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PREFACE

Due to the increasing importance of digital communications, the area of
research in coding theory and cryptography is broad and fast developing. In
this book there are presented some of the latest research developments in the
area. The book grew as a combination of two research conferences organized
in the area: the Vlora Conference in Coding Theory and Cryptography held
in Vlora, Albania during May 26-27, 2007, and the special session on coding
theory as part of the Applications of Computer Algebra conference, held
during July 19-22, Oakland University, Rochester, MI, USA.

The Vlora Conference in Coding Theory and Cryptography is part of
Vlora Conference Series which is a series of conferences organized yearly in
the city of Vlora sometime in the period April 25 - May 30. The conference
is 3-4 days long and focuses on some special topic each year. The topic
of the 2007 conference was coding theory and cryptography. The Vlora
conference series will host a Nato Advanced Study Institute during the
year 2008 with the theme New Challenges in Digital Communications. More
information of the conferences organized by the Vlora group can be found
at http://www.albmath.org/vlconf.

Applications of Computer Algebra (ACA) is a series of conferences de-
voted to promoting the applications and development of computer algebra
and symbolic computation. Topics include computer algebra and symbolic
computation in engineering, the sciences, medicine, pure and applied math-
ematics, education, communication and computer science. Occasionally the
ACA conferences have special sessions on coding theory and cryptography.

I especially want to thank A. Elezi who shared with me the burdens of
organizing the Vlora Conference in Coding Theory and Cryptography, the
participants of the conference in Vlora, and the Department of Mathematics
and Informatics at the Technological University of Vlora for helping host
the conference.

Also, my thanks go to the Department of Mathematics and Statistics
at Oakland University for hosting the Applications of Computer Algebra
conference. Without their financial and administrative support such a con-
ference would not be possible. My special thanks go to J. Nachman for
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sharing with me all the burdens of organizing such a big conference. I want
to thank also the co-organizers of the coding theory session D. Joyner and
C. Shor and all the participants of this session.

There are fourteen papers in this book which cover a wide range of topics
and 26 authors from institutions across North America and Europe. I want
to thank all the authors for their contributions to this volume. Finally,
my special thanks go to my co-editors W. C. Huffman, D. Joyner, and V.
Ustimenko for their continuous support and excellent editorial job. It was
their efforts which made the publication of this book possible.

T. Shaska
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The key equation for codes from order domains

John B. Little

Department of Mathematics and Computer Science,

College of the Holy Cross,

Worcester, MA 01610, USA
E-mail: little@mathcs.holycross.edu

We study a sort of analog of the key equation for decoding Reed-Solomon and

BCH codes and identify a key equation for all codes from order domains which

have finitely-generated value semigroups (the field of fractions of the order do-
main may have arbitrary transcendence degree, however). We provide a natural

interpretation of the construction using the theory of Macaulay’s inverse sys-

tems and duality. O’Sullivan’s generalized Berlekamp-Massey-Sakata (BMS)
decoding algorithm applies to the duals of suitable evaluation codes from these

order domains. When the BMS algorithm does apply, we will show how it can

be understood as a process for constructing a collection of solutions of our key
equation.

Keywords: order domain, key equation, Berlekamp-Massey-Sakata algorithm

1. Introduction

The theory of error control codes constructed using ideas from algebraic ge-
ometry (including the geometric Goppa and related codes) has undergone a
remarkable extension and simplification with the introduction of codes con-
structed from order domains. This development has been largely motivated
by the structures utilized in the Berlekamp-Massey-Sakata decoding algo-
rithm with Feng-Rao-Duursma majority voting for unknown syndromes.

The order domains, see [1–4], form a class of rings having many of the
same properties as the rings R = ∪∞m=0L(mQ) underlying the one-point
geometric Goppa codes constructed from curves. The general theory gives
a common framework for these codes, n-dimensional cyclic codes, as well as
many other Goppa-type codes constructed from varieties of dimension > 1.
Moreover, O’Sullivan has shown in [5] that the Berlekamp-Massey-Sakata
decoding algorithm (abbreviated as the BMS algorithm in the following)
and the Feng-Rao procedure extend in a natural way to a suitable class of
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codes in this much more general setting.
For the Reed-Solomon codes, the Berlekamp-Massey decoding algorithm

can be phrased as a method for solving a key equation. For a Reed-Solomon
code with minimum distance d = 2t+ 1, the key equation has the form

fS ≡ g mod 〈X2t〉. (1)

Here S is a known univariate polynomial in X constructed from the error
syndromes, and f, g are unknown polynomials in X. If the error vector e
satisfies wt(e) ≤ t, there is a unique solution (f, g) with deg(f) ≤ t, and
deg(g) < deg(f) (up to a constant multiple). The polynomial f is known as
the error locator because its roots give the inverses of the error locations;
the polynomial g is known as the error evaluator because the error values
can be determined from values of g at the roots of f , via the Forney formula.

O’Sullivan has introduced a generalization of this key equation for one-
point geometric Goppa codes from curves in [6] and shown that the BMS
algorithm can be modified to compute the analogs of the error-evaluator
polynomial together with error locators.

Our main goal in this article is to identify an analog of the key equa-
tion Eq. (1) for codes from general order domains, and to give a natural
interpretation of these ideas in the context of Macaulay’s inverse systems
for ideals in a polynomial ring (see [7–10]) and the theory of duality. We
will only consider order domains whose value semigroups are finitely gen-
erated. In these cases, the ring R can be presented as an affine algebra
R ∼= F[X1, . . . , Xs]/I, where the ideal I has a Gröbner basis of a very par-
ticular form (see [3]). Although O’Sullivan has shown how more general
order domains arise naturally from valuations on function fields, it is not
clear to us how our approach applies to those examples. On the positive
side, by basing all constructions on algebra in polynomial rings, all codes
from these order domains can be treated in a uniform way, Second, we also
propose to study the relation between the BMS algorithm and the process
of solving this key equation in the cases where BMS is applicable.

Our key equation generalizes the key equation for n-dimensional cyclic
codes studied by Chabanne and Norton in [12]. Results on the algebraic
background for their construction appear in [13]. See also [14] for connec-
tions with the more general problem of finding shortest linear recurrences,
and [15] for a generalization giving a key equation for codes over commu-
tative rings.

The present article is organized as follows. In Section 2 we will briefly
review the definition of an order domain, evaluation codes and dual evalu-
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ation codes. Section 3 contains a quick summary of the basics of Macaulay
inverse systems and duality. In Section 4 we introduce the key equation and
relate the BMS algorithm to the process of solving this equation.

2. Codes from Order Domains

In this section we will briefly recall the definition of order domains and
explain how they can be used to construct error control codes. We will use
the following formulation.

Definition 2.1. Let R be a Fq-algebra and let (Γ,+,�) be a well-ordered
semigroup. We assume the ordering is compatible with the semigroup oper-
ation in the sense that if a � b and c is arbitrary in Γ, then a+c � b+c. An
order function on R is a surjective mapping ρ : R→ {−∞} ∪ Γ satisfying:

(1) ρ(f) = −∞⇔ f = 0,
(2) ρ(cf) = ρ(f) for all f ∈ R, all c 6= 0 in Fq,
(3) ρ(f + g) � max�{ρ(f), ρ(g)},
(4) if ρ(f) = ρ(g) 6= −∞, then there exists c 6= 0 in Fq such that ρ(f) ≺

ρ(f − cg),
(5) ρ(fg) = ρ(f) + ρ(g).

We call Γ the value semigroup of ρ.

Axioms 1 and 5 in this definition imply that R must be an integral domain.
In the cases where the transcendence degree of R over Fq is at least 2, a ring
R with one order function will have many others too. For this reason an
order domain is formally defined as a pair (R, ρ) where R is an Fq-algebra
and ρ is an order function on R. However, from now on, we will only use
one particular order function on R at any one time. Hence we will often
omit it in refering to the order domain, and we will refer to Γ as the value
semigroup of R. Several constructions of order domains are discussed in [3]
and [4].

The most direct way to construct codes from an order domain given
by a particular presentation R ∼= Fq[X1, . . . , Xs]/I is to generalize Goppa’s
construction in the case of curves.

Let XR be the variety V (I) ⊂ As and let

XR(Fq) = {P1, . . . , Pn}

be the set of Fq-rational points on XR. Define an evaluation mapping

ev : R → Fn
q

f 7→ (f(P1), . . . , f(Pn))
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Let V ⊂ R be any finite-dimensional vector subspace. Then the image
ev(V ) ⊆ Fn

q will be a linear code in Fn
q . One can also consider the dual code

ev(V )⊥.
Of particular interest here are the codes constructed as follows (see

[5]). Let R be an order domain whose value semigroup Γ can be put into
order-preserving one-to-one correspondence with Z≥0. We refer to such Γ as
Archimedean value semigroups because it follows that for all nonconstant
f ∈ R and all g ∈ R there is some n ≥ 1 such that ρ(fn) � ρ(g). This
property is equivalent to saying that the corresponding valuation of K =
QF (R) has rank 1. O’Sullivan gives a necessary and sufficient condition for
this property when � is given by a monomial order on Zr

≥0 in [2], Example
1.3. Let ∆ be the ordered basis of R with ordering by ρ-value. Let ` ∈ N
and let V` be the span of the first ` elements of ∆. In this way, we obtain
evaluation codes Ev` = ev(V`) and dual codes C` = Ev⊥` for all `.

O’Sullivan’s generalized BMS algorithm is specifically tailored for this
last class of codes from order domains with Γ Archimedean. If the C` codes
are used to encode messages, then the Ev` codes describe the parity checks
and the syndromes used in the decoding algorithm.

3. Preliminaries on Inverse Systems

A natural setting for our formulation of a key equation for codes from or-
der domains is the theory of inverse systems of polynomial ideals originally
introduced by Macaulay. There are several different versions of this the-
ory. For modern versions using the language of differentiation operators,
see [9, 10]. Here, we will summarize a number of more or less well-known
results, using an alternate formulation of the definitions that works in any
characteristic. A reference for this approach is [8].

Let k be a field, let S = k[X1, . . . , Xs] and let T be the formal power
series ring k[[X−1

1 , . . . , X−1
s ]] in the inverse variables. T is an S-module

under a mapping

c : S × T → T

(f, g) 7→ f · g,

sometimes called contraction, defined as follows. First, given monomials Xα

in S and X−β in T , Xα ·X−β is defined to be Xα−β if this is in T , and 0
otherwise. We then extend by linearity to define c : S × T → T .

Let Homk(S, k) be the usual linear dual vector space. It is a standard
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fact that the mapping

φ : Homk(S, k)→ T

Λ 7→
∑

β∈Zs
≥0

Λ(Xβ)X−β

is an isomorphism of S-modules, if we make Homk(S, k) into an S-module
in the usual way by defining (qΛ)(p) = Λ(qp) for all polynomials p, q in S.
In explicit terms, the k-linear form on S obtained from an element g ∈ T
is a mapping Λg defined as follows. For all f ∈ S,

Λg(f) = (f · g)0,

where (t)0 denotes the constant term in t ∈ T . In the following we will
identify elements of T with their corresponding linear forms on S.

The theory of inverse systems sets up a correspondence between ideals
in S and submodules of T . All such ideals and submodules are finitely
generated and we will use the standard notation 〈f1, . . . , ft〉 for the ideal
generated by a collection of polynomials fi ∈ S.

For each ideal I ⊆ S, we can define the annihilator, or inverse system,
of I in T as

I⊥ = {Λ ∈ T : Λ(p) = 0, ∀ p ∈ I}.

It is easy to check that I⊥ is an S-submodule of T under the module
structure defined above. Similarly, given an S-submodule H ⊆ T , we can
define

H⊥ = {p ∈ S : Λ(p) = 0, ∀ Λ ∈ H},

and H⊥ is an ideal in S. The key point in this theory is the following duality
statement.

Theorem 3.1. The ideals of S and the S-submodules of T are in inclusion-
reversing bijective correspondence via the constructions above, and for all
I,H we have:

(I⊥)⊥ = I, (H⊥)⊥ = H.

See [8] for a proof.
We will be interested in applying Theorem 3.1 when I is the ideal of

some finite set of points in the n-dimensional affine space over k (e.g. when
k = Fq and I is an error-locator ideal arising in decoding – see Section 4
below). In the following, we will use the notation mP for the maximal ideal
of S corresponding to the point P ∈ ks.
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Theorem 3.2. Let P1, . . . , Pt be points in ks and let

I = mP1 ∩ · · · ∩mPt .

The submodule of T corresponding to I has the form

H = I⊥ = (mP1)
⊥ ⊕ · · · ⊕ (mPt

)⊥.

Proof. In Proposition 2.6 of [11], Geramita shows that (I∩J)⊥ = I⊥+J⊥

for any pair of ideals. The idea is that I⊥ and J⊥ can be constructed degree
by degree, so the corresponding statement from the linear algebra of finite-
dimensional vector spaces applies. The equality (I + J)⊥ = I⊥ ∩ J⊥ also
holds from linear algebra (and no finite-dimensionality is needed). The sum
in the statement of the Lemma is a direct sum since mPi

+ ∩j 6=imPj
= S,

hence (mPi)
⊥ ∩ Σj 6=i(mPj )

⊥ = {0}.

We can also give a concrete description of the elements of (mP )⊥.

Theorem 3.3. Let P = (a1, . . . , as) ∈ As over k, and let Li be the coordi-
nate hyperplane Xi = ai containing P .

(1) (mP )⊥ is the cyclic S-submodule of T generated by

hP =
∑

u∈Zs
≥0

PuX−u,

where if u = (u1, . . . , us), Pu denotes the product au1
1 · · · aus

s (Xu eval-
uated at P ).

(2) f · hP = f(P )hP for all f ∈ S, and the submodule (mP )⊥ is a one-
dimensional vector space over k.

(3) Let ILi
be the ideal 〈Xi− ai〉 in S (the ideal of Li). Then (ILi

)⊥ is the
submodule of T generated by hLi

=
∑∞

j=0 a
j
iX

−j
i .

(4) In T , we have hP =
∏s

i=1 hLi
.

Proof. (1) First, if f ∈ mP , and g ∈ S is arbitrary then

Λg·hP
(f) = (f · (g · hP ))0 = ((fg) · hP )0 = f(P )g(P ) = 0.

Hence the S-submodule 〈hP 〉 is contained in (mP )⊥. Conversely, if h ∈
(mP )⊥, then for all f ∈ mP ,

0 = Λh(f) = (f · h)0.

An easy calculation using all f of the form f = xβ − aβ ∈ mP shows that
h = chP for some constant c. Hence (mP )⊥ = 〈hP 〉.
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(2) The second claim follows by a direct computation of the contraction
product f · hp.

(3) Let f ∈ ILi (so f vanishes at all points of the hyperplane Li), and
let g ∈ S be arbitrary. Then

Λg·hLi
(f) = (f · (g · hLi))0 = ((fg) · hLi)0

= f(0, . . . , 0, ai, 0, . . . , 0)g(0, . . . , 0, ai, 0, . . . , 0) = 0,

since the only nonzero terms in the product ((fg) · hLi
) come from mono-

mials in fg containing only the variable Xi. Hence 〈hLi
〉 ⊂ T is contained

in I⊥Li
. Then we show the other inclusion as in the proof of (1).

(4) We have mP = IL1 + · · ·+ILs
. Hence (mP )⊥ = (IL1)

⊥∩· · ·∩(ILs
)⊥,

and the claim follows. We note that a more explicit form of this equation
can be derived by the formal geometric series summation formula:

hP =
∑

u∈Zs
≥0

PuX−u =
s∏

i=1

1
1− ai/Xi

=
s∏

i=1

hLi .

Both the polynomial ring S and the formal power series ring T can be
viewed as subrings of the field of formal Laurent series in the inverse vari-
ables,

K = k((X−1
1 , . . . , X−1

s )),

which is the field of fractions of T . Hence the (full) product fg for f ∈ S
and g ∈ T is an element of K. The contraction product f · g is a projection
of fg into T ⊂ K. We can also consider the projection of fg into S+ =
〈X1, . . . , Xs〉 ⊂ S ⊂ K under the linear projection with kernel spanned by
all monomials not in S+. We will denote this by (fg)+.

4. The Key Equation and its Relation to the BMS
Algorithm

Let C be one of the codes C = ev(V ) or ev(V )⊥ constructed from an
order domain R ∼= Fq[X1, . . . , Xs]/I. Consider an error vector e ∈ Fn

q

(where entries are indexed by the elements of the set XR(Fq)). In the
usual terminology, the error-locator ideal corresponding to e is the ideal
Ie ⊂ Fq[X1, . . . , Xs] defining the set of error locations:

Ie = {f ∈ Fq[X1, . . . , Xs] : f(P ) = 0, ∀ P s.t. eP 6= 0}.

We will use a slightly different notation and terminology in the following
because we want to make a systematic use of the observation that this ideal
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depends only on the support of e, not on the error values. Indeed, many
different error vectors yield the same ideal defining the error locations. For
this reason we will introduce E = {P : eP 6= 0}, and refer to the error-
locator ideal for any e with supp(e) = E as IE .

For each monomial Xu ∈ Fq[X1, . . . , Xs], we let

Eu = 〈e, ev(Xu)〉 =
∑

P∈XR(Fq)

ePP
u (2)

be the corresponding syndrome of the error vector. (As in Theorem 3.3, Pu

is shorthand notation for the evaluation of the monomial Xu at P .)
In the practical decoding situation, of course, for a code C = ev(V )⊥

where V is a subspace of R spanned by some set of monomials, only the
Eu for the Xu in a basis of V are initially known from the received word.

In addition, the elements of the ideal I+〈Xq
1−X1, . . . , X

q
s−Xs〉 defining

the set XR(Fq) give relations between the Eu. Indeed, the Eu for u in the
ordered basis ∆ for R with all components ≤ q−1 determine all the others,
and these syndromes still satisfy additional relations. Thus the Eu are, in
a sense, highly redundant.

To package the syndromes into a single algebraic object, following [12],
we define the syndrome series

Se =
∑

u∈Zs
≥0

EuX
−u

in the formal power series ring T = Fq[[X−1
1 , . . . , X−1

s ]]. (This depends both
on the set of error locations E and on the error values.) As in Section 3, we
have a natural interpretation for Se as an element of the dual space of the
ring S = Fq[X1, . . . , Xs].

The following expression for the syndrome series Se will be fundamental.
We substitute from Eq. (2) for the syndrome Eu and change the order of
summation to obtain:

Se =
∑

u∈Zn
≥0

EuX
−u =

∑
u∈Zn

≥0

∑
P∈XR(Fq)

ePP
uX−u

=
∑

P∈XR(Fq)

eP

∑
u∈Zn

≥0

PuX−u =
∑

P∈XR(Fq)

ePhP ,

where hP is the generator of (mP )⊥ from Theorem 3.3. The sum here
taking the terms with eP 6= 0, gives the decomposition of Se in the direct
sum expression for I⊥E as in Theorem 3.2.

The first statement in the following Theorem is well-known; it is a trans-
lation of the standard fact that error-locators give linear recurrences on the
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syndromes. But to our knowledge, this fact has not been considered from
exactly our point of view in this generality (see [16] for a special case).

Theorem 4.1. With all notation as above,

(1) f ∈ IE if and only if f · Se = 0 for all error vectors e with supp(e) = E.
(2) For each e with supp(e) = E, IE = 〈Se〉⊥ in the duality from Theo-

rem 3.1.
(3) If e, e′ are two error vectors with the same support, then 〈Se〉 = 〈Se′〉

as submodules of T .

Proof. For (1), we start from the expression for Se from Eq. (3). Then by
Theorem 3.3, we have

f · Se =
∑
P∈E

eP (f · hP ) =
∑
P∈E

eP f(P )hP .

If f ∈ IE , then clearly f ·Se = 0 for all choices of error values eP . Conversely,
if f · Se = 0 for all e with supp(e) = E , then f(P ) = 0 for all P ∈ E , so
f ∈ IE .

Claim (2) follows from (1).
The perhaps surprising claim (3) is a consequence of (2). Another way

to prove (3) is to note that there exist g ∈ R such that g(P )eP = e′P for all
P ∈ E . We have

g · Se =
∑
P∈E

eP (g · hP ) =
∑
P∈E

eP g(P )hP =
∑
P∈E

e′PhP = Se′ .

Hence 〈Se′〉 ⊆ 〈Se〉. Reversing the roles of e and e′, we get the other inclu-
sion as well, and (3) follows.

The following explicit expression for the terms in f · Se is also useful.
Let f =

∑
m fmX

m ∈ S. Then

f · Se = (
∑
m

fmX
m) · (

∑
u∈Zs

≥0

EuX
−u) =

∑
r∈Zs

≥0

(
∑
m

fmEm+r)X−r.

Hence f · Se = 0⇔
∑

m fmEm+r = 0 for all r ≥ 0.
The equation f · S = 0 from (1) in Theorem 4.1 is the prototype, so

to speak, for our generalizations of the key equation to codes from order
domains, and we will refer to it as the key equation in the following. It also
naturally generalizes all the various key equations that have been developed
in special cases, as we will demonstrate shortly. Before proceeding with
that, however, we wish to make several comments about the form of this
equation.
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Comparing the equation f ·Se = 0 with the familiar form Eq. (1), several
differences may be apparent. First, note that the syndrome series Se will
not be entirely known from the received word in the decoding situation.
The same is true in the Reed-Solomon case, of course. The polynomial S in
the congruence in Eq. (1) involves only the known syndromes, and Eq. (1)
is derived by accounting for the other terms in the full syndrome series.
With a truncation of Se in our situation we would obtain a similar type of
congruence (see the discussion following Eq. (8) below, for instance). It is
apparently somewhat rare, however, that the portion of Se known from the
received word suffices for decoding up to half the minimum distance of the
code.

Another difference is that there is no apparent analog of the error-
evaluator polynomial g from Eq. (1) in the equation f · Se = 0. The way to
obtain error evaluators in this situation is to consider the “purely positive
parts” (fSe)+ for certain solutions of our key equation.

We now turn to several examples that show how our key equation relates
to several special cases that have appeared in the literature.

Example 4.1. We begin by providing more detail on the precise relation
between Theorem 4.1, part (1) in the case of a Reed-Solomon code and
the usual key equation from Eq. (1). These codes are constructed from the
order domain R = Fq[X] (where Γ = Z≥0 and ρ is the degree mapping).
The key equation Eq. (1) applies to the code Ev` = ev(V`), where V` =
Span{1, X,X2, . . . , X`−1}, and the evaluation takes place at all Fq-rational
points on the affine line, omitting 0.

Our key equation in this case is closely related to, but not precisely
the same, as Eq. (1). The reason for the difference is that Theorem 4.1 is
applied to the dual code C` = Ev⊥` rather than Ev`. Starting from Eq. (3)
and using the formal geometric series summation formula as in Theorem 3.3
part (4), we can write:

Se =
∑
P∈E

eP

∑
u≥0

PuX−u = X

∑
P∈E eP

∏
Q∈E,Q 6=P (X −Q)∏

P∈E(X − P )
.

Hence, in this formulation, Se = Xq/p, where p is the generator of the
actual error locator ideal (not the ideal of the inverses of the error locations).
Moreover if we take f = p in Theorem 4.1, then

(pSe)+ = Xq (3)

gives an analog of the error evaluator. There are no “mixed terms” in the
products fSe in this one-variable situation.



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

11

Example 4.2. The key equation for s-dimensional cyclic codes introduced
by Chabanne and Norton in [12] has the form

σSe =

(
s∏

i=1

Xi

)
g, (4)

where σ =
∏s

i=1 σi(Xi), and σi is the univariate generator of the elimination
ideal IE∩Fq[Xi]. Our version of the Reed-Solomon key equation from Eq. (3)
is a special case of Eq. (4). Moreover, Eq. (4) is clearly the special case of
Theorem 4.1, part (1) for these codes where f = σ is the particular error
locator polynomial

∏s
i=1 σi(Xi) ∈ IE . For this special choice of error locator,

σ · Se = 0, and (σSe)+ = (
∏s

i=1Xi) g for some polynomial g. We see that
Se can be written as

Se =
∑
P

ePhP =

(
s∏

i=1

Xi

)∑
P

eP
1∏s

i=1(Xi −Xi(P ))
,

and the product σSe = (σSe)+ reduces to a polynomial (again, there are
no “mixed terms”).

Example 4.3. We now turn to the key equation for one-point geometric
Goppa codes introduced by O’Sullivan in [6]. Let X be a smooth curve
over Fq of genus g, and consider one-point codes constructed from R =
∪∞m=0L(mQ) for some point Q ∈ X (Fq), O’Sullivan’s key equation has the
form:

fωe = φ. (5)

Here ωe is the syndrome differential, which can be expressed as

ωe =
∑

P∈X (Fq)

ePωP,Q,

where ωP,Q is the differential of the third kind on Y with simple poles at
P and Q, no other poles, and residues resP (ωP,Q) = 1, resQ(ωP,Q) = −1.
For any f ∈ R, we have

resQ(fωe) =
∑
P

eP f(P ),

the syndrome of e corresponding to f . (We only defined syndromes for
monomials above; taking a presentation R = Fq[X1, . . . , Xs]/I, however,
any f ∈ R can be expressed as a linear combination of monomials and the
syndrome of f is defined accordingly.) The right-hand side of Eq. (5) is
also a differential. In this situation, Eq. (5) furnishes a key equation in the
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following sense: f is an error locator (i.e. f is in the ideal of R corresponding
to IE) if and only if φ has poles only at Q. In the special case that (2g−2)Q
is a canonical divisor (the divisor of zeroes of some differential of the first
kind ω0 on X ), Eq. (5) can be replaced by the equivalent equation foe = g,
where oe = ωe/ω0 and g = φ/ω0 are rational functions on X . Since ω0 is
zero only at Q, the key equation is now that f is an error locator if and
only if Eq. (5) is satisfied for some g ∈ R.

For instance, when X is a smooth plane curve V (F ) over Fq defined
by F ∈ Fq[X,Y ], with a single smooth point Q at infinity, then it is true
that (2g − 2)Q is canonical. O’Sullivan shows in Example 4.2 of [6] (using
a slightly different notation) that

oe =
∑

P∈X (Fq)

ePHP , (6)

where if P = (a, b), then HP = F (a,Y )
(X−a)(Y−b) . This is a function with a pole

of order 1 at P , a pole of order 2g − 1 at Q, and no other poles.
To relate this to our approach, note that we may assume from the start

that Q = (0 : 1 : 0) and that F is taken in the form

F (X,Y ) = Xβ − cY α +G(X,Y )

for some relatively prime α < β generating the value semigroup at Q. Every
term in G has (α, β)-weight less than αβ. First we rearrange to obtain

HP =
F (a, Y )

(X − a)(Y − b)
=

(aβ −Xβ) + F (X,Y ) + (G(a, Y )−G(X,Y ))
(X − a)(Y − b)

The F (X,Y ) term in the numerator does not depend on P . We can collect
those terms in the sum Eq. (6) and factor out the F (X,Y ). We will see
shortly that those terms can in fact be ignored. The G(a, Y )−G(X,Y ) in
the numerator furnish terms that go into the error evaluator g here. The
remaining portion is

−(Xβ − aβ)
(X − a)(Y − b)

= −X
β−1

Y

β−1∑
i=0

∞∑
j=0

aibj

XiY j
.

The sum here looks very much like that defining our hP from Theorem 3.3,
except that it only extends over the monomials in complement of 〈LT (F )〉.
Call this last sum h′P . As noted before the full series hP (and consequently
S) are redundant. For example, every ideal contained in mP (for instance
the ideal I = 〈F 〉 defining the curve), produces relations between the co-
efficients. From the duality theorem, Theorem 3.1, we have that I ⊂ mP

implies (mP )⊥ ⊂ I⊥, so F · hP = 0.
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The relation F · hP = 0 says in particular that the terms in h′P are
sufficient to determine the whole series hP . Indeed, we have

hP =
∞∑

i=0

(
(cY α −G)

Xβ

)i

h′P =
(
Xβ

F

)
h′P .

It follows that O’Sullivan’s key equation and ours are equivalent.

We now turn to the precise relation between solutions of our key equa-
tion and the polynomials generated by the BMS decoding algorithm applied
to the C` = Ev⊥` codes from order domains R. We will see that the BMS
algorithm systematically produces successively better approximations to
solutions of f · Se = 0, so that in effect, the BMS algorithm is a method for
solving the key equation for these codes.

For our purposes, it will suffice to consider the “Basic Algorithm” from
§3 of [5], in which all needed syndromes are assumed known and no sharp
stopping criteria are identified. The syndrome mapping corresponding to
the error vector e is

Syne : R → Fq

f 7→
∑
P∈E

eP f(P ),

where as above E is the set of error locations. The same reasoning used in
the proof of our Theorem 4.1 shows

f ∈ IE ⇔ Syne(fg) = 0,∀g ∈ R. (7)

From Definition 2.1 and Geil and Pellikaan’s presentation theorem, we
have an ordered monomial basis of R:

∆ = {Xα(j) : j ∈ N},

whose elements have distinct ρ-values. As in the construction of the Ev`

codes, we write V` = Span{1 = Xα(1), . . . , Xα(`)}. The V` exhaust R, so
for f 6= 0 ∈ R, we may define

o(f) = min{` : f ∈ V`},

and (for instance) o(0) = −1. In particular the semigroup Γ in our presen-
tation carries over to a (nonstandard) semigroup structure on N defined by
the addition operation

i⊕ j = k ⇔ o(Xα(i)Xα(j)) = k.
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Given f ∈ R, one defines

span(f) = min{` : ∃g ∈ V` s.t. Syne(fg) 6= 0}
fail(f) = o(f)⊕ span(f).

When f ∈ IE , span(f) = fail(f) =∞.
The BMS algorithm, then, is an iterative process which produces a

Gröbner basis for IE with respect to a certain monomial order >. The
strategy is to maintain data structures for all m ≥ 1 as follows. The ∆m

are an increasing sequence of sets of monomials, converging to the monomial
basis for IE as m→∞, and δm is the set of maximal elements of ∆m with
respect to > (the “interior corners of the footprint”). Similarly, we consider
the complement Σm of ∆m, and σm, the set of minimal elements of Σm

(the “exterior corners”). For sufficiently large m, the elements of σm will
be the leading terms of the elements of the Gröbner basis of IE , and Σm

will be the set of monomials in LT>(IE).
For eachm, the algorithm also produces collections of polynomials Fm =

{fm(s) : s ∈ σm} and Gm = {gm(c) : c ∈ δm} satisfying:

o(fm(s)) = s, fail(fm(s)) > m

span(gm(c)) = c, fail(gm(c)) ≤ m.

In the limit as m→∞, by Eq. (7), the Fm yield the Gröbner basis for IE .
We record the following simple observation.

Theorem 4.2. With all notation as above, suppose f ∈ R satisfies o(f) =
s, fail(f) > m. Then

f · Se ≡ 0 mod Ws,m,

where Ws,m is the Fq-vector subspace of the formal power series ring T

spanned by the X−α(j) such that s⊕ j > m.

Proof. By the definition, fail(f) > m means that Syne(fXα(k)) = 0 for
all k with o(f) ⊕ k ≤ m. By the definitions of Se and the contraction
product, Syne(fXα(k)) is exactly the coefficient of X−α(k) in f · Se.

The subspace Ws,m in Theorem 4.2 depends on s = o(f). In our situ-
ation, though, note that if s′ = max{o(f) : f ∈ Fm}, then Theorem 4.2
implies

f · Se ≡ 0 mod Ws′,m (8)
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for all f = fm(s) in Fm. Moreover, only finitely many terms from Se enter
into any one of these congruences, so Eq. (8) is, in effect, a sort of general
analog of Eq. (1).

The fm(s) from Fm can be understood as approximate solutions of key
equation (where the goodness of the approximation is determined by the
subspaces Ws′,m, a decreasing chain, tending to {0} in T , as m → ∞).
The BMS algorithm thus systematically constructs better and better ap-
proximations to solutions of the key equation. O’Sullivan’s stopping criteria
(see [5]) show when further steps of the algorithm make no changes. The
Feng-Rao theorem shows that any additional syndromes needed for this can
be determined by the majority-voting process when wt(e) ≤ bdF R(C`)−1

2 c.
We conclude by noting that O’Sullivan has also shown in [6] that, for

codes from curves, the BMS algorithm can be slightly modified to compute
error locators and error evaluators simultaneously in the situation studied
in Example 4.3. The same is almost certainly true in our general setting,
although we have not worked out all the details.
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1. Introduction

In this paper we survey several results of the authors about the nice role
of Gröbner bases technology and Möller FGLM techniques (FGLM stands
for Faugère, Gianni, Lazard and Mora, see [7]) applied to linear codes over
finite fields. This work is intended as an attempt to clarify and summa-
rize as well as unify several previous works of the authors [3–5]. We follow
Teo Mora’s approach for the presentation of Gröbner bases theory [15] and
study how this theory can describe several combinatorial properties of linear
codes. Section 2 contains a brief summary of Möller algorithm and related
concepts. In the third section we set up the notation and terminology of the
structures associated to a linear code. In section 4 we will look more closely
at those structures and we will indicate the resemblances with the Gröbner
bases technology, with special emphasis on the binary case. Although it is
not the main goal of this survey, in section 5 we point out several directions
of how these techniques can be used to derive solutions for several cod-
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ing theory problems such that gradient decoding, combinatorial problems,
minimal codeword bases, etc.

2. Möller’s algorithm

No attempt has been made here to develop the whole theory of Möller
algorithm. We will touch only a few aspects of the theory useful for our
paper. For a thorough treatment of Gröbner bases we refer the reader to
[15] and for a recent survey on Möller algorithm and FGLM techniques we
refer to [16].

As usual we will denote by X the finite set of variables {x1, . . . , xn} and
if a = (a1, . . . , an) ∈ Nn we will denote xa = xa1

1 . . . xan
n . Let P = F[X] the

polynomial ring over the field F and T = {xa | a ∈ Nn} the set of terms.
Let ≺ be a Notherian semigroup ordering on the set T (this is called either
term ordering or admissible ordering), for each f =

∑
τ∈T c(f, τ)τ ∈ P we

write T(f) = max≺{τ ∈ T | c(f, τ) 6= 0} and lc(f) = c(f,T(f)) for the
leading term and leading coefficient of f respectively.

If F ⊆ P then T(F ) = {T(f) | f ∈ F} and for each ideal I ⊂ P we
consider the semigroup ideal T(I) and the Gröbner éscalier N(I) = I\T(I).
It is well known that P ∼= I

⊕
spanF (N(I)) as F-vector spaces, which in

turn gives a unique canonical form for each element f ∈ P

Can(f, I,≺) =
∑

τ∈N(I)

c(f, τ,≺)τ ∈ spanF (N(I)) (1)

such that f − Can(f, I,≺) ∈ I.
Let G≺(I) denote the unique minimal basis of T≺(I), a set G ⊆ I is

said to be a Gröbner basis of the ideal I with respect to (w.r.t. for short)
the ordering ≺ if the set T≺(G) generates T≺(I) as a semigroup ideal. The
reduced Gröbner basis of the ideal I w.r.t. ≺ is the set

Red≺(I) = {τ − Can(τ, I,≺) | τ ∈ G≺(I)} , (2)

and the border basis of I w.r.t. ≺ is

Bor≺(I) = {τ − Can(τ, I,≺) | τ ∈ B≺(I)} , (3)

thus the border basis of the ideal I is a Gröbner basis of I that contains
the reduced Gröbner basis.

An ideal I ⊂ P is zero-dimensional if dimF(P/I) < ∞ where dimF
denotes the dimension as F vector space. From now on we will make the as-
sumption that our ideal I is zero-dimensional. The following representation
will play a central role in the paper
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Definition 2.1 (Gröbner representation). Let I ⊂ P be a zero-
dimensional ideal and s = dimF(P/I). A Gröbner representation of I is
the assignment of

(1) a set N = {τ1, . . . , τs} ⊆ N≺(I)
(2) and a set of square matrices

φ =
{
φ(r) =

(
ar

ij

)s
i,j=1

| r = 1, . . . , n , ar
ij ∈ F

}
such that

P/I = spanF(N), τixr ≡I
s∑

j=1

ar
ijτj ∀ 1 ≤ i ≤ s, 1 ≤ r ≤ n.

We call φ the matphi structure and φ(r) the matphi matrices. They
first appear in [7] in a procedure to describe the multiplication structure in
the quotient algebra P/I. Note that φ is independent of the particular set
N of representatives of P/I we have chosen. For each f ∈ P the Gröbner
description of f in terms of the Gröbner representation (N,φ) is

Rep(f,N) = (γ(f, τ1), . . . , γ(f, τs)) ∈ Fs

such that f −
∑s

i=1 γ(f, τi)τi ∈ I.
We write P∗ = HomF(P,F) to denote the vector space of all linear

functionals ` : P → F. P∗ is a P-module defined by the product

(` · f)(g) = `(fg) ` ∈ P∗, f, g ∈ P

where

`(f) =
∑
τ∈T

c(f, τ)`(τ).

Two ordered sets L = {`1, . . . , `r} ⊂ P∗, q = {q1, . . . , qs} ⊂ P are said to
be triangular if r = s and `i(qj) = 0 for all i < j. For each F-vector space
L ⊆ P∗ we define the ideal P(L) = {g ∈ P | `(g) = 0, ∀` ∈ L}.

Proposition 2.1 (Möller’s theorem). Let ≺ be any term ordering and
L = {`1, . . . , `s} ⊂ P∗ be a set of functionals such that I = P(L)
is a zero-dimensional ideal. Then there are a r ∈ N, an order ideal
N = {τ1, . . . , τr} ⊂ T and two ordered subsets

Λ = {λ1, . . . , λr} ⊂ L, q = {q1, . . . , qr} ⊂ P

such that

(1) r = deg(I) = dimF (spanF(L)).
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(2) N≺(I) = N .
(3) spanF(L) = spanF(Λ).
(4) spanF(τ1, . . . , τν) = spanF(q1, . . . , qν) for all ν ≤ r.
(5) The sets {λ1, . . . , λν} and {q1, . . . , qν} are triangular for all ν ≤ r.

Möller’s algorithm [7, 13, 14] is a procedure that returns the data stated in
the proposition above given a set of linear functionals L such that P(L). As
a byproduct of Möller algorithm one can compute a Gröbner representation
of the ideal. We will give in next section a modified version of such algorithm
adapted to the setting of linear codes.

3. Gröbner representation of a linear code

We will touch only a few aspects of the theory of linear codes over finite
fields, the reader is expected to be familiar with basic algebraic coding
theory (see [12] for a basic account). Just to fix the notation we will give a
few notions of linear codes in the following paragraphs.

Let Fq a finite field with q elements (q = pm, p a prime and m ∈ N).
A linear code C of length n and dimension k (k < n) is the image of an
injective linear mapping c : Fk

q → Fn
q . All codes in this paper are linear and

from now on will write code for linear code.
The set

C⊥ =
{
` ∈ (Fn

q )∗ | `(c) = 0 for all c ∈ C
}

(4)

is a Fq-linear subspace of (Fn
q )∗ = Hom(Fn

q ,Fq) of dimension n − k, thus
C⊥ can be seen as a code of length n and dimension n− k over the field Fq

called dual code of C (just fixing coordinates in (Fn
q )∗) . A generator matrix

of the code C is a k × n matrix such that its rows span C as a Fq-linear
space. If we consider the dual standard basis in (Fn

q )∗ the generator matrix
H of C⊥ fulfills H · c = 0 for all c ∈ C and is called parity check matrix.

The Hamming weight of a vector v ∈ Fn
q is the number of non-zero

entries in v and will be denoted by wh(v). The Hamming distance between
two vectors u and v is defined as dh(u,v) = wh(u− v) and the minimum
distance d of the code C is the minimum Hamming weight among all its
non-zero codewords. The error correcting capacity of a code isa t = bd−1

2 c.
Let C be a code and H be its parity check matrix, the syndrome of a

vector u ∈ Fn
q is H · u. Two vectors belong to the same coset if and only if

they have the same syndrome. The weight of a coset is the smallest weight

ab·c denotes the floor function.
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of a vector in the coset and any vector of smallest weight in the coset is
called a coset leader. Every coset of a weight at most t has a unique coset
leader thus the equation

H · u = H · e

has a unique minimal weight solution e among the coset leaders of the code
C for each u ∈ B(C, t) called the error vector of u where

B(C, t) =
{
u ∈ Fn

q | ∃c ∈ C such that dh(u, c) ≤ t
}
.

If we fix α a root of an irreducible polynomial of degree m over Fp we
can represent any element of Fq as a0 +a1α+ · · ·+am−1α

m−1 with ai ∈ Fp

for all i. Let T be the set of terms, i.e., the free commutative monoid
generated by the nm variables X = {x11, . . . , x1m, . . . , xn1, . . . , xnm}, and
consider the morphism of monoids from T onto Fn

q :

ψ : T →Fn
q

xij 7→(0, . . . , 0, αj−1︸ ︷︷ ︸
i

, 0, . . . , 0)

and, by morphism extension,
n∏

i=1

m∏
j=1

x
βij

ij 7→
((∑m

j=1 β1jα
j−1
)
, . . . ,

(∑m
j=1 βnjα

j−1
))

(5)

We say that
∏n

i=1

∏m
j=1 x

βij

ij ∈ T is in standard representation if βij < p

for all i, j.
A code C defines an equivalence relation RC in Fn

q given by

(u,v) ∈ RC ⇔ u− v ∈ C. (6)

This relation can be translated to xa,xb ∈ T as follows

xa ≡C xb ⇔ (ψ(xa), ψ(xb)) ∈ RC ⇔ ξC(xa) = ξC(xb) (7)

where ξC(xa) = H ·ψ(xa) is the transition from the monoid T to the set of
syndromes associated to the word u through ψ.

The support of xa ∈ T will be the set of variables in X that divide xa

and is denoted by supp(xa) whereas the indexb of xa is defined as

ind(xa) = {i | ∃j ∈ {1, . . . ,m} such that xij ∈ supp(xa)} . (8)

For the sake of simplicity in notation from now on we write the set of nm
variables as xk, where k = (i− 1)m+ j instead of xij .

bNote that this definition for elements in T corresponds to the definition of support of
the corresponding vector in Fn

q .
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Definition 3.1 (Error vector ordering). We say that xa is less than
xb w.r.t. the error-vector ordering, and denote it by xa ≺e xb, if one of the
following conditions holds:

(1) |ind(xa)| < |ind(xb)|.
(2) |ind(xa)| = |ind(xb)| and xa ≺ad xb, where ≺ad denotes an arbitrary

but fixed admissible ordering on T .

Note that the error vector ordering is a total degree compatible ordering
on T but in general it is not admissible (the multiplicative property of
admissible orderings sometimes fails). For example let the vector space F7

3

and ≺ad be the degree reverse lexicographical ordering, we have

x1x5 ≺e x3x7 but x1x5x7 �e x3x
2
7.

Anyway the error vector ordering still shares two important properties of
admissible orderings

(1) 1 ≺e xa for all a 6= 0.
(2) xa ≺e xaxi for all i = 1, . . . , n.

The two properties above will allow us to construct a Gröbner represen-
tation of a code using a sort of Möller algorithm as an analogue of the
Gröbner representation of a zero-dimensional ideal in Definition 2.1.

Definition 3.2 (Gröbner representation of a code). Let C be a Fq-
linear code of dimension k. A Gröbner representation of C is the assignment
of

• a set N = {τ1, . . . , τqn−k} ⊆ T
• and a function φ : N ×X → N (the function Matphi)

such that

(1) 1 ∈ N .
(2) If τ1, τ2 ∈ N and τ1 6= τ2 then ξC(τ1) 6= ξC(τ2).
(3) For all τ ∈ N \ {1} there exist x ∈ X such that τ = τ ′x and τ ′ ∈ N .
(4) ξC(φ(τ, xi)) = ξC(τxi).

Note that N has as many elements as different syndromes has code C and
condition (2) states that two different elements in N have different syn-
drome. The function φ gives us a multiplicative structure that is inde-
pendent of the particular set N of representative elements of the cosets
determined by the code (i.e. φ can be seen as a function on the cosets of
the code).
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The following algorithm is an instance of the general Möller algorithm.
Note that in the case of codes we can specify a system of generators of C⊥

just by giving the parity check matrix H of the code. For our purpose we
are just interested in computing a Gröbner representation of the code.

Algorithm 3.1 (Möller’s algorithm for codes).

Input: The parity check matrix of a linear code C over Fq and m such that
pm = q, p a prime number.

Output: N,φ for C as in Definition 3.2.

1: List← {1}, N ← ∅, r ← 0
2: while List 6= ∅ do

3: τ ← NextTerm[List], v← ξC(τ)
4: j ← Member[v, {v1, . . . ,vr}]
5: if j 6= false then

6: for k such that τ = τ ′xk with τ ′ ∈ N do

7: φ(τ ′, xk) = τj
8: end for

9: else

10: r ← r + 1, vr ← v, τr ← τ , N ← N ∪ {τr}
11: List← InsertNext[τr,List]
12: for k such that τr = τ ′xk with τ ′ ∈ N do

13: φ(τ ′, xk) = τr
14: end for

15: end if

16: end while

Where the internal functions in the algorithm are

(1) InsertNext[τ,List] Inserts all the products τx in List, where x ∈ X, and
keeps List in increasing order w.r.t. the order ≺e.

(2) NextTerm[List] returns the first element from List and deletes it from
that set.

(3) Member[obj,G] returns the position j of obj in G if obj ∈ G and false
otherwise.

For the proof of correctness of the algorithm we refer the reader to [5].
Note that by the construction, those representatives of the cosets given
in N such that are syndromes corresponding to vectors in B(C, t) are the
smallest terms in T w.r.t. ≺e, i.e. they are the standard terms whose images
by ψ are the error vectors.
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An important byproduct of this construction is the following theorem
that allows us to compute the error correcting capability of a code (see [5]
for a proof)

Theorem 3.1. Let List be the list of words in Step 3 of the previous algo-
rithm and let τ be the first element analyzed by NextTerm[List] such that τ
does not belong to N and τ is in standard representation. Then

t = |ind(τ)| − 1. (9)

Note that we do not need to run the whole algorithm in order to compute
such element τ in the theorem above, we just need to compute the first one.

Example 3.1. Consider the binary linear code C in F6
2 with generator

matrix:

G =

1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1

 .

The set of codewords is
C = {(0, 0, 0, 0, 0, 0), (1, 0, 1, 1, 0, 0), (1, 1, 0, 0, 1, 0), (0, 1, 0, 1, 0, 1)

(0, 0, 1, 0, 1, 1), (1, 1, 1, 0, 0, 1), (0, 1, 1, 1, 1, 0), (1, 0, 0, 1, 1, 1)}.
Let ≺ad be the degree reverse lexicographical ordering induced by x1 ≺

x2 ≺ . . . ≺ x6. Running Algorithm 3.1 it computes

N = {1, x1, x2, x3, x4, x5, x6, x1x6}

and φ is represented as a matrix of positions (pointer matrix) as follows

[ [[0, 0, 0, 0, 0, 0], 1, [2, 3, 4, 5, 6, 7]],[[1, 0, 0, 0, 0, 0], 1, [1, 6, 5, 4, 3, 8]],

[[0, 1, 0, 0, 0, 0], 1, [6, 1, 8, 7, 2, 5]],[[0, 0, 1, 0, 0, 0], 1, [5, 8, 1, 2, 7, 6]],

[[0, 0, 0, 1, 0, 0], 1, [4, 7, 2, 1, 8, 3]],[[0, 0, 0, 0, 1, 0], 1, [3, 2, 7, 8, 1, 4]],

[[0, 0, 0, 0, 0, 1], 1, [8, 5, 6, 3, 4, 1]],[[1, 0, 0, 0, 0, 1], 0, [7, 4, 3, 6, 5, 2]] ]

where in each triple the first entry correspond to the elements ψ(τ) where
τ ∈ N (τ = N [i]), the second entry is 1 if ψ(τ) ∈ B(C, t) or 0 otherwise,
and the third component points to the values φ(τ, xj), for j = 1, . . . , 6.

4. Reduced and border bases

Following the analogy between the Gröbner representation of a code C and
the Gröbner representation of an ideal presented in section 2 we will con-
sider the border basis of the code C w.r.t. the error vector ordering ≺e given
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by the set of binomials

Bor≺e
(C) = {τx− τ ′ | τ, τ ′ ∈ N,x ∈ X, τx 6= τ ′, ξC(τx) = ξC(τ ′)} . (10)

Note that this set is closely related with the structure matphi since

Bor≺e
(C) = {τx− φ(τ, x) | τ ∈ N,x ∈ X} \ {0} , (11)

i.e., the border basis of the code C w.r.t. ≺e contains all the binomials
corresponding to the non trivial pairs (τx, φ(τ, x)) ∈ RC .

As in every Gröbner bases technology, we will define a reduction to the
set of canonical forms in N by the following statement

Definition 4.1 (One step reduction). Let N,φ be as in Definition 3.2
for a code C and τ ∈ N , x ∈ X, we say that φ(τ, x) is the canonical form
of τx, i.e. τx reduces in one step to φ(τ, x).

This reduction definition can be extended to the set T as follows: Let xa =
xi1 . . . xik

∈ T , xij
≺e xik

for all j ≤ k − 1 and consider the recursive
function

Can≺e
: T −→ N

1 7→ 1
xa 7→ φ(Can≺e(xi1 . . . xik−1), xik

).
(12)

where the initial case is the empty word represented by 1. The element
Can≺e

(xa) ∈ N with the same syndrome as xa since

ξC (Can≺e
(xi1 . . . xik

)) = ξC
(
φ
(
Can≺e

(xi1xi2 . . . xik−1), xik

))
= ξC

(
Can≺e(xi1xi2 . . . xik−1)xik

)
= ξC

(
Can≺e

(xi1xi2 . . . xik−1)
)

+ ξC(xik
)

(13)

where the second equality in (13) holds by the definition of φ and the third
one due to the additivity of ξC , and we now compute by recursion

ξC (Can≺e(xi1 . . . xik
)) = ξC (Can≺e(1)xi1xi2 . . . xik

) = ξC (xi1xi2 . . . xik
)

thus both syndromes are equal. It remains to prove that Can≺e
is well de-

fined for all the elements on T by the recurrence in (12), but this follows
from steps 10 and 11 in Algorithm 3.1. Note that the recurrence proce-
dure we just have described is just recursive applications of border basis
reduction.

Finally we introduce the notion of reduced basis for the code C as follows

Definition 4.2 (Reduced basis of a code). The reduced basis in F[X]
for the code C w.r.t the ordering ≺e is a set Red≺e

(C) ⊆ Bor≺e
(C) such

that
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(1) For all (τ, x) ∈ N × X such that τx ∈ T (Bor≺e
), there exists τ1 ∈

T (Red≺e
(C)) such that τ1 | τx.

(2) Given τ1, τ2 ∈ T (Red≺e(C)) then τ1 - τ2 and τ2 - τ1.

Note that in the first case in definition above we have that τx 6= φ(τ, x),
i.e. τx /∈ N . Note also that although the definitions of reduced Gröbner
basis and reduced basis of a code are very similar in general the reduced
basis of a code can not be used for an effective reduction process due to the
non admissibility of the ordering ≺e (see Example 3.2 in [5]). However, the
structure of Gröbner representation always works and by this way we have
an effective reduction process for any code. In the binary case, the reduced
basis can be used as well.

4.1. Binary codes

We will make the assumption that we are working with a code C defined
over the field with two elements F2 during the rest of this section. Consider
the binomial ideal

I(C) := 〈{τ1 − τ2 | (ψ(τ1), ψ(τ2)) ∈ RC}〉 ⊂ F[X] (14)

where F is an arbitrary field. In the binary case we have that x2
i − 1 ∈ I(C),

for all xi ∈ X and it follows from Theorem 3.1 that if the code corrects at
least one error we have x2

i−1 ∈ Red≺e
(C), i.e. all the variables xi correspond

to canonical forms. If the code has 0 correcting capability there exists at
least one xi such that it is not a canonical form, and x2

i − 1 ∈ Red≺e(C) or
xi ∈ T(Red≺e

(C)), for each xi thus all the other elements of T(Red≺e
(C))

will be standard words (i.e. the exponent of each variable is at most one).
By the above discussion in the case of standard words, the order ≺e and

the total degree term ordering are exactly the same. So, the reduced basis
of the code w.r.t. ≺e will be exactly the reduced Gröbner basis of I(C) w.r.t.
the total degree term ordering related to the same admissible ordering used
for defining ≺e, thus in this case (binary case) the reduced basis of a code
can be used for a effective (Notherian) reduction process.

Example 4.1. If we consider the same code as in Example 3.1 then we
have that the reduced basis is

Red≺e
(C) = {x2

1 − 1, x2
2 − 1, x2

3 − 1, x2
4 − 1, x2

5 − 1, x2
6 − 1,

x1x2 − x5, x1x3 − x4, x1x4 − x3, x1x5 − x2,

x2x3 − x1x6, x2x4 − x6, x2x5 − x1, x2x6 − x4,

x3x4 − x1, x3x5 − x6, x3x6 − x5,

x4x5 − x1x6, x4x6 − x2, x5x6 − x3}.
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5. Applications

Although it is not our purpose in this paper to fully describe the applica-
tions of the Gröbner representation of a linear code we present here several
essential facts. All this applications are implemented in GAP [8] using the
package GBLA-LC [6].

5.1. Gradient decoding

Complete decoding [12] for a linear block code has proved to be an NP-
hard computational problem [2], i.e. it is unlikely that a polynomial time
(space) complete decoding algorithm can be found. In the literature sev-
eral attempts have been made to improve the syndrome decoding idea for
a general linear code. Usually they look for a smaller structure than the
syndrome table to perform the decoding, the main idea is finding for each
coset the smaller weight of the words in that coset instead of storing the
candidate error vector (see for example the Step-by-Step algorithm in [17]
or the test set decoding in [1], in particular those based on zero-neighbors
and zero-guards [9–11]). Following the notation in [1] we will call these
procedures gradient decoding algorithms.

In the same fashion we use the reduction given by the structures com-
puted above matphi or the border basis to give a procedure to decode any
arbitrary linear code. Also we give a step further for binary codes where
the reduction given by the reduced basis is Notherian (i.e. it can be used
for decoding) and the reduced basis is often smaller than matphi.

The theorem below, is independent of whether we used matphi or border
basis for reduction in any linear code or the reduced basis in a binary code.

Theorem 5.1 (See [5]). Let C be a linear code. Let τ ∈ T and τ ′ ∈ N

its corresponding canonical form. If wh(ψ(τ ′)) ≤ t then ψ(τ ′) is the error
vector corresponding to ψ(τ). Otherwise, if wh(ψ(τ ′)) > t, ψ(τ) contains
more than t errors. (t is the error correcting capability)

Proof. Note that each element has one and only one canonical form. If
ψ(τ) ∈ B(C, t) then it follows that wh(ψ(τ ′)) ≤ t, that is, ψ(τ ′) is the
error vector, and ψ(τ) − ψ(τ ′) is the codeword corresponding to ψ(τ). If
ψ(τ) /∈ B(C, t) it is clear that ψ(τ ′) /∈ B(C, t) (they both have the same
syndrome), therefore if wh(ψ(τ ′)) > t means that we had more than t

errors.

Note that the decoding procedure derived from Theorem 5.1 is a com-
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plete decoding procedure, that is it always finds the codeword that is closest
to the received vector. The procedure can be modified to an incomplete de-
coding (bounded-distance decoding) procedure in order to further reduce
the decoding computation needed.

Example 5.1. We consider the code defined in Example 3.1 and its mat-
phi, and the reduced basis showed in Example 4.1.

Decoding process using matphi.

(1) If y ∈ B(C, t)
y = (1, 1, 0, 1, 1, 0); wy := x1x2x4x5; φ(1, x1) = x1;
φ(x1, x2) = x5; φ(x5, x4) = x2x3; φ(x2x3, x5) = x4, this means
wh(ψ(x4)) = 1, then the codeword corresponding to y is c =
y − ψ(x4) = (1, 1, 0, 0, 1, 0).

(2) If y /∈ B(C, t)
y = (0, 1, 0, 0, 1, 1); wy := x2x5x6; φ(1, x2) = x2; φ(x2, x5) = x1;
φ(x1, x6) = x2x3, thus, wh(ψ(x2x3)) > 1; consequently, we report
an error in the transmission process, in this case the reader can
check that the vector y is outside the set B(C, 1) for the set C given
in Example 3.1. Note that we could also give the value y−ψ(x2x3)
as a result; this could be useful for applications of codes when it
is necessary to always give a result.

Using the reduced basis for decoding Let us work with the same two
cases above. By w

g−→ v we mean w is reduced to v modulo the binomial
g of the reduced basis.

(1) x1x2x4x5
x1x2−x5−→ x4x

2
5, x4x

2
5

x2
5−1−→ x4.

(2) x2x5x6
x2x5−x1−→ x1x6.

The following result gives us the “worst case” complexity of our decoding
procedure

Proposition 5.1.

Preprocessing (Möller’s algorithm for codes) Algorithm 3.1 performs
O(mnqn−k) iterations.

Decoding For any linear code the reduction to the candidate error vector
is performed in O(mn(p − 1)) applications of the matrix matphi or
border basis reduction.

Computing the error correction capability Algorithm 3.1 computes
the error correcting capability of a linear code after at most m·n·S(t+1)
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iterations where

S(l) =
l∑

i=0

(
n

i

)
(q − 1)i.

We refer the reader to [5] for a proof of this proposition. Note that the
algorithm we refer for computing the error correction capability is the one
derived from Theorem 3.1 ,i.e. run Möller’s algorithm until one element in
the theorem is found.

5.2. Permutation equivalent codes

Let C be a code of length n over Fq and let σ ∈ Sn, where Sn denotes the
symmetric group of degree n, we define:

σ(C) = {(yσ−1(i))n
i=1 | (yi)n

i=1 ∈ C},

and we say that C and σ(C) are permutation-equivalent or σ-equivalent and
we denote it by C ∼ σ(C).

The problem of finding whether two codes are permutation equivalent or
not is studied in several places in the literature (see [19] and the references
therein). In [18] the authors proved that the Code Equivalence Problem

is not an NP-complete problem, but it is at least as hard as the Graph

Isomorphism Problem. We transform the problem using a combinatorial
definition of permutation equivalent matphi as

Definition 5.1 (Permutation equivalent matphi). Let φ : N ×X −→
N and φ? : N? ×X −→ N? be two matphi functions. Then φ ∼ φ? if and
only if the following two conditions hold:

(1) There exists a σ ∈ Sn such that N? = σ(N), and
(2) For all v ∈ N and i = 1, . . . ,mn we have φ?(σ(v), σ(xi)) = σ(φ(v, xi)).

Our contribution to determine if two codes are permutation equivalent or
not is stated in the following theorem

Theorem 5.2. Let φ be a matphi function for the code C, and φ? a matphi
for a code C?. Then C ∼ C? ⇐⇒ φ ∼ φ?.

See [5] for a proof. In that paper several heuristic and incremental proce-
dures are shown for dealing with the Code Equivalence Problem (some of
them are implemented in the package GBLA-LC [6]).

In the binary case we can make use of the reduced basis. The main idea
is the following, if two codes are equivalent then, under the appropriate
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permutation, words of the same weight must be sent to each other. Note
also, that it will be used only the level t + 1 of the reduced bases, which
is the first interesting level, from level 1 to t all the elements are canonical
forms (we define level l of a reduced basis as the set of binomials of the
reduced basis which their maximal terms have cardinal of the set of indices
equal to l). The number of elements at this level can be large for big codes
but it is considerable smaller than the whole basis. Note that the same
reasoning by levels could be used for checking the permutation equivalence
of two matphis, thus, it is possible to use a part of a big structure and not
the whole object.

5.3. Gröbner codewords for binary codes

During this section all codes C are binary, i.e. defined over the field with
two elements F2 and we will work with an error term ordering such that it
is a degree compatible monomial ordering ≺dc and x1 ≺dc x2 ≺dc . . . . Let
Td (f) denote the total degree of the polynomial f and let G = Red≺dc

(C)
be the reduced basis of the binomial ideal associated to the code in (14)
w.r.t. ≺dc. For each element in g = τ1 − τ2 ∈ I(C) we define cg as the
codeword associated to the binomial, i.e. cg = ψ(τ1)+ψ(τ2). We define the
set of Gröbner words of the code C w.r.t. ≺dc as the set

CG =
{
cg ∈ C | g ∈ G \

{
x2

i − 1
}n

i=1

}
. (15)

From Section 5.1 we know that this set can be used to perform a gradient
decoding procedure in the code, we will show two further combinatorial
properties of this set (See [3] for the proofs).

Proposition 5.2 (Codewords of minimal weight). Let c be a code-
word of minimal weight d.

(1) If d is odd then there exists g ∈ G such that c = cg and Td (g) = t+ 1.
(2) If d is even then either there exists g ∈ G such that c = cg and Td (g) =

t + 1 or there exist g1, g2 ∈ G such that c = cg1 + cg2 = ψ(τ1) +
ψ(τ2), where g1 = τ1 − τ , g2 = τ2 − τ (τ1 = T (g1), τ2 = T (g2), τ =
Can(g1, G) = Can(g2, G)), with t+ 1 = Td (g1) = Td (g2).

A codeword c is called minimal if does not exist c1 ∈ C \ {c} such that
supp(xc1) ⊂ supp(xc). Then we have the following result for a set of
Gröbner codewords.

Proposition 5.3. The elements of the set CG of Gröbner codewords are
minimal codewords of the code C.
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Proposition 5.4 (Decomposition of a codeword). Any codeword c ∈
C can be decomposed as a sum of the form c =

∑l
i=1 cgi

, where cgi
∈ CG,

wh(cgi) ≤ wh(c), and

Td (gi) ≤
[
(wh(c)− 1)

2

]
+ 1, for all i = 1, . . . , l.

Using the connection between the set of cycles in graph and binary codes
[3, 17] the propositions above enable us to compute all the minimal cycles
of a graph according to their lengths and a minimal cycle basis (see [3] for
further details).

Example 5.2. The set of Gröbner codewords for the code of the Exam-
ple 3.1 and the reduced basis of Example 4.1 is

CG =
{

(1, 1, 0, 0, 1, 0), (1, 0, 1, 1, 0, 0), (0, 1, 0, 1, 0, 1),
(1, 1, 1, 0, 0, 1), (1, 0, 0, 1, 1, 1)

}
.

By Proposition 5.2 and taking into account that d = 3 and the codewords
of minimal weight of C are (1, 1, 0, 0, 1, 0),(1, 0, 1, 1, 0, 0),(0, 1, 0, 1, 0, 1).
Let c = (0, 1, 1, 1, 1, 0) /∈ CG. Applying Proposition 5.4 we get

c = cg1 + cg2 = (1, 1, 0, 0, 1, 0) + (1, 0, 1, 1, 0, 0).
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We survey background material involved in the geometric description of codes.
Arcs and minihypers figure prominently, appearing here as multisets. We re-

prove several results, but our main goal is setting the stage for a recent mini-

hyper approach to the classification of three-dimensional codes meeting the
Griesmer bound.

1. Introduction

Ray Hill and the author [20] recently began a systematic classification of
certain three-dimensional codes meeting the Griesmer bound. We employed
minihypers as the basis for the classification, mainly because of a natural
inductive process inherent within that framework. But we were pleasantly
surprised by the variety of geometric structures that arise in the description
of some of the key minihypers. The present paper outlines the minihyper
framework, presenting background, concepts, and vocabulary. It also gives
proofs of several related geometric and coding results, most of which are
known. The final section contains examples of the classification that was
carried out in the cited paper. The references given are not meant to be
exhaustive, but they are intended to provide access to an extensive litera-
ture.

2. Codes and the Griesmer bound

The subject of this paper is linear codes and developments centering on the
Griesmer bound. The alphabet for the codes is the finite field Fq of prime-
power size q. Traditionally, an [n, k]q code is a k-dimensional subspace of
the ambient space Fn

q of words of length n. When the minimum weight d
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of the code is specified, the code parameters are displayed as [n, k, d]q. A
linear code is usually presented as the row space of an n-columned matrix
of rank k, a generator matrix for the code. We shall shortly give a geometric
presentation for codes that will be a major theme of the paper.

Given the field and two of the code parameters, one can seek to maximize
or minimize the third, as the case may be. Thus a distance-optimal code
is one for which d is as large as possible for given n and k, while a length-
optimal code is one with smallest n, given k and d. Finding codes displaying
the extremes has been a major activity in coding theory. We shall be most
interested in length-optimal codes, usually simply called optimal codes.
The guiding bound for them is the Griesmer bound, proved for q = 2 by
Griesmer [14] and for general q by Solomon and Stiffler [29].

Theorem 2.1. (Griesmer bound) For an [n, k, d]q code,

n ≥ gq(k, d) = d+
⌈
d

q

⌉
+ . . .+

⌈
d

qk−1

⌉
.

A code meeting the Griesmer bound is called a Griesmer code.
There is a formula for gq(k, d) that will be useful later (Hill [18]): for

a vector space V over Fq, let PG(V ) be the projective space based on V ,
whose points are the 1-dimensional subspaces of V . We denote PG(Ft+1

q ) by
PG(t, q), or simply Πt if q is understood. The number of points in PG(t, q)
is θt := (qt+1−1)/(q−1) = qt + . . .+1. Note that θ0 = 1 and θi+1 = qθi +1;
we set θ−1 = 0 (some authors write vt+1 for θt). Now let

⌈
d/qk−1

⌉
= δ,

and expand δqk−1 − d base q as
∑k−2

i=0 δiq
i, with 0 ≤ δi ≤ q − 1. Then

d = δqk−1 −
∑k−2

i=0 δiq
i, and

gq(k, d) = δθk−1 −
k−2∑
i=0

δiθi. (1)

3. Codes and multisets

The alternative description of codes we shall use was presented by Assmus
and Mattson [1] at the beginning of the development of algebraic coding
theory. For a recent exposition of this idea aimed at codes over rings, see
Wood [34]. Let Fk

q be construed as the message space for a code. Then let
λ1, . . . , λn, the coding functionals, be n members of the vector-space dual
(Fk

q )∗ of Fk
q ; we shall identify (Fk

q )∗ with Fk
q itself. Message v is encoded as

λ(v) = (λ1(v), . . . , λn(v)), and the image λ(Fk
q ) in Fn

q is the corresponding
code. If v1, . . . ,vk is a basis of Fk

q , then the k × n matrix [λj(vi)] is a
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generator matrix of the code. The λi must satisfy the coding axiom: λ is to
be one-to-one. A code is called full length if none of the λi is the 0-functional.
Permuting and scaling the λi replaces λ(Fk

q ) with a monomially equivalent
code. Thus as far as the weight structure of the code is concerned, only the
points 〈λi〉 in Πk−1 = PG(k − 1, q) ( = PG((Fk

q )∗)) are of significance.
Let L be the multiset in Πk−1 comprising the 〈λi〉: the members of

L are the 〈λi〉, but with multiplicities. More formally, L is the mapping
Πk−1 → N for which L(P ) is the number of times point P appears in the
list 〈λ1〉 , . . . , 〈λn〉. Two such multisets L and L′ correspond to (monomially)
equivalent codes exactly when there is a projectivity τ of Πk−1 (induced
by a linear transformation) with L′ = L ◦ τ , making L and L′ projectively
equivalent. We can use the notation C(L) for the code λ(Fk

q ) if we bear in
mind that L determines a code only to equivalence. As we wish to concen-
trate on the connection between multisets and codes, we shall assume that
all codes are full-length.

Several authors have investigated this use of multisets in coding theory,
among them Dodunekov and Simonis [11], Hamada (cited later), Landjev
[25], and Storme [30]. The classic paper by Calderbank and Kantor [9]
explores connections between codes with just two non-zero weights and
various geometric structures.

3.1. Arcs

Let A be any multiset in Πt for some t. The multiplicity of point P is
A(P ), and we let max(A) and min(A) denote the maximum and minimum
of the A(P ). If max(A) = 1, we shall refer to A as a set. (The code C(L)
is sometimes called projective if L is a set.) For a subset X of Πt, let
A(X) =

∑
P :P∈X A(P ), the strength of X. Thus for the multiset L of an

[n, k]q code, n = L(Πk−1). Moreover, if v ∈ Fk
q , v 6= 0, then the weight of

the corresponding codeword c = λ(v) is wt(c) = n−L(c⊥), where c⊥ is the
hyperplane in Πk−1 comprising the points 〈λ〉 for which λ(v) = 0. We can
think of the message space in projective terms, too: the nonzero vectors
in the projective point 〈v〉, v 6= 0, give codewords in the corresponding
point 〈λ(v)〉 all having the same weight. If the code is an [n, k, d]q code,
then for all hyperplanes H, L(H) ≤ n− d, with equality for some H (every
H has the form c⊥ for some c). Such a multiset L is called an (n, n − d)-
arc (Landjev [25]). There is a one-to-one correspondence between classes of
projectively equivalent (n, n− d)-arcs and classes of equivalent codes.

