far
from being simply a genomic region coding a functional polypep-
tide (3, 4). Alternative splicing, noncoding RNAs involved in
posttranscriptional and translational regulation and chimeric tran-
scripts are only few examples explaining how our gene view is
changing (5). Nevertheless, performing computational gene pre-
diction needs the formulation of a practical even though limited
definition of gene. Computational methods are in fact projected to
execute commands according to specific statements, schemes, and
rules and, thus, given a genomic sequence it is basic to have a clear
idea of what to search for. Practically, an eukaryotic gene can be
defined as a transcribed DNA region composed of exons and
introns whose expression is regulated by cis-acting elements such
as promoters mostly located upstream of the gene and other
regulatory elements (e.g., enhancers) located also very far away
form the transcription start site (TSS). Furthermore, specific
sequences recognized by the splicing machinery are generally
found between introns and exons, and inside introns.

After the transcription, the corresponding primary messenger
is further processed by removing intronic regions and leading to
the mature mRNA in which the coding region is flanked upstream
and downstream from untranslated regions, 50-UTR and 30-UTR,
respectively.

In this context, a gene prediction program works scanning an
unknown genomic sequence to identify exact boundaries of many
different signals common to most eukaryotic protein coding genes
with the aim to automatically reconstruct a complete and reliable
gene structure.

Although regions upstream and downstream of the protein
coding genes can be very important for gene regulation, the lack of
common sequence motifs likely make these regions refractory to
prediction by current algorithms. It is well known that enhancers
and silencers often lie many kilobases away from the gene TSS and
are frequently not well conserved and sometimes cryptic. Conse-
quently, most of gene prediction programs focus solely on identi-
fying the protein coding regions of a gene. For this reason, in the
following, we will provide an overview on the main approaches and
systems for the identification of protein-coding eukaryotic genes,
illustrating also their specific strength and weakness aspects.
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Over the last 15 years and as new genome sequences are made
available to the scientific community, several computational systems
devoted to solve the hard task of predicting coding genes in eukar-
yotic genomes have been proposed (a comprehensive list is depicted
in Table 16.1). In general, such automatic gene prediction systems

Table 16.1
A compilation of widespread ab initio and evidence-based gene prediction
programs

Program Web page Evidence Reference

GENSCAN http://genes.mit.edu/GENSCAN.html No (16)

GENEID http://www1.imim.es/geneid.html No (18)

SNAP http://homepage.mac.com/iankorf/ No (6)

GlimmerHMM http://www.cbcb.umd.edu/software/
GlimmerHMM/

No (19)

GeneMark http://exon.gatech.edu/GeneMark/
eukhmm.cgi

No (17)

AUGUSTUS http://augustus.gobics.de/ ESTs, cDNAs, and
proteins

(26, 52)

SGP2 http://genome.imim.es/software/sgp2/
sgp2.html

TBLASTX hits (48)

GENOMESCAN http://genes.mit.edu/genomescan.html BLASTX hits (50)

TWINSCAN http://mblab.wustl.edu/nscan/submit/ BLASTN hits and
ESTs

(49)

GENOMINER http://bl209.caspur.it/Gminer/ Complete
genomes

(33)

ENSEMBL http://www.ensembl.org/ ESTs, cDNAs, and
proteins

(55)

N-SCAN http://mblab.wustl.edu/nscan/submit/ ESTs, complete
genomes

(8, 51)

EXOGEAN http://www.biologie.ens.fr/dyogen/
spip.php?rubrique4&lang=en

ESTs, cDNAs, and
proteins

(43)

GENEWISE http://www.ebi.ac.uk/Wise2/index.html Proteins (45)

ASPIC http://t.caspur.it/ASPIC/ ESTs and cDNAs (41, 42)

Eugène http://www.inra.fr/mia/T/EuGene/ ESTs, cDNAs, and
proteins

(20)

GAZE http://www.sanger.ac.uk/Software/
analysis/GAZE/

All available + ab
initio

(59)

JIGSAW http://www.cbcb.umd.edu/software/
jigsaw/

All available + ab
initio

(60)
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can be divided into two main categories: (1) ab initio (or intrinsic)
and (2) evidence-based (or extrinsic). Ab initio methods deal strictly
with genomic sequences and make use of statistical approaches to
search for coding regions and typical gene signals. In contrast,
evidence-based methods, sometimes called also homology meth-
ods, attempt to find out genes using either similarity search proce-
dures in the main databases or experimental data including
expressed sequence tags (ESTs), full-length complementary DNAs
(cDNAs), and even data from microarray hybridization experi-
ments. Although evidence-based and ab initio methods can work
independently, more accurate gene predictions have been obtained
combining both the approaches. Ab initio computational tools in
fact tend to over-predict coding exons misplacing start and stop
codons. On the other hand, evidence-based tools fail in all cases in
which genes are not experimentally supported or when no similarity
can be found in the public databases.

Recently, a new category of gene predictors, defined some-
times consensus, has been described. Systems falling in such cate-
gory take as input ab initio predictions from different gene finding
programs, similarity search results, expression data (ESTs, cDNAs,
and proteins) and combine all together in order to obtain a final
consensus gene structure.

Anyway, researchers involved in genome annotation should
beware of using gene prediction programs since they may not fit
their expectations. Ab initio gene finders, for instance, predict
poorly without adequate training sets or do not perform optimally
in a foreign genome (6). Sometimes gene prediction tools do not
correctly work with protein similarities against evolutionary distant
organisms, and the use of cDNAs or ESTs from other species
generally leads to inaccurate splice site and exon predictions (7, 8).

2. Methods

2.1. Ab Initio Gene

Finding
After the completion of the primary sequence of a genome, the
simplest and cost-effective approach is to carry out a genome-wide
ab initio gene finding to annotate a complete set of exon–intron
structures and infer all the potentially encoded proteins. Such
programs in fact do not require experimental evidences or a priori
knowledge of a specific genomic portion. They go through an
uncharacterized DNA sequence searching for signals (such as
start and stop codons, splice sites, polyadenylation sites, branch
points) and features of coding regions, subsequently used to
assemble a final gene structure.

Historically, the first ab initio gene finders were defined for
prokaryotic genomes. The high gene density of these genomes

272 Picardi and Pesole



with the simpler and unbroken gene structure allowed the identi-
fication of two main regions, those coding for proteins (and thus
translated) and those intergenic noncoding. Consequently, the
issue of gene prediction was firstly limited in discerning coding
from noncoding and sometimes open reading frames (ORFs) were
simply identified looking for long genomic sequences (at least
300 bp) starting with the ATG codon and ending with a termina-
tion codon (TGA, TAA, TAG). However, it was not unlikely to
find quite long unfunctional ORFs, especially in the antisense
strand of the expressed ORFs (9).

Actually, different statistical approaches taking into account
the codon usage or the nucleotide composition improved to glo-
bal identification of coding regions (10, 11). Moreover, potential
protein coding sequences show a period-3 bias due to the codon
structure that can be modeled by appropriate mathematical tech-
niques such as Fourier Transformation (12) or wavelets (13, 14).
Recently, a new statistical approach based on Z-curve has also been
proposed and described (15).

Although statistics methods revealed very useful in the case of
microbial genomes, they are clearly inadequate to predict eukar-
yotic coding genes because of their more complex structures con-
sisting of discontinuous genomic regions where short coding
exons are joined together by noncoding and frequently very long
introns. Many recent programs such as GENSCAN (16), Gene-
Mark (17), or GeneID (18) distinguish coding from noncoding
regions of eukaryotic genomes by means of an alternative coding
measure based on hexanucleotide usage. Generally, six-mer dis-
tribution can be modeled through well-defined stochastic pro-
cesses known as Markov chains in which the probability to
observe a given nucleotide (A, C, G, or T) at a specific position
depends only on the previous k nucleotides (where k is also indi-
cated as the order of the Markov chain). For this reason, a Markov
chain model enables the capturing of local dependencies between
adjacent nucleotides in function of its order. From a practical point
of view, for instance, a Markov model of the fifth order reflects the
peculiar hexamer distribution. Since each element of a Markov
model is a probability value, its estimation from real data sets
depends on the number of available coding and noncoding
sequences of the training sets. Although a higher order Markov
chain may lead to a more accurate prediction, it generally requires a
larger training set. The majority of currently used ab initio gene
predictors including GENSCAN (16), GeneMark (17), or Gen-
eID (18) discriminate coding from noncoding regions using Mar-
kov chains of order four or five. GENSCAN (16) and GeneMark
(17) also adopt a more complex three-periodic Markov model in
which single Markov models are used for each nucleotide of a
codon. A different strategy is used by the program GlimmerHMM
(19) in which different Markov models of order ranging from 0 to
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k (k up to 8) are interpolated. The resulting interpolated Markov
model (IMM), implemented also in Eugène (20) program, proved
to overcome mistakes due to narrow training sets (21).

Unfortunately, Markov models alone are not able to correctly
predict entire eukaryotic protein coding genes. They fail every time
a short coding exon is encountered and the main reason of this
failure is due to the low number of nucleotides that significantly
reduces the power of whatever statistical method. Moreover, Mar-
kov models do not make assumptions about exon–intron borders
as well as other characterized gene signals. Exons are in fact
chained with introns and roughly 99% of exon–intron boundaries
are functionally conserved (50 GT-AG 30) to allow the removal of
introns by the posttranscriptional splicing mechanism. Splice sites
(donors and acceptors), start and stop codons, intronic branch
points, or polyadenylation sites are currently ab initio predicted
by position weight matrices (PWMs) or related approaches. A
PWM is simply a reference matrix to score each possible base at
every position within a potential signal. Specific PWMs, graphically
depicted as sequence logos, can be calculated on every gene signal
from a large collection of genes. Matrices for splice donors, for
instance, typically consider the three terminal nucleotides of an
exon and the six starting nucleotides of the following intron,
whereas matrices for splice acceptors generally take into account
the last six nucleotides of an intron and the three first nucleotides
of the following exon and sometimes include also the poly-pyr-
imidine tract (commonly found 15–30 nucleotides upstream the
30 end of intron). Besides PWMs, more complex matrices such as
weight array matrices (WAMs) are frequently implemented in
modern gene finding tools in order to capture dependencies
between adjacent positions.

Independent predictions of signal and coding regions nor-
mally yield a high number of false positives. Such a number is
dramatically reduced combining signals and coding predictions.
In this context, the program GeneID (18) is undoubtedly the best
example. It is in fact designed following a simple hierarchical
structure. First, eukaryotic gene signals (start and stop codons,
splicing sites) are predicted and scored along an unknown genomic
sequence using PWMs or WAMs. Subsequently, coding exons
compatible with previously detected signals are assembled and
assigned to one of the four categories: single, initial, internal,
and terminal. Single exons begin with a start codon and end with
stop codon; initial exons begin with a start codon and end with a
donor site; internal exons begin with an acceptor site and end with
a donor site; and terminal exons begin with an acceptor site and
end with a termination codon. A specific score is also assigned to
each exon and calculated as the sum of the scores of the defined
signals plus the log-likelihood ratio for coding DNA according to a
Markov model of order four or five. Finally, from the set of
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predicted exons, the gene structure maximizing the sum of the
score of its exons is assembled using a dynamic programming
algorithm. GeneID in fact was the first gene predictor implement-
ing an appropriate module (named GenAmic) to reconstruct full
gene structures in linear time according to specific rules such as
frame compatibility, exon order (an internal after an initial but
never after a terminal), or simple gene and genomic structure
requirements (a minimum intron length or a minimum intergenic
distance) (22).

Although geneID is quite efficient in predicting eukaryotic
genes, its accuracy is sometimes lower than the accuracy obtained
using the new generation of ab initio gene finders based on hidden
Markov models (HMMs) (23). HMMs are powerful statistical
techniques firstly developed in the field of linguistics research,
but they revealed highly useful also in many biological problems.
They are currently used for finding periodicities and motifs in
DNA, for producing reliable multiple alignments, or for predict-
ing protein domains and secondary structures.

In the gene prediction context, an HMM can be thought as a
stochastic process consisting of a discrete set of states (in which
some of the details are unknown or hidden) and a set of transition
probabilities to move from a state to another. Each state is a feature
of the eukaryotic gene and while the HMM is in any particular
state, it emits nucleotides which are visible and have got the same
statistical properties of that state. Since the output of a regular
HMM exhibits a length of one for each state within the hidden
state space, the more complex generalized hidden Markov model
(GHMM) has been developed. In this case, each state is a gene
feature of arbitrary length such as exons, introns, splice sites, and
poly-adenylation sites. Gene prediction programs including the
very popular GENSCAN (16), Genie (24), HMMgene (25),
SNAP (6), GlimmerHMM (19), and AUGUSTUS (26) model
genomic sequences via a GHMM approach. Each program exhi-
bits a specific state diagram even though all programs use the well-
known Viterbi algorithm to produce a reliable gene architecture.
This algorithm works like a directed acyclic graph where nodes are
the sequences emitted by the GHMM.

Ab initio gene prediction systems as those previously cited are
valuable in annotating newly sequenced genomes. Sometimes,
they represent the only available approach to predict coding
genes in genomic regions not yet supported by experimental evi-
dence. However, since they are based on HMM or GHMM, all
parameters of the model are probabilities that have to be inferred
through an accurate training procedure. Occasionally, newly
sequenced genomes may lack large enough samples of known
genes from which to estimate model parameters. Consequently,
they lead to incorrect gene predictions and a lot of false positives.
At the same time, also predictions performed using ab initio gene
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finders trained on another organism result generally unsuccessful.
From a phylogenetic point of view, in fact, two organisms may be
strongly related without sharing the same genomic features such as
gene density, codon usage, or nucleotide composition. Recently,
however, the idea of bootstrap parameter estimation has been
introduced (6). According to this idea, a foreign gene finder is
run on a novel genome and the resulting predictions are used to
estimate the parameters for gene prediction for the novel genome
(6). Anyway, it should be underlined that ab initio gene finders
could work suboptimally every time the characteristics of a given
genomic sequence do not fit those sampled in the training set.

2.2. Evidence-Based

Gene Finding

In contrast with ab initio methods, gene prediction systems based
on external evidences aim to identify gene structures using simi-
larity search results and expression data (ESTs, cDNAs, and pro-
teins). Generally, methods relying on evidence make use of a
statistically significant similarity between an unknown genomic
sequence and a protein or DNA sequence present in a database
in order to determine transcribed and/or coding regions. Cur-
rently, the best approaches to detect similarities between
sequences are based on local alignment methods either optimal
such as Smith-Waterman algorithm (27) or heuristic as implemen-
ted in BLAST, FASTA, and BLAT (28–31) programs.

It has been estimated that almost 50% of the genes in a novel
genome can be identified thanks to a sufficient similarity score with
sequences stored in the main databases. However, even when
good similarities are found, they do not ensure the accurate pre-
diction of exact gene architectures such as the correct exon–intron
boundaries. A part of predicted exons may be only partially identi-
fied. Nevertheless, the exponential growth of primary sequence
databases makes similarity searches the key methodology to dis-
criminate coding from noncoding regions. Over the last years, a
huge compilation of approaches devoted to address this task has
been proposed, including CRITICA (32) and GenoMiner (33). In
particular, the latter bioinformatic tool is able to identify conserved
sequence tags (CSTs) through the comparison of an unknown
genomic region and one or more of the available complete gen-
omes. The assessment of the coding or noncoding nature of each
CST is performed through the computation of a coding potential
score (CPS) based on the evaluation of the peculiar evolutionary
dynamics of protein coding sequences at both the nucleotide and
amino acid levels (33, 34).

Despite the usefulness of similarity search against protein and
nucleic acid databases, all available software in this field suffers in
predicting main gene signals. In many cases, some splice sites or
small exons are completely missed. Such limitations of similarity-
based tools have been actually accommodated in a new family of
programs developed to optimally handle expression data. Full-length
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cDNAs and ESTs, in fact, represent a tremendous source of
evidence to identify exon–intron boundaries and complete gene
structures. Programs as SIM4 (35), Spidey (36), GeneSeqer (37,
38), GMAP (39), and EST_Genome (40) have been recently
released to perform a progressive alignment (sometimes also a
mapping) of a genomic sequence against a cDNA database. The
predominant strategy adopted is to align onto a genomic sequence
one cDNA or EST sequence at a time using approximate algo-
rithms and relaxing gap extension penalties to accommodate long
introns. A part of these programs introduces also scoring schemes
to improve the detection of exon–intron boundaries. However,
many difficulties arise when a cDNA sequence differs from its
corresponding genomic exons, due to polymorphisms, mutations,
or sequencing errors. Sequencing errors in ESTs may be particu-
larly misleading when they fall near exon–exon junctions, thus
complicating the detection of correct splice sites. A way to reduce
the errors due to the misalignments of expressed sequences is to
perform a multiple EST sequence comparison and alignment
against the genomic sequence. A method working in this direction
has been implemented in the program ASPIC (41, 42). According
to this algorithm, each EST or cDNA of a given cluster is split in a
set of factors or pseudo-exons aligned onto the genomic sequence.
Since repeats and short exons in the genomic sequence may pro-
duce ambiguous alignments (each factor may align in a number of
equally probable ways), the correct exon–intron structure is
obtained combining common pseudo-exons from different ESTs
or cDNAs. In this methodology, the detection of canonical and
noncanonical splice sites has been improved refining the exon–
intron boundaries by a dynamic programming procedure. More-
over, compared to other available software, ASPIC exploits EST to
genome multialignments to infer potential alternative transcripts
through an ad hoc directed acyclic graph (41).

Differently from ASPIC, the recently introduced program
Exogean (43) attempts to reconstruct exon–intron structures by
aligning ESTs and cDNAs onto a genomic sequence using BLAT.
After the alignment, different steps of directed acyclic graphs are
followed to assemble complete gene structures and potential alter-
native splicing transcripts (43). Of course, Exogean and ASPIC are
expected to fail in all cases in which ESTs cannot cover entire gene
regions. However, Exogean should be more prone to errors since
its alignments rely on BLAT that does not introduce specific
corrections for ambiguously aligned splice sites. Anyway, BLAT
ensures also the mapping and alignment of protein sequences even
though this task has been specifically addressed in other programs
such as Procrustes and GeneWise (44, 45). In particular, they work
by cutting a query genomic sequence in all potential exons bor-
dered by acceptor and donor sites and then build a full gene
structure using the exons compatible with a given protein
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sequence. However, inferences about not translated regions (50

and 30 UTRs) and noncoding exons or introns in these regions are
generally precluded. Moreover, the accuracy of recovered gene
structures is strongly related with the detected protein similarities
(7). Therefore, it is expected that a higher protein similarity leads
to a better gene prediction accuracy.

2.3. Combining Ab

Initio and Evidence-

Based Methods

Currently, many researchers tend to use independently ab initio
and evidence-based methods, but more accurate and reliable gene
predictions can be obtained combining both systems. The pro-
grams Doublescan (46) and SLAM (47), for instance, rely on
sophisticated models of coding and noncoding DNA and splice
signals, in addition to measures of sequence similarity. SLAM and
Doublescan combine an optimal sequence alignment generated by
Pair Hidden Markov Models (PHMMs) and modeling of the
eukaryotic gene features adopting the so-called Generalized Pair
HMMs (GPHMMs). In these methods, gene prediction and
sequence alignment are obtained simultaneously.

A different class of programs adopt, instead, a more heuristic
approach, and separate ab initio gene prediction from sequence
similarity. In SGP2 (48), a query genomic sequence is contrasted
against a known genome, sometimes called informant genome,
using TBALSTX. Subsequently, high-scoring segment pairs
(HSPs) are considered to increase the score of geneID predicted
exons. In this way, exons predicted ab initio with low score but
supported by sequence similarity can be included in the final gene
model (48). A similar approach has been also implemented in the
program TWINSCAN (49). In this case, however, HSPs obtained
by a BLASTN search against an informant genome are converted
into a representation called ‘‘conservation sequence.’’ To each
representation is then assigned a conservation probability used to
modify the state probabilities of the GENSCAN model (49). This
approach is reminiscent of that used in GENOMESCAN (50) to
incorporate similarity to known proteins (via BLASTX) to modify
the GENSCAN scoring scheme. In the more complex NSCAN
(51) system, instead, the GENSCAN performance is improved by
using the pattern of conservation from multiple informant gen-
omes. Other existing programs such as AUGUSTUS-dual (52) or
DOGFISH (53) work in a similar way.

All gene predictors based on sequence similarity harbor a
theoretical advantage since they are not species-specific. In prac-
tice, however, the performance of these methods strongly depends
on the evolutionary distance between compared sequences. Very
large or very small distances, in fact, may prevent any significant
improvement over ab initio systems. Moreover, the use of simila-
rities from distantly related organisms could drive to inaccurate
splice site predictions. A part of these limitations has been actually
solved including the information from EST and cDNA
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alignments. Significant improvements in gene prediction accuracy
have been registered with TWINSCAN_EST (54), NSCAN_EST
(8), and AUGUSTUS-EST (52) in which the predictions based on
similarity searches are refined employing ESTs aligned to a query
genomic sequence.

Besides methods previously described, a number of more or
less complex pipelines have been also developed. ENSEMBL is of
course one of the most important examples (55). In this pipeline,
the automatic gene prediction is based on genomic information
coming from four different sources: proteins and mRNAs from the
corresponding species, proteins and mRNAs from other species,
ESTs, and ab initio gene predictions supported by experimental
data. A specific set of analysis tools is then used to handle with
these different data sources. For example, protein similarities are
considered by GeneWise, and cDNA and EST alignments by
EST_Genome and Exonerate (56), where ab initio predictions
are generated by GENSCAN. When ESTs and cDNAs data are
sufficient, ENSEMBL is also able to predict alternative transcripts
using the program ESTGenes (57) based on a directed acyclic
graph.

The Pairagon + NSCAN-EST pipeline predicts eukaryotic
coding genes in two steps. At the beginning, the Pairagon pro-
gram based on PairHMM probability model is used to align native
full-length cDNA against a query genomic sequence in order to
produce a first set of reliable gene structures. Then, NSCAN_EST
is applied to the remaining genomic regions of the query not
covered by cDNAs leading to a second set of gene predictions.

Recently, a new pipeline called CEGMA (58) has been also
proposed to provide an initial and reliable catalog of genes for newly
sequenced genomes in absence of experimental data. In this case,
conserved protein families occurring in a wide range of eukaryotes
are mapped onto a novel genomic sequence in order to accurately
identify the corresponding exon–intron structures. The core of the
CEGMA pipeline includes the use of profile-HMMs.

Every time a novel genome is completely sequenced, the auto-
matic annotation is a natural consequence. Given the high number
of available gene predictors, however, selecting an appropriate tool
is not a trivial issue. A common workflow is to produce a first
annotation by ab initio gene predictors and then refine gene
structures supported by experimental evidence. In the last part of
the annotation, also computational systems-defined consensus or
combiners can be used to generate more reliable gene structures.
Examples of combiners are the programs GAZE or Jigsaw
(59, 60). In practice, different sets of predictions are initially
produced using a variety of gene finders either ab initio or evidence
based. All inferred gene structures are then combined in a final set
of nonredundant genes using algorithms based on dynamic pro-
gramming (GAZE) or decision trees (Jigsaw). In case of Jigsaw, a
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weight is assigned to each gene finder through a training proce-
dure. However, prudence is always required in using these systems,
since the inclusion of inconsistent data or gene models could lead
to unsuccessful predictions.

2.4. Measuring Gene

Finding Accuracy

Before the application of any prediction system or pipeline, it is
good practice to test their accuracy on well-controlled benchmark
data sets in order to choose the most appropriate system. To
evaluate the accuracy of a gene prediction program, the gene
structure predicted by the program is compared with the structure
of the actual gene encoded in the sequence. The accuracy can be
evaluated at different levels of resolution. Typically, these are the
nucleotide, exon, and gene levels. These three levels offer com-
plementary views of the accuracy of the program. At each level,
there are two basic measures: sensitivity and specificity. Briefly,
sensitivity (Sn) is the proportion of real elements (coding nucleo-
tides, exons, or genes) that have been correctly predicted, while
specificity (Sp) is the proportion of predicted elements that are
correct. According to Burset and Guigò (61), Sn is defined as

Sn ¼ TP

TPþ FN

and Sp as

Sn ¼ TP

TPþ FP

where TP is the total number of coding elements correctly pre-
dicted, TN the number of correctly predicted noncoding elements,
FP the number of noncoding elements predicted as coding, and FN
the number of coding elements predicted as noncoding.

Both Sn and Sp take values from 0 to 1, and approach to 1 in a
successful prediction. In cases where Sn is high but Sp is low, a
gene over-prediction should be expected. On the other hand, if Sn
is low while Sp is high, the prediction is overlay conservative and
may miss a large number of genes.

However, neither Sn nor Sp alone constitutes good measures
of global accuracy, since high sensitivity can be reached with low
specificity and vice versa. For this reason, it is desirable in practice
to use a single measure for accuracy. Generally in gene finding
literature, it is defined as the average between Sn and Sp.

Recently, dedicated software has been developed to calculate
main accuracy measures taking into account also alternative spli-
cing. In this last case, all predicted gene models are compared to all
annotated genes, and suitable Sn and Sp at transcript level are
calculated.

The gene accuracy metrics are strongly related to the bench-
mark data set. Therefore, the choice of an appropriate reference set
is a crucial step in the setup of a gene finding system. Current
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Fig. 16.1. Evaluation of gene predictions for gene finders falling into different categories. AUGUSTUS, GENEID, and
GENSCAN work ab initio, TWINSCAN employs similarity from a related genome, ENSEMBL and EXOGEAN include
expression data, and finally JIGSAW combines all available evidence. Sensitivity, specificity, and accuracy values are
referred to human ENCODE regions according to the EGASP project (62). Abbreviations in the legends are as follow. NSn,
ESn, and GSn stay for nucleotide, exon, and gene sensitivity. NSp, ESp, and GSp stay for nucleotide, exon, and gene
specificity.
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accuracy measures, in fact, have some limitation since predictions
are generally tested on data sets made of short genomic sequences
encoding a single gene with a simple gene structure. More reliable
data sets, instead, should be a representative of the genome under
study. The 44 genomic regions from ENCODE project spanning
the 1% of the human genome are undoubtedly the best example of
reference set (3). Since these regions have been manually anno-
tated, they represent an optimal playground for assessing the
accuracy of computational methods to predict eukaryotic genes.
In this regard, the performance of different gene prediction tools
has been evaluated through the EGASP project (62). Results from
this assessment strongly indicate that programs using expression
data outperform those ab initio or based on comparative genomics
(Fig. 16.1). However, accurate results are also obtained combin-
ing pure ab initio gene predictions with available evidence (62) (see
Fig. 16.1).
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Biodiversità Molecolare (Ministero dell’Università e della
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Chapter 17

Sequence and Structure Analysis of Noncoding RNAs

Stefan Washietl

Abstract

Noncoding RNAs (ncRNAs) are increasingly recognized as important functional molecules in the cell.
Here we give a short overview of fundamental computational techniques to analyze ncRNAs that can help
us better understand their function. Topics covered include prediction of secondary structure from the
primary sequence, prediction of consensus structures for homologous sequences, search for homologous
sequences in databases using sequence and structure comparisons, annotation of tRNAs, rRNAs, snoR-
NAs, and microRNAs, de novo prediction of novel ncRNAs, and prediction of RNA/RNA interactions
including miRNA target prediction.

Key words: noncoding RNAs, RNA secondary-structure prediction, homology search, gene
prediction, snoRNAs, microRNAs, tRNAs, rRNAs.

1. Introduction

In the past few years, it has become evident that noncoding RNAs
are much more abundant than previously thought. It is now widely
acknowledged that ncRNAs are key players in the cell with impor-
tant biological functions (1).

ncRNAs are a surprisingly inhomogeneous class of molecules.
They can vary considerably in size, ranging from very short 22nt
long micro RNAs (miRNAs) to polyadenlyated mRNA-like
ncRNAs that can be many kilobases long. They also have diverse
molecular functions. They can target other molecules by sequence-
specific RNA/RNA interactions like small nucleolar RNAs (snoR-
NAs) or miRNAs, they can be important structural components of
large protein complexes like the RNA component of the signal
recognition particle, or they can even have enzymatic function
themselves as, for example, RNAseP or the spliceosomal RNAs.

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
DOI 10.1007/978-1-60327-241-4_17, ª Humana Press, a part of Springer Science+Business Media, LLC 2010
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In this chapter, we present a selection of important computa-
tional methods to analyze ncRNAs. Figure 17.1 shows an over-
view of the concepts and programs used.

Secondary structure is a central key to understand ncRNA
function. In the first part of this chapter (Section 3.2), we address
the problem of predicting accurate secondary structure models
from the primary sequence.

The prediction of novel ncRNA genes in genomic data is still a
difficult problem. However, there has been recent progress and we
present ncRNA gene-finding strategies in the second part of this
chapter (Section 3.3).

The rest of the chapter presents techniques to classify and/or
functionally annotate ncRNAs. These techniques can be used to
annotate full genomes or analyze experimentally identified and/or
computationally predicted ncRNAs. Topics covered are generic
sequence/structure homology search (Section 3.4), specific clas-
sification algorithms for well-known ncRNA classes (Section 3.5),
and prediction of possible target interactions (Section 3).

