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Preface

Error-correcting codes are used to achieve a reliable transmission of

information through noisy channels. Due to their importance for many

applications they became a meeting point between mathematics, computer

science and engineering. All error-correcting codes are constructed using

mathematical tools but, perhaps, the most deep and fascinating links be-

tween (classical) mathematics and codes can be found in Algebraic Geom-

etry Codes.

The theory of Algebraic Geometry codes started over thirty years ago

with the works of V.D. Goppa. Nowadays this theory is both a ripe subject

and an exciting research field. At the same time, it has impelled research

in different mathematical areas, as for example curves over finite fields.

In this book we try to provide the fundamentals, the ‘state of the art’

and the ‘state of research’, of this field. It consists of twelve chapters written

by some of the most renowned specialists worldwide, each of them devoted

to one of the main leading topics in this subject. These chapters are mostly

self-contained and have been designed to be read independently.

We hope that this book will be useful for students and researchers in

algebraic geometry and coding theory, as well as for computer scientists

and engineers interested in information transmission.

We want to thank all the authors for their contribution to this volume.

It was their efforts which made the publication of this book possible. Also

we want to thank World Scientific and E. H. Chionh for their continuous

support and excellent editorial job.

C. Munuera and E. Mart́ınez-Moro
Dept. of Applied Mathematics,

University of Valladolid

D. Ruano
Department of Mathematics,

Technical University of Denmark
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G. Serrano Sotelo

12. Quantum Error-Correcting Codes from Algebraic Curves 419

J.-L. Kim and G.L. Matthews



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

Chapter 1

Algebraic Geometry Codes: General Theory

Iwan M. Duursma

Department of Mathematics,
University of Illinois at Urbana-Champaign,

duursma@math.uiuc.edu

This chapter describes some of the basic properties of geometric Goppa
codes, including relations to other families of codes, bounds for the pa-
rameters, and sufficient conditions for efficient error correction. Special
attention is given to recent results on two-point codes from Hermitian
curves and to applications for secret sharing.
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Introduction

Geometric Goppa codes became famous when Tsfasman, Vladuts and

Zink showed that infinite families of such codes can be constructed that

exceed the Gilbert-Varshamov bound. An important step towards actual

application of the codes came when Justesen, Larsen, Jensen, Havemose

and Høholdt gave an efficient decoding algorithm for a special class of

curves. Many curves have since then been proposed and studied for the

construction of geometric Goppa codes. Decoding algorithms can now cor-

rect any geometric Goppa code up to half its designed minimum distance

and improvements in their implementation continue to be made. Several

new applications have been proposed that use special features of geometric

Goppa codes. This chapter presents basic properties of geometric Goppa

codes. The material is divided over four sections, with results on linear

codes, cyclic codes, Reed-Muller codes, and geometric Goppa codes.

1.1. Linear codes and the affine line

Let F be a finite field. A F-linear code C of length n is a linear subspace

of Fn. For x, y ∈ Fn, the Hamming distance of x and y is

d(x, y) = |{i : xi 6= yi, i = 1, 2, . . . , n}|.
The minimum distance of a nontrivial code C is

d(C) = min {d(x, y) : x, y ∈ C, x 6= y}.
The dimension k of a code and the minimum distance d satisfy the Singleton

bound,

k + d ≤ n+ 1.

Codes that attain the upper bound are called maximum distance separable

(MDS). An example is the code

C(< k,F) = { (f(a1), f(a2), . . . , f(aq)) : f ∈ F[x]<k },
for a fixed ordering (a1, a2, . . . , aq) of the elements in F. The code C(< k,F)

is a special case of an extended cyclic code, a Reed-Muller code, and a geo-

metric Goppa code. Those three families of codes are the subject of the

next three sections. In this section we describe a number of properties that

are important for all three families but that actually hold for much larger
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classes of codes if not for all linear codes.

The dual code C⊥ of a code C is the maximal subspace of Fn that is

orthogonal to C with respect to the standard inner product. A code is

nondegenerate if neither the code nor its dual has a coordinate where all

words are zero. The dual of the code C(< k,F) is the code C(< q − k,F),

since
∑

x∈F
xi = 0, for i = 0, 1, . . . , q − 2.

The Singleton defect or the genus of a code is g(C) = n + 1 − k − d.

The dual of a MDS code is again MDS, but in general a code and its dual

may have different genera. Every subset of k coordinates in an MDS code

carries full information about the codeword. For a general code the MDS

discrepancy or the information defect is the minimal m such that every

subset of k coordinates contains at least k −m information symbols. The

parameter m is the same for a code and its dual and is at most the genus

of a code.

1.1.1. Dimension and infinite families

A code C of type [n, k, d] is optimal if it has maximal dimension for

given length and minimum distance. For a family {[ni, ki, di]} of optimal

codes of increasing length with lim di/ni = δ, define α(δ) = lim sup ki/ni.

For an optimal code, each of its qn−k cosets in Fn contains at least one

vector y with d(y, 0) < d. The lower bound

qn−k ≤ |{y ∈ Fn : d(y, 0) < d}|

for the dimension of an optimal code is called the Gilbert-Varshamov bound.

For 0 ≤ δ ≤ θ = (q − 1)/q,

1

n
log |{y ∈ Fn : d(y, 0) < δn}| = Hq(δ) + o(1),

where Hq(x) = x logq(q − 1)− x logq x− (1 − x) logq(1 − x), for 0 < x ≤ θ.

Theorem 1.1. (asymptotic Gilbert-Varshamov bound) For an infinite fam-

ily of optimal codes with relative distance d/n = δ,

α(δ) ≥ 1 −Hq(δ), for 0 < δ ≤ θ.

Lemma 1.2. For a q-ary linear code with k > m+1 and n−k > m(qm+1−
1)/(q − 1) −(m+ 1) the information defect is at least m.
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Proof. Divide the coordinates in a subset of k − (m + 1) independent

coordinates and its complement of n− k+ (m+ 1) > m(qm+1 − 1)/(q− 1)

coordinates. In the subcode with zeros in the k − (m + 1) coordinates

there is a block of size at least m+ 1 in which the nonzero coordinates are

essentially repeated. Together the k−(m+1)+(m+1) coordinates contain

only k −m information symbols. �

For families of q−ary linear codes with k and n − k going to infinity,

the information defect (and therefore also the genus) goes to infinity. As a

consequence we obtain the following upper bound for the dimension of an

optimal code.

Theorem 1.3. (asymptotic Plotkin bound) For an infinite family of codes

with k, n− k → ∞, we have d ≤ θ(n− k) as n −→ ∞, or

α(δ) ≤ 1 − δ/θ, for 0 < δ ≤ θ.

1.1.2. Duality and differentials

Let C be a linear code of length n. Omitting the i-th coordinate pro-

duces the punctured code Pi(C) of length n− 1. The shortened code Si(C)

is the subcode of Pi(C) of words with omitted i-th coordinate equal to zero.

In general P (C)⊥ = S(C⊥). For a subset P = {a1, a2, . . . , an} of the field

F, define a code

C(< k,P) = { (f(a1), f(a2), . . . , f(an)) : f ∈ F[x]<k }.

The code C(< k,P) is a punctured version of the code C(< k,F). The dual

code is a shortened version of the code C(< q − k,F).

C(< k,P)⊥ = { (f(a1), f(a2), . . . , f(an)) : f ∈ F[x]<q−k, f |F−P = 0 }.

Let p(x) = (x − a1)(x − a2) · · · (x − an) and let xq − x = p(x)r(x). Then

−1 = p′(ai)r(ai), for i = 1, 2, . . . , n. With f of the form f = rh,

C(< k,P)⊥ = { (
h(a1)

p′(a1)
,
h(a2)

p′(a2)
, . . . ,

h(an)

p′(an)
) : h ∈ F[x]<n−k }.

We give a description of the dual code using differentials. For a polynomial

h ∈ F[x] of degree deg h < n, let

ω =
h

p
dx = (

c1
x− a1

+
c2

x− a2
+ · · · + cn

x− an
) dx
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be a differential with at most simple poles and with residues c1, c2, . . . , cn
at x = a1, a2, . . . , an, respectively. Then h(ai) = cip

′(ai) and

C(< k,P)⊥ = {(resa1(ω), resa2(ω), . . . , resan
(ω)) :

ω =
h

p
dx, deg h < n− k}.

1.1.3. Minimum distance

Several useful inequalities exist for the parameters of codes A,B,C with
∑

i

aibici = 0, for all a ∈ A, b ∈ B, c ∈ C.

Let a ∗ b = (a1b1, · · · , anbn) denote the Hadamard product or coordinate-

wise product of two vectors a and b. The relation between A,B,C can be

formulated as A ∗ B = {a ∗ b : a ∈ A, b ∈ B} ⊂ C⊥. Such decompositions

of the dual code under the Hadamard product form the basis for several

bounds for the minimum distance.

Theorem 1.4. (Roos bound for linear codes) For a linear code C, and for

linear codes A and B with A ∗B ⊂ C⊥,

g(A) < d(B⊥) − 1 ⇒ d(C) ≥ k(A) + d(B⊥) − 1.

Proof. It is enough to show that for every subset I of (k(A) − 1) +

(d(B⊥) − 1) positions there exists a word a ∗ b ∈ A ∗ B with precisely

one nonzero coordinate in those positions. First choose a ∈ A with zeros

in k(A) − 1 positions of I . Then choose b ∈ B with a single nonzero

coordinate in the remaining d(B⊥) − 1 positions such that the nonzero

coordinate appears in a position where a is nonzero. This is possible since

a has no more then n− d(A) < k(A) − 1 + d(B⊥) − 1 zeros. �

Theorem 1.5. (Symmetric Roos bound for linear codes) For a linear code

C, and for linear codes A and B with A ∗B ⊂ C⊥,

g(A) < k(B) and g(B) < k(A)

⇒ d(C) ≤ g(A) + g(B) or d(C) ≥ k(A) + k(B).

The two versions of the Roos bound can be used in combination, with

different choices for A and B, to produce stronger results.

Theorem 1.6. (Shift bound or Coset bound) Let C be a linear code and

let C1 ⊂ C be a maximal subcode. If there exist vectors a1, . . . , aw and
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b1, . . . , bw such that
{
ai ∗ bj ∈ C⊥ for i+ j ≤ w,

ai ∗ bj ∈ C⊥
1 \C⊥ for i+ j = w + 1,

then words in C\C1 have weight at least w.

Proof. For all c ∈ C\C1 and a ∗ b ∈ C⊥
1 \C⊥,

∑
i aibici 6= 0. Thus it

suffices to show the existence, for any choice of w − 1 coordinates, of a

vector a ∗ b ∈ C⊥
1 \C⊥ that vanishes in those coordinates. The conditions

show that the vectors a1, . . . , aw are linearly independent, and there ex-

ists a nonzero linear combination a of the vectors a1, . . . , aw vanishing at

w − 1 given coordinates coordinates. If i is maximal such that ai has a

nonzero coefficient in the linear combination a then a ∗ bw+1−i ∈ C⊥
1 \C⊥

and vanishes in the w − 1 coordinates. �

Theorem 1.7. (Iterated coset bound) Repeated application of the coset

bound to a sequence Cr ⊂ · · · ⊂ C1 ⊂ C0 = C gives the lower bound

d(C) ≥ min {d1, d2, . . . , dr, d(Cr)}, where d(Ci−1/Ci) ≥ di is obtained with

the coset bound.

1.1.4. Error correction

Let A, B, and C be nondegenerate linear codes such that
∑

i

aibici = 0, for all a ∈ A, b ∈ B, c ∈ C.

If k(A) > t and d(B⊥) > t then (A,B) is called a t-error-locating pair for

C. For a given error-locating pair the error positions in a received word

can be located by solving a suitable system of linear equations.

Theorem 1.8. Let (A,B) be a t-error-locating pair for C. For c ∈ C and

for a vector e of weight at most t, let y = c + e. Every vector a ∈ A with

a ∗ y ⊥ b for all b ∈ B has the property a ∗ e = 0.

An error-locating pair for C is called error-correcting if moreover d(A)+

d(C) > n. For a given error-correcting pair a codeword can be recovered

from the zeros in an error locating vector a ∈ A by solving a second suitable

system of linear equations.

Theorem 1.9. Let (A,B) be a t-error-correcting pair for C. For c ∈ C

and for a vector e of weight at most t, let y = c + e. Let a ∈ A have the
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property a ∗ e = 0. Then c ∈ C is the unique solution to the system of

equations c ∈ C and a ∗ c = a ∗ y.

The key equation a ∗ y ⊥ b for all b ∈ B amounts to a linear system

of dim (B) equations in dim (A) unknowns. A different formulation gives a

key equation with n linear equations in dim (A) + dim (B⊥) unknowns.

Theorem 1.10. For c ∈ C and for a vector e of weight at most t, let

y = c+ e. For every pair of vectors a ∈ A, b̂ ∈ B⊥ with a∗y = b̂, the vector

c is the unique solution to the system of equations c ∈ C and a ∗ c = b̂.

In general, the decoding is not completed with c ∈ C since c is merely

an encoding of the relevant information symbols. In such cases it may

be better to bypass the computation of c and to solve directly for the

information symbols. The t-error-correcting code C(< q − 2t,F) has a t-

error-correcting pair (A = C(≤ t,F), B = C(< t,F). The key equation for

an error-locating vector is: determine g(x) ∈ F[x]≤t such that
∑

i

yig(xi)h(xi) = 0, for all h ∈ F[x]<t.

When t errors occur, the solution for g(x) is the unique polynomial that

vanishes in those positions. The second key equations is: determine g(x) ∈
F[x]≤t and ĥ(x) ∈ F[x]<q−t such that

yig(xi) = ĥi(xi), for i = 1, 2, . . . , n.

When t errors occur, the solution is the pair (g(x), f(x)g(x)) where ci =

f(xi) for i = 1, 2 . . . , n. In general, the information symbols are the coeffi-

cients of f . The key equation with n equations generalizes to list decoding.

List decoding produces a list of bounded size ` that contains all code words

that are within distance t of the received word.

Theorem 1.11. For a code C(< k, {x1, . . . , xn}) and a received vector y,

let

Q(x, y) =
∑̀

i=0

gi(x)y
i, deg gi < n− t− i(k − 1),

be a nonzero polynomial such that Q(xi, yi) = 0 for i = 1, 2, . . . , n. Then

y− f(x) divides Q(x, y) for all f with yi = f(xi) in at least n− t positions.

Let EI be the subspace of Fn generated by unit vectors ei with i ∈ I,

for I ⊂ {1, . . . , n}. For an error vector e ∈ EI , we reformulate the sufficient

conditions for error correction in terms of I . Let Ī = {1, . . . , n}\I.
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Theorem 1.12. For a linear code C, let A and B be linear codes with

A ∗ B ⊂ C⊥, such that for all a ∈ A and c ∈ C, a ∗ c = 0 if and only if

a = 0 or c = 0. Let y = c+ e, with c ∈ C and e ∈ EI . If I is such that

A ∩EĪ 6= 0 and B⊥ ∩ EI = 0

then there exists a nonzero vector a ∈ A with a ∗ y ⊥ b for all b ∈ B. And

for any such a, c ∈ C is the unique solution to the system of equations

c ∈ C and a ∗ c = a ∗ y.

1.1.5. Linear secret sharing schemes

An ideal F−linear secret sharing scheme (LSSS) Σ = Σ0(Π) on the set

of players P = {1, 2, . . . , n} is a sequence Π = (π0, π1, . . . , πn) of surjective

linear mappings πi : E → F, where E is a vector space of finite dimension

over F. For a given s ∈ F and for a randomly chosen x ∈ E with π0(x) = s,

the values π1(x), . . . , πn(x) form a collection of shares for the secret value

π0(x). A subset A ⊂ P is qualified or accepted by Σ if the players in A

can determine the secret value uniquely from their shares. Otherwise A is

unqualified or rejected by Σ.

Lemma 1.13. A subset A ⊂ P is unqualified if and only if there exists

x ∈ E with π0(x) = 1 and πi(x) = 0 for all i ∈ A.

For a LSSS Σ = Σ0(Π), let Ĉ = {(π1(x), . . . , πn(x), π0(x)) : x ∈ E}
be the linear code of length n + 1 with shares in the first n positions

and secret value in the last position. Let C denote the punctured code

{(π1(x), . . . , πn(x)) : x ∈ E} and let C0 denote the shortened code

{(π1(x), . . . , πn(x)) : x ∈ E, π0(x) = 0}.

Theorem 1.14. (Rejection bound) Let Σ = Σ(Ĉ). If there exist vectors

a0, . . . , at ∈ Fn and b0, . . . , bt ∈ Fn such that
{
ai ∗ bj ∈ C0 for i+ j < t.

ai ∗ bj ∈ C\C0 for i+ j = t.

then any subset A ⊂ P of size at most t is rejected by Σ.

Proof. A subset of players can not recover the secret s if and only if there

exists a vector in C\C0 that is zero in their positions. The conditions show

that the vectors a0, . . . , at are independent. For a given set of t players

there exists a nonzero linear combination a of the vectors a0, . . . , at that

vanishes at their coordinates. If i is maximal such that ai has a nonzero
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coefficient in the linear combination a then a ∗ bt−i ∈ C\C0 and vanishes

in the t coordinates. �

A LSSS Σ is nondegenerate if the secret can be reconstructed as a linear

combination of all the shares. That is, there exist r1, . . . , rn ∈ F such that

π0(x) =
∑

i

riπi(x), for all x ∈ E.

The same values reconstruct the sum π0(x) + π0(y) of two secrets from

the pairwise sums πi(x) + πi(y) of their shares. We call Σ additive in

n − t positions if for any subset A ⊂ P of size t there exists a choice for

r1, . . . , rn ∈ F with ri = 0 for i ∈ A.

Proposition 1.15. For a given LSSS Σ(Ĉ), let Σ(D̂) be the scheme defined

with the dual code D̂ of Ĉ. Then Σ(Ĉ) is additive in n− t positions if and

only if Σ(D̂) rejects all subsets A ⊂ P of size t.

To implement secure protocols for multiparty computations that involve

addition and multiplication, a stronger property is needed. A LSSS Σ is

multiplicative if the product π0(x)·π0(y) of two secrets can be reconstructed

as a linear combination of the pairwise products πi(x) · πi(y) of the shares,

i.e. if there exist r1, . . . , rn ∈ F such that

π0(x)π0(y) =
∑

i

riπi(x)π(y), for all x, y ∈ E.

We call Σ multiplicative in n− t positions if for any subset A ⊂ P of size

t there exists a choice for r1, . . . , rn ∈ F with ri = 0 for i ∈ A. A LSSS Σ

is called strongly multiplicative if for any unqualified subset A ⊂ P there

exists a choice for r1, . . . , rn ∈ F with ri = 0 for i ∈ A.

Proposition 1.16. For a given LSSS Σ(Ĉ), let Σ(B̂) be the scheme de-

fined with the maximal code B̂ that is orthogonal to Ĉ ∗ Ĉ. Then Σ(Ĉ) is

multiplicative in n−t positions if and only if Σ(B̂) rejects all subsets A ⊂ P
of size t. And Σ(Ĉ) is strongly multiplicative if and only if Σ(B̂) rejects all

unqualified subsets A ⊂ P.

A LSSS Σ(Ĉ) that is multiplicative in n−t positions (or that is strongly

multiplicative) has a decomposition D̂ ⊃ Ĉ ∗ B̂ of the dual code D̂. This

decomposition can be used to apply error correction as in the previous sec-

tion to recover the secret in the presence of corrupted shares. The following

theorem outlines a dedicated secret reconstruction procedure that avoids

correcting corrupted shares and instead computes the secret directly. For
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geometric Goppa codes the theorem is a way to recover the value f(P0)

from possibly erroneous values f(P1), . . . , f(Pn). Since the point P0 can

be chosen arbitrarily, the function f can be recovered completely and the

theorem provides a way to decode geometric Goppa codes up to half their

designed minimum distance (Theorem 1.58 in Section 1.4.7).

Theorem 1.17. (Secret reconstruction) Let Σ = Σ0(Π),Σ′ = Σ0(Π
′),Σ′′ =

Σ0(Π
′′) be LSSSs such that

∑
i πi(x)π

′(y)π′′(z) = 0, for all x ∈ E, y ∈
E′, z ∈ E′′. For a possibly corrupted vector of shares (s1, . . . , sn) for Σ, let

(y, z) ∈ E′ ×E′′ be such that π′
0(y) = π′′

0 (z) = 1 and

0 =
∑

i

siπ
′
i(y)π

′′
i (z0) ∀z0 ∈ E′′ with π′′

0 (z0) = 0,

0 =
∑

i

siπ
′
i(y0)π

′′
i (z) ∀y0 ∈ E′ with π′

0(y0) = 0.

If the corrupted shares are contained in a subset A that is rejected by both

Σ′ and Σ′′ then such a pair (y, z) exists and the secret for the uncorrupted

vector of shares is

s = −
∑

i

siπ
′(y)π′′(z).

If either Σ′ or Σ′′ rejects A but not both then a pair (y, z) may not exist.

If it exists then the formula for the secret produces the correct value for s.

Proof. Assume that A is rejected by Σ′′. Then z = z1 with π′′
0 (z1) = 1

and π′′
i (z1) = 0 for i ∈ A gives a solution for z. An arbitrary z ∈ E ′′ with

π′′
0 (z) = 1 is of the form z = z0 + z1 with π′′

0 (z0) = 0. For a solution y to

the first equation and for an arbitrary z ∈ E ′′ with π′′
0 (z) = 1,

∑

i

siπ
′
i(y)π

′′
i (z) =

∑

i

siπ
′(y)π′′(z1) =

∑

i

πi(x)π
′(y)π′′(z1) = −s.

This clearly implies the claims in the theorem. �

The choices that are made for y and z in general need not vanish in the

corrupted shares. In general, the secret is reconstructed without obtaining

information about corrupted players. Clearly the two equations reduce to

a single equation when Σ′ = Σ′′.

A LSSS Σ = Σ0(Π) with
∑

i πi(x)πi(y)πi(z) = 0 for all x, y, z ∈ E

is called trilinear. Such a scheme is strongly multiplicative and can re-

construct the secret efficiently whenever the corrupted shares are con-
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tained in an unqualified subset. A trilinear scheme that rejects all sub-

sets of size t is multiplicative in n − t positions. The Shamir LSSS

Σ0(≤ t, {a1, . . . , an, a0}} is the scheme Σ0(Π), where Π : F[x]≤t −→ Fn+1,

f → (f(a1), . . . , f(an), f(a0)).

Theorem 1.18. The Shamir LSSS Σ0(≤ t, (a1, . . . , an, a0)}) rejects all

subsets of size t or less and accepts all subsets of size t + 1 or more. For

3t < n, the scheme is trilinear.

Proof. For p = (x− a0)(x− a1) · · · (x− an), and for ri = p′(ai),

n∑

i=0

rif(ai)g(ai)h(ai) = 0, ∀f, g, h ∈ F≤t[x].

�

1.1.6. Weight distributions and codes over extension fields

The weight distribution of a linear code C of length n is the vector

(A0, A1, . . . , An), where Ai is the number of words of weight i in C. For

a q-ary code the weight enumerator A(x, y) and the projective weight enu-

merator Ā(x, y) are defined by

A(x, y) =

n∑

i=0

Aix
n−iyi = xn + (q − 1)Ā(x, y).

For the code C(< k, {a1, . . . , an}) we can describe the projective weight

enumerator in terms of the zeta function of the affine line. The latter is a

generating function for the number of monic polynomials of a given degree,

with Euler product factorization

(1 − qT )−1 =
∏

fmonic, irr

(1 − T deg f )−1.

The number of monic polynomials of degree less than k that vanish in

precisely n− i elements of {a1, . . . , an} becomes

Āi = [T k−1]

(
n
i

)
Tn−i(1 − T )i

(1 − T )(1 − qT )

and

Ā(x, y) = [T k−1]
(xT + y(1 − T ))n

(1 − T )(1− qT )
.
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For a given coordinate, the weight enumerator of a code can be described

recursively in terms of the punctured code and the shortened code at the

given coordinate.

A(x, y) =





xS(x, y), if j is a loop

(x+ (q − 1)y)P (x, y), if j is a bridge

yP (x, y) + (x − y)S(x, y), otherwise.

A coordinate is called a loop if shortening preserves the dimension and a

bridge if puncturing lowers the dimension. A code is nondegenerate if it

has no loops or bridges. An invariant that satisfies a recursion of the above

type is called a Tutte-Grothendieck invariant. By continuing the recursion

it is clear that there exist polynomials T (x, y), called the Tutte polynomial,

and W (x, y) = T (x+ 1, y + 1), called the Whitney polynomial, such that

A(x, y)

(x− y)kyn−k
= T (

x+ (q − 1)y

x− y
,
x

y
) = W (

qy

x − y
,
x− y

y
).

The recursive procedure, and thus the polynomials T and W , remains the

same if the q-ary code is extended to a code with coefficients in an extension

field of size qm. The weight enumerator A(m) of the qm-ary code is

A(m)(x, y)

(x − y)kyn−k
= W (

qmy

x− y
,
x− y

y
).

For a weight enumerator A(x, y), let

P (x, y) =
1

n
(
∂

∂x
+

∂

∂y
)A(x, y), S(x, y) =

1

n
(
∂

∂x
)A(x, y)

be the average punctured and shortened weight enumerator, respectively.

They clearly satisfy the recursion type A(x, y) = yP (x, y) + (x − y)S(x, y)

of a nondegenerate code. Let aw = Aw/
(

n
w

)
, for w = 0, 1, . . . , n. Define the

normalized weight enumerator as

a(t) =
1

q − 1
(ad + ad+1t+ · · · + ant

n−d)

Theorem 1.19. The expression

a(t)(1 + t)d+1 (mod tn−d+1)

is invariant under puncturing and averaging or shortening and averaging.

For the q-ary code C(< k, {a1, . . . , an} the expression agrees with the eval-

uation of 1/(1 − T )(1− qT ) at T = t/(1 + t).
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1.2. Cyclic codes and classical Goppa codes

A F-linear code C of length n with coordinates {0, 1, . . . , n−1} is cyclic

if, after identifying words c = (c0, c1, . . . , cn) with polynomials c(x) = c0 +

c1x+ · · ·+cn−1x
n−1, the code is an ideal in the ring R = F[x]/(xn−1). The

ring R is a principal ideal domain. Polynomials g(x) and gcd(xn − 1, g(x))

generate the same ideal in R and cyclic codes of length n correspond one-

to-one to factors g(x) of xn − 1. If gcd(charF, n) = 1, then xn − 1 factors

over F as a product of distinct irreducible polynomials. For a factorization

xn−1 = f1 · · · ft into t irreducible factors, there are 2t cyclic codes of length

n over F.
The code C with generating polynomial g(x)|xn−1 is determined by the

irreducible factors in g(x) or by the zeros of g(x) in an algebraic closure F
of F. Let α ∈ F be a primitive n-th root of unity. For i ∈ Z/nZ, let mi(x)

be the minimal polynomial of αi over F. If g(x) = lcm{mi(x) : i ∈ I}
then I is called a defining set for C. The maximal defining set for C is the

set {i ∈ Z/nZ : g(αi) = 0}. The dual code of a cyclic code with maximal

defining set I is cyclic with maximal defining set I∗ = Z/nZ\ − I , where

we use
∑n−1

k=0 (αi+j)k = 0, for all i, j ∈ Z/nZ with i + j 6= 0, Thus, the

dual code of the code generated by g(x) is the code generated by h(x) =

(xn − 1)/g∗(x), where g∗(x) is the reciprocal polynomial of g(x).

1.2.1. Reed-Solomon and BCH codes

Of particular interest among cyclic codes are BCH codes, that are de-

fined with a defining set of the form I = {b + 1, b + 2, . . . , b + δ − 1}.
A BCH code over a field of q elements is called primitive if the length

n = qm − 1, for m ≥ 1. A Reed-Solomon code is a primitive BCH code of

length n = qm − 1 over the field of qm elements. For the given defining set,

a Reed-Solomon code has parameters [qm, qm + 1 − δ, δ]. Primitive BCH

codes in general have a maximal defining set that is larger than I . They

are subcodes of Reed-Solomon codes and have minimum distance d ≥ δ. A

lower bound for the dimension is k ≥ n −m(δ − 1), with an improvement

k ≥ n−m(q−1)d(δ−1)/qe when b = 0. BCH codes are an important way to

construct long codes over a given finite field such that both the minimum

distance and the dimension have lower bounds. However asymptotically

BCH codes are not good. For an infinite family of BCH codes of increasing

length, either the relative distance d/n or the information rate k/n goes to

zero as n goes to infinity.
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Theorem 1.20. The Reed-Solomon code of length n = qm − 1 over the

field of qm elements with defining set I = {b + 1, b + 2, . . . , b + δ − 1}
has as codewords the vectors (f(α0), f(α1), . . . , f(αn−1)), for f ∈ L =

〈x−b, . . . , x−1, 1, x, . . . , xa〉, where a is such that a + b = n − δ. The BCH

code over the field of q elements with the same length and defining set is a

subcode of the Reed-Solomon code.

The space L is the vector space of rational functions in x with pole

order at most a at ∞, pole order at most b at 0, and no other poles. In

the terminology of the next section the Reed-Solomon code over the field

F with defining set I = {b + 1, b + 2, . . . , b + δ − 1} is a two-point code

CL(aP∞ + bP0,F∗). When b = 0 the code CL(aP∞,F) is called a one-point

code. These are the codes C(≤ a,F) that were used as a main example

in the previous section. BCH codes with b = 0, i.e. subfield subcodes of

one-point codes, are called narrow sense.

To apply the theorems in Section 1.1.3 to cyclic codes requires a de-

composition of their defining set. We illustrate this for the dual of the

two-error correcting BCH code of length n = 15 over F4. The BCH code

has defining set {1, 2, 3, 4} and complete defining set I = {1, 2, 3, 4, 8, 12}.
The dual code has complete defining set I∗ = {0, 1, 2, 4, 5, 6, 8, 9, 10}. The

code and its dual are of type [15, 9, 5] and [15, 6, 8], respectively. For the de-

composition I∗ ⊃ {0, 1, 2, 4, 5, 6}+{0, 4}, Theorem 1.4 gives d ≥ 8. For the

decomposition I∗ ⊃ {0, 2, 4}+{0, 2, 4, 6},Theorem 1.4 only gives d ≥ 7. On

the other hand this decomposition can be used with Theorem 1.9 to correct

any three errors. For the decomposition I∗ ⊃ {0, 1, 4, 5}+ {0, 1, 4, 5}, The-

orem 1.5 gives d ≤ 4 or d ≥ 8. The pair meets the conditions of Theorem

1.9 for correcting three errors, so the possibility d ≤ 4 is easily excluded.

Of the two decompositions that correct any three errors, the second has the

property that the codes A and B can be defined over F4, while in the first

case decoding takes place over the field F16.

1.2.2. Classical Goppa codes

The family of classical Goppa codes includes as subfamily the BCH

codes but is large enough to contain infinite families of codes of increasing

length that attain the asymptotic Gilbert-Varshamov lower bound for the

dimension of optimal codes.

Let α1, · · · , αn ⊂ F be distinct field elements and let g(x) ∈ F[x] be a

monic polynomial that is relatively prime to p(x) = (x − α1) · · · (x − αn).
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The classical Goppa code defined with the polynomial g(x) is the set of all

words c = (c1, · · · , cn) ∈ Fn with

c1
x− α1

dx+ · · · + cn
x− αn

dx =
h(x)

p(x)
dx, for g(x)|h(x).

The polynomial h is of degree at most n− 1. It vanishes at the zeros of a

word c = (c1, · · · , cn). Since g|h, we have n− d ≤ degh− deg g ≤ n− 1− t

and d ≥ t+ 1.

Theorem 1.21. Let C be the classical Goppa code over Fqm defined with

relatively prime polynomials g(x) and p(x)|xqm − x. The dual code C⊥ of

C is obtained by evaluation of functions in L = 〈h/g : degh < deg g〉.

Proof. As in Section 1.1.2,

C = 〈 (
g(α1)α

i
1

p′(α1)
, · · · , g(αn)αi

n

p′(αn)
) : i = 0, 1, . . . , n− t− 1 〉,

C⊥ = 〈 (
αj

1

g(α1)
, · · · , αj

n

g(αn)
) : j = 0, 1, . . . , t− 1 〉.

�

In the terminology of geometric Goppa codes, C is defined by eval-

uating residues of differentials ω ∈ Ω(G − P∞) and C⊥ by evaluating

values of functions f ∈ L(G − P∞), where G is the divisor of zeros of

g(x). A classical Goppa code over the subfield F of size q is a subfield sub-

code of the code C. The Reed-Solomon code of length n = qm − 1 with

I = {1, 2, . . . , δ − 1} has a dual code that is defined by the evaluation

of functions f ∈ L((δ − 1)P∞ − P0) = 〈x, . . . , xδ−1〉. To realize a Reed-

Solomon code as a classical Goppa code we evaluate instead the functions

f ∈ L((δ − 1)P0 − P∞) = 〈x1−δ , . . . , x−1〉. A value in position α for the

Reed-Solomon code appears with the different evaluation in position α−1.

The rearranged Reed-Solomon code is a classical Goppa code with divisor

G = (δ − 1)P0 and polynomial g(x) = xδ−1.

Let V (d − 1) = |{y ∈ Fn : d(y, 0) < d}| be the number of words in a

closed ball of Hamming radius d − 1. Recall that the Gilbert-Varshamov

bound shows that for given n and d, there exist codes with qn−k ≤ V (d−1).

Theorem 1.22. For a given length n = qm and minimum distance d, there

exist irreducible polynomials g(x) over Fqm such that the classical Goppa

code defined with g(x) has minimum distance at least d and dimension

attaining the asymptotic Gilbert-Varshamov bound.
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Proof. Let t denote the degree of g(x). The number of irreducible

polynomials of degree t over qm is at least (qmt−d(t)qmt/2)/t, where d(t) is

the number of divisors of t. For a word (c1, . . . , cn) of weight at most d−1,

h(x) has at least n − d + 1 zeros in common with p(x), and the cofactor

of degree at most d − 2 contains no more than d/t irreducible factors of

degree t. Thus, for d/t ·V (d−1) < (qmt −d(t)qmt/2)/t, there exist classical

Goppa codes with polynomial g(x) of degree t and minimum distance d.

Since qn−k ≤ qmt, there exist classical Goppa codes with

qn−k · (1 − d(t)q−mt/2) ≤ dV (d− 1).

After taking logarithms and dividing by n, the factors (1−d(t)q−mt/2) and

d are absorbed in o(1) as n goes to infinity. �

1.2.3. Dual BCH codes

The RS code of length n = qm −1 with defining set I = {1, 2, . . . , δ−1}
has parameters [qm − 1, qm − δ, δ] over the field Fqm . The BCH code over

the subfield Fq with the same length and defining set is the subcode of the

RS code with coefficients in Fq. The dual of a BCH code is again cyclic

but it is in general not a BCH code. With Delsarte’s theorem it can be

described as the trace of the dual RS code.

Theorem 1.23. (Delsarte’s Theorem) Let C be a linear code of length n

over Fqm with dual code C⊥. For the subfield F = Fq and for the trace map

Tr(x) = x+ xq + · · · + xqm−1

,

(C ∩ Fn)⊥ = Tr(C⊥).

The extended RS code of length n = qm is the code C(≤ qm − δ,Fqm),

with dual code C(≤ δ − 1,Fqm). The weights of nonconstant codewords in

the dual of the extended BCH code can be estimated with the Hasse-Weil

bound.

Theorem 1.24. For a polynomial f ∈ Fqm [x], let N(f) denote the number

of zeros in (Tr(f(α)) : α ∈ Fqm). If f is of degree at most δ − 1 and not of

the form a(yq − y) + b, for a ∈ Fq , b ∈ Fqm , then

|q ·N(f) − qm| ≤ (δ − 2)(q − 1)qm/2.

The bound compares the number q · N(f) of solutions (x, y) for the

equation yq − y = f(x) with the number qm of points on the affine line.
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The weight distribution of a dual BCH code describes the number of ratio-

nal points on curves of the form yq − y = f(x), for f of bounded degree.

The RS code and the BCH code describe linear relations among the

vectors (α, α2, . . . , αδ−1) ∈ Fδ−1
qm , for α ∈ F∗qm . With class field theory the

vectors have a natural interpretation as reduced Frobenius automorphisms

inside a ray class group of conductor δ. This interpretation will be used in

two directions. Weil’s theorem on L−series for ray class fields gives esti-

mates for the weight distribution of BCH codes. And BCH codes describe

the relations between elements in ray class groups that determine the prop-

erties of quotient fields of the ray class field with many rational points.

Let F be a finite field of size q = pm, for a prime p. Let Qp(α) be a

cyclotomic extension of the p-adic numbers with α a primitive n-th roots

of unity for n = pm − 1 and let Zp[α] be the ring of integers in Qp(α). For

a positive integer e, let Re be the finite ring Zp[α]/(pe). So that |Re| = qe.

For a fixed positive integer δ, let I = {1, 2, . . . , δ − 1} and let I∗ =

{i ∈ I : gcd(p, i) = 1}. For i ∈ I∗, let ei be the unique integer with

ipei−1 < δ ≤ ipei . So that
∑

i∈I∗ ei = δ − 1.

Theorem 1.25. (Class field theory) Let F be a finite field. For every non-

negative integer δ, there exists a unique maximal abelian extension K/F(x),

called the ray class field extension of conductor δ, for which all characters

have conductor at most δ(x)∞ and in which (x)0 splits completely. The

extension is finite of degree qδ−1 with Galois group

Gal(K/F(x)) ' (F[T ]/T δ)∗/F∗ ' ⊕i∈I∗ Rei
.

For α ∈ F, let (K/F(x), α) ∈ Gal(K/F(x) denote the Frobenius automor-

phism. Under the isomorphisms

(K/F(x), α) ↔ (1 + αT ) ↔ (αi : i ∈ I∗).

If H is the subgroup generated by the Frobenius elements for α ∈ F, then

the fixed field KH/F defines an extension with group G/H in which ∞ is

completely ramified and in which x = a splits completely, for all a ∈ F.

The set of all relations (cα ∈ Z/peZ : α ∈ F∗) with
∑

α cαFα = 0 defines

a cyclic code modulo pe. The Frobenius element Fα, for α ∈ Fast, can be

represented by the column vector hα = (pe−eiαi : i ∈ I∗) ∈ R
|I∗|
e . The code
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has a generator polynomial g(x) = g0(x) + pg1(x) + · · · + pe−1ge−1 with

ge−1| · · · |g1|g0|xn − 1, such that, for i ∈ I∗, gj(α
i) = 0 if and only if j < ei

if and only if ipj < δ. The extended cyclic code C(pm, δ) modulo pe is the

set of all relations (cα ∈ Z/peZ : α ∈ F ) with
∑

α cαFα = 0 and moreover∑
α cα = 0. The code C(2m, 3) is defined modulo 4. It is known as the

quaternary Preparata code and its dual as the quaternary Kerdock code.

The reduction of the code C(pm, δ) modulo p is the extended primitive

BCH code with designed minimum distance δ.

Theorem 1.26. (Weil bound) Let χ be a character for K/F(x) of conduc-

tor δ, and let Fα denote the Frobenius element in G = Gal(K/F(x)) that

corresponds to x = α. Then

|
∑

α∈F

χ(Fα)| ≤ (δ − 2)
√
q.

The theorem applies to characters of characteristic pe and is more

general then Theorem .... The latter follows by writing q · N(f) −
qm =

∑
βq−1=1

∑
αqm−1=1 χ(Tr(βf(α)). In general, for a polynomial f =

∑
i∈I∗ pe−ei

∑
ipj<δ fipjxipj ∈ Re[x], for a trace map Tr : Re → Z/peZ, and

for a nontrivial character χ : Z/peZ→ C,

|
∑

αqm−α=0

χ(Tr(f(α))| ≤ (δ − 2)
√
q.

Let ∆ = { i′ ∈ I∗ : ∃i ∈ I∗ | i < i′, and i′ ≡ i · qj (mod n) }. For i′ ∈ ∆

with witness i, a relation
∑

j cjα
ij = 0 ∈ Rei

implies that
∑

j α
i′j = 0 ∈

Re′
i
. Therefore, the group G/H has size at least

∏
i′∈∆ |Re′

i
|.

Theorem 1.27.

(1) For q = r2, let δ = r + 2 and I = {1, 2 . . . , r + 1}. Then |G/H | ≥ r.

(2) For q0 = 2s, q = 22s+1, let δ = 2q0 + 2 and I = {1, 2, . . . , 2q0 + 1}.
Then 2q0 + 1 ∈ I ′, and |G/H | ≥ |R1| = q.

(3) For q0 = 3s, q = 32s+1, let δ = 3q0 + 3 and I = {1, 2, . . . , 3q0 + 2}.
Then 3q0 + 1, 3q0 + 2 ∈ I ′ and |G/H | ≥ |R1 ×R1| = q2.

Proof. (1) The elements αr+1 span the subfield Fr of R1 = Fq. And

|Fq/Fr| = r. (2) 2q0 +1 ≡ 2q0(q0 +1) (mod q−1). (3) 3q0 +1 ≡ 3q0(q0 +1)

(mod q − 1) and 3q0 + 2 ≡ 3q0(2q0 + 1) (mod q − 1). �
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1.3. Reed-Muller codes

For geometric Goppa codes defined by the evaluation of functions in

points X = {P1, . . . , Pn} that form an ideal-theoretic complete intersec-

tion, the main properties can be established without the usual tools for

algebraic curves. The dimension is given by the Hilbert function of X (in-

stead of the Riemann-Roch theorem for curves), the dual code is of the same

explicit form as the code itself (instead of defined in terms of differentials),

and the code and its dual are related by the a-invariant of X (instead of

the residue theorem for curves). Codes defined on complete intersections

generalize the affine Reed-Muller codes and are part of the larger class of

evaluation codes.

For a finite field F, let A = F[x0, x1, ..., xm] =
⊕

ν≥0A(ν) be the graded

ring of polynomials in m+1 variables with homogeneous components A(ν),

and let X = {P1, ..., Pn} ⊆ Pm(F) be a set of n distinct points. For a

positive integer ν, the F-linear code C(ν,X) of length n is the image of the

homogeneous component A(ν) after evaluation on X . That is, for a given

choice of representatives for P1, . . . , Pn, the code C(ν,X) = α(A(ν)), for

the F-linear evaluation map

α : A −→ Fn, α(f) = (f(P1), ..., f(Pn)).

For the field F of two elements, the binary Reed-Muller code RM(ν,m) is

defined as the code C(ν,X) with X = {(1 : x1 : · · · : xm) : xi ∈ F}.
Replacing the binary field with an arbitrary finite field yields the class of

affine or generalized Reed-Muller codes GRM(ν,m). Evaluation of A(ν)

on a complete set X of representatives for the points of projective m-space

over F yields the class of projective Reed-Muller codes PRM(m, r).

Let IX =
⊕

ν≥0 IX (ν) ⊆ A be the vanishing ideal of X . Then the

code C(ν,X) is isomorphic to S(ν)/IX (ν) and its dimension is HX(ν),

where HX is the Hilbert function of IX . If the ideal IX is a complete

intersection, that is if IX = (f1, . . . , fm) such that fi is not a zero divisor

in F[x0, x1, . . . , xm]/(f1, . . . , fi−1), then the Hilbert function is completely

determined by the multi-degree (ν1, . . . , νm) of IX . Moreover, duality of

codes can be described in terms of the a-invariant (ν1 + · · · + νm) −m− 1

of X .

Theorem 1.28. Let X be an ideal-theoretic complete intersection X of

multi-degree (ν1, ..., νn) with ideal IX = (f1, ..., fm). Let aX = (ν1 + · · · +
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νm)− (m+ 1) be the a-invariant of IX . The Hilbert function HX(ν) of IX
is

(
m+ ν

ν

)
−
∑

i

(
m+ ν − νi

ν − νi

)
+
∑

i<j

(
m+ ν − (νi + νj)

ν − (νi + νj)

)

+ · · · + (−1)m

(
m+ ν − (ν1 + · · · + νm)

ν − (ν1 + · · · + νm)

)

For 0 ≤ ν ≤ aX , HX(ν) +HX (aX − ν) = n.

The generalized Reed-Muller code GRM(ν,m) is defined with X =

Pm(F)\(x0 = 0). It has vanishing ideal I = (xq
1−x1x

q−1
0 , . . . , xq

m−xmx
q−1
0 )

with multi-degree (ν1, . . . , νm) = (q, . . . , q) and a-invariant mq − (m + 1).

The code GRM(ν,m) has dual code GRM(qm −m − 1 − ν,m). The set

Pm(F) of all points in projective m−space is in general not a complete

intersection. Complete intersections in P2(F) are described by the Bezout

theorem.

Theorem 1.29. (Bezout) The ideal generated by two polynomials f1, f2 ∈
F[x0, x1, x2] with no common factors is a complete intersection. Over the

algebraic closure of F the intersection of the curves f1 = 0 and f2 = 0

contains deg f1 · deg f2 points counted with multiplicities.

Examples of complete intersections in P2 are: (1) the projective line

with multi-degree (1, q + 1) and |X | = q + 1, aX = q − 1. (2a) the rational

points on the Hermitian curve with multi-degree (r + 1, r2 − r + 1) and

|X | = r3 + 1, aX = q − 1. (2b) the subset of rational points with multi-

degree (r, r2) and |X | = r3, aX = r2 + r − 3. (3) the Klein curve with

multi-degree (4, 6) and |X | = 24, aX = 7.

Theorem 1.30. Let C(ν,X) be defined on the intersection X =

{P1, ..., Pn} ⊆ P2(F) of two curves f1 = 0 and f2 = 0 with no common com-

ponent. Let ν1 = deg f1 and ν2 = deg f2. The Hilbert polynomial HX(ν) of

IX is
(

2 + ν

ν

)
−
(

2 + ν − ν1
ν − ν1

)
−
(

2 + ν − ν2
ν − ν2

)
+

(
2 + ν − (ν1 + ν2)

ν − (ν1 + ν2)

)
.

For 0 ≤ ν ≤ aX , HX(ν) +HX (aX − ν) = n.

Thus, when X is the set of r3 + 1 rational points of the Hermitian

curve of degree r + 1 then, for any 0 ≤ ν ≤ r2 − 1, the codes C(ν,X) and
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C(q − 1 − ν,X) are dual to each other. This can also be seen as follows.

For codes C(< k,F) on the affine line, duality of C(< k,F) and

C(< q− k,F) amounts to the property
∑

x∈F
xi = 0, for i = 0, 1, . . . , q− 2.

If we extend the summation to points on the projective line, we have∑
(x:y) x

iyq−1−i = 0, for i = 0, 1, . . . , q − 1. The cases i > 0 reduce to

the affine line x = 1 and the cases i < q − 1 to the affine line y = 1. Note

that the total degree q − 1 of xiyq−1−i makes the summation independent

of a choice of representative for the projective points. That the a-invariant

for the projective line and the Hermitian curve is q − 1 in both cases cor-

responds to the fact that the rational points of the Hermitian curve form a

codeword in the code spanned by lines [6], [50].

1.4. Geometric Goppa codes

Geometric Goppa codes use algebraic curves for their construction. Sim-

ilar to codes on the affine line (Section 1.1), they can be defined in two

different ways, by evaluating functions or by computing residues of differ-

entials. In combination with well known theorems for algebraic curves, the

definitions immediately reveal the following important properties of geo-

metric Goppa codes:

- An explicit geometric description of both a code and its dual.

- Good lower bounds for the dimension, the minimum distance, and the

dual minimum distance of a code.

- Expressions for code parameters in terms of invariants of algebraic curves.

- A multiplicative structure on codes.

Following are some important results for geometric Goppa codes that cru-

cially depend on these properties:

- Constructions of polynomial complexity for asymptotically good codes.

- Efficient algebraic decoding.

- Applications to secret sharing and efficient multi-party computation.

In this section, we first give the definitions and the main properties of

geometric Goppa codes (Sections 1.4.1, 1.4.2), followed by a summary of

curves that have been used for their construction (Section 1.4.3). One-

point codes and two-point codes are discussed in Sections 1.4.4 and 1.4.5.

Finally, we present results on error correction (Section 1.4.6), secret sharing

(Section 1.4.7), and weight distributions (Section 1.4.8).
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1.4.1. Curves and linear codes

An algebraic curve X/F is defined as an algebraic variety (i.e. an irre-

ducible algebraic set) of dimension one over the field F. The field of rational

functions is denoted by F(X ), the module of rational differentials by Ω(X ).

Among all curves with function field F(X ) there is up to isomorphism a

unique nonsingular projective curve. We define the codes in terms of the

function field F(X ) of X . The geometric properties that we establish for

codes hold for codes that are defined with the unique nonsingular projective

model of X . Function fields of algebraic curves over a finite field can be

characterized as finite separable extensions K/F(x).

Points on a curve X are identified with places of the function field,

rational points with places of degree one. Let t denote a generator of the

maximal ideal of a place. For a rational function f , define the divisor

(f) =
∑
νt(f)P , where P runs over all places and νt denotes the discrete

valuation at P . For a divisor E, define

L(E) = { f ∈ F(X )∗ : (f) +E ≥ 0 } ∪ { 0 }
as the linear space of rational functions with pole divisor bounded by E.

Definition 1.31. Let D = P1 + P2 + · · · + Pn, for distinct rational points

P1, P2, . . . , Pn, and let G be a divisor with support disjoint from D. The

code CL(D,G) is the image of the linear map

αL : L(G) −→ Fn, f 7→ ( f(P1), . . . , f(Pn) ).

The map establishes an isomorphism L(G)/L(G−D) ' CL(D,G).

In general, dimL(G) ≤ degG+ 1. To estimate the dimension of a code

we need a lower bound for L(G).

Theorem 1.32. (Riemann) There exists a minimal constant g ≥ 0 de-

pending only on X , such that dimL(G) ≥ degG + 1 − g. Moreover, for

every divisor G of degree degG > 2g − 2, dimL(G) = degG + 1 − g. The

parameter g is called the genus of the curve X .

Theorem 1.33. (code parameters) For 2g − 2 < degG < n, the code

CL(G,D) has dimension k = degG + 1 − g and minimum distance d ≥
n−degG. The dual code CL(G,D) has dimension k⊥ = n− (degG+1−g)
and minimum distance d⊥ ≥ degG− (2g − 2). In particular,

n+ 1 − g ≤ k + d, k⊥ + d⊥ ≤ n+ 1.



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

Algebraic Geometry Codes: General Theory 23

Proof. The only part remaining is to show that d⊥ ≥ degG−(2g−2). For

any τ < d⊥ positions Q1, . . . , Qτ , dimL(G)− dimL(G−Q1 · · · −Qτ ) = τ

and the encoding map αL is surjective on the τ positions. �

A divisor is called principal if it is the divisor of a function. The relation

E1 ∼ E2 if and only if E1 −E2 is principal defines an equivalence relation

on divisors.

Theorem 1.34. (Approximation theorem) For a divisor E and a finite set

of places S, there exists a divisor E ′ that is linearly equivalent to E and

that has support outside S.

In many cases it is attractive to define codes where D and G have one

or more rational points in common. For the construction of such codes one

may replace G with an equivalent divisor using the approximation theorem.

However, the following theorem gives an important geometric property of

algebraic curves that makes the construction of such codes straightforward

without replacing the divisor G.

Theorem 1.35. For a nonsingular curve X and for rational functions

(f0, f1, . . . , fm), the rational map (f0 : f1 : · · · : fm) : X −→ Pm is a

morphism (is defined everywhere).

In case the divisors D and G have a rational point P in common, the

evaluation map αL in the definition of CL(G,D) is modified at the coordi-

nate αL,P . For a given local parameter t at P , and for i = ordP (G),

αL,P : L(G) −→ F, f 7→ (tif)(P ).

The bounds in Theorem 1.33 are based on properties of the geometric em-

bedding of points in projective space and remain valid for the modified

construction.

The Klein curve is defined by the equation X3Y + Y 3Z + Z3X = 0.

Define a divisor ∆ = (0 : 0 : 1) + (0 : 1 : 0) + (1 : 0 : 0). A monomial

XaY bZc intersects the curve with multiplicities

(X3Y + Y 3Z + Z3X = 0) ∩ (XaY bZc = 0) =

(3a+ b)(0 : 0 : 1) + (3b+ c)(1 : 0 : 0) + (3c+ a)(0 : 1 : 0).

We find a basis 〈X2Y/XY Z, Y 2Z/XY Z,Z2X/XY Z,XY Z/XY Z〉 for

L(2∆). Over the field of eight elements, the curve has 24 rational points.

The given basis does not evaluate in the three points of ∆. An option
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is to define the code on the remaining 21 points or to replace 2∆ with

an equivalent divisor that has support in an extension field of F8. The

straightforward solution suggested by the theorem is to embed the points

as images of the morphism (X2Y : Y 2Z : Z2X : XY Z). The morphism

sends (0 : 0 : 1) 7→ (0 : 1 : 0 : 0), (1 : 0 : 0) 7→ (0 : 0 : 1 : 0), and

(0 : 1 : 0) 7→ (1 : 0 : 0 : 0). There exist no 6 distinct rational points with

Q1 + · · · + Q6 ∼ 2∆ and the code CL(2∆, D) is of type [24, 4, 19]. The

distance is an arithmetic peculiarity of the configuration of flexpoints on

the Klein curve that can be explained in terms of the large automorphism

group of the curve but not with any of the theorems in this chapter.

Not all properties of codes are preserved by the modified construc-

tion: For divisors G1 ≤ G2 that have supports disjoint from D, the code

CL(D,G1) is a subcode of the code CL(D,G2). When G2 − G1 is not

disjoint from D this is in general no longer true.

1.4.2. Duality and differentials

For a differential ω, define the divisor (ω) =
∑
νt(ω)P , where P runs

over all places and νt(fdt) = νt(f). The rational differentials Ω(X ) form a

free F(X ) module of rank one. The divisor class of a differential is called

the canonical divisor class, K denotes a divisor representing the class. For

a divisor E, define the linear space of rational differentials

Ω(E) = {ω ∈ Ω(X )∗ : (ω) ≥ E } ∪ { 0 }.

Definition 1.36. Let D = P1 + P2 + · · · + Pn, for distinct rational points

P1, P2, . . . , Pn, and let G be a divisor with support disjoint from D. The

code CΩ(D,G) is the image of the linear map

αΩ : Ω(G−D) −→ Fn, ω 7→ ( resP1(ω), . . . , resPn
(ω) ).

The map establishes an isomorphism Ω(G−D)/Ω(G) ' CΩ(D,G).

In case the divisors D and G have a rational point P in common, the

evaluation map αΩ is modified at the coordinate αΩ,P . For a given local

parameter t at P , and for i = ordP (G),

αΩ,P : Ω(G−D) −→ F, ω 7→ resP (t−iω).

Theorem 1.37. (Residue theorem) The summation over all places of the

residues of a differential is well-defined and equal to zero.
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Each differential ω induces a natural isomorphism

L((ω) −E)
∼−→ Ω(E), f 7→ fω.

If η is a differential with a simple pole at P and residue resP (η) = 1, and

if f is a function with no pole at P , then resP (fη) = f(P ).

Lemma 1.38. If η is a differential with simple poles at P1, P2, . . . , Pn and

residues equal to 1 at those points then

CΩ(G,D) = CL((η) +D −G,D).

Proof. For f ∈ L((η) +D −G), f(P ) = resP (fη), where the differential

ω = fη has divisor (ω) = (f) + (η) ≥ G−D. �

Lemma 1.39. Let f be a nonzero rational function. The differential df/f

has at most simple poles and the residue at P is resP (df/f) = ordP (f).

Theorem 1.40. (Riemann-Roch) The dimensions of L(E) and L(K−E) '
Ω(E) are related by

dimL(E) − dimL(K −E) = deg (E) + 1 − g.

Together, the Residue theorem and the Riemann-Roch theorem imply

that CΩ(G,D) is the dual code of CL(D,G).

Theorem 1.41. The codes CL(D,G) and CΩ(G,D) are dual codes.

As the dual of CL(D,G), the code CΩ(D,G) has minimum distance at

least degG− (2g − 2) (Theorem 1.33).

Theorem 1.42. (Symmetric floor bound) Let G = A + B + Z, for Z ≥ 0

such that L(A+Z) = L(A) and L(B+Z) = L(B). For D with D∩Z = 0,

a nonzero word in CΩ(D,G) has weight at least degG− (2g − 2) + degZ.

Proof. Suppose that c ∈ CΩ(D,G) is nonzero in the positions Q = Q1 +

· · · +Qd, so that there exists E ≥ 0 with K +Q ∼ A + B + Z + E. With

the Riemann-Roch theorem,

dimL(A+E) − dimL(B + Z −Q) = deg (A+E) + 1 − g,

dimL(A+ Z) − dimL(B +E −Q) = deg (A+ Z) + 1 − g.

It follows that

degE − degZ = l(A+E) − l(A) + l(B +E −Q) − l(B −Q) ≥ 0.

Finally, degE ≥ degZ gives d ≥ degG− (2g − 2) + degZ. �
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The divisor K satisfies: degK = 2g− 2 and l(K) = g. The genus g of a

nonsingular plane curve of degree m satisfies g = (m− 1)(m− 2)/2. For a

plane curve, let the divisor L denote the intersection divisor of a line with

the curve, then K = (m− 2)L represents the canonical class.

For divisors G + G′ ∼ D, the codes CL(G,D) and CL(G′, D) are in

general not dual codes, unless g = 1. The two codes have the same number

of words of designed distance. Namely G is equivalent to a sum of rational

points Q if and only if G′ is equivalent to the sum of rational points Q′,
where Q + Q′ = D. If one code has distance greater than the designed

distance then the other code as well. With the Klein curve over F8, and

for G = 2∆, we found a code of type [24, 4, 19]. In this case, D ∼ 8∆

and the code with G′ = 6∆ is of type [24, 16, 7]. This is the best known

three-error-correcting code of length 24 over F8. Its weight distribution is

given in Table 1.3.

Theorem 1.43. (Clifford’s theorem) For a divisor E such that both L(E)

and Ω(E) are nontrivial,

dimL(E) ≤ deg (E)

2
+ 1.

1.4.3. Families of curves

The first step towards good geometric Goppa codes over a field Fq is the

search for curves X/Fq that have many rational points for a given genus.

For a given curve X/Fq of genus g with N rational points, we can con-

struct Fq-linear codes of length N of any dimension 0 ≤ k ≤ N such that

k + d ≥ N + 1 − g.

The class of Deligne-Lusztig varieties was defined for the purpose of study-

ing representations of algebraic groups. The class contains three families

of irreducible curves (Table 1.1). Curves in each family have the maximal

number of rational points for their genus and they have large automorphism

groups. In each case, the automorphism group is of order N(N − 1)(q− 1)

and acts 2−transitively on the set of rational points. The curve of unitary

type was already known as the Hermitian curve. Another much studied

curve is the Klein curve, or the modular curve X(7). From its definition

as a modular curve it follows that it is a nonsingular quartic with auto-

morphism group the simple group PSL(2, 7) of order 168. Klein found the

model X3Y + Y 3Z + Z3X = 0 for the unique curve with these properties.

Over the field of eight elements it has the maximal number of 24 rational
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points for a curve of genus 3.

Table 1.1. Deligne-Lusztig curves X/Fq .

Type Unitary Suzuki Ree

X yr + y = xr+1. yq + y = xq0 (xq + x). yq − y = xq0 (xq − x),
zq − z = xq0(yq − y).

q q = r2 q = 2q2
0 ≥ 8. q = 3q2

0 ≥ 27.

g r(r − 1)/2 q0(q − 1) 3
2
q0(q − 1)(q + q0 + 1)

N r3 + 1 q2 + 1 q3 + 1

conductor r + 2 2q0 + 2 3q0 + 3

Serre initiated the construction of curves with many points using class

field theory. This has been a very successful method to show that cer-

tain pairs (N, g) occur as the number of rational points and the genus of a

curve. The actual construction of the curves is in general not straightfor-

ward. Lauter uses class field theory to show the existence of curves with

the parameters of the Deligne-Lusztig curves. In those cases there is a con-

nection between class field theory and BCH codes (Theorem 1.27).

For asymptotic results we need families of curves of increasing genus

such that lim inf Ni/gi > 0 as gi → ∞. For any given family lim supNi/gi ≤√
q − 1 (Drinfeld-Vladuts bound). Asymptotic results were first obtained

by Tsfasman, Vladuts and Zink. They use families of modular curves over

Fq to attain the best possible lim inf Ni/gi = `−1, for q = `2. In subsequent

papers polynomial constructions were given for the codes from these curves.

Garcia and Stichtenoth presented several constructions for optimal towers

that have a short and explicit recursive definition (Table 1.2).

Table 1.2. Recursively defined towers of function fields (F1 = Fq(x1)).

(A) Fn+1 = Fn(zn+1) z`
n+1 + zn+1 = x`+1

n , xn = zn/xn−1 q = `2

(B) Fn+1 = Fn(xn+1) x`
i+1 + xi+1 = x`

i/(x`−1
i + 1) q = `2

(C) Fn+1 = Fn(xn+1) xm
i+1 + (xi + 1)m = 1 m|(q − 1)/(p − 1)

(D) Fn+1 = Fn(xn+1) x`−1
i+1 + (xi + 1)`−1 = 1 q = `2

The towers (A) and (B) are wildly ramified while the towers (C) and

(D) are tamely ramified. An efficient construction of codes in the tower

(A) is given in [70]. In [78], codes are constructed with the field F3 in
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the tower (B). The towers (A) and (B) correspond to Drinfeld modular

curves [27] and the towers (C) and (D) to classical modular curves [25].

Examples are the modular towers X0(3
n) in char = 2 and X0(2

n) in char =

3. Klein gives solutions for the modular equations J2(j(τ), j(2τ)) = 0 and

J3(j(τ), j(3τ)) = 0 in terms of resolvents,

J2(ψ2(η), ψ2(η0)) = 0, for ψ2(η) = 64
(η + 3)3

(η − 1)2
, (η − 1)(η0 − 1) = 1,

J3(ψ3(η), ψ3(η0)) = 0, for ψ3(η) = 27
η(η + 8)3

(eta− 1)3
, (η − 1)(η0 − 1) = 1,

such that ψ2(z
′2) = ψ2(z

2) for all symmetries of the triangle {1,−1,∞},
and ψ3(z

′3) = ψ3(z
3) for all symmetries of the tetrahedron {1, ω, ω2,∞}.

In particular,

ψ2(z
′2) = ψ2(z

2), for z′ =
z + 3

z − 1
(1 ↔ ∞,−1 ↔ −1).

ψ3(z
′3) = ψ3(z

3), for z′ =
z + 2

z − 1
(1 ↔ ∞, ω ↔ ω2).

The modular equation is symmetric in its two arguments and so is the

equation (η − 1)(η0 − 1) = 1 in the variables η, η0. In the z−plane, a

recursive formula for the modular tower can be achieved by rotating z

before adjoining z0 (as described in Cohn, Iteration and the icosahedron).

z′ =
z + 3

z − 1
, (z′2 − 1)(z2

0 − 1) = 1.

z′ =
z + 2

z − 1
, (z′3 − 1)(z3

0 − 1) = 1.

In the variables x = −1/z, y = −1/z0, the recursive formulas are

y2 +

(
1 + x

1 − 3x

)2

= 1.

y3 +

(
1 + x

1 − 2x

)3

= 1.

In char = 3 the first towerX0(2
n) is of type (D), and in char = 2 the second

tower X0(3
n) is of type (C).

The equation Fn+1 = Fn(xn+1), x
2
i+1 + xi+1 = xi + 1 + 1/xi defines

an asymptotically good tower over F8. It has a generalization to arbitrary

cubic fields.
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1.4.4. One-point codes

For a curve with many rational points for a given genus, any choice of

divisor G will give a good code. In many cases, once the degree of G has

been fixed, a convenient choice is a divisor G = mP∞ with support at a

single point P∞. The codes CL(mP∞, D) are called one-point codes. It

follows from Lemma 1.38 that the dual code of a one-point code is again a

one-point code if there exists a differential η with divisor (2g−2+n)P∞−D
that has residues equal to 1 at the points P1, P2, . . . , Pn. In that case

CΩ(mP∞, D) = CL((2g − 2 + n−m)P∞, D).

For the projective line, for the Hermitian curves, and for the Suzuki curves,

the dual of a one-point code is again a one-point code. For each of these

curves, the divisor D can be chosen to be the set of all rational points mi-

nus the point P∞. For this choice of D, there exists an algebraic function

x ∈ K such that n = [K : F(x)] · q and η = df/f for f = xq − x.. The

one-point codes can be extended by including the point P∞ in D. The

modified construction for one-point codes is straightforward and in some

cases the longer codes that are obtained in this way have larger automor-

phism groups.

For the Klein curveX3Y +Y 3Z+Z3X = 0, the dual of a one-point code

is in general not a one-point code. The curve has three points O0, O1, O2

with XY Z = 0. Let K = L be the canonical divisor class and let

∆ = O0 +O1 + O2. The divisor classes K and 2∆ are invariant under the

full automorphism group PSL(2, 7). The spaces L(m(L−∆)) are spanned

by monomials. For the Klein curve over F8, the codes CL(m(L − ∆), D)

are better than the one-point codes on the same curve, are closed under

duality, and have interesting geometric properties.

The space L(mP∞) is a subset of the affine ring R = ∪m≥0L(mP∞) of

rational functions with poles only at P∞. The ring is a finitely generated

F-algebra. If φ1, . . . , φr are generators and m1, . . . ,mr are their pole orders

then the set of all possible pole orders is the semigroup Λ = Zm1 + · · · +
Zmr ⊂ Z The complement Z\Λ is finite of size g. Especially when r is

small, the ring R can be used for efficient encoding (if the code is a one-

point code) or efficient decoding (using a key equation in standard form if

the dual code is a one-point code, or a key equation in Welch-Berlekamp

form if the code is a one-point code).
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The Hermitian curve over a field F of size q2 is the curve X/F : yq +y =

xq+1. For every x ∈ F, there are q solutions for y ∈ F. Together with the

point at infinity P∞ = (0 : 1 : 0) the curve has q3 +1 rational points. Codes

from Hermitian curves are among the most studied geometric Goppa codes.

The semigroup Λ of nongaps is generated by {q, q + 1}.

Lemma 1.44. For an integer a, write a = a0(q + 1)− a1 with 0 ≤ a1 ≤ q.

Then a is a nongap if and only if a1 ≤ a0.

For the Suzuki curve, the semigroup of nongaps is generated by {q, q+

q0, q+ 2q0, q+2q0 +1}, and for the Klein curve by {3, 5, 7}. For Hermitian

one-point codes, the actual minimum distance is completely determined by

properties of the nongaps. We give a first proof based on the following

lemma.

Lemma 1.45. For every point R = (x0, y0) 6= P∞, there exists an effective

divisor ER of degree q such that (y − y0) = R + ER − (q + 1)P∞ and

ER ∩ P∞ = 0.

Theorem 1.46. Let G = K+(a0(q+1)−a1)P∞, with K = (q−2)(q+1)P∞
a canonical divisor. Then

d(CΩ(G,D)) =

{
a0(q + 1) − a1 if a1 ≤ a0

a0(q + 1) − a0 if a1 > a0

Proof. Let Q = Q1 + · · · + Qd and assume that there exists a nonzero

differential ω ∈ Ω(G − Q) with (ω) = G − Q + E,E ≥ 0. Then Q ∼
(a0(q + 1) − a1)P∞ + E. For each point R ∈ E apply the lemma to find

Q +
∑
ER ∼ ((a0 + degE)(q + 1) − a1)P∞. With the first lemma a1 ≤

a0 + degE. �

In this case, it appears natural to formulate the bound for the code

CΩ(G,D). The result and the proof depends on G but not on D. Below

we repeat the proof for a code CL(G∗, D) which essentially leads us back

to the case of a code CΩ(G,D) after making the assumption D ∼ nP∞.

Proof. (second proof) We prove the minimum distance bound for the

code CL(m∗P∞, D), wherem∗ = n+2g−2−m= n−a0(q+1)+a1. Assume

that there exists a nonzero f ∈ L(m∗P∞−Q′), with (f) = Q′+E−m∗P∞,

E ≥ 0. Then the complement Q = D −Q′ ∼ (n−m∗)P∞ + E. As in the

first proof, Q+
∑
ER ∼ ((a0 +degE)(q+1)−a1)P∞ and a1 ≤ a0 +degE.

�
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A special case of the theorem can be obtained with Theorem 1.42. Let

A = B = (a0(q+ 1)− q)P∞, Z = (q− a0 − 1)P∞, 1 ≤ a0 ≤ q− 1. Then the

code CΩ(G,D) with G = (2a0−1)(q+1)−a0 has d = d∗+(q−a0−1). This

corresponds to the case G = ((q − 2)(q+ 1) + (2a0 + 1− q)(q + 1)− a0)P∞
in the theorem above, with a0 ≥ 2a0 + 1 − q if and only if a0 ≤ q − 1.

For Hermitian one-point codes of length q3, the q3 finite rational points

form a complete intersection with coordinate ring

F[x, y]/(yq + y − xq+1, xq2 − x)

= 〈xiyj : 0 ≤ i ≤ q2 − 1, 0 ≤ j ≤ q − 1〉.

For the q3 monomials xiyj in the vector space basis,

∑

P∈D

xiyj =

{
1 if xiyj = xq2−1yq−1

0 otherwise

Duality can be stated as
∑

P∈D

xiyj = 0, for i+ j ≤ q − 1, (i, j) 6= (0, q − 1).

The monomials with i + j ≤ q − 1, (i, j) 6= (0, q − 1) generate but do not

form a basis for the coordinate ring. The set of all q3 + 1 rational points is

also a complete intersection, with coordinate ring

F[x, y]/(yq + y − xq+1, x(yq2 − y)/(yq + y))

= 〈xiyj : 0 ≤ i ≤ q, 0 ≤ j ≤ q2 − q〉.

For the q3 + 1 monomials xiyj in the vector space basis,

∑

P∈D∪P∞

xiyj =

{
1 if xiyj = xqyq2−q

0 otherwise.

Duality can be stated as
∑

P∈D

xiyj = 0, for i+ j ≤ q − 1.

This is the same duality as that for a summation over all points of the

projective line, and indeed follows from that duality since the points on the

Hermitian curve form a codeword in the code of the point-line graph of the

projective plane [6], [50]. The monomials with i + j ≤ q − 1 generate but
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do not form a basis for the coordinate ring. The tables give the monomial

basis for each of the two coordinate rings when q = 3.

− 1 y y2

1 0 4 8

x 3 7 11

x2 6 10 14

x3 9 13 17

x4 12 16 20

x5 15 19 23

x6 18 22 26

x7 21 25 29

x8 24 28 32

− 1 y y2 y3 y4 y5 y6

1 0 4 8 12 16 20 24

x 3 7 11 15 19 23 27

x2 6 10 14 18 22 26 30

x3 9 13 17 21 25 29 33

The coordinate ring F[x, y] of the Hermitian curve itself is often considered

as an F[x] algebra with free basis {1, y, . . . , yq−1}. For one-point codes of

full length q3 +1, the ring F[x, y] may be considered as an F[y] algebra with

free basis {1, x, . . . , xq}.

1.4.5. Two-point codes

Let X be a curve and let P∞, P0 be distinct rational points. A two-point

code is defined with a divisor G = aP∞ + bP0. For the rational function

field F(x) let P∞ be the simple pole of x and P0 the simple zero of x. Then,

for a + b ≥ 0, L(aP∞ + bP0) = 〈x−b, . . . , xa〉. Thus, two-point codes are

to one-point codes what BCH codes are to narrow sense BCH codes. The

larger class of codes contains some codes that are better without giving

up the advantages of efficient encoding and decoding. The subsemigroup

H(P∞, P0) of N × N was introduced in 1985 by Joe Harris. It consists of

all ordered pairs (a, b) such that there exists a rational function on X with

polar divisor aP∞+bP0. It generalizes the subsemigroup H(P∞) of N. The

complement G(P∞) = N\H(P∞) of gaps at P∞ is of size g. The size of the

complement G(P∞, P0) = N×N\H(P∞, P0) does not depend on the genus

alone. For the questions that we are interested in we extend H(P∞, P0) to

the subsemigroup of Z× Z of nongaps at P∞ and P0. Thus

H(P∞, P0) = {(a, b) ∈ Z× Z :

∃f ∈ L(aP∞ + bP0)| ordP∞
= −a, ordP0 = −b}.

The semigroup is contained in the halfplane a+ b ≥ 0, but not in the first

quadrant. The complement G(P∞, P0) = Z × Z\H(P∞, P0) is contained
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in the halfplane a + b ≤ 2g − 1. We extend the definition of the set Γ by

Kim [51] to the subsemigroup of the full integer plane.

Γ(P∞, P0) = {(a, b) ∈ H(P∞, P0) :

for given a, b is minimal with (a, b) ∈ H(P∞, P0)}.

Proposition 1.47. The set Γ is defined as the graph of a function σ :

Z −→ Z. The function σ is a permutation of the integers. If f is a nonzero

rational function with (f) = m(P0−P∞) then σ is determined by its images

on a set of representatives for the integers modulo m.

Proof. The pair (a, b) is in Γ(P∞, P0) if and only if L(aP∞ + bP0) 6=
L((a− 1)P∞ + bP0) and L(aP∞ + (b − 1)P0) = L((a− 1)P∞ + (b− 1)P0)

if and only if L(aP∞ + bP0) 6= L(aP∞ + (b − 1)P0) and L((a − 1)P∞ +

bP0) = L((a − 1)P∞ + (b − 1)P0). That is, for given b, a is minimal with

(a, b) ∈ H(P∞, P0). Clearly, if (a, b) ∈ Γ then (a+m, b−m) ∈ Γ. �

We call the ordered pair (a, b) ∈ Γ a discrepancy pair. A pair of integers

(a, b) is a nongap if and only if the discrepancies (a, b′) and (a′, b) satisfy

b′ ≤ b and a′ ≤ a.

Lemma 1.48. For two rational points P∞, P0 on the Hermitian curve yq +

y = xq+1 over Fq2 , there exists f with (f) = (q + 1)(P0 − P∞). The set of

discrepancies

Γ(P∞, P0) = {(a0(q + 1) − a1,−a0(q + 1) + a1q) : a0 ∈ Z, 0 ≤ a1 ≤ q}.

Proof. It suffice to consider a0 = 0, a1 = 0, 1, . . . , q. The minimal choices

correspond to functions (y/x)a1 with order −a1 at P∞ and qa1 at P0 =

(0, 0). �

Lemma 1.49. Write (a, b) ∈ Z × Z as (a0(q + 1) − a1, b0(q + 1) − b1)

with a0, b0 ∈ Z and 0 ≤ a1, b1,≤ q. Then (a, b) is a nongap if and only if

a1, b1 ≤ a0 + b0.

The following result was first obtained, in a different formulation and

with a different proof, by Homma and Kim. We state the result as formu-

lated by Beelen [3] and Park [65].

Theorem 1.50. Let G = K + aP∞ + bP0 ≥ K + P∞ +P0, where K is the

canonical divisor, and write

a = a0(q + 1) − a1, 0 ≤ a1 ≤ q,

b = b0(q + 1) − b1, 0 ≤ b1 ≤ q.
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Let d = d(CΩ(G,D)) and let d∗ = deg (G) − (2g − 2) = a+ b.

(1) a1, b1 ≤ a0 + b0, d = d∗.
(2a) b1 ≤ a0 + b0 ≤ a1, d = d∗ + a1 − (a0 + b0).

(2b) a1 ≤ a0 + b0 ≤ b1, d = d∗ + b1 − (a0 + b0).

(3a) a0 + b0 ≤ a1 ≤ b1 and a1 < q, d = d∗ + a1 + b1 − 2(a0 + b0).

(3b) a0 + b0 ≤ b1 ≤ a1 and b1 < q d = d∗ + a1 + b1 − 2(a0 + b0).

(4) a0 + b0 ≤ a1 = b1 = q d = d∗ + q − (a0 + b0).

Proof. Let H = (q + 1)P∞. For a0 + b0 ≤ a0 + b0 + r < a1,

G+ P∞ = ((a0 + b0 + r)H − a1P∞) + ((q − 1 − r)H − qP∞ − b1P0)

is the sum of two gaps. For a0 + b0 ≤ a0 + b0 + s < b1,

G+ P∞ = ((q − 1 − s)H − qP∞) + ((a0 + b0 + s)H − a1P∞ − b1P0)

is the sum of two gaps. Applying the coset bound Theorem 1.6 repeatedly,

as in Theorem 1.7, gives a lower bound for the minimum distance that

adds the number of pairs of gaps to the designed distance. The first group

of pairs adds a1 − (a0 + b0) to cases (2a,3a,4). The second group adds

b1− (a0 +b0) to the case (3a). The cases (2b) and (3b) follow by symmetry.

�

1.4.6. Error correction

For algebraic decoding it is important to have triples of codes A,B,C

with
∑
aibici = 0 for all a ∈ A, b ∈ B, c ∈ C. For a choice of error-locating

code A = CL(F,D), the general formats we use are

(1) A = CL(F,D) B = CL(G− F,D) C = CΩ(G,D).

(2) A = CL(F,D) B = CΩ(G+ F,D) C = CL(G,D).

The direct application of Theorems 1.8 and 1.9 to geometric Goppa codes

is as follows. For c ∈ C, let y = c + e be a received word such that e is

nonzero in the error positions Q = Q1 + . . . + Qt. For dimA > t, there

exists a nonzero f ∈ L(F − Q), i.e. a nonzero function that vanishes in

the error positions. The function f is obtained as a solution to the key

equation.

(1) Find f ∈ L(F ) :
∑

i f(Pi)g(Pi)yi = 0, ∀g ∈ L(G− F ).

(2) Find f ∈ L(F ), h ∈ L(G+ F ) : f(Pi)yi = h(Pi), for i = 1, 2, . . . , n.
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The key equations produce a nonzero f ∈ L(F −Q) from which the code-

word c can be uniquely decoded if

(1) L(F −Q) 6= 0 and Ω(G− F −Q) = 0.

(2) L(F −Q) 6= 0 and L(G+ F +Q−D) = 0.

Two codes CΩ(G,D) and CL(G∗, D) are equal if G+G∗ = (η) +D, for a

suitable differential η that depends onD but not on G and G∗. The two key

equations are equivalent and lead to algorithms with the same performance.

In particular, using the first with G and the second with G∗ = (η)+D−G

leads to similar conditions for decoding the same codes.

Theorem 1.51. (Basic algorithm) In both key equations, a choice of F with

degF = g+ t will correctly decode a received word with t ≤ (d∗−1)/2− g/2
errors.

Proof.

(1) deg (G− F −Q) = 2g − 2 + d∗ − g − 2t > 2g − 2.

(2) deg (G+ F +Q−D) = g + 2t− d∗ < 0.
�

If decoding fails with the divisor F because L(F − Q) = 0 then with

little extra computational cost decoding can be attempted with the updated

divisor F + P∞. For this process it is important that

(1) L(F −Q) = 0 ⇒ Ω(G− F − P∞ −Q) = 0.

(2) L(F −Q) = 0 ⇒ L(G+ F + P∞ +Q−D) = 0.

Lemma 1.52. For a pair of divisors A and B with degB < dimL(A+B)

L(B) 6= 0 ⇒ L(A) 6= 0.

Proof. Assume L(B) 6= 0. Replacing B with an equivalent effective di-

visor if necessary, dimL(A+B) ≤ dimL(A) + degB, and thus L(A) 6= 0.

�

Theorem 1.53. (Modified algorithm) In both key equations, the implica-

tions necessary for updating the key equation from a choice F to a choice

F + P∞ hold when

t ≤ (d∗ − 1)/2 + (dimL(E) − 1) − degE/2,

where (1) E = K −G+ 2F + P∞, or (2) E = G+ 2F + P∞ −D.
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With the Riemann-Roch theorem, the defect is the same for E and for

K −E,

deg (E)/2 − (l(E) − 1) = deg (K −E)/2− (l(K −E) − 1).

A divisor is called special if both L(E) 6= 0 and L(K − E) 6= 0. Clifford’s

theorem gives that the defect is nonnegative when E is a special divisor.

For the Hermitian curve K ∼ (2g − 2)P∞ and D ∼ nP∞. For one-

point codes with odd designed distance d∗ = 2t + 1, if F goes through

tP∞, . . . , (t+g)P∞ then up to equivalence E goes through (1)K, . . . , 2P∞, 0
or (2) 0, 2P∞, . . . ,K.

Theorem 1.54. The modified algorithm for one-point Hermitian codes

from the curve yq + y = xq+1 corrects any number of errors t ≤ (d∗ −
1)/2− q(q − 2)/8.

For the case q = 4, the defect is one and we present an example where

an error of size t = (d∗ − 1)/2 is decoded as an error of size t + 1 in the

same coset.

Consider X/F16 : y4 + y = x5. The evaluation of

f = x9y + x8y + x8 + x7y2 + x6 + x5y3 + x5 + x4y3

+ x4y2 + x4 + x3y3 + x3 + x2y3 + xy3 + x+ y3

gives a word c = (c1, . . . , c23, 0, . . . , 0) ∈ CL(41P∞, D) of weight 23. The

nonzero positions lie on the lines

`1 : x = α5, `2 : x = α10, `3 : y = (x+ 1),

`4 : y = α5(x+ 1), `5 : y = α10(x+ 1).

Let

Q1 = (`1 − P∞) + (`2 − P∞) + (`3 − (0, 1)) ∼ 13P∞ − (0, 1).

Q2 = `4 + `5 + (0, 1) ∼ 10P∞ + (0, 1).

The vanishing ideals for Q1 and Q2 are generated by

Q1 : (x5 + y4 + y, f1 = x2y + · · · , g1 = x6 + · · · ),
Q2 : (x5 + y4 + y, f2 = x2y2 + · · · , g2 = y3 + · · · ).
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− 1 y y2 y3 y4 y5 y6 · · ·
1 − − − − − + + · · ·
x − − − − + + + · · ·
x2 − + + + + + + · · ·
x3 − + + + + + + · · ·
x4 − + + + + + + · · ·

− 1 y y2 y3 y4 y5 y6 · · ·
1 − − − + + + + · · ·
x − − + + + + + · · ·
x2 − − + + + + + · · ·
x3 − − + + + + + · · ·
x4 − − + + + + + · · ·

If the word c = (c1, . . . , c23, 0, . . . , 0) is received as (c1, . . . , c12, 0, . . . , 0),

with errors in the eleven positions corresponding to Q2, then the modified

algorithm finds the smallest error-locating function f1 for Q1 before it finds

the smallest error-locating function f2 for Q2, and the word is decoded

as the allzero word. Among the functions that solve the key equation,

there are functions with leading monomial x2y, x3y, x4y that locate Q1 and

functions with leading monomials xy2, y3, xy3, y4 that locate Q2. Assuming

that the codeword is of the form s · x9y + · · · , for a given s ∈ F, we can

add one more constraint to the key equation. The functions with leading

monomial x2y, x3y, x4y remain valid only when s = 0. The functions with

leading monomials xy2, y3, xy3, y4 remain valid only when s = 1. None of

the seven functions remains valid when s 6= 0, 1. The number of errors t is

therefore at least 11 if s = 1, at least 12 if s = 0 and at least 15 if s 6= 0, 1.

The decoder should therefore first explore the case s = 1 which in this case

leads to the closest codeword.

1 y y2 y3 y4 y5 y6 · · ·
1 0 1 1 1 0 1 1 · · ·
x 1 1 0 1 0 0 s? · · ·
x2 0 0 0 1 1 0 . · · ·
x3 0 0 0 0 1 . . · · ·
x4 0 1 0 1 1 . . · · ·

1 y y2 y3 y4 y5 y6 · · ·
1 − − − ? ? + + · · ·
x − − ? ? + + + · · ·
x2 − ? + + + + + · · ·
x3 − ? + + + + + · · ·
x4 − ? + + + + + · · ·

1.4.7. Secret reconstruction for algebraic-geometric LSSSs

An ideal F-linear secret sharing scheme Σ = Σ0(Π) on the set of players

{1, 2, . . . , n} is defined as an F-linear map Π : E −→ Fn+1. For x ∈ E, the

values π1(x), . . . , πn(x) ∈ F are the shares of the secret value π0(x) ∈ F. We

recast the main properties of a linear secret sharing scheme in the language

of geometric Goppa codes. We also show that every geometric Goppa code

can be decoded up to half the designed distance.
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Let X/F be a curve. Let P = {P1, . . . , Pn} be a set of n rational points

and let P0 be a fixed rational point not in P . For a choice of divisor G,

define an algebraic geometric LSSS Σ = Σ0(G,P) with the F−linear map

αL : L(G) −→ Fn+1. For f ∈ L(G), the values f(P1), . . . , f(Pn) ∈ F are

the shares of the secret value f(P0) ∈ F.

Lemma 1.55. For G of degree degG = 2g + t, the AG-LSSS Σ0(G,P)

rejects any subset of size at most t and accepts any subset of size at least

t+ 2g + 1.

Proof. A subset A = {Q1, . . . , Qa} ⊂ P is unqualified if and only if

L(G− A) 6= L(G−A − P0). The latter holds for all a ≤ t and fails for all

a ≥ t+ 2g + 1. �

For a different proof, that uses Riemann’s Theorem, let f0, . . . , fg ∈
L(G −Q1 · · · − Qt) be functions with increasing orders of vanishing at P0

in the range {0, . . . , 2g}. And let h0, . . . , hg ∈ L(2gP0) be functions with

increasing pole order at P0 in the range {0, . . . , 2g}. By the pigeonhole

principle there exist fi and gj such that figj is a unit at P0.

For a proof that uses Riemann’s theorem in combination with Theorem

1.14, let f0, f1, . . . , fg+t ∈ L(G) be functions with increasing orders of van-

ishing at P0 in the range {0, . . . , 2g+t}. And let g0, . . . , gg+t ∈ L((2g+t)P0)

be functions with increasing pole order at P0 in the range {0, . . . , 2g+t}. By

the pigeonhole principle there exist subsequences f ′
0, . . . , f

′
t and g′0, . . . , g

′
t

such that
{
f ′

i ∗ g′j ∈ L(G− P0) for i+ j < t.

f ′
i ∗ g′j ∈ L(G)\L(G− P0) for i+ j = t.

Now apply Theorem 1.14. The last proof shows that in special cases the

rejection threshold can be higher depending on the vanishing orders at P0

of the divisor G. The following theorem appears in [9].

Theorem 1.56. For a divisor G of degree degG = 2g+ t, and for a set of

rational points P of size n, the AG-LSSS Σ0(G,P) is multiplicative in n− t
positions (resp. strongly multiplicative) if 3t < n− 4g (resp. 3t < n− 6g).

Proof. A subset of n − t players can interpolate the product fg of two

functions f, g ∈ L(G) if 2degG < n− t, that is if 3t < n− 4g. Unqualified

subsets for Σ are of size at most t+2g. Strong multiplication is guaranteed

if the dual code CL(G′, D+P0) of CL(2G,D+P0) rejects all subsets of size
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t+ 2g. This is the case if degG′ = n+ 1 + 2g − 2 − 2degG ≥ 4g + t, that

is if 3t < n− 6g. �

The theorem shows that for a curve X/F of genus g with N rational

points, and for 3t+4g < n ≤ N−1, there exist linear secret sharing schemes

Σ = Σ0(G,P) on n participants such that

- Σ reject all subsets of size t, and

- Σ reconstructs products of secrets from any n− t products of shares.

One of the main results in [9] is that efficient linear secret sharing schemes

for an increasing number of participants can be constructed over a small

base field using asymptotically good families of curves.

Strong multiplication can be realized with the weaker bound 3t+4g < n

by choosing the divisor G of degree 2g + t such that Σ0(G,P) is trilinear,

i.e. such that CL(G,D + P0) is essentially orthogonal to CL(2G,D + P0).

This gives the following generalization of a Shamir secret sharing scheme

(Theorem 1.18).

Theorem 1.57. For a divisor G such that there exists a differential η with

(η) = 3G−D − P0, the AG-LSSS Σ0(G,P) is trilinear.

We give such a choice for the Hermitian curve X/F16 : Y 4Z+Y Z = X5.

It has 65 rational points that form a complete intersection X = P with a-

invariant a = q − 1 = 15. The LSSS Σ(Ĉ) defined with the Reed-Muller

code Ĉ = RM(ν = 5, X = P) is trilinear. The Reed-Muller code is equiva-

lent to a geometric Goppa code defined with a divisor G ∼ 5L. The curve

has parameters N = 65 and g = 6, the code Ĉ is of type [65, 20, 40], and

the scheme Σ(Ĉ) has parameters n = 64 and t = 13.

For a LSSS Σ0(G,P) with degG ≤ n − (2t + 1), any two vectors of

shares differ in at least 2t+ 1 positions. If at most t shares are corrupted

then it is a priori possible to detect the corrupted shares and to determine

their correct value. The assumption 4g + 2t = 2degG < n− t that is used

for schemes that are multiplicative in n − t positions corresponds to the

much weaker degG ≤ n− (2t+ 1) − 2g.

For a LSSS Σ0(G,P) with degG ≤ n − (2t + 1) − 2g, correcting t

corrupted shares is straightforward with the key equation in Theorem 1.10.

Let (s1, . . . , sn) be a vector of possibly corrupted shares that differs in at
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most t positions from the vector (f(P1), . . . , f(Pn)), for f ∈ L(G). After

choosing a suitable divisor F , we solve for g ∈ L(F ) and h ∈ L(G+F ) such

that g(Pi)si = h(Pi) for i = 1, . . . , n. The function f is recovered as f =

h/g. The procedure succeeds if the corrupted positions Q = Q1 + . . .+Qt

satisfy

L(F −Q) 6= 0 and L(G+ F +Q−D) = 0.

The conditions hold for t + g ≤ degF ≤ t + 2g. The choice degF = t + g

gives a key equation with smallest number of variables and this is the most

efficient choice. For F of degree degF = t+3g/2, both conditions hold with

degQ = t+g/2.This choice corrects the largest number of corrupted shares.

For degF = t + 2g, and in particular for F = G, only up to t corrupted

shares can be corrected but there exists a solution for g with g(P0) 6= 0

and in that case the secret can be recovered as f(P0) = h(P0)/g(P0). The

last choice corresponds to the reconstruction procedure in [12] for a general

LSSS. The constraint g(P0) 6= 0 is not needed for an AG-LSSS if we evalu-

ate the secret as f(P0) = (h/g)(P0).

To correct t corrupted shares in a LSSS Σ = Σ0(G,P) with degG ≤
n− (2t+ 1), we use the procedure in Theorem 1.17. The procedure makes

use of two schemes Σ′ = Σ0(F,P) and Σ′′ = Σ0(F
∗,P) such that CL(F +

F ∗,P + P0) is orthogonal to CL(G,P + P0). Let f ∈ L(G). If (s1, . . . , sn)

is a vector that differs from the vector (f(P1), . . . , f(Pn)) in the positions

Q = Q1 + . . .+Qt, then the procedure returns the correct value for f(P0)

if

L(F −Q) 6= L(F −Q− P0) and L(F ∗ −Q) 6= L(F ∗ −Q− P0).

If one of the conditions fails the procedure may not return a value. An

incorrect value is returned only if

L(F −Q) = L(F −Q− P0) and L(F ∗ −Q) = L(F ∗ −Q− P0).

Theorem 1.58. Let C = CL(G,P) be a geometric Goppa code of length

n with divisor G of degree degG = n − (2t + 1). Let P0 be a point not in

P . For f ∈ L(G), let (s1, . . . , sn) be a vector that differs in no more than t

positions from the vector (f(P1), . . . , f(Pn)). Among the values for f(P0)

that are returned by the reconstruction procedure when it is applied with

F = tP0, . . . , (t + 2g)P0, the correct value for f(P0) outnumbers any other

value.
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Proof. dimL((t + 2g)P0 −Q) − dimL(tP0 −Q − P0) = g + 1. For F =

tP0, . . . , (t+2g)P0, the condition L(F−Q) 6= L(F−Q−P0) holds g+1 times

and fails g times. The matching divisor F ∗ similarly meets the condition

L(F ∗ − Q) 6= L(F ∗ − Q − P0) exactly g + 1 times and fails it g times.

With the pigeonhole principle, both conditions hold, and the correct value

is returned, at least once. Moreover, the number of times that an incorrect

value is returned is at most the number of times that both conditions fail

which is one less than the number of times that both conditions hold. �

1.4.8. Weight distributions

Weight distributions of linear codes are in general hard to determine.

The extra structure of geometric Goppa codes makes it possible to approach

their weight distribution as a distribution problem of effective divisors over

divisor classes and to benefit from the group structure on the divisor classes.

For a code CL(G,D) with injective encoding map L(G) −→ CL(G,D),

words of weight w correspond to functions in L(G) with n − w zeros in

D. The correspondence between nonzero words of weight w and effective

divisors in the class of G that intersect D in n−w points is (q− 1)-to-one.

Thus, in order to determine weight distributions, we may consider all effec-

tive divisors of a given degree that intersect D in a given number of points

and their distribution over the finitely many divisor classes of that degree.

The main tools for pursuing the above approach are zeta functions,

to study divisor distributions, and Fourier analysis over the finite group

of divisor classes of degree zero. In this section we show that the weight

distributions of the codes CL(G,D), where G runs over a full set of inequiv-

alent divisors G1, G2, · · · , Gh of the same degree, have an average weight

distribution that depends only on the zeta function of the curve and the

degrees of the divisors G and D. The error terms for each individual weight

distribution are controlled by the L− series L(T, χ), where χ = χ1, . . . , χh

is an unramified character of the function field.

Let K = F(X ) be the function field of X and let PK be the set of all the

places of K. The group of divisors D(K) is the free abelian group generated

by the set of places PK . The principal divisors (f), for a nonzero f ∈ K,

form a subgroup P (K) of D(K). The quotient D(K)/P (K) is the divisor

class group C(K). The group C(K) is finitely generated of the form Γ×Z.

The finite torsion subgroup Γ is the group of divisor classes of degree zero.
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The set of places PK generates the semigroup of effective divisors E(K).

For a fixed divisor class E of degree one, let

L(T ) =
∑

a≥0

∑

g∈Γ

|(g + aE) ∩ E(K)| XgT a

be a generating function for the number of effective divisors in the divisor

class g + aE. Let {eχ : χ ∈ Γ̂} be a basis of primitive idempotents for CΓ,

eχ =
1

|Γ|
∑

g∈Γ

χ(−g)Xg,

so that Xg eχ = χ(g) eχ. Define coordinate functions L(T, g), L(T, χ) ∈
C[[T ]] via

L(T ) =
∑

g

L(T, g)Xg =
∑

χ

L(T, χ)eχ.

The function L(T, g) is a generating function for the number of effective

divisors in the divisor class g + aE, for a ≥ 0. The function L(T, χ) is a

Dirichlet L-series for a Dirichlet character of trivial conductor. For a non-

trivial character χ, L(T, χ) is a polynomial of degree 2g−2 with cyclotomic

integer coefficients. For the trivial character χ0, L(T, χ0) = Z(T ) is the zeta

function of the curve. For a rational place P , let gP +E be the divisor class

of P , for gP ∈ Γ. For a subset P of rational places, define

Λ(T ) =
∏

P∈P
(1 +XgP T ) ∈ CΓ[T ],

with coordinate functions

Λ(T ) =
∑

g

Λ(T, g)Xg =
∑

χ

Λ(T, χ)eχ.

Theorem 1.59. The distribution over divisor classes of effective divisors

that contain precisely a given number of elements from P is given by

A(U, T ) = L(T )Λ(U − T ) ∈ CΓ[U ](T ).

The coordinate function A(U, T, g) ∈ C[U ][[T ]] is the generating function

for the number of effective divisors in the divisor class g + (i + j)E with

precisely i elements of P in the support.

Proof. The generating function L(T ) has an Euler product decomposi-

tion. The contribution of P ∈ P to A(U, T ) is, with g = gP ,

1 +Xg(U − T )

1 −XgT
= 1 +XgU +X2gUT +X3gUT 2 + · · · .
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Hence the variable U keeps track of the precise number of places P ∈ P
that contribute to a term of A(U, T ). �

To compute weight distributions with the theorem we compute the co-

ordinate functions A(U, T, χ) = L(T, χ)Λ(U −T, χ) on the basis of idempo-

tents and apply an inverse Fourier transform to recover coordinate functions

A(U, T, g) for A(U, T ). The top row in the table below gives the weight dis-

tribution for a code of type [24, 16, 7] over F8 constructed with the Klein

curve. The method outlined here produces the weight distributions for all

2744 = 143 codes of type [24, 16] on the Klein curve. For the code and its

dual, only the weights below the Singleton bound are listed. Using only

the contribution of the trivial character χ = χ0 gives the average weight

distribution for codes defined with inequivalent divisors of the same degree.

1

|Γ|
∑

g

A(U, T, g) =
1

|Γ|Z(T )(1 + U − T )n.

Table 1.3. Weight distributions for the 2744 distinct
[24, 16,≥ 6] codes on the Klein quartic over F8.

Small weights Small dual weights
# Ā6 Ā7 Ā8 Ā⊥

14 Ā⊥
15 Ā⊥

16

1 0 2520 37620 696 4200 11340
7 52 2184 38643 852 3720 11907

24 35 2170 38709 672 4329 11753
24 56 2138 37968 707 4469 10846

168 38 2167 38642 683 4312 11752
168 60 2131 37896 745 4278 11276
168 47 2190 38106 735 4212 11544
168 53 2136 38340 747 4167 11643
126 52 2104 38430 692 4404 11378
126 40 2176 38280 660 4484 11336
252 60 2060 38537 729 4246 11718
504 48 2140 38288 692 4374 11506
504 49 2154 38336 731 4222 11558
504 46 2165 38348 717 4272 11478

avg 49.1 2144.2 38328.1 714.7 4288.5 11525.2

Computed as an inverse Fourier transform of the unramified
L−series of the curve.
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1.5. Bibliographic notes

There are many textbooks for coding theory, including [4], [48], [55], [57].

The books [5], [36], [44], [49], [54], [62], [68], [71], [72], [75], [77], [79], as well

as the survey chapters [10], [42], [45], [47], discuss algebraic geometry codes,

each with a distinct approach and emphasis. We give a few more references

for the topics discussed in this chapter. Roos bound for the minimum

distance [22], Linear secret sharing schemes [12], Weight distributions and

codes over extension fields [21], [76], Dual BCH codes [20], [32], [69], Codes

from the Klein and Suzuki curves [8], [17], [33], [39], [61], Floor bound

[7], [58], [56], Explicit towers [1], [11], [25], [30], [31], [59], [70], [78], One-

point codes [29], [52], [80], Two-point codes [2], [3], [46], [51], [60], [65],

Error correction [13], [23], [37], [38], [66], Secret reconstruction for algebraic-

geometric LSSSs [9], [10], [14], Weight distributions [18].
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2.1. Introduction

The work on decoding of algebraic geometry codes started in 1986 and

in the following 10 years a lot of papers appeared. The paper [11] surveys all

the work on decoding until 1995. In this chapter we will present decoding

algorithms using recent ideas and methods.

The chapter is organized as follows: In Section 2.2 we present the basic

algorithm for decoding a general algebraic geometry code CL(D,G), this

algorithm only decodes error-patterns of weight smaller than d−1
2 −g where

d is the Goppa bound on the minimum distance of the code and g is the

genus of the curve used in the construction. Section 2.3 contains a syndrome

49
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formulation of the basic algorithm, this gives the possibility of correcting
d−1
2 − g

2 errors. In Section 2.4 we introduce and prove the generalized order

bound, which improves the Goppa bound on the minimum distance in many

cases and in Section 2.4 we use majority voting to give an algorithm that

corrects up to dS−1
2 errors where dS is the order bound on the minimum

distance. Section 2.6 contains a list decoding algorithm which gives the

possibility of correcting more errors, but then the correct codeword is on

a (small) list. In Section 2.7 we give a syndrome formulation of the list

decoder in order to drastically reduce the complexity of this algorithm.

The sections contain a number of examples illustrating the methods. We

have chosen not to include references in the text, but in Section 2.8 we

discuss the literature. The chapter ends with a full list of references.

2.2. The basic algorithm

2.2.1. Decoding

When an (n, k) code C is used for correcting errors, one of the important

problems is the design of a decoder. One can consider this as a mapping

from Fn
q into the code C, as an algorithm or sometimes even as a physical

device. We will usually see a decoder as a mapping or as an algorithm. One

way of stating the objective of the decoder is: for a received vector r, select

a codeword c that minimizes d(r, c). This is called maximum likelihood

decoding. It is clear that if the code is t-error correcting, i.e t < dmin

2 and

r = c+ e with w(e) ≤ t then the output of such a decoder is c.

It is often difficult to design a maximum likelihood decoder, but if we only

want to correct t errors where t < dmin

2 it is sometimes easier to get a good

algorithm.

Definition 2.1. A minimum distance decoder is a decoder that, given a

received word r, selects the codeword c that satisfies d(r, c) < dmin

2 if such

a codeword exists, and otherwise declares failure.

It is obvious that there can be at most one such codeword.

We will also in the following consider a so-called list decoder.

Definition 2.2. Let 0 ≤ τ ≤ n. A τ list decoder is a decoder that, given

a received word r, outputs all codewords c such that d(r, c) ≤ τ .

Again it is clear that if τ < dmin

2 then there is at most one codeword,

but for larger τ there could be more, hence the name list decoder. Also,
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for such a decoder to be useful, the number of codewords on the list should

be small.

2.2.2. The basic algorithm for decoding of algebraic geome-

try codes

Let χ be an algebraic curve i.e. an affine or projective variety of di-

mension one, which is absolutely irreducible and nonsingular and whose

defining equations are (homogeneous) polynomials with coefficients in a

finite field F, and let F denote its function field. Moreover, let G and

D = P1 + · · · + Pn be F-rational divisors on χ with SuppD ∩ SuppG = ∅
and denote by g the genus of the curve χ. Moreover define the functions

EvD : L(G) → Fn

f 7→ (f(P1), . . . , f(Pn))

and

ResD : Ω(G−D) → Fn

ω 7→ (resP1(ω), . . . , resPn
(ω)),

that are used to construct the codes CL(D,G) and CΩ(D,G).

Suppose that we wish to use the code CL(D,G) and that we have re-

ceived the word (r1, . . . , rn) containing at most t errors. The algorithm

below works with a divisor A with SuppA ∩ SuppD = ∅ satisfying

(1) degA < n− t

(2) degA > n+degG
2 + g − 1

It can be seen that if t < n−degG
2 − g then such a divisor A exists, but we

will see later in Section 3 that condition (2) above can be relaxed and then

we can work with larger t.

The idea of the algorithm is to find a nonzero polynomial Q(y) ∈ F [y]

such that:

(i) Q(y) = Q0 +Q1y where Q0 ∈ L(A) and Q1 ∈ L(A−G)

(ii) Q0(Pj) + rjQ1(Pj) = 0, j = 1, . . . , n

The polynomial Q(y) is called an interpolation polynomial.

Lemma 2.3. Suppose the transmitted word is evD(f) with f ∈ L(G) and

Q(y) satisfy (i) and (ii) then f = −Q0

Q1
.
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Proof. Since f ∈ L(G) and Q1 ∈ L(A − G) we have fQ1 ∈ L(A) and

therefore Q(f) ∈ L(A). We also have that Q0(P ) + f(P )Q1(P ) = 0 for at

least n− t points P ∈ {P1, . . . , Pn}, so Q(f) ∈ L(A− Pi1 − · · · − Pis
) with

s ≥ n − t. But deg(A − Pi1 − · · · − Pis
) < 0 and therefore Q(f) = 0 and

the result follows. �

We also get that Q(y) = Q1(−f +y) and therefore Q1 must have the error-

positions among its zeroes. For this reason Q1 is called an error-locator.

Lemma 2.4. If the divisor A satisfies condition (2) above then there exists

a nonzero Q(y) ∈ F [y] satisfying (i) and (ii).

Proof. Let {g1, . . . , gl0} be a basis for L(A) and {h1, . . . , hl1} a basis for

L(A−G). We then write

Q0 =
∑l0

i=1 q0igi

and

Q1 =
∑l1

i=1 q1ihi

so (ii) becomes
∑l0

i=1 q0igi(Pj) + rj
∑l1

i=1 q1ihi(Pj) = 0, with j = 1, . . . , n.

Since l0 + l1 = l(A) + l(A − G) ≥ degA + deg(A − G) − 2g + 2 =

2degA− degG− 2g + 2 > n the n linear homogenous equations have more

that n unknowns (q0i and q1i) so there is a nonzero solution. �

Based on the considerations above we can now present the so-called basic

algorithm

Input: A received word (r1, r2, . . . , rn).

Find a polynomial Q(y) satisfying (i) and (ii).

If f = −Q0

Q1
∈ L(G) Output: EvD (f).

Else Output: Failure.

2.3. Syndrome formulation of the basic algorithm

In this section we will reformulate the basic algorithm using so-called

syndromes. The advantage of this over the description given before is that

an interpolation polynomial can be found easier now, since its defining

system of linear equations can be divided into two pieces. Also we will

be able to show now that the basic algorithm for the code CL(D,G) can

correct up to t < (n − degG − g)/2 errors improving the previous result
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that it can correct up to (d− 1)/2− g errors. For future reference we give

the following definitions:

MA :=



g1(P1) . . . gl0(P1)

...
...

g1(Pn) . . . gl0(Pn)


 , (2.1)

Dr :=



r1

. . .

rn


 (2.2)

and

MA−G :=



h1(P1) . . . hl1(P1)

...
...

h1(Pn) . . . hl1(Pn)


 (2.3)

The interpolation conditions can then be written as:

MA · q0 + DrMA−G · q1 = 0 (2.4)

Thus we can find interpolation polynomials using linear algebra techniques

on system (2.4). A faster method can be obtained by multiplying system

(2.4) from the left with a suitable invertible matrix. We will construct this

matrix using differentials on the curve χ.

Lemma 2.5. Let A be a non-trivial divisor and write l0 = l(A). Further

let D = P1 + · · · + Pn as before and suppose that SuppA ∩ SuppD = ∅.

Finally let 〈·, ·〉 denote the standard inner product on Fn. Then there exist

differentials ω1, . . . , ωn such that

(i) The set {ResD (ω1), . . . ,ResD (ωn)} is a basis for Fn,

(ii) The set {ResD (ω1), . . . ,ResD (ωn−l0)} is a basis of the code CΩ(D,A),

(iii) For any point P ∈ SuppD and 1 ≤ i ≤ n, we have vP (ωi) ≥ −1,

(iv) For any c ∈ CL(D,A) and 1 ≤ j ≤ n− l0, we have 〈c,ResD (ωj)〉 = 0.

Proof. First of all, we choose some point T outside SuppD (not neces-

sarily rational). Note that CΩ(D,−T ) = Fn, since it is the dual of the code

CL(D,−T ) and L(−T ) = {0}. So for any v ∈ Fn, there exists a differential
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ω ∈ Ω(−T − D) such that (ResD (ω)) = v. Since degA < n, we see that

dimΩ(A − D) ≥ dimCΩ(D,A) = n − dimCL(D,A) = n − l(A) = n − l0.

Therefore, starting with a basis v1, . . . , vn−l0 of CΩ(D,A), we can find dif-

ferentials ω1, . . . , ωn−l0 ∈ Ω(A−D) such that vi = res(ωi).

We can complete the set {v1, . . . , vn−l0} to a basis of Fn by adding

l0 suitable vectors to it, say {vn−l0+1, . . . , vn}. By the above remark we

can then find differentials ωn−l0+1, . . . , ωn ∈ Ω(−T − D) such that vj =

ResD (ωj) for all j between n− l0 + 1 and n. This proves items (i), (ii) and

(iii).

It is clear that if j ≤ n− l0 and c ∈ CL(D,A), then 〈c,ResD (ωj)〉 = 0,

since ResD (ωj) ∈ CΩ(D,A) = CL(D,A)⊥. This proves item (iv), and the

lemma follows. �

Definition 2.6. Let G and D = P1 + · · ·+Pn be divisors defining a code as

usual. Given a differential ω, a function h, and a word r = (r1, . . . , rn) ∈ Fn,

we define the following syndrome:

sω,h(r) := 〈r,ResD (hω)〉,

where as before 〈·, ·〉 denotes the standard inner product on Fn.

Remark 2.7. The name syndrome is justified in the following sense. If

ω ∈ Ω(A−D), h ∈ L(A−G), and c ∈ CL(D,G), say c = EvD (f), then

sω,h(c) = 〈EvD (f),ResD (hω)〉

=

n∑

i=1

f(Pi) resPi
(hω)

=
n∑

i=1

resPi
(fhω)

= 0

(2.5)

where the last equality follows from the residue theorem, since the differ-

ential f hω cannot have poles outside SuppD.

Proposition 2.8. Let G,D and A be as above, let {h1, . . . , hl1} be a basis

of L(A − G), and let ω1, . . . , ωn−l0 ∈ Ω(A −D) be differential forms such

that {ResD (ω1), . . . ,ResD (ωn−l0)} is a basis of the code CΩ(D,A). Then

the system in equation (2.4) is equivalent to the following system:
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


sω1,h1(r) . . . sω1,hl1
(r)

...
...

sωn−l0
,h1(r) . . . sωn−l0

,hl1
(r)






q11
...

q1l1


 =




0
...