Here is the Griesmer bound in the language of arcs:



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

36

Proposition 3.1. Let K be an (n, r)-arc in Πt = PG(t, q): K(Πt) = n and
K(H) ≤ r for all hyperplanes H, with equality for some H. Suppose that
d ≤ n− r. Then

n ≥ d+
⌈
d

q

⌉
+ . . .+

⌈
d

qt

⌉
. (2)

Proof. Let J be a t− 2 subspace in Πt (J is the empty set if t = 1). Then

n = K(Πt) =
∑

H:J⊂H

K(H)− qK(J) ≤ (q + 1)r − qK(J),

the sum over the q + 1 hyperplanes H containing J . Thus K(J) ≤ r −
(n− r)/q ≤ r − d/q. If H is a hyperplane with K(H) = r, this means that
K|H is an (r, r′)-arc in Πt−1 for some r′ ≤ r − d/q; so r − r′ ≥ dd/qe. As
da/(bc)e = dda/be /ce in general, we obtain r ≥ dd/qe + . . . + dd/qte by
induction (at t = 1, n ≤ (q + 1)r), which gives the stated inequality.

Of course, for arcs one expects an upper bound on n, and that is what
(2) really is: with d = n− r, the inequality becomes⌈

n− r
q

⌉
+ . . .+

⌈
n− r
qt

⌉
≤ r.

If n > r, this gives the elementary lower bound (n− r)/q + (t− 1) ≤ r, or
n ≤ (q+1)r− (t−1)q. If K is a set, then r ≤ θt−1. Thus at t = 2, arcs with
r = q + 2 must be multisets. For them, the bound is n ≤ q2 + q + 2, since
n = q2+q+2 gives q+1 on the left and n = q2+q+3 gives q+3. The paper
by Ball et al. [3] contains an extensive study of (q2 +q+2, q+2)-arcs in Π2.
Bounds for arcs that are sets have been widely investigated, and Hirschfeld
and Storme [22] provide a recent survey.

3.2. Combinations

If A and B are multisets in Πt, the function combination aA+bB (a, b ∈ Q)
makes sense as a multiset if its values are always in N. However, as Wood
[34] observes, one can usefully define “virtual codes” whose multisets are
unrestricted functions to Q. The empty multiset N has N (P ) = 0 for all
P , and the set Πt itself, denoted by P, has P(P ) = 1 for all P . If L and L′
are multisets for two codes C and C ′ of the same dimension, then L + L′
is the multiset for a code denoted C|C ′ that has as generator matrix the
juxtaposition of those for C and C ′, the matrices being set up relative to
the same basis of the message space. For m > 0, mL corresponds to the
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m-fold replication m×C = C| . . . |C of C. In particular, mP represents an
m-fold replicated simplex code, all of whose nonzero words have the same
weight. Linear codes with this property are called constant weight linear
codes. As will be shown in Corollary 4.1, these replicated simplex codes are
the only full-length constant weight linear codes (Assmus and Mattson [1];
Bonisoli [6]).

4. Minihypers

An (f, h)-minihyper in Πt is a multiset M for which M(Πt) = f and
M(H) ≥ h for all hyperplanes H, with equality for some H. Minihypers
were defined by Hamada and Tamari [17] and have been used extensively
by Hamada and others for classifying Griesmer codes (see, for example, the
surveys by Hamada [15, 16] and the one by Storme [30]). If K is an (n, r)-arc
in Πt with max(K) ≤ m, then M = mP − K is an (mθt − n,mθt−1 − r)-
minihyper. When L is the arc for an [n, k]q code and b = max(L), M =
bP−L presents the functionals (as projective points) that must be omitted
from b copies of (Fk

q )∗ to define the code. Such a structure is closely related
to the concept of an anticode introduced by Farrell (see, for example, Farrell
[12] and MacWilliams and Sloane [27], Chapter 17, Section 6). Conversely,
ifM is an (f, h)-minihyper in Πk−1 and m ≥ max(M), then L = mP −M
defines an (n, n − d)-arc with n = mθk−1 − f and d = n − (mθk−2 − h) =
mqk−1 − f + h. The shortest corresponding code C0 comes from taking
m to be max(M), and the other codes have the form C0|S, where S is a
replicated simplex code.

Here are some results for codes proved in the language of minihypers,
based on this preliminary observation: letM be an (f, h)-minihyper in Πt,
t ≥ 1, and let P ∈ Πt. Then∑

H:P∈H

M(H) = θt−1M(P ) + θt−2

∑
Q6=P

M(Q) = qt−1M(P ) + θt−2f, (3)

H in the left sum running through the hyperplanes containing P .

Proposition 4.1. Suppose that the weights of all nonzero words in an
[n, k]q code C are congruent modulo ∆, for some ∆ relatively prime to q.
Then C is equivalent to (∆×C0)|S for a code C0 and a replicated simplex
code S.

Proof. Let wt(c) ≡ w(mod ∆) for all nonzero c in C. WithM = bP −L,
b = max(L) as above,M(c⊥) = bθk−2−n+wt(c), so thatM(H) ≡ bθk−2−
n + w(mod∆) for all hyperplanes H. Then (3) implies that qt−1M(P )
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is constant mod∆, and as ∆ and q are relatively prime, M(P ) itself is
constant mod∆. The same is then true for L(P ): L(P ) = xP ∆ + y, y
independent of P (y < ∆). Defining L0 by P → xP , we have L = ∆L0 +yP
and we take C0 = C(L0), S = C(yP). (If all xP are 0, then there is no code
C0.)

The special case that w = 0, when all word weights are divisible by ∆
(and y = 0), was proved in Ward [31] and reproved in Dodunekov and
Simonis [11] in the arc framework. As a corollary of Proposition 4.1 we
obtain the Assmus-Mattson-Bonisoli theorem:

Corollary 4.1. A full-length constant-weight linear code is equivalent to a
replicated simplex code.

Proof. The hypothesis of the proposition is satisfied for any ∆ relatively
prime to q, the field size. For ∆ > n, there can be no term ∆× C0, and C
must be equivalent to S.

We also obtain a slight generalization of Corollary 2 in Delsarte [10]:

Corollary 4.2. Let a code C over Fq have exactly two nonzero codeword
weights. Suppose that min(L) = 0 for the arc L of C, and that C is not
a replicated code (these conditions hold if C is projective). Then the two
weights differ by a power of the prime dividing q.

Proof. If the difference between the weights had a factor ∆ relatively prime
to q, the two weights would be congruent mod ∆. Then the hypothesis im-
plies that y = 0 in Proposition 4.1. But now the non-replication assumption
requires ∆ = 1.

4.1. The Hamada bound

Hamada [15] presented a bound for minihypers that are sets and described
the generalization to multisets. We shall prove this generalization in detail
and mention some connections. We need the following numerical arrange-
ment: given q, let e ≥ 0 be fixed. For any a ≥ 0, write a =

∑e
i=0 aiθi, where

ae = ba/θec and for j < e, aj =
⌊
(a−

∑e
i=j+1 aiθi)/θj

⌋
. We express this

(e+1)-term θ-expansion as a = [ae, ae−1, . . . , a0]. The expansion has these
properties: ae ≥ 0; 0 ≤ aj ≤ q for j < e; and if aj = q for some j < e, then
aj−1 = . . . = a0 = 0. The mapping a→ [ae, ae−1, . . . , a0] is one-to-one from
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N onto the set of lists of length e+1 having these three properties. Numerical
order corresponds to lexicographic order (denoted ≺) of the (e + 1)-term
θ-expansions. If a = [ae, . . . , a0], then a + 1 = [ae, . . . , a0 + 1] if none of
ae−1, . . . , a0 is q; but if a = [ae, . . . , ai, q, 0, . . . 0] (possibly with no zeros
after the q), then a+ 1 = [ae, . . . , ai + 1, 0, . . . , 0], with one more zero.

Theorem 4.1. (Hamada bound) LetM be an (f, h)-minihyper in PG(t, q),
and let the t-term θ-expansion of h be h = [ht−1, . . . , h0]. Then

f ≥ f(h) = [ht−1, . . . , h0, 0] (a (t+ 1) term θ-expansion)

= qh+
t−1∑
i=0

hi.

Proof. That f(h) = qh+
∑t−1

i=0 hi follows from the relation θi+1 = qθi +1.
For the proof of the bound, induct on t. At t = 1, h = [h]. The hyperplanes
are just the points, for whichM(P ) ≥ h. Then f ≥ (q + 1)h = [h, 0].

For t ≥ 2, let J be a (t − 2)-subspace in PG(t, q). Summing over the
q + 1 hyperplanes H containing J , we obtain

f =
∑

H:J⊂H

M(H)− qM(J) ≥ (q + 1)h− qM(J).

The bound will be established if there is a J for which (q+1)h− qM(J) ≥
[ht−1, . . . , h0, 0], which simplifies to [ht−1, . . . , h1] ≥ M(J) (the left side
is a (t − 1)-term θ-expansion). Thus suppose that [ht−1, . . . , h1] < M(J)
for all J . Let H be a hyperplane, and let

[
h′t−2, . . . , h

′
0

]
be the minimum

of the M(J) for J ⊂ H; [ht−1, . . . , h1] ≺
[
h′t−2, . . . , h

′
0

]
. By induction,

M(H) ≥
[
h′t−2, . . . , h

′
0, 0
]
. But [ht−1, . . . , h1] ≺

[
h′t−2, . . . , h

′
0

]
implies that

[ht−1, . . . , h1, h0] ≺
[
h′t−2, . . . , h

′
0, 0
]
; that is, h <M(H). As this holds for

all hyperplanes H, the fact thatM(H) = h for some H is contradicted.

This corollary was also given in Hamada [15]:

Corollary 4.3. Let f = [ht−1, . . . , h0, h−1], and let h = [ht−1, . . . , h0].
Suppose that M is a multiset in Πt for which M(Πt) = f and M(H) ≥ h

for all hyperplanes H. Then M is an (f, h)-minihyper.

Proof. M is an (f, h′)-minihyper for some h′ ≥ h, and we need h′ = h.
Let h′ =

[
h′t−1, . . . , h

′
0

]
, so that f(h′) =

[
h′t−1, . . . , h

′
0, 0
]
. By the theorem,

f(h′) ≤ f , which reads
[
h′t−1, . . . , h

′
0, 0
]
� [ht−1, . . . , h0, h−1] for the θ-

expansions. If h < h′, then [ht−1, . . . , h0] ≺
[
h′t−1, . . . , h

′
0

]
; but, as above,

that implies the contradiction [ht−1, . . . , h0, h−1] ≺
[
h′t−1, . . . , h

′
0, 0
]
.
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The Hamada bound can be applied to multiarcs: let K be an (n, r)-arc
in PG(t, q), and let b = max(K); thus b ≥ dr/θt−1e. Then bP − K is a
(bθt − n, bθt−1 − r)-minihyper, so that bθt − n ≥ f(bθt−1 − r); that is, n ≤
bθt−f(bθt−1−r). Write bθt−1−r = (b−dr/θt−1e)θt−1+(dr/θt−1e θt−1−r).
Let the (t−1)-term θ-expansion of dr/θt−1e θt−1−r be [rt−2, . . . , r0]. Since
dr/θt−1e θt−1− r < θt−1, we have rt−2 ≤ q. Thus the t-term θ-expansion of
(b−dr/θt−1e)θt−1 +(dr/θt−1e θt−1− r) is [b− dr/θt−1e , rt−2, . . . , r0]. Then

f(bθt−1 − r) = q(bθt−1 − r) + (b− dr/θt−1e) +
t−2∑
i=0

ri

= bθt − qr − dr/θt−1e+
t−2∑
i=0

ri.

In the resulting inequality, b disappears:

Proposition 4.2. If K is an (n, r)-arc in PG(t, q), then n ≤ qr+dr/θt−1e−∑t−2
i=0 ri. Here dr/θt−1e θt−1 − r = [rt−2, . . . , r0].

This bound should be compared with the elementary bound n ≤ (q+1)r−
(t− 1)q obtained after Proposition 3.1.

How does the Hamada bound relate to the Griesmer bound? The arc L
of a full-length [n, k, d]q code is an (n, n − d)-arc in PG(k − 1, q) (we take
k ≥ 3), and with r = n− d, the bound inequality in Proposition 4.2 can be
written as

0 ≤ q(n− d)− n+ d(n− d)/θk−2e −
k−3∑
i=0

ri,

with d(n− d)/θk−2e θk−2 − (n − d) = [rk−3, . . . , r0]. For fixed q, k, and d,
the right-hand side of the inequality is a nondecreasing function R(n) of n,
as one verifies by examining the change from n to n+1; the delicate point is
the effect in the t-term θ-expansion of a when a changes to a+1 as covered
by the formulas before Theorem 4.1. From (1), gq(k, d) = δθk−1−

∑k−2
i=0 δiθi

when d = δqk−1−
∑k−2

i=0 δiq
i. Then gq(k, d)− d = δθk−2−

∑k−2
i=1 δiθi−1 and

d(gq(k, d)− d)/θk−2e = δ, so that [rk−3, . . . , r0] = [δk−2, . . . , δ1]. With this,
R(gq(k, d)) comes out to be δ0, correctly nonnegative. But for n = gq(k, d)−
1, [rk−3, . . . , r0] = [δk−2, . . . , δ1 + 1], since each δi is actually at most q− 1.
Thus d(n− d)/θk−2e is still δ, and R(n) = R(gq(k, d)) − q = δ0 − q < 0.
So gq(k, d) is the smallest value of n for which the inequality holds, in line
with the Griesmer bound.

Let L be the arc for an [n, k, d]q Griesmer code, C. With b = max(L),
M = bP −L is the (f, h)-minihyper (a Griesmer minihyper) for this code.
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We give the parameters f and h explicitly. If d = δqk−1 −
∑k−2

i=0 δiq
i, then

n = gq(k, d) = δθk−1 −
∑k−2

i=0 δiθi, from the preceding paragraph. Since∑k−2
i=0 δiθi < θk−1, we have dn/θk−1e = δ; and since f = M(Πk−1) =

bθk−1 − n ≥ 0, it follows that b ≥ δ. If L(〈λ〉) = b, let C ′ be the short-
ened code whose coordinate functionals are the restrictions to kerλ of the
coordinate functionals of C that are not in 〈λ〉. (In conventional terms,
C ′ consists of the words of C that have zeros at the positions indexed
by members of 〈λ〉, with those positions then deleted.) Then C ′ is an
[n − b, k − 1, d′]q code with d′ ≥ d. The Griesmer bound for C ′ gives
n − b ≥

∑k−2
i=0

⌈
d/qi

⌉
= n −

⌈
d/qk−1

⌉
, so that b ≤

⌈
d/qk−1

⌉
= δ. Con-

sequently b = δ (this argument is adapted from Hill [18]). Thus with
h = bθk−2 − (n − d), then since n − d = δθk−2 −

∑k−2
i=1 δiθi−1 (again from

the preceding paragraph), we have

f =
k−2∑
i=0

δiθi = [δk−2, . . . , δ0] and h =
k−2∑
i=1

δiθi−1 = [δk−2, . . . , δ1] .

4.2. Achievement of the Griesmer bound

The following theorem guides the search for optimal codes.

Theorem 4.2. Let k and q be fixed. Then for sufficiently large d, [n, k, d]q
Griesmer codes exist.

Finding the cases for which Griesmer codes do not exist for given q and
k thus is a finite problem, upon which much effort has been put. The two
surveys Hill [18] and Hill and Kolev [19] cover background and the state
of affairs at their publication dates. Maruta [28] illustrates the kind of
information sought for particular values of k. A web server maintained by
A. E. Brouwer [7] provides up-to-date lower and upper bounds for distance-
optimal codes, substantiated by references, from which bounds for length-
optimal codes can be inferred. We give a proof of Theorem 4.2 adapted from
Baumert and McEliece [5] (which uses ideas in Solomon and Stiffler [29]),
which, however, provides only a crude lower bound for d. Hill [18] presents
constructions due to Belov and others for Griesmer codes that lower the
bound on d; indeed, much of Hamada’s work has been in the direction of
generalizing these constructions by using minihypers.

Proof. In Πk−1, let T be a subspace of projective dimension t ≤ k − 1
as a minihyper PT : PT is the characteristic function of T . If T ⊆ H for a
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hyperplane H, then PT (H) = θt; while if T * H, H ∩ T is a (t− 1)-space
and PT (H) = θt−1. Thus PT is a (θt, θt−1)-minihyper (the second entry is
0 when t = 0). Now suppose that d = δqk−1−

∑k−2
i=0 δiq

i, with the δi fixed,
but δ not prescribed. Let M =

∑k−2
i=0 δiPi, where Pi = PTi , Ti a subspace

of dimension i. Then M(Πk−1) =
∑k−2

i=0 δiPi(Πk−1) =
∑k−2

i=0 δiθi; and for
a hyperplane H, M(H) =

∑k−2
i=0 δiPi(H) ≥

∑k−2
i=0 δiθi−1 =

∑k−2
i=1 δiθi−1.

By Corollary 4.3,M is a (
∑k−2

i=0 δiθi,
∑k−2

i=1 δiθi−1)-minihyper (which is not
hard to prove directly). If δ ≥ max(M), then δP −M is an (n, n− d′)-arc
with n = δθk−1 −

∑k−2
i=0 δiθi and

d′ = n− (δθk−2 −
k−2∑
i=1

δiθi−1) = δqk−1 −
k−2∑
i=0

δiq
i = d.

So C(δP −M) is a desired [gq(k, d), k, d]q Griesmer code. Now M(P ) ≤∑k−2
i=0 δi ≤ (k − 1)(q − 1). Therefore this construction works for δ ≥ (k −

1)(q − 1) and so for d ≥ (k − 1)(q − 1)qk−1.

When δ = 1,M is required to be a set, and if it is to be a sum of certain
Pi, the corresponding subspaces must be disjoint. A number of authors have
sought constructions of such M; see, for example, the paper of Ferret and
Storme [13] that surveys and improves earlier work.

5. Divisibility

If all the word weights of a linear code share a common divisor ∆ > 1, the
code is called divisible (by ∆), and ∆ is a divisor of the code. Generalized
Reed-Muller codes and formally self-dual codes covered by the Gleason-
Pierce theorem are prominent examples; see the survey by Ward [33]. This
theorem from Ward [32] generalizes an earlier theorem of Dodunekov for
binary codes:

Theorem 5.1. If the minimum weight of a Griesmer code over Fp, p a
prime, is divisible by pe, then the code itself is divisible by pe.

The following generalizing conjecture appears in Ward [33] (where it is
proved for q = 4):

Conjecture 5.1. Let C be a Griesmer code over Fq whose minimum weight
is divisible by pe ≥ q, p the prime dividing q. Then C is divisible by pe+1/q.

If L is the (n, n − d)-arc in Πk−1 of a (full-length) [n, k, d]q code di-
visible by ∆, then as in Proposition 4.1, the strengths of all hyperplanes
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will be congruent mod ∆, and the same will be true of the corresponding
minihyper. But such congruence properties of geometrical objects are more
widespread than just those inherited from codes. Polynomial methods have
led to many of these properties, as surveyed, for example, by Ball [2]. For in-
stance, Landjev [25] proves Theorem 5.1 (but not–alas—its generalization)
with polynomial methods. Theorem 5.1 of Ball et al. [3], which concerns
(q2+q+2, q+2)-arcs in PG(2, q), q a power of the prime p, has a polynomial
proof of the fact that if the number of points with multiplicity 2 is more
than (q − 1)pe−1, then the line strengths are all congruent to q2 + q + 2
mod pe (2 is the maximum point multiplicity for such an arc). These arcs
correspond to [q2 + q+2, 3, q2]q codes, which, though distance-optimal, are
not Griesmer codes. And perhaps most famously, Ball, Blokhuis, and Maz-
zocca [4] used the polynomial approach to show that in PG(2, q) with q

odd, there are no sets that are (n, r)-arcs, with r < q, meeting the bound
n ≤ (q + 1)r − q with equality. (At r = q, the complement of a line is such
an arc.)

6. Three-dimensional Griesmer codes

For k = 1, Griesmer codes, like all codes, are trivial. At k = 2, with
d = δq − δ0 and n = δ(q + 1) − δ0, the corresponding arc is an (n, δ)-arc.
Such an arc can be created, for example, by initially assigning multiplicity δ
to all q+1 points and then lowering the multiplicity by 1 at δ0 of them–this
is actually an example of a Belov construction!

For k = 3, the situation is totally different. Here d = δq2− δ1q− δ0 and
n = δq2 + (δ − δ1)q + δ − δ1 − δ0. The arc is an (n, δq + δ − δ1)-arc and
the minihyper has parameters (δ1(q + 1) + δ0, δ1). As pointed out earlier,
arcs in Π2 have been studied intensively. Our paper, Hill and Ward [20],
is meant to initiate a classification of Griesmer codes for k = 3 from the
minihyper viewpoint. It was inspired in part by the work of Jones et al. [24]
on four-dimensional divisible Griesmer codes over F8. One of the results of
that paper was that there is no [93, 4, 80]8 code; it can be shown that such
a code would have to be divisible by 4, in line with Conjecture 5.1. Proving
nonexistence required some analysis of [92, 3, 80]8 subcodes, but only the
weight distributions of these codes were needed. There are four different
distribution possibilities, each of which corresponds to at least one code.
It is thus of interest to characterize the actual codes, whose minihypers
have parameters (54, 6). In our general analysis we focused on (x(q+1), x)-
minihypers (δ1 = x, δ0 = 0), with x < q. We did this in part because of
the divisibility aspects mentioned below, and in part because in existence
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questions for higher dimensional Griesmer codes, it is frequently the case
that key values of d are multiples of q. This is so because solutions for
these cases often lead to solutions for a sequence of codes with minimum
distances going down from d. Three-dimensional codes will be involved in
an analysis based on induction in dimension.

In our work, two important aspects came into play: minihypers that are
“orphans” and divisibility.

6.1. Orphans

If Mi is a (fi, hi)-minihyper in Πt for i = 1, 2, then their sum is an (f1 +
f2, h)-minihyper for some h ≥ h1 +h2. Hence in classifying minihypers, one
could begin by looking for indecomposable minihypers (a term suggested
by Ivan Landjev), those not the sum of two “smaller” minihypers. Even
with the indecomposable minihypers in hand, to projective equivalence,
one would have to deal with possible ways of adding representatives of the
equivalence classes. The simplest instance is that one of the minihypers is
the characteristic function of a subspace. Thus in Π2, let l be a line and let
Pl be its characteristic function, a (q+1, 1)-minihyper. Then the move from
M to M + Pl might be referred to as “adding a line.” Coining a phrase,
we call M + Pl a child of its parent M, and now the emphasis shifts to
classifying orphans, minihypers with no parents. The status of orphanage
for a minihyper puts extra constraints on its geometric structure.

If M is an (x(q + 1), x)-minihyper, then min(M) = 0, since otherwise
x(q+1) =M(Π2) ≥ q2 +q+1, contradicting the standing assumption that
x < q. Let P be a point withM(P ) = 0. AsM(l) ≥ x for each of the q+1
lines l on P and

∑
l:P∈lM(l) = x(q + 1), it can only be thatM(l) = x for

each such line. Thus ifM(l) > x for some line l, then l has no 0-point on it.
If, in fact,M(l) ≥ x+q, then each point P on l hasM(P ) > 0. Such anM
will not be an orphan, for the following reason: let M′ =M−Pl (so that
M =M′ +Pl). ThenM′ is an ((x− 1)(q+ 1), x− 1)-minihyper. This is so
becauseM′(l) ≥ x−1; and for any other line l′,M′(l′) =M(l′)−1 ≥ x−1.
Since M(l′) = x for some line l′ 6= l, we have M′(l′) = x − 1. Therefore
in seeking orphans, we may assume that M(l) < x + q for all lines l. We
include the empty minihyper N for convenience; each Pl is a child of N .

6.2. Divisibility

The second aspect also puts extra constraints on the geometric structure of
the minihypers, namely divisibility again. The codes corresponding to an
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(x(q + 1), x)-minihyper M in Π2 are [δq2 + (δ − x)q + δ − x, 3, (δq − x)q]q
Griesmer codes. For a nonzero codeword c,M(c⊥) = x(q+1)−δq2+wt(c).
So divisibility of all values wt(c) by a divisor q0 of q2 implies that all line
strengths (the hyperplanes are lines) are congruent to x(q + 1) mod q0.

For example, when q is a prime, the fact that q divides d givesM(l) ≡
x(q + 1) ≡ x(mod q), by Theorem 5.1. IfM were an orphan, thenM(l) <
x + q and the congruence would force M(l) = x. In the present case, (3)
reads

x(q + 1) =
∑
l:P∈l

M(l) = qM(P ) + x(q + 1),

making M(P ) = 0 for all P and soM = N . That is:

Theorem 6.1. If q is a prime, then there are no orphan (x(q + 1), x)-
minihypers (x < q) in Π2 other than N . In other words, each (x(q+1), x)-
minihyper is a sum of lines.

If p is the prime dividing q and pe|x (so pe < q), then peq divides the
minimum weight of the corresponding code. Assuming that Conjecture 5.1
is true, we would get that the code is divisible by pe+1, and then M(l) ≡
x(mod pe+1) for all lines l. But in fact this congruence is true–never mind
the conjecture–because the polynomial proof in Ball et al. [3] mentioned
after Conjecture 5.1 can be invoked with appropriate changes. Having the
congruence in hand, we can strengthen Theorem 6.1:

Theorem 6.2. Suppose that M is a nonempty orphan (x(q + 1), x)-
minihyper in Π2 and p is the prime dividing q. Then x > q − q/p.

(There is an analogous theorem in the paper by Landjev and Honold [26];
this paper develops multiset ideas for codes defined over chain rings.) We
can also bound line strengths and point multiplicities more sharply:

Proposition 6.1. Let M be a nonempty orphan (x(q + 1), x)-minihyper
in Π2 and suppose that x ≤ y < q with pe|y. Then
i) M(l) ≤ x+ q − pe+1 for each line l, and
ii) maxM≤ x− pe+1.

Both Theorem 6.2 and Proposition 6.1 are proved using an observation
like that at the end of Subsection 6.1: suppose that M is an (x(q + 1), x)-
minihyper, and let l0 be a line withM(l0) = x. If x ≤ y < q, letM′ =M+
(y−x)Pl′ for a chosen line l′ different from l0. ThenM′(l) =M(l)+(y−x)
for l 6= l′, whileM′(l′) =M(l′)+(y−x)(q+1). ThusM′(l) ≥ y for all lines
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l, and since M′(l0) = y, M′ is a (y(q + 1), y)-minihyper. Now if pe < q,
then M′(l) ≡ y(mod pe+1) if and only if M(l) ≡ x(mod pe+1), a transfer
of congruences.

6.3. The [92, 3, 80]8 codes

As pointed out, the [92, 3, 80]8 Griesmer codes correspond to (54, 6)-
minihypers in PG(2, 8). Since 80 = 2×82−6×8, so that δ = 2, maxM = 2
for a corresponding minihyper M. Thus if M is a sum of lines, no three
are concurrent and their configuration is a (6, 2)-arc in the dual plane Π∗

2

of Π2. To projective equivalence, there are five such arcs (Hirschfeld [21],
Section 14.6): one comprises six lines (as dual points) on a conic in the dual
plane and a second five lines on a conic plus its nucleus (line). The remain-
ing three are complete–they cannot be augmented to (7, 2)-arcs. They are
projectively distinct, but they are equivalent under collineations induced
by semilinear transformations that involve the automorphisms of F8. So
there are five monomially inequivalent corresponding codes.

The “oldest” (smallest x) orphan minihyper is N , and by Theorem
6.2, the next oldest could have x = 8 − 8/2 + 1 = 5. For a minihyper,
two counts are important: ai is the number of lines of strength i (i-lines),
the sequence of ai forming the spectrum of the minihyper; and pj is the
number of points of multiplicity j (j-points). These numbers are connected
by standard equations derived by counting arguments (generally double-
counting arguments!). Examination of the possibilities for the number of
i-lines on a j-point is also an important ingredient in the analysis. There
is indeed a (45, 5) orphan minihyper, H1 (in the notation of Hill and Ward
[20]). By Proposition 6.1, max(H1) ≤ 5 − 4 = 1 (from y = 6); so H1

is a set. It has the spectrum a5 = 63, a9 = 10; and p0 = 28, p1 = 45.
It follows quickly that the ten 9-lines form a dual hyperoval, a (10, 2)-arc
in Π∗

2. This is projectively unique (Hirschfeld [21], Section 14.6 again): it
consists of the nine lines of a dual conic and the nucleus. However, H1 has
three inequivalent children, according as the added line is a line of the conic,
the nucleus, or one of the remaining 63 lines (and all line choices here are
projectively equivalent).

The final code corresponds to the unique orphan (54, 6)-minihyper, H2.
Its spectrum is a6 = 61, a10 = 12; and p0 = 22, p1 = 48, p2 = 3. The three
2-points are collinear on a 6-line, l. Each of the them is on four additional
6-lines. Moreover, any point of intersection of two of these twelve lines that
go through two different 2-points is on a 6-line through the third 2-point.
This means that l and the twelve additional 6-lines form a dual projective
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triad (Hirschfeld [21], p. 335), which is also projectively unique. We shall
return to H2 shortly.

We have now described the minihypers for nine distinct [92, 3, 80]8
codes.

6.4. Duality

The possibility of introducing configurations in some sense dual to given
ones seems implicit from the beginning, where the arc for a code is actu-
ally set up in the dual of the message space. In their fundamental paper,
Brouwer and van Eupen [8] showed how to obtain new codes from old by
constructing arcs in the projective space of the message space itself (geo-
metrically dual configurations have been known for centuries, of course).
The points of these arcs were certain points 〈v〉, with multiplicities, chosen
by the weights of their codewords λ(v). Dodunekov and Simonis [11] elab-
orated upon the framework that Brouwer and van Eupen set up, and that
elaboration was invoked, for example, by Jaffe and Simonis [23], to produce
a number of codes better than any previously known. Duality also plays
a role in the paper of Calderbank and Kantor [9] cited. However, as Jaffe
and Simonis point out, the choice of which codewords to use in creating a
dual is something of an art: “A key problem is to understand why the dual
transform method . . . produces good codes so often.”

To illustrate the idea, we show how a natural dual for H2 produces an-
other orphan minihyper, labeled H7 in our paper, with parameters (63, 7).
In the analysis of a minihyper, one assigns a complexion to a line, the
description of how many points of given multiplicity lie on the line. A con-
venient short-hand is a symbol aαbβ . . . indicating that the line contains α
a-points, β b-points, and so on. A similar notation is used for points to de-
scribe the strengths of the lines on them. First we give the line complexions
for H2, along with the multiplicities used for the dual structure. (The type
names suggest the number of 0-points on the lines.)

line strength line type complexion number dual multiplicity
6 s 2306 (the line l) 1 3
6 f 211404 12 1
6 t 1603 48 1
10 z 2118 12 0

Then here are the point complexions, multiplicities, and strengths as lines
in the dual. We have also identified how many lines there are of each type
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on the point.

point multiplicity complexion line names number dual strength
2 10465 z4s1f4 3 7
1 10267 z2f1t6 48 7
0 69 f3t6 16 9
0 69 s1t8 6 11

The thirteen points s and f in the dual form a projective triad. The type
f points are collinear in fours with the type s point, the three lines of
collinearity in the dual being the 2-points in the original.
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We construct some new families of optical orthogonal codes that are asymptot-

ically optimal. In particular, for any prescribed value of λ, we construct infinite

families of (n, w, λ)-OOCs that in each case are asymptotically optimal. Our
constructions rely on various techniques in finite projective spaces involving

normal rational curves and Singer groups. These constructions generalize and

improve previous constructions of OOCs, in particular, those from conics [1]
and arcs [2].

Keywords: optical orthogonal codes; Singer cycles; cyclically permutable con-

stant weight codes; normal rational curves.

1. Introduction

There is interest in applying code-division multiple-access (CDMA) tech-
niques to optical networks (OCDMA) and the codes used in an OCDMA
system are called optical orthogonal codes. An (n,w, λa, λc)-optical orthog-
onal code (OOC) is a family of binary sequences (codewords) of length n,
and constant hamming weight w satisfying the following two conditions:



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

52

• (auto-correlation property) for any codeword c = (c0, c1, . . . , cn−1) and

for any integer 1 ≤ t ≤ n− 1, there holds
n−1∑
i=1

cici+t ≤ λa

• (cross-correlation property) for any two distinct codewords c, c′ and for

any integer 0 ≤ t ≤ n− 1, there holds
n−1∑
i=0

cic
′
i+t ≤ λc

where each subscript is reduced modulo n.
As stated above, an application of optical orthogonal codes is to op-

tical CDMA communication systems where binary codewords with strong
correlation properties are required (see Refs. 3–5 for more details). Subse-
quently, OOCs have been used for multimedia transmissions in networks us-
ing fiber-optics [6]. Optical orthogonal codes have also been called cyclically
permutable constant weight codes in the construction of protocol sequences
for multiuser collision channels without feedback [7]. Mathematically, OOCs
have been studied in their own right because of their connection to vari-
ous problems that arise naturally in combinatorics. For instance, there is
a fundamental equivalence between optimal OOCs and maximum cyclic
t-difference packings [8].

An (n,w, λa, λc)-OOC with λa = λc is denoted an (n,w, λ)-OOC. The
number of codewords is the size of the code. For fixed values of n, w, λa and
λc, the largest size of an (n,w, λa, λc)-OOC is denoted Φ(n,w, λa, λc). An
(n,w, λa, λc)-OOC of size Φ(n,w, λa, λc) is said to be optimal. In applica-
tions, optimal OOCs facilitate the largest possible number of asynchronous
users to transmit information efficiently and reliably. From the Johnson
Bound for constant weight codes it follows [4] that

Φ(n,w, λ) ≤
⌊

1
w

⌊
n− 1
w − 1

⌊
n− 2
w − 2

⌊
· · ·
⌊
n− λ
w − λ

⌋⌋
· · ·
⌋
. (1)

Much of the literature is restricted to (n,w, λ)-OOCs. If C is an
(n,w, λa, λc)-OOC with λa 6= λc then we obtain a bound on the size of
C by taking λ = max{λa, λc} in (1). Alternatively, Yang and Fuja [9] dis-
cuss OOCs with λa > λc and a corresponding bound is established. The
codes we construct in Sections 3, 4 and 5 all have λa = λc and, as such, (1)
seems the only applicable bound.

We now carefully define the concept of an OOC being asymptotically
optimal. Let F be an infinite family of OOCs of varying length n with λa =
λc. For any (n,w, λ)-OOC C ∈ F containing at least one codeword, the
number of codewords in C is denoted by M(n,w, λ) and the corresponding
Johnson bound is denoted by J(n,w, λ).
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Definition 1.1. The family F is called asymptotically optimal if

lim
n→∞

M(n,w, λ)
J(n,w, λ)

= 1. (2)

For λ = 1, 2 there are many constructions of (asymptotically) optimal
families of (n,w, λ)-OOCs. For λ > 2 however, constructive examples seem
relatively scarce. In Ref. 1, 2, 10, 11, methods of projective geometry are
successfully employed to provide asymptotically optimal families of OOCs
with λ ≥ 2. In the present work we generalize the previous constructions. In
particular, for each prescribed λ ≥ 2 we provide several new asymptotically
optimal families of OOCs (Theorems 3.3, 5.1 and Corollaries 4.1, 4.2, 5.1,
and 5.2). The codes constructed in Theorem 5.1 have the same or similar
parameters to those constructed in Ref. 1 yet compare more favorably with
the Johnson Bound (JB). For instance, Table 1 shows how the sizes of some
of our codes compare to some previously known codes. We remark that the
construction given in Ref. 1 is a special case of our Corollary 4.1 by taking
k = 3. We also mention that the construction provided in Corollary 4.2 is
a strict improvement to the main results of Ref. 2.

Table 1. Comparison of constructions of (n, 9, λ)-OOCs

n λ |C| JB |C|/JB Reference

585 2 456 673 0.6775631501 1, Proposition 6

511 2 448 510 0.8784313727 Theorem 5.1 (k = 3, q = 8)

4681 3 14450752 33845825 0.4269581846 2, Theorem 9
4681 3 14479433 33845825 0.4278055860 Corollary 4.2 (k = 4, q = 8)

2. Preliminaries

As our work relies heavily on the structure of finite projective spaces, we
start with a short overview of the fundamental concepts needed. We let
PG(k, q) represent the finite projective geometry of dimension k and order
q. Due to a result of Veblen and Young in the early 1900s, all finite projective
spaces of dimension not equal to two are equivalent up to the order. The
space PG(k, q) can be modeled easily with the vector space of dimension k+
1 over the finite field GF (q). In this model, the one-dimensional subspaces
represent the points, two-dimensional subspaces represent lines, etc. Using
this model, it is not hard to show by elementary counting that the number
of points of PG(k, q) is given by θ(k, q) = qk+1−1

q−1 . We will continue to use
the symbol θ(k, q) to represent this number.
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The Fundamental Theorem of Projective Geometry states that the full
automorphism group of PG(k, q) is the group PΓL(k + 1, q) of semilin-
ear transformations acting on the underlying vector space. The subgroup
PGL(k + 1, q) ∼= GL(k + 1, q)/Z0 (where Z0 represents the center of the
group GL(k+1, q)) of projective linear transformations is easily modeled by
matrices and will be referred to in some of our discussions. A Singer group
is a cyclic group acting sharply transitively on the points and hyperplanes
of PG(k, q), and the generator of such a group is known as a Singer cycle.
Singer groups are known to exists in projective spaces of any order and
dimension.

Another property that will provide some assistance is the principle of
duality. For any result about points of PG(k, q), there is always a corre-
sponding result about hyperplanes (subspaces, or flats, of dimension k−1).
More generally, for any result dealing with flats of PG(k, q), replacing each
reference to an m-flat, m < k, with a reference to a (k−m−1)-flat, yields a
corresponding dual statement that has the same truth value. For instance,
a result about a set of points of PG(k, q), no three of which are collinear,
could be rewritten dually about a set of hyperplanes of PG(k, q), no three
of which meet in a common (k − 2)-flat.

Chung, Salehi, and Wei [4] provide a method for constructing (n,w, 1)-
OOCs using lines of the projective geometry PG(k, q). As our methods
may be viewed as a generalization of this construction, we describe the
technique in detail. The idea makes use of a Singer cycle that is most easily
understood by modeling a finite projective space using a finite field. If we
let ω be a primitive element of GF (qk+1), the points of Σ = PG(k, q) can be
represented by the field elements ω0 = 1, ω, ω2, . . . , ωn−1 where n = qk+1−1

q−1 .
Hence, in a natural way a point set A of PG(k, q) corresponds to a binary
n-tuple (or codeword) (a0, a1, . . . , an−1) where ai = 1 if and only if ωi ∈ A.

Recall that the non-zero elements ofGF (qk+1) form a cyclic group under
multiplication. Moreover, it is not hard to show that multiplication by ω in-
duces an automorphism, or collineation, on the associated projective space
PG(k, q). Denote by φ the collineation of Σ defined by ωi 7→ ωi+1. The map
φ clearly acts transitively on the points (and dually on the hyperplanes) of
Σ. It is important to note that if A is a point set of Σ corresponding to
the codeword c = (a0, a1, . . . , an−1), then φ induces a cyclic shift on the
coordinates of c. Furthermore, φ is a Singer cycle for PG(k, q).

For each line ` of Σ = PG(k, q), consider its orbit O` under φ. We say
O` is a full orbit if it has size n = θ(k, q). Let L(k, q) denote the number
of full line orbits. A variety of techniques for determining L(k, q) exist in
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the literature; in sections 4,5 of Ref. 3 Bird and Keedwell employ methods
of design theory, whereas in section 5 of Ref. 12, Ebert et. al. take a more
geometrical approach. If O` is a full orbit, then a representative line and
corresponding codeword is chosen. Short orbits are discarded. Two lines
of Σ intersect in at most one point and each line contains q + 1 points. It
follows that the codewords satisfy both λa ≤ 1 and λc ≤ 1 and the following
is obtained.

Theorem 2.1. For any prime power q and any positive integer k, there
exists a (θ(k, q), q + 1, 1)-OOC consisting of L(k, q) =

⌊
qk−1
q2−1

⌋
codewords.

Our new constructions of asymptotically optimal OOCs will also rely
on orbits of Singer groups. However, we consider the orbits of flats of vary-

ing dimension. As such, we let
[
k + 1
d+ 1

]
q

denote the number of d-flats in

PG(k, q). Elementary counting can be used to show that[
k + 1
d+ 1

]
q

=
(qk+1 − 1)(qk+1 − q) · · · (qk+1 − qd)
(qd+1 − 1)(qd+1 − q) · · · (qd+1 − qd)

≈ q(k−d)(d+1).

Moreover, it is well understood that in PG(k, q), not all orbits of d-flats
are full orbits (having size θ(k, q)). The number of orbits of d-flats of vary-
ing lengths was investigated in Ref. 13. We let Nq(d, k) be the number of
full d-flat orbits in PG(k, q). Hence, using the notation from the construc-
tion above, Nq(1, k) ≡ L(k, q). The following lemma is a consequence of
Theorem 2.1 of Ref. 13 and shall prove useful in our new constructions of
asymptotically optimal OOCs. Note that the count in Theorem 2.1 is a
special case of the following.

Lemma 2.1. Using the notation above,

Nq(d, k) =

⌊
1

θ(k, q)

[
k + 1
d+ 1

]
q

⌋
≈ q(k−d−1)d.

The final concept from finite projective geometry that we make use of
is that of an arc. An m-arc in PG(d, q) is a collection of m > d points that
meets some hyperplane in d points and meets no hyperplane in as many
as d + 1 points. It follows that if K is an m-arc in PG(d, q) then no d + 1
points of K lie on a hyperplane, no d lie on a (d − 2)-flat,..., no 3 lie on
a line. An arc is called complete if it is maximal with respect to inclusion.
The concept of an arc generalizes naturally. We define an m-arc of degree
r (≥ d) in PG(d, q) to be a set of m points of PG(d, q) that meets some
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hyperplane in r points and meets no hyperplane in as many as r+1 points.
Hence, arcs of degree d are simply arcs. In the plane PG(2, q), for instance,
an arc of degree 2 is simply an arc, and an arc of degree 3 (also known as a
cubic arc) is a set of points that intersects at least one line in 3 points and
intersects no line in as many as 4 points. There is a great deal of literature
regarding the connection between arcs and other classes of error-correcting
codes including low-density parity-check codes [14] and MDS codes [15].

In PG(2, q), a (non-degenerate) conic is a (q + 1)-arc and elementary
counting shows that this arc is complete when q is odd. In fact, a well-
known result of Segre says that every complete arc of PG(2, q), q odd, is a
conic. The (q + 2)-arcs (hyperovals) exist in PG(2, q) if q is even and they
are necessarily complete. Conics are a special case of the so called normal
rational curves. A rational curve Cn of order n in PG(d, q) is a set of points

{P (t) = (g0(t0, t1), . . . , gd(t0, t1)) | t0, t1 ∈ GF (q)}

where each gi is a binary form of degree n and the highest common factor
of g0, g1, . . . , gd is 1. The curve Cn may also be written

{P (t) = (f0(t), . . . , fd(t)) | t ∈ GF (q) ∪ {∞}} (3)

where fi(t) = gi(1, t).

Definition 2.1. A normal rational curve (NRC) in PG(d, q), 2 ≤ d ≤ q−2
is a rational curve (of order d) projectively equivalent to

{(1, t, . . . , td) | t ∈ GF (q) } ∪ {(0, . . . , 0, 1)}.

It is well-known that an NRC is, in fact, a (q+1)-arc. If C is an NRC in
PG(d, q) then the subgroup of PGL(d+1, q) leaving C fixed is (isomorphic
to) PGL(2, q) (see Ref. 16 Theorem 27.5.3). It follows that if ν(d, q) denotes
the number of distinct normal rational curves in PG(d, q) then

ν(d, q) =
|PGL(d+ 1, q)|
|PGL(2, q)|

=
(qd+1 − 1)(qd+1 − q) · · · (qd+1 − qd)

(q2 − 1)(q2 − q)
(4)

The following is a well known property of NRCs (see Ref. 17).

Theorem 2.2. For 2 ≤ d ≤ q − 2, a (d + 3)-arc in PG(d, q) is contained
in a unique normal rational curve.
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Definition 2.2. Let π = PG(d, q). A collection F of m-arcs (perhaps of
varying degrees) in π is said to be a t-family if every pair of distinct members
of F meet in at most t points. By Fd

q (m, r, t) we denote the maximal size
in PG(d, q) of a t-family of m-arcs each having degree at most r (≥ d). If
r = d (and consequently all arcs are of degree d) we write Fd

q (m, t).

Remark 2.1. F1
q (q + 1, t) = 1 for all t ≥ 1 and in light of Theorem 2.2,

Fd
q (q + 1, d+ i) ≥ ν(d, q) for all i ≥ 2.

3. A construction from arcs in d-flats

Our first construction relies on arcs lying in d-flats of a large projective
space over sufficiently large order q. Using families of arcs as defined in
Definition 2.2, we obtain the following.

Theorem 3.1. Fix k and d with k > d ≥ 1. For each prime power q ≥ d

there exists an (θ(k, q),m, d)-OOC with

|C| = Fd
q (m, d) · Nq(d, k).

Proof. Let Σ = PG(k, q), let ω be a primitive element of GF (qk+1) with
associated Singer cycle φ, and let N = Nq(d, k). Let 〈Π1〉, 〈Π2〉, . . . , 〈ΠN 〉
be the full orbits of d-flats in Σ. Within each Πi, let Fi be a d-family of
m-arcs with |Fi| = Fd

q (m, d), i = 1, 2, . . . , N . Let

F =
N⋃

i=1

Fi

and identify each member of F with the corresponding codeword of length
θ(k, q) and weight m.

For the auto-correlation, let K be a member of F , where say K is an
m-arc in Πk. For each i, K ∩ φi(K) ⊂ Πk ∩ φi(Πk). Here, we use φ(K)
to represent the image of K under the Singer cycle φ. Therefore, for all i
with 1 ≤ i ≤ θ(k, q)− 1, the number

∣∣K ∩ φi(K)
∣∣ is bounded above by the

maximal intersection of K with a (d−1)-flat contained in Πk which, by the
definition of arc, is d. It follows that λa ≤ d.

For the cross-correlation consider two distinct members of F , say K and
K′ where K and K′ are m-arcs in say Πs and Πt respectively (where perhaps
s = t). We wish to investigate the maximal cardinality:

max
1≤i,j≤ θ(k,q)

{
|φi(K) ∩ φj(K′)|

}
.
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We have that φi(K) ∩ φj(K′) ⊆ φi(Πs) ∩ φj(Πt). If s 6= t then φi(Πs)
and φj(Πt) are in different orbits of d-flats, implying that φi(Πs) ∩ φj(Πt)
is contained in a (d − 1)-flat. If s = t but i 6= j, then φi(Πs) 6= φj(Πs),
implying that φi(Πs)∩φj(Πs) is still contained in a (d− 1)-flat. Therefore,
by definition of an arc in PG(d, q), φi(K)∩φj(K′) must have cardinality at
most d. It follows that λc ≤ d.

The following appears in Ref. 2; for the sake of completeness we include
a proof.

Theorem 3.2. In π = PG(d, q), d ≥ 2, there exists a d-family F of (q+1)-
arcs where |F| = (qd+1 − q2)(qd+1 − q3) · · · (qd+1 − qd).

Proof. Consider π = PG(d, q) as a (Baer) subspace of Π = PG(d, q2). Let
Π∗ = Π \ π. Choose a point P = (α0, α1, . . . , αd) ∈ Π∗.

With reference to Equation (3), consider the collection of NRCs in Π
having polynomial coefficients in GF (q). Denote by XP the number of such
NRCs containing P . Note that any such NRC intersects π in an NRC of π.
To determine XP , we count ordered pairs (N , Q) where N is an NRC of Π
over GF (q) and Q is a point of N in Π∗. This gives us the following.

|PGL(d+ 1, q)|
|PGL(2, q)|

[(q2+1)−(q+1)] =
[(

(q2)d+1 − 1
q2 − 1

)
−
(

(q)d+1 − 1
q − 1

)]
XP .

After some simplification we arrive at

XP = (qd+1 − q2)(qd+1 − q3) · · · (qd+1 − qd).

Let C be an NRC in Π over GF (q) containing P . Then the point P q =
(αq

0, α
q
1, . . . , α

q
d) conjugate to P is also contained in C (and is also in Π∗). As

such, any two of the NRCs counted above have at most d common points in
π. Hence, by restricting to the intersection of these NRCs with π we have
a d-family of (q + 1)-arcs in π having size XP .

Corollary 3.1. If q is a prime power, then in PG(d, q), the maximum size
of a d-family of (q + 1)-arcs, denoted by Fd

q (q + 1, d) satisfies

Fd
q (q + 1, d) ≥ (qd+1 − q2)(qd+1 − q3) · · · (qd+1 − qd).
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Theorem 3.3. Fix k and d with k > d ≥ 2. For each prime power q ≥ d

there exists a (θ(k, q), q + 1, d)-OOC C with

|C| ≥ (qd+1− q2)(qd+1− q3) · · · (qd+1− qd) ·

⌊
1

θ(k, q)

[
k + 1
d+ 1

]
q

⌋
≈ qkd−d−1

Proof. Follows from Theorem 3.1, Corollary 3.1 and Lemma 2.1.

Now fix k > d ≥ 1 and consider the infinite family of (θ(k, q), q + 1, d)-
OOCs constructed as in Theorem 3.3. The Johnson Bound for these codes
is

J(θ(k, q), q + 1, d) =
⌊

1
q+1

⌊
θ(k,q)−1

q

⌊
θ(k,q)−2

q−1

⌊
· · ·
⌊

θ(k,q)−d
q+1−d

⌋⌋⌋
≈ qkd−d−1.

With reference to Definition 1.1 we see that the codes constructed as in
Theorem 3.3 satisfy the following limit:

lim
n→∞

M(n,w, λ)
J(n,w, λ)

= 1.

Hence, we obtain the following.

Theorem 3.4. Each infinite family of OOCs in Theorem 3.3 is asymptot-
ically optimal.

4. A construction from arcs of higher degree

We now show that for d > 1 it is possible to improve the codes constructed
above. Again, we rely on families of arcs lying in certain flats of a large pro-
jective space with sufficiently large order q. For this construction, however,
we vary the dimension of the flats where the arcs lie.

Theorem 4.1. Fix k and d with k > d ≥ 1. For each prime power q ≥ d

and for each m > d there exists a (θ(k, q),m, d)-OOC C with

|C| =
d∑

i=1

F i
q(m, d, d) · Nq(i, k).

Proof. Let Σ = PG(k, q). For fixed s, 1 ≤ s ≤ d, let Ns = Nq(s, k),
the number of full orbits of s-flats in PG(k, q). For each s, 1 ≤ s ≤ d let
Πs,1,Πs,2, . . . ,Πs,Ns

be s-flats chosen one from each of the full s-flat orbits
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under φ. In each Πs,t 1 ≤ s ≤ d, 1 ≤ t ≤ Ns let Fs,t be a d-family of m-arcs
each of degree at most d with |Fs,t| = Fs

q (m, d, d).
Let

F =
⋃
s,t

Fs,t.

Identify each member of F with the corresponding codeword of length
θ(k, q) and weight m. We claim that the code C comprised of all such code-
words is a (θ(k, q),m, d)-OOC. That C is of constant weight m is clear.

The auto-correlation, λa = d:
Let K be a member of F , say K ∈ Fs,t is an m-arc of degree r (≤ d) in the
s-flat Π, 1 ≤ s ≤ d, and 〈Π〉 is a full orbit under φ. It suffices to show

|φi(K) ∩ φj(K)| ≤ d, for all i 6= j, 1 ≤ i, j ≤ θ(k, q).

For any i, j, i 6= j, 1 ≤ i, j ≤ θ(k, q), since 〈Π〉 is a full orbit, φi(Π) 6= φj(Π)
which implies that

dim
(
φi(Π) ∩ φj(Π)

)
≤ s− 1.

Therefore, since φi(K)∩φj(K) ⊂ φi(K)∩
(
φi(Π) ∩ φj(Π)

)
and since φi(Π)∩

φj(Π) is at most an (s−1)-flat, we are computing the maximum size of the
intersection of an m-arc of degree r lying in an s-flat with an (s − 1)-flat.
It follows that

|φi(K) ∩ φj(K)| ≤ |φi(K) ∩
(
φi(Π) ∩ φj(Π)

)
| ≤ r

by the definition of an arc of degree r. Since r ≤ d we have λa ≤ d.

The cross-correlation, λc = d:
Let K 6= K′ ∈ F where K ∈ Fs,t is an m-arc of degree r ≤ d in the s-flat
Π, 〈Π〉 a full orbit and K′ ∈ Fs′,t′ is an m-arc of degree r′ ≤ d in the s′-flat
Π′, 〈Π′〉 a full orbit. It suffices to show

|φi(K) ∩ φj(K′)| ≤ d, for all i, j, 1 ≤ i, j ≤ θ(k, q).

For any i, j, 1 ≤ i, j ≤ θ(k, q), either s = s′ or, without loss of generality,
s′ < s. If s′ < s then dim(φi(Π)∩ φj(Π′)) ≤ s′ < s and therefore (as in the
first part of the proof)

|φi(K) ∩ φj(K′)| ≤ r ≤ d.



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

61

If s = s′ we consider two cases:
Case 1: Π = Π′. In this case Π,Π′ ∈ Fs,t. Therefore if i = j, then (by defini-
tion of a d-family) |φi(K)∩φj(K′)| ≤ d. If i 6= j then dim

(
φi(Π) ∩ φj(Π)

)
≤

s− 1 whence

|φi(K) ∩ φj(K′)| ≤ r ≤ d.

Case 2: Π 6= Π′. In this case 〈Π〉 6= 〈Π′〉, so φi(Π) 6= φj(Π′) and again
dim

(
φi(Π) ∩ φj(Π)

)
≤ s− 1 whence

|φi(K) ∩ φj(K′)| ≤ r ≤ d.

It follows that λc ≤ d.

If we use the 2-family of arcs (in this case, conics) in the plane as in
Theorem 3.2, and embed into the ambient space PG(k, q), we obtain the
following asymptotically optimal class of OOCs.

Corollary 4.1. For k > 2 and for each prime power q ≥ 2 there exists a
(θ(k, q), q + 1, 2)-OOC C with

|C| = (q3 − q2) · Nq(2, k) +Nq(1, k)

= (q3 − q2) ·

⌊
1

θ(k,q)

[
k + 1

3

]
q

⌋
+

⌊
1

θ(k,q)

[
k + 1

2

]
q

⌋
(5)

codewords.

Remark 4.1. For k = 3 above, we get the main result of Ref. 1.

Table 2 compares some of the classes of codes constructed as in Corollary
4.1 with the number of codes given by the Johnson Bound.

Table 2. Values of
M(n,w,λ)
J(n,w,λ)

, n = θ(k, q),

w = q + 1, λ = 2

q k = 3 k = 4 k = 5

7 0.6404255318 0.6330472103 0.6318161869

11 0.7546353523 0.7521739130 0.7519103045
121 0.9754142500 0.9754115290 0.9754115020

343 0.9912792665 0.9912791440 0.9912791434

1721 0.9982578413 0.9982575034 0.9982578401

Teaming the result of Theorem 4.1 with the construction in Theorem
3.2 for large families of arcs we can improve upon the codes constructed as
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in Theorem 3.3. That is, codes of the same parameters and of larger size
result. Indeed, fix d, let our ambient space be PG(k, q), k > d, and consider
the full Singer orbits of flats of dimension d or less. For our first class of
codewords, we take a d-family of arcs in a representative d-flat from each
full d-flat orbit. As in Corollary 3.1 we have

Fd
q (q + 1, d, d) ≥ (qd+1 − q2)(qd+1 − q3) · · · (qd+1 − qd).

For our second class of codewords, we look at the (d − 1)-flats. In the
construction outlined in Theorem 4.1 a d-family of arcs of degree d in a
representative (d− 1)-flat from each full orbit is used. For such families, a
general construction yielding a family of significant size appears difficult.
However, a (d−1)-family of arcs in PG(d−1, q) is easily constructed (as in
Theorem 3.2) and may be considered (perhaps rather trivially) as a d-family
of arcs of degree at most d. That is,

Fd−1
q (q+1, d, d) ≥ Fd−1

q (q+1, d−1, d−1) ≥ (qd−q2)(qd−q3) · · · (qd−qd−1).

For subsequent classes of codewords, we consider in turn the (d−i)-flats,
for each i ≥ 2. By Theorem 2.2 the collection of all NRCs in a (d − i)-flat
i ≥ 2 is a (d− i+2)-family of arcs (of degree (d− i)). Hence again we arrive
at an ostensibly loose lower bound:

Fd−i
q (q + 1, d, d) ≥ ν(d− i, q) for each i ≥ 2.

Putting all of these classes of codewords together establishes the following.

Corollary 4.2. For k > d ≥ 3 and for each prime power q ≥ d there exists
a (θ(k, q), q + 1, d)-OOC C consisting of

Nq(d, k) ·
dY

i=2

(qd+1 − qi) +Nq(d− 1, k) ·
d−1Y
i=2

(qd − qi) +

d−2X
i=1

�
ν(i, q) · Nq(i, k)

�

=

$
1

θ(k, q)

�
k + 1
d + 1

�
q

%
·

dY
i=2

(qd+1 − qi) +

$
1

θ(k, q)

�
k + 1

d

�
q

%
·
d−1Y
i=2

(qd − qi)

+
Pd−2

i=1

 
ν(i, q) ·

$�
k + 1
i + 1

�
q

%!

(6)

codewords.

Remark 4.2. Taking k = d + 1 in the above yields codes of the same
parameters as those constructed in Ref. 2. Moreover, the size of the codes
constructed in Ref. 2 correspond to the first and last terms in the expansion
(6). Consequently, for λ > 2 we obtain a strict improvement to the main
construction of (n,w, λ)-OOCs in Ref. 2.
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Tables 3 and 4 compare some of the classes of codes constructed as in
Corollary 4.2 with the number of codes given by the Johnson Bound.

Table 3. Values of
M(n,w,λ)
J(n,w,λ)

, n = θ(k, q),

w = q + 1, λ = 3

q k = 4 k = 5 k = 6

7 0.3723672313 0.3778141740 0.3788019688
11 0.5503002252 0.5542495934 0.5546309684

121 0.9512311850 0.9512954758 0.9512960102

343 0.9826092131 0.9826175386 0.9826175623
1721 0.9965177060 0.9965180418 0.9965180423

Table 4. Values of
M(n,w,λ)
J(n,w,λ)

, n = θ(k, q),

w = q + 1, λ = 5

q k = 6 k = 7 k = 8

7 0.0663583530 0.0677297426 0.0679268867

11 0.2100588301 0.2118051740 0.2119642548

121 0.8822149212 0.8822751817 0.8822756800

343 0.9570511656 0.9570593005 0.9570593242
1721 0.9913154765 0.9913158107 0.9913158117

5. Affine constructions

For our final construction, we will work in the finite affine space AG(k, q).
Our basic technique follows the work of Ref. 18 where the authors use d-flats
of AG(k, q) to construct some OOCs, some of which are optimal. One way
to model AG(d, k) is to simply start in the projective space PG(d, k) and
delete any hyperplane Σ. The remaining points form the points of AG(d, k)
and the flats of AG(d, q) are simply the flats of PG(d, k) with any points
of Σ deleted.

It is well-known that AG(d, q) does not admit a Singer group in the
same fashion as PG(d, q). However, we can still apply the same general
techniques as above. One way to model AG(k, q) is with a k-dimensional
vector space over GF (q). In this model, the vectors represent the affine
points. The finite field GF (qk) is one example of such a vector space. As the
non-zero field elements of GF (qk) form a cyclic group under multiplication,
we can obtain a similar group (to that of a Singer group of PG(d, q)) by
simply removing the point corresponding to the zero element of GF (qk).
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Briefly, let Σ = AG(k, q) and denote by 0 the zero vector in Σ. Take α to be
a primitive element of GF (qk). Just as in the projective case, each nonzero
vector in Σ corresponds in the natural way to αj for some j, 0 ≤ j ≤ qk−2.
Denote by φ̂ the (Singer-like) mapping of Σ defined by φ̂(αj) = αj+1 and
φ̂(0) = 0. Hence, for all of our constructions below, our code lengths will
be of the form qk−1 where the coordinates of the codewords correspond to
the non-zero elements of the finite field GF (qk) (see e.g. Ref. 19). Just as
in the previous sections, we will make use of certain families of arcs lying
in AG(k, q).

Definition 5.1. Let π = AG(d, q). A collection F of m-arcs (perhaps of
varying degrees) in π is said to be a t-family if every pair of distinct members
of F meet in at most t points. By Ed

q (m, r, t) we denote maximal size in
AG(d, q) of a t-family of m-arcs each having degree at most r (≥ d). If r = d

(and consequently all arcs are of degree d) we write Ed
q (m, t).

Consider the space AG(k, q) with the origin removed, and consider the d-
flats that do not contain the origin as a point. We wish to count the number
of full orbits of these d-flats under the action of the group described above
on the points of AG(d, q) minus the origin. We letMq(d, k) be the number
of such full d-flat orbits in AG(k, q). It follows from Theorem 8 of Ref. 19
that

Mq(d, k) =
qk−d − 1
qd − 1

·
[
k

d

]
q

=
(qk−1 − 1)(qk−2 − 1) · · · (qk−d − 1)

(qd − 1)(qd−1 − 1) · · · (q − 1)
.

Theorem 5.1. For each prime power q ≥ 2 there exists a (qk−1, q+1, 2)-
OOC C with

|C| = (q3 − q2)Mq(2, k).

Proof. Our technique is exactly as in Theorem 3.1. We consider a family
of (q + 1)-arcs lying in a plane π of AG(k, q) not containing the origin. We
only need to show that the 2-family of (q+ 1)-arcs of PG(2, q) constructed
in Theorem 3.2 can still be constructed in AG(2, q).

Let Π = PG(2, q2) and let π ∼= PG(2, q) be the natural Baer subplane
of Π consisting of the set of points whose homogeneous coordinates lie in
the subfield GF (q) of the field GF (q2). Let P be any point of Π \ π. As
in Theorem 3.2, there are q3 − q2 arcs of Π, the family F , that meet the
Baer subplane π in a sub-arc of size q + 1. We refer to these sub-arcs as
GF (q)-arcs. Now, consider the line PP q, that is, the line joining P with is
conjugate point P q. It’s a simple consequence of the classical theory that
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this line meets the subplane π in a Baer subline. Since the points P and P q

both lie on each of the arcs of F , it follows that no other points of the line
PP q lie on any of the GF (q)-arcs. Hence, if we remove the Baer subline of
PP q lying in π from the Baer subplane π, we are left with an isomorphic
copy of AG(2, q) containing a set of q3 − q2 arcs, pairwise meeting in at
most two points.

We now embed the affine plane AG(2, q) in AG(k, q) and associate with
each arc of the family a codeword. The results on auto and cross correlation
now follow as in Theorem 3.1.

We can increase the number of codewords in the code above by adding
the lines of AG(2, q) as additional codewords. In AG(2, q), however, lines
contain q points. Hence, in order to keep our codewords of constant weight,
we start by removing one point (randomly) from each arc of the family F .
Using these q-arcs together with the lines of AG(2, q) gives us the following.

Corollary 5.1. For k > 2 and for each prime power q ≥ 2 there exists a
(qk − 1, q, 2)-OOC C with

|C| = (q3 − q2)Mq(2, k) +Mq(1, k).

Just as with the projective case, the construction above generalizes nat-
urally. The proof of the following is entire similar to that of Theorem 4.1.

Theorem 5.2. Fix k and d with k > d ≥ 1. For each prime power q ≥ d

and for each m > d there exists a (qk − 1,m, d)-OOC C with

|C| =
d∑

i=1

E i
q(m, d, d) · Mq(i, k).

We now establish some lower bounds on E i
q(m, d, d), i ≤ d.

Lemma 5.1. In AG(d, q), d ≥ 2, there exists a d-family F0 of (q− d+ 3)-
arcs with |F0| = (qd+1 − q2)(qd+1 − q3) · · · (qd+1 − qd).

Proof. As in Theorem 5.1, consider π = PG(d, q) as a (Baer) subspace
of Π = PG(d, q2) and choose a point P of Π outside of π. As discussed
in Theorem 3.2, there are (qd+1 − q2)(qd+1 − q3) · · · (qd+1 − qd) NRCs (the
family F) passing through P and meeting π in a sub-arc, and this collec-
tion of (q + 1)-arcs forms a d-family of GF (q)-arcs in π. The line PP q of
Π meets π in a Baer subline l0. Now consider any (d − 1)-flat, say π0, of
π that contains the line l0. The hyperplane π0 extends to a hyperplane of
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the entire space Π that contains the points P and P q. By the definition of
arc, any of the arcs in our family F meet this (d− 1)-flat of Π in at most d
points, two of which are P and P q. Hence, if we delete the hyperplane π0

from π, we delete at most d− 2 points from any arc of the family F . This
gives us a family of arcs we call F0. For any arc of F not meeting π0 in
d− 2 points, we (randomly) remove points so that each arc of F0 has size
(q+1)− (d−2) = q−d+3. Hence, every member of F0 is a (q−d+3)-arc.

From Lemma 5.1 we have

Ed
q (q − d+ 3, d, d) ≥ (qd+1 − q2)(qd+1 − q3) · · · (qd+1 − qd).

Moreover, an analysis similar to that preceding Corollary 4.2 yields

Ed−1
q (q − d+ 3, d, d) ≥ Ed−1

q (q − d+ 3, d− 1, d− 1)
≥ (qd − q2)(qd − q3) · · · (qd − qd−1),

and

Ed−i
q (q − d+ 3, d, d) ≥ ν(d− i, q) for each i ≥ 2

which, with Theorem 5.2, establishes the following.

Corollary 5.2. For k > d ≥ 3 and for each prime power q ≥ d there exists
a (qk − 1, q − d+ 3, d)-OOC C consisting of

Mq(d, k) ·
d∏

i=2

(qd+1−qi)+Mq(d−1, k) ·
d−1∏
i=2

(qd−qi)+
d−2∑
i=1

(
ν(i, q) ·Mq(i, k)

)
codewords.

As discussed before Corollary 4.2, we can potentially increase the num-
ber of codewords by using arcs of higher degree. In particular, if there exists
a t-family F of m-arcs of degree r in PG(d, q), then there would exist a
t-family F0 of (m− r)-arcs of degree r in AG(d, q). Such a family F0 could
potentially be larger than the family described in Lemma 5.1 which would
lead to larger codes. In addition, notice in the constructions above that we
were forced to remove some points from our arcs for the sole purpose of
maintaining a constant codeword weight. Avoiding this might improve the
parameters of our codes.

Tables 5, 6, and 7 compare some of the classes of codes constructed as
in Corollary 5.2 with the number of codes given by the Johnson Bound.
Of particular note are the codes for λ = 2 (Table 5) whose ratio with the
Johnson bound is extremely close to 1.
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Table 5. Values of
M(n,w,λ)
J(n,w,λ)

, n = qk − 1,

w = q + 1, λ = 2

q k = 3 k = 4 k = 5

7 0.8621700881 0.9804586940 0.9972032137

11 0.9104589917 0.9918766332 0.9992610944

121 0.9917366568 0.9999317079 0.9999994356
343 0.9970845975 0.9999915002 0.9999999753

1721 0.9994189427 0.9999996625 0.9999999997

Table 6. Values of
M(n,w,λ)
J(n,w,λ)

, n = qk−1, w = q,

λ = 3

q k = 4 k = 5 k = 6

7 0.2960072911 0.3428831335 0.3497386757

11 0.4885791465 0.5365032592 0.5409140118
121 0.9432368020 0.9510961860 0.9511611465

343 0.9797276160 0.9825922863 0.9826006382

1721 0.9959379975 0.9965170310 0.9965173675

Table 7. Values of
M(n,w,λ)
J(n,w,λ)

, n = qk − 1,

w = q − 2, λ = 5

q k = 6 k = 7 k = 8

8 0.0023607860 0.0026977534 0.0027405412

11 0.0307547138 0.0338295282 0.0341113883

121 0.7894584074 0.7960372276 0.7960916016
343 0.9210483659 0.9237414898 0.9237493411

1721 0.9838383895 0.9844103884 0.9844107212

Note: Our code construction for the tables above involves d-families of
(q − d + 3)-arcs. To avoid trivial arcs we considered only values of q for
which q − d+ 3 > d.

