
Data-Centric Systems and Applications

Series Editors

M.J. Carey
S. Ceri

Editorial Board

P. Bernstein
U. Dayal

C. Faloutsos
J.C. Freytag
G. Gardarin

W. Jonker
V. Krishnamurthy

M.-A. Neimat
P. Valduriez
G. Weikum

K.-Y. Whang
J. Widom

Vipul Kashyap · Christoph Bussler ·
Matthew Moran

The Semantic Web
Semantics for Data and
Services on the Web

With 61 Figures and 18 Tables

Vipul Kashyap Christoph Bussler
Partners HealthCare System Merced Systems, Inc.
Clinical Informatics R&D 333 Twin Dolphin Drive
93 Worcester St, Suite 201 Suite 500
Wellesley, MA 02481 Redwood Shores, CA 94065
USA USA
vkashyap1@partners.org chbussler@aol.com

Matthew Moran
Nortel
Mervue Industry Park
Galway
Ireland
maitiu_moran@hotmail.com

ISBN 978-3-540-76451-9 e-ISBN 978-3-540-76452-6

DOI 10.1007/978-3-540-76452-6

Library of Congress Control Number: 2008931474

ACM Computing Classification (1998): H.4, I.2, J.3

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KünkelLopka GmbH, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

A decade ago Tim Berners-Lee proposed an extraordinary vision: despite the phe-
nomenal success of the Web, it would not, and could not, reach its full potential
unless it became a place where automated processes could participate as well as
people. This meant the publication of documents and data to the web in such a way
that they could be interpreted, integrated, aggregated and queried to reveal new
connections and answer questions, rather than just browsed and searched. Many
scoffed at this idea, interpreting the early emphasis on language design and reason-
ing as AI in new clothes. This missed the point. The Grand Challenge of the
Semantic Web is one that needs not only the information structure of ontologies,
metadata, and data, but also the computational infrastructure of Web Services, P2P
and Grid distributed computing and workflows. Consequently, it is a truly whole-
system and multi-disciplinary effort.

This is also an initiative that has to be put into practice. That means a pragmatic
approach to standards, tools, mechanisms and methodologies, and real, challenging
examples. It would seem self-evident that the Semantic Web should be able to
make a major contribution to clinical information discovery. Scientific communi-
ties are ideal incubators: knowledge-driven, fragmented, diverse, a range of struc-
tured and unstructured resources with many disconnected suppliers and consumers
of knowledge. Moreover, the clinicians and biosciences have embraced the notions
of annotation and classification using ontologies for centuries, and have demand-
ing requirements for trust, security, fidelity and expressivity.

This book is the first to describe comprehensively the two main characteristics
of the Semantic Web – its information and its processes – and to apply it not to toy,
artificial examples but to a challenging application that matters, namely transla-
tional medicine. As such, it will become a key text for all of those serious about
discovering the many facets of the Semantic Web, those who need to understand
the current state of the art as it really is in practice, and those who need to be
knowledgeable about its future.

Professor Carole Goble

University of Manchester

Acknowledgments

Vipul would like to dedicate this book to his son Ashish and daughter Aastha. A
significant portion of this book was written during paternity leave, when Ashish
was born! Vipul also expresses his gratitude to his wife Nitu for tolerating the
demands on their family time. The support of Vipul’s parents, Yogendra Singh and
Vibha, during these times was very valuable and helped reduce stress for Vipul and
his family. Vipul would like to acknowledge Dr. Tonya Hongsermeier for her spir-
ited evangelism of the Semantic Web at Partners Healthcare and the W3C Health-
care and Life Sciences Interest Group (HCLSIG). She helped create opportunities
to work on Semantic-Web-related projects and pointed me to the translational med-
icine use case, discussed in Chapter 2 of the book. Vipul also valued his interac-
tions with Dr. Howard Goldberg, which helped him understand pragmatic
applications of Semantic Web technologies in the healthcare area. Dr. Blackford
Middletonís support for work related to Semantic Web technologies at Partners is
also gratefully acknowledged. Discussions and debates with Olivier Bodenreider at
the National Library of Medicine were very instructive and introduced Vipul to the
area of biomedical informatics. The interactions with various colleagues in
HCLSIG, such as Eric Neumann, Kei Cheung, Bill Bug, Susie Stephens, Don
Doherty, June Kinoshita, Alan Ruttenberg and others, were also very thought pro-
voking and intellectually stimulating. With Stefan Decker, Vipul had the pleasure
of co-presenting a tutorial on the Semantic Web at VLDB 2003, on which this book
is based. Vipul has also enjoyed tremendously the follow-on collaboration with
Christoph Bussler and Matt Moran on writing this book. Finally, Vipul would like
to acknowledge Dr. Amit Sheth, who has been a great mentor and was responsible
for introducing me to the research area of semantics and the Semantic Web.

Chris wants to acknowledge a few people he met during his Semantic Web Ser-
vices journey in Ireland. First there is Dieter Fensel, who in a nutshell was instru-
mental in opening up the field of semantics to him during many years of
collaboration. Then there is the WSMX team that started making Semantic Web
Services a reality in various research projects and through a still ongoing open
source implementation that started to make its way into standards and industry:
David Aiken, Emilia Cimpian, Enrica Dente, Doug Foxvog, Armin Haller, Thomas
Haselwanter, Juan Miguel Gomez, Mick Kerrigan, Edward Kilgariff, Adrian
Mocan, Matt Moran, Manuel Ohlendor, Eyal Oren, Ina O'Murchu, Brahmananda
Sapkota, Laurentiu Vasiliu, Jana Viskova, Tomas Vitvar, Maciej Zaremba, and
Michal Zaremba. In context of this book, Vipul and Matt were great co-authors and

viii Acknowledgments

Chris enjoyed working together with them a lot during this project. Last but not
least he would like to give a huge thanks to his family, Barbara and Vernon, for
joining him and supporting him during their time in Ireland; the memories about
that time shall remain with them forever.

Matt wants to thank the folks who have encouraged him in his transition into
research over the last four years. The WSMX team that Chris has already listed has
been fantastic to work with. Matt enjoyed being in the team and thinks its energy
and positive approach has been a strong factor in keeping up the momentum in
Semantic Web Services research. He would like to particularly thank Tomas Vitvar
and Maciej Zaremba with whom he has established a great relationship over the
last two years. He is very grateful to Chris and Dieter Fensel, who gave him the
chance to step into Semantic Web Services research with DERI. He has learned a
lot from them both and hopes to keep learning from them in the future. Writing this
book with Vipul and Chris has been a great experience for Matt. The back-and-
forth conversations have been generous and enlightening. Finally, he would like to
thank his sisters Maeve, Claire, Joanne and Mags, and his parents, for their biased
praise and keeping him supplied with Irish stew and wild salmon through the
course of his working on this book.

The three authors would like to thank the team at Springer Verlag for its support,
especially Ralf Gerstner, who was always engaged, supportive, patient as well as
available for discussion and advice.

June 2008

Vipul Kashyap, Boston, MA, USA
Christoph Bussler, San Jose, CA, USA
Matthew Moran, Galway, Ireland

Contents

Part I
Preliminaries... 1

1 Introduction .. 3
1.1 Motivation: Why Semantic Web? ... 4
1.2 A Framework for Semantic Web ... 5
1.3 Use Case: Translational Medicine Clinical Vignette 7
1.4 Scope and Organization ... 9

2 Use Case and Functional Requirements .. 11
2.1 Detailed Clinical Use Case ... 12
2.2 Stakeholders and Information Needs ... 13
2.3 Conceptual Architecture ... 15
2.4 Functional Requirements .. 17
2.5 Research Issues ... 18
2.6 Summary .. 19

Part II
Information Aspects of the Semantic Web ... 21

3 Semantic Web Content ... 23
3.1 Nature of Web Content ... 23
3.2 Nature of Semantic Web Content ... 24
3.3 Metadata ... 25

3.3.1 Metadata Usage in Various Applications 26
3.3.2 Metadata: A Tool for Describing and

Modeling Information ... 27
3.4 Ontologies: Vocabularies and Reference Terms for Metadata 30
3.5 Summary .. 33

4 Metadata Frameworks .. 35
4.1 Examples of Metadata Frameworks ... 35

4.1.1 XML-Based Metadata Framework .. 36
4.1.2 RDF-Based Metadata Framework ... 36
4.1.3 OWL-Based Metadata Framework .. 37
4.1.4 WSMO-Based Metadata Framework 37

4.2 Two Perspectives: Data Models and Model-Theoretic Semantics 38

x Contents

4.2.1 Data Models ... 38
4.2.2 Multiple Syntaxes for RDF: A Short Note 47
4.2.3 Model-Theoretic Semantics ... 48

4.3 Query Languages .. 51
4.3.1 Query Languages for XML Data ... 51
4.3.2 Query Languages for RDF Data ... 62
4.3.3 Extending Query Languages with Reasoning

and Entailment ... 73
4.4 Clinical Scenario Revisited .. 74

4.4.1 Semantic Web Specifications: LIMS and EMR Data 74
4.4.2 Linking data from Multiple Data Sources 76
4.4.3 Advantages and Disadvantages of using

Semantic Web Specifications .. 78
4.5 Summary .. 78

5 Ontologies and Schemas ... 79
5.1 What is an Ontology? ... 79
5.2 Ontology Representation Languages .. 84

5.2.1 XML Schema ... 84
5.2.2 RDF Schema .. 92
5.2.3 Web Ontology Language .. 100
5.2.4 The Web Service Modeling Ontology (WSMO) 112
5.2.5 Comparison of Ontology Representation Languages 118

5.3 Integration of Ontology and Rule Languages 122
5.3.1 Motivation and Requirements .. 122
5.3.2 Overview of Languages and Approaches 123
5.3.3 Semantic Web Rules Language .. 124

5.4 Clinical Scenario Revisited ... 126
5.4.1 A Domain Ontology for Translational Medicine 126
5.4.2 Integration of Ontologies and Rules for

Clinical Decision Support .. 130
5.4.3 Advanatages and Disadvantages of using

Semantic Web Specifications ... 135
5.5 Summary ... 135

6 Ontology Authoring and Management .. 137
6.1 Ontology Building Tools ... 137

6.1.1 Ontology Editors: Brief Descriptions 138
6.1.2 Ontology Editors: A Comparative Evaluation 143

6.2 Ontology Bootstrapping Approaches .. 148
6.3 Ontology Merge and Integration Tools ... 150

6.3.1 Ontology Merge and Integration Tools:
A Brief Description .. 151

6.3.2 Evaluation of Ontology Merge and Integration Tools 152
6.4 Ontology Engines and Reasoners .. 154

 Contents xi

6.5 Clinical Scenario Revisited ... 157
6.6 Summary ... 158

7 Applications of Metadata and Ontologies .. 161
7.1 Tools and Techniques for Metadata Annotation 161

7.1.1 Requirements for Metadata Annotation 162
7.1.2 Tools and Technologies for Metadata Annotation 163
7.1.3 Comparative Evaluation ... 168

7.2 Techniques for Schema/Ontology Mapping 173
7.2.1 A Classification of Schema-matching Approaches 173
7.2.2 Schema-matching Techniques: Overview 179

7.3 Ontology Driven Information Integration ... 183
7.3.1 The Role of Ontologies in Information Integration 183
7.3.2 Ontology Representations Used in

Information Integration .. 187
7.3.3 The Role of Mapping in Information Integration 188
7.3.4 The Role of Ontology Engineering in

Information Integration .. 190
7.4 Summary ... 192

Part III
Process Aspects of the Semantic Web .. 193

8 Communication .. 195
8.1 Communication Concepts ... 195

8.1.1 Fundamental Types .. 196
8.1.2 Formats and Protocols (FAP) ... 197
8.1.3 Separation of Interface and Logic .. 198
8.1.4 Communicating Parties .. 199
8.1.5 Mediation .. 201
8.1.6 Non-functional Aspects .. 202

8.2 Communication Paradigms ... 203
8.2.1 Client/Server (C/S) ... 204
8.2.2 Queueing ... 204
8.2.3 Peer-to-Peer (P2P) .. 205
8.2.4 Blackboard .. 205
8.2.5 Web Services .. 206
8.2.6 Representational State Transfer (REST) 207
8.2.7 Agents ... 207
8.2.8 Tuple Spaces ... 208
8.2.9 Co-location ... 208
8.2.10 Summary .. 209

8.3 Long-Running Communication ... 209
8.3.1 Business-to-Business (B2B) Protocols 210
8.3.2 Application-to-Application (A2A) Protocols 211

xii Contents

8.4 Web Services ... 211
8.5 Clinical Use Case .. 212
8.6 Summary ... 214

9 State of the Art in Web Services ... 215
9.1 History ... 215
9.2 Traditional Web Services .. 216

9.2.1 WSDL ... 217
9.2.2 SOAP .. 218
9.2.3 UDDI .. 219
9.2.4 Summary .. 219

9.3 Emerging Web Service Specifications (WS*-Stack) 220
9.3.1 Standards .. 220
9.3.2 Web Service Standards ... 221
9.3.3 Semantic-Web-Service-Related Standards 222

9.4 Service-oriented Architecture (SOA) .. 223
9.4.1 Service Paradigm .. 223
9.4.2 SOA and Web Services .. 224
9.4.3 Open Issues and Technical Challenges 224

9.5 Semantics and Web Services ... 226
9.5.1 Semantics, What Semantics? .. 227
9.5.2 Data Semantics ... 228
9.5.3 Process Semantics .. 229
9.5.4 Selection Semantics .. 229
9.5.5 Other Types of Semantics .. 230

9.6 Clinical Use Case .. 231
9.7 Summary ... 232

10 Web Service Composition .. 233
10.1 Composition .. 233

10.1.1 Motivation .. 233
10.1.2 Definition of Composition .. 235
10.1.3 Web Services and Composition .. 237
10.1.4 Choreography and Orchestration .. 238

10.2 Dynamic Composition ... 239
10.3 Business-to-Business Communication .. 240
10.4 Application-to-Application Communication 241
10.5 Complex Business Logic ... 242
10.6 Standards and Technologies .. 243

10.6.1 Web Services Business Process
Execution Language (WS-BPEL) .. 244

10.6.2 Business Process Modeling Notation (BPMN) 245
10.6.3 Web Service Choreography Description Language

(WS-CDL) .. 245
10.6.4 Java Business Integration (JBI) .. 246

 Contents xiii

10.7 Clinical Use Case .. 247
10.8 Summary ... 247

11 Semantic Web Services .. 249
11.1 Semantics of Web Services ... 249

11.1.1 Why Semantic Web Services? .. 249
11.1.2 Interface vs. Implementation .. 251
11.1.3 Modeling of State ... 251

11.2 Alternatives for Capturing Semantics of Web Services 253
11.2.1 Finite State Machines ... 253
11.2.2 Statechart Diagrams .. 254
11.2.3 Petri Nets .. 254
11.2.4 Process Algebras .. 256

11.3 Semantic Web Service Approaches .. 259
11.3.1 OWL-S ... 259
11.3.2 SWSF .. 261
11.3.3 WSDL-S ... 266
11.3.4 SAWSDL .. 268
11.3.5 WSMO, WSML and WSMX ... 269

11.4 Reasoning with Web Service Semantics ... 276
11.4.1 Discovery .. 276
11.4.2 Semantic Web Service Composition 281
11.4.3 Mediation .. 283

11.5 Clinical Use Case .. 285
11.6 Summary ... 286

Part IV
Standards .. 287

12 Semantic Web Standards ... 289
12.1 Relevant Standards Organization .. 289

12.1.1 International Organization for Standardization (ISO) 289
12.1.2 International Electotechnical Commission (IEC) 290
12.1.3 Organization for the Advancement of

Structured Information Standards (OASIS) 290
12.1.4 World Wide Web Consortium (W3C) 290
12.1.5 International Engineering Task Force (IETF) 291
12.1.6 National Institute of Standards and Technology (NIST) 291
12.1.7 The Object Modeling Group (OMG) 291
12.1.8 Semantic Web Services Initiative (SWSI) 292
12.1.9 United States National Library of Medicine (NLM) 292

12.2 Semantic Web Content Standardization Efforts 293
12.2.1 Standard Generalized Markup Language (SGML) 293
12.2.2 eXtensible Markup Language (XML) 293
12.2.3 eXtensible Stylesheet Transformation Language (XSLT) ... 294

xiv Contents

12.2.4 XPath .. 294
12.2.5 XQuery ... 294
12.2.6 XML Schema .. 294
12.2.7 Resource Description Framework (RDF) 295
12.2.8 SPARQL ... 295
12.2.9 RDF Schema ... 295
12.2.10 Web Ontology Language (OWL) ... 296
12.2.11 Rule-ML ... 296
12.2.12 Semantic Web Rules Language (SWRL) 296
12.2.13 Ontology Definition Metamodel (ODM) 296
12.2.14 Unified Modeling Language (UML) 297
12.2.15 Knowledge Interchange Format (KIF) 297
12.2.16 Open Knowledge Base Connectivity Protocol (OKBC) 297
12.2.17 DIG Description Logics Interface .. 297
12.2.18 OWL API .. 298
12.2.19 Standardized Vocabularies and Ontologies 298

12.3 Semantic Web Services Standardization Efforts 300
12.3.1 ISO-18629 Process Specification Language (PSL) 301
12.3.2 W3C Semantic Annotations for the

Web Services Description Language (SAWSDL) 302
12.3.3 OWL-S ... 303
12.3.4 Web Services Modeling Ontology (WSMO) 303
12.3.5 Semantic Web Services Framework (SWSF) 304
12.3.6 WSDL-S ... 304
12.3.7 OASIS Semantic Execution Environment (SEE) 304
12.3.8 OASIS Service-Oriented Architecture

Reference Model (SOA RM) .. 305
12.3.9 Semantic Web Services Architecture (SWSA) 306
12.3.10 Semantic Web Services Interest Group (SWS-IG) 307

12.4 Summary ... 307

Part V
Putting it All Together and Perspective ... 309

13 A Solution Approach to the Clinical Use Case .. 311
13.1 Service Discovery, Composition and Choreography 312

13.1.1 Specification of Clinical Workflow using WSMO 313
13.1.2 Data Structures in Data Flow ... 316
13.1.3 Data Mediation ... 319
13.1.4 Goal Definition ... 328
13.1.5 Discovery .. 331
13.1.6 Orchestration/Service Composition 333
13.1.7 Process and Protocol Mediation ... 339

13.2 Data and Knowledge Integration ... 342

 Contents xv

13.2.1 Data Integration Services: WSMO/WSML Specification 343
13.2.2 Semantic Data Integration Architecture 344
13.2.3 A Domain Ontology for Translational Medicine 346
13.2.4 Use of RDF to represent Genomic and Clinical Data 351
13.2.5 The Integration Process .. 353

13.3 Decision Support ... 356
13.3.1 Decision Support Services: WSMO/WSML Specification .. 357
13.3.2 Architecture .. 358
13.3.3 Business Object Model Design .. 359
13.3.4 Rule Base Design ... 360
13.3.5 Definitions vs. Actions: Ontology Design 360

13.4 Knowledge Maintenance and Provenance .. 365

14 Outlook: The Good, the Bad and the Ugly? ... 369
14.1 The Good - Progress and Impact ... 369
14.2 The Bad - Major Obstacles to Overcome .. 371
14.3 The Ugly - Possible Prohibitors .. 372

Part VI
References and Index ... 375

References .. 377
Index ... 405

Part I
Preliminaries

1 Introduction

Semantics in the Webster dictionary is defined as meaning or relationship of mean-
ings of a sign or a set of signs [4]. From an Information Systems perspective,
semantics of information can be defined as the meaning and use of information [1].
The Semantic Web is defined as an extension of the current Web in which informa-
tion is given a well-defined meaning, better enabling people and computers to
work together [2]. The Semantic Web is a vision: the idea of having data on the
Web defined and linked in a way that it can be used by machines not just for dis-
play purposes, but also for automation, integration and reuse of data across various
applications. The goal of the Semantic Web initiative is as broad as that of the Web:
to create a universal medium for the exchange of data. It is envisaged to smoothly
interconnect personal information management, enterprise application integration,
and the global sharing of commercial, scientific and cultural data.

These descriptions, though espousing the same vision and goal, however give
rise to multiple interpretations, reflecting the perspectives of various fields of com-
puter science and informatics, which can be enumerated as follows:

• Researchers in the database and information systems communities have devel-
oped conceptual, logical and physical data and process models to capture
semantics of information and processes. These communities have focussed on
efficient and scalable storage, indexing and querying of data on one hand, and
efficient choreography and orchestration of workflows and services on the other.

• Researchers in the knowledge representation community have developed
expressive knowledge representation schemes and theories to capture semantics
of information and processes in a declarative manner. This community has
focussed on implementation of reasoners and inference mechanisms for check-
ing validity and satisfiability of knowledge specifications.

• Researchers in the information retrieval community have developed thesauri
and taxonomies to capture semantics of information. These thesauri and taxono-
mies have been used to guide search and browsing of documents in document
collections. Statistical approaches to capture latent semantics by computing co-
occurrence frequencies of terms in a corpus have also been developed.

• Researchers in the machine learning and natural language processing commit-
tees have focussed on semantic annotations of data and documents with respect
to a well defined set of categories and concepts. Recently there have been efforts
related to learning ontologies or taxonomies of concepts.

4 1 Introduction

• Semantics of information has been used to support efficient distributed comput-
ing related to location of relevant resources. Researchers in the peer-to-peer
communities have proposed approaches that use semantic annotations and local-
ized mappings to locate resources and perform data integration.

• Researchers in the agent systems communities have used ontologies to represent
both the semantics of the messages exchanged between agents and the protocols
followed by a community of agents for performing a set of tasks.

• Recently researchers in the Web Services communities have proposed process
models and ontologies to capture the semantics of services and to a limited
extent the semantics of computations to enable reuse and interoperability of
applications.

Information technology and the Web has become ubiquitous in our day-to-day
lives. Web-based approaches have become the default mode for implementing
business processes and operations. Different communities and market verticals
such as telecommunication, manufacturing, healthcare and the life sciences are
using information and Web-based systems in significant ways to streamline their
processes and gain competitive advantage in the market. Approaches that put
machine understandable data on the Web are becoming more prevalent.

We discuss next the motivations behind and the vision and goals of the Semantic
Web. A framework for characterization of the technologies behind the Semantic
Web is presented. A use case for the Semantic Web from the domain of healthcare
and the life sciences is presented. This will be the underlying scenario used to
motivate the various Semantic Web technologies that will be discussed in this
book. Finally, the organization of this book into various units and chapters will be
presented.

1.1 Motivation: Why Semantic Web?

With Internet connectivity everywhere and an overabundance of available informa-
tion the infrastructure for communication is in place. Still, information and services
are distributed, often hard to find and hard to integrate. This results in a higher cost
to find relevant information and get value from it. Several aspects are fueling the
Semantic Web effort:

• Increased cost pressure and competition require businesses to reduce costs by
interconnecting workflows and business processes and simplifying the effort of
data and service sharing.

• Portal implementations within organizations and e-Government in almost every
developed country are aiming to unify the access to government information
and services.

• Organizations are attempting to increase automation and interoperability by
publishing machine-interoperable data on the Web. Scalability and interopera-

 1.2 A Framework for Semantic Web 5

bility across multiple information systems within and across communities has
become an urgent priority.

• Scientific progress requires a stronger collaboration and intra- and inter-commu-
nity information sharing. Various efforts in these areas are aiming to enable data
and services sharing: examples are, among many more, the Gene Ontology and
Bio Ontology Working Groups for genomics data, the CME project of the
Southern California Earthquake Center for seismological data and services
among seismologists, and GEON, a geosciences project aiming to interlink and
share multi-disciplinary data-sets.

• E-business efforts have focussed on creating business-specific vocabularies for
information and process interoperation across enterprises within and across
industry boundaries. Some examples of these vocabularies are BPMI, XML-HR
and CIM/DMTF.

• There have been efforts in the healthcare and life sciences areas to create spe-
cialized vocabularies for different domains. The Unified Medical Language
Thesaurus (UMLS®) is a collection of various biomedical vocabularies used for
capturing diagnoses (SNOMED), billing information (ICD9) and search queries
(MeSH). Life sciences researchers have developed specialized vocabularies
such as Gene Ontology for capturing information about genomic structure, func-
tion and processes; BioPax for capturing information about Biological Path-
ways; and MAGE-ML for representing micro-array data in a standardized
format.

• The Web is increasingly used as a collaboration forum, using blogs, wikis and
other tools for sharing information and tasks such as collaborative metadata
annotation and ontology building.

However, this has led to the design and implementation of a multitude of data
and metadata schemes along with specialized workflows and processes within and
across communities, giving rise to the problem of information overload and the
“Tower of Babel” phenomenon. The Web can reach its full potential only if it
becomes a place where data can be shared and processed by automated tools as
well as by people. For the Web to scale, tomorrow's programs must be able to share
and process data even when these programs have been designed totally indepen-
dently. This is one of the main goals and motivation behind the Semantic Web
vision.

1.2 A Framework for Semantic Web

There is a widespread misperception that the Semantic Web is primarily a rehash of
existing AI and database work focussed on encoding KR formalisms in markup
languages such as RDF(S), DAML+OIL or OWL. We seek to dispel this notion by
presenting the broad dimensions of this emerging Semantic Web and the multi-dis-
ciplinary technological underpinnings. In fact, we argue that it is absolutely critical
to be able to seek, leverage and synergize contributions from a wide variety of

6 1 Introduction

technologies and sub-fields of computer science. A framework for presenting the
Semantic Web viewed from different perspectives is:

• Information Aspects of the Semantic Web:
Semantic Web Content. This refers to the myriad forms of data that will be
presented on the Semantic Web along with the metadata descriptions embedded
in the data. This is best exemplified by the equation:
Semantic Web Content = Data + Metadata.
Data. This includes structured (e.g., relational) data, semi-structured (e.g., RDF,
XML) data and unstructured (e.g., raw text multimedia) data consisting of meta-
data descriptions embedded in the data.
Metadata and Annotations. This refers to the various types of domain- or
application- specific metadata descriptions that will be used to annotate data on
the Semantic Web. Annotation is fundamental to the creation of the Semantic
Web.
Ontologies and Schemas. This refers to the underlying vocabulary and seman-
tics of the metadata annotations. Collections of domain-specific concepts may
be used to create domain- and application-specific views on the underlying con-
tent. Schemas are a special case of metadata that are structured and may contain
semantic information. In the cases where the metadata is explicit (e.g., database
schemas, XML schemas), these metadata may be mapped to other related meta-
data or ontological concepts.

Table 1.1. Framework for the Semantic Web

 Information Aspects Process Aspects

Content
Metadata and
Annotations

Ontologies
and Schemas

DB and CM
Systemsa

X X

KR Systemsb X X

Machine
Learning

X X

Statistical
Clustering

X X

Information
Retrieval

X X

NLPc X X X

Distributed
Computing

X

SOA X X X X

Agents X X X X

 1.3 Use Case: Translational Medicine Clinical Vignette 7

• Computational Aspects of the Semantic Web:
Computing Infrastructures. This refers to various computing infrastructures
that support the communication between computational entities such as agents,
P2P, Web Services and the different styles of communication.
Direct Communication. Direct communication enables computational entities
to send synchronous and asynchronous messages to each other through direct
communication channels.
Mediated Communication. Mediated communication supports a mediator that
acts as intermediary for two or more computational entities to communicate.
Service Description. This refers to the definition of the interfaces of computa-
tional entities that will communicate with each other. The description needs to
ensure interoperability of applications at the semantic level through the defini-
tion of service behavior as well as dynamic service composition and invocation.
Service-level agreements governing the scalability and performance are part of
service descriptions.

1.3 Use Case: Translational Medicine Clinical Vignette

The field of translational medicine may be defined as in [3]: (a) validation of theo-
ries emerging from preclinical experimentation on disease-affected human subjects
and; (b) refinement of biological principles that underpin human disease heteroge-
neity and polymorphisms by using information obtained from preliminary human
experimentation. This is a new emerging field which straddles the health ecosys-
tem, consisting of diverse market sectors such as healthcare delivery, drug discov-
ery and life sciences. In this section, we present a high-level description of a
clinical vignette which has ramifications across the health ecosystem. This clinical
vignette will be used throughout the book to motivate solutions based on Semantic
Web technologies and discuss details related to the same. A detailed description of

P2Pd X X X

Grid Comput-
ing

X

a. DB and CM systems refer to database and content management systems respec-
tively

b. KR Systems refer to Knowledge Representation Systems
c. NLP refers to Natural Language Processing Technologies
d. P2P refers to Peer-to-Peer Computing Infrastructures

Table 1.1. Framework for the Semantic Web

 Information Aspects Process Aspects

Content
Metadata and
Annotations

Ontologies
and Schemas

8 1 Introduction

the clinical vignette, identifying high-level functional requirements will be pre-
sented in the next chapter.

The use case begins when a patient enters a doctor’s office complaining of faint-
ing-like symptoms and pain in the chest. The doctor performs a clinical examina-
tion of the patient that reveals abnormal heart sounds. On further discussion with
the patient, the doctor learns that the patient has a family history of sudden death,
with the patient’s father dying at the age of 40. His two younger brothers are
apparently normal. The doctor then decides to order an ultrasound based on his
clinical examination of the patient. The echocardiogram reveals hypertrophic car-
diomyopathy. This could lead to the sequencing of various genomes such as MYH7
and MYBPC3 which could result in the doctor’s ordering various types of thera-
pies, drugs and monitoring protocols.

This clinical use case will be used to motivate the need for various aspects of
semantics-related technologies:

• Semantics-rich data and information models that can capture phenotypic infor-
mation related to the physical exam, structured image reports and family history
on one the hand; and on the other hand genotypic information such as the results
of molecular diagnostic tests such as mutations, expression levels, and so on.

• Semantic mappings that would enable integration of data and information across
clinical and genomic data sources. Some of these mappings may be complex
and require execution of rule-based specifications.

• The ability to specify semantic rules for implementing clinical decision support
that could suggest appropriate molecular diagnostic tests based on the pheno-
typic characteristics of the patient and propose therapies based on the patient’s
genotype.

• The ability to semi-automate knowledge acquisition of genotypic and pheno-
typic associations and other knowledge that could inform decision support and
provide a substrate for information integration. Statistical and Machine Learn-
ing techniques are specially relevant in this context.

• The ability to manage change in knowledge due to the rapid rate of knowledge
discovery in the healthcare and life sciences. The role of semantic inferences
based on expressive ontologies and information models will be crucial in this
context.

• The ability to represent processes such as therapeutic protocols and biological
pathways and possible ways of combining them. Semantic Web process models
are likely to be useful in this context.

• The ability to orchestrate clinical workflows across multiple clinical and
genomic contexts.

 1.4 Scope and Organization 9

1.4 Scope and Organization

In this book, we will discuss the state of the art related to the use and deployment
of Semantic Web specifications. These discussions will be presented in the context
of a framework presented in Section 1.2. We focus on a very pragmatic view of the
Semantic Web, viz., that of a way of standardizing data, information, knowledge
and process specifications to achieve enhanced information and process interopera-
bility, decision support and knowledge change management. We will focus on how
these semantic technologies and specifications can work in the context of a use
case discussed in the previous section. We will not discuss issues related to the
“strong AI” such as higher order logics, modeling of consciousness and cognitive
abilities of human beings.

The organization of the book is as follows:

• Chapter 2 presents a detailed discussion of the clinical vignette discussed ear-
lier. High-level use case description and functional requirements and architec-
tural assumptions are presented. These will be used to motivate the various
Semantic Web technologies discussed in this book.

• Chapter 3 discusses various examples of different types of “Semantic Web”
content spanning across structured, semi-structured and unstructured data.

• Chapter 4 discusses various metadata frameworks based on W3C recommenda-
tions such as XML, RDF and OWL. Issues related to the data models of markup
specifications such as XML, RDF and OWL; and associated query languages
such as XML Schema and SPARQL are discussed with examples drawn from a
solution approach to the clinical use case .

• Chapter 5 discusses the broad question of What is an Ontology? and various
artifacts created by different communities such as thesauri, schemas and classi-
fication schemes will be discussed. Specifications for representation of schemas
and ontologies on the Web such as XML Schema, RDF Schema and OWL are
discussed with examples drawn from a solution approach to the clinical use
case.

• Chapter 6 discusses issues related to ontology authoring, bootstrapping and
management. Tools for ontology authoring, merging, versioning and integration
are discussed follow by a discussion of ontology versioning and change man-
agement issues that arise in the context of the clinical use case.

• Applications enabled by the use of metadata descriptions and ontologies on the
Semantic Web, are presented in Chapter 7. Tools for metadata annotation and
are discussed followed by a discussion on approaches for ontology-based infor-
mation integration.

• A discussion of communication models such agents, P2P, client/server and their
relationship to Web Services and the Semantic Web is presented in Chapter 8.

• A discussion of the current standards and the state of the art in Web Services is
presented in Chapter 9. The impact of semantic inadequacies on web services
based on current web standards will also be discussed.

10 1 Introduction

• Dynamic Services Composition, a key enabler of functionality reuse on the
Semantic Web, is discussed in Chapter 10

• Chapter 11 discusses the idea of Semantic Web Services and how the inadequa-
cies of current web standards can be addressed.

• Chapter 12 enumerates standards in the area of Semantic Web and Semantic
Web Services.

• Chapter 13 presents a solution based on Semantic Web technologies for the use
case requirements presented in Chapter 2.

Finally, the list of references and the list of index entries follow.

2 Use Case and Functional Requirements

The success of new innovations and technologies are very often disruptive in
nature. At the same time, they enable novel next-generation infrastructures and
solutions. These solutions often give rise to creation of new markets and/or intro-
duce great efficiencies. For example, the standardization and deployment of IP net-
works resulted in introducing novel applications that were not possible in older
telecom networks. The Web itself has revolutionized the way people look for infor-
mation and corporations do business. Web-based solutions have dramatically
driven down operational costs both within and across enterprises. The Semantic
Web is being proposed as the next-generation infrastructure, which builds on the
current Web and attempts to give information on the Web a well-defined meaning
[2]. This may well be viewed as the next wave of innovation being witnessed in the
information technology sector.

On the other hand, the healthcare and life sciences sectors is playing host to a
battery of innovations triggered by the sequencing of the human genome. A signif-
icant area of innovative activity is the area of translational medicine which aims to
improve the communication between basic and clinical science so that more thera-
peutic insights may be derived from new scientific ideas and vice versa. Transla-
tional research [3] goes from bench to bedside, where theories emerging from
preclinical experimentation are tested on disease-affected human subjects, and
from bedside to bench, where information obtained from preliminary human
experimentation can be used to refine our understanding of the biological princi-
ples underpinning the heterogeneity of human disease and polymorphisms. The
products of translational research, such as molecular diagnostic tests, are likely to
be the first enablers of personalized medicine (see an interesting characterization of
activity in the healthcare and life sciences areas in [5]). We will refer to this activ-
ity as Translational Medicine in the context of this book.

We are witnessing a confluence of two waves of innovation, Semantic Web
activity on the one hand, and translational medicine activity on the other. Informat-
ics and Semantic Web technologies will play a big role in realizing the vision of
translational medicine. The organization of this chapter is as follows. We begin
(Section 2.1) with a detailed discussion of the clinical vignette described in the
introduction. This illustrates the use of molecular diagnostic tests in a clinical set-
ting. We believe that initially translational medicine will manifest itself in clinical
practice in this manner. This is followed in Section 2.2 with an analysis of various
stakeholders in the fields of healthcare and life sciences, along with their respective
needs and requirements. In Section 2.3, we discuss conceptual architectures for

12 2 Use Case and Functional Requirements

translational medicine followed by identification of key functional requirements
that need to be supported. Finally, in Section 2.4, we discuss research issues moti-
vated by the functional requirements with pointers to chapters in the book where
these issues will be discussed in more detail.

2.1 Detailed Clinical Use Case

We anticipate that one of the earliest manifestations of translational research will
be the introduction and hopefully accelerated adoption of therapies and tests
gleaned from genomics and clinical research into everyday clinical practice. The
weak link in this chain is obviously the clinical practitioner. The worlds of genomic
research and clinical practice have been separate until now, though there are efforts
underway that seek to utilize results of genomic discovery in the context of clinical
practice. We now present a detailed discussion of the clinical use vignette pre-
sented in the introduction.

Consider a patient with shortness of breath and fatigue in a doctor’s clinic. Sub-
sequent examination of the patient reveals the following information:

• A clinical examination of the patient reveals abnormal heart sounds which could
be documented in a structured physical exam report.

• Further discussion of the family history of the patient reveals that his father had
a sudden death at the age of 40, but his two brothers are normal. This informa-
tion needs to be represented in a structured family history record.

• Based on the finding of abnormal heart sounds, the doctor may decide (or an
information system may recommend him) to order an ultrasound for the patient.
The results of this ultrasound can be represented as structured annotations on an
image file.

The finding of the ultrasound may reveal cardiomyopathy, based on which the
doctor may decide (or the information system may recommend him) to order
molecular diagnostic tests to screen the following genes for genetic variations:

1. beta-cardiac Myosin Heavy Chain (MYH7)
2. cardiac Myosin-Binding Protein C (MYBPC3)
3. cardiac Troponin T (TNNT2)
4. cardiac Troponin I (TNNI3)
5. alpha-Tropomyosin (TPM1)
6. cardiac alpha-Actin (ACTC)
7. cardiac Regulatory Myosin Light Chain (MYL2)
8. cardiac Essential Myosin Light Chain (MYL3)

If the patient tests positive for pathogenic variants in any of the above genes, the
doctor may want to recommend that first and second degree relatives of the patient
consider testing. The doctor in charge can then select treatment based on all data.
He can stratify the treatment by clinical presentation, imaging and noninvasive

 2.2 Stakeholders and Information Needs 13

physiological measures in the genomic era, e.g., noninvasive serum proteomics.
The introduction of genetic tests introduces further stratification of the patient pop-
ulation for treatment. For instance, a patient is considered at high risk for sudden
death if the following hold (based on recommendations by the American College
of Cardiologists [6]):
1. Previous history of cardiac arrest
2. Mass hypertrophy (indicated by a septal measurement of 3.0 or higher)
3. Significant family history
4. Serious arrhythmias (documented)
5. Recurrent syncope
6. Adverse blood pressure response on stress test

Whenever a patient is determined to be at a high risk for sudden death, he is put
under therapeutic protocols based on drugs such as Amiadorone or Implantable
Cardioverter Defibrillator (ICD). It may be noted that the therapy is determined
purely on the basis of phenotypic conditions which in the case of some patients
may not have held to be true. In this case while molecular diagnostic tests may
indicate a risk for cardiomyopathy, phenotypic monitoring protocol may be indi-
cated.

2.2 Stakeholders and Information Needs

We now present an analysis of the clinical use case, by specifying an information
flow (illustrated in Figure 2.1). Various stakeholders and their information needs
and requirements in the context of the information flow are also presented. The
information needs in the contexts of clinical diagnosis and therapeutic intervention
are presented, which include (a) aggregation of data for identifying patients for
clinical trials and tissue banks, (b) data-driven knowledge acquisition for creation
of knowledge bases for decision support, and (c) mappings between genotypic and
phenotypic traits.

An enumeration of the information requirements is presented in Table 2.1. The
key stakeholders involved in this flow are patients and clinicians (physicians and
nurses who treat these patients) on the one hand and clinical and life science
researchers on the other. Life science researchers and clinical trials designers are
interested in information (a database for genotypic and phenotypic associations)
that gives them new ideas for drugs (target validation and discovery, lead genera-
tion) whereas a clinical trials designer would be interested in patient cohorts and
results of therapies for effective clinical trials design. The clinical practitioner
would need this information to help him decide which tests to order and what ther-
apies to prescribe (decision support). Some of this information would also be
stored in the electronic medical record. Clinical researchers would like to use ther-
apeutic information in conjunction with test results to develop clinical guidelines
for appropriate use of these therapies on the one hand, and knowledge bases for
decision support (typically represented as rules) on the other. An interesting class

14 2 Use Case and Functional Requirements

of stakeholders is healthcare institutions, which would like to use this information
to enable translational medicine by integrating clinical and genomic data, and to
monitor the quality of clinical care provided. A knowledge engineer is an interest-
ing stakeholder who is interested in the information to construct knowledge bases
for decision support and to design clinical guidelines.

Fig. 2.1. Translational medicine information flows

Table 2.1. Information requirements

Step
Number

Information
Requirement Application Stakeholders

1 Description of Genetic
Tests, Patient Information,
Decision Support KB

Decision Support, Elec-
tronic Medical Record

Clinician,
Patient

2 Test Results, Decision
Support KB

Decision Support, Data-
base of Genotypic Phe-
notypic associations

Clinician,
Patient, Health-
care Institution

3 Database with Genotypic
Phenotypic Associations

Knowledge Acquisition,
Decision Support, Clini-
cal Guidelines design

Knowledge
Engineer, Clini-
cal Researcher,
Clinician

4 Test Orders, Test Results Clinical Trials Manage-
ment Software

Clinical Trials
Designer

5 Tissue and Specimen
Information, Test Results

Laboratory Information
Management System

Clinician, Life
Science
Researcher

Patient Encounter Test ordering
guidance

New test results

Therapeutic
guidance

1

2

Integrated Genotypic
Phenotypic Database

Genetics
Decision Support

Tissue-bank

Clinical
Trials Referral

4

Knowledge
Acquisition Clinical

Trials Phase 1-4

3

7

5

Bench
R&D

6

Patient Encounter Test ordering
guidance

New test results

Therapeutic
guidance

1

2

Integrated Genotypic
Phenotypic Database

Genetics
Decision Support

Tissue-bank

Clinical
Trials Referral

4

Knowledge
Acquisition Clinical

Trials Phase 1-4

3

7

5

Bench
R&D

6

 2.3 Conceptual Architecture 15

2.3 Conceptual Architecture

In the previous section, we presented an analysis of information requirements for
translational medicine. Each requirement identified in terms of information items,
has multiple stakeholders, and is associated with different contexts, such as:

• Different domains such as genomics, proteomics or clinical information
• Research (as required for drug discovery) as opposed to operations (for clinical

practice)
• Different applications such as the electronic medical record (EMR), and labora-

tory information systems (LIMS)
• Different services such as decision support, data integration and knowledge-

provenance-related services

In this section, we build upon this analysis and present a conceptual architecture
required to support a cycle of learning from innovation and its translation into the
clinical care environment. The components of the conceptual architecture illus-
trated in Figure 2.2 are as follows.

Portals: This is the user interface layer and exposes various personalizable por-
tal views to various applications supported by the architecture. Different stakehold-
ers such clinical researchers, lab personnel, clinical trials designers, clinical care
providers, hospital administrators and knowledge engineers can access information
through this layer of the architecture.

Applications: Various stakeholders will access a wide variety of applications
through their respective portals. The two main applications, viz. the Electronic
Health Record (EHR) system and Laboratory Information Management Systems
(LIMS) are illustrated in the architecture. We anticipate the emergence of novel
applications that integrate applications and data across the healthcare and life sci-
ence domains , which are collectively identified as “translational medicine” appli-
cations.

6 Tissue and Specimen
Information, Test Results,
Database with Genotypic
Phenotypic associations

Lead Generation, Target
Discovery and Valida-
tion, Clinical Guidelines
Design

Life Science
Researcher,
Clinical
Researcher

7 Database with Genotypic
and Phenotypic Associa-
tions

Clinical Trials Design Clinical Trials
Designer

Table 2.1. Information requirements

Step
Number

Information
Requirement Application Stakeholders

16 2 Use Case and Functional Requirements

Fig. 2.2. Conceptual Architecture for Translational Medicine

Service Discovery, Composition and Choreography: Newly emerging appli-
cations are likely to be created via composition of pre existing services and appli-
cations. This component of the architecture is responsible for managing service
composition and choreography aspects. Tools that support annotations of services
and help define and create new services are used to create service descriptions that
can be consumed by this component to enable service discovery, composition and
choreography.

Services: The services that need to be implemented for enabling Translational
Medicine applications can be characterized as (a) business or clinical services and
(b) infrastructural or technological services. Examples of clinical services are clin-
ical decision support services and medication services, which address some aspect
of functionality needed to support clinical systems requirements. Some examples
of technological services are ontology and rules engine services, which provide
specific informatics services such as classification or inferencing and may be
invoked by clinical services to implement their functionality. Another example is a
knowledge management service which implements functionality for creation and
maintenance of various ontologies and knowledge bases. Tools that support knowl-
edge authoring are used to create knowledge that can be consumed by these ser-
vices.

Data and Knowledge Integration: This component of the architecture enables
integration of genotypic and phenotypic patient data and reference information
data. This integrated data could be used for enabling clinical care transactions,

TOOLS

SERVICES

PORTALS R&D CLINICAL TRIALSDIAGNOSTIC SvsLABs CLINICAL CARE

LIMS EHR

ASSAYS
ANNOTATIONS

DIAGNOSTIC TEST RESULTS
ASSAY INTERPRETATIONS ORDERS AND OBSERVATIONS

APPLICATIONS

Ontology Engine
Services

TRANSLATIONAL MEDICINEEHR

SERVICE DISCOVERY, COMPOSITION AND CHOREOGRAPHY

DATA AND KNOWLEDGE INTEGRATION

Rule Engine
Services

Decision Support
Services

Medication
Services

Knowledge
Management Services

Clinical Data Laboratory Data Metadata
Repository Database of

Genotypic/
Phenotypic
Associations

DATA AND
KNOWLEDGE
REPOSITORIES

Ontologies
Knowledge
Bases and
Rule Bases

Metadata
Annotation

Ontology –
Data Mapping

Ontology
Mapping

Knowledge
Acquisition
and Authoring

Service
Creation and
Provisioning

TOOLS

SERVICES

PORTALS R&D CLINICAL TRIALSDIAGNOSTIC SvsLABs CLINICAL CARE

LIMS EHR

ASSAYS
ANNOTATIONS

DIAGNOSTIC TEST RESULTS
ASSAY INTERPRETATIONS ORDERS AND OBSERVATIONS

APPLICATIONS

Ontology Engine
Services

TRANSLATIONAL MEDICINEEHR

SERVICE DISCOVERY, COMPOSITION AND CHOREOGRAPHY

DATA AND KNOWLEDGE INTEGRATION

Rule Engine
Services

Decision Support
Services

Medication
Services

Knowledge
Management Services

Clinical Data Laboratory Data Metadata
Repository Database of

Genotypic/
Phenotypic
Associations

DATA AND
KNOWLEDGE
REPOSITORIES

Ontologies
Knowledge
Bases and
Rule Bases

Metadata
Annotation

Ontology –
Data Mapping

Ontology
Mapping

Knowledge
Acquisition
and Authoring

Service
Creation and
Provisioning

 2.4 Functional Requirements 17

knowledge acquisition of clinical guidelines and decision support rules, and for
hypothesis discovery for identifying promising drug targets. Examples of knowl-
edge integration would be merging of ontologies and knowledge bases to be used
for clinical decision support. Tools that support creation of mappings and annota-
tions are used to create mappings across knowledge and data sources that are con-
sumed by the data and knowledge integration component.

Data and Knowledge Repositories: These refer to the various data, metadata
and knowledge repositories that exist in healthcare and life sciences organizations.
Some examples are databases containing clinical information and results of labora-
tory tests for patients. Metadata related to various knowledge objects (e.g., creation
data, author, category of knowledge) are stored in a metadata repository. Knowl-
edge such as genotypic-phenotypic associations can be stored in a database,
whereas ontologies and rule bases can be stored in specialized repositories man-
aged by ontology engines and rule bases. Tools that support metadata annotation
can be used to create metadata annotations that can be stored in the metadata repos-
itory.

2.4 Functional Requirements

The conceptual architecture discussed in the earlier section helps us identify crucial
functional requirements that need to be supported for enabling translational medi-
cine, discussed next.

Service Discovery, Composition and Choreography: The ability to rapidly
provision new services is crucial for enabling new emerging applications in the
area of translational medicine. This involves the ability to define and develop new
services from pre existing services on the one hand and the ability to provision and
deploy them in an execution environment on the other. This may involve composi-
tion of infrastructural and business services. For instance, one may want to develop
a new service that composes an ontology engine and a rules engine service for cre-
ating new semantics-based decision support services. From a clinical perspective,
one may want to compose clinical protocol monitoring services and notification
services (which monitor the state of a patient and alert physicians if necessary)
with appropriate clinical decision support services and medication dosing services
to offer sophisticated decision support.

Data and Knowledge Integration: This represents the ability to integrate data
across different types of clinical and biological data repositories. In the context of
the clinical use case discussed in Section 2.1, there is a need for integration and
correlation of clinical and phenotypic data about a patient obtained from the EMR
with molecular diagnostic test results obtained from the LIMS. Furthermore, the
integrated information product will need to be used in different contexts in differ-
ent ways as identified in the information requirements enumerated in Table 2.1.
Effective data integration would require effective knowledge integration where
clinically oriented ontologies such as SNOMED [7] and ICD-10 [8] may need to

18 2 Use Case and Functional Requirements

be integrated with biologically oriented ontologies such as BioPAX [9] and Gene
Ontology [10].

Decision Support: Based on the clinical use case discussed in Section 2.1, there
is a need for providing guidance to a clinician for ordering the right molecular
diagnostic tests in the context of phenotypic observations about a patient and for
ordering appropriate therapies in response to molecular diagnostic test results. The
decision support functionality spans both the clinical and biological domains and
depends on effective integration of knowledge and data across data repositories
containing clinical and biological data and knowledge.

Knowledge Maintenance and Provenance: All the functional requirements
identified above (service composition, data integration and decision support) criti-
cally depend on domain-specific knowledge that could be represented as ontolo-
gies, rule bases, semantic mappings (between data and ontological concepts), and
bridge ontology mappings (between concepts in different ontologies). The health-
care and life sciences domains are experiencing a rapid rate of new knowledge dis-
covery and change. A knowledge change “event” has the potential of introducing
inconsistencies and changes in the current knowledge bases that inform semantic
data integration and decision support functions. There is a critical need to keep
knowledge bases current with the latest knowledge discovery and changes in the
healthcare and life sciences domains.

2.5 Research Issues

We now discuss research issues motivated by functional requirements presented in
the previous section.

Semantic Web Services: Annotation of services using semantic and standard-
ized descriptions is an active area of research and is used to enable service discov-
ery and composition. Models and languages for specifying Semantic Web Services
with the goal of automating service composition and choreography have been pro-
posed. A discussion of Semantic Web Services and their role in enabling service
discovery, composition and choreography is presented in Chapter 11.

Ontology-Driven Decision Support: Ontology and rule integration is emerging
as a new area of research activity. This is specially relevant in the context of scal-
able and extensible decision support implementations, where ontologies can be
used to enhance the scalability and extensibility of rule-based approaches. A dis-
cussion of these research issues is presented in Chapter 5.

Ontology-Driven Knowledge Maintenance and Provenance: Knowledge
maintenance and provenance in the context of ontology evolution, versioning and
management has been an extensive area of research. Issues related to ontology
bootstrapping and creation are also closely related to ontology evaluation and ver-
sioning. A discussion of these research issues is presented in Chapter 5.

Semantic Information Integration: Approaches for integration of information
across diverse data sources has been an active area of research across various

 2.6 Summary 19

fields, particularly database systems and knowledge representation. A large num-
ber of approaches have used various forms of semantics to achieve the goal of
information integration. Approaches based on ontology integration have also been
proposed in the context of information integration. A discussion of these research
issues is presented in Chapter 7.

Semantic Metadata Annotation: The ability to annotate Web resources and
services with semantic descriptions is crucial to supporting the various functional
requirements discussed in the previous section. An interesting form of annotation
is the ability to create mappings between schema describing the metadata and con-
cepts and relationships in an ontology, or across concepts and relationships in mul-
tiple ontologies. There has been extensive work presented in database, machine
learning and Semantic Web literature on tools and approaches for metadata annota-
tion and schema and ontology matching. A discussion of these research issues in
presented in Chapter 7.

2.6 Summary

In this chapter, we presented a detailed clinical use case that serves as an example
and provides the motivation for various Semantic Web technologies discussed in
this book. The use case describes a typical clinical scenario when a patient visits a
physician with some symptoms. The patient is evaluated by the physician who may
then decide to order some tests and prescribe some therapies based on the results of
those tests. Various stakeholders over and above the physician and the patient, such
as the healthcare institution, the knowledge engineer, the clinical/life science
researcher and the clinical trials designer are identified. The applications involved
in enabling the use case such as electronic medical records, clinical and genomic
decision support, knowledge management, clinical trials management systems and
laboratory information management systems are also identified. A conceptual
architecture and abstract functional requirements based on the use case are pre-
sented. Research issues that arise in the context of the use case are finallt identi-
fied.

Part II
Information Aspects of the Semantic Web

3 Semantic Web Content

In this chapter, we begin with an understanding of the nature of data and content
available on the web today and discuss preliminary approaches for representing
metadata. We will then methodically enumerate and discuss various types of
Semantic Web content spanning structured, unstructured and semi-structured data,
with examples from the healthcare and life science domains. The basic premise of
the Semantic Web is to build up on the current web to give each piece of data a
well-defined meaning. We will illustrate with examples the notion of “self-describ-
ing” data and the role of metadata descriptions and ontologies in achieving this
goal.

3.1 Nature of Web Content

There are two groups of web content. One, which we would call the “surface” Web
is what everybody knows as the “Web,” a group that consists of static, publicly
available web pages, and which is a relatively small portion of the entire web. The
surface web is defined as those web pages whose links are visible in search results
obtained from various search engines. Another group is called the “deep” Web, and
it consists of specialized Web-accessible databases and dynamic Web sites, which
are not widely known by “average” surfers, even though the information available
on the “deep” Web is 400 to 550 times larger than the information on the “surface.”

The “surface” Web consists of approximately 2.5 billion documents with a
growth of 7.3 million page per day. Most of these documents are static HTML
pages with embedded images, audio and video content. With improving search
engine technology, more of the “deep Web” pages can now be indexed. Pages in
non-HTML formats (Portable Document Format (PDF), Word, Excel, Corel Suite,
etc.) are “translated” into HTML now in most search engines and can “seen” in
search results. Script-based pages, whose links contain a “?” or other script coding,
no longer cause most search engines to exclude them. Pages generated dynamically
by other types of database software (e.g., Active Server Pages, ColdFusion) can be
indexed if there is a stable URL somewhere that search engine spiders can find.
There are now many types of dynamically generated pages like these that are found
in most general web search engines. Some of these documents are created from
XML-based content by applying appropriate style sheets and XSLT transforms and
also contain basic metadata such as keywords and authors represented as “meta
tags” in HTML.

24 3 Semantic Web Content

The “deep Web” primarily consists of content stored in structured (relational or
XML) databases which are retrieved by Web servers and converted to HTML
pages dynamically on the fly. As discussed above, most of this information can
now be indexed and searched via stable URLs. Other examples of deep Web con-
tent are real-time streaming data such as stock quotes and streaming media such as
audio and video content. Sites that require forms to be filled out and require user
login and authentication also belong to the deep Web.

Various types of unstructured, semi-structured and structured content are now
available on the web. A limited collection of metadata is also being represented in
current Web pages. We now discuss various types of metadata and how they can be
used to provide meaning to content on the Semantic Web.

3.2 Nature of Semantic Web Content

The nature of Semantic Web content, with its emphasis on providing every piece of
Web content a well-defined meaning, is likely to be very different from current
Web content. Some characteristics or requirements of Semantic Web content are
listed below:

• Semantic Web content should support dual requirements of understandability to
the human reader and machine processability at the same time. This requires the
ability to precisely and unambiguously specify the meaning. This has led to the
creation of various XML-based specifications such as RDF and various human
readable notations such as N3 for the same.

• The key to machine processability of content on the Semantic Web is that it
should be self-describing. This is achievable partly by producing a common lan-
guage to specify data and metadata on the Web.

• The current state of the art is limited when it comes to understanding, which is
still an area of research in the artificial intelligence community. Thus, standard-
ization is the key element for enhancing machine understanding of data and con-
tent on the Web. This is achievable by grounding terms used in creating
metadata descriptions in well-defined ontologies on the Web, which could
potentially lead to enhanced information interoperability.

• Finally, there is a widespread tendency in Web-based applications to hard code
the semantics within application code. Whereas current Web content has imple-
mented the separation of content from presentation to a large extent, the Seman-
tic Web aims to externalize the inherent semantics from syntax, structure and
other considerations. This has led to a layered characterization of metadata that
have been used to capture these various aspects of information.

Thus, metadata forms a key aspect of enabling the Semantic Web vision, and as
discussed above, Semantic Web data and content items will require metadata
descriptions associated with the data in some form or other. This observation may
be formalized with the following equation:

 3.3 Metadata 25

Semantic Web Content = Data + Metadata

Metadata descriptions on the other hand should be grounded in terms, concepts
and relationships present in well-defined ontologies that can be referenced to on
the Web via URIs. This is illustrated in the Semantic Web mind map illustrated in
Figure 3.1.

Fig. 3.1. Semantic Web mind map

We will now discuss various types of data and metadata found in the healthcare
and life science domains. Furthermore, we characterize metadata based on the cap-
tured semantics.

3.3 Metadata

Metadata in its most general sense is defined as data or information about data. For
structured databases, the most common example of metadata is the schema of the
database. However with the wide variety of datatypes on the Web, we shall refer to
an expanded notion of metadata of which the schema of structured databases is a
(small) part. Metadata may be used to store derived properties of media useful in
information access or retrieval. They may describe or be a summary of the infor-
mation content of the data described in an intensional manner. They may also be
used to represent properties of or relationships between individual objects of heter-
ogeneous types and media. The function of metadata descriptions is twofold:

Ontologies and Schemata
RDF(S), OWL, XML Schemas, EER Models, UML Models, MOF
Tools: Protégé, OilEd, Rational Rose, ERWin

Metadata
Metadata annotations, XML, RDF, SPARQL, XQuery, SQL, DAML-QL,
Rules, RuleML, SWRL, XSLT, CSS, XPath, Name Spaces

Data
Relational Data, XML data, Name Spaces, Raw text/Images

Semantic Web Content

Ontologies and Schemata
RDF(S), OWL, XML Schemas, EER Models, UML Models, MOF
Tools: Protégé, OilEd, Rational Rose, ERWin

Metadata
Metadata annotations, XML, RDF, SPARQL, XQuery, SQL, DAML-QL,
Rules, RuleML, SWRL, XSLT, CSS, XPath, Name Spaces

Data
Relational Data, XML data, Name Spaces, Raw text/Images

Semantic Web Content

26 3 Semantic Web Content

• To enable the abstraction of representational details such as the format and orga-
nization of data, and capture the information content of the underlying data
independent of representational details. These expressions may be used to repre-
sent useful relationships between various pieces of data within a repository or
web site.

• To enable representation of domain knowledge describing the information
domain to which the underlying data belongs. This knowledge may then be used
to make inferences about the underlying data to determine the relevance and
identify relationships across data stored in different repositories and web sites.

We now discuss issues related to metadata from two different perspectives iden-
tified in [13], viz., the usage of metadata in various applications and the informa-
tion content captured by the metadata.

3.3.1 Metadata Usage in Various Applications

We now discuss a set of application scenarios that require functionality for manip-
ulation and retrieval of digital content that are relevant to the Web and the role of
metadata in supporting this functionality.

Navigation, Browsing and Retrieval from Image Collections: An increasing
number of applications, such as those in healthcare, maintain large collections of
images. There is a need for semantic-content-based navigation, browsing, and
retrieval of images. An important issue is to associate a user’s semantic impression
with the images, e.g., image of a brain tumor. This requires knowledge of spatial
content of the image, and the way it changes or evolves over time, which can be
represented as metadata annotations.

Video: In many applications relevant to news agencies, there exist collections of
video footage which need to be searched based on semantic content, e.g., videos
containing field goals in a soccer game, or the video of an echocardiogram. This
gives rise to the same set of issues as described above, such as the change in the
spatial positions of various objects in the video images (spatial evolution). How-
ever, there is a temporal aspect to videos that was not captured above. Sophisti-
cated time-stamp-based schemes can be represented as a part of the metadata
annotations.

Audio and Speech: Radio stations collect many, if not all, of their important
and informative programs, such as radio news, in archives. Parts of such programs
are often reused in other radio broadcasts. However, to efficiently retrieve parts of
radio programs, it is necessary to have the right metadata generated from, and asso-
ciated with, the audio recordings. An important issue here is capturing, in text, the
essence of the audio, in which vocabulary plays a central role. Domain-specific
vocabularies can drive the metadata extraction process making it more efficient.

Structured Document Management: As the publishing paradigm is shifting
from popular desktop publishing to database-driven web-based publishing, pro-
cessing of structured documents becomes more and more important. Particular

 3.3 Metadata 27

document information models, such as SGML [14] and XML, introduce structure-
and content-based metadata. Efficient retrieval is achieved by exploiting document
structure, as the metadata can be used for indexing, which is essential for quick
response times. Thus, queries asking for documents with a title containing “Com-
puter Science” can be easily optimized.

Geographic and Environmental Information Systems: These systems have a
wide variety of users who have very specific information needs. Information inte-
gration is a key requirement, which is supported by provision of descriptive infor-
mation to end users and information systems. This involves issues of capturing
descriptions as metadata and reconciling the different vocabularies used by the dif-
ferent information systems in interpreting the descriptions.

Digital Libraries: Digital libraries offer a wide range of services and collec-
tions of digital documents, and constitute a challenging application area for the
development and implementation of metadata frameworks. These frameworks are
geared toward description of collections of digital materials such as text docu-
ments, spatially referenced data-sets, audio, and video. Some frameworks follow
the traditional library paradigm with metadata like subject headings [15] and the-
sauri [16].

Mixed-media Access: This is an approach which allows queries to be specified
independently of the underlying media types. Data corresponding to the query may
be retrieved from different media such as text and images, and “fused” appropri-
ately before being presented to the user. Symbolic metadata descriptions may be
used to describe information from different media types in a uniform manner.

Knowledge-Based Decision Support Systems: Rule-based systems are being
increasingly used for providing decision support functionality in various domains
such as finance and clinical decision support [17] [18]. Rules may be viewed as
specialized metadata descriptions that provide further description or elaboration of
a business object model or schema.

Knowledge Management Systems: Metadata descriptions play a critical role
in managing large amounts of knowledge and data. Important functionality enabled
by metadata descriptions are effective and precise searching, browsing and catego-
rization of information artifacts, and change management via encoding and repre-
sentation of provenance-related knowledge.

3.3.2 Metadata: A Tool for Describing and Modeling Information

We now characterize various types of metadata based on the amount of informa-
tion content they capture, and present a classification of various types of metadata
used by researchers and practitioners in the healthcare and life science fields. A
brief classification based on the one presented in [12] is discussed and illustrated in
Figure 3.2.

Content-Independent Metadata: This type of metadata captures information
that does not depend on or capture the content of the document or information arti-
fact it is associated with. Examples of this type of metadata could be identifying

28 3 Semantic Web Content

information such as gene or other life science identifiers, patient medical record
number, and sample accession numbers used by laboratories to track patient (and
animal) samples in laboratories. Other types of metadata could be date of dictation
and transcription of patient clinical notes, date of collection and processing of
patient samples for laboratory tests. Still other types of metadata could be system-
level or Web-related identifiers such as locations, URIs and mime types. There is
no information content captured by these metadata but they are still useful for iden-
tifying units of information that might be of interest, for retrieval of data from
actual physical locations and for checking for currency or obsolescence. This type
of metadata is used to encapsulate information units of interest and organize them
according to an information or object model.

Content-Based Metadata: This type of metadata depends on the content of the
document or information artifact it is associated with. Examples of content-based
metadata are the size of a document, the coordinates of a spot on a gene chip and
the number of rows and columns in a radiological image. Other popular examples
of content-based metadata are inverted tree indices and document vectors based on
the text of a document and the shape, color and texture of image-based data. These
metadata typically capture representational and structural information, and enable
interoperability through support for browsing and navigation of the underlying
data. Content based metadata can be further subdivided as follows:

Structural Metadata: These metadata primarily capture structural informa-
tion of the document or information artifact. An example of such metadata is
one that characterizes various sections in a clinical note for a patient, such as
History of Present Illness, Review of Symptoms, and Medications. Different
subdomains of medicine may have different structural metadata associated
with them. Also structural metadata might be independent of the application or
subject domain of the application, for example, C/C++ parse trees and XML
DTDs.
Domain-Specific Metadata: Metadata of this type is described in a manner
specific to the application or subject domain of the information. Issues of
vocabulary become very important in this case, as the metadata terms have to
be chosen in a domain-specific manner. This type of metadata, that helps
abstract out representational details and capture information meaningful to a
particular application or subject domain, is domain specific metadata. Exam-
ples of such metadata are patient state descriptors such as contraindications,
allergies and medical subject headings (MeSH) in the healthcare domain and
gene mutations, variants, SNPs, proteins and transcription factors in the life
science domain. Domain-specific metadata can be further characterized as fol-
lows:

Intra-domain-specific Metadata: These types of metadata capture rela-
tionships and associations between data within the context of the same
information domain. For example, the relationship between a patient and
the allergies and contraindications suffered by him belong to a common
clinical information domain.

 3.3 Metadata 29

Inter-domain-specific Metadata: These types of metadata capture rela-
tionships and associations between data across multiple information
domains. For example the relationship between the clinical findings and
the phenotypes of a person belong to the healthcare information domain
and his or her genes and mutations or genotype belong to the life science
information domain.

We present in Table 3.1 above, a brief survey of different types of metadata used
by various researchers. Q-Features and R-Features were used for modeling image
and video data [24]. Impression vectors were generated from text descriptions of
images [26]. NDVI and spatial registration metadata were used to model geospatial
maps, primarily of different types of vegetation [30]. Interesting examples of
mixed-media access are the speech feature index [23] and topic change indices
[20]. Metadata capturing information about documents are document vectors [22],
inverted indices [25], document classification and composition metadata [19] and
parent-child relationships (based on document structure) [31]. Metadata templates
[29] have been used for information resource discovery. Semantic metadata such as
contexts [32] [33], land-cover, relief [35], Cyc concepts [21], and concepts from

Table 3.1. Metadata for digital data

Metadata Media/Metadatatype

Q-Features Image, Video/Domain Specific

R-Features Image, Video/Structural

Impression Vector Image/Content Based

NDVI, Spatial Registration Image/Domain Specific

Speech feature index Audio/Content Based

Topic change indices Audio/Content Based

Inverted Indices Text/Content Based

Document Vectors Text/Content Based

Content Classification Metadata Multimedia/Domain Specific

Document Composition Metadata Multimedia/Structural

Metadata Templates Media Independent/Domain Specific

Land Cover, Relief Media Independent/Domain Specific

Parent-Child Relationships Text/Structural

Contexts Structured Database/Domain Specific

Concepts from Cyc Structured Database/Domain Specific

User’s Data Attributes Text. Structured Database/Domain Specific

Medical Subject Headings Text/Domain Specific

Domain Ontologies Media Independent/Domain Specific

30 3 Semantic Web Content

domain ontologies [34] have been constructed from well-defined and standardized
vocabularies and ontologies. Medical Subject Headings (MeSH) [15] are used to
annotate biomedical research articles in MEDLINE [28]. These are constructed
from biomedical vocabularies available in the UMLS [16]. An attempt at modeling
user attributes is presented in [36].

The above discussion suggests that domain-specific metadata capture informa-
tion which is more meaningful with respect to a specific application or a domain.
The information captured by other types of metadata primarily reflect the format
and organization of underlying data. Thus, domain-specific metadata is the most
appropriate for capturing meaning on the Semantic Web.

Fig. 3.2. Semantics-based characterization of metadata

Domain-specific metadata can be constructed from terms in a domain-specific
ontology, or terms in concept libraries describing information in an application or
subject domain. Thus, we view ontologies as metadata, which themselves can be
viewed as a vocabulary of terms for construction of more domain-specific meta-
data descriptions. We discuss various types of ontologies in the next section.

3.4 Ontologies: Vocabularies and Reference Terms for Metadata

We discussed in the previous section that the role of metadata-based descriptions
are for describing and modeling information on the Web. The degree of semantics
depends on the nature of these descriptions, i.e., whether they are domain-specific.
A crucial aspect of creating metadata descriptions is the vocabulary used to create
them. The key to utilizing the knowledge of an application domain is identifying
the basic vocabulary consisting of terms or concepts of interest to a typical user in

Data
(Structured, Text, Images, …)

Content Independent Metadata
(gene/patient Identifiers, Accession numbers, creation date,

transcription date, modification date, …)

Structural Metadata
(Clinical Note Sections, C/C++ parse trees, XML

DTDs, HTML DOM/SAX structures)

Domain Specific Metadata
(Patient state descriptions, e.g.,

contraindications, allergies, Abcess,
Abcess located_inLiver, Mutations,
Transcription Factors, Pathways, …)

Ontologies
(Snomed,

ICD9. Gene
Ontology, BioPax)

Incre
asi

ng

sem
an

tic
s

for
deep

er

unde
rst

an
ding,

mean
ingful

an
aly

sis
an

d

act
ionab

le

inform
ati

on

Data
(Structured, Text, Images, …)

Content Independent Metadata
(gene/patient Identifiers, Accession numbers, creation date,

transcription date, modification date, …)

Structural Metadata
(Clinical Note Sections, C/C++ parse trees, XML

DTDs, HTML DOM/SAX structures)

Domain Specific Metadata
(Patient state descriptions, e.g.,

contraindications, allergies, Abcess,
Abcess located_inLiver, Mutations,
Transcription Factors, Pathways, …)

Ontologies
(Snomed,

ICD9. Gene
Ontology, BioPax)

Incre
asi

ng

sem
an

tic
s

for
deep

er

unde
rst

an
ding,

mean
ingful

an
aly

sis
an

d

act
ionab

le

inform
ati

on

 3.4 Ontologies: Vocabularies and Reference Terms for Metadata 31

the application domain and the interrelationships among the concepts in the ontol-
ogy.

An ontology may be defined as the specification of a representational vocabu-
lary for a shared domain of discourse which may include definitions of classes,
relations, functions and other objects [37]. However, there exist a variety of stan-
dards that are being currently used for enabling high quality search, categorization
and interoperation of information across multiple information systems. These stan-
dards do not have the formal sophistication and logical underpinnings of an ontol-
ogy, but are currently in extensive use and provide an extensive collection of
concepts and relationships that can serve as a substrate for rich metadata descrip-
tions, and thus can be viewed as “ontology-like” artifacts. We present a character-
ization of these artifacts from an informatics perspective with examples from the
healthcare and life sciences and other domains.

Fig. 3.3. Ontology characterization

An informal categorization of ontology-like artifacts illustrated in Figure 3.3
has the following categories:

• Term Lists: These are collections of terms or tokens that play the role of stan-
dardized dictionaries in an organization. Examples of term lists are standardized
dictionaries of medications, patient problems and drug interactions used in
healthcare organizations.

• Thesauri/Taxonomies: These are collections of concepts in which the concepts
are organized according to interrelationships with each other. The relationships
represented in taxonomies and thesauri are typically limited to synonyms and
hierarchical relationships such as broader than/narrower than, parent/child and
informal is-a. The semantics of these relationships are not clearly defined and

Catalog

General
Logical

constraints

Terms/
glossary

Thesauri:
BT/NT,

Parent/Child,
Informal Is-A

Formal is-a
Frames

(Properties)

Formal
instances

Value
Restriction

Disjointness,
Inverse

Simple
Taxonomies

Expressive
Ontologies

MeSH,
Gene Ontology,
UMLS Meta

CYCRDF(S)DB Schema

IEEE SUOOWL

KEGG TAMBIS

EcoCyc

BioPAX

Ontylog

Snomed

Medication Lists
DDI Lists

Catalog

General
Logical

constraints

Terms/
glossary

Thesauri:
BT/NT,

Parent/Child,
Informal Is-A

Formal is-a
Frames

(Properties)

Formal
instances

Value
Restriction

Disjointness,
Inverse

Simple
Taxonomies

Expressive
Ontologies

MeSH,
Gene Ontology,
UMLS Meta

CYCRDF(S)DB Schema

IEEE SUOOWL

KEGG TAMBIS

EcoCyc

BioPAXTAMBIS

EcoCyc

BioPAX

Ontylog

Snomed

Medication Lists
DDI Lists

32 3 Semantic Web Content

the hierarchical relationships typically incorporate hyponymy/hypernyms, par-
tonomy and instance-of relationships. Some examples of thesauri and taxonomy
being used in biomedicine are the Medical Subjects Heading [15], the Gene
Ontology [10], the International Classification of Diseases [8], and the UMLS
Metathesaurus [16]. Concepts from thesauri and taxonomies are typically used
in metadata annotations of publication documents such as those available in
PubMed MEDLINE [28].

• Database Schemas: These are collections of tables and columns that are used to
implement underlying information models represented in entity-relationship
[39] and UML models [40]. The semantics of database schemas are well defined
in terms of the relational model [38], where tables typically represent concepts
and their properties are represented by table columns. Relationships between
concepts are represented by foreign keys. An interesting example of an informa-
tion model used in healthcare for interoperability across information systems is
the HL7 RIM [41].

• RDF and XML Schemas: These are collections of concepts that have complex
interrelationships and nesting within each other. Concepts and relationships in
RDF Schemas [42] are instantiated in RDF based on a graph-based data model
with reification, whereas XML Schema [43] documents are instantiated in XML
using a tree-based data model. KEGG [44] is an example of a genomic database
which uses an XML/RDF-based markup language to represent and store
genomic data.

• OWL Ontologies: Ontologies represented using the Web Ontology Language
(OWL) [45] capture specialized constraints and axioms. OWL-DL, a variant of
OWL, is equivalent in expressiveness to Description Logics. OWL reasoners
can use these constraints and axioms to infer subsumption and equivalence rela-
tionships between two concepts and mutual contradictions between concepts if
they exist. The interesting property of OWL-DL is that it is a highly expressive
and tractable subset of first-order logic for a large number of important use
cases. SNOMED [7] is a widely used standard in the healthcare domain and is
represented using Ontylog [48], a less expressive variant of OWL-DL. Other
examples of ontologies in use are in the TAMBIS [46] system for biomedical
data integration and the BioPax [47] ontology for representing biological path-
ways.

• Logical First Order Theories: More sophisticated ontologies such as the IEEE
Standard Upper Ontology (IEEE SUO) [49] use a first-order logic language
such as the Knowledge Interchange Format (KIF) [50] to represent knowledge.
These languages, though more expressive than OWL-DL, are for the most part
intractable and are not implemented in practical information systems.

• Higher-Order Logics: There are ontologies such as the Cyc Ontology [51]
which use higher-order logics to represent language. The goal of such ontolo-
gies is to capture common sense knowledge and reason with it to a limited
extent. Such ontologies are not considered practical, given the state of the art
today.

 3.5 Summary 33

3.5 Summary

In this chapter, a discussion on the nature of content present found on the Web was
presented. The nature of Semantic Web content in contrast to Web content today
was discussed and the critical role of metadata was identified. A three layered
framework based on data, metadata and ontology was presented. The usage con-
texts and information content captured in different types of metadata was dis-
cussed. Ontologies were identified as a specialized type of metadata with a rich and
domain-specific content. The different types of ontologies in the vocabulary
schema logical-theory continuum were also discussed and presented.

4 Metadata Frameworks

We present a discussion of various frameworks and schemes proposed for repre-
sentation, storage and manipulation of data and metadata. Standards and specifica-
tions proposed by the World Wide Web Consortium (W3C) such the eXtensible
Markup Language (XML) [43], Resource Description Framework (RDF) [42] and
the Web Ontology Language (OWL) [45] are presented. The frameworks are
described and contrasted along various dimensions such as the data model and
expressiveness of the specification and query languages for manipulation of meta-
data specifications and repositories. We will also discuss relationships of these
metadata frameworks with rule-based and ontology standards, where applicable.

4.1 Examples of Metadata Frameworks

We define a metadata framework as consisting of a set of specifications that
address various needs for creating, manipulating and querying metadata descrip-
tions. Typically a metadata framework would consist of:

• Data Model: A data model may be viewed as a collection of datatypes that can
be used to construct an abstract view of a Web document (or collection of docu-
ments), along with functions that allow access to the information contained in
values belonging to these types [52].

• Semantics: In some cases, languages for specifying metadata descriptions have
well-defined semantics. These semantics are typically specified by using model-
theoretic semantics, a branch of mathematics that is used to provide meaning for
many logics and representation formalisms, and has recently been applied to
several Semantic-Web-related formalisms, namely RDF [53] and OWL [54].

• Serialization Format: A serialization format typically provides a meta-lan-
guage and syntactic constructs for encoding metadata descriptions. It may be
noted that multiple data models can be serialized using the same format. For
instance, RDF and OWL have different underlying data models but are serial-
ized using the XML syntax.

• Query Language: A query language provides a language for expressing the
information needs of a user and is typically based on constructs provided by the
data model in conjunction with a boolean expressions and specialized operators
such as for ordering, sorting and computing transitive closure.

36 4 Metadata Frameworks

We now present the core metadata frameworks that have been developed and
deployed in the context of Web and Semantic-Web-based applications.

4.1.1 XML-Based Metadata Framework

This is one of the earliest metadata frameworks proposed for capturing Web con-
tent. The initial goal of XML-based specifications was to enable separation of con-
tent and presentation of Web content, but this later evolved into representing both
content and metadata. The XML-based metadata framework proposed by the W3C
consists of the following components:

• Specifications for XML itself, including namespaces and InfoSets which are
used to represent content and metadata. This also includes the XLink and
XPointer specifications which seek to represent hypertext links in XML docu-
ments.

• Specifications for the Extensible Stylesheet Language (XSL) including both
XSL Transformations (XSLT) for conversion of an XML document into alter-
nate XML descriptions or presentation elements for display on a Web page; and
XSL Formatting Objects (XSL/FO) for specification of formatting semantics.

• Specifications for XQuery and XPath which are used to extract XML content
from real and virtual XML documents on the Web.

• Specification for XML Schemas that provide mechanisms to define and
describe the structure, content, and to some extent semantics of XML docu-
ments.

4.1.2 RDF-Based Metadata Framework

The RDF specification was designed from the ground up as a language for repre-
senting metadata about resources on the Web. The RDF-based metadata framework
proposed by the W3C consists of the following components:

• Specifications for RDF itself based on an XML syntax called RDF/XML in
terms of XML Namespaces, XML Information Sets and XML Base specifica-
tions. This includes a well-defined graph-based data model (discussed later in
this chapter). Alternative syntaxes such as N3 which represent RDF expressions
as collections of triples have also been proposed.

• Specifications for RDF Schema (RDF(S)), which is used to define RDF vocabu-
laries or models of which RDF statements are instances or extensions.

• The SPARQL specification, which contains a protocol and query language for
accessing RDF data stored in RDF data stores.

 4.1 Examples of Metadata Frameworks 37

4.1.3 OWL-Based Metadata Framework

The OWL specification (in particular OWL Full) contains constructs that enable
expression of different types of constraints and axioms at both the schema and the
data levels. OWL specifications come in these dialects: OWL-Lite, OWL-DL and
OWL Full. Any RDF graph is typically OWL Full unless it has been restricted (via
its RDF schema) to the other dialects.

• At the data level, OWL specifications help us represent class membership of an
instance and the values of its various properties, along with descriptions of
anonymous individuals without actually specifying who they are. Relationships
between instances such same-as and different-from are also supported.

• At the schema level, OWL specifications enable representation of relationships
between classes such as subclass-of, disjointedness or equivalence. The dialects
of OWL are more geared toward specifications at the schema level as opposed
to the data level.

• Query languages based on OWL, such as OWL-QL have been proposed and are
still in their infancy. Approaches that combine SPARQL and OWL have also
been proposed to leverage the use of OWL-based inferences in the context of
query processsing.

4.1.4 WSMO-Based Metadata Framework

WSMO is a meta-ontology in terms of the Object Management Group (OMG)
Meta-Object Facility (MOF) [326] specification for an abstract language and
framework to represent its meta-models. MOF provides the constructs of classes
and their generalization through subclasses as well as attributes with declarations
of type and multiplicity. MOF defines four layers:

• Information layer: the data to be described
• Model layer: metadata describing the data in the information layer
• Meta-model layer: defines the structure and semantics of the metadata
• Meta-meta-model layer: defines the structure and semantics of the meta-meta-

data

The four layers of MOF and how they relate to WSMO are described in detail in
[325]. Briefly, the language defining WSMO corresponds to the meta-meta-model
layer. The WSMO model itself represents the meta-model layer. WSMO has four
top level elements: Ontologies, Web Services, Goals and Mediators. These consti-
tute the model layer. Finally the actual data described by the ontologies and
exchanged between Web Services, for example, make up the information layer.

38 4 Metadata Frameworks

4.2 Two Perspectives: Data Models and Model-Theoretic Semantics

We now present a discussion on the data models and semantics underlying the var-
ious metadata frameworks discussed in the previous section. As discussed in [52],
there are several fundamental differences between data models and model-theo-
retic semantics:

Information retention: XML data models tend to retain all the text information
from the input document, such as comments, white spaces and text representations
of typed values. In model-theoretic semantics, on the other hand, there is a decision
made on just which kind of information to retain, and which kind of information to
ignore. For example, it is typical in model-theoretic semantics to ignore the order
in which information is presented.

Direction of flow: In the data model approach, there is a process of generating a
data model from an input document and thus the result is constructed from the
input. In model-theoretic semantics, on the other hand, the interpretations are sim-
ply mathematical objects that are not constructed at all. Instead there is a relation-
ship between syntax constructs and interpretations that determines which
interpretations are compatible with a document. Generally there are many interpre-
tations that are so compatible, not just one.

Schema vs. Data: XML data models usually make a fundamental distinction
between schema and data. In model-theoretic semantics, both schema and data are
part of a model on which one can perform reasoning.
In this section, we will focus on data model issues related to our discussion on
XML/RDF and model-theoretic issues related to our discussion on RDF/OWL. In
particular, we attempt to reconcile these two perspectives by:

• Presenting a discussion of the underlying data models of both XML and RDF.
Similarities and differences between the XML and RDF data models are also
discussed.

• Presenting an introductory discussion of model-theoretic semantics, including
notions of interpretations and entailments. A small discussion of how model the-
ory can be used to describe the semantics of RDF is presented and pointers to
more detailed specifications of RDF, RDF(S) and OWL are provided.

4.2.1 Data Models

We begin with a discussion on XML data models presented in [55]. The key dis-
tinction between data in XML and data in traditional models is that XML is not rig-
idly structured. In the relational and object-oriented models, every data instance
has a schema, which is separate from and independent of the data. In XML, the
schema exists with the data as tag names. This is consistent with our observation in
Chapter 2, that Semantic Web content would include both data and metadata and
also be self-describing.

 4.2 Two Perspectives: Data Models and Model-Theoretic Semantics 39

For example, in the relational model, a schema might define the relation person
with attribute names name and address, e.g., person(name, address). An instance
of this schema would contain tuples such as ("Smith", "Philadelphia"). The
relation and attribute names are separate from the data and are usually stored in a
database catalog. In XML, the schema information is stored with the data. Struc-
tured values are called elements. Attributes, or element names, are called tags, and
elements may also have attributes whose values are always atomic. For instance,
the following XML is well-formed.

<person>
<name>Smith</name>
<address>Philadelphia</address>

</person>

Thus, XML data is self-describing and can naturally model irregularities that
cannot be modeled by relational or object-oriented data. For example, data items
may have missing elements or multiple occurrences of the same element; elements
may have atomic values in some data items and structured values in others; and
collections of elements can have heterogeneous structures.

Self-describing data has been considered recently in the database research com-
munity. Researchers have found this data to be fundamentally different from rela-
tional or object-oriented data, and called it semi-structured data. Semi-structured
data is motivated by the problems of integrating heterogeneous data sources and
modeling sources such as biological databases, Web data, and structured text docu-
ments, such as SGML and XML. Research on semi-structured data has addressed
data models, query language design, query processing and optimization, schema
languages, and schema extraction. Consider the XML data below.

<patients>
<patient ID="patient1">
 <!-- This is a MGH patient -->
 <lastname>Doe</lastname>
 <firstname>John</firstname>
 <physician><lastname>Kashyap</lastname></physician>
 <hospital><name>Massachusetts General<name></hospital>
</patient>
<patient ID="patient2">
 <!-- This is a BWH patient -->
 <lastname>Doe</lastname>
 <firstname>Jane</firstname>
 <physician><lastname>Bussler</lastname></physician>
 <physician><lastname>Moran</lastname></physician>
 <hospital><name>Brigham and Womens</name></hospital>
</patient>

</patients>

One approach is to view XML data from an “unordered” perspective. The first
record has four elements (one last name and first name, one physician, and one

40 4 Metadata Frameworks

hospital) and the second record has two physicians. The XML document, however,
contains additional information that is not directly relevant to the data itself, such
as the comment at the beginning of the patient elements, the fact that lastname and
firstname precedes physicians, and the fact that the patient with the id “patient1”
precedes the patient with the id “patient2.” This information is not always relevant
to the semantics of the information, which are independent of comments and the
order in which the data values are displayed. We assume that a distinction can be
made between information that is intrinsic to the data and information, such as doc-
ument layout specification, that is not. The unordered model ignores comments and
relative order between elements, but preserves all other essential data. An unor-
dered XML Graph consists of:

• A graph, G, in which each node is represented by a unique string called an object
identifier (OID),

• G’s edges are labeled with element tags,
• G’s nodes are labeled with sets of attribute-value pairs,
• G’s leaves are labeled with one string value, and
• G has a distinguished node called the root.

The example patient data is represented by the XML graph in Figure 4.1.
Attributes are associated with nodes and elements are represented by edge labels.T
he terms node and object interchangeably object identifiers are omitted for clarity.

Fig. 4.1. Unordered XML Graph for example XML data

The data model allows several edges between the same two nodes, but with the
following restriction. A node cannot have two outgoing edges with the same labels
and the same values. Here value means the string value in the case of a leaf node,
or the OID in the case of a non-leaf node. Restated, this condition says that (1)
between any two nodes there can be at most one edge with a given label, and (2) a
node cannot have two leaf children with the same label and the same string value.
It is important to note that XML graphs are not only derived from XML docu-

patient patient

(ID = “patient1”)
(ID = “patient2”)

lastname

firstname
physician

lastname

hospital

name

Doe

John

Kashyap

Massachusetts General

lastname

firstname
physician

lastname

hospital

name

Doe

Jane

Bussler

Brigham and Womens

physician

lastname

Moran

patient patient

(ID = “patient1”)
(ID = “patient2”)

lastname

firstname
physician

lastname

hospital

name

Doe

John

Kashyap

Massachusetts General

lastname

firstname
physician

lastname

hospital

name

Doe

Jane

Bussler

Brigham and Womens

physician

lastname

Moran

 4.2 Two Perspectives: Data Models and Model-Theoretic Semantics 41

ments, but are also generated by queries. An ordered XML graph is an XML graph
in which there is a total order on all nodes in the graph. For graphs constructed
from XML documents a natural order for nodes is their document order. Given a
total order on nodes, we can enforce a local order on the outgoing edges of each
node. The Example data would be represented by the ordered graph in Figure 4.2.
Nodes are labeled with their index (parenthesized integers) in the total node order
and edge labels are labeled with their local order (bracketed integers).

Fig. 4.2. Ordered XML Graph for example data

To support element sharing, XML reserves an attribute of type ID (often called
ID) to specify a unique key for an element. An attribute of type IDREF allows an
element to refer to another element with the designated key, and an attribute of type
IDREFS may refer to multiple elements. In the data model, these attributes are
treated differently from all others. For example, assume attributes ID and physi-
cian have types ID and IDREFS respectively:

<!ATTLIST patient ID ID #REQUIRED>
<!ATTLIST patient treated-by IDREFS #IMPLIED>

For example, in the XML fragment below, the two <patient> elements are the
same as the previous example, and the <physician> element which is refered to
by the treated-by attribute.

<patient ID="patient1" treated-by="physician1">
...
</patient>
<patient ID="patient2" treated-by="physician2 physician3">
. . .
</patient>
<physician ID="physician1">
<lastname>Kashyap</lastname>
</physician>

patient[0] patient[1]

(ID = “patient1”)
(ID = “patient2”)

lastname[0]

firstname[1]
physician[2]

lastname[0]

hospital[3]

name[0]

Doe

John

Kashyap

Massachusetts General

lastname[0]

firstname[1]
physician[2]

lastname[0]

hospital[4]

name[0]

Doe

Jane

Bussler

Brigham and Womens

physician[3]

lastname[0]

Moran

(1)

(2)

(3)

(4)
(5)

(6)

(7)

(8)

(9)

(10)
(11)

(12)

(13)

(14)

(15)

(16)

(17)

patient[0] patient[1]

(ID = “patient1”)
(ID = “patient2”)

lastname[0]

firstname[1]
physician[2]

lastname[0]

hospital[3]

name[0]

Doe

John

Kashyap

Massachusetts General

lastname[0]

firstname[1]
physician[2]

lastname[0]

hospital[4]

name[0]

Doe

Jane

Bussler

Brigham and Womens

physician[3]

lastname[0]

Moran

(1)

(2)

(3)

(4)
(5)

(6)

(7)

(8)

(9)

(10)
(11)

(12)

(13)

(14)

(15)

(16)

(17)

42 4 Metadata Frameworks

<physician ID="physician2">
<lastname>Bussler</lastname>
</physician>
<physician ID="physician3">
<lastname>Moran</lastname>
</physician>

An IDREF attribute is represented by an edge from the referring element to the
referenced element; the edge is labeled by the attribute name. ID attributes are also
treated specially, because they become the node’s OID. The elements above are
represented by the XML graph in Figure 4.3.

Fig. 4.3. Representation of IDREF attributes in an XML graph

We now continue with a description of the basic RDF data model [56], which
consists of three object types:

Resources: All things being described by RDF expressions are called resources.
A resource may be an entire Web page such as the HTML document “http://
www.w3.org/Overview.html”. A resource may be a part of a Web page, e.g., a spe-
cific HTML or XML element within the document source. A resource may further-
more also be a whole collection of pages, e.g., an entire Web site. Finally, a
resource may be an object that is not directly accessible via the Web, e.g., a printed
book. Resources are always named by URIs plus optional anchor IDs. Anything
can have a URI; the extensibility of URIs allows the introduction of identifiers for
any entity imaginable.

Properties: A property is a specific aspect, characteristic, attribute, or relation
used to describe a resource. Each property has a specific meaning, and defines its
permitted values, the types of resources it can describe, and its relationship with
other properties.

Statements: A specific resource together with a named property plus the value
of that property for that resource is an RDF statement. These three individual parts
of a statement are called, respectively, the subject, the predicate, and the object.
The object of a statement (i.e., the property value) can be another resource or it can
be a literal, i.e., a resource (specified by a URI) or a simple string or other primitive
datatype defined by XML.

patient
patient

lastname

firstname

physician

lastname
Doe

John Kashyap

lastname

firstname

physician

lastname

Doe Jane
Bussler

physician

lastname

Moran

treated-by

treated-by

treated-by

patient
patient

lastname

firstname

physician

lastname
Doe

John Kashyap

lastname

firstname

physician

lastname

Doe Jane
Bussler

physician

lastname

Moran

treated-by

treated-by

treated-by

 4.2 Two Perspectives: Data Models and Model-Theoretic Semantics 43

Resources and properties are identified by URIs or uniform resource identifiers.
For the purposes of this section, properties will be referred to by a simple name.
Consider the simple sentence based on the example presented earlier: The name of
“patient1” is “John Doe”. This sentence has the following parts:

• Subject (Resource): http://www.hospital.org/Patients/patient1
• Predicate (Property): Name
• Object (literal): “John Doe”

and is illustrated diagrammatically as follows:

The direction of the arrow is important. The arc always starts at the subject and
points to the object of the statement. The simple diagram above may also be read
“http://www.hospital.org/Patients/patient1 has name John Doe”, or in general
“<subject> HAS <predicate> <object>”. It is important to note that the RDF
representation of a patient requires all resources (patients in this case) to be
assigned a URI.

Now, consider the case where we want to say something about the physician of
this resource. The individual whose name is Kashyap, email <kashyap@hospi-
tal.org>, treats (or the patient is treated by) http://www.hospital.org/Patients/
patient1. The intention of this sentence is to make the value of the treated-by prop-
erty a structured entity. In RDF such an entity is represented as another resource.
The sentence above does not give a name to that resource; it is anonymous, so in
the diagram, it is represented as an anonymous or empty node:

This diagram could be read “http://www.hospital.org/Patients/patient1” is
treated by someone and someone has name Kashyap and email “kashyap@hospi-
tal.org”. The structured entity above can also be assigned a unique URI leading to
the following two sentences. This can be expressed using two sentences: The indi-
vidual referred to by http://www.hospital.org/Physicians/physician1 is named
Kashyap and has the email address kashyap@hospital.org. The patient http://
www.hospital.org/Patients/patient1 was treated by this individual. The RDF model
for these sentences is:

http://www.hospital.org/Patients/patient1 John Doe
Name

http://www.hospital.org/Patients/patient1 John Doe
Name

http://www.hospital.org/Patients/patient1
treated-by

Kashyap kashyap@hospital.org

Name Email

http://www.hospital.org/Patients/patient1
treated-by

Kashyap kashyap@hospital.org

Name Email

44 4 Metadata Frameworks

An important design consideration that emerges here is that it might be advanta-
geous to assign URIs to structured entities as opposed to modeling them as anony-
mous or empty nodes. In the context of data integration, there URIs can be
instrumental in identifying similar (sameAs) nodes and merging RDF graphs. This
would not be possible with anonymous nodes. RDF defines three types of con-
tainer objects:

Bag: An unordered list of resources or literals. Bags are used to declare that a
property has multiple values and that there is no significance to the order in which
the values are given. Bag might be used to give a list of patient medications, where
the order of medications does not matter. Duplicate values are permitted.

Sequence: An ordered list of resources or literals. Sequence is used to declare
that a property has multiple values and that the order of the values is significant.
Sequence might be used, for example, to show the trend of blood pressure values
of a patient over time. Duplicate values are permitted.

Alternative: A list of resources or literals that represent alternatives for the (sin-
gle) value of a property. Alterntives might be use for example to provide the An
application using a property whose value is an Alternative collection is aware that
it can choose any one of the items in the list as appropriate.

RDF uses the type property, defined below, is used to make a declaration that
the resource is one of the container object types defined above. The membership
relation between this container resource and the resources that belong in the collec-
tion is defined by a set of properties defined expressly for this purpose. These
membership properties are named simply “_1”, “_2”, “_3”, etc. Container
resources may have other properties in addition to the membership properties and
the type property. For example, to represent the sentence The medical conditions
which patient1 suffers from are “Diabetes Mellitus”, “Coronary Artery Disease”
and “Hypertensions”, the RDF model is

http://www.hospital.org/Patients/patient1

treated-by
Kashyap

kashyap@hospital.org

Name

Email

http://www.hospital.org/Physicians/physician1

http://www.hospital.org/Patients/patient1

treated-by
Kashyap

kashyap@hospital.org

Name

Email

http://www.hospital.org/Physicians/physician1http://www.hospital.org/Physicians/physician1

 4.2 Two Perspectives: Data Models and Model-Theoretic Semantics 45

RDF can also be used for making statements about other RDF statements. In
order to make a statement about another statement, an RDF model of the original
statement is built; this model is a new resource to which we can attach additional
properties. Consider the following sentence Kashyap says that John Doe suffers
from Diabetes Mellitus. Nothing has been said about the patient, instead, a fact
about a statement the physician Kashyap makes about the patient has made has
been expressed. The original statement is modeled as a resource with four proper-
ties: subject, object, predicate and type. This process is formally called reification
and the model of a statement is called a reified statement. To model the example
above, we could attach another property to the reified statement (say, “attribut-
edTo”) with an appropriate value (in this case, “Kashyap”). The RDF model asso-
ciated with this statement is presented below:

The RDF Data Model is formally defined as follows:

• There is a set called Resources.
• There is a set called Literals.
• There is a subset of Resources called Properties, for e.g., rdf:type

http://www.hospital.org/Patients/patient1

has-condition
rdf:Bag

Diabetes Mellitus

rdf:type

rdf:_1

Coronary Artery Disease

Hypertension

rdf:_2

rdf:_3

http://www.hospital.org/Patients/patient1

has-condition
rdf:Bag

Diabetes Mellitus

rdf:type

rdf:_1

Coronary Artery Disease

Hypertension

rdf:_2

rdf:_3

http://www.hospital.org/Patients/patient1

rdf:subject rdf:Statement

Diabetes Mellitus

rdf:type

rdf:object

Kashyap

attributed-to

s:has-condition

rdf:predicate

http://www.hospital.org/Patients/patient1http://www.hospital.org/Patients/patient1

rdf:subject rdf:Statement

Diabetes Mellitus

rdf:type

rdf:object

Kashyap

attributed-to

s:has-conditions:has-condition

rdf:predicate

46 4 Metadata Frameworks

• There is a set called Statements, each element of which is a triple of the form
{pred, sub, obj}, where pred is a Property; sub is a Resource; and obj could be
either a Resource or a Literal.

• The set of collections are identified by specially designated resources such as
rdf:Bag, rdf:Sequence and rdf:Alt.

Reification may be formally specified as follows:

• rdf:Statement is a Resources
• rdf:Predicate, rdf:Subject and rdf:Object are properties used in the reified

model.
• Reification of a triple r, {pred, sub, obj} consists of elements s1, s2, s3, and s4

of Statements such that
• s1: {rdf:Predicate, r, pred}
• s2: {rdf:Subject, r, subj}
• s3: {rdf:Object, r, obj}
• s4: {rdf:Type, r, rdf:Statement}

There are interesting similarities and differences between the XML and RDF
data models [55] [57]:

• The XML data model structures provide a tree representation (with a horizontal
overlay of IDs and IDREFs) of the XML document and can be accessed by
applications via a functional interface.

• Parsing RDF documents results in an RDF graph structure, similar to the XML
data model, but with a graph instead of a tree. Many RDFS constructs, such as
its subclass property, result in constraints in the semantics, such as requiring that
certain kinds of relationships are transitive. These semantics are missing from
the XML data model.

• The XML data model is strong in capturing positional collections of data since
the children of an XML element are textually ordered. It is weak in capturing
non-positional collections since these would suggest arc labels, absent in XML,
which indicate the role each of the unordered components is playing in the col-
lection.

• The XML data model doesn’t support the distinction of various types of tags
into classes and properties, as in the case of the RDF data model where there is a
clear distinction between resources, classes, properties and values.

OWL is a vocabulary extension of RDF [53]. Thus any RDF graph forms an
OWL Full ontology. OWL Full ontologies can thus include arbitrary RDF content,
which is treated in a manner consistent with its treatment by RDF. OWL assigns an
additional meaning to certain RDF triples. On the other hand, The exchange syntax
for OWL is RDF/XML [58], as specified in the OWL Reference Description [59].
Further, the meaning of an OWL ontology in RDF/XML is determined only from
the RDF graph/ that results from the RDF parsing of the RDF/XML document.
Thus the OWL data model has been defined to be the same as the RDF data model,

 4.2 Two Perspectives: Data Models and Model-Theoretic Semantics 47

with OWL offering a vocabulary that provides enhanced semantic interpretation on
an RDF Graph. We now present a discussion on the role of model theory in
expressing the various interpretations of a data model using mathematical struc-
tures; and the entailments supported by a language.

4.2.2 Multiple Syntaxes for RDF: A Short Note

It should be noted that the RDF data model can be serialized using multiple syn-
taxes. The two possible syntaxes are the XML based syntax and the triples based
syntax. Consider the RDF Graph discussed earlier.

The XML Serialization of the above graph is as follows.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description

rdf:about="http://www.hospital.org/Patients/pateint1">
 <treated-by
 rdf:resource="http://www.hospital.org/Physicians/physican1"/>
</rdf:Description>
<rdf:Description
 rdf:about="http://www.hospital.org/Physicians/physician1">
 <Name>Kashyap</Name>
 <Email>kashyap@hospital.org</Email
</rdf:Description>
</rdf:RDF>

The triples based serialization of the above graph is as follows.

<http://www.hospital.org/Patients/patient1> treated-by
 <http://www.hospital.org/Physicians/physician1> .
<http://www.hospital.org/Physicians/physician1> Name "Kashyap";
 Email kashyap@hospital.org .

We will be adopting the triples syntax for RDF related discussion in the rest of
this chapter.

http://www.hospital.org/Patients/patient1

treated-by
Kashyap

kashyap@hospital.org

Name

Email

http://www.hospital.org/Physicians/physician1

http://www.hospital.org/Patients/patient1

treated-by
Kashyap

kashyap@hospital.org

Name

Email

http://www.hospital.org/Physicians/physician1http://www.hospital.org/Physicians/physician1

48 4 Metadata Frameworks

4.2.3 Model-Theoretic Semantics

Model theory assumes that the language refers to a “world”, and describes the min-
imal conditions that a world must satisfy in order to assign an appropriate meaning
for every expression in the language. A particular world is called an interpretation,
so model theory might be better called 'interpretation theory'. The idea is to provide
an abstract, mathematical account of the properties that any such interpretation
must have, making as few assumptions as possible about its actual nature or intrin-
sic structure, thereby retaining as much generality as possible. The chief utility of a
formal semantic theory is not to provide any deep analysis of the nature of the
things being described by the language or to suggest any particular processing
model, but rather to provide a technical way to determine when inference processes
are valid, i.e., when they preserve truth. This provides the maximal freedom for
implementations while preserving a globally coherent notion of meaning. In a
model-theoretic semantics, there is no one single interpretation or model, but
instead a collection of interpretations or models. These models can be thought of as
the different ways that the world can be and still be compatible with the informa-
tion in the data or document. We begin with an introductory discussion on the
notion of interpretations and entailment in the context of RDF presented in [53].

An interpretation provides just enough information about a possible way the
world might be - a 'possible world' - in order to fix the truth-value (true or false) of
any ground RDF triple. RDF uses two kinds of referring expressions, URI refer-
ences and literals, both of which are treated as logical constants, i.e., as expressions
having a single value. URI references are treated as simply denoting resources and
no further assumptions are made about those resources. An interpretation assigns
meanings to symbols in a particular vocabulary of URI references. Some interpre-
tations may assign special meanings to symbols in a particular namespace, called a
reserved vocabulary. Examples of reserved vocabularies are those associated with
RDF, RDF Schema and OWL. A discussion of interpretations and entailments for
ground RDF graphs is now presented. The interested reader may refer to [53] for a
more detailed exposition.

All interpretations are constructed as being relative to a set of URI references
called the vocabulary of the interpretation. A simple interpretation I of a vocabu-
lary V is defined by:
1. A global, non-empty set LV of literal values.
2. A mapping XL from the set of literals to LV.
3. A non-empty set IR of resources, called the domain or universe of I.
4. A subset IP of IR , called the set of properties of I.
5. A mapping IEXT: IP => P(IR x (IR U LV)), where P stands for powerset.

IEXT(x) is a set of pairs, i.e., a binary relational extension called the extension
of x.

6. A mapping IS: V => IR.

 4.2 Two Perspectives: Data Models and Model-Theoretic Semantics 49

The denotation of a ground RDF graph in I is given recursively by the following
rules, which extend the interpretation mapping I from names to ground graphs.

• If E is a literal, then I(E) = XL(E)
• If E is a URI Reference, then I(E) = IS(E)
• If E is an asserted triple s p o. then I(E) = true if <I(s), I(o)> is in IEXT(I(p)),

otherwise I(E) = false.
• If E is a ground RDF graph then I(E) = false if I(E’) = false for some asserted

triple E’ in E, otherwise I(E) =true.

Consider a small vocabulary {a, b, c}. An interpretation of this vocabulary can
be specified as follows and is illustrated in Figure 4.4.

IR = {Thing1, Thing2}, IP = {Thing1},
where Thing1, Thing2 are things in the universe.
IEXT = Thing1 => {<Thing1, Thing2>, <Thing2, Thing1>}
IS = a => Thing1, b => Thing1, c => Thing2

Fig. 4.4. An example of an Interpretation

Based on the above interpretation, the following triples are true:
a b c .
c a a .
c b a .

50 4 Metadata Frameworks

I(a b c .) = true if <I(a),I(c)> is in IEXT(I(b)), i.e. if <Thing1,Thing2> is in
IEXT(Thing1), which is {<Thing1,Thing2>,<Thing2,Thing1>}
So I(a b c .) is true)

The following triples are false:
a c b .
a b b .
c a c .

I(a c b .) = true if <I(a),I(b)>, i.e.<Thing1,Thing2>, is in IEXT(I(c)); but I(c) =
Thing2 and IEXT is not defined on Thing2
The condition fails and I(a c b .) = false.)