0


 . (2.6)

That is, for any solution (q11, . . . , q1l1) of system (2.6) there exists exactly

one l0-tuple (q01, . . . , q0l0) such that (q01, . . . , q0l0 ; q11, . . . , q1l1) is a solution

of system (2.4), and conversely, given a solution (q01, . . . , q0l0 ; q11, . . . , q1l1)

of system (2.4), the l1-tuple (q11, . . . , q1l1) is a solution of system (2.6).

Proof. Let ω1, . . . , ωn be differentials satisfying the properties in Lemma

2.5. From this basis, we define the matrix H by putting the i-th row of M

equal to ResD (ωi). We will multiply system (2.4) with H from the left.

Note that H is regular, implying that the multiplied system has exactly

the same solutions as the original one. First we investigate the matrix

HMA. Since degA < n, we see that dimCL(D,A) = l(A) = l0. Hence the

matrix MA (as well as the matrix HMA) has rank l0. On the other hand,

according to item 4 in Lemma 2.5, the first n− l0 rows of HMA are zero.

Thus the l0 × l0 matrix B obtained by deleting the first n − l0 rows from

HMA is regular.

We have now shown that when we multiply system (2.4) from the left

by H, we obtain a system of the form:

(
0

B

)


q01
...

q0l0


+ HDr MA−G



q11
...

q1l1


 =




0
...

0


 . (2.7)

A direct computation shows that the entries of the matrix HDr MA−G

indeed are syndromes as defined in Definition 2.6. In other words: system

(2.6) is nothing but the first n − l0 equations of system (2.7). Since B is

regular, the claim of the proposition now follows. �

We define S(A)(r) to be the matrix occurring in Proposition 2.8, i.e. we

define:

S(A)(r) :=




sω1,h1(r) . . . sω1,hl1
(r)

...
...

sωn−l0
,h1(r) . . . sωn−l0

,hl1
(r)


 . (2.8)

Given two matrices M1 and M2, we denote by M1|M2 the matrix whose

columns are those of M1 followed by those of M2. As a bonus of the proof

of the previous proposition, we get the following:
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Corollary 2.9. The rank of the matrix MA|DrMA−G is at most l0 + t,

were t denotes the number of errors in r.

Proof. In the proof of Proposition we defined a regular matrix H such

that

H · (MA|DrMA−G) =

(
0 S(A)(r)

B ∗

)
.

Therefore we see that

rank(MA|DrMA−G) = rank(H · (MA|DrMA−G)) = l0 + rankS(A)(r).

Thus it suffices to show that rankS(A)(r) ≤ t.

Now suppose that r = c+ e, where c ∈ CL(D,G) and e an error-vector

of Hamming weight wt(e) = t. From Remark 2.7 we see that S(A)(r) =

S(A)(e) and therefore we have that

rankS(A)(r) = rankS(A)(e) ≤ rank(HDeMA−G) ≤ rankDe = wt(e) = t.

�

This corollary enables one to analyse the performance of the basic al-

gorithm in more detail than before.

Proposition 2.10. Let c = EvD (f) ∈ CL(D,G) be a codeword and e

an error-vector of weight t < (n − degG − g)/2. Given the received word

r = c + e, there exists an interpolation polynomial Q(y) = Q0 +Q1y and a

divisor A such that

(1) Q0 ∈ L(A) and Q1 ∈ L(A−G),

(2) degA < n− t,

(3) l(A−G) > t,

(4) f = −Q0/Q1.

Proof. The above corollary implies that the number of linearly indepen-

dent equations in system 2.4 is at most l0 + t. Therefore if l(A−G) > t and

degA < n−t, an interpolation polynomialQ(y) = Q0+Q1y with the desired

properties exists. If degA ≥ degG+ t+ g, then l(A−G) > t. It is therefore

enough to assume that degA < n− t and degA ≥ degG + t+ g. A divisor

A satisfying these two conditions exists as long as t < (n− degG− g)/2.�

Example 2.11. In this example F = Fq2 , where q is a power of a prime

number p. We state some general facts about the Hermitian curve χ defined

over F by the equation

xq
2 + x2 = xq+1

1 . (2.9)



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

Decoding Algebraic Geometry Codes 57

We actually consider its projective closure, but for convenience we usually

work with equation (2.9). First we fix some notation. Given α, β ∈ F and a

point P with x1(P ) = α and x2(P ) = β, we write P = Pαβ . Let β1, . . . , βq

be all solutions to the equation tq + t = 0. Then we define Ti := P0βi
for

1 ≤ i ≤ q. The projective point (0 : 1 : 0) we denote by T∞. Note that the

points T1, . . . , Tq, T∞ are exactly those points on the Hermitian curve that

also lie on the line x1 = 0. All these points are rational.

It is well known that the genus of H is g = q(q − 1)/2 and that it has

q3 + 1 rational points. We denote the q3 − q rational points different from

T1, . . . , Tq, T∞ by P1, . . . , Pq3−q and define

D := P1 + · · · + Pq3−q.

Also for any (q + 1)-tuple k∞, k1, . . . , kq of integers we define

G(k∞, k1, . . . , kq) := k∞T∞ +

q∑

i=1

kiTi.

A basis of the space L(G(k∞, k1, . . . , kq)) can be described as follows: first

of all, a generating set for L(G(k∞, k1, . . . , kq)) is given by the set of all

functions xi
1

∏q
j=1(x2 − βj)

e(i,j) satisfying:

• 0 ≤ i ≤ q,

• i+ (q + 1)e(i, j) ≥ −kj for all j with 1 ≤ j ≤ q,

• iq +
∑q

j=1 e(i, j)(q + 1) ≤ k∞.
The resulting functions are not linearly independent in general, but this

can be achieved in the following way: for each i between 0 and q and

each number d(i) between −∑q
j=1b(kj + i)/(q+ 1)c and (k∞ − iq)/(q+ 1),

choose (if it exists) exactly one q-tuple ( e(i, 1), . . . , e(i, q) ) satisfying the

above conditions such that e(i, 1) + · · · + e(i, q) = d(i). The corresponding

functions constitute a basis.

For future reference we also note that the differential dx1 has divisor

(dx1) = (q2 − q − 2)T∞. (2.10)

Let S ⊂ Fq2 and suppose that

D =
∑

α∈S

∑

β:βq+β=αq+1

Pαβ .

Then we have that(
dx1∏

α∈S(x1 − α)

)
= −D + (n+ 2g − 2)T∞.
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One can use this differential to show that for D as above, we obtain an

isomorphism between Ω(−D +A) and L(−A+ (n+ 2g − 2)T∞).

Example 2.12. In this example consider the Hermitian curve for q = 4

and choose the divisor G = T1 + 2T2 + 3T3 + 4T4 + 13T∞. We write F16

as F2[γ], where γ4 = γ + 1. All solutions of t4 + t = 0 are then given by

β1 = 0, β2 = 1, β3 = γ5, and β4 = γ10. A basis for L(G) is given by

· xα
2 , with 0 ≤ α ≤ 2,

· x1x
α
2 /(x2 + γ10), with 0 ≤ α ≤ 2,

· x2
1x

α
2 /(x

2
2 + x2 + 1), with 0 ≤ α ≤ 3,

· x3
1x

α
2 /(x

3
2 + 1), with 0 ≤ α ≤ 3, and

· x4
1x

α
2 /(x

4
2 + x2), with 0 ≤ α ≤ 3.

Now let D be the sum of all 60 rational points not in SuppG. We

order the points by writing their coordinates as a power of γ and then

ordering theses two exponents lexicographically. In this way we get P1 =

(1, γ), . . . , P60 = (γ14, γ14).

The code CL(D,G) is an [60, 18,≥ 37] code and the basic algorithm

can correct t = 15 errors. Now we choose A = G + 21T∞, since then

degA = 44 < 60 − 15 and l(A − G) = l(21T∞) = 16 > 15. To write

down system (2.6), we need, according to Proposition 2.8, to calculate a

basis for the space L(A − G) and differentials ω1, . . . , ω21 such that their

images under the residue map form a basis of the code CΩ(D,A). In this

case the last part amounts to calculating a basis for Ω(−D+A). Using the

differential form ω := (x15
1 +1)−1dx1, we see that the spaces L(−A+70T∞)

and Ω(−D+A) are isomorphic via f 7→ fω. A basis for L(A−G) is given

by:

· xα
2 , with 0 ≤ α ≤ 4,

· x1x
α
2 , with 0 ≤ α ≤ 3,

· x2
1x

α
2 , with 0 ≤ α ≤ 2,

· x3
1x

α
2 , with 0 ≤ α ≤ 1, and

· x4
1x

α
2 , with 0 ≤ α ≤ 1.

For future convenience, we order this basis with respect to the pole-order

in T∞, so that h1 = 1, h2 = x1, h3 = x2, ..., h15 = x4
2, h16 = x4

1x2. A basis

for Ω(−D +A) is given by:



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

Decoding Algebraic Geometry Codes 59

· (x4
2 + x2)x

α
2ω, with 0 ≤ α ≤ 3,

· x1(x
3
2 + 1)xα

2ω, with 0 ≤ α ≤ 3,

· x2
1(x

2
2 + x2 + 1)xα

2ω, with 0 ≤ α ≤ 3,

· x3
1(x2 + γ10)xα

2ω, with 0 ≤ α ≤ 3, and

· x4
1x

α
2ω, with 0 ≤ α ≤ 4.

Again we order this basis with respect to the pole-order in T∞. We then

get ω1 = x4
1ω, ω2 = x3

1(x2 − γ10)ω, . . . , ω20 = (x4
2 + x2)x

3
2ω, ω21 = x4

1x
4
2ω.

Now we will show an example of error-correction using the basic algo-

rithm. Suppose that the sent codeword is c = EvD (x2
2 + x4

1x
3
2/(x

4
2 + x2))

and that the error-vector e = (e1, . . . , e60) is given by e4 = 1, e8 = γ,

e9 = γ3, e16 = γ7, e18 = γ11, e25 = 1, e31 = γ, e37 = γ6, e39 = γ10,

e42 = γ, e47 = 1, e52 = γ12, e55 = γ8, e58 = 1, e60 = γ3, and ei = 0 for

all other values of i. Then the matrix S(A)(c + e), which is independent of

the sent codeword c, is the following:




γ6 γ5 γ14 γ11 γ6 γ γ13 γ γ6 γ2 0 γ12 0 γ2 γ6 γ9

γ9 γ7 γ5 γ13 γ3 γ11 γ11 γ11 γ9 γ7 γ9 γ11 γ5 γ4 γ6 γ5

γ3 γ12 γ10 γ10 γ14 γ9 γ5 γ12 γ14 γ8 γ6 γ2 γ9 γ4 γ3 γ

1 γ12 γ11 γ5 γ13 γ γ3 0 γ12 0 γ γ8 γ9 γ13 0 1

γ5 γ11 γ6 γ13 γ γ6 0 γ12 0 γ2 γ8 γ9 γ13 0 γ13 γ10

γ14 γ6 γ γ γ6 γ2 γ12 0 γ2 γ6 γ9 γ13 0 γ13 γ8 γ7

γ5 γ3 γ11 γ11 γ9 γ7 γ11 γ5 γ4 γ6 γ5 0 γ γ10 γ5 γ7

γ10 γ14 γ9 γ12 γ14 γ8 γ2 γ9 γ4 γ3 γ γ8 γ13 γ3 γ5 γ5

γ11 γ13 γ 0 γ12 0 γ8 γ9 γ13 0 1 γ10 γ7 γ11 γ5 γ11

γ6 γ γ6 γ12 0 γ2 γ9 γ13 0 γ13 γ10 γ7 γ11 γ5 γ γ12

γ γ6 γ2 0 γ2 γ6 γ13 0 γ13 γ8 γ7 γ11 γ5 γ γ7 γ4

γ11 γ9 γ7 γ5 γ4 γ6 0 γ γ10 γ5 γ7 γ5 γ10 γ4 γ6 γ14

γ9 γ14 γ8 γ9 γ4 γ3 γ8 γ13 γ3 γ5 γ5 γ7 γ γ7 γ4 γ13

γ γ12 0 γ9 γ13 0 γ10 γ7 γ11 γ5 γ11 γ12 γ4 γ8 γ7 γ11

γ6 0 γ2 γ13 0 γ13 γ7 γ11 γ5 γ γ12 γ4 γ8 γ7 γ9 γ13

γ2 γ2 γ6 0 γ13 γ8 γ11 γ5 γ γ7 γ4 γ8 γ7 γ9 1 γ8

γ7 γ4 γ6 γ γ10 γ5 γ5 γ10 γ4 γ6 γ14 γ9 γ2 γ8 0 γ2

γ8 γ4 γ3 γ13 γ3 γ5 γ7 γ γ7 γ4 γ13 γ8 γ12 γ11 γ12 γ14

0 γ13 0 γ7 γ11 γ5 γ12 γ4 γ8 γ7 γ11 γ13 γ8 γ6 γ2 γ6

γ2 0 γ13 γ11 γ5 γ γ4 γ8 γ7 γ9 γ13 γ8 γ6 γ2 1 1

γ6 γ13 γ8 γ5 γ γ7 γ8 γ7 γ9 1 γ8 γ6 γ2 1 γ2 γ6




.
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One can check that the kernel of this matrix is one-dimensional. A corre-

sponding error-locator is:

Q1 = γ12h2 + h3 + γ2h4 + γ2h5 + γ4h6 + γ13h7 + γ6h8+

γ7h9 + γ4h10 + γ3h11 + γ7h12 + γ6h13 + γ11h14 + γ8h15.

The error-positions i can be found by computing the zeroes Pi of this poly-

nomial. In this case we find that the 15 error-positions are contained in the

set {4, 8, 9, 12, 16, 18, 19, 21, 25, 31, 37, 39, 42, 47, 48, 52, 55, 58, 60}.
Now that the variables q1 = (q11, . . . , q1l1) are known, we can substi-

tute their values into system (2.7). In that way we obtain a system of 39

equations in the 39 variables q0 = (q01, . . . , q0l0). To find these equations

we need to choose, as in Lemma 2.5, differentials ω1, . . . , ω60 such that their

images under the map ResD form a basis of F 60
16 . The first 21 are simply

the differentials defined above as the basis for Ω(−D+A). The remaining

39 we choose from Ω(−D + A − 45T∞). We can actually choose them in

the following way

· (x4
2 + x2)x

α
2ω, with 4 ≤ α ≤ 11,

· x1(x
3
2 + 1)xα

2ω, with 4 ≤ α ≤ 11,

· x2
1(x

2
2 + x2 + 1)xα

2ω, with 4 ≤ α ≤ 11,

· x3
1(x2 + γ10)xα

2ω, with 4 ≤ α ≤ 11, and

· x4
1x

α
2ω, with 5 ≤ α ≤ 11.

Like for the given basis for Ω(−D+A), we order this basis by increasing pole

order at T∞. Then we get ω22 = x3
1(x2 + γ10)x4

2ω, . . . , ω60 = (x4
2 + x2)x

11
2 .

We can now calculate the 60 × 60 matrix H as well as the vector v :=

HDrMA−Gq1. The first 21 coordinates of v are 0, since q1 is in the kernel

of S(A)(r). The remaining 39 coordinates of this vector are given by:

v22 = 0, v23 = 0, v24 = 0, v25 = γ8, v26 = γ7, v27 = γ,

v28 = γ10, v29 = γ4, v30 = γ7, v31 = γ3, v32 = γ14, v33 = γ5,

v34 = γ13, v35 = γ4, v36 = γ10, v37 = γ5, v38 = γ, v39 = 0,

v40 = γ2, v41 = γ8, v42 = γ13, v43 = γ, v44 = 0, v45 = γ4,

v46 = γ3, v47 = γ, v48 = γ, v49 = 0, v50 = γ4, v51 = γ10,

v52 = γ5, v53 = γ, v54 = 0, v55 = 1, v56 = γ11, v57 = γ12,

v58 = γ8, v59 = γ4, v60 = γ3.

We now choose the following basis for L(A):
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· xα
2 , with 0 ≤ α ≤ 6,

· x1x
α
2 /(x2 + γ10), with 0 ≤ α ≤ 7,

· x2
1x

α
2 /(x

2
2 + x2 + 1), with 0 ≤ α ≤ 7,

· x3
1x

α
2 /(x

3
2 + 1), with 0 ≤ α ≤ 7, and

· x4
1x

α
2 /(x

4
2 + x2), with 0 ≤ α ≤ 7,

and order it with increasing pole order in T∞. Then g1 = x4
1/(x

4
2 + x2),

g2 = x3
1/(x

3
2 + 1), . . . , g39 = x1x

7
2/(x2 + γ10). We can then calculate the

matrix B from the proof of Proposition 2.8. By the way we have chosen

and ordered the differentials and functions, we obtain more structure than

was indicated in Proposition 2.8. In this case we obtain that

Bij =

{
1 if i+ j = 40 or i+ j = 55,

0 otherwise.

This means that is straightforward to calculate Q0 now and we obtain

Q0 = γ13g12 + γ2g13 + γ7g14 + γ3g16 + γ4g17 + γ8g18 + γ12g19 + γ11g20+

g21 + γg23 + γ5g24 + γ10g25 + γ4g26 + γ13g27 + γ5g28 + γ14g29 + γ3g30+

γ7g31 + γ4g32 + γ10g33 + γg34 + γ7g35 + γ8g36.

Note that Q0/Q1 = x2
2 + x4

1x
3
2/(x

4
2 + x2).

2.4. The generalized order bound

The advantage of the codes CL(D,G) and CΩ(D,G) is an a priori lower

bound on the minimum distance d. In case of CL(D,G) we know that

d ≥ n− degG, while for CΩ(D,G) we know that d ≥ degG− 2g+ 2. These

bounds are known as the Goppa-bounds. Though good in general, it is

clear that if degG ≤ 2g − 2 the bound d ≥ degG − 2g + 2 is trivial, while

if degG ≥ n, the bound d ≥ n − degG lower bound is trivial. We will see

that there exist a bound that improves the Goppa-bounds in the mentioned

cases, but sometimes also if 2g − 2 < degG < n. In this section we will

show how to obtain this lower bound, called the generalized order bound.

Let T 6∈ SuppD be a rational point. We then define the ring

R(T ) :=
⋃

i≥0

L(iT ). (2.11)
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There is a natural mapping ρT from R(T )\{0} to N = {0, 1, 2, . . .}, namely

ρT : R(T )\{0} → N

f 7→ −vT (f).

(2.12)

The image H(T ) of this map is the so-called Weierstrass semigroup of T :

H(T ) := ρT (R(T )\{0}) (2.13)

We will now define a certain type of R(T )-modules called order mod-

ules that will be useful when computing lowwer bounds on the minimum

distance of algebraic geometry codes.

Definition 2.13. An order module M for R(T ) is a pair (M,ϕ), where M

is an R(T )-module and ϕ a surjective F-linear map ϕ : M → Fn such that:

(1) M =
⋃

i∈Z
Mi, with Mi ⊂ M vector spaces such that for all integers

i ≤ j we have that Mi ⊂Mj ,

(2) There exists an integer a such that Mi = {0} for all i < a,

(3) For any integers i and j, we have that L(iT )Mj ⊂Mi+j ,

(4) For f ∈ R(T ) and m ∈ M we have that ϕ(fm) = EvD (f) ∗ ϕ(m),

where ∗ denotes the coordinate-wise product on Fn,

(5) For m ∈ Mi\Mi−1 and f ∈ R(T ) satisfying ρT (f) = j, we have that

fm ∈ Mi+j\Mi+j−1,

(6) For all i, we have that Mi = Mi−1 or dimMi = dimMi−1 + 1.

Remark 2.14. An analogue of the map ρT can be defined on M as follows:

ρT,M : M\{0} → Z

m 7→ min{i |m ∈ Mi}.
(2.14)

Item 5 of Definition 2.13 is then equivalent to:

(5a) For any f ∈ R(T )\{0} and m ∈M\{0} we have that

ρT,M (fm) = ρT (f) + ρT,M (m).

The linear subspaces ϕ(Mi) ⊂ Fn are interpreted as codes. Examples of

order modules are

ML(D,G, T ) := (∪i∈ZL(G+ iT ),EvD ) (2.15)
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and

MΩ(D,G, T ) := (∪i∈ZΩ(−D +G− iT ),ResD ). (2.16)

In the first case, we have that ρT,M(m) = −vT (m) − vT (G), while the

corresponding codes are the codes CL(D,G + iT ). In the second example

we have that ρT,M(m) = −vT (m) + vT (G), while we now obtain the codes

CΩ(D,G− iT ).

Remark 2.15. The codes coming from MΩ(D,G, T ) are the same as those

from ML(D,K +D −G, T ), where K = (ω) is the divisor of a differential

ω that has poles of order one and residues equal to one in all points of

SuppD. If one wishes, we can therefore reduce computations in the module

MΩ(D,G, T ) to ones in ML(D,K +D −G, T ).

The analogue of the set H(T ) for an order module M = (M,ϕ) is:

H(T,M) := ρT,M(M\{0}). (2.17)

Note that this set is not a semigroup in general, but it does have the

property that i ∈ H(T,M) implies that i+H(T ) ⊂ H(T,M). An element

from N\H(T ) is called a gap of the semigroup H(T ). It is well known that

the number of gaps equals the genus g of the curve. We will define the

analogue concepts for H(T,M).

Definition 2.16. Let a = minH(T,M). The set Z≥a\H(T,M) is called

the set of gaps of H(T,M). We denote the number of gaps by g(M).

Remark 2.17. Since a + H(T ) ⊂ H(T,M), we always have g(M) ≤ g.

Using Riemann-Roch’s theorem, we find that in case M = ML(D,G, T ),

then a = −degG+ g− g(M). Similarly, if M = MΩ(D,G, T ), then we get

that a = −n+ degG− g − g(M) + 2.

We now define the set

N(T,M, i) := {(i1, i2) | i1 ∈ H(T ); i2 ∈ H(T,M); i1 + i2 = i+ 1} (2.18)

and its cardinality

ν(T,M, i) := #N(T,M, i). (2.19)

Lemma 2.18. Let pT (t) :=
∑

i1∈H(T ) t
i1 and pT,M(t) :=

∑
i2∈H(T,M) t

i2 .

Then ν(T,M, i) is the coefficient of ti+1 in pT (t)pT,M(t).

Proof. This follows directly from the definition of ν(T,M, i). �
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We can use this interpretation to give a lower bound on ν(T,M, i). We do

this in the following lemma.

Lemma 2.19. Let M be an order module and let a = minH(T,M). Then

ν(T,M, i) ≥ i− a+ 2− g − g(M).

Proof. We can choose polynomials qT (t) and qT,M(t) such that the fol-

lowing identities of Laurent series hold:

pT (t) + qT (t) =
1

1 − t

and

pT,M(t) + qT,M(t) =
ta

1− t
.

Moreover, qT (t) is the sum of precisely g monomials, and qT,M(t) of g(M)

monomials. These monomials all have coefficient 1. The above implies that

pT (t)pT,M(t) = ta
1

(1 − t)2
− taqT (t) + qT,M(t)

1 − t
+ qT (t)qT,M(t).

Considering this as a Laurent series in t, we can compute the coefficient

of ti+1. The term ta/(1 − t)2 contributes exactly with i − a + 2 to this

coefficient, the term −(taqT (t) + qT,M(t))/(1− t) with at least −g− g(M)

and the term qT (t)qT,M(t) with a nonnegative number. All in all we get

that the coefficient of ti+1 in pT (t)pT,M(t) is at least i− a+ 2− g− g(M).

The lemma now follows from Lemma 2.18. �

Given an order module M = (∪iMi, ϕ), we can shift the order module

by s as follows: M+s = (∪iMi+s, ϕ). Then ν(T,M+s, i) = ν(T,M, i+ s)

implying that ν(T,M, s) = ν(T,M+s, 0). Therefore it will be practical to

simplify our notation when i = 0 by defining:

N(T,M) := N(T,M, 0)

and

ν(T,M) := ν(T,M, 0).

We now have the necessary notation to formulate the following propo-

sition that is essential in order to obtain lower bounds on the minimum

distance of codes coming from order modules.

Proposition 2.20. Let M = (M,ϕ) be an order module for R(T ) and let

c ∈ ϕ(Mi)
⊥\ϕ(Mi+1)

⊥. Then wt(c) ≥ ν(T,M, i), with wt(c) the Ham-

ming weight of c.
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Proof. Let c = (c1, . . . , cn) ∈ ϕ(Mi)
⊥\ϕ(Mi+1)

⊥. We denote by Dc the

diagonal matrix with c1, . . . , cn on its diagonal.

Let H(T ) = {ρ1, ρ2, . . . }, such that ρk < ρl if k < l. For every

ρk ∈ H(T ) we choose a function fk ∈ R(T ) such that ρT (fk) = ρk. Fur-

ther we define vk := EvD (fk). Let N be a natural number such that

EvD (L(NT )) = Fn and N > max{k | (ρk, l) ∈ N(T,M, i)}. Then we let

H1 be the N × n matrix whose k-th row is EvD (fk) for 1 ≤ k ≤ N . By

choice of N , we have that rankH1 = n.

By item 2 in Definition 2.13, there exists an integerN1 such that MN1 =

0. On the other hand, since ϕ is assumed to be a surjective linear map to

Fn, there exists an N2 such that ϕ(MN2) = Fn and N2 > max{l | (ρk, l) ∈
N(T,M, i)}. The set H(T,M)∩ [N1, N2] consists of finitely many integers,

say s1, . . . , sL. Then we can choose mk ∈Msk
\Msk−1. By the choice of the

mk we see that ρT,M(mk) < ρT,M(ml) if k < l. Now we define hk := ϕ(mk)

and H2 the L×n matrix with hk as k-th row. By our choice of N1, N2 and

by item 5 in Definition 2.13, we have that rankH2 = n.

Consider the matrix S(c) := H1DcH
t
2. Since H1 and H2 have full

rank, we see that rankS(c) = wt(c). On the other hand we will show that

rankS(c) ≥ ν(T,M, i). Note that

S(c)ij =

n∑

λ=1

fi(Pλ)cλϕ(mj)λ =

n∑

λ=1

cλϕ(fimj)λ = 〈c, ϕ(fimj)〉. (2.20)

Let (ρi, j) ∈ N(T,M, i). By our choice of N we have that i ≤ N and

therefore vi occurs as a row in H1. Similarly hj occurs as a row in H2.

Now let t := ν(T,M, i) and suppose that

N(T,M, i) = {(ρi1 , jt), (ρi2 , jt−1), . . . , (ρit
, j1)}.

For convenience, we define σk := ρik
. Without loss of generality we can

assume that i1 < i2 < · · · < it. This implies that j1 < j2 < · · · < jt, since

if both k < l and jk > jl, then

i+ 1 = σt+1−l + jl < σt+1−k + jl < σt+1−k + jk = i+ 1.

Let H be the t × t matrix obtained from S(c) by choosing all those

entries S(c)ij with i ∈ {i1, . . . , it} and j ∈ {j1, . . . , jt}. Clearly rankS(c) ≥
rankH, so the proposition follows if we show that H has full rank. Suppose

that k+l < t+1. Then ϕ(fik
mjl

) ∈ ϕ(Mi), since ρT,M(fik
mjl

) = ρT (fik
)+

ρT,M(mjl
) = σk + jl < σk + jt+1−k = i+ 1. But this implies by equation

(2.20) that

S(c)ikjl
= 〈c, ϕ(fik

mjl
)〉 = 0.
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On the other hand, if k+ l = t+ 1, then a similar computation shows that

ϕ(fik
mjl

) ∈ ϕ(Mi+1) and that S(c)ikjl
6= 0. This means that H is of the

form

H =




0 ∗
. .
.

∗


 ,

where a ∗ denotes a nonzero element of F. Thus rankH = t. �

When using the above proposition, one needs to choose an order mod-

ule. For example for the code CL(D,G) we could choose the mod-

ule MΩ(D,G, T ) and for the code CΩ(D,G), we can use the module

ML(D,G, T ).

Now we describe the generalized order bound. Let D = P1 + · · ·+Pn as

usual and G a divisor such that SuppG ∩ SuppD = ∅. Suppose that the

set {T1, T2, . . . , } consists of rational points that do not occur in SuppD.

Now let S = (S1, S2, . . . ) be a sequence of points, each of which is contained

in {T1, T2, . . . , }. We also recursively define the divisors G0 := G, Gi+1 :=

Gi + Si+1, H0 := G, Hi+1 := Hi − Si+1 and modules

MS(i) := MΩ(D,Hi, Si+1)

and

M⊥
S (i) := ML(D,Gi, Si+1).

With this notation in mind, we can then define:

Definition 2.21.

dS(G) := mini{ν(Si+1,MS(i))}

and

d⊥S (G) ≥ mini{ν(Si+1,M⊥
S (i))}.

In the first (respectively second) case the minimum is taken over all i

such that i ≥ 0 and CL(D,Hi) 6= CL(D,Hi+1) (respectively CΩ(D,Gi) 6=
CΩ(D,Gi+1)).

With this notation we get the following theorem:

Theorem 2.22. Let {T1, T2, . . . } be a set of rational points not occurring

in SuppD and let S = (S1, S2, . . . ) be a sequence of points, each of which



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

Decoding Algebraic Geometry Codes 67

is contained in the set {T1, T2, . . . , }. Then the minimum distance d of the

code CL(D,G) satisfies

d ≥ dS(G),

while the minimum distance d⊥ of the code CΩ(D,G) satisfies

d⊥ ≥ d⊥S (G).

Proof. We will prove the statements about the code CL(D,G). The

results for the code CΩ(D,G) can be proved similarly.

Recall that ν(T,M) := ν(T,M, 0). We can write CL(D,G) as the

disjoint union ∪i≥0CL(D,Hi)\CL(D,Hi+1). If CL(D,Hi) 6= CL(D,Hi+1)

and c ∈ CL(D,Hi)\CL(D,Hi+1), then from Proposition 2.20 we see that

wt(c) ≥ ν(Si+1,MS(i)). Then it follows that d ≥ mini{ν(Si+1,MS(i))},
if we take the minimum over all nonnegative i such that CL(D,Hi) 6=
CL(D,Hi+1). �

The original Goppa bounds now follow as a corollary, showing that the

generalized order bound is always at least as good.

Corollary 2.23. The minimum distance d of the code CL(D,G) satisfies

d ≥ n− degG,

while the minimum distance d⊥ of the code CΩ(D,G) satisfies

d⊥ ≥ degG− 2g + 2.

Proof. Recall that MS(i) = MΩ(D,Hi, Si+1) andHi = G−S0−· · ·−Si.

Remark 2.17 and Lemma 2.19 imply that ν(Si+1,MS(i) ) ≥ n−degG+ i ≥
n − degG. Therefore d ≥ dS(G) ≥ n − degG. Similarly, we have that

ν(Si+1,M⊥
S (i) ) ≥ degG + i− 2g + 2 ≥ degG− 2g + 2, which implies that

d⊥ ≥ d⊥S (G) ≥ degG− 2g + 2. �

Example 2.24. In this example we will study a code coming from the

Hermitian curve defined over F64 by the equation x8
2 +x2 = x9

1. This curve

has 513 rational points, exactly one of which has a pole in x1 and x2. As

usual, we denote this point by T∞. We denote by T0 the unique point

having a zero in both x1 and x2. Further, we denote by D the sum of the

504 rational points P satisfying x1(P ) 6= 0.

In this example we will consider the code CL(D,−T0 +490T∞). This is

a [504, 462,≥ 15] code, since l(−T0 + 490T∞) = 462 and the Goppa bound

gives that the minimum distance is at least 504 − 489 = 15. We will show
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that the Goppa bound is not sharp in this case and show that the minimum

distance is at least 21.

We wish to use Theorem 2.22 to get a lower bound on the minimum

distance of the code CL(D,−T0 + 490T∞). First we need to choose a se-

quence S, which we take to be S := (T∞, T0, T0, T0, . . . ) in this example.

We will compute the quantity dS(−T0 + 490T∞). In order to do so we will

work in the modules M(i)
Ω(S). The first module we need to work in is

therefore MS(0) = MΩ(D,−T0 + 490T∞, T∞). We start by calculating

H(T∞,MS(0)).

We will need to know what ρT∞
(Ω(−D − T0 + 490T∞)) is. The Weier-

strass semigroup H(T∞) is as a semigroup generated by 8 and 9. Explic-

itly, we have that H(T∞) = 〈8, 9〉 = {0, 8, 9, 16, 17, 18, 24, . . .}. Moreover it

holds that H(T ) = H(T∞) for any rational point T . This means that the

Laurent series

p(t) :=
∑

i∈〈8,9〉
ti (2.21)

will play a central role in the evaluation of the generalized order bound.

For any order modules and for anym ∈Mi\Mi−1 we have ρT,M(m) = i.

We see that for m ∈ Ω(−D−T0 +(490− i)T∞)\Ω(−D−T0 +(491− i)T∞)

we have ρT∞,MS(0)(m) = ρT∞
(m) + 490. Further, using the differential

ω = (x63
1 + 1)−1dx1, we see that

ρT∞
(Ω(−D−T0+(490− i)T∞)) = {−558+s | s ∈ ρT∞

(L(T0 +(68+ i)T∞)).

Using the description of L-spaces in Example 2.11, we see that
⋃

i∈Z

ρT∞
(L(T0 + (68 + i)T∞)) = H(T∞) ∪ {55}.

Putting everything together, we find that

H(T∞,MS(0)) = {s− 68 | s ∈ H(T∞)} ∪ {−13}.

Therefore

pT∞,MS(0)(t) = t−13 + t−68p(t)

Using equation (2.21), we can now calculate that

p(t)pT∞,MS(0)(t) = · · · + 24t+ 21t2 + 17t3 + · · · ,

and therefore (see Lemma 2.18):

ν(T∞,MS(0)) = 24.



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

Decoding Algebraic Geometry Codes 69

For the next step we need to know the set H(T0,MS(1)). Note that

H(T0) = H(T∞). We will calculate ρT0(L((1+i)T0+69T∞)). Using the fact

that (x2) = 9(T0−T∞), we see that ρT0(L((1+i)T0+69T∞)) = {s−63 | s ∈
ρT0(L((64+i)T0+6T∞)). The automorphism τ defined by τ(x) = x1/x2 and

τ(y) = 1/x2, interchanges the points T0 and T∞. Using this automorphism,

we can conclude that ρT0(L((64+i)T0+6T∞)) = ρT∞
(L((64+i)T∞+6T0)).

Similarly as above we now find that

H(T0,MS(1)) = {s− 64 | s ∈ H(T0)} ∪ {−49,−41,−33,−25,−17,−9}.

This implies that

pT0,MS(1)(t) = t−49 + t−41 + t−33 + t−25 + t−17 + t−9 + t−64p(t),

enabling us to calculate that

p(t)pT0,MS(1)(t) = · · · + 21t+ 25t2 + 27t3 + 27t4 + 25t5 + · · · . (2.22)

Hence ν(T0,MS(1)) = 21. Since the sequence S only contains T0 apart from

the very first point in the sequence, we now can remain working with the

module MS(1). For i ≥ 0, we can see the module MS(i+1) as the i-th shift

of MS(1). More precisely, we have that ν(T0,MS(i+1)) = ν(T0,MS(1), i).

This means that with the above computation of H(T0,MS(1)), we have all

information we need to calculate dS(−T0 + 490T∞). More specifically, we

see from equation (2.22) that ν(T0,MS(2)) = ν(T0,MS(5)) = 25 and

ν(T0,MS(3)) = ν(T0,MS(4)) = 27. For i ≥ 6, we can use Lemma 2.19 to

show that ν(T0,MS(i)) ≥ 15 + i ≥ 21.

All in all, we have shown that dS(−T0 + 490T∞) = 21.

2.5. Majority voting

Given a code CL(D,G), we have seen that the basic algorithm is able

to correct b(n−degG− 1− g)/2c errors. This means that the full potential

of the code has not been used yet. In this section we will describe an

algorithm that can correct b(dS(G) − 1)/2c errors, where dS(G) denotes

the generalized order bound from Section 2.4. This main technique is that

of majority voting for so-called unknown syndromes. Loosely speaking this

technique enables one to obtain more information about the error-vector

enabling one to correct more errors than with the basic algorithm.

Let r = c + e. The (n−l0)×l1 matrix S(A)(r) plays a central role in the

proof of the fact that the basic algorithm can correct b(n−degG−1−g)/2c
errors. The reason is that if c ∈ CL(D,G), then S(A)(c) = 0 which implies
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that S(A)(c) = S(A)(e). The matrix S(A)(r) therefore gives information

about the error-vector e. More precisely, we have seen in Proposition 2.8

that its kernel determines the error-locator Q1.

Definition 2.25. If ω and h are such that hω 6∈ Ω(−D + G), then the

syndrome sω,h(r) will in general depend both on c and e. Such a syndrome

it said to be unknown.

Also we define the following syndrome:

Definition 2.26. Let ω be a differential form. Then we define

sω(r) := sω,1(r).

Let T 6∈ SuppG be a rational point. For now let us assume that

A = G + aT . We can do this, since the only restrictions on A were that

degA < n− t and l(A−G) > t. If t+ g − 1 < a < n− t− degG both con-

ditions are guaranteed to hold. It will be convenient to extend the matrix

S(A)(r) in this setup. The matrix S(A)(r) itself depends on the choice of

functions and differentials from L(A −G) and Ω(A −D) (see Proposition

2.8). We now specify a more precise choice: let H(T ) = {ρ1, ρ2, . . . } and

h1, h2, · · · ∈ R(T ) such that ρT (hi) = ρi. Similarly, let M := MΩ(D,G, T )

and H(T,M) = {σ1, σ2, . . . }. We can then choose differential forms

ω1, ω2, · · · ∈ ∪iΩ(−D +G− iT ) such that ρT,M(ωj) = σj . We then define

the following matrices:

Definition 2.27.

Stot
T (r) :=



sω1,h1(r) sω1,h2(r) . . .

sω2,h1(r) sω2,h2(r) . . .
...

...
. . .




and

Stot
T (r)|i,j :=



sω1,h1(r) . . . sω1,hi

(r)
...

...

sωj ,h1(r) . . . sωj ,hi
(r)


 .

The matrix Stot
T (r) extends the matrix S(A)(r) in equation (2.8) in the

case that A = G+aT . Note that hiωj ∈ Ω(−D+G−(ρi+σj)T ). Therefore

we have that all elements sωj ,hi
(r) of Stot

T (r) such that ρi + σj ≤ 0, are

known syndromes, i.e. equal to sωj ,hi
(e).

Before proceeding, we need some terminology:
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Definition 2.28. A position (i, j) in the matrix Stot
T (e) is said to be a

candidate, if the matrices Stot
T (e)|i−1,j−1, Stot

T (e)|i−1,j , and Stot
T (e)|i,j−1

all have the same rank. If furthermore the matrices Stot
T (e)|i−1,j−1 and

Stot
T (e)|i,j do not have equal rank, then the position (i, j) is called a dis-

crepancy.

Now suppose that r = c + e, with c ∈ CL(D,G) and that we are given

a candidate (i, j) with ρi + σj = 1. We can determine these candidates,

since the part of the matrix Stot
T (e) that we need to determine them only

involves known syndromes and therefore can be copied from Stot
T (r).

Furthermore, suppose that ωl ∈ Ω(−D + G − T )\Ω(−D + G). Then

there exists constants µ ∈ F\{0} and µk ∈ F (only depending on (i, j) )

such that

ωl = µhiωj +

l−1∑

k=0

µkωk. (2.23)

Also there exists a unique element α ∈ F such that the matrix M obtained

from Stot
T (r)|i,j by replacing its (i, j)− th element by α, has the same rank

as the matrix Stot
T (r)|i−1,j−1. We say that the candidate (i, j) votes for α

concerning the syndrome sωj ,hi
(e). Using equation (2.23) we then also get

a value for sωl
(e). If this value is correct, we say that the candidate votes

correctly, otherwise we say that the candidate votes incorrectly. We now

show that this voting procedure gives the right value for sωj ,hi
(e) in the

majority of cases, if we assume that not too many errors have occurred.

Theorem 2.29. Let c ∈ CL(D,G) be a codeword and r = c + e a received

word. Let ωl ∈ Ω(−D +G− T )\Ω(−D+G) and assume that CL(D,G) 6=
CL(D,G− T ) as well as that 2 wt(e) < ν(T,MΩ(D,G, T )).

Then the majority of candidates in N(T,MΩ(D,G, T )) vote for the correct

value of sωl
(e).

Proof. We consider the following sets:

K := {(i, j) | (i, j) a discrepancy, ρi + σj < 1},

F := {(i, j) ∈ N(T,M, 0) | (i, j) a candidate voting incorrectly for sωl
(e)}

and

T := {(i, j) ∈ N(T,M, 0) | (i, j) a candidate voting correctly for sωl
(e)}.

Let ρN1 (resp. σN2) be the largest first (resp. second) coordinate

occurring in N(T,M, 0). We consider the matrix Stot
T (e)|N1,N2 . Its rank
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equals wt(e), but on the other hand it is at least #K+#F, since discrepan-

cies are exactly pivot positions in the matrix Stot
T (e)|N1,N2 . Therefore we

have that

2#K + 2#F ≤ 2 wt(e) < ν(T,M).

On the other hand, if an element (i, j) ∈ N(T,M, 0) is not a candidate,

then there exists an element of K with first coordinate i or second coordinate

j. Therefore, the number of non-candidates in N(T,M, 0) is at most 2#K.

The number of candidates in N(T,M, 0) is of course equal to #F+#T. All

in all we find that

ν(T,M) ≤ 2#K + #F + #T.

Combining this with the above, we see that #T > #F. �

Note that if CL(D,G) = CL(D,G−T ), but Ω(−D+G−T ) 6= Ω(−D+G)

it is not hard to determine sωl
(e) for ωl ∈ Ω(−D+G−T ), since then there

exists ω ∈ Ω(−D +G) such that ResD (ω) = ResD (ωl). This implies that

sωl
(e) = sω(e), but the latter is a known syndrome. Combined with the

above theorem, we see that we can always determine the value of sωl
(e) as

long as 2 wt(e) < ν(T,M).

Suppose as before that the set {T1, T2, . . . } consists of rational points

that do not occur in SuppD. Now let again S = (S1, S2, . . . ) be a se-

quence of points, each of which is contained in {T1, T2, . . . , }. Further we

defined divisors H0 := G, Hi+1 := Hi − Si+1 and modules MS(i) :=

MΩ(D,Hi, Si+1). Recall that by Theorem 2.22 the minimum distance d of

the code CL(D,G) satisfies d ≥ dS(G) := mini{ν(Si+1,MS(i))}, where the

minimum is taken over all i such that CL(D,Hi) 6= CL(D,Hi+1). We can

decode the code CL(D,G) up to half this bound, since we can determine

all unknown syndromes by using Theorem 2.29 iteratively on the sequence

of codes CL(D,G) ⊃ · · · ⊃ CL(D,Hi) ⊃ CL(D,Hi+1) ⊃ · · · . Eventually,

we then know all syndromes, after which we can determine the error-vector

e.

One does not need to calculate all unknown syndromes, but one can

stop the recursive computations when a code CL(D,Hi) is reached such

that n− degHi − g ≥ dS(G). We prove this in the following proposition.

Proposition 2.30. Let c ∈ CL(D,G) and S = (S1, S2, . . . ) a sequence of

points not occurring in SuppD. Suppose that e ∈ Fn of weight at most

(dS(G)− 1)/2. Let δ = dS(G)−n+degG+ g. Suppose that we know sω(e)
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for all ω ∈ Ω(−D+G− S1 − · · · − Sδ). Then we can find c using the basic

algorithm on the code CL(D,G− S1 − · · · − Sδ).

Proof. We write T = S1 and suppose that c = EvD (f) with f ∈ L(G).

Let f1, . . . , fk be a basis of L(G) such that ρT (f1) < · · · < ρT (fk) and

ωl an element of Ω(−D + G − T ) of maximal pole order at T . We then

have that any ω ∈ Ω(−D +G − T ) can be written as αωl + ωr for certain

ωr ∈ Ω(−D +G) and constant α. Also we can write

f =
k∑

i=1

αifi

and by assumption sωl
(c) = sωl

(r)−sωl
(e) is a known expression. Further,

since ρT (fi) < ρT (fk) for 1 ≤ i < k and c = EvD (f), we have that

sωl
(c) =

k∑

i=1

αisωl
(EvD (fi)) = αksωl

(EvD (fk)).

We claim that we can always determine αk. Indeed if sωm
(EvD (fk)) =

0, then sωl
(c) = 0 implying that c ∈ CL(D,G − T ). But then αk = 0. If

sωm
(EvD (fk)) 6= 0, then

αk =
sωl

(c)

sωl
(EvD (fk))

=
sωl

(r) − sωl
(e)

sωl
(EvD (fk))

. (2.24)

We can now repeat the above proces treating r−αk ev(fk) as the received

vector, taking CL(D,G−S1) as the code we work with and defining T = S2.

Iterating this procedure δ times, we obtain as output a vector r − EvD (g)

for an explicitly known function g such that f − g ∈ L(G− S1 − · · · − Sδ).

The vector r − EvD (g) differs in wt(e) < (n − degG + δ − g)/2 positions

from EvD (f − g), so we can use the basic algorithm to find the function

f − g completing the decoding. �

Example 2.31. In this example we consider the curve χ defined over F64

given by the equation x2
2 + x2 = x9

1. It is a hyperelliptic curve of genus

4 with 129 rational points. We denote by T∞ the unique point that has

a pole at x1, by T0 the point that has a zero at x2 and by T1 the point

that has a zero at x2 + 1. Let G = −T0 + 121T∞ and D be the sum of the

126 rational points different from T0, T1 and T∞. The code CL(D,G) is a

[126, 117,≥ 6] code. We first calculate the generalized order bound for this

code using the sequence S = (T∞, T∞, . . . ). We have that H(T∞) = 〈2, 9〉.
The differential ω = (x63

1 + 1)−1dx1 has divisor −D + 132T∞ and can be
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used to show that H(T∞,MS(0)) = {i− 11 | i ∈ H(T∞)} ∪ {−4}. We find

that

pT∞
(t)pT∞,MS(0)(t) = · · · + 7t+ 7t2 + 8t3 + 9t4 + 10t5 + · · · . (2.25)

This means that dS(G) = 7 implying that the code we are studying is in

fact a [126, 117,≥ 7] code.

We represent F64 as F2[γ], with γ a primitive element satisfying γ6 +

γ + 1 = 0. The points in SuppD have nonzero coordinates, and therefore

we write them as powers of γ with exponents between 0 and 62. Then we

can order these points lexicographically after these exponents. In this way

we get P1 = (1, γ21), . . . , P126 = (γ62, γ45). As in the proof of Proposition

2.30 we will need a basis f1, . . . , f117 of L(G) of increasing pole order in

T∞. We can take

fi =





xi
1 if 1 ≤ i ≤ 3,

x
(i−5)/2
1 x2 if i ≥ 5 and i odd,

x
i/2
1 if i ≥ 4 and i even.

Following the notation in and just before Definition 2.27, we have in our

case

i 1 2 3 4 5 6 7 8 9 10 11 12

ρi 0 2 4 6 8 9 10 11 12 13 14 15

hi 1 x1 x2
1 x3

1 x4
1 x2 x5

1 x1x2 x6
1 x2

1x2 x7
1 x3

1x2

and (still using ω = (x63
1 + 1)−1dx1)

j 1 2 3 4 5 6 7 8 9 10 11 12

σj -11 -9 -7 -5 -4 -3 -2 -1 0 1 2 3
ωj

ω 1 x1 x2
1 x3

1
x8
1

x2
x4

1 x2 x5
1 x1x2 x6

1 x2
1x2 x7

1

Now we define an error-vector e in the following way: e1 = 1, e2 = γ42,

e93 = γ13, and ei = 0 otherwise. Since dS(G) = 7, we can correct this

error-pattern with the majority voting algorithm. Goppa’s bound for the

minimum distance of the code CL(D,G) equals 6, so we need to determine

g + (7− 6) = 5 unknown syndromes in this case. We now assume that the

sent codeword was c = EvD (γx60
1 + x56

1 x2), so that the received word is
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r = c + e. Then we have that Stot
T∞(c)|14,14 equals




0 0 0 0 0 0 0 0 1 γ 0 0 0 0

0 0 0 0 0 0 1 γ 0 0 0 0 0 0

0 0 0 0 1 γ 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 γ 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 γ 0 0 0 0 0 1 γ 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 γ 0 0 0 0 1 γ 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0

γ 0 0 0 1 γ 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0




,

while Stot
T∞

(e)|14,14 is equal to the matrix




γ7 1 γ45 γ43 γ37 γ7 γ54 γ53 γ26 γ36 γ30 γ19 γ62 γ2

1 γ45 γ43 γ37 γ54 γ53 γ26 γ36 γ30 γ19 γ62 γ2 γ46 γ48

γ45 γ43 γ37 γ54 γ26 γ36 γ30 γ19 γ62 γ2 γ46 γ48 γ16 γ31

γ43 γ37 γ54 γ26 γ30 γ19 γ62 γ2 γ46 γ48 γ16 γ31 γ13 γ14

γ5 0 γ51 γ18 γ23 γ62 γ15 γ46 γ49 γ16 γ25 γ13 γ47 γ36

γ37 γ54 γ26 γ30 γ62 γ2 γ46 γ48 γ16 γ31 γ13 γ14 γ36 γ60

γ7 γ53 γ36 γ19 γ2 γ50 γ48 γ60 γ31 γ28 γ14 γ3 γ60 γ61

γ54 γ26 γ30 γ62 γ46 γ48 γ16 γ31 γ13 γ14 γ36 γ60 γ22 γ43

γ53 γ36 γ19 γ2 γ48 γ60 γ31 γ28 γ14 γ3 γ60 γ61 γ43 γ7

γ26 γ30 γ62 γ46 γ16 γ31 γ13 γ14 γ36 γ60 γ22 γ43 γ35 γ26

γ36 γ19 γ2 γ48 γ31 γ28 γ14 γ3 γ60 γ61 γ43 γ7 γ26 1

γ30 γ62 γ46 γ16 γ13 γ14 γ36 γ60 γ22 γ43 γ35 γ26 γ34 γ9

γ19 γ2 γ48 γ31 γ14 γ3 γ60 γ61 γ43 γ7 γ26 1 γ9 γ45

γ62 γ46 γ16 γ13 γ36 γ60 γ22 γ43 γ35 γ26 γ34 γ9 γ48 γ55




.
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In the decoding algorithm, we know the matrix Stot
T∞(r)|14,14, which is

the sum of the above two matrices, which are unknown to the receiver.

However, note that Stot
T∞(r) and Stot

T∞(e) are guaranteed to be the same in

all those positions (i, j) satisfying σi + ρj ≤ 0, since these positions contain

the known syndromes.

We now try to calculate f = γx60
1 +x56

1 x2. Since we know that f ∈ L(G),

we can write f =
∑117

i=1 αifi. We will determine α113 up till α117 using

majority voting. In the first step of the algorithm we need to determine

which positions (i, j) satisfying σi + ρj = 1, are candidates as well. From

equation (2.25) we can deduce that there are at most 7 such positions (i, j).

By row reduction of the matrix Stot
T∞(r) we can compute that in this case

the positions (1, 1) and (2, 2) are the only discrepancies in the known part

Stot
T∞(e). The candidates in the first and following steps can therefore not

contain a 1 or a 2 in any of their coordinates. The votes can be calculated

directly once the candidates are known. The results of the first step of the

algorithm are given in the following table:

candidate (6, 3) (4, 4) (3, 5)

vote γ26 γ26 γ26

We conclude that sω10(e) = γ26. Using equation (2.24), we find that α117 =

1. We can then update the matrix Stot
T∞(r) by replacing it with the matrix

Stot
T∞(r − EvD (f117)). Since the voting is unanimous, there are no new

discrepancies. In the second step of the algorithm, we find the following:

candidate (7, 3) (5, 4) (3, 6)

vote γ36 γ36 γ36

Therefore sω10(e) = γ36 and α116 = γ. In this particular example the

updated syndrome matrix now becomes Stot
T∞(e), because of our choice of

the sent codeword c. Continuing to the third step, we find:

candidate (8, 3) (6, 4) (4, 5) (3, 7)

vote γ30 γ30 γ30 γ30

Thus sω11(e) = γ30 and α115 = 0. The fourth step yields the following

results:

candidate (9, 3) (7, 4) (5, 5) (4, 6) (3, 8)

vote γ19 γ19 γ19 γ19 γ19
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This implies that sω12(e) = γ19 and α114 = 0. The fifth and last step gives:

candidate (10, 3) (8, 4) (6, 5) (5, 6) (4, 7) (3, 9)

vote γ62 γ62 γ62 γ49 γ62 γ62

In this case the voting is not unanimous and we find sω13(e) = γ62 and

α113 = 0. The reason the voting is not unanimous in this case, is that the

(5, 6)-th position is a discrepancy in the matrix of syndromes.

2.6. List decoding of algebraic geometry codes

In this section we will describe a list decoding algorithm for algebraic

geometry codes, which is an extension of the basic algorithm presented in

Section 2.2.

Suppose that we wish to use the code CL(D,G) and that we have re-

ceived the word (r1, . . . , rn) containing at most τ errors. The algorithm

works with a divisor A with SuppA ∩ SuppD = ∅ satisfying certain con-

ditions that we describe below and a natural number s.

The idea of the algorithm is to find a nonzero polynomial Q(y) ∈ F [y]

such that:

(i) Q(y) = Q0 +Q1y + · · · +Qλy
λ where Qi ∈ L(A− iG), i = 0, . . . , λ

(ii) Q(y) has a zero of multiplicity s in (Pj , rj), j = 1, . . . , n

The meaning of (ii) is the following: Let t be a local parameter at Pj

then Q(y) =
∑
µa,bt

a(y − rj)
b. That Q(y) has a zero of multiplicity s in

(Pj , rj) then means that µa,b = 0 for a+ b < s

This algorithm is an extension of the basic algorithm in two ways. The

y-degree of the interpolation polynomial Q is allowed to be larger than one

and the zeroes now shall be of multiplicity s. In this way, as we shall see,

we are able to correct a larger number of errors if we accept a list of possible

codewords.

The conditions on the divisor A are as follows.

(1) degA < s(n− τ)

(2) degA > ns(s+1)
2(λ+1) + λdegG

2 + g − 1

It can be seen that if τ < n − n(s+1)
2(λ+1) − λdegG

2s − g
s then such a divisor A

exists.
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Lemma 2.32. Suppose the transmitted word is generated by f ∈ L(G) and

Q(y) satisfies (i) and (ii) then Q(f) = 0

Proof. Since f ∈ L(G) and Qi ∈ L(A − iG) we have f iQi ∈ L(A)

and therefore Q(f) ∈ L(A). We also have that Q(f(Pj)) has a zero of

multiplicity s in Pj for at least n − τ j’s ∈ {1, 2, . . . , n} so that Q(f) ∈
L(A− sPi1 −· · ·− sPir

) with r ≥ n− τ . But deg(A− sPi1 −· · ·− sPir
) < 0

and therefore Q(f) = 0. This implies that if the divisor A satisfies condition

(1) above then the function f that generated the sent codeword gives a

factor y − f in Q(y). �

Later we will discuss how such factors are actually found.

Lemma 2.33. If degA satisfies (2) above then a nonzero Q(y) ∈ F [y]

exists satisfying (i) and (ii).

Proof. By selecting bases for the spaces L(A − iG), i = 0, 1, . . . , λ the

condition (ii) translates into a system of homogeneous linear equations in∑λ
i=0 l(A − iG) unknowns. The number of equations is n(s+1)s

2 which by

(2) is smaller than the number of unknowns, so there is a nonzero solution

to the system. �

This leads to the following algorithm:

Input: A received word r = (r1, r2, . . . , rn).

Find a polynomial Q(y) satisfying (i) and (ii).

Find factors of Q(y) of the form y − f with f ∈ L(G).

If no such factors exist Output: Failure.

Else Output : EvD (f) for those f ’s where d(EvD (f), r) ≤ τ .

It can be seen that this list decoding algorithm only improves on n−degG
2

if λ ≥ s and

n
(
1 − s+1

λ+1

)
>
(

λ
s − 1

)
degG+ 2g

s + 1

and also that for fixed λ the optimal s is
⌊[

2(λ+1)
n

(
λ
2 degG+ g

)] 1
2

⌋

Example 2.34. This is a continuation of Example 2.12 where we consid-

ered the [60, 18,≥ 37] code over F16. With λ = 6 and s = 4 we can correct

19 errors, with λ = 10 and s = 7, 20, and with λ = 50 and s = 32, 22 errors

can be corrected with the list decoder.
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As we have seen, and we will discuss this further in the next section, the

polynomial Q(y) can be found by solving a system of homogenous linear

equations.

We will address the question of finding the relevant factors of the poly-

nomial Q(y) and present two different methods for doing that. The first

one transforms the problem to that of finding factors of an univariate poly-

nomial over a large finite field and the second one uses Hensel lifting.

The first algorithm reduces the problem of finding factors of Q(y) of the

form y − f with f ∈ L(G) to the problem of finding roots of a polynomial

Q̂(y) in Fqm obtained by ”reducing” the coefficients of Q(y) modulo a point

R of sufficiently large degree m where R /∈ SuppA and R /∈ SuppG. It can

be seen that such a point exists. The reduction is performed by evaluating

the functions Qi in R. One then finds zeroes of Q̂(y) using a root-finding

algorithm for finite fields and for those zeroes that lie in EvR(L(G)) one

finds the corresponding f ’s ∈ L(G). For this to be possible the map

EvR : L(G) → Fqm shall be injective and this is the case if degR > degG.

To turn these remarks into a proper algorithm one needs a way of eval-

uating functions from L(G) and L(A − iG) in R, and also a method for

reconstructing an f from an element in EvR(L(G)) ⊆ Fqm . We shall now

assume w.l.o.g that the divisor G is effective and also that A ≥ G. This

implies that L(G) ⊆ L(A) and also that L(A− iG) ⊆ L(A).

Let φ1, φ2, . . ., φk be a basis of L(G) as a vector space over Fq , and let φ1,

. . ., φk , φk+1, . . ., φa be a basis of L(A). We then ”represent” R by the val-

ues φ1(R), φ2(R), . . . , φa(R) i.e. an element of Fa
qm . Let Qi =

∑a
j=1 γi,jφj

then Q(y) =
∑λ

i=0

∑a
j=1 γi,jφjy

i and Q̂(y) =
∑λ

i=0

∑a
j=1 γi,jφj(R)yi. If

β ∈ Fqm is a zero of Q̂(y) we shall then find (f1, f2, . . . , fk) ∈ Fq such that∑k
l=1 flφl(R) = β. Using a basis of Fqm over Fq this gives m linear equa-

tions in k unknowns and we know that either this has no solution or a unique

solution. In the latter case we have found an f and if d(EvD (f), r) ≤ τ we

put EvD (f) on the list.

In the second algorithm the idea is the following: Let P be a point,

P /∈ SuppA and P /∈ SuppG and let t be a local parameter at P . Then a

function in L(G) can be developed as a power series in t, f =
∑∞

i=0 ait
i.

The polynomial Q(y) can also be considered as element of Fq [[t]][y], Q(y) =

Q0(t, y) =
∑∞,λ

i=0,j=0 αi,j t
iyj , so if Q(f) = 0 we get

Q0(t,

∞∑

i=0

ait
i) = 0 (2.26)
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If we consider this equation modulo increasing powers of t it is possible to

determine the ai’s recursively.

In the first step we look at equation (2.26) mod t which is the same as

Q0(0, a0) = 0 and this is

λ∑

j=0

α0,ja0
j = 0 (2.27)

Here we can suppose that α0,j 6= 0 for some j since if not Q0(t, y) = tR(t, y)

and we would get R(t, f) = 0. This means that we can determine a0 as a

zero in Fq of the polynomial Q0(0, T ). In order to give an easy description

of the updating procedure we let for i ≥ 0, ψi(t) =
∑∞

s=i ast
s−i, Mi(t, y) =

t−riQi(t, y) where ri is the largest integer such that tri divides Qi(t, ty+ai)

and

Qi+1(t, y) = Mi(t, ty + ai).

Note that Qi+1(t, y) as well as ri may depend on the value found for ai in

the previous step of the algorithm, but for simplicity we suppress this in

our notation. We then have

Lemma 2.35. Qi(t, ψi(t)) = 0, Mi(0, ai) = 0 and Mi(0, y) 6= 0.

Proof. Observe that the y degrees of Qi(t, y) are the same for all i and

that Qi(t, y) 6= 0 so ri is well-defined. Also since t does not divide Mi(t, y)

we have Mi(0, y) 6= 0. We can now prove that Qi(t, ψi(t)) = 0 by induction

on i, where the basis i = 0 is obvious from (2.26). For the induction step

if Qi(t, ψi(t)) = 0 then ψi+1(t) = (ψi(t) − ai)/t is a y-root of Qi(t, ty + ai)

and hence of Qi+1(t, y) = t−riQi(t, ty + ai). By substituting t = 0 in

Mi(t, ψi(t)) = t−riQi(t, ψi(t)) = 0 we obtain Mi(0, ai) = 0. �

This means that the coefficients ai can be found by solving an equation of

degree λ, but as we shall see the total number of solutions f is at most λ.

This can be concluded from the following

Lemma 2.36. Let M1(t, y) =
∑λ

j=0 M
(j)(t)yj be a nonzero polynomial in

Fq[[t]][y] and let β be zero of M1(0, y) of multiplicity mβ. Define

M2(t, y) = t−rM1(t, ty + β),

where r is the largest integer such that tr divides M1(t, ty + β) then

degyM2(0, y) ≤ mβ.
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Proof. Let M̂(t, y) = M1(t, y+β) =
∑λ

j=0 qj(t)y
j then qj(0) = 0 for 0 ≤

j < mβ and qmβ
(0) 6= 0, or equivalently t divides qj(t) for 0 ≤ j < mβ but it

does not divide qmβ
(0). This means that t divides M̂(t, ty) but tmβ+1 does

not, so r ≤ mβ. Since M2(t, y) = t−rM1(t, ty+β) =
∑λ

j=mβ
qj(t)t

j−ryj we

get M2(0, y) =
∑λ

j=mβ
(qj(t)t

j−r)|t=0y
j so degyM2(0, y) ≤ r ≤ mβ. �

Corollary 2.37. The number of different f ’s is at most λ.

Proof. Denote by Ai the set of all solutions a = (a0, . . . , ai) the algorithm

finds after i steps. We will show by induction that

∑

a∈Ai

mai
≤ λ. (2.28)

This will imply the corollary, since then #Ai ≤ λ for all i. For i = 0

equation (2.28) is true, since all found a0’s in the start of the algorithm are

roots of Q0(0, y) and degyQ0(0, y) = λ. Now suppose the result is true for

i. Given a fixed (a0, . . . , ai) at this stage of the algorithm, the ai+1’s the

algorithm finds in the next step are, according to Lemma 2.36, roots of a

polynomial of degree at most mai
so the sum of their multiplicities is at

most mai
. This implies that

∑
a∈Ai+1

mai+1 ≤∑
a∈Ai

mai
≤ λ. �

The only remaining issue is to bound the number of ai’s we have to

determine in order to reconstruct the function f ∈ L(G). To this end let

k = dimL(G)and let b1, b2, . . . , bk be a basis of L(G) such that ji = vP (bi) <

vP (bi+1) = ji+1, i = 1, . . . , k − 1. This means that f is determined if we

know the ai’s up to i = jk. Since bk ∈ L(G− jkP ) we have jk ≤ degG.

Example 2.38. In this example we consider the Hermitian curve over F4

defined by x2
2 + x2 = x3

1. We write F4 = F2[α] with α2 = α + 1. Also

we write P1 = (0, 0), P2 = (0, 1), P3 = (1, α), P4 = (1, α2), P5 = (α, α),

P6 = (α, α2), P7 = (α2, α), P8 = (α2, α2), and denote as before by T∞
the unique pole of x1. We now take D = P1 + · · · + P8, G = 4T∞, and

A = 35T∞. If we choose s = 6 and λ = 8, we can correct 2 errors using the

list decoder. In order to describe the list-decoding procedure, we need to

choose bases for the spaces L(A − iG), whose dimension we denote by li.

In this case we can for 0 ≤ i ≤ λ and 1 ≤ j ≤ li choose
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gij =





1 if j = 1,

x1x
(j−2)/3
2 if j ≡ 2 mod 3,

x
j/3
2 if j ≡ 0 mod 3,

x2
1x

(j−4)/3
2 if j > 1 and j ≡ 1 mod 3.

Suppose that we transmit the all zero word and receive.

(α2, 0, 0, α2, 0, 0, 0, 0).

The decoder from Section 2.5 fails to decode this word, but we can

use list decoding if we choose s = 6 and λ = 8. To find an in-

terpolation polynomial we could solve the linear system occurring in

the proof of Lemma 2.33. This system has 168 equations and 171

variables. However, we will see in Section 2.7 that this approach is

not optimal. Using the results from Section 2.7 (more specifically,

Example 2.45), we get that the interpolation polynomial is equal to:

Q(y)=(1 + x2 + αx2
2 + αx2

1x2 + α2x1x
2
2 + αx3

2 + α2x2
1x

2
2 + αx1x

3
2 + x4

2 +

αx2
1x

3
2 + α2x1x

4
2 + x2

1x
4
2 + αx1x

5
2 + α2x2

1x
5
2 + αx1x

6
2 + x7

2 + αx2
1x

6
2 +

x1x
7
2 + x8

2+ x2
1x

7
2+ αx1x

8
2+ αx9

2+ α2x2
1x

8
2+ x1x

9
2+ α2x10

2 + x2
1x

9
2)y+

(α2 + αx1+αx2
1+x2

2+α2x2
1x2+α2x3

2+x2
1x

2
2+α2x1x

3
2+α2x5

2+x2
1x

4
2+

x2
1x

4
2+ α2x6

2+αx2
1x

5
2+αx7

2+α2x2
1x

6
2+αx1x

7
2+x8

2+α2x1x
8
2+αx9

2)y
2+

(α2+ αx2+ x1x2 + α2x2
1x2 + x1x

2
2 + αx3

2 + x2
1x

2
2 + α2x4

2 + α2x2
1x

3
2+

αx5
2+ αx2

1x
4
2+α2x1x

5
2+ αx6

2+ α2x2
1x

5
2+ α2x1x

6
2)y

3+(α+x1+α2x2+

x1x2+ αx2
2 + α2x2

1x2 + αx1x
2
2 + x3

2 + αx1x
3
2 + αx4

2 + x2
1x

3
2)y

4+ (α+

α2x2+α2x1x2+x2
2+ x2

1x2+ x1x
2
2+ α2x2

1x
2
2+ αx1x

3
2)y

5+ (1+ α2x1+

αx2 + α2x2
1 + α2x1x2 + x2

2 + α2x2
1x2)y

6 + y7 + (α2 + αx1)y
8.

In order to factorize this using the first method described above, we let

F43 = F4[X2]/〈X2
3 + αX2 + 1〉 and F43×3 = F43 [X1]/〈X1

3 +X2
2 +X2〉.

This makes sense since the polynomial X2
3 + αX2 + 1 is irreducible

over F4 and for any root X2 of it, the polynomial X1
3 + X2

2 +

X2 is irreducible over F43 . If we let R be a point (x1, x2) on

the curve in F43×3 corresponding to the description above we get
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Q̂(y)= ( (α+ αx2) + (αx2 + α2x2
2)x1 + (αx2 + x2

2)x
2
1 ) y + ( (α+ α2x2) +

(α+α2x2)x1+(1+αx2
2)x

2
1)y

2+((α2x2+α2x2
2)+(α+αx2+α2x2

2)x1+

(α2 + αx2 + α2x2
2)x

2
1)y

3+((α2 + x2 + αx2
2)+(α2 + α2x2 + αx2

2)x1+

(αx2 + x2
2)x

2
1 ) y4 + ( (α+ x2) + (α+ αx2

2)x1 + (1 + αx2)x
2
1 ) y5 +

( (x2 + αx2
2) + (1 + αx2 + x2

2)x1 + (α + α2x2
2)x

2
2 )y6 + ((1 + α2x2

2)+

(α2 + αx2
2)x1 + (α+ x2

2)x
2
1)y

7 + y8.

This polynomial has three factors of degree one namely

y

(α2 + α2x1 + α2x2
1) + y

and ((α2 + αx2 + x2
2) + (αx2 + α2x2

2)x1 + (1 + α2x2 + αx2
2)x

2
1) + y

The last of these factors does not correspond to a codeword since it is not

in L(G) but the first two factors correspond to the codewords

(α2, α2, α2, α2, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0)

which both have distance two to the received word.

Now we shall describe the Hensel-lifting approach to find y-roots of

Q(y). As the point in which we develop, we choose P = P00 and as local

parameter for P we pick t = x1. Then we write Q(y) explicitly as an

element of F4[[t]][y]. Since x1 = t, we find from the defining equation of

the curve that x2 = t3 + t6 + t12 +O(t24). Substituting this in Q(y) we see

that

Q(y) = (1 + t3 + αt5 + α2t6 + α2t7 + t8 + αt9)y+

(α2 + αt+ αt2 + α2t5 + t6 + αt8 + α2t9)y2+

(α2 + αt3 + t4 + α2t5 + αt6 + αt8 + αt9)y3+

(α+ t+ α2t3 + t4 + α2t5 + t6 + α2t7 + α2t8 + t9)y4+

(α+ α2t3 + α2t4 + t5 + αt6 + αt7 + αt8)y5+

(1 + α2t+ α2t2 + αt3 + α2t4 + α2t5 + α2t6 + α2t7 + α2t8)y6+

y7 + (α2 + αt)y8 + O(t10).

Now we can determine all possibilities for a0, since from the above it has
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to be a root of Q0(0, y) = α2y(y − α)(y − α2)6. Therefore there are three

possibilities for a0, namely 0, α and α2. For each of them separately we

can calculate the updated polynomial Q1(t, y). If a0 equals 0 or α, it has

multiplicity 1, implying by Lemma 2.36 that the next coefficient is the root

of a polynomial of degree at most one, i.e. a1 is uniquely determined if it

exists. Since a0 = α2 has multiplicity 6 this need not be true in that case.

In fact, if a0 = α2 then Q1(t, y) = t−6Q0(t, ty + α2) and we find

Q1(t, y)= 1 + t3 + (t+ αt2 + α2t3)y + (1 + α2t+ αt2 + αt3)y2+

(α+ t+ α2t2+ αt3)y3+ (1+ αt+ αt2+ t3)y4 + (α2t2 + α2t3)y5+

(α + α2t+ α2t2 + αt3)y6 + ty7 + (α2t2 + αt3)y8 + O(t4)

and therefore Q1(0, y) = (y − α)(y − α2)(αy4 + αy3 + y2 + y + 1). We see

that if a0 = α2, then a1 = α or a1 = α2 both having multiplicity one. The

degree 4 factor of Q1(0, y) does not give rise to F4-rational solutions and

is therefore ignored. The outcome of the entire Hensel-lifting procedure

including multiplicities and found values for the ai’s can be described in a

tree structure. Below the edges we state the multiplicities ri, while above

the vertices we give the values for the ai’s.
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From the Hensel-lifting procedure we get four outputs for (a0, a1, a2, a3),

namely (α2, α2, α2, 0), (α2, α, α2, 1), (α, 1, 1, α2), and (0, 0, 0, 0). The corre-

sponding functions are α2 +α2x+α2x2, α2 +αx+α2x2 +y, α+x+x2 +α2,

and 0. The first and the last function give rise to solutions of the equation

Q(f) = 0 and thus to two codewords, while the remaining two are not

solutions.

2.7. Syndrome formulation of list decoding

In this section we will formulate the list decoding algorithm using syn-

dromes. As in the case of the basic algorithm, the advantage is that one can

eliminate variables from the system of linear equations used to determine

the interpolation polynomial.

As discussed in Section 2.6 in order to list-decode we need a polynomial

Q(y) =
∑λ

i=0 Qiy
i such that Qi ∈ L(A− iG) and such that (Pl, rl) is a zero

of Q(y) of multiplicity s for all i between 1 and n. We denote by gi1, . . . , gili

a basis of L(A−iG) and write Qi =
∑li

j=1 qijgij . The condition that (Pl, rl)

is a zero of Q(y) of multiplicity s gives rise to
(
s+1
2

)
linear equations in the

coefficients qij . More explicitly, we can do the following: first for any

Pl ∈ SuppD we choose a function tl ∈ F such that vPl
(tl) = 1. Given such

a tl, we can write a function g that is regular at Pl as a power series in tl,

say g = α0 + α1t + · · · + αat
a + · · · . We have that α0 = g(Pl). The αa

depend in general on Pl and the choice of tl ∈ F . Denoting by D
(a)
tl

the a-

th Hasse-derivative with respect to tl, we then have that D
(a)
tl

(g)(P ) = αa,

so we can describe the power series purely in terms of Hasse-derivatives.

We extend the Hasse-derivative to F [y] by first defining

D(b)
y D

(a)
tl

(gyj) :=

(
j

b

)
D

(a)
tl

(g)yj−b

and then by extending it linearly to F [y]. This definition ensures that if we

develop the polynomial Q(y) in a power series in the variables tl and y−rl,
then the coefficient of tal (y− rl)b is given exactly by D

(b)
y D

(a)
tl

(Q(y))(Pl, rl).

By the approximation theorem there exists t ∈ F such that vP (t) = 1

for all P ∈ SuppD. We will therefore for convenience assume from now

on that tl = t does not depend on l. The
(
s+1
2

)
equations coming from

the condition that (Pl, rl) is a zero of Q(y) of multiplicity s can now be

described as follows:

D(b)
y D

(a)
t (Q(y))(Pl, rl) = 0, for all a, b with a+ b < s,
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or equivalently

λ∑

i=b

(
i

b

)
ri−b
l

li∑

j=1

qijD
(a)
t (gij)(Pl) = 0, (2.29)

for all
(
s+1
2

)
pairs of nonnegative integers (a, b) such that a+ b < s.

We would like to write these equations in matrix form

M




q0

...

qλ


 =




0
...

0


 , (2.30)

where M plays a similar role as the matrix (MA|DrMA−G) for equation

(2.4). For 0 ≤ b ≤ s−1 and b ≤ i ≤ λ, we therefore introduce the following

(s− b)n× li matrix:

M
(i−b)
i :=




gi1(P1) . . . gili(P1)
...

...

D
(s−1−b)
t (gi1)(P1) . . . D

(s−1−b)
t (gili)(P1)

...
...

gi1(Pn) . . . gili(Pn)
...

...

D
(s−1−b)
t (gi1)(Pn) . . . D

(s−1−b)
t (gili)(Pn)




(2.31)

and the (s− b)n× (s− b)n matrix

D
(b)
i :=

(
i+ b

b

)




ri
1

. . .

ri
1

. . .

ri
n

. . .

ri
n




, (2.32)
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where every element ri
l is repeated s− b times on the diagonal. Using these

definitions, we can then find the matrix M we are looking for. In other

words, if we define M to be the matrix:




M
(0)
0 D

(0)
1 M

(1)
1 · · · D

(0)
s−1M

(s−1)
s−1 · · · D

(0)
λ M

(λ)
λ

0 M
(0)
1 · · · D

(1)
s−2M

(s−2)
s−1 · · · D

(1)
λ−1M

(λ−1)
λ

...
. . .

. . .
...

...

0 · · · 0 M
(0)
s−1 · · · D

(s−1)
λ−s+1M

(λ−s+1)
λ



, (2.33)

then we can reformulate equation (2.29) as matrix equation (2.30).

Example 2.39. In this example we show how to calculate the above equa-

tions in case of the Hermitian curve given by the equation xq
2 + x2 = xq+1

1

defined over Fq2 . The function t = xq2 −x is a local parameter for all points

on the curve different from T∞. We will describe how to compute D
(a)
t (f)

for any function f ∈ F . In the first place, Hasse derivatives satisfy the

Leibniz rule:

D
(a)
t (fg) =

a∑

i=0

D
(i)
t (f)D

(a−i)
t (g)

and more general

D
(a)
t (f1 · · · fm) =

∑

i1+···+im=a

D
(i1)
t (f1) · · ·D(im)

t (fm).

Using this and the linearity of Hasse derivatives, we see that in order to

describe them explicitly, it is enough to be able to calculate D
(a)
t (x1) and

D
(a)
t (x2) for all natural numbers a.

We will now show how to calculate D
(a)
t (x1) recursively. We have that

D
(0)
t (x1) = x1. Now suppose that a > 0 and that we know D

(α)
t (x1) for

all α between 0 and a − 1. Using the equation t = xq2

1 + x1, we find that

D
(a)
t (x1) = D

(a)
t (t)−D

(a)
t (xq2

1 ). We have that D
(0)
t (t) = t, D

(1)
t (t) = 1 and

D
(a)
t (t) = 0 if a > 1. Further using the general Leibniz rule, we find that

D
(a)
t (xq2

1 ) =
∑

i1+···iq2=aD
i1
t (x1) · · ·D

(iq2 )

t (x1). If ij = a for some j, then

remaining indices are zero implying that for this choice of indices we find

the term xa−1
1 D

(a)
t (x1). By varying j between 1 and q2, we see that there

are exactly q2 such terms. Thus these terms do not contribute to the sum.

This means that D
(a)
t (x1) = D

(a)
t (t − xq2

1 ) can be expressed as polynomial

in D
(α)
t (x1) for α varying between 0 and a− 1.
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It remains to show how to calculate D
(a)
t (x2) recursively. In the

first place D
(0)
t (x2) = x2 and since xq

2 + x2 = xq+1
1 , we also have that

D
(a)
t (x2) = D

(a)
t (xq+1

1 ) − D
(a)
t (xq

2). We already know how to calculate

D
(a)
t (xq+1

1 ) recursively and similarly as above we can express D
(a)
t (xq

2) as

a polynomial in D
(α)
t (x2) with α between 0 and a − 1. For future use, we

state some explicit results for q = 2:

a 0 1 2 3 4 5

D
(a)
t (x1) x1 1 0 0 1 0

D
(a)
t (x2) x2 x2

1 x1 + x4
1 1 x8

1 0

Before continuing our discussion of equation (2.29), we will establish

some facts on the matrices M
(0)
i . We will think about them as generator

matrices of certain codes that we will define now.

Definition 2.40. Let s be a natural number, D = P1 + · · ·+ Pn as before

and A be a divisor with support disjoint from SuppD, but of arbitrary

degree. Further, let t ∈ F be a local parameter for all P ∈ SuppD simul-

taneously. We define

Ev
(s)
P : L(A) → Fs

f 7→ (f(P ), D
(1)
t (f)(P ), . . . , D

(s−1)
t (f)(P ))

Ev
(s)
D : L(A) → Fsn

f 7→ (Ev
(s)
P1

(f), . . . ,Ev
(s)
Pn

(f))

and

C
(s)
L (D,A) := Ev

(s)
D (L(A)).

Note that if s > 1, the map Ev
(s)
P depends on the choice of the local

parameter t. The point of the above definition is that the columns occurring

in the matrix M
(0)
i are codewords in the code C

(s−i)
L (D,A−iG). Moreover,

we have that

rankM
(0)
i = dimC

(s−i)
L (A− iG). (2.34)

In order to define the analogue of the code CΩ(D,A), we consider a

differential ω ∈ Ω(−sD+A). Locally at a point P ∈ SuppD, one can then

write ω = (βst
−s + · · ·+β1t

−1 + · · · ) dt. We can calculate βi using residues,

since βi = resP (ti−1ω). This motivates the following definition:
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Definition 2.41. Let s,D,A and t be as in Definition 2.40. We define

Res
(s)
P : Ω(−sD +A) → Fs

ω 7→ (resP (ω), resP (tω), . . . , resP (ts−1ω)),

Res
(s)
D : Ω(−sD +A) → Fsn

ω 7→ (Res
(s)
P1

(ω), . . . ,Res
(s)
Pn

(ω))

and

C
(s)
Ω (D,A) := Res

(s)
D (Ω(−sD +A)).

If s = 1 it is well known that C
(s)
L (D,A) and C

(s)
Ω (D,A) are dual to

each other. We will now show that this also holds for arbitrary s. It is

important that the choice of local parameter t is fixed when defining these

codes.

Proposition 2.42. We have that

(1) dimC
(s)
L (D,A) = l(A) − l(−sD +A),

(2) C
(s)
Ω (D,A) = C

(s)
L (D,A)⊥.

Proof. Let g ∈ L(A). We have that Ev
(s)
D (g) = (0, . . . , 0) if and only if g

has a zero of order at least s in every P ∈ SuppD. This implies that the

kernel of Ev
(s)
D is L(−sD +A). This proves the first statement.

Now we prove the second statement. Let ω ∈ Ω(−sD+A) and g ∈ L(A).

Locally at a P ∈ SuppD, we can write ω = (βst
−s + · · · + β1t

−1 + · · · ) dt
and g = α0 + α1t + · · · + αs−1t

s−1 + · · · . Then Res
(s)
P (ω) = (β1, . . . , βs)

and Ev
(s)
P (g) = (α0, . . . , αs−1). The inner product 〈Res

(s)
P (ω),Ev

(s)
P (g)〉 is

exactly the coefficient of t−1 in the product gω. Therefore we have that

〈Res
(s)
P (ω),Ev

(s)
P (g)〉 = resP (gω).

Also note that gω ∈ Ω(−sD). All in all, we can deduce that

〈Res
(s)
D (ω),Ev

(s)
D (g)〉 =

n∑

i=0

resPi
(gω) = 0.

In the last equality, we used the residue theorem. This implies that

C
(s)
Ω (D,A) ⊂ C

(s)
L (D,A)⊥.

The proposition now follows once we prove that

dimC
(s)
Ω (D,A) + dimC

(s)
L (D,A) = sn.
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However, similarly to the first statement, one can prove that

dimC
(s)
Ω (D,A) = dimΩ(−sD + A) − dimΩ(A). Therefore we have that

dimC
(s)
L (D,A) + dimC

(s)
Ω (D,A) = l(A) − l(−sD+A)+

dimΩ(−sD +A) − dimΩ(A) = deg(A) − deg(−sD +A) = sn.

We used Riemann-Roch’s theorem to obtain the second equality. �

Recall that li = l(A− iG). For convenience we also define

mi := l(−(s− i)D +A− iG).

Combining the above proposition with equation (2.34), we find that

rankM
(0)
i = li −mi. (2.35)

Note that this implies that dimC
(s)
L (D,A) = l(A) if degA < sn. This is

always the case in the setup of the list decoding algorithm.

We now have the right machinery to describe the analogue of the matrix

H in Proposition 2.8 for the list-decoding case. Therefore we now give the

following definition:

Definition 2.43. Let A and G be divisors as in the list decoding setup.

Let b be an integer between 0 and s − 1 and ω1, . . . , ω(s−b)n differential

forms such that the vectors Res
(s−b)
D (ωi) with 1 ≤ i ≤ dimC

(s−b)
Ω (D,A −

bG), form a basis of C
(s−b)
Ω (D,A − bG) and the vecors Res

(s−b)
D (ω1), . . . ,

Res
(s−b)
D (ω(s−b)n) form a basis of F(s−b)n. Then we define the (s − b)n ×

(s− b)n matrix.

Hb :=




Res
(s−b)
D (ω1)

...

Res
(s−b)
D (ω(s−b)n)




and for 0 ≤ b ≤ s− 1 and b ≤ i ≤ λ, the (s− b)n× li matrix

S
(i−b)
i := Hb D

(b)
i−b M

(i−b)
i .

Note that the matrices Hb are regular, since its rows form by choice of

differentials a basis of F(s−b)n. We now obtain the following proposition.
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Proposition 2.44. The set of equations in (2.29) is row equivalent to the

system




S
(0)
0 S

(1)
1 · · · S

(s−1)
s−1 · · · S

(λ)
λ

0 S
(0)
1 · · · S

(s−2)
s−1 · · · S

(λ−1)
λ

...
. . .

. . .
...

...

0 · · · 0 S
(0)
s−1 · · · S

(λ−s+1)
λ







q0

q1

...

qλ




=




0

0
...

0



. (2.36)

Proof. The proposition follows after multiplying the b-th row of matrices

in equation (2.33) with Hb. �

The matrices S
(0)
0 , . . . , S

(0)
s−1 are independent of the received word r and

by equation (2.35) we have

rankS
(0)
i = li −mi. (2.37)

If li < (s − i)n, this reduces to rankS
(0)
i = li. Similarly as in the proof of

Corollary 2.9, we then have that if li < (s − i)n, then S
(0)
i can be written

in the form

S
(0)
i =


 0

B
(0)
i


 ,

where 0 denotes the (s− i)n− li × li zero matrix. The li × li matrix B
(0)
i

is regular, meaning that with Gaussian elimination, we can eliminate the

variables qi1, . . . , qili in all rows different from those of B
(0)
i . For i = 0 the

situation is very simple, since the only rows in system (2.36) in which the

variables q01, . . . , q0l0 occur, are the rows coming from B
(0)
0 . If li ≥ (s−i)n,

then we can eliminate rankS
(0)
i = li −mi variables among qi1, . . . , qili .

All in all, we can simplify system (2.36) by eliminating
∑s

i=0(li −mi)

variables. This means that the remaining

s∑

i=0

mi +

λ∑

i=s+1

li

variables can be found by solving
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s∑

i=0

( (s− i)n− li +mi )

linear equations. This gives an in general significant reduction of the size

of the original system.

Example 2.45. This example is a continuation of Example 2.38. In the

formulation from Section 2.6, we needed to solve a linear system of 168

equations 171 variables in order to find an interpolation polynomial Q(y).

We have just seen however that we can reduce the size of the system. First

we calculate the rank of the matrices S
(0)
i and find:

i 0 1 2 3 4 5

rankS
(0)
i 35 31 27 23 16 8

This means that we can eliminate 140 variables and equations thereby re-

ducing the original system to a system of 28 equations in 31 variables. We

can eliminate all 116 variables qij with 0 ≤ i ≤ 3 and 1 ≤ j ≤ li, since

for i ≤ 3 we have that li < (s − i)n. For i = 4 and i = 5, the situation is

more complicated, but all we need to do is to compute the matrices S
(0)
4

and S
(0)
5 explicitly. In order to do this, we need to choose differentials

as in Definition 2.43. Given a b between 0 and s, we can choose a basis

for Ω(−(s − b)D + A − bG) with the desired properties as follows (recall

t = x1 + x4
1):

ωi =

{
fi dt/t

s−b if 1 ≤ i < (s− b)n,

f(s−b)n+1 dt/t
s−b if i = (s− b)n.

Using this choice of differential, we can compute all matrices S
(0)
i explicitly.

By our choice of bases, they have more structure than we indicated before.

In the first place we find that (B
(0)
i )pq = 0 if p+q < li +1 and (B

(0)
i )pq = 1

if p + q = li + 1. This means that the Gaussian elimination steps needed

to eliminate the qij (with 0 ≤ i ≤ 3 and 1 ≤ j ≤ li) are straightforward to

do. We also find that the matrix S
(0)
4 is equal to
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


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0




.

Therefore we can eliminate the 16 variables q4j with 1 ≤ j ≤ 15 and j = 17.

We also find that

S
(0)
5 =




0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 1 0 0 0 0 0 1 0 0 1 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0




,

enabling us to eliminate the 8 variables q5j with 1 ≤ j ≤ 7 and j = 9. What

remains is to calculate the remaining 31 variables. Doing the elimination

explicitly, we find that the vector consisting of these remaining 31 variables

has to be in the kernel of the 28× 31 matrix:



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

94 P. Beelen and T. Høholdt

(
A1 A2

A3 A4

)
,

with

A1 =




0 0 0 1 α α α 0 0 α2 1 0 1 α2 1

0 0 α2 α 1 α2 α2 0 α α2 0 α2 α2 0 α

0 α2 0 α2 0 1 1 α 1 α 0 α2 0 1 α2

0 0 0 α2 α 1 α 1 1 α2 α2 0 α2 α α

α2 0 α2 1 0 α α 1 α2 α α2 1 α2 0 0

0 α2 α 0 α2 0 α2 1 α2 1 0 0 0 1 α2

0 α 0 α 1 1 0 α2 α α2 0 0 0 α2 0

α2 0 0 1 0 α2 0 1 α 0 1 0 α 1 1

α 0 0 α α2 α2 1 0 1 α 0 0 0 0 0

0 α α2 α2 α2 α2 α α 1 α2 0 α 0 α2 0

0 α2 0 0 0 0 α2 α2 0 α2 α 0 α 1 1

0 0 α α2 1 α2 0 1 α2 0 0 α 0 0 α

α2 α 0 0 α2 1 α2 1 α 1 0 α2 0 α α2

0 0 0 0 0 0 0 α2 0 0 0 0 0 0 0




,

A2 =




0 1 0 α2 α2 0 α α2 α α2 α2 α α 0 0 0

1 0 0 α α2 1 α2 α2 1 α 1 1 α2 0 0 0

0 0 α 0 1 α α 0 1 1 0 α2 α 0 0 0

0 α 1 α2 α α α2 1 α α 1 0 1 0 0 0

α 0 1 α 1 0 1 α α2 0 0 α α2 0 0 0

α 0 α 0 α 0 1 0 α 0 1 1 1 0 0 α

0 0 0 0 α 0 α 0 α α α α2 0 0 α 0

α α2 α α 0 α2 α α2 α2 α α2 α α 0 0 α

α2 0 α2 0 α2 α2 0 α2 1 α α2 α 1 α α 0

1 0 α2 0 1 1 1 α α α 1 1 α2 0 α α2

0 α2 0 α α 1 α2 α 1 α2 1 α2 1 α α2 α

0 0 α 0 0 1 α α α2 α α α 0 0 α α

0 0 α 0 0 α 0 α2 α2 0 α2 α α2 α2 α 0

0 0 0 0 0 0 0 1 α 0 0 α2 1 0 0 0




,
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A3 =




0 0 0 0 0 α2 0 0 0 α 0 0 0 0 0

0 0 0 0 α2 0 0 0 α 0 0 0 0 0 0

0 0 0 0 0 0 0 α 0 α2 0 0 0 0 0

0 0 0 α2 0 0 α 0 α2 α 0 0 0 0 0

0 0 0 0 α2 α 0 α2 α α2 0 0 0 0 0

0 0 0 0 α 0 α2 0 α2 0 0 0 0 0 0

0 0 0 α2 0 α2 α α2 0 α 0 0 0 0 0

0 0 0 α 0 α α2 0 α 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 α2

0 0 0 0 0 0 0 0 0 0 0 0 α2 0 0

0 0 0 0 0 0 0 0 0 0 0 α2 0 0 α2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 α

0 0 0 0 0 0 0 0 0 0 α2 0 α2 α 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




,

and

A4 =




0 0 0 0 0 0 1 0 α2 α α2 α α 0 0 0

0 0 0 0 0 0 α α2 0 α2 α α α 0 0 0

0 0 0 0 0 0 0 α2 1 1 α 1 0 0 0 0

0 0 0 0 0 0 α2 α α2 1 α2 0 α2 0 0 0

0 0 0 0 0 0 1 α 0 1 α2 1 α2 0 0 0

0 0 0 0 0 0 1 0 α 0 0 α2 0 0 0 0

0 0 0 0 0 0 α α 0 α2 α 1 α 0 0 0

0 0 0 0 0 0 1 α2 1 α2 α 0 α 0 0 0

0 0 α2 α 0 0 α α2 α α2 1 0 α2 0 0 0

α2 α 0 0 α α2 α2 α2 α 1 1 α2 α 0 0 0

α 0 0 0 α2 0 α α 1 α2 α α2 α 0 0 0

0 α2 α α2 0 α α2 α2 α 1 α2 1 α2 0 0 0

0 α α2 0 α 0 α α 1 α2 α α2 α 0 0 0

0 0 0 0 0 0 0 0 0 0 α2 α2 α 0 0 0




.

This matrix is much easier to handle than the original 168×171 matrix. Its

kernel is 5-dimensional and one of the solutions is given by (only nonzero

values are given, the rest of the 31 variables are zero):

q58 q510 q511 q61 q62 q63 q64 q65 q66 q67 q71 q81 q82

1 α2 α 1 α2 α α2 α2 1 α2 1 α2 α
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Setting in these 31 values in system (2.36), we can then calculate the re-

maining 140 variables immediately and find the interpolation polynomial

Q(y) mentioned in Example 2.38.

2.8. Literature

In this section we give the reader a guide to the literature as well as give

the source of some of the results used in this chapter. The goal of these

references is not to be extensive and many more people have worked on

these subjects than we refer to. The reader is asked to check the references

in the material we refer to to obtain a more complete reference list.

All necessary algebraic geometry is covered by the books [7, 16]. The

references [10, 11] survey the decoding of algebraic geometry codes up till

1995. Especially many references for and history about the basic algo-

rithm, the order bound, and majority voting can be found there. Again we

would like to stress that for a complete record the reader should consult

the references in [10, 11].

We now give more detailed references for each section. Again we stress

that for a complete record the reader should check the references in the

mentioned literature. The basic algorithm presented in Sections 2.2 and 2.3

has been investigated in many papers. Usually the algorithm is presented

for the code CΩ(D,G), but we have chosen to adapt it to the code CL(D,G).

The differences are small and the performance is the same, which can be

expected since there exists a divisor H such that CL(D,G) = CΩ(D,H).

The given basis for L(G(k∞, k1, . . . , kq)) in Example 2.11 was calculated

in [13]. The generalized order bound in Section 2.4 was described in [2].

It is an extension of the order bound. Independently, an extension of the

order bound was discussed in [4]. The majority voting algorithm presented

in Section 2.5 is an extension of the existing majority voting algorithm as

presented in [10, 11] and is close to the algorithm described in [5].

The list-decoding algorithm from Section 2.6 was first described in [17]

for Reed-Solomon codes and subsequently extended to algebraic geometry

codes in [15]. In both articles the multiplicity parameter s is equal to 1.

The concept of multiplicity occurs for the first time in [8], thus extending

the original algorithm to all rates. For Hermitian codes, the root finding

part was done using points of high degree in [12], for general algebraic

geometry codes in [9]. The existence of a point (or equivalently: “place” in

the language of function fields) of high enough degree follows from Corollary

V.2.10 in [16]. Root finding using Hensel lifting was done for Reed-Solomon
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codes in [14] and for algebraic geometry codes in [1]. The Hensel lifting

algorithm we present is an extension to cover general algebraic geometry

codes with multiplicity parameter s possibly larger than one. The syndrome

reformulation of the list-decoding algorithm in this generality (i.e. s > 1)

is new. In [3] it was done for Reed-Solomon and Hermitian codes. For

s = 1 it was described in [14] in the case of Reed-Solomon codes. For some

stated facts about Hasse-derivatives and Taylor series see Sections 1.3 and

2.5 in [7].
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For Reed-Solomon codes, the key equation relates the syndrome
polynomial—computed from the parity check matrix and the received
vector—to two unknown polynomials, the locator and the evaluator. The
roots of the locator polynomial identify the error positions. The eval-
uator polynomial, along with the derivative of the locator polynomial,
gives the error values via the Forney formula. The Berlekamp-Massey
algorithm efficiently computes the two unknown polynomials.

This chapter shows how the key equation, the Berlekamp-Massey
algorithm, the Forney formula, and another formula for error evaluation
due to Horiguchi all generalize in a natural way to one-point codes. The
algorithm presented here is based on Kötter’s adaptation of Sakata’s
algorithm.
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3.1. Introduction

For Reed-Solomon codes, the key equation relates the syndrome

polynomial—computed from the parity check matrix and the received

vector—to two unknown polynomials, the locator and the evaluator. The

exact formulation of the key equation has evolved since Berlekamp’s intro-

duction of the term [2]. There are also key equations for other algorithms,

such as Sugiyama et al [42], and Berlekamp-Welch [44]. The goal of this

chapter is to show that the key equation, the Berlekamp-Massey algorithm

and the error evaluation formulas of Forney and Horiguchi [18] all gener-

alize to one-point codes. An important aspect of the generalization is to

treat the ideal of error locator polynomials as a module over a polynomial

ring in one variable, which is essentially the approach Kötter used in his

version of the Berlekamp-Massey-Sakata algorithm [21]. The chapter is di-

vided into three main sections, Reed-Solomon codes, Hermitian codes, and

one-point codes. We have attempted to make each section as self-contained

as possible, and to minimize the mathematical background required.

The section on Reed-Solomon codes gives a concise treatment of the

key-equation, the Berlekamp-Massey algorithm, and the error evaluation

formulas in a manner that will generalize easily to one-point codes. Two

aspects of our approach are atypical, though certainly not new. First, the

locator polynomial vanishes at the error positions—as opposed to the usual

definition which uses the reciprocals of the positions—because this is more



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

The Key Equation for One-Point Codes 101

natural in the context of algebraic geometry codes. Second, the syndrome is

a rational polynomial—rather than a polynomial—because this is in accord

with the duality of codes on algebraic curves. Theorem 3.7 gives a very for-

mal statement of the properties satisfied by the intermediate polynomials

computed in the Berlekamp-Massey algorithm. Analogous results are es-

tablished in the later sections for Hermitian and one-point codes. At the

end of the section on Reed-Solomon codes we briefly discuss the usual for-

mulation of the key equation—see for example [3, 37]—and the connections

with the Euclidean algorithm and the algorithm of Sugiyama et al. There

are also interesting connections to the Berlekamp-Welch algorithm and to

the list decoding algorithm of Lee and O’Sullivan [24], but these are not

developed here.

The section on Hermitian codes requires little if any background in alge-

braic geometry, and only minimal familiarity with the algebra of polynomial

rings and Gröbner bases. The presentation of this section closely parallels

that of the section on Reed-Solomon codes, so that overall similarity be-

tween the two as well as the new complexities are as clear as possible. The

locator polynomial is replaced with the ideal of polynomials vanishing at

the error locations, and the problem is to find several locator polynomials

of minimal degree, one for each congruence class modulo q, where the field

size is q2. The syndrome is again a rational polynomial, and the property

of a locator is that its product with the syndrome eliminates the denomi-

nator, giving a polynomial. The product of the locator and the syndrome

also may be used for error evaluation. Kötter’s algorithm is essentially q

Berlekamp-Massey algorithms operating in parallel, and the only place in

which the algebra of the curve is used is in the computation of recursions

of candidate locator polynomials with the syndrome. The Forney formula

and Horiguchi formula for error evaluation are simple, but not obvious,

generalizations of those for Reed-Solomon codes.

The section on one-point codes shows that the decoding algorithms and

formulas for Hermitian codes need only minor modification to apply to gen-

eral one-point codes. The focus of this section is not reproving the decoding

results in the more general setting; instead, it is to establish the algebraic

structure that makes the algorithms work. In particular, we will need to

use differentials, residues of differentials, and duality with respect to the

residue map. This section does require the theory of curves and algebraic

function fields, but we have tried to build the exposition using a small num-

ber of key results as a base. The treatment is based on O’Sullivan [32, 33],

with, we hope, improvements in exposition.
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3.2. The key equation for Reed-Solomon codes

In this section, we briefly discuss Reed-Solomon codes, set up the de-

coding problem and introduce the locator and evaluator polynomials. The

syndrome is defined as a rational polynomial, but it may also be seen as a

power series. We then present the key equation and the Berlekamp-Massey

algorithm in a form that we will generalize to codes from algebraic curves.

We derive Horiguchi’s formula for error evaluation, which removes the need

to compute the error evaluator polynomial. Finally, we explore connections

with the Euclidean algorithm.

3.2.1. Reed-Solomon codes

Let Fq be the finite field of q elements. Given n different elements

α1, . . . , αn of Fq, define the map ev : Fq[x] → Fn
q , f 7→ (f(α1), . . . , f(αn)).

The generalized Reed-Solomon code GRS(ᾱ, k), where ᾱ = (α1, . . . , αn), is

defined as the image by ev of the polynomials in Fq[x] with degree at most

k − 1. It has generator matrix




1 1 . . . 1

α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αk−1
1 αk−1

2 . . . αk−1
n




It is well known (see for instance [37, §5.1]) that the parity check matrix

of GRS(ᾱ, k) is then




1 1 . . . 1

α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αn−k−1
1 αn−k−1

2 . . . αn−k−1
n







β1 0 . . . . . . 0

0 β2 0
. . .

...
... 0

. . .
. . .

...
...

. . . 0
. . . 0

0 . . . . . . 0 βn




for some β1, β2, . . . , βn ∈ Fq . That is, (c1, c2, . . . , cn) is in GRS(ᾱ, k) if and

only if (c1β1, c2β2, . . . , cnβn) is in GRS⊥(ᾱ, n− k).

If the field size is q and n = q − 1 then it is said to be a conventional

Reed-Solomon code or just Reed-Solomon code and we denote it by RS(k).
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In this case it can be proven that βi = αi. So the parity check matrix is




α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

α3
1 α3

2 . . . α3
n

...
...

...
...

αn−k
1 αn−k

2 . . . αn−k
n



.

3.2.2. Polynomials for decoding

Suppose that a word c ∈ GRS⊥(ᾱ, n − k) is transmitted and that the

vector u is received. The vector e = u− c is the error vector. We assume

that e has t ≤ n−k
2 non-zero positions. We will use c, u, e and t throughout

this section. The decoding task is to recover e from u and thereby get

c = u− e.

We define the error locator polynomial associated to e as

fe =
∏

j:ej 6=0

(x− αj)

and the error evaluator polynomial as

ϕe =
∑

j:ej 6=0

ej

∏

k:ek 6=0
k 6=j

(x − αk).

The utility of the error locator polynomial and the error evaluator poly-

nomial is that the error positions can be identified as the indices j such that

fe(αj) = 0 and the error values can be computed by the so-called Forney

formula given in the next lemma, whose verification is straightforward.

Lemma 3.1. If ej 6= 0 then ej =
ϕe(αj)
fe′(αj)

.

Another useful fact about f e and ϕe is that from the received vector we

know the first coefficients of the power series in 1
x obtained when dividing

ϕe by fe. This is shown in the next lemma.

Lemma 3.2. ϕe

fe = 1
x

(
s0 + s1

x + s2

x2 + · · ·
)
, where sa =

∑n
j=1 ejα

a
j . In

particular, for a ≤ n− k − 1, sa =
∑n

j=1 ujα
a
j .
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Proof.

ϕe

fe
=

n∑

j=1

ej

x− αj
=

1

x

n∑

j=1

ej

1 − αj

x

=
1

x

n∑

j=1

ej

∞∑

a=0

(αj

x

)a

=
1

x

∞∑

a=0

1

xa

n∑

j=1

ejα
a
j

=
1

x

∞∑

a=0

sa

xa

Looking at the parity check matrix of GRS(ᾱ, n− k)⊥, it can be deduced

that for a ≤ n−k−1,
∑n

j=1 cjα
a
j = 0. Hence, sa =

∑n
j=1 ejα

a
j =

∑n
j=1(uj−

cj)α
a
j =

∑n
j=1 ujα

a
j . �

Definition 3.3. For a vector e, the syndrome of e is S = ϕe

fe . The syndrome

of order a is sa =
∑n

j=1 ujα
a
j .

Just as any element of the field Fq(x) may be written as a Laurent

series in x, any h ∈ Fq(x) also may be written as a Laurent series in 1/x,

h =
∑

a≤d hax
a for some d ∈ Z. If hd is nonzero in this expression, we

say the degree of h is d, and if hd = 1 we say that h is monic. Notice that

h ∈ Fq [x] if and only if ha = 0 for all a < 0 and that our definition of

degree coincides with the usual one on Fq [x]. Henceforth, we will not use

the form for h given above. Instead we will write Laurent series in 1/x in

the form h = 1
x

∑
a hax

−a. It is understood that the sum is over all integers

a ≥ −d−1 where d is the degree of h. In this form, h is a polynomial when

ha = 0 for all a ≥ 0. As an example, the syndrome is S = 1
x

∑
a≥0 sax

−a.

Its degree is −1, unless s0 = 0.

Lemma 3.4. Let f be a polynomial and let α ∈ Fq. If the Laurent series

in 1
x given by f

x−α has no term of degree −1 then f(α) = 0.
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Proof. There exists g ∈ Fq [x] such that f(x) = f(α)+(x−α)g(x). Then

f(x)

x− α
=

f(α)

x− α
+ g(x)

= g(x) +
f(α)

x

(
1 +

α

x
+
(α
x

)2

+ · · ·
)

= g(x) +
f(α)

x
+
αf(α)

x2
+
α2f(α)

x3
+ · · ·

If the term of degree −1 is zero, then f(α) = 0. �

Proposition 3.5. If fS has no terms of degrees −1,−2, . . . ,−t then f is

a multiple of f e. In particular, if fS is a polynomial then f is a multiple

of fe.

Proof. Suppose fS has no terms of degrees −1,−2, . . . ,−t. Suppose

ej 6= 0 and let

g(x) =
∏

k:ek 6=0
k 6=j

(x− αk).

Note that degg = t− 1 and so fgS has no term of degree −1. Now,

fgS =
∑

k:ek 6=0

ekfg

x− αk

= ej
fg

x− αj
+
∑

k:ek 6=0
k 6=j

ekf
g

x− αk
.

Since fgS has no term of degree −1 and the right term in the previous sum

is a polynomial, we deduce that fg
x−αj

has no term of degree −1. By the

previous lemma, x− αj must divide f . Since j was chosen arbitrarily such

that ej 6= 0, we conclude that f e must divide f . �

3.2.3. The key equation and the Berlekamp-Massey

algorithm

We now present the version of the Berlekamp-Massey algorithm that

will be our model for generalization to codes from algebraic curves. The

Berlekamp-Massey algorithm finds the minimal solution to the key equa-

tion.
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Definition 3.6. We will say that polynomials f, ϕ satisfy the key equation

for syndrome S when fS = ϕ.

The Berlekamp-Massey Algorithm

Initialize:

(
f (0) ϕ(0)

g(0) ψ(0)

)
=

(
1 0

0 −1

)

Algorithm: For m = 0 to n− k − 1,

d = degf (m)

µ =
∑d

a=0 f
(m)
a sa+(m−d)

p = 2d−m− 1

U (m) =





(
1 −µxp

0 1

)
if µ = 0 or p ≥ 0

(
x−p −µ
1/µ 0

)
otherwise.

(
f (m+1) ϕ(m+1)

g(m+1) ψ(m+1)

)
= U (m)

(
f (m) ϕ(m)

g(m) ψ(m)

)

Output: f (n−k), ϕ(n−k).

Notice that this algorithm uses only the syndromes of order up to n−
k − 1 and these are exactly the syndromes that can be computed from

the received vector. We may think of f (m), ϕ(m) and also g(m), ψ(m) as

approximate solutions of the key equation. The algorithm takes a linear

combination of two approximate solutions to create a better approximation.

Theorem 3.7. For all m ≥ 0,

(1) f (m) is monic of degree at most m.

(2) deg(f (m)S − ϕ(m)) ≤ −m+ degf (m) − 1. In particular, f (m)S has no

terms in degrees −1,−2, . . . ,−m+ degf (m).

(3) g(m)S − ψ(m) is monic of degree −degf (m).

(4) deg(g(m)) ≤ m− degf (m).

Proof. We will proceed by induction on m. It is easy to verify the case

m = 0. Assume the statements are satisfied at step m. Let d = degf (m).

Notice that d ≤ m by item (1), and µ is the coefficient of xd−m−1 in f (m)S.

Furthermore, since d − m − 1 < 0, and ϕ(m) is a polynomial, µ is the

coefficient of xd−m−1 in f (m)S − ϕ(m).



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

The Key Equation for One-Point Codes 107

If µ = 0, then the algorithm retains the polynomials from the mth

iteration, e.g. f (m+1) = f (m). The induction hypothesis immediately gives

items (1), (3), and (4) of the theorem, and item (2) follows from µ = 0.

Consider the case when p = 2d−m− 1 ≥ 0 and µ 6= 0. The algorithm

sets f (m+1) = f (m) − µxpg(m). By the induction hypothesis,

deg(xpg(m)) ≤ 2d−m− 1 +m− d = d− 1,

so deg(f (m+1)) = deg(f (m)) = d < m and f (m+1) is monic, so item (1)

holds. Now,

f (m+1)S − ϕ(m+1) = (f (m)S − ϕ(m)) − µxp(g(m)S − ψ(m)).

The degree of each term is d−m− 1 and the coefficients of xd−m−1 cancel.

Thus deg(f (m+1)S−ϕ(m+1)) ≤ −(m+1)+deg(f (m+1))−1, as required. This

proves item (2). Items (3) and (4) are trivial in this case, since g(m+1) =

g(m) and ϕ(m+1) = ϕ(m).

Finally, consider the case when p = 2d−m− 1 < 0, in which f (m+1) =

x−pf (m) −µg(m). By computing the degrees of each summand, one can see

that f (m+1) is monic of degree m+ 1 − d ≤ m+ 1 as claimed in item (1).

We have

f (m+1)S − ϕ(m+1) = x−p(f (m)S − ϕ(m)) − µ(g(m)S − ψ(m)).

The degree of each term is −d and the coefficients cancel. Thus

deg(f (m+1)S − ϕ(m+1)) < −d. We can see that item (2) holds since

−(m+1)+deg(f (m+1))−1 = −d−1. The algorithm sets g(m+1) = µ−1f (m)

and ψ(m+1) = µ−1ϕ(m). Item (4) holds since (m+ 1)− deg(f (m+1)) = d =

deg(g(m)). Item (3) holds since g(m+1)S − ψ(m+1) = µ−1(f (m)S − ϕ(m)),

which has degree exactly d−m− 1 = −deg(f (m+1)) and it is monic. �

The next few results show that the algorithm produces the minimal

solution to the key equation, f e and feS.

Lemma 3.8. For all m, degf (m) ≤ t.