Fig. 17.1. Overview of the concepts and programs covered in this chapter.
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The goal of this chapter is to give an overview of the most
important techniques and demonstrate the use of current state-of-
the art programs. Due to space restrictions, we can only show the
most basic usage of these programs and have had to leave out some
programs altogether. Whenever possible, we try to give pointers to
advanced analysis techniques and sources of information to enable
the interested reader to delve more deeply into the subject.

1.1. Typographical

Conventions

Lines starting with a ‘‘#’’ are commands and you should type them
into your terminal window, followed by pressing return. The ‘‘#’’
sign stands for your command line prompt and may look different
on your system. If a command is too long for one line in this book,
it is separated by a backslash ‘‘\’’ and continues on the next line.
You do not have to input the backslash, you can simply type the
command on one line.

2. Materials

2.1. Hardware All examples shown in this chapter can be run on a modern desk-
top or laptop computer in reasonable time. However, in a real-life
scenario it is likely that more complex data sets are analyzed which
would require more processing power, e.g., in the form of a
computing cluster.

2.2. Software We recommend using the Linux operating system. Alternatively, it is
possible to use Mac OS X or any other UNIX like system. Some
programs might also run under Microsoft Windows. However, instal-
lation and usage under Windows is generally more complicated and
not covered here. Most of the analysis can also be carried out using
public Web-servers. In this case, only a Web-browser is necessary.

Table 17.1 shows the software necessary to complete the
examples in this chapter. All programs are freely available on the
Web. The version numbers are the latest as of February 2008.
Most of the programs can either be run locally or through a
Web-server. Depending on the demands and knowledge of the
user, either way might be preferable. Only QRNA and INFER-
NAL strictly require installation as there is no Web-server available.
Pfold, on the other hand, is only available through the Web-server.

2.3. Example Files Example files used in this chapter can be downloaded here:
www.tbi.univie.ac.at/papers/SUPPLEMENTS/MiMB/.

2.4. Additional

Information

On the site www.tbi.univie.ac.at/papers/SUPPLEMENTS/
MiMB/, you can also find all links to software downloads, Web-
servers, and additional documentation.
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3. Methods

3.1. Software

Installation
All software packages are distributed as TAR/GZIP compressed
archives. Download the files ending in tar.gz or tgz to your
machine and uncompress it, e.g.,

# tar -xzf ViennaRNA-1.7.tar.gz

Vienna RNA, RNAz, and INFERNAL use the standard GNU
installation system. So you can easily install the software packages
by running the following commands:

# ./configure
# make
# su
# make install

This requires root privileges and installs all files under the /usr/
local tree. The executables, for example, are installed to /usr/local/
bin and should be ready to run. If you do not have root privileges,
if you want to install the programs in a different location, or if
you experience other problems (e.g., gcc compiler not found) see
Note 1. Repeat this process for RNAz and INFERNAL.

To install QRNA, run the following commands:

# tar -xzf qrna-2.0.3c.tar.gz
# cd qrna-2.0.3c
# cd squid
# make
# cd squid02

Table 17.1
Software used in this chapter

Software Version Download Web-Server Web-Site Ref.

Vienna RNA 1.7 þ þ www.tbi.univie.ac.at/�ivo/RNA/ (2)

Pfold � þ www.daimi.au.dk/�compbio/
rnafold/

(3)

RNAz 1.1 þ þ www.tbi.univie.ac.at/�wash/RNAz (4)

QRNA 2.0.3c þ � ftp://selab.janelia.org/pub/software/
qrna

(5)

CMFinder 0.2 þ þ bio.cs.washington.edu/yzizhen/
CMfinder/

(6)

INFERNAL 0.81 þ � infernal.janelia.org (7)
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# make
# cd ..
# cd src
# make

This creates the executable file eqrna. You can make it acces-
sible from everywhere from your system, for example, by creating
a link to the executable in /usr/local/bin (requiring root privi-
leges and assuming that you have extracted the folder to �/
programs):

# su
# ln -s �/programs/qrna-2.0.3c/src/eqrna \
/usr/local/bin/eqrna

In addition, you have to set the environment variable
QRNADB pointing to your installation directory. If you are
using a C shell type,

# setenv QRNADB �/programs/qrna-2.0.3c/lib

if you are using BASH run,

# export QRNADB=�/programs/qrna-2.0.3c/lib

The other programs will be used through their Web-interfaces
and we do not show their installation here.

3.2. Prediction of RNA

Secondary Structure

Prediction of the secondary structure from the primary sequence
is probably the most central problem in RNA analysis. Although
the function of an RNA molecule is ultimately dependent on its
tertiary structure, secondary structure can be seen as a coarse-
grained approximation and it is a useful level on which to under-
stand RNA function. Depending on the data available, different
strategies can be used to obtain the best secondary structure
models.

3.2.1. Structure Prediction

for Single Sequences

The most widely used and generally most accurate way of
predicting a secondary structure for a single sequence is ther-
modynamic folding algorithms, as implemented, for example,
in the Vienna RNA package. The program RNAfold uses
experimentally derived energy parameters and efficient algo-
rithms to calculate the energetically optimal structure, or more
precisely, the structure with minimum free energy (MFE). The
sequence is given in a FASTA-like format (see Fig. 17.2A). As
an illustrative example, we use a tRNA sequence that folds
into the well-known clover-leaf structure. RNAfold reads the
file from the standard input and writes the results to standard
output:
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A >tRNA AF041468
GGGGGTATAGCTCAGTTGGTAGAGCGCTGCCTTTGCACGGCAGATGTCAGGGGTTCGAGTCCCCTTACCTCCA

B
>tRNA2 X54300
GGGGGUAUAGCUUAGUUGGUAGAGCGCUGCUUUUGCAAGGCAGAUGUCAGCGGUUCGAAUCCGCUUACCUCCA
............................((((xxxxx))))................................

C

CLUSTAL W(1.81) multiple sequence alignment

AF041468 GGGGGTATAGCTCAGT-TGGTAGAGCGCTGCCTTTGCACGGCAGATGTCAGGGGTTCGAG
X54300 GGGGGTATAGCTTAGT-TGGTAGAGCGCTGCTTTTGCAAGGCAGATGTCAGCGGTTCGAA
L00194 GGGGCCATAGCTCAGT-TGGTAGAGCGCCTGCTTTGCAAG-CAGGTGTCGTCGGTTCGAA
AY017179 GGGCCGGTAGCTCAGCCTGGGAGAGCGTCGGCTTTGCAAGCCGAAGGCCCCGGGTTCGAA

AF041468 TCCCCTTACCTCCA
X54300 TCCGCTTACCTCCA
L00194 TCCGTCTGGCTCCA
AY017179 TCCCGGCCGGTCCA

D

>AF041468
GGGGGTATAGCTCAGT-TGGTAGAGCGCTGCCTTTGCACGGCAGATGTCAGGGGTTCGAGTCCCCTTACCTCCA
>X54300
GGGGGTATAGCTTAGT-TGGTAGAGCGCTGCTTTTGCAAGGCAGATGTCAGCGGTTCGAATCCGCTTACCTCCA
>L00194
GGGGCCATAGCTCAGT-TGGTAGAGCGCCTGCTTTGCAAG-CAGGTGTCGTCGGTTCGAATCCGTCTGGCTCCA
>AY017179
GGGCCGGTAGCTCAGCCTGGGAGAGCGTCGGCTTTGCAAGCCGAAGGCCCCGGGTTCGAATCCCGGCCGGTCCA

E

# STOCKHOLM 1.0

AF041468 GGGGGTATAGCTCAGT-TGGTAGAGCGCTGCCTTTGCACGGCAGATGTCAGGGGTTCGAG
X54300 GGGGGTATAGCTTAGT-TGGTAGAGCGCTGCTTTTGCAAGGCAGATGTCAGCGGTTCGAA
L00194 GGGGCCATAGCTCAGT-TGGTAGAGCGCCTGCTTTGCAAG-CAGGTGTCGTCGGTTCGAA
AY017179 GGGCCGGTAGCTCAGCCTGGGAGAGCGTCGGCTTTGCAAGCCGAAGGCCCCGGGTTCGAA
#=GC SS_cons <<<<<<<..<<<<.........>>>>.<<<<<<.....>>>>>>.....<<<<<......

AF041468 TCCCCTTACCTCCA
X54300 TCCGCTTACCTCCA
L00194 TCCGTCTGGCTCCA
AY017179 TCCCGGCCGGTCCA
#=GC SS_cons .>>>>>>>>>>>>.

Fig. 17.2. File formats used in this chapter. (A) Input for RNAfold. The Vienna RNA package generally uses a FASTA-like
format including a header starting with ‘‘>’’ and the sequence. The difference to standard FASTA is that the header is
optional and that the sequence must not contain line breaks, i.e., it must be on one line. (B) Input for constrained folding
(RNAfold -C). The second line shows the constraints on the structure like requiring specific base-pairs with ‘‘(‘‘ and ‘‘)’’ or
unpaired regions with ‘‘x’’. (C) CLUSTAL W alignment format used for RNAalifold and RNAz. (D) Multiple alignment format
in FASTA format. Sequences contain gaps and are all of the same length. Input format for Pfold and (if pairwise) for QRNA.
(E) STOCKHOLM format used by INFERNAL. It is similar to CLUSTAL W. Note the annotated secondary structure in a dot/
bracket notation with angular brackets.
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# RNAfold < tRNA.fa
>tRNA AF041468
GGGGGUAUAGCUCAGUUGGUAGAGCGCUGCCUUUGCACGGCAGA
(((((((..((((........)))).(((((.......))))).
UGUCAGGGGUUCGAGUCCCCUUACCUCCA
....(((((.......)))))))))))). (-31.10)

The predicted structures are given below the sequences in
a ‘‘dot/bracket’’ notation. Each base-pair in the secondary
structure is indicated by a pair of brackets, unpaired bases are
shown as dots. Next to the structure you see the MFE of
�31.10 in kcal/mol. RNAfold also creates a graphical repre-
sentation of the structure prediction in Postscript format. The
file is automatically named according to the sequence name, in
our case tRNA_ss.ps. Under Linux, it can be viewed using
ghostview

# gv tRNA_ss.ps

Under OS X you can run

# open tRNA_ss.ps

which automatically converts the postscript file to PDF and dis-
plays it.

One has to keep in mind that the RNA structure calculated by
RNAfold is only a prediction. The accuracy heavily depends on the
type of RNA studied. One can expect roughly 70% of the predicted
bases to be correct, but in unfortunate cases the accuracy can be far
below this. The accuracy also depends on the length of the
sequence. Structures for short RNAs are predicted more reliably
than for long RNAs.

Under natural conditions, an RNA molecule usually does not
only fold into a single structure but forms a thermodynamic ensem-
ble of structures including suboptimal structures. Using RNAsu-
bopt it is possible to predict all suboptimal structures that are
within a certain energy range of the MFE.

# RNAsubopt -e 1 -s < tRNA2.fa

This command calculates all structures that are at most 1 kcal/
mol above the MFE and sorts them by their energy. In this
example of another tRNA, the structure of minimum free energy
at �27.90 kcal/mol is not the correct one. The correct fold has a
free energy of�27.30 and appears as 11th suboptimal structure in
the list.

You will notice that for long sequences there is a huge number
of suboptimal structures. To get an overview over all structures in
the ensemble, it is possible to calculate the pairing probabilities of
all possible base pairs in a sequence:

# RNAfold -p < 5S.fa
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This command calculates the base-pairing probabilities of a 5S
rRNA. The file 5S_dp.ps is created that visualizes the probabilities
in a ‘‘dot-plot’’ (Fig. 17.3). In this example, the base-pairs of the
MFE structure are the most likely, but you also see alternative
base-pairs with lower probability that might be of interest
although they are not part of the MFE.

If one has some information on the true secondary structure,
e.g., from experimental data, one can improve the model by
incorporating this information in the prediction. If we call RNA-
fold with the option �C (‘‘constrained folding’’), it expects
another line in the input file after the sequence that holds con-
straints on the structure (Fig. 17.2B). Here we require four base-
pairs in the anticodon stem to be formed (indicated by ‘‘(‘‘ and
‘‘)’’). On the other hand, we require the anticodon to be unpaired
(indicated by ‘‘x’’).

# RNAfold -C < tRNA2_constraints.fa

The constraints result in a correctly predicted clover-leaf
shape, while the unconstrained folding gives a completely different
structure.

U U C G G C G G C C A U A G C G G C A G G G A A A C G C C C G G U C C C A U G C C G A A C C C G G A A G C U A A G C C C C U C C G G G  C A C C G C C G A A C

U U C G G C G G C C A U A G C G G C A G G G A A A C G C C C G G U C C C A U G C C G A A C C C G G A A G C U A A G C C C C U C C G G G  C A C C G C C G A A C

U 
U 

C 
G 

G 
C 

G 
G 

C 
C 

A 
U 

A 
G 

C 
G 

G 
C 

A 
G 

G 
G 

A 
A 

A 
C 

G 
C 

C 
C 

G 
G 

U 
C 

C 
C 

A 
U 

G 
C 

C 
G 

A 
A 

C 
C 

C 
G 

G 
A 

A 
G 

C 
U 

A 
A 

G 
C 

C 
C 

C 
U 

C 
C 

G 
G 

G 
 C

 A
 C

 C
 G

 C
 C

 G
 A

 A
 C

U 
U 

C 
G 

G 
C 

G 
G 

C 
C 

A 
U 

A 
G 

C 
G 

G 
C 

A 
G 

G 
G 

A 
A 

A 
C 

G 
C 

C 
C 

G 
G 

U 
C 

C 
C 

A 
U 

G 
C 

C 
G 

A 
A 

C 
C 

C 
G 

G 
A 

A 
G 

C 
U 

A 
A 

G 
C 

C 
C 

C 
U 

C 
C 

G 
G 

G 
 C

 A
 C

 C
 G

 C
 C

 G
 A

 A
A 

Fig. 17.3. Base-pairing probabilities of a 5S rRNA visualized by a ‘‘dot-plot.’’ Each dot in
the upper right triangle of the matrix corresponds to a base-pair. The size of a dot is
proportional to the probability of the base-pair in the thermodynamical ensemble. The
base-pairs in the minimum free energy structure are shown in the lower left triangle.
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3.2.2. Consensus Structure

Prediction for Homologous

Sequences

The quality of a secondary structure model can be improved
considerably if additional information from homologous
sequences is incorporated. RNAalifold predicts a consensus
secondary structure for aligned sequences. It extends the ther-
modynamic folding algorithm of RNAfold and incorporates
covariation information (i.e., consistent and compensatory
mutations). RNAalifold takes a CLUSTAL W formatted align-
ment (Fig. 17.2C) as input, otherwise the usage is similar to
RNAfold:

# RNAalifold < tRNA.aln
4 sequences; length of alignment 74.
GGGGCUAUAGCUCAGU_UGGUAGAGCGCCGCCUUUGCAAGGCAGA
(((((((..((((.........)))).((((((.....)))))).
UGUCAGCGGUUCGAAUCCCCUUACCUCCA
...(((((.......)))))))))))).
minimumfreeenergy=-30.98kcal/mol(-27.72+-3.25)

The command returns the consensus structure in dot/bracket
notation and a ‘‘consensus MFE’’ that consists of an ‘‘energy
term’’ �27.72 and a ‘‘co-variation term’’ that is �3.25 in our
example. The energy term is essentially the average folding energy
of the single sequences if forced to fold into a consensus structure.
The covariation term is (roughly speaking) negative if there are
many consistent and/or compensatory mutations supporting a
structure and positive if there are many mutations inconsistent
with the consensus structure.

RNAalifold generates the file alirna.ps that contains the sec-
ondary structure plot with covariations highlighted. Similar to
RNAfold, RNAalifold can also be run with option �p, that
produces a dot-plot of pair probabilities. More information
on how to use RNAalifold can be found in another book of this
series (8).

An alternative to RNAalifold is Pfold. It uses a probabilistic
folding algorithm based on stochastic context free grammars and
incorporates a model of the phylogenetic relationship between
the sequences. Although Pfold gives good results, one limitation
is that it is only available through a Web-server. Go to www.dai
mi.au.dk/�compbio/rnafold/ and paste the content of the file
tRNA_aln.fa into the form. Pfold takes a FASTA formatted
alignment as input (see Fig. 17.2C). Enter also your E-mail
address and press ‘‘Fold RNA.’’ Within a few minutes, a link to
the results should be sent to your E-mail address. On the result
page, you get secondary structure predictions in dot/bracket
format together with an estimation on how reliable the predicted
bases are. The results include a dot-plot, secondary structure
plot, and the phylogenetic tree that was used to predict the
structure.
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3.3. De Novo Prediction

of Structural ncRNAs

Unfortunately there is no general de novo ‘‘gene-finder’’ for
ncRNAs as we know it for protein genes. No single algorithm
can detect all of the diverse classes of molecules that we loosely
refer to as ‘‘ncRNAs.’’ However, one common characteristic of a
large subset of ncRNAs is their secondary structure. Therefore, it is
a promising approach to predict potentially functional secondary
structures in genomic data. These structures can give hints to the
presence of ncRNAs.

3.3.1. Single Sequences RNAfold can be used to predict a structure for a given sequence.
However, it predicts a structure for any sequence, be it an
ncRNA, some other biological sequence, or even just a random
sequence. To assess the significance of a folded structure one
commonly calculates ‘‘stability z-scores’’ (9, 10). One compares
the folding energy of the given sequence to the expected folding
energies of random sequences of the same dinucleotide content
and length. Let m be the MFE of the native sequence and � and �
the mean and standard deviation of random sequences. The
z-score is given by z = (m � �)/�. Negative z-scores indicate
that the given sequence is more stable than one would expect
from chance. This approach is implemented in the latest version
of RNAz that calculates a z-score for a sequence in FASTA
format:

# RNAz ––single tRNA.fa

Unfortunately the z-score is generally not significant enough to be
used as basis for a gene finder. It is also difficult to give clear advise
on how to interpret the value of a z-score for a single sequence.
However, a z-score is preferable to using the absolute folding
energy and it can give a first hint as to whether a fold might be
functional or not.

3.3.2. Aligned Sequences A much more accurate way to predict functional RNA structures is
a combination of the z-score approach with evolutionary signals.
The preferable input for RNAz is a multiple sequence alignment of
2–6 sequences. It estimates z-scores for the single sequences and,
in addition, calculates a so-called structure conservation index
(SCI). The SCI indicates whether the sequences share a common
structure or not. The value lies usually between 0 and 1 and is
calculated using the RNAfold/RNAalifold algorithms. RNAz
then combines the z-score and the SCI to classify an alignment as
‘‘functional RNA’’ or ‘‘other.’’ Sequences with low z-score (i.e.,
stable structures) and high SCI (i.e., high structural conservation)
are predicted as potential ncRNAs. The input alignment needs to
be in Clustal W (Fig. 17.2C) format or MAF alignment format.
We can simply run

# RNAz tRNA.aln
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Here are the relevant lines of the output:

Mean z–score: –2.68
Structure conservation index: 0.94
SVM RNA-class probability: 0.999672
Prediction: RNA

The z-score and SCI are calculated. From these values a ‘‘RNA
class probability’’ is calculated. If this value is above 0.5 the pre-
diction is ‘‘RNA’’ otherwise it is ‘‘other.’’

An alternative way to detect evolutionarily conserved RNA
secondary structures is QRNA. It analyzes pairwise alignments
and scores the data using probabilistic models. There are three
alternative models: one model for structural RNAs, one for protein
coding regions, and one for other genomic regions. The alignment
is classified according to the model which is found to explain
the data best. QRNA takes FASTA-formatted input alignments
(Fig. 17.2D). tRNA_pair.fa contains the first two sequences of
the previously used multiple alignment tRNA.aln. QRNA is run as
follows:

# eqrna tRNA_pair.fa

The relevant lines of the output:

winner = RNA
sigmoidalOTH = -5.327 sigmoidalCOD = -9.302
sigmoidalRNA = 5.233

For each model, a so-called sigmoid score is shown, which is
calculated from the score of this model and the two other models
as null model. The model with the highest sigmoid score is the
‘‘winner.’’ In our case, the RNA model scores best and the align-
ment is classified as RNA.

3.3.3. Unaligned Sequences Both RNAz and QRNA require a sequence alignment as input.
However, if the sequences are too diverged it can be difficult to get
a reasonable alignment. Still the sequences can have common
secondary structure motifs. CMFinder finds structured motifs in
unaligned sequences. An advantage of CMFinder is that it can deal
with long extraneous flanking regions, and cases when the motif is
only present in a subset of sequences. CMFinder is based on an
expectation-maximization algorithm using covariance models for
motif description, heuristics for motif search, and a Bayesian fra-
mework for structure prediction combining folding energy and
sequence covariation.

The Web-interface takes a FASTA-formatted sequence file. An
important parameter is the ‘‘number of stem loops.’’ It determines
the complexity of the motifs to be found. Usually it is set to 1 or 2
for single stem-loop or double stem-loop motifs. CMFinder has
many other parameters, which we cannot explain in detail here.
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Please refer to the online documentation. In the simplest case use
the default parameters, upload your file in FASTA format, input
your E-mail address, and click ‘‘Submit.’’ You can try it with the
example file glms.fa that contains a bacterial ribozyme.

The results consist of a series of putative structure motifs.
Depending on the input parameters, they consist of one or two
stems or more complex motifs. The file ending in *. summary
contains a table with all motifs, showing some interesting charac-
teristics like folding energy, sequence identity, GC content, etc.
For each motif, two files are generated: one is an alignment in
Stockholm format (Fig. 17.2E) that contains the structurally
aligned motifs, the other is a covariation model suitable for use
with INFERNAL (see Section 3.4.2).

3.4. Searching

Databases for

Homologous

Sequences

Homology search is currently the most promising way to get some
clues on the function of an unknown ncRNA or to predict new
ncRNAs of known families in genomic data. Searching databases
for homologous sequences is a fundamental technique in bioinfor-
matics and much has been written about it. However, rules to
perform successful homology searches for structured ncRNAs can
be quite different.

3.4.1. Sequence-Based

Algorithms

The most commonly used program for homology searches of
databases is the BLAST algorithm in its two incarnations WU-
BLAST and NCBI-BLAST. Default parameters usually do not give
the most accurate results for ncRNAs.

To get optimal sensitivity, the word size should be set
lower than the default. A word size of 7 was shown to give
good results (11) on a test set of various structured RNAs.
This is the minimum word size for NCBI-BLAST. For WU-
BLAST, it is possible to lower the word size to 3. This slightly
increases the sensitivity but comes with a considerable increase
in computing time.

The default scoring matrix for NCBI-BLAST is optimized for
highly similar sequences (99% sequence identity). WU-BLAST
defaults are optimized for more distant homologies (65–100%)
and perform much better on structural ncRNAs. Therefore, NCBI
should be used with parameters ‘‘�r 5�q�4’’ to adjust match and
mismatch scores.

The following command lines show useful parameters that
gave good results on the benchmark in (11):

NCBI-BLAST:

# blastall -p blastn -d database.fa \
-i query.fa -W 7 -r 5 -q -4 -G 10 -E 10

WU-BLAST:

# blastn database.fa query.fa W=7
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Depending on the problem at hand, these parameters can be a
good starting point. NCBI-BLAST and WU-BLAST programs are
freely available (http://blast.wustl.edu/, ftp://ftp.ncbi.nih.gov/
blast/) together with extensive documentation on how to use
them. Using the same parameters, both NCBI- and WU-BLAST
usually give very similar results. WU-BLAST is, however, faster than
NCBI-BLAST. Many sequence databases and genome projects have
a BLAST interface for homology search. Also when using these
services it is advisable to adjust the parameters if possible.

3.4.2. Sequence- and

Structure-Based Algorithms

A combination of sequence and structure information can lead to
much more sensitive homology searches. The tools of the INFER-
NAL package allow to build consensus RNA secondary structure
profiles based on stochastic context-free grammars (profile
SCFGs). Profile SCFGs include both sequence and RNA consen-
sus secondary structure information.

To use INFERNAL, you need an alignment of RNA
sequences and a consensus structure given in Stockholm format.
The Stockholm format is similar to Clustal W (see Fig. 17.2E). In
Section 3.2.2, it is explained how to obtain a consensus structure.

The file tRNA.sto contains our tRNA alignment example and
a RNAalifold consensus structure. The following command builds
the covariance model tRNA.cm from this alignment:

# cmbuild tRNA.cm tRNA.sto

The file database.fa contains a tRNA embedded in 3 kb of
some viral DNA. The covariance model can be used to search
this ‘‘database’’ for homologous sequences/structures:

# cmsearch tRNA.cm database.fa

This command calculates optimal local alignments of the
query profile against the sequences in the database. The output is
similar to BLAST output, indicating strand and location of the hit
in the query and target. The secondary structure is shown in the
first line in an extended notation. For example, < and > denote
base pairs in simple stems, while ‘‘(‘‘and’’)’’ are base pairs closing a
multifurcating loop as the acceptor stem in our tRNA. Refer to the
excellent documentation of INFERNAL for more details on the
output format.

Plus strand results:

Query = 1 - 73, Target = 1751 - 1824
Score = 75.44, GC = 70

(((((((,,<<<<___.____>>>>,
1 GGggccguAGCucAGu.uGGuAgaGCG

GGG:C:GUAGCUCAG UGG AGAGCG
1751 GGGCCGGUAGCUCAGCcUGGGAGAGCG
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<<<<<<_____>>>>>>,,,,,<<<<<
ccGccuuuGcAaggCggAuGucgggGG
:CG:CUUUGCAAG:CG:A G C::GGG
UCGGCUUUGCAAGCCGAAGGCCCCGGG

______>>>>>))))))):
uucGAAuCCccccggcuCCA 73
UUCGAAUCCC::C:G:UCCA
UUCGAAUCCCGGCCGGUCCA 1824

The quality of a hit is measured by a bit score (in this example,
75.44). As a rule-of-thumb, bit scores higher than the log (base 2)
of the database size are significant. The latest version of INFER-
NAL also calculates E-values. You will have noticed that INFER-
NAL is relatively slow and the calculation of E-values makes it even
slower. The search without E-values took roughly 5 s on an Intel
Centrino Core duo, while it took 2 min and 15 s including E-
values.

Speed is a critical issue when using INFERNAL. It is impractic-
able to search large databases or genomes on a single machine. The
latest INFERNAL version provides heuristic speed-up strategies as
well as ways to distribute the calculation on many CPUs. These
advanced features are beyond the scope of this chapter and we have
to refer the reader again to the INFERNAL documentation.

In our example, we have used cmsearch to match one model
against a database of sequences. It is of course also possible to search
one sequence against a database of many covariance models. The
Rfam database provides covariance models of hundreds of structural
RNA families (12). They can be downloaded here: ftp://ftp.sanger.
ac.uk/pub/databases/Rfam/CURRENT/Rfam.tar.gz. Assuming
that the Rfam models reside in a subdirectory rfam and a BASH
shell is available, the following short loop searches the sequence
tRNA.fa against all Rfam families and writes the output to rfam.out.

# for cm in rfam/*.cm;\
# do echo $cm >> rfam.out;\
# cmsearch $cm tRNA.fa >> rfam.out;\
# done

The Rfam database does not only provide covariance models.
It is also possible download the raw sequences or multiple align-
ments in various formats. Together with extensive and well-pre-
sented annotation, it is a central resource for noncoding RNA
analysis.

3.5. Annotation of

Specific RNA Classes

If homology-based identification fails, functional annotation of
ncRNAs is difficult. However, there are a few well-known classes
of ncRNAs that can be identified on the basis of very general
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structure and sequence characteristics. In the following, we pre-
sent some programs used to classify and annotate important
ncRNA classes (Table 17.2).

3.5.1. tRNAs tRNAs can be annotated very reliably using tRNAscan-SE. The
program is available for local use and as Web-server. It takes
FASTA (and other sequence formats) as input. It returns an overall
score and detailed annotation of each hit including secondary
structure model and anticodon of the predicted tRNA. Specific
models for eukaryotes, archaea, and bacteria are available. tRNAs-
can-SE is also capable of distinguishing true tRNAs from tRNA-
derived pseudogenes. You can test with the file tRNA.fa.

3.5.2. rRNAs The program RNAmmer annotates rRNAs (16s/18s, 23s/28s,
and 5s but not 5.8 rRNAs). It uses profile HMMs and is mainly
based on sequence homology. However, since it is specifically
designed for rRNAs it provides more consistent and reliable anno-
tations than generic homology search approaches. RNAmmer is
available as Web-server and for download. It takes FASTA-for-
matted input sequence and you can test it with the file 5S.fa.

3.5.3. snoRNAs There are two major types of snoRNAs: C/D box and H/ACA
snoRNAs. The former mediate methylation modifications in
rRNAs, while the latter guide pseudouridylation modifications.
snoScan (15) and snoGPS (16) predict C/D box and H/ACA
box snoRNAs, respectively. Both programs are available for local

Table 17.2
Programs to annotate specific RNA classes

Software RNA class DL WS Web site Ref.

tRNAscan-
SE

tRNA þ þ lowelab.ucsc.edu/tRNAscan-SE (13)

RNAmmer rRNA þ þ www.cbs.dtu.dk/services/RNAmmer/ (14)

snoScan C/D box snoRNA þ þ lowelab.ucsc.edu/snoscan (15)

snoGPS H/ACA box
snoRNA

þ þ lowelab.ucsc.edu/snoGPS (16)

snoReport C/D and H/ACA
snoRNA

þ � www.tbi.univie.ac.at/�jana/software.html (17)

BRUCE tmRNA þ þ 130.235.46.10/ARAGORN1.1/HTML/
bruceindex.html

(18)

SRPscan SRP RNA � þ bio.lundberg.gu.se/srpscan (19)

DL, software available for download; WS, software available as Web-server.
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use and as Web-server. snoScan and snoGPS use probabilistic
models that also include the target sites in their prediction. This
means that both programs need a list of potential target RNA
sequences as input.