6. Conclusion

We have exhibited a very general construction of optical orthogonal codes
that gives rise to a robust class of asymptotically optimal codes. Our codes
generalize and improve the prior constructions involving conics [1] and
arcs [2] by expanding the families of intersecting arcs and by working in
higher dimensional projective spaces. One next step might be to consider
subgeometries PG(k, q) embedded in PG(k, qn) and use large families of
arcs in these subgeometries to find other classes of OOCs whose size ap-
proaches that given by the Johnson Bound.

In the last section of Ref. 18 the authors discuss the possibility of OOCs
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with different weight classes. In the constructions of Section 5, points were
arbitrarily removed from certain arcs for the sole purpose of maintaining
a constant codeword weight. Hence, the methods of Section 5 provide a
construction for large non-constant weight codes with strong auto and cross
correlations properties. The investigation into bounds on the size of such
OOCs with different weight classes seems an interesting problem as well.
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Let ` > 0 be a square free integer and OK the ring of integers of the imaginary
quadratic field K = Q(

√
−`). Codes C over K determine lattices Λ`(C) over

rings OK/pOK . The theta functions θΛ`
(C) of such lattices are known to

determine the symmetrized weight enumerator swe(C) for small primes p =
2, 3; see [1, 10].

In this paper we explore such constructions for any p. If p - ` then the ring

R := OK/pOK is isomorphic to Fp2 or Fp × Fp. Given a code C over R we
define new theta functions on the corresponding lattices. We prove that the

theta series θΛ`
(C) can be written in terms of the complete weight enumerator

of C and that θΛ`
(C) is the same for almost all `. Furthermore, for large enough

`, there is a unique complete weight enumerator polynomial which corresponds

to θΛ`
(C).

Keywords: codes, lattices, theta functions

1. Introduction

Let ` > 0 be a square free integer, K = Q(
√
−`) be the imaginary quadratic

field, and OK its ring of integers. Codes, Hermitian lattices, and their theta-
functions over rings R := OK/pOK , for small primes p, have been studied
by many authors, see [1, 7, 8] among others. In [1], an explicit description

∗Partially supported by a NATO grant
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of theta functions and MacWilliams identities are given for p = 2, 3. For a
general reference of the topic, see [6].

In this paper we aim to explore such constructions, under certain restric-
tions, for any p. Further, we study the weight enumerators of such codes in
terms of the theta functions of the corresponding lattices. We aim to find
MacWilliams-like identities in such cases and explore to what extent the
theta functions of these lattices determine the codes. The last question was
studied in [2] and [10] for p = 2.

This paper is organized as follows. In section 2 we give a brief overview
of the basic definitions for codes and lattices and define theta functions
over Fp. In section 3 we define theta-functions on the lattice defined over
R := OK/pOK . For general odd p, among the p2 lattices, there are (p+1)2

4

associated theta series.
In section 4, we address a special case of a general problem of the con-

struction of lattices: the injectivity of Construction A. For codes defined
over an alphabet of size four (regarded as a quotient of the ring of integers
of an imaginary quadratic field), the problem is solved completely in [10].
The analogous questions are asked for codes defined over Fp2 or Fp × Fp.
The main obstacle seems to express the theta function in terms of the sym-
metric weight enumerator of the code. However, the theta function θΛ`

(C)
can be expressed in terms of the complete weight enumerator of the code
(cf. section 4). Using such an expression we prove the following two facts:

Theorem: Let p be a fixed prime and ` any square free integer such that
K = Q(

√
−`) and R := OK/pOK is isomorphic to Fp2 or Fp × Fp. For a

given code C defined over R, the theta series θΛ`
(C) is the same for almost

all `.

Theorem: Let C be a code defined over R and θΛ`
(C) be its correspond-

ing theta function for level `. Then, for large enough `, there is a unique
complete weight enumerator polynomial which corresponds to θΛ`

(C).

In contrary to results in [10] we did not attempt to find explicit bounds
for `. However, for a given small p it is possible such bounds can be deter-
mined using similar techniques as in [10]. This is intended to be completed
in further work; see [11].
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2. Preliminaries

Let ` > 0 be a square free integer and K = Q(
√
−`) be the imaginary

quadratic field with discriminant dK . Recall that

dK =

{
−` if ` ≡ 3 mod 4,

−4` otherwise.

Let OK be the ring of integers of K. A lattice Λ over K is an OK-submodule
of Kn of full rank. The Hermitian dual is defined by

Λ∗ = {x ∈ Kn | x · ȳ ∈ OK , for all y ∈ Λ}, (1)

where x · y :=
∑n

i=1 xiyi and ȳ denotes component-wise complex conju-
gation. In the case that Λ is a free OK - module, for every OK basis
{v1, v2, ...., vn} we can associate a Gram matrix G(Λ) given by G(Λ) =
(vi · vj)n

i,j=1 and the determinant detΛ := det(G) defined up to squares
of units in OK . If Λ = Λ∗ then Λ is Hermitian self-dual (or unimodular)
and integral if and only if Λ ⊂ Λ∗. An integral lattice has the property
Λ ⊂ Λ∗ ⊂ 1

detΛΛ. An integral lattice is called even if x ·x ≡ 0 mod 2 for all
x ∈ Λ, and otherwise it is odd. An odd unimodular lattice is called a Type
1 lattice and even unimodular lattice is called a Type 2 lattice.

The theta series of a lattice Λ in Kn is given by

θΛ(τ) =
∑
z∈Λ

eπiτz·z̄,

where τ ∈ H = {z ∈ C : Im(z) > 0}.Usually we let q = eπiτ . Then, θΛ(q) =∑
z∈Λ q

z·z̄. The one dimensional theta series (or Jacobi’s theta series) and
its shadow are given by

θ3(q) =
∑
n∈Z

qn2
, θ2(q) =

∑
n∈ 1

2+Z

qn2
.

Let ` ≡ 3 mod 4 and d be a positive number such that ` = 4d − 1. Then,
−` ≡ 1 mod 4. This implies that the ring of integers is OK = Z[ω`], where
ω` = −1+

√
−`

2 and ω2
` + ω` + d = 0. The principal norm form of K is given

by

Qd(x, y) = |x− yω`|2 = x2 + xy + dy2. (2)

The structure of OK/pOK depends on the value of ` modulo p. For (a
p )

the Legendre symbol,

OK/pOK =


Fp × Fp if (−`

p ) = 1,

Fp2 if (−`
p ) = −1,

Fp + uFp with u2 = 0 if p | `.
(3)
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We will concern ourselves with the cases where p - `.

2.1. Theta functions over Fp

Let q = eπiτ . For integers a and b and a prime p, let Λa,b denote the lattice
a− bω` + pOK . The theta series associated to this lattice is

θΛa,b
(q) =

∑
m,n∈Z

q|a+mp−(b+np)ω`|2

=
∑

m,n∈Z
qQd(mp+a,np+b)

=
∑

m,n∈Z
qp2Qd(m+a/p,n+b/p).

(4)

For a prime p and an integer j, consider the theta series

θp,j(q) :=
∑

n∈ j
2p +Z

qn2
. (5)

Note that θp,j(q) = θp,k(q) if and only if j ≡ ±k mod 2p.
The theta series of Λa,b can be written in terms of these series. In par-

ticular,

θΛa,b
(q) = θp,b(qp2`)θp,2a+b(qp2

) + θp,b+p(qp2`)θp,2a+b+p(qp2
). (6)

The proof of this fact is similar to the proof of Lemma 2.1 in [5].

Lemma 2.1. For any integers a, b,m, n, if the ordered pair (m,n) is
component-wise congruent modulo p to one of

(a, b), (−a,−b), (a+ b,−b), (−a− b, b),

then

θΛm,n
(q) = θΛa,b

(q)

Proof. We prove this by supposing either

θp,n(q) = θp,b(q) and θp,2m+n(q) = θp,2a+b(q) (7)

or

θp,n(q) = θp,b+p(q) and θp,2m+n(q) = θp,2a+b+p(q). (8)

From Eq. 7, we have four subcases corresponding to n ≡ ±b mod 2p
and 2m+ n ≡ ±(2a+ b) mod 2p. If n ≡ b mod 2p, one finds that m ≡ a
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mod p or m ≡ −a− b mod p. If n ≡ −b mod 2p, one finds that m ≡ a+ b

mod p or m ≡ −a mod p.
From Eq. 8, we have four subcases as well, corresponding to n ≡ ±(b+p)

mod 2p and 2m + n ≡ ±(2a + b + p) mod 2p. If n ≡ b + p mod 2p, then
either m ≡ a mod p or m ≡ −a − b mod p. And if n ≡ −b − p mod 2p,
then either m ≡ a+ b mod p or m ≡ −a mod p.

Therefore, if n ≡ b mod p, then m ≡ a mod p or m ≡ −a− b mod p.
If n ≡ −b mod p, then m ≡ a+ b mod p or m ≡ −a mod p.

Remark 2.1. Notice that in the case of p = 2, there are 4 lattices Λa,b

corresponding to choices of a and b modulo 2. One finds that θΛ0,1(q) =
θΛ1,1(q) (which is given as Eq. (3.9) in Lemma 3.1 of [2]), so there are 3
associated theta series.

Remark 2.2. In the case of p = 3, among the 9 lattices, one finds that

θΛ0,1(q) = θΛ2,1(q) = θΛ1,2(q) = θΛ0,2(q),

θΛ1,1(q) = θΛ2,2(q), and

θΛ1,0(q) = θΛ2,0(q),

giving a total of 4 associated theta series.
For general odd p, among the p2 lattices, there are (p+1)2

4 associated
theta series.

3. Theta functions of codes over R

Let p - ` and

R := OK/pOK =
{
a+ bω : a, b ∈ Fp, ω

2 + ω + d = 0
}
.

A linear code C of length n over R is an R-submodule of Rn. The dual
is defined as C⊥ = {u ∈ Rn : u · v̄ = 0 for all v ∈ C}. If C = C⊥ then C is
self-dual. We define

Λ`(C) := {x ∈ On
K : ρ`(x) ∈ C},

where ρ` : OK → OK/pOK → R . In other words, Λ`(C) consists of all
vectors in On

K which when taken mod pOK componentwise are in ρ−1
` (C).

This method of lattice construction is known as Construction A.
For 0 ≤ a, b ≤ p − 1, let ra+pb = a − bω, so R =

{
r0, . . . , rp2−1

}
. For

a codeword u = (u1, . . . , un) ∈ Rn and ri ∈ R, we define the counting
function

ni(u) := #{i : ui = ri}.
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The complete weight enumerator of the R code C is the polynomial

cweC(z0, z1, . . . , zp2−1) =
∑
u∈C

z
n0(u)
0 z

n1(u)
1 . . . z

np2−1(u)

p2−1 . (9)

We can use this polynomial to find the theta function of the lattice Λ`(C).

Lemma 3.1. Let C be a code defined over R and cweC its complete weight
enumerator as above. Then,

θΛ`(C)(q) = cweC(θΛ0,0(q), θΛ1,0(q), . . . , θΛp−1,p−1(q))

Proof. Since

θΛ`(C)(q) =
∑

z∈Λ`(C)

qz·z̄,

one has

θΛ`(C)(q) =
∑
u∈C

θΛ`(u)(q),

=
∑
u∈C

∑
x∈u+pOn

K

qx·x̄,

=
∑
u∈C

n∏
j=1

∑
x∈uj+pOK

qx·x̄ (for u = (u1, . . . , un)),

=
∑
u∈C

n∏
j=1

θuj+pOK
(q),

=
∑
u∈C

p2−1∏
i=0

(θr̃i+pOK
(q))ni(u) (where r̃a+pb = a− bω` ∈ OK),

= cweC(θr̃0+pOK
(q), θr̃1+pOK

(q), . . . , θr̃p2−1+pOK
(q)),

= cweC(θΛ0,0(q), θΛ1,0(q), . . . , θΛp−1,p−1(q)),

which completes the proof.

3.1. A MacWilliams identity

Let C⊥ be the dual code to C. From Theorem 4.1 of [1] one has the following
MacWilliams identity:

Theorem 3.1. Let χ : (R,+) → (C∗,×) be a character of the additive
group of R whose restriction to any nonzero left ideal of R is nontrivial.
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Then

cweC⊥(z0, . . . , zp2−1) =
1
p2
cweC(M(z0, . . . , zp2−1)),

where M is the matrix defined by

M = (χ(rirj))0≤i≤p−1,0≤j≤p−1.

To apply this theorem, we need an appropriate character. Define χ by
χ(a + bω) = e2πib/p. Any non-zero ideal I ⊂ R contains an element of
R − {0, 1, . . . , p− 1}, so there is some a + bω ∈ I with b 6= 0, meaning χ
acts non-trivially on I. A calculation shows that

(a+ bω)(s+ tω) = (as− at+ btd) + (bt− as)ω,

so χ((a+bω)(s+ tω)) = e(bs−at)2πi/p. This is independent of d, so we obtain
the same MacWilliams identity for codes over Fp2 and Fp × Fp.

In the case of p = 2, for example, such identities can be made explicit;
see [2] and [1] among others.

3.2. A generalization of the symmetric weight enumerator

polynomial

In [2], for p = 2, the symmetric weight enumerator polynomial sweC of a
code C over a ring or field of cardinality 4 is defined to be

sweC(X,Y, Z) = cweC(X,Y, Z, Z).

For ΛC(q) the lattice obtained from C by Construction A, by Theorem 5.2
of [2], one can then write

θΛ`(C)(q) = sweC(θΛ0,0(q), θΛ1,0(q), θΛ0,1(q)).

These theta functions are referred to as Ad(q), Cd(q), and Gd(q) in [2] and
[10].

For p > 2, however, there are (p+1)2

4 (which is larger than 3) theta
functions associated to the various lattices, so our analog of the symmetric
weight enumerator polynomial has more than 3 variables.

Example 3.1. For p = 3, from Remark 2.2, we have four theta functions
corresponding to the lattices Λa,b, namely

θΛ0,0(q), θΛ1,0(q), θΛ1,1(q), θΛ0,1(q).

If we define the “symmetric weight enumerator for p = 3” to be

sweC(X,Y, Z,W ) = cweC(X,Y, Y, Z,W,Z, Z, Z,W ),
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then one finds that

θΛ`C(q) = cweC(θΛ0,0(q), θΛ1,0(q), . . . , θΛ2,2(q)), (10)

= sweC(θΛ0,0(q), θΛ1,0(q), θΛ1,1(q), θΛ0,1(q)). (11)

Finding such an explicit relation between the theta function and the
symmetric weight enumerator polynomial for larger p seems difficult. We
suggest the following problem:

Problem 1. Define an symmetric weight enumerator, analogous to the
p = 2 case, for codes defined over R for p > 3. Write a MacWilliams
identity for the symmetric weight enumerator and determine an explicit
relation between the symmetric weight enumerator and theta functions.

4. The injectivity of construction A

For a fixed prime p, let R = OK/pOK and C be a linear code over R of
length n and dimension k. An admissible level ` is an integer ` such that
R is isomorphic to Fp2 or Fp × Fp. For an admissible `, let Λ`(C) be the
corresponding lattice as in the previous section. Then, the level ` theta
function θΛ`(C)(τ) of the lattice Λ`(C) is determined by the complete
weight enumerator cweC of C, evaluated on the theta functions defined on
cosets of OK/pOK . We consider the following questions:

i) How do the theta functions θΛ`(C)(τ) of the same code C differ for
different levels `?

ii) Can non-equivalent codes give the same theta functions for all levels
`?

Next we see how this can be made explicit for the case p = 2.

4.1. The case p = 2

For p = 2 case these questions are fully answered in [10]. We have the
following:

Theorem 4.1 (Thm. 1, [10]). Let p = 2 and C be a code defined over
R. For all admissible `, `′ such that ` > `′, the following holds

θΛ`
(C) = θΛ`′ (C) +O(q

`′+1
4 ).
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Let C be a code of length n defined over R and θΛ`
(C) be its corre-

sponding theta function for level `. Let f(x, y, z) ∈ F [x, y, z] where F is
a field of transcendental degree δ. We say that f(x, y, z) is in a family of
polynomials of dimension δ.

Theorem 4.2 (Thm. 2, [10]). Let p = 2 and C be a code of length n

defined over R and θΛ`
(C) be its corresponding theta function for level `.

Then the following hold:

i) For ` < 2(n+1)(n+2)
n − 1 there is a δ-dimensional family of symmetrized

weight enumerator polynomials corresponding to θΛ`
(C), where

δ ≥ (n+1)(n+2)
2 − n(`+1)

4 − 1.
ii) For ` ≥ 2(n+1)(n+2)

n − 1 and n < `+1
4 there is a unique symmetrized

weight enumerator polynomial which corresponds to θΛ`
(C).

Example 4.1. There are two non isomorphic codes

C3,2 = ω < [0, 1, 1] > +(ω + 1) < [0, 1, 1] >⊥

C3,3 = ω < [0, 0, 1] > +(ω + 1) < [0, 0, 1] >⊥ .

with symmetrized weight enumerator polynomials

sweC3,2(X,Y, Z) = X3 +X2Z +XY 2 + 2XZ2 + Y 2Z + 2Z3

sweC3,3(X,Y, Z) = X3 + 3X2Z + 3XZ2 + Z3

Both these codes give the following theta function for level ` = 7:

θ = 1 + 6q2 + 24q4 + 56q6 + 114q8 + 168q10 + 280q12 + 294q14 + · · ·

However, when ` = 15, we are in the second case of the above theorem.
Two non equivalent codes cannot give the same theta function for ` = 15
and n = 3. Explicit details are given in [10].

The above results were obtained by using the explicit expression of
theta in terms of the symmetric weight enumerator valuated on the theta
functions of the cosets. Hence, a solution to Problem 1 most likely would
lead to obtaining such results for all p > 2 and admissible `. In this paper
we use the complete weight enumerator polynomial to get similar results.

4.2. The case p > 2

Let C be a code defined over R for a fixed p > 2. Let the complete weight
enumerator of C be the degree n polynomial

cweC = f(x0, . . . , xr)
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for r = p2 − 1. Then from Lemma 3.1 we have that

θΛ`(C)(τ) = f(θΛ0,0(τ), . . . , θΛp−1,p−1(τ))

for a given `. First we want to address how θΛ`(C)(τ) and θΛ`′ (C)(τ) differ
for different ` and `′. We have the following:

Theorem 4.3. Let C be a code defined over R. For all admissible `, `′ the
following holds

θΛ`
(C)− θΛ`′ (C) =

s∑
i=0

aiq
s

for some ai ∈ Z and s ∈ Z+.

Corollary 4.1. Let p be a fixed prime and ` any square free integer such
that K = Q(

√
−`) and R := OK/pOK is isomorphic to Fp2 or Fp × Fp.

For a given code C defined over R, the theta series θΛ`
(C) is the same for

almost all `.

Theorem 4.4. Let C be a code defined over R and θΛ`
(C) be its cor-

responding theta function for level `. Then, for large enough `, there is
a unique complete weight enumerator polynomial which corresponds to
θΛ`

(C).

The proofs of Theorems 4.3 and 4.4 are provided in [11] where explicit
bounds for ` are provided for small p.
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Introduction

Goppa codes (more properly, geometric Goppa codes, for the earliest codes
introduced by Goppa were still associated with rational functions on the
line) provide a fertile area of interaction between coding theory and al-
gebraic geometry, specifically algebraic curves over finite fields. Goppa’s
original idea is based on the explicit representation of the space of sections
of a line bundle over the curve, and deep issues regarding ‘curves with many
points’ and asymptotic bounds on the genus and ramification of towers of
curves have been brought up in view of this application, cf. [9] for a brief
survey. More recently, rank-2 vector bundles over the curve have been in-
terpreted as error-correcting devices [4–6, 12] but not so explicitly. Their
line subbundles of highest possible degree are of particular interest for de-
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coding, and our goal in this small note is to initiate a study of these objects
in the finite field setting.

Higher-rank vector bundles (meaning higher than 1, for line bundles are
quite different and better-known objects) come with a concept of “max-
imal subbundle” for which we refer to the paper [15] although it made
earlier appearances (Corrado Segre 1889), since degrees of subbundles can
be be related to the self-intersection numbers of sections of the bundle pro-
jectivized fiberwise into a ruled surface. We restrict attention to rank-2
bundles, and for these, a maximal subbundle is a line subbundle of largest
possible degree. There has been enormous activity on the topic of maxi-
mal subbundles in algebraic geometry, which we do not reference here, and
this prompts our proposed line of research. On one hand, the results of
[15] are given over an algebraically closed field of characteristic zero. Even
from the pure viewpoint of algebraic geometry, it would be worth extending
the study to any characteristic, and in addition, restricting the analysis to
finite fields. In the same vein as counting (rational) points on curves and
points of Brill-Noether loci, we propose to count the number of maximal
subbundles. Here we give but one example. We decided to use the Klein
curve X as a test case, in part because it is so full of beautiful unique
properties among curves of genus 3 (small enough yet highly non-trivial),
and partly because its large number of automorphisms has already made
it popular in coding theory. Over the finite field F8 the Klein quartic has
24 points, hence it attains Serre’s improvement of the Hasse-Weil bound,
|#X(Fq)− (q + 1)| ≤ g[2√q].

As regards the link with error-correcting, a weakness might be that the
bundles which correspond to correctable messages are unstable, hence their
maximal subbundles have very large degree, too large, roughly speaking, to
be interesting in algebraic geometry (except perhaps for the suggestions of
[12], to the effect of blowing up unstable strata). Our present result concerns
bundles whose maximal subbundles have degree zero, yet we regard it as
work towards a potential link with coding theory, for example pursuing the
suggestion in [12], that is to look at stable points whose lack of correctability
(exceeding the distance from a unique codeword) is not too large, so that
error-correction is possible in practice (“For practical purposes this would
be almost as good as unique decoding (...) one is then interested in maximal
sublinebundles”). Other potential uses of stable bundles are discussed in
Section 1.

We adopt three approaches which we believe to be new. The first uses
the ideas of [15] to construct all rank-2 bundles with largest-dimensional
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varieties of subbundles; part of this approach is the study of quotients of
the curve by an automorphism, which was done relatively recently [21]. The
second approach pertains to one of the constructions of [15], and it consists
in determining the rank-2 bundle that presents the curve as a triple cover;
this approach has the advantage of bringing in another higher-rank bundle,
very natural to the situation and proposed by Miranda in [17], the Tschirn-
hausen module. In the third approach, we formulate Goppa codes in terms
of adeles and pseudo-differentials. Adeles provide another way of looking
at the rank-2 bundles that appear in connection to codes on curves, a fact
used in [6] to investigate an aspect of code construction. For practical im-
plementation of a (de-)coding algorithm, which is one goal of our program,
the first step will necessitate an explicit criterion for (maximal) subbundles
in terms of adeles. Then, turning to varieties of maximal subbundles, the
Tschirnhausen module will provide the multiplicative structure of the cov-
ering curve, thus we believe that determining this bundle is the next step
in the direction of the ultimate goal.

1. Goppa Codes and rank-2 Vector Bundles

In this section we review the role of vector bundles in error-correction for
Goppa codes.

Let X be a smooth projective curve of genus g defined over a finite
field k, with a set of k-rational points denoted Q,P1, P2, . . . , Pn. Define the
divisor D = P1 + · · ·+Pn and choose an integer m so that n > m > 2g− 2.

The one-point Goppa code

CL(D,mQ) = {(f(P1), . . . , f(Pn)) : f ∈ L(mQ)}

has dimension l(mQ) = m − g + 1 by the Riemann-Roch theorem. Its
minimum distance is at least n − m, since any non-zero f ∈ L(mQ) can
vanish at no more than m of the points Pi.

The space of message functions can be taken more generally as L(G) for
an arbitrary divisor G of degree m supported by k-rational points outside
the support of D. However, one-point codes (i.e., G a multiple of a single
point) are used in practice to maximize the length n of the code and to
simplify the construction of a basis for L(G).

The dual code to CL(D,mQ) is also a Goppa code, often described in
a more convenient form by defining

CΩ(D,mQ) = {(ResP1(ω), . . . , ResPn
(ω)) : ω ∈ ΩX(mQ−D)} .
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The fact that CL(D,mQ) and CΩ(D,mQ) are dual codes is a conse-
quence of the residue theorem, which states the sum of residues of a differ-
ential over all points is zero.

Requiring m > 2g − 2 makes computing the dimension of L(mQ) and
hence of the code CL(D,mQ) a simple application of the Riemann-Roch
theorem. We actually want m > 2g so that the rational map ϕ : X → Pm−g

determined by the complete linear system |mQ| is guaranteed to be an
embedding.

Since the rows of a generator matrix for CL(D,mQ) are obtained by
evaluating the functions of a basis for L(mQ) at P1, . . . , Pn, we can view
the columns as points ϕ(Pi) on the curve in Pm−g. These columns are parity
checks for the dual code CΩ(D,mQ), so a corrupted codeword of the dual
is in effect a linear combination of some of the points ϕ(Pi), namely those
points at which errors occurred. More explicitly, if H denotes the parity
check matrix and y = (c+e) a received word, with codeword c ∈ CΩ(D,mQ)
and error vector e, then Hy = H(c + e) = He, and the received word
y = e1 · ϕ(P1) + · · · + en · ϕ(Pn) can be viewed as a point in the j-secant
variety of the curve in Pm−g, where j = |{i : ei 6= 0}|.

We call A =
∑

ei 6=0 Pi the error divisor. The received word y = c+ e is
said to be correctable if degA < (d− 1)/2, where d = m− 2g+ 2 is a lower
bound on the mimimum distance, since in this case the received word is
closer to the transmitted codeword c than to any other codeword.

We also consider an error vector (e) as a point in H0(X,ΩC(mQ−D))∗,
and then identify it with the isomorphism class of a rank-2 extension E of
the form

0→ OX → E → OX(D −mQ)→ 0

in a standard way through

H0(X,Ω(mQ−D))∗ ∼= H1(X,OX(mQ−D))
∼= ExtOX

(OX ,OX(mQ−D))
∼= ExtOX

(OX(D −mQ),OX).

Lange and Narasimhan [15] showed that s(E)(:=degE − 2max(degL),
where L is a subbundle of E) is determined by the smallest integer j such
that (e) is contained in the j-secant variety of the curve. Applying their
results to our situation and with our notation, we get that A is the error
divisor for a correctable word if and only if OX(D−mQ−A) is the unique
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maximal subbundle of E. This abstract connection between decoding and
maximal subbundles of rank-2 extensions was first noticed by Johnsen [12].

A decoding algorithm based on this idea would determine the rank-2
bundle E corresponding to the syndrome He = Hy of the received word
y = c + e, in concrete form for instance as a transition matrix, and then
compute its unique maximal subbundle OX(D−mQ−A). One might then
expect to extract the error divisor A and so obtain the error positions
(and then the actual error values via simple linear algebra), but with a
caveat: we cannot distinguish OX(D −mQ − A) from OX(D −mQ − A′)
when A ∼ A′, so the most that can be guaranteed about the error divisor
computed by such an algorithm without additional assumptions (such as
the number of errors being less than the gonality of the curve) is that it is
linearly equivalent to the true error divisor.

We note that for correctable words, the associated bundle E is neces-
sarily unstable [12]. Still, computing maximal subbundles of stable E’s in
our extension space may be useful for decoding. If the number of errors in
a word y exceeds the error correction capacity of the code, it may happen
that there are several codewords of precisely equal Hamming distance from
y. In that case, finding maximal subbundles amounts to producing a small
list of candidate error divisors, though the issue of linear equivalence dis-
cussed above applies here as well. There is a vast coding theory literature
on list decoding, as it is called.

The study of stable rank-2 bundles on curves with many maximal sub-
bundles defined over a finite field may, in addition to its inherent interest,
have a coding theory application, since for particular code parameters the
maximum possible number of closest codewords to a given (uncorrectable)
word may not be known. This point was discussed in [4], where it was also
observed that the recent discovery of families of Goppa codes with expo-
nentially many minimum weight codewords [1] is somewhat related: this
result says that for a certain code there is a Hamming sphere of radius d
centered at 0 with a huge number of codewords on its boundary; a stable
bundle with many maximal subbundles (over the base field) would describe
a Hamming sphere of radius greater than d centered at an uncorrectable
word with a huge number of codewords on its boundary. One possible way
to find rank-2 bundles with lots of maximal subbundles over a finite field
is to construct examples with infinitely many in the algebraic closure and
then count the ones defined over the base field. We turn to this construction
next.
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2. The Klein Curve as Cover

In this section, which is composed of old-and-new facts about the Klein
curve, we recall some results that were given in characteristic zero in the
original references; however, they hold in our more general situation pro-
vided the characteristic of the base field k is not 2, 3 or 7 (the divisors of
168 which is the order of AutX in any other characteristic), and provided
k contains a seventh root of unity, as noted in the text, because the results
we use are obtained by algebraic operations defined over the integers.

The two most familiar ways (for a third one cf. 2.4) to write an algebraic
equation for Klein’s curve X are:

s7 = t(1− t)2,

x3
1x2 + x3

2x0 + x3
0x1 = 0.

Klein, already in his original definition [14] of the unique curve of genus
3 that has the maximal number of automorphisms, presented it at first as
a modular curve, then as a (canonical) plane quartic. This double feature
already exhibits the curve as a cover, on one hand, a (7 : 1) cover of P1,
on the other, true of every non-hyperelliptic curve of genus 3, as a (3 :
1) trigonal cover in a 1-dimensional manifold way. More surprisingly, [3,
VIII.75] shows that the Jacobian of the curve is isomorphic as a complex
manifold (without principal polarization) to the product of three elliptic
curves; more precisely, using the (7 : 1) cover, Baker computes the period
matrix

Z =

− 1
8 + 3

√
7i

8 − 1
4 −

√
7i
4 − 3

8 +
√

7i
8

− 1
4 −

√
7i
4

1
2 +

√
7i
2 − 1

4 −
√

7i
4

− 3
8 +

√
7i
8 − 1

4 −
√

7i
4

7
8 + 3

√
7i

8

 .
As observed in [22], all entries lie in the field generated (over the field k of
definition of the curve, k = Q, e.g.) by the character of the representation
induced on the differentials of the first kind by the automorphism group
of the curve. But another interesting phenomenon occurs: Jac(X) = C3/Λ,
where Λ is the lattice corresponding to [I Z], is actually isomorphic to the
product of 3 elliptic curves. Indeed, Baker shows that it can be brought by
an integral (but not unimodular) transformation into diagonal form:1 0 0 1+i

√
7

4 0 0
0 1 0 0 2 1+i

√
7

4 0
0 0 1 0 0 2 1+i

√
7

4

 .
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He also remarks that this transformation does not give us an algebraic map
from X to an elliptic curve; for that we use recent work [21], which gives a
bit more: the three elliptic curves are isomorphic as opposed to 2-isogenous
as in Baker’s decomposition.

We recall some notation and standard facts from [21]. The following
three elements generate the automorphism group of X, which is isomor-
phic to PSL2(F7): σ(x0, x1, x2) = (x1, x2, x0) of order 3, τ(x0, x1, x2) =(
x1 + µ1x2 + 1

µ3
x0, µ1x1 + 1

µ3
x2 + x0,

1
µ3
x1 + x2 + µ1x0

)
of order 2 and

ε(x0, x1, x2) = (x0, ζx1, ζ
5x2) of order 7, where ζ is a primitive 7th root

of 1 and we let µi = ζi + ζ−i.

Proposition 2.1. [21] The quotient of X by σi, i = 0, 1, 2 gives three
(canonically isomorphic) elliptic curves Ti with Weierstrass equations:

Ti : y2 + 3ζ4ixy + ζ5iy = x3 − 2ζ2ix− 3ζ3i, i = 0, 1, 2,

with the (3 : 1)-morphisms X → Ti given by φi(x1, x2) = (−wi, vi) where

wi = x+ ζ6i 1
y

+ ζ4i y

x
, vi = y + ζ6i 1

x
+ ζ2ix

y
.

Given that the above result is algebraic, we can simply replace Q[ζ] by a
finite field that contains a seventh root of unity, and keep the notation ζ for a
primitive one. In fact, it is quite interesting and non-tivial to find AutX over
an algebraically closed field of any characteristic. This was accomplished in
[30–32]: if the characteristic is p 6= 3, 7 the group is again GL(3, 2). For
p = 3 (resp. p = 7), the group properly contains GL(3, 2) and is of order
6048 (resp. 672). It is thus not true (as had also been observed earlier) that
the Hurwitz bound 84(g − 1) holds for the number of automorphisms of a
curve of genus g (> 1), if the characteristic is not zero; a bound does exist,
modified by the contribution of wild ramification in the Riemann-Hurwitz
formula, has degree 4 in g, and it is known which curves attain it.

Our program is now the study of maximal subbundles in positive char-
acteristic. Following the seminal article [15], for a rank-2 (algebraic) vector
bundle over a curve X of genus g, we define the numerical invariant:

s(E) = degE − 2max(degL),

where L is a line-subbundle of E. By definition, the degree of E and s(E)
have the same parity. It is known that s(E) ≤ g, and the study in [15]
addresses the case s(E) > 0 (equivalent to E being a stable bundle) or
s(E) ≥ 0 (semi-stable). The relevant geometric object then is M(E), the
subvariety of maximal subbundles. This variety can be identified canonically
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with the space of minimal sections of the ruled surface P(E), minimal in
the sense of having smallest self-intersection number. Let us also denote
by M(d) the moduli space of stable bundles of rank 2 and degree d over a
curve X of genus g ≥ 2, and by M(d, s) its stratification into locally closed
subsets according to the value of the invariant s(E). For generic E, M(E)
is smooth and projective and its dimension is described in terms of the rank
and degree of E and the genus of X. It has exactly the Chern numbers of
an étale cover of the symmetric product SnX, where n = dimM(E) [20].
In particular, for the general bundle, s(E) = g if the degree of E has the
same parity as the genus, and s(E) = g − 1 otherwise. When s(E) = g,
the variety of maximal subbundles of E is a curve, but when s(E) = g− 1,
it is generically a finite number of points. It is this number that in the
case of positive characteristic could conceivably be smaller, in the case
the field is not algebraically closed and the subbundle as a variety is not
rational over the field of definition, or perhaps larger, as is the case for
the number of automorphisms, due to the wild-ramification contribution in
the Riemann-Hurwitz formula, in view of the fact that in [15] a manifold
of maximal line subbundles are identified by using covering maps. The
number of subbundles does have a topological-degree significance, because
of the cited result [20] which computes it as a Chern number, 2g times a
Castelnuovo number, but so does the number of inflections of a plane curve;
in point of fact, the Klein curve is the “funny curve” in characteristic 3, and
all of its points are inflections [11, Exercise IV.2.4]. It is also interesting to
note that the dimension of M(E) can jump, as in the following example [20,
Remark 1.5]: the general bundle E with trivial determinant on a curve of
genus 3 has a finite number of maximal subbundles, 23 = 8, since s(E) =
g−1 as we recalled. But M(E) is isomorphic to the curve for the 64 bundles
E = κ−1 ⊗ V , where κ is a theta characteristic and V is the unique stable
rank-2 bundle whose determinant is the canonical bundle, and whose space
of sections has the maximal possible dimH0(X,V ) = 3. In fact, in this
programmatic note we focus on such ‘richest’ case only, namely s(E) =
g − 1(= 2 in our case) and dimM(E)=1, strictly larger than for general
E. In [15] it is determined exactly which E have this property, providing a
negative answer to a conjecture of M. Maruyama, to the effect of dimM(E)
being zero for all, not merely general, bundles that have s(E) ≤ g − 1.

Proposition 2.2 (after 15, Theorem 5.1). Every degree-2 cover X →
T of an elliptic curve gives a g-dimensional subvariety of M(d, 2), where
d is an even number, for all of whose points E, dimM(E) = 1. If X is of
genus 3, any trigonality of X gives a 3-dimensional subvariety of M(d, 2)
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for all of whose points E, dimM(E) = 1. For any other E ∈ M(d, 2),
dimM(E) = 0.

We also record the construction of the rank-2 bundles that have a non-
generic dimM(E):

Lemma 2.1 (after 15, Section 5). (i) If π : X → T is a (2 : 1) elliptic
cover and g(X) ≥ 3 then to every L ∈ PicgT where g = g(X) there is
associated a vector bundle E ∈M(2, 2) on X with dimM(E) = 1. Varying
L ∈ PicgT and twisting the associated E by a line bundle of degree d−2

2 on
X yields other elements of M(d, 2), while ‘factoring’ by the one-dimensional
families of their maximal subbundles finally gives a g-dimensional algebraic
family in M(d, 2). (ii) To any trigonality π : X → P1 of a curve of genus 3
there is associated in a canonical way a vector bundle E ∈M(2, 2) on X.

Proof. (i) Pulling back any rank-2 bundle F on the elliptic curve with
s(F ) = 1 as well as the family of line subbundles of appropriate degree
gives the examples. They can be described geometrically: the embedding
H0(T,L) → H0(X,π∗L) (which is of codimension 1) defines a point in
Pg = P(H0(X,π∗L) which is not on the image of X. This point can be
interpreted as a non-split exact sequence on X whose central element is a
vector bundle of rank 2 with s(E) = 2 and detE = π∗L⊗K−1

X , where KX

is the canonical divisor of X. Projection from the point has degree 2 on
the image of X and represents the 2-secants of X through that point, so
the maximal subbundles are represented by the points of the elliptic curve
embedded in the hyperplane covered by the projection, except possibly the
projection of the singular point of the image of X. (ii) Here the bundle E is
the middle term of the extension given by the embedding H0(P1,OP1(2))→
H0(X,π∗OP1(2)) so detE = π∗OP1(2)⊗K−1

X and again the 3-dimensional
family of bundles is parametrized by Picd−2/2X plus the trigonalities minus
1 for the maximal subbundles, which correspond to the trisecant lines of
the embedded curve in P3 which go through the extension point.

This lemma together with the proof (which we do not produce) that no
other bundle exhibits the jump phenomenon, proves Proposition 2.2.

We are next faced with the task of giving (in an algebraic and explicit
way) a (2 : 1) elliptic subcover of X or a trigonal rationality. We begin
with the latter. Rather than take the approach of [7] and determine the
quotient of the Klein curve under all cyclic subgroups of automorphisms,
we use the interesting analysis proposed in [18], by addressing the additional
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question: given a trigonality obtained by projecting a smooth plane quartic
to a line from a point on it, when is this cover Galois? We take this point
of view because we find it potentially interesting to give an addendum to
Kowalevski’s early result: she proved that a plane quartic is a (2 : 1) cover
of an elliptic curve if and only if four of its 28 bitangents are concurrent,
as we recall in Prop. 2.4.

The gonality of a curve is the smallest possible degree of the function
field of the curve over a rational field of one variable. We now adapt state-
ments from [18], which assumes the field of definition k to be algebraically
closed of characteristic zero. For our purposes we assume that all maps are
defined over k in case k isn’t algebraically closed (such as a finite field). The
Klein curve is not hyperelliptic, hence it is trigonal. For a plane smooth m-
gonal curve of degree d the gonality is d−1 and any extensionK/k(t), where
K is the function field of the curve and k(t) is any rational field of degree
1, corresponds to an (m : 1) projection from a point of the curve onto a
line [18]. In [18], the authors determine the following objects pertaining to
a smooth quartic (such as our Klein curve – in fact, their worked-out ex-
ample is the Fermat curve, whose automorphism group [33] has order 96):
for P ∈ X, the projection of X from P to a line is a degree-3 cover, and the
Galois group as well as the genus of the corresponding cover are calculated,
together with the (finite) number of points P for which the cover is Galois.

Proposition 2.3 (after 18, Theorem 2.1). For any smooth plane quar-
tic X and any point P ∈ X, the projection from P to a line corresponds to
a field extension that does not depend on the line, and if we call g(P ) the
genus of the smooth curve whose function field is the Galois closure of the
field extension corresponding to the projection and P a Galois point when
the extension is Galois, then: g(P )=3,6,7,8,9, or 10, with g(P ) =10 for the
general point, with Galois group isomorphic to S3. The number of Galois
points can be 0,1, or 4, and it is zero for a general quartic.

In [18], part of the criterion for P to be a Galois point is that P be a
2-inflection point. In particular, for the Klein curve, none exists, since the
inflections are all distinct and comprise the 24 Weierstrass points, so none
of the trigonal covers is Galois.

Similar issues are treated in [18] for the case P /∈ X, there being more
cases to analyze and slightly less complete results. The Klein curve does
admit a double cover to an elliptic curve. Indeed, as noted in [14], there
are 21 subgroups of order 2 of AutX, each corresponding to a collineation;
the centers of projection give (4 : 1) maps of X to a line which factor
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through an elliptic curve, the ramification given by the four bitangents to
X through the center (each bitangent contains three centers so that there
are 21×4

3 = 28 bitangents). We note however that none of the 4-gonal covers
given by projection from P /∈ X of the Klein (unlike the Fermat!) quartic
are Galois either; the 21 elliptic subfields of K(X) fixed by involutions are
one orbit under AutX [16].

It seems worth recalling Kowalevski’s criterion for a smooth plane quar-
tic to be a (2 : 1) elliptic cover, which again is proved in characteristic zero.
Her proof was analytic, a contribution to the theory of reduction, part of
her dissertation supervised by Weierstrass. An algebraic proof is given in
[8], as part of the properties of Weierstrass points of curves with involution.

Proposition 2.4 (Chap. III, Art. 71, 72, 76 in [3]). A canonically
embedded plane curve of genus 3 admits a (2 : 1) cover to an elliptic curve
if and only if four of its bitangents are concurrent, equivalently in suitable
coordinates it has an equation:

(z2 − φ2)2 = 4xy(ax+ by)(cx+ dy),

with φ2 a homogeneous for of degree 2 in x, y.

Here the bitangents are patently represented by the linear forms x, y, ax+by
and cx+dy, whose cross-ratio is an invariant of the elliptic curve. Note the
analogy with genus one: an elliptic curve is the Fermat curve if and only
if it can be represented as a plane cubic with three concurrent bitangents,
the projection from their common point being Galois. As recalled above,
Klein’s curve can be written in this way by virtue of its automorphisms of
order two. An actual geometric model of the elliptic curve together with
the (2 : 1) projection can be found by embedding X in P3 via the divisor of
degree 6 that pulls back an L ∈ Pic3T , precisely as in Lemma 2.1, obtaining
an extension E to be viewed as a point in P3 and projecting the image of
X from that point to a plane; Baker (loc. cit. in Prop. 2.4) states this fact
concretely presenting the image of X as a space sextic with equations:

z2 − φ2 = xt, xt2 = 4y(ax+ by)(cx+ dy),

as obtained by sending [x, y, z] 7→ [x, y, z, t] ∼ [1, y/x, z/x, (z2 − φ2)/x2] by
the pole-divisor map of 3P1 + 3P2, P1 and P2 being the points of contact
of the bitangent x = 0.

Remark. One subtle issue that we do not address in this note is the fol-
lowing. A classical result reprised and refined in [13] says that if an abelian
surface has more than two elliptic subgroups, then it has infinitely many;
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[13] shows also that it has finitely many ones for each bounded degree (the
degree can be taken to be the intersection number with any fixed ample
divisor). In our case, we would ask how many genuinely distinct (ellip-
tic) subcovers the Klein curve has, in particular over each finite field. We
note that much current work is devoted to classifying subcovers of Her-
mitian curves (of key interest in the area of Goppa codes), for example
in [7] a classification is given of the quotients of Hermitian curves by all
prime-order automorphisms. For the genus-2 case, an explicit detection of
isogenous/isomorphic degree-2 and degree-3 subcovers, as well as partial
results for higher degree, is given in [24–27].

Summary. Let X be the Klein curve. For each fixed determinant, the
rank-2 bundles E ∈ M(2, 2) with dimM(E) = 1 correspond to a given
elliptic-hyperelliptic map or trigonality. The 64 points E mentioned above
that exhibit the jump phenomenon as regards dimM(E) [20] have fixed
(even-degree) determinant. It follows from the above construction that each
map gives rise to one bundle; the 21 subgroups of order 2 of AutX come
with three maps each (each group of 4 concurrent bitangents gives an el-
liptic curve and each bitangent contains three centers), so we recover the
64 = 21× 3 + [one trigonality] bundles of [20], on which AutX acts by
permutations. To compute the number of these bundles over a finite field
Fq, one of our goals, first we fix a determinant of degree d that is an el-
ement of PicdX(Fq) (there exists one for each degree, and the number of
distinct ones is independent of the degree [19, Chap. 3]), then there are
as many bundles (semistable and with that determinant), with ‘too many
subbundles’, as there are points of order 2 in Pic0X(Fq), found [19] (since
the Jacobian splits) by splitting the characteristic p in Z[

√
−7].

Example. Consider the Klein curve X defined by x3
1x2 + x3

2x0 + x3
0x1 = 0

over F8 = F2[β]/(β3 +β+1). Since the characteristic is 2, we cannot expect
the same situation as in characteristic zero, in fact there are no odd theta-
characteristics since the tangent line at any point is an inflectionary tangent.
However, the maximal-subbundle geometry survives. Fix coordinates so
that on the line at infinity z = 0, parametrized as [a, b], P∞ = [1, 0] and let
π : X → P1 be the projection from Q3 = [0, 0, 1] to the line at infinity, so
that 2P∞ pulls back to 6Q1, where Q1 = [1, 0, 0].

Let ϕ : P1 → P2 denote the embedding [a, b] 7→ [1, a/b, a2/b2]. The
divisor map ϕ6Q1 : X → P3 that makes the following diagram commute is
given by [a, b, c] 7→ [1, a/b, a2/b2, ab/c2].

The injection H0(P1, 2P∞)
π∗

↪→ H0(X, 6Q1) corresponds to the point
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(e) = [0, 0, 0, 1] ∈ P3. The projection p in the commutative diagram

P3 − {e} p−→ P2

ϕ6Q1 ↑ ↑ ϕ
X

π−→ P1

is [a, b, c, d]
p7→ [a, b, c]. The points ϕ(P1) parametrize the trisecant lines of

ϕ6Q1(X) containing (e).
Choose a point Q = [a, 1] on the projective line, a ∈ F8

∗. Then the three
points [a, 1, ∗] ∈ π−1(Q) are mapped by ϕ∗ to a trisecant line containing (e).
Any two of these points determine a maximal subbundle of E, the rank-2
bundle corresponding to (e). We can compute

π−1(Q) = {[a, 1, a3β], [a, 1, a3β2], [a, 1, a3β4]}

and it follows that E has 7 ·
(
3
2

)
= 21 maximal subbundles that are rational

over F8, namely those of the form

OX

(
[a, 1, a3βi] + [a, 1, a3βj ]

)
where a ∈ F8

∗ and (i, j) ∈
{
(1, 2), (1, 4), (2, 4)

}
.

3. The Tschirnhausen Module of the Cover

In [17], the author sets out to “develop the foundations of the theory of
triple coverings in algebraic geometry”, working on an algebraically closed
field of characteristic unequal to 2 or 3; his result in summary:

A triple cover of an irreducible variety Y is determined by a locally free
rank-2 OY -module E and a map Φ : S3E → ∧2E, and conversely.

It may be worthwhile to determine this rank-2 bundle in our situation,
in view of what we described above, even when the cover does not pertain
to one of the exceptional rank-2 bundles over the Klein curve. We believe
that the object introduced by Miranda has not yet been widely used while
being potentially useful in coding theory. We restrict attention to one of
the above triple covers X → T , where X is the Klein curve, or one of the
trigonalities X → P1; we denote the target by Y in either case.

Definition 3.1. E is the Tschirnhausen module of OX over OY , namely
the direct summand in OX = OY ⊕ E consisting of the functions a ∈
OX\OY whose minimal polynomial over OY has trace zero.

The name given by Miranda to the module refers to the Tschirnhausen
transformation [29], used in several instances of reduction of degree of al-
gebraic equations; another important example, the quintic equation, is also
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related to curves [10]. The conventional way to perform a Tschirnhausen
transformation is to allow a substitution y = xm+rm−1x

m−1+. . .+r1x+r0,
in order to simultaneously eliminate (by using the r’s as free parameters)
intermediate terms of any nth- (say) degree equationa. In the case of a
quintic, to bring it to Bring-Jerrard form: x5 + ax+ b, with y =

∑4
j=0 ajx

j

one has to solve three equations of degrees 1, 2, and 3 in the coefficients of
the original equation. In this case [10] it is possible to intersect suitable hy-
persurfaces in P4 and find solutions by solving equations of degree at most
four. Bring’s curve is then of genus four and can be explicitly uniformized
as it possesses sufficiently many automorphisms, in particular a (12 : 1)
(Galois) cover to an elliptic curve. This provides a solution to the general
quintic in terms of modular forms of weight −2.

With this motivation, Miranda defines the Tschirnhausen module of the
triple cover X → Y to be the submodule E in the decomposition of local
k-algebras (where k is an algebraically closed field of characteristic unequal
to 2 or 3), or sheaves, OX = OY ⊕E consisting of the elements a ∈ OX\OY

whose minimal polynomial is trace free.
In our situation, for the map in Prop. 2.1 given explicitly as above, the

module consists of the elements 2
3a−a

σ−aσ2
, for all a in the function field

of X that are not σ-invariant; is is enough to take a = x, y to span the
module and the map σ is given explicitly: x 7→ y 7→ z 7→ x so x projects to
2
3x− y− z and y to 2

3y− z−x. This would provide actual equations for the
corresponding divisor; however, we give a more theoretic way to identify it.

Miranda computes the ramification and branch locus of the triple cover:
the branch locus in Y is a divisor whose associated line bundle is (∧2E)−2 so
by the Riemann-Hurwitz formula (which has no inertia components under
the assumptions we made on the characteristic), 2g(X) − 2 = 3(2g(Y ) −
2) + degree(∧2E). In conclusion, in our case E has degree 4. Atiyah [2]
gave a description of all the semistable bundles over an elliptic curve, but
we are further restricted in our situation: the cover is by construction a
Galois cover, and Miranda shows that E splits into the sum of two eigenline
bundles: f∗OX = OY ⊕ L−1 ⊕M−1, E = L−1 ⊕M−1, where L−1, M−1

are the eigenspaces for σ, σ2. Since there are exactly two σ-fixed points on
X, namely p1 = [1, ε, ε2] and p2 = [1, ε2, ε] where ε is a primitive third root
of 1, the bundles L and M are O(−2pi).

The trigonality, however, is never Galois as we saw. To compute the

aWe acknowledge this clear and clever exemplification due to Titus Pierzas III posted
on the web: A New Way To Derive The Bring-Jerrard Quintic in Radicals,

www.geocities.com/titus−piezas/Tschirnhausen.pdf.
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Tschirnhausen module which, being a rank-2 bundle over P1, decomposes
into O(n) ⊕ O(m), we refer to [17, Section 9] for an argument, essentially
based on the Riemann-Hurwitz formula, yielding n = −2 and m = −3.

Summary. The Tschirnhausen module for the possible triple covers of the
Klein curve to the elliptic curve T that admits multiplication by a primitive
root of 7 as an endomorphism, or to the projective line, are respectively

OE(−2p1)⊕OE(−2p2), OP1(−2)⊕OP1(−3).

4. Goppa Codes and Adeles

We observe in this section that Goppa codes can also be formulated in terms
of adeles and pseudo-differentials, and in this setting the duality between
CL(D,mQ) and CΩ(D,mQ) can be established without direct appeal to
the residue theorem or the analogous result for pseudo-differentials.

An introduction to adeles and pseudo-differentials can be found in the
chapters on the Riemann-Roch theorem in the books by Moreno [19, Chap.
2] and Stichtenoth [28, Chap. I.5]. Basic definitions and results needed for
our purposes are reviewed below.

4.1. Adeles and pseudo-differentials

Let K denote the function field of the curve X, and k the field of
constants. In this subsection, D denotes an arbitrary divisor. As usual,
l(D) = dimk L(D), where L(D) is the Riemann-Roch space of D. By
Riemann’s theorem, l(D) ≥ degD − g + 1, and the index of specialty is
i(D) = l(D)− degD + g − 1.

An adeleb is a mapping α : X → K that associates a function αP to
every point P ∈ X in such a way that αP ∈ OP for all but finitely many
points P . It is convenient to define the order of an adele α at a point P by
ordP (α) = ordP (αP ).

The set A of all adeles is called the adele space. We can add adeles
componentwise: the P -component of α+α′ is (α+α′)P = αP +α′P , which
is again an adele. Componentwise multiplication also makes sense, turning
A into a ring. More to the point for our purposes, it is a vector space over
k, and the k-subspace A(D) for a divisor D is defined in analogy to L(D),

A(D) = {α ∈ A : ordP (α) + ordP (D) ≥ 0 for every P ∈ X}.

bSome authors use the term repartition or pre-adele for what is here called an adele,
reserving the term adele for when the functions αP are allowed to lie in the completion

of K with respect to the valuation ordP .
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An embedding K ↪→ A is obtained by identifying f ∈ K with the adele
whose every component is equal to f . In particular, let f/Q for Q ∈ X

denote the adele α ∈ A defined by

αP =
{
f : P = Q.

0 : P 6= Q.

For a divisor D, A(D) +K is an infinite dimensional k-subspace of A,
but the quotient space A/ (A(D) +K) is finite dimensional, in fact equal
to the index of specialty i(D) of D. This fact is implied by the canonical
isomorphism (see [23, Prop. II.3], for example)

H1(C,OX(D)) ∼=
A

A(D) +K

and can also be established directly, without cohomological arguments [19].
The next proposition records this fact for ease of reference below.

Proposition 4.1. With the given notation, dimk A/ (A(D) +K) = i(D).

A pseudo-differential (also called a Weil differential) is a k-linear map
ω : A → k vanishing on A(D) + K for some divisor D. Note that if ωi

vanishes on A(Di) +K (i = 1, 2) then ω1 + ω2 vanishes on A(D) +K for
any divisor D with D ≤ Di (i = 1, 2). With scalar multiplication defined in
the obvious way, the space of all pseudo-differentials becomes a vector space
over k, which we denote by Ωs

K/k following Moreno [19]. The subspace

Ωs
K/k(D) = {ω ∈ Ωs

K/k : ω vanishes on A(D) +K}

has dimension i(D) by Prop. 4.1. Stichtenoth works out in full detail the cor-
respondence between differentials and pseudo-differentials [28, Chap. IV].
Here we note only that for a given pseudo-differential ω there is a unique
divisor W of smallest possible degree with the following property: if ω van-
ishes on A(F ) + K for some divisor F , then F ≤ W . As expected, W is
also the divisor of the corresponding differential.

4.2. Goppa codes and adeles

As in subsection 4.1, let D = P1 + · · · + Pn, where the Pi are k-rational
points. Fix another k-rational point Q (Q 6= Pi) and an integer m with
n > m > 2g− 2. Let n′ = n+ g− 1 and Di = D−Pi for 1 ≤ i ≤ n. Choose
fi ∈ L(n′Q−Di) so that

fi(Pj) =
{

1 : i = j.

0 : i 6= j.
(1)
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Such functions fi exist since l(n′Q − Di) ≥ 1. Also, l(n′Q) = n and the
fi are linearly independent, so they form a basis for L(n′Q). Now consider
the linear code

C = {(c1, . . . , cn)) ∈ kn : ordQ(c1f1 + · · ·+ cnfn) ≥ −m} .

The distance and dimension of C are easy to compute. Choose a non-zero
codeword (c1, . . . , cn) and let f =

∑
i cifi. Define I ⊂ {1, . . . , n} so that

ci = 0 ↔ i ∈ I, and note that f(Pi) = 0 for every i ∈ I. Now since
ordQ(f) ≥ −m, we know that f has at most m zeros. This means that
|I| ≤ m, so (c1, . . . , cn) is non-zero in at least n −m positions. As for the
dimension, f ∈ L(mQ) by definition, so dimk C = l(mQ) = m− g + 1.

In fact, C = CL(D,mQ). To see this, note that for f =
∑

i cifi ∈ L(mQ)
we have f(Pi) = ci ·fi(Pi) = ci. In other words, a codeword (c1, . . . , cn) ∈ C
is obtained by evaluating some f ∈ L(mQ) at the points Pi.

Fix a local parameter t at Q. Expanding each fi around Q, we can write

fi =
∞∑

j =−n′

ci,j · tj

with uniquely determined coefficients ci,j ∈ k. A parity check matrix H

for the code can be constructed using these coefficients: the i-th column is
the vector of coefficients in the expansion of fi up to (and including) the
t−(m+1) term. The kernel of this matrix consists of linear combinations of
the functions fi with at most m poles at Q, that is to say, codewords.

We now proceed to interpret the parity check matrix H in terms of
pseudo-differentials by way of the following two lemmas.

Lemma 4.1. Letting t denote a local parameter at Q, the set B = {t−i/Q :
m < i ≤ n′} is a basis for A/ (A(mQ−D) +K) as a vector space over k.

Proof. Consider first an arbitrary adele α. By the Strong Approximation
Theorem [28], there is a function g ∈ K satisfying ordPi(α−g) > 0 for each
point Pi in the support of D, and ordP (α − g) ≥ 0 for every other point
of the curve except Q. It follows that α ≡ (αQ − g)/Q modulo A(mQ −
D)+K. In particular, A/ (A(mQ−D) +K) has a basis consisting of adeles
everywhere zero except at Q.

If the pole order of f ∈ K at Q is at most m, then f/Q ∈ A(mQ−D).
On the other hand, if f has more that n′ poles at Q, say r poles, there is a
non-zero g ∈ L(rQ−D) with ordQ(f−g) > −r, and f/Q−g ∈ A(mQ−D).
This implies that if f/Q 6≡ 0 then −n ≤ ordQ(f) < −m.
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We have established that there is a basis for A/(A(mQ − D) + K)
consisting of adeles of the form f/Q with −n ≤ ordQ(f) < −m. The basis
has size i(mQ −D) = |B| by Prop. 4.1, and we clearly can obtain B from
it by a linear transformation.

Lemma 4.2. With the functions fi as defined in (1), we have 1/Pi ≡ fi/Q

mod A(mQ−D) +K for 1 ≤ i ≤ n.

Proof. Define αi ∈ A(mQ−D) by

(αi)P =


0 : P = Q.

fi + 1 : P = Pi.

fi : otherwise.

Then αi − fi = 1/Pi − fi/Q, so 1/Pi ≡ fi/Q as claimed.

A pseudo-differential ω ∈ Ωs
K/k(mQ−D) is determined by a vector

â = (am+1, am+2, . . . , an′) ∈ kn′−m

describing the action of ω on elements of B; i.e., ω : t−i/Q 7→ ai. In par-
ticular, ω(1/Pi) can be computed as the inner product of â and the i-th
column of H, the parity check matrix for CL(D,mQ). And since a parity
check matrix of a code is a generator matrix for its dual, we can define the
dual code to CL(D,mQ) purely in terms of adeles by

C(D,mQ)⊥ =
{

(ω(1/P1), . . . , ω(1/Pn)) : ω ∈ Ωs
K/k(mQ−D)

}
We close the circle by noting that from the correspondence between pseudo-
differentials and differentials it can be shown that an arbitrary pseudo-
differential maps the adele 1/P (for any P ∈ X) to the residue at P

of the corresponding differential. Consequently, CΩ(D,mQ) as defined in
the first section is dual to CL(D,mQ), which we have established using
the theory of adeles and pseudo-differentials and without appeal to the
residue theorem. As noted earlier, since our extension space is isomor-
phic to H1(X,OX(mQ − D)), it can be identified with the adelic space
A/(A(mQ − D) + K). One angle from which we propose to study rank-2
extensions and their maximal subbundles over finite fields is through this
connection to adeles. We showed that every adele is equivalent, modulo
A(mQ−D) +K, to an adele of the form f/Q; in fact, each such f deter-
mines a transition function for a rank-2 bundle in our space of extensions.
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[32] S. Tufféry, Déformations de courbes avec action de groupe. II, Forum Math.

8 (1996), no. 2, 205–218.
[33] P. Tzermias, The group of automorphisms of the Fermat curve, J. Number

Theory 53 (1995), no. 1, 173–178.



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

101

Remarks on s-extremal codes

Jon-Lark Kim

Department of Mathematics,

University of Louisville,

Louisville, KY 40292, USA
E-mail: jl.kim@louisville.edu

www.math.louisville.edu/∼jlkim

We study s-extremal codes over F4 or over F2. A Type I self-dual code over F4

or over F2 of length n and minimum distance d is s-extremal if the minimum
weight of its shadow is largest possible. The purpose of this paper is to give

some results which are missing in a series of papers by Bachoc and Gaborit [2],

by Gaborit [6], and by Bautista, et. al. [1]. In particular, we give an explicit
formula for the numbers of the first four nonzero weights of an s-extremal code

over F4. We improve a bound on the length for which there exists an s-extremal

code over F4 (res. F2) with even minimum distance d (resp. d ≡ 0 (mod 4)),
and give codes related to s-extremal binary codes.

Keywords: Additive self-dual codes; Ninary self-dual codes; s-extremal codes.

1. Introduction

Binary self-dual codes have been of great interest since the beginning of
the coding theory partly because many good linear block codes are either
self-orthogonal or self-dual. Furthermore, they have nice properties; in par-
ticular, the weight enumerator of a binary self-dual code is invariant under
a certain finite group, which often restricts the minimum distance of such
a code. We refer to the chapter of self-dual codes [12] for a full discussion
of self-dual codes.

It was Conway and Sloane [4] who introduced the notion of the shadow
of a binary self-dual code in order to get additional constraints in the weight
enumerator of a singly-even binary self-dual code C. The shadow S of C is
defined as

S := C⊥0 \ C.

Let d be the minimum distance of C and s the minimum weight of S.
Bachoc and Gaborit [2] showed that 2d + s ≤ n

2 + 4, except in the case
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n ≡ 22 (mod 24) and d = 4[n/24] + 6, where 2d + s = n/2 + 8. Binary
codes attaining these bounds are called s-extremal [2]. Elkies [5] studied
binary s-extremal codes for d = 2 and d = 4, and Bachoc and Gaborit
considered the case when d = 6.

Rains [11] gave additional constraints of the weight enumerator of the
shadow of an additive self-dual Type I code over F4 and derived the best
known upper bound on the highest possible minimum distance of these
codes. Let dI (dII) be the minimum weight of an additive self-dual Type I
(Type II, respectively) code of length n > 1. Then

dI ≤


2
⌊

n
6

⌋
+ 1 if n ≡ 0 (mod 6)

2
⌊

n
6

⌋
+ 3 if n ≡ 5 (mod 6)

2
⌊

n
6

⌋
+ 2 otherwise

dII ≤2
⌊n

6

⌋
+ 2.

A code meeting the appropriate bound is called extremal.

Following the ideas of Bachoc and Gaborit, Bautista, et. al. [1] introduce
the notion of an s-extremal additive F4 code. The authors [1] show that if
there is an s-extremal F4 code of length n with even minimum distance d,
then n < 3d; they relate s-extremal F4 codes to other s-extremal codes or
extremal F4 codes.

In this article, we give an explicit formula for Ad, · · · , Ad+3, the numbers
of the first four nonzero weights of an s-extremal code over F4. We hope that
this formula can be used to verify the nonexistence of certain s-extremal
F4 codes. In particular, we show that for an s-extremal F4 code of length n
with even d, n ≤ 3d− 2, improving slightly n ≤ 3d− 1 of [1] and providing
the optimality of n. We also briefly consider binary s-extremal codes. We
observe that if there is a binary s-extremal code with parameters (s, d) of
length n and d ≡ 0 (mod 4), then n ≤ 6d− 4, improving n ≤ 6d− 2 of [6].
Furthermore we relate a binary s-extremal code of length 6d to another
s-extremal code of that length, and produce extremal Type II codes from
certain s-extremal codes. One sees the parallelism between s-extremal codes
over F4 and those over F2.

2. s-Extremal Additive F4 Codes

We recall basic definitions on additive F4 codes [3, 7].
An additive F4 code C of length n is a subset C ⊂ Fn

4 which is a vector
space over F2. We say that C is an (n, 2k) code if it has 2k codewords. If



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

103

c ∈ C, the weight of c, denoted by wt(c), is the Hamming weight of c and
the minimum distance (or minimum weight) d of C is the smallest weight
among any non-zero codeword in C. We call C an (n, 2k, d) code.

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn
4 . The trace inner product of

x and y is given by

〈x,y〉 :=
n∑

i=1

Tr(xiy
2
i )

where Tr : F4 → F2 is the trace map Tr(α) = α+ α2.
If C is an additive code, its dual, denoted C⊥, is the additive code

{x ∈ Fn
4 | 〈x, c〉 = 0 for all c ∈ C}. If C is an (n, 2k) code, then C⊥ is an

(n, 22n−k) code. C is self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥. If
C is self-dual, it is an (n, 2n) code. For an additive self-dual code over F4,
if all codewords have even weight, the code is Type II; otherwise it is Type
I.

Definition 2.1. Let C be an additive F4 code of length n which is self-dual
with respect to the trace inner product. The shadow S = S(C) of C is given
by

S = {w ∈ Fn
4 | 〈v,w〉 ≡ wt(v) (mod 2) for every v ∈ C}.

If C is Type II, S(C) = C, while if C is Type I, S(C) is a coset of C
(see p. 203 of [12]).

The next theorem, which is the F4-analog of Theorem 1 of [2], was first
given in [1].

Theorem 2.1. Let C be a Type I additive F4 code of length n, self-dual
with respect to the trace inner product, let d = dmin(C) be the minimum
distance of C, let S = S(C) be the shadow of C, and let s = wtmin(S) be
the minimum weight of S. Then 2d + s ≤ n + 2 unless n = 6m + 5 and
d = 2m+ 3, in which case 2d+ s = n+ 4.

Theorem 2.1 motivates the next definition [1].

Definition 2.2. Let C be a Type I additive F4 code of length n, self-dual
with respect to the trace inner product, let d = dmin(C) be the minimum
distance of C, let S = S(C) be the shadow of C, and let s = wtmin(S) be the
minimum weight of S. We say C is s-extremal if the bound of Theorem 2.1
is met, i.e., if 2d+ s = n+ 2 except when n = 6m+ 5 and d = 2m+ 3, in
which case 2d+ s = n+ 4.
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Remark 2.1. It is interesting to note that the weight enumerator of any s-
extremal code is uniquely determined and can be explicitly computed from
the values of n and d (or n and s) [1].

Gleason’s Theorem for additive F4-codes holds as follows; see [1, 9, 11]
for details.

Theorem 2.2. Let C be an additive F4 code of length n which is self-dual
with respect to the trace inner product. Let S = S(C) be the shadow of C,
and let C(x, y) and S(x, y) be the homogeneous weight enumerators of C
and S, respectively. Then

S(x, y) =
1
|C|

C(x+ 3y, y − x),

and there are polynomials

P (X,Y ) =
bn

2 c∑
i=0

uiX
n−2iY i and Q(X,Y ) =

bn
2 c∑

i=0

viX
n−2iY i

over R such that

C(x, y) = P (x+ y, x2 + 3y2) = Q(x+ y, y(x− y))

and

S(x, y) = P (2y, x2 + 3y2) = Q(2y,
y2 − x2

2
).

Certain coefficients of P (x, y) and Q(x, y) are 0 as follows; see [1] for
details.

Lemma 2.1. Let C be an additive F4 code of length n which is self-dual
with respect to the trace inner product. Let S = S(C) be the shadow of
C. Every vector in S has weight congruent to n modulo 2. Moreover, if
we let s = wtmin(S) be the minimum weight of S and write s = n − 2r,
then the coefficients ui and vi in the polynomials P (X,Y ) and Q(X,Y ) of
Theorem 2.2 are 0 for r + 1 ≤ i ≤ bn

2 c.

Let C be an s-extremal F4 code of length n with minimum distance d
and the minimum weight s of the shadow of C. In what follows, we derive
an explicit formula for Ad, · · ·Ad+3, where Ai is the number of codewords
in C of weight i.

Using the second equation of C(x, y) in Theorem 2.2 and Lemma 2.1,
we have
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C(1, y) = 1 +Ady
d +Ad+1y

d+1 +Ad+2y
d+2 +Ad+3y

d+3 + · · ·

=
d−1∑
i=0

vi(1 + y)n−2i(y(1− y))i.

Dividing both sides by (1 + y)n, we get

1
(1 + y)n

(1 +Ady
d +Ad+1y

d+1 +Ad+2y
d+2 +Ad+3y

d+3 + . . . )

=
d−1∑
i=0

vi

(
y(1− y)
(1 + y)2

)i

.