Proof. Consider f eg(m)S − feψ(m). This is a polynomial since

feS, g(m), ψ(m) and fe are. Since the degree of f e is t, we have

deg(feg(m)S − feψ(m)) = t−degf (m), using item (3) in Theorem 3.7. Thus

t− degf (m) ≥ 0. �

Lemma 3.9. When m ≥ 2t, f (m) = fe and ϕ(m) = ϕe.
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Proof. Theorem 3.7 tells us that f (m)S has no terms of degree

−1, . . . ,−m + deg(f (m)). From the previous lemma, if m ≥ 2t then

−m + deg(f (m)) ≤ −2t + t = −t. Thus, f (m)S has no terms of degree

−1, . . . ,−t. By Proposition 3.5, f (m) must be a multiple of f e; by Theo-

rem 3.7 it is monic; and, by the preceding lemma, its degree is at most t.

Thus, it must be equal to f e.

On the other hand, deg(f eS −ϕ(m)) ≤ −m+ t− 1 ≤ −t− 1 < 0. Since

both feS and ϕ(m) are polynomials, this means ϕ(m) = feS = ϕe. �

Proposition 3.10. If t ≤ d−1
2 then the previous algorithm outputs f e

and ϕe.

Proof. If t ≤ d−1
2 then n − k ≥ d − 1 ≥ 2t and the result follows from

Lemma 3.9. �

3.2.4. Error evaluation without the evaluator polynomial

We now derive a formula for error evaluation that does not use the error

evaluator polynomial, and thereby removes the need for computing it. It is

called the Horiguchi-Kötter algorithm in [3] and appears in [18, 20].

From the algorithm it is clear that

(
f (m) ϕ(m)

g(m) ψ(m)

)
= U (m−1)U (m−2) . . . U (1)U (0)

(
1 0

0 −1

)
.

Taking determinants, since each U (m) has determinant 1, we get

f (m)ψ(m) − g(m)ϕ(m) = −1. (3.1)

In particular, when m ≥ 2t,

feψ(m) − g(m)ϕe = −1.

Let j be such that ej 6= 0. Evaluating at αj we get g(m)(αj)ϕ
e(αj) = 1 and

so ϕe(αj) = (g(m)(αj))
−1. Using Lemma 3.1 we can establish the following

proposition.

Proposition 3.11. For m ≥ 2t and g(m) as in the Berlekamp-Massey

algorithm, if ej 6= 0 then

ej = (fe′(αj)g
(m)(αj))

−1.
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The last proposition tells us that in the Berlekamp-Massey algorithm

we do not need to multiply U (m) by all the matrix
(
f (m) ϕ(m)

g(m) ψ(m)

)

but by the vector
(
f (m)

g(m)

)
.

Then the initialization step will be
(
f (0)

g(0)

)
=

(
1

0

)

and the updating step will be
(
f (m+1)

g(m+1)

)
= U (m)

(
f (m)

g(m)

)
.

3.2.5. Connections to the Euclidean algorithm

Suppose that all the αi defining the GRS code are nth roots of unity. In

particular, we could demand that none of the αi are zero and take n = q−1.

From the definition of S it is easy to see that sa = sn+a for all a ≥ 0, and

consequently,

S(xn − 1) = s0x
n−1 + s1x

n−2 + · · · + sn−2x+ sn−1.

Call this polynomial S. We might alter our definition of the key equation

to say that f , and ϕ are solutions when fS = ϕ(xn − 1). That is

f(s0x
n−1 + s1x

n−2 + · · · + sn−2x+ sn−1) = ϕ(xn − 1). (3.2)

Of course, the solution set is the same as for our original equation, and

fe, ϕe are the minimal degree solutions such that f e is monic. The result

analogous to Theorem 3.7 states that deg(f (m)S̄ − ϕ(m)) ≤ n − 1 − m +

degf (m) and g(m)S−ψ(m) is monic of degree n−degf (m). When the weight

of e is t, f (2t) = fe and ϕ(2t) = ϕe give the least common multiple of S and

xn − 1; the lcm is f eS = ϕe(xn − 1).

For a linear algebra perspective, write f = f0 + f1x + · · · + ftx
t. The

key equation requires that
∑t

i=0 fisi+a = 0 for all 0 ≤ a ≤ n − t − 1.

Setting ft = 1, there are t unknowns, f0, . . . , ft−1, so the t equations where

a = 0, . . . , t − 1, are enough to determine the coefficients of f . Thus we

need to know the syndromes s0 to s2t−1 to compute f e. This verifies that
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the Berlekamp-Massey algorithm used with a code of redundancy 2t can

correct t errors.

Equation (3.2) leads to a relationship between the Berlekamp-Massey

algorithm and the Euclidean algorithm. Let m0,m1, . . . ,mr be the itera-

tions of the algorithm in which p(m) < 0 and let mr+1 = 2t where t is the

weight of e. One can check that p(m) < −p(m`) for all m` < m ≤ m`+1.

For each ` = 0, . . . , r, let

V (`) = U (m`+1−1) · · ·U (m`+1)U (m`).

Then

V (`) =

(
q` −µ(m`)

(µ(m`))−1 0

)

where q` is a monic polynomial of degree p(m`). Define recursively,
(
A0

B0

)
=

(
S

xn − 1

)
and

(
A`+1

B`+1

)
= V (`)

(
A`

B`

)

so that A`+1 = −µ(m`)B` + q`A` and B`+1 = (µ(m`))−1A`. Rearranging,

we get B`+1 = −µ(m`−1)

µ(m`) (B`−1 − q`−1B`). This is a variant of the classical

Euclidean algorithm for computing the greatest common divisor with the

modification that the remainders are all monic. We will sketch the main

points and leave verification of the details to the reader.

Notice that A` = f (m`−1)S − ϕ(m`−1)(xn − 1) and similarly B` =

g(m`−1)S − ψ(m`−1)(xn − 1). From the discussion after (3.2), degB` = n−
degf (m`−1). Referring to the Berlekamp-Massey algorithm, degf (ml+1−1) =

degf (m`) < degf (m`−1) so we have degB`+1 < degB` and the sequence of

B` does indeed satisfy the requirements of the Euclidean algorithm with

monic quotients.

At the final iteration, mr+1 = 2t, f (mr+1) = fe and ϕ(mr+1) = ϕe so that

Ar+1 = feS −ϕe(xn − 1) = 0. As noted earlier, f eS is a constant multiple

of the lcm of S and xn−1. We also have Br+1 = g(2t)S−ψ(2t)(xn−1) is the

monic greatest common divisor of S and (xn − 1), namely
∏

i:ei=0(x−αi).

Thus we see that the Berlekamp-Massey algorithm breaks each division

of this version of the Euclidean algorithm into several steps, one for each

subtraction of a monomial multiple of the divisor. The Berlekamp-Massey

algorithm is also more efficient than the Euclidean algorithm, because it
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never computes the B`. It takes advantage of the fact that B0 = xn −
1 is very sparse, and just computes the critical coefficients µ(m) via the

polynomials f (m) and S.

Berlekamp’s formulation of the key equation was different from the one

presented here. To obtain his formulation, let

σe = xtfe

(
1

x

)
=

∏

k:ek 6=0

(1 − αkx)

ωe = xt−1ϕ

(
1

x

)
=
∑

j:ej 6=0

ej

∏

k:ek 6=0
k 6=j

(1 − αkx).

These polynomials are Λ(x) and Γ(x) respectively in [3, 37]. Then

xn+t−1fe

(
1

x

)
S

(
1

x

)
= xn+t−1ϕe

(
1

x

)((
1

x

)n

− 1

)

σe
(
s0 + s1x+ · · · + sn−1x

n−1
)

= ωe(1 − xn)

σe
(
s0 + s1x+ · · · + s2t−1x

2t−1
)
≡ ωe mod x2t

This is essentially the key equation in [2, 3, 37], modulo minor changes due

to different choices of parity check matrix.

The algorithm of Sugiyama et al [42] is based on the equation

σe
(
s0 + s1x+ · · · + s2t−1x

2t−1
)

+ x2tT = ωe

One can run the Euclidean algorithm on R0 = x2t and R1 = s0 + · · · +
s2t−1x

2t−1 until the remainder has degree less than t. Sugiyama et al

showed that the resulting combination of (s0 + s1x+ · · ·+ s2t−1x
2t−1) and

x2t obtained is ωe and that the coefficient of (s0 + s1x+ · · · + s2t−1x
2t−1)

is σe. The article [42] actually treats the more general situation of Goppa

codes and error-erasure decoding.

3.3. The key equation for Hermitian codes

The most widely studied algebraic geometry codes are those from Her-

mitian curves. One reason for the interest in Hermitian curves is that

they are maximal curves, meeting the Weil bound on the number of points

for a given genus. They also have a very simple formula, and a great

deal of symmetry, which leads to lots of structure that makes them use-

ful in coding. The short articles of Stichtenoth [40] and Tiersma [43], and

Stichtenoth’s book [41] are good references for information on Hermitian

curves and codes.
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In this section we will derive the key equation and the algorithm for

solving it in a manner that parallels the section on Reed-Solomon codes.

We will not discuss one very important issue: The syndromes computed

from the received vector are insufficient for exploiting the full error correc-

tion capability of the Berlekamp-Massey-Sakata decoding algorithm. The

majority voting algorithm of Feng-Rao [10] and Duursma [7] is required

to compute more syndrome values. We will not discuss majority voting.

Instead, we simply deal with the problem solved by the BMS algorithm,

computing the error locator ideal from the syndrome of the error vector.

A detailed treatment of majority voting may be found in the chapter on

algebraic geometry codes by Høholdt et al [17]. The conditions ensuring

success in the majority voting algorithm are best understood in terms of

the “footprint” of the error vector, which is discussed below, and can lead

to decoding beyond the minimum distance [4].

3.3.1. The Hermitian curve

Let q be a prime power. We will use the following equation for the

Hermitian curve over Fq2 ,

Xq+1 = Y q + Y.

For each α ∈ Fq2 , αq+1 is the norm of α with respect to the extension

Fq2/Fq, so αq+1 belongs to Fq . On the other hand, βq + β is the trace

of β with respect to Fq2/Fq, so βq + β also belongs to Fq . Each element

γ ∈ Fq has q preimages under the trace map, and γ has q + 1 preimages

under the norm map (unless γ = 0 when there is one). Thus there are

n = q + (q − 1)q(q + 1) = q3 points on the curve. We label them P1 =

(α1, β1), P2 = (α2, β2), . . . , Pn = (αn, βn).

Let Fq2 [X,Y ]/(Xq+1 − Y q − Y ) = Fq2 [x, y], where x is the image of X

in the quotient and y is the image of Y . Since yq = xq+1 − y, each element

f in Fq2 [x, y] can be expressed in a unique way as a sum f0(x) + f1(x)y +

f2(x)y
2 + · · ·+ fq−1(x)y

q−1. That is, {1, y, . . . , yq−1} is a basis of Fq2 [x, y]

as an Fq2 [x]-module. Also, M = {xayb : 0 ≤ a, 0 ≤ b < q} is a basis of

Fq2 [x, y] as a Fq2 -vector space.

We wish to introduce a function on Fq2 [x, y] akin to the degree function

on Fq [x]. Notice that any weighted degree in Fq2 [X,Y ] such that Xq+1 and

Y q + Y have equal weights is obtained by assigning to X a weight kq and

to Y a weight k(q + 1) for some non-negative integer k. Letting k = 1, we

define the order function ρ by ρ(xayb) = deg(q,q+1)(X
aY b) = aq + b(q + 1)
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and for f =
∑

a,b≥0 fa,bx
ayb we define ρ(f) = maxfa,b 6=0 ρ(x

ayb).

One can see that xayb and xa′

ya′

in M satisfy ρ(xayb) = ρ(xa′

ya′

)

if and only if a = a′ and b = b′ and that ρ(Fq2 [x, y]) = ρ(M). Define

Λ = ρ(Fq2 [x, y]) = qN0 + (q + 1)N0. The map ρ : Fq2 [x, y] → Λ satisfies

ρ(fg) = ρ(f) + ρ(g). This suggests extending it to the quotient field of

Fq2 [x, y], which we will write Fq2(x, y), by defining ρ(f/g) = ρ(f) − ρ(g).

Now the image of ρ is all of Z.

3.3.2. Hermitian codes

We define the evaluation map

ev : Fq2 [x, y] −→ Fn

f 7−→ (f(α1, β1), f(α2, β2), . . . , f(αn, βn)).

The Hermitian code H(m) over Fq2 is the linear code generated by

{(f(P1), . . . , f(Pn)) : f ∈ M, ρ(f) ≤ m}. It is shown in [40] (see also [19])

that H(m) = Fn
q2 when m ≥ q3 +q2 −q−1 and that for m < q3 +q2 −q−1

the dual of H(m) is H(q3 + q2 − q − 2 −m). Clearly, the monomials xayb

such that 0 ≤ b < q and aq + b(q + 1) ≤ m are a basis for the space

{f ∈ Fq2 : ρ(f) ≤ m}, so they may be used to create a generating matrix

for H(m). Since xq2 −x vanishes on all points Pk , we should not use mono-

mials xayb with a ≥ q2 in the generating matrix. This is only an issue when

m ≥ q3. Thus for m ∈ Λ and m = aq + b(q + 1), with b < q, a generator

matrix of H(m) is obtained by evaluating monomials xa′

yb′ whose weighted

degree is at most m and such that a′ < q2.



1 1 . . . 1

α1 α2 . . . αn

β1 β2 . . . βn

α2
1 α2

2 . . . α2
n

α1β1 α2β2 . . . αnβn

β2
1 β2

2 . . . β2
n

...
...

...
...

αa
1β

b
1 α

a
2β

b
2 . . . αa

nβ
b
n




.

3.3.3. Polynomials for decoding

Suppose that a word c ∈ H(m)⊥ was transmitted and that a vector u

is received. The vector e = u− c is the error vector. Let t be the weight of
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e. Define the error locator ideal of e as

Ie = {f ∈ Fq2 [x, y] : f(αk, βk) = 0 for all k with ek 6= 0}

and the syndrome for e as

S =
n∑

k=1

ek
xq+1 − αq+1

k

(x − αk)(y − βk)
=

n∑

k=1

ek
yq + y − βq

k − βk

(x− αk)(y − βk)
. (3.3)

Notice that the order of each term in the summand is q2 − q − 1.

We will give three justifications for this definition of the syndrome in

the lemmas below. We note first that for any (α, β) ∈ F2
q2 on the Hermitian

curve,

xq+1 − αq+1

x− α
= αq

(
x
α

)q+1 − 1
x
α − 1

= αq

((x
α

)q

+
(x
α

)q−1

+ · · · + x

α
+ 1

)

= xq + αxq−1 + · · · + αq−1x+ αq

and

yq + y − βq − β

y − β
= 1 +

yq − βq

y − β

= 1 + yq−1 + βyq−2 + · · · + βq−2y + βq−1

We will use these identities several times during this presentation.

The first lemma gives a nice relationship between Ie and S. We will

show later that the converse also holds.

Lemma 3.12. If f ∈ Ie then fS ∈ Fq2 [x, y].

Proof. If f ∈ Ie and Pk1 , . . . , Pkt
are the error positions then there exist

gk1 , . . . , gkt
and hk1 , . . . , hkt

in Fq2 [x, y] such that

f = gk1(x− αk1) + hk1(y − βk1)

= gk2(x− αk2) + hk2(y − βk2)

...

= gkt
(x− αkt

) + hkt
(y − βkt

)
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Hence

fS =
∑

ki:eki
6=0

eki

(
gki

yq + y − βq
ki

− βki

y − βki

+ hki

xq+1 − αq+1
ki

x− αki

)

=
∑

ki:eki
6=0

eki
gki

(
1 + yq−1 + βki

yq−2 + · · · + βq−2
ki

y + βq−1
ki

)

+
∑

ki:eki
6=0

eki
hki

(
xq + αki

xq−1 + · · · + αq−1
ki

x+ αq
ki

)

which belongs to Fq2 [x, y]. �

The next lemma shows that for f ∈ Ie, the product fS may be used for

error evaluation. We will need the derivative of y with respect to x. Since

q = 0 in Fq2 , and d(yq + y)/dx = d(xq+1)/dx, we deduce that dy/dx = xq .

We say that f has a simple zero at a point P when f(P ) = 0 but f ′(P ) 6= 0.

Lemma 3.13. If f ∈ Ie and Pk is an error position then ekf
′(Pk) =

fS(Pk). If f has a simple zero at Pk then

ek =
fS(Pk)

f ′(Pk)
.

Proof. The rational function
xq+1−αq+1

j

(x−αj)(y−βj)
=

yq+y−βq
j −βj

(x−αj)(y−βj)
gives a well

defined value at any point different from (αj , βj), so when j 6= k,(
f

xq+1−αq+1
j

(x−αj)(y−βj)

)
(Pk) = 0. Consequently,

fS(Pk) = ek

(
f

xq+1 − αq+1
k

(x− αk)(y − βk)

)
(Pk).

Since f(Pk) = 0, there are g, h ∈ Fq2 [x, y] such that f = (x − αk)g + (y −
βk)h. Hence,

fS(Pk) = ek

(
(1 + yq−1 + βky

q−2 + · · · + βq−2
k y + βq−1

k )(Pk)
)
g(Pk).

+ek

(
(xq + αkx

q−1 + · · · + αq−1
k x+ αq

k)(Pk)
)
h(Pk)

= ek

(
(1 + qβq−1

k )g(Pk) + (q + 1)αq
kh(Pk)

)

= ek (g(Pk) + αq
kh(Pk)) .
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On the other hand, f ′ = g + xqh+ (x− αk)g′ + (y − βk)h′. Evaluating f ′

at Pk ,

f ′(Pk) = g(Pk) + αq
kh(Pk), so

ekf
′(Pk) = fS(Pk).

When f has a simple zero at Pk

ek = fS(Pk)/f ′(Pk).
�

As our final justification for our definition of S, we show that the syn-

drome values for the vector e, that is the products ev(xayb) · e, appear as

coefficients in a particular expansion of S.

Lemma 3.14. Let sa,b =
∑n

k=1 ekα
a
kβ

b
k and let δb be 1 when b = 0 and 0

otherwise.

S =
1

x

q−1∑

b=0

∞∑

a=0

sa,bx
−a(yq−1−b + δb)

Proof.

yq + y − βq
k − βk

(x − αk)(y − βk)
=

(
1 +

yq − βq
k

y − βk

)
1

x

(
1

1 − αk

x

)

= (1 + yq−1 + βky
q−2 + · · · + βq−2

k y + βq−1
k )(

1

x
+
αk

x2
+
α2

k

x3
+ . . . )

=
∑

0≤a

∑

0≤b<q

αa
kβ

b
kx

−a−1(yq−1−b + δb).

Hence,

S =
n∑

k=1

ek

∑

0≤a

∑

0≤b<q

αa
kβ

b
kx

−a−1(yq−1−b + δb)

=
∑

0≤a

∑

0≤b<q

(
n∑

k=1

ekα
a
kβ

b
k

)
x−a−1(yq−1−b + δb)

=
1

x

∑

0≤a

∑

0≤b<q

sa,bx
−a(yq−1−b + δb).

�
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3.3.4. Another basis for Fq2(x, y)

The final result of the previous section suggests that we introduce a new

basis for Fq2(x, y) over Fq2(x). For 0 ≤ b < q, let

z∗b =

{
yq−1 + 1 if b = 0

yq−1−b otherwise.
(3.4)

Notice that ρ(z∗b ) = (q + 1)(q − 1 − b) = q2 − 1 − b(q + 1). We will call

{z∗b : b = 0, . . . , q−1} the ∗-basis. We will write the syndrome, and products

of the syndrome with polynomials in x, y, using the ∗-basis. An element

f ∈ Fq2 [x, y] is monic in the ∗-basis when its leading term, say fa,bx
az∗b ,

has fa,b = 1. The following two lemmas show how this basis is useful for

decoding.

Lemma 3.15. The coefficient of z∗0 in ybz∗c is 1 if b = c and is 0 otherwise.

Proof. One can prove by a straightforward computation that for 0 ≤
b, c < q,

ybz∗c =





z∗0 if b = c = 0

z∗0 − z∗q−1 if b = c 6= 0

xq+1z∗q−b if b > c = 0

xq+1z∗q+c−b − z∗q−1+c−b if b > c > 0

z∗c−b if c > b

For example, if b > c > 0 then

ybz∗c = yq−1+b−c

= yb−c−1(xq+1 − y)

= xq+1z∗q+c−b − z∗q−1+c−b

Notice that 2 ≤ q + c− b ≤ q − 1, so that each of the indices in this case is

between 1 and q− 1. Thus the coefficient of z∗0 in ybz∗c is 0 when 0 ≤ b ≤ c.

Similar arguments apply to the other cases. �

Any element of Fq2(x, y) may be expressed uniquely as
∑q−1

b=0 hbz
∗
b for

hb ∈ Fq2(x). We will write hb in the form used for the syndrome in Sec-

tion 3.2.1, hb = 1
x

∑
a ha,bx

−a, where it is understood that a varies over all

integers larger than some unspecified bound. For example, we will write

the syndrome as S = 1
x

∑q−1
b=0

∑
a sa,bx

−az∗b , where it is understood that

sa,b = 0 for a < 0.
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Lemma 3.16. Let f ∈ Fq2 [x, y], let a ∈ Z and let b satisfy 0 ≤ b < q. The

coefficient of x−a−1z∗b in fS equals the coefficient of z∗0/x in xaybfS.

More precisely, expand f̃ = ybf , S, and fS as follows.

f̃ =

q−1∑

c=0

f̃cy
c =

q−1∑

c=0

∑

a

f̃a,c x
ayc

S =
1

x

q−1∑

c=0

scz
∗
c =

1

x

q−1∑

c=0

∑

a

sa,c x
−az∗c

fS =
1

x

q−1∑

c=0

tcz
∗
c =

1

x

q−1∑

c=0

∑

a

ta,c x
−az∗c

Here sc =
∑

a sa,cx
−a and similar definitions hold for tc and f̃c. Then

tb =

q−1∑

c=0

f̃csc and ta,b =

q−1∑

c=0

∑

i

f̃i,c si+a,c.

Proof. From the previous lemma, the coefficient of z∗0 in

yb(fS) =
1

x

q−1∑

c=0

tcy
bz∗c

is (1/x)tb. On the other hand, ybf = f̃ , so

(ybf)S =

(
q−1∑

c=0

f̃cy
c

)(
1

x

q−1∑

d=0

sdz
∗
d

)

=
1

x

q−1∑

c=0

q−1∑

d=0

f̃csdy
cz∗d .

Applying the previous lemma, the coefficient of z∗0 is (1/x)
∑q−1

c=0 f̃csc. We

conclude that tb =
∑q−1

c=0 f̃csc. Writing f̃c =
∑

i f̃i,c x
i and sc =

∑
j sj,c x

−j

we have

f̃csc =
∑

i

f̃i,c x
i
∑

j

sj,c x
−j

=
∑

a

x−a
∑

i

f̃i,c si+a,c.

This sum is finite since f̃c has finite support, and it gives the formula for

ta,b. �
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This lemma tells us that to identify the coefficient of x−a−1z∗b in fS,

we write f̃ = ybf in the standard basis and then compute the recursion

ta,b =
∑q−1

c=0

∑
i f̃i,c si+a,c.

3.3.5. The key equation

We now define the key equation and approximate solutions to the key

equation. We establish some simple lemmas that show basic properties of

approximate solutions and how two approximate solutions can be combined

to get a better approximation.

Definition 3.17. We say that f, ϕ ∈ Fq2 [x, y] solve the key equation for

syndrome S when fS = ϕ.

For a nonzero f ∈ Fq2 [x, y], writing fS = 1
x

∑q−1
b=0

∑
a ta,b x

−az∗b , we

see that f, ϕ satisfy the key equation when ta,b = 0 for a ≥ 0 and ϕ =
1
x

∑q−1
b=0

∑
a<0 ta,b x

−az∗b .

Definition 3.18. We say that f and ϕ in Fq2 [x, y], with f nonzero, solve

the Kth approximation of the key equation for syndrome S (or the Kth

key equation, for short) when the following two conditions hold.

(1) ρ(fS − ϕ) ≤ q2 − q − 1 −K,

(2) ϕ, written in the ∗-basis, is a sum of terms whose order is at least

q2 − q −K.

We will also say that 0 and x−a−1z∗b , for a < 0, solve the aq + b(q + 1) key

equation.

Notice that ρ(x−a−1z∗b ) = q2 − q− 1− (aq+ b(q+ 1)), and when a < 0,

we have x−a−1z∗b ∈ Fq2 [x, y]. Thus, for 0, x−a−1z∗b , condition (1) holds

with K = aq + b(q + 1), but condition (2) is not satisfied. It is convenient

to make this pair a solution to the key equation, so we have included the

special case in the definition.

For f 6= 0, (1) means that fS−ϕ has only terms x−a−1z∗b with aq+b(q+

1) ≥ K, while (2) means that ϕ has only terms x−a−1z∗b with aq+b(q+1) <

K and with a < 0 because ϕ is a polynomial. Consequently, using the
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expression for fS above, f, ϕ solve the Kth key equation if and only if

ta,b = 0 whenever a ≥ 0 and aq + b(q + 1) < K, and

ϕ =
1

x

q−1∑

b=0

∑

a<0
aq+b(q+1)<K

ta,bx
−az∗b .

Example 3.19. The pair yb, 0 satisfies the −b(q + 1) key equation. We

have

ρ(ybS) ≤ b(q + 1) + q2 − q − 1 = q2 − q − 1 − (−b(q + 1)).

The pair 0, z∗b satisfies the b(q + 1) − q key equation.

ρ(z∗b ) = (q − 1 − b)(q + 1) = q2 − q − 1 − (b(q + 1) − q)

The following technical lemmas will be used to simplify the proof of

Theorem 3.26, which establishes the properties of the decoding algorithm.

Lemma 3.20. Suppose that f 6= 0 and that f, ϕ satisfy the Kth key equa-

tion for syndrome S. Let g ∈ Fq2 [x, y] with ρ(g) < K. Then, in the ?-basis

expansion of gfS the coefficient of z∗0/x is 0. Consequently, if g and h are

both monic of order K then the coefficients of z∗0/x in gfS and hfS are

equal.

Proof. It is sufficient to establish this result for a monomial, g = xayb,

with aq+b(q+1) < K. By Lemma 3.16, the coefficient of z∗0/x in xaybfS is

equal to the coefficient of x−a−1z∗b in fS. Expanding fS as in Lemma 3.16,

this coefficient is ta,b. The discussion after the definition of approximate

solutions to the key equation shows that ta,b = 0 for a ≥ 0 and aq+b(q+1) <

K. The final statement of the lemma follows from ρ(g − h) < K. �

Lemma 3.21. Suppose that f, ϕ satisfy the Kth key equation. For any

nonnegative integer i, the K − iq key equation is satisfied by xif, xiϕ.

Proof. It is trivial to check the lemma for the case when f = 0 and

ϕ = x−a−1z∗b . For f 6= 0, we certainly have xif, xiϕ ∈ Fq2 [x, y]. The terms

in ϕ have order at least q2 − q−K, so the terms in xiϕ have order at least

q2−q−K+iq = q2−q−(K−iq). We also assume ρ(fS−ϕ) ≤ q2−q−1−K,

so ρ(xi(fS − ϕ)) ≤ q2 − q − 1 − (K − iq). �

Notice that an analogous result does not hold for multiplication by y.

The example above shows that 0, z∗1 solves the K = 1 key equation. Yet, 0,
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yz∗1 does not solve the key equation of orderK−(q+1) = −q. Indeed, yz∗1 =

z∗0 − z∗q−1 and the −z∗q−1 term violates the requirements of the definition.

Lemma 3.22. Suppose that f, ϕ and g, ψ satisfy the Kth key equation

where K = aq + b(q + 1). Suppose in addition that f 6= 0 and gS − ψ

is monic of order q2 − q − 1 −K. Let the coefficient of x−a−1z∗b in fS be

µ. Then f − µg, ϕ− µψ satisfy the (K + 1)th key equation.

Proof. By assumption, ρ(fS − ϕ) ≤ q2 − q − 1 −K and ϕ has terms of

order q2 − q −K or larger. Furthermore, µ is the coefficient of x−a−1z∗b in

fS. Since ρ(x−a−1z∗b ) = q2 − q − 1 −K, when µ = 0 the inequality above

is strict, and f, ϕ solve the (K + 1)th key equation. Suppose µ 6= 0. Then

both fS−ϕ and gS−ψ have order q2 − q− 1−K. Since gS−ψ is monic,

ρ((fS − ϕ) − µ(gS − ψ)) < q2 − q − 1 −K. Furthermore, ψ has terms of

order at least q2−q−1−K (allowing for the case in which g = 0) so ϕ−µψ
has terms of order at least q2 − q − (K + 1), as required for the (K + 1)th

key equation. �

Proposition 3.24 below is a generalization of Proposition 3.5 to Hermi-

tian curves. It also gives the converse of Lemma 3.12. First, we need a

lemma.

Lemma 3.23. Let f ∈ Fq2 [x, y] and let (α, β) ∈ Fq2 be a point on the

Hermitian curve. Then f(α, β) is the coefficient of z∗0/x in the ∗-basis
expansion of f xq+1−αq+1

(x−α)(y−β) .

Proof. We know that f(x, y) = f(α, β) + (x − α)g + (y − β)h for some

g, h ∈ Fq2 [x, y]. Thus f xq+1−αq+1

(x−α)(y−β) has a polynomial part plus

f(α, β)
xq+1 − αq+1

(x− α)(y − β)
=
f(α, β)

x− α

(
yq−1 + 1 + βyq−2 + · · · + βq−2y + βq−1

)

(3.5)

= f(α, β)
1

x

q−1∑

b=0

∑

a

αaβbx−az∗b (3.6)

The coefficient of z∗0/x is f(α, β) as claimed. �

We need some facts about generators for Ie. We summarize here mate-

rial that is treated in depth in [17]. Recall that Λ = {ρ(f) : f ∈ Fq2 [x, y]}.
Define the footprint of e as ∆e = Λ − ρ(Ie). The quotient ring Fq2 [x, y]/Ie

is a t-dimensional Fq2 -vector space. A basis for this space is obtained by

taking the classes of xayb for ρ(xayb) ∈ ∆e, so |∆e| = t.
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Since Fq2 [x] is a principal ideal domain, for any ideal I with Fq2 [x, y]/I

finite dimensional over Fq2 , the ideal I is a free module over Fq2 [x] of rank

q. For each i with 0 ≤ i ≤ q− 1 let fi be such that ρ(fi) is minimal among

{f ∈ I : ρ(f) ≡ i mod q}. Then {fi : 0 ≤ i ≤ q − 1} is a Gröbner basis

for I . By reducing fi by multiples of fj for j 6= i we may assume that all

nonzero terms of fi, except the leading term, have order in ∆ = Λ − ρ(I).

Proposition 3.24. If the expansion of fS in the ∗-basis has zero coeffi-

cients for all x−a−1z∗b such that aq + b(q + 1) ∈ ∆e then f ∈ Ie. In partic-

ular, let K be the maximal element of ∆e. If f , ϕ satisfy the (K+1)th key

equation then f ∈ Ie.

Proof. Let f satisfy the hypotheses of the proposition. Let ek 6= 0 and

let Pk = (αk, βk). We will prove that f(Pk) = 0. Consider the ideal

I ′ = {h ∈ Fq2 [x, y] : h(Pj) = 0 for all j with ej 6= 0 and j 6= k}
and let ∆′ = Λ \ {ρ(f) : f ∈ I ′}. Notice that |∆′| = t − 1, so there exists

some g ∈ I ′ such that ρ(g) ∈ ∆e \ ∆′. Reducing g modulo a reduced

Gröbner basis for I ′, we can ensure that every monomial in g has order in

∆e.

As in Lemma 3.16, write fS = 1
x

∑q−1
b=0

∑
a ta,bx

−az∗b . Lemma 3.16

shows that ta,b is the coefficient of z∗0/x in xaybfS. For aq+ b(q+ 1) ∈ ∆e,

the hypothesis of this lemma is that ta,b = 0, so the coefficient of z∗0/x in

xaybfS is 0. Since g is a linear combination of monomials with order in

∆e, the coefficient of z∗0/x in gfS is 0.

On the other hand, Lemma 3.23 and the definition of the syndrome,

(3.3), shows that the coefficient of z∗0/x in gfS is
n∑

j=1

ejg(Pj)f(Pj) = ekg(Pk)f(Pk).

Here we have used g(Pj) = 0 for j 6= k since g ∈ I ′. Since g 6∈ Ie we must

have g(Pk) 6= 0, so we conclude that f(Pk) = 0.

The final statement of the proposition follows immediately from the

observation following the definition of approximate solutions to the key

equation. If f, ϕ satisfy the Kth key equation for K = 1 + max∆e, then

the coefficient of x−a−1z∗b is 0 for any a ≥ 0 and aq + b(q + 1) < K. �

3.3.6. Solving the key equation

As noted in the introduction, this algorithm is based on Kötter’s ver-

sion of Sakata’s generalization of the Berlekamp-Massey algorithm. The
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algorithm uses the algebra of Fq2 [x, y] in only one place, the computation

of f̃ , otherwise all the computations involve polynomials in x, which are

easily implementable using shift-registers.

The value M determining the final iteration of the algorithm is given in

Proposition 3.28 below.

Decoding algorithm for Hermitian codes

Initialize: For i = 0 to q − 1, set

(
f

(0)
i ϕ

(0)
i

g
(0)
i ψ

(0)
i

)
=

(
yi 0

0 −z∗i

)

Algorithm: For m = 0 to M , and for each pair i, j such that m ≡ i +

j mod q, set

di = ρ(f
(m)
i ) dj = ρ(f

(m)
j )

ri = m−di−j(q+1)
q rj =

m−dj−i(q+1)
q

f̃i = yjfi f̃j = yifj

µi =
∑q−1

c=0

∑
a(f̃i)a,csa+ri,c µj =

∑q−1
c=0

∑
a(f̃j)a,csa+rj ,c

p =
di+dj−m

q − 1

The update for j is analogous to the one for i given below.

U
(m)
i =





(
1 −µix

p

0 1

)
if µi = 0 or p ≥ 0

(
x−p −µi

1/µi 0

)
otherwise.

(
f

(m+1)
i ϕ

(m+1)
i

g
(m+1)
j ψ

(m+1)
j

)
= U

(m)
i

(
f

(m)
i ϕ

(m)
i

g
(m)
j ψ

(m)
j

)

Output: f
(M+1)
i , ϕ

(M+1)
i for 0 ≤ i < q.

Remark 3.25. The monomial xriyj used to define f̃i is the shift necessary

so that xriyjf
(m)
i has leading term of order m. Indeed, ρ(xriyjf

(m)
i ) =

riq + j(q + 1) + di = m. Lemma 3.16 says that µi is the coefficient of

x−ri−1z∗j in f
(m)
i S.

Theorem 3.26. For m ≥ 0,

(1) f
(m)
i is monic and ρ(f

(m)
i ) ≡ i mod q.
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(2) f
(m)
i , ϕ

(m)
i satisfy the m− ρ(f

(m)
i ) approximation of the key equation.

(3) g
(m)
i , ψ

(m)
i satisfy the ρ(f

(m)
i ) − q approximation of the key equation

and g
(m)
i S − ψ

(m)
i is monic of order q2 − 1 − ρ(f

(m)
i ).

(4) ρ(g
(m)
i ) < m− ρ(f

(m)
i ) + q.

Proof. We will proceed by induction on m. Example 3.19 establishes the

base step, m = 0.

Assume that the statements of the theorem are true for m, we will prove

them for m + 1. It is sufficient to consider a pair i, j with 0 ≤ i, j < q − 1

satisfying i+ j ≡ m mod q. Let di, ri, µi, p be as defined in the algorithm.

The induction hypothesis says that f
(m)
i , ϕ

(m)
i satisfy the m − di key

equation. By Lemma 3.16, µi is the coefficient of x−ri−1z∗j in f
(m)
i S. A

simple computation shows ρ(x−ri−1z∗j ) = q2−q−1−(m−di). Consequently,

if µi = 0, then fm
i , ϕ

m
i solve the (m + 1 − di) key equation. In this case,

the algorithm retains the data from the iteration m, e.g. f (m+1) = f (m).

It is easy to verify that the properties of the theorem hold.

If µi 6= 0, we consider two cases. First, suppose p ≥ 0. The algorithm

sets f
(m+1)
i = f

(m)
i −µix

pg
(m)
i . Notice that ρ(µix

pg
(m)
i ) < (di+dj−m−q)+

(m − dj + q) = di. This shows that ρ(f
(m+1)
i ) = di and f

(m+1)
i is monic,

as claimed in item (1). By the induction hypothesis and Lemma 3.21,

xpg
(m)
j , xpψ

(m)
j satisfy the dj−q−pq = m−di key equation and xp(g

(m)
j S−

ψ
(m)
j ) is monic of order q2 − q − 1 − (m − di). Lemma 3.22 shows that

f
(m)
i −µix

pg
(m)
j , ϕ

(m)
i −µix

pψ
(m)
j solves the m+1− di key equation. Since

di = ρ(f
(m+1)
i ), we have established item (2) of the theorem. Items (3)

and (4) follow because g
(m+1)
i = g

(m)
i and ψ

(m+1)
i = ψ

(m)
i .

Suppose now that p < 0 and µi 6= 0. In this case, f
(m+1)
i =

x−pf
(m)
i − µig

(m)
j . A simple computation shows ρ(x−pf

(m)
i ) = m− dj + q

while ρ(g
(m)
j ) < m− dj + q. Thus, f

(m+1)
i is monic, and

ρ(f
(m+1)
i ) = ρ(x−pf

(m)
i ) = m− dj + q ≡ i mod q.

From Lemma 3.21, x−pf
(m)
i , x−pϕ

(m)
i satisfy the key equation of order m−

di + pq = dj − q. By the induction hypothesis, g
(m)
j , ψ

(m)
j satisfy the key

equation of the same order. Furthermore, µi is the coefficient of x−p−ri−1z∗j
in x−pf

(m)
i S. Noting that q(p + ri) + j(q + 1) = dj − q we may apply

Lemma 3.22 to obtain that f
(m+1)
i , ϕ

(m+1)
i satisfy the key equation of

order dj − q + 1 = m+ 1 − ρ(f
(m+1)
i ). This proves item (2).
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To prove items (4) and (3), we first establish that µj = µi. We claim

that each is the coefficient of z∗0/x in x−p−1f
(m)
j f

(m)
i S. We know µi is

the coefficient of x−ri−1z∗j in f
(m)
i S, which by Lemma 3.16 is the coeffi-

cient of z∗0/x in xriyjf
(m)
i S. Since x−p−1f

(m)
j and xriyj are both monic

of order m − di, Lemma 3.20 says the coefficients of z∗0/x in xriyjf
(m)
i S

and x−p−1f
(m)
j f

(m)
i S are equal. A similar argument works for j, which

establishes the claim.

Since µj = µi 6= 0, the algorithm sets g
(m+1)
i = µ−1

i f
(m)
j and ψ

(m)
i =

µ−1
i ϕ

(m)
j . We can verify item (4),

(m+ 1) − ρ(f
(m+1)
i ) + q = m+ 1 − (m− dj + q) + q

= dj + 1

> ρ(g
(m+1)
i )

Item (3) also follows since g
(m+1)
i , ψ

(m+1)
i satisfy the m − dj key equation

andm−dj = ρ(f
(m+1)
i )−q. Furthermore, g

(m+1)
i S−ψ(m+1)

i = µ−1
j (f

(m)
j S−

ϕ
(m)
j ) is monic. �

The next results establish the iteration number M at which the algo-

rithm may be terminated. This depends on the footprint of e, ∆e, intro-

duced earlier as well as the orders of the Gröbner basis for Ie. For i = 0

up to q − 1 define σi = min{ρ(f) : f ∈ Ie and ρ(f) ≡ i mod q}.
Lemma 3.27. For all m and for all i, ρ(f

(m)
i ) ≤ σi.

Proof. Let f e
i ∈ Ie have pole order σi and consider f e

i g
(m)
i S − fe

i ψ
(m)
i .

By Theorem 3.26 (3), we have ρ(f e
i g

(m)S−fe
i ψ

(m)) = σi +q2−1−ρ(f (m)
i ).

This must be an element of Λ because f e
i S, g(m) and ψ(m) are all in Fq2 [x, y].

Since σi − ρ(f
(m)
i ) is a multiple of q, and q2 − q − 1 6∈ Λ, we must have

σi − ρ(f
(m)
i ) ≥ 0. �

Proposition 3.28. Let σmax = max{σi : 0 ≤ i ≤ q − 1} and let δmax =

max{c ∈ ∆e}. For m > σmax+δmax, each of the polynomials f
(m)
i belongs to

Ie. Let M = σmax+max{δmax, q
2−q−1}. Each of the pairs f

(M+1)
i , ϕ

(M+1)
i

satisfies the key equation.

Proof. By Theorem 3.26, f
(m)
i , ϕ

(m)
i satisfy them−ρ(f (m)

i ) key equation.

If m > σmax + δmax, then, m − ρ(f
(m)
i ) > δmax, so the result follows from

Lemma 3.24. For M = σmax + max{δmax, q
2 − q − 1}, we have

ρ(f
(M+1)
i S − ϕ

(M+1)
i ) ≤ q2 − q − 1 − (M + 1 − ρ(f

(M+1)
i )) < 0.
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Since f
(M+1)
i is a locator, ϕ

(M+1)
i must equal f

(M+1)
i S. �

3.3.7. Error evaluation without the error evalua-

tor polynomials

In this section we generalize the error evaluation formula in Proposi-

tion 3.11 that uses just the error locator polynomial f and the update

polynomial g to determine error values. The main result is Theorem 3.30,

which is readily derived from Proposition 3.29. Unfortunately, the proposi-

tion requires a result that takes some work to establish: In the algorithm,

when i+ j ≡ m mod q, µi = µj . This was shown for p < 0 in the proof of

Theorem 3.26, but in order to show it for p ≥ 0 we need a rather technical

result, Proposition 3.48. Since the result is easier to state using the lan-

guage of residues—instead of referring to the coefficient of z∗0/x—we have

deferred it to the section on general one-point codes.

Proposition 3.29. Let B
(M)
i =

(
f

(m)
i ϕ

(m)
i

g
(m)
i ψ

(m)
i

)
. Then for all m,

q−1∑

i=0

detB
(m)
i = −

q−1∑

i=0

yiz∗i = −1 (3.7)

Proof. We proceed by induction. The case m = 0 is a simple calculation.

Assume that the statement of the theorem is true for m; we will prove it for

m+ 1. It is sufficient to show that detB
(m+1)
i = detB

(m)
i if 2i ≡ m mod q

and detB
(m+1)
i + detB

(m+1)
j = detB

(m)
i + detB

(m)
j if i+ j ≡ m mod q and

i 6= j.

If 2i ≡ m mod q, then B
(m+1)
i = U

(m)
i B

(m)
i , where

U
(m)
i =





(
1 −µix

p

0 1

)
if µi = 0 or p ≥ 0

(
x−p −µi

1/µi 0

)
otherwise.

Since detU
(m)
i = 1 in either case, we have detB

(m+1)
i = detB

(m)
i .
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Assume now that i + j ≡ m mod q and that i 6= j. Proposition 3.48

shows that µi = µj , so, from the algorithm

B
(m+1)
i =





(
f

(m)
i − µix

pg
(m)
j ϕ

(m)
i − µix

pψ
(m)
j

g
(m)
i ψ

(m)
i

)
if µi = 0 or p ≥ 0

(
x−pf

(m)
i − µig

(m)
j x−pϕ

(m)
i − µiψ

(m)
j

µ−1
i f

(m)
j µ−1

i ϕ
(m)
j

)
otherwise.

The two cases lead respectively to

detB
(m+1)
i =

{
f

(m)
i ψ

(m)
i − g

(m)
i ϕ

(m)
i − µix

p(g
(m)
j ψ

(m)
i − g

(m)
i ψ

(m)
j ) or

f
(m)
j ψ

(m)
j − g

(m)
j ϕ

(m)
j − µix

p(g
(m)
i ψ

(m)
j − g

(m)
j ψ

(m)
i )

To obtain detB
(m+1)
j one simply switches i and j in these formulas. When

we take the sum of detB
(m+1)
i and detB

(m+1)
j , the final terms cancel, so

detB
(m+1)
i + detB

(m+1)
j = detB

(m)
i + detB

(m)
j . �

We now take M as in Proposition 3.28, so that the algorithm of the

previous section has produced solutions to the key equation. Let

fi = f
(M+1)
i ϕi = ϕ

(M+1)
i

gi = g
(M+1)
i ψi = ψ

(M+1)
i

Then the fi are a basis for Ie as a module over Fq2 [x, y] and fi, ϕi satisfy

the key equation.

Theorem 3.30. If Pk is an error position.

ek =

(
q−1∑

i=0

f ′
i(Pk)gi(Pk)

)−1

(3.8)

Proof. From the preceding lemma,

q−1∑

i=0

(fiψi − giϕi) = −1

Evaluating at an error position Pk we have −∑q−1
i=0 giϕi(Pk) = −1. Apply

Lemma 3.13, to get
∑q−1

i=0 gi(Pk)ekf
′
i(Pk) = 1. Solving for ek gives the

formula. �
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3.3.8. An example

Consider the Hermitian curve associated to the field extension F9 =

F3[α] where α2 = α + 1. Let x and y be the classes of X and Y in the

quotient F9[X,Y ]/(X4 −Y 3 −Y ). The basis monomials are xayb for a ≥ 0

and 0 ≤ b ≤ 2. The order of x is 3 and the order of y is 4. So,

Λ = {0, 3, 4, 6, 7, 8, 9, 10, . . .}.
The Hermitian curve in this case has 27 points, which we take in the fol-

lowing order: (1, α), (1, α3), (1, 2), (α, 1), (α, α5), (α, α7), (α2, α), (α2, α3),

(α2, 2), (α3, 1), (α3, α5), (α3, α7), (2, α), (2, α3), (2, 2), (α5, 1), (α5, α5),

(α5, α7), (α6, α), (α6, α3), (α6, 2), (α7, 1), (α7, α5), (α7, α7), (0, α2), (0, α6),

(0, 0).

Let us consider correction of two errors. There are two choices for

∆e when the weight of e is two, {0, 4} when the points are on a vertical

line, and {0, 3} when they are not. Following [4], we will call the latter

case “generic” and former “non-generic.” In either case σmax = 8. From

Proposition 3.28, the computation of all error locators and evaluators is

complete after iteration numberM = σmax+max{δmax, q
2−q−1}. Thus, for

an algorithm to correct either of the two errors we terminate the algorithm

with iterationM = 8+5 = 13, and take the data for superscript 14. We will

explain in detail the first steps in the generic case. All the computations

are summarized in Table 3.5. The computations in the non-generic case are

summarized in Table 3.5.

For the generic error vector we take error values α2 at the point (α, 1)

and α7 at the point (α6, α3), so the error vector is

e = (000α20000000000000000α7000000).

The associated syndromes are

s0,b s1,b s2,b s3,b s4,b s5,b s6,b s7,b s8,b

sa,0 α5 α2 α5 0 1 2 α6 α5 α5

sa,1 2 1 α2 α α α6 α 0 2

sa,2 α5 α2 α5 0 1 2 α6 α5 α5

To initialize f , g, ϕ, ψ we take
f0 = 1 g0 = 0 ϕ0 = 0 ψ0 = 2y2 + 2

f1 = y g1 = 0 ϕ1 = 0 ψ1 = 2y

g2 = 0 f2 = y2 ϕ2 = 0 ψ2 = 2
We start with m = 0. The pairs i, j with i+ j ≡ m mod 3 are 0, 0 and

1, 2. The data computed in the algorithm is,
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r0 = 0 f̃0 = 1 µ0 = s0,0 = α5,

r1 = −4 f̃1 = x4 + 2y µ1 = s0,0 + 2s−4,1 = α5,

r2 = −4 f̃2 = x4 + 2y µ2 = s0,0 + 2s−4,1 = α5.
For the pair 0, 0, p = −1, and for the pair 1, 2, p = 3, so

U
(0)
0 =

(
x α

α3 0

)
and U

(0)
1 = U

(0)
2 =

(
1 αx3

0 1

)
.

As a result,

f
(1)
0 = x ϕ

(1)
0 = α5y2 + α5 g

(1)
0 = α3 ψ

(1)
0 = 0,

f
(1)
1 = y ϕ

(1)
1 = α5x3 g

(1)
1 = 0 ψ

(1)
1 = 2y

f
(1)
2 = y2 ϕ

(1)
2 = α5x3y g

(1)
2 = 0 ψ

(1)
2 = 2

For m = 1, the pairs i, j with i + j ≡ m mod 3 are 0, 1 and 2, 2, and,
r0 = −2 f̃0 = xy µ0 = s−1,1 = 0,

r1 = −1 f̃1 = y µ1 = s−1,1 = 0,

r2 = −5 f̃2 = x4y + 2y2 µ2 = s−1,1 + 2s−5,2 = 0.
This means that

U
(1)
0 = U

(1)
1 = U

(1)
2 =

(
1 0

0 1

)

and fi, ϕi, gi, ψi remain unchanged.

For m = 2, the pairs i, j with i+ j ≡ m mod 3 are 0, 2 and 1, 1, and,
r0 = −3 f̃0 = xy2 µ0 = s−2,2 = 0

r1 = −2 f̃1 = y2 µ1 = s−2,2 = 0

r2 = −2 f̃2 = y2 µ2 = s−2,2 + 2s−2,2 = 0

Again, this means U
(2)
0 = U

(2)
1 = U

(2)
2 =

(
1 0

0 1

)
, and fi, ϕi, gi, ψi remain

unchanged.

For m = 3, the pairs i, j with i+ j ≡ m mod 3 are 0, 0 and 1, 2. Now,
r0 = 0 f̃0 = x µ0 = s1,0 = α2

r1 = −3 f̃1 = x4 + 2y µ1 = s1,0 + 2s−3,1 = α2

r2 = −3 f̃2 = x4 + 2y µ2 = s1,0 + 2s−3,1 = α2

For the pair 0, 0 we have p = 0 and for the pair 1, 2 we have p = 2 so,

U
(3)
0 =

(
1 α6

0 1

)
and U

(3)
1 = U

(3)
2 =

(
1 α6x2

0 1

)

Consequently,

f
(4)
0 = x+ α ϕ

(4)
0 = α5y2 + α5 g

(4)
0 = α3 ψ

(4)
0 = 0

f
(4)
1 = y ϕ

(4)
1 = α5x3 + α2x2 g

(4)
1 = 0 ψ

(4)
1 = 2y

f
(4)
2 = y2 ϕ

(4)
2 = α5x3y + α2x2y g

(4)
2 = 0 ψ

(4)
2 = 2
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The subsequent steps are summarized in Table 3.5. Let fi = f
(14)
i and

similarly for the other data. The locators and associated derivatives are

(using dy
dx = x3),

f0 = x2 + x+ α7 (f0)
′ = 2x+ 1

f1 = y + α5x+ α (f1)
′
= x3 + α5

f2 = y2 + α7x2 + α7x+ α3 (f2)
′ = 2x3y + α3x+ α7

The points where f0, f1, and f2 vanish are exactly P4 = (α, 1) and

P21 = (α6, 2), coinciding with the error positions. The polynomials ϕ are:

ϕ0 = α5xy2 + y2 + 2xy + αx+ 2,

ϕ1 = α5x3 + α2y2 + α2x2 + αy + α5x+ a6,

ϕ2 = α5x3y + 2xy2 + α2x2y + 2x3 + α7y2 + α2xy + x2 + α7x+ 1
The error values at these positions can be computed using the formula in

Lemma 3.13. For example,

e4 =
ϕ1(P4)

(f1)
′
(P4)

=
α5

α3
= α2 e21 =

ϕ1(P21)

(f1)
′
(P21)

=
α6

α7
= α7.

The same error values could have been obtained using f0 and ϕ0 instead of

f1 and ϕ1. However, we could not have used f2 and ϕ2, because the zero

of f2 at P21 is not simple.

By Theorem 3.30, the error values can also be obtained using g0, g1, g2
instead of ϕ0, ϕ1, ϕ2. Since g0 = α6x + α7, and g1 = g2 = 0 there is only

one term to compute.

e4 = (f ′
0(P4)g0(P4))

−1
e21 =

(
(f0)

′
(P21)g0(P21)

)−1

=
(
α3 · α3

)−1
=
(
α7 · α2

)−1

= α2 = α7.

An example of a non-generic error vector is

(000000α20α7000000000000000000).

The error positions correspond to the points P7 = (α2, α) and P9(α
2, 2)

which lie on the line x = α2. The associated syndromes are

s0,c s1,c s2,c s3,c s4,c s5,c s6,c s7,c s8,c

sa,0 α5 α7 α α3 α5 α7 α α3 α5

sa,1 α7 α α3 α5 α7 α α3 α5 α7

sa,2 α2 2 α6 1 α2 2 α6 1 α2

The steps of the algorithm are summarized in Table 3.5. Notice that after

step m = 4, f0 = x− α2 = x+ α6 is already a locator.
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3.4. The key equation for one-point codes

Sakata’s generalization of the Berlekamp-Massey algorithm was origi-

nally designed for a monomial ordering on a polynomial ring in several vari-

ables [38]. It has been adapted to the more general setting of a ring with

an order function [17], which corresponds to an algebraic variety (curve,

surface or higher dimensional object) and a choice of valuation on the vari-

ety [31]. In the case of a curve C, one takes the ring R of functions having

poles only at a single point Q on C, and the pole order function. The one-

point codes defined by C and Q are obtained by evaluating functions in R

at rational points P1, P2, . . . , Pn that are distinct from Q.

In this section we show that the results in the Hermitian codes section,

with very minor modifications, apply to one-point codes. The main chal-

lenge is to establish the dual bases in which we write the locator polynomial

and the evaluator, which is now a differential. Once this foundation is set,

the decoding material falls in place via the same arguments as were used for

Hermitian codes. We simply state the results here and leave verification to

the reader. The section starts with a quick tour of the main properties of

uniformizing parameters, differentials, residues, and other topics that are

needed to establish the algorithms and formulas for decoding. Our primary

reference for this section is Stichtenoth’s book [41], but another valuable

resource is Pretzel’s book [36].

3.4.1. Curves, function fields and differentials

Let K be a function field of transcendence degree one over Fq. Let C be

the smooth curve over Fq defined by K. We assume that Fq is algebraically

closed in K, which is equivalent to C being absolutely irreducible. Let Q

be a rational point of C and let νQ be the associated valuation of K. Let

L(mQ) be the space of functions on C having poles only at Q and of order

at most m there. Each L(mQ) contains L((m−1)Q), and is either equal to

it, when we say m is a gap, or of dimension one larger, when m is a nongap.

Let Λ be the set of nongaps and let Λc be its complement in Z. Λ is called

the Weierstrass semigroup of C at Q. The union of the L(mQ) is a ring,

R =

∞⋃

m=0

L(mQ)

For f ∈ R, we define ρ(f) = −νQ(f) to be the pole order of f at Q.

Formally, we set ρ(0) = −∞.
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Let κ be the smallest positive element of Λ. For each b = 0, . . . , κ− 1,

let λb be the smallest element of Λ congruent to b modulo κ. Any integer

may be written in a unique way as λb + aκ for some b ∈ {0, . . . , κ− 1} and

a ∈ Z. Elements of Λ have a ≥ 0 and elements of Λc have a < 0. The set

λ1, . . . , λκ−1 is usually known as the Apéry set of Λ (named so after [1]).

Let x ∈ R have pole order κ, and for each b, let zb have pole order λb. We

also assume that some uniformizing parameter uQ at Q has been selected,

and that x, and zb are monic with respect to uQ. That is, when either x

or zb is written as a power series in uQ the initial term has coefficient 1. In

particular, z0 = 1.

Proposition 3.31. With the notation above, R is a free module over Fq[x]

with basis {zb}κ−1
b=0 . This is also a basis for K over Fq(x).

Proof. Let y ∈ R satisfy ρ(y) ≡ b mod κ. Since λb is the smallest element

of Λ congruent to b, there is some nonnegative a such that ρ(y) = λb + aκ.

Now ρ(y) = ρ(xazb) so there is some β ∈ Fq such that ρ(y−βxazb) < ρ(y).

Continuing in this manner, we find that for some gj ∈ Fq[x], the pole order

of y −∑j gjzj is negative. Since y −∑j gjzj ∈ R, the pole order must be

−∞; that is y −∑j gjzj = 0.

On the other hand, no nontrivial combination
∑

j gjzj can equal 0. If

gj 6= 0 then ρ(gjzj) ≡ j mod κ. Thus ρ(
∑

j gjzj) = maxj:gj 6=0{ρ(gjzj)}
which is not −∞. Thus, R is free over Fq[x] with basis {zj}κ−1

j=0 . The

argument for linear independence holds for gj ∈ Fq(x) as well. Since x

has only one pole, and that of order κ, the dimension of K over Fq(x) is

κ, [41, I.4.11]. Thus {zj}κ−1
j=0 is a basis for K over Fq(x). �

There are parallel constructions for differentials. The module of differ-

entials of K over Fq , which we denote Ω, is a one-dimensional vector space

over K. For any separating element u ∈ K, in particular for a uniformizing

parameter, du is a basis for Ω. If uP is a uniformizing parameter at a point

P , then any ω ∈ Ω may be written in the form
∑∞

i=r ciu
i
P duP with ci ∈ Fq

and cr 6= 0. One defines νP (ω) = r and resP (ω) = c−1 (or resP (ω) = 0 if

r > −1). These definitions are independent of the choice of uniformizing

parameter. We will say that ω is monic, relative to uP , when cr = 1. The

divisor of ω is (ω) =
∑

P νP (ω), where the sum is over all points of C. For

any divisor D, Ω(D) is the space of differentials such that (ω) ≥ D. Thus,

Ω(mQ) is the space of differentials which have valuation at least m at Q
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and which have nonnegative valuation elsewhere. Let

Ω(−∞Q) =
∞⋃

m=0

Ω(−mQ)

It is evident that Ω(−∞Q) is a module over R.

The most fundamental invariant of the curve C is its genus, g. We will

use the following fundamental results about divisors and the genus.

• The degree of any differential is 2g − 2.

• For the point Q, the number of positive gaps, |N \ Λ|, is g.

• Ω(−∞Q) is isomorphic to R when (2g − 2)Q is a canonical divisor.

• The Riemann-Roch theorem: For any divisor D,

dimL(D) − dimΩ(D) = m+ 1 − g.

• The residue theorem: For any differential ω,
∑

P resP (ω) = 0, where

the sum is over all points of C.

3.4.2. One-point codes and their duals

Let P1, P2, . . . , Pn be distinct rational points on C, each different from

Q, and let D = P1 + P2 + · · · + Pn. We define the evaluation map ev as

follows.

ev : R −→ Fn
q

f 7−→ (f(P1), f(P2), . . . , f(Pn))

Similarly, we have the residue map

res : Ω(−∞Q−D) −→ Fn
q

ω 7−→ (resP1(ω), resP2(ω), . . . , resPn
(ω))

Restricting the evaluation map to L(mQ) and the residue map to

Ω(mQ−D) we get exact sequences.

0 −−−−→ L(mQ−D) −−−−→ L(mQ) −−−−→ Fn
q

0 −−−−→ Ω(mQ) −−−−→ Ω(mQ−D) −−−−→ Fn
q

The image codes are CL(D,mQ) = ev(L(mQ)) and CΩ(D,mQ) =

res(Ω(mQ−D)).

Proposition 3.32. The codes CL(D,mQ) and CΩ(D,mQ) are dual.
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Proof. For f ∈ L(mQ) and ω ∈ Ω(mQ − D), the poles of fω are sup-

ported on D. From the residue theorem,

ev(f) · res(ω) =

n∑

k=1

resPk
(fω) = − resQ(fω) = 0

The Riemann-Roch theorem says

dimL(mQ) − dimΩ(mQ) = m+ 1 − g

dimL(mQ−D) − dimΩ(mQ−D) = m− n+ 1 − g

Taking the difference,

(dimL(mQ) − dimL(mQ−D)) + (dimΩ(mQ−D) − dimΩ(mQ)) = n

Thus, the codes are of complementary dimension and are orthogonal, so

they are dual codes. �

One consequence of the proposition is that the code CΩ(D,−Q) is the

whole space Fn
q . In a later section we will identify a differential, hPk

dx ∈
Ω(−Q−D), whose image under res is 1 in position k and 0 elsewhere. The

syndrome of an error vector e will be
∑n

k=1 ekhPk
dx.

We will consider the family of codes CΩ(D,mQ). The check matrix is

constructed by taking rows of the form ev(xazb) for aκ+λb ≤ m, arranged

by increasing pole order. As in earlier sections, we assume c ∈ CΩ(D,mQ)

is sent, the vector u ∈ Fn
q is received, and e = u− c, the error vector, has

weight t.

3.4.3. The trace and a dual basis

We have identified a basis for K over Fq(x); we now seek a dual basis for

Ω. The dual basis is constructed using the intimate relationship between

differentials and the trace map of an extension of function fields (see [41,

II.4, IV.3], or [36, 13.12-13]). Let Tr be the trace map from K to Fq(x).

Recall that the dual basis to {zb}κ−1
b=0 is the unique set of elements of K,

z∗0 , . . . , z
∗
κ−1 such that Tr(zbz

∗
j ) is 1 if b = j and 0 otherwise.

We will use a result that appears as Proposition 8 in Ch. X of [22]: Let

F be a separable finite extension of k(x) and let Q1, . . . , Qr be the distinct

points over a point P of k(x). Let y be an element of F . Then

r∑

i=1

resQi
(ydx) = resP (Tr(y)dx)
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The theorem assumes k is an algebraically closed field. It is also true if

k is not algebraically closed provided P,Qi are rational points since the

residues are defined for rational points and unchanged when one passes to

the algebraic closure. In our case, let ∞ be the point on the projective line

where x has a pole. On C, x will also have a pole at any point mapping to ∞.

Since the only pole of x is Q, the formula says resQ(ydx) = res∞(Tr(y)dx)

for any y ∈ K.

Proposition 3.33. For each b ∈ {0, . . . , κ − 1}, z∗bdx is an element of

Ω(−∞Q), −z∗bdx is monic, relative to uQ, and νQ(z∗b dx) = λb − κ − 1.

Additionally,

resQ(zjz
∗
bx

adx) =

{
−1 when a = −1 and j = b

0 otherwise

Proof. We will prove the residue formula first. Using the formula for the

residue at Q and the property of the dual basis,

resQ(zjz
∗
bx

adx) = res∞(xa Tr(zjz
∗
b )dx)

=

{
res∞(xadx) when j = b

0 otherwise

For the case j = b, note that u = 1/x is a uniformizing parameter at ∞,

and xadx = u−a(−u−2du) = −u−a−2du. The residue is −1 when a = −1

and is zero otherwise.

Now let j ≡ νQ(z∗bdx) + 1 mod κ and let a be such that

νQ(z∗b dx) = λj − 1 − (a+ 1)κ

Then

νQ(zjz
∗
bx

−a−1dx) = −λj + (λj − 1 − (a+ 1)κ) + (a+ 1)κ = −1

Therefore, resQ(zjz
∗
bx

−a−1dx) 6= 0. By what we proved earlier, this can

only be true when j = b and a = 0. Therefore, νQ(z∗b dx) = λb − 1 − κ.

Furthermore, since res(zbz
∗
bx

−1dx) = −1, and zb is monic, −z∗bdx is also

monic (relative to uQ).

Finally, we show z∗bdx ∈ Ω(−∞Q). From the residue formula we can

see that for each zj and any hj ∈ Fq[x], resQ(hjzjz
∗
b ) = 0. Since any

element of R can be expressed in the form
∑κ−1

j=0 hjzj , we conclude that

resQ(fz∗bdx) = 0 for any f ∈ R. Now suppose that z∗bdx has a pole at some

point P 6= Q. By the strong approximation theorem, we may choose f ∈ R

to eliminate any other poles of z∗b dx away from P and Q and we may also
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ensure that νP (fz∗bdx) = −1. Then resQ(fz∗b dx) = − resP (fz∗b dx) 6= 0,

which contradicts what was shown above. Thus z∗bdx can have a pole only

at Q. �

Proposition 3.34. With the notation above, Ω(−∞Q) is a free module

over Fq[x] with basis {z∗bdx}κ−1
b=0 . This is also a basis for Ω over Fq(x).

Proof. Let l(mQ) = dimL(mQ) and i(mQ) = dimΩ(mQ). From the

Riemann-Roch theorem one can show

l((m− 1)Q) − l(mQ) = i((m− 1)Q) − i(mQ) − 1

If m ∈ Λ, the left hand side is −1, so i((m− 1)Q) = i(mQ). Conversely, if

m ∈ Λc then the left hand side is 0, so i((m− 1)Q) = i(mQ) + 1 and there

is some ω ∈ Ω(−∞Q) such that νQ(ω) = m− 1. Thus

{νQ(ω) + 1 : ω ∈ Ω(−∞Q)} = Λc =

κ−1⋃

b=0

{λb − aκ : a > 0}

We now proceed as in Proposition 3.31. Let ω ∈ Ω(−∞Q) and let i

and a > 0 be such that νQ(ω) = λb − aκ − 1. There is some α ∈ Fq such

that νQ(ω − αxa−1z∗bdx) > λb − aκ− 1. Continuing in this manner, there

exist gb ∈ Fq [x] such that ω−∑κ−1
b=0 gbz

∗
b dx has valuation at Q larger than

(2g − 2). It is also in Ω(−∞Q), so it has no poles away from Q. Thus

ω −∑κ−1
b=0 gbz

∗
bdx = 0, for otherwise it would have degree greater than

(2g − 2). This shows any ω ∈ Ω(−∞Q) is a combination of z∗b dx with

coefficients in Fq[x].

Uniqueness and the extension to Ω are shown as in Proposition 3.31.�

The next result is required to derive the error evaluation formula that

is analogous to Theorem 3.30.

Proposition 3.35. Let M/L be a finite separable field extension and let

Tr be the trace map from M to L. Let z1, . . . , zn be a basis for M over L

and let z∗1 , . . . , z
∗
n be the dual basis. Then

n∑

i=1

ziz
∗
i = 1 (3.9)

Proof. Since M is finite and separable over L there is some y ∈M such

that M = L(y). We will show the result first for the basis 1, y, . . . , yn−1.

Let F (T ) ∈ L[T ] be the minimal polynomial of y and let F ′(T ) be its formal
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derivative. Let

C(T ) =
F (T )

T − y

= cn−1T
n−1 + cn−2T

n−2 + · · · + c1T + c0

where ci ∈ M and cn−1 = 1. The proof of [41, III.5.10] (or [23, VI.5.5])

shows that the dual basis to 1, y, y2, . . . , yn−1 is c0/F
′(y), . . . , cn−1/F

′(y).
For this basis, the sum in (3.9) is

κ−1∑

i=1

yi ci
F ′(y)

=
1

F ′(y)
C(y) (3.10)

In some algebraic closure of M , let y1, y2, . . . , yn−1 be the roots of F

that are distinct from y and let yn = y. Then C(y) =
∏n−1

i=1 (y − yi). Since

F ′(T ) =
∑n

i=1

∏
j 6=i(T − yi), F

′(y) =
∏n−1

i=1 (y − yi) = C(y), so the sum in

(3.10) is 1 as claimed.

Now suppose {zi} is another basis let {z∗i } be its dual basis, and let

{y∗i } be the dual basis to {yi}. Let M be the change of basis matrix from

the z-basis to the y-basis: za =
∑n

i=1 ma,iy
i. The change of basis matrixM

from the z∗ basis to the y∗ basis is (MT )−1, as the following computation

shows.

δa,b = Tr(zaz
∗
b ) = Tr




n∑

i=1

ma,iy
i

n∑

j=1

mb,jy
∗
j




=

n∑

i=1

n∑

j=1

ma,imb,j Tr(yiy∗j )

=

n∑

i=1

n∑

j=1

ma,imb,i

A similar computation shows
∑n

a=1 zaz
∗
a = 1,

n∑

a=1

zaz
∗
a =

n∑

a=1

n∑

i=1

n∑

j=1

ma,iy
ima,jy

∗
j

=

n∑

i=1

n∑

j=1

yiy∗j

n∑

a=1

ma,ima,j

=

n∑

i=1

yiy∗i = 1.

�
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Example 3.36. A natural generalization of Hermitian codes is the norm-

trace codes, which were studied in [13]. Consider the field extension,

Fqr/Fq. Let N be the norm function and Tr the trace function for this

extension. The norm-trace curve is Tr(y) = N(x), that is

r−1∑

i=0

yqi

= x
qr−1
q−1

In the function field of this curve, y is a solution to the polynomial F (T ) ∈
Fq(x)[T ], F (T ) =

∑r−1
i=0 T

qi − x
qr−1
q−1 . Dividing by T − y and substituting

∑r−1
i=0 y

qi

for x
qr−1
q−1 we get

C(t) =
1

T − Y

(
r−1∑

i=0

T qi −
r−1∑

i=0

yqi

)

=

r−1∑

i=0

(T qi − yqi

)/(T − y)

=

r−1∑

i=0

qi−1∑

j=0

T jyqi−1−j

=

qr−1−1∑

j=0

T j
r−1∑

i=dlogq(j+1)e
yqi−1−j

We also have F ′(T ) = 1. Thus the dual basis to 1, y, . . . , yqr−1 is

y∗0 , . . . y
∗
qr−1 where y∗j =

∑r−1
i=dlogq(j+1)e y

qi−1−j .

3.4.4. Polynomials for decoding

Define the error locator ideal of e to be

Ie = {f ∈ R : f(Pk) = 0 for all k with ek 6= 0}
For a point P , let

hP =
1

x− x(P )

κ−1∑

b=0

zb(P )z∗b .

We define the syndrome of e to be

S =

n∑

k=1

ekhPk
.



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

The Key Equation for One-Point Codes 139

As we did with Hermitian codes, we will give three justifications for this

definition of the syndrome. The first is that the coefficients of S are the

products ev(xazb) · e.

Lemma 3.37. Let sa,b =
∑n

k=1 ek(x(Pk))a(z(Pk))b. Then

S =
1

x

κ−1∑

b=0

∞∑

a=0

sa,bx
−az∗b

Proof. Writing (x − x(P ))−1 as a series in 1/x we have

hP =
1

x

( ∞∑

a=0

(
x(P )

x

)a
)(

κ−1∑

b=0

zb(P )z∗b

)
(3.11)

=
κ−1∑

b=0

∞∑

a=0

(x(P ))azb(P )x−az∗b

Thus

S =
1

x

n∑

k=1

ek

κ−1∑

b=0

∞∑

a=0

(x(Pk))azb(Pk)x−az∗b

=
1

x

κ−1∑

b=0

∞∑

a=0

x−az∗b

n∑

k=1

ek(x(Pk))azb(Pk)

=
1

x

κ−1∑

b=0

∞∑

a=0

sa,bx
−az∗b (3.12)

�

For the next two properties of the syndrome, we first need the following

lemma.

Lemma 3.38. The differential hP dx has simple poles at P and Q and no

other poles. Furthermore resQ hP dx = −1, so −hP dx is monic with respect

to uQ.

Proof. The valuation at Q of 1
x−x(P )z

∗
bdx is λb−1, and this is minimal for

b = 0. Since z0 = 1 and −z∗0dx is monic, νQ(hpdx) = νQ( 1
x−x(P )z

∗
0dx) = −1

and the residue is −1.

Using the expansion for hP in (3.11),

resQ(xizjhP dx) =

∞∑

a=0

κ−1∑

b=0

(x(P ))azb(P ) resQ(xi−a−1zjz
∗
bdx)

= −(x(P ))izj(P )
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Extending by the linearity of the residue map, for any g ∈ R,

resQ(ghP dx) = −g(P ).

We now show that hP dx has no pole at P ′ 6= P,Q. Suppose the contrary,

hP dx has a pole at some P ′ 6= P,Q. By the strong approximation theorem,

there is some g ∈ R such that ghP dx has a zero at P , a simple pole at

P ′ and no other poles, except at Q. Using the residue theorem we get a

contradiction,

0 = g(P ) = − resQ(ghP dx) = resP ′(ghP dx) 6= 0

Similarly, we may show that the pole of hP dx at P is simple. If not, we

could find a g ∈ R with νP (g) = −νP (hP dx) − 1 > 0. Again, we get a

contradiction,

0 = g(P ) = − resQ(ghP dx) = resP (ghpdx) 6= 0
�

The connection between the error locator ideal and the syndrome is now

clear.

Lemma 3.39. For f ∈ R, f ∈ Ie if and only if fSdx ∈ Ω(−∞Q).

Proof. From the previous lemma, Sdx has a simple pole at each Pk where

ek is nonzero. Thus fSdx ∈ Ω(−∞Q) if and only if νPk
(f) ≥ 1 whenever

ek 6= 0. This is just saying f ∈ Ie. �

Finally, we show that for f ∈ Ie, fS may be used for error evaluation.

Lemma 3.40. Let Pk be an error position and let uk be a uniformizing

parameter at Pk. If f is an error locator and ϕ = fSdx, then

ek
df

duk
(Pk) =

ϕ

duk
(Pk) (3.13)

Proof. Since f vanishes at Pk we can write f = a1uk + a2u
2
k + · · · . Each

hPk
has a simple pole at Pk and no pole at Pj for j 6= k, so from the

definition of S,

Sdx =
(
eku

−1
k + c0 + c1uk + · · ·

)
duk

Thus

fSdx

duk
= eka1 + · · ·
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On the other hand,

df

duk
= a1 + 2a2uk + · · ·

Evaluating the two at Pk amounts to setting uk = 0, which gives the result.

�

To compute ek using this formula, we need f to have a simple zero at

Pk. The formula simplifies when x−x(Pk) itself is a uniformizing parameter

at Pk , ek
df
dx(Pk) = fS(Pk).

3.4.5. The key equation and its solution

The key equation and the algorithm for solving it are little changed

from those for Hermitian codes. We use κ instead of q in the indexing of z

and z∗. The key equation uses differentials, not just polynomials. The key

equation for Hermitian codes can be derived from the one in this section

by dividing by dx, whose divisor is (2g−2)Q, and thereby shifting the pole

order by 2g − 2 = q2 − q − 2. We will simply state the main results, and

leave adaptations of the proofs in the previous section to the reader.

Definition 3.41. We say that f ∈ R and ϕ ∈ Ω(−∞Q) solve the key

equation for syndrome S when fSdx = ϕ. We say that a nonzero f ∈ R

and ϕ ∈ Ω(−∞Q) solve the K-th approximation of the key equation for

syndrome S when the following two conditions hold.

(1) ρ(fSdx− ϕ) ≤ 1 −K,

(2) ϕ, written in the ∗-basis, is a sum of terms whose order is at least 2−K.

We will also say that 0 and x−a−1z∗bdx, for a < 0, solve the aκ + λb key

equation.

One could also express this definition in terms of the valuation νQ,

f and ϕ solve theK-th key equation when νQ(fSdx−ϕ) ≥ K−1. Since each

hP dx has a simple pole at Q, νQ(Sdx) ≥ −1. Therefore, ρ(zbSdx) ≤ 1−λb,

so the pair zb, 0 satisfies the −λb key equation. The pair 0, z∗b solves the

λb − κ key equation.

Here are the three lemmas used in the proof that the decoding algorithm

works.

Lemma 3.42. Suppose that f 6= 0 and that f, ϕ satisfy the Kth key

equation for syndrome S. If g and h are both monic of order K then

resQ(gfS) = resQ(hfS).
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Lemma 3.43. Suppose that f, ϕ satisfy the Kth key equation. For any

nonnegative integer i, xif, xiϕ satisfy the K − iκ key equation.

Lemma 3.44. Suppose that f, ϕ and g, ψ satisfy the Kth key equation

where K = aκ + λb. Suppose in addition that f 6= 0 and gSdx − ψ is

monic of order 1 −K. Let the coefficient of x−a−1z∗b in fSdx be µ. Then

f − µg, ϕ− µψ satisfy the (K + 1)th key equation.

The decoding algorithm has only minor changes: κ replaces q, zi replaces

yi and λi replaces i(q + 1).

Decoding algorithm for one-point codes

Initialize: For i = 0 to κ− 1, set

(
f

(0)
i ϕ

(0)
i

g
(0)
i ψ

(0)
i

)
=

(
zi 0

0 −z∗i dx

)

Algorithm: For m = 0 to M , and for each pair i, j such that m ≡ i +

j mod κ, set

di = ρ(f
(m)
i ) dj = ρ(f

(m)
j )

ri =
m−di−λj

κ rj =
m−dj−λi

κ

f̃i = zjfi f̃j = zifj

µi =
∑κ−1

c=0

∑
a(f̃i)a,csa+ri,c µj =

∑κ−1
c=0

∑
a(f̃j)a,csa+rj ,c

p =
di+dj−m

κ − 1

The update for j is analogous to the one for i given below.

U
(m)
i =





(
1 −µix

p

0 1

)
if µi = 0 or p ≥ 0

(
x−p −µi

1/µi 0

)
otherwise.

(
f

(m+1)
i ϕ

(m+1)
i

g
(m+1)
j ψ

(m+1)
j

)
= U

(m)
i

(
f

(m)
i ϕ

(m)
i

g
(m)
j ψ

(m)
j

)

Output: f
(M+1)
i , ϕ

(M+1)
i for 0 ≤ i < κ.

One can check that at iteration m, ρ(xrizjf
(m)
i ) = m. Using an ar-

gument analogous to the one in Lemma 3.16 one can show that µi =

resQ(xrizjf
(m)
i Sdx) and that this is the coefficient of x−ri−1z∗j in f

(m)
i S.

Theorem 3.45. For m ≥ 0,
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(1) f
(m)
i is monic and ρ(f

(m)
i ) ≡ i mod κ.

(2) f
(m)
i , ϕ

(m)
i satisfy the m− ρ(f

(m)
i ) approximation of the key equation.

(3) g
(m)
i , ψ

(m)
i satisfy the ρ(f

(m)
i ) − κ approximation of the key equation

and giSdx− ψ
(m)
i is monic of order 1 + κ− ρ(f

(m)
i ).

(4) ρ(g
(m)
i ) < m− ρ(f

(m)
i ) + κ.

The iteration at which the algorithm can terminate depends on the

set ∆e = Λ − ρ(Ie) and the values σi = min{ρ(f) : f ∈ Ie and ρ(f) ≡
i mod κ}.

Proposition 3.46. If resQ(xaz∗b fSdx) = 0 for all a, b such that that

aκ+ λb ∈ ∆e then f ∈ Ie. In particular, if f, ϕ satisfy the max∆e key

equation, then f ∈ Ie.

Proposition 3.47. Let σmax = max{σi : 0 ≤ i ≤ κ − 1} and let

δmax = max{c ∈ ∆e}. For m > σmax + δmax, each of the polynomials f
(m)
i

belongs to Ie. Let M = σmax + max{δmax, 2g − 1}. Each of the pairs

f
(M+1)
i , ϕ

(M+1)
i satisfies the key equation.

3.4.6. Error evaluation without the error evaluator

polynomials

The error evaluation formula that we derived for Hermitian codes carries

over to one-point codes. We have to stipulate that x− x(Pk) has a simple

zero at Pk, though it may be possible to remove this restriction. As was

mentioned in the section on Hermitian codes, the derivation of the formula

depends on the fact that at iteration m, and for i+ j ≡ m mod κ, µi = µj

in the decoding algorithm. This is proven in Proposition 3.48 below.

In the proof of the proposition we will use the Cauchy-Binet Theorem.

Let B,C be n×2 matrices and let T be an n×n matrix such that C = TB.

For I, J two-element subsets of {1, . . . , n}, let CI be the two rows of C

indexed by I and let TJ
I be the 2 × 2 submatrix of T consisting of entries

from the rows in I and the columns in J . The Cauchy-Binet theorem says

that

detCI =
∑

J

detTJ
I detBJ

where the sum runs over all two-element subsets J of {1, . . . , n}.

Proposition 3.48. In the mth iteration of the algorithm, µi = µj for

i+ j ≡ m mod κ. Furthermore for i 6= j, the coefficient of z∗0 in the ?-basis
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expansion of each of the following determinants is 0:

det

(
f

(m)
i ϕ

(m)
i

f
(m)
j ϕ

(m)
j

)
, det

(
g
(m)
i ψ

(m)
i

g
(m)
j ψ

(m)
j

)
, det

(
f

(m)
i ϕ

(m)
i

g
(m)
j ψ

(m)
j

)
.

The coefficient of z∗0 is −dx in

det

(
f

(m)
i ϕ

(m)
i

g
(m)
i ψ

(m)
i

)
. (3.14)

The formulas may also be expressed using residues via Proposition 3.33.

The coefficient of z∗0 in D is 0 if and only if resQ (xaD) = 0 for all a.

Equation (3.14) is equivalent to saying that

resQ

(
xadet

(
f

(m)
i ϕ

(m)
i

g
(m)
i ψ

(m)
i

))
=

{
1 if a = −1

0 otherwise
.

Proof. The proof proceeds by induction. The determinental conditions

are readily verified for m = 0. The inductive step has two parts. First,

we show that if the determinental conditions hold for m, then µi = µj for

i+ j ≡ m mod κ in the mth iteration of the algorithm. Then we show that

the determinental conditions hold for m+ 1.

Assume the determinental conditions hold for m. Let i+ j ≡ m mod κ

and let µi, µj , ri, and rj be as in the algorithm. We will suppress the

superscript (m) on f
(m)
i and the other data. We will show below that

µi = resQ

(
x−p−1fjfiSdx− x−p−1fjϕi

)
. (3.15)

One of the hypotheses of the lemma is that the coefficient of z∗0 in fjϕi−fiϕj

is 0. Thus, we may substitute fiϕj for fjϕi in (3.15) to say that

µi = resQ

(
x−p−1fjfiSdx− x−p−1fjϕi

)
. (3.16)

The right hand side of this formula is the analogue of (3.15) with j and i

switched. This shows that µj = µi.

To establish (3.15), we apply item (2) of Theorem 3.45 to obtain

ρ(fiSdx− ϕi) ≤ 1 + ρ(fi) −m.

As we noted before Theorem 3.45, µi is the coefficient of x−ri−1z∗j in fiS.

Thus,

ρ(fiSdx− ϕi − µix
−ri−1z∗j dx) < 1 + ρ(fi) −m.

Multiplying by x−p−1fj we have

ρ(x−p−1fjfiSdx− x−p−1fjϕi − µix
−p−1fjx

−ri−1z∗j dx) < 1.
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Equivalently, the valuation of the expression is nonnegative. This shows

that resQ(x−p−1fjfiSdx − x−p−1fjϕi) = resQ(µix
−p−ri−2fjz

∗
j dx). The

expression on the right has valuation −1, and residue µi, which establishes

(3.15).

We now prove that the determinental conditions of the lemma hold for

m+ 1. Let

B
(m)
i =

(
f

(m)
i ϕ

(m)
i

g
(m)
i ψ

(m)
i

)
, and let B(m) =




B
(m)
0

B
(m)
1

B
(m)
2

. . .

B
(m)
κ−1




Let T be the update matrix for the mth iteration, so B(m+1) = TB(m).

We want to show that for I ⊆ {1, . . . , 2κ} and B
(m+1)
I the appropriate 2×2

submatrix, the coefficient of z∗0 in detB
(m+1)
I is 0 unless I is a consecutive

pair of the form {2i + 1, 2i + 2} for i = 0, . . . , κ − 1. From the inductive

hypotheses, the coefficient of z∗0 in detB
(m)
I is only nonzero for these I .

Consequently, from the Cauchy-Binet theorem

resQ

(
xadetB

(m+1)
I

)
=
∑

J

resQ

(
xadetTJ

I detB
(m)
J

)
(3.17)

where the sum runs over all J of the form {2j + 1, 2j + 2}.
From the algorithm, for i+ j ≡ m mod κ and i 6= j,




f
(m+1)
i ϕ

(m+1)
i

g
(m+1)
i ψ

(m+1)
i

f
(m+1)
j ϕ

(m+1)
j

g
(m+1)
j ψ

(m+1)
j


 =








1 0 0 −µxp

0 1 0 0

0 −µxp 1 0

0 0 0 1







f
(m)
i ϕ

(m)
i

g
(m)
i ψ

(m)
i

f
(m)
j ϕ

(m)
j

g
(m)
j ψ

(m)
j



, if µ = 0 or p ≥ 0




x−p 0 0 −µ
0 0 1/µ 0

0 −µ x−p 0

1/µ 0 0 0







f
(m)
i ϕ

(m)
i

g
(m)
i ψ

(m)
i

f
(m)
j ϕ

(m)
j

g
(m)
j ψ

(m)
j




otherwise.

(3.18)

Notice that we have used µ = µi = µj . Of course, if i = j, i.e. 2i =

m mod κ, then the formula is simpler, B
(m+1)
i = U

(m)
i B

(m)
i , with U

(m)
i

from the algorithm.

In the formula (3.17), we consider two cases for I . If there is no i, j with

i+ j ≡ m mod κ such that I ⊆ {2j+ 1, 2j+ 2, 2i+ 1, 2i+ 2} then for all J
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of the form {2j+ 1, 2j+ 2}, TJ
I has a row that is all zeros, and detTJ

I = 0.

For such I , we therefore have resQ

(
xadetB

(m+1)
I

)
= 0.

Now consider I ⊆ {2j + 1, 2j + 2, 2i+ 1, 2i+ 2} with i+ j ≡ m mod κ.

Similar reasoning shows that

resQ

(
xadetB

(m+1)
I

)
= resQ

(
xadetTJ

I detB
(m)
J

)
+resQ

(
xadetTJ̄

I detB
(m)

J̄

)

where J = {2j + 1, 2j + 2} and J̄ = {2i+ 1, 2i+ 2}. There are
(
4
2

)
choices

of I to check for each of the two possible update matrices. If I = J or

I = J̄ , then either detTJ
I = 1 and detTJ

I = 0 or vice-versa depending on

the matrix. Thus the induction hypothesis shows that the coefficient of z∗0
in detB

(m)
I is −dx as desired. For I = {2i+ 1, 2j + 2} or {2i+ 2, 2j + 2},

and for either update matrix, detTJ
I = detTJ̄

I = 0. Thus the coefficient of

z∗0 in detB
(m)
I is 0 as desired. Finally, for I = {2i+1, 2j+1}, and for either

update matrix, detTJ
I = −detTJ̄

I and this is a monomial in x.

resQ

(
xadetB

(m+1)
I

)
= resQ

(
xadetTJ

I

(
detB

(m)
J − detB

(m)

J̄

))

The induction hypothesis says that the coefficient of z∗0 is the same in

detB
(m)
J and detB

(m)

J̄
. Thus the coefficient of z∗0 in detB

(m+1)
I is 0 as

desired. �

Proposition 3.49. Let B
(M)
i =

(
f

(m)
i ϕ

(m)
i

g
(m)
i ψ

(m)
i

)
. Then for all m,

κ−1∑

i=0

detB
(m)
i = −dx

(
κ−1∑

i=0

ziz
∗
i

)
= −dx (3.19)

Theorem 3.50. Suppose that x−x(Pk) is a uniformizing parameter at an

error position Pk. Let f ′ = df/dx. Then

ek =

(
κ−1∑

i=0

f ′
i(Pk)gi(Pk)

)−1

(3.20)

3.5. Bibliographical notes

The history of the key equation may be divided into three stages. In

the first stage there is the key equation and iterative solution of it in

Berlekamp’s book [2], and a more implementation oriented approach in

Massey’s article [27]. These articles build on the Peterson-Gorenstein-

Zierler decoding algorithm [14, 34] and Forney’s improvements [12], which

use matrices and are less efficient.
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The second stage includes two new algorithms. Sugiyama et al [42] de-

fine a key equation and give an efficient solution to it using the Euclidean

algorithm. The Welch-Berlekamp algorithm [44] is related to the rational

interpolation problem and has its own key equation. A number of articles

explore the algebraic formulation of these algorithms, efficient implementa-

tion, or the relationship between the different algorithms. Among these we

mention Fitzpatrick’s article on the key equation [11], comparisons of the

Euclidean and Berlekamp-Massey algorithms by Dornstetter [6] and Hey-

dtmann and Jensen [16], and comparisons of key equations in Moon and

Gunther [28], Morii and Kasahara [29], and Yaghoobian and Blake [45]. A

more extensive discussion and bibliography may be found in Roth’s text-

book [37, Ch. 6].

A third stage concerns the extension of the key equation and decoding

algorithms to algebraic geometry codes. The key breakthrough was Sakata’s

algorithm for finding linear recurrence relations for higher dimensional ar-

rays [38]. We are using Kötter’s version of the algorithm for algebraic

curves [21], in which the ring of functions is treated as a module over a

polynomial ring. The Forney formula is generalized for one-point codes in

Hansen et al [15] and in Leonard [25, 26]. Several generalizations of the key

equation have appeared. Chabanne and Norton [5] work with a polynomial

ring in several variables and express the syndrome as a power series. The

key equation is generalized to arbitrary codes on curves by Ehrhard [8],

Porter, Shen and Pellikaan [35], and by Farrán [9]. A later paper by Shen

and Tzeng [39], deals with one-point codes. There are elements of all these

approaches in this chapter, but we have maintained the focus on one-point

codes, where the generalizations are particularly simple, and the treatment

is based on the articles of O’Sullivan [30, 32, 33].
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Table 3.1. Steps for correcting two errors in general position.

m i j ri f̃i µi p U
(m)
i

f
(m+1)
i

ϕ
(m+1)
i

g
(m+1)
i

ψ
(m+1)
i

−1 0 1 0 0 2y2 + 2
1 y 0 0 2y

2 y2 0 0 2

0 0 0 0 1 α5
−1 [[x,α], [α3, 0]] x α5y2 + α5 α3 0

1 2 −4 x4 + 2y α5 3 [[1, αx3], [0, 1]] y α5x3

2 1 −4 x4 + 2y α5 3 [[1, αx3], [0, 1]] y2 α5x3y

1 0 1 −2 xy 0 1
1 0 −1 y 0 1

2 2 −5 x4y + 2y2 0 4

2 0 2 −3 xy2 0 2

1 1 −2 y2 0 1

2 0 −2 y2 0 2

3 0 0 0 x α2 0 [[1, α6], [0, 1]] x + α α5y2 + α5

1 2 −3 x4 + 2y α2 2 [[1, α6x2], [0, 1]] y α5x3 + α2x2

2 1 −3 x4 + 2y α2 2 [[1, α6x2], [0, 1]] y2 α5x3y + α2x2y

4 0 1 −1 xy + αy 2 0 [[1, 1], [0, 1]] x + α α5y2 + 2y + α5

1 0 0 y 2 0 [[1, 1], [0, 1]] y + α3 α5x3 + α2x2

2 2 −4 x4y + 2y2 2 3 [[1, x3], [0, 1]] y2 α5x3y + α2x2y + 2x3

5 0 2 −2 xy2 + αy2 0 1

1 1 −1 y2 + α3y 0 0

2 0 −1 y2 0 1

6 0 0 1 x + α α2
−1 [[x,α6], [α6, 0]] x2 + αx + α α5xy2 + 2xy + α5x α6x + α7 α3y2 + α2y + α3

1 2 −2 x4 + α3y2 + 2y α5 1 [[1, αx], [0, 1]] y + α3 α5x3 + α2x2 + α5x

2 1 −2 x4 + 2y α5 1 [[1, αx], [0, 1]] y2 α5x3y + α2x2y + 2x3 + α5xy

7 0 1 −1 x2y + αxy + αy α3 0 [[1, α7], [0, 1]] x2 + αx + α α5xy2 + 2xy + α3y + α5x

1 0 1 y + α3 α3 0 [[1, α7], [0, 1]] y + α5x + α α5x3 + α2y2 + α2x2 + αy + α5x + α2

2 2 −3 x4y + 2y2 1 2 [[1, 2x2], [0, 1]] y2 α5x3y + α2x2y + 2x3 + α5xy + x2

8 0 2 −2 x2y2 + αxy2 + αy2 α5 1 [[1, αx], [0, 1]] x2 + αx + α α5xy2 + 2xy + α3y + αx

1 1 0 y2 + α5xy + αy 0 −1

2 0 0 y2 α5 1 [[1, αx], [0, 1]] y2 + α7x2 + x α5x3y + 2xy2 + α2x2y + 2x3 + α2xy

+x2 + 2x

9 0 0 1 x2 + αx + α α 0 [[1, α5], [0, 1]] x2 + x + α7 α5xy2 + y2 + 2xy + αx + 1

1 2 −1 x4 + α5xy2 + αy2 + 2y α2 0 [[1, α6], [0, 1]] y + α5x + α α5x3 + α2y2 + α2x2 + αy + α5x

+α6

2 1 −1 x4 + α7x2y + xy + 2y α2 0 [[1, α6], [0, 1]] y2 + α7x2 + x α5x3y + 2xy2 + α2x2y + 2x3 + α2xy

+x2 + α2y + 2x

10 0 1 0 x2y + xy + α7y 0 −1

1 0 2 y + α5x + α 0 −1

2 2 −2 x4y + α7x2y2 + xy2 + 2y2 α 1 [[1, α5x], [0, 1]] y2 + α7x2 + x α5x3y + 2xy2 + α2x2y + 2x3 + α2xy

+x2 + α2y + α7x

11 0 2 −1 x2y2 + xy2 + α7y2 1 0 [[1, 2], [0, 1]] x2 + x + α7 α5xy2 + y2 + 2xy + αx + 2

1 1 1 y2 + α5xy + αy 0 −2

2 0 1 y2 + α7x2 + x 1 0 [[1, 2], [0, 1]] y2 + α7x2 + α7x + α3 α5x3y + 2xy2 + α2x2y + 2x3 + α7y2

+α2xy + x2 + α7x + α7

12 0 0 2 x2 + x + α7 0 −1

1 2 0 x4 + α5xy2 + αy2 + 2y 0 −1

2 1 0 x4 + α7x2y + α7xy + α5y 0 −1

13 0 1 1 x2y + xy + α7y 0 −2

1 0 3 y + α5x + α 0 −2

2 2 −1 x4y + α7x2y2 + α7xy2 + α5y2 α6 0 [[1, α2], [0, 1]] y2 + α7x2 + α7x + α3 α5x3y + 2xy2 + α2x2y + 2x3 + α7y2

+α2xy + x2 + α7x + 1
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Table 3.2. Steps for correcting two errors in positions on a vertical line.

m i j ri f̃i µi p U
(m)
i

f
(m+1)
i

ϕ
(m+1)
i

g
(m+1)
i

ψ
(m+1)
i

−1 0 1 0 0 2y2 + 2
1 y 0 0 2y

2 y2 0 0 2

0 0 0 0 1 α5
−1 [[x,α], [α3, 0]] x α5y2 + α5 α3 0

1 2 −4 x4 + 2y α5 3 [[1, αx3], [0, 1]] y α5x3

2 1 −4 x4 + 2y α5 3 [[1, αx3], [0, 1]] y2 α5x3y

1 0 1 −2 xy 0 1
1 0 −1 y 0 1

2 2 −5 x4y + 2y2 0 4

2 0 2 −3 xy2 0 2

1 1 −2 y2 0 1

2 0 −2 y2 0 2

3 0 0 0 x α7 0 [[1, α3], [0, 1]] x + α6 α5y2 + α5

1 2 −3 x4 + 2y α7 2 [[1, α3x2], [0, 1]] y α5x3 + α7x2

2 1 −3 x4 + 2y α7 2 [[1, α3x2], [0, 1]] y2 α5x3y + α7x2y

4 0 1 −1 xy + α6y α7 0 [[1, α3], [0, 1]] x + α6 α5y2 + α7y + α5

1 0 0 y α7 0 [[1, α3], [0, 1]] y + α6 α5x3 + α7x2

2 2 −4 x4y + 2y2 α7 3 [[1, α3x3], [0, 1]] y2 α5x3y + α7x2y + α7x3

5 0 2 −2 xy2 + α6y2 0 1

1 1 −1 y2 + α6y 0 0

2 0 −1 y2 0 1

6 0 0 1 x + α6 0 −1

1 2 −2 x4 + α6y2 + 2y α 1 [[1, α5x], [0, 1]] y + α6 α5x3 + α7x2 + αx

2 1 −2 x4 + 2y α 1 [[1, α5x], [0, 1]] y2 α5x3y + α7x2y + α7x3 + αxy

7 0 1 0 xy + α6y 0 −1

1 0 1 y + α6 0 −1

2 2 −3 x4y + 2y2 α 2 [[1, α5x2], [0, 1]] y2 α5x3y + α7x2y + α7x3 + αxy + αx2

8 0 2 −1 xy2 + α6y2 α2 0 [[1, α6], [0, 1]] x + α6 α5y2 + α7y + 1

1 1 0 y2 + α6y 1 −1 [[x, 2], [1, 0]] xy + α6x α5x4 + α7x3 + αx2 + y y + α6 α5x3 + α7x2 + αx

2 0 0 y2 α2 0 [[1, α6], [0, 1]] y2 + α α5x3y + α7x2y + α7x3 + αxy + αx2

9 0 0 2 x + α6 0 −2

1 2 −2 x5 + α6xy2 + 2xy α3 1 [[1, α7x], [0, 1]] xy + α6x α5x4 + α7x3 + αx2 + y + α3x

2 1 −1 x4 + α7y α3 1 [[1, α7x], [0, 1]] y2 + α7xy + α5x + α α5x3y + 2x4 + α7x2y + x3 + αxy

+α2x2

10 0 1 1 xy + α6y 0 −1

1 0 1 xy + α6x 0 −1

2 2 −2 x4y + α7x5 + α5xy2 + α7y2 + α3xy 2 1 [[1, x], [0, 1]] y2 + α7xy + α5x + α α5x3y + 2x4 + α7x2y + x3 + αxy

+α2x2 + 2x

11 0 2 0 xy2 + α6y2 0 −1

1 1 0 xy2 + α6xy α2 0 [[1, α6], [0, 1]] xy + α6y + α6x + 2 α5x4 + y

2 0 1 y2 + α7xy + α5x + α 0 −1

12 0 0 3 x + α6 0 −3

1 2 −1 x5 + α6x4 + α6xy2 + 2y2 + 2xy + α2y α6 0 [[1, α2], [0, 1]] xy + α6y + α6x + 2 α5x4 + y + α6

2 1 0 x4 + α7xy2 + α5xy + α7y α6 0 [[1, α2], [0, 1]] y2 + α7xy + α2y + α5x + α2 α5x3y + 2x4 + α7x2y + αx3 + αxy

+α3x2 + α5x

13 0 1 2 xy + α6y 0 −2

1 0 2 xy + α6y + α6x + 2 0 −2

2 2 −1 x4y + α7x5 + α2x4 + α5xy2 + αy2 + α3xy + α6y 2 0 [[1, 1], [0, 1]] y2 + α7xy + α2y + α5x + α2 α5x3y + 2x4 + α7x2y + αx3 + αxy

+α3x2 + α5x + 2
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Evaluation codes (also called order domain codes) are traditionally intro-
duced as generalized one-point geometric Goppa codes. In the present
chapter we will give a new point of view on evaluation codes by intro-
ducing them instead as particular nice examples of affine variety codes.
Our study includes a reformulation of the usual methods to estimate the
minimum distances of evaluation codes into the setting of affine variety
codes. Finally we describe the connection to the theory of one-point
geometric Goppa codes.
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4.1. Introduction

Over the years the theory of geometric Goppa codes has produced many

interesting results. The only drawback is that the codes are often described

theoretically and that concrete generator matrices or parity check matrices

153
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are often not rendered. As an attempt to simplify the description of one-

point geometric Goppa codes and to support an easy generalization of such

codes to higher dimensional objects than curves, Høholdt, van Lint, and

Pellikaan founded the theory of order domains in [20]. You may say that or-

der domains are manufactured to simplify the concrete code constructions.

That is, generator matrices and parity check matrices are easily described.

The codes defined from order domains are often called evaluation codes or

order domain codes. The minimum distance and in larger generality the

generalized Hamming weights of evaluation codes can be found by apply-

ing one of two bounds that rely only on some relatively simple theory. For

a parity check matrix description one applies the order bound [20], [19]

and [18]. This bound is an incidence of the Feng-Rao bound [11], [12], [29].

If instead a generator matrix description is given then one uses the bound

in [2] which relies on the same notion as does the more well-known order

bound.

Although evaluation codes have their origin in the study of geometric

Goppa codes in the present chapter we will turn things upside down and

introduce them as particular nice examples of affine variety codes. This

adds a new perspective to the theory of evaluation codes as well as to the

theory of affine variety codes. We reformulate the Feng-Rao bound and the

bound from [2] into the setting of affine variety codes. Having done this

we see that the affine variety codes for which we get maximal information

from the above two bounds are the affine variety codes related to order

domains. We conclude the chapter by describing the connection to the

theory of one-point geometric Goppa codes.

4.2. Affine variety codes

Affine variety codes were introduced by Fitzgerald and Lax in [13]. The

definition of the codes calls for an ideal I ⊆ Fq [X1, . . . , Xm] from which we

start by defining

Iq = I + 〈Xq
1 −X1, . . . , X

q
m −Xm〉 (4.1)

Rq = Fq [X1, . . . , Xm]/Iq . (4.2)

Let

V = {P1, . . . , Pn} = VFq
(Iq) = VF̄q

(Iq)

be the variety of Iq . Here, k̄ means the algebraic closure of the field k and
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Pi 6= Pj for i 6= j. Define an Fq linear map ev : Rq → Fn
q by

ev(F + Iq) = (F (P1), . . . , F (Pn)).

We will call this map an evaluation map. Writing Pj = (P
(1)
j , . . . , P

(m)
j )

for j = 1, . . . , n we see that the i-th entry of

ev

(( ∏

s=1,...,m

∏

j = 1, . . . , n

P
(s)
j 6= P

(s)
i

(Xs − P
(s)
j )

)
+ Iq

)

is nonzero whereas all other entries equal zero. Therefore, the map ev is

surjective. We next show that ev is also injective. To this end we first recall

from [4, Pro. 8.14] that if J is an ideal in a polynomialring k[X1, . . . , Xm]

where k is perfect and if J contains a squarefree univariate polynomial in

every variable then J is a radical ideal. This clearly makes Iq radical. Next

we recall from The Strong Nullstellensatz [7, Th. 6, Sec. 4.2] that if an ideal

J ⊆ k̄[X1, . . . , Xm] is radical then the vanishing ideal of the variety Vk̄(J)

is J itself. This implies that the vanishing ideal in Fq[X1, . . . , Xm] of V

equals Iq and therefore the map ev is injective. We have shown that ev is

a vector space isomorphism. We can now define the affine variety codes.

Definition 4.1. Let Iq and Rq be as in (4.1) and (4.2) and assume that L is

an Fq-vector subspace of Rq . Define the affine variety code C(I, L) = ev(L),

and the affine variety code C(I, L)⊥ to be the orthogonal complement of

C(I, L) with respect to the usual inner product on Fn
q . That is,

C(I, L)⊥ = {~c | ~c · ev(F + Iq) = 0 for all F + Iq ∈ L}
where ~f · ~h denotes the inner product of ~f and ~h.

4.3. Some Gröbner basis theoretical tools

In this section we present some Gröbner basis theoretical tools that will

be very useful in the construction of affine variety codes. The tools will

also help us to estimate the parameters of the codes. We start by recalling

the concept of a footprint.

Definition 4.2. Let J ⊆ k[X1, . . . , Xm] be an ideal and let ≺ be a fixed

monomial ordering. Denote by M(X1, . . . , Xm) the monomials in the vari-

ables X1, . . . , Xm. The footprint of J with respect to ≺ is the set

∆≺(J) = {M ∈ M(X1, . . . , Xm) |M is not the leading monomial

of any polynomial in J}.
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Given a basis for the ideal J it may indeed not be obvious at a first glance

what is the footprint. However, every polynomial ideal possesses a particu-

lar type of basis from which the footprint can be easily read off. These are

the Gröbner bases.

Definition 4.3. Let J ⊆ k[X1, . . . , Xm] be an ideal and ≺ a monomial

ordering. A finite subset G of J is called a Gröbner basis (with respect to

≺) if for every polynomial P (X1, . . . , Xm) ∈ J there exists a G ∈ G such

that the leading monomial of G divides the leading monomial of P .

One of the main results in Gröbner basis theory is that a Gröbner basis

G for J is indeed a basis for J . Given a basis for J we can extend it to

a Gröbner basis by applying Buchberger’s algorithm. Hence, there is a

method to detect the footprint ∆≺(J).

The next couple of results explain our interest in the footprint. From [7,

Pro. 4, Sec. 5.3] we have the following proposition.

Proposition 4.4. Let the notation be as in Definition 4.2. The set

{M + J |M ∈ ∆≺(J)} (4.3)

constitutes a basis for k[X1, . . . , Xm]/J as a vector space over k.

Throughout this chapter we will make extensively use of the division

algorithm for multivariate polynomials [7, Sec. 2.3] with which we will as-

sume the reader to be familiar. Given a monomial ordering, a polynomial

H and an ordered list of polynomials (G1, . . . , Gr) the algorithm calcu-

lates the remainder of H modulo (G1, . . . , Gr). This remainder is written

H rem (G1, . . . , Gr). When G = {G1, . . . , Gs} constitutes a Gröbner basis

(for the ideal 〈G1, . . . , Gr〉) the remainder does not depend on how we or-

der the elements in the list (G1, . . . , Gr) and therefore in this case we will

simply talk about the remainder modulo G. We observe that to write an

element H + J ∈ k[X1, . . . , Xm]/J as a linear combination of the elements

in (4.3) we need only find the remainder of H modulo the Gröbner basis

G. Moreover, as a consequence of Proposition 4.4 and the definition of a

Gröbner basis, H rem G are the same no matter which Gröbner basis is

chosen for J as long as ≺ is fixed.

Applying the above theory to the case Rq = Fq [X1, . . . , Xm]/Iq we see

that for every fixed choice of ≺ Proposition 4.4 gives us a basis {M +

Iq | M ∈ ∆≺(Iq)} for Rq. If {B1 + Iq , . . . , Bdim(L) + Iq} is a basis for

a subspace L ⊆ Rq we may therefore without loss of generality assume
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that Supp(B1), . . . , Supp(Bdim(L)) ⊆ ∆≺(Iq). Here, Supp(F ) means the

support of F . Once the variety VFq
(Iq) is found we can then easily specify

the generator matrix for C(I, L) as well as easily specify the parity check

matrix for C(I, L)⊥. The length of the codes clearly is

n = #VFq
(Iq) = #VFq

(I) = #∆≺(Iq).

As ev is an isomorphism the dimension of C(I, L) is dim(L) whereas the

dimension of C(I, L)⊥ equals n − dim(L). What remains is to estimate

the minimum distances of the codes. This will be done in Section 4.4 and

Section 4.5 below.

In Section 4.4 we will need the following corollary to Proposition 4.4. It is

an incidence of the more general footprint bound [8, Cor. 2.5, Sec. 4.2].

Corollary 4.5. Let F1, . . . , Fs ∈ Fq [X1, . . . , Xm]. The number of common

zeros of F1, . . . , Fs over Fq is #∆≺(〈F1, . . . , Fs, X
q
1 −X1, . . . , X

q
m −Xm〉)

(here ≺ is any monomial ordering).

Proof. Let n be the number of common zeros. As explained in the pre-

vious section Rq is isomorphic to Fn
q as a vector space over Fq under the

isomorphism ev. By Proposition 4.4 the dimension of Rq is #∆≺(Iq). The

proof is complete. �

4.4. A bound on the minimum distance of C(I, L)

We now estimate the minimum distance of C(I, L). The bound that we

present can be viewed as an interpretation of the bound in [2, Th. 8]. Let

≺ and I ⊆ Fq [X1, . . .Xm] be fixed and consider a subspace L ⊆ Rq . By

using Gaussian elimination any basis of L can be transformed into a basis

of the following form.

Definition 4.6. A basis {B1 + Iq , . . . , Bdim(L) + Iq} for L ⊆ Rq where

Supp(Bi) ⊆ ∆≺(Iq) for i = 1, . . . , dim(L) and where lm(B1) ≺ · · · ≺
lm(Bdim(L)) is said to be well-behaving with respect to ≺. Here, lm(F )

means the leading monomial of F .

For fixed ≺ the sequence
(
lm(B1), . . . , lm(Bdim(L))

)
is the same for all

choices of well-behaving bases of L. Therefore the following definition makes

sense.

Definition 4.7. Let L be a subspace of Rq and define

2≺(L) = {lm(B1), . . . , lm(Bdim(L))}
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where {B1 + Iq , . . . , Bdim(L) + Iq} is any well-behaving basis of L with

respect to ≺.

Definition 4.8. Let G be a Gröbner basis for Iq with respect to ≺. An or-

dered pair of monomials (M1,M2), M1,M2 ∈ ∆≺(Iq) is said to be one-way

well-behaving (OWB) if for allH with Supp(H) ⊆ ∆≺(Iq) and lm(H) = M1

lm(M1M2 rem G) = lm(HM2 rem G)

holds.

As already mentioned F rem G = F rem G ′ if G and G′ are Gröbner bases

for Iq with respect to identical ordering. Therefore the definition of OWB

is independent of which Gröbner basis G we consider as long as ≺ is fixed.

Theorem 4.9. Let ≺ be fixed. The minimum distance of C(I, L) is at least

min
{
#{K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq) such that

(P,N) is OWB and lm(PN rem G) = K}
∣∣P ∈ 2≺(L)

}
.

