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PREFACE

In rewriting the first edition of this book, two goals were pursued. The first
one is educational, to make the book more accessible to graduate and advanced
undergraduate students and to supplement the presentation with additional “infras-
tructure” that allows the reader to use the book as a textbook for special courses.
The second goal, although more usual, is no less important; it strives from the
necessity to renew the material of the book in view of the fast development of
this field during the last two decades.

For the educational goal the narrative is given in maximum possible plain
language accompanied by many boxed “Examples” showing explicitly how the
theory is applied to solving specific chemical problems, and each chapter is
supplemented by “Summary Notes,” “Questions,” “Exercises,” and “Problems.”
These supplements serve as a guide to learning and adoption of the subject by
the students, and to help the instructor of the course. Some of these additions
are on the level of chemical problem solving with detailed solutions given at the
end of the book.

Beside these essential educational improvements the book preserves and
enhances the first edition’s role as a source of information on the basics
of electronic structure and properties of transition metal systems (TMSs) in
its most modern understanding, and with emphasis on origins and physical
meaning. All the chapters are corrected and updated, but essential changes were
introduced in Chapters 5–9, especially in Chapters 5 and 8. In particular, in
Chapter 5 combined quantum–classical (QM/MM) methods of modeling large
organometallic systems are described and examples of QM/MM calculations
for specific TMS are given. In the same chapter an extended presentation of
the density-functional methods of electronic structure calculations (which have

xxi



xxii PREFACE

reached widespread use also by nonexperts) is given together with examples
of computations using free programs downloaded from the Internet. Similar
examples are also given for semiempirical and ab initio methods of computation.
In Chapter 8 some important physical methods of investigation are added,
including a section on gamma-resonance spectroscopy, as well as further
description of IR, Raman, and charge transfer spectra.

The special boxed “Examples” in nine chapters of the book (a total of 70)
supplement the theoretical methods and results, making them more accessible and
understandable. They may serve also as separate essays—solutions of chemical
problems by means of theoretical methods, and therefore they are indicated on a
separate line in the book Contents.

The role and place of this book among others available is outlined in the
introductory Chapter 1, but I should like to note here the (unique of this kind)
attempt to promote a novel, more general agenda (with a higher level of theory
and understanding) of the role of electronic structure in formation and transfor-
mation of matter. With regard to TMS, the first significant level of electronic
theory was reached in the 1950s–1960s by crystal field theory . A higher level
of theory was achieved in the 1980s–1990s, based on computer developments
that allowed for full molecular orbital and density-functional electronic structure
calculations .

However, in the last two to three decades a new, higher level of understanding
of the role of electronic structure in properties of matter emerged that has not yet
been assimilated by the lay chemist and physicist, and still has not been intro-
duced in teaching of this subject. The novel understanding is related to the ways
in which the electrons control molecular transformation. It turns out that nuclear
configuration changes are dependent on the electronic structure that essentially
involves excited electronic states . The point is that quantum separation of ground
and excited electronic states is valid only for given, fixed positions of the nuclei;
any displacement of the latter mixes the initial ground and excited or degenerate
states, and this mixing is crucial in understanding the origin of nuclear config-
uration changes. Mixing electronic states, ground and excited, degenerate and
nondegenerate, solely determines all possible nuclear configuration instabilities,
distortions, and transformations , including formation of molecular shapes and
crystal lattices, conformational changes and phase transitions, chemical activa-
tion, and mechanism of chemical reactions, to mention a few.

Comprehending this nuclear-dynamical aspect of electronic structure elevates
the theory to a new, higher level and facilitates a better understanding of chemical
and physical phenomena. The intention of this book is to instill this advanced
way of thinking in physics and chemistry. It is given in many parts of the book
as a paradigm, more noticeable and explicitly in Section 7.4 with applications in
subsequent chapters, especially Chapters 9–11.

In preparation of this book I benefited from the help of my students and
colleagues, many of whom were mentioned in the Preface to the first edition. For
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the present (second) edition I received further assistance from J. E. Boggs, P.
Garcia-Fernandez, V. Z. Polinger, B. S. Tsukerblat, M. D. Kaplan, S. A. Borshch,
S. S. Stavrov, G. I. Bersuker, L. F. Chibotaru, I. Ya. Ogurtsov, N. N. Gorinchoy,
Wenli Zou, and Yang Liu. I am grateful also to F. A. Cotton and J. P. Fackler, Jr.,
for their foreword to the first edition. Special thanks are due to Professor Charles
Dismukes (Princeton University), who used the first edition as a textbook to his
courses and provided us with a variety of comments and questions, as well as
corrections to misprints and omissions.

Isaac B. Bersuker
Austin, Texas, March 2009

EXTRACTS FROM THE PREFACE TO THE FIRST EDITION

Presently transition metal compounds form a number of research fields with vast
applications ranging from a variety of magnetic, ferroelectric, and superconduct-
ing materials to all kinds of catalysts, to metallobiochemical systems of vital
importance. The main goal of this book is to provide a comprehensive discus-
sion of the latest developments in the study of electronic structure and related
properties of transition metal coordination systems, and to present the subject in
a form suitable for chemists and physicists—students, researchers, and teachers.

Most attention is paid to a better understanding of the basic principles, general
features, and specifics of electronic properties affecting ligand bonding, stereo-
chemistry and crystal chemistry, chemical reactivity, electron transfer and redox
phenomena, as well as spectroscopic, magnetic, and electronic density distribu-
tion properties. The discussion of relativistic effects in bonding, presented in
a book context for the first time, elucidates the origin of important properties
including, for instance, the “nobleness” and the yellow color of gold.

Quite novel are the implications of vibronic effects in chemical and physical
phenomena presented in this book. The concept of vibronic interactions developed
during the last two decades as a perturbational approach to the coupling between
the electronic motion and nuclear configuration, contributes significantly to the
solution of a number of problems. These include, for instance, band shapes of
electronic and photoelectron spectra, local stereochemistry and structural phase
transitions in crystals, plasticity, distortion isomers, and temperature dependent
conformers, molecular pseudorotations, chemical activation by coordination, and
electron-conformational effects in biological systems.

One of the special features of this book is that it includes both the theory of
electronic structure and its applications to various problems. Significant efforts
were made to present the whole topic in a unified fashion with indications of
direct and indirect links between its numerous more specific aspects, and to make
the presentation understandable without oversimplification. Many examples are
provided, which will assist the reader in understanding how theoretical concepts
can be applied to laboratory problems.
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During the preparation of this book I benefited from the help and cooperation
of my students and co-workers, as well as from suggestions of many colleagues
throughout the world. I am very grateful to all of them.

Isaac B. Bersuker
Austin, Texas, April 1995



FOREWORD TO THE
FIRST EDITION

While several major treatises have been published in the English language that
purport to cover the topic of this volume, none has appeared in more than a
decade. Advances in computing during this time have put the tools of the the-
oretical chemist in the hands of the experimentalist. Use of these tools requires
a working knowledge of the basis for understanding the electronic structure and
properties of the transition elements and their compounds. Therefore, theoretical
features of the electronic structure of transition metal compounds are an impor-
tant component of the training of both the experimental and theoretical chemist
contributing solutions to problems in this area. Since this chemistry permeates
industrial and biological chemistry as well as catalysis, solutions to problems in
this field take on considerable importance. The field of transition metal chemistry
is, indeed, fortunate that Isaac Bersuker, the leading contributor to the theory of
transition metal electronic structure in the late period of the former Soviet Union,
has translated and edited his numerous contributions published originally in Rus-
sian and combined them with new work into this modern English language text.

Isaac Bersuker became recognized as an authority in the Soviet Union on
transition metal chemistry theory with publication of his 1962 book, which in
many ways covered the same material that was published in English as An Intro-
duction to Transition-Metal Chemistry by L. E. Orgel (Butler and Tanner Ltd.,
Frome, Somerset. England, 1960). While Orgel’s book was “must” reading for
transition metal chemists in the West in the 1960s, Bersuker’s book served the
same role in the Soviet Union. To our knowledge, Bersuker’s Russian language
book was never fully translated into English, although one of us (JPF) had a
Russian-speaking student translate much of it for him in the late 1960s. As
Bersuker’s interaction with Western scientists increased during the 1970s and
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1980s, his contribution to the understanding of the electronic structure of metal
systems became increasingly known and appreciated. While in the former Soviet
Union, Bersuker directed a powerful Academy of Sciences program in Kishinev,
Moldova which focused on problems involving coupling between electronic and
vibrational phenomena. In 1993 he moved to the United States (Austin, Texas),
where he continues to be active. He recently authored a major review on “The
concept of vibronic interactions in crystal stereochemistry of transition metal
compounds,” J. Coord. Chem . 289, 338 (1995).

Many readers of this Foreword will be familiar with Isaac Bersuker’s contri-
butions to the understanding of the Jahn–Teller effect. His book The Jahn–Teller
Effect and Vibronic Interactions in Modern Chemistry (Plenum Press, New York,
1984) is an important contribution used by persons interested in evaluating those
systems in which vibrational and electronic states have similar energy separations
that interact with each other. The useful concept of orbital vibronic constants is
first presented in text form in the Jahn–Teller volume. This topic is brought into
focus for the reader of this book in Chapter 7, following along after several
introductory chapters that build the basic theory of transition metal chemistry.
Incidentally, relativistic effects for transition metal compounds are treated for
what is perhaps the first time in a book directed toward inorganic chemistry.
Molecular orbital methods are introduced and compared, various bonding types
are classified, electronic band shapes are interpreted, and magnetic properties are
discussed. Stereochemistry is a fundamental and important part of this book, with
symmetry and group theory widely used throughout, including the classification
of terms, selection rules, crystal structures, and vibronic effects (vibronic stereo-
chemistry). The book concludes with an investigation of the electronic properties
of transition metal complexes, including the use of modern techniques such as
EXAFS and the development of the concepts associated with electron transfer,
a topic of fundamental importance to biological catalysis. Chemical activation
and the direct calculation of energy barriers in chemical reactions complete the
coverage in the book. Thus the student of this text is armed with an important,
even essential arsenal of theory with which to handle virtually any electronic
structure problem in transition metal chemistry.

We trust that this book will be a suitable primer for every serious practitioner
of modern transition metal chemistry.

F. A. Cotton
J. P. Fackler, JR.
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1
INTRODUCTION: SUBJECT
AND METHODS

The electronic theory of transition metal systems pioneers a way of thinking in
chemistry.

This chapter is intended to introduce the reader to the objectives and main
purpose of the book, to define the subject and the methods of its exploration,
and to determine its “ecological niche” in the rapid development of science and
increasing demands for generalized information.

After a brief discussion of the main objectives and the role and place of this
book among others available (Section 1.1), the definitions of chemical bonding
and coordination systems are given (Section 1.2), followed by a very brief outline
of the main ideas of quantum chemistry, mostly definitions employed in the
subsequent presentation (Section 1.3).

1.1. OBJECTIVES

Molecular Engineering and Intuitive Guesswork

The beginning of the twenty-first century (even the next millennium of human
civilization) inclines us to sum up the achievements in the past century and to
relate our intentions to what is expected in the coming new age. In the twentieth
century the theory of structure and properties of transition metal coordination
compounds, as well as polyatomic systems in general, advanced tremendously

Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory,
Second Edition By Isaac B. Bersuker
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and reached impressive results. Basic understanding of the nature of chemical
bonding and chemical transformations was reached and the idea of purposeful
synthesis of new compounds with specific properties was promoted significantly.
As a result of the rapid development of this trend in science, especially in the
second half of the century, the solution of the problem of molecular engineering ,
which includes design and consequent synthesis of newly designed compounds,
is approaching rapidly. In the twenty-first century the majority of new chemical
compounds will be obtained on the basis of molecular design, and we should be
prepared, both practically and psychologically, to meet this challenge.

Molecular engineering is based mainly on the knowledge of molecular struc-
ture, including electronic structure. To design a compound with specific proper-
ties, the laws that control the formation and structure of molecular systems, as
well the correlation between structure and properties, must be known in detail.
Therefore, the study of electronic structure and properties of polyatomic systems
is one of the most important tasks of modern chemistry in view of its trends and
developments in the near future.

However, so far the majority of chemical compounds with the required proper-
ties were obtained mainly on the basis of intuitive knowledge, without specialized
molecular engineering. Thus far the preparation of new compounds has depended
mainly on the skill and intuition of the researcher. On the other hand, intuition,
or intuitive knowledge, does not emerge from nothing; implicitly it is based on
real knowledge or, more precisely, on understanding (see discussion below) of
the phenomena lying in the base of the processes under consideration. Intuitive
guesswork is also a kind of “engineering”. The in-depth understanding of chem-
ical phenomena based on a correctly formulated way of thinking allows one
to sidestep (circumvent, jump over) the lack of detailed information about the
specific process under study, and to come to a correct result that from the out-
side appears to be “unexpected.” The better the understanding in visual images
concepts, models, and comparisons, the more fruitful the intuitive thinking.

It is clear that the smaller is the region of lack of knowledge (i.e., the less the
volume of the “black box” of ignorance), the easier it is to “jump over” it. If this
black box is large, the findings of intuitive guess-work are of a unique, accidental
nature; they become more frequent and more purposeful with reduction of the
black box. The volume of the black box decreases rapidly with the increase in
our knowledge (although it may never be exactly zero). Hence the preparation of
new compounds based on intuitive thinking ultimately also depends on in-depth
understanding of the phenomena, understanding based on the knowledge of the
laws controlling the formation of new compounds and their properties.

Preparation of new compounds with specific properties based on either molec-
ular engineering or intuitive conjecture requires (in both cases) knowledge of
structure and properties of such compounds .

The term “understanding” used above is not trivial and needs some clarifica-
tion. We use this term in the following sense: to understand the origin of a new
phenomenon means to be able to reduce it to more simple (“usual”), conventional
images or concepts . To deepen or extend the understanding means to introduce
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more complicated basic images to which the phenomena should be reduced. In
the 1950s the basic images in the understanding of the origin of properties of
transition metal compounds were created by the crystal field theory (Chapter 4),
which arose instead of and in addition to the image of a two-electron valence
bond. Subsequently, a deeper understanding was reached by introducing more
complicated images (concepts) of molecular orbitals that continue to serve as
basic images (Chapters 5 and 6). In the more recent decades new basic concepts
based on vibronic coupling (Chapter 7) have emerged, which essentially involves
excited states information, distortion, and transformation of molecular configu-
rations. Note that the new images of understanding, being more complicated,
do not fully negate the old ones, but complement them with new content. New
images (concepts) are produced by the theory. With the progress of science the
images become more complicated, approaching the reality.

Lack of understanding means that it is impossible to reduce the phenomenon
to well-established conventional images. This requires creation of new images.
Sometimes the latter differ drastically from the usual ones. In the history of sci-
ence the most dramatic new images have been introduced by quantum mechanics.
The wave–particle duality —the fact that a microscopic object (e.g., the electron)
exhibits properties of both particles (i.e., it can be localized at a single point of
space) and plane waves (i.e., it is delocalized over the whole space)—cannot be
understood within the existing images, it must be taken as such in a conventional
manner until it becomes usual.

In view of what we noted above about understanding, to make the book
intelligible means to reduce the properties of transition metal compounds to
basic images (concepts). Hence we should describe the newest basic images
that provide understanding most appropriate to the real phenomena. The main
concepts in the theory of electronic structure of coordination compounds,
mentioned above (crystal fields, molecular orbitals, vibronic coupling) should
be presented such as to become usual elements of thinking in chemistry (in fact,
molecular orbitals are now such elements). This, in turn, requires simplicity
and visualization to the greatest extent possible. Simplicity in this aspect means
less abstracted presentation with more specific examples avoiding as much as
possible bulky mathematical deductions. As pointed out by Werner Heisenberg
[1.1], “even for the physicist description in plain language will be a criterion of
the degree of understanding that has been reached”.

However, aspiring to simplicity involves the danger of oversimplification .
The latter takes place when the phenomenon under consideration is presented
by a “smoothed” picture in which angles are cut off and important details are
omitted. For instance, in many books and papers it is stated that as a result of the
Jahn–Teller effect, distorted molecular configurations should be observed. This
statement is an oversimplification because, in fact, Jahn–Teller distortions can
be observed only under some important additional conditions (Sections 7.3 and
9.2). Besides misunderstanding, oversimplification may create also illusions of
“easy access to science,” whereas in fact much stronger efforts are needed; this
may have negative influence on education and scientific thinking.
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Main Objectives of This Book in Comparison with Other Sources

Many books and review articles are devoted to the electronic structure and prop-
erties of transition metal coordination compounds or, more often, to particular
aspects of this problem (see, e.g., Refs. 1.2–1.16 and references cited therein).
The present book differs significantly from those sources in many respects.

First, this book attempts to give a generalized view on the modern state of
art of the whole topic beginning from the main ideas of quantum chemistry
and atomic states through theories of electronic structure and vibronic coupling
to physical methods of investigation and applications to various chemical and
physical problems. The advantages of this presentation, as compared with many
publications devoted to a more narrow aspect of the problem, is that the latter
give a generalized view of what is going on in that narrow field, whereas this
book generalizes the trend as a whole, including its main particular problems.

We emphasize that the whole trend is not equal to the sum of particular trends
(more than 2000 years ago Aristotle claimed that “the whole is more than the sum
of its parts”). A general view of the topic as a whole, given as an entire subject
with direct interrelations between its different, more particular aspects, provides a
significantly higher level of understanding of both the particular problems and the
whole trend. Presented by the same author in a unified way and on the same level,
different problems should be better understood by the reader. In some aspects
it is pleasing to see the unity of nature at work linking apparently unrelated
observations together (see, e.g., the discussion of the statement that “nature tends
to avoid degeneracies” in Section 7.4).

Many problems treated in this book are novel ; they have not been fully con-
sidered before in books on coordination compounds. This is, first, the concept
of vibronic interactions considered in Chapter 7, and then used to solve various
problems of coordination compounds (Chapters 9–11). The treatment of elec-
tronic structure, relativistic effects in bonding, optical band shapes, electronic
and vibronic origin of stereochemistry, electron transfer in mixed-valence com-
pounds, chemical activation by coordination , and others is also novel. Even for
those problems that were solved long before and considered repeatedly in books
and review publications, renewal of their presentation updated in accordance
with the novel achievements of the theory is required periodically. The previ-
ous books on electronic structure of coordination compounds with goals similar
to those of particular parts of this book have long been published [1.3–1.15];
two of the most recent books were published more than 10 years ago [1.14],
not long after our first edition. Special attention in many publications was paid
to methods of numerical computation [1.17–1.19, 1.21, 1.22]. The majority of
the present book’s sections include novel, original treatments for these “clas-
sical” problems too (see, e.g., the definition of the coordination bond given
in Sections 1.2 and 6.1). In comparison with other books of this level, this
book further explains the origins of phenomena based on first principles, which
leads to a more in-depth understanding; it prefers physical meaning over pure
description.
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As mentioned in the Preface, the novelty of this book is also in its special
efforts to promote a novel agenda with a higher level of theory and understanding
of the role of electronic structure in formation and transformation of matter.
With regard to transition metal systems (TMSs), the first significant level of
electronic theory was reached in the 1950s–1960s by the crystal field theory . It
was essentially improved in the 1980s-1990s based on computer developments
that allowed for full molecular orbital electronic structure calculations .

However, in the last two or three decades a new, higher level of understand-
ing of electronic structure and properties of matter emerged that is not yet fully
apprehended by the lay chemist and physicist, and it still has not been intro-
duced in teaching of this subject. Distinguished from the electronic structure of
well-defined molecular shapes, the novel understanding is related to all kinds
of molecular transformation. The point is that quantum separation of ground
and excited electronic states (as well as the definition of degenerate states) is
valid only for given, fixed positions of the nuclei; these states become mixed by
nuclear displacements, and this mixing is crucial in understanding nuclear con-
figuration changes (Section 7.4). Mixing electronic states, ground and excited,
solely determines all possible nuclear configuration instabilities, distortions, and
transformations , including formation of molecular shapes and crystal lattices,
conformational changes and phase transitions, chemical activation, and chemical
reactions mechanisms, to mention only a few. For a given nuclear configuration
no changes are possible within just one electronic state—this is the two electronic
states in transformations (TEST) paradigm.

Comprehending this nuclear-dynamical aspect of electronic structure elevates
the theory to a new, higher level facilitates a better understanding of chemical
and physical phenomena. The intention of this book is also to instill this advanced
way of thinking in physics and chemistry. It is given in many parts of this book,
more noticeably and explicitly in Chapter 7, Section 7.4, with applications in
subsequent chapters.

This book’s symbiosis of theory and applications, namely, the presentation of
the general theory of electronic structure (Chapters 2–5 and 7), together with
applications to chemical bonding (Chapter 6), physical methods of investiga-
tion (Chapter 8), and various chemical problems (Chapters 9–11), accompanied
by 70 Examples of solutions of relevant specific problems, as well Summary
Notes, Questions, Exercises, and Problems to each chapter, is very rare in the
literature. Meanwhile, this presentation allows the reader, interested in the solu-
tions of applied problems, to consult directly the theoretical background of these
solutions and to consider their applicability to other problems. The treatment of
different chemical properties from the same perspective also has the advantage
of stimulating the search for new effects, rules, and laws that emerge from these
direct comparisons.

To summarize, the main objectives of this book are to give a general and most
modern view on the theory of electronic structure and properties of transition
metal compounds with applications to various chemical and physical problems,
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presented in a way intelligible to students, researchers, and teachers, and usable
also as a textbook for graduate and advanced undergraduate students .

Some comments are worthwhile about the meaning of the notion “Introduction
to the Theory” given in the title of the book. It means that the latter is addressed
also to those who have not studied any special theory of electronic structure
of transition metal coordination compounds (but who have some background in
quantum theory in the volume of a regular course for chemists). It also implies
that the book is not devoted to the advances of the theory itself, its sophisticated
formulations and methodologies. Instead, the latest achievements of the theory
are presented together with explanations of how they have been obtained (but
without bulky mathematical deductions) and how they can be used to solve
physical and chemical problems. Further developments of the theory itself form
a part of quantum chemistry well presented in literature [1.16–1.22].

An important question concerning the theory is the real meaning implied by
this term. The theory of electronic structure forms one of the principal parts
of modern quantum chemistry (others are molecular dynamics, intermolecular
interactions, molecular transformations, interaction with external fields, etc.). Its
particular trend—numerical computation of the electronic structure for fixed
nuclei—is at present most advanced. Modern computers and supercomputers
allow us, in principle, to compute the electronic structure of any coordination
system of reasonable size and to get relatively accurate figures of its energies
and wavefunctions, energy barriers of chemical reactions, spectroscopic proper-
ties, and so on (see Examples in Chapters 5, 6, and 11). Note that two decades ago
metal-containing systems with active d and f orbitals were a challenge to quan-
tum chemistry [1.17, 1.21]. With the development of computers and advanced
computer algorithms and programs, these calculations tend to become routine
(see Examples and Problems in Chapters 5, 6, and 11).

However, the numerical data of the computed electronic structure themselves
cannot be regarded as a theory. Indeed, these data characterize a single compound
(for which the computation has been carried out) and, in general, they cannot
be directly transferred to other compounds. From this perspective computer data
seem similar to many other characteristics of the compounds obtained by dif-
ferent experimental facilities. In fact, numerical results on electronic structure
computation are outputs of a computer experiment ; the computer is thus similar
to a numerical spectrometer that yields the energy spectrum and wavefunctions
of the system.

To transform experimental data into a theory, the data should be properly
accumulated and generalized. The latter means correlating the data with some
analytical models obtained by simplifications and reasonable assumptions intro-
duced in the first principles. In this way the experimental data can be rationalized
and shown to express some laws, rules, trends, and characteristic orders of mag-
nitude. The same is true for computer numerical data. The latter are thus most
appreciated when they are obtained for series of compounds with similar struc-
tures and/or similar properties that can be directly generalized. In particular,
this is true for different nuclear configurations of the same system—adiabatic
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potential energy surfaces (APES) and chemical reaction energy barriers [1.17,
1.21, 1.22] (see Chapters 6 and 11).

Note also that ab initio calculated wavefunctions of coordination compounds
are given in thousands of determinants that in general can be neither read nor
understood without specific rationalizations by means of physically grounded
simplified schemes (but they can be further processed by means of computer
programs). Nevertheless, the results of numerical calculation are of inestimable
value to the theory of electronic structure; together with other experimental data,
they form the informational basis of the theory and allow one to discriminate the
best theoretical models among the many possible.

Finally, as mentioned above, the book is intended to be used also as a text-
book for graduate and advanced undergraduate students . For this purpose we
introduced many Examples (offset from general text in box format) of specific
applications of the theory, as well as end-of-chapter summary notes, questions,
exercises, and problems with solutions deemed to make this book more acces-
sible to chemists and physicists, including graduate and advanced undergraduate
students, and usable for teaching special courses. Such courses may not neces-
sarily include the entire book material—they can be devoted to only parts of
it—but because of the interrelation between these parts and cross references, the
student will be enriched with knowledge from other parts. The book is deemed to
provide a solid background in and updated understanding of the laws controlling
molecular properties, which is most important in pursuing further research and
teaching activity on any narrower subject of this vast field.

1.2. DEFINITIONS OF CHEMICAL BONDING AND TRANSITION
METAL COORDINATION SYSTEM

Chemical Bonding as an Electronic Phenomenon

Chemical bonding is usually defined as an interaction between two or sev-
eral atoms that causes the formation of a chemically stable polyatomic system
(molecule, radical, molecular ion, complex, crystal, chemisorbed formation on
surfaces, etc.). However, this formulation is not sufficiently rigorous, since with-
out additional explanation it is not clear when the system should be considered
as chemically stable. In fact, in this definition, admitting that chemical bonding
is a kind of interaction, we introduce for the characterization of the latter a new
term “chemically stable system,” which is no clearer than the initial one, the
chemical bond.

One may try to discriminate chemical bonding from other (say, intermolecular)
interactions by the bonding energy. However, the latter, as is well known from
experimental data, is not sufficiently informative for this purpose; for chemical
bonds the bonding energy varies from several to several hundred kilocalories per
mole (kcal/mol), as it is thus both smaller and larger than intermolecular interac-
tion (which reaches about 20 kcal/mol) and the hydrogen bond (1–8 kcal/mol)
(compare with the energies of the bond UBr5—Br equal to 13 kcal/mol, or the
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reaction ClO2 → Cl + O2 equal to 4 kcal/mol [1.24]). It can also be shown that
bond lengths are not always sufficiently informative with respect to the nature of
the bonding.

A more rigorous discrimination of the chemical bonding can be based on the
differences in electronic structure. The main feature of chemical interaction is that
it results in a significant reorganization (restructuring) of the electronic shells of
the bonding atoms . This reorganization is characterized by “collectivization” of
the valence electrons and charge transfer (in case of different atoms). Electron
collectivization is a more general characteristic of the bond since it can take
place without charge transfer, whereas charge transfer cannot be realized without
collectivization; the limit case of pure (100%) ionic bonds does not exist.

We define the chemical bond as an interaction between atoms associated with
a collectivization of the valence electronic orbitals [1.25]. This definition is suf-
ficiently rigorous and allows one to distinguish chemical bonding from, say,
intermolecular interaction or physical adsorption on surfaces (according to this
definition, the hydrogen bond, which is associated with electron collectivization
and charge transfer, is a type of chemical bonding).

Any rigorous definition of a physical quantity should contain, explicitly or
implicitly, an indication of the means of its observation . In the definition of the
chemical bonding given above, the means of its observation are implied; the col-
lectivization of the electrons affects all the main physical and chemical properties
of the system, and therefore the set of all these properties forms an experimental
criterion of chemical bonding. In this set, such an important characteristic of
the bond as its energy, which is an integral feature of the bond, may be less
sensitive to the electronic structure than, for instance, the electronic spectra. In
the example described above, the bond UBr5—Br with a bonding energy of ∼13
kcal/mol (which is less than the intermolecular limit of 20 kcal/mol) could be
attributed to intermolecular bonding, but the electronic spectra testify to chem-
ical bonding. Besides bonding energy and electronic spectra, chemical bonding
affects essentially all other spectra in whole-range spectroscopy, magnetic and
electric properties, electron and X-ray diffraction, and so on.

The electronic nature of chemical bonding leads directly to the conclusion of its
quantum origin. The motions of the electrons in atomic systems can be correctly
described only by means of quantum mechanics. The nature of the bonding
between two neutral atoms in the hydrogen molecule was first revealed by Heitler
and London in 1927 by means of a quantum-mechanical description [1.26]. It was
shown that the bonding results from the so-called exchange part of the energy,
which is negative and results from the undistinguishability of the electrons and
the Pauli principle; the exchange energy is a quantum effect and has no classical
(nonquantum) analog. The Heitler–London approximation lies at the base of the
quantum electronic theory of chemical bonding and quantum chemistry.

However, it is incorrect to state that the chemical bonding is due to exchange
forces that keep the neutral atoms together. The analysis of the Heitler–London
approximation for the H2 molecule clearly shows that the only forces that lead
to the formation of the chemical bond are the electrostatic interaction forces
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between the four particles: two protons and two electrons. In fact, the bonding is
caused by the quantum wave properties of the electrons. The interference of the
wavefunctions of the two electrons from the two bonding hydrogen atoms, under
certain conditions, results in extra electronic charge concentration in the region
between the two nuclei (constructive interference), thus keeping them bonded.
In many cases a significant part of the bonding energy is due to the reduction of
the kinetic energy of the collectivized electrons. The separation of the exchange
part of the energy results from the assumed one-electron approximation in the
wavefunction when there are two or more electrons. For instance, in the case of
H2

+ with a single electron, there is still chemical bonding (resulting from the
same interference of the two wavefunctions occupied by one electron) in spite
of the absence of exchange interaction.

The quantum nature of the chemical bond is stipulated by the quantum-
mechanical description of the motions of the electrons and nuclei .

The quantum origin of chemical bonding contributes directly to the understand-
ing of the main property of a chemical compound—its existence and stability.
Therefore in the study of the composition–structure–property correlation the elec-
tronic structure plays a key role. Note that in general the term electronic structure
implies that in addition to the ground-state energy and electron distribution (the
wavefunction), the excited states are also known. The latter allow one to describe
vibronic coupling and spectroscopic properties, as well as the behavior of the
system under the influence of external perturbations, including intermolecular
interactions and chemical reactions (Sections 10.1 and 11.1).

However, the electronic structure does not describe all the properties of the
compound. In particular, the temperature dependence of the properties may be
determined rather by the dynamics in the nuclear subsystem . An important feature
of the system is also the coupling of the electronic distribution to the nuclear
configuration and nuclear dynamics (vibronic coupling).

The electronic structure, vibronic coupling, and nuclear dynamics describe
in principle all the properties of isolated molecules . To describe chemical
compounds in their different aggregate states—ensembles of interacting
molecules—quantum-statistical, thermodynamic, and kinetics studies should be
employed .

Definition of Coordination System

The definition of a coordination system (coordination bond, coordination com-
pound) is not trivial and encounters difficulties. Many previous attempts to give
a compact definition based on empirical data were unsuccessful (see, e.g., the
text by Cotton and Wilkinson [1.15] and Section 6.1). In view of the discussion
given below in this section, these attempts failed because they tried to define the
coordination compound according to the genealogy (prehistory) of its formation,
whereas in fact the properties of any molecular system are determined by its
structural features, primarily by its electronic structure, regardless of the method
of its preparation [1.25] (properties of chemical compounds are functions of state,
not functions of pass).
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The usual definition of a coordination system that can be traced back to the
coordination theory created by Alfred Werner more than a century ago [1.27] is
that a complex or a coordination compound is formed by a central atom (CA)
or ion M that can bond one or several ligands (atoms, atomic groups, ions) L1,
L2, . . . , resulting in the system ML1L2, . . . , Ln (all the ligands Li or some of them
may be identical). This definition is so general that any molecular system can be
considered as a coordination compound. For instance, methane can be presented
as C4+ (M) + 4H− (4L), that is, as a coordination compound ML4 [1.15]. To
avoid this misunderstanding, it was required that the ions M and ligands Li be
“real,” existing under the usual chemical conditions, and that the reaction of
complex formation take place under the usual conditions.

Even with these limitations, the definition above is invalid, and there are
many cases when it is misleading. For example, SiF6

2− has many features of
coordination compounds (Section 6.1), whereas, when presented as required by
the definition as Si4+ + 6F−, we encounter conflict with the fact that Si4+ does
not exist under the usual conditions. This example can be treated as a more real
composition: SiF4 + 2F−; then, to include it in the definition, we must assume that
M can be also a molecule, but this assumption gives rise to new controversies
and misunderstandings. This and many other examples show explicitly that it
is impossible to give a general definition of coordination systems based on the
genealogy of their formation .

On the other hand, the properties of molecular compounds as functions of state
are determined by their electronic structure. This statement leads directly to the
idea of classification of chemical bonds and definition of coordination systems on
the basis of electronic structure [1.25]. At present, when the electronic structure
of coordination compounds is relatively well studied, the tendency to classify
the chemical compounds on their methods of preparation seems somewhat old-
fashioned. However, it was not old-fashioned at the time when coordination
chemistry was rapidly developing, while the knowledge about electronic struc-
ture was rather poor and could not serve as a basis for classification. Note also
that the way of thinking in chemistry was (and in a great measure is) more
appropriate to preparative chemistry , but it is gradually changing to structural
chemistry .

It is quite understandable that the definition of coordination systems based on
electronic structure is more convenient to discuss after the study of electronic
structure. Therefore the classification of chemical bonds and chemical compounds
is given in more detail in Section 6.1. According to Section 6.1, chemical bonds
can be classified after their electronic structure into three main classes (Table 6.1).
The first is that of localized valence bonds formed by two electrons with opposite
spins, by one from each of the bonding atoms, and these two electrons occupy one
localized bonding orbital. These valence bonds follow the usual rules of valence
of organic compounds, which can be described by one valence scheme without the
assumption of resonance structures (superposition of valence schemes). Localized
double, triple, . . . , bonds are also included in this class. The compounds with
localized valence bonds can be called valence compounds .
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The second class contains linearly delocalized bonds with possible ramification
in which the valence electrons occupy one-electron molecular orbitals that are
delocalized over all or a part of (but more than one) interatomic bonds (e.g.,
conjugated organic molecules, metallic chain structures or solids). These bonds
can be called conjugated , or orbital, bonds . In fact, this class of bonds includes
all organic and main-group-element compounds that cannot be described by one
valence scheme.

The third class contains the bonds that are three-dimensional delocalized
around a center: coordination bonds . Distinct from the conjugated bonds,
which are delocalized along the bonding line, the coordination bond is
three-dimensionally center-delocalized . In other words, the coordination bond is
formed by a coordination center to which the ligands are bonded via electrons
that occupy one-electron orbitals, each of which involves all or several ligands.
This means that, in general, there are no localized CA–ligand bonds; they are
collectivized by the three-dimensionally (i.e., along several bonds CA–ligand)
delocalized bonding electrons. It can be shown that the delocalization of
the one-electron orbitals is realized via the d or f orbitals of the central
atom, which have many lobes differently oriented in space (Section 2.1),
while s and p electrons can provide only localized or linearly delocalized
orbitals.

This definition allows one to discriminate the coordination bonds from
valence and conjugated bonds. For instance, the two tetrahedral systems, CH4

and CuCl42−, differ essentially in electronic structure: CH4 has four localized
two-electron bonds C—H (hybridized sp3 valence bonds), whereas in CuCl42−
the bonding electrons are delocalized over all the ligands via the copper d

electrons (coordination bond). Note that by this definition the bonds in NH4
+

and BH4
− are valence bonds analogous to CH4 [1.28]; similarly, BF3—NH3 is

a valence compound since its electronic structure is analogous to CF3—CH3.
In the SiF6

2− example considered above, SiF4 is a valence compound because
of its localized Si—F bonds (analogies of C—F), while the bond in SiF6

2− can be
considered as a coordination bond because the octahedral coordination involves
partially the low-lying d orbitals of Si, making the one-electron bonding states
delocalized (Section 6.1).

With this classification of chemical bonds, the following definition of the
coordination compound or, more general, coordination system can be given: a
coordination system ML1L2 · · · Ln consists of a coordinating atom (coordina-
tion center) M ligated to n atoms or groups of atoms (ligands) L1, L2, . . . , Ln

by coordination bonds that are delocalized over all or several ligands . Following
this definition two main structural features characterize the coordination system:
the coordination center and the three-dimensionally center-delocalized (coordina-
tion) bond. These features determine the main properties of coordination bonding
discussed in this book; for a brief summary see Table 6.2.

Transition metal compounds are mostly coordination systems: even in the solid
state of ionic crystals (as well as in the pure metallic state) the local features of
the system are controlled by the coordination centers with properties that, in
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essence, are quite similar to those of isolated coordination systems. The main
reason for this similarity between molecular and local crystal properties lies in
the specific role of the d electrons in both cases. Since these electrons may be
active also as low-lying excited states, this book, which is devoted to transition
metal systems (TMSs), mostly coordination systems, also includes partly pre- and
posttransition and rare-earth systems. As emphasized in Section 6.1, in principle
any atom may serve as a coordination center; active d states lacking in the free
atom may occur as a result of a corresponding chemical interaction that results
in d-state activation and coordination bonding.

1.3. THE SCHRÖDINGER EQUATION

This section presents some basic notions of quantum chemistry, the Schrödinger
equation and the main approximations used in its solution for molecular systems,
which we give here mainly to introduce appropriate denotations used below.
There are quite a number of textbooks on this topic: the reader is referred to
several texts [1.29–1.33], to mention only some of them.

Formulation

Following the formal scheme of quantum mechanics [1.29], each physical quan-
tity L (energy, momentum, coordinate, etc.) is correlated with an operator L (a
symbol that denotes a certain mathematical operation), such that the experimen-
tally observed values of this quantity L = Ln, n = 1, 2, . . . , are the eigenvalues
of the following operator equation

L�n = Ln�n, n = 1, 2, . . . (1.1)

The eigenfunction �n (the wavefunction) contains information about all prop-
erties of the system in the state with L = Ln.

For the main physical quantities the form of the operator L is well known.
In quantum chemistry, the most important quantity is the energy of the system
E. The operator of energy is the Hamilton operator H, called the Hamiltonian .
Therefore the operator equation for the energy is

H�n = En�n (1.2)

This is the Schrödinger equation for stationary states (for which the energy has a
definite value). For nonstationary states that are time-dependent, the Schrödinger
equation is (� is the Planck constant and i is the imaginary unit, i2 = −1):

i�
∂�

∂t
= H� (1.3)

Equation (1.2) is a particular case of Eq. (1.3).
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The Hamiltonian H (hereafter we denote operators in italic type) includes the
operators of the kinetic energies of the electrons and nuclei T and the potential
energy of all the interactions between them U , H = T + U . In the nonrelativis-
tic approximation these interactions are purely electrostatic. Taking account of
relativistic effects, the dependence of the masses on velocity, as well as magnetic
spin–orbital and spin–spin interactions, should be included. This can be done
on the basis of the Dirac equation discussed in Sections 2.1 and 5.4 (see also
Sections 5.5 and 6.5).

The total kinetic energy is the sum of the kinetic energy operators of each
particle T = p2/2μ, where �p = −i� �∇ is the operator of the momentum ( �∇
is a gradient vector with components ∂/∂x, ∂/∂y, and ∂/∂z; do not confuse
the imaginary unit i, i2 = −1, with the summation index, which is often also
expressed as i) and μ is its mass:

T =
∑

i

−�
2�i

2μi

(1.4)

This equation accounts for the fact that p2 = (−i�∇)2 = −�
2�, where � is a

usual differential operator (∇2 = �), �i� = ∂2�/∂x2
i + ∂2�/∂y2

i + ∂2�/∂z2
i .

The operator U contains the sum of the Coulomb attractions and repulsions.
The attraction of the ith electron to the α nucleus is Uiα = −Zαe2/riα , where
e is the numerical value of the charge of the electron, Zα is the order number
of the element in the periodic table equal to the positive charge of the nucleus,
riα = |ri − Rα| is the electron–nucleus distance, and ri and Rα are the radius
vectors of the electron and nucleus, respectively. The Coulomb repulsion between
the electrons is Uij = e2/rij , and between the nuclei it is Uαβ = ZαZβe2/Rαβ ,
where rij = |ri − rj | and Rαβ = |Rα − Rβ | are the interelectron and internuclei
distances, respectively.

Thus the Schrödinger equation for a molecular system of n electrons with
mass m and N nuclei with masses Mα can be expressed as

[T + U ]�k = Ek�k

or in a more explicit form as

⎡

⎣
n∑

i

−�
2�i

2m
+

N∑

α

−�
2�α

2Mα

−
n∑

i

N∑

α

Zαe2

riα

+
∑

i<j

e2

rij

+
∑

α<β

ZαZβe2

Rαβ

−Ek

⎤

⎦�k(r1, r2, . . . , rn; R1, R2, . . . , RN) = 0 (1.5)

This equation is in fact a linear differential equation of the second order (of ellip-
tical type) with respect to 3(n + N) variables ri and Rα. It yields a nontrivial
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solution for only discrete values Ek, which are thus the only possible stationary
energy values of the system, as well as their corresponding wavefunctions �k.
The latter, as mentioned above, contains the information of all the (nonrelativis-
tic) properties of the system in the state with the energy Ek. In particular, �k

also contains complete information about the electronic and nuclear charge dis-
tribution: |�(r1, r2, . . . , R1, R2, . . .)|2 equals the probability of finding the first
electron at r1, the second at r2, and so on (Section 5.2).

The exact solution of the Schrödinger equation allows one, in principle, to
determine a priori all the properties of any polyatomic system and its behavior in
different conditions . Note that in all cases when exact solutions of Eq. (1.5) have
been obtained, they were in good agreement with the experimental data, and in
many cases the results of calculation have an accuracy rivaling experiment.

Role of Approximations

In the early stages of development of quantum mechanics, the Schrödinger
equation raised some hopes that it could describe the entire chemistry, rendering
many experimental approaches unnecessary. In a 1929 publication [1.34] one of
the founders of quantum mechanics, P. A. M. Dirac, stated that “the underlying
physical laws necessary for the mathematical theory of a large part of physics
and the whole chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated
to be soluble.” After 80 years this statement remains valid; there are still prin-
cipal difficulties in obtaining exact solutions of Eq. (1.5) for molecular systems
with many particles, although the achievements in this field are impressive. With
the growth of computers, exact solutions of Eq. (1.5) or even more complicated
equations that include relativistic effects become possible for a limited number of
electrons and nuclei. This number is increasing, but for relatively large numbers
of particles the results of numerical computations become difficult to perceive
and almost impossible to interpret directly.

For instance, as mentioned above, the wavefunction of a system with tens of
particles emerges from the numerical calculations spread on thousands of deter-
minants. With the increase in the number of particles the numerical information
yielded by the computer becomes so vast that it is useless. To rationalize these
data and to be able to solve Eq. (1.5) for larger molecular systems, simplifications
by introducing approximations and/or analytical models are absolutely necessary
(see also the discussion at the end of Section 5.6).

Thus the exact numerical solution of the Schrödinger (Dirac) equation for
large molecular systems is at present, in general, an irrational task . The problem
of electronic structure can be solved by introducing approximate methods of
solution of Eq. (1.5) that allow one to obtain energies Ek and wavefunctions �k

in a convenient form and to evaluate the physical and chemical quantities with
the required accuracy. The choice of the approximation that is optimal for the
solution of a specific problem for a given molecular system and analysis of the
results in view of the approximations made is one of the most important (and
sometimes most difficult) problems of quantum chemistry.
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Most approximations used in modern quantum chemistry are aimed at the
separation of variables in Eq. (1.5). These approximations can be divided into
three main groups:

1. Separation of the nuclear dynamics from the electronic motions—the adi-
abatic approximation (Section 7.1).

2. Substitution of the local interactions between the electrons given by the
Coulomb terms e2/rij by some averaged interaction that is an additive
function of ri and rj (neglect of correlation effects)—the one-electron
approximation, followed by an account for correlation effects by different
methods (Section 5.3).

3. Presentation of the one-electron function of many centers—molecular
orbitals (MOs), by a sum of one-center functions; atomic orbitals (AOs),
the approximation of molecular orbitals as linear combinations of atomic
orbitals (MO LCAO) (Section 5.1); and related approximations in the
density-functional approaches (Section 5.4).

These approximations are discussed in Chapters 2, 4, 5, and 7.

SUMMARY NOTES

1. Molecular engineering of new compounds—the forefront of modern
chemistry—is based on knowledge and understanding of the laws that
control the structure and properties of molecular systems. Intuitive
guesswork is an art of the researcher based on the same premises.

2. Understanding a new phenomenon means being able to reduce it to already
known (conventional) images and conceptions. New images and concep-
tions are produced by the theory that is a generalization of experimental
data.

3. The chemical bond is defined as an interaction between atoms that collec-
tivizes the motion of some or all of their valence electrons. The bonding is
produced by electrostatic forces between the electrons and nuclei as their
motion is described by means of quantum mechanics.

4. Different kinds of chemical bonds should be classified by their electronic
structure, not by the way they are obtained—properties of chemical com-
pounds are functions of state, not functions of pass.

5. Coordination compounds are defined as having a central atom—a coordi-
nation center forming three-dimensionally delocalized bonds with two or
more ligands. Such bonds are produced by significant participation of d

or f electrons, which are present in transition metal atoms, but can be
activated in some other atoms under the ligand influence or by excitation.

6. The basis of electronic structure studies is quantum chemistry, the main
equation of which is the Schrödinger equation . To solve this equation
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for practically important molecular systems, three main simplifications
are employed: (a) separation of electronic and nuclear motions (adiabatic
approximation), (b) separation of the variables of the electrons (one-
electron approximation), and (c) presentation of the molecular orbitals as
a linear combination of atomic orbitals (MO LCAO approximation).

7. One of the main goals of this book is to promote a general view (under-
standing) of the whole subject by presenting the theory of electronic struc-
ture interlinked with physical methods of investigation and applications to
a variety of chemical problems. The whole subject is more than a sum of
its particular topics considered elsewhere.

8. Another goal is to make the book accessible to lay chemists and physicists,
including graduate and advanced undergraduate students, and usable also
as a textbook for corresponding courses. For this purpose the discussion of
the topics are presented together with many examples and illustrations of
applications of the theory to specific transition metal systems, as well as
summary notes, questions, exercises, and problems.
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2
ATOMIC STATES

Atomic states are the primary characteristics of the interacting atoms forming the
transition metal system (TMS ). They determine practically all the properties of
TMS described in this book .

This chapter presents a brief general introduction to the subject and the main
formulas used in the following chapters (for more details on atomic states, see
Refs. 2.1–2.5).

2.1. ONE-ELECTRON STATES

Angular and Radial Functions

The one-electron approximation for a multielectron system is based on the
assumption that each electron moves independently in an averaged field
created by all the other electrons and nuclei. This assumption allows one
to perform a complete separation of the variables, that is, to describe the
motion of the electron by its own coordinates, independent of the coordinates
of other electrons. The one-electron approximation, although widely used,
is, strictly speaking, not valid in many-electron systems because it neglects
electron correlation effects (Section 5.3), but it is the most convenient starting
approximation.

For an atom it is also assumed that the averaged field in which the elec-
tron moves has spherical symmetry. Under this assumption the one-electron
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wavefunction, solutions of the Schrödinger equation [Eq. (1.5)], can be pre-
sented as a product of the radial R(r) and angular Y (θ, φ) parts, where r, θ, φ

are the polar coordinates with the origin at the nucleus. In the approximation
of hydrogenlike functions the one-electron states—atomic orbitals (AOs)—are
described by the same quantum numbers n, l,m, as in the hydrogen atom:
n = 1, 2, . . . , ; l = 0, 1, 2, . . . , (n − 1); m = 0, ±1, ±2, . . . , ±l. Then

ψlmn = Rnl(r)Ylm(θ, φ) (2.1)

where Ylm(θ, φ) is a spherical function,

Yl,m(θ, φ) =
[
(2l + 1)(l − m)!

4π(l + m)!

]1/2

P m
l (cos θ)eimφ (2.2)

and P m
l (x) is an associated Legendre polynomial:

P m
l (x) = (1 − x2)m/2(dl+m/dxl+m)

(x2 − 1)l

2l l!
(2.3)

For l = 0,m = 0 (s states), the function (2.2) does not depend on the angles θ

and φ, and the function (2.1) depends only on the distance between the electron
and the nucleus r; its diagram in space has the form of a continuous sphere
(Fig. 2.1).

FIGURE 2.1. Schematic representation of angular (a) and radial (b) distributions of
atomic s functions.
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For l = 1 (p states), m = 0,±1, that is, there are three functions (2.2), two of
which (with m = 1 and m = −1) are complex-conjugated. Since for a free atom
the one-electron energies εnl are independent of m and all the three states have
the same energy (threefold degeneracy), any linear combination of these three
functions is also a wavefunction with the same energy (in any combination only
three such functions are independent). Therefore it is often convenient to express
them in the real form (Table 2.1 and Fig. 2.2).

Similarly, real combinations of functions (2.1) can be chosen for the five d

states (l = 2, m = 0, ±1,±2) shown in Table 2.1 (Fig. 2.3). Note that diagram-
ming p, d, . . . functions becomes possible after the choice of convenient linear
combinations of functions (2.2), which are real and allow for visual presentation.
Hence the picture of these p, d, f, . . . , one-electron states in absence of exter-
nal perturbations is rather conventional; any of the combinations of degenerate
p(d, f ) states is also a p(d, f ) state. Only under external perturbations do the
lobes acquire a specific orientation and a real physical meaning that determines
the charge distribution .

Other real combinations of d functions may be preferred dependent on the
symmetry of the external perturbation acting upon the atom (Chapter 4).

Similarly, for seven f functions (l = 3, m = 0, ±1,±2, ±3) two sets of
real angular parts are commonly used (Table 2.2 and Fig. 2.4). The first set,

FIGURE 2.2. Angular (a) and radial (b) distributions of atomic p functions.
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TABLE 2.1. Orthonormalized Real Angular Parts of One-Electron s, p, and d

Functions Ylm(θ, φ)

Ylm in Polar Ylm in Cartesian
Denotation Coordinates Coordinates

s (4π)−1/2 (4π)−1/2

px (3/4π)1/2 sin θ cos φ (3/4π)1/2r−1x

py (3/4π)1/2 sin θ sin φ (3/4π)1/2r−1y

pz (3/4π)1/2 cos θ (3/4π)1/2r−1z

dz2 (5/16π)1/2 (3 cos2 θ−1) (5/16π)1/2r−2(3z2 − r2)

dx2−y2 (15/16π)1/2 sin2 θ cos 2φ (15/16π)1/2r−2(x2 − y2)

dxy (15/16π)1/2 sin2 θ sin 2φ (15/4π)1/2r−2xy

dxz (15/4π)1/2 sin θ cos θ cos φ (15/4π)1/2r−2xz

dyz (15/4π)1/2 sin θ cos θ sin φ (15/4π)1/2r−2yz

FIGURE 2.3. Illustration of angular (a) and radial (b) distributions of atomic d states.

called cubic, is convenient when atomic states in cubic fields are considered
(Section 4.4). The second set is preferable for lower symmetries. The functions
of one set can be easily obtained as a linear combination of the functions of



22 ATOMIC STATES

TABLE 2.2. Orthonormalized Real Angular Parts of One-Electron Atomic f

Functions Y3m(θ, φ)

Y3m

Detonation Polar Coordinates Cartesian Coordinates

Cubic Set

fx3 (7/16π)1/2 sin θ cos φ(5 sin2 θ cos2 φ − 3) (7/16π)1/2r−3x(5x2−3r2)

fy3 (7/16π)1/2 sin θ sin φ(5 sin2 θ sin2 φ − 3) (7/16π)1/2r−3y(5y2−3r2)

fz3 (7/16π)1/2(5 cos3 θ − 3 cos θ) (7/16π)1/2r−3z(5z2−3r2)

fxyz (105/16π)1/2 sin2 θ cos θ sin 2φ (105/4π)1/2r−3xyz

fx(z2−y2) (105/16π)1/2 sin θ cos φ(cos2 θ − sin2 θ

sin2 φ)

(105/16π)1/2r−3x(z2 − y2)

fy(x2−z2) (105/16π)1/2 sin θ sin φ(cos2 θ − sin2 θ

cos2 φ)

(105/16π)1/2r−3y(z2 − x2)

fz(x2−y2) (105/16π)1/2 sin2 θ cos θ cos 2φ (105/16π)1/2r−3z(x2 − y2)

Low-Symmetry Set

fz3 (17/16π)1/2(5 cos3 θ − 3 cos θ) (17/16π)1/2r−3z(5z2−3r2)

fxz2 (21/32π)1/2 sin θ cos φ(5 cos2 θ − 1) (21/32π)1/2r−3x(5z2 − r2)

fyz2 (21/32π)1/2 sin θ sin φ(5 cos2 θ − 1) (21/32π)1/2r−3y(5z2 − r2)

fxyz (105/16π)1/2 sin2 θ cos θ sin 2φ (105/4π)1/2r−3xyz

fz(x2−y2) (105/16π)1/2 sin2 θ cos θ cos 2φ (105/16π)1/2r−3z(x2 − y2)

fx(x2−3y2) (35/32π)1/2 sin3 θ cos 3φ (35/32π)1/2r−3x(x2−3y2)

fy(3x2−y2) (35/32π)1/2 sin3 θ sin 3φ (35/32π)1/2r−3y(3x2 − y2)

FIGURE 2.4. Angular distributions for some atomic one-electron wavefunctions f .
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the other set (e.g., fy3 = −[101/2fy(3x2−y2) + 61/2fyz2 ]/4). Again, all these and
other linear combinations of atomic functions acquire physical sense only under
external perturbations that lower the spherical symmetry.

The radial functions Rnl(r) in (2.1) for one-electron hydrogenlike atoms can
also be presented in an analytic form as follows (α = Z/na0, where Z is the
nuclear charge and a0 is the Bohr radius):

Rnl(r) =
[

(n − l−1)!

((n + l)!)32n

]1/2

(2α)l+3/2 exp(−αr)rlL2l+1
n+l (2αr) (2.4)

where Li
k(x) is the so-called Laguerre polynomial:

Li
k(x) = di

dxi

[

ex dk

dxk
(xke−x)

]

(2.5)

Expressions for several of the most usable radial functions are given in
Table 2.3.

Hydrogenlike functions (2.4) can be used for approximate estimations of some
properties of nonhydrogen (many-electron) atoms, provided the real charge is
substituted by the effective charge Zeff. Different approximations are used to
choose Zeff in the wavefunction. One of them is purely empirical, based on fitting
the one-electron energies calculated by this wavefunction with the experimental
ionization potentials.

Instead of the hydrogenlike function (2.4), Slater-type nodeless atomic func-
tions are often used in molecular calculations. These functions have the general

TABLE 2.3. Expressions for Some Radial Parts of
One-Electron Hydrogenlike Atomic Functions Rnl

(α = Z/na0)

Function Expression

R10 2α3/2e−αr

R10 2α3/2e−αr (1 − αr)

R21 (2/
√

3)α5/2re−αr

R30
2
3α3/2e−αr (3 − 6αr + 2α2r2)

R31 (2
√

2/3)α5/2re−αr (2 − αr)

R32 (4/3
√

10)α7/2r2e−αr

R40
2
3α3/2e−αr (3 − 9αr + 6α2r2 − α3r3)

R41 (2/
√

15)α5/2re−αr (5 − 5αr + α2r2)

R42 (2/3
√

5)α7/2r2e−αr (3 − αr)

R43 (2/3
√

35)α9/2r3e−αr



24 ATOMIC STATES

form

Rn(r) = Nrn∗−1 exp

[−(Z − γ )r

n∗a0

]

(2.6)

where N is the normalization constant, n∗ is the effective principal quantum
number, γ is the screening constant, and Z − γ is the effective nuclear charge,
and there are simple rules for evaluating their magnitudes for each electronic
configuration [2.2]. Sometimes the parameters of the Slater function (2.6) are
considered as variational variables to be determined from the condition of the
minimum of energy of the system.

In more accurate calculations numerical Hartree–Fock (HF) wavefunctions,
discussed in Section 2.2, are used as one-electronic states. Computed HF one-
electron wavefunctions are available for all the atoms and their ionized states
[2.6, 2.7]. For practical use analytical presentations of the numerical functions
are more convenient [2.8, 2.9].

Atomic orbitals (AOs) are most important in the calculation of molecular
orbitals (MOs) by the LCAO methods (Chapter 5). There are many aspects to
the choice of atomic orbitals in the calculation of MOs and the chemical bonding
(see basis sets in MO calculations, Section 5.3).

Orbital Overlaps: Hybridized Functions

As mentioned above, the well-known and widely used presentation of hydro-
genlike one-electron orbitals in atoms in the form of s,p,d,f,. . . is based on the
assumption of spherical symmetry of the field in which each electron moves,
because only spherical symmetry allows for solutions in the form of spherical
functions (2.2). If the field, under external influence, becomes nonspherical, these
atomic states are no longer independent. They mix, and the degree of this mix-
ing, or hybridization , is determined by the symmetry and strength of the external
field and the energy gaps between the admixed orbitals. This is one of the obvi-
ous consequences of chemical interactions (bonding) in which the atom under
consideration takes part.

One of the basic features of two atoms that determine their ability to inter-
act with each other chemically is the “diffusiveness” (extension in space) and
mutual orientation of their atomic states in space expressed by the orbital overlap
(Section 5.2). If atom A is presented by its AO ϕA, and atom B by ϕB , then the
expression

SAB =
∫

ϕAϕB dτ (2.7)

is called the overlap integral .
It should be noted that it is the integral (total) overlap SAB that characterizes

the formation of a chemical bond between neutral atoms. The presence of local
regions of overlap (differential overlap) is necessary but not sufficient for the
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bond formation, because the local overlaps may have different signs in different
regions and thus compensate each other in the integral overlap. On the other hand,
the overlap integral (2.7) itself, although indicating the possibility of bonding, is
not sufficiently informative for characterizing all the bonding features. Another
important parameter determining the bonding is the energy gap between the
overlapping orbitals (Section 5.2).

Symmetry considerations provide a way to estimate whether the integral (2.7)
is zero without its actual calculation. Group-theoretical rules (Section 3.4) allow
us to do this easily. Sometimes, the evaluation of the integral (2.7) can also be
done using rather simple visual considerations. Indeed, it is well known that any
transformation of the variables under the sign of the integral does not change its
value. This means that if one can find a transformation of the coordinates for
which one of the two functions ϕA or ϕB changes it sign, whereas the other does
not, then SAB = −SAB = 0.