Write f(y) = 1
(1+y)n and g(y) = y(1−y)

(1+y)2 . Then we have

d−1∑
i=0

vig
i(y) = f(y) + f(y)Ady

d + · · ·+ f(y)Ad+3y
d+3 +O(yd+4). (1)

We expand f(y) as a power series of y as follows.

f(y) =
1

(1 + y)n
=

∞∑
i=0

(−1)i

(
n+ i− 1

i

)
yi

= 1− ny +
(
n+ 1

2

)
y2 −

(
n+ 2

3

)
y3 +O(y4).

We plug this in Equation (1) to get the following lemma.

Lemma 2.2. Under the above notations,
d−1∑
i=0

vig
i(y) = f(y) +Ad

{
1− ny +

(
n+ 1

2

)
y2 −

(
n+ 2

3

)
y3 +O(y4)

}
yd

+Ad+1

{
1− ny +

(
n+ 1

2

)
y2 −

(
n+ 2

3

)
y3 +O(y4)

}
yd+1

+ · · ·
= f(y) +Ady

d + {−nAd +Ad+1} yd+1

+
{
Ad

(
n+ 1

2

)
− nAd+1 +Ad+2

}
yd+2

+
{
−Ad

(
n+ 2

3

)
+Ad+1

(
n+ 1

2

)
− nAd+2 +Ad+3

}
yd+3

+O(yd+4).
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Our next step is to rewrite gi(y) for i ≥ d as a power series in y. Since
g(y) = y(1−y)

(1+y)2 , we have

gd(y) =
yd(1− y)d

(1 + y)2d

= yd

 d∑
j=0

(−1)j

(
d

j

)
yj

( ∞∑
i=0

(−1)i

(
2d+ i− 1

i

)
yi

)

= yd − 3dyd+1 +
{(

d

2

)
+ d

(
2d
1

)
+
(

2d+ 1
2

)}
yd+2

+
{
−
(
d

3

)
−
(
d

2

)(
2d
1

)
− d
(

2d+ 1
2

)
−
(

2d+ 2
3

)}
yd+3

+O(yd+4).

Similarly we obtain the following.

gd+1(y) = yd+1 +
{
−
(
d+ 1

1

)
−
(

2d+ 2
1

)}
yd+2

+
{(

2d+ 3
2

)
+
(
d+ 1

1

)(
2d+ 2

1

)
+
(
d+ 1

2

)}
yd+3

+O(yd+4),

gd+2(y) = yd+2 +
{
−
(

2d+ 4
1

)
−
(
d+ 2

1

)}
yd+3 +O(yd+4),

gd+3(y) = yd+3 +O(yd+4).

Now we can rewrite yi for i = d, d+ 1, d+ 2, d+ 3 in terms of gi(y) and
O(yd+4) as follows.

yd+3 = gd+3(y) +O(yd+4),

yd+2 = gd+2(y) +
{(

d+ 2
1

)
+
(

2d+ 4
1

)}
gd+3(y) +O(yd+4),

yd+1 = gd+1(y) +
{(

d+ 1
1

)
+
(

2d+ 2
1

)}
gd+2(y)

+ (3d+ 3)(3d+ 6)gd+3(y)

−
{(

2d+ 3
2

)
+
(
d+ 1

1

)(
2d+ 2

1

)
+
(
d+ 1

2

)}
gd+3(y) +O(yd+4),
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yd = gd(y) + 3dgd+1(y)

+
{

3d(3d+ 3)−
(
d

2

)
− d
(

2d
1

)
−
(

2d+ 1
2

)}
gd+2(y)

+ 3d(3d+ 3)(3d+ 6)gd+3(y)

− 3d
{(

2d+ 3
2

)
+ (d+ 1)(2d+ 2) +

(
d+ 1

2

)}
gd+3(y)

− (3d+ 6)
{(

d

2

)
+ d

(
2d
1

)
+
(

2d+ 1
2

)}
gd+3(y)

+
{(

d

3

)
+
(
d

2

)(
2d
1

)
+ d

(
2d+ 1

2

)
+
(

2d+ 2
3

)}
gd+3(y)

+O(yd+4).

Now let κi be the coefficient of gi(y) in

f(y) =
∑
i≥0

κig(y)i

Then we plug the above calculations in Lemma 2.2 to obtain the follow-
ing relation between κi and Ai’s.

Lemma 2.3.
Under the notations as above,

(i) κd = −Ad,

(ii) κd+1 = −((3d− n)Ad +Ad+1),

(iii) κd+2 = −1
2
Ad(9d2 + 17d− 6dn− 5n+ n2)

−Ad+1(3d+ 3− n)−Ad+2,

(iv) κd+3 = −Ad

{
9
2
d3 +

51
2
d2 + 37d+ n(−9

2
d2 − 35

2
d− 13)

}
−Ad

{
(3d+ 6)

(
n+ 1

2

)
−
(
n+ 2

3

)}
−Ad+1

{
9
2
d2 +

35
2
d+ 13− n(3d+ 6) +

(
n+ 1

2

)}
−Ad+2(3d+ 6− n)−Ad+3.

On the other hand, we can evaluate κi using the Bürman-Lagrange
Theorem. We recall the Bürman-Lagrange Theorem (as stated in [11]): If
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f(x) and g(x) are formal power series with g(0) = 0 and g′(0) 6= 0 and the
coefficients κi are defined by

f(x) =
∑
i≥0

κig(x)i,

then

κi =
1
i

(
coefficient of xi−1 in f ′(x)

(
x

g(x)

)i
)
.

Our functions f(y) and g(y) satisfy these hypotheses, and we have

κd =
1
d

(
coefficient of yd−1 in f ′(y)

(
y

g(y)

)d
)

=
1
d

(
coefficient of yd−1 in

(
−n

(1 + y)n+1

)(
(1 + y)2

1− y

)d
)

=
−n
d

(
coefficient of yd−1 in

1
(1 + y)n−3d+1(1− y2)d

)
.

Similarly we obtain the following.

κd+1 =
−n
d+ 1

(
coefficient of yd in

1
(1 + y)n−3d−2(1− y2)d+1

)
κd+2 =

−n
d+ 2

(
coefficient of yd+1 in

1
(1 + y)n−3d−5(1− y2)d+2

)
κd+3 =

−n
d+ 3

(
coefficient of yd+2 in

1
(1 + y)n−3d−8(1− y2)d+3

)

Corollary 2.1. If d is even and n = 3d− 1 then there is no s-extremal F4

code.

Proof. If n = 3d−1, then κd = −n
d

(
coefficient of yd−1 in 1

(1−y2)d

)
. Hence

κd = 0 as d is even. Then by (i) of Lemma 2.3, Ad = 0, which is a contra-
diction.

Note that an s-extremal code of length n with minimum distance d must
satisfy n ≥ 3d−5, and that if d is even, 3d−4 ≤ n < 3d [1]. Hence we have
the following.

Corollary 2.2. An s-extremal code of length n with even minimum dis-
tance d must satisfy n = 3d− 4, 3d− 3, or 3d− 2.
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When d is even, Corollary 2.2 fully explains Table 2 of [1] where a
possible range of n for which an s-extremal code exists is displayed. After
simplifications, we further have an explicit formula for the κi’s as follows.
Therefore combining this with Lemma 2.3 we get an explicit formula for
Ad, Ad+1, Ad+2, Ad+3.

Proposition 2.1. Suppose that C is an s-extremal F4 code of length n ≥
3d − 5 with minimum distance d. If m := 3d − n − 1 > 0, then for any
nonnegative integer i = 0, 1, 2, 3, · · · ,

kd+i =
−n
d+ i

 m+3i∑
j=0,j≡1+i(2)

(
m+ 3i
j

)(
d+ i+ d−1+i−j

2 − 1
d− 1 + i

) if d even,

and

kd+i =
−n
d+ i

 m+3i∑
j=0,j≡i(2)

(
m+ 3i
j

)(
d+ i+ d−1+i−j

2 − 1
d− 1 + i

) if d odd.

Example 2.1. Let C be an s-extremal additive F4 code of length n = 6
with minimum distance d = 3. For example, take as generator matrix of C
the 6 by 6 circulant matrix whose first row is (1, ω, 1, 0, 0, 0) (see [8]). This
code is equivalent to the odd Hexacode O6 [9]. We show how to compute the
weight distribution A3, A4, A5, and A6 by finding corresponding κi’s. As
κ3 = −2

(
coefficient of y2 in (1 + y)2 1

(1−y2)3

)
= −2

((
2
0

)(
3
2

)
+
(
2
2

)(
2
2

))
=

−8, we have A3 = 8 by Lemma 2.3. Similarly, we compute κ4 = −45,
κ5 = −270, and κ6 = −1683. This implies A4 = 21, A5 = 24, and A6 = 10.
This weight distribution also appears in Table 1 of [1].

3. s-Extremal Binary Codes

In this section we consider binary self-dual codes and produce related codes
from s-extremal binary codes, as an F2 analogue of [1].

Let C be a binary Type I self-dual code of length n and let S be its
shadow. Let C0 be the doubly-even subcode of C and let C⊥0 = C0 ∪ C2 ∪
C1 ∪ C3, where C = C0 ∪ C2 and S = C1 ∪ C3. It is well known that
C(1) = C0 ∪C1 and C(3) = C0 ∪C3 are self-dual if and only if 1 ∈ C0, i.e.,
4|n (see Lemma 9.4.6, Theorems 9.4.7 and 9.4.10 in [10]).

Conway and Sloane [4] showed that there exist c0, · · · , c[n/8] ∈ R such
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that:

C(x, y) =
[n/8]∑
i=0

ci(x2 + y2)
n
2−4i{x2y2(x2 − y2)2}i, (2)

S(x, y) =
[n/8]∑
i=0

ci(−1)i2
n
2−6i(xy)

n
2−4i(x4 − y4)2i. (3)

Applying the Bürman-Lagrange Theorem to certain transformed equations
of the above equations, Bachoc and Gaborit [2] introduced a notion of an
s-extremal binary code; for details see [2].

Theorem 3.1. Let C be a binary Type I self-dual code of length n and
minimum distance d, and let S be its shadow of minimum weight s. Then
2d+ s ≤ 4+ n

2 , unless n ≡ 22 (mod 24) and d = 4[n/24]+6, in which case
2d+ s = 8 + n

2 .

Definition 3.1. A binary Type I code meeting the above bound is called
s-extremal.

When d ≡ 0 (mod 4), the length of a s-extremal code is bounded by 6d
as follows.

Theorem 3.2. Let C be an s-extremal code with parameters (s, d) of length
n. If d ≡ 0 (mod 4), then n < 6d (i.e., n ≤ 6d− 2).

Following the proof of the above theorem in [6], we have that for any
binary s-extremal code,

Ad =
n

d

(
coefficient of yd−2 in

1
(1 + y2)

n
2−3d+1(1− y4)d

)
.

In particular, if n = 6d − 2, then n
2 − 3d + 1 = 0. Further if d ≡ 0

(mod 4) then d − 2 ≡ 2 (mod 4). Therefore Ad = 0, which is impossible.
Therefore we obtain the following.

Proposition 3.1. Let C be an s-extremal code with parameters (s, d) of
length n. If d ≡ 0 (mod 4), then n ≤ 6d− 4.

Codes related to s-extremal additive F4 codes are described in Propo-
sitions 7.1 and 7.3 in [1], whose proofs however contain minor errors. We
show that this can be done analogously for binary s-extremal codes in the
following propositions. We include the proofs for completeness.

Proposition 3.2. Let C be a binary s-extremal code of length n and min-
imum distance d satisfying 2d+ s = 4+ n

2 . If d ≡ 2 (mod 4) and s = d+4,
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then C(1) and C(3) are also s-extremal with minimum distance d′ = d + 2
and the minimum shadow weight s′ = d.

Proof. Since d ≡ 2 (mod 4), n
2 = 3d is congruent to 2 (mod 4). Thus

all weights in S are congruent to 2 (mod 4) (by Theorem 9.4.7 [10] or by
looking at the powers of y in Equation (3)). Thus both C(1) and C(3) are
Type I self-dual codes; self-duality follows as 4|n. We may assume that C1

contains a vector x of minimum weight s. There are two possibilities for
d(C0): Either d(C0) = d+ 2 or d(C0) > d+ 2.

If d(C0) > d + 2, then d(C0) ≥ d + 6 as C0 is doubly-even. So in this
case, the minimum distance of C(1) is d′ = min{d(C0), d(C1)} = min{≥
d+ 6, s} = d+ 4. The shadow of C(1) is C2 ∪ C3, and its minimum weight
is s′ = min{d(C2), d(C3)} = min{d,≥ s} = d. As 2d′ + s′ = 2(d+ 4) + d =
3d+ 8 = n

2 + 8, n must be congruent to 22 (mod 24). This contradicts the
condition that n

2 ≡ 2 (mod 4).
Thus we have d(C0) = d+2. Following the above arguments, we obtain

d′ = d+ 2 and s′ = d. As 2d′ + s′ = 2(d+ 2) + d = 3d+ 4 = n
2 + 4, C(1) is

s-extremal.
As d(C0) = d + 2, one can show that C(3) is s-extremal in a similar

manner.

Proposition 3.3. Let C be a binary s-extremal code of length n = 24µ+8
and minimum distance d. If d ≡ 2 (mod 4) and s = d + 2, then both C(1)

and C(3) are extremal Type II codes with minimum distance d + 2. More-
over the weight enumerators of C1 and C3 are the same and are explicitly
determined.

Proof. As n
2 ≡ 0 (mod 4), 4|n and all weights in S are doubly-even. So

C(1) and C(3) are Type II. Since d(S) = s, the minimum distance of C(i) is
min{d(C0), d(Ci)} ≥ s for i = 1, 3, and either d(C1) = s or d(C3) = s, but
not necessarily both. We know that d(C0) ≥ d + 2 = s as d ≡ 2 (mod 4)
and C0 is doubly-even. So d(C(i)) = min{d(C0), d(Ci)} ≥ s for i = 1, 3.
Since 2d+s = 4+ n

2 = 12µ+8 and d = s−2, we have 2(s−2)+s = 12µ+8
implying s = 4µ+4. As extremal Type II codes of length n = 24µ+8 have
minimum weight at most 4µ+4, d(C(i)) must be s = d+2 and each d(C(i))
is extremal.

Finally note that the weight enumerator of a binary extremal Type II
code is uniquely determined by its length and that the weight enumerator
of C0 is explicitly determined by that of C. Thus the weight enumerator of
C1 and C3 are the same and are explicitly determined.
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4. Conclusion

We have obtained results concerning both s-extremal F4 codes and s-
extremal binary codes. In particular, we find an explicit formula for
Ad, · · · , Ad+3 of an s-extremal F4 code. This formula is of use for knowing
a possible weight distribution of an s-extremal F4 code. Furthermore, this
formula might be used for the upper bound on the length of an s-extremal
F4 code when its minimum distance is odd. For example, suppose that there
exists an s-extremal F4 code with odd d and n = 3d + 2. Then κd+1 = 0
from Proposition 2.1. Hence Ad+1 = 2Ad by Lemma 2.3. All the weight
enumerators of s-extremal F4 codes [1] do not have this relation. On the
other hand we remark that one can obtain a formula for Ad, · · · , Ad+3 of a
binary s-extremal code in an analogous manner.

We also have improved a bound on the length for which there exists an
s-extremal code over F4 or over F2 with even minimum distance, and gave
binary s-extremal or extremal codes constructed from binary s-extremal
codes.
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We look at AG codes associated to P1, re-examining the problem of determin-

ing their automorphism groups (originally investigated by Dür in 1987 using

combinatorial techniques) using recent methods from algebraic geometry. We
classify those finite groups that can arise as the automorphism group of an

AG code and give an explicit description of how these groups appear. We give

examples of generalized Reed-Solomon codes with large automorphism groups
G, such as G = PSL(2, q), and explicitly describe their G-module structure.

Keywords: generalized Reed-Solomon codes, permutation automorphism

groups, algebraic-geometric codes, G-modules

1. Introduction

Reed-Solomon codes are popular in applications because fast encoding and
decoding algorithms are known for them. For example, they are used in
compact discs (more details can be found in §5.6 in Huffman and Pless [4]).

In this paper we study which groups can arise as automorphism groups
of a related collection of codes, the algebraic geometry (AG) codes on P1.
These codes are monomially equivalent to generalized Reed-Solomon (GRS)
codes. Their automorphism groups were first studied by Dür [2] in 1987
using combinatorial techniques. Huffman [3] gives an excellent exposition
of Dür’s original work. In this paper, using recent methods from algebraic
geometry (due to Brandt and Stichenoth [12], Valentini and Madan [14],
Kontogeorgis [9]), we present a method for computing GRS codes with
“large” permutation automorphism groups. In contrast to Dür’s results, we
indicate exactly how these automorphism groups can be obtained.

The paper is organized as follows. In section 2 we review some back-
ground on AG codes and GRS codes. In section 3 we review some known
results on automorphisms of AG codes, and then prove our main result,



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

115

characterizing the automorphism groups of AG codes. In section 4 we use
these results to give examples of codes with large automorphism groups.
In section 5, we discuss the structure of these group representations as
G-modules, in some cases determining it explicitly.

2. AG codes and GRS codes

We recall some well-known background on AG codes and GRS codes.
Let X be a smooth projective curve over a field F and let F denote

a separable algebraic closure of F . We will generally take F to be finite
of order q. Let F (X) denote the function field of X (the field of rational
functions on X). Recall that a divisor on X is a formal sum, with integer
coefficients, of places of F (X). We will denote the group of divisors on X

by Div(X). The rational points of X are the places of degree 1, and the set
of rational points is denoted X(F ).

AG codes associated to a divisor D are constructed from the Riemann-
Roch space

L(D) = LX(D) = {f ∈ F (X)× | div(f) +D ≥ 0} ∪ {0},

where div(f) denotes the (principal) divisor of the function f ∈ F (X). The
Riemann-Roch space is a finite dimensional vector space over F , whose
dimension is given by the Riemann-Roch theorem.

Let P1, ..., Pn ∈ X(F ) be distinct points and E = P1+...+Pn ∈ Div(X).
Assume these divisors have disjoint support, supp(D) ∩ supp(E) = ∅. Let
C(D,E) denote the AG code

C(D,E) = {(f(P1), ..., f(Pn)) | f ∈ L(D)}. (1)

This is the image of L(D) under the evaluation map

evalE : L(D)→ Fn,

f 7−→ (f(P1), ..., f(Pn)).
(2)

The following is well-known (a proof can be found in Joyner and Ksir [7]).

Lemma 2.1. If deg(D) > deg(E), then evalE is injective.

In this paper, we restrict to the case where X is the projective line P1

over F . In this case, if degD ≥ 0 then dimL(D) = degD+1, and otherwise
dimL(D) = 0. Thus we will be interested in the case where degD ≥ 0.
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In the special case when D is a positive integer multiple of the point at
infinity, then this construction gives a Reed-Solomon code. More generally,

C = {(α1f(P1), ..., αnf(Pn)) | f ∈ L(` · ∞)},

is called a generalized Reed-Solomon code (or GRS code), where
α1, ..., αn is a fixed set of non-zero elements in F (called “multipliers”).

In fact, for a more general D, this construction gives a code which is
monomially equivalent to a GRS code, and which furthermore is MDS (that
is, n + 1 = k + d, where n is the length, k is the dimension, and d is the
minimum distance of the code). We say that two codes C,C ′ of length n are
monomially equivalent if there is an element of the group of monomial
matrices Monn(F ) – those matrices with precisely one non-zero entry in
each row and column – (acting in the natural way on Fn) sending C to C ′

(as F -vector spaces).

Lemma 2.2. Let X = P1/F , D be any divisor of positive degree on X, and
let E = P1 + . . .+Pn, where P1, . . . , Pn are points in X(F ) and n > degD.
Let C(D,E) be the AG code constructed as above. Then C(D,E) is an
MDS code which is monomially equivalent to a GRS code (with all scalars
αi = 1).

Proof. This is well-known (see for example Stichtenoth [11], §II.2), but
we give the details for convenience. C(D,E) has length n and dimension
k = deg(D)+1. By Theorem 13.4.3 of Huffman and Pless [4], its minimum
distance d satisfies

n− deg(D) ≤ d,

and the Singleton bound says that

d ≤ n+ 1− k = n− deg(D).

Therefore, d = n+ 1− k, and this shows that C(D,E) is MDS.
The monomial equivalence follows from the fact that on P1, all divisors

of a given positive degree are (rationally) equivalent, so D is rationally
equivalent to deg(D) · ∞. Thus there is a rational function h on X such
that

D = deg(D) · ∞+ div(h).

Then for any f ∈ L(D), fh is in L(deg(D) · ∞). Thus there is a map

M : C(D,E)→ C(deg(D) · ∞, E)

(f(P1), . . . , f(Pn)) 7→ (fh(P1), . . . , fh(Pn))
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which is linear and whose matrix is diagonal with diagonal entries
h(P1), . . . , h(Pn). In particular, M is a monomial matrix, so C(D,E) and
the GRS code C(deg(D) · ∞, E) are monomially equivalent.

Remark 2.1. The spectrum of a code of length n is the list
[A0, A1, ..., An], where Ai denotes the number of codewords of weight i.
The dual code of a linear code C ⊂ Fn is the dual of C as a vector space
with respect to the Hamming inner product on Fn, denoted C⊥. We say C
is formally self-dual if the spectrum of C⊥ is the same as that of C. The
spectrum of any MDS code is known (see §7.4 in Huffman and Pless [4]),
and as a consequence of this we have the following

Aj =
(
n

j

)
(q − 1)

j−d∑
i=0

(−1)i

(
j − 1
i

)
qj−d−i, d ≤ j ≤ n,

where q is the order of the finite field F . The following is an easy conse-
quence of this and the fact that the dual code of an MDS code is MDS: if C
is a GRS code with parameters [n, k, d] satisfying n = 2k then C is formally
self-dual. We will see later some examples of formally self-dual codes with
large automorphism groups.

3. Automorphisms

The action of a finite group G ⊂ Aut(X) on F (X) is defined by restriction
to G of the map

ρ : Aut(X) −→ Aut(F (X)),
g 7−→ (f 7−→ fg)

where fg(x) = (ρ(g)(f))(x) = f(g−1(x)).
Note that Y = X/G is also smooth and the quotient map

ψ : X → Y (3)

yields an identification F (Y ) = F (X)G := {f ∈ F (X) | fg = f, ∀ g ∈ G}.
Of course, G also acts on the group Div(X) of divisors of X. If g ∈

Aut(X) and dP ∈ Z, for places P of F (X), then g(
∑

P dPP ) =
∑

P dP g(P ).
It is easy to show that div(fg) = g(div(f)). Because of this, if div(f)+D ≥ 0
then div(fg) + g(D) ≥ 0, for all g ∈ Aut(X). In particular, if the action of
G on X leaves D ∈ Div(X) stable then G also acts on L(D). We denote
this action by

ρ : G→ Aut(L(D)).
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Now suppose that E = P1 + . . . + Pn is also stabilized by G. In other
words, G acts on the set supp(E) = {P1, . . . , Pn} by permutation. Then
the group G acts on C(D,E) by g ∈ G sending c = (f(P1), ..., f(Pn)) ∈ C
to c′ = (f(g−1(P1)), ..., f(g−1(Pn))), where f ∈ L(D).

Remark 3.1. Observe that this map sending c 7−→ c′, denoted φ(g),
is well-defined. This is clearly true if evalE is injective. In case evalE
is not injective, suppose c is also represented by f ′ ∈ L(D), so c =
(f ′(P1), ..., f ′(Pn)) ∈ C. Since G acts on the set supp(E) by permu-
tation, for each Pi, g−1(Pi) = Pj for some j. Then f(g−1(Pi)) =
f(Pj) = f ′(Pj) = f ′(g−1(Pi)), so (f(g−1(P1)), ..., f(g−1(Pn))) =
(f ′(g−1(P1)), ..., f ′(g−1(Pn))). Therefore, φ(g) is well-defined.

The permutation automorphism group of the code C, denoted
Perm(C), is the subgroup of the symmetric group Sn (acting in the natural
way on Fn) which preserves the set of codewords. More generally, we say
two codes C and C ′ of length n are permutation equivalent if there is an
element of Sn sending C to C ′ (as F -vector spaces). The automorphism
group of the code C, denoted Aut(C), is the subgroup of the group of
monomial matrices Monn(F ) (acting in the natural way on Fn) which pre-
serves the set of codewords. Thus the permutation automorphism group of
C is a subgroup of the full automorphism group.

The map φ induces a homomorphism of G into the automorphism group
of the code. The image of the map

φ : G→ Aut(C)
g 7−→ φ(g)

(4)

is contained in Perm(C).
Define AutD,E(X) to be the subgroup of Aut(X) which preserves the

divisors D and E.
When does a group of permutation automorphisms of the code C induce

a group of automorphisms of the curve X? Permutation automorphisms of
the code C(D,E) induce curve automorphisms whenever D is very ample
and the degree of E is large enough. Under these conditions, the groups
AutD,E(X) and PermC are isomorphic.

Theorem 3.1. (Joyner and Ksir [6]) Let X be an algebraic curve, D be a
very ample divisor on X, and P1, . . . , Pn be a set of points on X disjoint
from the support of D. Let E = P1 + . . .+Pn be the associated divisor, and
C = C(D,E) the associated AG code. Let G be the group of permutation
automorphisms of C. Then there is an integer r ≥ 1 such that if n >
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r ·deg(D), then G can be lifted to a group of automorphisms of the curve X
itself. This lifting defines a group homomorphism ψ : PermC → Aut(X).
Furthermore, the lifted automorphisms will preserve D and E, so the image
of ψ will be contained in AutD,E(X).

Remark 3.2. An explicit upper bound on r can be determined (see Joyner-
Ksir [6]). In the case where X = P1, r = 2. In addition, any divisor of
positive degree on P1 is very ample. Therefore, as long as degD > 0 and
n > 2 deg(D), the groups Perm(C) and AutD,E(X) will be isomorphic.

Now we would like to describe all possible finite groups of automor-
phisms of P1. Valentini and Madan [14] give a very explicit list of possible
automorphisms of the associated function field F (X) and their ramifica-
tions.

Proposition 3.1. (Valentini and Madan [14]) Let F be finite field of order
q = pk. Let G be a nontrivial finite group of automorphisms of F (X) fixing
F elementwise and let E = F (X)G be the fixed field of G. Let r be the
number of ramified places of E in the extension F (X)/E and e1, . . . , er the
corresponding ramification indices. Then G is one of the following groups,
with F (X)/E having one of the associated ramification behaviors:

(1) Cyclic group of order relatively prime to p with r = 2, e1 = e2 = |G0|.
(2) Dihedral group Dm of order 2m with p = 2, (p,m) = 1, r = 2, e1 = 2,

e2 = m, or p 6= 2, (p,m) = 1, r = 3, e1 = e2 = 2, e3 = m.
(3) Alternating group A4 with p 6= 2, 3, r = 3, e1 = 2, e2 = e3 = 3.
(4) Symmetric group S4 with p 6= 2, 3, r = 3, e1 = 2, e2 = 3, e3 = 4.
(5) Alternating group A5 with p = 3, r = 2, e1 = 6, e2 = 5, or p 6= 2, 3, 5,

r = 3, e1 = 2, e2 = 3, e3 = 5.
(6) Elementary Abelian p-group with r = 1, e = |G0|.
(7) Semidirect product of an elementary Abelian p-group of order q with a

cyclic group of order m with m|(q − 1), r = 2, e1 = |G0|, e2 = m.
(8) PSL(2, q), with p 6= 2, q = pm, r = 2, e1 = q(q−1)

2 , e2 = (q+1)
2 .

(9) PGL(2, q), with q = pm, r = 2, e1 = q(q − 1), e2 = q + 1.

The following result of Brandt can be found in §4 of Kontogeorgis and
Antoniadis [8]. It provides a more detailed explanation of the group action
on P1 than the previous Proposition, giving the orbits explicitly in each
case.

Notation: In the result below, let i =
√
−1. Also, if S ⊂ T then let T −S

denote the subset of elements of T not in S.
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Proposition 3.2. (Brandt [1]) If the characteristic p of the algebraically
closed field of constants F is zero or p > 5 then the possible automorphism
groups of the projective line are given by the following list.

(1) Cyclic group of order δ.
(2) Dδ = 〈σ, τ〉, (δ, p) = 1 where σ(x) = ξx , τ(x) = 1/x, ξ is a primitive

δ-th root of one. The possible orbits of the Dδ action are B∞ = {0,∞},
B− = {roots of xδ−1}, B+ = {roots of xδ +1}, Ba = {roots of x2δ +
xδ + 1}, where a ∈ F − {±2}.

(3) A4 = 〈σ, µ〉, σ(x) = −x , µ(x) = ix+1
x−1 , i2 = −1. The possi-

ble orbits of the action are the following sets: B0 = {0,∞,±1,±i},
B1 = {roots of x4 − 2i

√
3x2 + 1}, B2 = {roots of x4 − 2i

√
3x2 + 1},

Ba = {roots of
∏3

i=1(x
4 + aix

2 + 1)}, where a1 ∈ F − {±2,±2i
√

3},
a2 = 2a1+12

2−a1
, a3 = 2a1−12

2+a1
.

(4) S4 = 〈σ, µ〉, σ(x) = ix, µ(x) = ix+1
x−1 , i2 = −1. The possible orbits of the

action are the following sets: B0 = {0,∞,±1,±i}, B1 = {roots of x8+
14x4+1}, B2 = {roots of (x4+1)(x8−34x4+1)}, Ba = {roots of (x8+
14x4 + 1)3 − a(x5 − x)4}, a ∈ F − {108}.

(5) A5 = 〈σ, ρ〉, σ(x) = ξx, µ(x) = − x+b
bx+1 , where ξ is a primitive fifth root

of one and b = −i(ξ4 + ξ), i2 = −1. The possible orbits of the action
are the following sets: B∞ = {0,∞}∪{roots of f0(x) := x10 +11ix5 +
1}, B0 = {roots of f1(x) := x20 − 228ix15 − 494x10 − 228ix5 + 1},
B∗0 = {roots of x30 + 522ix25 + 10005x20 − 10005x10 − 522ix5 − 1},
Ba = {roots of f1(x)3 − af0(x)5}, where a ∈ F − {−1728i}.

(6) Semidirect products of elementary Abelian groups with cyclic groups:
(Z/pZ× ...×Z/pZ)×Z/mZ of order ptm, where m|(pt−1). Suppose we
have an embedding of a field of order pt into k. Assume GF (pt) contains
all the m-th roots of unity. The possible orbits of the action are the
following sets: B∞ = {∞}, B0 = {roots of f(x) := x

∏(pt−1)/m
j=1 (xm −

bj)}, where bj are selected so that all the elements of the additive group
Z/pZ × ... × Z/pZ (t times), when viewed as elements in F , are roots
of f(x), Ba = {roots of f(x)m − a}, where a ∈ F −B0.

(7) PSL(2, pt) = 〈σ, τ, φ〉, σ(x) = ξ2x , τ(x) = −1/x, φ(x) = x + 1,
where ξ is a primitive m = pt − 1 root of one. The orbits of the action
are B∞ = {∞, roots of xm − x}. B0 = {roots of (xm − x)m−1 + 1},
Ba = {roots of ((xm−x)m−1 +1)(m+1)/2−a(xm−x)m(m−1)/2}, where
a ∈ F×.

(8) PGL(2, pt) = 〈σ, τ, φ〉, σ(x) = ξx , τ(x) = 1/x, φ(x) = x + 1, where
ξ is a primitive m = pt − 1 root of one. The orbits of the action are
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B∞ = {∞, roots of xm − x}. B0 = {roots of (xm − x)m−1 + 1}, Ba =
{roots of ((xm − x)m−1 + 1)m+1 − a(xm − x)m(m−1)}, where a ∈ F×.

Proof. Brandt [1], Stichtenoth [12].

Let Y = X/G be the curve associated to the field E in Proposition 3.1,
and let π : X → Y be the quotient map.

Corollary 3.1. Assume that (1) the finite field F has characteristic > 5,
(2) π is defined over F , (3) for each p1 ∈ X(F ), all the points p0 in the
fiber π−1(p1) are rational: p0 ∈ X(F ), and (4) F is so large that the orbits
described in Proposition 3.2 are complete. Then the above Proposition 3.2
holds over F .

Proof. Under the hypotheses given, the inertia group is always equal to
the decomposition group and the action of the group G of automorphisms
commutes with the action of the absolute Galois group Γ = Gal(F/F ).

The following is our main result.

Theorem 3.2. Assume C is a GRS code constructed from a divisor D
with positive degree and defined over a sufficiently large finite field F (as
described in Corollary 3.1). Then the automorphism group of C must be
one of the groups in Proposition 3.1.

In fact, the action can be made explicit using Proposition 3.2.

Corollary 3.2. Each GRS code over a sufficiently large finite field is mono-
mially equivalent to a code whose automorphism group is one of the groups
in Proposition 3.1.

Proof. (of theorem) We assume the field is as in Corollary 3.1. Use Theo-
rem 3.1 and Lemma 2.2.

It would be interesting to know if this result can be refined in the case
when n = 2k, as that might give rise to a class of easily constructable
self-dual codes with large automorphism group.

4. Examples

Pick two distinct orbits O1 and O2 of G in X(F ). Assume that D is the
sum of the points in the orbit O1 and let O2 = {P1, ..., Pn} ⊂ X(F ). Define
the associated code of length n by
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C = {(f(P1), ..., f(Pn)) | f ∈ L(D)} ⊂ Fn.

This code has a G-action, by g ∈ G sending (f(P1), ..., f(Pn)) to
(f(g−1P1), ..., f(g−1Pn)), so is a G-module. Indeed, by construction, the
action of G is by permuting the coordinates of C.

Example 4.1. Let F be a finite field of characteristic > 5 which contains

(1) all 4th and 5th roots of unity, (2) all the roots of x10 + 11ix5 + 1, (3) all

the roots B0 of x20 − 228ix15 − 494x10 − 228ix5 + 1, and (4) all the roots B∗
0 of

x30+522ix25+10005x20−10005x10−522ix5−1. Furthermore, let B∞ = {0,∞}∪
{roots of x10 +11ix5 +1}. Let E =

P
P∈B0

P and let D =
P

P∈B∗0∪B∞
P . Then

deg(E) = 20 and deg(D) = 42. Then C = C(D, E) is a formally self-dual code

with parameters n = 42, k = 21, d = 22, and automorphism group A5.

This follows from (5) of Proposition 3.2 and Remark 2.1.

Example 4.2. Let F = GF (q) be a finite field of characteristic p > 5 for which

q ≡ 1 (mod 8) and for which F contains (1) all the roots of xq−1 − x, and (2)

all the roots B1 of ((xq−1 − x)q−2 + 1)q/2 − (xq−1 − x)(q−1)(q−2)/2. If B∞ =

{∞, roots of xq−1 − x}, then let D =
(q−1)(q−2)

4

P
P∈B∞

P , E =
P

P∈B1
P ,

and C = C(D, E). Then C is a formally self-dual code with parameters n =
q(q−1)(q−2)

2 , k = n/2, d = n + 1 − k, and permutation automorphism group

G = PSL(2, q).

This follows from (7) of Proposition 3.2.

5. Structure of the representations

We study the possible representations of finite groups G on the codes
C(D,E). As noted in Lemma 3.1, when E is large enough, this is the
same as the representation of G on L(D). Therefore we study the possible
representations of G on L(D). For simplicity we will restrict to the case
where the support of D is rational, i.e. D =

∑s
i=1 aiPi, where P1, . . . , Ps

are rational points on P1.
We can give the representation explicitly by finding a basis for L(D).

For a divisor D with rational support on X = P1, it is easy to find a basis
for L(D), as follows. Let ∞ = [1 : 0] ∈ X denote the point corresponding
to the localization F [x](1/x), and [p : 1] denote the point corresponding to
the localization F [x](x−p), for p ∈ F . For notational simplicity, let

mP (x) =

{
x, P = [1 : 0] =∞,
1

(x−p) , P = [p : 1].
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Then mP (x) is a rational function with a simple pole at the point P , and
no other poles.

Lemma 5.1. Let D =
∑s

i=1 aiPi be a divisor with rational support on
X = P1, so ai ∈ Z and Pi ∈ X(F ) for 0 ≤ i ≤ s.

(a) If D is effective, then

{1,mPi
(x)k | 1 ≤ k ≤ ai, 1 ≤ i ≤ s}

is a basis for L(D).
(b) If D is not effective but deg(D) ≥ 0, then D can be written as D =

D1 + D2, where D1 is effective and deg(D2) = 0. Let q(x) ∈ L(D2)
(which is a 1-dimensional vector space) be any non-zero element. Let
D1 =

∑s
i=1 aiPi. Then

{q(x),mPi
(x)kq(x) | 1 ≤ k ≤ ai, 1 ≤ i ≤ s}

is a basis for L(D).
(c) If deg(D) < 0, then L(D) = {0}.

Proof. This is an easy application of the Riemann-Roch theorem. Note
that the first part appears as Lemma 2.4 in Lorenzini [10].

By the Riemann-Roch theorem, L(D) has dimension degD + 1 if
deg(D) ≥ 0 and otherwise L(D) = {0}, proving part (c) and the exis-
tence of q(x) in part (b). For part (a), since mPi

(x)k has a pole of order
k at Pi and no other poles, it will be in L(D) if and only if k ≤ ai. Simi-
larly, for part (b), mPi

(x)k will be in L(D1) if and only if k ≤ ai; therefore
mPi

(x)kq(x) will be in L(D1 +D2) = L(D) under the same conditions. In
each of parts (a) and (b), the set of functions given is linearly independent,
so by a dimension count must form a basis for L(D).

Now let G be a finite group acting on X = P1 and let D be a divisor
with rational support, stabilized by G. Let S = supp(D) and let

S = S1 ∪ S2 ∪ ... ∪ Sm

be the decomposition of S into primitive G-sets. Then we can write D as

D =
m∑

k=1

akSk =
m∑

k=1

ak

s∑
i=1

Pik,

where for each k, P1k . . . Psk are the points in the orbit Sk. Then G will act
by a permutation on the points P1k . . . Psk in each orbit, and therefore on
the corresponding functions mPsk

(x).
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Theorem 5.1. Let X, F , G ⊂ Aut(X) = PGL(2, F ), and D be as above.
Let ρ : G→ Aut(L(D)) denote the associated representation.

(a) If D is effective then

ρ ∼= 1⊕m
k=1 akρk,

where 1 denotes the trivial representation, and ρk is the permutation
representation on the subspace

Vk = span {mP (x) | P ∈ Sk}.

(b) If deg(D) > 0 but D is not effective then L(D) is a sub-G-module of
L(D+), where D+ is a G-invariant effective divisor satisfying D+ ≥ D.

The groups and orbits which can arise are described in Proposition 3.1
above.

Proof. (a) By part (a) of Lemma 5.1, {1,mPik
(x)` | 1 ≤ ` ≤ ai, 1 ≤

i ≤ s 1 ≤ k ≤ m} form a basis for L(D). G will act trivially on the
constants. For each `, G will act by permutations as described on each set
{mPik

(x)` | Pik ∈ Sk}.
(b) Since D is not effective, we may write D = D+ − D−, where D+

and D− are non-zero effective divisors. The action of G must preserve D+

and D−. Since L(D) is a G-submodule of L(D+), the claim follows.
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In this paper we discuss an algorithm for code equivalence. We reduce the

equivalence test for linear codes to a test for isomorphism of binary matrices.
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1. Introduction

In this paper, we consider the algorithm for equivalence which is imple-
mented in the current version of the package Q − Extension [3]. Mainly,
this package can be used for classification of linear codes over small fields.
Actually, we reduce, as many other algorithms do, the equivalence test for
linear codes to a test for isomorphism of binary matrices or bipartite graphs.
This allows us to use the developed algorithm for many other combinatorial
objects - nonlinear codes, combinatorial designs, Hadamard matrices, etc.

The paper is organized in the following way: In section 2 we give some
main definitions related to the code equivalence and the isomorphism of
binary matrices. We also show how to transform the problem of code equiv-
alence to the problem of isomorphism of binary matrices. In section 3, we
present an important part of the mathematical base of the algorithm. Sec-
tion 4 contains the main algorithm with detailed pseudo code. In the end
of the section we give some additional invariants.

∗Partially supported by the Bulgarian National Science Fund under Contract No MM
1304/2003
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2. Codes and binary matrices

2.1. Equivalence of linear codes

Let Fn
q be the n-dimensional vector space over the finite field Fq. The Ham-

ming distance between two vectors of Fn
q is defined as the number of coor-

dinates in which they differ. A q-ary linear [n, k, d]q code is a k-dimensional
linear subspace of Fn

q with minimum distance d. A generator matrix G of
a linear [n, k] code C is any matrix of rank k (over Fq) with rows from C.

Definition 2.1. We say that two linear [n, k]q codes C1 and C2 are equiv-
alent, if the codewords of C2 can be obtained from the codewords of C1

via a finite sequence of transformations of the following types:

(1) permutation of coordinate positions;
(2) multiplication of the elements in a given position by a non-zero

element of Fq;
(3) application of a field automorphism to the elements in all coordinate

positions.

An automorphism of a linear code C is a finite sequence of transforma-
tions of type (1)–(3), which maps each codeword of C onto a codeword of
C. The set of automorphisms of a code C forms a group which is called the
automorphism group of the code C and denoted by Aut(C).

This definition is well motivated as the transformations (1)–(3) preserve
the Hamming distance and the linearity (for more details see [5, Chapter
7.3]). The problem of equivalence of codes has been considered in many pa-
pers. We distinguish the works of Leon [7] and Sendrier [11]. The complexity
of the Code Equivalence Problem is studied in [10].

The algorithm proposed by Sendrier [11] directly uses generator matrices
of the linear codes. It works only for codes with specific properties and
cannot be used in the general case.

Let C be a linear code over a field with q > 2 elements. In our algorithm,
we use a subset D of C which is stable under the action of Aut(C) and
generates C as a vector space. If the vector d ∈ D then the vectors λd for
λ ∈ Fq \ {0} are also in D. Let D′ = {d′1, d′2, . . . , d′K} be a subset of D
such that no two vectors d′i, d

′
j ∈ D′ are proportional for i 6= j, and for any

vector d ∈ D there is a constant λ ∈ Fq \ {0} for which λd ∈ D′.
Let A′′ be the matrix with rows d′1, d

′
2, . . . , d

′
K . We associate to any

element d′i,j the matrix
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D′
i,j =


d′i,j α2d

′
i,j . . . αq−1d

′
i,j

α2d
′
i,j α2

2 · d′i,j . . . α2αq−1d
′
i,j

. . . . . . . . . . . .

αq−1d
′
i,j α2αq−1d

′
i,j . . . α2

q−1d
′
i,j

 ,

where Fq \ {0} = {1, α2, . . . , αq−1}. In this way we obtain a q-ary (K(q −
1) + n)× n(q − 1) matrix A′

A′ =



D′
1,1 D′

1,2 . . . D′
1,n

D′
2,1 D′

2,2 . . . D′
2,n

. . . . . . . . . . . .

D′
K,1 D′

K,2 . . . D′
K,n

11 . . . 1 00 . . . 0 . . . 00 . . . 0
00 . . . 0 11 . . . 1 . . . 00 . . . 0
. . . . . . . . . . . .

00 . . . 0︸ ︷︷ ︸ 00 . . . 0︸ ︷︷ ︸ . . . 11 . . . 1︸ ︷︷ ︸
q − 1 q − 1 q − 1


From this matrix we easily obtain the binary (K(q− 1) + n)× n(q− 1)

matrix A such that

ai,j = 1 ⇐⇒ a′i,j = 1, ai,j = 0 otherwise. (1)

For large enough values of K, Aut(A) will be isomorphic to Aut(C) (see
definitions 2.3 and 2.4). The last n rows guarantee that an automorphism
σ will map any block of q−1 columns of A (which corresponds to a column
of A′′) to another block of q − 1 columns.

So we reduce our code equivalence problem to an isomorphism test of
binary matrices. Moreover, by the permutation which gives an isomorphism
of the binary matrices, we can find the coefficients in point (2) in the defi-
nition for equivalence of q-ary codes and the field automorphism when q is
a power of a prime (see section 2.3).

2.2. Isomorphism of binary matrices

Let us denote by Ω the set of all binary m × n matrices. We define an
ordering in the set Fn

2 as follows: For a = (α1, α2, . . . , αn) ∈ Fn
2 and b =

(β1, β2, . . . , βn) ∈ Fn
2 we have a < b ⇐⇒ α1 = β1, . . . , αj−1 = βj−1,

αj < βj for some j ≤ n. We use it to define a sorted matrix.

Definition 2.2. A sorted matrix is a matrix with rows a1, a2, . . . , am

such that a1 ≥ a2 ≥ · · · ≥ am.
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Obviously, we can correspond to any matrix A ∈ Ω a sorted matrix
Asort in a unique way.

We consider the action of the group Sn on the columns of a matrix
A ∈ Ω. If σ ∈ Sn, we denote by Aσ the matrix obtained from A after the
permutation of the columns. If the columns of A are b1, b2, . . . , bn then the
columns of Aσ are σ(b1) = b1σ, σ(b2) = b2σ, . . . , σ(bn) = bnσ. Similarly,
we consider the action of Sm on the rows of A. For τ ∈ Sm, we denote
by τA the matrix obtained from A after the permutation of the rows. If
a1, a2, . . . , am are the rows of A then the rows of τA are τ(a1) = a1τ ,
τ(a2) = a2τ , . . . , τ(am) = amτ . Obviously, for any matrix A ∈ Ω, there is a
permutation γ ∈ Sm such that the sorted matrix Asort = γA.

Definition 2.3. Two matrices of the same size are isomorphic if the
rows of the second one can be obtained from the rows of the first one by a
permutation of the columns.

This definition is based on the natural action of the symmetric group Sn

on the set of columns for all elements in Ω. Obviously, the matrices A and
B from the set Ω are isomorphic, or A ∼ B, if their corresponding sorted
matrices are isomorphic. This fact allows us to consider only the sorted
matrices in Ω.

Any permutation of the columns of A which maps the rows of A into
rows of the same matrix, is called an automorphism of A. The set of all
automorphisms of A is a subgroup of the symmetric group Sn and we denote
it by Aut(A).

The following definition (equivalent to definition 2.3 ) is based on the
action of the symmetric group Sn on the set of columns and the action of
the symmetric group Sm on the set of rows to all elements in Ω.

Definition 2.4. Two matrices of the same size are isomorphic if the
second one can be obtained from the first one by a permutation of the
columns and the rows.

We prefer the first one because it is similar to the usual code equivalence
definition. Considering the sorted matrices, we have A ∼ B if there exists
a permutation σ ∈ Sn such that Bsort = (Aσ)sort.

We consider two main problems.

Problem 2.1. Is there a permutation σ ∈ Sn such that for given binary
matrices A and B, Bsort = (Aσ)sort?
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Problem 2.2. For a given binary matrix A, compute a set of generators
for the automorphism group of A.

The definition for isomorphism of binary matrices allows us to consider
the set Ω as a union of equivalence classes. Matrices which are isomorphic
belong to the same equivalence class. Every matrix of an equivalence class
can serve as a representative for this equivalence class. In many cases, a
canonical representative is used, which is selected based on some specific
conditions. This canonical representative is intended to easily make the
distinction between distinct equivalence classes. Practically, it reduces the
isomorphism testing of matrices to comparing matrices. More precisely, we
can define the canonical representative map as follows:

Definition 2.5. A canonical representative map is a function ρ: Ω 7→
Ω which satisfies the following two properties:

1. for all X ∈ Ω it holds that ρ(X) ∼ X,
2. for all X,Y ∈ Ω it holds that X ∼ Y implies ρ(X) = ρ(Y ).

We say that the matrix X is in canonical form if ρ(X) = X.

We consider ordering in the set of all binary m × n matrices. For the
matrices A = (a1, a2, . . . , am)t and B = (b1, b2, . . . , bm)t we have A <

B ⇐⇒ a1 = b1, . . . , aj−1 = bj−1, aj < bj for some j ≤ m. For any two
matrices A and B we can say A < B, A > B or A = B.

Now we will present a way to choose a canonical representative. For
the canonical representative of the class of equivalence of the matrix A we
can take the matrix B such that Bsort ≥ (Aσ)sort for any permutation
σ ∈ Sn. It is easy to define the canonical representative in this way but
quite complicated to find it. Of course, we can try all permutations in
Sn. Using comparison of matrices, we can define ordering for the elements
in Sn with respect to a binary matrix A: γ1 < γ2 with respect to A if
(Aγ1)sort < (Aγ2)sort. The general idea of a class of algorithms including
ours is to find a minimal (or maximal) element in the set Π of permutations,
which depends on the matrix A, where Π has a much smaller number of
elements than Sn.

Definition 2.6. Let A1, A2, . . . , As be all different m× n binary matrices
which are isomorphic to the matrix in canonical form B. Let σi ∈ Sn be a
permutation of the columns of the matrix Ai such that (Aiσi)sort = Bsort,
i = 1, . . . , s. We call the permutation σi a canonical labeling map for
the matrix Ai defined by B.
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As Aiτ = B ∀τ ∈ σiAut(B), the map σi is not unique except when
Aut(B) = {id}. A canonical labeling of the columns of the matrix Ai is
(σi(1), σi(2), . . . , σi(n)).

An important computational problem is the following:

Problem 2.3. For a given binary matrix A compute the canonical form B

and a canonical labeling σ ∈ Sn such that Bsort = (Aσ)sort.

The aim of our work is to present an algorithm which defines a spe-
cific canonical representative map and gives a solution of the three defined
problems.

Problems 1,2, and 3, are connected with the graph isomorphism prob-
lem. First of all, any binary matrix can be considered as a bipartite graph.
In the case of a bipartite graph, the set of vertices is decomposed into two
disjoint colored sets (columns and rows) such that no two graph vertices
within the same set are adjacent. Hence, solving the isomorphism problems
for bipartite graphs and binary matrices is the same.

In other hand, any graph can be made bipartite by replacing each edge
by two edges connected with a new vertex. And any two graphs are isomor-
phic if and only if the transformed bipartite graphs are. Theoretical results
for the graph isomorphism problem can be found in [1], [4].

Next, we briefly describe some of the basic setup and give pseudo-code
for the algorithm. For further details see [8].

2.3. The connection between equivalence of linear codes and

isomorphism of binary matrices

Let C be a linear code over a field with q > 2 elements and A be the
corresponding binary (K(q− 1) + n)× n(q− 1) matrix as presented in (1).
To any automorphism ϕ of C there corresponds a permutation σϕ from
Aut(A) in the following way:

(1) If ϕ is a permutation of the coordinate positions, the permutation σϕ

is the same ϕ which acts on the blocks of q− 1 columns corresponding
to the coordinates of C.

(2) If ϕ is a multiplication of the elements in a given position, say i, by a
nonzero element α ∈ Fq, σϕ is a permutation of the columns in the block
of q − 1 columns corresponding to the position i. This permutation,
considered as an element of the symmetric group Sq−1, depends only
on α; that’s why we denote it by σ(α). So for all nonzero elements of Fq

we can collect corresponding permutations and from the permutation
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easily find the element. Moreover, the set Yq = {σ(α) | α ∈ Fq \ {0}}
forms a cyclic subgroup of Sq−1 of order q − 1.

(3) The case when ϕ is a field automorphism is more complicated. Then
the corresponding permutation σϕ is a permutation of the columns in
the blocks. As in the previous case, it can be considered as an element
of Sq−1 and depends only on the field automorphism. As we know, the
Galois group of a finite field with q = ps elements is a cyclic group of
order s; that’s why the set Xq of the corresponding permutations in
Sq−1 forms a cyclic group of order s.

(4) When ϕ is a finite sequence of the transformations of the three types,
then σϕ is the product of the corresponding permutations of the
columns in A.

Example 2.1. Let C be a quaternary code and F4 = {0, 1, x, x2}, x3 = 1.
We associate the elements of the field with binary 3 × 3 matrices in the
following way:

0 7−→

000
000
000

 , 1 7−→

100
001
010

 , x 7−→

001
010
100

 , x2 7−→

010
100
001

 . (2)

It is easy to see that the multiplication by x corresponds to the permu-
tation (132) of the columns in any of these blocks, and the multiplication
by x2 corresponds to the permutation (123). The only nontrivial automor-
phism of the field maps the element a ∈ F4 to its conjugate a = a2. We can
represent it as the permutation (23) of the columns combined with the same
permutation of the rows. So the transposition (12) = (23)(132) corresponds
to the field automorphism combined with a multiplication by x.

Example 2.2. Let consider the field F5 = Z5. Then

1→


1000
0010
0100
0001

 , 2→


0010
0001
1000
0100

 , 3→


0100
1000
0001
0010

 , 4→


0001
0100
0010
1000

 . (3)

In this case we have Y5 = {id, σ(2) = (1342), σ(4) = (14)(23), σ(3) =
(1243)}.

Proposition 2.1. If the codes C and C ′ are equivalent, then the corre-
sponding matrices A and A′ are isomorphic. Moreover, if C ′ = φ(C) then
σ = σφ is a composition of a permutation of the n blocks of q − 1 columns
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corresponding to the coordinates of the codes, and permutations from a coset
τYq, where τ ∈ Xq.

Proposition 2.2. If there is a permutation σ ∈ Sn(q−1) such that
(Aσ)sort = (A′)sort, this permutation is a composition of a permutation
of the n blocks of q − 1 columns corresponding to the coordinates of the
codes, and permutations from a coset τYq, where τ ∈ Xq, then the codes C
and C ′ are equivalent.

Proof. The permutation of the n blocks corresponds to a permutation of
the coordinates of C. A permutation from the coset τYq corresponds to a
field automorphism followed by a multiplication of the elements in a given
position by a nonzero element of the field.

If the matrices A and A′ are isomorphic, they have the same canon-
ical form B. As Bsort = (Aτ)sort = (A′τ ′)sort for some permutations τ
and τ ′, we can take σ = τ(τ ′)−1 to be the isomorphism. Obtaining the
canonical form of the matrices, we find also their automorphism groups. If
the automorphism groups Aut(A) and Aut(A′) of two isomorphic matrices
consist only of permutations as described in the proposition, then the cor-
responding codes are equivalent. Really, from the structure of the matrices,
it follows that a permutation ϕ, such that ϕ(A) = A′, maps any block of
A into a block of A′. Moreover, if τ ∈ Sq−1, τ 6∈ Yq, then τσ(α)τ−1 6∈ Yq.
Hence, if ϕ is not of the type as described in the proposition, the group
Aut(A′) will also contain elements which are not of this type - but this is
not the case.

Proposition 2.3. Let C be a linear code over Fq and A be the correspond-
ing binary (K(q − 1) + n) × n(q − 1) matrix as presented in Eq. (1). If
all automorphisms of A are of the type described in Proposition 2.2, then
Aut(C) ∼= Aut(A).

3. Orbits, partitions, invariants

3.1. Orbits

The group Aut(A) splits the columns of A into disjoint sets O1, O2, . . . , Ok

called orbits. Two columns a1 and b1 are in the same orbit if and only
if there is an automorphism σ ∈ Aut(A) such that σ(a1) = b1. All au-
tomorphisms γ ∈ Aut(A) for which γ(a1) = a1 form a group Aut(Aa1)
called the stabilizer of a1. All the automorphisms which map a1 to b1
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form a coset of the stabilizer Aut(Aa1). Moreover, if a1 and b1 are in the
same orbit, their stabilizers Aut(Aa1) and Aut(Ab1) are conjugated, i.e.
Aut(Aa1) = σ−1Aut(Ab1)σ.

The group Aut(Aa1) also splits the columns of A into disjoint orbits,
which we denote by Oa1

1 , Oa1
2 , . . . , Oa1

r , as Oa1
i ⊂ Oj for a suitable j, i =

1, . . . , r. If a1 and b1 are in the same orbit, to any orbit Oa1
i , it corresponds

in a unique way an orbit Ob1
i . We call the orbits Oa1

i and Ob1
i corresponding

with respect to the fixed columns a1 and b1, and denote this by Oa1
i oO

b1
i .

Any two corresponding orbits Oa1
i and Ob1

i (Oa1
i oO

b1
i ) belong to the same

orbit induced by Aut(A). Moreover, for any a2 ∈ Oa1
i and b2 ∈ Ob1

i , there
exists an automorphism σ ∈ Aut(A) such that b1 = σ(a1) and b2 = σ(a2).
Conversely, if a2 ∈ Oa1

i and b2 ∈ Ob1
i , but the orbits Oa1

i and Ob1
i are not

corresponding, then for any γ, for which γ(a1) = b1, we have γ(a2) 6= b2.
Similarly, for any a2 ∈ Oa1

i and b2 ∈ Ob1
i , Oa1

i o O
b1
i , we denote the

corresponding orbits with respect to the fixed pairs of columns a1, a2 and
b1, b2 by Oa1,a2

i2
oOb1,b2

i2
. If |Aut(Aa1,a2)| > 1, we can continue to fix columns.

In the general case, we denote the stabilizer of the points a1, a2, . . . , ak by
Aut(Aa1,a2,...,ak

). The corresponding orbits are denoted by Oa1,a2,...,ak

i o
Ob1,b2,...,bk

i .

Let Aut(Aa1,a2,...,ak
) and Aut(Ab1,b2,...,bk

) be conjugated, i.e. there
exists an automorphism σ such that σ(ai) = bi, i = 1, 2, . . . , k. If
|Aut(Aa1,a2,...,ak

)| = 1 then any of the corresponding orbits has only one
element and therefore these orbits define the automorphism σ.

If γ ∈ Sn and Oa1,a2,...,ak

i = {o1, o2, . . . , oj} is an orbit induced by
Aut(Aa1,a2,...,ak

) then O
γ(a1),γ(a2),...,γ(ak)
i = {γ(o1), γ(o2), . . . , γ(oj)} is an

orbit induced by Aut(Aγγ(a1),γ(a2),...,γ(ak)).

3.2. Partitions, ordered partitions

A partition π = (V1, V2, . . . , Vr) of a set L is a family of disjoint nonempty
subsets V1, V2, . . . , Vr, Vi ⊂ L, called cells, such that V1 ∪V2 ∪ · · · ∪Vr = L.
A cardinality of a cell is the number of its elements. A cell is called discrete
if it consists of only one element, and the partition is discrete if all its cells
are discrete.

Any group G of automorphisms, G ⊂ Aut(A), splits the columns into
orbits. But in this case we have no criteria to order the cells. The trivial
group {id} splits the columns into a discrete partition.

Any automorphism induces a partition of columns with respect to the
cyclic group generated by this automorphism. Let Gi be the cyclic group
generated by γi, and let πi be the partition which corresponds to the orbits
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of Gi, i = 1, 2. The orbits of the group G, generated by γ1 and γ2, form a
new partition π, and we can find it in the following rule using π1 and π2.
If there are two columns which are in different cells Vi and Vj in πl1 and in
the same cell in πl2 , {l1, l2} = {1, 2}, then the columns of Vi and Vj have
to be in one cell in π.

An ordered partition is a partition, for which Vi < Vj or Vi > Vj for any
i 6= j. We will write the ordered partitions in increasing order, i.e. Vi < Vj

for i < j.
Let π = (V1, V2, . . . , Vr) is a partition and γ ∈ Sn. Then γ(π) =

(γ(V1), γ(V2), . . . , γ(Vr)) where γ(Vj) = (γ(a1), γ(a2), . . . , γ(ai)) for Vj =
[a1, a2, . . . , ai].

3.3. Definition of invariants

An invariant of the columns of a matrix A with respect to the group Aut(A)
is a function f1 which maps any column to an element of an ordered set
M (for example Z), as f1(ci) = mi, mi ∈ M , such that if σ(ci) = cj ,
σ ∈ Aut(A), then f1(ci) = f1(cj). Moreover, f1(c) has the same value as
f1(γ(c)) with respect to γAut(Aγ)γ−1 for any permutation γ ∈ Sn.

The invariant f1 induces an ordered partition of the set of columns of
the matrix , as f1(ci) = f1(cj)⇔ ci, cj ∈ Vp, f1(ci) < f1(cj)⇔ ci ∈ Vp, cj ∈
Vq for p < q. This ordered partition can be considered as:

- arranging the columns in groups - any cell consists of the columns in
one or more orbits.

- reordering the columns with respect to the cells and their order. If the
partition is discrete, it defines a permutation of the columns in A.

- we can choose a cell as special. For example this could be the first
largest cell.

The group Aut(A) stabilizes the defined partition π1. We define in-
variants with respect to the stabilizer Aut(Aa1,a2,...,ak

) of the columns
a1, a2, . . . , ak in the following way.

Definition 3.1. Let πk = (V1, V2, . . . , Vrk
) be an ordered partition such

that σ(πk) = πk for any σ ∈ Aut(Aa1,a2,...,ak−1) and ak be a column in the
special cell Vjs

. An invariant of the columns of a matrix A with respect to
the group Aut(Aa1,a2,...,ak−1,ak

) and the ordered partition πk is a function
fk+1, which maps any column to an element of M , such that:

1. fk+1(ak) < fk+1(b) for all b ∈ Vjs
\ {ak}.

2. fk+1(a) < fk+1(b) for any a ∈ Vi, b ∈ Vj , where Vi, Vj ∈ πk, i < j.
3. fk+1(a) = fk+1(b) when a and b are in the same orbit with respect
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to the stabilizer Aut(Aa1,a2,...,ak
). Moreover, fk+1(a) = fk+1(γ(a)) with

respect to γAut((Aγ)γ(a1),γ(a2),...,γ(ak))γ−1 and γ(πk) for any γ ∈ Sn.

Definition 3.2. We call the set of invariants F strong if the columns in
different orbits have different values in M .

Let F = {f1, f2, f3, . . . } be a set of invariants. To obtain a discrete par-
tition, induced by F and the matrix A, we can use the following algorithm:

00]disc part(inp A:binary matrix; F:set of invariants; π0:partition;
00] out k:number of fixed columns;
00] π1, π2, . . . , πk:partitions;
00] w:array of cells; v:vector of fixed columns );
00] var
00] i: integer; v: vector;
01] begin
02] i := 1;
03] v[i] := 0;
04] inv act; { using f1 and π0 find π1 = (V1, V2 . . . , Vr1) and Vs1 ; }

{Vs1 is a ”special” cell }
05] w[1]:=Vs1 ;
06] while πi is not discrete do
07] begin
08] choose ai from Vsi ;
09] fix(ai); { (V1, . . . , Vsi , . . . , Vri) go to (V1, . . . , ai, Vsi \ {ai}, . . . , Vri) }
10] v[i] := ai;
11] i := i + 1;
12] inv act; { using fi find πi = (V1, V2, . . . , Vri) and Vsi ; }
13] w[i]:=Vsi ;
14] end;
15] k := i;
16] end;

We use the following notations in the algorithms: inp - input variables,
out - output variables, inp out - variables, used as input and output (they
change in the corresponding algorithm).

After acting with f1 on the columns of the input partition π0, the algo-
rithm obtains (step 4) a partition induced by f1 and a special cell Vs1 . If the
partition obtained is not discrete, the algorithm chooses a column from the
special cell, and collects this column in v[i]. In row 9, the algorithm fixes
the chosen column, i.e. it splits the special cell Vsi

in the partition π1 into
two cells. The first one is discrete and contains only the fixed column. In
row 12, using the invariant fi, the algorithm obtains the next partition. In
the end, the variable k keeps the number of fixed columns and the number
of levels, and w keeps the special cells in the different levels.



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

137

We call a position of a cell Vl in the partition πj =
(V1, . . . , Vl−1, Vl, . . . , Vr) the number |V1| + |V2| + · · · + |Vl−1| + 1. From
the definition 3.1, it follows that any cell Vi in the partition πj consists of
ordered cells in the partition πj+1 and the position of the first one is the
same as the position of Vi.

The set v of fixed columns in steps one, two, etc., and the algorithm
disc part define in a unique way an ordered partition. We call the set v the
vector of the fixed columns.

If we choose different columns ai from the special cell Vsi
, the algorithm

disc part determines different discrete partitions. Let us denote by Π the
set of all different discrete partitions which can be generated using the
algorithm disc part. Let πk = (V1, V2 . . . , Vri) ∈ Π be a discrete partition.
This means that any cell is discrete, ri = n, and πk = ([ci1 ], [ci2 ], . . . , [cin

]),
where cj are columns in A.

3.4. Properties of partitions induced by invariants

Let A be a binary matrix and F be a set of invariants.

Proposition 3.1. Let the stabilizers Aut(Aa1,...,ak
) and Aut(Ab1,...,bk

) be
conjugate and the orbits Oa1,...,ak

i1
and Ob1,...,bk

i1
be corresponding (Oa1,...,ak

i1
o

Ob1,...,bk

i1
). If Oa1,...,ak

i1
belongs to the special cell, then Ob1,...,bk

i1
also belongs

to the special cell but after fixing b1, b2, . . . , bk.

Proof. Let f2(d) = mi1 ∈ M where d is a column in Oa1
i1

or in another
orbit in the special cell. By point 2 in definition 3.1, the value of f2 will
be also mi1 for the columns in the corresponding orbits. This means that
these corresponding orbits form a special cell after fixing b1. For k > 1, the
proposition can be proved trivially by induction with respect to the number
of fixed columns.

Corollary 3.1. Let π′ and π′′ be two partitions obtained in the row 12 of
disc part and their corresponding vectors of fixed columns v′ and v′′ have
k elements. If there exists an automorphism σ such that v′′ = σ(v′), then
π′′ = σ(π′). If π ∈ Π and σ ∈ Aut(A) then σ(π) ∈ Π.

The discrete partition πk = ([ci1 ], [ci2 ], . . . , [cin
]) determines the permu-

tation of the columns π̂k = (1→ ci1 , 2→ ci2 , . . . , n→ cin). Conversely, for
any permutation we have a unique discrete partition.

We compare discrete partitions πA and πB of the matrices A and B,
respectively, in the following way: πA < πB ⇔ (Aπ̂A)sort < (Bπ̂B)sort,
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πA � πB ⇔ (Aπ̂A)sort = (Bπ̂B)sort.

Lemma 3.1. Consider the matrices A and B = Aτ for τ ∈ Sn and the
sets ΠA and ΠB of all discrete partitions obtained for A and B using the
algorithm disc part. Then there is an one-to-one correspondence between
ΠA and ΠB. Moreover, for any discrete partition πA ∈ ΠA there is a discrete
partition πB ∈ ΠB such that πB � πA.

Proof. Let πA = ([ci1 ], [ci2 ], . . . , [cin
]) be a discrete partition in ΠA with

vector of the fixed columns v. From the properties of the orbits and def-
inition 3.1, it follows that τ(v) = (τ(v1), τ(v2), . . . , τ(vk)) is the vector of
the fixed columns of the partition τ(πA) = ([τ(ci1)], [τ(ci2)], . . . , [τ(cin

)]).
Actually, the columns cil

and τ(cil
) are the same, l = 1, 2, . . . , n. From

proposition 3.1, it follows that τ(πA) ∈ ΠB . Hence πA � τ(πA) with re-
spect to the definition given above.

For a fixed column a, we call the position of the corresponding discrete
cell in the partition a position of this column. So if we fix a column a, its
position is not changed until the end of the procedure, where we obtain a
discrete partition. In the algorithm disc part, we can obtain not only the
vector of fixed columns v, but also the vector of their positions vp.

The comparing of the discrete partitions helps us to define a canonical
discrete partition.

Lemma 3.2. The maximal discrete partition c in Π such that c �
max{πj ;πj ∈ Π}, which we call canonical, determines a permutation ĉ

which is a canonical labeling map for A.

Proof. It follows from the definition for canonical labeling map and lemma
3.1.

Proposition 3.2. Two discrete partitions γ1 = ([ci1 ], [ci2 ], . . . , [cin ]) and
γ2 = ([cj1 ], [cj2 ], . . . , [cjn

]), for which γ1 � γ2, define an automorphism
σ̂ = (ci1 → cj1 , ci2 → cj2 , . . . , cin

→ cjn
), which is σ̂ = γ̂1 · γ̂−1

2 .

Proof. γ1 � γ2 ⇒ (Aγ̂1)sort = (Aγ̂2)sort.

Lemma 3.3. Two discrete partitions π′ and π′′ in Π with vectors of fixed
columns v′ and v′′ of length k are equal (π′ � π′′) if and only if v′j and

v′′j belong to corresponding orbits for any j ≤ k (if v′j ∈ O
v′1,...,v′j−1
j and

v′′j ∈ O
v′′1 ,...,v′′j−1
j for j ≤ k, then O

v′1,...,v′j−1
j oOv′′1 ,...,v′′j−1

j ).
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Proof. If π′ � π′′ then there is an automorphism σ̂ = π̂′ · π̂′′
−1

which
maps the first partition to the second one. Hence σ̂(v′) = v′′ and so the
corresponding vectors of fixed columns are in corresponding orbits.