Proof. Let ~c ∈ C(I, L). Then there exists an F such that Supp(F ) ⊆
∆≺(Iq), lm(F ) = P ∈ 2≺(L) and ev(F + Iq) = ~c. By Corollary 4.5 the

Hamming weight of ~c is equal to n−#∆≺(Iq +〈F 〉) and therefore we take a

closer look at ∆≺(Iq + 〈F 〉). If N,K ∈ ∆≺(Iq) satisfy that (P,N) is OWB

and lm(PN rem G) = K then

K ∈ ∆≺(Iq)\∆≺(Iq + 〈F 〉).
Hence,

#∆≺(Iq + 〈F 〉) ≤ #∆≺(Iq) − #
{
K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq)

such that (P,N) is OWB and lm(PN rem G) = K
}
. (4.4)

But n = #∆≺(Iq) and therefore the Hamming weight of ~c is at least

#
{
K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq)

such that (P,N) is OWB and lm(PN rem G = K
}
.
�

It is of course possible to apply Theorem 4.9 for different choices of ≺ to

see which one gives the sharpest estimate. To get the full advantage of

Theorem 4.9 we need to have some information of the algebraic structure

of Rq . The following Corollary, however, easily applies to any affine variety

code. Also this bound could be applied for different choices of ≺ to get the

sharpest estimate.
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Corollary 4.10. Let ≺ be fixed. The minimum distance of C(I, L) is at

least

min
{
#{K ∈ ∆≺(Iq) | P divides K}

∣∣P ∈ 2≺(L)}. (4.5)

Proof. Let K,P be as in (4.5). Clearly K
P ∈ ∆≺(Iq). To see that (P, K

P )

is OWB let H be a polynomial with lm(H) = P and Supp(H) ⊆ ∆≺(Iq).

Clearly, the leading monomial ofH K
P is equal toK. The division algorithm,

when applied to H K
P and G, starts by moving K to the remainder. This is

due to K ∈ ∆≺(Iq). When we run the division algorithm all other terms

A are either moved to the remainder, are replaced with with polynomials

S such that lm(S) ≺ lm(A) holds, or are replaced with 0. Therefore,

lm
(
H
K

P
rem G

)
= K = lm

(
P
K

P
rem G

)
.

�

Remark 4.11. It is possible to modify Theorem 4.9 and Corollary 4.10 to

also deal with generalized Hamming weights. For the case of Theorem 4.9

this corresponds to interpreting the bound in [2, Th. 10].

Example 4.12. Let I = 〈0〉 ⊆ Fq[X1, . . . , Xm]. Then

G = {Xq
1 −X1, . . . , X

q
m −Xm}

is a Gröbner basis for Iq (regardless of the ordering ≺ chosen). Hence,

∆≺(Iq) = {X i1
1 · · ·X im

m | 0 ≤ i1 < q, . . . , 0 ≤ im < q}
holds and

{X i1
1 · · ·X im

m + Iq | 0 ≤ i1 < q, . . . , 0 ≤ im < q}
is a basis for Rq = Fq[X1, . . . , Xm]/Iq as a vectorspace over Fq. It follows

that the corresponding affine variety codes are of length n = #∆≺(Iq) =

qm. Let s be an integer 0 ≤ s ≤ m(q − 1). If we choose L to be the space

generated by the basis elements X i1
1 · · ·X im

m +Iq with i1 + · · ·+ im ≤ s then

we get

L = {F (X1, . . . , Xm) + Iq | deg(F ) ≤ s}. (4.6)

Here, deg(F ) means the total degree of F . Clearly,

2≺(Iq) = {X i1
1 · · ·X im

m | 0 ≤ i1 < q, . . . , 0 ≤ im < q, i1 + · · · + im ≤ s}.
The code C(I, L) is known as the generalized Reed-Muller code RMq(s,m),

and Corollary 4.10 tells us that the minimum distance of RMq(s,m) is at

least

min{(q−i1) · · · (q−im) | 0 ≤ i1 < q, . . . , 0 ≤ im < q, i1+· · ·+im ≤ s} (4.7)
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as

#{Xj1
1 · · ·Xjm

m ∈ ∆≺(Iq) | X i1
1 · · ·X im

m divides Xj1
1 · · ·Xjm

m }
= (q − i1) · · · (q − im).

Writing s = a(q−1)+b with a, b ∈ N0 and 0 ≤ b < q−1 the number in (4.7)

can be shown to be equal to (q− b)qm−a−1. Now letting Fq = {α1, . . . , αq}
and defining

F = (Xq−1
1 − 1) · · · (Xq−1

a − 1)(Xa+1 − α1) · · · (Xa+1 − αb)

we see that ev(F + Iq) ∈ C(I, L) is of Hammingweight equal to (q −
b)qm−a−1. Hence, Corollary 4.10 produces the correct value of the min-

imum distance of the generalized Reed-Muller codes. It is interesting to

observe that the minimum distance of the generalized Reed-Muller codes

was originally established using quite different and more complicated meth-

ods [23].

If the goal is to produce codes with good parameters then there is better

choice of L than (4.6) namely

L = Span
Fq
{X i1

1 · · ·X im
m | 0 ≤ i1 < q, . . . , 0 ≤ im, (q − i1) · · · (q − im) ≥ δ}.

(4.8)

Corollary 4.10 tells us that the corresponding code C(I, L) is of minimum

distance at least δ and it is the largest code of prescribed minimum dis-

tance δ. If actually i1, . . . , im exists with (q − i1) · · · (q − im) = δ then,

as above, we can detect a codeword of Hammingweight δ and we con-

clude that Corollary 4.10 produces the actual minimum distance in this

case. The codes C(I, L) corresponding to (4.8) are called Massey-Costello-

Justesen codes [26], [22] and are of course examples of improved generalized

Reed-Muller codes.

4.5. The Feng-Rao bound for C(I, L)⊥

In this section we reformulate the Feng-Rao bound into the setting of

affine variety codes.

Theorem 4.13. Let ≺ be fixed. The minimum distance of C(I, L)⊥ is at

least

min
{
#{P ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq) such that (P,N) is OWB

and lm(PN rem G) = K}
∣∣K ∈ ∆≺(Iq)\2≺(L)

}
. (4.9)
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Proof. Let {B1 + Iq , . . . , Bdim(L) + Iq} be a well-behaving basis for L.

Consider ~c ∈ C(I, L)⊥\{~0}. That is, ~c satisfies ~c · ev(Bi + Iq) = 0 for

i = 1, . . . , dim(L) but

~c · ev(K + Iq) 6= 0 (4.10)

holds for some K ∈ ∆≺(Iq). Let K ∈ ∆≺(Iq) be smallest possible with

respect to ≺ such that (4.10) holds. By linearity of the inner product

and the minimality of K we have K /∈ 2≺(L). Consider OWB pairs

(P1, N1), . . . , (Pδ, Nδ), where P1, N1, . . . , Pδ , Nδ ∈ ∆≺(Iq), P1 ≺ · · · ≺ Pδ

and lm(PiNi rem G) = K for i = 1, . . . , δ. The minimality of K and the

OWB property of (Pi, Ni) ensure that

~c · ev
(( ∑

t = 1, . . . , i

ai 6= 0

atPt

)
Ni rem G + Iq

)
6= 0 (4.11)

holds for any i ∈ {1, . . . , δ}. Let ∗ be the componentwise product on Fn
q

given by

(a1, . . . , an) ∗ (b1, . . . , bn) = (a1b1, . . . , anbn).

As

( ∑

t = 1, . . . , i

ai 6= 0

atPt

)
Ni rem G + Iq =

( ∑

t = 1, . . . , i

ai 6= 0

atPt

)
Ni + Iq

we conclude from (4.11) that

~c ∗ ev

(( ∑

t = 1, . . . , i

ai 6= 0

atPt

)
+ Iq

)
6= ~0

for any i ∈ {1, . . . , δ}. Hence, ~c ∗ ~e 6= ~0 for all

~e ∈
{
ev
(( δ∑

t=1

atPt

)
+ Iq

)∣∣a1, . . . , aδ ∈ Fq, not all ai equal 0
}
. (4.12)

The space consisting of (4.12) and (0, . . . , 0) is of dimension δ and therefore

the Hamming weight of ~c needs to be at least δ. �

It is of course possible to apply Theorem 4.13 to different choices of

≺ to see which one gives the sharpest estimate. Theorem 4.13 requires
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that we have some information about the algebraic structure of Rq. The

following Corollary, however, easily applies to any affine variety code. Also

this bound could be applied for different choices of ≺ to get the sharpest

estimate.

Corollary 4.14. Let the notation be as in Theorem 4.13. The minimum

distance of C(I, L)⊥ is at least

min
{
#{P ∈ ∆≺(Iq) | P divides K}

∣∣K ∈ ∆≺(Iq)\2≺(L)
}
.

Proof. See the proof of Corollary 4.10. �

Remark 4.15. It is possible to modify Theorem 4.13 and Corollary 4.14 to

also deal with generalized Hamming weights. For the case of Theorem 4.13

this corresponds to interpreting the last part of [18, Th. 1].

Example 4.16. This is a continuation of Example 4.12. It is well-known

that the dual code of a generalized Reed-Muller code is again a generalized

Reed-Muller code. More precisely,

RMq(s,m) = RMq((q − 1)m− 1 − s,m)⊥

holds [9, Th. 2.2.1]. Applying Corollary 4.14 to RM((q − 1)m− 1− s,m)⊥

we see that the minimum distance of RMq(s,m) is at least

min
{
(i1 + 1) · · · (im + 1) | 0 ≤ i1 < q, . . . , 0 ≤ im < q,

i1 + · · · + im ≥ (q − 1)m− s
}
. (4.13)

Writing again s = a(q − 1) + b with 0 ≤ b < q − 1 (4.13) becomes equal to

(q− b)qm−a−1 which we in Example 4.12 have seen to be equal to the true

minimum distance of RMq(s,m). Hence, also Corollary 4.14 produces the

true value of the minimum distance of generalized Reed-Muller codes. If

the goal is to produce codes C(I, L)⊥ with good parameters then choosing

L to be

L = Span
Fq

{
X i1

1 · · ·X im
m | 0 ≤ i1 < q, . . . , 0 ≤ im < q,

(i1 + 1) · · · (im + 1) < qm − s
}

(4.14)

would be a better choice. The codes C(I, L)⊥ corresponding to (4.14) are

called hyperbolic codes and are denoted Hypq(s,m) [14, Def. 6]. By [14, Th.

3] Hypq(s,m) equals C(I, L′) where L′ is the space in (4.8) with r = qm−s.
That is, hyperbolic codes are the same as Massey-Costello-Justesen codes.

We showed in Example 4.12 that the minimum distance of C(I, L′) is at
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least qm − s. Applying Corollary 4.14 to Hypq(s,m) also gives the result

that the minimum distance is at least qm − s. Hence, Corollary 4.10 and

Corollary 4.14 produce the same results for generalized Reed-Muller codes

and for Hyperbolic codes.

4.6. Using weighted degree orderings

In this section we consider two examples where the monomial ordering is a

weighted degree lexicographic ordering.

Definition 4.17. Let w(X1), . . . , w(Xm) ∈ N and define the weight of

X i1
1 · · ·X im

m to be the number w(X i1
1 · · ·X im

m ) = i1w(X1) + · · ·+ imw(Xm).

The weighted degree lexicographic ordering on M(X1, . . . , Xm) is the

ordering with X i1
1 · · ·X im

m ≺ Xj1
1 · · ·Xjm

m if either w(X i1
1 · · ·X im

m ) <

w(Xj1
1 · · ·Xjm

m ) holds or w(X i1
1 · · ·X im

m ) = w(Xj1
1 · · ·Xjm

m ) holds but

X i1
1 · · ·X im

m ≺lex X
j1
1 · · ·Xjm

m . Here, ≺lex is the lexicographic ordering with

Xm ≺lex · · · ≺lex X1.

One of the qualities of weighted degree lexicographic orderings is the fol-

lowing lemma. The proof of the lemma is left for the reader.

Lemma 4.18. Let a weighted degree lexicographic ordering be given as in

Definition 4.17. If H has got exactly one monomial of highest weight w′

in its support and G has exactly two monomials of highest weight in its

support then H rem (G) has exactly one monomial of highest weight in its

support and this weight is w′.

The codes C(I, L)⊥ in the next example were originally treated in [24]

whereas the codes C(I, L) are treated for the first time in the present chap-

ter.

Example 4.19. Consider the ideals

I = 〈X3Y + Y 3 +X〉 ⊆ F8[X,Y ]

Iq = I + 〈X8 +X,Y 8 + Y 〉 ⊆ F8[X,Y ].

Let ≺ be the weighted degree lexicographic ordering defined by setting

w(X) = 2, w(Y ) = 3 and by interpreting X as X1 and Y as X2. Clearly,

B = {X3Y + Y 3 +X} is a Gröbner basis for I and

∆≺(I) = {X iY j | if i ≥ 3 then j = 0}
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holds. Using Buchberger’s algorithm we find the following Gröbner basis

for Iq

G = {X3Y + Y 3 +X,X8 +X,XY 5 +X5 +X2Y 2 + Y, Y 7 +X7}

and therefore

∆≺(Iq) =
{
1, X, Y,X2, XY, Y 2, X3, X2Y,XY 2, X4, Y 3, X2Y 2,

X5, XY 3, Y 4, X6, X2Y 3, XY 4, X7, Y 5, X2Y 4, Y 6
}

(4.15)

with corresponding weights

{0, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 18}.

The elements in (4.15) are listed in increasing order with respect to ≺.

Using Lemma 4.18 and some other results we can detect altogether 166

useful OWB pairs plus a few more that we will not use. We illustrate the

method used to check for the OWB property by considering a few OWB

pairs. First to see that (X3, X) is OWB we must show that HX rem G =

X3X rem G for all H with lm(H) = X3. We have

lm
(
(a1 + a2X + a3Y + a4X

2 + a5XY + a6Y
2 + X3)X rem G

)
= X4

(4.16)

no matter what are a1, . . . , a6. This is because X3X = X4 ∈ ∆≺(Iq) and

therefore X4 is moved to the remainder upon division with G. The proof

that (X3, X) is OWB is complete. To see that (XY,X2) is OWB we cannot

apply the same argument as above as XYX2 = X3Y /∈ ∆≺(Iq). We have

w(1 · X2), w(X · X2), w(Y · X2), w(X2 · X2) < w(XY · X2) = 9.

That is, there is only one monomial of highest weight in (a1 +a2X+a3Y +

a4X
2 + XY )X2 and this weight is 9. As X3Y + Y 3 + Y has exactly two

monomials of highest weight in its support Lemma 4.18 tells us that the

monomial

lm
(
(a1 + a2X + a3Y + a4X

2 +XY )X2 rem B
)

is also of weight 9. There is only one such monomial in ∆≺(I) namely Y 3.

As Y 3 also belongs to ∆≺(Iq) we conclude

lm
(
(a1 + a2X + a3Y + a4X

2 +XY )X2 rem G
)

= Y 3
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no matter what are a1, . . . , a4. Hence, (XY,X2) is OWB. Finally, to see

that (XY,X2Y ) is OWB we start by recognizing from Lemma 4.18 that

the weight of

lm
(
(a1 + a2X + a3Y + a4X

2 +XY )X2Y rem B
)

equals w(XY · X2Y ) = 12. However, now there are the two possibilities

X6 and Y 4 of leading monomials as both are of weight 12 and both belong

to ∆≺(I). A closer analysis reveals that

lm
(
(a1 + a2X + a3Y + a4X

2 +XY )X2Y rem B
)

= Y 4.

As Y 4 also belongs to ∆≺(Iq) we conclude that

lm
(
(a1 + a2X + a3Y + a4X

2 +XY )X2Y rem G
)

= Y 4

and (XY,X2Y ) is OWB.

Observe that for fixed P and K there can exist more choices of N such that

(P,N) is OWB and lm(PN rem G) = K. As an example both (XY, Y 2)

and (XY,X3) are OWB and satisfy

lm(XY · Y 2 rem G) = lm(XY ·X3 rem G) = XY 3.

In table 4.1 we list some information about the OWB pairs. By σ̄(P ) we

denote the number of detected K ∈ ∆≺(Iq) such that an N ∈ ∆≺(Iq)

exists with (P,N) OWB and lm(PN rem G) = K. By µ̄(K) we denote

the number of detected P ∈ ∆≺(Iq) such that an N ∈ ∆≺(Iq) exists with

(P,N) OWB and lm(PN rem G) = K.

Table 4.1. Information about the OWB pairs

M 1 X Y X2 XY Y 2 X3 X2Y XY 2 X4 Y 3

σ̄(M) 22 19 14 16 12 11 5 10 9 4 8
µ̄(M) 1 2 2 3 4 3 4 6 6 5 8

M X2Y 2 X5 XY 3 Y 4 X6 X2Y 3 XY 4 X7 Y 5 X2Y 4 Y 6

σ̄(M) 7 3 6 5 2 4 3 1 2 2 1
µ̄(M) 9 6 10 11 7 12 13 8 14 15 17

For the code construction C(I, L) we choose L to be spanned by the

(M + Iq)’s with M ∈ ∆≺(Iq) and σ̄(M) ≥ δ. By Theorem 4.9 this gives

us codes of highest possible dimension with prescribed minimum distance

at least δ. For the code construction C(I, L)⊥ we choose L to be spanned

by the (M + Iq)’s with M ∈ ∆≺(Iq) and µ̄(M) < δ. By Theorem 4.13 this

gives codes of highest possible dimension with prescribed minimum distance

at least δ. The length of the codes equals n = #∆≺(Iq). From (4.15) we
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therefore have n = 22. In Table 4.2 we list the parameters [k, δ] that can

be realized from Theorem 4.9 and Theorem 4.13. Here k is the dimension

and δ is the prescribed minimum distance. We conclude that although

Table 4.2. Parameters of the codes

C(I, L) [1,22] [2,19] [3,16] [4,14] [5,12] [6,11]
[7,10] [8,9] [9,8] [10,7] [11,6] [13,5]
[15,4] [17,3] [20,2] [22,1]

C(I, L)⊥ [1,17] [2,15] [3,14] [4,13] [5,12] [6,11]
[7,10] [8,9] [10,8] [11,7] [14,6] [15,5]
[17,4] [19,3] [21,2]

the bound in Theorem 4.9 relies on the same notion as does the bound in

Theorem 4.13 the two bounds can sometimes produce completely different

results.

In Example 4.19 it was quite involved to detect which pairs are OWB. This

is due to the fact that in ∆≺(I) as well as in ∆≺(Iq) there were more mono-

mials of the same weight. In the next example no two different monomials

in ∆≺(I) will be of the same weight. As a consequence it becomes very

easy to find OWB pairs.

Example 4.20. Consider the ideals

I = 〈X4 − Y 3 − Y 〉 ⊆ F9[X,Y ]

Iq = 〈X4 − Y 3 − Y,X9 −X,Y 9 − Y 〉 ⊆ F9[X,Y ].

Let ≺ be the weighted degree lexicographic ordering given by w(X) = 3,

w(Y ) = 4 and by interpreting X as X2 and Y as X1. Clearly,

B = {X4 − Y 3 − Y }
is a Gröbner basis for I and applying Buchberger’s algorithm we find that

G = {X4 − Y 3 − Y,X9 −X}
is a Gröbner basis for Iq . Hence,

∆≺(I) = {X iY j | 0 ≤ i, 0 ≤ j < 3}
∆≺(Iq) = {X iY j | 0 ≤ i < 9, 0 ≤ j < 3}. (4.17)

The map w : ∆≺(I) → 〈3, 4〉 given by w(X iY j) = i3 + j4 is a bijection.

Here, 〈3, 4〉 means the semigroup generated by 3 and 4. Hence, we can

identify any monomial M ∈ ∆≺(I) uniquely by its weight. Consider a
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polynomial F with Supp(F ) ⊆ ∆≺(Iq) and write P = lm(F ). Let N ∈
∆≺(Iq) be arbitrary. By Lemma 4.18 the leading monomial of FN rem B is

the unique monomialK ∈ ∆≺(I) of weight equal to w(PN) = w(P )+w(N).

If K ∈ ∆≺(Iq) holds then (P,N) is OWB. Hence, given P,N ∈ ∆≺(Iq)

then (P,N) is OWB if w(P ) + w(N) ∈ w(∆≺(Iq)). Next we show that

if K ∈ ∆≺(Iq) and P,N ∈ ∆≺(I) satisfy w(P ) + w(N) = w(K) then

also P,N ∈ ∆≺(Iq) holds. This in particular implies that (P,N) is OWB.

Aiming for a contradiction assume that P /∈ ∆≺(Iq). By the definition

of the footprint there exists a polynomial H ∈ Iq having P as leading

monomial. As P ∈ ∆≺(I) we may without loss of generality assume that

H is reduced modulo B. That is, we may assume that Supp(H) ⊆ ∆≺(I)

holds. From H ∈ Iq we conclude that

HN rem B ∈ Iq . (4.18)

On the other hand the assumption Supp(H) ⊆ ∆≺(I) in combination with

Lemma 4.18 implies lm(HN rem B) = K. Here we used the fact that no

two monomials in ∆≺(I) are of the same weight. But K is assumed to

be in ∆≺(Iq) and therefore (4.18) cannot be true. We have reached at a

contradiction. Assuming N /∈ ∆≺(Iq) would lead to a similar contradiction.

The above observations imply that to detect OWB pairs it is enough to

study the weights. For this purpose define

Γ = w(∆≺(I)) = 〈3, 4〉

and for λ ∈ w(∆≺(Iq)) let

σ(λ) = #{η ∈ w(∆≺(Iq)) | η − λ ∈ Γ}

and for λ ∈ Γ let

µ(λ) = #{α ∈ Γ | λ− α ∈ Γ}.

We have shown above that if P ∈ ∆≺(Iq) then there exist pairwise dif-

ferent elements K1, . . . ,Kσ(w(P )) ∈ ∆≺(Iq) and corresponding elements

N1, . . . , Nσ(w(P )) ∈ ∆≺(Iq) such that for i = 1, . . . , σ(w(P )) (P,Ni) is

OWB with lm(PNi rem G) = Ki. Similarly, if K ∈ ∆≺(Iq) then there

exist pairwise different elements P1, . . . , Pµ(w(K)) ∈ ∆≺(Iq) and corre-

sponding elements N1, . . . , Nµ(w(K)) ∈ ∆≺(Iq) such that (Pi, Ni) is OWB

with lm(PiNi rem G) = K. In Table 4.3 we list σ(w) and µ(w) for all

w ∈ w(∆≺(Iq)). For the purpose of the code constructions define the fol-
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Table 4.3.

w 0 3 4 6 7 8 9 10 11

σ(w) 27 24 23 21 20 19 18 17 16
µ(w) 1 2 2 3 4 3 4 6 6

w 12 13 14 15 16 17 18 19 20
σ(w) 15 14 13 12 11 10 9 8 7
µ(w) 7 8 9 10 11 12 13 14 15

w 21 22 23 24 25 26 28 29 32
σ(w) 6 6 4 3 4 3 2 2 1
µ(w) 16 17 18 19 20 21 23 24 27

lowing subspaces of Rq = F9[X,Y ]/Iq

L1 = Span
F9
{M + Iq |M ∈ ∆≺(Iq), w(M) ≤ s}

L2 = Span
F9
{M + Iq |M ∈ ∆≺(Iq), σ(w(M)) ≥ δ}

L3 = Span
F9
{M + Iq |M ∈ ∆≺(Iq), µ(w(M)) < δ}.

The corresponding affine variety codes are all of length n = #∆≺(Iq) = 27.

From Theorem 4.9 the minimum distance of C(I, L2) is at least δ and

from Theorem 4.13 also the minimum distance of C(I, L3)
⊥ is at least δ.

The codes C(I, L2) and C(I, L3)
⊥ respectively are so to speak the largest

codes with designed minimum distance δ with respect to Theorem 4.9 and

Theorem 4.13 respectively. Applying Theorem 4.9 and Theorem 4.13 re-

spectively to the codes C(I, L1) and C(I, L1)
⊥ respectively we get lower

bounds on the minimum distances. As an example choosing s = 23 the

code C(I, L1) is of dimension 21 and minimum distance at least 4. Choos-

ing δ = 4 the code C(I, L2) is of dimension 22 and minimum distance also

at least 4. As another example choosing s = 7 the code C(I, L1)
⊥ is of

dimension 22 and of minimum distance at least 3. Choosing δ = 4 the code

C(I, L3)
⊥ is also of dimension 22 but is of minimum distance at least 4.

4.7. The order domain conditions

In the previous section we demonstrated that the weighted degree lex-

icographic ordering can sometimes be very useful when we look for OWB

pairs. In particular the task of finding OWB pairs were rather simple in

Example 4.20 due to the fact that no two monomials in ∆≺(I) were of the

same weight and due to the fact that the defining polynomial of I possessed

exactly two monomials of highest weight in its support. In this section we
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generalize the construction in Example 4.20. All proofs will be straightfor-

ward generalizations of the arguments from Example 4.20 and so they are

mostly left out. We start by generalizing the concept of a weighted degree

lexicographic ordering.

Definition 4.21. Let w(X1), . . . , w(Xm) ∈ Nr
0 and assume ≺Nr

0
is a mono-

mial ordering on Nr
0. Extend w to a monomial function on M(X1, . . . , Xm)

by

w(X i1
1 · · ·X im

m ) = i1w(X1) + · · · + imw(Xm).

Let ≺M be a monomial ordering on M(X1, . . . , Xm). The generalized

weighted degree ordering defined from w(X1), . . . , w(Xm), ≺Nr
0

and ≺M
is the ordering ≺w given by

X i1
1 · · ·X im

m ≺w Xj1
1 · · ·Xjm

m

if

w(X i1
1 · · ·X im

m ) ≺Nr
0
w(Xj1

1 · · ·Xjm
m )

holds or if

w(X i1
1 · · ·X im

m ) = w(Xj1
1 · · ·Xjm

m )

holds but

X i1
1 · · ·X im

m ≺M Xj1
1 · · ·Xjm

m .

The weighted degree of a polynomial F is wdeg(F ) = w(lm(F )).

We now state the order domain conditions which play a central role in the

present chapter.

Definition 4.22. Consider an ideal I ⊆ k[X1, . . . , Xm] where k is a field.

Let a generalized weighted degree ordering ≺w be given as in Defini-

tion 4.21. Assume I possesses a Gröbner basis B such that any G ∈ B
has exactly two monomials of highest weight and such that no two mono-

mials in ∆≺(I) is of the same weight. Then we say that I and ≺w satisfy

the order domain conditions.

The following lemma is an immediate generalization of Lemma 4.18. Again

we leave the proof for the reader.

Lemma 4.23. Let I, ≺w and B be as in Definition 4.22. Let F be a

polynomial with exactly one monomial of highest weight. Then w(lm(F )) =

w(lm(F rem B)). In particular w(lm(F )) = w(lm(F rem B)) holds for all

F with Supp(F ) ⊆ ∆≺w
(I).
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Remark 4.24. If I and ≺w satisfy the order domain conditions then any

polynomial G in any Gröbner basis B of I must contain exactly two mono-

mials of highest weight. Hence, the choice of B is of no importance in

Definition 4.22. This result is a consequence of Lemma 4.23 and the fact

that the remainder is independent of the Gröbner basis chosen.

The following proposition is an immediate generalization of similar results

in Example 4.20.

Proposition 4.25. Assume I ⊆ Fq [X1, . . . , Xm] and ≺w satisfy the order

domain conditions. Consider Iq = I + 〈Xq
1 −X1, . . . , X

q
m −Xm〉. A pair

(P,N) where P,N ∈ ∆≺w
(Iq) is OWB if w(P ) + w(N) ∈ w(∆≺w

(Iq)).

If K ∈ ∆≺w
(Iq) and P,N ∈ ∆≺w

(I) satisfy w(P ) + w(N) = w(K), then

P,N ∈ ∆≺w
(Iq), and (P,N) is OWB.

Definition 4.26. Assume I and ≺w satisfy the order domain conditions.

Let Γ = w(∆≺w
(I)) and define for all λ ∈ w(∆≺w

(Iq))

σ(λ) = #{η ∈ w(∆≺w
(Iq)) | η − λ ∈ Γ}

and for all λ ∈ Γ

µ(λ) = #{α ∈ Γ | λ− α ∈ Γ}.

Applying Theorem 4.9 and Theorem 4.13 in combination with Proposi-

tion 4.25 we get the following theorem.

Theorem 4.27. Assume I and ≺w satisfy the order domain conditions.

Let L be a subspace of Rq = Fq[X1, . . . , Xm]/Iq and assume

{B1 + Iq , . . . , Bdim(L) + Iq}
is a well-behaving basis (Definition 4.6). The minimum distance of C(I, L)

is at least

min{σ(w(lm(B1))), . . . , σ(w(lm(Bdim(L))))}.
The minimum distance of C(I, L)⊥ is at least

min{µ(w(M)) | M ∈ ∆≺w
(Iq)\{lm(B1), . . . , lm(Bdim(L))}

≥ min{µ(λ) | λ ∈ Γ\{w(B1), . . . , w(Bdim(L))}}.

Consider the following choices of L. Let ~s ∈ Nr
0 and δ ∈ N.

L1 = Span
Fq
{M + Iq |M ∈ ∆≺w

(Iq), w(M) �Nr
0
~s} (4.19)

L2 = Span
Fq
{M + Iq |M ∈ ∆≺w

(Iq), σ(w(M)) ≥ δ} (4.20)

L3 = Span
Fq
{M + Iq |M ∈ ∆≺w

(Iq), µ(w(M)) < δ}. (4.21)
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Theorem 4.27 tells us that the minimum distance of C(I, L2) and C(I, L3)
⊥

is at least δ. By construction C(I, L2) and C(I, L3)
⊥ are the largest codes

with prescribed minimum distance δ. We shall in Section 4.10 see that

whenever the weights are numerical, that is whenever ~s = s is an in-

teger, then the minimum distance of C(I, L1) is at least n − s. Here,

n = #∆≺w
(Iq). Similarly we will derive in Section 4.10 a simple expres-

sion for a lower bound on the minimum distance of C(I, L1)
⊥ whenever the

weights are numerical.

Example 4.28. This is a continuation of Example 4.12 and Exam-

ple 4.16. Choose the weights w(X1) = (1, 0, . . . , 0), w(X2) = (0, 1, 0, . . . , 0),

. . . , w(Xm) = (0, . . . , 0, 1) ∈ Nm
0 . Let ≺Nm

0
be the graded ordering on Nm

0

with (1, 0, . . . , 0) ≺Nm
0

· · · ≺Nm
0

(0, . . . , 0, 1). Let ≺M be any monomial

ordering on M(X1, . . . , Xm). Using the convention that the empty set is

a Gröbner basis for the ideal I = 〈0〉 ⊆ Fq[X1, . . . , Xm] we see that the

order domain conditions are trivially satisfied. The code C(I, L1) with

~s = (0, . . . , 0, s) is the generalized Reed-Muller code RMq(s,m). Simi-

larly, the codes C(I, L2) and C(I, L3)
⊥ are the improved generalized Reed-

Muller codes considered in Example 4.12 and Example 4.16. Applying

Theorem 4.27 we count exactly the same OWB pairs that we count by

applying Corollary 4.10 and Corollary 4.14.

Given I and ≺w such that the order domain conditions are satisfied we

might want to construct codes by evaluating in a subset U ( VFq
(I) rather

than in the entire variety VFq
(I). The following remark deals with this

situation

Remark 4.29. Assume that the pair I and ≺w satisfies the order domain

conditions. Let U ⊆ VFq
(I). Every finite set of points is a variety and

therefore there exists polynomials H1, . . . , Hr such that the vanishing ideal

of U equals

IU = Iq + 〈H1, . . . , Hr〉.

The estimates of the minimum distances of C(I, L) and C(I, L)⊥ still hold

if these codes are made by evaluating in U rather than in the entire vari-

ety VFq
(I). All we need to do is to replace Iq with IU in Definition 4.6,

Definition 4.7, Proposition 4.25, Definition 4.26 and Theorem 4.27.
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4.8. Weight functions and order domains

The concept of an order function was introduced by Høholdt et al. in [20]

to simplify the treatment of one-point geometric Goppa codes and to pro-

vide a language for easy generalization of one-point geometric Goppa codes

to objects of higher dimensions than curves. The concept was further de-

veloped in [33] and [17]. Here, we describe some terminology from [17].

Definition 4.30. Let R be a k-algebra and let Γ be a subsemigroup of

Nr
0 for some r. Let ≺ be a monomial ordering on Nr

0. A surjective map

ρ : R → Γ−∞ = Γ∪ {−∞} that satisfies the following six conditions is said

to be a weight function

(W.0) ρ(f) = −∞ if and only if f = 0

(W.1) ρ(af) = ρ(f) for all nonzero a ∈ Fq

(W.2) ρ(f + g) � max{ρ(f), ρ(g)} and equality holds when ρ(f) ≺ ρ(g)

(W.3) If ρ(f) ≺ ρ(g) and h 6= 0, then ρ(fh) ≺ ρ(gh)

(W.4) If f and g are nonzero and ρ(f) = ρ(g), then there

exists a nonzero a ∈ Fq such that ρ(f − ag) ≺ ρ(g)

(W.5) If f and g are nonzero then ρ(fg) = ρ(f) + ρ(g).

A k-algebra with a weight function is called an order domain and Γ is called

the value semigroup of ρ.

From [17][Th. 9.1 and Th. 10.4] we know that if the value semigroup Γ

is finitely generated then it can be described in the language of Gröbner

basis theory. We have the following result which connects Definition 4.30

to the theory of the previous section.

Theorem 4.31. Let ≺w be a generalized weighted degree ordering on

M(X1, . . . , Xm) and let I ⊂ k[X1, X2, . . . , Xm] be an ideal. If I and

≺w satisfy the order domain conditions (Definition 4.22) then R =

k[X1, X2, . . . , Xm]/I is an order domain with a weight function defined as

follows: Given a nonzero f ∈ k[X1, X2, . . . , Xm]/I write f = F + I where

Supp(F ) ⊆ ∆≺w
(I). We have ρ(f) = wdeg(F ) and ρ(0) = −∞.

Any weight function with a finitely generated value semigroup Γ can be de-

scribed as above.

Proof. We only show the first part of the theorem. Regarding the last

part we refer to the proof in [17]. Assume I and ≺w satisfy the order

domain conditions. The properties (W.0), (W.1), and (W.2) are obviously

satisfied. Given f = F1 + I and g = F2 + I with Supp(F1) ⊆ ∆≺w
(I) and
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Supp(F2) ⊆ ∆≺w
(I) let b be the leading coefficient of F1 and let c be the

leading coefficient of F2. If we choose a = b/c then the result in (W.4) holds.

Property (W.5) follows immediately from Lemma 4.23. Finally, property

(W.3) is a consequence of (W.5) (in fact (W.3) is not needed in the definition

of a weight function). �

As mentioned earlier the ideals and the monomial orderings considered

in Example 4.20 and Example 4.28 satisfy the order domain conditions.

Therefore by Theorem 4.31 the corresponding factor rings are order domains

and the weights correspond to weight functions following Theorem 4.31.

4.9. Codes form order domains

We now describe the codes related to order domains. We will need a

couple of definitions.

Definition 4.32. Let R be an Fq-algebra. A surjective map ϕ : R → Fn
q

is called a morphism of Fq-algebras if ϕ is Fq linear and if

ϕ(fg) = ϕ(f) ∗ ϕ(g)

for all f, g ∈ R (here ∗ is the componentwise product described in Sec-

tion 4.5).

Definition 4.33. Let ρ : R → Γ ∪ {−∞} be a weight function. A set

{fλ | ρ(fλ) = λ, λ ∈ Γ}
is called a well-behaving basis for R.

It is clear that all order domains possess well-behaving bases. Recall that

we in Definition 4.6 introduced the concept of a well-behaving basis for

L ⊆ Rq . The concept of a well-behaving basis for an order domain R

as defined above is not the same. However, the two concepts are closely

related.

Proposition 4.34. Assume R is an order domain over k. If {fλ | ρ(fλ) =

λ, λ ∈ Γ} is a well-behaving basis for R then it is a basis for R as a vec-

torspace over k.

Proof. For the case of weight functions with finitely generated value semi-

group the result follows by combining the characterization in Theorem 4.31

with the result in Proposition 4.4. For the general case we refer to [17, Th.

Pro. 3.2 and Def. 3.1]. �
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Remark 4.35. Given two well-behaving bases {fλ | ρ(fλ) = λ, λ ∈ Γ} and

{gλ | ρ(gλ) = λ, λ ∈ Γ} then for all η ∈ Γ, gη is a linear combination of

the elements in {fλ | λ � η} and the coefficients of fη in this expression is

nonzero.

It follows from Remark 4.35 that it is of no importance in the next definition

which well-behaving basis is considered.

Definition 4.36. Let R be an order domain over Fq with a weight function

ρ : R → Γ∪{−∞} and let {fλ | ρ(fλ) = λ, λ ∈ Γ} be a well-behaving basis.

Let ϕ : R → Fn
q be a morphism as in Definition 4.32. Define α(1) = 0. For

i = 2, . . . , n define recursively α(i) to be the smallest element in Γ that is

greater than α(1), . . . , α(i− 1) and satisfies

ϕ(fα(i)) /∈ Span
Fq
{ϕ(fλ) | λ ≺Nr

0
α(i)}.

Write ∆(R, ρ, ϕ) = {α(1), . . . , α(n)}.

Definition 4.37. For λ ∈ ∆(R, ρ, ϕ) define

σ(λ) = #{γ ∈ ∆(R, ρ, ϕ) | γ − λ ∈ Γ}.

For λ ∈ Γ define

µ(λ) = #{α ∈ Γ | λ− α ∈ Γ}.

We can now define the codes.

Definition 4.38. Let R be an order domain over Fq and let ϕ be a

morphism as in Definition 4.32. Consider a fixed well-behaving basis

{fλ | ρ(fλ) = λ, λ ∈ Γ}. For λ ∈ Γ and δ ∈ N consider the codes

E(λ) = Span
Fq
{ϕ(fη) | η �Nr

0
λ}

Ẽ(δ) = Span
Fq
{ϕ(fη) | η ∈ ∆(R, ρ, ϕ) and σ(η) ≥ δ}

C(λ) = {~c ∈ Fn
q | ~c · ϕ(fη) = 0 for all η with η �Nr

0
λ}

C̃(δ) = {~c ∈ Fn
q | ~c · ϕ(fη) = 0 for all η ∈ ∆(R, ρ, ϕ) with µ(η) < δ}.

Remark 4.39. From Remark 4.35 we conclude that the choice of well-

behaving basis is of no importance for the definition of the codes E(λ) and

C(λ).

From [20, Th. 4.13 and Pro. 4.23] and [2, Th. 33] we have the following

theorem. The result concerning C(λ) and C̃(δ) is known as the order bound.
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Theorem 4.40. The minimum distance of E(λ) is at least

min{σ(η) | η �Nr
0
λ} (4.22)

and the minimum distance of C(λ) is at least

min{µ(η) | λ ≺Nr
0
η and η ∈ ∆(R, ρ, ϕ)} ≥ min{µ(η) | λ ≺Nr

0
η}. (4.23)

The minimum distances of Ẽ(δ) and C̃(δ) are at least δ.

Recall from Theorem 4.31 that if Γ is a finitely generated value semigroup

then the corresponding order domain R can be described as a factor ring.

We now show that for such order domains Theorem 4.40 is a direct conse-

quence of the theory developed in Section 4.7. We start with the following

easy characterization of ϕ.

Proposition 4.41. Let ϕ : R = Fq [X1, . . . , Xm]/I → Fn
q be a morphism as

in Definition 4.32. There exists a set

U = {P1, . . . , Pn} ⊆ VFq
(I)

such that ϕ(F + I) = (F (P1), . . . , F (Pn)) for all F + I ∈ R. The Pi’s are

pairwise different.

Applying Proposition 4.41 to order domains with finitely generated value

semigroup we see that the codes in Definition 4.38 are of the type covered

by Remark 4.29 of Section 4.7. Rather than dealing with the general case

U ⊆ VFq
(I) we will in the following concentrate on the situation U =

VFq
(I). The reader can easily generalize our findings by replacing, as in

Remark 4.29, any occurrence of Iq with IU .

Our most important observation is that

∆(R, ρ, ϕ) = w(∆≺w
(Iq)). (4.24)

To show (4.24) we start by noting that both sets are of size n. Hence, (4.24)

must hold if we can show

∆(R, ρ, ϕ) ⊆ w(∆≺w
(Iq)).

Clearly, α(1) = 0 is in w(∆≺w
(Iq)) as any non-empty footprint contains 1.

Aiming for a contradiction assume α(i) /∈ w(∆≺w
(Iq)) for some 2 ≤ i ≤ n.

Let fα(i) = F + I , w(lm(F )) = α(i). We have

ϕ(F + I) = ϕ(F rem G + I) (4.25)

where G is a Gröbner basis for Iq . The very definition of a Gröbner basis en-

sures that lm(F rem G) ∈ ∆≺w
(Iq). Hence, lm(F rem G) ≺w lm(F ). But
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then, by (4.25) and Definition 4.36, α(i) /∈ ∆(R, ρ, ϕ). We have reached at

a contradiction and therefore (4.24) holds.

With (4.24) in hand we establish the following connections: E(λ) and

C(λ) respectively equals C(I, L1) and C(I, L1)
⊥ respectively where L1 is

as in (4.19). Ẽ(δ) equals C(I, L2) where L2 is as in (4.20) and C̃(δ) equals

C(I, L3)
⊥ where L3 is as in (4.21). We conclude that the bounds in The-

orem 4.40 on the minimum distances of E(λ), Ẽ(δ), C(λ) and C̃(δ) are

consequences of Theorem 4.27.

4.10. One-point geometric Goppa codes

One of the main reasons for introducing order domains in [20] was to

have an easy description of one-point geometric Goppa codes and to have

an easy way of generalizing the construction of one-point geometric Goppa

codes to algebraic structures of higher transcendence degree. Presenting

in the present chapter things in reverse order of what is normally done we

now finally come to the one-point geometric Goppa codes.

Let P be a rational place in an algebraic function field F of one variable with

constant field Fq. Let νP be the valuation corresponding to P . Consider

the algebraic structure

R = ∪∞
m=0L(mP). (4.26)

Defining ρ = −νP we have ρ(R) = Γ ∪ {−∞} where Γ ⊆ N0 is known

as the Weierstrass semigroup corresponding to P . By inspection the map

ρ : R → Γ∪ {−∞} satisfies the six conditions in Definition 4.30 and there-

fore is a weight function.

Unfortunately it is not in general an easy task to determine the structure

R above and therefore it is often difficult to find the factor ring description

of R as guaranteed by Theorem 4.31. Observe, that one such description

was given in Example 4.20 in the case of a Hermitian curve over F9.

The geometric Goppa codes coming from the structure in (4.26) are known

as one-point geometric Goppa codes. We now explain the connection

between these codes and the affine variety codes in Section 4.7. Let

Q1, . . . ,Qn be rational places, pairwise different, and all different from

P . The map ϕ : R → Fn
q , ϕ(f) = (f(Q1), . . . , f(Qn)) is a morphism

as in Definition 4.32. Therefore from Proposition 4.41 the rational places

Q1, . . . ,Qn correspond to n different affine points P1, . . . , Pn in V(Iq) and

ϕ(F + I) = (F (P1), . . . , F (Pn)) holds. We have

CL(Q1 + · · · + Qn, λP) = C(I, L)
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and

CΩ(Q1 + · · · + Qn, λP) = C(I, L)⊥

where

L = {f ∈ R | ρ(f) ≤ λ}.

Let Γ = {λ1, λ2, . . .} where λ1 < λ2 < · · · holds. The Goppa bounds from

algebraic geometry applied to the case of one-point geometric Goppa codes

state.

Theorem 4.42. Let P be a rational place as above and let R be the corre-

sponding order domain as in (4.26). The minimum distance of E(λ) is at

least

n− λ. (4.27)

The minimum distance of C(λt) is at least

t+ 1 − g. (4.28)

Now we show that the bounds in Theorem 4.42 can be viewed as being a

consequence of Theorem 4.40. We will need the following technical lemma

from [20, Lem. 5.15 and Th. 5.24].

Lemma 4.43. Let Γ = {λ1, λ2, . . .} with λ1 < λ2 < · · · be a semigroup in

N0 with finitely many gaps. Define

g(i) = #{λ ∈ N0\Γ | λ < λi}.

For any λi we have #(Γ\(λi + Γ)) = λi and µ(λi) = i− g(i) +D(i) where

D(i) = {(x, y)|x, y ∈ N0\Γ and x+ y = λi}.

Here, λ+ Γ means {λ+ λ1, λ+ λ2, . . .}.

Theorem 4.44. For the case of one-point geometric Goppa codes the bound

in (4.22) is always at least as good as (and sometimes better than) the bound

in (4.27). Similarly, the bound in (4.23) is always at least as good as (and

sometimes better than) the bound in (4.28).

Proof. To prove the first claim we need only consider numbers λi ∈
∆(R, ρ, ϕ), λi ≤ s. We have σ(λi) = #(∆(R, ρ, ϕ) ∩ (λi + Γ)). From the

first part of Lemma 4.43 we see that the number of elements in ∆(R, ρ, ϕ)

that are not in λi + Γ is at most λi. Therefore σ(λi) ≥ n − λi holds with
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equality only when Γ\(λi + Γ) ⊆ ∆(R, ρ, ϕ). We conclude min{σ(λi) | λi ∈
∆(R, ρ, ϕ), λi ≤ s} ≥ n− s. Concerning the last claim we have

min{µ(η) | η ∈ Γ and λt < η} = min{i− g(i) + #D(i) | t < i} ≥ t+ 1− g

with equality if and only if λt+1 = λt + 1, g(t+ 1) = g and #D(t+ 1) = 0

hold. �

Having shown that the bounds in Theorem 4.40 on the minimum distances

of the codes E(λ) and C(λ) are at least as good as the Goppa bounds in the

case of R being of the form (4.26) it is clear that we can consider the codes

Ẽ(δ) and the codes C̃(δ) related to (4.26) as improved one-point geometric

Goppa codes.

It was shown in [27, Th. 1] that all numerical weight functions (i. e. weight

functions with weights in N0) are either of the form (4.26) or is a sub alge-

bra of such a structure. Turning to semigroups that are not numerical the

related structures are no longer curves but are higher dimensional [17, Sec.

11]. The related codes can be viewed as generalizations of one-point geo-

metric Goppa codes.

4.11. Bibliographical Notes

The theory of evaluation codes has grown relatively large in its ten years’

lifetime and therefore it is not possible to give a full list of references on

the topic in the present chapter. Instead we will give just a few references

on different aspects of the theory.

Examples of evaluation codes coming from higher dimensional objects than

curves are given in [25] and [2]. Regarding generalized Hamming weights

of evaluation codes more results can be found in [19], [3], [2], and [18].

The Feng-Rao bound as described in [11], [12], and [24] is more general

than the order bound [20] in that it does not only deal with evaluation

codes. The most general version of the Feng-Rao bound deals with lin-

ear codes [29], [18]. The Gröbner basis theoretical point of view on or-

der domains are studied in [30], [31], [28], [33], [21], and [17]. Evaluation

codes are described in a Gröbner basis theoretical setting in [30], [31], [1],

and [2]. For the case of affine variety codes decoding algorithms can be

found in [13], [10], [32]. Many papers deal with decoding of evaluation

codes. Among these are [20], [6], and [16]. A study of the function µ on

different families of semigroups Γ can be found in [5] and [34].
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For a prime power q, let αq be the standard function in the asymp-
totic theory of codes, that is, αq(δ) is the largest asymptotic informa-
tion rate that can be achieved for a given asymptotic relative minimum
distance δ of q-ary codes. In recent years the Tsfasman-Vlăduţ-Zink
lower bound on αq(δ) was improved by Elkies, Xing, Niederreiter and
Özbudak, Stichtenoth and Xing, and Maharaj. In this chapter we give
an exposition of these results.
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5.1. Introduction

For any prime power q, let Fq denote the finite field of order q. We

write |M | for the cardinality of a finite set M . If C is a code over Fq (also

called a q-ary code), we always assume that |C| ≥ 2. We write n(C) for

181
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the length of C and d(C) for the minimum distance of C.

For any prime power q, let αq and αlin
q denote the important functions

in the asymptotic theory of codes which are defined by

αq(δ) = sup {R ∈ [0, 1] : (δ, R) ∈ Uq} for 0 ≤ δ ≤ 1 (5.1)

and

αlin
q (δ) = sup {R ∈ [0, 1] : (δ, R) ∈ U lin

q } for 0 ≤ δ ≤ 1. (5.2)

Here Uq (resp. U lin
q ) is the set of all ordered pairs (δ, R) ∈ [0, 1]2 for which

there exists a sequence {Ci}∞i=1 of not necessarily linear (resp. linear) codes

over Fq such that n(Ci) → ∞ as i→ ∞ and

δ = lim
i→∞

d(Ci)

n(Ci)
, R = lim

i→∞

logq |Ci|
n(Ci)

,

where logq is the logarithm to the base q. The following basic properties

of the functions αq and αlin
q can be found in [14, Section 1.3.1]. It is trivial

that αq(δ) ≥ αlin
q (δ) for 0 ≤ δ ≤ 1.

Proposition 5.1. The functions αq and αlin
q have the following properties:

(i) αq and αlin
q are nonincreasing and continuous on [0, 1];

(ii) αq(0) = αlin
q (0) = 1;

(iii) αq(δ) = αlin
q (δ) = 0 for (q − 1)/q ≤ δ ≤ 1.

Values of αq(δ) and αlin
q (δ) are not known for 0 < δ < (q − 1)/q. A

central problem in the asymptotic theory of codes is to find lower bounds

on αq(δ) and αlin
q (δ) for 0 < δ < (q − 1)/q. A classical lower bound dating

from the 1950s is the following one (see [4] and [5]).

Proposition 5.2 (Asymptotic Gilbert-Varshamov Bound). For

any prime power q, we have

αlin
q (δ)

≥ RGV(δ) := 1 − δ logq(q − 1) + δ logq δ + (1 − δ) logq(1 − δ)
(5.3)

for 0 < δ < (q − 1)/q.

Since no improvement on (5.3) was obtained for a long time, there was

speculation that maybe αlin
q (δ) = RGV(δ) for 0 < δ < (q − 1)/q. However,

this conjecture was disproved when the following bound was established

in [15] by using algebraic-geometry codes.
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Proposition 5.3 (Tsfasman-Vlăduţ-Zink Bound). For any prime

power q, we have

αlin
q (δ) ≥ 1 − δ − 1

A(q)
for 0 ≤ δ ≤ 1. (5.4)

Here and in the following, we put

A(q) := lim sup
g→∞

Nq(g)

g
,

where Nq(g) denotes the maximum number of rational places that a global

function field of genus g with full constant field Fq can have. We recall

from [10, Chapter 5] that A(q) > 0 for all q and that A(q) =
√
q − 1 if q is

a square. For nonsquares q the exact value of A(q) is not known, but we

have lower and upper bounds on A(q) (see again [10, Chapter 5] and also

the more recent paper [1]).

It was already proved in [15] that (5.4) yields a better lower bound on

αlin
q (δ) than (5.3) for all squares q ≥ 49 and for certain ranges of the param-

eter δ. Later, analogous results were shown for other cases of sufficiently

large composite q by using (5.4); see [10, Section 6.2] for a survey of such

results.

Recently the Tsfasman-Vlăduţ-Zink bound (5.4) was improved for not

necessarily linear codes by Elkies [2] and Xing [18]. Shortly thereafter,

Niederreiter and Özbudak [7, Corollary 5.4] improved the bound in Xing [18]

by showing that

αq(δ) ≥ 1 − δ − 1

A(q)
+ logq

(
1 +

1

q3

)
for 0 ≤ δ ≤ 1. (5.5)

Later, Stichtenoth and Xing [12] gave a simpler proof of (5.5). These results

improve the Tsfasman-Vlăduţ-Zink bound on αq(δ) uniformly, i.e, for all

values of q and δ.

The bound (5.4) for αlin
q (δ) was already improved, although not uni-

formly in δ, by Vlăduţ [16] (see also [14, Chapter 3.4]) and Xing [17].

Recently, Niederreiter and Özbudak [8] improved the bound (5.5) for cer-

tain values of q and δ. Maharaj [6] refined the approach of Stichtenoth and

Xing [12] and also obtained improvements on (5.5) for certain values of q

and δ. Later, Niederreiter and Özbudak [9] refined and complemented the

methods of [8] and improved all previous bounds on αlin
q (δ) and αq(δ) for

certain values of q and δ.

In this chapter we give an exposition of these results. In Section 5.2

we present some background and fix some notation. The uniform improve-
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ments in [7] and [12] on the lower bound for αq(δ) yielding (5.5) are ex-

plained in Sections 5.3 and Section 5.4. The improvements on the lower

bounds for αlin
q (δ) and αq(δ) for certain values of q and δ given in [9] are

explained in Section 5.5.

5.2. Preliminaries

In this section we recall some definitions, we explain essential terminol-

ogy, and we give the basic background that we use throughout the chapter.

We also recall some important existence results on sequences of global func-

tion fields over finite fields with certain properties that we will use in our

constructions.

A global function field F over Fq is an extension field of Fq such that

there exists an element z ∈ F that is transcendental over Fq and for which

F is a finite extension of the rational function field Fq(z). Moreover, we

call Fq the full constant field of F if Fq is algebraically closed in F . A place

of F is the maximal ideal of some valuation ring of F . Let Z denote the

set of integers. A normalized discrete valuation of F is a surjective map

ν : F → Z ∪ {∞} satisfying the following properties:

(i) ν(x) = ∞ ⇐⇒ x = 0;

(ii) ν(xy) = ν(x) + ν(y) for all x, y ∈ F ;

(iii) ν(x+ y) ≥ min (ν(x), ν(y)) for all x, y ∈ F ;

(iv) ν(a) = 0 for all a ∈ Fq \ {0}.

There is a bijective correspondence between the places of F and the normal-

ized discrete valuations of F . Let νP be the normalized discrete valuation

of F corresponding to the place P of F . The valuation ring of P is

OP := {x ∈ F : νP (x) ≥ 0}

and the maximal ideal of OP is

MP := {x ∈ OP : νP (x) > 0}.

If Fq is the full constant field of F , then the residue class field OP /MP can

be identified with a finite extension of Fq . The degree of this extension is

called the degree of the place P , denoted by deg(P ). A place of degree 1 is

called rational. For detailed background on global function fields, we refer

to the book of Stichtenoth [11].
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Assume that F is a global function field with full constant field Fq . Let

PF be the set of all places of F . For f ∈ F \ {0},
(f) :=

∑

P∈PF

νP (f)P

denotes the principal divisor of f and

(f)0 :=
∑

P∈PF

νP (f)>0

νP (f)P

denotes the zero divisor of f . For an arbitrary divisor

G =
∑

P∈PF

mPP

of F , we write νP (G) for the coefficient mP of P . Note that νP (G) is an

integer. The degree of G is defined by

deg(G) =
∑

P∈PF

νP (G)deg(P ).

The support of G is given by the finite set

supp(G) = {P ∈ PF : νP (G) 6= 0}.
We use the standard notation

L(G) = {f ∈ F : νP (f) ≥ −νP (G) for all P ∈ PF }
for the Riemann-Roch space of G. Note that L(G) is a finite-dimensional

vector space over Fq. It is a well-known fact that

L(G) = {0} if deg(G) < 0. (5.6)

The following fundamental result provides information on the dimension

dim(L(G)) of L(G) over Fq.

Proposition 5.4 (Riemann-Roch Theorem). Let F be a global func-

tion field with full constant field Fq. Assume that g is the genus of F .

Then for an arbitrary divisor G of F we have

dim(L(G)) ≥ deg(G) + 1 − g,

and equality holds if deg(G) ≥ 2g − 1.

Remark 5.5. With the notation of Proposition 5.4, if dim(L(G)) =

deg(G) + 1− g, then G is called a nonspecial divisor of F . It is well known

that if G is a nonspecial divisor and G′ ≥ G, then the divisor G′ is also

nonspecial (cf. [11, Remark I.6.9]).
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We also use the following simple lemma.

Lemma 5.6. Let F be a global function field with full constant field

Fq. Let P1, . . . , Pn be distinct rational places of F and r be an arbi-

trary integer. Then there exists a divisor G of F with deg(G) = r and

supp(G) ∩ {P1, . . . , Pn} = ∅.

Proof. Let g be the genus of F . Using [11, Corollary V.2.10] we obtain

that for an integer ` ≥ 4g + 3, there exist places Q`+1 and Q` of F such

that deg(Q`+1) = ` + 1 and deg(Q`) = `. Hence putting, for example,

G = r (Q`+1 −Q`) we complete the proof. �

The real-valued function Eq(x) on the interval [0, 1] defined below cor-

responds to the entropy function H2(x) = −x log2 x − (1 − x) log2(1 − x)

when q = 2 (see [5, p. 308] and also (5.3)).

Definition 5.7. For a real number 0 < x < 1, let

Eq(x) = −x logq x− (1 − x) logq(1 − x).

For x ∈ {0, 1} we put Eq(x) = 0.

Using Stirling’s formula, it is not difficult to show that for any real

number 0 ≤ x ≤ 1 we have the following asymptotic behavior of binomial

coefficients:

lim
n→∞

logq

(
n

bxnc
)

n
= Eq(x).

Now we recall an important result on sequences of global function fields

from the literature.

Remark 5.8. Assume that q is a square and a prime power. Let γ =
√
q−1.

By [15] or [3], there exists a sequence (Fi)
∞
i=1 of global function fields with

full constant field Fq such that gi → ∞ as i → ∞ and limi→∞
ni

gi
= γ.

Here ni and gi are the number of rational places and the genus of Fi,

respectively, for i ≥ 1. Note that for any such q and γ, we have that

1 − 1
γ + logq

(
1 + 1

q3

)
> 0.

5.3. Two Constructions of Asymptotically Good Codes

In this section we explain in detail two constructions by Niederreiter

and Özbudak [7] of asymptotically good codes with excellent parameters.

These constructions yield the currently best global improvement on the
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Tsfasman-Vlăduţ-Zink bound (see (5.5) and Corollary 5.23). We present

these constructions in a somewhat more general framework than that in [7].

We fix an arbitrary positive integer m. Let F be a global function field

with full constant field Fq such that there exist at least n ≥ 1 distinct

rational places P1, . . . , Pn of F . Let ti be a local parameter of F at Pi for

1 ≤ i ≤ n, that is, νPi
(ti) = 1 for 1 ≤ i ≤ n.

For a nonnegative integer r, let G be a divisor of F with deg(G) = r

and supp(G) ∩ {P1, . . . , Pn} = ∅ (cf. Lemma 5.6). For f ∈ L(G), the local

expansion of f at Pi has the form

f =

∞∑

`=0

f (`)(Pi) t
`
i

with f (`)(Pi) ∈ Fq for 1 ≤ i ≤ n and ` ≥ 0.

For each i = 1, . . . , n, let

φi : L(G) → Fm
q

f 7→
(
f (m−1)(Pi), . . . , f

(1)(Pi), f
(0)(Pi)

)
.

Let Φ be the Fq-linear map defined by

Φ : L(G) → Fmn
q

f 7→ (φ1(f), . . . , φn(f)) .
(5.7)

Moreover, let ψ be the Fq-linear map

ψ : L(G) → Fn
q

f 7→
(
f (m)(P1), . . . , f

(m)(Pn)
)
.

(5.8)

Remark 5.9. We note that the maps ψ and Φ (provided m ≥ 2 for the

map Φ) depend on the choice of the local parameters ti.

Initially we will assume that G (or its degree r, cf. Lemma 5.6) is chosen

such that Φ is a surjective map. We will relax this condition later in this

section using an averaging argument (see also Remark 5.18).

We need to introduce certain weights on F(m+1)n
q and Fmn

q . Let a =(
a(m), a(m−1), . . . , a(0)

)
∈ Fm+1

q and b =
(
b(m−1), . . . , b(0)

)
∈ Fm

q . We define

the weights vm+1(a) and v(2,...,m+1)(b) as

vm+1(a) =





m+ 1 if a(0) 6= 0,

m if a(1) 6= 0 and a(0) = 0,
...

...

1 if a(m) 6= 0, and a(m−1) = · · · = a(0) = 0,

0 if a = 0,

(5.9)
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and

v(2,...,m+1)(b) =





m+ 1 if b(0) 6= 0,
...

...

2 if b(m−1) 6= 0 and b(m−2) = · · · = b(0) = 0,

0 if b = 0.

(5.10)

If A = (a1, . . . ,an) ∈ F(m+1)n
q with ai ∈ Fm+1

q for 1 ≤ i ≤ n, then the

weight Vm+1(A) is given by

Vm+1(A) =

n∑

i=1

vm+1(ai). (5.11)

Similarly if B = (b1, . . . , bn) ∈ Fmn
q with bi ∈ Fm

q for 1 ≤ i ≤ n, then the

weight V(2,...,m+1)(B) is given by

V(2,...,m+1)(B) =
n∑

i=1

v(2,...,m+1)(bi). (5.12)

In the next lemma we show a useful relationship between the weights in

(5.11) and (5.12).

Lemma 5.10. Let C = (c1, . . . , cn) ∈ F(m+1)n
q with ci =(

c
(m)
i , c

(m−1)
i , . . . , c

(0)
i

)
∈ Fm+1

q for 1 ≤ i ≤ n. Consider the related code-

words A = (a1, . . . ,an) ∈ Fmn
q and b = (b1, . . . , bn) ∈ Fn

q given by

ai =
(
c
(m−1)
i , . . . , c

(0)
i

)
∈ Fm

q and bi = c
(m)
i ∈ Fq

for 1 ≤ i ≤ n. Then we have

Vm+1(C) ≤ V(2,...,m+1)(A) + ||b||,

where ||b|| is the Hamming weight of b.

Proof. It suffices to prove that for each 1 ≤ i ≤ n we have

vm+1(ci) ≤
{
v(2,...,m+1)(ai) if bi = 0,

v(2,...,m+1)(ai) + 1 if bi 6= 0.

Assume that bi = 0. Then it follows from (5.9) and (5.10) that vm+1(ci) =

v(2,...,m+1)(ai). Now assume that bi 6= 0. If ai 6= 0, then again from the

definitions in (5.9) and (5.10) we obtain vm+1(ci) = v(2,...,m+1)(ai). If

ai = 0, then we get vm+1(ci) = v(2,...,m+1)(ai) + 1. This completes the

proof. �
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The following notion is important for our constructions.

Definition 5.11. For a nonempty subset M of Fmn
q , let ρ̂(2,...,m+1)(M)

denote the integer

ρ̂(2,...,m+1)(M) = max
{
V(2,...,m+1)(A − B) : A,B ∈ M

}
. (5.13)

Now we are ready to give our basic construction. Let M ⊆ Fmn
q be

nonempty and N = Φ−1(M) be the inverse image of M under Φ. Let C be

the q-ary code of length n defined by

C = ψ(N), (5.14)

where ψ is given in (5.8).

Theorem 5.12. Let m be an arbitrary positive integer. Assume that F

is a global function field with full constant field Fq such that there exist at

least n ≥ 1 distinct rational places P1, . . . , Pn of F . Let G be a divisor of F

such that deg(G) = r, supp(G) ∩ {P1, . . . , Pn} = ∅, and the corresponding

map Φ defined in (5.7) is surjective. Let M ⊆ Fmn
q be such that |M | ≥ 2

and (m + 1)n − r − ρ̂(2,...,m+1)(M) ≥ 1. Then C defined in (5.14) is an

(n, |C|, d(C)) code over Fq with

|C| = |L(G−m(P1 + · · · + Pn))| · |M | (5.15)

and

d(C) ≥ (m+ 1)n− r − ρ̂(2,...,m+1)(M). (5.16)

Also C is Fq-linear if M is an Fq-linear subset of Fmn
q .

Proof. Let f, g ∈ N with f 6= g. For 1 ≤ i ≤ n and h ∈ {f, g}, let

ci(h) =
(
h(m)(Pi), h

(m−1)(Pi), . . . , h
(0)(Pi)

)
∈ Fm+1

q ,

ai(h) =
(
h(m−1)(Pi), . . . , h

(0)(Pi)
)
∈ Fm

q ,

bi(h) = h(m)(Pi) ∈ Fq .

Moreover, let

C(h) = (c1(h), . . . , cn(h)) ∈ F(m+1)n
q ,

A(h) = (a1(h), . . . ,an(h)) ∈ Fmn
q ,

b(h) = (b1(h), . . . , bn(h)) ∈ Fn
q .

Using Lemma 5.10, we obtain that

Vm+1(C(f) − C(g)) ≤ V(2,...,m+1)(A(f) − A(g)) + ||b(f) − b(g)||. (5.17)
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Note that A(f),A(g) ∈ M and hence we have (cf. Definition 5.11)

V(2,...,m+1) (A(f) − A(g)) ≤ ρ̂(2,...,m+1)(M). (5.18)

By the definition of the weight in (5.9) we get

f − g ∈ L
(
G−

n∑

i=1

(m+ 1 − vm+1 (ci(f) − ci(g)))Pi

)
. (5.19)

As f 6= g, the degree of the divisor in (5.19) is nonnegative (compare with

(5.6)). This yields

r − (m+ 1)n+

n∑

i=1

vm+1 (ci(f) − ci(g)) ≥ 0.

This means that

Vm+1 (C(f) − C(g)) ≥ (m+ 1)n− r. (5.20)

Using (5.17), (5.18), and (5.20), we obtain that

||b(f) − b(g)|| ≥ Vm+1 (C(f) − C(g)) − V(2,...,m+1)(A(f) − A(g))

≥ (m+ 1)n− r − ρ̂(2,...,m+1)(M).

Therefore, as b(f) − b(g) = ψ(f) − ψ(g), we obtain (5.16). Using (5.16)

and the assumption (m + 1)n − r − ρ̂(2,...,m+1)(M) ≥ 1, we conclude that

the map ψ is one-to-one when restricted to N .

It remains to prove that |C| is as given in (5.15). Note that |C| = |N |,
and since Φ is a surjective Fq-linear map, we have

|C| = |N | = |Φ−1(M)| = |Ker(Φ)| · |M |.

Now Ker(Φ) = L (G−m(P1 + · · · + Pn)), which completes the proof. �

Remark 5.13. Under the notation and assumptions of Theorem 5.12, let

g be the genus of F . If

mn+ 2g − 1 ≤ r ≤ (m+ 1)n− ρ̂(2,...,m+1)(M) − 1,

then both of the conditions of the theorem that Φ is surjective and that

(m+1)n− r− ρ̂(2,...,m+1)(M) ≥ 1 are satisfied. Indeed, if r−mn ≥ 2g− 1,

then using Proposition 5.4 we obtain that dim(L(G)) = r + 1 − g and

dim(Ker(Φ)) = r −mn+ 1 − g, and hence Φ is surjective.
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Remark 5.14. Note that N is a nonlinear subset of L(G) in general. Nev-

ertheless, there exists a nonempty subsetN0 ⊆ N such thatN is the disjoint

union of L (G−m (P1 + · · · + Pn))-cosets of the elements of N0, i.e.,

N =
⋃

g∈N0

{f + g : f ∈ L (G−m (P1 + · · · + Pn))} .

Let U0 be the subset of C defined by

U0 = ψ(N0).

Then C is a nonlinear code in general, but C is the disjoint union of ψ
(
L(G−

m(P1 + · · · + Pn))
)
-cosets of the elements of U0, namely

C =
⋃

u∈U0

{c + u : c ∈ ψ (L (G−m (P1 + · · · + Pn)))} .

Next we obtain an asymptotic version of Theorem 5.12. In the following

theorem, for a fixed positive integer m, we assume the existence of suitable

sequences of global function fields and suitable sequences of subsets of Fmn
q

as n → ∞. Recall that in Remark 5.8 we gave concrete examples of such

sequences of global function fields. Moreover, in Proposition 5.20 below we

will construct suitable sequences of subsets explicitly. These sequences of

global function fields and sequences of subsets will imply excellent lower

bounds on the function αq(δ) (see Corollaries 5.22 and 5.23).

Theorem 5.15. Let m be an arbitrary positive integer. Assume that

(Fi)
∞
i=1 is a sequence of global function fields with full constant field Fq

such that gi → ∞ as i → ∞ and limi→∞
ni

gi
= γ > 2. Here ni

and gi are the number of rational places and the genus of Fi, respec-

tively, for i ≥ 1. For each i ≥ 1, let Mi be a nonempty subset of

Fmni
q . We also assume that (logq |Mi|)/ni and ρ̂(2,...,m+1)(Mi)/ni con-

verge as i → ∞, and moreover limi→∞
ρ̂(2,...,m+1)(Mi)

ni
< 1 − 2

γ . Then for

0 < δ ≤ 1 − 2
γ − limi→∞

ρ̂(2,...,m+1)(Mi)

ni
we have

αq(δ) ≥ 1 − δ − 1

γ
+ lim

i→∞

logq |Mi|
ni

− lim
i→∞

ρ̂(2,...,m+1)(Mi)

ni
. (5.21)

Proof. Throughout this proof, if not stated otherwise, i denotes a suf-

ficiently large integer. Fix m and note that by the continuity of αq (see

Proposition 5.1(i)) we can assume that

0 < δ < 1 − 2

γ
− lim

i→∞

ρ̂(2,...,m+1)(Mi)

ni
.
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Let r̂i be the real number satisfying

δ = (m+ 1) − r̂i
ni

− ρ̂(2,...,m+1)(Mi)

ni
. (5.22)

Note that as δ < 1 − 2 limi→∞
gi

ni
− limi→∞

ρ̂(2,...,m+1)(Mi)

ni
by assumption,

we have

2gi ≤ (1 − δ)ni − ρ̂(2,...,m+1)(Mi). (5.23)

Putting r̂i into (5.23), we get

2gi ≤ −mni + r̂i. (5.24)

Let ri = br̂ic. Then using (5.24), we obtain that

ri ≥ mni + 2gi − 1 (5.25)

and

δ ≥ (m+ 1) − ri
ni

− ρ̂(2,...,m+1)(Mi)

ni
> δ − 1

ni
. (5.26)

Recall that δ > 0 and note that limi→∞ ni = ∞. Therefore we have δni > 1.

Using also (5.26), we obtain that the integer

(m+ 1)ni − ri − ρ̂(2,...,m+1)(Mi) ≥ 1. (5.27)

Let Pi,1, . . . , Pi,ni
be distinct rational places of the global function field

Fi. Moreover, using Lemma 5.6 we obtain a divisor Gi of Fi such that

deg(Gi) = ri and supp(Gi) ∩ {Pi,1, . . . , Pi,ni
} = ∅.

Using Gi and Pi,1, . . . , Pi,ni
(corresponding to G and P1, . . . , Pn of The-

orem 5.12), we define the Fq-linear maps Φi and ψi as in (5.7) and (5.8).

It follows from (5.25) and Remark 5.13 that Φi is a surjective map.

Using the map Φi and the subset Mi ⊆ Fmni
q , we define the subset Ni of

L(Gi) asNi = Φ−1
i (Mi). Then we define the code Ci ⊆ Fni

q as Ci = ψi (Ni).

We will prove that

lim inf
i→∞

d(Ci)

ni
≥ δ (5.28)

and

lim
i→∞

logq |Ci|
ni

= 1 − δ − 1

γ
+ lim

i→∞

logq |Mi|
ni

− lim
i→∞

ρ̂(2,...,m+1)(Mi)

ni
.

(5.29)

In view of the fact that αq is a nonincreasing function (see Proposition

5.1(i)), (5.28) and (5.29) will imply the bound (5.21).
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First we prove (5.28). Recall that Φi is a surjective map. Note also that

(5.27) holds. Therefore the conditions of Theorem 5.12 are satisfied. Using

Theorem 5.12, we obtain that

d(Ci)

ni
≥ (m+ 1) − ri

ni
− ρ̂(2,...,m+1)(Mi)

ni
. (5.30)

By (5.22) and ri = br̂ic, we observe that

δ = m+ 1 − lim
i→∞

ri
ni

− lim
i→∞

ρ̂(2,...,m+1)(Mi)

ni
, (5.31)

and hence (5.30) implies (5.28).

It remains to prove (5.29). Using Theorem 5.12, (5.25), and Proposition

5.4, we obtain that

logq |Ci|
ni

=
ri −mni + 1 − gi

ni
+

logq |Mi|
ni

. (5.32)

Hence (5.31) and (5.32) imply that

lim
i→∞

logq |Ci|
ni

= lim
i→∞

ri
ni

−m− 1

γ
+ lim

i→∞

logq |Mi|
ni

= 1 − δ − 1

γ
+ lim

i→∞

logq |Mi|
ni

− lim
i→∞

ρ̂(2,...,m+1)(Mi)

ni
.

This completes the proof. �

The condition δ ≤ 1− 2
γ −limi→∞

ρ̂(2,...,m+1)(Mi)

ni
in Theorem 5.15 is quite

restrictive. This follows from the condition that the map Φ in Theorem 5.12

is to be surjective. Now using an averaging argument, we extend Theorem

5.12 and Theorem 5.15 by relaxing these conditions. We note that although

the averaging argument extends the range of δ to its full range, it uses a

less constructive method (see Remark 5.18).

We assume that F is a global function field with full constant field Fq.

For n ≥ 1, we assume that P1, . . . , Pn are distinct rational places of F . Let

G be a divisor of F such that deg(G) = r and supp(G)∩ {P1, . . . , Pn} = ∅
(cf. Lemma 5.6). We define the Fq-linear map Φ as in (5.7). Moreover, we

assume that M is a nonempty subset of Fmn
q such that

(m+ 1)n− r − ρ̂2,...,m+1(M) ≥ 1. (5.33)

For any C ∈ Fmn
q , let

M(C) = {A + C : A ∈M}.
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It is clear that

|M | = |M(C)| (5.34)

and

ρ̂(2,...,m+1)(M) = ρ̂(2,...,m+1)(M(C)) (5.35)

for any C ∈ Fmn
q . Using a standard averaging argument, we will obtain

the existence of M(C) with suitable properties. Let S be the subset of the

cartesian product L(G) × Fmn
q defined by

S =
{
(f,C) ∈ L(G) × Fmn

q : f ∈ L(G), Φ(f) ∈M(C)
}
.

From (5.34) we obtain that

|S| = |L(G)| · |M |.
For each C ∈ Fmn

q , let NC ⊆ L(G) and SC ⊆ S be the subsets defined as

NC = {f ∈ L(G) : Φ(f) ∈M(C)} (5.36)

and

SC = {(f,C) ∈ S : f ∈ NC}.
Note that

S =
⋃

C∈Fmn
q

SC

and for each C ∈ Fmn
q we have

|SC | = |NC |.
Hence there exists C ∈ Fmn

q such that

|NC | = |SC | ≥ |S|
qmn

=
|L(G)| · |M |

qmn
. (5.37)

For such C ∈ Fmn
q we define the q-ary code C of length n by

C = ψ(NC), (5.38)

where ψ is given by (5.8).

The following theorem extends Theorem 5.12.

Theorem 5.16. Let m be an arbitrary positive integer. Assume that F

is a global function field with full constant field Fq such that there exist at

least n ≥ 1 distinct rational places P1, . . . , Pn of F . Let G be a divisor of

F with deg(G) = r and supp(G) ∩ {P1, . . . , Pn} = ∅. Let M be a subset of
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Fmn
q such that |L(G)| · |M | > qmn and (m+ 1)n− r − ρ̂(2,...,m+1)(M) ≥ 1.

Then C defined in (5.38) is an (n, |C|, d(C)) code over Fq with

|C| ≥
⌈ |L(G)| · |M |

qmn

⌉
(5.39)

and

d(C) ≥ (m+ 1)n− r − ρ̂(2,...,m+1)(M). (5.40)

Also C is Fq-linear if M is an Fq-linear subset of Fmn
q .

Proof. Let f, g ∈ NC with f 6= g. For h ∈ {f, g}, let C(h) ∈ F(m+1)n
q ,

A(h) ∈ Fmn
q , and b(h) ∈ Fn

q be as defined in the proof of Theorem 5.12.

Note that

A(f),A(g) ∈ M(c)

by definition. Therefore we have

V(2,...,m+1)(A(f) − A(g)) ≤ ρ̂(2,...,m+1)(M(C)).

Using (5.35) and following the proof of Theorem 5.12, we obtain that

||b(f) − b(g)|| ≥ (m+ 1)n− r − ρ̂(2,...,m+1)(M),

which implies (5.40). As (m+1)n− r− ρ̂(2,...,m+1)(M) ≥ 1 by assumption,

the restriction of ψ to NC is one-to-one. Therefore |C| = |NC | and (5.39)

follows from (5.37). �

Now we are ready to extend Theorem 5.15 to the full range of δ.

Theorem 5.17. Let m be an arbitrary positive integer. Assume that

(Fi)
∞
i=1 is a sequence of global function fields with full constant field Fq

such that gi → ∞ as i → ∞ and limi→∞
ni

gi
= γ > 0. Here ni and gi are

the number of rational places and the genus of Fi, respectively, for i ≥ 1.

For each i ≥ 1, let Mi be a nonempty subset of Fmni
q . We also assume that

(logq |Mi|)/ni and ρ̂(2,...,m+1)(Mi)/ni converge as i→ ∞, and

1 − 1

γ
+ lim

i→∞

logq |Mi|
ni

− lim
i→∞

ρ̂(2,...,m+1)(Mi)

ni
> 0. (5.41)

For 0 < δ ≤ 1 − 1
γ + limi→∞

logq |Mi|
ni

− limi→∞
ρ̂(2,...,m+1)(Mi)

ni
we have

αq(δ) ≥ 1 − δ − 1

γ
+ lim

i→∞

logq |Mi|
ni

− lim
i→∞

ρ̂(2,...,m+1)(Mi)

ni
. (5.42)
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Proof. We follow the proof of Theorem 5.15 and we assume that i is

sufficiently large throughout this proof, if not stated otherwise. We can

assume that

1 − δ − 1

γ
+ lim

i→∞

logq |Mi|
ni

− lim
i→∞

ρ̂(2,...,m+1)(Mi)

ni
> 0, (5.43)

since otherwise the statement in (5.42) is obvious. Let r̂i be the real number

satisfying

δ = (m+ 1) − r̂i
ni

− ρ̂(2,...,m+1)(Mi)

ni
, (5.44)

and put ri = br̂ic. As δ > 0, following the arguments of the proof of

Theorem 5.15 we obtain that

(m+ 1)ni − ri − ρ̂(2,...,m+1)(Mi) ≥ 1.

As in the proof of Theorem 5.15, let Pi,1, . . . , Pi,ni
be distinct rational

places of the global function field Fi. By Lemma 5.6 we obtain a divisor

Gi of Fi such that deg(Gi) = ri and supp(Gi) ∩ {Pi,1, . . . , Pi,ni
} = ∅.

Similarly we define the Fq-linear maps Φi and ψi from L(Gi) to Fmni
q and

Fni
q , respectively.

We obtain Ci ∈ Fmni
q such that for NCi

⊆ L(Gi) as given in (5.36) we

have (cf. (5.37))

|NCi
| ≥ |L(Gi)| · |Mi|

qmni
.

By Proposition 5.4 we have

dim(L(Gi)) ≥ ri + 1 − gi. (5.45)

Then using (5.43) and (5.44) we get that

|L(Gi)| · |Mi| > qmni .

Therefore the conditions of Theorem 5.16 are satisfied.

We define the code Ci ⊆ Fni
q as ψi(NCi

). Using Theorem 5.16 and

(5.44), we obtain that

lim inf
i→∞

d(Ci)

ni
≥ δ. (5.46)

From Theorem 5.16 we also obtain that

lim inf
i→∞

logq |Ci|
ni

≥ lim inf
i→∞

dim(L(Gi))

ni
+ lim

i→∞

logq |Mi|
ni

−m. (5.47)
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Using (5.44) and (5.45), we get that

lim inf
i→∞

dim(L(Gi))

ni

≥ m+ 1 − δ − lim
i→∞

ρ̂(2,...,m+1)(Mi)

ni
− lim

i→∞

gi

ni
.

(5.48)

Then from (5.47) and (5.48) we obtain that

lim inf
i→∞

logq |Ci|
ni

≥ 1 − δ − 1

γ
+ lim

i→∞

logq |Mi|
ni

− lim
i→∞

ρ̂(2,...,m+1)(Mi)

ni
.

Using (5.46) and the fact that αq is a nonincreasing function (see Proposi-

tion 5.1(i)), we complete the proof. �

Remark 5.18. The constructions of the sequences of codes in Theorem

5.15 and Theorem 5.17 are similar. However, while Theorem 5.15 uses

the subset Mi in the sequence (Mi)
∞
i=1 as it is given, Theorem 5.17 uses

a nonconstructive existence argument for choosing C i ∈ Fmni
q in order to

obtain the corresponding subset M(Ci). Therefore Theorem 5.17 is less

constructive than Theorem 5.15.

We present a concrete example of a sequence (Mi)
∞
i=1 of subsets as in

Theorem 5.17 satisfying the required properties. First we give a definition.

Definition 5.19. Let m ≥ 1 be an integer. For an integer n ≥ 1 and

A =
(
a
(1)
1 , . . . , a(1)

m , a
(2)
1 , . . . , a(2)

m , . . . . . . , a
(n)
1 , . . . , a(n)

m

)
∈ Fmn

q ,

let Im(A), Im−1(A), . . . , I1(A) be the subsets of {1, . . . , n} defined by

Im(A) =
{
i ∈ {1, . . . , n} : a(i)

m 6= 0
}
,

Im−1(A) =
{
i ∈ {1, . . . , n} : a(i)

m = 0, a
(i)
m−1 6= 0

}
,

...

I1(A) =
{
i ∈ {1, . . . , n} : a(i)

m = · · · = a
(i)
2 = 0, a

(i)
1 6= 0

}
.

We obtain some properties of a subset of Fmn
q that we will use together

with Theorem 5.17. Recall that the real-valued function Eq on the interval

[0, 1] was defined in Definition 5.7.

Proposition 5.20. Let m ≥ 1 be an integer. Let ∆ be the region in

Rm consisting of the m-tuples (x1, . . . , xm) of real numbers such that



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

198 Ferruh Özbudak

0 ≤ x1, . . . , xm and x1 + · · · + xm ≤ 1. For n ≥ 1 and (x1, . . . , xm) ∈ ∆,

let S(n, x1, . . . , xm) be the subset of Fmn
q defined by

S(n, x1, . . . , xm) =
{
A ∈ Fmn

q : |I1(A)| = bx1nc, . . . , |Im(A)| = bxmnc
}
.

Then

|S(n, x1, . . . , xm)|

=

(
n

bxmnc

)
(q − 1)bxmncq(m−1)bxmnc

×
(
n− bxmnc
bxm−1nc

)
(q − 1)bxm−1ncq(m−2)bxm−1nc

× · · ·

×
(
n− (bxmnc + bxm−1nc + · · · + bx2nc)

bx1nc

)
(q − 1)bx1nc

(5.49)

and

ρ̂(2,...,m+1) (S(n, x1, . . . , xm))

≤ 2 (2bx1nc + 3bx2nc + · · · + (m+ 1)bxmnc) .
(5.50)

Let V (x1, . . . , xm) be the real-valued function on ∆ ⊆ Rm defined by

V (x1, . . . , xm)

= Eq(xm) +
∑m−1

j=1 (1 − xm − xm−1 − · · · − xj+1)Eq

(
xj

1−xm−xm−1−···−xj+1

)

+
(∑m

j=1 xj

)
logq(q − 1) +

∑m
j=2(j − 1)xj − 2

∑m
j=1(j + 1)xj .

For (x1, . . . , xm) ∈ ∆ we have

lim inf
n→∞

(
logq |S(n, x1, . . . , xm)|

n
− ρ̂(2,...,m+1) (S(n, x1, . . . , xm))

n

)

≥ V (x1, . . . , xm).

(5.51)

Moreover, V (x1, . . . , xm) attains its maximum at

(x1, . . . , xm)

=
(
qm−1 q−1

qm+3+qm−1 , q
m−2 q−1

qm+3+qm−1 , . . . ,
q−1

qm+3+qm−1

) (5.52)
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and we have

V

(
qm−1 q − 1

qm+3 + qm − 1
, . . . ,

q − 1

qm+3 + qm − 1

)

= logq

(
1 + qm−1

qm+3

)
.

(5.53)

Proof. The statements (5.49) and (5.50) follow from the definition of

S(n, x1, . . . , xm). Using (5.49) and some manipulations, we obtain that

lim
n→∞

logq |S(n, x1, . . . , xm)|
n

= V (x1, . . . , xm) + 2
m∑

j=1

(j + 1)xj . (5.54)

Then (5.51) follows from (5.50) and (5.54).

Let 1 ≤ ` ≤ m be an integer. For the partial derivative
∂V (x1, . . . , xm)

∂x`
of V (x1, . . . , xm) we have

∂V (x1, . . . , xm)

∂x`

= logq

(
1 − (x1 + · · · + xm)

x`

)
+ logq(q − 1) − (`+ 3).

(5.55)

The identity in (5.55) implies that the point defined in (5.52) is the unique

critical point of V (x1, . . . , xm), and moreover it is easy to show that

V (x1, . . . , xm) attains its maximum at the point given in (5.52). The re-

sult in (5.53) follows from an algebraic manipulation using the definition of

V (x1, . . . , xm). �

Using Theorem 5.17 and Proposition 5.20, we obtain the following corol-

lary.

Corollary 5.21. Let m ≥ 1 be an integer. Assume that (Fi)
∞
i=1 is a se-

quence of global function fields with full constant field Fq such that gi → ∞
as i → ∞ and limi→∞

ni

gi
= γ > 0. Here ni and gi are the number of

rational places and the genus of Fi, respectively, for i ≥ 1. Then we have

αq(δ) ≥ 1 − δ − 1

γ
+ logq

(
1 +

qm − 1

qm+3

)
for 0 ≤ δ ≤ 1.

Proof. We can assume that

1 − 1

γ
+ logq

(
1 +

qm − 1

qm+3

)
> 0

and

0 < δ ≤ 1 − 1

γ
+ logq

(
1 +

qm − 1

qm+3

)
,
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for otherwise the result is trivial. Let (x1, . . . , xm) be the m-tuple of ra-

tional numbers given in (5.52). Under the notations of Theorem 5.17 and

Proposition 5.20, for each i ≥ 1 let Mi = S(ni, x1, . . . , xm) ⊆ Fmni
q . By

passing, if necessary, to a subsequence, we see that the conditions of Theo-

rem 5.17 are satisfied. We obtain the lower bound on αq(δ) using Theorem

5.17 and Proposition 5.20. �

Letting m→ ∞ in Corollary 5.21, we obtain the following result.

Corollary 5.22. Assume that (Fi)
∞
i=1 is a sequence of global function fields

with full constant field Fq such that gi → ∞ as i → ∞ and limi→∞
ni

gi
=

γ > 0. Here ni and gi are the number of rational places and the genus of

Fi, respectively, for i ≥ 1. Then we have

αq(δ) ≥ 1 − δ − 1

γ
+ logq

(
1 +

1

q3

)
for 0 ≤ δ ≤ 1.

Corollary 5.23. For any prime power q, we have

αq(δ) ≥ 1 − δ − 1

A(q)
+ logq

(
1 +

1

q3

)
for 0 ≤ δ ≤ 1.

Proof. By the definition of A(q) in Section 5.1, we can apply Corollary

5.22 with γ = A(q). �

5.4. The Stichtenoth-Xing Construction

In [12] Stichtenoth and Xing gave a simpler construction of asymptoti-

cally good codes which yields the same lower bound on αq(δ) as Corollary

5.22, though on a shorter interval. In this section we present an exposition

of their result.

Let F be a global function field with full constant field Fq such that

there exist at least n ≥ 1 distinct rational places P1, . . . , Pn of F . Let

G be a nonspecial divisor of F with deg(G) = r, dim(L(G)) ≥ 1, and

supp(G) ∩ {P1, . . . , Pn} = ∅ (see Remark 5.5).

Let 1 ≤ t ≤ s be integers with t ≤ n. Let E(s, t) be the set consisting

of the divisors E of F such that

E = ai1Pi1 + ai2Pi2 + · · · + ait
Pit

, (5.56)

where 1 ≤ i1 < i2 < · · · < it ≤ n and ai1 , ai2 , . . . , ait
are positive integers

with ai1 + ai2 + · · · + ait
= s. It is easy to see that

|E(s, t)| =

(
n

t

)(
s− 1

t− 1

)
. (5.57)
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For each E ∈ E(s, t) in the form (5.56), let S(G,E) be the subset of F given

by

S(G,E)

= {f ∈ L(G+E) : νPi1
(f) = −ai1 , νPi2

(f) = −ai2 , . . . , νPit
(f) = −ait

}.
Assume that E1, E2 ∈ E(s, t) are distinct divisors. Then

S(G,E1) ∩ S(G,E2) = ∅. (5.58)

Indeed, otherwise there exist integers 1 ≤ i ≤ n and a 6= b such that

f ∈ S(G,E1) ∩ S(G,E2) with νPi
(f) = −a, νPi

(f) = −b, which is a con-

tradiction.

Lemma 5.24. Under the notation and assumptions as above, for each E ∈
E(s, t) we have

|S(G,E)| = qr+s−g+1

(
1 − 1

q

)t

.

Proof. In this proof we follow the arguments of Maharaj in [6, Section

2]. Let E = a1P1 + a2P2 + · · ·+ atPt for simplicity, where a1, a2, . . . , at are

positive integers with a1 + a2 + · · · + at = s. For integers 1 ≤ i ≤ t and

1 ≤ j ≤ ai, the fact that G is nonspecial (cf. Remark 5.5) implies that

dim(L(G + jPi)) = dim(L(G + (j − 1)Pi)) + 1,

and hence we can choose and fix fi,j ∈ L(G + jPi) \ L(G + (j − 1)Pi).

Note that {fi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ ai} is a linearly independent set over

Fq. Moreover, f ∈ S(G,E) if and only if there exist a uniquely determined

f0 ∈ L(G) and for 1 ≤ i ≤ t and 1 ≤ j ≤ ai uniquely determined

βi,j ∈
{
Fq if 1 ≤ j < ai,

Fq \ {0} if j = ai,

such that f = f0 +

t∑

i=1

ai∑

j=1

βi,jfi,j . Hence

|S(G,E)| = |L(G)|qs

(
q − 1

q

)t

= qr+1−gqs

(
1 − 1

q

)t

,

which is the desired result. �

Let S(G; s, t) ⊆ F be the set defined by

S(G; s, t) =
⋃

E∈E(s,t)

S(G,E).
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Using Lemma 5.24, (5.57), and (5.58), we obtain that

|S(G; s, t)|

=
∑

E∈E(s,t)

|S(G,E)| = qr+s−g+1

(
1− 1

q

)t(
n

t

)(
s− 1

t− 1

)
. (5.59)

Now we are ready to describe the basic construction of Stichtenoth and

Xing [12]. For each f ∈ S(G; s, t), there exists a uniquely determined

E ∈ E(s, t) such that f ∈ S(G,E). If P ∈ {P1, . . . , Pn} \ supp(E), then

the evaluation f (0)(P ) of f at P is a well-defined element of Fq (cf. Section

5.3). For 1 ≤ i ≤ n and f ∈ S(G; s, t), put

λi(f) =

{
f (0)(Pi) if Pi 6∈ supp(E),

0 if Pi ∈ supp(E).

Then we define the map λ : S(G; s, t) → Fn
q as

λ(f) = (λ1(f), λ2(f), . . . , λn(f)) .

Let C be the q-ary code of length n defined by

C = λ (S(G; s, t)) . (5.60)

Theorem 5.25. Assume that F is a global function field with full constant

field Fq such that there exist at least n ≥ 1 distinct rational places P1, . . . , Pn

of F . Let G be a nonspecial divisor of F such that deg(G) = r, dim(L(G)) ≥
1, and supp(G) ∩ {P1, . . . , Pn} = ∅. Let 1 ≤ t ≤ s be integers with t ≤ n

and n− r − 2s− 2t ≥ 1. Then C defined in (5.60) is an (n, |C|, d(C)) code

over Fq with

|C| = qr+s−g+1

(
1 − 1

q

)t(
n

t

)(
s− 1

t− 1

)

and

d(C) ≥ n− r − 2s− 2t.

Proof. Let f1, f2 ∈ S(G; s, t) with f1 6= f2. Let E1, E2 ∈ E(s, t) be the

divisors corresponding to f1 and f2, respectively. Let U = {P1, . . . , Pn} \
(supp(E1) ∪ supp(E2)). Since |supp(E1)| = |supp(E2)| = t, we have

|U | ≥ n− 2t. (5.61)

Let f = f1 − f2 and Z = {P ∈ U : f (0)(P ) = 0}. Then f ∈
L
(
G+E1 +E2 −

∑
P∈Z P

)
\ {0} and hence by (5.6),

deg

(
G+E1 +E2 −

∑

P∈Z

P

)
= r + 2s− |Z| ≥ 0. (5.62)
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Using (5.61) and (5.62), we obtain that

|U \ Z| = |U | − |Z| ≥ n− r − 2s− 2t,

which implies for the Hamming weight ||λ(f1)−λ(f2)|| of λ(f1)−λ(f2) ∈ Fn
q

that

||λ(f1) − λ(f2)|| ≥ n− r − 2s− 2t.

As n − r − 2s − 2t ≥ 1, we obtain that the map λ is one-to-one and

|C| = |S(G; s, t)|. We complete the proof using (5.59). �

Theorem 5.26. Assume that (Fi)
∞
i=1 is a sequence of global function fields

with full constant field Fq such that gi → ∞ as i → ∞ and limi→∞
ni

gi
=

γ > 0. Here ni and gi are the number of rational places and the genus of

Fi, respectively, for i ≥ 1. Let 0 ≤ x ≤ y ≤ 1 be real numbers. We also

assume that 1 − 2
γ − 2y − 2x > 0. For 0 < δ ≤ 1 − 2

γ − 2y − 2x we have

αq(δ) ≥ 1 − δ − 1

γ
− y − 2x+ x logq

(
1 − 1

q

)
+Eq(x) + yEq

(
x

y

)
.

Proof. As in the proofs of Theorems 5.15 and 5.17, we assume that i is

a sufficiently large integer throughout this proof. By the continuity of αq

(see Proposition 5.1(i)) we can assume that δ < 1 − 2
γ − 2y − 2x.

Let r̂i be the real number satisfying

δ = 1 − r̂i
ni

− 2y − 2x. (5.63)

Note that as δ < 1 − 2
γ − 2y − 2x and limi→∞

ni

gi
= γ by assumption, we

have r̂i ≥ 2gi. Putting ri = br̂ic we obtain that

ri ≥ 2gi. (5.64)

Let Pi,1, . . . , Pi,ni
be distinct rational places of Fi. Let Gi be a divisor of

Fi such that deg(Gi) = ri and supp(Gi)∩{Pi,1, . . . , Pi,ni
} = ∅ (cf. Lemma

5.6). Then Gi is a nonspecial divisor of Fi (cf. Proposition 5.4 and Remark

5.5) and using (5.64) we obtain that dim(L(Gi)) = ri + 1− gi ≥ gi + 1 ≥ 1.

Let si = bynic and ti = bxnic. As δ > 0 we obtain that ni − ri − 2si −
2ti ≥ 1. Therefore using Theorem 5.25 for the global function field Fi, we

obtain a q-ary code Ci of length ni such that

logq |Ci|
= ri + si − gi + 1 + ti logq

(
1 − 1

q

)
+ logq

(
ni

ti

)
+ logq

(
si − 1

ti − 1

)
(5.65)
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and

d(Ci) ≥ ni − ri − 2si − 2ti. (5.66)

Using (5.63) and (5.66), we obtain that

lim inf
i→∞

d(Ci)

ni
≥ δ.

Using Definition 5.7, (5.63), and (5.65), we get

lim
i→∞

logq |Ci|
ni

= (1 − δ − 2y − 2x) + y − 1

γ
− x logq

(
1 − 1

q

)
+Eq(x) + yEq

(
x

y

)
.

This completes the proof. �

Let ∆ be the region in R2 consisting of the points (x, y) such that

0 ≤ x ≤ y ≤ 1. Let V (x, y) be the real-valued function on ∆ defined by

V (x, y) = −y − 2x+ x logq

(
1 − 1

q

)
+Eq(x) + yEq

(
x

y

)
.

Then for the partial derivatives ∂V (x,y)
∂x and ∂V (x,y)

∂y we have

∂V (x, y)

∂x

= −2 + logq

(
1 − 1

q

)
+ logq(1 − x) + logq(y − x) − 2 logq x

(5.67)

and

∂V (x, y)

∂y
= −1 + logq y − logq(y − x). (5.68)

Using (5.67) and (5.68), we obtain that V (x, y) attains its maximum on ∆

at

(x, y) =

(
1

q3 + 1
,

q

(q − 1)(q3 + 1)

)
.

By straightforward manipulations we get

V

(
1

q3 + 1
,

q

(q − 1)(q3 + 1)

)
= logq

(
1 +

1

q3

)
.

Therefore using x = 1
q3+1 and y = q

(q−1)(q3+1) in Theorem 5.26, we obtain

the following corollary.

Corollary 5.27. Assume that (Fi)
∞
i=1 is a sequence of global function fields

with full constant field Fq such that gi → ∞ as i → ∞ and limi→∞
ni

gi
=
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γ > 0. Here ni and gi are the number of rational places and the genus of

Fi, respectively, for i ≥ 1. Then for

0 < δ ≤ 1 − 2

γ
− 4q − 2

(q − 1)(q3 + 1)

we have

αq(δ) ≥ 1 − δ − 1

γ
+ logq

(
1 +

1

q3

)
.

Proof. Note that for x = 1
q3+1 and y = q

(q−1)(q3+1) , the upper bound

δ ≤ 1 − 2
γ − 2y − 2x in Theorem 5.26 becomes δ ≤ 1 − 2

γ − 4q−2
(q−1)(q3+1) .

Then the corollary follows immediately from Theorem 5.26 and the fact

that V
(

1
q3+1 ,

q
(q−1)(q3+1)

)
= logq

(
1 + 1

q3

)
. �

5.5. Improved Bounds Using Distinguished Divisors

We recall that Vlăduţ [16] (see also [14, Chapter 3.4]) and Xing [17]

improved the Tsfasman-Vlăduţ-Zink bound (5.4) for αlin
q (δ), although not

uniformly in δ. Similarly, Niederreiter and Özbudak [8] and Maharaj [6]

improved the bound (5.5) for certain values of q and δ. Later, Niederreiter

and Özbudak [9] refined and complemented the methods of [8] and they

further improved the previous bounds on αlin
q (δ) and αq(δ), including the

bound in [6], for certain values of q and δ. In this section we give an

exposition of the results of Niederreiter and Özbudak in [9].

We fix some notation as in Section 5.3. We choose an arbitrary positive

integer m. Let F be a global function field with full constant field Fq such

that there exist at least n ≥ 1 distinct rational places P1, . . . , Pn of F . Let

ti be a local parameter of F at Pi for 1 ≤ i ≤ n. Moreover, we assume that

the class number of F is h (see, for example, [11, Section V.1]).

We introduce and recall some definitions.

Definition 5.28. For a positive divisor D of F , let D be the divisor

D = a1P1 + · · · + anPn,

where ai = min(m+ 1, νPi
(D)) for 1 ≤ i ≤ n.
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Definition 5.29. For a positive divisor D of F , let

0(D) = |{i ∈ {1, . . . , n} : νPi
(D) = m}| ,

1(D) = |{i ∈ {1, . . . , n} : νPi
(D) = m− 1}| ,

...

m(D) = |{i ∈ {1, . . . , n} : νPi
(D) = 0}| .

Moreover, we define

Jm(D) = 21(D) + 32(D) + · · · + (m+ 1)m(D). (5.69)

Let G be a divisor of F with supp(G) ∩ {P1, . . . , Pn} = ∅ and

dim(L(G)) ≥ 1. Using the local expansions at P1, . . . , Pn and the divi-

sor G, we define the Fq-linear maps Φ and ψ from L(G) to Fmn
q and Fn

q as

in (5.7) and (5.8), respectively.

Recall that for A ∈ Fmn
q , the subsets Im(A), Im−1(A), . . . , I1(A) of

{1, . . . , n} are defined in Definition 5.19.

Lemma 5.30. For a divisor G of F with supp(G) ∩ {P1, . . . , Pn} = ∅ and

dim (L(G)) ≥ 1, let f ∈ L(G) \ {0}. Moreover, let E = (f)0 be the zero

divisor of f and A := Φ(f) ∈ Fmn
q . Then

1(E) = |I1(A)|, 2(E) = |I2(A)|, . . . , m(E) = |Im(A)|,

and

Jm(E) = 2 |I1(A)| + 3 |I2(A)| + · · · + (m+ 1) |Im(A)| .

Proof. For each 1 ≤ i ≤ n and 1 ≤ ` ≤ m, using Definition 5.19 we

obtain that i ∈ I`(A) ⇐⇒ νPi
(E) = m − `. Hence by Definition 5.29 we

have

m(E) = |Im(A)|, m−1(E) = |Im−1(A)|, . . . , 1(E) = |I1(A)|.

Using (5.69) we complete the proof. �

Next we define an important set of positive divisors.

Definition 5.31. For integers r ≥ s ≥ 0 and nonnegative integers

X1, X2, . . . , Xm, let Vm(r, s;X1, X2, . . . , Xm) be the set consisting of the

positive divisors D of the global function field F satisfying all of the fol-

lowing:

• Condition 1: deg(D) = r and deg
(
D
)
≥ s;
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• Condition 2:

m(D) ≤ 2Xm,

m−1(D) ≤ 2Xm−1 +Xm,

m−2(D) ≤ 2Xm−2 + (Xm−1 +Xm) ,
...

1(D) ≤ 2X1 + (X2 +X3 + · · · +Xm) ;

• Condition 3: Jm(D) ≤ 2 (2X1 + 3X2 + · · · + (m+ 1)Xm).

In the following proposition, which can be viewed as a refinement of

Lemma 5.6, we use the Weak Approximation Theorem [11, Theorem I.3.1].

Proposition 5.32. For integers r ≥ s ≥ 0 and nonnegative integers

X1, . . . , Xm, if

|Vm(r, s;X1, . . . , Xm)| < h,

then there exists a divisor G of F of degree r such that supp(G) ∩
{P1, . . . , Pn} = ∅ and for each f ∈ L(G) \ {0}, if E = (f)0 satisfies

Conditions 2 and 3 of Definition 5.31 with the given X1, . . . , Xm, then

deg
(
E
)
≤ s− 1.

Proof. As |Vm(r, s;X1, . . . , Xm)| < h, there exists a degree r divisor G

of F such that G is nonequivalent to V for any V ∈ Vm(r, s;X1, . . . , Xm).

Using the Weak Approximation Theorem, we can assume that supp(G) ∩
{P1, . . . , Pn} = ∅ without loss of generality (compare with [8, proof of

Corollary 2.2]). Let f ∈ L(G) \ {0}, D = G + (f), and E = (f)0. Since

supp(G) ∩ {P1, . . . , Pn} = ∅ and D is positive, we have D = E. Assume

that Conditions 2 and 3 of Definition 5.31 are satisfied by E. If deg
(
E
)
≥ s,

then D ∈ Vm(r, s;X1, . . . , Xm) and hence D is nonequivalent to G, which

is a contradiction. Thus, we must have deg
(
E
)
≤ s− 1. �

The following two lemmas are useful for the basic construction of this

section. They are technical lemmas and we refer to [9] for their proofs.

Lemma 5.33. For A,B ∈ Fmn
q , we have

2 |I1(A − B)| + 3 |I2(A − B)| + · · · + (m+ 1) |Im(A − B)|

≤ 2 |I1(A)| + 3 |I2(A)| + · · · + (m+ 1) |Im(A)|

+2 |I1(B)| + 3 |I2(B)| + · · · + (m+ 1) |Im(B)| .
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Lemma 5.34. For A,B ∈ Fmn
q , we have the following containment rela-

tions:

Im(A − B) ⊆ Im(A) ∪ Im(B),

Im−1(A − B) ⊆ Im−1(A) ∪ Im−1(B) ∪ {Im(A) ∩ Im(B)} ,

Im−2(A − B) ⊆ Im−2(A) ∪ Im−2(B) ∪ {Im−1(A) ∩ Im−1(B)}
∪{Im(A) ∩ Im(B)},

...

I1(A − B) ⊆ I1(A) ∪ I1(B) ∪⋃2≤ν≤m {Iν(A) ∩ Iν(B)} .

For C ∈ Fmn
q and nonnegative real numbers x1, . . . , xm with x1 + · · ·+

xm ≤ 1, let M(x1, . . . , xm; C) be the subset of Fmn
q defined by

M(x1, . . . , xm; C)

=
{
A ∈ Fmn

q : |I1(A − C)| ≤ bx1nc, . . . , |Im(A − C)| ≤ bxmnc
}
.

Note that |M(x1, . . . , xm; C)| = |M(x1, . . . , xm;0)| for each C ∈ Fmn
q and

|M(x1, . . . , xm;0)| ≥ |S(n, x1, . . . , xn)|, (5.70)

where S(n, x1, . . . , xn) is the subset of Fmn
q defined in Proposition 5.20.

Now we are ready to give the basic construction of this section. Assume

that r ≥ s ≥ 0 are integers and x1, . . . , xm ≥ 0 are real numbers with

x1 + · · · + xm ≤ 1 such that

|Vm (r, s; bx1nc, bx2nc, . . . , bxmnc)| < h. (5.71)

Let G be a divisor of F of degree r obtained using (5.71) and Proposition

5.32. If

|L(G)| · |M(x1, . . . , xm;0)| > qmn, (5.72)

then there exists C ∈ Fmn
q such that for the set

NC := {f ∈ L(G) : Φ(f) ∈M(x1, . . . , xm; C)} (5.73)

we have

|NC | ≥ |L(G)| · |M(x1, . . . , xm;0)|
qmn

> 1. (5.74)

Theorem 5.35. Assume that r ≥ s ≥ 0 are integers and that x1, . . . , xm

are nonnegative real numbers with x1 + · · · + xm ≤ 1 satisfying (5.71). Let
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G be a divisor of F of degree r obtained using (5.71) and Proposition 5.32.

Assume also that (5.72) holds and that

(m+ 1)n ≥ s+ 2
m∑

l=1

(l + 1)bxlnc. (5.75)

Using the chosen divisor G and (5.72), let C ∈ Fmn
q be such that the set NC

satisfies (5.74). Let C be the q-ary code of length n given by C = ψ (NC).

Then for the cardinality |C| of C we have

|C| ≥
⌈L(G) · |M(x1, . . . , xm;0)|

qmn

⌉

and for the minimum distance d(C) of C we have

d(C) ≥ (m+ 1)n+ 1 − s− 2

m∑

l=1

(l + 1)bxlnc.

Proof. Let f1, f2 ∈ NC be such that f1 6= f2 and put f = f1−f2 ∈ L(G).

Let E be the zero divisor of f and

E = a1P1 + · · · + anPn

be the divisor defined in Definition 5.28. Let Φ(f1) =: A and Φ(f2) =: B.

We have

Φ(f) = A − B. (5.76)

As A,B ∈M(x1, . . . , xm; C), we also have

|Ii(A − C)| ≤ bxinc and |Ii(B − C)| ≤ bxinc for 1 ≤ i ≤ n. (5.77)

Using (5.76), (5.77), Lemmas 5.30 and 5.33, we obtain that

Jm(E) = 2 |I1(A − B)| + 3 |I2(A − B)| + · · · + (m+ 1) |Im(A − B)|

≤ 2 |I1(A − C)| + 3 |I2(A − C)| + · · · + (m+ 1) |Im(A − C)|

+2 |I1(B − C)| + 3 |I2(B − C)| + · · · + (m+ 1) |Im(B − C)|

≤ 2 (2bx1nc + 3bx2nc + · · · + (m+ 1)bxmnc) .
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Moreover, using (5.76), (5.77), Lemmas 5.30 and 5.34, we further obtain

that

m(E) = |Im((A − C) − (B − C))|
≤ |Im(A − C)| + |Im(B − C)|
≤ 2bxmnc,

m−1(E) = |Im−1((A − C) − (B − C))|
≤ |Im−1(A − C)| + |Im−1(B − C)| + |Im(A − C) ∩ Im(B − C)|
≤ 2bxm−1nc + bxmnc,

...

1(E) = |I1((A − C) − (B − C))|
≤ |I1(A − C)| + |I1(B − C)| +∑m

ν=2 |Iν(A − C) ∩ Iν(B − C)|
≤ 2bx1nc +

∑m
ν=2bxνnc.

Hence by the choice of the divisor G (cf. Proposition 5.32), we have

deg
(
E
)
≤ s− 1. (5.78)

Moreover, we obtain
n∑

i=1

(m+ 1 − ai)

= (m+ 1)n−
n∑

i=1

ai = (m+ 1)n− deg
(
E
)
≥ (m+ 1)n− s+ 1,

where we used (5.78). Let ||ψ(f)|| denote the Hamming weight of the vector

ψ(f) ∈ Fn
q . Then using Definition 5.29 and (5.69), we have

n∑

i=1

(m+ 1 − ai) =

n∑

i=1

0≤ai≤m

(m+ 1 − ai) ≤ ||ψ(f)|| +
n∑

i=1

0≤ai≤m−1

(m+ 1 − ai)

= ||ψ(f)|| + Jm(E).