For example, take ϕA = sA and ϕB = pB
x (the bonding line is assumed to

be along z). Then SAB = ∫
sApB

x dτ = 0 because the coordinate transformation
x ′ = −x (reflection in the plane yz ) changes the sign of pB

x (p′
x = −px) and

does not change the sign of sA (see Fig. 2.1 and Table 2.1). On the other hand,∫
sApz dτ �= 0 since in this case the two functions sA and pz are not changed

under the symmetry operations of the system.
The symmetry of the region of orbital overlap between two atoms is of great

importance for characterization of their bonding. Depending on this symmetry,
one can distinguish the so-called σ , π, δ, . . . bonds. A more rigorous foundation
of this classification of chemical bonds in diatomics is based on the quantized
values of the projection of the electron angular momentum on the internuclear
axis of the molecule characterized by its quantum numbers λ = 0, 1, 2, . . . , which
correspond to σ, π, δ, . . . bonds, respectively.

For a σ bond the orbital overlap region is symmetric with respect to the line of
bonding between the atoms, which means that the electron density of the bond
(Section 5.2) has axial symmetry (Fig. 2.5). The wavefunction of the system
with this bond is independent of the angle of rotation around the molecular
axis; the projection of the angular momentum on this axis (and its quantum
number λ) is zero. For a π bond the overlap is symmetrical with respect to the
plane comprising the molecular axis (Fig. 2.6), and λ = 1. In the δ bond there
are two mutually perpendicular planes of symmetry that cross at the molecular
axis, λ = 2 (Fig. 2.7) (Hereafter positive orbital lobes are shadowed).

Obviously, not all atomic functions can be employed in the formation of
diatomic bonds of given symmetry. For instance, s functions never form π bonds
because they do not have the required symmetry of reflection in the plane crossing
the molecular axis. Similarly, p functions cannot form δ bonds since they lack
two mutually perpendicular planes of symmetry. On the other hand, under certain
conditions d functions can form both δ and π bonds, as well as σ bonds, p

functions can form π and σ bonds, while s function can form σ bonds only.
However, strong relativistic effects violate these rules (see below in this section
and in Section 6.5).
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FIGURE 2.5. Interatomic σ overlaps: (a) s –s, (b) (pσ − pσ ).

The notions of σ, π, δ, . . . bonds, which have a rigorous physical sense in
the case of diatomics, may become less definitive and rather conventional in
some polyatomic systems, especially in coordination compounds with three-
dimensionally delocalized bonds. Indeed, for the latter the same AOs of the
CA can take part in the formation of σ bonds with one ligand and π bonds with
another (for examples of σ + π bonds, see Section 6.3). As mentioned above, in
the case of transition metal coordination compounds, pure localized (separated)
bonds CA—ligand, strictly speaking, make little sense, but they can be well
defined as ligand–complex bonds.

The greater the orbital overlap, ceteris paribus, the stronger the bonding
(Section 5.2). Therefore, the binding favors spatially oriented orbitals, and this
explains the formation of hybridized orbitals induced by chemical bonding. As
mentioned above, the separation of atomic one-electron orbitals into s, p, d, f, . . .
is a rigorous consequence of the spherical symmetry of the field. Hence in the
free atom there are neither hybridized orbitals nor “directed valencies”; they are
formed under the influence of the external (bonding) fields .

Figure 2.8a shows the two independent s and pz orbitals, while in Fig. 2.8b the
mixed (hybridized) s + pz and s − pz functions are illustrated. The hybridized
AOs are much more oriented in space along the z and −z axes, respectively,
than are the pure s and pz orbitals, thus favoring stronger chemical bonds with
two other atoms in these directions. It is just this enhanced bonding that induces
the sp hybridization.

Provided the geometry of the molecular system formed by the interacting
atoms is known, the hybridized orbitals can be obtained from the condition
of orthogonality and normalization [2.10]. The following types of hybridized
orbitals are widely used: sp, linear coordination; sp2, trigonal-planar; sp3 and sd3,
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FIGURE 2.6. Interatomic π overlaps: (a) pπ –pπ ; (b) dπ –dπ .

tetrahedral; d2sp3, octahedral; and so on. Table 2.4 gives some of the hybridized
functions. As stated in Sections 1.2 and 6.1, d orbitals form three-dimensional
delocalized bonds rather than localized hybrid bonds.

Spin–Orbital Interaction

The relativistic features of atomic orbitals are considered in the next subsection,
and relativistic effects are discussed in Section 6.5 (and in other parts of this
book), but one of these effects, the spin–orbital interaction, is most important
in quantum chemistry and cannot be avoided even in nonrelativistic approaches.
Spin–orbital interaction in polyatomic systems with nonzero spin affects almost
all their properties (as illustrated multiply in the next chapters).

It is known that the electron possesses a spin momentum s, and that its projec-
tion has two values, sz = ± 1

2�, corresponding to its two possible positions with
respect to the axis of quantization: spinup and spindown. Taking into account
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FIGURE 2.7. Interatomic δ dA
x2−y2 –dB

x2−y2 overlap that has two perpendicular planes of
symmetry that cross the axis of bonding.

FIGURE 2.8. sp hybridization: (a) free s and pz orbitals; (b) hybridized s + pz and
s − pz orbitals.
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TABLE 2.4. Some Hybridized Atomic Orbitals

Type of Hybridization Hybridized Orbitals

sp (along x) 2−1/2(s + px), 2−1/2(s − px)

sp2 (in xy plane) 3−1/2(s + √
2px)

3−1/2(s − px/
√

2 + √
3py/

√
2)

3−1/2(s − px/
√

2 − √
3py/

√
2)

sp3 (tetrahedral) 1
2 (s + px + py + pz)

1
2 (s + px − py − pz)

1
2 (s − px + py − pz)

1
2 (s − px − py + pz)

d2sp3 6−1/2(s + √
3pz + √

2dz2)

6−1/2(s − √
3pz + √

2dz2)

12−1/2(
√

2s + √
6py − dz2 + √

3dx2−y2)

12−1/2(
√

2s − √
6py − dz2 + √

3dx2−y2)

12−1/2(
√

2s + √
6px − dz2 − √

3dx2−y2)

12−1/2(
√

2s − √
6px − dz2 − √

3dx2−y2)

this spin and assuming that it is independent of the orbital motion of the electrons,
we should multiply the one-electron orbital function (2.1) by the spin function
determining the spin state, and to add the spin quantum numbers ms = ± 1

2 to
the three orbital quantum number n, l, m.

Complications begin when we take into account that the spin momentum is
associated with a magnetic moment of the electron (the Bohr magneton). Indeed,
the orbital motion of the electron creates a magnetic field and the magnetic
moment of the electron interacts with the magnetic field of orbital motion. This
is the spin–orbital interaction . It is obvious that the spin–orbital interaction is
different for the two spin positions, spinup along the orbital magnetic field and
spindown in the opposite direction, resulting in the spin–orbital splitting of the
energy levels.

The energy of interaction of the electron spin s with the magnetic field of its
orbital motion that has the momentum l is a relativistic effect [not included in
the Schrödinger equation (1.5)] that emerges from Dirac’s equation [2.5]. For the
operator of this interaction HSO, we have

HSO = ξ(r)(l, s) ξ(r) = − e

2m2c2r

dV (r)

dr
(2.8)

where V (r) is the potential energy of the electron in the atom. For light atoms
HSO can be considered as a perturbation of the nonrelativistic states. Then the
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energy correction due to the spin–orbital interaction can be obtained by per-
turbation theory. In the first order these corrections are equal to the diagonal
matrix elements of the perturbation (2.8). Usually they are characterized by the
one-electron spin–orbital constant ξnl

ξnl = �
2
∫

ξ(r)R2
nl(r)r

2 dr (2.9)

where Rnl(r) is the radial part of the atomic wavefunction of the perturbed state
(nl ). For a Coulomb field V = Ze/r

ξnl = Ze2
�

2

2m2c2a3
0

∫

r−3Rnl(r)r
2 dr

= e2
�

2

2m2c2a3
0n

3l(l + 1)(l + 1/2)
Z4 (2.10)

Here l �= 0; for l = 0, HSO = 0: s states are not subject to spin–orbital splitting.
From expression (2.10) it is seen that the constant of spin–orbital interaction ξ

for an electron in a hydrogenlike atom is strongly dependent on the atomic number
Z (proportional to Z4). For instance, for a 3d electron ξ3d = 1.4 × 10−2Z4 cm−1,
and for a 4d electron ξ4d = 6.1 × 10−3Z4 cm−1. It follows that the influence of
spin–orbital interactions becomes very strong in heavy atoms and for large Z val-
ues it can no longer be taken as a small perturbation; it should be considered along
with other electrostatic interactions in the atom. In this case the wavefunction of
the electron cannot be taken as a product of its orbital and spin parts.

Relativistic Atomic Functions

Relativistic atomic states become of great importance in the study of electronic
structure and properties of transition metal compounds (Sections 5.4 and 6.5).
For large electron speeds v that are realized in heavy atoms, the dependence of
the mass of the electron on its speed and the magnetic moment of the electron
[not included in the Schrödinger equation (1.5)] should be taken into account.
This is done in the Dirac equation, which, in the absence of external magnetic
fields, can be written as follows [2.5]:

(αcp + eU + mc2)� = E� (2.11)

Formally, this equation is somewhat similar to the Schrödinger equation (1.5),
but in fact, Eq. (2.11) is much more complicated than (1.5). First, (2.11) is a
matrix equation of the fourth rank, which means that there is a system of four
coupled equations to be solved. This is due to the matrices α and β. They are
(the β matrix is employed later):

α =
(

0 σ

σ 0

)

β =
(

I 0
0 −I

)

(2.12)
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where the components of the vector–matrix σ are the well-known Pauli
matrices:

σx =
(

0 1
1 0

)

σy =
(

0 −i

i 0

)

σz =
(

1 0
0 −1

)

(2.13)

and I is a unit matrix:

I =
(

1 0
0 1

)

(2.14)

Other notations in (2.11) are usual: c is the speed of light and p = −i�∇
[hence αcp means −i�c(αx∂/∂x + αy∂/∂y + αz∂/∂z)].

According to the fourth-rank equation (2.11), its solution �, the wavefunction,
is also fourth component. Indeed, it resembles a column four-vector, which is
called a bispinor [2.5]:

� =

⎛

⎜
⎜
⎝

�(1)

�(2)

�(3)

�(4)

⎞

⎟
⎟
⎠ =

(
ϕ

χ

)

(2.15)

where ϕ and χ are spinors composed of the 1,2 and 3,4 components, respectively.
The presentation of the solution (2.15) as two spinors has a specific physical
meaning, since when the ratio v/c is not very large, the first spinor ϕ is much
larger than the second one χ , and the latter can be neglected.

The physical meaning of the wavefunction � of (2.15) that emerges from
quantum mechanics is, in general, the same as in the nonrelativistic case:
|�(1)|2dτ means the probability of finding the electron in the volume dτ near
point 1. Then |�|2 = �∗�, and the product of the column vector � with its
complex-conjugated �∗ [which is a row vector (�(1)∗, �(2)∗, �(3)∗, �(4)∗)]
yields

|�|2 = |�(1)|2 + |�(2)|2 + |�(3)|2 + |�(4)|2 (2.16)

or

|�|2 = |ϕ|2 + |χ |2 (2.17)

Thus the density of position probability equals the sum of the contributions
of all the components of the relativistic wavefunction. In particular, when the
electron speed is not very large (e.g., in the region far from the nucleus), the
major contribution comes from the large component ϕ, and |�|2 ≈ |ϕ|2

To estimate relativistic effects as compared to the nonrelativistic properties, the
constant α = 1

137 , called the fine-structure constant , is introduced (do not confuse
this α constant with the α parameter in the nonrelativistic radial functions in
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Table 2.3 and the α matrices above). In atomic units the speed of light c ∼= 137.
On the other hand, the electron speed v at the nucleus in the same units is equal
to Z, the nuclear charge. Hence the magnitude αZ equals the ratio of the electron
speed to the speed of light at the nucleus, where this ratio is maximal.

In the spherically symmetric field of the nucleus, the relativistic solution is
characterized by four quantum numbers (which are somewhat similar to the non-
relativistic ones):

1. The principal quantum number n = 1, 2, 3, . . . , which has the same mean-
ing as in the nonrelativistic atom.

2. The azimuthal quantum number l = 0, 1, 2, . . . , (n−1), which denotes
the states corresponding to s, p, d, . . . , respectively; distinct from the
Schrödinger atom, in the relativistic case, l is no longer the quantum
number of the orbital angular momentum.

3. j = |l ± 1
2 |, the angular momentum quantum number that is always positive

(as l is) and half-integer; it takes at most two values.
4. m, the magnetic quantum number that can take all half-odd-integer values

from −j to +j [m = j, j − 1, . . . , −(j − 1), −j ].

With these quantum numbers nljm , for s electrons, we have j = 1
2 ,m = ± 1

2
(two states); for p electrons: j = 1

2 with m = ± 1
2 (two states) and j = 3/2 with

m = ± 1
2 , ± 3

2 (four states); for d electrons: j = 3
2 with m = ± 1

2 , ± 3
2 (four states)

and j = 5
2 with m = ± 1

2 ,± 3
2 ,± 5

2 (six states). Usually the magnetic quantum
number (similar to the nonrelativistic spin quantum number ms) is not indicated,
and hence we have two ns1/2 states, two np1/2 and four np3/2 states, four nd3/2

and six nd5/2 states, six nf5/2 and eight nf7/2 states, and so on.
For these states the four-component wavefunctions are [2.5, 2.11]:

�nljm = (Nnljm)1/2

⎛

⎜
⎜
⎝

ga1Yl, m−1/2

ga2Y1, m+1/2

−if a3Y2j−1, m−1/2

−if a4Y2j−1, m+1/2

⎞

⎟
⎟
⎠ (2.18)

where Ylm are the spherical harmonics (2.2), Nnljm is the normalization factor
determined from the condition

∫ |�nljm|2dτ = 1 [taking into account Eq. (2.16)],
and ai are constants as follows:

a1 =
(

l + 1
2 ± m

2l + 1

)1/2

a2 =
(

l + 1
2 ∓ m

2l + 1

)1/2
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a3 =
(

2j − l + 1
2 ∓ m

4j − 2l + 1

)1/2

(2.19)

a4 =
(

2j − l + 1
2 ± m

4j − 2l + 1

)1/2

where in the symbol ± the sign of j − l should be taken, whereas in ∓ its
opposite is implied, and g and f are the radial parts of the wavefunction: g is
the same for the two components �(1) and �(2) of the large spinor, while f

is the same for �(3) and �(4) of the small spinor [Eq. (2.18)]. Their general
expressions are somewhat awkward [2.5] [they can be presented as a product
of an exponent with a polynomial similar to (2.4)], but it is important that the f
component is αZ times smaller than the g one. Table 2.5 presents some explicit
expressions for relativistic s and p functions in a hydrogenlike atom given with
accuracy up to terms αZ included [2.11].

Some interesting features emerge from the relativistic functions as compared
with the nonrelativistic ones. First, the relativistic s functions are spherically
symmetric, quite similar to the nonrelativistic case. But surprisingly, in contrast
to the nonrelativistic p orbitals, the p1/2 states are also spherically symmetric.
This can be easily confirmed by substituting the four components of any of the
two p1/2 functions from Table 2.5 into Eq. (2.16). It appears to be a general
trend: relativistic atomic functions with the same j and m quantum numbers
have the same angular dependence of the corresponding position density. This
means not only that s1/2(

1
2 ) and p1/2(

1
2 ) have identical (in this case spherically

symmetric) angular dependence of the position density but also that p3/2(
3
2 ) and

d3/2(
3
2 ), d5/2(

5
2 ), and f5/2(

5
2 ) have similar angular electron cloud distribution.

The p3/2(
1
2 ) distribution is also different from that of the nonrelativistic p

states. Indeed, using Eq. (2.16) with the data in Table 2.5, one can easily find
that the angular dependence of the electron distribution in this state is cos2 θ +
1
3 (instead of cos2 θ in the pz function); that is, it has also a 1

3 weighted s-
type spherically symmetric distribution. The p3/2(

3
2 ) functions yield an angular

distribution identical to the nonrelativistic case.
The s-type distribution in the relativistic p states [p1/2 and p3/2(

1
2 )] is very

important for the bonding properties of corresponding atoms, especially in their
ability to form pure σ and π bonds (see below). Another feature of these functions
is that they have no angular nodes; it can be shown that all the relativistic atomic
functions have no radial nodes, either. Indeed, the radial nodes in the large
component g never coincide with those of the smaller component f , and hence
at the points where g2 is zero f 2 gives a non-zero contribution of the order of
(αZ)2 = (Z/137)2. Thus in the relativistic presentation, strictly speaking, there
are no points of zero radial distribution of electron position density.

All the foregoing effects in the relativistic atomic states are significant if and
only if the spin–orbital interaction is sufficiently strong. For zero (or negligible)
spin–orbital splitting all the p states are degenerate (the energies of p1/2 and p3/2
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TABLE 2.5. Relativistic Atomic Wavefunctions for a Hydrogenlike Atom to the
First Order in αZa

Atomic
State

√
N Spinors Radial Part Angular Part

m = 1
2 m = − 1

2

1s1/2 1 ϕ e−r 1 0
0 −1

χ αZe−r 1
2 i cos θ − 1

2 i sin θe−iφ

1
2 i sin θeiφ 1

2 i cos θ

m = 1
2 m = − 1

2

2s1/2
( 1

8

)1/2
ϕ e−r/2[1 − (r/2)] 1 0

0 −1

χ αZe−r/2[1 − (r/4)] 1
2 i cos θ − 1

2 i sin θe−iφ

1
2 i sin θeiφ 1

2 i cos θ

m = 1
2 m = − 1

2

2p1/2
( 1

32

)1/2
ϕ re−r/2 −(1/

√
3) cos θ (1/

√
3) sin θ e−iφ

−(1/
√

3) sin θ eiφ −(1/
√

3) cos θ

χ αZe−r/2[1 − (r/6)]
( 3

4

)1/2
i 0

0
( 3

4

)1/2
i

m = 1
2 m = − 1

2

2p3/2
( 1

32

)1/2
ϕ re−r/2

( 2
3

)1/2
cos θ − ( 1

6

)1/2
sin θ e−iφ

m = ± 1
2 − ( 1

6

)1/2
sin θ eiφ − ( 2

3

)1/2
cos θ

χ αZre−r/2
( 3

32

)1/2
i
(
cos2 θ − 1

3

) − ( 3
32

)1/2
i sin θ

cos θ e−iφ

( 3
32

)1/2
i sin θ cos θeiφ

( 3
32

)1/2
i
(
cos2 θ − 1

3

)

m = 3
2 m = − 3

2

2p3/2
( 1

32

)1/2
ϕ re−r/2 (1/

√
2) sin θ eiφ 0

m = ± 3
2 0 (1/

√
2) sin θ e−iφ

χ αZre−r/2
( 1

32

)1/2
i sin θ cos θeiφ

( 1
32

)1/2
i sin2 θ e−2iφ

( 1
32

)1/2
i sin2 θe2iφ − ( 1

32

)1/2
i sin θ

cos θ e−iφ

Source: Powel [2.11].
aThe radial coordinate r is given in a0/Z units, while the function as a whole is in (Z3/πa3

0 )1/2

units.
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states coincide), and then any of their linear combination is also an eigenfunction
with the same energy. In particular, the combinations

(
2
3

)1/2
p3/2,1/2 − (

1
3

)1/2
p1/2,1/2 ∼ pz

( 1
2

)1/2
p3/2,3/2 + ( 1

3

)1/2
p1/2,−1/2 − ( 1

6

)1/2
p3/2,−1/2 ∼ px

( 1
2

)1/2
p3/2,3/2 − ( 1

3

)1/2
p1/2,−1/2 + ( 1

6

)1/2
p3/2,−1/2 ∼ py (2.20)

have the angular behavior of the corresponding pz, px , and py nonrelativis-
tic atomic p functions. A sufficiently large separation between the p1/2 and
p3/2 states caused by the spin–orbital interaction (as compared with the bond-
ing effects) makes this orbital mixing impossible, thus realizing the relativistic
behavior of the corresponding atomic states.

More complicated are the orbital overlaps of relativistic functions. When
two atoms A and B are characterized by four-component wavefunctions of the
type (2.15), their overlap, similar to that in (2.16), is given by the following
expression:

SAB =
∫

�∗
A�B dτ =

∫ [
�

(1)∗
A �

(1)
B

+�
(2)∗
A �

(2)
B + �

(3)∗
A �

(3)
B + �

(4)∗
A �

(4)
B

]
dτ (2.21)

With the relativistic functions in Table 2.5, the idea of σ, π , and δ bonds
changes significantly. Indeed, only the overlap of sA

1/2 –sB
1/2 functions is of pure

σ type, quite similar to the overlap of the corresponding nonrelativistic orbitals.
The pA

1/2 –pB
1/2 overlap is essentially different from both pA

z –pB
z σ overlap

and pA
x –pB

x (pA
y –pB

y ) π overlap. The direct substitution of the four-component
functions from Table 2.5 into Eq. (2.21) (in fact, only the large ϕ component
should be tried since the χ spinor is much smaller, and, in any case, it yields
the same angular dependence as does the ϕ spinor) shows that pA

1/2(
1
2 )–pB

1/2(
1
2 )

overlap has 1
3σ bonding character and 2

3π antibonding, or vice versa, 1
3σ

antibonding and 2
3π bonding (see Section 6.5 and Fig. 6.32). Similarly, the

pA
3/2(

1
2 )–pB

3/2(
1
2 ) overlap comprises 2

3 of σ bonding and 1
3 of π antibonding,

or vice versa, 2
3 of σ antibonding and 1

3 of π bonding. The pA
3/2(

3
2 )–pB

3/2(
3
2 )

overlap is the same as for nonrelativistic p functions. These conclusions are
important to the analysis of the electronic structure and bonding in heavy-atom
coordination compounds (Section 6.5).

2.2. MULTIELECTRON STATES: ENERGY TERMS

Electronic Configurations and Terms

For more than one electron in the atom, the picture of electronic structure
becomes significantly more complicated. In the one-electron approximation the
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multielectron wavefunction is composed of one-electron functions following spe-
cific rules that depend on the magnitudes of the spin–orbital and interelectron
interactions. When ignoring these interactions, the electron can be distributed
among the one-electron orbitals of the type (2.1) with the quantum numbers
n, l, m, ms following the Pauli principle. This distribution—the numbers of elec-
trons in s, p, d, f states—forms the electron configuration of the atom. With the
spin–orbital and interelectron interactions taken into account there may be many
states of the same electron configuration that differ with respect to energy and
spin values.

Methods of determining the states of a given electron configuration are vary
according different for different relationships between the spin–orbital and inter-
electron interactions. For light atoms (to approximately the middle of the periodic
table) the spin–orbital interaction is no larger than ∼103 cm−1 (see Table 2.7,
below), and hence it is much weaker than the interelectron interaction, which
is of the order of 104 cm−1. In this case Russell–Saunders LS coupling takes
place, for which the orbital and spin momenta of the electrons li and si are
summed up separately into the total orbital momentum L = ∑

i li and total spin
momentum S = ∑

i si ; the spin–orbital interaction is considered afterward and
results in the total electronic angular momentum J = L + S. In the LS coupling
scheme the wavefunction of the atom is a solution of Eq. (1.1) for the operators
L2, Lz, S

2, Sz, and is characterized by the following quantum numbers:

• L, the total momentum: L = 0, 1, 2, . . .
• M = ∑

i mi, the projection Lz of the total momentum L: M = L, L −
1, . . . , 0, −1, . . . , −L (2L + 1 values)

• S, the total spin
• MS = ∑

s ms , the projection Sz of the total spin S: MS = S, S − 1, . . . , −S

(2S + 1 values)

The set of states with the same values of L and S, but different M and
MS , in all (2L + 1)(2S + 1) states, forms the atomic term . The terms with L =
0, 1, 2, 3, 4, 5, . . . are denoted by the capital letters S, P, D, F, G, H , respec-
tively, with denotation of the spin multiplicity (the number of spin states) equal
to 2S + 1 as a superscript in the left-hand side. For instance, the term with L = 1
and S = 1 (spin triplet) is denoted by 3P .

Because of different charge distributions and spin orientations in different
one-electron states (Fig. 2.1) and hence different interelectron interactions, the
energies of different terms (even with the same electronic configuration) are
significantly different. These differences can be calculated and expressed by the
Slater–Condon, or Racah, parameters . Table 2.6 lists the relative energies of
the terms of dn configurations expressed by Racah parameters A, B,C. They are
obtained as explained later in this section.

The analysis shows that in all the cases the state with the lowest energy, the
ground state, corresponds to the term of maximum possible (in the configuration
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TABLE 2.6. Energy Terms of Electronic dn Configurations Expressed by Racah
Parameters A, B,C

Electronic
Configuration Terma Relative Electron Interaction Energyb

d1, d9 2D

d2, d8 3F A − 8B
3P A + 7B
1G A + 4B + 2C
1D A − 3B + 2C
1S A + 14B + 7C

d3, d7 4F 3A − 15B
4P 3A
2H,2P 3A − 6B + 3C
2G 3A − 11B + 3C
2F 3A + 9B + 3C
2D′, 2D′′ 3A + 5B + 5C ± (193B2 + 8BC + 4C2)1/2

d4, d6 5D 6A − 21B
3H 6A − 17B + 4C
3G 6A − 12B + 4C
3F ′, 3F ′′ 6A − 5B + 11

2 C ± 3
2 (68B2 + 4BC + C2)1/2

3D 6A − 5B + 4C
3P ′,3P ′′ 6A − 5B + 11

2 C ± 1
2 (912B2 − 24BC + 9C2)1/2

1I 6A − 15B + 6C
1G′,1G′′ 6A − 5B + 15

2 C ± 1
2 (708B2 − 12BC + 9C2)1/2

1F 6A + 6C
1D′,1D′′ 6A + 9B + 15

2 C ± 3
2 (144B2 + 8BC + C2)1/2

1S′,1S′′ 6A + 10B + 10C ± 2(193B2 + 8BC + 4C2)1/2

d5 6S 10A − 35B
4G 10A − 25B + 5C
4F 10A − 13B + 7C
4D 10A − 18B + 5C
4P 10A − 28B + 7C
2I 10A − 24B + 8C
2H 10A − 22B + 10C
2G′ 10A − 13B + 8C
2G′′ 10A + 3B + 10C
2F ′ 10A − 9B + 8C
2F ′′ 10A − 25B + 10C
2D′,2D′′ 10A − 3B + 11C ± 3(57B2 + 2BC + C2) 1

2
2D′′′ 10A − 4B + 10C
2P 10A + 20B + 10C
2S 10A − 3B + 8C

aTerms with the same L and S are distinguished by primes.
bEnergies of d10−n configurations differ from those of dn by a constant shift.
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TABLE 2.7. Constants of Spin–Orbital Coupling λ for Some Transition Metal 3d

Ions in Their Ground States

Electronic Ground
Ion Configuration State λ (cm−1)

Ti3+ d1 2D 154
V3+ d2 3F 104
V2+ d3 4F 55
Cr3+ d3 4F 87
Cr2+ d4 5D 57
Mn3+ d4 5D 85
Mn2+, Fe3+ d5 6S 0
Fe2+ d6 5D −100
Co2+ d7 4F −180
Ni2+ d8 3F −335
Cu2+ d9 3D −852

under consideration) spin multiplicity and maximum orbital momentum for this
multiplicity. This is the well-known Hund rule. For example, for the electronic
configuration [A](nd )2 (where [A] denotes the inner closed shell), for instance,
V 3+, the possible terms, as shown below and in Table 2.6, are 3F, 1D, 3P, 1G,
and 1S. Following Hund’s rule, the ground term is 3F , because it has the maximal
spin S = 1 (spin multiplicity 2S + 1 = 3), and with the maximal spin it also has
the maximal orbital momentum L = 3 (the 3P term also has the maximal spin
S = 1, but its orbital momentum L = 1 is lower).

The origin of Hund’s rule can be understood when one considers the fact that
the maximum spin means that the electrons occupy as many separate one-electron
orbitals with parallel spin orientations as possible (in the same orbital, two elec-
trons have mutually compensating opposite spins). For such electrons the negative
exchange interaction that lowers the energy is maximal (the exchange between
electrons with opposite spins is zero). In addition, together with the requirement
of maximum orbital momentum, it favors the electron charge distribution over the
largest possible volume of the atom, thus lowering the interelectron electrostatic
repulsion.

In the approximation of the LS coupling under consideration the total momen-
tum of the atom is J = L + S, its quantum number J acquires all the values
by one from L + S to |L − S|: J = L + S, L + S − 1, . . . , |L − S|. When the
spin–orbital interaction is included, the energy levels with different J values
may be different. The magnitude of this spin–orbital splitting can be obtained by
means of perturbation theory. Following Eq. (2.8), the operator of the spin–orbital
interaction in a multielectron atom can be written in the following form:

HSO =
∑

i

ξ(ri)(li , si ) (2.22)
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which in the case of LS coupling can be transformed to

HSO = λ(L, S) (2.23)

where λ is a combination of radial integrals of the type (2.9), called the
spin–orbital constant of the atom (or ion).

The spin–orbital constant λ plays a significant role in quantum chemistry
and the theory of physical methods of investigation of molecular systems. λ can
be either positive or negative, unlike the analogous spin–orbital constant for
one-electron ξnl , which is always positive [see Eqs. (2.9) and (2.10)]. Besides
theoretical calculations, λ can be obtained from experimental data using the rule
of Landé intervals . Indeed, J = L + S, J 2 = L2 + S2 + 2(L, S) and hence

(L, S) = J 2 − L2 − S2

2
(2.24)

On the other hand, it is known from quantum mechanics that the mean value
of the squares of the momenta are 〈J 2〉 = J (J + 1), 〈L2〉 = L(L + 1), 〈S2〉 =
S(S + 1), and hence the mean value of the perturbation (2.23), the first correction
�Ej to the energy level with the corresponding J value of the LS term under
consideration, is

�Ej = λ〈(L, S)〉 = λ[J (J+1) − L(L+1) − S(S+1)]

2
(2.25)

Hence, for the energy difference between two levels of the same LS term with
consecutive J values, we have

EJ+1 − EJ = �EJ+1 − �EJ = λ(J + 1) (2.26)

This is the rule of Landé intervals, which enables us to obtain easily the λ values
using experimental (spectroscopic) data on the energy differences between the
components of the multiplet spectrum. Table 2.7 shows some of the values of λ

obtained in this way. As one can see, λ > 0 for electronic configurations dn with
n < 5, and λ < 0 for n> 5 (for d5L = 0 and λ = 0). In the case of heavy atoms
λ increases rapidly with Z reaching values of several thousand wavenumbers
(cm−1). For rare-earth elements there is an approximate empirical formula [2.12]:

λ = 200 (Z − 55) cm−1 (2.27)

For heavy atoms the LS coupling approximation becomes invalid because the
spin–orbital interaction is not as small as the interelectron repulsion. In these
cases the presentation (2.23) with separate summation of the orbital momenta
of the electrons into the total orbital momentum L, and the spin momenta into
the total spin S is ungrounded. For sufficiently strong spin–orbital interactions
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the opposite limit case is used in which the orbital li and spin si momenta of
each electron are first summed up, resulting in its total momentum ji = li + si ,
and then these one-electron total momenta ji are summarized, yielding the total
momentum of the atom J = ∑

i ji . This is the so-called j–j coupling scheme.
Examples of j–j coupling are considered in Section 5.5 and Examples 5.6 and
6.14.

In many cases the intermediate picture between the LS and jj coupling schemes
is more appropriate. With care, these cases can also be handled by the LS approx-
imation [2.3].

Multielectron Wavefunctions

In the one-electron approximation to the study of multielectron systems, each
electron is described by a wavefunction that does not contain the coordinates
of the other electrons, and the total wavefunction is constructed by the one-
electron functions following certain rules. The main requirement for the total
wavefunction is that it be antisymmetric with respect to the permutation of the
(orbital and spin) coordinates of any two electrons. This condition follows from
the quantum-mechanical principle of undistinguishability of identical particles
with half-integer spins, and results directly in the Pauli principle.

To obey the condition of antisymmetry with respect to electron permutations,
the presentation of the full wavefunction � in the form of a determinant composed
of one-electron functions (the so-called Slater determinant) is most convenient.
For n-electron systems with closed shells, we obtain

�(1, 2, . . . , n) = (n!)−1/2

⎡

⎢
⎢
⎢
⎣

ψ1(1) ψ1(2) · · · ψ1(n)

ψ2(1) ψ2(2) · · · ψ2(n)
...

...
...

ψn(1) ψn(2) · · · ψn(n)

⎤

⎥
⎥
⎥
⎦

(2.28)

where each number 1, 2, . . . , n in parentheses is the shorthand notation for the
three orbital and one spin coordinates of the corresponding electron, and the
factor (n!)−1/2 occurs as a result of normalization (the one-electron functions ψi

are assumed to be orthonormalized).
From (2.28) one can easily verify that the function � has the required sym-

metry properties. Indeed, the interchange of the coordinates of any two electrons,
say 1 with 2, is equivalent to the interchange of two columns of the determinant
(1 and 2), and this changes the sign of the latter.

If the one-electron functions are characterized by the four quantum num-
bers n, l, m,ms , then the full wavefunction is determined by the set of quantum
numbers of all the occupied one-electron states, which can be denoted as follows:

�(n1l1m1ms1; n2l2m2ms2; · · · ; nnlnmnmsn) (2.29)



MULTIELECTRON STATES: ENERGY TERMS 41

For electrons of the same shell (nl ), the quantum numbers n and l may be
omitted, and the two values of the spin quantum number can be denoted by “+”
and “−.” For instance, for two equivalent (i.e., with the same n) d electrons with
quantum numbers m1 = 2, ms1 = 1

2 and m2 = 1, ms2 = − 1
2 the wavefunction can

be written as �(2+, 1−). As mentioned above, the one-electron functions in the
LS coupling scheme under consideration are presented as a product of the orbital
and spin parts, ψ(nlmms) = ϕnlm(ri , θ, φ)ηi(ms), where ϕnlm is determined by
Eq. (2.1) and ηi(ms) is the spin state function.

Using these denotations, we demonstrate below how the possible electronic
terms of a given configuration can be revealed. Consider an example of two d

electrons above the closed shell of an atom, namely, the configuration [A](nd )2.
There are five orbital d states, each having two spin states, hence 10 states are to
be occupied by the two electrons under the condition that each state accept only
one electron. The number of possible pairs of states equals the number of com-
bination of 10 by 2: C2

10 = 10 × 9/2 = 45. For each of these 45 possible states
of the d2 configuration, there is a wavefunction �(m1ms1;m2ms2) determined
after Eq. (2.28).

If we neglect the interelectron interaction, all these 45 states have the same
energy, and there is a 45-fold degeneracy. In Table 2.8 the wavefunctions for
these 45 states are grouped according to the values of the quantum numbers of the
projection of the summary orbital momentum of the two electrons M = m1 + m2

and summary spin Ms = ms1 + ms2. Such tables can be easily composed for any
electron configuration of the atom. Then, to obtain the possible terms, one has
to separate the groups of states that have the same L and S, but different M and
Ms (2L + 1)(2S + 1) states in each group (each term).

TABLE 2.8. All Possible 45 States of Two-Electron (nd)2 Configuration (in
One-Electron Approximation) Classified by Quantum Numbers M and Ms

Ms

M 1 0 −1

4 �(2+; 2−)

3 �(2+; 1+) �(2+; 1−), �(2−; 1+) �(2−; 1−)

2 �(2+; 0+) �(2+; 0−), �(2−; 0+), �(1+; 1−) �(2−; 0−)

1 �(2+; −1+) �(2+; −1−), �(2−;−1+) �(2−;−1−)

�(1+; 0+) �(1+; 0−), �(1−; 0+) �(1−; 0−)

0 �(2+, −2+) �(2+; −2−), �(2−, 2+) �(2−;−2−)

�(1+; −1+) �(1+; −1−), �(1−;−1+),�(0+; 0−) �(1−;−1−)

−1 �(1+; −2+) �(1+; −2−), �(1−;−2+) �(1−;−2−)

�(0+; −1+) �(0+; −1−), �(0−;−1+) �(0−;−1−)

−2 �(0+; −2+) �(0+; −2−), �(0−;−2+),�(−1+;−1−) �(0−;−2−)

−3 �(−1+;−2+) �(−1+;−2−), �(−1−; −2+) �(−1−;−2−)

−4 �(−2+;−2−)



42 ATOMIC STATES

It is seen from Table 2.8 that the largest value, M = 4, is possible only in
combination with Ms = 0. Since M = L, L − 1, . . . , and Ms = S, S − 1, . . . , the
largest L is also 4 with S = 0. Thus the term with the largest L is the spin singlet
1G. This term has (2L + 1)(2S + 1) = 9 states with Ms = 0 and M = 4, 3, 2, 1,
0, −1, −2, −3, −4. They can be easily found in Table 2.8 and eliminated.

From the remaining states the senior one is that with M = 3 and Ms = 1.
It belongs to the term with L = 3 and S = 1, specifically, to the 3F term that
has (2L + 1)(2S + 1) = 21 states with M = 3, 2, 1, 0, −1, −2, −3, and Ms =
1, 0, −1 for each M value. Eliminating them from Table 2.8, we again find the
senior state with M = 2 and Ms = 0 that belongs to the 1D term (five states).
In a similar way we also find the 3P term (9 states) and the 1S term (one state),
thus counting all the 45 states. Hence for the configuration [A](nd )2 the terms
1G, 3F , 1D, 3P , and 1S are possible. Similarly, the possible terms of all the other
configurations dn listed in Table 2.6 were found.

The wavefunctions of the atomic terms with certain L, M, S, and Ms

values �(LMSMs) can be found as a linear combination of the functions
�(m1ms1;m2ms2) [see (2.28)] that satisfy the condition of being an eigenfunc-
tion of the operators L2, S2, Lz, Sz. The method of their determination based on
the symmetry properties of these operators is given in special manuals [2.1–2.4,
2.13,]. In particular, if the functions are known for some of the M and MS

values, they can also be found for other quantum numbers using the following
relationships:

= (Lx ± iLy)�(LMSMs)

= �[(L ± M + 1)(L ∓ M)]1/2�(L, M ± 1, S, Ms) (2.30)

= (Sx ± iSy)�(LMSMs)

= �[(S ± Ms + 1)(S ∓ Ms)]
1/2�(L, M, S, Ms ± 1) (2.31)

Table 2.9 gives some of the widely used wavefunctions for the terms 3F and
3P of the configurations d2 and d8, as well as 4F and 4P for the configurations
d3 and d7. The functions are given for one value of the spin quantum number
Ms ; for the other values of Ms they can be found from the relation (2.31). The
configurations d1, d4, d6, and d9, using the principle of complementary electronic
configurations (see below), can be presented as one-electron configurations above
a closed shell; their functions �(L, M, S, Ms) coincide with ψ(nlmms).

Slater–Condon and Racah Parameters

As mentioned above, without the electron interaction presented by the term
H ′ = ∑

e2/rij in the Hamiltonian, all terms of a given electron configuration
have the same energy. When the electron interaction is included, the energies
of different terms diverge due to the differences in the electron repulsion and
exchange interaction. To determine this energy-level splitting, one can consider
the electron interaction H ′ as a perturbation and solve the perturbation theory
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TABLE 2.9. Wavefunctions �(LMSMs) of Some Terms of d2 and d3

Configurations Expressed as Linear Combinations of Determinant Functions
�(m1ms1; m2ms2; . . .)

Term �(LMSMs)
∑

i Ci�

3F(d2) �
(

3 3 1 1
)

�(2+; 1+)

�
(

3 2 1 1
)

�(2+; 0+)

�
(

3 1 1 1
) √ 3

5 �(2+;−1+) + √ 2
5 �(1+; 0+)

�
(

3 0 1 1
) √ 1

5 �(2+;−2+) + √ 4
5 �(1+;−1+)

�
(

3 −1 1 1
) √ 3

5 �(1+;−2+) + √ 2
5 �(0+;−1+)

�
(

3 −2 1 1
)

�(0+; −2+)

�
(

3 −3 1 1
)

�(−1+;−2+)

3P(d2) �
(

1 1 1 1
) √ 2

5 �(2+;−1+) − √ 3
5 �(1+; 0+)

�
(

1 0 1 1
) √ 4

5 �(2+;−2+) − √ 1
5 �(1+;−1+)

�
(

1 −1 1 1
) √ 2

5 �(1+;−2+) − √ 3
5 �(0+;−1+)

4F(d3) �
(

3 3 3
2

3
2

)
�(2+; 1+; 0+)

�
(

3 2 3
2

3
2

)
�(2+; 1+; −1+)

�
(

3 1 3
2

3
2

) √ 2
5 �(2+; 1+;−2+) + √ 3

5 �(2+; 0+;−1+)

�
(

3 0 3
2

3
2

) √ 4
5 �(2+; 0+;−2+) + √ 1

5 �(1+; 0+;−1+)

�
(

3 −1 3
2

3
2

) √ 2
5 �(2+;−1+;−2+) + √ 3

5 �(1+; 0+;−2+)

�
(

3 −2 3
2

3
2

)
�(1+; −1+; −2+)

�
(

3 −3 3
2

3
2

)
�(0+; −1+; −2+)

4P(d3) �
(

1 1 3
2

3
2

) √ 3
5 �(2+; 1+;−2+) − √ 2

5 �(2+; 0+,−1+)

�
(

1 0 3
2

3
2

) √ 1
5 �(2+; 0+;−2+) − √ 4

5 �(1+; 0+;−1+)

�
(

1 −1 3
2

3
2

) √ 3
5 �(2+;−1+;−2+) − √ 2

5 �(1+; 0+;−2+)

problem, taking the functions �(LMSMs) as zeroth-order functions. The cor-
responding secular equation of perturbation theory is then essentially simplified
because the operators L2, S2, Lz, and Sz commute with H ′. This means that
with the functions � that are eigenfunctions of the operators above, only matrix
elements of the perturbation H ′ that are diagonal in L and S are nonzero, and
they are the same for different M and Ms . In other words, the energy corrections
�E caused by electron interaction are the same for all states with the same LS
value, and can be found directly as diagonal matrix elements:

�E(L, S) =
∫ ∑

e2

rij

|�(LMSMs)|2 dτ (2.32)
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Off-diagonal matrix elements of H ′ may also be nonzero if the wavefunctions
of the two states pertain to different configurations, and they were calculated in
the Hartree–Fock or other approximation without including correlation effects
(the exact wavefunctions are mutually orthogonal and yield zero off-diagonal
matrix elements of H′). To judge which such states can interact, a simple sym-
metry argument can be invoked: H ′ is invariant to all symmetry operations of the
atom (spherical group) and thus belongs to the totally symmetric representation
of this group (Chapter 3), and hence integrals such as (2.32) are nonzero only
if the two states from different configurations have the same symmetry. This
is the origin of the term configuration interaction used to evaluate the electron
correlation effects (see Section 5.3 for more details).

The way of calculation of integrals of the type (2.32) is well known. Since �

is a linear combination of � in Table 2.9, Eq. (2.32) can be reduced to integrals
of the following type:

∫

�∗(m1, ms1, . . . )
e2

rij

�(m′
1m

′
s1, . . . ) dτ (2.33)

This integral equals zero when the two functions � differ by more than two
one-electron states. Indeed, different one-electron functions are orthogonal to
each other, and since r12 = |r1 − r2| depends on the coordinates of only two
electrons, the integration over the other coordinates with orthogonal functions
yields zero. For instance

∫

�∗(2+; 1−; 0+)
∑

i,j

1

rij

�(1+; 2−; 0−) dτ = 0

whereas
∫

�∗(2+; 1−; 0+)
∑

i,j

1

rij

�(2+; 2−; 1+) dτ �= 0

Thus only four one-electron functions (two from each side) can differ in the
nonzero integrals (2.33); denote them by a, b, c, and d . Then the expression for
�E is reduced to a sum of two-electron integrals of the following type:

[ab|cd] =
∫

a∗(1)b(1)
e2

r12
c∗(2) d(2) dτ1 dτ2 (2.34)

In the notation on the left-hand side of Eq. (2.34), widely employed in quantum
chemistry, a and b are one-electron functions of the first electron, while c and
d contain the coordinates of the second electron. Some of these one-electron
functions can coincide. In particular, the following integrals

[aa|bb] = I (a, b) =
∫

a∗(1)a(1)
e2

r12
b∗(2)b(2) dτ1 dτ2 (2.35)
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[ab|ba] = K(a, b) =
∫

a∗(1)b(1)
e2

r12
b∗(2)a(2) dτ1 dτ2 (2.36)

are most usable. The first one, called the Coulomb integral , equals the energy of
the electrostatic repulsion of two electron clouds described by the one-electron
probability distributions a2(1) and b2(2), respectively. K(a, b) is termed the
exchange integral representing the energy decrease caused by the exchange inter-
action between the two electrons in the states a and b.

To calculate the integral (2.34), the following expression is useful:

1

r12
=

∞∑

k=0

Kk(r1, r2)Pk(cos γ12) (2.37)

where

Kk(r1, r2) =
{

rk
1 /rk+1

2 if r1 < r2

rk
2 /rk+1

1 if r2 < r1

(2.38)

and Pk(cos γ12) is the Legendre polynomial [Eq. (2.3) with m = 0] of the argu-
ment cos γ12 = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2). Substituting the one-
electron functions a, b, c, and d by their expressions of the type (2.1) together
with (2.37) and (2.38) into (2.34) and using some orthogonality conditions for the
spherical functions, one can integrate over the angular coordinates, thus reducing
the expression for [ab|cd ] to a limited number of two-electron radial integrals of
the following type:

R(k)(abcd) = e2
∫ ∫

R∗
n(a)l(a)(r1)Rn(b)l(b)(r1)Kk(r1, r2)

× R∗
n(c)l(c)(r2)Rn(d)l(d)(r2)r

2
1 r2

2 dr1 dr2 (2.39)

For the Coulomb and exchange contributions, the following notations are
used:

R(k)(aabb) = F (k) (2.40)

R(k)(abba) = G(k) (2.41)

The constants F (k) and G(k) are referred to as Slater–Condon parameters . For
electrons that have the same n and l values (such electrons are called equivalent
because of their equivalent orbitals), all the radial integrals R(k) are of the F (k)

type. In atomic calculations the parameters Fk are more convenient; they differ
from F (k) by a numerical coefficient. For instance, for equivalent d electrons the
nonzero Fk parameters are

F0 = F (0) F2 = 1
49F (2) F4 = 1

144F (4) (2.42)
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Finally, in many cases combinations of Slater–Condon parameters, known as
Racah parameters , are used:

A = F0 − 49F4 B = F2 − 5F4 C = 35F4 (2.43)

The correction to the energy due to electron interactions and hence the rela-
tive energies of atomic terms of dn configuration expressed in terms of Racah
parameters A, B,C are given in Table 2.6.

To calculate the Racah parameters, as seen from expression (2.39), the radial
wavefunctions of the atomic one-electron states are needed. More often it is
preferred to consider the values A, B,C as empirical parameters and to deter-
mine them from the comparison of the calculated energies with those deter-
mined experimentally from spectroscopic data. For the electronic configuration
[A](nd)2 discussed above, the energy difference between the terms 3F and 3P

is E(3P) − E(3F) = 15B (Table 2.6). On the other hand, the experimental value
of this splitting, for instance, for V 3+(3d2), is ≈13000 cm−1; hence B ≈ 870
cm−1. Some values of the Racah parameters for transition metal ions and their
complexes are given in Tables 4.7 (Section 4.5) and 8.3 (Section 8.2). Some-
times the following estimations for Slater–Condon parameters for f electrons
are useful [2.14]: F4 ≤ 0.202F2, and F6 ≤ 0.0306F2.

In many cases there is no need for detailed calculation of the energy terms
for all possible electron configurations of the atom because for some of them
the electronic terms can be revealed directly from other configurations using
the principle of complementary configurations . According to this principle, the
configuration with n equivalent electrons has the same types of terms as the
configuration N − n, where N is the number of electrons in the closed shell
under consideration. The reason is that formally the problem of n electrons is
equivalent to that of N − n “holes,” and hence the problem of n particles can be
reduced to that of N − n (other) particles. The reduction of computation work by
using this principle is significant; for the configuration d9 the terms are equivalent
to those of d1, for d8 - to d2, for d7 - to d3, and so on. The rule is also valid
for half-filled shells for which all the orbital states are occupied (orbitally closed
shell). This means that for d4 one can use the configurations of d5−4 = d1 (d5

is a half-filled shell), for d6 - that of d10−6 → d4 → d1, and so on. Thus all
the terms of dn configurations can be reduced to those of d1 and d2. Tables 2.6
and 2.9 are based on this principle.

The Hartree–Fock Method

The Hartree–Fock method of calculation is of general importance serving as a
starting point to many other methods of investigation of multiparticle systems.
For multielectron systems (atoms, molecules, crystals) the Hartree–Fock method
[2.1–2.4] yields the best solutions (one-electron functions and energies) compat-
ible with the approximation of full separation of the electron variables, that is,
ignoring correlation effects (Section 5.3). The importance of this method and its
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self-consistent procedure can hardly be overestimated because it lies in the base
of the entire gamut of modern computational chemistry and physics .

To disclose the essence of this method, let us begin with the Hartree approx-
imation. Assume that each electron can be considered as moving independently
in an averaged field created by the nucleus and the other electrons. This means
that its wavefunction ϕi(ri) is independent of the variables of other electrons,
and the expression |ϕi(ri )|2 is the probability density of finding the ith electron
at point ri . Since the probability of simultaneously occurring independent events
equals the product of probabilities of each event, the electronic wavefunction of
the system as a whole can be presented in the form of a simple product of the
one-electron functions ϕi(ri ):

�(ri , r2, . . . , rn) = ϕi(r1)ϕ2(r2) · · · ϕn(rn) (2.44)

This means that |�|2 is the density of the probability of finding electron
1 at r1, electron 2 at r2, and so on. The functions ϕi(r) are assumed to be
orthonormalized:

∫

ϕ∗
i (r)ϕj (r) dτ = δij i, j = 1, 2, . . . , n (2.45)

Hereafter in this book, δij means the Kroneker index (or δ symbol):

δij =
{

0 if i �= j

1 if i = j
(2.46)

To determine the functions ϕ(r), the variational principle can be employed.
This principle states that the functions (2.44) sought for must obey the condition
of the minimal total energy E of the system, δE = 0 (here δ means variation,
not to be confused with the Kroneker index δij ) calculated with the Hamiltonian
H of the Schrödinger equation:

E =
∫

�∗H� dτ (2.47)

δE = δ

∫

�∗H� dτ = 0 (2.48)

By substituting (2.44) into (2.48) with the Hamiltonian from Section 1.3 and
varying the unknown functions ϕi(ri), one finds the following system of equations
for these functions:

[H 0 + Vk(r) − εk] ϕk(r) = 0 k = 1, 2, . . . , n (2.49)

where H 0 is the part of the Hamiltonian that contains the kinetic energy T and
the energies of interaction with the nuclei Uα:

H 0 = T −
∑

α

Uα = − �
2

2m
� −

∑

α

e2Zα

|r − Rα| (2.50)
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and Vk(r) is the sum of the energies of the electrostatic repulsive interaction of
the kth electron with the charges of the ith electrons distributed in space with
the densities e|ϕi(ri )|2:

Vk(r) =
∑

i∗k

e2
∫ |ϕi(r′)|2

|r − r′| dτ (2.51)

The system of equations (2.49) describes the full separation of the variables of
the electrons; each of its n equations contains the coordinates of only one electron.
They are complicated, integrodifferential equations (the unknown function is
under both differentiation and integration) that can be solved by means of a
special iteration procedure termed the self-consistent field (SCF) method . The
fundamentals of this method are as follows.

Assume that we have a set of functions ϕk(r)—the initial set—obtained, for
instance, by ignoring the electron interaction [i.e., assuming Vk(r) = 0 in Eq.
(2.49)]. With these functions, all the terms Vk(r) after (2.51) and their sum
(the average potential of interaction of one electron with all the others) can
be evaluated. By substituting these terms into the system (2.49), one obtains n

independent simple differential equations that can be solved numerically. These
solutions yield a new system of functions ϕ′ (and eigenvalues ε′) that are more
accurate than the initial set ϕ because the electron interaction has been accounted
for. With the more accurate functions one can calculate more accurate potentials
of the interelectronic interaction V ′

k(r) and again solve Eqs. (2.49) with these
better potentials, and so on, until the new eigenfunctions ϕk and new eigenvalues
εk coincide with the previous values (within the accuracy required). The solu-
tions obtained in this way are called self-consistent solutions . The self-consistent
method described above was suggested first by Hartree [2.15].

However, as shown by Fock [2.16], the presentation (2.44) of the wavefunc-
tion � as a simple product of one-electron functions ϕ does not satisfy the
condition of undistinguishability of the electrons that requires the total wave-
function to be antisymmetric with respect to the permutation of the coordinates
of any two electrons. To obey this condition in the case of a closed-shell system,
the wavefunction � should be presented in the form of the determinant (2.28)
constructed by the functions ϕi(r). The substitution of this determinant function
into Eq. (2.48) and the consequent variation of the functions ϕk(r) yields the
following system of equations instead of (2.49):

⎡

⎣H 0 + 2
n/2∑

i=1

e2
∫

ϕ∗
i (r

′)ϕi(r′)
|r − r′| dτ ′ − 2εkk

⎤

⎦ϕk(r)

−
n/2∑

i=1

[
e2

∫
ϕ∗

i (r
′)ϕk(r′)

|r − r′| dτ ′ − εik

]

ϕi(r′) = 0 (2.52)
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Here it is taken into account that in accordance with the assumption of a closed
shell, the number of electrons n is even, and in each of the orbital states ϕk(r)
there are two electrons with opposite spins. The second sum in (2.52) is the so-
called exchange correction that arises additionally [as compared with (2.49)] from
the undistinguishability principle, the exchange interactions . Exchange interac-
tions are nonzero for electrons with the same spin states only, and therefore the
number of terms in the second sum in (2.52) is half that in the first sum, the
electrostatic interactions.

The term with i = k from the exchange sum that corresponds to the interaction
of the electron with itself vanishes automatically since it is present in both sums
of (2.52) with opposite signs [the remaining term with i = k in the first sum
(which has the factor 2) denotes the electrostatic interaction of the ith electron
with the other one in the same orbital state ϕi(r) but with an opposite spin].

The constants εik occur as Lagrange factors at the condition of normalization
and orthogonality of the functions ϕk and ϕi (2.45). The most part of these
constants can be eliminated by substituting ϕi with their linear combinations
ϕ′

i . In other words, we can perform a unitary transformation [see Eq. (3.11)]
of the set of functions ϕi to another set ϕ′

i for which the off-diagonal values
ε′
ik become zero. Unitary transformations do not change the initial determinant

function (2.28) and hence the energy of the system [2.17].
Denoting the remaining diagonal value εkk = Ek and introducing the operator

Pik that interchanges the indices i and k of the function on which it acts, we
have (the prime at ϕ′ is omitted):

[

H 0 +
∑

i

e2
∫

ϕ∗
i (r

′)(2 − Pik)ϕi(r′)
|r − r′| dτ ′ − Ek

]

ϕk(r) = 0 k = 1, 2, . . . ,
n

2

(2.53)

This is the system of Hartree–Fock (HF) self-consistent field (SCF) equations for
a multielectron system with a closed electronic shell. It can be solved in the same
manner as discussed above for the Hartree equations yielding self-consistent
one-electron states—wavefunctions ϕk(r) and eigenvalue Ek. The latter has
the physical meaning of the one-electron orbital energy in the self-consistent
state ϕk(r).

Equations (2.53) can be written in the form of a usual Schrödinger equation:

Fkϕk(r) = Ekϕk(r) (2.54)

where

Fk = H 0 +
∑

i

e2
∫

ϕ∗
i (r)(2 − Pik)ϕi(r′)

|r − r′| dτ ′ (2.55)
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is the Fock effective one-electron Hamiltonian, sometimes called Fockian . Mul-
tiplying Eq. (2.53) or (2.54) by ϕk(r) from the left-hand side and integrating over
r , one finds

Ek = H 0
kk +

∑

i

(2[ii|kk] − [ik|ki])

= H 0
kk +

∑

i

[2I (i, k) − K(i, k)] (2.56)

where the notation (2.35) for the Coulomb integral I (i, k) = [ii|kk] and (2.36)
for the exchange one K(i, k) = [ik|ki] are used. Accounting for the expression
(2.50) for H 0, we conclude that the self-consistent energy of the kth electron in
the one-electron state equals the sum of its kinetic energy, the energy of interac-
tion with the nuclei, and the energy of the Coulomb and exchange interelectron
interactions.

In fact, Ek equals the energy that must be applied to withdraw the kth electron
from the atom, the ionization energy , provided all the other one-electron states
are not changed by the transition to the ionized state. This statement is known
as the Koopmans theorem [2.18]. For many coordination systems the Koopmans
theorem is invalid because of the significant changes in the one-electron states
(interelectron interaction) caused by the elimination of one electron; on ionization
the remaining electrons relax to new self-consistent states (see Sections 6.2, 6.4,
8.3, etc.).

For the sum of the one-electron energies of the n electrons, we have

2
n/2∑

k=1

Ek = 2
n/2∑

k−1

H 0
kk + 2

n/2∑

k=1

[2I (i, k) − K(i, k)] (2.57)

It is important that in this sum the interelectron interaction is included twice:
once in the sum of the interaction of a given ith electron with all the others
(including the kth electron) and the second time in the sum of the interaction
of the kth electron with all the others also including the ith one. Therefore, to
obtain the total energy of the system E, the interelectron interaction should be
subtracted once from the expression (2.57). Hence

E = 2
n/2∑

k−1

H 0
kk +

n/2∑

k=1

[2I (i, k) − K(i, k)] (2.58)

For a system with an open shell of electrons the Hartree–Fock equations
(2.53) become much more complicated. This problem is discussed further in
Section 5.3.
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SUMMARY NOTES

1. Atomic states are basic elements (elementary bricks) of electronic structure
of transition metal systems (TMSs).

2. The usually presented space distributions of the degenerate p, d, . . . states
of free atoms are virtual; they become real (in the sense of charge distribu-
tion) only under external perturbations, such as by bonding to other atoms,
in which case they may also become mixed, hybridized. Hybridization is
thus a bonding effect.

3. The interaction between the magnetic moment of the electron spin and the
magnetic field of its orbital motion (spin–orbital interaction) is one of
the most essential relativistic effects, unavoidable even in nonrelativistic
treatment of molecular systems. Spin–orbital interaction is much more
significant for TMS than for organic compounds.