Conversely, if v′j and v′′j belong to corresponding orbits for any j ≤ k,
then there exists an automorphism σ such that σ(v′j) = v′′j for j = 1, 2, . . . , k
and therefore π′′ = σ(π′).

Theorem 3.1. Let T1 ⊂ Π and T2 ⊂ Π be the sets of all discrete partitions
with vectors of fixed columns (v1, . . . , vj , a, . . . ) and (v1, . . . , vj , b, . . . ), and
a and b be in the same orbit with respect to Aut(Av1,...,vj ). Then any element
πT2 ∈ T2 can be presented as πT2 = σ(πT1) for some σ ∈ Aut(Av1,...,vj

).
The permutation σ is an automorphism which means that πT1 and πT2 are
equal.

Proof. Let πT1 ∈ T1 is a partition with a vector of fixed columns v =
(v1, . . . , vj , a, vj+2, . . . , vk). There is a permutation σ ∈ Aut(Av1,...,vj

) such
that σ(a) = b. Then σ(v) = (v1, . . . , vj , b, σ(vj+2), . . . , σ(vk)) is the vec-
tor of fixed columns for the partition σ(πT1). This partition is in T2 (see
proposition 3.1). Now it is trivially to see that any element πT2 ∈ T2 can
be presented as πT2 = σ(πT1) for some σ ∈ Av1,...,vj .

Corollary 3.2. If two discrete partitions π′ and π′′ of a matrix A are equal
then their vectors of positions of fixed columns vp′ and vp′′ are the same.

Corollary 3.3. If all the invariants in F are strong (i.e. every special cell
consists of one orbit) then all discrete partitions in Π are equal.

3.5. Invariants of columns and rows

Let us consider the second definition for isomorphism of matrices. In anal-
ogy to the definition for the columns invariants, we can define row invariants
which induce ordered partitions πrow

k with respect to the stabilizer of the
columns Aut(Aa1,a2,...,ak−1) and the previous row partition πrow

k−1.
Now on, we denote by π an ordered partition which consists of πcolumn

and πrow, or π = (πcolumn, πrow). We denote the cells of πrow by V ′i =
[a′1, . . . , a

′
j ].

There are invariants of columns which are very effective and recursively
depend on rows invariants.

Definition 3.3. We call distance between b and V the number of ones in



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

140

a row b and the columns in a set V and denote d(b, V ). Similarly, we define
distance between a column b and a set of rows V .

Now we consider an invariant which is based on the following trivial
fact.

Lemma 3.4. Let us consider the set Vcolumn of columns of a binary matrix
which consists of one or a few orbits with respect to a group of automor-
phisms G. Then a necessary condition two rows a and b from the set of
rows Vrows to be in the same orbit with respect to G is d(a, Vcolumn) =
d(b, Vcolumn). Similarly, this works for two columns and a set of rows.

This claim is also true in the case when G is a stabilizer of columns
Aut(Aa1,a2,...,ak

) ⊂ Aut(A).
We give an example to show how to use lemma 3.4 to obtain an invariant

and the induced by it partition. We denote by R an ordered partition of
rows or columns, which we use for comparing. Actually, R can be an ordered
partition of some of the rows and columns (not of all rows and columns) or
even the empty set.

Example 3.1. Let us consider the matrix

A = 〈1111000, 0101100, 0010110, 0001011, 1000111, 1100010, 0110001〉

In the beginning, we have the trivial partition of the columns

πcolumn = Rcolumn = (V1), V1 = [1, 2, 3, 4, 5, 6, 7],

and the trivial partition of the rows πrow = Rrow = (V ′1), for V ′1 =
[1′, 2′, 3′, 4′, 5′, 6′, 7′].

The number of ones in the rows is 1′− 4, 2′− 3, 3′− 3, 4′− 3, 5′− 4, 6′−
3, 7′−3, or d(1′, V1) = 4, d(1′, V1) = 4, d(2′, V1) = 3, d(3′, V1) = 3, d(4′, V1) = 3,

d(5′, V1) = 4, d(6′, V1) = 3, d(7′, V1) = 3. This means that the set of the rows
has at least 2 orbits with respect to Aut(A). The number of ones in the
rows (or the distance to the set of all columns V1) induces the following
ordered partition: πrow = (V ′1 , V

′
2) = ([2′, 3′, 4′, 6′, 7′], [1′, 5′]).

In the second step we use the obtained partition πrow as Rrow and com-
pare the distances from the columns to the cells of Rrow. So we obtain the
following distances from the columns to the cells of Rrow:

1 2 3 4 5 6 7
d(∗, V ′1) 1 3 2 2 2 3 2
d(∗, V ′2) 2 1 1 1 1 1 1
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These distances induce the next ordered partition of the columns.
πcolumn = (V1, V2, V3) = ([1], [3, 4, 5, 7], [2, 6]). In the third step, we com-
pare the distances between the rows and the obtained πcolumn:

1′ 2′ 3′ 4′ 5′ 6′ 7′

d(∗, V1) 1 0 0 1 1 1 0
d(∗, V2) 2 2 2 2 2 1 2
d(∗, V3) 1 1 1 1 1 2 1

Hence, after this step we have

πrow = (V ′1 , V
′
2 , V

′
3) = ([2′, 3′, 4′, 7′], [6′], [1′, 5′]).

In step 4, for the columns we obtain following distances

1 2 3 4 5 6 7
d(∗, V ′1) 0 2 2 2 2 2 2
d(∗, V ′2) 1 1 0 0 0 1 0
d(∗, V ′3) 2 1 1 1 1 2 1

There is no new splitting of cells and therefore the process stops. We
can generalize all the calculations for the columns in the following way:
to any column we correspond in a unique way a polynomial with integer
coefficients:

f(1) = 1 + Y (1 + 2x) + Y 2(x+ 2x2)

f(2) = f(6) = 1 + Y (3 + x) + Y 2(2 + x+ x2)

f(3) = f(4) = f(5) = f(7) = 1 + Y (2 + x) + Y 2(2 + x2)

The coefficients for Y 0 is one because all the columns are in the same
cell in the beginning. The coefficients for Y and Y 2 depend on the distances
to the corresponding cells of Rcolumn in the steps two and four.

Actually, we repeat some of the calculations in this procedure. In step
two, we look for distances between all columns and the rows in the set
[2′, 3′, 4′, 6′, 7′]. In step 4, we look for the distances to [2′, 3′, 4′, 7′] and [6′].
It is clear that in step 4 we can obtain the same splitting of columns if we
compute only the distances to the cell [6′] or to cell of rows [2′, 3′, 4′, 7′].
Generally, it is necessary to calculate the distances to all cells except one.
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We skip the first largest cell (with maximum cardinality) for efficiency. If
there is only one cell, there is no reason to compare again with it.

To obtain the final partition of columns and rows, we use the following
algorithm:

stable(inp A:bin mat; inp out π:partition; inp πh:partition; inp copy:string);
00] var i: integer;
00] πcolumns, πrows: partition; πhcolumns, πhrows: partition;
01] begin
02] init πcolumns and πrows using π;
03] init Rcolumns and Rrows using πh;
04] split(inp out: πrows, inp: Rcolumns, out: Rrows, inp: copy);
05] copy:=’some’;
06] split(inp out: πcolumns, inp: Rrows, out: Rcolumns, inp: copy );
07] while not ((|Rcolumns| = 0) and (|Rrows| = 0)) do
08] begin
10] split(inp out: πrows, inp: Rcolumns, out: Rrows, inp: copy);
11] split(inp out: πcolumns, inp: Rrows, out: Rcolumns, inp: copy);
12] end;
13] πcolumns and πrows form π;
14] end;

Split partitions πrows with respect to Rcolumns and copy the result in
Rrows, which will be used in the next step to partition the columns.

split(inp out π:partition of rows (or columns);

inp Rnow:partition of columns (or rows);
out Rnext:partition of rows (or columns);

inp copy:string );

begin
Rnext:=(); { empty }
for every cell V in π do
begin

partition V in V1, . . . , Vg such that a ∈ Vi and b ∈ Vj for i < j ⇔
d(a, Rnow

r ) = d(b, Rnow
r ) for r = 1, . . . , l − 1, and d(a, Rnow

l ) < d(b, Rnow
l ) for some l

replace V in π with V1, . . . , Vg in that order;

if copy = ’every’ then

add all V1, . . . , Vg in Rnext in that order else {copy=’some’ }
add all V1, . . . , Vg without Vt (Vt is the first largest cell) in Rnext in that order;

end;

end;

The algorithm stable has four parameters. The first one is the binary
matrix which we consider. The second one is the input partition whose
cells the algorithm will split depending on the distances to the cells of
the ordered partition πh. The final result (output of the algorithm) is also
written in π. The parameter some takes two values: ’some’ and ’every’.
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The algorithm stable skips the mentioned above additional calculations
when the parameter ’copy’ has the value ’some’.

The partition π1 = (V column
1 , . . . , V column

s1 , . . . , V column
r1 ; V row

1 , . . . , V row
r′1

),
which we have obtained as a result of the algorithm stable(A, π, πh =
π, copy =′ every′), can be considered as induced by the invariant f1. We
can find the special cell V column

s1
as it is said in the definition.

This algorithm can be used to obtain the partition, induced by f2, in
the following way: Let fix a1 in π1, i.e. π2 = (V column

1 , . . . , [a1], V column
s1

\
{a1}, . . . , V column

r1
;V row

1 , . . . , V row
r′1

) and πh = ([a1]). Then we run the algo-
rithm stable with parameters (A, π := π2, πh, copy =′ some′). The process
continues until the step when we obtain a discrete partition.

The suggested algorithm is proper to be used in rows 4 and 12 in the
algorithm disc part in the following form:

inv act(inp out π:partition; inp πh:partition; out sp cell:cell; inp copy:string);
begin

stable(inp:A, inp out:π, inp:πh, inp:copy);
find a special cell sp cell;

end;

In the first step of the algorithm disc part, row 4, the parameters of
inv act have to be πh = π and copy = every, and in the other steps of
disc part, in row 12, the parameter πh is a partition with one cell and
it has only one column - this is the last fixed column. In all these steps
copy = some.

Let A be a matrix without repeated rows. It is easy to see that any
discrete partition for the columns leads to a discrete partition of the rows.
If the matrix A contains repeated rows, a discrete partition of the columns
leads to a partition of the rows with discrete cells or cells with repeated
rows. Without lost of generality, we can split a cell with repeated rows into
discrete cells. Hence, as an output of the algorithm disc part we obtain
a discrete partition of the columns and of the rows. Thus, we have the
following lemma:

Lemma 3.5. Any discrete partition of the columns obtained by disc part
defines in a unique way a discrete partition of the rows.

Remark 3.1. The ordered discrete partitions obtained with the algorithm
disc part, which uses in rows 4 and 12 the algorithm inv act, allows us to
compare binary matrices instead of sorted binary matrices.

Remark 3.2. This type of invariant is related to ’equitable partition’ or
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’stable partition’ of graphs. Algorithms for one-stable partition can be found
in [8] and [6]. A good survey and additional results for one-stable, two-stable
and k-stable partitions can be found in [2].

4. Main algorithm

The strategy of the algorithm is similar to the McKay’s algorithm [8]. Let
Υ be the set of all vectors of fixed columns which can be obtained in row
10 of the algorithm disc part. We can define a tree with these vectors. The
root of the tree is the empty set. In the first level, the nodes are different
columns from the special cell in the partition induced by f1. We fix these
columns. The fixed column a1 determines the columns from the special
cell induced by f2. These columns form nodes in the second level, which
are successors of a1, and so on. The leaves of the tree correspond to the
discrete partitions from Π.

Our algorithm visits all nonequal discrete partitions in Π with backtrack
search (step by step, try out all the possibilities) to the tree. It also finds the
maximal (canonical) discrete partition among them. When the algorithm
has discovered automorphisms it collects and uses them to prune the search
tree. All these automorphisms generate the automorphism group of the
matrix.

We call a discrete partition first in Π if the corresponding vector of
fixed columns v fdisc is lexicographically smallest (the left leaf in the search
tree). The first discrete partition is very important for the algorithm. We
compare any new obtained discrete partition with the first one and with
the maximal found so far. The number of columns which are in the same
orbit with the columns in the vector of fixed columns v fdisc is counted. In
this way the algorithm calculates the order of automorphism group (using
that |Aut(A)| = |O(a)||Aut(Aa)|).

The main variables, used by the algorithm, are:

• fdisc: partition – the first discrete partition with vector of fixed
columns v fdisc.
• orbits: partition – The orbits of G, G ≤ Av fdisc1,...,v fdisch−1 . If the

algorithm has discovered the automorphisms γ1, . . . , γl, this partition
consists of cells which correspond to the orbits of the group G ≤ Aut(A)
with generators γ1, . . . , γl. In the beginning G = {id}. Then in some
steps G coincides with Av fdisc1,...,v fdisch

for h = |v fdisc|, |v fdisc|−
1, . . . , 1. In the end of the algorithm G = Aut(A).
• k: integer – the current depth of the backtrack search.
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• h: integer – shows the smallest depth reached by the backtrack search.
The algorithm looks for the columns which are in the same orbit with
v fdisc[h] with respect to Aut(Av fdisc1,...,v fdisch−1) in the special cell
w[h]. In the beginning h = |v fdisc| − 1. After visiting all columns in
the nondiscrete special cell obtained in the process of generating of the
first discrete partition, h takes values h− 1 and so on.
• sp cell: cell – the special cell obtained after the action of the corre-

sponding invariant.
• w: array of cells – If k > h, w[k] consists of the first columns (with

smallest index) from the orbits of Aut(Av1,v2,...,vk−1) which are in the
special cell. If k ≤ h, then w[k] consists of all columns from the special
cell.
• tree: array of integers – tree[k] shows the number of columns in w[k]

which are visited so far.
• π: array of partitions – π[k] is the current partition with vector of fixed

columns v.
• cdisc: partition – keeps the maximal discrete partition to the current

point of the execution (candidate for canonical) with vector of fixed
points v cdisc.
• ind: integer – the number of columns in the orbit of
Aut(Av fdisc1,...,v fdisch−1), which contains v fdisc[h].

• size: integer – The order of the group Aut(Av fdisc1,...,v fdisch
). In the

end size = |Aut(A)|.
• list of aut contains discovered generators of the automorphism group
Aut(A).

• πh: partition with one cell with one element v[k − 1].

00]canon(inp A:bin mat; inp: π0:partition; out: cdisc:partition;);
00]var orbits, fdisc, πh: partition;

00] π: array of partitions;
00] w: array of cells;

00] sp cell: cell;

00] k, size, ind, h: integer;
00] tree, v, v fdisc, v cdisc: array of integer;

00] γ: automorphism;
00] list of aut;
00]begin
01] gen f(inp: π0; out: π, k, w, v);

02] fdisc := π[k];
03] v fdisc := v;
04] v cdisc := v;
05] cdisc := π[k];

06] k := k − 1; orbits = ([1], [2], . . . , [n]);
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07] h := k;
08] size := 1;

09] ind := 1;

10] for i := 1 to k do tree[i] := 1;
11] while k <> 0 do

12] begin

13] if |w[k]| − tree[k] > 0 then
14] begin

15] tree[k] := tree[k] + 1;

16] find next v[k] in w[k](inp:w[k]; out:v[k]);
17] if k = h then if(v fdisc[h] and v[k] are in the same orbit) then ind := ind + 1;

18] if (k > h) or (k = h and (v[k] is first element of an orbit)) then

19] begin {if depth}
20] k := k + 1; tree[k] := 0; v[k] := 0; w[k] := []; {empty}
21] int to part(inp: v[k − 1]; out: πh); {set πh }
22] π[k] := π[k − 1]; fix(inp: v[k − 1]; inp out: π[k]);

23] inv act(inp out: π[k]; inp: πh,k; out: sp cell);

24] if ifdiscrete(π[k]) then
25] begin

26] if π[k] = cdisc then

27] begin
28] π[k] and cdisc define an automorphism γ;

29] if gama ext orbits(inp: γ; inp out: orbits) then

30] begin
31] add γ into list of aut;

32] if (v[h] is not first element in an orbit) then k := h;
33] if (v fdisc[h] and v[h] in the same orbit) then ind := ind + 1;

34] gcd is the position of first difference between v and v cdisc

35] end;
36] if (k <> h) then k := gcd;

37] end;

38] if π[k] > cdisc then begin cdisc := π[k]; v cdisc := v; end;
39] if π[k] = fdisc then

40] begin

41] π[k] and fdisc define an automorphism γ;
42] if gama ext orbits(inp: γ; inp out: orbits) then

43] begin

44] add γ into list of aut;
45] ind := ind + 1;

46] end;
47] k := h;

48] end;

49] end {end discrete}
50] else if k > h then restrict(inp: list of aut,sp cell; out: w[k]);
51] end {if depth}
52] end {if}
53] else

54] begin k := k − 1;

55] if h > k then begin h := k; size := size · ind; ind := 1; end;
56] end;

57] end; {end while}
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58]end;

In row 1 the algorithm finds the first discrete partition. The procedure
disc part can be used as gen f after changing row 08 (choose ai from Vsi

)
with 08| choose ai – the column with smallest index in Vsi .

The discrete partition, obtained in row 1, is the first discrete and max-
imal discrete partition cdisc in this step with a vector of fixed columns
v fdisc = v cdisc (rows 2-5).

While the current level is not 0 (row 11) the backtrack search continues.
If the number of columns in w[k] is bigger than the number of the visited
columns in w[k] (tree[k]), we continue with the next element in w[k] (rows
15, 16, with the procedure find next v[k] in w[k]).

If k > h, or k = h and v[k] is the first element of an orbit, the algorithm
continues in depth. In the case when k = h but v[k] is not the first element
of an orbit, the next partition is defined by the vector of fixed columns
(v[1], . . . , v[k − 1], v[k]). But the algorithm already has passed all discrete
partitions which are defined by the vector of fixed columns (v[1], . . . , v[k−
1], v[k]f , . . . ), where v[k]f is the first in the same orbit. By theorem 3.1, we
can skip the current v[k].

Using the last fixed column as the only column in the partition πh, the
previous known partition π[k − 1] after fixing the same column (row 22,
procedure fix), and inv act, the algorithm obtains the next partition and
the next special cell. If the obtained partition is discrete, the algorithm
compares it with the current maximal cdisc (row 28) and fdisc (row 39).

In the first comparing we have two cases. If the algorithm has discovered
an automorphism, and this automorphism gives new (extended) orbits, then
it is collected in list of aut. We check whether the element v[h] is first in
any of the new orbits. If not, the backtracking jumps to the level h, because
the first element is already passed (v fdisc[1] = v[1], . . . , v fdisc[h − 1] =
v[h − 1]). If yes, it jumps to the level of the first difference between v and
v cdisc. If the current discrete partition π[k] is bigger than cdisc, the algo-
rithm takes π[k] as maximal (or canonical). In the second comparing, if the
algorithm discovers an automorphism, the backtracking jumps to the level
h. The discovered automorphisms, which fix the columns v[1], . . . , v[k− 1],
form a group G. If the obtained partition is not discrete, the algorithm
puts all columns from the special cell sp cell (row 23), which are first el-
ements in orbits with respect to G, in w[k] (with procedure restrict(inp:
list of aut,sp cell; out: w[k]) ).
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4.1. Additional invariants

There are two general strategies to improve the efficiency of the main algo-
rithm. The first one is to cut the part of the search tree which corresponds
to the set of vectors Υ. The next example is based on the fact that the sets
of vectors of positions Ψ′ and Ψ′′ corresponding to vectors of fixed columns
Υ′ and Υ′′ for the matrices A and γ(A), γ ∈ Sn, are equal: Ψ′ = Ψ′′.

We can redefine the canonical partition to be c � max{πj , πj ∈ Π′},
where Π′ is the set of discrete partitions which have lexicographically largest
vector of positions of fixed columns.

In the main algorithm, we have to compare the vector of positions vp,
corresponding to v, with the vector vpf of the positions of the first discrete
partition fdisc and the vector of positions vpc of the discrete partition
which is a candidate for maximal cdisc. If the current vp coincides with
vpf or vpc, the backtrack search continues - the algorithm expects an auto-
morphism. If vp[k] <> vpf [k] and vp[k] < vpc[k], the backtracking jumps
in the previous level. Another similar approach can be found in [8].

The other strategy is to use proper invariants, which will help us to
decrease the number of the discrete partitions in Π. This happens when the
number of the orbits in the special cells are smaller than before. In fact, if
every spacial cell consists of only one orbit, the algorithm visits only j + 1
discrete partitions to obtain j generators of the automorphism group. The
number of possible generators is bounded by n − 1 (n is the number of
columns). To do this, we can use stronger invariants. Unfortunately, such
invariants usually are computationally expensive. There are two options:

If we consider structures with a small group, we use an additional in-
variant in lower level. We call this level pointed. If we expect structures
with a large group, we use an additional invariant in levels which depend
on given parameters - for example the size of the largest cell in the current
partition (we use as pointed levels the levels in which this size is smaller
than a given constant). To use additional invariants, we redefine inv act:

inv act(inp out π: partition; inp πh: partition; k: integer; out sp cell:cell);

begin
if k is in a pointed level then
begin

partition the special cell sp cell in πh using additional invariants

stable(inp A: bin mat; inp out π: partition; inp πh: partition; inp copy: string );
end else

stable(inp A: bin mat; inp out π: partition; inp πh; partition; inp copy: string );
find a special cell sp cell;

end;
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The pointed levels are input for the main algorithm and depend on
the user. There are no special cell in the beginning. To use an additional
invariant in the first level, we consider the set of all columns of the matrix
as a special cell. Of course, we have to use the redefined inv act in the
procedure disc part.

The difference here is that we use as an input partition for comparing πh
in stable not only the fixed column but the partition obtained after splitting
the special cell using the additional invariants. Now we describe the type
of the additional invariants which we use. Let’s consider the following 8× 8
matrix 

10001110
01101001
01001110
01010101
10010101
10110010
01110010
10101001


This matrix has the same number of ones in any row and column, so

we can expect that all columns are in the same orbit. But this is not true.
If we consider the sum of the first, third and forth columns, we obtain
inv = (1, 1, 0, 1, 2, 3, 2, 2). To this vector, we correspond the polynomial

Y x3 + Y 2x3 + Y 3x,

such that Y axb shows that inv has b elements equal to a. Then we calculate
the sums of the first column with all pairs of two other columns. So we
obtain

inv1(Y, x) = Y (12x3 + 9x4) + Y 2(12x3 + 9x4) + Y 3(12x)

which is the sum of the corresponding polynomials. With
(
n
3

)
×m operations,

we can have similar polynomials for all columns. In this way we obtain

inv1 = inv2 = Y (12x3 + 9x4) + Y 2(12x3 + 9x4) + Y 3(12x)

and

inv3 = inv4 = · · · = inv8 =Y (8x3 + 9x4 + 2x6)

+ Y 2(8x3 + 9x4 + 2x6) + Y 3(8x+ 12x2)

These polynomials split the set of all columns (with respect to the lex-
icographic ordering of the corresponding vectors) in two cells and define
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π = ([3, 4, 5, 6, 7, 8], [1, 2]). This means that we have at least two orbits. We
call this type of invariants additional ’sum’ invariants with complexity 3 in
level 1. For the graph invariants you can see [9].

Remark 4.1. Additional invariants are necessary only in cases when the
matrix A has a very specific structure. For example, when A is an incidence
matrix of a combinatorial design. This algorithm can be used also in the
case when we have coloring of the columns.Then the initial partition will
depend on the coloring.

5. Efficiency and storage requirements

About the efficiency of the algorithm stable for graphs, which is an impor-
tant part of the main algorithm, we refer to [8]. The efficiency of the main
algorithm depends on the size and the structure of the automorphism group
and the cardinality of the set of discrete partitions Π. The author does not
know a reasonable theoretical bound for this cardinality.

As we mentioned, this implementation needs m × n units of memory
(for the matrix A), which is less than (m+n)× (m+n) units - the memory
used for the corresponding graph. This fact helps us to use easily variables
which need a lot of memory. These variables are: 1) partitions of the rows
and columns π1, π2, . . . , πk. Of course, k ≤ n, but if we consider matrix
without repeated columns k will be much smaller; 2) the set of special
cells w - only for columns; 3) the obtained automorphisms. Actually, we
keep the orbits of the columns with respect to the cyclic group generated
by the corresponding automorphism. This can be realized with two arrays
with length n (see [6]). 4) the first discrete partition fdisc and the current
maximal partition cdisc. For any of them we need two arrays with length
n+m.
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size n2n are found.
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1. Introduction

For n ≥ 2, the graph with vertices the 2n vectors of Fn
2 and two vertices

adjacent if their coordinates differ in precisely one place, is called the n-
cube, denoted by Qn. We examine the binary code obtained from the row
span of an adjacency matrix for Qn over the field F2, and show that when n
is even it is self-dual and can be used for permutation decoding. Our main
result obtaining 3-PD-sets is as follows:

Theorem 1.1. For n even and n ≥ 8, let

Tn = {T (w)ti | w ∈ Fn
2 , 1 ≤ i ≤ n},

where T (w) is the translation by w ∈ Fn
2 , ti = (i, n) for i < n is a trans-

position in the symmetric group Sn, and tn is the identity map. Then Tn

is a 3-PD-set of size n2n for the self-dual [2n, 2n−1, n]2 code Cn from an
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adjacency matrix for the n-cube Qn, with the information set

I = [0,1, . . . ,2n−1 − 3,2n − 2,2n − 1].

This is proved in Section 4, with the notation for Tn and I given in Section 3.
Background definitions and notions are in Section 2 and general properties
of the graph Qn, the symmetric design obtained from it, and its binary
codes, are in Section 3.

2. Background and terminology

The notation for designs and codes is as in [1]. An incidence structure
D = (P,B,J ), with point set P, block set B and incidence J is a t-
(v, k, λ) design, if |P| = v, every block B ∈ B is incident with precisely k

points, and every t distinct points are together incident with precisely λ

blocks. The design is symmetric if it has the same number of points and
blocks. The code CF of the design D over the finite field F is the space
spanned by the incidence vectors of the blocks over F . If Q is any subset
of P, then we will denote the incidence vector of Q by vQ. If Q = {P}
where P ∈ P, then we will write vP instead of the more cumbersome v{P}.
Thus CF =

〈
vB |B ∈ B

〉
, and is a subspace of FP , the full vector space of

functions from P to F .
All the codes here are linear codes, and the notation [n, k, d]q will be

used for a q-ary code C of length n, dimension k, and minimum weight d,
where the weight wt(v) of a vector v is the number of non-zero coordinate
entries. The distance d(u, v) between two vectors u, v is the number of
places in which they differ, i.e. wt(u − v). A generator matrix for C
is a k × n matrix made up of a basis for C, and the dual code C⊥ is the
orthogonal under the standard inner product (, ), i.e. C⊥ = {v ∈ Fn|(v, c) =
0 for all c ∈ C}. A check matrix for C is a generator matrix for C⊥. The
all-one vector will be denoted by , and is the vector with all entries equal
to 1. Two linear codes of the same length and over the same field are
isomorphic if they can be obtained from one another by permuting the
coordinate positions. An automorphism of a code C is an isomorphism
from C to C. The automorphism group will be denoted by Aut(C). Any
code is isomorphic to a code with generator matrix in so-called standard
form, i.e. the form [Ik |A]; a check matrix then is given by [−AT | In−k].
The first k coordinates are the information symbols and the last n − k
coordinates are the check symbols.

The graphs, Γ = (V,E) with vertex set V and edge set E, discussed
here are undirected with no loops. A graph is regular if all the vertices
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have the same valency. The adjacency matrix A of a graph of order n is
an n× n matrix with entries aij such that aij = 1 if vertices vi and vj are
adjacent, and aij = 0 otherwise.

Permutation decoding was first developed by MacWilliams [7] and
involves finding a set of automorphisms of a code called a PD-set. The
method is described fully in MacWilliams and Sloane [8, Chapter 16, p. 513]
and Huffman [4, Section 8]. In [5] and [6] the definition of PD-sets was
extended to that of s-PD-sets for s-error-correction:

Definition 2.1. If C is a t-error-correcting code with information set I
and check set C, then a PD-set for C is a set S of automorphisms of C
which is such that every t-set of coordinate positions is moved by at least
one member of S into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such
that every s-set of coordinate positions is moved by at least one member
of S into C.

That a PD-set will fully use the error-correction potential of the code
follows easily and is proved in Huffman [4, Theorem 8.1]. That an s-PD-set
will correct s errors follows in the same way (see [5, Result 2.3]).

The algorithm for permutation decoding is as follows: we have a t-error-
correcting [n, k, d]q code C with check matrix H in standard form. Thus the
generator matrix G = [Ik|A] and H = [−AT |In−k], for some A, and the first
k coordinate positions correspond to the information symbols. Any vector
v of length k is encoded as vG. Suppose x is sent and y is received and at
most s errors occur, where s ≤ t. Let S = {g1, . . . , gm} be an s-PD-set.
Compute the syndromes H(ygi)T for i = 1, . . . ,m until an i is found such
that the weight of this vector is s or less. Compute the codeword c that has
the same information symbols as ygi and decode y as cg−1

i .

3. Binary codes of cubic graphs

For n ≥ 2 let Qn denote the n-cube (see [9]) and Dn the symmetric 1-design
obtained by defining the 2n vertices (i.e. vectors in Fn

2 ) to be the points P,
and a block v̄ for every point (vector) v by

v̄ = {w | w ∈ P and w adjacent to v in Qn}.

Then Dn is a 1-(2n, n, n) symmetric design with the property that two
distinct blocks meet in zero or two points and similarly any two distinct
points are together on zero or two blocks.
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We will use the following notation: for r ∈ Z and 0 ≤ r ≤ 2n − 1, if
r =

∑n
i=1 ri2

i−1 is the binary representation of r, let r = (r1, . . . , rn) be
the corresponding vector in Fn

2 , i.e. point in P.
The complement of v ∈ P will be denoted by vc. Thus vc(i) = 1 + v(i)

for 1 ≤ i ≤ n, where v(i) denotes the ith coordinate entry of v. Similarly,
for α ∈ F2, αc = α+ 1. Clearly vc = v + 2n − 1.

The binary code Cn of the design Dn is the same as the row span over F2

of an adjacency matrix forQn, and for n even and n ≥ 4, it is a [2n, 2n−1, n]2
self-dual code. Before showing this, we show why the case for n odd is not
of interest.

Proposition 3.1. For n odd, the binary code Cn of Dn is the full space
F2n

.

Proof: For n odd, it can be verified directly that

v(x1,...,xn) = v(x1,...,(xn)c) +
n−1∑
i=1

v(x1,...,(xi)c,...,xn−1,xn)

for all choices of x = (x1, . . . , xn). Thus Cn contains all the vectors of weight
1 and is the full space. �

The automorphism group of the design and of the code contains (prop-
erly, for n ≥ 4) the automorphism group TSn = T o Sn of the graph
(see [9]), where T is the translation group of order 2n and Sn is the sym-
metric group acting on the n coordinate positions of the points v ∈ P. We
will write, for each w ∈ P, T (w) for the automorphism of Cn defined by the
translation on Fn

2 given by T (w) : v 7→ v +w for each v ∈ Fn
2 . The identity

map will be denoted by ι = T (0). Then T = {T (w) | w ∈ P}.

Lemma 3.1. The group TSn acts imprimitively on the points of the design
Dn for n ≥ 4 with {v, vc}, for each v ∈ Fn

2 , a block of imprimitivity.

Proof: We need only show that for g ∈ TSn, and any v ∈ Fn
2 , vcg = (vg)c,

which will make the set {v, vc} a block of imprimitivity. Clearly TSn is
transitive on points. For g ∈ Sn the assertion is clear. If g is the translation
T (u), where T (u) : v 7→ v+u, then vcg = vcT (u) = v+2n − 1+u = vT (u)+
2n − 1 = (vg)c. Thus for any g ∈ TSn and any v ∈ Fn

2 , vcg = (vg)c. �

For each i such that 1 ≤ i < n let ti = (i, n) ∈ Sn, i.e. the automorphism
of Cn defined by the transposition of the coordinate positions. For n ≥ 4
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let

Pn = {ti | 1 ≤ i ≤ n− 1} ∪ {ι} (1)

Tn = TPn. (2)

Since the translation group T is normalized by Sn, elements of the form
T (w)tiT (u) are all in Tn, i.e. σ−1T (u)σ = T (uσ−1), so that for transposi-
tions t, tT (u) = T (ut)t.

Proposition 3.2. For n even, n ≥ 4, Cn is a [2n, 2n−1, n]2 self-dual code
with

I = [0,1, . . . ,2n−1 − 3,2n − 2,2n − 1]

as an information set.

Proof: Using the natural ordering for the points and blocks, the incidence
matrix for Qn has the form

Bn =


Bn−2 I2n−2 I2n−2 0
I2n−2 Bn−2 0 I2n−2

I2n−2 0 Bn−2 I2n−2

0 I2n−2 I2n−2 Bn−2

 (3)

where Bn−2 is the incidence matrix of the graph Qn−2. It is easy to prove
that the matrix has rank 2n−1 and it can be shown by induction that the
minimum weight is n. That the code is self-dual follows from the earlier
observation that blocks meet in 0, 2 or n points.

To show that I is an information set, let B∗n be the first 2n−1 rows of Bn.
Clearly B∗n has rank 2n−1 and generates the same code as Bn. We want to
switch the column indexed by 2n−1 − 2 with that indexed by 2n − 2, and
the column indexed by 2n−1 − 1 with that indexed by 2n − 1. Notice that
2n−1 − 2 ∈ 2n−1 − 1, so the 2×2 submatrix of B∗n from the (2n−1−2)th and

(2n−1−1)th rows and columns has the form
[

0 1
1 0

]
, while the corresponding

2 × 2 submatrix from the same rows but the last two columns is just I2.
Thus the column interchanges described will give the information set I. �

If I is as in the proposition, the corresponding check set is C. We will
write

I1 = [0,1, . . . ,2n−1 − 3] (4)

C1 = [2n−1,2n−1 + 1, . . . ,2n − 3] (5)

I2 = [2n − 2,2n − 1] (6)

C2 = [2n−1 − 2,2n−1 − 1] (7)
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and

a = 2n − 2 = (0, 1, . . . , 1, 1) , b = 2n − 1 = (1, 1, . . . , 1, 1) (8)

A = 2n−1 − 2 = (0, 1, . . . , 1, 0) , B = 2n−1 − 1 = (1, 1, . . . , 1, 0) (9)

Notice that the points a and b are placed in I in order to have points and
their complements in I since under any automorphism g ∈ TSn of the
design, if vg = w then vcg = wc, by Lemma 3.1. Thus we have ac = 1 and
bc = 0, Ac = 1 + 2n−1, Bc = 2n−1, and v + vc = b for any vector v ∈ P.

4. 3-PD-sets

In this section we prove the main result, Theorem 1.1, obtaining 3-PD-
sets. Since the minimum weight is n, the code cannot correct three errors
if n < 8. However the proof of the theorem holds for n = 4, 6 as well.

Proof of Theorem 1.1: Let T = {x, y, z} be a set of three points in P.
We need to show that there is an element in Tn that maps T into C. We
consider the various possibilities for the points in T . If T ⊆ C then use ι.
Thus suppose at least one of the points is in I and, by using a translation,
suppose that one of the points, say z, is 0. If T ⊆ I, then T (2n−1) will
work. Now we consider the other cases.

(1) x ∈ I1, y ∈ C1
Then there are ix, iy such that 2 ≤ ix, iy ≤ n − 1 such that x(ix) =
y(iy) = 0. If ix = iy = i, then T ti ⊆ I, unless yti ∈ {A,B}, so
tiT (2n−1) will work unless yti ∈ {A,B}. If yti = A, then y(1) = y(i) =
0, y(j) = 1 otherwise. If x(1) = 0, then t1T (2n−1) will work. If x(1) = 1,
then take any j 6= 1, i, n, and use T (2j−1)tiT (2n−1). If yti = B, then
y(i) = 0 and y(j) = 1 otherwise. Here we can take any j 6= 1, i, n, and
use T (2j−1)tiT (2n−1).
If x and y have no common zero, then if y = xc, so that x+ y = b, we
can use T (x)T (2n−1). If x(i) = y(i) = 1, where 1 ≤ i ≤ n − 1, then
tiT (2n−1 − 1) can be used.

(2) x ∈ I1, y ∈ C2
Since x ∈ I1, x(i) = 0 for some i such that 2 ≤ i ≤ n−1. If there is a j
such that j 6= i and 2 ≤ j ≤ n− 1 with x(j) = 0, then T (2i−1 + 2n−1)
can be used.
If there is no such j, then either x(1) = x(i) = x(n) = 0 and x(j) = 1
for j 6∈ {1, i, n}, or x(i) = x(n) = 0 and x(j) = 1 for j 6∈ {i, n}. In
either case, take j 6= i, 2 ≤ j ≤ n − 1. Then the map T (2j−1 + 2n−1)
can be used.
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(3) x ∈ I2, y ∈ C1
(a) x = a: since y ∈ C1, there is a j such that 2 ≤ j ≤ n − 1 with

y(j) = 0. If y(i) = 1 for i 6= j and 1 ≤ i ≤ n, or if y(1) = 0 and
y(i) = 1 for i 6= j and 2 ≤ i ≤ n, then T (A) will work. If there is
an i 6= j such that y(i) = y(j) = 0 where 2 ≤ i, j ≤ n − 1, then
tjT (2n−1) can be used.

(b) x = b: this follows exactly as in the x = a case except that in the
first two cases for y use T (B) instead of T (A).

(4) x ∈ I2, y ∈ C2
(a) x = a, y = A: use T (a)t2T (2n−1).
(b) x = a, y = B: use tn−1T (B).
(c) x = b, y = A: use tn−1T (B).
(d) x = b, y = B: use t1T (1 + 2n−1).

(5) x, y ∈ C

(a) x, y ∈ C1: if x+ y = B then T (B) will work. Otherwise x(i) = y(i)
for some i such that 1 ≤ i ≤ n − 1. Again T (B) will work unless
x or y are (0, . . . , 0, 1) or (1, 0, . . . , 0, 1). If x = (0, . . . , 0, 1) then
y(i) = 0 for some i such that 2 ≤ i ≤ n−1. Then tiT (2n−1) can be
used unless y(j) = 1 for all j 6= i, or y(1) = y(i) = 0 and y(j) = 1
for j 6= 1, i; in these cases tiT (2i−1 + 2n−1) can be used. The same
arguments hold if x = (1, 0, . . . , 0, 1).

(b) x ∈ C1, y ∈ C2: since x ∈ C1, there is a j such that 2 ≤ j ≤ n − 1
with x(j) = 0. Then tjT (2j−1 + 2n−1) can be used.

(c) x, y ∈ C2: T (2n−2 + 2n−1) will work.

This completes all the cases and proves the theorem. �

Note that this result also shows that the set Tn is a 2-PD-set for Cn

for n = 6. However, this set Tn with this information set I will not give
a 4-PD-set, since it is quite easy to verify that the set of four points
{0,2,2n − 2,2n−1 − 1} cannot be moved by any element of Tn into the
check positions.

5. Discussion

The automorphism group of the symmetric 1-design is much larger than
that of the graph. In particular, it will contain any invertible n× n matrix
over F2 with the property that the sum of any two of its rows has weight
2. In fact, if v ∈ P has an even number of entries equal to 1, then the
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matrix A having for rows the points in v̄, will be be an automorphism of
Dn that also preserves the blocks of imprimitivity. If v has an odd number
of entries equal to 1, it will not be invertible. There are also other, non-
linear, automorphisms, of the design, and that also preserve these blocks of
imprimitivity, as is indicated by computations with Magma [2, 3].

It is possible to arrange more interchanges so that more instances of a
point and its complement in the information set occur. Thus s-PD-sets for
s > 3 seem possible in general.
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1. Introduction

One of the great achievements in coding theory in the last decade or so
has been the discovery that iterative decoding methods, such as the sum-
product algorithm, can be used to achieve Shannon capacity; see [7, 11].
Although there are provable asymptotic results for the performance of the
sum-product algorithm, there is little that can be said for finite length
codes. In this article we focus on very simple cases for which we can derive
exact formulas for convergence of the sum-product algorithm. By estab-
lishing some simple, but provable, results we hope to build a foundation
for further algebraic analysis. These examples may also enhance the intu-
itive understanding of the algorithm and thereby yield improved heuristic
methods for code construction.

Given a binary matrix H, the sum-product algorithm is defined by us-
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ing the bipartite graph of H. It is to be expected that the sum-product
algorithm will yield better decoding performance on some bipartite graphs
than on others. What makes one graph (or, equivalently, matrix) better
than another? Several properties have been proposed, some of them based
on other decoding algorithms. Short cycles in the bipartite graph of the
parity-check matrix are considered problematic; see [16]. The reasoning is
that inaccurate received estimates of bit values passed to the decoding al-
gorithm are self-reinforcing in the presence of short cycles. Recent work
suggests that short cycles are particularly problematic when the degrees of
the nodes involved are low; see [14]. An erasure correction algorithm that
is similar to belief propagation fails exactly when it arrives at a stopping
set; see [1]. These sets also seem to foil the belief-propagation algorithm.
The experiments by MacKay and Postol in [8] with the Margulis group-
theoretic construction led them to attribute decoding failure in the error
floor region to near-codewords. These are vectors v such that Hv has low
weight. Richardson in [10] calls near-codewords trapping sets; he also sees
them as a cause of error floors. Pseudo-codewords arise from codewords in a
code for a covering graph of the bipartite graph of the check matrix; see [6].
The closure of the set of pseudo-codewords is a polytope in Rn where n is
the dimension of the code. The articles [4, 15] investigate their relevance for
sum-product decoding. Pseudo-codewords are directly relevant in another
approach to decoding due to Feldman [2, 3] that uses linear programming.
This algorithm attempts to maximize a linear functional over the polytope
of pseudo-codewords, and the vertices of the polytope are the possible solu-
tions to the problem. Bipartite graphs with good expansion properties were
shown to be asymptotically good for a low-complexity decoding algorithm
presented in [12].

In the simple cases that we examine, pseudo-codewords, near-codewords
and stopping sets do not play a role and expansion is not meaningful because
the graphs are very small. We do see a difference between graphs that
are very similar, but differ in one aspect, the existence of short cycles.
The difference in performance of the sum-product algorithm yields some
surprises.

Section 2 introduces the bipartite graphs under investigation and some
experiments with the performance of the sum-product algorithm. In Sec-
tion 3 we give our algebraic analysis of the sum-product algorithm for a
restricted set of bipartite graphs, those in which all check nodes have de-
gree 2. Section 4 applies our algebraic results to the bipartite graphs of
Section 2 and explains the differences in performance therein.
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2. Experimental Results

Figures 1 and 3 show several bipartite graphs. Following common practice,
the circular nodes (shaded) are called bit nodes and the square nodes are
called check nodes. A code is defined by allowing bit nodes to take values
in Z/2, such that each check node is connected to an even number of 1s.
It is readily seen that all the codes defined by these graphs are repetition
codes, that is, codes whose only two codewords are the vector of repeated
0s and that of repeated 1s.

Consider the two graphs in Figure 1, each of which determines the rep-
etition code of length four. The em 4-Choose-2 graph is constructed by
creating one check for each two element subset of the four bit nodes. As we
will show in the next section, the Two-to-One graph is a two-to-one cover
of the complete bipartite graph on 2 bit-nodes and 3 check-nodes (in fact,
it is the unique connected cover).

��
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�������� ���� ����

Fig. 1. Two graphs defining the repetition code of length four. Two-to-One on the left,

and 4-Choose-2 on the right.

Figure 2 shows the performance of the sum-product algorithm on each
graph, for each of two different termination criteria. The “fine” case used a
threshold of 10−20, while the “coarse” case used a threshold of 10−3. It is
evident that the 4-Choose-2 graph has superior performance, and that it is
less affected by the degradation of performance under a coarser threshold.
It would be tempting to attribute the superior performance to the larger
girth of the 4-Choose-2 graph.

Consider the three graphs in Figure 3, which are all 3-to-1 covers of the
complete bipartite graph on 2 bit-nodes and 3 check-nodes. One can show
that any connected 3-to-1 cover is one of these three. One of the graphs has
girth 8, one has three 4-cycles, and one has two 4-cycles.

Figure 4 shows the performance of the sum-product algorithm on these
graphs, for the same two termination criteria as used above. Perhaps sur-



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

163

4 5 6 7 8 9 10 11
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/N
0
 [dB]

B
it 

er
ro

r 
ra

te

4choose2fine
4choose2coarse
2to1 fine
2to1 coarse

Fig. 2. The performance of the sum-product algorithm on the graphs in Figure 1, using

two different termination criteria.

prisingly, the performance of the sum-product algorithm is the same when
the threshold is fine. On the other hand, with a coarse threshold we see
greater degradation of performance corresponding to a greater number of
4-cycles.

In the following sections we will derive formulas for convergence which
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Fig. 3. Three graphs defining the repetition code of length 6. From the top No 4-cycles,

Two 4-cycles, and Three 4-cycles.

will explain the performance in these examples.

3. Analysis of the Sum-Product Algorithm

The principal goal of this section is to develop our algebraic analysis of
the sum-product algorithm for graphs on which all check nodes have de-
gree 2. One may readily check that the code defined by such a graph is
a repetition code. We start with a discussion of maps of bipartite graphs,
including covering maps and automorphisms. We then present the version
of the sum-product algorithm that we use and show how it is affected by an
automorphism. Finally we show that the algorithm simplifies dramatically
when all check nodes have degree 2.
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Fig. 4. The performance of the sum-product algorithm on the graphs in Figure 3, using

two different termination criteria.

Bipartite Graphs

Definition 3.1. A bipartite graph consists of an edge set E and two sets
of nodes L and R with two structural maps λ : E → L and ρ : E → R

giving the ends of each edge E. A codeword is an association of 0 or 1 to
each ` ∈ L such that each r ∈ R is connected to an even number of nonzero
bits. The elements of L are typically called bit nodes and the elements of R
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check nodes.

A binary matrix H yields a bipartite graph by taking R to be the set
of rows of H, L the set of columns of H and E enumerating the nonzero
entries of H, so that for e the edge associated to the nonzero entry Hr`,
λ(e) = ` and ρ(e) = r.

Definition 3.2. A map of bipartite graphs σ : (E,L,R, λ, ρ) −→
(E,L,R, λ, ρ) is a triple of functions σE : E → E, σL : L → L, and
σR : R → R such that λ(σE(e)) = σL(λ(e)) and similarly ρ(σE(e)) =
σR(ρ(e)).

We say σ is a covering map if for each e ∈ E, ` ∈ L, and r ∈ R,

|σ−1
E (e)| = |σ−1

L (`)|
= |σ−1

R (r)|

and for each ` ∈ L and r ∈ R we have

|λ−1
(`)| = |λ−1(σL(`))| and

|ρ−1(r)| = |ρ−1(σR(r))|.

If n = |σ−1
E (e)|, we say the map is an n-fold cover.

An automorphism of a bipartite graph is a map σ from a bipartite graph
to itself such that σE , σL and σR is a bijection.

Example 3.1. Let L = {0, 1}, R = {A,B,C} and let E = L × R. The
projections of E onto each factor define a bipartite graph which we will
call 2-bits-3-checks. Figure 5 shows the graph. The automorphism group is
S3 × S2 where Sn is the symmetric group on n objects. The action of S3

permutes the check nodes while fixing the bit nodes, whereas the action of
S2 is reflection through the central axis of the diagram.

The Two-to-One graph in Figure 1 maps to 2-bits-3-checks by taking the
leftmost bits of each diamond to 0, the rightmost bits to 1, the top checks of
each diamond to A, the bottom checks of each diamond to C and the other
two checks to B. The map is a two-to-one cover. The reader may verify
that the 4-Choose-2 graph in Figure 5 does not map to 2-bits-3-checks.

Each of the graphs in Figure 3 also maps to 2-bits-3-checks yielding
3-to-1 covers.

The Sum-Product Algorithm

The following algorithm is the sum-product algorithm, expressed using the
notation for a bipartite graph introduced above. We also use positive real
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Fig. 5. The bipartite graph 2-bits-3-checks.

numbers to represent the probability distributions in the algorithm. The
input data for bit ` is the “odds” that the actual intended or transmitted
value for that bit was 1, expressed as the likelihood ratio u` = p`(1)/p`(0).
Likewise, the messages along the edges of the graph produced by the al-
gorithm are expressed as the odds of 1. The algorithm uses the transform
from the “odds of 1” domain to the difference domain in which a probability
distribution p is represented as p(0)−p(1), which is in the interval [−1,+1].
The function s : R ∪ {∞} −→ R ∪ {∞} defined by s(x) = 1−x

1+x transforms
from one domain to the other. Notice that s(s(x)) = x. In the literature,
the ratio p(0)/p(1) is sometimes used rather than p(1)/p(0). We prefer the
latter, since with this notation the same function s is used to translate in
each direction.

Algorithm 3.1 (Sum-Product Algorithm).

Input: For each ` ∈ L, u` ∈ (0,∞). Termination criteria ε > 0.
Data Structures: For each e ∈ E, xe, ye ∈ (0,∞).
Initialization: Set ye ← 1 for all e ∈ E.

Algorithm:

Bit-To-Check Step: For each e ∈ E, set

xe ← uλ(e)

∏
f :λ(f)=λ(e)

f 6=e

yf

Check-To-Bit Step: For each e ∈ E, set

ye ← s

 ∏
f :ρ(f)=ρ(e)

f 6=e

s(xf )


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New Estimate Step: Set

û` ← u`

∏
e∈λ−1(l)

ye

Termination and Output: If either û` < ε or û` > 1/ε for all ` ∈ L

then output the hard decision based on û`: Vector w ∈ FL such that

w` =

{
1 if û` > 1

0 else

When analyzing the algorithm it will sometimes prove useful to indicate
the iteration using a superscript. Thus for example, we will sometimes write

x(t+1)
e ← uλ(e)

∏
f :λ(f)=λ(e)

f 6=e

y
(t)
f

Let σ be an automorphism of the bipartite graph. Then the update step
of the algorithm says that

xσE(e) ← uλ(σE(e))

∏
f :λ(f)=λ(σE(e))

f 6=σE(e)

yf

Since {f ∈ E : λ(f) = λ(σE(e))} = {σE(f) : f ∈ E, λ(f) = λ(e)}, and
since λσE = σLλ the update may be rewritten

xσE(e) ← uσL(λ(e))

∏
f :λ(f)=λ(e)

f 6=e

yσE(f) (1)

Proposition 3.1. Let σ be an automorphism of the graph and suppose that
uσL(`) = u` for all ` ∈ L. Then xe = xσ(e) and ye = yσ(e) at each iteration
of the algorithm.

Proof. At initialization y
(0)
e = y

(0)
σE(e) for all e ∈ E since ye(0) = 1. We

proceed by induction assuming that the statement holds at iteration t.

x
(t+1)
σE(e) = uσL(λ(e))

∏
f :λ(f)=λ(e)

f 6=e

y
(t)
σE(f) (2)

= uλ(e)

∏
f :λ(f)=λ(e)

f 6=e

y
(t)
f (3)

= x(t+1)
e (4)

The analogous argument is used to show that y(t+1)
σ(e) = y

(t+1)
e .
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Reduction of the SPA to a local sum algorithm when check

nodes have degree 2

We now restrict attention to a fixed bipartite graph in which each check
node has degree 2. We will also assume that the graph is connected. One
may readily check that the code defined by such a graph is a repetition
code. The sum-product algorithm simplifies dramatically because at the
check to bit step there is only one term in the product.

Proposition 3.2. If all right nodes have degree 2, then then all edge mes-
sages are monomials in the u`.

Proof. Clearly, at initialization y
(0)
e = 1 is a monomial as claimed. If all

y
(t)
e are monomial then all x(t+1)

e are as well, since the bit-to-check step just
involves multiplication. Each right node has degree 2, so the product in the
check-to-bit step has only one term. Since s is an involution, y(t+1)

e = x
(t+1)
e′

where e′ is the unique edge distinct from e sharing the same right node.
Thus we may establish the proposition by induction.

Notation 3.1. For an edge e let e′ be the unique edge, distinct from e,
with ρ(e) = ρ(e′). Let us use ae ∈ NL to denote the (vector of) exponents
appearing in xe so xe =

∏
`∈L u

ae,`

` . We will abbreviate this product as as
uae . When we want to specify the tth iteration we will write a

(t)
e .

Let 0 ∈ NL be the zero vector and let δ` ∈ NL be the vector which is 1
in the `th component and 0 otherwise.

We may reduce the sum-product algorithm to an algorithm that com-
putes the exponents of the input data u` for each edge e. Note that no
notation is needed for ye since it is equal to xe′ .

Algorithm 3.2 (Local Sum Algorithm).

Data Structures: For each e ∈ E, ae,∈ NL.
Initialization: Set ae ← 0 for all e ∈ E.

Algorithm: Set

ae ← δλ(e) +
∑

f :λ(f)=λ(e)
f 6=e

af ′ (5)

Since a is a vector of integers doubly indexed by e ∈ E and ` ∈ L, we
can consider a as an element of the vector space C|E||L| of dimension |E||L|
over the complex numbers C.
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Our update function is a linear inhomogeneous map on this space, the
inhomogenous part coming from the term δλ(e). The homogeneous part of
the map is represented by the matrix M , defined as follows.

M (e,`),(f,m) =

{
1 if λ(e) = λ(f ′), f ′ 6= e, and ` = m

0 else
(6)

We can write the local sum algorithm in a homogeneous way by using a
“dummy” variable to supply the necessary δλ(e) terms. To this end, define
T ∈ C|E||L| such that

T e,l =

{
1 if λ(e) = l

0 else
(7)

Let

M =
[
M T

0T 1

]
(8)

Then [
a(t)

1

]
= M

[
a(t−1)

1

]
(9)

We have thus reduced analysis of the sum-product algorithm in our
restricted case to the problem of understanding the dynamics of the matrix
M .

Proposition 3.3. Suppose that all check nodes have degree 2. Let xe = uae

and let a be the concatenation of the exponent vectors ae. Then at iteration
t, [

a(t)

1

]
= M

t
[
0
1

]
(10)

We can use the automorphism group of the bipartite graph to reduce the
dimensionality of the problem. Consider an automorphism σ of the graph.
From (1) we have

xσE(e) ← uσL(λ(e))

∏
f :λ(f)=λ(e)

f 6=e

yσE(f)

= uσL(λ(e))

∏
f :λ(f)=λ(e)

f 6=e

xσE(f ′)
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where ρ(f ′) = ρ(f), so

aσE(e) ← δσL(λ(e)) +
∑

f :λ(f)=λ(e)
f 6=e

aσE(f ′) (11)

Proposition 3.4. Let σ be an automorphism of a bipartite graph in which
all checks have degree 2. At any iteration of the local sum algorithm,

aσE(e),σL(`) = ae,l

Proof. At initialization, the claim is immediate. We proceed by induction.
From the algorithm,

a
(t+1)
e,` =

∑
f :λ(f)=λ(e)

f 6=e

a
(t)
f ′,` +

{
1 if λ(e) = `

0 else

From the action of σ in (11) we have

a
(t+1)
σE(e),σL(`) =

(
δσL(λ(e))

)
σL(`)

+
∑

f :λ(f)=λ(e)
f 6=e

a
(t)
σE(f ′),σL(`)

Using the induction hypothesis and observing that σL(λ(e)) = σL(`) if and
only if λ(e) = ` we have

a
(t+1)
σE(e),σL(`) =

∑
f :λ(f)=λ(e)

f 6=e

a
(t)
f ′,` +

{
1 if λ(e) = `

0 else

= a
(t+1)
e,`

As a consequence of this proposition we may compute just the exponents
ae for one edge from each orbit under the automorphism group of the
bipartite graph. The exponent for any edge f may be obtained by applying
an appropriate automorphism to the representative from the orbit of f .
Instead of using the update matrix (6) we may simplify to a matrix N

with one representative edge for each orbit. The entries in N must be
derived from (5) replacing af ′ with some aσ(g) for g the representative for
the orbit of f ′ and σ an automorphism taking g to f ′.
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4. Examples

In this section we solve the following question for a number of bipartite
graphs in which all check nodes have degree 2: Under what conditions on the
input values u` will all values xe in the sum-product algorithm converge to
0 (or to∞)? In these examples, we ignore termination criteria and examine
the convergence behavior of the infinite sequence x(t)

e , t = 1, 2, ...
Our method is to identify a set of representatives for the edge set E

under the action of the automorphism of the graph. Let a be the vector of
exponents indexed by these representatives and by ` ∈ L. We derive the
update matrix N using one representative from each equivalence class. We
then have a dynamical system: for

N =
[
N T

0T 1

]
(12)

we have [
a(t)

1

]
= N

t
[
0
1

]
(13)

Except for one case, that of a simple cycle, we will write
[
0
1

]
=
∑t

i=1 wi

as a sum of eigenvectors of N . Let µi be the eigenvalue associated to wi.
Then [

a(t)

1

]
=

t∑
i=1

µt
iwi (14)

We can determine convergence from the fact that for large t the eigenvectors
with largest eigenvalues will dominate.

A cycle of length 2m

Consider a cycle of length 2m with both bit nodes and check nodes enumer-
ated from 0 to m−1. Let b+ and bi be the edges such that λ(b+) = λ(bi) = b

and ρ(b+) = b, ρ(b−) = b−1 mod m. It is clear that the symmetry group is
the dihedral group Dm and that it is transitive on edges. For the reflection
around bit node 0 we have from Proposition 3.4, a0+,` = a0−,−` (computing
−` modulo m). For rotation by 1 the proposition says

a(k+1)+,l+1 = ak+,l

a(k+1)−,l+1 = ak−,l
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Choosing 0− as our representative edge, from the algorithm (5)

a0− = (1, 0, . . . , 0) + a1−

= (1, 0, . . . , 0) + (a0−,m−1,a0−,0, . . . ,a0−,m−2)

so the update matrix N is circulant implementing a shift by 1. For m = 5
we have

N =



0 0 0 0 1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


One can check that

N
5

=



1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1



More generally we have the following

Proposition 4.1. Suppose the bipartite graph is a cycle of length 2m. Let
1 be the vector of length m which is 1 in all components and let δ` be the
vector of length m which is 1 in the `th component and 0 elsewhere. Write
t = ms+ k with k ∈ {0, . . . ,m− 1}. The local sum algorithm produces

a
(ms+k)
0−

= s1 +
k−1∑
`=0

δ`

The sum-product algorithm converges to 0 when
∏

` u` < 1, converges to ∞
when

∏
` u` > 1 and oscillates with period m when

∏
` u` = 1.

Proof. Let Ik be the circulant matrix corresponding to a cyclic shift by k.
The update matrix is

N =
[
I1 δ0

0T 1

]
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One can prove by induction that for 0 ≤ k < m

N
ms+k

=
[
I s1
0T 1

][
Ik
∑k−1

`=0 δ`

0T 1

]

=

[
Ik s1 +

∑k−1
`=0 δ`

0T 1

]

Thus ams+k
0−

= s1 +
∑k−1

`=0 δ`. Since x0− = ua0− = (u0 · · ·um−1)s
∏k−1

`=0 u`,
the converge properties are easily verified.

2 bits n checks

As noted earlier the automorphism group of this graph is S3 × S2. There
is only a single orbit for the edges under this group action, so we may
reduce analysis of the sum-product algorithm to the consideration of a
single edge e. Proposition 3.4 shows that all edges leaving the same bit
have the same vector of exponents. Edges connected to different bit nodes
differ by transposition of the entries. That is, for e an edge with λ(e) = 0
and f an edge with λ(e) = 1 we have af = (ae,1,ae,0). The update of the
algorithm is a

(t+1)
e = 2af + (1, 0) = (a(t)

e,1,a
(t)
e,0) + (1, 0). Using e as the

representative edge, in the matrix equation (12) we have

N =

0 2 1
2 0 0
0 0 1



The eigenvalues of N are 2,−2, and 1, with respective eigenvectors

w1 =

1
1
0

 ,w2 =

 1
−1
0

, and w3 =

− 1
3

− 2
3

1

. The initial vector is

a(0) =

0
0
1

 =
1
2
w1 −

1
6
w2 + w3
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We can calculate

a(t) =
1
2
· 2tw1 −

1
6
(−2)tw2 + w3

=

2t−1 − 1
6 (−2)t − 1

3

2t−1 + 1
6 (−2)t − 2

3

1

 =




2t−1

3
2t+1−2

3

1

 , t even


2t+1−1

3
2t−2

3

1

 , t odd.

Thus, for t even, the message passed by bit 0 at the tth iteration is

u
− 1

3
0 u

− 2
3

1 · (u0u
2
1)

2t

3 ,

which tends toward 0 if u0u
2
1 < 1 and toward ∞ if u0u

2
1 > 1. On the other

hand, when t is odd, the message looks like

u
− 1

3
0 u

− 2
3

1 · (u2
0u1)

2t

3 ,

and this quantity tends toward 0 if u2
0u1 < 1 and toward ∞ if u2

0u1 > 1.
We see that these conditions are symmetric with respect to u0 and u1

and therefore the sum-product algorithm

• converges to the codeword [0, 0] if u2
0u1 and u0u

2
1 are both less than 1;

• converges to the codeword [1, 1] if u2
0u1 and u0u

2
1 are both greater than

1;
• fails to converge if u2

1u2 < 1 < u1u
2
2 or u2

1u2 < 1 < u1u
2
2.

These results generalize in straightforward way. We will say that two
positive real numbers have the same parity when they are either both less
than 1 or both greater than 1.

Proposition 4.2. Suppose the bipartite graph has 2 bit nodes and m check
nodes. Then the sum-product algorithm converges when u0u

m−1
1 and

um−1
0 u1 have the same parity and it divirges otherwise.

4-Choose-2

The symmetry group in this case is S4 and is transitive on edges. Let us
enumerate the bits from 0 to 3, going left to right, and identify the edges
by an ordered pair of bits. Then edge (0, 1) is the edge from 0 to the check
for the pair {0, 1}. Let a be the vector of exponents for the edge (0, 1). The
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two edges used to update a are the edges (2, 0) and (3, 0). Proposition 3.4
allows us to write the messages along these edges by making use of the
permutations (0, 2, 1) and (0, 3, 1). Thus the update is

a(t+1) = (1, 0, 0, 0) + (a(t)
1 ,a

(t)
2 ,a

(t)
0 ,a

(t)
3 ) + (a(t)

1 ,a
(t)
3 ,a

(t)
2 ,a

(t)
0 )

and the matrix

N =


0 2 0 0
0 0 1 1
1 0 1 0
1 0 0 1


The eigenvalues of N are 2, − 1±

√
7i

2 and 1. The eigenspace for 2 is
spanned by (1, 1, 1, 1, 0). Since the other eigenvalues have norm

√
2 or 1,

the value at any edge is dominated by u0u1u2u3. Thus the sum product
algorithm converges if and only if u0u1u2u3 6= 1.

We skip the analysis of the 2-to1 cover, since it is similar to the 3-to-
1 covers done below. The final result is that the sum-product algorithm
converges if and only if u0u2(u1u3)2 and (u0u2)2u1u3 have the same parity.
This explains the superior performance of the 4-Choose-2 graph.

3-to-1 covers of the complete 2-bits-3-checks graph

Each of the graphs in Figure 3 are 3-to-1 covers of the complete 2-bits-3-
checks graph examined above. Let us enumerate the bits from 0 to 5, going
from left to right. We briefly summarize the analysis for two of the graphs
and do the third in some detail.

The No 4-Cycles graph given in Figure 3 has a very large automorphism
group, generated by any automorphism switching the parity of all bit nodes
and two copies of S3, one acting on the odd numbered bits (and fixing the
even numbered bits), and the other acting on the even numbered bits (and
fixing the odd numbered bits). In each case there are associated permuta-
tions of the checks and edges. There is only one orbit of edges under the
automorphism group. The analysis in this case is the simplest of the three;
the update matrix N has dimension only 7× 7.

The Three 4-cycles graph of Figure 3 has automorphism group generated
by a cyclic shift by 2 of the bit nodes, vertical reflections of each diamond,
and reflection around the central axis, which switches parity of the bit
nodes. The edges have two orbits under the automorphism group, namely
those involved in 4-cycles and those not. Therefore, in this case we need
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only keep track of two 6-vectors, which we will take to emanate from bit 0,
and the update matrix N has dimension 13× 13.

The Two 4-cycles graph given in Figure 3, has automorphisms generated
by σ, the 180-degree rotation around the center; τ , which interchanges the
first and second bits, the third and fourth bits, and the fifth and sixth bits
(and performs the necessary permutations of the checks and edges), and π,
which interchanges the two checks on the far left of the graph and their
attendant edges.

The edges of this graph form 4 orbits under its automorphism group,
which we can take to be the upper and lower edges from bit 0 and the middle
and lower edges from bit 3. The update matrix N is therefore 25× 25, the
first 24 dimensions coming from the exponents along the respective edges
and, as in previous examples, the last one “driving” the dynamical system
by adding 1 to the respective bits’ exponents at each time step. We can
describe the matrix as follows: Label the vectors of exponents for the ui

along the edges as follows: a along the upper edge from bit 0; b along the
lower edge from bit 0; c along the lower edge from bit 3; and d along the
horizontal edge from bit 3. The updating rule is then as follows, where ′

denotes updated values:

(a0,a1,a2,a3,a4,a5)′ = (a1 + c0 + 1,a0 + c1,a3 + c2,

a2 + c3,a5 + c4,a4 + c5)

(b0, b1, b2, b3, b4, b5)′ = (2a1 + 1, 2a0, 2a3, 2a2, 2a5, 2a4)

(c0, c1, c2, c3, c4, c5)′ = (b4 + d1, b5 + d0, b2 + d3,

d2, b0 + d5, b1 + d4)

(d0,d1,d2,d3,d4,d5)′ = (b0 + b4, b1 + b5, 2b2, 2b3, b0 + b4, b1 + b5)

From these equations one derives the 25× 25 transition matrix N .
For each of the three graphs the eigenvalues have norm 2,

√
2 or 1. The

initial vector (0, 0, 0, ..., 1) can be decomposed into a sum of eigenvectors
as 1

6w2 + 1
18w−2 + other terms, where w2 = (1, 1, 1, ..., 1, 1, 0) has eigen-

value 2, w−2 = (1,−1, 1,−1, ..., 1,−1, 0) has eigenvalue −2 and the other
terms involve eigenvectors associated to smaller eigenvalues. Therefore, as
the system evolves, these two terms dominate. At odd iterations, the sig-
nificant terms look like 2t · 1

9 (1, 2, 1, 2...1, 2, 0) and at even iterations like
2t · 19 (2, 1, 2, 1, ..., 2, 1, 0). Thus, if (u0u2u4)(u1u3u5)2 and (u0u2u4)2(u1u3u5)
have the same parity the sum-product algorithm will converge; otherwise, it
will diverge. This explains why the performance curves under the stringent
criterion given in Figure 4 are the same for the three graphs. The algorithm
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under the stringent criterion reflects the convergence behavior of the infi-
nite sequences, which are identical. This is somewhat surprising given the
presence of multiple 4-cycles in two of them and desirable “large girth” in
the third.

Degradation of performance with the coarse termination

criterion

We now consider the difference in performance for the three graphs un-
der the less stringent termination criterion. Let us write the initial vector
(0, 0, . . . , 1) as 1

6w2 + 1
18w−2 + w√

2 + w1, where w√
2 is the contribution

from all eigenvectors associated to eigenvalues of norm
√

2 and w1 is the
contribution from the eigenvectors associated to eigenvalues of norm 1. Con-
sider inputs u0, . . . , u5 such that (u0u2u4)(u1u3u5)2 and (u0u2u4)2(u1u3u5)
have the same parity, say both < 1, so that the sum-product algorithm con-
verges. The sum-product algorithm will terminate early and be incorrect,
when at iteration t, some of the û(t)

` are larger than 103 and others are
less than 10−3. For this to happen some of the u` must be larger than 1,
and their contribution at the locations `′ where û(t)

`′ > 103 must be un-
usually high. We have û`′ = u

P
λ(e)=l′ ae and, at iteration t, each a

(t)
e is

some subvector of N
t
(w2 +w−2 +w√

2 +w1) (subject to a permutation of

indices). The contribution from uN
t
(w2+w−2) is either (u0u2u4)(u1u3u5)2

or (u0u2u4)2(u1u3u5) for each of the graphs. Thus early termination is due
to the contribution from N

t
w√

2. The difference in performance is due to
the different dynamics for this expression in the three graphs.

For the No 4-cycle graph the vector of exponents for û2t+s
1 is

(−2)t(0, 2/3, 0,−1/3, 0,−1/3). Thus û may be greater than 103 when u1

is large and u3 and u5 are small, or vice-versa. The situation at other bit
nodes is similar. For the Three 4-cycle graph the vector of exponents at bit
node 1 behaves more chaotically.