When the targets are unknown (e.g., so-called orphan snoR-
NAs), the program snoReport (17) is more accurate. It uses a
support vector machine approach that is based on structure and
sequence features. snoReport is available for download and can be
run under UNIX like systems.

3.5.4. miRNAs Annotation of miRNAs is currently of particular interest. The basic
idea is to predict the typical stem-loops of the pre-miRNA. It is
challenging, however, to distinguish true miRNA stem-loops from
‘‘background’’ stem-loops that are abundant in all genomes. A
plethora of methods have been proposed for this classification
task. It is neither possible to present all of them in this chapter,
nor would it make sense to pick out one or two specific methods
since no ‘‘standard’’ approach currently exists. Table 17.3 lists
currently available programs to identify miRNAs. There are even
more, but we have limited the list to methods which are either
available for download or as a Web-server.

3.5.5. Other Classes There are some other ncRNA classes for which specific software
was developed to allow more reliable detection. Here we just want
to mention SRPscan (19) for annotating signal recognition parti-
cle (SRP) RNAs and BRUCE (18) for detecting transfer-messen-
ger RNAs (tmRNAs). Both programs are available as Web-server
and BRUCE can also be downloaded for local use.

3.6. Interaction

Partners

Many ncRNAs function through RNA/RNA interactions. The
sequence-specific binding of miRNAs to UTRs of mRNAs is
probably the best-known example. However, also in bacteria
many small ncRNAs are known to interact with their target by
hybridization (36).

3.6.1. Hybridization

Structure of Two RNAs

RNAduplex can be used to find potential binding sites of a short
RNA in a longer target RNA. It takes a FASTA formatted file
(Vienna style without line breaks) containing two sequences. The
first entry is the (long) target RNA, while the second is the (short)
RNA for which a binding site should be found. The file ‘‘inter-
action.fa’’ contains the 30-UTR of a mRNA and the microRNA
mir-145. RNAduplex is run as follows:

# RNAduplex < interaction.fa
>NM_024615
>hsa-miR-145
.(((((.(((...((((((((((.&)))))))))))))))))).

34,57 : 1,19 (-21.80)
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Table 17.3
Programs for microRNA prediction

Software Description DL WS Web site Ref.

miRscan Scores pairs of homologous
hairpins; applied to
nematodes and
vertebrates; uses
empirical rules

� þ genes.mit.edu/mirscan (20)

miRFinder1 Scores pairs of homologous
hairpins; uses SVM;
applied to drosophilids
and vertebrates

þ � www.bioinformatics.org/
mirfinder

(21)

miPred2 SVM classification of
hairpins; tested on
animal, plant, and viral
miRNAs.

þ � web.bii.a-star.edu.sg/
�stanley/Publications/
Supp_ materials/06-002-
supp.html

(22)

miPred2 Hairpin classification in
human using machine-
learning techniques

� þ www.bioinf.seu.edu.cn/
miRNA

(23)

triplet-SVM SVM classification of
hairpins; tested on
animal, plant, and viral
miRNAs

þ � bioinfo.au.tsinghua.edu.cn/
mirnasvm/

(24)

ProMir Probabilistic learning of
sequence and structure
features of hairpins;
applied to vertebrate
miRNAs especially
human

� þ cbit.snu.ac.kr/�ProMiR2/ (25)

BayesmiRNAfind Naive Bayes classifier of
hairpins; applied to
animal miRNAs

� þ wotan.wistar.upenn.edu/
miRNA/

(26)

RNAmicro SVM classification of
conserved hairpins;
applied to animal
miRNAs

þ � www.tbi.univie.ac.at/
�jana/software/
RNAmicro.html

(27)

miRRim Analyzes multiple
alignments using a
Hidden Markov model
of conservation and
structural features;
tested on vertebrate
genomes

þ � mirrim.ncrna.org/ (28)

(continued)
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Looking at the output, we find that that the most favorable
binding has an interaction energy of �21.8 kcal/mol and pairs up
pos. 34–57 of the UTR with pos. 1–19 of the miRNA. The
hybridization structure is shown in dot/bracket notation. Note
the ‘‘&’’ sign that separates the two molecules from each other.
Using the option ‘‘�e,’’ RNAduplex can also predict alternative
(suboptimal) binding sites. For example, running RNAduplex�e
5 would list all binding sites within 5 kcal/mol of the best one. It is

Table 17.3 (continued)

Software Description DL WS Web site Ref.

microHARVESTER Finds homologous
mirRNAs to known
miRNAs in plants using
BLAST and structural
filters

� þ www-ab.informatik.uni-
tuebingen.de/brisbane/
tb/index.php

(29)

mirAlign Finds homologous
mirRNAs to known
animal miRNAs using
BLAST and structural
filters

� þ bioinfo.au.tsinghua.edu.cn/
miralign

(30)

Srnaloop Finds homologous
mirRNAs to known
miRNAs using a BLAST
like algorithm and
structural filters; applied
to C. elegans

þ � arep.med.harvard.edu/
miRNA

(31)

Structure-Based
miRNA analysis
tool

Structural comparison of
hairpin to known
miRNA hairpins using
RNAforester alignment
tool

� þ tagc.univ-mrs.fr/mirna/ (32)

findMiRNA Prediction of miRNA
precursor with targets in
Arabidopsis thaliana
transcripts

þ � sundarlab.ucdavis.edu/
mirna/

(33)

Microprocessor
SVM, miRNA
SVM

Classifies hairpins by
predicting most likely
Drosha processing site;
uses SVM; applied to
human

þ þ https://
demo1.interagon.com/
miRNA/

(34)

DL, software available for download; WS, software available as Web-server.
1There is another method called miRFinder (35). However, the software is not available for download or as
Web-server.
2There are two programs named ‘‘miPred’’ by their authors.
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Table 17.4
Programs for microRNA target prediction

Software Description DL WS Website Ref.

PITA Considers hybridization energy and
thermodynamic target accessibility

þ þ genie.weizmann.ac.il/
pubs/mir07/
index.html

(38)

STarMir Sfold-based algorithm that models
target interaction as two-step
reaction: nucleation at an accessible
target site followed by hybrid
elongation to disrupt local target
secondary structure

� þ sfold.wadsworth.org/
starmir.pl

(39)

TargetScanS Searches perfect conserved seeds with
small variations in the end

� þ www.targetscan.org (40)

miRNAda Uses local alignment with emphasis on
the seed and thermodynamic filter
using modified RNAfold

þ þ www.microrna.org (41)

PicTar Predicts targets based on seed match
and thermodynamic filter; calculates
maximum likelihood by combining
several predictions in one UTR

� � pictar.bio.nyu.edu (42)

RNAhybrid Finds target with best hybridization
energy; provides BLAST like E-
values

þ þ bibiserv.techfak.uni-
bielefeld.de/
rnahybrid/

Rna22 Extracts patterns of a set of miRNAs,
finds regions that are likely to be
targeted (‘‘target islands’’), finally
finds best miRNA for the region

� þ cbcsrv.watson.ibm.com/
rna22.html

(43)

Diana-
microT

Scans UTRs in fixed window and
calculates hybridization energy,
which is compared to dinucleotide
based shuffled random controls

� þ diana.pcbi.upenn.edu (44)

miTarget SVM classifier using structural,
thermodynamic, and position-based
features

� þ cbit.snu.ac.kr/�mi
Target

(45)

DL, software available for download; WS, software available as Web-server.

Noncoding RNAs 303



important to note that RNAduplex only predicts intermolecular
base pairs. For the more general case with intramolecular base-
pairing allowed, the program RNAcofold can be used which is also
part of the Vienna RNA package but is not covered in this chapter.

3.6.2. miRNA Target

Prediction

While RNAduplex is a simple and useful method of calculating
hybridization energies and structures, it cannot be recommended
as general tool for miRNA target prediction. There are many
specific tools for this task. For similar reasons as in Section 3, it
is impossible, however, to recommend one of them or to review all
in detail. Therefore, we want to point to recent reviews on this
topic (37) and give a list of available methods (Table 17.4).

Most of the programs start with searching for short exact or
nearly exact matches of the 50-end of the miRNA (‘‘seed’’). Then
the hybridization energy is evaluated to filter for valid targets.
Variants include comparative analysis of multiple alignments and,
more recently, consideration of the intramolecular secondary
structure (accessibility) of the target.

4. Notes

4.1. Note 1 The installation process using ./configure and make should work
on all UNIX-like systems. If you get error messages it may be
necessary that you install additional ‘‘developer packages.’’ On
some Linux distributions, for example, there is no C-compiler
installed by default. Also on OS X it may be necessary that you
have installed the ‘‘XCode’’ tools.

If you do not have root privileges or want to install the
programs into a different location than /usr/local/ (e.g., your
home directory), you can use the following command:

# ./configure –prefix=/home/stefan

This installs the executable to /home/stefan/bin. Please note
that the bin directory must be in your PATH of executables if you
want to call the programs without specifying the complete path.
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Chapter 18

Conformational Disorder

Sonia Longhi, Philippe Lieutaud, and Bruno Canard

Abstract

In recent years it was shown that a large number of proteins are either fully or partially disordered.
Intrinsically disordered proteins are ubiquitary proteins that fulfill essential biological functions while
lacking a stable 3D structure. Despite the large abundance of disorder, disordered regions are still poorly
detected. The identification of disordered regions facilitates the functional annotation of proteins and is
instrumental in delineating boundaries of protein domains amenable to crystallization. This chapter
focuses on the methods currently employed for predicting disorder and identifying regions involved in
induced folding.

Key words: intrinsic disorder, intrinsically unstructured proteins, induced folding, prediction
methods, disorder metaserver.

1. Introduction

In recent years there has been an increasing amount of experimen-
tal evidence pointing out the abundance of protein disorder within
the living world. Recent computational studies have shown that
the frequency and length of disordered regions increase with
increasing organism complexity, with as much as one third of
eukaryotic proteins containing long intrinsically disordered
regions (1) and 12% of them being fully disordered (2). Intrinsi-
cally disordered proteins (IDPs) are functional proteins that fulfill
essential biological functions while lacking highly populated con-
stant secondary and tertiary structures under physiological condi-
tions. Although there are IDPs that carry out their function while
remaining disordered all the time (e.g., entropic chains), many of
them undergo a disorder-to-order transition upon binding to their
physiological partner(s), a process termed induced folding.

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
DOI 10.1007/978-1-60327-241-4_18, ª Humana Press, a part of Springer Science+Business Media, LLC 2010
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The functional relevance of disorder resides in an increased
plasticity that enables the binding of numerous, structurally distinct
targets. Accordingly, intrinsic disorder is a distinctive and common
feature of ‘‘hub’’ proteins, with disorder serving as a determinant of
protein promiscuity (3). As such, most IDPs are involved in func-
tions that imply multiple partner interactions, such as molecular
recognition, molecular assembly, cell cycle regulation, signal trans-
duction, and transcription [for a recent review on IDPs see (4)].

The recognition of disordered regions has a practical interest
in that it facilitates the functional annotation of proteins (5) and
is instrumental for delineating protein domains amenable to
crystallization.

Statistical analyses showed that amino acid sequences encoding
disordered regions are significantly different from those of ordered
proteins, thus allowing IDPs to be predicted with a rather good
accuracy. Specifically, IDPs (i) have a biased amino acid composi-
tion, being enriched in G, S, P and depleted in W, F, I, Y, V, L, (ii)
have a low secondary structure content, (iii) tend to have a low
sequence complexity, (iv) are on average much more variable than
ordered ones due to less restrictive amino acid substitutions.

Based on these peculiar sequence features, a number of disorder
predictors have beendeveloped in recent years, the majority ofwhich
are available on the Web [for reviews see (6–8)]. In this chapter, we
focus on the various disorder predictors currently available and
present a general suggested procedure for disorder prediction.

2. Materials

1. Computer connected to the Web

3. Methods

3.1. Running Individual

Disorder Predictions
In the last decade a number of disorder predictors have been
developed, which exploit the sequence bias of disordered proteins.
Different types or ‘‘flavors’’ of protein disorder exist (9), differing
in the extent (i.e., the amount of residual secondary and/or ter-
tiary structure) and length of disorder. Since different predictors
rely on different physico-chemical parameters, a given predictor
can be more performant in detecting a given feature of a disor-
dered protein. Hence, predictions good enough to decipher the
modular organization of a protein can only be obtained by com-
bining various predictors [for examples see (6, 7, 10–13)].
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It is useful to distinguish two kinds of predictors: those that
have been trained on data sets of disordered proteins and those
that have not. Data sets of disorder are necessarily biased, since
they contain relatively few disordered proteins. Indeed, the Dis-
Prot (http://www.disprot.org/), which is the largest publicly
available database of disordered proteins whose disorder has
been experimentally assessed, contains only 523 entries (14),
and regions of missing electron density in the PDB are generally
short, as long regions generally prevent crystallization. While
predictors trained on data sets of disordered regions identify
disordered regions on the basis of the peculiar sequence proper-
ties that characterize them, the others identify disorder as lack of
ordered 3D structure. The second group of predictors avoids the
shortcomings and biases associated with the disordered data
sets. Therefore, they are expected to perform better than the
former methods on disordered proteins presently underrepre-
sented in training data sets (i.e., fully or mostly disordered
proteins).

3.1.1. Predictors Trained on

Data Sets of Disordered

Proteins

3.1.1.1. PONDR

PONDR (Predictor of Natural Disordered Regions) (see http://
www.pondr.com), a neural network based on local amino acid
composition, flexibility, and other sequence features, was the
first predictor to be developed (15). PONDR is available in various
versions. While VSL1 performs better to identify short regions of
disorder, VL3 should be preferred to delineate domains as it gives
smoother predictions. Notably, VL-XT can highlight potential
protein-binding regions, indicated by sharp drops in the middle
of long disordered regions (see Section 3.3).

1. Before you can use PONDR you will need to create a new
user account (limited to 50 predictions for academic
users).

2. Paste your sequence in raw format and click on ‘‘submit.’’

3. The result is provided as a gif file. The significance threshold
above which residues are considered to be disordered is 0.5.
Segments composed by more than 40 consecutive disordered
residues are highlighted by a thick black line.

3.1.1.2. DisProt VSL2 As the accuracy of PONDR predictors is limited for short disor-
dered regions (<30 residues), the group of Dunker has recently
developed a new predictor, DisProt VSL2, which is intended to
give accurate predictions regardless of the length of the disordered
region (16). The VSL2 predictor is based on a support vector
machine. The data set, obtained from both DisProt and PDB,
has been split into two groups on the basis of the length of disorder
(i.e.,>30 and<30 residues). VSL2 turned out to behave well with
both subgroups and to be able to identify short disordered regions
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that were mis-predicted by the previous PONDR predictors. The
publicly available VSL2 server (see http://www.ist.temple.edu/
disprot/predictorVSL2.php) consists of two variants of the VSL2
predictor: VSL2B is the baseline model that uses only 26 features
calculated from the amino acid sequence, while the more accurate
VSL2P uses 22 additional features derived from PSI-BLAST
profiles. The VSL2 predictor integrating the full set of different
features (including residue features, PSI-BLAST profiles, and
secondary structure PHD and PSIPRED predictions) can
be downloaded from http://www.ist.temple.edu/disprot/
predictorVSL2.php.

1. Paste your sequence in raw format, enter your E-mail address,
and click on ‘‘submit.’’

2. The result is provided in another page and the plot can be
saved (png format) by clicking on it with the mouse right
button. The output also provides a table with disorder prob-
abilities per residue. The significance threshold above which
residues are considered to be disordered is 0.5.

3.1.1.3. DisProt (PONDR)

VL3, VL3H, VL3E, and VL3P

VL3 uses several features from the previously introduced
PONDR VL2 (9), but benefits from optimized predictor models
and a slightly larger (152 versus 145) set of disordered proteins
that were cleaned of mislabeling errors found in the smaller set.
The VL3 predictor is based on an ensemble of feed-forward
neural networks whose training stage is done using a data set
obtained from both DisProt and PDB. PONDR VL3H uses the
same method as VL3, but it utilizes homologues of the disor-
dered proteins in the training stage, while PONDR VL3P uses
attributes derived from sequence profiles obtained by PSI-
BLAST searches (17, 18). These predictors are available at
http://www.ist.temple.edu/disprot/predictor.php. Requests
are limited to 100 per IP address per day and the maximum
length of a query sequence is limited to 5,000 residues. For the
VL3E predictor, which results from the combination of VL3H
and VL3P, up to 10 queries no longer than 500 residues can be
processed per IP address per day. Predictions for VL3E are sent
by E-mail upon completion.

1. Chose the predictor to be run among VL2, VL3, VL3H, and
VL3E.

2. Paste your sequence in raw format, enter your E-mail address,
and click on ‘‘submit.’’

3. Prediction results are returned online and the plot can be
saved (png format) by clicking on it with the mouse right
button. The output also provides a table with disorder prob-
abilities per residue. The significance threshold above which
residues are considered to be disordered is 0.5.
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3.1.1.4. Globplot 2 Globplot 2 (http://globplot.embl.de) uses the ‘‘Russell/Lind-
ing’’ scale that expresses the propensity for a given amino acid to
be in ‘‘random coil’’ or in ‘‘regular secondary structure’’ (19). It
also provides an easy overview of modular organization of large
proteins thanks to user-friendly, built-in SMART, PFAM, and
low-complexity predictions. Note that in Globplot outputs,
changes of slope often correspond to domain boundaries.

1. Paste your sequence in raw format or enter the SwissProt ID
(or AC) in the foreseen field, enter Title (optional), and click
on ‘‘GlobPlot now.’’

2. The result page provides a postscript (ps) file that can be down-
loaded. Below the graph, the amino acid sequence of the pro-
tein is given, with disordered residues colored in blue.

3.1.1.5. DisEMBL DisEMBL (http://dis.embl.de) is based on a neural network and
consists of three separate predictors, trained on separate data sets,
that comprise respectively residues within ‘‘loops/coils,’’ ‘‘hot
loops’’ (loops with high B-factors – i.e., very mobile from X-ray
crystal structure), or that are missing from the PDB X-ray struc-
tures (called ‘‘Remark 465’’) (20). Among these, the only true
disorder predictor is Remark 465, as the two others only predict
regions devoid of regular secondary structure. DisEMBL also
provides prediction of low sequence complexity (CAST predictor)
and aggregation propensity (TANGO predictor).

1. Paste your sequence in raw format or enter the SwissProt ID
(or AC) in the foreseen field, enter Title (optional), and click
on ‘‘DisEMBL protein.’’

2. The result page provides a postcript file that can be down-
loaded. Below the graph, the amino acid sequence of the
protein is given, with residues in loops and hot loops being
colored in blue and red, respectively. Disordered residues, as
predicted by Remark 465, are shown in green.

3.1.1.6. Disopred2 Disopred2 (http://bioinf.cs.ucl.ac.uk/disopred) is based on sup-
port vector machine classifiers trained on PSI-BLAST profiles
(21). It therefore incorporates information from multiple
sequence alignments since its inputs are derived from sequence
profiles generated by PSI-BLAST. Hence, prediction accuracy is
lower if there are few homologues.

1. Paste your sequence in raw format, enter Title (optional) and
your E-mail address, and click on ‘‘predict.’’

2. Prediction results are sent by E-mail upon completion. Aster-
isks represent disordered predictions and dots predictions of
order. Links to disorder profile plots (ps, pdf, and jpg for-
mats) and plain text files containing classifier outputs are
given in the main body of the E-mail.
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3.1.1.7. RONN RONN (http://www.strubi.ox.ac.uk/RONN) uses an approach
based on a bio-basis function neural network. It relies on the
calculation of ‘‘distances,’’ as determined by sequence alignment,
from well-characterized prototype sequences (ordered, disor-
dered, or a mixture of both). Its key feature is that amino acid
side chain properties are not considered at any stage (22).

1. Paste your sequence in raw format and click on ‘‘send.’’

2. Prediction results are returned online and the plot can be
saved as an image (png) format. Below the graph, the amino
acid sequence of the protein is given, with disordered residues
highlighted by an asterisk. Boundaries of disordered regions
are also clearly indicated above the graph.

3.1.1.8. DISpro DISpro (http://scratch.proteomics.ics.uci.edu/) is based on a
neural network (23). It combines sequence profiles obtained by
PSI-BLAST, secondary structure predictions and solvent accessi-
bility. This predictor was trained on disordered sequences (i.e.,
regions of missing atomic coordinates) derived from the PDB.

1. Enter your E-mail address (required), the sequence name
(optional), paste your sequence in raw format, select the
prediction to be run by ticking the appropriate box, and
click on ‘‘submit.’’

2. Prediction results are sent by E-mail. Residues predicted to be
disordered or ordered are indicated by a ‘‘D’’ or an ‘‘O,’’
respectively. Per residue disorder probabilities are also
provided.

3.1.1.9. SPRITZ The SPRITZ server (http://protein.cribi.unipd.it/spritz) takes
into account sequence profiles obtained from PSI-BLAST and
structure predictions. SPRITZ uses two separate predictors based
on vector machines trained on different data sets (24). The train-
ing data set of short disordered regions (less than 45 residues) was
derived from a subset of PDB sequences with short regions of
missing density, while the training data set of long regions was
derived from both DisProt and from a subset of the PDB
(i.e., PDBselect25). This server allows the submission of several
sequences at one time and offers the possibility of choosing
between predictions of short or of long disordered regions.

1. Enter your E-mail address, the name of the query sequence
(optional), paste your sequence in raw format.

2. Chose the type of disorder (i.e., ‘‘short’’ or ‘‘long’’) and click
on ‘‘predict.’’

3. Prediction results are sent by E-mail. Residues predicted to be
in regions other than helices and b strands are indicated by a
‘‘C.’’ For a detailed explanation of the results, see http://
distill.ucd.ie/distill/explanation.html#output_formats.
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3.1.1.10. PreLink PreLink (http://genomics.eu.org/prelink/) relies on amino acid
composition and on low hydrophobic cluster content (25). In this
respect, it is a derivative of HCA, a powerful approach that is
discussed below. Prelink predicts regions that are expected to be
unstructured in all conditions, regardless of the presence of a
binding partner. Thus, it generally predicts as ordered disordered
regions that have the potential to be ordered in the presence of a
partner (i.e., to undergo induced folding).

1. Paste your sequence in raw format or upload a file (Fasta
format) containing multiple sequences (click on ‘‘upload’’ to
select the file on your computer and then on ‘‘upload’’), and
click on ‘‘submit.’’

2. Prediction results are returned online. The plot can be saved
as an image (png format) by clicking on it with the mouse
right button. Below the graph the amino acid sequence is
given and disordered residues are shown in red.

3.1.1.11. Ucon Ucon (http://www.predictprotein.org/submit_ucon.html) is a
method that combines predictions for protein-specific contacts
with a generic pairwise potential. This predictor was trained
against the DisProt and the PDB. It performs well in predicting
proteins with long unstructured regions (26).

1. Enter your E-mail address, tick the box ‘‘results on our web-
site, NOT in e-mail,’’ and enter the sequence name
(optional).

2. Paste your sequence in raw format or click on ‘‘SRS6’’ to
retrieve the sequence from a public database, and click on
‘‘submit/run prediction.’’

3. Upon completion of the prediction, an E-mail is sent with a
link for accessing the results. Alternatively, the user can
choose to be sent an E-mail with the results in html format.

3.1.1.12. OnD-CRF OnD-CRF (http://babel.ucmp.umu.se/ond-crf/) predicts dis-
order using conditional random fields (CRF) (27).

1. Paste your sequence in raw or Fasta format or upload the
query sequence from a file and click on ‘‘submit query’’ (you
can also choose to be sent results by E-mail).

2. Prediction results are returned online. The plot can be saved as
an image (png format) by clicking on it with the mouse right
button. The threshold above which residues are considered as
disordered is dynamic and indicated above the plot. Below the
graph, boundaries of disordered regions are provided and the
amino acid sequence is also given, with disordered residues
shown in red. Disorder probabilities per residue are given
upon positioning the pointer on the amino acid sequence
shown below the graph.
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3.1.1.13. POODLE-S POODLE-S (http://mbs.cbrc.jp/poodle/poodle-s.html) pre-
dicts disordered regions from amino acid sequences by using
physico-chemical features and reduced amino acid set of a posi-
tion-specific scoring matrix (28). POODLE-S was trained against
the PDB and the DisProt database. Assessment of performance
was done on the data set of CASP7.

1. Paste your sequence in raw format, enter your E-mail address,
choose the type of prediction (‘‘missing residues’’ or ‘‘High
B-Factor residues’’), and click on ‘‘submit.’’

2. Prediction results are sent by E-mail, where a link to a gra-
phical output is given. Residues with disorder probabilities
higher than 0.5 are considered to be disordered. Probabilities
per residue are given upon positioning the pointer on the
disorder curve. The plot can be saved by using the ‘‘screen
capture’’ option of the user’s computer.

3.1.1.14. PrDOS PrDOS (http://prdos.hgc.jp/cgi-bin/top.cgi) is composed of
two predictors: a predictor based on the local amino acid sequence
and one based on template proteins (or homologous proteins for
which structural information is available). The first part is imple-
mented using support vector machine (SVM) algorithm for the
position-specific score matrix (or profile) of the input sequence.
More precisely, a sliding window is used to map individual residues
into a feature space. A similar idea has already been used in a
secondary structure prediction, as in PSI-PRED. The second part
assumes the conservation of intrinsic disorder in protein families
and is simply implemented using PSI-BLAST and our own mea-
sure of disorder, as described later. The final prediction is done as
the combination of the results of the two predictors.

1. Paste your sequence in raw format, enter the sequence name
and the E-mail address (optional), and click on ‘‘predict.’’

2. A new page appears where the estimated calculation time is
indicated. The user is asked to confirm the submission by
clicking on the OK button.

3. On the results page, the plot can be saved as an image (png
format) by clicking on it with the mouse right button. Resi-
dues with disorder probabilities higher than 0.5 are consid-
ered to be disordered. Above the graph, the amino acid
sequence is shown and disordered residues are shown in red.
Disorder probabilities per residue can be obtained by clicking
on the download button (below the graph), which yields an
output in the casp or csv format.

3.1.1.15. DisPSSMP DisPSSMP (http://biominer.bime.ntu.edu.tw/dispssmp/) is
based on the use of position-specific scoring matrices (PSSMs)
that takes into account the amino acid composition and residue
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position, i.e., the environment around each residue. The specificity
of DisPSSMP is that it condenses the PSSMs with respect to
physico-chemical properties of amino acids (29).

1. Paste your sequence in raw format, enter the E-mail address
(optional), and click on ‘‘predict.’’

2. A new page appears and the user is asked to click on ‘‘links.’’

3. Prediction results are returned online. The plot can be
saved as an image (png format) by clicking on it with the
mouse right button. Residues with disorder probabilities
higher than 0.5 are considered to be disordered. Below
the graph, disorder probabilities per residue are given in
casp format.

3.1.2. Predictors That Have

Not Been Trained on

Disordered Proteins

3.1.2.1. The Charge/

Hydropathy Method and Its

Derivative FoldIndex

The charge/hydropathy analysis is based on the elegant reason-
ing that folding of a protein is governed by a balance between
attractive forces (of hydrophobic nature) and repulsive forces
(electrostatic, between similarly charged residues) (30). Thus,
globular proteins can be distinguished from unstructured ones
based on the ratio of their net charge versus their hydropathy.
The Mean Net Charge (R) of a protein is determined as the
absolute value of the difference between the number of positively
and negatively charged residues divided by the total number of
amino acid residues. It can be calculated using the program
ProtParam at the ExPASy server (http://www.expasy.ch/
tools). The Mean Hydrophobicity (H) is the sum of normalized
hydrophobicities of individual residues divided by the total num-
ber of amino acid residues minus 4 residues (to take into account
fringe effects in the calculation of hydrophobicity). Individual
hydrophobicities can be determined using the Protscale program
at the ExPASy server, using the options ‘‘Hphob / Kyte &
Doolittle,’’ a window size of 5, and normalizing the scale from
0 to 1. The values computed for individual residues are then
exported to a spreadsheet, summed and divided by the total
number of residues minus four to yield (H). A protein is pre-
dicted as disordered if H < [(R +1.151) / 2.785].

A drawback of this approach is that it gives only a global
(i.e., not positional) indication, not valid if the protein is com-
posed of both ordered and disordered regions. It can be applied
only to protein domains, implying that a prior knowledge of the
modular organization of the protein is required.

A derivative of this method, FoldIndex (http://bip.weizmann.
ac.il/fldbin/findex), solves this problem by computing the charge/
hydropathy ratio using a sliding window along the protein (31).
However, since the default sliding window is set to 51 residues,
FoldIndex does not provide reliable predictions for the N- and C-
termini and is therefore not recommended for proteins with less than
100 residues.
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1. Paste your sequence in raw format and click on ‘‘process.’’

2. The results page shows a plot that can be saved as an image
(png format) by clicking on it with the mouse right button.
Disordered regions are shown in red and have a negative
‘‘foldability’’ value, while ordered regions are shown in
green and have a positive value. Disorder statistics (number
of disordered regions, longest disordered region, number of
disordered residues and scores) are given below the plot.