4. Relativistic atomic functions have some peculiar properties making them
much different from nonrelativistic (NR) ones. In particular, their radial
part has no nodes, the p1/2 function is spherical symmetric (similar to
the NR s function), and their overlap does not produce pure σ or pure π

bonding (they are mixed, etc.; see also Section 6.5).
5. Each electronic configuration of multielectron atoms produces several

electronic terms with different electron spins and distributions over the
one-electron states. Electronic terms have different energies and wave-
functions because of the differences in electron repulsion and exchange
interaction.

6. In the iterative self-consistent field (SCF) approximation the averaged field
for each electron is calculated first with some guesswork functions and are
used to solve equations to obtain better wavefunctions, which are used to
recalculate the (better) averaged field, and so on, until the resulting energy
and wavefunction coincide with the previous one. This Hartree–Fock SCF
procedure is a starting point in almost all the modern methods of calculation
of electronic structure.

QUESTIONS

Answer the following questions (explain your answer): True or false?

2.1. The charge distribution of a d electron in a free transition metal atom has
the characteristic angular features of a d function in Fig. 2.3.

2.2. As a result of orbital sp3 hybridization, a free carbon atom has four tetra-
hedrally directed valences.

2.3. Spin–orbital interaction is zero for s electrons.
2.4. For both light and heavy atoms the total electronic wavefunction of an atom

equals the product of the orbital and spin wavefunctions.
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2.5. The overlap integral between the orbitals of two atoms cannot be larger than
unity.

2.6. For transition metal compounds the spin–orbital coupling is negligible.
2.7. Slater–Condon parameters describe the interelectron interaction in atoms.

EXERCISES AND PROBLEMS

Note: Asterisks indicate advanced exercises and problems.

P2.1. Use Eqs. (2.1)–(2.5) to calculate the explicit radial and angular atomic
functions for 5d and 5f electrons. How many nodes (zeros) have the
radial functions? Are there nodes in the corresponding relativistic radial
atomic functions?

P2.2. Albright and Burdett [2.19, p. 28] stated that hybridized sp3 atomic func-
tions are nonorthogonal to each other. On the other hand, in Section 2.1 of
this book, it is stated that the coefficients of the hybridized functions are
determined from the condition of their orthogonality. Resolve this contro-
versy by showing that the hybridized functions of any type (sp2, sp3, and
d2sp3 orbitals in Table 2.4) are mutually orthogonal.

P2.3. Explain the difference between Russell–Saunders LS and heavy-atom j –j

coupling of moments and spins of electrons in atoms. Give examples of
these two types of coupling in interelectron interactions.

P2.4. From the list of the terms of electronic dn configurations and their energies
as a function of Racah parameters in Table 2.6, we can see that the com-
plementary configurations dn and d10−n have the same terms and energy
functions (the latter may differ by a constant meaning by just the energy
read off.). Explain why this occurs.

*P2.5. Using Tables 2.6, 4.7, and 8.3, construct the energy-level diagrams (posi-
tions of term energies) for the first row transition metal ions with electronic
configurations [A](3d )2 and [A](3d )3, respectively. Take the energy read
off at the Racah parameter A = 0.

P2.6. On the basis of the system of equations (2.53), formulate in writing how,
step by step, the iterative SCF procedure is used to solve the problem of
electronic structure. What is the physical meaning of the orbital energies
Ek and wavefunctions φk(r) obtained from these solutions?
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3
SYMMETRY IDEAS AND
GROUP-THEORETICAL
DESCRIPTION

In the theory of electronic structure and properties of transition metal coordi-
nation compounds the ideas of symmetry are of great, sometimes fundamental
importance.

The most complete description of symmetry properties is achieved in the
mathematical group theory. In this chapter we give minimum information about
some rules worked out by group-theoretical methods that are required for a better
understanding of the presentation in this book (for more details on group theory
see, e.g., Refs. 3.1–3.8).

3.1. SYMMETRY TRANSFORMATIONS AND MATRICES

Molecular symmetry is the property of a molecule to remain invariant under
certain rotations and reflections in space and permutations of identical particles.
These rotations, reflections, and permutations are called symmetry operations,
or symmetry transformations . For instance, in the equilateral planar-triangular
configuration of the molecule V3, the symmetry transformations are (Fig. 3.1)
rotations around the Oz axis (which is perpendicular to the plane of the molecule)
by angles 2π/3, 4π/3, 2π , and around the axes A1B1, A2B2, and A3B3 by angles
π and 2π , as well as reflection in the planes that comprise these axes and are
perpendicular to the plane of the molecule, and reflection in the plane of the
triangle.

Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory,
Second Edition By Isaac B. Bersuker
Copyright © 2010 John Wiley & Sons, Inc.
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FIGURE 3.1. Symmetry elements of an equilateral triangle.

For the simplest symmetry operations in space, namely, rotation and reflections
(for crystals there are also translations), there are conventional notations. The
rotation around some axis by the angle 2π/n is denoted by Cn. It is obvious that
if, after some rotation, the molecule is matched with itself, it will behave in the
same way when this rotation is repeated an integer number of times.

The result of consequent performance of two symmetry operations is defined as
their product . If Cn is a symmetry operation of the molecule, then Cn · Cn = C2

n is
also a symmetry operation. In general, Cp with any integer p is also a symmetry
operation. In particular, Cn

n is a rotation by an angle 2π that does not change
the position of the molecule in space; this is the identical operation E ; hence
Cn

n = E. The axis of rotation in the Cn operation is called the symmetry axis of
the order n, or n-fold axis.

The symmetry operation σ denotes the reflection in a plane; obviously, σ 2 =
E. If there is also an axis of symmetry, the reflection in the plane containing
this axis is denoted by σv or σd , while the reflection in the plane perpendicular
to the axis of symmetry is σh. The consequent performance of the operations Cn

and σh, their product Cn · σh = Sn, is called the reflection–rotation operation . In
particular, the rotation by an angle π (C2) followed by the reflection in the plane
perpendicular to the rotation axis σh, is the inversion operation I with respect to
the point where the axis crosses the plane: I = S2 = C2 · σh. From these simple
operations all the symmetry transformations of molecules can be deduced.

The term transformations for these rotations and reflections comes from their
mathematical expression by simple linear transformations of the coordinate sys-
tem. For instance, the rotation of the molecule by an angle φ around the axis Oz
is equivalent to the transformation of the coordinate system in which the point
M(x, y, z) is transfered to M ′(x′, y′, z′) and

x′ = x cos φ + y sin φ

y′ = −x sin φ + y cos φ (3.1)

z′ = z
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Such transformations are used very often; therefore, it is convenient to simplify
their notation. First, let us write Eq. (3.1) in a more symmetric form:

x′ = cos φ · x + sin φ · y + 0 · z
y′ = − sin φ · x + cos φ · y + 0 · z (3.1′)

z′ = 0 · x + 0 · y + 1 · z

We see that the transformation (3.1) is determined by a set of coefficients that
can be arranged in a quadratic table:

A =
⎛

⎝
cos φ sin φ 0

− sin φ cos φ 0
0 0 1

⎞

⎠ (3.2)

This table is called the matrix of the transformation (3.1). By means of the
matrix A, the transformation of M into M ′ can be written in a much simpler
(compact) form:

M ′ = AM (3.3)

where A means that a special operation given by the system of equation (3.1)
(and denoted by the matrix A) should be performed on the coordinates of M .

The transformation of an arbitrary function of coordinates f (x, y, z) via the
transformation of the coordinates (3.1) can be written in a similar way:

f (x′, y′, z′) = Af (x, y, z) (3.3′)

Here A means that the operation (3.1) should apply to all the coordinates,
and in this way the whole function f changes. The symbol A, indicating a
certain operation to be performed over the function that follows A, is called an
operator . Hence each symmetry transformation can be presented by a certain
matrix–operator.

If one performs a backrotation (i.e., a rotation by the angle −φ) on the same
system, then the point M ′ is transferred back to M , and it can be shown using Eqs.
(3.1) that the transformation of M ′(x′, y′, z′) into M(x, y, z) has the following
form:

x = x′ cos φ − y′ sin φ

y = x′ sin φ + y′ cos φ (3.4)

z = z′
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with the matrix

A′ =
⎛

⎝
cos φ − sin φ 0
sin φ cos φ 0

0 0 1

⎞

⎠ (3.5)

This transformation can be written more compactly as

M = A′M ′ (3.6)

Obviously the consequent application of the operations A and A′ to point M

transfers this point into itself; hence

AA′M = M (3.7)

or AA′ = E, the identical transformation. It can be shown that E is always a
diagonal unity matrix with zero off-diagonal elements and units in the diagonal
positions. In particular, in the three-dimensional case discussed above, we obtain

E =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ (3.8)

which corresponds to the transformation:

x = x′

y = y′ (3.9)

z = z′

The condition AA′ = E means that A and A′ are mutually inverse matrices . If
some transformation is described by the matrix A, then the inverse transformation
A′ is described by the inverse matrix A−1. The latter can be obtained from the
former by means of a simple transposition of the columns by rows [compare
A′ after (3.5) with A after (3.2)]. This operation is called transposition of the
matrix. For any real and unitary (see below) transformation the inverse matrix is
just the transposed matrix.

The reflection operation can be presented in a manner quite similar to that
for rotations. For instance, the reflection in the plane xy corresponds to the
transformation x′ = x, y′ = y, and z′ = −z with the matrix

A =
⎛

⎝
1 0 0
0 1 0
0 0 −1

⎞

⎠ (3.9′)
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while the inversion is

x′ = −x

y′ = −y

z′ = −z

A =
⎛

⎝
−1 0 0
0 −1 0
0 0 −1

⎞

⎠ (3.10)

In the general case of n coordinates x1, x2, . . ., xn (n-dimensional space) their
linear transformation, similar to (3.1) or (3.10) for the three-dimensional space,
can be conveniently written as follows:

x′
i =

∑

j

aij xj , i = 1, 2, . . ., n (3.11)

where aij are the coefficients of the transformation. The matrix A corresponding
to this transformation is

A =

⎛

⎜
⎜
⎜
⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

an1 an2 . . . ann

⎞

⎟
⎟
⎟
⎠

(3.12)

The matrices (3.2), (3.5), (3.8)–(3.10) are particular cases of the matrix (3.12)
for three-dimensional transformations.

It can be shown that for rotations and reflections the matrix elements aij obey
certain relationships of orthogonality and normalization:

∑

j

ajkajl = δkl (3.13)

where δkl is the Kronecker index (2.46): δkl = 1 if k = l and δkl = 0 if k �= l.
The linear transformations that obey the condition (3.13) are called unitary

transformations . It can be easily checked that the three-dimensional transforma-
tions (rotations and reflections) are unitary transformations. Thus all the molecular
space symmetry operations are unitary transformations.

Let us perform two consequent unitary transformations:

x′
j =

n∑

k=1

ajkxk j = 1, 2, . . ., n

x′′
i =

n∑

j

bij x
′
j i = 1, 2, . . ., n

(3.14)

or in a more compact form

M ′ = AM

M ′′ = BM ′ (3.14′)
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The result of the two transformations can also be obtained directly by one
transformation of x into x′′:

x′′
i =

n∑

k=1

cikxk i = 1, 2, . . ., n (3.15)

or
M ′′ = CM (3.15′)

where C is the matrix of this transformation. On the other hand, by substitution
of the first of Eqs. (3.14′) into the second one, we have

M ′′ = BM ′ = BAM

Thus [cf. (3.15′)]

C = B · A (3.16)

Determined in this way, the matrix C equals the product of the matrices B and
A. Its elements can be found by substituting the first Eq. (3.14) into the second
one:

x′′ =
∑

j

bij x
′
j =

∑

j

bij

∑

k

ajkxk =
∑

j,k

bij ajkxk (3.15′′)

Hence

cik =
∑

j

bij ajk (3.17)

In other words, the matrix elements of the product of two matrices equals
the sum of the products of the elements of each row of the multiplier with
the elements of the corresponding column of the multiplicand. In this context
it is worthwhile to emphasize that the product of two matrices (two symmetry
operations) is, in general, not commutative (the multiplier and multiplicand are
not interchangeable):

B · A �= A · B (3.18)

Thus the consecutive application of two transformations (two symmetry oper-
ations) can be described by one matrix equal to the product of the matrices of
the two transformations. Obviously, the identical transformation E multiplied by
any matrix A does not change it: E · A = A.

To conclude this section: (1) each symmetry transformation of the molecule
corresponds to some matrix–operator, (2) inverse transformation corresponds to
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the inverse matrix, (3) the identity operation corresponds to the unity matrix, and
(4) the consecutive application of two symmetry operations corresponds to the
product of their matrices.

Thus the geometric properties of symmetry are translated into the language of
matrices–operators; this is important for direct use of group-theoretical consid-
erations in evaluation of structure and properties of matter.

3.2. GROUPS OF SYMMETRY TRANSFORMATIONS

One of the most important properties of a molecule is that its symmetry trans-
formations form a group in the mathematical sense of this word . A group is a set
of elements (of any nature) that satisfies the following conditions:

1. The operation of multiplication of two elements is defined, the product of
any two elements being also an element of the set under consideration.

2. The multiplication obeys the law of associativity: (AB) · C = A · (BC),
where A, B, and C are elements of the set.

3. Among the elements there is an identity one E, that is, an element which
in the product with another one does not change the latter.

4. For each element there is an inverse element that satisfies the condition
A · A−1 = E.

It can be shown that the set of symmetry operations of a molecule satisfies all four
of these conditions for a group. Indeed, the product of two symmetry operations,
defined as their consecutive application, is also a symmetry operation; each of
them matches the molecule with itself (by definition), and hence their product
also matches the molecule with itself. Then the identity element is the identical
transformation (say, the rotation by an angle 2π), and the inverse element, as
shown above, is given by the inverse transformation. The associative law can
also be easily checked.

Thus the set of symmetry transformations forms a group in the mathematical
sense of the word, and this means that all the results of the mathematical theory
of groups can be used directly to reveal the properties of symmetry operations
and their role in physical and chemical properties of the molecule. Next, we
formulate briefly some useful group-theoretical rules.

The number of elements in the group is called the order of the group. For
a molecule the order of the group can be either a finite, or an infinite number.
The latter is realized, for instance, in linear molecules for which the number of
rotations is infinite, since rotations by any angle around the axis of the molecule
is a symmetry operation (in this case the group is continuous). If the order of
the group is not a simple number, then some subgroups can be separated from
the group, which means that within the set of elements of the group there are
smaller sets that form smaller groups.
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Two elements, A and B, are called conjugated if there is such a third element
P for which

A = P · B · P −1 (3.19)

It can be shown that if A is conjugated with B, and B is conjugated with C,
then A is conjugated with C. This property allows one to separate the elements
of the group into smaller sets in which all the elements are mutually conjugated.
These sets are called classes .

There is a simple geometric rule that enables one to easily separate the sym-
metry operations into classes. Denote by A the rotation around the Oa axis by
an angle φ, and by B the rotation by the same angle around another axis Ob.
If there is an element P of the group that transforms the axis Ob into Oa , then
A = PBP−1, and A and B belong to the same class. The proof of this rule
emerges directly from geometric concepts and can be easily checked. Separation
of the group elements into classes is very important for applications.

Note that all the molecular symmetry groups are point groups for which any
set of consecutive symmetry operations leaves at least one point of the system
unchanged. Otherwise, these operations are not symmetry operations because
they displace the molecule and it does not match with itself. For crystals there is
also translation symmetry, but the local properties can still be described by point
groups.

The simplest point groups are as follows (Fig. 3.2). The groups Cn, n =
1, 2, . . . contain one axis of symmetry of the nth order and n elements:
Cn, C

2
n, C

3
n, . . ., Cn

n = E. The groups Cnh and Cnv can be obtained by adding
reflection planes σh and σv , respectively, to the nth-order axis (in C∞h and
C∞v the order of the symmetry axis is infinite). The group Dnh is obtained by
adding a perpendicular second-order axis to the main nth axis (this also creates
reflection planes; see below). Most important for coordination compounds are

FIGURE 3.2. Symmetry elements of some point groups: (a) fourth-order axis C4 and
symmetry planes σv and σh of the C4h group; (b) σd planes of the same group C4h; (c)
the threefold axis C3 and symmetry planes σv of the C3v group.
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the cubic groups, tetrahedral T , Td , and Th, and octahedral O and Oh, as well
as icosahedral groups I and Ih. The description of these groups in detail is
given in special manuals mentioned above. Example 3.1 illustrates the details in
the description of the cubic Oh group.

EXAMPLE 3.1

The Symmetry Group of an Octahedral Oh System and Its Classes

Consider as an example the octahedral Oh group, which corresponds
to the symmetry operations of an octahedral complex with identical
ligands. It includes all the symmetry elements of a cube (Fig. 3.3):
three axes of the fourth order C4 lining the centers of opposite faces
of the cube (in octahedral complexes they line two ligands in the trans
position) and three axes of the second order that coincide with the
C4 axes: C2 = C2

4 ; four axes of the third order C3 that coincide with
the diagonals of the cube; six axes of the second order C′

2 connecting
the midpoints of the opposite edges; a center of symmetry (inversion
operation I ); three reflection planes parallel to the faces of the cube σh;
and six reflection planes σd , each containing two opposite edges.

FIGURE 3.3. Symmetry axes of a cube.

To determine the number of elements (the order of the group) and
their distribution over the classes, it is convenient to begin with the
subgroup O of the Oh group, which is also known as a separate group
of all the rotations of the octahedron (without reflections). According
to the geometric rule of distribution of the symmetry operations into
classes formulated above, rotations by the same angle around different
axes enter the same class if among the elements of the group O under
consideration there are such rotations that transfer one axis into another.
Using this rule one can establish that in the O group there are 24
elements that form five classes:
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1. Class E , which contains one element (the identical element always
forms a separate class)

2. Class C4, containing six elements, three rotations C4, and three
rotations C3

4 around the fourth-order axes; C3
4 means 3× rotation

by the angle 2π/4, which is equivalent to C−1
4 , the element inverse

to C4 describing the rotation around C4 by an angle of −2π/4
3. Class C2

4 = C2, containing three rotations by an angle π around
the fourth-order axis C4

4. Class C3, containing eight rotations by angles 2π/3 and −2π/3
around the third-order axis (the elements C3 and C2

3)

5. Class C′
2, containing six rotations by angle π around the second-

order axis

The elements of the octahedral group Oh can be obtained from the
elements of the O group by multiplying each of them by the ele-
ment S2 = I , the inversion in the center of the cube. We then have:
E · I = I, C3 · I = S6, C4 · I = S4, C

′
2 · I = σd , and C2 · I = σh. This

results in a doubling of the number of elements and classes. Hence
the Oh group has 48 elements distributed in 10 classes (the number
of elements is indicated in parentheses): E(1), C4(6), C2(3), C3(8),
C′

2(6), I (1), S4(6), σh(3), S6(8), and σd (6). Each of these symme-
try transformations corresponds to a matrix, and all these matrices
form the same group, as the transformations; the relationships obtained
above for symmetry transformations are equally valid for the appropri-
ate matrices–operators. Table 3.1 (see also Table A1.11) shows all these
classes together with the corresponding irreducible representations and
their characters discussed in the next section.

TABLE 3.1. Irreducible Representations and Characters of the
Octahedral Point Group Oa

h

Oh E 6C4 3C2
4=C2 8C3 6C ′

2 S2=1 6S4 3σh 8S6 6σd

A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
A1u +1 +1 +1 +1 +1 −1 −1 −1 −1 −1
A2g +1 −1 +1 +1 −1 +1 −1 +1 +1 −1
A2u +1 −1 +1 +1 −1 −1 +1 −1 −1 +1
Eg +2 0 +2 −1 0 +2 0 +2 −1 0
Eu +2 0 +2 −1 0 −2 0 −2 +1 0
T1g +3 +1 −1 0 −1 +3 +1 −1 0 −1
T1u +3 +1 −1 0 −1 −3 −1 +1 0 +1
T2g +3 −1 −1 0 +1 +3 −1 −1 0 +1
T2u +3 −1 −1 0 +1 −3 +1 +1 0 −1
aSee also Table A1.11.
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3.3. REPRESENTATIONS OF GROUPS AND MATRICES
OF REPRESENTATIONS

As is known from quantum mechanics, the state of the system with given energy
ε (the eigenstate) is determined by the wavefunction ψ or, more general, by a
set of wavefunctions ψ1, ψ2, . . ., ψf that satisfy the Schrödinger equation (1.5):

Hψn = εψn n = 1, 2, . . ., f (3.20)

If f > 1, there are more than one state with the same energy ε and the term
is f -fold degenerate (the functions ψn are assumed to be linearly independent).
It is easy to check that if all these functions satisfy Eq. (3.20), then any of
the linear combinations a1ψ1 + a2ψ2 + · · · + af ψf with arbitrary coefficients
a1, a2, . . ., af , satisfies the same equation.

Let us apply a symmetry operation G to both parts of Eq. (3.20):

G(Hψn) = G(εnψn) (3.21)

By definition, G does not change the molecule and hence its Hamiltonian H .
This means that G(Hψ) = H(Gψ). On the other hand, εn is a constant; hence
G(εnψn) = εn(Gψn). Thus Eq. (3.21) yields

H(Gψn) = εn(Gψn) (3.21′)

It is seen that the function ψ ′
n = Gψn [i.e., the ψn transformed by the sym-

metry operation G as required by the rule (3.3′)] also satisfies the Schrödinger
equation with the same energy εn. But there are only f such independent func-
tions. Therefore, ψ ′

n must coincide with one of them or (more general) with their
linear combination:

ψ ′
n =

f∑

k

Gnkψk n = 1, 2, . . ., f (3.22)

where Gnk are some constants.
We thus obtained f equations that show how the f linearly independent

functions ψ1, ψ2, . . ., ψf transform to a new system of functions ψ ′
1, ψ

′
2, . . ., ψ ′

f

by the symmetry operation G. The transformation is determined by the constants
Gnk , which can be written in the form of a matrix, quite similar to the coordinate
transformations (3.12) (Section 3.1):

G =

⎛

⎜
⎜
⎜
⎝

G11 G12 · · · G1f

G21 G22 · · · G2f

...
...

...

Gf 1 Gf 2 · · · Gff

⎞

⎟
⎟
⎟
⎠

(3.23)
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For another symmetry transformation, we can similarly obtain another matrix.
Counting all the symmetry transformations, that is, all the elements of the sym-
metry group of the molecule under consideration, we obtain a set of matrices of
the dimension f ; their number is equal to the number of elements in the group.
These matrices form the representation of the group, with f as its dimensionality,
while the set of functions ψ1, ψ2, . . ., ψf , by means of which the matrices were
obtained, is called the basis of the representation .

It can be shown that to obtain the group representation there is no need to use
the set of basis functions that are wavefunctions of the system with given energy.
To obtain the transformations (3.22), the only requirement imposed on the basis
functions is that they be independent and transform to each other by symme-
try transformations. The three-dimensional matrices of symmetry rotations and
reflections introduced above can serve as an example of such a representation of
the group (for this representation the coordinates x, y, z serve as basis functions).
But it is important that the wavefunctions of the system can serve as a basis of
the group representation .

By using different basis sets one, can obtain different representations for the
same group; the number of possible representations is thus infinite. However,
not all of these representations are independent and not all of the independent
representations are important to the applications.

Let us first introduce the notion of equivalent representations. Assume that by
means of a set of basis functions ψ1, ψ2, . . ., ψp we obtained a representation
G of the group. Apply to these functions some linear transformation of the type
(3.22) with the transformation constants given by some matrix S. As a result of
this transformation, we obtain another set of functions ψ ′

1, ψ
′
2, . . ., ψ ′

p, which can
also serve as a basis of another representation G′. It can be shown that there is
a certain relationship between the matrices G of the former and G′ of the latter
representations:

G′ = S−1GS (3.24)

The representations G and G′ related by (3.34) are called equivalent repre-
sentations .

By comparison with (3.19), one can see that the relationship between the
matrices of equivalent representations coincides with the condition of conjugation
of the (belonging to the same class) symmetry operations corresponding to these
matrices, provided that S belongs to the same group.

An important feature of equivalent representations is that their matrices, related
by (3.24), have the same characters X. The character of a matrix X(G) equals
the sum of its diagonal elements:

X(G) = G11 + G22 + · · · + Gff =
f∑

i

Gii (3.25)

In particular, the character of the identical transformation E corresponding to
the unity matrix with all the diagonal elements Gii = 1, i = 1, 2, . . ., f equals
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the dimensionality of the representation f :

X(E) = f (3.26)

Let us show that the characters of the matrices of equivalent representations
coincide:

X(G) = X(G′) (3.27)

Indeed, using the rule of multiplication of matrices (3.17), we can obtain from
(3.24) the following relations:

X(G′) =
∑

i

Gii =
∑

i

∑

j

∑

k

S−1
ik GklSli =

∑

k

∑

l

Gklδkl =
∑

k

Gkk = X(G)

where the elements of the inverse matrix S−1 are denoted by S−1
ik and the relation

∑

i

S−1
ik Sli = δkl

is employed [cf. Eq. (3.13)].
Since all the elements of the same class are related by (3.24), the characters

of their matrices obey the condition (3.27), that is, the matrices of the elements
of the same class have the same characters .

Another important feature of the group representation is the possibility of
reducing them to irreducible representations (often denoted as IrReps and some-
times called symmetry types). When passing from a given basis of functions to
another (equivalent) by means of some linear transformation, it may be pos-
sible to divide the whole set of functions into smaller sets of f1, f2, . . ., fr

(f1 + f2 + · · · + fr = f ) functions, so that in each smaller set they transform
to one another (by symmetry transformations) not involving the functions of
other sets. In other words, each of these sets can serve as a basis of a represen-
tation of smaller dimensionality. The larger representation is thus reducible. If
such a separation of the basis sets cannot be carried out by linear transformations,
then the representation is called irreducible.

By means of a linear transformation of the basis set the matrices of a reducible
representation can be reduced to the form, in which the nonzero matrix ele-
ments lie within some smaller square tables (submatrices) that occupy diagonal
positions, out of which all the matrix elements are zero as follows:
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Gkl

k,l = f1 + 1,   ,f1 + f2

Gij

i,j = 1,2,. . .,f1

Gmd

m,d = f − fr,. . ,f

0

0

. . .
(3.28)

If the dimensionality of these submatrices cannot be lowered by linear trans-
formations of the basis functions, then each of them is a matrix of an IrRep
and the set of such (equal in dimensionality and similar in position) submatri-
ces forms an IrRep. Hence the reducible representation of the dimensionality f

can be characterized by r sets of matrices of lower dimensionality, f1, f2, . . ., fr

(f1 + f2 + · · · + fr = f ), each realizing an IrRep of the group. This procedure
is called decomposition of the reducible representation into irreducible parts .

It follows from the presentation of the matrix of the reducible representation
in the form (3.28) that its character equals the sum of the characters of the
irreducible representations to which the reducible one is reduced. Denoting the
characters of the reducible and irreducible representations by X(G) and X(α)(G),
respectively, we have

X(G) =
∑

α

a(α)X(α)(G) (3.29)

where a(α) is the number of times that the α IrRep enters the reducible one.
The characters obey some orthogonality relationships. The latter are based on

the orthogonality relation for the matrix elements of the matrices of the repre-
sentations [cf. (3.13)]:

∑

G

G
(α)
ik G

(β)

lm = g

fα

δαβδilδkm (3.30)

which means that if the two IrRep are different, α �= β, the above sum is zero.
In particular, assuming that β is a unity representation, we have

∑

G

G
(α)
ik = 0 (3.31)
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for any nonunity representation α. Several interesting consequences follow from
Eq. (3.30) [For direct use of Eq. (3.31), see Section 3.4]. In particular, the sum
(over all the symmetry operations G) of the products of characters X(α)(G) and
X(β)(G) of two irreducible representations α and β is equal to zero if the two
representations are different, and to the order of the group g if they coincide:

∑

G

X(α)(G)X(β)(G) = gδαβ (3.32)

Multiplying the left and the right sides of (3.29) by X(β)(G), summing over
G, and taking into account the relation (3.32), we get

a(β) = 1

g

∑

G

X(G)X(β)(G) (3.33)

This relation, known as the formula of decomposition of reducible representations
into irreducible parts , solves directly the problem of finding whether a certain
IrRep is included in the reducible one, provided that the characters of both the
latter and former are known. Many symmetry problems can be solved by this
formula.

Let us also list (without derivation) some important rules concerning IrReps
and their characters:

1. The number of nonequivalent IrReps of a group equals the number of its
classes r .

2. The sum of the squares of the dimensionalities of the IrReps equals the
order of the group g : f 2

1 + f 2
2 + · · · + f 2

r = g.
3. The dimensionalities of the IrReps of the group are divisors of its order.
4. Among the IrReps there is the so-called unity representation realized by one

basis function that is totally symmetric with respect to all the symmetry
operations of the group; all the characters of the matrices of the unity
representation are equal to one.

5. The characters of the matrices of the IrRep 
, which is a direct product of
the representations α and β, equals the products of the characters of the
corresponding matrices of these representations.

The term direct product of representations needs some clarification. Denote the
sets of basis functions of the representations α and β by ψα and ψβ , respectively.
Then the direct product of the representations α and β is the representation γ

realized by the set of functions from the products ψ(α)ψ(β). If ψ(α) and ψ(β)

coincide, the new representation with the characters [X(G)]2 decomposes into
two representations [3.1, 3.7]:

1. The representation of symmetric product with the characters

[X]2(G) = 1
2 {[X(G)]2 + X(G2)} (3.34)
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2. Representations of the antisymmetric product with the characters

{X}2(G) = 1
2 {[X(G)]2 − X(G2)} (3.35)

The two products, symmetric and antisymmetric, play an important role in the
description of physical properties of molecules (see below in Example 3.2).

The general properties of IrReps and their characters, especially the orthonor-
malization conditions of the type (3.30), allow one to calculate the values of all
the characters. They are calculated and tabulated for all the symmetry groups.
Appendix A1 gives the tables of characters of the most usable molecular point
groups, including information about symmetry properties of Cartesian coordinates
and rotations, while Table 3.1 in Example 3.1 shows the symmetry elements, their
classes, and the IrReps of octahedral systems with Oh symmetry. Each column
of Table 3.1 presents 1 of the 10 classes of this group. The number of its ele-
ments is indicated by a coefficient to the denotation of the class, while the rows
correspond to the 10 IrReps. The notations are those due to Mulliken 3.9: one-
dimensional representations are denoted by A and B, and two-, three-, four-
and five-dimensional by E, T , G, and H , respectively. In practice the notations
of Bethe are also used, in which only one letter, 
, with indices, is employed
(Section 3.6). If the group includes the inversion operation I , all the represen-
tations have an additional index, either g or u, indicating the parity of the basis
functions with respect to the operation of inversion: g means evenness (gerade),
while u means oddness (ungerade).

The knowledge of the characters of the IrReps of the symmetry group enables
us to describe all the properties of the molecule related to its symmetry.

3.4. CLASSIFICATION OF MOLECULAR TERMS AND VIBRATIONS,
SELECTION RULES, AND WIGNER–ECKART THEOREM

In this and subsequent sections some important applications of the group-
theoretical rules, discussed above, are considered briefly.

Classification of molecular terms on symmetry is at present unavoidable in any
rational description of electronic structure and properties of molecules. As shown
above, the set of wavefunctions of an eigenstate forms a basis of the representa-
tion of the group of symmetry transformations of the molecule. It can be shown
that this representation is irreducible. Hence we have a direct correspondence
between (1) the energy terms of the molecular system and their wavefunctions
and (2) the IrReps of its group of symmetry transformations. This forms the basis
for the classification of molecular states on symmetry.

Each energy term is correlated with an IrRep of the symmetry group of the
molecular system. The dimensionality of the representation indicates the degener-
acy of the term , that is, the number of functions that transform to each other by the
symmetry operations and hence the number of states with the same energy, while
the characters of the matrices of the IrReps describe the symmetry properties of
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these wavefunctions. For instance, for a molecular system with the symmetry
described by the group Oh (Table 3.1), the following types of energy terms are
possible: nondegenerate A1g, A1u, A2g, A2u; double degenerate, Eg and Eu; and
threefold degenerate, T1g, T1u, T2g, T2u (see Section 3.5, Examples 3.3 and 3.4,
and Solutions to Problems P3.5 and P3.6).

Quite similar to energy terms, normal vibrations (Section 7.1) can be
classified on symmetry types of the symmetry group of the system. It can
be shown that by symmetry transformations, normal nuclear displacements
in vibrations with a given frequency transform into each other, realizing an
IrRep of the symmetry group, similar to the symmetry transformations of the
wavefunctions of a given term in Eqs. (3.21)–(3.23). Therefore, each normal
vibration belongs to an IrRep of the symmetry group that determines the
symmetry and degeneracy of the vibration (Section 3.5).

The classification of molecular terms and vibrations on symmetry is most
important in different applications. Besides describing of the symmetry properties,
it allows us to solve many problems, including construction of molecular orbitals
with given symmetry (Section 3.5), possible normal vibration (Section 3.5),
energy-level splitting in external fields (Section 4.2), selection rules for matrix
elements describing observable properties (e.g., in light absorption; see Section
8.1), evaluation of the possible terms of given electron configurations, and so on.

Consider selection rules for matrix elements . The most general form of a
matrix element representing molecular properties is

∫

�∗
1 f �2 dτ (3.36)

where f is a scalar, vector, or tensor operator describing the physical property
under study (Section 1.3), while �1 and �2 are the wavefunctions of two states
of the system. In particular, �1 = �2 for the diagonal matrix element.

Direct calculation of (3.36) is often difficult mainly because the wavefunctions
are unknown. However, the selection rules —the general rules indicating whether
the matrix element (3.36) is zero or nonzero—can be solved using symmetry
ideas and the group-theoretical results without calculation of the integral. For
this purpose knowledge of the symmetry properties of the operator f and of the
wavefunctions �1 and �2 is needed. Using this classification on symmetry, �1
and �2 can be directly attributed to the corresponding IrReps, and the same can be
done for f by considering its behavior under the operations of the symmetry group.

Equation (3.36) is a definite integral, a number, and as such it is independent
of coordinate transformations G performed under the sign of the integral. This
means that ∫

Fi dτ =
∫

GFi dτ (3.37)

where we denoted Fi = �1f �2. On the other hand, considering Fi as one of
the functions of a basis realizing some representation γ of the group, we obtain
[after Eq. (3.22)]

GFi =
∑

k

G
(γ )

ik Fk
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and hence ∫

Fi dτ =
∫ ∑

k

G
(γ )

ik Fk dτ

Now, by summing up the left- and right hand sides of this equation over
all the symmetry operations G of the group, the integral at the left (which is
independent of G) is just multiplied by the number of elements g. Hence

g

∫

�∗
1 f�2 dτ =

∑

k

∫

Fk

∑

G

G
(γ )

ik dτ (3.38)

But the sum
∑

G G
(γ )

ik , following (3.31), is nonzero only when γ is a unity
representation, and is zero for all the other representations. On the other hand, the
representation γ of the product F = �∗

1 f �2 equals the product of representations
of �1, f, and �2. Thus we arrived at the fundamental rule: the matrix element
(3.36 ) is nonzero if and only if the product of representations to which �1, f , and
�2 belong contains the unity representation .

To obtain selection rules for operators of physical magnitudes using this rule
some simple procedures should be carried out. Provided that the representations
of the wavefunctions �1 and �2 and the operator f are known, they should be
multiplied, and then, using Eq. (3.33), one should determine whether the product
of these three representations contains the unity representation. For the latter
all the characters are equal to a unity, while the characters of the product of
the representations equal the product of their characters. Note that if the two
functions �1 and �2 are equal [and hence (3.36) is a diagonal matrix element],
the product of their representations must be taken as a symmetric product with
the characters after (3.34): [X2](G) = 1

2 {[X(G)]2 + X(G2)}.
Another important application of group theory is the determination of energy

terms of electron configurations . In Section 2.2, atomic energy terms are listed
in Table 2.6. Similarly, different molecular terms are formed from any given
electron configuration by distributing the electrons over the possible combinations
of one-electron orbital and spin states of this configuration. Example 3.2 explains
in detail how the application of group-theoretical rules essentially simplifies this
procedure using the two-electron configuration e2 as an example.

EXAMPLE 3.2

Energy Terms of Electronic Configuration e2

Different terms of the same electron configuration are produced by
all possible combinations of its one-electron orbital and spin functions
(Section 2.2). There are four two-electron combinations of the one-
electron functions of the two twofold degenerate E states in the e2
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configuration. According to Section 3.3 [Eqs. (3.34) and (3.35)], the
irreducible representations (IrReps) of these four states can be found by
decomposition of the reducible representation of their direct product into
IrReps using Eq. (3.33). The characters of the reducible representation
of the direct product of two representation are equal to the product of
their characters. For the octahedral group Oh, using Table A1.11 [or Eq.
(3.1)], we can easily see that for the direct product E × E the reducible
characters are

G E C′
2 C4 C2 C3 I S4 S6 σh σd

X(G) 4 0 4 1 0 4 0 1 4 0

Even without using Eq. (3.33) we can see by direct inspection that these
characters equal the sum of those in A1, A2, and E. Hence E × E =
A1 + A2 + E.

The same three terms emerge from the e2 configuration in any cubic
group (Td,O) and any other group that has a threefold axis of symmetry.
However, for C4v , C4h, D4h, and D4v , as well as for any group of the
type C4nv,h or D4nv,h, where n is an integer (the axis of symmetry is
a multiple of 4) the decomposition for e2 is different: E × E = A1 +
A2 + B1 + B2. This is an important distinction between the two kinds
of possible symmetries of TMS.

So far we considered only the orbital parts of the one-electron states.
To account for the possible spin states, the direct product of two IrRep’s
can be decomposed into a symmetric part and an antisymmetric part
given by Eqs. (3.34) and (3.35), respectively. Using these formulas we
easily can separate the symmetric [#] and antisymmetric {#} parts:

[E × E] = A1 + E

{E × E} = A2

Now we can engage the Pauli principle or, more generally, the con-
dition that the total wavefunction be antisymmetric with regard to the
permutation (exchange of coordinates) of the two electrons. This means
that for the symmetric orbital part the spin function should be anti-
symmetric, and hence the two spins should be antiparallel (↑↓) with
the total spin equal to zero; the two terms A1 and E are singlets, 1A1

and 1E. On the contrary, the orbitally antisymmetric term A2 must be
accompanied by a symmetric spin function (↑↑) with a total spin S = 1
meaning a spin triplet (2S+1 = 3), 3A2. Thus the final solution is that
the electronic configuration e2 has three terms: 1A1, 1E, and 3A2.

If we denote the two orbitals of the degenerate e state by |θ〉 and
|ε〉 and the spin states by arrows as above, we can present the four
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wavefunctions of these terms as follows [3.10]:

3A2 = |θ ↑; ε ↑〉
1A1 = 1√

2
(|ε ↑; ε ↓〉 + |θ ↑; θ ↓〉)

1Eθ = 1√
2
(|ε ↑; ε ↓〉 − |θ ↑; θ ↓〉)

1Eε = 1√
2
(|θ ↑; ε ↓〉 + |θ ↓; ε ↑〉)

From many other group-theoretical rules very useful in applications, we for-
mulate here (without proof) the Wigner–Eckart theorem . The degenerate state of
the system belongs to the IrReps with a dimensionality greater than unity (E, T ,
etc.), and its matrices have several rows and columns. In this case it is convenient
to attribute the wavefunctions of the term to the corresponding rows of the repre-
sentation. For instance, for the threefold degenerate T1u term of the Oh group the
three wavefunctions transform under symmetry operations as the three coordi-
nates x, y, z, respectively (Table A1.11). Hence each of them represents a row of
the representation T1u. The three functions of the T2g term (also threefold degen-
erate) transform as the three products of coordinates xy, xz, and yz, respectively.
In general, 
 denotes the representation of the term and γ are its rows.

Consider the matrix element
∫

�∗(
1γ1)f
γ �(
2γ2)dτ ≡ 〈
1γ1|f
γ |
2γ2〉 (3.39)

where f
γ is an operator of a physical magnitude that transform as the γ row
of the 
 representation and 
1γ1, 
2γ2 are the representations and their rows for
the two wavefunctions. The notation of the integral (3.39) given in the right-hand
side is widely used in practice. The Wigner–Eckart theorem states that the matrix
element (3.39) can be reduced to the following form [3.5]:

〈
1γ1|f
γ |
2γ2〉 = 〈
1‖f
‖
2〉 · 〈
1γ1, 
γ |
2γ2〉 (3.40)

where 〈
1‖f
‖
2〉 is the reduced matrix element dependent on the repre-
sentations 
1, 
, 
2, but not on their rows, and 〈
1γ1, 
γ |
2γ2〉 are the
Clebsh–Gordan coefficients for which there are ready-made tables.

The essence of the Wigner–Eckart theorem (3.40) is that for degenerate states
there is no need to calculate all matrix elements for all rows of the representation;
if one knows at least one matrix element, the reduced matrix element can be
obtained from (3.40), and then all the others can be calculated using the tabulated
Clebsh–Gordan coefficients. The theorem also limits the number of possible
independent parameters of the problem with given symmetry.
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3.5. CONSTRUCTION OF SYMMETRIZED MOLECULAR
ORBITALS AND NORMAL VIBRATIONS

In the methods of molecular orbitals—linear combinations of atomic orbitals
(MO LCAO, Chapter 5), as well as in many other related problems, it is neces-
sary to construct an LCAO that transforms after the IrReps of the symmetry group
of the system. Consider as an example an octahedral complex with Oh symmetry.
The six ligand σ orbitals (with respect to the ligand–metal bond, Section 2.2),
σ1, σ2, . . ., σ6, are shown in Fig. 3.4. By the symmetry operations of the octahe-
dral group Oh these functions transform to each other; the transformed functions
can be written as follows:

σ ′
i = Ci1σ1 + Ci2σ2 + · · · + Ci6σ6 i = 1, 2, . . ., 6 (3.41)

The coefficients Cij of these six transformations form the matrix of the rep-
resentation for the symmetry operation used, and the number of such matrices
equals the number of symmetry operations in the group. The set of these matrices
forms the reducible representation of the transformation (3.41). If all coefficients

FIGURE 3.4. Space orientation of the π1x, π1y , and σn (n = 1, 2, . . ., 6) ligand orbitals
in an octahedral complex (cf. Fig. 5.1).
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of the matrices are known, it is easy to calculate their characters with Eq. (3.25),
and then to decompose the reducible representation into irreducible parts using
Eq. (3.33). The types of IrReps obtained in this way are just that sought for, to
which the MOs—linear combinations of the six σ orbitals of the ligand—pertain.

However, to obtain the characters of the symmetry transformation (3.41), there
is no need to perform these transformations and to find all the coefficients Cij .

Instead, one can use the following rule: the character of the representation for a
given symmetry transformation equals the number of atoms that remain unmoved
by this transformation .

Let us illustrate this rule by applying the transformation C4 of the Oh group,
the rotation by an angle π/2 around the axis Oz. As seen from Fig. 3.4, by
this rotation two ligands, 1 and 4, remain unmoved from their positions and
hence, following the abovementioned rule, X(C4) = 2 (for the transformation
of the six ligand σ functions). This result can be checked directly. Indeed, by
the C4 rotation the new function σ ′ can be easily expressed by the old ones:
σ ′

1 = σ1, σ
′
2 = σ6, σ

′
3 = σ2, and so on. This can be conveniently written in the

form of a general transformation (3.41):

σ ′
1 = 1 · σ1 + 0 · σ2 + 0 · σ3 + 0 · σ4 + 0 · σ5 + 0 · σ6

σ ′
2 = 0 · σ1 + 0 · σ2 + 0 · σ3 + 0 · σ4 + 0 · σ5 + 1 · σ6

σ ′
3 = 0 · σ1 + 1 · σ2 + 0 · σ3 + 0 · σ4 + 0 · σ5 + 0 · σ6 (3.42)

σ ′
4 = 0 · σ1 + 0 · σ2 + 0 · σ3 + 1 · σ4 + 0 · σ5 + 0 · σ6

σ ′
5 = 0 · σ1 + 0 · σ2 + 1 · σ3 + 0 · σ4 + 0 · σ5 + 0 · σ6

σ ′
6 = 0 · σ1 + 0 · σ2 + 0 · σ3 + 0 · σ4 + 1 · σ5 + 0 · σ6

The matrix of this transformation is

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(3.43)

and it is seen that the sum of the diagonal elements is indeed X(C4) = 2.
Using this rule, we can obtain directly all the characters of the reducible

representation 
 for all the symmetry transformations of the Oh group:

G E C′
2 C4 C2 C3 I S4 S6 σh σd

X(G) 6 0 2 2 0 0 0 0 4 2
(3.44)
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This representation can be decomposed into irreducible parts by means of
Eq. (3.33):


− → A1g + Eg + T1u (3.45)

Thus the symmetrized (group) orbitals of the type σ formed as linear combi-
nations of the σ AOs of the six ligands of an octahedral complex should belong
to one of the following IrReps of the Oh group: A1g, Eg, T1u. To construct the
appropriate linear combinations of the atomic σ functions that transform after
these representations, look first for the simple one, A1g . Since its matrices are
one-dimensional and the characters are units, the A1g-type linear combination of
σ -type AOs of the ligands for any symmetry operation of the Oh group transforms
into itself. The only combination of this type is their sum:

�(A1g) = σ1 + σ2 + σ3 + σ4 + σ5 + σ6 (3.46)

Indeed, any symmetry operation transforms σi into σj , and this does not change
the sum (3.46).

For degenerate representations Eg (f = 2) and T1u (f = 3), the procedure is
more complicated. To construct the symmetrized orbital ψ(α) that belongs to the
α irreducible representation the projection formula can be employed [3.7]:

ψ(α) = fα

g

∑

G

X(α)(G)Gψ (3.47)

where ψ is an arbitrary function of the basis set (when there are recurring repre-
sentations of the same symmetry, this relation should be slightly modified [3.3]).
To use (3.47), one must choose a function ψ from the basis, apply to this function
the symmetry operations G, multiply by its character in the representation α,
and sum up the results over all the operations G of the group. The result will be
either a linear combination of different functions of the basis sought for or zero.
The latter case means that the initial function ψ has not been chosen properly (it
does not enter the α representation) and another one should to be tried. Example
3.3 shows how Eg-type orbitals can be constructed following the same rules.

EXAMPLE 3.3

Construction of Eg-Symmetry-Adapted σ MOs for Octahedral Oh Systems

Let us apply Eq. (3.47) to find the MOs that transform after the Eg

representation of the octahedral Oh group. Take σ1 as the initial ψ .
From Table 3.1, one can see that for the Eg representation X(C′

2) =
X(C4) = X(S4) = X(σd) = 0, and hence the corresponding symmetry
transformations do not contribute to the sum (3.47). Then
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• For the identical transformation E: X(E) = 2, Eσ1 = σ1.
• For eight rotations C3: X(C3) = −1, and each of the follow-

ing transformations takes place twice (for rotations by an angle
2π/3 and −2π/3, respectively): C3σ1 = σ2, C3σ1 = σ3, C3σ1 =
σ5, C3σ1 = σ6 (for four axes C3, respectively).

• For three rotations: C2
4 = C2: X(C2) = 2, and σ1 transforms once

in σ1 and twice in σ4.
• For the inversion operation I : X(I) = 2, I · σ1 = σ4.
• For eight rotation–reflections S6: X(S6) = −1, and σ1 transforms

consecutively into σ2, σ3, σ5, and σ6, respectively, twice in each of
them, similar to the transformation C3.

• For three reflections σh: X(σh) = 2, and σ1 transforms once in σ4

and twice in itself (σ1).

Factoring in all these transformations and character values, and sub-
stituting them into Eq. (3.47), we have

ψ1(Eg) = 2
48 [2σ1 − 1 · (2σ2 + 2σ3 + 2σ5 + 2σ6) + 2 · (σ1 + 2σ4)

+ 2σ4 − 1 · (2σ2 + 2σ3 + 2σ5 + 2σ6) + 2(σ4 + 2σ1)

= 1
6 (2σ1 + 2σ4 − σ2 − σ3 − σ5 − σ6) (3.48)

This is just one of the Eg functions sought for, with an accuracy up
to the normalization factor N ; neglecting ligand–ligand overlap, N =
( 1

12 )1/2. To obtain the other Eg function (Eg is twofold degenerate), we
should repeat the procedure above, taking consecutively σ2 and σ3 as
the probe functions ψ . Owing to the equivalence of all the ligands in the
Oh symmetry, we can conclude directly that for ψ ∼ σ2 and ψ ∼ σ3

we obtain, respectively, ψ ′(Eg) = N [2σ2 + 2σ5 − σ1 − σ3 − σ4 − σ6,
and ψ ′′

2 (Eg) = N [2σ3 + 2σ6 − σ1 − σ2 − σ3 − σ4] (with σ4, σ5, and σ6

taken as ψ , we obtain the same three functions ψ1, ψ
′
2, and ψ ′′

2 ).
However, one can easily check that these three Eg functions are not

mutually orthogonal and hence are not linearly independent. Therefore,
from the two functions ψ ′

2 and ψ ′′
2 , only one combination should be

constructed that transforms after the Eg representation and is orthogonal
to ψ1. Because each of the functions ψ ′

1 and ψ ′′
2 transforms after Eg ,

any of their linear combinations belongs to Eg . It can be easily shown
that the combination that is orthogonal to (3.48) is

ψ2(Eg) = 1
2 (σ2 + σ5 − σ3 − σ6) (3.49)

The two functions (3.48) and (3.49) represent the Eg state sought
for (see Table 5.1 in Section 5.1).
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For atomic π functions the procedure used to obtain adapted MOs is more
complicated because the geometric rule of finding the characters of the reducible
representation of the type (3.44) should be modified. Indeed, as seen from Fig. 3.4,
the π orbitals of each ligand have two orientations in space (say, p1x and p1y for
ligand 1), and therefore they do not necessarily transform into themselves under
symmetry operations that leave the ligand in its initial position. For instance,
under the C4 rotation of the octahedron ligand 1 remains unchanged, but its π

functions change: p′
1x → −p1y, p

′
1y → −p1x (Fig. 3.4). Therefore the above-

mentioned geometric rule for finding character values in the case of π functions
modifies as follows. The character of the representation of a given symmetry
transformation equals the number of π functions that remain unchanged by this
transformation minus the number of functions that change their sign. Example
3.4 shows how the T2g-type π orbital is constructed.

In a similar way, the normal vibrations of the system can be determined.
As mentioned in Section 3.4, nuclear displacements in normal vibration with a
given frequency have the same transformation properties as wavefunctions of a
given energy term, that is they belong to one of the IrReps of the symmetry
group following group-theoretical rules. Applying the symmetry transformations
of the group to the normal displacements, we obtain a set of matrices of these
transformations that forms the full vibrational representation . This representation
is reducible and can be decomposed in IrReps using Eq. (3.33). The IrReps
obtained in this way are just the types of normal vibrations of the system.

To obtain the characters of the vibrational representation, we must also obtain
the set of matrices of the symmetry transformations of the normal displacements
of the nuclei and sum up their diagonal elements. To do so, several simplifications
are possible. First, since unitary transformations of coordinates do not change
the characters of their matrices, we can perform transformations on Cartesian
coordinates instead of normal ones. The matrices of transformations of Cartesian
coordinates are simple, they are given by Eqs. (3.2), (3.5), (3.8), and (3.10) for
several symmetry operations.

Second, since we don’t need the whole matrix but only their diagonal ele-
ments, only the coordinates of the atoms that remain unmoved by the symmetry
transformation should be factored in, as those of the atoms’ interchanging
positions will not be on the diagonal of the matrix. For a symmetry rotation C(φ)

on an angle φ, the transformation matrix is given by (3.2) with the character

χC(φ) = 1 + 2 cos φ (3.50)

If there are NC unmoved atoms in this rotation, each of them gives the same
contribution, and hence (3.53) should be multiplied by NC . However, as we look
only to vibrational displacements, we should exclude the translational and rota-
tional displacement of the molecule as a whole. From the corresponding matrices
we find that each of these two transformations gives the same contribution
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EXAMPLE 3.4

Construction of T 2g-Symmetry-Adapted π MOs for Octahedral Oh Systems

For the 12π functions of six ligands in octahedral systems of Oh sym-
metry (Fig 3.4), the identical transformation E leaves unchanged all
π functions, and hence X(E) = 12. For C3 rotations no π functions
remain unchanged or changing sign: X(C3) = 0. The same is true for
C′

2: X(C′
2) = 0. For C4 rotations two ligands (e.g., 1 and 4) remain at

their initial positions, but their pπ functions transform to each other, and
hence X(C4) = 0, whereas under the rotation C2 = C2

4 these functions
only change sign: p′

1x = −p1x, p
′
1y = −p1y, p

′
4x = −p4x, p

′
4y = −p4y .

Hence X(C2) = −4. Similarly, we find all the other characters of the
reducible representation:

G E C′
2 8C3 6C4 C2 I 6S4 8S6 3σh 6σd

X(G) 12 0 0 0 −4 0 0 0 0 0
(3.51)

Using Eq. (3.33), one can easily decompose this representation 


into irreducible parts:


 → T1g + T2u + T2g + T1u (3.52)

Thus the ligand π functions in the Oh group can realize symmetrized
orbitals of the threefold degenerate type T1g , T1u, T2g , and T2u only, and
hence these π functions take part only in such MO types.

To find these MOs, it is most convenient to use the projection formula
(3.47). Taking as the starting function ψ , one of the π functions of
a ligand (e.g., π2y), one can easily obtain the following for the T2g

representation:

ψ(T2g) = 1
2 (π2y + π3x + π5x + π6y) (3.53)

Taking the other π orbitals as reference functions in the formula
(3.47), we obtain the other two T2g functions, as well as the T1g , T1u,
and T2u combinations, all in all 12 symmetrized MOs formed by 12
ligand π functions (Table 5.1).

In the same way any other functions sets can be transformed (pro-
jected) to symmetrized combinations that belong to certain IrReps of
the symmetry group.
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1 + 2 cos φ. Hence the total character of a rotational transformation is

χC(φ) = (NC−2)(1 + 2 cos φ) (3.54)

In particular, for the identical transformation E,φ = 0, and χ(E) = 3(N − 2).
In a similar way we find that for reflection in a plane σ

χ(σ) = Nσ (3.55)

while for inversion (see the matrix (3.8))

χ(I) = −3NI (3.56)

and for rotation-reflection axes S(φ), χ(S) = NS(−1 + 2 cos φ), where Nσ ,NI ,
and NS are the corresponding numbers of atoms that remain unmoved by the
transformation, see Example 3.5.

EXAMPLE 3.5

Normal Coordinates of a Regular Triangular Molecule X3

A regular triangular molecule X3 has D3h symmetry (Fig. 3.1) with
six classes of symmetry transformations (six IrReps), shown in Table
A1.5. To obtain the characters of the full vibrational representation,
we apply Eqs. (3.54)–(3.56) to each class of symmetry transformation,
respectively. For the identical operation E, all atoms remain unmoved
and in Eq. (3.54) with NC = 3 and φ = 0, we obtain χ(E) = 3. For
the σh reflection Nσ = 3; hence χ(σh) = 3. For the C3 rotation φ =
2π/3, NC = 0, and χ(C3) = 0. Similarly, χ(S3) = χ(C3) · χ(σh) = 0,
χ(C2) = 1, and χ(σv) = 1. Thus the characters of the full vibrational
representation are

G E σh C3 S3 C2 σv

χ(G) 3 3 0 0 1 1

Now, using Eq. (3.33), or by direct inspection, we can see that this
reducible representation equals the sum A1 + E′. The X3 molecule thus
has one totally symmetric A1 and one double degenerate E′ normal
vibrations. They are shown in Fig. 7.3. To get the coordinate displace-
ments in these vibrations one can use the projection formula (3.47)
applying it to the atomic displacements, one at a time.
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3.6. THE NOTION OF DOUBLE GROUPS

As mentioned in Section 2.2, with the spin–orbital interaction included, the sta-
tionary states of the system are classified by the quantum number J of the total
momentum J = L + S; J = L + S, L + S − 1, . . ., |L − S|. This classification is
of special importance in systems with sufficiently strong spin–orbital interaction
(strong relativistic effects, see Sections 2.1, 5.4, 5.5, and 6.5).

If S is a half-integer (for an odd number of electrons), J is also a half-integer.
The states with half-integer J values are described not by simple functions, but by
two-component spinors (cf. the relativistic description of atomic states with four-
component bispinors in Section 2.1, which, in quasirelativistic approaches, are
reduced to two-component spinors; see Sections 5.4 and 5.5). Under symmetry
operations, the two-component spinors, unlike simple functions, transform in a
special way by realizing the so-called two-valued representations [3.7].

The two-valued representations are not real representations in the sense
described above and do not obey the orthogonality relationships of the types
(3.30)–(3.33). Therefore, their inclusion in the point groups significantly
complicates the applications. To avoid these difficulties the notion of double
groups is introduced.

Let us consider a usual point group and formally add to its symmetry oper-
ations an additional element Q describing a rotation by the angle 2π around
some axis. Assume that Q is not identical with the E operation Q �= E, but
that Q2 = E. Then the number of elements of the group is doubled because
each operation G is complemented by a new operation QG. In particular, Cn

n =
Q, C2n

n = E, σ 2 = Q, σ 4 = E, and so on. It can be shown that in such a group
with formally doubled elements (double group) the double-valued representa-
tions describing the symmetry properties of states with half-integer J values
(bispinors) decompose into two single-valued representations that have usual
group-theoretical properties. Therefore, if the elements of the double group—its
IrReps and their characters—are known, the states with half-integer spin values
can be considered in the same manner as described above, provided that they are
attributed to double groups.

The double-groups properties can be obtained in a manner similar to those for
the simple groups using general theorems of group theory. The doubling of the
number of elements does not necessarily double the number of classes (and hence
representations) of the group. For instance, in the group of rotations of a cube O

there are 24 elements and five classes considered above (Section 3.2), while in
the corresponding double group O ′ (the double groups are denoted by the same
letters as the simple groups, with a prime) there are 48 elements and eight classes,
and the new representations are E′

1, E′
2, and G′ (Appendix 1, Table A1.13).

Some remarks regarding the notations are in order. The representations of
the double groups corresponding to the two-valued representations of the simple
groups are marked by primes (after Mulliken): E′ and G′ for twofold and four-
fold representations, respectively. In the literature, especially for double groups,
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the Bethe notations are also widely used. Therefore the following table of corre-
spondence for these two types of notations may be useful:

Mulliken: A B E T1 T2 E′
1 E′

2 G′

Bethe: 
1 
2 
3 
4 
5 
6 
7 
8

(3.57)

Direct products of IrReps of double groups (as well as simple groups and
simple and double groups) are given in Appendix 1, Table A1.14.

SUMMARY NOTES

1. Symmetry description of molecular systems by means of group-theoretical
parameters provides for very useful qualitative understanding and quanti-
tative evaluation of their properties.