We say that I satisfies E if I(E)=true, and that a set S of expressions (simply)
entails E if every interpretation which satisfies every member of S also satisfies E.
If {E} entails E’ we will say that E entails E’. Any process or technique which con-
structs a graph E from some other graphs S is said to be (simply) valid iff S always
entails E, otherwise invalid. It may be noted that being an invalid process does not
mean that the conclusion is false, and being valid does not guarantee truth. How-
ever, validity represents the best guarantee that any assertional language can offer:
if given true inputs, it will never draw a false conclusion from them. Simple entail-
ment can be recognized by relatively simple syntactic comparisons. The two basic
forms of simply valid proof step in RDF are, in logical terms, the inference from (P
and Q) to P, and the inference from (foo baz) to (exists (?x) (foo ?x)) . Some exam-
ples of entailments are:

• If E is ground, then I satisfies E iff it satisfies every triple in E
• If E and E’ are ground, then E entails E’ iff E’ is a subgraph of E
• The merge of a set of RDF graphs S is entailed by S, and entails every member

of S
• S entails E iff a subgraph of the merge of S is an instance of E.

In this section, we have presented a small introduction to the notion of model-
theoretic interpretations and entailments. These techniques provide a mathematical
basis for specifying the semantics of various metadata representation languages
and can be used by tool developers and implementers to validate and their imple-
mentations. There has been significant work done for specifying the semantics for
various semantic web languages. The interested reader can peruse the following
efforts:

• A detailed exposition of model-theoretic semantics for RDF and RDF(S) is pre-
sented in [53].

• A detailed presentation of an RDF compatible Model-Theoretic sematnics fow
OWL is presented in [60]. This also includes intepretation for constructors for
OWL classes that and relationships that hold between classes (e.g., subclass).

• An interesting approach presented in [52] that presents model-theoretic interpre-
tations of XML data. In particular, this apporach deals with ordering informa-
tion, which is not usually part of RDF semantics, but it is important to capture

 4.3 Query Languages 51

document order in XML documents. Additional conditions for an interpretation
to be an RDF interpretation are also specified.

• A detailed discussion of the interpretation of RDF Schema (presented in Chap-
ter 5) is presented in [53].

4.3 Query Languages

In the previous section, we discussed data models and semantics for various XML/
RDF- and OWL-based specifications that are being proposed and to a limited
extent in use for representing metadata descriptions. We now discuss query lan-
guages that have been proposed for manipulating these metadata descriptions.

4.3.1 Query Languages for XML Data

There have been various query language proposals for manipulating XML data,
such as Lorel [62], XML-QL [55], XML-GL [63], XQBE [386], XSLT [65], XQL
[66] and XQuery [64]. We first discuss these proposals in the context of a compar-
ative survey presented in [61] and then present XQuery, the W3C Recommenda-
tion in more detail.

XML Query Languages: A Historical Perspective and Comparative Analysis

We present a historical perspective on the development of query languages for
semi-structured data. For the reader interested in understanding Semantic Web
technologies and specifications and their application to real-world problems, an
understanding of the development and evolution of query languages for XML (and
later RDF) is important. We begin by first discussing some examples of query lan-
guages:

• Lorel: Lorel is a SQL/OQL style language for querying semi-structured data,
extended to XML data. It supports type coercion and powerful path expressions.

• XML-QL: XML-QL supports specification of both queries and transforma-
tions. It extends SQL with an explicit CONSTRUCT clause and uses element
patterns built on top of XML syntax for matching data in an XML document.

• XML-GL: XML-GL is a graphical query language relying on a graphical repre-
sentation of XML documents and is aimed at supporting a user-friendly inter-
face similar to Query By Example (QBE).

• XSLT: An XSLT style sheet consists of a collection of template rules; each tem-
plate rule has two parts: a pattern which is matched against nodes in the source
tree and a template which is instantiated to form part of the result tree. XSLT
makes use of the expression language defined by XPath [67].

52 4 Metadata Frameworks

• XQL: XQL is a notation for selecting and extracting XML data, and is designed
with the goal of being syntactically simple and compact with reduced expressive
power.

• XBQE: This is an enhanced version of XML-GL specifically targeted to be a
suitable visual interface for XQuery.

• XQuery: XQuery is a W3C Candidate Recommendation for querying XML
data. It assembles many features from previously defined languages such as: (a)
syntax for navigation in hierarchical documents from XPath and XQL, (b) vari-
able bindings from XML-QL, (c) combination of clauses from SQL, and (d) a
functional language from OQL.

We now present a summary of the comparison of the query languages discussed
above. A more detailed analysis is available in [61]:

Data Model Representation: All the languages assume a tree-based data
model. Lorel, XML-QL, XML-GL and XQuery assume cross-links, whereas
XBQE also assumes explicit joins between attribute values. Lorel and XQuery dif-
ferentially interpret IDREFs as strings and references, whereas the others interpret
IDREFs as strings only. XQuery and XBQE are highly compatible with existing
W3C standards such as XQuery and XPath data model and XML Schema.

Basic Query Abstractions: All the query languages support document selec-
tion. Full fledged joins including intra-document, inter-document, inner and outer
joins are supported by all languages, except for XQL which supports it partially.
All the languages except XML-QL and XBQE support an explicit operator or func-
tion to dereference IDREFs. XBQE supports IDREF dereferencing via specifica-
tion of explicit joins. Only Lorel supports the ability to define views on the data.

Path Expressions: All languages, except XML-GL support partially specified
path expressions which makes it easy to query semi-structured data, especially
when the extract structure is not known. XML-GL has partial support for this fea-
ture. Only Lorel, XML-GL and XBQE support matching of partially specified path
expressions with cylic data.

Quantification, Negation, Reduction and Filtering: All languages support
existential quantification, whereas universal quantification is supported only by
Lorel, XQL and XQuery. Negations are supported by all languages except XML-
QL and XBQE, which supports it partially. Reduction or the ability to prune ele-
ments from the final result are supported only by XSLT and XBQE. Ad hoc opera-
tors for filtering, i.e., the ability to retain specific elements while preserving
hierarchy and sequence are supported by XBQE and XQuery, and partially by
XSLT.

Restructuring Abstractions: Construction mechanisms to build new XML
data are supported by all languages excpet XQL. Grouping constructs are sup-
ported by Lorel and XQL and partially by XSLT. XBQE and XQuery support
grouping partially through restructuring. Skolem functions that generate unique
OIDs are supported by Lorel, XML-QL and XQuery. XBQE and XML-GL par-
tially support skolem functions.

 4.3 Query Languages 53

Aggregation, Nesting and Set Operations: Aggregation functions that a scalar
value out of a multiset of values are supported by all languages except XML-QL.
XSLT and XQL partially support aggregation functions. Nested queries are sup-
ported by all languages except XML-GL and XBQE that supports it partially. Set
operations are supported by Lorel, XSLT, XQL and XQuery. Set operations are
partiallyby XML-QL and XBQE supports only intersection explicitly.

Order Management: Support for ordering of element instances is supported by
all languages excetp XQL. All languages support the preserving the order of the
result based on the order they appear in the original document. The ability query
the order of elements is supported by all languages except XML-GL and XBQE.
The ability to ask for numbered instances of XML elements is supported by Lorel,
XSLT, XQL and XQuery.

Typing and Extensibility: The ability to embed specialized types in an XML
query language is supported only XQuery and to a partial extent, Lorel. Type coer-
cion and the ability to compare values with different type constructors is supported
by Lorel, XQL and XQuery. Support for built-in, user-defined and external func-
tions is partially available in all languages except Lorel which lacks support.

Integration with XML: None of the languages provide support for RDF, OWL,
XLink and XPointer. All languages excetp Lorel, XML-GL and XBQE support
XML namespaces. XML-QL has partial support for XML namespaces. The ability
to query tag names rather than tag content are supported by all languages except
XML-GL, XQL and XBQE.

Update Support: The ability to update XML elements and attributes is sup-
poted by all languages except XML-QL, XQL and XQuery.

The query languages can be organized into the following three classes:
1. Core Query Languages: XQL and XML-QL are representative of this class,

playing the same role as core SQL standards and languages in the relational
world. Their expressive power is included within thst of XSLT.

2. Graphic Query Interfaces: XML-GL and XQBE are representative of this
class, playing the same role as QBE in the relational world. It can suitably be
adopted as a front-end to any of these query languages to express a comprehen-
sive class of queries (a subset of them in the case of more powerful languages).

3. Expressive XML Query Languages: XQuery, Lorel and XSLT are representa-
tive of this class, playing the same role as high-level SQL standards and lan-
guages (e.g., SQL2 in the relational world). Lorel is strongly object-oriented
while XQuery can be considered value-oriented. XQuery is a promising expres-
sive query language that realizes its potentiality by incorporating the experience
of XPath and XQL on the one hand, and of SQL/ OQL and XML-QL on the
other. The third language of this class, XSLT, covers a lower position in the tax-
onomy, being less powerful than the previous two. It is a style sheet language
with a fairly procedural tendency as opposed to Lorel, which can be considered
completely declarative, and to XQuery, which blends the declarative and proce-
dural flavor.

54 4 Metadata Frameworks

The XQuery Query Language for XML Data

XQuery is a W3C Recommendation [64] designed by the XML Query Working
Group. XQuery is a functional language comprised of several kinds of expressions
that can be nested and composed with full generality. It is based on the type system
of XML Schema and is designed to be compatible with other XML-related stan-
dards. The design of XQuery has been subject to a number of influences, the most
important perhaps being compatibility with existing W3C standards, including
XML Schema, XSLT, XPath, and XML itself. XPath, in particular, is so important
and so closely related that XQuery is defined as a superset of XPath. The overall
design of XQuery is based on a language proposal called Quilt [71], which in turn
was influenced by the functional approach of Object Query Language (OQL) [72],
by the syntax of Structured Query Language (SQL) [73], and by previous XML
query language proposals including XQL [66], XML-QL [55], and Lorel [62]. We
now discuss the XQuery language based on the overview and examples presented
in [70].

Consider a small XML database that that contains data from an Electronic
Health Record (EHR) system. The database consists of two XML documents
named patients.xml and lab-results.xml. The patients.xml document con-
tains a root element named patients, which in turn contains a patient element for
each patient in the EHR system. Each patient element has a status attribute and
subelements named patient-id, name, sex, and age. The lab-results.xml docu-
ment contains a root element named lab-results, which in turn contains a lab-
result element for each laboratory result that has been received from a patient. Each
lab-result element has subelements named patient-id, lab-test, and
sequenced-gene. The XML Graph for the sample data is illustrated in Figure 4.5

Expressions

XQuery is a functional language, which means that it is made up of expressions
that return values and do not have side effects. XQuery has several kinds of expres-
sions, most of which are composed from lower-level expressions, combined by
operators or keywords. XQuery expressions are fully composable, that is, where an
expression is expected, any kind of expression may be used. The value of an
expression, in general, is a heterogeneous sequence of nodes and atomic values.

 4.3 Query Languages 55

Fig. 4.5. XML Graph corresponding to example Data

Primary Expressions. The simplest kind of XQuery expression is a literal,
which represents an atomic value which may be of type integer, decimal, real,
double and string. Atomic values of other types may be created by calling con-
structors. A constructor is a function that creates a value of a particular type from a
string containing a lexical representation of the desired type. For example in order
to create a value of type date, one may invoke the constructor date("2008-5-31").
A variable in XQuery is a name that begins with a dollar sign. A variable may be
bound to a value and used in an expression to represent that value. One way of
binding a value to a variable is by using the LET expression, for e.g., let $start
:= 1. Parentheses may be used to enforce a particular evaluation order in expres-
sions that contain multiple operators. For example, the expression (2 + 4) * 5
evaluates to thirty, since the parenthesized expression (2 + 4) is evaluated first
and its result is multiplied by five. A context item expression is a XQuery exprees-
sion that evaluates to the context item, which may be either a node (as in the
expression fn:doc("patients.xml")/patients/patient[fn:count(./age)=1])
or an atomic value (as in the expression (1 to 100)[. mod 5 eq 0]).Another sim-
ple form of XQuery expression is a function call. For example, the core library
function substring to extract the first six characters from a string can be invoked as
substring("Martha Washington", 1, 6).

lab-result lab-result

patient-id

lab-test sequenced-genepatient1

Molecular
Diagnostic

MYH7

patient-id

lab-test sequenced-genepatient2

Molecular
Diagnostic

TNN2

patient patient
(status = admitted)

patient-id

name sex agepatient1

John Doe Male 42

(status = discharged)

patient-id

name sex agepatient2

Jane Doe Female 38

patients
patients.xml

lab-results
lab-results.xml

lab-result lab-result

patient-id

lab-test sequenced-genepatient1

Molecular
Diagnostic

MYH7

patient-id

lab-test sequenced-genepatient2

Molecular
Diagnostic

TNN2

patient patient
(status = admitted)

patient-id

name sex agepatient1

John Doe Male 42

(status = discharged)

patient-id

name sex agepatient2

Jane Doe Female 38

patients
patients.xml

lab-results
lab-results.xml

56 4 Metadata Frameworks

Path Expressions. A path expression, used to locate nodes in a document, con-
sists of a series of steps, separated by “/” or “//”, and optionally beginning with a
“/” or “//”. An initial “/” or “//” is an abbreviation for one or more initial steps
that are implicitly added to the beginning of the path expression. A step generates a
sequence of items, and then filters the sequence with zero or more predicates. A
step may either be an axis step or a filter expression. An axis step returns a
sequence of nodes reachable from a context node along an axis (e.g., child/des-
candant or parent/ancestor) and satisfies a node test (e.g., type of node such as
text or element). The value of the path expression is the node sequence that
results from the last step in the path.

In XQuery, a predicate is an expression, enclosed in square brackets, that is used
to filter a sequence of values. Predicates are often used in the steps of a path
expression. For example, in the step patient[name = "John Doe"], the phrase
name = "John Doe" is a predicate that is used to select certain item nodes and dis-
card others. For each item in the input sequence, the result of the predicate expres-
sion is coerced to an xs:boolean value, called the predicate truth value. Those
items for which the predicate truth value is true are retained, and those for which
the predicate truth value is false are discarded. If the predicate expression evalu-
ates to a number, the candidate item is selected if its ordinal position in the list of
candidate items is equal to the number. For example patient[2] selects the sec-
ond child of a given node. Predicates can be used to test the existence of nodes. For
example, patient[height] selects patient nodes that have a height child node,
regardless of its value. Common comparison operators used in predicates are dis-
cussed later in this section. Consider the following examples of path expressions:

• List the age of all the patients with the name “John Doe”.
fn:doc("patients.xml")/*/patient[name = "John Doe"]/age
Q1 illustrates a four-step path expression using abbreviated syntax. The first
step invokes the built-in document function, which returns the document node
for the document named patients.xml. The second step is an axis step that
finds all children of the document node (“*” selects all the children of a node,
which in this case is only a single element node named items). The third step
finds all child elements at the next level that are named patient and that in turn
have a child called name with the value “John Doe”. The result of the third step
is a sequence of patient element nodes. Each of these patient nodes is used in
turn as the context node for the fourth step, which finds the age elements that
are children of the given item.

• List all name elements found in the document patients.xml.
fn:doc("patients.xml")//name
When two steps are separated by a double slash rather than by a single slash, it
means that the second step may traverse multiple levels of the hierarchy, using
the descendants axis rather than the single-level child axis. For example, Q2
searches for name elements that are descendants of the root node of a given doc-
ument. The result of Q2 is a sequence of element nodes that could, in principle,
have been found at various levels of the node hierarchy.

 4.3 Query Languages 57

• Find the status attribute of the patient that is the parent of a given name.
$name/../@status
Within a path expression, a single dot (“ . ”) refers to the context node, and two
consecutive dots (“..”) refer to the parent of the context node. This is illustrated
by Q3, which begins at the node that is bound to the variable $name, traverses to
the parent patient node, and then traverses the attribute to find an attribute
named status. The result of Q3 is a single attribute node.

Sequence Expressions. XQuery supports operators to construct, filter, and
combine sequences of items. Sequences in XQuery are never nested as nested
sequences are flattened out. Sequences can be constructed using the comma opera-
tor (e.g., (1, 2, 3)) and range expressions (e.g., 1 to 3). A filter expression con-
sists of a primary expression followed by one or more predicates (e.g.,
patient[age > 65]). XQuery provides the union, intersect and except operators
for combining sequences of nodes. The union operator takes two node sequences
as operands and return a sequence containing all the nodes that occur in either of
the operands. The intersect operator takes two node sequences as operands and
returns a sequence containing all the nodes that occur in both operands. The except
operator takes two node sequences as operands and returns a sequence containing
all the nodes that occur in the first operand but not in the second operand. Dupli-
cate nodes are eliminated based on node identity. Consider the following query:
Construct a new element named elderly male patients, containing copies of all the
patient elements in the document patients.xml that have age > 65 and sex as Male.

<elderly-male-patients>
 fn:doc("patients.xml")
 /*/patient[age > 65]
 intersect
 fn:doc("patients.xml")
 /*/patient[sex = "Male"]
</elderly-male-patients>

Arithmetic Expressions. XQuery provides arithmetic operators for addition,
subtraction, multiplication, division, and modulus, in their usual binary and unary
forms. A subtraction operator must be preceded by white space if it could other-
wise be interpreted as part of the previous token. For example, a-b will be inter-
preted as a name, but a - b and a -b will be interpreted as arithmetic expressions.
XQuery supports two division operators named div and idiv. Each of these opera-
tors accepts two operands of any numeric type. For example, $arg1 idiv $arg2 is
equivalent to ($arg1 div $arg2) cast as xs:integer? except for error cases.
An example of a query using an arithmetic expression is as follows.
Given a sequence of patient elements, replace the height and weight subelements
with a new body-mass-index element containing the value of height divided by
weight squared.

for $p in $patients
return

58 4 Metadata Frameworks

 <patient>
 {
 $p/name,

 $p/sex,
 $p/age,

 <body-mass-index>
 {$p/height div ($p/weight * $p/weight)}
 </body-mass-index>
 }
 </patient>

For those patients whose height or weight is missing ($p/height or $p/weight
evaluates to an empty sequence), the generated body-mass-index element will be
empty.

Comparison Expressions. Comparison expressions allow two values to be
compared. XQuery provides three kinds of comparison expressions, called value
comparisons, general comparisons, and node comparisons.

• Value comparison operators: eq, ne, lt, le, gt, ge. These operators can
compare two scalar values, but they raise an error if either operand is a sequence
of length greater than one. If either operand is a node, the value comparison
operator extracts its value before performing the comparison. For example,
patient[age gt 65] selects a patient node if it has exactly one age child node
whose value is greater than 65.

• General comparison operators: =, !=, >, >=, <, <=. These operators can
deal with operands that are sequences, providing implicit “existential” seman-
tics for both operands. Like the value comparison operators, the general com-
parison operators automatically extract values from the nodes. For example,
patient[age > 65] selects a patient node if it has at least one age child node
whose value is greater than 65.

• Node comparison operators: is, <<, >>. These operators compare the identities
of two nodes. For example, $node1 is $node2 is true if the variables $node1
and $node2 are bound to the same node (that is, the node identity is the same for
both variables). A comparison with the << operator returns true if the left oper-
and node precedes the right operand node in document order; otherwise it
returns false. A comparison with the >> operator returns true if the left oper-
and node follows the right operand node in document order; otherwise it returns
false.

Logical Expressions. A logical expression is either an and-expression or an or-
expression. If a logical expression does not raise an error, its value is always one of
the boolean values true or false. In addition to and- and or-expressions, XQuery
provides a function named fn:not that takes a general sequence as parameter and
returns true if the effective boolean value of its parameter is false, and false if the
effective boolean value of its parameter is true. For example, the following predi-
cate selects patient nodes that have exactly one name child element with the value
“John Doe” and also have at least one age child element with any value:

 4.3 Query Languages 59

patient[name eq "John Doe" and age]. The following step uses the not func-
tion with an existence test to find patient nodes that have no age child element:
patient[fn:not(age)].

Constructors. XQuery provides constructors that can create XML structures
within a query. Constructors are provided for element, attribute, document, text,
comment, and processing instruction nodes. Two kinds of constructors are pro-
vided: direct constructors, which use an XML-like notation, and computed con-
structors, which use a notation based on enclosed expressions. For example, the
following expression constructs an element named male-patient containing one
attribute named status and two child elements named patient-id and sex:

<male-patient status = "admitted">
 <patient-id>patient1</patient-id>
 <sex>Male</sex>
</male-patient>

In some cases, the values are evaluated by some expression, which is enclosed
in curly braces. The evaluation is done by the constructor. For example, the values
of status and the sex of the patient are computed and inserted at run time.

<male-patient status = "{$s}">
 <patient-id>patient1</patient-id>
 <sex> {$sex} </sex>
</male-patient>

FLWOR Expressions. XQuery provides a feature called a FLWOR expression
that supports iteration and binding of variables to intermediate results. This kind of
expression is often useful for computing joins between two or more documents and
for restructuring data. The name FLWOR, pronounced “flower”, is suggested by
the keywords for, let, where, order by, and return. The for and let clauses in a
FLWOR expression generate an ordered sequence of tuples of bound variables,
called the tuple stream. The optional where clause serves to filter the tuple stream,
retaining some tuples and discarding others. The optional order by clause can be
used to reorder the tuple stream. The return clause constructs the result of the
FLWOR expression. The return clause is evaluated once for every tuple in the
tuple stream, after filtering by the where clause, using the variable bindings in the
respective tuples. The result of the FLWOR expression is an ordered sequence con-
taining the results of these evaluations, concatenated as if by the comma operator.

The following example of a FLWOR expression includes all of the possible
clauses. The for clause iterates over all the patients in an input document, binding
the variable $p to each department number in turn. For each binding of $p, the let
clause binds variable $lr to all the lab results of the given patient, selected from
another input document. The result of the for and let clauses is a tuple stream in
which each tuple contains a pair of bindings for $p and $lr ($p is bound to a patient
and $lr is bound to a set of lab results of that patient). The where clause filters the
tuple stream by keeping only those binding pairs that represent patients having at

60 4 Metadata Frameworks

least two lab results. The order by clause orders the surviving tuples in descending
order by the number of lab results of the patient. The return clause constructs a
new patient-genes element for each surviving tuple, containing the patient infor-
mation, number of genes and the list of genes sequenced for the patient.
For each patient from whom more than two genes were sequenced, generate a
patient-genes element containing name, sex, age and gene count ordered by the
number of genes sequenced.

for $p in fn:doc("patients.xml")/*/patient
let $lr := fn:doc("lab-results.xml")/*/lab-result[patient-id = $p/
patient-id]
where fn:count ($lr) > 2
order by fn:count ($lr)
return
 <patient-genes>
 {
 $p,
 <gene-count> {count ($lr)} </gene-count>
 for $sg in fn:distinct-values($lr/sequenced-gene)
 return <gene> {$sg} </gene>
 }
</patient-genes>

Conditional Expressions. XQuery supports a conditional expression based on

the keywords if, then, and else. The expression following the if keyword is
called the test expression, and the expressions following the then and else key-
words are called the then-expression and else-expression, respectively. If the effec-
tive boolean value of the test expression is true, the value of the then-expression is
returned. If the effective boolean value of the test expression is false, the value of
the else-expression is returned. Here are some examples of conditional expres-
sions:
if ($widget1/unit-cost < $widget2/unit-cost)
 then $widget1 else $widget2

In the above example, the test expression is a comparison expression.

if ($part/@discounted)
 then $part/wholesale else $part/retail

In the above example, the test expression tests for the existence of an attribute
named discounted, independently of its value.

Quantified Expressions. These expressions support existential and universal
quantification and are always true or false. A quantified expression begins with a
quantifier, which is the keyword some or every, followed by one or more in-clauses
that are used to bind variables, followed by the keyword satisfies and a test
expression. The value of the quantified expression is defined by the following
rules:

 4.3 Query Languages 61

1. If the quantifier is some, the quantified expression is true if at least one evalua-
tion of the test expression has the effective boolean value true; otherwise the
quantified expression is false. This rule implies that, if the in-clauses generate
zero binding tuples, the value of the quantified expression is false.

2. If the quantifier is every, the quantified expression is true if every evaluation
of the test expression has the effective boolean value true; otherwise the quan-
tified expression is false. This rule implies that, if the in-clauses generate zero
binding tuples, the value of the quantified expression is true.
Some examples of quantified expressions are as follows.

every $patient in /patients/patient satisfies $patient/@status

This expression is true if every patient element has a status attribute (regard-
less of the values of these attributes):

some $patient in /patients/patient satisfies
($patient/weight > $patient/height)

This expression is true if at least one patient element has weight greater than
height.

Types

The type system of XQuery consistes of schema types and sequence types.
Sequence types are used to refer to a type in an XQuery expression and describe
the type of an XQuery value, which is always a sequence. A schema type is a type
that is defined using XML Schema facilities. A schema type can be used as a type
annotation on an element or attribute node (unless it is a non-instantiable type in
which case its derived types can be so used). Every schema type is either a complex
type or a simple type; simple types are further subdivided into list types, union
types, and atomic types. Atomic types represent the intersection between the cate-
gories of sequence type and schema type. An atomic type, such as xs:integer or
my:hatsize, is both a sequence type and a schema type.

Predefined Schema Types. These include the built-in schema types in the
namespace http://www.w3.org/2001/XMLSchema, which has the predefined
namespace prefix xs. The schema types in this namespace are defined in XML
Schema and augmented by additional types defined in the XQuery/XPath Data
Model (XDM).

Sequence Types. A sequence type (except the special type empty-sequence())
consists of an item type that constrains the type of each item in the sequence, and a
cardinality that constrains the number of items in the sequence. Apart from the
item type item(), which permits any kind of item, item types divide into node
types (such as element()) and atomic types (such as xs:integer). Item types rep-
resenting element and attribute nodes may specify the required type annotations of
those nodes, in the form of a schema type. Thus the item type element(*,

62 4 Metadata Frameworks

us:address) denotes any element node whose type annotation is (or is derived
from) the schema type named us:address.

4.3.2 Query Languages for RDF Data

There have been various query language proposals for manipulating RDF data,
such as RQL [75], SeRQL [76], TRIPLE [77], RDQL [78], N3 [79] and Versa [80].
We first discuss these proposals in the context of a comparative survey presented in
[81] and then present SPARQL, the W3C Proposed Recommendation in more
detail.

RDF Query Languages: A Historical Perspective and Comparative Analysis

This section is a continuation of the historical perspective on the development of
query languages for semi-structured data, presented in Section 4.3.1. For the reader
interested in understanding Semantic Web technologies and specifications and
their application to real-world problems, an understanding of the development and
evolution of query languages for RDF is important. We begin with a brief descrip-
tion of various query language proposals.

• RQL: RQL is a typed language following a functional approach with an OQL-
like syntax, which supports generalized path expressions featuring variables on
both nodes and edges of the RDF graph. The novelty of RQL lies in its ability to
smoothly combine schema and data querying while exploiting the taxonomies
of labels and multiple classification of resources.

• SeRQL: SeRQL is a light weight yet expressive query and transformation lan-
guage that seeks to address practical concerns. It is loosely based on several
existing languages, most notably RQL, RDQL and N3.

• TRIPLE: Triple denotes both a query and rules language and the actual run-
time system. The language is derived from F-Logic [82]. RDF triples (S,P,O)
are represented as F-Logic expressions S[P->O], which can be nested. Triple
does not distinguish between rules and queries, which are simply headless rules,
where the results are bindings of free variables in the query.

• RDQL: RDQL, a W3C member submission, follows a SQL-like select pattern,
where a from clause is omitted. For example, select ?p where

(?p,<rdfs:label>,"foo") collects all resources with label “foo” in the free
variable p.

• N3: Notation3 (N3) provides a text-based syntax for RDF. Therefore the data
model of N3 conforms to the RDF data model. Additionally, N3 allows us to
define rules that may be used for specifying queries, for example: ?y

rdfs:label "foo" => ?y a :QueryResult.

• Versa: The main building block of Versa is a list of RDF resources. Traversal
operations, which have the form ListExpr - ListExpr -> BoolExpr. return a

 4.3 Query Languages 63

list of all objects of matching triples. For instance, the traversal expression
all() - rdfs:label -> * would return a list containing all labels.

We now present a comparison of these query languages. A detailed discussion is
presented in [81]:

Support for the RDF Data Model: The underlying structure of any RDF docu-
ment is a collection of triples, called the RDF graph. Since the RDF data model is
independent of a concrete serialization syntax, query languages usually do not pro-
vide features for query serialization-specific features, e.g., order of serialization.
RQL is the only language that provides for this support. RDF has a formal seman-
tics which provides a dependable basis for reasoning and entailment about the
meaning of an RDF graph. RQL is partialy compatible with the formal semantics
of RDF, and N3 and TRIPLE support RDF semantics and entailment via custom
rules. Some implementations of SPARQL, e.g., Jena support entailments via rules
engines and ontology-based inferences.

Query Language Properties: The closure property requires that the results of
an operation be elements of the data model, i.e., if the language operates on the
graph data model, the query results would again have to be graphs. SeRQL and N3
have support for closure, whereas SPARQL provides the CONSTRUCT operator
for this purpose. Adequacy is the dual of closure, which requires that all the con-
cepts of the underlying data model be used. SPARQL has support for adequacy.
The mapping of the TRIPLE model to the RDF data model is not lossless and
hence has partial adequacy. Orthogonality requires that all operations be used inde-
pendently of the usage context. Of all languages, RDQL is the one which doesn’t
support orthogonality. Safety requires that a syntactically correct query return a
finite set of results on a finite data-set. Typical concepts that cause query languages
to be unsafe are recursion, negation and built-in functions. RDQL, N3 and Versa
are safe query languages.

Path Expressions: Path expressions are offered in various syntactic forms by
all RDF query languages. Some RDF query languages such as SeRQL and VERSA
support means to deal with irregularities and incomplete information. SPARQL has
support irregularity and incompleteness using the OPTIONAL construct and RQL
has partial support for optionality of variable bindings.

Basic Algebraic Operations: In the relational data model several basic alge-
braic operations are considered, i.e., (i) selection, (ii) projection, (iii) cartesian
product, (iv) set difference and (v) set union. The three basic algebraic operations,
selection, projection, and product, are supported by all the proposed languages
being discussed. Union operations are supported by all languages except RDQL.
Difference is supported by RQL, SeRQL, SPARQL and partially supported by
Versa.

Quantification: An existential predicate over a set of resources is satisfied if at
least one of the values satisfies the predicate. Analogously, a universal predicate is
satisfied if all the values satisfy the predicate. Existential quantification is sup-
ported by all languages as any selection predicate implicitly has existential bind-

64 4 Metadata Frameworks

ings. Universal quantification is supported by RQL, SeRQL, SPARQL and
partially by TRIPLE.

Aggregation and Grouping: Aggregate functions compute a scalar value from
a multiset of values. A special case of aggregation is counting the number of ele-
ments in a set which is supported only by RQL, N3 and Versa. Grouping addition-
ally allows aggregates to be computed on groups of values. None of the compared
query languages allows us to group values as the SQL GROUP BY clause.

Recursion: Recursive queries typically occur in scenarios where the underlying
relationship is transitive in nature. The denotation of a property has to be given in
queries as symmetric or transitive relationships are not natively supported in RDF.
There is support for transitivity and recursion in TRIPLE and N3 via rules and in
Versa via the “traverse” operator.

Reification: Reification is a unique feature of RDF, which allows treating RDF
statements as resources themselves, such that statements can be made about state-
ments. Reification is supported to some extent by all languages except N3 and
SPARQL?

Collections and Containers: RDF allows us to define groups of entities using
collections (a closed group of entities) and containers. All the proposed languages
being investigated partially support the ability to retrieve these collection and their
elements along with order information.

Namespaces: Given a set of resources, it might be interesting to query all values
of properties from a certain namespace or a namespace with a certain pattern. Pat-
tern matching on namespaces is particularly useful for versioned RDF data, as
many versioning schemes rely on the namespace to encode version information.
All query languages other than TRIPLE and Versa support this feature. RDQL has
partial support for this feature.

Literals and Datatypes: RDF supports the type system of XML Schema to cre-
ate typed literals. An RDF query language should support XML Schema datatypes.
A datatype consists of a lexical space, a value space and lexical-to-value mapping.
All languages have support for the lexical space, whereas only RQL, SeRQL have
support for the value space. RDQL has partial support for the value space.

Entailment: The RDF Schema vocabulary supports the entailment of implicit
information such as use of subclass, domain and range relationships. All languages
except Versa, support entailment to varying degrees.

Desired Properties: Many of the existing proposals support very little function-
ality for grouping and aggregation. Surprisingly, except for Versa and SPARQL, no
language is capable to do sorting and ordering on the output. Due to the semi-struc-
tured nature of RDF, support for optional matches is crucial in any RDF query lan-
guage and should be supported with a dedicated syntax as in SPARQL. Overall, the
languages' support for RDF-specific features like containers, collections, XML
Schema datatypes, and reification is quite poor. Since these are features of the data
model, the degree of adequacy among the languages is low.

 4.3 Query Languages 65

The SPARQL Query Language for RDF Data

SPARQL is a W3C Recommendation [83] which consists of three separate specifi-
cations which describe a query language [83], a data access protocol which uses
WSDL 2.0 to define simple HTTP and SOAP protcols for querying remote data-
bases [85], and the XML format [84] in which query results will be returned. In
this Section, we discuss the SPARQL query language, which consists of the fol-
lowing components:

Graph Patterns: These patterns consists of combinations of triple patterns (one
or more of subject, predicate, and object replaced by variables) that help identify a
subset of the RDF graphs which need to be retrieved.

RDF Dataset: Many RDF data stores hold multiple RDF graphs, and record
information about each graph, allowing an application to make queries that involve
information from more than one graph. A SPARQL query is executed against an
RDF dataset which represents such a collection of graphs. There is one graph, the
default graph, which does not have a name, and zero or more named graphs.

Solution Modifiers: Query patterns generate an unordered collection of solu-
tions, which are then treated as a sequence, initially in no specific order. Sequence
modifiers are then applied to create other sequences as appropriate.

Query Form: The last sequence generated after application of the solution
modifiers is used to generate a SPARQL result form based on the Query Form such
as SELECT, CONSTRUCT or ASK.

Consider two RDF data sources, one from an Electronic Medical Record (EMR)
system and another from a Laboratory Information Management System (LIMS).
The RDF graphs view of these data sources are illustrated in Figure 4.6. The EMR
data illustrated on the left hand side consists of a Patient associated to a Person
via the isRelatedTo edge. The Patient has an associated FamilyHistory which
linked by the edge labeled hasFamilyHistory. The FamilyHistory is associated
with a Person through associatedRelative edge and a Disease via the problem
edge. The isRelatedTo edge is reified and the characteristics of the relation such
as the type and degree of the relation are linked by edges with those labels. The
LIMS data illustrated on the right hand side consists of a Patient and the associ-
ated MolecularDiagnosticTestResult linked by the edge labeled hasStruc-
turedTestResult. The test result sequences a Mutation which linked by the edge
labeled identifiesMutation. In some cases, when a gene mutation is found, this
could be indicative of a Disease linked by the edge labeled indicatesDisease.
The indicatesDisease edge is reified and the strength of evidence (linked by
edges labeled evidence1 and evidence2) by which the patient is inferred to be suf-
fering from that disease. We will use this example data to illustrate various aspects
of the SPARQL query language.

Graph Patterns

Graph patterns match against the default graph of an RDF dataset, except for the
RDF Dataset Graph Pattern. The result of a query is the set of all pattern solutions

66 4 Metadata Frameworks

that match the query pattern, giving all the ways a query can match the graph being
queried. Each result is one solution to the query and there may be zero, one or mul-
tiple results to a query.

Fig. 4.6. RDF Graphs corresponding to example data

Basic Graph Pattern. A graph pattern is a set of triple patterns, which are cre-
ated by introducing variables in triples in place of any of subject, predicate and
object positions. The following triple pattern has a subject variable (the variable
?patient), a predicate name and an object variable (the variable ?name).
?patient name ?name

The following query contains a basic graph pattern of two triple patterns, each
of which must match with the same solution for the graph pattern to match. It
retrieves the structured test results for a particular patient “John Doe”.

SELECT ?testResult
WHERE {

 ?patient name "John Doe" .
 ?patient hasSttructuredTestResult ?testResult

 }

In the SPARQL syntax, basic graph patterns are sequences of triple patterns
mixed with value constraints (discussed later). Other graph patterns separate basic
patterns. An example is illustrated below, with a FILTER construct specifying the
value constraint.

{ ?patient age ?age .
 FILTER (?age > 65) .
 ?patient height ?height
}

“Paternal” 1

type degree

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

isRelatedTo

FamilyHistory
(id = URI3)

hasFamilyHistory

“Sudden Death”
problem

EMR Data

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

FamilyHistory
(id = URI3)

“Sudden Death”
problem

associatedRelative

EMR Data

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

hasStructuredTestResult

MYH7 missense Ser532Pro
(id = URI5)

identifiesMutation

Dialated
Cardiomyopathy
(id = URI6)

indicatesDisease

LIMS Data

90%

evidence1

95%

evidence2

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

MYH7 missense Ser532Pro
(id = URI5) Dialated

Cardiomyopathy
(id = URI6)LIMS Data

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

MYH7 missense Ser532Pro
(id = URI5) Dialated

Cardiomyopathy
(id = URI6)LIMS Data

90%

evidence1

95%

evidence2

95%

evidence2

“Paternal” 1

type degree

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

isRelatedTo

FamilyHistory
(id = URI3)

hasFamilyHistory

“Sudden Death”
problem

EMR Data

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

FamilyHistory
(id = URI3)

“Sudden Death”
problem

associatedRelative

EMR Data

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

hasStructuredTestResult

MYH7 missense Ser532Pro
(id = URI5)

identifiesMutation

Dialated
Cardiomyopathy
(id = URI6)

indicatesDisease

LIMS Data

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

hasStructuredTestResult

MYH7 missense Ser532Pro
(id = URI5)

identifiesMutation

Dialated
Cardiomyopathy
(id = URI6)

indicatesDisease

LIMS Data

90%

evidence1

95%

evidence2

95%

evidence2

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

MYH7 missense Ser532Pro
(id = URI5) Dialated

Cardiomyopathy
(id = URI6)LIMS Data

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

MYH7 missense Ser532Pro
(id = URI5) Dialated

Cardiomyopathy
(id = URI6)LIMS Data

90%

evidence1

95%

evidence2

95%

evidence2

 4.3 Query Languages 67

Furthermore, RDF literals can also participate in the pattern-matching process.
The example below illustrates matching integers.

SELECT ?patient
WHERE {

 ?patient ?property 42
 }

The example below illustrates matching a user defined datatype.

SELECT ?patient
WHERE {

?patient ?property "abc"^^<http://example.org/datatype#special-
Datatype>

}

The example below illustrates matching against language tags

SELECT ?disease
WHERE {

 ?testResult indicatesDisease "Diabetes"@en
 }

Group Graph Pattern. A group graph pattern is a set of graph patterns such
that all the patterns match using the same substitution. In a SPARQL query string,
group graph patterns are delimited by curly braces {}. An example of a group
graph pattern is illustrated below.

SELECT ?name ?age ?height ?weight
WHERE {
 ?patient name ?name .
 ?patient age ?age .

 ?patient height ?height .
 ?patient weight ?weight .
 }

Value Constraints. Graph pattern matching creates bindings of variables. It is
possible to further restrict solutions by constraining the allowable bindings of vari-
ables to RDF terms. Value constraints take the form of boolean-valued expressions;
the language also allows application-specific constraints on the values in a solu-
tion. An example of a query using value constraints, which identifies elderly
patients is illustrated below.

SELECT ?name ?age
WHERE {

 ?patient age ?age .
 FILTER (?age > 65) .
 ?patient name ?name .

 }

68 4 Metadata Frameworks

There is a set of functions and operators in SPARQL for constraints. In addition,
there is an extension mechanism to provide access to functions that are not defined
in the SPARQL language. Any potential solution that causes an error condition in a
constraint will not form part of the final results, but does not cause the query to fail.
When matching RDF literals in graph patterns, the datatype lexical-to-value map-
ping may be reflected in the underlying RDF graph, leading to additional matches
where it is known that two literals have the same value. RDF semantics does not
require this of all RDF graphs.

Optional Graph Pattern. Basic graph patterns allow applications to make que-
ries where entire query patterns must match for there to be a solution. For every
solution of the query, every variable is bound to an RDF term in a pattern solution.
However, regular, complete structures cannot be assumed in all RDF graphs and it
is useful to be able to have queries that allow information to be added to the solu-
tion where the information is available, but not to have the solution rejected
because some part of the query pattern does not match. Optional matching provides
this facility; if the optional part does not lead to any solutions, variables can be left
unbound. Optional parts of the graph pattern may be specified syntactically with
the OPTIONAL keyword applied to a graph pattern. This is illustrated in the query
below which retrieves names and ages for a patient where available. If the age of
the patient is not available, then only names are retrieved.

SELECT ?name ?age
WHERE {

 ?patient name ?name .
 OPTIONAL { ?patient age ?age }
 }

Constraints can be specified in an optional graph pattern as follows. In the query
below, if the age of a patient is available, only those ages are retrieved which are
greater than 65.

SELECT ?name ?age
WHERE {

 ?patient name ?name .
 OPTIONAL { ?patient age ?age .
 FILTER (?age > 65) }
 }

Optional patterns can occur inside any group graph pattern, including a group
graph pattern which itself is optional, forming a nested pattern. The outer optional
graph pattern must match for any nested optional pattern to be matched. In the
query below, all patients that have a test result which indicates a disease are identi-
fied and the type of test and disease are returned along with the name of the patient.
In the case where there is no test result associated with a patient, the inner optional
pattern that retrieves the indicated disease is not evaluated.

 4.3 Query Languages 69

SELECT ?name ?test-type ?disease
WHERE {

 ?patient name ?name .
 OPTIONAL { ?patient hasStructuredTestResult ?result .
 ?result testType ?test-type
 OPTIONAL { ?result indicatesDisease ?disease}
 }
 }

Union Graph Pattern. SPARQL provides a means of combining graph patterns
so that one of several alternative graph patterns may match. If more than one of the
alternatives match, all the possible pattern solutions are found. The UNION keyword
is the syntax for pattern alternatives. The query below retrieves all patients who are
minors or seniors.

SELECT ?name
WHERE {

 { ?patient name ?name .
 ?patient age ?age .
 FILTER (?age < 18) }

 UNION
 { ?patient name ?name .
 ?patient age ?age .

 FILTER (?age > 65) }
 }

RDF Dataset Graph Pattern. A SPARQL query is executed against an RDF
dataset which represents such a collection of graphs. Different parts of the query
may be matched against different graphs. When querying a collection of graphs,
the GRAPH keyword is used to match patterns against named graphs. This is by
using either an IRI to select a graph or a variable to range over the IRIs naming
graphs. The query below matches the graph pattern on each of the named graphs in
the dataset and forms solutions which have the src variable bound to IRIs of the
graph being matched. The src variable may bind itself to different RDF graphs,
where for a given patient, these graphs could contain clinical lab tests such as LDL
and HbA1c or could contain the results of molecular diagnostic tests that could
identify gene mutations.

SELECT ?src ?name ?testResult
WHERE
 {
 GRAPH ?src
 { ?patient name "John Doe"
 ?patient hasStructuredTestResult ?testResult
 }
 }

70 4 Metadata Frameworks

RDF Datasets

Many RDF data stores hold multiple RDF graphs, and record information about
each graph, allowing an application to make queries that involve information from
more than one graph. There is one graph, the default graph, which does not have a
name, and zero or more named graphs, each identified by IRI.
An RDF dataset is a set
{ G, (<u1>, G1), (<u2>, G2), . . . (<un>, Gn) }
where G and each Gi are graphs, and each <ui> is an IRI. Each <ui> is distinct. G is
called the default graph. (<ui>, Gi) are called named graphs. There may be no
named graphs. RDF data can be combined by RDF merge [53] of graphs so that the
default graph can be made to include the RDF merge of some or all of the informa-
tion in the named graphs. In the example below, the named graphs contain the same
triples as before. The RDF dataset includes an RDF merge of the named graphs in
the default graph, relabeling blank nodes to keep them distinct. In the example
below, we present a partial representation of the EMR data as the default graph and
a partial representation of the LIMS data as a named graph.

Default graph <http://www.hospital.org/EMR>
URI1 name "X" .
URI1 hasFamilyHistory URI3 .
URI3 problem URI7 .
URI7 name "DialatedCardiomyopathy" .
URI1 isRelatedTo URI2 .
URI3 associatedRelative URI2 .
Named graph: <http://www.laboratory.com/LIMS>
URI1 hasStructuredTestResult URI4 .
URI4 identifiesMutation URI5 .
URI4 indicatesDisease URI6
URI5 name "MYH7" .
URI6 name "Dialated Cardiomyopathy" .

Solution Sequence Modifiers

SPARQL supports the following types of solution sequence modifiers:
Projection modifier. The solution sequence can be transformed into one involv-

ing only a subset of the variables. For each solution in the sequence, a new solution
is formed using a specified selection of the variables. The following example
shows a query to extract just the names of patients.

SELECT ?name
WHERE

{ ?patient name ?name }

Distinct modifier. The solution sequence can be modified by adding the DIS-
TINCT keyword which ensures that every combination of variable bindings (i.e.,
each solution) in the sequence is unique.

 4.3 Query Languages 71

SELECT DISTINCT ?patient-name ?gene-name
WHERE {

 ?patient name ?patient-name
 ?patient hasStructuredTestResult ?test-result
 ?test-result identifiesMutation ?mutation

 ?mutation name ?gene-name}
 }

Order modifier. The ORDER BY clause takes a solution sequence and applies
ordering conditions. An ordering condition can be a variable or a function call. The
direction of ordering is ascending by default. It can be explicitly set to ascending or
descending by enclosing the condition in ASC() or DESC() respectively. If multiple
conditions are given, then they are applied in turn until one gives the indication of
the ordering.

SELECT ?name
WHERE {

 ?patient name ?name
 ?patient age ?age
 }

ORDER BY DESC(?age)

Limit modifier. The LIMIT form puts an upper bound on the number of solu-
tions returned. If the number of actual solutions is greater than the limit, then at
most the limit number of solutions will be returned.

SELECT ?name
WHERE {

 ?patient name ?name
 }

LIMIT 20

Offset modifier. OFFSET causes the solutions generated to start after the speci-
fied number of solutions. An OFFSET of zero has no effect.

SELECT ?name
WHERE {

 ?patient name ?name
 ?patient age ?age

 }
ORDER BY DESC(?age)
LIMIT 5
OFFSET 10

Query Forms

SPARQL supports the following types of Query Forms.

72 4 Metadata Frameworks

Select Form. The SELECT form of results returns the variables directly. The syn-
tax SELECT * is an abbreviation that selects all of the variables.

SELECT ?patient-name ?gene-name
WHERE {

 ?patient name ?patient-name
 ?patient hasStructuredTestResult ?test-result
 ?test-result identifiesMutation ?mutation

 ?mutation name ?mutation-name}
 }

Construct Form. The CONSTRUCT result form returns a single RDF graph speci-
fied by a graph template. The result is an RDF graph formed by taking each query
solution in the solution sequence, substituting for the variables in the graph tem-
plate and combining the triples into a single RDF graph by set union. If any such
instantiation produces a triple containing an unbound variable, or an illegal RDF
construct (such as a literal in subject or predicate position), then that triple is not
included in the output RDF graph. The graph template can contain ground or
explicit triples, that is, triples with no variables, and these also appear in the output
RDF graph returned by the CONSTRUCT query form. Using CONSTRUCT it is possible
to extract parts or the whole of graphs from the target RDF dataset. The access to
the graph can be conditional on other information. The construct query below con-
structs an RDF graph for the patient John Doe which contains all information about
the family history and lab test results retrieved from the EMR and LIMS.

CONSTRUCT { ?s ?p ?o }
FROM <http://www.hospital.org/EMR>
FROM NAMED <http://www.laboratory.com/LIMS>
WHERE {
 GRAPH ?src {
 ?patient ?name "John Doe" .

 ?patient hasFamilyHistory ?family_history .
 ?family_history ?x ?y .
 ?patient hasStructuredTestResult ?test-result .
 ?test-result ?z ?t .
 }
 }

Ask Form. Applications can use the ASK form to test whether or not a query pat-
tern has a solution. No information is returned about the possible query solutions,
just whether the server can find one or not.

ASK {
 ?patient name "John Doe" .
 ?patient age 42
 }

 4.3 Query Languages 73

4.3.3 Extending Query Languages with Reasoning and Entailment

SPARQL has been designed so that its graph matching semantics can be extended
to an arbitrary entailment regime [53]. We present example queries that illustrate
how SPARQL can be extended with different types of entailment based on RDF(S)
and OWL semantics. Consider the example RDF data presented in the previous
section. That RDF data describes a set of patients associated with molecular diag-
nostic test results. The following query identifies all the genes that share the same
function in Gene Ontology (GO) as MYH7.

PREFIX eg: <http://ncbi.nlm.nih.gov/entrezgene#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX go: <http://www.geneontology.org/owl#>
SELECT $gene_symbol $label $evidence
WHERE {

 $input_gene eg:symbol "MYH7" .
 $input_gene eg:label $input_label
 $gene eg:symbol $gene_symbol .
 $gene rdf:type $go .
 $go rdfs:label $label .
 $go rdfs:subClassOf $go1 .
 $go1 eg:label $input_label .
 }

ORDER BY $gene_symbol

The highlighted conditions in the SPARQL query above encode expressions
involving the RDF(S) vocabulary. The SPARQL query supports the associated
semantics and entailment of the $go rdfs:subClassOf $go1 in which all the sub-
classes of the class corresponding to the input label are retrieved. This enables the
identification of genes with functions that are specializations of the functions asso-
ciated with MYH7 in GO. Most SPARQL query processing engines support
RDF(S) natively. An example of a SPARQL query which uses OWL entailments is
presented below. This query helps to identify the genes and physiological pro-
cesses in which the functions of the proteins obtained from the gene are realized by
processes that are either subprocesses or specializations of the Signal Transduction
process.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT ?genename ?processname
WHERE {

 ?gene rdfs:label ?genename
 ?protein rdfs:subClassOf ?protein_superclass .

?protein_superclass owl:equivalentClass ?restriction3 .
 ?restriction3 owl:onProperty gene-product-of
 ?restriction3 owl:hasValue ?gene
 ?protein rdfs:subClassOf ?owlrestriction1
 ?owlrestriction1 owl:onProperty has_function.

74 4 Metadata Frameworks

 ?owlrestriction1 owl:someValuesFrom ?owlrestriction2
 ?owlrestruction2 owl:onProperty realized_as.
 ?owlrestriction2 owl:someValuesFrom ?process.
 { ?process part-of SignalTransductionProcess
 UNION ?process rdfs:subClassOf SignalTransductionProcess }
 ?process rdfs:label ?processname
}

The SPARQL predicates which encode OWL axioms are highlighted in the
query below. The OWL entailment regime is invoked here and can the inferences
that are drawn are compatible with the OWL semantics.

There have been various proposals for OWL based query languages. Among
them are the ASK queries of DIG protocol [400], nRQL queries and the Racer-Pro
system [401]. However, DIG queries are limited to atomic (TBox or RBox or
ABox) queries whereas nRQL supports only conjunctive ABox queries. A more
recent effort is SPARQL-DL [402] which seeks to combine for OWL-DL that can
combine TBox/RBox/ABox queries, the semantics for which is based directly on
the OWL-DL entailment relation. An earlier proposal, OWL-QL [86] has been pro-
posed as a standard for query-answering dialogs among Semantic Web agents
using knowledge represented in the Ontology Web Language (OWL). However it
has not achieved much traction so far.

4.4 Clinical Scenario Revisited

We now revisit the Clinical Scenario discussed in Chapter 2 and discuss how
semantic web based metadata specifications can be used in designing a solution for
the use case scenario. We present an RDF-based representation of the clinical and
genomic data obtained from the EMR and LIMS. We illustrate the use of Semantic
Web infrastructure to ground these descriptions in URIs and also link them to con-
trolled vocabularies prevalent in the healthcare and life sciences industry. Some
example queries are presented and a discussion on the advantages of using a
Semantic Web specification are discussed.

4.4.1 Semantic Web Specifications: LIMS and EMR Data

Consider the RDF graphs illustrated in Figure 4.6, the RDF representations of
these graphs using the triples syntax is as follows:

Available at http://www.hospital.org/EMR
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

URI1 name "X" ;
URI1 isRelatedTo URI2 .

_:stmt1 rdf:type rdf:Statement .

 4.4 Clinical Scenario Revisited 75

_:stmt1 rdf:subject URI1 .
_:stmt1 rdf:predicate related_to .
_:stmt1 rdf:object URI2 .
_:stmt1 type "Paternal"@en .
_:stmt1 degree 1 .

URI1 hasFamilyHistory URI3 .
URI3 associatedRelative URI2 .
URI3 problem URI7 .

URI7 rdf:type skos:Concept .
URI7 skos:preflabel "Sudden Death"@en .
URI7 skos:inScheme URI8 .
URI8 rdf:type skos:ConceptScheme
URI8 dc:title "Systematized Nomenclature of Medicine (SNOMED)" .

Available at http://www.laboratory.com/LIMS
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

URI1 hasStructuredTestResult URI4 .
URI4 identifiesMutation URI5 .
URI4 indicatesDisease URI6

_:stmt2 rdf:type rdf:Statement .
_:stmt2 rdf:subject URI4 .
_:stmt2 rdf:predicate identifiesMutation .
_:stmt2 rdf:object URI6 .
_:stmt2 evidence1 "90%" .
_:stmt2 evidence2 "95%" .

URI5 rdf:type skos:Concept .
URI5 skos:preflabel "MYH7 missense Ser532Pro"@en .
URI5 skos:inScheme URI9 .
URI9 rdf:type skos:ConceptScheme
URI9 dc:title "Human Genome Nomenclature"@en .

URI6 rdf:type skos:Concept .
URI6 skos:preflabel "Dialated Cardiomyopathy"@en .
URI6 skos:inScheme URI10 .
URI10 rdf:type skos:ConceptScheme .
URI10 dc:title "NCI Thesaurus" .

The RDF representations of example EMR and LIMS data above illustrate the
following key features that are enabled by Semantic Web specifications:

• As discussed earlier, one of the key aspects of the RDF specification is the abil-
ity to uniquely identify resources using URIs which are available. In the exam-
ple above, the same URI (e.g., URI1) is used to identify a patient in the EMR and
the LIMS data-set. This is an important feature from the point of view of achiev-
ing web-scale data linkage and integration.

• The ability to “reify” an edge in the RDF graph (e.g., URI1 isRelatedTo URI2)
and attaching additional properties and values (e.g., type and "Paternal").

76 4 Metadata Frameworks

• There are multiple standardized vocabularies in use in the healthcare and life
sciences. Some examples referenced in the above example are NCI Thesaurus,
SNOMED and Human Genome Nomenclature. The Semantic Web specification
through the Simple Knowledge Organization Scheme (SKOS) [403] provides a
standardized way to link to concepts from these standardized vocabularies. For
e.g., the RDF graph refers to a standardized vocabulary code for “Sudden
Death” from the SNOMED controlled vocabulary by using the following RDF
triples.
URI3 problem URI7 .
URI7 rdf:type skos:Concept .
URI7 skos:preflabel "Sudden Death"@en .
URI7 skos:inScheme URI8 .
URI8 rdf:type skos:ConceptScheme
URI8 dc:title "Systematized Nomenclature of Medicine (SNOMED)" .

4.4.2 Linking data from Multiple Data Sources

A critical functionality required as a part of the solution for the clinical scenario is
the ability to combine clinical and genomic data related to a patient. We now
present RDF constructs and SPARQL queries that can enable this integration. As
discussed in the earlier section, uniquely identifying the patient using URIs is a
critical part of enabling this data linking and integration.

A key construct supported in the SPARQL specification is the ability to define a
graph data-set containing a default graph and other default graphs. For instance the
RDF graph describing the EMR data can be specified as a default graph and the
RDF graph describing the LIMS data can be specified as the named graph. An
interesting capability is that these graphs can be distributed and available at differ-
ent URIs as illustrated below.

Default graph <http://www.hospital.org/EMR>
/* ... RDF representation as illustrated in Section 4.4.1 above ... */

Named graph: <http://www.laboratory.com/LIMS>
/* ... RDF representation in Section 4.4.1 above ... */

In order for merging and integrating the data, we need to represent mappings
across the EMR and LIMS data for a given patient. These mappings will be lever-
aged either by a graph merge or by a SPARQL query to achieve data linking and
integration. Consider the merged RDF graph illustrating the integration of clinical
and genomic data as illustrated in Figure 4.7 below.

 4.4 Clinical Scenario Revisited 77

Fig. 4.7. Merged RDF graph combining Clinical and Genomic Data

A default mapping is the ability to match on URIs, a mappping we get for free
by using the Semantic Web infrastructure. The merged graph based on ID matching
is available based on the GraphMerge operation on the Graph Data-Set illustrated
above. However, the merged graph in Figure 4.7 above illustrates two new edges,
suffersFrom and hasMutation which identify the association between the patient
and a disease and gene based on the results of the molecular diagnostic test result.
The mappings required for enabling this are:

• If a structured test result for a patient indicates a disease with higher then 90%
probability, then the patient may suffer from that disease. This can be repre-
sented using SPARQL CONSTRUCT expression as follows:

CONSTRUCT { ?s suffersFrom ?o}
WHERE {
 ?s hasStructuredTestResult ?result .
 ?result indicatesDisease ?o .
 ?stmt rdf:type rdf:Statement .
 ?stmt rdf:subject ?result .
 ?stmt rdf:predicate indicatesDisease .
 ?stmt rdf:object ?o
 ?stmt evidence1 ?evidence_strength
 FILTER (?evidence_strength > 90)
 }

• If the structured test result for a patient indicates a mutation, then the patient has
the mutation is part of the patient’s genome. This can be represented using the
following SPARQL CONSTRUCT expression.

CONSTRUCT { ?s hasMutation ?o}
 WHERE {
 ?s hasStructuredTestResult ?result .
 ?result identifiesMutation ?o .
 }

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

isRelatedTo

FamilyHistory
(id = URI3)

hasFamilyHistory

“Sudden Death”
problem

“Paternal” 1

type degree

associatedRelative

StructuredTestResult

MYH7 missense Ser532Pro
(id = URI5)

identifiesMutation

Dialated
Cardiomyopathy
(id = URI6)

indicatesDisease

90%, 95%

evidence

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

FamilyHistory
(id = URI3)

“Sudden Death”
problem

“Paternal” 1

type degree

(id = URI4)

MYH7 missense Ser532Pro
(id = URI5)

Dialated
Cardiomyopathy
(id = URI6)

hasStructuredTestResult

suffersFrom

has_gene

90%, 95%

evidence

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

isRelatedTo

FamilyHistory
(id = URI3)

hasFamilyHistory

“Sudden Death”
problem

“Paternal” 1

type degree

associatedRelative

StructuredTestResult

MYH7 missense Ser532Pro
(id = URI5)

identifiesMutation

Dialated
Cardiomyopathy
(id = URI6)

indicatesDisease

90%, 95%

evidence

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

FamilyHistory
(id = URI3)

“Sudden Death”
problem

“Paternal” 1

type degree

(id = URI4)

MYH7 missense Ser532Pro
(id = URI5)

Dialated
Cardiomyopathy
(id = URI6)

hasStructuredTestResult

suffersFrom

has_gene

90%, 95%

evidence

78 4 Metadata Frameworks

The merged graph can then be created by appropriately constructing the
SPARQL query, where the CONSTRUCT part will contain the new predicates and the
WHERE clauses can be appropriately combined.

4.4.3 Advantages and Disadvantages of using Semantic Web Specifications

The solution approach proposed above supports an incremental approach for data
integration. Furthermore, the solution leverages the underlying web infrastructure
to uniquely identify resources referred to in RDF graphs. This enables easy linking
and integration of data across multiple RDF data sources, without the need imple-
ment costly data value mapping techniques. The most valuable aspect of this
approach is that it enables a flexible approach to ground data representing in RDF
graphs to concepts in standardized concepts and vocabularies. The SKOS standard
enables the association of semantics with the data in consistent manner. Finally, the
key advantage of semantic web specifications is the ability to specify mapping
rules at the information level using the SPARQL CONSTRUCT expression. The
enables integration and linking at the “information” level in contrast with the cur-
rent state of art with one of java and perl scripts that implement one-off integration
solutions. The externalization and representation of mappings using semantic web
specifications enable re-use and configuration of mappings that can be leveraged to
implement data linking and integration.

4.5 Summary

In this chapter we presented a detailed discussion of three major metadata frame-
works based on the XML, RDF amd OWL specifications. The data models and
query languages of these specifications were presented. An introductory discussion
on model-theoretic semantics was also presented. A comparison of various query
language proposals for XML and RDF data was presented and W3C recommenda-
tions, XQuery and SPARQL were discussed in detail. A solution based on semantic
web specifications to part of the clinical use case scenario was presented along
with a short discusion on the advantages of using semantic web specifications.

5 Ontologies and Schemas

We present a discussion of various ontology and schema-like artifacts used in vari-
ous fields of activity such as library sciences, relational databases, knowledge rep-
resentation and medical informatics. We then discuss languages proposed for
representation of ontologies and schemas such as XML Schema [87], RDF Schema
[88] and OWL [54] and present a comparative evaluation of these languages. The
model-theoretic semantics underlying constructs in RDF Schema and OWL are
also presented. A discussion of various tools for ontology creation and authoring is
presented. This is followed by a discussion of approaches for semi-automatic boot-
strapping and generation of ontologies; ontology matching; and ontology manage-
ment and versioning. Finally, the role of rule-based approaches for representation
and reasoning with ontologies will be presented.

5.1 What is an Ontology?

An ontology has been defined [89] as a specification of a conceptualization con-
sisting of a collection of concepts, properties and interrelationships between con-
cepts that can exist for an agent or a community of agents. From our point of view
an ontology is a set of terms of interest in a particular information domain and the
relationships among them. They can characterize knowledge in an application or
domain-specific manner (domain ontologies) or in a domain-independent manner
(upper ontologies). This set of terms and interrelationships between them can exist
and have been represented in a wide variety of information artifacts such as the-
sauri, database schemas and UML models to name a few. We view all these arti-
facts as “ontologies”, albeit of varying levels of expressiveness.

A Typology of Terminological Systems

Terminological systems may be viewed as examples of rudimentary forms of
ontologies, a typology of which has been proposed in [90]:

• Terminology: List of terms referring to concepts in a particular defined domain.
• Thesaurus: Terms are ordered, e.g., alphabetically, and concepts may be

described by one or more synonymous terms.
• Vocabulary: Concepts have definitions, either formal or in free text.

80 5 Ontologies and Schemas

• Nomenclature: A set of rules for composing new complex objects or the termi-
nological system resulting from this set of composition rules.

• Classification: Concepts are arranged using generic (is_a) relationships.
• Coding Systems: Codes designate concepts.

These term lists can be stored in files or database tables and can be used for var-
ious purposes such as for metadata annotation, for reference terms for use in vari-
ous publications and documents and for information exchange between various
applications. Some terminologies have been used to systematically record patient
data, e.g., choosing a specific code for a patient procedure and for statistical pur-
poses such as estimating the rate of mortality at various hospitals. One of the first
terminological systems, the International Classification of Diseases (ICD) [8] was
developed in order that “the medical terms reported by physicians, medical exam-
iners and coroners on death certificates can be grouped together for statistical pur-
poses”. Based on the typology discussed above, ICD can be typified as a
terminology, a thesaurus, and a classification and coding system. Some other appli-
cations in which these terminologies have been used in the healthcare context are:
clinical documentation in the electronic medical record, clinical decision support,
audit, reporting epidemiology and billing. Figure 5.1 illustrates a portion of the
ICD.

Fig. 5.1. ICD: An example of terminology, thesaurus, classification and coding system

Neoplasms (C00 – D48)
• C00 – C97: Malignant neoplasms

– C00 – C75: Malignant neoplasms, stated or presumed to be primary, of specified site
except lymphoid, haematopoietic and related tissue

• C00 – C14: Lip, oral cavity and pharynx
• C15 – C26: Digestive Organs
• C30 – C39: Respiratory and intrathoracic organs
• C40 – C41: Bone and articular cartilage
• C43 – C44: Skin
• C45 – C49: Mesothelial and soft tissue
• C50: Breast
• C51 – C58: Female genital organs
• C60 – C63: Male genital organs
• C64 – C68: Urinary tract
• C69 – C72: Eye, brain and other parts of the central nervous system
• C73 – C75: Thyroid and other endocrine glands

– C76 – C80: Malignant neoplasms of ill-defined, secondary and unspecified sites
– C81 – C96: Malignant neoplasms, stated or presumed to be primary, of lymphoid,

haematopoietic and related tissue
– C96: Malignant neoplasms of independent (primary) multiple sites

• D00 – D09: In situ neoplasms
• D10 – D36: Benign neoplasms
• D37: Neoplasms of uncertain or unknown behavior

ICD Version 6

 5.1 What is an Ontology? 81

Database Schemas

In most applications, database schemas are used to represent implicitly the infor-
mation model or ontology required by the application. The emphasis of a database
schema is more on providing data persistence for an application and the semantics
of the data are captured in an implicit manner using primary and foreign keys and
functional dependencies. For the purposes of local application requirements, the
limited expressiveness provided by a database schema suffices. For most purposes
a database schema may be viewed as a rudimentary ontology. An example of a
database schema for environmental information is illustrated in Figure 5.2 below.
Primary keys in each of the tables are identified and foreign keys are illustrated
with arrows between the appropriate columns across multiple tables.

Fig. 5.2. Portion of an environmental ontology represented in a database schema

Entity-Relationship (E-R) Models

Entity-Relationship (E-R) models have been used in information systems literature
for representing information models and ontologies. Initial information require-
ments for an application are typically captured as entity-relationship models before
they are mapped to an underlying relational database schema. These models typi-
cally have data semantics represented in a more explicit manner than database
schemas and are more suitable for representing information models and ontologies.
Figure 5.3 illustrates an example of an E-R model representation of the database
schema presented in Figure 5.2 above.

Site
site_id (PK)
site_name
site_ifms_ssid_
code
site_rcra_id
site_epa_id Action

site_id (PK, FK to Site)
rat_code (PK, FK to ref_action_type)
act_code_id (PK)

Ref_action_type
rat_code (PK)
rat_name
rat_def

Ref_action_type
rat_code (PK)
rat_name
rat_def

Waste_Src_Media_Contaminated
wsmrc_nmbr(PK)
site_id (PK, FK to Action)
rat_code (FK to Action)
act_code_id (FK to Action)

Waste_Src_Media_Contaminated
wsmrc_nmbr(PK)
site_id (PK, FK to Action)
rat_code (FK to Action)
act_code_id (FK to Action)

Waste_Src_Media_Contaminated
wsmrc_nmbr(PK)
site_id (PK, FK to Action)
rat_code (FK to Action)
act_code_id (FK to Action)

Remedial_Response
site_id
act_code_id
rat_code

Remedial_Response
site_id
act_code_id
rat_code

82 5 Ontologies and Schemas

Fig. 5.3. Portion of an environmental ontology represented as an E-R model

UML Models

UML models [40] have been typically used to precisely specify functional and
implementation requirements for building software systems. Though not com-
monly, they have also been used to specify information models and ontologies. An
example of a UML representation of the Common Information Model (CIM) pro-
posed by the Distributed Management Task Force is illustrated in Figure 5.4. CIM
provides a common definition of management information for systems, networks,
applications and services, and allows for vendor extensions. CIM’s common defi-
nitions enable vendors to exchange semantically rich management information
between systems throughout the network.

Fig. 5.4. Portion of the Common Information Model represented as a UML model

OWL Ontologies

The Web Ontology Language (OWL) [45] is the W3C Recommendation for repre-
senting ontologies on the Web, a detailed description of which is presented later in
the chapter. It contains specific constructs to represent the domain and range of
properties, subclass and other axioms and constraints on the values that might be

Site

Contaminant

RemedialResponse

actionName

PerformedAt

+Name : string
Named Element

+Value
Qualifier

Property

Class

Method
Trigger

Schema

Reference Association Indication

+Characteristics

1

* 1

+Element Schema

*

+Domain

1
*

+Domain

1
*

1*

+Property Override *
*

*
+Method Override

*

*
+Subtype/Supertype

*

+Range

1

*

*

*

*

*

 5.1 What is an Ontology? 83

assigned to the property of an object. An example of an OWL-based ontology for
Parkinson’s disease is illustrated in Figure 5.5.

First-Order Logic and Higher Order Theories

Ontologies that capture semantics with a high degree of expressiveness are repre-
sented in formalisms that are based on first-order logic. Consider the Biblio-
graphic-data ontology represented using the Knowledge Interchange Format (KIF)
[50]:

Fig. 5.5. An OWL based ontology for Parkinson’s Disease

Periodical-Publication Subclass-Partition: Journal, Magazine, Newspa-
per
(<=> (Subclass-Partition ?C ?Class-Partition)

 (And (Class ?C) (Class-Partition ?Class-Partition)
 (Forall (?Subclass)
 (=> (Member ?Subclass ?Class-Partition)
 (Subclass-Of ?Subclass ?C)))))

The above KIF expression describes the partition of the class Periodical-Pub-
lication into the subclasses Journal, Magazine and Newspaper. Furthermore it
defines the notion of a Subclass-Partition: A class has a subclass partition iff all
members of the partition are each a subclass of the given class.

+rdfs:comment : rdfs:Literal
+rdfs:isDefinedBy : rdfs:Resource
+rdfs:label : rdfs:Literal
+rdfs:seeAlso : rdfs:Resource

rdfs:Resource

owl:Thing

+isCausedBy : AllelicVariant
Disease

+hasMutation : AllelicVariant
+hasVariant : AllelicVariant
+transcribesTo : Dardarin

Gene

+hasPathologicalHallmark : LewyBody
+hasRiskFactor : UCHL-1

ParkinsonsDisease
+isRiskFactorOf : ParkinsonsDisease

UCHL-1

+isPathologicalHallmarkOf : ParkinsonsDisease
LewyBody

84 5 Ontologies and Schemas

Upper Ontologies

An upper ontology (top-level ontology or foundation ontology) is an attempt to
create an ontology which describes very general concepts that are the same across
all domains. The aim is to have a large number on ontologies accessible under this
upper ontology. It is usually a hierarchy of entities and associated rules (both theo-
rems and regulations) that attempts to describe those general entities that do not
belong to a specific problem domain. Two examples of upper ontologies are
DOLCE [92] and BFO [93].

5.2 Ontology Representation Languages

In the previous Section, we discussed various knowledge artifacts that may be
viewed as an ontology. We now discuss the various standards for ontology repre-
sentation on the Web such as XML Schema, RDF Schema, the Web Ontology Lan-
guage (OWL), and the Web Services Modeling Language (WSML).

5.2.1 XML Schema

XML Schema is not an Ontology Representation Language in the conventional
sense of the term. In a manner similar to the broad range of ontology like artifacts
discussed in the previous section, we adopt a broad perspective on an Ontology
Representation Language. At the same time from a usage perspective there has
been significant work in various communities, e.g., healthcare and finance, where
industry standard data and information models have been represented using XML
Schema-based specifications. We present a discussion of XML Schema based on
the running example in this section. Alternative representations based on RDF
Schema, OWL and service oriented representations based on WSML; and compar-
ative pros and cons will be discussed in later sections.

 The purpose of a schema is to define a class of XML documents, and so the
term “instance document” is often used to describe an XML document that con-
forms to a particular schema. In fact, neither instances nor schemas need to exist as
documents per se they may exist as streams of bytes sent between applications, as
fields in a database record, or as collections of XML InfoSet “information items”.
We now present a discussion of XML Schema based on the examples and exposi-
tion in [94]. Consider the example XML document below which shows a patient
and the laboratory tests ordered for him or her.

<?xml version="1.0"?>
<laboratoryTestOrder orderDate="1999-10-20">
 <recipientAddress country="US">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <city>Mill Valley</city>

 5.2 Ontology Representation Languages 85

 <state>CA</state>
 <zip>90952</zip>
 </recipientAddress>
 <payorAddress country="US">
 <name>Robert Smith</name>

 <company>CIGNA</company>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </payorAddress>
 <comment>The bill should be sent to the insurance company and teh
results should be mailed to the patient</comment>
 <panel>
 <test num="872-CL">
 <testName>LDL</testName>
 <quantity>1</quantity>
 <USPrice>148.95</USPrice>
 </test>
 <test num="926-GN">
 <productName>Genes in HCM Panel</productName>
 <quantity>1</quantity>
 <USPrice>500.00</USPrice>
 <shipDate>1999-05-21</shipDate>
 </test>
 </panel>
</laboratoryTestOrder>

The laboratory order consists of a main element, laboratoryTestOrder, and the
subelements recipientAddress, payorAddress, comment, and panel. These
subelements (except comment) in turn contain other subelements, and so on, until a
subelement such as USPrice contains a number rather than any subelements. Ele-
ments that contain subelements or carry attributes are said to have complex types,
whereas elements that contain numbers (or strings or dates) but do not contain any
subelements are said to have simple types. Some elements have attributes;
attributes always have simple types. The complex types in the instance document,
and some of the simple types, are defined in the schema for purchase orders. The
other simple types are defined as part of XML Schema's repertoire of built-in sim-
ple types. The laboratory test order schema is presented below.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Laboratory test order schema for Lab.com.
 Copyright 2000 Lab.com. All rights reserved.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="laboratoryTestOrder"
 type="LaboratoryTestOrderType"/>
 <xsd:element name="comment" type="xsd:string"/>

86 5 Ontologies and Schemas

 <xsd:complexType name="LaboratoryTestOrderType">
 <xsd:sequence>
 <xsd:element name="recipientAddress" type="USAddress"/>
 <xsd:element name="payorAddress" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="panel" type="Panel"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
 </xsd:complexType>
 <xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="company" type="xsd:string" minOccurs
= "0"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country"
 type="xsd:NMTOKEN" fixed="US"/>
 </xsd:complexType>
 <xsd:complexType name="Panel">
 <xsd:sequence>
 <xsd:element name="test" minOccurs="0"
 maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="testName"
 type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction
 base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate"
 type="xsd:date" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="num"
 type="LOINC" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <!-- Unique code for identifying lab tests from the LOINC standard
-->
 <xsd:simpleType name="LOINC">
 <xsd:restriction base="xsd:string">

 5.2 Ontology Representation Languages 87

 <xsd:pattern value="\d{3}-[A-Z]{2}"/>
 </xsd:restriction>

</xsd:simpleType>
</xsd:schema>

Each of the elements in the schema has a prefix xsd: which is associated with
the XML Schema namespace through the declaration, xmlns:xsd="http://
www.w3.org/2001/XMLSchema", that appears in the schema element. The prefix
xsd: is used by convention to denote the XML Schema namespace, although any
prefix can be used. The same prefix, and hence the same association, also appears
on the names of built-in simple types, e.g., xsd:string. The purpose of the associ-
ation is to identify the elements and simple types as belonging to the vocabulary of
the XML Schema language rather than the vocabulary of the schema author.

Complex Type Definitions, Element and Attribute Declarations

Complex types allow elements in their content and may carry attributes, whereas
simple types cannot have element content and cannot carry attributes. New com-
plex types are defined using the complexType element and such definitions typi-
cally contain a set of element declarations, element references, and attribute
declarations. The declarations are not themselves types, but rather an association
between a name and the constraints which govern the appearance of that name in
documents governed by the associated schema. Elements are declared using the
element element, and attributes are declared using the attribute element. For
example, USAddress is defined as a complex type, and within the definition of
USAddress we see five element declarations and one attribute declaration:

<xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country"
 type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

Any element appearing in an instance whose type is declared to be USAddress
(e.g., recipientAddress) must consist of five elements and one attribute. These
elements must be called name, street, city, state and zip as specified by the
values of the declarations' name attributes, and the elements must appear in the
same sequence (order) in which they are declared. The first four of these elements
will each contain a string, and the fifth will contain a number. The element whose
type is declared to be USAddress may appear with an attribute called country

88 5 Ontologies and Schemas

which must contain the string US. On the other hand, the LaboratoryTestOrder-
Type definition contains element declarations involving complex types, e.g., USAd-
dress, although both declarations use the same type attribute to identify the type,
regardless of whether the type is simple or complex. It may be noted that in the def-
inition of LaboratoryTestOrderType, two of the element declarations, for recipi-
entAddress and payorAddress, associate different element names with the same
complex type, namely USAddress.
<xsd:complexType name="LaboratoryTestOrderType">
 <xsd:sequence>
 <xsd:element name="recipientAddress" type="USAddress"/>
 <xsd:element name="payorAddress" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="panel" type="Panel"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

Occurrence Constraints

Consider the following examples that appear in the definitions of Panel, Test and
USAddress respectively:

<xsd:element name="test" minOccurs="0"
 maxOccurs="unbounded">
<xsd:attribute name="num" type="SKU" use="required"/>
<xsd:attribute name="country"
 type="xsd:NMTOKEN" fixed="US"/>

The maximum and minimum number of times an element may appear is deter-
mined by the value of a maxOccurs and minOccurs attribute in its declaration. This
value may be a positive integer such as 41, or the term unbounded to indicate there
is no maximum number of occurrences. Attributes are declared with a use attribute
to indicate whether the attribute is required, optional, or even prohibited.
Default values of both attributes and elements are declared using the default
attribute. When an attribute is declared with a default value, the value of the
attribute is whatever value appears as the attribute's value in an instance document;
if the attribute does not appear in the instance document, the schema processor pro-
vides the attribute with a value equal to that of the default attribute. When an ele-
ment is declared with a default value, the value of the element is whatever value
appears as the element's content in the instance document; if the element appears
without any content, the schema processor provides the element with a value equal
to that of the default attribute. Default attribute values apply when attributes are
missing, and default element values apply when elements are empty. The fixed
attribute is used in both attribute and element declarations to ensure that the
attributes and elements are set to particular values.

 5.2 Ontology Representation Languages 89

Simple Types

Simple types can either be built-in XML Schema datatypes such as string or dec-
imal; or can be derived from built-in simple or derived datatypes, for example the
LOINC datatype defined in the XML Schema. It is derived (by restriction) from the
simple type string. Furthermore, we constrain the values of LOINC using a facet
called pattern in conjunction with the regular expression "\d{3}-[A-Z]{2}" that
is read “three digits followed by a hyphen followed by two upper-case ASCII let-
ters”:

<xsd:simpleType name="LOINC">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}-[A-Z]{2}"/>
 </xsd:restriction>
</xsd:simpleType>

Suppose we wish to create a new type of integer called myInteger whose range
of values is between 10000 and 99999 (inclusive). We base our definition on the
built-in simple type integer, whose range of values also includes integers less than
10000 and greater than 99999. To define myInteger, we restrict the range of the
integer base type by employing two facets called minInclusive and maxInclu-
sive:

<xsd:simpleType name="myInteger">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>
 </xsd:restriction>
</xsd:simpleType>

XML Schema defines twelve facets, among which the enumeration facet is par-
ticularly useful. The enumeration facet limits a simple type to a set of distinct val-
ues. For example, we can use the enumeration facet to define a new simple type
called USState, derived from string, whose value must be one of the standard US
state abbreviations:

<xsd:simpleType name="USState">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AK"/>
 <xsd:enumeration value="AL"/>
 <xsd:enumeration value="AR"/>
 <!-- and so on ... -->
 </xsd:restriction>
</xsd:simpleType>

90 5 Ontologies and Schemas

List Types

XML Schema has three built-in list types, NMTOKENS, IDREFS and ENTITIES, in
addition to list types that can be derived from atomic datatypes. An NMTOKEN is a
sequence of one or more letters, digits and most punctuation marks. NMTOKENS is a
list of NMTOKEN values separated by white spaces. An IDREF attribute allows the
creation of links to an ID within an XML document (one-to-one). IDREFS is a list of
IDREFS and allows an attribute to specify a link from one element to many other
elements (one-to-many). Several facets can be applied to list types: length, min-
Length, maxLength, pattern, and enumeration. For example, to define a list of
exactly six US states (SixUSStates), we first define a new list type called USState-
List from USState, and then we derive SixUSStates by restricting USStateList to
only six items:

<xsd:simpleType name="USStateList">
 <xsd:list itemType="USState"/>
</xsd:simpleType>
<xsd:simpleType name="SixUSStates">

<xsd:restriction base="USStateList">
 <xsd:length value="6"/>
 </xsd:restriction>
</xsd:simpleType>

Union Types

Atomic types and list types enable an element or an attribute value to be one or
more instances of one atomic type. In contrast, a union type enables an element or
attribute value to be one or more instances of one type drawn from the union of
multiple atomic and list types. For example, the zipUnion union type is built from
one atomic type and one list type:

<xsd:simpleType name="zipUnion">
 <xsd:union memberTypes="USState listOfMyIntType"/>
</xsd:simpleType>

When we define a union type, the memberTypes attribute value is a list of all the
types in the union.

Building Content Models

XML Schema enables groups of elements to be defined and named, so that the ele-
ments can be used to build up the content models of complex types. In the example
below, the choice group element allows only one of its children to appear in an
instance. One child is an inner group element that references the named group
shipAndBill consisting of the element sequence recipientAddress, payorAd-

dress, and the second child is a singleUSAddress. Hence, in an instance docu-

 5.2 Ontology Representation Languages 91

ment, the laboratoryTestOrder element must contain either a recipientAddress
element followed by a payorAddress element or a singleUSAddress element.

<xsd:complexType name="LaboratoryTestOrderType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:group ref="shipAndBill"/>
 <xsd:element name="singleUSAddress" type="USAddress"/>
 </xsd:choice>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="panel" type="Panel"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>
<xsd:group id="shipAndBill">
 <xsd:sequence>
 <xsd:element name="recipientAddress" type="USAddress"/>
 <xsd:element name="payorAddress" type="USAddress"/>
 </xsd:sequence>
</xsd:group>

Deriving New Types

XML Schema provides the ability to derive new types from pre existing types by
various mechanisms such as extension and restriction. An example of creating new
types by extension is presented below.

<complexType name="Address">
 <sequence>
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 </sequence>
</complexType>
<complexType name="USAddress">
 <complexContent>
 <extension base="Address">
 <sequence>
 <element name="state" type="USState"/>
 <element name="zip" type="positiveInteger"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

The Address type contains the basic elements of an address: a name, a street and
a city. From this starting point, a new complex type that contains all the elements
of the original type plus additional elements that are specific to addresses in the US
is created. The new complex type USAddress is created using the complexType ele-
ment. In addition, we indicate that the content model of the new type is complex,

92 5 Ontologies and Schemas

i.e., contains elements, by using the complexContent element, and we indicate that
we are extending the base type Address by the value of the base attribute on the
extension element.

It is possible to derive new types by restricting the content models of existing
types. A complex type derived by restriction is very similar to its base type, except
that its declarations are more limited than the corresponding declarations in the
base type. In fact, the values represented by the new type are a subset of the values
represented by the base type. For example, we can create a new type, Restricted-
LaboratoryTestOrderType type derived by restriction from the base type Labora-
toryTestOrderType, and provide a new (more restrictive) value for the minimum
number of comment element occurrences.

<complexType name="RestrictedLaboratoryTestOrderType">
 <complexContent>
 <restriction base="LaboratoryTestOrderType">
 <sequence>
 <element name="recipientAddress" type="Address"/>
 <element name="payorAddress" type="Address"/>
 <element ref="comment" minOccurs="1"/>
 <element name="panel" type="Panel"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>

This change narrows the allowable number of comment elements from a mini-
mum of 0 to a minimum of 1. Note that all RestrictedLaboratoryTestOrderType
type elements will also be acceptable as LaboratoryTestOrderType type elements.

5.2.2 RDF Schema

RDF provides a way to express simple statements about resources, using named
properties and values. However, RDF user communities also need the ability to
define the vocabularies (terms) they intend to use in those statements, specifically,
to indicate that they are describing specific kinds or classes of resources, and will
use specific properties in describing those resources. RDF Schema provides the
facilities needed to describe such classes and properties, and to indicate which
classes and properties are expected to be used together (for example, to say that a
particular property will be used to describe instances of a particular class). In other
words, RDF Schema provides a type system for RDF. We now present a discussion
of RDF Schema based on the exposition in [96]. We begin by revisiting the exam-
ple discussed in the previous section and represent information about a patient and
his laboratory test orders using RDF Schema constructs. We will be using the XML
syntax for representing the RDF and RDF Schema representations in this chapter.

<?xml version="1.0"?>

 5.2 Ontology Representation Languages 93

<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:lab="http://www.example.com/schema.rdf#"

 xml:base="http://www.example.com/2008/06/laborders"/>
 <rdf:Description rdf:ID="o123">

 <rdf:type
resource="http://www.example.com/schema.rdf#LaboratoryTestOrder"/>
 <lab:recipientAddress rdf:ID="a123"/>
 <lab:payorAddress rdf:ID="a234"/>
 <lab:testPanel rdf:ID="p123"/>
 <lab:orderDate rdf:datatype="&xsd;date">
 1999-10-20
 </lab:orderDate>
</rdf:Description>

 <rdf:Description rdf:ID="a123">
<rdf:type resource="http://www.example.com/schema.rdf#USAddress"/>
 <lab:name rdf:datatype="&xsd;string">Alice Smith</lab:name>
 <lab:street rdf:datatype="&xsd;string">
 123 Maple Street
 </lab:street>
 <lab:city rdf:datatype="&xsd;string">Mill Valley</lab:city>
 <lab:state rdf:datatype="&xsd;string">CA</lab:state>
 <lab:zip rdf:datatype="&xsd;decimal">90952</lab:zip>
 <lab:country rdf:datatype="&xsd;string">US</lab:country>
</rdf:Description>
<rdf:Description rdf:ID="a234">
<rdf:type resource="http://www.example.com/schema.rdf#USAddress"/>
 <lab:name rdf:datatype="&xsd;string">Robert Smith</lab:name>
 <lab:company rdf:datatype="&xsd;string">CIGNA</lab:company>
 <lab:street rdf:datatype="&xsd;string">8 Oak Avenue</lab:street>
 <lab:city rdf:datatype="&xsd;string">Old Town</lab:city>
 <lab:state rdf:datatype="&xsd;string">PA</lab:state>
 <lab:zip rdf:datatype="&xsd;decimal">95819</lab:zip>
 <lab:country rdf:datatype="&xsd;string">US</lab:country>
</rdf:Description>
<rdf:Description rdf:ID="p123">
 <rdf:type resource="http://www.example.com/schema.rdf#Panel"/>
 <lab:test rdf:ID="872-CL"/>
 <lab:test rdf:ID="926-GN"/>
</rdf:Description>
<rdf:Description rdf:ID="872-CL">
 <rdf:type resource="http://www.example.com/schema.rdf#Test"/>
 <lab:testName rdf:datatype="&xsd;string">LDL</lab:testName>
 <lab:quantity rdf:datatype="&xsd;integer">1</lab:quantity>
 <lab:usPrice rdf:datatype="xsd;float">148.95</lab:usPrice>
</rdf:Description>
<rdf:Description rdf:ID="926-GN">
 <rdf:type resource="http://www.example.com/schema.rdf#Test"/>
 <lab:testName rdf:datatype="&xsd;string">
 Human Genes in HCM Panel
 </lab:testName>
 <lab:quantity rdf:datatype="&xsd;integer">1</lab:quantity>

94 5 Ontologies and Schemas

 <lab:usPrice rdf:datatype="xsd;float">500.00</lab:usPrice>
 <lab:shipDate rdf:datatype="xsd;date">1999-05-21</lab:shipDate>
</rdf:Description>

</rdf:RDF>

The RDF graph identified by rdf:ID="o123" is used to represent an instance of
the LabOrder class as reference by the rdf:type construct. It may be noted that lab
order ID is not a URI and rdf:about has not been used to identify the appropriate
URI. In this example, we assume that the laboratory (example.com) has a database
for filing the orders for a given patient. The URI for this order represented as an
RDF resource is created by appending the URL corresponding to the XML base
(http://www.example.com/2008/06/laborders/) to the ID. Thus the URI corre-
sponding to this RDF graph is http://www.example.com/2008/06/laborders/
o123. The class for laboratory orders has properties such as recipientAddress, pay-
orAddress and panel which points to RDF graphs that might be instances of other
classes and may have other properties attached to them. The RDF and RDF
Schema specifications are specially designed to reuse the basic types specified by
the XML schema specification. This is achieved by using the rdf:datatype con-
struct. For example, the RDF expression <lab:testName

rdf:datatype="&xsd;string">LDL</lab:testName> specifies that the datatype
corresponding to the lab:testName property is the string datatype as specified in
the XML Schema specification. The RDF Schema for laboratory test orders is pre-
sented below.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<rdfs:Class rdf:ID="LaboratoryTestOrder">
<rdfs:Class rdf:ID="USAddress"/>
<rdfs:Class rdf:ID="Panel"/>
<rdfs:Class rdf:ID="Test"/>

<rdfs:Datatype rdf:about="&xsd;string"/>
<rdfs:Datatype rdf:about="&xsd;date"/>
<rdfs:Datatype rdf:about="&xsd;decimal"/>
<rdfs:Datatype rdf:about="&xsd;integer"/>
<rdfs:Datatype rdf:about="&xsd;float"/>

<rdf:Property rdf:ID="recipientAddress">
 <rdfs:domain rdf:resource="#LaboratoryTestOrder"/>
 <rdfs:range rdf:resource="#USAddress"/>
</rdf:Property>
<rdf:Property rdf:ID="payorAddress">
 <rdfs:domain rdf:resource="#LaboratoryTestOrder"/>
 <rdfs:range rdf:resource="#USAddress"/>
</rdf:Property>
<rdf:Property rdf:ID="testPanel">
 <rdfs:domain rdf:resource="#LaboratoryTestOrder"/>
 <rdfs:range rdf:resource="#Panel"/>
</rdf:Property>

 5.2 Ontology Representation Languages 95

<rdf:Property rdf:ID="orderDate">
 <rdfs:domain rdf:resource="#LaboratoryTestOrder"/>
 <rdfs:range rdf:resource="&xsd;date"/>
</rdf:Property>
<rdf:Property rdf:ID="name">
 <rdfs:domain rdf:resource="#USAddress"/>
 <rdfs:range rdf:resource="&xsd;date"/>
</rdf:Property>
<rdf:Property rdf:ID="street">
 <rdfs:domain rdf:resource="#USAddress"/>
 <rdfs:range rdf:resource="&xsd;string"/>
</rdf:Property>
<rdf:Property rdf:ID="city">
 <rdfs:domain rdf:resource="#USAddress"/>
 <rdfs:range rdf:resource="&xsd;string"/>
</rdf:Property>
<rdf:Property rdf:ID="state">
 <rdfs:domain rdf:resource="#USAddress"/>
 <rdfs:range rdf:resource="&xsd;string"/>
</rdf:Property>
<rdf:Property rdf:ID="country">
 <rdfs:domain rdf:resource="#USAddress"/>
 <rdfs:range rdf:resource="&xsd;string"/>
</rdf:Property>
<rdf:Property rdf:ID="zip">
 <rdfs:domain rdf:resource="#USAddress"/>
 <rdfs:range rdf:resource="&xsd;decimal"/>
</rdf:Property>
<rdf:Property rdf:ID="test">
 <rdfs:domain rdf:resource="#Panel"/>
 <rdfs:range rdf:resource="#Test"/>
</rdf:Property>
<rdf:Property rdf:ID="testName">
 <rdfs:domain rdf:resource="#Test"/>
 <rdfs:range rdf:resource="&xsd;string"/>
</rdf:Property>
<rdf:Property rdf:ID="quantity">
 <rdfs:domain rdf:resource="#Test"/>
 <rdfs:range rdf:resource="&xsd;integer"/>
</rdf:Property>
<rdf:Property rdf:ID="usPrice">
 <rdfs:domain rdf:resource="#Test"/>
 <rdfs:range rdf:resource="&xsd;float"/>
</rdf:Property>
<rdf:Property rdf:ID="shipDate">
 <rdfs:domain rdf:resource="#Test"/>
 <rdfs:range rdf:resource="&xsd;date"/>
</rdf:Property>

96 5 Ontologies and Schemas

Describing Classes

A basic step in any kind of description process is identifying the various kinds of
things to be described. RDF Schema refers to these “kinds of things” as classes. A
class in RDF Schema corresponds to the generic concept of a type or category, and
can be used to represent almost any category of thing, such as Web pages, people,
document types, databases or abstract concepts. Classes are described using the
RDF Schema resources rdfs:Class and rdfs:Resource, and the properties
rdf:type and rdfs:subClassOf. In RDF Schema, a class is any resource having
an rdf:type property whose value is the resource rdfs:Class. So the class would
be described by assigning the class a URIref, say LabOrder and describing that
resource with an rdf:type property whose value is the resource rdfs:Class. This
can be expressed in an RDF statement as follows:

<rdf:Description rdf:ID="LaboratoryTestOrder">
<rdf:type
 rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdf:Description>

Class descriptions such as the above can also be represented as follows.

<rdfs:Class rdf:ID="LaboratoryTestOrder"/>

Having described LaboratoryTestOrder as a class, resource o123 would be
described as a laboratory test order by the RDF statement:

<rdf:Description rdf:ID="o123">
<rdf:type
 rdf:resource=
 "http://www.example.com/rdf.schema#LaboratoryTestOrder"/>

</rdf:Description>

The specialization relationship between two classes is described using the pre-
defined rdfs:subClassOf property to relate the two classes. For example, to say
that USAdresss is a specialized kind of Address can be represented using the fol-
lowing RDF statement.

<rdfs:Class rdf:ID="USAddress">
<rdfs:subClassOf rdf:resource="#Address">

</rdfs:Class>

It may be noted that RDF itself does not define the special meaning of terms
from the RDF Schema vocabulary such as rdfs:subClassOf. So if an RDF schema
defines this rdfs:subClassOf relationship between USAddress and Address, RDF
software not written to understand the RDF Schema terms would recognize this as
a triple, with predicate rdfs:subClassOf, but it would not understand the special
significance of rdfs:subClassOf.

 5.2 Ontology Representation Languages 97

Describing Properties

In addition to describing the specific classes of things they want to describe, user
communities also need to be able to describe specific properties that characterize
those classes of things (such as test to describe the set of tests that belong in a test
panel). In RDF Schema, properties are described using the RDF class rdf:Prop-
erty, and the RDF Schema properties rdfs:domain, rdfs:range, and rdfs:sub-
PropertyOf. All properties in RDF are described as instances of class
rdf:Property. So a new property, such as lab:test, is described by assigning the
property a URIref, and describing that resource with an rdf:type property whose
value is the resource rdf:Property, for example, by writing the RDF statement.

<rdf:Description rdf:ID="test">
<rdf:type
 rdf:resource="http://www.w3.org/2000/01/rdf-schema#Property"/>

</rdf:Description>

Property descriptions may also be represented as follows.

<rdfs:Property rdf:ID="test"/>

RDF Schema also provides vocabulary for describing how properties and
classes are intended to be used together in RDF data. The most important informa-
tion of this kind is supplied by using the RDF Schema properties rdfs:range and
rdfs:domain to further describe application-specific properties. The rdfs:range
property is used to indicate that the values of a particular property are instances of
a designated class. For example the following RDF statements indicate that the
property lab:test has values that are instances of class lab:Test.

<rdf:Property rdf:ID="test">
 <rdfs:range rdf:resource="#Test"/>
</rdf:Property>

A property, say lab:test, can have zero, one, or more than one range proper-
ties. If lab:test has no range property, then nothing is said about the values of the
lab:test property. If lab:test has more than one range property, say one speci-
fying lab:ClinicalTest as its range, and another specifying lab:MolecularDiag-
nosticTest as its range, this says that the values of the lab:test property are
resources that are instances of all of the classes specified as the ranges, i.e., that
any value of lab:test is both a lab:ClinicalTest and a lab:MolecularDiag-
nosticTest. This can be represented as follows.

<rdf:Property rdf:ID="test">
 <rdfs:range rdf:resource="#ClinicalTest"/>

<rdfs:range rdf:resource="#MolecularDiagnosticTest"/>
</rdf:Property>

98 5 Ontologies and Schemas

The rdfs:domain property is used to indicate that a particular property applies
to a designated class. The RDF statement below indicate that the property
lab:test applies to instances of class lab:Panel.

<rdf:Property rdf:ID="test">
 <rdfs:domain rdf:resource="#Panel"/>
</rdf:Property>

These statements indicate that the lab:test property have instances of
lab:Panel as subjects. A given property, say lab:test, may have zero, one, or
more than one domain property. If lab:test has no domain property, then nothing
is said about the resources that lab:test properties may be used with (any
resource could have a lab:test property). If lab:test has more than one domain
property, say one specifying lab:OutPatientPanel as the domain and another one
specifying lab:InPatientPanel as the domain, this says that any resource that has
a lab:test property is an instance of all of the classes specified as the domains,
i.e., that any resource that has a lab:test property is both a lab:InPatientPanel
and a lab:OutPatientPanel (illustrating the need for care in specifying domains
and ranges). A statement that the property lab:test has the two domains
lab:InPatientPanel and lab:OutPatientPanel can be represented in RDF as
follows.

<rdf:Property rdf:ID="test">
 <rdfs:domain rdf:resource="#InPatientPanel"/>

<rdfs:domain rdf:resource="#OutPatientPanel"/>
</rdf:Property>

RDF Schema Classes and XML Schema Types

There is a clear difference in the objectives targeted by the RDF Schema and XML
Schema specifications. XML Schema seeks to describe the actual structure of a
given document, whereas RDF Schema seeks to describe the semantics of informa-
tion. Hence in the case of RDF Schema, there is a clear commitment to the notion
of a class and a property, whereas XML Schema seeks to represent the notion of
an element which describes different types of elements that could appear in a doc-
ument. This leads to different interpretations of XML Schema types and RDF
Schema classes which can have an impact on the application being developed.
Consider the two representations of USAdress as presented earlier. The XML
Schema representation is given below.

<xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>

 5.2 Ontology Representation Languages 99

 </xsd:sequence>
 <xsd:attribute name="country"
 type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

The RDF Schema for US Address is given below. We include the class declara-
tion and the property declarations in which USAddress is identified as the domain.

<rdfs:Class rdf:ID="USAddress"/>
<rdf:Property rdf:ID="name">

<rdfs:domain rdf:resource="#USAddress"/>
<rdfs:range rdf:resource="&xsd;string"/>

</rdf:Property>
<rdf:Property rdf:ID="city"/>
<rdf:Property rdf:ID="state"/>
<rdf:Property rdf:ID="country"/>
<rdf:Property rdf:ID="zip"/>

The RDF Schema specifications seek to re-use and interoperate with XML
Schema specifications by supporting the ability for properties defined in RDF (e.g.,
name) to refer to XML Schema datatypes (e.g., "&xsd;string"). This is crucial for
supporting interoperability. However given the widespread usage and acceptance
of XML Schema, the desire to use XML Schema types interchangeably and in
some cases instead of RDF Schema classes and properties could lead to unintended
consequences. Important differences in perspectives are discussed as follows.

• The complex type USAddress doesn’t represent the semantics of US addresses,
but how they would appear in an XML document. An application developer
seeking to use the XML Schema type definition as characterizing the class of all
US addresses, should be careful to impose consistent interpretations of an ele-
ment as a class or a property. The challenge here is that XML Schema specifica-
tions do not provide guidance on this issue and different interpretations are
likely in practice.

• The complex type USAddress dictates the order in which the various parts of the
address appear in a document. This is required when one seeks to describe the
structural representation in an XML document, but is extraneous to the informa-
tion contained in US addresses, leading to the following disadvantages: (a) The
type specification is unnecessarily complex, if the aim is to describe and use the
information captured in US addresses; and (b) The type specification is not eas-
ily generalizable. For instance, a French application may seek to display the data
elements corresponding to US addresses in a different order. This is better
achieved by using an RDF Schema representation of the class of US addresses
and applying an XSLT transformation to achieve the appropriate display order.

• XML Schema views a complex type as having specific elements and attributes ,
e.g., USAddress has elements street, city, state and zip whereas RDF
Schema views properties as applying to classes, e.g., properties street, city,
state and zip apply to the USAddress class. The scope of properties in an RDF

100 5 Ontologies and Schemas

schema are by default global and these properties could apply to a different class
say a generic class called Address. The biggest advantage of the RDF Schema
viewpoint is that it is easier to extend the use of property definitions to situations
that might not have been anticipated in the original description. Thus RDF
Schema has better support for generalizability and flexibility.

5.2.3 Web Ontology Language

The Web Ontology Language, OWL, is intended to provide a language that can be
used to describe the classes and relations between them that are inherent in Web
documents and applications. We now present a discussion based on [97], that dem-
onstrates the use of this language to formalize a domain by defining classes, prop-
erties about those classes, axioms involving properties and classes, individuals and
properties about those individuals. The OWL language provides three increasingly
expressive sublanguages designed for use by specific communities of implemen-
tors and users.

• OWL Lite supports those users primarily needing a classification hierarchy and
simple constraint features. For example, while OWL Lite supports cardinality
constraints, it only permits cardinality values of 0 or 1. It should be simpler to
provide tool support for OWL Lite than its more expressive relatives, and pro-
vide a quick migration path for thesauri and other taxonomies.

• OWL-DL supports those users who want the maximum expressiveness without
losing computational completeness (all entailments are guaranteed to be com-
puted) and decidability (all computations will finish in finite time) of reasoning
systems. OWL-DL includes all OWL language constructs with restrictions such
as type separation (a class cannot also be an individual or property, a property
cannot also be an individual or class). OWL-DL is so named due to its corre-
spondence with the description logics field of research that has studied a partic-
ular decidable fragment of first-order logic. OWL-DL was designed to support
the existing Description Logics business segment and has desirable computa-
tional properties for reasoning systems.

• OWL Full is meant for users who want maximum expressiveness and the syn-
tactic freedom of RDF with no computational guarantees. For example, in OWL
Full a class can be treated simultaneously as a collection of individuals and as an
individual in its own right. Another significant difference from OWL-DL is that
a owl:DatatypeProperty can be marked as an owl:InverseFunctionalProp-
erty. OWL Full allows an ontology to augment the meaning of the pre-defined
(RDF or OWL) vocabulary. It is unlikely that any reasoning software will be
able to support every feature of OWL Full.

 5.2 Ontology Representation Languages 101

A domain ontology for Translational Medicine

A subset of a domain ontology for Translational Medicine which will also be used
for illustrating aspects of the solution to the clinical use case scenario is illustrated
in Figure 5.6 below. The classes and relationships modeled in this ontology are:

• As discussed in earlier sections, the class LaboratoryTestOrder represents the
order for a laboratory test for a patient. The order may be for a panel of tests rep-
resented in the class Panel which may contain one or more tests represented in
the class Test. The order may have a recipientAddress and a payorAddress
represented by the class USAddress, representing the set of addresses in the US.

• The class Patient is a core concept that characterizes patient state information,
such as values of various patient state parameters, the results of diagnostic tests
and his family and lineage information. It is related to the class Person through
the subclass relationship. Information about a patient’s relatives is represented
using the is_related relationship and the Relative concept. The class Fam-
ilyHistory captures information of family members who may have had the dis-
ease for which the patient is being evaluated, and is related to the Patient
concept via the hasFamilyHistory relationship.

Fig. 5.6. A domain ontology for Translational Medicine

• The StructuredTestResult captures results of laboratory tests and is related to
the Patient class via the hasStructuredTest relationship and the Test class
via the associatedResult relationship. Various types of test results such as
LDL, AST, ALT, TotalBilirubin, etc. can be represented as subclasses of this
class. The MolecularDiagnosticTestResult class represents the results of a
molecular diagnostic test result, a type of structured test result (represented
using the subclass relationship). Molecular diagnostics identify mutations (rep-

Person

Patient Relative

FamilyHistory

Mutation Gene

Disease

StructuredTestResult

MolecularDiagnosticTestResult

Genomic

Clinical

isRelatedTo

associatedRelativehasFamilyHistory

hasMutation

isMutationOf

hasGene

suffersFrom

indicatesDisease

identifiesMutation

hasStructuredTestResult

subclass
relationship

LaboratoryTestOrderPanel

Test
USAddress

associatedResult

test

testPanel

payorAddress recipientAddress

hasAddress

hasMolecularDiagnosticTestResult

hasPatient

Person

Patient Relative

FamilyHistory

Mutation Gene

Disease

StructuredTestResult

MolecularDiagnosticTestResult

Genomic

Clinical

isRelatedTo

associatedRelativehasFamilyHistory

hasMutation

isMutationOf

hasGene

suffersFrom

indicatesDisease

identifiesMutation

hasStructuredTestResult

subclass
relationship

LaboratoryTestOrderPanel

Test
USAddress

associatedResult

test

testPanel

payorAddress recipientAddress

hasAddress

hasMolecularDiagnosticTestResult

hasPatient

102 5 Ontologies and Schemas

resented using the identifiesMutation relationship) and indicates diseases
(represented using the indicatesDisease relationship) in a patient.