3.1.2.2. NORSp NORSp (No Ordered Regular Secondary structure predictor)
(http://cubic.bioc.columbia.edu/services/NORSp/submit.html)
generates multiple sequence alignments and relies on the principle
that long regions predicted to be devoid of secondary structure and
accessible to the solvent are generally unstructured (32). However,
a few exceptions to this rule exist, namely the ‘‘loopy proteins’’ that
are devoid of regular secondary structure and yet are ordered (33).

1. Enter your E-mail address, paste your sequence in raw format or
upload a sequence file, and click on ‘‘submit/run prediction.’’

2. Upon completion of prediction, the user is sent an E-mail
with a link to the result page. Boundaries of NORS regions
are indicated before the annotated sequence in which solvent
exposure, secondary structure elements, coils, and trans-
membrane regions are also indicated.

3.1.2.3. IUPred IUPred (http://iupred.enzim.hu) uses a novel algorithm that
evaluates the energy resulting from inter-residues interactions
(34). Although it was derived from the analysis of the sequences
of globular proteins only, it allows the recognition of disordered
proteins based on their lower interaction energy. This provides a
new way to look at the lack of a well-defined structure, which can
be viewed as a consequence of a significantly lower capacity to form
favorable contacts, correlating with studies by the group of Gal-
zitskaya [see (35)].

1. Enter the sequence name (optional), paste your sequence in
raw format, chose the prediction type (long disorder, short
disorder, structured regions), choose ‘‘plot’’ in output type
and adjust the plot window size, and click on ‘‘submit.’’

2. Prediction results are promptly returned online and the plot
can be saved (png format) by clicking on it with the mouse
right button. The output also provides a table with disorder
probabilities per residue. The significance threshold above
which residues are considered to be disordered is 0.5.

3.1.2.4. FoldUnfold The FoldUnfold predictor (http://skuld.protres.ru/�mlobanov/
ogu/ogu.cgi) calculates the expected average number of contacts
per residue from the amino acid sequence alone (35). The average
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number of contacts per residue was computed from a data set of
globular proteins. A region is considered as natively unfolded when
the expected number of close residues is less than 20.4 for its amino
acids and the region is greater or equal in size to the averaging
window.

1. Paste your sequence in raw format or upload a sequence file,
tick boxes ‘‘analyse regions also in those proteins which are
predicted as fully disordered’’ and ‘‘write profile’’ and click on
‘‘send.’’

2. Prediction results are returned online. Boundaries of disor-
dered regions are given. In the profile disordered residues
are shown in red. The average contacts per residue are also
given.

3.1.2.5. DRIP-PRED DRIP-PRED (Disordered Regions In Proteins PREDiction)
(http://www.sbc.su.se/�maccallr/disorder/) is based on search
of sequence patterns obtained by PSI-BLAST that are not typically
found in the PDB (http://www.forcasp.org/paper2127.html). If
a sequence profile is not well represented in the PDB, then it is
expected to have no ordered 3D structure. For a query sequence,
sequence profile windows are extracted and compared to the
reference sequence profile windows, and then an estimation of
disorder is performed for each position. As a last step, the results
of this comparison are weighted by PSI-PRED predictions. As
predictions can take up to 8 hours, it is preferred to choose to be
sent results by E-mail as well. In this latter case, the user is sent an
E-mail with a link to the result page.

1. Enter your E-mail address (optional), paste your sequence in
raw format, click on ‘‘submit,’’ and give your job a name
(optional).

2. Prediction results are shown in the amino acid sequence for-
mat with disordered residues underlined and a color code as a
function of disorder probabilities. Per residue disorder prob-
abilities are given below the amino acid sequence in the casp
format.

3.1.3. Hydrophobic Cluster

Analysis (HCA): A

Nonconventional Disorder

Predictor

Another non-automated method that is very useful for unveiling
unstructured regions is HCA (36). HCA outputs can be obtained
from http://bioserv.rpbs.jussieu.fr/RPBS/cgi-bin/ and from
the MeDor metaserver (http://www.vazymolo.org/MeDor/).
HCA provides a 2D helical representation of protein sequences in
which hydrophobic clusters are plotted along the sequence (36).
As such, HCA is not stricto sensu a predictor. Disordered regions
are recognizable as they are depleted (or devoid) in hydrophobic
clusters (see Fig. 18.1). HCA stands aside from other predictors
since it provides a representation of the short-range environment
of each amino acid, thus giving information not only on order/
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disorder but also on the folding potential (see Section 3.2).
Although HCA does not provide a quantitative prediction
of disorder and rather requires human interpretation, it provides
additional, qualitative information as compared to automated
predictors. In particular, HCA highlights coiled-coils
(see Fig. 18.1), regions with a biased composition, regions with
potential for induced folding, and very short potential globular
domains (for examples see (6, 7, 11)). Finally, it allows mean-
ingful comparison with related protein sequences and enables a
better definition of the boundaries of disordered regions.

3.1.4. Predictor

Specificities

Some predictors, namely Disopred2, Prelink and DisEMBL
Remark465, perform better on short disordered regions in the
context of globally ordered proteins. These predictors have a good
specificity (i.e., they predict relatively few ordered residues to be
disordered), but a moderate sensitivity (i.e., they miss a significant
number of disordered residues). Although recent reports suggest
that progress has been made in predicting short (< 20 residues)
disordered regions, it is noteworthy that the shorter the region of
predicted disorder, the higher the probability that it corresponds
to an ordered, yet devoid of regular secondary structure, protein

-Generate multiple sequence alignment

-Run disorder predictions using the MeDor metaserver and/or individual disorder
predictors and identify consensus predictions of (dis)order
-Run charge-hydropathy method on putative domains and provisionally classify
 them as structured or unstructured

-Compare disorder predictions with premarked regions and with domain architecture
-Run charge-hydropathy method on regions with dubious structural status
-Delineate boundaries of ordered/disordered regions more precisely using HCA
- Identify potential binding sites within disordered regions by HCA and PONDR VL-XT

-Identify regions of low sequence complexity (SEG)

-Identify predicted coiled-coils (Coils, ParCoil2), 
transmembrane segments and signal peptides (Phobius),
zinc-fingers, leucine zippers (2ZIP), disulfide bridges (DIpro)
-Generate HCA plot and mark regions obviously biased, 
i.e. devoid of hydrophobic clusters or highly hydrophobic

-Identify  long (>50aa) regions devoid of predicted
 secondary structure (NORSp, Psi-Pred…

-Premark variable regions that might correspond 
 to linkers between domains
-Try to get domain information and candidate 
 modular organization (PFAM, etc.)

Variable

Fig. 18.1. General scheme for prediction of disordered regions in a protein.

318 Longhi et al.



segment connecting �- or b-strands (Longhi et al., unpublished
data). Finally, while IUPred and Ucon perform well for predicting
long disordered segments, some predictors are ‘‘polyvalent’’
(e.g., RONN, PONDR VSL1, FoldIndex, and Globplot2).

3.2. Identifying Regions

of Induced Folding

IDPs bind to their target(s) through ‘‘molecular recognition
elements’’ (MoREs), where these latter are interaction-prone
short segments that become ordered upon binding to partner(s)
(37). It has been noticed (38) that PONDR VL-XT can highlight
potential MoREs [for examples see (39, 40)]. The analysis of
hydrophobic clusters and secondary structures is also instrumen-
tal for the identification of regions undergoing induced folding,
because burying of hydrophobic residues at the protein–partner
interface is often the major driving force in protein folding. In
some cases, hydrophobic clusters are found within secondary
structure elements that are unstable in the native protein, but
can stably fold upon binding to a partner. Therefore, HCA can be
very informative in highlighting potential induced folding
regions (see Fig. 18.2A).

1. Perform HCA on the query sequence using either the HCA
server or the MeDor metaserver (see Section 3.4) and look for
short hydrophobic clusters occurring within disordered
regions.

2. Perform prediction using PONDR VL-XT and look for sharp
(and short) drops in the middle of disorder predictions.

3.3. General Procedure

for Disorder Prediction

As the performance of predictors is dependent on both the type of
disorder they predict and on the type of disorder against which
they were trained, multiple prediction methods need to be com-
bined to improve the accuracy and specificity of disorder predic-
tions (6, 7). Figure 18.1 illustrates a general sequence analysis
procedure that integrates the peculiarities of each method to pre-
dict disordered regions.

1. Retrieve the amino acid sequence of the protein of interest by
entering the protein name at the NCBI home page (http://
www.ncbi.nlm.nih.gov/) after selecting ‘‘protein’’ in the
‘‘search’’ field.

2. Perform an analysis of sequence composition using the Prot-
Param ExPASy server (http://www.expasy.ch/tools/prot-
param.html) and compare the results with the average
sequence composition of proteins within the UniProtKB/
Swiss-Prot database (see http://www.expasy.ch/sprot/
relnotes/relstat.html).

3. Perform an analysis of sequence complexity using the SEG
program (41). The SEG program can be downloaded from
ftp://ftp.ncbi.nih.gov/pub/seg/seg, while simplified
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versions with default settings can be run at either http://men
del.imp.univie.ac.at/METHODS/seg.server.html or http://
www.ncbi.nlm.nih.gov/BLAST. The stringency of the search
for low-complexity segments is determined by 3 user-defined
parameters: trigger window length [W], trigger complexity
[K(1)], and extension complexity [K(2)]. Typical parameters
for disorder prediction of long non-globular domains are
[W]=45, [K(1)]=3.4, and [K(2)]=3.75, while for short

α-MoRE

 PDB 1T6O
Predicted α-MoRE

PONDR VL-XT of NTAIL

400 410 420 430 440 450 460 470 480 490 500 510 520

A

B C

Fig. 18.2. (A) MeDor output of NTAIL (VAZyMolO accession number: VAZy90 (11); DisProt
accession number: DP00160). Predicted secondary structure elements, as provided by
the Pred2ary predictor, are shown above the NTAIL sequence. The HCA plot is shown
below the amino acid sequence. Arrows below the HCA plot correspond to regions of
predicted disorder. The induced folding region (�-MoRE) is highlighted. Note that the
disordered state of NTAIL has been experimentally confirmed (39, 49). (B) Graphical
output of the VL-XT prediction of the NTAIL domain with the predicted�-MoRE highlighted
by a black bar. (C) Structure of the �-MoRE (dark grey �-helix) in complex with the
C-terminal X domain of the measles virus P (50) (PDB code: 1T6O) confirming its
involvement in partner-induced folding. The picture was obtained using Pymol. Note
that a drop in the VL-XT output similar to that corresponding to the �-MoRE can also be
observed for the 400–420 region (B) and that the HCA plot of this region shows the
presence of a small hydrophobic cluster (A), consistent with an additional induced folding
region. The folding potential of this region has been experimentally confirmed through
spectroscopic studies in the presence of 20% TFE (51).
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non-globular domains are [W]=25, [K(1)]=3.0, and
[K(2)]=3.3. Note however, that low-complexity regions can
also be found in ordered proteins, such as coiled-coils and
other non-globular proteins like collagen.

4. Search for (i) signal peptides and transmembrane regions
using the Phobius server (http://phobius.sbc.su.se/
index.html) (42), (ii) leucine zippers using the 2ZIP server
(http://2zip.molgen.mpg.de/) (43), and (iii) coiled-coils
using programs such as Coils (http://www.ch.embnet.org/
software/COILS_form.html) (44). Note that the identifica-
tion of coiled-coils is crucial since they can lead to mis-pre-
dictions of disorder [for examples see (6, 7)]. It is also
recommended to use DIpro (http://contact.ics.uci.edu/
bridge.html) (45) to identify possible disulfide bridges and
search for possible metal-binding regions by looking for con-
served Cys3-His or Cys2-His2 motifs in multiple sequence
alignments. Indeed, the presence of conserved cysteines
and/or of metal-binding motifs prevents meaningful local
predictions of disorder within these regions, as they may dis-
play features typifying disorder while gaining structure upon
disulfide formation or upon binding to metal ions (30).

5. Run hydrophobic cluster analysis (HCA) (http://bio-
serv.rpbs.jussieu.fr/RPBS/cgi-bin/) to highlight regions
devoid of hydrophobic clusters and with obvious sequence
bias composition.

6. Search for long (>50 residues) regions devoid of predicted
secondary structure using the PSI-PRED (http://bioinf.cs.
ucl.ac.uk/psipred/psiform.html) (46) and PredictProtein
(http://www.predictprotein.org/) servers.

7. Generate a multiple sequence alignment. A set of related
sequences can be obtained by running PSI-BLAST (http://
www.ncbi.nlm.nih.gov/blast/Blast.cgi). Click on the ‘‘get
selected sequences’’ option and save them to a file in Fasta
format. Use this file as input for building up a multiple
sequence alignment using ClustalW (http://align.gen
ome.jp/). Mark variable regions likely corresponding to flex-
ible linkers or long disordered regions.

8. Analyze the sequence against the PFAM database (http://
pfam.jouy.inra.fr/hmmsearch.shtml) to get domain informa-
tion and candidate modular organization.

9. Run individual disorder predictions and identify a consensus
of disorder. As a first approach, we suggest to perform pre-
dictions using the default parameters of each predictor, as
they generally perform at best in terms of accuracy, specificity,
and sensitivity. Once a gross domain architecture for the
protein of interest is established, the case of domains whose
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structural state is uncertain can be settled using the charge/
hydropathy method, which has a quite low error rate. As a last
step, boundaries between ordered and disordered regions can
be refined and regions with propensity to undergo induced
folding can be identified using HCA and PONDR VL-XT.

Since running multiple prediction methods is a time-consuming
procedure, use of the MeDor metaserver (47) (see Section 3.4) can
considerably speed up the procedure as it allows launching multi-
ple, simultaneous disorder predictions.

3.4. Running the MeDor

Metaserver for the

Prediction of Disorder

MeDor (MEtaserver of DisORder) (http://www.vazymolo.org/
MeDor/) (47) helps to identify protein disorder by providing a
graphical interface with a unified view of the output of multiple
disorder predictors (Fig. 18.2A). It allows fast, simultaneous
analysis of a query sequence by multiple predictors and easy
comparison of the prediction results. It also enables a standar-
dized access to disorder predictors and allows meaningful com-
parisons among various query sequences. Beyond providing a
graphical representation of the regions of predicted disorder,
MeDor is also conceived to serve as a tool allowing to highlight
specific regions of interest and to retrieve their sequence (47).
Presently, the following programs are run by MeDor: a second-
ary structure prediction (SSP), based on the StrBioLib library of
the Pred2ary program (48), HCA, IUPred, PreLink, RONN,
FoldUnfold, DisEMBL, FoldIndex, GlobPlot2, DISPROT
VSL2B, VL3, VL3H, and Phobius. While SSP and HCA do
not require a Web connection, the other predictors are remotely
launched through connection to the public Web servers. Addi-
tional predictors could be nevertheless easily implemented in
MeDor in the future. Predictors to be run can be selected from
the MeDor input frame.

MeDor provides a graphical output (Fig. 18.2A), in which
the sequence query and the results of the various predictors are
featured horizontally, with a scroll bar allowing progression from
the N-terminus to the C-terminus. All predictions are drawn
along the sequence that is represented as a single, continuous
horizontal line. In addition, MeDor outputs can be saved and
printed.

It is noteworthy that MeDor is not intended to provide a
consensus of disorder prediction and is rather conceived to speed
up the disorder prediction step by itself and to provide a global
overview of predictions. As such, the identification of regions of
disorder is presently done on a case-by-case basis and requires
human analysis. Future developments implying the generation of
an automated and reliable consensus of disorder are expected to
further accelerate the identification of both structured and disor-
dered regions.
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1. Go to the MeDor home page (http://www.vazymolo.org/
MeDor/).

2. Paste the sequence in either raw or Fasta format and option-
ally enter the sequence name.

3. Click on ‘‘Start MeDor.’’

4. Alternatively, MeDor can be downloaded (choose the appro-
priate version according to your computer environment).
Using the downloaded version of MeDor instead of the
applet version enables the user to (i) run DISPROT VL3,
VL3H, and VSL2B predictions (in the limit of 100 requests
per IP number), (ii) print the results, (iii) save the output as an
image, (iv) save (and load) files in the MeDor format, (v)
access the comment panel, and (vi) import a sequence by
providing the SwissProt accession number.
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Chapter 19

Protein Secondary Structure Prediction

Walter Pirovano and Jaap Heringa

Abstract

While the prediction of a native protein structure from sequence continues to remain a challenging
problem, over the past decades computational methods have become quite successful in exploiting the
mechanisms behind secondary structure formation. The great effort expended in this area has resulted in
the development of a vast number of secondary structure prediction methods. Especially the combination
of well-optimized/sensitive machine-learning algorithms and inclusion of homologous sequence informa-
tion has led to increased prediction accuracies of up to 80%. In this chapter, we will first introduce some
basic notions and provide a brief history of secondary structure prediction advances. Then a comprehensive
overview of state-of-the-art prediction methods will be given. Finally, we will discuss open questions and
challenges in this field and provide some practical recommendations for the user.

Key words: secondary structure, secondary structure prediction, multiple sequence alignment.

1. Introduction

1.1. How Do We Define

a Secondary Structure?
In 1951, Pauling and Corey (1, 2) first suggested the existence of
regular conformations of amino acid sequences in globular pro-
teins. In their studies they put forward two possible stable con-
formations of the backbone: the �-helix and the b-strand. Stability
of these elements is mainly gained by the formation of hydrogen
bonds between the residue side chains. Later it appeared that some
protein parts assume less regular folds. This third class of more
unstructured regions is commonly referred to as coil or loop. A
secondary structure element can be defined as a consecutive frag-
ment of a protein sequence which corresponds to a local region in
the associated protein structure showing distinct geometrical fea-
tures (see Fig. 19.1). Generally, about 50% of all protein residues
participate in �-helices and b-strands, while the remaining half is
more irregularly structured.

O. Carugo, F. Eisenhaber (eds.), Data Mining Techniques for the Life Sciences, Methods in Molecular Biology 609,
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The organization in specific secondary structure elements is of
crucial importance for the stability of proteins. It is commonly
known that when globular proteins fold into their 3D structure,
the hydrophobic residues tend to group together in the internal
core of the protein (while the hydrophilic residues can mainly be
found along the surface). Nonetheless, the hydrophilic nature of
the main-chain forms an obstacle for correct folding. This is
because the polar nitrogen and oxygen atoms of the main-chain
need to form hydrogen bonds, also when located in the protein
core where no solvent is available to engage in hydrogen bonding.
Fortunately, �-helices and b-sheets perfectly suit this stability
requirement, since each main-chain N-atom can associate with a
complementary O-atom. In �-helices, hydrogen bonds can be
conveniently formed between the main-chain residues of a succes-
sive turn, whereas b-strands require the formation of more com-
plex ‘parallel’ or ‘anti-parallel’ b-sheets to yield H-bonded
interaction between the polar main-chain atoms.

1.2. Importance of

Secondary Structure

Prediction

In the previous section we briefly described the importance
of secondary structure in the protein-folding process. It has
been observed that secondary structure elements are formed
early on during folding. Their subsequent assembly results in
the proteins’ initial structural framework (3). As a consequence
of this so-called framework model of protein folding, secondary

Fig. 19.1. Cartoon representation of a protein structure containing all three secondary
structure elements: helices, strands (displayed as arrows) and coils (displayed as ropes).
The PDB-ID of the protein, a formyl transferase, is 1meo.
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structure prediction techniques are often implemented in meth-
ods that infer protein 3D structures. One of these approaches,
called threading, aims at the identification of a template structure
that most closely matches a given query structure. Threading
techniques thus follow the so-called inverse folding problem,
where the question is not what three-dimensional structure a
given protein sequence will adopt (the folding problem) but
what sequence is compatible with a given three-dimensional
structure. In most threading implementations a database of ter-
tiary structures (for instance, the Protein Data Bank (PDB) (4)) is
scanned and for each fold a pseudo-energy is computed to deter-
mine if it is a good match for the query sequence, often in
conjunction with its predicted secondary structure (5–9). Also
ab initio prediction, where sequence information is used for de
novo prediction of a 3D model, has been shown to benefit sig-
nificantly from reliably predicted secondary structure (10).

In addition to fold recognition, secondary structure prediction
has also been successfully integrated in a number of further impor-
tant bioinformatics tools. These include homology detection pro-
grams (11, 12), multiple sequence alignment routines (13, 14)
and protein disorder prediction approaches (15). In all these cases,
the common thread is that structure is more conserved than
sequence. This applies particularly to more distantly related pro-
teins, where evolutionary relatedness might not be discernible at
the sequence level anymore but can still be detected at the struc-
tural level. In some applications, secondary structure information
is used indirectly. For instance, a threading algorithm might not
directly use information from secondary structure prediction but
employ a technique for remote homology detection that incorpo-
rates secondary structure prediction.

1.3. Deciphering

Prediction Rules from

Residue Patterns

1.3.1. Information Retrieval

The most intuitive and direct way to derive amino acid residue
patterns encoding distinct secondary structure topologies is to
gather information from sequences for which the corresponding
tertiary structure is known. In fact, many analyses using the Protein
Data Bank, currently holding over 50,000 solved protein struc-
tures, have led to a much better understanding of the principles
governing secondary structure formation. Other benefits have
come from the use of multiple sequence alignments, which has
been of great value for unravelling the evolutionary conservation
patterns. Although prediction methods differ in the way they
exploit these principles, all of them make use of the observed
trends in �-helices, b-sheets, and coils. This means that modern
methods all carry out a form of knowledge-based prediction,
where prediction rules are learned from information gathered
from databases. It should be kept in mind however that none of
these rules is infallible and examples are abundant where contro-
versial patterns dominate.
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1.3.2. �-Helices �-Helices are often positioned in proximity of the buried core of
the protein. The inner buried face of the helix is therefore usually
composed of hydrophobic residues, while the opposite side faces
the solvent and thus consists of more hydrophilic residues provid-
ing polar interaction with the solvent (in Fig. 19.2 an amino acid
hydrophobicity scale is provided). Given that one complete turn
around the central �-helical axis comprises 3.6 residues, the
expected sequence pattern is hydrophobic and hydrophilic resi-
dues alternating every two residues (see Fig. 19.3). Variations on
this theme can be observed in coiled-coil structures (e.g. so-called
leucine zippers) where two or more helices twist along each other’s
axes. Here the periodicity is slightly different since hydrophobic
residues are repeated every seven residues. Some residue types are
not seen in helices or parts thereof. An example is proline, which is
usually not observed in the central parts as its typical circular side-
chain causes a disruption of the helical turn. Nevertheless prolines
are able to form hydrogen bonds at least at the N-terminal side of
the helix and this explains why they can participate more easily in
the first turn of the helix. For similar reasons also other amino
acids, such as glycine, serine, or tyrosine, tend to avoid �-helices as
they do not contribute to a stable helical conformation.

Fig. 19.2. Normalized hydrophobicity scale for amino acids as proposed by Eisenberg
et al. (74).

Fig. 19.3. Hydrophobicity patterns for different secondary structures types. Simplified
structures of both the �-helix and the b-sheet are given along with a generalized amino
acid scheme (white balls indicate hydrophilic amino acids, black balls hydrophobic).
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1.3.3. �-Strands The amino acid patterns observed in b-strands are of a different
nature. A tight net, the b-sheet, is formed through hydrogen-
bonded main-chain interaction between the strands. Depending
on the orientation of the strands, the b-sheet is organized in a
parallel or anti-parallel manner. A distinction can be made between
strands located in the buried part of the sheet and those that reside
at the edges. In buried strands (see Fig. 19.3), the main-chains
typically form hydrogen bonds with the backbone of the neigh-
bouring strands. The two strands at either edge of the b-sheet
however have only one neighbouring strand at the inside and must
therefore satisfy one half of their main-chain hydrogen bonding
requirement with solvent or protein parts not involved in the b-
sheet considered. An elegant solution for this problem is seen in
the so-called b-barrel fold where the two edge strands are brought
in close proximity such that their main-chains can now form
mutual hydrogen bonds. Because of their position away from the
solvent, buried b-strands typically consist of hydrophobic amino
acids. Edge strands often have one face exposed to the solvent,
giving rise to an alternating 1-to-1 hydropathical pattern (see
Fig. 19.3) caused by the fact that their side-chains alternatingly
protrude into the solvent or into the protein interior.

Unlike helices, strands are able to accommodate ‘disruptive’
amino acids (such as glycines) giving rise to so-called b-bulges
(16, 17) that kink the main-chain but do not disrupt the tight
structure formed by the hydrogen bonds. Proline residues do not
occur in b-bulges as their main-chain conformation is not con-
sistent with this structure (17). Prolines are preferred constitu-
ents of edge-strands, where they can form hydrogen bonds with
the solvent.

1.3.4. Loops As mentioned above, loop regions are mainly located at the protein
surface. Unlike �-helices and b-strands, loops do not have a
defined structure (in fact they are unstructured) and residue side-
chains are usually not involved in hydrogen bond formation. These
distinctive properties are partly guaranteed by the occurrence of
polar residues such as alanine, glycine, serine, and tyrosine. Gly-
cines are particularly preferred in loops because of their inherent
flexibility. Furthermore, prolines are regularly observed in these
regions because their rigid and unusual main-chain structure is not
an obstacle for hydrogen bonding in loops as opposed to helices
and strands.

1.4. Building Up

Topology Models

The promising initial results of secondary structure prediction
have encouraged many researchers to investigate mechanisms
behind the higher order stages of the folding process. Unfortu-
nately, tertiary structure prediction has not yet reached a generally
satisfying level and as a result so-called structural genomics initia-
tives have been instigated to crystallize all representative members
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of the protein-folding space. Nevertheless several principles based
on secondary structure can be used to predict a helpful topology
model of a protein.

l b-�-b motifs, repetitive elements of two b-strands alternated
by an �-helix, in more than 95% of all cases give rise to a right-
handed chirality.

l More in general, if proteins contain both �- and b-topologies,
the helices often cover up a core of b-strands. For modelling
purposes it can therefore be useful to consider that b-sheets
tend to be ‘sandwiched’ in between �-helices.

l Transmembrane segments, where part of a protein sticks into
the cell membrane, can serve well as anchoring points for a
topology model of membrane proteins. Especially hydropho-
bicity patterns for transmembrane �-helices are quite well
recognized and can be quite reliably predicted by one of the
state-of-the-art methods. This topic will be described more
extensively below.

l Residue conservation, displayed by multiple sequence align-
ments, can also be informative for a topology model. On the
one hand, gapped alignment regions may indicate an unstruc-
tured region that will probably correspond to a loop. On the
other hand also strongly conserved residues might be com-
prised in loops: these are then likely to be responsible for the
catalytic function of enzymes. The grouping of these catalytic
residues can help to reconstruct the active site of the model.

2. Overview of
Secondary
Structure
Prediction Methods

2.1. The Early Methods

The first attempts to predict secondary structure were made in the
1970s and involved only single sequences. Most early methods
basically relied on a straightforward statistical analysis of sequence
composition underlying the three secondary structure elements.
The main challenge in the early days was that only relatively few
structures were experimentally verified, such that the statistics
could only be gathered from relatively few observations. As a
result, the early prediction accuracies were in between 50% and
60% (18). It is important to keep in mind that based on the overall
distributions of helices, strands, and coils (of about 30%, 20% and
50%, respectively), a random predictor will give an accuracy of
around 40%.

The early approach proposed by Nagano (19) explored the
likelihood of residue pairs within specific secondary structures to
show short-range interactions (up to six residues in sequence). The
interactions were linearly combined to calculate interacting
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residue propensities for each secondary structure element. Also the
Chou–Fasman method (20) based its predictions on differences in
residue type composition for the various secondary structure
states. Neighbouring residues were checked for helices and strands
and predicted types were selected according to the higher scoring
preference. Lim (21) instead developed an extensive set of stereo-
chemical prediction rules for �-helices and b-sheets, based on their
observed frequencies in globular proteins. For some time this was
the most accurate method (reaching 56% accuracy) due to the
valuable hydrophobicity rules applied here (22). Nevertheless the
Chou–Fasman method was more popular due to its public avail-
ability. A breakthrough in the field was obtained by the GOR
method (23), which uses amino acid frequencies within a 17-
residue window to discriminate between secondary structure
types. Further refinement of the method in subsequent versions,
including some post-processing steps (24), led to an accuracy of
around 65%: a notable success for a method based solely on single
sequence prediction.

2.2. A Note on Current

Prediction Methods

Also recent methods adopt the window approach that includes a
local stretch of amino acids around a central position to predict the
secondary structure state at that position. Training algorithms,
when properly applied, then help to decipher the prediction
rules. Whereas early methods relied on a straightforward statistical
analysis of sequence composition underlying the three secondary
structure elements, modern methods adopt more sophisticated
machine learning protocols for gleaning the sequence signals asso-
ciated with the secondary structure types. However, the powerful
combination of a large number of crystallized protein structures
for better training techniques and the use of multiple sequence
alignments have been of great advantage in recent prediction
methods. The latter idea was first exploited by Zvelebil et al. in
1987 (25) and its success was later also confirmed by Levin et al.
(26) and Rost and Sander (27). As a consequence, nowadays all
state-of-the-art methods (including those described below) use
multiple alignment information to better incorporate the evolu-
tionary signals of residue and secondary structure conservation.
Another crucial development in the field concerns the usage of
computational neural networks for secondary structure prediction.
The earliest published method (28) appeared when neural net-
work computing was in its infancy – only 2 years after the initial
publication by Rumelhart et al. (29). After the first successful
neural network implementation by Qian and Sejnowski, predic-
tion algorithms based on other computational formalisms were
developed, the most important of which include k-Nearest-Neigh-
bour approaches, Hidden Markov Model (HMM) methods and
Consensus approaches. Although each of these techniques have
their own distinct advantages, over the past several years neural
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nets have turned out to be the most successful. As a result alter-
native approaches also have converged on neural nets, for instance
by merging them into their original strategy.