2. Symmetry operations (transformations) of a molecular system can be conve-
niently described by matrices that form a mathematical group. This allows
one to apply group theory to the analysis and description of molecular
properties.

3. The irreducible representations (IrReps) or symmetry types of the group
and the characters of their transformation matrices (the sum of their diag-
onal elements) are the most important group parameters. The symmetry
operations are divided into classes in which their transformation matrices
have the same characters. There are tables of classes, IrReps, and their
characters for all symmetry groups (see Appendix).

4. Application of group theory to the description of molecular properties is
based on the fact that the energy levels and wavefunctions —solutions of
the Schrödinger equation—belong necessarily to one of the symmetry types
(IrReps) of the symmetry group of the system, and hence all the stationary
states of the system can be classified on symmetry.

5. Group-theoretical description allows one to evaluate a variety of important
properties of the system, including the possible types of energy states and
wavefunctions, symmetry-adapted molecular orbitals, selection rules for
transitions between the energy states, possible spontaneous distortions of
high-symmetry configurations, and so on. The results of this chapter are
used thoroughly in all the other parts of this book.

EXERCISES

3.1. Reveal all the symmetry operations of a hexagonal prism.
3.2. Determine the symmetry group of NH3 (pyramidal), CuF3 (planar), CH2—

CH2, [ReH9]2− (tricapped trigonal prism), H4[W(CN)8] (square antiprism),
K4[W(CN)8] (dodecahedron), and [Ni(CN)5]3− (square pyramid).
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3.3. Using the tables of IrReps in the Appendix 1, evaluate the selection rules
for electric-dipole and magnetic-dipole optical transitions between the A,
E, and T states in systems with Oh, Td , D3d , D2h, D4h, and Ih symmetries.
[Hint : The components of electric-dipole and magnetic-dipole operators
(Section 8.1) transform as corresponding Cartesian coordinates x, y, z, and
rotations Rx, Ry, Rz, respectively.]

3.4. Using the tables of characters of IrReps in Appendix 1, show that for
cubic groups the symmetric products [E × E] = A1 + A2 + E, [T × T ] =
A + E + T1 + T2, while for the C4v group [E × E] = A1 + A2 + B1 + B2.

3.5. Following the procedure of building symmetrized (symmetry-adapted) A1g

and Eg-type σ MOs and T2g π MOs given in Section 3.5 and in Examples
3.2 and 3.3, construct σ - and π-type MOs for the other T1g and T2u sym-
metry types of octahedral complexes of Oh symmetry in Table 5.1.

3.6. Similar to Exercise 3.5 above, construct σ - and π-type MO’s for tetrahedral
molecular systems with Td symmetry (Table 5.2).

3.7. Using the tables of IrReps in Appendix 1, find the selection rules for the
tensor of polarizabilities αij (Section 8.2) for molecular systems with Oh

symmetry. (Hint : The components of any tensor αxx, αxy , etc. transform as
the corresponding products of Cartesian coordinates xx, xy, etc.)

3.8. Example 3.2 shows in detail how to determine the energy terms of the
electron configuration e2. Obtain in the same way the energy terms of the
electron configuration t2 in systems with cubic symmetries Td , O, and Oh.
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4
CRYSTAL FIELD THEORY

Simple model theories can often be used as a basis for correct understanding of
rather complicated phenomena.∗

The crystal field theory in its application to transition metal compounds dis-
cussed in this chapter may serve as an illustration to this statement.

4.1. INTRODUCTION

Brief History

The basis for crystal field theory (CFT) was created by Bethe in 1929 in his
classical work “Term splitting in crystals” [4.2]. This publication contains, in
essence, all the main elements of modern theory. The first period of develop-
ment of the CFT in the 1930s is related to the papers by Van Vleck and his
coworkers (see Refs. 4.1, 4.3, and references cited therein) in which the origin
of the magnetic properties of transition metal ions in crystals was revealed.

The theoretical results obtained by Van Vleck were aimed at “crystalline”
effects; their general relevance to coordination compounds was not realized at that
time. Nevertheless, some important results illustrating the efficiency of the CFT

∗There is an expression of Enrico Fermi: “A really good theoretical physicist can obtain right
answers even with wrong formulas.” Paraphrasing this apothegm, Van Vleck wrote [4.1]: “A really
good theoretical chemists can obtain right answers with wrong models.”

Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory,
Second Edition By Isaac B. Bersuker
Copyright © 2010 John Wiley & Sons, Inc.
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were obtained, including explanation of magnetic behavior in the cases of weak
and strong ligand fields, reduction of the orbital magnetic moment by the crystal
field, temperature dependence of magnetic susceptibility, and the Jahn–Teller
effect.

The second period of CFT development, the period of its vigorous growth,
began in the 1950s. In works by Ilse, Hartmann, Orgel, Moffitt, Ballhausen,
Jorgensen, and others (see Refs. 4.4–4.9 and references cited therein), CFT suc-
cessfully was shown to explain the origin of absorption spectra in the visible
and related regions (the origin of colors), as well as a series of other optical,
electric, magnetic, thermodynamic, and electron spin resonance (ESR) properties
of transition metal systems (TMSs).

Historically, CFT in its application to inorganic complexes can be considered
as a direct extension of prequantum electrostatic considerations. Electrostatic
theory, first developed by Kossel [4.10] and Magnus [4.11], is based on the
assumption that the central ion and the ligands are kept together by ion–ion
or ion–dipole electrostatic interactions. Despite very limited possibilities, the
pure electrostatic approach was rather stimulating at the time. It was further
developed after the creation of quantum mechanics, which allows for a more
adequate description of these ideas.

Main Assumptions

In its applications to transition metal coordination compounds, CFT is based on
the following main assumptions (basic statements):

1. The transition metal coordination compound (as it is described in
Section 1.2) is stable because of the electrostatic interaction between the
central atom (CA) or ion and ligands—ions or dipoles .

2. The CA is considered with its detailed electronic structure, while the ligands
are assumed to be “structureless” sources of electrostatic fields (sometimes
allowing for their polarization in the field of the CA and the other ligands).

3. The structure and properties of the system based on this model are described
by means of quantum mechanics .

Only statements 1 was employed in the old prequantum theory. Basic assump-
tions 2 and 3 allow one to consider phenomena that have a quantum nature and
take place mainly within the electronic shell of the CA, but do not involve explic-
itly the electronic structure of the ligands. Despite this significant limitation (for
more details, see Section 4.6), CFT, within the limits of its applicability, is a
rather efficient means of investigating many aspects of the electronic structure
and properties of transition metal compounds.

In accordance with the basic statements of the CFT, the electronic structure
of a coordination system is determined by the Schrödinger equation (1.5) with
the Hamiltonian H
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H = H0 + V + W (4.1)

where H0 includes all the intraatomic interactions in the CA—the kinetic energy
of its n electrons and the interaction between them and with the nucleus, V is
the interaction between the CA electrons and the ligands taken as point charges
qi or dipoles μi , and W is the electrostatic interaction of the positive charge Ze

of the CA nucleus with the ligand charges or dipoles (as above, Z is the order
number of the element in the periodic table and e is the absolute value of the
electronic charge).

Taking the origin of the polar coordinate system at the nucleus, we can denote
the N ligand coordinates by Ri(Ri, ϑi , φi), i = 1, 2, . . . , N . Then

V = −
N∑

i

n∑

j

eqi

|rj − Ri | (4.2)

and

W =
N∑

i

Zeqi

Ri

(4.3)

If qi < 0, then the term (4.3) provides the required CA–ligand negative inter-
action energy due to which the complex is stable. In this case the term V after
(4.2) is positive, and hence the electron–ligand interaction destabilizes the com-
plex. This situation is quite usual in real systems; the CA is electropositive and
the ligands are electronegative. Formally, there is a possibility that qi is posi-
tive, and then V is negative, providing the necessary stabilization energy, as W

is destabilizing; this model seems to be unreal except when the electrons are
formally substituted by positive holes (Section 4.2).

The term W after (4.3) is seldom considered in CFT explicitly because cal-
culation of the absolute values of stabilization (bonding) energies is beyond the
possibilities of this theory. On the other hand, W is independent of the electron
coordinates, and therefore it is constant with respect to the electronic properties,
considered in CFT. As usual in quantum chemistry, the valence electrons of the
CA are most important in chemical phenomena. Therefore the number of elec-
trons n in Eq. (4.2) is often the number of the valence electrons, while Ze is the
effective charge of the remaining core.

4.2. SPLITTING OF THE ENERGY LEVELS OF ONE d ELECTRON
IN LIGAND FIELDS

Qualitative Aspects and Visual Interpretation

In accordance with the assumptions of the CFT, the main effect of complex
formation is produced by the ligands’ field, which changes the electronic structure
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FIGURE 4.1. Ligand numeration in octahedral (a) and tetrahedral (b) complexes.

of the CA. The problem of calculating atomic states in external fields of different
symmetries (different ligand positions) was solved by Bethe [4.2]. The main effect
of ligand influence on the states of the CA is the splitting of its energy levels . The
origin of this splitting is known in quantum mechanics as the Stark effect .

Consider the simplest (from the CFT perspective) case when the central ion of
an octahedral complex (Fig. 4.1a) contains only one d electron over the closed
shell, as, for instance, in [Ti(H2O)6]3+. The ground state of the Ti3+ ion is 2D

(Section 2.2, Table 2.6). This term has an orbital momentum L = 2, an orbital
degeneracy 2L + 1 = 5, and a spin S = 1

2 (doublet state). The five orbital states
are just the five possible angular states of the only d electron given in Table 2.1,
with identical radial parts. As seen from Fig. 2.3, the three orbitals dxy, dxz, dyz

(t2g orbitals) are oriented in space in such a way that their distribution maxima
(their lobes) fall into the region in between the coordinate axes. The lobes of the
remaining two orbitals, dz2 and dx2 –y2 (eg orbitals), are oriented exactly along
the axes.

Compare the electron distributions in the two types of d states, eg and t2g ,
say, dx2 –y2 (eg) and dxy (t2g), illustrated in Fig. 4.2. Because the ligands have
negative charges (ligand–dipoles are oriented with the negative pole to the CA),
we easily conclude that in octahedral complexes the dx2 –y2 electron is subject to
a stronger electrostatic repulsion from the ligands than is the dxy one. Hence the
electron energies of these two states (which are equal in the free ion), under the
electrostatic influence of the ligands become different; the dx2 –y2 energy level is
higher than the dxy one. All three t2g states (dxy, dxz, dyz) are fully equivalent
with respect to the six ligands, and therefore they have the same (lower) energy,
forming a threefold-degenerate term. It can be shown that the two eg states also
have equal energies, forming a twofold-degenerate term.

Thus the five d states that have the same energy in the free atom (or ion)
are divided into two groups of states with different energies under the octahedral
field of the ligands. In other words, the fivefold-degenerate D term of the free
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FIGURE 4.2. Comparison of electron distributions in the two d states, dx2−y2 (solid
lines) and dxy (dashed lines) with respect to the four ligands in the xy plane (the positive
lobes of both functions are shadowed).

ion is split in the field of the ligands of an octahedral complex into two terms:
threefold-degenerate 2T2g and twofold-degenerate 2Eg:

2D → 2T2g + 2Eg (4.4)

The denotation here is that due to Mulliken (Sections 3.3 and 3.6). Note that one-
electron states of the same symmetry are denoted by corresponding lowercase
letters (t2g, eg , etc.) as distinct from many-electron terms denoted by capital
letters.

It follows from these considerations that the splitting (4.4) occurs as a result of
the smaller repulsion (from the ligands) of the t2g states than eg states, but all five
states are destabilized in the field of the ligands. For applications, it is convenient
to present this effect quantitatively as a sum of two effects: destabilization and
splitting . This is illustrated in Fig. 4.3; the corresponding calculations of the
destabilization E0 and splitting � values are given below.

Visually, the destabilization equals the energy of repulsion of the CA electrons
from the ligand charges when they are assumed to have spherically symmetric
distribution around the central atom; this repulsion E0 is the same for all five d

electrons. Obviously the destabilization must be compensated for by the attraction
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FIGURE 4.3. Destabilization E0 and splitting � of the atomic D term in the field of six
ligands in an octahedral complex (the degeneracies are indicated in parantheses): (a) free
atom; (b) spherical averaged ligand field; (c) octahedral field.

term W between the CA core and ligands in Eq. (4.3); otherwise the complex is
not stable.

For a tetrahedral complex the qualitative picture of the term splitting is inverse
to that of the octahedral case. Indeed, in the tetrahedral environment of four
ligands the t2g orbitals are oriented with their lobes much closer to the ligands
than are the eg orbitals, and hence the former are subject to stronger repulsion
than the latter. Therefore the energy levels of the t2g orbitals are higher than those
of eg . Symmetry considerations and the calculations given below show that in
the tetrahedral system, again, the three t2g states, as well as the two eg states,
remain degenerate, forming the T2 and E terms, respectively (in the case of a
tetrahedron there is no inversion symmetry and no classification of the terms by
g and u; see Section 3.4 and Appendix 1). Hence, in a tetrahedral complex, the
D-term splitting is (Fig. 4.4b)

D → T2 + E (4.5)

which is very similar to that of an octahedral complex (4.4). However, in contrast
to the octahedral case, the T2 term is higher in energy than the E term, and the
splitting magnitude, as well as the destabilization energy, is smaller.

Both octahedral and tetrahedral symmetries appertain to the cubic groups of
symmetry (Appendix 1). Figure 4.4 also shows splitting of the atomic D term in
the field of eight ligands at the corners of a cube. If the symmetry of the ligand
field is lowered, the terms T2 and E may be subject to further splitting. Consider
the case of a tetragonally distorted octahedron formed by the elongation of the
regular octahedron along one of its diagonals, say, z. In this case the energies
of the two eg orbitals, dx2 –y2 and dz2 , are no longer equal, since the repulsion
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FIGURE 4.4. Splitting of the D term in cubic (a), tetrahedral (b), and octahedral (c) fields
of the ligands.

is lower in the latter. The three t2g states do not remain equivalent, either; two
of them, dxz and dyz, experience (equally) less repulsion from the ligands than
does dxy . Therefore, in the tetragonally distorted octahedron the atomic D term
splits into four terms, from which only Eg(dxz, dyz) remains twofold-degenerate
(Fig. 4.5). If the symmetry of the ligand field is further lowered (e.g., if the two
axes, x and y, are nonequivalent), the twofold-degenerate term splits as well.

For a CA with more than one d electron, the visual interpretation of the
splitting becomes more complicated but the main idea remains the same; in the
CFT model the energies of the states that are degenerate in the free atom (ion)
may differ because of the variation in repulsion from the ligands.

If the number of d electrons above the closed shell equals nine, the visual
interpretation of the splitting becomes possible again; it is quite similar to that of
d1, considered above. Indeed, the d9 configuration can be formally presented as
one positive electronic charge above the closed-shell d10 configuration, that is, a
d hole in the d10 shell (see the principle of complementary configurations [4.15]
in Section 2.2). The behavior of the states of the d hole in the field of the ligands
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is the same as for one d electron, with the distinction that the charge of the d

hole is opposite that of the d electron, and hence the sign of the interaction with
the ligands changes from repulsion to attraction. For these reasons the ground
state of the d9 configuration (the d hole) is also 2D, as for the d1 configuration,
and its splitting in crystal fields of different symmetries has the same components
as does d1, but with their mutual arrangement inverse to that of d1. This rule of
inverse term splitting for complimentary electron configurations is valid for any
pair of electronic configuration , dn and d10−n (n = 1,2,3,4), in which the number
of, respectively, d electrons and d holes over the closed shell d10 is the same.

Calculation of the Splitting Magnitude

The quantitative evaluation of energy-level splitting of the CA in the field of
ligands is relatively simple. The calculations should be based on the Schrödinger
equation (1.5) with the Hamiltonian (4.1). As mentioned above, the term W after
(4.3) is not important for the splitting since it is independent of electron coor-
dinates. To simplify the calculations, further assumptions are introduced in the
CFT. In this section we assume that the term V , the electron–ligand interaction,
is much smaller than the intraatomic interactions described by H0, and hence V

can be considered as a perturbation to the solutions of H0. This assumption is
valid if the resulting term splitting obtained in this way is smaller than the energy
gap between the terms of the free atom or ion (solutions of H0). In Sections 4.3
and 4.4 this statement is subject to modification.

Consider the case of one d electron above the closed shell, that is, the electron
configuration of the CA [A]d1, where [A] denotes the atomic closed-shell config-
uration. The solution for the free ion with the Hamiltonian H0 yields the fivefold
orbitally degenerate 2D term. To reveal the modifications of this term under
the perturbation V after (4.2), one has to solve the perturbation theory problem,
which in the case of fivefold degeneracy reduces to the secular equation of the
fifth order with respect to the energy level corrections ε:

‖Vmm′ − εδmm′ ‖ = 0 m,m′ = 2, 1, 0, −1, −2 (4.6)

or in more detail
∣
∣
∣
∣
∣
∣
∣
∣
∣

V22 − ε V21 V20 V2−1 V2−2

V12 V11 − ε V10 V1−1 V1−2

V02 V01 V00 − ε V0−1 V0−2

V−12 V−11 V−10 V−11 − ε V−1−2

V−22 V−21 V−20 V−2−1 V−22 − ε

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 (4.7)

where, in accordance with (4.2)

Vmm′ =
∑

i

eqi

∫
ψ∗

mψm′

|r − Ri |dτ (4.8)
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TABLE 4.1. Coefficients Amm′ and Bmm′ in Matrix Elements of the
Crystal Field for a d Electron (4.9)a

(63/
√

4π)Amm′ (35/
√

4π)Bmm′

m′ m′
m 2 1 0 −1 −2 2 1 0 −1 −2

2 1 −√
5

√
15 −√

35
√

70 −√
20

√
30 −√

20 0 0

1
√

5 −4
√

30 −√
40

√
35 −√

30
√

5
√

5 −√
30 0

0
√

15 −√
30 6 −√

30
√

15 −√
20 −√

5
√

20 −√
5 −√

20

−1
√

35 −√
40

√
30 −4

√
5 0 −√

30
√

5
√

5 −√
30

−2
√

70 −√
35

√
15 −√

5 1 0 0 −√
20

√
30 −√

20
aDmm′ = (4π)1/2δmm′ .

and the functions of the d states are taken in their general form (2.2) (not as real
combinations in Table 2.1) with the indices m and m′ listed in (4.6).

The general expression for Vmm′ (which is most important in the CFT) is
obtained in Appendix 2, Eq. (A2.8):

Vmm′ =
∑

i

eqi[Amm′F4(Ri)Y
m−m′
4 (ϑi, φi) + Bmm′F2(Ri)Y

m−m′
2 (ϑi, φi)

+ Dmm′F0(Ri)Y
m−m′
0 (ϑi, φi) (4.9)

where Amm′ , Bmm′ , and Dmm′ are some constants (determined by corresponding
Clebsh–Gordan coefficients) given in Table 4.1, while the functions Fk(R) [not
to be confused with the Slater–Condon constants Fk after (2.32)] is given by the
expression

Fk(R) = R−(k+1)

∫ R

0
rkR2

nl(r)r
2 dr + Rk

∫ ∞

R

r−(k+1)R2
nl(r)r

2 dr (4.10)

with radial functions Rn2(r) after Table 2.3 (not to be confused with the ligand
coordinates R); they can be calculated and expressed in analytical form (A2.10).
In Example 4.1 and Appendix 3 calculations of the splitting magnitude � in
systems of different symmetry are shown in more detail.

Analyzing the crystal field splitting obtained in Example 4.1 and in Appendix
3, one can see that it has some interesting general features. In particular, there
is always the preservation of the center of gravity —the sum of the energy level
displacements (from the E0 value) multiplied by their degeneracies equals zero.
For instance, for the splitting D → T2g + Eg , we have 2 · 3

5� − 3 · 2
5� = 0.

This rule enables us to predict some relations between the energy-level posi-
tions with respect to E0. As compared with the octahedron, the corresponding
splitting in the tetrahedron, as mentioned above, is inverted and smaller (Fig. 4.4).
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EXAMPLE 4.1

Splitting of a d-Electron Term in Octahedral Crystal Fields

By way of example, let us calculate the splitting of a d electron term
in an octahedral field of six identical ligands at the corners of a regular
octahedron. The ligand charges and coordinates are (Fig. 4.1a)

qi = q Ri = R i = 1, 2, . . ., 6

ϑ1 = 0 ϑ2 = ϑ3 = ϑ5 = ϑ6 = π

2
ϑ4 = π

φ2 = 0 φ3 = π

2
φ5 = π φ6 = 3π

2

(4.11)

Substituting these values into Eq. (4.9) and taking into account the
data of Table 4.1, we find that V21 = V20 = V2−1 = V10 = V1−1 =
V1−2 = V0−1 = V0−2 = V−1−2 = 0, and only four matrix elements,
V00, V11, V22, and V2−2, are nonzero:

V22 =V−2−2 = eq[6F0(R) + 1
6F4(R)]

V11 =V−1−1 = eq[6F0(R) − 2
3F4(R)]

V00 = eq[6F0(R) + F4(R)]

V−22 =V2−2 = 5
6eqF4(R)

(4.12)

With these matrix elements the roots of Eq. (4.7) can be obtained
directly:

ε1 = V00

ε2 = V22 + V2−2

ε3 = V22 − V2−2

ε4 = ε5 = V11

(4.13)

Then we note that V22 + V2−2 = V00 and V22 − V2−2 = V11. Finally
the roots ε—perturbation corrections to the atomic energy levels—are

ε1 = ε2 = V00 = eq[6F0(R) + F4(R)]
ε3 = ε4 = ε5 = V11 = eq[6F0(R) − 2

3F4(R)]
(4.14)

Thus, in accordance with the above-described qualitative results, the
d electron energy levels (2D term) are split by the octahedral ligand field
into twofold (Eg)- and threefold (T2g)-degenerate terms. Furthermore,
Eqs. (4.14) allow one to obtain the expressions for absolute values
and signs of the splitting � and destabilization energy E0. Indeed,
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from (4.10) it is seen that all the functions Fk(R) are positive, Fk > 0.
Therefore V00 >V11, and the twofold-degenerate Eg term is higher in
energy than the T2g one. The splitting � is the main CFT parameter .
We have

� = ε(Eg) − ε(T2g) = 5
3eqF4(R) (4.15)

Then the expressions for the energies (4.14) can be rewritten as
follows:

ε(Eg) = E0 + 3
5�

ε(T2g) = E0 − 2
5�

(4.16)

where

E0 = 6eqF0(R) (4.17)

is just the average energy of repulsion of the d electron from six neg-
ative charges q when they are uniformly distributed over a sphere of
radius R with the center at the CA, the destabilization energy. Simi-
larly, the splitting and destabilization can be calculated for other types
of coordination given in Appendix 3.

Using (A3.14), we have

ε(T2) = ET
0 + 2

5�T (4.18)

ε(E) = ET
0 − 3

5�T (4.19)

where

�T = 20
27eqF4(R) (4.20)

ET
0 = 4eqF0(R) (4.21)

Note that with the same R and q, �T = − 4
9�, that is, the splitting magnitude

in tetrahedral symmetry, ceteris paribus, is 4
9 times the octahedral splitting.

In the cubic coordination (eight ligands at the corners of a cube) the splitting
and destabilization energy are qualitatively similar to those of the tetrahedral
case, but 2 times larger in magnitude [Eqs. (A3.17) and (A3.18)]:

�C = 40
27eqF4(R) = 2�T (4.22)

EC
0 = 8eqF0(R) = 2ET

0 (4.23)
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FIGURE 4.6. Splitting of the energy levels of d states (D term) in regular octa-
hedral field (a) and tetragonally distorted (elongated octahedral) field (b); E′

0 is the
spherical–symmetric destabilization.

For tetragonally distorted octahedra the description of the splitting requires,
in addition to the main CFT parameter �, two parameters Ds and Dt (A3.7):

Ds = 2
7eq[F2(R2) − F2(R1)] (4.24)

Dt = 2
21eq[F4(R2) − F4(R1)] (4.25)

where R1 and R2 are the distances between the CA and the axial and equatorial
ligands, respectively. With these parameters, the energy levels of the d states in
the tetragonally distorted octahedron are (Fig. 4.6):

ε(A1g; dz2) = E′
0 + 3

5� − 2Ds − 6Dt

ε(B1g; dx2−y2) = E′
0 + 3

5� + 2Ds − Dt

ε(B2g; dxy) = E′
0 − 2

5� + 2Ds − Dt

ε(Eg; dxz, dyz) = E′
0 − 2

5� − Ds + 4Dt

(4.26)

where [cf. (4.17)]

E′
0 = eq[2F0(R1) + 4F0(R2)] (4.27)

and � is the same as in Eq. (4.15).
A planar-quadratic complex can be considered as the limit case of a

tetragonally distorted octahedron with R1 → ∞. Then Fk(R1) → 0, Dt = 2
35�
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(Appendix 3), and only two independent parameters, Ds and �, are needed to
describe the splitting (Fig. 4.6). Following (A3.10), we obtain

ε(A1g; dz2) = E′′
0 + 9

35� − 2Ds

ε(B1g; dx2−y2) = E′′
0 + 19

35� + 2Ds

ε(B2g; dxy) = E′′
0 − 16

35� + 2Ds

ε(Eg; dxz, dyz) = E′′
0 − 6

35� − Ds

(4.28)

with � after (4.15) and

E′′
0 = 4eqF4(R) (4.29)

If the ligand is a point dipole, the term splitting is qualitatively the same, as
in the case of point charges. Assuming that the dimensions of the dipole with
the dipole moment μ are much smaller than the distance to the CA, one can
obtain the following expression for the splitting magnitude in the octahedral case
(A3.3):

� = − 5
3 eμF ′

4(R) (4.30)

where the prime at F means its derivative [cf. (4.15)]; note that F ′
4 < 0.

For more complicated coordination the calculations can be carried out in a
similar way, first evaluating the matrix elements Vmm′ after (4.9), and then solving
the secular equation (4.7). For lower symmetries (including those resulting from
different ligands), numerical solutions of (4.7) may be necessary. The results
for planar trigonal coordination, trigonal biprism and antiprism, and some other
cases can be found in Ref. 4.13; another example, a semicoordinated octahedron
prism of C2v symmetry with 1 : 4 : 2 stereochemistry (of the type NbF7

2−) has
been considered [4.14].

Group-Theoretical Analysis

Let us discuss now the problem of term splitting from the point of view of
symmetry considerations, given in Chapter 3, without employing the secular
equation (4.7). For a free atom the group of symmetry transformations is the
group of rotations of a sphere R(3) that has an infinite number of elements and
many irreducible representations (IrReps). The spherical functions YM

L (ϑ, φ) =
P M

L (cos ϑ)eiMφ , where P M
L is an associated Legendre polynomial [see (2.2)],

can be taken as a basis of this group. For each L value there are 2L + 1 spher-
ical functions with different M (M = 0, ±1, . . . , ±L), which transform to each
other by the symmetry transformations of the group and produce the IrRep of
dimensionality 2L + 1. Hence the atomic terms have a (2L + 1)-fold degeneracy.

For the spherical group the characters of the matrices of the representations
for a rotation by an angle φ can be calculated by the following formula [4.2]:
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X(φ) = sin(L + 1
2 )φ

sin 1
2φ

(4.31)

When the atom is introduced in an external field of, for instance, Oh symmetry,
the symmetry of the system as a whole (the atom plus the field) becomes Oh,
and only those symmetry transformations (rotations) that comply with the Oh

restrictions remain. The number of symmetry transformations is thus reduced,
which means that the IrRep of the spherical group, to which the atomic term
of (2L + 1)-fold degeneracy belongs, may become reducible in the Oh group
(Section 3.3). The reducible representation can be decomposed into several IrReps
of smaller dimensionality, to which several energy terms of lower degeneracy
belong—the term splits.

To determine the term splitting, the representation of the spherical group with
the dimensionality 2L + 1 should be decomposed into IrReps of the Oh group.
This problem is solved completely by means of the relation (3.33). Consider, for
example, the atomic term D in the octahedral complex of Oh symmetry, discussed
above. For this term L = 2, 2L + 1 = 5. To employ (3.33), one has to calculate
first the characters X(G) of the representation of the spherical group with L = 2
for all operations G of the Oh group. For the first classes that include rotations
only (Table 3.1) the characters can be calculated after (4.31). For the remaining
five classes the symmetry elements are those of the first five classes multiplied
by the operation of inversion I (Section 3.2), and hence their characters can be
determined as a product of the characters of the two factors. Since the functions
of the basis (the spherical functions with L = 2) are invariant with respect to the
inversion transformation [X(I) = 1], the characters for the elements of the five
classes with inversion are the same as that without inversion.

For instance, for the element C′
2 (rotation by an angle π), using (4.31) with

L = 2, we obtain

X(π) = sin 5
2π

sin(π/2)
= 1

and for the element σd = C′
2I :

X(σd) = X(C′
2) · X(I) = 1 · 1 = 1

In a similar way one can obtain the characters for all the other symmetry
operations of the Oh group listed in Table 3.1, as follows:

G E 6C4 3C2
4 = 3C2 8C3 6C′

2 I 6S4 3σh 8S6 6σd

X(G) 5 −1 1 −1 1 5 −1 1 −1 1
(4.32)

Now, using Eq. (3.33), one can find out the irreducible representations of the
Oh group comprised in the reducible representation (4.32). We have
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TABLE 4.2. Types of Symmetry (Irreducible Representations of the Tables in
Appendix 1) to Which the Atomic States with Given Quantum Numbers L(l) or
J(j) Belong in the Point Groups of Different Symmetriesa

L or J Oh Td D3 D4h C4v C2v

0 A1g A1 A1 A1g A1 A1

1 T1u T2 A2 + E A2u + Eu A1 + E A1 + B1 + B2

2 Eg E E A1g + B1g A1 + B1 2A1

T2g T2 A1 + E B2g + Eg B2 + E A2 + B1 + B2

3 A2u A1 A2 B1u B2 A2

T1u T2 A2 + E A2u + Eu A1 + E A1 + B1 + B2

T2u T1 A1 + E B2u + Eu B1 + E A1 + B1 + B2

4 A1g A1 A1 A1g A1 A1

Eg E E A1g + B1g A1 + B1 2A1

T1g T1 A2 + E A2g + Eg A2 + E A2 + B1 + B2

T2g T2 A1 + E B2g + Eg B2 + E A2 + B1 + B2

5 Eu E E A1u + B1u A2 + B2 2A2

T1u T2 A2 + E A2u + Eu A1 + E A1 + B1 + B2

T2u T1 A1 + E B2u + Eu B1 + E A1 + B1 + B2

aBelonging to several types of symmetry in the cases of L �= 0 or J �= 0 can be interpreted as a
corresponding splitting.

a(A1g) = 1
48 (5−6+3−8+6+5−6+3−8+6) = 0

a(Eg) = 1
48 (10+0+6+8+0+10+0+6+8+0) = 1

and so on. In this way one finds that a(Eg) = 1, a(T2g) = 1, and all the other a(β) =
0. It follows that the fivefold-degenerate D term in the field of Oh symmetry
splits into two terms: twofold-degenerate Eg and threefold-degenerate T2g: D →
Eg + T2g . Quite similarly, one can find the splitting in all other cases of this kind.

Table 4.2 gives the IrReps (symmetry types) to which the orbital states of a
free atom (spherical functions) belong in fields of different symmetries; compar-
ison of symmetry types in different groups gives the expected splitting of the
corresponding terms. For instance, the D term (L = 2) splits into Eg + T2g in
the Oh group, E + A1 + E in the D3 group, A1g + B1g + B2g + Eg in the D4h

group, and so on. Similar correlations between the symmetry representations that
show the possible term splitting when passing from higher symmetries to lower
ones in other cases are given in Table 4.3.

4.3. SEVERAL d ELECTRONS

Case of a Weak Field

If the electron configuration of the CA contains more than one d electron
above the closed shell, the picture of possible energy terms and their splitting
in the ligand fields is significantly complicated by the interaction between the
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TABLE 4.3. Correlations of the Irreducible Representations of the Oh and
D4h Symmetry Groups with Their Subgroups Indicating the Corresponding
Symmetry Transformations and Splitting

Group Subgroup Group Subgroup

Oh Td D4h D3 D4h C4v C2v

A1g A1 A1g A1 A1g A1 A1

A1u A2 A1u A1 A1u A2 A2

A2g A2 B1g A2 A2g A2 B1

A2u A1 B1u A2 A2u A1 B2

Eg E A1g + B1g E B1g B1 A1

Eu E A1u + B1u E B1u B2 A2

T1g T1 A2g + Eg A2 + E B2g B2 B1

T1u T2 A2u + Eu A2 + E B2u B1 B2

T2g T2 B2g + Eg A1 + E Eg E A2 + B2

T2u T1 B2u + Eu A1 + E Eu E A1 + B1

d electrons. If the ligand field is not very strong, the atomic terms can still be
classified by the quantum number of the atomic total momentum L, and the
influence of the ligands can be taken as a perturbation of the atomic terms; this
is the case of weak ligand field .

The term weak field is discussed below in more detail (in particular, see the
beginning of Section 4.4 for some different terminology). Here we emphasize
that under the influence of the weak field of the ligands the LS coupling between
the d electrons (Section 2.2) is not destroyed, and the term with the highest spin
is the ground term. Therefore the complexes with weak ligand fields are also
called high-spin complexes .

For several d electrons the main effect of ligand fields, as for one d electron,
is energy term splitting. However, unlike the d1 case, the visual interpretation
of the splitting of the terms of dn configuration (n> 1) is difficult. But the
cause of the splitting is the same; in the ligand field, the atomic (multielectron)
states that have the same energy in the free atom (ion), are subject to different
repulsion from the ligands owing to their different orientation with respect to these
ligands.

Quantitatively, for the electronic configuration of the CA A(nd )2 in the ligand
field, which is weaker than the interaction between the d electrons, one can
consider first the possible states of the free atom (ion) and find its terms, as is
done in Section 2.2, and then determine the influence of the ligand field as a
perturbation for each of these terms separately. For two d electrons the possible
terms are (Table 2.6) 3F , 3P , 1G, 1D, and 1S, with the 3F term being the ground
state. Their wavefunctions � (LMSM s) are given in Section 2.2, Table 2.8. The
perturbation operator, following Eq. (4.2), is
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V ′ =
∑

α

eqα

(
1

|r1 − Rα| + 1

|r2 − Rα|
)

= V (r1) + V (r2) (4.33)

Calculation of the matrix elements of this perturbation is relatively not difficult
because the operators V (ri ) depend on the orbital coordinates of only one electron
(and not on spin coordinates). Presenting the two-electron wavefunction � by the
determinant functions �(m1ms1;m2ms2) (Table 2.8), one can see that the matrix
element of V ′ is nonzero if and only if the two spin quantum numbers ms1 and
ms2 and one of the m values (m1 or m2) in the two functions are identical. This
can be expressed as follows:

〈�(m1ms1;m2ms2|V ′|�(m′
1m

′
s1;m′

2m
′
s2)〉

= δms1ms1′δms2ms2′(Vm1m1′δm2m2′ + Vm2m2′δm1m1′ − Vm1m2δm1′m2′

−Vm1′m2′δm1m2) (4.34)

Here Vmm′ are the one-electron matrix elements (4.9), calculated above. Using
(4.34), one can obtain the expressions for all the two-electron matrix elements
< 1|V ′|2 > by the known one-electron matrix elements Vmm′ ; they are given in
Appendix 4.

By way of example, let us consider the ground-state term 3F of the d2 config-
uration in the octahedral field of Oh symmetry. The wavefunctions are given in
Table 2.8. The term 3F is orbitally sevenfold-degenerate (L = 3, 2L + 1 = 7),
and the secular equation of the perturbation theory is of the seventh order [cf.
Eq. (4.7)]:

‖V ′
ij − εδij‖ = 0 i, j = 1, 2, . . . , 7 (4.35)

Assuming, as above, that the ligands are point charges and using expressions
from Appendix 4 for V ′

ij and (4.9) for Vmm′ with the ligand coordinates (4.11),
we have V ′

12 = V ′
14 = V ′

16 = V ′
17′ = V ′

23 = V ′
24 = V ′

25 = V ′
27 = V ′

34 = V ′
35 =

V ′
36 = V ′

45 = V ′
46 = V ′

47 = V ′
56 = V ′

57 = V ′
67 = 0. Besides

V ′
11 = V ′

77 V ′
22 = V ′

66 V ′
33 = V ′

55 (4.36)

With these matrix elements the secular equation (4.35) yields the following
roots:

ε1 = V ′
44

ε2,3 = V ′
22 + ( 5

3 )1/2V ′
15

ε4,5,6,7 = 1
2 {(V ′

11 + V ′
33) ± [(V ′

11 − V ′
33)

2 + 4(V ′
15)

2]1/2}
(4.37)
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Substituting again V ′
ij after (A4.1) and Vmm′ after (4.12), we find the pertur-

bation corrections to the energy levels in the ligand field (the symmetry types in
the Oh group are shown in parentheses):

ε1(
3Ag) = 2V00 = eq[12F0 + 2F4]

ε2,3,4(
3T2g) = V00 + V11 = eq[12F0 + 1

3F4] (4.38)
ε5,6,7(

3T1g) = 1
5V00 + 9

5V11 = eq[12F0 − F4]

Or, introducing the main parameter � of the CFT after (4.15) and the desta-
bilization energy E0 after (4.17), we have

ε(3A2g) = 2E0 + 6
5�

ε(3T2g) = 2E0 + 1
5�

ε(3T1g) = 2E0 − 3
5�

(4.39)

It follows that the atomic orbitally sevenfold-degenerate 3F term in the octa-
hedral field of six ligands splits into three terms: one orbitally nondegenerate
3A2g and two threefold degenerate 3T2g and 3T1g:

3F →3 A2g +3 T2g +3 T1g (4.40)

Since � and E0 are positive, 3T1g is the ground term, and 3T2g and 3A2g

follow consecutively (Fig. 4.7).
The wavefunctions of the terms (4.39) can be obtained as solutions of the

secular equation (4.35) in the form of linear combinations of the atomic functions
�(LMSM s). They are given in Table 4.4 [for the spin triplet the functions for
only one spin value are given; the others can be obtained by the transformation
(2.31)].

The splitting of other terms of the [A](nd)2 configuration is obtained similarly:
1D term:

ε(1Eg) = eq[12F0 + 4
7F4] = 2E0 + 12

35� (4.41)

ε(1T2g) = eq[12F0 − 8
21F4] = 2E0 − 8

35�

3P term:

ε(3T2g) = 12eqF0 = 2E0 (4.42)

1G term:

ε(1A1g) = eq[12F0 + 2
3F4] = 2E0 + 2

5�

ε(1Eg) = eq[12F0 + 2
21F4] = 2E0 + 2

35�

ε(1T2g) = eq[12F0 − 13
21F4] = 2E0 − 13

35�

ε(1T1g) = eq[12F0 + 1
3F2E0 + 1

5�

(4.43)
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FIGURE 4.7. Splitting of the terms of the electronic d2 configuration in octahedral
ligand fields in the weak-field limit: (a) d-electron energy level; (b) interelectron inter-
action (spherical averaged part); (c) interelectron interaction—formation of atomic terms
(Section 2.2); (d) ligand field destabilization; (e) ligand field splitting as a function of �.

1S term:

ε(1A1g) = 12eqF0 = 2E0 (4.44)

These splittings are illustrated in Fig. 4.7; the destabilization energy—the aver-
aged electron interaction equal to the Racah parameter A (Section 2.2, Table
2.6)—is also shown.

The calculations above are carried out in the weak-field approximation, in
which the perturbation theory is applied to each atomic term separately. Therefore
the criterion of validity of the weak-field approximations is that the term splitting
is much smaller than the energy gap between the terms . As seen from Fig. 4.7,
for d2 configurations this criterion is fulfilled if � is sufficiently small. For large
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TABLE 4.4. Wavefunctions of Component States of the 3F(d2) Term (Split in the
Octahedral Field of Oh Symmetry) Expressed by Linear Combinations of the
Atomic Functions � (LMSMs ) of Table 2.8a

Type of Symmetry
(Component Terms)

∑
i Ci�i

A2g

( 1
2

)1/2
[�(3 2 1 1) − �(3 −2 1 1)]

T1g

( 5
8

)1/2
�(3 −3 1 1) + ( 3

8

)1/2
�(3 1 1 1)

�(3 0 1 1)
( 5

8

)1/2
�(3 3 1 1) + ( 3

8

)1/2
�(3 −1 1 1)

T2g

( 3
8

)1/2
�(3 3 1 1) − ( 5

8

)1/2
�(3 −1 1 1)

( 1
2

)1/2
[�(3 2 1 1) + �(3 −2 1 1)]

(
3
8

)1/2
�(3 −3 1 1) − (

5
8

)
�(3 1 1 1)

aThe component with Ms = 1 only is shown; the states with Ms = −1 and Ms = 0 can be found
by transformations using Eq (2.31).

� values the components of the split terms even cross each other, rendering the
approximation of weak field invalid.

For complexes with symmetries lower than Oh the degenerate terms are subject
to further splitting as shown in Table 4.2. For quantitative estimates one can use
the results of Appendix 3. For a tetragonally distorted (elongated) octahedron
with the coordinates (A3.4), the nonzero matrix elements V ′

ij are the same as
in the regular octahedron. Hence the roots of the secular equation (4.35) for the
splitting of the 3F term are given by the same general expressions (4.37) in
which the matrix elements Vmm′ are those of Eq. (A3.5), not (4.12). Therefore,
as distinct from the regular octahedron, the tetragonally elongated one yields five
different roots, two of which are twofold-degenerate:

ε1(
3A2g) = V00 + V22 + V2−2

ε2(
3B2g) = V00 + V22 − V2−2

ε3(
3A′

2g) = 8
5V11 + 2

5V22 (4.45)

ε4,5(
3E′

g) = V11 + 4
5V22 + 1

5V00

− [ 1
25 (V22 − V00)

2 + 3
5 (V2−2)

2]1/2

ε(3E′′
g) = V11 + 4

5V22 + 1
5V00

+ [ 1
25 (V22 − V00)

2 + 3
5 (V2−2)

2]1/2

It is seen that, in accordance with the group-theoretical results (Table 4.3), in
tetragonal fields T2g and T1g terms of the octahedron undergo further splitting:
T2g → B2g + E′

g, T1g → A′
2g + E′′

g . The wavefunctions of these states can be
obtained in the usual fashion from the functions in Tables 2.8 and 4.4.

For a square-planar complex with the CA in the center of the square the
energy levels are given by Eq. (4.37) with the matrix element Vmm′ after (A3.9).
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In the case of tetrahedral symmetry with four point charges at the corners of a
tetrahedron and the CA in the center [with the coordinates (A3.11)], splitting of
the 3F term of the d2 configuration results in three terms, 3T1, 3T2, and 3A2:

ε(3T1) = 1
5V00 + 9

5V11 = eq[8F0 + 4
9F4] = 2ET

0 + 3
5�T

ε(3T2) = V00 + V11 = eq[8F0 − 4
27F4] = 2E0 − 1

5�T (4.46)
ε(3A2) = 2V00 = eq[8F0 − 8

9F4 = 2ET
0 − 6

5�T

As with one d electron, the tetrahedral splitting is similar to the octahedral
one, but with the inverse order of the energy levels: ε(3A2) < ε(3T2) < ε(3T1)

[cf. (4.39)]. Again, ET
0 = 2

3E0 and �T = − 4
9�, provided that the ligand charges

q and their distances R to the CA are the same as in the octahedron.
For systems with lower symmetries the calculations are more difficult, but they

can be reduced by using the method of equivalent operators [4.15] or irreducible
tensor operators [4.16, 4.17]. The tables of spectroscopic coefficients for p, d ,
and f configurations [4.18] are rather useful for such calculations.

The qualitative picture of term splitting for electronic configurations [A](nd)n

with n> 2 in fields of lower symmetry can be found directly by using the
complementary rule (Section 2.2): configurations dn and d10−n have mutually
inverted schemes of term splitting. In the weak-field case this rule is also valid
for the pairs of configurations dn and d5−n. Therefore the splitting of the terms
of the electronic configuration d3 can be obtained from that of d2. In particu-
lar, the ground state 4F has the same three terms 4T1g , 4T2g , and 4A2g as the
3F state of the d2 configuration, but they are arranged in an inverse sequence:
ε(T1g)> ε(T2g) > ε(A2g), with energy spacing 3

5�,− 1
5�, and − 6

5�, respec-
tively, from the nonsplit level (Fig. 4.8). The average destabilization energy in
the case of d3 is 3E0 instead of 2E0 for the d2 configuration (in the approxi-
mation under consideration it is proportional to the number of d electrons) and,
again, the preservation rule for the center of gravity of the multiplet is obeyed
(Section 4.2):

3ε(T1g) + 3ε(T2g) + ε(A2g) = 0

For other configurations the scheme of term splitting can be evaluated simi-
larly; for high-spin configurations the scheme for d4 corresponds to the inverted
one of d1 (i.e., it is the same as for d9); for d5 (term 6S) there is no splitting;
the configuration d6 corresponds to the inverted d4, which is analogous to d1; d7

corresponds to d2, and d8 to d3 (i.e., to inverted d2); d9 is similar to inverted d1.

Strong Crystal Fields and Low- and High-Spin Complexes

In the other limit case, opposite to the weak-field one, the effect of the ligand field
on the states of the CA is strong; it surpasses the electrostatic interaction between
the electrons. In this case the orbital coupling between the electrons is broken
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FIGURE 4.8. Splitting of the ground-state term 4F of the d3(d7)-electron configuration
in octahedral Oh and tetrahedral Td ligand fields as a function of the CFT parameter �

with the T1g(F )–T1g(P ) interaction included.

and the states with definitive total momentum quantum numbers L (S, P, D,
etc., states), strictly speaking, cease to exist. In other words, each d electron
chooses its orientation in space under the influence of the ligand field rather than
the other d electrons. This is the strong-ligand-field limit . [A formally similar
situation takes place when the orbital coupling between the electrons is broken by
the spin–orbital interaction (cf. the j–j coupling scheme in Sections 2.2 and 4.4).

It follows that when the ligand field is strong, it makes no sense to speak about
atomic term splitting, since the terms themselves are destroyed. To determine the
states in this case, one should first find the orientations of each d state in the
ligand field neglecting the electron interaction, and then evaluate the possible
terms of the system taking into account the interaction of the electrons in these
crystal-field-oriented electronic states.

As shown in Section 4.2, for one d electron in the octahedral field of the
ligands there are two nonequivalent kinds of orbital states: the more stable t2g

states (dxy, dxz, dyz) in which the electrostatic repulsion from the six ligands is
smaller, and the less stable (higher in energy by �) states eg (dx2 –y2 , dz2) in
which the repulsion from the ligands is larger. Hence in the strong ligand field,
neglecting the electron interaction, the d electrons occupy first the t2g orbitals
(maximum six electrons) and then the eg orbitals (four electrons); the electron
configuration is (t2g)

n for n ≤ 6, and (t2g)
6(eg)

n−6 for n> 6. The energy terms
can be obtained from these configurations by including the electron interaction.



SEVERAL d ELECTRONS 107

Consider the atomic electron configuration [A](nd)2. In strong ligand fields,
as stated above, the two d electrons in the ground state of an octahedral complex
occupy two t2g orbitals (the state with two electrons in one orbital is higher in
energy) forming the (t2g)

2 configuration. In the excited states one of the two d

electrons can occupy the eg orbital and form the (t2g)
1(eg)

1 configuration, which
is higher than (t2g)

2 by �, and the two electrons can occupy the eg orbitals,
resulting in the excited (eg)

2 configuration, also higher by � than (t2g)
1(eg)

1

[and by 2� than (t2g)
2].

Thus the d2 configuration in the strong octahedral field forms three configura-
tions, (t2g)

2, (t2g)
1(eg)

1, and (eg)
2, situated consecutively with an energy spacing

� (Fig. 4.9c). In each of these configurations the electron interaction yields sev-
eral terms similar to the term formation in the free atom (Section 2.2). The
method for evaluating the energy terms is discussed below; the resulting terms
for the (t2g)

2 configuration expressed by Racah parameters (2.43) are as follows:

ε3(T1g) = A − 5B

ε(1T2g) = A + B + 2C

ε(1Eg) = A + B + 2C

ε(1A1g) = A + 10B + 5C

(4.47)

Splitting of the configurations that emerge from d2 is shown in Fig. 4.9e. In
particular, the ground state of the (t2g)

2 configuration 3T1g is the same as in
the weak-field limit. However, the sequence and spacing of the excited states is
essentially different. Table 4.5 gives the electronic configurations and the ground-
state terms for all the atomic configurations dn in strong octahedral and tetrahedral
ligand fields. By comparison with the corresponding cases of weak fields, one
can see that differences occur for n = 4,5,6,7 in octahedral symmetry, and for
n = 3,4,5,6 in tetrahedral systems. It is important that in these cases the spin
multiplicity of the ground state is always lower in the strong-field limit than
in the weak field. Therefore the complexes with strong ligand fields are called
low-spin complexes , as distinct from complexes with weak ligand fields, which
are high-spin complexes .

One consequence of this result is the statement that, depending on the ligand
properties (ligand field strength), there may be complexes of the same metal in the
same oxidation state with two different kinds of spin multiplicity of the ground
state (and hence different magnetic properties). This phenomenon is confirmed
experimentally on a wide range of TMS and it is widely used in their investi-
gation. In particular, there may be a coexistence of the two magnetic states in a
narrow range of external magnetic fields or temperature (see spin crossover in
Section 8.4). Together with the elucidation of the origin of the colors (Section
8.2), this explanation of magnetic behavior of transition metal complexes is one
of the most important achievements of the CFT. The two cases of ligand fields,
weak and strong, remain equally important in the MO theory and are discussed
again in Section 6.2 (cf. Table 4.5 with Tables 6.3 and 6.4).
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FIGURE 4.9. Splitting of the terms of the d2 configuration in strong fields of octahedral
symmetry: (a) d-electron energy level; (b) ligand field destabilization; (c) ligand field
splitting as a function of �; (d) electron interaction destabilization; (e) electron interaction
splitting.

The criterion of validity of the strong-field limit, similar to the weak-field
case, follows from its assumptions. Since the splitting caused by the electron
interactions are determined for each of the three configurations (t2g)

2, (t2g)
1(eg)

1,
and (eg)

2 separately, the results are valid when the splitting is smaller than
the energy gap � between them. For splitting of the (t2g)

2 configuration, the
maximum distance between its components after (4.47) is 15B + 5C; hence the
condition of validity of the strong-field approach is 15B + 5C � �. Otherwise
the terms of the same symmetry from different configurations become strongly
mixed [e.g., 1T2g from (t2g)

2 with 1T2g from (t2g)
1(eg)

1], and it is said that there
is a configuration interaction .

For more than two d electrons, the criterion of validity of the strong-field
approximation can be established similarly. Of special interest are the cases of



SEVERAL d ELECTRONS 109

TABLE 4.5. Electronic Configuration and Ground-State Terms of Octahedral and
Tetrahedral Complexes in the Case of Strong Ligand Fieldsa

Octahedral Complex Tetrahedral Complex

Number of Electronic Ground-State Electronic Ground-State
d Electrons Configuration Term Configuration Term

d1 t2g
2T2g e 2E

d2 (t2g)
2 3T1g (e)2 3A2

d3 (t2g)
3 4A2g (e)3 2E

d4 (t2g)
4 3T1g (e)4 1A1

d5 (t2g)
5 2T2g (e)4t2

2T2

d6 (t2g)
6 1A1g (e)4(t2)

2 3T1

d7 (t2g)
6eg

2Eg (e)4(t2)
3 4A2

d8 (t2g)
6(eg)

2 3A2g (e)4(t2)
4 2T1

d9 (t2g)
6(eg)

3 2Eg (e)4(t2)
5 2T2

d10 (t2g)
6(eg)

4 1A1g (e)4(t2)
6 1A1

aCompare with Tables 6.3 and 6.4.

d4, d5, d6, and d7 in octahedral complexes and d3, d4, d5, and d6 in tetrahedral
systems, for which the two limit cases differ by the spin of the ground state. Let
us introduce the notion of pairing energy � defined as the difference between the
energies of multielectron interactions in low- and high-spin complexes, respec-
tively, divided by the number of pairings destroyed by the low-spin → high-spin
transition. It is obvious that the low-spin state is preferable if

� < � (4.48)

On the contrary, if

� >� (4.49)

the high-spin state is the ground state.
Comparison of the data in Table 2.6 for the relative energies of the terms of

dn configurations with the expressions (4.47) allows one to obtain the following
relations [4.15]:

�(d4) = 6B + 5C

�(d5) = 15
2 B + 5C (4.50)

�(d6) = 5
2B + 4C

�(d7) = 4B + 4C

and if the Racah parameters B and C can be assumed the same in different
configurations, then
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�(d6) < �(d7) < �(d4) < �(d5) (4.51)

Some interesting consequences follow from Eqs. (4.48)–(4.51): (1) the pair-
ing energy is the lowest for the d6 configuration, and hence the low-spin state
is preferable in octahedral complexes with this configuration as compared with
others ceteris paribus; and (2) as � is significantly smaller for tetrahedral com-
plexes than for octahedral systems, the low-spin configuration for the former is
much less probable than for the latter. Finally, by comparisons [4.15], it was
shown that for d6 and d5 configurations the state with intermediate spins (S = 1
for d6 and S = 3

2 for d5) is less probable. Several high-spin and low-spin iron
complexes are shown in Example 4.2.

EXAMPLE 4.2

High- and Low-Spin Octahedral Complexes of Iron

The conclusions presented above have many confirmations in the exper-
imental data (Chapters 8–11). With specific � values for different CAs
and ligands retrieved from spectroscopic data [some of which are listed
in Table 8.2 and in the spectrochemical series (8.23) and (8.24)], one
can see that, for instance, the complex [Fe(NO2)6]3− should be in the
low-spin configuration (t2g)

5 with all the five d electrons in the three
t2g orbitals resulting in one unpaired electron and total spin S = 1

2 ,
because NO2

− ligands produce large � splittings [one of the largest
according to the spectrochemical series (8.24)], whereas [FeBr6]3− is a
high-spin complex [Br− is a weak-field ligand, the weakest in the series
(8.23) and (8.24)] with all five electrons unpaired [electron configura-
tion (t2g)

3(eg)
2] and total spin S = 5

2 . The ground terms of these two
complexes are 2T2g and 6S, respectively.

Energy Terms of Strong-Field Configurations

Energy terms of strong-field configurations can be formed by means of a proce-
dure similar to that used in the formation of atomic terms (Section 2.2). Let us
illustrate this by the example of the ground-state configuration (t2g)

2.
There are three t2g functions of the d electron, dxy, dxz, and dyz, that we denote

here by ϕ1, ϕ2 and ϕ3, respectively, and each of them is associated with two spin
states denoted, as above, by “+” and “–.” Hence we should distribute the two
electrons in six one-electron states, ϕ+

1 , ϕ−
1 , ϕ+

2 , ϕ−
2 , ϕ+

3 , ϕ−
3 , making 15 possibil-

ities [C2
6 = 6!/2!(6−2)! = 6·5/2 = 15]. Thus there are 15 determinant functions

�(ϕ±
i , ϕ±

j ) of the type (2.28) that have different total spin projection values:
Ms = 1, 0, −1. Let us group the 15 functions with respect to Ms (cf. Table 2.8):
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Ms = 1:

�(ϕ+
1 , ϕ+

2 ) �(ϕ+
1 , ϕ+

3 ) �(ϕ+
2 , ϕ+

3 ) (4.52)

Ms = −1:

�(ϕ−
1 , ϕ−

2 ) �(ϕ−
1 , ϕ−

3 ) �(ϕ−
2 , ϕ−

3 ) (4.53)

Ms = 0:

�(ϕ+
1 , ϕ−

1 ) �(ϕ+
2 , ϕ−

2 ) �(ϕ+
3 , ϕ−

3 )

�(ϕ−
1 , ϕ+

1 ) �(ϕ−
2 , ϕ+

2 ) �(ϕ−
3 , ϕ+

3 )

�(ϕ−
1 , ϕ+

2 ) �(ϕ−
1 , ϕ+

3 ) �(ϕ−
2 , ϕ+

3 )

(4.54)

Since for spin triplets S = 1 and Ms = 1, 0, −1, while for singlets S = 0,

Ms = 0, we conclude that among the 15 functions, 9 of which belong to
triplets, while the remaining 6 form singlets. To find them, one can use
symmetry considerations. The two one-electron t2g states transform after the T2g

representation of the Oh group of symmetry. To determine the possible terms
of the (t2g)

2 configuration, one must find the irreducible representations in the
product T2g × T2g using the relation (3.33) and the characters of the Oh group
given in Table 3.1: T2g × T2g = T1g + T2g + Eg + A1g . On the other hand, the
symmetry properties of the d functions show that the three functions (4.52)
with Ms = 1 transform as T1g , the three functions (4.54) with Ms = −1 have
the same symmetry T1g , and from the functions (4.53) with Ms = 0 one can
also form three linear combinations that transform after the same representation
T1g (the method to select functions and construct linear combinations that
transform after certain types of symmetry is given in Section 3.5). These
nine functions form the term 3T1g . To satisfy the remaining representations
T2g, Eg , and A1g with the remaining six singlet functions from (4.54), we have
the only possibility: 1T2g ,1Eg , and 1A1g . Thus the (t2g)

2 configuration yields
the following terms: 3T1g ,1T2g ,1Eg ,1A1g (see also Problem P3.9). Using the
functions (4.52) through (4.54) and the group-theoretical formula (3.47), one
can construct the functions for all these terms. They are given in Table 4.6.

The energy difference between the four terms of the d2 configuration is caused
by the corresponding differences in the interelectron interaction described by the
matrix elements of the operator

∑
i,j e2/rij . The latter, in accordance with the

strong-field approximation, can be considered as a perturbation of the states
of the (t2g)

2 configuration. Taking the 15 states (4.52)–(4.54) as a basis, we
solve the secular equation of the perturbation theory to find 15 values of energy
corrections ε.