(0, 2/3, 0,−1/3, 0,−1/3) at iteration 0

(1, 2/3, 0,−1/3,−1,−1/3) at iteration 2

(−1,−10/3, 0, 5/3, 1, 5/3) at iteration 4

(−3, 2/3, 0,−1/3, 3, 1/3) at iteration 6

The exact cause of inferior performance for the Three 4-cycle graph is
not obvious, but we think two things play a role. First, the L1-norm of the
vector of exponents for û` is larger for the Three 4-cycle graph. Second,
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the chaotic variation of the vector of exponents for û` means that there are
more conditions that can lead to early, and incorrect, termination.

5. Concluding Remarks

Although the examples considered in this article are very simple and do not
define codes of practical interest, there are several interesting results and
some properties that may have relevance for realistic codes.

We remark that the usual explanations for decoding failure seem irrel-
evant for these graphs. For each of the examples the only stopping sets are
trivial, either the empty set or the entire set. One does find near-codewords
of different weights for the different graphs in Figures 5 and 3, but they
don’t appear to be directly related to the convergence criteria reported
here. Expansion hardly makes sense with such small graphs. The polytope
of pseudo-codewords is simply a line segment generated by the all 0 code-
word and the all 1 codeword, so the only extremal pseudo-codewords are
in fact codewords. Thus pseudo-codewords do not explain decoding failure.
These properties may be associated with decoding failure on large graphs,
but these examples suggest they are not a cause, but rather correlated to
some deeper causative phenomenon.

One explanation for pseudo-codewords causing decoding failure is that
the sum-product algorithm on a given graph may be affected by codewords
in a covering graph. Our examples suggest the reverse effect, the sum-
product algorithm on the covering graphs of 2-bits-3-checks seem to have
inherited the convergence behavior of their base graph. Furthermore, the
4-Choose-2 graph shows that one can do better than a covering graph. It
would be interesting to see if this effect can be proven, whether for bipartite
graphs with all check nodes of degree 2, or more generally. If so, this suggests
an inherent weakness in the low-density matrices constructed in several
articles, e.g. [5, 9, 13], using a block matrix of circulants. It also presents a
challenge to find other algebraic methods for constructing bipartite graphs.
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The paper is devoted to the graph based cryptography. The girth of a directed

graph (girth indicator) is defined via its smallest commutative diagram. The
analogue of Erdøos’s Even Circuit Theorem for directed graphs allows to es-

tablish upper bound on the size of directed graphs with a fixed girth indicator.

Size of members of infinite family of directed regular graphs of high girth is
close to an upper bound.

Finite automata related to members of such a family of algebraic graphs

over chosen commutative ring can be used effectively for the design of cryp-
tographical algorithm for different problems of data security (stream ciphers,

data base encryption, public key mode an digital signatures).

The explicit construction of infinite family of algebraic graphs of high girth
defined over the arbitrarily chosen ring is given. Some results on their proper-

ties, based on theoretical studies or software implementations are given.

Keywords: Extremal graph theory, directed graphs of large girth, algebraic
graphs over commutative rings, graph based cryptography, coding theory

1. Introduction

One of the important direction in the classical extremal graph theory is
studies of the greatest number of edges ex(v, d) = ex(v, C3, . . . C2d) of
graphs on v vertices without cycles Ct of length t = 3, 4, . . . , d . It is known
that ex(v, C3, . . . , C2d) ≤ O(v1+1/d) (see [3]). Similar problem for directed
graphs (roughly, finite automata) has been motivated by applications to
cryptography and other areas of computer science.

We use term binary relation graph for the graph Γ of irreflexive binary
relation φ over finite set V such that for each v ∈ V sets {x|(x, v) ∈ φ} and
{x|(v, x) ∈ φ} have same cardinality.

We say that the pair of passes a = x0 → x1 → · · · → xs = b, s ≥ 1 and
a = y0 → y1 → · · · → yt = b, t ≥ 1 form an (s, t)-commutative diagram
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Os,t if xi 6= yj for 0 < i < s, 0 < j < t. Without loss of generality we assume
s ≥ t and refer to the number s as the rank of Os,t. The directed cycle with
s arrows we denote as Os,0. The minimal parameter s = max(s, t) of the
commutative diagram Os,t with s+ t ≥ 3 in the binary relation graph Γ we
call the girth indicator of the Γ and denote it as gi(Γ).

Let E = Ed(v) = Ex(v,Os,t, s + t ≥ 3|2 ≤ s ≤ d) be the maximal size
(number of arrows) of the binary relation graphs with the girth indicator
> d.

Notice , that the size of symmetric irreflexive relation is the double of the
size of corresponding simple graph. because undirected edge of the simple
graph corresponds to two arrows of O2,0. In [27] the following bound has
been obtained

Ed(v) ≤ v1+1/d +O(v) (1)

Via explicit constructions we find out that for d = 2, 3, 4, 5 and 6 the bound
(1) is sharp up to magnitude.

It indicates that studies of extremal properties of graphs of binary re-
lations with the high girth indicator and studies of ex(v, C3, . . . , Cn) are
far from being equivalent. Really, the sharpness of the ex(v, n) for n = 8
and n = 12 are old open problems (similar to cases of cycles C8 and C12 in
Erdös’ Even Circuit Theorem).

The girth of the simple graph is the minimal length of its minimal cycles.
The infinite family of k-regular graphs Γi of fixed degree k is the family of
graphs of large girth if the size of its members is close to exv, C3, c4, . . . , Cn,
i.e. girth of Γi of order vi is clogk−1(vi), where c is independent on i con-
stant. They turned out to be very useful in networking (see [2]).

The idea to use simple graphs of large girth in cryptography had been
widely explored, in particular see [10], [19], [20], [22]-[26], [28]-[29].

The definitions of family of graphs of large girth for the class of irreflex-
ive binary relation graphs formulated in [28], where more general encryption
scheme for the ”potentially infinite” text based on the graphs of binary re-
lations with special ”rainbow-like” coloring of arrows has been proposed
(see section 2 of current paper for all details). In fact, a family of k-regular
binary relation graphs Γi, i = 1, . . . is a family of graphs of large girth if
the size of its members is close to the bound (1).

For the encryption purpose we identify the vertex of the graph with
the plaintext, encryption procedure corresponds to the chain of adjacent
vertices starting from the plaintext, the information on such chain is given
by the sequence of colors (passwords). We assume that the end of the chain
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is the ciphertext.
The important feature of such encryption is the resistance to attacks,

when adversary intercepts the pair plaintext - ciphertext. It is true because
the best algorithm of finding the pass between given vertices (by Dijkstra,
see [6] and latest modifications) has complexity nlnn where n is the order
of the graph, i.e. the size of the plainspace. The situation is similar to the
checking of the primality of Fermat’s numbers 22m

+ 1: if the input given
by the string of binary digits, then the problem is polynomial, but if the
input is given by just a parameter m, then the task is NP-complete.

We have an encryption scheme with the flexible length of the password
(length of the chain). If graphs are connected then we can convert each
potentially infinite plaintext into the chosen string ”as fast as it is possible”.

Finally, in the case of ”algebraic graphs” (see [1]) with the special
”rainbow-like” coloring (symbolic rainbow-like graphs of section 3) there
is an option to use symbolic computations in the implementation of graph
based algorithm. We can create public rules symbolically and use the above
algorithm as public key tool (for the example of implementation look at
[24]).

The first explicit examples of families with large girth with arbitrary
large valency were given by Margulis. The constructions were Cayley graphs
Xp,q of group SL2(Zq) with respect to special sets of q + 1 generators,
p and q are primes congruent to 1 mod 4. The family of Xp,q is not a
family of algebraic graphs because the neighborhood of each vertex is not
an algebraic variety over Fq. For each p, graphs Xp,q, where q is running
via appropriate primes, form a family of small world graph of unbounded
diameter (see [15]-

The first family of connected algebraic graphs over Fq of large girth
and arbitrarily large degree had been constructed in [13]. These graphs
CD(k, q), k is an integer ≥ 2 and q is odd prime power had been constructed
as connected component of graphs D(k, q) defined earlier. For each q graphs
CD(k, q), k ≥ 2 form a family of large girth with γ = 4/3logq−1q.

Some new examples of simple algebraic graphs of large girth and arbi-
trary large degree the reader can find in [29].

[17]).
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2. Binary relations, related rainbow-like graphs and
algorithms

2.1. Binary relations and special colorings

Let Φ be an irreflexive binary relation over the set V , i.e. Φ ∈ V × V and
for each v pair (v, v) is not the element of Φ.

We say that u is the neighbor of v if (v, u) ∈ Φ. Recall, that we use term
binary relation graph for the graph Γ of irreflexive binary relation φ over
finite set V such that for each v ∈ V sets {x|(x, v) ∈ φ} and {x|(v, x) ∈ φ}
have the same cardinality. It is a directed graph without loops and multiple
edges.

Let Γ be the graph of binary relation. The pass between vertices a and b
is the sequence a = x0 → x1 → . . . xs = b of length s, where xi, i = 0, 1, . . . s
are distinct vertices.

We shall use a term the family of algebraic graphs for the family of
graphs Γ(K), where K belongs to some infinite class F of commutative
rings, such that the neighborhood of each vertex of Γ(K) and the vertex
set itself are quasi-projective varieties over K of dimension ≥ 1 (see [1]).

Such a family can be treated as special Turing machine with the internal
and external alphabet K.

We say that the graph Γ of binary relation Φ has a rainbow-like coloring
over the set of colors C if for each v, v ∈ V we have a coloring function ρv,
which is a bijection from the neighborhood St(v) of v onto C, such that
the operator Nc(v) of taking the neighbor of v with color c is the bijection
of V onto V .

We say that the rainbow like coloring ρ is invertible if there is a rainbow-
like coloring of Φ−1 over C ′ such that Nc

−1 = N ′
c′ for some color c′ ∈ C ′.

Example 2.1. (Cayley graphs)
Let G be the group and S be subset of distinct generators, then the

binary relation φ = {(g1, g2)|gi ∈ G, i = 1, 2, g1g2−1 ∈ S} admits the
rainbow like coloring ρ(g1, g2) = g1g2

−1

This rainbow like coloring is invertible because the inverse graph φ−1 =
{(g2, g1)|g1g2−1 ∈ S} admits the rainbow-like coloring ρ

′
(g2, g1) = g2g1

−1 ∈
S−1.

Example 2.2. (Parallelotopic graphs and latin squares)
Let G be the graph with the coloring µ : V (G)→ C of the set of vertices

V (G) into colors from C such that the neighborhood of each vertex looks
like rainbow, i.e. consists of |C| vertices of different colors. In case of pair
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(G,µ) we shall refer to G as parallelotopic graph with the local projection
µ (see [20], [22] and further references).

It is obvious that parallelotopic graphs are k-regular with k = |C|. If
C ′ is a subset of C, then induced subgraph GC′ of G which consists of all
vertices with colors from C ′ is also a parallelotopic graph. It is clear that
connected component of the parallelotopic graph is also a parallelotopic
graph.

The arc of the graph G is a sequence of vertices v1, . . . , vk such that
viIvi+1 for i = 1, . . . , k − 1 and vi 6= vi+2 for i = 1, . . . , k − 2. If v1, . . . , vk

is an arc of the parallelotopic graph (G,µ) then µ(vi) 6= µ(vi+2) for i =
1, . . . , k − 2.

Let + be the latin square defined on the set of colors C. Let us assume
that ρ(u, v) = µ(u) − µ(v). The operator Nc(u) of taking the neighbor of
the color is invertible, Nc

−1 = N−c, where −c is the opposite for c element
in the latin square. It means that ρ is invertible rainbow like coloring.

Example 2.3. The class of sparse parallelotopic bipartite graphs can be
given by the following incidence structure defined over finite field Fq in [27].

Let P = {(x1, . . . , xn)|xi ∈ Fq} and L = {[y1, . . . , yn]|yi ∈ Fq} be
the sets of points and lines. The point (x1, . . . , xn) is incident to the line
[y1, y2, . . . , yn]|yi ∈ Fq] if and only if xi − yi = xk(i)yl(i), i = 2, 3, . . . , n,
where parameters k(i) < i, l(i) < i are chosen for each value of i. We can
define the coloring µ((x1, . . . xn) = x1, µ([y1, . . . , yn]) = y1 and obtain the
parallelotopic graph. The choice of the field addition + as an appropriate
latin square allows us to define an effective finite automaton: the operator
of taking the neighbor of chosen color require 2n− 1 field operations.

2.2. General symmetric algorithm

Let us consider the encryption algorithm corresponding to the graph Γ with
the chosen invertible rainbow-like coloring of edges. Let ρ(u, v) be the color
of arrow u → v, C is the totality of colors and Nc(u) is the operator of
taking the neighbor of u with the color c.

The password is the string of colors (c1, c2, . . . , cs) and the encryp-
tion procedure is the composition Nc1 × Nc2 . . . Ncs

of bijective maps
Nci

: V (Γ) → V (Γ) . So if the plaintext v ∈ V (Γ) is given, then the
encryption procedure corresponds to the following chain: x0 = v → x1 =
Nc1(x0) → x2 = Nc2(x1) → · · · → xs = Ncs

(xs−1) = u in the graph. The
vertex u is the ciphertext.

Let N ′
c′(Nc(v)) = v for each v ∈ V (Γ). The decryption procedure corre-
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sponds to the composition of maps N ′
c′s

, N ′
c′s−1

, . . . , N ′
c′1

. The above scheme
gives a symmetric encryption algorithm with flexible length of the password
(key). Let A(Γ, ρ, s) be the above encryption scheme.

Examples 1 and 2 demonstrate that each known infinite family of graphs
of large girth of unbounded degree can be used for the development of the
encryption algorithm according to the above scheme; see [28] or [29] for the
details.

2.3. Symbolic computations and public keys

Let K be the commutative ring. Recall that graph Γ is the algebraic graph
over K if the set of vertices V (Γ) and the neighborhood of each vertex u

are algebraic quasi-projective varieties over the ring K; see [1].
In the case of symbolic invertible rainbow-like graph (Γ, ρ, ρ′), the vertex

set V (Γ) and the neighborhoods of each vertex are open algebraic varieties
in Zariski topology as well as the color set C, maps N(c, v) = Nc(u) and
N ′(c, v) = N ′

c(u) are polynomial maps from C × V (Γ) onto V (Γ).
In the case of symbolic rainbow-like graph the encryption as above with

the key (t1, t2, . . . , tk) is given by some polynomial map from Ck×V (Γ)→
V (Γ). We can treat ti, i = 1, . . . , k as symbolic variables.

The specializations ti = αi ∈ K give the public key map P : V (Γ) →
V (Γ). Like in the known example of polynomial encryption proposed by
Imai and Matsumoto (see [16]) and its modifications by J. Patarin (see
[12]) we can combine P with two invertible affine transformations T1 and
T2 (bijective polynomial maps of degree 1) and work with the public map
Q = T1PT2.

Let us use the characters Alice and Bob from books on Cryptography
(see, for instance [11], [12]), where Bob is a public user and Alice is a key
holder. So she knows the string t1, . . . , , ts, the graph and affine transfor-
mations T1 and T2. She can decrypt via consecutive applications of T2

−1,
N ′

t′k
, N ′

t′k−1, . . . N
′
t1 and T1

−1.
The public user Bob has the encryption mapQ only. He can encrypt, but

the decryption is hard task because (1) Q is the polynomial map of degree
≥ 2 from many variables. (2) Even in the case, when Bob knows T1, T2 and
the graph Γ. The problem of finding the pass between the plaintext vertex
and the ciphertext vertex has complexity nlnn, where n = |V (Γ)| is the
size of plainspace. So Bob is not able to decrypt if the plainspace is large
enough.
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2.4. Coding theory, other applications

The theory of distance transitive graphs is the theoretical basis for coding
theory problems dealing with the problem of error detection and error cor-
rection (see [4], [5]). Some applications (not only in Coding Theory, but in
Complexity Studies and Parallel Computing) require the expansion prop-
erties of the graphs (see [2], [8] and further references). For instance, error
correcting codes by Tanner [18] use expansion properties of finite gener-
alized polygons, which are both distance-regular and expanding graphs.
In the paper [7] Tanner’s idea (see [13]) had been implemented to graphs
CD(k, q) which are not distance regular, but have good expansion prop-
erties. We suggest to use the encryption based on the graphs X(p, q) of
fixed degree q + 1. They form the family of graphs of large girth (girth
= 4/3logq(v)), family of small world graphs (diameter = 4/3logq(v) + 2,
family of expanding graphs (the second largest eigenvalue is bounded by
2
√
q [14], so it is the Ramanujan case).

3. The incidence structures defined over commutative rings

We define the family of graphs D(k,K), where k > 2 is positive integer and
K is a commutative ring (see [20], [29]), such graphs have been considered
in [13] for the case K = Fq. Let P and L be two copies of Cartesian power
KN , where K is the commutative ring and N is the set of positive integer
numbers. Elements of P will be called points and those of L lines.

To distinguish points from lines we use parentheses and brackets, for
x ∈ V , we write (x) ∈ P or [x] ∈ L. It will also be advantageous to adopt
the notation for co-ordinates of points and lines introduced in [20] for the
case of general commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . .].

The elements of P and L can be thought as infinite ordered tuples of el-
ements from K, such that only finite number of components are different
from zero.

We now define an incidence structure (P,L, I) as follows. We say that
the point (p) is incident with the line [l], and we write (p)I[l], if the following
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relations between their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i

l′i,i − p′i,i = li,i−1p0,1

li,i+1 − pi,i+1 = li,ip0,1

li+1,i − pi+1,i = l1,0p
′
i,i

(2)

These four relations are defined for i ≥ 1, p′1,1 = p1,1, l′1,1 = l1,1). This
incidence structure (P,L, I) we denote by D(K) and identify it with the
bipartite incidence graph of (P,L, I), which has the vertex set P ∪ L and
edge set consisting of all pairs {(p), [l]} for which (p)I[l].

For each positive integer k ≥ 2 we obtain an incidence structure
(Pk, Lk, Ik) as follows. First, Pk and Lk are obtained from P and L, re-
spectively, by simply projecting each vector onto its k initial coordinates
with respect to the above order. The incidence Ik is then defined by impos-
ing the first k−1 incidence equations and ignoring all others. The incidence
graph corresponding to the structure (Pk, Lk, Ik) is denoted by D(k,K).

To facilitate notation in future results, it will be convenient for us to
define p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p0,0 = l0,0 = −1, p′0,0 = l′0,0 = −1,
and to assume that (6) are defined for i ≥ 0.

Notice that for i = 0, the four conditions (1) are satisfied by every
point and line, and, for i = 1, the first two equations coincide and give
l1,1 − p1,1 = l1,0p0,1.

The incidence relation is motivated by the linear interpretation of
Lie geometries in terms of their Lie algebras [22] . Let us define the
”root subgroups” Uα, where the ”root” α belongs to the root system
Root = {(1, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2), (2, 2)′ . . . , (i, i), (i, i)′, (i, i +
1), (i+ 1, i) . . . }. The ”root system above” contains all real and imaginary
roots of the Kac-Moody Lie Algebra Ã1 with the symmetric Cartan matrix
(see [9]). We just double the imaginary roots (i, i) by introducing (i, i)′.

Remark 3.1. For K = Fq the following statement had been formulated in
[13]. Let k ≥ 6, t =

[
k+2
4

]
, and let

u = (uα, u11, · · · , utt, u
′
tt, ut,t+1, ut+1,t, · · · )

be a vertex of D(k,K) (α ∈ {(1, 0), (0, 1)}, it does not matter whether u is
a point or a line). For every r, 2 ≤ r ≤ t, let

ar = ar(u) =
∑

i=0,r

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at).
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Proposition 3.1. (i) The classes of equivalence relation τ = {(u, v)|a(u) =
a(v)} are connected components of graph D(n,K), where n ≥ 2 and K be
the ring with unity of odd characteristic.

(ii) For any t − 1 ring elements xi ∈ K), 2 ≤ t ≥ [(k + 2)/4], there
exists a vertex v of D(k,K) for which

a(v) = (x2, . . . , xt) = (x).

(3i) The equivalence class C for the equivalence relation τ on the set
Kn ∪Kn is isomorphic to the affine variety Kt ∪Kt , t = [4/3n] + 1 for
n = 0, 2, 3 mod 4, t = [4/3n] + 2 for n = 1 mod 4.

Remark 3.2. Let K be the general commutative ring and C be the equiv-
alence class on τ on the vertex set D(K) (D(n,K), then the induced sub-
graph, with the vertex set C is the union of several connected components
of D(K) (D(n,K)).

Without loss of generality we may assume that the vertex v of C(n,K)
satisfies to conditions a2(v) = 0, . . . at(v) = 0. We can find the values of
components v′i,i) from this system of equations and eliminate them. Thus
we can identify P and L with elements of Kt, where t = [3/4n] + 1 for
n = 0, 2, 3 mod 4, and t = [3/4n] + 2 for n = 1 mod 4.

We shall use notation C(t,K) (C(K)) for the induced subgraph of
D(n,K) with the vertex set C.

Remark 3.3. IfK = Fq, q is odd, then the graph C(t, k) coincides with the
connected component CD(n, q) of the graph D(n, q) (see [29] and further
references), graph C(Fq) is a q-regular tree. In other cases the question
on the connectivity of C(t,K) is open. It is clear that g(C(t, Fq)) is ≥
2[2t/3] + 4.

Proposition 3.2. Projective limit of graphs D(n,K) (graphs C(t,K),
CD(n,K) ) with respect to standard morphisms of D(n + 1,K) onto
D(n,K) (their restrictions on induced subgraphs) equals to D(K) (C(K).

If K is an integrity domain, then D(K) and CD(K) are forests. Let C
be the connected component, i.e a tree.

We define the parallelotopic coloring of the graphs C(t,K)), D(n,K),
C(K) and D(K) by formulae µ(p1,0, p1,1, . . . ) = p1,0, µ([l0,1, l1,1, . . . ]) =
l0,1.

Let us consider the directed flag graphs F (t,K) and E(n,K) of the
tactical configurations C(t,K) and D(n,K), respectively. The vertex set of
F (t,K) (E(n,K)) is a totality of flags f = (([l], (p)), where (p)I[l] in the
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C(t,K) (D((n,K), respectively), we have f1 → f2 for f1 = ([l1], (p1)), f2 =
([l2], (p2)) if [l2]I(p1) ,[l1] 6= [l2], (p1) 6= (p2). We can consider the symbolic
invertible rainbow-like coloring ρ(f1, f2) of F (t,K) ( E(t,K)) defined on
the color set K∗ ×K∗ by the following rule:

Let f1 = ([l1], (p1)), f2 = ([l2], (p2)) form the arrow in F (t,K) (E(t,K)).
So, [l2]I(p1). We assume that ρ(f1, f2) = (l11,0 − l21,0, p

1
0,1 − l20,1).

If K is finite, then the cardinality of the color set is (|K| − 1)2. Let
RegK be the totality of regular elements, i.e. not zero divisors of the ring
K. Let us delete all arrows with color (x, y), where one of the elements x
and y is not a zero divisor for F (t,K) and E(t,K). New graph RF (t,K)
and RE(t,K) are the symbolic rainbow-like graphs over the set of colors
(RegK)2. The following statement can be found in [28].

Theorem 3.1. The girth indicator gi of the symbolic rainbow like graph
RF (t, k) are g ≥ 1/3t.

Corollary 3.1. Let K be a finite such that k = |RegK| ≥ 2. Then graphs
RF (t,K), t = 1, 2, . . . form the family of symbolic rainbow-like graphs of
large girth of degree k2.

4. Symmetric encryption, algorithms related to graphs
RF (n, K)

We can apply the general scheme of symmetric encryption to the paral-
lelotopic graphs RF (t,K) or RE(n,K) from the previous section. Other
options are based on the fact that RE(n,K) and E(n,K) are the envelop-
ing graph for RF (t,K) and the description of ”connectivity invariants”
ai(u), i ≥ 2 of D(n,K).

The information on the vertex f = {(p), [l]}, (p)I[l] can be given by
the list of coordinates (p1,0, p1,1, . . . ) of the point (p) and the parallelotopic
color l0,1 of the line [l]. Obviously, (p) and [l] are in the same connected
component of the graph D(n,K). So we can think of ai((p)), i ≥ 2 as
connectivity invariants of the graph RE(n,K).

Let Root be the list of all roots related to D(n,K) and Ω = Root −
{(0, 1)} be the list of the indexes of components of the tuple (p). Let ai(p),
i = 2, 3, . . . , t be the list of connectivity invariants. We choose two subsets
J = {i1, i2, . . . il} and J ′ = {j1, . . . , Jm} , |J∩J ′| = 0 of the set {2, 3, . . . , t},
l +m ≤ t− 1. So we have 3t−1 options to make a choice of (J, J ′). Let

Fj(x1, x2, . . . , xd), d = t− l −m− 1, j = 1, 2
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be the polynomial maps from Kd into K. The pair (J, J ′) and functions Fi,
i = 1, 2 form the ”internal key” of our encryption algorithm.

Let us choose the ”external key” in the form of the pair (b),=
(b1, . . . , bd), c, where b ∈ Kd and c ∈ Reg(K)s for some even integer
1 ≤ s < gi− 1. If the ring K is finite, then we have |K|d|RegK|s options to
form the external password for chosen parameter s.

4.1. The encryption algorithm

Let

∆(J) = {(i, i)|i ∈ J}
∆(J ′) = {(i, i)|i ∈ J ′}
Root′ = Root− J ∪ J ′

(3)

The plainspace is the totality of functions f : Root′ → K. So the
plainspace is the string of characters from the alphabet K.

Step 1. We will form the vertex of the graph E(n,K) by the follow-
ing rule: form the point (p) such that pα = f(α) for α ∈ Root′. For the
α ∈ ∆(J) ∪ ∆(J ′) values pα (α = (i, i) or α = (i, i)′) will be computed
consequently from the equations ai(p) = bi, i ∈ J ∪ J ′, [l] be the neighbor-
ing line for (p) with the parallelotopic color f((0, 1)). We form the vertex
v = ((p), [l]) of the graph E(n,K).

Step 2. Let Rt1,t2(u) be the operator of taking the neighbor of the vertex
u = (p), [l]) of the parallelotopic color (p1,0 + t1, l0,1 + t2), where ti ∈ K,
i = 1, 2. Let s1, s2, . . . , sd be the list of elements of the complement for
J ∪ J ′. We compute RF1(as1 (p),...,asd

)(p),F2(as1 (p),...,asd
)(p) = v0.

Step 3. Apply the composition of operators Rc1,c2 , . . . , Rcs−1,cs
to the

vertex v0. In fact, we use here the general encryption scheme for the graph
RE(n,K) in case of the plaintext v0). Let ((h), [g]) be the resulting vertex.
Assume that the information on this pair is given by function z : Root→ K,
such that z((0, 1)) = g0,1 and zα = hα for α 6= (0, 1).

Step 4. The ciphertext is the restriction z′ of the function z onto
Root−∆(J) ∪∆(J ′).

Step 5. We combine polynomial map τ : f → z′ as above with two
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invertible sparse affine transformations A and B by taking the composition
AτB.

4.2. Decryption procedure

Step 1. Let u be the ciphertext. We form the vertex ((p′), [l′]) of the graph
RE(n,K) from the function y = B−1(U) by the following rule: p′α = y(α)
for α ∈ Root′, for the α ∈ ∆(J) ∪∆(J ′) values p′α (α = (i, i) or α = (i, i)′)
will be computed consequently from the equations

ai(p′) = bi, , i ∈ J ∪ J′.

The line [l′] be the neighboring line for (p′) with the parallelotopic color
y((0.1). We form the vertex

vertex v′ = ((p′), [l′]) of the graph RE(n,K)−1.

Step 2. Let R′t1,t2(u) be the operator of taking the neighbor of the
vertex u = ((p), [l]) in the graph E(n,K)−1 of the parallelotopic color
(p1,0 = t1, l0,1 + t2), where ti ∈ RegK, i = 1, 2. Let s1, s2, . . . sd

be the list of elements of the complement for J ∪ J ′. We compute
R−F1(as1 (p′),...,asd

(p′)),−F2(as1 (p′),...,asd
(p′))(v′) = v′0.

Step 3. Apply the composition of operators R′−cs−1,−ccs
, . . . ,−Rc1,c2 to

the vertex v′0. In fact, we use here the general decryption scheme for the
graph RE(n,K) in case of the ciphertext v′0).

Step 4. Let ((h′), [g′]) be the resulting vertex. Assume that the in-
formation on this pair is given by function z1 : Root → K, such that
z((0, 1)) = g′0,1 and zα = h′α for α 6= (0, 1). We take the restriction z′1 of
the function z1 onto Root−∆(J) ∪∆(J ′).

Step 5. Compute the plaintext A−1(z′1).

Let us denote the above symmetric encryption algorithm as
Alg(F1, F2, A,B).

Proposition 4.1. (i) Let us keep the internal password fixed. Then differ-
ent external passwords correspond to distinct ciphertext.

(ii) If the values of F1(as1(p), . . . , asd
(p)) and F2(as1(p), . . . , asd

(p))
(Step 2) are regular elements and B = A−1 of the ciphertext is always

different from the plaintext.
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Proof. Let us consider the transformation Alg(E,E, F1, F2), where E is
the identity map. Steps 1 and 2 do not depend on the external alphabet.
The encryption procedure corresponds to the directed pass in the graph
RE(n,K) of the length less than the girth indicator. So the property (i)
holds. The affine transformations A and B are bijections, so the property
(i) is true for the Alg(A,B, F1, F2).

If the condition of (ii) holds then steps 2 and 3 of Alg(E,E, F1, F2)
correspond to the directed pass in the graph RE(n,K) of the length less
then the girth indicator. So this transformation have no fixed points. The
map Alg(A,A−1, F1, F2) is conjugate with Alg(E,E, F1, F2).

Remark 4.1. In fact we can use conditions F1(as1(p), . . . , asd
(p)) ×

F2(as1(p), . . . , asd
(p)) 6= 0 or Fi(as1(p), . . . , asd

(p)) = 0 for some i instead
of condition of (ii) for the above statement.

We say that functions A,B, Fi, i = 1, 2 are sparse if their computation
requires O(n) operations of the ring K.

Proposition 4.2. (i) Let the complexity of transformations A,B, Fi, i =
1, 2. If max(|J |, |J ′|) is bounded by independent on n constant, then the
symmetric encryption as above requires O(n) ring operations.

(ii) For each positive integer m there is a choice of functions Fi, i = 1, 2,
such that the degree of polynomial encryption map is ≥ m.

(iii) If functions F1 and F2 are constants, then the encryption
transformation of Alg(E,E, F1, F2) sending (l0,1, p1,0, p1,1, . . . , pα, . . . ) into
(l′0,1, p

′
1,0, p

′
1,1, . . . , p

′
α, . . . ) ’ is a triangular map of kind l′0,1 → l′0,1 + c,

p′α → pα + fα(l0,1, p1,0, p1,1, . . . , pα). So the value of p′alpha depends compo-
nents pβ such that β < α according to the natural order on the root set.

Remark 4.2. The properties (i) and (iii) of the statement above allow
to use Alg(E,E, c1, c2 as a stream cipher for ”changing data on the fly”
(telecommunications, encryption CD’s with movies and etc). If we keep
the external password fixed, then change of the single character pα of the
plaintext lead to change of characters p′β of ciphertext with β ≥ α.

Remark 4.3. In the case of the root set with the highest roots (l, l), (l, l)′

such that l is not an element of J and J ′, Fi(as1(p), . . . , asd
(p)), i = 1, 2 are

linear combinations of as1(p), . . . , asd
(p) containing terms kiai(p), ki 6= 0

change of single character of the ciphertext lead to change with the proba-
bility close to 1 each character of the ciphertext. It justifies use of nontrivial
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F1 and F2 for the self-coding in case of encryption of large file (data bases,
Geological Information Systems, etc).

4.3. Examples

1) In the practically important case of the ring K = Z2n (sizes of the
ASKEE and binary alphabets are 27 and 28, respectively) the RegK is
the totality of odd residues modulo 2n, all values of functions of kind
2f(x1, x2, . . . , xn) + 1 are regular elements. So if Fi, i = 1, 2 belong to
this set, then the ciphertext for Alg(A,A−1, F1, F2) is always different from
each plaintext.

2) In the case of K = z2k+1, the value of Euler function φ(2k+1) giving
us the number of regular elements of the ring is ≥ k, because of all even
residues are regular, values of functions of kind 2f(x1, . . . , xn) either are
regular or zero, So if Fi, i = 1, 2 belong to this set, then the ciphertext for
Alg(A,A−1, F1, F2) is always different from each plaintext.

3) In the case of the integer domain RegK coincides with the K − {0}
any transformation Alg(A,A−1, F1, F2) has no fixed points.

5. Public keys

We can use the following modification of the encryption Alg(A,B, F1, F2)
with subsets J = {i1, i2, . . . , il} and J ′ = {j1, . . . , jm} , |J ∩ J ′| = 0 of the
set {2, 3, . . . , t}, l +m ≤ t− 1. Recall that Fi, i = 1, 2 depend on variables
(x1, x2, . . . , xd), d = t− l −m− 1.

Let us choose the ”dynamical external key” in the form of the pair
b = (b1, . . . bd) ∈ Kd and c = (f1(x1, x2, . . . , xd), . . . , fs(x1, . . . , xd)), where
s is even integer and fi are polynomial maps from Kd into K.

We have to complete Step 1 and 2 without any changes. After computa-
tion of ”numerical password” c′ = (f1(as1(p), . . . , asd

(p)) = (c′1, . . . , c
′
d)

and complete modified Step 3 i. e. apply the composition of operators
Rc′1,c′2

, . . . , Rc′s−1,c′s
to the vertex v0. In fact, we use here the general en-

cryption scheme for the graph E(n,K) in case of the plaintext v0).
After we conduct remaining steps 4 and 5 without any changes.
The new algorithm Alg(E(n, k), A,B, F1, F2, f1, . . . , fs) defines the

polynomial map of the free module Kr, r = |Root − J ∪ J | into itself.
We have to create (say with ”Mathematica” or ”Maple”) the public rule:

y1 = P1(x1, . . . , xr), . . . , yr = Pr(x1, . . . , xr).
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The public user Bob can use it for the encryption procedure. If parameter
s and degrees of polynomials F1, F2, f1, . . . , fs are sufficiently large then he
is not able to find the inverse map.

The key holder Alice use information on the graph E(n,K), matri-
ces A, B, sets J, J ′, functions F1, F2 and external key i. e. string b
of elements of the ring K and sequences of functions f1, . . . , fs. That
is why she can use modified decryption scheme of Alg(A,B, F1, F2) ,
where the only modification is the computation of ”numerical password”
c = (f1(as1(p), . . . , asd

(p)) = (c1, . . . , cd) for the restriction p of the output
of Step 2 onto the set Root{(0, 1)}.

If values functions F1, F2, f1, . . . , fs are regular elements then the plain-
text and the ciphertext of Alg(E(n, k), E,E, F1, F2, f1, . . . , fs) are at the
distance s/2 + 1 in the graph RE(n,K). If s/2 + 1 is ≤ gi, then the cipher-
text is always different from the plaintext.

6. Other algebraic parallelotopic graphs

The algorithm Alg(E,E, F1, F2) with empty sets Jand J can be easily
generalized on the arbitrary algebraic parallelotopic graph G(K) over ring
K with the color set M and coloring function µ. We can assume that
M = M(K) is the open quasi-algebraic variety over the commutative ring
K. Let V (K) be the vertex set of G and g : V (K)→ Kl be the connectivity
invariant of the graph i. e. function which is constant on vertices from
the same connected component. Let Ra(v) be the operator of taking the
neighbor of the vertex v ∈ V (G) of the color a ∈ M . Let hi(x, y), x ∈ M ,
y ∈ M , i = 1, . . . , s be polynomial maps from M ×Kl → M such that
each equation of kind hi(x, b) = c has unique solution in variable x. We
define the following invertible procedure τ : v → v1 = Rh1(µ(v),g(v)(v) →
Rh2(µ(v1),g(v) → Rhs(µ(vs−1),g(v). The transformation AτB, where A and B
are sparse invertible polynomial automorphisms of V (G), can be used for
various cryptographical problems.

If L(x, y) be the latin squire on M , which is a polynomial map from
M×M → M , then we can take hi = L(φi(x), y), where φi are polynomial
automorphisms of open variety M .

The reader can find examples of parallelotopic graphs over the set of
colors Km of high girth for each commutative ring K and each positive
integer m ≥ 2.

We can consider more general graphs RF 2s(t,K) (RE2s(t,K)), which
vertices are chains (p1), [l1], . . . , (ps), [ls] of old graph Ct(K) (D(n,K),
respectively) such that ρ(pi) − ρ(pi−1), i = 2, 3, . . . , s and ρ(li) −
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ρ(li−1), i = 2, 3, . . . , s. Two vertices (p1), [l1], . . . , (ps), . . . , [ls] and
(x1), [y1], . . . , (xs), [ys] are in binary relation RF s(t, s) (REs(t, s), respec-
tively) if [ls]I(x1) and ρ((x1)) − ρ((ps)) and ρ([y1]) − ρ([ls]) are regular
elements of the ring K.

We consider as well the directed bipartite graphs RF 2s+1(t,K) with the
point-set

{((p1), [l1], . . . , (ps), [ls], (ps+1)|(pi)I[li]I(pi+1), i = 1, . . . , s}

and line-set

{([y1], (x1) . . . , [ys], (xs), [ys+1])|[li]I(pi)I[li+1], i = 1, . . . , s}.

We have,

((p1), l[l1], . . . , (ps), [ls], (ps+1)→ ([y1], (x1) . . . , [ys], (xs), [ys+1])

if

(ps+1)I[y1], and ρ([y1])− ρ([ls]), ρ((x1))− ρ(ps+1

are regular elements of the ring K. Analogously,

([y1], (x1) . . . , [ys], (xs), [ys+1])→ ((p1), [l1], . . . , (ps), [ls], (ps+1)

if

(p1)I[ys+1], and ρ((p1))− ρ((xs)), ρ([l1])− ρ([ys+1])

are regular elements.

Proposition 6.1. The map π given by the close formula

pπ = [p10,−p11, p21, p12,−p′22,−p22, . . . ,−p′ii,−pii, pi+1,i, pi,i+1, . . . ],

lπ = (l01,−l11, l21, l12,−l′22,−l22, . . . ,−l′ii,−lii, li+1,i, li,i+1, · · · )

is the color preserving automorphism of D(K) of order two. It preserves
blocks of the equivalence relation τ . Its restriction on V (D(2n, k)) and
V (CD(2n,K)) are color preserving graph automorphism of order two.

We define the polarity graph RF 2s+1
π (t,K) with the vertex set

{((p1), [l1], . . . , (ps), [ls], (ps+1)|(pi)I[li]I(pi+1), i = 1, . . . , s}

by declaring

((p1), [l1], . . . , (ps), [ls], (ps+1))→ ((x1), [y1], . . . , (xs), [lys], (xs+1))

in the case when

((p1), [l1], . . . , (ps), [ls], (ps+1)) → (π((x1)), π([y1]), . . . , π((xs)), π([lys]), π((xs+1))
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Corollary 6.1. Let K be a finite such that k = |RegK| ≥ 2. Then
graphs RF s(t,K) (RF 2s+1

π (t,K)), t = 1, 2, . . . form the family of symbolic
rainbow-like graphs of large girth of degree ks (k2s+1, respectively).

Password length 3000 6000 9000
m
5 915 1760 2606
10 1830 3520 5211
15 2745 5280 7815
20 3666 7053 10440

7. Remarks on implementation

In our package for symmetric encryption we used the rings Z28 and F28 ,
same field as in the new U.S. Advanced Encryption Standard (AES). In fact,
our crypto-system works primarily with bytes (8 bits), represented from the
right as: b7b6b5b4b3b2b1b0. The 8-bit elements of the field are regarded
as polynomials with coefficients in the field F2: b7x7 + b6x6 + b5x5 +
b4x4 + b3x3 + b2x2 + b1x1 + b0. The field elements will be denoted by
their sequence of bits, using two hexadecimal digits. . We eight irreducible
polynomial (a polynomial that cannot be factored into the product of two
simpler polynomials). As for the AES, we use the following irreducible poly-
nomial: m(x) = x8+x4+x3+x+1 = 0x11b(hex). The intermediate product
of the two polynomial we first generate a multiplication table for the 256
elements and once any multiplication of elements in the F28 , we use the
loaded multiplication table for efficiency reasons.

To evaluate the performance of our algorithm (F28), we use measure
the encryption time for our method for different size of data files and using
different password lengths of keys (in bytes). It shows also that for password
of length 10 our algorithm is capable to encrypt at speed as fast as 2
kilo-bytes per millisecond. Together with the traditional table below, we
just write the close formula T = 2nk, T - time, n, k are dimensions of
the plainspace and the keyspace as vector spaces over the chosen field,

in the directed graph RF 2s+1(t, K). The following statement is immediate

corollary from Theorem 3.
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respectively. Our program is written in Java and it runs on Pentium 4,
1GHZ. The better performance on better computers we get via C or C++
version.

Our algorithm uses binary code, it may encrypt any data type. We have
developed a prototype software written in Java. We hope that our software
can be a very attractive tool for reliable security of virtual organization
(e-learning, e-business, etc ...). We used families of graphs RE(k,K), K ∈
{Z28 , F28}, D(k, F28). Because of the use of loaded multiplication table the
speed of computation does not depend on the choice of the family.

Remark. Case of rings Z2s . Let us assume that the password and the
plaintext are numbers written base 2 (binary code). To encrypt we making
two steps: first is the conversion of the plaintext and the key into strings
of residues mod Z2s (numbers n and k base 2s), second is our algorithm
on symmetric mode with the numerical key. The complexity of first step
O(log2(n))+Olog2(k) does not depend on parameter s (see [11]). The com-
plexity of second step is approximately 2nk2−2s because the key (plaintext)
is the string of length k2−s (n−2s, respectively. So the algorithm in case of
s = 32 (s = 64) works 16 times (64 times, respectively) faster then in case
s = 8 evaluated by table below.

References

[1] N. Biggs, Algebraic Graph Theory (2nd ed), Cambridge, University Press,
1993.

[2] F. Bien, Constructions of telephone networks by group representations, No-
tices Amer. Mah. Soc., 36 (1989), 5-22.

[3] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
[4] A. Brower, A. Cohen, A. Nuemaier, Distance regular graphs, Springer, Berlin,

1989.
[5] P. J. Cameron and J.H. van Lint, Graphs, Codes and Designs, London. Math.

Soc. Lecture Notes, 43, Cambridge (1980).
[6] E. Dijkstra, A note on two problems in connection with graphs, Num. Math.,

1 (1959), 269-271.
[7] P. S. Guinard and J.Lodge, Tanner Type Codes Arizing from Large Girth

Graphs, Communications Research Centre, Canada , Reprint GUI94, 2006.
[8] S. Hoory, N. Linial, and A.Wigderson, Expander graphs and their applications,

Bulletin (New Series) of AMS, volume 43, N4, 439-461,
[9] V. Kac. Infinite dimensional Lie algebras, Birkhauser, Boston, 1983.
[10] Yu. Khmelevsky , V. A. Ustimenko, Practical aspects of the Informational

Systems reengineering, The South Pacific Journal of Natural Science, volume
21, 2003, www.usp.ac.fj(spjns).

[11] N. Koblitz, A Course in Number Theory and Cryptography, Second Edition,
Springer, 1994, 237 p.



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

199

[12] N. Koblitz, Algebraic aspects of Cryptography, in Algorithms and Compu-
tations in Mathematics, v. 3, Springer, 1998.

[13] F. Lazebnik, V. Ustimenko and A.J.Woldar, A new series of dense graphs
of high girth, Bulletin of the AMS 32 (1) (1995), 73-79.

[14] A. Lubotsky, R. Philips, P. Sarnak, Ramanujan graphs, J. Comb. Theory,
115, N 2., (1989), 62-89.

[15] G. A. Margulis, Explicit construction of graphs without short cycles and low
density codes, Combinatorica, 2, (1982), 71-78.

[16] G. Margulis, Explicit group-theoretical constructions of combinatorial
schemes and their application to desighn of expanders and concentrators,
Probl. Peredachi Informatsii, 24, N1, 51-60. English translation publ. Journal
of Problems of Information transmission (1988), 39-46.

[17] M. Margulis, Arithmetic groups and graphs without short cycles, 6th Intern.
Symp. on Information Theory, Tashkent, abstracts, vol. 1, 1984, pp. 123-125
(in Russion).

[18] R.Michael Tanner. A recursive approach to low complexity codes, IEEE Trans
on Info.Th., IT, 27(5):533-547, Sept. 1981.

[19] A. Tousene, V. Ustimenko, Graph Based Private Key Crypto System, Inter-
national Journal on Computer Research, Nova Science Publisher, volume 13
(2006), issue 4, 12p.

[20] V. A. Ustimenko, Coordinatisation of regular tree and its quotients, in
”Voronoi’s impact on modern science”, eds P. Engel and H. Syta, book 2,
National Acad. of Sci, Institute of Matematics, 1998, 228p.

[21] V. A. Ustimenko, On the varieties of parabolic subgroups, their generaliza-
tions and combinatorial applications, Acta Applicandae Mathematicae, 52
(1998), 223-238.

[22] V. Ustimenko, Graphs with Special Arcs and Cryptography, Acta Applican-
dae Mathematicae, 2002, vol. 74, N2, 117-153.

[23] V. Ustimenko, CRYPTIM: Graphs as tools for symmetric encryption, In
Lecture Notes in Comput. Sci., 2227, Springer, New York, 2001.

[24] V. Ustimenko, Maximality of affine group and hidden graph cryptsystems,
Journal of Algebra and Discrete Mathematics, October, 2004, v.10, pp. 51-65.

[25] V. A. Ustimenko, D. Sharma, CRYPTIM: system to encrypt text and image
data, Proceedings of International ICSC Congress on Intelligent Systems 2000,
Wollongong, 2001, 11pp.

[26] V. Ustimenko, A. Touzene, CRYPTALL:system to encrypt all types of data,
Notices of the Kiev-Mohyla Academy, v 23, June , 2004, pp. 12-15.

[27] V. Ustimenko, On the extremal binary relation graphs of high girth, Proceed-
ings of the Conference on infinite particle systems, Kazimerz- Dolny, 2006,
World Scientific Publ.(to appear).

[28] V. Ustimenko, On the graph based cryptography and symbolic computations,
Serdica Journal of Computing, Proceedings of the International Conference,
ACA 2006, Warna, Bugaria (to appear).

[29] V. Ustimenko. On linguistic Dynamical Systems, Graphs of Large Girth and
Cryptography, Journal of Mathematical Sciences, Springer, vol.140, N3 (2007)
pp. 412-434.



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

200

Fast arithmetic on hyperelliptic curves via continued fraction
expansions

M. J. Jacobson, Jr.

Department of Computer Science, University of Calgary,
2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

E-mail: jacobs@cpsc.ucalgary.ca

R. Scheidler∗

Department of Mathematics and Statistics, University of Calgary,

2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

E-mail: rscheidl@math.ucalgary.ca

A. Stein

Department of Mathematics, University of Wyoming
1000 E. University Avenue, Laramie, WY 82071-3036, USA

Email: astein@uwyo.edu

In this paper, we present a new algorithm for computing the reduced sum of

two divisors of an arbitrary hyperelliptic curve. Our formulas and algorithms
are generalizations of Shanks’s NUCOMP algorithm, which was suggested ear-

lier for composing and reducing positive definite binary quadratic forms. Our

formulation of NUCOMP is derived by approximating the irrational contin-
ued fraction expansion used to reduce a divisor by a rational continued frac-

tion expansion, resulting in a relatively simple and efficient presentation of

the algorithm as compared to previous versions. We describe a novel, unified
framework for divisor reduction on an arbitrary hyperelliptic curve using the

theory of continued fractions, and derive our formulation of NUCOMP based

on these results. We present numerical data demonstrating that our version
of NUCOMP is more efficient than Cantor’s algorithm for most hyperelliptic

curves, except those of very small genus defined over small finite fields.
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1. Introduction and Motivation

Divisor addition and reduction is one of the fundamental operations re-
quired for a number of problems and applications related to hyperelliptic
curves. The group law of the Jacobian can be realized by this operation,
and as such, applications ranging from computing the structure of the divi-
sor class group to cryptographic protocols depend on it. Furthermore, the
speed of algorithms for solving discrete logarithm problems on hyperelliptic
curves, particularly of medium and large size genus, depend on a fast com-
putation of the group law. There has been a great deal of work on finding
efficient algorithms for this operation (see for instance [5]).

Cantor’s algorithm [2] is a generic algorithm that allows this opera-
tion to be explicitly computed. It works by first adding the two divisors
and subsequently reducing the sum. One drawback of this approach, and
most algorithms derived from it, is that one has to deal with intermedi-
ate operands of double size. That is, while the basis polynomials of the
two starting divisors and the final reduced divisor have degree at most g,
where g is the genus of the curve, the divisor sum has a basis consisting
of two polynomials whose degree is usually as large as 2g, and reduction
only gradually reduces the degrees back down to g. This greatly reduces
the speed of the operation, and it is highly desirable to be able to perform
divisor addition and reduction without having to compute with quantities
of double size.

The group operation of the class group of positive definite binary
quadratic forms, composition and reduction, suffers from the same problem
of large intermediate operands. In 1988, Shanks [13] devised a solution to
this problem, an algorithm he called NUCOMP. The idea behind this algo-
rithm is to stop the composition process before completion and apply a type
of intermediate reduction before computing the composed form. Instead
of using the rather expensive continued fraction algorithm that produces
the aforementioned intermediate operands of double size, the reduction is
performed using the much less costly extended Euclidean Algorithm. The
coefficients are only computed once the form is reduced or almost reduced.
As a result, the sizes of the intermediate operands are significantly smaller,
and the binary quadratic form produced by NUCOMP is very close to being
reduced.

In [11], van der Poorten generalized NUCOMP to computing with ideals
in the infrastructure of a real quadratic number field by showing how the
relative generator corresponding to the output can be recovered. Jacobson
and van der Poorten [6] presented numerical evidence for the efficiency
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of their version of NUCOMP. They also sketched an adaptation of this
method to arithmetic in the class group and infrastructure of a hyperelliptic
curve. Their computational results indicated that their version of NUCOMP
was more efficient than Cantor’s algorithm for moderately small genera
(between genus 5 and 10), and that the relative efficiency improved as both
the genus and size of the ground field increase. However, a formal analysis
and description of NUCOMP in the hyperelliptic curve setting was not
provided.

Shanks’s formulation of NUCOMP, as well as the treatments in [11]
and [6], are based on the arithmetic of binary quadratic forms. In [8], the
authors described NUCOMP in terms of ideal arithmetic in real quadratic
number fields. They provided a clear and complete description of NUCOMP
in terms of continued fraction expansions of real quadratic irrationalities
and, in addition, showed how to optimize the formulas in this context.

In this paper, we provide a unified description of NUCOMP for divisor
arithmetic on the three different possible models of a hyperelliptic curve:
imaginary, real, and unusual [3]. We generalize the results in [8], describ-
ing and deriving NUCOMP in terms of continued fraction expansions in
all three settings. Furthermore, we explain NUCOMP purely in terms of
divisor arithmetic, also incorporating the infrastructure arithmetic of a real
hyperelliptic curve. Our formulation of NUCOMP is complete and some-
what simpler than that in [6], and its relation to Cantor’s algorithm is
more clear. In addition, we prove its correctness and a number of related
results, including the fact that the output is in most cases reduced, and
is in the worst case only one step away from being reduced. The end re-
sult, supported by computational results, is that our improved formulation
of NUCOMP offers performance improvements over Cantor’s algorithm for
even smaller genera than indicated in [6].

We begin in Sec. 2 with an overview of continued fractions, and explain
divisor arithmetic on hyperelliptic curves and its connection to continued
fractions in Sec. 3–Sec. 5. Based on this foundation, we describe divisor
addition and reduction as well as NUCOMP in Sec. 6–Sec. 10. We conclude
with numerical results in Sec. 11, including a discussion of the efficiency of
our two different versions of NUCOMP as given in Sec. 9.
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2. Continued Fraction Expansions

For brevity, we write the symbolic expression

s0 +
1

s1 +
1

. . .
sn +

1
αn+1

as [s0, s1, . . . , sn, αn+1]. If we wish to leave the end of the expression unde-
termined, we simply write [s0, s1, . . . ].

Let k be any field, k[t] the ring of polynomials in the indeterminate t with
coefficients in k, and k(t) the field of rational functions in t with coefficients
in k. It is well-known that the completion of k(t) with respect to the place
at infinity of k(t) (corresponding to the discrete valuation “denominator
degree minus numerator degree”) is the field k〈t−1〉 of Puiseux series in t−1;
that is, any non-zero element in k〈t−1〉 is of the form

α =
d∑

i=−∞
ait

i ,

where d ∈ Z, ai ∈ k for i ≤ d, and ad 6= 0. Define

bαc =
d∑

i=0

ait
i , sgn(α) = ad , deg(α) = d . (2.1)

Also, define b0c = 0 and deg(0) = −∞.
Let n ≥ 0, s0, s1, . . . , sn a sequence of polynomials in k[t], and α ∈

k〈t−1〉 non-zero. Then the expression

α = [s0, s1, . . . , sn, αn+1] (2.2)

is referred to as the (ordinary) continued fraction expansion of α with partial
quotients s0, s1, . . . , sn. It uniquely defines a Puiseux series αn+1 ∈ k〈t−1〉
where α0 = α and αi+1 = (αi − si)−1 for 0 ≤ i ≤ n. If we set

A−2 = 0 , A−1 = 1 , Ai = siAi−1 +Ai−2 ,

B−2 = 1 , B−1 = 0 , Bi = siBi−1 +Bi−2 ,
(2.3)

for 0 ≤ i ≤ n, then Ai/Bi = [s0, s1, . . . , si] for 0 ≤ i ≤ n − 1. Since
AiBi−1 − Ai−1Bi = (−1)i−1 for −1 ≤ i ≤ n, Ai and Bi are coprime for
−2 ≤ i ≤ n.

If si = qi with qi = bαic for i ≥ 0, then Eq. (2.2) is the well-known regu-
lar continued fraction expansion of α. Here, the partial quotients q0, q1, . . .
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are uniquely determined by α, and deg(qi) ≥ 1 for all i ∈ N. The rational
function Ai/Bi = [q0, q1, . . . , qi] is the i-th convergent of α. This term is
motivated by the well-known inequalities

deg
(
α− Ai

Bi

)
≤ − deg(BiBi+1) < −2 deg(Bi) (2.4)

for all i ≥ 0. The following result is also well-known:

Lemma 2.1. Let α ∈ k〈t−1〉, E, F ∈ k[t] with αF 6= 0 and gcd(E,F ) = 1.
If

deg
(
α− E

F

)
< −2 deg(F ) ,

then E/F is a convergent in the regular continued fraction expansion of α.

Throughout this paper, we reserve the symbols qi and q̂i for the quo-
tients of a regular continued fraction expansion; for arbitrary partial quo-
tients, we use the symbol si. To distinguish expansions of rational functions
from those of Puiseux series, we henceforth use the convention that partial
quotients and convergents relating to expansions of rational functions are
equipped with a “ˆ” symbol, whereas quantities pertaining to expansions
of Puiseux series do not have this symbol.

One of the main ideas underlying NUCOMP is to approximate the reg-
ular continued fraction expansion of a Puiseux series by that of a rational
function “close” to it. We then expect the convergents, and hence the two
expansions, to agree up to a certain point:

Theorem 2.1. Let α ∈ k〈t−1〉 and α̂ ∈ k(t) be non-zero, and write α̂ =
E/F with E,F ∈ k[t]. Let q̂i (0 ≤ i ≤ m) and r̂i (−1 ≤ i ≤ m) be the
sequences of quotients and remainders, respectively, obtained by applying the
Euclidean Algorithm to α̂; that is, r̂−2 = E, r̂−1 = F, r̂i−2 = q̂ir̂i−1+r̂i with
q̂i = bri−2/ri−1c for 0 ≤ i ≤ m, so r̂m−1 = gcd(E,F ) and r̂m = 0. If there
exists n ∈ Z, −1 ≤ n ≤ m− 1, such that 2 deg(r̂n) > deg(F 2(α− α̂)), then
the first n+2 partial quotients in the regular continued fraction expansions
of α and α̂ are equal.

Proof. Let α = [q0, q1, . . . , qm, . . .] be the regular continued fraction expan-
sion of α. The regular continued fraction expansion of α̂ is obviously α̂ =
[q̂0, q̂1, . . . , q̂m]. Then Ai/Bi = [q0, q1, . . . , qi] and Âi/B̂i = [q̂0, q̂1, . . . , q̂i]
are the i-th convergents of α and α̂, respectively. We wish to prove that
qi = q̂i for 0 ≤ i ≤ n+ 1.
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Suppose n as in the statement exists. If n = −1, then 2 deg(r̂−1) =
2 deg(F ) > deg(F 2(α− α̂)) implies deg(α− α̂) < 0, so q0 = bαc = bα̂c = q̂0.

Assume now inductively that 2 deg(r̂n−1) > deg(F 2(α−α̂)) implies qi =
q̂i for 0 ≤ i ≤ n and suppose that 2 deg(r̂n) > deg(F 2(α− α̂)). Since the ri
are decreasing in degree for −1 ≤ i ≤ m, we have 2 deg(r̂n−1) > 2 deg(r̂n) >
deg(F 2(α − α̂)), so qi = q̂i for 0 ≤ i ≤ n by induction hypothesis, and we
only need to show qn+1 = q̂n+1.

A simple induction argument yields r̂i = (−1)i−1(ÂiF − B̂iE) for −2 ≤
i ≤ m, so by assumption and Eq. (2.4),

deg(α− α̂) < 2 deg
(
r̂n

F

)
= 2deg(Ân − B̂nα̂) ≤ −2 deg(B̂n+1) .

It follows again from Eq. (2.4) that

deg

(
α− Ân+1

B̂n+1

)
≤ max

{
deg(α− α̂),deg

(
α̂− Ân+1

B̂n+1

)}
< −2 deg(B̂n+1) .

Since gcd(Ân+1, B̂n+1) = 1, Lemma 2.1 implies that Ân+1/B̂n+1 = Aj/Bj

for some j ≥ 0. If j < n+ 1, then [qj+1, . . . , qn+1] = 0 which is a contradic-
tion. If j > n + 1, then similarly [q̂n+2, . . . , q̂j ] = 0, again a contradiction.
Thus, Ân+1/B̂n+1 = An+1/Bn+1, and hence qn+1 = q̂n+1.

Let E,F ∈ k[t] be non-zero, and assume that deg(E) > deg(F ). Con-
sider again the regular continued fraction expansion of the rational function
E/F = [q̂0, q̂1, . . . , q̂m], where m ≥ 0 is again minimal with that property.
Set φ̂0 = E/F and φ̂i+1 = (φ̂i − q̂i)−1, so q̂i = bφ̂ic for i ≥ 0. This contin-
ued fraction expansion corresponds to the Euclidean algorithm applied to
E and F. We define

b−1 = E , b0 = F , bi+1 = bi−1 − q̂ibi ,

a−1 = 0 , a0 = −1 , ai+1 = ai−1 − q̂iai ,
(2.5)

so q̂i = bbi−1/bic, for 0 ≤ i ≤ m. Then q̂i and bi+1 are the quotients and
remainders, respectively, when dividing bi−1 by bi. We have

bi−1 = q̂i bi + bi+1 , deg(bi+1) < deg(bi) (−1 ≤ i ≤ m) , (2.6)

and the bi strictly decrease in degree for −1 ≤ i ≤ m+1. Then m is minimal
such that bm+1 = 0, so bm = gcd(E,F ).

As before, denote by Âi/B̂i = [q̂0, q̂1, . . . , q̂i] the i-th convergents of φ̂0

for 0 ≤ i ≤ m. The quantities Âi, B̂i can be computed recursively by

Â−2 = 0, Â−1 = 1, Âi = q̂iÂi−1 + Âi−2 (0 ≤ i ≤ m) ,
B̂−2 = 1, B̂−1 = 0, B̂i = q̂iB̂i−1 + B̂i−2 (0 ≤ i ≤ m) .

(2.7)
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Then induction yields ai = (−1)i−1Âi−1 for −1 ≤ i ≤ m+ 1; in particular,
we see that the ai increase in degree for −1 ≤ i ≤ m+ 1. We also obtain

b−1 = (−1)i(ai−1bi − aibi−1) (0 ≤ i ≤ m+ 1) . (2.8)

We require the following basic degree properties later on:

Lemma 2.2.

(a) deg(bi) = deg(bi−1)− deg(q̂i) ≤ deg(bi−1)− 1 (0 ≤ i ≤ m) .
(b) deg(ai) = deg(ai−1) + deg(q̂i−1) ≥ deg(ai−1) + 1 (1 ≤ i ≤ m+ 1) .
(c) deg(bi) ≤ deg(b−1)− i− 1 (−1 ≤ i ≤ m+ 1) .
(d) deg(ai) ≥ i (0 ≤ i ≤ m+ 1) .
(e) deg(ai) + deg(bi−1) = deg(b−1) (0 ≤ i ≤ m+ 1) .

Proof. Since deg(q̂i) ≥ 1 for 0 ≤ i ≤ m by Eq. (2.6), (a) and (b) follow
from Eq. (2.5). Parts (c) and (d) can then be obtained from (a) and (b),
respectively, using induction. Finally, since deg(aibi−1) > deg(ai−1bi) by
(a) and (b), (e) now follows from Eq. (2.8).

3. Hyperelliptic Curves

We employ an algebraic framework of hyperelliptic curves based on the
treatments of function fields given in [12], [17], and [4], as opposed to a
more geometric treatment. Let k be a finite field of order q. Following [3],
we define a hyperelliptic function field of genus g ∈ N to be a quadratic
extension of genus g over the rational function field k(u), and a hyperelliptic
curve of genus g over k to be a plane, smootha, absolutely irreducible, affine
curve C over k whose function field k(C) is hyperelliptic of genus g. The
curve C and its function field are called imaginary, unusual, or real, if the
place at infinity of k(u) is ramified, inert, or split in k(C), respectively.
Then C is of the form

C : v2 + h(u)v = f(u) , (3.1)

where f, h ∈ k[u], h = 0 if k has odd characteristic, h is monic if k has even
characteristic, and every irreducible factor in k[u] of h is a simple factor of f ;
in particular, f is squarefree if k has odd characteristic. Then the function
field of C is k(C) = k(u, v) and its maximal order is the integral domain
k[C] = k[u, v], the coordinate ring of C over k. The different signatures at
infinity can easily be distinguished as follows:

aA hyperelliptic curve does have singularities at infinity if it is not elliptic, i.e. g ≥ 2
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(1) C is imaginary if deg(f) = 2g+1, and if deg(h) ≤ g if k has character-
istic 2;

(2) C is unusual if the following holds: if k has odd characteristic, then
deg(f) = 2g + 2 and sgn(f) is a non-square in k, whereas if k has
characteristic 2, then deg(h) = g + 1, deg(f) = 2g + 2 and the leading
coefficient of f is not of the form e2 + e for any e ∈ k∗.

(3) C is real if the following holds: if k has odd characteristic, then deg(f) =
2g + 2 and sgn(f) is a square in k, whereas if k has characteristic 2,
then deg(h) = g + 1, and either deg(f) ≤ 2g + 1, or deg(f) = 2g + 2
and the leading coefficient of f is of the form e2 + e for some e ∈ k∗.

In some literature sources, unusual curves are counted among the imaginary
ones, as there is a unique place in k(C) lying above the place at infinity of
k(u) for both models. Note also that an unusual curve over k is real over a
quadratic extension of k; whence the term “unusual”.

It is well-known that the places of k(u) are given by the monic irreducible
polynomials in k[u] together with the place at infinity of k(u). Define S to be
the set of places of k(C) lying above the place at infinity of k(u), and write
S = {∞} if C is imaginary or unusual, and S = {∞1,∞2} if C is real. Then
the places of k(C) are the prime ideals lying above the places of k(u) (the
finite places) together with the elements of S (the infinite places). To every
place p of k(C) corresponds a normalized additive valuation νp on k(C)
and a discrete valuation ring Op = {α ∈ k(C) | νp(α) ≥ 0}; for brevity, we
write νi = ν∞i (i = 1, 2) if C is real. The degree deg(p) of a place p is the
field extension degree deg(p) = [Op/p : k]. Note that deg(∞) = 1 if C is
imaginary, deg(∞) = 2 if C is unusual, and deg(∞1) = deg(∞2) = 1 if C is
real. The norm of a finite place p is the polynomial N(p) = Pdeg(p) ∈ k[u],
where P is the unique place of k(u) lying below p.

For any place p of k(C), denote by k(C)p the completion of k(C) with
respect to p. Then it is easy to see that the completions k(C)S of k(C) with
respect to the places in S are, respectively,

k(C)S =


k(C)∞ = k〈u−1/2〉 if C is imaginary ,

k(C)∞ = k′〈u−1〉 if C is unusual ,
k(C)∞1 = k(C)∞2 = k〈u−1〉 if C is real ,

where k′ = k(sgn(v)) is a quadratic extension of k. For C imaginary or
unusual, the embedding of k(C) into k(C)S is unique, whereas for the real
case, we have two embeddings of k(C) into k〈u−1〉. Here, we number the
indices so that ν1(v) ≤ ν2(v), and choose the embedding with deg(α) =
−ν1(α) for all α ∈ k(C).



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

208

To unify our discussion over all hyperelliptic models, we henceforth in-
terpret elements in k(C) as series in powers of u−1, where in the imaginary
case, the exponents of these powers are half integers. All degrees of function
field elements are then taken with respect to u; more exactly, we set

deg(α) = degu(α) =


−ν∞(α)/2 if C is imaginary ,
−ν∞(α) if C is unusual ,
−ν1(α) = −ν2(α) if C is real ,

for α ∈ k(C). Here, if α = a + bv ∈ k(C) with a, b ∈ k(u), then α =
a − b(v + h) is the conjugate of α. Note that for imaginary curves, deg(α)
can be a half integer. The following properties are easily seen:

Lemma 3.1.

(a) If C is imaginary, then deg(v) = deg(v + h) = g + 1/2.
(b) If C is unusual or real with deg(f) = 2g+2, then deg(v) = deg(v+h) =

g + 1.
(c) If C is real and deg(f) ≤ 2g+ 1, then deg(v) = g+ 1 and deg(v+h) =

deg(f)− (g + 1) ≤ g.

A divisor b is a formal sum D =
∑

p νp(D)p where p runs through all
the places of k(C) and νp(D) = 0 for all but finitely many places p. The
support supp(D) of D is the set of places for which νp(D) 6= 0, and the
degree of D is deg(D) =

∑
p νp(D) deg(p); this agrees with the notion of

degree of a place. A divisor whose support is disjoint from S is a finite
divisor. Every divisor D of k(C) can be written uniquely as a sum of two
divisors

D = DS +DS where DS is finite and supp(D) ⊆ S .

The norm map extends naturally to all finite divisors DS via Z-linearity,
and we can now define the norm of any divisor D to be N(D) = N(DS).

For two divisors D1 and D2 of k(C), we write D1 ≥ D2 if νp(D1) ≥
νp(D2) for all places p of k(C). With this notation, we see that k[C] is the
set of all α ∈ k(C) with div(α)S ≥ 0 and its unit group k[C]∗ consists of
exactly those α ∈ k(C) with div(α)S = 0.

bAn equivalent geometric definition of a divisor (defined over k) that is frequently used in
the literature on hyperelliptic curves is as follows: it is a formal sum D =

P
P νP (D)P

that is invariant under the Galois action of k, where P runs through all the points

on C with coordinates in some algebraic closure of k. The degree of D is then simplyP
P νP (D).
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Let D denote the group of divisors of k(C), D0 the subgroup of D of
degree 0 divisors of k(C), and P the subgroup of D0 of principal divisors of
k(C). Then the degree 0 divisor class group Pic0 = D0/P of k(C) is a finite
Abelian group whose order h is the (degree 0 divisor) class number of C.