• The class Gene represents information about genes and is linked to the Patient
class via the hasGene relationship. Genetic variants or mutations of a given gene
are represented using the Mutation class which is linked to the Patient class
via the hasMutation relationship. The relationship between a gene and mutation
is represented using the isMutationOf relationship.

• The Disease class characterizes the disease states which can be diagnosed about
a patient, and is related to the Patient class via the suffersFrom relationship
and to the molecular diagnostic test results concept via the indicatesDisease
relationship.

Simple Classes and Individuals

The most basic concepts in a domain should correspond to classes that are the roots
of various taxonomic trees. Every individual in the OWL world is a member of the
class owl:Thing. Thus each user-defined class is implicitly a subclass of
owl:Thing. Domain-specific root classes are defined by simply declaring a named
class. OWL also defines the empty class, owl:Nothing. Based on the ontology
illustrated in Figure 5.6, the following classes are created in OWL.

<owl:Class rdf:ID="Patient"/>
<owl:Class rdf:ID="LaboratoryTestOrder"/>
<owl:Class rdf:ID="Panel"/>
<owl:Class rdf:ID="Test"/>
<owl:Class rdf:ID="StructuredTestResult"/>
<owl:Class rdf:ID="Disease"/>
<owl:Class rdf:ID="Gene"/>
<owl:Class rdf:ID="Mutation"/>

The above OWL statements tell us nothing about these classes other than their
existence, despite the use of familiar English terms as labels. And while the classes
exist, they may have no members. The fundamental taxonomic constructor for
classes is rdfs:subClassOf. It relates a more specific class to a more general class.
If X is a subclass of Y, then every instance of X is also an instance of Y.

<owl:Class rdf:ID="MolecularDiagnosticTestResult">
 <rdfs:subClassOf rdf:resource="#StructuredTestResult"/>
 ...
</owl:Class>

We define MolecularDiagnosticTestResult (laboratory results which require
running molecular diagnostic tests on patient samples) is defined as a sublcass of
StructuredTestResult. In addition to classes, we want to be able to describe their
members. We normally think of these as individuals in our universe of things. An

 5.2 Ontology Representation Languages 103

individual is minimally introduced by declaring it to be a member of a class as fol-
lows:

<MolecularDiagnosticTestResult rdf:ID="result1"/>

Simple Properties

A property is a binary relation. Datatype properties relate instances of a class with
RDF literals or XML Schema datatypes, whereas object properties relate instances
of two classes.

<owl:ObjectProperty rdf:ID="hasStructuredTestResult">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#StructuredTestResult"/>
</owl:ObjectProperty>

The property hasStructuredTestResult has a domain of Patient and a range
of StructuredTestResult. That is, it relates instances of the class Patient to
instances of the class StructuredTestResult. Multiple domains mean that the
domain of the property is the intersection of the identified classes (and similarly for
range). Properties, like classes, can be arranged in a hierarchy.

<owl:ObjectProperty rdf:ID="hasMolecularDiagnosticTestResult">
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult" />
 <rdfs:range rdf:resource="#MolecularDiagnosticTestResult" />
 ...
</owl:ObjectProperty>

Patients are related to their laboratory test results through the hasStruc-
turedTestResult property. hasMolecularDiagnosticTestResult is a subprop-
erty with it’s range restricted to MolecularDiagnosticTestResult, a subclass of
StructuredTestResult.

Property Characteristics

If a property, P, is specified as transitive, then for any x, y, and z:

P(x,y) and P(y,z) -> P(x,z)

The property isRelatedTo specified below is transitive.

<owl:ObjectProperty rdf:ID="isRelatedTo">
 <rdf:type rdf:resource="&owl;TransitiveProperty" />
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Person"/>
</owl:ObjectProperty>

104 5 Ontologies and Schemas

If a property, P, is tagged as symmetric, then for any x and y:

P(x,y) <-> P(y,x)

The property isRelatedTo defined above is also symmetric. If a property, P, is
tagged as functional, then for all x, y, and z:

P(x,y) and P(x,z) -> y = z

In our running example, orderDateTime, i.e., the date and time at which a labo-
ratory test order is placed is functional. A laboratory test order has a unique data
and time at which it was ordered. That is, a given LaboratoryTestOrder can only
be associated with a single date and time using the orderDateTime property. It is
not a requirement of a owl:FunctionalProperty that all elements of the range
have values.

<owl:DataTypeProperty rdf:ID="orderDateTime">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#LaboratoryTestOrder"/>
 <rdfs:range rdf:resource="&xsd;datetime" />
</owl:DataTypeProperty>

If a property, P1, is tagged as the owl:inverseOf P2, then for all x and y:

P1(x,y) iff P2(y,x)

Note that the syntax for owl:inverseOf takes a property name as an argument.

<owl:ObjectProperty rdf:ID="hasStructuredTestResult">
 <owl:inverseOf rdf:resource="#hasPatient"/>
</owl:ObjectProperty>

If a property, P, is tagged as InverseFunctional, then for all x, y and z:

P(y,x) and P(z,x) implies y = z

The inverse of a functional property must be inverse functional.

<owl:ObjectProperty rdf:ID="hasStructuredTestResult">
 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>
 <owl:inverseOf rdf:resource="#hasPatient"/>
</owl:ObjectProperty>

The elements of the range in an inverse functional property define a unique key
in the database sense. owl:InverseFunctional implies that the elements of the
range provide a unique identifier for each element of the domain.

 5.2 Ontology Representation Languages 105

Property Restrictions

The owl:allValuesFrom restriction requires that for every instance of the class that
has instances of the specified property, the values of the property are all members
of the class indicated by the owl:allValuesFrom clause.

<owl:Class rdf:ID="Patient">
<rdfs:subClassOf>

 <owl:Restriction>
 <owl:onProperty rdf:resource="#isRelatedTo"/>
 <owl:allValuesFrom rdf:resource="#Relative"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

An patient is related only to persons who are known to be relatives. The
allValuesFrom restriction is on the isRelatedTo property of the Patient class
and points to the class Relative, the instances of which identify those people that
are relatives of someone.

The owl:someValuesFrom is restriction requires that for every instance of the
class that has instanced of the specified property, the values of the property is some
member of the class indicated by the owl:someValuesFrom clause.

<owl:Class rdf:ID="Mutation">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isMutationOf"/>
 <owl:someValuesFrom rdf:resource="#Gene"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

 ¬
A mutation is mutation of some gene. The someValuesFrom restriction is on the

isMutationOf property of the Mutation class and points to the Gene class.
The difference between the two formulations is the difference between universal

and existential quantification. The first does not require a patient to necessarily
have a relative. If it does have a relative, they must all be instances of the class
Relative. The second requires that there be at least one gene that a mutation is a
mutation of.

owl:cardinality permits the specification of exactly the number of elements in
a relation. For example, we specify LaboratoryTestResult to be a class with
exactly one Patient.

<owl:Class rdf:ID="StructuredTestResult">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasPatient"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

106 5 Ontologies and Schemas

1
 </owl:cardinality>

 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Cardinality expressions with values limited to 0 or 1 are part of OWL Lite. This
permits the user to indicate 'at least one', 'no more than one', and 'exactly one'. Pos-
itive integer values other than 0 and 1 are permitted in OWL-DL. owl:maxCardi-
nality can be used to specify an upper bound. owl:minCardinality can be used
to specify a lower bound. In combination, the two can be used to limit the prop-
erty's cardinality to a numeric interval.

owl:hasValue allows us to specify classes based on the existence of particular
property values. Hence, an individual will be a member of such a class whenever at
least one of its property values is equal to the hasValue resource.

<owl:Class rdf:ID="PatientWithMYH7Gene">
 ...
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasGene"/>
 <owl:hasValue rdf:resource="#MYH7"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

 Here we specify that the hasGene property must have at least one value that is
equal to MYH7. As for allValuesFrom and someValuesFrom, this is a local restric-
tion. It holds for hasGene as applied to Patient.

Ontology Mapping Constructs

It is frequently useful to be able to indicate that a particular class or property in one
ontology is equivalent to a class or property in a second ontology. This capability
must be used with care. If the combined ontologies are contradictory (all A's are
B's vs. all A's are not B's) there will be no extension (no individuals and relations)
that satisfies the resulting combination. The property owl:equivalentClass is
used to indicate that two classes have precisely the same instances. Class expres-
sions can also be the target of owl:equivalentClass, eliminating the need to con-
trive names for every class expression and providing a powerful definitional
capability based on satisfaction of a property.

<owl:Class rdf:ID="MYH7Mutation">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isMutationOf" />
 <owl:hasValue rdf:resource="#MYH7" />
 </owl:Restriction>

 5.2 Ontology Representation Languages 107

 </owl:equivalentClass>
</owl:Class>

MYH7 mutations are exactly those things who have the value MYH7 for the
isMutationOf property.

The mechanism to specify identity between individuals is similar to that for
classes, but declares two individuals to be identical. An example would be:

<Gene rdf:ID="GeneImplicatedInHCM">
 <owl:sameAs rdf:resource="#MYH7"/>
</Gene>

It may be noted that using sameAs to equate two classes is not the same as equat-
ing them with equivalentClass; instead, it causes the the classes to be interpreted
as individuals, and is therefore sufficient to categorize an ontology as OWL Full. In
OWL Full sameAs may be used to equate anything a class and an individual, a
property and a class, etc.,and causes both arguments to be interpreted as individu-
als.

There also exists a mechanism to specify that two individuals are different from
each other as follows.

<Gene rdf:ID="MYH7">
 <owl:differentFrom rdf:resource="#TNNT2"/>
</Allergen>

A more convenient mechanism exists to define a set of mutually distinct indi-
viduals.

<owl:AllDifferent>
 <owl:distinctMembers rdf:parseType="Collection">
 <Allergen rdf:ID="#MYH7"/>
 <Allergen rdf:ID="#TNNT2"/>
 <Allergen rdf:ID="#MYL3"/>
 </owl:distinctMembers>
</owl:AllDifferent>

Note that owl:distinctMembers can only be used in combination with
owl:AllDifferent.

Complex Class Descriptions

The following example demonstrates the use of the intersectionOf construct.

<owl:Class rdf:ID="DiabeticPatient">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Patient"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#suffersFrom"/>

108 5 Ontologies and Schemas

 <owl:someValuesFrom rdf:resource="#Diabetes"/>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

Classes constructed using the set operations are more like definitions than any-
thing we have seen to date. The members of the class are completely specified by
the set operation. The construction above states that DiabeticPatient is exactly
the intersection of the class Patient and the set of things that suffer from some
instance of the class Diabetes. This means that if something is a patient and suffers
from some instance of Diabetes, then it is an instance of DiabeticPatient.

The following example demonstrates the use of the unionOf construct. It is used
exactly like the intersectionOf construct:

<owl:Class rdf:ID="StructuredTestResult">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#AbnormalStructuredTestResult"/>
 <owl:Class rdf:about="#NormalStructuredTestResult"/>
 </owl:unionOf>
</owl:Class>

The class of structured test results includes both the extension of abnormal and
normal values of the LDL results.

The complementOf construct selects all individuals from the domain of dis-
course that do not belong to a certain class. Usually this refers to a very large set of
individuals:

<owl:Class rdf:ID="NonDiabeticPatient">
 <owl:complementOf rdf:resource="#DiabeticPatient"/>
</owl:Class>

The class of NonDiabeticPatient includes as its members all individuals that
do not belong to the extension of DiabeticPatient.

OWL provides the means to specify a class via a direct enumeration of its mem-
bers. This is done using the oneOf construct. Notably, this definition completely
specifies the class extension, so that no other individual can be declared to belong
to the class. The following defines a class Gender whose members are the individu-
als Male and Female.

<owl:Class rdf:ID="Gender">
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#Male"/>
 <owl:Thing rdf:about="#Female"/>
 </owl:oneOf>
</owl:Class>

No other individuals can be a valid Gender since the class has been defined by
enumeration. Each element of the oneOf construct must be a validly declared indi-

 5.2 Ontology Representation Languages 109

vidual. An individual has to belong to some class. In the above example, each indi-
vidual was referenced by name. We used owl:Thing as a simple construct to
introduce the reference.

The disjointness of a set of classes can be expressed using the owl:dis-
jointWith constructor. It guarantees that an individual that is a member of one
class cannot simultaneously be an instance of a specified other class.

<owl:Class rdf:ID="MolecularDiagnosticTestResult">
 <rdfs:subClassOf rdf:resource="#LaboratoryTestResult"/>
 <owl:disjointWith rdf:resource="#ClinicalTestResult"/>
 <owl:disjointWith rdf:resource="#PhysicalExamTestResult"/>
</owl:Class>

The above specification only asserts that MolecularDiagnosticTestResult is
disjoint from all of these other classes. It does not assert, for example, that Clini-
calTestResult and PhysicalExamTestResult are disjoint.

RDF Schema and OWL

We present a discussion on the limitations of the expressive power of RDF Schema
and how OWL expressions can be used to overcome some of the limitations:

• In RDF Schema, rdfs:range defines the range of a property, e.g., isAller-
gicTo for all classes. It is not possible to declare range restrictions that apply to
some classes only. For example, it is not possible to specify that some patients,
e.g., DiabeticPatients suffer from a particular type of disease, e.g., Diabetes,
whereas others might suffer from other diseases as well. This can be specified in
OWL using the allValuesFrom property restriction on the suffersFrom prop-
erty.

• In RDF Schema, one cannot specify the disjointness of classes, e.g., Molecular-
DiagnosticTestResult and ClinicalTestResult. This can be specified in
OWL using the disjointWith construct.

• In RDF Schema, one cannot build new classes by using boolean combinations
involving, union, intersection and complement. This can be specified in OWL
using the intersectionOf, unionOf, oneOf and complementOf constructs.

• RDF Schema doesn’t support the specification of cardinality constraints on
properties, e.g., a laboratory test result is associated with exactly 1 patient. This
can be specified in OWL using the cardinality, minCardinality and maxCar-
dinality constructs.

• Unlike RDF Schema, OWL supports the specification of special characteristics
of properties such as transitivity, symmetricity and reflexivity (e.g.,
isRelatedTo) and inverse properties (e.g., hasStructuredTestResult and
hasPatient).

The OWL Specification has been designed to be compatible with RDF and RDF
Schema. All varieties of OWL use RDF as their syntax. Instances are declared as in

110 5 Ontologies and Schemas

RDF using RDF descriptions. OWL constructs are specializations of their RDF
counterparts, for e.g., owl:Class is a specialization of rdfs:Class; and
owl:ObjectProperty and owl:DatatypeProperty are specializations of
rdf:Property.

XML Schema and OWL

We discussed the differences in perspective between RDF Schema and XML
Schema in Section 5.2.2. The OWL specification adopts a perspective similar to
that of RDF Schema. Some differences in perspectives between XML Schema and
OWL are as follows.

• The notion of occurrence constraints or cardinalities appear in XML Schema
and OWL. Consider the following XML Schema representation of a Panel of
tests involving occurrence constraints.

<xsd:complexType name="Panel">
 <xsd:sequence>
 <xsd:element name="test" minOccurs="1" maxOccurs="unbounded"/>

 ...
 </xsd:sequence>
</xsd:complexType>

Consider an OWL-based representation of the same information.

<owl:Class rdf:ID="Panel">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="test">
 <owl:minCardinality>1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

There is a crucial difference in the way the two representations are interpreted.
The XML Schema representation evaluates the number of occurrences of a lab-
oratory test element in a panel element. On the other hand, the OWL representa-
tion evaluates the number of laboratory test instances that are values of the test
property. If a given XML document doesn’t contain at least one occurrence of a
laboratory test element, an error will be flagged. However, in the case of the
OWL expression, the laboratory test instances could appear in any other docu-
ment. Furthermore, unless it is explicitly asserted (or inferred) that there are no
laboratory test instances associated with a given panel, an inconsistency or con-
tradiction will not be flagged.

• In XML Schema, new types can be defined as extensions of existing types,
whereas in OWL, new classes can be defined in terms of existing classes and
properties. Consider the following XML Schema definition of USAddress:

 5.2 Ontology Representation Languages 111

<complexType name="Address">
 <sequence>
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 </sequence>
</complexType>
<complexType name="USAddress">
 <complexContent>
 <extension base="Address">
 <sequence>
 <element name="state" type="USState"/>
 <element name="zip" type="positiveInteger"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

As discussed earlier each of the elements are assumed to be local to the type def-
inition. Thus when a new derived type, USAddress, is created from a base type,
Address, the new elements that are being added need to be specified. This is in
contrast to OWL (which is similar to RDF Schema) where all properties are glo-
bal and can be assigned to each class. There is no need to enumerate all the
properties when specifying USAddress as the subclass of Address. The restric-
tion on the property state can be specified by a local property restriction. The
resulting expression is simpler to understand and use.

<owl:Class rdf:ID="USAddress">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Address"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#state"/>
 <owl:allValuesFrom rdf:resource="#USState"/>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

There is a critical differences in how these expressions are interpreted. For
instance, the XML Schema representation specifies that the USAddress type is
an extension of the Address type, however that does not imply that every
instance of a USAddress type is also an instance of the Address type, though this
might be true for the most part. On the other hand, the OWL specification
clearly implies through the OWL semantics specification, that every instance of
the USAddress class is also an instance of the Address class.

112 5 Ontologies and Schemas

5.2.4 The Web Service Modeling Ontology (WSMO)

WSMO is a meta-ontology that was devised for describing all aspects of Semantic
Web Services. It consists of four top level elements: Web Service, Goal, Ontology
and Mediator. The Ontology element itself defines the conceptual model used by
all WSMO elements. Hence the description of WSMO as a meta-ontology. It is an
ontology that defines how other ontologies can be constructed. WSMO’s concep-
tual model is given semantics through a layered family of logical languages, col-
lectively known as the Web Service Modeling Language (WSML). The WSMO
home page1 provides an extensive set of readily accessible resources describing the
conceptual model and WSML languages. In addition, WSMO is the subject of a
number of journal articles and books e.g [325], [328], [404]. Full descriptions and
detailed examples of WSMO are available at these resources. In this section we
provide an introductory description of the WSMO Ontology element and the lay-
ered family of logical languages that make up WSML. To illustrate this, we con-
tinue with our running example from the medical domain. Chapter 11 looks at the
the WSMO Web Service element used for the description of Semantic Web Ser-
vices.

WSML has a frame-like syntax which means that information about a class and
its attributes, or a relation and its parameters, or an instance and its atribute values
are grouped together in individual syntactic constructs. This is intended to help
with readability of WSML in comparison with OWL or RDF which use XML as
their primary syntax and where information about a class, relation or axiom can be
spread across several constructs (that said, an XML syntax is also available for
WSML). Also in contrast with OWL, WSML attributes are generally defined
locally to a class. This is the recommended usage but does not always have to be
the case. Attribute identifiers are gloablly unique and it is possible, if neccessary to
define global attributes using axioms. More information on the syntax and rules of
the WSML language are available in [328] and at the online WSML Language
Reference2.

Concepts

Concepts represent things in a domain of interest. They are defined within a sub-
sumption hierarchy. A concept can be a subconcept of zero, one or many super
concepts. For example, the following WSML defines the concepts Test and Liv-
erTest, where Test subsumes LiverTest.

concept Test
 testId ofType (1) _IRI
 input ofType TestInput

1. http://www.wsmo.org (accessed on May 20, 2008).
2. http://www.wsmo.org/TR/d16/d16.1/v0.3/ (accessed on May 20, 2008).

 5.2 Ontology Representation Languages 113

 output ofType TestOutput
concept LiverTest subConceptOf Test
 enzymesToTest ofType LiverEnzymes
 secondControlTest symmetric (0 1) impliesType LiverTest

We already mentioned that, generally, attributes are defined locally for a con-
cept. In contrast with OWL, WSML attributes can have cardinality and range con-
straints which can be used for consistency checking. Similar to the use of database
constraints, its possible in WSML for an ontology to be verified as being consistent
based on whether or not stated constraints hold. In OWL, the use of cardinality and
range constraints are used to create additional inferences such as membership or
equality of objects in a class. The designers of WSML held this to be counter-intu-
itive from the perspective of frame-based languages from which WSML essentially
derives. Cardinality in WSML is specified using parenthesis after the ofType key-
word with either one or two space separated values. The first value indicates the
minimal cardinality while the second specifies the maximum. Where only one
value is present, it specifies both the minimum and maximum. Additionally, the *
character is used to specify no upper limit. For example (0 1) means an attribute is
optional. (1) mean it must occur exactly once (known as a functional attribute). (1
*) means that the attribute must exist at least once but with no upper limit. Where
the cardinality is not specified, then it is assumed there is no cardinality constraint
i.e. (0 *).

WSML allows attributes to be defined that impose constraints as well as those
that are used for inferring additional information. The former are identified by the
ofType keyword. These are the most commonly used attributes and constrain the
attribute to the specified type. If the constraint does not hold, the ontology will be
inconsistent. The latter set of attributes are identified by the impliesType keyword.
These attributes do not impose constraints but can be used to infer additional infor-
mation. The Test concept in the listing above has a testId attribute with a cardinality
of exactly one (functional). Each instance of the Test concept must have exactly
one testId attribute value. The secondControlTest attribute of the LiverTest concept
is used to indicate that optionally a second control test can be specified. If this
attribute exists, the defintion says that its type can be inferred to be the LiverTest
concept.

Where no datatype is specified, keywords are available to specify attributes as
reflexive, transitive, symmetric or the inverse of another attribute. They can also be
defined as being the subattribute of another attribute. Unlike constraints, these key-
words are used by WSML inference engines to infer additional information rather
than for consistency checking. For example, the secondControlTest is specified as
symmetric which means that the instance of the concept used for its value can be
inferred to also have a secondControlTest attribute that points back to the first con-
cept instance.

114 5 Ontologies and Schemas

Relations

Relations are used to model interdependencies between concepts. A relation usu-
ally has two or more parameters (typed using concepts) and is defined using a logi-
cal expression which must evaluate to true over specific instances of the relevant
concepts for the relation to hold. For example, in our medical example, we define
concepts for Symptom and Condition, and declare a relation between them below.
The relation is called isSymtomaticOf and can be read as - an instance of the Sym-
tom concept isSymtomaticOf an instance of a Condition concept. In this WSML
snippet, the relation is just declared. The order of the parameters is important but
the at this point there is no definition, in terms of a logical expression, for how the
relation can be evaluated to be true. Such a definition can be provided by the axiom
WSML element described in the next section.

concept Symptom
 clinicalName ofType _string
 durationObserved ofType _time
 recommendedTest ofType Test
concept Condition
 conditionName ofType _string
 recommendedTreatment ofType Treatment
relation isSymptomaticOf(ofType Symptom, ofType Condition)

Instances

Instances can be either defined explicitly, by specifying values for a concept and its
attributes, or by referring to a unique instance identifier. When instances are
defined, values are given to each attribute in accordance with that attribute’s defini-
tion. For example, the listing below is an instance of a CDA Diastolic Blood Pres-
sure concept from the HL7 CDA medical data model. The value codeBlock3 is an
instance of a CodeBlock concept. The other attribute values are of simple built-in
types.

instance CDADiastolicBP_1_4524 memberOf CDADiastolicBP
codeValues hasValue codeBlock3
classCode hasValue "OBS"
moodCode hasValue "EVN"
valueType hasValue "PQ"
value hasValue 86
valueUnit hasValue "mm[Hg]"

Instances of relations can also be defined. An instance of our earlier isSym-
tomatic relation can be defined using the relationinstance keyword as:
relationinstance isSymtomaticOf(highDiastolicBP, weakenedLiver)

 5.2 Ontology Representation Languages 115

Axioms

An axiom is a logical expression in WSML that can be evaluated to true or false. It
is the means by which rules within a WSMO ontology can be expressed formally
and unambiguously so that they can be evaluated by an automated reasoning
engine. The axiom below defines the rule for when an instance of a LiverPanelRe-
sult can be considered abnormal. It says that an adnormal liver result is defined to
exist when the one of the attributes hasALT, hasAST, or hasCreatinine has an
anbormally high value.

axiom isAbnormalLiverPanelResult
definedBy

 ?liverPanelResult[hasALT hasValue ?alt,
 hasAST hasValue ?ast,
 hasCreatinine hasValue ?creatinine]
 memberOf LivePanelResult
 and
 (?alt > NORMAL_ALT or
 (?ast > NORMAL_AST or
 (?creatinine > NORMAL_CREATININE).

Annotations and Non-functional Properties

Every WSMO element can have a set of annotations attached to it to specify meta-
data that may be outside the domain model for the element. For example, the date
the element was last modified, its version, author etc. Non-functional properties
extend the notion of annotations so that they can include logical expressions. For
both types of metadata, the WSMO specification indicates that a starting point is
the use of Dublin Core metadata3. For example:

ontology hl7_cda_bp_archetype
nfp

 dc#title hasValue "HL7 Ontology for the BP Archetype"
 dc#description hasValue "An ontology that defines
 the HL7 archetype for describing
 blood pressure conditions
 dc#dateCreate hasValue "18 May 2008"

endnfp

Importing Ontologies

Ontologies can be imported into a WSML defintion and used directly as long as no
conflict in the concept definitions arise. This is specified through the importsontol-

3. http://dublincore.org/ (accessed on May 20, 2008).

116 5 Ontologies and Schemas

ogy keyword. Our example ontology below, for the CEN 13606 openEHR data
model, imports concept definitions for blood pressure from the ehr-bp-archetype
ontology. It assumes that no mediation is required to use the imported ontology.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"
nameSpace {_"http://www.example.org/patientHistory#",
 ehr_bp _"http://www.example.org/ehr-bp-archetype#"}
importsOntology {_"http://www.example.org/ehr-bp-archetype}
concept Patient
 personalDetails ofType (1) PatientPersonalDetails
 ...

Mediators

Mediators are used to link WSMO elements defined in different ontologies
together. WSMO defines four types of mediators: Ontology-to-Ontology (ooMedi-
ator), Goal-to-Goal (ggMediator), Web Service-to-Goal (wgMediator), and Web
Service-to-Web Service (wwMediator). The ooMediator is, as yet, the most com-
monly mediator declaration used for WSMO. The WSML definitions for mediator
and ooMediator are:

Class mediator sub-Class wsmoElement
 importsOntology type ontology
 hasNonFunctionalProperties type nonFunctionalProperty
 hasSource type {ontology, goal, webService, mediator}
 hasTarget type {ontology, goal, webService, mediator}
 hasMediationService type {goal, webService, wwMediator}
Class ooMediator sub-Class mediator
 hasSource type {ontology, ooMediator}

The WSML language also allows any defintion to declare that it uses a particu-
lar mediator using the usesMediator keyword followed by the URI for the media-
tor. For example, an ooMediator, called openEHR-to-HL7CDA, defined to bridge
the heterogeneity between the data models of openEHR and HL7 CDA could be
declared for use in a Web Service by including the following statement:

usesMediator _"http://example.org/openEHR-to-HL7CDA"

WSML Layered Family of Languages

The formal syntax and semantics for WSMO is provided by the Web Service Mod-
eling Language (WSML) [328] which is actually a layered family of formal
description languages. Each member of the family corresponds to a different type
of logic, which allows for different expressiveness and reasoning capability. The
various logic formalisms are Description Logics, First-Order Logic and Logic Pro-
gramming, all of which are useful for the modeling of Semantic Web Services.
There are five variants, illustrated in Figure 5.7 and described briefly below.

 5.2 Ontology Representation Languages 117

• WSML-Core. Defined by the intersection of Description Logics and Horn
Logic based on Description Logics Programs [329]. It is the least expressive
member of the family and consequently has the best computational characteris-
tics.

• WSML-DL. An extension of WSML-Core which captures Description Logics
SHIQ(D) and is equivalent to OWL-DL.

• WSML-Flight. This is based on a logic programming variant of F-Logic which
provides convenient object-oriented and frame-based constructs. It extends
WSML-Core with support for meta-modeling, constraints and non-monotonic
negation.

• WSML-Rule. This extends WSML-Flight in the direction of Logic Program-
ming to provide a powerful rule language.

• WSML-Full. Unifies WSML-DL and WSML-Rule under first-order logic with
extensions for the support of non-monotonic negation. This language is the least
specified of the WSML family as it is not yet clear which formalisms are neces-
sary to achieve it

.

Fig. 5.7. WSML family [328]

In Figure 5.8, the layering of the WSML languages is illustrated with WSML-
Core (least expressive) at the bottom and WSML-Full (most expressive) at the top.
There are two possible layered combinations:

• WSML-Core + WSML-Flight + WSML-Flight + WSML-Full
• WSML-Core + WSML-DL + WSML-Full + WSML-Full

The two layerings are disjoint to the extent that only the WSML-Core subset
provides a common basis. With that restriction, the semantics in the language
remain relatively clean in contrast to SWSL-FOL and SWSL-Rule which, as
described earlier, share common syntax but not semantics and consequently cannot
be used together.

118 5 Ontologies and Schemas

Before leaving the description of WSML, the rationale provided by the authors
of WSML for not using OWL as the basis for the language is that OWL was
designed as a language for the Semantic Web annotating structures with machine-
processable semantics. OWL was not designed as a language rich enough to
describe the process models that are part and parcel of the Semantic Web Service
conceptual model. This is reflected directly in the OWL-S work where there is no
alignment with a framework like MOF and which relies on OWL combined with
different notations and semantics for expressing conditions. In some cases this
leads to open semantic and decidability issues which are a hindrance to practical
usage of the language.

Fig. 5.8. WSML layering [328]

5.2.5 Comparison of Ontology Representation Languages

We now compare XML Schema, RDF Schema, OWL and WSML based on the
dimensions and analysis presented in [98]. The dimensions for comparison are as
follows:

• Context: Modularity is an important consideration, especially in large distrib-
uted environments. The same term should be interpreted according to the con-
text in which it is defined. The same term can be defined differently in
alternative contexts. It is important that the language be able to express the dif-
ferent contexts in which terms should be interpreted. Namespaces, one of the
most elegant features adopted by the XML standard, can be used as a limited
form of context. A very subtle but important point is that the URI specified in
the tag is not required to point to a schema that defines the terms to be used in
that namespace, and so effectively the tag just provides a label to refer to the
context. OWL and RDF use XML namespaces to refer to schemas. An impor-
tant difference from XML is that the namespace URI reference also identifies

 5.2 Ontology Representation Languages 119

the location of the RDF schema. Thus, the use of namespaces in RDF seems to
be a more clean mechanism to represent contexts.

• Subclasses and properties: These express relations between object classes.
Subclasses represent “is-a” relations. Properties relate different object classes.
Classes and properties are sometimes called concepts and roles, or frames and
slots, or objects and attributes, or collections and predicates. In XML Schema,
there are no explicit constructs for defining classes and properties. There are
only elements and subelements, which can be given an adhoc interpretation as a
class/subclass or as a class/property statement. XML allows the definition of
new types by extending or restricting existing simple or complex element types.
However, the extended and restricted types are not subclasses of the types used
in their definition. OWL and RDF Schema provide constructs to define classes,
properties, subclasses and subproperties.

• Primitive datatypes: A common set of primitive datatypes, such as strings and
numbers, that can be used directly or to compose new complex types. XML
Schema offers a wide variety of datatypes compatible with database manage-
ment systems. These datatypes have been adopted by RDF Schema and OWL.

• Instances: These objects denote individuals, which can be described in terms of
their properties or specified to be members of a class.

• Property constraints: These constraints define each property. Properties can be
described with respect to a specific class, which means that the property can
only be described or used for that class. Properties can also be described as inde-
pendent entities, which means that any classes that satisfy the constraints can be
related with that property even if this is not indicated in the class definition.
XML Schema provides range constraints on elements by the “type” attribute of
the element definition. The domain of an element is implicitly the parent ele-
ment within which it is defined or referred to. A property, and hence its range, is
global if the property (or element) is a top-level element (no parent elements);
otherwise it is local. Local cardinality constraints on properties can be specified
using “minOccurs” and “maxOccurs” attributes while referring to the property
inside a parent element. However, it is not possible to define cardinality con-
straints globally. RDF Schema allows range and domain constraints on proper-
ties, which are declared globally. Multiple range and domain statements imply
conjunction in both RDF Schema and OWL. RDF Schema does not provide car-
dinality constraints in its specification. OWL provides for a wide variety of con-
straints on the ranges of properties, both local and global.

• Property values: In addition to range and cardinality, the values that can be
assigned to a property can be restricted further. A default value can be provided.
An enumeration of possible values may be given as a set of choices. Ordered
sets specify the order of the elements, either extensionally or intensionally. Ele-
ments are by default ordered in XML. However, we can impose a particular
order on the occurrence of elements in XML Schema by the <xsd:sequence>
tag. In RDF and OWL, we can order a set by using the <rdf:Seq> tag.

120 5 Ontologies and Schemas

• Negation, conjunction and disjunction: Negated statements of any description
allowed in the language are often useful, but the computational cost is steep, and
as a result only limited forms of negation are typically supported in a given lan-
guage. Disjunctive expressions are often used to describe relations among sub-
classes or property constraints. OWL supports negation and disjunction, through
<owl:complementOf> (negation) and <owl:unionOf> (disjunction). XML
Schema also provides a <union> tag which gives the disjoint union of various
element “types”. Conjunction is supported in OWL through the <owl:inter-
sectionOf> tag, while multiple <rdfs:subClassOf> tags imply conjunction in
RDF Schema.

• Inheritance: Inheritance indicates that the constraints and values of properties
in parent classes are true of the subclasses. Multiple inheritance allows inherit-
ance from multiple parent classes.

• Definitions: Definitions indicate whether necessary and sufficient conditions
for class membership can be specified. The system can use these definitions to
reason about class-subclass relations (subsumption) and to determine whether
instances are members of a class (recognition), as in description logic systems.
OWL offers the ability to specify necessary and sufficient conditions using the
<owl:equivalentClass> tag.

• Logical Consequence: A key characteristic of a semantic web language is a
well defined specification based on a mathematical characterization of the inter-
pretations of the language and the set of logical entailments or consequences
supported. A comparison of ontology representation languages.

Table 5.1. A comparison of ontology representation languages

Dimen-
sion Detail

XML
Schema

RDF
Schema OWL WSML

Contexts Contexts Yes Yes Yes Yes

Classes Object
Classes and
Properties

No, any
XML ele-
ment can be
a class or a
property

Yes Yes Yes

Inheritance No, but ele-
ment types
can be
extended

Yes Yes Yes

 5.2 Ontology Representation Languages 121

Property/
Element
Con-
straints

Property/
Element
range

Yes, (Glo-
bal and
Local)

Yes (Glo-
bal only)

Yes (Glo-
bal and
Local)

Yes (Global
and Local)

Property/
Element
domain

Yes (implic-
itly the ele-
ment under
which it is
defined)

Yes (Glo-
bal only)

Yes (Glo-
bal only)

Yes (implic-
itly local to
the concept
to which it
belongs but
can be
explicitly
global)

Property/
Element car-
dinality

Yes (Local
only, min/
max occurs)

No Yes, (Glo-
bal and
Local)

Yes, (Glo-
bal and
Local)

Datatypes
&
Instances

Basic
Datatypes

Yes Yes (XSD
Datatypes)

Yes (XSD
Data-
types)

Yes (XSD
Data-types)

Enumera-
tion of val-
ues

Yes No Yes Yes

Datatypes
and
instances

Instances Yes Yes Yes, using
RDF

Yes

Data-Sets Bounded
Lists

No Yes Yes Yes

Ordered
Data-Sets

Yes Yes Yes Yes

Negation,
Disjunc-
tion &
Conjunc-
tion

Negation No No Yes Yes
(depending
on WSML
variant)

Disjunction No, but
union of ele-
ment types
supported

No Yes Yes
(depending
on WSML
variant)

Conjunction No Yes Yes Yes

Defini-
tions

Definitions No No Yes Yes

Table 5.1. A comparison of ontology representation languages

Dimen-
sion Detail

XML
Schema

RDF
Schema OWL WSML

122 5 Ontologies and Schemas

5.3 Integration of Ontology and Rule Languages

A powerful complementary approach for representing ontologies and other types
of knowledge on the Semantic Web is based on declarative rule-based languages
such as RuleML and SWRL. Semantic and inferential interoperation across these
approaches is critical for enabling the Semantic Web infrastructure. We present and
discuss requirements for interoperation, and present a comparison of these two
approaches followed by a discussion of some approaches to achieve this integra-
tion.

5.3.1 Motivation and Requirements

In this section, we discuss the motivations for combining ontologies and rules and
present key requirements for the same. A mapping between ontology and rule lan-
guages is important for many aspects of the Semantic Web [160]:

Language Layering: A key requirement for the Semantic Web architecture is to
be able to layer rules on top of ontologies in particular to create and reason with
rulebases that mention vocabulary specified by ontology-based knowledge bases
and to do so in a semantically coherent and powerful manner.

Querying: Rules offer extensive facilities for instance reasoning and querying.
Hence, combining description logics with rule paradigms can enable expressive
instance queries with respect to terminological knowledge bases represented using
ontology representation languages.

Data Integration: The majority of today’s structured data resides in relational
databases. As the Semantic Web grows in importance, people will probably start
publishing their data according to some chosen ontology. This may require loading
of data into description logic reasoners, whereas logic programming and rule-
based systems can access databases directly through built-in predicates.

Semantic Web Services: Semantic Web Services attempt to describe services in
a knowledge-based manner in order to use them for a variety of purposes, includ-
ing discovery and search; selection, evaluation, negotiation and contracting; com-
position and planning; execution; and monitoring. Both rules and ontologies are

Property
types

Inverse No No Yes Yes

Transitive No No Yes Yes

Logical
Conse-
quence

No Limited Yes Yes

Table 5.1. A comparison of ontology representation languages

Dimen-
sion Detail

XML
Schema

RDF
Schema OWL WSML

 5.3 Integration of Ontology and Rule Languages 123

necessary for such service descriptions and play complementary roles. While
ontologies are useful for representing hierarchical categorization of services over-
all and of their inputs and outputs, rules are useful for representing contingent fea-
tures such as business policies, or the relationships between preconditions and
postconditions.

Expressiveness Considerations: There are advanatages and disadvantages of
using OWL based representations and rules to represent ontologies and knowledge
bases. The language provided by OWL-DL for talking about properties is much
weaker. In particular, there is no composition constructor, so it is impossible to
capture relationships between a component property and another possibly compos-
ite property. The example of the property uncle being the composition of the par-
ent and brother properties cannot be represented in OWL-DL and needs a rule-
based representation as follows:

uncle(x,y) <= parent(x,z) and brother(z,y)

Definite Horn FOL requires that all variables are universally quantified (at the
outer level of the rule). This makes it impossible to assert the existence of individ-
uals whose identity might not be known. For example, it is impossible to assert that
all persons have a father (known or unknown). This can be expressed as a DL
axiom as follows:

Class(Person partial restriction(father someValuesFrom(Thing)))

5.3.2 Overview of Languages and Approaches

There have been multiple approaches used to integrate rules- and description-log-
ics-based ontologies. Some approaches have been driven by a pragmatic perspec-
tive where rules and DLs are viewed as separate components of a system, whereas
others have taken an integrated view where the DL and rule specifications are
manipulated collectively. The latter approach seeks to represent DLs and variants
of rule languages using a First-Order Logic (FOL) framework and identification of
the appropriate sublanguage of first-order logic that is some combination of
description logics and rule-based languages. A brief summary of the various
approaches taken is presented below.

• Weak Integration of DLs and Rules: An approach adopted in early description
logic systems such as CLASSIC [165] [166] was to include a rule language
component. The rules were given a weaker semantic treatment than axioms
asserting subclass relationships, were only applied to individuals and did not
affect class based inferences.

• Stronger Integration with Weak DLs and Syntactic Restrictions: The
CARIN system integrated rules and description logics, by using a rather weak
description logics and placing severe syntactic restrictions on the occurrence of

124 5 Ontologies and Schemas

description logic terms in the heads of rules, to achieve sound and complete rea-
soning was still possible [167].

• Description Logics Programs: Description Logics Program (DLP) [161] is a
sublanguage defined by the intersection of definite equality-free datalog logic
programs and description logics. DLP captures a significant fragment of OWL-
DL, including the whole OWL-DL fragment of RDF(S), simple frame axioms
and more expressive property axioms.

• OWL Rules Language (ORL): The OWL Rules Proposal [168] seeks to
extend OWL-DL with a form of rules while maintaining maximum backward
compatibility with OWL’s existing syntax and semantics. This is achieved by
adding a new kind of axiom to OWL-DL, namely Horn Rules. The OWL-DL
model-theoretic semantics is extended to provide a formal semantics for such an
ontology language. This language is more expressive than the DLP discussed
above as it extends the expressiveness of OWL-DL as opposed to choosing the
intersection of DLs and definite Horn Rules which is necessarily less expressive
than either.

• Semantic Web Rules Language (SWRL): The proposal for SWRL [312] is a
W3C member submission is based on a combination of the OWL-DL and OWL
Lite sublanguages of the OWL Web Ontology Language with the Unary/Binary
Datalog RuleML sublanguages of the Rule Markup Language [395]. The pro-
posal extends the set of OWL axioms to include Horn-like rules. It thus enables
Horn-like rules to be combined with an OWL knowledge base.

• F-Logic: F-logic (frame logic) [412], is a knowledge representation and ontol-
ogy language. It accounts in a declarative fashion for structural aspects of
object-oriented and frame-based languages. Features include, among others,
object identity, complex objects, inheritance, polymorphism, query methods,
encapsulation. F-logic stands in the same relationship to object-oriented pro-
gramming as classical predicate calculus stands to relational database program-
ming.

5.3.3 Semantic Web Rules Language

The SWRL proposal extends the set of OWL axioms to include Horn-like rules. It
thus enables Horn-like rules to be combined with an OWL knowledge base. The
proposed rules are of the form of an implication between an antecedent (body) and
consequent (head). The intended meaning can be read as: whenever the conditions
specified in the antecedent hold, then the conditions specified in the consequent
must also hold. Both the antecedent (body) and consequent (head) consist of zero
or more atoms. An empty antecedent is treated as trivially true (i.e. satisfied by
every interpretation), so the consequent must also be satisfied by every interpreta-
tion; an empty consequent is treated as trivially false (i.e., not satisfied by any
interpretation), so the antecedent must also not be satisfied by any interpretation.
Multiple atoms are treated as a conjunction. Atoms in these rules can be of the

 5.3 Integration of Ontology and Rule Languages 125

form C(x), P(x,y), sameAs(x,y) or differentFrom(x,y), where C is an OWL
description, P is an OWL property, and x,y are either variables, OWL individuals
or OWL data values. We now present examples of rules in the SWRL format which
cannot be expressed using OWL.
1. If a patient has a structured test result which is indicative of a particular disease

then, the patient suffers from that disease. This rule involves the properties
hasStructuredTestResult, indicatesDisease and suffersFrom and specifies
that the combination of the first two properties implies the third property. This
rule cannot be currently expressed in an OWL axiom. The SWRL representa-
tion of this rule is as follows.

<ruleml:imp>
 <ruleml:_rlab ruleml:href="#example1"/>
 <ruleml:_body>
 <swrlx:individualPropertyAtom
 swrlx:property="hasStructuredTestResult">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x2</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="indicatesDisease">
 <ruleml:var>x2</ruleml:var>
 <ruleml:var>x3</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_body>
 <ruleml:_head>
 <swrlx:individualPropertyAtom swrlx:property="suffersFrom">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x3</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_head>
 </ruleml:imp>

2. Another interesting use of SWRL rules, is that one can directly use OWL
expressions in the body or head of the rule. This is an interesting approach for
integration of rules and ontologies. Consider the rule: If a patient is a diabetic
patient, then create an LDL test. This can be represented in SWRL which spec-
ifies the OWL description of an allergic patient in the body of the SWRL rule as
follows:

<ruleml:imp>
 <ruleml:_rlab ruleml:href="#example2"/>
 <ruleml:_body>
 <swrlx:classAtom>
 <owlx:IntersectionOf>
 <owlx:Class owlx:name="Patient"/>
 <owlx:ObjectRestriction owlx:property="suffersFrom">
 <owlx:someValuesFrom owlx:class="Diabetes"/>
 </owlx:ObjectRestriction>
 </owlx:IntersectionOf>

126 5 Ontologies and Schemas

 <ruleml:var>x1</ruleml:var>
 </swrlx:classAtom>
 </ruleml:_body>
 <ruleml:_head>
 <swrlx:classAtom>
 <owlx:IntersectionOf>
 <owlx:Class owlx:name="Test"/>
 <owlx:ObjectRestriction owlx:property="testName">
 <owlx:hasValue owlx:Individual="LDL"/>
 </owlx:ObjectRestriction>
 </owlx:IntersectionOf>
 <ruleml:var>x2</ruleml:var>
 </ruleml:_head>
 </ruleml:imp>

It may be noted that both the head and the body contain OWL expressions
(enclosed in the <owlx:IntersectionOf> </owlx:IntersectionOf> tags).
Patient, isAllergicTo, Test and testName are classes and properties defined
in an OWL ontology which can be directly referred to from a SWRL Rule. Fur-
thermore, as we will discuss in the context of the use case, the above leads to an
interesting differentiation between classification inferences and actionable
rules, e.g., creating a new test for checking allergies. We will discuss these
issues in more detail in the next section.

5.4 Clinical Scenario Revisited

We now revisit the Clinical Scenario discussed in Chapter 2 and discuss how
semantic web based ontology represenation languages can be used to design a solu-
tion for the use case scenario. We present an OWL based specification on an ontol-
ogy for Translational Medicine that spans clinical and genomic domains. An
interesting approach for combining OWL-based ontologies with rule-based clinical
decision support is also presented. Issues related to decoupling of ontological defi-
nitions from clinical decision rules for ordering therapies is presented.

5.4.1 A Domain Ontology for Translational Medicine

We chose OWL as the Ontology Representation Language for designing a solution
to the clinical use case. Presented below is an OWL representation of the ontology
illustrated in Figure 5.6.

<owl:Class rdf:ID="Person"/>
<owl:Class rdf:ID="Patient">
 <rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>
<owl:Class rdf:ID="Relative">
 <rdfs:subClassOf rdf:resource="#Person"/>

 5.4 Clinical Scenario Revisited 127

</owl:Class>
<owl:Class rdf:ID="StructuredTestResult"/>
<owl:Class rdf:ID="MolecularDiagnosticTestResult"/>
<owl:Class rdf:ID="FamilyHistory"/>
<owl:Class rdf:ID="Disease"/>
<owl:Class rdf:ID="Gene"/>
<owl:Class rdf:ID="Mutation"/>
<owl:Class rdf:ID="LaboratoryTestOrder"/>
<owl:Class rdf:ID="Panel"/>
<owl:Class rdf:ID="Test"/>
<owl:Class rdf:ID="USAddress"/>

<owl:ObjectProperty rdf:ID="isRelatedTo">
 <rdf:type rdf:resource="&owl;TransitiveProperty" />
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Relative"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasFamilyHistory">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#FamilyHistory"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="associatedRelative">
 <rdfs:domain rdf:resource="#FamilyHistory"/>
 <rdfs:range rdf:resource="#Relative"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasStructuredTestResult">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#StructuredTestResult"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasStructuredTestResult">
 <owl:inverseOf rdf:resource="#hasPatient"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasMolecularDiagnosticTestResult">
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult" />
 <rdfs:range rdf:resource="#MolecularDiagnosticTestResult" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="identifiesMutation"/>
 <rdfs:domain rdf:resource="#MolecularDiagnosticTestResult"/>
 <rdfs:range rdf:resource="#Mutation"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="indicatesDisease">
 <rdfs:domain rdf:resource="#MolecularDiagnosticTestResult"/>
 <rdfs:range rdf:resource="#Disease"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="suffersFrom">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Disease"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasMutation">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Mutation"/>
</owl:ObjectProperty>

128 5 Ontologies and Schemas

<owl:ObjectProperty rdf:ID="hasGene">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Gene"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="isMutationOf">
 <rdfs:domain rdf:resource="#Mutation"/>
 <rdfs:range rdf:resource="#Gene"/>
</owl:ObjectProperty>
<owl:ObjectProperty> rdf:ID="hasAddress">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#USAddress"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="recipientAddress">
 <rdfs:domain rdf:resource="#LaboratoryTestOrder"/>
 <rdfs:range rdf:resource="#USAddress"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="payorAddress">
 <rdfs:domain rdf:resource="#LaboratoryTestOrder"/>
 <rdfs:range rdf:resource="#USAddress"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="testPanel">
 <rdfs:domain rdf:resource="#LaboratoryTestOrder"/>
 <rdfs:range rdf:resource="#Panel"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="test">
 <rdfs:domain rdf:resource="#Panel"/>
 <rdfs:range rdf:resource="#Test"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="associatedResult">
 <rdfs:domain rdf:resource="#Test"/>
 <rdfs:range rdf:resource="#StructuredTestResult"/>
</owl:ObjectProperty>
<owl:DataTypeProperty rdf:ID="orderDateTime">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#LaboratoryTestOrder"/>
 <rdfs:range rdf:resource="&xsd;datetime" />
</owl:DataTypeProperty>
<owl:Class rdf:ID="Patient">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isRelatedTo"/>
 <owl:allValuesFrom rdf:resource="#Relative"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Mutation">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isMutationOf"/>
 <owl:someValuesFrom rdf:resource="#Gene"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class> ¬

 5.4 Clinical Scenario Revisited 129

<owl:Class rdf:ID="StructuredTestResult">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasPatient"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1
 </owl:cardinality>

 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="PatientWithMYH7Gene">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasGene"/>
 <owl:hasValue rdf:resource="#MYH7"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="DiabeticPatient">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Patient"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#suffersFrom"/>
 <owl:someValuesFrom rdf:resource="#Diabetes"/>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>
<owl:Class rdf:ID="StructuredTestResult">

<owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:resource="#NormalStructuredTestResult"/>
 <owl:Class rdf:resource="#AbnormalStructuredTestResult"/>
</owl:unionOf>

</owl:Class>
<owl:Class rdf:ID="NormalStructuredTestResult">

<rdfs:subClassOf rdf:resource="#StructuredTestResult"/>
 <owl:disjointWith rdf:resource="#AbnormalStructuredTestResult/>
</owl:Class>
<owl:Class rdf:ID="AbnormalStructuredTestResult">

<rdfs:subClassOf rdf:resource="#StructuredTestResult"/>
 <owl:disjointWith rdf:resource="#NormalStructuredTestResult/>
</owl:Class>

The OWL Specifications above illustrate some of the key features, based on
which one may chose OWL as opposed to other alternatives:

• OWL seeks to model the semantics of the information through constructs such
as owl:Class, owl:ObjectProperty and owl:DatatypeProperty.

• OWL supports the ability to iteratively add descriptions as more knowledge and
information becomes available. For instance, in the ontology below, the declara-
tion of the class Mutation could be added first. The property restriction
(<owl:onProperty rdf:resource="#isMutationOf"> <owl:someValuesFrom

130 5 Ontologies and Schemas

rdf:resource="#Gene">) could be added later independently by another
domain expert.

• Unlike RDF Schema, OWL supports the ability to locally restrict the values of a
particular property, e.g., the values of the property suffersFrom are restricted to
instances of the class Diabetes when applied to instances of the class Diabe-
tesPatient. Other classes of patients may be restricted to instances of other dis-
eases.

• In contrast with RDF Schema, OWL supports the ability to support complex
classes (StructuredTestResult is the union of NormalStructuredTestResult
and AbnormalStructuredTestResult), disjoint classes (NormalStruc-
turedTestResult and AbnormalStructuredTestResult) and cardinality con-
straints (e.g., each instance of StructuredTestResult has exactly 1 value for
the hasPatient property).

5.4.2 Integration of Ontologies and Rules for Clinical Decision Support

Consider the following clinical decision rule which determines whether a particular
therapy needs to be ordered for a patient.

IF the patient has a contraindication to Fibric Acid
THEN Prescribe the Zetia Lipid Management Therapy

Consider an extension to the ontology presented in the previous section as fol-
lows (Note: this illustrates how an ontology description be iteratively enhanced).
The extension is illustrated in below.

<owl:ObjectProperty hasLiverPanel>
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult"/>
</owl:ObjectProperty>
<owl:ObjectProperty hasALP>
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult"/>
</owl:ObjectProperty>
<owl:ObjectProperty hasALT>
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult"/>
</owl:ObjectProperty>
<owl:ObjectProperty hasAST>
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult"/>
</owl:ObjectProperty>
<owl:ObjectProperty hasCreatinine>
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult"/>
</owl:ObjectProperty>
<owl:ObjectProperty hasTotalBilirubin>
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="isAllergicTo">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Allergen"/>
</owl:ObjectProperty>

 5.4 Clinical Scenario Revisited 131

<owl:ObjectProperty rdf:ID="recommendedTherapy">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Therapy"/>
</owl:ObjectProperty>

Fig. 5.9. Enhanced ontology to model Contraindication

<owl:Class rdf:ID="Allergen"/>
<Allergen rdf:ID="FibricAcid"/>

<owl:Class rdf:ID="Therapy"/>
<Therapy rdf:ID="ZetiaLipidManagementTherapy"/>

<owl:Class rdf:ID="LiverPanelResult>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:resource="#NormalLiverPanelResult"/>
 <owl:Class rdf:resource="#AbnormalLiverPanelResult"/>
 </owl:unionOf>
</owl:Class>
<owl:Class rdf:ID="AbnormalLiverPanelResult"/>
 <rdfs:subClassOf rdf:resource="#LiverPanelResult"/>
 <owl:disjointWith rdf:resource="#NormalLiverPanelResult"/>
</owl:Class>

<owl:Class rdf:ID="NormalLiverPanelResult"/>
 <rdfs:subClassOf rdf:resource="#LiverPanelResult"/>
 <owl:disjointWith rdf:resource="#AbnormalLiverPanelResult"/>

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

Patient

PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel

PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

Patient

PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel
PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel

PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid
PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

132 5 Ontologies and Schemas

</owl:Class>
/* Similar definitions for ALPResult, ALTResult, */
/* CreatinineResult and TotalBilirubinResult */

<owl:DatatypeProperty hasALPValue>
 <rdfs:domain rdf:resource="#ALPResult"/>
 <rdfs:range rdf:datatype="&xsd;float"/>
</owl:DatatypeProperty>
/* Similar properties for hasALTValue, hasASTValue, */
/* hasCreatinineValue, hasTotalBilirubinValue */

The example clinical decision rule can be specified as follows:

<ruleml:imp>
 <ruleml:_rlab ruleml:href="#PropertyBasedRule"/>
 <ruleml:_body>
 <swrlx:individualPropertyAtom swrlx:property="hasALPValue">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x3</ruleml:var>
 </swrlx:individualPropertyAtom>

 <swrlx:builtinAtom swrlx:builtin="&swrlb;#greaterThanOrEqual">
 <ruleml:var>x3</ruleml:var>
 <owlx:DataValue owlx:datatype="&xsd;#int">
 ex:NormalALPValue
 </owlx:DataValue>
 </swrlx:builtinAtom>

 ...
 /* Conditions for abnormal ALT, AST, Creatinine and
 Total Bilirubin come here */
 ...
 <swrlx:individualPropertyAtom
 swrlx:property="isAllergicTo">
 <ruleml:var>x1</ruleml:var>
 <owlx:Individual>FibricAcid</owlx:Individual>
 </swrlx:individualPropertyAtom>
 </ruleml:_body>
 <ruleml:_head>
 <swrlx:individualPropertyAtom
 swrlx:property="recommendedTherapy">
 <ruleml:var>x1</ruleml:var>
 <owlx:Individual>ZetiaLipidManagementTherapy</owlx:Individual>
 </swrlx:individualPropertyAtom>
 </ruleml:_head>
</ruleml:imp>

The above rule represents the various conditions that correspond to checking
whether a patient has a contraindication to Fibric Acid (<ruleml:_body>) so that
the system can recommend a particular therapy for a patient (<ruleml:_head>).
This conditions in the rule body also include a set of conditions that indicate an
abnormal liver panel; and allergy to fibric acid. An alternative way of representing
the above rule can be written by leveraging OWL classes defined in an ontology.

 5.4 Clinical Scenario Revisited 133

Consider the definition of a FibricAcidContraindication represented using OWL as
follows and illustrated in Figure 5.9.

<owl:Class rdf:ID="PatientContraindicatedToFibricAcid">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:resource="#Patient"/>
 <owl:Restriction>
 <owl:onProperty="#isAllergicTo"/>
 <owl:hasValue="#FibricAcid"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty="#hasLiverPanel"/>
 <owl:allValuesFrom="#AbnormalLiverPanelResult"/>
 </owl:Restriction>
 </owl:unionOf>
</owl:Class>

The above OWL class defines patients with contraindication to Fibric Acid as
patients having an abnormal liver panel and having an allergy to Fibric Acid.
Abnormal Live Panel is further defined as:

<owl:Class rdf:ID="AbnormalLiverPanel">
<owl:intersectionOF rdf:parseType="Collection">

 <owl:Restriction>
 <owl:onProperty="#hasALP"/>
 <owl:allValuesFrom="#AbnormalALPResult"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty="#hasALT"/>
 <owl:allValuesFrom="#AbnormalALTResult"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty="#hasAST"/>
 <owl:allValuesFrom="#AbnormalASTResult"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty="#hasCreatinine"/>
 <owl:allValuesFrom="#AbnormalCreatinine"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty="#hasTotalBilrubin"/>
 <owl:allValuesFrom="#AbnormalTotalBilirubin"/>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

Based on the above definition, a highly simplified version of the rule can now
be specified as:

<ruleml:imp>
 <ruleml:_rlab ruleml:href="#DefinedOWLClassBasedRule"/>

134 5 Ontologies and Schemas

 <ruleml:_body>
 <swrlx:classAtom>
 <owlx:Class owlx:name="PatientContraindicatedToFibricAcid"/>
 <ruleml:var>x1</ruleml:var>
 </swrlx:classAtom>
 </ruleml:_body>
 <ruleml:_head>

 <swrlx:individualPropertyAtom
 swrlx:property="recommendedTherapy">
 <ruleml:var>x1</ruleml:var>
 <owlx:Individual>ZetiaLipidManagementTherapy</owlx:Individual>
 </swrlx:individualPropertyAtom>

</ruleml:_head>
</ruleml:imp>

The class Patient and properties isAllergicTo, hasLiverPanel and others
provide a framework for describing the patient. The class PatientContraindicat-
edToFibricAcid is a subclass of all patients that are known to have contraindica-
tion to fibric acid. This is expressed using an OWL axiom. The class Allergen
represents various diseases allergens of interest including FibricAcid. The classes
AbnormalALPResult, AbnormalALTResult, AbnormalASTResult, AbnormalTo-

talBilirubinResult and AbnormalCreatinineResult represent ranges of values
of abnormal ALP, ALT, AST, total bilirubin and creatinine results respectively.
Custom datatypes based on the OWL specifications provide the ability to map
XML Schema datatypes to OWL classes. The class AbnormalLiverPanel is
defined using an axiom to characterize the collection of abnormal values of various
component test results (e.g., ALP, ALT, AST) that belong to a liver panel.

The representation of an axiom specifying the definition of PatientContrain-
dicatedToFibricAcid enables the knowledge engineer to simplify the rule base
significantly. The classification of a patient as being contraindicated to fibric acid
is now performed by the ontology engine. The separation of definitions from
actions and their implementation in an ontology engine reduces the complexity of
the rule base maintenance significantly. It may be noted that the conditions that
comprise a definition may appear multiple times in multiple rules in a rule base.
Our approach enables the encapsulation of these conditions in a definition, e.g.,
PatientContraindicatedToFibricAcid. Thus all rules can now reference the
class PatientContraindicatedToFibricAcid which is defined and maintained in
the ontology engine. Whenever the definition of PatientContraindicat-

edToFibricAcid changes, the changes can be isolated within the ontology engine
and the rules that reference this definition can be easily identified.

Since SWRL is an emerging standard and there is a lack of robust implementa-
tions, a commercial rules engine implementation can be used to implement the
rules portion. In Chapter 13, we will revisit this discussion and illusrate an imple-
mentation approach using the ILOG [405] Business Rules Management System
(BRMS).

 5.5 Summary 135

5.4.3 Advanatages and Disadvantages of using Semantic Web Specifications

The key advantages of using Semantic Web specifications for representing ontolo-
gies and schema like artifacts can be characterized along the following dimensions:

• Representation of semantics as opposed to structure. Semantic web specifi-
cations such as RDF Schema and OWL focus on representation of semantics of
the information as opposed to the structure of the document in which the infor-
mation is captured, as in XML Schema. This results in the creation and author-
ing of simpler ontologies and schemas since structural details, e.g., sequence, of
the document is not needed and not modeled. The commitment to basic seman-
tic constructs, e.g., classes and properties, results in more precise and unambig-
uous specifications. Finally, RDF Schema and OWL specifications are
generizable across different types of data representation formats as they seek to
model the information and knowledge contained in various types of data and
documents.

• Incremental specifications of Descriptions. The perspective of global proper-
ties adopted by RDF Schema and OWL enables incremental and distributed cre-
ation of ontology and knowledge specifications as different properties along
with associated property restrictions can be can associated with a class at differ-
ent times by different authors. Also since OWL has been engineered to be serial-
ized into RDF and use the RDF Schema Vocabulary, one could imagine
incrementally increasing the expressivity of these specifications based on appli-
cation requirements.

• Expressiveness Considerations. As discussed earlier, one can adopt increas-
ingly expressive specifications when the need arises. For example, OWL pro-
vides constructs for localizing property ranges for particular classes, cardinality
constraints, complex classes involving and boolean operations; and disjointness
constraints. Furthermore, OWL specifications can be integrated with rule-based
specifications as proposed in the SWRL specifications.

• Scalability and Robustness. There are concerns related to the scalability and
robustness of semantic web tools such as OWL reasonser and rules engines.
However industrial strength Business Rules Management Systmes are known to
scale well and open source OWL reasoners such as Pellet and Racer.

5.5 Summary

In this chapter, we presented a discussion on ontology and schema frameworks
proposed in the context of Semantic Web specifications. A discussion of different
types of ontologies and schemas used in different domains and verticals was pre-
sented. The continuum of ontology and schema representation languages XML
Schema, RDF Schema, OWL and WSML in the context of Semantic Web stan-
dards was presented along with examples from the clinical scenario. In conclusion,
approaches for integrating ontology and rule languages were also discussed.

6 Ontology Authoring and Management

Ontologies are a critical component of the Semantic Web architecture. In this chap-
ter, we present a discussion on various aspects of ontology authoring and manage-
ment. We discuss a collection of ontology building tools and present an evaluation
across various dimensions. A brief discussion on techniques for boostrapping of
ontologies is presented along with a discussion on techniques of integration, merg-
ing and versioning of ontologies.

6.1 Ontology Building Tools

We begin with a survey of ontology building and editing tools that are in use today
[99] [100]. The tools may be useful for building ontology schemas (terminological
components) alone or together with instance data. Ontology browsers without an
editing focus and other types of ontology building tools are not included. Concise
descriptions of each software tool are presented and compared according to differ-
ent criteria which are presented below.

Software architecture and tool evolution, which includes information about
the tool architecture (standalone, client/server, n-tier application), how the tool can
be extended with other functionalities/modules, how ontologies are stored (data-
bases, text files, etc.) and if there is any backup management system.

Interoperability with other ontology development tools and languages,
which includes information about the interoperability capabilities of the tool. We
will review the tool's interoperability with other ontology tools (for merge, annota-
tion, storage, inferencing, etc.), as well as translations to and from ontology lan-
guages.

Knowledge representation. We will present the KR paradigm underlying the
knowledge model of the tool. It is very relevant in order for us to know what and
how knowledge can be modeled in the tool. We will also analyze if the tool pro-
vides any language for building axioms.

Inference services attached to the tool. We will analyze whether the tool has a
built-in inference engine or it can use other external inference engines. We will
also analyze if the tool performs constraint/consistency checking, if it can automat-
ically classify concepts in a concept taxonomy and if it is able to manage excep-
tions in taxonomies.

Usability. We will analyze the existence of graphical editors for the creation of
concept taxonomies and relations, the ability to prune these graphs and the possi-

138 6 Ontology Authoring and Management

bility to perform zooms of parts of it. We will also analyze if the tool allows some
kind of collaborative working and if it provides libraries of ontologies.

6.1.1 Ontology Editors: Brief Descriptions

A brief description of some of the prominent ontology editors in use today is pre-
sented below.

Apollo: Apollo [101] is a user-friendly ontology development application, moti-
vated by requirements of industrial users who wished to use knowledge-modeling
techniques, but require a syntax and an environment that is easy to use. The appli-
cation is implemented in Java and supports all the basic primitives of knowledge
modeling: ontologies, classes, instances, functions and relations. Full consistency
checking is done while editing, for example, detecting the use of undefined classes.
Apollo has its own internal language for storing the ontologies, but can also export
the ontology into different representation languages, as required by the user.

LinKFactory: Link Factory [102] LinKFactory® is a formal ontology manage-
ment system developed by Language & Computing NV, designed to build and
manage very large and complex language-independent formal ontologies. The
LinKFactory system consists of 2 major java-based components: the LinKFac-
tory® Server, and the LinKFactory Workbench (client side component). The Link-
Factory Workbench allows the user to browse and model several ontologies and
align them. From the knowledge representation and underlying reasoning point of
view, LinkFactory has the following characteristics and possibilities: fixed built-in
ISA (formal subsumption), DISJOINT, and SAME-AS relationships, definable
relationship hierarchy (multiple hierarchies), specification of necessary and suffi-
cient conditions for individual concept definitions, several constraint-checking
methods, autoclassification of new concepts on the basis of natural language terms
as well as formal definitions, mechanisms to map and/or merge various ontologies;
and automatic text analysis to assign links to the ontology.

OntoStudio: OntoStudio [103], the successor of OntoEdit, is a engineering
environment for ontology creation and maintenance. OntoStudio is built on top of a
powerful internal ontology model. This paradigm supports representation-lan-
guage-neutral modeling as much as possible for concepts, relations and axioms.
Several graphical views on structures in the ontology support representation of dif-
ferent phases of the ontology engineering cycle. The tool allows the user to edit a
hierarchy of concepts or classes. A concept may have several names, which essen-
tially is a way to define synonyms for that concept. The tool for reorganization of
concepts within the hierarchy is based on a “copy-and-paste” like functionality.
The tool is based on a flexible plug-in framework, allowing easy extension and
customization. Some available plug-ins are: (a) inferencing for consistency check-
ing, classification and execution of rules; (b) collaborative engineering of ontolo-
gies; and (c) an ontology server for administration, collaborative sharing of and
persistent storage for ontologies.

 6.1 Ontology Building Tools 139

Ontolingua Server: The Ontolingua Server is a set of tools and services that
support the building of shared ontologies between distributed groups, and that have
been developed by the Knowledge Systems Laboratory (KSL) at Stanford Univer-
sity. The ontology server architecture provides access to a library of ontologies,
translators to languages (Prolog, CORBA IDL, CLIPS, Loom, etc.) and an editor to
create and browse ontologies. Remote editors can browse and edit ontologies, and
remote or local applications can access any of the ontologies in the ontology
library using the OKBC (Open Knowledge-Based Connectivity) protocol.

Ontosaurus: Ontosaurus [105], developed by the Information Sciences Institute
(ISI) at the University of South California, consists of two modules: an ontology
server, which uses Loom as its knowledge representation language, and an ontol-
ogy browser server that dynamically creates HTML pages (including image and
textual documentation) that displays the ontology hierarchy. The ontology can be
edited by HTML forms, and translators exist for translation from LOOM to Ontol-
ingua, KIF, KRSS and C++.

Protege: Protégé [106] is an open source ontology editor that has seen wide
usage from modeling cancer protocol guidelines to nuclear power stations. Protégé
provides a graphical and interactive ontology design and knowledge base develop-
ment environment. Tree controls allow quick and simple navigation through a class
hierarchy. Protégé uses forms as the interface for filling in slot values. The knowl-
edge model of Protégé is OKBC compatible, and includes support for classes and
the class hierarchy with multiple inheritance; template and own slots; specification
of pre defined and arbitrary facets for slots, which include allowed values, cardi-
nality restrictions, default values, and inverse slots; and metaclasses and metaclass
hierarchy. The Protege architecture supports a database backend and caching
mechanism. Its component-based architecture enables system builders to add new
functionality by creating appropriate plug-ins, which fall into one of the three cate-
gories: (1) backends for import and export of knowledge bases in various formats;
(2) slot widgets for display and edit of slot values in domain and task specific
ways; and (3) tab plug-ins which are typically applications tightly linked with Pro-
tege knowledge bases. Current back-end plug-ins include export and import from-
RDF Schema, XML Schema and OWL files. Currently, tabs that enable advanced
visualization, ontology merging, version management and inferences are available.

WebODE: WebODE [107] [108] is engineering workbench that provides ser-
vices for the ontology development process. Ontologies are represented using a
very expressive knowledge model, based on the reference set of intermediate rep-
resentations of the METHONTOLOGY methodology [109], which includes ontol-
ogy components such as concepts (with instance and class attributes), partitions, ad
hoc binary relations, predefined relations (taxonomic and part-of), instances, axi-
oms, rules, constants and bibliographic references. It also allows the import of
terms from other ontologies. Ontologies in WebODE are stored in a relational data-
base underlying a well-defined service-oriented API for ontology access that
makes easy integration with other systems. Ontologies built with WebODE can be
easily integrated with other systems by using its automatic export/import services

140 6 Ontology Authoring and Management

from and into XML, and translation services into and from various ontology speci-
fication languages (currently, RDF(S), OWL, CARIN and FLogic) and systems
such as Java and Jess. Authoring is aided both by form-based and graphical user
interfaces, a user-defined views manager, a consistency checker, an inference
engine, an axiom builder and the documentation service. Two interesting and novel
features of WebODE are: instance set for instantiating the same conceptual model
for different scenarios, and conceptual views from the same conceptual model. The
graphical user interface allows browsing all the relationships defined on the ontol-
ogy as well as pruning these views with respect to selected types of relationships.
WebODE also supports collaborative authoring of ontologies. Constraint-checking
capabilities are also provided for type constraints, numerical values constraints,
cardinality constraints and taxonomic consistency verification.

WebOnto: WebOnto [110] is a tool developed by the Knowledge Media Insti-
tute (KMi) of the Open University (England). It supports the collaborative brows-
ing, creation and editing of ontologies, which are represented in the knowledge-
modeling language OCML. Its main features are: management of ontologies using
a graphical interface; the automatic generation of instance editing forms from class
definitions; support for Problem Solving Methods (PSMs) and task modeling;
inspection of elements incorporating inheritance of properties and consistency
checking; a full tell and ask interface, and support for collaborative work; by
means of broadcast/receive; and making annotations.

ICOM: ICOM [111] supports the conceptual design phase of an information
system. An Extended Entity-Relationship (EER) conceptual data model, enriched
with multidimensional aggregations and inter-schema constraints, is used. ICOM is
fully integrated with a very powerful description logic reasoning server which acts
as a background inference engine. The ICOM modeling language can express: (a)
the standard E-R data model, enriched with IsA links (i.e., inclusion dependen-
cies), disjoint and covering constraints, full-cardinality constraints, and definitions
attached to entities and relations by means of view expressions over other entities
and relationships in the schema; (b) aggregated entities together with their multiply
hierarchically organized dimensions; and (c) a rich class of (inter-schema) integrity
constraints, as inclusion and equivalence dependencies between view expressions
involving entities and relationships possibly belonging to different schemas. ICOM
reasons with (multiple) diagrams by encoding them in a single description logic
knowledge base, and shows the result of any deductions such as inferred links, new
stricter constraints, and inconsistent entities or relationships. The DLR description
logics is used to encode the schemas and to express the views and the constraints.
The Java-based tool allows for the creation, the editing, the managing, and the stor-
ing of several interconnected conceptual schemas, with a user-friendly graphical
interface (including an auto-layout facility).

IODE: OntologyWorks IODE [112] is a data and information modeling tool for
creating high-definition ontologies, specifically designed for supporting ontology
development for database and application development. IODE incorporates a
library of vetted and comprehensive domain-independent content that knits

 6.1 Ontology Building Tools 141

together and guides the development of ontologies, ensuring interoperability across
domains and across time. It uses a powerful logic (SCL) for representation of
ontologies and verifies the consistency of these ontologies, both internally and with
respect to domain-independent content. IODE supports existing W3C standards
such as RDF and OWL, and supports management of ontology versions in a trans-
actional environment.

Visual Ontology Modeler: The Visual Ontology Modeler [113] by Sandpiper
Software is a visual application for building component-based ontologies. It is a
UML-based modeling tool that enables ontology development and management for
use in collaborative applications and interoperability solutions. Some key features
are: (a) A multi-user, network-based environment for ontology development in a
rich, graphical notation; (b) Automated import/export facilities in XML schema,
RDF, OWL, DAML, and MOF formats; (c) A feature-rich set of ontology author-
ing wizards that create and maintain the required UML model elements for the
user, saving time and substantially reducing construction errors and inconsisten-
cies. The Visual Ontology Modeler implements Sandpiper's UML Profile for
Knowledge Representation, which extends UML to enable modeling of frame-
based knowledge representation concepts such as class, relation, function and indi-
vidual frames, as well as the slots and facets that constrain those frames. It also
includes a library of ontologies, including the IEEE Standard Upper Ontology
(SUO), concepts relevant to XML schema, RDF, and DAML generation, and other
basic concepts to develop rich ontologies. The framework supports analysis, align-
ment, development, merging, and evolution, with consistency checking and valida-
tion for OWL-DL, first order, and production rules-related applications.

Semtalk: Semtalk [114] is a Microsoft Visio based graphical modeling tool,
which is used for business process modeling, product configuration and visual
glossaries. Since it is based on an open extensible meta-model, new modeling tools
can be created with reasonable effort. Most of these solutions make use of
SemTalk’s ability to represent ontologies or at least taxonomies in a visual way
using Microsoft Visio. The native modeling language supported by the SemTalk
consistency engine is a mixture of RDF(S) and OWL. It supports multiple inherit-
ance, instances, and object and datatype properties. A UML-based graphical repre-
sentation is adopted for the graphical representation of ontologies. Semtalk
provides export and import interfaces to RDF(S), OWL, DAML and F-Logic.

COBra: COBra [115] is an ontology browser and editor for GO and OBO
ontologies. It has been specifically designed to be usable by biologists to create
links between ontologies, and supports: (a) drag-and-drop editing of GO ontolo-
gies; (b) mapping between two ontologies; and (c) translation to OWL and other
Semantic Web languages. COBra supports manual creation of links between terms
in two ontologies, e.g.,links or mappings between tissues in an anatomy and the
cell types of the tissues can be recorded and stored. COBra supports import/export
of ontologies from and into GO and GO XML/RDF/RDF(S), DAG Edit and OWL.

Generic Knowledge Base (GKB) Editor: The GKB Editor [116] is a tool for
graphically browsing and editing knowledge bases across multiple frame represen-

142 6 Ontology Authoring and Management

tation systems (FRSs) in a uniform manner. It offers an intuitive user interface in
which objects and data items are represented as nodes in a graph, with the relation-
ships between them forming the edges. A sophisticated incremental browsing facil-
ity allows the user to selectively display only that region of a KB that is currently
of interest, even as that region changes. The GKB Editor consists of three main
modules: a graphical interactive display based on Grasper-CL, and a library of
generic knowledge-base functions, and corresponding libraries of frame-represen-
tation-specific methods, based on Open Knowledge Base Connectivity (OKBC).

SWOOP: Most existing ontology development toolkits provide an integrated
environment to build and edit ontologies, check for errors and inconsistencies
(using a reasoner), browse multiple ontologies, and share and reuse existing data
by establishing mappings among different ontological entities. However, their UI
design (look and feel) and usage style are inspired by traditional KR-based para-
digms, whose constrained and methodical framework have steep learning curves,
making them cumbersome to use for the average Web user. SWOOP [117] is a
hypermedia-inspired ontology editor that employs a Web browser metaphor for its
design and usage. Such a tool would be more effective (in terms of acceptance and
use) for the average web user by presenting a simpler, consistent and familiar
framework for dealing with entities on the Semantic Web. Some features of
SWOOP are: (a) Web-browser-like look and feel including URI-based access and
hyperlink-based navigation; (b) inline editing with HTML renderer; (c) browsing,
comparison and mapping of multiple ontologies; (d) ontology partitioning and
explanation; (e) collaborative annotation support; and (e) sound and complete con-
junct Abox queries.

WSMT: The Web Services Modeling Toolkit [377] is an open source graphical
development environment for all elements of the Web Service Modeling Ontology
(WSMO). It is built as a set of plug-ins for the Eclipse development environment
and allows ontology engineers to graphically build their ontologies. Particular
focus is placed on visualization of large ontologies with zoom-in and zoom-out
capabilities. Verification and consistency checking are provided through a
plugged-in WSML reasoner. Another plug-in allows the creation of mappings
between ontologies that can be used in a WSMO execution environment.

WSMO Studio: WSMO Studio [378] also provides an open source Eclipse-
based development environment for building WSMO ontologies. Similarly to
WSMT, reasoning support can be plugged in for different WSML language vari-
ants. It also directly supports WSMO annotations of existing WSDL Web Service
descriptions via the W3C SAWSDL. Another difference with WSMT is that
WSMO Studio does not focus on graphical visualization of ontologies.

TopBraid Composer: TopBraid Composer is an enterprise-class modeling
environment for developing Semantic Web ontologies and building semantic appli-
cations. Fully compliant with W3C standards, Composer offers comprehensive
support for developing, managing and testing configurations of knowledge models
and their instance knowledge bases. Composer incorporates a flexible and extensi-

 6.1 Ontology Building Tools 143

ble framework with a published API for developing semantic client/server or
browser-based solutions, that can integrate disparate applications and data sources.
Implemented as an Eclipse plug-in, Composer is used to develop ontology models,
configure data source integration as well as to customize dynamic forms and
reports. Other than W3C standards, there is support for importing UML models,
XML Schemas and relational databases. It supports integration with leading RDF
data stores such as Jena, Pellet and Racer.

Neon Toolkit: The NeOn toolkit [406], based on the OntoStudion Editor core, is
an extensible Ontology Engineering Environment. It contains plugins for ontology
management and visualization. The core features of the Neon toolkit include sup-
port for basic schema editing operations, visualization and browsing of ontologies,
the ability to import and export ontologies in various representation languages such
as F-Logic, subsets of RDF(S) and OWL. It is designed around an open and modu-
lar architecture, which includes infrastructure services such as registry and reposi-
tory, and supports distributed components for ontology management, reasoning
and collaboration in networked ontologies. Building on the Eclipse platform, the
Toolkit provides an open framework for plug-in developers. A number of commer-
cial plugins are available that extent the toolkit by various functionalities including
support for rules, development and interpretation of mappings, ability to access
databases and import database schemas and specify queries in a Query-Editor.

6.1.2 Ontology Editors: A Comparative Evaluation

We present a comparative evaluation based on the dimensions identified earlier.

Table 6.1. Ontology editing tools: Architecture

Tool
SW
Architecture Extensibility

Ontology
Storage

Backup
Management

Apollo Standalone Plug-ins Files No

LinKFactory 3-tier Plug-ins DBMS No

OntoStudio Client Server Plug-ins DBMS No

Ontolingua
Server

Client Server No Files No

Ontosaurus Client Server No Files No

Protege Standalone Plug-ins DBMS No

WebODE 3-tier Plug-ins DBMS Yes

WebOnto Client Server No Files Yes

ICOM Client Server No XML Files

IODE Standalone No Deductive
DBMS

Yes

144 6 Ontology Authoring and Management

Table 6.1 presents a comparison of various ontology editors and tools based on
its software architecture (standalone, client/server, n-tier application), extensibility,
storage of the ontologies (databases, ASCII files, etc.) and backup management.
From this perspective, most of the tools are moving toward Java platforms, and
most of them are moving to extensible architectures as well. Storage in databases is
and backup management are weak points of ontology tools.

Interoperability (Table 6.2) with other ontology development tools, merging
tools, information systems and databases, as well as translations to and from some
ontology languages, are important for integration of ontologies into applications.
Most of the new tools export and import to adhoc XML and other markup lan-
guages.

Visual Ontol-
ogy Modeler

Plug-in to
Rational Rose

Yes As UML
class dia-
gram

Yes

Semtalk Plug-in for
Microsoft
Visio

No Visio files No

COBra Standalone No Flat files
(multiple
formats)

No

GKB Standalone
and client
server

No Yes No

SWOOP Web-based cli-
ent server

Yes via plug-
ins

As HTML
models

No

WSMT Standalone
Eclipse plug-in

Plug-ins Flat file No

WSMO Studio Standalone
Eclipse plug-in

Plug-ins Flat file No

Topbraid Com-
poser

Standalone
Eclipse plug-in

Plug-ins DBMS Yes

Neon Toolkit Standalone
Eclipse plug-in

Plug-ins DBMS Yes

Table 6.1. Ontology editing tools: Architecture

Tool
SW
Architecture Extensibility

Ontology
Storage

Backup
Management

 6.1 Ontology Building Tools 145

Table 6.2. Ontology editing tools: Knowledge representation and methodological support

Tool KR Knowledge Model
Axiom
Language

Methodological
Support

Apollo Frames (OKBC) Unrestricted No

LinKFactory Frames + First Order Logic Restricted First
Order Logic

Yes

OntoStudio Frames + First Order Logic FLogic OntoKnowledge

Ontolingua
Server

Frames + First Order Logic KIF No

Ontosaurus Description Logics LOOM No

Protege Frames + First Order Logic
+ Metaclasses

PAL No

WebODE Frames + First Order Logic WAB Methontology

WebOnto Frames _ First Order Logic OCML No

ICOM Description Logics with
extension

DLR No

IODE Common Logic, extended
with temporal reasoning
and quantification over
predicates

FOL Yes

Visual Ontol-
ogy Modeler

Description Logics DL Own - collabo-
rative ontology
development

Semtalk OWL OWL Full is pos-
sible

No

COBra RDF and OWL Not used No

GKB Multiple Frame Represen-
tation Systems

LOOM and oth-
ers

No

SWOOP OWL OWL-DL No

WSMT WSML WSML No

WSMO Studio WSML WSML No

Topbraid
Composer

RDF, OWL and SWRL OWL-DL No

Neon Toolkit F-Logic, RDF and OWL F-Logic,
OWL-DL

Yes, Neon
Ontology Dev
Process and
Lifecycle

146 6 Ontology Authoring and Management

From the knowledge representation point of view (Table 6.2), there are two fam-
ilies of tools: description-logic-based tools, and other tools, which allow represen-
tation of knowledge following a hybrid approach based on frames and first order
logic. Additionally, Protégé provides flexible modeling components like meta-
classes. Some ontology building methodologies that are supported are: the Onto-
Knowledge methodology, GALEN methodology and Methontology. None of the
tools provide project management facilities, and provide only a little support for
ontology maintenance and evaluation.

Table 6.3. Ontology editing tools: Inference services

Tool

Inbuilt
Inference
Engine

External
Inference
Engine

Constraint,
Consistency
Checking

Automatic
Classification

Exception
Handling

Apollo No No Yes No No

LinKFac-
tory

Yes Yes Yes Yes No

OntoStudio Yes
(Ontobro-
ker)

No Yes No No

Ontolingua
Server

No ATP No No No

Ontosaurus Yes Yes Yes Yes No

Protege Yes
(PAL)

Jess,
FLogic,
Pellet

Yes No No

WebODE Yes (Pro-
log)

Jess Yes No No

WebOnto Yes No Yes No No

ICOM Not in
GUI

Connect
to ICOM
server

Yes No No

IODE Yes No Yes No Yes

Visual
Ontology
Modeler

No DL rea-
soner,
rules
engines

Yes No No

Semtalk No No No No No

COBra No No No No No

GKB No Yes Yes No No

 6.1 Ontology Building Tools 147

Before selecting a tool, it is also important to know which inference services are
attached to it (Table 6.3). This includes built-in and other inference engines, con-
straint and consistency-checking mechanisms, automatic classifications and excep-
tion handling, among others. LinkFactory has its own inference engine,
OntoStudio uses OntoBroker, Ontolingua uses ATP, Ontosaurus uses the Loom
classifier, Protégé uses PAL and can also be linked to DL reasoners, WebODE uses
Ciao Prolog and WebOnto uses the OCML inference engine. Besides, WebODE
and Ontosaurus provide evaluation facilities. LinkFactory performs automatic clas-
sification. Finally, none of the tools provide exception-handling mechanisms.

SWOOP No Yes (Pel-
let or
other
engine)

Only with
reasoner
plug-in

No No

WSMT No Yes, via
plug-in

Yes No No

WSMO
Studio

No Yes, via
plug-in

Yes No No

Topbraid
Composer

No Yes,
OWLIM,
Pellet,
Jena, Ora-
cle Rules

Yes Yes Yes

Neon Tool-
kit

Yes,
Ontobro-
ker

Yes,
KAON-2
Engine

Yes No Yes

Table 6.4. Ontology editing tools: Usability

Tool
Graphical
Taxonomy

Graphical
prunes Zoom Collaboration

Ontology
Libraries

Apollo Yes Yes No Yes Yes

LinKFactory Yes Yes Yes Yes Yes

OntoStudio No* No No* Yes Yes

Ontolingua
Server

Yes No No Yes Yes

Ontosaurus Yes Yes Yes Yes No

Protege Yes Yes Yes No Yes

Table 6.3. Ontology editing tools: Inference services

Tool

Inbuilt
Inference
Engine

External
Inference
Engine

Constraint,
Consistency
Checking

Automatic
Classification

Exception
Handling

148 6 Ontology Authoring and Management

Related to the usability of tools (Table 6.4), WebOnto has the most advanced
features related to the cooperative and collaborative construction of ontologies. In
general, more features are required in existing tools to ensure the successful collab-
orative building of ontologies. Finally, other usability aspects related to help sys-
tem, editing and visualization should be improved in most of the tools.

6.2 Ontology Bootstrapping Approaches

There have been various approaches for semi-automatic generation of ontologies
or taxonomies from underlying unstructured text data. These approaches can be
broadly characterized as:

• Supervised-machine-learning based approaches, which require a large number
of training examples, traditionally generated manually.

• Natural Language Processing (NLP) based approaches applied for generating
ontological concepts and relationships. These are based on rules that analyze

WebODE Yes Yes No Yes No

WebOnto Yes Yes No Yes Yes

ICOM Yes No No No Import and
export as
XML

IODE No No No Yes Yes

Visual Ontol-
ogy Modeler

Yes No No Yes Yes

Semtalk Yes No No Yes Yes

COBra Yes No No No Limited to
GO and
OBO

GKB Yes No Yes Yes No

SWOOP Yes No No Yes No

WSMT Yes No Yes No No

WSMO
Studio

No No No No Yes

Topbraid
Composer

Yes Yes Yes Yes No

Neon Toolkit Yes Yes Yes Yes No

Table 6.4. Ontology editing tools: Usability

Tool
Graphical
Taxonomy

Graphical
prunes Zoom Collaboration

Ontology
Libraries

 6.2 Ontology Bootstrapping Approaches 149

patterns based on syntactic categories, which requires significant human
involvement, making it expensive and infeasible for large-scale applications.

• Statistical clustering methods have been used to partition data-sets, categorize
search results and visualize data. However, they have not focussed on generat-
ing labels for clusters and creation of new taxonomies.

Machine learning approaches are for the most part supervised, for which a set of
manually generated positive and negative training examples are used. An approach
using the concept-forming system COBWEB [118] has been used to perform incre-
mental conceptual clustering on structured instances of concepts extracted from the
Web [119]. Experimental and theoretical results on learning the CLASSIC descrip-
tion logic were presented in [120], and were used to construct concept hierarchies.
An approach to bootstrapping a classification taxonomy based on a set of struc-
tured rules was proposed in [121]. A supervised approach presented in [122] sup-
ports semi-automatic and incremental bootstrapping of a domain-specific
information extraction system.

Empirical and corpus-based NLP methods to build domain-specific lexicons
have been proposed in [123] and used in [124]. Approaches that learn meanings of
unknown words based on other word definitions in the surrounding context have
been presented in [125] [126]. Case-based methods that match unknown word con-
texts against previously seen word contexts are described in [127] [128].
Approaches presented in [129] [130] apply shallow parsing, tagging and chunking,
along with statistical techniques to extract terminologies or enhance existing ontol-
ogies. Full parse tree construction followed by decomposition into elementary
dependency trees has been used to create medical ontologies from French text cor-
pora in [131]. In [132], a thesaurus is built by performing clustering according to a
similarity measure after having retrieved triples from a parsed corpus.

Linguistic structures such as verbs, appositions and nominal modifications have
been used to identify hypernymic propositions in biomedical text [133]. Lexico-
syntactic patterns have been investigated for inferring hyponymy from textual data
in [134]. Salient words and phrases extracted from the documents are organized
hierarchically using subsumption type co-occurrences in [130]. A description of
supervised and unsupervised approaches to extract semantic relationships between
terms in a text document is presented in [135]. A generalized association rule algo-
rithm proposed in [136] detects non-taxonomic relationships between concepts and
also determines the right level of abstraction at which to establish the relationship.

Effectively mining relevant information from a large volume of unstructured
documents has received considerable attention in recent years [137] [138] [139]. A
survey on the use of clustering in information retrieval is presented in [140]. Docu-
ment clustering has been used for browsing large document collections in [141],
using a “scatter/gather” methodology. These approaches create vector space repre-
sentations of documents and use Euclidean or cosine-distance-based similarity
metrics like the Euclidean ones to extract clusters from groups of documents. Clus-
tering of Web documents to organize search results has been proposed in [142]
[143].

150 6 Ontology Authoring and Management

There is a realization amongst researchers that one needs to leverage the
strengths of a wide variety of techniques across machine learning, natural language
processing and statistical approaches to address the difficult problem of ontology
generation. Frameworks for hybrid approaches have been proposed:

• The ontology learning framework developed by Maedche and Staab [144].
• The Thematic Mapping System [144].
• The Taxaminer approach, which presents a framework to combine the tech-

niques enumerated above [145].
• A complementary approach that uses the structure and content of HTML-based

pages on the Web to generate ontologies [146].

6.3 Ontology Merge and Integration Tools

Ontology merging and integration, including functionalities related to versioning
and keeping track of various changes, are very important in the context of the
ontology design process. Furthermore, a large number of ontologies are being used
to annotate content on the Web. There is a need to be able to reconcile annotations
based on multiple ontologies and also support query processing across multiple
ontologies. An approach to address the above challenge is to establish mappings
between ontologies and to merge them at run time, as proposed in [147] [148]. A
large number of ontology mapping and merging tools have appeared to address
these issues. We now present a brief survey and a comparative evaluation of vari-
ous ontology merge and integration tools [99]. The criteria used for the compara-
tive evaluation of these tools are as follows:

Knowledge used during the merge process: The merging process can be much
more efficient if additional knowledge can be made to bear on the process. Some
examples of these knowledge resources are: electronic dictionaries, thesauri, lexi-
cons, concept definitions and slot values, graph structures, instances of concepts
and inputs from the user.

Interoperability: It is important because key activities such as transformation
of formats and evaluation can be performed by other non-merging tools. Some
important considerations are interoperability with other ontology tools or informa-
tion systems and whether ontologies expressed in different languages can be
merged.

Management of different versions of ontologies: A change in the source
ontology results in a change in the merged ontology. Some important consider-
ations are whether the tool takes advantage of the former versions of the ontologies
and whether it warns that the merged ontology is not an accurate reflection of the
source ontologies.

Components manipulated by the tools: An important consideration is about
which components that can be merged by the ontology development tools or about
which suggestions can be made by the merging tools. The main components that

 6.3 Ontology Merge and Integration Tools 151

need to be considered are concepts (including slots, and taxonomic and other rela-
tionships), axioms, rules and instances.

Editing and Visualization: This is very important for the usability of the tool.
Some important considerations are support for a step-by-step view of the process, a
simultaneous view of the source ontologies being merged, graphical prunes
(views) of the ontologies being merged, zooming and the ability to hide/show
information.

6.3.1 Ontology Merge and Integration Tools: A Brief Description

In this section, we present a brief description of some of the ontology merge and
integration tools in use today.

Chimaera: Chimaera [149] is a merging and diagnostic Web-based browser
ontology environment. It contains a simple editing environment in the tool and also
allows the user to use the full Ontolingua editor/browser environment for more
extensive editing. It facilitates merging by allowing users to upload existing ontol-
ogies into a new workspace (or into an existing ontology). Chimaera will suggest
potential merging candidates based on a number of properties. Chimaera allows the
user to choose the level of vigor with which it suggests merging candidates. Higher
settings, for example, will look for things like possible acronym expansion. Chi-
maera also supports a taxonomy resolution mode. It looks for a number of syntactic
term relationships, and when attached to a classifier, it can look for semantic sub-
sumption relationships as well. Chimaera includes analysis capability that allows
users to run a diagnostic suite of tests selectively or in its entirety. The tests include
incompleteness tests, syntactic checks, taxonomic analysis, and semantic checks.
Terms that are used but that are not defined, terms that have contradictory ranges,
and cycles in ontology definitions are also detected.

PROMPT: PROMPT [150] is a tool for semi-automatic guided ontology merg-
ing, and is available as a plug-in for Protege. PROMPT leads the user through the
ontology-merging process, identifying possible points of integration, and making
suggestions regarding what operations should be done next, what conflicts need to
be resolved, and how those conflicts can be resolved. PROMPT’s ontology-merg-
ing process is interactive. A user makes many of the decisions, and PROMPT
either performs additional actions automatically based on the user’s choices or cre-
ates a new set of suggestions and identifies additional conflicts among the input
ontologies. The tool takes into account different features in the source ontologies to
make suggestions and to look for conflicts. These features include names of classes
and slots, class hierarchy, slot attachment to classes, facets and facet values. Some
conflicts identified by PROMPT are: name conflicts, dangling references, redun-
dancy in the class hierarchy (more than one path from a class to a parent other than
the root) and slot value restrictions that violate class inheritance.

ODEMerge: ODEMerge [151] is a tool to merge ontologies that is integrated in
WebODE [107]. This tool is a partial software support for the methodology for
merging ontologies [152], which proposes the following steps: (1) transformation

152 6 Ontology Authoring and Management

of formats of the ontologies to be merged; (2) evaluation of the ontologies; (3)
merging of the ontologies; (4) evaluation of the result; and (5) transformation of
the format of the resulting ontology to be adapted to the application where it will
be used. WebODE helps in steps (1), (2), (4) and (5) of the merging methodology,
and ODEMerge carries out the merge of taxonomies of concepts in step (3).
Besides, ODEMerge helps in the merging of attributes and relations, and it incor-
porates many of the rules identified in the methodology. ODEMerge uses the
source ontologies to be merged, and the synonymy, hyponymy and hypernymy
relationships between terms across ontologies in the merging process. Customized
dictionaries can be added to provide the relationships, and new merging rules can
also be defined. ODEMerge supports the merging of ontologies in all the ontology
languages supported by the WebODE tool.

6.3.2 Evaluation of Ontology Merge and Integration Tools

We now present a comparative evaluation of the various tools based on the dimen-
sions identified earlier.

Table 6.5 compares the information used by these tools (electronic dictionaries,
lexicons, etc.) during the merge process. The more information a tool uses during
this process, the more work it is able to perform without the user's participation.
Most of the tools start the merging process by searching for similar concepts of
ontologies.

Table 6.5. Information used during the merge process

Feature PROMPT ODEMerge Chimaera

Thesauri, Dictionaries No No No

Lexicons No No No

Concept Definitions
and Slot Values

Yes Yes Yes

Graph Structure Yes Yes No

Instances of concepts Yes No No

User Input Yes Yes Yes

Table 6.6. Interoperability

Feature PROMPT ODEMerge Chimaera

Tools and systems
Interoperability

Yes Yes Yes

Multiple ontology
language support

Yes Yes Yes

 6.3 Ontology Merge and Integration Tools 153

Interoperability with other ontology tools is also an important aspect (Table 6.6)
and is usually determined by the ontology development platform in which the
merge tool is integrated. Another important aspect is whether the tool can merge
ontologies expressed in different languages. All these tools are able to merge ontol-
ogies expressed in different languages (XML, RDFS, OIL, etc.).

Given that ontologies usually evolve, the management of different ontology ver-
sions is also important (Table 6.7). None of these tools takes advantage of former
versions of the ontologies to be merged, and none of them warns users about
changes in the source ontologies.

Table 6.7. Management of different versions

Feature PROMPT ODEMerge Chimaera

Leveraging previous
ontology versions

No No No

Notifications of changes
in source ontologies

No No No

Table 6.8. Components of ontologies manipulated by the tools

Feature PROMPT ODEMerge Chimaera

Concepts Merge, Suggest Merge Merge, Suggest

Own Slots Merge, Suggest Merge Merge, Suggest

Template Slots Merge, Suggest Merge Merge, Suggest

Taxonomies Merge, Suggest Merge Merge, Suggest

Concepts Merge, Suggest Merge Merge, Suggest

Relations Merge Merge Not currently
supported

Partitions and/or
Decompositions

No Merge Both supported

Relations or
Functions?

Merge, Suggest
(relations only)

Merge Not currently
supported

Arity Merge, Suggest
(binary relations)

Merge No

Sets of axioms No No No

Sets of rules No No No

Instances Merge, Suggest No Not currently
supported

of Concepts Merge, Suggest No No

154 6 Ontology Authoring and Management

We present in Table 6.8 which kinds of components can be merged by the tool
and about which kinds of component merging suggestions can be proposed by the
tools. All the tools allow merging concepts, taxonomies, relations and instances.
However, no tool allows merging axioms and rules. From among all of them,
PROMPT is the tool that provides most suggestions to the users.

Edition and visualization features (Table 6.9) are strongly influenced by the
ontology development platform in which these tools are integrated.

6.4 Ontology Engines and Reasoners

In this section, we present a brief description of ontology reasoners and engines.
Whereas most of the ontology-reasoning systems are based on description logics,
some reasoners are implemented based on rules and first-order logic theorem prov-
ers.

CEL: The system CEL [153] is a description logic system that offers both sound
and complete polynomial-time algorithms and expressive means that allow its use
in real-world applications. It is based on recent theoretical advances that have
shown that the description logics (DL) EL, which allows for conjunction and exis-
tential restrictions, and some of its extensions have a polynomial-time subsumption
problem even in the presence of concept definitions and so-called general concept

of Relations Merge, Suggest No No

Claims No No No

Table 6.9. Editing and visualization support

Feature PROMPT ODEMerge Chimaera

Step by Step view of
Process

Graphical, tabu-
lar, hierarchical

Non-graphical HTML text

Simultaneous view
of source ontologies

Yes No Yes

Graphical view of
source ontologies

Through host
tool

Through host
tool

No

Zoom Through host
tool

Through host
tool

No

Hide/Show Through host
tool

Through host
tool

Yes: for subclass/
superclass relation-
ships and child slots

Table 6.8. Components of ontologies manipulated by the tools

Feature PROMPT ODEMerge Chimaera

 6.4 Ontology Engines and Reasoners 155

inclusions (GCI). The DL EL+ handled by CEL extends EL by so-called role inclu-
sions (RI). On the practical side, it has turned out that the expressive power of EL+
is sufficient to express several large life science ontologies. In particular, the Sys-
tematized Nomenclature of Medicine (SNOMED) [7] can be expressed using EL
with RIs and acyclic concept definitions. The Gene Ontology (GO) [10] can also
be expressed in EL with acyclic concept definitions and one transitive role (which
is a special case of an RI). Finally, large parts of the Galen Medical Knowledge
Base (GALEN) [154] can be expressed in EL with GCIs and RIs.

CEL is a tractable fragment of OWL 1.1 [407], which is an extension of OWL
and is currently a W3C member submission. A W3C group is currently working on
creating the next version of the OWL, to be christened OWL 2.0, based on this sub-
mission. This tractability is achieved by eliminating the allValuesFrom construct
and retaining the someValuesFrom construct. CEL also supports the role inclusion
axioms e.g., hasStructuredTestResult o indicatesDisease => suffersFrom.
The constructs from OWL 1.1 which cause intractability are cardinality restric-
tions, union, negation, inverse properties, functional and inverse functional proper-
ties.

FaCT++: FaCT++ [155] is the new generation of the well-known FaCT [156]
OWL-DL reasoner. FaCT++ uses the established FaCT algorithms, with a different
internal architecture, and is implemented using C++ for efficiency and portability.
Some interesting features of FaCT are: (a) its expressive logic (in particular the
SHIQ reasoner): SHIQ is sufficiently expressive to be used as a reasoner for the
DLR logic, and hence to reason with database schemas; (b) its support for reason-
ing with arbitrary knowledge bases (i.e., those containing general concept inclu-
sion axioms); (c) its optimized tableaux implementation (which has now become
the standard for DL systems); and (d) its CORBA- based client server architecture.

fuzzyDL: fuzzyDL [157] is a Description Logics Reasoner supporting Fuzzy
Logic reasoning. The fuzzyDL system includes a reasoner for fuzzy SHIF with
concrete fuzzy concepts (ALC augmented with transitive roles, a role hierarchy,
inverse roles, functional roles, and explicit definition of fuzzy sets). Some interest-
ing features of fuzzyDL are: (a) extension of the classical Description Logics SHIF
to the fuzzy case; (b) explicit definitions of fuzzy concepts with left-shoulder,
right-shoulder, triangular and trapezoidal membership functions; (c) concept modi-
fiers in terms of linear hedges; (d) support for General Inclusion Axioms; (e) sup-
port for “Zadeh semantics” and Lukasiewicz logic; and (f) backward compatibility,
i.e. it support for classical description logic reasoning.

KAON2: KAON2 [158] is an infrastructure for managing OWL-DL, SWRL,
and F-Logic ontologies and has the following interesting features: (a) an API for
programmatic management of OWL-DL, SWRL, and F-Logic ontologies; (b) a
stand alone server providing access to ontologies in a distributed manner using
RMI; (c) an inference engine for answering conjunctive queries (expressed using
SPARQL syntax); (d) a DIG interface, allowing access from tools such as Protege;
and (e) a module for extracting ontology instances from relational databases.

156 6 Ontology Authoring and Management

Pellet: Pellet [159] is an open source OWL-DL reasoner written in Java, origi-
nally developed at the University of Maryland's Mindswap Lab, and funded by a
diverse group of organizations. Pellet is based on the tableaux algorithms devel-
oped for expressive Description Logics (DLs). It supports the full expressiveness
of OWL-DL including reasoning about nominals (enumerated classes). In addition
to OWL-DL, as of version 1.4, Pellet supports all the features proposed in OWL
1.1, with the exception of n-ary datatypes. Thus the expressiveness of supported
DL is SROIQ(D), which extends the well-known DL SHOIN(D) (the DL that cor-
responds to OWL-DL) with qualified cardinality restrictions, complex subproperty
axioms (between a property and a property chain), local reflexivity restrictions,
reflexive, irreflexive, symmetric, and anti-symmetric properties, disjoint proper-
ties, and user-defined datatypes. Pellet provides many different reasoning services
such as consistency checking, concept satisfiability, classification and realization.
It also incorporates various optimization techniques described in the DL literature
and contains several novel optimizations for nominals, conjunctive query answer-
ing and incremental reasoning.

RacerPro: RacerPro [160] provides a first implementation of the Semantic Web
Rules Language (SWRL) in its latest version. It also supports services for OWL
ontologies and RDF data descriptions such as: (a) consistency checking for OWL
ontologies and a set of data descriptions; (b) inference of implicit subclasses and
synonyms for resources (classes or instances); (c) OWL-QL query processing for
OWL documents (ontologies and their instances); and (d) incremental query
answering for information retrieval tasks. RacerPro implements a highly optimized
tableau calculus for a very expressive description logics. It offers reasoning ser-
vices for multiple T-boxes and for multiple A-boxes as well. The system imple-
ments the description logic ALCQHIR, also known as SHIQ. This is the basic logic
ALC augmented with qualifying number restrictions, role hierarchies, inverse
roles, and transitive roles. In addition to these basic features, RacerPro also pro-
vides facilities for algebraic reasoning including concrete domains for dealing with
min/max restrictions over the integers; linear polynomial (in)equations over the
reals or cardinals with order relations; and equalities and inequalities of strings.
RacerPro combines description logic reasoning with, for instance, reasoning about
spatial (or temporal) relations within the A-box query language nRQL. Bindings
for query variables that are determined by A-box reasoning can be further tested
with respect to an associated constraint network of spatial (or temporal) relation-
ships.