Therefore we obtain

||ψ(f)|| ≥ (m+ 1)n− s+ 1 − Jm(E)

≥ (m+ 1)n− s+ 1 − 2 (2bx1nc + 3bx2nc + · · · + (m+ 1)bxmnc) .
This yields the desired lower bound on d(C). Using (5.75) we obtain that

d(C) ≥ 1, and so the map ψ is one-to-one on NC . Therefore |C| = |NC |,
and hence the lower bound on |C| follows from (5.74). This completes the

proof. �
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A special case of Theorem 5.35 gives linear codes.

Corollary 5.36. Assume that r ≥ s ≥ 0 are integers and that x1 = x2 =

· · · = xm = 0 satisfy (5.71). Let G be a divisor of F of degree r obtained

using (5.71) and Proposition 5.32. Assume also that

|L(G)| > qmn (5.79)

and that (m + 1)n ≥ s. Using the chosen divisor G and the kernel of the

corresponding map Φ, put C = ψ (Ker Φ). Then C is a linear code over Fq

of length n. Moreover, for the dimension of C we have

dim(C) ≥ dim (L(G)) −mn

and for the minimum distance d(C) of C we have

d(C) ≥ (m+ 1)n+ 1 − s.

Proof. The kernel of Φ is an Fq-linear subspace of L(G) and is the

Riemann-Roch space given by

Ker Φ = L (G−m(P1 + · · · + Pn)) .

As dim (L (G−m(P1 + · · · + Pn))) ≥ dim (L(G)) − mn, using (5.79) we

obtain that Ker Φ 6= {0}. The maps Φ and ψ are Fq-linear, and hence C

is a linear code over Fq. We obtain the bounds on the dimension and the

minimum distance of C using similar methods as in the proof of Theorem

5.35. �

For the asymptotic bounds we need the following assumption.

Assumption 1 Assume that (Fi)
∞
i=1 is a sequence of global function fields

with full constant field Fq, with gi → ∞ as i → ∞, and with

lim supi→∞
ni

gi
= γ > 0, where ni and gi denote the number of rational

places and the genus of Fi, respectively. For each l ≥ 1, let γl ≥ 0 be

a real number with lim inf i→∞
Bi,l

gi
≥ γl, where Bi,l is the number of

degree l places of Fi. Using a suitable subsequence of (Fi)
∞
i=1, we can

take γ1 = γ.

In the following definitions (Definitions 5.37 and 5.39), the following

proposition (Proposition 5.38), and the following lemma (Lemma 5.40),

we obtain an upper bound on the cardinality of some sets of the form

Vm(r, s;X1, . . . , Xm). This bound will be useful for the asymptotic version

of Theorem 5.35. Since the proofs of Proposition 5.38 and Lemma 5.40 are
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rather technical, we prefer not to include them here and we refer to [9] for

these proofs.

Definition 5.37. Under Assumption 1, let y > 0, x1, x2, . . . , xm, σ ≥ 0 be

real numbers satisfying

y + 2(2x1 + 3x2 + · · · + (m+ 1)xm) +
σ

γ
< 1. (5.80)

For real numbers 0 ≤ x ≤ σ
γ and t1, t2, . . . , tm satisfying

0 ≤ tm ≤ 2xm, 0 ≤ tm−1 ≤ 2xm−1 + xm, . . . ,

0 ≤ t1 ≤ 2x1 + (x2 + x3 + · · · + xm),
(5.81)

and

2t1 + 3t2 + · · · + (m+ 1)tm ≤ 2(2x1 + 3x2 + · · · + (m+ 1)xm), (5.82)

let S(σ, y, x, t1, t2, . . . , tm) be the real-valued function

S(σ, y, x, t1, t2, . . . , tm)

= Eq(tm) + (1 − tm)Eq

(
tm−1

1−tm

)

+ · · · + (1 − (t2 + · · · + tm))Eq

(
t1

1−(t2+···+tm)

)

+ (1 − (t1 + t2 + · · · + tm))Eq

(
y + x+ (t1 + 2t2 + · · · +mtm)

1 − (t1 + t2 + · · · + tm)

)

+





(
y + σ

γ + (t1 + 2t2 + · · · +mtm)
)
Eq

(
y+x+(t1+2t2+···+mtm)
y+ σ

γ
+(t1+2t2+···+mtm)

)

if y+x+(t1+2t2+···+mtm)
y+ σ

γ
+(t1+2t2+···+mtm) ≥ 1 − 1

q ,

(
y + σ

γ + (t1 + 2t2 + · · · +mtm)
)

−(y + x+ (t1 + 2t2 + · · · +mtm)) logq(q − 1)

if y+x+(t1+2t2+···+mtm)
y+ σ

γ
+(t1+2t2+···+mtm) ≤ 1 − 1

q .

Note that by (5.80) we have 2 (2x1 + 3x2 + · · · (m+ 1)xm) < 1, and hence

using (5.82) we obtain t1 + t2 + · · · + tm ≤ t1 + 3
2 t2 + · · · + m+1

2 tm < 1
2 .
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Proposition 5.38. Under Assumption 1, let y > 0 and x1, x2, . . . , xm, σ ≥
0 be real numbers satisfying (5.80). For each integer i ≥ 1, let ri =⌊(
m+ y + σ

γ

)
ni

⌋
, si = b(m+ y)nic, X(i)

1 = bx1nic, X(i)
2 = bx2nic, . . . ,

X
(i)
m = bxmnic, and V(i)

m (ri, si;X
(i)
1 , X

(i)
2 , . . . , X

(i)
m ) be the set of positive

divisors of Fi defined in Definition 5.31. Then for the cardinalities of these

sets we have

lim sup
i→∞

logq

∣∣∣V(i)
m (ri, si;X

(i)
1 , X

(i)
2 , . . . , X

(i)
m )
∣∣∣

ni
≤ max S(σ, y, x, t1, t2, . . . , tm),

where the maximum is over all real numbers x and t1, t2, . . . , tm satisfying

0 ≤ x ≤ σ
γ and the conditions in (5.81) and (5.82).

Definition 5.39. Under Assumption 1, let y > 0 and x1, x2, . . . , xm ≥ 0

be real numbers such that y + 2 (2x1 + 3x2 + · · · + (m+ 1)xm) < 1. For

σ ≥ 0 and y+2 (2x1 + 3x2 + · · · + (m+ 1)xm)+ σ
γ < 1, let Iy,x1,x2,...,xm

(σ)

be the real-valued function of σ defined by

Iy,x1,x2,...,xm
(σ) = max S(σ, y, x, t1, t2, . . . , tm),

where the maximum is over all real numbers x, t1, t2, . . . , tm with 0 ≤ x ≤ σ
γ

and t1, t2, . . . , tm satisfying conditions (5.81) and (5.82).

Lemma 5.40. Under the assumptions of Definition 5.39, the real-valued

function Iy,x1,x2,...,xm
(σ) is a strictly increasing function of σ on its do-

main of definition, which is the interval of σ such that σ ≥ 0 and

y + 2 (2x1 + 3x2 + · · · + (m+ 1)xm) + σ
γ < 1.

In the following proposition we compute Iy,x1,x2,...,xm
(σ) under some

conditions. Again we refer to [9] for its proof.

Proposition 5.41. We keep the assumptions of Definition 5.39. If m = 1,

then let t̄1 = t∗1 = 2x1. If m ≥ 2, then let

t̄m = 2xm and t̄` = 2x` +

m∑

ν=`+1

xν for 1 ≤ ` ≤ m− 1,

let t∗1 be the real number defined by

2t∗1 +
m∑

`=2

(`+ 1)t̄` = 2
m∑

`=1

(`+ 1)x`,

and for each 2 ≤ ` ≤ m, let t∗` be the real number defined inductively using

t∗`−1 by

(`+ 1)t∗` − (`+ 1)t̄` = `t∗`−1 − `t̄`−1. (5.83)



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

214 Ferruh Özbudak

Moreover, let u be the real number depending on x1, . . . , xm defined by

u = t∗1 +

m∑

`=2

`t̄`,

where u = t∗1 if m = 1. Assume also that all of the following conditions

hold:

C1: σ
γ ≤ y

q−1 ;

C2: for each 1 ≤ ` ≤ m,

t̄`

(
y +

σ

γ
+ u

)2`

<

(
1 − y − σ

γ
− 2

m∑

ν=1

(ν + 1)xν

)`+1(
y +

σ

γ

)`

;

C3: σ
γ (1 − y) < y2;

C4: if m ≥ 2, then for each 1 ≤ ` ≤ m− 1,

(t̄`+1)
`+1

(
y +

σ

γ
+ u

)
≤ (t∗` )

`+2
.

Then we have Iy,x1,x2,x3,...,xm
(σ) = S(σ, y, 0, t∗1, t̄2, t̄3, . . . , t̄m).

Now we introduce an important function based on the function

Iy,x1,...,xm
(σ) defined in Definition 5.39. In the next definition we use the

fact that Iy,x1,...,xm
(σ) is an increasing function on its domain of definition,

see Lemma 5.40.

Definition 5.42. Under Assumption 1 and for real numbers y > 0 and

x1, . . . , xm ≥ 0 with y + 2(2x1 + 3x2 + · · · + (m + 1)xm) < 1, let

Ψ(y, x1, . . . , xm) be the real-valued function of y, x1, . . . , xm defined by

Ψ(y, x1, . . . , xm) =





I−1
y,x1,...,xm

(
1

γ

[
1 +

∞∑

l=1

γl logq

ql

ql − 1

])

if lim
σ→θ−

Iy,x1,...,xm
(σ) >

1

γ

[
1 +

∞∑

l=1

γl logq

ql

ql − 1

]
,

0 otherwise,

where θ = γ (1 − y − 2(2x1 + 3x2 + · · · (m+ 1)xm)).
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Now we are ready to establish our main results of this section.

Theorem 5.43. Under Assumption 1, let x1, . . . , xm ≥ 0 be real numbers

with 2(2x1 + 3x2 + · · · + (m + 1)xm) < 1. For each real number 0 < δ <

1 − 2(2x1 + 3x2 + · · · + (m+ 1)xm) we have

αq(δ) ≥ R{γl},x1,...,xm
(δ) := 1 − δ − 1

γ
+ (x1 + · · · + xm) logq(q − 1)

−(x1 logq x1 + · · · + xm logq xm)

− (1 − (x1 + · · · + xm)) logq (1 − (x1 + · · · + xm))

− (4x1 + 5x2 + · · · + (m+ 3)xm)

+
1

γ
Ψ
(
1 − δ − 2(2x1 + 3x2 + · · · (m+ 1)xm), x1, x2, . . . , xm

)
.

Proof. Let y = 1 − δ − 2(2x1 + 3x2 + · · · + (m + 1)xm) and σ =

Ψ(y, x1, . . . , xm). If R{γl},x1,...,xm
(δ) ≤ 0, then the statement of the theo-

rem is trivial. If σ = 0 and R{γl},x1,...,xm
(δ) > 0, then the theorem follows

from [7, Theorem 5.1]. Indeed, in this case let ri = b(m+ y)nic for i ≥ 1.

As R{γl},x1,...,xm
(δ) > 0, the conditions of [7, Theorem 5.1] are satisfied.

Then using [7, Theorem 5.1] for sufficiently large i with a divisor of degree ri

of Fi, we obtain a sequence of q-ary codes proving the theorem in this case.

The computation of the parameters is similar to the case where σ > 0 and

R{γl},x1,...,xm
(δ) > 0, which is explained in detail below. Note that Theo-

rem 5.17 together with Proposition 5.20 can be used instead of [7, Theorem

5.1] above.

Now we consider the remaining case where σ > 0 and R{γl},x1,...,xm
(δ) >

0. Let 0 < ε < σ be a real number satisfying

y + (x1 + · · · + xm) logq(q − 1) − (x1 logq x1 + · · · + xm logq xm)

− (1 − (x1 + · · · + xm)) logq (1 − (x1 + · · · + xm))

+(x2 + 2x3 + · · · + (m− 1)xm)

>
1 − (σ − ε)

γ
.

(5.84)

For i ≥ 1, let

ri =
⌊(
m+ y + σ−ε

γ

)
ni

⌋
, si = b(m+ y)nic ,

X
(i)
1 = bx1nic, X(i)

2 = bx2nic, . . . , X(i)
m = bxmnic.

(5.85)
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It follows from [13, Corollary 2] (see also [14, Exercise 2.3.27]) that we

have

lim inf
i→∞

logq hi

ni
≥ 1

γ

[
1 +

∞∑

l=1

γl logq

ql

ql − 1

]
, (5.86)

where hi is the class number of Fi. For sufficiently large i, by Proposition

5.38 and (5.86), the hypotheses of Proposition 5.32 for the global function

field Fi with ri, si, and X
(i)
1 , . . . , X

(i)
m as in (5.85) are satisfied. Let Gi

be the divisor of Fi given by Proposition 5.32 with these parameters for

sufficiently large i.

Note that

lim inf
i→∞

logq |M(x1, . . . , xm;0)|
ni

≥ (x1 + · · · + xm) logq(q − 1) − (x1 logq x1 + · · · + xm logq xm)

− (1 − (x1 + · · · + xm)) logq (1 − (x1 + · · · + xm))

+(x2 + 2x3 + · · · + (m− 1)xm)

(5.87)

(see (5.70) and Proposition 5.20). Since we have (5.84), using the divisor

Gi of the global function field Fi for sufficiently large i, Theorem 5.35, and

(5.87), we obtain a sequence of q-ary codes {Ci}∞i=1 of lengths {ni}∞i=1,

respectively, such that ni → ∞ as i→ ∞ by Assumption 1 as well as

lim inf
i→∞

logq |Ci|
ni

≥ y +
σ − ε

γ
− 1

γ

+ (x1 + · · · + xm) logq(q − 1) − (x1 logq x1 + · · · + xm logq xm)

− (1 − (x1 + · · · + xm)) logq (1 − (x1 + · · · + xm))

+ (x2 + 2x3 + · · · + (m− 1)xm)

= 1 − δ − 2(2x1 + 3x2 + · · · + (m+ 1)xm) +
σ − ε

γ
− 1

γ

+ (x1 + · · · + xm) logq(q − 1) − (x1 logq x1 + · · · + xm logq xm)

− (1 − (x1 + · · · + xm)) logq (1 − (x1 + · · · + xm))

+ (x2 + 2x3 + · · · + (m− 1)xm)

= R{γl},x1,...,xm
(δ) − ε

γ

and

lim inf
i→∞

d(Ci)

ni
≥ δ.
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Using the fact that αq is a nonincreasing function (see Proposition 5.1(i)),

we get

αq(δ) ≥ R{γl},x1,...,xm
(δ) − ε

γ
.

Letting ε→ 0+ completes the proof. �

Corollary 5.44. Under Assumption 1, for each real number 0 < δ < 1 we

have

αlin
q (δ) ≥ Rlin

{γl}(δ) := 1 − δ − 1

γ
+

1

γ
Ψ
(
1 − δ, 0

)
.

Proof. Taking m = 1 and using similar methods as in the proof of The-

orem 5.43, but applying Corollary 5.36 instead of Theorem 5.35, we obtain

the desired result. �

In the rest of this section we give numerical examples in order to demon-

strate that Theorem 5.43 and Corollary 5.44 yield improvements on the

lower bounds for αq(δ) and αlin
q (δ) at least for certain values of q and cer-

tain values of δ.

Let RNO2,γ,x(δ) and Rlin
X,γ(δ) denote the lower bound in [8, Theorem 5.1]

and Xing’s lower bound for αlin
q (δ) in [17], respectively (see also [8, Theorem

4.6]).

Let q = 26, γ = γ1 =
√
q − 1 (see Remark 5.8), γl = 0 for l ≥ 2, and

δ =
13763868443250238929521503984833381597731412559044

46065097831342932365531985486767649347321318605709

= 0.29879169026501515839 . . . .

In [8, Example 5.2], using x = 10−13 it has been obtained that

αq(δ) ≥ RNO2,γ,x(δ) = 0.55835371587781529071 . . . ,

and it has been demonstrated that RNO2,γ,x(δ)−Rlin
X,γ(δ) ≥ 7.3387 · 10−15.

By Corollary 5.44 we obtain that

αlin
q (δ) ≥ Rlin

γ (δ) = 0.55835395724081743804 . . . .

Note that Rlin
γ (δ) − RNO2,γ,x(δ) ≥ 2.4136300214732 · 10−7, and Rlin

γ (δ) is

better than Rlin
X,γ(δ). Hence we have an improvement on the lower bound

for αlin
q (δ) compared to Xing’s bound in [17].

By Theorem 5.43 with x1 = 3.41 · 10−16, x2 = 1.0634 · 10−23, and

x3 = 1.93 · 10−31, we obtain αq(δ) ≥ Rγ,x1,x2,x3(δ), where

Rγ,x1,x2,x3(δ) −Rlin
γ (δ) ≥ 2.711029 · 10−17.
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Hence Rγ,x1,x2,x3(δ) gives a further improvement on the lower bound for

αq(δ). Note that Rγ,x1,x2,x3(δ) yields an improvement on RNO2,γ,x(δ) of

the order 10−7, whereas Maharaj [6] obtained only an improvement of the

order 10−15.

Now let

δ =
32301229388092693436010481501934267749589906046665

46065097831342932365531985486767649347321318605709

= 0.70120830973498484160 . . . .

In [8, Example 5.2], using x = 10−13 it has been obtained that

αq(δ) ≥ RNO2,γ,x(δ) = 0.15593709640785805503 . . . ,

and it has been demonstrated that RNO2,γ,x(δ)−Rlin
X,γ(δ) ≥ 1.97862 ·10−14.

By Corollary 5.44 we obtain that

αlin
q (δ) ≥ Rlin

γ (δ) = 0.15593754394482448829 . . . .

Note that Rlin
γ (δ)−RNO2,γ,x(δ) ≥ 4.4753696643325 · 10−7, hence Rlin

γ (δ) is

better than Rlin
X,γ(δ). Hence we have an improvement on the lower bound

for αlin
q (δ) compared to Xing’s bound in [17].

By Theorem 5.43 with x1 = 3.89 · 10−18, x2 = 1.98 · 10−26, and x3 =

5.87 · 10−35, we obtain αq(δ) ≥ Rγ,x1,x2,x3(δ), where

Rγ,x1,x2,x3(δ) −Rlin
γ (δ) ≥ 2.592642 · 10−19.

Hence Rγ,x1,x2,x3(δ) gives a further improvement on the lower bound for

αq(δ). Note that Rγ,x1,x2,x3(δ) yields again an improvement on RNO2,γ,x(δ)

of the order 10−7, whereas Maharaj [6] obtained only an improvement of

the order 10−14.

The numerical examples above were already given in [9, Section 7]. For

further examples we refer to [9, Section 7].
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TÜBİTAK under Grant No. TBAG-107T826.



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

Asymptotically Good Codes 219

References

[1] J. Bezerra, A. Garcia, and H. Stichtenoth, An explicit tower of function fields
over cubic finite fields and Zink’s lower bound, J. Reine Angew. Math., vol.
589, pp. 159–199, 2005.

[2] N.D. Elkies, Excellent nonlinear codes from modular curves, in: STOC’01,
Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(Hersonissos, Greece, 2001), ACM Press, New York, 2001, pp. 200–208.

[3] A. Garcia and H. Stichtenoth, A tower of Artin-Schreier extensions of func-
tion fields attaining the Drinfeld-Vladut bound, Invent. Math., vol. 121, pp.
211–222, 1995.

[4] J.H. van Lint, Introduction to Coding Theory, 3rd ed., Springer, Berlin, 1999.
[5] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes,

North-Holland, Amsterdam, 1977.
[6] H. Maharaj, A note on further improvements of the TVZ-bound, IEEE

Trans. Inform. Theory, vol. 53, pp. 1210–1214, 2007.
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Algebraic Curves with Many Points

over Finite Fields
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As long as Algebra and Geometry proceeded along separate
paths, their advance was slow and their applications limited.

But when these sciences joined company they drew from
each other fresh vitality and thenceforward marched on at
a rapid pace towards perfection.

J.L. Lagrange

(Cited in Goppa’s book [38])
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Introduction

The purpose of this chapter is to survey some results concerning the

number of rational points of curves over finite fields. A remarkable moti-

vation which is intimately related to mathematicians like Fermat, Euler,

Lagrange, Legengre, Gauss, Jacobi, ... is the following question (cf. [17],

[85], [81]). Let p be a prime and m ≥ 2 an integer such that p does not di-

vide m. Let Fp denote the finite field with p elements. How many solutions

221
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in the projective plane P2(Fp) exist for the curve

Xm + Y m + Zm = 0?

In the early years of the 19th century, Gauss considered finite sums of

powers of pth root of unity (now known as Gauss sums) to give a proof of

one of the great theorems in mathematics: the Quadratic Reciprocity Law

(cf. m = 2); the proof suggests an approach to Higher Reciprocity Law

(cf. m > 2). Let N be the number of Fp-solutions of the curve above. It

turns out that N is a Jacobi sum; i.e., a finite sum of sums closely related

to Gauss sums. Gauss calculated N for m = 2 and m = 3; see e.g. [81, Ch.

6]. If m > 3 however, things get progressively more complicated and in

general there is only an estimate, namely

|N − (p+ 1)| ≤ b2g√pc ,

where g = (m− 1)(m− 2)/2 is the genus of the curve, see Weil [102]. This

result is indeed a particular case of a deep result in Algebraic Curve The-

ory, namely the so-called Hasse-Weil bound (HW-bound) (or the Riemann-

Hypothesis) for curves over finite fields. Throughout, let X be a curve

(nonsingular, projective, geometrically irreducible) of genus g over the fi-

nite field Fq with q elements. The HW-bound assert that

|#X (Fq) − (q + 1)| ≤ b2g√qc ;

Hasse (around 1932) showed the case g = 1 via complex multiplication

on elliptic curves and Weil (around 1940) showed the general case via the

theory of the correspondences [101]. The key starting point was a conjecture

of Artin (Ph.D. thesis, 1924) on the complex module of the zeroes of a zeta-

function of a curve, see Theorem 6.2. Such a function was introduced by

Artin himself in analogy with Dedekind’s zeta-function of numerical fields

and the aforementioned conjecture was inspired by the well-known classical

Riemann hypothesis.

Bombieri [8] gave an elementary proof of the HW-bound by following

ideas of Stepanov, Postnikov, Stark and Manin; his proof uses the Riemann-

Roch theorem only. Now, once the HW-bound was available, some sharp

upper bounds were obtained in the context of questions associated to curves;

e.g. exponential sums [89], [70] and the number of elements of plane arcs

[49], [50] and [48] (see also the references therein).

Let Nq(g) be the maximal number of rational points that a curve of

genus g over Fq can have. In the last years, due mainly to applications in

Coding Theory and Cryptography, there has been considerable interest in
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computing the actual value of Nq(g). It is a classical result that Nq(0) =

q + 1. Deuring [16] and Serre [88] computed Nq(1) and Nq(2); we quote

these computations in Example 6.5. For g = 3 we have the Voloch’s bound

which says that Nq(3) ≤ 2q + 6 whenever q 6= 8, 9, see Example 6.6. Serre

computed Nq(3) for q < 25 [88] and Top [94] extended these computations

to q < 100; see Remarks 6.7, 6.8. The tables in [34] describe what is

known about Nq(g) for g ≤ 50 and q ∈ {2, 3, 4, 8, 9, 16, 27}. By using

narrow ray class extensions, Niederreiter and Xing found bounds on Nq(g)

for q = 2, 3, 4, 5, 8, 16 and 1 ≤ g ≤ 50 [75]; see also [76] and the references

therein.

In general, a closed formula for Nq(g) seems still to be a long way off.

An upper bound on Nq(g) is clearly the HW-bound; Serre [87] observed

that this bound may be sharpened in several cases via the HWS-bound in

(6.4) or the “explicit formulas” method in Proposition 6.9. Osterlé used

tools from linear programing to optimize this method [88] by selecting the

“best” trigonometric polynomial in (6.6); this is called the Osterlé bound.

Currently, powerful tools related to Abelian Varieties are used to investigate

Nq(g); cf. Howe, Lauter, Serre [59], [60], [61], [62], [63], [64], [65]; we will

not survey these results here.

In order to find lower bounds on Nq(g) we look for curves X “with

many points” in the sense that #X (Fq) has to be as close as possible to

the best upper bound known on Nq(g). In most cases, the best known

bound comes from Osterlé’s (cf. [62]). If #X (Fq) = Nq(g), the curve is

called Optimal. In Section 6.5 we investigate a particular family of optimal

curves, the so-called Maximal Curves; i.e., those whose number of rational

points attains the upper HW-bound. A distinguished example here is the

Hermitian curve which is intrinsically determined by its genus and number

of rational points [82]; see Theorem 6.25 here. There are also two important

families of optimal curves, namely the Suzuki curves and the Ree curves;

each curve in each family is intrinsically determined by the data: (1) the

genus, (2) the number of rational points and (3) the automorphism group

(see Hansen [39], Hansen-Pedesrsen [40], Hansen-Stichtenoth, [41], Heen

[46]). An important result is Theorem 6.15, where we show that the Suzuki

curve is characterized by properties (1) and (2) only; it seems that this

property is an open problem for the Ree curve. It is worthwhile to point

out that the Hermitian curve, the Suzuki curve and the Ree curve are

respectively the Deligne-Lusztig varieties of positive genus associated to

connected reduction algebraic group of type 2A
2, 22

B and 2R
2 [15].

Apart from Bombieri’s work in simplifying the proof of the HW-bound
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and the bounds on exponential sums and plane arcs mentioned above, qual-

itative aspects of the study of the HW-bound in 1940 was similar to that

in 1977. The interest on this matter was renewed after Goppa (around

1977) constructed error-correcting codes from linear series on curves, the so-

called Geometric Goppa Codes (GG-codes) (as they currently are known);

see [37], [38]. These codes generalize the well-known Reed-Solomon codes,

BCH-codes and the “classical” Goppa codes (see van Lint [67], van Lint-

van der Geer [68]). Goppa’s idea showed for the first time how two totally

different areas of mathematics: Algebraic Curve Theory (“pure” subject)

and Coding Theory (“applied” subject) can be related to each other.

Next we briefly describe (the dual construction) of a GG-code. Let gr
e

be a r-dimencional linear series on X of degree e defined over Fq and whose

sections are contained in a Riemann-Roch space L(G). For simplicity we

shall assume that gr
e = |G| is complete. Let P1, . . . , Pn be pairwise distinct

Fq-rational points of the curve such that Pi 6∈ Supp(G) for any i. Consider

the Fq-linear map

ev : f ∈ L(G) 7→ (f(P1), . . . , f(Pn)) ∈ Fn
q .

Then the following q-ary linear code, namely

CX (G,D) := ev(L(G))

is the Goppa code defined by the triple (X , G,D), where D := P1+ . . .+Pn.

Let k and d be respectively the dimension and minimum distance of the

code. Then

(1) k = `(G) − `(G −D), where `(.) denotes the Fq-dimension of the cor-

responding Riemann-Roch space;

(2) d ≥ n− deg(G).

We observe that k and d can be handled by means of the Riemann-Roch

theorem. In addition, (2) is only meaningful, if (fixed deg(G)), X is a curve

with many points. With respect to the dimension k, if n > deg(G), then

k = `(G) = deg(G) + 1 − g + `(K −G) ≥ deg(G) + 1 − g ,

where K is a canonical divisor on X ; in particular,

n+ 1 ≥ k + d ≥ n+ 1 − g . (∗)

Thus we are ready to appreciate an amazing asymptotic property of families

of GG-codes and to understand the first remarkable application of these

codes in the context of asymptotic problems in Coding Theory. As a matter
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of fact, Tsfasman, Vlǎduţ and Zink [97] (see also [96], [70]) showed that,

for q ≥ 49 a square, the Gilbert-Varshamov bound can be improved via a

sequence of GG-codes; roughly speaking, this is done as follows:

(A) They show that there is a family of GG-codes (Xi) such that the se-

quence of their relative parameters (ri, δi) has a limit point (R, δ). Here

the sequence of genus gi → ∞ and lim suppi
ni

gi
=

√
q − 1;

(B) Then inequality (∗) implies R+ δ = 1 − 1/(
√
q − 1); this improves the

Gilbert-Varshamov.

For Items (A) and (B) above, one studies values Nq(g) (q fixed and g large

enough) and ask for the limit

A(q) := lim supg

Nq(g)

g

to be as large as possible. We consider this question in Section 6.2, where

our main references were the papers by Kresch et al. [56] and Elkies et

al. [19].

Coming back to the study of the HW-bound for a single curve, Stöhr and

Voloch (around 1982) development a geometric method to bound #X (Fq)

based on Fq-linear series on the curve [91]; such a bound will be denoted by

SV-bound. We report some features on this theory in the Appendix. The

SV-bound gives a new proof of the HW-bound and improvements in several

cases. For example, via the SV-bound, Voloch obtained the best upper

bound known so far on the order of complete arcs in projective planes over

prime fields [99], [100].

There is a natural link between the arithmetic and geometry of a curve

which comes from a linear series naturally defined from the zeta-function

of the curve (see Section 6.3). This linear series is simple and its existence

implies the uniqueness of the Suzuki curve. In the case of maximal curves,

the linear series is very ample (Theorem 6.23) and thus we can study max-

imal curves embedded in projective spaces and apply classical results from

Algebraic Curve Theory or Finite Geometry such as:

• The Castelnuovo genus bound for curves in projective spaces [10], [6],

[78], [42];

• Halphen’s bound on the genus of the curve taking into consideration

the degree of a surface where the curve is contained [11];

• Properties of quadratic surfaces in P3(F̄q) [48].
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We recall that Castelnuovo and Halphen bounds are valid in positive char-

acteristic by Hartshorne [42] (space curves) and Rathmann [78].

From the interplay of these properties with the Stöhr-Voloch theory

(Appendix) we deduce quantitave and qualitative properties of maximal

curves (see Hirschfeld et al. [51]); we will mention a few of them in Section

6.5.

Tafasolian [92] (Ph. D. Thesis, 2008) investigated properties of maxi-

mal curves via Cartier Operators; among other things, he characterized cer-

tain HWS-maximal curves, HW-maximal Fermat curves and HW-maximal

Artin-Schreier curves. His results improve on previous work in [2], [5], [3],

[1], [22].

Standard references are the books by Fulton [25], Arbarello et al. [6],

Hartshorne [42], Namba [73], Stichtenoth [90], Moreno, [70], Stepanov [89],

Goldschmidt [36], Goppa [38], Tsfasman and Vladut [96], Hirschfeld et

all. [51]. For the convenience of the reader we include an Appendix on the

Theory of Stöhr-Voloch [91].

Throughout this chapter, by a curve over Fq (the finite field with q

elements) we mean a nonsingular, projective, geometrically irreducible al-

gebraic curve defined over Fq.

6.1. The Function Nq(g)

In this section we discuss curves with many points. Our references on

zeta-functions are e.g. the books [90], [89] or [70]. Let X be a curve of genus

g over Fq . Let Ni = #X (Fqi) be the number of Fqi -rational points of X .

Thanks to Riemann, Dedekind, Artin, Hasse, Weil, ... all the information

about the Ni is contained in the zeta-function

Z(t) = Z(X , q; t) := exp(

∞∑

i=1

Nit
i/i) (6.1)

of X over Fq. By the Riemann-Roch theorem, there is a polynomial L(t) =

L(X , q; t) of degree 2g satisfying:

Proposition 6.1.

(1) L(t) = Z(t)(1 − t)(1 − qt);

(2) L(t) = π2g
j=1(1 − αjt) where the αj are algebraic integers which can be

arranged in such a way that αj ᾱj = q.
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Thus from (6.1) we obtain

Ni = qi + 1 −
2g∑

j=1

αi
j = qi + 1 −

g∑

j=1

(αi
j + ᾱi

j) . (6.2)

The main result to bound #X (Fq) is the following.

Theorem 6.2. (Riemann hypothesis) The complex value of each αj is
√
q.

Therefore (6.2) implies the Hasse-Weil bound (HW-bound) mentioned in

the introduction (for i = 1), namely

|#X (Fqi ) − (qi + 1)| ≤ b2g
√
qic . (6.3)

Example 6.3. (The Hermitian curve) If q = `2, the HW-bound is sharp

as the following curve, known as the Hermitian curve

H : X`+1 + Y `+1 + Z`+1 = 0

shows. The genus of H is g = `(`− 1)/2 and #H(F`2) = `3 + 1. Rück and

Stichtenoth [82] noticed that H is the unique curve having these properties;

we will improve this result in Theorem 6.25.

Example 6.4. (The Klein quartic over F8) In general the HW-bound is

not sharp: Consider the curve

K : X3Y + Y 3Z + Z3X = 0 ,

known as the Klein quartic. If q = 8, the curve is nonsingular of genus

g = 3. The HW-bound is 25; however, #K(F8) = 24.

In Remark 6.26 we will see that the HW-bound is not necessarily sharp

even if q is a square. Set

Nq(g) := max{#Y(Fq) : Y a curve of genus g defined over Fq} .

Example 6.5. (Deuring [16], Serre [88]) Write q = pα and m = b2√qc.
Thus

• Nq(1) = q + 1 +m except when α ≥ 3 is odd, and p divides m; in this

case, Nq(1) = q +m.

• Nq(2) = q + 1 + 2m except in the following cases: (1) N4(2) = 10,

N9(2) = 20; (2) α is odd, p divides m; (3) α is odd and q of the form

x2 + 1, x2 + x+ 1 or x2 + x+ 2 (x ∈ Z).
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In cases (2) and (3) above we have Nq(2) = q+2m if 2
√
q−m > (

√
5−1)/2

or Nq(2) = q + 2m− 1 otherwise.

As a nice application of the Appendix we prove the Voloch’s bound for

curves of genus 3; cf. Serre [88], Top [94, Prop.1].

Example 6.6. For q 6= 8, 9, Nq(3) ≤ 2q + 6. Indeed, let X be a curve of

genus 3 over Fq with #X (Fq) > 2q + 6. Then X is nonhyperelliptic. We

apply the Appendix to the canonical linear series D. Let 0 = ν0 < ν1 be

the Fq-Frobenius orders and S the Fq-divisor of D respectively. Thus

2q + 6 < deg(S)/2 = (4ν1 + (q + 2)4)/2

so that ν1 > 1. Thus the order sequence of D is 0, 1, ν1 and j2(P ) ≥ ν1 + 1

for any P ∈ X (Fq). The Hefez-Voloch theorem (Appendix) gives #X (Fq) =

4(q − 2) and thus

deg(R) = (1 + ν1)4 + 12 ≥ #X (Fq) = 4(q − 2) ,

and hence q < ν1 + 6; i.e. q ∈ {2, 3, 4, 5, 7, 8, 9} as ν1 ≤ 4. On the other

hand, #X (Fq) = 4q − 8 > 2q + 6 so that q = 8, 9.

Remark 6.7. We have that 28 ≤ N9(3) and 24 ≤ N8(3) due to the Her-

mitian curve and the Klein quartic above.

Case: q = 9. Following the example above we find that ν1 = 3 when-

ever #X (F9) ≤ deg(S)/2 = 28 In particular, N9(3) = 28. We observe

that there is just one curve of genus g = 3 over F9 with 28 rational points,

namely the Hermitian X4 + Y 4 + Z4 = 0, cf. [82].

Case. q = 8. As in Case 1 we find that ν1 = 2 and N8(3) = 24.

From [94, Prop1.1(a)] the Klein quartic over F8 is the unique curve of

genus 3 with 24 rational points.

Remark 6.8. From the table in [94] we observe that Voloch’s bound is

sharp for q = 4, 5, 7, 11, 13, 16, 17, 19, 25. Let q = p2a with p an odd prime

and a ≥ 1 an integer. Ibukiyama [52] showed that there exist a curve of

genus 3 over Fq whose number of rational points attains the HW-bound.

Thus Nq(3) = p2a + 1 + 6pa.

Serre [87] noticed that the HW-bound (6.3) may be improved to the fol-

lowing HWS-bound:

|#X (Fqi) − (qi + 1)| ≤ gb2√qc . (6.4)

This bound is sharp as Example 6.4 above shows. Now we remark the Serre

“explicit formulas” method; cf. [88], [39].
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From Theorem 6.2 we can write αj =
√
qexp(

√
−1θj). From (6.2)

Ni = qi + 1 − 2
√
q

i
g∑

j=1

cos(jθj) . (6.5)

Let f(θ) be a trigonometric polynomial of the form

f(θ) = 1 + 2
∑

n≥1

cn cos(nθ) .

Set

ψd(t) :=
∑

n≥1

cndt
nd d ≥ 1 .

After some computation, (6.5) implies

g∑

j=1

f(θj) + +
∑

d≥1

dadψd(q
−1/2) = g + ψ1(q

−1/2) + ψ1(q
1/2) , (6.6)

where ad is the number of points of degree d. Notice that Ni =
∑

d|i dad.

Whence we obtain the following.

Proposition 6.9. Suppose that the ci’s are non-negative real number not

all zero. Suppose that f(θ) ≥ 0 for all θ. Then

N1 = #X (Fq) ≤
g

ψ1(q−1/2)
+ 1 +

ψ1(q
1/2)

ψ1(q−1/2)
;

equality holds if and only if

g∑

j=1

f(θj) = 0 , and
∑

d≥2

dadψd(q
−1/2) = 0 .

Set

h(t) = h(X , q; t) := t2gL(X , q; t−1) . (6.7)

The following result is the key starting point for the characterization of the

Suzuki curve given in Section 6.4.

Proposition 6.10. (cf. [88]) Let q = 2q20 with q0 a power of two. Let X be

a curve of genus g = q0(q − 1) with N1 = q2 + 1 rational points. Then

h(t) = (t2 + 2q0t+ q)g .
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Proof. Let h(t) =
∏g

j=1(t− αj)(t − ᾱj) with αj =
√
q exp(

√
−1θj). We

let

f(θ) := 1 +
√

2 cos(θ) +
1

2
cos(2θ) =

1

2
(1 +

√
2 cos(θ))2 .

Thus ψ1(t) =
√

2
2 t+

√
14t2 and ψ2(t) = 1

4 t
2. After some computations from

Proposition 6.9 we have
∑g

j=1 f(θj) = 0. It follows that cos(θj) = − 1√
2

and hence αj + ᾱj = −2q0; the result follows. �

6.2. Asymptotic Problems

In this section we survey a few results related to Tsfasman-Vlǎdiţ-Zink

improvement on the Gilbert-Varshamov bound. The key matter is to find

a family of curves (Xg) (indexed by its genus and defined over a fixed field

Fq) such that

A(q) := lim supg

Nq(g)

g

be as large as possible. This number was introduced by Ihara [53] (and the

inverse value was considered by Manin, loc. cit.). Ihara showed

Nq(g) ≤ q + 1 +
1

2

√
(8q + 1)g2 + 4(q2 − q)g − g

and thus if g >
√
q(
√
q− 1)/2, Nq(g) is less than the HW-bound. From the

upper bound on Nq(g) above it follows that

A(q) ≤ 1

2
(
√

8q + 1 − 1) .

Vlǎduţ and Drinfeld [98] improve this bound and show that indeed

A(q) ≤ √
q − 1 .

To find lower bounds on A(q) one needs to produce families of curves with

many points. Serre used class field theory [87], [88] to show that A(q) ≥ γq

with γq a positive constant depending of q (see also [74]). We have a

stronger result, namely Nq(g) > γqg for any g (see Elkies et al. [19]). Ihara

used supersingular points on a family of modular curves (Xg) to show that,

when q is an square, one can take γq =
√
q − 1 and hence

A(q) =
√
q − 1 . (6.8)

The GG-codes constructed on the respective curves (Xg) above have the

best asymptotic parameters that can be constructed so far; for practical
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applications one needs an explicit description of the aforementioned codes;

this task seems to be very hard in the case of modular curves. Garcia

and Stichtenoth proved (6.8) via curves defined by “explicit equations”

(see [26], [27]). It is an intrigued fact that Garcia and Stichtenoth curves

are also modular curves (see Elkies [18]).

For q = p2m+1, it seems that the true value of A(q) is unknown. Zink

showed A(p3) ≥ 2(p2 − 1)/(p+ 2) (curves with no explicit equations). van

der Geer and van der Vlugt [33] for q = 8 and Bezerra et al. [7] for any q

as above generalized Zink’s bound (curves with explicit equations).

Further asymptotic results on Nq(g) which implies consequence both

for A(q) and A−(q) := lim infgNq(g)/g can be found in the quite nice

references [56] and [19] (see also the references therein).

6.3. Zeta-functions and Linear Series

Let X be a curve of genus g over Fq such that #X (Fq) > 0. Let

L(t) = L(X , q; t) be the enumerator of the zeta-function of X over Fq . We

consider the function h(t) defined in (6.7), namely

h(t) = t2gL(t−1) =

g∏

j=1

(t− αj)(t− ᾱj) ,

where the αj are defined in Proposition 6.1. Then h(t) is monic, of degree

2g whose independent term is non-zero; moreover, h(t) is the characteristic

polynomial of the Frobenius morphism ΦJ on the Jacobian J of the curve

X (here we consider ΦJ as an endomorphism on a Tate module). Let

h(t) =
∏

j

h
rj

j (t)

be the factorization of h(t) in Z[t]. Since ΦJ is semisimple and the represen-

tation of endomorphisms of J on the Tate module is faithfully, see [93, Thm.

2], [58, VI§3], it follows that

∏

j

hj(ΦJ ) = 0 . (6.9)

Let Φ denote the Frobenius morphism on X . Let π : X → J be the natural

morphism P 7→ [P − P0], where P0 ∈ X (Fq). We have

π ◦Φ = ΦJ ◦ π
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and thus (6.9) implies the following linear equivalence of divisors on X
∏

j

hj(Φ) ∼ mP0 , where P ∈ X and m :=
∏

j

hj(1) . (6.10)

This suggests the study of the linear series

D := |mP0| .

Let us write
∏

j

hj(t) = tU + α1t
U−1 + α2t

U−2 + . . .+ αU−1t+ αU .

We assume:

(A) α1 ≥ 1, αj ≥ 0 for j = 2, . . . , U (we already known that αU 6= 0);

(B) αj+1 ≥ αj for j = 1, . . . , U − 1.

Remark 6.11. There are curves which do not satisfy conditions (A) and

(B) above; cf. [9].

Next we compute some invariants of the linear series D above according to

the results in the Appendix; we use the notation of that Appendix. Let r

be the dimension of D. For P ∈ X (Fq) we have the following sequence of

non-gaps at P :

0 = m0(P ) < m1(P ) < . . . < mr−1(P ) < mr(P ) = m.

Lemma 6.12.

(1) If P ∈ X (Fq), then the (D, P )-orders are

0 = m−mr(P ) < m−mr−1(P ) < . . . < m−m1(P ) < m−m0(P ) ;

(2) If

P 6∈ X (Fq) ∪ X (Fq2) ∪ . . . ∪ X (FqU )

then j1(P ) = 1;

(3) The numbers 1, α1, . . . , αU are orders of D;

(4) If Φi(P ) 6= P for i = 1, 2, . . . , U + 1, then αU is a non-gap at P. In

particular, αU is a generic non-gap of X ;

(5) If Φi(P ) 6= P for i = 1, 2, . . . , U and ΦU+1(P ) = P, then αU − 1 is

also a non-gap at P.
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Proof. The proof of (1), (2) or (3) is similar to [22, Thm. 1.4, Prop. 1.5].

To show the other statements, let us apply Φ∗ in (6.10); thus

αUP ∼ ΦU+1(P )+(α1−1)ΦU (P )+(α2−α1)Φ
U−1(P )+. . .+(αU−αU−1)Φ(P ) .

Then (4) and (5) follow from hypothesis (A) and (B) above. �

We finish this section with some properties involving rational points.

Proposition 6.13. Suppose that char(Fq) does not divide m.

(1) If #X (Fq) ≥ 2g+3, then there exists P ∈ X (Fq) such that (m−1) and

m are non-gaps at P ;

(2) The linear series D is simple; i.e., the morphism π : X → π(X ) ⊆
Pr(F̄q) defined by D is birational.

Proof. (1) Following [103], let P 6= P0 be a rational point. We have

mP ∼ mP0 by (6.10). Let x : X → P1(F̄q) be a rational function with

div(x) = mP −mP0. Let n be the number of rational points wchich are

unramified for x. Then by Riemann-Hurwitz 2g − 2 ≥ m(−2) + 2(m −
1) + (#X (Fq) − n − 2) so that n ≥ #X (Fq) − (2g + 2) ≥ 1. Thus there

exists Q ∈ X (Fq), Q 6= P, P0 such that div(x − a) = Q + D −mP0 with

D ∈ Div(X ), P0, Q 6∈ Supp(D). Let y be a rational function such that

div(y) = mP0 −mQ. Then div((x− a)y) = D− (m− 1)Q and the proof is

complete.

(2) Let Q ∈ X (Fq) be the point in (1) and x, y ∈ Fq(X) be such that

div∞(x) = (m − 1)Q and div∞(y) = mQ. Then Fq(X ) = Fq(x, y) and we

are done. �

Proposition 6.14.

(1) εr = νr−1;

(2) Let P ∈ X (Fq) and suppose that #X (Fq) ≥ q(m − αU ) + 2. Then

jr−1(P ) < αU ; in particular, εr = αU and P is a D-Weierstrass point;

(3) If #X (Fq) ≥ qαU + 1, then #X (Fq) = qαU + 1 and m1(P ) = αU for

any P ∈ X (Fq).

Proof. (1) We have #X (Fq) ≤ qm1(P ) + 1 by Lewittes [66, Thm. 1(b)].

Then the result follows from Lemma 6.12.

(2) Let P ∈ X (Fq). We havem1(P ) ≤ m1(Q), whereQ is a generic point

of X (apply the Appendix to the canonical linear series on X ). Therefore,

m1(Q) ≤ αU by Lemma 6.12 and hence qαU + 1 ≤ X (Fq) ≤ qm1(P ) + 1 ≤
qαU + 1. �
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6.4. A Characterization of the Suzuki Curve

This section is based on [24]; it is a nice application of the interplay of

Section 6.3 and the Appendix. Throughout, we let q0 = 2s > 2 be a power

of two and set q := 2q20 . As we mentioned in the Introduction, the Suzuki

curve S is the unique curve over Fq defined by the following data:

(I) genus: g = q0(q − 1);

(II) number of Fq-rational points: N1 = q2 + 1;

(III) Fq-automorphism group equals the Suzuki group.

Our aim is to show the following.

Theorem 6.15. Let X be a curve of genus g = q0(q− 1) over Fq such that

N1 = #X (Fq) = q2 + 1. Then X is isomorphic to the Suzuki curve S.

We first show some lemmas. The reference “Lemma A” below is placed in

the Appendix.

Let X be as in the theorem. Let h(t) = t2gL(t−1) be the polynomial

defined in (6.7). The starting point of the proof is Proposition 6.10; thus

h(t) = (t2 + 2q0t+ q)g .

Let Φ : X → X be the Frobenius morphism on X . From Section 6.3 we

conclude that X is equipped with the linear series

D := |(1 + 2q0 + q)P0| , P0 a rational point

such that for any P ∈ X

Φ2(P ) + 2q0Φ(P ) + q0P ∼ (1 + 2q0 + q)P0 . (6.11)

Let r denote the dimension of D. We already know that m = mr(P ) =

1 + 2q0 + q for any P ∈ X (Fq). Lemma 6.12 and Proposition 6.14 imply

the following properties:

(1) m1(P ) = q and jr−1(P ) = 1 + 2q0 for any P ∈ X (Fq);

(2) ε1 = 1 and εr = νr−1 = q.

Lemma 6.16. r ≥ 3 and εr−1 = 2q0.

Proof. By Lemma 6.12 the numbers 1, 2q0 and q are orders of D and

thus r ≥ 3. Since εr−1 ≤ jr−1(P ) = 1+2q0 (Lemma A) and εr = q we have

2q0 ≤ εr−1 ≤ 1 + 2q0 .
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Suppose that εr−1 = 1 + 2q0 (observe that 2q0 is also an order of D). Let

P ∈ X (Fq). By Lemma A

νr−2 ≤ jr−1(P ) − j1(P ) ≤ εr−2 = 2q0 .

Thus the sequence of Frobenius orders of D would be ε0, ε1, . . . , εr−2, εr.

Now for any P ∈ X (Fq) (Lemma A)

vP (S) ≥
r−1∑

i=0

(ji+1(P ) − νi)

=

r−2∑

i=0

(ji+1(P ) − νi) + (jr(P ) − νr−1) ≥ (r − 1)j1(P ) + 1 + 2q0

so that

deg(S) ≥ (r + 2q0)N1 . (6.12)

From the following identities

• 2g − 2 = (2q0 − 2)(1 + 2q0 + q) = (2q0 − 2)mr(P ),

• N1 = (1 − 2q0 + q)(1 + 2q0 + q) = (1 − 2q0 + q)mr(P ),

inequality (6.12) becomes

(2q0 − 2)

r−1∑

i=0

νi + (r + q) ≥ (r + 2q0)(1 − 2q0 + q) .

Since νr−1 = q it follows that

r−2∑

i=0

εi =

r−2∑

i=0

νi ≥ (r − 1)q0 .

Now we use a property involving the orders of D (see [20]): εi + εj ≤ εi+j

for i+ j ≤ r. We apply this in the form εi + εj ≤ εr−2 with i+ j = r − 2.

Thus

2

r−2∑

i=0

εi ≤ (r − 1)εr−2 = (r − 1)2q0 .

We conclude that εi + εr−2−i = εr−2 for i = 0, 1, . . . , r − 2. In particular,

εr−3 = 2q0 − 1 and the p-adic criterion (cf. [91, Cor. 1.9]) would imply

εi = i for i = 0, 1, . . . , r− 3. These facts imply r = 2q0 + 2. Finally, we are

going to see that this is a contradiction according to Castelnuovo’s genus

bound applied to D; we must have

2g = 2q0(q − 1) ≤ (q + 2q0 − (r − 1)/2)2

r − 1
.
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For r = 2q0 + 2 this gives 2q0(q − 1) < (q + q0)
2/2q0 = q0q + q/2 + q0/2, a

contradiction. �

Remark 6.17. We write an alternative proof of the previous lemma. We

have 2q0 ≤ εr−1 ≤ jr−1(P ) = 2q0 + 1. Suppose εr−1 = 2q0 + 1 and thus

εr−2 = 2q0. For any P ∈ X (Fq), εr−2 ≤ jr−2(P ) < jr−1(P ) = 1 + 2q0;

thus jr−2(P ) = 2q0 and 1 + q ∈ H(P ). If we take P̃ ∈ X (Fq) such that

1+2q0+q, 2q0+q ∈ H(P̃ ) (Proposition 6.13), H(P̃ ) contains the semigroup

H := 〈q, q + 1, 2q0 + q, 1 + 2q0 + q〉
and hence g ≤ g(H) := (N0 \H). However, one shows that g > g(H) as in

Remark 6.20 below.

Lemma 6.18. There exists P ∈ X (Fq) such that the following properties

hold true:

(1) j1(P ) = 1;

(2) ji(P ) = νi−1 + 1 for i = 2, . . . , r − 1.

Proof. Let P ∈ X (Fq). In the proof of Lemma 6.16 we obtained the

following inequality

vP (S) ≥
r−2∑

i=0

(ji+1(P ) − νi) + 1 + 2q0 ≥ (r − 1)j1(P ) + 1 + 2q0 ≥ r + 2q0 .

Thus it is enough to show that vP (S) = r + q0 for some point P ∈ X (Fq).

Suppose on the contrary that vP (S) ≥ r+2q0 +1 for any P ∈ X (Fq). Then

arguing as in the proof of Lemma 6.16 we would have

r−2∑

i=0

νi ≥ rq0 + 1 .

As νi ≤ εi+1, then

1 +

r−2∑

i=0

νi ≤
r−1∑

i=0

εi ≤ rεr−1/2

and thus

rq0 + 2 ≤ rεr−1/2

so that εr−1 > 2q0 which is a contradiction according to Lemma 6.16. �

Lemma 6.19.

(1) ε2 is a power of two;

(2) ν1 > ε1 = 1.
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Proof. (1) It is a consequence of the p-adic criterion [91, Cor. 1.9].

(2) Suppose that ν1 = 1. Let P be a Fq-rational point satisfying Lemma

6.18. Then j2(P ) = 2 and thus by Lemma 6.12 the Weierstrass semigroup

H(P ) at P contains the semigroup

H := 〈q,−1 + 2q0 + q, 2q0 + q, 1 + 2q0 + q〉 .

Therefore g ≤ g(H) := #(N0 \H). This is a contradiction as we will see in

the remark below. �

Remark 6.20. Let H be the semigroup defined above. We are going to

show that g(H) = g− q20/4. To begin with we notice that L := ∪2q0−1
i=1 Li is

a complete system of residues module q, where

Li = {iq + i(2q0 − 1) + j : j = 0, . . . , 2i} if 1 ≤ i ≤ q0 − 1,

Lq0 = {q0q + q − q0 + j : j = 0, . . . , q0 − 1},
Lq0+1 = {(q0 + 1)q + 1 + j : j = 0, . . . , q0 − 1},
Lq0+i = {(q0 + i)q0 + (2i− 3)q0 + i− 1 + j : j = 0, . . . , q0 − 2i+ 1}∪

{(q0 + i)q + (2i− 2)q0 + i+ j : j = 0, . . . q0 − 1} if 2 ≤ i ≤ q0/2,

L3q0/2+i = {(3q0/2 + i)q + (q0/2 + i− 1)(2q0 − 1) + q0 + 2i− 1 + j :

j = 0, . . . , q0 − 2i− 1} if 1 ≤ i ≤ q0/2− 1.

Moreover, for each ` ∈ L, ` ∈ H and ` − q 6∈ H . Hence g(H) can be

computed by summing up the coefficients of q from the above list (see

e.g. [86, Thm. p.3]); i.e.

g(H) =
∑q0−1

i=1 i(2i+ 1) + q20 + (q0 + 1)q0 +
∑q0/2

i=2 (q0 + i)(2q0 − 2i+ 2)+∑q0/2−1
i=1 (3q0/2 + i)(q0 − 2i) = q0(q − 1) − q20/4 .

In the remaining part of this chapter we let P0 be a point satisfying

Lemma 6.18. We set mi := mi(P0) and denote by v = vP0 the valuation at

P0.

By Lemma 6.19 the Frobenius orders of D are ν0 = 0, ν1 =

ε2, . . . , νr−1 = εr and thus





mi = 2q0 + q − εr−i if i = 1, . . . , r − 2,

mr−1 = 2q0 + q,

mr = 1 + 2q0 + q.

(6.13)

Let x, y2, . . . , yr ∈ Fq(X ) be rational functions such that div∞(x) = m1P0,

and div∞(yi) = miP0 for i = 2, . . . , r. The fact ν1 > 1 means that the
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following matrix



1 xq yq
2 . . . yq

r

1 x y2 . . . yr

0 1 D1
xy2 . . . D

1
xyr




has rank two (cf. [91, Sect. 2]). Here Dj
xyi denotes the jth Hasse derivative

(see e.g. [83], [84], [44]). In particular,

yq
i − yi = D1

xyi(x
q − x) for i = 2, . . . , r . (6.14)

Lemma 6.21.

(1) For P ∈ X (Fq), the divisor (2g − 2)P is canonical; in particular, the

Weierstrass semigroup at P is symmetric;

(2) Let n ∈ H(P0). If n < 2q0 + q, then n ≤ q0 + q;

(3) For i = 2, . . . , r there exists gi ∈ Fq(X ) such that D1
xyi = gε2

i .

Furthermore, div∞(gi) = qmi−q2

ε2
P0.

Proof. (1) Let P ∈ X (Fq). We have mrP ∼ mrP0 by (6.11) and 2g−2 =

(2q0 − 2)mr. Thus we can assume P = P0. Let t be a local parameter at

P0. We shall show that v( dx
dt ) = 2g− 2. The equation i = r in (6.14) by dx

dt

and the product rule give

dx

dt
(yq

r − yr) =
dyr

dt
(xq − x) ;

from properties of valuations: v( dx
dt ) − qmr = −mr − (q2 + 1); i.e.,

v(
dx

dt
) = (q − 1)mr − (1 − 2q0 + q)mr = (2q0 − 2)mr = 2g − 2 .

(2) We know that the elements q, 2q0 + q and 1 + 2q0 + q belong to the

Weierstrass semigroup H(P0) at P0. Then the numbers

kq + j(2q0 + q) + i(1 + 2q0 + q) = (k + j + i)q + (j + i)q0 + i

are also non-gaps at P0 where k, j, i ∈ N0. Let k = 2q0 − 2, j + i = q0 − 2.

Hence,

(2q0 − 2)q + q − 4q0 + j for j = 0, . . . , q0 − 2

are also non-gaps at P0. Therefore, by the symmetry ofH(P0), the elements

below

1 + q0 + q + j with j = 0, . . . , q0 − 2

are gaps at P0 and the proof follows.
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(3) Set fi := D1
xyi. By Hasse-Schmidt [43, Satz 10] it is enough to show

that

Dj
xfi = 0 , for 1 ≤ j < ε2 .

From Eqs 6.14 it is clear that D1
xfi = 0. Now as ε2 > 2 each matrix below

has rank two (cf. [91, Sect. 1])



1 x y2 . . . yr

0 1 D1
xy2 . . . D

1
xyr

0 0 Dj
xy2 . . . D

j
xyr


 , 2 ≤ j < ε2 ;

consequently Dj
xfi = 0 for 2 ≤ j < ε2. Finally from the computations

v(gi) = v(fi)/ε2 and −qmi = v(fi)−q2 by (6.14) we find v(fi) = −qmi+q0.

If P 6= P0,
dfi

dt = dyi

dt where t = x−x(P ) is a local parameter at P by Item

(1). �

Lemma 6.22. ε2 = q0 and r = 4.

Proof. By Lemma 6.16, r ≥ 3. We claim that r ≥ 4; otherwise, let

g2 be the rational function in Lemma 6.21(3). We have v(g2) = −q since

m2 = 2q0 + q and ε2 = 2q0. Therefore there exist elements a 6= 0 and b in

Fq such that x = ag2 + b (notice that v(x) = −q). The case i = 2 in (6.14)

reads
y2
a

q
− y2

a
= g2q0

2 (gq
2 − g2) ;

let v := y2/a, u := g2 and set w := vq0 − uq0+1. Thus

wq − w = uq0(uq − u)

and we find that q0 + q is a non-gap at P0 (cf. [41, Lemma 1.8]). This

contradiction eliminates the case r = 3.

Let r ≥ 4 and 2 ≤ i < r. We show that ε2 = q0. The element

(qmr−2 − q2)/ε2 is a positive non-gap at P0 and hence at least m1 = q.

Thus mr−2 − q ≥ ε2 (∗) and 2q0 − ε2 ≥ ε2 by (6.13); it follows that q0 ≥ ε2.

Now by Lemma 6.21(2) mr−2 ≤ q0 + q; from mr−2 = 2q0 + q − ε2, q0 ≤ ε2.

Finally we show that r = 4. As in (∗) we deduce that m2 − q ≥ ε2 and

from (6.13) 2q0 − εr−2 ≥ ε2 = `; i.e, q0 ≥ εr−2 ≥ ε2 = q0 so that εr−2 = ε2
and the proof follows. �

Proof of Theorem 6.15. Let P0 ∈ X (Fq) be as above. The case i = 2

in (6.14) and Lemma 6.21 give

yq
2 − y2 = gq0

2 (xq − x) ;
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moreover, m2 = q0 + q and so v(g2) = −q. Thus x = ag2 + b with a and b

in Fq, a 6= 0; in particular,

y2
a

q
− y2

a
= gq0

2 (gq
2 − g2) .

It follows that X is defined by the plane equation

vq − v = uq0(uq − u) ,

where v := y2/a and u := g2, and thus its automorphism group (over F̄q)

is the Suzuki group (Henn [46]). As the Suzuki group is simple it follows

that it is also defined over Fq . We conclude that X is isomorphic to the

Suzuki curve by the statements (I), (II) and (III) stated at the beginning

of this section.

6.5. Maximal Curves

Let X be a curve of genus g > 0 over Fq with q = `2. The curve is called

maximal if its number of rational points attains the HW-bound. By (6.2),

the αj ’s in Proposition 6.1 satisfies αj = −` for any j. Thus the polynomial

h(t) in (6.7) is of the form

h(t) = (t+ `)2g .

Let Φ : X → X be the Frobenius morphism over Fq. By Section 6.3 the

curve X is equipped with the linear series

D = |(1 + `)P0| , P0 a rational point

such that

Φ(P ) + `P ∼ (1 + `)P0 (6.15)

for any P ∈ X ; see the picture below

We already know that the Hermitian curve H is maximal. We can

obtain many examples of maximal curves by taking into consideration the

following Serre’s remark (cf. [57]). Let Y be a curve over F`2 and X → Y
a non-constant morphism over F`2 ; then P (Y , `2; t) divides P (X , `2; t). In

particular, if X is maximal, Y is so. Therefore if G is a subgroup of the

automorphisms group of H, the quotiont curve H/G is also maximal; we

remark that there exists maximal curves which are not covered by the

Hermitian curve (see Example 6.31). van der Geer and van der Vlught

constructed maximal curves via methods coming from linear codes. See

Hirschfeld et al. [51] for a complete bibliography on maximal curves.
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Fig. 6.1. Maximal curve

5.1 The linear series D. Let r and

π = (f0 : f1 : . . . : fr)

be respectively the dimension and the morphism defined by D. We use the

notation of the Appendix. Set Pr := Pr(F̄`2), PM := PM (F̄`2).

By Proposition 6.14, εr = ` which is equivalent (see e.g. [31]) to the

existence of rational functions w0, w1, . . . , wr (not all zero) such that

w`
0f0 + w`

1f1 + . . .+ w`
rfr = 0 . (6.16)

For P ∈ X let v = vP and t = tP denote respectively the valuation and a

local parameter at P . We let e = eP := min{v(w0), v(w1), . . . , v(wr)} and

zi := t−ewi.

Then for any P ∈ X , the D-osculating hyperplane at P is defined by

(z`
0(P ), z`

1(P ), . . . , z`
r(P )) .

Hence from (6.15) and (6.16) we obtain the following dual relation

z0f
`
0 + z1f

`
1 + . . .+ zrf

`
r = 0 . (6.17)

A natural question is the following: Is π an embedding?. Since j1(P ) = 1

for any P we have just to investigate whether or not π is injective. Let us

consider the morphism

φ := (w0 : w1 : . . . : wr) = (z0 : z1 : . . . : zr) .



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

242 F. Torres

Let M be the dimension of the linear series D′ associated to φ. By (6.17) D′

satisfies (6.15) in the sense that all the divisor of type Φ(P ) + qP ∈ D′; we

notice that we may have M < r since the wi’s may be linearly dependent.

We obtain the following qualitative and quantitative properties of maximal

curves [54].

Theorem 6.23.

(1) The morphism π : X → Pr is an embedding;

(2) The morphism φ : X → Pr is an embedding; thus X is isomorphic to

φ(X ) ⊆ PM ;

(3) Let us identify the curve X with its image π(X ) ⊆ Pr. The curve is

contained in an Hermitian variety;

(4) Let Y ⊆ Pr be a curve of degree `+ 1 over Fq . If Y is contained in an

Hermitian variety, then Y is a maximal curve.

Proof. (sketch) (1) If π(P ) = π(Q), by (6.15) {P,Φ(P )} = {Q,Φ(Q)}.
Let P = Φ(Q) (and one shows that Q is rational). Let Φ̃ : P → P denote

the Frobenius morphism on Pr. We have π ◦ Φ = Φ̃ ◦ π and hence π(P )

is rational; that is Φ̃(π(P )) = π(P ). After a change of coordinates we

can assume π(P ) = (1 : 0 : . . . : 0) with f0 = 1 and v(fi) ≥ 1. Let

zi(t) = zi(P ) + a
(1)
i t+ . . . for i = 0, 1, . . . , r. From (6.16):

D = (z0(P )f0 + z1(P )f1 + . . .+ zr(P )fr) = −
r∑

i=0

fi((a
1
i )

`t` + . . .)

We have to show that vP (D) = `+ 1. From the equation above,

v(D) = `+ v

(
r∑

i=0

fi

(
(a

(1)
i )`+ ..

))

As vP (fi) ≥ 1 for i ≥ 1 we just have to check that a
(1)
0 = 0. This comes

from (6.17).

(2) The proof is similar to (1).

(3) The linear series D′ is a sub linear series of D; in particular each

zj is a F`2-linear combination of type zj =
∑r

i=1 aijfi. After some linear

computations, the result follows from (6.17).

(4) See [54, Thm. 4.1]. �

Remark 6.24. The minimum dimension of the Hermitian variety which

contains a maximal curve is M = dim(D′).
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5.2 The Hermitian Curve. Notation as above. We notice that r ≥ 2

by (6.15). We shall prove the following. We recall that the Hermitian curve

can be also defined by the equation y` + y = x`+1.

Theorem 6.25. ( [24], [72]) Let X be a maximal curve over F`2 of genus

g > 0. The following statements are equivalent:

(1) X is the Hermitian curve;

(2) g > (`− 1)2/4;

(3) r = 2.

Proof. The genus in (1) is `(`− 1)/2 and (2) follows. Assume (2). Since

D is simple we apply Castelnuovo’s genus bound; i.e.,

2g ≤ (2`− r + 1)2/4(r − 1) .

If r ≥ 3, then 2g ≤ (`− 1)2/4, a contradiction. Now assume (3). To proof

(1) we proceed as in Theorem 6.15. Let x, y ∈ F`2(X ) whose pole divisor

are respectively div∞(x) = `P0 and div∞y = (`+1)P0 (Lemma 6.12). Since

ν1 = ` we have a relation of type

(yq2 − y)D1
xx = (x`2 − x)D1

xy , (6.18)

Let f := D1
xy. Then D1

xf = 0. Now since ε2 = ν1 = ` (Proposition 6.14),

for i = 2, . . . , < ε2 = ` the rank of the following matrices is two:



1 x y

0 1 f

0 0 Di
xy


 .

Thus Di
xy = 0 for i = 2, . . . , ` and from (6.18), Di

xf = 0 for i = 1, . . . , `−1.

So by [43, Satz 10], f is a `2-th power, says f = f `2

1 . From (6.18), vP0(f) =

−`2 and so vP0(f1) = −`; thus f1 = ax + b with a, b ∈ F`2 , a 6= 0. If

x1 := ax+ b and y1 := ay, the equation (6.18) becomes

y`2

1 − y1 = x`
1(x

`2

1 − x1);

therefore

(y`
1 + y1 − x`+1

1 )` = y`
1 + y1 − x`+1

1

and the proof is complete. �

5.3. The genus. Here we discuss some properties concerning the genus

g of a maximal curve over F`2 . First of all we notice that Theorem 6.25

implies the following restriction on g which was conjectured by Xing and
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Stichtenoth [103]; see [21], [23]. (This gives a partial answer of a question

of Serre [88].) We have

g ≤ g2 := b(`− 1)2/4c , or g = g1 = `(`− 1)/2 . (6.19)

Remark 6.26. Thus N`2(g) < `2+1+2`g for g2 < g < g1 (cf. Lauter [59]).

We already know that g = g1 occurs only for the Hermitian curve. A

similar property holds for g = g2: the unique maximal curves of genus g2
is the quotient of the Hermitian curve by certain involutions; these curves

are defined by the following plane curves [22], [2], [55]

• yq + y = x(q+1)/2 if q is odd;

• yq/2 + . . .+ y2 + y = xq+1 if q is even.

We can improve (6.19) as follows. Let g3 := h(`+ 1, 3) = b(`2 − `+ 4)/6c
denote the Halphen’s number which asserts that any non-degenerate curve

in P3(F̄`2) of degree `+1 of genus g > g3 is contained in a quadratic surface.

Thus, as the curve has many rational points, g ≥ g2.

Theorem 6.27. ( [55]) The genus g of a maximal curve over F`2 satisfies

g ≤ g3 = b(`2−`+4)/6c , or g = g2 = b(`−1)2/4c or g = g1 = `(`−1)/2 .

There exist examples of maximal curves of g = g3: for example the quotient

curves of the Hermitian curve by certain subgroups of order three; they are

defined by the following plane equations [28], [13], [14]

• x(`+1)/3 + x2(`+1)/3 + y`+1 = 0 if ` ≡ 2 (mod 3);

• ωx(`−1)/3 − yx2(`−1)/3 + y` = 0 if ` ≡ 1 (mod 3), where ω ∈ F`2 such

that ω`−1 = −1;

• y` + y = (
∑t

i x
`/3)2 if ` = 3t.

Question 6.28. There is a unique maximal curve of genus g3 which is

Galois covered by the Hermitian curve, namely the examples above [14,

Prop. 2.1]. Is there exist a maximal curve of genus g3 which is not covered

by the Hermitian curve?

For ` 6≡ 0 (mod 3), we can improve Theorem 6.27 as follows.

Theorem 6.29. ( [95]) Let X be a maximal curve over F`2 of genus g.

Assume ` 6≡ 0 (mod 3) and r = 3. If (4`− 1)(2g− 2) > (`+1)(`2 − 5`− 2),

then

g ≥ (q2 − 2q + 3)/6 .
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Proof. First we show that ε2 = 2; on the contrary, ε3 ≥ 4, by the p-adic

criterion (here we use the hypothesis on `). Let R and S be the ramification

and F`2 -Frobenius divisor of D respectively. We have (Lemma A)

vP (S) ≥ j2(P ) + (j3(P ) − ε2) ≥ 5 for any P ∈ X (F`2)

and so the maximality of X implies

deg(S) = (`+ 1)(2g − 2) + (`+ 3)(`+ 1) ≥ 5(`+ 1)2 + 5`(2g − 2) .

It follows that

(`+ 1)(`2 − 5`− 2) ≥ (4`− 1)(2g − 2) ,

a contradiction. Now we use the ramification divisor R:

deg(R) = (`+ 2 + 1)(2g − 2) + 4(`+ 1) ≥ (`+ 1)2 + `(2g − 2)

and thus g ≥ (`2 − 2`+ 3)/6. �

Corollary 6.30. Let X , g and ` be as in the theorem above. If g > (` −
1)(`− 2)/6, then

g ≥ (`2 − 2`+ 3)/6 .

Proof. The hypothesis on g implies r ≤ 3. If r = 2, then g = `(`− 1)/2

by Theorem 6.25. Let r = 3; the hypothesis on g is equivalent to (2g−2) >

(`+ 1)(`− 4)/3 and hence

(4`− 1)(2g − 2) > (4`− 1)(`+ 1)(`− 4)/3 > (`+ 1)2(`2 − 5`− 2)

and the result follows. �

5.4 Examples. Throughout, by a maximal curve we mean a maximal

curve over F`2 .

Example 6.31. (Curves covered by the Hermitian curve, I) We have al-

ready noticed that any curve covered by the Hermitian curve is also maxi-

mal. However, there exist maximal curves that cannot arise in this way. The

first example of such a situation was given by Giulietti and Korchmáros [35];

their example is the case m = 3 of the nonsingular model of the curve de-

fined in P3(F̄`2m) (m odd) by the equations
{
z(`m+1)/(`+1) = yh(x)

(x` + x)N/` = y`+1

where h(x) =
∑N

i=0(−1)i+1x(`−1)i and N(`−1)+1 = (`m+1)/(`+1). After

some computations one shows that the curve is contained in an Hermitian
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variety and that any irreducible component is defined over F`2m ; it follows

that each irreducible component is maximal according to Theorem 6.23. In

addition the genus of such components is (`m + 1)(L`− 2)/2 + 1. By using

the Riemann-Hurwitz genus formula and by counting rational points one

concludes that such components cannot be covered by the Hermitian curve.

We should say that we have no a theoretically explanation on the existence

of these examples. We shall start with the question below.

Example 6.32. (Curves covered by the Hermitian curve, II) Let X be a

maximal of genus g. By Theorem 6.27, X is covered by the Hermitian curve

provided that

g > c(`) = (`2 − `+ 4)/6 .

Question 6.33. Shall we improve the bound c(`)?

Notice that c(α) is the Halphen’ s bound related to quadratic surfaces in P3;

we may obtain further improvements on c(`) by taking into considerations

constraints that curves with many rational points may impose on surface

of arbitrary degree.

Example 6.34. (On the uniqueness of maximal curves, I) Let X be a

maximal curve of genus g. Let d be a divisor of `+ 1. The curve is defined

by the plane curve

y` + y = x(`+1)/d

whenever there exists a rational point P of X such that (`+1)/d belongs to

the Weierstrass semigroup at P [22] (see also [1], [3] for analogous results).

Example 6.35. (On the uniqueness of maximal curves, II) Let d be a

divisor of `+ 1. The previous example suggests to consider the uniqueness

of maximal curves X of genus

g =
1

2
(`− 1)(

`+ 1

d
− 1) .

If d = 2, g coincides with Castelnuovo genus bound. In this case, the geom-

etry of the curve equipped with the linear series |2D| implies the hypothesis

on non-gaps above; thus there is a unique maximal curve of genus (`−1)2/4

as we have pointed out above.

If d = 3, g also coincides with Castelnuovo genus bound and as in the

case above, the hypothesis on non-gaps hold true and there exists a unique

maximal curve of genus (`− 1)(`− 2)/6.
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Now observe that g = (`− 1)(`− 2)/6 is an integer for ` ≡ 2 (mod 3).

However, for ` ≥ 13, there is no maximal curves having such a genus [55].

Here one uses a beautiful theorem due to Accola [4] concerning further

constraints on curves whose genus equals Castelnuovo’s genus bound.

Question 6.36. Shall we exclude the hypothesis on non-gaps in Example

6.34?

Example 6.37. (On the uniqueness of maximal curves, III) A maximal

curve is not necessarily characterized via its genus.

(1) Let ` ≡ 3 mod 4. Consider the maximal curve X and Y defined

respectively by the plane curves:

x(`+1)/2 + y(`+1)/2 + 1 = 0 , and y` + y = x(`+1)/4 .

They have the same genus g = (`− 1)(`− 3)/8 but they are not isomorphic

because the semigroup 〈(`− 1)/2, , (`+ 1)/2〉 is a Weierstrass semigroup at

some point of X but there is no point on Y satisfying this property [30], [12].

Moreover, in the last reference it is shown that the unique plane maximal

curve of degree (`+ 1)/2 (` ≥ 11 odd) is the curve X above.

(2) Let us consider maximal curves over F64. Let ε be a primitive 3th-

root of unity.

Curve X : The Hermitian curve is given by x9 + y9 + 1 = 0. Consider

T1 : (x, y) 7→ (x, εy). Thus the quotient curve X1 := H/ < T1 > is defined

by u9+v3 +1 = 0 (∗). Now consider T2 : (u, v) 7→ (εu, ε−1v). Then X1/〈T2〉
is defined by z4 + z = w3 (to see this we just multiply (∗) by u3); clearly

its genus is g = 3 and it is maximal since it is covered by the Hermitian

curve (cf. Rodriguez [79], Luengo et al. [80]).

Curve Y : Consider the maximal curve Y1 : x4 + x2 + x = y9. We can

use the automorphism T1 : (x, y) → (x, εy) to obtain the maximal curve

Y := Y1/〈T1〉 of genus 3 defined by u4 + u2 + u = w3.

Claim. The curves X and Y above are non-isomorphic over F̄64 (cf.

[29], [95]). There is just one point P0 over x = ∞ or u = ∞. The number 5

does not belong to the Weierstrass semigroup at P0 and so for both curves

D = 4P0 is the canonical linear series. We apply the Appendix to D and one

shows that the curve X and Y have 5 and 17 Weierstrass points respectively.

Let ` 6≡ 0 (mod 3). Then by Corollary 6.30 the genus g of a maximal

curve does not belong to the interval

[b1

6
(`− 1)(`− 2)c + 1, d1

6
(`2 − 2`+ 3)e − 1] . (6.20)
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Let S(`) be the set of numbers that arise as the genus of maximal curves

over F`2 . For ` ≤ 5, the set S(`) is complete determined [28, Remark 6.1];

by taking into consideration such a remark we work out the following.

Example 6.38. Case ` = 7. g ≤ g3 = 7 or {0, 1, 2, 3, 5, 7, 9, 21} ⊆ S(7);

6 6∈ S(7) by (6.20).

Case ` = 8. g ≤ g3 = 10 or {0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 28} ⊆ S(8);

8 6∈ S(8) by (6.20),

Case ` = 11. g ≤ g3 = 19

or {0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 18, 19, 25, 55} ⊆ S(11); 16 6∈ S(11) by

(6.20),

Case ` = 13. g ≤ g3 = 26 or {0, 1, 2, 3, 6, 9, 12, 15, 18, 26, 36, 78} ⊆
S(13); 23, 24 6∈ S(13) by (6.20). Moreover, 22 6∈ S(13) (cf. Example 6.35).

Case ` = 16. g ≤ g3 = 40 or {0, 1, 2, 4, 6, 8, 12, 24, 28, 56, 120} ⊆ S(16);

36, 37 6∈ S(16) by (6.20. Moreover, 35 6∈ S(16) (cf. Example 6.35).

Question 6.39.

(1) Does 4 (resp. 5) belong to S(7) (resp. S(8))?

(2) Does g = g4 := d 1
6 (`2 − 2` + 3)e belong to S(`) for infinitely many `?

(In each case above such a g exists).

(3) What about the genus of a maximal curves in the interval [g4, g3 − 1]?

Example 6.40. (Plane maximal curves) Here we consider (nonsingular)

plane maximal curves (over F`2)

(1) Fermat curves: Xm + Y m + Zm = 0. Clearly the curve is maximal

if m | (`+ 1). Tafazolian [92] proved that in fact the curve is maximal only

if this condition holds.

(2) Hurwitz curves (cf. [5], [29]). Let Hn : XnY + Y nZ + ZnX = 0.

This curve is covered by the Fermat curve

Un2−n+1 + V n2−n+1 +Wn2−n+1 = 0

(via an unramified morphism). In particular, if (n2 − n+ 1) | (` + 1), Hn

is maximal. Conversely, if Hn is maximal, ` + 1 belongs to the Weier-

strass semigroup at any rational point. After some computations via the

Weierstrass semigroup at P = (0 : 1 : 0), which is generated by the set

S = {s(n− 1) + 1 : s = 1, . . . , n} ,
one shows that (q+1) is a multiple of (n2−n+1). As a numerical example

we choose n = 3 and conclude that the Klein curve is maximal over F`2 if

and only if ` ≡ 6 (mod 7).
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Appendix: On the Stöhr-Voloch theory.

In this appendix, we recall some results of Stöhr-Voloch paper [91] con-

cerning Weierstrass points and Frobenius orders. Let X be a curve of genus

g defined over F̄q.

Let D ⊆ |E| be a base-point-free linear series of dimension r and degree

D on X . For P ∈ X and i ≥ 0 an integer, we define sub-sets of D which

will provide with geometric information on X . Let Di(P ) := {D ∈ D :

vP (D) ≥ i} (here D =
∑

P vP (D)P ). We have Di(P ) = ∅ for i > D,

D ⊇ D0(P ) ⊇ D1(P ) ⊇ . . . ⊇ Dd−1(P ) ⊇ DD(P ) ,

and each Di(P ) is a sub-linear series of D such that the codimension of

Di+1(P ) in Di(P ) is at most one. If Di(P ) % Di+1(P ), then the integer

i is called a (D, P )-order; thus by Linear Algebra we have a sequence of

(N + 1) orders at P :

0 = j0(P ) < j1(P ) < . . . < jr(P ) ≤ d .

Notice that D = D0(P ) since D is base-point-free by hypothesis. It is a

fundamental result the fact that the sequence above is the same for all but

finitely many points P of X , see [91, Thm. 1.5]. This constant sequence is

called the order sequence of D and will be denoted by

0 = ε0 < ε1 < . . . < εr .

The finitely many points P , where exceptional (D, P )-orders occur, are

called the D-Weierstrass points of X . There exists a divisor R on X , the

ramification divisor of D, whose support is exactly the set of D-Weierstrass

points:

R = div (det (Dεi

t fj)) + (

r∑

i=0

εi)div(dt) + (r + 1)E ,

where π = (f0 : f1 : . . . : fr) is the morphism defined by D, t a separat-

ing element of F̄`(X )|F̄` and the operator Di
t is the ith Hasse derivative

(properties of these operators can be seen in Hefez’s paper [44]). Moreover,

the number of D-Weierstrass points of X (counted with multiplicity) is the

degree of R.

Now to deal with rational points over Fq we require that both X and D
be defined over this field. Choose the coordinates fi’s above in such a way

that vP (fi) + vP (E) = ji(P ), where vP denotes the valuation at P . Set

Li(P ) = 〈fi, . . . , fr〉. Thus

Di(P ) = {div(f) +E : f ∈ Li(P )} .
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For i = 0, . . . , r − 1 set

Si(P ) := Dji+1(P ) ∩ . . . ∩ Djr
(P ) and

Ti(P ) := ∩D∈Si
Supp(D) .

This is a subspaces of the dual of Pr(F̄q) whose projective dimension is i.

Notice that

{P} = T0(P )  T1(P )  . . .  Tr−1(P ) .

The spaces Tr−1(P ) and T1(P ) are usually called the D-osculating hyper-

plane and the D-tangent line at P respectively.

Let Φ : X → X be the Frobenius morphism on X . Suppose that for a

generic P , Φ(P ) ∈ TN−1(P ). Then there exists an integer 1 ≤ I ≤ r−1 such

that φ(P ) ∈ TI(P )\TI−1(P ). Define νj := εj for 0 ≤ j ≤ I−1 and νj = εj+1

for j = I, . . . , r − 1. The sequence 0 = ν0 < ν1 < . . . < νN−1 is called the

Frobenius order sequence of D (with respect to Fq; cf. [91, Sect. 2]). The

key property related with rational points in [91] is the existence of a divisor

S, the Frobenius divisor of X (over Fq) satisfying Lemma A(3)(4)(5)(6)

below. This divisor is defined as follows. Let L̃ denote the determinant of

the matrix whose rows are:

(f `
0 , f

`
1 , . . . , f

`
r ) , (Dνi

t f0, D
νi

t f1, . . . , D
νi

t fr) , i = 0, 1, . . . , r − 1 .

Then

S := div(L̃) + (

r−1∑

i=0

νi)div(dt) + (q + r)E .

We notice that X (Fq) ⊆ Supp(S) and vP (S) ≥ r for P ∈ X (Fq) (Lemma

below). Thus

#X (Fq) ≤ deg(S)/r .

We subsume some properties of the ramification divisor and Frobenius di-

visor of D.

Lemma A. Let P ∈ X and q be a power of a prime p.

(1) For each i, ji(P ) ≥ εi;

(2) vP (R) ≥∑r
i=0(ji(P )−εi); equality holds if and only if det

((
ji(P )

εj

))
6≡ 0

(mod p);

(3) If P ∈ X (Fq), then for each i, νi ≤ ji+1(P ) − j1(P );

(4) If P ∈ X (Fq), then vP (S) ≥∑r−1
i=0 (ji+1(P ) − νi); equality holds if and

only if det
((

ji+1(P )
νj

))
6≡ 0 (mod p);
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(5) If P ∈ X (Fq), then vP (S) ≥ rj1(P );

(6) If P 6∈ X (Fq), then vP (S) ≥∑r−1
i=0 (ji(P ) − νi).

Frobenius non classical plane curves. (Hefez-Voloch [45]) Let X
be a plane curve of degree d defined over Fq . We consider the linear series

D := g2
d (whose elements cuts out the curve by lines). Let 0 < ν be the

Fq-Frobenius order sequence of D. Assume that ν > 1 (one usually says

that X is non-classical). Thus the order sequence of D is 0 < 1 < ν and

hence

deg(R) = (1 + ν)(2g − 2) + 3d , and deg(S) = ν(2g − 2) + (q + 2)d .

The Hefez-Voloch used in this paper affirm

#X (Fq) = deg(S) − deg(R) = d(q − d+ 2) .
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[101] A. Weil, “Courbes Algébriques et Variétés Abeliennes”, Hermann, Paris,
1971.

[102] A. Weil, Number of solutions of equations in finite fields, Bull. Amer. Math.
Soc. 55 (1949), 497–508.

[103] C. Xing and H. Stichtenoth, “The genus of maximal functions fields”,
Manuscripta Math. 86 (1995), 217–224.



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

Chapter 7

Algebraic Geometry Codes from Higher Dimensional

Varieties

John B. Little

Department of Mathematics and Computer Science,
College of the Holy Cross,
Worcester, MA 01610 USA

little@mathcs.holycross.edu

This chapter gives a general survey of work on Goppa-type codes from
higher dimensional algebraic varieties. The construction and several
techniques for estimating the minimum distance are described first.
Codes from various classes of varieties, including Hermitian hypersur-
faces, Grassmannians, flag varieties, ruled surfaces over curves, and
Deligne-Lusztig varieties are considered. Connections with the theories
of toric codes and order domains considered elsewhere in this volume are
also briefly indicated.
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7.1. Introduction

The codes considered in this chapter can all be understood as examples

of evaluation codes produced from a finite set S = {P1, . . . , Pn} of Fq-

rational points on an algebraic varietyX and an Fq-vector space of functions

F defined on S. The set of codewords is the image of an evaluation mapping

evS : F −→ Fn
q (7.1)

f 7→ (f(P1), . . . , f(Pn)).

X will usually be assumed smooth, but in fact many of the constructions

also make sense for normal varieties.

The Goppa CL(D,G) codes from curves X where F = L(G) for some

divisor G on X were the first examples of codes of this type to be consid-

ered. Relatively early in the history of applications of algebraic geometry

to coding theory, however, Tsfasman and Vladut proposed in Chapter 3.1

of [55] that higher dimensional varieties might also be used to construct

codes. By the results of [46], every linear code can be obtained by the con-

struction of Definition 7.1 below, starting from some S ⊆ X(Fq) for some

variety X and some line bundle L on X ; indeed curves suffice for this (see

Section 7.8). Hence the question is whether one can identify specific higher

dimensional varieties X , spaces of functions F , and sets of rational points

S that yield particularly interesting codes using algebraic geometric con-

structions. There has been a fairly steady stream of articles since the 1990’s

studying such codes and our first main goal here is to survey the methods

that have been developed and the results that have been obtained.

In a sense, the first major difference between higher dimensional va-

rieties and curves is that points on X of dimension ≥ 2 are subvarieties

of codimension ≥ 2, not divisors. This means that many of the familiar

tools used for Goppa codes (e.g. Riemann-Roch theorems, the theory of

differentials and residues, etc.) do not apply in exactly the same way.

A second difference is the possibility of performing birational modifica-

tions such as blowing up points or other subvarieties on a variety of higher

dimension. For instance, if p is a point in a smooth algebraic variety X of

dimension δ ≥ 2, there is another smooth variety Y = Blp(X), a proper

morphism π : Y → X , and an exceptional divisor E ' Pδ−1 in Y such that

π(E) = {p}, and π|Y −E : Y −E ' X −{p} as varieties. Because Y and X
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have isomorphic nonempty Zariski-open subsets, they have isomorphic func-

tion fields. Such varieties Y and X are said to be birationally isomorphic.

This says that function fields in two or more variables always have many

different nonisomorphic smooth models, and the connection with function

fields is not as tight as in the curve case.

It must be said that the theory of Goppa-type codes from higher di-

mensional varieties is much less advanced at this point than the theory for

Goppa codes from curves, perhaps because of these differences. There is

still no clear understanding of how best to harness the properties of higher

dimensional varieties in coding theory. Indeed, as we will see, most of

the work that has appeared to date has been devoted to case studies of the

structural properties of codes constructed from certain particular families of

varieties X – their parameters, their weight distributions, their hierarchies

of higher Hamming weights, and so forth. A few general ideas for estimat-

ing the minimum distance d have been developed. However, in many of

the cases where the exact weight distributions are known, other algebraic

constructions yield better codes. In addition, the development of efficient

encoding and decoding algorithms for these codes has not really begun (see

Section 7.8 on this point, though). The theory of order domains should yield

tools here as well as for codes from curves. Nevertheless, the universality

of this construction offers hope that good examples can be constructed this

way, and our second main goal is to encourage others to explore this area.

This survey is organized as follows. In Section 7.2, we give two variants

of Tsfasman and Vladut’s code construction, one starting from an abstract

variety X and line bundle L on X , the other starting from an embedded

variety X ⊆ Pm. We also present some first examples. Four general meth-

ods for estimating the minimum distance are presented in Section 7.3. Two

appeared first in S.H. Hansen’s article [26]. For the first of these, it is as-

sumed that all of the Fq-rational points of interest are contained in a family

of curves on X and intersection products of divisors with those curves are

used to bound d. The second method is based on the Seshadri constant

of the line bundle L with respect to the set of Fq-rational points on X .

A third method from [17] can be used when the set of Fq-rational points

is itself a complete intersection in Pm. Finally, we present another, more

arithmetic, method based on the Weil conjectures developed by Lachaud

in [37].

The next sections 7.4 and 7.5 present a selection of the examples of these

codes that have appeared in the literature, codes constructed from quadric

hypersurfaces, Hermitian hypersurfaces, Grassmannians and flag varieties,
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Del Pezzo surfaces, ruled surfaces, and Deligne-Lusztig varieties. Finally,

we present some comparisons between codes in section 7.7.

Where practicable, we have provided brief proofs of the results we state,

in order to show the methods involved in the study of these codes.

As we proceed through these examples, the prerequisites from algebraic

geometry steadily increase. Our intended audience includes both coding

theorists familiar with the theory of Goppa codes on curves but not higher

dimensional geometry and algebraic geometers curious about how higher

dimensional varieties might be used in the coding theory context. The

text [28] by Hartshorne is a good general reference for most of the algebraic

geometry we need. The construction of Grassmannians via exterior alge-

bra, Schubert varieties, and the intersection theory on Grassmannians are

covered in Griffiths and Harris, [19]. A full understanding of the Deligne-

Lusztig varieties also depends on the theory of reductive algebraic groups G

over fields of characteristic p and the classification of their finite subgroups

GF by root systems and Dynkin diagrams with an action of the Frobenius

endomorphism, F . The book [5] of Carter contains all the information

needed for this.

Because of space limitations, it has not been possible to discuss all the

results of every paper in this area in detail. Pointers to all of the literature

of which the author is aware are provided in the bibliographic notes in

Section 7.8, the references, and their bibliographies.

Any omissions or errors are entirely due to the author. Any comments

or suggestions are welcome.

7.1.1. Notation

We will use the following general notational and terminological conven-

tions.

• The number of elements in a finite set T will be denoted by #T .

• The parameters of a linear code are denoted [n, k, d] as usual, where n

is the block length, k is the dimension, and d is the minimum distance.

• The generalized Hamming weights are denoted dr, 1 ≤ r ≤ k. As in [58],

dr is the size of the minimal support of an r-dimensional subcode of C,

extending the usual minimum distance d = d1.

• We denote an algebraically closed field of characteristic p by F and all

finite fields Fq for q = pm are considered as subfields of F.

• The projective spaces Pm, Grassmannians G(`,m), and so forth are
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considered as varieties over the algebraically closed field F in order to

“do geometry.” The Fq-rational points used in the construction of the

codes are finite subsets of these varieties.

• If f is a homogeneous polynomial in Fq[x0, . . . , xm], V(f) is the zero

locus of f in Pm.

• A line bundle is a locally free sheaf of rank one. At several points, it

will be convenient to use the sheaf cohomology groups H i(X,L) for a

line bundle L. The space of global sections will also be written Γ(X,L).

7.2. The General Construction

Several apparently different, but essentially equivalent, versions of the

construction are commonly encountered in the literature. For instance, one

description starts from a smooth projective variety X defined over Fq, a

set S ⊆ X(Fq) of Fq-rational points of X , and a line bundle L on X , also

defined over Fq. Let P be an Fq-rational point of X . The stalk LP , modulo

sections vanishing at P , denoted LP , is isomorphic to Fq by a choice of

local trivialization.

Definition 7.1. The choice of such local trivializations at each point in S
defines a linear mapping (called the germ map in [55])

α : Γ(X,L) −→
n⊕

i=1

LPi
' Fn

q , (7.2)

and the image is the code denoted C(X,L;S), or C(X,L) if the set of

points S is understood from the context.

If L = OX(G) for an Fq-rational divisor G on X whose support is

disjoint from {P1, . . . , Pn}, then up to monomial equivalence, this is the

same as the evaluation code as in Equation (7.1) from the subspace F of

the field of rational functions of X given by

F = {f ∈ Fq(X)∗ : div(f) +G ≥ 0} ∪ {0}.
For instance, when X is a smooth algebraic curve and L = OX(G) for

some divisor G defined over Fq whose support is disjoint from the support

of D = P1+· · ·+Pn, then this is the same as the algebraic geometric Goppa

code CL(D,G) from X .

For explicit constructions of codes from embedded varieties X ⊆ Pm,

another more elementary description is also available using homogeneous

coordinates (a0 : a1 : · · · : am) for points in Pm.
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Definition 7.2. Choosing any one such homogeneous coordinate vector

defined over Fq for each of the points Pi in the set S, define an evaluation

map evS and a code as in Equation (7.1) using the vector space F1 of linear

forms (homogeneous polynomials of degree 1) in Fq[x0, . . . , xm]. The code

obtained as the image of this mapping is denoted C(X), or C(X ;S) if it is

important to specify the set of points. Similarly, the space of linear forms

can be replaced by the vector space Fh of homogeneous polynomials of any

degree h ≥ 1, and corresponding codes denoted Ch(X ;S) or Ch(X) are

obtained.

Example 7.3. Let X = Pm itself, and let S be the set of affine Fq-rational

points of X , that is, points in the complement of the hyperplane V(x0),

having homogeneous coordinate vectors of the form (1 : a1 : . . . : am). With

these particular coordinate vectors, the code Ch(X ;S) is the well-known

q-ary hth order (generalized) Reed-Muller code, denoted Rq(h,m). (When

m = 1, this is the same as an extended Reed-Solomon code.) The block

length is n = qm. If h < q, then the monomials xβ = xβ0

0 · · ·xβm
m where

|β| = β0 + · · ·+ βm = h are linearly independent on S, so the dimension of

Rq(s,m) is k =
(
m+h

h

)
. If S = Pm(Fq), the resulting projective Reed-Muller

codes have block length n = qm + · · · + q + 1. ♦

There is, of course, a tight connection between Definition 7.1 and Defini-

tion 7.2. If X is embedded in Pm and L = OX (1) is the hyperplane bundle,

then C(X,OX (1)) and C(X) are monomially equivalent codes (they differ

at most by constant multiples in each component depending on how the iso-

morphisms of the fibers with Fq are chosen). Similarly, Ch(X) is equivalent

to C(X,OX(h)). Also, in theory it suffices to consider the C(X) = C1(X)

codes, since the Ch(X) code on X is the same as the C1 code on the variety

νh(X), where νh is the degree-h Veronese mapping

νh : Pm −→ P(m+h
h )−1

(x0 : x1 : · · · : xm) 7→ (· · · : xβ : · · · ),

and xβ = xβ0

0 · · ·xβm
m ranges over all monomials of total degree h. The

image νh(Pm) has dimension m, degree hm, and is isomorphic to Pm.
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7.3. Estimating the Parameters

7.3.1. Elementary bounds

Suppose Definition 7.2 is used to construct a code Ch(X ;S) from a

variety X . The block length of the code is n = #S. Using a standard

linear algebra result, the dimension is

k = dimFh − dim ker evS .

Forms of degree h vanishing on X always give elements of ker evS . The

dimension of the space of such forms can be computed using the long exact

cohomology sequence of

0 −→ IX(h) −→ OPm(h) −→ OX(h) −→ 0. (7.3)

But if the points in S are not in general position, there can be other elements

of the kernel as well and it may be necessary to take the properties of S as

a 0-dimensional algebraic set into account to understand the parameters of

the Ch(X ;S) codes. See Section 7.3.4 below.

Since each codeword is evS(f) = (f(P1), . . . , f(Pn)) for some form f ,

the codeword weight is n−#(V(f)∩ S), the number of Pi in S where f is

not zero. Therefore,

d = minf 6=0∈Fh
(n− #(V(f) ∩ S)) . (7.4)

Along similarly general lines, let dimY = δ and let the degree of Y be

s < q + 1 in Pm. Let E be an Fq-rational linear subspace of dimension

m − δ − 1 with E ∩ Y = ∅. By projection from E onto a linear subspace

L ' Pδ, each Fq-rational point of L corresponds to at most s such points

of Y , so

#Y (Fq) ≤ s · #Pδ(Fq) = s(qδ + · · · + q + 1). (7.5)

Applying Equation (7.5) to Y = X ∩H for a hyperplane, Lachaud obtains

the following elementary bound in [37].

Theorem 7.4. Let X be a projective variety of dimension δ and degree

s < q + 1. Then the C(X) code has

d ≥ n− s(qδ−1 + · · · + q + 1).

A more refined estimate of the number of Fq rational points on a pro-

jective hypersurface establishes the following result for the projective Reed-

Muller codes introduced in Example 7.3.
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Theorem 7.5. Let h ≤ q. The projective Reed-Muller code of order h has

parameters
[
qm + · · · + q + 1,

(
m+ h

h

)
, (q + 1 − h)qm−1

]
.

Proof. Write S = Pm(Fq). The evaluation mapping is injective and

k = dimFs =
(
m+h

h

)
provided that d > 0. By [52], if f is a homogeneous

polynomial of degree h ≤ q, then (improving the bound of Equation (7.5))

#(V(f) ∩ S) ≤ hqm−1 + qm−2 + · · · + q + 1.

Moreover, if V(f) is the union of h Fq-rational hyperplanes meeting along a

common (m−2)-dimensional linear subspace, this bound is attained. Hence

d = (qm+qm−1+· · ·+q+1)−(hqm−1+qm−2+· · ·+q+1) = (q+1−h)qm−1

as claimed. �

The reducible f featuring in the proof of Theorem 7.5 give a first indi-

cation of a general theme related to these codes.

Observation 7.6. The minimum weight codewords of a Ch(X ;S) code

tend to come from “maximally reducible” V(f) ∩X for f ∈ Fh.

The underlying reason for this is the fact that reducible varieties (espe-

cially those that are unions of linear subspaces or other rational varieties)

can have many more Fq-rational points than other varieties of the same

degree. The Weil-type bounds discussed below can be used to quantify this

remark.

7.3.2. Bounds from covering families of curves

For the following discussion, it will be most convenient to use the code

construction given in Definition 7.1. In many concrete cases, it can be seen

that the points in the set S are distributed on a collection of curves Ci

(subvarieties of dimension 1) on the variety X . Since each section f ∈
Γ(X,L) on X defines a divisor of zeroes Z(f), a subvariety of codimension

1 on X , determining the minimum distance of the C(X,L) code reduces to

understanding how many times the divisors Z(f) can intersect the curves

Ci at points of S. To prepare, let C be any irreducible curve in X . Observe

that the divisors Z(f) for f ∈ Γ(X,L) all cut out divisors on C of the same

degree. This degree will be denoted by L · C. In this situation, Hansen

derives a lower bound for d in [26].
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Theorem 7.7. Let X be a normal projective variety defined over Fq, of

dimension dimX ≥ 2. Let S ⊆ X(Fq) and assume S ⊂
a⋃

i=1

Ci where Ci are

irreducible curves on X, also defined over Fq. Assume that #(Ci ∩S) ≤ N

for all i. Let L be a line bundle on X defined over Fq such that

0 ≤ L · Ci ≤ η ≤ N

for all i. Let

` = max
f 6=0∈Γ(X,L)

#{i : Z(f) contains Ci}.

Then the code C(X,L;S) has

d ≥ #S − `N − (a− `)η.

Proof. Let f ∈ Γ(X,L), let D = Z(f), and let E = Z(f) ∩
a⋃

i=1

Ci.

Suppose E contains `′ ≤ ` of the Ci. The number points of S that are

contained in E is estimated as follows:

#(E ∩ S) ≤ `′N + (a− `′)η

≤ `N + (a− `)η

(since by hypothesis η ≤ N). Hence evS(f) has at least #S − `N − (a− `)η
nonzero entries. �

Example 7.8. Let X = P1×P1. Let S = X(Fq), which consists of (q+1)2

points, equally distributed over the lines C1, . . . , Cq+1 of one of the rulings.

The Picard group of line bundles modulo isomorphism is Pic(X) ' Z⊕ Z,

so the lines Ci may be taken as the divisors of zeros of sections of a line

bundle of type (1, 0). Let L have type (α, β) where 0 ≤ α, β ≤ q + 1,

and apply Theorem 7.7 to estimate d for the C(X,L) code. Because of

the description of S above, N = q + 1. The divisor Z(f) for f ∈ Γ(X,L)

contains at most α of the Ci, so ` = α. Moreover, L · Ci = β for each i, so

η = β. The bound is

d ≥ (q + 1)2 − α(q + 1) − (q + 1 − α)β = (q + 1 − α)(q + 1 − β).

It is easy to construct codewords of this weight via bihomogeneous

polynomials on P1 × P1. So this is the exact minimum distance. ♦
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7.3.3. Bounds using Seshadri constants

A second general method for estimating the minimum distance of the

C(X,L;S) codes is based on the Seshadri constant of L relative to the set S.

This is potentially useful but requires some significantly more sophisticated

birational geometry to state and apply. Let π : Y → X be the blow up

of the X at the points in S and call the exceptional divisor E. Then the

Seshadri constant is defined as

ε(L,S) = sup{ε ∈ Q : π∗L − εE is nef on Y }.

(Here, “nef” means numerically effective, that is, (π∗L− εE) ·C ≥ 0 for all

irreducible curves C on Y .) Hansen proves the following estimate for the

minimum distance of the C(X,L;S) codes in [26].

Theorem 7.9. Let X be a nonsingular projective variety of dimension ≥
2 over Fq. If L is ample with Seshadri constant ε(L,S) ≥ e ∈ N, and

n > e1−dim(X)Ldim(X), then C(X,L;S) has minimum distance d ≥ n −
e1−dim(X)Ldim(X).

This is particularly well-suited for analyzing certain codes from Deligne-

Lusztig varieties to be defined in Section 7.5 below.

7.3.4. Bounds from S itself

All of the Ch(X ;S) codes introduced in Section 7.2 can be viewed as

punctures of the projective Reed-Muller code of order h on Pm (delete the

components corresponding to points in the complement of S). For this

reason, in addition to making use of the properties of the variety X , it is

also possible to use properties of the 0-dimensional algebraic set (or scheme)

S itself to study these codes.

Let IP be the sheaf of ideals defining any 0-dimensional P . From the

long exact cohomology sequence of the exact sequence of sheaves

0 −→ IP −→ OPm −→ OP −→ 0,

it follows that for all h ≥ 0, the following sequence is exact:

0 → H0(IP(h)) → H0(OPm(h)) → H0(OP (h)) → H1(IP (h)) → 0. (7.6)

The term H0(IP (h)) gives the space of homogeneous forms of degree h

vanishing on P . The term H1(IP(h)) measures the failure of the points in
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P to impose independent conditions on forms of degree h. The dimension

of the Ch(S) code is given by the Hilbert function of S:

HS(h) = dimH0(OPm(h)) − dimH0(IS(h)) = #S − dimH1(IS(h)).

In the case that S is a complete intersection of hypersurfaces of degrees

d1, . . . , dm defined by homogeneous polynomials f1, . . . , fm, the Hilbert

function can be computed explicitly from the Koszul complex of the reg-

ular sequence f1, . . . , fm (see [23]). Moreover, there are particularly nice

techniques from commutative algebra and algebraic geometry related to the

classical Cayley-Bacharach Theorem that apply. A modern version of this

result due to Davis, Geramita, and Orecchia can be stated as follows in the

situation at hand.

Theorem 7.10. Let S ⊂ Pm be a reduced complete intersection of hy-

persurfaces of degrees d1, . . . , dm. Let Γ′,Γ′′ be disjoint subsets of S with

S = Γ′ ∪ Γ′′. Let s =
∑m

i=1 di −m− 1. Then for all h ≥ 0,

dimH0(IΓ′(h)) − dimH0(IS(h)) = dimH1(IΓ′′(s− h)).

Applied to the corresponding codes from a complete intersection S con-

sisting of d1d2 . . . dm distinct Fq-rational points, this result implies the fol-

lowing.

Theorem 7.11. Let S be a reduced complete intersection of hypersurfaces

of degrees d1, . . . , dm in Pm. Let s =
∑m

i=1 di −m− 1 as in Theorem 7.10.

If 1 ≤ h ≤ s, the code Ch(S) has minimum distance

d ≥
m∑

i=1

di − h− (m− 1) = s− h+ 2.

The proof is accomplished by showing that under these hypotheses, any

form of degree h that is zero on a subset Γ′ that is too large must be zero

at all points in S because the H1(IΓ′′(s− h)) group vanishes.

The bound on d given here was improved rather strikingly by Ballico

and Fontanari to d ≥ m(s − h) + 2 under the assumption that all subsets

of m+ 1 of the points in S span Pm – see [2] for this.

Bounds derived by these methods are usually interesting only for h

close to s. Moreover some, but not all, interesting examples of S satisfy

the complete intersection hypothesis. For instance the affine Fq-rational

points in Pm form a complete intersection for all m. The F8-rational points

on the Klein quartic and the Fr2 points on the Hermitian curve are other

examples.
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7.3.5. General Weil-type bounds

From Equation (7.4) above, and the proof of Theorem 7.5, the minimum

distance of a C(X) code as in Definition 7.2 is determined by the numbers

of Fq-rational points on the subvarieties Y = X ∩ V(f). Hence, another

possible approach to estimate d is to apply general bounds for #Y (Fq), for

instance bounds derived from the statements of the Weil conjectures, or

refined versions of these.

We very briefly recall the deep mathematics behind this approach.

Thinking of X as a variety over the algebraic closure of the finite field,

the number of Fq-rational points on X can be computed by an analog of

the Lefschetz trace formula for the action of the Frobenius endomorphism

F on the `-adic étale cohomology groups of X , H i(X) (where ` is any prime

not dividing q):

#X(Fq) =

2m∑

i=0

(−1)i Tr(F |H i(X)). (7.7)

Moreover, the eigenvalues of F on H i(X) are algebraic numbers of absolute

value qi/2. When X is obtained from a variety Y defined over the ring of

integers R of some number field by reduction modulo some prime ideal in

R, then the dimensions of the H i(X) are the same as the topological Betti

numbers of the variety over C corresponding to Y .

Thus, for instance, if X is a smooth curve of genus g which is the

reduction of a smooth curve Y , then

#X(Fq) = q + 1 −
2g∑

j=0

αj ,

where |αj | = q1/2 for all j. The Hasse-Weil bound often used in the theory

of Goppa codes from curves is a direct consequence:

|#X(Fq) − (q + 1)| ≤ 2g
√
q.

There is a correspondingly concrete Weil-type bound for hypersurfaces in

Pm, and this can be used to derive bounds on the numbers of Fq-rational

points in hyperplane sections as well. A hypersurface is said to be nonde-

generate if it not contained in any linear subspace of Pm.

Theorem 7.12. Let X be a smooth nondegenerate hypersurface of degree

s in Pm, m ≥ 2. Then

|#X(Fq) − (qm−1 + · · · + q + 1)| ≤ b(s)q(m−1)/2, (7.8)
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where b(s) = s−1
s ((s−1)m−(−1)m) is the middle Betti number of a smooth

hypersurface of degree s when m is even, and one less than that number

when m is odd.

Equation (7.8) follows from the shape of the cohomology groups H i(X)

of a smooth hypersurface in Pm, which (by the Lefschetz hyperplane the-

orem and Poincaré duality) look like the corresponding groups for Pm−1,

except possibly in the middle dimension i = m− 1.

Example 7.13. If m = 2 and X is a smooth curve of degree s in P2, then

b(s) =
s− 1

s
((s− 1)2 − 1) = (s− 1)(s− 2) = 2g(X)

as expected. In order to obtain long codes over Fq , the maximal curves, that

is, curves attaining the maximum #X(Fq) from Equation (7.8), have been

especially intensively studied. For instance, when q = r2, the Hermitian

curve of degree s = r + 1 over Fr2 , X = V(xr+1
0 + xr+1

1 + xr+1
2 ), has

#X(Fr2) = r3 + 1 = 1 + r2 + r(r − 1)r. ♦

Example 7.14. Whenm = 3 and q = r2, the analogous Hermitian surfaces

X = V(xr+1
0 + xr+1

1 + xr+1
2 + xr+1

3 ) also attain the upper bound from

Equation (7.8), which reads

#X(Fr2) ≤ 1 + r2 + r4 +
r

r + 1
(r3 + 1)r2 = (r2 + 1)(r3 + 1).

The Hermitian surface contains this many distinct Fr2-rational points be-

cause, for instance, it is possible to take the defining equation to the affine

form

yr
1 + y1 = yr+1

2 + yr+1
3

by a linear change of coordinates that puts a plane tangent to the surface

as the plane at infinity. Then there are r5 affine Fr2-rational points (r for

each pair (y2, y3) ∈ (Fr2)2). There are also (r + 1)r2 + 1 rational points at

infinity since the intersection of the surface with each of its tangent planes

at an Fr2-rational point is the union of r+1 concurrent lines in that plane.

This yields r5 + (r + 1)r2 + 1 = (r3 + 1)(r2 + 1) points as claimed. ♦

The following result of Lachaud appears in [37].

Theorem 7.15. Let X be a smooth nondegenerate hypersurface of degree

s in Pm for m ≥ 3. Let H = V(f) for a linear form in Fq[x0, . . . , xm], and
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let XH denote the intersection X ∩H (with the reduced scheme structure).