Recall that the conjugation map on k(C), arising from the hyperelliptic
involution on C, maps each element α = a+ bv ∈ k(C) with a, b ∈ k(u) to
α = a− b(v+h). This map thus acts on all the finite places of k(C) as well
as on S via ∞ =∞ if C is imaginary or unusual and ∞1 =∞2 if C is real.
This action extends naturally to the groups D, D0, P, and hence to Pic0.

Note that N(D) = N(D) and D+D = div(N(D)) for any degree 0 divisor
D.

Define DS = {DS | D ∈ D}, DS = {DS | D ∈ D}, PS = P ∩ DS , and
PS = P∩DS . By Proposition 14.1, p. 243, of [12], there are exact sequences

(0)→ k∗ → k[C]∗ → PS → (0) , (3.2)

(0)→ (DS ∩D0)/PS → Pic0 → DS/PS → Z/fZ→ (0) , (3.3)

where f = gcd{deg(p) | p ∈ S}, so f = 2 if C is unusual and f = 1
otherwise. If C is imaginary or unusual, then DS ∩D0 = PS = 0, whereas
if C is real, then DS∩D0 = 〈∞1−∞2〉 and PS = 〈R(∞1−∞2)〉, where R is
the order of the divisor class of ∞1−∞2 in Pic0 and is called the regulator
of C. The principal divisor R(∞1 − ∞2) is the divisor of a fundamental
unit of k(C), i.e. a generator of the infinite cyclic group k[C]∗/k∗. For
completeness, if C is imaginary or unusual, simply define the regulator of
C to be R = 1.

A fractional k[C]-ideal is a subset f of k(C) such that df is a k[C]-ideal
for some non-zero d ∈ k[u]. Let I denote the group of non-zero fractional
k[C]-ideals, H the subgroup of I of non-zero principal fractional k[C]-ideals
(which we write as (α) for α ∈ k(C)∗), C = I/H the ideal class group of
k(C), and h′ = |C| the ideal class number of k(C). There is a natural
isomorphism

Φ : DS → I, DS 7→ {α ∈ k(C)∗ | div(α)S ≥ DS} (3.4)

with inverse

Φ−1 : I → DS

f 7→ DS =
∑
p 6∈S

mpp where mp = min{νp(α) | α ∈ f non-zero} .

The conjugate f of a fractional ideal f is the image of f under the conjugation
map. If f is non-zero, then the norm N(f) of f is simply N(Φ−1(f)), the norm
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of the finite divisor corresponding to f under Φ−1, with Φ given by Eq. (3.4).
Note that ff is the principal fractional ideal generated by N(f).

The isomorphism Φ extends to an isomorphism from the factor group
DS/PS onto the ideal class group C (see p. 401 of [4] and Theorem 14.5,
p. 247, of [12]). Thus, we have h = Rh′/f by Eq. (3.3). The Hasse-Weil
bounds (

√
q − 1)2g ≤ h ≤ (

√
q + 1)2g imply h ∼ qg, and for real curves, we

generally expect that h′ is small and hence R ≈ h. The isomorphism Φ in
Eq. (3.4) can further be extended to the group D0, or a subgroup thereof,
as follows.

3.1. Imaginary Curves

Since deg(∞) = 1 in this case, every degree 0 divisor of k(C) can be written
uniquely in the form D = DS − deg(DS)∞. Hence, every degree 0 divisor
D is uniquely determined by DS , and the isomorphism in Eq. (3.4) extends
naturally to an isomorphism D0 → I.

3.2. Unusual Curves

Here, deg(∞) = 2, so every degree 0 divisor D of k(C) can be written
as D = DS − (deg(DS)/2)∞ and must have deg(DS) even. Again, every
degree 0 divisor D is uniquely determined by DS . Thus, Φ as given in
Eq. (3.4) extends to an isomorphism from D0 onto the group of fractional
ideals whose norm have even degree.

3.3. Real Curves

If C is real, then deg(∞1) = deg(∞2) = 1, so every degree 0 divisor of k(C)
can be uniquely written in the form

D = DS − deg(DS)∞2 + ν1(D)(∞1 −∞2) .

Hence, every degree 0 divisor D is uniquely determined by DS and ν1(D).
Here, Φ extends to an isomorphism from the subgroup of D0 of degree 0
divisors D with ν1(D) = 0 onto I.

We conclude this section with the observation that the choice of the
transcendental element u determines the signature at infinity (ramified,
inert, or split) and hence the set S of places lying above infinity. So the
ideal class group C, its order h′, and the regulator R depend on the model
of C (imaginary, unusual, or real), whereas the genus g, the divisor groups
D, D0 and P, as well as the degree 0 divisor class group Pic0 and its order
h are model-independent.
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4. Reduced Ideals and Divisors

Some of the material in this and the next section can be found in [2], [5],
and [7]. As before, let C : v2 + h(u)v = f(u) be a hyperelliptic curve
of genus g over a finite field k. The maximal order k[C] of k(C) is an
integral domain and a k[u]-module of rank 2 with k[u]-basis {1, v}. The
non-zero integral ideals in k[C] are exactly the k[u]-modules of the form
a = k[u]SQ+k[u]S(P+v) where P,Q, S ∈ k[u] and Q divides f+hP−P 2.

Here, S and Q are unique up to factors in k∗ and P is unique modulo
Q. For brevity, write a = S(Q,P ). An ideal a = S(Q,P ) is primitive if
S ∈ k∗, in which case we simply take S = 1 and write a = (Q,P ). A
primitive ideal a is reduced if degQ ≤ g. The basis Q,P of a primitive
ideal a = (Q,P ) is adapted if deg(P ) < deg(Q) and reduced if C is real and
deg(P−h−v) < deg(Q) < deg(P+v); the latter is only possible if C is real.
In practice, it is common to have reduced divisors given in adapted form for
imaginary and unusual curves and in reduced (or possibly adapted) form
for real curves.

A divisor D of k(C) is effective if D ≥ 0. An effective finite divisor DS

is semi-reduced c if there does not exist any subset U ⊆ supp(DS) such
that

∑
p∈U νp(DS)p is the divisor of a polynomial in k[u], and reduced if

in addition deg(DS) ≤ g. Under the isomorphism in Eq. (3.4), effective
finite divisors of k(C) map to integral k[C]-ideals, semi-reduced divisors
to primitive ideals, and reduced divisors to reduced ideals. Analogous to
the ideal notation, we write DS = (Q,P ) for the semi-reduced divisor of
k(C) corresponding to the primitive k[C]-ideal a = (Q,P ) under Φ, and
refer to the polynomials Q and P as a basis of DS ; note that N(DS) =
N(a) = sgn(Q)−1Q. It is easy to see that the conjugation map of k(C) acts
on semi-reduced and reduced divisors DS = (Q,P ) via DS = (Q,−P − h).

Up to now, we have only defined the notions of reduced and semi-reduced
for finite divisors. We simply extend this notion to arbitrary degree 0 divi-
sors of k(C) by declaring a degree 0 divisor D to be (semi-)reduced if DS

is (semi-)reduced. We then say that a semi-reduced divisor D is in adapted
or reduced form if DS is given by an adapted or reduced basis, respectively.

We would like to represent degree 0 divisor classes via reduced divisors.
In the imaginary case, this is well-known, but we repeat it briefly here for
completeness; for the other two hyperelliptic curve models, it is less simple.
In particular, for the unusual case, reduced divisors need not exist in some

cFor geometric and ideal-independent definitions of the notions of semi-reduced and
reduced divisors, see for example [2] or [5].
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divisor classes, so we will have to allow divisors D with deg(DS) = g + 1
when representing elements in Pic0. For simplicity, we will say that a degree
0 divisor D in a given class C ∈ Pic0 has minimal norm if D is semi-reduced
and deg(N(E)) ≥ deg(N(D)) for every semi-reduced divisor E ∈ C.We will
see that if C is imaginary, unusual with g even, or real, then D will always
be reduced, otherwise (C unusual and g odd), we have deg(N(D)) ≤ g+1.

4.1. Imaginary Curves

Here, it is well-known that reduced divisors are pairwise inequivalent (see
[2]), and every degree 0 divisor class in Pic0, and hence every ideal class in
C, has exactly one reduced representative.

4.2. Unusual Curves

Again, reduced degree 0 divisors are pairwise inequivalent, and every degree
0 divisor class contains at most one reduced divisor. Those classes that do
not contain any reduced divisor contain exactly q + 1 pairwise equivalent
semi-reduced divisors D with deg(DS) = g+1 (see p. 183 of [1]). Note that
this can only occur if g is odd, so in this case, the norm of a reduced divisor
must have degree ≤ g−1. Hence if g is even, then in complete analogy to the
imaginary case, every divisor class does in fact have a unique representative.
In order to represent divisor classes without reduced divisors, i.e. with q+1
pairwise equivalent divisors of minimal norm of degree g + 1, for g odd, a
fast equivalence test or a systematic efficient way to identity a distinguished
divisor of minimal norm in a given degree 0 divisor class are required.

4.3. Real Curves

By Proposition 4.1 of [10], every degree 0 divisor class of k(C) contains a
uniqued reduced divisor D such that 0 ≤ deg(DS) + ν1(D) ≤ g, or equiva-
lently, −g ≤ ν2(D) ≤ 0. Using these reduced representatives for arithmetic
in Pic0 is somewhat slower that for imaginary curves, so we concentrate
instead on reduced divisors D = DS − deg(DS)∞2 with ν1(D) = 0. By the
Paulus-Rück result cited above, these divisors are pairwise inequivalent,
so every degree 0 divisor class of k(C) contains at most one such reduced
divisor.

dThe proposition as stated in [10] reads “0 ≤ ν1(D) ≤ g − deg(DS)”. The correct
statement is “0 ≤ deg(DS) + ν1(D) ≤ g”.
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Rather than examining degree 0 divisor classes, we now consider ideal
classes of k(C). Recall that the isomorphism Φ defined in Eq. (3.4) can be
extend to an isomorphism from the set {D ∈ D0 | ν1(D) = 0} onto I. For
any non-zero fractional ideal f, set D(f) = Φ−1(f) to be the divisor with no
support at ∞1 corresponding to f; note that f is reduced if and only if D(f)
is reduced. Let C be any ideal class of k(C), and define the set

RC = {D(a) | a ∈ C reduced} .

By our above remarks, all the divisors in RC are reduced and pairwise
inequivalent even though the corresponding ideals are all equivalent. Since
the basis polynomials of a reduced divisor or ideal have bounded degree,
RC is a finite set.

We now fix any reduced ideal a ∈ C; for example, if C is the principal
ideal class, then we always chose a = (1) to be the trivial ideal. Then for
every b ∈ C, there exists α ∈ k(C)∗ with b = (α)a; if a = (1), then α

is in fact a generator of b. By multiplying α with a suitable power of a
fundamental unit of k(C), or equivalently, adding a suitable multiple of
R(∞1 − ∞2) to its divisor, we may assume that −R < ν1(α) ≤ 0, or
equivalently, 0 ≤ deg(α) < R. Then we define the distance of the divisor
D(b) (with respect to D(a)) to be δ(D(b)) = deg(α). It follows that the set
RC is ordered by distance, and if we set D1 = D(a) and rC = |RC|, then
we can write

RC = {D1, D2, . . . , DrC}

and δi = δ(Di), with 0 = δ1 < δ2 < · · · < δrC < R. The set RC is called
the infrastructure of C; we will motivate this term later on. Note that if C
is the principal class and b ∈ C, D(b) and D(b) both belong to RC, and
δ(D(b)) = R+ deg(D(b)S)− δ(D(b)) if b is nontrivial.

5. Reduction and Baby Steps

We continue to assume that we have a hyperelliptic curve C given by
Eq. (3.1). Our goal is to develop a unified framework for reduction on all
hyperelliptic curves. We begin with the standard approach for reduction on
imaginary curves — which we however apply to any hyperelliptic curve —
and then link this technique to the traditional continued fractions method
for real curves.

Starting with polynomials R0, S0 such that deg(R0) < deg(S0) and S0
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dividing f + hR0 −R2
0, deg(S0) even if C is unusual, the recursion

Si+1 =
f + hRi −R2

i

Si
, Ri+1 = h−Ri +

⌊
Ri − h
Si+1

⌋
Si+1 , (5.1)

produces a sequence of semi-reduced, pairwise equivalent divisors Ei =
(Si−1, Ri−1), i ∈ N. To avoid the costly full division in the expression for
Si+1, we can rewrite Eq. (5.1) as follows. Given S0 and R0, generate S1 and
R1 using Eq. (5.1) and s1 = b(R0 − h)/S1c. Then for i ∈ N:

Si+1 = Si−1 + si(Ri−1 −Ri) , si+1 =
⌊
Ri − h
Si+1

⌋
,

Ri+1 = h−Ri + si+1Si+1 ≡ h−Ri (mod Si+1) .
(5.2)

Note that si+1 and Ri+1 are simply obtained by applying the division al-
gorithm, i.e. Ri − h = si+1Si+1 + (−Ri+1) and deg(−Ri+1) < deg(Si+1).
Similar to [2] and [15], we derive the following properties.

Lemma 5.1.

(a) deg(Ri) < deg(Si) for all i ≥ 0, so all the Ei are in adapted form.
(b) If deg(Si) ≥ g + 2, then deg(Si+1) ≤ deg(Si)− 2.
(c) If deg(Si) = g + 1, then deg(Si+1) ≤ g if C is imaginary and

deg(Si+1) = g + 1 if C is unusual or real. Hence, unless C is real,
Ei+2 has minimal norm.

(d) There is a minimal index j such that deg(Sj) ≤ deg(v) < deg(Sj−1), so
unless C is real, Ej+1 is the first of divisor of minimal norm. We have
j ≤ d(deg(S0)− g)/2e if deg(Sj) ≤ g and j ≤ d(deg(S0)− g − 1)/2e if
deg(Sj) = g + 1.

(e) If C is unusual, then deg(Si) is even for all i ≥ 0.

Proof. (a) is obvious from Eq. (5.1). Since deg(h) ≤ g + 1, Eq. (5.1) and
(a) imply

deg(Si+1) = deg(f + hRi −R2
i )− deg(Si) (5.3)

≤ max{deg(f), deg(Si) + g, 2 deg(Si)− 2} − deg(Si) ,

yielding (b) and (c). Now (d) can easily be derived from (b) and (c). To
see (e), note that if deg(Ri) ≥ g+ 1, then deg(Si) ≥ g+ 2, so by Eq. (5.3),
deg(Si+1) = 2 deg(Ri)− deg(Si) (note that by the assumptions on sgn(f),
there can never be cancellation in the numerator of Si+1 in the case where
deg(Ri) = g + 1), and if deg(Ri) ≤ g, then deg(Si+1) = 2g + 2 − deg(Si).
In either case, deg(Si+1) has the same parity as deg(Si), so (e) is obtained
by induction, since deg(S0) was assumed to be even if C is unusual.
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Suppose deg(Sj) ≤ deg(v) < deg(Sj−1) as in part (d) of Lemma 5.1. If
C is imaginary, or C is unusual with deg(Sj) ≤ g, then Ej+1 is the unique
reduced divisor in the class of D1. If C is unusual and deg(Sj) = g + 1,
(g odd), then the other q semi-reduced divisors equivalent to Ej+1 whose
norm have degree g + 1 can be obtained from Ej+1 as follows (see also [1]
for the case where q is odd).

Proposition 5.1. Let C given by Eq. (3.1) be unusual of odd genus g and
E = (S,R) a semi-reduced divisor with deg(R) ≤ deg(S) = g+ 1. Then the
q + 1 divisors in the divisor class of E whose norm have degree g + 1 are
given by E and Ea = (Sa, Ra) for a ∈ Fq where

Ra = h−R+ aS, Sa =
f + hRa −R2

a

S
. (5.4)

Proof. Since Ea = E+div((Ra+v)/S) for all a ∈ Fq, all Ea are equivalent
to E. Furthermore, deg(Ra) ≤ g + 1 and hence deg(Sa) = g + 1, since the
conditions on sgn(f) prevent cancellation of leading terms in the numerator
of Sa. So it only remains to show that E and and all the Ea are pairwise
distinct. To that end, we prove that equality among any two of these q+ 1
divisors leads to a sequence of divisibility conditions that yield a singular
point on C.

So fix a ∈ Fq and suppose that Ea = E or Ea = Eb for some b ∈ Fq\{a}.
We first claim that

Sa and S differ by a constant factor in Fq . (5.5)

This is clear if Ea = E, so suppose Ea = Eb with b ∈ Fq, b 6= a. Then Sa

and Sb differ by a constant factor, and Ra ≡ Rb (mod Sa). By Eq. (5.4),
Ra ≡ Rb (mod S), so since deg(Ra − Rb) = deg(Sa) = deg(S) = g + 1, we
see that Sa and S must also differ by a constant factor in Fq.

Next, we claim that

S divides 2R− h . (5.6)

If Ea = E, then R ≡ Ra (mod S). On the other hand, Ra ≡ h−R (mod S)
by Eq. (5.4), so R ≡ h− R (mod S), proving Eq. (5.6). Suppose now that
Ea = Eb for some b ∈ Fq distinct from a. Then Sa and Sb differ by a
constant factor, so by Eq. (5.5), both differ from S by a constant factor.
Now a simple calculation yields Sa−Sb = (a− b)(2R−h− (a+ b)S). Since
a 6= b and S divides the left hand side of this equality, S must again divide
2R− h.
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Our next assertion is that

S2 divides f + hR−R2 . (5.7)

By Eq. (5.4) and Eq. (5.6), Ra ≡ h−R ≡ R (mod S). Since deg(Ra−R) ≤
g + 1 = deg(S), there exists ca ∈ Fq with Ra = R + caS. Substituting into
Eq. (5.4) yields SSa = f + hR − R2 + caS(h − 2R − caS). By Eq. (5.5),
S2 divides the left hand side of this equality. Invoking Eq. (5.6), we obtain
Eq. (5.7).

Our fourth and final claim is that

S divides f ′ + hR′ , (5.8)

where f ′ denotes the derivative of f with respect to u; similarly for R′.
To prove this claim, we simply observe that taking derivatives in Eq. (5.7)
implies that S divides f ′ + h′R+ hR′ − 2RR′ = f ′ + hR′ +R′(h− 2R), so
Eq. (5.8) now follows from Eq. (5.6).

Now let r be a root of S in some algebraic closure of k. Then Eq. (5.6)–
Eq. (5.8) easily imply that (r,−R(r)) is a singular point on C, a contra-
diction. So no two among the divisors E and Ea (a ∈ Fq) can be be equal,
proving the proposition.

We now relate Eq. (5.1) to a regular continued fraction expansion, which
is the usual approach to reduction on real curves. Let P,Q ∈ k[u] with Q

non-zero and Q dividing f + hP − P 2, and let s0, s1, . . . be a sequence of
polynomials in k[u]. Set P0 = P, Q0 = Q, and

Pi+1 = h− Pi + siQi, Qi+1 =
f + hPi+1 − P 2

i+1

Qi
, (5.9)

for i ≥ 0. If we set φi = (Pi + v)/Qi, then φi+1 = (φi − si)−1, so
φ0 = [s0, s1, . . . , si, φi+1] for all i ≥ 0. Thus, Eq. (5.9) determines a con-
tinued fraction expansion of φ0 in the completion k(C)S . It is clear that
Eq. (5.9) defines a sequenceDi = (Qi−1, Pi−1) of semi-reduced divisors with
corresponding primitive ideals ai. The operation Di → Di+1 is referred to
as a baby or reduction stepe.

Set θ1 = 1 and θi =
∏i−1

j=1 φ
−1
j for i ≥ 2. Since φiφi = −Qi−1/Qi, it is

easy to see that Q0θiθi = (−1)i−1Qi−1. Thus

θi =
i−1∏
j=1

φ
−1

j = (−1)i−1Qi−1

Q0θi
= (−1)i−1Qi−1

Q0

i−1∏
j=1

φj . (5.10)

eNote that Eq. (5.4) is a special case of Eq. (5.9), with si = a ∈ Fq . However, in this
case, the recursion only alternates between E and Ea.
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Then ai+1 = (φ
−1

i )ai and hence ai = (θi)a1, for i ∈ N. Therefore, the ideals
ai are all equivalent, so baby steps preserve ideal equivalence.

If we choose si in Eq. (5.9) to be si = qi = bφic, i.e. the quotient in
the regular continued fraction expansion of φ0 in k(C)S , then we have the
baby steps

qi =
⌊
Pi + v

Qi

⌋
, Pi+1 = h−Pi + qiQi, Qi+1 =

f + hPi+1 − P 2
i+1

Qi
. (5.11)

If deg(Qi) > deg(v), then qi = bPi/Qic. It is now easy to deduce that if j
is as in part (d) of Lemma 5.1 and Si, Ri are defined as in Eq. (5.1), then

qi = bPi/Qic ∈ k[u], Pi+1 = h−Ri, Qi+1 = Si+1 , (5.12)

for 0 ≤ i < j. Therefore, for this range of indices, Eq. (5.11) is equivalent to
Eq. (5.1) and hence produces the same sequence of divisors. For imaginary
and unusual curves, we will only consider baby steps as in Eq. (5.11) in the
range 0 ≤ i < j. For C real, baby steps as in Eq. (5.11) can be performed
beyond that range as well. However, for i ≥ j, qj 6= bPj/Qjc, so Eq. (5.12)
is false. Here, if we use Eq. (5.11) to compute the sequence Di+1 = (Qi, Pi),
starting with i = j, then Di+1 is reduced for i > j. We have deg(Pj+1 −
h− v) ≤ g, deg(Pj+1 + v) = g + 1, and for i ≥ j + 2, Di+1 = (Qi, Pi) is in
reduced form.

We now see that for all hyperelliptic curves, there exists an index l ≥
0 such that Eq. (5.11) repeatedly applied to D1 = (Q0, P0) produces a
reduced divisor Dl+1, if one exists, after l ≤ d(deg(Q0) − g)/2e steps. If
C is unusual, g is odd, and the class of D1 contains no reduced divisor,
then Eq. (5.11) produces a divisor Dl+1 whose norm has degree g+ 1 after
l ≤ d(deg(Q0)−g−1)/2e steps. In the imaginary and unusual scenarios, we
have l = j with j as in part (d) of Lemma 5.1; for C real, we have l = j+1.
For 0 ≤ i < l, Eq. (5.11) is equivalent to

qi =
⌊
Pi + eiv

Qi

⌋
, ei =

{
1 if C real, deg(Qi) = g + 1,
0 otherwise,

Pi+1 = h− Pi + qiQi, Qi+1 =
f + hPi+1 − P 2

i+1

Qi
.

(5.13)

Again, the recursion in Eq. (5.13) can be made more efficient for i ≥ 1, i.e.
for all but the first baby step. Given Q0 and P0, we compute Q1 and P1

using Eq. (5.13). Then for i ∈ N:

qi =
⌊
Pi + beivc

Qi

⌋
, ri ≡ Pi + beivc (mod Qi) ,

Pi+1 = h+ beivc − ri , Qi+1 = Qi−1 + qi(ri − ri−1) .
(5.14)
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As before, the first line in Eq. (5.14) is equivalent to applying the division
algorithm in order to compute polynomials qi and ri such that Pi +beivc =
qiQi + ri and deg(ri) < deg(Qi).

Suppose now that C is real. If we repeatedly apply Eq. (5.11), or
equivalently, Eq. (5.14), starting with a reduced divisor D1 = D(a) for
some reduced ideal a of k(C), then we can generate the entire infrastruc-
ture RC = {Di | 1 ≤ i ≤ rC} of the ideal class C containing a. Here,
Di = D(ai) where ai = (θi)a with θi as in Eq. (5.10), so the distance of Di

is δi = deg(θi). In particular, θrC is a fundamental unit of k(C) of positive
degree, and deg(θrC) = R is the regulator of k(C).

We conclude this section by showing how to compute the distances
δi = δ(Di). By Eq. (5.10), the distance satisfies

δi = deg(θi) = deg(Qi−1)− deg(Q0) +
i−1∑
j=1

deg(qj) (5.15)

for i ∈ N. Since φi = (Pi − h − v)/Qi = −Qi−1/(Pi + v) and δi+1 − δi =
−deg(φi) = deg(Pi + v) − deg(Qi−1) = g + 1 − deg(Qi−1) by Eq. (5.10),
we have 1 ≤ δi+1 − δi ≤ g if Di is non-zero, and δi+1 = g + 1 if Di = 0, in
which case C is the principal class.

6. Giant Steps and the Idea of NUCOMP

As before, let C be given by Eq. (3.1), and let D′ = (Q′, P ′), D′′ = (Q′′, P ′′)
be two semi-reduced divisors of k(C). Then it is well-known that there exists
a semi-reduced divisor D = (Q,P ) in the divisor class of the sum D′ +D′′

that can be computed as follows.

S = gcd(Q′, Q′′, P ′ + P ′′ − h) = V Q′ +WQ′′ +X(P ′ + P ′′ − h) ,

Q =
Q′Q′′

S2
, (6.1)

P = P ′′ + U
Q′′

S
with U ≡W (P ′ − P ′′) +XR′′ (mod Q′/S) ,

where U, V,W,X ∈ k[u], deg(U) < deg(Q′/S), and R′′ = (f + hP ′′ −
P ′′

2)/Q′′. Note that D is in adapted form if deg(P ′′) < deg(Q).
Since S tends to have very small degree (usually S = 1), we expect

degQ ≈ degQ′ + degQ′′; in particular, even if D′ and D′′ have minimal
norm, thenD will generally not have minimal norm. We now apply repeated
baby steps as in Eq. (5.14) to P0 = P and Q0 = Q until we obtain a divisor
of minimal norm. The first divisor thus obtained is defined to be D′⊕D′′.

The operation (D′, D′′)→ D′⊕D′′ is called a giant step.
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6.1. Imaginary Curves

Here, D′⊕D′′ is the unique reduced divisor in the class of D′ + D′′, and
the algorithm above is Cantor’s algorithm [2]. Thus, the group operation
on Pic0 can be performed efficiently via reduced representatives.

6.2. Unusual Curves

In this case, if g is even, then everything is completely analogous to the
imaginary setting. However, if g is odd, then D′⊕D′′ may or may not
be reduced, so the set of reduced divisors is no longer closed under the
operation ⊕ . However, as mentioned earlier, if we could either perform
fast equivalence testing, or efficiently and systematically identify a distin-
guished divisor D with deg(DS) = g+1 in every divisor class that contains
no reduced divisor, then we could perform arithmetic in Pic0 via these
distinguished representatives plus reduced representatives if they exist.

6.3. Real Curves

Suppose D′ and D′′ are reduced, and D′ ∈ RC′ , D
′′ ∈ RC′′ for suitable

ideal classes C′,C′′ of k(C). Then D′⊕D′′ ∈ RC′C′′ . In particular, if C′′

is the principal ideal class, then D′⊕D′′ ∈ RC′ , and we have

δ(D′⊕D′′) = δ(D′) + δ(D′′)− δ with 0 ≤ δ ≤ 2g . (6.2)

Here, distances in the principal class are taken with respect to D1 = 0, and
distances in C′ with respect to some some suitable first divisor. The “error
term” δ in Eq. (6.2) is linear in g and hence very small compared to the two
distances δ(D′) and δ(D′′). The quantity δ in Eq. (6.2) can be efficiently
computed as part of the giant step.

Suppose now that D′ = (Q′, P ′) and D′′ = (Q′′, P ′′) are two divisors of
minimal norm. A giant step as described above finds the divisor D′⊕D′′

in two steps. First set D1 = (Q,P ) with P and Q given by Eq. (6.1); Q
and P have degree approximately 2g, i.e. double size. Then apply repeated
baby steps as in Eq. (5.14) to D1 until the first divisor Dl+1 = D′⊕D′′ of
minimal norm is obtained; by Lemma 5.1, we have l ≤ dg/2e for all three
curve models, so this takes at most dg/2e such steps. The reduction process
produces a sequence of semi-reduced divisors Di+1 = (Qi, Pi), 0 ≤ i ≤ l, via
the continued fraction expansion of φ = (P +v)/Q = [q0, q1, . . . , ql, φl+1]. It
slowly shrinks the degrees of the Qi and Pi again to original size, reducing
them by about 2 in each step by Lemma 5.1. The obvious disadvantage
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of this method is that the polynomials Qi, Pi have large degree while i is
small, and are costly to compute.

NUCOMP is an algorithm for computing D′⊕D′′ that eliminates these
costly baby steps on large operands. The idea of NUCOMP is to perform
arithmetic on polynomials of much smaller degree. Instead of computing Q
as well as the Qi and Pi explicitly via the continued fraction expansion of
φ, one computes sequences of polynomials ai, bi, ci, and di such that

Qi = (−1)i(bi−1ci−1 − ai−1di−1)

Pi = (−1)i(bi−2ci−1 − ai−1di−2) + P ′′ .

Only two basis coefficients Qn+2 and Pn+2 are evaluated at the end in order
to obtain a divisor Dn+3. Here, the value of n is determined by the property
that an, bn, cn, and dn have approximately equal degree of about g/2. More
exactly, we will have l = n+ 2 or n+ 3, i.e. D′⊕D′′ = Dn+3 or Dn+4.

The key observation is that φ̂ = U/(Q′/S), with U as given in Eq. (6.1),
is a very good rational approximation of φ = (P+v)/Q, and that the contin-
ued fraction expansion of φ̂

−1
is given by Q′/(SU) = [q1, q2, . . . , qn+1, . . .].

Note that deg(U) < deg(Q′/S) ≤ g (or possibly g+ 1), so all quantities in-
volved are of small degree. The polynomials ai, bi, ci, and di are computed
recursively along with the continued fraction expansion of Q′/(SU) which
is basically the extended Euclidean algorithm applied to Q′/S and U ; in
fact, the bi are the remainders obtained in this Euclidean division process.
Alternatively, only the ai and bi are computed recursively, and cn−1, dn−1,

and dn are then obtained from these two sequences; this approach turns
out to employ polynomials of smaller degree (as c0 and d0 have large de-
gree), but requires an extra full division by Q′/S. We describe the details
of NUCOMP in the next two sections.

7. NUCOMP

Let D′ = (Q′, P ′) and D′′ = (Q′′, P ′′) be two divisors of minimal norm,
and let P,Q, S, U be defined as in Eq. (6.1). We assume that

deg(P ′′) ≤ g + 1 < deg(Q) . (7.1)

The first inequality in Eq. (7.1) is equivalent to deg(P ′′ + v) ≤ g + 1,
and holds if D′′ is given in adapted or reduced form. While it can always
be achieved by reducing P modulo Q, for example, we will see that this
will generally not be necessary, i.e. usually NUCOMP outputs a divisor
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D̂ = (Q̂, P̂ ) that again satisfiesf deg(P̂ ) ≤ g + 1.
The second inequality in Eq. (7.1) is no great restriction, since if

deg(Q) ≤ g + 1, then D = (Q,P ) is at most one baby step away from
having minimal norm, so one would simply compute D′⊕D′′ using one of
the recursions in Section 5 and not use NUCOMP in this case. We now
define

M = max{g ,deg(P ′′ + v)} ∈ 1
2

Z . (7.2)

Note that M ∈ {g+1/2, g+1} if C is imaginary, M = deg(P ′′+ v) = g+1
if C is unusual (since sgn(P ′′) ∈ k and sgn(v) /∈ k can never cancel each
other), and M ∈ {g, g + 1} if C is real. Furthermore, if D′′ is given in
adapted or reduced form, then M = deg(P ′′ + v).

The quantity

N =
1
2
(deg(Q′)− deg(Q′′) +M) ∈ 1

4
Z (7.3)

will play a crucial role in our discussion. Since D′′ is of minimal norm, we
have deg(Q′′) ≤M for all hyperelliptic curve models, so N ≥ deg(Q′)/2 >
0. Furthermore, N < deg(Q′/S) by the second inequality in Eq. (7.1), so
N < g + 1. Usually, we expect N to be of magnitude g/2.

Let Q′/SU = [q̂0, q̂1, . . . , q̂m] be the regular continued fraction expan-
sion of Q′/SU, where as usual, m ≥ 0 is minimal. Setting E = Q′/S and
F = U, Eq. (2.5) defines sequences ai, bi for −1 ≤ i ≤ m, i.e.

b−1 = Q′/S , b0 = U , bi+1 = bi−1 − q̂ibi ,

a−1 = 0 , a0 = −1 , ai+1 = ai−1 − q̂iai .
(7.4)

If we put b−2 = U and q̂−1 = 0, then for i ≥ −1, the remainder sequence
of the Euclidean algorithm applied to φ̂ = SU/Q′ is the same as the one
applied to φ̂

−1
= Q′/SU since deg(U) < deg(Q′/S). The first step then

simply reads U = b−2 = 0 · b−1 + b0. Since Q′/SU = [q̂0, q̂1, . . . , q̂m], we
then see that the continued fraction expansion of φ̂ is φ̂ = [0, q̂0, q̂1, . . . , q̂m].

Set P̂ 0 = P, Q̂0 = Q, and recall that q̂−1 = 0. We investigate the
sequence of semi-reduced divisors D̂i = (Q̂i−1, P̂ i−1), 1 ≤ i ≤ m + 3,
obtained by choosing si = q̂i−1 in Eq. (5.9). That is

P̂ i+1 = h− P̂ i + q̂i−1Q̂i, Q̂i+1 =
f + hP̂ i+1 − P̂

2

i+1

Q̂i

, (7.5)

fIf C is unusual, g is odd, and deg(Q̂) = g +1, then we expect deg(P̂ ) ≤ g +2. However,
in this situation, it suffices to assume deg(P ′′) ≤ g + 2 as well. In order to avoid having

to distinguish between too many different cases, we will henceforth ignore this scenario.
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for 0 ≤ i ≤ m+1. To facilitate the computation of P̂ i, Q̂i, we proceed as in
[8] and introduce two more sequences of polynomials ci, di, −1 ≤ i ≤ m+1
as follows.

c−1 =
Q′′

S
, c0 =

P − P ′

b−1
, ci+1 = ci−1 − q̂ici,

d−1 = P ′ + P ′′ − h, d0 =
d−1b0 − SR′′

b−1
, di+1 = di−1 − q̂idi,

(7.6)

for 0 ≤ i ≤ m.We point out an interesting symmetry between the sequences
bi and ci, −1 ≤ i ≤ m + 1; namely, reversing the roles of D′ and D′′ in
Eq. (6.1) results in a swap of these two sequences. An easy induction yields

ci =
1
b−1

(
bi
Q′′

S
+ ai(P ′ − P ′′)

)
, (7.7)

di =
1
b−1

(bi(P ′ + P ′′ − h) + aiSR
′′) , (7.8)

for −1 ≤ i ≤ m+ 1. Using induction simultaneously on both formulas, we
obtain

Q̂i = (−1)i(bi−1ci−1 − ai−1di−1) , (7.9)

P̂ i = (−1)i(bi−2ci−1 − ai−1di−2) + P ′′ , (7.10)

for 0 ≤ i ≤ m+ 2.
As outlined above, we wish to determine a point up to which the divisors

Di+1 = (Qi, Pi) with P0 = P , Q0 = Q, and Pi, Qi given by Eq. (5.13)
or equivalently, by Eq. (5.11) or Eq. (5.14) are identical to the divisors
D̂i+1 = (Q̂i, P̂ i) with P̂ i, Q̂i given by Eq. (7.5) or equivalently, by Eq. (7.9)
and Eq. (7.10). Clearly, D̂1 = D1 by definition, so our goal is to find a
maximal index n ≥ −1 that guarantees Qi = Q̂i and Pi = P̂ i, and hence
Di+1 = D̂i+1, for 0 ≤ i ≤ n+ 2 (see Theorem 7.1). Such an index will have
to satisfy n ≤ m to ensure that the polynomials Q̂i, P̂ i as given in Eq. (7.5)
are in fact defined. Our next task will then be to see how many baby steps
if any we need to apply to the last divisor Dn+3 = (Qn+2, Pn+2) to obtain
the divisor D′⊕D′′.

Theorem 7.1. Let D′ = (Q′, P ′), D′′ = (Q′′, P ′′) be two divisors, and let
P and Q be given by Eq. (6.1). Set P0 = P̂ 0 = P, Q0 = Q̂0 = Q, and define
Pi, Qi (i ∈ N) by Eq. (5.11), P̂ i, Q̂i (1 ≤ i ≤ m + 2) by Eq. (7.5), and bi
(−1 ≤ i ≤ m+1) by Eq. (7.4). Then there exists n ∈ Z, −1 ≤ n ≤ m, such
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that deg(bn) > N, with N as in Eq. (7.3). Furthermore,

qi = q̂i−1 (0 ≤ i ≤ n+ 1) ,

Pi = P̂ i (0 ≤ i ≤ n+ 2) ,

Qi = Q̂i (0 ≤ i ≤ n+ 2) .

Proof. We already observed that deg(b−1) = deg(Q′/S) > N, so since
deg(bi) decreases as i increases, there must exist n ≥ −1 with deg(bn) > N.

Since deg(bm+1) = −∞ < N, we must have n ≤ m. So n as specified above
exists and all the quantities q̂i−1, P̂ i, Q̂i above are in fact well-defined.

Set φ = (P + v)/Q and φ̂ = SU/Q′. Then φ = [q0, q1, . . .] with qi =
(Pi + v)/Qi is the continued fraction expansion of φ in a suitable field of
Puiseux series; also, recall that φ̂ = [q̂−1, q̂0, . . . , q̂m] where q̂−1 = 0. We
wish to applyg Theorem 2.1 to φ and φ̂. Since φ − φ̂ = (P ′′ + v)/Q, we
have b2−1(φ − φ̂) = Q′(P ′′ + v)/Q′′. The definition of N implies 2N ≥
deg(Q′(P ′′ + v)/Q′′), so

2 deg(bn) > 2N ≥ deg
(
b2−1(φ− φ̂)

)
. (7.11)

Seth r̂−2 = U, r̂−1 = Q′/S, and r̂i = r̂i−2−q̂i−1r̂i−1 for 0 ≤ i ≤ m+1. Then
r̂i = bi for −1 ≤ i ≤ m+1, so the r̂i are the remainders when applying the
Euclidean algorithm to E = U and F = Q′/S. By Theorem 2.1, Eq. (7.11)
implies that qi = q̂i−1 for 0 ≤ i ≤ n + 1. Now P0 = P̂ 0, Q0 = Q̂0, and
inductively by Eq. (5.11) and Eq. (7.5),

Pi+1 = h− Pi + qiQi = h− P̂ i + q̂i−1Q̂i = P̂ i+1 ,

Qi+1 =
f + hPi+1 − P 2

i+1

Qi
=
f + hP̂ i+1 − P̂

2

i+1

Q̂i

= Q̂i+1 ,

for 0 ≤ i ≤ n+ 1.

Corollary 7.1. With the notation of Theorem 7.1, we have Di = D̂i for
1 ≤ i ≤ n+ 3.

gAlthough the degrees in Theorem 2.1 are taken with respect to u1/2 if C is imaginary,

the statement still holds if degrees are taken with respect to u as is done here, since this

only changes both sides of the degree inequality in Theorem 2.1 by a factor of 2.
hNote that the indices of the partial quotients q̂i in the definition of the r̂i are offset

by 1 compared to the proof of Theorem 2.1 because here, the continued fraction in

question is φ̂ = [q̂−1, q̂0, q̂1, . . . , q̂m] (with q̂−1 = 0), whereas in Theorem 2.1, it is

φ̂ = [q̂0, q̂1, . . . , q̂m].
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Since deg(bi) is a decreasing sequence for −1 ≤ i ≤ m+ 1, there exists
a unique index n with −1 ≤ n ≤ m such that

deg(bn) > N ≥ deg(bn+1) , (7.12)

with N as in Eq. (7.3). By Corollary 7.1, Di = D̂i for 1 ≤ i ≤ n+ 3.

8. Giant Steps with NUCOMP

We now show that Dn+3 is at most one baby step away from being reduced
if C is imaginary or real, and always has minimal norm if C is unusual.
Furthermore, Dn+2 never has minimal norm. Note that this implies that if
Dn+3 actually has minimal norm, then Dn+3 = D′⊕D′′.

Substituting Eq. (7.7) and Eq. (7.8) into Eq. (7.9) yields

Q̂i =
(−1)i

b−1

(
Q′′

S
b2i−1 + (h− 2P ′′)ai−1bi−1 − SR′′a2

i−1

)
(8.1)

for 0 ≤ i ≤ m+2. For brevity, we define sequences of rational functions ui,

vi, wi via

ui =
Q′′

b−1S
b2i , vi =

h− 2P ′′

b−1
aibi , wi =

SR′′

b−1
a2

i , (8.2)

for −1 ≤ i ≤ m+ 1, where as before, R′′ = (f + hP ′′ − P ′′2)/Q′′. Then

(−1)i+1Q̂i+1 = ui + vi + wi (1 ≤ i ≤ m+ 1) . (8.3)

Note that ui decreases and wi increases in degree as i increases. Further-
more, ui, vi, wi satisfy the following properties:

Lemma 8.1. Let N and n be given by Eq. (7.3) and Eq. (7.12), respec-
tively, and define

L = deg(Q′′R′′) = deg(f + hP ′′ − P ′′2)
= deg(P ′′ + v) + deg(P ′′ − h− v) .

(8.4)

Then we have the following:

(a) deg(vi) ≤ g for −1 ≤ i ≤ m+ 1.
(b) deg(wi) = L− deg(ui−1) for 0 ≤ i ≤ m+ 1.
(c) deg(un+1) ≤M < deg(ui) for −1 ≤ i ≤ n.
(d) deg(wi) ≤ deg(P ′′ − h− v)− 1 ≤ g for −1 ≤ i ≤ n+ 1.
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Proof. Since deg(h − 2P ′′) ≤ g + 1, (a) can be derived using Lemma 2.2
(e) and (b), since

deg(vi) = deg(ai) + deg(bi) + deg(h− 2P ′′)− deg(b−1)

= deg(ai)− deg(ai+1) + deg(h− 2P ′′) ≤ −1 + (g + 1) = g

for 0 ≤ i ≤ m+ 1. The definition of ui−1 as well as Eq. (8.4) and part (e)
of Lemma 2.2 imply

deg(wi) = 2 deg(ai) + deg(S) + deg(R′′)− deg(b−1)

= deg(b−1)− 2 deg(bi−1) + deg(S) + L− deg(Q′′)

= L− deg(ui−1)

for 0 ≤ i ≤ m+ 1, whence follows (b). For (c), we note that

deg(ui) = 2 deg(bi) + deg(Q′′/S)− deg(b−1)

= deg(Q′′/Q′) + 2 deg(bi)

= M − 2N + 2 deg(bi)

for −1 ≤ i ≤ m+1. We then see from Eq. (7.2) and Eq. (7.3) that deg(ui) ≤
M if and only if deg(bi) ≤ N. Part (c) now follows from Eq. (7.12). For
(d), we note that deg(w−1) = −∞, and for 0 ≤ i ≤ n + 1, by Eq. (8.4),
Eq. (7.2), and parts (b) and (c),

deg(wi) = L− deg(ui−1) < L−M
≤ L− deg(P ′′ + v) = deg(P ′′ − h− v) .

Corollary 8.1. Let N and n be given by Eq. (7.3) and Eq. (7.12), respec-
tively. Then the following holds.

(a) deg(Qi+1) = deg(ui) ≥ g + 2 for −1 ≤ i ≤ n.
(b) deg(Qn+2) ≤M + 1 ≤ g + 1.
(c) deg(Qn+2) ≤ g if and only if deg(bn+1) < N or M < g + 1.

Proof. Parts (a) and (b) immediately follow from Eq. (8.3) as well as
parts (a), (c), and (d) of Lemma 8.1. For part (c) of the Corollary, note
that deg(un+1) = M − 2(N − deg(bn+1)), so deg(Qn+2) = g+ 1 if and only
if deg(un+1) = g+ 1, which in turn holds if and only if deg(bn+1) = N and
M = g + 1.

We now determine how to obtain the divisor D′⊕D′′ using NUCOMP.
First, we recall that Eq. (7.5), or equivalently, Eq. (7.10) and Eq. (7.9),
define a sequence of divisors D̂i+1 = (Q̂i, P̂ i) for 0 ≤ i ≤ n + 2. If C
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is imaginary or real and deg(Q̂n+2) = g + 1, then we define the divisor
Dn+4 = (Qn+3, Pn+3) where

qn+2 =

⌊
P̂n+2 + en+2v

Q̂n+2

⌋
with en+2 =

{
1 if C is real ,
0 if C is imaginary ,

Pn+3 = h− P̂n+2 + qn+2Q̂n+2, Qn+3 =
f + hPn+3 − P 2

n+3

Q̂n+2

.

(8.5)

so Pn+3 and Qn+3 are obtained by applying Eq. (5.13) to Pn+2 = P̂n+2

and Qn+2 = Q̂n+2. For brevity, we define the integer

K = deg(Q′′) + deg(Q′)− g . (8.6)

Then we can determine D′⊕D′′ as follows.

Proposition 8.1. Let N, n, and K be given by Eq. (7.3), Eq. (7.12), and
Eq. (8.6), respectively. Then the following holds.

(a) If C is unusual, then D′⊕D′′ = Dn+3.

(b) If C is imaginary or real and deg(P ′′+v) < g+1, then D′⊕D′′ = D̂n+3.

(c) If C is imaginary or real and deg(P ′′ + v) = g + 1, then D′⊕D′′ =
D̂n+3 if K is even. If K is odd, then D′⊕D′′ = Dn+3 and only if
deg(Qn+2) ≤ g, or equivalently, deg(bn+1) < N, otherwise D′⊕D′′ =
Dn+4.

Proof. Note that deg(P ′′+v) < g+1 if and only ifM < g+1, and deg(P ′′+
v) = g+1 if and only ifM = g+1.We now use the definition ofD′⊕D′′ and
invoke Corollary 7.1. Then parts (a) and (b) follow immediately from parts
(a) and (c) of Corollary 8.1, respectively. For part (c) of the Proposition,
we have M = deg(P ′′ + v) = g + 1, so D′⊕D′′ = Dn+3 if and only if
deg(Qn+2) ≤ g, which by part (c) of Corollary 8.1 holds if and only if
deg(bn+1) < N. Now if K is even, then 2N = K + 1 + 2(g− deg(Q′′)) is an
integer and odd, and 2 deg(bn) is even, so we must have deg(bn+1) < N. If
K is odd and deg(Qn+2) = g + 1, then Dn+3 is not reduced, so it suffices
to prove that Dn+4 is reduced.

To that end, note that by Eq. (8.5), deg(Pn+3 − h − en+2v) <

deg(Qn+2) = g + 1. If C is imaginary, then this implies deg(Pn+3) ≤ g,

whereas if C is real, then deg(Pn+3−h−v) ≤ g. In either case, deg(Qn+3) ≤
2g + 1− deg(Qn+2) = g by Eq. (8.5), so Dn+4 is reduced.

Remark 8.1. We note that if C is imaginary or real, deg(P ′′ + v) =
g + 1, and K as given in Eq. (8.6) is odd, then we will almost always have
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D′⊕D′′ = Dn+4, i.e. it is very unlikely that Dn+3 is reduced. In fact,
under these conditions, if Dn+3 is reduced, then it is easy to show that
deg(bn+1) ≤ N − 1 and deg(bn) ≥ N + 1, so

deg(bn)− deg(bn+1) ≥ 2 . (8.7)

If bn+1 = 0, then bn = gcd(Q′/S, U), so Eq. (8.7) would imply that Q′/S
and U have a non-trivial common factor which is highly unlikely. If bn+1 6=
0, then Eq. (8.7) implies deg(q̂n+1) ≥ 2. But all but the first partial quotient
in a regular continued fraction expansion are expected to have degree 1 with
very high probability.

To compute the relative distance δ = δ(D′)+ δ(D′′)− δ(D′⊕D′′) using
NUCOMP in the case where C is real, let a, a′, a′′ be the reduced ideals
corresponding to the divisors D′⊕D′′, D′, D′′, respectively. Then a =
(S/θ)a′a′′ where θ = θi with a1 = a′a′′, ai = a, and i = n + 3 or n + 4 by
Proposition 8.1. Setting d = deg(S)− deg(θn+3), we obtain by Eq. (5.10),
Eq. (6.1), and Theorem 7.1,

d = deg(S)−

deg(Qn+2)− deg(Q0) +
n+2∑
j=1

deg(qj)


= deg(Q′) + deg(Q′′)− deg(S)− deg(Q̂n+2)−

n∑
j=0

deg(q̂j)− deg(qn+2) .

If D′⊕D′′ = Dn+3, then δ = d, and if D′⊕D′′ = Dn+4, then δ =
d − deg(qn+3) with qn+3 = b(Pn+3 + v)/Qn+3c, so deg(qn+3) = g + 1 −
deg(Qn+3).

We now give upper bounds on the index n of Eq. (7.12).

Theorem 8.1. Let N, n and K be defined by Eq. (7.3), Eq. (7.12) and
Eq. (8.6), respectively. Then the following holds:

(a) If K is even, then n ≤ (K − 4)/2 and D′⊕D′′ = Dn+3 is reduced.
(b) If K is odd, then we have the following:

(a) If C is unusual, then n ≤ (K − 5)/2 and D′⊕D′′ = Dn+3.

(b) If C is imaginary or real and deg(P ′′ + v) < g + 1, then n ≤
(K − 3)/2 and D′⊕D′′ = Dn+3.

(c) If C is imaginary or real and deg(P ′′ + v) = g + 1, then
n ≤ (K − 5)/2, and D′⊕D′′ = Dn+3 if and only if deg(bn+1) <
N, otherwise D′⊕D′′ = Dn+4.
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Proof. From Lemma 2.2 (c), Eq. (7.3), Eq. (7.12), and Eq. (8.6), we obtain

n ≤ deg(b−1)− deg(bn)− 1 < deg(Q′)−N − 1 =
1
2
(K −M + g)− 1 .

If K is even, then as before, deg(bn+1) < N, which holds if and only if
deg(Qn+2) < M, or equivalently, deg(Qn+2) ≤ g. Thus, Dn+3 is reduced,
and we simply use M ≥ g to obtain n < K/2− 1 and hence n ≤ (K− 4)/2.

Suppose now that K is odd. Then all the claims in Theorem 8.1 except
for the bounds on n follow from Proposition 8.1. If deg(P ′′ + v) < g + 1,
then we again use M ≥ g to obtain n ≤ (K − 3)/2. If deg(P ′′ + v) = g + 1
then M = g+1, yielding n ≤ (K−5)/2. Note that this includes the unusual
scenario.

Remark 8.2. The bounds in Theorem (8.1) can also be derived as follows.
If D′⊕D′′ = Dl+1, then by our remarks just before Eq. (5.13), l ≤ dK/2e
if deg(Ql) ≤ g, and l ≤ d(K − 1)/2e if deg(Ql) = g + 1 for C unusual and
g odd. Now distinguish between the cases l = n + 2 and l = n + 3 using
Proposition 8.1.

In lieu of Remark 8.1, we see that in the imaginary and real cases,
D′⊕D′′ can usually be found in (K − 4)/2 “NUCOMP steps” if K is even
and in either (K−3)/2 NUCOMP steps or (K−5)/2 NUCOMP steps plus
one reduction step if K is odd. Furthermore, if D′ and D′′ have minimal
norm, then we expect that deg(Q′) = deg(Q′′). This degree will generally
be equal to g if C is imaginary, unusual with g even, or real, and tends to be
equal to g+ 1 if C is unusual and g odd. In the latter case, we expect that
the norm of D′⊕D′′ again has degree g + 1. We thus obtain the following
Corollary:

Corollary 8.2. Let N, n and K be defined by Eq. (7.3), Eq. (7.12) and
Eq. (8.6), respectively, and assume that

• M = deg(P ′′ + v) = g + 1.
• deg(Q′) = deg(Q′′) = g if C is imaginary, unusual with g even, or real.
• deg(Q′) = deg(Q′′) = g + 1 if C is unusual and g odd.
• deg(bn)− deg(bn+1) = 1.

Then the following holds:

(a) If g is even, then D′⊕D′′ = Dn+3 is reduced and n ≤ (g − 4)/2.
(b) If g is odd and C is unusual, then D′⊕D′′ = Dn+3 and n ≤ (g− 3)/2.
(c) If g is odd and C is imaginary or real, then D′⊕D′′ = Dn+4 and

n ≤ (g − 5)/2.
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Proof. Since deg(Q′) = deg(Q′′), g has the same parity as K. If g is even,
or g is odd and C is imaginary or real, then deg(Q′) = deg(Q′′) = g, so
K = g. The bounds on n for these cases now again follow immediately from
Theorem 8.1. If g is odd and C is unusual, then K = 2(g + 1)− g = g + 2,
so (K − 5)/2 = (g − 3)/2.

In all three cases of Corollary 8.2, as pointed out in Sec. 6, D′⊕D′′ is
reached after at most dg/2e steps; these are all NUCOMP steps except in
case (c), where all but the last step are NUCOMP steps and the last step
is a baby step.

Finally, recall our assumption Eq. (7.1) that deg(P ′′ + v) ≤ g + 1.
We argue that if D′⊕D′′ = (Q̂, P̂ ), then we generally have deg(P̂ ) ≤
g + 1 as well if C is imaginary or real. If P̂ = Pn+3, then we saw that
deg(Pn+3−h−v) ≤ g, so deg(P̂ ) ≤ g if C is imaginary and deg(P̂ ) ≤ g+1
if C is real. Suppose now that P̂ = P̂n+2, so deg(Qn+2) ≤ g, implying
deg(un+1) ≤ g by Eq. (8.3) and Lemma 8.1. Since gcd(Q′/S, U) is very
likely to have small degree (usually the gcd is 1), it is highly improbable
that bn+1 = 0. Therefore, q̂n+1 is defined, and from part (a) of Lemma 2.2
and the definition of ui, we see that

deg(Qn+1) = deg(un) = 2 deg(q̂n+1) + deg(un+1) ≤ 2 deg(q̂n+1) + g .

It follows from Eq. (5.13) and part (a) of Corollary 8.1 that Pn+2 = h −
Pn+1 +bPn+1/Qn+1cQn+1, so deg(Pn+2) ≤ deg(Qn+1)−1 ≤ 2 deg(q̂n+1)+
g − 1. Since q̂n+1, as the partial quotient of a continued fraction expan-
sion, is expected to have degree 1, we obtain deg(Pn+2) ≤ g + 1 with high
probability.

Note that if C is unusual, then we may have deg(Pn+2) ≤ g+ 2, but all
the proofs in Sec. 8 can be easily adjusted to work for this case under the
assumption deg(P ′′) ≤ g + 2. We omit the details of this reasoning.

If we impose stronger conditions than Eq. (7.1) on P ′′, then P̂ need not
satisfy the same conditions. For example, if D′′ is given in adapted form,
then D′⊕D′′ will usually not be in adapted form. Similarly, if C is real and
D′′ is in reduced form, then D′⊕D′′ will generally not be in reduced form.
In this case, if the application requires the basis Q̂, P̂ to be of a particular
form, then a suitable multiple of Q̂ will need to be added to P̂ . However, we
point out that in many applications, the above question does not even play
a role. For example, if we apply NUCOMP repeatedly to a starting divisor
D′′ = (Q′′, P ′′), say to generate a “scalar product” D′′⊕D′′⊕ · · · ⊕D′′

computed as part of a cryptographic protocol, then it is sufficient to ensure
that deg(P ′′) ≤ g + 1 once at the beginning of the computation.
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9. NUCOMP Algorithms

The basic strategy of the NUCOMP algorithm is as follows. Suppose we
are given two divisors D′ = (Q′, P ′) and D′′ = (Q′′, P ′′) of minimal norm
with deg(P ′′) ≤ g + 1; for reasons of efficiency, we will also input the
polynomials R′ = (f+hP ′−P ′2)/Q′ and R′′ = (f+hP ′′−P ′′2)/Q′′. Begin
by computing S,U as in Eq. (6.1). If deg(Q′)+deg(Q′′)−2 deg(S) ≤ g+1,
then the divisor D = (Q,P ) defined in Eq. (6.1) is at most one step away
from having minimal norm, so simply compute Q and P as in Eq. (6.1)
and, if necessary, apply one reduction step — Eq. (5.2) if C is imaginary
or Eq. (5.14) otherwise — to D = (Q,P ) to obtain D′⊕D′′.

Suppose now that deg(Q′) + deg(Q′′) − 2 deg(S) ≥ g + 2. Then we
simultaneously compute the sequences bi, ai, ci, di for −1 ≤ i ≤ n+ 1; this
is what we referred to as“NUCOMP steps” in the previous section. Finally,
recover Pn+2 and Qn+2 using Eq. (7.10) and Eq. (7.9) and, if necessary,
apply one iteration of Eq. (5.14) to Pn+2, Qn+2 to obtain D′⊕D′′. We
describe this method in algorithmic form below.

Algorithm 9.1. NUCOMP (original)

Input: (Q′, P ′, R′), (Q′′, P ′′, R′′) with Q′R′ = f + hP ′ − P ′2 and Q′′R′′ =
f +hP ′′−P ′′2, representing two semi-reduced divisors D′ and D′′ of minimal

norm.

Output: (Q̂, P̂ , R̂) representing D′⊕D′′ with Q̂R̂ = f + hP̂ − P̂
2
.

(1) // Compute D′ +D′′

(a) Compute S1,W1 ∈ F[u] such that S1 = gcd(Q′, Q′′) = V1Q
′+W1Q

′′.

(b) IF S1 = 1 THEN S := S1 = 1, X := 0, W := W1, GOTO (d).

(c) Compute S,W2, X ∈ F[u] such that S = gcd(S1, P
′ + P ′′ − h) =

W2S1 +X(P ′ + P ′′ − h). Put W := W1W2.

(d) Put b−1 := Q′/S and U :≡W (P ′ − P ′′) +XR′′ (mod b−1).

(2) IF deg(Q′) + deg(Q′′)− 2 deg(S) ≤ g + 1 THEN // at most one baby

step

(a) Put

Q̂ :=
Q′Q′′

S2
, P̂ := P ′′ + U

Q′′

S
(mod Q), R̂ :=

f + hP − P 2

Q
.

(b) IF deg(Q̂) = g + 1 AND C is imaginary THEN

Q̂ := R̂ , P̂ := h− P̂ (mod Q̂) , R̂ :=
f + hP̂ − P̂

2

Q̂
.
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(c) IF deg(Q̂) = g + 1 AND C is real THEN

(i) Put P̃ := P̂ , Q̃ := Q̂

(ii) q̃ := b(P̃ + v)/Q̃c.
(iii) P̂ := h− P̃ + q̃Q̃.

(iv) Q̂ := R̂+ q̃(P̃ − P̂ ), R̂ := Q̃.

(d) RETURN(Q,P,R)

(3) // Now apply NUCOMP

(a) b0 := U, a−1 := 0, a0 := 1.
(b) c−1 := Q′′/S, P = P ′′ + UQ′′/S, c0 := (P − P ′)/b−1.

(c) d−1 := P ′ + P ′′ − h, d0 := (d−1b0 − SR′′)/b−1.

(d) i := 0, N := (deg(Q′)− deg(Q′′) + max{g,deg(P ′′ + v)})/2.
(4) While deg(bi) > N do

(a) q̂i := bbi−1/bic, bi+1 := bi−1 (mod bi). // Division with remainder

(b) ai+1 := ai−1 − q̂iai.

(c) ci+1 := ci−1 − q̂ici.

(d) di+1 := di−1 − q̂idi.

(e) i := i+ 1.

(5) // Now i = n+ 1, so deg(bn+1) ≤ N < deg(bn).

(a) Qi+1 := (−1)i+1(bici − aidi) // Qi+1 = Qn+2.

(b) Pi+1 := (−1)i+1(bi−1ci − aidi−1) + P ′′ // Pi+1 = Pn+2.

(c) Ri+1 := (−1)i−1(ai−1di−1 − bi−1ci−1) // Ri+1 = Rn+2 = Qn+1

(d) IF C is imaginary or real and deg(Qi+1) = g + 1 THEN

i. IF C is imaginary, qi+1 := bPi+1/Qi+1c
ELSE qi+1 := b(Pi+1 + v)/Qi+1c

ii. Pi+2 := h− Pi+1 + qi+1Qi+1.

iii. Qi+2 := Ri+1 + qi+1(Pi+1 − Pi+2).
iv. Ri+2 := Qi+1.

v. i := i+ 1.

(e) put Q̂ := Qi+1, P̂ := Pi+1, R̂ := Ri+1.

(f) RETURN(Q̂, P̂ , R̂).

There is an alternative version of this algorithm that is aimed at keeping
the size of the intermediate operands low. In the context of binary quadratic
forms, this idea is originally due to Atkin. Instead of computing all four
sequences, we only compute bi, ai for −1 ≤ i ≤ n+ 1. Then compute cn+1,

dn and dn+1 using Eq. (7.7) and Eq. (7.8), and finally, Pn+2 and Qn+2

using Eq. (7.10) and Eq. (7.9). Since N ≈ g/2, we expect bn and bn+1
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to have approximate degree g/2. By Lemma 2.2 (e), we thus also expect
deg(an+1) ≈ g/2, and Eq. (7.7) and Eq. (7.8) show that cn+1, dn and dn+1

also have approximate degree g/2. So all operands have very small degree;
only the numerators in Eq. (7.7) for i = n + 1 and Eq. (7.8) for i = n

and i = n + 1 have degree ≈ 3g/2. These degrees are much smaller than
those of the numerators of c0 and d0 which are roughly 2g. On the other
hand, the computation of cn+1, dn and dn+1 requires three divisions by b−1,

compared to only two such divisions required for computing c0 and d0. We
again present this technique algorithmically below.

Algorithm 9.2. NUCOMP (small operands)

Input: (Q′, P ′, R′), (Q′′, P ′′, R′′) with Q′R′ = f + hP ′ − P ′2 and Q′′R′′ =
f +hP ′′−P ′′2, representing two semi-reduced divisors D′ and D′′ of minimal

norm.

Output: (Q̂, P̂ , R̂) representing D′⊕D′′ with Q̂R̂ = f + hP̂ − P̂
2
.

(1) // Compute D′ +D′′

(a) Compute S1,W1 ∈ F[u] such that S1 = gcd(Q′, Q′′) = V1Q
′+W1Q

′′.

(b) IF S1 = 1 THEN S := S1 = 1, X := 0, W := W1, GOTO (d).

(c) Compute S,W2, X ∈ F[u] such that S = gcd(S1, P
′ + P ′′ − h) =

W2S1 +X(P ′ + P ′′ − h). Put W := W1W2.

(d) Put b−1 := Q′/S and U :≡W (P ′ − P ′′) +XR′′ (mod b−1).

(2) IF deg(Q′) + deg(Q′′)− 2 deg(S) ≤ g + 1 THEN // at most one baby

step

(a) Put

Q̂ :=
Q′Q′′

S2
, P̂ := P ′′ + U

Q′′

S
(mod Q), R̂ :=

f + hP − P 2

Q
.

(b) IF deg(Q̂) = g + 1 AND C is imaginary THEN

Q̂ := R̂ , P̂ := h− P̂ (mod Q̂) , R̂ :=
f + hP̂ − P̂

2

Q̂
.

(c) IF deg(Q̂) = g + 1 AND C is real THEN

(i) Put P̃ := P̂ , Q̃ := Q̂

(ii) q̃ := b(P̃ + v)/Q̃c.
(iii) P̂ := h− P̃ + q̃Q̃.

(iv) Q̂ := R̂+ q̃(P̃ − P ), R̂ := Q̃.

(d) RETURN(Q̂, P̂ , R̂)

(3) // Now apply NUCOMP
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(a) b0 := U, a−1 := 0, a0 := 1.
(b) i := 0, N := (deg(Q′)− deg(Q′′) + max{g,deg(P ′′ + v)})/2.

(4) While deg(bi) > N do

(a) q̂i := bbi−1/bic, bi+1 := bi−1 (mod bi). // Division with remainder

(b) ai+1 := ai−1 − q̂iai.

(c) i := i+ 1.

(5) // Now i = n+ 1, so deg(bn+1) ≤ N < deg(bn).

(a) ci := (biQ′′/S + ai(P ′ − P ′′))/b−1.

(b) di−1 := (bi−1(P ′ + P ′′ − h) + ai−1SR
′′)/b−1.

(c) X1 := bi−1ci, ci−1 := (X1 + (−1)i(P ′ − P ′′))/bi.
(d) X2 := (−1)i−1aidi−1, di := ((P ′ + P ′′ − h)−X2)/(−1)i−2ai−1.

(e) Qi+1 := (−1)i+1(bici − aidi) // Qi+1 = Qn+2.

(f) Pi+1 := (−1)i+1(X2 −X1) + P ′′ // Pi+1 = Pn+2.

(g) Ri+1 := (−1)i−1(ai−1di−1 − bi−1ci−1) // Ri+1 = Rn+2 = Qn+1

(h) IF C is imaginary or real and deg(Qi+1) = g + 1 THEN

i. IF C is imaginary, qi+1 := bPi+1/Qi+1c
ELSE qi+1 := b(Pi+1 + v)/Qi+1c

ii. Pi+2 := h− Pi+1 + qi+1Qi+1.

iii. Qi+2 := Ri+1 + qi+1(Pi+1 − Pi+2).
iv. Ri+2 := Qi+1.

v. i := i+ 1.

(i) put Q̂ := Qi+1, P̂ := Pi+1, R̂ := Ri+1.

(j) RETURN(Q̂, P̂ , R̂).

10. An Extra Reduced Divisor

For real curves, if Dn+3 is not reduced, then one can compute an alternative
reduced divisor different from Dn+4 under certain circumstances. Let C
be a real hyperelliptic curve, and deg(P ′′ − h − v) ≤ g; this is the case,
for example, if D′′ is given in reduced form. If L is as in Eq. (8.4), then
L ≤ 2g+1, and L ≤ g if D′′ is in reduced form. Furthermore, deg(P ′′+v) =
M = g + 1, so by Proposition 8.1 (c), D′⊕D′′ = Dn+4 if and only if K
as given in Eq. (8.6) is odd and deg(bn+1) = N ; note that in this case,
bn+1 6= 0, so q̂n+1 and bn+2 are defined. So suppose that this is the case,
and define a new divisor D̂n+4 = (Q̂n+3, P̂n+3) as follows:

P̂n+3 = h− P̂n+2 + q̂n+1Q̂n+2, Q̂n+3 =
f + hP̂n+3 − P̂

2

n+3

Q̂i

, (10.1)
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i.e. D̂n+4 is obtained by applying Eq. (7.5) to D̂n+3 = (Q̂n+2, P̂n+2) (or
alternatively, by using Eq. (7.10) and Eq. (7.9) with i = n + 3). We prove
D̂n+4 is a reduced divisor that is almost always different from Dn+4.

Proposition 10.1. Let C be real, deg(P ′′−h− v) ≤ g, D̂n+3 not reduced,
and D̂n+4 = (Q̂n+3, P̂n+3) be given by Eq. (10.1). Then D̂n+4 is reduced.

Proof. We have deg(Q̂n+2) = deg(un+1) = g + 1. Then deg(un+2) ≤
deg(un+1)−2 = g−1 by Lemma 2.2 (a), deg(vn+2) ≤ g by Lemma 8.1 (a),
and deg(wn+2) = L− deg(un+1) ≤ g by Lemma 8.1 (b), since L ≤ 2g + 1.
Thus, deg(Q̂n+3) ≤ g by Eq. (8.3), so D̂n+4 is reduced.

Before we can prove that D̂n+4 6= Dn+4 almost always, we first require
a lemma.

Lemma 10.1. Under the assumptions of Proposition 10.1, we have

deg(P̂n+3 + v) ≤ g .

Proof. Analogous to Eq. (8.1), we can derive

(−1)i+1(P̂ i+1 + P ′′ − h) = u′i + v′i + w′i

where

u′i =
Q′′

b−1S
bi−1bi , v′i =

h− 2P ′′

b−1
ai−1bi , w′i =

SR′′

b−1
ai−1ai ,

for 0 ≤ i ≤ m+ 1. Using Lemmas 2.2 and 8.1, we obtain

deg(u′n+2) ≤ deg(un+1)− 1 = (g + 1)− 1 = g ,

deg(v′n+2) ≤ deg(vn+1)− 1 ≤ g − 1 ,

deg(w′n+2) ≤ deg(wn+2)− 1 = L− deg(un+1)− 1 = g − 1 .

It follows that

deg(P̂n+3 + v) = deg
(
(P̂n+3 + P ′′ − h)− (P ′′ − h− v)

)
≤ g .

Proposition 10.2. Under the assumptions of Proposition 10.1, and with
Dn+4 given by Eq. (8.5), we have D̂n+4 6= Dn+4, provided Dn+4 6= 0.