The next section gives an overview of state-of-the-art methods
that are exclusively or partly based on neural networks. For most of
them a Web server is available of which the addresses are given in
Table 19.1.

2.3. State-of-the-Art

Methods: The Power of

Neural Networks

2.3.1. Principles of Neural

Networks

Neural networks are complex machine-learning algorithms that
are based upon non-linear statistics. They are organized as inter-
connected layers of input and output units and can also contain
intermediate unit layers (for a review, see Ref. (30)). Each unit in a
layer receives information from one or more other connected
units, as if it receives an electrical stimulus being a live neuronal
cell, and determines its output signal based on the weights of the
input signals. A neural net can be regarded as a black box, which
operates as a result of the specific weights of the internal connec-
tions connecting the units and the function used in each unit to
convert the input signals into an output signal. In practice, often a
simple step function associated with a threshold value is used to
determine the output signal. The training protocol followed to
optimize the grouping of a set of input patterns into a set of output
patterns by adjusting the weights is therefore crucial. Training
normally starts with a set of random weights, after which in a so-
called forward pass the outputs are calculated and the error at the
output units determined. Then, in a backward pass, the output unit
error is used to alter the weights on the output units. The error at
the hidden nodes is calculated by backpropagating the error at the

Table 19.1
Overview of state-of-the-art secondary structure predictors and their Web sites

Name Web site

PHD/PHDpsi http://www.predictprotein.org/

PSIPRED http://bioinf.cs.ucl.ac.uk/psipred/

PROF (king) http://www.aber.ac.uk/�phiwww/prof/

SSpro http://scratch.proteomics.ics.uci.edu/

Porter http://distill.ucd.ie/porter/

APSSP2 http://www.imtech.res.in/raghava/apssp2/

SAM-T06 http://www.soe.ucsc.edu/research/compbio/SAM_T06/T06-query.html/

YASPIN http://www.ibi.vu.nl/programs/yaspinwww/

Jpred (v3) http://www.compbio.dundee.ac.uk/jpred/
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output units through the weights, while the weights on the hidden
nodes are adjusted in turn using these values. For each data pair to
be learned, a forward pass and backward pass are performed. This
scenario is iterated until the error is at a low enough level (or a
maximum number of iterations is reached). Generally, neural net-
based secondary structure prediction methods employ a sliding
window in order to train the network with signals corresponding
to a single secondary structural element (see Fig. 19.4). Care must
be taken not to overtrain the network, as this leads to a network
that is not able to extrapolate the patterns it has seen during the
training phase to new unseen sequences. As stated above, methods
that incorporate neural networks got the upper hand but also
other techniques which attempted to combine neural networks
with other powerful schemes will be described.

2.3.2. PHD/PHDpsi These two methods share the same basic neural network technique
and are therefore covered together in this section. The initial PHD
method (27) was the first approach that combined database
searching and prediction from multiple sequence alignment
using the neural network formalism, and these benefits resulted
in an accuracy for the first time surpassing 70%. In the classical
PHD approach, first the query sequence is fed to BLAST (31) in
order to retrieve homologous sequences from the SWISS-PROT
(32) database. These are subsequently aligned using the MAX-
HOM alignment program (33). The resulting multiple sequence
alignment is then converted to a profile, which is passed on to the

Fig. 19.4. Schematic representation of a sliding window approach used to train a neural
network. A window, for which each time the middle position will be predicted, is slid over the
sequence. The trained neural network converts the window information (here ‘NMHRYPN’)
into a prediction (here ‘C’ representing coil) for the middle residue (here ‘R’). The neural
network depicted represents a single sequence prediction. Modern methods typically use a
multiple sequence alignment as input, which is then converted into a profile comprising a
frequency table of the amino acids appearing at each alignment position.

Protein Secondary Structure Prediction 335



core of the method: a three-layered neural network. In the first
layer a 13-residue window slides over the multiple alignment
profile and produces a three-state raw secondary structure predic-
tion. The next network layer re-evaluates the raw output now
using a 17-residue sliding window and attempts to correct unrea-
listic solutions provided by the previous network. A consequence
of the neural network training protocol is that prediction errors
might arise due to training biases rendering adjustment of the
three-state probabilities crucial. The third network layer in the
PHD method therefore represents a so-called jury network,
where the predictions of a number of independently trained two-
layered networks are converted into a final prediction.

The more recent PHDpsi method (34) exploits the advantages
coming from increased protein database sizes and improved
homology detection methods into the original approach. Follow-
ing other methods in the field (see below), the PSI-BLAST
method (35, 36) is used here to find more distantly related
sequences, resulting in improved multiple alignment reliability.

2.3.3. PSIPRED Another popular method is PSIPRED (37). Similarly to PHDpsi it
invokes PSI-BLAST to gather additional sequence information for
the given query sequence. However the position-specific sequence
profiles (PSSMs) obtained by PSI-BLAST are directly taken as input
for the neural network. The neural network architecture itself is less
complex that that of PHD and only consists of two layers. First a
PSI-BLAST sequence profile of window length 15 is passed to the
first layer for an initial prediction. Then a second layer filters these
raw results and determines the final output. Both the usage of local
sequence alignments in the first step and a rather straightforward
but effective training protocol for the neural networks has shown to
be of great advantage for the prediction accuracy. As a consequence,
the wide popularity of the method is mainly due to its easy usage and
high overall prediction performance.

2.3.4. PROF (King) The PROF (king) algorithm (38) follows a complicated scheme
where multi-staged classifiers are used as input to a three-layered
neural network architecture combined with linear discrimination.
The idea behind the approach is to use as much relevant information
as possible using independently trained algorithms. As a first step of
the PROF (king) method, GOR formalisms (see above) are ‘learned’
and used as classifiers for the neural network. As a next step, homo-
logous sequences to the query are obtained using PSI-BLAST. Both
the PSSM containing local information and profiles obtained after
global alignment constitute a second group of classifiers for the
neural net. As a third step, the outputs are given to a subsequent
neural network layer which is combined with linear discriminant
analysis. In the final step, additional attributes are used to produce
new classifiers: the hydrophobic moment in helices or strands, the

336 Pirovano and Heringa



fractions of several hydrophilic residues, and the secondary structure
fractions determined in the preceding step. A last neural network
layer then predicts the final secondary structure states.

2.3.5. SSpro/Porter SSpro (39) is among the leading secondary structure prediction
algorithms in terms of accuracy. The method takes advantage of a
sophisticated protocol coined bi-directional recurrent neural net-
work (BRNN). Of particular interest is the effort made in this
method to include long-range interactions, which is considered a
challenging task for prediction techniques. A solution provided by
the BRNN architecture is the use of a basic sliding window plus an
additional two windows that slide in from opposite sides (each
covering the entire sequence) at each basic window position.
Updated versions of the program (40) benefit from the use PSI-
BLAST profiles as input for the BRNN whereas the original ver-
sion used BLAST profiles. As another update, an additional SSpro
flavour emerged (SSpro8) able to predict eight-state secondary
structure instead of the classical three-state prediction, where the
grouping in eight states follows the DSSP-concept (see Section 3).

In this section also the prediction program Porter (41) should
be mentioned, which is a further development of the SSpro toolkit.
The new elements implemented in Porter include an extension of
the amino acid alphabet describing the input profiles, improved
incorporation of long-range distance information, a more sophisti-
cated filtering, and the use of more extensive training sets. Although
only a slight improvement is observed relative to SSpro, Porter is the
current top performer, attaining an accuracy of about 80% accord-
ing to the EVA assessment server (see below).

2.3.6. PSSP/APSSP/

APSSP2

An alternative to neural networks are k-nearest-neighbour (kNN)
techniques. Here an initial training phase is applied on sequence
fragments from a database containing solved structures. For each
database fragment, also called ‘exemplar’, the central residue is
labelled according to the observed secondary structure state. Next,
a sliding window approach is applied to the query sequence: each
window is compared with the exemplars and the k most similar
fragments are defined. From all selected k secondary structure labels
(typically between 25 and 100) three-state propensities are calcu-
lated resulting in the final assessment. Neural network methods
currently outperform kNN approaches and perhaps the
best explanation for this is the reduced predictive power of
kNNs in cases where no closely related solved structures are available.
A number of kNN-based approaches integrate neural network sys-
tems in an attempt to obtain a synergic effect from this combination.

An interesting method that combines a kNN strategy with
neural networks is PSSP (42). As a first step of the method, a
‘classical’ nearest-neighbour classifier searches for the most similar
exemplars in the database. However, given the huge number of
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protein structures that has become available, this step would be
extremely slow. To alleviate this problem, only short sequence
stretches (of three residues) that are identical to the database
sequence are considered. As a second step, a standard neural net-
work is implemented, which complements the limited fold cover-
age of the kNN. The third step evaluates the prediction
probabilities coming from the first two steps and determines the
final secondary structure state. A final refinement is subsequently
performed using a so-called structure to structure approach. Two
advanced versions of the program, APSSP (43) and APSSP2 (44),
have had some modifications effected as compared to the original
method: the original kNN step is in both these methods replaced
by an example-based learning (EBL) technique. Furthermore,
instead of the neural network approach adopted in the original
protocol, the APSSP algorithm incorporates the method Jnet (see
Section 2.3.9) as a second prediction step, whereas the APSSP2
method maintains the neural network approach, albeit the input is
a multiple sequence alignment (created with PSI-BLAST) repla-
cing the single sequence approach of the original PSSP method.

2.3.7. SAM-T99/SAM-T02/

SAM-T06

The SAM package contains a collection of sequence analysis tools
that take advantage of Hidden Markov Models (HMMs). The
SAM-T series includes a structure prediction method that combines
HMMs with neural nets to reliably assign secondary structure. An
HMM is a probabilistic model that contains a series of states linked
together by state transitions. Compared to the standard Markov
model, the internal parameters are unknown (hidden) and the
challenge is to unravel these from the observed output. HMMs
are implemented in a variety of areas, including speech recognition
and weather forecasting. A successful application in bioinformatics is
HMM-based remote homology searching (45, 46). This is also the
first step of the SAM-T99 (46, 47) structure prediction protocol,
where an HMM is used to search iteratively for related sequences in
a protein database. From the sequences found, a proper multiple
alignment is constructed which is then fed as input to a neural
network (as seen in a number of related approaches). In SAM-T02
(48), the follow-up, the original protocol was improved by includ-
ing predicted secondary structure features in the scoring functions
of other techniques included in the package. The more recent
version, SAM-T06 (49), refined the iterative strategies and the
local structure prediction method. Moreover, the package now
also includes contact prediction and full-coordinate 3D structure
prediction, which can be performed in a fully automated manner.

2.3.8. YASPIN The YASPIN method (50) also employs HMMs and neural net-
works, though using a rather different strategy. The method uses a
single feed-forward perceptron network which receives (1) a 15-
residue PSSM window obtained from PSI-BLAST and (2) an
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additional unit indicating protein chain terminations. These are
passed to the output layer that provides a seven-state prediction:
helix beginning (Hb), helix (H), helix end (He), strand beginning
(Eb), strand (E), strand end (Ee) and coil (C). The helical and
stranded flanking regions are taken as separate entities because these
regions often exhibit discernible sequence patterns. The strength of
the neural net implementation of YASPIN resides both in its simpli-
city and in the effort to capture position-specific signals relating to
capping regions of the structural elements. Finally, the seven-state
output of the neural network is filtered through an HMM, which
applies the Viterbi algorithm to optimally predict a three-state sec-
ondary structure for the given query. A specific strength of the
method is its ability to predict b-strands with high accuracy.

2.3.9. Jpred (Jnet) A different class of methods are consensus methods, which were a
consequence of the realization that no single strategy will be able to
outperform all others for the whole protein range. On the one hand,
the different methodologies and systems behind each method will
yield alternative predictions, where it is likely that some strategies will
be more effective than others depending on the particular case
considered. On the other hand, methods are trained using different
techniques and training sets which can cause an undesired bias in a
methods’ performance. A solution to these problems is provided by
consensus approaches which basically combine the outcomes of
several state-of-the-art methods. A simple majority voting scheme
can be adopted to determine for each position the most likely (i.e.
the most observed) secondary structure state. The idea is analogous
to the classical use of three clocks on board of historic navy vessels,
such that a failing clock could be detected whenever the other two
continued to work properly. It should be stressed however that
consensus methods can become biased easily if they cover the meth-
odology space in an unbalanced manner, for instance by including a
number of similar methods that produce correlated results. Never-
theless, consensus approaches are promising in this field as they are
less affected by chance effects involved in single methods.

A widely used consensus method for secondary structure pre-
diction is Jpred. The original method was proposed in 1998 (51).
Homologous sequences to the query were retrieved using BLAST
and subsequently aligned with ClustalX (52). The resulting multi-
ple sequence alignment was then fed to several methods, including
PHD (53), PREDATOR (54) and NNSSP (55). A simple majority
voting scheme determined the final output, albeit if no winning
prediction could be declared, the PHD result was taken. A few
years after the introduction of the original Jpred method, the Jnet
algorithm was incorporated (56) in place of the various prediction
methods included in the original Jpred implementation, inducing
a substantial change in the method. The Jnet algorithm itself can
be considered a consensus method but only of assorted neural
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networks, akin to the PHD method (see above), rather than of
different prediction techniques. This development made the Jpred
method less dependent on the developments of other structure
predictors. As a first step in the new Jpred approach, for each query
sequence PSI-BLAST is run after which a filtering step removes
redundant sequences. In the second step, alignment profiles are
calculated using different strategies and given to the neural net-
work ensemble. Recently an updated version of the prediction
server has become available, Jpred 3 (57), which incorporates the
Jnet v2.0 algorithm. The strategy now only uses PSI-BLAST
PSSMs and hidden Markov model profiles from HMMER (45),
albeit the complexity of the neural network has been increased.

3. Assessing
Prediction
Accuracy

3.1. How Do We Assess

Predictions Using

Experimentally Solved

Protein Structures

At present, the main source of reference secondary structures is
derived from the Protein Data Bank (PDB). The PDB is a continu-
ally updated database of all available experimentally derived three-
dimensional protein structures. The PDB data is in the form of
three-dimensional coordinate files, which can be parsed to extra-
polate the secondary structure elements. The most commonly used
secondary structure assignment program is DSSP program, which is
based upon hydrogen bonding patterns between main-chain atoms.
The program is used to produce the DSSP database (Dictionary for
Secondary Structure of Proteins) (58). A more recent development
is the DSSPcont protocol (59), which for each residue position
provides a secondary structure likelihood. Another popular assign-
ment program is STRIDE (60), which incorporates a knowledge-
based assignment technique.

There are two ways in which one can approach the issue of
protein structure prediction accuracy. The first way is from the
developer’s point of view, where the interest is in how well a method
can react to a challenging problem. This question is addressed in the
CASP and CAFASP meetings. The second way is from the user’s
point of view, so mainly molecular biologists. Here the interest is in
which method is overall better, so that misleading results can be
minimized. In this case, the EVA team has set up a server (http://
cubic.bioc.columbia.edu/eva) that continually evaluates the accu-
racy of prediction programs that are registered to it.

3.2. CASP and CAFASP The CASP experiments (Critical Assessment of techniques for
protein Structure Prediction) are organized to assess all types of
methods for predicting protein structure and discuss the current
advances in the field as well as required future directions and
improvements for problematic areas in the field. The first CASP
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meeting was held in 1994 and has since been held bi-annually in
different locations around the globe. The most recent experiment
was CASP7 in November 2006 (for an overview see (61)). The
CASP experiments put together protein sets of which the solved
structural information has not been released yet and challenge all
methods that take part to do their best predictions. This way, every
2 years the best methods are evaluated using newly solved proteins
that have not been seen by any of the contenders. In addition,
closely linked to CASP are the CAFASP experiments (Critical
Assessment of Fully Automated Structure Prediction), which use
the CASP protein sets to test automatic prediction servers that are
available online for researchers to use. The fifth and latest CAFASP
experiment was held together with CASP 7 in 2006. These experi-
ments are mainly aimed to give an assessment of what online
automatic tools are currently available to researchers and to deter-
mine how good they are by assessing them on equal terms.

3.3. The EVA Automatic

Evaluation of

Prediction Methods

The EVA server (EValuation of Automatic protein structure predic-
tion) is a Web-based assessment tool that has been performing evalua-
tions of the accuracies of its member structure prediction servers since
June 2000 (62). The assessment comprises four different categories of
structure prediction: (a) comparative modelling, (b) fold recognition
and threading, (c) secondary structure prediction and (d) inter-residue
contact prediction. The EVA server updates its reference secondary
structure data sets on a daily basis by retrieving the most up-to-date
experimentally determined structures from the PDB and employing
the DSSP program (58) to parse the 3D coordinates into secondary
structure chains. The amino acid sequences of the newly acquired
proteins are then submitted to the member secondary structure pre-
diction servers and their predictions are evaluated with reference to
those generated by the DSSP program. At present (June 2008), 19
secondary structure prediction server-members are assessed by EVA
and freely available on the EVA Web site at Columbia University
(http://cubic.bioc.columbia.edu/eva/) and also mirrored at the
UCSF (http://eva.compbio.ucsf.edu/�eva/) and at the CNB
Madrid (http://pdg.cnb.uam.es/eva/).

4. Methods for
Transmembrane
Topology
Prediction Membrane proteins form a distinct topological class due to the

presence of one or more transmembrane (TM) sequence segments.
In contrast to globular proteins where all possible mutual orienta-
tions of individual structural elements are in principle possible, the
TM segments of membrane proteins are subjected to severe restric-
tions imposed by the lipid bilayer of the cell membrane.
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There is a considerable lag in structures available for mem-
brane proteins compared to the large and vastly growing numbers
of soluble proteins due to limitations of current crystallization
techniques. In fact not even 2% of all solved structures deposited
in the PDB database show a membrane topology (4, 63), although
they constitute around 20–30% of the total number of sequenced
proteins (64). The most frequently observed secondary structure
in transmembrane segments is the �-helix, but also transmem-
brane structures based on b-strands that constitute a b-barrel
have been encountered.

Fortunately, the location of the transmembrane segments in the
primary sequence is relatively easy to predict due to the rather strong
tendency of certain hydrophobic amino acid types with their special
physico-chemical properties to occur in membrane-spanning
regions. A number of methods are available for prediction of �-
helical TM segments, achieving accuracies above 70%. Nonetheless,
just like in globular proteins, it is a hard task to determine the exact
location of the structural element compared to the number of
segments. Two widely used methods that employ HMMs for TM
topology prediction are HMMTOP (65) and TMHMM (66).
Another HMM-based method, called Phobius (67), is able to also
discriminate between TM segments and signal peptides. This
method performs rather well on proteins containing a signal peptide
since other methods often confuse signal peptide patterns with
transmembrane patterns. PolyPhobius (68) follows the Phobius
protocol but now includes homology-extended information from
PSI-BLAST for prediction. The MEMSAT (69) method also
exploits evolutionary information from PSI-BLAST, albeit it imple-
ments neural networks. The claim here is that, akin to secondary
structure prediction methods, the evolutionary information repre-
sented in a sequence alignment is incorporated more optimally in
neural nets. There are only a few prediction methods for b-barrel
TM segments. Among these is TBBpred (70), a neural network-
based method which also incorporates a support vector machine.
A major problem for training is the severely limited number of
experimentally solved b-barrel TM structures available to train on.

5. Integrating
Secondary
Structure
Information into
Multiple

5.1. Sequence

Alignment

An important application of secondary structure prediction is the
integration of secondary structure information in multiple
sequence alignment techniques. Given the gap in between the
availability of sequence and structure data, most sequence analysis
protocols have to resort to predicted structural data. In the case of
multiple alignment, incorporating secondary structure information
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relies on the fact that in divergent evolution molecular structures are
more conserved than their corresponding coding sequences. This
implies that secondary structures can be used to pinpoint homo-
logous sequence regions if the evolutionary traces in the sequences
themselves have become obscure. Owing also to the fact that mod-
ern secondary structure prediction techniques approach 80% in
prediction accuracy, yielding four out of five residues correctly
predicted on average, the evolutionary advantage of using secondary
structure information now outweighs the chance of misprediction.

Following the multiple alignment method PRALINE (13,
71, 72), the SPEM (14) method and the recently developed PRO-
MALS (73) technique are able to complement progressive align-
ment with secondary structure prediction in an attempt to improve
the alignment accuracy. While PRALINE and SPEM use a standard
progressive alignment protocol, PROMALS adopts Bayesian con-
sistency to fill its library with the posterior decoding of a pair hidden
Markov model.

Further, the PRALINE method incorporates an iterative
scheme to optimize alignment and secondary structure prediction,
where secondary structure prediction can be performed using an
initial multiple alignment, after which the next multiple alignment
is created with the help of the predicted secondary structure.
Alternatively, for each sequence, homologous sequences can be
obtained by using PSI-BLAST, followed by secondary structure
prediction.

6. Challenges for
the Field and
Practical
Considerations

6.1. Is There an Upper

Limit?

The current state-of-the-art sustained prediction accuracy is 80% as
attained by the Porter method (see above). The most important
feature to which this top accuracy can be attributed is the incorpora-
tion of long-range interactions by means of two extra windows slid
over the sequence in opposite directions. This mechanism is likely
to particularly aid the prediction of b-strands, which generally turn
out to be the least predictable secondary structure element due to
their context dependency. Since b-strands embedded in the core of
a b-sheet need two adjacent b-strands to satisfy the hydrogen bond-
ing requirements (see above), the side-chains of such a b-strand
together with those of its neighbouring strands need to accommo-
date the arrangement of the three strands in either a parallel or anti-
parallel fashion. Sequence patterns associated with such interactions
can be effectively traced by the triplet window approach as imple-
mented in the Porter method. Some other local protein structures
might also be amenable to this technique. An example is interacting
�-helices in the b-barrel fold, where each helix interacts with two
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neighbouring helices. However, other structures that cannot be
approximated by three colinear stretches of protein sequence are
not likely to be predicted accurately by the Porter prediction
scheme.

It is interesting to note that the available prediction programs
do not assess the likelihood of the predicted secondary structure
with respect to the tertiary structure. For example, a single pre-
dicted b-strand is highly unlikely, and so is a predicted alternating
b/� structure starting with a N-terminal helix.

Further improvements in accuracy beyond 80% might result
from more flexible schemes to incorporate long-range interac-
tions, while gains might also be anticipated from techniques that
combine secondary structure prediction and higher-order struc-
ture akin to the framework model of protein folding (see above),
possibly in an iterative fashion.

6.2. Prediction

Accuracy and Multiple

Alignment Quality

A crucial factor in the prediction of secondary structure is the
quality of the input multiple sequence alignment. In fact, where
15 years of development of secondary structure prediction techni-
ques has lead to an increase of about 7% in prediction accuracy,
alternative alignments obtained from different alignment pro-
grams lead to secondary structure prediction accuracies varying
easily over 20%. For optimal alignment it is important to carefully
select an appropriate set of orthologous sequences that can be
trusted to fold into the same secondary structural elements. The
PSI-BLAST homology searching program is currently the most
widely used method for gathering a set of sequences orthologous
to a given query sequence. Sources of error are overly similar
sequences that will lead to biases in the sequence profile abstracted
from the multiple alignment, while distantly related sequences
might lead to misalignment. Another complicating factor for
assembling a set of orthologous sequences is the occurrence of
orphan sequences that have no relatives in current sequence data-
bases. A consequence is reduced evolutionary information in the
multiple alignment that can be reduced to a single sequence in
extreme cases, or the inclusion of non-homologous sequences that
are unlikely to have similar tertiary structures and comprise a
different secondary structure.

It should be stressed that even if an optimal set of orthologous
sequences is assembled and aligned exactly according to their
evolutionary relationships, slight differences in the length of sec-
ondary structure elements in the various orthologous sequences
will lead to alignment where the flanking regions of matched
helices and strands will be rugged, resulting in noise that will
negatively affect the delineation of the secondary structure ele-
ments of the query sequence. The intricate evolutionary relation-
ships between orthologous sequences and associated structural
variation is believed to be a major burden for optimal prediction
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based upon multiple alignment information. The development of
filtering techniques for homologous regions that will lead to more
consistently matched flanking regions might aid the prediction
accuracy. However, for higher order structure prediction based
upon assembling predicted secondary structure elements, it is
more permissible to mispredict the flanking regions of the second-
ary structures than to miss a single complete helix or strand.

6.3. Practical

Recommendations

A number of prediction techniques report so-called reliability
indices accompanying the putative secondary structure elements,
indicating to what extent the user might trust the predictions. This
allows the user to select the most reliably predicted secondary
structure elements, which generally are predicted with higher
accuracy than regions with lower reliability indices.

It is also important to include a number of different state-of-
the-art methods in the prediction of secondary structure. In case of
inconsistencies it is advisable to assemble a consensus prediction
where preference might be given to the most reliable prediction
methods. Reliability indices can aid the effective weighting of
prediction accuracies of the methods included. It is also recom-
mended to carefully select a set of putative orthologous sequences
and attempt a number of different multiple alignment techniques.
As mentioned above, multiple alignment differences can lead to
more varying predictions than obtained as a result of different
prediction techniques.

Before finalising a prediction, the structural implications of the
predicted secondary structure elements should be checked. It can
be insightful to include threading techniques in this process, as
those algorithms might aid the tertiary structural and functional
annotation of a given query sequence, and in turn provide infor-
mation as to the most crucial secondary structure elements.
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Chapter 20

Analysis and Prediction of Protein Quaternary Structure

Anne Poupon and Joel Janin

Abstract

The quaternary structure (QS) of a protein is determined by measuring its molecular weight in solution. The
data have to be extracted from the literature, and they may be missing even for proteins that have a crystal
structure reported in the Protein Data Bank (PDB). The PDB and other databases derived from it report QS
information that either was obtained from the depositors or is based on an analysis of the contacts between
polypeptide chains in the crystal, and this frequently differs from the QS determined in solution.

The QS of a protein can be predicted from its sequence using either homology or threading methods.
However, a majority of the proteins with less than 30% sequence identity have different QSs. A model of
the QS can also be derived by docking the subunits when their 3D structure is independently known, but
the model is likely to be incorrect if large conformation changes take place when the oligomer assembles.

Key words: oligomeric proteins, protein molecular weight, biomolecule, molecular assembly,
protein–protein docking, threading, modeling.

1. Introduction

Most proteins are made of not one, but several polypeptide chains,
and their assembly constitutes a quaternary structure (QS). QS was
first identified in hemoglobin in the mid 1920s, when its molecu-
lar weight was determined by sedimentation in the ultracentrifuge.
Mammalian hemoglobins have two � and two b chains. They are
heterotetramers, ‘hetero’ referring to the different amino acid
sequences of � and b, but other animal species have hemoglobins
that are monomers, homodimers (in which the two chains have the
same sequence), or more complex assemblies. All are homologous
and their subunits have essentially the same fold: the globin fold.
They also have the same basic function, binding oxygen, but the
diversity of their QS plays a major role in adapting that function to
the physiology of the organism in which they occur.
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For many years, the time table of sequence, crystal structure, and
QS determination was more or less the same, and their status also
(1). With the advent of large-scale DNA sequencing, many amino
acid sequences became available and the focus was placed on pre-
dicting from the sequence (the primary structure), the presence of�-
helices and b-sheets (the secondary structure), and ultimately the
fold of the polypeptide chain (the tertiary structure). QS was largely
forgotten until, in recent years, genome-wide genetic and biochem-
ical studies indicated that most gene products are not autonomous
entities. Rather, they are elements of multimolecular assemblies that
range from small oligomers (proteins with few subunits) to huge
molecular machines like the ribosome or the nuclear pore (2). In all,
QS is essential to function, and it is now recognized that this must be
established along with the protein sequence and fold. Relevant
databases and Web sites are listed in Table 20.1.

Table 20.1
Databases and Web servers

General

PDB http://www.rcsb.org/pdb/

SCOP http://scop.mrc-lmb.cam.ac.uk/scop/

ExPASy http://www.expasy.ch

PFAM http://www.sanger.ac.uk/Software/Pfam

Quaternary structure databases

3D Complex http://3dcomplex.org

PiQSi http://www.piqsi.org/

ProtBuD http://dunbrack.fccc.edu/ProtBuD/

QS prediction from the PDB

PQS http://pqs.ebi.ac.uk/

PITA http://www.ebi.ac.uk/thornton-srv/databases/pita

PISA http://www.ebi.ac.uk/msd-srv/prot_int

QS prediction from sequence

InterPreTS http://www.russell.embl.de/cgi-bin/interprets2

3DID http://gatealoy.pcb.ub.es/3did/

Prediction of interacting surfaces

ASEdb http://nic.ucsf.edu/asedb

ConSurf http://consurf.tau.ac.il

(continued)
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2. QS, Symmetry,
and Crystal
Structures

The QS is defined by the chain content of the protein (�2b2 in
hemoglobin) and the way the chains are arranged, especially its
symmetry (3). An oligomeric protein with n identical subunits,
each of which may comprise more than one polypeptide chain, can
have the symmetries of one of the following point groups:

– Cn (cyclic n) with a n-fold axis (360�/n rotation)
– Dm (dihedral m) for even n¼2m, with a m-fold axis and m

twofold axes orthogonal to it
– Cubic T, O or I, with twofold, threefold, and either fourfold

(in O) or fivefold (in I) rotation axes.