Jena: The Jena2 inference subsystem [408], is designed to allow a range of
inference engines or reasoners to be plugged into Jena. Such engines are used to
derive additional RDF assertions which are entailed from some base RDF together
with any optional ontology information and the axioms and rules associated with
the reasoner. The primary use of this mechanism is to support the use of languages
such as RDFS and OWL which allow additional facts to be inferred from instance
data and class descriptions. However, the machinery is designed to be quite general
and, in particular, it includes a generic rules engine that can be used for many RDF

 6.5 Clinical Scenario Revisited 157

processing or transformation tasks. Other than the generic rules engine, there are
other pre-defined reasoners included in the Jena2 system, such as a transitive rea-
soner that stores and traverses class and property lattices, a RDFS rule reasoner
that implements a configurable set of RDFS entailments, and a set of reasoners for
various subsets of OWL.

JESS: Jess [409], is a rules engine and scripting environment written entirely in
Sun's Java language at Sandia National Laboratories in Livermore, CA. Using Jess,
it is possible to build Java software that has the capacity to perform reasoning
using knowledge supplied in the form of declarative rules. Jess includes a full-fea-
tured development environment based on the award-winning Eclipse platform. Jess
uses an enhanced version of the Rete algorithm [410] to process rules. Jess has
many unique features including backward chaining and working memory queries,
and Jess can directly manipulate and reason about Java objects.

6.5 Clinical Scenario Revisited

Consider the clinical use case scenario presented in Chapter 2. In particular con-
sider the important issue of knowledge change propagation in this section. Con-
sider the definition in natural language of fibric acid contraindication:

A patient is contraindicated for fibric acid if he or she has an
allergy to fibric acid or has an abnormal liver panel.

Suppose there is a new (hypothetical) biomarker for fibric acid contraindication
for which a new molecular diagnostic test is introduced in the market. This leads to
a redefinition of a fibric acid contraindication as follows.

The patient is contraindicated for fibric acid if he has an allergy to
fibric acid or has elevated Liver Panel or has a genetic mutation.

Let us also assume that there is a change in a clinically normal range of values
for the lab test AST which is a part of the liver panel lab test. This leads to a knowl-
edge change and propagation across various knowledge objects that are sub-com-
ponents and associated with the fibric acid contraindication concept. A
diagrammatic representation of the OWL representation of the new fibric contrain-
dication with the changes marked in red ovals is illustrated below. The definition of
“fibric acid contraindication” changes, triggered by changes at various levels of
granularity.

A potential sequence of change propagation steps are enumerated below:
1. The clinically normal range of values for the AST lab result changes.
2. This leads to a change in the abnormal value ranges for the AST lab result
3. This leads to a change in the definition of an abnormal liver panel.

158 6 Ontology Authoring and Management

4. This leads to a change in what it means to be a patient with an abnormal liver
panel.

5. The definition of fibric acid contraindication changes due to the following
changes:
(A) The change in the definition of a patient with an abnormal liver panel as
enumerated in steps 1-4 above.
(B) Introduction of a new condition: a patient having a mutation: “Missense:
XYZ3@&%” (hypothetical). This is a new condition which could lead to a
change in what it means to be a patient with a contraindication to fibric acid.

Fig. 6.1. Knowledge change and propagation

It may be noted that in our discussion in Section 6.3.1, none of the ontology edi-
tors and tools today support versioning and change management functionality. In
our solution approach, we propose to load these ontologies as data into a rules
engine and write specialized rules to identify the impacts of a change operation.

6.6 Summary

In this chapter, we presented a discussion on different aspects of ontology author-
ing, bootstrapping and management. In particular, we present a survey of ontology
building tools, ontology-reasoning engines, and techniques for ontology bootstrap-

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

Patient

PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel

PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

PatientWithBiomarker
hasMutation hasValue “Missense:XYZ3@&%”

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

Patient

PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel
PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel

PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid
PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

PatientWithBiomarker
hasMutation hasValue “Missense:XYZ3@&%”
PatientWithBiomarker
hasMutation hasValue “Missense:XYZ3@&%”

 6.6 Summary 159

ping, matching, merging and integration. A more detailed account of ontology
authoring and management may be obtained from the Handbook on Ontologies by
Staab and Ruder [411]. The clinical use case is revisited and an approach for mod-
eling knowledge change and propagation as ontology versioning and change man-
agement is presented.

7 Applications of Metadata and Ontologies

A key value proposition enabled by the use of metadata descriptios based on con-
cepts from domain specific ontologies, is the ability to describe Web and other
types of content using semantic descriptions with fine grained abstractions. These
descriptions could appear in the form of annotations in the case of unstructured
data. Alternatively, in the case of structured data created according to a well
defined schema, these descriptions can be created based on a mapping between the
schema and a domain specific ontology. These metadata descriptions may also be
used to query the underlying structured data as well. Finally, with the mappings
between the schema and domain ontologies form a critical component, that enables
domain ontolog driven information integration. In this chapter, we discuss:

• Structured and semi-structured metadata annotations of unstructured and semi-
structured documents on the Web. Tools and techniques to support metadata
annotation are presented in Section 7.1.

• Structured metadata annotations of structured Web resources with a well-
defined set of types and schemas. Techniques to support schema and ontology
mapping are discussed in Section 7.2.

• Approaches for ontology driven information integration are discussed in Section
7.3.

7.1 Tools and Techniques for Metadata Annotation

Knowledge about documents has traditionally been managed through the use of
metadata, which can concern the world around the document, e.g., the author, and
often at least part of the content, e.g., keywords. The Semantic Web proposes anno-
tating document content using semantic information from domain ontologies. The
result is Web pages with machine interpretable markup that provide the source
material with which agents and Semantic Web Services can operate. The goal is to
create annotations with well-defined semantics, however those semantics may be
defined. This is a crucial requirement for interoperability, as it ensures that the
annotator and annotation consumer actually share meaning.

Semantic Web annotations go beyond familiar textual annotations about the
content of the documents, such as “clause seven of this contract has been deleted
because . . .” and “the test results need to go in here”. This kind of informal annota-
tion is common in word processor applications and is intended primarily for use by

162 7 Applications of Metadata and Ontologies

document creators. Semantic annotation formally identifies concepts and relations
between concepts in documents, and is intended primarily for use by machines. For
example, a semantic annotation might relate “Paris” in a text to an ontology which
both identifies it as the abstract concept “City” and links it to the instance “France”
of the abstract concept “Country”, thus removing any ambiguity about which
“Paris” it refers to. Annotations can be utilized to make the knowledge contained in
unstructured sources (medical images such as X-rays) available in a structured
form, allowing both accurate and focussed retrieval and knowledge sharing for a
given patient’s case. Moreover, they can be processed to automatically draft textual
reports about the patient, the diagnostic information that is available and the
assessments made about the data by the medical team.

In this section, we discuss some requirements identified for semantic annotation
and review the systems that currently exist to support annotations of documents
presented in [171]. Seven requirements, which are used to assess the capabilities of
existing annotation systems, are identified for semantic annotation systems.

7.1.1 Requirements for Metadata Annotation

The metadata task may be considered from four viewpoints: ontologies, docu-
ments, annotations that link ontologies to documents, and end users. Each view-
point suggests one or more requirements, e.g., the need for tools to support
multiple, evolving ontologies (ontology viewpoint) and the need to support the
reuse and versioning of documents (document viewpoint). Some requirements for
metadata annotation are as follows [171]:
1. Standard Formats: Using standardized formats and data models is preferable

whenever possible. Two types of standard are required, standards for describing
ontologies such as OWL [45] and standards for annotations such as tRDF [42].

2. User-Centered/Collaborative Design: Since few organizations have the
capacity to employ professional annotators, it is crucial to provide knowledge
workers with easy to use interfaces that simplify the annotation process and
place it in the context of their everyday work. Thre is a need to facilitate collab-
oration between users, with experts from different fields contributing to and
reusing metadata annotations. Other issues for collaboration include imple-
menting systems with access control functionality. For example, in a medical
context, physicians might share all information about patients among them-
selves but only share anonymized information with planners. Issues related to
access policies, trust and provenance are important in this context.

3. Ontology Support (Multiple Ontologies and Evolution): Metadata annota-
tion tools need to be able to support multiple ontologies. For example, in a med-
ical context, there may be one ontology for general metadata about a patient
and other domain-specific ontologies that deal with diagnosis and medications.
In addition, systems will have to cope with changes made to ontologies over
time, such as incorporating new classes or modifying existing ones. This is a

 7.1 Tools and Techniques for Metadata Annotation 163

crucial requirement as in some domains such as the biomedical domain, stan-
dardized vocabularies and ontologies are regularly updated. In this case, the
problem is ensuring consistency between ontologies and annotations with
respect to ontology changes. Some important issues for the design of an annota-
tion environment are to determine how changes should be reflected in the
knowledge base of annotated documents and whether changes to ontologies
create conflicts with existing annotations. Knowledge workers may require
facilities to help them explore and edit the ontologies they are using.

4. Document Evolution (Document and Annotation Consistency): Ontologies
change sometimes but some documents change many times. What should hap-
pen to the annotations on a document when it is revised? Is it even desirable, in
general, to transfer annotations to a new version of a document, or do versions
of annotations need to be maintained in parallel with document versions. For
example, if a contract were prepared for a new client, annotations that referred
to a legal ontology could be retained, but annotations which referred to previ-
ous clients could be removed. How can this selective transfer of annotations be
achieved?

5. Annotation Storage: The Semantic Web model assumes that annotations will
be stored separately from the original document, whereas the “word processor”
model assumes that comments are stored as an integral part of the document,
which can be viewed or not as the reader prefers. The Semantic Web model,
which decouples content and semantics, works particularly well for the Web
environment in which the authors of annotations do not necessarily have any
control over the documents they are annotating.

6. Automation: Easing the knowledge acquisition bottleneck can be enabled by
the provision of facilities for automatic markup of document collections to
facilitate the economical annotation of large document collections. To achieve
this, the integration of knowledge extraction and natural language processing
technologies into the annotation environment is vital.

7.1.2 Tools and Technologies for Metadata Annotation

In this section, we discuss annotation frameworks, tools and environments that pro-
duce semantic metadata annotations, i.e., metadata annotations that are based on a
vocabulary presented by ontologies.

Metadata Annotation Frameworks

We discuss two frameworks for annotation in the Semantic Web, the W3C annota-
tion project Annotea [172], and CREAM [173], an annotation framework being
developed at the University of Karlsruhe. These frameworks can be implemented
by multiple tools.

164 7 Applications of Metadata and Ontologies

Annotea is a W3C project, which specifies infrastructure for annotation of Web
documents, with emphasis on the collaborative use of annotations. The main for-
mat for Annotea is RDF and the kinds of documents that can be annotated are lim-
ited to HTML or XML-based documents. XPointer is used as the method for
locating annotations within a document. The Annotea approach concentrates on a
semiformal style of annotation, in which annotations are free text statements about
documents. These statements must have metadata (author, creation time, etc.) and
may be typed according to user-defined RDF schemas of arbitrary complexity. The
storage model proposed is a mixed one with annotations being stored as RDF held
either on local machines or on public RDF servers. The Annotea framework has
been instantiated in a number of tools including Amaya, Annozilla and Vannotea,
which are discussed later in this section.

The CREAM framework looks at the context in which annotations could be
made. It specifies components required by an annotation system, including the
annotation interface, with automatic support for annotators, the document manage-
ment system and the annotation inference server. CREAM subscribes to W3C stan-
dard formats with annotations made in RDF or OWL and XPointers used to locate
annotations in text, which restricts it to Web-native formats such as XML and
HTML. The CREAM framework supports annotating the databases from which
deep Web pages are generated so that the annotations are generated automatically
with the pages. It is supported by a storage model that allows users to choose
whether they want to store annotations separately on a server or embedded in a
Web page. The CREAM framework allows for relational metadata, defined as
“annotations which contain relationship instances”. Relational metadata is essen-
tial for constructing knowledge bases which can be used to provide semantic ser-
vices. Examples of tools based on the CREAM framework are S-CREAM and
OntoMat-Annotizer, discussed later in the section.

Metadata Annotation Tools

The most basic annotation tools allow users to manually create annotations. They
have a great deal in common with purely textual annotation tools but provide some
support for ontologies. The W3C Web browser and editor Amaya [174] can mark-
up Web documents in XML or HTML. The user can make annotations in the same
tool they use for browsing and for editing text, making Amaya a good example of a
single point of access environment. The Annozilla [179] browser aims to make all
Amaya annotations readable in the Mozilla browser and to shadow Amaya devel-
opments. Teknowledge [180] produces a similar plug-in for Internet Explorer.

The Mangrove system is another example of manual but user-friendly annota-
tion [175]. The annotation tool itself is a straightforward graphical user interface
that allows users to associate a selection of tags with text that they highlight. Man-
grove has recently been integrated with a semantic email service [176], which sup-
ports the initiation of semantic email processes, such as meeting scheduling, via
text forms. The COHSE Annotator [188] produces annotations that are compatible

 7.1 Tools and Techniques for Metadata Annotation 165

with Annotea. The annotator is provided as a plug-in suitable for use in Mozilla or
Internet Explorer, giving the user a choice of working environment. The COHSE
architecture has been used to support a number of domain applications, including
the generation of semantic annotation for visually impaired users [190] and enrich-
ing a Java tutorial site [189].

Multimedia annotation is the next phase of development for annotation, expand-
ing the range files types that can be marked up into images, video and audio. Van-
notea [177] has been developed by the University of Brisbane for adding metadata
to MPEG-2 (video), JPEG 2000 (image) and Direct 3D (mesh) files, with the mesh
being used to define regions of images. It has been designed to allow input from
distributed users enabling deployment to annotate cultural artifacts in a collabora-
tive annotation exercise involving both museum curators and indigenous groups
[177].

Some manual annotation tools provide more sophisticated user support and a
degree of semi-automatic or automatic annotation facilities. The OntoMat-Anno-
tizer is a tool for making annotations based on the CREAM framework. A Web
browser displays the page being annotated and provides user-friendly function,
such as drag-and-drop creation of instances and the ability to markup pages while
they are being created. OntoMat has been extended to include support for semi-
automatic annotation. The first of these extensions was S-CREAM [181], which
uses an information extraction (IE) system (Amilcare [182]). The system learns
how to reproduce the user annotation, to be able to suggest annotations for new
documents. OntoMat also incorporates methods for deep annotation [183]. M-
OntoMat-Annotizer [184] supports manual annotation of image and video data by
indexers with little multimedia experience by automatic extraction of low-level
features that describe objects in the content.

SHOE Knowledge Annotator [186] was an early system which allowed users to
markup HTML pages in SHOE guided by ontologies available locally or via a
URL. Users were assisted by being prompted for inputs. Running SHOE took a
step toward automated markup by assisting users to build wrappers for Web pages
that specify how to extract entities from lists and other pages with regular formats.
A recent addition is the RDF annotator SMORE [185] which allows mark-up of
images and emails as well as HTML and text. A tool with similar characteristics to
SMORE is the Open Ontology Forge (OOF) [187], an ontology editor that supports
annotation, taking it a step further toward an integrated environment to handle doc-
uments, ontologies and annotations.

Automation can generally be regarded as falling into three categories. The most
basic kind uses rules or wrappers written by hand that try to capture known pat-
terns for the annotations. Supervised systems learn from sample annotations
marked up by the user. A problem with these methods is that picking enough good
examples is a nontrivial and error-prone task. In order to tackle this problem unsu-
pervised systems employ a variety of strategies to learn how to annotate without
user supervision, but their accuracy is limited.

166 7 Applications of Metadata and Ontologies

Lixto is a Web information extraction system which allows wrappers to be
defined for converting unstructured resources into structured ones. The tool allows
users to create wrappers interactively and visually by selecting relevant pieces of
information [191]. MnM was designed to markup training data for IE tools rather
than as an annotation tool per se [192]. It stores marked up documents as tagged
versions of the original, rather than in RDF format. It provides an HTML browser
to display the document and ontology browser features. MnM provides open APIs
to link to ontology servers and for integrating information extraction tools, making
it flexible with the formats and methods it uses.

Melita [193] is a user-driven automated semantic annotation tool which makes
two main strategies available to the user. It provides an underlying adaptive infor-
mation extraction system (Amilcare) that learns how to annotate the documents by
generalizing on the user annotations. It also provides facilities for rule writing
(based on regular expressions) to allow sophisticated users to define their own
rules. Documents are not selected based on the expected usefulness, to the IE sys-
tem, of annotating the document. The Amilcare IE system has been incorporated in
K@, a legal KM system with RDF-based semantic capabilities produced by Qui-
nary [194].

CAFETIERE is a rule-based system for generating XML annotations developed
as part of the Parmenides project [195]; it has been used to annotate the GENIA
biomedical corpus [208]. Text mining techniques supplemented with slot-based
constraints are used to suggest annotations to analysts [196]. The Parmenides
project also experimented with a clustering approach to suggest concepts and rela-
tions to extend ontologies [197].

Armadillo is a system for unsupervised creation of knowledge bases from large
repositories (e.g., the Web) as well as for document annotation [198]. It uses the
redundancy of the information in repositories to bootstrap learning from a handful
of seed examples selected by the user. Seeds are searched in the repository. Then
Adaptive IE is used to generalize over the examples and find new facts. Confirma-
tion by several sources (e.g., documents) is then required to check the quality of the
newly acquired data. After confirmation, a new round of learning can be initiated.
This bootstrapping process can be repeated until the user is satisfied with the qual-
ity of the learned information.

KnowItAll [199] automates extraction of large knowledge bases of facts from
the Web. The pointwise mutual information (PMI) measure is used. The PMI mea-
sure is roughly the ratio between the number of search engine hits obtained by que-
rying with the discriminator phrase (e.g., “Liege is a city”) and the number of hits
obtained by querying with the extracted fact (e.g., “Liege”). Three extensions to
the system (pattern learning, subclass extraction and list extraction) which are
shown to improve overall performance have also been provided.

The SmartWeb project is also investigating unsupervised approaches for RDF
knowledge base population [200]. Their approach uses class and subclass names
from the ontology to construct examples. The context of these examples is then
learned. In this way, instances can be identified which have similar contexts, but

 7.1 Tools and Techniques for Metadata Annotation 167

which may use different terminology from the ontology. SmartWeb is aimed at
broadband mobile access.

Another approach to learning annotations which exploits the sheer size of the
Web is Pattern-based Annotation through Knowledge On the Web (PANKOW)
[201]. PANKOW uses a range of relatively rare, but informative, syntactic patterns
to markup candidate phrases in Web pages without having to manually produce an
initial set of marked-up Web pages and go through a supervised learning step.
AeroSWARM8 is an automatic tool for annotation using OWL ontologies based
on the DAML annotator AeroDAML [202]. This has both a client/server version
and a Web-enabled demonstrator in which the user enters a URI and the system
automatically returns a file of annotations on another Web page.

SemTag is another example of a tool which focusses only on automatic markup
[124]. It is based on IBM’s text analysis platform Seeker and uses similarity func-
tions to recognize entities which occur in contexts similar to marked-up examples.
The key problem of large-scale automatic markup is identified as ambiguity, e.g.,
identical strings, such as “Niger”, which can refer to different things, a river or a
country. A Taxonomy-Based Disambiguation (TBD) algorithm is proposed to
tackle this problem. SemTag is proposed as a bootstrapping solution to get a
semantically tagged collection off the ground. It is intended as a tool for specialists
rather than one for knowledge workers.

KIM [203] [204] uses information extraction techniques to build a large knowl-
edge base of annotations. The annotations in KIM are metadata in the form of
named entities (people, places, etc.) which are defined in the KIMO ontology and
identified mainly from references to extremely large gazetteers. In the Rich News
application KIM has been used to help annotate television and radio news by
exploiting the fact that Web news stories on the same topic are often published in
parallel [207].

The Rainbow project is taking a Web-mining-led approach to automating anno-
tation. Rainbow is in fact a family of independent applications which share a com-
mon Webservice front end and upper-level ontology [205]. The applications
include text mining from product catalogs as well as more general pattern-match-
ing applications such as pornography recognition in bit map image files. The gen-
erated RDF is stored in Sesame databases for semantic retrieval [210].

A traditional approach to information extraction is used by the h-TechSight
Knowledge Management Platform, in which the GATE rule-based IE system is
used to feed a semantic portal [206]. This work is of particular interest because the
automatically generated annotations are monitored to produce metrics describing
the “dynamics” of concepts and instances which can be fed back to end users
[209]. It is envisaged that dynamics data will be used to inform the manual evolu-
tion of ontologies.

168 7 Applications of Metadata and Ontologies

Integrated Annotation Environments

In this section, we discuss systems that are aimed at integrating annotation into
standard tools and making annotation simultaneous to writing. WiCKOffice [211]
demonstrates how writing within a knowledge-aware environment has useful sup-
port possibilities, such as automatic assistance for form filling using data extracted
from knowledge bases. AktiveDoc [212] enables annotation of documents at three
levels: ontology-based content annotation, free text statements and on-demand
document enrichment. Support is provided during both editing and reading. Semi-
automatic annotation of content is provided via adaptive information extraction
from text (using Amilcare). AktiveDoc is designed for knowledge reuse; it is able
to monitor editing actions and to provide automatic suggestions about relevant
content. Armadillo supports searches of relevant knowledge in large repositories;
annotations in the document are used as context for searches. Annotations are
saved in a separate database; levels of confidentiality are associated with annota-
tions to ensure confidentiality of knowledge when necessary. AeroDAML can pro-
vide automation within authoring environments. For example, the SemanticWord
annotator [213] provides graphical-user-interface based tools to help analysts
annotate Microsoft Word documents with DAML ontologies as they write.

Two systems discussed next, are not strictly annotation tools, but produce anno-
tation-like services on demand for users browsing unannotated resources. Magpie
[214] operates from within a Web browser and does “real-time” annotation of Web
resources by highlighting text strings related to an ontology of the user’s choice.
The Thresher uses wrappers to generate RDF on the fly as users browse deep Web
resources [215]. The user can access semantic services for recognized objects.
Writing wrappers is a complex task which Thresher tackles by providing facilities
for nontechnical users to markup examples of a particular class. These are then
used to induce wrappers automatically. Thresher is part of the Haystack semantic
browser [216], which enables users to personalize the ontologies they use.

7.1.3 Comparative Evaluation

We now revisit the requirements presented in Section 7.1.1, and discuss a compar-
ative evaluation of the various tool discussed in the previous section with respect to
the requirements.
1. Standard Formats: The discussion in the previous section shows that the W3C

standards, particularly Annotea, are becoming dominant in this area. Systems
like CAFETIERE, which use their own XML-based annotation scheme, are
rare. This requirement has been fulfilled, although the standards may need to be
augmented to tackle inadequacies in the existing standards.

2. User-Centered/Collaborative Design: The most common home environment
of the tools we have seen is a Web browser, a natural result of the fact that most
of them were designed for the Semantic Web. The downside is that it both

 7.1 Tools and Techniques for Metadata Annotation 169

focusses development on native Web formats like HTML and XML and tends
to divorce the annotation process from the process of document creation. More
attention needs to be paid to developing built-in or plug-in semantic annotation
facilities in commonly used packages to encourage knowledge workers to view
annotation as part of the authoring process, not as an afterthought, and also to
support annotation in collaborative environments, as for example in Vannotea.
Most of the tools discussed in the previous section did not address issues of
provenance or access rights. Standard methods to restrict access to databases or
the file system are available. As a result of offering this kind of support for
trust, provenance and access policies concerning annotations are important
issues which need to be addressed.

3. Ontology Support (Multiple Ontologies and Evolution): Annotation tools
have adapted rapidly to recent changes in ontology standards for the Web, with
many of the more recent tools already supporting OWL. However, support for
doing anything more complex than searching and navigating an ontology
browser is the exception. Ontology maintenance, which directly affects the
maintenance of annotations, is poorly supported, or not supported at all, by the
current generation of tools. This perhaps reflects the assumption that knowl-
edge workers will use existing ontologies rather than editing or creating them.
However there are signs that annotation systems are giving users more control
of ontologies. Melita allows users to split a concept and then view all the
instances that have been created for the old concept and reassign them. The
COHSE architecture includes a component for maintaining the ontology but
this does not appear to be available from the annotator. The Open Ontology
Forge supports the creation of new classes from a root class. h-TechSight moni-
tors the dynamics of instances and concepts to assist endusers in manual ontol-
ogy evolution. Parmenides has gone further and experimented with clustering
methods to suggest ontology changes. However there is still a long way to go
and we believe that ontology maintenance presents a significant research chal-
lenge.

4. Document Evolution (Document and Annotation Consistency): Keeping
annotations synchronized with changes to documents is challenging and this is
one area in which the current annotation standards are inadequate. The Annotea
approach adopted by many of the tools stores annotations separately from the
document and uses XPointer to locate them in the document. There are strong
arguments in favor of separate storage of annotations and documents, but the
problem with the XPointer approach is that connections are one-way from
annotations to documents and, therefore, too easily broken by edits at the docu-
ment end. An environment in which documents and annotations are stored sep-
arately, but closely coordinated is required. A number of practical fixes have
been implemented in OntoMat, including the ability to search for similar docu-
ments that have already been annotated, and a proposal to use pattern matching
to help relocate annotations in suitable places in the new document. However, a
coordinated approach is needed to tackle the issues of versioning annotations as

170 7 Applications of Metadata and Ontologies

documents evolve. These include determining who has permission to edit anno-
tations, at which points in the document life cycle is it appropriate to update the
annotations, and what automatic interventions are possible to reduce the burden
on users.

5. Annotation Storage: In the Semantic Web, documents and their annotations
are stored separately. This is unavoidable since documents and annotations are
likely to be owned by different people or organizations and stored in different
places. A variety of approaches to separate storage were seen in the tools dis-
cussed. The Annotea approach calls for RDF servers. Web storage technologies
that have been used are RDF triplestore (Armadillo and AktiveDoc), Label
Bureaus (SemTag) and DLS (COHSE). An alternative model is to store annota-
tions directly in the document. This approach has been used for in Semantic-
Word and MnM. Separate storage of annotations results in decoupling of
semantics and content and facilitates document reuse because it is possible to
set up rules which control and automate which kinds of annotations are trans-
ferred to new documents and which are not. It allows information from hetero-
geneous resources to be queried centrally as a knowledge base. It also makes it
easy to produce different views of a document for users with different roles in
an organization or different access rights, thus facilitating knowledge sharing
and collaboration. The results of the comparative evaluation of the various tools
with respect to the above requirements is presented in Table 7.1 below.

Table 7.1. Comparison of metadata tools

Annotation
Tool

User-Centered
Design

Ontology
support

Document
Evolution

Annotation
Storage

Amaya Web browser, editor Annotation
server

XPointer Local, annotation
server

Mangrove Graphical annotation
tool

RDF database
(Jena)

Vannotea Collaboration support Annotation server

OntoMat Drag/drop, create,
annotate

Ontobroker
annotations
inference server

Xpointer,
pattern
matching

Annotation server,
embedded in Web
page, separate file

M-OntoMat
Annotizer

Extraction of visual
descriptors

Annotation server

SHOE
Knowledge
Annotator

Prompting Ontology server Embedded in Web
page

SMORE Web browser, editor Ontology server,
editing

Open Ontol-
ogy Forge

Web browser, drag,
drop, create, annotate

Local, editable
ontologies

Xpointer Local RDF or XML
file

COHSE
Annotator

Plug-in for Mozilla
and Internet Explorer

Ontology server Xpointer Annotation server

 7.1 Tools and Techniques for Metadata Annotation 171

6. Automation: Automation is vital to ease the knowledge acquisition bottleneck,
as discussed above. Many of the systems we examined had some kind of auto-
matic and semi-automatic support for annotation. Most of these handled just
text, using mainly wrappers, IE and natural language processing although there
are some systems, notably M-OntoMat-Annotizer and parts of the Rainbow
Project, looking to automate the handling of other media. Language technolo-

Lixto

MnM Web browser Ontology server Store anno-
tated page

Embedded inWeb
page

Melita Control IE intrusive-
ness

Local, editable
ontologies

Regular
expressions

Parmenides Additions based
on clustering

Armadillo RDF triple store

KnowItAll

SmartWeb RDF Knowledge
base

PANKOW CREAM

Aero-
SWARM

Web Services Local ontologies

SemTag Label Bureau
(PICS)

KIM Various plug-in front
ends

KIMO RDF Knowledge-
base

Rainbow
Project

AmphorA XHTML
database

Shared upper-
level ontology

RDF repository
(Sesame)

h-TechSight KM Portal Ontology editor,
dynamics metrics

Tagged HTML web
server

WiCKOf-
fice

Office application,
support for form fill-
ing

Annotation server

AktivDoc Integrated editing
environment

RDF triple store

Semantic-
Word

Microsoft Word GUIs Markup
tied to text
regions

Magpie Web browser plug-in

Thresher Haystack semantic
browser

Ontology person-
alization

Table 7.1. Comparison of metadata tools

Annotation
Tool

User-Centered
Design

Ontology
support

Document
Evolution

Annotation
Storage

172 7 Applications of Metadata and Ontologies

gies present usability challenges when deployed for knowledge workers since
most are research tools or designed for use by specialists. A first step in
addressing these challenges is Melita, where attention has been paid in finding
ways to enable a seamless user interaction with the underlying IE system. In
addition to the usability challenges there are also research challenges, among
which extraction of relations is important for semantic annotation. A compari-
son of annotation tools for automation is presented in Table 7.2 below.

Table 7.2. A comparison of annotation tools based on automation support

Annotation Tool Automation Type of Analysis Learning

Amaya No

Mangrove No

Vannotea No

OntoMat Yes PANKOW, Amilcare (IE) Supervised learning

M-OntoMat
Annotizer

Yes Extraction of spatial descrip-
tion

Genetic algorithms

SHOE Knowledge
Annotator

Yes Running SHOE (wrappers) No

SMORE Yes Screen scraper No

Open Ontology
Forge

Yes String matching No

COHSE Annotator Yes Ontology string matching No

Lixto Yes Wrappers No

MnM Yes POS tagging, named entity rec-
ognition

Supervised learning

Melita Yes String matching, POS tagging,
named entity recognition

Supervised learning

Parmenides Yes Text mining with constraints Unsupervised
learning

Armadillo Yes String matching, POS tagging,
named entity recognition

Unsupervised
learning

KnowItAll Yes String matching, Hearst
patterns

Unsupervised
learning

SmartWeb Yes Shallow linguistic parsing Unsupervised
learning

PANKOW Yes Hearst patterns Unsupervised
learning

AeroSWARM Yes AeroText No

SemTag Yes Seeker, similarity, TBD Unsupervised
learning

KIM Yes String matching, POS tagging.
named entity recognition

No

 7.2 Techniques for Schema/Ontology Mapping 173

7.2 Techniques for Schema/Ontology Mapping

Schema and ontology matching is a critical problem in many application domains,
such as Semantic Web, schema/ontology integration, data warehouses, and e-com-
merce. Many different matching solutions have been proposed so far. In the fol-
lowing we present a discussion of schema and ontology matching techniques based
on classifications presented in [217] [218].

7.2.1 A Classification of Schema-matching Approaches

Schema-matching approaches can be classified as follows [217] [218]:

• Elementary matchers: These consist of instance-based and schema-based, ele-
ment- and structure-level, linguistic- and constraint-based matching techniques.

• Combination of matchers: These consist of various ways of combining the
schema matchers using committee-based or hybrid approaches.

Elementary schema-based matching techniques are classified based on two per-
spectives (Figure 7.1). These two perspectives are presented as two trees sharing
their leaves. The leaves represent classes of elementary matching techniques and
their concrete examples, identified as basic techniques in the figure. The two per-
spectives are discussed below.

Granularity/Input Interpretation: This is based on the granularity of the
match, i.e., whether it is at the element or structural level, and how these tech-
niques interpret this information. This perspective is illustrated from the top in a
descending manner in Figure 7.1 till it reaches the Basic Techniques Layer. Ele-
mentary matchers are further distinguished based on the following criteria:

Element-level vs. structure-level. Element-level matching techniques compute
mapping elements by analyzing entities in isolation, ignoring their relations with

Rainbow Project Yes Hidden markov models, bit-
map classification

Supervised learning

h-TechSight Yes Shallow linguistic analysis No

WiCKOffice Yes Named entity recognition No

AktivDoc Yes String matching, POS tagging,
named entity recognition

Unsupervised and
supervised learning

SemanticWord Yes AeroDAML No

Magpie Yes String matching, named entity
recognition

No

Thresher Yes Screen scraping, wrappers Supervised learning

Table 7.2. A comparison of annotation tools based on automation support

Annotation Tool Automation Type of Analysis Learning

174 7 Applications of Metadata and Ontologies

other entities. Structure-level techniques compute mapping elements by analyzing
how entities appear together in a structure.

Syntactic vs. external vs. semantic. The key characteristic of the syntactic
techniques is that they interpret the input as a function of its syntactic structure.
External techniques exploit auxiliary (external) resources of a domain and common
knowledge in order to interpret the input. These resources might be human input or
some thesaurus expressing the relationships between terms. The key characteristic
of the semantic techniques is that they use some formal semantics (e.g., model-the-
oretic semantics), possibly with some sort of reasoning to interpret the input and
justify their results.

Fig. 7.1. A Classification of schema-based matching approaches

Type of Input. This is based on the type of input used by the elementary match-
ing techniques. This perspective is illustrated from the bottom in an ascending
manner in Figure 7.1 till it reaches the Basic Techniques Layer. Elementary match-
ers are further distinguished based on the following criteria:

• The first level is categorized depending on which kind of data the algorithms
work on: string (terminological), structure (structural) or model (semantics).
The two first ones are found in the ontology descriptions, the last one requires
some semantic interpretation of the ontology and usually uses some semanti-
cally-compliant reasoner to deduce the correspondences.

Schema-Based Matching Techniques

Schema-Based Matching Techniques

Element Level Structure Level

Syntactic External Syntactic External Semantic

String-based
- Name

similarity
- Description

similarity
- Global

namespaces

Language-
based
- Tokenization
- Lemmatization
- Morphological

analysis
- Elimination

Linguistic
resource
- Lexicon
- Thesauri

Constraint-
based
- Type

similarity
- Key

properties

Alignment
reuse
- Entire

schema/
ontology

- Fragments

Upper level
ontologies
- SUMO
- DOLCE
- BFO

Graph-
based
- Graph

Matching
- Paths
- Children
- Leaves

Taxonomy-
based
- Taxonomic

Structure

Structures
Repository
- Structure’s
metadata

Model-based
- Propsitional SAT
- DL-based

Terminological Structural Semantic

Linguistic Internal Relational

Type of Input

Granularity and
Interpretation of Input

List of Techniques

Schema-Based Matching Techniques

Schema-Based Matching Techniques

Element Level Structure Level

Syntactic External Syntactic External Semantic

String-based
- Name

similarity
- Description

similarity
- Global

namespaces

Language-
based
- Tokenization
- Lemmatization
- Morphological

analysis
- Elimination

Linguistic
resource
- Lexicon
- Thesauri

Constraint-
based
- Type

similarity
- Key

properties

Alignment
reuse
- Entire

schema/
ontology

- Fragments

Upper level
ontologies
- SUMO
- DOLCE
- BFO

Graph-
based
- Graph

Matching
- Paths
- Children
- Leaves

Taxonomy-
based
- Taxonomic

Structure

Structures
Repository
- Structure’s
metadata

Model-based
- Propsitional SAT
- DL-based

Terminological Structural Semantic

Linguistic Internal Relational

Type of Input

Granularity and
Interpretation of Input

List of Techniques

 7.2 Techniques for Schema/Ontology Mapping 175

• The second level of this classification decomposes further these categories if
necessary: terminological methods can be string-based (considering the terms
as sequences of characters) or based on the interpretation of these terms as lin-
guistic objects (linguistic). The structural methods category is split into two
types of methods: those which consider the internal structure of entities (e.g.,
attributes and their types) and those which consider the relation of entities with
other entities (relational).

We discuss below the main classes of the Basic Techniques Layer and the asso-
ciated matching systems according to the above classification in more detail. Tech-
niques based on upper-level ontologies and DL-based techniques have not been
implemented in any matching system yet. However, their use in matching systems
seems quite likely in the near future.

Element-level techniques

String-based techniques consider strings as sequences of letters in an alphabet.
They assume that the more similar the strings, the more likely they denote the same
concepts. A comparison of different string-matching techniques, from distance-like
functions to token-based distance functions can be found in [219]. Some examples
of string-based techniques which are extensively used in matching systems are pre-
fix/suffix, edit distance, and n-gram.

Prefix/Suffix. Two strings are input and a check of whether the first string
starts/ends with the second one is performed. Prefix is efficient in matching cog-
nate strings and similar acronyms (e.g., int and integer). This test can be trans-
formed into a smoother distance by measuring the relative size of the prefix and the
strings. These techniques have been used in [225] [231] [232] [233].

Edit distance. This distance takes as input two strings and computes the edit
distance between the strings, that is, the number of insertions, deletions, and substi-
tutions of characters required to transform one string into another, normalized by
the length of the longest string.

N-gram. This test takes as input two strings and computes the number of com-
mon n-grams (i.e., sequences of n characters) between them. These techniques
have been used in [225] [231] [234].

Language-based techniques consider names as words in some natural language
(e.g., English) and apply Natural Language Processing (NLP) techniques that
exploit morphological properties of the input words.

Tokenization. Names of entities are parsed into sequences of tokens by a token-
izer which recognizes punctuation, cases, blank characters, digits, etc. (e.g., see
[230]).

Lemmatization. The strings, underlying tokens are morphologically analyzed
in order to find all their possible basic forms (e.g., see [230]).

Elimination. The tokens that are articles, prepositions, conjunctions, and so on,
are marked to be discarded (e.g., see [232]).

176 7 Applications of Metadata and Ontologies

Usually, the above-mentioned techniques are applied to names of entities before
running string-based or lexicon-based techniques in order to improve their results.
However, language-based techniques may be considered as a separate class of
matching techniques, since they can be naturally extended, for example, in a dis-
tance computation (by comparing the resulting strings or sets of strings).

Constraint-based techniques are algorithms which deal with the internal con-
straints being applied to the definitions of entities, such as types, cardinality of
attributes, and keys.

Datatype comparison involves comparing the various attributes of a class with
regard to the datatypes of their value. Contrary to objects that require interpreta-
tion, the datatypes can be considered objectively and it is possible to determine
how a datatype is close to another (ideally this can be based on the interpretation of
datatypes as sets of values and the set-theoretic comparison of these datatypes). For
instance, the datatype day can be considered closer to the datatype workingday
than the datatype integer. This technique is used in [228].

Multiplicity comparison attribute values can be collected by a particular con-
struction (set, list, multiset) on which cardinality constraints are applied. It is possi-
ble to compare the so constructed datatypes by comparing (i) the datatypes on
which they are constructed and (ii) the cardinality constraints that are applied to
them. For instance, a set of between two and three children is closer to a set of
three people than a set of ten to twelve flowers (if children are people). This tech-
nique is used in [228].

Linguistic resources such as common knowledge or domain-specific thesauri
are used to match words (in this case names of schema/ontology entities are con-
sidered as words of a natural language) based on linguistic relations between them
(e.g., synonyms, hyponyms).

Common knowledge thesauri are used to obtain the meaning of terms used in
schemas/ontologies. For example, WordNet [237] is an electronic lexical database
for English (and other languages), where various senses (possible meanings) of
words or expressions are put together into sets of synonyms. Relations between
schema/ontology entities can be computed in terms of bindings between WordNet
senses; see, for instance [221] [230]. Other matchers exploit thesauri based on their
structural properties, e.g., WordNet hierarchies. In particular, hierarchy-based
matchers measure the distance, for example, by counting the number of arcs tra-
versed, between two concepts in a given hierarchy.

Domain-specific thesauri usually store some specific domain knowledge,
which is not available in common knowledge thesauri (e.g., proper names) as
entries with synonym, hypernym and other relations; see, for instance [232].

Alignment reuse techniques exploit alignments of previously matched schemas
and ontologies, for instance, when we need to match schema/ontology o and o’’,
given the alignments between o and o’, and between o’ and o’’ from the external
resource, storing previous match operation results. The alignment reuse is moti-
vated by the intuition that many schemas/ontologies to be matched are similar to
already-matched schemas/ontologies, especially if they are describing the same

 7.2 Techniques for Schema/Ontology Mapping 177

application domain. These techniques are particularly promising when dealing
with large schemas/ontologies consisting of hundreds and thousands of entities. In
these cases, first, large match problems are decomposed into smaller sub-problems,
thus generating a set of schema/ontology fragment-matching problems. Then, reus-
ing previous match results can be more effectively applied at the level of schema/
ontology fragments compared to entire schemas/ontologies. The approach was first
introduced in [217], and later was implemented as two matchers, i.e., reuse of (i)
entire schemas/ontologies alignments, or (ii) their fragments; see, for details [220]
[225] [235].

Upper-level formal ontologies can be also used as external sources of common
knowledge. Examples are the Suggested Upper Merged Ontology (SUMO) [49]
and Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE)
[92]. The key characteristic of these ontologies is that they are logic-based systems,
and therefore, matching techniques exploiting them can be based on the analysis of
interpretations. Even though current matching systems do not use these techniques,
it is likely that this will happen in the near future. In fact, the DOLCE ontology
aims at providing a formal specification (axiomatic theory) for the top-level part of
WordNet. Therefore, systems exploiting WordNet now in their matching process
might also consider using DOLCE as a potential extension.

Structure-level techniques

Graph-based techniques view database schemas, taxonomies and ontologies as
graph-like structures containing terms and their interrelationships. Usually, the
similarity comparison between a pair of nodes from the two schemas/ontologies is
based on the analysis of their positions within the graphs. The intuition behind this
is that if two nodes from two schemas/ontologies are similar, their neighbors might
also be somehow similar.

Graph matching. Matching graphs is a combinatorial problem and is usually
solved by approximate methods. In schema/ontology matching, the problem is
encoded as an optimization problem (finding the graph matching minimizing some
distance like the dissimilarity between matched objects) which is further resolved
with the help of a graph-matching algorithm. This optimization problem is solved
through a fix-point algorithm (improving gradually an approximate solution until
no improvement is made). Examples of such algorithms are [233] and [228].

Children. The (structural) similarity between inner nodes of the graphs is com-
puted based on similarity of their children nodes, that is, two non-leaf schema ele-
ments are structurally similar if their immediate children sets are highly similar. A
more complex version of this matcher is implemented in [225].

Leaves. The (structural) similarity between inner nodes of the graphs is com-
puted based on similarity of leaf nodes, that is, two non-leaf schema elements are
structurally similar if their leaf sets are highly similar, even if their immediate chil-
dren are not; see, for example [225] [232].

178 7 Applications of Metadata and Ontologies

Relations. The similarity computation between nodes can also be based on their
relations. For example, if class Photo and Camera relates to class NKN by relation
hasBrand in one ontology, and if class DigitalCamera relates to class Nikon by
relation hasMarque in the other ontology, then knowing that classes Photo and Cam-
era and DigitalCamera are similar, and also relations hasBrand and hasMarque
are similar, we can infer that NKN and Nikon may be similar.

Taxonomy-based techniques consider only the specialization relation. The intu-
ition behind taxonomic techniques is that is-a links connect terms that are already
similar (each being a subset of the other); therefore their neighbors may be also
somehow similar.

Bounded path matching. Bounded path matchers take two paths with links
between classes defined by the hierarchical relations, compare terms and their
positions along these paths, and identify similar terms; see, for instance [234].

Super(sub)-concept rules. These matchers are based on rules capturing the
above stated intuition. For example, if super-concepts are the same, the actual con-
cepts are similar to each other. If sub-concepts are the same, the compared concepts
are also similar; see, for example [224] [226].

Repository of structures stores schemas/ontologies and their fragments together
with pairwise similarities (e.g., coefficients in the [0,1] range) between them.
When new structures are to be matched, they are first checked for similarity to the
structures which are already available in the repository. The goal is to identify
structures which are sufficiently similar to be worth matching in more detail, or to
reuse already existing alignments. Obviously, the determination of similarity
between structures should be computationally cheaper than matching them in full
detail. In order to match two structures, [235] proposes using some metadata
describing these structures, such as structure name, root name, number of nodes,
maximal path length, etc. Then, these indicators are analyzed and are aggregated
into a single coefficient, which estimates the similarity between them.

Model-based algorithms handle the input based on its semantic interpretation
(e.g., model-theoretic semantics). Examples are propositional satisfiability (SAT)
and description logics (DL) reasoning techniques. As from [221] [229] [230], the
approach is to decompose the graph(tree)-matching problem into a set of node-
matching problems. Then, each node-matching problem, namely each pair of
nodes with possible relations between them, is translated into a propositional for-
mula of form, Axioms => rel(context1, context2), and checked for validity. Axioms
encode background knowledge (e.g., HypertrophicCardioMyopathy subClassOf
Disease codifies the fact that Hypertrophic Cardiomyopathy is a kind of disease),
which is used as premises to reason about relations rel (e.g., =, subClassOf,
unsatisfiability) holding between the nodes context1 and context2. A proposi-
tional formula is valid iff its negation is unsatisfiable. The unsatisfiability is
checked by using state-of-the-art SAT solvers. Propositional language used for
codifying matching problems into propositional unsatisfiability problems is limited
in its expressiveness; namely it allows for handling only unary predicates. Thus, it
cannot handle, for example, binary predicates, such as properties or roles, which

 7.2 Techniques for Schema/Ontology Mapping 179

are expressible in OWL and various variants of DLs. The relations (e.g., =, sub-
ClassOf, unsatisfiability) can be expressed using subsumption in DLs. In fact,
first merging two ontologies (after renaming) and then testing each pair of concepts
and roles for subsumption is enough for aligning terms with the same interpretation
(or with a subset of the interpretations of the others). Currently, there are no sys-
tems supporting DL-based techniques.

7.2.2 Schema-matching Techniques: Overview

We now look at some recent schema-based state-of-the-art matching systems in the
context of the classification presented in Figure 7.1. A summary of the various
characteristics of these techniques is presented in Table 7.3.

Similarity Flooding. The Similarity Flooding (SF) [233] approach utilizes a
hybrid-matching algorithm based on the ideas of similarity propagation. Schemas
are presented as directed labeled graphs; the algorithm manipulates them in an iter-
ative fix-point computation to produce an alignment between the nodes of the input
graphs. The technique starts with string-based comparison (common prefix and
suffix tests) of the vertex labels to obtain an initial alignment which is refined
within the fix-point computation. The basic concept behind the SF algorithm is the
similarity spreading from similar nodes to the adjacent neighbors through propaga-
tion coefficients. From iteration to iteration the spreading depth and the similarity
measure increase till the fix-point is reached. The result of this step is a refined
alignment which is further filtered to finalize the matching process. SF considers
the alignment as a solution to a clearly stated optimization problem.

Artemis. Analysis of Requirements: Tool Environment for Multiple Informa-
tion Systems (Artemis) [222] was designed as a module of the MOMIS mediator
system [238] for creating global views. It performs affinity-based analysis and
hierarchical clustering of source schema elements. Affinity-based analysis repre-
sents the matching step: in a hybrid manner it calculates the name, structural and
global affinity coefficients exploiting a common thesaurus. The common thesaurus
is built with the help of Ontology Development Tools, WordNet or manual input. It
represents a set of intensional and extensional relationships which depict intra- and
inter-schema knowledge about classes and attributes of the input schemas. Based
on global affinity coefficients, a hierarchical clustering technique categorizes
classes into groups at different levels of affinity. For each cluster it creates a set of
global attributes and the global class. The logical correspondence between the
attributes of a global class and source schema attributes is determined through a
mapping table.

Cupid. Cupid [232] implements a hybrid-matching algorithm comprising lin-
guistic and structural schema-matching techniques, and computes similarity coeffi-
cients with the assistance of a domain-specific thesaurus. Input schemas are
encoded as graphs. Nodes represent schema elements and are traversed in a com-
bined bottom-up and top-down manner. The matching algorithm consists of three
phases and operates only with tree structures to which non-tree cases are reduced.

180 7 Applications of Metadata and Ontologies

The first phase (linguistic matching) computes linguistic similarity coefficients
between schema element names (labels) based on morphological normalization,
categorization, string-based techniques (common prefix, suffix tests) and a thesauri
lookup. The second phase (structural matching) computes structural similarity
coefficients weighted by leaves which measure the similarity between contexts in
which elementary schema elements occur. The third phase (mapping elements gen-
eration) computes weighted similarity coefficients and generates final alignment
by choosing pairs of schema elements with weighted similarity coefficients which
are higher than a threshold.

COMA. COmbination ofMAtching algorithms (COMA) [225] is a composite
schema-matching tool. It provides an extensible library of matching algorithms, a
framework for combining obtained results, and a platform for the evaluation of the
effectiveness of the different matchers. Matching library is extensible, and contains
six elementary matchers, five hybrid matchers, and one reuse-oriented matcher.
Most of the matchers implement string-based techniques (affix, n-gram, edit dis-
tance, etc.) as a background idea; others share techniques with Cupid (thesauri
look-up, etc.); and the reuse-oriented matcher tries to reuse previously obtained
results for entire new schemas or for its fragments. Schemas are internally encoded
as DAGs, where the elements are the paths. This aims at capturing contexts in
which the elements occur. Distinct features of the COMA tool with respect to
Cupid are a more flexible architecture and a possibility of performing iterations in
the matching process.

NOM. Naive Ontology Mapping (NOM) [227] adopts the idea of composite
matching from COMA [225]. Some other innovations with respect to COMA are
in the set of elementary matchers based on rules exploiting explicitly codified
knowledge in ontologies, such as information about super- and sub-concepts and
super- and sub-properties. At present the system supports 17 rules. For example,
one rule states that if super-concepts are the same, the actual concepts are similar to
each other. NOM also exploits a set of instance-based techniques.

QOM. Quick Ontology Mapping (QOM) [226] is a successor of the NOM sys-
tem [227]. The approach is based on the idea that the loss of quality in matching
algorithms is marginal (to a standard baseline); however, improvement in effi-
ciency can be tremendous. This fact allows QOM to produce mapping elements
fast, even for large-size ontologies. QOM is grounded in matching rules of NOM.
However, for the purpose of efficiency the use of some rules has been restricted.
QOM avoids the complete pairwise comparison of trees in favor of an incomplete
top-down strategy. Experimental study has shown that QOM is on par with other
state-of-the-art algorithms for the quality of the proposed alignment, while outper-
forming them with respect to efficiency. Also, QOM shows better results than
approaches within the same complexity class.

OLA. OWL Lite Aligner (OLA) [228] is designed with the idea of balancing the
contribution of each component that composes an ontology (these include classes,
properties, names, constraints, taxonomy, and even instances). As such it takes
advantage of all the elementary matching techniques that have been considered in

 7.2 Techniques for Schema/Ontology Mapping 181

the previous sections except the semantic ones. OLA is a family of distance-based
algorithms which converts definitions of distances based on all the input structures
into a set of equations. These distances are almost linearly aggregated (they are lin-
early aggregated modulo local matches of entities). The algorithm then looks for
the matching between the ontologies that minimizes the overall distance between
them. For that purpose it starts with base distance measures computed from labels
and concrete datatypes. Then, it iterates a fix-point algorithm until no improvement
is produced. From that solution, an alignment is generated which satisfies some
additional criterion (on the alignment obtained and the distance between aligned
entities). As a system, OLA considers the alignment as a solution to a clearly stated
optimization problem.

Anchor-PROMPT. Anchor-PROMPT [234] (an extension of PROMPT) is an
ontology-merging and alignment tool with a sophisticated prompt mechanism for
possible matching terms. The anchor-PROMPT is a hybrid alignment algorithm
which takes as input two ontologies (internally represented as graphs) and a set of
anchor-pairs of related terms, which are identified with the help of string-based
techniques (edit-distance test) or defined by a user, or another matcher computing
linguistic similarity. Then the algorithm refines them by analyzing the paths of the
input ontologies limited by the anchors in order to determine terms frequently
appearing in similar positions on similar paths. Finally, based on the frequencies
and user feedback, the algorithm determines matching candidates.

S-Match. S-Match [229] [230] [231] is a schema-based matching system. It
takes two graph-like structures (e.g., XML schemas or ontologies) and returns
semantic relations (e.g., equivalence, subsumption) between the nodes of the
graphs that correspond semantically to each other. The relations are determined by
analyzing the meaning (concepts, not labels) which is codified in the elements and
the structures of schemas/ontologies. In particular, labels at nodes, written in natu-
ral language, are translated into propositional formulas which explicitly codify the
label’s intended meaning. This allows for a translation of the matching problem
into a propositional unsatisfiability problem, which can then be efficiently resolved
using (sound and complete) state-of-the-art propositional satisfiability deciders. S-
Match was designed and developed as a platform for semantic matching, namely,
as a highly modular system with a core of semantic relationship computations,
where single components can be plugged, unplugged or suitably customized. It is a

182 7 Applications of Metadata and Ontologies

hybrid system with a composition at the element level. At present, S-Match librar-
ies contains thirteen element-level matchers and three structure-level matchers.

Table 7.3. Summary of schema-matching approaches

Element Level Matching Structure Level Matching

Syntactic External Syntactic Semantic

SF string-based,
datatypes, key
properties

iterative fix-
point computa-
tion

Artemis domain compatibil-
ity;
language based

common
thesaurus,
broader term,
related term

matching of
neighbors via
clustering

Cupid string-based, lan-
guage-based,
datatypes, key
properties

auxiliary
thesauri,
synonyms,
hypernyms,
abbreviations

tree matching
weighted by
leaves

COMA string-based, lan-
guage-based,
datatypes

auxiliary
thesauri,
synonyms,
hypernyms,
abbreviations
alignment reuse

DAG match-
ing with bias
toward chil-
dren of leaf
nodes; paths

NOM/
QOM

string-based,
domains and ranges

application spe-
cific vocabulary

neighbor
matching, tax-
onomic struc-
ture

Anchor-
PROMPT

string-based,
domain and ranges

bounded path
matching

OLA string-based, lan-
guage based,
datatypes

WordNet iterative fix-
point computa-
tion, neighbor
matching, tax-
onomic struc-
ture

S-Match string-based, lan-
guage based

WordNet, sense-
based, gloss-
based

proposi-
tional SAT,
DLs

 7.3 Ontology Driven Information Integration 183

7.3 Ontology Driven Information Integration

In order to achieve semantic interoperability in a heterogeneous information sys-
tem, the meaning of the information that is interchanged has to be understood
across the systems. Semantic conflicts occur whenever two contexts do not use the
same interpretation of the information. The use of ontologies and metadata descrip-
tions for the explication of implicit and hidden knowledge is a possible approach to
overcome the problem of semantic heterogeneity. Uschold and Gruninger mention
interoperability as a key application of ontologies, and many ontology-based
approaches [239] to information integration in order to achieve interoperability
have been developed.

In this section we discuss existing solutions for ontology-based information
integration presented in [240]. Various approaches to intelligent information inte-
gration have been adopted in systems such as SIMS [241], TSIMMIS [242],
OBSERVER [147], Carnot [21], InfoSleuth [243], KRAFT [244], PICSEL [245],
DWQ [246], Ontobroker [247], SHOE [248], Crossvision Enterprise Information
Integrator by Software AG [413] and others. Most of these systems use some
notion of ontologies for integration across information resources. An evaluation of
these approaches is presented based on the following criteria:

Use of Ontologies: The role and the architecture of ontologies heavily influence
their representation formalism.

Ontology Representation: Depending on the use of the ontology, the represen-
tation capabilities differ from approach to approach.

Use of Mappings: In order to support the integration process the ontologies
have to be linked to the underlying schemas used to store the data. If several ontol-
ogies are used in an integration system, inter-ontology mappings between classes
in different ontoologies is also important.

Ontology Engineering: Before an integration of information sources can begin
the appropriate ontologies have to be acquired or be selected for reuse. How does
the integration approach support the acquisition or reuse of ontologies?

We begin with a discussion on various ontology-based architectures and the role
of plau. This is followed by a discussion of the use of different representations, i.e.,
different ontology languages for information integration. Mappings used to con-
nect ontologies to information sources, inter-ontology mappings, and associated
methodologies for ontology engineering for information integration are also dis-
cussed.

7.3.1 The Role of Ontologies in Information Integration

Ontologies can be used in an integration task to explicitly describe the semantics of
data an information stored in the underlying information sources. This can be
achieved by identification of corresponding concepts from ontologies. The uses
and roles played by ontologies in information integration is discussed next.

184 7 Applications of Metadata and Ontologies

Explicit Semantic Descriptions

Different approaches for using ontologies for information integration can be char-
acterized as: single ontology approaches, multiple ontology approaches and hybrid
ontology approaches, and are illustrated in Figure 7.2. Some approaches provide a
general framework where all three architectures can be implemented (e.g., DWQ
[246]). A discussion of the three main architectures is as follows.

Fig. 7.2. Ontology-driven architectures for Information Integration

Single Ontology Approaches. Single ontology approaches use a domain ontol-
ogy providing a shared vocabulary for the specification of the semantics. All infor-
mation sources are related to one global ontology. We have adopted the single
ontology approach in the solution design presented for the clinical use case and
scenario. A prominent approach of this kind of ontology integration is SIMS [241].
The SIMS model of the application domain includes a hierarchical terminological
knowledge base with nodes representing objects, actions, and states. An indepen-
dent model of each information source is described for this system by relating the
objects of each source to the global domain model. The relationships clarify the
semantics of the source objects and help to find semantically corresponding
objects.

Single ontology approaches can be applied to integration problems where all
information sources to be integrated provide nearly the same view on a domain.
But if one information source has a different view on a domain, e.g., by providing
another level of granularity, finding the minimal ontology commitment [89]
becomes a difficult task. For example, if two information sources provide product
specifications but refer to absolute heterogeneous product catalogs which catego-

Domain
Ontology

a) Single Ontology Approach

Local
Ontology

b) Multiple Ontology Approach Local
Ontology

Local
Ontology

Local
Ontology

c) Hybrid Approach

Local
Ontology

Local
Ontology

Shared Vocabulary

Domain
Ontology

a) Single Ontology Approach

Local
Ontology

b) Multiple Ontology Approach Local
Ontology

Local
Ontology

Local
Ontology

c) Hybrid Approach

Local
Ontology

Local
Ontology

Shared Vocabulary

 7.3 Ontology Driven Information Integration 185

rize the products, the development of a global ontology which combines the differ-
ent product catalogs becomes very difficult. Information sources with reference to
similar product catalogs are much easier to integrate. Also, single ontology
approaches are susceptible to changes in the information sources which can affect
the conceptualization of the domain represented in the ontology. Depending on the
nature of the changes in one information source it can imply changes in the global
ontology and in the mappings to the other information sources. These disadvan-
tages led to the development of multiple ontology approaches.

The domain ontology can also be a combination of several specialized ontolo-
gies. A reason for the combination of several ontologies can be the modularization
of a potentially large monolithic ontology. The combination is supported by ontol-
ogy representation formalisms, i.e., by importing other ontology modules (e.g.,
Ontolingua [89]).

Multiple Ontology Approaches. In multiple ontology approaches, each infor-
mation source is described by its own domain- or application-specific ontology.
For example, in OBSERVER [147], the semantics of an information source is
described by a domain-specific ontology. In principle, the domain ontology can be
a combination of several other ontologies but it cannot be assumed that the differ-
ent domain ontologies share the same vocabulary. The Crossvision Information
Integrator supports a multiple ontology approach. It relies on information models
which are organized using ontologies, which are managed in a metadata repository
(CentraSite). A semantic inference engine (Semantic Server) then allows the raw
data to be aggregated dynamically, perfectly tailored for the individual business
user's needs.

At a first glance, the advantage of multiple ontology approaches seems to be that
no common and minimal ontology commitment around an ontology is needed.
Each ontology could be developed without respect to other information sources or
domain ontologies — no common ontology with the agreement of all information
sources/ontologies are needed. This ontology architecture can simplify the change,
i.e., modifications in one information source/ontology or the adding and removing
of information sources/ontologies. But in reality the lack of a common vocabulary
makes it extremely difficult to compare different source ontologies. To overcome
this problem, an additional representation formalism defining the inter-ontology
mapping is required. The inter-ontology mapping identifies semantically corre-
sponding terms of different ontologies, terms which are semantically equal or sim-
ilar. But the mapping also has to consider different views on a domain, i.e.,
different granularities of the ontology concepts. Issues of semantic heterogeneity
may also occur in defining inter-ontology mappings.

Hybrid Ontology Approaches. To overcome the drawbacks of the single or
multiple ontology approaches, hybrid approaches were developed. Similar to mul-
tiple ontology approaches the semantics of each source is described by its appropri-
ate domain ontology. But in order to make the source ontologies comparable to
each other they are built upon one global shared vocabulary [249] [250]. The
shared vocabulary contains basic terms (the primitives) of a domain. In order to

186 7 Applications of Metadata and Ontologies

build complex terms of ontologies the primitives are combined by some operators.
Because each term of an ontology is based on the primitives, the terms can be eas-
ily mapped to each other, than in multiple ontology approaches. Sometimes the
shared vocabulary is also an ontology.

In the COIN system [249], the local description of a piece of information, the
so-called context, is simply an attribute value vector. The terms for the context
stem from the common shared vocabulary and the data itself. In the MECOTA sys-
tem [250] each piece of source information is annotated by a label which indicates
the semantics of the information. The label combines primitive terms from the
shared vocabulary. The combination operators are similar to the operators known
from the description logics, but are extended for the special requirements resulting
from integration of sources, e.g., by an operator for aggregation. In the BUSTER
system [251], the shared vocabulary is a (general) ontology, which covers all possi-
ble refinements. For example, the general ontology defines the attribute value
ranges of its concepts. A domain ontology is one (partial) refinement of the general
ontology, e.g., restricting the value range of some attributes. Since domain ontolo-
gies only use the general ontology, they remain comparable.

The advantage of a hybrid approach is that new sources can easily be added
without the need of modification in the mappings or in the shared vocabulary. It
also supports the acquisition and evolution of ontologies. The use of a shared
vocabulary makes the source ontologies comparable and avoids the disadvantages
of multiple ontology approaches. The drawback of hybrid approaches, however, is
that existing ontologies cannot be reused easily, but have to be redeveloped from
scratch, because all domain ontologies have to refer to the shared vocabulary.

Ontologies as a Query Model

Integrated information sources normally provide an integrated view. Some integra-
tion approaches use the ontology as the query schema, e.g., the SIMS system [241].
The user formulates a query in terms of the ontology. The system reformulates the
query into subqueries for each appropriate source, collects and combines the query
results, and returns the results. Using an ontology as a query model has the advan-
tage that the structure of the query model should be more intuitive for the user
because it corresponds more to the user’s appreciation of the domain. However, the
user has to know the structure and the contents of the ontology.

Ontologies as Verification Mechanism

During the integration process several mappings must be specified from a domain
ontology to the local source schema. The correctness of such mappings can be con-
siderably improved if these can be verified automatically. A subquery is correct
with respect to a query if the local subquery provides a part of the queried answers,
i.e., the subqueries must be contained in the global query (query containment)
[246][245]. Since an ontology contains a (complete) specification of the conceptu-

 7.3 Ontology Driven Information Integration 187

alization, the mappings can be validated with respect to these ontologies. Query
containment means that the ontology concepts corresponding to the local subque-
ries are contained in the ontology concepts related to the query.

In the DWQ system [246], each source is assumed to be a collection of rela-
tional tables. Each table is described in terms of its ontology with the help of con-
junctive queries. A query and the decomposed subqueries can be unfolded to their
ontology concepts. The subqueries are correct, i.e., are contained in the query, if
their ontology concepts are subsumed by the ontology concepts. The PICSEL
project [245] can also verify the mapping, but in contrast to DWQ it can also gen-
erate mapping hypotheses automatically which are validated with respect to a glo-
bal ontology.

The quality of the verification strongly depends on the completeness of an
ontology. If the ontology is incomplete, the verification result can erroneously
imply a correct query subsumption. Since in general the completeness can not be
measured, it is impossible to make any statements about the quality of the verifica-
tion.

7.3.2 Ontology Representations Used in Information Integration

Various approaches to intelligent information integration based on ontologies have
predominantly used variants of description logics in order to represent ontologies.
The CLASSIC system [165] has been used in the OBSERVER system [148] and by
database researchers investigating semantic heterogeneities and interoperability
[252]. The SIMS system makes use of the LOOM description logic [253]. Other
terminological languages used are GRAIL [254], used in the TAMBIS system [46],
and OIL [256], which is used for terminology integration in the BUSTER system
[255].

Besides the purely terminological languages mentioned above there are also
approaches using extensions of description logics which include rule bases. Some
examples are the use of CARIN [167], a description logic extended with function-
free horn rules in the PICSEL system [245]. The DWQ project [246] uses AL-log
[257], which combines simple description logics with Datalog and the logic DLR,
a description logic with n-ary relations. The integration of description logics with
rule-based reasoning makes it necessary to restrict the expressive power of the ter-
minological part of the language in order to maintain decidability.

The second main group of languages used in ontology-based information inte-
gration systems are classical frame-based representation languages. Examples for
such systems are COIN [249], KRAFT [244] and InfoSleuth [243]. There are also
approaches that directly use F-Logic [82] with a self-defined syntax (Ontobroker
[247] and COIN [249]).

188 7 Applications of Metadata and Ontologies

7.3.3 The Role of Mapping in Information Integration

The task of integrating heterogeneous information sources provides a use case for
ontologies. Ontologies may be viewed as the glue that puts together information of
various kinds. Mappings refer to the connection of an ontology to other parts of the
system. Mapping are a critical requirement for information integration for (a) con-
necting ontologies with the information source they describe; and (b) connecting
different ontologies used in a system. In Section 7.2, we discussed a representative
set of techniques to identify and discover mappings between two schema or ontol-
ogy like artifacts. In this section, we discuss how these mappings, once generated
can be used in the context of Information Integration.

Mapping Ontologies to Information Resources

Different approaches used to establish a connection between ontologies and infor-
mation sources are as follows.

Structure Resemblance. A straightforward approach to connecting an ontology
with the database schema is to simply produce a one-to-one copy of the structure of
the database and encode it in a language that makes automated reasoning possible.
The integration is then performed on the copy of the model and can easily be
tracked back to the original data. This approach is implemented in the SIMS medi-
ator [258] and also by the TSIMMIS system [242].

Definition of Terms. In order to make the semantics of terms in a database
schema clear it is not sufficient to produce a copy of the schema. There are
approaches such as those used in the BUSTER system [255] that use the ontology
to further define terms from the database or the database schema. These definitions
can consist of a set of rules defining the term and are, in most cases, described by
concept definitions.

Structure Enrichment. This is the most common approach for relating ontolo-
gies to information sources, and combines the two previous approaches. A logical
model is built that resembles the structure of the information source and contains
additional definitions of concepts. A detailed discussion of structure is presented in
[252], which is used in OBSERVER [147], KRAFT [244], PICSEL [245] and
DWQ [246]. While OBSERVER uses description logics for both structure resem-
blance and additional definitions, PICSEL and DWQ define the structure of the
information by (typed) horn rules. Additional definitions of concepts mentioned in
these rules are given by a description logic model. KRAFT does not commit to a
specific definition scheme.

Meta-annotation. An interesting approach is the use of meta-annotations that
add semantic information to an information source. This approach is particularly
relevant in the context of the integrating information on the Web, where annotation
may be viewed as a natural way of adding semantics. Ontology-based integration
approaches developed for the Web context are the Ontobroker [247] and SHOE
[248] systems.

 7.3 Ontology Driven Information Integration 189

Inter-ontology Mapping

Some information integration systems such as [148] [244] use more than one
ontology to describe the information. The problem of mapping different ontologies
is a well-known problem in knowledge engineering. We now discuss approaches
that are used in the context of information integration systems.

Defined Mappings. In the KRAFT System [244], translations between different
ontologies are done by special mediator agents which can be customized to trans-
late between different ontologies and even different languages. Different kinds of
mappings are distinguished in this approach starting from simple one-to-one map-
pings between classes and values to mappings between compound expressions.
This approach allows great flexibility, but it fails to ensure a preservation of
semantics: the user is free to define arbitrary mappings even if they do not make
sense or produce conflicts.

Lexical Relations. An attempt to provide at least intuitive semantics for map-
pings between concepts in different ontologies is made in the OBSERVER system
[148]. The approaches extend a common description logic model by quantified
inter-ontology relationships borrowed from linguistics. The relationships used are
synonym, hypernym, hyponym, overlap, covering and disjoint. While these rela-
tions are similar to constructs used in description logics they do not have a formal
semantics. Consequently, the query translation algorithm is probabilistic in nature.

Top-Level Grounding. In order to avoid a loss of semantics, one has to stay
inside the formal representation language when defining mappings between differ-
ent ontologies (e.g., DWQ [Calvanese et al., 2001]). A straightforward way to
achieve this is to relate all ontologies used to a single top-level ontology. This can
be done by inheriting concepts from a common top-level ontology. This approach
can be used to resolve conflicts and ambiguities. While this approach enables
establishment of connections between concepts from different ontologies in terms
of common superclasses, it does not establish a direct correspondence. This might
lead to problems when exact matches are required.

Semantic Correspondences. An approach that tries to overcome the ambiguity
that arises the previous approach, is to identify well-founded semantic correspon-
dences between concepts from different ontologies. In order to avoid arbitrary
mappings between concepts, these approaches have to rely on a common vocabu-
lary for defining concepts across different ontologies. One approach uses semantic
labels in order to compute correspondences between database fields. Another
approach is to represent concepts from different ontologies in a description logic
model of terms and use subsumption reasoning to establish relations between dif-
ferent terminologies. Approaches using formal concept analysis also fall into this
category, because they define concepts on the basis of a common vocabulary to
compute a common concept lattice.

190 7 Applications of Metadata and Ontologies

7.3.4 The Role of Ontology Engineering in Information Integration

Since ontologies play a crucial role semantic information integration, it is crucial to
support the ontology engineering process, especially that part which is likely to
have an impact on the information integration process.

Ontology Development Methodologies

Example information integration systems and their approaches for developing
ontologies are discussed as follows.

InfoSleuth. Ontologies in InfoSleuth are defined primarily manually using
Entity-Relationship (E-R) models. Approaches for semi-automatic construction of
ontologies from textual databases have been proposed in [259]. The methodology
is as follows: first, human experts provide a small number of seed words to repre-
sent high-level concepts. The system then processes the incoming documents,
extracting phrases that involve seed words, generates corresponding concept terms,
and classifies them into the ontology. During this process the system also collects
seed word candidates for the next round of processing. This iteration can be com-
pleted for a predefined number of rounds. A human expert verifies the classifica-
tion after each round. As more documents arrive, the ontology expands and the
expert is confronted with the new concepts. This is a significant feature of this sys-
tem, called the “discover and alert” feature.

KRAFT. Ontologies in KRAFT are built based on two methods: manual con-
struction of shared ontologies and extraction of domain or information source
ontologies. KRAFT offers two methods for building ontologies:

• The steps of the development of shared ontologies are (a) ontology scoping, (b)
domain analysis, (c) ontology formalization and (d) top-level ontology. The
minimal scope is a set of terms that is necessary to support the communication
within the KRAFT network. The domain analysis is based on the idea that
changes within ontologies are inevitable and the means to handle changes
should be provided. The authors pursue a domain-led strategy, where the shared
ontology fully characterizes the area of knowledge in which the problem is situ-
ated. Within the ontology formalization phase the fully characterized knowledge
is defined formally in classes, relations and functions. The top-level ontology is
needed to introduce predefined terms/primitives.

• A bottom-up approach to extract an ontology from existing shared ontologies
was introduced in [260]. The first step is a syntactic translation from the
KRAFT exportable view (in a native language) of the resource into the KRAFT
schema. The second step is the ontological upgrade, a semi-automatic transla-
tion plus knowledge-based enhancement, where the local ontology adds knowl-
edge and further relationships between the entities in the translated schema.

Ontobroker. There are three classes of Web information sources [261]: (a) Mul-
tiple-instance sources with the same structure but different contents, (b) single-

 7.3 Ontology Driven Information Integration 191

instance sources with large amount of data in a structured format, and (c) loosely
structured pages with little or no structure. Ontobroker uses two ways of formaliz-
ing knowledge. First, sources from (a) and (b) allow it to implement wrappers that
automatically extract factual knowledge from these sources. Second, sources with
little or no knowledge have to be formalized manually.

SIMS. An independent model of each information source is described in the
SIMS system, along with a domain model that must be defined to describe objects
and actions. The SIMS model of the application domain includes a hierarchical ter-
minological knowledge base with nodes representing objects, actions, and states.
In addition, it includes indications of all relationships between the nodes. Scalabil-
ity and maintenance problems on addition of a new information source or change
in domain knowledge are addressed. As every information source is independent
and modeled separately, the addition of a new source is relatively straightforward.
A graphical LOOM knowledge base builder (LOOM-KB) is used to support this
process. The domain model is enlarged to accommodate new information sources
or new knowledge.

Tools for the Annotation Process

Some of the systems discussed in this chapter provide support with the annotation
process of information sources, leading to a semantic enrichment of the informa-
tion. Some tools used in the process are OntoStudio (previously known as Onto-
edit, discussed in Chapter 6.3), the SHOE Knowledge Annotator and the I-COM
tool used in the DWQ project. With the help of the SHOE Knowledge Annotator
tool, the user can describe the contents of a Web page [262]. The Knowledge
Annotator has an interface which displays instances, ontologies, and claims (docu-
ments collected). The tool also provides integrity checks. With a second tool called
Expose the annotated Web pages are parsed and the contents stored in a repository.
The I-COM tool [111] was developed within the DWQ project. This tool uses an
extended entity-relationship (EER) conceptual data model and enriches it with
aggregations and inter-schema constraints.

Ontology Evolution

Support for ontology evolution is a critical piece of functionality in the context of
an information integration system. An integration system and the ontologies must
support adding and/or removing sources and must be robust to changes in the
information source. The SHOE system is one system that takes these issues into
account.

Once the SHOE-annotated Web pages are uploaded on the Web, the Expose tool
has the task to update the repositories with the knowledge from these pages. This
includes a list of pages to be visited and an identification of all hypertext links, cat-
egory instances, and relation arguments within the page. The tool then stores the
new information in the PARKA knowledge base. The problems associated with

192 7 Applications of Metadata and Ontologies

managing dynamic ontologies through the Web have been presented in [248]. By
adding revision marks to the ontology, changes and revision become possible. The
authors illustrated that revisions which add categories and relations will have no
effect, and that revisions which modify rules may change the answers to queries.
When categories and relations are removed, answers to queries may be eliminated.

7.4 Summary

In this chapter we presented applications of metadata and ontologies, such as
semantic annotations, mappings and information integration. These applications
are enabled by semantic descriptions of data and resources on the web-based and
other repositories; and themselves enable new functionality on the web and on
internal organizations’ intranets. We presented tools and techniques for annotation
of Web resources with semantic metadata annotations. Two types of metadata data
annotations are considered: (a) structured and semi-structured metadata annota-
tions of unstructured Web content; and (b) structured metadata annotations of
structured Web content. It was noted that the latter corresponds to mapping the
schemas underlying the structured content to domain-specific ontologies, and a
discussion and taxonomy of schema-matching techniques was also presented.
Finally, we presented various approaches adopted for ontology driven information
integration, including a discussion on various types of architectures, the role played
by ontologies in the creation of mappings, specifying queries and as a verification
mechanisms.

Part III
Process Aspects of the Semantic Web

8 Communication

The Semantic Web would be impossible without the advent of simple and efficient
communication networks that allow any user connected to the Web to access any
public Semantic Web site without effort, very efficiently and extremely fast (most
of the time). The basis for this ease of access is a very simple data format for spec-
ifying Semantic Web pages and a very simple communication protocol for their
access. Both can be easily implemented on any computing platform. This ease of
implementation ensures that everybody can participate independent of their partic-
ular computing equipment.

Complementing the Semantic Web, machine-to-machine communication (in
contrast to serving up content for human consumption) is addressed by Semantic
Web Services. Semantic Web Services are the mechanism for software-to-software
communication and coordination (whereas the Semantic Web is for human users).
Semantic Web Services are not a disruptive new paradigm, instead, they leverage
existing communication knowledge, conventions and technologies and improve on
them.

This Section builds the fundamental basis for Semantic Web Services. It dis-
cusses the concepts of communication from a principled perspective in Section 8.1.
Based on these fundamental concepts, major communication paradigms are listed
in Section 8.2. Long-running communication in the context of B2B integration and
EAI integration is reviewed in Section 8.3. In Section 8.4 a particular type of com-
munication, Web Services, is emphasized as the focus of the following Chapters.
Section 8.6 summarizes this Chapter.

8.1 Communication Concepts

Communication in its basic form allows two or more parties to exchange data that
for them has value (at least equivalent to the effort spent on communication). There
are basic forms of communication like synchronous or asynchronous communica-
tion that provide the fundamental basis. In addition, for senders and receivers to
understand each other, data formats have to be agreed upon as well as the possible
range of content for those data formats so that the communication partners can
understand each other: a date with the value of 01-02-07 can be misunderstood eas-
ily if its precise semantics is not captured (one possible interpretation is July 2nd,
2001). Finally, in order for senders and receivers to synchronize the sending and
receiving of data, they have to follow specific communication protocols. This Sec-

196 8 Communication

tion outlines the basics of communication and builds the foundation for the remain-
ing Sections in this Chapter.

8.1.1 Fundamental Types

When parties are communicating they need to establish a communication channel
over which the data is communicated between them. All communication channels
can be classified into only a few basic classes that define the basic properties of
communication. The three basic forms are as follows:

• Synchronous Connection. A synchronous communication channel requires all
communicating parties to be part of the communication channel concurrently in
order to communicate. The parties exchange data between each other. The send-
ing party puts the data on the synchronous channel (or connection) and the
receiving party or parties receive the data. In a synchronous connection it is pos-
sible that the receiving party starts receiving the initial data while the sending
party still sends the remaining data. If one party leaves the synchronous connec-
tion, it cannot participate in the communication any more. If the leaving party is
one of the last two parties on the connection, the communication finishes (or is
disrupted) as the communication requires at least two concurrent communica-
tion partners. Elaborate synchronous connections allow parties to send and
receive concurrently in both communication directions; less advanced connec-
tions can be used only for one direction of data transfer at any given point in
time. Examples for synchronous connections are the ancient telephone for
humans or the remote procedure call between software systems.

• Asynchronous Connection. Asynchronous connections are very different in
nature from synchronous connections. An asynchronous connection does not
require all communicating parties to be concurrently connected to the connec-
tion itself. At any point in time a sending party can put data on the asynchronous
connection and at the same or different points in time a receiving party can take
data from the connection (as long as data is present and as long as the connec-
tion itself is available). The asynchronous connection itself stores the data. In
this sense it is stateful and through this mechanism allows the independent pres-
ence of sending and receiving parties. If a sending party puts several separate
pieces of data on the asynchronous connection, it depends on the particular
implementation of the asynchronous channel if the order of the data is preserved
or not. If it is not preserved and the receiving party depends on the correct order,
the data must contain some information about the order so that the receiving
party can reorder the data appropriately independent of the asynchronous com-
munication channel. In the general case data on the asynchronous connection is
consumed by the receiving party once it takes the data off the connection. In this
sense the reading is removing (“destroying”) the data on the channel.

• Shared Variable. Communication over shared variables is the third type of
connection. A shared variable is accessible by a sending as well as a receiving

 8.1 Communication Concepts 197

party. A sending party can put data into a shared variable any number of times at
any point in time. Each time the sending party puts data into the shared variable
it overwrites the previous value. A receiving party can take data from a shared
variable. When it does so, the data is not consumed; instead, the data remains
and other receiving parties can access the data in the shared variable. The
receiver can write data to the shared variable, too, of course. In this case, if the
receiver does not want any other party to read the shared variable, it can put a
“null” on it, i.e., overwriting its value. Putting data into a shared variable and
reading a shared variable are asynchronous to each other. It is also not guaran-
teed that a receiving party sees all values of the shared variable. If the sending
party writes very often, it might very well be the case that the receiving party
does not read fast enough and misses intermediate values. Since the shared vari-
able allows concurrent access it needs to ensure that the read or the write is
atomic to avoid that senders and receivers are interfering while operating on the
shared variable.

All specific implementations of communication technology can be reduced to
one of the three fundamental types discussed above. For example, communicating
through a database is a shared variable communication. Communicating through
queues is an asynchronous communication. A remote procedure call is a synchro-
nous connection. Some of the major technologies are introduced later in Section
8.2..

8.1.2 Formats and Protocols (FAP)

A communication channel of either type is minimally required in order for parties
to communicate with each other. If the communication itself should be successful,
meaning, the communicating parties understand each other and have a constructive
communication with a defined outcome, more has to be agreed upon then just the
communication channel. There are two major aspects of communication that need
to be in place for a meaningful communication: formats and protocols.

Formats refers to the data structure and data content that is communicated. The
sender as well as the receiver have to agree on the data structure and content in
order to understand each other. Structure refers to the particular data elements and
their relationship that is communicated whereas content refers to the values in the
data elements. Only if sender and receiver agree on structure and content, can they
“make sense” out of each other’s data and have a meaningful conversation. This
agreement that has to be in place and needs to cover all possible values and struc-
tures. As the communication has to work under all allowed combinations, the
agreement is quite difficult to achieve in general, as it is practically impossible to
enumerate all possible combinations to prove that the communicating parties
understand each other for each combination.

Protocols refer to the exchange sequence of the data in their particular formats.
A communication in the general sense requires that sender and receiver exchange

198 8 Communication

several distinct sets of data by sending them to each other. This requires a specific
order to ensure that both, sender and receiver understand where they are in the
communication and what data has to be exchanged next in the sequence of
exchanges. The involved parties only make constructive progress during their com-
municating if they follow the correct exchange sequence or one of several correct
sequences (if several are permissible).

No matter which fundamental type of communication channel is used, the for-
mats as well as protocols have to be agreed upon so that all involved parties can
participate in the communication in a meaningful way. Furthermore, if formats are
transmitted that cannot be understood, or if protocols are violated, then the com-
munication must be able to recognize this error situation and try to get back to a
meaningful state. For example, if formats are not understood, then the receiver
must be able to send back a “not understood, please send again” response. Other-
wise, if a communication error is not detected, no repair is possible and the com-
munication has ended unsuccessfully.

If the protocol is violated, the violation must be detected, the overall communi-
cation must stop and synchronize on a state that all parties agree to as a consistent
state from which to continue. This might happen if, for example, certain data mes-
sages are lost in the communication and the receiver is waiting for a specific
exchange that the sender assumes happened already.

Both formats and protocols play an important role in Web Services as well as
Semantic Web Services. Formats are described using Semantic Web languages
whereas protocols are defined through various elements that the Semantic Web
Services efforts provide.

8.1.3 Separation of Interface and Logic

Formats and protocols have to be implemented as software code in order to make
communication over communication channels work. The data formats and data
values that are sent over communication channels have to be independent of the
software of the sender or the software of the receiver to achieve maximum inde-
pendence. In any communication setup it is impossible to guarantee, ensure or
enforce that both, sender and receiver use the same software from the same vendor
for sending and receiving the data. Consequently there needs to be a distinction
between the implementation of how to produce the data or consume the data
(implementation or logic) and the definition of the data itself (including its possible
contents). This distinction follows the well-established separation of interface and
implementation in computer science. Later on when Web Services and Semantic
Web Services are discussed this distinction becomes a very important aspect.

The same applies to the behavior of communication. The order of formats sent
and received by the communicating parties must be described in such a way that all
communicating parties can agree to it independently of the software used to imple-
ment and enforce the behavior. This means that the definition of behavior must be
done in such a way that the behavior can be inferred from the language used to

 8.1 Communication Concepts 199

describe the behavior (instead of examining the code of the software that imple-
ments the behavior). In consequence, this allows both, the sender and receiver to
agree on the behavior while implementing it in their preferred software technology
or with technology of their preferred software vendor. Again, when talking about
Web Services and Semantic Web Services this aspect becomes important in the for-
malisms and languages used.

8.1.4 Communicating Parties

Communication cannot take place without communication partners engaging in the
communication by sending and receiving data from each other. In a given commu-
nication there is always a sending partner (sender) and at least one receiving part-
ner (receiver). The sender sends out data that the receiver obtains by taking part in
the communication. Several receivers are possible in a communication and all of
them receive the data sent by the sender.

During a communication the role of sending and receiving can change if the
communication is conversational. Once a sender has sent out data, and after the
receivers have received the data, one of the receivers can assume the sender role
and send out data. This is especially the case in the situation where the communi-
cating parties have a dialog in the sense that formats are sent back and forth in
order for both parties to accomplish the goal of the communication. In a multi-
party communication it is possible that several parties start sending at the same
time as they do not know about each other’s state and intent. In such a situation it is
important to ensure that either the protocol does not allow such a conflict to happen
or that a dynamic mechanism is available at run time that enforces only one sender
at a time.

Some communication channels allow only one sender at any given point in time.
In this case there can only be a single sender for a given communication and no
coordination has to be enforced through the protocol. However, some communica-
tion channels allow the concurrent sending of data by several senders. In this case
several senders can send data, but for the communication to be meaningful, the
participating receivers needs to be able to receive data from different senders con-
currently. If a channel allows several concurrent senders it is not necessary to
enforce the one-sender-at-a-time policy, of course.

Another dimension opens up when a single communication channel can “host”
several independent communications. In this case it is necessary to distinguish the
communication not only by communication channel, but also by identifier within
one communication channel. In computer science this case can take place when
asynchronous technology like queueing technology is used. In this technology it is
possible to send messages across a queue that originate from different senders and
are addressed to different receivers. In this case each message must either carry a
communication identifier to identify the communication or each message carries a
receiver identifier so that the respective receiver knows which messages to read.

200 8 Communication

If the approach is followed that messages carry the identifier of a communica-
tion then the notion of an “instance of communication” is important. This can be
further formalized by associating senders and receivers (which are instances, too)
to communication instances. Going forward we assume this notion. At any given
point in time, when senders and receivers communicate, they do this in context of
an instance of a communication. Consequently, it is possible that the same senders
and receivers open up a separate instance of communication. In addition, the same
senders and receivers can be participants in different instances of communications,
either concurrently or sequentially.

This notion of communication is independent of the fundamental types of com-
munication as outlined in Section 8.1.1. They have to agree on a fundamental type
(by selecting a given communication technology). Of course, the separation of
interface and implementation is important, as stated in Section 8.1.3. The relevance
here is that no matter in how many communications a given participant (or party)
takes part, it has to maintain the separation.

And, furthermore, the communicating parties have to agree on the FAP, as out-
lined in Section 8.1.2. Each communication in the general case follows a defined
FAP. Different communications can follow different FAPs, as agreed upon by the
participants. This ensures that every communication over any channel is meaning-
ful for the participants.

A further generalization is possible, although not really used widely. If a FAP is
defined (for example as a standard), then in many cases the definition might be suf-
ficient for the communication requirements of several parties. However, some-
times a given FAP might not be sufficient. This could be if data formats are
missing that are required for a particular case. The parties, in order to overcome
this problem, can either extend or modify the FAP, or they can change the FAP
during a communication and switch over to a different FAP. The switch over then
enables the set of participants to use as many FAPs in one communication as
required to make the communication work and meaningful. While this is a very
interesting generalization, it is not usually done.

If two parties are involved in a communication it is called a binary communica-
tion. If more than two parties are involved, it is called a multi-party communica-
tion. A multi-party communication enables several parties to take place in a
communication. So far it was assumed that there is one communication instance
and all parties are related. Furthermore, it was assumed that all parties are aware of
each other and all concurrently receive data from a sender. However, this is not
necessarily always the case. A multi-party communication can actually be
achieved by one party being the “communication coordinator” and all other parties
engaging in a binary communication with the coordinator. So only the coordinator
is aware of all the parties, but each party is only aware of the one coordinator. This
requires that the coordinator is part of the communication for its whole length, can
receive all data from all senders, and can relay sent data to all parties that are not
sending at a given point in time. This also allows having the coordinator engage
with different parties using different FAPs.

 8.1 Communication Concepts 201

8.1.5 Mediation

Formats and protocols are agreed upon between the parties of a communication.
Once they have agreed upon it, they will follow it precisely as otherwise the com-
munication will most likely not be meaningful and therefore unsuccessful. The
communicating parties have no interest in this situation. Therefore, they will do
everything necessary to comply with the FAPs.

In the general case, the FAP is determined by the interface that the communicat-
ing party can support (see Section 8.1.3). This interface determines what the com-
municating party can support, and hence this interface allows the selection of one
or more FAPs that comply with this interface.

As in the general case, the interface has to be implemented in order to support it
at run time. Therefore, the interface is implemented by software. If the internal data
processing environment, however, supports different data structures and data con-
tent, then there is a mismatch between the interface and the software used to
achieve the implementation. Why would this ever be the case? Why would a party
not define the interface in such a way that the interface can be implemented easily?

In the world of communication over world-wide networks across company
boundaries there are established practices of FAPs (often referred to as B2B proto-
cols). [263] discusses quite a number of those. In order for a given party to easily
participate in a communication it is wise to support the FAPs of a given industry.
Therefore, the party is probably inclined to solve the discrepancy between the
interface it needs to support and its available implementation technology rather
then supporting an interface that does not allow it to easily participate in given
FAPs.

Bridging the data structures and data content on the interface and the implemen-
tation software is the data mediation problem. This problem is well-studied and
many attempts are made to structurally overcome it [263].

The same is true for the protocol aspect. The behavior that a given FAP
demands might be the same or might be different from the behavior the underlying
software for implementing it exposes. In addition to data mediation as described
above the concept of protocol mediation is required. [264] describes the protocol
mediation problem in detail. Only if data and protocol mediation are both sup-
ported it is possible to map the interface to the implementation within a given party
of a communication.

Not all parties can support at their interface all the FAPs that they need to in
order to participate properly in the various communications. In this case it is neces-
sary to move the mediation (data and protocol) outside the interface. So instead of
mediating the difference between the interface and implementation within a party,
the mediation is done outside the interface between parties. This makes the concept
of a “middle man” necessary. The middle man is a party to the communication for
specifically mediating between communicating parties. The middle man estab-
lished a communication channel with all participating parties and uses different
FAPs for that. The FAPs used are those that the parties can support. The middle

202 8 Communication

man itself mediates between the FAPs as it passes along the data from the sender to
the receivers.

The benefit of this approach is that parties can participate in communications
that they could not support directly. Of course, the middle man has to be available
and able to mediate appropriately.

The most flexible party to a communication is the one that has a declarative way
of mediation within its boundaries between its interface and its implementation. If
the mediation is declarative, existing mediations can be changed or new mediations
can be added. If the change or addition of mediation is fast and flexible, the party
can define additional interfaces as required by FAPs as it can build the mediation
to its implementation easily. It is therefore assumed for simplicity that this is the
approach going forward in the remaining Chapters about processes and the Seman-
tic Web. If a given party cannot implement mediation this way, the way out is the
middle man.

8.1.6 Non-functional Aspects

Ideally, communication is secure, reliable, recoverable, fast, and has many other
“nice” properties that make it convenient for the communicating parties. Properties
like security, reliability, recoverability, performance, and others are called non-
functional communication properties (as they are related to the communication
system behavior, not the semantics of a communication). Different implementa-
tions of communication channels have various support for non-functional commu-
nication properties. Depending on the particular needs of the communicating
parties they have to select the most suitable mechanism.

A few properties are discussed in the following. The list is not complete and
only highlights the most important aspects:

• Security. Security has many different facets. The most relevant are that data
communicated should not be visible to any party not involved in the communi-
cation. This is usually achieved by either encrypting the data packets themselves
that are communicated or encrypting the whole communication channel instead
of the individual packets. Furthermore, no other attack should be possible like
taking data packets off the communication channel, or introducing additional
ones in order to cause disruption in the protocol. Another aspect is authentica-
tion and authorization of the parties that want to join a communication channel.
Not all parties should be easily able to join a communication just like that. The
originator of the communication should be able to restrict access as necessary
and have parties authenticate themselves in order to allow the proper authoriza-
tion.

• Reliability. Reliability is important in the presence of failures. In case of a fail-
ure it must be clear what status the communication is in and which of the last
data transmissions succeeded successfully and which did not. This allows after a
failure to continue the communication from a consistent state forward.

 8.2 Communication Paradigms 203

• Transactionality. Transactional behavior of communication is important in the
presence of fatal errors. If a server goes down and has to be restarted, if a net-
work fails or a communication software stops working, then it is important that
the communication can be recovered to its last consistent state. This is important
as it allows the communicating parties to continue the communication without
having to execute any recovery strategy itself, let alone compensating actions
that would modify already achieved states.

• Throughput. If the data sent is of high volume or if many communications are
ongoing in parallel then the communication channel might become a bottleneck
in the sense that it cannot support all communication as fast as in a low load sit-
uation. In this case the communication system degrades in terms of perfor-
mance. Throughput is important and the ideal situation is that degradation
happens only under very high load. Furthermore, it should be gradual, not sud-
den.

• Performance. Performance is related to the speed of data transmission. In many
situations speed is of high importance, for example, when communication takes
place over synchronous connections that require a fast response. In other situa-
tions performance is not as important as the communicating parties do not have
to operate within the bounds of specific time lines.

• Availability. We are used to the immediate and constant availability of the
phone system. Whenever we want to make a call we expect the phone be avail-
able and ready. Connections to the Internet are also expected to be “always-on”.
In this sense every party is expecting to be able to engage in a communication
whenever they need to. High availability of the communication channel is
important. Of course, this does not mean that all communicating parties are
always available; a phone call might not be taken by the intended recipient.

This discussion of non-functional communication properties concludes this Sec-
tion. The fundamental communication concepts have been introduced that form the
conceptual basis of communication as related to Semantic Web Services. In the
next Section specific communication paradigms that are based on the fundamental
types are introduced.

8.2 Communication Paradigms

Based on the fundamental types of communication, namely shared variables, syn-
chronous and asynchronous communication, different specific communication par-
adigms were developed over time. Leaving the postal mail approach of storing data
on a storage medium like DVDs and sending them by postal mail aside (i.e. “phys-
ical communication”), the most important current communication paradigms (like
client/server or queueing) that are en vogue are discussed throughout this Section.

For each paradigm, the FAP as well as the number of communicating parties are
discussed as well as to which basic type it belongs.

204 8 Communication

8.2.1 Client/Server (C/S)

The client/server communication paradigm is one of the oldest paradigms and is
part of the synchronous connection type. This approach distinguishes a provider of
functionality, called server, from the consumer of functionality, called client. Cli-
ents and the server can be on the same computer or they can be on different com-
puters. In the latter case, communication is established over a network (be it a local
network or a wide-area network).

The FAPs for this paradigm are determined by the server. The server defines
and specifies the possible invocations a client can make and their order, it defines
the data structures as well as the data content. And it defines the behavior, too. The
client has no ability to influence any of these definitions, it can only use whatever
the server provides and allows at any given point in time.

A server can serve many clients. The exact number depends the server’s capac-
ity and the size of the computation its clients request. The clients do not know
about each other, so it is not possible to have a multi-party communication; instead,
all communication is binary between a client and the server.

8.2.2 Queueing

The queueing paradigm became popular in recent times with the advent of explicit
queueing systems as a separate architecture and technology component or implicit
database or application server functionality. Queueing is of the asynchronous con-
nection type as it decouples the communicating parties.

Queueing is in principle a one-way communication mechanism where a sender
submits messages to a particular queue using an enqueue operation. The messages
will be stored in the queue, generally in the order of receipt. The receiver takes
messages from the queue using a dequeue operation. In its simplest form, queues
maintain the message order and operate under the first-in-first-out (FIFO) mode.

In this situation the determination of the FAP becomes an interesting topic as it
depends on the viewpoint of who decides on the FAP. In the majority of cases the
queueing paradigm takes the form of an asynchronous client/server model where
the receivers determine the FAP and the senders have to comply. However, this is
not necessarily the only possible viewpoint. An alternative viewpoint is that the
sender is an information source and publishes its message to a queue and is not
really interested in which receivers pick up the message content. In this viewpoint
fundamentally the receiver is the one that is “interested” in the message and has to
comply to the senders FAP accordingly.

Over a queue many senders can communicate with many receivers. In order to
establish a two-way communication two queues can be put in place, each queue for
one direction of communication. Alternatively one queue can be used and the send-
ers and receivers both put messages and read message from the same queue. If it is
important to know in this case what messages are response messages, they have to
be marked accordingly either through typing the message or an attribute in the con-

 8.2 Communication Paradigms 205

tents of the message. In the case of two queues, one can be marked as the request
queue and one as the response queue. Still, in any case one sender and one receiver
communicate with each other. The reason is that on dequeue the message gets
removed from a queue, meaning, the only one receiver can receive a single mes-
sage.

However, more advanced queueing systems allow more than one receiver to
receive the same message. The queueing system in this case ensures that all receiv-
ers receive a copy of the same message. This is accomplished by receivers declar-
ing interest in specific messages and the queueing system notifying all receivers
about the advent of those. These systems are called publish/subscribe systems.
Receivers (subscribers) then will receive those messages from the senders (pub-
lishers) and can proceed with whatever processing they need to do.

8.2.3 Peer-to-Peer (P2P)

The peer-to-peer paradigm is very similar to the client/server paradigm and is of
the type synchronous connection. The major difference is that the server in the cli-
ent/server paradigm is usually stationary and in a central location to which all cli-
ents connect to. In the peer-to-peer paradigm this is not the case. Two
communicating parties (in this case called peers) communicate directly with each
other and establish a connection directly, not going through some central location
like a stationary server at all. Each party can become server whenever it wants to
and can become client whenever necessary. Fundamentally, every peer is a server
or a client at any point in time. In this case any two pairs of parties that know about
each other can establish a direct connection at any time, establishing peer-to-peer
links.

In the peer-to-peer paradigm, as each party can become a peer at any time, all
have to agree on the FAP in order to be able to establish direct connections. More
elaborate peer-to-peer protocols allow peers to communication with each other that
do not have a direct communication link. In this case other peers act as relay station
forwarding the communication. Two peers therefore communicate directly,
whereby the actual data transport is over other peers as intermediaries (invisible to
the communication channel itself).

It is possible that one peer communicates concurrently with several other peers.
In addition, several peers can communicate with each other at the same time. So a
true multi-party communication can be established where the peers know about
each other.

8.2.4 Blackboard

The blackboard paradigm is an approach to further decouple senders and receivers,
even more then a queueing system allows to do. A blackboard architecture pro-
vides a space where data can be posted, changed or removed by a sender. There is

206 8 Communication

no specific guarantee about when data is made available and how long it will reside
there. Receivers can read data at any point in time and as often as they want or need
to. The basic protocol of how to post data and how to read data is determined by
the blackboard. However, the FAP between senders and receivers is not deter-
mined by the blackboard, that remains within the control of senders and receivers.
Still, the FAP that senders and receivers use between them and the FAP of the
blackbaord has to match within the constraints of the blackboard. For example, if
the FAP requires versions, but the blackboard does not support versions, the proto-
cols are incompatible.

There can be any number of senders and receivers, and there can be many
receivers participate in the same communication as the blackbord does not restrict
data to be accessible only to specific senders.

8.2.5 Web Services

Web Services is a new communication paradigm that is centered around the public
Internet as communication transport layer. Web Services have three aspects to it.
First, the interface of the communicating parties is described using an interface
definition language (called the Web Service Definition Language (WSDL)). This
formal language allows the definition of the messages a communicating party
sends as well as receives. Message sending and receiving is based on operations
that have messages as input and output parameters. This approach differs from
B2B protocols where messages are sent and received without the notion of opera-
tions.

Second, an explicit transmission protocol is defined, called SOAP (initially
standing for the Simple Object Access Protocol, however this has since been
dropped). This protocol is abstract in the sense that it defines how a message as
defined in WSDL is structured when it is sent using a concrete transmission proto-
col. A separate binding is defined to bind the SOAP protocol to a real transport.
Bindings exist (amongst others) for HTTP as well as MIME. This is interesting as
HTTP is a synchronous protocol based on the synchronous communication type
whereas MIME is an asynchronous protocol based on the asynchronous base type.
The interesting aspect is that the interface definition is independent of the actual
communication mechanism.

Third, a publication mechanism is defined that allows communicating parties, if
they so wish, to publish their interface definitions in public or private directories
for others to look up. This supports the detection of communicating parties based
on their defined interfaces.

The FAP are in part predefined by the notion of operations with input and output
parameters. However, the sequence or order of operations that has to be called is
undefined and open for the communicating parties to agree upon. The data struc-
ture and content is free for the participating parties to decide, however, the specifi-
cation language is XML Schema. With XML Schema the communicating parties

 8.2 Communication Paradigms 207

can agree on structure and content to the extent XML Schema supports the defini-
tion.

Web Services are a bilateral communication mechanism that allows two parties
to communicate with each other. A multi-party communication is not supported by
the current Web Service standards or technology.

8.2.6 Representational State Transfer (REST)

REST (representational state transfer) [265] is a particular style of enabling com-
munication based on the principle that all data as well as operations on data are
enabled using strictly static URLs based on the HTTP protocol. The fundamental
approach is to see data and operations as identifiable resources and the identifica-
tion mechanism is URLs. As such, resources like data or operations are identified
by URLs. Accessing a particular car (identified for example as 45671) from a car
selling web site (for example, www.sellyourcar.com) could be www.selly-
ourcar.com/car/45671. The response to issuing the URL would be the data format
and data content representing the car identified with 45671. Searching a car could
be www.sellyourcar.com/findCarForm. This would provide the client to obtain the
data format with the search criteria to be filled for searching a particular car.

REST implements a “classical” client/server model where the client requests
action from a server through particular structured URLs. A server provides a
response to clients if a well-formed URL is transmitted to it. The communication is
synchronous and over the HTTP protocol. The static URLs ensure that the data or
functionality can be accessed with the same URL at any point in time.

The form of communication is binary as only two parties can participate in one
communication. However, a server can provide responses to several clients, of
course. The FAPs are not explicit, but implicit (analogous to the client/server
model). In this communication style there is no explicit definition of the data for-
mats, permissible values or the protocols as interface as the interface is not explic-
itly defined. Instead, all aspects, including the URL structure, are defined by the
server in implicit form (as opposed to a WSDL definition). This follows closely
“normal” HTML page requests and responses.

8.2.7 Agents

Agents is a concept stemming from the area of Artificial Intelligence (AI). Agents
are autonomous entities that form a perception of the world around them and that
can communicate with other agents. The communication allows agents to achieve
their task by asking other agents to contribute. From a communication viewpoint
agents do not only communicate data, but explicitly ask other agents to perform
specific tasks. The asked agent can execute the task, delegate the task to another
agent or refuse to engage in executing the task (effectively rejecting it). In this
sense there is an explicit notion of acceptance as well as refusal of tasks.

208 8 Communication

An agent can communicate with any number of other agents. However, all agent
communication is bilateral in the sense that each agent communicates with one or
more other agents directly, never in a multi-interaction way.

The formats are not predefined by an agent protocol. Agents can agree on the
formats and data content they want to use. They even can engage in communica-
tion without having agreed upfront on the specific formats as an agent can always
respond with the “I don’t understand” message back to the message originator in
order to indicate that the communication will not be possible due to data format or
data content misunderstanding. However, in order for every agent to exchange
messages with any other agent, a basic protocol for at least exchanging messages
needs to be in place. Otherwise any communication is impossible. Also, minimally
the “I don’t understand” message needs to be agreed upon upfront, too, for agents
to be able to tell each other that they could not understand. Otherwise the response
message could not be interpreted either, making any communication impossible.

8.2.8 Tuple Spaces

Tuple spaces are like blackboards where communicating parties can add tuples into
a space that can be read by other parties. The data structure is predefined as tuples
and all communicating parties have to follow this structure. The tuple space itself
is a space that exists on its own without communicating parties to be connected to
it. Tuple spaces are therefore following the shared variable basic principle. Access
to the tuple space is concurrent, however, each individual tuple is accessed atomi-
cally for consistency reasons.

The formats are open for the parties to determine or to define. The basic proto-
col of tuple management is determined by the tuple space. Any protocol beyond
that, i.e., the number and order of specific tuples written is solely in the discretion
of the communicating parties.

Any number of parties can communicate with each other at the same time using
tuple spaces. In this approach bi-lateral as well as multi-party communication is
supported. Interestingly enough, from the viewpoint of an individual party, it is not
clear at all if there is a bilateral or multi-party communication. It can be the case
that one party writes tuples that are never picked up by any other party. In this
sense tuple spaces (like blackboards) allow a one-party communication; this is
really an oxymoron, unless the storing and reading of tuples by the same party is
considered communication with itself.

8.2.9 Co-location

Co-location is a communication paradigm that allows parties to communicate with-
out crossing remote networks for the purpose of the communication. Co-location is
based on the principle that the communicating parties share their communication
code so that a party communicating with another one really does a local invocation

 8.3 Long-Running Communication 209

instead of a remote invocation. This allows the existence of a structured communi-
cation without incurring the network overhead for sending data between the par-
ties.