Then

|#XH(Fq) − (qm−2 + · · · + q + 1)| ≤ (s− 1)m−1q(m−1)/2, (7.9)

and

|q#XH(Fq) − #X(Fq)| ≤ (s− 1)m−1(q + s− 1)q(m−1)/2. (7.10)

These bounds are proved by comparing the cohomology of X and XH ,

taking into account possible singularities of XH . For a proof, see Corollary

4.6 and preceding results of [37].

When S is the full set of Fq-rational points on X , so n = #S for the

C(X ;S) code and H is a general hyperplane, these imply the following

bounds on #(H ∩ S). Equation (7.10) implies
∣∣∣∣(n− #(H ∩ S)) − (q − 1)

q
n

∣∣∣∣ ≤ (s− 1)m−1(q + s− 1)q(m−3)/2 (7.11)

and
∣∣(n− #(H ∩ S)) − qm−2

∣∣ ≤ s(s− 1)m−1q(m−1)/2. (7.12)

These, together with Equation (7.9), give universally applicable lower

bounds on d by applying Equation (7.4).

As is perhaps to be expected, it is often possible to derive tighter bounds

in specific cases by taking the properties of X into account.

7.4. Examples

This section will consider codes produced according to the constructions

from Section 7.2 from various special classes of varieties. By analogy with

the case of Goppa codes from curves, much work has focused in identifying

varieties with many rational points over finite fields Fq and studying the

codes constructed from those X .

7.4.1. Quadrics

First consider the C(X) codes from quadric hypersurfaces X = V(f)

for homogeneous f of degree 2 in Fq[x0, . . . , xm]. The following statements

are proved, for instance, in Chapter 22 of [30]. Up to projective equivalence

over Fq , such X are completely described by a positive integer called the

rank and a second integer called the character, which takes values in the

finite set {0, 1, 2}. The rank, denoted ρ, can be described as the minimum
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number of variables needed to express f after a linear change of coordinates

in Pm. X is said to be nondegenerate if ρ = m+1. Nondegenerate quadrics

are always smooth varieties. Degenerate quadrics are singular, but they

are cones over nondegenerate quadrics in a linear subspace of Pm. Hence in

principle it suffices to study nondegenerate quadrics and we will consider

only that case here. The character, denoted w, is most easily described by

considering a finite set of possible normal forms for f .

If m is even, then every nondegenerate quadric can be taken to the form

x2
0 + x1x2 + x3x4 + · · · + xm−1xm.

V(f) is called a parabolic quadric in this case, and the character w is defined

to be 1.

On the other hand, if m is odd, there are two distinct possible forms:

x0x1 + x2x3 + · · · + xm−1xm or

q(x0, x1) + x2x3 + · · · + xm−1xm.

In the first case, V(f) is called a hyperbolic quadric and w = 2. In the

second, q(x0, x1) is a quadratic form in two variables which can be further

reduced to slightly different normal forms depending on whether q is even

or odd. For both even and odd q, in the second case, V(f) is called a

elliptic quadric and w = 0.

Theorem 7.16. A nondegenerate quadric X in Pm with character w has

#X(Fq) = qm−1 + · · · + q + 1 + (w − 1)q(m−1)/2.

In particular, this result says that hyperbolic and parabolic quadrics at-

tain the upper bound from Equation (7.8) with s = 2, and elliptic quadrics

attain the lower bound.

Because each linear section of X is also a quadric in a lower-dimensional

space, Theorem 7.16 can be used to determine the full weight distributions

of the C(X) codes. In particular,

Theorem 7.17. The C(X) code from a smooth quadric X in Pm has n

given in Theorem 7.16, k = m+ 1 and

d =





qm−1 if w = 2

qm−1 − q(m−2)/2 if w = 1

qm−1 − q(m−1)/2 if w = 0.

(7.13)
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For instance, if m is even, so w = 1 (the parabolic case), the hyperplane

section of X containing the most Fq-rational points will be a hyperbolic

section and d is as above. When w = 2 (for example, for codes from hyper-

bolic quadrics in P3), the minimum weight codewords come from hyperplane

sections that are degenerate quadrics.

The same sort of reasoning has also been used by Nogin and Wan

to determine the complete hierarchy of generalized Hamming weights

d1(C(X)), . . . , dk(C(X)). The results are somewhat intricate to state,

though, so we refer the interested reader to the articles [44, 57] and the

notes in Section 7.8.

For the Ch(X) codes with h ≥ 2, the dimension can be estimated using

Equation (7.3), where IX(h) ' OPm(h− 2). This yields

k ≤
(
m+ h

h

)
−
(
m+ h− 2

h− 2

)
.

7.4.2. Hermitian hypersurfaces

For the C(X) codes constructed from the Hermitian surfaces of Exam-

ple 7.14 with q = r2, Equation (7.9) gives

d ≥ (r2 + 1)(r3 + 1) − (r2 + 1 + r4) = r5 − r4 + r3.

However, closer examination of the hyperplane sections of the Hermitian

surface yields the following statement.

Theorem 7.18. Let X = V(xr+1
0 + xr+1

1 + xr+1
2 + xr+1

3 ) be the Hermitian

surface over Fr2 . The C(X) code on S = X(Fr2) has parameters
[
(r2 + 1)(r3 + 1), 4, r5

]
.

Proof. Every Fr2-rational plane in P3 intersects X either in a Hermitian

curve containing r3 + 1 points over Fr2 , or else in r + 1 concurrent lines

containing (r + 1)r2 + 1 points. Hence by Equation (7.4),

d = n− ((r + 1)r2 + 1) = r5.
�

The Ch(X) codes with h > 1 are more subtle here.

Theorem 7.19. Let X and S be as in Theorem 7.18. If h < r + 1, the

Ch(X) code has parameters
[
(r2 + 1)(r3 + 1),

(
4 + h

h

)
, d ≥ n− h(r + 1)(r2 + 1)

]
.
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Proof. This bound follows from Theorem 7.4 by the fact that if f is a

form of degree h, then V(f) ∩ X is a curve of degree δ = h(r + 1) in P3.

The hypothesis on h implies that the evaluation mapping is injective. For

larger h, Equation (7.3) would be used to determine the dimension of the

space of forms of degree h vanishing on the Hermitian variety. �

An even tighter bound

d ≥ n− (h(r3 + r2 − r) + r + 1) (7.14)

has been conjectured by Sørensen for these codes in [53].

The Hermitian curve and surface codes can be generalized as follows (see

Chapter 23 of [30]). Over a field of order q = r2, consider the Hermitian

hypersurface in Pm defined by

X = V(xr+1
0 + xr+1

1 + · · · + xr+1
m ). (7.15)

The mapping F (x) = xr is a involutory field automorphism of Fr2 . The

defining polynomial of X may be understood as H(x, x) for the mapping

H : Fm+1
r2 × Fm+1

r2 → Fr2 given by

H(x, y) = x0y
r
0 + · · · + xmy

r
m.

It is clear that H is additive in each variable and satisfies H(λx, y) =

λH(x, y) and H(x, λy) = λrH(x, y) = F (λ)H(x, y) for the automorphism

F above. Hence H is an example of what is known as a sesquilinear form

on Fm+1
r2 ×Fm+1

r2 . After a linear change of coordinates defined over Fr2 , any

such sesquilinear H on V × V , where V is a finite-dimensional Fr2-vector

space, can be expressed as

H(x, y) = x0y
r
0 + · · · + x`y

r
` (7.16)

for some ` ≤ dimV . H is said to be nondegenerate if ` = dimV and

degenerate otherwise.

It follows that every linear section L∩X of a Hermitian hypersurface is

also a Hermitian variety in the linear subspace L = PW for some vector sub-

space W . Moreover, if the section is degenerate (i.e. ` < dimW in Equation

(7.16)), then the section is a cone over a nondegenerate Hermitian variety

in a linear subspace of L. Thus, the properties of the codes C(X) from the

Hermitian hypersurfaces are formally quite similar to (and even somewhat

simpler than) the properties of codes from quadrics discussed above. The

main ingredient is the following statement for the nondegenerate Hermitian

hypersurfaces.
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Theorem 7.20. Let X be the nondegenerate Hermitian hypersurface from

Equation (7.15). Then

#X(Fr2) = r2m−2 + · · · + r2 + 1 + b(r + 1)rm−1,

where b(r + 1) = r
r+1 (rm − (−1)m).

In other words, for all m, the nondegenerate Hermitian hypersurfaces

meet the upper bound from Equation (7.8) for a hypersurface of degree

s = r + 1.

Theorem 7.21. Let S = X(Fr2) for the nondegenerate Hermitian hy-

persurface X in Pm. The C(X ;S) code has n given in Theorem 7.20,

k = m+ 1, and

d =

{
r2m−1 − rm−1 if m ≡ 0 mod 2

r2m−1 if m ≡ 1 mod 2.

When m is even, the minimum weight codewords of the C(X) come

from nondegenerate Hermitian variety hyperplane sections. On the other

hand, if m is odd, then the minimum weight codewords of C(X) come from

hyperplane sections that are degenerate Hermitian varieties. In both cases,

the nonzero codewords of C(X) have only two distinct weights:

r2m−1 + (−1)m−1rm−1 and r2m−1.

The hierarchies of generalized Hamming weights dr are also known for the

C(X) codes by work of Hirschfeld, Tsfasman, and Vladut, [31]. The same

sort of techniques used in Theorem 7.18 above can be applied to the Ch(X)

codes for h ≥ 2 here. However, much less is known about the exact Ham-

ming weights of these codes.

7.4.3. Grassmannians and flag varieties

The Grassmannian G(`,m) is a projective variety whose points are in

one-to-one correspondence with the `-dimensional vector subspaces of an

m-dimensional vector space (or equivalently the (`− 1)-dimensional linear

subspaces of Pm−1). We very briefly recall the construction.

Let F denote an algebraic closure of Fq . Given any basis B =

{v1, . . . , v`} for an `-dimensional vector subspace W of Fm, form the `×m

matrix M(B) with rows vi. Consider the determinants of the maximal

square (`× `) submatrices of M(B). There is one such maximal minor for

each subset I ⊂ {1, . . . ,m} with #I = `, so writing pI(W ) for the maximal
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minor in the columns corresponding to I , the Plücker coordinate vector of

W is the homogeneous coordinate vector

p(W ) = (· · · : pI(W ) : · · · ) ∈ P(m
` )−1, (7.17)

where I runs through all subsets of size ` in {1, . . . ,m}. The point p(W )

is a well-defined invariant of W because a change of basis in W multiplies

the matrix M(B) on the left by the change of basis matrix, an element of

GL(`,F). All components of the Plücker coordinate vector are multiplied

by the determinant of the change of basis matrix, an element of F ∗. Hence

any choice of basis in W yields the same point p(W ) in P(m
` )−1.

The locus of all such points (for all W ) forms the Grassmannian G(`, k),

an algebraic variety whose defining ideal is generated by a collection of

Plücker quadrics. Consider the set of W such that pI0(W ) 6= 0, so the

maximal minor with I0 = {1, . . . , `} is invertible. The set of such W is one

of the open subsets in the standard affine cover of G(`,m). In the row-

reduced echelon form of M(B), the entries in the columns complementary

to I0 (an `×(m−`) block) are arbitrary and uniquely determine W . Hence

dimG(`,m) = `(m− `).

To construct Grassmannian codes, one uses the Fq-rational points of

G(`,m), which come from subspaces W defined over Fq. Nogin has es-

tablished the following result.

Theorem 7.22. Let S be the set of all the Fq-rational points on X =

G(`,m). Then the C(X ;S) code (from linear forms in the Plücker coordi-

nates) has parameters
[[
m

`

]

q

,

(
m

`

)
, q`(m−`)

]
,

where
[
m

`

]

q

=
(qm − 1)(qm − q) · · · (qm − q`−1)

(q` − 1)(q` − q) · · · (q` − q`−1)
.

Proof. The numerator in the formula for

[
m

`

]

q

is precisely the number

of ways of picking a list of ` linearly independent vectors in Fm
q (a basis

for a W defined over Fq). Similarly, the denominator is the number of

ways of picking ` linearly independent vectors in F `
q , hence the order of

the group GL(`,Fq). The quotient is the number of distinct `-dimensional



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

276 J.B. Little

subspaces of Fm
q . This shows n = #S =

[
m

`

]

q

. Assuming d = q`(m−`) for

the moment, the fact that d > 0 says the evaluation mapping on the vector

space of linear forms in P(m
` )−1 is injective, and the formula for k follows.

Finally, we must prove that d = q`(m−`).

The complement of the hyperplane section G(`,m) ∩ V(pI0 ) contains

exactly q`(m−`) Fq-rational points of G(`,m). Hence d ≤ q`(m−`). The

cleanest way to prove that this is an equality is to use the language of

exterior algebra on Fq-vector spaces, following Nogin in [45].

Let V = Fm
q and write ei for the standard basis vectors in V . The

Fq-rational points of the Grassmannian G(`,m) can be identified with the

subset of P
(∧` V

)
' P(m

` )−1 corresponding to the completely decomposable

elements of the exterior product
∧`

V (that is, nonzero elements of the form

ω = w1 ∧ w2 ∧ · · · ∧ w` for some wi ∈ V that form a basis for the subspace

they span).

The hyperplanes in P
(∧`

V
)

correspond to elements of P
(∧`

V
)∗

,

hence to elements of
∧m−`

V (up to scalars) via the nondegenerate pairing

∧ :
∧m−`

V ×∧`
V → ∧m

V ' Fq .

It follows that the hyperplanes in P
(∧`

V
)

all have the form

H(α) = P {ω ∈ ∧`
V : α ∧ ω = 0}

for some nonzero α ∈ ∧m−`
V .

Under these identifications, each hyperplane V(f) for f a linear form in

the Plücker coordinates corresponds to H(α) for some α. For instance,

V(pI0 ) corresponds to H(α0) for the completely decomposable element

α0 = e`+1 ∧ · · · ∧ em. All completely decomposable α ∈ ∧m−`
V define hy-

perplane sections of the Grassmannian with the same number of Fq-rational

points. Call this number N`.

What must be proved is that if β ∈ ∧m−` V is arbitrary, then the linear

forms f in the Plücker coordinates defining the hyperplane H(β) satisfy

wt(evS(f)) ≥ N`.

This follows by induction on ` using the easily checked fact that if e ∈ V

and α ∈ ∧m−`
V , then

α ∧ e = 0 ⇐⇒ α = α′ ∧ e (7.18)

for some α′ ∈ ∧m−`−1
V .
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If ` = 1, there is nothing to prove because every element of
∧m−1

V is

completely decomposable. If ` > 1, writing [`]q = #GL(`,Fq),

wt(evS(f)) = #{W = Span(w1, . . . , w`) : β ∧ w1 ∧ · · · ∧ w` 6= 0}
= #{(w1, . . . , w`) : β ∧ w1 ∧ · · · ∧ w` 6= 0} / [`]q.

Hence by the induction hypothesis, if α is completely decomposable

[`]q · wt(evS(f)) =
∑

w1:β∧w1 6=0

#{(w2, . . . , w`) : (β ∧ w1) ∧ w2 ∧ · · · ∧ w` 6= 0}

≥
∑

w1:β∧w1 6=0

N`−1 · [`− 1]q

= N`−1 · [`− 1]q · #{w1 : β ∧ w1 6= 0}
≥ N`−1 · [`− 1]q · #{w1 : α ∧ w1 6= 0} by Equation (7.18)

= [`]q ·N`.
�

The exterior algebra language can also be used to say more about the

weight distribution of C(G(`,m);S). For instance, the number of minimum

weight words of this code is equal to the number of linear forms correspond-

ing to completely decomposable α. This number is exactly q − 1 times the

number of Fq-rational points of the dual Grassmannian G(m− `,m), or

(q − 1)

[
m

m− `

]

q

= (q − 1)

[
m

`

]

q

.

For further information on these codes see the bibliographic notes in Sec-

tion 7.8.

Codes on certain subvarieties of Grassmannians, the so-called Schubert

varieties, have also been studied in detail by Chen, Guerra and Vincenti,

and Ghorpade and Tsfasman. Let α = (α1, . . . , α`) ∈ Z`, where 1 ≤ α1 ≤
· · · ≤ α` ≤ m. If B = {v1, . . . , vm} is a fixed basis of Fm

q , let Ai be the

span of the first i vectors in B. Then the Schubert variety Ωα is defined as

Ωα = {p(W ) ∈ G(`,m) : dimW ∩Aαi
≥ i}. (7.19)

See Section 7.8 for some pointers to the literature here.

Just as Grassmannians parametrize linear subspaces in Fm, the flag

varieties parametrize flags of linear subspaces, that is nested sequences of

subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vs,
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where dimVi = `i and 0 < `1 < `2 < . . . < `s < m. The flag is said to

have type (`1, `2, . . . , `s). Also set `s+1 = m and `0 = 0 by convention. The

group G = GL(m,F) acts on the set of flags of each fixed type and the

isotropy subgroup of a particular flag is a parabolic subgroup P conjugate

to the group of block upper-triangular matrices with diagonal blocks Mr of

sizes `r − `r−1 for 1 ≤ r ≤ s+1. Hence the quotient G/P , which is denoted

F(`1, `2, . . . , `s;m), classifies flags of type (`1, `2, . . . , `s). The set G/P has

the structure of a projective variety, which can be described as follows. Each

Vi corresponds to a point of G(`i,m). So the flag corresponds to a point

of the product variety G(`1,m) × · · · ×G(`s,m) and F(`1, `2, . . . , `s;m) is

the subset of this product defined by the conditions Vi ⊂ Vi+1 for all i.

This can be embedded in PN1 × · · · × PNs , for Ni =
(
m
`i

)
, by the Plücker

coordinates as in Equation (7.17). Finally, the product

PN1 × · · · × PNs ↪→ PN

for N = (N1 +1) · · · · · (Ns +1)− 1 by another standard construction called

the Segre map.

As in the Grassmannian case, Fq-rational points on the flag variety

F(`1, `2, . . . , `s;m) correspond to flags that are defined over Fq . As an

example of codes from flag varieties, consider the code C(X ;S) from X =

F(1,m− 1;m) (that is, the variety parametrizing flags V1 ⊂ V2 consisting

of a line V1 and a hyperplane V2 containing that line). In this case

F(1,m− 1;m) ⊂ G(1,m) ×G(m− 1,m) ' Pm−1 × Pm−1 ↪→ Pm2−1.

Theorem 7.23. Let S be the set of all the Fq-rational points on X =

F(1,m− 1;m). Then the C(X ;S) code has parameters
[
(qm − 1)(qm−1 − 1)

(q − 1)2
,m2 − 1, q2m−3 − qm−2

]
.

The proof is due to Rodier and appears in [48]. The evaluation map-

ping using linear forms on Pm2−1 is not injective in this case because the

condition that V1 ⊂ V2 is expressed by a linear equation in the coordinates

of the Segre embedding of Pm−1 × Pm−1.

7.4.4. Blow-ups and Del Pezzo surfaces

Consider the surface X = P2. Let

Yk → Yk−1 → · · · → Y1 → Y0 = X, (7.20)
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be a sequence of morphisms where for all j, πj : Yj → Yj−1 is the blow

up of an Fq-rational point of the surface Yj−1. The result will be a surface

Y = Yk containing divisors E1, . . . , Ek that are all contracted to a point

on X . Each Ej is isomorphic to P1, and each contributes q additional

Fq-rational points. Therefore

#Y (Fq) = q2 + q + 1 + kq,

which also attains the upper Weil bound for a surface with the Betti num-

bers of these examples. Whether this construction gives interesting codes

depends very much on the the embedding of the surface Y into Pm (that

is, on the linear series of divisors forming the hyperplane sections).

One famous family of examples of such surfaces are the so-called Del

Pezzo surfaces. Hartshorne’s text [28] and Manin [40] are good general

references for these. By definition, a Del Pezzo surface is a surface of

degree m in Pm on which the anticanonical line bundle K−1 is ample. A

classical result in the theory of algebraic surfaces is that every Del Pezzo

surface over an algebraically closed field F is obtained either as the degree

2 Veronese image of a quadric in P3, or as follows. Let ` be one of the

integers 0, 1, . . . , 6, and take points p1, . . . , p` in P2 in general position (no

three collinear, and no six contained in a conic curve). The linear system of

cubic curves in P2 containing the base points {p1, . . . , p`} gives a rational

map ρ : P2 – – → P9−`. The image is a surface X` of degree 9− ` on which

the points pi blow up to exceptional divisors Ei ' P1 as in the composition

of all the maps in Equation (7.20). Since the canonical sheaf on P2 is

K ' OP2(−3), the anticanonical divisors are precisely the divisors in the

linear system of cubics containing {p1, . . . , p`}. For instance, with ` = 6,

X` is a cubic surface in P3, and every smooth cubic surface is obtained by

blowing up some choice of points p1, . . . , p6. With ` = 0, the surface X0 is

the degree 3 Veronese image of P2, a surface of degree 9 in P9.

To get a Del Pezzo surface defined over Fq, the points pi should be Fq-

rational points in P2. This means that the construction above can fail for

certain small fields (there may not be enough points pi in general position).

It suffices to take q > 4, however in order to construct the Del Pezzo surfaces

with 0 ≤ ` ≤ 6.

By considering the possible hyperplane sections of the Del Pezzo surface

Boguslavsky derives the following result in [3].

Theorem 7.24. Let X` be the Del Pezzo surface constructed as above and
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let q > 4. The parameters of the C(X`) code are

n = q2 + q + 1 + `q, k = 10 − `,

and d given in the following table

` 0 1 2 3 4 5 6

d(C(X`)) q
2 − 2q q2 − 2q q2 − 2q q2 − 2q + 1 q2 q2 + 2q q2 + 4q + 1∗

The case ` = 6 corresponds to the code from a cubic surface in P3.

Note the asterisk in the table above. In the generic case, there are plane

sections of a cubic surface consisting of three lines forming a triangle, but

no sections consisting of three concurrent lines. The triangle plane sections

contain the maximum number of Fq-rational points, namely 3q. Hence

d(C(X6)) = q2 + 7q + 1 − 3q = q2 + 4q + 1, as claimed in this case. For

some special configurations of points pi, however, the corresponding cubic

surface will have Eckardt points where there is a plane section consisting of

three concurrent lines. For those surfaces, the minimum distance is q2 + 4q

rather than q2 + 4q + 1.

7.4.5. Ruled surfaces and generalizations

A ruled surface is a surface X with a mapping π : X → C to a smooth

curve C, whose fibers over all points of C are P1’s. Moreover, it is usually

required that π has a section, that is, a mapping σ : C → X such that

π ◦ σ is the identity on C. For instance, over an algebraically closed field,

quadric surfaces in P3 are isomorphic to the product ruled surface P1 ×P1.

For background on these varieties, Chapter V of [28] is a good reference.

Starting from a curve C and a vector bundle of rank 2 (that is, a locally

free sheaf of rank 2) E on C, the projective space bundle X = P(E) is a ruled

surface. Conversely, every ruled surface π : X → C is isomorphic to P(E)

for some locally free sheaf of rank 2 on C. Given a curve C and two vector

bundles on C, the ruled surfaces P(E) and P(E ′) are isomorphic if and only

if E ' E ′ ⊗ L for some line bundle L on C. By choosing L appropriately,

it is possible to make H0(E) 6= 0 but H0(E ⊗ M) = 0 whenever M is a

line bundle on C of negative degree and in this case we say E is normalized.

Then there is a section C0 of X with C2
0 = −e where e = deg(E) is the

degree of the divisor E on C corresponding to the line bundle
∧2 E . If E

is decomposable (a direct sum of two line bundles) and normalized, then

e ≥ 0. If E is indecomposable, then it is known that −g(C) ≤ e ≤ 2g(C)−2,

where g(C) is the genus.
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Up to numerical equivalence, each divisor D on X is D ∼ b1C0 + b2f ,

where f is a fiber of the mapping π and b1, b2 ∈ Z. The intersection product

on divisors is determined by the relations C2
0 = −e, C0 · f = 1, f2 = 0.

S.H. Hansen has shown the following result.

Theorem 7.25. Let π : X → C be a normalized ruled surface with invari-

ant e ≥ 0. Let #C(Fq) = a, and let S be the full set of Fq-rational points

on X. Let L = OX(b1C0 + b2f). Then the C(X,L;S) code has parameters

[a(q + 1), dimΓ(X,L), d ≥ n− b2(q + 1) − (a− b2)b1],

(provided that b2 < a and the bound on d is positive).

Proof. Let f1, . . . , fa be the fibers of π over the Fq-rational points of

C. These are disjoint curves on X isomorphic to P1, hence contain q + 1

Fq-rational points each. Every Fq-rational point of X lies on one of these

lines, so n = a(q + 1). As usual, the statement for k follows if d > 0.

The estimate for d comes from the method of Theorem 7.7 applied to the

covering family of curves f1, . . . , fa. In the notation of that theorem, we

have N = q + 1 and η = (b1C0 + b2f) · f = b1. At most ` = b2 of the

fibers are contained in any divisor D corresponding to a global section of

OX(b1C0 + b2f) since D · C0 = (b1C0 + b2f) · C0 = −eb1 + b2 ≤ b2. The

bound on d follows immediately. �

The dimension of the space of global sections of L can be computed

via divisors on C because of general facts about sheaves on the projective

space bundle P(E) (see [28], Lemma V.2.4). See the bibliographic notes in

Section 7.8 for more information about these codes and for work on codes

from projective bundles of higher fiber dimension.

7.4.6. Other work on codes from surfaces

One interesting recent contribution to the search for good codes from

higher-dimensional varieties is described in the unpublished preprint [56] of

Voloch and Zarzar and the article [61] of Zarzar. Following Observation 7.6,

Voloch and Zarzar seek good surfaces for constructing codes by limiting the

presence of reducible V(f) ∩X via control of the rank of the Néron-Severi

group of X .
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7.5. Codes from Deligne-Lusztig Varieties

Some of the most interesting varieties that have been used to produce

codes by the constructions of Section 7.2 are the so-called Deligne-Lusztig

varieties from representation theory. As we will see, their description in-

volves several of the general processes on varieties involved in the examples

above.

Let G be a connected reductive affine algebraic group over the algebraic

closure F of Fq , a closed subgroup of GL(n,F) for some n. We have the q-

Frobenius endomorphism F : G → G whose fixed points are the Fq-rational

points of G.

A Borel subgroup of G is a maximal connected solvable subgroup of

G. A torus is a subgroup of G isomorphic to (F ∗)s for some s. All Borel

subgroups are conjugate, and each maximal torus T is contained in some

Borel subgroup. Let N(T ) be the normalizer of T in G. The quotient

N(T )/T is a finite group called the Weyl group of G.

The set B of all Borel subgroups of G can be identified with the quotient

G/B for any particular B via the mapping G/B → B given by g 7→ g−1Bg.

If w ∈W , then the Deligne-Lusztig variety associated to w can be described

as follows. Let B be an F -stable Borel subgroup, then

X(w) = {x ∈ G : x−1F (x) ∈ BwB}/B ⊂ B.

Theorem 7.26. Let w = s1 · · · sn be a minimal factorization of w into

simple reflections in W , the Weyl group of G as above. Then

(1) X(w) is a locally closed smooth variety of pure dimension n.

(2) The variety X(w) is fixed by the action of the group GF and is defined

over Fqδ , where δ is the smallest integer such that F δ fixes w.

(3) The closure of X(w) in B is the union of the X(si1 · · · sir
) such that

1 ≤ i1 < i2 < · · · < ir ≤ n and X(e).

We refer to [5] for the classification of reductive G in terms of Dynkin

diagrams with action of F . In [21], J. Hansen studied the Hermitian curves

over Fq2 , the Suzuki curves over F22n+1 and the Ree curves over F32n+1 , all

well-known maximal curves, and all used to construct interesting Goppa

codes with very large automorphism groups. Hansen showed that the un-

derlying reason these particular curves are so rich in good properties is that

they are the Deligne-Lusztig varieties for groups G for which there is just

one orbit of simple reflections in the Weyl group under the action of F . The

Hermitian curves come from groups of type 2A2, the Suzuki curves come
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from the groups of type 2B2, and the Ree curves from the groups of type
2G2.

It is known that there are seven cases in which there are two F -orbits

in the set of reflections in W , so taking s1, s2 from the distinct orbits, the

Deligne-Lusztig construction with w = s1s2 leads to algebraic surfaces:

A2, C2, G2,
2A3,

2A4,
3D4,

2F4.

One of these cases is relatively uninteresting. In [47], Rodier shows that

the complete, smooth Deligne-Lusztig variety X(s1, s2) from the group of

type A2 is isomorphic to the blow-up of P2 at all of its Fq-rational points.

For the group of type 2A3, however, Rodier shows that X(s1, s2) is

isomorphic to the blow-up of the Hermitian surface in P3 at its Fq2 -rational

points. Hence as in the discussion of the blow-ups of P2 above, and using

Example 7.14, we get a surface with (q3 + 1)(q2 + 1)2 points.

Similarly the X(s1, s2) from a group of type 2A4 is isomorphic to the

blow-up of the complete intersection Y of the two hypersurfaces

0 = xq+1
0 + xq+1

1 + · · · + xq+1
4 (7.21)

0 = xq3+1
0 + xq3+1

1 + · · · + xq3+1
4

in P4 at the (q5 +1)(q2 +1) Fq2 -rational points on that surface. (These are

the same as the Fq2 -rational points on the Hermitian 3-fold in P4 defined by

the first equation.) It is easy to check that these points are all singular, and

in fact they blow up to Hermitian curves (not P1’s) on the Deligne-Lusztig

surface. Hence the Deligne-Lusztig surface X has a very large number of

Fq2 -rational points in this case,

#X(Fq2) = (q5 + 1)(q2 + 1)(q3 + 1).

Rodier determines the structure and number of Fqδ -rational points in the

G2,
3D4, and 2F4 cases as well. Interestingly enough, his method is to

realize the Deligne-Lusztig varieties as certain subsets of flag varieties as

above, where the subspaces in the flags are related to each other using the

Frobenius endomorphism.

Rodier and S.H. Hansen also discuss the properties of the Ch(X) codes

on these varieties. For instance in [26], Hansen shows the following result by

relating codes on Y from Equation (7.21) and codes on the Deligne-Lusztig

surface itself.

Theorem 7.27. Let X be the Deligne-Lusztig surface of type 2A4 over the
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field Fq2 . For 1 ≤ h ≤ q2, there exist codes over Fq2 with

n = (q5 + 1)(q3 + 1)(q2 + 1),

k =

(
4 + h

h

)
−
(

4 + h− (q + 1)

t− (q + 1)

)
, and

d ≥ n− hP (q),

where P (q) = (q3 + 1)(q5 + 1) + (q + 1)(q3 + 1)(q2 − h+ 1).

Since P (q) has degree 8 in q, this shows that d + k ≥ n − O(n4/5)

with n = O(q10), some very long codes indeed! Hansen also considers the

codes obtained from the singular points on the complete intersection from

Equation (7.21) (that is from the Hermitian 3-fold).

7.6. Connections with Other Code Constructions

In this section we point out some connections between the construc-

tion presented here and some other examples of algebraic geometric codes

related to higher dimensional varieties in the literature. There is a close

connection between the codes C(X,L;S) and the toric codes constructed

from polytopes or fans in Rs as in [22] or Chapter 8 of this volume. A toric

variety of dimension s over an algebraically closed field F is a variety X

containing a Zariski-open subset isomorphic to the s-dimensional algebraic

torus T ' (F ∗)s and on which T acts in a manner compatible with the

multiplicative group structure on T . The combinatorial data in a fan Σ in

Rs encodes the gluing information needed to produce a normal toric variety

XΣ from affine open subsets of the form Spec(F[Sσ ]) where F[Sσ] is a semi-

group algebra associated to the cone σ in the fan Σ. A polytope P in Rs

determines a normal fan ΣP and line bundle LP on XΣP
. The toric codes

are codes C(X,L;S) for X = XΣP
, L = LP and S = T ∩ F s

q =
(
F ∗

q

)s
. It

is not difficult to see that toric codes are s-dimensional cyclic codes with

certain other properties generalizing those of Reed-Solomon codes.

The study of decoding algorithms for one-point algebraic geometric

Goppa codes has been unified and simplified by the theory of order do-

mains discussed in [14, 32]. The article [38] shows how order domains can

be constructed from many of the higher dimensional varieties discussed

here.
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7.7. Code Comparisons

It is instructive to compare codes constructed by the methods described

in this chapter and the best currently known codes for the same n, k. We

will focus on the minimum distance, although there are many other con-

siderations too in deciding on codes for given applications. According to

Observation 7.6, when highly reducible V(f) ∩ X exist for some f in Fh,

the resulting codes may not be very good.

All comparisons will be made by means of the online tables of Markus

Grassl, [18]. One initial observation is that many of the varieties X that we

have discussed have so many Fq-rational points that the C(X) codes have

extremely low information rates k/n and the n achieved are far beyond

the ranges explored to date. When no explicit codes are known, it is still

possible to make comparisons with general bounds. Since the k for most

of the Ch(X) codes we have seen are much smaller than n, the Griesmer

bound yields some information. The usual form of the Griesmer bound

(see [33]) says that for an [n, k, d] code over Fq,

n ≥
k−1∑

i=0

⌈
d

qi

⌉
.

Given n, k, this inequality can also be used to derive an upper bound on

realizable d for [n, k] codes that, in a sense, improves the Singleton bound

d ≤ n− k + 1. It should be noted, however, that there are many pairs n, k

for which there are no codes attaining the Griesmer upper bound on d.

We begin by noting the following well-known fact.

Theorem 7.28. The projective Reed-Muller codes with h = 1 from Theo-

rem 7.5 attain the Griesmer upper bound for all m.

This follows since n = #Pm(Fq) = qm + · · · + q + 1, d = qm, and

k = m+ 1.

For h > 1, however, the presence of reducible forms of degree h, which

can have many more Fq-rational zeroes than irreducible forms (see the proof

of Theorem 7.5), tends to reduce the minimum distance relative to other

code constructions. This is true for all q, although the difference shows up

for smaller h the larger q is.

For instance, in the binary case, the h = 2 projective Reed-Muller code

with m = 5 has parameters [63, 21, 16], but there are binary [63, 21, 18]

codes known by [18]. Similarly, with q = 4, the h = 2 projective Reed-

Muller code with m = 3 over F4 has parameters [85, 10, 48], but there
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are [85, 10, 52] codes known over F4 by [18]. In the cases that have been

explored in detail, the gap between the projective Reed-Muller codes and

the best known codes seems to increase with m for fixed h, and also for h

with fixed m (for the cases h < q + 1 considered here at least).

The minimum distance for the C(X) codes from quadrics from Equation

(7.13) also tend to be relatively close to the Griesmer bound for their n, k,

although the bounds grow slightly faster than the actual d as m→ ∞ and

slightly better codes are known in a number of cases. The codes from elliptic

quadrics (w = 0) are superior in general to those from hyperbolic quadrics

(w = 2) whenm is odd. When m = 3, this is a reflection of the phenomenon

noted in Observation 7.6. For larger odd m, this is an interesting example

showing that the “greedy” approach of maximizing n = #X(Fq) does not

always yield the best codes.

For example, over F8, the C(X) code from a hyperbolic quadric in P3

has parameters [81, 4, 64], but there are [81, 4, 68] codes known by [18]. (The

Griesmer bound in this case gives d ≤ 69.) By way of contrast, the C(X)

code from an elliptic quadric has parameters [65, 4, 56], and this is the best

possible by the Griesmer bound. Similar patterns hold over all of the small

fields where systematic exploration has been done. For larger m, however,

it is not always the case that C(X) codes from elliptic quadrics meet the

Griesmer bound, and there are slightly better known codes in some cases.

The C2(X) codes from quadrics seem to be similar, at least in the case

m = 3, where the results of Edoukou from [12] can be applied. Over F8 for

instance, the C2(X) code from a hyperbolic quadric surface has parameters

[81, 9, 49], but there are [81, 9, 58] codes known by [18]. On the other hand,

the C2(X) code from an elliptic quadric has parameters [65, 9, 47], and this

matches the best known d for this n, k over F8. (The tightest known upper

bound is d ≤ 50.)

The Hermitian hypersurface codes seem to be similar to those from

quadrics. The C(X) codes are quite good, coming quite near the Griesmer

bound. For instance, the Hermitian surface code from Theorem 7.18 over

F16 has parameters [1105, 4, 1024]. This is far outside the range of n and

fields for which tables are available, but by way of comparison, d ≤ 1034 by

the Griesmer bound. However, the C2(X) codes are nowhere near as good,

and the gap grows with h.

The codes from Del Pezzo surfaces from Theorem 7.24 seem to be in-

teresting only for ` = 0 (the case X ' P2) and ` = 6 (the case of the cubic

surface in P3). The intermediate cases are quite inferior to the best known

codes because hyperplane sections can contain many of the exceptional di-
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visors (an instance of Observation 7.6).

For the other families of varieties we have considered (Grassmannians,

flag varieties, Deligne-Lusztig varieties), once q or m get even moderately

large, n is so huge that very little is known. On the basis of rather limited

evidence, the Grassmannian and flag variety codes might be especially good

only over very small fields, though. For example, the C(X) code from

X = G(2, 4) over F2 has parameters [35, 6, 16], which attains the Griesmer

bound. Over F3, the corresponding Grassmannian code has [130, 6, 81], but

there are [130, 6, 84] codes over F3 known by [18] and the Griesmer bound

gives d ≤ 84 in this case.

It is unrealistic to expect every code constructed from a variety of dimen-

sion ≥ 2 to be a world-beater. The study of error control codes constructed

from higher dimensional varieties is an area where it is certainly true that

we have just barely begun feeling out the lay of the land and just barely

scratched the surface of what should be possible. If this survey of past work

inspires further exploration, then one of its goals will have been achieved!

7.8. Bibliographic Notes

Section 7.1. The universality of the Goppa construction for producing linear

codes is proved in [46]. This refers specifically to Pellikaan, Shen, and van

Wee’s result that every linear code is weakly algebraic-geometric: Given C,

there exists a smooth projective curve X , a set S of Fq-rational points on

X , and a line bundle L = O(G) for some divisor G with support disjoint

from S, such that C is isomorphic to C(X,L;S) (with no restriction on the

degree of G).

Although very little work to date has been done on decoding methods,

the large groups of automorphisms of some of the varieties considered here

make the permutation decoding paradigm a possibility for certain of these

codes. Some work along these lines has been done by Kroll and Vincenti,

[34, 35].

Section 7.2. Both forms of the construction of codes from varieties (Def-

initions 7.1 and 7.2) come from [55], which was the first place where this

idea was described in published form. The form in Definition 7.2 can be

made even more concrete and less algebraic-geometric by the language of

projective systems of points and their associated codes.

Section 7.3. Theorem 7.5 is taken from [37]. It does not include the codes
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for h > q because the evaluation mapping is no longer injective in those

cases, The parameters of the Ch codes for h > q have been studied by

Lachaud in [36] and Sørensen in [54]. The generalized Hamming weights

dr for the Reed-Muller codes have been studied by Heijnen and Pellikaan

in [29]. Some ideas about finding good subcodes of the C2 codes have been

presented by Brouwer in [4].

Theorem 7.7, the following example, and the bound using Seshadri con-

stants in Theorem 7.9 are all due to S.H. Hansen and are taken from [26].

The results on bounds for the minimum distance when S is a com-

plete intersection come from [17] and that article’s bibliography gives sev-

eral sources for the Cayley-Bacharach theorem and modern generalizations.

The genesis for this was the observation that if S is a reduced complete in-

tersection of two cubic curves in P2, and Γ′ is any subset of eight of the nine

points in S, then every cubic that contains the eight points in Γ′ also passes

through the ninth point in S. Related applications to coding theory were

discussed by Duursma, Renteria and Tapia-Recillas in [10] and J. Hansen

in [23]. The theorem stated here can also be extended to yield a criterion

for MDS codes.

The Weil conjectures were originally stated in [59] and proved in com-

plete generality by Deligne in [9] following three decades of work by Dwork,

Serre, Artin, Grothendieck, Verdier, and many others. Weil’s paper gives

a different form for middle Betti number in Equation (7.8), but it can be

seen that his form is equivalent to ours. The discussion of Weil-type bounds

follows Lachaud’s presentation in [37]. Because of space limitations and

the significantly higher prerequisites needed to work with the `-adic étale

cohomology theory in any detail in higher codimension, we have focused

only on the application of Lachaud’s results to codes from hypersurfaces.

The discussion in [37] is considerably more general. Edoukou has verified

Sørensen’s conjecture (see Equation (7.14)) on the Hermitian surface codes

in the case h = 2 in [11].

Section 7.4. The codes from quadrics have been intensively studied since

at least the 1975 article [60] of Wolfmann. They are especially accessible

because so much is known about the sets of Fq-rational points on quadrics

as finite geometries; see Hirschfeld and Thas, [30]. The complete hierarchies

of generalized Hamming weights dr for the C(X) codes were determined

independently by Nogin in [44] and Wan in [57]. To aid in comparing these

different sources, we note that Wan’s invariant δ is related to Hirschfeld

and Thas’s (and our) character w by δ = 2 − w. The character can also
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be defined by w = 2g − m + 3 where g is the dimension of the largest

linear subspace of Pm contained in the quadric X . Comparatively little

has appeared in the literature concerning the Ch(X) codes with h > 1 on

quadrics following the work of Aubry in [1]. One recent article studying

the C2(X) codes from quadrics in P3 is Edoukou, [12].

Hirschfeld and Thas also contains a wealth of information related to the

codes on Hermitian hypersurfaces. The parameters of the C(X) codes were

established by Chakravarti in [6], and the generalized Hamming weights

were determined in by Hirschfeld, Tsfasman, and Vladut in [31].

Grassmannian codes were studied first in the binary case by C. Ryan and

K. Ryan in [49–51]. The material on Grassmannian codes presented here is

taken from [45]. In that article, Nogin also determines the complete weight

distribution for the codes from X = G(2,m) and shows that the generalized

weights dr of the Grassmann codes meet the generalized Griesmer bound

when r ≤ max{`,m− `}+ 1. More information on the generalized weights

was established by Ghorpade and Lachaud in [15] and these codes are also

discussed as a special case of the code construction from flag varieties by

Rodier in [48]. That article also gives the proof of Theorem 7.23. Codes

from the Schubert varieties defined in Equation (7.19) have been studied

in [7, 16, 20].

The material on Del Pezzo surface codes is taken from Boguslavsky, [3].

That article also determines the complete hierarchy of generalized Hamming

weights dr for these codes.

Codes from ruled surfaces were studied by S.H. Hansen in [26] as an

example of how the bound from Theorem 7.7 could be applied. That article

also addresses the cases where the invariant e < 0, and presents some

examples involving ruled surfaces over the Hermitian elliptic curve over F4.

Codes from ruled surfaces were also considered in Lomont’s thesis, [39].

The results for codes over ruled surfaces have been generalized to give

corresponding results for codes on projective bundles P(E) for E of all ranks

r ≥ 2 by Nakashima in [43]. Nakashima also considers codes on Grassmann,

quadric, and Hermitian bundles in [42].

Other work on codes from algebraic surfaces is contained in the Ph.D.

theses of Lomont, [39], and Davis, [8].

Section 7.5. Rodier’s article [47] is a gold mine of information and tech-

niques for the Deligne-Lusztig surfaces and Deligne-Lusztig varieties more

generally. The original article of Deligne and Lusztig and a number of other

works devoted to this construction are referenced in the bibliography. The
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Picard group and other aspects of the finer structure of Deligne-Lusztig

varieties have been studied by S.H. Hansen in [24–26]. Hansen’s thesis, [24]

contains chapters corresponding to the other articles here.

Section 7.6. A standard reference for the theory of toric varieties over C
is Fulton’s text, [13]; the construction generalizes to fields of characteristic

p with no difficulty. See Chapter 8 of this volume [41] and the references

there for other studies of toric codes.
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Introduction

Algebraic geometry codes can be defined using higher dimensional vari-

eties, as shown in the previous chapter [27]. In this chapter we also study a

family of codes from higher dimensional varieties, those arising from toric

varieties. They were introduced by J.P. Hansen in 1998 [16].

In general, it is not possible to compute a basis of a code coming from a

higher dimensional variety or to estimate its parameters. However, this is

possible for toric codes since every definition and property for toric varieties

has a combinatorial description.

We present an introduction to toric geometry, we assume some knowl-

edge in algebraic geometry but not in toric geometry. Then we define the

codes and study their parameters, structure and properties. We do not

mention any decoding algorithm since it does not exist so far.

8.1. Toric geometry

In this section we present some results and definitions of toric geometry

necessary to define toric codes.

Formally, a toric variety X is a normal variety containing an algebraic

torus T = K∗×· · ·×K∗, where K is a field, as a dense subset for the Zariski

topology and, furthermore, the torus acts on the variety X . The impor-

tance of these varieties is based on their correspondence with combinatorial

objects, like cones and polytopes, which allows us to perform computations.

The results of this section can be found in [8, 14, 31]. We mainly use the

notation in [14].

8.1.1. Cones, fans, polytopes and toric varieties

LetN be a lattice isomorphic to Zr for some r ≥ 1. LetM = Hom(N,Z)

be the dual lattice of N . One has the Z-bilinear map 〈 , 〉 : M ×N → Z,

(u, v) 7→ u(v). Let NR = N ⊗ R and MR = M ⊗ R, where MR is the dual

vector space of NR (NR and MR are isomorphic to Rr). Then, NR and MR

inherit the R-bilinear map 〈 , 〉 : MR ×NR → R, (u, v) 7→ u(v).

A convex polyhedral cone σ is a set

σ = {s1v1 + · · · + skvk ∈ NR | si ≥ 0}
generated by a finite number of elements v1, . . . , vk ∈ NR. The dimension

of σ, dim(σ), is the dimension of the vector space σ + (−σ) = Rσ, where
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−σ is {−s | s ∈ σ}. The dual cone σ∨ ⊂ MR of a convex polyhedral cone

is defined as

σ∨ = {u ∈ MR | 〈u, v〉 ≥ 0 ∀ v ∈ σ}

A face τ of a cone σ is the intersection of σ with a hyperplane defined by

a non-negative linear form in σ, that is, τ = σ ∩ u⊥ = {v ∈ σ | 〈u, v〉 = 0}
for a u ∈ σ∨. The convex cone σ is in fact a face of σ since it is the

intersection with the linear form defined by 0. Moreover, each face is a

convex polyhedral cone generated by the vectors of σ such that 〈u, vi〉 = 0.

The one-dimensional faces are called edges and they will be denoted by ρ.

The primitive element v(ρ) ∈ N of an edge ρ is the unique generator of

ρ ∩N as additive semigroup. One has a partial order in the set of faces of

σ: let τ and τ ′ be two faces of σ, if τ ⊂ τ ′ we denote it by τ < τ ′.
A convex polyhedral cone σ is said to be rational if it has a generator

system in the lattice N . A convex polyhedral cone σ is strongly convex if

σ ∩ (−σ) = {0} or, equivalently, if σ∨ generates MR. Every rational cone

is generated by a minimal number of elements in N ; if the cone is strongly

convex this minimal set of generators consists of the primitive elements of

the edges. Moreover, if σ is a strongly convex rational cone then σ∨ is

a rational polyhedral cone in MR [31, Proposition 1.3]. For the sake of

simplicity, in this chapter a strongly convex rational cone will be called

cone.

Let σ be a cone, then Sσ = σ∨∩M is a finitely generated group by Gor-

dan’s lemma [31, Proposition 1.1]. We consider the K-algebra associated

to Sσ , K[Sσ] =
⊕

u∈Sσ
Kχu (where χuχu′

= χu+u′

, and the zero element

is χ0). Therefore, we can define the affine variety Uσ as Uσ = Spec(K[Sσ ]),

called affine toric variety associated to σ.

A finitely generated commutative algebra A determines an affine variety

Spec(A). However, it is possible to consider toric varieties without using

the language of schemes: choosing generators of A, one can see that it is

isomorphic to K[X1, . . . , Xr]/I , where I is an ideal in K[X1, . . . , Xr]. In this

way one can identify the points of Z(I) = {p ∈ Kn | f(p) = 0, ∀f ∈ I} with

maximal ideals of Spec(A), which are called closed points of the variety

and are denoted by Specm(A). A morphism of algebras A→ B determines

a morphism of varieties Spec(B) → Spec(A). In particular closed points

correspond to morphisms of algebras A → K.

For toric varieties, one has that closed points correspond to homomor-

phisms of semigroups Sσ → K, where K = K∗∪{0} is a commutative semi-

group, and that Specm(K[Sσ ]) ' Hom(Sσ ,K). One may also consider χu as
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a Laurent monomial, χu(t) = tu1
1 · · · tur

r ∈ K[t1, . . . , tr](t1···tr) (localization

of K[t1, . . . , tr] at (t1 · · · tr)), moreover, χu defines a map (K∗)r → K∗. In

the language of algebraic groups χu is called character [21].

We call T = (K∗)r, the algebraic torus of dimension r. We claim that

T is contained as a dense subset in any toric variety and that it acts on the

toric variety, extending the action on itself. Furthermore, as we claimed,

these two properties characterize toric varieties [24].

Let us see that T = K∗ × · · · × K∗ is contained in Uσ . One has that

Sσ is a subsemigroup of S{0} = M . Let v1, . . . , vr be a basis of N and

u1 = v∗1 , . . . , ur = v∗r its dual basis in M . A generator system of M as a

semigroup, is u∗1, . . . , u
∗
r ,−u∗1, . . . ,−u∗r, therefore, if we write xi = χu∗

i ∈
K[M ], one has that

K[M ] = K[x1, x2, . . . , xr, x
−1
1 , x−1

2 , . . . , x−1
r ] = K[x1, x2, . . . , xr](x1x2···xr)

which is the ring of Laurent polynomials with r indeterminates and U0 =

Spec(K[M ]) = K∗×· · ·×K∗ = (K∗)r = T . Consequently, as any semigroup

Sσ is a subsemigroup of M , K[Sσ] is a subalgebra of K[M ]. To summarize,

K[Sσ] is a domain and T ⊂ Uσ. Moreover, we can write T without choosing

coordinates

T = Spec(K[M ]) = Hom(M,K)

Let σ be a cone in N , the torus T acts over Uσ in the following way:

a point t ∈ T is identified with a homomorphism of groups M → K and a

point x ∈ Uσ is identified with a homomorphism of semigroups Sσ → K.

Then

T × Uσ → Uσ

(t, x) 7→ t · x
where t · x is the homomorphism of semigroups

t · x : Sσ → K
u 7→ t(u)x(u)

Example 8.1. Let σ be the cone generated by v1, . . . , vl with 1 ≤ l ≤ r.

One has that

Sσ = Z≥0u1 + · · · + Z≥0ul + Zul+1 + · · · + Zur

Therefore, K[σ] = K[x1, . . . , xl, xl+1, x
−1
l+1, . . . , xr, x

−1
r ] and Uσ = Kl ×

(K∗)r−l.

From this example, one may infer that if σ is generated by l elements

that can be completed to form a basis of N , then Uσ is the product of an
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affine space of dimension l and an (r − l)-dimensional torus, and that Uσ

is a non-singular variety (as we will see in theorem 8.5).

A fan 4 in N is a finite set of cones in NR such that: each face of a cone

in 4 is also a cone in 4 and the intersection of two cones in 4 is a face

of each of them. For a fan 4 the toric variety X4 is constructed taking

the disjoint union of the affine toric varieties Uσ for σ ∈ 4, and gluing the

affine varieties with common faces: for the cones σ, σ′ ∈ 4 one has that

σ ∩ σ′ is a face of each of them, and we can therefore identify Uσ∩σ′ as

an open subvariety of Uσ and of Uσ′ . These identifications are compatible

since the correspondence between cones and affine varieties preserves the

order on the faces. Moreover, X4 is an scheme since Uσ∩σ′ → Uσ × Uσ′

is a closed immersion, where σ and σ′ are two cones whose intersection is

a common face. In particular, let σ be a cone in N and let 4 be the fan

composed of the faces of σ, then X4 = Uσ.

In next example we construct a toric variety from a fan.

Example 8.2. Let 4 be the fan of figure 8.1. The zero-dimensional cone is

(0, 0). The one-dimensional cones are the 4 half-lines with origin the point

(0, 0) and generated by v(ρ1) = (1, 0), v(ρ2) = (0, 1), v(ρ3) = (−1, 0) and

v(ρ4) = (0,−1). The two-dimensional cones are the 4 quadrants σi, i =

1, . . . , 4.

v(ρ
1
) 

v(ρ
2
) 

v(ρ
2
) 

v(ρ
4
) 

Fig. 8.1. Fan 4, example 8.2

The toric varieties Uσi
' K2 (corresponding to the algebras K[x1, x2],

K[x−1
1 , x2], K[x−1

1 , x−1
2 ] and K[x1, x

−1
2 ], respectively) glue in the usual way
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to give P1 × P1 (fixing coordinates, x1 = t1/t0, and x2 = t′1/t
′
0 where

(t1 : t0) × (t′1 : t′0) are the coordinates of P1 × P1).

A convex rational polytope in MR is the convex hull of a finite set of

points in M , for the sake of simplicity we will call it polytope. We can

represent a polytope as the intersection of half-spaces. In the same way as

in NR, one can consider faces of polytopes in MR. A facet F of a polytope

P is a face of P of codimension 1 in M , therefore there exists a normal

subspace to this face, generated by two elements of the lattice N , one inner

and one outward. Let vF ∈ N be the primitive and inner element generating

the normal face to F and aF an integer such that

P =
⋂

F facet of P

{u ∈MR | 〈u, vF 〉 ≥ −aF}

For a face τ of P , let στ be the cone generated by vF for all the facets

F containing τ . Then

4P = {στ | τ is a face of P}
is a fan called fan associated to P . The toric variety defined by P is denoted

by XP .

Example 8.3. Let P be the plane polytope of MR with vertices (0, 0),

(1, 0), (1, 1), (0, 1), i.e. the convex hull of those points.

1 

1 

Fig. 8.2. Polytope P , example 8.3

P is the intersection of the following half-spaces,

P = {u1 ≥ 0} ∩ {−u1 ≥ −1} ∩ {u2 ≥ 0} ∩ {−u2 ≥ −1}
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The inner primitive elements of N normal to the facets are

v1,−v1, v2,−v2. Each vertix of the polytope defines a cone of dimension 2

in the normal fan (for instance, (0, 0) defines a cone generated by v1 and

v2). Therefore, one has that the normal fan 4P is the one in example 8.2,

and hence XP = P1 × P1.

8.1.2. Properties of toric varieties

A toric variety XP defined using a polytope P is a projective variety [7,

Theorem 12.2], that is, we may consider XP not only as an abstract variety,

but also as being embedded in Pl for some l.

Theorem 8.4. Let 4 be a fan. The toric variety X4 associated to 4 is

projective if and only if 4 is the normal fan associated to a polytope.

For a variety defined using a polytope P , the proof of the previous result

considers the map

ϕP : T → Pl−1

t 7→ (χu1(t), . . . , χul(t))

where P ∩ M = {u1, . . . , ul}. Then the map ϕQ is an embedding for s

sufficiently large, where Q = sP = {sp | p ∈ P}. This gives an elementary

way to define toric varieties coming from a polytope: XP is the Zariski

closure of the image of ϕQ for s sufficiently large. If the variety is non-

singular, then s = 1 [31, Corollary 2.15].

A fan 4 is said to be non-singular if for every face σ ∈ 4 there exists

a Z-basis {v1, . . . , vr} of N such that σ is generated by {v1, . . . , vs}, where

s ≤ r is the dimension of σ (it is said to be singular otherwise). Thanks to

this result, one has a combinatorial criterion to determine whether a toric

variety is singular [14, section 2.1], [31, theorem 1.10].

Theorem 8.5. The toric variety X4 associated to a fan 4 is singular if

and only if 4 is singular.

Let 4 be a fan, a fan 4′ is a refinement of 4 if every cone of 4 is union

of cones of 4′. The morphism X ′
4 → X4 induced by the identity map from

N to N is birational and proper. Furthermore, it is an isomorphism over

the torus contained in both varieties [14, section 2.4].

This construction can be used to understand and compute the resolution

of singularities of toric varieties. The fan 4′, which is non-singular and a
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refinement of 4, is called refined fan of 4. For toric surfaces, this construc-

tion can be computed in terms of continued fractions with the complexity

of the Euclidean algorithm [14, section 2.6].

Example 8.6. Let P be the polytope with vertices (0, 0), (2, 2) and (0, 4).

v(ρ
1
) 

v(ρ
2
) 

v(ρ
3
) 

v(ρ
4
) 

Fig. 8.3. P and its normal refined fan.

P = {u1 ≥ 0} ∩ {−u1 + u2 ≥ 0} ∩ {−u1 − u2 ≥ −4}
The edges of 4P are generated by (1, 0), (−1, 1) and (−1,−1), hence 4P

is a singular fan, since (−1, 1) and (−1,−1) do no generate the lattice N .

We may refine the fan 4P just considering the edge generated by (−1, 0),

that is, the edges of the refined fan 4′ are generated by (1, 0), (−1, 1),

(−1, 0) and (−1,−1). One has that 4′ is a refinement of 4, and that X4′

is a non-singular variety by theorem 8.5.

The toric varieties defined above are normal varieties, also called normal

toric varieties. That is, all of their local rings are integrally closed domains

in their fraction rings [14, section 2.1]. These varieties are normal because

we have used all the points of the lattice to define them [7, theorem 7.2].

Let σ be a cone generated by u1, . . . , ut, then K[Sσ] = K[χu1 , . . . , χut ].

One has that K[Sσ] = K[Y1, . . . , Yt]/I , where I is generated by binomials

of the form Y a1
1 · · ·Y at

t −Y b1
1 · · ·Y bt

t , with a1, . . . , at, b1, . . . , bt non-negative

integers such that

a1u1 + · · · + atut = b1u1 + · · · + btut
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Nevertheless, not every quotient algebra defined by a binomial ideal defines

a normal toric variety [35].

A fan 4 is said to be complete if the union of all its faces is NR. One has

the following result that characterizes complete toric varieties [14, Section

2.4], [31, Section 1.4]

Theorem 8.7. A toric variety X4 is complete (compact) if and only if 4
is complete.

Let P be a polytope containing the origin, then the normal fan 4P is

complete and hence the variety XP is complete. Therefore, one usually

considers polytopes containing the origin.

8.1.3. Orbits and divisors

Let P be a polytope and 4P its associated normal fan. Since XP is a

normal projective variety, we may consider the commutative group Div(XP )

of Weil divisors of X . A Weil divisor is a finite linear combination (over

Z) of irreducible varieties of codimension 1. We denote by T–Div(XP ) the

subgroup of Weil divisors that are invariant under the action of T .

The following theorem characterizes the T -orbits, orbits by the action of

T , in terms of 4P [31, proposition 1.6], using the bijective correspondence

of the faces of a polytope and the cones of its normal fan.

Theorem 8.8. Let P be a polytope and 4P its normal fan. For every

σ ∈ 4P we consider

orb(σ) = Hom(M ∩ σ⊥,K∗)

Every T -orbit of XP has this form above and, moreover, there exists a

bijective correspondence between the cones of 4P and the T -orbits of XP .

Furthermore, one has the following properties:

• orb({0}) = T .

• Let σ ∈ 4. Then orb(σ) is an open set in its own closure, which we

denote by V (σ). The variety V (σ) is a closed toric subvariety of XP

of codimension dim(σ), that is, dimσ + dimV (σ) = r.

• If XP is non-singular then, V (σ) is non-singular.

By the previous result, {V (ρ) | ρ ∈ 4P (1)} is a basis of T–Div(XP ) over

Z. We denote by PDiv(XP ) the subgroup of principal divisors of Div(XP ),
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i.e., the divisors of the form

div(f) =
∑

V

vV (f)V

with f a rational function on XP , different from zero, and vV (f) the order

of f in the closed subvarieties V of XP of codimension 1. Each u ∈ M

corresponds to a character χu, which is a regular function in T and gives

rise to a rational function on XP .

The subgroup CDiv(XP ) of Cartier divisors of Div(XP ) are the locally

principal Weil divisors, i.e., there exists an open covering XP =
⋃
Uj and

non-zero rational functions, fj , such that the Cartier divisor can be written

as the divisor div(f−1
j ) in Uj . If XP is non-singular, then every Weil divisor

is a Cartier divisor, i.e. CDiv(XP ) = Div(XP ) [20, proposition 6.11].

A polytope P defines the following T -invariant Cartier Divisor

DP =
∑

F facet of P

aFV (ρF )

and given u ∈ P

div(χu) =
∑

F facet of P

〈u, vF 〉V (ρF )

Example 8.9. Two polytopes with the same inner normal vectors define

the same toric variety. For instance, the polytope Pa,b with vertices (0, 0),

(a, 0), (a, b) and (0, b) defines the toric variety P1 × P1 for all a, b ∈ N (see

examples 8.2 and 8.3). In particular, for a = b = 1 one has the polytope in

example 8.3. However, they define different Cartier divisors

DPa,b
= aV (ρ) + bV (ρ′)

where ρ and ρ′ are the cones generated by (−1, 0) and (0,−1) respectively.

A complete fan 4 and T -invariant Cartier divisor D =
∑
aρV (ρ) define

a polytope,

PD = {u ∈MR | 〈u, v(ρ)〉 ≥ −aρ ∀ ρ edge of 4}

Furthermore, PDP
= P . Therefore, a polytope is the same datum as a

complete normal toric variety and a Cartier divisor.
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8.2. Definition of toric codes

Let Fq be the finite field with q elements. Let P be a rational polytope

of dimension r ≥ 2, XP the toric variety defined by its refined normal fan

and DP its associated Cartier divisor over XP , as in the previous section.

In particular, one has that XP is a non-singular toric variety.

We define toric codes evaluating rational functions at the (q−1)r points

of T = (F∗q)
r. The toric code CP associated to P , which is an algebraic

geometry code in the sense of chapter 7 of this volume [27], is the image of

the Fq-linear evaluation map given by

ev : H0(XP ,O(DP )) → (Fq)
#T

f 7→ (f(t))t∈T

Since we evaluate in #T points, CP has length n = #T = (q − 1)r. The

following result shows us a basis of the functions that we evaluate. That

is, it allows us to compute a basis of L(DP ) = H0(XP ,O(DP )), i.e., the

rational functions -global sections- f over XP such that div(f) +DP � 0

(f has zeros and poles bounded by DP ).

Lemma 8.10. Let XP be the toric variety associated to a polytope P . A

basis of the Fq-vector space L(D) is {χu | u ∈ P ∩M}.

Then, for every t in T = (F∗q)
r, the rational functions of L(DP ) can be

evaluated at t

L(DP ) → Fq

f 7→ f(t)

since f is a linear combination of characters χu that can be considered as

Laurent monomials. This map is just the evaluation of a Laurent polyno-

mial whose monomials have exponents in P ∩M at points with non-zero

coordinates.

Remark 8.11. For a polytope P , we can also define a toric code CP using

the embedding of the refined toric variety XP in the projective space (see

[27, Definition 7.2]). We consider the map

ϕP : T → Pl−1

t 7→ (χu1(t), . . . , χul(t))

where P ∩M = {u1, . . . , ul}. The map ϕP fixes coordinates for the points

of the torus in Pl−1, let T = {t1, . . . , tn} and Pi = ϕ(ti). Let F be the

vector space of linear forms (homogeneous polynomials of degree 1) in
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Fq[x1, . . . , xl]. The toric code EP is the image of the Fq-linear evaluation

map

α : F → Fn
q

f 7→ (f(P1), . . . , f(Pn))

One has that CP = EP , in particular ev(χui) = α(xi).

From lemma 8.10 it follows that H0(XP ,O(DP )) is a finite dimensional

Fq-vector space with basis {χu | u ∈ M ∩ P}, therefore a generator system

of the code CP is {(χu(t))t∈T | u ∈ M ∩ P}. This generator system is a

basis of the code if and only if the evaluation map ev is injective.

Example 8.12. Let P be polytope of example 8.3, P ∩M is {(0, 0), (1, 0),

(0, 1), (1, 1)}. The toric code CP has length (q − 1)2 and is generated by

CP = 〈(1)t∈T , (t1)t∈T , (t2)t∈T , (t1t2)t∈T 〉 ⊂ F(q−1)2

q ,

where t = (t1, t2) ∈ T . We will see in theorem 8.13 that this generator

system is injective for any finite field Fq, therefore the dimension of CP =

#(P ∩M) = 4.

We consider the class of elements of P ∩ M modulo H , that is, u =

(u1 mod (q − 1), . . . , ur mod (q − 1)) ∈ H , where u = (u1, . . . , ur) ∈ H .

This allows us to see whether the evaluation map is injective [32, theorem

3.3].

Theorem 8.13. Let P be a polytope, the evaluation map

ev : H0(XP ,O(DP )) → (Fq)
#T

is injective if and only if u1 6= u2 with

u1 6= u2, for all u1, u2 ∈ P ∩M .

Proof. Let f ∈ H0(XP ,O(DP )) be non-zero, f =
∑

u∈P∩M λuX
u ∈

Fq[X1, . . . , Xr]. Let f =
∑

u∈P∩M λuX
u. One has that f(t) = f(t) in Fq

for all t ∈ T , although f 6= f in Fq[X1, . . . , Xr] (in general).

Let u1 6= u2 with u1 6= u2, for all u1, u2 ∈ P ∩M . One has that f cannot

vanish completely at T since it is a non-zero polynomial whose monomials

only have exponents in H = ({0, . . . , q − 2})r ⊂ Zr (see [32, lemma 3.2]).

Let u1, u2 ∈ P ∩M with u1 6= u2, then Xu1 −Xu2 ∈ H0(XP ,O(DP ))

is non-zero and belongs to the kernel of ev. �

The dimension of CP is equal to k = #P = #{u | u ∈ P∩M}. When the

evaluation map is injective the dimension of CP is equal to the number of

lattice points of the polytope. There are algorithms that can compute this

number [9]. Furthermore, there are formulas, that depend on the geometry
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of XP , to compute the number of lattice points of the polytope: let P be

a polytope and Pσ = P ∩ (σ⊥ + u(σ)), where σ ∈ 4P and u(σ) is any

element in M/(σ⊥∩M), in other words Pσ is the intersection of P with the

corresponding translation of the perpendicular subspace to σ [14, chaper

5]. Then, combining the Riemann-Roch theorem with a result about Todd

classes, one has that (see [14, chaper 5])

#(P ∩M) =
∑

σ∈4P

rσvolr(Pσ)

where volr is the Lebesgue volume and rσ is a rational number that depends

only on the geometry of σ (see [5, 30] and their references). A particular

case of the previous statement is the well-known Pick’s formula for plane

polytopes

#(P ∩M) = vol2(P ) +
Perimeter(P )

2
+ 1

Some computations of families of toric codes (CPi
)∞i=1 can be found in

the bibliography, where Pi+1 is a dilatation of Pi, that is, there is λ ∈ N
such that Pi+1 = λPi = {λp | p ∈ P}. The Ehrhart function of P counts the

lattice points of the polytope λP , with λ ∈ N. This function is computed

in [4].

Although there are toric codes with good parameters, see [23] for some

families, the asymptotic behaviour of the families considered so far is not

good. One important remark is that the length of a toric code n is fixed,

n = (q−1)r, by the base field and the dimension of the variety. If one wants

to consider a infinite family of toric codes with strictly increasing length,

the dimension of the polytopes should be increased as well, if the base field

is fixed. Then, we cannot study these problems using the Ehrhart function.

In section 8.5 we will see some examples of toric codes. We refer the

reader to [23] for a larger collection of examples, some of them with good

parameters.

Example 8.14. We present some families of toric codes with known pa-

rameters (see [17]). One can compute their minimum distance using several

approaches in the bibliography.

• Let P be the plane polytope with vertices (0, 0), (a, a), (0, 2a) with

2a < q − 1. Then k = (a+ 1)2 and d = (q − 1)2 − 2a(q − 1).

• Let P be the plane polytope with vertices (0, 0), (0, a), (0, a) with

a < q−1, XP = P2. Then k = (a+1)(a+2)/2 and d = (q−1)2−a(q−1).
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• Let P be the plane polytope with vertices (0, 0), (a, 0), (a, b), (0, b)

with a, b < q − 1, XP = P1 × P1. Then k = (a + 1)(b + 1) and

d = (q − 1− a)(q − 1 − b).

• Let P be the plane polytope with vertices (0, 0), (a, 0), (a, b+ra), (0, b)

with a, b < q − 1 and b+ ra < q − 1, XP is the Hirzebruch surface Fr

(see [14, section 1.1]). Then k = (a + 1)(b + 1) + ra(a + 1)/2 and

d = min{(q − a− 1)(q − b− 1), (q − 1)(q − b− ar − 1)}.

8.3. Classification of toric codes

Let us consider a classification of monomially equivalent codes from [29]:

two codes, C1, C2 with generator matrix G1, G2, are monomially equivalent

if there is an invertible n × n diagonal matrix ∆ and an n × n permuta-

tion matrix Π such that G2 = G1∆Π is a generator matrix for C2. Two

monomially equivalent codes have the same parameters.

One has that two polytopes P , Q are lattice equivalent if there exists

an invertible map T : MR → MR, T (x) = M(x) + λ, such that T (P ) = Q,

where M is an r × r matrix and λ is an r-dimensional vector. With the

following result one has a characterization of monomially equivalent toric

codes.

Theorem 8.15. Let P , Q be two polytopes lattice equivalent, then the toric

codes CP and CQ are monomially equivalent.

One can also find the beginning of a classification of plane toric codes

in [29], for small k, using this result.

Example 8.16. Let P be a polytope and Q = {p+u0 | p ∈ P} for u0 ∈M ;

Q is the polytope obtained shifting P by u0. One can easily see that P and

Q are lattice equivalent and therefore CP and CQ have the same parameters.

Moreover, one can also obtain this result, for this example, using a more

elementary approach: let q = p+u0, with q ∈ Q and p ∈ P . Then ev(χq) =

ev(χpχu0) = ev(χp)∗ev(χu0), where ∗ is the component-wise product. Then

ev(χq) and ev(χp) have the same weight since every coordinate of ev(χu0)

is non-zero.

8.4. Structure of toric codes

In this section we will see that toric codes are multicyclic and we will

also compute the dual of a toric code.
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8.4.1. Multicyclic structure

Multicyclic codes are a natural extension of cyclic codes, in particular

a cyclic code is a 1-D cyclic code. A code C ⊂ A = Fq [X1, . . . , Xr]/(X
N1
1 −

1, . . . , XNr
r − 1) is multicyclic or r-D cyclic if it is an ideal in A, with

N1, . . . , Nr ∈ N. Let Fq [X1, . . . , Xr]≤(N1−1,...,Nr−1) be the Fq-vector space

of polynomials in the variables X1, . . . , Xr of degree lower than Ni in each

variable Xi for all i. We can consider the following isomorphisms of vector

spaces Fn
q ' Fq[X1, . . . , Xr]≤(N1−1,...,Nr−1) ' A where n = N1 · · ·Nr, and

we can identify its elements.

Let CP be the toric code, for a polytope P . Set α a primitive el-

ement of Fq , i.e. F∗q = {α0, α1, . . . , αq−2} and therefore T = {αi =

(αi1 , . . . , αir ) | i ∈ H}. Then CP is the vector subspace of Fn
q generated by

{(χu(αi))i∈H | u ∈ P}, where χu(αi) = α〈u,i〉 = αu1i1+···+unin . In order to

study the multicyclic structure we shall use the previous isomorphism. We

represent (with multi-index notation for X i)

(α〈u,i〉)i∈H by
∑

i∈H

α〈u,i〉X i

Proposition 8.17. Let P be a polytope, CP is an r-D cyclic code with

N1 = q − 1, . . ., Nr = q − 1.

Proof. Let u ∈ P , we use the polynomial notation for CP :∑
i∈H α〈u,i〉X i ∈ CP . Hence

∑
i∈H α〈u,i−a〉X i = α−〈u,a〉∑

i∈H α〈u,i〉X i.

And the result holds due to the linearity of CP . �

The previous result can be found in [11, 33]. Moreover, in [33] it is

considered as an extension of toric codes, called generalized toric codes,

that are evaluation codes of the algebra

Fq[H ] = 〈Y u = Y u1
1 · · ·Y ur

r | u = (u1, . . . , ur) ∈ H〉 ⊂ Fq[Y1, . . . , Yr]

at the points of T . With this setting one can prove that any r-D cyclic code,

with N1 = q − 1, . . . , Nr = q − 1, is a generalized toric code. Therefore,

the generalized toric codes and the r-D cyclic codes with N1 = q − 1, . . .,

Nr = q − 1 are the same family of codes.

8.4.2. Dual of a toric code

The following result gives the dual of a toric code (see [6, 33]). The dual

of a toric code is not a toric code in general. However, it is a generalized

toric code.
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Theorem 8.18.

Let P be a polytope and CP its associated toric code. Let u1, u2 ∈ P ,

one has that

〈ev(χu1), ev(χu2)〉 =

{
0 if u1 + u2 6= 0

(−1)r if u1 + u2 = 0

Let u ∈ P , u′ = −u with u as in the previous section (see theorem 8.13)

and P ′ = {u′ | u ∈ P ∩M} ⊂ Zr, #P ′ = #(P ∩M). Let P⊥ = H \ P ′,
then the dual code of CP is C⊥

P = CP⊥ . One has that CP⊥ is not a toric code

in general, since P⊥ is not a convex polytope, but just an evaluation code.

Proof. Let u1, u2 ∈ P , then one has that 〈(α〈u1,i〉)i∈H , (α
〈u2,i〉)i∈H〉 =∑

i∈H α〈u1+u2,i〉 =

∑

i∈H

α〈u1+u2,i〉 =





q(q−1)
2 (supp(u1 + u2)) = 0 if u1 + u2 6= 0

∑
i∈H 1 = (−1)r if u1 + u2 = 0

where supp(u1 + u2) is the number of nonzero coordinates of u1 + u2.

Then 〈ev(χu1), ev(χu2)〉 = 0 for u1 ∈ P , u2 ∈ P⊥ since u1 + u2 6= 0. On

account of the dimension of H0(XP ,O(DP )) and the linearity of the codes

the proof is completed. �

The previous result shows that the dual of a toric code CP1 is a toric

code only when there exists a convex polytope P2 such that P1
⊥

= P2.

However, the dual of a generalized toric code is a generalized toric code.

Let P be the convex hull of the points of H , P ∩M = H , the matrix

M of the evaluation map ev : H0(XP ,O(DP )) → Fn
q is

M =




α〈u1,i1〉 α〈u1,i2〉 · · · · · · α〈u1,in〉

α〈u2,i1〉 α〈u2,i2〉 · · · · · · α〈u2,in〉

...
...

...
...

...
...

...
...

...
...

α〈un,i1〉 α〈un,i2〉 · · · · · · α〈un,in〉




where {u1, . . . , un} = {i1, . . . , in} = H and if moreover uj = ij then M is

a symmetric matrix, therefore we assume uj = ij ∀j = 1, . . . n.

We have thus proved that a generator matrix of the code CP with k =

#P , is the (k × n)-matrix consisting of the k rows α〈u,i1〉, . . . , α〈u,in〉 of M
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with u ∈ P and a control matrix of CP is the (n− k× n)-matrix consisting

of the n− k rows α〈u,i1〉, . . . , α〈u,in〉 of M with u ∈ P⊥.

Moreover, one has that there exist no self-dual toric codes: for q

even, n = (q − 1)r is odd, and then there are no self-dual codes. For

q odd, n is even but there are 2r elements in H , u1, . . . , u2r , such that

〈ev(χui), ev(χui)〉 6= 0 (2ui = 0 mod (q − 1) if and only if ui is equal to 0

or (q− 1)/2). Therefore, the maximum dimension of a self-orthogonal code

(C⊥ ⊂ C) is n/2−2r−1 < n/2, and there exist no self dual generalized toric

codes.

8.5. Minimum distance

In this section we describe some estimations for the minimum distance

of a toric code. Namely, we show three lower bounds, the first two are

valid for toric codes coming from a plane polytope and they are based on

invariants of the polytope. The third one holds for toric codes coming from

a polytope of arbitrary dimension.

Apart from these three bounds, a bound for the minimum distance of a

toric code coming from a polytope of arbitrary dimension can be found in

[29]. This bound is established considering a generalization of Vandermonde

determinants for the matrix M presented in section 8.4.2, however, the

computations only hold, so far, for rectangular polytopes and simplices.

For these two families of polytopes the bounds are sharp, we refer the

reader to [29] for details.

Furthermore, for a polytope P , one has an upper bound for the min-

imum distance of CP just considering a polytope Q ⊂ P , such that the

minimum distance of CQ is known. Then d(CP ) ≤ d(CQ). This has been

used in the bibliography to check whether the lower bounds of the minimum

distance are sharp.

8.5.1. Bound with Minkowski sum

One can find this bound for the minimum distance in [28], we refer

the reader to [28] and its references for all results, missing definitions and

further details. This bound is based on the Minkowski sum of two plane

polytopes and the Hasse-Weil bound for the number of Fq-rational points

of a curve, this bound is valid for toric codes coming from plane polytopes.

The Minkowski sum of two polytopes P,Q is the pointwise sum of their

points P +Q = {p+ q | p ∈ P, q ∈ Q}.
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The Hasse-Weil bounds: for a non-singular curve X over Fq and abso-

lutely irreducible over Fq (irreducible over the algebraic closure of Fq) one

has the following bounds for the number of Fq-rational points of X

1 + q − 2g
√
q ≤ #X ≤ 1 + q + 2g

√
q

where g is the genus of X . This formula also holds for singular curves,

where g is now the arithmetic genus of X .

Then, one can prove (see [28, proposition 5.2]) that for q sufficiently

large the rational functions with more irreducible components have more

zeros in T than those fewer irreducible components. This allows us to

obtain the following lower bound, sharp for large base fields.

Theorem 8.19. Let P be a polytope with P ∩M ⊂ H = {0, . . . , q−2}r and

q sufficiently large (see [28, proposition 5.2]). Let l be the largest positive

integer such that there exists a polytope Q ⊂ P such that it is the Minkowski

sum of l non-trivial polytopes (positive dimension), Q = P1+ · · ·+Pl. Then

there exists some Q ⊂ P of this form such that

d(CP ) ≥
l∑

i=1

d(CPi
) − (l − 1)(q − 1)2

Example 8.20. Let P be the plane polytope with vertices (0, 0), (4, 1),

(1, 4). The toric code Ct
P ⊂ F49

8 has parameters [49,11,28]. This exam-

ple was given by D. Joyner [23] and it had better parameters than any

other known code when this article was written. We will also consider this

example for the other bounds.

By theorem 8.19 one has that

d(CP ) ≥ (q − 1)2 − 3(q − 1)

for q sufficiently large (larger than 729). One can easily see that this lower

bound is sharp (for instance considering the upper bound [32, proposition

4.2]). However, the minimum distance of CP with q = 8 cannot be obtained

using this bound.

8.5.2. Bound with Minkowski length

We refer the reader to [34] and its references for all the results, missing

definitions and further details in this section. This bound is valid for toric

codes coming from plane polytopes. The main tools are the full Minkowski

length of a plane polytope and the Hasse-Weil bounds.
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Let P be a polytope and let P = P1 + · · ·+Pl for some non-trivial poly-

topes (positive dimension). The Minkowski length of P , `(P ), is the largest

number of summands in such decompositions of P . Moreover, we can define

the full Minkowski length of a polytope P as L(P ) = max{`(Q) | Q ⊂ P}.
The full Minkowski length is invariant by monomial transformations. A

subpolytope Q ⊂ P is called maximal for P if `(Q) = L(P ).

A polytope is strongly indecomposable if its full Minkowski length is

1. One can prove that a strongly indecomposable polytope of dimension

1 is monomially equivalent to the polytope with vertices (0, 0), (1, 0) and

that a a strongly indecomposable polytope P of dimension 2 is monomially

equivalent to one of the following polytopes: the polytope with vertices

(0, 0), (1, 0), (0, 1) called P unit triangle or the polytope with vertices (1, 0),

(2, 2), (0, 1) called P exceptional triangle.

Classifying the plane polytopes with full Minkowski length 2 and using

the Hasse-Weil bound the following lower bound for the minimum distance

is obtained

Theorem 8.21. Let P ⊂ H be a polytope with area A = A(P ) and full

Minkowski length L = L(P ). Then, for q ≥ max
(
23,
(
c+

√
c2 + 5/2

)2)
,

where c = A/2 − L + 9/4, the minimum distance of the toric code CP is

bounded by

d(CP ) ≥ (q − 1)2 − L(q − 1) − 2
√
q + 1

If no maximal decomposition in P contains an exceptional triangle, then

for q ≥ max
(
37,
(
c+

√
c2 + 2

)2)
, where c = A/2−L+11/4, the minimum

distance of the toric code CP is bounded by

d(CP ) ≥ (q − 1)2 − L(q − 1)

In [34, Section 3] one can find two algorithms to compute the Minkowski

length of a plane polytope and to determine whether there is a maxi-

mal Minkowski decomposition with an exceptional triangle as a summand.

Those algorithms answer these two questions in polynomial time in the

number of lattice points of the polytope.

This bound is sharp for large fields and can be considered as an im-

provement of the bound of the previous section, since it is sharp for smaller

base fields.

Example 8.22. Let P be the plane polytope with vertices (0, 0), (4, 1),

(1, 4). The toric code Ct
P ⊂ F49

8 has parameters [49,11,28] (see example

8.20).
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One has that L(P ) = 3 and A = 15/2. By theorem 8.21 one has that

d(CP ) ≥ (q − 1)2 − 3(q − 1)

for q ≥ 53. This can be improved considering the zeros of an irreducible

curve at XP \T (see [34, Section 2.2]) and one has that the previous bound

holds for q ≥ 37. One can easily see that this lower bound is sharp (for

instance considering the upper bound [32, proposition 4.2]). However, one

cannot obtain the minimum distance of CP with q = 8 using this bound.

8.5.3. Bound with intersection theory

One can estimate the minimum distance using intersection theory. This

lower bound is the one in [19] for toric varieties. This bound is also pre-

sented in [27, theorem 7.7] in this book. One can find the computations for

this lower bound in [17, 32]. We remark that the following results are only

valid for a non-singular toric variety.

One has that T is contained in the following (q−1)r−1 lines (and there-

fore irreducible curves):

Cη1,...,ηr−1 = Z({χui − ηi : i = 1, . . . , r − 1}), ηi ∈ F∗q ∀i

where {u1, . . . ur} is a basis of M . Following [27, theorem 7.7], for a poly-

tope P , the toric code CP has

d(CP ) ≥ (q − 1)r − l(q − 1) − ((q − 1)r−1 − l)(DP · C)

where l is the maximum number of lines where a function can vanish com-

pletely and DP · C is the intersection number of the Cartier Divisor DP

and the 1-cycle C = V({χui : i = 1, . . . , r − 1}) [12], since DP · Cη1,...,ηr−1

has the same value for any η1, . . . , ηr−1 ∈ Fq.

The bound for the minimum distance can be understood in the following

way: the weight of a word in CP is greater than or equal to the length minus

the maximum number of points of T belonging to the zero locus of a rational

function. The number of points of this zero locus is considered as the union

of the lines where a rational function f vanishes completely and the points

in the zero locus of the lines where f does not vanish; this second number

is by definition DP · C [10].

Following [14, Chapter 5] one has that

DP · C = DP · (div(χu1))0 · . . . · (div(χur−1))0
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and this intersection number can be computed using the mixed volume of

the associated polytopes

r!Vr(P, P(div(χu1 ))0 , . . . , P(div(χur−1 ))0)

The mixed volume Vr of r polytopes P1, . . . , Pr is

Vr(P1, . . . , Pr) =
1

r!

r∑

j=1

(−1)r−j
∑

1≤i1<···<ij≤r

volr(Pi1 + · · · + Pij
)

where Volr is the Lebesgue volume. An algorithm to compute the Lebesgue

volume of a polytope may be found in [3]. Moreover under certain hypoth-

esis the mixed volume can be computed directly [25].

Let f ∈ H0(XP ,O(DP )), since CP = CP ′ if and only if P = P ′ we

assume without loss of generality that degti
f ≤ q − 2.

f(t1, . . . , tr) = f0(t1, . . . , tr−1)+f1(t1, . . . , tr−1)tr+· · ·+fq−2(t1, . . . , tr−1)t
q−2
r

Let Cη1,...,ηr−1 be a line where f vanishes, f(η1, . . . , ηr−1, tr) ∈ Fq[tr] and

degf(η1, . . . , ηr−1, tr) < tq−1
r . Therefore, since f(η1, . . . , ηr−1, tr) = 0 ∀ tr ∈

F∗q , it follows fi(η1, . . . , ηr−1) = 0 ∀ i.
The number l is lower than or equal to the maximum number of zeros

of a non-zero function f ∈ H0(XP ′ ,O(DP ′)) where P ′ is the r-projection

of the polytope P . This can be repeated until we reach dimension 2.

For a plane polytope we compute the minimum distance as in [17]. Let

us consider P a plane polytope and let us bound the minimum distance. In

dimension 2 we can improve the previous computation: as in this dimension

a 1-cycle is a Weil divisor and f vanishes in l of the previous lines, one has

that

div(f) +DP − l(div(χu1))0 � 0

Or, equivalently, f ∈ H0(XP ,O(DP − l(div(χu1))0)), and the maximum

number of zeros of f in the other (q − 1 − l) lines is DP − l(div(χu1))0 ·
(div(χu1))0, which is lower than or equal to the previous one. This will

probably allow us to to give a sharper bound.

From lemma 8.10 one has that

l ≤ max{u2 − u′2 | u1 = u′1, (u1, u2) ∈ P, (u′1, u
′
2) ∈ P}

since {χu | u ∈ P ∩M} is a basis of L(D).

One can find in [17, 32] several examples where this bound is sharp.

Finally, we compute the intersection number of the two Cartier divisors
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just in the same way as for r > 2, using the mixed volume of the associated

polytopes.

Example 8.23. Let P be the plane polytope with vertices (0, 0), (b1, 0),

(b1, b2), (0, b2), with b1, b2 ∈ N. The polytope P is a dilatation of the

polytope in example 8.3, the variety XP is P1 ×P1 (see 8.2). This example

has been also considered in chapter 7 of this volume [27, Example 7.8].

From the polytope P it is also clear that the code CP is the product of two

doubly extended Reed-Solomon codes.

The fan 4P associated to P is generated by cones with edges generated

by v(ρ1) = (1, 0), v(ρ2) = (0, 1), v(ρ3) = (−1, 0) and v(ρ4) = (0,−1). The

toric variety XP is non-singular.

P =

4⋂

i=1

{〈u, ρi〉 ≥ −ai}

where a1 = 0, a2 = 0, a3 = b1, a4 = b2. Therefore DP =
∑
aiV (ρi) =

b1V (ρ3) + b2V (ρ4).

Then CP has length n = (q − 1)2. By theorem 8.13 the evaluation map

ev is injective if b1, b2 < q − 1 and the dimension of CP is

k = max{b1 + 1, q − 1} × max{b2 + 1, q − 1}

By using the bound obtained by intersection theory, we get that the mini-

mum distance is

d ≥ n− l(q − 1) + (q − 1 − l)(DP − l(div(χu1))0 · (div(χu1 ))0)

where l ≤ b1.

One has that div(χu1) =
∑〈u1, v(ρi)〉V (ρi) = V (ρ1) − V (ρ3). Therefore,

(div(χu1))0 = V (ρ1).

The intersection number is (see [32] for details):

(DP − l(div(χu1))0) · (div(χu1))0 = (b1V (ρ3) + b2V (ρ4)) · V (ρ1)

−lV (ρ1) · V (ρ1)

= b2 − 0 = b2

Therefore the minimum distance is bounded by

d ≥ (q − 1)2 − (b1(q − 1 − b2) + (q − 1)b2) = (q − 1 − b1)(q − 1 − b2)
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The previous example shows the following fact: whenever the refined fan

of a plane toric variety includes the cones generated by (1, 0), (0, 1), (−1, 0)

and (0,−1), the lower bound can be easily computed using the following

result. This situation is quite common when P defines a singular variety

and the normal fan needs to be refined using the algorithm in [14, section

2.2].

Proposition 8.24. Let P be a polytope, and let 4P be the refined normal

fan such that the cones generated by (1, 0), (0, 1), (−1, 0) and (0,−1) are

in 4P . In other words, 4P is a refinement of the fan of P1 × P1.

Then, the bound with intersection theory is

d ≥ (q − 1)2 − width(P)(q − 1) − (q − 1 − width(P))A

where A = vol2(P + (−1, 0)) − vol2(P ), and

width(P ) = max{u2 − u′2 | u1 = u′1, (u1, u2) ∈ P, (u′1, u
′
2) ∈ P}

Proof. Let 4P be the normal fan of P . Then 4P is generated by cones

with edges generated by v(ρ1) = (1, 0), v(ρ2) = (0, 1), v(ρ3) = (−1, 0),

v(ρ4) = (0,−1), v(ρ5), . . . , v(ρm), let P =
⋂m

i=1{〈u, ρi〉 ≥ −ai}.
One has that

(div(χu1))0 = V (ρ1) + V (ρ3) +

m∑

i=5

aiV (ρi)

We claim that P(div(χu1 ))0 is the one-dimensional polytope Q with ver-

tices (−1, 0) and (0, 0). It is clear that P(div(χu1 ))0 ⊂ Q, the other content

holds because one can easily prove that there is no line in MR defined by

〈u, v(ρi)〉 = −ai through Q. Therefore, the Lebesgue volume of P(div(χu1 ))0

is zero.

Therefore

d ≥ (q − 1)2 − l(q − 1) − (q − 1 − l)((DP − l(div(χu1))0) · (div(χu1))0) =

(q − 1)2 − l(q − 1) − (q − 1 − l)(DP · (div(χu1))0)

where l = width(P ).

Moreover, one has that (DP · (div(χu1))0) = 2V2(P, P(div(χu1 ))0) =

vol2(P +P(div(χu1 ))0)−vol2(P )−vol2(P(div(χu1 ))0) = vol2(P +Q)−vol2(P ).

And the result holds �

In particular, the previous result shows that the parameters of the code,

considering the designed distance obtained using intersection theory, are not
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better than those of the codes in example 8.23. This result also explains

why this bound is not sharp at all for Joyner’s example.

Example 8.25. Let P be the plane polytope with vertices (0, 0), (4, 1),

(1, 4) and let q = 8. The toric code Ct
P ⊂ F49

8 has parameters [49,11,28]

(see examples 8.20 and 8.22).

The fan 4P associated to P is generated by cones with edges gen-

erated by (−1, 4), (−1,−1), (4,−1). The variety XP is singular since

(4,−1), (−1, 4) is not a basis of Z2. We consider the algorithm in [14, sec-

tion 2.6] to refine the normal fan and we obtain the minimal resolution of

XP . The refined fan is generated by 13 edges. Namely,

P =

13⋂

i=1

{u | 〈u, v(ρi) ≥ −ai〉}

where v(ρ1) = (1, 0), v(ρ2) = (0, 1), v(ρ3) = (−1, 4), v(ρ4) = (−1, 3),

v(ρ5) = (−1, 2), v(ρ6) = (−1, 1), v(ρ7) = (−1, 0), v(ρ8) = (−1,−1),

v(ρ9) = (0,−1), v(ρ10) = (1,−1), v(ρ11) = (2,−1), v(ρ12) = (3,−1),

v(ρ13) = (4,−1) and a1 = 0 , a2 = 0, a3 = 0, a4 = 1, a5 = 2, a6 = 3,

a7 = 4, a8 = 5, a9 = 4, a10 = 3, a11 = 2, a12 = 1, a13 = 0.

Therefore, we can use proposition 8.24 to compute the bound for the

minimum distance. We have that the width of P is 3. Let Q be the polytope

with vertices (−1, 0) and (0, 0), then vol2(P + Q) − vol2(P ) = 4. Hence,

the minimum distance is

d ≥ (8 − 1)2 − 3(8 − 1) − (8 − 1 − 3)4 = 12

where 12 is much smaller than the minimum distance, 28.

Let P be a polytope, the bound using intersection theory can be im-

proved using the following approaches:

• One may obtain a sharper bound considering different lines Cη1,...,ηr−1

to bound the zeros of a rational function at T .

• One can consider an invertible map T : MR → MR, T (x) = M(x) + λ,

such that M is an r × r matrix and λ is an r-dimensional vector (see

section 8.3). Then P and Q = T (P ) are lattice equivalent polytopes

whose associated codes, CP and CQ, have the same parameters. Then

the intersection theory bound may give a sharper bound for the mini-

mum distance of CP .

However, it is not clear so far how to consider these improvements in a

canonical way for an arbitrary polytope.
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8.6. Conclusion

This chapter has been an introduction to toric geometry and toric codes,

we hope this will help the reader to start working with toric codes. There

are two main research problems for toric codes: although there are examples

of toric codes with good parameters, the problem of identifying polytopes

that will give rise to good toric codes is still open. The second problem is

to obtain an efficient decoding algorithm. Another interesting remark, is

that new results for toric geometry and polytopes can give rise to obtaining

new results for toric codes.

8.7. Bibliographical notes

In this section we give the reader some references for deeper study and

the source of the results of this chapter. Moreover, we would like to mention

that there is a generalization of toric codes: papers [1] and [2] generalize

toric geometry to allow certain non-rational varieties. Algebraic geome-

try codes coming from these so-called T-Varieties are investigated in [22].

Estimates for the dimension and minimum distance of the codes can be

calculated using a similar approach to the toric case (with intersection the-

ory).

Section 8.1: In order to work with toric codes, one should be familiar

with some concepts of algebraic geometry and toric geometry. For an in-

troduction, we recommend the introduction to toric geometry by D. Cox

in [7]. Even though, most of the bibliography for toric geometry is over the

complex field, one can find in [8] a survey of toric geometry where the re-

sults hold for any field. The source of toric geometry [26] may be interesting

for some readers. One can find the standard references for toric geometry

in [14, 31], and a deep study of the mixed volume and the combinatorics of

toric geometry in [15]. For intersection theory, we refer the reader to the

book by Fulton [12], and we recommend for an introduction [13].

Section 8.2: Toric codes were introduced by J.P Hansen [16–18]. How-

ever, toric codes were introduced in [16] in a slightly different way to the

one presented in this chapter. J.P. Hansen considers the algebraic closure

of Fq as the base field and he evaluates the functions of H0(XP ,O(DP ))

invariant under the action of Frobenious, that is, the functions that are

Fq-linear combination of {χu | u ∈ P ∩M}. Therefore, this construction

gives the same toric code as the one presented in this chapter.

D. Joyner defines in [23] a code for a toric variety coming from a com-
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plete fan, a Cartier divisor and a 1-cycle, he uses the 1-cycle to evaluate

rational functions at their support. Then, he considers the special case

where the 1-cycle has support T and he calls these codes standard toric

codes. However, since a complete fan and a Cartier divisor is the same

data as a polytope P , the toric codes defined here are the standard toric

codes [23, definition 4.5]. D. Joyner has implemented the construction

of toric codes and some related procedures, including the desingulariza-

tion, [36], and one can also find there an introduction to toric geometry

and toric codes.

Section 8.3: The classification used for toric codes comes from [29]. One

can find a classification for toric codes coming from plane polytopes of small

dimension k.

Section 8.4: The multicylic structure was proved for plane toric codes

in [11] by representing the words of the code by matrices, it is also claimed

in there that toric codes coming from a polytope of higher dimension are

multicylic as well. One can find the proof, representing the words of the

code by polynomials, in [33]. The dual of a toric code was obtained inde-

pently in [6] and [33].

Section 8.5: The different lower bounds for the minimum distance are

from [17, 28, 29, 32, 34]. The bounds with the Minkowski sum and length

are valid for toric codes coming from plane polytopes. The bound in [29] is

valid for r-dimensional polytopes but the computation only holds for two

families so far (rectangular polytopes and simplices). The bound in [17] is

for plane polytopes and it was extended for arbitrary dimension in [32].

References

[1] K. Altmann and J. Hausen, Polyhedral divisiors and algebraic torus actions,
Math Ann. 344, 557–607, (2006).
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In this chapter, algebraic geometric codes over local, Artinian rings are
defined and studied. Decoding algorithms for these codes are also pre-
sented.
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9.1. Introduction

Whenever information is transmitted across a channel, errors are likely

to occur. Since Shannon’s groundbreaking paper [36], coding theorists have

sought to construct codes which have many codewords, that are easy to

encode and decode, and that correct errors. While the main tools used in

coding theory have traditionally been those of combinatorics and group the-

ory, this volume is dedicated to codes constructed using algebraic geometry.

Such codes were first introduced by Goppa [13] in 1977; see Definition 9.1
∗This work was partially supported by the National Science Foundation grant DMS-
0602332.
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below. Soon after Goppa’s original paper, Tsfasman, Vlăduţ and Zink [43]

used modular curves to construct a sequence of codes with asymptotically

better parameters than any previously known codes. Thus, the study of

algebraic geometric codes took on great significance.

The field of coding theory took another major turn with the 1994 pa-

per of Hammons, Kumar, Calderbank, Sloane and Solé [15] that shows

that certain nonlinear binary codes are, in fact, nonlinear images of linear

codes over the ring Z/4Z. The study of linear codes over rings has contin-

ued to mature into a mathematical field of study in its own right, causing

Alexander Barg, Professor of Electrical and Computer Engineering at the

University of Maryland, to state at an AMS meeting in October 2006, “We

do not have to pretend that what we are doing has anything to do with

information transfer any more.”

The object of this chapter is to combine these areas of coding theory

by introducing and studying algebraic geometric codes over rings. The re-

mainder of this chapter is structured as follows: In Section 9.1.1, we review

the required notions from the study of linear codes over rings, and the

required background on curves over rings is found in Section 9.1.2. Alge-

braic geometric codes over rings are defined in Section 9.2 and their basic

properties are given there. Section 9.3 considers these codes with respect

to weight measures other than the Hamming weight. Three decoding al-

gorithms for algebraic geometric codes over rings are given in Section 9.4:

the so-called basic algorithm in Section 9.4.1, a list-decoding algorithm in

Section 9.4.2, and a variation of the list-decoding algorithm that allows for

decoding with respect to weight measures other than the Hamming weight

in Section 9.4.3.

For future reference, we end this section with the definition and main

theorem on algebraic geometric codes over finite fields.

Definition 9.1 (Goppa, [13]; see also [40], [42]). Let X be a smooth,

absolutely irreducible, projective curve over the finite field Fq. Let P =

{P1, . . . , Pn} ⊆ X(Fq) be a set of n distinct Fq-rational points on X and

let D be a divisor on X such that SuppD∩P = ∅. The algebraic geometric

codes associated to X , P and D are

CL(X,P , D) = {(f(P1), . . . , f(Pn)) | f ∈ L(D)}

and

CΩ(X,P , D) = {(resP1(v), . . . , resPn
(v)) | v ∈ Ω(D)}
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where L(D) is the vector space of rational functions associated to D and

Ω(D) is the vector space of rational differential forms associated to D.

The following theorem gives the basic properties of algebraic geometric

codes over finite fields.

Theorem 9.2 (Goppa, [13]; see also [40], [42]).

Let X, P = {P1, . . . , Pn} and D be as in Definition 9.1, and assume

2g − 2 < degD < n, where g is the genus of X. Then

(1) CL(X,P , D) is a linear code of length n, dimension degD + 1 − g and

minimum distance at least δL := n− degD.

(2) CΩ(X,P , D) is a linear code of length n, dimension n− (degD+1− g)
and minimum distance at least δΩ := degD − 2g + 2.

(3) CL(X,P , D)⊥ = CΩ(X,P , D).

(4) For some canonical divisor K on X, we have CΩ(X,P , D) =

CL(X,P ,K + P − D), where P is being used here to mean the Weil

divisor P1 + · · · + Pn.

Definition 9.3. The quantities δL and δΩ are called the designed minimum

distances of CL(X,P , D) and CΩ(X,P , D), respectively.

9.1.1. Codes over Rings

Recall that a code of minimum (Hamming) distance d can correct any

error pattern of weight at most b d−1
2 c. Thus one wants to find codes with

high minimum distance. On the other hand, the efficiency of a code can be

measured in terms of its dimension, which, in the case of a possibly nonlin-

ear code with M codewords over an alphabet of size q, can be interpreted as

logq(M). Hence one wants to find codes with many codewords. These two

goals are at odds with one another, leading one to consider them together:

Over a fixed alphabet, what is the largest number of codewords that a code

of length n and minimum distance d can have?

This question, of course, is part of what makes algebraic geometry codes

so interesting. Soon after the introduction of algebraic geometry codes by

Goppa [13], Tsfasman, Vlăduţ and Zink [43] showed that, for q ≥ 49 a

perfect square, there is a sequence of algebraic geometry codes that asymp-

totically beats the Gilbert-Varshamov bound; this was the first time such a

sequence had been shown to exist even though the bound had been known

since 1952 [12]. Moreover, this result was a bit of a triumph for mathemati-

cians, who tend to hold dear the belief that structure is good: though many
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different methods, both algebraic and random, had been used in an effort

to construct codes beating the asymptotic Gilbert-Varshamov bound, no

attempt was successful until the powerful tools of algebraic geometry were

brought into play.

On the other hand, it has long been known that, for certain lengths

and minimum distances, there are nonlinear binary codes with more code-

words than any linear code of the same length and minimum distance. One

example of this is the Nordstrom-Robinson code [34], a code of length 16

with minimum distance 8 and 256 codewords. The Nordstrom-Robinson

code lies at the base of two families of nonlinear codes that have more

codewords than all known linear codes with the same length and minimum

distance: the Kerdock codes [21] and the Preparata [35] codes. The fact

that these good codes are nonlinear was very troubling to many mathe-

maticians. In a breakthrough paper [15], Hammons, Kumar, Calderbank,

Sloane and Solé showed that these codes do indeed have a linear structure,

when viewed as codes over the ring of integers modulo 4 rather than as

binary codes.

We begin with the (standard) definition.

Definition 9.4. Let A be a ring. A code of length n over A is a subset C

of An. If C is a submodule of An, we say C is a linear code over A. If C

is a free A-module, we say that C is free and define the dimension of C to

be dimC = rankA(C).

Although some work on codes over rings was done as early as 1972 [6],

interest in these codes did not become widespread until the 1994 paper of

Hammons, et al. [15]. In that paper, it was shown that many good nonlinear

binary codes, including the Kerdock and Preparata codes (and in particular

the Nordstrom-Robinson code) can be obtained as images of linear codes

over the ring Z/4Z under the Gray map. The Gray map φ : Z/4Z→ F2×F2

can be defined by

φ(0) = (0, 0)

φ(1) = (0, 1)

φ(2) = (1, 1)

φ(3) = (1, 0)

and then extended to a map φ : (Z/4Z)n → F2n
2 by declaring

φ ((x1, x2, . . . , xn)) = (φ(x1), φ(x2), . . . , φ(xn)) .
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The study of codes over rings has exploded, with many authors ex-

ploring many different aspects of the topic. For example, different rings

have been considered. Hammons, et al. [15] moved beyond the ring Z/4Z
and considered codes over Galois rings, which are rings formed by adjoin-

ing to Z/peZ, for some prime p and some positive integer e, a root of a

monic irreducible polynomial that remains irreducible over the residue field

Fp. Further generalizations followed, including to finite chain rings—finite

commutative local rings in which the unique maximal ideal is principal.

The point of the comment of Barg’s quoted in the introduction to this

chapter was that the questions about codes over rings have become more

theoretical, often with the following flavor: “Here’s a fundamental property

of codes over finite fields. What is the largest class of rings for which this

property holds?” A major achievement in this direction came in 1999,

when Wood [51] showed that every code C over a fixed ring R satisfies

|C|
∣∣C⊥∣∣ = |Rn| if and only if R is a finite quasi-Frobenius ring. In the

same paper, Wood also showed that the MacWilliams Identities [30] hold

for all codes over a fixed ring R if and only if R is a finite Frobenius ring.

The original work [48], [50] of Walker on algebraic geometric codes over

rings required that the ring be locala and Artinianb and, in some instances,

Gorensteinc. On the other hand, much of the literature on general codes

over rings assumes the rings are Frobenius or quasi-Frobenius. In fact, the

conditions Gorenstein, Frobenius and quasi-Frobenius coincide for commu-

tative Artinian rings [8]. We note, in particular, that Galois rings and, more

generally, finite chain rings are finite, local, Artinian, Gorenstein (hence

Frobenius and quasi-Frobenius) rings.

9.1.2. Curves over Rings

This section gives some properties of curves over rings that will be

needed for the remainder of the chapter. Let A be a local Artinian ring

with maximal ideal m and finite residue field Fq. Let X ⊂ Pr
A be a curve

over A, by which we mean that X is a smooth irreducible projective scheme

over SpecA of relative dimension one. The natural map f : X → Spec(A)

is called the structure morphism of X over A. Let

X = X×SpecA SpecFq
aSee, e.g., [31] for general algebraic background. A local ring is a finite commutative
ring with a unique maximal ideal.
bA ring is Artinian if it satisfies the descending chain condition: any descending chain
I1 ⊇ I2 ⊇ . . . of ideals must eventually stabilize.
cA local Artinian ring is Gorenstein if it is injective as a module over itself.
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be the fibre of X over m and let φ : X → X be the canonical embedding. As

in [50], we assume that X is absolutely irreducible. Additional information

on curves over rings can be found in [16] and [17].

In the field case, the group Div(X) of Weil divisors modulo linear equiva-

lence, the group CaCl(X) of Cartier divisors modulo linear equivalence and

the Picard group Pic(X) of isomorphism classes of line bundles are all three

isomorphic. In particular, the fact that Div(X) ' Pic(X) is used implicitly

in Definition 9.1 to associate the vector spaces L(D) and Ω(D), which are

really global sections of line bundles, to the Weil divisor D. Although this

isomorphism does not hold in the more general setting of curves over local

Artinian rings, it is still true that CaCl(X) ' Pic(X). As the notion of a

Cartier divisor is less familiar to many readers than is that of a Weil divisor,

we include the definition and essential ingredients of the isomorphism next.

Definition 9.5 (See, e.g., [17]). Let X be a scheme and let K denote

the sheaf of total quotient rings on X. Denote by K∗ the sheaf of invertible

elements in K and let O∗ be the sheaf of invertible elements of OX. A

Cartier divisor D is a global section of the sheaf K∗/O∗. If a Cartier

divisor D is in the image of the natural map Γ(X,K∗) → Γ(X,K∗/O∗),
then D is said to be principal. Two Cartier divisors D and D′ are linearly

equivalent if their difference is principal. The Cartier divisor class group

CaCl(X) is the group of Cartier divisors modulo linear equivalence.

A Cartier divisor can be represented in the form D = {(Ui, fi)} where

{Ui} is an open cover of X and fi is an element of Γ(Ui,K∗) such that for

each i and j,

fi/fj ∈ Γ(Ui ∩ Uj ,O∗).

Although the group operation on K∗/O∗ is multiplication, it is standard

(see, e.g., [17]) to use the language of additive groups when talking about

Cartier divisors in order to preserve the analogy of Cartier divisors with

Weil divisors; we have done this already in Definition 9.5 in using the

difference of two divisors to define linear equivalence.

The next definition shows how to associate a line bundle to a Cartier

divisor; the subsequent proposition indicates how the isomorphism between

CaCl(X) and Pic(X) works.

Definition 9.6. Let D = {(Ui, fi)} be a Cartier divisor on X. The sub-
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sheaf OX(D) of K is given by

Γ(Ui,OX(D)) = f−1
i Γ(Ui,OX) =

1

fi
OX(Ui).

Proposition 9.7 (Proposition II.6.13, [17]). Let X be a curve over a

local Artinian ring. Then

(1) For any Cartier divisor D, OX(D) is an invertible sheaf on X. The

map D 7→ OX(D) gives a 1-1 correspondence between Cartier divisors

and invertible subsheaves of K.

(2) OX(D1 −D2) ' OX(D1) ⊗OX(D2)
−1

(3) D1 ∼ D2 if and only if OX(D1) ' OX(D2) as sheaves.

As seen in Definition 9.1, an important ingredient in the construction

of algebraic geometry codes over finite fields is the notion of Fq-rational

points. The analog in the ring case is the notion of A-points, which we

define next.

Definition 9.8 (Definition 4.3, [50]). Let X be a curve over A and let

Z be a zero-dimensional closed subscheme of X. Let i : Z → X be inclusion

and f : X → SpecA be the structure morphism. Then Z is an A-point of

X if the composition f ◦ i is an isomorphism of schemes.

From Definition 9.8, it follows that Γ(Z,OX|Z) ' A for any A-point Z

of X. It is noted in [50] that every closed point P ∈ X that is an Fq-rational

point of X is contained in an A-point of X. Furthermore, since A/m ' Fq,

the unique closed point of any A-point Z is an Fq-rational point of X . If Z1

and Z2 are A-points containing Fq-rational points P1 and P2 respectively,

then Z1 and Z2 are disjoint if P1 6= P2.

Given an A-point Z on X, there is a unique, well-defined Cartier divisor

(which we will also denote by Z) associated to Z. We can express this

divisor explicitly in terms of a local parameter for Z in a neighborhood of

the unique closed point P contained in Z; see [16] for the original statement

(proof omitted) that these local parameters exist and [48] for a detailed

proof. Letting U = SpecB be an affine open neighborhood of P on which

the ideal for Z is principal and letting t be a local parameter for Z on U ,

one can show that B/(t) ' A and that t is a unit on the set U \ {P}. Let

V=X \ {P}. Then t is a unit on U ∩ V = U \ {P} and the Cartier divisor

for Z can be expressed as {(U, t), (V, 1)}.
In Section 9.2 below, we will give two constructions of algebraic geo-

metric codes over local Artinian rings. As in the field case of Definition 9.1,
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one of these constructions will amount to evaluating rational functions, and

the other will amount to taking residues of rational differential forms. To

analyze these constructions, versions of the Riemann-Roch Theorem and

the Residue Theorem, both of which are well-known in the field case, will

be needed. A complete discussion is given in [50]; here we give only the

statements of these theorems and the definitions necessary to do so. We

treat the Riemann-Roch Theorem first.