The most common is C2 in homodimers, but dihedral sym-
metry is the rule when n is an even number. Thus, D2 tetramers are
more common than C4, and D3 hexamers than C6. Membrane
proteins are an exception, because of the inherent asymmetry of
biological membranes, compatible only with Cn. Cubic symmetry
is illustrated by the capsids of icosahedral viruses.

The QS of a protein may change with the conditions, the
presence of a ligand for instance. Thus, many transcription factors
oligomerize when they bind DNA. Similarly, the symmetry may be

Table 20.1 (continued)

Intervor http://cgal.inria.fr/Intervor/

PIbase http://alto.compbio.ucsf.edu/pibase/

Protein–protein docking

CAPRI http://capri.ebi.ac.uk/

Servers

ClusPro http://nrc.bu.edu/cluster/

MultiDock http://www.sbg.bio.ic.ac.uk/docking/multidock.html

GRAMM-X http://vakser.bioinformatics.ku.edu/resources/gramm/grammx

HADDOCK http://haddock.chem.uu.nl/

PatchDock http://bioinfo3d.cs.tau.ac.il/PatchDock

SymmDock http://bioinfo3d.cs.tau.ac.il/SymmDock/

SKE-Dock http://www.pharm.kitasato-u.ac.jp/biomoleculardesign/files/SKE_DOCK.html

SmoothDock http://structure.pitt.edu/servers/smoothdock/

RosettaDock http://rosettadock.graylab.jhu.edu/

PRISM http://prism.ccbb.ku.edu.tr/prism/
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exact or approximate. Examples are the HIV protease, a homo-
dimer that loses its C2 symmetry when it binds a peptide substrate,
or hemoglobin, which has an exact C2 symmetry, and also an
approximate D2 symmetry if the difference between � and b chains
is ignored. In general, the symmetry of an oligomeric protein is
known only after its atomic structure is determined. The major
tools for that are X-ray crystallography and NMR, but crystallo-
graphy is surprisingly poor at establishing the QS. A protein crystal
is a multimolecular assembly held together by the same forces as
the QS. In a crystal, intermolecular contacts coexist with subunit
contacts, and telling the two apart may not be trivial; methods to
do so are discussed below.

By convention, the Protein Data Bank (PDB) (4) reports
atomic coordinates for the crystal asymmetric unit (ASU). This
may include more than one polypeptide chain irrespective of the
QS. Thus, a monomeric protein can yield crystals with two or more
chains in the ASU, and crystallographers commonly refer to the
‘dimer in the asymmetric unit’ whether or not the protein is
dimeric in solution. In counterpart, an oligomeric protein can
give crystals with one chain in the ASU, the other chains being
related to it by crystal symmetries. A dimeric protein can even
crystallize with three chains in the ASU: a dimer and a half, the
other half being generated by a crystal symmetry. For this reason,
the header of many PDB entries includes ‘biomolecule’ records
(described in 4.1 below) that relate the ASU to the QS. NMR
structures are determined in solution, but comparatively few NMR
entries in the PDB report oligomeric structures because of their
larger size, and also of their symmetry that causes ambiguities
when assigning resonances.

3. Mining the
Literature

Experimentally, the subunit composition of a protein is assigned
by measuring its molecular weight (Mw) and comparing to the
Mw of the polypeptide chain(s), measured or calculated from their
amino acid sequence and corrected for posttranslational modifica-
tions if needed. Less frequently, the subunit composition is deter-
mined by introducing chemical crosslinks between the subunits
and analyzing the products by gel electrophoresis under denatur-
ing conditions. Publications that report crystal or NMR structures
usually refer to such data when they exist, but they do not do so in
a systematic way, and the information is often buried in the text. A
literature search must then explore the publications in full and use
keywords related to methods for Mw determination as well as to
the QS. Mass spectrometry, the most powerful method of all, is
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not yet a standard tool for establishing QS, because conventional
sample desorption procedures break the noncovalent bonds
between subunits. A protein Mw in solution can be reliably esti-
mated by careful studies of static light scattering, small-angle X-ray
scattering (SAXS), or by equilibrium analytical centrifugation, all
relatively expensive experiments. Parameters related to Mw, such
as the diffusion coefficient, can be determined by NMR and other
biophysical methods. Gel filtration on a molecular sieve (also
called size exclusion chromatography) and dynamic light scatter-
ing (DLS) are less demanding in terms of equipment and the
protein sample. These methods measure parameters, the Stokes
radius for molecular sieves and the diffusion coefficient for DLS,
that depend on the shape of the protein as well as its Mw. Both are
commonly used, but in the absence of other data, a sentence such
as ‘the protein migrates as a dimer under gel filtration’ should only
be taken as an indication of the QS.

Curated sets of proteins of known X-ray and oligomeric struc-
tures have been obtained by carrying out manual surveys of the
biochemical literature and identifying data that establish their QS in
solution (5–7). The sets are of a very limited size: 96 monomers and
76 homodimers in (5), 188 monomers and 122 homodimers in (7),
and they represent only a small fraction of the PDB. Recently, Levy
(8) performed a large-scale literature search to assign the QS of
3,214 proteins, which may cover one-quarter or more of the PDB
by extension to close homologs in which the QS is very likely
conserved. The search used keywords related to the QS (‘mono-
mer’, ‘dimer’) and to methods for Mw determination. The results
are accessible through the PiQSi database (see Section 4.2 below).
The QS assignments in that study are in nearly perfect agreement
with the manually curated data sets, but they often disagree with the
PDB biomolecule. The discrepancies concern 15% of the proteins in
the whole database, and 27% in a nonredundant subset (8).

4. QS in Databases

4.1. QS in the Protein

Data Bank
PDB entries contain information on the biomolecule as reported
by their authors, coded in the records REMARK 300 that defines
its relationship to the ASU, and REMARK 350 that gives the
symmetry operations needed to build it from the ASU.

Let us take some examples.

4.1.1. Entry 1mkb REMARK 300 BIOMOLECULE: 1

REMARK 300 THIS ENTRY CONTAINS THE CRYSTALLOGRAPHIC ASYMMETRIC UNIT

REMARK 300 WHICH CONSISTS OF 2 CHAIN(S). SEE REMARK 350 FOR REMARK 300

INFORMATION ON GENERATING THE BIOLOGICAL MOLECULE(S)....
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REMARK 350 BIOMOLECULE: 1

REMARK 350 APPLY THE FOLLOWING TO CHAINS: A, B

REMARK 350 BIOMT1 1 1.000000 0.000000 0.000000 0.00000

REMARK 350 BIOMT2 1 0.000000 1.000000 0.000000 0.00000

REMARK 350 BIOMT3 1 0.000000 0.000000 1.000000 0.00000

REMARK 300 tells us that there is one biomolecule and the
ASU contains two chains; REMARK 350 cites their chain codes
followed by an identity matrix, which implies that the biomolecule
is the same as the ASU. Checking the SEQRES records shows that
the two chains have the same sequence. Therefore, the protein is a
homodimer.

4.1.2. Entry 1otp The ASU contains one chain according to REMARK 300, but
REMARK 350 has two matrices: the identity matrix and one
that generates a second subunit. The protein is also a
homodimer.

4.1.3. Entry 1r56 REMARK 300 reports two biomolecules, and eight chains in the
ASU; REMARK 350 gives 4 chain codes followed by the identity
matrix, to each biomolecule; SEQRES quotes 8 identical
sequences. Taken together, these data show that the protein is a
homotetramer, with two copies of it in the ASU.

It should be noted that the word ‘dimer’ or ‘tetramer’ appears
nowhere in these entries. Thus, oligomers in the PDB cannot be
extracted simply by searching for keywords. A script has to be
written to compare the number of chains in the ASU to that of
biomolecules in REMARK 300 and of transformation matrices in
REMARK 350, and then build the biomolecule(s) using these
matrices.

REMARK 300 is absent from entries deposited before 1999,
and if present, it may just state that ‘the biological unit of this
protein is unknown’. The examples above indicate that the infor-
mation on the QS in PDB entries is not easily interpretable. More-
over, it is never documented: REMARK 300 cites no data, and an
entry will not necessarily be updated if new data become available
after its deposition.

4.2. QS in Databases

Derived from the PDB

4.2.1. Biounit

Aware of the difficulty in interpreting the QS information in PDB
entries, the curators of the PDB at the Research Collaboratory for
Structural Bioinformatics (RCSB) have created a derived database
called Biounit. Biounit is based on the REMARK 300/350
records for entries posterior to 1999, and on supporting informa-
tion from the authors, SwissProt or PQS (see Section 4.3) for
earlier entries. It is accessible through, and at present only
through, the RCSB PDB interface. For each entry, the interface
displays images of the biomolecule and the ASU content, and it
allows downloading their coordinates.
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4.2.2. ProtBuD The Protein Biological Unit Database (ProtBuD) (9) compares the
QS derived from the PDB to that in PQS. The two agree in 82% of
the entries and differ from the ASU in 52%. The ProtBuD hierarchy
is based on SCOP (structural classification of proteins) (10) and,
when a PDB or a SCOP entry code is entered, its user interface shows
the SCOP classification of each chain before displaying the ProtBuD
page proper. This page describes the content of the ASU and the
biomolecule as defined in the PDB file and in PQS. ProtBuD also
lists all the pairwise interfaces and gives access to coordinates for each
assembly. DNA, RNA, and other ligands are cited when present.

4.2.3. D Complex 3D Complex (11) uses the QS information from the PDB Biounit.
Version V2.0, based on the 1.73 release of SCOP, will eventually
be extended to the whole PDB, omitting the nonprotein compo-
nents. 3D Complex offers a hierarchical classification of protein
assemblies (which it calls ‘complexes’) based on the domain assign-
ments in SCOP and a graph representation of domain–domain
contacts. Like SCOP, it has a top level ‘topology’ above a level of
‘families’ that accounts for evolutionary relationships. The topol-
ogy depends on the number of subunits, the symmetry, and the
pattern of contacts represented by a graph; an efficient graph-
matching procedure is used to assign and compare QS topologies.
A QS family contains assemblies of a given topology, and in which
the chains making equivalent contacts belong to the same SCOP
superfamily. Lower levels are labeled QSx, where x is the percent
sequence identity between equivalent chains in related assemblies
(e.g., 30% sequence identity for QS30).

The interface allows the user to browse through the hierarchy
of 3D Complex and build a custom query (Fig. 20.1). It makes it
for example, very easy to list all the homotetramers at less than 30%
sequence identity. Each molecular assembly appears in a visually
friendly graph representation, where the color and shape of the
nodes mark homologous and nonhomologous subunits, and
edges represent pairwise contacts. Labels near edges report the
number of residues in the interface as an estimate of its size;
clicking on the nodes yields additional information on the subunits
and access to external links.

4.2.4. PiQSi Protein quaternary structure investigation (PiQSi) (8) is an anno-
tated database derived from 3D Complex and interlinked with it.
As mentioned above, PiQSi stems from a literature search yielding
QS annotations that were extended to proteins with high sequence
identity (>90%) in a second step. The QS in PiQSi differs from that
in the PDB or PQS in about 15% of the cases. At present, the
database contains over 10,000 entries, which can be accessed by
entering a PDB code or a protein sequence. The interface then
displays the graph representation of the assembly and other items
carried over from 3D Complex. It also cites as a clickable PubMed
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Fig. 20.1. Quaternary structures in the 3D Complex and PiQS databases. (A) The 3D Complex database (11) reports the QS
of PDB biomolecules. The database has a hierarchic structure with 192 ‘topologies’ and 3151 ‘families’. The square
tetramer topology comprises 160 families; clicking yields a list of nonredundant representatives. Among those, the Cre
recombinase (4crx) is a homotetramer with the (relatively rare) C4 symmetry, when it is in complex with DNA forming a
four-way Holliday junction. (B) A second click connects to 4crx in the PiQSi database (8) that reports QS information based
on the literature. PiQSi has annotations for several PDB entries for the Cre recombinase or its homologs. The PDB
biomolecule is a tetramer in 4crx and 1kbu, a dimer in 1crx, and a trimer in 1f44. The literature agrees with the PDB in the
case of the 1f44 trimer, which is in complex with a three-way Holliday junction, but not the 1crx dimer.
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ID, the reference used to annotate the QS. A tag indicates whether
the biomolecule in the PDB is thought to be correct, incorrect, or
uncertain, and in each case, a comment explains the annotator’s
opinion. The whole database can be downloaded through the Web
site, for instance, to serve as a training set for prediction methods.

A specificity of PiQSi is that its users can submit new annota-
tions in a Wiki spirit. They will be processed by the curators and
eventually propagated in the database. Thus, PiQSi initiates a
community effort to manually curate the QS information in the
PDB.

4.3. Deriving the QS

from the Atomic

Coordinates: PQS,

PITA, PISA

The Macromolecular Structure Database (MSD) Group at the
European Bioinformatics Institute has developed tools that ana-
lyze geometric and physical-chemical properties of the protein–
protein contacts in a crystal or NMR structure and attempt to
derive the QS from those. They do not use the information in
REMARK 300 and may disagree with it. Servers offer access to
both the tools (by submitting coordinates in the PDB format) and
databases that contain the results of their application to all entries
in the PDB.

4.3.1. PQS The Probable Quaternary Structure (PQS) algorithm (12) was the
first of its type, and the others are derived from it. PQS applies
crystal symmetries to each molecule in the ASU, generates neigh-
bors, and gives each pairwise interface a score based on the area
buried at the interface plus a solvation energy term. It then builds
the QS iteratively by retaining only interfaces that achieve a given
score. The ‘probable’ QS cited in the database is the one with the
best score. A query to the database, done by submitting a PDB
entry code or a set of atomic coordinates, returns a line of values
that includes the assembly type (monomeric, dimeric, etc.). It also
gives access to a text output that contains additional information,
and to a file containing atomic coordinates of the assembly in PDB
format.

4.3.2. PITA Protein InTerfaces and Assemblies (PITA) (13) is similar to PQS,
except that a statistical potential replaces the solvation energy, and
that all assemblies are kept above a certain score.

4.3.3. PISA In Protein Interfaces, Surfaces and Assemblies (PISA) (14), the
iterative construction of the QS is replaced by a graph exploration
procedure that surveys all the assemblies that can be formed in the
crystal. The procedure handles nonprotein components ligands
(DNA, RNA, small molecules, and ions), and it can detect large
assemblies that PQS or PITA would miss. For each assembly, PISA
calculates a free energy of dissociation, �Gdiss, that includes a
number of physical-chemical terms. Given a PDB code or a set
of atomic coordinates, the user interface returns tables with
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information on each chain, each pairwise interface, and all the
assemblies that have a positive �Gdiss. Selecting a chain, interface,
or assembly in the tables gives access to atomic coordinates and to
additional values concerning the selected item, and opens a 3D
interactive graphic window.

5. Predicting QS
from the Amino
Acid Sequence

Determining the QS of a protein is no straightforward task experi-
mentally in solution, and it can be error-prone even when an X-ray
structure is available. Thus, there should be a strong incentive to
predict the QS from the amino acid sequence yet we are still in
early stages of such a prediction.

Given the sequence of a protein, one may first ask whether it is
oligomeric or not. Oligomers contain large subunit interfaces that
have physical–chemical properties resembling the protein interior
more than its surface (15). This affects their amino acid composi-
tion and must be reflected in the sequence. The Quaternary Struc-
ture Explorer (16) uses an empirical combination of parameters
derived from the sequence to predict whether a polypeptide chain
is a monomer or part of an oligomer. However, the reported
accuracy is only 70%, and a prediction based on just the amino
acid composition performs at least as well (17).

Beyond that point, QS is generally predicted by homology
assuming that it is conserved in evolution (18). Albeit safe for
close homologs (hemoglobins from different mammals), the
assumption breaks down at a certain level of divergence (fish
hemoglobins, myoglobin, etc.), and this may explain why standard
tools for homology modeling generally ignore the QS. How far in
evolution is QS conserved? Aloy et al. (19) report that the inter-
action between two Pfam domains is almost invariably conserved
at 30–40% sequence identity or more. However, Lévy et al. (20)
find that, at this identity level, 30% of the proteins in PiQSi have
different QSs, and that below 30% identity, the QS changes in half
of the homologs. Thus, the reliability of a QS prediction made by
homology is questionable below 40% sequence identity.

5.1. InterPreTS Interaction Prediction through Tertiary Structure (InterPreTS)
(21) creates models of protein–protein interfaces derived from a
database of domains known to interact. Given two query
sequences, InterPreTS identifies Pfam domains in them, and
looks up the database to find if the domains interact. This database,
now called 3DID, is derived from iPfam (22), and it records 4,814
domain–domain interactions, of which 85% are interchain (23). If
the Pfam domain pair is present, the query sequences are aligned

358 Poupon and Janin



with the closest homologs and the resulting interaction is evalu-
ated with an empirical potential. This procedure was used to carry
out structural predictions on 102 protein complexes in yeast,
yielding at least partial models of half of the complexes (24).

5.2. Threading Threading methods aim to detect structural homology at low levels
of sequence identity. M-TASSER (25, 26) is a threading procedure
designed to build dimers. It uses a library of 1,838 templates, mostly
homodimers, selected in the PDB on the basis of the biomolecule
record and checked against PQS; a literature search done on a small
subset suggests that it still contains 10–15% of nondimers. A query
sequence is first threaded with TASSER (27) to generate models of
the monomers, which are structurally aligned on the dimers in the
library and refined with the TASSER force field. An all-against-all
comparison was performed on the dimers in the library. Excluding
templates with >30% sequence identity, the structural alignment
identified a correct template in about half of the cases, and the
refined models had an average RMSD of 5.9 Å relative to the native
structures. Threading the sequences directly on the dimers in the
library yielded fewer templates, but 80% showed a weak sequence
identity and the final RMSD was the same.

6. Protein–Protein
Docking

Docking procedures predict the structure of a complex based on
those of its components. A number of methods to dock two proteins
have been developed in recent years (28–33). They generally operate
in two steps: exploration and scoring. The exploration step moves
one component as a rigid body relative to the other, aiming to bring
in contact regions of the two protein surfaces that are complementary
in shape and physical–chemical properties. The search yields thou-
sands of models of the complex, most of which are false positives,
along with a few near-native solutions, or possibly none if large
conformation changes occur in the components. The scoring step
evaluates and ranks these models in order to identify the near-native
solutions and perform further refinement on them.

6.1. Docking

Algorithms

Exploration algorithms often use a simplified representation of the
molecules rather than the atomic coordinates, in order to remove
high-resolution details and speed up the search. Thus, the protein
model in ATTRACT (34) has only 1 to 3 pseudo-atoms per
residue. In the commonly used FFT (fast Fourier transform) corre-
lation algorithm, the two protein structures are mapped onto a
cubic grid, and each grid point is given a weight that marks its
position relative to the molecule (outside, inside, on the surface),
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and codes for some physical-chemical properties (electrostatics, pair
potentials). The correlation between the weights associated to the
two proteins is used to score a position. It is efficiently calculated by
FFT for all grid translations of one protein relative to the other, but
the calculation must be repeated for each orientation. Procedures
based on the FFT correlation algorithm are ZDOCK (35) and
DOT (36), implemented in the ClusPro and SmoothDock servers,
FTDOCK (37) implemented in the MultiDock server, and
GRAMM-X (38). PatchDock (39) uses a very efficient computer
vision procedure in which the two protein surfaces are divided into
concave, convex, and flat patches, and complementary patches are
brought together by a geometric hashing algorithm.

All these algorithms perform exhaustive, or at least extensive,
translation/rotation searches. Other algorithms randomly gener-
ate starting positions (‘decoys’) and use heuristic procedures to
optimize them. In RosettaDock (40, 41) and several related pro-
cedures (42), thousands of decoys are generated and refined.
RosettaDock uses two-steps of Monte-Carlo minimization to do
that, the first step with a simplified protein model and force field,
the second, with explicit atoms and the very successful Rosetta
force field, originally developed for folding predictions.

6.2. Scoring and

Refinement

Scoring aims at identifying near-native models among those issued
from the search. Scoring schemes often combine energy, geo-
metric complementarity, propensities, and other terms in a single
scoring function that is optimized through machine learning pro-
cedure. External information may be available on the complex, for
instance, as an interface prediction (43), sequence conservation, or
biological data on mutants. Such information can be used in the
first step to limit the search space, or be taken care of during
scoring. In the case of HADDOCK, external information is used
to drive the search itself. This algorithm treats a variety of data
including NMR data if they exist, as ‘ambiguous interaction
restraints’ in an energy minimization procedure (44, 45).

The top scores yield candidate solutions that must be refined to
optimize the position and orientation of the components in the
modeled complex, and also to account for conformation changes.
Commonly used protocols perform energy minimization and/or
molecular dynamics simulations. Side-chain flexibility is a minimum
requirement at that stage, but changes in backbone conformation
and larger movements such as domain hinge rotations must also be
considered, as they commonly occur when two proteins interact.
HADDOCK or RosettaDock handle conformation changes by
leaving free some main-chain dihedral angles. Other procedures
do it by generating a number of alternative conformations in a
first step, and then ‘cross-docking’ the conformers pairwise (46,
47). In both cases, flexibility greatly increases the size of the calcula-
tion and the number of false positives.
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6.3. Generating

Oligomers by Docking

Up to now, docking has mostly been used to model binary com-
plexes between proteins for which an X-ray or NMR structure has
been determined independently. As oligomeric proteins are obli-
gate assemblies with few exceptions, no experimental structure of
the isolated monomer is available for docking. This may never-
theless be performed on models generated in silico by homology
or threading (48). A remarkable example is the structural model
recently proposed for the nuclear pore (49). To build it, a fold type
was assigned to each domain in all the 456 constituent proteins,
the domains were modeled, and the models assembled by optimiz-
ing a score function under a large number of restraints derived
from experiment. The C16 symmetry of the nuclear pore played a
major role in that operation.

Cyclic (or dihedral) symmetry is a severe constraint in modeling
oligomeric proteins, and it has been incorporated in some of the
docking procedures originally designed to model binary complexes
(50, 51). The algorithm implemented in the SymmDock server is a
version of PatchDock that limits all rotations to those compatible with
Cn symmetry (39). When multicomponent docking is performed by
adding one component at a time, the constraints due to the occupied
space also play a major role in limiting the search (52, 53).

6.4. Assessing Docking

Predictions: CAPRI

The CAPRI (Critical Assessment of PRedicted Interactions (54))
experiment has been designed to test the performance of protein–
protein docking in blind predictions, as CASP (Critical Assessment
of Techniques for Protein Structure Prediction) does for protein
fold prediction. Early attempts to include QS predictions in CASP
were not pursued in recent rounds (55) even though many CASP
targets are oligomeric. CAPRI targets are protein–protein com-
plexes; their X-ray structure is known but still unpublished, and
their components (or at least close homologs) are in the PDB.
CAPRI predictors dock the components and submit models that
are assessed against the experimental structure of the complexes.

Because the component structures must be known, most
CAPRI targets are transient complexes rather than oligomeric
proteins (56, 57). In six years of the experiment, only three targets
have been oligomers, all three homodimers: one in which the
subunits take two different orientations, another that had a mono-
meric homolog in the PDB, and a viral envelope protein that
changes from a dimeric form to a trimer during cell infection
(58); the structure of the trimer had to be predicted from the
previously known dimer. In all cases, symmetry should have helped
in finding correct docking solutions, but there were large confor-
mation changes and domain movements that the prediction pro-
cedures failed to reproduce. In the viral envelope protein, the
movements did not affect the trimer interface, and HADDOCK
produced a solution that correctly reproduced the geometry of the
X-ray structure (59). In general, the capacity to predict and
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simulate conformation changes appears to be crucial to the success
of docking methods, and this is even more obvious when the target
is an oligomeric protein.

7. Conclusion

The quaternary structure of proteins is highly relevant to their
function, and its importance is now fully recognized. Because QS
must be determined in solution and can remain uncertain even
when an X-ray structure is known, the biomolecule assignment in
PDB entries is often in error, and a number of derived databases
implement methods to correct it. QS can also be predicted in the
absence of a detailed structure by homology, threading, or pro-
tein–protein docking. Whereas the reliability of such predictions
remains questionable, they have been proved to be extremely
useful in cases where the constraints derived from experimental
information sets are sufficient to guide the modeling procedure.
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Chapter 21

Prediction of Posttranslational Modification of Proteins
from Their Amino Acid Sequence

Birgit Eisenhaber and Frank Eisenhaber

Abstract

If posttranslational modifications (PTMs) are chemical alterations of the protein primary structure during
the protein’s life cycle as a result of an enzymatic reaction, then the motif in the substrate protein sequence
that is recognized by the enzyme can serve as basis for predictor construction that recognizes PTM sites in
database sequences. The recognition motif consists generally of two regions: first, a small, central segment
that enters the catalytic cleft of the enzyme and that is specific for this type of PTM and, second, a sequence
environment of about 10 or more residues with linker characteristics (a trend for small and polar residues
with flexible backbone) on either side of the central part that are needed to provide accessibility of the
central segment to the enzyme’s catalytic site. In this review, we consider predictors for cleavage of
targeting signals, lipid PTMs, phosphorylation, and glycosylation.

Key words: posttranslational modifications, GPI lipid anchor, myristoylation, prenylation,
farnesylation, geranylgeranylation, phosphorylation, glycosylation, peroxisomal localization, protein
function prediction.

1. Introduction

A posttranslational modification (PTM) of a protein is the chemi-
cal alteration of its primary structure after translation. Generally, it
is required that the considered type of covalent modification has to
be a general feature of proteins from different families, not just that
of a group of sequentially very similar ones. PTMs include both the
formation of covalent cross-links of intra- or intermolecular (with a
ligand/another protein) nature and the cleavage of covalent bonds
including the breakage of a peptide bond and the removal of
groups from single amino acid types. A typical protein appears to
undergo several PTMs during its life time. Currently, more than
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100 PTMs are known, the variety of PTMs is still growing and
modifications that were considered obscure only a decade ago have
become a mainstream target of research (1).

PTMs have a great impact on protein size, hydrophobicity,
and its other physico-chemical properties. With PTMs, proteins
can go beyond the limitations of chemical structure imposed by
the set of 20 natural amino acid monomers and, therefore, may
assume a much larger variety of complementary functional
properties. PTMs can change, enhance, or block specific pro-
tein activities, or target a protein to another subcellular locali-
zation. Consequently, they allow the regulation of a protein’s
function.

2. General
Consideration
for PTM Predictor
Construction
and Evaluation

2.1. PTMs as a Result of

an Enzymatic Process

From the view point of protein function prediction (2), PTMs
that originate from the action of posttranslationally modifying
enzymes (in contrast to spontaneous PTMs, for example, as a
result of long-term exposure to pathologically increased metabo-
lite concentrations) are especially important. On the one hand,
these PTMs are part of an information transfer in pathways and,
thus, of special biological importance. On the other hand, these
PTMs are introduced into and only into substrate proteins that
carry a sequence motif that is recognized by the posttranslation-
ally modifying enzyme. Regardless of the specific nature of the
PTM, the general structure of the sequence motif region has
common properties: Except for a minority of cases (PTM before
folding or after unfolding, at sites on large loops, etc.), PTM sites
are embedded in nonglobular regions without inherent struc-
tural preference (3, 4). As a trend, the residues in these regions
are polar, small, and with flexible backbone. A small central motif
region (typically, about 5 residues) that is specific for the PTM
and that enters the catalytic cleft of the enzyme is surrounded by
segments with linker characteristics (with more than 10 residues
on either side) that make the PTM site mechanically accessible to
the enzyme. It are the enzyme-generated PTMs that will be
considered in the following text.

During the last decade, the number of high-throughput
sequencing projects has been dramatically increased. Quite a few
of whole genomes including the human one are available; protein
sequence databases have reached an enormous size. At the same
time, there are a huge number of functionally uncharacterized
genes and proteins. Especially in the case of otherwise uncharac-
terized proteins, PTM prediction is a valuable tool for limiting the
range of the protein’s possible function. For example, a target for
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glycosylphosphatidylinositol (GPI) lipid anchoring, a complex
lipid PTM has a defined subcellular localization (inner surface of
the endoplasmic reticulum, Golgi, or the outer leaflet of the
plasmalemma) and a limited range of functions (as extracellular
enzyme, receptor, surface antigen, or transporter). The knowl-
edge of a protein’s PTMs is not less important for proteins with
some annotational features. This further characterization with a
predicted PTM, possibly, can link the protein to another pathway
or a new biological mechanism. From the biological point of
view, it is important to know which posttranslationally modifying
enzyme is the source of the PTM for a given substrate protein
since this relationship carries a pathway information. To con-
clude, the computer-aided prediction of the possibility of a pro-
tein’s posttranslational modification from amino acid sequence is
an important task that is critical for the biological interpretation
of proteome data.