On the other hand, we already know the symmetrized linear combinations
of these functions given in Table 4.6, which transform after the IrReps of the
symmetry group of the system, and hence these functions are correct zeroth-
order functions of the perturbation theory. With these functions the corrections
are equal to the diagonal matrix elements of the electron interaction

∑
i,j e2/rij .
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TABLE 4.6. Wavefunctions of States of the Configuration (t2g)2 in Strong Ligand
Fields as Linear Combinations of the Two-Electron Functions �k (ϕ±

i , ϕ±
j )

Term Ms

∑
k Ck�k

3T1g 1 �(ϕ+
1 ;ϕ+

2 )

�(ϕ+
1 ;ϕ+

3 )

�(ϕ+
2 ;ϕ+

3 )

(1/
√

2)[�(ϕ+
1 ;ϕ−

2 ) + �(ϕ−
1 ;ϕ+

2 )]
0 (1/

√
2)[�(ϕ+

1 ;ϕ−
3 ) + �(ϕ−

1 ;ϕ+
3 )]

(1/
√

2)[�(ϕ+
2 ;ϕ−

3 ) + �(ϕ−
2 ;ϕ+

3 )]
�(ϕ−

1 ;ϕ−
2 )

−1 �(ϕ−
1 , ϕ−

3 )

�(ϕ−
2 , ϕ−

3 )
1T2g (1/

√
2)[�(ϕ+

1 ;ϕ−
2 ) − �(ϕ−

1 ;ϕ+
2 )]

0 (1/
√

2)[�(ϕ+
1 ;ϕ−

3 ) − �(ϕ−
1 ;ϕ+

3 )]
(1/

√
2)[�(ϕ+

2 ;ϕ−
3 ) − �(ϕ−

2 ;ϕ+
3 )]

1Eg 0 (1/
√

2)[�(ϕ+
2 ;ϕ−

2 ) − �(ϕ+
3 ;ϕ−

3 )]
(1/

√
6)[2�(ϕ+

1 ;ϕ−
1 ) − �(ϕ+

2 ; ϕ−
2 ) − �(ϕ+

3 ;ϕ−
3 )]

1A1g 0 (1/
√

3)[�(ϕ+
1 ; ϕ−

1 ) + �(ϕ+
2 ;ϕ−

2 ) + �(ϕ+
3 ; ϕ−

3 )]

Methods of calculation of such matrix elements are discussed in Section 2.2.
The results can be expressed by Slater–Condon or Racah parameters. In the case
under consideration they yield the energies given by Eq. (4.47). For the other
configurations (t2g)

1(eg)
1 and (eg)

2 of d2, the possible energy terms can be found
quite similarly, resulting in the scheme of energy terms for the [A](nd)2 states
in a strong octahedral field given in Fig. 4.9.

The quantitative criterion of validity of the strong-field limit coincides with
the criterion of applicability of the perturbation theory: the term splitting must
be much smaller than the energy gap � between the electronic configurations in
the ligand field.

Arbitrary Ligand Fields and Tanabe–Sugano Diagrams

If the ligand field is of intermediate strength for which neither the weak-field nor
strong-field criterion is realized, the problem should be solved with the ligand
field and electron interactions considered simultaneously. For a specific system
the calculations can be carried out by numerical computation. However, a general
understanding (and sometimes practical results) can be obtained when starting
from one of the limit cases, for which the problem can be solved analytically, with
subsequent corrections on the abovementioned term interactions, or configuration
interaction.

For instance, for the electronic configuration [A](nd)2, as a result of the split-
ting in octahedral ligand fields in the weak-field limit, some of the terms of
the same symmetry (originating from different atomic terms) are quite close in
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energy (Fig. 4.7): 1T2g(
1D) and 1T2g(

1G), 1Eg(
1D) and 1Eg(

1G). Other terms
[e.g., 3T1g(

3F) and 3T1g(
3P), 1A1g(

1G) and 1A1g(
1S)] are apparently not so

close, but may also interact significantly. In the strong field limit examples of
close-in-energy terms are 1A1g(t2g)

2 and 1A1g(eg)
2, 1T2g(t2g)

2 and 1T2g(t2g)(eg),
and so on.

These relatively close-in-energy terms of the same symmetry influence each
other, they “interact,” and it can be shown that the interacting energy levels
diverge. Therefore, we can say that there is a repulsion of terms with the same
symmetry . Another formulation of this rule is that the terms of the same symme-
try do not intersect (nonintersection rule). Figure 4.8 illustrates this effect for
the 4T1g(F ) −4 T1g(P ) repulsion in octahedral [4T1(F ) −4 T1(P ) in tetrahedral]
complexes.

The magnitude of repulsion (divergence) of two terms of the same symmetry
� as a result of their interaction �E(�) can be evaluated by perturbation theory
considering the electron interaction

∑
e2/rij and the ligand field potential V

after Eq. (4.33) as perturbations. Denote the wavefunctions of the two interacting
terms by �1 and �2 and the energy gap between them by 2δ. Taking the energy
reference in the middle of this gap, we have for the secular equation of the
perturbation theory:

[−δ − ε H12

H21 δ − ε

]

= 0 (4.55)

where

H12 =
∫

�∗
1

[∑
e2

rij

+ V

]

�2 dτ (4.56)

is the term interaction energy.
The solutions of (4.55)—corrections to the energies of the interacting terms

ε—are

ε1,2 = ±(δ2 + H 2
12)

1/2 (4.57)

and hence

�E = ε2 − ε1 − 2δ = 2[(δ2 + H 2
12)

1/2 − δ] (4.58)

We emphasize that the matrix element H12 after (4.56) equals zero if the two
wavefunctions �1 and �2 belong to different symmetry types (see selection rules
for matrix elements, Section 3.4). For H12 = 0, �E = 0, and therefore the terms
of different symmetry do not interact (they intersect). Certainly, if there are more
than two interacting terms, the order of the secular equation (4.55) increases
respectively.
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TABLE 4.7. Some Numerical Values for the Racah Parameters B and C (in cm−1)
and γ = C/B for Transition Metal Ions M2+ and M3+

M2+ B C γ M3+ B C γ

Ti2+ 695 2910 4.19 — — — —
V2+ 755 3255 4.31 V3+ 862 3815 4.43
Cr2+ 810 3565 4.40 Cr3+ 918 4133 4.50
Mn2+ 860 3850 4.78 Mn3+ 965 4450 4.61
Fe2+ 917 4040 4.41 Fe3+ 1015 4800 4.73
Co2+ 971 449 4.63 Co3+ 1065 5120 4.81
Ni2+ 1030 4850 4.71 Ni3+ 1115 5450 4.89

With the corrections (4.58) included, the energies of the terms are no longer
bound to a certain assumption of the strength of the ligand field and are inde-
pendent of the reference limit case taken as a starting point. Figure 4.10 shows
the correlation of the terms of the [A](nd)2 configuration in octahedral fields of
strong, weak, and intermediate strength.

It follows that for arbitrary strength of ligand fields the energy term splitting
depends not only on the CFT parameter � but also on the initial energy spac-
ing of the atomic terms. The latter can be defined, as in Table 2.6 for the d2

configuration, by three Racah parameters: A, B, and C. Parameter A determines
the energy of destabilization by the average electron interaction, which is the
same for all the terms (see Table 2.6 and Fig. 4.7) and can be excluded by an
appropriate choice of the energy reference.

Parameters B and C can be obtained from the empirical spectroscopic data
of free atoms and ions (Section 2.2). Table 4.7 lists these parameters for some
transition metal ions (most usable in coordination chemistry) together with their
ratio γ = C/B (see also Table 8.3). The γ value does not differ much for different
ions (for rough approximate estimations it may be assumed that C ≈ 4.5B).
Assuming that γ is known, one can reduce the number of parameters determining
the relative energy-level positions to two: � and B. Then, by choosing the scale
in B units, one obtains the energies as a function of only one parameter �.

Energy-level diagrams as functions of the CFT parameter � for all the dn

configurations (n = 2,3,4,5,6,7,8) given in Fig. 4.11 were constructed by Tanabe
and Sugano [4.19]. In these diagrams the energy readoff is taken at the ground
state. Therefore, for the electronic configuration dn with n = 4,5,6,7 in octahedral
fields (n = 3,4,5,6 in tetrahedral fields) at a certain value of � (more precisely,
�/B), there is a term crossing, the ground-state changes, and all the energy
levels on the diagram are subject to a break. Usually at this break the ground-
state multiplicity also changes, and there is a transition from the weak ligand
field to the strong field. The Tanabe–Sugano diagrams give the most complete
information about the electronic structure of the system in the CFT model. For
improvements in these diagrams with respect to the spin–orbital interaction see,
for instance, Ref. 4.20.
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FIGURE 4.10. Correlation of the energy terms of the electronic d2 configuration in weak,
strong, and intermediate ligand fields of octahedral symmetry. From left to right (weak
field): (a) d levels; (b) with interelectron interaction; (c) with interelectron interaction
in the ligand field. From right to left (strong field): (a) d levels; (b) d-level terms in the
ligand field; (c) in the ligand field with interelectron interaction; (d) arbitrary field: d-level
terms in ligand fields with interelectron and term interactions included. (From Schlafer
and Gliemann [4.7].)

4.4. f -ELECTRON TERM SPLITTING

One important feature of f electrons is that they are usually screened from the
ligand field by the outer s, p, d electrons and hence they are less affected by
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the ligands than the d electrons. On the other hand, f electrons are subject to
stronger spin–orbital coupling [Eq. (2.27)]. Hence, distinct from compounds with
d electrons, where the spin–orbital coupling is assumed to be smaller than both
the ligand field and interelectron interactions, in f -electron systems the ligand
field is smaller than both the interelectron and spin–orbital interactions.

In fact, following Bethe [4.2], we should compare three important magnitudes:
electron interaction, ligand field potential, and spin–orbital interaction. With these
three magnitudes, three cases are significant in the CFT:

1. Weak field —the ligand potential is weaker than both interelectron and
spin–orbital interactions.

2. Intermediate field —the ligand field is smaller than the interelectron inter-
action, but larger than the spin–orbital coupling.

FIGURE 4.11a. Tanabe–Sugano diagrams: energy levels as a function of octahedral
crystal fields � in 103 cm−1. For convenience, the energy levels with multiplicities dif-
ferent from the ground-state ones are given by dashed lines. The indices g and u are
omitted. Some levels of minor significance are not shown.
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FIGURE 4.11b. (Continued )

3. Strong field —the ligand field potential is stronger than both the interelec-
tron and spin–orbital interactions.

For d electrons case 1 is not important, and therefore it is usually ignored
(cases 2 and 3 are called weak - and strong-field cases , respectively).

For f electrons in weak fields (1) the atomic terms should be characterized (in
addition to L and S) by the quantum number J = L + S − 1, . . . , |L − S|, which
factors in the spin–orbital interaction (Section 2.2). Since the total spin S can be
a semiinteger, J may also be a semiinteger. For instance, for one f electron with
L = 3, S = 1

2 , and with the spin–orbital interaction included, J = 7
2 and 5

2 , so
its states are 2F7/2, 2F5/2 (the J value is indicated as a subscript). The weak-field
approximation here means that the splitting of each of these terms by the ligand
field can be considered separately.

Visual interpretation of the charge distribution in the states with the total
momentum quantum number J and the splitting of these states in ligand fields
of different symmetries is not so straightforward, as in the case of d electrons,
where the spin–orbital interaction can be approximately neglected. Qualitatively,
the splitting of f states can be easily obtained by means of the group-theoretical
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FIGURE 4.11c. (Continued )

rules (Sections 3.4 and 4.2), while quantitative calculations can be performed by
perturbation theory.

However, some grade of understanding of the situation can be reached by using
the model of pure orbital states, that is, neglecting the spin–orbital coupling. In
particular, considering the angular distributions of atomic f -electron functions
from the cubic set, given in Table 2.2 and Fig. 2.4, and the corresponding electro-
static repulsion of the electron in these states from six point charges (or dipoles)
of an octahedral complex, one can conclude that in the three states fx3 , fy3 ,
and fz3 , the repulsion is the greatest (and equal for all of them). In the other
three states fx(y2 –z2), fy(z2 –x2), and fz(x2 –y2), it is also equal but smaller than in
the previous three states, and in the fxyz state it is the smallest (in tetrahedral
systems, analogously to the d electron states, the picture is inverted).

Thus the sevenfold orbitally degenerate F term of the free atom (ion) with
one f electron is split by the octahedral ligand field into three terms from which
one is nondegenerate and two are threefold-degenerate. It can be shown that the
symmetries of these states are A2u, T2u, and T1u, respectively (Fig. 4.12).

Hence the splitting F → A2u + T2u + T1u is similar to that obtained above for
the F term of the d2 configuration in octahedral fields (Figs. 4.7 and 4.8), with
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FIGURE 4.11d. (Continued )

an inverted ordering and opposite parity of the terms, u instead of g; f states,
unlike the d ones, are odd with respect to reflections.

By way of example, we also show the scheme of splitting of the energy levels
of an f electron in the field of a hexagonal biprism with the sixfold axis along
z (Fig. 4.13), which is realized, for instance, in uranyl complexes [4.21]. Here
the low-symmetry set of one-electron atomic angular f functions of Table 2.2
is used. Splitting of the orbital states in other cases in ligand fields of different
symmetries can be revealed using Table 4.2.

Quantitative calculations of the energy term splitting of f electrons can be
carried out similarly to that for d electrons, considered above. To do this, the
secular equation (4.6) of the seventh order (for one f electron) must be solved.
For the matrix elements Vmm′ one can obtain expressions of the type (4.9) for
arbitrary positions of the ligands [4.22]. They are given in Appendix 5.

However, as stated above, in the case of f electrons the spin–orbital interac-
tion can be stronger than the ligand field, and hence the latter should be considered
as a perturbation to the atomic states classified by the quantum number J of the
total momentum J = L + S. Qualitatively, the splitting of the J term can be
obtained by applying group-theoretical rules given in Section 3.4. If J is an inte-
ger, the splitting coincides completely with that expected for the corresponding
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FIGURE 4.11e. (Continued )

L value. For semiinteger J values, the double groups of symmetry discussed in
Section 3.6 should be employed, and the terms should be classified according
to their irreducible representations E′

1, E
′
2 (twofold-degenerate), G′ (fourfold) or,

respectively, �6, �7, �8 in Bethe’s notations. The splitting is evaluated, as usual,
by means of Eq. (3.33) with the characters given in the corresponding tables of
Appendix 1. Some results for most usable cases are given in Table 4.8.

TABLE 4.8. Splitting of Atomic Terms with Semiinteger J Values in
Ligand Fields of Different Symmetries

J Cubic Symmetry O ′ Tetragonal Symmetry D′
4 Hexagonal Symmetry D′

6

1
2 E′

1 E′
1 E′

2
3
2 G′ E′

1 + E′
2 E′

2 + E′
3

5
2 E′

2 + G′ E′
1 + 2E′

2 E′
1 + E′

2 + E′
3

7
2 E′

1 + E′
2 + G′ 2E′

1 + 2E′
2 E′

1 + 2E′
2 + E′

3
9
2 E′

1 + 2G′ 3E′
1 + 2E′

2 E′
1 + 2E′

2 + 2E′
3

11
2 E′

1 + E′
2 + 2G′ 3E′

1 + 3E′
2 2E′

1 + 2E′
2 + 2E′

3
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FIGURE 4.11f. (Continued )

For quantitative calculations the ligand field, spin–orbital interaction, and
electron interaction should be included in the perturbation simultaneously. Such
calculations are carried out numerically (see, e.g., Ref. 4.17). Similar to d elec-
trons, the method of equivalent operators and irreducible tensor operators may
be useful for such calculations [4.15–4.18].

4.5. CRYSTAL FIELD PARAMETERS AND EXTRASTABILIZATION
ENERGY

The most valuable results of the CFT are based on its semiempirical versions
that yield general qualitative and semiquantitative conclusions. In these versions
the electronic structure of the system is described by means of one (or several)
parameters that can be obtained from independent experimental data or from
comparison of the theory with the experiments (see also Section 4.6). Therefore
the meaning of the CFT parameters is of great importance.

The main parameters of the dn-term splitting in cubic fields (cube, octahedron,
tetrahedron) is the energy gap � between the eg and t2g one-electron states,
which is often denoted as 10Dq . According to Eqs. (4.15) and (4.30), for six
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FIGURE 4.11g. (Continued )

ligand–point charges q at the corners of a regular octahedron, we obtain

� = 5
3eqF4(R) (4.59)

where the function F4(R) is defined by Eq. (4.10) and R is the interatomic
CA–ligand distance, while for the similar case of ligand–dipole moments μ, we
have

� = − 5
3eμF ′

4(R) (4.60)

For a tetrahedron �T = − 4
9�, while for a cube �C = 2�T = − 8

9�

[Eqs. (4.20) and (4.22)].
Direct calculation of � after Eqs. (4.59) and (4.60) does not have sufficient

credibility because of the rough assumptions on which CFT is based on. However
some rules in the relative changes of � in series of similar compounds can be
carried out from these relations quite satisfactorily. According to Eqs. (4.59)
and (4.60), � depends on three parameters. Two of them, q (or μ) and R,
characterize the ligand, its charge and position, respectively, while the third one
(α) is the effective parameter of the CA radial nd function in the Fk(R) functions
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FIGURE 4.12. Splitting of the atomic energy levels of one f electron in octahedral
(a) and tetrahedral (b) ligand fields (the spin–orbital interaction is neglected).

FIGURE 4.13. Splitting of one f -electron energy levels in the field of a hexagonal
biprism.

measuring the strength of the coupling of the d electron to the CA nuclei. In the
same group of transition metals (e.g., in the iron group) the α values for different
metals in the same oxidation state are close (the ionization potentials determining
approximately the α value differ in this series by no more than 10–15%). Hence
for such a series � depends mostly on the ligand field. Therefore � is called the
ligand field parameter .
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When passing from the elements of the first transition group to the second
and third ones, the α value decreases significantly, and hence the parameter �

increases. Indeed, following (A2.14), F4(R) decreases with increasing α [for
actual values of interatomic distances R the derivative F ′

4(x) < 0, x = αR]. The
data on absorption spectra confirm these conclusions (Section 8.2). For instance,
for hydrated transition metal ions of the first transition group, � varies in the
limits 7500–12,500 cm−1 and 13,500–21,000 cm−1 for the oxidation states +2
and +3, respectively, while for the second and third transition groups � is larger
by 30–70%. Different ligands can be arranged in a spectrochemical series with
respect to the splitting � that they produce in a complex of the same metal
discussed in Section 8.2.

Another parameter of the splitting that may be useful in practice is the energy
of extrastabilization δ, which equals the energy difference between the initial
nonsplit term (but destabilized by the average ligand repulsion energy E0) and
the new ground term after the splitting. The term stabilization for this magnitude
may be misleading because the electron–ligand interaction is repulsion (destabi-
lization). In fact, the new ground state is just less destabilized than the electronic
states on average, and it is implied that this “less destabilization” can be consid-
ered as an additional stabilization [i.e., in addition to that produced by the main
attractive term (4.3) minus the average destabilization energy E0 in Eq. (4.17)].

The δ value can be easily obtained from the expression for � and the rule of
preservation of the center of gravity (Section 4.2). For the electronic configura-
tion [A](nd)1 in an octahedral field δ = 2

5� (Fig. 4.3), while in the tetrahedral
fields δT = 3

5�T = 4
15�, and in the eight-coordinate cube δC = 2δT = 8

15� [see
Fig. 4.4 and Eqs. (4.20) and (4.22)]. On the basis of these relations and account-
ing for the electron occupation of different orbitals in the weak- and strong-field
limits, the extrastabilization energies for different electron configurations dn are
given in Table 4.9.

One feature of the extrastabilization energy that emerges from this table is its
nonmonotonous change with the number of d electrons. In particular, for high-
spin complexes δ is zero for d0, d5, and d10, and has two maxima at d3 and d8.
This “two-humped” behavior is confirmed qualitatively by many experimental
data. By way of an illustrative example the heat of formation of bivalent and
trivalent transition metal aqua complexes as a function of dn is shown in Fig. 4.14.
It is seen that, indeed, �H has two maxima and three minima as predicted by
CFT (note that the extrastabilization energy is to be added to the main bonding
energy, which is shown in Fig. 4.14 by a solid line).

However, in Table 4.9 the changes in electron interactions by passing from
one configuration to another are ignored. Meanwhile, they may be significantly
different. For instance, for the d2 configuration in the weak-field limit, according
to the data in Table 2.6, the energy of interaction between the two electrons in
the ground state 3T1g(

3F) (in the 3T1g term originating from the atomic 3F term)
equals A − 8B, whereas in the strong-field case in the ground state 3T1g(t2g)

2

[i.e., for the same term 3T1g originating from the strong field configuration (t2g)
2]

it equals A − 5B [see Eqs. (4.47) and Fig. 4.9]. The destabilization energies E0
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TABLE 4.9. Energy of Extrastabilization δ in Ligand Fields of Different
Symmetries in Units of the Crystal Field Parameter �a

High Spin Low Spin
Electronic Examples
Configuration of Ions Octahedron Tetrahedron Cube Octahedron Tetrahedron Cube

d0 Sc2+ 0 0 0 0 0 0
d1 Ti3+ 2

5
4

15
8
15

2
5

4
15

8
15

d2 V3+ 4
5

8
15

16
15

4
5

8
15

16
15

d3 Cr3+ 6
5

16
45

32
45

6
5

4
5

8
5

d4 Mn3+ 3
5

8
45

16
45

8
5

16
15

32
15

d5 Mn2+, Fe3+ 0 0 0 2 8
9

16
9

d6 Fe2+, Co3+ 2
5

4
15

8
15

12
5

32
45

64
45

d7 Co2+ 4
5

8
15

16
15

9
5

8
15

16
15

d8 Ni2+ 6
5

16
45

32
45

6
5

16
45

32
45

d9 Cu2+ 3
5

8
45

16
45

3
5

8
45

16
45

d10 Zn2+ 0 0 0 0 0 0
aFor dn with n > 1 the interelectron interaction is neglected.

a

b

FIGURE 4.14. “Two-humped” dependence of the heat of formation �H of aqua com-
plexes of trivalent (a) and divalent (b) transition metals. The solid line links the values
of �H without extrastabilization.
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TABLE 4.10. Approximate Relative Values of d Orbital Energies (in � Units) in
Crystal Fields of Different Symmetriesa

Coordination Mode of Coordination
Number (Symmetry) dx2 –y2 dz2 dxy dxz dyz

1 — −0.314 0.514 −0.314 0.057 0.057
2 Linear −0.628 1.028 −0.628 0.114 0.114
3 Trigonal 0.546 −0.321 0.546 −0.386 −0.386
4 Tetrahedral −0.267 −0.267 0.178 0.178 0.178
4 Square-planar 1.228 −0.428 0.228 −0.514 −0.514
5 Square pyramid 0.914 0.086 −0.086 −0.457 −0.457
5 Trigonal pyramid −0.082 0.707 −0.082 −0.272 −0.272
6 Octahedral 0.600 0.600 −0.400 −0.400 −0.400
7 Pentagonal bipyramid 0.282 0.493 0.282 −0.528 −0.528
az is the axis of the highest symmetry.

vary for different numbers of electrons and ligands as well. These circumstances
complicate the quantitative interpretation of the experimental data on �H in
CFT.

If the symmetry of the ligand field is lower than cubic, degenerate terms are
subject to further splitting; its characterization requires additional parameters. For
tetragonal distorted octahedra the additional parameters are Ds and Dt , given,
respectively, by Eqs. (4.24) and (4.25) as functions of F2(R) and F4(R). A
rough simplification, F2 ≈ 2F4, makes it possible to present approximately all
the energy d levels as a function of one parameter �. They are given in Table 4.10
for different types of ligand coordination to the CA. The data of this table can be
used for qualitative estimations only. For more details on CFT parameters, see
Ref. 4.23.

4.6. LIMITS OF APPLICABILITY OF CRYSTAL FIELD THEORY

The limits of application of the CFT, as of any other approximate theory, are
determined by its main assumptions (postulates), as well as by the additional
simplifications introduced for their realization. Usually the limits of any theory
can be established definitively when there is a more general theory for which
the one under consideration can be considered as a particular case. In this sense
the possibilities and limitations of the CFT are better understood when compared
with the conclusions of the (in general) wider MO LCAO theory (Section 5.6).

As indicated above, the assumption of the pure electrostatic nature of the
CA–ligand interaction with the ligands as point charges or dipoles a priori
excludes the possibility of investigating, by means of CFT, such important prob-
lems as the nature of chemical binding and charge distribution in coordination
compounds, as well as the phenomena that depend on the details of the electronic
structure of the ligands (ligand activation, charge transfer spectra, reactivity, etc.).
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The properties of coordination compounds that can be analyzed by CFT are
limited by those originating from the electronic structure of the central atom
influenced by the ligands. This excludes such important problems as complex
formation (e.g., π bonding), stereochemistry, reactivity, ligand activation, and
hyperfine ESR spectra.

Even with these strong limitations, the range of CFT remains sufficiently
wide. Indeed, it includes the origin of color (electronic absorption spectra in
the visible and related regions, Section 8.2), magnetic susceptibility and ESR
spectra (without ligand hyperfine structure; Section 8.4), relative stabilities in
solutions, and some vibronic interaction effects (Chapter 7), and the number of
such problems can be significantly increased by including covalence corrections
(Section 5.2).

When analyzing the applicability of CFT, one should distinguish between its
qualitative and quantitative aspects. The qualitative aspect of the theory (the anal-
ysis of term splitting, symmetry of states, relative energies, spin multiplicities,
etc.) covers a much wider spectrum of problems and systems than do its quantita-
tive treatments, which requires more accurate energy spectra and wavefunctions.
Indeed, the qualitative conclusions of CFT are based mainly on the symmetry
properties of the system that are independent of the nature of the bonding (and
remain the same in all the theories), whereas the quantitative results are bound
to the approximation of the electrostatic ligand fields, which is a priori invalid
for many systems. Obviously, the qualitative conclusions of CFT not only have
larger limits of application but are more reliable.

The CFT assumption that the ligands are point charges or dipoles at first
sight seems to be rather rough. Nevertheless, the results obtained in this model,
within the limits of its applicability, may be quite reasonable, due mainly to
the compensation of the errors with opposite signs (Section 5.6). However, the
semiempirical versions of CFT in which the main parameters are obtained from
empirical data seem to be more useful. As mentioned in Section 4.4, f electrons
in rare-earth complexes are strongly screened from the ligand field by the outer
s, p, d electrons. For this reason the covalence with f -electron participation is
rather weak, and study of f -electron states and related properties by CFT is quite
acceptable also for quantitative calculations (see the case of weak covalence and
AOM in Section 5.2). This conclusion is confirmed by experimental data [4.17,
4.18, 4.24, 4.25].

Finally, no less important is the fact that the CFT provided (and still provides)
a simple introduction to (a tool for a better understanding of) more sophisticated
theories discussed in the following chapters. The relative simplicity and stimu-
lating power of the CFT allowed one of the most significant contributors to this
theory, Professor Moffitt, to state [4.26]:

It will be a long time before a method is developed to surpass in simplicity, elegance
and power that of crystal field theory. Within its extensive domain it has provided
at very least a deep qualitative insight into the behavior of a many-electron system.
No other molecular theory, to our knowledge, has provided so many useful numbers
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which are so nearby correct. And none has a better immediate prospect of extending
its chemical applications.

Although more than 50 years have passed since the time of this statement, only
the last two sentences should be revised because of the impressive achievements
in MO theories in more recent decades.

SUMMARY NOTES

1. Crystal field theory (CFT) is a quantum extension of the prequantum elec-
trostatic theory that assumed that the bonding in a transition metal system
(TMS) is due to pure electrostatic interaction between the central atom
(CA) and ligands. The CFT considers the electronic structure of the CA by
means of quantum mechanics, while the ligands are treated as “structure-
less” sources of electrostatic (“crystal”) fields.

2. The main effect of ligand influence on the CA is splitting of its energy
levels (Stark effect). This crystal field splitting explains a variety of optical,
magnetic, and thermodynamic properties of TMS.

3. CFT allows one to evaluate energy-level splitting on either a qualitative
level by means of group-theoretical considerations or by direct calculation
of the splitting using quantum-mechanical perturbation theory. In the latter
case the CFT is more reliable in its semiempirical approximation, in which
some parameters are taken from experimental data.

4. When there is more than one electron in the d shell of the CA of the TMS,
their distribution over the split energy levels may be different dependent
on the splitting magnitude. If the splitting is sufficiently large, the electrons
tend to occupy first the lowest levels (even if this is accompanied by pairing
the spins of the electrons on the same level), thus resulting in low-spin
electronic configurations in the ground state. In the other limit case of
small CFT splitting the electrons occupy as much as possible levels with
parallel spins producing high-spin configurations of the TMS.

5. In the general case of two or several d electrons, the energy terms of
the corresponding electronic configuration can be obtained by numerical
calculation of their energies as a function of the main parameter of the
CFT splitting and the interelectron interaction, Tanabe–Sugano diagrams .

6. CFT splitting of f-electron levels of the CA is different from that of d

electrons because they have different symmetry and bonding properties,
and in many cases they are screened from the ligands by the outer d

electrons.
7. The overall heuristic value of CFT lies mainly in its qualitative results

based on symmetry properties . Its shortcomings are due to the neglect of
electronic structure and quantum properties of the ligands. The angular
overlap method in Chapter 5 is removing a part of this failure, but a full
remedy is achieved in the MO theory.
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QUESTIONS

Answer the following questions with explanation:

4.1. What are the main assumptions of CFT? What limitations are introduced
by these assumptions in the study of TMS? Give examples of observable
properties that cannot be explained by CFT.

4.2. Why are the energy levels of d electrons split in spite of symmetric
arrangements of the ligands in octahedral and tetrahedral complexes? Are
p-electron levels split in the same complexes?

4.3. According to Fig 4.3 and calculations, the destabilization energy produced
by the averaged field of the ligands E0 is larger than the stabilization gained
by the energy-level splitting. Why, then, are such complexes stable?

4.4. If the CA has several d electrons, which two types of octahedral or tetrahe-
dral transition metal coordination systems are possible, dependent on the
strength of the ligand field, and how do they relate to the number of d

electrons and the total spin? Give examples.
4.5. Why do weakly influencing ligands (producing weak CFT splitting) gener-

ate electronic configurations with the highest possible total spin, whereas
strongly influencing ligands form complexes with the lowest possible spin?
Give three examples of low-spin complexes and three of high-spin ones
with their electronic configurations.

4.6. From the term-splitting diagram in Fig. 4.7 for a system with the d2 electron
configuration in octahedral crystal fields, can we judge as to whether the
perturbation theory used for its calculation is applicable to this case?

4.7. Figures 4.8 and 4.11 show that some energy levels as a function of the
crystal field parameter � intersect while the others do not. What are the
conditions for nonintersection?

4.8. In case of more than one d electron, what is the difference between crys-
tal field destabilization (Fig. 4.9b) and electron interaction destabilization
(Fig. 4.9d)? Should we expect that the former is larger than the latter in
case of strong fields?

4.9. Why are low-spin tetrahedral complexes much rarer than octahedral ones?
4.10. Under equal ligand field strengths, what are the differences between d- and

f -electron splittings?

EXERCISES AND PROBLEMS

P4.1. Similar to the calculation of the splitting of the energy levels of one d elec-
tron in different fields of ligands presented in Chapter 4 and Appendixes
1–3, calculate the energy-level splitting of one d electron in the field of
eight ligands—point charges that form a square prism with the CA in its
center, as a function of similar parameters.
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*P4.2. Find the energy-level splitting of (a) one d electron and (b) one f elec-
tron, in icosahedral crystal fields by means of group-theoretical analysis
(Section 4.2).

P4.3. Check and ensure that in all the cases of crystal field splitting considered
in this chapter the center of gravity of the split energy levels remains
unchanged and equal to the energy level before splitting. Explain why
this takes place.

*P4.4. Determine whether Cr(H2O)6
2+, Mn(H2O)6

2+, Mn(H2O)6
3+, Mn(en)3

2+,
Fe(H2O)6

2+, Fe(CN)6
4−, Co(NH3)6

3+, and Co(CN)6
3− are low-spin or

high-spin complexes by estimating the pairing energy � after Eq. (4.50)
with Racah parameters from Table 4.7 and � values from Table 8.2 in
Chapter 8.

*P4.5. On the basis of group symmetry rules, find the possible terms of elec-
tronic configurations (eg)

2 and (t2g)
3 in octahedral and (e)2 and (t2)

3 in
tetrahedral ligand fields. What are the ground-state terms in these cases
according to Hund’s rule?

*P4.6. Using the Tanabe–Sugano diagrams and approximate � values from
Table 8.2 and spectrochemical series (8.24) (as well as literature data) find
out existing transition metal coordination systems that can be expected
to have coexisting low-spin and high-spin states important in the spin
crossover phenomenon (Section 8.4).
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5
METHOD OF MOLECULAR
ORBITALS AND RELATED
APPROACHES

Molecular orbitals are the main electronic structural units for analysis and solu-
tion of chemical problems at the electronic level .

Historically, application of the MO method to transition metal and rare-earth
complexes began with the improvement of crystal field theory by means of
including covalency effects, and in this aspect it was called ligand field the-
ory . However, in its present form the MO method in application to coordination
compounds basically does not differ from that widely used for organic and main-
group systems, although practically the treatment of coordination system with
this method is more complicated because of the presence of active d and f

electrons.
In this chapter the main ideas and special features of the MO approach are

presented in a form applicable to transition metal coordination compounds. The
general presentation of the MO method is discussed together with the methods of
numerical calculations (ab initio, nonempirical, semiquantitative, and semiempir-
ical), as well as other related approaches, including density-functional methods.
The application of these methods to the solution of the main problem of coordi-
nation chemistry—the origin of chemical bonding—is given in Chapter 6, while
specific calculations of electronic structure using these methods are demonstrated
in Chapters 6, 9, 10, 11, and Solutions to Problems.

Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory,
Second Edition By Isaac B. Bersuker
Copyright © 2010 John Wiley & Sons, Inc.
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5.1. BASIC IDEAS OF THE MO LCAO METHOD

Main Assumptions

The basic idea behind the MO method, as compared with crystal field theory
(CFT) discussed in Chapter 4, is to drop the main restricting CFT assumption
that the electronic structure of the ligands can be ignored, and include explicitly
all the electrons in the quantum-mechanical treatment of the molecular system.
The MO approach makes no a priori assumptions about the nature of the chemical
bonding. Unlike CFT, where the atoms or groups of atoms of the complex are
assumed to preserve mainly their individual features, in the MO method the
coordination system is considered, in principle, as an integral system in which
separate atoms lose their individuality.

For example, the complex Co(NH3)6
3+ is considered in the MO theory as

having a skeleton of 6 nitrogen nuclei, 18 hydrogen nuclei, 1 cobalt nucleus, and
84 electrons that move in the field of the nuclei. The motion of each electron
is determined by both the nuclear configuration (provided that the latter can be
assumed to be fixed; Section 7.1) and the motions of the other 83 electrons. All
these motions (including the nuclear motions) are determined by the Schrödinger
equation (Section 1.1).

Exact solution of the Schrödinger equation (1.5) for a coordination system is
hardly possible at present because of computation difficulties. So far, the only
practically acceptable approaches are that based on the adiabatic approximation
discussed in Section 7.1, and the one-electron approximation , which assumes
that each electron can be considered as moving independently in the mean field
created by the nuclei and the remaining electrons (Section 2.2). In the one-electron
approximation, the coordination system is described by one-electron states that in
general extend throughout the entire system; they are called molecular orbitals
(MOs). The MO method was first suggested by Hund and Mulliken [5.1]; its
applications to transition metal coordination compounds were developed by Van-
Vleck, Orgel, Griffith, Ballhausen, and others (see in Refs. 5.2–5.6 and references
cited therein).

In general, evaluation of one-electron MOs is still a complicated problem.
Its solution requires further simplifications; the main one is the so-called LCAO
approximation, in which the wavefunction of the MO is sought for in the form
of a linear combination of atomic orbitals (LCAO):

φ(r) = c1ψ1(r) + c2ψ2(r) + · · · + cnψn(r) =
∑

i

ciψi(r) (5.1)

where n is the number of atomic orbitals (note that each atom can be presented
by more than one orbital), ψi is the ith one-electron atomic wavefunction, and
ci are variational coefficients to be evaluated as the best choice (see below). The
set of ψi’s forms the LCAO basis . In fact, the LCAO approximation means that
we assume that each MO electron can be found at each atom of the system with
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a probability determined by the |ci |2 value; when it is near the given atom, the
MO electron moves as a usual atomic valence electron.

For coordination compounds with heavy atoms further simplifications may
be needed. In particular, the inner electrons of atomic closed shells are often
considered as localized near the nucleus and hence not participating directly
in the bonding with other atoms. Hence only valence electrons remain in the
MO LCAO treatment. However, the separation of inner-core electrons from the
valence electrons is not straightforward and should be carried out with care,
especially in ab initio calculations (see Section 5.4).

Secular Equation

Following the variational principle, the coefficients ci in the probe function (5.1)
should satisfy the condition of minimum total energy of the system. Actually,
calculation of the LCAO coefficients is one of the most important parts of the
MO LCAO method, which is discussed in more detail in Section 5.3. Here we
present some simple analytical relations that nevertheless have a basic meaning
for all the versions of the method under consideration.

In the Hartree–Fock method (Section 2.2) each electron moves independently
in an effective self-consistent field of nuclei and other electrons with the effective
Hamiltonian Hk given by Eq. (2.55) (denoted there as Fk). With this latter the
energy of the MO electron (5.1) is (the k index is omitted)

E =
∫

ϕ∗Hϕ dτ
∫

ϕ∗ϕ dτ
(5.2)

Substituting ϕ by its expression (5.1) and introducing the denotations

Sik =
∫

ψ∗
i ψk dτ (5.3)

Hik =
∫

ψ∗
i Hψk dτ (5.4)

we easily obtain

E
∑

i,k

c∗
i ckSik =

∑

i,k

c∗
i ckHik (5.5)

As mentioned earlier (Section 2.1), Sik is the overlap integral between the
atomic functions i and k (Sii = 1 due to the normalization condition). The
matrix elements (5.4) are discussed in Section 5.3; for i �= k, Hik is called
the resonance integral , and Hii is the Coulomb integral . The condition of the
energy minimum with respect to the ci values means that the corresponding first
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derivative must be zero:

∂E

∂ci

= 0 i = 1, 2, . . . , n (5.6)

This results in the following equations with respect to the ci’s:

∑

k

ck(Hik − ESik) = 0 i = 1, 2, . . . , n (5.7)

This algebraic system of equations with respect to the unknown E is
linear and uniform. It yields nonzero solutions provided that its determinant
is zero:

⎡

⎢
⎢
⎢
⎣

H11 − E H12 − ES12 . . . H1n − ES1n

H21 − ES21 H22 − E . . . H2n − ES2n

...
...

...
...
...

...

Hn1 − ESn1 Hn2 − ESn2 . . . Hnn − E

⎤

⎥
⎥
⎥
⎦

= 0 (5.8)

or in the following compressed format, used later in this book:

‖Hik − ESik‖ = 0 (5.8′)

Condition (5.8) is in fact an algebraic equation of the nth power with respect
to the unknown E. Such equations are usually called secular equations . In gen-
eral, (5.8) gives n different solutions Ei ; for each of them a set of cik values,
ci1, ci2, . . . , cin, can be obtained from Eqs. (5.7). The uniform system (5.7) yields
only n − 1 constants cik; one more is obtained from the condition of normaliza-
tion

∫
ϕ∗ϕ dτ = 1.

Thus, assuming that the one-electron wavefunctions have the form (5.1), that
is, that they are linear combinations of n atomic functions, we get n MO energies
Ei, i = 1, 2, . . . , n, and n sets of LCAO coefficients for each MO. Equations (5.7)
and (5.8) form the basis of all the versions of the MO LCAO method. Calculations
based on these equations are discussed in Section 5.3.

Classification by Symmetry

One of the special features of coordination compounds concerning the use of
the MO LCAO method is the importance of symmetry considerations. The latter
usually reduce significantly the calculation difficulties. As compared with organic
and some main-group inorganic compounds, TMSs acquire high-symmetry con-
figurations much more often, especially in their active sites. Provided that one
knows the symmetry group of the system (Section 3.2), the possible MOs can
be a priori divided on symmetries, with each MO attributed to a certain IrRep.
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Then, using the results of Section 3.5, one can construct the appropriate LCAO
of the CA and ligand atomic functions that satisfy the required symmetry prop-
erties. With the known symmetry of the MOs, some of the matrix elements of
the secular equation (5.8) vanish, thus reducing essentially the order n of this
equation.

Let us first specify some notations. Figure 5.1 illustrates the choice of the gen-
eral and local (ligand) coordinate systems, ligand numeration, and the orientation

FIGURE 5.1. General and ligand local coordinate systems for octahedral (a) and tetra-
hedral (b) complexes. In the octahedral case the orientation of the π1x, π1y , and σn

(n = 1, 2, . . . , 6) ligand orbitals is also demonstrated.
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of their σ and π orbitals in octahedral and tetrahedral complexes. The z axes
of the ligand coordinates are directed toward the central atom (for simplicity of
overlap integral calculations), while the other axes are arbitrary. The σ orbitals
have axial symmetry with respect to the ligand z axis, while the π orbitals lie in
the plane that is perpendicular to this axis, and they are oriented along the local x

or y axes. The ligand orbitals are also labeled according to their ligand number.
For instance, π2x means the π orbital of the second ligand oriented along the x

axis of the local coordinate system.
As shown in Section 3.4, the symmetry of the system determines directly

the classification of the MOs on the IrReps of the corresponding point group.
For example, for an octahedral complex with six identical ligands that has Oh

symmetry, the following MO types are possible (the degeneracy is indicated in
parentheses): A1g(1), A1u(1), A2g(1), A2u(1), Eg(2), Eu(2), T1g(3), T1u(3), T2g(3),
and T2u(3) (see Tables 3.1 and A1.11). These symmetries restrict significantly
the number of independent functions that describe the term under consideration
(or the MO); it should be equal to the degeneracy (with the number in parenthe-
ses), and these functions should transform into each other under the symmetry
transformations of the Oh group (Section 3.4).

Denote the wavefunction of the MO of corresponding symmetry of a transition
metal coordination system by

ϕ(r) = aψ0(r) + b	(r) (5.9)

where ψ0 is the atomic orbital of the CA or a linear combination of such orbitals
[if there are two or several central atoms, the form (5.9) and the consequent results
including Table 5.1, discussed below, should be modified], and 	 is a molecular
orbital—a linear combination of the ligand atomic functions ψi [cf. (5.1)]:

	 = c1ψ1 + c2ψ2 + · · · + cnψn (5.10)

and the LCAO coefficients a, b, c1, . . . , cn should be determined by calculations
(from the condition of minimum energy and normalization).

Since the MO (5.9) must belong to one of the IrReps of the symmetry group
of the system, both ψ0 and 	 should belong to the same representation (or to
the same line of the representation if it is degenerate), they must have the same
symmetry properties. Such symmetrized linear combinations of atomic orbitals
that transform after a given type of symmetry (IrRep) of the symmetry group
of this system are called group-symmetric orbitals , or simply group orbitals , or
else symmetrized (symmetry-adapted ) orbitals . The possible group orbitals of
the system are thus determined by its symmetry group (Appendix 1).

Note that, despite having quite understandable physical sense, MOs are not
directly observable quantities. According to quantum mechanics, physical observ-
ables are determined by matrix elements of corresponding operators calculated
with the total wavefunction ψ(r1, r2, . . . , rn) constructed by one-electron MOs
ϕ(r) in the form of a determinant [Eq. (5.45)] or a combination of determinants.
Charge distribution is given by |ψ(r1, r2, . . . , rn)|2 (see below).
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Symmetrized Orbitals

To determine the coefficients ci in Eq. (5.10) that satisfy the necessary symme-
try conditions for the wavefunction, one has to perform some relatively simple
transformations described in Section 3.5. Using the method shown there, all the
symmetrized MOs can be easily determined (Examples 3.3 and 3.4). The results
for σ - and π-type symmetrized MOs of some important cases of octahedral (Oh

symmetry), tetrahedral (Td ), and bipyramidal-tetragonal (D4h) systems are given
in Tables 5.1–5.3. Table 5.3 also contains the MO functions for square-planar
complexes, for which one should put σ1 = σ4 = π1 = π4 = 0 in the expressions
of the functions for the bipyramidal system.

In all cases in Tables 5.1–5.3 it is assumed that the CA participates in the
MO formation by its s, p, d , and f atomic orbitals, while the ligands participate
by one σ (simple or hybridized) and two π orbitals each. It is seen that, for
instance, in an octahedral system the s orbital of the central atom takes part in
the MO A1g type only, while the two eg type orbitals, dz2 and dx2−y2 , form a

TABLE 5.1. Atomic Functions of the Central Atom ψ0 and Symmetrized
Ligand σ and π Orbitals, �σ and �π , for Different Types of Symmetry of the
Oh Group for Octahedral Complexes

Type of
Symmetry ψ0 	σ 	π

A1g s (1/
√

6)(σ1 + σ2 +
σ3 + σ4 + σ5 + σ6)

—

A2u fxyz — —
T1u px, fx (1/

√
2)(σ2 − σ5)

1
2 (π1x − π4y − π3x + π6y)

py, fy (1/
√

2)(σ3 − σ6)
1
2 (π1y − π4x − π2y + π5x)

pz, fz (1/
√

2)(σ1 − σ4)
1
2 (π2x − π5y + π3y − π6x)

Eg dx2−y2
1
2 (σ2 + σ5 − σ3 − σ6)

dz2 (1/
√

12)(2σ1+2σ4 −
σ2 − σ5 − σ3 − σ6)

—

T2g dxy — 1
2 (π2y + π5x + π3x + π6y)

dxz — 1
2 (π1x + π4y + π2x + π5y)

dyz — 1
2 (π1y + π4x + π3y + π6x)

T1g — — 1
2 (π1y + π4x − π3y − π6x)

— — 1
2 (π2x + π5y − π1x − π4y)

— — 1
2 (π3x + π6y − π2y − π5x)

T2u fx(y2−z2) — 1
2 (π1x − π4y + π3x − π6y)

fy(z2−x2) — 1
2 (π2y − π5x + π1y − π4x)

fz(x2−y2) — 1
2 (π2x − π5y − π3y + π6x)
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TABLE 5.2. Atomic Functions of the Central Atom ψ0 and the Symmetrized
Ligand σ and π Orbitals, �σ and �π , for Different Types of Symmetry of the
Td Group for Tetrahedral Complexes

Type of
Symmetry ψ0 	σ 	π

A1 s 1
2 (σ1 + σ2 + σ3 + σ4) —

A2 fxyz — —

T2 px; dyz; fx
1
2 (σ1 − σ2 + σ3 − σ4)

1
4 (π4x + π2x − π1x −

π3x) + (
√

3/4)(π4y +
π2y − π1y − π3y)

py; dxz; fy
1
2 (σ1 + σ2 + σ3 − σ4)

1
2 (π1x + π2x − π3x − π4x)

pz;pxy; fz
1
2 (σ1 − σ2 − σ3 − σ4)

1
4 (π3x + π2x − π1x −

π4x) + (
√

3/4)(π4y +
π1y − π2y − π3y)

E dx2−y2 — 1
4 (π1x + π2x + π3x +

π4x) + (
√

3/4)(π1y +
π2y + π3y + π4y)

dz2 — 1
4 (π1x + π2x + π3x +

π4x) − (
√

3/4)(π1y +
π2y + π3y + π4y)

T1 fx(y2−z2) — 1
4 (π2y + π4y − π3y −

π1y) + (
√

3/4)(π1x +
π3x−2x − π4x)

fy(z2−x2) — 1
2 (π1y + π2y − π3y − π4y)

fz(x2−y2) — 1
4 (π2y + π3y − π1y −

π4y) + (
√

3/4)(π2x +
π3x − π1x − π4x)

twofold-degenerate σ MO of the type Eg , whereas three t2g-type orbitals, dxy, dxz,

and dyz, form only π MOs of T2g type. On the contrary, in the tetrahedral system
the E orbitals dz2 and dx2−y2 form only π MOs, while the T2 orbitals can, in
principle, participate in both σ - and π-type MO’s. This is an example of the fact
mentioned earlier (in Section 2.1) that the separation into σ and π MO’s may be
conventional for coordination compounds; the same atomic orbitals of the CA
participate in the formation of MOs with both σ orbitals of (some) ligands and π

orbitals of other ligands. Tables 5.1–5.3 also show other cases of “σ + π” orbitals
(the T1u orbital in the Oh group, A2u- and Eu-type orbitals in D4h systems, etc.).
Examples of such systems are discussed in Section 6.3.

Note also that some symmetry-adapted combinations of ligand atomic orbitals
do not have corresponding parts on the CA (e.g., T1g states for Oh systems,
as well as T2u states for Oh and T1 for Td systems in the absence of active f
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TABLE 5.3. Atomic Functions of the Central atom and the Symmetrized Ligand σ

and π Orbitals, �σ and �π , for Different Types of Symmetry of the D4h Group for
a Tetragonally Distorted Octahedrona

Type of
Symmetry ψ0 	σ 	π

A1g s; dz2 (1/
√

2)(σ1 + σ4); —
1
2 (σ2 + σ5 + σ3 + σ6)

B1g dx2−y2
1
2 (σ2 + σ5 − σ3 − σ6) —

A2u pz (1/
√

2)(σ1 − σ4)
1
2 (π2x − π5y − π3y − π5x)

Eu px (1/
√

2)(σ2 − σ5) (1/
√

2)(π1x − π4y)

(1/
√

2)(π3x − π6y)

py (1/
√

2)(σ3 − σ6) (1/
√

2)(π1y − π4x)

(1/
√

2)(π2x − π5y)

B2g dxy — 1
2 (π2y + π5x + π3x + π6y)

Eg dxz — (1/
√

2)(π1x + π4y)

(1/
√

2)(π2x + π5y)

dyz — (1/
√

2)(π1x + π4x)

(1/
√

2)(π3y + π6x)

aFor a square-planar D4h system put σ1 = σ4 = π1x = π1y = π4x = π4y = 0.

states), and hence these states remain nonbonding. The same is true for the A2u

state in Oh systems when the central atom has active f -electron orbitals: the
latter also remain nonbonding. Tables 5.1–5.3 contain all the possible group-
symmetric combinations 	 of 6 σ and 12 π ligand atomic orbitals of octahedral
systems, and 4 σ and 8 π orbitals of the ligands of tetrahedral systems. The
mutual overlap of the ligand AOs is ignored in the normalization coefficients of
the ligand-symmetrized orbitals; they are included in the variational constants a

and b in Eq. (5.9).
In Table 5.4 the group overlap integrals G0i are also given:

G0i =
∫

ψ∗
0 	i dτ =

∑

j

cij

∫

ψ∗
0 ψj dτ =

∑

j

cijS0j (5.11)

where S0j are usual diatomic overlap integrals that can be easily expressed by
the standard tabulated values of the type S(s, σ ), S(p, σ ), S(p, π), . . . (given as
a function of interatomic distances), and the coefficients cij are those given in
Tables 5.1–5.3 for symmetry-adapted combinations of the ligand functions. The
group resonance integrals are defined quite similarly:

HG
0i =

∫

ψ∗
0 H	i =

∑

j

cij

∫

ψ∗
0 Hψj =

∑

j

cijH0j (5.11′)
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TABLE 5.4. Group Overlap Integrals G0σ and GOπ for Different Types of
Symmetry of Groups 0h, Td , and D4h for Octahedral, Tetrahedral, and
Tetragonally Distorted Octahedral Complexes, Respectively,
Considered in Tables 5.1–5.3a

Symmetry Symmetry
Group Type ψ0 G0σ G0π

Oh A1g s
√

6S(s, σ ) —
T1u px

√
2S(p, σ ) 2S(p, π)

fx

√
2S(f, σ ) 2S(f, π)

Eg dx2−y2
√

3S(d, σ ) —
T2g dxy — 2S(d, π)

T2u fx(y2−z2) — 2S(f, π)

Td A1 s 2S(s, σ ) —

T2 px (2/
√

3)S(p, σ ) − ( 8
3

)1/2
S(p, π)

dxy (2/
√

3)S(d, σ )
( 8

3

)1/2
S(d, π)

E dx2−y2 —
(

8
3

)1/2
S(d, π)

T1 fx(y2−z2) — (2/
√

3)S(f, π)

D4h A′
1g s

√
2S(s, σ1) —

dz2
√

2S(d, σ1) —
A′′

1g s 2S(d, σ2) —
dz2 −S(d, σ2) —

B1g dx2−y2
√

3S(d, σ ) —
A2u pz

√
2S(p, σ1) 2S(p, π2)

Eu px

√
2S(p, σ2) 2S(p, π1);√

2S(p, π2)

B2g dxy — 2S(d, π)

Eg dxz —
√

2S(d, π1);√
2S(d, π2)

aS(s, σ ), S(p, σ ), S(p, π), . . . , are the usual overlap integrals between the corresponding orbitals of
two atoms.

Simplification of the Secular Equation

With the symmetrized functions ψ0 and 	 taken as a basis of the MO LCAO
method, the secular equation (5.8) can be significantly simplified without reduc-
tion of accuracy. Indeed, as shown in Section 3.4, the integrals Sik and Hik after
(5.3) and (5.4) are nonzero if and only if the two functions ψi and ψk have
the same symmetry properties (i.e., belong to the same symmetry type). This
means that in Eq. (5.8) all the off-diagonal elements for any ψi and ψk that
belong to different IrReps are zero. After a corresponding grouping of the basic
wavefunctions on their symmetries, Eq. (5.8) transforms to the following:

Hij − ESij

Hkl − ESkl

Hmd − ESmd

0

0

= 0. . .

(5.12)
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In this equation it is implied that the first, say, n1 functions labeled i and j

belong to one and the same IrRep of the symmetry group, the next n2 functions
labeled k and l belong to another IrRep, and so on, and that the last group of nr

functions belong to the rth representation. Hence the r quadratic matrices that
occupy the diagonal positions in (5.12) belong to r IrReps of the symmetry point
group of the systems, while the off-diagonal matrix elements between them are
zero by symmetry.

As is well known, the determinant (5.12) equals the product of all the smaller
determinants on the diagonal positions. This means that equation (5.12) of power
n with respect to the MO energy E decomposes into r equations of much lower
powers n1, n2, . . . , nr (n1 + n2 + · · · + nr = n) that are much easier to solve,
thus simplifying significantly the solution of the MO LCAO problem. Hence,
when using symmetrized functions, the order of the equation that should be
solved is reduced from the whole number of functions in the basis set n to the
number of these functions in the partial groups belonging to the same IrRep.

For example, for an octahedral complex of Oh symmetry (without f electrons),
in accordance with Table 5.1, the secular equation of the MO LCAO method,
by using symmetrized functions, decomposes into one second-order equation
for the A1g representation [only two functions belong to A1g: ns of the CA
and 	σ = ( 1

6 )1/2(σ1 + σ2 + · · · + σ6) of the ligands], three identical third-order
equations for T1u, two identical second-order equations for Eg , and three second-
order equations for T2g . One can see that for high-symmetry systems the order
of the secular equation in the MO LCAO method is not very high. However,
the problem as a whole with many valence electrons is still very complicated
because of the interaction between the electrons, due to which, even in the one-
electron HF approximation, the different square blocks in (5.12) are coupled
via the integrals Hik of the effective Hamiltonian (2.55), which contain LCAO
coefficients of the MOs from all the other blocks. This problem is discussed in
more detail in Section 5.3.

5.2. CHARGE DISTRIBUTION AND BONDING IN THE MO LCAO
METHOD AND THE CASE OF WEAK COVALENCY

Atomic Charges and Bond Orders

With the MO energies Ei and LCAO coefficients cij known, one can visualize
the electronic structure. In particular, for the charge distribution the so-called
Mulliken electron population analysis [5.7] is widely used. This analysis is based
on the definition of electronic density. From the quantum-mechanical definition
and statistical interpretation of the wavefunction in the coordinate representation,
|ϕ(r)|2 dv means the probability of finding the electron [that occupies the MO
ϕ(r)] within the volume dv near point r (regardless of its spin value). Therefore
the function ρ(r)

ρ(r) = |ϕ(r)|2 (5.13)
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represents the probability density (or simply density) of electronic distribution
along the MO ϕ(r).

In a system with n electrons and wavefunction �(r1, r2, . . . , rn), the proba-
bility of finding an electron near r1 is

ρ(r1) = n

∫

|�(r1, r2, . . . , rn)|2 dv2 · · · dvn (5.14)

The coefficient n is introduced because any of the n electrons can be at point
r1 and the density should be normalized:

∫
ρ(r1)dv1 = n. Thus the electronic

density and hence the parameters of electronic distribution in the system are
completely determined by its wavefunction.

The redistribution of the charge density by formation of molecules (chemical
bonding) is determined by the function �ρ:

�ρ = ρ(r) −
∑

μ

ρμ(r) (5.15)

where ρμ(r) means the electronic density function of the free atom in the position
that it occupies in the molecule. By definition, �ρ means the difference between
the electronic density of the molecule and the free atoms, the deformation density ,
which indicates the changes in charge distribution that take place by the binding.
The function �ρ is usually presented by equal density curves which are more
informative than the electron density diagrams (Section 8.6).

In the MO LCAO approximation where the MO wavefunction is presented
by the LCAO (5.1), the electronic density ρ(r) can be expressed by the LCAO
coefficients. Indeed, assume that the ith MO under consideration contains only
two basis functions—AOs of two atoms A and B —ψA and ψB [e.g., the atomic
functions of the central atom and the ligand denoted in (5.9) as ψ0 and 	,
respectively]:

ϕi(r) = ciAψA + ciBψB (5.16)

Then (we assume that the AOs and the LCAO coefficients are real)

|ϕi(r)|2 = |ciA|2|ψA(r)|2 + |ciB |2|ψB(r)|2 + 2ciAciBψAψB (5.17)

In a more general case with ϕi(r) in (5.1)

|ϕi(r)|2 =
∑

μ,ν

ciμciνψμψν (5.17′)

The first and second terms of expression (5.17) can be interpreted as the prob-
abilities of finding the MO electron at the central atom and ligands, respectively,
determined by the module square values of the corresponding LCAO coeffi-
cients. The last term has a more complicated nature. Denote the MO occupancy
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by qi and define it as the total charge on the MO: qi = ∫
ρi(r)dv. Substituting

ρi(r) = qi |ϕi(r)|2 and assuming that the AO functions are normalized, we have(∑
μ,ν ciμciνSμν = 1

)

qi = qi

∑

μ,ν

ciμciνSμν (5.18)

in the two-center case under consideration

qi = qi |ciA|2 + qi |ciB |2 + 2qiciAciBSAB (5.18′)

where SAB is the overlap integral (or group overlap integral). It is seen from this
expression that the whole charge qi on the MO is divided into three parts: the
part qi |ciA|2 originating from atom A, the qi |ciB |2 term contributed by atom B,
and the third part pi = qi · 2ciAciBSAB , called overlap population describing the
contribution of the overlap area to the charge distribution.

Mulliken suggested [5.7] defining the electronic charge on the atom by includ-
ing half of the overlap population into each of the two atomic charges:

qiA = qi(|ciA|2 + ciAciBSAB)

qiB = qi(|ciB |2 + ciAciBSAB)
(5.19)

If atom A participates with its AOs in many MOs of the system, the effective
electronic charge on the atom after Mulliken is

qA =
∑

i

qiA

or in general

qμ =
∑

i,ν

qiciμciνSμν (5.20)

The effective positive charge on the atom equals ZA − qA, where ZA is the
nuclear charge.