Proof. Recall that Eq. (8.5) yielded deg(Pn+3 − h − v) ≤ g, so
deg(Pn+3 + v) = g + 1. Thus, by Lemma 10.1, deg(P̂n+3 + v) ≤ g <

deg(Pn+3 + v). It follows that deg(Pn+3) = deg(P̂n+3) = g + 1 and
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P̂n+3 6= Pn+3. Now P̂n+3 − Pn+3 = sQ̂n+2 with s = q̂n+1 − qn+2. Since
deg(Q̂n+2) = g + 1, we must have s ∈ F∗q .

By way of contradiction, assume that D̂n+4 = Dn+4 6= 0. Then Qn+3

and Q̂n+3 differ by a factor in k∗, and Qn+3 divides P̂n+3−Pn+3 = sQ̂n+2.

Since s ∈ F∗q , we see that Qn+3 divides Q̂n+2. By Eq. (8.5) and Eq. (10.1),
we have

Q̂n+2(Q̂n+3 −Qn+3) = (f + hP̂n+3 − P̂
2

n+3)− (f + hPn+3 − P 2
n+3)

= (P̂n+3 − Pn+3)(h− P̂n+3 − Pn+3)

= sQ̂n+2(h− 2Pn+3 − sQ̂n+2) ,

so Qn+3 divides h−2Pn+3. Now Dn+4 6= 0 forces Qn+3 to be non-constant.
Let r be a root of Qn+3 in some algebraic closure of k. Then we can use rea-
soning analogous to the proof of Proposition 5.1 to infer that (r,−Pn+3(r))
is a singular point on C, a contradiction.

Remark 10.1. Let ân+3, an+4 and ân+4 be the reduced ideals corre-
sponding to D̂n+3, Dn+4, and D̂n+4, respectively. Then (Q̂n+2)an+4 =
(Pn+3 + v)ân+3 and (Q̂n+2)ân+4 = (P̂n+3 + v)ân+3. If we now take dis-
tances with respect to some starting divisor and set δn+4 = δ(Dn+4) and
δ̂n+4 = δ(D̂n+4), then we have δn+4 = δ̂n+4 + δ with

δ = deg(Pn+3 + v)− deg(P̂n+3 + v) .

Since deg(Pn+3 +v) = g+1 > deg(P̂n+3 +v), we have δ ≥ 1. Furthermore,
since deg(Pn+3 + v) = deg(P̂n+3 − h− v) = g + 1,

Pn+3 + v

P̂n+3 + v
=

(Pn+3 + v)(P̂n+3 − h− v)
Q̂n+2Qn+3

,

and deg(Qn+3) ≥ 1, we have δ ≤ 2(g+1)−(g+1)−1 = g. In summary, 1 ≤
δ ≤ g, so Dn+4 and D̂n+4 are not far from each other in the infrastructure
of the appropriate ideal class. In general, we expect deg(Qn+3) = g and
hence δ = 1, so Dn+4 and D̂n+4 are neighbors.

11. Numerical Results

The following numerical experiments were performed on a Pentium IV 2.4
GHz computer running Linux. We used the computer algebra library NTL
[14] for finite field and polynomial arithmetic and the GNU C++ compiler
version 3.4.3.
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11.1. Binary Exponentiation

In order to test the efficiency of our versions of NUCOMP, we implemented
routines for binary exponentiation using Cantor’s algorithm in Eq. (6.1),
NUCOMP (Algorithm 9.1), and NUCOMP with small operands (Algo-
rithm 9.2). All three algorithms were implemented using real, imaginary,
and unusual curves defined over prime finite fields Fp and characteristic 2
finite fields F2n .

Table 11.1-11.5 contain the ratio of runtimes for binary exponentiation
using Algorithm 9.1 (NUCOMP using recurrences to compute ci and di)
divided by the runtime using Algorithm 9.2 (NUCOMP using formulas
to compute the final values of ci and di). For each genus and field size
listed, 1000 binary exponentiations were performed with random 100-bit
exponents. The same 1000 exponents were used for both algorithms and
for all genera and finite field sizes. The divisors produced by NUCOMP
were normalized; adapted basis was used for imaginary and unusual curves
and reduced basis was used for real curves [5]. The data clearly show that
Algorithm 9.1 is more efficient that Algorithm 9.2 for g < 10 approximately,
but that Algorithm 9.2 is ultimately more efficient as g grows.

Table 11.1. Exponentiation ratios (Alg 9.1 / Alg 9.2) over Fp, imaginary.

log2 p
g 2 4 8 16 32 64 128 256 512

2 0.9839 0.9012 0.8983 0.9037 0.9038 0.8909 0.9110 0.9140 0.8976
3 0.8703 0.9471 0.9289 0.8934 0.9523 0.9659 0.9503 0.9568 0.9591
4 0.9619 0.9342 0.9266 0.9662 0.9503 0.9514 0.9634 0.9644 0.9672
5 0.9693 0.9550 0.9518 0.9576 0.9567 0.9474 0.9327 0.9341 0.9318
6 0.9754 0.9548 0.9631 0.9624 0.9378 0.9467 0.9413 0.9442 0.9434
7 0.9407 0.9530 0.9608 0.9561 0.9518 0.9532 0.9559 0.9592 0.9613
8 0.9726 0.9663 0.9666 0.9600 0.9576 0.9668 0.9785 0.9641 0.9671
9 0.9751 0.9764 0.9840 0.9776 0.9645 0.9760 0.9947 0.9710 0.9784
10 0.9793 0.9708 0.9817 0.9724 0.9629 0.9746 0.9976 0.9775 0.9864
11 0.9853 0.9792 0.9854 0.9877 0.9705 0.9839 1.0067 0.9875 0.9974
12 0.9983 0.9969 0.9971 0.9875 0.9777 0.9907 0.9924 0.9917 1.0023
13 0.9851 1.0084 1.0000 0.9963 0.9874 0.9993 0.9986 1.0024 1.0102
14 1.0126 1.0039 1.0049 0.9988 0.9845 1.0010 1.0003 1.0038 1.0130
15 1.0143 1.0085 1.0102 1.0097 0.9913 1.0079 1.0076 1.0103 1.0204
20 1.0823 1.1033 1.1029 1.1017 1.0670 1.1102 1.0568 1.0710 1.0866
25 1.1003 1.1185 1.1137 1.1203 1.1103 1.1187 1.0718 1.0988 1.0896
30 1.0872 1.0908 1.0927 1.0895 1.1152 1.1107 1.0839 1.0946 1.1129

Table 11.6–11.10 contain the ratio of runtimes for binary exponenti-
ation using Cantor’s algorithm as compared to that using the faster of
Algorithm 9.1 or Algorithm 9.2. Again, for each genus and field size listed,
1000 binary exponentiations were performed with random 100-bit expo-
nents. The same 1000 exponents were used for both algorithms and for all
genera and finite field sizes. The data clearly show that NUCOMP out-
performs Cantor’s algorithm except for very small genera and finite field
sizes, and that its relative performance improves as both the genus and
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Table 11.2. Exponentiation ratios (Alg 9.1 / Alg 9.2) over Fp, real.

log2 p
g 2 4 8 16 32 64 128 256 512

2 0.8661 0.8743 0.9368 0.9557 0.8414 0.8766 0.8830 0.8859 0.8761
3 0.8579 0.9149 0.9163 0.9216 0.8967 0.8996 0.8924 0.8761 0.8851
4 0.9395 0.9647 0.9485 0.9582 0.9533 0.9545 0.9633 0.9648 0.9694
5 0.9294 0.9209 0.9335 0.9489 0.9629 0.9661 0.9652 0.9695 0.9726
6 0.9477 0.9397 0.9595 0.9523 0.9636 0.9566 0.9499 0.9535 0.9570
7 0.8635 0.9431 0.9466 0.9370 0.9644 0.9606 0.9580 0.9586 0.9595
8 0.9349 0.9667 0.9684 0.9860 0.9869 0.9793 1.0003 0.9783 0.9781
9 0.9549 0.9723 0.9683 0.9561 0.9859 0.9818 0.9997 0.9774 0.9788
10 0.9522 0.9963 0.9913 0.9820 0.9968 0.9942 1.0116 0.9857 0.9962
11 0.9540 0.9645 0.9854 0.9874 0.9966 0.9975 0.9957 0.9902 0.9992
12 0.9726 0.9872 0.9960 0.9809 1.0166 1.0098 1.0058 1.0011 1.0130
13 0.9806 0.9948 0.9926 0.9941 1.0191 1.0148 1.0078 1.0018 1.0105
14 0.9883 1.0135 1.0023 0.9989 1.0239 1.0197 1.0171 1.0139 1.0237
15 0.9807 0.9989 1.0117 1.0071 1.0229 1.0226 1.0168 1.0127 1.0209
20 1.0995 1.1180 1.1156 1.1109 1.1063 1.1291 1.0692 1.0856 1.0932
25 1.0968 1.1090 1.1164 1.1060 1.0847 1.1100 1.0745 1.0784 1.0989
30 1.0981 1.1088 1.1149 1.1068 1.0980 1.1066 1.0863 1.0979 1.1258

Table 11.3. Exponentiation ratios (Alg 9.1 / Alg 9.2) over Fp, unusual.

log2 p
g 2 4 8 16 32 64 128 256 512

2 0.9108 0.8800 0.8571 0.8910 0.8969 0.8896 0.9069 0.9082 0.9019
3 0.9175 1.0081 1.0161 1.0109 0.9715 0.9466 0.9658 0.9583 0.9649
4 0.9504 1.0290 1.0311 0.9967 0.9552 0.9542 0.9614 0.9603 0.9660
5 0.9684 0.9690 0.9853 0.9844 0.9730 0.9486 0.9475 0.9439 0.9491
6 0.9649 0.9626 0.9862 0.9731 0.9584 0.9471 0.9418 0.9368 0.9389
7 0.9816 1.0212 1.0139 0.9620 0.9854 0.9705 0.9868 0.9672 0.9724
8 0.9929 0.9867 0.9911 0.9980 0.9775 0.9666 0.9782 0.9590 0.9629
9 0.9938 0.9981 1.0131 0.9832 1.0047 0.9870 1.0063 0.9792 0.9899
10 1.0000 0.9982 0.9964 1.0017 0.9959 0.9834 0.9993 0.9729 0.9854
11 1.0000 1.0235 1.0103 1.0072 1.0228 1.0015 1.0012 0.9924 1.0058
12 1.0048 1.0046 1.0085 1.0014 1.0163 0.9956 0.9953 0.9851 0.9975
13 1.0000 1.0077 1.0243 1.0024 1.0362 0.9985 1.0101 1.0058 1.0184
14 0.9960 1.0245 1.0037 1.0070 1.0313 1.0101 1.0034 0.9958 1.0099
15 1.0094 1.0301 1.0370 1.0321 1.0448 1.0145 1.0176 1.0184 1.0264
20 1.1394 1.1789 1.1526 1.1262 1.1024 1.1000 1.0621 1.0671 1.0884
25 1.1014 1.1103 1.1209 1.1168 1.0860 1.1069 1.0716 1.0799 1.0981
30 1.0932 1.1047 1.1064 1.1018 1.0939 1.1108 1.0799 1.0885 1.1068

Table 11.4. Exponentiation ratios (Alg 9.1 / Alg 9.2) over F2n , imaginary.

log2 p
g 2 4 8 16 32 64 128 256 512

2 0.9308 0.9002 0.8891 0.8889 0.8976 0.8744 0.9006 0.8880 0.8871
3 0.9622 0.9511 0.9547 0.9514 0.9446 0.9440 0.9600 0.9571 0.9585
4 0.9507 0.9395 0.9480 0.9507 0.9528 0.9592 0.9663 0.9613 0.9610
5 0.9682 0.9436 0.9396 0.9557 0.9443 0.9440 0.9396 0.9356 0.9343
6 0.9661 0.9544 0.9468 0.9528 0.9519 0.9530 0.9469 0.9474 0.9458
7 0.9819 0.9620 0.9674 0.9662 0.9681 0.9669 0.9611 0.9644 0.9622
8 0.9881 0.9663 0.9653 0.9693 0.9725 0.9780 0.9693 0.9691 0.9688
9 1.0071 0.9929 0.9868 0.9853 0.9920 0.9890 0.9807 0.9830 0.9820
10 1.0026 1.0011 0.9864 0.9917 0.9918 0.9891 0.9872 0.9878 0.9876
11 1.0205 0.9981 1.0046 1.0010 0.9947 0.9960 0.9960 0.9986 0.9964
12 1.0272 1.0124 1.0193 1.0137 1.0019 0.9984 1.0016 1.0042 1.0022
13 1.0341 1.0191 1.0311 1.0249 1.0116 1.0092 1.0118 1.0060 1.0148
14 1.0441 1.0311 1.0322 1.0242 1.0145 1.0081 1.0148 1.0181 1.0187
15 1.0504 1.0311 1.0415 1.0324 1.0208 1.0133 1.0190 1.0221 1.0216
20 1.1072 1.1263 1.1350 1.1218 1.1051 1.0890 1.0923 1.0893 1.0885
25 1.1624 1.1662 1.1724 1.1556 1.1337 1.1104 1.1119 1.1203 1.1146
30 1.1869 1.1797 1.1930 1.1826 1.1419 1.1375 1.1335 1.1337 1.1309

finite field size increase. The findings are consistent with those presented
in [6], but our improved versions of NUCOMP presented here out-perform
Cantor’s algorithm for even smaller genera and finite field sizes than in [6].
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Table 11.5. Exponentiation ratios (Alg 9.1 / Alg 9.2) over F2n , real

log2 p
g 2 4 8 16 32 64 128 256 512

2 0.9249 0.8800 0.8630 0.8604 0.8649 0.8603 0.8816 0.8737 0.8725
3 0.8406 0.8562 0.8682 0.8670 0.8710 0.8910 0.8613 0.8745 0.8723
4 0.9331 0.9424 0.9480 0.9561 0.9524 0.9526 0.9561 0.9614 0.9618
5 0.9217 0.9480 0.9562 0.9596 0.9600 0.9526 0.9614 0.9668 0.9665
6 0.9471 0.9655 0.9548 0.9628 0.9574 0.9711 0.9444 0.9503 0.9504
7 0.9557 0.9580 0.9531 0.9511 0.9588 0.9574 0.9462 0.9512 0.9506
8 0.9765 0.9776 0.9781 0.9750 0.9819 0.9800 0.9711 0.9737 0.9759
9 0.9761 0.9709 0.9752 0.9799 0.9729 0.9705 0.9701 0.9701 0.9676
10 0.9891 1.0057 1.0019 0.9996 0.9970 0.9857 0.9868 0.9892 0.9952
11 0.9810 0.9962 1.0070 0.9997 0.9920 0.9849 0.9866 0.9905 0.9910
12 1.0080 1.0064 1.0220 1.0158 1.0081 0.9958 1.0006 1.0082 1.0085
13 1.0029 1.0162 1.0208 1.0120 1.0041 0.9845 1.0009 1.0093 1.0082
14 1.0243 1.0326 1.0379 1.0284 1.0162 0.9981 1.0093 1.0214 1.0215
15 1.0228 1.0329 1.0327 1.0270 1.0175 1.0016 1.0111 1.0182 1.0176
20 1.1270 1.1450 1.1401 1.1737 1.1256 1.0984 1.0998 1.0968 1.0937
25 1.1456 1.1565 1.1748 1.1471 1.0596 1.1021 1.1083 1.1207 1.1049
30 1.1672 1.1757 1.1822 1.1820 1.1477 1.1239 1.1288 1.1374 1.1328

Table 11.6. Exponentiation ratios (NUCOMP / Cantor) over Fp, imaginary.

log2 p
g 2 4 8 16 32 64 128 256 512

2 1.0991 1.0504 1.0743 1.0432 0.9308 0.9141 0.9242 0.8847 0.8447
3 1.0662 1.0707 1.0609 1.0140 0.9523 0.9419 0.9008 0.8865 0.8652
4 1.0632 1.0607 1.0390 1.0158 0.9309 0.9286 0.9068 0.8582 0.8540
5 1.0766 1.0376 1.0350 1.0194 0.9120 0.9046 0.8865 0.8571 0.8642
6 1.0931 1.0462 1.0150 1.0056 0.8888 0.8963 0.8452 0.8594 0.8573
7 1.0235 0.9865 0.9679 0.9583 0.8692 0.8755 0.8310 0.8558 0.8586
8 0.9924 0.9349 0.9414 0.9268 0.8532 0.8697 0.8237 0.8500 0.8424
9 0.9557 0.9212 0.9212 0.9273 0.8405 0.8588 0.8144 0.8472 0.8420
10 0.9423 0.8975 0.8961 0.8910 0.8275 0.8451 0.8078 0.8402 0.8334
11 0.9538 0.8968 0.8981 0.9046 0.8128 0.8407 0.7921 0.8371 0.8333
12 0.9441 0.9043 0.8991 0.8918 0.8075 0.8332 0.8047 0.8278 0.8235
13 0.9361 0.9320 0.9035 0.9063 0.8060 0.7857 0.7995 0.8184 0.8148
14 0.9308 0.9038 0.8971 0.8981 0.7926 0.7821 0.8035 0.8184 0.8071
15 0.9135 0.8747 0.8704 0.8694 0.7851 0.7715 0.8043 0.8130 0.8059
20 0.8255 0.7956 0.7861 0.7989 0.7536 0.7242 0.7910 0.7843 0.7769
25 0.7949 0.7662 0.7693 0.7727 0.7208 0.7398 0.7854 0.7943 0.7759
30 0.7921 0.7714 0.7730 0.7716 0.7157 0.7372 0.7743 0.7616 0.7588

Table 11.7. Exponentiation ratios (NUCOMP / Cantor) over Fp, real.

log2 p
g 2 4 8 16 32 64 128 256 512

2 0.8943 1.1268 1.2192 1.2763 1.0659 1.0987 1.0872 1.0731 1.0835
3 1.0449 1.1497 1.1165 1.1330 1.0503 1.0515 1.0434 1.0376 1.0500
4 1.0745 1.1081 1.0932 1.0784 1.0169 1.0137 1.0150 0.9847 1.0060
5 1.0549 1.0659 1.0300 1.0570 0.9635 0.9771 0.9650 0.9664 0.9787
6 1.0507 1.0124 1.0350 1.0327 0.9444 0.9555 0.9243 0.9540 0.9569
7 0.9705 0.9525 0.9231 0.9209 0.9144 0.9309 0.8950 0.9289 0.9512
8 0.9724 0.9539 0.9426 0.9338 0.9094 0.9195 0.8816 0.9244 0.9254
9 0.9591 0.9179 0.9028 0.9023 0.8726 0.8876 0.8608 0.8913 0.9013
10 0.9105 0.9056 0.8818 0.8877 0.8625 0.8879 0.8642 0.8933 0.8955
11 0.9396 0.9043 0.9159 0.9145 0.8402 0.8596 0.8415 0.8836 0.8862
12 0.9668 0.9341 0.9149 0.9135 0.8356 0.8536 0.8512 0.8832 0.8745
13 0.9581 0.9128 0.8856 0.8942 0.8047 0.7877 0.8201 0.8637 0.8560
14 0.9596 0.9098 0.8782 0.8912 0.8051 0.7874 0.8205 0.8502 0.8471
15 0.9356 0.8696 0.8640 0.8670 0.7789 0.7656 0.8037 0.8425 0.8387
20 0.8065 0.7549 0.7519 0.7638 0.7463 0.7275 0.8110 0.8108 0.8008
25 0.7717 0.7303 0.7215 0.7186 0.6996 0.7124 0.7818 0.7842 0.7723
30 0.7651 0.7337 0.7270 0.7392 0.6873 0.7212 0.7687 0.7749 0.7801

11.2. Key Exchange

We also ran numerous examples of the key exchange protocols described
in [7], again using both real and imaginary curves and Fp (p prime) and F2n

as base fields. The genus of our curves ranged from 2 to 6 and the underlying
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Table 11.8. Exponentiation ratios (NUCOMP / Cantor) over Fp, unusual.

log2 p
g 2 4 8 16 32 64 128 256 512

2 1.0438 1.1079 1.0435 1.0444 0.9607 0.9345 0.9257 0.8955 0.8749
3 1.0500 1.0649 1.0506 1.0377 0.9102 0.8970 0.8815 0.8443 0.8417
4 1.1220 1.0905 1.0576 1.0565 0.9182 0.9301 0.9102 0.8782 0.8698
5 1.0824 1.0539 1.0030 1.0216 0.8861 0.8631 0.8382 0.8535 0.8465
6 1.1224 1.0404 1.0259 1.0419 0.9115 0.8951 0.8580 0.8769 0.8744
7 1.0081 0.9179 0.9309 0.9179 0.8604 0.8461 0.8158 0.8424 0.8312
8 0.9882 0.9695 0.9654 0.9900 0.8668 0.8647 0.8342 0.8627 0.8526
9 0.9340 0.8902 0.8883 0.8784 0.8286 0.8274 0.7986 0.8336 0.8274
10 0.9245 0.9151 0.9224 0.9308 0.8523 0.8396 0.8182 0.8484 0.8424
11 0.9641 0.9075 0.8642 0.8858 0.8033 0.8117 0.8016 0.8177 0.8164
12 0.9570 0.8997 0.8892 0.9055 0.8215 0.8265 0.8166 0.8258 0.8338
13 0.9615 0.8977 0.8662 0.8828 0.7821 0.7650 0.7964 0.8115 0.8026
14 0.9448 0.8719 0.8652 0.8858 0.7839 0.7699 0.8104 0.8328 0.8251
15 0.8945 0.8203 0.8111 0.8306 0.7663 0.7389 0.7822 0.7945 0.7858
20 0.8458 0.8234 0.8108 0.8250 0.7220 0.7456 0.8074 0.7927 0.7996
25 0.7964 0.7660 0.7606 0.7656 0.7252 0.7429 0.7942 0.7901 0.7822
30 0.7781 0.7591 0.7575 0.7622 0.7055 0.7307 0.7769 0.7766 0.7682

Table 11.9. Exponentiation ratios (NUCOMP / Cantor) over F2n , imaginary.

log2 p
g 2 4 8 16 32 64 128 256 512

2 1.0068 0.9696 0.9498 0.9257 0.9185 0.8919 0.8824 0.8433 0.8205
3 0.9857 0.9757 0.9401 0.9244 0.9244 0.9251 0.8789 0.8951 0.8855
4 0.9725 0.9638 0.9448 0.9301 0.9056 0.9204 0.9285 0.9102 0.9110
5 0.9916 0.9705 0.9404 0.9360 0.9115 0.9153 0.9192 0.9035 0.9008
6 0.9632 0.9479 0.9248 0.9155 0.8915 0.9025 0.9132 0.9045 0.9035
7 0.9688 0.9248 0.9083 0.9050 0.8855 0.8761 0.9181 0.9161 0.9158
8 0.9305 0.9110 0.8928 0.8903 0.8866 0.9096 0.9263 0.9237 0.9247
9 0.9245 0.8985 0.8799 0.8902 0.8766 0.8926 0.9061 0.9079 0.9098
10 0.8890 0.8843 0.8809 0.8907 0.8715 0.8823 0.8937 0.8971 0.8996
11 0.8932 0.8695 0.8777 0.8780 0.8640 0.8776 0.8865 0.8938 0.8955
12 0.8744 0.8581 0.8621 0.8593 0.8666 0.8798 0.8811 0.8852 0.8905
13 0.8551 0.8623 0.8401 0.8469 0.8537 0.8696 0.8678 0.8759 0.8778
14 0.8407 0.8298 0.8202 0.8332 0.8492 0.8669 0.8676 0.8751 0.8802
15 0.8220 0.8171 0.8041 0.8173 0.8430 0.8609 0.8649 0.8750 0.8805
20 0.7449 0.7362 0.7399 0.7625 0.7950 0.8106 0.8316 0.8481 0.8536
25 0.7015 0.7089 0.7146 0.7263 0.7585 0.7847 0.8059 0.8174 0.8270
30 0.6744 0.7118 0.6993 0.7078 0.7419 0.7632 0.7839 0.7996 0.8131

Table 11.10. Exponentiation ratios (NUCOMP / Cantor) over F2n , real.

log2 p
g 2 4 8 16 32 64 128 256 512

2 0.9277 1.0896 1.0930 1.0854 1.1152 1.0998 1.0653 1.0787 1.0661
3 0.8948 0.9597 0.9860 0.9622 0.9695 0.9791 0.9640 0.9824 0.9814
4 1.0213 1.0360 1.0375 1.0274 1.0267 1.0252 1.0289 1.0421 1.0440
5 0.9587 0.9672 0.9630 0.9505 0.9372 0.9295 0.9499 0.9516 0.9491
6 0.9989 0.9776 0.9743 0.9838 0.9718 0.9715 0.9689 0.9777 0.9790
7 0.9370 0.9193 0.9025 0.9126 0.8990 0.9041 0.9311 0.9413 0.9424
8 0.9534 0.9439 0.9222 0.9379 0.9365 0.9476 0.9650 0.9785 0.9842
9 0.9008 0.8771 0.8685 0.8928 0.8707 0.8727 0.8891 0.8954 0.8963
10 0.9053 0.8863 0.8854 0.9142 0.9098 0.9115 0.9252 0.9384 0.9491
11 0.8601 0.8518 0.8504 0.8713 0.8624 0.8595 0.8755 0.8838 0.8870
12 0.8878 0.8679 0.8589 0.8705 0.8938 0.9006 0.9154 0.9220 0.9301
13 0.8377 0.8230 0.8171 0.8281 0.8478 0.8476 0.8675 0.8729 0.8770
14 0.8393 0.8258 0.8206 0.8384 0.8659 0.8783 0.8863 0.8957 0.9031
15 0.7970 0.7775 0.7800 0.7942 0.8204 0.8423 0.8548 0.8594 0.8659
20 0.7221 0.7313 0.7312 0.7552 0.7968 0.8291 0.8311 0.8548 0.8638
25 0.6565 0.6298 0.6678 0.6954 0.7907 0.7356 0.7520 0.7756 0.8010
30 0.6576 0.6649 0.6722 0.6936 0.7353 0.7663 0.7823 0.8043 0.8187

finite field was chosen so that the size of the Jacobian (approximately qg

where the finite field has q elements) was roughly 2160, 2224, 2256, 2384,

and 2512. Assuming only generic attacks with square root complexity, these
curves offer 80, 112, 128, 192, and 256 bits of security for cryptographic
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protocols based on the corresponding discrete logarithm problem. NIST [9]
currently recommends these five levels of security for key establishment in
U.S. Government applications. Although the use of curves with genus 3 and
larger for cryptographic purposes is questionable, we nevertheless included
times for higher genus as our main goal is to provide a relative comparison
between our formulation of NUCOMP with Cantor’s algorithm.

For curves defined over Fp, we chose a random prime p of appropriate
length such that pg had the required bit length, and for curves over F2n

we chose the minimal value of n with gn greater than or equal to the re-
quired bit length. For each genus and finite field, we randomly selected 2000
curves and executed Diffie–Hellman key exchange twice for each curve, once
using Cantor’s algorithm and once using our version of NUCOMP (Algo-
rithm 9.1). We used Algorithm 9.1 as opposed to Algorithm 9.2, because
our previous experiments indicated that it is more efficient for low genus
curves. The random exponents used had 160, 224, 256, 384, and 512 bits,
respectively, ensuring that the number of bits of security corresponds to
the five levels recommended by NIST (again, considering only generic at-
tacks). In order to provide a fair comparison, the same sequence of random
exponents was used for each run of the key exchange protocol.

Table 11.11 contains the average CPU time in seconds for each version of
the protocol using real and imaginary curves over Fp and F2n . The columns
labeled “Cantor” contain the runtimes when using Cantor’s algorithm, and
those labeled “NC” the runtimes when using NUCOMP. The times for any
precomputations, as described in [7], are not included. We also give the
ratios of the average time spent for key exchange using NUCOMP versus
that using Cantor’s algorithm in Table 11.12. Clearly, in almost all cases,
NUCOMP offers a fairly significant performance improvement as opposed
to Cantor’s algorithm, even for genus as low as 2.

12. Conclusions

Our results indicate that NUCOMP does provide an improvement for di-
visor arithmetic in hyperelliptic curves except for the smallest examples in
terms of genus and finite field size. They also show that both versions of
NUCOMP, Algorithm 9.1 and Algorithm 9.2, are useful. Nevertheless, a
careful complexity analysis and further numerical experiments are required
to compare NUCOMP and Cantor’s algorithm more precisely.

There are a number of possible improvements to NUCOMP that need
to be investigated. For example, our remarks at the end of Sec. 8 indicate
that basis normalization need not be done when NUCOMP is used as a



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

241

Table 11.11. Key exchange timings over Fp and F2n (in seconds).

Security Fp F2n
level Imaginary Real Imaginary Real

(in bits) g Cantor NC Cantor NC Cantor NC Cantor NC

2 0.0322 0.0290 0.0324 0.0306 0.0320 0.0282 0.0282 0.0291
3 0.0382 0.0350 0.0390 0.0363 0.0342 0.0320 0.0322 0.0317

80 4 0.0492 0.0438 0.0487 0.0438 0.0443 0.0404 0.0403 0.0382
5 0.0466 0.0435 0.0483 0.0444 0.0611 0.0601 0.0560 0.0563
6 0.0124 0.0124 0.0123 0.0122 0.0737 0.0705 0.0667 0.0658

2 0.0562 0.0498 0.0554 0.0520 0.0585 0.0505 0.0511 0.0522
3 0.0737 0.0649 0.0707 0.0660 0.0692 0.0627 0.0624 0.0636

112 4 0.0723 0.0651 0.0730 0.0648 0.0691 0.0630 0.0622 0.0598
5 0.0938 0.0875 0.0937 0.0867 0.0846 0.0822 0.0776 0.0781
6 0.1182 0.1076 0.1171 0.1048 0.1032 0.0977 0.0946 0.0919

2 0.0667 0.0593 0.0663 0.0625 0.0692 0.0594 0.0598 0.0611
3 0.0870 0.0771 0.0847 0.0790 0.0807 0.0732 0.0730 0.0734

128 4 0.0904 0.0806 0.0906 0.0806 0.0791 0.0723 0.0697 0.0667
5 0.1129 0.1044 0.1124 0.1037 0.0989 0.0957 0.0899 0.0909
6 0.1354 0.1224 0.1318 0.1181 0.1192 0.1129 0.1090 0.1063

2 0.1439 0.1235 0.1375 0.1290 0.1620 0.1348 0.1369 0.1395
3 0.1617 0.1436 0.1577 0.1480 0.1652 0.1484 0.1472 0.1486

192 4 0.1832 0.1609 0.1793 0.1615 0.1743 0.1642 0.1537 0.1505
5 0.2313 0.2114 0.2210 0.2069 0.2190 0.2147 0.1964 0.1985
6 0.2247 0.2053 0.2242 0.2019 0.1912 0.1795 0.1726 0.1677

2 0.2517 0.2127 0.2303 0.2182 0.3037 0.2556 0.2540 0.2593
3 0.2920 0.2538 0.2825 0.2633 0.3417 0.3129 0.3025 0.3106

256 4 0.2875 0.2537 0.2771 0.2505 0.3015 0.2815 0.2664 0.2622
5 0.3662 0.3375 0.3557 0.3341 0.3693 0.3599 0.3338 0.3344
6 0.3968 0.3577 0.3792 0.3446 0.3555 0.3456 0.3185 0.3120

Table 11.12. Key exchange ratios over Fp and F2n .

Security level
g 80 112 128 192 256

2 0.8999 0.8869 0.8890 0.8585 0.8454
3 0.9153 0.8804 0.8866 0.8882 0.8693

Fp 4 0.8916 0.9004 0.8919 0.8781 0.8825
imaginary 5 0.9329 0.9332 0.9242 0.9140 0.9214

6 0.9984 0.9102 0.9038 0.9135 0.9015

2 0.9435 0.9383 0.9429 0.9383 0.9477
3 0.9305 0.9342 0.9323 0.9384 0.9321

Fp 4 0.9000 0.8867 0.8895 0.9008 0.9041
real 5 0.9197 0.9255 0.9229 0.9363 0.9391

6 0.9905 0.8947 0.8961 0.9007 0.9088

2 0.8800 0.8621 0.8579 0.8320 0.8417
3 0.9364 0.9066 0.9074 0.8984 0.9157

F2n 4 0.9132 0.9125 0.9144 0.9420 0.9336
imaginary 5 0.9829 0.9718 0.9677 0.9803 0.9744

6 0.9558 0.9467 0.9475 0.9388 0.9722

2 1.0334 1.0222 1.0225 1.0190 1.0206
3 0.9855 1.0181 1.0067 1.0097 1.0270

F2n 4 0.9493 0.9616 0.9567 0.9796 0.9840
real 5 1.0046 1.0065 1.0112 1.0106 1.0016

6 0.9870 0.9707 0.9753 0.9717 0.9796

component for binary exponentiation, because the degree of P̂ will generally
be at most g + 1 at the end of NUCOMP. Not performing normalization
saves one division with remainder at the cost of the inputs to subsequent
applications of NUCOMP having slightly larger degrees. In addition, the
results in Sec. 10 indicate that in some cases, it is possible to perform one
extra NUCOMP step to guarantee that the output of NUCOMP is reduced
without having to perform a continued fraction step. Further investigation
and analysis is required to determine which of these options is the most
efficient in practice.
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Our data also indicate that using NUCOMP is more efficient than Can-
tor’s algorithm for cryptographic key exchange using low genus hyperellip-
tic curves, for both imaginary and real models, However, explicit formulas
based on Cantor’s algorithm have been developed for divisor arithmetic on
curves of genus 2, 3, and 4 (see [5] for a partial survey and references). NU-
COMP, as presented in this paper, is generic in the sense that it works for
any genus and as such does not compete in terms of performance with these
explicit formulas. Given that NUCOMP out-performs Cantor’s algorithm,
it is conceivable that some of the ideas used in NUCOMP can be applied to
improve the explicit formulas. This, as well as the open problems mentioned
above, is the subject of on-going research.
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1. Introduction

Let F2 be the binary field and let 〈·, ·〉 denote the usual inner product of
Fn

2 . An [n, k] binary code is a k-dimensional subspace C of Fn
2 ; C is self-

orthogonal if C ⊂ C⊥, where C⊥ = {x ∈ Fn
2 : 〈x, y〉 = 0 for all y ∈ C}.

Self-dual codes are [2k, k] self-orthogonal codes.
Let Sn denote the symmetric group on {1, . . . , n}. Sn acts on Fn

2 by
permuting its coordinates. Call two codes C1, C2 ⊂ Fn

2 equivalent if there
exists σ ∈ Sn such that C2 = Cσ

1 . Self-orthogonality of codes is preserved
under this equivalence. Classification of self-orthogonal codes, especially, of
self-dual codes, has been a focus of attention since the early days of coding
theory; see Pless [7], Pless and Sloane [8], Conway and Pless [1], Conway,
Pless and Sloane [2], and Huffman [5]. Complete classifications of self-dual
codes are known up to length 32 [2].

Let Ψk,n denote the number of inequivalent [n, k] self-orthogonal codes.
We are interested in the computation of Ψk,n. More precisely, to what extent
can Ψk,n be explicitly determined? In a recent paper [4], we introduced an
algorithm which essentially says that for a given moderate k, it is possible
to find an explicit formula for Ψk,n that holds for all n. In fact, formulas for
Ψk,n with k ≤ 5 have been found in [4]. The main purpose of the present
paper is to announce the formula for Ψ6,n. The result consists of a master
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formula and forty sub formulas which are ingredients of the master formula.
In Section 2, we describe the method of computation. The master formula is
the Cauchy-Frobenius lemma, i.e., Burnside’s lemma, applied to an action
by the group GL(6,F2) × Sn on a certain set of 6 × n matrices over F2.
The sub formulas count numbers of matrices fixed by representatives from
the conjugacy classes of GL(6,F2) ×Sn. We tabulate the sub formulas in
Table 2 of the appendix. In Table 4 of the appendix, one can find the values
of Ψk,n with k ≤ 6 and n ≤ 40.

Knowing the value of Ψk,n is a big advantage if we try to classify all [n, k]
self-orthogonal codes. Without knowing Ψk,n beforehand, the algorithm to
classify [n, k] self-orthogonal codes relies on the mass formula, see [6, §9.7.1].
This algorithm consists of two types of steps: (i) search for an inequivalent
code, (ii) computation of the order of the automorphism group of the newly
found inequivalent code. The purpose of type (ii) steps is to check if the
list of inequivalent codes already found is complete. However, if Ψk,n is
known beforehand, type (ii) steps are not needed. All we have to do is to
find Ψk,n pairwise inequivalent [n, k] self-orthogonal codes (by whatever
method). For example, classification of [16, 6] self-orthogonal codes seems
quite an undertaking. (To the author’s knowledge, this classification is not
known.) However, the problem becomes more feasible when reformulated
as “find 153 (= Ψ6,16) pairwise inequivalent [16, 6] self-orthogonal codes”.

2. Method of Computation

The method for computing Ψk,n has been laid out in [4]. Since all details
are available in 4, we only outline the approach here.

Let Ψ≤k,n be the number of inequivalent self-orthogonal codes in Fn
2

with dimension ≤ k. Since

Ψk,n = Ψ≤k,n −Ψ≤k−1,n,

it suffices to compute Ψ≤k−1,n and Ψ≤k,n. (Since Ψ≤5,n has been de-
termined in [4], for the purpose of this paper, we only need to deter-
mine Ψ≤6,n.) Let Mk×n be the set of all k × n matrices over F2 and let
Sk×n = {X ∈Mk×n : XXT = 0}. The group GL(k,F2)×Sn acts on Sk×n

by

X(A,P ) = A−1XP, (A,P ) ∈ GL(k,F2)×Sn, X ∈ Sk×n.

(Here, a permutation in Sn is treated an n× n permutation matrix.) The
number Ψ≤k,n is precisely the number of GL(k,F2) × Sn-orbits in Sk×n.
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By the Cauchy-Frobenius lemma,

Ψ≤k,n =
1

|GL(k,F2)×Sn|
∑

A∈GL(k,F2)
P∈Sn

|Fix(A,P )|, (1)

where

Fix(A,P ) = {X ∈ Sk×n : X(A,P ) = X}
= {X ∈Mk×n : AX = XP, XXT = 0}.

Equation (1) can be reduced to

Ψ≤k,n =
∑

A∈C(GL(k,F2))

1
|centGL(k,F2)(A)|

∑
λ=(λ1,λ2,... )`n

|Fix(A,Pλ)|
λ1!λ2! · · · 1λ12λ2 · · ·

.

(2)
In (2), the symbol λ = (λ1, λ2, . . . ) ` n means that λ is a partition
of n, i.e., λi ≥ 0 and

∑
i≥1 iλi = n; Pλ ∈ Sn is a permutation with

cycle type λ; C(GL(k,F2)) is the set of all rational canonical forms in
GL(k,F2); centGL(k,F2)(A) is the centralizer of A in GL(k,F2). The car-
dinality |centGL(k,F2)(A)| is given by the following two facts.

• If A = A1 ⊕A2 (=
[

A1
A2

]
), where Ai ∈ GL(ki,F2) and every elemen-

tary divisor of A1 is prime to every elementary divisor of A2, then

|centGL(k,F2)(A)| = |centGL(k1,F2)(A1)| |centGL(k2,F2)(A2)|.

• ([3, Theorem 3.6]) Assume that A ∈ Mk×k has elementary divisors
f1, . . . , f1︸ ︷︷ ︸

µ1

, f2, . . . , f2︸ ︷︷ ︸
µ2

, . . . , where f ∈ F2[x] is irreducible of degree d.

Then

|centGL(k,F2)(A)|

=
∏
i≥1

2dµi(1µ1+2µ2+···+iµi+iµi+1+iµi+2+··· )
µi∏

j=1

(1− 2−dj).

The cardinality |Fix(A,Pλ)| is given by the following theorem.

Theorem 2.1 ([4, Theorem 3.3]). Let λ = (λ1, λ2, . . . ) ` n and let A ∈
GL(k,F2) with multiplicative order o(A) = t. For each d | t, let sd =
k − rank(Ad − I), let Bd ∈ Mk×sd

such that its columns form a basis of
{x ∈ Fk

2 : (Ad − I)x = 0}, and let

αd =
∑

i≥1, ν(i)≤ν(t)
gcd(i,t)=d

λi,
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where ν is the 2-adic order. Then

|Fix(A,Pλ)| = 2
P

ν(i)>ν(t) sgcd(i,t)λi · n(A),

where n(A) is the number of sequences of matrices (Yd)d|t with Yd ∈Msd×αd

and ∑
d|t

d−1∑
j=0

AjBdYdY
T
d B

T
d (Aj)T = 0.

The computation of n(A) is complicated but is not out of reach for a
moderate k. An algorithm for computing n(A) is detailed in [4, Algorthim
3.4]. The algorithm is based on the predictable behavior of binary quadratic
forms. In [4], one can also find many examples of step-by-step execution of
this algorithm.

The following additional facts greatly simplify the computation of
|Fix(A,Pλ)| for many A.

• ([4, Lemma 3.7 and Eq. (3.25)]) |Fix(Ik, Pλ)| is known.
• ([4, Corollary 3.10]) Let f1, . . . , ft ∈ F2[x]\{x} be irreducible such that
{f1, f∗1 }, . . . , {ft, f

∗
t } are pairwise disjoint, where f∗i is the reciprocal

polynomial of fi. Let A = A1 ⊕ · · · ⊕ At ∈ GL(k,F2), where Ai ∈
GL(ki,F2) and the elementary divisors of Ai are powers of fi or f∗i .
Then

|Fix(A,Pλ)| =
t∏

i=1

|Fix(Ai, Pλ)|. (3)

• ([4, Lemma 3.11]) Let f ∈ F2[x] \ {x} be an irreducible polyno-
mial which is not self-reciprocal. Let t be the smallest positive inte-
ger such that f | xt − 1. Let A ∈ GL(k,F2) have elementary divisors
f1, . . . , f1︸ ︷︷ ︸

µ1

, . . . , fs, . . . , fs︸ ︷︷ ︸
µs

and let λ = (λ1, λ2, . . . ) ` n. Then

|Fix(A,Pλ)| = 2deg f
P

j≥1 λjt

P
l≥1 µl min{l,2ν(j)}.

We now turn to the case k = 6. GL(6,F2) has 60 rational canonical
forms A1, . . . , A60. Their elementary divisors and the cardinalities of their
centralizers are given in Table 1 of the appendix. Formulas for |Fix(Ai, Pλ)|,
1 ≤ i ≤ 60, are computed by the method outlined above. The results
are contained in Table 2 of the appendix. It is common that for several
Ai, |Fix(Ai, Pλ)| share the same formula. As a result, Table 2 contains 40
formulas instead of 60. All computations in this project were done using
Mathematica [9].
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Remarks.

(i) Since the amount of computation (mostly symbolic) in this project is
very large and since the result is very intricate, there is a natural con-
cern about the possible errors in the computation. To have a strong
assurance for the correctness of the formulas in Table 2, we have used
them to compute the values of Ψ≤6,n for n ≤ 40 (Table 3 of the ap-
pendix). If any of those formulas for |Fix(Ai, Pλ)| had gone wrong, most
likely, the results of Ψ≤6,n coming out of the master formula would not
have been integers. The results of Ψ≤6,n have turned out to be integers.

(ii) It is possible to simplify the computation and presentation of Ψ≤k,n.
The idea is to further exploit (3) in order to express Ψ≤k,n in terms
of functions that are reusable. We will discuss this idea in details else-
where. In fact, there do not seem to be insurmountable obstacles in the
computation of Ψ≤k,n with reasonably larger k’s.

Appendix. Tables

The appendix consists of four tables. Table 1 contains the information of
C(GL(6,F2)) = {A1, . . . , A60}, the set of rational canonical forms in
GL(6,F2). Table 2 contains the formulas for |Fix(Ai, Pλ)|, 1 ≤ i ≤ 60.
In Table 2, λ = (λ1, λ2, . . . ) and

λa,b =
∑

i≡a (mod b)

λi for 0 ≤ a < b.

The function δ : {0, 1, . . . } → {0, 1} is defined by

δ(x) =

{
0 if x = 0,

1 if x > 0.

Tables 3 and 4 give the values of Ψ≤k,n and Ψk,n with k ≤ 6 and n ≤ 40.
Portions of Tables 3 and 4 with k ≤ 5 are from [4].



May 10, 2007 8:8 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

249

Table 1. Information about C(GL(6, F2) = {A1, . . . , A60}

elementary divisors |centGL(6,F2)( )|
A1 x + 1, x + 1, x + 1, x + 1, x + 1, x + 1 215 · 34 · 5 · 72 · 31
A2 x + 1, x + 1, x + 1, x + 1, (x + 1)2 215 · 32 · 5 · 7
A3 x + 1, x + 1, x + 1, (x + 1)3 211 · 3 · 7
A4 x + 1, x + 1, x + 1, x + 1, x2 + x + 1 26 · 33 · 5 · 7
A5 x + 1, x + 1, x + 1, x3 + x + 1 23 · 3 · 72

A6 x + 1, x + 1, x + 1, x3 + x2 + 1 23 · 3 · 72

A7 x + 1, x + 1, (x + 1)2, (x + 1)2 214 · 32

A8 x + 1, x + 1, (x + 1)2, x2 + x + 1 26 · 32

A9 x + 1, x + 1, x2 + x + 1, x2 + x + 1 23 · 33 · 5
A10 x + 1, x + 1, (x + 1)4 28 · 3
A11 x + 1, x + 1, (x2 + x + 1)2 23 · 32

A12 x + 1, x + 1, x4 + x3 + x2 + x + 1 2 · 32 · 5
A13 x + 1, x + 1, x4 + x + 1 2 · 32 · 5
A14 x + 1, x + 1, x4 + x3 + 1 2 · 32 · 5
A15 x + 1, (x + 1)2, (x + 1)3 211

A16 x + 1, (x + 1)2, x3 + x + 1 23 · 7
A17 x + 1, (x + 1)2, x3 + x2 + 1 23 · 7
A18 x + 1, x2 + x + 1, (x + 1)3 24 · 3
A19 x + 1, x2 + x + 1, x3 + x + 1 3 · 7
A20 x + 1, x2 + x + 1, x3 + x2 + 1 3 · 7
A21 x + 1, (x + 1)5 26

A22 x + 1, x5 + x2 + 1 31

A23 x + 1, x5 + x3 + 1 31

A24 x + 1, x5 + x3 + x2 + x + 1 31

A25 x + 1, x5 + x4 + x2 + x + 1 31

A26 x + 1, x5 + x4 + x3 + x + 1 31

A27 x + 1, x5 + x4 + x3 + x2 + 1 31

A28 (x + 1)2, (x + 1)2, (x + 1)2 212 · 3 · 7
A29 (x + 1)2, (x + 1)2, x2 + x + 1 25 · 32

A30 (x + 1)2, x2 + x + 1, x2 + x + 1 23 · 32 · 5
A31 (x + 1)2, (x + 1)4 28

A32 (x + 1)2, (x2 + x + 1)2 23 · 3
A33 (x + 1)2, x4 + x3 + x2 + x + 1 2 · 3 · 5
A34 (x + 1)2, x4 + x + 1 2 · 3 · 5
A35 (x + 1)2, x4 + x3 + 1 2 · 3 · 5
A36 x2 + x + 1, x2 + x + 1, x2 + x + 1 26 · 34 · 5 · 7
A37 x2 + x + 1, (x + 1)4 23 · 3
A38 x2 + x + 1, (x2 + x + 1)2 26 · 32

A39 x2 + x + 1, x4 + x3 + x2 + x + 1 32 · 5
A40 x2 + x + 1, x4 + x + 1 32 · 5
A41 x2 + x + 1, x4 + x3 + 1 32 · 5
A42 (x + 1)3, (x + 1)3 29 · 3
A43 (x + 1)3, x3 + x + 1 22 · 7
A44 (x + 1)3, x3 + x2 + 1 22 · 7
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Table 1. continued

elementary divisors |centGL(6,F2)( )|
A45 x3 + x + 1, x3 + x + 1 23 · 32 · 72

A46 x3 + x + 1, x3 + x2 + 1 72

A47 x3 + x2 + 1, x3 + x2 + 1 23 · 32 · 72

A48 (x + 1)6 25

A49 (x2 + x + 1)3 24 · 3
A50 (x3 + x + 1)2 23 · 7
A51 (x3 + x2 + 1)2 23 · 7
A52 x6 + x + 1 32 · 7
A53 x6 + x3 + 1 32 · 7
A54 x6 + x4 + x2 + x + 1 32 · 7
A55 x6 + x4 + x3 + x + 1 32 · 7
A56 x6 + x5 + 1 32 · 7
A57 x6 + x5 + x2 + x + 1 32 · 7
A58 x6 + x5 + x3 + x2 + 1 32 · 7
A59 x6 + x5 + x4 + x + 1 32 · 7
A60 x6 + x5 + x4 + x2 + 1 32 · 7
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Table 2. Formulas for |Fix(Ai, Pλ)|, 1 ≤ i ≤ 60

i |Fix(Ai, Pλ)|
1 26λ0,2

�
26λ1,2−21(914068− 914067 δ(λ1,2)) + 25λ1,2−21 651 (3 + (−1)λ1,2 )

+24λ1,2−18 4557 (5 + 3(−1)λ1,2 ) + 23λ1,2−13 217 (9 + 7(−1)λ1,2 )
�

2 26λ0,4
�
25λ1,2+6λ2,4−16[2920− 1459 δ(λ1,2)− 1459 δ(λ1,2 + λ2,4)− δ(λ2,4)]

+24λ1,2+6λ2,4−16 35(3 + (−1)λ1,2 )(2− δ(λ2,4))

+23λ1,2+6λ2,4−13 7(5 + 3(−1)λ1,2 )(2− δ(λ2,4))

+25λ1,2+5λ2,4−10 525(1− δ(λ1,2)) + 24λ1,2+5λ2,4−12 15(3 + (−1)λ1,2 )

+23λ1,2+5λ2,4−11 105(5 + 3(−1)λ1,2 )
�

3 26λ0,8
�
24λ1,2+5λ2,4+6λ4,8−11[200− 35 δ(λ1,2)− 64 δ(λ1,2 + λ2,4)

−64 δ(λ1,2 + λ4,8)− δ(λ2,4 + λ4,8)− 35 δ(λ1,2 + λ2,4 + λ4,8)]

+23λ1,2+5λ2,4+6λ4,8−11 7(3 + (−1)λ1,2 )(2− δ(λ2,4 + λ4,8))

+24λ1,2+4λ2,4+6λ4,8−7 21(2− δ(λ1,2)− δ(λ1,2 + λ4,8))

+23λ1,2+4λ2,4+6λ4,8−9 7(3 + (−1)λ1,2 )(2− δ(λ4,8))

+22λ1,2+4λ2,4+6λ4,8−8 7(5 + 3(−1)λ1,2 )(2− δ(λ4,8))
�

4 24λ0,2+2λ0,6−1[22λ3,6 + (−1)λ3,62λ3,6 ]
�
24λ1,2−10(436− 435 δ(λ1,2))

+23λ1,2−10 35(3 + (−1)λ1,2 ) + 22λ1,2−7 7(5 + 3(−1)λ1,2 )
�

5
6 23λ0,2+3λ0,7

�
23λ1,2−6(36− 35 δ(λ1,2)) + 22λ1,2−6 7(3 + (−1)λ1,2 )

�

7 26λ0,4
�
24λ1,2+6λ2,4−13[976− 27 δ(λ1,2)− 3 δ(λ2,4)− 945 δ(λ1,2 + λ2,4)]

+23λ1,2+6λ2,4−13(3 + (−1)λ1,2 )(76− 75 δ(λ2,4))

+24λ1,2+5λ2,4−13[4(237 + 7(−1)λ2,4 )− 27(35 + (−1)λ2,4 )δ(λ1,2)]

+23λ1,2+5λ2,4−13(3 + (−1)λ1,2 )(75+(−1)λ2,4 ) + 24λ1,2+4λ2,4−4 3(1−δ(λ1,2))

+23λ1,2+4λ2,4−6(3 + (−1)λ1,2 ) + 22λ1,2+4λ2,4−7 7(5 + 3(−1)λ1,2 )
�

8 24λ0,4+2λ0,6−1[22λ3,6 +(−1)λ3,62λ3,6 ]
�
23λ1,2+4λ2,4−7[24−δ(λ2,4)−11 δ(λ1,2)

−11 δ(λ1,2 + λ2,4)] + 22λ1,2+4λ2,4−7(3 + (−1)λ1,2 )(2− δ(λ2,4))

+22λ1,2+3λ2,4−5 3[7 + (−1)λ1,2 − 4 δ(λ1,2)]
�

9 22λ0,2+4λ0,6−3
�
22λ1,2−3(4− 3 δ(λ1,2)) + 2λ1,2−3(3 + (−1)λ1,2 )

�

·[24λ3,6−1 + 23λ3,6−1 5(−1)λ3,6 + 22λ3,6 5]

10 26λ0,8
�
23λ1,2+4λ2,4+6λ4,8−8[24− δ(λ4,8)− 3 δ(λ1,2)− 3 δ(λ1,2 + λ4,8)

−8 δ(λ1,2 + λ2,4)− 8 δ(λ1,2 + λ2,4 + λ4,8)]

+22λ1,2+4λ2,4+6λ4,8−8(3 + (−1)λ1,2 )(2− δ(λ4,8))

+23λ1,2+3λ2,4+6λ4,8−4 3(1− δ(λ1,2 + λ4,8))

+22λ1,2+3λ2,4+6λ4,8−6 3(3 + (−1)λ1,2 )(1− δ(λ4,8))

+23λ1,2+4λ2,4+5λ4,8−8(1+(−1)λ4,8 )[12−δ(λ2,4)−3 δ(λ1,2 + λ2,4)−8 δ(λ1,2)]

+22λ1,2+4λ2,4+5λ4,8−8(3 + (−1)λ1,2 )(1 + (−1)λ4,8 )(1− δ(λ2,4))

+23λ1,2+3λ2,4+5λ4,8−4 3(1− δ(λ1,2)) + 22λ1,2+3λ2,4+5λ4,8−6 3(3 + (−1)λ1,2 )
�

11 22λ0,2+4λ0,12−1
�
22λ1,2−3(4− 3 δ(λ1,2)) + 2λ1,2−3(3 + (−1)λ1,2 )

�

·[22λ3,6+4λ6,12−1 + 22λ3,6+3λ6,12−1(−1)λ6,12 + 2λ3,6+2λ6,12 (−1)λ3,6 ]

12 22λ0,2+4λ0,10−2
�
22λ1,2−3(4− 3 δ(λ1,2)) + 2λ1,2−3(3 + (−1)λ1,2 )

�

·[24λ5,10 + 22λ5,10 3(−1)λ5,10 ]
13
14 22λ0,2+4λ0,15

�
22λ1,2−3(4− 3 δ(λ1,2)) + 2λ1,2−3(3 + (−1)λ1,2 )

�

15 26λ0,8
�
23λ1,2+5λ2,4+6λ4,8−9[80− δ(λ1,2)− δ(λ2,4)− 43 δ(λ1,2 + λ2,4)

−4 δ(λ1,2 + λ4,8)− 2 δ(λ2,4 + λ4,8)− 26 δ(λ1,2 + λ2,4 + λ4,8)]

+22λ1,2+5λ2,4+6λ4,8−7(3 + (−1)λ1,2 )[3− δ(λ2,4)− 2 δ(λ2,4 + λ4,8)]

+23λ1,2+4λ2,4+6λ4,8−9[2 + 2(13 + 2(−1)λ2,4 )(1− δ(λ1,2))

+(1 + (−1)λ2,4 )(1− δ(λ4,8)) + (43 + 3(−1)λ2,4 )(1− δ(λ1,2 + λ4,8))]

+22λ1,2+4λ2,4+6λ4,8−7(3 + (−1)λ1,2 )(3− δ(λ4,8))

+23λ1,2+3λ2,4+5λ4,8−2(1− δ(λ1,2)) + 22λ1,2+3λ2,4+5λ4,8−4(3 + (−1)λ1,2 )
�
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Table 2. continued

i |Fix(Ai, Pλ)|
16
17 23λ0,4+3λ0,7

�
22λ1,2+3λ2,4−4[8− 3 δ(λ1,2)− δ(λ2,4)− 3 δ(λ1,2 + λ2,4)]

+2λ1,2+2λ2,4−3(3 + (−1)λ1,2 )
�

18 22λ0,6+4λ0,8−1[22λ3,6 +(−1)λ3,62λ3,6 ]
�
22λ1,2+3λ2,4+4λ4,8−4[8−δ(λ2,4+λ4,8)

−δ(λ1,2)− 2 δ(λ1,2 + λ4,8)− 2 δ(λ1,2 + λ2,4)− δ(λ1,2 + λ2,4 + λ4,8)]

+2λ1,2+2λ2,4+4λ4,8−4(3 + (−1)λ1,2 )(2− δ(λ4,8))
�

19
20 2λ0,1+2λ0,6+3λ0,7−2(2− δ(λ1,2))[22λ3,6 + (−1)λ3,62λ3,6 ]

21 26λ0,16
�
22λ1,2+3λ2,4+5λ4,8+6λ8,16−5[8− δ(λ1,2)− 2 δ(λ1,2 + λ2,4)− δ(λ4,8)

−δ(λ1,2 + λ4,8)− 2 δ(λ1,2 + λ2,4 + λ4,8)]

+2λ1,2+2λ2,4+5λ4,8+6λ8,16−4(3 + (−1)λ1,2 )(1− δ(λ4,8 + λ8,16))

+22λ1,2+3λ2,4+4λ4,8+6λ8,16−5(1 + (−1)λ4,8 )[4− 2 δ(λ1,2 + λ8,16)

−δ(λ2,4 + λ8,16)− δ(λ1,2 + λ2,4 + λ8,16)]

+2λ1,2+2λ2,4+4λ4,8+6λ8,16−4(3 + (−1)λ1,2 )
�

22
p

27
2λ0,1+5λ0,31−1(2− δ(λ1,2))

28 26λ0,4
�
23λ1,2+6λ2,4−12[1184− 35 δ(λ2,4)− 7 δ(λ1,2)− 1141 δ(λ1,2 + λ2,4)]

+22λ1,2+6λ2,4−7 7(3 + (−1)λ1,2 )(1− δ(λ2,4))

+23λ1,2+5λ2,4−12 7(3 + (−1)λ2,4 )(8− 7 δ(λ1,2))

+23λ1,2+4λ2,4−5 7(1− δ(λ1,2)) + 22λ1,2+4λ2,4−7 7(3 + (−1)λ1,2 )
�

29 24λ0,4+2λ0,6−1[22λ3,6 + (−1)λ3,62λ3,6 ]

·
�
22λ1,2+4λ2,4−6[16− 3 δ(λ2,4)− 3 δ(λ1,2)− 9 δ(λ1,2 + λ2,4)]

+22λ1,2+3λ2,4−6(3 + (−1)λ2,4 )(4− 3 δ(λ1,2)) + 2λ1,2+2λ2,4−3(3 + (−1)λ1,2 )
�

30 2λ1,2+2λ0,2+4λ0,6−5[4− δ(λ1,2)− δ(λ2,4)− δ(λ1,2 + λ2,4)]

·[24λ3,6−1 + 23λ3,6−1 5(−1)λ3,6 + 22λ3,6 5]

31 26λ0,8
�
22λ1,2+4λ2,4+6λ4,8−7[16− δ(λ1,2)− δ(λ2,4)− 5 δ(λ1,2 + λ2,4)−δ(λ4,8)

−δ(λ1,2 + λ4,8)− δ(λ2,4 + λ4,8)− 5 δ(λ1,2 + λ2,4 + λ4,8)]

+22λ1,2+3λ2,4+6λ4,8−6[(1 + (−1)λ2,4 )(1− δ(λ4,8))

+(5 + (−1)λ2,4 )(1− δ(λ1,2 + λ4,8))]

+22λ1,2+4λ2,4+5λ4,8−6(1 + (−1)λ4,8 )[4− δ(λ1,2)− δ(λ2,4)− 2 δ(λ1,2 + λ2,4)]

+22λ1,2+3λ2,4+5λ4,8−5[1 + (2 + (−1)λ2,4 )(1− δ(λ1,2))]

+2λ1,2+2λ2,4+4λ4,8−3(3 + (−1)λ1,2 )
�

32 2λ1,2+2λ0,2+4λ0,12−3[4− δ(λ1,2)− δ(λ2,4)− δ(λ1,2 + λ2,4)]

·[22λ3,6+4λ6,12−1 + 22λ3,6+3λ6,12−1(−1)λ6,12 + 2λ3,6+2λ6,12 (−1)λ3,6 ]

33 2λ1,2+2λ0,2+4λ0,10−4[4− δ(λ1,2)− δ(λ2,4)− δ(λ1,2 + λ2,4)]

·[24λ5,10 + 22λ5,10 3(−1)λ5,10 ]
34
35 2λ1,2+2λ0,2+4λ0,15−2[4− δ(λ1,2)− δ(λ2,4)− δ(λ1,2 + λ2,4)]

36 26λ0,6
�
26λ3,6−9 + 25λ3,6−9 21(−1)λ3,6 + 24λ3,6−8 105 + 23λ3,6−6 35(−1)λ3,6

�

37 22λ0,6+4λ0,8−1[22λ3,6 + (−1)λ3,62λ3,6 ]
�
2λ1,2+2λ2,4+4λ4,8−3[4− δ(λ4,8)

−δ(λ1,2 + λ2,4)− δ(λ1,2 + λ2,4 + λ4,8)]

+2λ1,2+2λ2,4+3λ4,8−3(1 + (−1)λ4,8 )(2− δ(λ1,2)− δ(λ2,4))
�

38 26λ0,12 [24λ3,6+6λ6,12−5 + 23λ3,6+6λ6,12−5(−1)λ3,6

+24λ3,6+5λ6,12−5(−1)λ6,12 + 23λ3,6+5λ6,12−5(−1)λ3,6+λ6,12

+23λ3,6+4λ6,12−2(−1)λ3,6 + 22λ3,6+4λ6,12−3 5]

39 22λ0,6+4λ0,10−3[22λ3,6 + (−1)λ3,62λ3,6 ][24λ5,10 + 22λ5,10 3(−1)λ5,10 ]
40
41 22λ0,6+4λ0,15−1[22λ3,6 + (−1)λ3,62λ3,6 ]
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Table 2. continued

i |Fix(Ai, Pλ)|
42 26λ0,8

�
22λ1,2+4λ2,4+6λ4,8−6[16− 3 δ(λ1,2 + λ2,4)− 3 δ(λ1,2 + λ4,8)

−3 δ(λ2,4 + λ4,8)− 6 δ(λ1,2 + λ2,4 + λ4,8)]

+22λ1,2+3λ2,4+5λ4,8−6[3 + (−1)λ2,4+λ4,8

+3(1− δ(λ1,2))(2 + (−1)λ2,4 + (−1)λ4,8 )]

+2λ1,2+2λ2,4+4λ4,8−3(3 + (−1)λ1,2 )
�

43
44 2λ1,2+2λ2,4+3λ0,4+3λ0,7−2[4− δ(λ1,2 + λ2,4)− δ(λ1,2 + λ4,8)− δ(λ2,4+λ4,8)]
45
47 26λ0,7

46 26λ0,14 [26λ7,14−3 + 23λ7,14−3 7]

48 26λ0,16
�
2λ1,2+2λ2,4+4λ4,8+6λ8,16−3[4− δ(λ1,2 + λ2,4 + λ4,8)

−δ(λ1,2 + λ2,4 + λ8,16)− δ(λ4,8 + λ8,16)] + 2λ1,2+2λ2,4+3λ4,8+5λ8,16−3

·[(1 + (−1)λ4,8+λ8,16 )(1− δ(λ1,2)) + ((−1)λ4,8 + (−1)λ8,16 )(1− δ(λ2,4))]
�

49 26λ0,24 [22λ3,6+4λ6,12+6λ12,24−2 + 22λ3,6+3λ6,12+5λ12,24−2(−1)λ6,12+λ12,24

+2λ3,6+2λ6,12+4λ12,24−1(−1)λ3,6 ]
50
51 23λ0,7+3λ0,14

52
55
p

59

26λ0,63

53 26λ0,18 [26λ9,18−3 + 23λ9,18−3(−1)λ9,18 7]
54
60 26λ0,21
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Table 3. Values of Ψ≤k,n, k ≤ 6, n ≤ 40

n\k 0 1 2 3 4 5 6

1 1 1 1 1 1 1 1

2 1 2 2 2 2 2 2

3 1 2 2 2 2 2 2

4 1 3 4 4 4 4 4

5 1 3 4 4 4 4 4

6 1 4 7 8 8 8 8

7 1 4 7 9 9 9 9

8 1 5 11 16 18 18 18

9 1 5 11 17 20 20 20

10 1 6 16 28 37 39 39

11 1 6 16 30 42 46 46

12 1 7 23 49 77 92 95

13 1 7 23 53 89 112 118

14 1 8 31 82 157 218 245

15 1 8 31 89 187 281 329

16 1 9 41 133 323 551 704

17 1 9 41 144 389 740 1,016

18 1 10 53 210 654 1,447 2,244

19 1 10 53 229 804 2,059 3,602

20 1 11 67 325 1,324 4,029 8,330

21 1 11 67 354 1,651 6,032 15,012

22 1 12 83 490 2,654 11,774 36,548

23 1 12 83 534 3,356 18,581 75,207

24 1 13 102 727 5,291 36,239 194,365

25 1 13 102 793 6,759 59,798 454,191

26 1 14 123 1,058 10,433 116,020 1,238,014

27 1 14 123 1,154 13,444 198,489 3,196,838

28 1 15 147 1,515 20,363 382,272 9,024,639

29 1 15 147 1,651 26,384 670,031 24,685,875

30 1 16 174 2,136 39,229 1,276,454 70,478,121

31 1 16 174 2,329 51,025 2,267,431 196,702,836

32 1 17 204 2,972 74,574 4,260,828 557,194,708

33 1 17 204 3,237 97,143 7,596,889 1,547,951,716

34 1 18 237 4,078 139,660 14,050,410 4,299,971,583

35 1 18 237 4,439 181,923 24,965,555 11,732,683,283

36 1 19 274 5,532 257,592 45,384,782 31,774,581,057

37 1 19 274 6,017 335,029 79,965,507 84,618,649,911

38 1 20 314 7,418 467,600 142,792,476 222,909,144,028

39 1 20 314 8,061 606,613 248,697,834 577,998,702,214

40 1 21 358 9,843 835,392 497,412,483 1,480,493,480,646
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Table 4. Values of Ψk,n, k ≤ 6, n ≤ 40

n\k 0 1 2 3 4 5 6

1 1 0 0 0 0 0 0

2 1 1 0 0 0 0 0

3 1 1 0 0 0 0 0

4 1 2 1 0 0 0 0

5 1 2 1 0 0 0 0

6 1 3 3 1 0 0 0

7 1 3 3 2 0 0 0

8 1 4 6 5 2 0 0

9 1 4 6 6 3 0 0

10 1 5 10 12 9 2 0

11 1 5 10 14 12 4 0

12 1 6 16 26 28 15 3

13 1 6 16 30 36 23 6

14 1 7 23 51 75 61 27

15 1 7 23 58 98 94 48

16 1 8 32 92 190 228 153

17 1 8 32 103 245 351 276

18 1 9 43 157 444 793 797

19 1 9 43 176 575 1,255 1,543

20 1 10 56 258 999 2,705 4,301

21 1 10 56 287 1,297 4,381 8,980

22 1 11 71 407 2,164 9,120 24,774

23 1 11 71 451 2,822 15,225 56,626

24 1 12 89 625 4,564 30,948 158,126

25 1 12 89 691 5,966 53,039 394,393

26 1 13 109 935 9,375 105,587 1,121,994

27 1 13 109 1,031 12,290 185,045 2,998,349

28 1 14 132 1,368 18,848 361,909 8,642,367

29 1 14 132 1,504 24,733 643,647 24,015,844

30 1 15 158 1,962 37,093 1,237,225 69,201,667

31 1 15 158 2,155 48,696 2,216,406 194,435,405

32 1 16 187 2,768 71,602 4,186,254 552,933,880

33 1 16 187 3,033 93,906 7,499,746 1,540,354,827

34 1 17 219 3,841 135,582 13,910,750 4,285,921,173

35 1 17 219 4,202 177,484 24,783,632 11,707,717,728

36 1 18 255 5,258 252,060 45,127,190 31,729,196,275

37 1 18 255 5,743 329,012 79,630,478 84,538,684,404

38 1 19 294 7,104 460,182 142,324,876 222,766,351,552

39 1 19 294 7,747 598,552 248,091,221 577,750,004,380

40 1 20 337 9,485 825,549 496,577,091 1,479,996,068,163
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