2.2. General

Considerations for PTM

Predictors

Whereas PTM prediction from sequence was a relatively obscure
area of research 10 years ago, a superficial study of literature
databases reveals a flood of papers in recent years. Unfortu-
nately, many of these predictors have not been properly vali-
dated and the significance of new predictions beyond the range
of what is solidly known from experiments cannot be reasonably
assessed. Indeed, it is insufficient to collect some type of learning
set, apply an automatic learning procedure, and throw the ‘‘pre-
dictor’’ on the market. This will not lead to biologically mean-
ingful new predictions. What are the problems in the area of
PTM predictor construction? Below, we will consider the most
important aspects relevant for the evaluation of prediction tools
(1, 3, 4).

The most basic issue is motif size. Many prediction efforts
process only the putative central part of the recognition motif in
their score function, maybe, with inclusion of a couple of sur-
rounding residues. With a motif length of about a handful of
residues, the motif description is not very discriminative and
false-positive predictions (with more incorrect than correct pre-
dictions) become the major problem that devalues the signifi-
cance of the prediction in the eyes of experimentalists. The
traditional approach of characterizing short motifs with PRO-
SITE-like notations (5–7) emphasizes positional information
isolatedly; it ignores inter-positional correlations and is not really
applicable for motif regions that are rather characterized by phy-
sical property conservation of amino acid side chains (in contrast
to amino acid type conservation) (4). Consideration of the
requirement of motif embedding in a linker-type region (3, 8)
enlarges the total motif length to something like 25–30 residues
and dramatically adds discriminative power to the scoring
function.
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The second critical issue is the question of proper biological
context. It is important to build enzyme-specific scoring function
for predictors. Thus, the learning set should include only substrates
that are collected from one posttranslationally modifying enzyme
or from a class of enzymes that essentially recognize the same
motif in substrate proteins. For example, there is no biological
sense for an acetylation predictor (9) that recognizes an ‘‘aver-
age’’ motif (‘‘averaged’’ over several enzymes with possibly over-
lapping, yet vastly nonidentical specificity) since there is no
enzyme that recognizes this ‘‘average’’ motif. The high rate of
false predictions by enzyme-non-specific tools render them not
useful for advice in experimental strategy planning and for pro-
teome-wide scans.

Yet, it must be noticed that, very often, the link between the
information on the type of PTM in a substrate protein and the
information about the enzyme gets lost. For example, there are
a number of mass-spectrometric data sets on phosphorylated
proteins available, but the nature of the kinases behind these
phosphorylation sites remains generally unknown. With this back-
ground, databases such as Phospho.ELM (10) with detailed infor-
mation on substrates of explicitly named kinases are the more
valuable. One might think that only predictors following the
recognition motif concept enter the recent scientific literature;
surprisingly, the nonbiological concept of relating PTMs (and
subcellular localization) with overall amino acid composition is
still not dead [see for example (11–17)]. There is no biological
mechanism known that recognizes total amino acid composition;
yet, the attachment of a nonglobular segment to the target protein
carrying the motif for a PTM executing enzyme or a translocation
receptor add the respective property (capability for PTM or trans-
location) to the protein, essentially without changing the amino
acid composition.

The third key question in predictor development is the quality
of underlying data – the amount and redundancy of example
substrate protein sequences (or information about model pep-
tides) and the level of authenticity. The UniProt (Swiss-Prot/
TrEMBL) database is one of the best curated protein sequence
databases. It strives to provide a high level of annotation, a minimal
level of redundancy, and high level of integration with other
databases (http://ca.expasy.org/sprot). Unfortunately, many
PTMs are annotated based on sequence similarity to known sub-
strates or other more obscure considerations but not on first-hand
experimental evidence. Such assumptions raise the level of noise in
the dataset. To emphasize, homologues do not need to have the
same type of PTM. For example, human nyctalopin is GPI lipid
anchored and the mouse orthologue is membrane bound with a
transmembrane helix, although there is considerable sequence
identity among the two homologues (18).
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Finally from the mathematical point of view, there is a large
variety of formal methods to describe a regression between
sequence features of a recognition motif and the PTM outcome.
The application of automated learning procedures such as neural
networks (NN) or support vector machines (SVM) appears
straightforward; yet, the large amount of parameters involved in
the scoring function renders them not optimal for the task when
learning sets are small and when they might contain false
examples.

A technically cheaper approach that tries to understand
sequence determinants that affect productive binding of the sub-
strate protein segment with the binding site of the modifying
enzyme generates considerably fewer parameters for physical prop-
erty terms that have been proven very successful in rejecting
improper sequence queries (1, 4, 19, 20). Interestingly, small
subsets of apparently wrong examples in the learning set become
eye-catching as a result of their discordance with the binding site
requirements. For example, in the case of the development of
MyrPS/NMT (20, 21), a prediction tool for N-terminal N-myr-
istoylation, this approach revealed a striking difference with regard
to six N-terminally overly hydrophobic proteins that were anno-
tated as NMT substrates in the sequence database and, thus
entered the learning set: the physical binding model distinguishes
them as clearly different from the learning set and possibly unsui-
table targets (20, 21), whereas a neural network approach does not
see this difference (22) and treats all learning set examples equally
reliable.

2.3. General Issues

with Prediction Rate

Accuracy

A good sequence-based predictor should be able to clarify two
questions:

1. Is the query protein a potential target for the PTM consid-
ered? Both the positive and negative answers need to be
reliable and risk of a false positive or false negative prediction
should be quantified probabilistically.

2. If the sequence is a potential target for the PTM, what are the
likely sequence positions in the query protein that may harbor
the modification?

The ideal predictor is characterized by a high sensitivity and
a very low false-positive prediction rate. Any real predictor is
always a compromise between these two oppositional requests.
On the one hand, it is relatively easy to create a program which
predicts a selected training (learning) set with nearly 100% by
choosing not very stringent parameters. But such a parameter
set will result in a giant rate of false positive predictions. On
the other hand, very stringent parameters warrant a low false-
positive prediction rate but decrease the sensitivity (true-positive
prediction rate) of the program. In a practical context of an

Prediction of Posttranslational Modification of Proteins from Their Amino Acid Sequence 369



experimental laboratory and for proteome scans, the issue of a low
false-positive prediction rates might even become more important
for the predictor than the recognition of 100% of the known
cases.

Unfortunately, many of the existing predictors do not find the
compromise with false-positive prediction rates in the race for full
coverage of known sequence examples. The user of a prediction
program is encouraged to cast a critical eye over the prediction
algorithm and the prediction results:

(1) On the collection of the training/learning set(s): Did the
authors analyze their training set(s) carefully? What is the
quality of the data? Are they properly experimentally veri-
fied? Are the descriptions of the sequence entries in agree-
ment with recent literature? Are there taxonomic
differences and is the specificity of orthologues of the post-
translationally modifying enzymes unchanged? Are their
mutation analysis data available? How specific is the training
set; e.g., a PTM can be introduced by different enzymes or
different enzyme complexes with different requirements for
substrate specificity. Is the training set specific for only one
type of PTM pathway?

(2) What are the parameters of the prediction function? How
many parameters does the prediction function include and
how much learning data is backing them? Are there any
biological mechanisms that can be used to explain the role
of the parameters in the prediction model?

(3) Critical analysis of the prediction results: It is a good idea to
test some experimentally verified examples with the predic-
tor (as well as sequentially similar antiexamples, e.g., from
mutations that abolish the capability for the PTM) and to
analyze the quality of prediction. An important question is
whether the prediction result is in agreement with the exist-
ing knowledge about the analyzed protein(s) and the
mechanism of the respective PTM; e.g., only a restricted
number of amino acids can serve as a cleavage and/or
attachment site.

In the following text, we try summarize the state of the art of
prediction of various PTMs from sequence. Emphasis is given to
prediction tools that perform reliably, especially with low false-
positive rates that have also been proven useful in finding new
biological insight. A good predictor should have coverage of well-
verified examples of 90% or better and, at the same time, generate
false-positive prediction with a rate of, maximally, a few percent.
Occasionally, we will turn to comparative analysis of predictors for
the same PTM and highlight some of the points discussed above
that distinguish good predictors from not so recommendable
tools.
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3. Predictors for
Specific PTMS

3.1. Recognition of

Targeting Signals with

and Without Proteolytic

Cleavage Sites

A number of N-terminal targeting signals, most notably the
N-terminal signal peptide coding for extracellular export, are
cleaved after recognition by the respective enzyme complex
during the translocation process. In these cases, signal
recognition occurs cotranslationally at the unfolded protein;
thus, the concept of embedding in linker-type segments is
not applicable here. The state of the art is represented by
SignalP (23), Phobius (24), and SPOCTOPUS for the signal
peptide and TargetP (25) for the organelle-specific
predictors.

Interestingly, the concept of a central motif surrounded by
linkers does work also for translocation signals that are recognized
by receptor proteins posttranslationally such as the peroxisomal
translocation signal 1 (PTS1) (26, 27).

The respective WWW servers can be found at the following
sites:

SignalP (23) http://www.cbs.dtu.dk/services/SignalP

ChloroP (25) http://www.cbs.dtu.dk/services/ChloroP

TargetP (25) http://www.cbs.dtu.dk/services/TargetP

Phobius (24) http://phobius.sbc.su.se

PeroPS/
PTS1 (26)

http://mendel.imp.ac.at/mendeljsp/sat/
pts1/PTS1predictor.jsp

3.2. Lipid PTMs The number of enzymes responsible for several lipid PTMs
(GPI lipid, farnesyl, geranylgeranyl, and myristoyl anchors)
among eukaryotes is relatively small and, typically, there is
just one enzyme species for a given modification. Thus, all
known targets can be assigned to this enzyme, a considerable
shortcut in the assessment of the available data on lipid mod-
ified proteins. Quite reliable prediction tools are available for
GPI lipid anchoring (19, 28–32), myristoyl (20, 21, 33–35)
and prenyl anchors (36–39).

The range of palmitoyltransferases is less well understood and
the assignment of protein substrates to the various enzymatic
entities is only at the beginning. At best, heuristic rules are reason-
ably applied to palmitoylation sites prediction without great relia-
bility (40).

The respective WWW servers can be found at the following
sites:
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big-PI/GPI
animals (19)

http://mendel.imp.ac.at/gpi/gpi_server.
html

big-PI/GPI
plants (31)

http://mendel.imp.ac.at/gpi/plant_ser
ver.html

big-PI/GPI
fungi (32)

http://mendel.imp.ac.at/gpi/fungi_ser
ver.html

MyrPS/NMT (20) http://mendel.imp.ac.at/myristate/
SUPLpredictor.html

PrePS (36) http://mendel.imp.ac.at/sat/PrePS

CSS_palm (40) http://bioinformatics.lcd-ustc.org/
css_palm

The GPI lipid anchor prediction algorithm is the first out of a
series of PTM prediction efforts based on the simplified binding site
model (3, 28, 32). The animal protein big-PI predictor (19) and its
taxonomicderivatives for fungi (32)andplants (31)areagoodstarting
point to evaluate alternative and more recent predictor developments
in the light of the requirements described in the sections above.

The aim of the programs is to predict suitable substrate protein
candidates for glycosyl-phosphatidylinositol (GPI) anchoring and,
in the case of a hit, to predict the attachment site of the anchor. GPI
lipid anchoring is a PTM that tethers eukaryotic proteins and their
viruses to the extracellular leaflet of the cell membrane. The bio-
synthesis of GPI anchored proteins is a very complex, multilevel
process that takes place in the endoplasmatic reticulum (ER)
(3, 41). A transamidase complex cleaves a C-terminal propeptide
from the substrate protein and attaches a pre-synthesized GPI
moiety to the cleavage site. The cleavage and attachment site is
called o-site. Typically, the whole construct is exported to the
extracellular side of the cell membrane, but it is not excluded that
some of the GPI anchored proteins remain in the ER or other
compartments of the vesicular system during their whole lifecycle.

The GPI-SOM predictor (42) relies on automatic learning
from a complex set of sequences annotated as transamidase sub-
strates. This learning set has dramatic deficiencies:

(i) The authors claim that the positive training and evaluation
sets consist of proteins that had been experimentally shown to be
GPI anchored. These include 110 proteins regardless of taxa from
the whole eukaryote kingdom selected via Entrez from Genbank,
supplemented with a set of 248 GPI proteins from Arabidopsis
thaliana (43). Unfortunately, the data are of different quality with
respect to the experimental verification. It should be noted that it is
not sufficient to know the fact of GPI anchoring of a protein (typi-
cally it is only verified by a phospholipase C release test), but it is also
important to know the exact o-cleavage site. At least for the Borner
A. thaliana set, this is not the case. The authors of GPI-SOM ignore
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the fact that there are taxonomic differences in the C-terminal GPI
sequence motif (44) that are distinguished by the transamidase
complexes of various taxa. (ii) There is a large body of data available
from GPI motif mutation analyses spread over the literature and the
majority of which has been compiled in two surveys for metazoa (19)
and fungi (32). These data contain both an experimentally verified
positive collection and a verified negative sequence set, both with
more than 100 cases. The mutations are an especially demanding test
for the GPI lipid anchor predictor since a single point mutation can
abolish the capability for GPI lipid anchoring completely.

It was already mentioned that automated learning procedures
require learning sets of especially high quality since they are unable to
recognize errors in the sequence collections. The final GPI-SOM
prediction program was implemented as a Kohonen SOM (neural
network of the Kohonen type, also termed self-organizing map) with
an input layer of 44 neurons (thus, introducing hundreds of adjus-
table parameters). Neuronal networks are a very common technique
for classifying data sets but, with noise in the learning set, the
predictor will generate systematic errors at the output layer. Due to
their technical approach, the authors could not make use of any
mechanistic insights that govern the recognition process of substrates
by the transamidase. The following examples highlight the problems:

(1) Human complement decay-accelerating factor (CD55 or
DAF, accession number P08174) is a protein that was tested
to be GPI anchored even by different research groups. It was
used for mutational studies (44, 45), theo-site is well known.
GPI-SOM predictor is not able to classify this protein as a
GPI lipid modified protein and does not find even a trend
among the various mutations.

(2) If one tests the 248 A. thaliana sequences (43), which are a
part of the positive training set for GPI-SOM, then 245 out of
the 248 sequences are listed as GPI-SOM positive predictions
(240 as GPI-anchored proteins in combination with SignalP
prediction). But a closer analysis of the prediction results
reveals that most of the predicted o-cleavage sites are wrong.
Only a limited set of amino acid residues (Ala, Cys, Asp, Gly,
Asn, and Ser) is known to be capable to serve as an o-site (43,
45, 46). In the case of the predicted 245 GPI candidates, only
97 (39.6%) predicted cleavage sites are compatible with this
rule. This means that the majority (at least 60.4%) of theo-sites
is wrongly predicted by GPI-SOM. Interestingly, GPI-SOM
favors proline at the o-site position (37 proteins), followed by
serine (35) and glycine (25). According to mutational studies
[see mutation database (19)], proline is absolutely disfavored
from occupying the o-site position. Thus, GPI-SOM predic-
tions are in conflict with basic enzymology of the process
considered.
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(3) The GPI-SOM authors predict almost all of the proteins of a
SWISS-PROT data set to be GPI anchored (Table 2-e in
their paper). What they did not discuss is that this data set
contains quite a number of doubtfully annotated protein
sequences [Table I in Ref. (28)] and one might rightfully
expect that these proteins will not carry a GPI lipid anchor.

(4) The authors of GPI-SOM found that, among transmem-
brane proteins with an N-terminal signal leader peptide plus
a hydrophobic C-terminus – the proteins most closely resem-
bling GPI-anchored ones – the false-positive prediction rate
is around 30%, a rate that disqualifies the tool for experimen-
tal planning.

The authors of GPI-SOM combine their own prediction mod-
ule with the SignalP (47) program (surprisingly, without acknowl-
edgment of the SignalP authors). Using the SignalP program, the
GPI-SOM authors reduce their prediction rate in S. cerevisiae from
438 positives (out of 5,864 proteins) to only 121 positives. The
remaining 307 hits are ruled out as positives with the argument
that a protein cannot be GPI anchored without having an N-
terminal signal leader peptide. In the general context, this conclu-
sion is very problematic. First, alternative export mechanisms to
the ER appear to exist and example proteins exported via the
alternative pathway with a GPI lipid anchor are known (48).
Second, SignalP is a prediction program having its own error
rates. Third, the quality of the sequence data in large sequence
sets, especially in high-throughput sequence data, is limited. It is
possible that the N-termini and/or C-termini of sequences are
missing (49). To put in a nutshell, the GPI-SOM predictor is not a
useful tool for analyzing large-scale data because the false-positive
prediction rate is in an unacceptable range. The tool can also not
be used for the prediction ofo-sites because it is incapable to do so.

There is another recently published GPI predictor called Fra-
gAnchor (50). It is based on the tandem use of a neuronal network
and a hidden Markov model. We have tested both our mutation set
containing proteins and mutated proteins for which GPI anchoring
has been experimentally shown [positive mutation set – 188
sequences (19)] and a respective negative mutation set containing
protein mutations, which were shown to be not compatible with
GPI anchoring [108 sequences (19)] with the FragAnchor program.
The prediction of the positive mutation set appears very reasonable,
only 10 sequences (5.3%) are not predicted as true candidates for
GPI lipid modification. But the prediction of the negative mutation
set seems to be problematic. Only 22 out of 108 sequences (20.4%)
were predicted as not GPI anchored; thus, the false-positive predic-
tion rate is in the order of 80%. Indeed, it is relatively easy to create a
predictor with high sensitivity, but the real challenging task is to keep
the rate of false-positive predictions in a low range.
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The most recent GPI-anchor predictor, PredGPI (51), is an
especially negative example for using machine learning methods
(in this case, with SVM) due to its very poor training set. PredGPI
is trained on a dataset of only 26 protein sequences just ignoring
the plenty of data that is available these days. But the paper is also
remarkable in other respects. If one enters the small learning set of
26 sequences into the PredGPI Web server interface (http://
gpcr2.biocomp.unibo.it/predgpi), one will get a really surprising
result that greatly differs from what the authors show in Table 3 in
their paper. According to that table, PredGPI predicts all of the 26
proteins as GPI anchored. Unfortunately, the Web server comes
up with a different result: seven of the proteins are predicted as GPI
candidates with high probability, 13 proteins are predicted as
probable GPI anchored proteins, one protein is indicated as sui-
table for GPI anchoring with low probability but five proteins are
predicted as not GPI anchored at all.

3.3. Phosphorylation

Prediction Tools

Protein phosphorylation is one of the most common and one of
the most studied posttranslational modifications. In the case of
eukaryotic proteins, kinases, the enzymes that catalyze protein
phosphorylation, transfer a phosphate (PO4) group from adeno-
sine triphosphate (ATP) to serine, threonine, or tyrosine amino
acids, thereby generating adenosine diphosphate (ADP). In addi-
tion, phosphorylation of basic amino acids (histidine, arginine,
lysine) is possible in prokaryotic proteins. Today, more than 500
protein kinases have been identified in the human genome, and
they modify at least one-third of all human protein species (52).

Reversible phosphorylation is a ubiquitous regulatory
mechanism that controls a large variety of biological processes
such as cell growth and differentiation, proliferation, and apopto-
sis. Typically, protein kinases, phosphatases (dephosphorylation
enzymes), and their substrates are organized in very complex
regulatory networks. Proteins can work as a trigger or a switch in
such a system depending on their phosphorylation status.

Over the past few years, phosphoproteomic mass spectrometry
(MS) has replaced the traditional methods for measuring protein
phosphorylation (mutational analysis, Edman degradation chem-
istry on phosphopeptides). Thousands of phosporylation sites
have been identified for thousands of proteins. But in most cases,
the information which kinase is responsible for the phosphoryla-
tion of a certain amino acid in a certain protein is missing. Of
course, this fact impedes the development of powerful predictors
for protein phosphorylation sites. There are several databases such
as Phospho.ELM (10), PhosphoSitePlus (www.phosphosite.org),
and NetworKIN (53) trying to reduce the gap between the num-
ber of experimentally identified phosphorylation sites and the
number of phosphorylation sites for which the modifying kinase
is known.

Prediction of Posttranslational Modification of Proteins from Their Amino Acid Sequence 375



Unfortunately, most of the phosphorylation predictors
described in the literature are not created for substrates of a
specific kinase but for quite a number of unrelated protein
substrates (or, in the worst case, for all possible Ser-, Thr- or
Tyr-kinases). Since the kinases have largely differing substrate
specificities, naturally, these predictors struggle with the problem
of predicting a huge number of potential phosphorylation sites
(many of them being false positives). This leads to the situation
that most of these predicted sites are misclassified. Therefore,
these prediction tools cannot be recommended for planning of
experiments or proteome-wide in silico scans. It is a fundamental
quality feature of a predictor to aim at predicting substrates for
specific kinases or a class of kinases with essentially identical
substrate specificity.

There are quite a number of different phosphorylation site
predictors available and the list below is far from complete; yet,
only a few can be recommended for usage:

pkaPS (54) http://mendel.imp.ac.at/sat/pkaPS

DIPHOS (8) http://www.ist.temple.edu/DIPHOS

KinasePhos2.0 (55) http://KinasePhos2.mbc.nctu.edu.tw

NetPhosK (56) http://www.cbs.dtu.dk/services/
NetPhosK

NetPhos (57) http://www.cbs.dtu.dk/services/
NetPhos

NetPhosYeast (58) http://www.cbs.dtu.dk/services/Net
PhosYeast

PredPospho (59) http://pred.ngri.re.kr/PredPhospho.htm

GPS2.0 (60) http://bioinformatics.lcd-ustc.org/gps2/
down.php

Predikin (61) http://predikin.biosci.uq.edu.au

Scansite2.0 (62) http://scansite.mit.edu

The overarching problem in phosphorylation site prediction is
the false-positive rate and only the more recent developments
approach this problem seriously. Exact measurement of the selec-
tivity is not an easy issue either (see (1, 4, 54, 63)for discussion).

NetPhos (57) was one of the first approaches which outper-
formed simple PROSITE-like (6) searches, but this is a neural net-
work predictor for substrates of any kinase, a situation contradicting
the known biological mechanisms of protein substrate selection.
NetPhosK (56) is a kinase-specific extension to the general NetPhos
method. Scansite 2.0 (62) uses position-specific scoring matrixes
(PSSM) to predict phosphorylation motifs for 62 different kinases.
In this site model, only the central motif that directly interacts with
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the active site of the kinase is considered for discrimination from
nonsites; it appears that this is a major reason for the high false-
positive rate. Using support vector machines (SVMs), PredPhospho
(59) and KinasePhos2.0 (55), attempts to predict phosphorylation
sites and the type of kinase that acts at each site.

Typically, prediction algorithms which are based on PROSITE-
like patterns generate a huge amount of false-positive predictions.
The same is true for profile searches with short motifs. In the case of
GPS2.0 (60), the authors even increase the possibility of a false-
positive prediction by reducing the strength of the profile they
search with (to achieve higher coverage of known examples). The
final score for a query (phosphorylation) site is calculated as an
average value of substitution scores which are obtained from the
comparison of the query motif to all known phosphorylation sites in
the training set. The substitution scores rely on a slightly modified
BLOSUM62 substitution matrix which contains negative values for
disfavored substitutions, e.g., replacing alanine with arginine is
evaluated by -2, and positive (or zero) values for more advantageous
substitutions, e.g. replacing alanine with serine is scored with +1.
Surprisingly, the authors of GPS2.0 simplify the substitution scores
in that way that they ignore negative matrix values (just adding zero
instead) and, therefore, do not penalize the occurrence of disfavored
amino acid types in the query motif at all.

pkaPS (54) is an algorithm for the prediction of protein kinase
A (PKA) phosphorylation sites. The pkaPS authors studied the
PKA recognition motif in great detail and created a capable pre-
diction module (sensitivity� 96% at a specificity�94%) based on a
simplified substrate protein-binding model. Comparison of the
prediction performances of pkaPS to the previously mentioned
phosphorylation site predictors (PKA prediction only) shows that
pkaPS is the most powerful standalone predictor at present (54).
DIPHOS (8) is a predictor that is conceptionally most closely
related to pkaPS. The authors of the predictor programs try to
improve the discrimination between phosphorylation and non-
phosphorylation sites by using disorder information (sequence
complexity, hydrophobicity, net charge) in addition to position-
specific amino acid frequencies. The authors rely on the hypothesis
that protein phosphorylation predominantly occurs within intrin-
sically disordered protein regions.

3.4. Glycosylation Many proteins in eukaryotic cells are glycoproteins. Glycosylation
is an enzymatic process that covalently links oligosaccharide chains
to certain amino acids. In contrast, glycation is a nonenzymatic
reaction that adds sugar molecules, such as glucose or fructose, to
lysine residues (56). Glycosylation is known to be important for a
large variety of functions such as protein folding and stability,
manipulation of a protein’s cellular localization, and trafficking as
well as cell–cell interactions.
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There are four main categories of glycosylation: (i) N-linked
glycosylation (addition of the sugars to the amino group (NH2) of
an asparagine of secreted or membrane-bound proteins), (ii) O-
linked glycosylation (addition of the sugar to the hydroxyl group
(OH) of a serine or a threonine), (iii) C-mannosylation (addition
of a mannose sugar to tryptophan), and (iv) GPI anchors (see lipid
anchor modifications) (56).

The number of glycosyltransferases is huge; many of them are
not explored and, compared with the situation of phosphorylation
substrates, the relationship between the specific glycosyltrans-
ferases and their substrates is generally even less studied than for
the kinases. As a result, glycosylation prediction remains in a very
unsatisfactory state and the computerized protein sequence-based
predictors have low predictive power. Among the published litera-
ture and the WWW-available sites, the following servers belong to
the more reasonable ones:

NetNGlyc (64) http://www.cbs.dtu.dk/services/Net
NGlyc

NetOGlyc (65) http://www.cbs.dtu.dk/services/Net
OGlyc

OGPET (no
reference)

http://ogpet.utep.edu/OGPET

CKSSAP_OGlySite
(66)

http://bioinformatics.cau.edu.cn/
zzd_lab/CKSAAP_OGlySite

Oglyc (67) http://www.biosino.org/Oglyc

DictyOGlyc (68) http://www.cbs.dtu.dk/services/Dicty
OGlyc

YinOYang (64) http://www.cbs.dtu.dk/services/YinO
Yang

NetCGlyc (69) http://www.cbs.dtu.dk/services/Net
CGlyc

NetGlycate (70) http://www.cbs.dtu.dk/services/net
Glycate

Traditionally, N-glycosylation is understood as a process of
adding a glycan structure to the substrate protein in the endoplas-
mic reticulum. The NetNglyc server predicts N-glycosylation sites
in human proteins using artificial neural networks that examine the
sequence context of Asn-Xaa-Ser/Thr motifs (64).

O-glycosylation is more diverse from the viewpoint of subcel-
lular localizations of targets. They can be secreted or become
transmembrane proteins, also at Golgi vesicle membranes. In
addition, O-glycosylation has been shown to occur in the nucleus
and cytoplasm of cells (56). NetOGlyc(65) produces neural
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network predictions of mucin-type GalNAc O-glycosylation sites
in mammalian proteins. It is a combination of predictions from the
best overall network and the best isolated (single) site network.
The best overall network relies on amino acid composition, aver-
aged surface accessibility predictions together with substitution
matrix profile encoding of the protein sequence. Interestingly,
the authors find that a glycosylated serine or threonine is less likely
to be precisely conserved than a nonglycosylated one. Unfortu-
nately, the predictive power is not great. The authors say that the
addition of GalNAc to serine and threonine is mediated by at least
14 different UDP-GalNAc:polypeptide N-acetyl-galactosaminyl-
transferase (71) with, most likely, differing specificity. Another
WWW server for the same mucin-type glycosylation is OGPET
(see above for WWW URL) with a simple pattern-matching
procedure.

The authors of CKSSAP_OGlySite (66) suggest that the usage
of the composition of k-spaced amino acid pairs evaluated with an
SVM reaches prediction rates that are better than those of OGlyc
(67), another SVM-based tool that evaluates the presence of 188
physical properties in the motif region; yet, the problem of glyco-
syltransferase preference for certain types of protein substrates
remains untouched in both papers. When we submitted EGFR_-
HUMAN (P00533, annotated as N-linked glycoprotein), the tool
NetOGlyc does not predict any sites (apparently the correct pre-
diction), OGPET generates one prediction (serine 921), CKSAAP
delivers even 11 sites (residues 1025, 1026, 1028, 1032, 1036,
1037, 1039, 1041, 1045, 1141, 1145), and Oglyc finds 6 sites
(threonine 273, serines 921, 924, 1036, and 1042, threonine
1046). It should be noted that OGlyc reports the results shifted
by one residue, apparently a small bug. CSKAAP requires the user
to wait (in our case, a day) to receive an E-mail for the prediction
results.

DictyOGlyc (68) is a specialized predictor for O-�-GlcNAc
sites in Dictostelium discoideum-based neuronal networks that
explore the immediate sequence context and the predicted surface
accessibility of potential sites. Unfortunately, there are only 39
sequences in the learning set.

The YinOYang neuronal network produces predictions for O-
bGlcNAc attachment sites in eukaryotic protein sequences. This
tool should be applied in parallel with NetPhos. The idea of ‘‘Ying-
Yang’’-sites suggests that glycosylation and phosphorylation of the
same serine or threonine hydroxyl group are possible and it should
be predicted by both methods.

C2-mannosylation of tryptophane is a recently discovered new
form of glycosylation of proteins (72) that is introduced into the
unfolded protein, apparently, during import into the endoplasmic
reticulum. There are almost 70 experimentally verified examples
with the WxxW (or the WxxC) motif. The NetCGlyc (69)
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neuronal network explores an 21-residue sequence window as
input window with the potentially modified tryptophane at the
center. The NetGlycate (70) neuronal network attempts to find
sites for nonenzymatic glycation sites.