However, one must ask the question how data actually ever gets transferred
between the two parties as in the end of the day they are in separate environments?
The basic assumption in the co-location paradigm is that the communication code
implements database updates as side effects. If this is the case, if one party calls
another party’s communication code, that updates the database of that party. So in
reality the communication on a communication protocol level is local, however,
the remote access part is “pushed down” to the database access layer.

This paradigm is relevant especially within organizations where remote data-
base connectivity is possible. In such an environment all communication is limited
to a one-hop database invocation without additional remote invocations across a
network. This reduces the remote invocations while keeping the database connec-
tivity constant.

Any number of parties can participate in such a co-location as each party uses
the communication code of every other party it communicates with. In addition,
the formats and protocols can be freely agreed upon as the shared communication
code can be invoked as needed by the sender.

8.2.10 Summary

Many communication paradigms exist, each having its very own properties. In a
given communication situation, some might be more appropriate then others. How-
ever, at the end of the day, all allow the transmission of data from a sender to a
receiver.

8.3 Long-Running Communication

Communication between two parties is not restricted to only a single individual
exchange of data. In many cases several exchanges take place, from sender to
receiver and back. These exchanges usually take place one after another. If this
communication is following a protocol for the whole duration of the communica-
tion and is about the same business process or about the same business objective
(like for example clarifying the insurance coverage of a patient) then it is consid-
ered a long-running communication.

The term long-running comes from the fact that the individual communications
are related to each other and not arbitrary. Furthermore, if one individual commu-
nication fails, then only the failed one needs to be repeated or corrected, not the
whole communication from the beginning up to this point. In a long-running com-
munication each individual successful communication is regarded as a consistent
state. So if the last individual communication fails, and as the last consistent state

210 8 Communication

is persisted, it can be retrieved and taken as the restart point for continuing the
long-running communication.

Long-running communication is widely used, especially in context of inter-
organization communication in form of B2B protocols as well as in intra-organiza-
tion communication in form of Enterprise Application Integration (EAI), also
called Application-to-Application (A2A) integration. In the following each is dis-
cussed separately in turn.

8.3.1 Business-to-Business (B2B) Protocols

B2B communication takes place when company boundaries are crossed while data
is passed back and forth between the communicating parties. A typical situation in
the supply chain industry is when a buyer sends a purchase order to a seller and the
seller responds with an acknowledgment that the order will be fulfilled. Later on
the seller would send an invoice for the goods shipped, expecting a payment from
the buyer. Another situation in the healthcare domain would be the communication
about clinical tests between different healthcare providers.

B2B communication is about sending and receiving meaningful business data
that allow businesses to act upon or to react to. The formats have to be agreed upon
so that the communicating parties can understand each other. The same is true for
protocols as the communicating parties have to comply to the protocols in order to
send or to wait for a message at the precisely correct time.

As outlined in [263] there are several standards organizations maintaining and
further extending standards that define the formats and protocols. Examples are
RosettaNet, HIPPAA, EDI, just to name a few.

The challenges in setting up proper B2B communication are manifold. The main
challenge is the semantically correct interpretation of the various data elements in
the messages that are exchanged. As the data sent across is in general coming from
various back end application systems, it reflects many different data models. As
the formats themselves represent a data model the correct interpretation depends
not only on the structure of the messages but also their contents.

Another challenge is to design the long-running B2B interactions and to ensure
run-time compliance to the agreed long-running protocol. Depending on the com-
plexity of the long-running process it is possible that many correct executions of
the processes exist. Plus, many different error situations can happen that require
compensation in order to get back on track to a correct execution.

Since important business data are communicated other aspects are of impor-
tence. Security is a big and important item, and so is reliability. Reliability refers to
the guarantee that a message was not only passed, but also received. Nirvana in this
case would be an exactly-once transmission so that both, sender and receiver are
guaranteed that each message was transmitted exactly once. This ensures that
every message is accounted for and not lost. In addition, neither sender nor
receiver have to worry about error detection, handling and recovery on a message
passing level.

 8.4 Web Services 211

In addition to the reliability of a single data exchange, the consistency of the
overall long-running process is very essential as both communicating parties rely
on the consistency in order to do successful business with each other. If one trans-
mission in a process fails (and keeps failing) then it might be the time when the
overall process needs to be abandoned. As it is a long-running process many states
were committed along the way clearly requiring compensation to undo already
achieved work.

At run time, speed and throughput is of concern as well as security. However,
these are non-functional properties not relevant to the discussion in context of
semantics.

8.3.2 Application-to-Application (A2A) Protocols

Application-to-Application integration is also referred to as Enterprise Application
Integration (EAI). A2A protocols are very similar to B2B protocols in that data is
passed back and forth. In contrast to B2B protocols, the endpoints are applications
within an enterprise, not systems across a network between companies.

The issues and problems are the very same as in B2B protocols, including secu-
rity. This might be a surprising statement as in general applications are invoked
over their interfaces. However, applications may still provide purchase orders or
wait for acknowledgements at their interfaces. In this sense there may be a long-
running process implemented inside that requires compliance. Transformation is
necessary as the data model inside the application might be different from that of
the B2B protocol or other applications that are integrated. As enterprises, espe-
cially larger ones have different physical locations communication between appli-
cations is possibly going over the Internet, so security becomes an important
aspect. In this sense, A2A and B2B integration are very similar.

Some of the problems can be solved a lot easier due to the fact that the integra-
tion is within an enterprise. For example, the exactly-once semantics in data trans-
mission can be achieved using transactional communication systems like
transactional RPC or transactional queueing systems. Also, the endpoint of the
integration are applications within the same enterprise, so supposedly the commu-
nication between the governing groups should be a lot easier then across company
boundaries.

From a semantics viewpoint there is no difference between B2B and A2A proto-
cols at all. This is the reason why not distinction is made in the remainder of the
book.

8.4 Web Services

Web Services are the current silver bullet for (remote) communication in context of
the Web as well as within enterprises or governmental organizations. Aside from
the fact that Web Services is a relatively new development (only a few years old)

212 8 Communication

the initial charm lay within its perceived simplicity. To keep things simple, there
was the notion of an interface, a transport protocol and a mechanism to register
interfaces. And that was all there was to it initially. Everybody liked this simplicity
despite the fact that everybody knew from the very beginning that additional fea-
tures and functionality are needed like security, transactions, policy, processes, and
so on.

The initial run-time model was that of a client/server model. A server defines
services by means of interfaces in a XML-based language call WSDL (Web Ser-
vice Description Language). These interfaces are made available in a registry that
clients can lookup. The initial effort was UDDI (Universal Description, Discovery
and Integration). Clients wanting to invoke services, could lookup UDDI reposito-
ries, retrieve interfaces and (having this knowledge) invoke those interfaces
dynamically. Of course, there was no security, no reliability, no policy or any addi-
tional functionality.

Over time, the realization set in that these features were necessary leading to the
development of WS-* (spoken “Web Service Star” or half-jokingly “Web Service
Death Star”) which refers to a (relatively large) set of standards and proposals that
together lead to an acceptable set of technologies for communication. This set of
standards is in the meanwhile so complex that efforts are underway to simplify this
(leading to a split and proliferation of multiple activities).

All these efforts have as common denominator a few technical concepts and
principles that will be discussed in the next Chapter of the book in more detail. The
next Chapter discusses also the most important standards from this set in more
detail to outline the overall complexity that is to be mastered in order to implement
useful Web Services.

One of the efforts that wants to enhance the state-of-the-art are Semantic Web
Services. This is a very important activity as it strives to incorporate semantics at
the level of description models, mechanisms and languages. A separate Chapter is
devoted to those to introduce current efforts in this space and yet another Chapter
of the book looks at standards activities for Semantic Web Services.

8.5 Clinical Use Case

The clinical use case (see Chapter 2 and Chapter 13) is fundamentally a distributed
application system with many concurrent activities. Doctors retrieve and enter
data, clerks schedule appointments, test results are forwarded or inferencing takes
place to derive information.

All the various subsystems of the clinical use case implementation are indepen-
dent in their data management and they communicate with each other in order to
exchange data. Chapter 2 outlines the basic use case as well as its requirements.
Chapter 13 outlines the complete use case in detail and shows how semantic tech-
nologies are used to define the functionality.

 8.5 Clinical Use Case 213

Here we discuss how communication technologies are used to support the clini-
cal use case implementation. First of all, as the use case takes place in a clinical
environment, security and reliability play very big roles. Security ensures that the
patient specific data is only accessible to those authorized to see it. For the commu-
nication technology this means that only those communication technologies and
their implementations can be used that support security.

The second big requirement in clinical environments is reliability. It is essential
that any data that is collected manually is transmitted and stored in such a way that
it cannot get lost. Transactional communication technologies ensure this require-
ment. Also, any derived information as well as information gathered through test
results have to be reliably communicated so that it is ensured that data is not lost
during communication, be it a one-step communication between two systems or a
multi-step (long-running) communication between several systems.

For the latter case, when several systems have to cooperate, long-running com-
munication is the best approach to ensure that the cooperation finishes and does not
stop undiscovered at a partial state. Long-running communication maintains the
state during the cooperation and can restart or continue after a failure from the last
consistent state.

The next few chapters will introduce Semantic Web Service technology. Ser-
vices will be discovered, put together into an orchestration as well as invoked. This
technology is in principle independent of the underlying communication technolo-
gies as they can use any available one. For the clinical use case this means that all
remote invocations of services is based on secure and reliable communication. Web
Service orchestration will be executed on long-running communication so that
state is not lost.

Some of the systems, like for example the system that discovers services, does
not have to be reliable. In these special cases, when a discovery fails, it can be re-
run in order to obtain a good result. In more general terms this means that idempo-
tent functionality does not have to be reliable as it can be re-executed without loss
of information.

When it comes to the selection of a sepecific technology implementation no
general advice can be given as in every real life implementations the choice is
determined mostly by the already existing infrastructure. For example, if a hospital
has already a transactional queueing system from a specific vendor, than this is the
one that needs to be deployed in Semantic Web Service implementations, too, for
pragmatic and financial reasons. Also, if some of the remote connections are based
on B2B protocols using healthcare document or message standards than this is the
one to be chosen. However, independent of the specific technology that is avail-
able, the aspects of security and reliability are essential and must be achieved.

The use case in Chapter 13 focusses on the functional definition of the clinical
use case and does not further go into the specific communication technologies any
more.

214 8 Communication

8.6 Summary

In summary, communication is a highly utilized and very well researched area of
computer science. Communication between computers is at an all time high as the
networks around the globe get more tightly integrated every day. The latest devel-
opment, Web Services, made communication a lot easier (initially) leading to a lot
of development of remote services.

Various communication styles and mechanisms exist that address different func-
tionality. However, common to all is the lack of semantic description languages
and concepts, as pointed out in this Chapter. The following Chapters focus first on
Web Services and later on Semantic Web Services that in the end strive to over-
come the semantic description problem of dynamic behavior expressed as long-
running processes.

9 State of the Art in Web Services

This Chapter introduces the current state-of-the-art in Web Services in the form of
various standard proposals that are being worked on currently or that are already
implemented in software products. It starts with a brief introduction into the history
of Web Services in Section 9.1 and continues with the description of traditional
Web Services in Section 9.2. Section 9.3 provides an overview of the standards
activities that are ongoing in the area as well as already achieved standards. Web
Service composition, as a specifically important area, is called out separately in
Chapter 10.

Web Services are a set of technologies that have to be put in context of an archi-
tecture in order to be used properly in a given implementation. This new architec-
ture paradigm is called Service-Oriented Architecture (SOA) and will be
introduced after the Web Service discussion in Section 9.4. Web Services are syn-
tactic in nature not actively trying to advance into the space of semantic technology
at this point in time. However, semantics remains one of the biggest challenges in
the proper design of software systems, especially when the software system is
composed of interoperable services that are not originating from the same set of
authors. Therefore, a brief overview of the semantics aspects are provided in Sec-
tion 9.5 leading up to the following Chapter on Semantic Web Services. Section
9.7 summarizes.

9.1 History

With the emergence of the Internet infrastructure in conjunction with the simple
HTTP protocol and XML as a data representation language the question arose if
this light and simple (and world-wide available) infrastructure can be used instead
of the more heavy-weight environments like CORBA for “long-distance” remote
communication across the Internet and organizations’ boundaries.

This idea resulted in the XML RPC work of Dave Winer together with
Microsoft [352] in 1998. In its simple form it uses HTTP as the transport protocol
and uses XML as the platform-independent encoding of the data passed between a
sender and a receiver. The specification of the XML RPC protocol is very brief and
herein lies its power.

Out of this XML RPC work arose the more sophisticated SOAP transport proto-
col afterwards [353]. Dave Winer was involved in this development, too, together
with members of Microsoft. Originally SOAP was the acronym for Simple Object

216 9 State of the Art in Web Services

Access Protocol. The acronym interpretation was dropped when SOAP became a
W3C Recommendation in 2003 [354]. Today virtually all Web Service implementa-
tions support the SOAP protocol.

In parallel to the SOAP development the Web Service Description Language
(WSDL) was introduced. While SOAP is concerned about the data representation
and data protocol binding at run time (“on the wire”), WSDL is concerned with the
functional definition of endpoints (in WSDL terminology called operations) that
can be remotely invoked. As example, retrieving a patient’s name based on an iden-
tifier like the SSN would be an operation. WSDL is also based on XML and is using
the XML syntax for defining endpoints: their names, parameters, bindings, and so
on. In 2001 a W3C Note [355] defined WSDL 1.1 and in 2006 WSDL 2.0 became a
W3C candidate recommendation [356].

A third standard, Universal Description Discovery and Integration (UDDI) was
in the works in the same time period [357]. UDDI is a standard that defines how to
store web service definitions in a repository as well as how to discover them. It
takes the role as a public Web Service directory that can be used to find or “dis-
cover” services. Service consumers are the customers of such directories. Corpora-
tion internal directories exist, too, for non-public use of Web Services that are for
within the corporation only. In 2005 version 3.02 of UDDI was approved by the
OASIS organization [358].

The three standards, SOAP, WSDL and UDDI form the initial basis or “tradi-
tional Web Services” foundation. These three were a very small and simple basis to
start from. At the same time it became clear very rapidly that many necessary fea-
tures remained out of scope, like security, reliability, and other important functional
and non-functional aspects. This in turn caused a flurry of additional standards pro-
posals in the Web Service area that started to address important additional areas, but
at the same time introduced a vast complexity that software vendors, corporations,
researchers and standards organizations are struggling with currently as it is not
clear yet how all these various standards relate to each other, especially their imple-
mentations from a technology component point of view.

9.2 Traditional Web Services

The basic idea of Web Services is centered around the idea of separating interface,
implementation and deployment. The interface of a Web Service defines the names
of the operations of a particular service and for each operation the input and output
data in the form of messages. In addition, the possible invocation locations are pro-
vided so that actual Web Services can be invoked at run time. The definition format
is defined as Web Service Description Language (WSDL).

If all goes well in a general sense, there will be a huge number of Web Services
available in the Web, as this will be the only way of communication in the future. In
order to find Web Services it is necessary to devise a way for their discovery. UDDI
is such a mechanism and is part of the “traditional” Web Services idea. Finally, at

 9.2 Traditional Web Services 217

run time, actual invocation data and return data needs to be transported over the
network using various forms of communication technology. SOAP defines the
message layout for these data transfers.

There have been many articles and books written about Web Services, for exam-
ple [359]. Because of this high availability of information the following descrip-
tions are kept very short.

9.2.1 WSDL

WSDL has an abstract part that defines the operations as well as their input and
output messages. Figure 9.1 is the example as shown in [356].

Fig. 9.1. Abstract WSDL example

First, the namespaces are declared that are in use in the definition. The next sec-
tion defines types in form of XML schemas. Then the abstract interface definition
follows: two operations are specified, one called “listFlights” and the other is
called “reserveFlight”. Each operation has an input message and an output message
specified the defines the data required by the operation as well as sent back by the
operation. A feature is specified, too, that indicates what particular non-functional
feature the client of these operations has to support, in this case a secure channel.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:description targetNamespace="http://example.org/TicketAgent.wsdl20"
xmlns:xsTicketAgent="http://example.org/TicketAgent.xsd"
xmlns:wsdl="http://www.w3.org/2006/01/wsdl"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/2006/01/wsdl
 http://www.w3.org/2006/01/wsdl/wsdl20.xsd">
<wsdl:types>
 <xs:import schemaLocation="TicketAgent.xsd"
 namespace="http://example.org/TicketAgent.xsd" />
</wsdl:types>

<wsdl:interface name="TicketAgent">
 <feature ref="http://example.com/secure-channel"
 required="true"/>

 <wsdl:operation name="listFlights"
 pattern="http://www.w3.org/2006/01/wsdl/in-out">
 <wsdl:input element="xsTicketAgent:listFlightsRequest"/>
 <wsdl:output element="xsTicketAgent:listFlightsResponse"/>
 </wsdl:operation>

 <wsdl:operation name="reserveFlight"
 pattern="http://www.w3.org/2006/01/wsdl/in-out">
 <wsdl:input element="xsTicketAgent:reserveFlightRequest"/>
 <wsdl:output element="xsTicketAgent:reserveFlightResponse"/>
 </wsdl:operation>
</wsdl:interface>
</wsdl:description>

218 9 State of the Art in Web Services

[356] and [360] are the full specification of WSDL version 2.0 which is a Rec-
ommendation of W3C.

9.2.2 SOAP

The SOAP recommendation [354] states that “SOAP Version 1.2 (SOAP) is a light-
weight protocol intended for exchanging structured information in a decentralized,
distributed environment. It uses XML technologies to define an extensible messag-
ing framework providing a message construct that can be exchanged over a variety
of underlying protocols. The framework has been designed to be independent of any
particular programming model and other implementation specific semantics.”

The SOAP specification defines the structure of a SOAP message. This structure
defines different parts like a header and a body. Figure 9.2 shows an example from
[354].

Fig. 9.2. Example SOAP message

The message shows in the header section information for the receiver in the
“alertcontrol” tag. The body contains an “alert”.

In addition to the message structure, SOAP also defines how to bind messages to
network protocols like HTTP or SMTP. Furthermore, the specification allows for
extensions that are specific so particular senders and receivers, specifically non-
functional properties like security or reliability. Finally, the fourth part that the
SOAP recommendation defines is a processing model of what it means to send and
receive SOAP messages.

The relationship between SOAP and WSDL is defined in the WSDL specifica-
tion adjunct [361]. This recommendation shows how a Web Service defined in
WSDL is mapped to the SOAP message format at run time. This binding supports
therefore a platform and processing language independent communication across
networks. A Web Service provider publishing a WSDL specification of its services
therefore will be interoperable with a Web Service consumer that is WSDL and
SOAP compliant. The WSDL document will ensure that both, Web Service pro-
vider and Web Service consumer have a common understanding of the Web Ser-
vices.

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header>
 <n:alertcontrol xmlns:n="http://example.org/alertcontrol">
 <n:priority>1</n:priority>
 <n:expires>2001-06-22T14:00:00-05:00</n:expires>
 </n:alertcontrol>
</env:Header>
<env:Body>
 <m:alert xmlns:m="http://example.org/alert">
 <m:msg>Pick up Mary at school at 2pm</m:msg>
 </m:alert>
</env:Body>
</env:Envelope>

 9.2 Traditional Web Services 219

9.2.3 UDDI

UDDI is the third element of the “traditional Web Services” trio. The purpose of
UDDI is to provide an environment where Web Service providers can register their
services (i.e., “advertise” them) and where Web Service consumers can find Web
Services according to their needs. UDDI can be seen as a market place where Web
Service providers and consumers find each other. The technical underpinning is
called a UDDI registry that contains the various Web Service descriptions that can
be queried by Web Service consumers.

The UDDI specification [358] defines data structures and access interfaces to
interact with a UDDI registry. For a UDDI registry to be useful Web Service pro-
viders have to store their Web Service definitions in the registry. Once those are
stored they are available for search or “discovery”. A Web Service provider can
update its services as well as retract them.

Web Service consumers can access a UDDI registry to search for Web Services
based on keywords and other information. Once they found a set they can then
decide which particular Web Service to invoke. Of course, between invocations,
they have to be aware of any changes so that subsequent calls to the same service
are successful and not result in failure.

Services that have side effects (e.g. those updating a database) are treated spe-
cially in the sense that Web Service providers do not really provide the particular
invocation endpoints in UDDI. This is not mandated by UDDI, however, Web Ser-
vice providers do not open up all details because of fear of misuse and denial-of-
service attacks. A Web Service provider in general only puts the functional defini-
tion of its Web Services into UDDI leaving the connectivity information unspeci-
fied. A Web Service consumer, once he found the services he wishes to use, will
then have to contact the Web Service provider off-line in order to establish the con-
nectivity. This usually is governed by a contract that contains provisions for service
level agreements as well as course of action for misuse of the services.

9.2.4 Summary

In summary, SOAP and WSDL provide the infrastructure for Web Service commu-
nication independent of computing platforms and independent of those transport
protocols that have bindings available for SOAP and WSDL. These two standards
are sufficient for basic communication.

UDDI adds independence in the sense that it allows Web Service consumers and
providers to find each other in a registry or broker setting so that neither consumers
nor providers have to search each other through other means.

However, while these three standards are powerful and useful, they do not pro-
vide functionality that is usually required in enterprise computing. Aspects like
security or reliability are relevant in context of business data, especially when com-
municated across organization’s boundaries. In the following a brief overview of

220 9 State of the Art in Web Services

additional standards work is given that aims to address the missing functionality of
SOAP, WSDL and UDDI.

9.3 Emerging Web Service Specifications (WS*-Stack)

Once the three fundamental specifications (WSDL, SOAP, UDDI) took shape and
were available for use, it immediately became clear that these three specifications,
although very simple and straight forward, will not be sufficient for serious commu-
nication of valuable and critical business data over the Web. “Industry-strength”
properties like security, reliability, transactions, long-running communication, pol-
icy, and so on were unsupported by the traditional Web Service technology. A mul-
titude of standards have been worked on in the space in general that address
industry-strength requirements. They are introduced next.

9.3.1 Standards

More or less immediately after the realization that the traditional three Web Service
standards are not sufficient, various companies and standards organizations started
working on extending the traditional Web Services with additional functional and
non-functional properties to make Web Services really useful in industrial settings.

Fig. 9.3. Zapthing Poster of Standards [362]

 9.3 Emerging Web Service Specifications (WS*-Stack) 221

Zapthink [362] made an attempt a few years back to arrange all efforts on one
big poster which can be seen in Figure 9.3. This poster does not only show Web
Service related standards at that time, but also efforts of other organizations clearly
indicating that Web Services are only one of many efforts. At that time the poster
gave a very good overview of the complexity and sheer number of standards being
worked on across all industries and on all levels. Some of those went away, new
standards appeared, but in general the complexity and variety remained. In context
of the Semantic Web and Web Services only the Web Service specific standards are
of detailed interest. These are introduced next in more detail.

9.3.2 Web Service Standards

While the Zapthink poster categorizes standards from all standards organizations,
way beyond pure Web Service standards, Figure 9.4 shows the a subset focussing
on Web Service standards only. This newer representation is taken from [364] and
is one of many representations that are available. There is not (yet) a single one
everybody agrees on as a reference representation at this point in time. Figure 9.4
also categorizes the various standards into various categories. This classification is
again not a standard one as there is no agreement in this area, either.

Fig. 9.4. Web Service Technology Stack

222 9 State of the Art in Web Services

Describing all standards here that are in scope of the Web Services “stack” would
be too much as the sheer number is daunting. Details and specifications about the
Web Service standards that are already published or are still in the works can be
found with the respective standards organizations (which are described later in
Chapter 12). An important resource that describes the ongoing developments in
Web Service standards and others beyond those is Coverpages4. Not only does this
web site collect information about standards, it also maintains a distribution list pro-
viding regular updates on a weekly basis.

9.3.3 Semantic-Web-Service-Related Standards

The interesting discussion is about those Web Service standards that are relevant for
the Semantic Web Services work. This relevance is based on the focus to describe
functionality semantically enabled so that interoperability is provided. Non-func-
tional standards like transactions do not fall into this category.

• Process Standards. Figure 9.4 contains a few standards that are directly relevant
to Semantic Web Services. These are the process related standards BPEL and
WS-CDL (BPMN is omitted); these are discussed in Section 10.6. The reason for
those being relevant is that processes express behavior and the behavior of differ-
ent entities that need integration must match, otherwise the communication
between those will fail.

• Discovery Standards. In context of Web Service discovery UDDI and WSIL are
mentioned. UDDI has been discussed earlier in this Chapter.

• Service Description Standards. WSDL is important as WSDL supports the
description of the interfaces of services and is hence very relevant. WSDL has
been described earlier in this Chapter.

• Transformation Standards. Entities that communicate with each other follow
different data models in general. In order for them to communicate transforma-
tion needs to happen from one format into another one. So far no standards orga-
nization took up the formation of a standard in the transformation space,
although it is very relevant.

• Business Domain Standards. These standards focus on the vocabulary of spe-
cific business domains. For example, defining possible values of documents in
the healthcare domain. These will be used by Semantic Web Services, but will
not be the focus of improvement.

4. http://xml.coverpages.org (Accessed March 19, 2008).

 9.4 Service-oriented Architecture (SOA) 223

9.4 Service-oriented Architecture (SOA)

Web Services, both individual and composite, are a methodology underpinned by
technology. However, questions of granularity and design are out of the scope of
the Web Service technology per se. The technology and standards introduced ear-
lier allow the design and implementation of any type of service, fine or coarse
grained, public or company-internal, reliable, transactional or just “plain”. The
technology components or the standards do not prescribe or impose a specific
architecture or methodology, though. These are just technology components and
“neutral” building blocks.

In real application environments, however, Web Services have to achieve a
business goal, and so they have to fit into an existing computing and data infra-
structure consisting of databases, application systems, security components, and so
on. At the same time they have to be “enterprise-grade” in the sense that they are
“always up” (meaning always available), reliable and transactional, semantically
very clear, just to name a few non-functional requirements. While many of these
attributes are a matter of proper software engineering, others can be established
through a proper software architecture.

Using Web Service technology and standards properly demands an architecture
approach around Web Services and this architecture approach is called Service-ori-
ented Architecture (SOA). A brief description is provided next around SOA and
the role of Web Services in this context.

9.4.1 Service Paradigm

An important aspect of software architecture is its independence from base tech-
nology on one side and from the functional business requirements on the other
side. To draw the analogy, a relational database management system (RDBMS)
implements its own architecture and functional model independent of the operating
system it is running on. While a RDBMS has to adjust to the specifics of a given
operating system (e.g. Unix vs. Linux vs. Microsoft Vista), it does not change its
functional model. On the other “end” of its architecture a RDBMS implements
through languages like SQL and APIs various ways of accessing its functional
model (like relational tables and stored procedures). But it does not adjust or
change this access layer when used in a specific domain like healthcare or supply
chain.

The same is true for a Service-Oriented Architecture (SOA). A SOA needs to
establish the model of what a “Service” is, how it relates to other services, which
entities can provide services or use them, and how they relate to other elements like
data or processes. Furthermore, depending on the scope of a concrete architecture,
the effects of services can be part of a SOA if the SOA is concerned about the oper-
ational semantics.

The OASIS SOA reference model (RM) [363] provides such a SOA. It defines
the notion of services and all its aspects. In addition, it does not assume a specific

224 9 State of the Art in Web Services

technology base at all therefore being agnostic toward a specific implementation.
On the other hand, it does not restrict itself toward a particular application domain,
either. In this sense it is a true software architecture.

This makes it very valuable since with the OASIS SOA RM it is possible to map
the SOA architecture onto a technology base without “affecting” the business
domain; and at the same time the particular services of a business domain can be
specified independent of a particular implementation technology. This clearly indi-
cates a sound conceptual base where the model of services is technology indepen-
dent and at the same time expressive enough to represent the services of an
application or business domain.

9.4.2 SOA and Web Services

Services are not necessarily the same as Web Services. Web Services commonly
refer to services implemented based on Web technology and used in a Web context.
For example, WSDL, implemented with XML as the encoding for data bound to
HTTP/SOAP as the transport, is typically categorized as Web Service. At run time
actual business data are transmitted as XML instances.

However, in many situations this is either not necessary or even counter produc-
tive. Within enterprises it is not necessary or useful to represent data in transit as
XML instances or use HTTP as the transport protocol due to scalability and
resource consumption requirements. It can very well be the case that a service is
implemented using the Java programming language (and hence the data is encoded
as Java objects) and the invocations are taking place over RMI or queueing systems.
In such a situation services do not use Web technology, but the same concepts and
principles of services as the more general concept apply.

Ideally, services can be defined using WSDL at design time, but at deployment
time or at run time it may be decided to use Web technologies or enterprise engi-
neering technologies for their invocation. First steps toward this approach can be
found in efforts like WSIF that allow the specification of a service independent of
its implementation. So it is possible to define the service interface using Web tech-
nologies while at run time it is possible to access the service using enterprise tech-
nologies like Java.

A good SOA therefore does not restrict the notion of “service” to Web Services
at all, but makes a clear distinction between design time and run time and allows the
“mix and match” depending on the particular requirements.

9.4.3 Open Issues and Technical Challenges

Despite the OASIS SOA RM much of the SOA space is unclear at this point and is
to large extent technology driven. The technology focus is not a surprise since all
software vendors have technology components that address the (Web) services
space. In addition, specific perceptions exist that are worth mentioning here. The

 9.4 Service-oriented Architecture (SOA) 225

following issues have to be discussed and resolved in every single service imple-
mentation, often very implicitly. Only the most important and imminent ones are
called out in the following.

• Queues, queues, queues and queues. With services comes the perception of a
“plug-and-play” functionality in the sense that services can be developed and
made available at any time. Once available, services can (or cannot) be used, as
needed by possible Web Service requesters. This plug-and-play idea on a con-
ceptual or design level must be mirrored on a run-time level. The supposedly
simplest way to achieve this is to make services available as entry points
through queueing systems. A service can be made available for use by providing
a request queue for it. Using it then means to enqueue messages into the request
queue and enclosing the name of a response queue so that the service knows
where to place the result (or error message). At the same time queues introduce
asynchronous communication, adding to the complexity of error recovery. Fur-
thermore, there can be many queue communications between services if they
call each other. It is not very clear how a service notion based on asynchronous
communication plays with user interactions that are preferable synchronous in
nature.

• Transactions. In corporate environments transaction controlled modifications
of data is paramount to be recoverable and consistent at any time. Web Service
technology does not make it easy at all to support this base functionality. Many
technology components like HTTP connectivity or XML based implementa-
tions do not easily (if at all) participate in distributed (or even local) transac-
tions.

• Data and Services. Services in their nature are “functional”, meaning, they are
optimized for the description and execution of functions. In many situations,
however, data manipulation is a lot more important then function execution. If
everything in an IT architecture is defined as a service, then data access and
retrieval as well as modification is consequently implemented as a service, too.
For example, issues arise if services have to invoke each other to derive to a data
result set that could have been achieved by a single SQL statement. In this situa-
tion either the service calls are made (potentially being inefficient), the SQL
statement is implemented and made accessible as a service (but then functional-
ity is possibly duplicated) or the database access layer is presented as a service
accepting any SQL statement (but that would hide the functionality in the invo-
cation of the layer). The important point here is that the relationship between
data and services as concepts is to be clarified in projects from an architectural
viewpoint so that the particular way of accessing data is done consistently.

• Fractal Nature. In the sense of the Mandelbrot structure from mathematics,
services are fractal. A service internally can call services that in turn can call
services. Looking at the interface of a service it is not visible at all how deep the
invocation chain or tree is going to be. If helper services like logging, monitor-
ing and SLA management are services themselves, then there will be a lot more
service invocations going on at run time then purely those required to bring

226 9 State of the Art in Web Services

about the business functionality. If service invocations are expensive in this case
(like remote queue invocations), service use can become quite costly and slow.

• Design Time vs. Run Time. As discussed earlier, when Web technology is used
for defining services a decision has to be made if the same technologies are used
at run time or if the run-time technologies should be selected with different crite-
ria in mind. Convenience will lead down the path of using the same technologies;
but that is not necessarily the best choice. In general, run-time requirements
address performance, throughput and reliability whereas design time require-
ments address structure, consistency and correctness. In order to achieve those
conscious decisions have to be made.

• Management. Services have to be managed. Each service being brought online
might have to be made available at a specific and scheduled point in time. In
other cases, a service might have several versions concurrently, the oldest one
possibly scheduled for depreciation. In this case it is important to determine the
service consumers and to be able to notify them about the pending depreciation.
If errors happen at run time it is important to detect these and analyze those to
determine the root cause quickly. Service management has to worry about all
these topics and every project or enterprise has to not only be aware of those, but
also address them.

• SLA Supervision. While service management focusses on the functioning of a
service, service level agreement (SLA) supervision focusses on the proper func-
tioning within specific performance and throughput boundaries. If a service
degrades it has to be not only flagged, but also notifications might have to be sent
out. In addition, additional computing power might have to be brought online in
order to compensate for problems.

These topics are a few important ones that have to be clarified in service imple-
mentation projects. Ideally, a SOA addresses those in a specific project or enterprise
so that all services follow the same approach, be it their design time specification,
their run-time behavior or their management.

9.5 Semantics and Web Services

The whole Web Service community works currently on a syntactic technology
stack, meaning, various technology components that together allow the definition
and execution of services addressing the design as well as run-time requirements.
All standards and specifications revolve around syntactic means to define inter-
faces, data formats as well as non-functional properties. Their correct use and inter-
pretation is left to the engineers. For example, a service requester has to ensure that
the data format required by a service is the same as that it uses when invoking this
service. If such a data is syntactically correct, but semantically incorrect, the service
infrastructure cannot detect it automatically and instead of throwing a “semantic
error” it allows the service invocation to take place.

 9.5 Semantics and Web Services 227

Ensuring that implementations of Web Services are interoperable is governed by
the Web Service Interoperability Organization (WS-I)5 determining if the software
is interoperable on a syntactic level. Major software vendors are engaged as it is in
their very interest that their software interoperates properly.

The reason why ideally interoperability has to be mechanically proven is that
the syntactic standards do not contain enough semantics so that the different soft-
ware technologies are interoperable by construction. This is the basic reason for
trying to enhance Web Service technologies with semantic technology. The goal is
to make sure that Web Services are semantically interoperable (in addition to being
syntactically interoperable) so that any semantic mismatch can be detected by the
software infrastructure. Of course, this means that semantic technology will also be
used at design time to define the services properly from a semantics perspective.

9.5.1 Semantics, What Semantics?

On a critical note, it sounds like services and their interoperability will not work
unless the semantic technology is applied properly to the areas of services. Many
research papers state that without semantics service invocations will fail, data will
be inconsistent, and so on.

At the same time, organizations have their software systems interact for a very
long time already over networks using various standards in the B2B space and
more recently using Web Services. Not only data is transmitted for informational
purposes, but real transactional data like money transfers, payments, orders, and so
on.

The situation looks like an obvious contradiction where one community expects
big failures while the other community seem to use Web Service technology with-
out any problems.

Looking at the situation more closely it is not a contradiction at all. Rather, it is
the case that different communities solve the same problem in very different ways.
Looking at industry first, it can be observed that the service descriptions are mostly
of syntactic nature (aside from language elements like enumeration types, and
these can be debated, too). Any semantic mismatch is left to be detected and sorted
out at run time. Furthermore, the communication infrastructure is not responsible
for the content and its correct semantics, but the business application systems like
home grown applications or off-the-shelf ERP systems. Any mismatch will come
up in the business context and will be corrected there. This in principle means that
the semantic correctness is ensured during the “last mile” in service invocations
and error are reported back to the “first mile”.

The research community, however, is working on solving the semantic mis-
match detection into design time or at most to the invocation initiation time. This
means that if a service consumer and provider already mismatch on a definition, an

5. http://www.ws-i.org/ (Accessed March 19, 2007).

228 9 State of the Art in Web Services

invocation will never take place. If the semantic match cannot be 100% determined
based on the service definitions because run-time data values are needed, then addi-
tional matching checks take place at service invocation initiation when the run-time
values are present. If a mismatch is detected, the service invocation will not take
place.

From an industrial perspective this means that (ideally) the business applications
will never have to deal with semantically incorrect or mismatching data as the ser-
vice infrastructure has caught any issues long before. From an industrial perspective
this is certainly desirable. At the same time it moves a lot of development effort
upstream into the design time of services. It remains to be seen if this is practically
possible in industrial settings.

A service invocation has many aspects and from a functional side data, processes
and service selection can be called out as important areas for applying semantic
technology. These three areas are discussed next in more detail.

9.5.2 Data Semantics

Although semantic interoperability is a very difficult property to achieve, even the
simplest example highlights the severity of the problems. Let’s use as example an
international traveller who resides in the US and is on a trip to Japan. There he has
to visit a hospital and that hospital sends a message to the traveller’s healthcare pro-
vider in the US asking for the coverage. As part of this transmission the date of
admission into the hospital is included. The data structure on a syntactic level has
and attribute “admission date” with elements “day”, “month” and “year”. An exam-
ple date would be “11” for the day, “June” for the month and “2007” for the year.
However, the message contains “11”, “June” and “20”. Syntactically this is a correct
date, semantically there is a mismatch as in the US “2008” is expected (Gregorian
calendar), but the Japanese hospital put in the Imperial year “20” which is equiva-
lent to “2008” semantically.

This mismatch cannot be detected at a service interface level as the mismatch is
based on the data values. Consequently the invocation succeeds and the software
implementation has to deal with this semantic mismatch.

This type of semantics is called data semantics as it is about the interpretation of
data values. The goal is to ensure that the sender of data (or the service invoker) and
the message receiver (or the service provider) have the same understanding of the
data that is communicated back and forth between them. Instead of leaving it to the
implementation of services to detect any semantic data mismatches the goal must be
to detect them at design time as well as service invocation time. This reduces the
risk of service invocation failure, and in addition relieves the service implementa-
tions from establishing the correct data semantics as the service run time system
would ensure that service invocations only take place if the data is semantically cor-
rect. The goal of Semantic Web Services is to exactly achieve this.

A next step would be data consistency. Data consistency refers to correct data in
the sense of its pragmatics. For example, an admission date of June 11th, 1898

 9.5 Semantics and Web Services 229

would be a correct data, but it would not be in a pragmatic sense as this date is very
old and cannot be a valid admission date for a patient living today. However, in a
historical data exchange about a patient back then it would be consistent data. This
example highlights that the correctness of data also depends on the context in
which it is used, not only on its syntactical structure and correct data values.

Another important topic that plays a role in this context too is the trustworthi-
ness of data. Trustworthiness depends a lot on where data came from and which
parties were involved in the establishment, change and forwarding of the data. We
do not discuss trust in more detail here, but the area of trust is getting more and
more attention and is focussed on more and more in various communities.

9.5.3 Process Semantics

Process semantics is another fundamental aspect in context of Web Services. Pro-
cess semantics is the semantic match of behavior of a service provider and its ser-
vice consumers. For example, a service provider might require a three step
invocation in order to determine the coverage of a patient. A first invocation is to
establish the validity of the calling hospital, the second invocation is to establish
the validity of the patient and the third invocation is to establish the coverage. The
service provider only can provide the coverage if these three invocations are exe-
cuted successfully and completely in precisely this order. A service consumer, like
the hospital in Japan, has to conform to this sequence or “behavior” that is
expected from it. If it cannot comply, the coverage of the patient cannot be estab-
lished.

This match of the behavior exposed by a service provider and expected behavior
of a service consumer is termed “process semantics”. Like in the case of data
semantics, it is possible to establish the match at run time when the service pro-
vider keeps track of the invocations and raises an error in case a service consumer
initiates a wrong invocation. In this scenario the implementation of the services
must be able to deal with all error situations.

Alternatively the match could be established at design time with a proper defini-
tion of the interface and at run time by the service framework that would only
allow the invocation of correctly sequenced services. In this case the service imple-
mentations would not have to control the correct behavior; it would be done for
them by the service infrastructure.

Semantic Web Services have process semantics as their second big goal so that
services are not only properly defined, but also supervised at run time.

9.5.4 Selection Semantics

A third big topic in context of Semantic Web Services is the notion of service dis-
covery. Service discovery is based on the assumption that there will be too many
services available to know them all and in such completeness and detail that a ser-

230 9 State of the Art in Web Services

vice consumer can determine the perfect one. The assumption is that on a Web scale
there will be so many services available that it is impossible to know them all. Fur-
thermore, services will become available and unavailable, change their versions and
service levels so that it is not the norm that once a service works it will do so for-
ever. Based on these assumptions it is necessary to find or to discover services.

Research focusses on two approaches: one is to change the situation into a more
stable one where services are made known and their availability be managed in
repositories or directories. Instead of constantly being on the outlook on the Web
for appropriate services, a service consumer looks up a structured repository and
searches for what it needs. Service provider have to take great care in publishing
their services in the relevant directories. The upside of this approach is the struc-
tured way of dealing with the service detection and the completeness assumption
that if a service is not in a directory, it does not exist.

A second approach tries to acknowledge and to work with the nature of the Web
and discovers services dynamically in “search” style. Services are detected on the
Web (as web pages are) in form of Web searches. This is not necessarily reliable or
complete, but follows the architecture of the Web. The idea here is that a reliable
and useful service will be detected and will be reliable in its own interest.

There are many pro and con arguments for both these focus areas which are not
discussed here except one. The proponents of the dynamic discover claim that the
Web is by nature distributed and using a centralized directory contradicts this
approach. The proponents of the directory style of service discovery claim that ser-
vices have to be a lot more precisely defined and continuously searching the Web
for new services is not practical. Despite the upsides and downsides of each
approach it can be expected that both approaches will become relevant in different
contexts. A possible scenario is that the directory approach will prevail within orga-
nizations where services are under the organization’s control. The discovery
approach might be used on a Web scale for finding services initially.

However, the important aspect is that no matter how a service and its provider
was detected, it has to semantically match the expectations of the service consumer.
The more semantically precise the web service definition provided by a service pro-
vider, the better the service consumers can search for services.

9.5.5 Other Types of Semantics

In addition to the major three areas for semantics described so far there are other
areas, for example security, transactionality, trust, and more. Each of these addi-
tional areas require that a service consumer and a service provider understand each
other perfectly well in their expectations and functionality. Therefore it is possible
and necessary to ensure that semantically all parties involved in service invocation
and execution understand and agree with each other perfectly well.

An observation is that areas that are commonplace today require less work or are
already in a state where more work around semantics is not urgently required.
Examples are transactions as they have been in mainstream research and industrial

 9.6 Clinical Use Case 231

use for a long time. Other areas, like trust, are relatively new and require extensive
work in order to be understood well and consistently.

9.6 Clinical Use Case

Unless it is possible to start building an application like the clinical use case from
the very beginning, many infrastructure choices are made already by an organiza-
tion and any new development has to be put into the existing context for organiza-
tional, financial and efficiency reasons. Currently it is safe to assume that many
new developments in general are based on the traditional Web Service technology
as the predominant infrastructure choice for some time to come. Traditional Web
Service technology can be used in two roles. One role is being a distributed com-
puting infrastructure and the other role is being interface technology to existing
application system functionality. We discussed the former role first.

Semantic Web Services, as we will see later, are concerned about semantics on a
higher level, describing interfaces, data and goals in context of the application
functionality. They are not really concerned about the technical remote invocation
infrastructure or data storage technologies themselves. We therefore assume that in
the clinical use case the infrastructure is based on traditional Web Service technol-
ogy. This is achieved by nicely abstracting away from it in a general system archi-
tecture by defining a clear layer that implements this abstraction. One example is
the WSMX architecture (see Chapter 11). This architecture uses traditional Web
Service technology as a foundation for executing Semantic Web Services. The
Semantic Web Service designer does not have to be concerned about Web Service
technology as a foundation as this is not visible on a design level. Only Semantic
Web Services are visible and this is the only interface. The benefit of this approach
is that proven technology is used while the Semantic Technologies are layered on
top of those.

This is the reason that in the clinical use case traditional Web Service technol-
ogy is invisible on an application definition level. Only Semantic Technology is
visible and all requirements can be expressed through it. As Chapter 13 will show,
all services as well as data structures are purely defined using Semantic Web tech-
nology. Any underlying non-semantic technology is hidden while being used.

The second role of traditional Web Service technology is interfacing technology
to existing application systems. It can very well be the case that a clinic has one or
more application systems that are already implemented and in use based on tech-
nology from a few generations ago. In this case it is possible to wrap the applica-
tions’ interfaces through Web Service technology to make it accessible. Modern
SOAs or even WSMX are able to connect to those bridging the existing systems to
Semantic Web technology. In the clinical use case there is no system like this, how-
ever, it would be possible to include it.

In summary, for the clinical use case, we assume traditional Web Service tech-
nology as well as SOA as foundation layer for the execution of functionality. The

232 9 State of the Art in Web Services

specific clinical use case features are implemented using Semantic Web Technology
that is transparently mapped to the foundation layer.

9.7 Summary

In summary, the notion of “Web Services” is around for a few years at this point in
time and has entered mainstream development and use in commercial organizations.
The underlying principles, of course, are known for a long time and the Web Ser-
vice field can stand on those findings and results, take them up and refine them over
time. This is currently done by building a whole set of Web Service technologies
that allows remote communications including all necessary aspects like security,
reliability, or trust.

Since Web Service technology is considered a collection of technology compo-
nents, architectures for Web Services including methodology of how to use Web
Services properly are needed and very much in the initial works at this point in time.
This will make Web Services even more a basis for interoperable application devel-
opment.

The semantic aspects of Web Services are currently not part of the core technol-
ogy components. However, research efforts as well as standardization efforts exist
already with the goal to influence and extend the Web Service technology compo-
nents with Semantic Web technology. The following Chapter 11 outlines the current
approaches in a lot more detail.

10 Web Service Composition

Web Services are often invoked in isolation, meaning, a Web Service operation
provided by a Web Service provider is invoked by a Web Service requester. Based
on the input message, the operation provides the result in form of an output mes-
sage. However, in many cases an individual invocation is insufficient to achieve a
more complicated communication or execution scenario that a Web Service
requester needs to achieve, especially in the case of long-running communication
as discussed in Section 8.3. In this case, several Web Service operations have to be
invoked in a specified order to achieve the final outcome. For example, when an
invoice for a patient is to be put together, several services are invoked to retrieve
the patient’s address, to obtain the line items that require payment, to compute the
total amount the patient is liable for, and so on. The end state of the invoice is
therefore the result of a series of service invocations. Web Service composition is
the concept that provides a means for defining and executing explicitly long-run-
ning communication involving several Web Service invocations in an explicitly
specified way.

Section 10.1 introduces the concept of composition in more detail. Section 10.2
outlines dynamic composition as an alternative approach to static composition. The
Sections 10.3, 10.4 and 10.5 discuss how service composition is applied to B2B
integration, EAI and complex business logic, respectively. Standards in the area of
composition are discussed in Section 10.6 and Section 10.8 summarizes.

10.1 Composition

10.1.1 Motivation

Composition is not a new concept at all. On all levels of information systems engi-
neering, be it on an architectural level or an implementation level, the approach of
“divide and conquer” is predominantly used in order to structure a system at design
time. In principle terms, the functionality is organized in well-defined and well-
contained units that separate independent functionality from each other. Some are
base functions like managing an address (the “divided” parts or components), oth-
ers are tying the base functions together like constructing an invoice (the “conquer”
part or composition).

234 10 Web Service Composition

The divide and conquer approach supports many design features concurrently,
each of which is important and should be supported at the same time. One is func-
tionality abstraction where the interface and the implementation are clearly sepa-
rated. The interface defines the operations and (input/output) parameters in order to
interact with a component, whereby the implementation is hidden behind the inter-
face and implements the functionality of the component.

Modularization is the act of defining the components according to the contain-
ment principle, i. e., that a component should be responsible for one well-defined,
contained and complete set of functionality. Depending on the particular informa-
tion system in question the number of components might be low or high depending
on the number of concepts and functions that have to be implemented for these
concepts. Experience shows that the more the various components are independent
of each other the easier the composition of these components will be and their
future evolution.

Flexibility is another important feature for system design as business functional-
ity changes usually require one or several system changes in many cases. Ideally, a
specific change happens in a specific component, leaving other components intact
so that changes are only local to a component. This provides a huge amount of
flexibility as changes in many cases do not require revisiting a system as a whole,
but only small parts of it, requiring only minimal effort with minimal overall sys-
tem impact.

There are two main areas where composition is predominantly discussed in the
context of Web Services, communication and complex business logic. Composi-
tion in the context of communication deals with the interaction of different inde-
pendent entities like companies or application systems (the former one usually
termed B2B integration, the latter EAI). This type of composition ties together
existing systems as they are, independent of their location within an enterprise (the
EAI case) or in different enterprises (the B2B integration case). The challenge with
these systems is that they function independently and autonomously change their
state (autonomous systems), so the composition has to be aware and cognisant of
their autonomy.

Composition in the context of complex business logic does not coordinate inde-
pendently acting systems, but invokes business functionality directly that is not
part of another system, but only meant to be executed in the context of composi-
tions. For example, retrieving a patient’s address is used in many compositions, but
is not executed independently outside those compositions.

Composition is usually assumed to be explicit composition, meaning, that there
is a separate concept and implementation of “composition” that can be retrieved
and managed independently of the components it invokes. Furthermore, it is
assumed to be defined using a declarative language, for example WS-BPEL [266]
or other languages like those discussed in Section 10.6.

However, explicit composition is not the only possible approach as implicit
composition is possible, too. An implicit composition, for example using a pro-
gramming language, invokes components, too, and in the specified order. How-

 10.1 Composition 235

ever, it cannot be independently managed and is implemented by a programming
language. While this is a perfectly valid approach, explicit and declarative compo-
sitions are preferred due to the clear separation of the composition from the com-
ponents it invokes.

This motivation outlines the major corner stones that are relevant in the context
of composition while the next few subsections provide a more detailed discussion
of various aspects.

10.1.2 Definition of Composition

Independent of a composition being explicitly defined with a declarative language
or implicitly implemented with a programming language, the same technical con-
cepts have to be implemented and the same requirements fulfilled. Both cases are
summarized in a concept that is referred to as composition (or composing object).
The composition has an identity so it can be referred to it. At run time a composi-
tion can be instantiated many times so that it can be executed concurrently for dif-
ferent purposes or business cases. Following the example above, the invoices for
many patients can be put together concurrently through as many concurrent execut-
ing compositions as necessary e.g. one for each patient.

This in turn means that the components that are composed by the composition
can be invoked concurrently many times. Components that are invoked by a com-
position are referred to as composed objects or composed components. Since it is
possible that a specific component invocation fails (retrieving an address for a non-
existing patient), compositions and the composed components cannot only be in
different states of execution, but also in different states of error or failure situa-
tions. It is assumed that the execution infrastructure is able to handle this concur-
rency without any problem.

A composition has to define the order in which it invokes components. This
invocation order can be sequential, but can also include conditional branching or
parallel branches as well as loops. If the order is not relevant, the order can be ran-
dom, too, or unspecified (and it will be accomplished through other constraints like
data availability or resource availability). Control flow constructs in a composition
are very much like those that have been introduced by the workflow community
for quite a while [269]. Other, more current efforts are for example WS-BPEL
[266], OWL-S [272] or WSMO [276].

In order to make a composition useful the order of component invocations has to
be established as well as the data that the components receive and return. And as
different composed components work together, the output data of one might be the
input data of another one. For example, retrieving the address of a patient requires
a patient identifier. Once the address has been retrieved, it has to be passed on to
the component that puts together the invoice in order for the correct address to
show up for a given patient. So the output of the address retrieving component has
to flow to the component that puts together the invoice.

236 10 Web Service Composition

Traditionally data flow is not modeled explicitly like shown in MOBILE [269],
but implicit like in WS-BPEL [266]. However, explicit or implicit, all mandatory
input parameters of the composed components have to be bound. Figure 10.1
shows the main concepts of composition.

Fig. 10.1. Conceptual elements of Composition

A composition does not only retrieve data by invoking components, but compo-
nents themselves also update data in data sources like databases or application sys-
tems. In enterprise settings this requires transactional control so that the database
updates that a component executes take place completely or not at all. In case of
failures data must stay consistent and not become corrupted. This means that com-
ponents have to be transactionally controlled and executed in transaction contexts.

In addition, as discussed above, compositions themselves have state. A compo-
sition invokes components according to the defined control flow between the com-
ponents. If one component’s invocation is finished, the composition’s state
changed and it needs to advance to invoke the next composed components. This
state must be stored, too, in order to be able to recover to this state in case of fail-
ures. For example, if the system crashes that executes the composition then the
crash should not compromise the state the composition reached up to this point. At
restart time, the composition needs to recover to the last consistent state it reached.
Therefore, a composition’s state change needs to be transactional, too, in order to
establish a consistent state.

This transactional behavior, i. e., that a composition has internal states that are
transactionally committed, is also called long-running transactions. Each step
along its execution is recoverable while each state transition (invocation of a com-
ponent) is transactional, too. In this sense, multi-step EAI or B2B transactions are
long-running transactions. Complex business logic, however, does not necessarily

Composition

Composed
Components

Data and
Control Flow

End

Start

 10.1 Composition 237

have to follow this principle as in a complex business logic it might not be neces-
sary to transact every state change, but all component invocations in one “big”
transaction. The reason for this is that complex business logic might be invoking
several components that all should be executed as a unit. For this to happen it is
necessary that a composition can be configured to be a long-running transaction or
to invoke all components inside a single, possibly distributed transaction (distrib-
uted transactions are needed in the case when several independent databases are
involved in the composition).

As indicated above, each invocation of a component can fail and this error has
to be recognized by the invoking composition. The composition has to decide how
to respond to an error, by retrying or by passing on the error to its own invoker. If
the error cannot be resolved, and if at the time of error several previous invocations
were successful, it might be necessary to compensate for already achieved and
committed invocations [268]. This compensation has to undo already committed
states in order to ensure that after the compensation finishes it leaves a consistent
data state. For example, if the insurance benefits structure of a patient changes at
the time an invoice is put together it might be necessary to invalidate an already
produced invoice (before it is sent out) to recreate it based on the new benefits
structure. Since the original invoice was already stored and committed, it has to be
marked invalid (the compensation) and superseded by a new version based on the
new benefits.

The concept of composition is general and can be applied to Web Services, too.
The next subsection will highlight the specifics in the context of Web Services.

10.1.3 Web Services and Composition

In short, a Web Service composition is a composition where the invoked compo-
nents are Web Services. The composition therefore uses exclusively Web Services
in order to achieve its own goals. All the general principles and definitions from
the previous subsection apply.

Web Services following the WSDL model have several interaction patterns, like
one-way or request-reply invocations. Compositions have to be able to use any of
the invocation types, of course. From a composition viewpoint this means that it
needs to be able to invoke Web Services as they are defined by their providers. For
example, if the provider has a request-reply pattern, the composition must be able
to issue a request message and be contacted by the Web Services for the reply mes-
sage as this is an asynchronous pattern.

In addition it can be asked if the composition is a Web Service itself. In general,
this can be the case, but does not have to be the case. A composition can be imple-
mented as a Web Service itself. In this case the invoker assumes to be invoking a
Web Service. However, as it is a composition, it in turn invokes other web ser-
vices. But a composition does not have to be a Web Service itself, it can be of a dif-
ferent nature, like for example a java class invoking Web Services as invoked
objects.

238 10 Web Service Composition

An interesting question is if a composition can mix and match components that
are implemented as Web Services as well as implemented in other ways, like Java
classes. The answer is a clear “yes” and “no”. For example, the Oracle BPEL pro-
cess manager [275] shows how this can work. It only allows Web Services to be
integrated into the Web Service composition. However, through the Web Service
Invocation Framework (WSIF) [284] it allows Java classes to appear as Web Ser-
vices through different bindings. So from a composition viewpoint in this case only
Web Services are invoked. However, from the viewpoint of the Java class it
assumes it is invoked directly. Through the WSIF framework an indirection is pro-
vided that freely allows the use of different types of components, while the compo-
sition assumes that only Web Services are invoked.

10.1.4 Choreography and Orchestration

There is a lot of confusion and discussion around the terminology of choreography
and orchestration [279]. Independent of this (ongoing) discussion, technically there
are two sides of a composition that can be observed and are relevant and must be
discussed independently from the discussion cited above.

A composition invokes invoked components one after another as specified by
control flow and data flow. In this sense it makes components work together in a
specific way (and the components are not aware of each other). The order of execu-
tion, the selection of which components to invoke and the particular handling of
errors or exceptional situations are fully controlled by the composition itself and its
internal knowledge. In order to use a composition successfully it is not necessary to
know or even to understand its internals. For example, if invoices for patients
needs to be put together, the requester is only interested in the invoices and in those
cases where there was an error and why there was an error. The details behind the
composition that puts together invoices are irrelevant for the requester of the
invoices. So the outcome of the composition is important, not its internal imple-
mentation.

The other side of a composition is its behavior in relation to the requester of it
itself. As mentioned in the example, the invoker of the invoice producing composi-
tion is interested in the possible outcomes, or in other words, the externally visible
behavior. In this particular example the outcome can be a (potentially empty) list of
invoices and a (potentially empty) list of patients for which it was not possible to
put together an invoice together with reasons. In a more advanced case it could be
that the composition asks back for details in order to put together an invoice. For
example, if the insurance of a patient is not responsible any more the composition
could ask back if an alternative insurance is to be used (instead of assuming that
this situation represents an error).

In summary, a composition has an internal behavior that invokes components in
a specific order and has an external behavior that defines how it interacts with its
own invoker. One way to try to clear up the confusion would be to call the internal
behavior “orchestration” and the external behavior “choreography”, but that would

 10.2 Dynamic Composition 239

be only one more contribution to the discussion. In this sense the jury is still out on
the precise definition of the two terms.

10.2 Dynamic Composition

Compositions have to be designed and their internal behavior specified. The com-
ponents or Web Services to be invoked have to be identified, their interfaces under-
stood and then their invocation order defined using control flow and data flow
directives. In general, this is a design task leading to a composition implementa-
tion. Independent of the explicit or implicit approach, in the end a software engi-
neer or developer manually specifies the composition, tests it and releases it into
production based on a release schedule. This specification can be created using a
declarative or procedural programming language. Alternatively, graphical design
environments are available for it, too.

When designing compositions manually it is the software engineer who has to
ensure that the composition not only works syntactically, but also semantically in
the sense that the execution of the composition at run time “makes sense” and leads
to a desirable state of the business (i.e., its application systems as well as data and
processes). In this case the graphical design environment or the run-time environ-
ment for compositions is not able to verify if the composition design is leading
toward this goal. Semantic Web Services, as discussed in a later Chapter, will
address specifically how Semantic Web technology is used in order to support not
only syntactical but also semantically correct composition.

This manual specification of a composition leads to static compositions in the
sense that their internal behavior is fixed at design time. At run time it cannot be
changed and only instances of the fixed definition can be created and executed, as
discussed already earlier. Any necessary change has to be applied to the static com-
position design and again released according to the release schedule into the pro-
duction environment. Already running instances are not affected by the change.

Of course, through conditional branching the static compositions can adjust to
conditions at run time so that specific components are only invoked when the con-
ditions hold. However, in this case all conditions have to be defined at design time
as well as all the components that might be invoked. While it is possible in many
cases to enumerate all possible conditions, often it is not.

Manual composition design is not the only approach, however. Approaches
from the planning community exist that allow a composition be dynamically con-
structed (and executed) during run time. In principle this works through an infra-
structure that can be given a formal goal. The infrastructure, or planner, examines
the goal and retrieves those components that either can fulfill this goal directly or
are considered a partial solution to achieve the goal. In the former case the solution
is given by executing the component. In the latter case the planner searches for
another component that in tandem with the already found one can achieve the goal.
This would be the beginning of a composition with two components. Of course, it

240 10 Web Service Composition

can be that several additional components are necessary. Or, in the worst case,
there are no components found, in this case the goal cannot be achieved automati-
cally.

[267] puts the discussion of pure planning in the context of Web Services and
outlines specific problems in context of this technology. One problem is the data
heterogeneity. How does a planner know that e.g. a date of 2/20/2008 corresponds
to a date of 20.2.20? To resolve this syntactic mismatch a data transformation
engine is required that knows how to format a date in American syntax into a data
in the Japanese Imperial date format and vice versa. In addition, Web Services
allow side effects that are not known or visible at the interface. How can a planner
take this into consideration? To resolve this issue a more elaborate interface defini-
tion is required that captures the side effect while the data changes are invisible at
the interface level at run time.

Dynamic composition specification through planning is not available yet in
industrial mainstream implementations of service composition. Currently it
remains in the domain of research or very specific problem domains. Additional
references in this space are [273] and [283]. [280] show additionally how a plan
maps to composition languages like WS-BPEL (see Section 10.6 below). In the
discussion that follows we assume a manual composition design, not an automatic
one.

10.3 Business-to-Business Communication

The main characteristics of B2B communication is the conversational exchange of
business data between trading partners. One trading partner starts the communica-
tion and the other trading partner responds. Many of these exchanges take place
according to a predetermined protocol that in the end form a conversation with a
defined end state that reach a positive (or negative) business agreement. Each inter-
action requires one trading partner to send a message containing the business data
and the other trading partner to be ready to receive the message. In addition,
depending on content or other conditions, different types of messages might be
sent as well as a different number of messages. For example, a fulfillable order
might be acknowledged, an unfulfillable one might be rejected, maybe containing
data indicating what could be fulfilled instead.

Composition is an ideal approach for all involved trading partners to design
their part of the overall communication protocol. Each trading partner has its own
composition whereby each sending of a message of one trading partner corre-
sponds to the receiving of a message at another trading partner. In this sense the
compositions are complementary. If the composition of a trading partner does not
accommodate a message that is sent by the composition of another trading partner,
an error occurs and the conversation might not be successful.

If one trading partner can conditionally send different messages, the other trad-
ing partner needs to be able to receive any of those at this stage of the composition

 10.4 Application-to-Application Communication 241

as it does not know the result of the condition evaluation. If each receiving activity
is designed as a component invocation (for example, a blocking invocation that
returns when a message is received), then several component invocations have to
be concurrently take place in order to receive several messages.

In the context of Web Services, the sending as well as receiving of messages can
be implemented as Web Service invocations that span across the Internet between
the involved trading partners. A trading partner sending a document to another one
does this through a Web Service invocation. For example, a hospital sending a
claim to a health insurance company can do so by invoking a Web Service at the
insurance and providing the invoice as input message to that Web Service.

Composition is therefore a good way to implement B2B protocols, especially in
the Web Service context.

10.4 Application-to-Application Communication

B2B integration and Enterprise Application Integration (EAI) are very similar in
nature to the extent where the exact same composition concepts can be applied.
Like in B2B integration, different components are invoked that either retrieve from
or update data into application systems. These invocations have to happen in a spe-
cific order, too, in order to arrive to a consistent business outcome. Application’s
internal processes or execution states have to be ready, too, to receive data, so that
the order of communication between a composition and application cannot be ran-
dom but must be well defined.

However, there are some interesting differences between B2B and EAI that are
important to mention here. They do not impose specific requirements on the con-
ceptual model of composition, however, they apply composition concepts in differ-
ent ways.

EAI connects application systems and databases that are managed by enterprises
internally. These are available on the local network and because of data consis-
tency it is very important that any data access is done under transaction control. In
an EAI context the invocation of application systems from compositions is per-
formed under transactional control. Transactions across company boundaries are
not ready yet for a wide deployment, so “access” to trading partners is non-transac-
tional at present.

Due to missing transactions in B2B interactions the communication is based on
the request/reply pattern. So every non-transactional message sent is answered by a
non-transactional acknowledgement message as a general principle. Together with
proper setup for time-out it is possible to at least guarantee that messages are
received by the recipient. In an EAI context, the communication with application
systems or databases is transactional. Therefore, the composition knows if an invo-
cation was successful or not and, in consequence, one-way invocations are suffi-
cient and no independent reply messages are necessary.

242 10 Web Service Composition

Another topic that is often seen as a differentiation between B2B and EAI is
security. The perception is that security is really important when crossing compa-
nies’ boundaries, but not when applications are accessed. However, in many cases,
especially with larger organizations, accessing an application system is as secured
as communicating with a trading partner. So in the general case, security is
required and cannot be dropped or ignored at all.

In B2B integration every partner that is part of the B2B communication has its
own composition that it is following, complementary to the one the trading partner
it is communication with. So, for a binary B2B communication, two compositions
are involved. EAI is assumed to be different in the sense that only one composition
can connect all required application systems. There is no need for several composi-
tions per se. While this is the common perception, in reality it does not reflect the
nature of application systems. Those by themselves expose behavior that can be
captured by a composition. The EAI case therefore is really tying together the com-
positions of the various application systems; [Bussler 2003] discusses this in detail.

Sometimes it is argued that application systems internally implement their own
compositions. Looking at application systems in detail shows that application sys-
tems internally have business processes implemented as workflows. These are very
similar to compositions in the sense that different application system internal com-
ponents are composed so that the application system can implement complex inter-
nal logic. This internal workflow or composition, however, is not externally visible
as such as it is completely executed internally within application systems. Only if
application system logic needs data from outside the application system this need
surfaces on the application system boundary. At that point the application systems
in waiting for data from a source that is external to it. The same can happen if the
application system makes data available to the outside world. In this case an exter-
nal program or service has to access the application system to retrieve the data.

Only when the application system provides or requests data externally, can an
external composition interact with it because only then does the application system
logic wait for interaction. In all other cases the application system does not recog-
nize outside activity and therefore the introduction of any required interaction with
an external composition would require a change to the application system itself.

In summary, composition can be used to achieve application integration in the
sense of EAI with the same concepts that can achieve the integration of businesses
implementing B2B integration.

10.5 Complex Business Logic

In addition to B2B integration and EAI there is the third case where the required
business logic is not implemented yet at all by trading partners or application sys-
tems. In this case a design has to be established that outlines how the business logic
is implemented, as components, as composition, or both, possibly involving appli-
cation systems or B2B partners.

 10.6 Standards and Technologies 243

Whenever different functionality has to be combined, like retrieving a patient’s
address and line items for an invoice the question arises if this should be done by a
composition or hidden inside a component itself. On various levels of abstraction
combination of business logic happens that needs to be implemented.

It would be very powerful to have one mechanism of composition for all levels
of composition, be it on the highest level (like tracking and driving the process of
how a patient is treated in a hospital) or the most detailed level (like retrieving the
various elements of a patient’s address). Having stated this wish it must be under-
stood that the various levels have different characteristics.

On the higher levels compositions behave like long-running transactions where
each component invocation is persisted recoverably. As the composition
progresses through its component invocations it persists its own state after each
component invocation so that the overall system state is consistent (and recover-
able).

On lower levels this behavior might be the same, but there is also the other
behavior required where the invocations of all components is tied together in one
single transaction. Instead of long-running transaction behavior the behavior of a
single transaction is required. If a composition is a single transaction then it
appears itself as a component that does not have internal state that is persisted in
individual steps.

Having a composition model that at the same time can implement long-running
transaction behavior as well as single transaction behavior would be extremely
helpful in system design. It would allow the system construction to be independent
of the underlying technology and transaction behavior could be set according to the
needs.

10.6 Standards and Technologies

There are several composition languages proposed by various groups for the
explicit definition and execution of compositions. They can be roughly divided
into syntactic and semantic languages. The semantic languages for composition are
discussed in Chapter 11 (Semantic Web Services) and Chapter 12 (Semantic Web
Standards).

The syntactic languages are briefly reviewed in the following as they do not
address the main topic of the book. Also, many languages have been proposed over
time (the last 20 years actually). However, most of them became obsolete in the
sense that they never made it into software products (or if they made it into prod-
ucts, they are currently superseded by the standards discussed next). In the follow-
ing we restrict ourselves to those that are currently very visible and in the process
of being either implemented or already in use by enterprises.

244 10 Web Service Composition

10.6.1 Web Services Business Process Execution Language (WS-BPEL)

The Web Service Business Process Execution Language (WS-BPEL) [266] is cur-
rently the most prominent language for composition. Historically it has its roots in
mainly two languages, XLANG [278] proposed by Microsoft and WSFL [271]
proposed by IBM. Wikipedia [281] states:

“IBM and Microsoft had each defined their own, fairly similar, 'programming in
the large' languages, WSFL and XLANG, respectively. IBM and Microsoft decided
to combine these languages into a new language, BPEL4WS. In April 2003, BEA
Systems, IBM, Microsoft, SAP and Siebel Systems submitted BPEL4WS 1.1 to
OASIS for standardization via the Web Services BPEL Technical Committee.
Although BPEL4WS appeared as both a 1.0 and 1.1 version, the OASIS WS-BPEL
technical committee voted on 14 September 2004 to name their spec WS-BPEL 2.0.
This change in name was done to align BPEL with other Web Service standard
naming conventions which start with WS- and accounts for the significant
enhancements between BPEL4WS 1.1 and WS-BPEL 2.0. If you are not discuss-
ing a specific version, BPEL is sufficient.”

In fundamental terms, BPEL is a XML-based language for the definition of
long-running processes and compositions. BPEL is targeted to integrate services of
one, two or more parties in order to achieve complex integration patterns. In order
to differentiate between the observable behavior and the internal implementation of
the composition BPEL supports the notion of abstract (or public) processes that
define the observable behavior and executable (or private) processes that imple-
ment the processes. Abstract processes cannot be executed, while executable pro-
cesses can be.

The services of different parties that are integrated through a BPEL process
have to comply to the WSDL interface definition language. Using the WSIF [284]
approach to binding of implementations ensures that not only Web Services can be
integrated, but also other forms of implementations like programming language
concepts (EJBs for example). Not only does BPEL utilize WSDL specifications of
services, its internal data flow model is based on XML, too. This in turn makes
BPEL use XPath as access path definition of data elements as well as XSLT trans-
formation to transform data from one into another data model.

A process defined with BPEL is a reusable entity that can be used as subprocess
within another process. This way it is possible to encapsulate specific process
behavior in fragments of processes that can be combined later on to more complex
and comprehensive processes.

Errors and faults can happen during process execution and BPEL provides for
fault handlers that define the process behavior at execution time when an invoked
service does not return or return with an error message.

BPEL has more detailed features as a complete process definition language that
can be found in [266]. BPEL is currently “the” process execution language and it
supported by all major software vendors.

 10.6 Standards and Technologies 245

10.6.2 Business Process Modeling Notation (BPMN)

The Business Process Modeling Notation (BPMN) [274] was developed with the
clear direction and goal to be a modeling notation for modeling business processes
so that several stakeholders have a common language to communicate require-
ments, solutions and insights. The scope clearly excluded related models that are
models in their own right like organization structures, data models, and so forth.
BPMN references those, but does not provide modeling language constructs for
those.

Like BPEL it supports the notion of abstract (public) and private (internal) pro-
cesses, but it also adds the notion of collaboration (global processes). Collabora-
tions define how different parties relate to each other and how the message
exchange patterns look like that are established between the parties.

BPMN provides a graphical notation with the expectation that this will make the
understanding and communication a lot easier then a text-based language using
XML or similar approaches. The graphical notation has four categories of dia-
grams: flow objects (like events and activities), connecting objects (like sequence
and message flows), swimlanes (like pools and lanes) and artifacts (like data
objects and annotations). These graphical modeling symbols are used to draw pro-
cess diagrams. As these symbols are defined, the meaning of the process diagrams
becomes clear. BPMN has a comprehensive set of modeling constructs that are
introduced in the specification document [274].

Like in BPEL, it is possible to define compensating actions for activities in case
they fail or result in an error. Having this specification at a process modeling level
is as important as on an execution level as it is necessary to establish a consistent
state in presence of failures.

The ultimate situation would be if a graphical notation like BPMN could be
mapped to an execution-oriented language like BPEL. In this case it is possible to
not only model the processes, but also to execute them according to the graphical
model. A formal mapping from BPMN to BPEL exists in order to enable this map-
ping and several software vendors support the automatic generation of BPEL pro-
cesses based on the BPMN notation.

10.6.3 Web Service Choreography Description Language (WS-CDL)

The Web Service Choreography Description Language (WS-CDL) [270] is a spe-
cialized language for defining the behavior between collaborating parties. It
describes the common and observable behavior of the parties, independent of how
this behavior is implemented internally within the involved parties. Once the com-
mon behavior is defined the description can be used as the basis for a contact
between the involved parties.

WS-CDL is an XML based language that provides the language elements neces-
sary to define behavior between parties. Amongst the elements are role type, rela-
tionship type, participant type, information types, activities, exceptions, and

246 10 Web Service Composition

choreography. These various elements allow the definition of the precise interac-
tions between parties.

WS-CDL is not (yet) implemented by the main software vendors. There is no
official reason or justification for this lack of implementation. At the same time
WS-CDL overlaps with BPMN as well as BPEL as the latter languages also claim
to be able to model the behavior of interacting parties.

10.6.4 Java Business Integration (JBI)

The three above introduced languages, WS-BPEL, BPMN and WS-CDL, are lan-
guages that can implement compositions or processes. Once these languages are
implemented and a run time environment is provided for their interpretation, com-
positions can be implemented.

Although these languages are generic with respect to a particular domain like
supply chain, healthcare, and so on, it is not clear if they can implement all possible
requirements from all domains. It might be very well the case that in a particular
domain a requirement exists that cannot be implemented by these languages out-
of-box. For example, [282] provides some control flow patterns that cannot
directly be modeled by BPEL. In order to achieve those patterns a workaround
would be necessary outside the language definition.

This situation is addressed by Java Business Integration (JBI) [277] in a very
different way. Instead of defining a modeling language, JBI provides an integration
programming language interface that allows a plug-and-play functionality of proto-
col implementations based on WSDL. This is based on the idea that basically all
long-running protocols and interactions are based on fundamental one-way or two-
way message exchanges. JBI provides the notion of an environment that supports
basic message exchanges between components. The current and modern acronym
is ESB (Enterprise Service Bus).

Any component can be plugged into this JBI environment as long as it conforms
to the WSDL message exchange types. A component itself then can implement any
long-running functionality that might be required. JBI in this way decouples the
implementation of composition functionality from the communication with com-
ponents.

For example, a JBI plug-in can be built that allows the execution of BPEL. At
the same time another plug-in can be built that allows the execution of WS-CDL.
Both of these plug-ins can communicate with a JBI implementation at the same
time and messages can be exchanged as required. JBI therefore allows any number
of composition languages and approaches be present at the same time.

From a customer perspective this provides the ability to implement composi-
tions in the appropriate way, independent of the specific domains.

 10.7 Clinical Use Case 247

10.7 Clinical Use Case

Composition and all its aspects around dynamic discovery and mediation are a cen-
tral requirement in the clinical use case. The detailed definition of the composition
using Semantic Web Technology is precisely detailed out in Chapter 13.

The reason for using composition in the clinical use case is that functionally a
process takes place starting with a patient encounter until the patient receives ther-
apeutic guidance. All steps to derive to the therapeutic guidance are in a logical and
causal sequence. Composition can express this nicely.

The composition defines the process flow while the services needed along the
way are dynamically bound to the process. In contrast to workflow management
systems, the flow is defined by goals so that dynamic binding of services becomes
possible. In the end, while a composition is executed for a specific patient, the ser-
vices needed are dynamically bound.

In addition, the clinical use case has several situations in which data has to be
mediated between the composition’s ontologies and those used by the services.
This will be solved, too, with the composition definition. And, as in a real imple-
mentation, process mediation is necessary, too, as some services have a different
external visible behavior then the composition definition assumed. Several process
mediations are shown in the detailed definitions.

The composition as it is defined does not assume that only those services can be
used that are locally available within the hospital. While this might be the first
phase, it is possible to use external services with the same definition as the discov-
ery of services is independent of their implementation location. This enables the
hospital to enlist a variety of competing services over time without invalidating the
composition needed.

In summary, the clinical use case requires the full power of composition and all
its aspects. The detailed definitions in Chapter 13 show how all aspects are mod-
eled and used for the use case.

10.8 Summary

Composition as a concept is a very powerful tool in order to structure complex
business logic, be it B2B integration, EAI or complex computation. Long-running
transactions are the norm in business information technology and implementations
of composition through composition languages or frameworks are essential for the
information technology infrastructure.

For the time being manual composition will be predominantly used in the gen-
eral cases, dynamic or planning-based composition is not yet mainstream in soft-
ware products. However, it might be very well the case that in the long run the
sheer size of available services on the Web becomes useful and manageable.

The main problem in composition is the semantic consistency in terms of the
data and services involved and most of the development time is spent to achieve

248 10 Web Service Composition

semantic reliability. This area provides an enormous room for improvement that
Semantic Web Services plan to achieve.

11 Semantic Web Services

Semantic Web Services focus on extending traditional Web Services such that their
meaning is embedded in the syntactical description. A lot of work, especially in
academia, is devoted to this space and the current status and achievements will be
highlighted in this chapter. In Section 11.1 the reasons for Semantic Web Services
and the main extensions to traditional Web Services are introduced. While some
efforts are based on the development of Semantic Web languages, other efforts that
are introduced in Section 11.2 use alternative approaches. Section 11.3 discusses in
detail the current Semantic Web Service approaches that are based on the technolo-
gies developed in the Semantic Web community. Two very “hot topics” in the
space are discovery and composition, both of which are discussed in Section 11.4.
Section 11.6 provides a summary.

11.1 Semantics of Web Services

Semantic Web Services attempt to increase the usefulness of Web Services by
extending them with semantic descriptions. The main areas for extension are inter-
face descriptions incorporating semantic annotations, and the modeling of precise
state information of Web Services (especially for long-running interactions).

11.1.1 Why Semantic Web Services?

Web Services, as a technology for application-to-application (A2A) integration
over the Web, achieved a big step forward by using XML as its fundamental lan-
guage. XML has revolutionized the way data is exchanged and represented across
the Web. It provides a standard language for describing document types in any
arbitrary domain, facilitating the sharing of data across different systems and, most
notably, the Web. XML is flexible and extensible, allowing users to create their
own tags to match their own specific requirements. As a result XML-based lan-
guages have been designed for use in many different fields. In the context of Web
Services, WSDL is used to describe both interface and implementation details;
SOAP is used to define messages sent to and from services while the datatypes,
used in the content of the SOAP messages, are defined using XML Schema.
Despite its universality, there remain serious deficiencies in XML as the language
for Web Service interactions. XML is a language for defining the structure and

250 11 Semantic Web Services

syntax of data. It says nothing about the meaning, or semantics, that is associated
with the data. This hinders a potential service client from using a particular Web
Service because the need remains for a human to be involved to interpret both the
XML descriptions of the Web Services (WSDL) as well as the XML descriptions
of the data that the Web Services can exchange (XML Schema). The human has to
decide if the service matches his or her needs and whether or not he or she can
understand the data that should be sent to and received from the service.

As a consequence of the semantic ambiguity inherent in XML descriptions, a
number of further problems arise, particularly when Web Services are to be consid-
ered as the basis for automated A2A integration. One problem is the location of
Web Services for them to cater to a specific capability required by a potential cli-
ent. The UDDI specification, amongst others, provides for a registry of service
descriptions. However, the descriptions are not formalized and are only useful
when interpreted by a human reader.

Automated data transformation is another issue. If the data definitions used by
the Web Service do not match those used by the potential client, a transformation is
required and this is typically encoded using the eXtensible Stylesheet Language
(XSLT). For each pairwise transformation between a client and service two XSLT
style sheets are required, one for each direction. Both must be hand-coded as there
is no automated means for interpreting the data semantics. This has to be repeated
for each client having heterogeneous data definitions.

The WSDL specification provides a means for all the publicly available opera-
tions offered by a Web Service to be described. In business processes, services are
typically required to offer a complex behavioral pattern. RosettaNet is a B2B stan-
dard defining inter-company processes, including structure and semantics for busi-
ness messages and secure transportation of messages over the Internet. RosettaNet
defines various Partner Interface Protocols (PIPs). One example is PIP 3A4 for the
exchange of purchase order (PO) request and confirmation messages between trad-
ing partners. The PIP defines four messages, PO Request, PO Confirmation and
two signal messages to acknowledge the receipt of the request and the confirmation
respectively. A Web Service conforming to PIP 3A4 needs to be able to define not
only the messages and operations but also the control and data flow between the
messages. This is not possible using WSDL alone as the definition of control and
data flow between WSDL operations is not possible.

Moving on from the previous point, if one Web Service is defined to support the
RosettaNet PIP 3A4 B2B protocol and a potential client supports a different B2B
standard such as Electronic Business XML (ebXML), then mediation is required
between the behaviors defined in terms of the two B2B protocols used by the client
and the server respectively. As the public behavior offered by a Web Service is
only informally described, there is very limited possibility for automating the
mediation task.

 11.1 Semantics of Web Services 251

11.1.2 Interface vs. Implementation

An enduring problem in computer science is how to model and design software
solutions to problems in terms of the problems themselves rather than in terms of
the specific computer machinery required. The notion of abstracting away from the
underlying computer machinery is the basis for the evolution from programming at
the assembly code level, to languages like C and FORTRAN, and further to declar-
ative languages such as LISP, or object-oriented (OO) languages such as Smalltalk,
C++ and Java. With OO languages elements in the domain of the problem are mod-
eled as objects that can cooperate together to solve the problem at hand. Objects
are typed, have states, and can send and receive messages to and from each other.
Another underlying concept in OO programming is the separation of what an
object can do from how the object achieves this functionality. This is provided for
by the separation of interface and implementation. The interface is the public face
of an object describing the data and behavior that the object makes available to
other objects so that they can invoke its functionality.

Web Services also offer the separation of interface from implementation through
the WSDL descriptions. The definition part of a WSDL document defines the
datatypes, messages and operations that together define how to access the function-
ality offered by the service. WSDL also has a section for binding descriptions. This
defines the Web location at which the service can be accessed in addition to the
communication and message protocols that should be used for message exchange.
Although, in this respect, Web Services seem similar to objects with separated
interface and implementation, a major difference is that Web Services generally do
not maintain state. In other words, rather than building on the OO-influenced
remote method invocation (RMI), they build rather more on the earlier remote pro-
cedure call (RPC) technology.

As the WSDL definitions are fundamental in allowing potential users of a Web
Service to determine how to interact with that service, it is imperative that this
information be unambiguously defined. There are two aspects to consider, data and
behavior. In WSDL, the recommended technology for the definition of datatypes is
XML Schema. The WSDL schema itself provides the means for describing behav-
ior. The drawback for Web Services is that as neither aspect of interface description
results in unambiguous meaning, computer systems are blocked from being able to
interpret and reason over the description. This, in turn, restricts the opportunities
for automated Web Service discovery, composition and invocation, leading to a
strong motivation for semantic annotations.

11.1.3 Modeling of State

Long-running business processes are quite common in the real world. Airline res-
ervation systems usually allow holds to be placed on seats for a 48-hour period
before they must be confirmed. In supply chain management software, an order for
goods may be made from customer to supplier. Fulfilling the order might require

252 11 Semantic Web Services

parts to be ordered from a third party. The initial purchase order request remains
open until a confirmation message can be sent back from the supplier. It is possible
that this may take a number of hours or days. Additionally, the conversation
between both partners may require several (possibly asynchronous) messages back
and forth. In such cases, it makes no sense for the business partner making the
request to block its software systems while waiting for a request to be completed.
Instead a token is often shared between the trading partners that can be used to
identify the state of the process at the provider’s end.

As a result, it seems natural for Web Services that may be involved in long-run-
ning interactions to support the notion of state. This is sometimes considered as an
attempt to map the distributed computing architecture of a specification like
CORBA onto the Web, where a “factory” resource can be used to provide identifi-
ers to new or existing sessions on request. However, there is no specific mecha-
nism defined in WSDL for this purpose. In fact there is a strong argument from the
Web community that Web Services, as resources available over the Web, remain
stateless following the REST architectural style [299]. However the issue of how to
deal with long-running Web Services remains. One approach, from the Grid com-
munity, is the Web Services Resource Framework (WSRF) [300], a family of spec-
ifications that combine a stateful resource to a Web Service through interfaces
defined as part of a WSDL service description. WSRF relies on the WS-Address-
ing [301] specification as a means for providing the target endpoint for a message
sent to a Web Service implementing the WSRF interfaces.

For businesses providing a service that, for example, handles purchase order
requests, a hybrid approach involving document-style Web Services and business
standard specifications is sometimes adopted. For example, if both partners to a
business interaction agree to use the RosettaNet6 specification for handling pur-
chase orders (POs), they may agree to use a common order identification system.
The WSDL definition for the service would then define that an incoming PO docu-
ment should contain a typed XML element representing the PO identifier. The Web
Service interface would remain stateless and simply pass received messages to the
back-end systems designed to handle large volumes of concurrent PO requests.

Taking the example of the previous paragraph as typical usage of Web Services
in stateful interactions, there is a strong motivation for the formalization of indus-
try B2B specifications through the use of ontologies. The Semantic Web Services
machinery could then be employed to automatically tackle interoperability issues
between such ontologies at the conceptual level. Mappings would still be required
but only to be established between concepts in related ontologies rather than on a
one-to-one basis between data instances: the main drawback of using XSLT.

6. http://www.rosettanet.org/ (Accessed September 10, 2007).

 11.2 Alternatives for Capturing Semantics of Web Services 253

11.2 Alternatives for Capturing Semantics of Web Services

Using the technology of ontologies to extend traditional Web Services is usually
mainly targeted at the definition of the data contained in the messages exchanged
by Web Services. One of the important characteristics of Semantic Web Services is
their potential to improve on the existing Web Service model when it comes to
describing behavioral semantics. Web Services are touted as the basis for a new
wave of distributed computing over the Web, taking off from where CORBA [302]
and DCOM [303] left off for intranet- and extranet-based distributed systems. Two
aspects of behavior requiring a formal operational semantics for Web Services are:

• The external interface the Web Service offers to its potential clients
• The internal definition of the composition of other Web Services a particular

service might use to achieve its objectives

Especially in the area of long-running Web Services and composition, a set of
alternative technologies and formalisms is used to define precisely the meaning of
execution. This is discussed in the following.

11.2.1 Finite State Machines

Finite State Machines (FSMs) are one of the oldest techniques [293][294] in com-
puter science for modeling sequential behavior that depends not only on inputs but
also on the state a system is in when an input is received. FSMs consist of five ele-
ments: states, state transitions, conditions, input events, and output events. A state
provides information about something that has already happened. Transitions indi-
cate a change of state and are described by a condition that, when fulfilled, results
in the transition. Actions are activities that are performed at a given moment. For
example, different types of activities are when a state is entered (entry), when a
state is exited (exit), when a transition occurs (transition) and when an action takes
place (action). FSMs can be drawn using statecharts or by state transition tables.
Both illustrate the state that an FSM can move to given a current state and set of
inputs.

Finite state machines are rule-based and thus are suitable for problem-solving
algorithms. They are of two types. Deterministic FSMs are those for which, given a
state and set of inputs, the next state can be predicted. Non-deterministic FSMs are
those where the next state transition cannot be predicted given an initial state and
set of inputs, and an unpredictable external event may affect the FSM. Addition-
ally, there are two models defined for state machines, Moore and Mealy. Moore
machines are those where outputs are a function of the state only. Mealy machines
are those where outputs are a function of both the state and the inputs. In [295],
Hendler recognizes FSMs as a potential useful means to model the process model
for Web Services. Additionally [296] and [297] propose FSMs as a useful mecha-

254 11 Semantic Web Services

nism to model the internal and external behavior of services as a sequence of tran-
sitions between states.

11.2.2 Statechart Diagrams

In his paper [298], Harel notes that state machines are a natural medium for
describing the dynamic behavior of complex systems where events may occur at
run time, affecting the system’s execution. However, he draws attention to the
drawbacks of using FSMs for complex systems where the number of states may
grow exponentially, resulting in unmanageable complexity and illegibility in the
FSM diagrams. To counter these problems, he proposes statecharts as an extension
of the notion of FSMs to include the concepts of hierarchy, state clustering, modu-
larity and concurrency.

11.2.3 Petri Nets

Petri nets were invented in 1962 by C. A. Petri [304] as a mathematical model for
concurrent, asynchronous, parallel behavior in distributed systems. Graphically,
Petri nets are represented as bipartite graphs with place nodes, transition nodes and
directed arcs (also called edges) that link them. Bipartite graphs contain a set of
vertices that can be divided into two distinct disjoint sets such that no edge can
have both endpoints connected to the same set. In the case of Petri nets, no edge
can have both ends connected to places or both ends connected to transitions.
Places can have one or more tokens. A place that is connected to an ingoing edge
of a transition is considered an input for the transition. Similarly, a place that is
connected to an outgoing edge of a transition is considered an output for the transi-
tion. Transitions may fire as long as sufficient tokens are available at the input
places. When this happens, the transition is said to be enabled. Firing results in
tokens being removed from input places and added to output places.

Fig. 11.1. Simple Petri net

Figure 11.1 shows two markings (a) and (b) for a simple Petri net with places,
p1 and p2, and a transition, t1. A marking defines a possible state of a Petri net by

 11.2 Alternatives for Capturing Semantics of Web Services 255

defining what tokens are available at each of the net’s places. In (a), there is a token
at place p1 which means the transition, t1, is enabled and may fire. In (b), the tran-
sition, t1, has fired and a token has been removed from place p1 and added to place
p2. Original nets allowed only one token to be added or removed from a place
whenever a transition fired. Weighted Petri [305] nets are a generalization which
allow multiple tokens to be added or removed from places.

Fig. 11.2. Weighted Petri nets

Figure 11.2 shows a Weighted Petri net with the weights represented as positive
integers labelling the edges. The edge from place p1 to transition t1 is given a
weight of 2, the edge from place p2 to transition t1 is not labelled, implying a
weight of 1, and the edge from t1 to p3 is given a weight of 3. When the transition
t1 fires, two tokens are removed from p1, one token is removed from p2 and three
tokens are added to p3.

There are other well-known extensions to the original Petri net model. These
include colored Petri nets [306], timed Petri nets [307] and hierarchical Petri nets
[308]. In traditional nets, the tokens have no types associated with them. The pre-
condition for a transition to fire is that there be sufficient tokens available at the
input places. The postconditions for a transition are that tokens be removed from
the input places and added to the output places. With colored Petri nets, tokens are
typed or colored. This is useful as the tokens in a Petri net model are usually mod-
eling real-world objects that have associated attributes. The transitions in a colored
Petri net can use the type and values of the consumed tokens to determine the type
and values of the produced tokens.

When modeling real systems, it may be important to model temporal aspects of
the system. In other words, there may be a need to model durations and delays.
Timed Petri nets make this possible by associating time with tokens, places or tran-
sitions. For example, the model may be set up so that transitions take a certain
amount of time to complete. When a transition is enabled, the tokens are removed

256 11 Semantic Web Services

from the input places. After a certain time duration, tokens are added to the output
places. A consequence is that the state of the system is not always clearly repre-
sented.

Petri nets for large systems can easily become very complex and difficult to ana-
lyze. This difficulty can be addressed using hierarchical Petri nets which allow a
hierarchy of subnets to be constructed, each of which can be used to analyze one
particular area of the system. Each subnet can be considered as a black box that
may accept inputs from, and provide outputs to, other parts of the system being
considered. It can be mathematically proven that the combination of subnets for a
hierarchical Petri net have the same behavioral semantics as if the entire system
were modeled as one very large single net. The main benefit they offer is the ease
of use of Petri nets when modeling large and complex systems.

Modeling asynchronous distributed systems using Petri nets allows the model to
be checked for a number of potentially undesirable properties. According to [309],
these include:

• Termination. Does the Petri net terminate?
• State reachability. Are all possible states for the Petri net reachable?
• Immediate reachability. Is a particular state reachable when a specific transi-

tion fires?
• Partial deadlock. Is there a state where there is at least one transition that can

never fire?
• Deadlock. Is there a state where no transition can fire?
• Livelock. Is there a set of states where the only transitions that can fire move

between the states so that the Petri net never terminates?

11.2.4 Process Algebras

Process algebras (or process calculi) are algebraic languages that provide a formal
foundation for modeling programs which can run concurrently in parallel, and
which can interact with each other. In the case of such paralell systems, it’s insuffi-
cient to say that each program can be simply modeled as an input/output function
because the interaction between them affects their respective behaviours. Baeten
[387] provides a pragmatic description by focussing on the individual definitions
of the words “process” and “algebra”. He points out that “process” refers to the
behaviour of a system, or the total events or actions that the system can perform,
the order in which they are executed and various aspects of this execution. In the
context of modeling systems it is useful to keep the focus on certain essential
aspects of the behaviour possibly ignoring other real-world considerations so that
process models describe an observation of the behaviour of interest. The word
“algebra” indicates using a generalized axiomatic approach in describing the pro-
cess model. With a process modeled using algebraic equations, it becomes possible
to apply algebraic laws to allow descriptions to be manipulated and analysed, and
also provide a basis for formal reasoning about the process.

 11.2 Alternatives for Capturing Semantics of Web Services 257

Petri nets preceded the conception of Process algebras by about a decade. The
first Process algebra was devloped by Milner in the early 1970s and published as A
Calculus for Concurrent Systems (CCS) [390]. Pi-calculus [391], which has
become a popular Process algebra, has CCS as its theoretical starting point. In the
examples later in this section, we use Pi-calculus as a representative process alge-
bra. However, there are many others and a good starting point for further reading is
in Baeten’s work at [387].

Although Petri was the first person to develop models of interacting sequential
processes, the focus of Process algebras is slightly different. A high-level differ-
ence is that Petri nets are bipartite graphs, while CCS (as a representative Process
algebra) is a more textual, linear-like set of equations using an algebra that includes
operators for concurrency, parallelism, conditions and functions (or data buffers).
Van der Aalst [388] points out many notions for Petri nets have been translated into
process algebra and vice versa. He argues that an important difference is that the
notion of invariants devloped for Petri nets do not exist for Process algebra. In
[389] the authors highlight that, although both approaches model concurrent sys-
tems, they tend to be used by different communities. Petri nets are popular with
system and control engineers interested in issues around liveness and dynamic
invariants of system design. Process algebras, such as CCS, are more popular with
computer scientists who have some interest in liveness and invariance but are more
interested in comparing the behaviours of systems. Another difference is that the
Process algebras define systems as a collection of independent agents communicat-
ing with each other. Petri nets allow systems to be defined whose actions depend
on internal and external inputs but it is not always easy to identify individual
agents within the net.

As explained by Milner in his tutorial at [392], fundamental to the Process alge-
bra of CCS, and more recently of Pi-calculus, is the notions of naming. In the basic
version of Pi-calculus, there are only two types entities: names and processes.
Names have no structure and there can be infinitely many of them. Processes, in
Pi-calculus, are built from names using the syntax:

There are four parts to the right hand side of this definition. Each part is sepa-
rated by a large vertical bars representing the logical OR operator. These parts are
described briefly below in Table 11.1 while a full description is available in [392].

P ::= i I i Pi P Q !P | vx P

258 11 Semantic Web Services

Table 11.1. Parts of Calculus Definition

The “.” (dot) operator indicates sequential actions. The final action for a process
may be represented as a null action or “O” e.g. x(y).O, however this is usually
omitted in favour of x(y). We now explain a simple example of a processs
described by Milner using Pi-calculus.

xy | x(u).uv | xz

This process is equivalent to three concurrent processes, P | Q | R, where P rep-
resents y available for output on channel x, Q represents u expected as input on
channel x, and R represents z available for output on channel x. One of two com-
munications can happen on channel x but not both. Consequently there are two
possible outcomes for the result:

O | yv | xz or xy | zv | O

To see how these outcomes are derived, we look in more detail at the first of
them. In P, y is output on the channel x (i.e xy), and is accepted by Q as input
along the channel x (i.e. x(u)). The subsequent action uses the name y as the chan-
nel to output the name v (i.e. yv). If this first set of actions takes place then R (xz)
remains unchanged.

A relatively recent application of Process algebras is to Web Service composi-
tion. In Section 10.1.4, we described how there are two sides to service composi-
tion. The first is where components, represented as services, are put together one

The symbol pi is a prefix that represents an atomic action starting a
process. I is an infinite prefixing set. There are two kinds of prefix.
x(y) which means input a name y along a link (or channel) x. This
binds y in the prefixed process.
xy which means output the name y along the link x. In this case, y
is not bound to the process.
x and x are both names referring to links. x is used for input while
its co-name, x, is used for output.

The summation in the expression represents a process that is able
to take part in exactly one of several alternatives for communica-
tion. The choice itself is not made by the process.

The processes P and Q are concurrently active, can act indepen-
dently and can communicate with eac other

! is the replicator operator. This expression is shorthand for multi-
ple copies of P running concurrently. (The calculus does not
restrict this number.) Milner calls this “bang P”

Restricts the use of the name x exclusively to the process P. Milner
calls this “new x in P”.

i I i . Pi

P Q

!P

vx P

 11.3 Semantic Web Service Approaches 259

after another, specified by control and data flow, to achive a particular task. In
order to use such a composition, its not necessary to know its internals. The second
aspect is the behaviour of the composition with respect to its requester. We pointed
out that, in this way, service compositions can be seen to have both internal and
external behaviour. Languages such as WSPBPEL provide a means of describing
this behaviour structurally in tersm of XML. Process algebras (as do Petri nets)
provide a formal language for describing the behaviours. One example of this
application is in [393] where the authors focus on the use of Process algebra for
simulation, property verification, and correctness of composition of Web Services.
Another example in [394] describes a Process algebra called Finite State Process
(FSP) for which the authors have developed a tool called LTSA-WS for the analy-
sis of Web Service compositions described using WSBPEL.

11.3 Semantic Web Service Approaches

In this section, we look at the four leading ontology-based approaches for repre-
senting Semantic Web Services. These are OWL-S, SWSF, SAWSDL, WSDL-S
and WSMO. In each case, the conceptual model is described and the languages
used to express that model are explained.

11.3.1 OWL-S

Conceptual Model

OWL-S [310] is a Web Ontology Language (OWL) ontology, structured into three
sub-ontologies, for describing different aspects of Semantic Web Services. The
first aspect is the functionality a Web Service offers, including the constraints and
non-functional properties that influence it. This is described using the ServicePro-
file. Web Services enact their functionality through a behavioral model. Describing
this is the aim of the ServiceModel. Finally, OWL-S seeks to build on top of
WSDL and SOAP by mapping elements in the ServiceModel to elements in the
WSDL description. This part of the OWL-S ontology is called the ServiceGround-
ing. We look at each of the three parts in the next paragraphs.

In OWL-S, the ServiceProfile describes what a Web Service does and provides
the means by which the service can be advertised. As there is no distinction in the
conceptual model of OWL-S between service requests and service provisions, the
ServiceProfile is aimed equally at advertising services offered by providers and
services sought by requesters. Owing to its genesis in the research area of artificial
intelligence (AI), OWL-S defines the capability a service offers in terms of a state
transition. It is possible to specify the inputs and outputs expected to be sent to and
received from a service along with preconditions that must hold before the service
can execute and the effects of the service executing. The intent is that along with
arbitrary non-functional properties, this should be sufficient information for a dis-

260 11 Semantic Web Services

covery agent to be able to decide if a desired ServiceProfile matches any of the
ServiceProfiles in the set of candidate OWL-S Web Service descriptions available
to it.

The ServiceModel is used to define the behavioral aspect of the Web Service.
This part of the service is modeled as a process in the sense that a service requester
can view the process description and understand how to interact with the service in
order to access its functionality. In some ways, this process model can be consid-
ered as a partial workflow where the service requester provides the missing parts.
The ServiceModel allows for the description of different types of services, atomic,
abstract and composite. Atomic processes correspond to a single interaction with
the service, e.g., a single operation in a WSDL document. Composite processes
have multiple steps, each of which is an atomic process, connected by control and
data flow. Simple processes are abstractions to allow multiple views on the same
process. These can be used for the purposes of planning or reasoning. Simple pro-
cesses are not invocable but are described as being conceived as representing sin-
gle-step interactions. A simple process can be realized by an atomic process or
expanded to a composite process.

The final part of the conceptual model is the ServiceGrounding, providing a link
between the ServiceModel and the description of the concrete realization for a Web
Service provided by WSDL. Atomic processes are mapped to WSDL operations,
where the process inputs and outputs, described using OWL, are mapped to the
operation inputs and outputs, described using XML Schema. It is possible that a
single OWL-S Atomic Process can be mapped to many WSDL operations
(although this is not usually the case). Composite processes, being composed of
atomic processes, are grounded in the same way with the additional requirement of
an OWL-S process engine to interpret the defined control and data flow.

In many ways OWL-S was the first consensus-based ontology for describing
Semantic Web Services. It is the product of merging earlier research from two sep-
arate languages, DAML [291] and OIL [292], resulting in an ontology initially
called DAML-S but later renamed to OWL-S to emphasize the perceived layering
of the ontology on OWL (a W3C Recommendation). The actual use of the descrip-
tion logics variant, OWL-DL, as the ontology language for OWL-S has some
unwanted side effects noted in detail in [311]. In particular, OWL-S does not com-
ply with the OWL-DL specification, which places constraints on how OWL-S
ontologies can be reasoned over. A second problem is that variables are not sup-
ported within OWL-DL but are necessary when combining data from multiple co-
operating processes in OWL-S.

Language

Although primarily the OWL-S ontology is defined using the Web Ontology Lan-
guage (OWL), OWL-S is actually a mixture of a number of languages. This breaks
to some extent the claim for OWL-S that it is layered on top of OWL (and so a nat-
ural candidate for standardization). The reason for the language mixture is that

 11.3 Semantic Web Service Approaches 261

Web Services are inherently associated with distributed computing on the Web
through process definition and execution. OWL is simply not designed for this pur-
pose. Rather, it provides an upper ontology for defining conceptual models. In par-
ticular, to take advantage of the most commonly available implemented logical
reasoners, OWL-DL is used to define the domain models used in the Semantic
Web Service descriptions.

When describing logical expressions for the preconditions and results of Servi-
ceProfiles or ServiceModels, the modeler has a choice. The Semantic Web Rules
Language (SWRL) [312] and Resource Description Framework (RDF) [42] treat
expressions as XML literals while the Knowledge Interchange Format (KIF) [313]
or the Planning Domain Description Language (PDDL) [314] can be used for treat-
ing expressions as string literals.

11.3.2 SWSF

The establishment of the Semantic Web Services Framework (SWSF) [315] was
motivated by the recognition of some shortcomings of OWL-S as a conceptual
model for Semantic Web Services. At the time OWL-S was developed, attention
was focussed on how an ontology for Web Services could be described using
OWL. OWL itself is layered on top of the Resource Description Framework
(RDF), and it was considered an elegant solution to add OWL-S as a further layer.
A significant problem, as indicated in Section 11.3.1, is that OWL (or more pre-
cisely OWL-DL) is not well suited to describing processes. This situation is unsat-
isfactory as the functionality offered by Web Services can be considered as a
partial process involving the operations that the Web Service makes available to a
client application. The process description is partial as the client itself provides the
complimentary activities when it interacts with the service.

SWSF was devised to provide a full conceptual model and language expressive
enough to describe the process model of Web Services. There are two parts to the
SWSF. The first is a conceptual model called the Semantic Web Services Ontology
(SWSO) axiomatized using first order logic, and the second is a language called
the Semantic Web Services Language (SWSL).

Conceptual Model

SWSO defines a conceptual model for Semantic Web Services with a deliberate
focus on extending the work of OWL-S to interoperate with and provide semantics
for industry process modeling formalisms like the Business Process Execution
Language (BPEL). The first-order logic axiomatisation of SWSO is called FLOWS
(First-Order Logic Ontology for Web Services) and is based on the Process Speci-
fication Language (PSL) [316], an international standard ontology for describing
processes in domains of business, engineering and manufacturing. One of the
intentions of PSL was to provide a common interlingua for the many existing pro-
cess languages, allowing interoperability to be established between them. As the

262 11 Semantic Web Services

number of conceptual models and languages for Semantic Web Services grows,
there is a perceived need for such an umbrella formalism to facilitate interoperabil-
ity in this area.

As mentioned, FLOWS is axiomatized in first-order logic and is expressed in a
language called SWSL-FOL (Semantic Web Services Language for First-Order
Logic). To enable logic-programming-based implementations and reasoning for
SWSO, there is a second ontology available called ROWS (Rules Ontology for
Web Services) and this is expressed in SWSL-Rules. ROWS is derived from
FLOWS by a partial translation. The intent of the axiomatisation of ROWS is the
same as that of FLOWS but in some cases it is weakened because of the lower
expressiveness of the SWSL-Rules language compared to SWSL-FOL.

Service is the primary concept in SWSO with three top-level elements, derived
from the three parts of the OWL-S ontology. These are Service Descriptors, Pro-
cess Model and Grounding.