Definition 9.9. Let L be a line bundle on the curve X defined over the

local Artinian ring A with residue field Fq , let X = X×SpecA SpecFq, and

let φ : X → X be the canonical embedding. Let D′ be a Weil divisor on X

such that φ∗(L) = OX (D′). Then the degree of L is defined to be

degL = degD′.

Definition 9.10. With X and X as above, the genus of X is defined to be

the genus of X .

Let L1 and L2 be line bundles on a curve X of genus g. Then φ∗(L1 ⊗
L2) = φ∗(L1)⊗φ∗(L2) and deg(L1 ⊗L2) = degL1 +degL2. Furthermore, if

ω is the canonical line bundle on X (see Section II.8 of [17] for a definition),

then since X is smooth, φ∗(ω) is the canonical line bundle on X . Hence,

in this situation, degω = degφ∗(ω) = 2g − 2.

We can now state the required version of the Riemann-Roch Theorem.

Theorem 9.11 (Theorem 4.7, [50]). Let X be a curve of genus g over

the local Artinian ring A with residue field Fq and let L be a line bundle on

X. Let X = X×SpecA SpecFq and let L′ = φ∗(L), where φ : X → X is the

canonical embedding. If degL > 2g− 2, then Γ(X,L) is a free A-module of

rank degL + 1 − g.

Next, we turn our attention to the Residue Theorem. For more details

on the following discussion, see [50]; the treatment there is based on [16].

For the remainder of this section, we assume A is a Frobenius (equivalently,

Gorenstein) ring.

Definition 9.12. Let η be the generic point of X, let ω be the canonical

sheaf on X, and let ωη be the stalk of ω at η. Any element of ωη is called

a rational differential form on X.

Proposition 9.13. Let Z be an A-point on the curve X defined over the

ring A, let P be the unique closed point contained in Z and let t be a
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local parameter for Z. For any rational differential form v ∈ ωη, let v̄ be

the image of v in ωη/ωP , where ωP is the stalk of ω at P . Then, in a

neighborhood of Z, v̄ has an expansion of the form

v̄ =
∑

j<0

ajt
j dt

with each aj in A. Moreover, if Y is another A-point on X containing the

same closed point P , s is a local parameter for Y and

v̄ =
∑

j<0

bjs
j ds

is the expansion of v̄ in a neighborhood of Y , then a−1 = b−1.

Definition 9.14. With notation as in Proposition 9.13, the residue of v at

Z is defined to be resZ(v) = a−1 and the residue of v at P is defined to be

ResP (v) = resZ(v) for any A-point Z containing P .

Theorem 9.15 (Corollary 4.14, [50]). Let A be a local, Artinian,

Frobenius (Gorenstein) ring, let X be a curve over A, and let S be the

set of closed points on X. Then for any rational differential form v on X,
∑

P∈S

ResP (v) = 0.

9.2. Algebraic Geometric Codes over Rings

Algebraic geometric codes over rings were first studied by Walker in

[48], [50]. Let A be a local Artinian ring and let X be a curve over A. Let

Z = {Z1, . . . , Zn} be a set of disjoint A-points on X and let L be a line

bundle on X. For each i, let γi : Γ(Zi,L|Zi
) → A be an isomorphism, and

let γ = {γ1, . . . , γn} be the system of these isomorphisms.

Definition 9.16 (Definition 5.1, [50]). Let A, X, Z , L, and γ be as

above and let CL(X,Z ,L, γ) be the image of the composition α

Γ(X,L)
?> =<

α

��
// ⊕Γ(Zi,L|Zi

)
γ // An (9.1)

where the map Γ(X,L) → ⊕Γ(Zi,L|Zi
) is given by restriction. Then

CL(X,Z ,L, γ) is called an algebraic geometric code over A.
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It should be noted that this definition of algebraic geometric codes over

rings is motivated by the “H” construction [42], which gives a generaliza-

tion of algebraic geometric codes to allow for algebraic varieties of dimension

greater than one. In the case that the ring A is a field, the two definitions of

algebraic geometric codes coincide. In fact, we can use the fact mentioned

in Section 9.1.2 above that Pic(X) ' CaCl(X) to interpret the system γ of

isomorphisms as evaluation, thus making Definition 9.16 a direct general-

ization of Definition 9.1 from the field case to the ring case. To do this, we

first need to define what it means for an A-point to be not in the support

of a Cartier divisor.

Definition 9.17 (Definition 5.3, [50]). LetD be a Cartier divisor on X,

and let P ∈ X be a closed point that is a rational point of X = X ×SpecA

SpecFq . We say that P is not in the support of D if we can write D =

{(Ui, fi)}, where fi ∈ OX(Ui)
× for some i such that P ∈ Ui. If Z is an

A-point containing P and P is not in the support of D, we say Z is not in

the support of D as well.

Now let A, X ⊂ Pr, Z , L and γ be as in Definition 9.16 above, and

suppose we can find a Cartier divisor D such that OX(D) = L and Z

is not in the support of D for every Z ∈ Z . Let P be the closed point

contained in some Z ∈ Z and write D = {(Ui, fi)} where {Ui = SpecBi}
is an open cover of X and, for some i, we have that P ∈ Ui and that fi

is a unit of OX(Ui). Write U = Ui and B = Bi. Since P ∈ U , we have

Z ⊂ U and so Z = SpecB/J for some ideal J of B such that B/J ' A.

Let s ∈ Γ(X,OX(D)). Since Γ(U,OX(D)) = 1
fB, we have s|U = h

f for

some h ∈ B ⊂ K(X). Suppose Z is given in projective coordinates by

Z = (z0 : . . . : zr). Since A is local and z0, . . . , zr generate the unit ideal

of A, some zj is a unit. Without loss of generality, we may assume that

z0 = 1 and U is contained in the standard affine open subset of Pr defined

by z0 = 1. Then J is the ideal generated by z1 − x1, . . . , zn − xn, and the

map of (9.1) on the the coordinate corresponding to Z becomes

Γ(X,OX(D)) // Γ(Z,OX(D)|Z)
γ // A (9.2)

and is given by

s 7→ h(1, z1, . . . , zn)

f(1, z1, . . . , zn)
∈ A.

In other words, this map may be thought of as merely evaluating s at

Z. When we wish to think of things in this way, we will write s(Z) to
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represent the image of s ∈ Γ(X,OX(D)) under the composite map (9.2),

i.e., s(Z) = γ(s|Z).

The relationship between algebraic geometric codes over finite fields and

algebraic geometric codes over rings is further strengthened in the next

theorem.

Theorem 9.18 (Theorem 5.5, [50]). Let X, Z and P be as before. Let

L be a line bundle on X and let L′ = φ∗(L), where φ : X → X is the

canonical embedding. Let γ = {γi : Γ(Zi,L|Zi
) → A} be any system of

isomorphisms and let γ ′ = {γ′i} be the induced system of isomorphisms

γ′i : Γ(Pi,L′|Pi
) = Γ(Zi,L|Zi

) ⊗A Fq → Fq .

Setting C = CL(X,Z ,L, γ), C ′ = CFq
(X,P ,L′, γ′) and C = π(C), where

π : An → Fn
q denotes coordinatewise projection, we have C = C ′.

The next theorem summarizes the fundamental properties of the codes

CL(X,Z ,L, γ). The proof, which we include for completeness, uses Theo-

rem 9.18 above and mimics the proof of the field case.

Theorem 9.19 (Theorem 5.4 and Corollary 5.7, [50]). Let A, X, L,

Z = {Z1, . . . , Zn} and γ be as above. Assume that the residue field of A is

finite. Let g denote the genus of X, and suppose 2g − 2 < degL < n. The

CL(X,Z ,L, γ) is a free code of length n, dimension k = degL + 1 − g and

minimum Hamming distance at least δL := n− degL.

Proof. Set C = CL(X,Z ,L, γ). It is clear that C has length n. We will

show that it is free of dimension k = degL + 1 − g by showing that the

composite map α : Γ(X,L) → An of Definition 9.16 is injective and then

applying Theorem 9.11.

Let s ∈ Γ(X,L) such that α(s) = 0. Let D be any Cartier divisor

such that OX(D) ' L. Write D = {(Uj , gj)} and Zi = {(Uj , gij)} where

refinements have been taken if necessary. We may then write the divisor

D − Z1 − · · · − Zn as {Uj ,
gi

g1j ...gnj
}. We first show that s ∈ Γ(X,OX(D −

Z1 − · · · − Zn)), i.e., s ∈ gi

g1j ...gnj
OX(Uj) for each j.

Since s ∈ Γ(X,L), we have s ∈ 1
gj
OX(Uj) for each j, i.e., gjs ∈ OX(Uj).

Since α(s) = 0 for i = 1, . . . , n, gjs ∈ gijOX(Uj) ⊆ OX(Uj) for each i and

j. Because the Zi are disjoint, we have
⋂

i

gijOX(Uj) = g1j . . . gnjOX(Uj),
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which shows ker(α) = Γ(X,OX(D−Z1 −· · ·−Zn)). Let φ : X → X be the

canonical embedding. Since degφ∗OX(D−Z1 − · · · −Zn) = deg(D−Z1 −
· · · − Zn) < 0, we have Γ(X,OX(D − Z1 − · · · − Zn)) = 0 by Nakayama’s

Lemma [31]. Thus α : Γ(X,L) → A is an injection. Since C is the image of

α, this means that C ' Γ(X,L). By Theorem 9.11, C is free of dimension

(rank) k = degL + 1 − g as desired.

Since we now know that C is a free code, Theorem 3.4 of [50] says

that the minimum distance of C is precisely that of C, where C is the

coordinate-wise projection to C ⊂ An to Fn
q , where Fq is the residue field

of A. By Theorem 9.18, C is the algebraic geometric code CL(X,P ,L′, γ′)
over Fq, where P is the set of closed points contained in the A-points of Z ,

L′ = φ∗(L), and γ′ = {γ′i} is the induced system of isomorphisms

γ′i : Γ(Pi,L′|Pi
) = Γ(Zi,L|Zi

) ⊗A Fq → Fq .

The result is now immediate from Theorem 9.2, which says that

CL(X,P ,L′, γ′) has minimum distance at least n− degL′ = n− degL. �

Definition 9.20. The quantity δL := n − degL in Theorem 9.19 is called

the designed minimum distance of CL(X,Z ,L, γ).

One very nice property of algebraic geometric codes over finite fields

is that they are closed under taking duals. This property also holds for

algebraic geometric codes over local Artinian rings that are also Frobenius

(or, equivalently, Gorenstein), as we will now show. In an analogous manner

to what is done in the field case, we first define residue codes.

Let E = ω ⊗OX(Z), where Z is the Cartier divisor obtained by taking

the sum of the Cartier divisors Z1, ..., Zn. From Lemma 5.8 of [50], we have

Γ(X, E) ⊂ ωη. By Lemma 5.9 of [50], for each i, the map resZi
factors

through Γ(Zi, E|Zi
) and there exists an isomorphism ρi : Γ(Zi, E|Zi

) → A

that makes the following diagram commute:

Γ(X, E)

resZi
##GG

GG
GG

GG
G

// Γ(Zi, E|Zi
)

ρi

zzuuuuu
uuu

uu

A ,

where the map Γ(X, E) → Γ(Zi, E|Zi
) is given by restriction.

Definition 9.21. Let A be a local, Artinian, Frobenius ring, let X be a

curve over A, let Z = {Z1, . . . , Zn} be a set of disjoint A-points on X and
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let L be a line bundle on X. Let ω be the canonical line bundle on X. For

each i, let γi : Γ(Zi,L|Zi
) → A be an isomorphism, and let

ξi : Γ(Zi, ω ⊗OX(Z) ⊗L−1|Zi
) → A

be the isomorphism given by the rule

ξi(v|Zi
) = ρi(γ

−1
i (1)v|Zi

),

where ρ = {ρi} is the system of isomorphisms described above. Let γ = {γi}
and ξ = {ξi}. The residue code CΩ(X,Z ,L, γ) over A is defined to be

CΩ(X,Z ,L, γ) = CL(X,Z , ω ⊗OX(Z) ⊗L−1, ξ).

Remark 9.22. If a Cartier divisorD can be chosen so that L ' OX(D) and

no Z ∈ Z is in the support of D, then γ can be thought of as the evaluation

map (as mentioned earlier) and ξ can be thought of as the residue map.

The next theorem gives the basic properties of the codes CΩ(X,Z ,L, γ).
Its proof follows immediately from the definitions and Theorem 9.19.

Theorem 9.23. Let X, Z, L and γ be as before. If 2g − 2 < degL < n

then CΩ(X,Z ,L, γ) is a free code of dimension kΩ = n+ g− 1− degL and

minimum Hamming distance at least δΩ := degL − 2g + 2.

Theorem 9.24 (See Theorem 5.12 of [50]). Let X, L, Z, γ, and ξ be

described as above. Then

CL(X,Z ,L, γ)⊥ = CL(X,Z , ω ⊗OX(Z) ⊗L−1, ξ).

Proof. For 1 ≤ i ≤ n, let si ∈ Γ(Zi,L|Zi
) be the restriction of s ∈

Γ(X,L), and let vi ∈ Γ(Zi, (ω ⊗ OX(Z) ⊗ L−1)|Zi
) be the image of v ∈

Γ(X, ω ⊗OX(Z) ⊗L−1).

As in Theorem 9.15, let S be the set of closed points on X and let

P = {P1, . . . , Pn} be the set of closed points contained in Z = {Z1, . . . , Zn}.
We claim that if P ∈ S with ResP (sv) 6= 0, then P ∈ P . To see this, let

U = X \ P and choose open subsets V1, . . . , Vn of X such that Pi ∈ Vi and,

for j 6= i, Pj 6∈ Vi. Then U ∪ V1 ∪ · · · ∪ Vn is an open cover of X, and

we may express the Cartier divisor Z , i.e., the Cartier divisor that is the

sum of the points in Z as {(U, 1), (V1, t1), . . . , (Vn, tn)}, where ti is a local

parameter for Zi on Vi. If P ∈ S \ P , then P ∈ U and so sv|U ∈ Γ(U, ω),

which means that ResP (sv) = 0.
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Using this, we have

n∑

i=1

γi(si)ξi(vi) =
n∑

i=1

γi(si)ρi(γ
−1
i (1)vi) =

n∑

i=1

ρi(γi(si)γ
−1
i (1)vi)

=

n∑

i=1

ρi(γ
−1
i (γi(si) · 1)vi) =

n∑

i=1

ρi(sivi)

=

n∑

i=1

resZi
(sv) =

n∑

i=1

ResPi
(sv) =

∑

P∈S

ResP (sv)

= 0

by Theorem 9.15. �

Remark 9.25. For X, Z , L and γ as before, CL(X,Z ,L, γ) is equivalent

to a residue code. To see this, note that

ω ⊗OX(Z) ⊗ (OX(Z) ⊗ ω ⊗L−1)−1 ' L.

Thus CL(X,Z ,L, γ) is equivalent to CΩ(X,Z ,OX(Z)⊗ω⊗L−1, ψ), where

ψ = {ψi : Γ(X,OX(Z) ⊗ ω ⊗L−1|Zi
) → A}

is any system of isomorphisms.

As an application of the construction of algebraic geometric codes over

rings, Walker [49] showed that the Nordstrom-Robinson code, a nonlinear

binary code of length 16 with 256 codewords and minimum distance 6 that

has more codewords than any linear code of the same length and minimum

distance, is the image under the Gray map (see Section 9.1.1) of an algebraic

geometric code over the ring Z/4Z. To do this, she gave explicit equations

defining a curve X over Z/4Z, an explicit set Z of Z/4Z points on the

curve, an explicit Cartier divisor D on X, and a basis for the Z/4Z-module

Γ(X,OX(D)) so that the image under the Gray map of CL(X,Z ,L, γ) is

the Nordstrom-Robinson code.

9.3. Non-Hamming Weights and Exponential Sums

Recall that one motivation for considering codes over rings other than

fields is the paper [15] of Hammons, et al., which showed that certain non-

linear binary codes can be realized as images under the Gray map of linear

codes over the ring Z/4Z. The Lee weight on Z/4Z is the weight measure

that makes the Gray map an isometry between Z/4Z and F2
2: wL(0) = 0,
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wL(1) = wL(3) = 1, wL(2) = 2. More generally, we consider the Euclidean

weight on the ring Z/plZ, which we define as follows.

Definition 9.26 (See [46]). Let x ∈ Z/plZ. The Euclidean weight of x

is the distance in the complex plane between e2πix/pl

and the point (1, 0):

wE(x) =

√
sin2

(
2πx

pl

)
+

(
1 − cos

(
2πx

pl

))2

=

√
2 − 2 cos

(
2πx

pl

)
.

Notice that the square of the Euclidean weight of x ∈ Z/4Z is precisely

twice the Lee weight of x.

For simplicity, we consider the square of the Euclidean weight rather

than the Euclidean weight itself. For a vector x = (x1, . . . , xn) ∈ (Z/plZ)n,

we define the squared Euclidean weight of x to be

w2
E(x) =

n∑

j=1

w2
E(xj).

The observation (see [46]) that allows one to find bounds on the mini-

mum squared Euclidean weight of an algebraic geometric code over Z/plZ
is that there is a close relationship between the squared Euclidean weight

and the modulus of a certain exponential sum. More precisely, since

cos( 2πx
pl ) = Re(e2πix/pl

), we have for x ∈ (Z/plZ)n,

w2
E(x) =

n∑

j=1

(
2 − 2 Re(e2πixj/pl

)
)

= 2n− 2 Re

n∑

j=1

e2πixj/pl

≥ 2n− 2

∣∣∣∣∣∣

n∑

j=1

e2πixj/pl

∣∣∣∣∣∣
,

and so, to find a lower bound on the minimum Euclidean weight of a linear

code over Z/plZ, it is enough to find an upper bound on the modulus of

the exponential sum

n∑

j=1

e2πixj/pl

over all vectors x = (x1, . . . , xn) in the code.
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Now consider the case where the code in question is CL(X,Z ,L, γ),
where X is a curve over the ring A = Z/plZ. Then the exponential sum

above becomes
∑

Z∈Z
e2πif(Z)/pl

where f ∈ Γ(X,L).

It is not clear how to get a handle on this exponential sum in the most

general case. However, in situations where the A-points are chosen to be

algebraic liftings of the closed points, some progress has been made. To

explain this progress, we must move to the language of Witt vectors [27].

For a field k of characteristic p, we write Wl(k) for the ring of Witt vectors

of length l over k. This ring is local with maximal ideal generated by p,

such that pl = 0. In the case that k = Fpm , we have Wl(k) ' GR(pl,m)

and, in particular, Wl(Fp) ' Z/plZ.

Definition 9.27. Let A = Wl(Fpm). The Frobenius map F : A → A is

given by

F ((x0, . . . , xl−1)) = (xp
0, . . . , x

p
l−1)

and the trace map T : A→Wl(Fp) ' Z/plZ is given by

T (x) = x+ F (x) + · · · + Fm−1(x).

In light of this definition, we can consider a slightly more general class

of codes. As usual, let X be a curve defined over A = Wl(Fq) ' GR(pl,m)

where q = pm and let X = X ×SpecA SpecFq , so that X is a curve defined

over Fq. Let Z be a set of disjoint A-points on X, let D be a Cartier divisor

on X such that no Z ∈ Z is in the support of D and let f ∈ Γ(X,OX(D)).

As described above, in order to get a lower bound on the squared Euclidean

weight of T (CL(X,Z ,L, γ)), where L = OX(D), it suffices to find an upper

bound on the modulus of the sum
∑

Z∈Z
e2πiT (f(Z))/pl

(9.3)

where f ∈ Γ(X,L). Sums of this type were considered in the case of the

projective line by Li [28] and by Kumar, Helleseth and Calderbank [26].

In certain situations, one can transform the sum of (9.3) into a sum of

the form
∑

P∈P
e2πiT (f(P ))/pl
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where P ⊆ X(Fq) is the set of closed points contained in the A-points of

Z and f is a Witt vector of rational functions on X associated to f . Then

one applies the following theorem, due to Voloch and Walker in [46].

Theorem 9.28 (Theorem 3.1, [46]). Let q = pm where p is prime and

m ≥ 1. Let X be a curve of genus g defined over the finite field Fq with

function field K := Fq(X). Let Q ∈ X(Fq) and suppose f0, . . . , fl−1

have poles only at Q. Consider the Witt vector of rational functions f :=

(f0, . . . , fl−1) ∈ Wl(K). Set X0 = X \ {Q} and assume that f is not of the

form F (g)− g + c for any g ∈ Wl(K) and any c ∈ Wl(Fq). For 1 ≤ i ≤ n,

let degfi = −vQ(fi) be the order of the pole of fi at Q. Then

∣∣∣∣∣∣
∑

P∈X0(Fq)

e2πiT (f(P ))/pl

∣∣∣∣∣∣
≤
(
2g − 1 + max{pl−1−idegfi | 0 ≤ i ≤ l − 1}

)√
q.

Remark 9.29. This theorem easily extends to the case where the set of

poles of f0, . . . , fl−1 does not consist of a single Fq-rational point on X ;

the more general version is actually what is given in [46].

The crux of the matter, then, is to be able to transform the sum which

involves a rational function on X and runs over a set of A-points on X into

a sum which involves a Witt vector of rational functions on X and runs

over a set of Fq-rational points on X . Voloch and Walker do exactly this in

two situations: the case of canonical lifts [29] of ordinary [38] elliptic curves

[46], [44]; and the case of plane curves with a unique point at infinity [45].

In each case, the trick is to find an algebraic lifting of points from X(Fq)

to X(A). This work is extended in [47] to find bounds on the homogeneous

weight of T (C), where C = CL(X,Z ,L, γ) is defined over GR(pl,m) using

either the projective line, the canonical lift of an ordinary elliptic curve, or

a plane curve with a unique point at infinity.

Though motivated by the applications to coding theory, the results on

exponential sums in [44], [45], [46] and [47] have proven to be of independent

interest. Blache [4], [5] extended this work by considering other exponen-

tial sums along these and other curves defined over rings. Some of the

results were also improved upon by Finotti [9], [10], [11], who used work of

Mochizuki [33] to get better bounds on the degrees of the liftings of points.
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9.4. Decoding Algebraic Geometric Codes over Rings

Whenever a new class of codes is proposed, it is important to also pro-

pose decoding algorithms for the codes in the class. In this section, we

present three methods of decoding algebraic geometric codes over rings.

First, we give a generalization of the so-called Basic Algorithm for decoding

algebraic geometric codes over finite fields. This generalization allows for

the decoding of algebraic geometric codes over rings, given by the “residue

construction” of Definition 9.21 above, with respect to the Hamming dis-

tance and can correct any error pattern of weight up to b δΩ−g−1
2 c, where

δΩ is the designed minimum distance of the code. As such codes should

really be able to correct any error pattern of weight up to b d−1
2 c errors, we

next provide a generalization of the Guruswami-Sudan [14] list decoding

algorithm. Again, this algorithm decodes with respect to the Hamming

distance. Since other weight measures, such as the Lee weight, or, more

generally, the squared Euclidean weight, are often of interest when codes

over rings are considered, we offer a third decoding algorithm — a modifi-

cation of the second algorithm that, using ideas of Koetter and Vardy [25],

works for an arbitrary weight measure.

The results of this section are from the first author’s Ph.D. thesis [3]

and are previously unpublished.

9.4.1. The Basic Algorithm for the Hamming Metric

This section describes a decoding algorithm for a residue code over a

finite, local, Artinian, Gorenstein (Frobenius) ring A with respect to the

Hamming distance. By Remark 9.25, any algebraic geometric code over A

is equivalent to a residue code, so the algorithm decodes all algebraic geo-

metric codes overA. The algorithm is a generalization of the basic algorithm

for decoding algebraic geometric codes over finite fields. Presentations of

the basic algorithm, which itself is a generalization of the Arimoto-Peterson

algorithm for decoding Reed-Solomon codes, can be found in [18], [20]

and [39].

We begin this section with a proposition that provides motivation for

the basic algorithm.

Proposition 9.30 (Compare to Proposition 2.4 of [18]). Let C ⊂
An be a free code with parity check matrix H and let ~y ∈ An. If there

exist ~c ∈ C and ~e ∈ An such that ~y = ~c+ ~e with |{j | ej 6= 0}| < d(C), then
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~x = ~e is the unique solution of the system of linear equations given by

H~xT = H~yT

and

xj = 0 for j 6∈ J.

As before, let A be a finite, local, Artinian, Gorenstein (Frobenius) ring

with maximal ideal m and finite residue field Fq , and let X be a curve

over A of genus g. Let D be a Cartier divisor on X such that 2g − 2 <

degOX(D) < n, let Z = {Z1, . . . , Zn} be a set of pairwise disjoint A-

points on X, and let γ = {γi : Γ(Zi,OX(D)|Zi
) → A} be a system of

isomorphisms. For 1 ≤ i ≤ n, let Pi be the closed point contained in Zi,

and let P = {P1, . . . , Pn}. We will assume that, for each Pi ∈ P , Pi is not

in the support of D. We omit most proofs in this section, as many of the

results in this section follow from the definition of a Cartier divisor. The

omitted proofs can be found in [3].

Let CΩ = CΩ(X,Z ,OX(D), γ). Since 2g − 2 < degOX(D) < n, by

Theorem 9.23, CΩ is a free code with minimum distance at least δΩ =

degOX(D)− 2g+2. Hence, by Proposition 9.30, a received word ~y = ~c+~e,

where ~c ∈ CΩ and ~e ∈ An, can be correctly decoded if we can find a set

J ⊂ {1, . . . , n} such that j ∈ J if ej 6= 0 and |J | < δΩ. We shall find this

set under that condition that wt(~e) ≤
⌊

δΩ−1
2

⌋
by finding an error locator

function for ~y.

Definition 9.31 (See also [18]). Let ~y = ~c + ~e, where ~c ∈ CΩ and

wt(~e) ≤
⌊

δΩ−1
2

⌋
. Set

I = {i | 1 ≤ i ≤ n and ei 6= 0}.

Let F be a Cartier divisor on X and let δ = {δi : Γ(Zi,OX(F )|Zi
) → A}

be a system of isomorphisms. A function

s ∈ Γ(X,OX(F )) \ mΓ(X,OX(F ))

is an error locator function for ~y if δi(s|Zi
) ∈ m for all i ∈ I .

If A is a field, then an error locator function for ~y is simply a rational

function that is zero at all error positions. For the rest of this section,

unless otherwise stated, let ~y = ~c+ ~e be a received word with ~c ∈ CΩ and

wt(~e) ≤
⌊

δΩ−1
2

⌋
, let F be Cartier divisor on X with support disjoint from

P , and let δ = {δi : Γ(Zi,OX(F )|Zi
) → A} be a system of isomorphisms.
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The following lemma is needed to describe the set of error locator functions

for ~y.

Lemma 9.32. Let A, X, Z, F , γ = {γi} and δ = {δi} be as before. Then,

for each Zi ∈ Z, there exists an isomorphism

τi : Γ(Zi,OX(D − F )|Zi
) → A

such that, for s ∈ Γ(X,OX(F )) and v ∈ Γ(X,OX(D − F )),

δi(s|Zi
)τi(v|Zi

) = γi(sv|Zi
).

Proof. Let Zi ∈ Z . Let s ∈ Γ(X,OX(F )) and let v ∈ Γ(X,OX(D−F )).

Write F = {(Uj , fj)} and D = {(Uj , gj)}, where {Uj} is an open affine

cover of X and refinements have been taken if necessary. For each j, we have

s ∈ 1
fj
OX(Uj) and v ∈ fj

gj
OX(Uj), and so sv ∈ 1

gj
OX(Uj) for all j. Choose

Uj such that Pi ∈ Uj . Then, as discussed in Section 9.2, Uj = SpecB and

Zi = SpecB/J for some ideal J of B such that B/J ' A. Therefore,

Γ(Zi,OX(D − F )|Zi
) =

f̄j

ḡj
B/J,

where ḡj and f̄j are the images in B/J of gj and fj respectively. Since

Zi is neither in the support of F nor in the support of D, we may assume

both gj and fj are units of B. Thus γi(
1
ḡj

) = aD and δi(
1
f̄j

) = aF for some

aD, aF ∈ A×. Define the isomorphism τi : Γ(Zi,OX(D − F )|Zi
) → A by

the rule

τi

(
f̄j

ḡj

)
=
aD

aF
.

�

Definition 9.33 (See also [18]). Let X, Z , P , CΩ(X,Z ,OX(D), γ), F

and δ = {δi} be as before. Let ~y ∈ An be any received word. The set

K(~y, F, δ) is defined to be

K(~y, F, δ) =
{
s ∈ Γ(X,OX(F )) \ mΓ(X,OX(F ))

∣∣
∑n

i=1 yiδi(s|Zi
)τi(v|Zi

) = 0 for all v ∈ Γ(X,OX(D − F ))
}

where {τi} is the system of isomorphisms given in Lemma 9.32.

We shall show that, under certain conditions, the elements of K(~y, F, δ)

are error locator functions for ~y (see Theorem 9.35 below). Note that since

A is finite and both Γ(X,OX(F )) and Γ(X,OX(D − F )) are finitely gen-

erated, the A-modules Γ(X,OX(F )) and Γ(X,OX(D−F )) contain finitely

many elements. Therefore we may calculateK(~y, F, δ) by exhaustive search.
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If A is a field, then it is shown in [39] that the elements of K(~y, F, δ) can be

found by solving a system of linear equations. At this time, however, it has

not been investigated whether this method of finding elements of K(~y, F, δ)

holds when A is not a field.

The following lemma is needed to show that K(~y, F, δ) is a nonempty

set of error locator functions for ~y. A proof can be found in [3].

Lemma 9.34. Let X, Z, P, CΩ(X,Z ,OX(D), γ) and ~y = ~c + ~e be as

before. Let t = wt(~e), and let I = {i | ei 6= 0} be the set of error positions

for ~y. Let Q = {Zi | i ∈ I}, and let Q be the Cartier divisor obtained by

adding up the points of Q. Let F be a Cartier divisor on X. Then

(1) If degOX(D − F ) > t + 2g − 2, then CΩ(X,Q,OX(D − F ), τ) = {~0},
where τ = {τi : Γ(Zi,OX(D − F )|Zi

) → A} is any system of isomor-

phisms.

(2) If degOX(D) > t+g, then Γ(X,OX(F −Q))\mΓ(X,OX(F −Q)) 6= ∅.

If F has support disjoint from P, then

(3) For any s ∈ Γ(X,OX(F −Q)) and i ∈ I, we have δi(s|Zi
) = 0 for any

system of isomorphisms {δi : Γ(Zi,OX(F −Q)|Zi
) → A}.

(4) If s ∈ Γ(X,OX(F − Q)) \ mΓ(X,OX(F − Q)), then s ∈ K(~y, F, δ),

where δ = {δi : Γ(Zi,OX(F )|Zi
) → A} is any system of isomorphisms.

We now show that K(~y, F, δ) is a nonempty set of error locator functions

for ~y.

Theorem 9.35 (Compare to [18]). With notation as above, assume

deg(OX(F )) ≥ t + g and degOX(D − F ) > t + 2g − 2. Then K(~y, F, δ)

is a nonempty set of error locator functions for ~y.

Proof. Let s ∈ K(~y, F, δ). Then for all v ∈ Γ(X,OX(D − F )), we have

n∑

i=1

yiδi(s|Zi
)τi(v|Zi

) =
∑

i∈I

eiδi(s|Zi
)τi(v|Zi

) = 0,

where {τi : Γ(Zi,OX(D−F )|Zi
) → A} is the system of isomorphisms from

Lemma 9.32. Hence the word ~w ∈ A|I| with entries wi = eiδi(s|Zi
), i ∈ I , is

a codeword of CL(X,Q,OX(D−F ), τ)⊥ = CΩ(X,Q,OX(D−F ), τ). On the

other hand, by part (1) of Lemma 9.34, CΩ(X,Q,OX(D−F ), τ) = {~0}. We

conclude ~w = ~0, and hence eiδi(s|Zi
) = 0 for all i ∈ I . Note eiδi(s|Zi

) = 0 if

either δi(s|Zi
) = 0 or δi(s|Zi

) and ei are both nonzero (zero) divisors whose
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product is zero. In either case, this implies that δi(s|Zi
) is an element of

m, and thus s is an error locator function for ~y.

By part (4) of Lemma 9.34,

Γ(X,OX(F −Q)) \ mΓ(X,OX(F −Q)) ⊂ K(~y, F, δ).

Since degOX(F ) ≥ t+g, we have Γ(X,OX(F−Q))\mΓ(X,OX(F−Q)) 6= ∅
by part (2) of Lemma 9.34. Therefore K(~y, F, δ) is nonempty. �

Let s ∈ K(~y, F, δ). Before we can use Proposition 9.30 to decode ~y,

we need an upper bound on the number of A-points Zi ∈ Z such that

δi(s|Zi
) ∈ m.

Proposition 9.36. With notation as above, let

s ∈ Γ(X,OX(F )) \ mΓ(X,OX(F )).

Then δi(s|Zi
) ∈ m for at most degOX(F ) of the A-points in Z.

Proof. Let s ∈ Γ(X,OX(F )) \ mΓ(X,OX(F )) and consider the word

~s ∈ An defined by si = δi(s|Zi
). By Theorem 9.18, there exists

s̄ ∈ Γ(X,φ∗(OX(F ))) such that si ≡ δ′i(s̄|Pi
) (mod m) for all i. Hence

si ∈ m if and only if δ′i(s̄|Pi
) = 0, if and only if s̄|Pi

= 0. Because

s ∈ Γ(X,OX(F )) \ mΓ(X,OX(F )), we know s̄ 6= 0. Since s is a nonzero

element of Γ(X,φ∗(OX(F ))) and F has support disjoint from P , we con-

clude that s̄|Pi
= 0 for at most degφ∗(OX(F )) = degOX(F ) of the points

in P . Hence, δi(s|Zi
) ∈ m for at most degOX(F ) of the A-points in Z . �

Using Proposition 9.36, we immediately obtain the following bounds.

Lemma 9.37 (Compare to [18]). Suppose that degOX(F ) = t + g and

degOX(D − F ) > 2g− 2 + t. For s ∈ K(~y, F, δ), define J = {j | δj(s|Zj
) ∈

m}. Then t ≤
⌊

δΩ−g−1
2

⌋
and |J | < δΩ.

We now describe the basic algorithm for decoding the code

CΩ(X,Z ,OX(D), γ) with respect to the Hamming metric. Let F be a

Cartier divisor of X with support disjoint from P such that degOX(F ) =

t + g, where t =
⌊

δΩ−g−1
2

⌋
. For example, if there exists an Fq-rational

point P0 of X with P0 6∈ P , then we may let F = OX((t + g)Z0) for any

A-point Z0 containing P0. As before, let δ = {δi : Γ(Zi,OX(F )|Zi
) → A}

be a system of isomorphisms, and let H be the parity check matrix for

CΩ(X,Z ,OX(D), γ). The input to the algorithm is a received word ~y. The

basic algorithm (compare to Algorithm 4.1 of [18]) is then as follows:
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Step 1. Compute K(~y, F, δ).

Step 2. If K(~y, F, δ) = ∅ stop and output “?”.

Step 3. Select an element s of K(~y, F, δ) and compute

J = {j | δj(s|Zj
) ∈ m}.

Step 4. Solve the system of equations

H~xT = H~yT

and

xj = 0 for j 6∈ J.

If a unique solution ~e exists output ~y − ~e, otherwise output “?”.

Putting everything together, we have the following theorem. The proof

follows from Theorem 9.35, Lemma 9.37 and Proposition 9.30.

Theorem 9.38 (Compare to Theorem 4.2 of [18]). The basic algo-

rithm corrects
⌊

δΩ−g−1
2

⌋
errors.

9.4.2. List Decoding for the Hamming Metric

Let C be a linear code over a ring A with minimum Hamming distance

d. Let ~y be a received vector. It well known that, if at most
⌊

d−1
2

⌋
errors

occurred during transmission, then there exists a unique closest codeword

to ~y with respect to the Hamming distance. If more than
⌊

d−1
2

⌋
errors

occurred, then there may or may not be a unique closest codeword to ~y,

and many classical decoding algorithms may fail to correctly decode ~y in

this case. This is the motivation for the list decoding problem. That is,

given a received word ~y and an error bound e, we want to find all codewords

~c ∈ C such that d(~c, ~y) ≤ e, where d(~c, ~y) denotes the Hamming distance

between ~c and ~y. If a list decoding algorithm finds all codewords within

distance e of any received word, then the algorithm is said to be an e

error-correcting algorithm.

In 1997, Sudan [41] presented a list decoding algorithm for generalized

Reed-Solomon codes over finite fields. Shokrollahi and Wasserman [37]

showed that Sudan’s algorithm could be extended to one-point algebraic

geometric codes over finite fields. Guruswami and Sudan [14] then presented

an improved algorithm that corrects more errors than the original algorithm

and showed that this improved algorithm could also be extended to the case

of one-point algebraic geometric codes over finite fields. In [2], Armand
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showed that the algorithm holds for Generalized Reed-Solomon codes over

commutative rings. In this section, we show that the Guruswami-Sudan

algorithm works for one-point algebraic geometric codes over rings, which

are defined in Definition 9.39 below.

As before, let A be a local Artinian ring with principal maximal ideal

m and finite residue field Fq . Let X ⊂ Pr
A be a curve over A, and let

X = X×Spec A Spec Fq be the fibre of X over m. As before, assume that X

is absolutely irreducible. Let Z = {Z1, . . . , Zn} be a set of pairwise disjoint

A-points of X, and let Z be an A-point of X such that Z is disjoint from

all the points of Z . For 1 ≤ i ≤ n, let Pi be the closed point contained in

Zi and let P = {P1, . . . , Pn}. Let P be the closed point contained in Z.

Definition 9.39. Let X, Z and Z be as above and let m be a positive

integer with 2g − 2 < m < n, where n = |Z| and g is the genus of X.

Let γ = {γi}, where γi : Γ(Zi,OX(mZ)|Zi
) → A is the evaluation map

for 1 ≤ i ≤ n. Then the algebraic geometric code CL(X,Z ,OX(mZ), γ) is

called a one-point code.

Remark 9.40. Using Theorem 9.19, we see that the algebraic geometric

code CL(X,Z ,OX(mZ), γ) of Definition 9.39 is a free A-code of length |Z|,
dimension m+ 1 − g and minimum distance at least n−m.

Before we can describe the decoding algorithm we must define valuations

for A-points on X. Let K be the sheaf of total quotient rings on X, write

K(X) = Γ(X,K), and let Z be an A-point of X. Set

MZ =

∞⋃

j=0

Γ(X,OX(jZ)) ⊂ K(X),

so that MZ is the collection of all functions on X that have poles only at

Z.

Definition 9.41. Let Z be an A-point on X and f ∈ MZ . The valuation

νZ : MZ → {−n |n ∈ N} ∪ {∞, 0} is given by

νZ(f) =

{
∞, if f = 0

−m, if f 6∈ Γ(X,OX((m− 1)Z)) but f ∈ Γ(X,OX(mZ)).

If f 6= 0 and νZ(f) = −m, we say that f has a pole of order m at Z. For

any A-point W on X disjoint from Z, define the valuation νZ,W : MZ →
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N ∪ {∞, 0} by

νZ,W (f) =

{
∞, if f = 0

l, if f ∈ Γ(X,OX(mZ − lW )) \ Γ(X,OX(mZ − (l + 1)W ))

where νZ(f) = −m. If f 6= 0 and νZ(f) = l, we say that f has a zero of

order l at W .

If A is a field, then on the set MZ , the functions defined in Defini-

tion 9.41 are equivalent to the discrete valuations defined in Definition

I.1.11 of [40].

Remark 9.42. Let Z be an A-point of X, let f ∈ MZ and let W be an

A-point on X disjoint from Z. Then f ∈ Γ(X,OX(jZ − iW )) if and only

if 0 ≤ i ≤ νZ,W (f) and j ≥ −νZ(f).

The functions νZ and νZ,W have properties similar to those found in

the field case. A proof of the following lemma can be found in [3].

Lemma 9.43. Let Z be an A-point of X and let W be an A-point of X

disjoint from Z. Let r, s ∈ MZ and let a ∈ A \ {0}. Then

(1) νZ(a) = 0 and νZ,W (a) = 0.

(2) νZ(r + s) ≥ min{νZ(r), νZ (s)}.
(3) νZ(rs) ≥ νZ(r) + νZ(s).

(4) νZ,W (r + s) ≥ min{νZ,W (r), νZ,W (s)}.
(5) νZ,W (rs) ≥ νZ,W (r) + νZ,W (s).

The proof of the following proposition follows the spirit of the proof of

Theorem 5.4 of [50] and is therefore omitted.

Proposition 9.44. Let Z be an A-point of X and let {Z1, . . . Zn} be a

set of pairwise disjoint A-points of X, all disjoint from Z. Let h ∈ MZ .

If νZ(h) ≥ −m and νZ,Zi
(h) ≥ ri for 1 ≤ i ≤ n, for some nonnegative

integers m, r1,..., rn, then

h ∈ Γ(X,OX(mZ − r1Z1 − · · · − rnZn)).

For each A-point W disjoint from Z and each nonnegative integer j, we

have an evaluation map

γW,j : Γ(W,OX(jZ)|W ) → A.
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By the explicit formulation of the evaluation maps given in Section 9.2, the

maps γW,j are compatible, i.e. if h ∈ Γ(X,OX(iZ)) ⊂ MZ , then

γW,j(h) = γW,i(h)

for all j ≥ i. For h ∈ MZ , we abuse notation and write h(W ) to mean

γW,j(h|W ) for any nonnegative integer j such that h ∈ Γ(X,OX(jZ)).

Let ~y = ~c+~e be a received word, where ~c ∈ CL(X,Z ,OX(mZ), γ), and

let e be a positive integer. To list-decode ~y with error bound e, we want to

find all of the functions h ∈ Γ(X,OX(mZ)) such that h(Zi) = yi for at least

n − e points of Z . As in the case of algebraic geometric codes over fields

[14], the problem of decoding CL(X,Z ,OX(mZ), γ) can be reduced to a

reconstruction problem. In this context, the reconstruction problem will be

solved by constructing a nonzero polynomialQ(y) ∈ MZ [y] ⊂ K(X)[y] such

that Q(h) ∈ Γ(X,OX(lZ)) for all h ∈ Γ(X,OX(mZ)), and such that each

ordered pair (Zi, yi) is a zero of multiplicity at least r (a notion to be defined

shortly) of Q(y), where l and r are parameters of the algorithm. In order to

find the desired polynomial Q(y), generating sets with specific properties

are needed for Γ(X,OX(lZ)). The next proposition follows immediately

from Nakayama’s Lemma [31].

Proposition 9.45 (See page 413 of [19]). Let R be a commutative

ring, M a finitely generated R-module and J the Jacobson radical of R.

Let x1, . . . , xn ∈ M . Then x1, . . . , xn generate M if and only if x1, . . . , xn

generate M/JM , where xi is the image in M/JM of xi.

Since A is a local Artinian ring, the Jacobson radical of A is equal to

m. Let l > 2g − 2 be an integer. We know that Γ(X,OX(lZ)) is a free

A-module of rank l+ 1− g, that φ∗(OX(lZ)) = OX(lP ) where φ : X → X

is the canonical embedding and P is the unique closed point contained

in Z, and that Γ(X,OX(lZ)) ⊗A Fq ' Γ(X,OX(lP )). Hence, to find a

generating set for Γ(X,OX(lZ)) it is sufficient, by Proposition 9.45, to find

a generating set for Γ(X,OX(lP )).

In order to define what it means for an ordered pair to be a zero of

multiplicity r of Q(y), a “shifted” generating set is also needed.

Remark 9.46. For an Fq-rational point P and an integer l > 2g− 2 there

exist functions f̄1,. . . ,f̄l+1−g ∈ Γ(X,OX(lP )) and integers 0 ≤ n1 < n2 <

. . . < nl+1−g ≤ l such that f̄i has a pole of order ni at P . Thus, for

1 ≤ i ≤ l + 1 − g, we have νP (f̄i) = −ni and fi ∈ Γ(X,OX((i+ g − 1)P )).
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The next lemma is a restatement of Lemma 21 of [14], using the above

remark. It is used to find the “shifted” generating set in Corollary 9.48

below.

Lemma 9.47. Let P be an Fq-rational point of X and fix an integer l >

2g − 2. Set p = dimΓ(X,OX(lP )) = l + 1 − g. Then for any Fq-rational

point R 6= P of X, there is a basis {ψ̄R,1, . . . , ψ̄R,p} of Γ(X,OX(lP )) such

that νR(ψ̄R,j) ≥ j − 1 for 1 ≤ j ≤ p.

Corollary 9.48 (Compare to Lemma 21 of [14]). Let Z be an A-

point of X, let l > 2g − 2 be an integer, and set p = l+ 1 − g. Then

(1) There is a generating set {f1, . . . , fp} for Γ(X,OX(lZ)) such that, for

1 ≤ i ≤ p, fi ∈ Γ(X,OX((i+ g − 1)Z)).

(2) For any A-point W of X disjoint from Z, there is a generating set

{ψW,1, . . . , ψW,p} for Γ(X,OX(lZ)) such that νZ,W (ψW,j) ≥ j − 1 for

1 ≤ j ≤ p.

Proof. Let P and R be the closed points contained in Z and W respec-

tively. Let {f̄1, . . . , f̄p} be as in Remark 9.46.

(1) Since

Γ(X,OX((i+ g − 1)Z)) ⊗A Fq ' Γ(X,OX((i+ g − 1)P )),

for each i with 1 ≤ i ≤ p, there exists fi ∈ Γ(X,OX((i+ g−1)Z)) such

that fi (mod m) = f̄i.

(2) By Lemma 9.47, there exists a basis {ψ̄R,1, . . . ψ̄R,p} of Γ(X,OX(lP ))

such that νR(ψR,j) ≥ j − 1 for all j. Hence, ψ̄R,j ∈ Γ(X,OX(lP − (j −
1)R) for 1 ≤ j ≤ p. Choose ψW,j ∈ Γ(X,OX(lZ− (j−1)W )) such that

ψW,j reduces modulo m to ψ̄R,j .
�

Remark 9.49. Let {f1, . . . , fp} ⊂ Γ(X,OX(lZ)) be a generating set for

Γ(X,OX(lZ)), as given by Corollary 9.48. Then for any choice of qk,j ∈ A,

the polynomial

Q(y) =

b l−g
m

c∑

k=0

p−mk∑

j=1

qk,jfjy
k ∈ Γ(X,OX(lZ))[y]

satisfies Q(h) ∈ Γ(X,OX(lZ)) for all h ∈ Γ(X,OX(mZ)).
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Our goal is to find coefficients qk,j such that each ordered pair (Zi, yi) is

a zero of multiplicity of at least r of Q(y) =
∑b l−g

m
c

k=0

∑p−mk
j=1 qk,jfjy

k, where

r is a parameter of the algorithm; see (9.5) below.

Let W be an A-point of X disjoint from Z. Let {ψW,1, . . . , ψW,p} ⊂
Γ(X,OX(lZ)) be a generating set for Γ(X,OX(lZ)), as described in Corol-

lary 9.48, so that νZ,W (ψW,j) ≥ j − 1 for 1 ≤ j ≤ p. Then, for each i with

1 ≤ i ≤ p, there are scalars ΛW,i,1, . . . ,ΛW,i,p ⊂ A such that

fi = ΛW,i,1ψW,1 + · · · + ΛW,i,pψW,p.

Then

Q(y) =

b l−g
m

c∑

k1=0

p∑

j2=1

p−mk1∑

j1=1

qk1,j1ΛW,j1,j2ψW,j2y
k1 . (9.4)

For any a ∈ A,

Q(y + a) =

b l−g
m

c∑

k2=0

p∑

j2=1

q
(a)
k2,j2

ψW,j2y
k2

with coefficients q
(a)
k2,j2

given by

q
(a)
k2,j2

=

b l−g
m

c∑

k1=k2

p−mk1∑

j1=1

(
k1

k2

)
ak1−k2qk1,j1ΛW,j1,j2 .

Definition 9.50 (See Section IV of [14]). Let W be an A-point on X

disjoint from Z, let a ∈ A and let Q(y) be as in Equation 9.4. If q
(a)
k2,j2

= 0

for all j2 +k2 ≤ r, where j2 ≥ 1, k2 ≥ 0, and qk2,j2 6= 0 for some k2, j2 such

that k2+j2 = r+1, then (W,a) is a zero of multiplicity r of Q(y) ∈ K(X)[y].

We are now ready to describe the algorithm for solving the reconstruc-

tion problem. We assume that the algorithm has access to the following

information:

(1) The generating set {f1, . . . , fp} for Γ(X,OX(lZ)) such that, for j with

1 ≤ j ≤ p, fj ∈ Γ(X,OX((j+g−1)Z)) (as described in Corollary 9.48).

(2) For each Zi ∈ Z , the generating set {ψZi,1, . . . , ψZi,p} for Γ(X,OX(lZ))

(as described in Corollary 9.48), and, for 1 ≤ j ≤ p, the scalars

{ΛZi,j,1, . . . ,ΛZi,j,p} such that fj = ΛZi,j,1ψZi,1 + · · · + ΛZi,j,pψZi,p.

The input for the algorithm is a set of ordered pairs {(Z1, y1), . . . , (Zn, yn)},
where Z,Z1, . . . Zn are pairwise disjoint A-points of X and {y1, . . . , yn} ⊂
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A, and positive integers m and t with 2g − 2 < m < n and t < n. The

algorithm is as follows:

Step 0. Set

r = 1 +

⌊
2gt+mn+

√
(2gt+mn)2 − 4(g2 − 1)(t2 −mn)

2(t2 −mn)

⌋
(9.5)

and

l = rt − 1. (9.6)

Step 1. Find a polynomial

Q(y) =

b l−g
m

c∑

k1=0

p−mk1∑

j1=1

qk1,j1fj1y
k1 ∈ Γ(X,OX(lZ))[y]

such that Q(y) 6≡ 0 (mod m) and Q(y) has a zero of multiplicity at

least r at each ordered pair (Zi, yi) for 1 ≤ i ≤ n. (Lemma 9.51 below

shows when this is possible.)

Step 2. Find all functions h ∈ Γ(X,OX(mZ)) such that y − h is a factor

of Q(y). For each such h, check to see if h(Zi) = yi for at least t values

of i with 1 ≤ i ≤ n. If so, output h.

We now show that the algorithm solves the polynomial reconstruction

problem. We begin by showing that, under certain conditions, the polyno-

mial Q(y) sought in Step 1 of the algorithm exists.

Lemma 9.51 (Compare to Lemma 25 of [14]).

If n
(
r+1
2

)
< (l−g)(l−g+2)

2m , then the polynomial Q(y) sought in Step 1 of the

algorithm exists.

Proof. As in Lemma 25 of [14] we are solving a system of homogeneous

linear equations. It is shown in Chapter 4 of [3] that there exists a so-

lution such that Q(y) 6≡ 0 (mod m) if the number of unknowns is larger

than the number of constraints. In the proof of Lemma 25 of [14], it is

shown that there are n
(
r+1
2

)
constraints and at least (l−g)(l−g+2)

2m unknown

coefficients. �

Remark 9.52. The proof of Lemma 5 in [2], which uses the McCoy rank

of a matrix over A, can be used to show that a non-zero polynomial Q(y)

exists, but it is unclear whether this method guarantees that Q(y) 6≡ 0

(mod m).
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Now that we have proved that Q(y) exists, we will show that, if h ∈
Γ(X,OX(mZ)) and h(Zi) = yi for at least t values of y, then y − h is a

factor of Q(y). The following lemma, which follows from the properties

of valuations given in Lemma 9.43, is needed. Its proof parallels that of

Lemma 23 of [14].

Lemma 9.53 (Compare to Lemma 23 of [14]). Let Q(y) be the poly-

nomial found in Step 1. For 1 ≤ i ≤ n, if h ∈ MZ satisfies h(Zi) = yi,

then νZ,Zi
(Q(h)) ≥ r.

Lemma 9.54 (Compare to Lemma 24 of [14]).

Let h ∈ Γ(X,OX(mZ)) and let Q(y) be the polynomial found in Step 1.

If rt > l and h(Zi) = 0 for at least t values of i with 1 ≤ i ≤ n, then y − h

is a factor of Q(y).

Proof. By reindexing if necessary, we may assume that h(Z1) = y1, . . . ,

h(Zt) = yt. By Remark 9.49, Q(h) ∈ Γ(X,OX(lZ)). By Lemma 9.53,

we have νZ,Zi
(Q(h)) ≥ r for 1 ≤ i ≤ t. Since Z,Z1, . . . , Zt are pairwise

disjoint,

Q(h) ∈ Γ(X,OX(lZ − rZ1 − · · · − rZt))

by Proposition 9.44. We know

degOX (lZ − rZ1 − · · · − rZt) = l− rt,

and, since l < rt, we have l − rt < 0. Hence

Γ(X,OX(lZ − rZ1 − · · · − rZt)) = {0},

and so Q(h) = 0. It follows that y − h is a factor of Q(y). �

The proof of the next lemma is omitted, as it can be found in [14].

Lemma 9.55 (Lemma 26, [14]). If n, m and t satisfy t2 > mn, then

for the choice of r and l made in the algorithm, (l−g)(l−g+2)
2m > n

(
r+1
2

)
and

rt > l both hold.

Finally, putting everything together, we have the following theorem.

Theorem 9.56 (Compare to Theorem 27 of [14]).

The algorithm given above solves the polynomial reconstruction problem for

one-point algebraic geometric codes over rings with inputs m, t and points

{(Zi, yi)}n
i=1, provided that t >

√
mn.
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Proof. If t >
√
mn, then, by Lemma 9.55, rt > l and (l−g)(l−g+2)

2m >

n
(
r+1
2

)
. Hence, by Lemma 9.51, the polynomial Q(y) sought in Step 1

of the algorithm exists. By Lemma 9.54, if h ∈ Γ(X,OX(mZ)) satisfies

h(Zi) = yi for at least t of the points {(Z1, y1), . . . (Zn, yn)}, then y − h is

a factor of Q(y). �

Remark 9.57. For generalized Reed-Solomon codes over a Galois ring,

Armand [1] proposed a two-stage decoder for C that improves upon the

performance of the Guruswami-Sudan algorithm. Armand noted that his

two-stage decoding approach could be applied to a one-point algebraic code

C = CL(X,Z ,OX(mZ), γ) if

(1) C is an algebraic geometric code over Fq with the same minimum dis-

tance as C and

(2) an errors-and-erasure decoding algorithm exists for C.

By Theorem 9.18, C is a one-point algebraic geometric code over Fq.

Furthermore, since C is a free code, the minimum distances of C and C are

equal by Theorem 3.4 of [50]. Thus, the first condition is satisfied. Since

we can still use the Guruswami-Sudan algorithm when erasures occur [14],

there exists an errors-and-erasure decoding algorithm for C.

9.4.3. The Koetter-Vardy Algorithm for Decoding with

Other Metrics

As discussed above, the Hamming distance is often not the weight mea-

sure of interest when studying codes over rings. In this section, we follow

the work of Koetter and Vardy in [23] and [25] to show how the Guruswami-

Sudan algorithm may be used to decode an algebraic geometric code over

a local Artinian ring with respect to any given weight measure on the ring.

Let A be a local Artinian ring with principal maximal ideal m and finite

residue field Fq. Let X be a curve over A, and let X = X×Spec ASpec Fq be

the fibre of X over m. As before, assume that X is absolutely irreducible,

and let C = CL(X,Z ,OX(mZ), γ) be a one-point algebraic geometric code

over A, where Z = {Z1, . . . , Zn} is a set of pairwise disjoint A-points of X,

Z is an A-point of X disjoint from all the points of Z , m is a nonnegative

integer such that 2g − 2 < m < n and γ = {γi : Γ(Zi,OX(mZ)|Zi
) → A}

is the system of evaluation maps. For 1 ≤ i ≤ n, let Pi be the closed

point contained in Zi, and let P = {P1, . . . , Pn}. Let P be the closed point

contained in Z and fix an ordering on the elements of A, say a1, . . . , as,
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where s = |A|.
Although the Koetter-Vardy algorithm was originally developed for soft-

decision decoding of Reed-Solomon codes over finite fields, Koetter and

Vardy also showed that their algorithm could be extended to one-point

algebraic geometric codes over finite fields [22]. Due to length constraints,

these results were not included in [25]. Many of the results presented in

this section are the analogs in the ring case of results of Koetter and Vardy

for algebraic geometric codes over finite fields. We begin with the following

definitions.

Definition 9.58 (Compare to [23]). Let R : A × A → R be a function

such that R(a, b) ≥ 0 for all a, b ∈ A. Let ~x, ~y ∈ An. The cost of ~x given

~y, dR(~x, ~y), is defined by

dR(~x, ~y) = R(x1, y1) + · · · +R(xn, yn).

Let e be a nonnegative integer. The set A(~y, e) is defined by

A(~y, e) = {~x ∈ An | dR(~x, ~y) ≤ e}.

Definition 9.59 (Compare to Definition 3 of [25]). A multiplicity

matrix M = (mi,j) over the ring A with |A| = s is an s × n matrix of

nonnegative integers. The rows of M are indexed by the elements of A and

the columns of M are indexed by the elements of Z . The cost C(M) of M

is defined by

C(M) =
1

2

s∑

i=1

n∑

j=1

mi,j(mi,j + 1).

For a received word ~y, the first step of the Koetter-Vardy algorithm

is to compute a multiplicity matrix M~y for ~y and the given cost function

dR. More information about computing M~y will be given at the end of

this section. In the meantime, we will let M denote a given multiplicity

matrix with the understanding that when implementing the Koetter-Vardy

algorithm, the multiplicity matrix M used must first be computed and

depends on the received word ~y.

Recall that

MZ =

∞⋃

j=0

Γ(X,OX(jZ)) ⊂ K(X)

is the A-module of functions on X with poles only at the A-point Z. Given

a multiplicity matrix M , we will construct a polynomial QM (y) ∈ MZ [y]



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

Algebraic Geometric Codes over Rings 355

such that QM(y) has a zero of multiplicity at least mj,i at each ordered

pair (Zi, aj) ∈ Z ×A. The following definitions are useful.

Definition 9.60 (See [22], [25]). Let wZ and wy be nonnegative real

numbers. For any integer l, define NwZ ,wy
(l) by

NwZ ,wy
(l) = |{j, k | j ≥ 1, k ≥ 0, (j + g − 1)wZ + kwy ≤ l}|

and, for any integer δ, define ∆wZ ,wy
(δ) by

∆wZ ,wy
(δ) = min

{
l ∈ Z |NwZ ,wy

(l) > δ
}
.

Note that if {f1, . . . , fl+1−g} is a generating set for Γ(X,OX(lZ)), as

described in Corollary 9.48, then N1,m is the number of (unknown) coeffi-

cients qk,j in the polynomial

Q(y) =

b l−g
m

c∑

k=0

l−g+1−mk∑

j=1

qk,jfjy
k ∈ Γ(X,OX(lZ))[y],

i.e.,

N1,m(l) =

b l−g
m

c∑

k=0

l−g+1−mk∑

j=1

1 =

(⌊
l − g

m

⌋
+ 1

)
(l − g + 1 −mk) .

The following bounds on N1,m(l) and ∆1,m(δ) are derived in [22]. A proof

can be found in [3].

Lemma 9.61 (Koetter and Vardy, [22]; see also [3]). Let l, δ ∈ Z.

Then

N1,m(l) >
l2

2m
− g

(
l

m
+ 1

)

and

∆1,m(δ) ≤ g + 1 +
√

2m(δ + g) + g2.

Let M be a multiplicity matrix and let l = ∆1,m(C(M)). Note that

l > 2g − 2. Let {f1, . . . , fl−g+1} be a generating set for Γ(X,OX(lZ)),

as described by Corollary 9.48. As before, our goal is to find coefficients

qk,j ∈ A such that the polynomial

QM (y) =

b l−g
m

c∑

k=0

l−g+1−mk∑

j=1

qk,jfjy
k ∈ Γ(X,OX(lZ))[y]
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has a zero of multiplicity at least mj,i at the ordered pair (Zi, aj) for 1 ≤
i ≤ n, 1 ≤ j ≤ s.

For each i, 1 ≤ i ≤ n, let {ψZi,1, . . . , ψZi,l−g+1} ⊂ Γ(X,OX(lZ)) be a

generating set of Γ(X,OX(lZ)), as described in Corollary 9.48. Then for

each i, 1 ≤ i ≤ n, and for each j1, 1 ≤ j1 ≤ l − g + 1, there are coefficients

ΛZi,j1,1, . . . ,ΛZi,j1,l−g+1 ∈ A such that

fj1 = ΛZi,j1,1ψZi,1 + · · · + ΛZi,j1,l−g+1ψZi,l−g+1.

Hence, we may write QM (y) in the form

QM (y) =

b l−g
m

c∑

k1=0

l−g+1∑

j2=1

l−g+1−mk1∑

j1=1

qk1,j1ΛZi,j1,j2ψZi,j2y
k1 . (9.7)

Let (Zi, aj) ∈ Z × A. The polynomial QM (y) has a zero of multiplicity

at least mj,i at (Zi, aj) if q
(aj)
i,k2,j2

= 0 for all j2 ≥ 1, k2 ≥ 0 such that

j2 + k2 ≤ mj,i, where

q
(aj)
i,k2,j2

=

b l−g
m

c∑

k1=k2

l−g+1−mk1∑

j1=1

(
k1

k2

)
ak1−k2

j qk1,j1ΛZi,j1,j2 .

Therefore, the coefficients of QM (y) must satisfy
mi,j(mi,j+1)

2 linear con-

straints. Repeating this argument for all ordered pairs of Z ×A, it follows

that the coefficients of QM (y) must satisfy C(M) linear constraints.

Lemma 9.62 (See also [22], [25]). Let M be a multiplicity matrix and

let l = ∆1,m(C(M)). Then there exists a polynomial QM (y) ∈
Γ(X,OX(lZ))[y] such that

(1) QM (y) =
∑b l−g

m
c

k1=0

∑l−g+1−mk1

j1=1 qk1,j1fj1y
k1 for some qk1,j1 ∈ A.

(2) QM (y) has zero of multiplicity at least mj,i at each ordered pair (Zi, aj)

for 1 ≤ i ≤ n, 1 ≤ j ≤ s.

(3) QM (y) 6≡ 0 (mod m).

Proof. As in the Guruswami-Sudan algorithm, we are solving a system

of linear equations. As before, there exists a solution such that QM (y) 6≡ 0

(mod m) if the number of unknowns is larger than the number of con-

straints. There are C(M) constraints and N1,m(l) unknown coefficients.

Since l = ∆1,m(C(M)), it follows from the definition of ∆1,m(C(M)) that

QM (y) exists. �
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Given a multiplicity matrix M , we shall call a polynomial QM (y) that

satisfies the conditions described in Lemma 9.62 a polynomial associated

to M . As in the Guruswami-Sudan algorithm, the next step is to factor

QM (y). The following definitions are needed in order to describe the roots

of QM (y) contained in Γ(X,OX(mZ)).

Definition 9.63 (Compare to [25]). Let ~v ∈ An. Define the s × n ma-

trix [~v] = (vi,j) by

vi,j =

{
1, if ai = vj

0, otherwise.

Let B = (bi,j) and D = (di,j) be s × n matrices over A. Define the inner

product 〈B,D〉 by

〈B,D〉 = trace(BDT ) =

s∑

i=1

n∑

j=1

bi,jdi,j .

Definition 9.64 (Compare to Definition 4 of [25]). Let ~v ∈ An and

let M be a multiplicity matrix. The score SM (~v) of ~v with respect to M is

given by

SM (~v) = 〈M, [~v]〉.

Using the above definitions, we can describe the roots of QM (y) in

Γ(X,OX(mZ)). The proof of the next theorem is similar to the proof of

Lemma 9.54 and is therefore omitted.

Theorem 9.65 (Compare to Theorem 3 of [25]; see also [22]). Let

M be a multiplicity matrix and let QM (y) be a polynomial associated to

M . Let h ∈ Γ(X,OX(mZ)). Then y − h is a factor of QM (y) if

SM (~h) > ∆1,m(C(M)),

where ~h = (h(Z1), . . . , h(Zn)).

Let ~y be a received word and let e be an error bound. Recall A(~y, e) is

the set of codewords ~c ∈ CL(X,Z ,OX(mZ), γ) such that dR(~c, ~y) ≤ e. We

decode ~y as follows.

Step 1. Compute a multiplicity matrix M = M~y such that SM (~c) >

∆1,m(C(M~y)) for all ~c ∈ A(~y, e). (See Remark 9.66 below.)
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Step 2. Given M = M~y from Step 1, find a polynomial

QM (y) =

b l−g
m

c∑

k1=0

l−g+1−mk1∑

j1=1

qk1,j1fj1y
k1

for some qk1,j1 ∈ A such that QM (y) has zero of multiplicity at least

mj,i at each ordered pair (Zi, aj) for 1 ≤ i ≤ n, 1 ≤ j ≤ s.

Step 3. Find all functions h ∈ Γ(X,OX(mZ)) such that y − h is a factor

of Q(y). For each such h, check to see if dR(~y,~h) ≤ e, where ~h =

(h(Z1), . . . , h(Zn)) as in Theorem 9.65. If dR(~y,~h) ≤ e, then output h.

Remark 9.66. In Section IV of [24] it is shown how to find M~y in the

case of Reed Solomon codes over fields. Theorem 7 of [24] shows when

the computation of M~y is possible. As this computation does not change

significantly for CL(X,Z ,OX(mZ), γ), we omit the details of this step.

Information about finding M~y can be found in Section IV of [24] and in [23].

An example for the case of the Lee weight can be found in [3].

9.5. Conclusion

In this chapter we have introduced and explored algebraic geometric

codes over local Artinian rings. In particular, we have shown that algebraic

codes over rings have dimension and minimum distance properties similar to

those of algebraic geometric codes over fields, and that, as in the field case,

the codes are closed under duals. In the second half of the chapter, three

decoding algorithms were presented. The basic algorithm and Gurusawmi-

Sudan algorithm both decode with respect to the Hamming distance, while

the Koetter-Vardy algorithm can be used to decode with respect to other

weight measures.

There is still interesting work to be done in the area of algebraic geo-

metric codes over rings. For example, in the basic algorithm the set

K(~y, F, δ) is computed by exhaustion. For algebraic geometric codes over fi-

nite fields, this set can by found by solving a linear system of equations [39].

One may ask if the same is true when working over a local Artinian ring.

In the case of the Guruswami-Sudan and the Koetter-Vardy algorithms,

we assume that we are able to factor a polynomial Q(y) ∈ MZ [y]. As we

are no longer factoring Q(y) over a unique factorization domain, it is likely

that this step is harder to perform than it is in the field case.
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As new propertites and algorithms are discovered or developed for al-

gebraic geometric codes over fields, it is hoped that these concepts and al-

gorithms hold in the ring case. For example, Drake and Matthews [32], [7]

have shown how the Guruswami-Sudan algorithm can be used to decode

so-called multi-point codes, i.e., codes where the divisor in question is of

the form m1Q1 + · · · +mtQt rather than simply mQ, over finite fields. It

seems plausible that their methods will extend to the case of multi-point

codes over local Artinian rings as well, though the details have not yet been

worked out.
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[43] M. A. Tsfasman, S. G. Vlăduţ, and Th. Zink. Modular curves, Shimura
curves, and Goppa codes, better than Varshamov-Gilbert bound. Math.
Nachr., 109:21–28, 1982.

[44] J. F. Voloch and J. L. Walker. Lee weights of codes from elliptic curves. In
Codes, curves, and signals (Urbana, IL, 1997), volume 485 of Kluwer Inter-
nat. Ser. Engrg. Comput. Sci., pages 53–62. Kluwer Acad. Publ., Boston,
MA, 1998.

[45] J. F. Voloch and J. L. Walker. Codes over rings from curves of higher genus.
IEEE Trans. Inform. Theory, 45(6):1768–1776, 1999.

[46] J. F. Voloch and J. L. Walker. Euclidean weights of codes from elliptic curves
over rings. Trans. Amer. Math. Soc., 352(11):5063–5076 (electronic), 2000.

[47] J. F. Voloch and J. L. Walker. Homogeneous weights and exponential sums.
Finite Fields Appl., 9(3):310–321, 2003.

[48] J. L. Walker. Algebraic geometric codes over rings. PhD thesis, University
of Illinois, 1996.

[49] J. L. Walker. The Nordstrom-Robinson code is algebraic-geometric. IEEE
Trans. Inform. Theory, 43(5):1588–1593, 1997.

[50] J. L. Walker. Algebraic geometric codes over rings. J. Pure Appl. Algebra,
144(1):91–110, 1999.

[51] J. A. Wood. Duality for modules over finite rings and applications to coding
theory. Amer. J. Math., 121(3):555–575, 1999.



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

This page intentionally left blankThis page intentionally left blank



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

Chapter 10

Generalized Hamming Weights and Trellis Complexity

Carlos Munuera

University of Valladolid, Dept. of Applied Mathematics,
Avda Salamanca SN, 47014 Valladolid

Castilla, Spain

cmunuera@arq.uva.es

Contents

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

10.2 Generalized Hamming weights . . . . . . . . . . . . . . . . . . . . . . . . . . 364

10.3 Generalized Hamming weights of AG codes . . . . . . . . . . . . . . . . . . . 365

10.3.1 The gonality sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

10.3.2 Extending the Goppa bound . . . . . . . . . . . . . . . . . . . . . . . . 368

10.3.3 One-point codes and the Weierstrass semigroup . . . . . . . . . . . . . 369

10.3.4 Extending the order bound . . . . . . . . . . . . . . . . . . . . . . . . 371

10.4 Trellis structure of codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

10.4.1 Trellises and codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

10.4.2 Minimal trellises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

10.5 Linking the problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

10.6 Trellis structure of AG codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

10.6.1 A Goppa-like bound on s(C) . . . . . . . . . . . . . . . . . . . . . . . . 379

10.6.2 Another bound on the trellis state complexity . . . . . . . . . . . . . . 380

10.7 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

10.1. Introduction

In this chapter we shall study two interesting topics: the generalized

Hamming weights and the trellis structure of an AG code. Both can be

stated in the more general context of all linear codes, but they have par-

ticular properties that make the study more easy for AG codes. At the

first look, both problems seem very different, but as we shall see there are

connections between them.
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The first part is devoted to the generalized Hamming weights. We

introduce these weights and explain some of their main properties for linear

codes. In section 3 we deal with AG codes, extending the Goppa bound

and the order bound on the minimum distance to higher weights. In the

second part we study the trellis structure of codes. The problem is stated in

section 4, while the link between generalized Hamming weights and trellis

complexity is sketched in section 5. Finally, the trellis complexity of AG

codes is studied in section 6.

10.2. Generalized Hamming weights

Let Fq be the finite field with q elements. For a vector x ∈ Fn
q the

support of x is the set

supp(x) = {i | 1 ≤ i ≤ n, xi 6= 0}.
We recall that for a linear code C of length n and dimension k over Fq, the

minimum distance (or minimum weight) of C is d(C) = min{#supp(x) | x ∈
C,x 6= 0}. We can generalize this concept as follows. For a subset S ⊆ Fn

q ,

we define the support of S as the set of positions where at least one vector

in S is not zero,

supp(S) =
⋃

x∈S

supp(x).

Now, for 1 ≤ r ≤ k, we define the r-th generalized Hamming weight of C as

dr(C) = min{#supp(S) | S is an r-dimensional linear subcode of C}
and the weight hierarchy of C as the set of its generalized Hamming weights,

GHW(C) = {d1(C), . . . , dk(C)}. As remarked above, d1(C) is just the mini-

mum distance of C.

The next Proposition summarizes the main properties of these GHWs.

Proposition 10.1. Let C be a linear [n, k] code and let C⊥ be its dual.

Then

(1) (Monotonicity) 1 ≤ d1(C) < d2(C) < · · · < dk(C) ≤ n.

(2) (Generalized Singleton bound) dr(C) ≤ n− k + r.

(3) (Duality) {dr(C⊥) | 1 ≤ r ≤ n − k} ∪ {n + 1 − dr(C) | 1 ≤ r ≤ k} =

{1, . . . , n}.

We leave the proof of this Proposition as an exercise to the reader (or

see [2], [38]).
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Given a linear [n, k, d] code C, the Singleton bound states that d ≤
n− k + 1. Codes reaching equality are called maximum distance separable

(MDS). Property (2) in the above Proposition extends this bound to all

GHWs. This leads to the following definition: we say that C is r-th rank

MDS if dr(C) = n− k + r.

If the computation of the minimum distance d1(C) is usually a difficult

problem, the determination of the weight hierarchy in full, seems much

more difficult. A more modest goal is to find acceptable bounds on the

dr(C)’s. In the next section we accomplish this task for the AG codes.

10.3. Generalized Hamming weights of AG codes

As the GHWs generalize the minimum distance, it seems natural to

extend the available bounds on d1(C) to the remainder weights. In the

previous chapters we have found two such bounds: the original Goppa

bound and the order (or Feng-Rao) bound (the latter only for the duals of

one-point codes).

Let us remember the main definitions concerning AG codes. Let X be a

(projective, geometrically irreducible, non-singular algebraic) curve of genus

g defined over the finite field Fq. Let P = {P1, . . . , Pn} be a set of n rational

distinct points and let us consider the rational divisors D = P1 + · · · + Pn

and G, with supp(G) ∩ supp(D) = ∅ and 1 ≤ deg(G) ≤ n + 2g − 1. The

associated code C = C(X , D,G) is the image of the evaluation map

evP : L(G) → Fn
q , evP(f) = (f(P1), . . . , f(Pn))

where L(G) is the vector space of rational functions f such that f = 0

or div(f) + G ≥ 0. If `(G) stands for the dimension of L(G), then the

dimension of C is `(G) − `(G − D). The number a = `(G − D) is the

abundance of the code. If a = 0 then evP is injective and the code is called

nonabundant. If a > 0 it is said to be abundant.

10.3.1. The gonality sequence

The Goppa bound states that the minimum distance of the code C =

C(X , D,G) verifies d1(C) ≥ n − deg(G). In order to extend this bound to

higher weights we need a new tool. Recall that the (classical) gonality, γ,

of the curve X is defined as the smallest degree of a non constant morphism

X → P1 over Fq , where P1 stands for the projective line. This is equivalent
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to saying

γ = min{deg(A) | A is a rational divisor on X with `(A) ≥ 2}.

In the same way, for every positive integer r, we can define the r-th gonality

of X as

γr = min{deg(A) | A is a rational divisor on X with `(A) ≥ r}.

The sequence GS(X ) = (γr)r=1,2,... is called the gonality sequence of X .

Some of its main properties are collected in the next Proposition.

Proposition 10.2. Let X be a curve having at least one rational point and

let (γr) be its gonality sequence. Then

(1) γ1 = 0 and the sequence is strictly increasing.

(2) For r ≤ g we have 2r − 2 ≤ γr ≤ r + g − 1.

(3) γg = 2g − 2 and γr = g + r − 1 for r > g.

(4) Let m be an integer with 0 ≤ m ≤ 2g−1. Then m ∈ GS(X ) if and only

if 2g − 1 −m 6∈ GS(X ).

Proof. (1) is clear. The right-hand inequality of (2) and (3) follow from

Riemann-Roch Theorem, whereas the left-hand inequality of (2) is a direct

consequence of Clifford’s Theorem. Let us prove (4). By item (3), there are

precisely g gonality numbers in the interval [0, 2g − 1]. Thus it is enough

to show that 2g − 1 − γi 6= γj for any i, j = 1, . . . , g. Let A be a rational

divisor such that deg(A) = γi and `(A) ≥ i. Let W be a canonical divisor

on X . By the Riemann-Roch Theorem, `(W −A) ≥ i+ g−γi −1. Suppose

that j ≤ i + g − γi − 1. Then γj ≤ deg(W − A) = 2g − 2 − γi and thus

2g−1−γi 6= γj . Now let j ≥ i+g−γi and suppose by means of contradiction

that 2g−1−γi = γj . Let B be a rational divisor such that deg(B) = γj and

`(B) ≥ j. As above we have `(W −B) ≥ j+ g− γj − 1 so that `(W −B) ≥
j+ γi − g ≥ i. This is not possible since deg(W −B) = 2g− 2− γj = γi − 1

and the result is proved. �

The next Corollary states a property that we shall use later.

Corollary 10.3. For r = 1, . . . , g, we have

γg−γr+r−1 < 2g − 1 − γr < γg−γr+r.

Proof. Let r be an integer, 1 ≤ r ≤ g. The interval [0, γr] contains

exactly γr − r+ 1 nongonality numbers hence, according to item (4) in the

above Proposition, the interval [2g − 1− γr, 2g − 1] contains just the same
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amount of gonality numbers. Since 2g − 1 6∈ GS(X ) and γg = 2g − 2, we

conclude that the first of these gonality numbers is γg−γr+r. Taking into

account that 2g − 1 − γr 6∈ GS(X ), we get the result. �

The gonality sequence plays an important role in many computations

concerning AG codes. However it is usually difficult to determine. For

plane curves we have (see [27])

Proposition 10.4. Let X be a nonsingular plane curve of degree t over a

perfect field F with at least one rational point. Let r be a positive integer

and write r = 1
2 (j + 1)(j + 2) − i, with 0 ≤ i ≤ j. Then

γr =

{
jt− i if r ≤ g; and

r + g − 1 if r > g

where g is the genus of X (that is, g = (t− 1)(t− 2)/2).

To prove this Proposition we need a Theorem due to M. Noether.

Theorem 10.5. (M. Noether) Let X be a nonsingular plane curve of degree

t and genus g over a perfect field F. Let A be a rational divisor on X .

(1) If deg(A) > t(t− 3), then `(A) = deg(A) + 1 − g.

(2) If 0 ≤ deg(A) ≤ t(t−3), write deg(A) = jt−i with 0 ≤ j and 0 ≤ i < t.

Then

`(A) ≤
{

1
2j(j + 1) if i > j; and
1
2 (j + 1)(j + 2) − i if 0 ≤ i ≤ j.

We do not include the proof. The interested reader is addressed to

[16]. This Theorem holds for perfect fields so, in particular for finite fields,

because the dimension `(A) of a Fq-rational divisor does not change when

we consider A over the algebraic closure of Fq (see [34] for example). Let

us prove now Proposition 10.4.

Proof. If r > g then the Riemann-Roch Theorem implies the result. Let

us assume 1 ≤ r ≤ g and write r = 1
2 (j+1)(j+2)−i, with 0 ≤ i ≤ j ≤ t−3.

Let A be a divisor with `(A) = r and set deg(A) = j ′t − i′, for some

0 ≤ j′ ≤ t− 3 and 0 ≤ i′ < t. Let us see that γr ≥ jt− i. If i′ ≤ j′ then

r =
1

2
(j + 1)(j + 2) − i ≤ 1

2
(j′ + 1)(j′ + 2) − i′

by Noether’s Theorem. So j < j ′ or j = j′ and i ≥ i′. Thus jt − i ≤
j′t− i′ = deg(A). If i′ > j′ then

1

2
j(j + 1) < r =

1

2
(j + 1)(j + 2) − i ≤ 1

2
j′(j′ + 1)
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again by Noether’s Theorem. So j < j ′ and then jt − i < j′t − i′ =

deg(A). Then γr ≥ jt − i. To see the equality, take a rational point,

say Q = (0 : 1 : 0) (after a change of coordinates if necessary). Let B

be the divisor obtained as intersection of X with the line Z = 0. Since

j < t then the 1
2 (j + 1)(j + 2) functions xαyβ where x = X/Z, y = Y/Z,

α, β ∈ N0 and α + β ≤ j, are linearly independent and belong to L(jB).

Thus `(jB − iQ) ≥ 1
2 (j + 1)(j + 2) − i and we get the equality. �

10.3.2. Extending the Goppa bound

Let us already study the weight hierarchy of an AG code C. As in the

case of the minimum distance, the numbers dr(C) admit and arithmetical

interpretation.

Proposition 10.6. Let C = C(X , D,G) be a code of abundance a ≥ 0.

Then

dr(C) = min{n− deg(D′) | 0 ≤ D′ ≤ D, `(G−D′) ≥ r + a}

Proof. If dr(C) = d then there exists a subspace V ⊆ C of dimension r

and support size d. Let V = 〈evP (f1), . . . , evP(fr)〉. Then f1, . . . , fr are

independent functions vanishing at n− d distinct points, say Pd+1, . . . , Pn

(up to reordering if necessary). Thus f1, . . . , fr ∈ L(G − Pd+1 − · · · −
Pn) \ L(G − D) and hence `(G − Pd+1 − · · · − Pn) ≥ r + a. Conversely,

assume that there are n− d distinct points Pd+1, . . . , Pn, such that `(G−
Pd+1 − · · · − Pn) ≥ r + a. Let {φ1, . . . , φa} be a basis of L(G − D) and

extend it to a basis {φ1, . . . , φa, f1, f2 . . . } of L(G− Pd+1 − · · · − Pn). Let

V = 〈evP(f1), . . . , evP(fr)〉; thus supp(V ) ≤ d and dim(V ) = r, hence

dr(C) ≤ d. �

Corollary 10.7. Let C = C(X , D,G) be a code of dimension k and abun-

dance a. Then for every r, 1 ≤ r ≤ k we have

(1) dr(C) ≥ n− deg(G) + γr+a;

(2) if r + a > g then dr(C) = n− k + r;

(3) if r + a = g then dr(C) = n− k + r or dr(C) = n− k + r − 1.

Proof. Let D′ ≤ D be an effective divisor such that dr(C) = n−deg(D′).
Then `(G −D′) ≥ r + a so deg(G) + dr(C) − n ≥ γr+a and (1) is proved.

To prove (2) note that γr+a = r+ a+ g− 1 when r+ a > g, so n− k+ r ≤
n− deg(G) + γr+a and the equality follows from the Singleton bound. (3)

is proved in the same way. �
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Remark 10.8. (1) The statement (1) in the previous Corollary gives

d1(C) ≥ n−deg(G)+γa+1 for r = 1. This is known as the improved Goppa

bound. It is useful for deg(G) ≥ n when the classical Goppa bound does not

give any information. (2) The statement (2) shows that a code C(X , D,G)

of abundance a, arising from a curve of genus g, is (g − a+ 1)-rank MDS.

Let us write σ(C) = n − k + 1. According to the Singleton bound we

know that d ≤ σ(C). Actually we can improve this bound as follows.

Corollary 10.9. Let C = C(X , D,G) be a [n, k, d] code of abundance a ≥ 0.

Then σ(C) − (g − a) ≤ d ≤ σ(C).

Proof. Use the Singleton bound, the improved Goppa bound and the

inequality γa+1 ≥ 2a. �

10.3.3. One-point codes and the Weierstrass semigroup

A second way to get estimates for the GHWs is to extend the order (or

Feng-Rao) bound on d1(C). In general, this bound gives very good results.

However, its field of application is restricted to the duals of one-point codes.

In this section we shall recall some basic facts about these codes.

As in the previous sections, let X be a curve over Fq of genus g, P =

{P1, . . . , Pn} be a set of rational points and D = P1 + · · · + Pn. Assume

now that there exist an extra rational point Q, Q 6= Pi for all i. If we take

G = mQ, then the code C(X , D,G) is called one-point. To study these

codes it is useful to consider the algebra

L =

∞⋃

m=0

L(mQ)

and the set H = {−vQ(f) | f ∈ L}, where vQ is the valuation at Q. Due to

the properties of the valuations, H is a semigroup, called the Weierstrass

semigroup at Q. Recall that this means that 0 ∈ H and ρ, σ ∈ H implies

ρ + σ ∈ H . Note that `(mQ) > `((m − 1)Q) if and only if there exist

a rational function f ∈ L such that −vQ(f) = m, hence if H = {ρ1 =

0 < ρ1 < · · · }, it holds that `(ρlQ) = l, and for a nonnegative integer m,

`(mQ) = max{l | ρl ≤ m}.
The Weierstrass semigroup can be used to give upper bounds on the

GHWs. See for example the following result.

Proposition 10.10. Let C = C(X , D,G) be a code of dimension k and

abundance a. If there is a rational point Q 6∈ P, then for every r, 1 ≤ r ≤ k,
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such that C(X , D,G− ρr+aQ) 6= 0 we have

dr(C(X , D,G)) ≤ d1(C(X , D,G − ρr+aQ)).

Proof. For two effective divisors E1, E2 on X , it is known that `(E1) +

`(E2) ≤ `(E1 + E2) + 1 (see for example [15], Lemma IV.5.5). If

d1(C(X , D,G − ρr+aQ)) = d then there exists an effective divisor D′ ≤ D

of degree n−d such that `(G−ρr+aQ−D′) ≥ 1+ `(G−ρr+aQ−D). Thus

`(G− ρr+aQ−D′) + `(ρr+aQ) ≤ `(G−D′) + 1

and hence `(G−D′) ≥ r + a, so dr(C(X , D,G)) ≤ d. �

Let us return to one point codes. The evaluation map can be extended,

in the obvious way, to the algebra L,

evP : L → Fn
q , evP(f) = (f(P1), . . . , f(Pn)).

Note that this map is now surjective. In fact, from the Goppa’s estimates

for the dimension of a code, we have that dim(C(X , D, (n + 2g)Q)) = n.

On the other hand, as seen before, for a nonnegative integer m, we

have C(X , D,mQ) = C(X , D, ρlQ), where ρl is the largest element in H

not exceeding m. Then we can restrict to consider the one-point codes

C(X , D, ρlQ), with 0 ≤ ρl ≤ n + 2g, and their duals C(X , D, ρlQ)⊥. Re-

mark that, as we have seen in a previous chapter, the dual of an AG code

is again an AG code: C(X , D,G)⊥ = C(X , D,D +W −G), where W is a

canonical divisor with simple poles and residue 1 at each point Pi.

For all i = 0, 1, . . . , let fi ∈ L be a function such that −vQ(fi) = ρi.

Then {f1, . . . , fl} is a basis of L(ρl). In order to simplify the notation, we

shall write fi = evP(fi) (hence C(X , D, ρlQ) = 〈f1, . . . fl〉) and

C(l) = C(X , D, ρlQ)⊥ = {x ∈ Fn
q | x · f = 0 for all i ≤ l}

where · stands for the usual inner product

x · y =
∑

xiyi.

Example 10.11. The Hermitian curve H is defined over a field Fq2 by the

affine equation yq + y = xq+1. It is a nonsingular plane curve of genus

q(q−1)/2 and it has n = q3 rational affine points plus one point at infinity,

Q. This is the maximum possible number of points allowed by the Weyl

bound: H is a maximal curve. One-point codes constructed from this

curve and the divisors D, sum of all affine points, and G = mQ are called

Hermitian codes.
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It is easy to check that for all α, β ∈ Fq2 such that βq + β 6= 0, we have

div(x− α) =
∑

βq+β=αq+1

(α, β) − qQ,

div(y − β) =
∑

αq+1=βq+β

(α, β) − (q + 1)Q.

In particular, if H = H(Q) = {ρ1, ρ2, . . . } is the Weierstrass semigroup of

Q, we have 〈q, q + 1〉 ⊆ H . Since both semigroups have equal genus, we

conclude that H = 〈q, q + 1〉. Furthermore, according to Proposition 10.4,

the gonality sequence of H verifies γi = ρi for all i. In particular H is

symmetric, so (2g−2)Q is a canonical divisor. Let us consider the function

f =
∑

α∈Fq2

(x− α).

Since div(f) = D − nQ, it holds that D ∼ nQ, hence the dual of

C(H, D,mQ) is C(H, D, (n + 2g − 2 − m)Q). Finally, according to the

properties of valuations, the algebra L is given by L = 〈{xiyj | 0 ≤ i, 0 ≤
j ≤ q − 1}〉.

Example 10.12. (Example 10.11 continued). Let us consider the Hermi-

tian code C = C(H, D, ρQ), with ρ ∈ H . Let k be the dimension of this

code and be a its abundance. We can say something about the GHWs of

C by using the extended Goppa bound as follows. For a pole number at Q

m ∈ H , m ≤ n, write m = iq+ j(q + 1) with 0 ≤ i and 0 ≤ j < q. If either

i < q2 − q or j = 0, then there exists an effective divisor D′ ≤ D such that

mQ ∼ D′. Furthermore note that for a given positive integer t, then either

t ∈ H or n− t ∈ H . According to the extended Goppa bound, for every r,

1 ≤ r ≤ min{k, g − a}, we have

a) if q2 ≤ ρ− ρr+a ≤ n− q2, then dr(C) = n− ρ+ ρr+a.

b) if a > 0 then dr(C) ≤ ρr+1.

The proofs of all these statements are left to the reader as an exercise.

10.3.4. Extending the order bound

In this section, following [17], we shall extend the order bound on the

minimum distance to all the GHWs of the codes C(l). Let us remember

that for given y ∈ Fn
q we define the syndromes of y as si(y) = fi · y,

i = 1, 2, . . . . In the same way we can define the two-dimensional syndromes

of y as sij(y) = (fi ∗ fj) ·y, where ∗ stands for the coordinate wise product,
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x ∗ y = (x1y1, . . . , xnyn). Thus fi ∗ fj = evP(fifj). Now write l(i, j) =

min{t | fifj ∈ L(ρtQ)}, or equivalently l(i, j) = l if ρi + ρj = ρl.

Lemma 10.13. The function l is symmetric and strictly increasing in both

arguments.

Let N be the smallest integer such that f1, . . . , fN generate Fn
q . We

define the matrix of syndromes of y as

S(y) = (sij(y))1≤i,j≤N .

In the next two Lemmas we state some important properties of this

matrix.

Lemma 10.14. Let y ∈ Fn
q . Let S(y) the matrix of syndromes of y, D(y)

be the diagonal matrix with y in the diagonal and H be the N × n matrix

whose i-th row is fi. Then

S(y) = HD(y)Ht.

Lemma 10.15. Let y ∈ Fn
q .

(1) If y ∈ C(l) and l(i, j) ≤ l, then sij(y) = 0.

(2) If y ∈ C(l) and l(i, j) = l+ 1, then stj(y) = 0 for all t < i.

(3) If y ∈ C(l) \ C(l + 1) and l(i, j) = l + 1, then sij(y) 6= 0.

Proof. (1) If l(i, j) ≤ l, then evP(fifj) = fi∗fj ∈ C(l)⊥, hence (fi∗fj)·y =

0. (2) Since l is strictly increasing in both arguments, we have l(t, j) < l(i, j)

and the result follows from (1). (3) If l(i, j) = l + 1, then fifj = λfl+1 + f

for some λ ∈ F∗q and f ∈ L(ρlQ). Thus fi∗fj = λfl+1+f , with f = evP(f) ∈
C(l), hence sij(y) = (fi ∗ fj) · y = λfl+1 · y + f · y = λfl+1 · y 6= 0, since

y ∈ C(l) \ C(l + 1). �

Lemma 10.15 leads us to consider the set N(l) = {(i, j) ∈ N | l(i, j) =

l + 1}.

Lemma 10.16. Let N(l) = {(i1, j1), . . . , (ir, jr)}. Then the integers

i1, . . . , it are all different.

Proof. If it = ih and jt < jh then, since l is strictly increasing, we have

l(it, jt) < l(ih, jh) hence both pairs cannot belong to N(l). �

If N(l) = {(i1, j1), . . . , (ir, jr)} then, by the symmetry of l, we have

{i1, . . . , ir} = {j1, . . . , jr}. We denote this set by A(l), hence A(l) = {i ∈
N | (i, j) ∈ N(l) for some j}. From the above Lemma, #A(l) = #N(l).
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Let u ∈ Fn
q and consider the linear maps given by the matrices

S(u), D(u), H and Ht, which we can still denote by S(u), D(u), H and

Ht respectively, that is, S(u) : FN
q → FN

q , (S(u))(x) = xS(u), etc.

Lemma 10.17. Let U ⊆ C(l) be a subspace. Then #supp(U) =

dim〈∪u∈U Im(S(u))〉.

Proof. Let u ∈ U and let us consider the diagram

Fn
q

D(u)−→ Fn
qyHt

yH

FN
q

S(u)−→ FN
q

According to Lemma 10.14 this is a commutative diagram. Further-

more, since the matrix H has full rank, the map H is surjective and

the map Ht is injective. Thus dim(Im(S(u))) = dim(Im(D(u))), hence

dim〈∪u∈U Im(S(u))〉 = dim〈∪u∈U Im(D(u))〉. On the other hand, it is clear

that Im(D(u) is the subspace of equations (Xi = 0, i 6∈ supp(u)), and thus

〈∪u∈U Im(D(u))〉 is the subspace of equations (Xi = 0, i 6∈ supp(U)). Then

dim〈∪u∈U Im(D(u))〉 = #supp(U). �

Lemma 10.18. Let U be a linear subspace of C(l) of dimension r. Then

there exist r integers l ≤ l1 < · · · < lr < N such that

dim(C(li) ∩ U) = dim(C(li + 1) ∩ U) + 1.

Proof. Let us consider the decreasing chain of subspaces C(l)∩U ⊇ C(l+

1)∩U ⊇ · · · ⊇ C(N)∩U = (0). Since dim(C(l)∩U) = r, dim(C(N)∩U) = 0

and at every step t, dim(C(t) ∩ U) ≤ dim(C(t + 1) ∩ U) + 1, we conclude

that we get equality exactly r times. �

The r-tuple (l1, . . . , lr) is called the associated r-tuple to U in C(l). Let

A(l1, . . . , lr) = A(l1) ∪ · · · ∪ A(lr) and a(l1, . . . , lr) = #A(l1, . . . , lr). The

next result gives a bound on the cardinality of the support of a subspace.

Proposition 10.19. Let U be a linear subspace of C(l) of dimension r and

let (l1, . . . , lr) be the associated r-tuple. Then

#supp(U) ≥ a(l1, . . . , lr).

Proof. For i = 1, . . . , r, take a vector ui ∈ C(li) \ C(li + 1). Then

{u1, . . . ,ur} is a basis of U . Let Mi be the matrix obtained from S(ui)

by taking the rows of indices in A(l1). Thus Mi is a a(li) × N matrix
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and its rank is a(li), according to Lemma 10.15. Now let us consider the∑
a(li) ×N matrix

M =



M1

...

Mr


 .

Since the rank of this matrix is dim〈∪i=1,...,rIm(S(ui))〉 〉 ≤
dim〈∪u∈U Im(S(u))〉, according to Lemma 10.17 it is enough to prove that

rank(M) ≥ a(l1, . . . , lr). We shall proceed by induction, by using Gaussian

elimination. We begin by applying Gasussian elimination to M with the

a(l1) pivots in the rows of M1 and the columns of A(l1). Suppose now

that we have found a matrix with pivots in the rows of M1, . . . ,Mt and the

columns of ∪t
i=1A(li). Apply Gaussian elimination with the pivots in the

rows of Mt+1 and the columns of A(lt+1)\(∪t
i=1A(li)). Thus, finally we ob-

tain a matrix M ′ having pivots in the columns of ∪r
i=1A(li) = A(l1, . . . , lr).

Thus its rank, and therefore the rank of M , is at least a(l1, . . . , lr). �

Definition 10.20. The number

dORD(l) = min{a(l1, . . . , lr) | l ≤ l1 < · · · < lr ≤ N

and C(li) 6= C(li + 1) for all i = 1, . . . , r}
is called the order bound on the rth generalized Hamming weight of C(l).

As a consequence of the previous results we can state the following.

Theorem 10.21. dr(C(l)) ≥ dORD(l).

Example 10.22. (Example 10.12 continued). The computation of the or-

der bound is sometimes difficult. For example, let us consider the Hermitian

codes C = C(H, D, ρQ). For simplicity, let us restrict to the second gen-

eralized Hamming weight d2(C). We have d2(C(H, D, ρ)) ≥ n − ρ + ρ2 =

n− ρ + q and, after the results obtained in Example 10.12, equality holds

for ρ ≤ n−q2 +q+1. For n−q2 +q+2 ≤ ρ ≤ n−2, the order bound leads

to the true value of d2 as follows: write ρ = n− αq + β with 1 ≤ α ≤ q − 1

and 0 ≤ β ≤ q − 1, then

d2(C(H, D, ρ)) =

{
(α+ 1)q − β if β = 0 or β ≥ q − α; and

(α+ 1)q − 1 if 1 ≤ β < q − α.

The proof is left to the reader. However, it can be found (together with the

weight hierarchy in full of all Hermitian codes) in [2].



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

Generalized Hamming Weights and Trellis Complexity 375

10.4. Trellis structure of codes

10.4.1. Trellises and codes

A trellis of depth n is an edge-labeled directed graph T = (V,E) with

vertex set V and edge set E satisfying the following conditions:

• V is the union of (n+ 1) disjoint subsets V0, . . . , Vn;

• every edge in E that begins at Vi ends at Vi+1;

• every vertex in V belongs to at least one path from a vertex in V0 to a

vertex in Vn.

Given a trellis T , each vertex in Vi is called a state at time i, i = 0, . . . , n.

Edges represent transitions between states. Here we consider trellises with

V0 and Vn having just one element (called the root and the toor respectively)

and such that the label alphabet is the finite field Fq (or a power of Fq). We

can associate to each path from V0 to Vn the ordered n-tuple of edge labels.

The set of all such n-tuples is a block code CT over Fq. Conversely, given a

block code C ⊆ Fn
q we say that a trellis T represents C if CT = C. Remark

that there might exist more than one non-isomorphic trellis representing

the same code.

Example 10.23. Figure 1 shows a trellis representation of the [8, 4, 4] bi-

nary Reed-Muller code C with label alphabet F2
2. We leave as an exer-

cise to see that each codeword in C = 〈(10101010), (11001100), (11110000),

(11111111)〉 correspond to a unique path though the trellis.

Fig. 10.1. Trellis representation of the [8, 4, 4] binary Reed-Muller code.
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The use of trellises in coding theory started with applications to convo-

lutional codes. Later they were employed with block codes mainly for the

purpose of soft-decision decoding with the Viterbi algorithm. There are

some good reasons to study trellis representations. Two of them are the

following:

(1) Trellis based decoding (via the Viterbi algorithm) is one of the most

efficient decoding methods for decoding general linear codes; and

(2) The complexity of a minimal trellis representation gives a good measure

of the complexity of a code (whereas the parameters [n, k, d] do not).

There are several measures of the complexity of a trellis T that repre-

sents a code C ⊆ Fn
q , all of them related to the decoding complexity. The

most common is the state complexity profile, which is the sequence of state

space sizes, SCP(T ) = {s0(T ), . . . , sn(T )}, where si(T ) = logq(#Vi) with

V0, . . . , Vn being the underlying partition of the vertex set of T .

If the code C is linear, and once the order of coordinates of C is fixed,

there exists an unique (up to a graph isomorphism) trellis TC that simul-

taneously minimices all the si, that is, such that for each i = 0, 1, . . . , n

and any trellis T that represents C, it holds that si(TC) ≤ si(T ). We do

not give here the proof of this result; the interested reader is addressed to

the bibliography (see [37]). The trellis TC is called the minimal trellis of C.

Then the state complexity profile of C is, by definition, SCP(TC) and the

number

sT (C) := max{s0(TC), s1(TC), . . . , sn(TC)},
is called the state complexity of C. An important (although undesirable)

property of these numbers is that they may vary when changing the order of

coordinates. Let us remember that two codes are equivalent if one of them

can be obtained from the other by permuting coordinates. We denote by

[C] the set of codes which are equivalent to C. Thus we are lead to consider

the absolute state complexity of C, namely

s[C] = min{s(C′) | C′ ∈ [C]}.

10.4.2. Minimal trellises

Given a [n, k, d] linear code C over the finite field Fq , its minimal trellis

T = TC can be constructed in several ways. For our purposes the relevant

construction is the one given by Forney. He showed that the state sets

V0, . . . , Vn, are Vi = C/(Pi ⊕Fi), where Pi and Fi are respectively the i-th
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past and the i-th future subcodes of C; namely, P0 = Fn = 0, Pn = F0 = C,

and for i = 1, . . . , n− 1,

Pi = {(c1, . . . , ci) | (c1, . . . , ci, 0, . . . , 0) ∈ C},
Fi = {(ci+1, . . . , cn) | (0, . . . , 0, ci+1, . . . , cn) ∈ C}.

(see [37], Theorem 4.13). It follows that #Vi is a power of q so that si(C) =

k − ∆i, with ∆i = dim(Pi) + dim(Fi), i = 0, 1, . . . , n. A first consequence

is the following.

Proposition 10.24. The state complexity profile of a linear code and that

of its dual are identical.

Proof. Let G and H be, respectively, a generator and a parity check

matrix of C. Let Hi (respectively Gi) denote the matrix consisting of the

first i columns of H , H = (h1, · · · ,hi) (resp. columns of G). Consider the

sets W0 = (0) and for i = 1, . . . , n,

Wi = {c1h1 + · · · + cihi | (c1, . . . , ci, ∗, . . . , ∗) ∈ C} = 〈columns of HiG
t
i〉

where ∗ stands for any element in Fq. Now consider the map τi = C →Wi

defined by τi(c) = c1h1 + · · ·+ cihi. τi is linear, surjective and its kernel is

Pi⊕Fi. Then Vi
∼= Wi, hence it is enough to prove the duality property for

Wi. Since Wi(C⊥) is the column space of GiH
t
i and the columns of GiH

t
i

are the rows of HiG
t
i , the equality dim(Wi) = dim(Wi(C⊥)) follows from

the fact that the row rank of a matrix is equal to its column rank. �

Remark 10.25. The construction of the minimal trellis with Vi
∼=

〈columns of HiG
t
i〉 is the so called BCJR (Bahl, Cocke, Jelinek and Ra-

viv) construction.

Corollary 10.26. (The Wolf bound) s(C) ≤ min{k, n− k}.

Proof. From the Forney construction we have s(C) ≤ dim(C) and

s(C⊥) ≤ dim(C⊥). According to Proposition 10.24 we get the result. �

The number min{k, n− k} given by the Wolf bound is usually denoted

by w(C). According to Proposition 10.24, to study the state complexity of

C we can restrict ourselves to the case 2k ≤ n. Now by definition

s(C) = k − ∆,

where ∆ = ∆(C) = min{∆0,∆1, . . . ,∆n}. We set ∆[C] = max{∆(C ′) | C′ ∈
[C]}.

Lemma 10.27. With the above notation, the following holds:
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(1) Pi = 0 for i = 0, . . . , d− 1; in particular min{∆0, . . . ,∆d−1} = ∆d−1.

(2) Fi = 0 for i = n− d+ 1, . . . , n; in particular min{∆n−d+1, . . . ,∆n} =

∆n−d+1.

Proof. For i ∈ {1, . . . , d−1} (resp. i ∈ {n−d+1, . . . , n−1}), the effective

length of Pi (resp. Fi) is smaller than the weight of any nonzero codeword in

C. Thus Pi = 0 (resp. Fi = 0) and the result follows taking into account the

fact that dim(F0) > dim(F1) > . . . (resp. dim(Pn) > dim(Pn−1) > . . .). �

Proposition 10.28. For a linear code C, we have

s(C) =

{
k whenever 2d ≥ n+ 2,

k − min{∆d−1, . . . ,∆n−d+1} otherwise.

Proof. Follows from Lemma 10.27, by taking into account that there

exists an integer i with n− d+ 1 ≤ i ≤ d− 1 whenever 2d ≥ n+ 2. �

10.5. Linking the problems

Up to the moment we have introduced two objects related to a code C:

the GHWs and the trellis state complexity. At the first look, both seem

very different. However there are close connections relating them. These

relations become more clear if we see past and future subcodes Pi,Fi, of C
as subcodes of support sizes i and n− i respectively. Then their dimensions

can be bounded in terms of the GHWs. Thus it is not strange that methods

and tools used to study both problems are similar. As an example, we have

the following result.

Proposition 10.29. If there exists an integer i, 1 ≤ i ≤ k, such that either

di(C) ≥ n− d+ 2 or di(C⊥) ≥ n− d⊥ + 2, then s(C) ≥ w(C) − i+ 1.

Proof. Suppose di(C) ≥ n− d+ 2. Since the length of Fd−1 is n− d+ 1,

then #supp(Fd−1) < i and hence dim(Fd−1) < i. Since Pd−1 = 0 we get

the result. Similarly if di(C⊥) ≥ n− d⊥ + 2. �

For completeness, remark that when studying the trellis complexity,

instead the GHW (for which we fix the dimension and look for the maximum

support size) it is convenient to consider the ’reciprocal’ sequence (that is,

fix the support size and look for the maximum dimension). Then, given a

code C of length n, for i = 1, . . . , n we define

κi(C) = max{dim(S) | S is a linear subcode of C of support size i}.
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The sequence {κ1(C), . . . , κn(C)} is called the dimension/length profile of C.

It is equivalent to the weight hierarchy in the sense that once one of them

is known, the other can be determined as follows

di(C) = min{j | κj(C) ≥ i} i = 1, . . . , k,

κi(C) = max{j | dj(C) ≤ i} i = 1, . . . , n.

10.6. Trellis structure of AG codes

Let X be a curve of genus g and gonality sequence GS(X ) = (γi). Let

C = C(X , D,G) be an AG code of parameters [n, k, d] over Fq arising from

the curve X and the divisors G and D = P1 + · · · + Pn. In this section we

investigate bounds on the trellis state complexity of C.

10.6.1. A Goppa-like bound on s(C)

Firstly note that the past and future subcodes of an AG code C admit

a clear interpretation in geometrical terms.

Proposition 10.30. The past and future subcodes of C are given by

Pi
∼= C(X , D − Pi+1 − . . .− Pn, G− Pi+1 − . . .− Pn),

Fi
∼= C(X , D − P1 − . . .− Pi, G− P1 − . . .− Pi).

Proof. Let c = evP(f) ∈ C. Then c ∈ Pi if and only if f(Pi+1) = · · · =

f(Pn) = 0, that is, if and only if f ∈ L(G− Pi+1 − · · · − Pn). �

Corollary 10.31. Let C = C(X , D,G) be a code of abundance a. Then

(1) for i = 1, . . . , n− 1 we have

si(C) = `(G) − `(G− P1 − · · · − Pi) − `(G− Pi+1 − · · · − Pn) + a.

(2) If deg(G) < bn/2c + γa+1 or deg(G) > dn/2e + 2g − 2 − γa+1 then

s(C) = w(C).

Proof. (1) follows directly from the above Proposition, by taking di-

mensions. (2) If deg(G) < bn/2c + γa+1 then apply the improved Goppa

bound on the minimum distance to Proposition 10.28. If deg(G) >

dn/2e + 2g − 2 − γa+1 then use the duality property stated in Proposi-

tion 10.24. �

Lemma 10.32. Let i be a positive integer. If γa+i ≥ 2deg(G)−n+γa+1+2

or γa+i ≥ n+ 2(2g − 2) − 2deg(G) − γa+1 + 2 then s(C) ≥ w(C) − i+ 1.
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Proof. If i ≥ k+1 then the result is clear. Otherwise it is a consequence

of Proposition 10.29 and Corollary 10.7(1). �

Theorem 10.33. s(C) ≥ w(C) − (g − a).

Proof. Apply the above Lemma to i = g + 1 − a. �

Note that this result is completely analogous to the bound on the min-

imum distance obtained in Corollary 10.9.

10.6.2. Another bound on the trellis state complexity

A more careful analysis gives a new bound on s(C), which is stronger

but more difficult to compute. In this section we shall restrict to the case

2k ≤ n.

Lemma 10.34. If 2k ≤ n and n > 2g, then the code C = C(X , D,G) is

non-abundant and 2deg(G) − n ≤ 2g − 2.

Proof. Suppose that a = `(G −D) ≥ 1. Then the divisor G −D must

be special; otherwise k = `(G)− (deg(G−D)+1− g) ≥ (deg(G)+1− g)−
(deg(G−D) + 1− g) = n which is a contradiction. By Clifford’s Theorem,

deg(G−D) ≤ (deg(G) − n)/2 + 1 and hence

k = `(G)−a ≥ (deg(G)+1−g)−(deg(G)−n)/2−1 = (deg(G)+n−2g)/2.

From the hypothesis 2k ≤ n we conclude that 2g ≥ deg(G). On the other

hand, deg(G − D) ≥ 0 as `(G − D) ≥ 1, and thus 2g ≥ deg(G) ≥ n; a

contradiction. The second statement follows from the fact that n/2 ≥ k =

`(G) ≥ deg(G) + 1 − g. �

We can consider the gonality sequence GS(X ) as a subset of N′ = {−1}∪
N0. An element in N′ \ GS(X ) will be called a gap of X . By Proposition

10.2 there are g + 1 gaps and the biggest one is 2g− 1. Let ˜̀ : N′ → N0 be

the numerical function defined by ˜̀(−1) = 0 and for m ∈ N0

˜̀(m) = max{i ∈ N | γi ≤ m}.

The function ˜̀ is an increasing step function such that ˜̀(2g − 2) = g

and ˜̀(2g − 1 + i) = g + i for i ≥ 0. Moreover, ˜̀(a + 1) ≤ ˜̀(a) + 1 and

equality holds if and only if a+ 1 ∈ GS(X ).