With the charges (5.20), charge transfers �q can also be defined. Denoting
the electronic charge on the free atom or group of atoms by q0

μ, we have

�qμ = qμ − q0
μ (5.20′)

Similarly, for orbital charge transfer �qi we get

�qA
i = qiA − q0

iA (5.20′′)

where q0
iA denotes the electronic charge on the ith orbital in the free atom or

atomic group A.
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Besides the atomic charges, the bond orders, or density matrix Pμν

Pμν =
∑

i

qiciμciν (5.21)

are used in characterization of the electronic charge distribution and binding.
The Mulliken definition of atomic charges is far from perfect: (1) the overlap

population is equally divided into two parts for two interacting atoms A and B,
which are, in general, different; and (2) the overlap population can be negative,
resulting, if sufficiently large, in negative charge densities, or in orbital charges
larger than 2. But the most significant fault of the Mulliken atomic charges is
that they depend strongly on the basis set of LCAO calculations. It is obvious
that the values c2

iA characterize not so much the probability of location of the
electron at atom A as the probability of its being in the area where ψA has its
maximum . Depending on the nature of ψA, its maximum can be far outside atom
A. This argument is especially important for transition metal compounds because
their atomic functions are rather diffuse. Example 5.1 illustrates the inadequacy of
Mulliken’s definition of atomic charges in application to transition metal systems.

EXAMPLE 5.1

Shortcomings of Mulliken’s Definition of Atomic Charges in Molecules

Mulliken’s definition of atomic charges in molecules may have some
merit in application to organic and main-group compounds, but it fails
for transition metal compounds because of the d-electron heterogeneity
in the sense that usually the ligands have only sp electron configurations.
Indeed, consider the radial distribution in the 3d and 4s Slater-type AOs
(Section 2.1) shown in Fig. 5.2 for a typical transition metal system
with respect to the positions of the central atom M and the ligand L.
As one can see, while the 3d distribution characterizes approximately
the electron positions mainly on the CA, the 4s AO is far beyond the
atomic area, its maximum falling in the region of the ligand.

FIGURE 5.2. Typical radial distribution of atomic 3d and 4s electron densities
of a transition metal M with respect to the position of the ligand L.
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This means that in the atomic charge qM calculated after (5.20), the
contribution c2

4s in fact characterizes not the charge on the central atom
but that on the ligand L, thus revealing an incorrect notion about the
real charge on M.

Nevertheless, the Mulliken analysis proved to be useful in many cases, espe-
cially when not absolute but relative values of charge distributions and their
changes along a series of related compounds are considered.

Several other suggestions for more adequate calculations of atomic charges in
molecules were made, and among them we note the one due to Politzer [5.8],
in which the atomic charge is determined by direct integration of the electronic
density function ρ(r) over the volume of the atom. Again, there is some uncer-
tainty in the choice of borders of the atom in the molecule. In Section 8.6 we
briefly discuss this problem in relation to the idea of Bader [8.107] to define the
borders of the atom in the molecule as the surface S, where the gradient of the
charge density is zero, ∇ρ(r0) · n(r0) = 0, r0 ∈ S, and n is a unit vector normal
to the surface S.

Another rule of calculation of atomic charges was suggested for coordination
compounds by Noell [5.9] who proposed to use for the atomic charge on the
atom μ the following formula instead of (5.20):

qμ =
∑

i,ν

(FμFν)
1/2ciμciνSμν (5.22)

where for the ligands Fμ = Fν = 1, while for the CA Fμ is defined by the
following procedure. For the central AO

∫

|ψμ|2 dτ = 1 = Iμ + Lμ + Rμ (5.23)

where Iμ is the portion within the covalent sphere of the metal with radius Rc

(0 < r < Rc), Lμ is the ligand portion lying within the ligand cone [the volume
with the radius vector r (Rc < r < ∞) and angles θ and φ inside the cone of
revolution with the apex at the metal and the base determined by the ligand
dimensions], and Rμ is the remaining part that enters neither the Rc sphere nor
the ligand cone. Then Fμ is defined as follows:

Fμ = Iμ + Rμ (5.24)

In other words, by introducing the Fμ factor in the definition of the atomic
charge of the central atom, one excludes the electronic cloud in the ligand region
created by the central atom AO. For instance, for square-planar complexes of Pt
and Pd the cones of revolution embracing the four ligands are taken as four 90◦

cones, while the covalent radius is chosen as Rc = 1.30 Å for both Pt and Pd
[5.10]. For examples of calculations, see Sections 6.3, 6.4, and 11.3.
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Bonding, Nonbonding, and Antibonding Orbitals

To reveal the mechanism of chemical bonding in the MO LCAO scheme, consider
first a simple example. Assume that for a given symmetry representation of the
system there are only two basis functions that belong to this representation; one
of them (ψ0) is an AO of the CA, while the other one (	1) forms an appropriate
linear combination of the ligand functions, as in (5.9). Such a case is realized, for
instance, for the A1g representation of an octahedral complex (Table 5.1). The
secular equation for the two MOs, �1 = c′

0ψ0 + c′
1	1 and �2 = c′′

0ψ0 + c′′
1	1,

corresponding to this type of symmetry is

[
H00 − E H01 − EG01

H10 − EG10 H11 − E

]

= 0 (5.25)

where G01 = G10 is the group overlap integral given by Eq. (5.11) and in
Table 5.4. This quadratic equation with respect to E can be solved directly.
It yields two roots, E1 and E2,

E1,2 = [2 (1 − G2
01)]

−1{H00 + H11 − 2H01G01 ∀ [(H00 − H11)
2

+ 4 [H 2
01 + H00H11G

2
01 − H01G01(H00 + H11)]

1/2} (5.26)

From this expression it is seen, first, that in the absence of overlap between
ψ0 and 	1, that is, when G01 = H01 = 0, we have E1 = H00, E2 = H11. This
means that the two energy levels remain the same as in the atomic states ψ0 and
	1. Substituting these energy values into Eq. (5.7), we obtain the ci coefficients,
which will enable us to easily find from Eqs. (5.1) and (5.9) that, indeed, �1 = ψ0

and �2 = 	1; that is, they remain purely atomic. The MOs corresponding to these
states are called nonbonding . Such MOs, as mentioned above, are realized either
when some atomic orbitals (or their linear combinations) have no contraparts of
the same symmetry on other atoms (as, e.g., in the case of the T1 combination of
ligand orbitals in a tetrahedral system of Td symmetry in absence of f electrons;
Table 5.2), or when the corresponding group overlap integrals Gij and resonance
integral Hij are negligible.

In all other cases the values of the two roots (5.26) of Eq. (5.25) are beyond
the area between H00 and H11: E1 is smaller than the smallest value of H00

and H11, while E2 is larger than the largest one (Fig. 5.3). It follows that one
MO has the energy E1, which is lower than the atomic energies of the free
atoms, and hence this MO is bonding . On the contrary, the MO corresponding
to the energy E2 increases the energy as compared with the free atoms; this MO
is called antibonding . Since both Gij and Hij depend on the integral overlap
between the ψ0 and 	1 functions, the bonding and antibonding magnitudes of
the abovementioned MOs are also dependent on this overlap.

The wavefunctions of these two MOs, their LCAO coefficients c0 and c1 at ψ0

and 	1, can be easily evaluated by substituting consecutively the values E1 and
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FIGURE 5.3. MO energy level scheme for two atomic states from two centers with AOs
ψ0 and 	1 that produce bonding and antibonding MOs.

E2 after (5.26) into Eq. (5.7) and calculating the corresponding coefficients c′
0, c′

1
and c′′

0 , c′′
1 (also factoring in the normalization condition c2

0 + c2
1 + 2c1c0G01 = 1

for each pair of c′
0, c

′
1 and c′′

0, c
′′
1 coefficients, respectively).

The bonding energy obviously depends on the number of electrons that occupy
bonding (antibonding) MOs. Consider the case when each of the bonding parts,
the central atom in the state ψ and the ligands in the state 	1, are occupied by one
electron. Then, after formation of the MOs that mix (collectivize) these states,
the new two states, two MOs, should be populated by the same two electrons.
Following the Pauli principle, in the ground state with the lowest energy the two
electrons occupy the lowest MO with opposite spins. Neglecting the interelectron
interaction, the bonding energy �E is approximately

�E = H00 + H11 − 2E1 (5.27)

where it is taken into account that in the nonbonding state the energies of the two
electrons are H00 and H11, respectively. Substituting E1 from (5.26), we have

�E = (1 − G2
01){2H01G01 − G2

01(H00 + H11) + [(H00 − H11)
2

+ 4H 2
01 + 4H00H11G

2
01 − 4H01G01(H00 + H11)

1/2} (5.28)
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Note that if there are four electrons, with two from each bonding part,
they must occupy both the bonding and antibonding MOs in the ground
state and

�E = 2(H00 + H11) − 2(E1 + E2)

= (1 − G2
01)

−1[4H01G01 − 2(H00 + H11)G
2
01] ∼= 0 (5.29)

Here it is noted that roughly H01
∼= 1

2 (H00 + H11)G01 (Section 5.5).
Equation (5.29) means that bonding and antibonding MOs approximately com-

pensate each other, so there is almost zero bonding when they are both fully
occupied by electrons. The compensation of bonding and antibonding MOs is
also confirmed by more rigorous numerical calculations [5.11]. Hence the bond-
ing in the MO scheme occurs only when there is no full compensation of the
bonding MOs by the antibonding ones and the bonding is produced only by those
electrons that occupy uncompensated bonding orbitals.

If the number of basis functions that transform according to the given symme-
try type (and hence the order of the secular equation and the number of MOs) is
larger than 2, the possibility of visual interpretation of the origin of the bonding
features in the MO LCAO scheme decreases significantly, but the basic ideas of
bonding, nonbonding, and antibonding MOs with respect to the corresponding
free atomic states remain valid. Section 7.2 presents another criterion of MO
bonding properties on the basis of their orbital vibronic constants.

It is clear that the total bonding energy equals the sum of the individual MO
contributions (with corresponding corrections on changed interelectron interac-
tion). Noting the almost exact compensation of the bonding MOs with the corre-
sponding antibonding ones, we conclude that the total bonding energy equals the
summary contribution of the uncompensated bonding MOs (see also Section 6.2).
The number of the latter depends on the ordering of the bonding and antibond-
ing MOs and their occupation numbers. The highest occupied MO is usually
abbreviated as HOMO, while the lowest unoccupied MO is LUMO .

Case of Weak Covalency

In transition metal coordination bonding (including solid-state lattice formation),
the notion of weak covalence is very important. In fact this term is applicable to
the cases when the bonds between the central atom and ligands are rather ionic
and the covalence can be considered as a correction. Starting with ionic parts,
let us define the condition of weak covalence by assuming that the magnitudes
of the overlap integral S (or G) and |H01|/|H11 − H00| are small as compared
with a unity and that their squares can be neglected. This means that S << 1
and |H01| << |H11 − H00| (we assume that |H11|> |H00|). Then one can obtain
from Eq. (5.26) the following relations for the energies of the bonding E1 and
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antibonding E2 MO energies:

E1
∼= H11 − H01 − H11G01

H00 − H11
(5.30)

E2
∼= H00 + H01 − H00G01

H00 − H11
(5.31)

For the wavefunctions of these two MOs the following form seems to be
convenient:

�1 = N1(ψ0 + γ	1) (5.32)

�2 = N2(λψ0 − 	1) (5.33)

where N1 and N2 are the normalization coefficients,

N1 = [1 + γ 2 + 2γG01]−1/2

N2 = [1 + λ2 − 2λG01]−1/2
(5.34)

The relation between λ and γ can be obtained from the condition of orthog-
onality

∫
�∗

1 �2 dτ = 0:

λ = γ + G01

1 + γG01
(5.35)

Within the approximation of weak covalence at hand, using Eq. (5.7) for the
coefficients in Eqs. (5.32) and (5.33) and the energies (5.30) and (5.31), we get

γ = −H01 − H11G01

H00 − H11
(5.36)

λ = −H01 − H00G01

H00 − H11
= γ + G01 (5.37)

From these formulas it is seen first of all that the values γ and λ are also small
because both G01 and H01 are small. Hence the bonding MO in Eq. (5.32) is
mostly 	1, mainly a ligand function with some contribution from the central
atom, while the antibonding MO (5.33) is a CA function ψ0 with a smaller
contribution of the ligand part. If γ = 0, then �1 = 	1, and the bonding electron
remains on the ligand. On the other hand, γ = 0 is possible only when H01 =
G01 = 0, and this means, following (5.37), that λ = 0 and hence �2 = ψ0, that
is, the antibonding MO is of purely CA origin. Thus both the MOs in this case
are nonbonding and the bond remains purely ionic.

If γ �= 0 and λ �= 0, the bonding electrons become collectivized, and for γ =
λ = 1 the bonding state includes both the CA state ψ0 and the ligand state 	1
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with equal probability. In this case the bonding by this MO can be considered
as entirely covalent. Hence the constants γ (for the bonding MO) and λ (for the
antibonding MO) may serve as a measure of covalence.

Note that if 0 < γ < 1, then λ �= γ , and hence the degree of covalence on the
bonding and antibonding MOs may be different. If, in addition, G01 > 0, then
λ> γ , and in the approximation above, N2 >N1. Consequently, in the state of the
bonding MO the probability of the electron to remain on the ligand (determined
by N2

1 ) and on the CA (N2
1 γ 2) is always smaller than, respectively, on the

ligands (N2
2 λ2) and at the central atom (N2

2 ) in the case of the antibonding MO
(see numerical values in Problem 5.2).

This result is quite understandable if one considers that in the case of a bonding
MO a part of the electronic cloud determined by the term 2N2

1 γG01 (the overlap
population) is placed in between the bonding atoms (and in this position the elec-
tronic charge attracts the nuclei of both atoms, thus contributing to the bonding),
whereas in the antibonding case the corresponding term −2N2

2 λG01 is negative;
the antibonding MO produces a “negative overlap density,” a subtraction of the
electronic cloud in between the bonding atoms. The energy stabilization on the
bonding MO and its destabilization on the antibonding MO, as shown above,
within the approximations employed, almost compensate each other.

Angular Overlap Model

The case of weak covalence is rather widespread in coordination systems. In par-
ticular, almost all MOs formed by f electrons in coordination compounds of rare-
earth elements belong to weak covalence. Indeed, as mentioned in Section 4.4,
the f electrons are screened by the outer d electrons, and therefore they form
weak covalent bonds with the ligands (but the outer d electrons still may form
stronger covalent bonds). Even in d electron complexes in the case of high
oxidation states the covalence is formed mainly by outer s and p orbitals,
while the d electrons’ participation in the overlap with ligands is much weaker
(Section 6.1).

For compounds of weak covalence a qualitative and semiquantitative semiem-
pirical method of determination of the main chemically active MO energies,
called the angular overlap model (sometimes abbreviated as AOM) [5.4, 5.12]
has been worked out.

To simplify Eqs. (5.30) and (5.31) let us employ again the proportionality
between H01 and G01. According to Eq. (5.100) (with k = 2), H01 = (H00 +
H11)G01; substituting this expression into Eqs. (5.30) and (5.31), we have

E1
∼= H11 − H 2

00G
2
01

H00 − H11
(5.38)

E2
∼= H00 + H 2

11G
2
01

H00 − H11
(5.39)
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It is seen from these equations that within the approximation at hand the stabi-
lization of the bonding MO H00 − E1 and the destabilization of the antibonding
MO E2 − H11 are proportional to the square of the overlap integral G01. This
statement is taken as the basic assumption of the AOM.

The destabilization of the antibonding d and f MO energy levels which is
relatively easily observed in electronic spectra (especially in f -electron systems)
can serve as a measure of covalence of the bonds and of the nephelauxetic
effects (Section 8.2). However, the name of the method and its possibilities are
concerned more with the presentation of the overlap integral G01 as a product of
the radial G∗

01 and angular θ parts [5.12]:

G01 = G∗
01θ01 (5.40)

Substituting this expression into Eq. (5.39), one finds that the energy of desta-
bilization of the d- and f -electron states, E∗ = E2 − H11, is proportional to the
square of the angular overlap θ :

E∗ = eλθ
2
01 (5.41)

where

eλ = H 2
00(G

∗
01)

2
λ

H11 − H00
(5.42)

and the index λ is introduced to distinguish among σ, π, δ, . . . metal–ligand radial
overlaps. From Eq. (5.41) the main conclusion of the AOM method follows: The
destabilization of the atomic states of the CA due to the formation of covalent
bonds with the ligands is proportional to the square of the angular part of the
overlap integral . Since the radial part of the overlap integral G∗

01 depends on the
metal–ligand distance, and not on the angular position of the ligands, whereas the
angular part θ strongly depends on the angular positions of the latter, the angular
overlap model may provide a good method for studying relative geometries of
complexes with the same or similar CA and ligands.

In a more general treatment for molecular systems with low symmetries both
σ - and π-type overlap can be active in the same bond, where the π overlap
is of two types, π(s) and π(a), respectively (symmetric and antisymmetric with
respect to the reflection in the plane containing the z axis). Also, different types of
ligand orbitals may overlap with the given CA orbitals. In these cases the formula
for the destabilization energy of d and f orbitals (5.41) acquires the form

E∗ = eσ

∑

i

k2
0i (σ ) + eπ(s)

∑

i

k2
0i[π(s)] + eπ(a)

∑

i

k2
0i[π(a)] (5.43)

where k2
0i , similar to θ2

0i , are the squares of the angular part of the overlap
integral with the ith ligand and depend on the coordinates of the latter. Passing
to symmetrized group orbitals that already include corresponding summation
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over the ligands, one can simplify Eq. (5.43):

E∗(�) = eσ k2
0�(σ ) + eπ(s)k2

0�[π(s)] + eπ(a)k2
0�[π(a)] (5.44)

where k2
0� , unlike k2

0i , are the squares of the angular parts of the group overlap
integrals for the � representation. Table 5.5 gives the formulas for the k2

0�

values for d orbitals.
As is seen from Table 5.5, the dependence of k2

0� and hence E∗ on the angular
coordinates of the ligands ϕ and φ is very strong.

Equation (5.44) shows that with a small number of parameters, three for each
different ligand at most eσ , eπ (s), eπ(a), one can describe the destabilization of
the metal orbitals that determine the spectroscopic properties of the complex
in the visible and near-ultraviolet regions. Usually, the constants in Eq. (5.44)
are considered as empirical parameters, then the relative destabilization energies
for different geometries of the complex are well defined by this equation; the
whole procedure is easily programmed for personal computers allowing direct
estimation of CA orbital destabilization by different geometries of coordination
(for more details, see Ref. 5.14).

So far the most useful applications of the model seem to be in spectroscopy of
d –d transitions (Section 8.2), especially with f -electron participation. Compared
with crystal field theory, AOM is more attractive because it considers partly the
electronic structure of the ligands and introduces more realistic parameters. AOM
occupies a position in between CFT and the MO LCAO method.

However, in general the AOM deficiencies are almost the same as those of
CFT (Section 4.6). Indeed, although AOM factors in weak covalence, it does
it for the CA states only. Hence in this model, similar to CFT, ligand elec-
tronic states are not involved explicitly, and the MOs of mainly ligand origin
are excluded from consideration. This deprives us of the possibility of consid-
ering many important chemical phenomena, such as the origin of metal–ligand

TABLE 5.5. Squared Angular Parts of Group Overlap Integrals with CA d Statesa

d

States k2
0�(σ ) k2

0�[π(s)] k2
0�[π(a)]

dz2 N(cos2 θ − sin2 θ/2)2 3
4 N sin2 2θ 0

dx2−y2
3
4 sin4 θ

(∑
Cn cos 2φn

)2 1
4 sin2 2θ

(∑
Cn cos 2φn

)2
sin2 θ

(∑
Cn sin 2φn

)2

dxy
3
4 sin4 θ

(∑
Cn sin 2φn

)2 1
4 sin2 2θ

(∑
Cn sin 2φn

)2
sin2 θ

(∑
Cn cos 2φn

)2

dxz
3
4 sin2 2θ

(∑
Cn cos φn

)2
cos2 2θ(

∑
Cn cos φn)

2 cos2 θ(
∑

Cn sin φn)
2

dyz
3
4 sin2 2θ

(∑
Cn sin φn

)2
cos2 2θ

(∑
Cn sin φn

)2
cos2 θ

(∑
Cn cos φn

)2

aN is the number of ligands, Cn is the LCAO coefficient of the nth ligand in the group orbital �

(Tables 5.1–5.3), and θn and φn are the ligands’ angular coordinates (all the sums should be taken
from n = 1 through n = N ).
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bonding, charge transfer spectra, and the origin of configuration instability due
to the vibronic mixing of CA states with ligand orbitals. In view of the essential
progress in more accurate computational methods with user-friendly ready-made
computer programs, described below, the AOM becomes less practical in use
for solving coordination system problems. For the use of the weak covalence
approximation see Problem 5.2.

5.3. METHODS OF CALCULATION OF MO ENERGIES AND
LCAO COEFFICIENTS

SCF MO LCAO Approximation

Evaluation of the electronic structure of coordination compounds in the MO
LCAO approximation, as shown above, can be reduced to the solution of the
secular equation (5.8) that determines the MO energies Ei and Eqs. (5.7) for
the LCAO coefficients for each Ei value. Equations (5.7) and (5.8) contain the
overlap integrals Sij (or the group overlap integrals Gij ) and resonance integrals
Hij . Provided that the basis set of AOs is chosen, the Sij (or Gij ) values can
be calculated directly, whereas evaluation of the Hij magnitudes by Eq. (5.4) is
rather difficult.

In Eq. (5.4) H is an effective Hamiltonian for the one-electron state; it
describes the mean field of all the nuclei and other electrons in which the given
electron moves. This field depends essentially on the states of the other electrons
described by their MOs. The latter, in turn, depend on the MO of the electron
under consideration. This situation, in the framework of the full separation of the
variables of the electrons, is best described by the Hartree–Fock (HF) method of
self-consistent field (SCF) described in Section 2.2. In application to molecules in
a combination with the MO LCAO approximation, the corresponding equations
were obtained first by Roothaan [5.15]; the joint method is abbreviated as SCF
MO LCAO , or the Hartree–Fock–Roothaan (HFR) method .

Deduction of the HFR equations is relatively simple for closed-shell systems
when each MO is occupied by two electrons (the total spin is zero) and there is
no orbital degeneracy, but it becomes much more difficult when there are open
shells, and for systems in excited states [5.16–5.19].

Following discussion of the Hartree–Fock method in Section 2.2, for a
molecule with a closed-shell configuration of n electrons and n/2 states occupied
by two electrons each, the full wavefunction can be presented as a determinant
of the type (2.28) formed by one-electron MOs (the spin functions for zero total
spin are not shown):

�k =
[(n

2

)
!
]−1/2

det‖ϕ1(r1) · ϕ2(r2) · · · ϕn/2(rn/2)‖ (5.45)

where k indicates the electronic configuration under consideration. With this
presentation of the wavefunction the self-consistent MOs ϕi(ri ) are determined by
Eq. (2.53). If the MOs are taken as LCAO (5.1), we come to the equations for the
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MO energies and LCAO coefficients given by Eqs. (5.8) and (5.7), respectively.
In the Hartree–Fock method the matrix elements of the effective Hamiltonian
values Hij of these equations are given by the matrix elements of the Fockian
F k [Eq. (2.55)]. Its more detailed form is as follows.

Denote the MOs and AOs by Greek and Latin labels, respectively. Then,
for MOs of the type (5.1), we have (the asterisk denotes complex-conjugated
magnitudes)

ϕμ =
N∑

l

cμlψl(r)

ϕ∗
μ =

N∑

k

c∗
μkψk(r)

(5.46)

where N is the number of functions in the LCAO basis.
The matrix element of the effective Hamiltonian is

Hij = Fij =
∫

ϕ∗
i F

jϕj dτ (5.47)

where the operator F j (Fockian) [Eq. (2.55)] contains the functions (5.46). By
substitution we get

Hij = H 0
ij +

∑

k,l

Pkl([kl|ij ] − 1
2 [kj |il])

= H 0
ij + Iij − Kij (5.48)

Here, in accordance with Eq. (2.50), we have

H 0
ij = Tij −

∑

α

(Uα)ij (5.49)

where the notations are the same as in Chapter 2; T is the operator of kinetic
energy of the electron and Uα is its potential energy of attraction to the α nucleus,
and

Pkl =
n/2∑

μ=1

2c∗
μkcμl (5.50)

is an important characteristic of the charge distribution in the system in the MO
LCAO approximation—the matrix of bond orders, or density matrix, mentioned
in Section 5.2 [Eq. (5.21)], and

Iij =
∑

k,l

Pkl[kl|ij ] Kij = 1
2

∑
k,l Pkl[kj |il] (5.51)
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are the abbreviated denotations for, respectively, the Coulomb and exchange
interactions between the electrons. The notation [kl|ij ] represents two-electron
integrals (2.34).

Equations (5.48)–(5.50) show explicitly that in order to evaluate the Hij values
in Eqs. (5.7) and (5.8) of the MO LCAO method, one must know the sets of
LCAO coefficients cμk that are determined by the same equations. In other words,
the equations determining the cμk values are nonlinear [if one substitutes the
expression (5.48) for Hij into (5.7), the latter becomes cubic with respect to
cμk]. In these cases the solution can be obtained by the method of iterations
(similar to the atomic case in Section 2.2).

Assume that, from general knowledge about the system, we choose some
reasonable values of the cμk coefficients for all the MOs. With these coefficients
the Hij values after (5.48) can be calculated; then the MO energies Eμ and
new LCAO coefficients c′

μk can be evaluated for each MO after (5.8) and (5.7),
respectively. With the new coefficients c′

μk one can calculate new H ′
ij values and

determine with them new c′′
μk values, and so on, until the newly calculated MO

energies E′
μ and LCAO coefficients c′′

μk coincide (within the required accuracy)
with the previous ones. It is assumed that in this process of iterative calculations
the solution converges to the self-consistent values of Eμ and cμk sought for.

For systems with unpaired electrons (open shells), the full wavefunction can
be presented in the form of a linear combination of several determinants of
the type (5.45) corresponding to the symmetry and spin of the molecular term
under consideration. This results in an essential complication of the calculation
procedure. However, in some cases the presentation with one determinant can
be preserved. In particular, in the so-called unrestricted Hartree–Fock (UHF)
method [5.16–5.19] it is assumed that the orbital parts of the wavefunctions of
electrons with opposite spins, α (up, ↑) and β (down, ↓), are different [in the
restricted Hartree–Fock (RHF) method they are the same for the two electrons
on a given one-electron orbital]. Then the expansion (5.46) should be written
separately for the MOs with the spins α and β, ϕα

i and ϕ
β

i , respectively, and hence
the order of the secular equation (5.8) and the number of LCAO coefficients, cα

μk

and c
β

μk, increase, becoming equal to the number of electrons in the system (in
the RHF method for closed shells it is half the number of electrons).

Thus the calculations of electronic structure by the SCF MO LCAO (Roothaan)
method can be performed by an iterative procedure in which each iteration con-
sists of two important stages:

1. Calculation of the Coulomb integrals Iij and exchange Kij interactions
between the electrons using Eq. (5.51), as well as the one-electron integrals
of kinetic and potential energy (5.49) and overlap integrals Sij (or Gij )

2. Solution of Eqs. (5.7) and (5.8)

Each stage has its own difficulties, which increase with the number of electrons,
but most of them are due to the calculation of integrals (stage 1). Indeed, in most
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MO LCAO methods the number of integrals increases with the number of atoms
(and hence the number of the basis functions n) as n4 (see the discussion in
Section 5.7). Many of these integrals are multicenter integrals; their evaluation
requires the major part of computer time. However, the results of such calcu-
lations are far from being excellent. The reason is in the neglect of correlation
effects and poor basis sets , discussed below.

Calculations by the abovementioned SCF MO LCAO methods employing nei-
ther empirical parameters nor restricting computational simplifications are called
ab initio. When introducing some computational simplifications, they are also
called nonempirical . These methods do not use any empirical parameters except
the specification of the system by the number of nuclei and the nuclear charges,
as well as the number of electrons (in the literature there may be some nonessen-
tial differences in this classification of methods). In the adiabatic approximation
under consideration the Hamiltonian (Fockian) F j in Eq. (5.47), taken after
(2.55), also contains the nuclear configuration (geometry) of the molecular sys-
tem, but this is not necessarily an empirical parameter. Indeed, in sufficiently
full computations the electronic structure is calculated for different points of
nuclear coordinates yielding the adiabatic potential energy surface (APES), and
there are special procedures for reaching the minimum point on the APES suf-
ficiently rapidly [5.18, 5.19]. The coordinates of this minimum are assumed to
correspond to the equilibrium geometry of the molecule. Such calculations are
termed geometry optimization . Some computer programs perform this procedure
automatically.

The Role of Basis Sets

The main assumption of the MO LCAO method—the presentation of the MO in
the form of LCAO (5.1)—may be subjected to criticism. Indeed, in this presen-
tation one tries to approximate the unknown function of the MO with a limited
number of known atomic functions. Visually, the latter serve as molds, while the
LCAO coefficients are a means for adapting the molds to the complicated MO
surface. It is obvious that when the number of molds is small, and their form is
rigid and does not fit the MO surface well, the MO in the form of (5.1) is not
sufficient for presenting the real charge distribution (despite the best choice of
LCAO coefficients by the variational method).

Mathematically, any function can be presented in the form of an expansion
in a series of other functions, provided that the latter form a set that is complete
from the mathematical perspective. The usual sets of valence atomic orbitals do
not satisfy this condition. To be complete, the set of functions must include all
the exact solutions of the Schrödinger equation for a given atom or any other
polyatomic system.

This explains why the results of the calculation of the electronic structure of
molecular systems obtained by the MO LCAO method depend on the choice of
the basis set, larger (more complete) sets are preferable. However, as mentioned
above, the increase in the number of basis functions sharply increases the
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number of integrals to be calculated, making the problem much more difficult.
Nevertheless, using modern computers this can be done for systems of moderate
size. If the basis set is complete, the results are the same as if the prime
Hartree–Fock equations (2.52) were solved exactly. Such results are called
Hartree–Fock limit solutions .

In calculations of transition metal compounds performed so far, the basis set
is far from being complete. Often the minimal basis set is used, which contains
the AOs that are occupied by valence electrons in the ground state of the free
atoms forming the molecule (the valence basis); the extended basis also includes
unoccupied AOs of excited states. In general, three kinds of atomic functions can
be used to present the AOs in the MO LCAO method: (1) hydrogenlike orbitals
(Lagerr polynomials); (2) Slater orbitals (Section 2.1), and (3) Gaussian func-
tions . For the region of interatomic orbital overlap where the chemical bonding
is realized, Slater orbitals are most suitable, but they are not recommended for
the region at the nuclei; hydrogenlike functions may be better for this region. In
the MO LCAO problems the use of the basis of Slater orbitals or, more precisely,
Slater-type orbitals (STOs), is most widespread.

Both Slater and hydrogenlike functions create many difficulties when used in
calculations of molecular integrals. The problem is essentially simplified when the
corresponding STOs are expressed by Gaussian function—Gauss-type orbitals
(GTOs) [5.20–5.22]. The latter contain the exponential factor exp(−ζ r2) with a
r2 dependence on r [instead of exp(−ζ r) in the STO]; this allows for a much
more simple evaluation of two-electron two-center integrals. On the other hand,
the presentation of a given STO in the form of a sum of two or several (n) GTOs
with different coefficients is relatively simple and can be tabulated a priori. Such
functions are termed STO-nG. Usually n ranges from 2 to 6. The AOs (HF
solutions) ψk in Eq. (5.46) can be approximated by one STOs [5.23], or by two
or several STO [5.24, 5.25]. The notation STO-nG refers to the latter case. The
minimal basis set is usually STO-3G.

In general, several Gaussian functions represent each AO, and the question is
whether they should all be presented by the same cμk coefficient in the LCAO
(one coefficient for the whole AO), or be grouped in two, three, . . . , with two,
three, . . . , coefficients cμk. In the former case the basis is an one-exponential
one; in the case of two groups of orbitals for the same AO (with two variational
coefficients cμk) the basis is named two-exponential, or double-zeta (DZ). Note
that while the number of Gaussian functions in the AO determines the number
of integrals to be calculated in the MO LCAO procedure, the number of cμk

coefficients determines the order of the secular equation (5.8).
The angular part of the AOs in all presentations remains the same; the

s, p, d, f, . . . behavior is an important feature of the LCAO determining its
classification on symmetry discussed in Section 5.1. But the radial part is not
so strictly determined. In particular, the exponential parameter ζ of the Slater
orbital for free atoms is calculated to fit its charge distribution (atomic radii,
interatomic distances, etc.). If the AO is given by several STOs, the latter could
be chosen to fit, say, the HF solutions for the free atom.
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Thus, to obtain the Gaussian basis set, one must perform several numerical
calculation procedures: to obtain HF solutions, to fit them by STO, and then to
fit the STO by a Gaussian function. Huzinaga [5.26] (see also Refs. 5.27–5.29)
suggested avoiding all these lengthy intermediate calculations and determining
the Gaussian basis set directly from the condition of the minimum of the ground-
state energy of the atom. This can be done by means of a Roothaan procedure
taking the AO as a linear combination of Gaussian orbitals and considering both
the cij coefficients and the exponential parameters ζ as variational parameters.
Basis sets for many atoms were tabulated in this way [5.30, 5.31].

Obviously, the quality of the Huzinaga basis depends on how many individual
Gaussian orbitals are taken to form the atomic orbitals of the type s, p, d, . . . .
In this basis there is no sense in discriminating between 1s, 2s, 3s, . . . , orbitals,
because all of them have the same symmetry and enter in the same LCAO.
However, different Gaussian s orbitals or groups of them can have different
variational LCAO coefficients.

In total, the Gaussian basis set contains in general n1 s-type functions, n2

p-type ones, n3 d -type ones, and so on. These are called primitive functions
(PGTO), denoted as (n1s n2p n3d). In the LCAO they may be grouped
(contracted) to N1 s-type (N1 < n1), N2 p-type, N3 d -type, and so on, AOs.
This contracted basis is usually denoted in brackets as [N1s N2p N3d]. For
example, in the phrase “(9s5p3d) contracted to [4s3p2d],” (9s5p3d) means
that the basis set contains nine primitive s-type Gaussian functions (nine dif-
ferent radial parts with the same s-type angular factor), five p-type and three
d-type functions, while [4s3p2d] means that in the LCAO there are only four
cij coefficients presenting the s functions (four groups of Gaussian functions with
independent variational coefficients), three groups of p functions, and two groups
for d functions; in total, there are 17 PGTOs with only nine LCAO coefficients.

In the presentation by Pople et al. [5.32] the notations for basis sets of first-row
atoms contain several figures before the G letter denoting the numbers of Gaussian
functions in the inner (1s) state and in the split-valence states (2s and 2p). For
example, 6-31G means that the inner 1s function (for nonhydrogen atoms) is
presented by six Gaussian functions, while the outer valenceshell functions are
split into two groups (2s, 2p and 2s′, 2p′), the first being of which is presented
by a 3G (the same for 2s and 2p) and the second by a single Gaussian function
(one function for 2s′ and 2p′).

An extension of this basis set is achieved when the polarization functions are
added to give additional flexibility to the description of the MOs. For s functions
polarization additions are of the p type, and for p functions they are of the d type.
If polarization functions are added for only nonhydrogen atoms, the basis set is
denoted by one star (e.g., 6-31G*), while additional polarization functions also
for the hydrogen atoms (p functions) are indicated by adding a second star (6-
31G**). Krishnan et al. [5.32] give the parameters for an even more sophisticated
basis set for first-row atoms, 6-311G**. This means that the valence shell is split
into three groups (2s, 2p; 2s′, 2p′; 2s′′, 2p′′) presented by three, one, and one
Gaussian functions, respectively, and polarization functions for nonhydrogens
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and hydrogens are included. In addition to polarization functions, the basis set
may be improved by adding functions that are more extended in space, and
more diffuse (usually hybridized sp); such functions are especially important for
anions. Diffuse basis functions are marked by “+,” for example, 4−31 + G.

In the case of transition metal compounds in the description (n1s n2p

n3d/n′
1s n′

2p n′
3d/. . .) the slash usually divides different basis sets for

different atoms of the same system; the first place is for the basis set of the CA,
followed by one of the ligands of the first coordination sphere, and so on (the
same notation is often used to separate hydrogen atoms after the slash). The use
of different basis sets for the CA and ligands is quite reasonable, considering
the difference in their electronic configuration, especially the essential role of
d electrons, the d-electron heterogeneity introduced by the transition metal in
the otherwise approximately electronically homogeneous system (in the sense
that it contains electronically similar nsnp atoms). In homogeneous systems
with generally electronically similar atoms, the use of different basis sets for
different atoms is not recommended because this can result in an artifact of
charge redistribution toward the region where a larger basis set is used.

In further development of computational methods the so-called correlation
consistent (cc) basis sets were introduced [5.19] to accommodate the fact that
in the contracted set the functions that contribute similar amounts of correlation
energy should be included in the same group. For example, adding a polarization
d function to an sp basis set significantly lowers the energy, but the contribution
of the second d function will be less efficient and should be grouped together
with the first f function. Similarly, the third d function should be grouped with
the second f function and the first g function. Hence additional polarization
functions should be given in the order 1d, 2d1f, 3d2f 1g, and so forth.

The size of the cc basis set is usually given in terms of the number of contracted
functions: cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z, and cc-pV6Z, meaning cor-
relation consistent polarized double/triple/quadruple/quintiple/sextuple zeta basis
sets, respectively. Sometimes additional diffuse functions are added to these sets
denoted by the prefix aug-. For instance, aug-cc-pVDZ means that functions
1s, 1p, and 1d are added to the cc-pVDZ basis set. In this way a sequence of
basis sets can be generated that converges toward the basis set limit [5.19].

In choosing the best basis set for electronic structure calculation of config-
urationally unstable systems (e.g., transition states of chemical reactions) the
pseudo-Jahn–Teller PJT origin of the instability (Chapter 7) should be factored
in by choosing the additional basis functions to represent the excited electronic
states that contribute to the instability of the ground state [5.33].

One common error introduced by the use of limited basis sets emerges in
MO LCAO calculations of intermolecular interactions, for instance, in chemical
reactions. If we calculate two molecular systems A and B separately with poor
basis sets, their molecular properties will be evaluated with certain errors that, in
principle, can be eliminated by extending the basis. When approaching A–B and
calculating them together with the same two basis sets, the number of basis func-
tions in the MO LCAO scheme becomes that of A + B, that is, much larger than
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for A and B taken separately. This superposition of the basis sets, in addition to
describing the A–B interaction, improves the calculated intramolecular interac-
tions in each of the two molecules . Therefore, the energy of interaction between A

and B (Eint) is not equal to the difference between the energies of the joint system
E(A–B) and the sum of the energies of the separate molecules E(A) + E(B),
because of the changes of E(A) and E(B) due to the superposition of the two
basis sets. We have

E(A) + E(B) − E(A–B) = Eint + EBSSE

where EBSSE is the energy of the basis set superposition error (BSSE). The more
complete the basis set, the less the EBSSE. For example, for the interaction of Li+
with C2H5

−, ab initio calculations with STO-3G yield EBSSE = 72.63 kcal/mol,
while with the 6−31+G basis EBSSE = 0.20 kcal/mol [5.34].

In summary, we see that the choice of a proper basis set for ab initio calcula-
tions is by itself nontrivial and may require significant effort. Fortunately, a great
deal of experience is accumulated in this field, and there are ready-made basis
sets for direct use in a variety of problems. For a variety of sources of basis sets
aimed at electronic structure calculation of TMS, see Refs. 5.35.

Electron Correlation Effects

Even when the best basis sets are used in MO LCAO calculations (functional
complete sets) and the best possible HF (HF limit) solutions are obtained the
results may be far from satisfactory. The discrepancy between full HF calculations
and experimental data is due to the defect of the HF method mentioned above;
it does not include the so-called electron correlation effects [5.18, 5.19].

The origin of electron correlation effects is as follows. In the one-electron
approximations any given electron is assumed to move independently in the
mean field created by all the other electrons and nuclei. Under this assumption
the repulsion between the electrons is considered in average, but not at each
moment. In particular, in this scheme there is a probability that two electrons
meet at the same point in space, whereas actually this is impossible because of
their repulsion, which keeps them as far away as possible from each other. Thus
the motions of the electrons in time are not independent, but correlated.

For instance, in the simplest case of a helium atom the two correlated 1s

electrons at any instant occupy diametrically opposite positions on the 1s sphere
(Fig. 2.1), whereas in the HF description they can instantly be at the same point
of the 1s distribution. In the case of many electrons, the correlation around each
electron produces a “hole” in the charge distribution of all the other electrons,
sometimes called the Fermi hole.

A more detailed mathematical analysis shows that if the full wavefunction
is taken in the one-determinant form (5.45) (thus obeying the Pauli principle),
the probability of finding two electrons with parallel spins at the same point r
is zero. This means that the motions of spinlike electrons in the HF method are
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correlated, and there are correlation Fermi holes in the charge distribution of such
spinlike electrons. However, electrons with opposite spins remain uncorrelated.
In particular, two electrons on the same MO have opposite spins, and hence they
are uncorrelated.

The correlation energy Ecorr of the system is determined as the difference
between the exact nonrelativistic value Eex and the Hartree–Fock limit EHF

Ecorr = Eex − EHF

The importance of correlation effects for any molecular system is beyond
doubt. Even in the case of small molecules it can be significant when impor-
tant chemical characteristics are calculated. For instance, for the HF molecule
(not to be confused with the HF method) the total energy calculated by the
SCF MO LCAO method equals −2722.65 eV, while the experimental value is
−2734.16 eV. At first sight the discrepancy is not very large, less than 1%. But if
we calculate the dissociation energy as the difference between the energy of the
whole molecule and the free atoms, we have (in eV) D = −2722.65 + 2718.54 =
−4.11, whereas the experimental value is −6.08 eV; the error is about 30%.
Examples for coordination compounds are discussed in Sections 6.3 and 6.4.

The development of methods for calculating correlation effects was one of
the most important and difficult problems of quantum chemistry [5.18, 5.19].
Presently there are several such methods well worked out. Most widespread are
different versions of configuration interaction (CI), the main idea of which is to
look for the full wavefunction of the system � in the form of a linear combi-
nation of the wavefunctions �k constructed after (5.45) for different electronic
configurations that have the same symmetry properties:

� =
∑

k

Ak�k (5.52)

where the coefficients Ak are determined by the variational principle (similar to
cμk in the MO LCAO method). The inclusion of excited configurations into the
search of the best fit to the real charge distribution in the system is certainly
very helpful, allowing one to improve the HF results significantly. However, in
practice the number of integrals and the size of determinants to be solved increase
rapidly with the number of configurations in the expansion (5.52).

In general, the number of possible excited configurations equals the number
of determinants of the form (5.45) that can be constructed from the basis set
functions of the system. For example, if for the water molecule with 10 electrons
one chooses a basis set of 14 AOs, which in the double-zeta approximation yield
28 orbitals in the LCAO, the number of possible configurations equals the number
of combinations of 28 in 10 that equals ∼1.3 × 107. With such a large number
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of excited configurations, the problem becomes extremely difficult. Fortunately,
there are several ways to reduce the number of configurations in the CI procedure,
based mostly on symmetry considerations. It is easily seen that only those excited
configurations �k contribute to the CIs that have the same symmetry as the
ground state. Indeed, since the Hamiltonian is totally symmetric, all its matrix
elements are zero if the two functions, ground and excited, belong to different
IrReps of the point group of the molecule (Section 3.4). For the example of the
water molecule of C2v symmetry with the ground state 1A1 described above,
the effective excited configurations must be of orbital A1 symmetry and have the
same number of α and β (spinup and spindown) spin–orbitals.

But even after the essential reduction in the number of possible excited con-
figurations by symmetry, it still remains too large to be manageable. Further
reductions should be based on the analysis of the possible role of different con-
figurations in order to make reasonable truncations of the expansion (5.52). The
convergence of the latter is also dependent on the basis set. A detailed study
of the problem [5.18, 5.19, 5.36] resulted in several versions of the CI method,
including the independent electron pair approximation (IEPA), single and double
CI (CISD), cluster expansion of the wavefunction, many-electron theory (MET),
coupled-pair many-electron theory (CPMET), coupled-electron pair approxima-
tion (CEPA), and coupled-cluster methods (see below).

One extension of the CI method is to include the expansion (5.52) into the
SCF MO LCAO scheme, that is, to vary the total energy with respect to cμk and
Ak simultaneously—in this case the method is called multiconfiguration SCF
(MC SCF). More sophisticated (and time-consuming) is the multireference CI
(MRCI), in which the configurations produced from the MCSFC states serve as
the components of the expansion (5.52). Another method widely used now is
complete active space SCF (CAS SCF), in which a full CI is included for a set
of orbitals chosen as “active.” Quite a number of works are devoted to the use of
approaches based on the many-body Rayleigh–Schrödinger perturbation theory
(MB-RSPT, or simply PT) often called Moeller–Plesset (MP) approximation;
MP2, MP3, . . . denote MP approximations of the second-, third-, and higher-order
perturbation theory. Table 5.6 summarizes different classes of ab initio methods of
electronic structure calculations [5.37]. Some of them are size-sensitive, meaning
that they scale as the exact energy with the number of particles in the system
[i.e., the energy EAB(R → ∞) = EA + EB , where A and B are two parts of the
bonded system AB and R is the distance between them [5.18, 5.19]].

Coupled-cluster methods (CCMs) are more recent developments that compete
with the CI methods. The idea of CCM is to include all electronic correlation
corrections to infinite order. The wavefunction is taken as

�cc = eT 	0 (5.53)
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TABLE 5.6. Summary of Basic Ab Initio Methods of Electronic Structure
Calculations

Method and
Denotation Choice of Variational � Characterization

Hartree–Fock (HF) One determinant built
from one-electron MO
ϕ(i)

Labor ∼n4; ϕ(i) adjusted
iteratively by the SCF
procedure; the method
is size extensive

Configuration
interaction (CI)

Many determinants
� = ∑

k Ak�k

Labor ∼n5 or greater,
method converges
slowly, not size
extensive

Multiconfiguration
SCF (MCSCF)

� is the same as in CI Both CI and ϕ(i)

optimized
simultaneously; not size
extensive, convergence
difficult

Multireference CI
(MRCI)

�k are produced from �

in MCSCF
Truncated, not size

extensive
Complete active

space SCF (CAS
SCF)

Special case of MCSCF All determinants (full CI)
within the chosen set of
“active” orbitals in the
MCSCF scheme; size
extensive, CI expansion
increases rapidly

Generalized valence
bond (GVB)

Special case of MCSCF VB functions
(combinations of
determinants) are used
in the CI; simplest case,
perfect pairing
(two-electron bonds)

Many-body
(Moller–Plesset)
perturbation theory
(MP2, MP3, etc.)

� same as in CI Ak is determined by
perturbation theory;
nonvariational, size
extensive

Coupled cluster
methods (CCD,
CCDS, CCDS,
IEPA, CEPA, etc.)

� same as in CI Ak determined by
exponential cluster
expansion;
nonvariational, size
extensive

Quantum Monte
Carlo (QMC)

Quantum simulation HF
or CI “guiding”
functions

Small systems; difficult
for excited states

Source: Adapted from Salahub and Zerner [5.37].
an denotes the number of atomic orbitals in the basis set.
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where 	0 is a Slater determinant (5.45) and T is the cluster operator:

T = T1 + T2 + T3 + · · · (5.54)

The Ti operators, for instance, for T1 and T2 are

T1	0 =
occ∑

i

vir∑

a

ca
i 	

a
i (5.55)

T2	0 =
occ∑

i<j

vir∑

a<b

cab
ij 	ab

ij (5.56)

where 	a
i and 	ab

ij are excited-state determinants in which, respectively, one-
electron and two-electron excitations are introduced (occ and vir denote occupied
and virtual states, respectively). Thus, by expanding the exponential function in
Eq. (5.53), we have

eT = 1 + T + 1
2T 2 + 1

6T 3 + · · · (5.57)

with T after (5.54)–(5.56).
By minimizing the total energy [calculated with the function (5.53)] with

respect to the coefficients ca
i , cab

ij , and so on (in addition to the LCAO coef-
ficients in the MOs in the 	 determinants), one can get accurate values of
energies and wavefunction (5.53). Obviously the expansions (5.54) and (5.57)
should be truncated; this leads to different versions of CCM: CCD, CCSD,
CCSD(T).

The ab initio methods of electronic structure calculations mentioned above
and their computer program implementations are also aimed at determining the
equilibrium geometry of the molecular systems [5.19]. The idea beyond such
geometry optimization is to calculate the electronic energy at different (fixed)
nuclear configurations and to find the minimum-energy one. The program starts
with a reasonable configuration and chooses the steep slope as the shortest way
to the minimum.

For all these methods there are commercial programs that perform in a user-
friendly manner; some of them can be downloaded from the Internet free of
charge. The most usable program packages are GAUSSIAN [5.38], GAMESS
(generalized atomic and molecular electronic structure system) [5.39], and MOL-
PRO [5.40]. Examples 5.2 and 5.4 and Problems 5.4, 5.5, and 5.7 show in detail
(step by step) how to perform ab initio calculations of electronic structure using
programs that can be downloaded for free from the Internet.
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EXAMPLE 5.2

Exercise: Ab Initio Calculation of CuF2 Using Hartree–Fock
and MP2 Methods

Install GAMESS (available free of charge from the Internet
(http://classic.chem.msu.su/gran/gamess/index.html) and
read the manuals carefully. In order to prepare the input deck for an
ab initio program, it is necessary to know a few basis facts about the
molecule to be calculated.

• Approximate Geometry of the Molecule or Possible Configura-
tions. In the case of CuF2, two reasonable geometries can be tried:
(1) linear F—Cu—F and (2) angular (bent) F—Cu—F. An approx-
imate initial value for the Cu—F distance can be obtained from
ionic radii: d(Cu—F) ≈ R(Cu2+) + R(F−) = 0.9 + 1.2 = 2.1 Å.

• Total spin (S) of the Molecule. Starting with the assumption that
CuF2 is an ionic molecule, one finds that fluorine is a closed-shell
ion with S = 0 and Cu2+ is d9 ion with one unpaired electron so
the total spin of CuF2 is S = 1

2 .
• An Adequate Basis Set to Represent the Wavefunction. This is an

advanced topic so we can just use a common basis set, 6-31G*.

With these data we perform an initial run for a fixed geometry (usu-
ally called single-point in the literature) in the linear configuration
using the simplest Hartree–Fock method. An appropriate input deck
for GAMESS is given below:

$CONTRL SCFTYP=UHF RUNTYP=ENERGY UNITS=ANGS

ICHARG=0 MULT=2 $END
$SYSTEM TIMLIM=600 MEMORY=200000 $END
$SCF DIRSCF=.True. $END
$GUESS GUESS=HUCKEL $END
$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
$DATA
SP UHF/6-31G* Calculation of CuF2 - Linear
Dnh 4

COPPER 29.0 0.0 0.0 0.0
FLUORINE 9.0 0.0 0.0 1.2
$END
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In the input above the 6-31G basis is introduced by the keywords GBA-
SIS=N31 NGAUSS=6 while the extra polarization function that needs to
be added to make it 6-31G* is given by NDFUNC=1. Also note that the
type of calculation is unrestricted Hartree–Fock (SCFTYP=UHF) because
the system is not a spin singlet. Another important point is that very
few ab initio programs handle full-symmetry groups and are usually
restricted to Abelian symmetry. In GAMESS all linear molecules are
treated using D4h or C4v symmetry groups (this does not damage the
results). Also, many ab initio programs (GAMESS included) suppose
that the density matrix is totally symmetric, and as a consequence of
this restriction some problems can arise from calculating degenerate
electronic states.

Read carefully the output of the program and ascertain the symmetry
of the ground electronic state. Since the unpaired orbital is in an A1g

orbital (remember that GAMESS uses D4h symmetry), the label for the
ground state of CuF2 is 2 ∑

g . This state is not degenerate, and we can
expect the program to run the calculations without difficulty.

Now it is time to calculate the equilibrium metal–ligand distance.
Using the previous input deck change RUNTYP=OPTIMIZE and MEM-
ORY=280000, run the calculation and find the metal–ligand distance.
The solution is R = 1.713 Å.

Next check whether the molecule is linear or angular. In order to do
so, write an input deck to optimize the angular configuration. Change
the DATA block in the UHF (unrestricted Hartree–Fock) geometry opti-
mization input to

$DATA
UHF/6-31G* optimization of CuF2 - Angular
Cnv 2

COPPER 29.0 0.0 0.0 0.0
FLUORINE 9.0 1.4 0.0 1.4
$END

In this input an initial angle of 90◦ has been introduced. Run the
program and find the final geometry. The calculation should converge
back to the linear configuration minimum.

In order to check the geometry, we perform MP2 calculations, which
are much more accurate than the Hartree–Fock ones. This is done by
adding the keyword MPLEVL=2 in the CONTRL section. The GAMESS
program cannot calculate the gradients of unrestricted MP2 calculations,
so we have to significantly modify our input to include non-gradient-
geometry optimization. Check the manual to see how this is done and
write the input deck. A possible solution is
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$CONTRL SCFTYP=UHF MPLEVL=2 RUNTYP=TRUDGE UNITS=ANGS

ICHARG=0 MULT=2 COORD=HINT $END

$SYSTEM TIMLIM=600 MEMORY=280000 $END

$SCF DIRSCF=.True. $END

$GUESS GUESS=HUCKEL $END

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END

$DATA

Nongradient UMP2/6-31G* optimization of CuF2 -
Angular

Cnv 2

COPPER 29.0 LC 0.0 0.0 0.0 - 0 K

FLUORINE 9.0 PCC 1.7 45.0 0.0 + 0 K I

$END
$TRUDGE OPTMIZ=GEOMETRY NPAR=2 IEX(1)=21,22 $END

After running the calculation (which takes considerably longer than
previous times), we finally obtain the metal–ligand distance as 1.693 Å
and confirmation that the molecule is linear. Now, we can compare
the total energy between UMP2 and UHF calculations in their respec-
tive minima. They are, respectively, −1838.19505 and −1837.38058
hartrees. The lower energy is an indication of more accurate results.

5.4. SEMIQUANTITATIVE APPROACHES

Calculation of electronic structure of than those described in Example 5.1 by
ab initio SCF MO more complex coordination compounds, LCAO methods is
not a routine procedure yet for chemists who are not experts in this particular
field. Each such calculation is in part a creative piece of work that requires from
the researcher expert and intuitive knowledge of how to choose the method of
calculation, the basis set, the iterative and CI procedures, the output, and so on,
and to evaluate the meaning of the results. In addition, it requires considerable
computer time, and is thus expensive, not to mention unmanageable for large
molecules. Therefore there is a strong demand for simplifications of the methods
of calculation to make them most accessible.
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As mentioned above, the SCF version of the MO LCAO method, when carried
out directly, is called ab initio, or nonempirical in the sense that it is not based
on any assumptions about the parameters of the molecule except the nuclear
charges and number of electrons (see Examples 5.2 and 5.4). This statement is not
absolutely true because the calculation procedure is never purely mathematical;
it requires a great deal of experience, knowledge of chemistry, and intuition. So
far for coordination compounds, including heavy-metal atoms and polyatomic
ligands, simplifications have been and are almost absolutely necessary. Some of
them can be introduced without using empirical parameters, thus not violating
very much the nonempirical character of the calculations. In these cases the
method may be called semiquantitative.

An illustrative example of semiquantitative approaches aimed at transition
metal systems is provided by the Fenske–Hall method [5.41], which employs
some approximate presentation of the matrix elements of the effective Hamilto-
nian in the SCF MO LCAO method; it essentially simplifies the calculations
without introducing empirical parameters. In the Fenske–Hall approximation
these matrix elements are

Hii = εA
i −

∑

μ �=A

e2(Zμ − qμ)

RAμ

HAB
ij = (εA

i + εB
j )SAB

ij − Tij − 1
2e2SAB

ij

∑

μ �=A,B

(
Zμ − qμ

RAμ

+ Zμ − qμ

RBμ

)

(5.58)

HAA
ij = 0

where εA
i is the atomic orbital energy, RAμ is the distance from the CA to the

atom μ with the effective charge Z∗
μ = Zμ − qμ, Zμ is the nuclear charge, qμ

is the electronic charge on the atomic center (5.20), qμ = ∑
i,ν qiciμciνSμν , and

Sμν is the overlap integral.
With the matrix elements (5.58) the HFR procedure of the MO LCAO method

of calculation of the electronic structure is essentially simplified; instead of
the matrix elements (5.48) including one-, two-, three- and four-center inte-
grals (whose number is ∼n4), mainly one-center (in εi), overlap (Sij ), and
kinetic energy integrals, as well as Mulliken charges (5.20) should be calculated.
Unlike other methods that give similar simplicity (see below), the Fenske–Hall
method does not involve any adjustable or empirical parameters, except the
interatomic distances that are chosen in an nonarbitrary fashion. However, in
general this approach is not rigorously founded, making the results of calculations
with Eqs. (5.58) less credible than those obtained by ab initio and semiempir-
ical methods. For examples of calculations using the Fenske–Hall method, see
Section 11.3.
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Pseudopotentials or Effective Core Potentials (ECPs)

Among the semiquantitative methods of electronic structure calculations, the
ones that use pseudopotentials are most widespread. To avoid all-electron calcu-
lations, various approximations were suggested, aimed at excluding the inner
electrons. We present here one of the suggestions [5.42] that proved to be
useful.

The idea in general is to assume that the inner electrons do not participate
directly in the chemical bonding and hence can be accounted for in a simpler way
as a source of a special potential for the outer (valence) electrons (in semiempir-
ical methods it is assumed that the inner closed-shell electrons, together with the
nucleus, form an effective nuclear charge). Provided that we know this potential
exactly, the all-electron problem becomes a valence-electron problem, essentially
simplifying the calculations. This potential is often called pseudopotential ; in Ref.
5.42 it is termed effective core potential (ECP), or relativistic ECP (RECP) (when
relativistic effects are included). ECP should be constructed in such a manner
that it preserves all the features of interactions between the valence electrons and
the core, at least in the valence area where chemical bonding is important. The
procedure for doing this is as follows.