Service Descriptors. They provide a set of non-functional properties that a ser-
vice may have. The FLOWS specification includes examples of simple properties
such as the name, author, and textual description. The set is freely extensible to
include the properties identified in other conceptual models such as WSMO non-
functional properties or OWL-S service profile elements. Metadata specifications
for online documents including Dublin Core7 are also easily incorporated. Each
property is modeled as a relation linking the property to the service. For example,
Figure 11.3 shows FLOWS relations for service_name, version and reliability.
Note that Web Service reliability is a subjective notion in the context of the quality-
of-service (QoS) attributes a service may have. For it to be effective, a formal
description of the meaning of reliability in Web Services is required. Some ongo-
ing work in modeling this type of attribute using WSMO ontologies is described in
[351].

Fig. 11.3. FLOWS Service Descriptor Properties

Process Model. The underlying objective of PSL is to provide a language and
ontology that is expressive enough that all other process languages can be repre-
sented in it. If this is achieved then the integration of independent processes
described with heterogeneous models becomes possible. FLOWS extends the PSL
generic ontology for processes with two fundamental elements, especially to cater
to Web Services:

• The structured notion of atomic processes as found in OWL-S

7. http://dublincore.org/ (Accessed September 10, 2007).

name(service, service_name)
version(service, service_version)
reliability(service, service_reliability

 11.3 Semantic Web Service Approaches 263

• Infrastructure for allowing various forms of data flow

The Process Model of FLOWS is organized as a layered extension of the PSL-Out-
erCore ontology. The primary layer is called FLOWS-Core and contains the two
extensions just mentioned for Web Services. On top of this, five additional ontol-
ogy modules are defined that are used to express different constraints on the occur-
rences of services and their subactivities. A simplified diagram of this layering is
provided in Figure 11.4.

Fig. 11.4. FLOWS layered process model

As defined in the SWSF submission to the W3C submission, the layer has five
additional ontologies:

• Control Constraints axiomatize the basic constructs common to workflow-
style process models. In particular, the control constraints in FLOWS include
the concepts from the process model of OWL-S.

• Ordering Constraints allow the specification of activities defined by sequenc-
ing properties of atomic processes.

• Occurrence Constraints support the specification of non-deterministic activi-
ties within services.

• State Constraints support the specification of activities triggered by states (of
an overall system) that satisfy a given condition.

• Exception Constraints provide some basic infrastructure for modeling excep-
tions.

Four key terms defined by the FLOWS ontology are listed below:

• Service. A service is an object that can have an associated number of service
descriptors as described above, and an activity that specifies the process model
of the service.

• Atomic Process. An atomic process is generally a subactivity of the activity
associated with a service. It is directly invocable, has no subprocesses and can
be executed in a single step.

• Message. Messages have an associated message type and payload.

264 11 Semantic Web Services

• Channel. A channel is an abstraction for an object that holds messages that
have been sent but may not yet have been received. There is no restriction that
all messages sent be associated with channels, but where this is the case there
are additional axioms that must hold for the message.

Before leaving this brief description of the FLOWS Process Model, we draw
attention to the fact that FLOWS allows the modeling of predicates or terms whose
values may change in the course of an activity. The modeling elements are called
fluents and can be imagined as providing a behavior similar to that of variables in a
programming language, in that they allow processes to be chained together where a
value from one process may be required by another. The absence of this was one of
the observed drawbacks of the OWL-S process model.

Grounding. The SWSO approach to grounding follows very closely the
grounding of OWL-S v1.1 to WSDL. The SWSO specification defines how the
grounding must provide four things. These are:

• Mappings between the SWSO and WSDL messages patterns
• Mappings between message types as defined in SWSO and WSDL respectively
• Serialization from SWSO message types to the concrete message types defined

by WSDL
• Deserialization from the concrete WSDL message types to the SWSO messages

types

Language

We have already described that the Semantic Web Services Language (SWSL)
comes in two variants: SWSL-FOL and SWSL-Rules. The starting point is SWSL-
FOL which acts as a foundational ontology language with PSL as its foundation.
SWS-Rules is derived as a partial translation to facilitate implementation and rea-
soning based on logic programming techniques.

Both variants share syntax but not the semantics of that syntax. In fact, neither
language is a subset of the other, which means the two language variants are mutu-
ally incompatible (cannot be used together), which may somewhat complicate the
understanding of how to use of SWSO/L. The modeler must decide which lan-
guage best suits the purpose at hand. The decision is made simpler as each of the
variants has a differing focus. SWSL-FOL is most useful for process-related
descriptions while SWSL-Rules is geared toward the description of programming-
like tasks such as discovery and contracting. Both variants comply with Web prin-
ciples such as the use of URIs, integration with XML types and XML-compatible
namespaces. Additionally both are layered languages where new features are
incorporated at each layer.

A concise review of SWL-Rules is provided by the authors of [317]. As
described in this report, SWSL-Rules is a logic programming language including
features from Courteous logic programs [318], HiLog [319] and FLogic [320] and
can be seen as both a specification and an implementation language. The SWSL-

 11.3 Semantic Web Service Approaches 265

Rules language provides support for service-related tasks such as discovery, con-
tacting, and policy specification. It is a layered language as illustrated in
Figure 11.5. The core of the SWSL Rules language is represented by a pure Horn
subset. This subset is extended by adding features such as disjunction in the body
and conjunction and implication in the head [321], or negation in the rule body
interpreted as negation as failure (called NAF). Other extensions are (1) Courteous
rules (Courteous), (2) HiLog, and (3) Frames.

Fig. 11.5. SWSL-Rules Layers

Fig. 11.6. Layers of SWSL-FOL and relationship to SWSL-Rules

On the other hand, SWSL-FOL, intended to describe the dynamic (process)
aspect of services, is also layered. The bottom layer of Figure 11.6 shows the layers

Horn

Equality

Mon LT

Frames

Hilog
Reification

NAF

Non-mon LT

Courteous

Horn

Equality
Mon LT

Frames

HiLog

SWSL-FOL

SWSL-FOL+Equality

SWSL-FOL+ HiLog

SWSL-FOL+ Frames

266 11 Semantic Web Services

of SWSL-Rules that have monotonic semantics and therefore can be extended to
full first-order logic. The most basic extension is SWSL-FOL but Figure 11.6 also
shows three other possible layered variants that can be achieved by the relevant
extension. Theses are SWSL-FOL+Equality, SWSL-FOL+HiLog and SWSL-
FOL+Frame.

11.3.3 WSDL-S

WSDL-S [322] is a lightweight approach for augmenting WSDL descriptions of
Web Services with semantic annotations. It is a refinement of the work carried on
by the METEOR-S group at the LSDIS Lab, Athens, Georgia,8 to enable semantic
descriptions of inputs, outputs, preconditions and effects of Web Service opera-
tions by taking advantage of the extension mechanism of WSDL. WSDL-S is
agnostic to the ontology language and model used for the annotations of WSDL.

In the following paragraphs we take a look at the approach of WSDL-S, the con-
ceptual model representing the approach and the extensions to the WSDL language
that realize the semantic annotations.

Fig. 11.7. Associating semantics with WSDL [322]

Approach. In contrast to the OWL-S, SWSO and WSMO, WSDL-S does not
specify an ontology for the definition of Semantic Web Services. Rather, it takes a
bottom-up approach with the appeal that potentially only a little additional effort
on the part of service producers will provide a service description where the
description of the data and operations of the service are bound to ontological con-
cepts. WSDL-S intentionally builds directly on the existing Web Service technol-
ogy stack.

8. http://lsdis.cs.uga.edu/ (Accessed September 10, 2007).

 11.3 Semantic Web Service Approaches 267

WSDL v1.1 allows for the definition of extension to its language. This is taken
advantage of to provide an in-document link of certain WSDL elements to con-
cepts in one or more ontologies (assuming that the concepts can be identified
uniquely and that the links can be specified in legal XML). Figure 11.7 provides a
high-level overview.

Embedding annotations into WSDL through legal language extensions does not
affect the usage by the service provider of any other WS-* specifications or the
usage of WSDL in the context of process description languages such as the Busi-
ness Process Execution Language for Web Services (WSBPEL) [323]. Another
feature is that where XML Schema is used as the data definition language for
WSDL, it can be enhanced by linking XML Schema types to domain concepts
either by a one-to-one mapping or through a transformation defined in a domain
ontology.

Conceptual Model. WSDL-S defines its conceptual model using a simple XML
Schema introducing five elements that extend WSDL. These are:

• modelReference. This is used for annotating both simpleTypes and complex-
Types in XML Schema where there is a one-to-one mapping between the
schema type and the ontological concept. For simpleTypes, it is a direct map-
ping. For complexTypes, it can be used in two ways, bottom-up and top-down.
Bottom-level annotation involves describing every leaf element of the complex-
Type with the modelReference attribute. Top-level annotation means that the
complexType element itself is associated with a concept in the ontology. The
assumption is that the subelements of the complexType will map directly to the
sub-concepts and attributes of the domain concept.

• schemaMapping. Where there is no one-to-one mapping this attribute points to
a transformation that links the XML Schema element to the ontology concept.
For example, the value of the schemaMapping attribute might be a URI that
identifies an XSLT transformation.

• precondition. At the level of a WSDL operation it is possible to point to a defi-
nition of the precondition that must hold before that operation can be executed.
For simplicity only one precondition may be included and this may point to a set
of logical expressions in the ontology language of choice.

• effect. Similar to preconditions, effects point to logical expressions that should
hold after the execution of the service. In contrast to preconditions, WSDL-S
allows for the definition of multiple-effect subelements of operations.

• category. This is adopted from OWL-S and is an extension to the WSDL Inter-
face element of WSDL 2.0 (portType in WSDL 1.1). The intent is that category
information can be included here that may be picked up by a Web Service regis-
try implementation such as the one for UDDI.

268 11 Semantic Web Services

Language. WSDL-S is defined using the XML-Schema listed in Figure 11.8

Fig. 11.8. XML Schema for WSDL-S

11.3.4 SAWSDL

The Semantic Annotations for WSDL (SAWSDL) working group, formed recently
by the W3C, provides a W3C Candidate Recommendation for Semantic Web Ser-
vices based on a simplified form of WSDL-S. This is in the form of an incremental
bottom-up approach to Semantic Web Services where elements in WSDL docu-
ments are provided with semantic annotations through attributes provided using
standard valid extensions to WSDL. The approach is agnostic to the ontological
model used to define the semantics of annotated WSDL elements. From SAW-
SDL’s perspective, the annotations are valued by URIs. SAWSDL, like WSDL-S is

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.ibm.com/xmlns/stdwip/Web-services/WS-Semantics"
 xmlns:wssem="http://www.ibm.com/xmlns/stdwip/Web-services/WSSemantics"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <attribute name="modelReference" type="anyURI" use="optional"/>
 <attribute name="schemaMapping" type="anyURI" use="optional"/>

 <element name="category" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <extension base="wsdl:documented">
 <attribute name="categoryname" type="NCName" use="required"/>
 <attribute name="taxonomyURI" type="anyURI" use="required"/>
 <attribute name="taxonomyValue" type="String" use="optional"/>
 <attribute name="taxonomyCode" type="integer" use="optional"/>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <element name = "precondition">
 <complexType>
 <complexContent
 <restriction base="anyType">
 <xsd:attribute name="name" type="string" />
 <attribute name="modelReference" type="anyURI" />
 <attribute name="expression" type="string" />
 </restriction>
 </complexContent>
 </complexType>
 </element>
 <element name="effect">
 <complexType>
 <complexContent
 <restriction base="anyType">
 <xsd:attribute name="name" type="string" />
 <attribute name="modelReference" type="anyURI" />
 <attribute name="expression" type="string" />
 </restriction>
 </complexContent>
 </complexType>
 </element>
</schema>

 11.3 Semantic Web Service Approaches 269

targeted at WSDL v2.0 but it is also possible to use with WSDL v1.1 with an addi-
tional non-standard extension.

While WSDL-S specifies the attributes for modelReference, schemaMapping,
precondition, effect and category, SAWSDL confines itself to attributes of model-
Reference and two specializations of schemaMapping, namely, liftingSchemaMap-
ping and loweringSchemaMapping.

The modelReference attribute can be used to annotate XSD complex type defi-
nitions, simple type definitions, element declarations, and attribute declarations as
well as WSDL interfaces, operations, and faults. The liftingSchemaMapping can
be applied to XML Schema element declaration, complexType definitions and sim-
pleType definitions. All attributes defined by SAWSDL are defined by the XML
Schema, reproduced in Figure 11.9, to take a list of URIs as value.

Fig. 11.9. SAWSDL XML Schema

11.3.5 WSMO, WSML and WSMX

Both WSMO and OWL-S address the same problem space. After identifying per-
ceived fundamental drawbacks of the OWL-S approach, the WSMO working
group was formed to devise a more complete conceptual model for describing Web
Services. Conceptually WSMO, unlike OWL-S, explicitly models separate con-
cepts for goals and Web Services. Additionally WSMO models mediators explic-
itly as first-class elements capable of bridging heterogeneity issues. In contrast,
OWL-S does not explicitly model mediators. Rather, they are considered as spe-
cific types of services. A detailed discussion of this rationale is provided in [310].

Conceptual Model

Of the models for semantically annotating Web Services described so far, WSMO
and OWL-S are the most closely related. Both aim at the provision of a compre-
hensive conceptual model for Semantic Web Services. The authors of WSMO
describe how an important foundation point of the work on WSMO was the model
provided by OWL-S but maintain that OWL-S has a number of serious fundamen-

<xs:schema
 targetNamespace="http://www.w3.org/2002/ws/sawsdl/spec/sawsdl#"
 xmlns="http://www.w3.org/2002/ws/sawsdl/spec/sawsdl#"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://www.w3.org/2006/01/wsdl">

 <xs:simpleType name="listOfAnyURI">
 <xs:list itemType="xs:anyURI"/>
 </xs:simpleType>

 <xs:attribute name="modelReference" type="listOfAnyURI" />
 <xs:attribute name="liftingSchemaMapping" type="listOfAnyURI" />
 <xs:attribute name="loweringSchemaMapping" type="listOfAnyURI" />

</xs:schema>

270 11 Semantic Web Services

tal flaws that give rise to problems when attempting to use the ontology in practice.
These are described in detail in [324] but we will describe a subset of them in this
description of the WSMO conceptual model and in the following section describ-
ing the languages for WSMO that provide the formal definition of semantics for
the conceptual model. WSMO is predicated on a number of underlying principles
as defined in [325]. These are:

• Web compliance. Every element of WSMO is identified using Unique Refer-
ence Identifiers (URIs). Namespaces are supported. WSMO can be serialized to
XML, the language of the Web, and WSMO service descriptions ground to the
Web Service Description Language (WSDL).

• Ontology-based. Ontologies are used to model every element of WSMO.
• Strict decoupling. WSMO resources are defined in isolation of each other.

There is no assumption that every resource must be defined using the same
ontologies.

• Strong mediation. Strict decoupling is made possible by the attention paid to
mediation in the WSMO model. Mediators are top level modeling elements that
are used to bridge interoperability issues between independent, heterogeneous
WSMO resources.

• Ontological separation of roles. In WSMO the viewpoint of service requester
and service provider are distinctly represented by the complementary concepts
of goals and Web Services. This separation is adopted from the research in the
problem-solving domain and is a clear point of distinction between the OWL-S
and WSMO models.

• Description versus implementation. The ontological information model
defined by WSMO and the additional associated functionality layers on top of
existing Web Service implementation technology.

• Service versus Web Service. The definition of service within WSMO is a
superset of Web Services described by the WSDL language. WSMO is designed
to cover all types of service that may be available on the Web.

There are four top-level elements defined by WSMO as necessary for a compre-
hensive semantic description of Web Services. These are Ontologies, Web Ser-
vices, goals and mediators. Each of these elements is represented as a class with a
number of attributes. Attributes have their multiplicity set to multi-valued by
default. If an attribute is single-valued, this is explicitly stated. All WSMO ele-
ments have the attribute hasNonFunctionalProperty. This allows for the assign-
ment of any non-functional properties (e.g., related to quality-of-service or price,
or metadata regarding the owner of the element) to any element. The following
paragraphs provide a brief description of each of the top level WSMO elements.

Ontologies. They are used to define the information model for all aspects of
WSMO. Compared to structural languages used to define taxonomies such as
XML, ontologies allow for the formal definition of concepts and attributes in addi-
tion to restrictions and rules constraining them as well as functions and relations
that range over them. Two key distinguishing features of ontologies are the princi-

 11.3 Semantic Web Service Approaches 271

ples of a shared conceptualization and a formal semantics. Ontologies are only
useful if the meaning they express corresponds to a shared understanding by its
users. Likewise, the strength of an ontology is that the semantics of its elements are
machine-understandable, made possible through the provision of a mathematical
base for the language used to express the ontology. Ontologies defined in WSMO
are part of the MOF model layer.

Web Services. From a simplified perspective, WSMO Web Services are defined
by the functional capability they offer and one or more interfaces that enable a cli-
ent of the service to access that capability. Capability is one example of an attribute
of a WSMO class (i.e., Web Service) that is single-valued. In WSMO a Web Ser-
vice is defined as offering exactly one capability. The Web Service class also has
attributes for mediators (used to bridge heterogeneity problems), non-functional
properties (as described above) and ontologies that are imported (providing domain
models for some part of the description). We will focus on the capability and inter-
face descriptions as these constitute one area where the similarities and differences
between WSMO and OWL-S are apparent.

The capability of a Web Service in the WSMO model defines the functionality
that the service can provide when invoked by a service requester. It is defined using
a state transition model (similarly to OWL-S but with more intuitive semantics).
Prior to a Web Service invocation, preconditions define the required state of the
information space available to the Web Service and assumptions define the state of
the world outside that information space. An example of a precondition when using
a Web Service to purchase goods is that a creditcard number be valid or that a
postal code be valid for the delivery scope of the service. An example of an
assumption is that the address provided actually exist. Preconditions and assump-
tions are defined using sentences in a logical language known as axioms. Depend-
ing on the language used, the axioms can be more or less expressive.

Correspondingly, when a service executes successfully, postconditions are used
to define the state of the information space, and effects describe the state of the
world outside the information space. For example, a postcondition might be that a
shipment confirmation message be sent to the service requester and an effect might
be that the goods be physically put in a container and shipped.

All four types of condition are optional in the capability description. The service
can be considered as one or more state transitions that move from the state defined
by the preconditions and assumptions to the state defined by the postconditions and
effects. An application wishing to locate a service for a specific task uses the capa-
bility description of a WSMO service to determine if it offers the requisite func-
tionality. Universally quantified shared variables are used to allow information to
be shared between the four conditions allowed in capability descriptions.
For example, the listing below shows a Web Service capability from our running
translational medicine example for a service providing Therapeutic Guidance. The
capability states that on provision of patient information and a set of results corre-
sponding to that patient, a collection of proposed therapies will be returned by the
service. The scenario is fully described in context in Section 13.1.4.

272 11 Semantic Web Services

capability _"http://TherapeuticGuidelines/capability"

precondition
definedBy

?patient memberOf Patient and
?listTestResults memberOf ListResultsTests and
?listTestResults[patient hasValue ?patient].

postcondition
 definedBy

?listTherapies memberOf ListTherapies and
?listTherapies[patient hasValue ?patient].

...

While the capability defines what a service offers, the WSMO Web Service
interface elements describe views of external parties on how they can interact with
the service. These are is subdivided into two further elements, choreography and
orchestration. The interface choreography element describes how a service
requester can interact with the service to achieve its goal, including message
exchange patterns, the process model supported and the definition of the informa-
tion types exchanged at the interface. The interface orchestration element allows
for the definition of a Web Service as an orchestration of other cooperating services
(or goals, which we describe later). The idea is not that all (or indeed any) of the
details of how a service achieves its capability be made public, but rather an explic-
itly described orchestration, including control and data flow and data definitions,
allow the separation of the description of how the Web Service achieves its aims
from its implementation. Both choreography and orchestration elements of WSMO
Web Services are modeled using ontologized Abstract State Machines (ASMs)
[327]. ASMs were chosen as a general model as they provide a minimal set of
modeling primitives (no adhoc elements), are sufficiently expressive, and provide a
rigid mathematical model for expressing dynamics.

The listing below shows a WSML interface description for a Web Service for
getting guidance on tests to order for a patient in our translational medicine exam-
ple. This WSML snippet is broken down and explained in detail in the context of
the full example described in Section 13.1.6

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"
...
interface GetTestOrderingGuidanceInterface
orchestration TestOrderingGuidanceOrchestration
 stateSignature GetTestOrderingGuidanceSignature

 /* Concepts used as input and output to the orchestration */
 in Patient withGrounding {
 _"http://.../RulesEngineService.wsdl#wsdl.interfaceMessageReference
 (GetTestOrderingGuidance/GetTests/In)"}
 in Patient withGrounding {
 _"http://.../DataIntegration.wsdl#wsdl.interfaceMessageReference
 (PatientHistory/GetCardiacHistory/In)"}
 shared PatientCardiacHistory withGrounding {
 _"http://.../RulesEngineService.wsdl#wsdl.interfaceMessageReference
 (GetTestOrderingGuidance/GetTests/In)"}

 11.3 Semantic Web Service Approaches 273

 shared PatientCardiacHistory withGrounding {
 _"http://.../DataIntegration.wsdl#wsdl.interfaceMessageReference
 (PatientHistory/GetPatientCardiacHistory/Out)"}
 out ListTests withGrounding {
 _"http://.../RulesEngineService.wsdl#wsdl.interfaceMessageReference
 (GetTestOrderingGuidance/GetTests/Out)"}
 /* Concept used to define sequential control */
 controlled ControlState

 /* transition rules define the state changes of the orchestration */
 transitionRules

 if (
 ?patient memberOf Patient and
 ?patientCardiacHistory memberOf PatientCardiacHistory and
 then
 add(_# memberOf ListTests)
 update(?cs[value hasValue RulesEngineServiceCalled])
 endif

 if (
 ?patient memberOf Patient and
 ?cs[value hasValue initialState] memberOf ControlState)
 then
 add(_# memberOf PatientCardiacHistory)
 update(?cs[value hasValue PatientCardiacHistoryAvailable])
 endif

Goals. WSMO goals are used to describe, from their own perspective, the aims
service requesters have when they wish to interact with Web Services. The separa-
tion of goal and Web Service descriptions in WSMO is the realization of the objec-
tive to separate concerns. Service requesters are free to specify the services that
they require in their own terms. This is one of the distinctions between OWL-S and
WSMO. In OWL-S the service concept is used to describe both services and
requests for services. Although from a modeling viewpoint WSMO goals and Web
Services contain the same structure, they represent different perspectives in the
conceptual model and for this reason are kept separate. Like Web Services, goals
are defined with attributes for non-functional properties, imported ontologies,
mediators, capabilities and interfaces. All of these attributes are defined from the
perspective of what a service requester would like to get from a Web Service. The
matching of goal and Web Service descriptions (usually referred to as service dis-
covery) may require logical reasoning if syntactically different, but semantically
similar, terms are used by the two parties. Semantic mismatches may be resolved
using one or more of the mediator types defined by WSMO to cater to interopera-
bility issues.

Mediators. The last of the four top-level elements of the WSMO conceptual
model are mediators. They are used to bridge interoperability between any two
WSMO elements. A number of distinctions are drawn in the WSMO mediator
model. The first is between the description of a mediator and its implementation.
While WSMO Web Service descriptions say nothing about how the services are
implemented (they ground to WSDL for this), the same holds true for mediators
(they can be optionally grounded in a goal, Web Service or another mediator).
They describe the bridge that is required between any two elements. A second dis-

274 11 Semantic Web Services

tinction is between the kind of mediation that is necessary for Semantic Web Ser-
vices and the types of mediator that are defined by the WSMO model. The former
breaks down to three varieties of mediation:

• Data mediation. Handle mismatches at the data definition level.
• Protocol mediation. Handle mismatches between message exchange protocols.

This relates to the choreography descriptions of Web Services.
• Process mediation. Handle mismatches between heterogeneous business pro-

cesses such as those defined by the RosettaNet9 or ebXML10 standards.

Other varieties of mediation may also become necessary over time. The list
above is not considered exhaustive. The latter distinction is represented by the four
types of mediator defined by WSMO:

• OOMediators. Cater to differences in the descriptions of data models defined
by ontologies.

• WGMediators. Handle mismatches between the definition of a service request
as expressed in a goal and the definition of an offered service as expressed in a
Web Service

• GGMediators. While a repository of goals is already available, GGMediators
allow goals to be linked together where there are differences in their descrip-
tions. For example, say a goal is already known to match to a given Web Ser-
vice; a match of a weaker goal to the same Web Service may be facilitated
through a GGMediator.

• WWMediator. Analogous to the GGMediator. While a given Web Service
already is known to match a specific goal, a weaker or stronger Web Service
could also be matched to the same goal through the use of a bridging WWMedi-
ator.

Language

Earlier Section 5.2.4 included a subsection providing a description and detailed ref-
erences for the WSML fanily of languages that provide formal semantics for the
conceptual model of WSMO. The languages are layered to provide different levels
of expressiveness for the semantics of WSMO depending on the reasoning require-
ments.

Execution Environment

The evaluation of the conceptual model and formal languages provided by WSMO
and WSML respectively, is made easier by the availability of a reference imple-

9. http://www.rosettanet.org/ (Accessed May 20, 2008).
10. http://www.ebxml.org/ (Accessed May 20, 2008).

 11.3 Semantic Web Service Approaches 275

mentation. The Web Service Modeling Execution Environment (WSMX) [330]
[331] provides middleware functionality designed to take advantage of the seman-
tic annotations of Web Services using the WSMO model. The implemented
WSMX architecture provides an approach to the automated discovery, composi-
tion, mediation and invocation of Semantic Web Services. Other tools exist based
on the conceptual models described earlier in this chapter but none provide a single
coordinated platform capable of tackling all aspects of Semantic Web Service exe-
cution. Figure 11.10 shows a high-level overview of the WSMX architecture.

Fig. 11.10. WSMX Architecture

A detailed description of the WSMX architecture is available in [333]. Case-
study-driven descriptions of its usage are available at [332]. In this section, we pro-
vide a brief description of the functionality of the various boxes in Figure 11.10
coupled with a description of some of the design decisions to create the platform to
support this functionality.

The first point is that WSMX is intended as a middleware software layer at the
endpoints of inter-service communications. This is an intent rather than a restric-
tion. In other words, WSMX is not conceived as a third-party product that is inde-
pendent of either a service requester or a provider but rather as a lightweight
software layer that is positioned at the requester alone or at both the requester and
the provider.

All information passed in and out of the WSMX boundary is represented in
WSML. An adapter mechanism is provided to transform between non-WSML and
WSML messages. All messages entering and leaving WSMX pass through the
CommunicationManager which is responsible for handling any protocols relating
to transport and communication. The WSMO4JParser is used to parse WSML
descriptions to corresponding Java object models used as the internal data repre-
sentation. Discovery takes care of matching goals to Web Services. The data and
process mediation components take care of data, process and protocol heterogene-
ities where an appropriate mediator is available. The choreography and orchestra-
tion components are used to interpret and execute the abstract state machine
models corresponding to the interface choreography and orchestration descrip-

Reasoner Repository

Communication

Service
Requester

Service
Provider

Service
Requester

WSML

WSML

Adapters

eB
anking

Internet

XML

WSML

WSML

XML

Service
Provider

Data Mediation

WSMO4J Parser Discovery

Choreography QoS Discovery

Orchestration Process Mediation

Core

WSMO Studio

276 11 Semantic Web Services

tions. Quality of service discovery (QoSDiscovery) acts as a further match-making
mechanism between goals and Web Services based on ontologically defined QoS
attributes. On the bottom layer of the diagram, the WSML Reasoner acts at the
heart of the platform, being necessary for logical reasoning of WSML descriptions
for the discovery, mediation, choreography and orchestration functions. At the top
of the diagram, WSMO Studio11 and the Web Services Modeling Toolkit
(WSMT)12 are two alternatives for a WSMO modeling environment.

WSMX is implemented using an event-based messaging mechanism based on
Java Management Extensions (JMX)13 and JavaSpaces14. These provide a light-
weight community standards mechanism that allows all of the WSMX components
to be decoupled from each other. WSMX components are implemented in Java and
interact with each other through an event-based publish-and-subscribe messaging
system. More information on this and the open source implementation code of each
component is available at the WSMX SourceForge project Web site.15

11.4 Reasoning with Web Service Semantics

Semantic annotation makes it possible for computers to understand the meaning of
data and make more accurate decisions on how that data should be processed.
When we talk about computers being able to understand data, we mean that the
data is expressed in a language based on some type of formal logic that a computer
can reason over. The computational device that carries out this task is usually
referred to as a reasoner. In the last section, we have reviewed the state-of-the-art
efforts for Semantic Web Service ontologies and identified the logical formalisms
on which they are based. In this section, we discuss three particular areas where
reasoning with Web Service semantics provides significant value. These are dis-
covery, composition and mediation.

11.4.1 Discovery

Both Preist [334] and Baida et al. [335] distinguish between the concept of a ser-
vice and a Web Service. They define a service as something of value in a particular
domain of interest. Web Services are considered as the agents that provide the

11. http://www.wsmostudio.org/ (Accessed September 10, 2007).
12. http://sourceforge.net/projects/wsmt (Accessed September 10, 2007).
13. http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/ (Accessed

September 10, 2007).
14. http://java.sun.com/developer/technicalArticles/tools/JavaSpaces/ (Accessed September

10, 2007).
15. http://sourceforge.net/projects/wsmx (Accessed September 10, 2007).

 11.4 Reasoning with Web Service Semantics 277

actual service, while the details of how to interact with the Web Service are
described using WSDL and the messages exchanged with the Web Service are
formed using SOAP. In a broad sense, Web Service discovery means finding a pro-
vider agent (Web Service) that can offer something of value (service) in a particu-
lar domain that is of interest to the requester. In [336], the authors point out that
WSDL Web Service descriptions provide the technical details for invoking a set of
possible concrete services. For example, the Amazon Web Service allows for the
purchasing of books, DVDs and CDs (amongst other things). The WSDL does not
include any details of available titles. A requester looking for the concrete service
“sell me a book with the title “The Lord of the Rings” would not find a direct
match based on the WSDL Web Service description. Rather, he (or an agent operat-
ing on his behalf) would abstract his request to a search for WSDL Web Services
that sells books. Once located, a set of such Web Services may be interrogated to
check if they offer that particular title (or offer some concrete service). This leads
to two stages of discovery, pointed out in [337], each of which may be strengthened
through the use of semantic annotations. The first involves abstracting specific cli-
ent requests, e.g., from buy The Lord of the Rings to buy a Book. The second is
refining the results of the first stage so that a match with the specific request can be
made. This second stage will usually involve interaction with the Web Service via
the described interface.

In the rest of this section we look at existing efforts for Semantic Web Service
discovery, paying attention to the underlying requirements for reasoning. We first
look at keyword-based discovery using UDDI and then, in turn, look at subsump-
tion-based matching using Description Logics (DL), request rewriting with algo-
rithms for best profile covering, process querying and object-based discovery.

Keyword-Based Discovery

Keyword-based discovery is the basis of the first wave of efforts involving Web
Services and the UDDI registry specification. Initially, UDDI was used much like a
white-pages listing of available Web Services. Loosely structured information
regarding the provenance of the Web Service providers is provided through six
specific UDDI concepts:

• businessEntity: information about the business
• businessService: more detail on the service being offered
• bindingTemplates: each one describes a technical entry point for the service
• tModels: information regarding particular standards or specifications used by

the service
• publisherAssertion: declare relationships between business entities
• operationInfo: metadata regarding the information in the other five categories,

e.g., the time and date they were created.

278 11 Semantic Web Services

Keyword-based Web Service discovery usually associated with the use of UDDI
relies on string-matching techniques, and very often, with visual human inspection
of the information returned either through a graphical user interface on the UDDI
registry or with the use of a UDDI API. In either case, logical reasoning is not used
to match syntactically different but semantically similar terms. There have been
some efforts to build on the UDDI specification through the use of semantic anno-
tation of the information contained in registry entries, e.g., categories linked to
ontological concepts. The ontologies used for annotations may, for example, be
referenced in the tModels for the entries. This was discussed in [338].

As is the case for all efforts using semantic annotation to aid Web Service dis-
covery, the type of reasoning that may be used is dependent on the choice of onto-
logical language. In particular, we described in Section 11.3.2 on SWSF and in
Section 11.3.5 on WSMO and WSML how the various types of underlying logical
formalisms reflect the reasoning that may be applied.

Subsumption-Based Discovery

The conceptual model for the OWL-S profile includes concepts for input and out-
puts of a Web Service. The formal logical language used for profile descriptions is
OWL-DL (Description Logics). This is designed for the representation of complex
hierarchies of information. In the subsumption-reasoning approach of [367], an
advertisement matches a request when all the outputs of the request are satisfied by
the advertisement and all the inputs required by the advertisement are provided by
the request. The reasoner can infer from the subsumption hierarchy of concepts if
particular concepts match even where there are syntactic differences. The underly-
ing concepts of the inputs and outputs are used by the reasoner when computing
potential matches. The assumption is that all concepts used in the description of the
profiles of both requests and advertisements are defined in a specified registry of
OWL-DL ontologies. If concepts are included from unknown ontologies, the rea-
soner will not recognize them or be able to reason over them.

Similar to the query-rewriting approach to Semantic Web Service discovery
described in the next section, subsumption-based reasoning allows for degrees of
matching, i.e., matching that recognizes the degree of similarity between advertise-
ments and requests. Examples of degrees of matching are: exact match, plug-in
match, subsumption match. Additionally, other algorithms take into account of the
distance between concepts in a taxonomy tree. The amount of flexibility built into
this kind of discovery is at the discretion of the designers of the matching algo-
rithm.

Request Rewriting (with Best Profile Covering)

This approach builds on subsumption-based reasoning over the inputs and outputs
of OWL-S service advertisements and requests. It is described in detail in [339]
The algorithm extracts the inputs and outputs of the request, looking for a combi-

 11.4 Reasoning with Web Service Semantics 279

nation of Web Services that satisfies as much as possible the required outputs of
the query, and that requires as little as possible of any inputs not provided by the
query. The previous approach looked only for matches between one service request
and one advertisement. The request is essentially rewritten into a description of the
conjunction of Web Services from known OWL-S ontologies. Best profile cover-
ing means a much greater degree of flexibility is allowed in the matching algo-
rithm. Two concepts are defined, Profile rest (Pres) and Profile miss (Pmiss). Pres
is defined as the difference between the outputs defined in the query service profile
description and the outputs defined in the advertisement service profile description.
Pmiss is defined as the inputs required by the rewritten query (in terms of available
Web Services) and the inputs provided by the service request.

Roughly speaking, the difference between two descriptions A and B (written A
— B) means all the information that is part of A but not a part of B. In Description
Logics, A — B may be a set of descriptions that are not semantically equivalent. In
[339], the assumption is made that semantic equivalence holds and further refer-
ences to how this can be achieved are provided. Best profile cover is defined as the
situation where the size of Pres and Pmiss are minimized.

The inputs and outputs of the service requests and advertisements are normal-
ized into clauses (where each clause is of a known concept). The best profile cover-
ing problem is then reduced to an interpretation of hypergraphs by defining the
difference between two semantic descriptions as a set difference operation between
the sets of atomic clauses of two semantic descriptions. Hypergraph theory is used
so that the problem of discovering which Web Services best cover the query may
be resolved by finding the minimum transversal of a hypergraph with the minimum
cost. A hypergraph is constructed where each vertex represents a Web Service and
each edge represents a clause (A) of the normal description of the output of the
query. The edge is populated by services that have a clause A’ in their output that is
semantically equivalent to A.

To determine semantic equivalence, reasoning is essentially based on subsump-
tion and consistency checking but the matching algorithm additionally provides a
global reasoning mechanism, a flexible matching that goes beyond subsumption
tests, and effective computation of missed information.

State-based Discovery

In Section 11.3.5 on WSMO, we described how Web Service and goal capabilities
are modeled using preconditions, postconditions, assumptions and effects. As with
inputs, outputs, preconditions and effects of OWL-S (Section 11.3.1), this repre-
sents a model for describing the state of the world before and after the execution of
a Web Service. State-based discovery, as described in [337] for WSMO, seeks to
takes advantage of these descriptions to check if the states described in the service
request and advertisement, before and after the Web Service execution, match each
other.

280 11 Semantic Web Services

A state determines the properties of the real world and the available information
at some point in time. An abstract service is considered as a set of state transforma-
tions. As described earlier, a Web Service description may be considered as
abstract as it usually does not describe a single concrete service (e.g., sell books vs.
sell the book with title “The Lord of the Rings”). A concrete service can be mod-
eled as a transformation from one particular state to another. In [337], the authors
describe a formal model for WSMO Web Services and goals, and based on this
present a conceptual model for service location with four stages:

• Goal discovery: Locate a predefined goal that fits the requester’s desire. The
predefined goal is an abstraction of the requester’s desire in a more generic and
reusable from.

• Goal refinement: The goal is refined taking account of the specific information
provided in the service request.

• Abstract service discovery: Using the capability descriptions of the goal and
available Web Service descriptions (capabilities contain the conditions that
define the states for before and after execution), Web Services that may be able
to fulfill the service request are located. At this point there is no guarantee that
the abstract capability of matching services will be sufficient for the request.

• Service contracting: The located services will be checked for their ability to
satisfy the request. This will usually involve invocation of the services.

Additionally, the paper describes how abstract services and Goals can be repre-
sented as sets of objects during the discovery phase. Objects are both the outputs
and the effects that can be observed by a requester as a consequence of delivery of
a service. This is the key part of the discovery algorithm where the other parts of
the capability description are used during the service contracting phase.

The layered family of WSML languages can be employed when defining capa-
bilities, such that a greater degree of logical inference is available to implementa-
tions of the service discovery algorithm. This was discussed earlier in Section
11.3.5.

Process-Based Querying

Another approach to Web Service discovery uses the process ontology segment of
Semantic Web Service descriptions. This is an important aspect of OWL-S,
WSMO and, in particular, SWSF. The process models are queried using a process
query language to determine if specific service advertisements match service
requests. Such an approach is described in detail in [340]. For this purpose, process
models are decomposed into the following concepts, against each of which a query
can be made:

• Attributes: textual characteristics of the process
• Decomposition: a process may be composed of other subprocesses

 11.4 Reasoning with Web Service Semantics 281

• Resource flows: all process steps have input and output ports through which
resources, used by the process, can flow

• Mechanisms: resources that are used by the process as distinct from resources
that are consumed or produced

• Exceptions: characteristics of process failures

11.4.2 Semantic Web Service Composition

There is a significant relationship between Semantic Web Service discovery and
composition. In general, the algorithms for composition depend on the availability
of a set of Web Services that, when composed, provide functionality that matches
that required by the request. Further, in the course of composition, one or more of
the matching techniques, described in the last section, will be necessary to deter-
mine if a specific service matches the requirements of a particular stage in a service
composition. That said, there is a substantial body of research into composition
including and predating Web Service technology.

In this section, we look at a sample of the state-of-the-art approaches to Seman-
tic Web Service composition using inference engines to assist in the composition
by reasoning over semantic annotations. Specifically, we look at composition plan-
ning, constrained object models [341], process-based composition and workflow
approaches.

AI Planning

Planning is a research topic adopted from artificial intelligence (AI) concerned
with the realization of strategies by intelligent agents where the solution to the
strategy is determined at run time based on information represented using some
formal language. This is valuable as changes to the set of available services and
additional information can be taken into account by the inference engine at each
step of the planning. Broadly speaking, an initial and a final state are provided
along with information (and constraints on that information) of actions that are
available to the agent. Two common, broad approaches are adopted, forward chain-
ing and backward chaining. In forward chaining, the agent starts with the initial
state, looking for an action that can move the solution closer to the final state based
on the available information, e.g., what actions can be executed where the inputs to
that action are available in the information space. The process chains forward until
the final state can be reached. Backward chaining starts with the desired final state
and works backward to the initial state. As the models for Semantic Web Services
presented in this chapter pay special attention to the formalization of the data con-
sumed and produced by Web Services, as well as the constraints on that data, plan-
ning techniques, based on logical inference engines, are seen as a strong proposal
to the problem of Web Service composition. A comprehensive review of AI plan-

282 11 Semantic Web Services

ning is beyond the scope of this chapter. To give an indication of the variety of
approaches, we provide brief descriptions and references to additional material.

In the work of McIlraith and Son [342], the authors propose the modeling of ser-
vice requests and advertisements in terms of first-order situation calculus. Requests
are represented as generic procedures while services are represented as actions that
either change the state of the world or the information space. The logic program-
ming language Golog is adapted and extended as a natural formalism for represent-
ing and reasoning about service composition in this context.

An interesting link between the Semantic Web Service and AI communities is
through the relationship of PDDL and DAML-S (the precursor of OWL-S).
DAML-S was strongly influenced by PDDL, resulting in a straightforward map-
ping between the languages (with restrictions). Consequently, an approach to Web
Service composition proposed in [314] is based on the translation of DAML-S
descriptions to PDDL and reuse of the PDDL planners.

In [343], the authors describe how Hierarchical Task Planning (HTN) is espe-
cially suited to composition of Web Services described by OWL-S, as HTN places
particular focus on task decomposition and precondition evaluation, concepts that
tailor well to the OWL-S process descriptions. In [344], the meta-model for auto-
mated planning from AI and the meta-model for process-based service enactment
are merged in an effort to overcome the predominantly static nature of process
descriptions favored by industry, such as those defined using BPEL. Overcoming
the challenges involved in merging the meta-models allows for more dynamic
compositions that can be flexibly enacted. Enactment means that the composed
process itself is determined at run time based on the semantic description of the
input and output data and relevant constraints. Once the composed process has
been established, services are located for each activity and it is verified that the
overall process is executable.

Workflow and Business Processes Technology

A popular approach to the composition of Web Services, from an industrial point
of view, is through the use of business process modeling (BPM) where each step of
a process can be performed by the execution of a Web Service. BPM itself shares a
lot of its underlying theory with workflow modeling. Van der Aalst [345] provides
a critical comparison Web Service composition language using a set of workflow
patterns as the evaluation criteria. For a process or workflow to be established, the
stages have to be identified and suitable activities selected. A control flow needs to
be defined to ensure the correct sequence of invocation of each activity. Data flow
also needs to be defined so that the correct datatypes are used to transfer data from
one activity to another. Van der Aalst notes that Web Service composition lan-
guages adopt most of the functionality of workflow systems but show increased
expressiveness and in particular put additional focus on communication patterns.
He also points out the desirability of providing formal semantics for composition
languages through mappings to established process modeling formalisms.

 11.4 Reasoning with Web Service Semantics 283

The Web Services Business Process Execution Language (WSBPEL)16 pro-
vides an XML-based language for defining business processes in terms of opera-
tions provided by Web Services with WSDL descriptions. Although popular and
maturing, BPEL essentially is a static means of describing processes made up of
Web Service compositions. However, there is significant research activity to merge
the theoretical aspects of workflow (and by extension BPM) with the rich expres-
siveness of Semantic Web Service descriptions in languages like OWL-S and
WSMO.

For example, in [346], a BPEL process is defined manually as a skeleton. All
candidate services with semantic annotations that may be used by the process
(there may be multiple candidates for each step) are verified and then registered in
a service container. The skeleton process can then be configured to use different
combinations of services for different scenarios. A programmatic interface is used
to carry out the configuration. For example, in a process that involves booking
flights online, one airline’s service may be replaced by another’s without the need
to modify the skeleton business process. As the process models including the input
and output messages of each service are semantically described, inference reason-
ing comes into play where there are differences in the required inputs and outputs
of messages for the various services. The reasoning engine can check for semantic
compatibility and adjust the configuration of the process accordingly. A similar
approach is described for the eFlow platform in [347] where the composite service
is modeled as a graph. The graph consists of nodes for services, events and deci-
sions. Arcs joining the nodes denote execution dependencies. The service nodes
can be configured to resolve to a concrete service implementation either at design
time or run time.

A related approach to process-based Web Service composition is goal-based
orchestration [348] using the WSMO conceptual model. The key idea is that each
stage in a process can be represented by a WSMO goal rather than a specific ser-
vice identifier. The goals are resolved to concrete services at run time by a suitable
execution environment such as WSMX. A three-tier model is proposed that allows
the design of processes through a visual tool that can be mapped to a formal work-
flow language. The workflow language has then a direct mapping to the Abstract
State Machine (ASM) formalism used to describe service behavior in WSMO
orchestrations.

11.4.3 Mediation

A frequent, unstated assumption when tackling Web Service discovery and compo-
sition is that all artifacts (service requests and advertisements) use a common con-
ceptual model for defining data, processes and protocols. In real-world conditions,
it is highly unlikely that business partners can agree on this level of uniformity in

16. http://www.oasis-open.org/committees/wsbpel (Accessed September 10, 2007).

284 11 Semantic Web Services

advance. Even within a single organization, where there are multiple operational
units, each unit may use independent, heterogeneous conceptual models for legacy
applications. In such a situation, both discovery and composition of services is
very difficult without a defined means to bridge interoperability issues. Mediation
is the activity of mitigating the problems of interoperability through ontology
alignment. It has its origins in the significant history of research in the database
community into schema mapping.

The formal description of data and process as promoted by Semantic Web Ser-
vice technology provides the basis for mediation. Subsumption-based reasoning is
used in the case of languages based on description logics such as OWL-DL while
logic programming is used by WSML-Flight and rule-based reasoning is used for
languages such as SWSL-Rule and WSML-Rule (which extends WSML-Flight
with function symbols). Of the Semantic Web Service conceptual models discussed
in this chapter, only WSMO defines mediators as a top level element. The other
Semantic Web Service ontologies also recognize the necessity of mediation but do
not model it explicitly within their scope. The four categories of WSMO mediators
were identified in Section 11.3.5. In particular, current WSMO research efforts
focus on design for data mediation and process mediation.

As defined in [349], data mediation is based on the definition of a formal model
for ontology mappings. Mappings are created and stored using a formal language.
The mappings are applied as needed when an issue of heterogeneity occurs. For
example, in the WSMX execution environment, a goal may be defined in terms of
one ontology while a candidate Web Service may use another. During the matching
phase, the data mediation component checks for mappings between the two ontolo-
gies and applies mappings only as necessary. This means that usually only a subset
of the mappings that correspond to the concepts used is required, helping the effi-
ciency of the operation. The assumption is that the mappings between the ontolo-
gies have already been created.

In WSMO, process mediation deals with solving mismatches between the cho-
reographies of interacting partners [331]. In other words, it is required where the
requester’s choreography (goal choreography) and the service’s choreography do
not match. Mismatches can appear not only when the requester and the provider
use different conceptualizations of a domain (in which case data mediation is
required), but also if they have different requirements for the message exchange
pattern they wish to follow [350]. Essentially this means that one of them expects
to receive/send messages in a particular order while the other has different mes-
sages or a different message order. The role of the process mediator is to retain,
postpone and rebuild messages that would allow the communication process to
continue.

 11.5 Clinical Use Case 285

11.5 Clinical Use Case

Using Semantic Web technologies to share the formal definition of the meaning of
data models across the Web, so that they can be flexibly and powerfully queried,
only tackles part of the problem with integrating independent heterogeneous appli-
cations. Such applications (and systems) interact with each other on the basis of the
behaviour that they expose at their interfaces. This is well-recognized across vari-
ous domains of interest, including medicine, where there are several specifications
defining datamodels and behaviour within each respective domain.

In the running example, threading through this book from the use-case intro-
duced in Chapter 2 to the detailed description in Chapter 13, we fous on a transla-
tional medicine scenario involving two of these sets of specifications: CEN 13606
and HL7-CDA. We look at how modeling both the data and the behaviour, defined
for each specification, semantically can enable services to be located and combined
more flexibly.

Applying semantics to Web Services means being able to speicfy the meaning
of both the data and the behaviour that Web Services expose at their interfaces. The
novelty of Semantic Web Services is not that it is the first technology seeking to
define such semantics but that it applies existing semantic modeling mechanisms
to Web Services rather than requiring that a new technology stack be built from the
ground up.

In the last eight years multiple languages have emerged for the description of
different aspects of the Semantics required by Web Services. The fundamental
aims of these languages are very similar but each one either targets different spe-
cific aspects of Web Services or seeks to correct perceived inconsistencies in ear-
lier efforts. There is also a varying degree of available tool support.

We choose WSMO as the conceptual model for the detailed example in Chapter
13 because of its support for mediation, the clear separation of modeling and onto-
logical constructs for service requesters and providers, and its rule-based approach
for the definition of behavioural semantics. Additionally, there is an open source
execution engine available called WSMX17 available for WSMO against which the
model can be tested. WSMO has its own native language called WSML which we
use in the example as it uses a frame-based syntax that is reasonably reader-
friendly. It’s important to note that WSML also can be expressed in RDF and can
use the RDF examples included in other parts of this book.

The combination of Goals and rule-based process definitions for the sample
translational medicine workflow means that the process designers can focus on
what they want the process to do without having to worry at that point about the
design implementation. Each step in the process is modeled as a Goal to be
resolved to the most suitable service at run-time. For example, one Goal models

17. WSMX source and binaries are available at http://sourceforge.net/projects/wsmx,
(accessed May 26, 2008).

286 11 Semantic Web Services

the need to get guidance on the ordering of tests based on the symtoms and medical
hsitory of a patient. Another Goal models the need to get therapeutic guidance
depending on results returned from clinical and laboratory tests.

Each step may involve one or more independent services with possibly indepen-
dent data and behaviour models. Mediation based on formally defined mappings
act as bridges. These mappings do not come for free and require a design effort
from domain experts. However, as they are defined between industry standards at
the conceptual (rather than at the data-instance) level, they provide an extensible,
flexible basis for reuse across multiple scenarios.

11.6 Summary

In this chapter we have taken a look at the state-of-the-art approaches for providing
semantic annotations of Web Service descriptions. We started by looking at the
motivation for applying semantics to Web Services, discussing the drawbacks of
XML as a description language, in terms of providing machine-understandable and
unambiguous semantics. As Web Service descriptions focus on process models for
interacting with the software applications made available on the Web, we examined
various approaches to capturing behavioral semantics. These included Finite State
Machines, Statecharts and Petri-Nets. In the section on Semantic Web Service
approaches we described in detail the four current prominent efforts, OWL-S,
WSMO, SWSF and WSDL-S. Finally, as a strong motivation for the use of Seman-
tic Web Services is the possibility to use logical inference engines to reason over
semantic descriptions, we looked at three particular aspects of Semantic Web Ser-
vice usage that may require reasoning support. These are discovery, composition
and mediation. In each case, we discussed the prevalent underlying theories, most
of which predate the introduction of the Semantic Web Services terminology.

Part IV
Standards

12 Semantic Web Standards

As in many areas it is important to work on standardization to allow widespread
development of interoperable software. In the end, this is what counts as success.
Consequently, the Semantic Web communities engaged in this process through var-
ious means are presented in this chapter.

12.1 Relevant Standards Organization

In the following subsections, we provide brief descriptions of major organizations
involved in standardization activities. The list is not exhaustive and reflects the fact
that consensus on the various aspects of Semantic Web Services, a relatively young
technology, is limited and thus there are a limited number of relevant standards.
For each organization, we describe the intent and scope and the kind of member-
ship supported and summarize the standardization process.

12.1.1 International Organization for Standardization (ISO)

ISO, founded in 1947, is an international body constituted as a federation of
national standards bodies. At the end of 2007, there were 157 members, with many
of ISO’s standards having legal status in participating member countries. The orig-
inal intent was to promote common standards across national boundaries to facili-
tate the exchange of goods and services. The scope of ISO is broad, covering an
ever-increasing set of goods and services that may be traded. For standards relating
to electrical/electronic equipment, ISO adopts the work of the IEC (see Section
12.1.2). For standards relating to information technology, a joint committee estab-
lished between ISO and IEC, called JTC1, takes responsibility.

Voting members are recognized national standards bodies that have paid their
subscription to the ISO. Other categories of membership are possible with reduced
rights. Standardization work occurs in three phases. First the technical scope of a
future standard is designed. Second the voting members negotiate the technical
details. Third, the standard is approved by the ISO itself.

290 12 Semantic Web Standards

12.1.2 International Electotechnical Commission (IEC)

The IEC was founded in 1906 as an international standards organization for all
things related to electrical and electronic technologies. The genesis for IEC came
from the British IEE and American IEEE institutions. Similarly to ISO, the voting
members of the IEC comprise of national electrotechnical committees of sub-
scribed countries. By the end of 2006, there were 67 voting members. A further 69
countries are affiliate members without voting rights. To create broad acceptance
of their standards, IEC and ISO cooperate in a joint technical committee to pro-
mote standards that overlap between the two organizations.

The highest organizational unit in the IEC is the council made up of a general
assembly of National Committees, who are members of the commission. The
Council Board implements council policy and takes input from several Manage-
ment Advisory Committees. In particular the Standards Management Board takes
responsibility for the management of IEC’s standardization work including the cre-
ation, management and dissolution of individual Technical Committees.

12.1.3 Organization for the Advancement of Structured Information
Standards (OASIS)

OASIS is a non-profit consortium established for the promotion of eBusiness stan-
dards to facilitate processing of the increasing volume of business transactions car-
ried out over the Web. Operationally, OASIS has elected directors and a full-time
administrative staff funded by the consortium. Unlike ISO and IEC it is not made
up of national bodies. Rather, any organization is free to join and, depending on the
subscription level, members of an organization may obtain voting rights on the dif-
ferent stages of the technical specifications. Work is carried out by technical com-
mittees which, in turn, provide specification recommendations on which OASIS
members can vote. Although OASIS does not produce international standards in
the sense of ISO or IEC, its recommendations in the domain of eBusiness area are
regarded important by industry. In particular, with its industry focus on the
dynamic area of eBusiness, it strives to be as nimble and responsive as possible. In
2002 OASIS signed a memorandum of understanding with other standards organi-
zations to coordinate the various standards efforts with the intent of avoiding over-
lap.

12.1.4 World Wide Web Consortium (W3C)

The World Wide Web Consortium was founded in 1994 by Tim Berners-Lee, the
primary author of the URI, HTTP and HTML specifications on which the Web is
founded. It has major hosts in the Europe, Asia and the US, in addition to several
offices worldwide. According to the W3C home page, the W3C “is an international
consortium where Member organizations, a full-time staff, and the public work

 12.1 Relevant Standards Organization 291

together to develop standards”. Its mission is to “to lead the World Wide Web to its
full potential by developing protocols and guidelines that ensure long-term growth
for the Web”. To make this a reality, the W3C has already published over ninety
standards, called W3C Recommendations. It is committed to keeping Web technol-
ogies non-proprietary to promote interoperability to the maximum extent, and to
prevent market fragmentation.

As a member organization, W3C organizes itself in various entities. The Team
is a group of about sixty researchers who lead the technical activities from a man-
agement perspective. The advisory committee consists of one member from each
member organization and reviews proposals for new activities and proposed rec-
ommendations. The Technical Architecture Group was put in place to provide
architectural guidance and to resolve architectural conflicts. Working Groups are
established for technical developments, interest groups for general work and coor-
dination groups for ensuring cross-group communications.

12.1.5 International Engineering Task Force (IETF)

The IETF is an all-volunteer organization for the development of Internet stan-
dards. Founded in 1986, its underlying motivation was provided by engineers of
member organizations getting together to solve interoperability problems between
their respective products. There are a number of activity areas including telecoms,
security and transport. For each activity area, working groups are established for
particular topics. Each working group has one or more chairs and closes down once
work on that particular topic is complete.

IETF standards take the form of RFCs (Requests For Comments). The establish-
ment of an RFC is through rough consensus, carried out over email following an
agreed-upon decision-making procedure. The IETF meets three times a year and
cooperates closely with ISO, IEC and W3C.

12.1.6 National Institute of Standards and Technology (NIST)

The NIST is a non-regulatory federal agency in the US. It has a broad scope in the
promotion of standards and technology for the benefit of the US economy.
Although NIST is not a standards body per se, it monitors technology standards
and promotes their use in the US. This is particularly the case for US standards for
which the NIST Standards Service Division (SSD) promotes recognition both
domestically and globally to encourage US-driven trade.

12.1.7 The Object Modeling Group (OMG)

OMG is an international non-profit computer industry consortium founded in 1989
by Hewlett Packard, Sun Microsystems, Apple Computer, American Airlines, IBM

292 12 Semantic Web Standards

and Data General. It was originally established to create standards for distributed
computing but has evolved to include standards for enterprise integration and mod-
eling. Some prominent examples are the CORBA specification for distributed
computing and the UML specification for modeling object-oriented systems.

OMG has an open membership with members from both large and small com-
puter industries. Each member organization has voting rights. OMG has a board of
directors and a technology committee consisting of three sub-committees: the
architecture board, the platform technology committee and the domain technology
committee. Task forces are established under a responsible technology committee
to create standards in particular areas. The process usually starts with an RFP
(Request for Proposal) and goes through various phases before possibly being rec-
ommended as an OMG standard.

OMG maintains close liaisons with several other standards bodies. In particular,
it is an ISO-PAS submitter, which enables OMG standards to be fast-tracked
through the ISO standardization process. Several OMG standards have been
accepted as ISO standards, including UML (ISO/IEC 19501), MOF (ISO/IEC
19502) and IDL (ISO/IEC 14750).

12.1.8 Semantic Web Services Initiative (SWSI)

SWSI is an ad hoc initiative of researchers in the area of Semantic Web and
Semantic Web Services. SWSI is relevant in this section as the outcome of their
work led to submission to the W3C of the Semantic Web Services Framework
(SWSF) including the SWSL language (see Section 11.3.2).

12.1.9 United States National Library of Medicine (NLM)

NLM is the world’s largest medical library, located on the campus of the US
National Institute of Health, Bethesda, Maryland. It collects and maintains guide-
lines and standards relating to all aspects of healthcare in the United States. In this
context, it has been the US coordinating center for standard clinical vocabularies
since 2004.

The SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms)
terminology was originally developed in the US by the College of American
Pathologists and was licensed by the NLM for US use. Since April 2007,
SNOMED CT has been owned, maintained and distributed by the International
Health Terminology Standards Development Organization (IHTSDO) in Denmark.
However, the NLM is the US member of IHTSDO and distributes SNOMED CT at
no cost in the US under the terms of an IHTSDO international license.

Additionally, NLM funds ongoing development of LOINC (database facilitating
the exchange of medical information) and maintains the RxNorm clinical drug
vocabulary. SNOMED CT, LOINC and RxNorm have been designated as US-gov-

 12.2 Semantic Web Content Standardization Efforts 293

ernment-wide standards. In addition, NLM is working to align these three efforts
with the international HL7 clinical messaging standard.

12.2 Semantic Web Content Standardization Efforts

In this section, we enumerate a set of content standards that seek to standardize
representation of semantics to varying degrees. Some of these standards are
markup languages that predate the Internet era, but form the basis from which the
various Semantic Web markup languages have been derived. The intent is to iden-
tify some of the most prominent languages for describing information on the Web
and to indicate earlier efforts from which these languages have derived. We also
enumerate specifications for transforming and querying Semantic Web content,
and a list of standardized vocabularies and ontologies that are currently in use.

12.2.1 Standard Generalized Markup Language (SGML)

The Standard Generalized Markup Language (SGML) [14] is a meta-language in
which one can define markup languages for documents. SGML is a descendant of
IBM's Generalized Markup Language (GML), developed in the 1960s. SGML was
originally designed to enable the sharing of machine-readable documents in large
projects in government, law and industry, which have to remain readable for sev-
eral decades. Both XML and HTML originated as derivatives of SGML.

12.2.2 eXtensible Markup Language (XML)

The Extensible Markup Language (XML) [43] is a general-purpose markup lan-
guage. It is classified as an extensible language because it allows its users to define
their own tags. Its primary purpose is to facilitate the sharing of structured data
across different information systems, particularly via the Internet. It is used both to
encode documents and to serialize data. It started as a simplified subset of the Stan-
dard Generalized Markup Language (SGML), and is designed to be relatively
human-legible. By adding semantic constraints, application languages can be
implemented in XML. These include XHTML, RSS, MathML, GraphML, Scal-
able Vector Graphics, MusicXML, and thousands of others. Moreover, XML is
sometimes used as the specification language for such application languages. XML
is recommended by the World Wide Web Consortium. It is a fee-free open stan-
dard. The W3C recommendation specifies both the lexical grammar and the
requirements for parsing.

294 12 Semantic Web Standards

12.2.3 eXtensible Stylesheet Transformation Language (XSLT)

XSLT [65] is a language for transforming XML documents into other XML docu-
ments. XSLT v1.0 is one of a family of three languages that collectively make up
XSL. The other two are XSL Formatting Objects v1.1 and XPath v1.0. All three
are W3C recommendations. XSLT v2.0 became a W3C Recommendation in Janu-
ary 2007. It was developed in parallel with XPath v2.0 and both share the same
data model. While initially XSLT was developed to transform XML documents
into other XML documents formatted for presentation, it has become much more
of a general-purpose transformation language.

12.2.4 XPath

XPath [67] is a language that allows individual nodes in an XML document tree to
be addressed. It is mainly used within a host language such as XSLT 2.0 or XQuery
1.0, both of which became W3C Recommendations in January 2007. It also pro-
vides basic facilities for manipulation of strings, numbers and booleans. XPath
uses a compact, non-XML syntax to facilitate use of XPath within URIs and XML
attribute values. XPath operates on the abstract, logical structure of an XML docu-
ment, rather than its surface syntax. In addition to its use for addressing, XPath is
also designed so that it has a natural subset that can be used for matching (testing
whether or not a node matches a pattern); this use of XPath is described in XSLT.

12.2.5 XQuery

XQuery [64] is designed to be a language in which queries against XML data
sources are concise and easily understood. It can be considered analogous to SQL
for relational database systems and is flexible enough to query a broad spectrum of
XML information sources, including both databases and documents. The use of
expressions in XPath are augmented with the keywords FOR, LET, WHERE,
ORDER BY, and RETURN, which resemble keywords in SQL. They enable que-
ries to be built with embedded XML tags for the direct construction of valid XML
documents based on the query’s outcome.

12.2.6 XML Schema

XML Schema [87] can be used to express a schema: a set of rules to which an
XML document must conform in order to be considered 'valid'. However, unlike
most other schema languages, XML Schema was also designed for validation,
resulting in a collection of information adhering to specific datatypes. An XML
Schema instance is an XML Schema Definition (XSD) and includes the vocabulary

 12.2 Semantic Web Content Standardization Efforts 295

(element and attribute names), the content model (relationships and structure) and
the datatypes.

12.2.7 Resource Description Framework (RDF)

The Resource Description Framework (RDF) [96] is a language for representing
information about resources on the World Wide Web. It is provided as a family of
W3C Recommendations (current version from February 2004) and is particularly
intended for representing metadata about Web resources, such as the title, author,
and modification date of a Web page, copyright and licensing information about a
Web document, or the availability schedule for some shared resource. However, by
generalizing the concept of a “Web resource”, RDF can also be used to represent
information about things that can be identified on the Web (using Uniform
Resource Identifiers or URIs), even when they cannot be directly retrieved on the
Web. RDF is intended for situations in which this information needs to be pro-
cessed by applications, rather than being only displayed to people. RDF provides a
common framework for expressing this information, so it can be exchanged
between applications without loss of meaning.

12.2.8 SPARQL

The SPARQL specification [83], a W3C Candidate Recommendation as of June
2007, defines the syntax and semantics of a query language for RDF. SPARQL can
be used to express queries across diverse data sources, regardless of whether the
data is stored natively as RDF or viewed as RDF via middleware. SPARQL con-
tains capabilities for querying required and optional graph patterns along with their
conjunctions and disjunctions. SPARQL also supports extensible value testing and
constraining queries by source RDF graph. The results of SPARQL queries can be
result sets or RDF graphs.

12.2.9 RDF Schema

RDF(S) or RDF Schema [88] is an extensible knowledge representation language,
providing basic elements for the description of ontologies defined using RDF.
Vocabularies declared using RDFS are described in terms of classes and properties
using extensions to RDF provided by RDFS. The semantics are rather informal,
aimed at providing users with a simple means to organize their RDF information.
RDFS itself does not impose constraints on information as do the type systems, for
example, object-oriented languages such as Java. Although it is a W3C Recom-
mendation since February 2004, other standards such as OWL (Section 12.2.10)
provide a means for describing ontologies whose semantics are well-defined and
formalized in comparison with RDFS.

296 12 Semantic Web Standards

12.2.10 Web Ontology Language (OWL)

The Web Ontology Language (OWL) [59] is a language for defining and instantiat-
ing Web ontologies. An OWL ontology may include descriptions of classes, along
with their related properties and instances. OWL is designed for use by applica-
tions that need to process the content of information instead of just presenting
information to humans. It facilitates greater machine interpretability of Web con-
tent than that supported by XML, RDF, and RDF Schema (RDFS) by providing
additional vocabulary along with a formal semantics. OWL is based on the earlier
languages OIL and DAML+OIL, and has been a W3C Recommendation since
February 2004.

12.2.11 Rule-ML

The Rule Markup Language (RuleML) [395] is a markup language developed to
express both forward (bottom-up) and backward (top-down) rules in XML for
deduction, rewriting, and further inferential-transformational tasks. It is defined by
the Rule Markup Initiative, an active open network of individuals and groups from
both industry and academia that was formed to develop a canonical Web language
for rules using XML markup and transformations from and to other rule standards
and systems.

12.2.12 Semantic Web Rules Language (SWRL)

The Semantic Web Rule Language (SWRL) [312] is based on a combination of the
OWL-DL and OWL Lite sublanguages of the OWL Web Ontology Language with
the Unary/Binary Datalog RuleML sublanguages of the Rule Markup Language.
SWRL includes a high-level abstract syntax for Horn-like rules in both the OWL-
DL and OWL Lite sublanguages of OWL. A model-theoretic semantics is given to
provide the formal meaning for OWL ontologies, including rules written in this
abstract syntax, an XML syntax based on RuleML and the OWL XML. A presen-
tation syntax and an RDF concrete syntax based on the OWL RDF/XML exchange
syntax are also given.

12.2.13 Ontology Definition Metamodel (ODM)

The ODM specification [396] defines a family of independent metamodels, related
profiles, and mappings among the metamodels corresponding to several interna-
tional standards for ontology and topic maps definition, as well as capabilities sup-
porting conventional modeling paradigms for capturing conceptual knowledge,
such as entity-relationship modeling. In 2006, it was adopted as a standard by the
Object Management Group (OMG) and is applicable to knowledge representation,

 12.2 Semantic Web Content Standardization Efforts 297

conceptual modeling, formal taxonomy development and ontology definition, and
enables the use of a variety of enterprise models as starting points for ontology
development through mappings to UML and MOF. ODM-based ontologies can be
used to support interchange of knowledge among heterogeneous computer sys-
tems, representation of knowledge in ontologies and knowledge bases, and specifi-
cation of expressions that are the input to or output from inference engines.

12.2.14 Unified Modeling Language (UML)

The Unified Modeling Language (UML) [40] is a standardized specification lan-
guage for object modeling and includes a graphical notation used to create an
abstract model of a system, referred to as a UML model. UML is officially defined
at the Object Management Group (OMG) by the UML metamodel, a Meta-Object
Facility (MOF) metamodel. UML was designed to specify, visualize, construct,
and document software-intensive systems. UML is also used for business process
modeling, systems engineering modeling, and representing organizational struc-
tures. It is also being used for modeling ontologies.

12.2.15 Knowledge Interchange Format (KIF)

Knowledge Interchange Format (KIF) [50] is a computer-oriented language for the
interchange of knowledge among disparate programs. It has declarative semantics
(i.e., the meaning of expressions in the representation can be understood without an
interpreter for manipulating those expressions); it is logically comprehensive (i.e.,
it provides for the expression of arbitrary sentences in the first-order predicate cal-
culus); it provides for the representation of knowledge about the representation of
knowledge; it provides for the representation of non-monotonic reasoning rules;
and it provides for the definition of objects, functions, and relations.

12.2.16 Open Knowledge Base Connectivity Protocol (OKBC)

OKBC [397] is an API and reference implementation that allows representation-
systemplatform- and language-independent knowledge-level communication. It
enables knowledge application authors to write representation-system-independent
tools, and to publish their knowledge easily.

12.2.17 DIG Description Logics Interface

The DIG Interface [398] is a standardized XML interface to Description Logics
systems developed by the DL Implementation Group (DIG). DIG 2.0 from Novem-

298 12 Semantic Web Standards

ber 2006 provides a specification for a standardized interface across DL Reasoners
supporting the W3C OWL Recommendation.

12.2.18 OWL API

OWL API [399] is a Java interface and implementation for the W3C Web Ontol-
ogy Language (OWL), used to represent Semantic Web ontologies. The API is
focussed toward OWL Lite, OWL-DL and OWL 1.1 and offers an interface to
inference engines and validation functionality.

12.2.19 Standardized Vocabularies and Ontologies

A list of well known and standardized vocabularies and ontologies are provided
below.

CIM/DMTF

The Common Information Model (CIM) [91] provides a common definition of
management information for systems, networks, applications and services, and
allows for vendor extensions. CIM’s common definitions enable vendors to
exchange semantically rich management information between systems throughout
the network. CIM is composed of a specification and a schema. The schema pro-
vides the actual model descriptions, while the specification defines the details for
integration with other management models.

SNOMED

SNOMED (Systematized Nomenclature of Medicine) [7] is a systematically orga-
nized computer processable collection of medical terminology covering most areas
of clinical information such as diseases, findings, procedures, microorganisms, and
pharmaceuticals. It allows a consistent way to index, store, retrieve, and aggregate
clinical data across specialties and sites of care. It also helps in organizing the con-
tent of medical records, and in reducing the variability in the way data is captured,
encoded and used for clinical care of patients and research.

Gene Ontology

The Gene Ontology project, or GO [10], provides a controlled vocabulary to
describe gene and gene product attributes in any organism. It can be broadly split
into two parts. The first is the ontology itself - actually three ontologies, each rep-
resenting a key concept in molecular biology: the molecular function of gene prod-
ucts; their role in multi-step biological processes; and their localization to cellular
components. The second part is annotation, the characterization of gene products

 12.2 Semantic Web Content Standardization Efforts 299

using terms from the ontology. The members of the GO consortium submit their
data and it is made publicly available through the GO Web site.

International Classification of Diseases (ICD-9)

The International Statistical Classification of Diseases and Related Health Prob-
lems 9th Revision (ICD-9) [8] is a coding of diseases and signs, symptoms, abnor-
mal findings, complaints, social circumstances and external causes of injury or
diseases, as classified by the World Health Organization (WHO).

Medical Subject Headings (MeSH)

MeSH [15] is the National Library of Medicine's controlled vocabulary thesaurus.
It consists of sets of terms naming descriptors in a hierarchical structure that per-
mits searching at various levels of specificity. MeSH descriptors are arranged in
both an alphabetic and a hierarchical structure. At the most general level of the
hierarchical structure are very broad headings such as “Anatomy” or “Mental Dis-
orders.” More specific headings are found at more narrow levels of the eleven-
level hierarchy, such as “Ankle” and “Conduct Disorder.” There are 22,997
descriptors in MeSH. In addition to these headings, there are more than 151,000
headings called Supplementary Concept Records (formerly Supplementary Chemi-
cal Records) within a separate thesaurus. There are also thousands of cross-refer-
ences that assist in finding the most appropriate MeSH heading, for example,
Ascorbic Acid for Vitamin C. These additional entries include 24,050 printed “see”
references and 112,012 other entry points.

BioPax

BioPAX Level 2 [47] covers metabolic pathways, molecular interactions and pro-
tein post-translational modifications and is backward compatible with Level 1.
Future levels will expand support for signaling pathways, gene regulatory net-
works and genetic interactions.

Cyc

The Cyc knowledge base (KB) [51] is a formalized representation of a vast quan-
tity of fundamental human knowledge: facts, rules of thumb, and heuristics for rea-
soning about the objects and events of everyday life. The medium of representation
is the formal language CycL, described below. The KB consists of terms, which
constitute the vocabulary of CycL, and assertions, which relate those terms. These
assertions include both simple ground assertions and rules.

300 12 Semantic Web Standards

Basic Formal Ontology (BFO)

BFO [93] is narrowly focussed on the task of providing a genuine upper ontology
which can be used to support domain ontologies developed for scientific research,
as for example in biomedicine.

IEEE Suggested Upper Merged Ontology (SUMO)

The Suggested Upper Merged Ontology (SUMO) [49] and its domain ontologies
form the largest formal public ontology in existence today. They are being used for
research and applications in search, linguistics and reasoning. SUMO is the only
formal ontology that has been mapped to all of the WordNet lexicon. SUMO is
written in the SUO-KIF language.

Unified Medical Language System (UMLS)

The Unified Medical Language System (UMLS) [16] is a compendium of many
controlled vocabularies in the biomedical sciences. It provides a mapping structure
between these vocabularies and thus allows us to translate between the various ter-
minology systems; it may also be viewed as a comprehensive ontology of biomed-
ical concepts. UMLS consists of the following components:

• Metathesaurus, the core database of the UMLS, a collection of concepts and
terms from the various controlled vocabularies and their relationships;

• Semantic Network, a set of categories and relationships that are being used to
classify and relate the entries in the Metathesaurus;

• SPECIALIST Lexicon, a database of lexicographic information for use in natu-
ral language processing;

12.3 Semantic Web Services Standardization Efforts

This section outlines the major standards activities in the Semantic Web Services
area. Table 12.1 provides an overview of all standards activities that are discussed
in the following.

Table 12.1. Standards overview

Organ-
ization Standard

Candidate
Recomm-
endation

Member
Submission

Interest
Group

Guide-
lines

Proposed
Architecture
or
Framework

ISO/IEC PSL
(ISO 18629)

OASIS SOA RM SEE

 12.3 Semantic Web Services Standardization Efforts 301

Notably, PSL is already an international ISO standard. Other efforts like OWL-
S, SWSL, WSDL-S and WSMO have been accepted as member submissions to the
W3C Web Service Activity group. Architecturally, a working group has been
formed in the context of OASIS and there are some additional relevant activities in
this area.

12.3.1 ISO-18629 Process Specification Language (PSL)

PSL was developed by NIST as a neutral representation for manufacturing pro-
cesses. It allows process information to be shared between autonomous applica-
tions that each use heterogeneous representations. The NIST homepage for PSL18

describes how its rationale is to provide a language that is “common to all manu-
facturing applications, generic enough to be decoupled from any given application
and robust enough to be able to represent process information from any given
application”. In August 2006, PSL was published as an international standard by
ISO, giving the family of specifications the identifier ISO-18629.

 PSL is organized as a layered ontology with the concepts defined formally
using the Knowledge Interchange Format (KIF) [285]. The purpose of KIF is to
provide a formal language for the interchange of knowledge rather than as an inter-
nal representation of knowledge in a system (although nothing prevents its being
used in this way). The PSL ontology is organized into PSL-Core and a partially
ordered set of extensions. All extensions must be consistent with PSL-Core but
they need not be necessarily consistent with each other. The core ontology consists
of four disjoint classes:

• Activities may have zero or more occurrences
• Activity occurrences begin and end at timepoints
• Timepoints constitute a linearly ordered set with endpoints at infinity
• Objects all elements that are not activities, occurrences or timepoints

W3C SAWSDL OWL-S
WSMO
SWSF
WSDL-S

SWSIG

SWSI
(Non-affil-
iated)

SWSA

18. http://www.mel.nist.gov/psl/rationale.html (Accessed September 10, 2007).

Table 12.1. Standards overview

Organ-
ization Standard

Candidate
Recomm-
endation

Member
Submission

Interest
Group

Guide-
lines

Proposed
Architecture
or
Framework

302 12 Semantic Web Standards

To supplement the PSL-Core, additional concepts are introduced in the PSL-Outer-
Core theory. These include subactivities, occurrence trees, discrete states, atomic
activities, and activity occurrences. Remaining core theories in the PSL ontology
include: subactivity occurrence ordering, iterated occurrence ordering, duration
and resource requirements. There is a distinction made between core theories and
definitional extensions. Core theories introduce primitive concepts while all termi-
nology introduced in definitional extensions are defined using the terminology of
the core theories.

Section 11.3.2 describes how the Semantic Web Services Framework (SWSF)
defines a conceptual model for Semantic Web Services called the Semantic Web
Services Ontology (SWSO). The first-order axiomatization of SWSO is called
First-Order Logic Ontology for Web Services (FLOWS) where FLOWS is based
on PSL.

12.3.2 W3C Semantic Annotations for the Web Services Description
Language (SAWSDL)

Section 11.3.3 introduced SAWSDL as a bottom-up approach to semantic markup
of WSDL 2.0 Web Service descriptions. As it is possible for two services, offering
different functionality, to be described using very similar WSDL, SAWSDL is
intended as a means for allowing ambiguities to be resolved. It defines extensions
for WSDL 2.0, enabling elements of WSDL 2.0 documents to be associated with
ontological definitions. SAWSDL is agnostic to the choice of conceptual model. It
simply provides the means by which such models can be associated with service
descriptions.

As of January 2007, SAWSDL is a W3C Candidate Recommendation. The
W3C policy guidelines state that a working group can only advance its specifica-
tion to Candidate Recommendation level once the W3C is satisfied that the techni-
cal report is stable and appropriate for implementation. To reach the status of W3C
Recommendation, the working group must gather implementation experience and
update the specification accordingly. Once this has been completed, the specifica-
tion may be put forward to the W3C Advisory Committee. If it is satisfied that the
specification fulfills its mandate and any objections have been overcome, SAW-
SDL will become a W3C Recommendation.

SAWSDL came about as a result of the W3C Workshop on Frameworks for
Semantics in Web Services,19 held in Innsbruck, Austria in June 2005. A number
of W3C member submissions were presented and debated. The aim of the work-
shop was to determine if the level of activity and maturity in the area of Semantic
Web Services suggested the establishment of a W3C Working Group or some other
activity. There was limited consensus at the end of the meeting between the more

19. http://www.w3.org/2005/04/FSWS/workshop-report.html (Accessed September 10,
2007).

 12.3 Semantic Web Services Standardization Efforts 303

comprehensive Semantic Web Service ontologies defined by WSMO, OWL-S and
SWSF. On the other hand there was more agreement that the bottom-up approach
of WSDL-S provided a common ground on which a W3C activity could progress.
Ultimately, this led to the establishment of the SAWSDL Working Group.

12.3.3 OWL-S

A detailed description of OWL-S is provided in Section 11.3.1. Here, we examine
the history of OWL-S and its status with respect to standardization.

OWL-S has roots in research communities on both sides of the Atlantic. The
Ontology Inference Language (OIL) [286] took RDFS [287] as its starting point
and added more intuitive semantics to enrich the language into one that was suit-
able as a Web ontology language. Specifically, OIL had well-defined formal
semantics and reasoning support, and was intended to be intuitive to human readers
and be linked properly with the Web languages XML and RDF. At the same time,
in the US, a very similar parallel initiative was being undertaken called the DARPA
Agent Markup Language (DAML), resulting in an ontology called DAML-ONT
[289]. As both approaches had considerable overlap, in October 2000, the Joint
US/EU ad hoc Agent Markup Language Committee was established to work on a
DAML+OIL joint specification. The DAML-S ontology took over from
DAML+OIL and, after a number of version iterations, DAML-S was renamed
OWL-S to reflect its relationship to the Web Ontology Language (OWL).

OWL-S was submitted as a member submission to the W3C in 2005. It was a
significant input to the W3C Workshop on Frameworks for Semantics in Web Ser-
vices, mentioned in the previous section. In terms of standards OWL-S has no offi-
cial status outside its own community of users, although this is a substantial
community, particularly in the US.

12.3.4 Web Services Modeling Ontology (WSMO)

A detailed description of WSMO is included in Section 11.3.5. As with OWL-S, in
this section we look at the status of WSMO with respect to standardization.

The WSMO is an initiative started in 2004, through EU funding, as an effort to
address perceived fundamental problems in the OWL-S ontological model for
Semantic Web Services (described in Section 11.3.5). It built on earlier research,
notably the Web Services Modeling Framework [264]. As with OWL-S, WSMO
was submitted to the W3C as a member submission and was presented and debated
at the W3C Workshop on Frameworks for Semantics in Web Services. At the time
of this publishing, the WSMO community is very active and evolving (in contrast
to OWL-S which is relatively static), and the ontology, corresponding language,
Web Service Modeling Language (WSML) and reference architecture, and Web
Service Model Execution (WSMX) are foundational blocks in several current
large-scale EU research projects, e.g., DIP,20 SUPER,21 SWING.22

304 12 Semantic Web Standards

12.3.5 Semantic Web Services Framework (SWSF)

SWSF is described in Section 11.3.2 and was also a W3C member submission for
Semantic Web Services activity. Analogously to the motivation for WSMO, SWSF
was established on the basis of perceived shortcomings of the OWL-S ontology,
particularly with respect to the modeling of processes. We explained in Section
12.3.1 how SWSF is built on PSL, which itself has been promoted as an interna-
tional process language standard by ISO.

12.3.6 WSDL-S

WSDL-S is described in Section 11.3.3 and also was a W3C member submission.
We have already described how the bottom-up approach of WSDL-S was adopted
by the W3C as the basis for the SAWSDL Working Group.

12.3.7 OASIS Semantic Execution Environment (SEE)

In November 2005, the Semantic Execution Environment Technical Committee
(SEE TC) was formed at the OASIS eBusiness standards consortium to develop
guidelines, justifications, and implementation directions for deploying Semantic
Web Services in service-oriented architectures. A foundational input for the SEE
TC is the open source work on WSMX as a reference architecture and prototype
implementation for WSMO. The intent of the SEE TC is to:

• Provide a reference architecture for a Semantic Web Services execution envi-
ronment

• Formally describe execution semantics for the SEE reference architecture
• Relate the SEE reference architecture to the OASIS Standard for a Service-Ori-

ented Architecture Reference Model (SOA RM) as described in Section 12.3.8.

Service-oriented architectures anticipate a large number of ambient heteroge-
neous computational services which may be utilized in various combinations.
However, composing a set of services to meet arbitrary goals is often an attempt to
coordinate disparate resources with independent heterogeneous data and process
models. The services in the composition may not know, or fully understand, the
information models of each other in advance. So some interpretation, mediation or
common understanding is essential for any significant deployment. The SEE TC
aims to provide a reference architecture identifying the functional components, and
the methods required of them, to overcome this challenge.

20. http://dip.semanticweb.org/ (Accessed September 10, 2007).
21. http://www.ip-super.org/ (Accessed September 10, 2007).
22. http://www.swing-project.org/ (Accessed September 10, 2007).

 12.3 Semantic Web Services Standardization Efforts 305

The TC is also defining a formal description of the necessary execution seman-
tics of such a system. Taking advantage of the ontological models available for
Web Service description, the TC will additionally define a generic and open mech-
anism, using metadata, to allow components to be plugged into the system and
made available dynamically.

Corresponding to the works described in the previous paragraphs, there are three
draft deliverables being developed by the SEE TC. A fourth document is available
at the committee’s Web page summarizing related work and background informa-
tion. The three draft deliverables are:
1. Semantic Web Services Architecture and Information Model
2. SEE Execution Scenarios
3. Semantic Service-Oriented Architecture Reference Model

12.3.8 OASIS Service-Oriented Architecture Reference Model (SOA RM)

The OASIS SOA Reference Model (SOA RM) [288] specification defines a refer-
ence model as an “abstract framework for understanding significant relationships
among the entities of some environment. It enables the development of specific
reference or concrete architectures using consistent standards or specifications sup-
porting that environment. A reference model consists of a minimal set of unifying
concepts, axioms and relationships within a particular problem domain, and is
independent of specific standards, technologies, implementations, or other con-
crete details.”

The SOA RM aims to provide a single source of terminology for designers of
SOAs. It is separated from architecture implementations by several layers of
abstraction. The envisaged abstraction layers, starting from the top are:

• SOA Reference Model. Defines the concepts common across reference archi-
tectures for SOA, e.g., service, service description, visibility, interaction, con-
tract and policy, execution context and effect.

• SOA Reference Architecture. In any domain a reference architecture identifies
the specific elements, connections and patterns that are required for the architec-
ture to achieve its aims. There may be many reference architectures in a given
domain. The SOA RM provides an example from housing architecture.

• SOA Concrete Architecture. Adds specific additional elements that are
required to realize the architecture as a working system. Concrete architectures
have to take account of the deployment environment and the technologies that
are available.

• SOA Implementation. The executable code that provides the functionality
defined by the architecture.

From the above, it can be seen that the SOA RM is three levels of abstraction
above the actual code that implements an SOA. At this level of abstraction, it is

306 12 Semantic Web Standards

manageable to define all concepts that are required for the building of reference
architectures.

Although the SOA RM defines the concepts, it falls short of providing a formal
definition of the conceptual model which may result in different interpretations of
the English descriptions of the concepts in different reference architectures. Never-
theless, the SOA RM provides a useful starting point and, in terms of OASIS,
serves as important reference material to other technical committees. For example,
the SEE TC (Section 12.3.7) relates the conceptual model used by it (WSMO) to
the OASIS SOA RM. As of October 2006, the SOA RM specification became an
official OASIS Standard.

12.3.9 Semantic Web Services Architecture (SWSA)

The Semantic Web Services Architecture (SWSA) is a product of the Semantic
Web Services Initiative (SWSI),23 “an ad hoc initiative of academic and industrial
researchers, many of which are involved in DARPA and EU funded research
projects”. SWSI had two aims: the creation of a Semantic Web Services Language
(SWSL) which we discussed as part of Section 11.3.2 on the Semantic Web Ser-
vices Framework (a W3C member submission), and the development of a Seman-
tic Web Services Architecture (SWSA) [290]. The SWSA framework addresses
five categories of Semantic Web Services requirements. These are:

• Dynamic service discovery. The distributed search for services that can satisfy
some part of a service requester’s goal.

• Service engagement. Interpret candidate service enactment constraints (assum-
ing they are published with the service descriptions) and then negotiate with the
potential services until agreement, on how engagement with service can be car-
ried out, is reached.

• Service process enactment and management. The process of completing the
mutually agreed enactment between the service requester and provider. In par-
ticular, the various published communication protocols of requester and pro-
vider must be followed. When the process’s primary goal is not achieved, some
form of compensation activity may be necessary.

• Community support services. These include services for ontology lookup,
mapping and version control, security and privacy services, confidentiality and
trust services, reliability services, policy and protocol management services, and
lifecycle management services.

• Quality of service. Requesters and providers of services in real-world business
exchanges agree on contractual levels of service provision. An SWSA must pro-
vide services that can provide metrics on service provision and monitor if nego-
tiated QoS levels are maintained.

23. http://www.swsi.org/ (Accessed September 10, 2007).

 12.4 Summary 307

The SWSA was not directly submitted to a standardization body but is an influ-
ential body of work with respect to the WSMX architecture submitted to W3C and
subsequently the OASIS SEE Technical Committee. Although the ad-hoc SWSI
group has not officially disbanded, they are not active at this point in time. It is
likely that the publication of the SWSA and SWSL specifications mark the end of
their contribution to this area as a group.

12.3.10 Semantic Web Services Interest Group (SWS-IG)

The Semantic Web Services Interest Group (SWSIG)24 is a W3C forum for collab-
oration, exchange of ideas and dissemination of information regarding ongoing
research in the area of Semantic Web Services. It is part of the W3C Web Services
Activity and is the coordinator of member submissions on Semantic Web Services
to the W3C.

12.4 Summary

In this chapter, we provided a review of the standardization activities around
Semantic Web Services. Of these, PSL as an ISO international standard is the most
mature. The W3C is taking a bottom-up approach with SAWSDL on its way to
becoming a W3C Recommendation. In terms of architecture and usage, OASIS is
focussing on a reference model for service-oriented architecture which already is
attracting notice and may be extended with formal semantics; and the Semantic
Execution Environment Technical Committee aims at a specification for a Seman-
tic Web Services reference architecture and relates its conceptual model to that
described in the OASIS SOA RM standard.

24. http://www.w3.org/2002/ws/swsig/ (Accessed September 10, 2007).

Part V
Putting it All Together and Perspective

13 A Solution Approach to the Clinical Use Case

We now revisit functional requirements presented in Chapter 2 and illustrate them
with examples based on the use case. We begin with a simplified clinical workflow
in Figure 13.1 (which is an adaptation of Figure 2.1). This process is used as a
(simplified) entry point into the translational medicine use case discussed earlier.

Fig. 13.1. Clinical Vignette for Translational Medicine: simplified clinical workflow

The process illustrated in Figure 13.1 above is an example of a clinical process
and involves the basic patient-physician interactions in conjunction with a support
process that maintains the accuracy and currency of the knowledge used in the
clinical process.

• The patient encounter is the initial step where the patient is examined and obser-
vations about him and his observable state of health are recorded. Also, demo-
graphic information about the patient, including pertinent information about his
family members, may be recorded in an integrated electronic medical record
(EMR) at this time in case this has not been recorded yet in earlier visits.

• Based on the information available the physician orders clinical or genomic
tests in order to validate or invalidate certain hypotheses about the potential dis-
ease a patient may be suffering from. In this he may be assisted by a test order-

Patient
Encounter

Test ordering
guidance

New Test
results

Therapeutic
guidance

1 2

Integrated Genotypic
Phenotypic Database

Decision Support
Knowledge Base

Knowledge Accuracy
and Currency

Patient
Encounter

Test ordering
guidance

New Test
results

Therapeutic
guidance

1 2

Integrated Genotypic
Phenotypic Database

Decision Support
Knowledge Base

Knowledge Accuracy
and Currency

312 13 A Solution Approach to the Clinical Use Case

ing guidance service. This test ordering guidance service internally uses
decision support knowledge bases and other databases in order to provide its
functionality.

• After receiving new test results, the physician typically identifies therapies in
the form of drugs or clinical procedures for the patient. In this the physician is
assisted by a therapeutic decision support service that internally uses knowledge
bases and databases as in the previous service.

• Finally, there is a critical business requirement that the information and knowl-
edge that is made available to the physicians in the clinical workflow is current
with the latest discoveries and medicine and at the same time consistent with
other pieces of knowledge and information. This function is supported by an
ongoing knowledge accuracy and currency service that keeps the internal data-
bases and knowledge bases current and consistent with each other.

One may view the clinical workflow as a business or “healthcare” process
which can provide the framework for service discovery, composition and choreog-
raphy. The support process for knowledge accuracy and currency can be viewed as
a generic, domain-neutral, knowledge management process that aims to meet busi-
ness requirements. In the following the various elements of Semantic Web Services
are introduced for this example in more detail using the WSMO family of Seman-
tic Web Service technologies.

Any of the Semantic Web Service approaches described in Chapter 11 could
have been selected to flesh out our running example. WSMO is chosen as it offers
a conceptual model allowing independent modeling of the perspectives of both the
service requester and provider through the separate elements of Goals and Web
Services. Additionally, WSMO anticpates that services within a single domain will
likely use different models to describe their respective behaviour and data and,
consequently, strong support for mediation is one of WSMO’s fundamental princi-
ples. It is also arguable that WSML, as a frame-based language, provides a more
readable syntax than OWL-S, for example. Finally, an RDF syntax is available for
WSML25 which can be used to incorporate the RDF examples (focussing on
knowledge modeling) and the WSML example (focussing on service modeling)
through this book.

13.1 Service Discovery, Composition and Choreography

We now illustrate how Semantic-Web-related technologies can be used to support
annotations of services to facilitate service discovery, composition and choreogra-
phy. As discussed in Chapter 2, there are two kinds of services:

25. http://www.wsmo.org/TR/d32/v0.1/ (accessed May 28, 2008).

 13.1 Service Discovery, Composition and Choreography 313

• Business/Clinical Services. These are services that either are directly provi-
sioned as compositions of services to implement a business process such as the
clinical workflow illustrated in Figure 13.1 or could be implemented as an indi-
vidual service to support certain business requirements. Business or clinical ser-
vices may provide domain-specific functionality like the two in the example, as
they return data that are used by a physician, or could be domain-independent
services geared to meeting business requirements. The business services
invoked are a test ordering guidance service and a therapeutic guidance service.
Semantic Web technologies can be used to enable automatic discovery of these
services and their subsequent composition/orchestration to implement the given
business or clinical process.

• Technology/Infrastructure Services. Business services in turn may be imple-
mented by technology services at run time to implement the advertised function-
ality. For example, decision support services (test ordering and therapeutic) may
invoke technology services such as rules engine and ontology engine services,
classification and inferencing services and data integration services. These ser-
vices provide functionality independent of a specific application domain.
Semantic Web technologies can be used to support dynamic orchestration of
these services at run time. Knowledge management services either are invoked
in response to certain events or can be executed as a monitoring process to sup-
port the accuracy and currency of various knowledge artifacts (e.g., decision
support rules) used in the various services.

In the following sections, the two business services are defined, as are many
infrastructure services. The discussion will clearly state when a business service
and when an infrastructure service is used.

13.1.1 Specification of Clinical Workflow using WSMO

In this section, we model the workflow for the translational medicine example in
terms of Semantic Web Service technology. We use WSMO for our conceptual
model because of: (a) support for mediators; (b) ontological separation of request-
ers and providers; and (c) support for behavioral and process semantics. In other
words, our model can use WSMO Goals to describe what the service requester
wants and WSMO Web Service descriptions to describe what is available in the
system. Where semantic mismatches arise at the data, process or protocol level,
mediators can be defined to handle the heterogeneity.

From a modeling perspective, the translational medicine clinical workflow
described above and depicted in Figure 13.1 can be represented as a single Goal to
treat a patient. This high-level Goal can be modeled as a composition, or orchestra-
tion, of subgoals where each step in the orchestration is described by a Goal. Com-
posing services into an orchestration is not a trivial task. Although it is arguable
that if sufficient functional descriptions of services are available, then it is possible
for them to be automatically composed, often this is blocked for reasons such as

314 13 A Solution Approach to the Clinical Use Case

incomplete descriptions, or for more subjective reasons. Later in this chapter, we
look at the value Semantic Web Service descriptions can add in assisting domain
experts create service orchestrations in the context of the translational medicine
example.

Fig. 13.2. Overview of translational medicine workflow

Figure 13.2 shows this orchestration as an UML 2 activity diagram. The solid
lines represent control flow between each of the activities while the dashed lines
represent data flow. The type of data being exchanged at each flow is labelled
above it. The labels at the top of the figure indicate the state of the process as the
goals are executed. This is referred to later in the WSML listing for this orchestra-
tion. It may be noted that each of these subgoals may be viewed as clinical/busi-
ness services and may be further decomposed into technological/infrastructure
services such as rules engine services, ontology services and data integration ser-
vices.

The process starts when patient information is made available. The first step is
to get guidance on relevant tests to order for the patient. A list of candidate tests is
returned and those that are deemed suitable are selected (this may require expert
input or be automated). Based on the selected tests and the patient information, a
request is made for candidate therapies for treatment. As with the tests, suitable
therapies are identified and a plan established for treatment of the patient.
Figure 13.3 shows the relevant WSML definition of the WSMO Goal description
containing the orchestration depicted in Figure 13.2. The orchestration is defined
in terms of subgoals. As each Goal corresponds to a desired service, rather than a
pre-selected one, the concepts defined as necessary inputs and outputs do not need
to be grounded in specific messages in WSDL documents. Not binding the Goals
to WSDL operations, allows for more flexibility in the run-time matching og Goals
to Web Services.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule" ...
interface TreatPatientInterface
orchestration TreatPatientOrchestration
 stateSignature TreatPatientStateSignature

 /* Concepts used as input and output to the orchestration */
 in PastMedicalHistory
 out MedicationOrders

 13.1 Service Discovery, Composition and Choreography 315

 /* Concept used to maintain the control flow */
 controlled ControlState

 /* transition rules govern the control flow of the orchestration */
 transitionRules
/* If initial state and available patient history, request test

guidance */
 if (
 ?patient memberOf Patient and
 ?cs[value hasValue InitialState] memberOf ControlState)
 then
 call getTestOrderingGuidance
 (?patient)
 : _# memberOf ListTests
 update(?cs[value hasValue GetTestGuidanceCalled])
 endif

 /* Select and run subset of tests recommended by test guidance */
 if
 ?listPossibleTests memberOf ListTests and
 ?patient memberOf Patient and
 ?cs[value hasValue GetTestGuidanceCalled] memberOf ControlState
 then
 call selectAndRunTests
 (?listPossibleTests, ?patient)
 : _# memberOf ListTestResults
 update(?cs[value hasValue SelectAndRunTestsCalled])
 endif

 /* Based on test results, request guidance on available therapies */
 if (
 ?listTestResults memberOf ListTestResults and
 ?patient memberOf Patient and
 ?cs[value hasValue SelectAndRunTestsCalled] memberOf Control-
State
 then
 call getTherapeuticGuidance
 (?listTestResults, ?patient)
 : _# memberOf ListTherapies
 update(?cs[value hasValue GetTherapeuticGuidanceCalled])
 endif

/* Establish a plan for the fulfillment of the therapies */
 if
 ?listTherapies memberOf ListTherapies and
 ?cs[value hasValue GetTherapeuticGuidanceCalled] memberOf con-
trolState
 then
 call TherapiesPlan(?listTherapies) : _# memberOf TherapiesPlan
 update(?cs[value hasValue CreateTherapiesPlanCalled])
 endif

/* End orchestration once the therapies plan is created */
 if

316 13 A Solution Approach to the Clinical Use Case

 ?therapiesPlan memberOf TherapiesPlan and
 ?cs[value hasValue CreateTherapiesPlanCalled] memberOf control-
State
 then
 update(?cs[value hasValue FinalState])
 endif

Fig. 13.3. WSMO goal description for clinical workflow

We explain the syntax and meaning of WSMO orchestrations, including details
on grounding, in the context of this example, later in the chapter in Section 13.1.6.
Here we provide a brief overview. The main point to understand at this point is that
the steps of the orchestration are declared in terms of Goals to be achieved. The
orchestration says what the designer of the overall process wants to achieve with-
out specifying with which specific services that process will be implemented. This
illustrates the powerful abstraction that using Semantic Web Services allows.

The concepts involved in WSMO orchestrations take different modes. For our
example, we are interested in three of these. Concepts of modes in and out are
related to the data flow of the orchestration. Mode in means instances of the con-
cept can only be read by the orchestration. Mode out means that instances of the
concept can be created in the course of the orchestration and be available to the
calling environment. Concepts with mode controlled are used as part of the control
flow definition of the orchestration.

In Figure 13.3, each time a step of the orchestration needs to be executed, the
call statement is used to indicate that a WSMO goal needs to be achieved so that
the functionality of the step can be provided. The structure of the call statement is
similar to a function call in software programming. The call keyword is followed
by an identifier for the Goal. The variables inside the round brackets are similar to
input parameters, indicating the flow of data from the orchestration instance to the
execution of the goals. Finally, the expression after the closing bracket and the
colon indicates the ontological concept defining the meaning of the data that the
goal will return once it has been achieved. For example, the statement

call getTestOrderingGuidance
 (?patientHistory)
 : _# memberOf ListTests

has an execution semantics equivalent to achieving the Goal with ID getTestOr-
deringGuidance, making the data stored in the variable ?patientHistory, avail-
able to the Goal execution mechanism, and expecting an instance of the concept
ListTests to be provided to the orchestration on successful execution of the goal.

13.1.2 Data Structures in Data Flow

The data flow in the clinical workflow ensures that results of one activity are
passed on to the next activity. This approach ensures that the correct data is avail-

 13.1 Service Discovery, Composition and Choreography 317

able without the activities having to know about each other directly. The data struc-
tures used in data flows are defined in simplified form using WSML in the
following bullet points.

• Patient. Patient is the data structure that initiates the data flow in the clinical
workflow. The physician collects a patient history record, including current
readings for vital signs and any family medical history information. This data is
captured in an instance of the patient concept. The attribute for specifying the
blood pressure details is typed using the medical information model known as
CEN 13606 openEHR.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"
nameSpace {_"http://www.example.org/patientHistory#",
 ehr_bp _"http://www.example.org/ehr-bp-archetype#"}

importsOntology {_"http://www.example.org/ehr-bp-archetype}

concept Patient
 personalDetails ofType (1) PatientPersonalDetails
 ...
 familyHistory ofType FamilyHistory
 bloodPressureDetails ofType (1) ehr_bp#EHR_ComBP
 vitalSigns ofType (1) VitalSigns
 ...

concept PatientPersonalDetails
 firstName ofType _string
 lastName ofType string
 SSN ofType SSN
 ...

The cardinality of attributes is not constrained unless this is stated explicitly
using the (n m) construct where n is the minimum cardinality and m is the max-
imum. Some examples of this are: (0 *) means zero or many values allowed, (0
1) means either zero or one values allowed, (1) means exactly one value
allowed. If multiple values are allowed, they are provided in a space-separated
list. This data structure of Patient is simplified; however, in the context of this
example it is sufficient to show how the Semantic Web concepts are applied.

• List of Tests. The outcome of the first goal (or activity in the workflow) is a list
of tests that have to be taken.

concept Test
 testId ofType _IRI
 input ofType TestInput
 output ofType TestOutput

concept ListTests
 patient ofType (1) Patient
 individualtest ofType Test

318 13 A Solution Approach to the Clinical Use Case

concept LiverTest subConceptOf Test
 ...

concept MolecularDiagnosticTest subConceptOf Test
 ...

• Test Results. After the tests are done the test results are provided by the second
goal that is achieved. The definition of the test results is

concept TestResult
resultId ofType (1) _IRI
test ofType (1) Test

concept ListTestResults
patient ofType (1) Patient
individualResult ofType TestResult

concept LiverTestResult subConceptOf TestResult
 ...

concept MolecularDiagnosticTestResult subConceptOf TestResult
 ...

• List of Therapies. Based on the outcome of the tests the therapies that have to
be conducted are determined. This is defined as follows

concept Therapy
therapyId ofType (1) _IRI

 ...

concept ListTherapies
 patient ofType (1) Patient

individualTherapy ofType Therapy

concept FibrateTherapy subConceptOf Therapy
 ...

• Therapies Plan. Finally, a therapy plan is established and in the use case this is
the final outcome:

concept TherapiesPlan
 ...
 patient ofType (1) Patient
 therapiesPlanID ofType _IRI
 therapy ofType Therapy
 ...

These various data structures are represented as concepts in ontologies that are
used in the scope of the clinical workflow. However, each individual activity may
use different concepts internally for various reasons. One reason could be that
underlying repositories and databases might have existed for a while and their
ontologies been defined a long time back. Another reason could be that their defi-

 13.1 Service Discovery, Composition and Choreography 319

nition might possibly have taken place before the clinical workflow came into
existence, as they might have been used in different contexts long before it.

In order to ensure that the data structures in the data flow match with the data
structures or ontologies in the activities, data mappings may be necessary so that
data mediation can take place whenever a data structure from the data flow is given
to the activity or whenever an activity’s result is put into the data flow. The con-
crete data mediation that is discussed next is needed for the clinical workflow.

13.1.3 Data Mediation

There are multiple data standard specifications for the healthcare industry that
overlap to greater or lesser extents. This results in typical problems of data sharing
that are in no way unique to healthcare informatics. Adding to the complexity,
there are different levels of interoperability problems that need to be tackled before
healthcare systems can really communicate with each other. These include levels
for message protocol and message content. In our example, we will assume that
message level interoperability is guaranteed by all services adopting the HL7 pro-
tocol. While HL7 is by no means universally adopted, it is the strongest candidate
at this level. However, there are numerous possible specifications for the descrip-
tion of message content. Two of these include CEN 13606 and HL7-CDA for the
definition of the structure of the messages. The content of the messages may be
defined by medical vocabularies such as SNOMED, ICD-10 and LOINC amongst
others. As our example is based on translational medicine, it is likely that services
from the life sciences domain will also be required with corresponding vocabulary
specifications including BIOPAX and the Gene Ontology.

In Figure 13.2, each step of the orchestration represents a WSMO Goal that
resolves to a WSMO Web Service at run time. Each of these WSMO Web Services,
in turn, may represent a single Web Service or a further orchestration of Goals and/
or services. To illustrate how data heterogeneity impacts the process in our use
case, we focus on the Goal represented by the GetTestOrderingGuidance activity.
We assume that this Goal uses the CEN 13606 data standard for electronic health
records. The Goal’s capability matches that of a service providing the required
guidance on tests but this service uses the HL7 CDA data model, meaning that data
mediation is required to enable the interaction between the requester (represented
by the Goal) and the provider of the service.