Lemma 10.35. For a rational divisor F with deg(F ) ≥ −1, it holds that

`(F ) ≤ ˜̀(deg(F )).
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Proof. If deg(F ) = −1, then `(F ) = 0 = ˜̀(−1). If deg(F ) ≥ 0, let i ∈ N0

be such that γi ≤ deg(F ) < γi+1 so that ˜̀(deg(F )) = i. Thus by definition

of γi+1 we must have `(F ) ≤ i and the result follows. �

Let R : N′ ∩ [−1, 2g− 2] → N be the numerical function defined by

R(N) = min{ ˜̀(a) + ˜̀(b) : a, b ∈ N′ with a+ b = N}.
The main result of this section is the following.

Theorem 10.36. Let C = C(X , D,G) be an AG code such that 2k ≤ n and

n > 2g. Then ∆[C] ≤ R(2deg(G)−n) and hence s[C] ≥ w(C)−R(2deg(G)−
n).

Proof. Set m = deg(G). Since the function R depends only on the

underlying curve X , it is enough to show that ∆(C) ≤ R(2m − n). In

addition, w(C) = min{k, n − k} = k and by Proposition 10.28 we can

assume that 2d < n+ 2 so that 2m− n ≥ −1 by the Goppa estimate on d.

By Lemma 10.34 the code C is non-abundant and hence the i-th element

si = si(C) in the state complexity profile of C is given by si = k−∆i, where

∆i = `(G − P1 − . . . − Pi) + `(G − Pi+1 − . . . − Pn). Thus, according to

Proposition 10.28, and since d ≥ n−m, we have s(C) = w(C)−∆(C) where

∆(C) = min{∆d−1, . . . ,∆n−d+1} = min{∆n−m−1, . . . ,∆m+1}.
Let i be an integer with n−m−1 ≤ i ≤ m+1 so that deg(G−P1−. . .−Pi) ≥
−1 and deg(G− Pi+1 − . . .− Pn) ≥ −1; then by Lemma 10.35,

∆i ≤ ˜̀(deg(G− P1 − . . .− Pi)) + ˜̀(deg(G− Pi+ 1 − . . .− Pn)) .

Now, as deg(G−P1 − . . .−Pi)+deg(G−Pi+1 − . . .−Pn) = 2m−n, which

is at most 2g − 2 by Lemma 10.34, the result follows. �

In order to apply the above result we need to know the behavior of the

function R. This study is done in the rest of this section. In particular, we

shall compute R(2g − 2) whenever g > 0 and also explicitly describe R for

the case of plane curves.

Lemma 10.37. Let N ∈ N′ ∩ [−1, 2g− 2].

(1) R is an increasing function such that R(N) ≤ R(N + 1) ≤ R(N) + 1.

(2) If N < γi − 1, then 1 ≤ R(N) ≤ i− 1;

(3) R(N) ≤ b(N + 1)/2c+ 1;

(4) There exists a gap a = a(N) of X with a ≤ N/2 such that R(N) =
˜̀(a) + ˜̀(N − a).
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Proof. From the definition of R it is clear that R(N) ≥ 1 and that

R(−1) = 1. (1) Let R(N + 1) = ˜̀(a) + ˜̀(b) with a+ b = N + 1 and a ≤ b.

From a+(b−1) = N we have R(N) ≤ ˜̀(a)+˜̀(b−1) ≤ ˜̀(a)+˜̀(b) = R(N+1)

since ˜̀ is an increasing function. Now suppose that R(N) < R(N + 1) and

let R(N) = ˜̀(a′) + ˜̀(b′) with a′ + b′ = N . Then from (a′ + 1) + b′ = N +1,

R(N+1) ≤ ˜̀(a′+1)+ ˜̀(b′) and thus ˜̀(a′+1) > ˜̀(a′). Therefore R(N+1) =

R(N)+1 since ˜̀(a′+1) = ˜̀(a′)+1. (2) FromN = −1+(N+1) it follows that

R(N) ≤ ˜̀(N + 1); the latter number is at most i− 1 by hypothesis and (2)

follows. (3) There exists i ∈ {1, . . . , g} such that γi ≤ N + 1 < γi+1. Then

by (2), R(N) ≤ i, and the latter number is at most (N + 3)/2 by Lemma

10.35(2). (4) Let R(N) = ˜̀(a) + ˜̀(b) with a ≤ b = N − a and suppose that

a ∈ GS(X ). We have ˜̀(a − 1) = ˜̀(a) − 1, and ˜̀(b + 1) ≤ ˜̀(b) + 1. Then
˜̀(a−1)+ ˜̀(b+1) ≤ ˜̀(a)+ ˜̀(b) = R(N) and thus R(N) = ˜̀(a−1)+ ˜̀(b+1).

If a − 1 is a gap of X , then we are done; otherwise we repeat the above

argument. �

Remark 10.38. From Lemma 10.37(1)(3), we have that R(N) ≤ R(2g −
2) ≤ g whenever N ∈ N′ ∩ [−1, 2g − 2]. Then Theorem 10.36 yields the

main result in the previous section, namely s[C] ≥ w(C) − g, provided that

2k ≤ n and n > 2g. We are going to improve this result via Proposition

10.41 and Theorem 10.42 below.

Lemma 10.39. Let i ∈ N′, N ∈ N′ ∩ [−1, 2g − 2] and r ∈ N with i + r ≤
N + 1. If A = {i, i+ 1, . . . , i+ r} ⊆ N′ is a set of r+ 1 consecutive integers

such that i + 1, . . . , i + r are gaps of X , then min{ ˜̀(a) + ˜̀(N − a) : a ∈
A} = ˜̀(i+ r) + ˜̀(N − i− r).

Proof. Let a = i + j with 1 ≤ j ≤ r. By hypothesis a is a gap of X ,

hence ˜̀(a) = ˜̀(i). Then ˜̀(a) + ˜̀(N − a) is minimum when ˜̀(N − a) is so.

Since ˜̀ is an increasing function, this happens when a is the largest element

in A. �

Proposition 10.40. For N ∈ N′ ∩ [−1, 2g− 2], we have

R(N) =min{ ˜̀(a) + ˜̀(N − a) : −1 ≤ a ≤ N/2, a = bN/2c or

a ∈ N′ \GS(X ) with a+ 1 ∈ GS(X )} .

Proof. By Lemma 10.37(4), R(N) = ˜̀(a) + ˜̀(N − a) for some gap a

of X such that a ≤ N/2. Suppose that a < bN/2c. If each integer a′

with a < a′ ≤ bN/2c is a gap of X , then from Lemma 10.39 R(N) =
˜̀(bN/2c) + ˜̀(dN/2e); otherwise, by Lemma 10.39 again, we can assume

a+ 1 ∈ G(X ) and the result follows. �
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According to Remark 10.38, it is useful to compute R(2g − 2). The

result is the following.

Proposition 10.41. Let GS(X ) = (γi) be the gonality sequence of X . Then

R(2g − 2) = g − max{γi − 2(i− 2)|i = 1, . . . , g}.

Proof. By definition of R, R(2g− 2) = min{ ˜̀(a) + ˜̀(2g− 2− a) | − 1 ≤
a ≤ 2g − 1, a + 1 ∈ GS(X )}. Write a = γi − 1, 1 ≤ i ≤ g. Then, since
˜̀(γi−1) = i−1 and, according to Corollary 10.3, ˜̀(2g−γi−1) = g−γi+i−1,

we obtain the result. �

Now Theorem 10.36, Remark 10.38 and the above computation of

R(2g − 2) imply the following.

Theorem 10.42. Let C = C(X , D,G) be an AG code such that 2k ≤ n and

n > 2g, where g is the genus of X . Let γ2 be the gonality of X over Fq.

Then s[C] ≥ w(C) − g + γ2 − 2.

In the remaining part of this section we study the function R on a plane

curve X of degree r + 1. In this case the genus of X is g = r(r − 1)/2 and

its gonality sequence GS(X ) is obtained from the semigroup generated by

r and r + 1 (cf. Proposition 10.4). For an integer a ∈ N0, let α and β be

the non-negative integers defined by

a = αr + β , 0 ≤ β < r .

It is clear that a ∈ GS(X ) if and only β ≤ α.

Lemma 10.43.

˜̀(a) =
α(α + 1)

2
+ min{α, β} + 1 .

Proof. If a = 0, the formula is true so let a > 0. Suppose first that

a ∈ GS(X ) so that min{α, β} = β. Then ˜̀(a) = 1+ 2 + . . .+α+β+ 1 and

we the claimed formula follows. Now let a be a gap of X so that β > α.

We have ˜̀(a) = ˜̀(αr + α) and the result follows by applying the above

computation to αr + α ∈ GS(X ). �

Lemma 10.44. Let N ∈ N′ ∩ [−1, 2g− 2] and a = αr+ β a gap of X with

α ≥ 1 such that a ≤ N/2. Then ˜̀(a)+ ˜̀(N −a) ≤ ˜̀(a− r)+ ˜̀(N − (a− r)).

Proof. Set a′ = a− r, that is, a′ = (α− 1)r+β. Let b = N − a = δr+ ε,

with 0 ≤ ε < r so that b′ = N − a′ = (δ + 1)r + ε. From Lemma 10.43 we

have ˜̀(a)− ˜̀(a′) = α+ 1 and ˜̀(b)− ˜̀(b′) ≤ −δ − 1. Now the result follows

since a ≤ b = N − a implies δ ≥ α. �
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Thus Proposition 10.40 for the case of a plane curve becomes as follows.

Proposition 10.45. For N ∈ N0 ∩ [0, 2g − 2] let α and β be the integers

defined by bN/2c = αr + β with 0 ≤ β < r. Assume that α ≥ 1.

(1) If bN/2c is a gap of X , then

R(N) = min{ ˜̀(bN
2
c) + ˜̀(dN

2
e), ˜̀(αr − 1) + ˜̀(N − αr + 1)} .

(2) If bN/2c ∈ GS(X ), then R(N) = ˜̀(αr − 1) + ˜̀(N − αr + 1).

Proof. It follows from Proposition 10.40 and Lemma 10.44. �

To improve this result we shall introduce the notion of “jump”. An

integer N with 0 ≤ N ≤ 2g − 2 is called a jump of X whenever R(N) >

R(N − 1) (so, if R(N) = R(N − 1) + 1 by Lemma 10.37(1)). We denote by

U(X ) the set of jumps of X . Clearly #U(X ) = R(2g− 2) and this number

can be computed via the above Proposition. More precisely the following

holds.

Lemma 10.46. Let X be a (non-singular) plane curve of degree r + 1.

Then

(1) #U(X ) =

{
r2/4 if r is even,

(r2 − 1)/4 if r is odd;

(2) U(X ) = {αr + β | −1 ≤ α ≤ r − 1, 0 ≤ β ≤ r − 1, and 2β + 2 ≤ α,

or β = r − 1} \ {2g − 1}.

Proof. (1) Let us compute R(2g − 2). If r is even, then g − 1 = (r −
2)(r + 1)/2 = (r − 2)r/2 + (r − 2)/2 and thus it belongs to GS(X ). By

Proposition 10.45, R(2g − 2) = ˜̀(αr + 1) + ˜̀(2g − 2 − αr + 1) with α =

(r − 2)/2. Now the result follows by applying Lemma 10.43. The case

r odd is similar. (2) Let us denote by T the set of the right-hand side

in the equality in Item (2). We claim that #T = R(2g − 2). Indeed

#T =
∑b(r−4)/2c

β=0 (r−2β−3)+ r−1 = R(2g−2). Therefore it is enough to

show that T ⊆ U(X ). From Proposition 10.45 and Lemma 10.43 it is easily

seen that all elements in U(X ) are jumps. Then the proof is complete. �

Finally the promised improved description of R(N) in the case of plane

curves is as follows.

Proposition 10.47. Let X be a (non-singular) plane curve of degree r+1

and N ∈ N′∩ [−1, 2g−2]. Let α and β be the integers defined by N = αr+β

with 0 ≤ α ≤ r − 2 and −1 ≤ β ≤ r − 2.
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(1) If β > bα/2c − 1, then R(N) = R(αr + bα/2c − 1);

(2) If β ≤ bα/2c − 1, then

R(N) =

{
α(α+ 2)/4 + β + 1 if α is even,

(α+ 1)2/4 + β + 1 if α is odd.

Proof. (1) In this case αr + bα/2c − 1 is the largest jump of X not

exceeding N and (1) follows. (2) Here place all the integers from −1 to

2g − 2 in an array according to the corresponding values of α and β. The

j-th row of the array contains b(j + 2)/2c jumps of X which are precisely

the ones in the first b(j+2)/2c columns of the array. The number of jumps

from −1 to N is: β + 1 in the row α plus 2(
∑(α−1)/2

i=1 i) = α(α + 2)/2 if α

is even, and β + 1 in row α plus 2(
∑(α−2)/2

i=1 i) = (α+ 1)2/4 if α is odd. �

Example 10.48. Let us consider the Hermitian curve H, introduced in

example 10.11, and the Hermitian code C = C(H, D, ρQ), ρ ∈ H(Q). Let

us consider the particular case q = 5. Here n = 125 and g = 10. In order to

apply Theorem 10.36, we have to choose ρ such that −1 ≤ 2m− 125 ≤ 18,

that is 62 ≤ ρ ≤ 71. One easily checks that 2k ≤ n and n > 2g. The next

table contains the results given by Theorem 10.36 and Proposition 10.47.

The row ’Wolf’ contains the Wolf upper bound on s(C); the row ’true’

contains the true values of s(C), which have been computed by Blackmore

and Norton in [4]. The row ’LB’ contains the results obtained by using

Theorem 10.36.

Table 10.1. Trellis state complexity of Hermitian codes over F25.
ρ 62 63 64 65 66 67 68 69 70 71

Wolf 53 54 55 56 57 58 59 60 61 62
LB 52 53 54 54 55 55 55 56 55 56
true 53 53 54 54 55 56 56 56 57 56

10.7. Bibliographical notes

The generalized Hamming weights were introduced by Helleseth, Kløve

and Mykkeltveit in 1977, [18], in connexion with weight distributions. They

were later rediscovered by Wei [38], motivated by their cryptographical

applications, following the work of Ozarov and Wyner [26] on codes for

wire-tap channels. More recent applications connect the GHWs with the

trellis structure of codes (as seen in this chapter) or with the problem of

list decoding from erasures, see [14].
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Since the work of Wei the study of the GHWs has attracted considerable

interest, and now the full hierarchy is known, or at least partial results

are available, for many codes, including Hamming, cyclic, BCH, RS, RM,

product codes, etc. See [7, 8, 12, 19, 39] (and many others).

The relevance of the gonality sequence in the study AG codes was first

noticed by Pellikaan [27], who also found the gonality sequence of plane

curves (Proposition 10.4) in [28]. This sequence was introduced by Yang,

Kumar and Stichtenoth in [41], which is also the first article devoted to

study the GHWs of AG codes (mainly coming from Hermitian curves). The

results of that work were later improved and generalized by Munuera in [22].

Our exposition of the extension of the Goppa bound to all the GHWs is

based in these two papers, [22, 41], see also [23]. Making use of these results

and ideas, some authors have found the complete weight hierarchy of some

AG codes, see for example [6] for hyperelliptic curves and [2] for Hermitian

curves. The extension of the order bound to all GHWs was given by Heijnen

and Pellikaan, [17]. In this work, the complete weight hierarchy of Reed-

Muller codes was also determined. This line of research has been continued

by several authors. For example, in a series of papers, Shibuya, Sakaniva

and others, derived bounds to all linear codes, defined by their parity check

matrices, see [30–32]. These ideas have been completed by Geil, [13]. In

particular, the study of t-rank MDS codes is treated in [31].

A global geometric approach to the GHWs was given by Tsfasman and

Vladut [35]. For a generalization of the weight hierarchy to the called

support weight distribution, see [33]

Trellises were introduced by Forney in 1967, [9], in order to study the

Viterbi algorithm [10] for decoding convolutional codes. After these arti-

cles, trellises became ubiquitous in the theory of convolutional codes. The

use with block codes started with an article of Bahl, Cocke, Jelinek and Ra-

viv, [1], following an unpublished work of Forney. This paper also presented

a way to construct the trellis of a linear code (the BCJR construction).

However the interest in trellis representations started later, with the obser-

vation, made by Wolf [40], that they can be used for maximum-likelihood

decoding of linear codes with the Viterbi algorithm. The relation between

the trellis complexity and the generalized Hamming weights was discov-

ered in [21] and later studied in [11]. More details about the history, the

bibliography and the theory of trellises, can be obtained in the excellent

survey [37]

The study of the trellis structure of AG codes begun with the works of

Shany and Be’ery [29], and mainly Blackmore and Norton, who in a series of
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papers, [3–5], found the translation of past and future subcodes to algebraic

geometric terms and stated some important properties. In particular, in [4]

the state complexity of Hermitian codes is obtained. Our presentation in

this chapter, follows the structure of [24] and [25].

Finally, for a general reference on AG codes, the reader is addressed

to [20, 34, 36].
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Algebraic Geometry Constructions of Convolutional Codes
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Algebraic-geometric techniques to construct linear codes can be applied
to construct convolutional codes, using algebraic curves over function
fields. In this way we construct convolutional Goppa codes and provide
a systematic way for constructing convolutional codes with prescribed
properties. We study convolutional Goppa codes defined by the projec-
tive line and elliptic curves in detail.
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11.1. Introduction

The notion of convolutional codes was introduced by Peter Elias [4] in

1955, considering the codification as a time-dependent process: the codified

word at some instant depends not only on the information word at that

instant, but also on the previous words; the number of the previous words

391
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on which the codifications depends is called the memory of the codifier;

in this scheme the codification of a word can be interpreted as a certain

convolution with other words.

The use of convolutional codes was very important after the discovery

by Andrew Viterbi [19] in 1967 of the decodification algorithm known by

his name. The compatibility of this algorithm depends exponentially on

the memory of the codifier.

One of the main applications of convolutional codes is the transmission

of information through the deep-space, where there are strong limitations

of potency, but in general no restrictions to the wide band. The communi-

cation systems used in artificial satellites transmit telemetric information:

orders from earth stations to satellites and tracking. In the telemetric chan-

nel, where the rate of the code is relatively high, convolutional and block

codes are used.

For instance, the space missions Pioneer 10 and 11 to Jupiter and Sat-

urn in 1972-73 used a convolutional code of rate 1/2 and memory 31. After

Viterbi, a planetary standard as a convolutional code of rate 1/2 and mem-

ory 6 was implemented. This code was used for the first time in the Voyager

1 mission (1980-81), concatenated with a Reed-Solomon code, and in the

Galileo (1986) and Voyager 2 missions (1989), concatenated with other

convolutional and block codes.

Convolutional codes are also used in the construction of turbo-codes,

introduced in 1983 by Berrou, Glavieux and Thitimajshima [1]. These are

the codes currently used in wireless communications.

There are different approaches to the study of convolutional codes: they

can be studied as sequential circuits, as discrete linear systems, etc. From

an algebraic point of view, the fundamental reference is the work of G.

David Forney Jr. [5] in 1970. Then came the works of Robert J. McEliece

[11] in 1977 and Philippe Piret in 1988 [14]. More recently, McEliece [12]

in 1998 again gave an introduction to the algebraic theory of convolutional

codes, which clarifies the previous approaches.

The recent work of Joachim Rosenthal, Roxana Smarandache [16] and

Heide Gluesing-Luerssen [17] in 1999 and 2001, Vakhtang Lomadze [9] in

2001, and the authors of this chapter [2] in 2004, has shown that the use of

techniques of Algebraic Geometry are very useful in the study of convolu-

tional codes.

Our contribution continues with five sections. In §2 we give an intro-

duction to the general theory of convolutional codes. Section §3 is devoted

to constructing convolutional Goppa codes in terms of algebraic curves de-
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fined over the field of rational functions in one variable over a finite field

(see [13]).

In §4 we analyze the notion of weight and free distance for convolutional

codes, and their possible geometric interpretation in the case of convolu-

tional Goppa codes.

Finally, §5 and §6 are devoted to studying some explicit examples of

convolutional Goppa codes defined by the projective line and elliptic curves.

11.2. Convolutional Codes

Given a finite field Fq, representing the symbols in which an information

word u ∈ Fk
q is written, a linear block encoder is essentially an injective

linear map

G : Fk
q ↪→ Fn

q

u 7→ x = u ·G
,

whose image subspace is the linear code Ck = ImG ⊂ Fn
q .

The map G is a k × n matrix with entries in Fq, which is called a gen-

erator matrix of the code (their rows are a basis of Ck); k is the dimension

of the code, and n is its length. Alternatively, one can define the code Ck

by its implicit equations

Ck = {x ∈ Fn
q /H · x = 0} ,

where H is an (n − k) × n matrix with entries in Fq, called a parity-check

(control) matrix of the code.

In practical applications, the codification process is not limited to a sin-

gle word, but a sequence of information words depending on time u(t) ∈ Fk
q ,

t = 0, 1, 2, . . . , which after the codification are transformed in the sequence

of codified words

x(t) = u(t) ·G ∈ Ck ∈ Fn
q , t = 0, 1, 2, . . .

The codified word x(t) at the instant t depends only on the information

word u(t) at the same instant t.

The basic idea of convolutional codification is to allow x(t) to depend

not only on u(t) but also on u(t− 1), . . . , u(t−m) for some positive integer

m, which is the memory of the code. One can then consider a linear block

code as a convolutional code with zero memory.
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Let us explain this with greater precision. One can write a sequence of

words as a polynomial in one variable z whose coefficients are the sequence,

U(z) =
∑

t

u(t)zt ∈ Fq [z]
k ,

and the product by zi can be considered as a delay operator

ziU(z) =
∑

t

u(t)zt+i =
∑

t

u(t− i)zt ∈ Fq(z)
k .

One can now define a convolutional (polynomial) encoder as an injective

homomorphism of Fq[z]-modules

G(z) : Fq [z]
k ↪→ Fq [z]

n

U(z) 7→ X(z) = U(z) ·G(z)
,

where G(z) is a k × n matrix with entries in Fq [z].

If we allow the possibility of performing feedback, this means that we can

reverse the delay, and define convolutional codification more generally over

Fq(z), the field of fractions of Fq [z], i.e., the localization of the ring Fq [z]

with respect to the multiplicative system S = {Q(z) ∈ Fq[z]/Q(z) 6= 0}.
Thus, a convolutional encoder is an injective Fq(z)-linear map

G(z) : Fq(z)
k ↪→ Fq(z)

n ,

with the entries of G(z) also in Fq(z).

Definition 11.1. An (n, k) convolutional code Ck over Fq is a linear sub-

space of dimension k over Fq(z) of Fq(z)
n.

The integers (n, k) are called, respectively, the length and dimension of

the convolutional code, and n/k is the ratio of Ck ⊆ Fq(z)
n.

Example 11.2. The subspace of dimension 1 in F2(z)
3 defined by

C1 = 〈1 + z, 1 + z2, z + z3〉 ,

is a (3, 1)-convolutional code over F2, in which the code word x(t) at the

instant t is obtained in terms of the information words u(t), u(t−1), u(t−2)

and u(t− 3) in the following way:

x(t) = (u(t) + u(t− 1), u(t) + u(t− 2), u(t− 1) + u(t− 3)) .
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11.2.1. Convolutional encoders. Linear systems and circuits

Definition 11.3. A convolutional encoder, or codifier, for a convolutional

code Ck ⊆ Fq(z)
n is a k × n matrix

G(z) =



G1(z)

...

Gk(z)


 ,

where Gi(z) = (Gi1(z), . . . , Gin(z)) ∈ F (z)n are a basis of Ck.

Equivalently, G(z) is a generator matrix that defines an injective linear

encoding map:

G(z) : F (z)k ↪→ F (z)n

U(z) 7→ X(z) = U(z) ·G(z) ,

such that ImG(z) = Ck ⊂ F (z)n.

Given two codifiers G(z) and G′(z) of the same convolutional code Ck,

there exists an element (the base change) B(z) ∈ GL(k,Fq(z)) of the linear

group of dimension k over Fq(z) such that:

G′(z) = B(z) ·G(z) .

Example 11.4. The convolutional code C1 defined in example 11.2 has the

following different encoders

G(z) = ( 1 + z, 1 + z2, z + z3 )

G′(z) = ( z, z + z2, z2 + z3 )

G′′(z) = ( 1, 1 + z, z + z2 )

G′′′(z) = ( 1
1+z , 1, z )

and the following identities are satisfied

G(z) =
1 + z

z
·G′(z) = (1 + z) ·G′′(z) = (1 + z2) ·G′′′(z) .

Definition 11.5. A polynomial encoder is a convolutional encoder G(z)

whose entries are in Fq [z].

IfGi(z) is the i-th row of a polynomial encoderG(z), the degree ofGi(z),

denoted ei = DegreeGi(z), is the highest of the degrees of its components

ei = max
1≤j≤n

(DegreeGij(z)) .
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The memory of a polynomial encoder G(z), denoted mG, is the maximun

degree of its rows

mG = max
1≤i≤k

ei .

The degree of a polynomial encoder G(z), denoted δG, is the sum of the

degrees of its rows

δG =
k∑

i=1

ei .

Remark 11.6. By reordering the rows of G(z), one can henceforth assume

that

e1 ≤ · · · ≤ ek = mG .

Every convolutional code has polynomial encoders: if G(z) is an arbi-

trary encoder and µ(z) the least common multiple of the denominators of

its coefficients, µ(z)G(z) is a polynomial encoder of the same code. Thus,

for any encoder G(z) one can consider the degree δG as the degree of the

polynomial encoder µ(z)G(z). In particular, linear block codes are convo-

lutional codes for which there are zero degree encoders.

Definition 11.7. A convolutional encoder G(z) is called realizable if the

denominators of its entries are not multiples of z.

The notion of realizable encoder is related to the possibility of describing

the encoder as a linear system and therefore the possibility of constructing

a physical circuit which performs the encoding process. Given a k × n

realizable encoder G(z) of degree δG, it can be decomposed as

G(z) = D +E(z) · C ,
where D = G(0) is a k × n matrix with entries in Fq ; C is a δG × n matrix

with entries in Fq , and E(z) is a k × δG matrix defining the morphism of

states with values in the space of state-variables Fq [z]
δG

E(z) : Fq [z]
k → Fq[z]

δG

U(z) 7→ S(z) = U(z) · E(z) .

With these notations, the encoding morphism can be expressed in terms of

the state-variables S(z) as:

X(z) =U(z) ·G(z) = S(z) · C + U(z) ·D .

z−1S(z) =U(z) · z−1E(z) .
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Denoting B = (z−1E(z))|z=0 and decomposing z−1E(z) = B + E(z) · A,

where A is a δG × δG matrix with entries in Fq, one obtains the following

identity:

z−1S(z) = U(z) · (E(z) · A+B) = S(z) ·A+ U(z) ·B .

Thus, a convolutional realizable encoder is equivalent to a time-invariant

linear system with a finite number of state variables. The state space de-

scription of the encoder is given by

s(t+ 1) =s(t) · AδG×δG
+ u(t) · Bk×δG

x(t) =s(t) · CδG×n + u(t) ·Dk×n

}
. (11.1)

By solving the states in the first equation, one obtains x(t) as a function of

a set u(t), u(t − 1), . . . . If this set is infinite, we say that the encoder has

infinite memory, whereas if it is finite u(t), u(t− 1), . . . , u(t−mG), we call

mG the memory of the realizable encoder G(z).

Example 11.8. The encoder G′′′(z) = ( 1
1+z , 1, z) of example 11.4 is re-

alizable and its degree is δG′′′ = 2. Applying the above description, one

obtains:

D =G′′′(z)|z=0 = (1, 1, 0)

G′′′(z) −D =

(
z

1 + z
, 0, z

)
=

1

1 + z

(
z, 0, z + z2

)

=
1

1 + z

(
z, z2

)

︸ ︷︷ ︸
E(z)

·
(

1 0 1

0 0 1

)

︸ ︷︷ ︸
C

B =(z−1E(z))|z=0 = (1, 0)

z−1E(z) −B =
1

1 + z
(z, z) =

1

1 + z
(z, z2)

︸ ︷︷ ︸
E(z)

·
(

1 1

0 0

)

︸ ︷︷ ︸
A

and finally the state equations are:

(s1(t+ 1), s2(t+ 1)) =(s1(t), s2(t)) ·
(

1 1

0 0

)
+ u1(t) · (1, 0) ,

(x1(t), x2(t), x3(t)) =(s1(t), s2(t)) ·
(

1 0 1

0 0 1

)
+ u1(t) · (1, 1, 0)




.
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Remark 11.9. Let us consider the equations of the encoder of the above

example 11.8

(s1(t+ 1), s2(t+ 1)) =(u1(t) + s1(t), s1(t)) ,

(x1(t), x2(t), x3(t)) =(u1(t) + s1(t), u1(t), s1(t) + s2(t)) .

}

The state s1 depends recurrently on itself; that is, there is feed-back, and

by substituting the first equation in the second one obtains

x1(t) = u1(t) + s1(t) =u1(t) + u1(t− 1) + s1(t− 1) =

=u1(t) + u1(t− 1) + u1(t− 2) + s1(t− 2) =

=u1(t) + u1(t− 1) + u1(t− 2) + u1(t− 3) + . . .

Accordingly, the code word depends indefinitely on the information word,

which means that the encoder has infinite memory, although its degree is

finite.

The generator matrix of an encoder can be recovered from its expression

as a linear system: writing equations (11.1) as

z−1S(z) =S(z) ·A+ U(z) · B
X(z) =S(z) · C + U(z) ·D

}
,

and eliminating the state variables, one concludes:

G(z) = B · (z−1 IdδG
−A)−1 · C +D .

Example 11.10. Let us consider the matrices of the linear system defined

in example 11.8:

A =

(
1 1

0 0

)
, B =

(
1 0
)
, C =

(
1 0 1

0 0 1

)
, D =

(
1 1 0

)
.

One has
(
z−1 Id2 −A

)−1
= 1

1+z

(
z z2

0 z + z2

)
, and hence:

1

1 + z

(
1 0
)
·
(
z z2

0 z + z2

)

︸ ︷︷ ︸
E(z)

·
(

1 0 1

0 0 1

)
+
(
1 1 0

)
=
(

1
1+z , 1, z

)
= G′′′(z) .

The description of realizable encoders as linear systems allows us to

express them as physical devices called sequential circuits, composed of

memory boxes for delay operations (as many as the memory of the encoder)

and sum boxes for addition operations.



August 25, 2008 10:59 World Scientific Review Volume - 9in x 6in algebraic

Algebraic Geometry Constructions of Convolutional Codes 399

Example 11.11. Let us consider the encoder of example 11.8. Its expres-

sion as linear systems is given by the equations:

s1(t+ 1) =u1(t) + s1(t)

s2(t+ 1) =s1(t)

}
,

x1(t) =u1(t) + s1(t)

x2(t) =u1(t)

x3(t) =s1(t) + s2(t)




,

which correspond to the circuit:

11.2.2. Basic encoders. Degree of a convolutional code

Let Ck ⊆ Fq(z)
n be a (n, k)-convolutional code. Any polynomial encoder

G(z) for Ck induces a morphism of Fq[z]-modules:

φG : Fq [z]
k ↪→ Fq [z]

n ,

whose localization with respect to the multiplicative system S = {Q(z) ∈
Fq[z]/Q(z) 6= 0} is the encoding map:

G(z) = (φG)S : Fq(z)
k ↪→ Fq(z)

n .

The existence of a decoding map G−1(z) : Fq(z)
n → Fq(z)

k retract of G(z)

(i.e. G(z) ·G−1(z) = Idk) can be deduced from the exact sequence:

0 → Fq[z]
k φG−→ Fq [z]

n → Fq[z]
n/ ImφG → 0 .

For each multiplicative system S ⊂ Fq[z], one has the exact sequence:

0 → Fq [z]
k
S

(φG)S−→ Fq [z]
n
S → (Fq[z]

n/ ImφG)S → 0 .
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The existence of a retract of (φG)S is equivalent to saying that

(Fq [z]
n/ ImφG)S is a free module isomorphic to Fq[z]

n−k
S . Let us consider

the decomposition of Fq[z]
n/ ImφG as:

Fq [z]
n/ ImφG ' Fq[z]

n−k ⊕ T ,

where T is the torsion submodule of Fq[z]
n/ ImφG. Then, (φG)S is a retract

if and only if TS = 0. On the other hand,

T ' Fq[z]/〈γi(z)〉 ⊕ · · · ⊕ Fq [z]/〈γk(z)〉 ,
where γi(z) ∈ Fq[z] are the invariant factors of φG,

γi(z) = ∆i(z)/∆i−1(z) ,

where ∆i(z) is the highest common divisor of the minors of order i of G(z).

Thus, the vanishing of TS is equivalent to the condition of ∆k(z) being

invertible in Fq[z]S .

Definition 11.12. A polynomial encoder G(z) is non-catastrophic if any

of the following equivalent conditions are satisfied:

(1) G(z) has a right inverse in Fq [z]S, where S = {zl, l ≥ 0}.
(2) ∆k(z) = zl, l ≥ 0.

The word catastrophic is used by Massey and Sain [10] to refer to en-

coders in which a code word X(z) of finite length can be obtained from

an information word U(z) of infinite length, and hence the code word may

contain infinite errors (catastrophic errors).

Example 11.13. Let us consider the encoder G′(z) = (z, z + z2, z2 + z3)

of example 11.4. One has that ∆1(z) = z, and therefore G′(z) is a non-

catastrophic encoder, which has a (non-unique) right inverse, such as for

instance:

(G′)−1(z) =




1
z + P (z)(1 + z) +Q(z)(1 + z2)

P (z)

Q(z)


 ,

where P (z), Q(z) are arbitrary polynomials in Fq [z].

Definition 11.14. A polynomial encoder G(z) is basic if any of the follow-

ing equivalent conditions are satisfied:

(1) G(z) has a right inverse in Fq [z].

(2) ∆k(z) = 1.
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(3) γ1(z) = · · · = γk(z) = 1.

In particular, any basic encoder is non-catastrophic.

Example 11.15. The encoder G′′(z) = (1, 1 + z, z + z2) of example 11.4

satisfies the condition γ1(z) = 1, and is therefore basic. A right inverse of

G′′(z) is:

G−1(z) =




1 + P (z)(1 + z) +Q(z)(1 + z2)

P (z)

Q(z)


 .

The existence of basic encoders for all convolutional codes was proved

in a constructive way by Forney [5], using the Smith algorithm for the

computation of invariant factors.

Theorem 11.16. All convolutional codes admit basic encoders.

Proof. Let G(z) be a polynomial encoder for an (n, k)-convolutional

code. The Smith algorithm allows us to compute the invariant factors

γ1(z), . . . , γk(z) of φG and two unimodular matrices B(z) ∈ GL(k,Fq[z]),

C(z) ∈ GL(n,Fq[z]) such that:

B(z) ·G(z) · C(z) =
(
Γ(z) | 0k×(n−k)

)
,

where

Γ(z) =



γ1(z)

. . .

γk(z)


 .

From the above identity, one obtains:

Γ(z)−1 · B(z) ·G(z) = (Idk |0) · C(z)−1 ,

which has invariant factors equal to 1 and is therefore a basic encoder whose

right inverse is the polynomial matrix determined by the first k columns of

C(z). �

Example 11.17. If we apply the above algorithm to the polynomial en-

coder G(z) = (1 + z, 1 + z2, z + z3) introduced in example 11.2, we obtain:

Γ(z) = (1 + z) B(z) = (1) , C(z) =




1 1 + z z + z2

0 1 0

0 0 1


 ,
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and the corresponding basic encoder is

Γ(z)−1 ·B(z) ·G(z) =
1

1 + z
· (1) · (1 + z, 1 + z2, z+ z3) = (1, 1 + z, z+ z2) .

The basic encoders are a maximal class in the set of polynomials en-

coders, in the following sense:

Theorem 11.18. Let G(z) and G′(z) be two polynomial encoders of an

(n, k) convolutional code. One has:

(1) If G(z) is basic and ImφG ⊆ ImφG′ , then ImφG = ImφG′ .

(2) If G(z) and G′(z) are basic, then ImφG = ImφG′ .

Proof. (1) One has a conmutative diagram:

0 // Fq[z]
k

φG∼ // ImφG
� � //

� _

f

��

Fq [z]
n // Fq [z]

n/ ImφG
//

h

��

0

0 // Fq[z]
k

φ
G′∼ // ImφG′

� � // Fq [z]
n // Fq [z]

n/ ImφG′ // 0

and kerh = Cokerf . Since f is injective, one has that Cokerf =

ImφG′/ ImφG, and Fq[z]
n/ ImφG is free, since G(z) is basic. Thus, kerh

is torsion-free and hence ImφG′/ ImφG = 0.

(2) The submodule ImφG + ImφG′ generates the convolutional code

and contains ImφG and ImφG′ . Thus, applying (1), one has ImφG =

ImφG + ImφG′ = ImφG′ . �

Remark 11.19. This theorem implies that basic encoders are invari-

ant with respect the action of the unimodular group GL(k,Fq[z]) =

AutFq[z] Fq[z]
k.

Given two basic encodersG(z) andG′(z) of an (n, k) convolutional code,

there exists a B(z) ∈ GL(k,Fq[z]) such that:

G′(z) = B(z) ·G(z) .

Corollary 11.20. Let G(z) and G′(z) be two polynomial encoders of an

(n, k) convolutional code, and let us assume that G(z) is basic. If one

denotes

δ̄G = maximum degree of the minors of order k of G(z) ,

then:

δ̄G ≤ δ̄G′ .
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In particular, if G′(z) is also basic, then δ̄G = δ̄G′ .

Proof. G(z) and G′(z) define the same convolutional code, and hence

there exists a B(z) ∈ GL(k,Fq(z)) such that G′(z) = B(z) · G(z). Since

G(z) is basic, from theorem 11.18 ImφG′ ⊆ ImφG,

Fq [z]
k

φG∼ // ImφG

Fq [z]
k

B(z)

OO

φ
G′∼ // ImφG′ ,

� ?

OO

and one deduces that B(z) ∈ GL(k,Fq [z]).

Because the minors of G′(z) are the minors of G(z) multiplied by the

determinant of B(z), one concludes that δ̄G′ ≥ δ̄G. If G′(z) is also basic,

one deduces the equality. �

In the sense of corollary 11.20, the degree of any basic encoder is an

invariant of the convolutional code.

Definition 11.21. The degree δ of a convolutional code Ck ⊆ Fq(z)
n is

δ = δ̄G ,

where G(z) is any basic encoder of Ck.

Sometimes the degree δ̄G of a polynomial encoder is also called internal

degree (see McEliece [12]) to distinguish it from the so-called external degree,

used to refer to the degree δG (see definition 11.5).

11.2.3. Minimal basic encoders. Canonical encoders

In the implementation of convolutional codes as physical devices it is

convenient to find minimal encoders, in the sense that the corresponding

circuit had a minimum quantity of memory boxes. The formalization of

the concept of minimality can be expressed in terms of the degree δ of the

code.

Theorem 11.22. (Forney [5]) For each (n, k)-convolutional code of degree

δ there exists at least one basic encoder G(z) such that

δ = δG ≤ δG′ ,

for all realizable encoders G′(z) of the convolutional code. These basic en-

coders G(z) are called minimal basic encoders.
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Definition 11.23. (McEliece [12]) Given an (n, k)-convolutional code Ck ⊆
Fq(z)

n, a polynomial encoder G(z) is called

• canonical, if δG ≤ δG′ , for every polynomial encoder G′(z) of Ck.

• reduced, if δG = δ̄G.

Theorem 11.24. (McEliece [12])A polynomial encoder is canonical if and

only if it is basic and reduced. Moreover, the set of row degrees is the same

for every canonical encoder,

e1 ≤ · · · ≤ ek = mG .

These invariants of the convolutional code are called the Forney indices.

The maximum degree ek = mG is called the memory of the convolutional

code.

Remark 11.25. A polynomial encoder G(z) = (Gij(z)) is reduced if and

only if the matrix Ḡ = (ḡij), ḡij ∈ Fq, defined by the coefficients of the

terms of highest degree in each row, has rank k (McEliece [12]).

Thus, one has the following method for constructing reduced encoders:

if the matrix Ḡ does not have rank k, there exists a zero linear combination

between its rows
k∑

i=1

λiḡij = 0 , with λi ∈ Fq , 1 ≤ j ≤ n ,

from which one can construct a linear combination between the rows of

G(z) by eliminating the terms of highest degree,

k∑

i=1

λiz
ek−eiGij(z) = 0 ,

and this allows us to replace a row of G(z) by a new one to obtain a new

encoder with the lowest degree in each row. Applying this process several

times, we finally obtain a reduced encoder.

Example 11.26. For the encoders of example 11.4 we have:

G(z) ∆k Basic δG δ̄G Reduced

(1 + z, 1 + z2, z + z3) 1 + z No 3 3 Yes

(z, z + z2, z2 + z3) z No 3 3 Yes

(1, 1 + z, z + z2) 1 Yes 2 2 Yes

In particular, one deduces that C1 ⊂ F2(z)
3 is a convolutional code with

memory equal to its degree, δ = 2.
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11.2.4. Dual code. Parity-check (control) matrix

Let us consider, over the Fq(z)-vectorial space Fq(z)
n, the pairing 〈 , 〉

Fq(z)
n × Fq(z)

n → Fq(z)

(X(z), Y (z)) 7→ 〈X(z), Y (z)〉 =

n∑

i=1

Xi(z)Yi(z) ,
(11.2)

where X(z) = (X1(z), . . . , Xn(z)), Y (z) = (X1(z), . . . , Xn(z)) ∈ Fq(z)
n.

Definition 11.27. Given an (n, k)-convolutional code Ck ⊆ Fq(z)
n, the

dual code is the Fq(z)-subspace defined by

C⊥
k = {Y (z) ∈ Fq(z)

n / 〈X(z), Y (z)〉 = 0 for every X(z) ∈ C} .

Theorem 11.28. C⊥
k is an (n− k, k) convolutional code of degree equal to

the degree of Ck.

Proof. Let G(z) be a basic encoder Ck. Since G(z) is basic, then

Fq[z]
n/ ImφG ' Fq [z]

n−k is free, and one has an exact sequence

0 → Fq[z]
k φG−→ Fq[z]

n πG−→ Fq [z]
n−k → 0 ,

and taking HomFq [z]( ,Fq) one obtains the exact sequence of free Fq[z]-

modules

0 → Fq[z]
n−k π∗

−→ Fq[z]
n φ∗

G−→ Fq [z]
k → 0 .

By construction,

C⊥
k ' Imπ∗

G ,

from which one concludes that the matrix H(z) defining π∗
G is a basic

encoder of C⊥
k and δG = δH . Moreover, one has:

H(z) ·G(z)T = 0 , (11.3)

an equality that allows us to compute H(z) from G(z) or viceversa. �

Definition 11.29. A parity-check (control) matrix for an (n, k)-

convolutional code Ck is every (n, n− k)-generator matrix H(z) of its dual

code C⊥
k .

We can easily compute a parity-check matrix H(z) from equation (11.3)

when we have a generator matrix G(z) in which the first k columns have

rank k, making a base change to turn these columns into the identity matrix

of order k.
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Definition 11.30. An encoder G(z) of an (n, k)-convolutional code Ck ⊆
Fq(z)

n is systematic if it is takes the form

G(z) = (Idk×k | Ḡ(z)k×(n−k)) .

Let G(z) be a systematic encoder and let us decompose the parity-check

matrix H(z) as:

H(z) = (H̄(z)(n−k)×k | H̄ ′(z)(n−k)×(n−k)) .

From equation (11.3), one deduces that H̄(z)+H̄ ′(z)·Ḡ(z)T = 0. Therefore,

H(z) = H̄ ′(z) · (−Ḡ(z)T | Id(n−k)×(n−k)). Thus, we can take simply as a

parity-check matrix for Ck

H(z) = (−Ḡ(z)T | Id) .

Example 11.31. In example 11.4, the encoder G′′(z) = (1, 1 + z, z + z2)

is systematic. A parity check control matrix is:

H(z) =

(
1 + z 1 0

z + z2 0 1

)
.

Remark 11.32. There is another possible notion of dual codes (see [15]),

according to a time reversal Fq-linear pairing

[ , ] : Fq((z))
n × Fq((z))

n → Fq

(X(z), Y (z)) 7→
∑

t

〈x(t), y(−t)〉 ,

where X(z) =
∑

t x(t)z
t, Y =

∑
i y(t)z

t ∈ Fq((z))
n, and 〈 , 〉 is the stan-

dard Fq-bilinear form on Fn
q . The duality with respect to this pairing [ , ] is

therefore a duality over the base field Fq, whereas the duality with respect

to the pairing (11.2) is over the field Fq(z).

11.3. Convolutional Goppa codes

(For an overview of linear Goppa codes, see [7] or [8], and also section

1.4 in this book [3])

Let (X,OX) be a smooth projective curve over Fq(z) of genus g. Let

us denote by ΣX the field of rational functions of X , and let us assume

that Fq(z) is algebraically closed in ΣX . Both the Riemann-Roch and the

Residue theorems (see for instance [6]) still hold under this hypothesis.
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Given a set p1, . . . , pn of n different Fq(z)-rational points of X , if Opi

denotes the local ring at the point pi, with maximal ideal mpi
, and ti is a

local parameter at pi, one has the exact sequences:

0 → mpi
→ Opi

→ Opi
/mpi

' Fq(z) → 0 , .

s(ti) 7→ s(pi) .
(11.4)

Let us consider the divisor D = p1 + · · ·+ pn, with its associated invertible

sheaf OX (D). One then has an exact sequence of sheaves

0 → OX(−D) → OX → Q→ 0 , (11.5)

where the quotient Q is a sheaf with support at the points pi.

Let G be a divisor on X of degree r, with support disjoint from D. Ten-

soring the exact sequence (11.5) by the associated invertible sheaf OX(G),

one obtains:

0 → OX(G−D) → OX(G) → Q→ 0 . (11.6)

For each divisor F over X , let us denote its Fq(z)-vector space of global

sections by

L(F ) ≡ Γ(X,OX(F )) = {s ∈ ΣX | (s) + F ≥ 0} ,

where (s) is the divisor defined by s ∈ ΣX . Taking global sections in (11.6),

one obtains

0 → L(G−D) → L(G)
α→ Fq(z) ×

n

.̂ . .× Fq(z) → . . .

s 7→ (s(p1), . . . , s(pn)) .

Definition 11.33. The convolutional Goppa code C(D,G) associated with

the pair (D,G) is the image of the Fq(z)-linear map α : L(G) → Fq(z)
n.

Analogously, given a subspace Γ ⊆ L(G), one defines the convolutional

Goppa code C(D,Γ) as the image of α|Γ .

Remark 11.34. The above definition is more general than the one given

in [2] in terms of families of curves X → A1
Fq

. In fact, given such a family,

the fibreXη , over the generic point η ∈ A1
Fq

, is a curve over Fq(z). However,

not every curve over Fq(z) extends to a family over A1
Fq

.

By construction, C(D,G) is a convolutional code of length n and dimen-

sion

k ≡ dimL(G) − dimL(G−D) .
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Prop 11.35. Let us assume that 2g − 2 < r < n. Accordingly, the eval-

uation map α : L(G) ↪→ Fq(z)
n is injective, and the dimension of C(D,G)

is

k = r + 1 − g .

Proof. If r < n, dimL(G − D) = 0, the map α is injective and k =

dimL(G). If 2g − 2 < r, dimL(G) = 1 − g + r by the Riemann-Roch

theorem. �

11.3.1. Dual convolutional Goppa codes

Given a convolutional Goppa code C(D,G), let C(D,G)⊥ be its dual

convolutional code, in the sense of definition 11.27.

Theorem 11.36. C⊥(D,G) is also a convolutional Goppa code, in the

following sense: If K denotes the canonical divisor of rational differen-

tial forms over X, then C⊥(D,G) is the image of the Fq(z)-linear map

β : L(K +D −G) → Fq(z)
n, given by

β(η) = (Resp1(η), . . . ,Respn
(η)) .

Proof. Following the construction of C(D,G), we start by tensoring the

exact sequence (11.4) by m
∗
pi

= HomOpi
(mpi

,Opi
), and we obtain:

0 → Opi
→ m

∗
pi

→ Opi
/mpi

⊗Opi
m

∗
pi

' Fq(z) → 0

t−1
i s(ti) 7→ s(pi) .

(11.7)

Again tensoring (11.7) by mpi
/m2

pi
, the tangent space of differentials at the

point pi, one obtains:

0 → mpi
/m2

pi
→ m

∗
pi
⊗Opi

mpi
/m2

pi
→ Fq(z) → 0

t−1
i s(ti)dti 7→ s(pi) ,

(11.8)

where s(pi) = Respi
(t−1

i s(ti)dti).

This allows us to define a new convolutional Goppa code associated with

the pair of divisors D = p1 + · · · + pn and G; tensoring (11.5) by the line

sheaf OX (K +D −G), one has:

0 → OX (K −G) → OX (K +D −G) → Q→ 0 . (11.9)

Taking global sections, one has

0 → L(K −G) → L(K +D −G)
β→ Fq(z) ×

n

.̂ . .× Fq(z) → . . .

η 7→ (Resp1(η), . . . ,Respn
(η)) .
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The image of β is a subspace of Fq(z)
n, whose dimension can be calculated

by the Riemann-Roch theorem:

dimL(K +D −G) − dimL(K −G)

= dimL(G−D) − (r − n) − 1 + g − (dimL(G) − r − 1 + g)

= n− k .

Moreover, Imβ is the subspace C(D,G)⊥ ⊂ Fq(z)
n, because they have the

same dimension, and by the Residue theorem for every η ∈ L(K +D −G)

and every s ∈ L(G) one has

〈β(η), α(s)〉 =

n∑

i=1

s(pi) Respi
(η) =

n∑

i=1

Respi
(sη) = 0 .

�

Under the hypothesis 2g − 2 < r < n, the map β is injective, and

C⊥(D,G) is a convolutional code of length n and dimension

dimL(K +D −G) = n− (1 − g + r) .

Remark 11.37. In the context of duality in the sense of the pairing [ , ]

of remark 11.32,

[X(z), Y (z)] = Resz=0

(
〈X(z), Y (z)〉dz

z

)
=

n∑

i=1

Resz=0

(
Xi(z)Yi(z)

dz

z

)
.

Thus, the duality for convolutional Goppa codes in the sense of Definition

11.27 is related to the residues at the points of X , and the duality with

respect to the pairing [ , ] is related to the residues in the variable of the

base field.

11.4. Weights and (free)distance

For vectors x = (x1, . . . , xn) ∈ Fn
q , the (Hamming) weight is defined as

hwt(x) = #{i | xi 6= 0} and the (Hamming) distance between x, y ∈ Fn
q can

be defined as the weight hwt(y− x). In the setting of linear coding theory,

the corresponding notion of minimum weight (distance) of the words in the

code is one of the most important parameters of the code.

For convolutional codes, one needs an analogous notion for polynomial

vectors X(z) = (X(z)1, . . . , Xn(z)) ∈ Fq [z]
n. However, it is possible to

define two kinds of weights. First, one can simply define the Hamming

weight of X(z) as

hwt(X(z)) = #{i | Xi(z) 6= 0} .
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Thus, the concept of minimum Hamming weight of a convolutional code

does not reflect the performance of convolutional codes over noisy channels

in convolutional coding theory. Of course the minimum Hamming weight

of a convolutional Goppa code C(D,G) can be bounded using the Riemann-

Roch theorem, as in the usual Goppa codes.

However, when one considers X(z) ∈ Fq [z]
n as a polynomial with vector

coefficients

X(z) =
∑

t

x(t)zt , where x(t) = (x1(t), . . . , xn(t) ∈ Fn
q ,

one can define a more natural notion of weight in convolutional coding

theory :

Definition 11.38. The weight of X(z) ∈ Fq [z]
n is

wt(X(z)) =
∑

t

hwt(x(t)) .

Definition 11.39. The (free) distance of a (n, k)-convolutional code Ck ⊆
Fq(z)

n is

d = Min{wt(X(z)) | X(z) ∈ Ck ∩ Fq[z]
n , X(z) 6= 0} .

In particular, if the degree of the code is zero, Ck is a linear code and

the (free) distance is the (minimum) distance as linear code.

As in the case of linear codes, the distance d is one of the most important

parameters in convolutional coding theory.

In particular, an interesting problem is to find upper bounds for d. A

possible solution is to link convolutional codes with linear codes, fixing the

degree of the words in Ck:

Theorem 11.40. (McEliece [12]) For an (n, k)-convolutional code Ck ⊆
Fq(z)

n of Forney indices e1 ≤ · · · ≤ ek, let

CL = {X(z) ∈ C / Degree(X(z)) ≤ L} .
Identifying the set of all possible n-dimensional polynomial vectors of degree

≤ L over Fq with Fn(L+1)
q , one can see CL as an Fq-linear code of length

n(L+ 1) and a certain dimension kL. Then,

kL =

k∑

i=1

Max(L+ 1 − ei, 0) ,

and

d ≤ MinL≥0 (Max{distance of possible (n(L+ 1), kL) linear codes}) .
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This result can be used to calculate the distance d of a convolutional

code Ck from the distances dL of its linear (sub)codes CL.

Also it is possible for convolutional codes to find a bound of d analogous

to the Singleton bound for linear codes.

Theorem 11.41. (Rosenthal, Smarandache [16]) If Ck ⊆ Fq(z)
n is an

(n, k)-convolutional code of degree δ, its distance is bounded by:

d ≤ (n− k)
(
b δ
k
c + 1

)
+ δ + 1 .

If d achieves this bound, then Ck will be called a Maximum Distance Sepa-

rable (MDS) convolutional code.

For linear codes, there is a geometric interpretation of distance, in terms

of balls in the words of the code. Moreover, for linear Goppa codes the dis-

tance can be viewed in terms of the number of zeroes of certain meromorphic

functions, which allows us to use the Riemann-Roch theorem to make very

precise computations.

In the case of convolutional Goppa codes C(D,G) of length n over a

curve X defined over Fq(z), the interpretation of the notion of weight in

geometric terms is much more difficult. Let us assume that X can be

extended to a family of curves XU over U = SpecFq[z] = A1
Fq

(as in [2]).

Let X0 be the fibre of XU over the origin of U . The points p1, . . . , pn of

the divisor D define sections pi(z) : A1
Fq

→ XU and the polynomial words

of the code C(D,G) are defined by evaluating the sections s ∈ L(G) along

the sections pi(z).

Let p be one of the points defined by D, Cp the curve of XU defined as

the image of the section p(z), and q0 the intersection of Cp with X0; that

is, q0 = p(0). Let us assume that L(G) is a very ample linear series [6],

and let us assume that XU is immersed in PN
Fq

×P1
Fq

using the linear series

L(G). Let us denote by πr(q0) the r-th osculating plane to the curve Cp at

the point q0. One has a sequence of strict inclusions:

π0(q0) = q0 ⊂ π1(q0) ⊂ π2(q0) ⊂ · · · ⊂ πr(q0) ⊂ · · · .
The evaluation of s at p, s(p), can be expressed by:

s(p) = s0 + s1z + · · · + snz
n ,

where s0 = s(0) and sr, the r-th coefficient, can be interpreted as the r-th

jet of s(z) at the point q0.

With this interpretation in mind, one has that sr = 0 if and only if

Hs ∩ πr(q0) 6= ∅ and Hs ∩ πr−1(q0) $ Hs ∩ πr(q0) ,
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where Hs is the hyperplane defined by the section s.

Accordingly, the problem of computing the number #{r | sr = 0} can

be translated into a problem of enumerative geometry over finite fields.

The main problem here is to develop the classical theory of osculating

planes and all the classical computations in the case of finite base fields.

This is not an easy problem, but its solution would allow one to give a

geometric interpretation of the distance of convolutional Goppa codes.

11.5. Convolutional Goppa Codes over the projective line

Let X = P1
Fq(z) = ProjFq(z)[x0, x1] be the projective line over the field

Fq(z), and let us denote by t = x1/x0 the affine coordinate.

Let p0 = (1, 0) be the origin point, p∞ = (0, 1) the point at infinity, and

let p1, . . . , pn be different rational points of P1, pi 6= p0, p∞. Let us define

the divisors D = p1 + · · · + pn and G = rp∞ − sp0, with

0 ≤ s ≤ r < n .

Since g = 0, the evaluation map α : L(G) → Fq(z)
n is injective, and Imα

defines a convolutional Goppa code C(D,G) of length n and dimension

k = r − s+ 1.

Let us choose the functions ts, ts+1, . . . , tr as a basis of L(G). If αi ∈
Fq(z) is the local coordinate of the point pi, i = 1, . . . , n, the matrix of the

evaluation map α is the following generator matrix for the code C(D,G):

G =




αs
1 αs

2 . . . αs
n

αs+1
1 αs+1

2 . . . αs+1
n

...
...

. . .
...

αr
1 αr

2 . . . αr
n


 . (11.10)

The dual convolutional Goppa code C⊥(D,G) also has length n, and

dimension n− k = n− r + s− 1.

To construct C⊥(D,G), let us choose in L(K + D − G) the basis of

rational differential forms:

〈
dt

ts
∏n

i=1(t− αi)
,

t dt

ts
∏n

i=1(t− αi)
, . . . ,

tn−r+s−2dt

ts
∏n

i=1(t− αi)

〉
,
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and let us calculate the residues:

Respj

(
tmdt

ts
∏n

i=1(t− αi)

)

= Respj


 (t− αj + αj)

md(t− αj)

(t− αj)(t− αj + αj)s
∏n

i=1

i6=j
(t− αj + αj − αi)




=
αm

j

αs
j

∏n
i=1

i6=j
(αj − αi)

.

If one sets hj = 1
αs

j

∏
n
i=1
i6=j

(αj−αi)
, then the matrix H of

β : L(K +D −G) → Fq(z)
n,

H =




h1 h2 . . . hn

h1α1 h2α2 . . . hnαn

...
...

. . .
...

h1α
n−r+s−2
1 h2α

n−r+s−2
2 . . . hnα

n−r+s−2
n


, (11.11)

is a generator matrix for the dual code C⊥(D,G), and therefore a parity-

check matrix for C(D,G). In fact, one has H ·GT = 0.

Remark 11.42. The matrix in (11.11) suggests that C⊥(D,G) is an alter-

nating code over the field Fq(z), and we can thus apply to C(D,G) some

kind of Berlekamp-Massey decoding algorithm as a linear code over Fq(z).

Example 11.43. Let a, b ∈ Fq be two different non-zero elements, and

αi = ai−1z + bi−1 , i = 1, . . . , n , with n < q .

We present some examples of convolutional Goppa codes with canoni-

cal generator matrices, whose distance d attains the generalized Singleton

bound 11.41 (i.e., they are MDS convolutional codes), and we include their

encoding equations as linear systems.

• Field F3(z), F3 = {0, 1, 2}:
G =

(
z + 1 z + 2

)

H =
(

1
2(z+1)

1
z+2

)

A = ( 0 ) , B = ( 1 ) , C = ( 1 1 ) , D = ( 1 2 )

(n, k, δ, d) = (2, 1, 1, 4) .
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• Field F4(z), F4 = {0, 1, α, α2} where α2 + α+ 1 = 0:

G =

(
1 1 1

z + 1 αz + α2 α2z + α

)

H =
(

1
(α2z+α)(αz+α2)

1
(α2z+α)(z+1)

1
(αz+α2)(z+1)

)

A = ( 0 ) , B = ( 0
1 ) , C = ( 1 α α2 ) , D =

(
1 1 1
1 α2 α

)

(n, k, δ, d) = (3, 2, 1, 3) .

• Field F4(z):

G =
(
z + 1 z + α z + α2

)

H =

(
1

z+1
α

z+α
α2

z+α2

1 α α2

)

A = ( 0 ) , B = ( 1 ) , C = ( 1 1 1 ) , D = ( 1 α α2 )

(n, k, δ, d) = (3, 1, 1, 6) .

• Field F5(z), F5 = {0, 1, 2, 3, 4}:

G =
(
(z + 1)2 (z + 2)2 (z + 4)2

)

H =

(
2

(z+1)2
2

(z+2)2
1

(z+4)2

2
z+1

2
z+2

1
z+4

)

A = ( 0 1
0 0 ) , B = ( 1 0 ) , C = ( 2 4 3

1 1 1 ) , D = ( 1 4 1 )

(n, k, δ, d) = (3, 1, 2, 9) .

• Field F5(z):

G =

(
z + 1 2z + 3 4z + 4 3z + 2

(z + 1)2 (2z + 3)2 (4z + 4)2 (3z + 2)2

)

H =

(
4

a2bc
4

bcd2
4

a2bc
4

bcd2

4
abc

3
bcd

1
abc

2
bcd

)

where a = z + 1, b = z + 2, c = z + 3 and d = z + 4 ,

A =
(

0 0 0
0 0 1
0 0 0

)
, B = ( 1 0 0

0 1 0 ) , C =
(

1 2 4 3
2 2 2 2
1 4 1 4

)
, D = ( 1 3 4 2

1 4 1 4 )

(n, k, δ, d) = (4, 2, 3, 8) .
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11.6. Convolutional Goppa Codes over elliptic curves

We can obtain convolutional codes from elliptic curves in the same way.

Let X ⊂ P2
Fq(z) be a plane elliptic curve over Fq(z), and let us denote

by (x, y) the affine coordinates in P2
Fq(z). Let p∞ be the infinity point,

and p1, . . . , pn rational points of X , with pi = (xi(z), yi(z)). Let us define

D = p1 + · · · + pn and G = rp∞.

The canonical basis of L(G) is {1, x, y, . . . , xayb}, with 2a+3b = r (and

b = 0, 1 so that there are no linear combinations). Thus, the evaluation

map α : L(G) → Fq(z)
n is:

α(xiyj) = (xi
1(z)y

j
1(z), . . . , x

i
n(z)yj

n(z)).

The image of a subspace Γ ⊆ L(G) under the map α provides a Goppa

convolutional code.

We present a couple of examples obtained from elliptic curves that,

although not MDS, have distance approaching that bound.

Example 11.44. We consider the curve over F2(z)

y2 + (1 + z)xy + (z + z2)y = x3 + (z + z2)x2 ,

and the points

p1 = (z2 + z, z3 + z2)

p2 = (0, z2 + z)

p3 = (z, z2) .

L(G) is the subspace generated by {1, x}. Thus, the valuation map α is

defined by the matrix
(

1 1 1

z2 + z 0 z

)
.

This code has distance d = 2. The maximum distance for its parameters is

3.

Example 11.45. Let us now consider the curve over F2(z)

y2 + (1 + z + z2)xy + (z2 + z3)y = x3 + (z2 + z3)x2 ,

and the points

p1 = (z3 + z2, 0)

p2 = (0, z3 + z2)

p3 = (z3 + z2, z5 + z3)

p4 = (z2 + z, z3 + z)

p5 = (z2 + z, z4 + z2) .
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Again we take L(G) as the subspace generated by {1, x}. Therefore, the

valuation map α is defined by the matrix

(
1 1 1 1 1

z3 + z2 0 z3 + z2 z2 + z z2 + z

)
.

This code has distance d = 4. The maximum distance for its parameters is

5.

Remark 11.46. Every elliptic curve X over Fq(z) can be considered the

generic fibre of a fibration X → U = SpecFq[z], with some fibres singular

curves of genus 1. The global structure of this fibration is related to the

singular fibres (see [18]); the translation into the language of coding the-

ory of the arithmetic and geometric properties of the fibration is the first

step in the program of applying the general construction to the effective

construction of good convolutional Goppa codes of genus 1.
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This chapter discusses quantum error-correcting codes constructed from
algebraic curves. We give an introduction to quantum coding theory
including bounds on quantum codes. We describe stabilizer codes which
are the quantum analog of classical linear codes and discuss the binary
and q-ary CSS construction. Then we focus on quantum codes from
algebraic curves including the projective line, Hermitian curves, and
hyperelliptic curves. In addition, we describe the asymptotic behav-
iors of quantum codes from the Garcia-Stichtenoth tower attaining the
Drinfeld-Vlăduţ bound.
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12.1. Introduction

One of the applications of algebraic geometry (AG) codes is their use

in the construction of quantum error-correcting codes. Quantum error-

correction was developed by Shor [31] and has become one of key ingre-

dients in quantum computation and quantum information theory. Calder-

bank and Shor [6] and Steane [34] independently showed that quantum

error-correcting codes can be constructed via classical linear codes over

finite fields, known as the CSS construction. At the same time, Gottes-

man developed the stabilizer formalism [13]. Shortly thereafter, nonbinary

quantum codes were studied by Rains [28] and Ashikhmin and Knill [2].

In this chapter, we start with a brief introduction to quantum infor-

mation and quantum correction (Section 1.2). Interested readers can re-

fer to the book [27]. Then in Section 1.3, we describe how to construct

quantum error-correcting codes (in particular, stabilizer codes) from clas-

sical codes via the CSS construction. Finally Section 1.3 explains quantum

codes from algebraic geometry codes. We consider quantum Reed-Solomon

codes, quantum Hermitian codes, quantum codes from hyperelliptic curves,

and quantum codes from multipoint AG codes. We also discuss asymptotic

behaviors of quantum codes from AG codes.

12.2. Quantum information and error correction

12.2.1. Background and terminology

The classical unit of information is the bit, which is either 0 or 1. The

quantum analog of the classical 0 − 1 bit is the qubit, which is short for

quantum bit. A qubit is of the form

α|0〉 + β|1〉 where α, β ∈ C.

Often, the normalization condition that | α |2 + | β |2= 1 is assumed

to reflect that upon observation the qubit collapses to 0 with probability

| α |2 and to 1 with probability | β |2. Notice that the qubit may be viewed

as a vector in C2. As in classical coding theory, one may consider larger

alphabets such as Fq where q = pm and p is prime. Here, the units of

information are quantum digits, called qudits. To describe a qudit, fix a

basis {|a〉 : a ∈ Fq} for the complex vector space Cq . Then a qudit (also
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called a q-ary quantum state) is of the form
∑

a∈Fq

αa|a〉 where αa ∈ C.

Now the state of an n-qubit system may be viewed as a vector in the n-fold

tensor product

(Cq)⊗n = Cq ⊗ · · · ⊗Cq

︸ ︷︷ ︸ ∼= Cqn

.

n

In this setting, we now define a quantum code.

Definition 12.1. Given a prime power q, a q-ary quantum code of length

n is a complex subspace of (Cq)
⊗n

.

Throughout this chapter, q denotes a power of a prime p.

We next discuss how quantum codes guard against errors. Unlike the

classical case, it is not immediately obvious that this is even possible. More

pointedly, classical codes protect information by adding redundancy with

the most elementary example of this being a repetition code. However,

quantum information cannot be duplicated in the same sense due to the

following observation, called the No Cloning Theorem.

Theorem 12.2. (No Cloning Theorem) There is no quantum operation

that takes the state |ψ〉 to |ψ〉 ⊗ |ψ〉 for all states |ψ〉.

Proof. Suppose there is such an operation. Then given |ψ〉 6= |φ〉,
|ψ〉 + |φ〉 7→ |ψ〉|ψ〉 + |φ〉|φ〉

since |ψ〉 7→ |ψ〉 and |φ〉 7→ |φ〉. However,

|ψ〉 + |φ〉 7→ (|ψ〉 + |φ〉) (|ψ〉 + |φ〉)
which is a contradiction since

|ψ〉|ψ〉 + |φ〉|φ〉 6= (|ψ〉 + |φ〉) (|ψ〉 + |φ〉) .
�

Despite the inability to copy quantum information, quantum codes do

exist. Peter Shor produced the first example in 1995 [31] which was followed

by a larger family found by Shor and Calderbank in 1996 [6]. To better

understand the errors in a quantum system, it is helpful to consider the

following (albeit oversimplified) analogy as in [15]: Given a linear code C

of length n and dimension k over Fq, C partitions Fn
q into cosets

Fn
q = C ∪ (C + e1) ∪ (C + e2) ∪ · · · ∪

(
C + eqn−k−1

)
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and errors act on C by translation whereas a q-ary quantum code Q of

length n and dimension k gives rise to an orthogonal decomposition

Cqn

= Q⊕E1Q⊕E2Q⊕ · · · ⊕Eqn−k−1Q

and errors act on Q as unitary transformations. To be more precise, we

next describe the types of errors encountered by an n-qudit q-ary system.

When dealing with qubits, there are three types of errors that may

occur: a bit flip, phase flip, and a combination of bit and phase flips.

These errors on a single qubit may be represented by 2 × 2 matrices:

X =

[
0 1

1 0

]
, Z =

[
1 0

0 −1

]
, and Y =

[
0 −i
i 0

]
= iXZ.

Indeed,

X |a〉 = |a⊕ 1〉, Z|a〉 = (−1)a|a〉, and Y |a〉 = i(−1)a|a⊕ 1〉.
The matrices X , Y , and Z are called Pauli matrices.

More generally, let q = pm where p is prime. Given a, b ∈ Fq we have

dit flip and phase flip errors acting on a single qudit as

Ta|u〉 = |u+ a〉
and

Rb|u〉 = ξTr(bu)|u〉
where ξ = e

2πi
p is a pth root of unity and Tr : Fq → Fp is the trace function.

These operators may be expressed by matrices as follows. Suppose that

{γ1, γ2, . . . , γm} is a basis for Fq as an Fp-vector space. Given a, b ∈ Fq,

a =
∑m

i=1 aiγi and b =
∑m

i=1 biγi for some ai, bi ∈ Fp. Let T,R ∈ Cp×p be

the matrices

T =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

0 0 0 · · · 1

1 0 0 · · · 0




and R =




ξ

ξ2

ξ3

. . .

ξp−1




;

that is,

[T ]i,j = δi,j−1 mod p and [R]i,j = ξiδi,j

where

δi,j =

{
1 if i = j

0 otherwise
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and the rows and columns are indexed 0, . . . , p − 1. Now, matrices corre-

sponding to the dit flip and phase flip errors described above are

Ta := T a1 ⊗ T a2 ⊗ · · · ⊗ T am and Rb := Rb1 ⊗Rb2 ⊗ · · · ⊗Rbm .

Clearly,

TaRb = (T a1 ⊗ T a2 ⊗ · · · ⊗ T am)
(
Rb1 ⊗Rb2 ⊗ · · · ⊗Rbm

)

= T a1Rb1 ⊗ T a2Rb2 ⊗ · · · ⊗ T amRbm .

Note that {TaRb : a, b ∈ Fq} is an orthogonal basis for Cq under the trace

inner product 〈A,B〉 := Tr
(
A†B

)
where A† denotes the Hermitian trans-

pose of A. Thus, the span of {TaRb : a, b ∈ Fq} is the set of errors on a

single qudit.

Next, we consider errors on an n-state system, that is, a system of n

qudits. Given a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Fn
q , define

Ta := Ta1 ⊗ Ta2 ⊗ · · · ⊗ Tan
and Rb := Rb1 ⊗Rb2 ⊗ · · · ⊗Rbn

.

Then

TaRb = (Ta1 ⊗ Ta2 ⊗ · · · ⊗ Tan
) (Rb1 ⊗Rb2 ⊗ · · · ⊗Rbn

)

= Ta1Rb1 ⊗ Ta2Rb2 ⊗ · · · ⊗ Tan
Rbn

.

Given a, b ∈ Fn
q , set Ea,b := TaRb. We sometimes write Eab to mean Ea,b.

Then the set

En :=
{
Ea,b : a, b ∈ Fn

q

}

is an error basis for Cqn

. Hence, the error group for an n-state q-ary system

is

Gn =
{
ξiEa,b : a, b ∈ Fn

q , 0 ≤ i ≤ p− 1
}
,

a group of order pq2n with center Z(Gn) = 〈ξI〉.
We now discuss when errors are correctable by a quantum code C.

Let {|ψj〉 : 1 ≤ j ≤ k} be a basis for C. In order for errors E and F to be

correctable, E|ψi〉 and F |ψj〉 must be distinguishable (meaning orthogonal)

for all i 6= j; that is,

〈ψi|E†F |ψj〉 = 0.

Because measurement disturbs the state, error correction cannot be done

by measurement; that is, an operation that causes measurement is not

allowed. This includes anything that gives information about the state.

For example, if 〈ψi|E†F |ψi〉 6= 〈ψj |E†F |ψj〉 for some 1 ≤ i, j ≤ k, then
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this measurement gives information about the state. Hence, an additional

requirement for E and F to be correctable errors is that

〈ψi|E†F |ψi〉 = 〈ψj |E†F |ψj〉
for all 1 ≤ i, j ≤ k. This discussion is summarized in the following result

due to Knill and Laflamme [24] and Bennett, DiVincenzo, Smolin, and

Wootters [4].

Theorem 12.3. A set A of errors is correctable by a code C with basis

{|ψj〉 : 1 ≤ j ≤ k} if and only if

〈ψi|E†
aEb|ψj〉 = Cabδij

where Ea and Eb run over all possible errors in A and Cab depends only

on a and b (not on i and j).

The weight of an error ξiEa,b ∈ Gn is the number of its nonidentity

components, meaning

wt
(
ξiEa,b

)
= n− | {i : ai = bi = 0} |.

Given this notion of weight, we can now define the minimum distance of a

q-ary quantum code C of length n to be

d = max

{
d :

〈u|v〉 = 0 and wt(E) ≤ d− 1 ⇒ 〈u|E|v〉 = 0

∀|u〉, |v〉 ∈ C and ∀E ∈ Gn

}
.

Definition 12.4. An [[n, k, d]]q code is a q-ary quantum code of length n,

dimension k, and minimum distance d.

We will write [[n, k,≥ d]]q code to mean an q-ary quantum code of length

n, dimension k, and minimum distance at least d. As is standard, a classical

linear code of length n, dimension k, and minimum distance d (resp. at

least d) is called an [n, k, d] (resp. [n, k,≥ d]) code.

An [[n, k, d]]q code C is pure if and only if

wt(E) ≤ d− 1 ⇒ 〈u|E|v〉 = 0

for all |u〉, |v〉 ∈ C and all E ∈ Gn. Notice that the words u and v are not re-

quired to be orthogonal here. A weaker condition is that of nondegeneracy.

An [[n, k, d]]q code C is nondegenerate if and only if

wt(E) ≤ d− 1 ⇒ |u〉 and E|v〉 are linearly independent

for all |u〉, |v〉 ∈ C and all E ∈ Gn; otherwise C is said to be degenerate.

While the term degenerate has seemingly negative connotations, we will see

in the next subsection that this is not necessarily the case.
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12.2.2. Bounds on quantum codes

Many of the classical coding theory bounds have analogs that apply to

quantum codes.

Theorem 12.5. (Quantum Hamming Bound) Given any [[n, k, d]]q non-

degenerate quantum code,

b d−1
2 c∑

j=0

(
n

j

)(
q2 − 1

)j
qk ≤ qn.

Proof. Suppose that C is a [[n, k, d]]q nondegenerate quantum code.

Since C is nondegenerate, any two linearly independent correctable errors

produce orthogonal qk-dimensional subspaces of Cqn

. Given 0 ≤ j ≤ d−1
2 ,

any j errors are correctable and there are
(
n

j

)(
q2 − 1

)j

such errors. From this, the bound follows. �

Notice that this bound only applies to nondegenerate codes. This sug-

gests that it might be possible for a degenerate code to have parameters

exceeding this bound. In 1997, Gottesman [13] proved that degenerate

single- and double-error-correcting binary codes satisfy the bound given in

Theorem 12.5. Nearly a decade later, it was shown for degenerate q-ary

stabilizer codes of minimum distance 3 [22] and minimum distance 5 [1]. A

major open problem in quantum coding theory is to determine if there is a

Hamming bound that applies to degenerate codes.

Quantum codes also satisfy MacWilliams identities [32]. Using these,

one can prove a quantum analog of the classical singleton bound.

Theorem 12.6. (Quantum Singleton Bound) If C is a [[n, k, d]]q code with

k > 1, then

k + 2d ≤ n+ 2.

A quantum maximum distance separable (MDS) code is a quantum

code which attains the Singleton bound. Rains [28, Theorem 2] showed

that all quantum MDS codes are pure. There is an interesting relationship

betweeen quantum MDS codes and classical MDS codes. If Q is a quantum

MDS stabilizer code with n−2d+2 > 0, then it gives rise to classical MDS

codes [22, Lemma 61]. Recall that the MDS conjecture for classical codes
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says: “If there is a nontrivial [n, k, d]q MDS code, then n ≤ q + 1 unless

q is even and k = 3 or k = q − 1 in which case n ≤ q + 2.” The classical

MDS conjecture implies that there are no nontrivial MDS stabilizer codes

of lengths greater than q2 +1, except when q is even and d = 4 or d = q2 in

which case n ≤ q2 +2 [22, Corollary 65]. Therefore, the discovery of certain

quantum MDS codes could provide a route to disproving the classical MDS

conjecture. This is an active area of research in quantum error-correcting

codes.

Theorem 12.7. (Quantum Gilbert-Varshamov Bound) Suppose that 2 ≤
k < n, d ≥ 2 and n ≡ k mod 2. If

d−1∑

j=1

(
n

j

)
(q2 − 1)j−1 <

q2n − 1

qn+k − qn−k
,

then there exists a [[n, k, d]]q code.

Recently, Feng and Ma proved a Gilbert-Varshamov type bound which

guarantees the existence of pure codes.

Theorem 12.8. (Gilbert-Varshamov Bound for pure stabilizer codes) [9,

Theorem 1.4] Suppose that 2 ≤ k < n, d ≥ 2 and n ≡ k mod 2. If

d−1∑

j=1

(
n

j

)
(q2 − 1)j−1 <

qn−k+2 − 1

q2 − 1
,

then there exists a [[n, k, d]]q pure code.

Asymptotically, these two bounds coincide. We will consider the asymp-

totic version in Section 12.4. The statements in Theorems 12.7 and 12.8

may be made a bit stronger. Under the given hypotheses, there exists a

stabilizer code with the given parameters. Stabilizer codes are discussed in

the next section.

12.3. Relating quantum codes and classical codes

While classical linear codes may be compactly described in terms of a

basis, this may not be the most concise expression for a quantum code (see

Gottesman’s thesis [13] for some examples illustrating this). In fact, for a

large class of quantum codes called stabilizer codes, another algebraic struc-

ture is more useful. Stabilizer codes over F2 were introduced by Gottesman

in his thesis [13], and many of the same ideas were discovered independently
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by Calderbank, Rains, Shor, and Sloane [5] and used in the famous CSS

constuction.

12.3.1. Stabilizer codes

Some believe stabilizer codes to be the quantum analog of linear codes.

The stabilizer can be thought of as the quantum analog of a classical parity

check matrix. While not every code is a stabilizer code, the following is

true: Given a quantum code C, there is a stabilizer code C ′ such that

C ⊆ C ′ [22]; hence, knowledge of (lower bounds on) the error-correcting

capability of stabilizer codes provides information about the capabilities of

arbitrary quantum codes.

Definition 12.9. A q-ary quantum stabilizer code C of length n is a joint

eigenspace of operators of an abelian subgroup S of Gn; that is,

C =
{
u ∈ Cqn

: Mu = u ∀M ∈ S
}
.

The fact that S is abelian guarantees that the code is nontrivial. To see

this, suppose M,N ∈ S. Then

MN |ψ〉 = M |ψ〉 = |ψ〉 and NM |ψ〉 = N |ψ〉 = |ψ〉
which imply

(MN −NM) |ψ〉 = MN |ψ〉 −NM |ψ〉 = 0.

It follows that MN = NM or |ψ〉 = 0. As a result, S must be abelian or

C = {|0〉}. (If S is nonabelian, it is standard to extend S by Z(Gn).)

We do not have space to prove or even mention all of the facts on

stabilizer codes. Instead, we point the reader to the excellent references [2],

[13], and [22]. There one can find the following result.

Proposition 12.10. A stabilizer code C with stabilizer S ⊆ Gn has qn

|S|
codewords and minimum distance minwt{M ∈ N(S) \ S} where N(S) de-

notes the normalizer of S.

In the next subsection, we consider some stabilizer codes constructed

from classical linear codes.

12.3.2. CSS construction

In this section, we describe a large class of quantum stabilizer codes

based on classical linear codes.
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Recall that an additive code of length n over F4 is an additive subgroup

of Fn
4 . Write F4 = {0, ω, ω2, 1} where ω2 = ω + 1 so that ω = ω2. Then

{ω, ω} is a basis for F4 as an F2-vector space. Hence, given v ∈ Fn
4 ,

v = ωa+ ωb

for some a, b ∈ Fn
2 . This defines a bijection

f : Fn
4 → F2n

2

ωa+ ωb 7→ (a|b) .

This bijection may be composed with

g : F2n
2 → Gn

(a|b) 7→ Eab

to produce

φ : Fn
4 → Gn

ωa+ ωb 7→ Eab.

In [5], additive codes over F4 are used to construct quantum codes via

the following major result. Here, the inner product employed is the trace

inner product defined by

u ∗ v := Tr (u · v)

for all u, v ∈ Fn
4 , where the trace map is

Tr : F4 → F2

x 7→ x+ x

and u · v :=
∑n

i=1 uivi is the usual inner product. Recall that a code C is

self-orthogonal (or weakly self-dual) provided C ⊆ C⊥.

Theorem 12.11. [5, Theorem 2] Suppose that D ⊆ Fn
4 is an additive self-

orthogonal code such that |D| = 2n−k and D⊥ \D has no vectors of weight

less than d. Then any eigenspace of φ(D) is a [[n, k, d]]2 code.

Classical binary linear codes may be employed in Theorem 12.11 as

follows. Suppose that C1 is a [n, k1, d1]2 code and C2 is [n, k2, d2]2 code

where C1 ⊆ C2. Then

D = ωC1 + ωC⊥
2 ⊆ Fn

4
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is an additive code over F4. Moreover, D is self-orthogonal with respect to

the trace inner product. To see this, note that

Tr
(
(ωa+ ωb) · (ωa′ + ωb′)

)
=
∑n

i=1 aib
′
iTr (ω) + a′ibiTr (ω)

= (a|b) · (a′|b′)
= 0

for all (ωa+ ωb) , (ωa′ + ωb′) ∈ D as a, a′ ∈ C1 ⊆ C2 and b, b′ ∈ C⊥
2 .

Applying Theorem 12.11 to D as above produces what is commonly called

the CSS construction for binary quantum codes, one of the most important

constructions of quantum codes. This turns out to be a special case of a

q-ary construction which is given in Corollary 12.15.

Theorem 12.12. (Binary CSS construction) Suppose that C1 and C2 are

binary linear codes of length n and dimensions k1 and k2 respectively with

C1 ⊆ C2. Then there exists a
[
[n, k2 − k1,min{d(C2 \ C1) , d

(
C⊥

1 \ C2

)
}]
]
2

code.

Following Rains’ work on nonbinary quantum codes [28], Ashikhmin

and Knill developed a q-ary analog to Theorem 12.11. Notice that a code

C of length n over F4 is additive if and only if C is an F2-subspace of Fn
4 .

Hence, in the q-ary case where q = pm, the notion of an additive code is

replaced with that of an Fp-subspace. Such a code is said to be Fp-linear.

More precisely, we have the following definition.

Definition 12.13. Suppose q = pm where p is prime. An Fp-linear code

of length n over Fq is an Fp-subspace of Fn
q .

Consider

g : F2n
q → Gn

(a|b) 7→ Eab.

To generalize Theorem 12.11 to the q-ary case, one may use a generalization

of the trace inner product defined about. Given (a|b) , (a′|b′) ∈ F2n
q , set

(a|b) ∗ (a′|b′) = Tr (a · b′ − a′ · b)

where Tr : Fq → Fp is the usual trace map.

Theorem 12.14. [2, p. 3069] Suppose that D ⊆ F2n
q is an Fp-linear code

which is self-orthogonal with respect to ∗ such that |D| = pr. Then any

eigenspace of g(D) is a
[[
n, n− r

m , d
(
D⊥∗ \D

)]]
q

code.
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Classical q-ary codes may be employed in Theorem 12.14. To do so,

consider a degree two extension Fq2 of Fq. Suppose that ω is a primitive

element of Fq2 so that {ω, ω} is a basis for Fq2 over Fq . Define

f : Fn
q2 → F 2n

q

ωa+ ωb 7→ (a|b) .
This results in a q-ary version of the CSS construction.

Corollary 12.15. (q-ary CSS construction) [16, 22, 23] Suppose that

C1 and C2 are linear codes over Fq of length n and dimensions

k1 and k2 respectively with C1 ⊆ C2. Then there exists a[
[n, k2 − k1,min{d(C2 \ C1) , d

(
C⊥

1 \ C2

)
}]
]
q

code.

Proof. Set C = ωC1 + ωC⊥
2 ⊆ Fn

q2 and D = f(C) ⊆ F2n
q . Then D is

self-orthogonal with respect to ∗ (see [23, Lemma 2.5, Proposition 2.6]).

Now Theorem 12.14 gives the desired result. �

Next, we see how another inner product on Fn
q2 may be utilized to

construct quantum codes over Fq . Recall that the Hermitian inner product

on Fn
q2 is given by

u ∗h v :=

n∑

i=1

uiv
q
i .

In [2, Theorem 4], it is shown that a code which is self-orthogonal with

respect to the Hermitian inner product is also self-orthogonal with respect

to ∗. This idea can be used to construct q-ary quantum codes.

Corollary 12.16. [2, Corollary 1] Suppose that D is a [n, k, d]q2

code which is self-orthogonal with respect to the Hermitian inner prod-

uct. Let D⊥h denote the Hermitian dual of D. Then there exists a[[
n, n− 2k,min{wt

(
D⊥h \D

)
}
]]

q
code.

An [n, k, d]q code is pure if its dual contains no nonzero vectors of weight

less than d. For example, a self-dual code is pure. Suppose a quantum code

Q is constructed from a classical code C in the CSS construction (taking

C1 = C2 = C in Corollary 12.15). Then Q is pure if and only if C is pure.

12.4. Quantum codes constructed from algebraic geometry

codes

In this section we employ algebraic geometry codes in the construction

of quantum codes. We consider several families of such codes as well as
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asymptotic results. To begin, we review the notation used in this section.

Let X be a smooth, projective, absolutely irreducible curve of genus g

over a finite field Fq . Let Fq(X) denote the field of rational functions on X

defined over Fq , and let Ω(X) denote the set of differentials on X defined

over Fq. The divisor of a rational function f (resp. differential η) will be

denoted by (f) (resp. (η)). Given a divisor A on X defined over Fq , let

L(A) = {f ∈ Fq(X) : (f) ≥ −A} ∪ {0}

and

Ω(A) = {η ∈ Ω(X) : (η) ≥ A} ∪ {0}.

Let `(A) denote the dimension of L(A) as an Fq-vector space. The support

of a divisor D is denoted by suppD.

Algebraic geometry codes CL(D,G) and CΩ(D,G) can be con-

structed using divisors D =
∑n

i=1 Pi and G =
∑m

i=1 αiQi on X where

P1, . . . , Pn, Q1, . . . , Qm are pairwise distinct Fq-rational points and αi ∈ N
for all i, 1 ≤ i ≤ m. In particular,

CL(D,G) := {(f(P1), . . . , f(Pn)) : f ∈ L(G)}

and

CΩ(D,G) := {(resP1(η), . . . , resPn
(η)) : η ∈ Ω(G−D)} .

These codes are sometimes called m-point codes since the divisor G has

m distinct Fq-rational points in its support. Typically, an m-point code is

constructed by taking the divisor D to be the sum of all Fq-rational points

not in the support of G, and we will keep this convention. We will use the

term multipoint code to mean an m-point code with m ≥ 2.

The two algebraic geometry codes above are related in that

CL(D,G)⊥ = CΩ(D,G).

If degG < n, then CL(D,G) has length n, dimension `(G), and designed

distance n−deg G. If deg G > 2g−2, then CΩ(D,G) has dimension `(K+

D−G), where K is a canonical divisor, and designed distance deg G−(2g−
2). The minimum distance of each of the codes CL(D,G) and CΩ(D,G) is

at least its designed distance.

For more background on AG codes, the reader may consult [12], [35],

or [39].
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12.4.1. Families of quantum codes from one-point AG codes

12.4.1.1. Quantum Reed-Solomon codes

Perhaps the most popular family of AG codes is the class of Reed-

Solomon codes which are one-point AG codes on the projective line. Prior

to the work on nonbinary quantum codes [2], Grassl, Geiselmann, and

Beth [17] generalized some of the ideas in [5] from F4 to higher degree

extensions of F2. Specifically, they considered Reed-Solomon codes over

F2t and their binary expansions. Let {b1, . . . bt} be a basis for F2t as an

F2-vector space. Define

B : F2t → Ft
2∑t

i=1 aibi 7→ (a1, . . . , at) .

Given a [n, k, d]2t code C, B(C) is a [tn, tk,≥ d]2 code. By [17, Theorem

1],

B(C)⊥ = B⊥ (C⊥) .

Hence, if the basis is chosen to be self-dual (which it can be according

to [30, Theorem 4]) and the code C is self-orthogonal, then

B(C) ⊆ B
(
C⊥) = B (C)

⊥
.

Recall that an [n, k, d]2t Reed-Solomon code is self-dual provided 2k < n.

Using this fact together with their precursor to Corollary 12.15, Grassl et.

al. obtain the following.

Proposition 12.17. [17] Given δ > 2t−1
2 + 1, there is a quantum Reed-

Solomon code with parameters [[t (2t − 1) , t (2δ − 2t − 1) ,≥ 2t − δ + 1]]2.

Proof. Let C be an [2t − 1, 2t − δ, δ]2t Reed-Solomon code where δ >
2t−1

2 + 1. Then C is self-orthogonal. Now apply Corollary 12.15 with

C1 = C2 = B(C) where B is a self-dual basis for F2t over F2. The result

follows immediately. �

See [14] for applications of other cyclic codes to the construction of

quantum codes.

Quantum Reed-Solomon codes over fields of odd characteristic may be

constructed too. We do not provide the details here as this construction

is a special case of a result in Subsection 12.4.2. Extended Reed-Solomon

codes have also been used to construct quantum MDS codes as in [16].
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Table 12.1. Parameters of the Hermitian code
CL(P1 + · · · + Pq3 , αP∞)

α k (α) d (α)

0 ≤ α ≤ q2 − q − s

α = sq + t
a(a+1)

2
+ b + 1 q3 − α

0 ≤ b ≤ a ≤ q − 1

q2 − q − 2 < α < q3 − q2 + q α + 1 −
q(q−1)

2
n − α

q3 − q2 + q ≤ α < q3 q3 − α if a < b

α = q3 − q2 + aq + b α + 1 − q(q−1)
2

q3 − α + b if a ≥ b

0 ≤ a, b ≤ q − 1

q3 ≤ α ≤ q3 + q2 − q − 2 a + 2 if b = a

q3 + q2 − q − 2 − α = aq + b q3 − a(a+1)
2

− b − 1 a + 1 if b < a

0 ≤ b ≤ a ≤ q − 1

12.4.1.2. Quantum Hermitian codes

Next to Reed-Solomon codes, Hermitian codes are certainly the most

studied algebraic geometry codes. Recall that the exact parameters of

one-point Hermitian codes are known due to [41]. For reference, Table

12.1. gives the dimension k (α) and minimum distance d (α) of the code

CL(P1 + · · · + Pq3 , αP∞) where P1, . . . , Pq3 , P∞ are all of the Fq2 -rational

points of the Hermitian curve defined by yq +y = xq+1. Here α = max{a ∈
H (P∞) : a ≤ α} is the largest element of the Weierstrass semigroup at the

point P∞ that is no bigger than α.

If α1 < α2, then

CL (D,α1P∞) ⊆ CL (D,α2P∞) .

Applying Corollary 12.15 with C1 = CL (D,α1P∞) and C2 =

CL (D,α2P∞) yields the following fact.

Theorem 12.18. [29, Theorem 3] For 0 ≤ α1 < α2 ≤ q3 +q2−q−2, there

exists a
[[
q3, k (α2) − k (α1) ,≥ min{d (α2) , d

(
q3 + q2 − q − 2 − α1

)
}
]]

q2

code where k (α) and d (α) are given in Table 12.1.

Quantum Hermitian codes can also be constructed using Hermitian

codes which are self-orthogonal with respect to the Hermitian inner prod-

uct. Recall that the dual of the one-point Hermitian code CL (D,αP∞)

over Fq2 is given by

CL (D,αP∞)
⊥

= CL
(
D,
(
q3 + q2 − q − 2 − α

)
P∞
)

as shown in [36, 38]. It follows that CL (D,αP∞) is self-orthogonal if 2α ≤
q3 + q2 − q − 2 − α. Using this, one can prove that CL (D,αP∞) is self-

orthogonal with respect to the Hermitian inner product for 0 ≤ α ≤ q2 − 2
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(see [29, Lemma 7] for details). Now Corollary 12.16 gives another family

of quantum Hermitian codes.

Theorem 12.19. [29, Theorem 8] If 0 < α ≤ q2 − 2, then there exists

a
[[
q3, q3 − 2k (α) ,≥ d

(
q3 + q2 − q − 2 − α

)]]
q

code where k (α) and d (α)

are given in Table 12.1.

12.4.2. More general AG constructions

The quantum Reed-Solomon and quantum Hermitian codes defined ear-

lier in this section are special cases of a more general construction for quan-

tum codes from AG codes detailed in this section.

Let X be a smooth, projective, absolutely irreducible curve of genus g

over a finite field Fq. Suppose that A and B are divisors on X such that

A ≤ B, and let D = P1 + · · · + Pn be another divisor on X whose support

consists of n distinct Fq-rational points none of which are in the support of

A or B. Then

L(A) ⊆ L(B)

and so

CL(D,A) ⊆ CL(D,B).

Applying Corollary 12.15, we find a large family of quantum codes from

AG codes.

Theorem 12.20. Let A, B, and D = P1+· · ·+Pn be divisors on a smooth,

projective, absolutely irreducible curve X of genus g over Fq. Assume that

A ≤ B and (suppA ∪ suppB) ∩ suppD = ∅ and degB < n. Then there

exists a [[n, `(B) − `(A), d]]q code where

d ≥ min{d (CL (D,B) \ CL (D,A)) , d (CΩ (D,A) \ CΩ (D,B))}
≥ min{n− degB, degA− (2g − 2)}.

Proof. This follows immediately from Corollary 12.15 (taking C1 =

CL(D,A) and C2 = CL(D,B)) and the fact that degA ≤ degB < n implies

dimCL(D,B) = `(B) and dimCL(D,A) = `(A). �

In the next example, we see how one may apply Theorem 12.20 to a

multipoint code.

Example 12.21. Let X be a smooth, projective, absolutely irreducible

curve of genus g over Fq . Consider the m-point code CL(D,
∑m

i=1 aiQi)
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on X over Fq. Since Fq is finite, the class number of the function field of

X over Fq is finite [35, Proposition V.1.3]. Hence, there exists a rational

function f with divisor

(f) =

m∑

i=2

biQi − b1Q1

where bi ≥ ai for all i, 2 ≤ i ≤ m, and b1 :=
∑m

i=2 bi . Multiplication by f

gives rise to a vector space isomorphism

φ : L (
∑m

i=1 aiQi) → L ((a1 + b1)Q1 −
∑m

i=2 (bi − ai)Qi)

h 7→ fh

which in turn induces an isometry φ∗ of codes

CL

(
D,

m∑

i=1

aiQi

)
∼= CL

(
D, (a1 + b1)Q1 −

m∑

i=2

(bi − ai)Qi

)
.

Since (a1 + b1)Q1 −
∑m

i=2 (bi − ai)Qi ≤ (a1 + b1)Q1,

CL

(
D, (a1 + b1)Q1 −

m∑

i=2

(bi − ai)Qi

)
⊆ CL (D, (a1 + b1)Q1) .

Therefore, if a1 + b1 < |suppD| then Theorem 12.20 yields a quantum code

over Fq of length |suppD| and dimension

` ((a1 + b1)Q1) − `

(
(a1 + b1)Q1 −

m∑

i=2

(bi − ai)Qi

)
.

A bound on the minimum distance is given by the theorem also. However,

the weights of words in multipoint codes are not typically known. As a

result, determining the minimum distance of the quantum code may be

challenging. A notable exception to this is family of two-point Hermitian

codes whose exact minimum distance has been determined in the extensive

recent work of Homma and Kim [18], [19], [20], [21].

Of course, one may also apply Theorem 12.20 to nested multipoint

codes. While this construction provides a great deal of flexibility, it pro-

duces codes whose minimum distances may be hard to determine. For this

reason, we will not elaborate on this idea here.

Next, we consider how Corollary 12.16 may be applied to AG codes.

The idea is a generalization of Theorem 12.19.
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Lemma 12.22. The algebraic geometry code CL (D,G) is self-orthogonal

with respect to the Hermitian inner product if there exists a differential η

such that vPi
(η) = −1, ηPi

(1) = 1 for 1 ≤ i ≤ n, and

D + (η) ≥ (q + 1)G. (12.1)

Proof. Let D = P1 + · · ·+Pn and G be divisors on a smooth, projective,

absolutely irreducible curve X over Fq where P1, . . . , Pn are distinct Fq-

rational points not in the support of G. Recall that the dual of CL (D,G)

may be expressed as

CL (D,G)
⊥

= CL (D,D −G+ (η))

where η is a differential on X such that vPi
(η) = −1 and ηPi

(1) = 1 for

1 ≤ i ≤ n. Notice that for h ∈ L(G),

ev(f) ∗h ev(h) = 0 iff
∑n

i=1 f(Pi)h
q(Pi) = 0 ∀f ∈ L(G)

iff hq ∈ L (D −G+ (η))

iff q (h) ≥ G−D − (η)

if −qG ≥ G−D − (η)

where ev(f) := (f(P1), . . . , f(Pn)) It follows that given h ∈ L(G), ev(f) ∗h

ev(h) = 0 for all f ∈ L(G) if

D + (η) ≥ (q + 1)G.
�

The next result is a consequence of the lemma above. Here, P00 denotes

the common zero of the functions x and y on the Hermitian curve over Fq2 .

Proposition 12.23. Suppose that 0 ≤ a+ b < q2 − 2. Then the two-point

code CL (D, aP∞ + bP00) on the Hermitian curve defined by yq + y = xq+1

over Fq2 is self-orthogonal with respect to the Hermitian inner product.

Proof. Take η = yb+1

z dz where z = xq2 − x. Then

(η) =
(
q3 + q2 − q − (b+ 1) (q + 1)

)
P∞ − ((b+ 1) (q + 1) + 1)P00 −D

and the conditions of Lemma 12.22 are satisfied. �

Proposition 12.24. Let 0 ≤ a + b < q2 − 2. Then there exists a[[
q3 − 1, q3 − 2` (aP∞ + bP00) − l, d

]]
q

code where

d = min{wt
(
CL (D, aP∞ + bP00)

⊥h \ CL (D, aP∞ + bP00)
)
}.
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12.4.3. Quantum codes from hyperelliptic curves

In this subsection, we review Niehage’s construction of quantum codes

using hyperelliptic curves over finite fields [26]. This approaches uses ideas

of Matsumoto [25].

Given a1, . . . , an ∈ Fq \ {0}, define a weighted symplectic inner product

on F2n
q by

u ∗a v :=

n∑

i=1

ai (uivi+n − ui+nvi) .

The weighted symplectic inner product gives more flexibility in the con-

struction of quantum codes. However, a code C which is self-orthogonal

with respect to ∗a may not be self-orthogonal with respect to the standard

symplectic inner product ∗. To correct for this, the codewords of C are

multiplied by (a1, . . . , an, 1, . . . , 1). This is detailed in the following lemma.

Lemma 12.25. [26, Lemma 1] Let C be a linear code of length 2n over

Fq that is self-orthogonal with respect to ∗a. Let M denote the generator

matrix for the quantum code defined by C. Then the code C ′ with generator

matrix

M ′ := M · diag (a1, . . . , an, 1, . . . , 1)

is a stabilizer code (with respect to the standard symplectic inner product)

with the same parameters as C.

Proof. Suppose that C ⊆ F2n
q is self-orthogonal with respect to ∗a. Then

0 = u ∗a v =

n∑

i=1

ai (uivi+n − ui+nvi) =

n∑

i=1

((aiui) vi+n − ui+n (aivi))

for all u, v ∈ C. This proves that

C ′ := {(a1c1, . . . , ancn, cn+1, . . . , c2n) : c ∈ C}

is self-orthogonal with respect to ∗. �

Next, we describe how to use ∗a and a hyperelliptic curve X over Fq

to produce quantum codes. Let X be a smooth, projective, absolutely

irreducible curve over Fq with an automorphism σ of order two that fixes

the elements of Fq. Set

D = P1 + · · · + Pn + σP1 + · · · + σPn
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where P1, . . . , Pn, σP1, . . . , σPn are distinct Fq-rational points on X , and

take G to be a divisor on X defined over Fq that is fixed by σ and suppG∩
suppD = ∅. Suppose η is a differential on X satisfying

vPi
(η) = vσPi

(η) = −1

and

resPi
(η) = −resσPi

(η)

for all 1 ≤ i ≤ n. Then it can be shown (as in [26, Proposition 3] and [25,

Proposition 1]) that

CL (D,G)
⊥a = CL (D,D −G+ (η)) .

By an argument similar to that of Lemma 12.22, if G ≤ D −G+ (η) then

CL (D,G) is self-orthogonal with respect to ∗a. Now Lemma 12.25 implies

that CL (D,G)′ is self-orthogonal with respect to ∗. This construction gives

rise to quantum AG codes from hyperelliptic curves as discussed in [26].

12.4.4. Asymptotic results

Since their introduction by Goppa [11], algebraic geometry codes have

been a tool for obtaining asymptotic results [40]. In this section, we describe

families of asymptotically good quantum codes from AG codes.

Given a family of quantum [[ni, ki, di]] codes, let R = limn→∞
ki

ni
and

δ = limn→∞
di

ni
. If R > 0 and δ > 0, then the family is called good.

In [3], Ashikhmin, Litsyn, and Tsfasman proved that there exist asymp-

totically good families of binary quantum codes as follows.

Theorem 12.26. [3] For any δ ∈ (0, 1
18 ] and R lying on the broken line

given by the piecewise linear function

R(δ) = 1 − 1

2m−1 − 1
− 10

3
mδ for δ ∈ [δm, δm−1],

where m = 3, 4, 5, . . . , δ2 = 1
18 , δ3 = 3

56 , and

δm =
3

5

2m−2

(2m−1 − 1)(2m − 1)
for m = 4, 5, 6, . . . ,

there exist polynomially constructible families of binary quantum codes with

n→ ∞ and asymptotic parameters greater than or equal to (δ, R).
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Later, Chen, Ling, and Xing improved the above theorem on certain

intervals.

Theorem 12.27. [8] Let

δt =
2

3

2t − 3

(2t+ 1)(2t − 1)
.

For t ≥ 3 and δ ∈ (0, δt), there exist polynomially constructible families

of binary quantum codes with n→ ∞ and asymptotic parameters (δ, R1(δ)),

where R1(δ) = 3t(δt − δ).

Remark 12.28. When t = 3, the above theorem gives the line given by

R1 +9δ = 30
49 in (0, 10

147 ). This line exceeds the Ashikhmin-Litsyn-Tsfasman

bound in the interval ( 8
147 ,

1
18 ).

Kim and Walker [23] generalized the ideas of Chen-Ling-Xing’s con-

struction to non-binary quantum codes and obtained the following.

Theorem 12.29. [23] Let p be any prime number. If p is odd, choose

integers t ≥ 1 and r ≥ 0 such that 2t + r ≤ p + 1. If p = 2, then choose

integers t ≥ 3 and r = 1. Let

δ(p, r, t) =
(r + 1)(pt − 3)

(r + 2)(2t+ r)(pt − 1)
.

Then for any δ with 0 < δ < δ(p, r, t) < 1
4 , there exist polynomially

constructible families of p-ary quantum codes with n → ∞ and asymptotic

parameters at least (δ, Rp(δ)), where

Rp(δ) =
2t(r + 2)

r + 1
(δ(p, r, t) − δ).

Note that when p = 2, this theorem implies Theorem 12.27.

Proof. (Sketch of proof) We follow [23]. Let X be a smooth, projective,

absolutely irreducible curve over Fq of genus g. Let G be a divisor, which

is a multiple of a fixed Fq-rational point P0, and let D be the sum of all the

otherN Fq-rational points onX . We pick any integersm1 andm2 such that

2g − 2 < m1 < m2 < N . Then we consider the codes Tj := CL(D,mjP0)

for j = 1, 2. Then T1 ⊂ T2 and Tj (j = 1, 2) is an [N,mj −g+1,≥ N−mj ]

code over Fq and its dual T⊥
j is an [N,N −mj + g− 1,≥ mj − 2g+2] code

over Fq.
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From now on, we assume that the ground field is Fq2 , where q = pt

with p a prime. We want to obtain linear codes Cj over Fp from Tj over

Fq2 for j = 1, 2 via concatenation defined as follows. Consider an Fp-

linear map σ : Fq2 → F2t+r
p such that the image of σ is a [2t+ r, 2t, r + 1]

Reed-Solomon code over Fp for some nonnegative integer r. If p is 2, we

can choose t ≥ 1 and r = 1. If p is odd, we choose t and r such that

2t + r ≤ p + 1 or 0 ≤ r ≤ p − 2t + 1 due to the fact that Reed-Solomon

codes over Fp exist only for lengths at most p + 1. We map Tj via σ

componentwisely to get Cj := σ(Tj). Then Cj (j = 1, 2) is an Fp-linear

[(2t + r)N, 2t(mj − g + 1), ≥ (r + 1)(N − mj)] code. Further it can

be shown [8] that for any vector x ∈ C⊥
1 \C⊥

2 , we have the weight of x is

≥ m1 − 2g + 2.

Hence using the CSS construction (Corollary 12.15), we obtain a quan-

tum [[n, k, d]]p code B = B(X) with parameters n = (2t + r)N, k =

2t(m2 − m1), d ≥ min{(r + 1)(N − m2), m1 − 2g + 2}. Furthermore,

by letting l = m2 −m1, one can show that for any integers l and r with

0 < l ≤ N − 2g and 0 ≤ r ≤ p+ 1 − 2t, there is a quantum [[n, k, d]]p code

B = B(X) with parameters n = (2t+r)N, k = 2tl, d ≥ r+1
r+2 (N−2g−l+1).

Let X = {X} be a Garcia-Stichtenoth tower of polynomially con-

structible curves over Fq2 where q = pt with increasing genus g =

g(X) [10]. We know that X attains the Drinfeld-Vlăduţ bound, i.e.,

lim suppX∈X

#X(Fq2 )

g = q − 1. Then for any sequence of integers {l =

l(X) |X ∈ X} with 0 < l ≤ N−2g for eachX , we have 0 < lim supx∈X

l
N ≤

1 − 2
q−1 . As in [8], for a fixed λ ∈ (0, 1 − 2

q−1 ), we let λ := lim supx∈X

l
N .

Then

R := lim sup
x∈X

2tl

(2t+ r)N
=

2t

2t+ r
λ,

and

δ := lim sup
x∈X

r+1
r+2 (N − 2g − l + 1)

(2t+ r)N)
=

r + 1

(r + 2)(2t+ r)

(
1 − 2

q − 1
− λ

)
.

Solving for λ in terms of δ, we get the following.

Rp(δ) := R =
2t

2t+ r

(
1 − 2

q − 1

)
− 2t(r + 2)

r + 1
δ.

Using δ(p, r, t) defined in Theorem 12.29, we finally get

Rp(δ) =
2t(r + 2)

r + 1
(δ(p, r, t) − δ).

�
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Another approach to finding asymptotically good quantum codes uses

the construction of Subsection 12.4.3 and the tower of function fields in [37,

Theorem 1.7]. We refer the reader to [26] for these results.

12.5. Bibliographical notes

The literature on quantum error-correcting codes is massive. The first

paper on quantum error-correcting codes is by Shor (Scheme for reducing

decoherence in quantum memory Phys. Rev. A 52 (1995)). Calderbank,

Rains, Shor, and Sloane (Quantum error correction via codes over GF (4),

IEEE Trans. Inform. Theory, vol. 44, (1998)) described the correspondence

between binary additive quantum codes and additive self-orthogonal codes

over F4. Nielsen and Chuang (Quantum Computation and Quantum In-

formation, Cambridge University Press, Cambridge, 2000) is a widely used

textbook in both quantum computation and quantum information theory.

Motivated by the fact that there exist good families of algebraic geom-

etry codes meeting the Tsfasman-Vladut-Zink bound, which is better than

the Gilbert-Varshamov bound, Ashikhmin, Litsyn, and Tsfasman (Asymp-

totically good quantum codes, Phys. Rev. A 63 (2001)) showed that

asymptotically good binary quantum codes can be obtained from algebraic

geometry codes in a polynomial construction. Some improvements in this

direction have been made by Chen (Some good quantum error-correcting

codes from algebraic-geometric codes, IEEE Trans. Inform. Theory, vol.

47, 2001), Chen, Ling, and Xing (Asymptotically good quantum codes ex-

ceeding the Ashikhmin-Litsyn-Tsfasman bound, IEEE Trans. Inform. The-

ory, vol. 47, 2001), Kim and Walker (Nonbinary quantum error-correcting

codes from algebraic curves, Discrete Math. (2007)), Sarvepalli, Klappe-

necker (Nonbinary quantum codes from Hermitian curves, Applied algebra,

algebraic algorithms and error-correcting codes, 136–143, Lecture Notes in

Comput. Sci., 3857, Springer, Berlin, 2006), Niehage (Nonbinary quantum

Goppa codes exceeding the quantum Gilbert-Varshamov bound, Quantum

Inf. Process. 6 (2007)), and others.
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