The electrons of the transition metal atom are divided into valence and
core electrons. The core in the first-series transition elements is formed by
the electrons with the Ar-like shell: [. . . 3s23p6] = [Ar]. For the second
series they are [. . . 3d104s24p6] = [Kr], while for the third one the core is
[. . . 4d105s25p64f 14] = [Xe · 4f 14] with the exception of the La group, where
the [Xe] core only is replaced by pseudopotentials. In some cases the outermost
orbitals (ns)2(np)6 cannot be replaced by ECP and should be treated on an equal
footing with the valence nd , (n+1)s, and (n+1)p electrons [5.42].

Each core electron with the angular momentum quantum number l creates an
effective potential Ul for the valence electrons; the summary potential of the core
electrons is

U(r) = UL(r) +
L−1∑

l=0

[Ul(r) − UL(r)]P ∗
l (5.59)

where L is a unity greater than the highest l of any core orbital and P ∗
l is the

so-called core projection operator:

P ∗
l = |l > < l| (5.60)

where |l > = 	l (< l| = 	∗
l ) is an exact (relativistic or nonrelativistic)

Hartree–Fock atomic function. Actually P ∗
l means that in the equation for the

valence electron wavefunction, for instance, |l′ >, the sum in the term emerging
from the pseudopotential U , contains the expression 〈l|l′〉, due to which only
those terms of U remain effective, for which the wavefunction |l > is not
orthogonal to |l′ >.
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To obtain the effective potential Ul , a pseudo-Hartree–Fock function 	
p

l is
introduced. It is assumed that 	

p

l follows 	l as close as possible in the outer
(valence) region of the atom, and that it is nodeless and smoothly going to zero
inside the atom. More precisely, 	

p

l = 	l in the region of re > rc, where rc is
near to the outermost maximum of 	l , while 	p = rbf (r) inside this region;
f (r) is a fifth-degree polynomial and b = l + 3 (in the relativistic case b is taken
somewhat differently [5.42]). The coefficients of the polynomial are determined
to satisfy the conditions of continuity, normalization, nodelessness, and so on.

Now, the potential Ul is obtained from the condition that, if inserted in the
one-electron Hartree–Fock equation, it yields the pseudofunction 	

p

l with
the same energy εl . This means that Ul(r) obeys the one-electron equation
for the atomic radial wavefunction [5.43]:

[

−1

2

d2

dr2
+ l(l + 1)

2r2
− Z

r
+ Ul(r) + Vval(r)

]

	
p

l = εl	
p

l (5.61)

where Vval(r) is the Hartree–Fock (Coulomb and exchange) interaction of the l

electron with the valence electrons. If we relate this equation to that for the exact
Hartree–Fock atomic orbital 	l , we can extract the expression for Ul sought for:

Ul(r) = εl − l(l + 1)

2r2
+ Z

r
+ (	

p

l )′′

2	l

− Vval	
p

l

	l

(5.62)

Thus, to evaluate the one-electron ECP, the atomic Hartree–Fock one-electron
functions 	l and energies εl , as well as the pseudoorbitals 	

p

l after Eq. (5.61)
and their second derivatives (	

p

l )′′ should be calculated first.
Similar to basis wavefunctions (Section 5.3), the ECPs obtained by Eq. (5.62)

are conveniently presented in the form of a sum of Gaussian functions with
tabulated coefficients for all the important atoms up to Hg for both nonrelativistic
and relativistic cases [5.42]. The latter are obtained from similar equations that
include relativistic terms.

The pseudopotentials are thus generated from atomic data by adjustment to
orbital energies and orbital densities. Another version of ECP can be obtained by
adjustment to experimental data, for instance, to excitation and ionization energies
[5.44]. This version of pseudopotentials has some advantages—the experimental
data incorporate all the additional interactions not factored into the (necessarily
approximate) calculations (e.g., relativistic and core–valence correlation effects).
Calculations involving pseudopotentials are shown in Example 5.4.

Density-Functional Approaches

Widely used methods of electronic structure calculations employ the density-
functional theory (DFT) [5.45].

Modern DFT methods are based on the Hohenberg–Kohn (HK) theorem
[5.46], which proves that there is a one-to-one correspondence between the
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electronic density ρ(�r) of the ground state and the potential V (r, Q) (which
includes electron–nucleus and nucleus–nucleus interactions) under the assump-
tion that V (r, Q) can be considered as an external potential to the electronic
subsystem (see below). The definition of the electronic density is given by
Eqs. (5.13) and (5.14), while the operator V (r, Q) (r and Q denote all the elec-
tronic and nuclear coordinates, respectively) is described in (7.3′) [see also (1.5)];
the nucleus–nucleus interaction does not affect the electronic densities directly
and may be excluded from the major part of the consideration below.

The ρ(�r) ⇔ V (r, Q) correspondence means that there is also a direct corre-
spondence between ρ(�r) and the energy and wavefunction of the system because
the latter are defined by the Hamiltonian, which is a function of V (r, Q) and the
number of electrons n [n also enters in ρ(�r) by normalization; see Eq. (5.14)].
The density ρ(�r) is a function of three space coordinates and spin, whereas the
wavefunctions depend on 3n coordinates and spin. Therefore it is very attractive
(much simpler) to describe the system by electron densities instead of wavefunc-
tions. Unfortunately, the HK theorem [5.46], as well as the consequent extensions
[5.47], are just “theorems of existence” that give no recipes on how to find the
explicit expression for the dependence of ρ(�r) on V , or the energy E on ρ(�r).

Since ρ(�r) is a function, the dependence of E on ρ(�r) is a functional (a
function of a function) denoted as E[ρ]. The expression for the ground-state
energy E0 via this functional is straightforward:

E0 = E[ρ] = F [ρ] +
∫

V (r, Q)ρ(�r)∂τ (5.63)

where F [ρ] is a “universal” functional in the sense that it does not depend on
V , so it has the same form for all the systems

F [ρ] =
∫

�∗(T + U)�∂τ = T [ρ] + U [ρ] (5.64)

where T and U are the operators of, respectively, the kinetic and potential
energies in the electronic subsystem; the latter includes both electrostatic and
exchange interactions between the electrons. In the second term of (5.64) the
nuclear coordinates are assumed to be constants, and hence the nucleus–nucleus
interactions, as mentioned above, may be excluded from further consideration.

The density ρ(�r) was shown [5.47] to follow the variational principle, namely,
that the true function ρ(�r) minimizes the functional E[ρ]. But we are unable to
perform this minimization procedure in order to get ρ(�r) because we don’t know
the universal functional F [ρ], namely, how the kinetic energy in (5.64) and the
exchange energy in U depend on ρ(�r).

The next, more practical, step in realization of the DFT ideas was reached
in the Kohn–Sham (KS) equations [5.48]. Consider an artificial system with n

noninteracting electrons , each of which can be described by an orbital ϕi(�r) that
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is a solution of a simple one-electron Hartree-type equation (2.49) (Section 2.2):

[−�
2

2μ
� + V

(i)
KS(�r) − εi

]

ϕi(�r) = 0 (5.65)

where VKS(�r) is a local potential chosen in such a way that the density resulting
from the summation of the one-electron densities equals exactly the ground-state
density of the real system ρ0(�r):

ρKS(�r) =
n∑

i=1

|ϕi(�r)|2 = ρ0(�r) (5.66)

The full wavefunction of the system is a Slater determinant (5.45) of ϕi(�r) terms.
It was shown that such a noninteracting system that follows Eqs. (5.65) and

(5.66) exists if the potential VKS(�r) is taken as follows:

VKS(�r) =
∫

ρ(�r ′)
|�r − �r ′|∂τ + VXC(�r) −

∑

α

eZα

| �Rα − �r| (5.67)

The first term in this expression represents the electrostatic interaction of the
electron with all the other ones (including interaction with self), and the last
term represents the electron–nuclei interaction, while the term VXC(�r), called the
exchange–correlation potential is assumed to include all the other interactions
in the system, first the exchange interaction and correlation effects , as well
as the compensation for the inaccuracies introduced by the presentation of the
real system by the artificial model of noninteracting electrons, and for the self-
interaction in the first term.

So far no approximations have been involved in derivation of the KS equations
(5.66) and (5.67); hence, provided that the exchange–correlation potential VXC(�r)
as a functional of ρ(�r) is known (which is not the case!), we can relatively easily
get the KS one-electron orbitals ϕi(�r) and their energies εi from Eq. (5.65), as
well as the total energy [5.19]. The full wavefunction of the system is a Slater
determinant (5.45) of ϕi(�r) values.

The KS equations are quite similar to the Hartree equation (2.49) and can be
solved using a similar self-consistent approach (Section 2.2). For the multicenter
molecular system the orbitals ϕi(�r) can be sought for as a linear combination
of atomic orbitals symmetrized to satisfy the initial conditions of the problem
(see below), quite similar to the MO LCAO approach discussed in Sections 5.1
and 5.3 with the LCAO coefficients determined from the minimum-energy condi-
tion. With the first guess of ϕi(�r), one can calculate the approximate KS density
and the potential VKS(�r) using, respectively, Eqs. (5.66) and (5.67). With this
potential, new, more accurate orbitals ϕi(�r) can be obtained from Eq. (5.60) to
be used for the next iteration, and so on, until the newly obtained orbitals and
energies coincide with the previous ones within a given tolerance. The simplicity
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of this procedure as compared to the much more complicated ones in the wave-
function presentation is the most attractive feature of the DFT methods. It allows
for calculation of electronic structure of relatively large molecular systems and
crystals.

However, there are several major shortcomings of this approach that compli-
cate its application. First, the exchange–correlation potential VXC(�r) is unknown,
and there are no theoretical clues to its accurate evaluation. The choice of VXC(�r)
is therefore necessarily approximate and may essentially reduce the accuracy of
the results. Below we discuss suggestions for this potential. But even if the func-
tion VXC(�r) is known exactly (which is never the case), the physical meaning of
the KS orbitals ϕi(�r) and the orbital energies εi obtained for the artificial non-
interacting system and their relation to the real system remains unclear. Without
rigorous proof, some authors suggest that the KS orbitals approximately (quali-
tatively) reflect the situation in the real system, and there are at least two issues
to indirectly support this point of view: (1) the sum of the orbital densities after
Eq. (5.66) equals the density of the real system, and (2) the energy of the high-
est occupied orbital εmax equals the ionization potentials with the opposite sign.
Although the KS orbitals cannot compete in accuracy and physical meaning with
wavefunctions obtained in high-level correlated ab initio calculations, they are
better than the HF ones that ignore correlation effects.

Other difficulties in DFT methods are related to spin multiplicity, excited
states, and electronic degeneracy, all of which are most relevant to transition
metal compounds considered in this book. The spin multiplicity and the excited-
state symmetry can be predetermined by means of choosing appropriate spins
and symmetries of the KS orbitals. In particular, in the unrestricted Kohn–Sham
(UKS) approach (similar to the unrestricted HF approach), the total density (5.61)
can be presented as a sum of two densities for electrons with the spinup ρα(�r)
and spindown ρβ(�r), respectively, choosing the number of electrons in these
two groups to result in the required total spin and performing the procedure of
self-consistency separately for each group with different exchange–correlation
potentials V α

XC(�r) and V
β

XC(�r) (see below). Note that in this scheme the multi-
plicity is taken into account because of the KS approximation; in the rigorous
DFT this is not possible because the electron density does not depend on the total
spin [5.49]. Also, certain spin states cannot be accounted for with KS orbitals.
Similarly, by choosing the ϕi(�r) orbitals as transforming after corresponding
IrReps of the symmetry group of the system, one can enforce the DFT mini-
mization procedure to lead to the lowest state with a given symmetry that may
be an excited state, provided that its symmetry is different from the ground-state
one; excited states with the same symmetry as the ground state cannot be obtained
in this way.

More difficulties emerge in application of DFT methods to degenerate and
pseudodegenerate states [5.50]. From the very onset DFT assumes that the nuclei
are fixed, and this allows one to consider their influence on the electronic system
as an external potential. Although the nuclei are never fixed, in many cases their
motions are limited to small vibrations, and in these cases the DFT assumption



SEMIQUANTITATIVE APPROACHES 175

seems to be a reasonable approximation (still the nuclear motions introduce some
inaccuracy even in these cases). However, for degenerate and pseudodegenerate
states (Chapter 7), the approach of fixed nuclei is unacceptable, in principle,
and the DFT assumption does not hold [5.50]. Indeed, in these cases the adia-
batic approximation is invalid (Section 7.1), the electronic and nuclear motions
are not separable, and there is no way to present the electron–nucleus interac-
tion as an external potential to the electronic subsystem. Attempts to formulate
the HK theorem by presenting the total density as a product of electronic and
nuclear densities [5.51] does not solve the problem because, for orbital degener-
ate states, the wavefunction cannot be presented as a product of the electronic and
nuclear wavefunctions (their densities cannot be separated). In the wavefunction
presentation the special coupling between the electronic and nuclear motions is
considered in the system of coupled equations (7.6); the latter cannot be evaluated
in the DFT because the coupling between different electronic states expressed by
off-diagonal elements cannot be calculated in the density presentation.

For nondegenerate states that are well separated from the other electronic
states, the KS approximation to DFT yields reasonably good results for energies
and charge distributions (densities) with much less effort than in the conven-
tional MO LCAO methods with CI (Section 5.3), provided that we know the
exchange–correlation potential VXC(�r). As mentioned above, the form of this
potential is unknown (and, strictly speaking, not rigorously defined). In what
follows it is shown how this potential has been approximately modeled.

First, it is convenient to present it as a derivative of the exchange–correlation
energy EXC[ρ], which is a functional of the electron density: VXC(�r) =
∂EXC[ρ]/∂ρ. The physical guess is that the main parts of EXC[ρ] are the
exchange EX and correlation EC energies with the former predominant. The first
choices for the expressions of these energies in electron density approaches can
be traced back to the Thomas–Fermi–Dirac (TFD) method applied to atomic
and solid-state calculations [5.52]. The TFD method is based on the assumption
that the electronic subsystem can be considered as a uniform electron gas
moving on a positive background of nuclei, so the electron density is constant
everywhere and equal to n/V , where V is the volume of the system.

For this model it is relatively easy to estimate the exchange and correlation
energies (see below). One can approximately visualize constant electron density
in an idealized crystal lattice with fixed nuclei and totally free electrons; less
physical is the assumption of a uniform electron gas in atoms, and it is hardly
acceptable for molecules. In further development of the TFD approach Slater et al.
[5.53–5.55] suggested to separate the molecular system into congruent spheres
around the atoms in the molecule, assuming different densities inside and outside
these spheres, and sewing the in-sphere solutions at the borders between them
for continuity. In view of the modern achievements this simple approach (termed
Xα methods) is no more widely used, but the simple idea of constant density
is incorporated in the modern DFT methods as the local density approximation
(LDA). For a variety of Xα methods, see Refs. 5.54–5.58, including relativistic
versions [5.58].
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In the LDA the exchange–correlation energy is presented as

ELDA
XC [ρ] =

∫

ρ(�r)εXC[ρ(�r)]∂τ (5.68)

where εXC[ρ(�r)] is the exchange–correlation potential of a uniform electron gas
of density ρ(�r) per particle, weighted in Eq. (5.63) with the probability of finding
the electron at point �r , which is equal to ρ(�r). In LDA εXC[ρ(�r)] is presented
approximately as a sum of exchange and correlation potentials, εXC[ρ(�r)] =
εX[ρ(�r)] + εC[ρ(�r)] , and the exchange part is taken as in the TFD model [5.53]:

εX[ρ(�r)] = −3

4

[
3ρ(�r)

π

]1/3

(5.69)

With this simple exchange potential of a uniform electron gas εXC[ρ(�r)], the
correlation part in εC[ρ(�r)] can be evaluated numerically, and then conveniently
parameterized and introduced in computer programs. In the UKS approach,
mentioned above, the exchange–correlation energy should contain explicitly the
densities ρα(�r) and ρβ(�r) for both spinup and spindown electrons, respectively:

ELDA
XC [ρα, ρβ ] =

∫

ρ(�r)εXC[ρα(�r), ρβ(�r)]∂τ (5.70)

In the LDA this method is then termed local spin density approximation (LSD).
If ρα �= ρβ , there is a nonzero total spin and the state is called spin-polarized .
The spin polarization parameter is defined as

ξ = ρα(�r) − ρβ(�r)
ρ(�r) (5.71)

It changes from zero (nonpolarized state) to one (fully polarized state) when all
the electrons have the same spin.

The LDA seems to be a rough approximation as it is difficult to imagine
that the electrons form a uniform gas assumed in the computation of the
exchange–correlation potential. Nevertheless, it turns out that for many
molecular problems the results obtained by LDA, and especially by LSD, are
comparable to or better than those obtained by HF calculations. This is due
to the fact that, although LDA employs a simplified exchange potential (5.69),
it includes correlation effects that are fully ignored in the HF approximation.
However, for such problems as bonding energies and reaction barriers, both HF
and LDA are grossly inaccurate.

In further development of DFT methods, attempts were made to expand the
presentation of the exchange–correlation energy by including terms that consider
the variation in electron density along the molecule. This has been done in the
gradient expansion approximation (GEA) or in the more advanced generalized
gradient approximation ( GGA) by including gradients of the density ∇ρ in the
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exchange–correlation potential. In the GGA the latter is taken as

EGGA
XC [ρα, ρβ] =

∫

f (ρα, ρβ,∇ρα, ∇ρβ]∂τ (5.72)

By separating the exchange and correlation energies, EGGA
XC = EGGA

X + EGGA
C ,

this leads to the following expression for the exchange potential:

EGGA
X = ELDA

X −
∑

α,β

∫

F(sα,β)ρ
4/3
α,β (�r)∂τ (5.73)

with

sα,β(�r) = |∇ρα,β(�r)|
ρ

4/3
α,β (�r)

(5.74)

and different functions F(s) for different functionals. For instance, for the so-
called Becke functional [5.59]

F(s) = as2

1 + 6as(sinh−1 s)
(5.75)

while for the Perdew functional [5.60]

F(s) = (1 + 1.29s2 + 14s4 + 0.2s6) (5.76)

with another function s(r):

s(�r) = |∇ρ(�r)|
(24π)1/3ρ4/3(�r)

Many other functionals are used in DFT methods [5.19, 5.45]. In particular,
the so-called LYP functional introduced by Lee, Yang, and Parr [5.61] is very
popular, often used in combination with the Becke potential described above (the
BLYP or B3LYP potential). Distinguished from the other potentials, the LYP one
is not based on the uniform electron gas model; instead, it is derived from an
expression for the correlation energy in the helium atom. This potential contains
one empirical parameter.

It was also shown that time-domain DFT (TDDFT) [5.62], similar to the time-
dependent Schrödinger equation (1.3), can handle optical (and other) transition
probabilities in spectroscopy.

The most usable functionals are implemented in ready-made DFT programs
for electronic structure calculations: ADF [5.63], Ab-init [5.64] (for solids),
Siesta [5.65], or as a part of the software mentioned earlier such as Gaussian
[5.38], GAMESS [5.39], and MOLPRO [5.40]. Example 5.3 and Problem
5.6 show in detail, step-by-step, how to use these programs to perform DFT
calculations of specific TMS.
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EXAMPLE 5.3

Exercise: Calculation of ZnCl2 by the DFT Method

Download and install Firefly (formerly PC-GAMESS) free of charge
from the URL http://classic.chem.msu.su/gran/gamess/
index.html and read the manuals carefully. In order to prepare the
input file, it is necessary to know a few basic facts about the molecule
to be calculated:

• Approximate Geometry of the Molecule and Possible Configura-
tions. In the case of ZnCl2, two reasonable geometries can be tried:
(1) linear Cl—Zn—Cl and (2) angular (bent) Cl—Zn—Cl. An
approximate initial value for the Zn—Cl distance can be obtained
from ionic radii: d(Zn—Cl) ≈ R(Zn2+) + R(Cl−) = 0.7 + 1.8 =
2.5 Å.

• Total Spin (S) of the Molecule. Starting with the assumption that
ZnCl2 is an ionic molecule, one finds that both Cl− and Zn2+ are
closed-shell ions, so the total spin of ZnCl2 is S = 0.

• An Adequate Computational Model (i.e., a Combination of Method
and Basis Set). This is an advanced topic. As a demonstration,
here we use the B3LYP hybrid density functional and relativistic
effective core potential (RECP) double-zeta basis set SBKJC.

With these data we perform an initial run for a fixed geometry
(usually called single-point calculation in the literature) in the linear
configuration using the DFT method. An appropriate input deck for
Firefly is given below:

--- ZnCl2: B3LYP/SBKJC-ECP
$CONTRL SCFTYP=RHF DFTTYP=B3LYP ICHARG=0 MULT=1

ECP=SBKJC RUNTYP=ENERGY MAXIT=100
$END
$SYSTEM TIMLIM=2000 MWORDS=20 $END
$GUESS GUESS=HUCKEL $END
$BASIS GBASIS=SBKJC $END

$DATA
--- ZnCl2: linear ---
Dnh 4

Zn 30.0 0.0 0.0 0.0
Cl 17.0 0.0 0.0 2.5
$END
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(Note: there should be at least one space before each $.)
In the input above the SBKJC basis is introduced by the keywords

ECP=SBKJC (RECP part) and GBASIS=SBKJC (basis part). The type of
calculation is restricted (SCFTYP=RHF) because the system is a closed-
shell one. The functional is defined by DFTTYP=B3LYP. Another impor-
tant point is that very few ab initio programs handle full-symmetry
groups and are usually restricted to Abelian symmetry. In Firefly all
linear molecules are treated using D4h or C4v symmetry groups (this
does not deteriorate the results).

Read carefully the output of the program and find the symmetry
of the ground electronic state. Since the molecule is closed-shell, the
label for the calculated ground state of ZnCl2 is 1 ∑+

g . The calculated
energy is −256.020520800 hartrees. It may somewhat differ from the
B3LYP/SBKJC results by other programs. There are two reasons for
this discrepancy:

• In some of the programs, the local correlation part of B3LYP
is defined by VWN5 instead of VWN3. To use VWN5 in
Firefly, please define $DFT B3LYP=GAMESS $END in the input
above.

• Cartesian basis functions are used by default. To use spherical basis
functions, just insert D5=.TRUE. into the $CONTRL namelist.

Now it is time to calculate the equilibrium metal–ligand distance.
Use the previous input deck but replace RUNTYP=ENERGY by
RUNTYP=OPTIMIZE. Run the calculation and find the metal–ligand
distance (you can search the phrase EQUILIBRIUM GEOMETRY
LOCATED). The solution is R = 2.132 Å.

Next, we have to check whether the molecule is linear or angular.
To do so, we write an input deck to optimize the angular configura-
tion. Change the DATA block in the geometry optimization input given
above to

$DATA
--- ZnCl2: bent ---
Cnv 2

Zn 30.0 0.0 0.0 0.0
Cl 17.0 0.0 1.7 1.7
$END

In this input an initial angle of 90◦ has been introduced. Run the
program and find the final geometry. The calculation should converge
back to the linear configuration minimum.
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EXAMPLE 5.4

Exercise: Ab initio Calculation of the Electronic Structure of MnO4
−

Square-Planar, Tetrahedral, and Square-Based Pyramidal Configurations

Download the programs from packages GAMESS (free of charge) or
MOLPRO (trial version for one month free) aimed at electronic structure
calculation and geometry optimization of molecular systems, and read
the manuals. We perform here ab initio calculations of the ground state
energies, wavefunctions, and equilibrium geometry (interatomic dis-
tances and angles) of MnO4

− in square-planar, square-base pyramidal,
and tetrahedral configurations in a simple, Hartree–Fock approximation
with the basis set lanl2dz. For similar calculations in other approxima-
tions see Problems 5.4–5.7.

The inputs for performing the requested tasks using MOLPRO are
given below (they are similar in different programs). The input is built
employing the following steps.

• Geometry. In order to input the geometry with adequate constraints
for each case (square, tetrahedron, and pyramid) it is necessary to
use a z-matrix. The z-matrix format (http://en.wikipedia.
org/wiki/Z-matrix (chemistry), http://chemistry.umeche.
maine.edu/Modeling/GGZmat.html) allows us to introduce
the geometry of the molecule without defining its position or
orientation in space, which does not influence its internal energy
in vacuum. The logic behind the z-matrix of each particular case
is as follows:

• Square-planar geometry. Mn is placed first and then the oxygens
are placed in turn. The first oxygen only requires the input of the
metal–ligand distance (rml); the second one has the same (rml)
and the O—Mn—O angle of 90◦. The third and fourth oxygens
are placed accordingly. In order to obtain a planar configuration,
a dihedral angle of 0◦ or 180◦ for these ions is then used.

• Tetrahedral geometry. As in the previous case, Mn is placed first
and then all oxygens are placed at the metal ligand distance (rml).
For the first oxygen ion only the metal-ligand distance is needed.
The other three will form a O—Mn—O angle (tang) with this
oxygen equal to the tetrahedral angle, 109.471◦. For the second
oxygen only rml and tang are needed, while the third and fourth
require dihedral angles (Mn–O1–O2–(O3, O4)) equal to +120◦

and −120◦, respectively.
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• Pyramidal geometry. For this geometry configuration it is conve-
nient to define a dummy atom , as a reference point that does not
affect the calculation in any other way. First we place the dummy
atom with the Mn one at an arbitrary distance to it (rdummy).
Then we place all oxygens forming a dummy–Mn–O angle (ang)
that will be optimized during calculation and at a particular metal-
ligand distance (rml). The dihedral atoms (dummy–Mn–Ox–Oy)
will usually be +90◦, −90◦ or 180◦ depending on our particular
definition.

We should properly define all the equivalent geometrical parameters
(such as, the metal ligand distance) because this will be important in
the performance of geometry optimization.

The next step is to include the basis set. Usually, ab initio programs
internally store the most usable basis sets, but this is not always the
case (e.g., MOLPRO does not have the Mn atom for the 6-31G* basis
set). For these cases the basis set can be retrieved from original papers
or data bases on the internet (e.g., https://bse.pnl.gov/bse/
portal).

It is then necessary to define the method of calculation and the
assumed electronic state for the molecule. Check the manual of the
program and include the method of calculation in the input. Different
programs use different methods to define the electronic state of the
molecule. In many cases only the total charge of the molecule and the
spin multiplicity are needed (GAUSSIAN, GAMESS), while in other
cases it is necessary to enter the number of electrons, the symmetry
of the electronic state, and the total spin (MOLPRO). Depending on
the program you are using, enter these quantities in the proper format.
When counting the number of electrons in MOLPRO take into account
that the lanl2dz basis has a pseudopotential describing the core elec-
trons; as a consequence, the Mn atom simulated in this basis set has
fewer electrons than the real atom.

Finally, we should request that the program perform geometry
optimization, that is to say, the program must look for the minimum
energy under the geometry constraints of the input assumed in
this problem. In a more general formulation, it is not necessary
to input these geometry constraints and allow the program to find
the global minimum of the APES (this requires longer computer
time). From the results of the calculations below, the geometry
optimization without constraint is expected to yield the pyramidal
configuration.
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Input, square-planar geometry:

***,MnO_4 ˆ -, HF/lanl2dz square planar
ro=1.52 Angstrom; ! the initial metal ligand distance
rdummy=1; ! this is an arbitrary number
ang=90.0; ! O-Mn-O angle
died=90.;

geometry={Q1;
Mn,Q1,rdummy;
O1,Mn,rml,Q1,ang;
O2,Mn,rml,Q1,ang,O1,died;
O3,Mn,rml,Q1,ang,O1,-died;
O4,Mn,rml,Q1,ang,O2,died}

basis=lanl2dz; ! definition of the basis set
{rhf; ! the method employed for calculation
wf,46,1,0} ! the state definition, number of electrons

! (in lanl2dz there are less
electrons than in the real atom)

! irreducible representation of the
wavefunction

! Ag (closed shell) and S=0
{optg; ! geometry optimization
active,rml} ! only varies metal ligand and angle

Input, tetrahedral geometry:

***,MnO_4^-, HF/lanl2dz tetrahedral
rml=1.80 Angstrom; ! the initial metal ligand distance
tang=109.471; ! the tetrahedral
angle died=120.;
geometry={Mn;

O1,Mn,rml;
O2,Mn,rml,O1,tang;
O3,Mn,rml,O1,tang,O2,died;
O4,Mn,rml,O1,tang,O2,-died}

basis=lanl2dz;
{rhf; ! the method employed for calculation
wf,46,1,0} ! the state definition, number of electrons

! (in lanl2dz there are less
electrons than in the real atom)

! irreducible representation
of the wavefunction

! Ag (closed shell) and S=0
{optg; ! geometry optimization
active,rml} ! only varies metal ligand and angle
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Input, square-base pyramidal geometry:

***,MnO_4^-, HF/lanl2dz pyramidal
rml=1.84 Angstrom; ! the initial metal ligand

distance
rdummy=1; ! this is an arbitrary number
ang=130.0; ! the initial rdummy-Mn-O angle
died=90.; ! required to form a square-based pyramid
geometry={Q1; ! dummy atom, useful to

generate the geometry
Mn,Q1,rdummy;
O1,Mn,rml,Q1,ang;
O2,Mn,rml,Q1,ang,O1,died;
O3,Mn,rml,Q1,ang,O1,-died;
O4,Mn,rml,Q1,ang,O2,died}

basis=lanl2dz; ! definition of the basis set
{rhf; ! the method employed for

calculation
wf,46,1,0} ! the state definition,

number of electrons
! (in lanl2dz there are less

electrons than in the real
atom)

! irreducible representation of
the wavefunction

! Ag (closed shell) and S=0
{optg; ! geometry optimization
active,rml,ang} ! only varies metal

ligand and angle

Results: Numerical results for the three configurations of MnO−
obtained using MOLPRO are shown in the following table:

Angle
Configu- rml Dummy–Mn–O
ration Method Basis (Å) (degree) Energy (a.u.)

Square Hartree-
Fock

lanl2dz 1.839 — −401.27643354

Tetrahedral Hartree-
Fock

lanl2dz 1.741 — −401.42029498

Pyramidal Hartree-
Fock

lanl2dz 1.862 127.6 −401.48106362



184 METHOD OF MOLECULAR ORBITALS AND RELATED APPROACHES

The HF/lanl2dz calculations predict that all three conformations
are stable and that the pyramidal is significantly lower in energy. Fur-
ther comparison with other methods/basis sets are given in Problems
(solutions) 5.4–5.6.

In conclusion, we note that, strictly speaking, the DFT methods based on
KS equations are just a form of MO LCAO methods in which the calcula-
tions are simplified by introducing special potentials instead of very complicated
wavefunctions. This simplification is not without cost; part of the information
about the properties of the system is lost. DFT methods are convenient, practical
tools for essentially simplifying calculations of electronic structure of molec-
ular systems, especially when the ground-state energy and electronic densities
are sought for and the nuclear dynamics can be ignored. The scaling prop-
erties of DFT proportional to n3 instead of n4 in the wavefunction methods
(Section 5.3) make it favorable for considering large molecular systems that can-
not be treated by multideterminant methods. Less rigorous in general but still
often practically acceptable are results on DFT calculations of some (restricted
types of) excited states and spin multiplicities, while the whole approach is
questionable (or unacceptable) in the presence of electron degeneracy or pseudo-
degeneracy. Examples 5.2–5.4 are Problems (solutions) 5.4–5.7 provide further
discussion and comparisons of different numerical methods of electronic structure
calculation.

Relativistic Approaches

One of the most essential differences between the methods of electronic structure
calculation for transition metal heavy-atom compounds and those for organic or
simple inorganic molecules is in the necessity to factor in the relativistic effects in
the former, whereas they can often be neglected in the latter. For years relativistic
effects were considered as relativistic correction to nonrelativistic calculations
mainly by factoring in the spin–orbital interaction as a perturbation. This is
unacceptable in more accurate calculations. For instance, for the atoms of the third
transition period the spin–orbital interaction is of the same order of magnitude as
or larger than the interelectron and interatomic (chemical) interactions. For this
reason, in heavy-atom compounds there is no sense to calculate the electronic
terms and chemical bonding without relativistic effects and/or to account for
the spin–orbital interactions as a perturbation, as is done for most light-atom
molecules. Extensive developments of relativistic electronic structure calculations
in molecules began in the 1970s, although atomic systems were explored much
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earlier. The latest achievements in this area can be found in several review
publications [5.66–5.69].

Relativistic effects in chemical properties of atoms are considered in Section
2.1, and the results obtained there are also used in Section 6.5 in the discussion
of chemical bonding. Here in this section we consider briefly some semiquan-
titative methods of relativistic electronic structure calculation of coordination
compounds. In the next section semiempirical relativistic methods are also briefly
discussed.

At present the relativistic calculations of transition metal compounds are
rather semiquantitative. In a rigorous formulation the relativistic SCF MO LCAO
equations are complicated. The main distinction from the nonrelativistic formula-
tion lies in the use of the relativistic Dirac Hamiltonian for one-electron operators,
in which the velocity of the electrons v, assumed to be comparable with the light
velocity c, is taken into account explicitly. For the operator of the interelec-
tron interactions the classical expression without relativistic effects is generally
used; this does not introduce considerable inaccuracies except for small spin–spin
interactions. Thus, for the Dirac Hamiltonian we have [5.43] (cf. Eq. (2.11))

H =
∑

i

[αicpi + mc2βi + V (i)] +
∑

i,j

′ e2

rij

(5.77)

where the summation is performed over all the electrons, m is the mass of the
electron, p = −i�∇ is the operator of the momentum; V (i) = −∑

α Zαe2/Riα ,∑
i,j e2/rij are the Coulomb electron–nuclei and interelectron interactions,

respectively; and αi and βi are fourth-rank Dirac matrices given by Eqs.
(2.12)–(2.14).

As indicated in Section 2.1, the relativistic Hamiltonian (5.77) has a matrix
four-component form. The solutions of the Dirac equation with this Hamiltonian
are also four-component one-electron functions—bispinors � composed of two
spinors [Eq. (2.15)]—and they obey the conditions (2.16) and (2.17). The fourth-
rank matrix equation that determines the one-electron bispinor �(i) is

α1cp1 + mc2β1 + V (1) +
∑

k

∫

�+
k (2)

e2

r12
(1 − Pik)�k(2)dτ2]�i(1)

= Ei�i(1) (5.78)

where �+ is the transposed bispinor �.
Solving this equation by the MO LCAO self-consistent procedure, one can, in

principle, obtain relativistic SCF MO LCAO ab initio solutions. However, this is
a complicated procedure. A simplification can be reached in the quasirelativistic
approach (QRA), where it is assumed that at least for the valence electrons
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the relativistic effects can be accounted for approximately up to terms of the
order (v/c)2, inclusively. Simple estimates show that in the region of the valence
electrons higher powers in v/c are small and can be neglected, confirming the
validity of the QRA.

In the quasirelativistic approximation [5.43, 5.70] (see also Section 2.1) the
wavefunction can be presented by only one two-component spinor ϕi(j) because
the second one, in Eq. (2.15), χi(j), is of the order of (v/c)2 and hence yields
higher-order smallness in the energy. In the MO LCAO approximation ϕi should
be presented as a linear combination of the atomic spinors 	j [5.71]

ϕi =
∑

j

cij	j (5.79)

Performing the calculations of the matrix elements Hij of the secular
equation (5.8) with the functions (5.79), one comes to the following formulas
[cf. Eq. (5.48)]:

HR
ij = H 0R

ij + IR
ij − KR

ij (5.80)

where the quasirelativistic expressions for H 0R
ij , IR

ij , and KR
ij are rather different

from the nonrelativistic ones [5.76]:

H 0R
ij = H 0

ij +
〈

i

∣
∣
∣
∣−

p4

8m3c2
+ �

2�V

8m2c2
+ �σ [∇V, p]

4m2c2

∣
∣
∣
∣ j

〉

(5.81)

IR
ij = Iij + �

2m2c2

∑

k,l

Pkl〈〈ik|σ1[∇1r
−1
12 , p1]|lj 〉〉 (5.82)

KR
ij = Kij + �

2m2c2

∑

k,l

Pkl〈〈ik|σ1[∇1r
−1
12 , p1]|j l〉〉 (5.83)

Here 〈〈ik| |lj 〉〉 means integration over r1 with the spinors k and l, and over
r2 with the spinors i and j .

As one can see, the QR formula for the matrix elements in the MO LCAO
method contains the usual nonrelativistic terms (H 0

ij , Iij , and Kij , respectively)
plus relativistic additions. The physical meaning of all these terms can be revealed
by comparison with the relativistic terms which emerge in atomic calculations
[5.43]. Similar to the atomic case, three types of relativistic corrections can be
distinguished:

1. The term ∼p4, the contribution of the electron mass dependence on speed
2. The term ∼�V , the Darvin interaction , which has no classical interpreta-

tion
3. Terms proportional to the Pauli matrices σ , the spin–orbital interaction
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As seen from Eqs. (5.81)–(5.83), the part H 0R
ij denoting the kinetic energy

and the interaction with the core (nuclei), contains all three kinds of relativistic
corrections, while the Coulomb IR

ij and exchange KR
ij interaction terms contain

the correction on spin–orbital interaction only.
Note that the matrix elements (5.81)–(5.83) must be calculated by two-

component spinors (all operators are 2 × 2 matrices; where not explicitly noted,
a 2 × 2 unit matrix is implied). The latter depend on the basis set. The atomic
basis function 	 is an eigenfunction of the operator of the square of the total
momentum J 2 and its projection JZ , and therefore 	 is dependent on additional
quantum numbers l, j, M (Sections 2.1 and 2.2):

	ljM(r, β) =
⎛

⎝
	1

ljM

	2
ljM

⎞

⎠ = Rlj (r)YljM(θ, φ, β) (5.84)

Here Rlj (r) is a relativistic radial function, and YljM(θ, φ;β) is a spherical spinor
that can be presented as an expansion over spherical functions Ylm(θ, φ) [5.70]:

YljM(θ, φ, β) =
∑

m,μ

〈
lm 1

2μ|jM
〉
Ylm(θ, φ)qμ(β) (5.85)

where qμ(β) is the function of the spin argument β, its two values realiz-
ing the two components of the spinor, and 〈lm 1

2μ|jM〉 is the corresponding
Clebsh–Gordan coefficient. With the functions (5.84) and (5.85) the matrix ele-
ments (5.81)–(5.83) are reduced to linear combinations of integrals calculated
by the usual spherical functions Ylm(θ, φ) and relativistic radial functions Rlj (r).

Since in the relativistic case the spin-orbital interaction is strong and the
j – j coupling scheme is valid (Section 2.2), the multielectron states should be
classified by the total momentum J , and the MOs belong to the irreducible rep-
resentations of the double point groups (Section 3.5). The additional terms of
relativistic corrections can be calculated in the same approximation as the non-
relativistic terms. The QRA also allows semiempirical simplifications (see the
next section).

At present several methods of relativistic electronic structure calculations are
worked out and used in practice [5.66–5.69, 5.71–5.77], including all-electron
fully relativistic ab initio calculations [5.73], ECP relativistic and quasirelativistic
calculations and other pseudopotential approaches [5.74–5.77], relativistic and
quasirelativistic density-functional approaches [5.78–5.80], as well as semiem-
pirical realizations [5.71, 5.81] (see also Sections 5.5 and 6.5).

5.5. SEMIEMPIRICAL METHODS

Besides the semiquantitative approaches discussed in the previous section,
semiempirical methods are widely used in practice in order to simplify electronic
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structure calculations. In the semiempirical MO LCAO methods the main idea
is to substitute as many as possible integrals in the matrix elements Hii and
Hij of Eqs. (5.7) and (5.8) by empirical parameters. Among these methods one
can distinguish two groups that differ as to whether they neglect the overlap
integrals.

Zero-Differential Overlap (ZDO)

The ZDO approach was first suggested independently by Pople, and Pariser and
Parr for π-electron systems (see Refs. 5.82–5.88 and references cited therein).
It assumes that the overlap of different atomic functions ψi and ψj for any
elementary volume—the differential overlap —equals zero:

ψi(r)ψj (r)dτ = 0 i �= j (5.86)

In this approximation all integrals of the type [ij |kl] in Eqs. (5.48) and (5.51) are
zero, except for i = j and k = l. This means that all the three- and four-center
integrals are zero, the interelectronic interaction is described by the two-center
integrals of the type [ii|kk], and the overlap integrals

Sij =
∫

ψ∗
i (r)ψj (r)dτ = 0.

Logically, the assumption (5.86) leads to the conclusion that the resonance inte-
gral H 0

ij = ∫
ψ∗

i H 0ψj dτ for i �= j is also zero, but this gives completely
unacceptable results. Therefore, in the ZDO methods, it is assumed that H 0

ij �= 0
for i and j from the same or near-neighbor atoms.

At first sight the assumption (5.86) and its inconsistent repudiation when cal-
culating H 0

ij seem to introduce rough approximations. Nevertheless, the ZDO
approaches proved to be quite efficient in concrete calculations yielding satis-
factory results for simple systems. Afterward the method was given additional
grounds that also allowed one to clarify the nature of the assumption (5.86) and
the limits of its validity, and to obtain quantitative relationships for the resonance
integral [5.83]. It was shown that the ZDO formulas are valid when neglecting
S2, where S is the overlap integral. More accurate expressions in these meth-
ods can be obtained by using the so-called orthogonalized basis [5.84] for the
calculation of matrix elements.

In electronic structure calculations of transition metal compounds, the ZDO
method, called complete neglect of differential overlap (CNDO), may be useful.
In this method in the secular equation (5.8):

• All the overlap integrals are zero.
• The diagonal matrix elements Hii are taken from empirical data (see below).
• The off-diagonal core integrals H 0

ij with i �= j are taken proportional to the
overlap integrals Sij when ψi and ψj are from near-neighbor atoms, and
zero otherwise.
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• The electron interaction integrals obey the condition

[ij |kl] = γikδij δkl (5.87)

where hereafter the following denotation is used:

γik = [ii|kk] (5.88)

Under these conditions all the three- and four-center integrals vanish, and the
matrix element of the SCF MO LCAO method (5.48) is significantly simplified.

However, as shown by direct calculations [5.82], in this approximation the
results are not invariant with respect to the choice of the local coordinate sys-
tems on the atoms. In other words, the results of the calculations depend on the
orientations of nonsymmetric atomic functions (p, d, f, . . .) of a given atom with
respect to the others (which is quite understandable because we neglect the angu-
lar dependent overlap between them), and this unacceptable feature is inherent
to all the methods based on ZDO.

To overcome this principal difficulty, it was suggested [5.82] that all the elec-
tron repulsion integrals that depend on orientation be taken equal to each other
and to the one calculated with spherical symmetric s functions that do not depend
on orientation. In this approximation the repulsion integrals γij depend on the
type of atom, but not on its state. For instance, for the A atom γii = γAA for
all the i labels, and for diatomic integrals of the atoms A and B γij = γAB for all
i and j . This results in further simplification of the matrix elements H 0

ij [recall
Eq. (2.50): H 0 = H 0

A − ∑
B �=A UB with H 0

A = TA − UA, where T is the kinetic
energy and U is the interaction with the nucleus):

∫

ψ∗
iAH 0

AψjA dτ = εA
i δij (5.89)

∫

ψ∗
iAUBψjA dτ = UA

B δij (5.90)

and for near-neighbor atoms A and B

∫

ψ∗
iAH0ψjB dτ = β0

ABSij (5.91)

where εA
i characterizes the corresponding atomic orbital energy in the state ψA

i

and β0
AB is an empirical parameter. Denoting the valence electron density on

the atom A by PAA = ∑
k Pkk [cf. Eq. (5.21)], we obtain the following final

expressions for the matrix elements of the CNDO method:

HAA
ii = εA

i +
(

PAA − Pii

2

)

γAA +
∑

B �=A

(PBBγAB − UA
B ) (5.92)

HAB
ij = β0

ABSij − PijγAB

2
(5.93)
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HAA
ij = −PijγAA

2
(5.94)

The empirical parameters εA
i and β0

AB are taken as follows. εA
i is obtained

from the relation

−IA
0i = εA

i + (ZA − 1)γAA (5.95)

where IA
0i is the corresponding ionization potential, while β0

AB = (1/2)(β0
A + β0

B)

[cf. Eq. (5.101)], and β0
A and β0

B are atomic parameters taken, for example, from
the data of more accurate MO LCAO calculations for systems containing the
corresponding atom.

Another choice of parameters is suggested in the modification of the CNDO
method called CNDO/2 (as distinct from the abovementioned CNDO/1 method).
In CNDO/2 it is assumed that UA

B = ZBγAB , while εA
i is taken from a relation

that is somewhat different from (5.95):

−(IA
0i + Ai) = εA

i + (
ZA − 1

2

)
γAA (5.96)

where Ai is the corresponding electron affinity.
Thus in the CNDO methods only the overlap integrals Sij and simple repulsion

integrals with s functions,

γAA = e2
∫

s2
A(r1)s

2
A(r2)r

−1
12 dτ1 dτ2 (5.97)

and

γAB = e2
∫

s2
A(r1)s

2
B(r2)r

−1
12 dτ1 dτ2 (5.98)

should be calculated; in CNDO/1 the integral

UA
B = ZBe2

∫

s2
A(r)|r − R|−1 dτ (5.99)

is also to be computed. The other magnitudes εA
i and β0

AB are taken from empir-
ical data.

The CNDO method, described above, contains some essentially restricting
approximations that are especially significant in application to transition metal
compounds. In particular, when the ZDO (5.86) is applied to two different orbitals
of the same center, the integrals of exchange interactions between the intraatomic
electrons is neglected. Meanwhile they may reach ∼4–5 eV.

If the basis of atomic functions contains no more than one function per atom
(as, e.g., in π-electron approximation for conjugated organic molecules), there are
no such integrals. But if there are several functions per atom in the basis set (for
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a transition metal atom, as mentioned above, there are usually nine), the neglect
of one-center repulsion integrals may be a source of considerable error. To avoid
this, a version of ZDO can be employed, in which the approximation (5.86) is
applied only to the pairs of orbitals from different atoms, whereas the product of
functions ψiA(r)ψjA(r) from the same atom is considered nonzero, and the cor-
responding integrals with these products are calculated explicitly or approximated
by parameters. This method of calculation, called neglect of diatomic differential
overlap (NDDO), results in significant increase in the volume of calculations, as
compared with CNDO.

Another difficulty with CNDO methods is the abovementioned necessity to
introduce the same spherical symmetric (s-type) electronic cloud distribution for
all the electrons (p, d, f, . . .). For molecules containing only light (first-row)
atoms, this circumstance is not very restricting because the averaged electron
distribution in the 2p state does not differ very much from that of the 2s state.
But for transition metals and rare-earth elements this simplification becomes
unacceptable because of the significant differences in the electron distributions
of s, p, d , and f orbitals.

In the multicenter ZDO (MCZDO) method [5.86], this difficulty is partly
overcome while preserving the advantages of the NDDO method as compared
with the CNDO one. Distinct from the latter, in the MCZDO method (1) the ZDO
approximation (5.86) is not applied to the core integrals H 0

ij and to the one-center
integrals of interelectron repulsion; (2) the ZDO approximation is applied to all
the other multicenter electron repulsion integrals: [ij |kl] = γikδij δkl for i and
j on different atoms; (3) averaged two-center repulsion integrals are different
for different types of electrons; that is, instead of two integrals γAA and γAB of
the CNDO method the following are introduced: γss, γsp∗ (interaction of s cloud
with the averaged p distribution denoted by p∗), γsd∗ , γp∗p∗, γp∗d∗, γd∗d∗, γsf ∗ ,
and so on.

There are also modified CNDO methods aimed at electronic structure calcu-
lations for systems with open shells. Intermediate neglect of differential overlap
(INDO) [5.89] and modified INDO (MINDO) [5.90] methods , in the version for
coordination compounds [5.88, 5.91], are based on the scheme of the unrestricted
Hartree–Fock (UHF) method (Section 5.3), in which each electron is described by
its own orbital function (the two electrons with opposite spins on the same orbital
of the restricted HF method occupy different orbitals in the UHF method), and
on the NDDO approximation, in which the interatomic overlap only is neglected
(whereas the intraatomic one is included). However, unlike the NDDO method,
the INDO approximation assumes the two-center integrals of interelectronic inter-
action [iAjA|kBlB ] = 0 if A �= B, i �= j , and k �= l. This simplifies the otherwise
rather complicated calculations of the NDDO method, but it still accounts for the
main part of electron interactions on each center (including the exchange inter-
action) that determine the spin states. The one-center interelectron interactions
can be approximated by Slater–Condon parameters (Section 2.2).

Semiempirical methods of electronic structure calculations oriented toward
TMS are implemented in a software package called ZINDO [5.91].
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Extended Hückel (Hoffmann) Method

The simplest Hückel method , where the overlap integrals Sij in the secular
equation of the MO LCAO method (5.8) are taken equal to zero and the matrix
elements are substituted by empirical parameters, having some value in appli-
cation to organic molecules, is invalid for coordination compounds. If ignoring
Sij , one looses the specific role of (the electron heterogeneity introduced by) the
d electrons in the electronic structure. In ZDO methods targeting coordination
compounds—for instance, in INDO, this deficiency is compensated for by the
difference in the corresponding electron repulsion integrals. The extended Hückel
(EH) and the related iterative EH (IEH), or the self-consistent charge and con-
figuration (SCCC) method , avoid this fault by considering explicitly the overlap
integrals in Eq. (5.8). On the other hand, these methods, unlike the ZDO ones,
are completely semiempirical in the sense that all the matrix elements in (5.8)
are substituted by empirical parameters and overlap integrals Sij ; the latter are
thus the only computed magnitudes.

In the EH approximation the empirical presentation of the matrix elements is
as follows [5.92]:

Hii = −Ii (5.100)

Hij = k

2
(Hii + Hjj )Sij (5.101)

where k is a numerical coefficient, which in simple cases is taken equal to 1.67
for σ bonds and 2 for π bonds (see below), and Ii is the energy of ionization of
the atomic ith state. The presentation of the diagonal matrix element Hii by the
corresponding ionization potential goes back to the simple Hückel method, while
formula (5.101) for the off-diagonal element Hij was first used in calculations
of transition metal complexes by Wolfsberg and Helmholz [5.92] and widely
demonstrated in calculations of organic molecules by Hoffmann [5.93].

It can be shown that Eqs. (5.100) and (5.101) are of the same level of approx-
imation as the semiquantitative expressions (5.58) for the matrix element of the
effective Hamiltonian; they differ mainly by the last term in (5.58), often called
crystal field corrections . The latter improve the interatomic core interactions and
were also introduced in the semiempirical calculations (see below).

Presentations (5.100) and (5.101) were significantly improved by introduc-
ing the dependence of the Ii values on the atomic and orbital charges and
the requirement of self-consistency with respect to these charges [5.93]. Con-
sider the diagonal element of the Hamiltonian starting with expression (5.58),
HAA

ii = εA
i − ∑

μ �=A e2(Zμ − qμ)/RAμ. Here εA
i has the physical meaning of the

orbital energy of the electron in the valence state of atom A in the molecule,
that is, when the atom has a certain charge and electron population distribution
over the atomic states participating in the formation of the MO. In other words,
εA
i is the ith-state ionization energy in a specific configuration of other electrons,

usually called energy of ionization of the valence state (EIVS): εA
i = −Ii[A],
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where [A] denotes the corresponding electron configuration of A (a less accurate
notation of this value is also in use: valence orbital ionization potential (VOIP).

The effective charge of the other atoms is Zμ − qμ, where qμ =∑
i,ν qiciμciνSμν is the Mulliken total electronic charge on the μ atom after

Eq. (5.20). However, this formula does not account for the fact that the
screening of the nuclei by the charge qμ is not complete. Therefore, the effective
charges of the μ atoms should be taken with a correction constant kλ that
depends on the kind of bonding between A and μ produced by the ith function
(λ = σ, π, δ, . . .). With this correction

HA
ii = −Ii[A] − e2

∑

μ �=A

Zμ − qμ + kλ

RμA

(5.102)

In general, EIVS is different from the corresponding ionization energy of the
neutral atom because in the valence state the atom may have a considerable
charge, and the population of the s,p,d,f orbitals are altered by MO formation.
These effects are obviously much more significant for coordination compounds
than for organic molecules. To account for the dependence of ionization energy
on the atomic charge, Hoffmann suggested a linear correlation:

IA
i = IA

0i + aqA (5.103)

where IA
0i is the ionization potential of the neutral atom and qA is the atomic

charge (the constant a can be obtained by comparison of IA
i with one of the next

ionization potentials; see below).
The crystal field corrections in the second term in (5.102) are also more impor-

tant for coordination compounds than for organic molecules because the latter
have much smaller atomic charges. These corrections are even more important
when the coordination system is in a crystal lattice, where they are summarized
into the Madelung potential , which includes the electrostatic field of all the ions
of the lattice that influence the one under consideration.

Similar corrections should be introduced in the off-diagonal matrix elements
(5.53). For semiempirical calculations, several other than (5.101), but generally
equivalent, presentations of the off-diagonal element were suggested (Table 5.7).
Numerical estimates show that very often all these presentations yield close
results [5.99].

Iterative Extended Hückel Method

The iterative EH (IEH) method [sometimes also called the self-consistent charge
and configuration (SCCC) MO LCAO method] is an extension (improvement) of
the EH approach important to calculation of electronic structure of coordination
compounds. The essence of this improvement is to introduce a self-consistent
procedure with respect to the atomic charges and electronic configuration. Indeed,
the matrix elements Hii and Hij in Eqs. (5.100)–(5.102) contain those charges
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TABLE 5.7. Different Presentations of Off-Diagonal Matrix
Element of Hamiltonian Hij by Diagonal Elements (Uii and Hjj )
and Overlap Integral Sij in Semiempirical Methods

Authors Hij

Wolfsberg and Helmholz kSij (Hii + Hjj )/2
Ballhausen and Gray −kSij (HiiHjj )

1/2

Cussacs (2 − |Sij |)Sij (Hii + Hjj )/2
Erraneous kSij · 2HiiHjj /(Hii + Hjj )

Morokuma and Fukui Sij [(Hii + Hjj )/2 + k]
Neuton et al. Tij + Sij (Uii + Ujj )/2

Source: McGlynn et al. [5.94].
aUii is the matrix element of the potential energy; if the virial theorem holds,
Uii ≈ 2Hii .

and configurations that depend on LCAO coefficients, which, in turn, depend on
Hii and Hij , and so on.

Assume that we calculated the matrix elements (5.101) [or (5.102)] and
(5.100), and by solving Eqs. (5.7) and (5.8) we obtained a set of n MO energy
levels of the system

ε1, ε2, . . . εn (5.104)

and for each of them a set of LCAO coefficients:

ε1 : c11, c12, . . . , c1n

ε2 : c21, c22, . . . , c2n

...

εn : cn2, cn2, . . . , cnn

(5.105)

Each line of (5.105) corresponds to a certain (ith) MO, while each coeffi-
cient of the ith MO determines the contribution of the j th AO. By distributing
all the electrons over the lowest energies εi following the Pauli principle, one
finds the MO population numbers qi equal to 2 (fully occupied MOs), 1 (half-
occupied), or 0 (unoccupied) (in fragmentary calculations the charges may be
fractional; see Section 5.6). With these data the atomic charges and, separately,
the electronic charges on s,p,d,f, . . . orbitals, can be evaluated approximately by
means of Mulliken population analysis [Section 5.2, Eq. (5.20)]. The electronic
charges on the s, p, and d orbitals (in units of the electron charge)—occupation
numbers —are

qA
s =

∑

i,j

qic
A
iscij Ssj (5.106)

qA
p =

∑

i,j

∑

pA

qic
A
ipcijSpj (5.107)
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qA
d =

∑

i,j

∑

dA

qic
A
idcij Sdj (5.108)

where the label A in combination with s, p, and d means that the latter are
denoting the corresponding orbitals of atom A. The total (positive) atomic charge
Z∗

A is (mA is the number of valence electrons on the AOs of the reference neutral
atom or ion included in the LCAO)

Z∗
A = mA − (qA

s + qA
p + qA

d ) (5.109)

The dependence of the atomic ionization energy on the atomic charge for a
given electronic configuration Ii[A] can be well approximated by a three-term
square dependence, as follows:

Ii[A] = AiZ
2 + BiZ + Ci (5.110)

The constants Ai, Bi , and Ci can be found if one knows the ionization poten-
tials Ii for three Z values, for instance, for the neutral (Z = 0), ionized (Z = +1),
and double-ionized (Z = +2) states. These data can be obtained from the anal-
ysis of the energy terms and ionization potentials of free atoms in the given
electronic configuration [A] [5.95]. The ionization potential is taken equal to the
weighted-average energy value for all the terms formed by this configuration
(Section 2.2). For instance, the d energy of the configuration d2 (see Table 2.6)
is

Id [d2] = 1
45 [9E(1A) + 21E(3F) + 5E(1D) + 9E(3P) + E(1S) (5.111)

where the coefficients at the term energies E(2S+1L) equal the term degeneracy
(2S+1)(2L+1), while the term energies are known from spectroscopic data. The
EIVS and constants A, B, and C for some most usable atoms obtained in this
way are given in Refs. 5.94–5.97.

However, the atomic orbital charge distribution dqdsqspqp is, in general, frac-
tional (qd, qs , and qp are not integers). For fractional configurations there are no
empirical data on ionization energies. They can be approximated by linear com-
binations of the known values for integer–number configurations with fractional
coefficients, which are chosen to make the summary electronic configuration
equal to the fractional one.

Let us present the configuration dqdsqspqp with qs + qp + qd = n(1 − �)

[where n is integer and � = 1 − (qs + qp + qd)/n is a small fractional num-
ber], as a linear combination of integer–number configurations dn, dn−1s, dn−1p

(meaning that we present the fractional configuration as a sum of integer ones):

dqdsqppqs = adn + bdn−1s + cdn−1p (5.112)

Then, by equalizing the populations on the same orbitals, we get c = qp, b = qs ,
and a = 1 − qp − qs − �. Consequently, the EIVS of a fractional electronic
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configuration in the case under consideration is

Ii[d
qdsqspqp] = (1 − qp − qs − �)Ii[d

n] + qsIi[d
n−1s] + qpIi[d

n−1p]
(5.113)

Thus the procedure of self-consistent solutions in the IEH (SCCC) MO LCAO
method is as follows. With the LCAO coefficients cij obtained from Eqs. (5.7) and
(5.8), one calculates the atomic and configuration charges after (5.106)–(5.108),
and then determines new EIVS by Eq. (5.113) and new matrix elements Hii and
Hij by Eqs. (5.100)–(5.102), which allow one to determine new cij values, new
charges, and so on. Provided that this process converges, each new iteration yields
more precise results than the previous one, and this process can be continued until
the new atomic charges and configuration, within the accuracy required, coincide
with the previous ones, that is, are self-consistent.