In particular, we look at the attribute of the Patient concept for recording a blood
pressure measurement. The Goal states that this information is available in terms of
the CEN 13606 information model. However, let us assume that the service provid-
ing the functionality for the GetTestOrderingGuidance step requires the blood
pressure information to be specified using HL7-CDA. Both models allow the same
information to be specified but use different datatype definitions. At the instance
level, these overlaps are not immediately obvious. However, looking at a concep-
tual view on the models and using Semantic Web modeling tools to identify the
underlying base concepts allow the overlaps to be highlighted. Once this has been

320 13 A Solution Approach to the Clinical Use Case

achieved, mappings at the ontological level between the models can be created.
These mappings can be applied to instance data at run time to achieve the desired
data mediation. The example we use here is fully based on the example described
in [366] with the difference that WSMO rather than OWL is used as the model for
specifying the domain ontologies. The language for WSMO is less verbose than
OWL and has greater tool support for data mediation. The example is intended to
illustrate how semantic annotation facilitates service discovery and data mediation
to resolve interoperability issues. We do not imply that any additional semantics
are added to the information models or that we extend the work described in the
paper at [366]. A full discussion on the three underlying information models and
the algorithm for determining mappings between them is presented and analyzed in
the context of health informatics in that paper.

Snapshot of CEN 13606 and HL7-CDA

HL7 is a non-profit standards organization whose primary goal is to provide stan-
dards for the exchange of information between healthcare systems. HL Version 3 is
based on a data model called the Reference Information Model (RIM), consisting
of six backbone classes shown in Figure 13.4.

Fig. 13.4. HL7 RIM backbone classes

A fragment of this model is represented as the WSMO ontology in Figure 13.5.
Both the CEN 13606 and the HL7-CDA models derive their machine processable
meaning or semantics from the HL7 RIM. In other words both of these specifica-
tions refine the RIM to more specialized Refine Message Information Models (R-
MIMs). WSMO ontology fragments for these R-MIMs are shown in Figure 13.6
and Figure 13.7. In each case the ontologies import the WSMO ontology for the
RIM using its concepts to create more refined models.

 13.1 Service Discovery, Composition and Choreography 321

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"
namespace { _"http://www.example.org/hl7-rim#" }

ontology hl7rim

concept Act
 code ofType CD
 outBoundRelationship ofType ActRelationship

concept Observation subConceptOf Act
 value ofType ANY

concept ActRelationship
 _target ofType Act

concept ANY

concept CD subConceptOf ANY
 CD_code ofType _string
 CD_codeSystem ofType _string
 CD_codeSystemName ofType _string
 CD_displayName ofType _string

Fig. 13.5. WSMO ontology fragment for HL7 RIM

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"

namespace { _"http://www.example.org/hl7-cda-rmim#",
 rim _"http://www.wsmo.org/ontologies/hl7-rim#"
}

importsOntology {_"http://www.wsmo.org/ontologies/hl7-rim"}

ontology hl7rmim

concept EntryRelationship subConceptOf rim#ActRelationship
 clinicalStatement ofType Observation

concept Observation subConceptOf rim#Observation
 entryRelationship ofType EntryRelationship

Fig. 13.6. WSMO ontology fragment for HL7 CDA R-MIM

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"
namespace { _"http://www.example.org/ehr-rmim#",
 rim _"http://www.wsmo.org/ontologies/hl7-rim#"
}

importsOntology {_"http://www.wsmo.org/ontologies/hl7rim"}

ontology ehr_rmim

322 13 A Solution Approach to the Clinical Use Case

concept Element subConceptOf rim#Observation
 value ofType _integer

concept Entry subConceptOf rim#Act
 component1 ofType Component1

concept Component1 subConceptOf rim#ActRelationship
 element ofType Element

Fig. 13.7. WSMO ontology fragment for CEN 13606 R-MIM

Both HL7 CDA and CEN 13606 use archetypes as a means for modeling enti-
ties within specific subdomains. In our example, blood pressure information is a
typical example of an archetype that is useful. It can be thought of as a template
specifying a number of concepts, relationships between them and the constraints
that are relevant for the specific entity being described.

The blood pressure archetypes are modeled as an additional layer building on
the concepts defined in the R-MIMs of the respective models. Figure 13.8 and
Figure 13.9 show the WSMO ontology fragments for the blood pressure archetypes
in each of the two models. We are interested in how the concepts defined for the
archetype in the ontology for one R-MIM map to the corresponding R-MIM in the
second ontology. Creating such a mapping remains a job for domain experts but
the semantic description of the information model greatly helps this task. We use
the mediation tool available with the Web Services Modeling Toolkit (WSMT).

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"
namespace { _"http://www.example.org/hl7-cda#",
 cda_rmim _"http://www.example.org/hl7-cda-rmim#",
 rim _"http://www.wsmo.org/ontologies/hl7-rim#"
}

importsOntology {_"http://www.example.org/hl7-cda-rmim",
 _"http://www.wsmo.org/ontologies/hl7-rim"}

ontology hl7_cda_bp_archetype

concept CDADP subConceptOf cda_rmim#Observation
 cda_rmim#entryRelationship ofType
 CDASystolicBPER_or_CDADiastolicBPER

concept CDASystolicBPER subConceptOf
 cda_rmim#EntryRelationship

 _target ofType CDASystolicBP

concept CDADiastolicBPER subConceptOf
 cda_rmim#EntryRelationship

 _target ofType CDADiastolicBP

concept CDASystolicBP subConceptOf cda_rmim#Observation

concept CDADiastolicBP subConceptOf cda_rmim#Observation

 13.1 Service Discovery, Composition and Choreography 323

/* This axiom defines the concept of
CDASystolicBPER_or_CDADiastolicBPER as a union of the two types: CDA-
SystolicBPER, CDADiastolicBPER. */
axiom systolicBPER_Or_DiastolicBPER_Definition

definedBy
 ?x memberOf CDASystolicBPER_or_CDADiastolicBPER equivalent
 ?x memberOf CDASystolicBPER or
 ?x memberOf CDADiastolicBPER.

Fig. 13.8. WSMO ontology fragment of the HL7-CDA blood pressure artefact

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"
namespace { _"http://www.example.org/ehr-bp-archetype#",
 ehr_rmim _"http://www.example.org/ehr-rmim#",
 rim _"http://www.wsmo.org/ontologies/hl7-rim#" }

importsOntology {_"http://www.example.org/ehr-rmim",
 _"http://www.wsmo.org/ontologies/hl7-rim"}

ontology ehr_bp_archetype

concept EHRcomBP subConceptOf ehr_rmim#Entry
 component1 ofType
 EHRComSystolicBPComp_or_EHRComDiastolicBPComp

concept EHRComSystolicBPComp subConceptOf ehr_rmim#Component1
 _target ofType EHRComSystolicBP

concept EHRComDiastolicBPComp subConceptOf
 ehr_rmim#Component1
 _target ofType EHRComDiastolicBP

concept EHRComSystolicBP subConceptOf ehr_rmim#Element

concept EHRComDiastolicBP subConceptOf ehr_rmim#Element

/* This axiom defines EHRComSystolicBPComp_or_EHRComDiastolicBPComp
as a union of the two types: EHRComSystolicBPComp, EHRComDiastolicBP-
Comp. */
axiom systolicBPER_Or_DiastolicBPER_Definition

definedBy
 ?x memberOf EHRComSystolicBPComp_or_EHRComDiastolicBPComp
 equivalent
 ?x memberOf EHRComSystolicBPComp or
 ?x memberOf EHRComDiastolicBPComp.

Fig. 13.9. WSMO ontology fragment of the CEN 13606 blood pressure artefact

WSMT locates the imported ontologies and includes them in its graphical dis-
play. Figure 13.10 shows a snapshot of the mapping tool. The CEN EHR archetype
ontology is loaded in the left pane while the ontology for the HL7-CDA archetype

324 13 A Solution Approach to the Clinical Use Case

is loaded on the right. The various lines between the panes are visual indications of
the mappings already created. These can also be inspected in the panel at the bot-
tom of the screen. Each of the tabs in this bottom panel (e.g., Concept2Concept)
show different types of mappings. For a full description of the types of mappings,
including the formal model that underpins them, the reader is directed to [365].

Once the source and target ontologies are loaded into the tool, a combination of
lexical and structural heuristics helps the domain experts select the most appropri-
ate mappings as they work their way through the concepts. By taking a bottom-up
approach of creating the mappings for underlying concepts first, many of the
higher-level mappings will automatically also be created. For example, by first cre-
ating mappings between the R-MIMs of the two models, certain mappings for con-
cepts in the archetype models will automatically be created. The key advantage is
that mappings at the higher level (between archetypes) may not be immediately
obvious but, as it acquires more mapping information between R-MIMs, the tool is
able to accurately suggest these higher-level mappings.

Fig. 13.10. Partial mapping between CEN 13606 and Hl7-CDA blood pressure archetype
ontologies (WSMT snapshot)

In the general case every time data is given from the data flow to an activity,
data mediation is required. Also, results of activities given back to the data flow
require data mediation in general. This means that for each activity two data medi-
ations are necessary. The only time when this is not the case is when the ontology
underlying the data mediation is exactly the same as the one of the data flow. The
mediation in our example the mediations are those discussed and formally modeled
next.

A partial set of abstract mappings, as defined in [365], is illustrated in
Figure 13.11. Abstract mappings are independent of the formal logical language
used to apply them at run time. This example is described using WSML but the

CEN 13606 EHR HL7-CDA

 13.1 Service Discovery, Composition and Choreography 325

mappings also are applicable to other Semantic Web Services languages like
OWL-S.

Fig. 13.11. Partial abstract language mappings - one-way from openEHR to HL7 CDA

An example of a WSML instance of the CEN EHR archetype for blood pressure
is provided in Figure 13.12, while an example of a corresponding instance for a
HL7 CDA blood pressure archetype is given in Figure 13.13. Note that the
instances are semantically equivalent but expressed in terms of the two different
information models. Rather than applying mappings on the structure of datatypes

Mappings EHR R-MIM --> CDA R-MIM

Mapping (ElementToObservation
 classMapping(one_way

Element
 Observation))

Mapping (Comp1ToEntryRelationship
 classMapping(one_way

Component1
 EntryRelationship))

Mapping (element2observation
 attributeMapping(one_way
 [(Component1)element=>Element]
 [(EntryRelationship)clinicalSt
 atement=>Observation]))

Mapping (EntryToObservation
 classMapping(one_way

Entry
 Observation))

Mapping (element2observation
 attributeMapping(one_way

[(EHRComBP)component1=>

EHRComSystolicBPComp_or_
 EHRComDiastolicBPComp]
 [(CDABP)entryRelation-
ship=>
 CDASystolicBPER_or_
 CDADiastolicBPER]

Archetype Mappings openEHR -> HL7
CDA

Mapping (BP_Arch
classMapping(one-way

 EHRcomBP
 CDABP))

Mapping (SystolicBPComp
classMapping(one-way

 EHRComSystolicBPComp
 CDASystolicBPER))

Mapping (SystolicBP
classMapping(one-way

 EHRComSystolicBP
 CDASystolicBP))

Mapping (BPUnion
classMapping(one-way

 EHRComSystolicBPComp_or_
 EHRComDiastolicBPComp

 CDASystolicBPER_or_
 CDADiastolicBPER))

Mapping (DiastolicBPComp
classMapping(one-way

 EHRComDiastolicBPComp,
 CDADiastolicBPER))

Mapping (DiastolicBP
classMapping(one-way

 EHRComDiastolicBP
 CDADiastolicBP))

326 13 A Solution Approach to the Clinical Use Case

(as is typically the case with XSLT), this simplified example illustrates the use of
conceptual mappings between ontologies that can lead to richer, more flexible
transformations.

instance patientBP memberOf EHRComBP
classCode hasValue "ACT"
moodCode hasValue "EVN"

 codeBlock hasValue codeBlock1
 component1 hasValue SystolicBPComponent DiastolicBPComponent

instance codeBlock1 memberOf CodeBlock
 code hasValue 251076008

 codeSystem hasValue "2.16.840.1.113883.6.96"
 codeSystemValue hasValue "SNOMED CT"
 displayName hasValue "Cuff Blood Pressure"

instance SystolicBPComponent memberOf EHRComSystolicBPComp
typeCode hasValue "COMP"
element hasValue SystolicBP_1_200706

instance SystolicBP_1_200706 memberOf EHRComSystolicBP
codeBlock hasValue codeBlock2
classCode hasValue "OBS"
moodCode hasValue "EVN"
valueType hasValue "PQ"
value hasValue 132
valueUnit hasValue "mm[Hg]"

instance codeBlock2 memberOf CodeBlock
 ...
 displayName hasValue "Systolic BP"

instance DiastolicBPComponent memberOf EHRComDiastolicBPComp
typeCode hasValue "COMP"
element hasValue DiastolicBP_1_062007

instance DiastolicBP_1_062007 memberOf EHRComDiastolicBP
codeBlock hasValue codeBlock3
classCode hasValue "OBS"
moodCode hasValue "EVN"
valueType hasValue "PQ"
value hasValue 86
valueUnit hasValue "mm[Hg]"

instance codeBlock3 memberOf CodeBlock
 ...

 displayName hasValue "Diastolic BP"

Fig. 13.12. WSMO instances for a CEN 13606 blood pressure artefact

instance CDAPatientBP memberOf Observation
classCode hasValue "OBS"

 13.1 Service Discovery, Composition and Choreography 327

moodCode hasValue "EVN"
codeBlock hasValue codeBlock1

 entryRelationship hasValue systolicBPER diastolicBPER

instance codeBlock1 memberOf CodeBlock
 code hasValue 251076008
 codeSystem hasValue "2.16.840.1.113883.6.96"
 codeSystemValue hasValue "SNOMED CT"
 displayName hasValue "Cuff Blood Pressure"

instance systolicBPER memberOf CDASystolicBPER
typeCode hasValue "COMP"
observation hasValue CDASystolicBP_1_2234

instance CDASystolicBP_1_2234 memberOf CDASystolicBP
codeBlock hasValue codeBlock2
classCode hasValue "OBS"
moodCode hasValue "EVN"
valueType hasValue "PQ"
value hasValue 132
valueUnit hasValue "mm[Hg]"

instance codeBlock2 memberOf codeBlock
 ...
 displayName hasValue "Systolic Blood Pressure"

instance DiastolicBPComponent memberOf EHRComDiastolicBPComp
typeCode hasValue "COMP"
observation hasValue CDADiastolicBP_1_4524

instance CDADiastolicBP_1_4524 memberOf CDADiastolicBP
codeValues hasValue codeBlock3
classCode hasValue "OBS"
moodCode hasValue "EVN"
valueType hasValue "PQ"
value hasValue 86
valueUnit hasValue "mm[Hg]"

instance codeBlock3 memberOf codeBlock
 ...

 displayName hasValue "Diastolic Blood Pressure"

Fig. 13.13. WSMO instances for a HL7-CDA 13606 blood pressure artefact

As the definition shows, not all of the activities needed data mediation in this
case.

328 13 A Solution Approach to the Clinical Use Case

13.1.4 Goal Definition

In the clinical workflow described in Section 13.1.1, each activity is represented as
a Goal that can be resolved using Semantic Web Service discovery and mediation
techniques at run time or by using Semantic Web Service composition and orches-
tration techniques at design time. The designers of such a system could restrict the
pool of candidate services in such a way that only known and trusted services are
available for discovery, or they could leave this more open and allow possibly new
services to be offered as candidates, leaving a decision on suitability to an expert
user. The richer a Goal description can be in terms of specifying what a service
requester wants and the constraints that must be in place, the greater the possibility
for accuracy in locating suitable services. Nevertheless, if a Goal is created to heal
a patient showing the symptoms of a rash across the back and a headache, it is
likely that a physician will use an SWS-based discovery mechanism to identify
probable tests and therapies as guidance rather than allow these to be decided auto-
matically.

In this section, we will show some examples of how the Goals for our workflow
can be defined using WSMO as the conceptual model and WSML as the corre-
sponding formal language. We will also identify the potential of using Semantic
Web Services techniques to enable service discovery, composition and orchestra-
tion.

• TreatPatient. The topmost Goal is to treat a patient. This is the goal the physi-
cian has when a patient comes into his office. The goal might resolve into many
different workflows once the physician enters it into the clinical information
system. The clinical workflow shown in Figure 13.2 is one orchestration that
can fulfill the goal and we assume in this example that the physician selects it.
We show a WSML fragment of the capability for this goal below. The capability
states that the owner of this goal wishes to get an instance of the TherapiesPlan
concept (postcondition) for a specific patient based on the provision of an
instance of the Patient concept (precondition).

goal _"http://www.example.org/TreatPatient"
...
capability _"http://www.example.org/TreatPatient#capability"

precondition
definedBy

 ?patient memberOf Patient.

postcondition
definedBy

 ?therapiesPlan memberOf TherapiesPlan and
 ?therapiesPlan[patient hasValue ?patient].
...

 13.1 Service Discovery, Composition and Choreography 329

The TreatPatient Goal can be decomposed into a number of subgoals that
form a composition which can satisfy the overall request. We look at each sub-
goal corresponding to the orchestration in Figure 13.2 in the next bullet points.
Functional decomposition is a mature research area in the Artificial Intelligence
(AI) and Multi-Agent System (MAS) communities. Some examples are the use
of Hierarchical Task Network (HTN) planning using OWL-S service descrip-
tions from Sirin et al. [343] and McIlraith and Son [342]. In the latter, the
authors acknowledge that automatic decomposition is difficult precisely because
it is difficult to predict what knowledge necessary for the decomposed process
will be available at run time. The approach allows plans to be constructed that
can be customized and executed by agents operating on behalf of individuals.
For example, the orchestration of Figure 13.2 could act as a template for match-
ing the TreatPatient Goal but the services identified to match the GetTestOrder-
ingGuidance and GetTherapiesGuidance subgoals may require additional
information about allergies not present in the initial Patient data. This knowl-
edge could be retrieved either from preferences known to the agent or by includ-
ing an additional knowledge retrieval service in the orchestration.

• GetTestOrderingGuidance. The first step in satisfying the overall TreatPatient
goal is to determine what tests should be ordered based on the symptoms and
medical history presented in the instance of the patient concept. This is repre-
sented by the GetTestOrderingGuidance Goal whose WSML fragment is given
here:

goal _"http://www.example.org/GetTestOrderingGuidance"
...
capability _"http://www.example.org/GetTestOrderingGuidance#capa-
bility"

precondition
definedBy

 ?patient memberOf Patient.

postcondition
definedBy

 ?listTests memberOf ListTests and
 ?listTests[patient hasValue ?patient].
...

• SelectAndRunTests. Once a list of suitable tests has been obtained from a test
ordering guidance service, it is necessary for the most suitable tests to be identi-
fied, selected and run. This is the aim of the SelectAndRunTests Goal. Services
that match this Goal do not have to be restricted to only traditional Web Ser-
vices. The service may be implemented by posting a list of candidate tests to a
human expert’s monitoring system. The expert then selects tests and is responsi-
ble for their execution. The results of these tests are then returned to the overall
composition. The point here is that Semantic Web Service descriptions may
ground to human interaction systems as well as to completely machine-based

330 13 A Solution Approach to the Clinical Use Case

service implementations. An example of how the capability of this goal would
be expressed in WSML is:

goal _"http://www.example.org/SelectAndRunTests"
...
capability _"http://www.example.org/SelectAndRunTests#capability"

precondition
definedBy

 ?patient memberOf Patient and
 ?listTests memberOf ListTests and
 ?listTests[patient hasValue ?patient].

postcondition
definedBy

 ?listTestResults memberOf ListTestResults and
 ?listTestResults[patient hasValue ?patient].
...

• GetTherapeuticGuidance. Once the tests have been run and the results made
available, the next step is to use those results to get guidance on what therapies
are available and suitable for the given patient. As before the specification of the
Goal makes no assumption as to how any of the services matching it are imple-
mented. The WSML fragment for the capability is:

goal _"http://www.example.org/GetTherapeuticGuidance"
...
capability _"http://.../GetTherapeuticGuidance#capability"

precondition
definedBy

 ?patient memberOf Patient and
 ?listTestResults memberOf ListResultsTests and
 ?listTestResults[patient hasValue ?patient].

 postcondition
 definedBy
 ?listTherapies memberOf ListTherapies and
 ?listTherapies[patient hasValue ?patient].
...

• CreateTherapiesPlan.
goal _"http://www.example.org/CreateTherapiesPlan"
...
capability _"http://www.example.org/CreateTherapiesPlan#capabil-
ity"

precondition
definedBy

 ?listTherapies memberOf ListTherapies and
 ?listTherapies[?patient ofType Patient].

 13.1 Service Discovery, Composition and Choreography 331

postcondition
definedBy

 ?therapiesPlan memberOf TherapiesPlan and
 ?therapiesPlan[patient hasValue ?patient].
...

13.1.5 Discovery

In Section 11.4.1, we looked at different techniques for Semantic Web Service dis-
covery. For our example discovery means finding services whose advertised capa-
bility matches that specified in the Goals. For OWL-S and WSMO, capabilities are
defined through different conditions that hold before and after a service executes.
As the conditions are formally expressed, a reasoning engine can infer whether sets
of conditions overlap or not. In addition to capability matching, other steps are nec-
essary before a decision on the suitability of the service can be made. These
include determining if data and behavior mismatches can be overcome, if commu-
nication protocols can be mediated and if the other quality of service constraints on
both sides can be satisfied, e.g., message reliability and security.

We restrict ourselves to discovery based on matching the capability of the Goal
with the capability offered by a Web Service. Keller et al. identify in [337] the fol-
lowing types of matches between goals and services: (1) exact match, (2) subsump-
tion match, (3) plug-in match, (4) intersection match and (5) disjointness. These
are similar to types of service matches identified earlier by Paolucci et al. in [367].
For the example, we will restrict ourselves to exact matches. In other words, only
Web Services whose capability exactly matches that of the desired Goal will be
considered.

We take the example of the GetTherapeuticGuidance in the last section. The
Goal capability below states that a service is required with a precondition that an
instance of the Patient concept called ?patient and an instance of the ListTestRe-
sults concept called ?listTestResults be available as inputs, and that ?list-
TestResults have an attribute called patient whose value corresponds to
?patient. Similarly the postcondition states that the service will provide an
instance of the ListTherapies concept called ?listTherapies with an attribute
called patient having the value ?patient.

...
capability _"http://.../capability"

precondition
definedBy

?patient memberOf Patient and
?listTestResults memberOf ListResultsTests and
?listTestResults[patient hasValue ?patient].

postcondition
 definedBy

332 13 A Solution Approach to the Clinical Use Case

?listTherapies memberOf ListTherapies and
?listTherapies[patient hasValue ?patient].

...

For this example, we assume that there are three candidate service descriptions
matching the Goal capability. As we said above, we only consider exact matches.
Two of the services use the same ontology as that used by the Goal. For that rea-
son, the functional capabilities of these two are identical with that of the Goal.
However, the third service declares its postcondition using a concept called Thera-
peuticTreatments. A set of mappings exists between the ontology defining this
concept and that defining ListTherapies, including a specific mapping that states
the two concepts have equivalent meaning. Combining data mediation along with
discovery also returns this third service as an exact match. The listing of the capa-
bility of the third service is:

...
capability _"http://.../capability"

precondition
definedBy

?patient memberOf Patient and
?listTestResults memberOf ListResultsTests and
?listTestResults[patient hasValue ?patient].

postcondition
 definedBy

?treatments memberOf TherapeuticTreatments and
?treatments[patient hasValue ?patient].

...

Each of the three services come from different providers and have different non-
functional properties. Five sample properties are description, providerName,
implementationMechanism, USStateAppr (the states in which the service is autho-
rized), and SecurityProtocol (the security that the service supports). Exact-match-
ing discovery yields all three service descriptions as candidates. To pick the best
one, a selection step is necessary. This may be automated only if the selection soft-
ware can be configured with all preferences a domain expert may specify for this
process. An ontology-based approach for selection based on quality of service
parameters with WSMO as the ontological model is discussed in [351].

webService _"http://www.example.org/HealthGuidance"
 ...

nonFunctionalProperties
 description hasValue "Therapy Guidance Service"
 provider hasValue "HealthCare Services Inc., New York"
 implementationMechanism hasValue "SWRL Rules Engine"
 USStateAppr hasValue {"NY", "CT", "IL", "MA", "WA", "TX"}
 SecurityProtocol hasValue {"SSL"}

endNonFunctionalProperties

 13.1 Service Discovery, Composition and Choreography 333

 ...

webService _"http://www.example.org/TherapyUnlimited"
 ...

nonFunctionalProperties
 description hasValue "Therapy Guidance Service"
 provider hasValue "Therapy Unlimited, US."
 implementationMechanism hasValue "Oracle 10 RDBMS"
 USStateAppr hasValue hasValue "ALL"
 SecurityProtocol hasValue {"SSL", "PKI"}

endNonFunctionalProperties
...

webService _"http://www.example.org/Therapy4Us"
 ...

nonFunctionalProperties
 description hasValue "Therapy Guidance Service"
 provider hasValue "Therapy4Us Inc, US."
 implementationMechanism hasValue "Rules + DL Reasoner"
 USStateAppr hasValue hasValue {"TX", "CA", "MI", "GA"}
 SecurityProtocol hasValue {"PKI"}

endNonFunctionalProperties
 ...

13.1.6 Orchestration/Service Composition

Each of the top-level Goals (GetTestOrderingGuidance, SelectAndRunTests, Get-
TherapeuticGuidance) in the orchestration of Goals in Figure 13.2 may be
achieved by a single service or by a further orchestration of services. In WSMO,
the description of how a service uses other services (or Goals) to achieve its capa-
bility is defined by the service orchestration. If Goals are used, then an execution
environment, such as WSMX, enables the Goals to be resolved to service invoca-
tions at run time using discovery and mediation mechanisms. This gives an addi-
tional layer of flexibility when service orchestrations are being created, allowing
the orchestration designers to focus on what they want to achieve rather than hav-
ing them be aware of all potential services that may be available.

Orchestrations are typically kept private by the service provider if they reflect
private business logic. From an external perspective, whether a service has an
orchestration or not is usually not visible to clients. They see only the publicly
described capability and interface. For the client, this means that discovering and
interacting with a service is the same regardless of its internal design. In other
words, if the orchestration of a service is predefined, then identifying an orchestra-
tion for use in a system becomes a service discovery problem. A WSMO Web Ser-
vice description, for example, may represent a composition of services that is
described in the orchestration part of the service description. It is up to the service
provider whether this description is made public or not.

WSMO orchestrations allow the process implemented by services to be declara-
tively described using ontologized Abstract State Machines (ASMs). ASMs are

334 13 A Solution Approach to the Clinical Use Case

defined in terms of states and transition rules that model how the system, repre-
sented by the ASM, transitions from state to state. ASM was chosen as a general
model as it provides a minimal set of modeling primitives that is sufficiently
expressive to rigorously model dynamic semantics. If the provider wishes to
change this process, it can be done declaratively with minimal or no recoding.
There is an analogy with a business process described with a language such as
WSBPEL that is abstracted behind a Web Service interface. One question that
arises is how such orchestrations are created and whether the creation can be auto-
mated.

Fensel and Bussler point out three possibilities for the definition of orchestra-
tions of Web Services in WSMF [264]. The first is provider-based orchestration
where the result, from a requester’s perspective, is itself a Web Service; the
requester does not see details of the orchestration. The second is client-based com-
position where the requester combines services as necessary and the provider has
no knowledge on how the services are being composed. The third is where the pro-
vider declares additional information about how the service should be used and the
requester is free to combine services as long as any provider constraints are not
violated. It is this third way that we propose in this section.

Semantic Web Service descriptions allow providers to formally state constraints
on the usage of their services. Automated orchestration of services, particularly in a
specialist domain such as medicine, faces practical difficulties as knowledge
beyond technical suitability is often taken into account when combining services.
Services may be available that are incompletely described, but a physician, based
on his own information, must be able to use such services if he wishes.

The added value of Semantic Web Service descriptions over the use of WSDL
in WSBPEL orchestrations is that constraints on the usage of each test can be spec-
ified by that test’s providers using rules made up of ontologized logical expres-
sions. The tests (represented by services) can possibly be composed in multiple
different sequences, using a graphical orchestration tool, but none of these compo-
sitions may violate the constraints specified by other services. A reasoning engine
built into the tool ensures this.

We take the SelectAndRunTests Goal as an initial simple example. Assume the
GetTestGuidance goal has been matched to a service and has returned a set of can-
didate tests. The next step is to select the most suitable tests and request that they
be performed. Each service has been semantically described using WSMO. Based
on this set of descriptions, a physician (through tool support) may identify three
genomic tests (G1, G2, G3) looking for genetic markers for specific diseases, and
three clinical tests (C1, C2, C3) looking for evidence of disease in blood and tissue
samples. An orchestration may be constructed specifying that these tests should be
carried out in the sequence (G1, G2, C1, G3, C2, C3). However local hospital pol-
icy dictates that test G2 only be carried out after the other five as it involves a high
cost and may be unnecessary depending on results of other tests. This constraint is
encoded in the service description. The SWS-assisted orchestration engine guides
the creation of the orchestration so that this constraint is met. Although the orches-

 13.1 Service Discovery, Composition and Choreography 335

tration is not automated, the expert is presented with rich semantic information to
assist with the task and any violations of the constraints on the services will be
picked up by the semantically enabled tool.

WSML Example: GetTestOrderingGuidance Orchestration

We now take a look at the WSML representation of the orchestration defined for
the GetTestOrderingGuidance subgoal of the TreatPatient Goal shown in
Figure 13.2. The subgoals correspond to technological/infrastructural services such
as a data integration service and a rules engine service. As mentioned, WSMO uses
a rule-based approach to declare orchestrations using ontologized Abstract State
Machines (ASMs). Each orchestration has a state signature which is a state ontol-
ogy used by the service together with the definition of the modes the concepts and
relations within that ontology may have. The input and output messages of the
orchestration are associated with concepts having modes in and out respectively.
An additional mode controlled is used for concepts that are internal to the orches-
tration and used to define sequential control flow. This is necessary as when the
condition of a transition rule is met, any update rules in the body of that rule will
fire in parallel by default.

Grounding provides the link between the semantic and syntactic descriptions of
a Web Service provided by WSMO and WSDL respectively. WSDL provides a
mechanism by which each element of a WSDL document can be uniquely identi-
fied using a URI. How this mechanism is used in WSMO grounding is explained
by Kopecký et al. in [376]. The WSML withGrounding keyword is used to declare
the groundings. Concepts with mode in or shared may be grounded in input mes-
sages of WSDL operations and concepts with mode out or shared may be grounded
in output messages of WSDL operations. It is possible to have multiple groundings
declared for each concept (also explained in [376]). Transformations are necessary
between WSML and the instances of XML types defined for messages in WSDL.
We assume that this transformation, called lowering (WSML to XML) or, corre-
spondingly, lifting (XML to WSML), is available but details of how this is imple-
mented is out of scope of this section. The following WSML listing shows the
orchestration of a service to match the GetTestOrderingGuidance Goal.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"
...
interface GetTestOrderingGuidanceInterface
orchestration TestOrderingGuidanceOrchestration
 stateSignature GetTestOrderingGuidanceSignature

 /* Concepts used as input and output to the orchestration */
 in Patient withGrounding {
 _"http://.../RulesEngineService.wsdl#wsdl.interfaceMessageRef-
erence
 (GetTestOrderingGuidance/GetTests/In)"}
 in Patient withGrounding {

336 13 A Solution Approach to the Clinical Use Case

 _"http://.../DataIntegration.wsdl#wsdl.interfaceMessageRefer-
ence
 (PatientHistory/GetCardiacHistory/In)"}
 shared PatientCardiacHistory withGrounding {
 _"http://.../RulesEngineService.wsdl#wsdl.interfaceMessageRef-
erence
 (GetTestOrderingGuidance/GetTests/In)"}
 shared PatientCardiacHistory withGrounding {
 _"http://.../DataIntegration.wsdl#wsdl.interfaceMessageRefer-
ence
 (PatientHistory/GetPatientCardiacHistory/Out)"}
 out ListTests withGrounding {
 _"http://.../RulesEngineService.wsdl#wsdl.interfaceMessageRef-
erence
 (GetTestOrderingGuidance/GetTests/Out)"}
 /* Concept used to define sequential control */
 controlled ControlState

 /* transition rules define the state changes of the orchestration */
 transitionRules

 if (
 ?patient memberOf Patient and
 ?patientCardiacHistory memberOf PatientCardiacHistory and
 then
 add(_# memberOf ListTests)
 update(?cs[value hasValue RulesEngineServiceCalled])
endif

 if (
 ?patient memberOf Patient and
 ?cs[value hasValue initialState] memberOf ControlState)
 then
 add(_# memberOf PatientCardiacHistory)
 update(?cs[value hasValue PatientCardiacHistoryAvailable])
 endif

The first part of the orchestration declares the state signature. This consists of
the concepts that are used by the transition rules within the orchestration. We
assume that all the concepts are from the same namespace. The listing includes
concepts marked with modes in, out, shared and controlled as explained earlier.
Each concept unless marked as controlled has a grounding which links the concept
to the in or out message of an operation in a WSDL document. For example:

in Patient withGrounding {
 _"http://.../RulesEngineService.wsdl#wsdl.interfaceMessageReference
 (GetTestOrderingGuidance/GetTests/In)"}

The fragment identifier for Interface Message References used with the with-
Grounding keyword is defined as

wsdl.interfaceMessageReference(interface/operation/message)

 13.1 Service Discovery, Composition and Choreography 337

with the three parts in parentheses replaced with the following:

• message is the message label property of the Interface Message Reference com-
ponent. It can be either In or Out.

• operation is the local name of the operation that contains the message.
• interface is the local name of the interface owning the operation.

The Patient and PatientCardiacHistory concepts in this example have two
grounding declarations each. In both cases the correct grounding to use depends on
the transition rule being executed and this can be determined by the orchestration
engine. Two rules are declared.

The first states that if instances of Patient and PatientCardiacHistory and are
available in the ontology, defined by the state signature of the orchestration, an
instance of the ListTests concept will be added to that ontology. In terms of execu-
tion, this means that if the header part of the rule is true, the engine will look for a
concept of type ListTests with mode out in the state signature and will use its
grounding information to determine which service needs to be invoked to provide
the data. In this case it is the service defined by RulesEngineService.wsdl. The
grounding information in the state signature is sufficient to determine the operation
to invoke and the data required for the input is identified by the concepts in the
header of the rule.

The second rule is used if an instance of PatientCardiacHistory is missing,
meaning that the first rule cannot fire. An instance of the PatientCardiacHistory
for the Patient can be retrieved using the DataIntegration service. The header of
the second rule is checked in the same way (and at the same time) as the first. An
instance of the concept ControlState of mode controlled is used to ensure that the
DataIntegration service is only invoked (if at all) when the orchestration is in its
initial state. The grounding information in the state signature is used, as before, to
identify the correct WSDL service endpoint and operation to invoke. Once the
PatientCardiacHistory instance has been retrieved using the service, the ontology
of the orchestration is updated and the conditions of both transition rules are
checked again. Now all the information required for the first rule is available; it
fires, causing the RulesEngineService to be invoked and an instance of ListTests to
be returned. As no more rules can fire, the orchestration execution ends.

As with the GetTestOrderingGuidance Goal of the TreatPatient orchestration,
the clinical Goal, GetTherapeuticGuidance, may also be further decomposed into
subgoals, which correspond to technological/infrastructural services such as a data
integration service and a rules engine service. This is similar to the GetTestOrder-
ingGuidance service; only the input and out parameters are different. We will dis-
cuss further technological implementations of these services in later parts of the
chapter.

338 13 A Solution Approach to the Clinical Use Case

Steps Required To Create an Orchestration

Encapsulating a process definition as an orchestration of services with its own ser-
vice interface and description enables processes to be discovered and used as build-
ing blocks for other orchestrations in the same way as any other service. Usually,
the description of a service’s orchestration is not visible to the requesting client.
The following steps provide an example of what is required to create an orchestra-
tion of Web Services in the context of WSMO.

Identify the tasks that go into making up the orchestration. The overall goal
to be achieved needs to be decomposed into individual tasks. Each task is then
matched to an existing goal description or a new goal description is created.

Discover services to realize the goals. Semantic Web Service discovery is used
to find candidate Web Services. Constraints may be specified in the descriptions of
the goals for each task and only Web Services that do not violate these constraints
will be included as candidates for the orchestration.

Select a service for each task. Using the information provided in the semantic
descriptions of the services, the tool assists the expert in selecting the services
whose non-functional characteristics best match those required for the task.

Define the concepts used for input and output data. The selected Web Ser-
vices will have choreographies that describe their public interfaces. With tool assis-
tance this information can be used to declare the concepts representing messages
for the orchestration with modes in, out or shared. For example, if a concept is
declared with mode out in the choreography of a selected service then this means
that it will be made available to the orchestration from the Web Service and, there-
fore, should be marked with mode in for the orchestration.

Identify and include any mediation that may be necessary. Mediation is nec-
essary where the data or process descriptions of service choreographies, required to
cooperate, do not match. Services that provide this capability need to be discov-
ered. As all information for this discovery is available, it should be possible for the
tool to automatically carry out this step.

Define the control flow between the selected services. The first step is to iden-
tify the sequence in which services should be invoked. Preconditions and postcon-
ditions in the service capability define the data that the service will consume and
provide. It needs to be verified that preconditions of all services in the sequence
can be met. For example, in the GetTestOrderingGuidance example earlier, the
RulesEngineService requires an instance of PatientCardiacHistory for one of its
inputs. This precondition cannot be satisfied by the information available in the
instance of the Patient concept. This is a case of missing data which can be
obtained by using an additional service to get this information. The DataIntegration
service is identified for this and must precede the RulesEngineService in the invo-
cation sequence so that the pre- and postconditions are not violated. This verifica-
tion can be carried out by an orchestration tool. As the orchestration is being built,
the designer can be warned where sequence violations occur and guided in resolv-
ing them.

 13.1 Service Discovery, Composition and Choreography 339

Another type of violation is one where constraints on non-functional aspects of
services are included in the service descriptions. In Section 13.1.5, we gave some
examples of these, including USStateAppr (the US states in which the service was
approved) and SecurityProtocol (the security protocol required by the Web Service
implementation). As services are composed into an orchestration, these constraints
may be checked by the tool to ensure that they are not being violated. For example,
the expert using the tool may add configuration information about issues such as
security and which geographic region the orchestration will have to be deployed to.
As with functional conditions, the tool using logical reasoning support can monitor
the orchestration as it is being constructed and notify the user if a constraint is
being violated and possibly suggest alternative action.

As services are organized into the orchestration in the desired sequence, the tool
assists the individual operations required on the services to be selected. The final
result is the generation of the abstract state machine representation of the orchestra-
tion which consists of the state signature (the ontology defining all the data that the
orchestration uses) and the set of transition rules that define the sequence in which
the services will be invoked.

Change is inevitable and after an orchestration has been designed, there is no
guarantee that the behavior and data defined at the interfaces of services will
remain the same. There is a requirement that executions of orchestrations be moni-
tored so that changes that may occur can be handled. For example, the RulesEn-
gineService may add an additional input to allow selection of rules engine
implementations with differing characteristics. A new precondition in the service
description reflects this change. A simple approach would be for the orchestration
engine to notify that this new precondition was not being satisfied the next time an
instance of the orchestration is requested. This could prompt the expert to modify
the orchestration to take the new condition into account. We assume that the execu-
tion engine takes care of any consistency issues in migrating from the old orches-
tration instance to the new one. A more intelligent approach would be for the
engine to use the knowledge available to it to reason over what rules engine would
be most suitable and to carry out the modification and migration automatically.

An alternative to the last two steps above is to create the orchestration using
only goal descriptions. Data and control flow would still need to be specified but
the resolution of the goals to individual services and the handling of any mediation
could be delegated to an SWS execution environment at run time.

13.1.7 Process and Protocol Mediation

In the last Section, we looked at how the GetTestGuidance sub-goal could be
resolved using the RulesEngineService (with some assistance from the DataInte-
gration service). We described in Section 11.3.5 how WSMO conceptually sepa-
rates the concerns of service requesters and providers into goals and Web Service
descriptions respectively. The choreography of a goal describes the information
and behavior that a service requester would like a matching service to have at its

340 13 A Solution Approach to the Clinical Use Case

interface. The Web Service choreography description describes the interface that it
actually offers. Ideally, where a service capability matches that of a goal, the chore-
ographies match each other exactly as well. In reality this is less likely to be the
case. Three categories of mismatches listed in Section 11.3.5 are:

• Data mediation. Handle mismatches between datatypes used in the choreogar-
phies.

• Protocol mediation. Handle mismatches between message exchange protocols.
This relates to the messaging and communication protocols used, e.g., SOAP,
REST, HTTP, and FTP.

• Process mediation. Handle mismatches between interaction patterns defined
for interface behavior. These can be considered as public processes supported
by services or goals and may correspond to international standards such as those
defined by the RosettaNet26 or ebXML27 for eCommerce.

A fourth type of mismatch is identified by Fensel and Bussler in WSMF [264].
This is the mediation of dynamic service invocation. It relates to how orchestra-
tions may be flexibly designed as compositions of goals which need to be resolved
to a concrete orchestration instance at run time. In this section, we focus on process
and protocol mediation.

Where Web Services are used to represent trading partners participating in an
interaction, the invocation of operations on each Web Service interface will have to
follow a defined sequence. It must be possible for this sequence to be defined in
such a way that other partners can determine the sequence itself and, if applicable,
the standard being used. If two services using different invocation sequences wish
to interact in a process, then process mediation is required to align the invocation
sequences. It is possible for this type of mismatch to be resolved at run time if suf-
ficient machine-understandable semantics of the public processes supported by the
Web Services is made available. Bussler points out in [372] that semantic defini-
tions, in addition to data and message sequencing, are required to support B2B
interactions between Web Services. These include: the intent of the messages,
whether messages are asynchronous or synchronous, trading-partner-specific con-
figurations, message definitions, syntax of the messages, security, reliability and
communication protocols.

The terms protocol mediation and process mediation are often used interchange-
ably, e.g., in Williams et al. [373]. Williams points out that this probably reflects
research that dates back to the 1980s such as [374] [375] on how systems support-
ing differing communication protocols could be enabled to communicate with each
other. In the context of this section, protocol mediation deals with handling
interoperability problems that the communication of messages between two par-
ties. These include the communication protocol used, the security and reliability

26. http://www.rosettanet.org/ (Accessed September 10, 2007).
27. http://www.ebxml.org/ (Accessed September 10, 2007).

 13.1 Service Discovery, Composition and Choreography 341

constraints at the communication level, the binding of the messages to transporta-
tion protocols such as HTTP or FTP, the structure of messages, the syntax of the
language used in messages. Process mediation is concerned with the mismatches at
the process level and is a superset of protocol mediation.

In WSMF, the authors point out that sequence mismatches can be separated into
those that can and cannot be resolved. An unresolvable sequence mismatch, for
example, is one where a requester expects that a blood test be conducted, followed
by a liver test and a genomic test, in that order, while a provider expects the
genomic test first followed by the blood test and then the liver test. These
sequences cannot be matched. A resolvable mismatch is one in which the requester
does specify in which sequence the tests should be carried out and the sequence
can be matched by a mediator to that expected by the provider. Cimpian and
Mocan in [350] identify types of process sequence mismatches that may be
resolved by the process mediator component of the WSMX execution environment
[330] [332].

Fig. 13.14. Choreography mismatch between goal and Web Service

We return to the example of the GetTestGuidance goal and the RulesEngineSer-
vice. The RulesEngineService is used heavily by a large number of medical diag-
nostic facilities. There is no guarantee on the speed of the response to queries, as
some may require considerable processing, and resources are limited.

Consequently the service’s choreography specifies that for each request it will
synchronously provide an acknowledgement message and the response message
containing the list of recommended tests will be sent in a later message for which
the RulesEngineService expects a return acknowledgement message. Additionally
as the messages contain potentially confidential patient data they must be encoded
using the SSL security mechanism. The choreography for the GetTestGuidance
goal expects only one message to be sent out with the request and one to be
received with the list of recommended tests. It does not specify anything about
acknowledgement messages. Additionally it does not specify any requirement with

GetTest
Guidance

Goal

RulesEngine
Service

Goal
Choreography

Service
Choreography

GetTestRequest
GetTestsRequest

GetTestsRequest
Ack

ListTests

ListTests ListTests
Ack

342 13 A Solution Approach to the Clinical Use Case

regard to the security mechanism for the service request. Both choreographies are
illustrated in Figure 13.14.

Process mediation is required to handle the acknowledgement messages and
protocol mediation is required to handle the SSL. Both are provided through a Pro-
cessMediator which has access to the choreographies of the goal and the service
and which acts as an intermediary. In Figure 13.15, the request message is sent
from the requester. The ProcessMediator adds SSL security and passes the message
to the RulesEngineService. The RulesEngineService replies synchronously with an
acknowledgement message which is consumed by the process mediator. As the
goal choreography does not expect this message, it is discarded. Later the RulesEn-
gineService sends a message with the list of recommended tests. This is expected
by the goal choreography and passes through the process mediator unchanged with
only the SSL security removed. The RulesEngineService now expects an acknowl-
edgement message in return. The information required for this message is available
from earlier information and is generated by the ProcessMediator which sends it
back to the RulesEngineServices with the appropriate SSL security.

Fig. 13.15. Choreography mismatch between goal and Web Service

13.2 Data and Knowledge Integration

Up to now, in this chapter, we have examined how an overall process in transla-
tional medicine can be modeled using Semantic Web Service technology. In partic-
ular, we have used the WSMO model and corresponding WSML language to focus
on the description of a composition and the goals and services that could be used to
realize it. We highlighted how heterogeneity between the interfaces of a goal (what
a service requester wants) and a service (what is being provided) could be resolved
using ontologized mappings.

This section takes a data-centric view on integration issues in translational med-
icine, focussing on the creation and mapping or merging of data models that span
the clinical and genomic domains. RDF and OWL are used to specify the ontolo-
gies in the following examples as they are the most common Semantic Web lan-

GetTest
Guidance

Goal

RulesEngine
Service

Goal
Choreography

Service
Choreography

GetTestRequest
GetTestsRequest

GetTestsRequest
Ack

ListTests

ListTests ListTests
Ack

P
ro
ce

ss
M

ed
ia

to
r

 13.2 Data and Knowledge Integration 343

guages for knowledge representation. The Semantic Web Service models can be
linked to these examples through the RDF syntax for WSML which allows for bi-
driectional translation. In particular the RDF knowledge examples in the followiug
sections can be translated and applied to the WSML Goal and Web Service listings
used so far and in the remaining sections of this Chapter.

This component of the data integration architecture enables integration of geno-
typic and phenotypic patient data, and reference information data. This integrated
data could be used for enabling clinical care transactions, knowledge acquisition of
clinical guidelines and decision support rules, and for hypothesis discovery for
identifying promising drug targets. We now describe with the help of an example
our implementation approach for data integration based on Semantic Web specifi-
cations such as RDF and OWL to bridge clinical data obtained from an EMR and
genomic data obtained from a LIMS. The data integration approach consists of the
following steps:
1. Creation of a domain ontology identifying key concepts across the clinical and

genomic domains.
2. Design and creation of wrappers that expose the data in a given data repository

in an RDF view.
3. Specification of mapping rules that provide linkages across data retrieved from

different data repositories.
4. A user interface for: (a) specification of data linkage mappings; and (b) visual-

ization of the integrated information.
We first present a WSMO/WSML specification of Data Integration Services,

followed by a discussion of the semantic data integration architecture underlying
the implementation of a Data Integration Service. This is followed by a discussion
of the various steps enumerated above.

13.2.1 Data Integration Services: WSMO/WSML Specification

We now present a WSML specification of Data Integration Services in the context
of the GetTherapeuticGuidance clinical service. The orchestration of the data inte-
gration service is as follows:

• GetRelevantDataSources takes as input pointers to clinical data such as family
history, test results and contraindications and identifies the relevant data sources

• DistributedQueryProcessing takes as input the list of data sources and a query,
typically specified as a join of the various types of clinical data for a given
patient, and returns a list of RDF models/graphs from various data sources

• GraphMerge takes as input the set of RDF graphs and merges them based on
mapping rules which may also be input. In case the mapping rules are not input,
the default mapping rule for mapping URIs is used for the graph merge opera-
tion.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule" ...

344 13 A Solution Approach to the Clinical Use Case

interface DataIntegrationInterface
orchestration DataIntegrationOrchestration
 stateSignature DataIntegrationSignature

 /* Concepts used as input and output to the orchestration */
 in FamilyHistory, ListTestResults, ListContraindiations
 out ListTherapies
 /* Concept used to maintain the control flow */
 controlled ControlState

 /* Transition rules govern the control flow of the orchestration */
 transitionRules

 if (?familyHistory memberOf FamilyHistory and
 ?listTestResults memberOf ListTestResult and
 ?contraindication memberOf Contraindication
 ?cs[value hasValue InitialState] memberOf ControlState)
 then
 call GetRelevantDataSources
 (?familyHistory ?listTestResults ?contraindication)
 : _# memberOf DataSourceList
 update(?cs[value hasValue GetRelevantDataSourcesCalled])
 endif

 if (?dataSourceList memberOf DataSourceList and
 ?query = "join(FamilyHistory, ListTestResults, Contraindica-
tion)") and
 ?cs[value hasValue GetRelevantDataSourcesCalled] memberOf Con-
trolState)
 then
 call DistributedQueryProcessing
 (?dataSourceList ?query)
 : _# memberOF RDFGraphList
 update(?cs[value hasValue DistributedQueryProcessingCalled])
 endif

 if (?rdfGraphList memberOf RDFGraphList and
 ?mappingRules memberOf MappingList)
 ?cs[value hasValue DistributedQueryProcessingCalled] memberOf
ControlState)
 then
 call GraphMerge
 (?rdfGraphList ?mappingRules)
 : _# member Of IntegratedPatientRDFGraph
 update(?cs[value hasValue GraphMergeCalled])
 endif

13.2.2 Semantic Data Integration Architecture

The semantic data integration architecture is a federation of data repositories as
illustrated in Figure 13.5 below and has the following components:

 13.2 Data and Knowledge Integration 345

Data Repositories: Data repositories that participate in the federation offer
access to all or some portion of the data. In the translational medicine context,
these repositories could contain clinical data stored in the EMR system or genomic
data stored in the LIMS system. Data remain in their native repositories in a native
format and are not moved to a centralized location, as would be the case in data-
warehouse-based approach.

Domain Ontologies: Ontologies contain a collection of concepts and relation-
ships that characterize the knowledge in the clinical and genomic domains. They
provide a common reference point that supports the semantic integration and inter-
operation of data.

Fig. 13.16. Semantic Data Integration Architecture

RDF Wrappers: Wrappers are data-repository-specific software modules that
map internal database tables or other data structures to concepts and relationships
in the domain ontologies. Data in a repository is now exposed as RDF graphs for
use by the other components in the system.

Mediation Layer: The mediation layer takes as input mapping rules that may
be specified between various RDF graphs and computes the merged RDF graphs
based on those mapping rules. In Section 13.1.3, we looked at how mediation
between services could be established using ontologized mappings applied at run
time. Here we focus on providing a global view on merged data models abstracting
from the underlying heterogeneous data sources.

User Interfaces: User interfaces support: (a) visualization of integration results;
(b) design and creation of domain ontologies; (c) configuration of RDF wrappers;
and (d) specification of mapping rules to merge RDF graphs.

The main advantage of the approach is that one or more data sources can be
added in an incremental manner. According to the current state of the art, data inte-
gration is implemented via one-off programs or scripts where the semantics of the

EMR LIMS

RDF Wrapper RDF Wrapper

RDF Graph 1 RDF Graph 2

Merged RDF Graph

Mediation Layer

User Interface
for Results Viewing
and Visualization

User Interface
for Specifying
Mappings, Wrapper
Configurations and
Ontologies

Domain Ontologies
for Translational Medicine

EMR LIMS

RDF Wrapper RDF Wrapper

RDF Graph 1 RDF Graph 2

Merged RDF Graph

Mediation Layer

User Interface
for Results Viewing
and Visualization

User Interface
for Specifying
Mappings, Wrapper
Configurations and
Ontologies

Domain Ontologies
for Translational Medicine

EMR LIMS

RDF Wrapper RDF Wrapper

RDF Graph 1 RDF Graph 2

Merged RDF Graph

Mediation Layer

User Interface
for Results Viewing
and Visualization

User Interface
for Specifying
Mappings, Wrapper
Configurations and
Ontologies

Domain Ontologies
for Translational Medicine

EMR LIMS

RDF Wrapper RDF Wrapper

RDF Graph 1 RDF Graph 2

Merged RDF Graph

Mediation Layer

User Interface
for Results Viewing
and Visualization

User Interface
for Specifying
Mappings, Wrapper
Configurations and
Ontologies

Domain Ontologies
for Translational Medicine

346 13 A Solution Approach to the Clinical Use Case

data is hard-coded. Adding more data sources typically involves rewriting these
programs and scripts. In our approach, the semantics are made explicit in RDF
graphs and the integration is implemented via declarative specification of map-
pings and rules (this is analogous to the ontologized mapping examples of Section
13.1.3). These can be configured to incorporate new data sources via appropriate
configurations of mappings, rules and RDF wrappers, leading to a cost- and time-
effective solution.

13.2.3 A Domain Ontology for Translational Medicine

A key first step in semantic data integration is the definition of a domain ontology
spanning both the clinical and genomic domains. A portion of the domain ontology
is illustrated in Figure 13.17 and contains the following key concepts and relation-
ships.

Fig. 13.17. A domain ontology for translational medicine

• The class LaboratoryTestOrder represents the order for a laboratory test for a
patient. The order may be for a panel of tests represented in the class Panel
which may contain one or more tests represented in the class Test. The order
may have a recipientAddress and a payorAddress represented by the class
USAddress, representing the set of addresses in the US.

• The class Patient is a core concept that characterizes patient state information,
such as values of various patient state parameters, the results of diagnostic tests
and his family and lineage information. It is related to the class Person through
the subclass relationship. Information about a patient’s relatives is represented
using the is_related relationship and the Relative concept. The class Fam-
ilyHistory captures information of family members who may have had the dis-

Person

Patient Relative

FamilyHistory

Mutation Gene

Disease

StructuredTestResult

MolecularDiagnosticTestResult

Genomic

Clinical

isRelatedTo

associatedRelativehasFamilyHistory

hasMutation

isMutationOf

hasGene

suffersFrom

indicatesDisease

identifiesMutation

hasStructuredTestResult

subclass
relationship

LaboratoryTestOrderPanel

Test
USAddress

associatedResult

test

testPanel

payorAddress recipientAddress

hasAddress

hasMolecularDiagnosticTestResult

hasPatient

Person

Patient Relative

FamilyHistory

Mutation Gene

Disease

StructuredTestResult

MolecularDiagnosticTestResult

Genomic

Clinical

isRelatedTo

associatedRelativehasFamilyHistory

hasMutation

isMutationOf

hasGene

suffersFrom

indicatesDisease

identifiesMutation

hasStructuredTestResult

subclass
relationship

LaboratoryTestOrderPanel

Test
USAddress

associatedResult

test

testPanel

payorAddress recipientAddress

hasAddress

hasMolecularDiagnosticTestResult

hasPatient

 13.2 Data and Knowledge Integration 347

ease for which the patient is being evaluated, and is related to the Patient
concept via the hasFamilyHistory relationship.

• The StructuredTestResult captures results of laboratory tests and is related to
the Patient class via the hasStructuredTest relationship and the Test class
via the associatedResult relationship. Various types of test results such as
LDL, AST, ALT, TotalBilirubin, etc. can be represented as subclasses of this
class. The MolecularDiagnosticTestResult class represents the results of a
molecular diagnostic test result, a type of structured test result (represented
using the subclass relationship). Molecular diagnostics identify mutations (rep-
resented using the identifiesMutation relationship) and indicates diseases
(represented using the indicatesDisease relationship) in a patient.

• The class Gene represents information about genes and is linked to the Patient
class via the hasGene relationship. Genetic variants or mutations of a given gene
are represented using the Mutation class which is linked to the Patient class
via the hasMutation relationship. The relationship between a gene and mutation
is represented using the isMutationOf relationship.

• The Disease class characterizes the disease states which can be diagnosed about
a patient, and is related to the Patient class via the suffersFrom relationship
and to the molecular diagnostic test results concept via the indicatesDisease
relationship.

OWL Representation of Domain Ontology

The OWL representation of the domain ontology dicussed above is as follows.

<owl:Class rdf:ID="Person"/>
<owl:Class rdf:ID="Patient">
 <rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>
<owl:Class rdf:ID="Relative">
 <rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>
<owl:Class rdf:ID="StructuredTestResult"/>
<owl:Class rdf:ID="MolecularDiagnosticTestResult"/>
<owl:Class rdf:ID="FamilyHistory"/>
<owl:Class rdf:ID="Disease"/>
<owl:Class rdf:ID="Gene"/>
<owl:Class rdf:ID="Mutation"/>
<owl:Class rdf:ID="LaboratoryTestOrder"/>
<owl:Class rdf:ID="Panel"/>
<owl:Class rdf:ID="Test"/>
<owl:Class rdf:ID="USAddress"/>

<owl:ObjectProperty rdf:ID="isRelatedTo">
 <rdf:type rdf:resource="&owl;TransitiveProperty" />
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Relative"/>
</owl:ObjectProperty>

348 13 A Solution Approach to the Clinical Use Case

<owl:ObjectProperty rdf:ID="hasFamilyHistory">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#FamilyHistory"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="associatedRelative">
 <rdfs:domain rdf:resource="#FamilyHistory"/>
 <rdfs:range rdf:resource="#Relative"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasStructuredTestResult">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#StructuredTestResult"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasStructuredTestResult">
 <owl:inverseOf rdf:resource="#hasPatient"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasMolecularDiagnosticTestResult">
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult" />
 <rdfs:range rdf:resource="#MolecularDiagnosticTestResult" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="identifiesMutation"/>
 <rdfs:domain rdf:resource="#MolecularDiagnosticTestResult"/>
 <rdfs:range rdf:resource="#Mutation"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="indicatesDisease">
 <rdfs:domain rdf:resource="#MolecularDiagnosticTestResult"/>
 <rdfs:range rdf:resource="#Disease"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="suffersFrom">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Disease"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasMutation">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Mutation"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasGene">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Gene"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="isMutationOf">
 <rdfs:domain rdf:resource="#Mutation"/>
 <rdfs:range rdf:resource="#Gene"/>
</owl:ObjectProperty>
<owl:ObjectProperty> rdf:ID="hasAddress">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#USAddress"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="recipientAddress">
 <rdfs:domain rdf:resource="#LaboratoryTestOrder"/>
 <rdfs:range rdf:resource="#USAddress"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="payorAddress">
 <rdfs:domain rdf:resource="#LaboratoryTestOrder"/>

 13.2 Data and Knowledge Integration 349

 <rdfs:range rdf:resource="#USAddress"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="testPanel">
 <rdfs:domain rdf:resource="#LaboratoryTestOrder"/>
 <rdfs:range rdf:resource="#Panel"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="test">
 <rdfs:domain rdf:resource="#Panel"/>
 <rdfs:range rdf:resource="#Test"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="associatedResult">
 <rdfs:domain rdf:resource="#Test"/>
 <rdfs:range rdf:resource="#StructuredTestResult"/>
</owl:ObjectProperty>
<owl:DataTypeProperty rdf:ID="orderDateTime">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#LaboratoryTestOrder"/>
 <rdfs:range rdf:resource="&xsd;datetime" />
</owl:DataTypeProperty>
<owl:Class rdf:ID="Patient">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isRelatedTo"/>
 <owl:allValuesFrom rdf:resource="#Relative"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Mutation">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isMutationOf"/>
 <owl:someValuesFrom rdf:resource="#Gene"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class> ¬
<owl:Class rdf:ID="StructuredTestResult">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasPatient"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1
 </owl:cardinality>

 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="PatientWithMYH7Gene">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasGene"/>
 <owl:hasValue rdf:resource="#MYH7"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

350 13 A Solution Approach to the Clinical Use Case

<owl:Class rdf:ID="DiabeticPatient">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Patient"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#suffersFrom"/>
 <owl:someValuesFrom rdf:resource="#Diabetes"/>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>
<owl:Class rdf:ID="StructuredTestResult">

<owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:resource="#NormalStructuredTestResult"/>
 <owl:Class rdf:resource="#AbnormalStructuredTestResult"/>
</owl:unionOf>

</owl:Class>
<owl:Class rdf:ID="NormalStructuredTestResult">

<rdfs:subClassOf rdf:resource="#StructuredTestResult"/>
 <owl:disjointWith rdf:resource="#AbnormalStructuredTestResult/>
</owl:Class>
<owl:Class rdf:ID="AbnormalStructuredTestResult">

<rdfs:subClassOf rdf:resource="#StructuredTestResult"/>
 <owl:disjointWith rdf:resource="#NormalStructuredTestResult"/>
</owl:Class>

Advantages of OWL-based Semantic Web specifications

The OWL Specifications above illustrate some of the key features, based on which
one may chose OWL as opposed to other alternatives:

• OWL seeks to model the semantics of the information through constructs such
as owl:Class, owl:ObjectProperty and owl:DatatypeProperty.

• OWL supports the ability to iteratively add descriptions as more knowledge and
information becomes available. For instance, in the ontology below, the declara-
tion of the class Mutation could be added first. The property restriction
(<owl:onProperty rdf:resource="#isMutationOf"> <owl:someValuesFrom

rdf:resource="#Gene">) could be added later independently by another
domain expert.

• Unlike RDF Schema, OWL supports the ability to locally restrict the values of a
particular property, e.g., the values of the property suffersFrom are restricted to
instances of the class Diabetes when applied to instances of the class Diabe-
tesPatient. Other classes of patients may be restricted to instances of other dis-
eases.

• In contrast with RDF Schema, OWL supports the ability to support complex
classes (StructuredTestResult is the union of NormalStructuredTestResult
and AbnormalStructuredTestResult), disjoint classes (NormalStruc-
turedTestResult and AbnormalStructuredTestResult) and cardinality con-
straints (e.g., each instance of StructuredTestResult has exactly 1 value for
the hasPatient property).

 13.2 Data and Knowledge Integration 351

13.2.4 Use of RDF to represent Genomic and Clinical Data

As discussed in Section 13.2.1, RDF wrappers perform the function of transform-
ing information as stored in internal data structures in LIMS and EMR systems into
RDF-based graph representations. We illustrate with examples (Figure 13.18), the
RDF representation of clinical and genomic data in our implementation.

Clinical data related to a patient with a family history of SuddenDeath is illus-
trated. Nodes corresponding Patient ID and Person ID are connected by an edge
labeled isRelatedTo, modeling the relationship between a patient and his father.
The name of the patient (“Mr. X”) is modeled as another node, and is linked to the
patient node via an edge labeled name. Properties of the relationship between the
patient ID and person ID nodes are represented by reification of the edge labeled
isRelatedTo and by attaching labeled edges for properties such as the type of
relationship (paternal) and the degree of the relationship (1).

Fig. 13.18. RDF Representation of clinical and genomic data

Genomic data related to a patient evaluated for a given mutation (MYH7 mis-
sense Ser532Pro) is illustrated. Nodes corresponding to Patient ID and Molecular
Diagnostic Test Result ID are connected by an edge labeled hasStruc-

turedTestResult modeling the relationship between a patient and his molecular
diagnostic test result. Nodes are created for the genetic mutation MYH7 missense
Ser532Pro and the disease Dialated Cardiomyopathy. The relationship of the test
result to the genetic mutation and disease is modeled using the labeled edges iden-
tifiesMutation and indicatesDisease respectively. The degree of evidence for
the dialated cardiomyopathy is represented by reification of the indicatesDisease
relationship and attaching labeled edges evidence1 and evidence2 to the reified
edge. Multiple confidence values expressed by different experts can be represented
by reifying the edge multiple times.

“Paternal” 1

type degree

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

isRelatedTo

FamilyHistory
(id = URI3)

hasFamilyHistory

“Sudden Death”
problem

EMR Data

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

FamilyHistory
(id = URI3)

“Sudden Death”
problem

associatedRelative

EMR Data

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

hasStructuredTestResult

MYH7 missense Ser532Pro
(id = URI5)

identifiesMutation

Dialated
Cardiomyopathy
(id = URI6)

indicatesDisease

LIMS Data

90%

evidence1

95%

evidence2

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

MYH7 missense Ser532Pro
(id = URI5) Dialated

Cardiomyopathy
(id = URI6)LIMS Data

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

MYH7 missense Ser532Pro
(id = URI5) Dialated

Cardiomyopathy
(id = URI6)LIMS Data

90%

evidence1

95%

evidence2

95%

evidence2

“Paternal” 1

type degree

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

isRelatedTo

FamilyHistory
(id = URI3)

hasFamilyHistory

“Sudden Death”
problem

EMR Data

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

FamilyHistory
(id = URI3)

“Sudden Death”
problem

associatedRelative

EMR Data

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

hasStructuredTestResult

MYH7 missense Ser532Pro
(id = URI5)

identifiesMutation

Dialated
Cardiomyopathy
(id = URI6)

indicatesDisease

LIMS Data

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

hasStructuredTestResult

MYH7 missense Ser532Pro
(id = URI5)

identifiesMutation

Dialated
Cardiomyopathy
(id = URI6)

indicatesDisease

LIMS Data

90%

evidence1

95%

evidence2

95%

evidence2

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

MYH7 missense Ser532Pro
(id = URI5) Dialated

Cardiomyopathy
(id = URI6)LIMS Data

Patient
(id = URI1)

MolecularDiagnosticTestResult
(id = URI4)

MYH7 missense Ser532Pro
(id = URI5) Dialated

Cardiomyopathy
(id = URI6)LIMS Data

90%

evidence1

95%

evidence2

95%

evidence2

352 13 A Solution Approach to the Clinical Use Case

RDF Representation

The RDF representations of these graphs using the triples syntax is as follows:

Available at http://www.hospital.org/EMR
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

URI1 name "X" ;
URI1 isRelatedTo URI2 .

_:stmt1 rdf:type rdf:Statement .
_:stmt1 rdf:subject URI1 .
_:stmt1 rdf:predicate isRelatedTo .
_:stmt1 rdf:object URI2 .
_:stmt1 type "Paternal"@en .
_:stmt1 degree 1 .

URI1 hasFamilyHistory URI3 .
URI3 associatedRelative URI2 .
URI3 problem URI7 .

URI7 rdf:type skos:Concept .
URI7 skos:preflabel "Sudden Death"@en .
URI7 skos:inScheme URI8 .
URI8 rdf:type skos:ConceptScheme
URI8 dc:title "Systematized Nomenclature of Medicine (SNOMED)" .

Available at http://www.laboratory.com/LIMS
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

URI1 hasStructuredTestResult URI4 .
URI4 identifiesMutation URI5 .
URI4 indicatesDisease URI6

_:stmt2 rdf:type rdf:Statement .
_:stmt2 rdf:subject URI4 .
_:stmt2 rdf:predicate identifiesMutation .
_:stmt2 rdf:object URI6 .
_:stmt2 evidence1 "90%" .
_:stmt2 evidence2 "95%" .

URI5 rdf:type skos:Concept .
URI5 skos:preflabel "MYH7 missense Ser532Pro"@en .
URI5 skos:inScheme URI9 .
URI9 rdf:type skos:ConceptScheme
URI9 dc:title "Human Genome Nomenclature"@en .

URI6 rdf:type skos:Concept .
URI6 skos:preflabel "Dialated Cardiomyopathy"@en .
URI6 skos:inScheme URI10 .
URI10 rdf:type skos:ConcpetScheme .
URI10 dc:title "NCI Thesaurus" .

 13.2 Data and Knowledge Integration 353

Advantages of RDF Specification

The RDF representations of example EMR and LIMS data above illustrate the fol-
lowing key features that are enabled by Semantic Web specifications:

• As discussed earlier, one of the key aspects of the RDF specification is the abil-
ity to uniquely identify resources using URIs which are available. In the exam-
ple above, the same URI (e.g., URI1) is used to identify a patient in the EMR and
the LIMS data-set. This is an important feature from the point of view of achiev-
ing web-scale data linkage and integration.

• The ability to “reify” an edge in the RDF graph (e.g., URI1 isRelatedTo URI2)
and attaching additional properties and values (e.g., type and "Paternal").

• There are multiple standardized vocabularies in use in the healthcare and life
sciences. Some examples referenced in the above example are NCI Thesaurus,
SNOMED and Human Genome Nomenclature. The Semantic Web specification
through the Simple Knowledge Organization Scheme (SKOS) [403] provides a
standardized way to link to concepts from these standardized vocabularies. For
e.g., the RDF graph refers to a standardized vocabulary code for “Sudden
Death” from the SNOMED controlled vocabulary by using the following RDF
triples.
URI3 problem URI7 .
 URI7 rdf:type skos:Concept .
 URI7 skos:preflabel "Sudden Death"@en .
 URI7 skos:inScheme URI8 .
 URI8 rdf:type skos:ConceptScheme
 URI8 dc:title "Systematized Nomenclature of Medicine (SNOMED)" .

13.2.5 The Integration Process

The data integration process is an interactive one and involves the end user, who in
our case might be a clinical or genomic researcher. RDF graphs from different data
sources are displayed. The steps in the process that lead to the final integrated
result are enumerated below.
1. RDF graphs are displayed in an intuitive and understandable manner to the end

user in a graphical user interface.
2. The end user previews them and specifies a set of rules for linking nodes across

different RDF models. Some examples of simple rules that are implemented in
our system are:
(A) Merge nodes that have the same IDs or URIs.
(B) Merge nodes that have matching IDs, per a lookup on the Enterprise Master

Patient Index (EMPI).
(C) If there are three nodes in the merged graph, Node1, Node2 and Node3 such

that Node1 and Node2 are linked with an edge labeled hasStruc-

turedTestResult, and Node2 and Node3 are linked with an edge labeled

354 13 A Solution Approach to the Clinical Use Case

indicatesDisease, then introduce a new edge labeled suffersFrom that
links Node1 and Node3.

3. Merged RDF graphs that are generated based on these rules are displayed to the
user, who may then decide to activate or deactivate some of the rules displayed.

4. New edges (e.g., suffersFrom) that are inferred from these rules may be added
back to the system based on the results of the integration. Sophisticated data
mining that determines the confidence and support for these new relationships
might be invoked.

Fig. 13.19. RDF representation of the integrated result

Linking Data From Multiple Sources

A key construct supported in the SPARQL specification is the ability to define a
graph data-set containing a default graph and other default graphs. For instance the
RDF graph describing the EMR data can be specified as a default graph and the
RDF graph describing the LIMS data can be specified as the named graph. An
interesting capability is that these graphs can be distributed and available at differ-
ent URIs as illustrated below.

Default graph <http://www.hospital.org/EMR>
/* ... RDF representation as illustrated in Section 4.4.1 above ... */

Named graph: <http://www.laboratory.com/LIMS>
/* ... RDF representation in Section 4.4.1 above ... */

Consider the merged RDF graph illustrating the integration of clinical and genomic
data as illustrated in Figure 13.19 above. A default mapping is the ability to match
on URIs, a mappping we get for free by using the Semantic Web infrastructure.
The merged graph based on ID matching is available based on the graph merge
operation discussed above. However, the merged graph in Figure 13.19 above

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

isRelatedTo

FamilyHistory
(id = URI3)

hasFamilyHistory

“Sudden Death”
problem

“Paternal” 1

type degree

associatedRelative

StructuredTestResult

MYH7 missense Ser532Pro
(id = URI5)

identifiesMutation

Dialated
Cardiomyopathy
(id = URI6)

indicatesDisease

90%, 95%

evidence

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

FamilyHistory
(id = URI3)

“Sudden Death”
problem

“Paternal” 1

type degree

(id = URI4)

MYH7 missense Ser532Pro
(id = URI5)

Dialated
Cardiomyopathy
(id = URI6)

hasStructuredTestResult

suffersFrom

has_gene

90%, 95%

evidence

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

isRelatedTo

FamilyHistory
(id = URI3)

hasFamilyHistory

“Sudden Death”
problem

“Paternal” 1

type degree

associatedRelative

StructuredTestResult

MYH7 missense Ser532Pro
(id = URI5)

identifiesMutation

Dialated
Cardiomyopathy
(id = URI6)

indicatesDisease

90%, 95%

evidence

Patient
(id = URI1)

“Mr. X”

name

Person
(id = URI2)

FamilyHistory
(id = URI3)

“Sudden Death”
problem

“Paternal” 1

type degree

(id = URI4)

MYH7 missense Ser532Pro
(id = URI5)

Dialated
Cardiomyopathy
(id = URI6)

hasStructuredTestResult

suffersFrom

has_gene

90%, 95%

evidence

 13.2 Data and Knowledge Integration 355

illustrates two new edges, suffersFrom and hasMutation which identify the asso-
ciation between the patient and a disease and gene based on the results of the
molecular diagnostic test result. The mappings required for enabling this are:

• If a structured test result for a patient indicates a disease with higher then 90%
probability, then the patient may suffer from that disease. This can be repre-
sented using SPARQL CONSTRUCT expression as follows:

CONSTRUCT { ?s suffersFrom ?o}
WHERE {
 ?s hasStructuredTestResult ?result .
 ?result indicatesDisease ?o
 }

• If the structured test result for a patient indicates a mutation, then the patient has
the mutation is part of the patient’s genome. This can be represented using the
following SPARQL CONSTRUCT expression.
CONSTRUCT { ?s hasMutation ?o}

 WHERE {
 ?s hasStructuredTestResult ?result .
 ?result identifiesMutation ?o .
 }

The merged graph can then be created by appropriately constructing the
SPARQL query, where the CONSTRUCT part will contain the new predicates and the
WHERE clauses can be appropriately combined.

An alternate approach by which these mappings can be represented is using a
rule based formalism. A representation of the same rules using the N3 rules syntax
is as follows.

• {?s hasStructuredTestResult ?result .
 ?result indicatesDisease ?o}
=> {?s suffersFrom ?o}

• {?s hasStructuredTestResult ?result .
 ?result identifiesMutation ?o}
=> {?s suffersFrom ?o}

Advantages of using Semantic Web Specifications

The solution approach proposed above supports an incremental approach for data
integration. Furthermore, the solution leverages the underlying web infrastructure
to uniquely identify resources referred to in RDF graphs. This enables easy linking
and integration of data across multiple RDF data sources, without the need imple-
ment costly data value mapping techniques. The most valuable aspect of this
approach is that it enables a flexible approach to ground data representing in RDF
graphs to concepts in standardized concepts and vocabularies. The SKOS standard
enables the association of semantics with the data in consistent manner. Finally, the
key advantage of semantic web specifications is the ability to specify mapping

356 13 A Solution Approach to the Clinical Use Case

rules at the information level using the SPARQL CONSTRUCT expression or using
rules expressed in the N3 syntax. The enables integration and linking at the “infor-
mation” level in contrast with the current state of art with one of java and perl
scripts that implement one-off integration solutions. The externalization and repre-
sentation of mappings using semantic web specifications enable re-use and config-
uration of mappings that can be leveraged to implement data linking and
integration.

13.3 Decision Support

As illustrated in the clinical use case, there is a need for providing guidance to a
clinician for ordering the right molecular diagnostic tests in the context of pheno-
typic observations about a patient and for ordering appropriate therapies in
response to molecular diagnostic test results. The decision support functionality
spans both the clinical and biological domains and depends on effective integration
of knowledge and data across data repositories containing clinical and biological
data and knowledge.

In order to maintain the currency and consistency of decision support knowl-
edge across all clinical information systems and applications, a rules-based
approach for representing and executing decision support knowledge has been
adopted [367] [368]. We present an approach and architecture for implementing
scalable and maintainable clinical decision support using a business rules engine
and an OWL-based ontology engine. Various clinical applications will invoke this
clinical decision support service for their decision support needs.

 The architecture integrates a business rules engine that executes declarative if-
then rules stored in a rule base referencing objects and methods in a business object
model. The rules engine executes object methods by invoking services imple-
mented on the EMR. Specialized inferences that support classification of data and
instances into classes are identified and an approach to implementing these infer-
ences using an OWL (Web Ontology Language) based ontology engine is pre-
sented. Architectural alternatives for integration of clinical decision support
functionality with the invoking application and the underlying clinical data reposi-
tory and their associated trade-offs are also discussed. Consider the following deci-
sion support rule:

IF the patient’s LDL > 120
AND the patient has a contraindication to Fibric Acid
THEN Prescribe the Zetia Lipid Management Protocol

In Section 5.4.2, we presented a solution approach using the SWRL specifica-
tion. However, SWRL is currently a W3C member submission and is likely to be a
while before it is standardized. In this section, we present a solution approach
based on a commerical BRMS such as ILOG [405]. The steps for implementing the
above clinical guideline are:

 13.3 Decision Support 357

1. Create the business object model that defines patient-related classes and meth-
ods.

2. Specify rules to encode decision support logic.
3. Delineate definitions characterizing patient states and classes and represent

them in an ontology.
We begin by presenting our clinical decision support architecture and then illus-

trating with the example given above the steps for creation of appropriate ontolo-
gies and rule bases.

13.3.1 Decision Support Services: WSMO/WSML Specification

We now present a WSML specification of Decision Support Service in the context
of the GetTherapeuticGuidance clinical service. The orchestration of the decision
support service is as follows:

• SelectAndLoadRuleBase takes as input the integrated clinical and genomic data
associated with a patient and identifies the appropriate rulebase to be loaded into
the rules engine.

• AssertFactsInRuleEngine asserts all the patient data in the rules engine.
• ExecuteInferences initiates the execution of the rules engine and returns the

facts that are inferred in the process, in this case resulting in the therapeutic rec-
ommendations appropriate for the patient.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule" ...
interface DataIntegrationInterface
orchestration DataIntegrationOrchestration
 stateSignature DataIntegrationSignature

 /* Concepts used as input and output to the orchestration */
 in IntegratedPatientData, ListContraindications, ListDiseases
 out ListTherapies
 /* Concept used to maintain the control flow */
 controlled ControlState

 /* transition rules govern the control flow of the orchestration */
 transitionRules
 if (?integratedPatientData memberOf Patient and
 ?listContraindications memberOf ListContraindications and
 ?listDiseases memberOf ListDiseases
 ?cs[value hasValue InitialState] memberOf ControlState)
 then
 call SelectandLoadRuleBase
 (?integratedPatientData ?listContraindications ?listDiseases)
 : _# memberOf RuleEngine
 update(?cs[value hasValue SelectAndLoadRuleBaseCalled])
 endif

 if (?ruleEngine memberOf RuleEngine and

358 13 A Solution Approach to the Clinical Use Case

 ?integratedPatientData memberOf Patient and
 ?listContraindications memberOf ListContraindications and
 ?listDiseases memberOf ListDiseases and
 ?cs[value hasValue SelectAndLoadRuleBaseCalled])
 then
 call AssertFactsIntoRuleEngine
 (?integratedPatientData ?listContraindications ?listDiseases
?ruleEngine)
 : _# memberOf RuleEngine
 update(?cs[value hasValue AssertFactsIntoRuleEngineCalled])
 endif

if (?ruleEngine memberOf RuleEngine and
 ?cs[value hasValue AssertFactsIntoRuleEngineCalled])
 then
 call ExecuteInferences(?ruleEngine): _# memberOf ListTherapies
 update(?cs[value hasValue ExecuteInferencesCalled])
 endif

13.3.2 Architecture

The architecture for implementing clinical decision support is illustrated in
Figure 13.20 below and consists of the following components:

Fig. 13.20. Clinical decision support architecture

Clinical Data Repository: The clinical data repository stores patient-related
clinical data. External applications, the rules engine (via methods defined in the
business object model) and the ontology engine retrieve patient data by invoking
services implemented by the clinical data repository.

Standalone Rules Engine Service: A standalone rules engine service is imple-
mented using a business rules engine. On receiving a request, the service initializes
a rules engine instance, and loads the rule base and business object model. The
rules engine service then executes methods in the business object model and per-

APPLICATION

In-process Rule
Engine component

Ontology
Engine

Clinical Data
Repository

Standalone
Rules Engine
Service

APPLICATION

In-process Rule
Engine component

APPLICATION

In-process Rule
Engine component

Ontology
Engine

Clinical Data
Repository

Standalone
Rules Engine
Service

APPLICATION

In-process Rule
Engine component

APPLICATION

In-process Rule
Engine component

Ontology
Engine

Clinical Data
Repository

Standalone
Rules Engine
Service

APPLICATION

In-process Rule
Engine component

APPLICATION

In-process Rule
Engine component

Ontology
Engine

Clinical Data
Repository

Standalone
Rules Engine
Service

 13.3 Decision Support 359

forms rule-based inferences. The results obtained are then returned to the invoking
application.

In-Process Rules Engine Component: This provides functionality similar to
that of the rules engine service, except that the rules engine component is loaded in
the same process space in which the application is executing.

Ontology Engine: This will be implemented using an OWL-based ontology
engine. On receiving a request, the ontology engine performs classification infer-
ences on patient data to determine if a patient belongs to a particular category, e.g.,
patients with contraindication to fibric acid.

13.3.3 Business Object Model Design

The business object model for the above clinical decision support rule could be
specified as follows.

Class Patient: Person
method getName(): string;
method hasMolecularDiagnosticTestResult(): StructuredTestResult;
method hasLiverPanel(): LiverPanelResult;
method hasLDL(): real;
method hasContraindication(): set of string;
method hasMutation(): string;
method recommendedTherapy(): set of string;
method setRecommendedTherapy(string): void;
method isAllergicTo(): set of string;

Class StructuredTestResult
method getPatient(): Patient;
method indicatesDisease(): Disease;
method identifiesMutation(): set of string;
method evidenceOfMutation(string): real;

Class LiverPanelResult
method getPatient(): Patient;
method getALP(): real;
method getALT(): real;
method getAST(): real;
method getTotalBilirubin(): real;
method getCreatinine(): real;

The model describes patient state information by providing a class and set of
methods that make patient state information, e.g., results of various tests, therapies,
allergies and contraindications, available to the rules engine. The model also con-
tains classes corresponding to complex tests such as a liver panel result and meth-
ods that retrieve information specific to those tests, e.g., methods for retrieving
creatinine clearance and total bilirubin. The methods defined in the object model
are executed by the rules engine, which results in invocation of services in the clin-
ical data repository for retrieval of patient data.

360 13 A Solution Approach to the Clinical Use Case

13.3.4 Rule Base Design

The business object model defined in the previous section provides the vocabulary
for specifying various clinical decision support rules. Consider the following spec-
ification of the clinical decision support rule discussed earlier.

IF the_patient.hasLDL() > 120
AND ((the_patient.hasLiverPanel().getALP() > <Normal>
AND the_patient.hasLiverPanel().getALT() > <Normal>
AND the_patient.hasLiverPanel().getAST() > <Normal>
AND the_patient.hasLiverPanel().getTotalBilirubin() > <Normal>
AND the_patient.hasLiverPanel().getCreatinine() > <Normal>)
OR "Fibric Acid Allergy" memberOf the_patient.isAllergicTo())
THEN the_patient.setRecommendedTherapy("Zetia Lipid Management Ther-
apy")

The above rule represents the various conditions that need to be specified (the
IF part) so that the system can recommend a particular therapy for a patient (the
THEN part). The following conditions are represented on the IF part of the rule:
1. The first condition is a simple check on the value of the LDL test result for a

patient.
2. The second condition is a complex combination of conditions that check

whether a patient has contraindication to fibric acid. This is done by checking
whether the patient has an abnormal liver panel or an allergy to fibric acid.

13.3.5 Definitions vs. Actions: Ontology Design

Our implementation of the clinical decision support service using a business rules
engine involved encoding decision support logic across a wide variety of applica-
tions using rule sets and business object models. An interesting design pattern that
emerged is described below:

• Rule-based specifications of conditions that describe patient states and classes,
for instance, “Patient with contraindication to fibric acid”. They also involve
characterization of normal or abnormal physiological patient states, for instance,
“Patients with abnormal liver panel”. These specifications are also called defini-
tions.

• Rule-based specifications that propose therapies, medications and referrals, for
instance, prescribing lipid management therapy for a patient with a contraindi-
cation to fibric acid. These specifications are called actions.

The rule sets are modularized by separating the definition of a “Patient with a
contraindication to fibric acid” from the decisions that are recommended once a
patient is identified as belonging to that category. The definitions of various patient
states and classes can be represented as axioms in an ontology that could be exe-
cuted by an OWL ontology engine. At execution time, the business rules engine

 13.3 Decision Support 361

can invoke a service that interacts with the ontology engine to infer whether a par-
ticular patient belongs to a given class of patients, in this case, whether a patient
has a contraindication to fibric acid. The ontology of patient states and classes is
represented as follows and is illustrated in Figure 13.21.

<owl:ObjectProperty hasLiverPanel>
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult"/>
</owl:ObjectProperty>
<owl:ObjectProperty hasALP>
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult"/>
</owl:ObjectProperty>
<owl:ObjectProperty hasALT>
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult"/>
</owl:ObjectProperty>
<owl:ObjectProperty hasAST>
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult"/>
</owl:ObjectProperty>
<owl:ObjectProperty hasCreatinine>
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult"/>
</owl:ObjectProperty>
<owl:ObjectProperty hasTotalBilirubin>
 <rdfs:subPropertyOf rdf:resource="#hasStructuredTestResult"/>
</owl:ObjectProperty>

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

Patient

PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel

PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

Patient

PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel
PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel

PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid
PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

Fig. 13.21. An enhanced ontology for modeling contraindications

362 13 A Solution Approach to the Clinical Use Case

<owl:ObjectProperty rdf:ID="isAllergicTo">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Allergen"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="recommendedTherapy">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Therapy"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Allergen"/>
<Allergen rdf:ID="FibricAcid"/>

<owl:Class rdf:ID="Therapy"/>
<Therapy rdf:ID="ZetiaLipidManagementTherapy"/>
<owl:Class rdf:ID="LiverPanelResult">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:resource="#NormalLiverPanelResult"/>
 <owl:Class rdf:resource="#AbnormalLiverPanelResult"/>
 </owl:unionOf>
</owl:Class>
<owl:Class rdf:ID="AbnormalLiverPanelResult"/>
 <rdfs:subClassOf rdf:resource="#LiverPanelResult"/>
 <owl:disjointWith rdf:resource="#NormalLiverPanelResult"/>
</owl:Class>

<owl:Class rdf:ID="NormalLiverPanelResult"/>
 <rdfs:subClassOf rdf:resource="#LiverPanelResult"/>
 <owl:disjointWith rdf:resource="#AbnormalLiverPanelResult"/>
</owl:Class>
/* Similar definitions for ALPResult, ALTResult, */
/* CreatinineResult and TotalBilirubinResult */

<owl:DatatypeProperty hasALPValue>
 <rdfs:domain rdf:resource="#ALPResult"/>
 <rdfs:range rdf:datatype="&xsd;float"/>
</owl:DatatypeProperty>
/* Similar properties for hasALTValue, hasASTValue, */
/* hasCreatinineValue, hasTotalBilirubinValue */

Consider the definition of a FibricAcidContraindication represented using OWL
as follows and illustrated in Figure 13.21.
<owl:Class rdf:ID="PatientContraindicatedToFibricAcid">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:resource="#Patient"/>
 <owl:Restriction>
 <owl:onProperty="#isAllergicTo"/>
 <owl:hasValue="#FibricAcid"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty="#hasLiverPanel"/>
 <owl:allValuesFrom="#AbnormalLiverPanelResult"/>
 </owl:Restriction>
 </owl:unionOf>
</owl:Class>

 13.3 Decision Support 363

The above OWL class defines patients with contraindication to Fibric Acid as
patients having an abnormal liver panel and having an allergy to Fibric Acid.
Abnormal Live Panel is further defined as:

<owl:Class rdf:ID="AbnormalLiverPanel">
<owl:intersectionOF rdf:parseType="Collection">

 <owl:Restriction>
 <owl:onProperty="#hasALP"/>
 <owl:allValuesFrom="#AbnormalALPResult"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty="#hasALT"/>
 <owl:allValuesFrom="#AbnormalALTResult"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty="#hasAST"/>
<owl:allValuesFrom="#AbnormalASTResult"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty="#hasCreatinine"/>
 <owl:allValuesFrom="#AbnormalCreatinine"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty="#hasTotalBilrubin"/>
 <owl:allValuesFrom="#AbnormalTotalBilirubin"/>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

Based on the above definitions, a highly simplified version of the clinical deci-
sion rule discussed above can now be implemented as follows:

IF the_patient.hasLDL() > 120
AND the_patient.hasContraindiction() contains "Fibric Acid Contrain-
dication"
THEN the_patient.setRecommendedTherapy("Zetia Lipid Management Proto-
col")

The class Patient and properties isAllergicTo, hasLiverPanel and others
provide a framework for describing the patient. The class PatientContraindicat-
edToFibricAcid is a subclass of all patients that are known to have contraindica-
tion to fibric acid. This is expressed using an OWL axiom. The class Allergen
represents various diseases allergens of interest including FibricAcid. The classes
AbnormalALPResult, AbnormalALTResult, AbnormalASTResult, AbnormalTo-

talBilirubinResult and AbnormalCreatinineResult represent ranges of values
of abnormal ALP, ALT, AST, total bilirubin and creatinine results respectively.

364 13 A Solution Approach to the Clinical Use Case

Custom datatypes based on the OWL specifications provide the ability to map
XML Schema datatypes to OWL classes. The class AbnormalLiverPanel is
defined using an axiom to characterize the collection of abnormal values of various
component test results (e.g., ALP, ALT, AST) that belong to a liver panel.

The representation of an axiom specifying the definition of PatientContrain-
dicatedToFibricAcid enables the knowledge engineer to simplify the rule base
significantly. The separation of definitions from actions and their implementation
in an ontology engine reduces the complexity of the rule base maintenance signifi-
cantly. It may be noted that the conditions that comprise a definition may appear
multiple times in multiple rules in a rule base. Our approach enables the encapsula-
tion of these conditions in a definition, e.g., PatientContraindicatedToFibri-
cAcid. Thus all rules can now reference the class
PatientContraindicatedToFibricAcid which is defined and maintained in the
ontology engine. Whenever the definition of PatientContraindicatedToFibri-
cAcid changes, the changes can be isolated within the ontology engine and the
rules that reference this definition can be easily identified. Issues related to Knowl-
edge change, maintenance and Provenance are discussed next.

13.4 Knowledge Maintenance and Provenance

All the functional requirements identified above (service composition, data inte-
gration and decision support) critically depend on domain-specific knowledge that
could be represented as ontologies, rule bases, semantic mappings (between data
and ontological concepts), and bridge ontology mappings (between concepts in dif-
ferent ontologies). The healthcare and life sciences domains are experiencing a
rapid rate of new knowledge discovery and change. A knowledge change “event”
has the potential of introducing inconsistencies and changes in the current knowl-
edge bases that inform semantic data integration and decision support functions.
There is a critical need to keep knowledge bases current with the latest knowledge
discovery and changes in the healthcare and life sciences domains. Some require-
ments for knowledge maintenance and provenance that characterize these chal-
lenges are:

• Knowledge Management (KM) systems should have the ability to manage
knowledge change at different levels of granularity.

• The impact of knowledge change at one level of granularity should be propa-
gated to related knowledge at multiple levels of granularity.

• The impact of knowledge change of one type, e.g., definition of a contraindica-
tion, should be propagated to knowledge of another type, e.g., clinical decision
support rules, containing references to that definition.

 13.4 Knowledge Maintenance and Provenance 365

• The impact of knowledge on the data stored in the EMR should be accounted
for. For instance, changes in the logic of clinical decision support, may invali-
date earlier patient states that might have been inferred, or add new information
to the EMR.

We now present a WSML specification of the KnowledgeAccuracyAndCurrencty
service as an orchestration of the following goals/services:

• IdentifyRelevantKnowledgeBase identifies the potential knowledge bases that
are relevant to a knowledge change event, such as the change in the normal val-
ues of a blood test result or the discovery of a new biomarker.

• IdentifyKnowledgeImpact identifies the ontology definitions or rules that are
likely to be impacted. This could potentially be implemented as a technological
service by an underlying rule or ontology engine and results in notifications
being sent to the relevant knowledge engineers.

• IdentifyDataImpacts identifies the past inferences about a patient that might be
invalidated due to the changes in the knowledge and results in notifications
being sent to the appropriate patients or physicians.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule" ...
interface KnowledgeAccuracyAndCurrencyInterface
orchestration KnowledgeAccuracyandCurrencyOrchestration
 stateSignature KnowledgeAccuracyandCurrencySignature

 /* Concepts used as input and output to the orchestration */
 in ListKnowledgeChangeEvent
 out ListKnowledgeEngineerNotifications, ListPhysicianPatientNotifi-
cations
 /* Concept used to maintain the control flow */
 controlled ControlState

 /* transition rules govern the control flow of the orchestration */
 transitionRules
 if (?listKnowledgeChangeEvent memberOf ListKnowledgeChangeEvent and
 ?cs[value hasValue InitialState] memberOf ControlState)
 then
 call IdentifyRelevantKnowledgeBase
 (?listKnowledgeChangeEvent)
 : _# memberOf KBList
 update(?cs[value hasValue IdentifyRelevantKnowledgeBaseCalled])
 endif

 if (?kbList memberOf KBList and
 ?listKnowledgeChangeEvent memberOf ListKnowledgeChangeEvent and
 ?cs[value hasValue IdentifyRelevantKnowledgeBaseCalled]
 memberOf ControlState)
 then
 call IdentifyKnowledgeImpacts
 (?kbList ?listKnowledgeChangeEvent)
 : _# memberOf ListKnowledgeElements
 update(?cs[value hasValue IdentifyKnowledgeImpactsCalled])
 endif

366 13 A Solution Approach to the Clinical Use Case

 if (?listKnowledgeElements memberOf ListKnowledgeElements and
 ?cs[value hasValue IdentifyKnowledgeImpactsCalled] memberOf Con-
trolState)
 then
 call NotifyKnowledgeEngineers
 (?listKnowledgeElements)
 : _# memberOf ListKnowledgeEngineerNotifications
 call IdentifyDataImpacts
 (?listKnowledgeElement)
 : _# memberOf ListDataItems
 update(?cs[value hasValue KnowledgeEngineersNotified-DataImpac-
tIdentified])
 endif

 if (?listDataItems memberOf ListDataItems and
 ?cs[value hasValue KnowledgeEngineersNotified-DataImpactIdenti-
fied]
 memberOf ControlState)
 then
 call NotifyPhysiciansAndPatients
 (?listDataItems):
 _# memberOf ListPhysicianPatientNotifications
 update(?cs[value hasValue NotifyPhysiciansAndPatientsCalled])
 endif

There is a close relationship between knowledge change, the core issue in the
context of knowledge maintenance; and provenance. Issues related to when and by
whom the change was effected are issues related to knowledge provenance, and
provide useful information for maintaining knowledge. The issue of representing
the rationale behind the knowledge change involves both knowledge change and
provenance. On the one hand, the rationale behind the change could be that a
knowledge engineer did it, which is an aspect of provenance. On the other hand, if
the change in knowledge is due to the propagation of a change in either a knowl-
edge component or related knowledge, it is knowledge change propagation
invoked in the context of knowledge provenance.

We address the important issue of knowledge change propagation in this sec-
tion. Consider the definition in natural language of fibric acid contraindication:
A patient is contraindicated for fibric acid if he or she has an
allergy to fibric acid or has an abnormal liver panel.
Suppose there is a new (hypothetical) biomarker for fibric acid contraindication for
which a new molecular diagnostic test is introduced in the market. This leads to a
redefinition of a fibric acid contraindication as follows.
The patient is contraindicated for fibric acid if he has an allergy to
fibric acid or has elevated Liver Panel or has a genetic mutation.

 13.4 Knowledge Maintenance and Provenance 367

Let us also assume that there is a change in a clinically normal range of values
for the lab test AST which is a part of the liver panel lab test. This leads to a knowl-
edge change and propagation across various knowledge objects that are sub-com-
ponents and associated with the fibric acid contraindication concept. A
diagrammatic representation of the OWL representation of the new fibric contrain-
dication with the changes marked in red ovals is illustrated below. The definition of
“fibric acid contraindication” changes, triggered by changes at various levels of
granularity.

A potential sequence of change propagation steps are enumerated below:
1. The clinically normal range of values for the AST lab test changes.
2. This leads to a change in the abnormal value ranges for the AST lab test.
3. This leads to a change in the definition of an abnormal liver panel.
4. This leads to a change in what it means to be a patient with an abnormal liver

panel.
5. The definition of fibric acid contraindication changes due to the following

changes.
(A) The change in the definition of a patient with an abnormal liver panel as
enumerated in steps 1-4 above.

Fig. 13.22. Knowledge change and propagation

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

Patient

PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel

PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

PatientWithBiomarker
hasMutation hasValue “Missense:XYZ3@&%”

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

Patient

PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel
PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel

PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid
PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

PatientWithBiomarker
hasMutation hasValue “Missense:XYZ3@&%”
PatientWithBiomarker
hasMutation hasValue “Missense:XYZ3@&%”

368 13 A Solution Approach to the Clinical Use Case

our solution approach, we propose to load these ontologies as data into a rules
engine and write specialized rules to identify the impacts of a change operation.

It may be noted that in our discussion in Section 5.3.1, none of the ontology edi-
tors and tools today support versioning and change management functionality. In

(B) Introduction of a new condition: a patient having a mutation: “Missense:
XYZ3@&%” (hypothetical). This is a new condition which could lead to a
change in what it means to be a patient with a contraindication to fibric acid.

14 Outlook: The Good, the Bad and the Ugly?

In the introduction of this book we wrote: “The Semantic Web is a vision: the idea
of having data on the Web defined and linked in a way that it can be used by
machines not just for display purposes, but for automation, integration and reuse of
data across various applications. The goal of the Semantic Web initiative is as
broad as that of the Web: to create a universal medium for the exchange of data. It
is envisaged to smoothly interconnect personal information management, enter-
prise application integration, and the global sharing of commercial, scientific and
cultural data.”

So it is only appropriate in the outlook chapter to ask: “Where are we in the time
line for Semantic Web and Semantic Web Services?”

There is the notion of a time line for new technologies. One of these is the 5-5-5
rule from [384]. A fundamentally new concept seems to move from initial concept
to the mass market in 15 years. The first five years are for research, the second five
for refining products based on the research, and the last five are where the concept
reaches saturation in the market. This would mean that we are in the middle of the
second 5 years, meaning that the pure research is done and product refinements are
currently taking place.

At the same time this also means that the field is not done yet and a lot of ques-
tions and issues remain that we discuss next as The Good, The Bad and The Ugly.

14.1 The Good - Progress and Impact

A lot of positive and constructive work happened and is ongoing in the area of the
Semantic Web and Semantic Web Services. The most important are the following.

• Move from information to knowledge. The most important commodity an
organization can acquire is information. There is a significant move to the main-
stream for knowledge representation being driven to a growing extent by social
networking e.g. FOAF, RSS, tagging and tag clouds, see [380] or [381].

• Everything is connected. The ever increasing capability of mobile devices
means a move away from interaction models with central control and central
systems toward P2P-based communication without the need for a middle man
connecting the various devices. Every internet-enabled device has a unique
identifier and therefore can be a node in a network (e.g. Microsoft follows this
trend through the Peer Name Resolution Protocol (PNRP)28). Devices that can

370 14 Outlook: The Good, the Bad and the Ugly?

connect (using technologies such as HTTP) will interact and this is where
semantic interoperability will be more and more relevant in making heterogene-
ity transparent.

• Push for openly verifiable benchmarking. Efforts like the SWS Challenge
[385] push toward a public benchmark of claims, following traditional technolo-
gies like EDI. This ensures that semantic interoperability claims are verified and
form the basis of building trust into this new technology.

• Commercialisation. Companies like Ontoprise29, TopBraid Composer30,
Cycorp31 and Siderean32 are commercializing Semantic Web technology by
developing software products. Companies with significant semantics-based
products are being acquired by mature players in the market such as Web-
Methods (acquired Cerebra) and Google (acquired Applied Semantics) . Estab-
lished companies like Oracle now include Semantic Web technology in their
established products e.g. RDF supported in the heart of the Oracle database
architecture.

• Semantics for business processes. Joint industrial and academic research is
building on how Semantic Web principles can be applied to Web Services to
how they can be applied intrinsically in business process description and man-
agement technologies e.g. through projects such as SUPER [383]. While the
research for the lower layers of the architecture stack has progressed a lot,
research on the higher layers is moving into the active research phase.

• Standardization. SAWSDL is a W3C recommendation that extends WSDL to
support a minimal but useful set of semantic annotations. Given the popularity
of WSDL, there is a good chance for traction with SAWSDL. Another standard
that has become a W3C Recommendation is GRDDL which seeks to transform
the current web, i.e., XML, Microformats and RDFa documents to RDF.

All in all, the technology around the Semantic Web and Semantic Web Services
is being taken up not only in research, but also in product development and stan-
dardization. What remains is the clear identification of some “killer” applications
that will take over a specific area completely.

28.http://technet.microsoft.com/en-us/library/bb726971.aspx (Accessed March 21, 2008).
29.http://www.ontoprise.de/ (Accessed March 21, 2008).
30.http://www.topquadrant.com/topbraid/composer/ (Accessed March 21, 2008).
31.http://www.cyc.com/ (Accessed March 21, 2008).
32.http://www.siderean.com/ (Accessed March 21, 2008).

 14.2 The Bad - Major Obstacles to Overcome 371

14.2 The Bad - Major Obstacles to Overcome

Not all is good and in the area of Semantic Web and Semantic Web Services some
open issues remain and some tough problems are still to be addressed and resolved.
Some of these are

• Efficiency, speed, security. Semantic Web Service expectations are high but
there are some elephants lurking in the corners. Speed in the case of the SOAP/
HTTP model; lack of support for process models in the REST HTTP/XML
model (and possibly reliability and security at the message level rather than the
transport protocol level); the focus on grounding is to WSDL but the focus of
the WSDL binding is more or less RPC [379]. These are all infrastructure issues
and so questions needs to be resolved on where the improvement in efficiency
will come from what has been promised?

• Integration problem. Regardless of how services find each other, the processes
at the interfaces of services wishing to interact need to overcome their data and
process heterogeneity and have to match for a successful communication. If a
solvable mismatch exists, the communication between the services needs to be
mediated. A lot of the focus stays on discovery and composition for services to
find each other, but data and process mediation remains largely an unsolved
problem. Is the cart before the horse?

• Absence of systems that solve problems on a real-world scale. As is natural
for any new technology, the smaller problems are solved first. Bigger and more
demanding problems remain open and there is still no solution in sight for the
''Proposed Challenge for Measuring the Success of SWS'' [382]. As the technol-
ogy matures more relevant and more complex problems require solutions.

• Agreeing terms is hard. The fundamental aspect of the Semantic Web is in
achieving the agreement of meanings of terms declared in ontologies; and this is
hard. Its likely that the most popular concepts are the ones whose definition may
change the most [381] and comprehensive agreement, in any specific domain,
across many communities or countries remains a big challenge.

• Humans are still needed. While the vision puts forward the idea that software
agents find each other dynamically and figure out any mediation needed for
interoperation, currently we are far from achieving this. Furthermore, for fuzzy
problems humans are still in the loop and probably will for some time.

• Learning curve: The ability to design and understand RDF and OWL requires
an understanding of logic and is akin to learning a different paradigm of pro-
gramming. The description of logical expressions is not trivial and tool support
is still limited. Any shortage of intuitive and user-friendly tools for computer
scientists, or domain modelers, not well versed in logic-based formalisms makes
the problem worse. In order to achieve a major shift that enables software engi-
neers to easily deal with this different type of approach would also require that
the curricula in educational institutions changes significantly. And this will take

372 14 Outlook: The Good, the Bad and the Ugly?

time as we have seen, courses on operating systems can still be found in many
universities.

While a lot of progress has been made and the Semantic Technologies are being
taken up, there are major challenges remaining, as just discussed. This is not really
a big problem as this is a property of a new and evolving field. At the same time it
shows that a lot more work has to be accomplished in order to make this technol-
ogy the basis for day-to-day software engineering.

14.3 The Ugly - Possible Prohibitors

Not surprising, there are forces that push against the progress of the new technolo-
gies and are inhibitors. In the long run it will be seen if they are effective inhibitors
or just a temporal appearance.

• Why should I share my knowledge? Socio-economic factors dictate reality.
Who will develop the common ontologies and will they invest the effort and
then allow them to be used for free? Commercial systems such as RosettaNet
and EDI operate a different model as they address a very specific need in very
specific industries. Existing environments also are not attempting to solve a gen-
eral problem, but a very specific one.

• Logical reasoners are slow. Reasoners are slow and this is unlikely to change
dramatically soon. If performance is a real and hard requirement in many situa-
tions then the use of reasoners is not possible now. This is somewhat similar to
the situation of logic programming that never became mainstream as the perfor-
mance and the tooling was not useful in day-to-day software engineering (in
addition to the lack of education).