4. Conclusions

The experience shows that the prediction tools function best for
those PTMs, for which the biology is best understood and where
the prediction algorithm can mimic the recognition of the sub-
strate by the modifying enzyme. In the development of several
lipid anchor prediction tools [big-PI (19, 31, 32), MyrPS (20),
PrePS (36)], such considerations had been central and, not sur-
prisingly, the predictions have become similarly reliable as the
collection of sequence families within the homology concept.
Other tools that can be recommended for general use are SIG-
NALP (23) and, with somewhat more reservations, pkaPS (54).
The PeroPS (26, 27) tool for the recognition of the PTS1 translo-
cation signal is constructed following similar principles and
appears also safe for usage.

All other PTM prediction tools have considerable problems
with false-positive predictions and are problematic for the applica-
tion in the context of uncharacterized sequence studies. The
enormous growth of the number of bioinformatics teams and
researchers and the pressure on them to publish has led to a
proliferation of journals, inflation of the number of published
articles and a dramatic, collective decline of impact factors for
specialized bioinformatics journals. Over the field as a whole, the
standard of prediction tool development manuscripts has not
improved over the last decade neither with respect to biological
considerations nor technical perfection; even standards that were
generally accepted such as justification of the amount of para-
meters by the amount of data, proper cross-validation tests, or at
least the attempt of collecting all available experimental data for
learning of the scoring function’s parameters are frequently not
complied with.

At the end, we wish to highlight the problem between the
occurrences of sequence regions in a substrate protein that are
recognized by the prediction tools as fit for receiving a specific
PTM and the observation of this PTM in vivo for the same protein.
In the first situation, the focus is whether the protein can be the
target of a productive interaction with the modifying enzyme and
this question can, for example, be studied in an in vitro assay. It is
another question whether the two reaction partners ever come
together in vivo (and this might depend on physiological or
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pathological conditions, be influenced by mutations, etc.). Once
this conception is agreed upon, one might predict the occurrence
of sites that are fully functional for a PTM (or a translocation
signal); yet, they remain silent in normal physiology. Indeed,
such sites do exist as was shown in an experimental test (63).
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Chapter 22

Protein Crystallizability

Pawel Smialowski and Dmitrij Frishman

Abstract

Obtaining well-diffracting crystals remains a major challenge in protein structure research. In this chapter,
we review currently available computational methods to estimate the crystallization potential of a protein,
to optimize amino acid sequences toward improved crystallization likelihood, and to design optimal crystal
screen conditions.

Key words: protein crystallization, construct optimization, crystallization conditions, crystallization
screen.

1. Introduction

1.1. Protein

Crystallization
The study of structural properties of biological macromolecules is
one of the most important avenues of contemporary biology. The
availability of three-dimensional structures is an important prere-
quisite for understanding protein function (1) and ultimately for
elucidating the inner workings of the living cell.

Protein crystallization followed by X-ray diffraction data col-
lection is the method of choice for protein structure research.
Upon crystallization, molecules form an ordered, solid array. Crys-
tals typically start growing from supersaturated solutions in a
process called ‘‘nucleation.’’ Further crystal growth depends on
the presence of a high number of identical or nearly identical
molecules. For this reason the protein under study has to be
sufficiently stable to be present in only one structural form. Phy-
sical properties of the molecular surface must allow the formation
of a defect-free repetitive crystal lattice. Depending on the surface
properties proteins can form crystals/lattices of different geome-
tries even under the same crystallization conditions (2).
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Except for very few examples (e.g., crystallines in the eye),
cellular systems do not require protein crystallization to function
properly. Considering the high protein concentration in the cell, it
is feasible that evolution would select against unspecific protein–
protein interactions that lead to aggregation or crystallization (3).
Therefore, it is not surprising that protein crystallization under lab
conditions has a relatively low success rate. The standard approach
to crystallization requires sampling of physical and chemical con-
ditions including temperature, pH, and ionic strength. Usually a
vast number of different buffers, salts, and precipitating agents
have to be tested (4). Small molecular cofactors or inhibitors can
also play a crucial role in the crystallization process (5).

While the standard approach to crystallization is to search for
successful crystallization conditions (2), it is also common to
optimize the protein construct used for crystallization or replace
the protein of interest by an ortholog with a higher crystallization
probability. Many proteins which were recalcitrant to crystalliza-
tion in wild-type form become tractable after mutating their
sequence (6–13). As a consequence of construct optimization
(e.g., removal of flexible loops, etc.), many structures deposited
in the PDB [the databank of protein structures, (14)] cover only
protein fragments or domains.

1.2. Structural

Genomics

Structural genomics/proteomics is an international coordinated
effort to determine atomic resolution three-dimensional struc-
tures of proteins at large scale in a high-throughput fashion.

The structural genomics pipeline consists of successive experi-
mental stages from cloning up to structure determination and data
deposition. The number of recalcitrant instances at each step is
very high: on average, from 100 selected proteins only �3 yield
three-dimensional structures deposited with the PDB databank
(Fig. 22.1). The statistics obtained by structural genomics pro-
jects is also a good estimate of the success rate in structural biology
in general.

This notoriously low success rate of structure determination
stimulated the development of bioinformatics methods to select
potentially tractable proteins, the so-called low hanging fruit. The
ability to estimate a priori the prospect of a given protein to be
experimentally tractable cannot be over appreciated. Even a mini-
mal advance in this direction, improving the experimental success
rate by just a few percentage points, would cause significant reduc-
tion of cost and possibly yield dozens of additional structures.

The systematic approach to data collection taken by structural
genomics consortia gave rise to abundance of both positive and
negative experimental data from all stages of the protein structure
determination pipeline. This quickly growing corpus of experi-
mental success and failure data creates a unique opportunity for
retrospective data mining.
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Systematic characterization of the protein features influencing
solubility, crystallization, or more generally structural determina-
tion success rate began around year 2000 (15, 16) when high-
throughput structural proteomics consortia accumulated enough
experimental data to start the first round of retrospective evalua-
tion. Until that time, a number of rules of thumb, describing the
experimental behavior of proteins had been known for years:
transmembrane proteins are hard to express, solubilize, and crys-
tallize; long proteins are hardly accessible by nuclear magnetic
resonance (NMR); prokaryotic proteins are generally easier to
work with than eukaryotic ones; and proteins from thermophilic
organisms are more stable.

In this chapter, we review different approaches to predict the
crystallization behavior of proteins from their amino acid
sequences and present publicly available methods and tools.

2. Methods

There are still very few methods capable of estimating the prob-
ability of protein crystallization or of the overall success in struc-
ture determination. Although the early data mining efforts did not
result in publicly accessible Web-servers or software, they still
succeed in elucidating the dependencies between sequence fea-
tures and experimental behavior of proteins. Therefore, learning
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Fig. 22.1. The number of proteins surviving successive stages of structure determination
[data from TargetDB (72) (Status: 10/March/2006)]. Out of the 83,596 initially selected
targets only 3.4% (2830) have reached the PDB.
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about the results of these early efforts should be useful for the
reader. All databases and publicly available methods described
below are summarized in Table 22.1.

Based on the performed task, methods can be divided into
three groups: those that score protein amenability for structure
determination or crystallization, those that help to optimize the
protein construct, and those that guide crystallization condition
screens.

2.1. Crystallization

Target Selection

Working with proteins that do not yield crystals under standard
test conditions can be futile (17). Therefore, structural genomics
projects often resort to alternative targets sharing function and
high sequence similarity with the original protein of interest, but
having higher chances of crystallization. Orthologs from thermo-
stable organisms were frequently used in the early days of struc-
tural genomics (15) as it was believed that thermostable proteins
are generally more promising crystallization targets. In contrast to

Table 22.1
Predictive methods and databases for protein crystallization

Method Url Property

SECRET http://
webclu.bio.wzw.tum.
de:8080/secret

Predicting protein crystallizability for highly soluble
proteins of 46–200 residues length (23)

OB-
Score

http://www.compbio.dun
dee.ac.uk/obscore/

Probability of success in structure determination by
crystallizability (19)

XtalPred http://ffas.burnham.org/
XtalPred

Predict protein crystallizability and suggest bacterial
orthologs (26)

SERp http://
nihserver.mbi.ucla.edu/
SER/

Suggest protein construct optimization by point mutations
(13)

CrysPres http://www.ruppweb.org/
cryspred/default.html

Designing crystal screening conditions

ConSeq http://
conseq.bioinfo.tau.ac.il/

Highlight protein residues important for function and
structure (33)

XtalGrow http://jmr.xtal.pitt.edu/
xtalgrow/

Helps to construct and manage custom factorial
crystallization tests (52)

BMCD http://wwwbmcd.nist.gov:
8080/bmcd/bmcd.html

Biological Macromolecule Crystallization Database. It
includes information about the crystallization
conditions and crystal data (53)

MPCD www.crmcn.univ-mrs.fr/
mpcd/

Marseille Protein Crystallization Database – compilation of
two crystallization databases, CYCLOP and BMCD
(v2.0). (73)
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the simplistic target selection strategy guided solely by the organ-
ism of origin, currently available methods can score the probability
of protein crystallization based on a large body of success/failure
data from high-throughput structure determination efforts.

2.1.1. Overall Structural

Determination Success

(from Cloning to Structure)

The overall success in structure determination is defined by the
percentage of initially selected targets that survived all successive
experimental stages from cloning to structure deposition in PDB.
It is not always equivalent to protein crystallization since the
second most popular method for structure determination at
atomic resolution is nuclear magnetic resonance (NMR). Sample
quality requirements for both methods partially overlap. In parti-
cular, the protein has to be structurally stable and highly soluble in
aqueous solution. For the scope of this paragraph, we define over-
all structural determination success without differentiating
between the NMR and X-ray methods.

Canaves et al. (18) attempted resolving three-dimensional
structures of the entire protein complement of the hypothermo-
philic bacteria Thermatoga maritima. Out of 1,877 gene products
encoded in this organism, 539 were purified and 465 of them
crystallized. They described differences between the whole pro-
teome and those proteins that yielded structures by crystallization.
The successful set was depleted in proteins containing hydrophobic
regions predicted to be transmembrane helices and low-complexity
regions, with very few crystallized targets having more then 41
residues in such regions (18). The average length of a successful
protein was 274 residues, notably lower than the 311 residues in
the entire proteome. Very long (over 560 residues) and very short
(fewer than 80 amino acids) proteins were shown to crystallize less
frequently. Isoelectric point distributions for both sets were similar
and bi-modal, with the minimum at 7.5 (physiological pH of T.
maritima) and two maxima at 5.8 and 9.6. For crystallizable pro-
teins, the second maximum was slightly shifted from 9.6 to 9.3.
Moreover, success rate analysis showed that the probability of
crystallization is elevated (32–36%) for the proteins having pI
between 5.1 and 7.5. Hydrophobicity measured by GRAVY index
(grant average of hydropathy) was also found to be a very potent
feature. The distribution of the GRAVY index values for the subset
of successful proteins was mono-modal, centered at�0.3, while for
the entire proteome it was bi-modal with a second peak centered
about 0.7. As a result of this divergence, proteins with GRAVY
between �1 and 0.2 crystallized with the probability of �17% and
those with values higher than 0.4 or lower than �1 almost never.
Furthermore, amino acid composition was shown to be a very
important determinant of structural genomics success rate. Similar
to the GRAVY index, the distribution of charged residue occur-
rence (Glu, Asp, Lys, Arg, His) in the proteome was bi-modal while
for the crystallizable subset it was mono-modal with a peak at 30%.
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There were practically no crystallizing proteins with the content of
charged residues below 24% (18). Interestingly, a two-dimensional
drawing of GRAVY against isoelectric point revealed the presence
of areas with a higher density of successful instances as well as other
areas with a lower probability of success. The region restricted by
the pI values 4.3–7.5 and GRAVY –0.67–0.33 was highly enriched
in tractable proteins, containing 75% of all crystallized proteins and
only 60% of the entire proteome. On the other hand, the proteins
with pI higher then 9.1 and GRAVY higher then 0.53 were almost
exclusively not crystallizable.

The idea of building a simple predictor of structure determi-
nation success based on pI and GRAVY values sparked by Canaves
et al. (18) was further developed by Overton et al. (19). A classifier
(www.compbio.dundee.ac.uk/obscore) was constructed compar-
ing 5,454 PDB sequences against the UniRef50 data using a
Z-score based statistical test in the pI, GRAVY space, resulting in
a matrix of differential Z-score values. The UniRef50 dataset was
derived from UniProt (20) by sequence clustering such that no
two sequences share more than 50% identity. The method calcu-
lates the pI, GRAVY, and Z-score (called here OB-score) values for
the query sequence using the precalculated differential Z-score
matrix. Proteins with an OB-score� 5 were shown to have higher
relative probability of success. Since the method does not take into
account NMR-derived structures, it essentially evaluates only the
probability of structure determination by crystallization, but
because the method is trained on the contrast between the PDB
and UniProt sequences, without distinguishing individual stages
of structure determination, it still predicts the overall success.

Goh and coworkers (21) identified the following factors that
correlate with the overall success rate of structure determination:
membership in an orthologous family defined in the COG data-
base (22), higher percentage of acidic (DE > 9.7%) and nonpolar
(GAVLI > 31.7%) amino acids as well as the lower content of
cysteine (C < 1.8%) and the higher content of sulfur or oxygen-
containing residues (SCTM>10%). Annotation with a COG
family in this case reflects the fact that the given protein is already
functionally characterized and thus presumably constitutes a more
tractable experimental target.

2.1.2. Probability of Protein

Crystallization

All currently available methods to predict crystallization propensity
attempt to relate the query sequence to the body of known experi-
mental results. The first and the most straightforward method to
evaluate the chances of a protein being crystallizable is to check
whether its homologs had been already crystallized. In some cases,
this simple approach can also provide hints for construct optimization.

More sophisticated methods go one step further and relate the
query sequences not directly to the experimental instances but to
the statistical probabilistic models generalizing over the observed
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data. Based on the analysis of structural genomics data, it was
demonstrated that proteins determined structurally by X-ray or
NMR have different amino acid composition in comparison to
those that reached only the ‘‘purified’’ stage. The proteins unsuc-
cessful at the structure determination stage (X-ray or NMR) have
low content of alanine (A < 8.5%) and high percentage of hydro-
phobic residues (GAVLI > 26.7%) while successful targets are
characterized by higher alanine frequency (21). Christendat et al.
(15) found that 18 out of 25 crystallizable proteins, but only one
out of 39 noncrystallizable proteins have asparagine composition
below 3.5%. These values can be used for threshold-based estima-
tion of success chances.

The method developed by our group is based on the frequen-
cies of single amino acids, doublets, and triplets used as input
for the two-layer SVM and Naive Bayes classifier (23). To learn
specific features of crystallizable protein we explore the difference
between two sets of proteins: those whose structures were deter-
mined only by NMR and not having any sequence similarity
to proteins with known X-ray structures (used as a negative train-
ing set) and those with X-ray structures (used as a positive training
set). This approach was inspired by previous work of Valfar et al.
(24) and also by the fact that NMR is frequently being used
by structural genomics consortia as a complementary technique
to determine structures of proteins that did not yield to crystal-
lographic attempts. Using as input the frequencies of one, two,
and three amino acid stretches (optionally grouped by amino
acid properties such as hydrophobicity), we built a two-layer clas-
sifier with a number of SVMs as primary classifiers and a Naive
Bayes classifier as a result integrator. Employing ten time cross-
validation, we achieved the accuracy of 67% (65% on the positive
(crystallizable) and 69% on the negative (noncrystallizable) class)
(23). The crystallization predictor is accessible as a Web-server
(http://webclu.bio.wzw.tum.de:8080/secret). The limitation of
the method is the sequence length limit of sizes between 46 and
200 amino acids.

Analysis of high-throughput experiments (TargetDB database
extended with some internal data from PSI (Protein Structure
Initiative) participants) and protein structures deposited in the
PDB allowed Slabinski et al. (25, 26) to extract features decisive
for crystallization. They found that the probability of protein
crystallization correlates with sequence length, isoelectrical
point, GRAVY hydrophobicity index, instability index, the num-
ber of residues predicted to be in coiled-coil [as calculated by
COILS (27)], the length of the longest disordered region [as
calculated by DISOPRED2 (28)], and sequence conservation
(measured as a percentage of insertions in sequence when aligned
with homologs from a nonredundant database). Based on those
features calculated for crystallizable and noncrystallizable
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structural genomics targets, they derived a probabilistic feasibility
score using logarithmic opinion pool method (29). Targets with
top and bottom 20% scores were successful in 57 and 10% of the
cases, respectively. The authors offer a Web-server (XtalPred,
http://ffas.burnham.org/XtalPred) categorizing proteins accord-
ing to the feasibility score into optimal, suboptimal, average, diffi-
cult, and very difficult. Additionally, XtalPred is capable of
providing close bacterial homologs which are supposed to be
more likely to crystallize then the original protein. The main limita-
tion of this method is the absence of an appropriate statistical
evaluation on a protein set not used to formulate the rules (so-called
withhold data set).

2.2. Construct

Optimization

Complementary to scoring and selecting the most crystallizable
proteins there exist a number of procedures, both experimental
and computational, to improve protein constructs. This includes
theoretical methods to detect domain boundaries (30, 31) and
fold types (32), the presence of conserved or functionally crucial
regions or residues (33, 34), loops, unstructured (28, 35) or low-
complexity regions (36), secondary structure elements (37), high
entropy, or hydrophobic patches on predicted protein surface (6,
38). There is also an array of experimental techniques helping to
measure protein stability (DSC – differential scanning calorime-
try), aggregation state (DLS – dynamic light scattering, size exclu-
sion chromatography), the presence of flexible elements [NMR
(39); DXMS – deuterium exchange mass spectrometry (40)] and
domain boundaries [proteolytic mass spectrometry (41)]. All these
standard tools serve to trim and modify the protein sequence in
order to make it more structurally stable without affecting
domains, active/binding sites, or conserved regions of interest.
Because many of the computational methods listed above are
covered in other chapters of this book, in this paragraph we will
focus primarily on methods for improving putative crystal contact
interfaces.

Crystal’s nucleation and growth can be hindered by high
entropy of the protein surface. Quite often removing surface
loops or unstructured regions leads to improved crystallization
behavior. But not only loops can be the source of unfavorable
surface flexibility. Derewenda and coworkers (6–8) showed that
a substantial improvement in crystallization behavior can be
achieved by engineering crystal contacts.

Working with proteins of unknown structure, it is not possible
to identify which residues will build the crystal contacts. The
Derewenda method (13) detects clusters of nonconserved, sol-
vent-exposed residues with high-conformational entropy (lysine,
glutamine, glutamine acid), which can impede the formation of
crystal contacts. These residues are then substituted by smaller,
low-entropy amino acids such as alanine, histidine, tyrosine, or
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threonine (8). Among crystallization-promoting substitutions,
alanine was first reported. Currently it seems that tyrosine, threo-
nine, serine, and histidine can be equally sufficient (8). In many
cases, the latter substitutions are superior over alanine as they do
not interfere with protein solubility and for some proteins (e.g.,
RhoGDI) they result in better crystal quality.

Selection of amino acids types to be replaced is based on the
observed lower frequency of lysine, glutamine, and glutamic acid
at the protein–protein interaction interfaces (42, 43). Hence by
analogy their presence at the crystallization interface should be also
avoided. The choice of substituting amino acids is motivated by
the amino acid occurrence in interaction interfaces, where tyro-
sine, histidine, and serine are more frequent (42, 44, 45). Other
amino acids (alanine and threonine) are used primary because of
their small size, low entropy, and limited hydrophobicity.

Upon building for each protein a spectrum of constructs
harboring mutations on different high-entropy patches, the Dere-
wenda group reported improved crystallization and better crystal
diffraction for almost all tested proteins (6–8). Interestingly, they
also observed that mutated proteins crystallized in greater variety
of conditions which brings us to the next topic.

2.3. Optimizing Initial

Conditions

It is generally accepted that certain proteins will readily crystallize
in a wide range of different conditions, while others are less amen-
able to crystallization and will require extensive optimization of
conditions (17, 46). Nevertheless, screening a wide variety of
chemical and physical conditions remains currently the most com-
mon approach to crystallization optimization. Various strategies
are used to screen conditions for crystallization. Those include
simplified rational approaches (screening at the pI), highly regi-
mented approaches (successive grid screening) (47), and analytical
approaches (incomplete factorials, solubility assays, perturbation,
sparse-matrix) (48–50).

The incomplete factorial method was pioneered by Carter and
Carter (48). It is based on random permutation of specific aspects
of the crystallization conditions (e.g., pH, precipitant, additives).
Random sampling is supposed to provide a broad coverage of the
parameter space. The follow-up of this approach is the so-called
sparse-matrix method proposed by Jancarik and Kim (49, 51). It
has arguably become the most popular approach for initial crystal-
lization screening. In the sparse-matrix method, the parameters of
crystallization conditions are constrained to the value ranges
known to crystallize proteins. To further limit the number of
tests, those combinations of parameters that can be partially repre-
sented by other conditions were removed, resulting in the final
number of 50 unique conditions. Thanks to a limited number of
conditions, the sparse-matrix method requires the least amount of
samples. Most of the commercially available screens are based on
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either the sparse-matrix or the grid method. The choice of the
strategy should be based on the a priori knowledge about a
protein.

If you need to design a nonstandard screen you can use one of
the publicly available programs. For example, XtalGrow (http://
jmr.xtal.pitt.edu/xtalgrow/) (52) based on the Bayesian method
extends the Jancarik and Kim work (49) and can be used to
calculate a factorial matrix setup guided by the protein properties
and functions or based on the range of chemical parameters pro-
vided by the user. One of the assumptions made by the XtalGrow
authors is that similar macromolecules crystallize in clusters of
similar experimental conditions. The guidelines for specific types
of molecules (proteins were organized hierarchically according to
function) embedded into XtalGrow are based on the crystalliza-
tion data gathered in the Biological Macromolecular Crystalliza-
tion Database [BMCD, (53)].

The complexity of the screening procedure can be further
extended by using two different buffers: one to mix with the
protein and a second one to fill the reservoir (54, 55). The same
crystallization conditions over different reservoir solutions were
shown to lead to different crystallization/precipitation behavior of
the protein. Optimizing the reservoir solution can lead to a sub-
stantial improvement in success rate.

Although the importance of crystallization condition’s pH is
well known, it remains a subject of intense debate whether pH
optimal for crystallization can be deduced from the protein pI (56–
58). Optimizing protein buffering conditions for increased solu-
bility can lead to higher success rates in subsequent crystallization
test as demonstrated by Izaac et al. (59). By adjusting the formula-
tion of the protein solution, they increased the appearance of
crystals for 8 out of 10 tested proteins.

A very promising approach was presented by Anderson and
coworkers (60). They performed multiple solubility experiments
to derive phase diagrams for each protein separately. Equipped
with this knowledge they were able to design protein-specific
crystallization screens leading to successful crystallization for 9
out of 12 proteins, most of which failed on traditional screens.

Many groups try to define the smallest subset of conditions
capable of crystallizing the maximum number of proteins. Kimber
et al (17) studied crystallization behavior of 755 proteins from 6
organisms using the sparse-matrix screen described in Jancarik and
Kim (49). They suggested that it will be reasonable to reduce the
number of different conditions even further than originally pro-
posed by Jancarik and Kim. Kimber and coworkers derived 3
minimal sparse screens with 6, 12, and 24 conditions covering
61, 79, and 94% of successful crystallizations relative to the full
sparse screen with 48 conditions. Table 22.2 contains the formu-
lation of the minimal sparse screen with 12 conditions from
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Kimber et al. (17). Using argumentation similar to Jancarik and
Kim (49), they conclude that minimal screens are more practical and
economical than the original screen which was found to be over-
sampled toward high molecular weight PEGs (polyethylglycols).

Page and coworkers (61, 62) proposed a 67-condition screen
based on the expertise gathered by the Joint Center for Structural
Genomics (JCSG) and the University of Toronto during structural
studies on bacterial targets. They indicated that such limited subset
can outperform typical sparse-matrix screens in identifying initial
conditions. The same group also showed that 75% of diffracting
crystals can be obtained directly from initial coarse screens indicat-
ing that less then 25% of them required fine screening (62). In a
similar effort, Gao and coworkers (63) derived a simplified screen
based on the BMCD database which allowed them to reduce the
total number of conditions and to crystallize proteins which failed
with commercial screens.

Another optimization venue is the search for the optimal
inhibitor/substrate stabilizing protein structure. This approach
requires extensive experimental testing using libraries of putative

Table 22.2
Minimal sparse screen with 12 conditions from Kimber et al. (17). It covers 79%
of the crystals produced by the standard 48 conditions of the Jancarik and Kim
screen (49)

Numbers according to
Jancarik and Kim (49) Salt Buffer Precipitant

4 0.1 M Tris–HCl, pH 8.5 2 M NH4 Sulfate

6 0.2 M MgCl2 0.1 M Tris–HCl, pH 8.5 30% PEG 4000

10 0.2 M NH4 Acetate 0.1 M Na Acetate, pH 4.6 30% PEG 4000

17 0.2 M Li Sulfate 0.1 M Tris–HCl, pH 8.5 30% PEG 4000

18 0.2 M Mg Acetate 0.1 M Na Cacodylate, pH 6.5 20% PEG 8000

30 0.2 M (NH4)2SO4 30% PEG 8000

36 0.1 M Tris–HCl, pH 8.5 8% PEG 8000

38 0.1 M Na HEPES, pH 7.5 1.4 M Na Citrate

39 0.1 M Na HEPES, pH 7.5 2% PEG 400
2 M NH4 Sulfate

41 0.1 M Na HEPES, pH 7.5 10% 2-Propanol
20% PEG 4000

43 30% PEG 1500

45 0.2 M Zn Acetate 0.1 M Na Cacodylate pH 6.5 18% PEG 8000
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compounds to find the one with sufficient affinity to the protein.
Usually, researchers tend to employ virtual ligand screening
coupled with subsequent experimental measurements of the bind-
ing strength (for example fluorometry, calorimetry, or NMR).
This protocol proved to be very successful in stabilizing proteins
for crystallization and resulted in crystallization of previously
unsuccessful targets (5, 64).

Because of the size limits, this paragraph covers only a small
fraction of work done toward crystallization condition optimiza-
tion. For further reading please refer to specialized reviews (65) or
textbooks (4).

3. Notes

Considering protein properties leading to overall tractability in the
structure determination pipeline, one should not forget that often
different protein properties are pivotal for success at different
stages along the experimental pipeline. Examples of such cases
can be found above or in Smialowski et al. (66).

Considering construct optimization, one potential problem is
that removing loops and unstructured regions can prevent proper
protein folding and lead to aggregation and formation of inclusion
bodies. A possible way around this obstacle is to conduct expres-
sion and purification on the longer construct and then to remove
the unstructured region using engineered cleavage sites (67),
nonspecific enzymatic cleavage (68), or even spontaneous protein
degradation (69).

The quality of commercially available crystallization screens
still requires attention as even identical formulations from different
manufacturers can yield dramatically different results (70).

3.1. Data One of the major constraints of the methods for predicting experi-
mental tractability of proteins is the limited amount of available
data. A particularly difficult challenge is the scarceness of negative
experimental data. Data deficiency is the main reason why there are
so few studies considering transmembrane proteins. Every set of
rules or classifier is a form of statistical generalization over the data
at hand. Hence, it is possible that a new protein will be sufficiently
different from the data set used for training to render useless
attempts of predicting its experimental tractability (e.g., crystal-
lizability). Obviously this problem diminishes with the accumula-
tion of experimental data but nevertheless it will never disappear.
Applying rules and using predictors described in this chapter, one
has to consider the similarity of the query proteins to the sequences
used to construct algorithms. Another consequence of the low
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amount of data is that the available methods are quite general and
do not take into account specific properties of the protein under
study. They are built based on the assumption that protein crystal-
lization is governed by general rules and is not, for example, fold
specific. In fact it seems sensible to expect that different rules will
apply to proteins having very different folds even if they are all
nontransmembrane proteins. Crystallization of some of the types
of proteins underrepresented in the current data can be driven by
different rules and therefore not well predicted by general protein
crystallization algorithms. It remains to be investigated whether
protein crystallization is prevalently governed by the universal
rules or whether it is rather fold specific. Symptomatic is the experi-
mental behavior of transmembrane proteins and the fact that none
of the methods described above apply to transmembrane proteins.

3.2. Methods An important limitation of the methods and studies described in
this chapter is that except for the work of Hennessy et al. (52) all of
them consider proteins in isolation and do not take into account
chemical crystallization conditions. Such focus on the amino acid
sequence is based on the experimental reports suggesting that
individual proteins tend to either crystallize under many different
conditions, or not at all (17). Nevertheless it is also well documen-
ted that the presence of posttranslational modifications (71) or
addition of cofactors and inhibitors (5) can dramatically affect
protein crystallization. Additionally none of the methods consider
physical crystallization setup.

Crystallization prediction methods do not anticipate progress
in crystallization production methods. It is conceivable that a
protein that failed to crystallize 20 years ago can be easily crystal-
lized nowadays. Rapid improvement of crystallization methods
quickly makes earlier predictions based on previously available
data obsolete.
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