• The “dirty” Semantic Web. The Semantic Web is evolving and co-exists with
the current Web. It will not be a a clean formalized Semantic Web as expressed
in the vision and as can be seen with Swoogle. In fact, Semantic Web content
will be a mixture of HTML, XML, RDF and OWL markup expressions in addi-
tion to many documents containing proprietary formalizations. This is similar to
the situation where it takes a long time for legacy systems to die out and be
replaced by new technologies (and no end in sight here, either).

• The Data as opposed to the Semantic Web. The Semantic Web is more likely
to be a data web rather than a Semantic Web, where high levels of data standard-
ization will likely be achieved within the context of a domain or business verti-
cal, not across all areas of human knowledge. The data web will not be formal or
clean, but in fact characterized by errors and inconsistencies as the current web
is characterized today, for e.g., Error 404.

• Co-existing Semantic Web islands. There will be multiple Semantic Web
islands created in the context of multiple domains, industries and areas of activ-
ity where the value proposition is clearly understood, articulated and communi-
cated. These domains will have standardized vocabularies, information models

 14.3 The Ugly - Possible Prohibitors 373

and ontologies developed in a bottom up manner. Interoperation across these
islands will be achieved but in a hard-coded one-off manner driven by specific
business needs and consumer demands which will result in cross-maps across
the vocabularies generated in these islands.

• Dominance of textual and unstructured content. The majority of the Seman-
tic Web content will still be textual and unstructured with a thin metadata layer,
if at all. The situation will be similar to the current web where a significant por-
tion of the data is unstructured. However, as the value proposition is realized,
the percentage of structured metadata descriptions will increase with the benefit
that can be realized.

• The prevalence of “uncertainty”. In contrast to the “crisp” and formal notion
of relationships proposed in the current Semantic Web vision, data and relation-
ships between the data will be characterized by uncertainty. This uncertainty
will be due to the inconsistent and incomplete nature of information present on
the web and also due to the lack of knowledge as seen in rapidly evolving
domains such as the Healthcare and the Life Sciences.

• Business as usual. Probably one of the biggest inhibitors is the human nature of
doing business as usual and rejecting change. It can be currently observed that
Semantic Technology starts moving into specialized areas and specific technol-
ogies. Not broad application across all areas of computer science can be seen.
This has many reasons, like the human nature of rejecting change, but also the
behavior in research and industry to take up new developments only in their spe-
cific fields. So we can see Semantic Databases, and Semantic Languages, etc.,
but not the formation of a community around Semantic Computing that funda-
mentally revisits all aspects of computer science.

Time will tell how the whole area of the Semantic Web and Semantic Web Ser-
vices is going to succeed. There is a lot of progress being made based on a very
powerful vision. Still, problems have to be solved and some potentially powerful
inhibitors exist. For sure, specific areas and domains will greatly benefit from the
new technology and are already doing it. So partial success is achieved. However,
based on the 5-5-5 rule, it’ll take quite a number of years to come to have Semantic
Technology be omnipresent in computer science.

Part VI
References and Index

References

1. Kashyap, V., and A. Sheth. Semantics-based Information Brokering. Proceed-
ings of the Third International Conference on Information and Knowledge
Management, 1994

2. Berners-Lee, T., J. Hendler and O. Lassila. The Semantic Web. Scientific
American, May 2001

3. http://www.translational-medicine.com/info/about (Accessed September 10,
2007)

4. http://webster.com/dictionary/semantics (Accessed September 10, 2007)
5. Kashyap, V., E. Neumann and T. Hongsermeier. Tutorial on Semantics in the

Healthcare and LifeSciences. The 15th International World Wide Conference
(WWW 2006), 2006. http://lists.w3.org/Archives/Public/www-archive/
2006Jun/att-0010/Semantics_for_HCLS.pdf (Accessed September 10, 2007)

6. American College of Cardiology. http://www.acc.org (Accessed September
10, 2007)

7. SNOMED International. http://www.ihtsdo.org/our-standards/snomed-ct/
(Accessed September 10, 2007)

8. International Classification of Diseases. http://www.who.int/classifications/
icd/en/ (Accessed September 10, 2007)

9. BioPAX. http://www.biopax.org (Accessed September 10, 2007)
10. The Gene Ontology. http://www.geneontology.org (Accessed September 10,

2007)
11. Lawrence, S., and C. L. Giles. Accessibility of Information on the Web.

Nature Magazine. Vol. 400, No. 107, 1999
12. Kashyap, V. Information Modeling on the Web. The Role of Metadata,

Semantics and Ontologies. Practical Handbook of Internet Computing. CRC
Press, 2004

13. Boll, S., W. Klas, and A. Sheth. Overview on Using Metadata to manage
Multimedia Data. A. Sheth and W. Klas (editors): Multimedia Data Manage-
ment. McGraw-Hill, 1998

14. The Standard Generalized Markup Language. http://www.w3.org/MarkUp/
SGML (Accessed September 10, 2007)

378 References

15. Nelson, S. J., W. D. Johnston, and B. L. Humphreys. Relationships in Medi-
cal Subject Headings (MeSH). C. A. Bean and R. Green (editors): Relation-
ships in the Organization of Knowledge. Kluwer Academic Publishers, 2001

16. Lindbergh, D., B. Humphreys, and A. McCray. The Unified Medical Lan-
guage System. Methods Inf. Med., Vol. 32, No. 4, 1993. http://uml-
sks.nlm.nih.gov (Accessed September 10, 2007)

17. Goldberg, H., M. Vashevko, A. Postilnik, K. Smith, N. Plaks, B. Blumenfeld.
Evaluation of a Commercial Rules Engine as a basis for a Clinical Decision
Support Service. Proceedings of the Annual Symposium on Biomedical and
Health Informatics, AMIA, 2006

18. Kashyap, V., A. Morales and T. Hongsermeier. Implementing Clinical Deci-
sion Support: Achieving Scalability and Maintainability by combining Busi-
ness Rules with Ontologies. Proceedings of the Annual Symposium on
Biomedical and Health Informatics, AMIA, 2006

19. Bohm, K., and T. Rakow. Metadata for Multimedia Documents. In [27]
20. Chen, F., M. Hearst, J. Kupiec, J. Pederson, and L. Wilcox. Metadata for

Mixed-Media Access. In [27]
21. Collet, C., M. Huhns, and W. Shen. Resource Integration using a Large

Knowledge Base in Carnot. IEEE Computer, December 1991
22. Deerwester, S., S. Dumais, G. Furnas, T. Landauer, and R. Hashman. Index-

ing by Latent Semantic Indexing. Journal of the American Society for Infor-
mation Science. Vol. 41, No. 6, 1990

23. Glavitsch, U., P. Schauble, and M. Wechsler. Metadata for Integrating Speech
Documents in a Text Retrieval System. In [27]

24. Jain, R., and A. Hampapur. Representations of Video Databases. In [27]
25. Kahle, B., and A. Medlar. An Information System for Corporate Users: Wide

Area Information Servers. Connexions — The Interoperability Report. Vol. 5,
No. 11, November 1991

26. Kiyoki, Y., T. Kitagawa, and T. Hayama. A meta-database System for Seman-
tic Image Search by a Mathematical Model of Meaning. In [27]

27. Klaus, W., and A. Sheth (editors): Metadata for digital media. SIGMOD
Record, special issue on Metadata for Digital Media. Vol 23, No. 4, Decem-
ber 1994

28. The PubMed MEDLINE system. http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db=PubMed (Accessed September 10, 2007)

29. Ordille, J., and B. Miller. Distributed Active Catalogs and Meta-Data Cach-
ing in Descriptive Name Services. Proceedings of the 13th International Con-
ference on Distributed Computing Systems, 1993

30. Anderson, J., and M. Stonebraker. Sequoia 2000 Metadata Schema for Satel-
lite Images, In [27]

31. Shklar, L., A. Sheth, V. Kashyap, and K. Shah. Infoharness: Use of Automat-
ically Generated Metadata for Search and Retrieval of Heterogeneous Infor-
mation. Proceedings of CAiSE ’95. Lecture Notes in Computer Science #932,
1995

 References 379

32. Sciore, E., M. Siegel, and A. Rosenthal. Context Interchange using Meta-
Attributes. Proceedings of the CIKM, 1992

33. Kashyap, V., and A. Sheth. Semantics-based Information Brokering. Proceed-
ings of the Third International Conference on Information and Knowledge
Management (CIKM), 1994

34. Mena, E., V. Kashyap, A. Sheth, and A. Illarramendi. OBSERVER: An
approach for query processing in global information systems based on inter-
operation across pre-existing ontologies. Proceedings of the First IFCIS Inter-
national Conference on Cooperative Information Systems (CoopIS ’96), 1996

35. Sheth, A., and V. Kashyap. Media-independent Correlation of Information.
What? How? Proceedings of the First IEEE Metadata Conference, 1996

36. Shoens, K., A. Luniewski, P. Schwartz, J. Stamos, and J. Thomas. The Rufus
System: Information Organization for Semi-Structured Data. Proceedings of
the 19th VLDB Conference, 1993

37. Gruber, T. A translation approach to portable ontology specifications. Inter-
national Journal of Knowledge Acquisition for Knowledge-Based Systems,
Vol. 5, No. 2, June 1993

38. Codd, E. F. A relational model of data for large shared data banks. Communi-
cations of the ACM, Vol. 13, No. 6, June 1970

39. Chen, P. P. The entity relationship model — toward a unified view of data.
ACM Transactions on Database Systems. Vol. 1, No. 1, March 1976

40. Unified Modeling Language. http://www.uml.org (Accessed September 10,
2007)

41. Health Level 7 (HL7). http://www.hl7.org/library/
standards_non1.htm#HL7%20Version%203 (Accessed September 10, 2007)

42. Resource Description Framework. http://www.w3.org/RDF (Accessed Sep-
tember 10, 2007)

43. Extensible Markup Language. http://www.w3.org/XML (Accessed Septem-
ber 10, 2007)

44. Kyoto Encyclopedia of Genes and Genomes. http://www.genome.jp/kegg
(Accessed September 10, 2007)

45. OWL Web Ontology Language Overview. http://www.w3.org/TR/owl-fea-
tures (Accessed September 10, 2007)

46. Goble, C. A., R. Stevens, G. Ng, S. Bechhofer, N. W. Paton, P. G. Baker, M.
Peim, and A. Brass. Transparent Access to Multiple Bioinformatics, Informa-
tion Sources. IBM Systems Journal Special Issue on Deep computing for the
Life Sciences. Vol. 40, No. 2, 2001

47. Biological Pathways Exchange. BioPAX, http://www.biopax.org (Accessed
September 10, 2007)

48. Spackman, K. A., R. Dionne R, E. Mays, and J. Weis. Role grouping as an
extension to the description logic of Ontylog, motivated by concept modeling
in SNOMED. Proceedings of the Annual Symposium on Biomedical Infor-
matics, AMIA, 2002

380 References

49. IEEE Standard Upper Ontology. http://suo.ieee.org (Accessed September 10,
2007)

50. Knowledge Interchange Format (KIF). http://ksl.stanford.edu/knowledge-
sharing/kif/ (Accessed September 10, 2007)

51. Cyc Ontology. http://research.cyc.com (Accessed September 10, 2007)
52. Patel-Schneider, P., and J. Simeon. The Yin/Yang Web: XML Syntax and

RDF Semantics. Proceedings of the 11th International World Wide Web Con-
ference (WWW 2002), 2002

53. Hayes, P. RDF Semantics. http://www.w3.org/TR/rdf-mt/ (Accessed Septem-
ber 10, 2007)

54. OWL Web Ontology Language Semantics and Abstract Syntax. http://
www.w3.org/TR/owl-semantics/ (Accessed September 10, 2007)

55. Deutsch, A., M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query
Language for XML. Proceedings of the 8th International World Wide Web
Conference (WWW 1999), 1999

56. Lassila, O., and R. Swick. Resource description framework (RDF) model and
syntax specification. W3C Recommendation, 1999. http://www.w3.org/TR/
REC-rdf-syntax/ (Accessed September 10, 2007)

57. Boley, H. A web data model unifying XML and RDF. Unpublished draft,
2001. http://www.dfki.uni-kl.de/~boley/xmlrdf.html (Accessed September
10, 2007)

58. Patel-Schneider, P. F., and I. Horrocks. Mapping RDF Graphs to OWL. http://
www.w3.org/TR/2004/REC-owl-semantics-20040210/mapping.html
(Accessed September 10, 2007)

59. OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref/
(Accessed September 10, 2007)

60. Patel-Schneider, P. F., P. Hayes, and I. Horrocks. RDF-Compatible Model
Theoretic Semantics. http://www.w3.org/TR/owl-semantics/rdfs.html
(Accessed September 10, 2007)

61. Bonifati, A., and S. Ceri. Comparative Analysis of Five XML Query Lan-
guages. SIGMOD Record 29(1): 68-79, 2000

62. Abiteboul, S., D. Quass, J. McHugh, J. Widom, J. Wiener, and J. Widom. The
Lorel Query Language for Semistructured Data. Intenational Journal on Digi-
tal Libraries (IJDL). Vol. 1, No. 1, April 1997

63. Ceri, S., S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca.
XML-GL - a Graphical Language for Querying and Restructuring WWW
Data. International World Wide Web Conference (WWW), 1999

64. Boag, S., D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Sim-
eon (editors): XQuery 1.0: An XML Query Language. W3C Recommenda-
tion, January 23, 2007. http://www.w3.org/TR/xquery/ (Accessed September
10, 2007)

65. Clark, J. XML Transformations (XSLT). Version 1.0. W3C Recommendation
November, 1999. http://www.w3.org/TR/xslt (Accessed September 10, 2007)

 References 381

66. Derksen, E., P. Fankhauser, E. Howland, G. Huck, I. Macherius, M. Murata,
M. Resnick, and H. Schöning, J. Robie (editors): XQL (XML Query Lan-
guage), 1999. http://www.ibiblio.org/xql/xql-proposal.html (Accessed Sep-
tember 10, 2007)

67. Clark, J., and S. DeRose (editors): XML Path Language (XPath). Version 1.0.
http://www.w3.org/TR/xpath (Accessed September 10, 2007)

68. DeRose, S., E. Maler, and D. Orchard. XML Linking (XLink). Version 1.0.
W3C Recommendation, 2001. http://www.w3.org/TR/xlink (Accessed Sep-
tember 10, 2007)

69. DeRose, S., R. Daniel Jr., P. Grosso, E. Maler, J. Marsh, and N. Walsh. XML
Pointer Language (XPointer). W3C Working Draft, 2002. http://
www.w3.org/TR/xptr (Accessed September 10, 2007)

70. Chamberlin, D. XQuery: An XML Query Language. IBM Systems Journal.
Vol. 41, No. 4, 2002

71. Chamberlin, D., J. Robie, and D. Florescu. Quilt: An XML Query Language
for Heterogeneous Data Sources. Lecture Notes in Computer Science, 2000.
http://www.almaden.ibm.com/cs/people/chamberlin/quilt.html (Accessed
September 10, 2007)

72. Atwood, T., D. Barry, J. Duhl, J. Eastman, G. Ferran, D. Jordan, M. Loomis,
and D. Wade. The Object Database Standard: ODMG-93. Release 1.2. R. G.
C. Catell (editor). Morgan Kaufmann Publishers, 1996

73. Information Technology-Database Language SQL. Standard No. ISO/IEC
9075. International Organization for Standardization (ISO), 1999

74. XML Query Use Cases. W3C Working Group Note, 23 March 2007. http://
www.w3.org/TR/xmlquery-use-cases (Accessed September 10, 2007)

75. Karvounarakis, G., S. Alexaki, V. Christophides, D. Plexousakis, and M.
Schol. RQL: A Declarative Query Language for RDF. Proceedings of the
Eleventh International World Wide Web Conference (WWW'02), 2002

76. Broekstra, J., and A. Kampman. SeRQL: An RDF Query and Transformation
Language. Proceedings of the SWAD-Europe workshop on Semantic Web
Storage and Retrieval, 2003

77. Sintek, M., and S. Decker. TRIPLE - an RDF query, inference and transfor-
mation language. Deductive Databases and Knowledge Management
(DDLP), 2001

78. Seaborne, A. RDQL: A Query Language for RDF. W3C Member Submis-
sion. http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
(Accessed September 10, 2007)

79. Berners-Lee, T. (editor): Notation 3 (N3), A Readable RDF Syntax. http://
www.w3.org/DesignIssues/Notation3 (Accessed September 10, 2007)

80. Olson, M., and U. Obguji. Versa. http://copia.ogbuji.net/files/Versa.html
(Accessed September 10, 2007)

382 References

81. Haase, P., J. Broekstra, A. Eberhart, and R. Volz. A Comparison of RDF Lan-
guages. Proceedings of the 3rd International Semantic Web Conference
(ISWC), 2004

82. Kifer, M., G. Lausen, and J. Wu. Logical foundations of object-oriented and
frame-based languages. Journal of the ACM, Vol. 42, 1995

83. Prud’hommeaux, E., and A. Seaborne (editors): SPARQL query language for
RDF. W3C Proposed Recommendation, 12 November 2007. http://
www.w3.org/TR/rdf-sparql-query (Accessed November 24, 2007)

84. Beckett, D., and J. Broekstra (editors): SPARQL Query Results Format. W3C
Candidate Recommendation, 2006. http://www.w3.org/TR/rdf-sparql-XML-
res/ (Accessed September 10, 2007)

85. Clark, K. G. (editor): SPARQL Protocol for RDF. W3C Candidate Recom-
mendation, 2006. http://www.w3.org/TR/rdf-sparql-protocol/ (Accessed Sep-
tember 10, 2007)

86. Fikes, R., P. Hayes, and I. Horrocks. OWL-QL - A Language for Deductive
Query Answering on the Semantic Web. Knowledge Systems Laboratory.
Technical Report No. KSL-03-14, Department of Computer Science, Stan-
ford University, 2003

87. W3C XML Schema. http://www.w3.org/XML/Schema (Accessed September
10, 2007)

88. RDF Vocabulary Description Language 1.0: RDF Schema. http://
www.w3.org/TR/rdf-schema/ (Accessed September 10, 2007)

89. Gruber, T. R. A translation approach to portable ontologies. Knowledge
Acquisition. Vol. 5, No. 2, 1993

90. de Keizer, N. F., A. Abu-Hanna, and J. H. Zwetsloot-Schonk. Understanding
terminological systems. I: Terminology and Typology. Methods of Informa-
tion in Medicine. Vol. 39, No. 1, 2000

91. Distributed Management Task Force — Common Information Model. http://
www.dmtf.org/standards/cim/ (Accessed September 10, 2007)

92. DOLCE: A Descriptive Ontology for Linguistic and Cognitive Engineering.
http://www.loa-cnr.it/DOLCE.html (Accessed September 10, 2007)

93. Basic Formal Ontology (BFO). http://www.ifomis.uni-saarland.de/bfo/
home.php (Accessed September 10, 2007)

94. Wallside, D. C., and P. Walmsley. XML Schema Part 0: Primer. Second Edi-
tion. http://www.w3.org/TR/xmlschema-0 (Accessed September 10, 2007)

95. Thompson, H. S. Towards a logical foundation for XML Schema. Proceed-
ings of XML Europe, 2004. http://www.ltg.ed.ac.uk/~ht/
XML_Europe_2004.html (Accessed September 10, 2007)

96. Manola, F., and E. Miller (editors): RDF Primer. http://www.w3.org/TR/rdf-
primer/ (Accessed September 10, 2007)

97. Smith, M. K., C. Welty, and D. L. McGuinness (editors): OWL Web Ontol-
ogy Language Guide. http://www.w3.org/TR/owl-guide/ (Accessed Septem-
ber 10, 2007)

 References 383

98. Gil, Y., and V. Ratnakar. A Comparison of (Semantic) Markup Languages.
Proceedings of the 15th International FLAIRS Conference, 2002

99. Gomez Perez, A. (editor): Ontoweb Deliverable D1.3. A survey of ontology
tools. http://www.deri.at/fileadmin/documents/deliverables/Ontoweb/
D1.3.pdf (Accessed September 10, 2007)

100. Denny, M. Ontology Building: A survey of ontology tools. http://
www.xml.com/pub/a/2002/11/06/ontologies.html (Accessed September 10,
2007)

101. The Apollo Ontology Editor. http://apollo.open.ac.uk (Accessed September
10, 2007)

102. The Link Factory Ontology Editor. http://www.landcglobal.com/pages/link-
factory.php (Accessed September 10, 2007)

103. OntoStudio. http://www.ontoprise.de/content/e1171/e1249/index_eng.html
(Accessed September 10, 2007)

104. Ontolingua. http://ontolingua.stanford.edu (Accessed September 10, 2007)
105. Ontosaurus. http://www.isi.edu/isd/ontosaurus.html (Accessed September 10,

2007)
106. Protege. http://protege.stanford.edu (Accessed September 10, 2007)
107. WebODE. http://webode.dia.fi.upm.es/ (Accessed September 10, 2007)
108. Arpírez, J. C., O. Corcho, M. Fernández-López, and A. Gómez-Pérez.

WebODE: A Scalable Workbench for Ontological Engineering. First Interna-
tional Conference on Knowledge Capture (KCAP01), 2001

109. Fernández-López, M., A. Gómez-Pérez, A. Pazos, and J. Pazos. Building a
Chemical Ontology Using Methontology and the Ontology Design Environ-
ment. IEEE Intelligent Systems and Their Applications. Vol. 4, No. 1, 1999

110. WebOnto. http://kmi.open.ac.uk/projects/webonto/ (Accessed September 10,
2007)

111. ICOM. http://www.inf.unibz.it/~franconi/icom/ (Accessed September 10,
2007)

112. IODE. http://www.ontologyworks.com/iode.php (Accessed September 10,
2007)

113. Visual Ontology Modeler. http://www.sandsoft.com/products.html (Accessed
September 10, 2007)

114. Semtalk. http://www.semtalk.com (Accessed September 10, 2007)
115. CoBra. http://www.xspan.org/cobra/index.html (Accessed September 10,

2007)
116. Generic Knowledge Base Editor. http://www.ai.sri.com/~gkb/ (Accessed

September 10, 2007)
117. SWOOP. http://code.google.com/p/swoop/ (Accessed September 10, 2007)
118. Fisher, D. H. Knowledge Acquisition via incremental conceptual clustering.

Machine Learning, No. 2, 1987
119. Clerkin, P., P. Cunningham, and C. Hayes. Ontology Discovery for the

Semantic Web using Hierarchical Clustering. Proceedings of the Semantic
Web Mining Workshop, 2001

384 References

120. Cohen, W. W., and H. Hirsh. Learning the CLASSIC Description Logic: The-
oretical and Experimental Results. Principles of Knowledge Representation
and Reasoning. Proceedings of the Fourth International Conference, 1994

121. Suryanto, H. and P. Compton. Learning Classification taxonomies from a
classification knowledge based system. Proceedings of Workshop on Ontol-
ogy Learning, 2000

122. Maedche, A., G. Neumann, and S. Staab. Bootstrapping an Ontology Based
Information Extraction System. Studies in Fuzziness and Soft Computing.
Szczepaniak, J. Segovia, J. Kacprzyk, and L.A. Zadeh (editors): INTELLI-
GENT EXPLORATION OF THE WEB, 2003

123. Riloff, E., and J. Shepherd. A corpus-based approach for building semantic
lexicons. Proceedings of the Second Conference on Empirical Methods in
Natural Language Processing (EMNLP-97), 1997

124. Dill, S., N. Eiron, D. Gibson, D. Gruhl, R. V. Guha, A. Jhingran, T. Kanungo,
S. Rajagopalan, A. Tomkins, J. A. Tomlin, J. Y. Zien. SemTag and Sem-
Seeker: Bootstrapping the Semantic Web via automated semantic annotation.
Proceedings of the 12th International WWW Conference (WWW 2003),
2003

125. Jacobs, P., and U. Zernik. Acquiring Lexical Knowledge from Text: A Case
Study. Proceedings of the Seventh National Conference on Artificial Intelli-
gence, 1988

126. Hastings, P., and S. Lytinen. The Ups and Downs of Lexical Acquisition. Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence, 1994

127. Berwick, R. C. Learning Word Meanings from Examples. Semantic Struc-
tures: Advances in Natural Language Processing. Lawrence Erlbaum Associ-
ates, 1989

128. Cardie, C. A Case-based Approach to Knowledge Acquisition for Domain
Specific Sentence Analysis. Proceedings of the Eleventh National Confer-
ence on Artificial Intelligence, 1993

129. Missikoff, M., P. Velardi, and P. Fabriani. Text Mining Techniques to auto-
matically enrich a Domain Ontology. Applied Intelligence Vol. 18, 2003

130. Sanderson, M., and B. Croft. Deriving Concept Hierarchies from Text. Inter-
national Conference on Research and Development in Information Retrieval
(SIGIR 1999), 1999

131. Nazarenko, A., P. Zweigenbaum, J. Bouaud, and B. Habert. Corpus-based
identification and refinement of semantic classes. Proceedings of the AMIA
Annual Symposium, 1997

132. Lin, D. Automatic retrieval and clustering of similar words. Proceedings of
COLING-ACL-98, 1998

133. Fiszman, M., T. C. Rindflesch, and H. Kilicoglu. Integrating a Hypernymic
Preposition Interpreter into a Semantic Processor for Biomedical Texts. Pro-
ceedings of the AMIA Annual Symposium on Medical Informatics, 2003

 References 385

134. Hearst, M. Automatic acquisition of hyponyms from large text corpora. Pro-
ceedings of the 14th International Conference on Computational Linguistics,
1992

135. Finkelstein-Landau, M., and E. Morin. Extracting Semantic Relationships
between Terms: Supervised vs Unsupervised Methods. Proceedings of Inter-
national Workshop on Ontological Engineering on the Global Information
Infrastructure, 1999

136. Maedche, A., and S. Staab. Discovering conceptual relations from text. Tech-
nical Report 399, Institute AIFB, Karlsruhe University, 2000

137. Everitt, B. S., S. Landau, and M. Leese. Cluster Analysis. Edward Arnold. 4th
Edition, May 2001

138. Zhang, Y., and G. Karypis. Criterion functions for Document Clustering.
Technical Report, U. Minnesota, Dept. of Computer Science, #TR-01-40,
2002

139. Chakrabarti, S. Data Mining for Hypertext: A Tutorial Survey. ACM
SIGKDD Explorations, Vol. 1, No. 2, 2000

140. Rasmussen, E. Clustering Algorithms. W. B. Frakes and R. Baeza-Yates (edi-
tors): Information Retrieval: Data Structures and Algorithms. Prentice Hall,
1992

141. Cutting, D. R., D. R. Karger, J. O. Pedersen, and J. W. Tukey. Scatter/Gather:
A cluster-based approach to browsing large document collections. Annual
International Conference on Research and Development on Information
Retrieval, 1992

142. Zamir, O., and O. Etzioni. Web Document Clustering: A Feasibility Demon-
stration. Proceedings of ACM SIGIR Conference, 1998

143. Buckley, C., M. Mitra, J. Walz, and C. Cardie. Using clustering and supercon-
cepts within SMART: TREC 6. Sixth Test Retrieval Conference (TREC-6),
1997

144. Maedche, A., and S. Staab. Ontology learning for the Semantic Web. IEEE
Intelligent Systems, Vol. 16, 2001

145. Kashyap, V., C. Ramakrishnan, C. Thomas, and A. Sheth. TaxaMiner: An
Experimental Framework for Automated Taxonomy Bootstrapping. Interna-
tional Journal of Web and Grid Services. Special Issue on Semantic Web and
Mining Reasoning, 2005

146. Davulcu, H., S. Vadrevu, and S. Nagarajan. OntoMiner: Bootstrapping and
Populating Ontologies from Domain Specific Websites. Proceedings of the
First International Workshop on Semantic Web and Databases (SWDB 2003),
2003

147. Mena, E., A. Illarramendi, V. Kashyap, and A. Sheth. OBSERVER: An
Approach for Global Query Processing in Global Information Systems based
on Interoperation across Pre-existing Ontologies. Distributed and Parallel
Databases. Vol. 8, No. 2, 2000

148. Mena, E., V. Kashyap, A. Illarramendi, and A. Sheth. Imprecise Answers in
Distributed Environments: Estimation of Information Loss for Multiple

386 References

Ontology based Query Processing. International Journal of Cooperative
Information Systems (IJCIS). H. Wache and D. Fensel (editors): Special
Issue on Intelligent Integration of Information, Vol. 9, No. 4, 2000

149. Chimaera. http://ksl.stanford.edu/software/chimaera/ (Accessed September
10, 2007)

150. Noy, N. F., and M. A. Musen. PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment. Seventeenth National Conference on Arti-
ficial Intelligence (AAAI-2000), 2000

151. Ramos, J. A. Mezcla automática de ontologías y catálogos electrónicos. Final
Year Project. Facultad de Informática de la Universidad Politécnica de
Madrid. Spain, 2001

152. de Diego, R. Método de mezcla de catálogos electrónicos. Final Year Project.
Facultad de Informática de la Universidad Politécnica de Madrid. Spain, 2001

153. Baader, F., C. Lutz, and B. Suntisrivaraporn. CEL - A Polynomial-time Rea-
soner for Life Science Ontologies. U. Furbach and N. Shankar (editors): Pro-
ceedings of the 3rd International Joint Conference on Automated Reasoning
(IJCAR'06). Lecture Notes in Artificial Intelligence #4130, 2006

154. The GALEN Model. http://www.opengalen.org/themodel/ontology.html
(Accessed September 10, 2007)

155. OWL: FaCT++. http://owl.man.ac.uk/factplusplus (Accessed September 10,
2007)

156. The FaCT System. http://www.cs.man.ac.uk/~horrocks/FaCT/ (Accessed
September 10, 2007)

157. The fuzzy DL System. http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzz-
yDL.html (Accessed September 10, 2007)

158. KAON2: Ontology Management System for the Semantic Web. http://
kaon2.semanticweb.org (Accessed September 10, 2007)

159. Pellet, An Open Source OWL-DL Reasoner in Java. http://pellet.owldl.com
(Accessed September 10, 2007)

160. RacerPro. http://www.racer-systems.com/products/racerpro/index.phtml
(Accessed September 10, 2007)

161. Grosof, B. N., I. Horrocks, R. Volz, and S. Decker. Description Logic Pro-
grams: Combining Logic Programs with Description Logic. Proceedings of
the Twelfth International Conference World Wide Web Conference (WWW
2003), 2003

162. Borgida, A. On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence, Vol. 82, No. 1-2, 1996

163. Donini, F. M., M. Lenzerini, D. Nardi, and W. Nutt. The complexity of con-
cept languages. Proceedings of KR ‘91, 1991

164. Vardi, M. Y. Why is modal logic so robustly decidable? N. Immerman and P.
Kolaitis (editors): Descriptive Complexity and Finite Models. American
Mathematical Society, 1997

 References 387

165. Borgida, A., and P. F. Patel-Schneider. A semantics and complete algorithm
for subsumption in the CLASSIC description logic. Journal of Artificial Intel-
ligence Research, Vol. 1, 1994

166. Patel-Schneider, P. F., D. L. McGuinness, R. J. Brachman, L. A. Resnick, and
A. Borgida. The CLASSIC Knowledge Representation System: Guiding prin-
ciples and implementation rationale. SIGART Bulletin, Vol. 2, No. 3, 1991

167. Levy, A. Y., and M. C. Rousset. Combining Horn Rules and Description Log-
ics in CARIN. Artificial Intelligence, Vol. 104, No. 1-2, 1998

168. Horrocks, I., and P. Patel-Schneider. A Proposal for an OWL Rules Lan-
guage. Proceedings of the Thirteenth World Wide Web (WWW) Conference,
2004

169. Padgham, I., and P. Lambrix. A framework for part-of hierarchies in termino-
logical logics. Proceedings of the 14th International Conference on the Prin-
ciples of Knowledge Representation and Reasoning (KR ‘94), 1994

170. Rector, A., and I. Horrocks. Experience building a large re-usable medical
ontology using a description logic with transitivity and concept inclusion.
Proceedings of the Workshop on Ontological Engineering, AAAI Spring
Symposium, 1997

171. Uren, V., P. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta, and F.
Ciravegna. Semantic annotation for Knowledge Management: Requirements
and a survey of the state of the art. Web Semantics: Science, Services and
Agents on the World Wide Web. Vol. 4, No. 1, 2005

172. Kahan, J., M.-J. Koivunen, E. Prud’Hommeaux, and R. Swick. Annotea: An
open RDF infrastructure for shared web annotations. Proceedings of the 10th
International World Wide Web Conference (WWW 2001), 2001

173. Handschuh, S., and S. Staab. Authoring and annotation of web pages in
CREAM. Proceedings of the 11th International World Wide Web Conference
(WWW 2002), 2002

174. Quint, V., and I. Vatton. An Introduction to Amaya, W3C Note, 1997
175. McDowell, L., O. Etzioni, S. Gribble, A. Halevy, H. Levy, W. Pentney, D.

Verma, and S. Vlasseva. Enticing ordinary people onto the Semantic Web via
instant gratification. Proceedings of the 2nd International Semantic Web
Conference (ISWC 2003), 2003

176. McDowell, L., O. Etzioni, and A. Halevy. Semantic email: theory and appli-
cations. Journal of Web Semantics. Vol. 2, No. 2, 2004

177. Schroeter, R., J. Hunter, and D. Kosovic. Vannotea, A collaborative video
indexing, annotation and discussion system for broadband networks. Pro-
ceedings of the K-CAP 2003 Workshop on “Knowledge Markup and Seman-
tic Annotation”, 2003

178. Hunter, J., R. Schroeter, B. Koopman, and M. Henderson. Using the semantic
grid to build bridges between museums and indigenous communities. Pro-
ceedings of the GGF11—Semantic Grid Applications Workshop, 2004

179. Annozilla annotator. http://annozilla.mozdev.org (Accessed September 10,
2007)

388 References

180. Teknowledge Annotation Applications. http://mr.teknowledge.com/DAML/
(Accessed September 10, 2007)

181. Handschuh, S., S. Staab, and R. Studer. Leveraging metadata creation for the
Semantic Web with CREAM. Proceedings of the Annual German Conference
on AI, 2003

182. Ciravegna, F., and Y. Wilks. Designing adaptive information extraction for
the Semantic Web in amilcare. S. Handschuh and S. Staab (editors): Annota-
tion for the Semantic Web. Frontiers in Artificial Intelligence and Applica-
tions, IOS Press, Amsterdam, 2003

183. Volz, R., S. Handschuh, S. Staab, L. Stojanovic, and N. Stojanovic. Unveiling
the hidden bridge: deep annotation for mapping and migrating legacy data to
the Semantic Web. Journal of Web Semantics. Vol. 1, No. 2, 2004

184. Bloehdorn, S., K. Petridis, C. Saathoff, N. Simou, V. Tzouaras, Y. Avrithis, S.
Handschuh, Y. Kompatsiaris, S. Staab, and M.G. Strintzis. Semantic annota-
tion of images and videos for multimedia analysis. Proceedings of the 2nd
European Semantic Web Conference (ESWC 2005), 2005

185. SMORE: Semantic Markup, Ontology and RDF Editor. http://
www.ece.umd.edu/~adityak/editor.html (Accessed September 10h, 2007)

186. Heflin, J., and J. Hendler. A portrait of the Semantic Web in action. IEEE
Intelligent Systems. Vol. 16, No. 2, 2001

187. Collier, N., A. Kawazoe, A.A. Kitamoto, T. Wattarujeekrit, T.Y. Mizuta, and
A. Mullen. Integrating deep and shallow semantic structures in open ontology
forge. Proceedings of the Special Interest Group on Semantic Web and Ontol-
ogy. JSAI (Japanese Society for Artificial Intelligence). Vol. SIG-SWO-
A402-05, 2004

188. Bechhofer, S., and C. Goble. Towards annotation using DAML+ OIL. Pro-
ceedings of the Workshop on Semantic Markup and Annotation, 2001

189. Bechhofer, S., C. Goble, L. Carr, W. Hall, S. Kampa, and D. De Roure.
COHSE: conceptual open hypermedia service, S. Handschuh and S. Staab
(editors): Annotation for the Semantic Web, IOS Press, Amsterdam, 2003

190. Plessers, P., S. Casteleyn, Y. Yesilada, O. De Troyer, R. Stevens, S. Harper,
and C. Goble. Accessibility: a web engineering approach. Proceedings of the
14th International World Wide Web Conference (WWW2005), 2005

191. Baumgartner, R., R. Flesca, and G. Gottlob. Visual web information extrac-
tion with Lixto. Proceedings of the International Conference on Very Large
Data Bases (VLDB), 2001

192. Vargas-Vera M., E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and F. Cirave-
gna. MnM: A tool for automatic support on semantic markup. KMi Technical
Report Number 133, 2003

193. Ciravegna, F., A. Dingli, D. Petrelli, and Y. Wilks. User-system cooperation
in document annotation based on information. Proceedings of the 13th Inter-
national Conference on Knowledge Engineering and KM (EKAW02), 2002

 References 389

194. Gilardoni, L., M. Biasuzzi, M. Ferraro, R. Fonti, and P. Slavazza. Machine
learning for the Semantic Web: putting the user in the cycle. Proceedings of
the Dagstuhl Seminar Machine Learning for the Semantic Web, 2005

195. Black, W. J., J. McNaught, A. Vasilakopoulos, K. Zervanou, B. Theodoulidis,
and F. Rinaldi. CAFETIERE conceptual annotations for facts, events, terms,
individual entities, and relations. Parmenides Technical Report, TR-U4.3.1,
2005

196. Vasilakopoulos, A., M. Bersani, and W.J. Black. A Suite of Tools for Marking
Up Textual Data for Temporal Text Mining Scenarios. Proceedings of the 4th
International Conference on Language Resources and Evaluation (LREC-
2004), 2004

197. Siliopoulou, M., F. Rinaldi, W.J. Black, G.P. Zarri, R.M. Mueller, M. Brunzel,
B. Theodoulidis, G. Orphanos, M. Hess, J. Dowdall, J. McNaught, M. King,
A. Persidis, and L. Bernard. Coupling information extraction and data mining
for ontology learning in PARMENIDES. Proceedings of the Recherche
d’Information Assist´ee par Ordinateur (RIAO’2004), 2004

198. Ciravegna, F., S. Chapman, A. Dingli, and Y. Wilks. Learning to harvest
information for the Semantic Web. Proceedings of the 1st European Semantic
Web Symposium, 2004

199. Etzioni, O., M.J. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soder-
land, D.S. Weld, and A. Yates. Unsupervised named-entity extraction from
the Web: an experimental study. Artificial Intelligence. Vol. 165, No. 1, 2005

200. Buitelaar, P., and S. Ramaka. Unsupervised ontology based semantic tagging
for knowledge markup. Proceedings of the Workshop on Learning in Web
Search, 2005

201. Cimiano, P., S. Handschuh, and S. Staab. Towards the self-annotating web.
Proceedings of the 13th International World Wide Web Conference (WWW
2004), 2004

202. Kogut, P., and W. Holmes. AeroDAML: applying information extraction to
generate DAML annotations from web pages. Proceedings of the Workshop
on Knowledge Markup and Semantic Annotation, 2001

203. Popov, B., A. Kiryakov, D. Ognyanoff, D. Manov, A. Kirilov, and M. Gora-
nov. Towards Semantic Web information extraction. Proceedings of the
Human Language Technologies Workshop, 2003

204. Popov, B., A. Kirayakov, D. Ognyanoff, D. Manov, and A. Kirilov. KIM—a
semantic platform fo information extraction and retrieval. Natural Language
Engineering. Vol. 10, No. 3-4, 2004

205. Svatek, V., M. Labsky, and M. Vacura. Knowledge modelling for deductive
web mining. Proceedings of the 14th International Conference on Knowledge
Engineering and Knowledge Management (EKAW 2004), 2004

206. Maynard, D., M. Yankova, A. Kourakis, and A. Kokossis. Ontology-based
information extraction for market monitoring and technology watch. Pro-
ceedings of the Workshop on User Aspects of the Semantic Web (UserSWeb),
2005

390 References

207. Dowman, M., V. Tablan, H. Cunningham, and B. Popov. Web-assisted anno-
tation, semantic indexing and search of television and radio news. Proceed-
ings of the 14th International World Wide Web Conference (WWW2005),
2005

208. Rinaldi, F., G. Schneider, K. Kaljurand, J. Dowdall, A. Persidis, and O. Kon-
stanti. Mining relations in the GENIA corpus. Second European Workshop
on Data Mining and Text Mining for Bioinformatics, 2004

209. Maynard, D., M. Yankova, N. Aswani, and H. Cunningham. Automatic cre-
ation and monitoring of semantic metadata in a dynamic knowledge portal.
Proceedings on the Artificial Intelligence: Methodology, Systems, Applica-
tions (AIMSA 2004), 2004

210. Svab, O., M. Labsky, and V. Svatek. RDF-based retrieval of information
extracted from web product catalogues. Proceedings of the SIGIR’04 Seman-
tic Web Workshop, 2004

211. Carr, L., T. Miles-Board, A. Woukeu, G. Wills, and W. Hall. The case for
explicit knowledge in documents. Proceedings of the ACM Symposium on
Document Engineering (DocEng ’04), 2004

212. Lanfranchi, V., F. Ciravegna, and D. Petrelli. Semantic Web-based document:
editing and browsing in AktiveDoc. Proceedings of the 2nd European Seman-
tic Web Conference, 2005

213. Tallis, M. SemanticWord processing for content authors. Proceedings of the
Knowledge Markup and Semantic Annotation Workshop (SEMANNOT
2003), 2003

214. Dzbor, M., E. Motta, and J. Domingue. Opening up magpie via semantic ser-
vices. Proceedings of the 3rd International Semantic Web Conference, 2004

215. Hogue, A., D. Karger. Thresher: automating the unwrapping of semantic con-
tent from the world wide web. Proceedings of the 14th International World
Wide Web Conference (WWW2005), 2005

216. Huynh, D., D. Kerger, and D. Quan. Haystack: a platform for creating, orga-
nizing and visualizing information using RDF. Proceedings of the 11th Inter-
national World Wide Web Conference (WWW2002), 2002

217. Rahm, E., and P. Bernstein. A survey of approaches to automatic schema
matching. The VLDB Journal. Vol. 10, No. 4, 2001

218. Shvaiko, P., and J. Euzenat. A Survey of Schema-based Matching
approaches. Journal of Data Semantics. Vol. 4, 2005

219. Cohen, W., P. Ravikumar, and S. Fienberg. A comparison of string metrics for
matching names and records. Proceedings of the workshop on Data Cleaning
and Object Consolidation, 2003

220. Aumuller, D., H. H. Do, S. Massmann, and E. Rahm. Schema and ontology
matching with COMA++. In Proceedings of the International Conference on
Management of Data (SIGMOD), 2005

221. Bouquet, P., L. Serafini, and S. Zanobini. Semantic coordination: A new
approach and an application. Proceedings of the International Semantic Web
Conference (ISWC), 2003

 References 391

222. Castano, S., V. De Antonellis, and S. De Capitani di Vimercati. Global view-
ing of heterogeneous data sources. IEEE Transactions on Knowledge and
Data Engineering, Vol. 13, No. 2, 2001

223. Di Noia, T., E. Di Sciascio, F. M. Donini, and M. Mongiello. A system for
principled matchmaking in an electronic marketplace. Proceedings of the
World Wide Web Conference (WWW), 2003

224. Dieng, R., and S. Hug. Comparison of ”personal ontologies” represented
through conceptual graphs. Proceedings of the European Conference on Arti-
ficial Intelligence (ECAI), 1998

225. Do, H. H., and E. Rahm. COMA - a system for flexible combination of
schema matching approaches. Proceedings of the Very Large Data Bases
Conference (VLDB), 2001

226. Ehrig, M., and S. Staab. QOM: Quick ontology mapping. Proceedings of the
International Semantic Web Conference (ISWC), 2004

227. Ehrig, M., and Y. Sure. Ontology mapping - an integrated approach. In Pro-
ceedings of the European Semantic Web Symposium (ESWS), 2004

228. Euzenat, J., and P.Valtchev. Similarity-based ontology alignment in OWL-
lite. Proceedings of the European Conference on Artificial Intelligence
(ECAI), 2004.

229. Giunchiglia, F., and P. Shvaiko. Semantic matching. The Knowledge Engi-
neering Review Journal (KER), Vol. 18, No. 3, 2003

230. Giunchiglia, F., P. Shvaiko, and M. Yatskevich. S-Match: an algorithm and an
implementation of semantic matching. Proceedings of the European Semantic
Web Symposium (ESWS), 2004

231. Giunchiglia, F., P. Shvaiko, and M. Yatskevich. Semantic schema matching.
Technical Report DIT-05-014, University of Trento, 2005

232. Madhavan, J., P. Bernstein, and E. Rahm. Generic schema matching with
Cupid. Proceedings of the Very Large Data Bases Conference (VLDB), 2001

233. Melnik, S., H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile
graph matching algorithm. Proceedings of the International Conference on
Data Engineering (ICDE), 2002

234. Noy, N., and M. Musen. Anchor-PROMPT: using non-local context for
semantic matching. Proceedings of the workshop on Ontologies and Informa-
tion Sharing, 2001

235. Rahm, E., H. H. Do, and S. Maßmann. Matching large XML schemas. SIG-
MOD Record, Vol. 33, No. 4, 2004

236. Sotnykova, A., C. Vangenot, N. Cullot, N. Bennacer, and M.-A. Aufaure.
Semantic mappings in description logics for spatio-temporal database schema
integration. Journal on Data Semantics (JoDS). Special Issue on Semantic-
based Geographical Information Systems, III, 2005

237. Miller, A. G. WordNet: A lexical database for English. Communications of
the ACM, Vol. 38, No. 11, 1995

238. Bergamaschi, S., S. Castano, and M. Vincini. Semantic integration of semis-
tructured and structured data sources. SIGMOD Record, Vol. 28, No. 1, 1999

392 References

239. Uschold, M., and M. Gruniger. Ontologies: Principles, methods and applica-
tions. Knowledge Engineering Review, Vol. 11, No. 2, 1996

240. Wache, H., T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neu-
mann and S. Hubner, IJCAI Workshop on Ontologies and Information Shar-
ing, 2001

241. Arens, Y., C. Y. Chee, C. Hsu, and C. A. Knoblock. Retrieving and integrat-
ing data from multiple information sources. International Journal of Intelli-
gent and Cooperative Information Systems. Vol. 2, No. 2, 1993

242. Garcia-Molina, H., Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv,
J. Ullman, and J. Widom. The TSIMMIS Approach to Mediation: Data Mod-
els and Languages. Proceeding of NGITS (Next Generation Information
Technologies and System), 1995

243. Bayardo, R., W. Bohrer, R. Brice, A. Cichocki, G. Fowler, A. Helal, V.
Kashyap, T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R.
Shea, C. Unnikrishnan, A. Unruh, and D. Woelk. Infosleuth: Semantic Inte-
gration of Information in Open and Dynamic Environments. Proceedings of
the 1997 ACM International Conference on the Management of Data (SIG-
MOD), 1997

244. Preece, A. D., K.-J. Hui, W.A. Gray, P. Marti, T.J.M. Bench-Capon, D.M.
Jones, and Z. Cui. The KRAFT architecture for knowledge fusion and trans-
formation. Proceedings of the 19th SGES International Conference on
Knowledge-Based Systems and Applied Artificial Intelligence (ES’99),
1999.

245. Goasdoue, F., V. Lattes, and M. Rousset. The use of Carin language and algo-
rithms for Information Integration: The PICSEL project. International Journal
of Cooperative Information Systems (IJCIS). Vol. 9, No. 4, 1999

246. Calvanese, D., G. DeGiacomo, and M. Lenzerini. Description logics for infor-
mation integration. Computational Logic: From Logic Programming into the
Future (In honour of Bob Kowalski). Lecture Notes in Computer Science
#2408, 2001

247. Decker, S., M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology
based access to distributed and semi-structured information. R. Meersman, Z.
Tari, S. Stevens (editors): Semantic Issues in Multimedia Systems. Proceed-
ings of DS-8, 1999

248. Heflin, J., and J Hendler. Dynamic ontologies on the web. Proceedings of
American Association for Artificial Intelligence Conference (AAAI-2000),
2000

249. Goh, C. H. Representing and Reasoning about Semantic Conflicts in Hetero-
geneous Information Sources. Phd Thesis, MIT, 1997

250. Wache, H., Th. Scholz, H. Stieghahn and B. Konig-Ries. An integration
method for the specification of rule–oriented mediators. Y. Kambayashi and
H. Takakura (editors): Proceedings of the International Symposium on Data-
base Applications in Non-Traditional Environments (DANTE’99), 1999

 References 393

251. Stuckenschmidt, H., H. Wache, T. Vogele, and U. Visser. Enabling technolo-
gies for interoperability. U. Visser and H. Pundt (editors): Workshop on the
14th International Symposium of Computer Science for Environmental Pro-
tection, 2000

252. Kashyap, V., and A. Sheth, Schematic and semantic semilarities between
database objects: A context-based approach. The International Journal on
Very Large Data Bases. Vol. 5, No. 4, 1996

253. MacGregor, R. M. Using a description logics classifier to enhance deductive
inference. Proceedings of the Seventh IEEE Conference on AI Applications,
1991

254. Rector, A. L., S. Bechofer, C. A. Goble, I. Horrocks, W. A. Nowlan, and W.
D. Solomon. The GRAIL concept modelling language for medical terminol-
ogy. Artificial Intelligence in Medicine, Volume 9, 1997

255. Stuckenschmidt, H., and H. Wache. Context modeling and transformation for
semantic interoperability. Knowledge Representation Meets Databases
(KRDB), 2000

256. Fensel, D., I. Horrocks, F. Van Harmelen, S. Decker, M. Erdmann, and M.
Klein. OIL in a nutshell. 12th International Conference on Knowledge Engi-
neering and Knowledge Management EKAW2000, 2000

257. Donini, F., M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating data-
log and description logics. Journal of Intelligent Information Systems (JIIS),
Vol. 27, No. 1, 1998

258. Arens, Y., C. Hsu, and C. A. Knoblock. Query processing in the SIMS infor-
mation mediator. Advanced Planning Technology, 1996

259. Hwang, C. H. Incompletely and imprecisely speaking: Using dynamic ontol-
ogies for representing and retrieving information. Technical Report, Micro-
electronics and Computer Technology Corporation (MCC), 1999

260. Pazzaglia, J.-C. R., and S.M. Embury. Bottom-up integration of ontologies in
a database context. In KRDB’98 Workshop on Innovative Application Pro-
gramming and Query Interfaces, 1998

261. Ashish, N., and C. A. Knoblock. Semi-automatic wrapper generation for
internet information sources. Second IFCIS International Conference on
Cooperative Information Systems, 1997

262. Heflin, J., and J. Hendler. Semantic interoperability on the web. Extreme
Markup Languages 2000, 2000

263. Bussler, C. B2B Integration. Concepts and Architecture. Springer Verlag,
2003

264. Fensel, D., and C. Bussler. The Web Service Modelling Framework WSMF.
Electronic Commerce Research and Applications, Vol. 1, Issue 2, Elsevier
Science B.V., Summer 2002

265. Fielding, R. Architectural Styles and the Design of Network-based Software
Architectures. Dissertation. Information and Computer Science, University of
California, Irvine, 2000

394 References

266. Alves, A., A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford, Y.
Goland, A. Guízar, M. Kartha, C. K. Liu, R. Khalaf, D. König, M. Marin, V.
Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu (editors): Web
Services Business Process Execution Language, Version 2.0. OASIS Com-
mittee Draft, wsbpel-specification-cd_Jan_25_2007, 2007. http://docs.oasis-
open.org/wsbpel/2.0/ (Accessed September 10, 2007)

267. Carman, M., L. Serafini, and P. Traverso. Web Service Composition as Plan-
ning. ICAPS’03 Workshop on Planning for Web Services, 2003

268. Du, W., J. Davis, M.-C. Shan, U. Dayal. Flexible Compensation of Workflow
Processes. HPL-96-72 (R.1), Software Technology Laboratory, Hewlett
Packard, 1997. http://www.hpl.hp.com/techreports/96/HPL-96-72r1.pdf
(Accessed September 10, 2007)

269. Jablonski, S., and C. Bussler. Workflow Management - Modeling, Concepts,
Architecture and Implementation, International Thomson Computer Press,
1996

270. Kavantzas, N., D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, C. Barreto.
Web Services Choreography Description Language Version 1.0. W3C Candi-
date Recommendation. World Wide Web Consortium, 2005

271. Leymann, F. Web Services Flow Language (WSFL 1.0). IBM Software
Group, IBM, 2001

272. Martin, D., M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D.
McGuinness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and
K. Sycara. Bringing Semantics to Web Services: The OWL-S Approach. Pro-
ceedings of the First International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC 2004), 2004

273. Martinez, E., and Y. Lesperance. Web Servcie Composition as a Planning
Task: Experiments using Knowledge-Based Planning. Proceedings of the
ICAPS-2004 Workshop on Planning and Scheduling for Web and Grid Ser-
vices, 2004

274. Business Process Modeling Notation (BPMN) Specification. Final Adopted
Specification. dtc/06-02-01. Object Managemenet Group (OMG), 2006

275. Oracle BPEL Process Manager Developer's Guide 10g Release 2 (10.1.2)
B14448-03. Oracle Corporation, 2006. http://download-west.oracle.com/
docs/cd/B14099_19/integrate.1012/b14448/toc.htm (Accessed September 10,
2007)

276. Roman, D., U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg,A. Pol-
leres, C. Feier, C. Bussler, and D. Fensel. Web Service Modeling Ontology.
Applied Ontology. Vol. 1, No. 1, 2005

277. Ten-Hove, R., P. Walker (editors): Java Business Integration (JBI) 1.0. Final
Release. Sun Microsystems, USA, 2005

278. Thatte, S. XLANG - Web Services for Business Process Design. Microsoft
Corporation, 2001

 References 395

279. Tilkov, S. Choreography vs. Orchestration. Blog discussion. http://
www.innoq.com/blog/st/2005/02/16/choreography_vs_orchestration.html
(Accessed September 10, 2007)

280. Traverso, P., M. Pistore. Automated Composition of Semantic Web Services
into Executable Processes. International Semantic Web Conference (ISWC
2004), 2004

281. Wikipedia 2007. http://www.wikipedia.org (Accessed September 10, 2007)
282. Wohed, P., W. van der Aalst, M. Dumas, and A. ter Hofstede. Pattern Based

Analysis of BPEL4WS. Technical Report FIT-TR-2002-04, Queensland Uni-
versity of Technology, 2002

283. Wu, D., B. Parsia, E. Sirin, J. Hendler, D. Nau. Automating DAML-S Web
Services Composition Using SHOP2. Proceedings of 2nd International
Semantic Web Conference (ISWC2003), 2003

284. WSIF 2006. http://ws.apache.org/wsif/ (Accessed September 10, 2007)
285. Genesereth, M., and R. Filkes. Knowledge Interchange Format (KIF). Stan-

ford University Logic Group. Logic-92-1, 1992
286. Fensel, D., I. Horrocks, F. V. Harmelen, S. Decker, M. Erdmann, and M.

Klein. OIL in a Nutshell. Proceedings of the European Knowledge Acquisi-
tion Conference (EKAW-2000), 2000

287. Brickley, D., and R. V. Guha. Resource Description Framework (RDF).
Schema Specification 1.0. W3C Candidate Recommendation, 2000

288. MacKenzie, C. M., K. Laskey, F. McCabe, P. F. Brown, and R. Metz (editors):
Reference Model for Service Oriented Architecture 1.0. OASIS Standard,
2006

289. McGuinness, D. L., R. Fikes, L. A. Stein, and J. A. Hendler. DAML-ONT:
An Ontology Language for the Semantic Web. D. Fensel, J. A. Hendler, H.
Lieberman, and W. Wahlster (editors): Spinning the Semantic Web: Bringing
the World Wide Web to Its Full Potential. The MIT Press, 2003

290. Burstein, M., C. Bussler, M. Zaremba, T. Finin, M. N. Huhns, M. Paolucci, A.
P. Sheth, and S. Williams. A Semantic Web Services Architecture. IEEE
Internet Computing. Vol. 9, 2005. http://dx.doi.org/10.1109/MIC.2005.96
(Accessed September 10, 2007)

291. Hendler, J., and D. L. McGuinness. DARPA Agent Markup Language. IEEE
Intelligent Systems. Vol. 15, 2001

292. Fensel, D., I. Horrocks, F. V. Harmelen, S. Decker, M. Erdmann, and M.
Klein. OIL in a nutsell. Proceedings of the European Knowledge Acquisition
Conference (EKAW-2000), 2000

293. Gill, A. Introduction to the Theory of Finite-state Machines. McGraw-Hill,
1962

294. Moore, E. F. (editor): Gedanken-experiments on Sequential Circuits. Autom-
ata Studies. Annals of Mathematical Studies. No. 34, Princeton University
Press, 1956

295. Hendler, J. Agents and the Semantic Web. IEEE Intelligent Systems. Vol. 2,
2001

396 References

296. Berardi, D., D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella.
Automatic Composition of E-services That Export Their Behavior. Proceed-
ings of the First International Conference of Service-Oriented Computing
(ICSOC 2003), 2003

297. Bultan, T., X. Fu, R. Hull, and J. Su. Conversation specification: a new
approach to design and analysis of e-service composition. Proceedings of the
World Wide Web Conference, 2003

298. Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming. Vol. 8, 1987

299. Fielding, R. T., and R. N. Taylor. Principled design of the modern Web archi-
tecture. Proceedings of the 22nd International Conference on Software Engi-
neering, 2000

300. Czajkowski, K., D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D.
Snelling, S. Tuecke, and W. Vambenepe. The WS-Resource Framework.
Version 1.0, 2004

301. Box, D., E. Christensen, F. Curbera, D. Ferguson, J. Frey, M. Hadley, C.
Kaler, D. Langworthy, F. Leymann, B. Lovering, S. Lucco, S. Millet, N.
Mukhi, M. Nottingham, D. Orchard, J. Shewchuk, E. Sindambiwe, T. Storey,
S. Weerawarana, and S. Winkler. Web Services Addressing. W3C Member
Submission, 2004

302. The Object Management Group. The Common Object Request Broker Archi-
tecture (CORBA): Architecture and Specifications, 2002

303. Microsoft Corporation. Microsoft Distributed Common Object Model
(DCOM) v1.3, 1998

304. Petri, C. A. Kommunikation mit Automaten. Institut fuer Instrumentelle
Mathematik, 1962

305. Best, E. Weighted basic Petri Nets. Proceedings of the International Confer-
ence on Concurrency, 1988

306. Jensen, K. An Introduction to the Theoretical Aspects of Coloured Petri Nets.
A Decade of Concurrency, Lecture Notes in Computer Science #803, 1994

307. Merlin, P. M. A study of the recoverability of computing systems. Depart-
ment of Information and Computer Science, 1974

308. Stork, D. G., and R. J. v. Glabbeek. Token-Controlled Place Refinement in
Hierarchical Petri Nets with Application to Active Document Workflow. Pro-
ceedings of the 23rd International Conference on Applications and Theory of
Petri Nets (ICATPN '02), 2002

309. v. d. Aalst, W. M. P. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers. Vol. 8, 1998

310. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services.
Version 1.1, 2004. http://www.daml.org/services/owl-s/1.1/ (Accessed Sep-
tember 10, 2007)

 References 397

311. Balzer, S., T. Liebig, and M. Wagner. Pitfalls of OWL-S: A practical semantic
web use case. Proceedings of the 2nd international conference on Service ori-
ented computing, 2004

312. The Semantic Web Rule Language (SWRL). http://www.w3.org/Submission/
SWRL/ (Accessed May 27, 2008)

313. The Knowledge Interchange Format (KIF). http://www-ksl.stanford.edu/
knowledge-sharing/kif/ (Accessed September 10, 2007)

314. McDermott, D. The 1998 AI planning systems competition. The AI Maga-
zine. Vol. 21, 2000

315. Battle, S., A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M.
Kifer, D. Martin, S. McIlraith, D. McGuinness, J. Su, and S. Tabet (editors):
Semantic Web Services Framework (SWSF). Overview. W3C Submission,
2005. http://www.w3.org/Submission/SWSF/ (Accessed September 10,
2007)

316. Michel, J. J., and A. F. Cutting-Decelle. The Process Specification Language.
International Standards Organization ISO TC184/SC5 Meeting, 2004

317. Brodie, M., C. Bussler, J. deBruijn, T. Fahringer, D. Fensel, M. Hepp, H.
Lausen, D. Roman, T. Strang, H. Werthner, and M. Zaremba. Semantically
Enabled Service-Oriented Architectures: A Manifesto and a Paradigm Shift
in Computer Science. DERI Technical Report, 2005

318. Grosof, B. N. IBM Common Rules Report: A Courteous Compiler From
Generalized Courteous Logic Programs To Ordinary Logic Programs, 1999.
http://www.research.ibm.com/rules/paps/gclp_report1.pdf (Accessed Sep-
tember 10, 2007)

319. Chen, W., M. Kifer, and D. S. Warren. HiLog: A Foundation for Higher Order
Logic Programming. Journal of Logic Programming. Vol. 15, 1993

320. Kifer, M., G. Lausen, and a. J. Wu. Logical foundations of object oriented and
frame based languages. JACM. Vol. 42, 1995

321. Lloyd, J. W. Foundations of logic programming. Springer Verlag, 1987
322. Akkiraju, R., J. Farrell, J.Miller, M. Nagarajan, M. Schmidt, A. Sheth, and K.

Verma. Web Service Semantics - WSDL-S, 2005. http://lsdis.cs.uga.edu/
projects/meteor-s/wsdl-s/ (Accessed September 10, 2007)

323. The Web Service Business Process Execution Language. OASIS Specifica-
tion. http://www.oasis-open.org/committees/wsbpel (Accessed September 10,
2007)

324. Balzer, S., T. Liebig, and M. Wagner. Pitfalls of OWL-S: A practical semantic
web use case. Proceedings of the 2nd international conference on Service ori-
ented computing, 2004

325. Roman, D., U. Keller, H. Lausen, J. deBruijn, R. Lara, M. Stollberg, A. Pol-
leres, D. Fensel, and C. Bussler. Web Service Modeling Ontology. Applied
Ontology Journal. Vol. 1, No. 1, 2005

326. The Object Management Group (OMG). Meta Object Facility (MOF). http://
www.omg.org/mof/ (Accessed September 10, 2007)

398 References

327. Gurevich, Y. Evolving algebras 1993: Lipari guide in Specification and vali-
dation methods. Oxford University Press, 1993

328. deBruijn, J., H. Lausen, A. Polleres, and D. Fensel. The Web Service Model-
ing Language WSML: An Overview. Proceedings of the European Semantic
Web Services Conference (ESWC), 2006

329. Grosof, B. N., I. Horrocks, R. Volz, and S. Decker. Description logic pro-
grams: Combining logic programs with description logic. Proceedings of the
Twelfth International World Wide Web Conference (WWW 2003), 2003

330. Haller, A., E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX - A
Semantic Service-Oriented Architecture. Proceedings of the International
Conference on Web Service (ICWS 2005), 2005

331. Mocan, A., M. Moran, E. Cimpian, and M. Zaremba. Filling the Gap -
Extending Service Oriented Architectures with Semantics. Proceedings of the
ICEBE, 2006

332. Haselwanter, T., P. Kotinurmi, M. Moran, T. Vitvar, and M. Zaremba.
WSMX: A Semantic Service Oriented Middleware for B2B Integration. Pro-
ceedings of the International Conference on Service Oriented Computing,
2006

333. Moran, M., Michal. Zaremba, A. Mocan, E. Cimpian, T. Haselwanter, and
Maciej Zaremba. DIP Deliverable 6.11. Semantic Web Services Architecture
and Information Model, 2006

334. Preist, C. A Conceptual Architecture for Semantic Web Services. Proceedings
of the Third International Semantic Web Services Conference (ISWC), 2004

335. Baida, Z., J. Gordijn, and B. Omelayenko. A shared service terminology for
online service provisioning. Proceedings of the 6th international conference
on Electronic commerce, 2004

336. Fensel, D., U. Keller, H. Lausen, A. Polleres, and I. Toma. What is wrong
with Web Services Discovery. Proceedings of the W3C Workshop on Frame-
works for Semantics in Web Services, 2005

337. Keller, U., R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Loca-
tion of Services. Proceedings of the 2nd European Semantic Web Symposium
(ESWS2005), 2005

338. Voskob, M. UDDI Spec TC V4 Requirement - Taxonomy support for seman-
tics, 2004

339. Benatallah, B., M. S. Hacid, C. Rey, and F. Toumani. Request rewriting-based
web service discovery. Proceedings of the International Conference on The
Semantic Web, 2003

340. Bernstein, A., and M. Klein. Discovering services: Towards high-precision
service retrieval. Web Services, E-Business, and the Semantic Web. Lecture
Notes in Computer Science #2512, 2002

341. Albert, P., L. Henocque, and M. Kleiner. A Constrained Object Model for
Configuration Based Workflow Composition. Proceedings of the Business
Process Management Workshops (BPM 2005), 2005

 References 399

342. McIlraith, S., and T. Son. Adapting Golog for composition of semantic Web
Services. Proceedings of the 8th International Conference on Principles of
Knowledge Representation and Reasoning, 2002

343. Sirin, E., B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN planning for web
service composition using SHOP2. Web Semantics Journal, 2004

344. Mayer, H., H. Overdick, and M. Weske. Plængine: A System for Automated
Service Composition and Process Enactment. Proceedings of the Business
Process Management Workshop, 2005

345. v. d. Aalst, W. M. P., M. Dumas, and A. H. M. t. Hofstede. Web Service Com-
position Languages: Old Wine in New Bottles? Proceedings of the 29th
EUROMICRO Conference 2003, 2003

346. Osman, T., D. Thakker, and D. Al-Dabass. Bridging the Gap between Work-
flow and Semantic-based Web Services Composition. Proceedings of the
Business Process Management Workshop 2005, 2005

347. Casati, F., S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan. Adaptive and
Dynamic Service Composition in eFlow. HP Technical Report HPL-200039,
2000

348. Norton, B., and C. Pedrinaci. 3-Level Service Composition and Cashew: A
Model for Orchestration and Choreography in Semantic Web Services. Pro-
ceedings of the On the Move to Meaningful Internet Systems 2006 OTM
2006 Workshops, 2006

349. Mocan, A., E. Cimpian, and M. Kerrigan. Formal Model for Ontology Map-
ping Creation. Proceedings of the International Semantic Web Conference,
2006

350. Cimpian, E., and A. Mocan. WSMX Process Mediation Based on Choreogra-
phies. Proceedings of the Business Process Management Workshops 2005,
2005

351. Vu, L. H., M. Hauswirth, and K. Aberer. Towards P2P-Based Semantic Web
Service Discovery with QoS Support. Proceedings of the Business Process
Management Workshops, BPM 2005, 2005

352. XML RPC. http://www.xmlrpc.com/ (Accessed September 10, 2007)
353. SOAP. http://en.wikipedia.org/wiki/SOAP (Accessed September 10, 2007)
354. Gudgin, M., M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F. Nielsen (edi-

tors): SOAP Version 1.2 Part 1: Messaging Framework. W3C Recommenda-
tion. World Wide Web Consortium, 2003

355. Christensen, E., F. Curbera, G. Meredith, and S. Weerawarana (editors): Web
Services Description Language (WSDL) 1.1. W3C Note. World Wide Web
Consortium, 2001

356. Chinnici, R., J.-J. Moreau, A. Ryman, and S. Weerawarana (editors): Web
Services Description Language (WSDL) Version 2.0 Part 1: Core Language.
W3C Recommendation. World Wide Web Consortium, 2007

357. Boubez, T., M. Hondo, C. Kurt, J. Rodriguez, and D. Rogers (editors): UDDI
Programmer's API 1.0. UDDI Published Specification. UDDI.org, 2002

400 References

358. Clement, L., A. Hately, C. von Riegen, and T. Rogers (editors): UDDI Ver-
sion 3.0.2. UDDI Spec Technical Committee Draft. OASIS, 2004

359. Alonso, G., F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer
Verlag, 2003

360. Chinnici, R., H. Haas, A. Lewis, J.-J. Moreau, D. Orchard, and S. Weer-
awarana (editors): Web Services Description Language (WSDL) Version 2.0
Part 2: Adjuncts. W3C Recommendation. World Wide Web Consortium,
2007

361. Chinnici, R., H. Haas, A. Lewis, J-J. Moreau, D. Orchard, and S. Weer-
awarana (editors): Web Services Description Language (WSDL) Version 2.0
Part 2: Adjuncts. W3C Recommendation. World Wide Web Consortium.
March 2007

362. Zapthink. Key XML Specifications and Standards. Poster. Document ID:
ZTS-GI101. ZapThink LLC. http://www.zapthink.com/report.html?id=ZTS-
GI101. 2002 (Accessed September 7, 2007)

363. MacKenzie, C. M., K. Kaskey, F. McCabe, P. Brown, and R. Metz. Reference
Model for Service Oriented Architecture 1.0. Committee Specification 1.
OASIS, 2006

364. Wilkes, R. The Web Services Protocol Stack. CBDI Forum, 2005. http://road-
map.cbdiforum.com/reports/protocols/ (Accessed September 10, 2007)

365. Mocan, A., and E. Cimpian. An ontology-based data mediation framework
for semantic environments. International Journal on Semantic Web and Infor-
mation Systems (IJSWIS). Vol. 3, No. 2, 2007

366. Kilic, O., and A. Dogac. Achieving Clinical Statement Interoperability using
RMIM and Archetypebased Semantic Transformations. IEEE Transactions
on Information Technology in Biomedicine, 2007. http://
www.srdc.metu.edu.tr/webpage/projects/ride/publications/KilicDogac.pdf
(Accessed September 10, 2007)

367. Paolucci, M., T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of
Web Services Capabilities. Proceedings of the 1st International Semantic
Web Conference (ISWC), 2002

368. Goldberg, H., M. Vashevko, A. Postilnik, K. Smith, N. Plaks, and B. Blumen-
feld. Evaluation of a Commercial Rules Engine as a basis for a Clinical Deci-
sion Support Service. Proceedings of the Annual Symposium on Biomedical
and Health Informatics, 2006

369. Kashyap, V., A. Morales and T. Hongsermeier. Implementing Clinical Deci-
sion Support: Achieving Scalability and Maintainability by combining Busi-
ness Rules with Ontologies. Proceedings of the Annual Symposium on
Biomedical and Health Informatics, 2006

370. W3C Semantic Web Best Practices and Deployment Working Group. http://
www.w3.org/2001/sw/BestPractices/ (Accessed September 10, 2007)

371. Schulz, S., and U. Hahn. A Knowledge Representation view on Biomedical
Structure and Function. Proceedings of AMIA, 2002

 References 401

372. Bussler, C. B2B Protocol Standards and their Role in Semantic B2B Integra-
tion Engines. Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 2001

373. Williams, S. K., S. A. Battle, and J. E. Cuadrado. Protocol Mediation for
Adaptation in Semantic Web Services. Technical Report HPL-2005-78. Digi-
tal Systems Media Laboratory 2005

374. Bochmann, G. V. Higher-level Protocols are not Necessary End-to-End. ACM
SIGCOMM. Computer Communications Review. Vol. 13, 1983

375. Calvert, L., and S. S. Lam. Deriving a Protocol Converter: A Top-Down
Method. ACM SIGCOM Computer Communications Review. Vol. 19, 1989

376. Kopecký, J., D. Roman, T. Vitvar, M. Moran, and A. Mocan. WSMO
Grounding. WSMO Working Draft v0.1, 2007. http://wsmo.org/TR/d24/
d24.2/v0.1/ (Accessed September 10, 2007)

377. Kerrigan, M., A. Mocan, M. Tanler, and D. Fensel. The Web Service Model-
ing Toolkit - an Integrated Development Environment for Semantic Web Ser-
vices. Proceedings of the 4th European Semantic Web Conference (ESWC
2007), 2007

378. Dimitrov, M., A. Simov, V. Momtchev, and M. Konstantinov. WSMO Studio
— A Semantic Web Services Modelling Environment for WSMO. Proceed-
ings of the 4th European Semantic Web Conference (ESWC 2007), 2007

379. Web Services: Been There Done That. Intelligent Systems. Vol. 18, No. 1,
2003. http://hcs.science.uva.nl/semanticweb/literatuur/x1072.pdf (Accessed
September 10, 2007)

380. Sheth, A. Blog entry at http://lsdis.cs.uga.edu/~amit/blog/
index.php?title=why_are_we_still_pushing_semantic_web&more=1&c=1&t
b=1&pb=1 [3] A. Sheth; Blog; http://lsdis.cs.uga.edu/~amit/blog/ (Accessed
September 10, 2007)

381. Van Damme, C., M. Hepp, and K. Siorpaes. FolksOntology: An Integrated
Approach for Turning Folksonomies into Ontologies. Proceedings of Bridg-
ing the Gap between Semantic Web and Web 2.0 (SemNet 2007), 2007

382. Han, S.-K., and D. Roman. Towards Semantic Service-Oriented Systems on
the Web. Slide 90 of tutorial at Web Intelligence 2006, http://www.wsmo.org/
TR/d17/resources/200612-WI06/wi2006-tutorial.pdf (Accessed September
10, 2007)

383. European Union IST Integrated Project “SUPER”. http://www.ip-super.org/
(Accessed September 10, 2007)

384. Pressman, R. Software Engineering, A Practitioner's Approach. 4th Edition.
ISBN 0077094115, 1997

385. Semantic Web Service Challenge. http://sws-challenge.org (Accessed Sep-
tember 10, 2007)

386. Braga, D., A. Campi and S. Ceri. XQBE (XQuery By Example): A Visual
Interface to the Standard XML Query Language. ACM Transactions on Data-
base Systems. Vol. 30, No. 2, June 2005

402 References

387. Baeten, J. C. M. A Brief History of Process Algebra. Journal of Theoretical
Computer Science (Elsevier Publishing Ltd.), Vol. 335, 2005

388. v. d. Aalst, W. M. P. Pi calculus versus petri nets: Let us eat humble pie rather
than further inflate the pi hype. http://tmitwww.tm.tue.nl/research/patterns/
download/pi-hype.pdf (unpublished discussion paper, accessed March 27,
2008), 2003

389. Milan, C., U. Milan. Modelling and Simulation of Parallel Systems Using
CCS and Petri Nets: Major Concepts. In Proceedings of XXIst International
Colloquium ASIS 1999, Krnov, Czech Republic, p. 371-377, ISBN 80-
85988-41-0, 1999

390. Milner, R. A Calculus of Communicating Systems. Lecture Notes in Com-
puter Science. Vol. 92, Springer-Verlag, Berlin, 1980

391. Milner, R. Communicating and Mobile Systems: The Pi-Calculus. Cambridge
University Press, Cambridge, UK, 1999

392. Milner, R. The Polyadic pi-Calculus: A Tutorial. In F. L. Hamer, W. Brauer
and H. Schwichtenberg, editors, Logic and Algebra of Specification.
Springer-Verlag, 1993

393. Salaun, G., L. Bordeaux, M. Schaerf. Describing and Reasoning on Web Ser-
vices using Process Algebra. Proceedings of the IEEE International Confer-
ence on Web Services (ICWS), Washington DC, USA, 2004

394. Magee, J., and J. Kramer. Concurrency: State Models and Java Programs.
Wiley, New York, NY, USA, Second Edition, 2006

395. The Rule Markup Initiative, http://www.ruleml.org (Accessed March 27,
2008)

396. The Ontology Definition Metamodel (ODM). http://www.omg.org/docs/ptc/
07-09-09.pdf (Accessed March 27, 2008)

397. Open Knowledge Base Connectivity 2.0.3 — Proposed —. http://
www.ai.sri.com/~okbc/spec/okbc2/okbc2.html (Accessed March 27, 2008)

398. DIG Interface Standard (DIG 2.0). http://dl.kr.org/dig/interface.html
(Accessed March 27, 2008)

399. OWL API. http://owlapi.sourceforge.net/ (Accessed March 27, 2008)
400. Bechhofer, S., R. Moller and P. Crowther. The DIG description logic inter-

face. Proceedings of the International Description Logics Workshop (DL),
2003

401. Haarslev, V., R. Moller and M. Wessel. Querying the Semantic Web with
Racer+ nRQL. Procedings of the KI-04 Workshop on Applications of
Description Logics, 2004

402. Sirin, E., and B. Parsia. 3rd OWL Experiences and Directions Workshop
(OWLED), 2007

403. Simple Knowledge Organization System (SKOS). http://www.w3.org/2004/
02/skos/ (Accessed March 27, 2008)

404. Fensel, D., H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, J.
Domingue. Enabling Semantic Web Services: The Web Service Modeling
Ontology, Springer Verlag, 2006

 References 403

405. ILOG Business Rules Management Systems. http://www.ilog.com/products/
businessrules/ (Accessed May 27th , 2008)

406. NeOn Toolkit Portal. http://www.neon-toolkit.org/ (Accessed May 30, 2008)
407. OWL 1.1 Web Ontology Language Overview. http://www.w3.org/Submis-

sion/owl11-overview/ (Accessed May 30, 2008)
408. Jena 2 Inference Support. http://jena.sourceforge.net/inference/ (Accessed

May 30, 2008)
409. Jess, the Rule Engine for the Java Platform. http://www.jessrules.com/jess/

index.shtml (Accessed May 30, 2008)
410. Forgy, C. L. Rete: A Fast Algorithm for the Many Pattern/Many Object Pat-

tern Match Problem. Artificial Intelligence 19, p 17-37, 1982
411. Staab, S., and R. Studer (editors). Handbook on Ontologies. Birkhauser Pub-

lishers, 2004
412. Kifer, M., G. Lausen and J. Wu. Logical Foundations of Object-Oriented and

Frame-Based Languages. Journal of the ACM, May 1995
413. Concepts of Crossvision Information Integrator. http://documentation.soft-

wareag.com/crossvision/xei/concepts/conceptsover.htm (Accessed June 1,
2008)

Index

A
abstract processes 244, 245
Abstract service discovery 280
Abstract State Machine (ASM) 272
activities 245
Adaptive IE 166
Adaptive Information Extraction 168
AeroDAML 167, 168
AeroSWARM8 167
AI Planning 281
AktiveDoc 168
ALCQHIR 156
AL-log 187
Amaya 164
Amilcare 165, 166
analog telephone 196
Anchor-PROMPT 181
annotation frameworks, tools and environments 163
Annotation Process 191
annotation process 162
Annotation Storage 163
Annotea 163
Annozilla 164
Apollo 138
Application-to-Application (A2A) Protocols 211
Application-to-Application Communication 241
Armadillo 166, 168
Artemis 179
artifacts 245
assumptions 271
asynchronous communication 195
asynchronous connection 196
ATP 147
autonomous systems 234

406 Index

B
Basic Formal Ontology (BFO) 300
behavior of communication 198
best profile covering 277
BFO 84
BioPAX 18
BioPax 32, 299
BPEL 222
BPEL4WS 244
BPMN 222
Business Process Modeling Notation

(BPMN) 245
Business-to-Business (B2B) Protocols

210
Business-to-Business Communication

240
BUSTER 186, 187, 188

C
C++ 139
CAFETIERE 166, 168
Capability 271
CARIN 123, 187
Carnot 183
CEL 154
Chimaera 151
Choreography 238
choreography 246, 272
Ciao Prolog 147
CIM/DMTF 298
Classes 96
CLASSIC 149, 187
Classification 80
Classification of Schema-matching

Approaches 173
Clinical Use Case 12
clinical workflow 311
COBra 141
COBWEB 149
Coding Systems 80
COHSE 164
COIN 186, 187
collaboration 245
COMA 180

combination of business logic 243
Combination of matchers 173
combination of several specialized on-

tologies 185
COmbination ofMAtching algorithms

(COMA) 180
Common Information Model (CIM) 82
communication 195
communication channel 196
communication partners 195
communication protocols 195
community of agents 79
Comparison of Ontology Representa-

tion Languages 118
compensating actions 245
compensation 237
Complex types 87
component invocation 235
composed components 235
composed objects 235
composing object). 235
composition 233, 243
composition implementation 239
Composition in context of communica-

tion 234
Composition in context of complex

business logic 234
Computational Aspects of the Semantic

Web 7
conditional branching 235
conjunction 120
connecting objects 245
connection 196
containment principle 234
Content Models 90
Context 118
CORBA 215
CREAM 163, 164
Cupid 179
Cyc 299
Cyc Ontology 32

D
DAML 260

 Index 407

DAML+OIL 303
DAML-ONT 303
DAML-S 260, 303
DARPA Agent Markup Language

(DAML) 303
data flow 236
data formats 195
Data mediation 274, 340
data mediation 284
Data Model 35
Data Models and Semantics 38
data sources 236
Datalog 187
declarative compositions 235
deep Web 23
Defined Mappings 189
Definition of Composition 235
Definition of Terms 188
Description Logics 116
description logics 100, 187
description logics (DL) 178
description logics (DL) EL 154
Description Logics Program (DLP) 124
Descriptive Ontology for Linguistic

and Cognitive Engineering
(DOLCE) 177

DIG Description Logics Interface 297
DIP 303
Direct 3D 165
Discovery 276
disjunction 120
Distributed Management Task Force

82
distributed transactions 237
DL EL+ 155
DL reasoners 147
DLS 170
Document and Annotation consistency

163
document classification and composi-

tion 29
document vectors 29
DOLCE 84
domain ontology 186

Domain Specific Metadata 28
domain specific ontology 185
DWQ 183, 187, 188, 189, 191
Dynamic Composition 239
dynamic composition 233

E
EDI 210
effects 271
Electronic Health Record (EHR) 15
Elementary matchers 173
Enterprise Application Integration

(EAI) 211, 241
Entity-Relationship Models 81
exactly-once transmission 210
exceptions 245
executable processes 244
explicit composition 234
Expose 191
Expressive XML Query Languages 53
Extended Entity-Relationship (EER)

140
eXtensible Markup Language (XML)

35, 293
Extensible Stylesheet language (XSL)

36
eXtensible Stylesheet Transformation

Language (XSLT) 294
external behavior 238
externally visible behavior 238

F
FaCT++ 155
Finite State Machines 253
First-Order Logic 116
First-Order Logic Ontology for Web

Services (FLOWS) 261, 302
F-Logic 187
flow objects 245
FLOWS-Core 263
formats and protocols 197
foundation ontology 84
Frame Representation Systems (FRSs)

141

408 Index

Framework for Semantic Web 5
fuzzyDL 155

G
Galen Medical Knowledge Base (GA-

LEN) 155
GALEN methodology 146
GATE 167
Gene Ontology 18, 32, 298
Gene Ontology (GO) 155
general concept inclusions (GCI) 154
general ontology 186
Generic Knowledge Base (GKB) Edi-

tor 141
GENIA biomedical corpus 166
GGMediators 274
global ontology 184
global processes 245
GO 141
Goal 270
Goal discovery 280
Goal refinement 280
goal-based orchestration 283
GRAIL 187
Graphic Query Interfaces 53

H
Haystack 168
Hierarchical Task Planning (HTN) 282
Higher Order Theories 83
HIPPAA 210
Horn Rules 124
horn rules 188
h-TechSight Knowledge Management

Platform 167
HTTP 218
hybrid ontology approach 184

I
ICD-10 17
I-COM 191
ICOM 140
IEEE Standard Upper Ontology (IEEE

SUO) 32
IEEE Suggested Upper Merged Ontol-

ogy (SUMO) 300
Implementation 251
implicit composition 234
Impression vectors 29
inference engines 147
Information Aspects of the Semantic

Web 6
information types 245
InfoSleuth 183, 187, 190
Inheritance 120
instance document 84
Instances 119
Integrated Annotation Environments

168
Inter-domain specific metadata 29
Interface 251
interface 272
internal behavior 238
internal processes 245
International Classification of Diseases

32
International Classification of Diseases

(ICD) 80
International Classification of Diseases

(ICD-9) 299
International Electotechnical Commis-

sion (IEC) 290
International Engineering Task Force

(IETF) 291
International Organization for Stan-

dardization (ISO) 289
Inter-Ontology Mapping 189
inter-ontology mapping 185
Intra-domain specific metadata 28
inverted indices 29
invocation order 235
IODE 140
ISO-18629 Process Specification Lan-

guage (PSL) 301

J
Java Business Integration (JBI) 246

 Index 409

Java Management Extensions (JMX)
276

JavaSpaces 276
JPEG 2000 165

K
K@ 166
KAON2 155
KEGG 32
Keyword-Based Discovery 277
keyword-based discovery 277
KIF 139
KIM 167
KIMO ontology 167
KnowItAll 166
knowledge engineer 14
Knowledge Interchange Format (KIF)

32, 83, 261, 297, 301
KRAFT 183, 187, 188, 189, 190
KRSS 139

L
Label Bureaus 170
Laboratory Information Management

Systems (LIMS) 15
Lexical Relations 189
LinKFactory 138
List Types 90
Lixto 166
logic DLR 187
Logic Programming 116
Long-running Communication 209
long-running transaction 243
long-running transactions 236
LOOM 191
Loom 139, 147
LOOM description logic 187
Lorel 51, 54

M
Magpie 168
Mangrove 164
Mealy machines 253

MECOTA 186
Mediation 283
Mediator 270
Medical Subject Headings (MeSH) 299
Medical Subjects Heading 32
MEDLINE 30
Melita 166, 172
Meta-Annotation 188
Metadata 25
Metadata Annotation Frameoworks

163
Metadata Annotation Tools 164
metadata annotations of structured web

resources 161
Meta-Object Facility (MOF) 37
metdata annotations of unstructured

and semi-structured docments 161
METEOR-S 266
METHONTOLOGY 139
Methontology 146
minimal ontology commitment 184
MnM 166
Model-Theoretic Semantics 48
Modularization 234
MOMIS mediator system 179
monolithic ontology 185
M-OntoMat-Annotizer 165
Moore machines 253
Mozilla 164
MPEG-2 165
multi-party communication 199
Multiple ontologies and evolution 162
Multiple Ontology Approach 185
multiple ontology approach 184

N
N3 62
Naive Ontology Mapping (NOM) 180
National Institute of Standards and

Technology (NIST) 291
Natural Language Processing (NLP)

148
NDVI 29
Negation 120

410 Index

New Types 91
Nomenclature 80

O
OASIS SOA reference model (RM)

223
Object Management Group (OMG) 37
Object Query Language (OQL) 54
object-based discovery 277
OBO 141
OBSERVER 183, 185, 187, 188, 189
Occurrence Constraints 88
OCML 140
OCML inference engine 147
ODEMerge 151
OIL 187, 260
OKBC (Open Knowledge Based Con-

nectivity) 139
OntoBroker 147
Ontobroker 183, 187, 188, 190
Onto-edit 191
OntoKnowledge methodology 146
Ontolingua 139, 147, 185
Ontolingua Server 139
Ontologies 30
Ontologies as Verification Mechanism

186
Ontology 270
ontology as a query model 186
Ontology Bootstrapping 148
Ontology Building Tools 137
Ontology Definition Metamodel

(ODM) 296
Ontology Development Methodologies

190
Ontology Editors 138
Ontology Engines and Reasoners 154
ontology evolution 191
Ontology Inference Language (OIL)

303
Ontology Merge and Integration Tools

150
Ontology Representation Languages

84

ontology-based information integration
183

OntoMat-Annotizer 164, 165
Ontosaurus 139, 147
OntoStudio 138, 147, 191
Ontylog 32
OOMediators 274
Open Knowledge Base Connectivity

Protocol (OKBC) 297
Open Ontology Forge (OOF) 165
Orchestration 238
orchestration 272
Organization for the Advancement of

Structured Information Standards
(OASIS) 290

OWL 79, 118
OWL API 298
OWL based Metadata Framework 37
OWL Full 37, 100
OWL Lite 100
OWL Lite Aligner (OLA) 180
OWL Ontologies 82
OWL Rules Language (ORL) 124
OWL Rules Proposal 124
OWL-DL 32, 37, 100, 260
OWL-Lite 37
OWL-QL 73
OWL-S 259, 269, 303

P
PAL 147
parallel branches 235
PARKA 191
Parmenides project 166
participant type 245
Pattern-based Annotation through

Knowledge On the Web
(PANKOW) 167

PDDL 282
Pellet 156
Petri nets 254
PICSEL 183, 187, 188
Planning Domain Description Lan-

guage (PDDL) 261

 Index 411

postconditions 271
preconditions 271
Primitive datatypes 119
private processes 244, 245
Process mediation 274, 340
process mediation 284
process querying 277
Process Specification Language (PSL)

261
Process-Based Querying 280
professional annotators 162
PROMPT 151, 181
Properties 97
Property constraints 119
Property values 119
propositional satisfiability (SAT) 178
Protege 139
Protégé 147
Protocol mediation 274, 340
PSL-Core 301
PSL-OuterCore 302
PSL-OuterCore ontology 263
public processes 244, 245

Q
Q-Features 29
Query By Example (QBE) 51
Query Language 35
Query Languages 51
Query Languages for XML Data 51
Quick Ontology Mapping (QOM) 180
Quilt 54
Quinary 166

R
RacerPro 122, 156
Rainbow 167
RDF 36
RDF based Metadata Framework 36
RDF Schema 79, 92, 118, 295
RDF Schema (RDFS) 36
RDF Schemas 32
RDQL 62
receiver 199

receiving partner 199
receiving party 196
relationship type 245
Request Rewriting 278
request rewriting 277
Resource Description Framework

(RDF) 35, 162, 261, 295
R-Features 29
role inclusions (RI) 155
role of sending and receiving 199
role type 245
RosettaNet 210
RQL 62
rule-based reasoning 187
Rule-ML 296
Rules Ontology for Web Services

(ROWS) 262

S
S-CREAM 164
Seeker 167
Semantic annotation 162
Semantic Annotations for WSDL

(SAWSDL) 268
Semantic Correspondences 189
Semantic Web Rules Language

(SWRL) 156, 261, 296
Semantic Web Service Composition

281
Semantic Web Services 249
Semantic Web Services Framework

(SWSF) 261, 304
Semantic Web Services Initiative (SW-

SI) 292
Semantic Web Services Language

(SWSL) 261
Semantic Web Services Language for

First Order Logic (SWSL-FOL) 262
Semantic Web Services Ontology

(SWSO) 261, 302
semantically corresponding objects

184
Semantics 35
Semantics and Web Services 226

412 Index

semantics of information sources 183
Semantics of Web Services 249
SemanticWord 168
SemTag 167
Semtalk 141
sender 199
sending partner 199
sending party 196
Serialization Format 35
SeRQL 62
Service contracting 280
ServiceGrounding 259
ServiceModel 259
Service-Oriented Architecture (SOA)

215
Service-oriented Architecture (SOA)

223
ServiceProfile 259
Sesame 167
shared variable 196
shared vocabulary 184, 185
SHIF 155
SHIQ 156
SHIQ reasoner 155
SHOE 183, 188
SHOE Knowledge Annotator 165, 191
SHOIN(D) 156
Similarity Flooding (SF) 179
Simple Object Access Protocol 215
SIMS 183, 184, 186, 187, 188, 191
Single Ontology Approach 184
single ontology approach 184
SmartWeb project 166
S-Match 181
SMORE 165
SMTP 218
SNOMED 17, 298
SOAP 215
SPARQL 36, 62, 65, 295
spatial registration 29
specification of a conceptualization 79
speech feature index 29
SROIQ(D) 156
Standard Generalized Markup Lan-

guage (SGML) 293
Standard Upper Ontology (SUO) 141
standardized formats 162
State-based Discovery 279
Statechart Diagrams 254
static composition 233
Statistical clustering 149
Structural Metadata 28
Structure Enrichment 188
Structure Resemblance 188
Structured Query Language (SQL) 54
Subclasses and properties 119
Subsumption-Based Discovery 278
subsumption-based matching 277
Suggested Upper Merged Ontology

(SUMO) 177
SUPER 303
Supervised machine learning 148
surface Web 23
swimlanes 245
SWING 303
SWOOP 142
synchronous communication 195, 196
Systematized Nomenclature of Medi-

cine (SNOMED) 155

T
TAMBIS 32, 187
Taxonomies 31
Taxonomy Based Disambiguation

(TBD) 167
Teknowledge 164
Term Lists 31
Terminological Systems 79
Terminology 79
The Object Modeling Group (OMG)

291
Thesauri 31
Thesaurus 79
Thresher 168
topic change indices 29
Top-Level Grounding 189
top-level ontology 84, 189
traditional Web Services 216

 Index 413

transactional behavior 236
transactional control 236
transactional queueing 211
transactional RPC 211
Translation research 11
Translational Medicine 11
translational medicine 7
TRIPLE 62
TSIMMIS 183, 188

U
UML models 82
UMLS Metathesaurus 32
Unified Medical Language System

(UMLS) 300
Unified Modeling Language (UML)

297
Union Types 90
United States National Library of Med-

icine (NLM) 292
Universal Description Discovery and

Integration (UDDI) 216
Upper Ontologies 84

V
Vannotea 164, 165
Versa 62
Visual Ontology Modeler 141
Vocabularies and Reference Terms for

Metadata 30
Vocabulary 79

W
W3C Semantic Annotations for the

Web Services Description Language
(SAWSDL) 302

Web Ontology Language (OWL) 32,
35, 82, 162, 259, 296, 303

Web Service 270
Web Service Choreography Descrip-

tion Language (WS-CDL) 245
Web Service Composition 233
Web Service composition 237

Web Service Description Language
(WSDL) 216

Web Service Interoperability Organiza-
tion (WS-I) 227

Web Service Invocation Framework
(WSIF) 238

Web Service Model Execution
(WSMX) 303

Web Service Modeling Execution En-
vironment (WSMX) 275

Web Service Modeling Language
(WSML) 116

Web Service Modeling Languge
(WSML) 303

Web Service Standards 221
Web Service Technology Stack 221
Web Services BPEL Technical Com-

mittee 244
Web Services Business Process Execu-

tion Language (WS-BPEL) 244
Web Services Business Process Execu-

tion Language (WSBPEL) 283
Web Services Modeling Framework

303
Web Services Modeling Ontology

(WSMO) 303
Web Services Modeling Toolkit

(WSMT) 276
WebODE 139, 147
WebOnto 140, 147
WGMediators 274
WiCKOffice 168
WordNet 176
Workflow and Business Processes

Technology 282
World Wide Web Consortium (W3C)

290
WS*-Stack 220
WS-CDL 222
WSDL 244
WSDL-S 266, 304
WSFL 244
WSIF 224, 244
WSIL 222

414 Index

WSML-Core 117
WSML-DL 117
WSML-Flight 117
WSML-Full 117
WSML-Rule 117
WSMO 269
WSMO Studio 276
WSMO4JParser 275
WSMX SourceForge Project 276
WWMediator 274

X
XBQE 52
XLANG 244

XLink 36
XML based Metadata Framework 36
XML document 84
XML RPC 215
XML Schema 32, 79, 84, 118, 294
XML-GL 51
XML-QL 51, 54
XPath 36, 54, 244, 294
XPointer 36, 164
XQL 52, 54
XQuery 36, 52, 54, 294
XSL Formatting Objects (XSL/FO) 36
XSL transformations (XSLT) 36
XSLT 51, 244

	1 Introduction
	1.1 Motivation: Why Semantic Web?
	1.2 A Framework for Semantic Web
	1.3 Use Case: Translational Medicine Clinical Vignette
	1.4 Scope and Organization

	2 Use Case and Functional Requirements
	2.1 Detailed Clinical Use Case
	2.2 Stakeholders and Information Needs
	2.3 Conceptual Architecture
	2.4 Functional Requirements
	2.5 Research Issues
	2.6 Summary

	3 Semantic Web Content
	3.1 Nature of Web Content
	3.2 Nature of Semantic Web Content
	3.3 Metadata
	3.3.1 Metadata Usage in Various Applications
	3.3.2 Metadata: A Tool for Describing and Modeling Information

	3.4 Ontologies: Vocabularies and Reference Terms for Metadata
	3.5 Summary

	4 Metadata Frameworks
	4.1 Examples of Metadata Frameworks
	4.1.1 XML-Based Metadata Framework
	4.1.2 RDF-Based Metadata Framework
	4.1.3 OWL-Based Metadata Framework
	4.1.4 WSMO-Based Metadata Framework

	4.2 Two Perspectives: Data Models and Model-Theoretic Semantics
	4.2.1 Data Models
	4.2.2 Multiple Syntaxes for RDF: A Short Note
	4.2.3 Model-Theoretic Semantics

	4.3 Query Languages
	4.3.1 Query Languages for XML Data
	4.3.2 Query Languages for RDF Data
	4.3.3 Extending Query Languages with Reasoning and Entailment

	4.4 Clinical Scenario Revisited
	4.4.1 Semantic Web Specifications: LIMS and EMR Data
	4.4.2 Linking data from Multiple Data Sources
	4.4.3 Advantages and Disadvantages of using Semantic Web Specifications

	4.5 Summary

	5 Ontologies and Schemas
	5.1 What is an Ontology?
	5.2 Ontology Representation Languages
	5.2.1 XML Schema
	5.2.2 RDF Schema
	5.2.3 Web Ontology Language
	5.2.4 The Web Service Modeling Ontology WSMO
	5.2.5 Comparison of Ontology Representation Languages

	5.3 Integration of Ontology and Rule Languages
	5.3.1 Motivation and Requirements
	5.3.2 Overview of Languages and Approaches
	5.3.3 Semantic Web Rules Language

	5.4 Clinical Scenario Revisited
	5.4.1 A Domain Ontology for Translational Medicine
	5.4.2 Integration of Ontologies and Rules for Clinical Decision Support
	5.4.3 Advanatages and Disadvantages of using Semantic Web Specifications

	5.5 Summary

	6 Ontology Authoring and Management
	6.1 Ontology Building Tools
	6.1.1 Ontology Editors: Brief Descriptions
	6.1.2 Ontology Editors: A Comparative Evaluation

	6.2 Ontology Bootstrapping Approaches
	6.3 Ontology Merge and Integration Tools
	6.3.1 Ontology Merge and Integration Tools: A Brief Description
	6.3.2 Evaluation of Ontology Merge and Integration Tools

	6.4 Ontology Engines and Reasoners
	6.5 Clinical Scenario Revisited
	6.6 Summary

	8 Communication
	8.1 Communication Concepts
	8.1.1 Fundamental Types
	8.1.2 Formats and Protocols FAP
	8.1.3 Separation of Interface and Logic
	8.1.4 Communicating Parties
	8.1.5 Mediation
	8.1.6 Non-functional Aspects

	8.2 Communication Paradigms
	8.2.1 Client/Server C/S
	8.2.2 Queueing
	8.2.3 Peer-to-Peer P2P
	8.2.4 Blackboard
	8.2.5 Web Services
	8.2.6 Representational State Transfer REST
	8.2.7 Agents
	8.2.8 Tuple Spaces
	8.2.9 Co-location
	8.2.10 Summary

	8.3 Long-Running Communication
	8.3.1 Business-to-Business B2B Protocols
	8.3.2 Application-to-Application A2A Protocols

	8.4 Web Services
	8.5 Clinical Use Case
	8.6 Summary

	9 State of the Art in Web Services
	9.1 History
	9.2 Traditional Web Services
	9.2.1 WSDL
	9.2.2 SOAP
	9.2.3 UDDI
	9.2.4 Summary

	9.3 Emerging Web Service Specifications WS*-Stack
	9.3.1 Standards
	9.3.2 Web Service Standards
	9.3.3 Semantic-Web-Service-Related Standards

	9.4 Service-oriented Architecture SOA
	9.4.1 Service Paradigm
	9.4.2 SOA and Web Services
	9.4.3 Open Issues and Technical Challenges

	9.5 Semantics and Web Services
	9.5.1 Semantics, What Semantics?
	9.5.2 Data Semantics
	9.5.3 Process Semantics
	9.5.4 Selection Semantics
	9.5.5 Other Types of Semantics

	9.6 Clinical Use Case
	9.7 Summary

	10 Web Service Composition
	10.1 Composition
	10.1.1 Motivation
	10.1.2 Definition of Composition
	10.1.3 Web Services and Composition
	10.1.4 Choreography and Orchestration

	10.2 Dynamic Composition
	10.3 Business-to-Business Communication
	10.4 Application-to-Application Communication
	10.5 Complex Business Logic
	10.6 Standards and Technologies
	10.6.1 Web Services Business Process Execution Language WS-BPEL
	10.6.2 Business Process Modeling Notation BPMN
	10.6.3 Web Service Choreography Description Language WS-CDL
	10.6.4 Java Business Integration JBI

	10.7 Clinical Use Case
	10.8 Summary

	11 Semantic Web Services
	11.1 Semantics of Web Services
	11.1.1 Why Semantic Web Services?
	11.1.2 Interface vs. Implementation
	11.1.3 Modeling of State

	11.2 Alternatives for Capturing Semantics of Web Services
	11.2.1 Finite State Machines
	11.2.2 Statechart Diagrams
	11.2.3 Petri Nets
	11.2.4 Process Algebras

	11.3 Semantic Web Service Approaches
	11.3.1 OWL-S
	11.3.2 SWSF
	11.3.3 WSDL-S
	11.3.4 SAWSDL
	11.3.5 WSMO, WSML and WSMX

	11.4 Reasoning with Web Service Semantics
	11.4.1 Discovery
	11.4.2 Semantic Web Service Composition
	11.4.3 Mediation

	11.5 Clinical Use Case
	11.6 Summary

	12 Semantic Web Standards
	12.1 Relevant Standards Organization
	12.1.1 International Organization for Standardization ISO
	12.1.2 International Electotechnical Commission IEC
	12.1.3 Organization for the Advancement of Structured Information Standards OASIS
	12.1.4 World Wide Web Consortium W3C
	12.1.5 International Engineering Task Force IETF
	12.1.6 National Institute of Standards and Technology NIST
	12.1.7 The Object Modeling Group OMG
	12.1.8 Semantic Web Services Initiative SWSI
	12.1.9 United States National Library of Medicine NLM

	12.2 Semantic Web Content Standardization Efforts
	12.2.1 Standard Generalized Markup Language SGML
	12.2.2 eXtensible Markup Language XML
	12.2.3 eXtensible Stylesheet Transformation Language XSLT
	12.2.4 XPath
	12.2.5 XQuery
	12.2.6 XML Schema
	12.2.7 Resource Description Framework RDF
	12.2.8 SPARQL
	12.2.9 RDF Schema
	12.2.10 Web Ontology Language OWL
	12.2.11 Rule-ML
	12.2.12 Semantic Web Rules Language SWRL
	12.2.13 Ontology Definition Metamodel ODM
	12.2.14 Unified Modeling Language UML
	12.2.15 Knowledge Interchange Format KIF
	12.2.16 Open Knowledge Base Connectivity Protocol OKBC
	12.2.17 DIG Description Logics Interface
	12.2.18 OWL API
	12.2.19 Standardized Vocabularies and Ontologies

	12.3 Semantic Web Services Standardization Efforts
	12.3.1 ISO-18629 Process Specification Language PSL
	12.3.2 W3C Semantic Annotations for the Web Services Description Language SAWSDL
	12.3.3 OWL-S
	12.3.4 Web Services Modeling Ontology WSMO
	12.3.5 Semantic Web Services Framework SWSF
	12.3.6 WSDL-S
	12.3.7 OASIS Semantic Execution Environment SEE
	12.3.8 OASIS Service-Oriented Architecture Reference Model SOA RM
	12.3.9 Semantic Web Services Architecture SWSA
	12.3.10 Semantic Web Services Interest Group SWS-IG

	12.4 Summary

	13 A Solution Approach to the Clinical Use Case
	13.1 Service Discovery, Composition and Choreography
	13.1.1 Specification of Clinical Workflow using WSMO
	13.1.2 Data Structures in Data Flow
	13.1.3 Data Mediation
	13.1.4 Goal Definition
	13.1.5 Discovery
	13.1.6 Orchestration/Service Composition
	13.1.7 Process and Protocol Mediation

	13.2 Data and Knowledge Integration
	13.2.1 Data Integration Services: WSMO/WSML Specification
	13.2.2 Semantic Data Integration Architecture
	13.2.3 A Domain Ontology for Translational Medicine
	13.2.4 Use of RDF to represent Genomic and Clinical Data
	13.2.5 The Integration Process

	13.3 Decision Support
	13.3.1 Decision Support Services: WSMO/WSML Specification
	13.3.2 Architecture
	13.3.3 Business Object Model Design
	13.3.4 Rule Base Design
	13.3.5 Definitions vs. Actions: Ontology Design

	13.4 Knowledge Maintenance and Provenance

	14 Outlook: The Good, the Bad and the Ugly?
	14.1 The Good - Progress and Impact
	14.2 The Bad - Major Obstacles to Overcome
	14.3 The Ugly - Possible Prohibitors

	Part VI References and Index
	References
	Index