The crystal field corrections can be included in the computation program
directly. However, in some cases they are omitted. The reason is that usually
the atomic charges on the central (metal) atom and ligands have opposite signs
with the positive charge on the CA. Hence, for the metal, the EIVS value is
larger than that for the neutral atom, and the crystal field corrections after Eq.
(5.102) increase the absolute value of Hii . On the contrary, EIVS is smaller for
the ligand than for the corresponding neutral atom, and the crystal field of the
positive central atom increases the absolute value of Hii , making it closer to the
neutral atom value. Therefore, one can assume that when the ligand charges are
not very large, the charge dependence of EIVS of ligand atoms is compensated
for by the crystal field corrections. Hence the self-consistent procedure can be
carried out only on the central atom charges and configurations, keeping the Hii

values for the ligands constant and equal to their neutral atom values.
As to the correction constants kλ in Eq. (5.102), they remain almost arbitrary,

although their choice, within reasonable limits, does not strongly influence the
results. Bash and Gray [5.98] suggested two sets of kλ values: (1) kσ = 0.6, kπ =
0.40, kδ = 0.2 and (2) kσ = 0.5, kπ = 0.4, kδ = 0.3.

Extended Hückel calculations of the octahedral TiF6
3− complex are presented

in more detail in Example 5.5.

EXAMPLE 5.5

A1g-Type MOs of Octahedral TiF6
3− Calculated Using the Extended

Hückel (Wolfsberg–Helmholz) Approximation

A reasonable approach is to present TiF6
3− as Ti3+(F−)6 with one d

electron above the closed shells of Ti4+ and six F− ions. Then taking as
a basis set the Ti atomic orbitals 3d , 4s, and 4p, and one σ and two π

orbitals from each F− ion, we come to the symmetry-adapted LCAOs
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for octahedral complexes given in Table 5.1. Two AOs belong to the Ag

symmetry, ψ0 = 4s and 	σ = (1/
√

6) (σ1 + σ2 + σ3 + σ4 + σ5 + σ6)

(the latter is a group orbital), forming two MOs, ψ = c4sψ0 ± cσ	σ .
The secular equation (5.8) or (5.12) with respect to the MO energies E

and wavefunctions is thus [cf. Eq. (5.25)]

∣
∣
∣
∣

H4s4s − E HG
4sσ − EG(4s, σ )

HG
4sσ − EG(4s, σ ) Hσσ − E

∣
∣
∣
∣ = 0 (5.114)

where, according to Table 5.4, the group integral G(4s, σ ) =√
6S(4s, σ ), and similarly the group resonance integral H4s,σ =√
6H 4s,σ [see Eq. (5.11′)]. Equation (5.114) is a quadratic equation

with respect to the energy E with solutions given by Eq. (5.26).
Following the Wolfsberg–Helmholz formula (5.101) with K = 2 we
get H4s,σ = (H4s4s + Hσσ )S(4s, σ ), and for the diagonal element we
should take the ionization energy of the valence state (EIVS) with the
opposite sign. Preliminary estimations by an iterative procedure [5.99]
for the electronic configuration of the Ti site in this complex yield
Ti0.51+(3d2.64s0.374p0.50) with H4s4s = −78.90 kK (1kK = 103 cm−1)
and for the hybridized ligand σ state Hσσ = −154.5 kK. For the over-
lap integral calculations [5.99] at R(Ti—F) = 2.05 Å yield S(4s, σ ) =
0.175. With these data we obtain the following from Eq. (5.26):

E1 = −164.64 kK

E2 = −16.10 kK

The energy diagram for these MOs is thus (numeric values in kilocalo-
ries):

E2 = −16.10

−78.9

−154.5

E1 = −164.64

with E1 bonding and E2 antibonding.
With these energies we estimate the LCAO coefficients from

Eq. (5.7). For E1, c4s = 0.289, cσ = 0.841, and hence the bonding MO
is ψ1 = 0.289|4s >+ 0.841· (1/

√
6) (σ1 + σ2 + σ3 + σ4 + σ5 + σ6).

For the antibonding MO we get ψ2 = 0.289|4s >−0.841 ·
(1/

√
6) (σ1 + σ2 + σ3 + σ4 + σ5 + σ6).

Higher-energy MOs can be estimated in the same manner (see Prob-
lem 5.1).
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One of the main deficiencies of the extended Hückel method, described
above, is that it does not apply to molecular geometry optimization. Indeed, the
Wolfsberg–Helmholz formula (5.101) or its analogs in Table 5.8 do not correctly
account for the (nonoverlap) electrostatic interactions, especially between the
atomic cores, and therefore it cannot apply for potential energy curves for
stretching modes. Anderson and Hoffmann [5.100] attempt to overcome this
difficulty by adding a two-body electrostatic interaction to the energy term in
the EH approximation, while Calzaferri et al. [5.101] improved this presentation
significantly and implemented it in a computer program (called ICONC).

With the two-body electrostatic terms included, it is possible to derive the
corresponding geometries by energy optimization. The results obtained in this
way strongly depend on the parameterization of the additional terms [5.101].
Appropriate parameters have been suggested for some organometallic compounds
[5.102]. However, in general, in application to coordination compounds with
center-delocalized bonds and nontransferable metal–ligand bond properties the
parameterization based only on two-body interactions should be handled with
much caution. Apparently, such parameters could be applied to compounds for
which the metal–ligand bonds in question are mainly localized. The situation
here is very similar to that arising in the problem of molecular mechanics, where
intramolecular interactions are approximated by two-body atom–atom potentials
with appropriate transferable parameters (see Section 5.6). The merit of empirical
methods is discussed further in Section 5.7.

Quasirelativistic Parameterization

Quasirelativistic (QR) semiempirical versions are based on the general QR
approaches to the MO LCAO scheme, discussed in Section 5.4. Additional
difficulties in QR parameterization of the calculations emerge, in particular,
owing to the two-component spinor presentation of the wavefunction, and the
classification of MO states on the IrReps of the double groups of symmetry
required by the j – j coupling between the electrons (Sections 2.1, 3.6, and 5.4).

For the ZDO methods described above, the QR expressions for the matrix
elements formally remain the same as in the nonrelativistic case [5.103], but the

TABLE 5.8. Ionization Energies of s, p, and d Electrons from
Several Valence States (EIVS) of Pt Atom

Ionized State Ionization Process EIVS (cm−1)

s1/2 D9(2D5/2)s1/2 → D9(2D5/2) + e 71,976

p1/2 D9(2D5/2)p1/2 → D9(2D5/2) + e 38,803

p3/2 D9(2D5/2)p3/2 → D9(2D5/2) + e 33,648

d3/2 (d6
5/2d

4
3/2)0 → (d6

5/2d
3
3/2)3/2 + e 74,578

D5/2 (d6
5/2d

4
3/2)0 → (d5

5/2d
4
3/2)5/2 + e 66,160

Source: Bersuker et al. [5.103].
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meaning of the parameters is relativistic. In particular, in the CNDO methods
the overlap integrals and the interelectron repulsion integrals (5.97) and (5.98)
must be calculated by QR spinors, while the empirical parameters in (5.96), the
ionization potential, and the electron affinity should be taken for atomic states
classified in the j – j scheme.

Consider in more detail the QR IEH (or SCCC) MO LCAO parameteriza-
tion. As in the nonrelativistic version, the diagonal matrix elements Hii are
given by EIVS expressed in terms of atomic charges and fractional configu-
ration occupation numbers (5.113). But unlike the nonrelativistic case, for which
the electron configuration is taken in the form sxpydzf u, in the QR analog
the electronic configuration must be taken after the j –j coupling scheme as
sa

1/2p
b
1/2p

c
3/2d

l
3/2d

k
5/2f

m
7/2 (etc.), where x, y, . . . , a, b, c, . . . are the fractional occu-

pation numbers.
To illustrate the procedure for EIVS evaluation, consider a simple case of

a two-electron system in a sp configuration. For the free atom two relativistic
valence configurations are possible (Section 2.1): s1/2p1/2 and s1/2p3/2. Their
energy-level scheme is shown in Fig. 5.4. Similar to (5.111), the mean energy

FIGURE 5.4. Energy-level diagram for a two-electron atom in the sp configuration and
j –j coupling scheme: (a) averaged (“spherical”) interelectron interaction; (b) spin–orbital
interaction added; (c) nonspherical (“local”) interelectron interaction added (classification
of the total momentum J = 0, 1, 2).
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of these two configurations can be taken as averaged over the energy terms with
different total momentum quantum numbers J :

E(s1/2p1/2) = 1
4 [E(s1/2p1/2)0 + 3E(s1/2p1/2)1] (5.115)

E(s1/2p3/2) = 1
8 [5E(s1/2p3/2)2 + 3E(s1/2p3/2)1] (5.116)

For the ionized atom that has only one valence electron there are three possible
states: s1/2, p1/2, and p3/2 (Fig 5.5). Then, for the EIVS, we have

−Ip1/2[sp] = I0 + E(s1/2) − E(s1/2p1/2)

−Ip3/2[sp] = I0 + E(s1/2) − E(s1/2p3/2) (5.117)

−Is1/2[sp] = I0 + E(p1/2) − E(s1/2p1/2)

where I0 = E1 − E0 is the energy difference between the ground-state energies
of the ion and the atom, respectively, from which the configuration energies
E(s1/2), E(s1/2p1/2), . . . , are read off. In particular, when the ground state of the
ion is s1/2, then E(s1/2) = 0 (its p1/2 state is not shown in Fig. 5.5). Another
example including d electrons (for Pt compounds [5.103]) is illustrated in Fig. 5.6
in Example 5.6.

FIGURE 5.5. Energy-level scheme for a two-electron atom in the sp configuration (a)
and its ion (b) (the energies are term-averaged). The ionization potentials are shown by
arrows.
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EXAMPLE 5.6

Quasirelativistic Evaluation of Energies of Ionization of Several Valence
States (EIVS) of s, p, and d Electrons of the Pt Atom

Figure 5.6 shows several experimental energy levels of the neutral and
ionized Pt atom that are taken as the basis for evaluation of the EIVS
used in semiempirical relativistic IEH calculation of the electronic struc-
ture of PtCl62− [5.103]. The numerical values are given in Table 5.8.
The results obtained for this complex are discussed in Section 6.5.

FIGURE 5.6. Illustration to evaluation of EIVS d3/2 and d5/2 of the Pt atom
in the quasirelativistic approximation to the IEH (SCCC) MO LCAO method
(I0 is the first ionization potential): (a) electron configurations and terms of Pt
and Pt+; (b) energy-level values (in cm−1); (c) electron configurations in the
strong coupling scheme.

The dependence of QR EIVS on the fractional charges a, b, c, . . . , can be
determined in the same way as for the nonrelativistic case (5.113). Pyykko et al.
[5.104] give semiempirical parameterization for 5f elements. For reviews of
other possibilities, see Refs. 5.66–5.69, 5.81, and 5.105.

5.6. FRAGMENTARY CALCULATIONS, MOLECULAR MECHANICS,
AND COMBINED QUANTUM/CLASSICAL (QM/MM) MODELING

Despite the impressive speed and efficiency reached in modern computers, rela-
tively large (e.g., biological) molecular systems are still unattainable in electronic
structure calculations by high-level MO LCAO or DFT methods and are expected
to remain refractory to treatment by these methods in the near future (see also
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the discussion in Section 5.7). On the other hand, there is the permanent con-
troversy between the quantum local properties of molecular systems and the
classical properties of macroscale systems that contain large numbers of such
molecules. The description of macro properties based on microscopic molecular
mechanisms includes a hierarchy of methods from quantum mechanics (QM)
to classical molecular mechanics (MM), to molecular dynamics (MD), statistics,
and so on, which involves a transition from quantum to classical methods. There-
fore, with the increase in size of molecular systems that can be treated by QM
methods, there will still remain the interaction with the larger environment to be
treated by classical methods. In this hierarchy of methods the next-to-pure QM
calculations are fragmentary calculations, classical MM, and combined QM/MM
methods.

Fragmentary Calculations

The importance of fragmentary calculations is increasing continuously together
with demands for molecular modeling and its applications in various fields, espe-
cially in biology and drug design. To avoid bulky calculations of the electronic
structure of large molecular systems, it may be useful to expand the molecule
into smaller fragments that can be calculated separately, and then to construct
the solution for the system as a whole as a combination of fragment solutions.
Note that in the main versions of MO LCAO calculations, computation time is
approximately proportional to n4, where n is the number of basis functions, and
for r fragments n = n1 + n2 + · · · + nr, n

4 � n4
1 + n4

2 + · · · + n4
r , meaning sig-

nificant savings in fragmentary computation. The latter are also important in the
above mentioned realization of interfaces between quantum-mechanical descrip-
tion of local properties in large molecular systems and classical treatment of the
system as a whole (see below).

For nonempirical calculations of large organic molecules with closed shells,
molecular fragments can be calculated first, and then their wavefunctions can
be used as the basis set for a full MO LCAO calculation of the system as
a whole [5.106]. For instance, to calculate the ethane molecule in this way,
the methane molecule is calculated first, and then the solution for the ethane
molecule is presented as a linear combination of two solutions for two methane
molecules at a certain distance from each other. In so doing, it is assumed that
the elimination of two hydrogen atoms between them is counter balanced in the
basis set by formation of the C—C bond. The method was extended to large
organic molecules.

Fragmentary calculations used for organic molecules cannot be transferred
directly to transition metal coordination compounds because of the d-electron
delocalization properties (Sections 1.2 and 6.1) and significant charge transfers
between the fragments (see below). A special analysis of the conditions when this
separation is valid (at least approximately) yields the following results [5.107,
5.108].
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FIGURE 5.7. The border atom (BA) cut by the border surface (dashed line) into two
fragments I and II, and its sp2 hybridized orbitals m , k , and r . The near-neighbor orbitals
l , u , and q realize the intrafragment bonding to the BA. π-bonding (allowed to only one
of the fragments) can be formed via the remaining p orbital of the BA.

It is obvious that the separation of a molecule into fragments is possible
when the interfragment interaction is much smaller than the intrafragment one.
To formulate this condition quantitatively, consider an arbitrary molecule cut
into two fragments in such a way that there is only one border atom (BA),
the borderline between the fragments crosses this atom (Fig. 5.7), and the
BA does not form π bonds with at least one of the two fragments. Assume
that sp2 hybridization of the BA atomic orbitals takes place and denote the
σ functions directed to fragments I by m and II by k and r , respectively, the
corresponding σ orbitals of nearest-neighbor atoms in the fragments being
l, u, and q (for simplicity, the possible π bond with one of the fragments is
omitted).

With these basis functions the secular equation (5.8) contains two types of
integrals Hij : intrafragment of the type Hmm and Hml and interfragment of the
type Hmk and Hmu (Hlu-type integrals are assumed to be negligibly small). If
the interfragment integrals are smaller than the intrafragment ones, they can
be neglected in the zeroth-order approximation, and then the secular equation
decomposes into two independent equations for the two fragments. A similar
picture can be drawn for other cases of spn hybridization.

The four types of integrals can be estimated from the general formulas for spn

hybridization (Section 2.1). They are given in Table 5.9.
Comparing the integrals in Table 5.9, we see that if the BA is a carbon atom

(for which the 2s and 2p orbitals are very close in energy), the differences
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TABLE 5.9. Intrafragment and Interfragment Integrals that Should Be Compared
in Validation of the Proposed Fragmentation

Hybridization Intrafragment Integrals Interfragment Integrals

spn Hmm Hml Hmk Hmu

sp 1
2 (Hss + Hpp) (1/

√
2)(Hsσ +

Hpσ )

1
2 (Hss − Hpp) (1/

√
2)(Hsσ −

Hpσ )

sp2 1
3 (Hss + 2Hpp) (1/

√
3)(Hsσ +√

2Hpσ )

1
3 (Hss − Hpp) 1/

√
3[Hsσ −

(
√

2/2)Hpσ ]

sp3 1
4 (Hss + 3Hpp) 1

2 (Hsσ + √
3Hpσ ) 1

4 (Hss − Hpp) 1
2 [Hsσ −

(
√

3/3)Hpσ ]

Sources: Bersuker [5.107, 5.108].

Hss − Hpp and Hsσ − Hpσ are, respectively, much smaller than the sums Hss +
Hpp and Hsσ + Hpσ . For instance, for saturated carbon in organic compounds,
H2p2p/H2s2s ∼ 0.7 and hence the ratio Hmk/Hmm ∼ 0.15. This value changes
with the charge on the atom; for C+, Hmk/Hmm ∼ 0.09. Similar estimates can be
given for comparison of other integrals; the interfragment/intrafragment inte-
grals ratios decrease with the power n of the spn hybridization. For N, O,
and F the ratios Hmk/Hmm are similar to that of carbon with a slight increase
along this series. Thus 2s2p atoms C, N, O, and F are the best BA for frag-
mentation of large molecular systems that obey the necessary conditions of
fragmentation, provided that they do not serve as π-electron bridges between the
fragments.

If the BA forms active π orbitals with both fragments, there are no grounds
for separating the latter by this BA, because the off-diagonal intrafragment and
interfragment matrix elements Hik are of the same order of magnitude. Therefore,
the first rule of fragmentation is that the border atom between any two fragments
must have only localized σ bonds with at least one of the two fragments [5.107,
5.108].

In any fragmentation of the molecule (even when the abovementioned rule
is fulfilled and Hik is small), the solution obtained differs from the true one
for the molecule as a whole, and the problem is to find some criteria of the
inaccuracy introduced by such fragmentary calculations. Fortunately, there is
a mathematical theorem regarding localization of the characteristic numbers of
matrices (in our case values of energies ε) proved by Gershgorin [5.109] that
contributes significantly to the solution of this problem. Following this theorem,
the interval of localization of the roots of the secular equation (5.8) of the order
n (i.e., the MO energies ε in the MO LCAO method with a basis of n functions)
is limited by the following inequalities:
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|Hii − ε| ≤
∑

j �=i

|Hij | (5.118)

(In complex-conjugated numbers these intervals become circles on the complex
plane and are termed—Gershgorin circles .) It is seen from this expression that
localization of the MO energies ε with respect to the diagonal element (Coulomb
integral) Hii is determined by the sum of absolute values of all the off-diagonal
elements (resonance integrals) Hij of the ith row. Therefore, neglect of one of
the matrix elements Hik reduces two intervals of localization of the MO ener-
gies in the two fragments [the radii of the ith and kth Gershgorin circles in
(5.118)], making them closer to the atomic values Hii and Hkk . The effect is
thus determined by the magnitude |Hik|, as compared with the sum of all the
other values |Hij | (in the first fragment) or |Hkj | (in the second fragment). From
these results the second rule of fragmentation emerges: the greater the intrafrag-
ment delocalization (the larger the sum of |Hij |) as compared with interfragment
interaction (Hik), the less the error of fragmentation.

For small Hik values the fragmentary solutions can be improved by consider-
ing Hik as a small perturbation. In the case of n interacting MOs from the two
fragments, the value of the new MO energy level εα with respect to the unper-
turbed one ε is given by the following inequality, which is similar to (5.118)
[5.107, 5.108]:

|εα − ε| ≤ ν|cαiHik| (5.119)

where 2ν2 = [(4n+1)1/2 − 1], and cαi is the LCAO coefficient in the intrafrag-
ment MO formed by the BA orbital. It is seen that the deviation of εα from
ε under the influence of the nearest-neighbor fragment is proportional to both
Hik and cαi . The latter is the smaller, the more delocalized the intrafragment
MO. Hence, again, the electron delocalization inside the fragment reduces the
influence of the neighbor fragments . In Ref. 5.107 (see also Ref. 5.108), a proce-
dure for double (intrafragment and interfragment) self-consistent calculations is
worked out; it takes into account the influence of interfragment interactions on
both the energy levels and charge distribution. The latter is of special importance
to transition metal systems due to significant charge transfers between the frag-
ments; in these cases the interface between the fragments should be electronically
transparent (see below).

In application to coordination compounds, the results presented above allow
one to conclude that the central metal atom cannot be used as a BA to per-
form the fragmentation procedure, due to the rather delocalized nature of the
electronic distribution created by the d or f electrons. However, the ligands
can be calculated fragmentary, if the above mentioned conditions are obeyed.
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Also, in multinuclear (multi-metal-center) coordination compounds the separa-
tions into one-center fragments may be quite necessary in order to perform the
calculations.

For multicenter coordination compounds or coordination compounds in ionic
crystals, some one-center atomic groups (or a limited number of centers in crys-
tals) can be selected for electronic structure calculations, with the cut bonds
substituted by some boundary conditions that simulate the influence of the cluster
environment in the real systems. This can be done, for example, by setting some
pseudoatoms on the broken bonds [5.110] (sometimes called “dummy atoms”),
or by using cyclic border condition for clusters in crystals [5.111] in which the
broken bonds on the border are linked to the equivalent bonds on the other bor-
der (see below). The discussion of fragmentary calculations is continued below
together with QM/MM methods.

Molecular Mechanics

Before discussing the more relevant (to transition metal systems) combined
quantum–classical methods of molecular modeling we briefly discuss the purely
classical method of molecular mechanics (MM). The MM method [5.112] is
presently widely employed in molecular modeling , especially in conformational
analysis of organic compounds, including biological systems. In its modern ver-
sions (computer programs MM2 and MM3), and used within the limits of validity,
MM proved to be very useful [5.112–5.116]. MM methods gained even more
interest because of their application in molecular dynamics , which considers the
classical (driven by the Newton law) motions of atoms or molecules (e.g., in
liquids) along the APES produced by MM interaction between them [5.19].

The main assumption of the MM method is that there are well-defined param-
eters of interaction (bonding) between given pairs of atoms that are transferable
from one molecular system to another . With this assumption the purpose of the
MM method is to represent the total energy of the molecular system as a function
of its geometry given by interatomic distances and angles between the bonds, and
to find the equilibrium geometry from the condition of energy minimum. Unlike
quantum-chemical methods in which the total energy is obtained from electronic
structure calculations, in the method of MM the total energy is computed as a
sum of bond contributions calculated in a classical way by means of empirical
parameters. The total energy is presented as follows:

Etotal = Es + Eb + Etors + Evdw + Eelec (5.120)

where Es is the bond-stretching energy, Eb is the angle-bending energy, Etors is
the energy of torsional distortion, Evdw is Van der Waals interaction of nonbonded
atoms, and Eelec is their electrostatic interaction energy. Figure 5.8 gives the
denotation of the coordinates used in the definition of the energies (5.120).

The potential of stretching energy (of deformation along the bond) is given
by a harmonic term, a parabola with a minimum at the equilibrium (unstrained)
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FIGURE 5.8. Illustration to the choice of coordinates of intramolecular interactions
determining the geometry of molecules in molecular mechanics (NB denotes nonbonded
atoms).

interatomic distance R0:

Es(Rij ) = 1
2Kij (Rij − R0

ij )
2 (5.121)

where Kij is the stretching force constant of the i—j bond. This equation contains
two constants, Kij and R0

ij (sometimes called force-field constants), which in the
MM method are considered identical for all i—j bonds between atoms i and j ,
and are taken equal to some values for the free, unstrained bond (unaffected by
other bonds).

For the bending interaction potential a similar quadratic dependence on the
bending angle θijk between the two bonds i—j and j—k (Fig. 5.8) is suggested:

Eb(θijk) = 1
2Kijk(θijk − θ0

ijk)
2 (5.122)

In a similar way the other terms in (5.120) are presented by classical interaction
formulas with constants to be obtained from empirical data [5.112–5.116].

In application to coordination compounds, this method raises some questions
and concerns [5.108, 5.117, 5.118]. As stated elsewhere in this book (Sections
1.2, 6.1, etc.), because of the three-dimensional delocalization of the coordina-
tion bond, there are no constant values of the type Kij and R0

ij for specific
metal–ligand M—L bonds which could be used for any complex independent
of the other M—L′ bonds formed by the same metal M. For instance, as seen
from Table 9.10, the Cu—O bond length varies from 1.8 to 3.0 Å depending on
the other Cu–ligand bonds. Therefore, in general, there are no fixed transferable
parameters for the metal–ligand bonds to be employed in the molecular force
field of MM.

Another implication emerges from the charge redistribution (discussed in
Section 6.3) in the ligands by coordination to a transition metal center, which
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TABLE 5.10. Interaction Constants Kij and R0
ij for Bond Length Deformation

Es(Rij ) = 1
2Kij (Rij − R0

ij )2 in Some Coordination Compounds

Bond Type Kij R0
ij

i j (mdyn/Å) (Å)

Co(III) N 2.25 1.95
Co(III) O 2.25 1.93
Co(III) Cl 1.68 2.30
Ni(II) N 0.68 2.10
Cu(II) S 0.50 2.38
Cu(II) N= 0.89 2.00
Cu(II) O 0.89 2.00

Source: Brubaker and Johnson [5.113].

makes the former electronically excited. The ligand ground state HOMO is depop-
ulated, while its excited MOs become populated as a result of the backdonation
from the metal (see Fig. 6.6). Therefore, the ligands in transition metal systems
should be modeled in their partially excited state, with the measure of excitation
determined by the coordination center.

Attempts to use the MM method for transition metal systems in a similar
way as done for organic compounds may have some grounds for specific cases
that allow for sidestepping the difficulties mentioned above. For instance, for
quite similar coordination centers with the same first coordination sphere and
weak influence of the next coordination spheres, one can assume that the force
constants for the same metal–ligand bonds are approximately the same. For
example, the Co(III)—N bond parameters in all the octahedral complexes with
six almost equivalent Co(III)—N bonds that differ slightly in the second and next
coordination spheres can be considered approximately transferable within this set
of systems.

Table 5.10 provides some force-field constants for metal–nitrogen interactions,
as well as some other constants for comparison [5.113]. Example 5.7 shows an
application of molecular modeling to macrocycle complexes.

EXAMPLE 5.7

Application of Molecular Modeling to Transition Metal
Complexes with Macrocycles

An example illustrating the possibilities of the MM method in the limits
of its applicability is demonstrated by the results of the calculations
for some macrocycle complexes [5.114]. Figure 5.9 shows the three
most probable conformations of transition metal tetraaza macrocycle
complexes, and in Fig. 5.10 the total strain energy is given calculated
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by Eq. (5.117) for two conformers, trans-I and trans-III, of [M(12-
aneN4)]n+ as a function of the M—N— length. The nature of the metal
M is not considered since it is shown that the results are not sensitive to
the assumed M—N force constant, provided that the bond is sufficiently
weak.

FIGURE 5.9. Three conformers of metal complexes with 14-aneN4tetraaza
marcocycles. The open circles are hydrogen atoms, while L is another ligand.
(After Hancock [5.114].)

From the results of MM calculations presented in Fig. 5.10 several
conclusions emerge: (1), the energy of the trans-III conformation with
the 12-aneN4 macrocycle is much higher than that of trans-I, and hence
the former is not likely to occur; and (2) the best-fit M—N bond length
for the more stable conformer is 2.11 Å. Finally, the curvature of the
APES at the minimum of the trans-I conformer is much smaller than
that of trans-III, meaning that the former is much more tolerant to the
variation of the metal ion size.
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FIGURE 5.10. Total strain energy calculated by molecular mechanics as a
function of the M—N bond length for two conformers of [M(12-aneN4)]n+,
trans-I and trans-III. The arrows indicate the best-fit M—N sizes for trans-III
(1.82 Å) and trans-I (2.11 Å), as their energies at the minima are significantly
different. (From Hancock [5.114].)

The relatively good results obtained in some of the simple MM calculations
of transition metal systems (see Example 5.7) show that they are based on
a reasonable sidestepping of the difficulties of the MM method, mentioned
above. This could be done, in particular, due to the homoligand complexes
considered in this example. Attempts to consider heteroligand systems in a
similar way, that is, to use the same constants of the force field (5.117) for a
M—L1 bond in different systems in which other M—Ln bonds are different,
have been shown to be ungrounded [5.108, 5.117, 5.118]. This statement can be
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illustrated by a series of specific effects important to transition metal systems
but not evolved in the MM method. For example, the well-known effects
of mutual influence of ligands (cis and trans effects; Section 9.3) indicate
directly that the local metal–ligand bond in these systems is not specific and
cannot be characterized by the same parameters when other bonds are different.
Similarly, the Jahn–Teller and pseudo-Jahn–Teller effects (Sections 7.3 and
7.4), for instance, the off-center position of the CA (Section 9.2), the plasticity
effect (Section 9.4), and so on, are completely beyond the possibilities of
the MM methods (note the abovementioned diversity in Cu—L bond lengths
illustrated in Tables 9.10–9.12, which obviously cannot be described by fixed
parameters).

Some combined quantum mechanical/molecular mechanics (QM/MM) method
of modeling transition metal compounds, including organometallics and metallo-
biochemical systems, are devoid of the failures of the MM methods mentioned
above, but preserve the simplicity and visualization achieved in modeling organic
compounds.

Combined Quantum/Classical (QM/MM) Methods

The idea underlying methods of combined quantum-mechanical (QM) calcula-
tions with simple molecular mechanics (MM) treatment is based on the under-
standing that in large molecular systems the quantum effects usually take place
in the active centers , often metal centers (e.g., in metallobiochemical systems),
while the large organic environment mostly changes its conformation without
essential electronic changes. In these conditions it is reasonable to divide the
system into two (or more) fragments, one of which contains the metal center, the
others sharing the remaining organic part. The geometry of the metal fragment
can be optimized using QM methods (Section 5.5), while the configuration of the
huge organic part can be evaluated by the MM methods. Then the use of a spe-
cial interface between QM and MM, discussed below, allows for a self-consistent
description of the system as a whole.

The advantage of this fragmentary approach with QM for the metal center and
classical description (MM) for the organic ligands is that in the more explicit
treatment of the former the special effect produced by the d electrons (including
nontransferability, mutual influence of ligands, Jahn–Teller effects, etc.) are fac-
tored in, while the MM treatment of the ligands preserves the simplicity achieved
in modeling organic compounds. A full QM optimization of the entire system
may be beyond the practical possibilities of the modern computers and programs;
the ab initio methods are unavailable for large molecules, while semiempirical
methods, although affordable for larger (but not very large) systems, are not suffi-
ciently accurate in treating intramolecular nonbonding interactions (Section 5.7).
In general, as mentioned above, when passing from microscopic description to
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macroscale properties, an interface between quantum description and classical
treatment may be inevitable.

Before discussing the conditions of QM/MM division of a molecular system
and treatment of the QM and MM regions with different methods, we give a
summarized formulation of the main requirements to this approach that follow
from quantum mechanics [5.108]:

• Condition of Fragmentation. In dividing the molecular system into frag-
ments, there should be significant theoretical grounds to assume that the
main electronic features are not lost in the proposed fragmentation; that is,
the fragmentary description may serve as a zeroth-order approximation (this
condition is discussed above together with fragmentary calculations).

• Condition of Interfragment Self-Consistency. if the fragments are calculated
separately, it should be possible to converge (with a criterion for conver-
gence of) the results to those of the system as a whole that includes charge
redistribution between the fragments.

• Condition of QM-MM Continuity. If some of the fragments are calculated
by QM methods while the others are considered by MM, there should be
a QM/MM interface that allows for a smooth transition between the QM
(quantum) and MM (classical) description of nearest-neighbor fragments.
Since quantum and classical descriptions have different basic equations,
this condition is not trivial and may cause significant difficulties in the
implementation of the QM/MM approaches and interpretation of the
results.

The main condition of fragmentation follows directly from the QM formulation
of the problem. Assume that our polyatomic system is divided in two regions,
QM and MM (Fig. 5.11), with the intention of performing combined QM/MM
treatment of its properties. In some cases it is useful to divide the QM region
into two (or more) layers to be treated at different computation levels and/or to
introduce a third region around the QM/MM one, the boundary region (BR), in
order to account for the interaction with the remaining environment (which is
always present, in principle).

The full Hamiltonian H of the system can be presented as a sum of terms
that belong to the QM and MM regions (HQM and HMM, respectively) and the
interaction between them HQM/MM:

H = HQM + HMM + HQM/MM (5.123)

In many studies on the QM/MM approach it is assumed that by means of
the Hamiltonian (5.123) we obtain the following expression for the partition
of energy directly: E = EQM + EMM + EQM/MM, where EQM and EMM are the
energies of the QM and MM regions, respectively, and EQM/MM is the energy of
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QM

MM

FIGURE 5.11. Schematic representation of the division of a large molecular system in
QM and MM regions. BR (boundary region) denotes the remaining environment.

their interaction. In general, this assumption is invalid [5.108]; it may take place
approximately if, and only if, the interaction between the two fragments is small
and can be considered as a perturbation to the solutions of the two fragments
taken separately; only in this case the total wavefunction of the system in the
zeroth approximation may be taken in a multiplicative form to result in the above
partition of the energy.

In some earlier publications devoted to solute–solvent systems the QM region
contains the solute (which includes the molecules that undergo a chemical trans-
formation), while the MM region is just the solvent (or a chemically nonbonded
enzyme environment). In such cases the interaction between the two regions can
intuitively be assumed to be small, perturbationlike. But even in solute–solvent
interactions of TMS [5.119] (and even for organic compounds, for example, in
enzyme–water interaction [5.120]) the QM–MM interaction may significantly
involve charge transfer.

Charge transfer between the QM and MM regions creates a major problem
for the QM/MM approach. Orbital charge transfers (Section 5.2) between the
metal center (QM region) and ligands (MM region) are especially important
for a TMS, where they determine the main properties of the system. If the
orbital charge transfers are factored in, the simple separation of the energy in
fragments is not valid. A more elaborate approach deemed to manage both
the condition of fragmentation and the charge transfer problem is discussed
below.

One QM/MM method aimed at TMS, available in commercial packages of
computer programs, is called ONIOM (our own N -layered integrated molecular
orbital and molecular mechanics) method [5.121] (a previous simpler version
was called IMOMM: integrated MO+MM). The main idea of this method is to
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divide the system under consideration in two or several (N ) layers that can be
treated at a different level of QM calculations down to MM. The most important
points in this approach is how to present the total energy of all N layers when
each is treated differently, how to handle the interface between them, and how
to satisfy the condition of interlayer self consistency.

For the energy, the authors [5.121–5.123] suggest the following scheme of
calculations. Consider the three-layer system. Denote by, respectively, H, M, and
L the high, medium, and low levels of approximation in the calculations, and
by S, I, and R, the small (central layer), intermediate (central plus next layer),
and real (all three layers) systems, respectively. Then the total energy of the
three-layer system E(3) is presented by the following equation:

E(3) = E(H;S) + E(M;I) + E(L;R) − E(M;S) − E(L;I) (5.124)

where E(H;S) means the energy of the small system calculated by the highest
level, E(M;I) is the energy of the intermediate (two-layer) system calculated at
the medium level, and E(L;R) is the energy of the real system with all the three
layers calculated in the lowest (MM) level. In fact, Eq. (5.124) means that only
the smallest (most active) part of the system (S) is calculated at the highest level
(H), while for the next layer the energy is presented as E(M;I)-E(M;S), that is,
the energy of the two-layer intermediate system calculated at the medium level
minus the energy of the small system calculated at the same (medium) level.
Similarly, for the third layer the energy is presented as the difference between
the whole (real) three-layer system and the two-layered intermediate system, both
calculated at the lowest level of theory (e.g., MM).

To explain how the interface between the layers is handled, consider a two-
layer system [5.122] in which the real system is M(P(CH3)3)2 and the smaller one
(model system) to be treated by the ab initio method is M(PH3)2. As seen from
Fig. 5.12, four sets of atoms can be distinguished according to their roles in the
two-layer calculations. The carbon atoms in set 3 of the real system are substituted
by hydrogen atoms in the model system, where they form set 2. Therefore, when
considering the real system by MM after ab initio calculating the model system,
we can take the coordinates of the atoms in set 3 (denoted in general as R3) as
functions of R1 and R2 of the atoms in set 1 and set 2, respectively:

R3 = R3(R1, R2) (5.125)

With this in mind, we obtain the following expressions for the energies E:

For the model system:

EQM = EQM(R1, R2) (5.126)

For the real system:

EMM = EMM(R1, R3, R4) = EMM(R1, R2, R4) (5.127)



FRAGMENTARY CALCULATIONS, MOLECULAR MECHANICS 215

FIGURE 5.12. The IMOMM two-layer system with four sets of atoms for M(P(CH3)3)2.
The model system to be calculated ab initio is M(PH3)2. (After Maseras and Morokuma
[5.122].)

For the combined QM+MM description:

E = EQM + EMM = E(R1, R2, R4) (5.128)

Equations (5.124)–(5.128), together with the corresponding equations for the
energy gradients with respect to Ri coordinates, solve, in principle, the combined
problem of electronic structure and geometry optimization (for more details, see
Refs. 5.121–5.123). Example 5.8 shows how this procedure works in application
to the reaction of oxydative addition of H2 to Pt(t-Bu)3)2.

EXAMPLE 5.8

Oxidative Addition of H2 to Pt(t-Bu)3)2 Treated by ONIOM
Version of QM/MM Methods

The treatment [5.121] of oxidative addition of H2 to Pt(P(t-Bu)3)2 may
serve as an example to illustrate the ONIOM method applied to a three-
layer system. Figure 5.13 illustrates the choice of the three parts in the
calculations: real, intermediate, and small.
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FIGURE 5.13. ONIOM three-layer system (real system, intermediate model,
and small model) for oxydative addition of H2 to Pt(P(t-Bu)3)2. (After Svenson
et al. [5.121].)

Table 5.11 shows the results obtained by different three-level calcula-
tions for this system. The geometry was optimized at the IMOMM level
with MP2 for the QM part and MM3 for the MM treatment (MP2:MM3)
[5.123]. It is seen that reasonable results for the activation energy of the
reaction are obtained in the ONIOM (B3LYP:HF:MM3) calculations at
a much lower cost then the DFT(B3LYP:B3LYP:B3LYP) calculations
of the whole system.



FRAGMENTARY CALCULATIONS, MOLECULAR MECHANICS 217

TABLE 5.11. Activation Barriers Ea , Energies of Reaction Er

(in kcal/mol), and Their Errors �E with Respect to the Pure
DFT(B3LYP) Method for Oxidative Addition of H2 to Pt(P(t-Bu)3)2
Calculated with Various ONIOM Schemes

Computer
Scheme Ea �Ea Er �Er Time (s)

B3LYP:B3LYP:B3LYP 18.3 0.0 10.5 0.0 1207
HF:HF:HF 24.6 6.3 18.7 8.2 438
B3LYP:B3LYP:HF 19.1 0.8 14.9 4.4 586
B3LYP:B3LYP:MM3 16.8 −1.5 7.0 −3.5 148
B3LYP:HF:HF 19.8 1.5 14.0 3.4 453
B3LYP:HF:MM3 17.5 −0.8 6.1 −4.4 51
B3LYP:MM3:MM3 16.4 −1.9 8.0 −2.5 15
CCSD(T):MP2:MM3 14.2 — 4.1 — 500

Source: Svenson et al. [5.121].

Analyzing the ONIOM method from the perspective of the general theory
outlined above, we note that the requirements of the theory are not well satisfied
in at least two essential points. First, the total energy of the system is taken as a
sum of the QM and MM fragment energies [Eq. (5.124)]. As emphasized above,
this additive presentation of the energies is valid if and only if there is a separation
of variables of the fragments that would allow for the total wavefunction to be
taken as a product of wavefunctions of each fragment taken separately. The
authors [5.121–5.123] do not discuss the validity of Eq. (5.124) based on this
requirement.

In the oxidative addition of H2 to Pt(P(t-Bu)3)2 in Example 5.8, such sep-
aration of variables means that the delocalization over the whole (real) system
electronic states (the MOs) may be approximately presented as a multiplicative
combination of MOs localized on the small, intermediate, and real systems, taken
separately. This is not possible, or at least it has not been proved that it is possi-
ble. In view of the conditions of such separation discussed below, the relatively
good results of QM/MM calculation of the energy of this system (Table 5.1) is
seemingly due in part to saturated σ bonds formed by the atoms (carbons) at the
border between the fragments (see next section).

The neglect of the general condition of division in fragments is more evident
in other applications of this method to TMS [5.108]. In particular, in a two-
layer (DFT:MM) treatment of several large organometallic palladium complexes
[5.124] the division into the QM and MM regions cuts double bonds. Such a
separation of the two regions violates the basic requirements of the fragmentation
theory.

The total energy is an “average” characteristic of the system that is less sen-
sitive to the approximation used in its calculation than with charge distribution
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determined by the local values of the wavefunction. Since electronic structure
calculations are carried out on the QM fragment only, it is implicitly assumed
that the charge distribution in the fragment will remain the same as in the real
system. In case of TMS, as emphasized above, this may not be the case. It brings
us to the second requirement of the general theory, the condition of interfragment
self-consistency, which is not satisfied in the ONIOM approach. In other words,
ONIOM does not account for (and does not predict) charge transfer between the
QM and MM parts of the system.

Returning to the Example 5.8, Fig. 5.13, we see that, according to Eq. 5.124,
we should perform five calculations, including one for the whole (real) system at
the lower MM level and another for the intermediate model system at the same
MM level. However, as discussed above in this section, there are no reliable
force-field parameters for transition metals, and the MM approach is in general
not applicable to TMS. These comments apply to all the metal-containing systems
treated by the ONIOM method.

Another method, the QM/MM method with charge transfer between the QM
and MM parts (the QM/MM/CT method) [5.108, 5.117, 5.118], is based on
fragmentation of polyatomic systems discussed at the beginning of this section,
and it is aimed directly at TMS. It satisfies all the fragmentation requirements of
the general theory and includes the main distinguished feature of TMS: charge
transfer between its constituent fragments.

As shown above, the fragmentation condition can be obeyed if the inter-
fragment interactions are much stronger than the intrafragment ones. On the
basis of the fragmentation procedure discussed above, consider the two frag-
ments, I and II, of Fig. 5.7 and choose the border borderline between the
fragments to cut an 2s2p atom that is not a bridge of π-electron delocaliza-
tion; in other words, the border atom (BA) should not form π bonds with
at least one of the two fragments. As above, assume that some of its spn-
hybridized orbitals belong to fragment I, while the others pertain to fragment
II. This partitioning method, in which the borderline between the fragments
cuts an atom (not a bond), has the advantage of (1) satisfying the condition
of fragmentation, outlined above, and (2) allowing for direct charge transfers
between the fragments, which is most important when there is strong elec-
tron heterogeneity, for example, when some of the fragments contain transition
metals.

For evaluation of the charge transfer between the fragments and with inter-
fragment self-consistency the double-self-consistency (DSC) procedure was sug-
gested [5.108, 5.117, 5.118]. It allows one to correct both the energy-level
positions and orbital charge distribution of the zeroth-order solutions due to the
interfragment interaction.

In semiempirical MO-LCAO calculations of any type, for instance, the itera-
tive extended Hückel (IEH) approximation (Section 5.5), the charges on atoms,
and more specifically their in-molecule electronic configurations, are usually cal-
culated by means of a Mulliken population analysis (other population schemes
can be involved and similar procedures can be realized in ab initio calculations).
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For instance, for the p-electron density on atom A according to Eq. (5.18), we
have

qA
p =

∑

i,ν

∑

p∈A

ni cip ciνSpν (5.129)

where cip and ciν are the ith MO LCAO coefficients of the orbitals p and ν,
respectively, Spν is their overlap integral, and ni is the occupancy number of the
ith MO. These orbital densities determine the ionization energy of the valence
state and the matrix elements Hii and Hij for the next iteration in the self-
consistent calculations. In other methods these matrix elements are determined
by the density matrix Pμν [Eq. (5.21)]:

Pμν =
∑

i

ni cμi c∗νi

For the border atoms, as for the others, the atomic orbital charges and the den-
sity matrix are determined by the LCAO coefficients of all the AOs of the atoms
that participate in the corresponding MO. In iteration procedures the charges on
the border atoms that determine the ionization energy of the valence state or the
density matrix (which, in turn, form the matrix elements of the secular equation)
depend on the results of the previous calculation of both fragments . If as a result
of the zeroth-order calculations with separate fragments and arbitrary distribution
of electrons (first iteration), there is no balance of charge between the fragments,
i.e. the atomic charges (or density matrix) for the BA were underestimated in one
of the fragments and overestimated in the other one, the density matrix evaluation
for the next iteration should increase the corresponding matrix elements in the
first fragment and decrease them in the second fragment.

Denote the atomic charge on the BA obtained after (5.129) by separate self-
consistent-field calculations of fragments I and II by qBA(I) and qBA (II), respec-
tively. Then the difference

�qBA = qBA(I) − qBA(II) (5.130)

may serve as a measure of interfragment self-consistency. In the next iteration
the BA charges on fragments should be changed to

qBA′(I) = qBA(I) − k �qBA (5.131)

and

qBA′(II) = qBA(II) + k �qBA (5.132)

respectively, where k is an arbitrary coefficient introduced for speeding conver-
gence: qBA is the charge on one atom (BA), while the charge transfer goes to
the whole fragment.
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The BAs thus serve as channels of charge transfer from one fragment to
another , and the final solution of such fragmentary calculations yields MO ener-
gies and density matrices that are self-consistent with respect to both intrafrag-
ment and interfragment charge distribution (double self-consistency). In this way
an electronically transparent interface between the fragments is realized; it fac-
tors in all effects of charge transfer, excitation by coordination, and so on,
mentioned above. We calculate the fragments in parallel and independently, but
in fact they are strongly interdependent since after each iteration the charges, or
the density matrix, that determine the matrix elements of the Hamiltonian for
each fragment are calculated on the basis of the results of the previous iteration
obtained from both fragments.

This implementation of the condition of interfragment self-consistency implies
that both neighboring fragments are calculated quantum-mechanically. If one
of these fragments is to be optimized by MM as stipulated by the QM/MM
method, both conditions of interfragment self-consistency and QM/MM quantum-
to-classical continuity can be satisfied simultaneously by an additional procedure
in which, in addition to the smaller part of the system, which is given a full
QM treatment, and its larger part, which is optimized by MM, an intermediate
fragment between them (a part of the MM site) is separated and treated by
both QM (electronic structure) and MM (geometry optimization), the QM+MM
fragment. This allows one to reach double self-consistency at the border atom
using the electronic structure data from both fragments, and to realize a smooth
transition from the quantum site to the classical MM description of the organic
ligands.

For real molecular systems, especially (but not only) organometallics, appro-
priate fragmentation results in more than two fragments, some of them having
more than one BA (see the example below). This complicates the DSC pro-
cedure mainly because the charge transfer to a given fragment via one of the
BAs should be balanced with that from other fragments (via other BAs). A
procedure is suggested [5.108, 5.117] to expedite the DSC convergence in this
case, and the geometry optimization problem should be handled at each iteration
accordingly.

A major problem emerges in geometry optimization when unsaturated
valences remain at the border of the fragments. For instance, in the fragmen-
tation method, discussed above, when the BA participates with some of its
orbitals in one of the fragments, with its other orbitals engaged in the other
fragment, the BA has unsaturated valences when included in any one of the
fragments. There are several approximate procedures for handling this problem;
the most useful one is the so-called method of link atoms (or dummy atoms).
The essence of this method is simply to substitute the free valence by a bond
to a hydrogen atom. This means, for example, that the cut single bond C—N
in —C—N< is substituted by H—N< in the right fragment, and —C—H
in the left one. If an atom is cut in the fragmentation, the valences can be
substituted by either link atoms, as above, or link groups, as illustrated in
Fig 5.14. While intuitively the scheme of link atoms seems to be reasonable,
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FIGURE 5.14. Link groups for one of the border atoms (carbon) in the fragmentation
of iron picket-fence porphyrin (Fig. 5.15): (a) the real bonds formed by the border atom
(the latter is shown by encircled dots); (b) the link groups (shown by dashed lines) in
calculations for the central fragment; (c) the link groups for the ligand fragment.

the computational details may be complicated [5.108, 5.117]. Example 5.9
shows the results of application of the QM/MM/CT method to iron picket-fence
porphyrin.

EXAMPLE 5.9

Iron Picket-Fence Porphyrin Treated by the QM/MM Method with
Charge Transfer (QM/MM/CT)

By way of example we show here some results obtained by QM/MM/CT
calculations of iron picket-fence porphyrin [5.117, 5.108]. Figure 5.15
shows the chemical structure of this system [5.125]; dashed lines indi-
cate the fragmentation used in the calculations [5.117]. The BA (four
carbon atoms at four “fence” ligands and the nitrogen of the axial lig-
and) do not form π bonds with the central fragment because of steric
restrictions (the corresponding two molecular groups from both sides
of the BA are not coplanar).
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FIGURE 5.15. Structure of iron picket-fence porphyrin. The dashed line sep-
arates the central fragment; the border atoms are encircled.

The choice of link atomic groups is shown in Fig. 5.14. The authors
[5.117] tried also a simpler version with just one hydrogen atom for
each free valence with not very significant changes in the results. The
central fragment was optimized using INDO/1 from the ZINDO pack-
age [5.91, 5.126] reprogrammed to include the fractional MO occupancy
numbers following Eqs. (5.130)–(5.132). The MM treatment was real-
ized by using the Tripos force field [5.127] within the SYBYL molecular
modeling package.

The optimization procedure for the central fragment is rather fast
(several minutes) for the initial (closed-shell low-spin configuration)
fragment and becomes much slower for the open-shell calculations after
fractional charge transfers. The results reproduce the out-of-plane posi-
tion of the iron atom with respect to the porphyrin ring at a distance
h = 0.45 Å; the experimental value is 0.40 Å [5.128], which is usual
for the group of similar porphyrins [5.129]. This out-of-plane position
of the central atom is an important feature of some iron (and other
metal) porphyrins that is due to the vibronic mixing of the occupied
a2u(π) MO of the porphyrin ring with the unoccupied a1g(dz2) MO
of (mainly) the iron atom by the out-of-plane displacement of the iron
atom (see Section 9.2). It is one of the effects that cannot be accounted
for properly without QM treatment: MM does not involve electronically
excited states. The authors used INDO/1 [5.91, 5.126] for geometry opti-
mization and ICONC [5.130] for calculation of charge distribution and
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redistribution after charge transfer. Interfragment self-consistency was
reached after eight or nine cycles. The convergence process together
with the DSC charge redistribution between the fragments is illustrated
in Fig. 5.16.

FIGURE 5.16. Charge redistribution between the six fragments (CF is the
central fragment and Ln is the nth ligand fragment) in the DSC procedure versus
iteration. It is seen that self-consistency is achieved after the 8th iteration.

It is seen that each of the four “fence” fragments loses approxi-
mately 0.5–0.6 electron, while the axial ligand gains about 0.6 elec-
tron, transferred via the central fragment; the balance of the latter
is thus approximately about −1.6 electrons. This substantial charge
transfer between the fragments confirms that the non-charge-transfer
models of QM/MM treatment, discussed above, may be invalid for
TMS. The size of these charge transfers seems to be correct in order
of magnitude. A ligand-to-metal transfer of 0.5–1.0 electron is not
unexpected, and the large total transfer to the metal fragment may
be reasonable in view of the high “charge capacitance” of the por-
phyrin ring (Section 10.1, Example 10.1). The optimized geometry
agrees quite well with the experimental data available, in particular
with X-ray results [5.128].

For QM/MM/CT calculations for other systems, see Refs. 5.117,
5.118 and 5.131.
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5.7. GENERAL COMPARISON OF METHODS

Discussion of the advantages and disadvantages of the methods of electronic
structure calculations and their mutual comparison is an extensive subject for
entire monographs [5.17, 5.37, 5.132–5.134]. The goal of this section is to
provide a general brief outline of the problem for a better understanding and
rough estimation of the relative value of semiempirical and nonempirical MO
methods, as well as DFT and QM/MM methods in their application to transition
metal compounds.

The modern state of the art in the MO LCAO and related methods discussed
in this section is rather advanced and, in principle, makes it possible to compute
numerically the electronic structure of any molecular system of reasonable size.
This statement does not mean that there are no problems in the realization of such
computations. Concerning ab initio and nonempirical methods, these problems
are created by reasons of cost and difficulties in the rationalization of the results .

The cost reasons are due to the increased computer time required for the
calculations with an increased number of atoms in the system. For the calculation
of a moderate seven-atom octahedral complex of a 3d transition metal using
a minimal Gaussian basis set, one must compute about 109 integrals that can
be reduced to 107 by preliminary contraction of the basis set (Section 5.3),
and the number of integrals usually increases as n4, where n is the number of
functions in the basis set, which is larger than the number of atoms (in the DFT
methods the number of integral is proportional to n3). For instance, for a 30-atom
molecular system the number of integrals and hence the computer time increase
more than 250 times as the basis set increases 4 times. Obviously, there is a limit
of economic expediency of such calculations. Note also that in the calculation
of fine details (small effects) of electronic structure different versions of highly
sophisticated methods may yield different (sometimes conflicting) results, which
complicate their reliable interpretation [5.135].

Another difficulty with nonempirical calculations is that for large systems
the computer output information, the wavefunction, spread in thousands of
determinants is so vast that without additional rationalization it is useless.
Fortunately, modern computer programs are aimed at yielding final physical
quantities without revealing the wavefunction explicitly. As mentioned in
Section 1.2, numerical results of electronic structure calculations, taken as
such, are rather experimental data relevant to the specific system for which
the calculations were performed, and only when accumulated for series of
somewhat similar compounds, they can be used for comparisons and theoretical
generalizations based on analytical models .

From this perspective the semiquantitative and semiempirical methods are
more advantageous. First, with these methods the computer time is essentially
reduced. For instance, for the MnO4

− complex with a valence basis set of 3d, 4s,
and 4p AOs of Mn and only p AOs of the oxygen atoms, the number of repulsion
integrals to be computed in the nonempirical method is 26,796, while in the
NDDO method it is reduced to 2415, and in the semiempirical CNDO method
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there are only 15 [5.86]. In the semiempirical methods the results of numerical
computation, as distinct from the ab initio data, are quite understandable in terms
of visual MOs built up from atomic valence states, the picture of the electronic
structure is thus more acceptable for chemists.

However, semiquantitative and especially semiempirical methods have other
faults, mainly insufficient theoretical foundation, limited quantitative reliability,
and low credibility . As to the theoretical foundation, it is certainly reduced in
semiempirical methods as compared with the nonempirical ones. For instance, in
the extended Hückel method (Section 5.5) the coefficient k in the presentation of
the off-diagonal matrix element of the Hamiltonian Hij by the diagonal elements,
Hij = 1

2k(Hii + Hjj ), is usually taken as k = 2 for π bonds and k = 1.67 for
σ bonds, which, theoretically, are almost arbitrary (for further criticism of such
methods, see Refs. 5.85–5.87). Therefore, one cannot expect the energies and
wavefunctions obtained with such coefficients to be sufficiently trustworthy.

For absolute values of semiempirically calculated quantities, the credibility
is low, but increases when there are nonempirical results that can be used as
calibration points. When used with the same k value for series of compounds,
this method yields much more reliable relative values in which the systematic
error introduced by the arbitrary choice of the basic formula is mostly excluded.
As stated by Hoffmann [5.136], the extended Hückel theory “has the merit of
being of the low end of a quality scale of approximate MO calculations. Since
all other methods are superior to it, it inculcates in its user a feeling of humility
and forces him or her to think about why the calculations come out the way
they do. The method is widely applicable and transparent but it has limited
quantitative reliability.”

On another occasion, as Pyykko put it [5.105]: “it is said that when no such
results were yet available, some of the earliest semiempirical conclusions [5.71,
5.103] suggesting that relativistic effects might be important in chemistry, were
met with derision.” This derision was ungrounded because in these studies the
semiempirical approach was used only for comparison of relativistic and non-
relativistic results obtained with the same method for the same compounds.
The consequent developments confirmed the importance of relativistic effects
in chemistry (see Section 6.5).

The low credibility in semiempirical methods is often based also on their
inappropriate use and the ignorance of limits of applicability . All the methods of
calculation of electronic structure of molecules have limits of applicability deter-
mined by the principles on which they are based and the additional assumptions
made when the calculations are carried out. The main limitations of the MO and
density-functional methods are mentioned in Sections 5.3–5.5. The DFT meth-
ods as simplified ab initio MO LCAO approaches gained significant attention in
the last two decades.

In view of the variety of existing methods of calculation, the user may have
problems choosing the method that is adequate to the problem at hand. It is
clear that the method of calculation of the electronic structure of a given molec-
ular system should satisfy the requirement of minimum labor compatible with the
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problem to be solved and the accuracy required . For instance, to calculate the
expected g factors in the ESR spectra of transition metal and rare-earth complexes
(Section 8.4), the crystal field theory (Chapter 4) may be sufficient, whereas the
superhyperfine structure cannot be estimated without taking into account the cova-
lence effects, that is, without using one of the MO approximations (Section 5.2).
If the spin density distribution over a larger ligand system is sought for, a more
complete MO LCAO approach should be employed (semiempirical, semiquan-
titative, nonempirical, ab initio, and their different versions) depending on the
required quantitative reliability and accuracy.

The problem of accuracy of the results of quantum-chemical calculations is
not trivial. Although quantum chemistry is, in general, a theoretical discipline
based on the stone background of quantum mechanics, unlike the majority of
mathematical disciplines, it has no mathematically rigorous internal criterion of
calculations accuracy. This statement emerges from the basic approximations of
quantum chemistry, mentioned in Section 1.3, which are inevitable and have no
exact quantitative measure of the error they introduce that can be easily evaluated.

As a measure of accuracy of the calculations, the quantum-mechanical
limit —calculations in which all the interactions are taken into account exactly
as required by quantum mechanics—could be used. However, strictly speaking,
the exact quantum-mechanical limit cannot be reached, not only because
of technical problems, but also, in principle, because of the lack of exact
Hamiltonians that include the relativistic interaction between the electrons
(Section 5.4). Although the latter is important only for some relatively weak
magnetic properties, it is a matter of principle that, strictly speaking, the exact
quantum-mechanical limit does not exist.

Practically, the quantum-mechanical limit cannot be reached for more prosaic
reasons that are discussed in Sections 1.3, 5.3, and 5.4. For the MO and DFT
methods they are: (1) use of limited basis sets and neglect of (a part of) electron
correlation effects, (2) adiabatic and nonadiabatic coupling to nuclear motions,
and (3) relativistic effects. Extension of the basis set leads to the Hartree–Fock
limit. Including the correlation effects (e.g., by CI), one moves significantly
to the quantum-mechanical limit, but still remains far from it. Exact calcula-
tions, including nuclear motions and relativistic effects, are beyond the practical
possibilities not only for coordination compounds, but also for much smaller
molecules.

Thus in electronic structure calculations in general we are far from the
quantum-mechanical limit, and there are no quantitative estimates of the
remaining distance to this limit in each specific case. Therefore, the only
practically acceptable criterion of accuracy of the results of calculations is the
comparison with experimental data .

Concerning the comparison with experiments, in some cases the less labori-
ous and less quantitatively reliable semiempirical results may be closer to the
experimental data than the nonempirical calculations. This better agreement with
experiments is reached not by more accurate calculations, but by introducing
appropriate empirical and other (sometimes arbitrary, adjustable) parameters.
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With adjustable parameters, one can obtain results that are more adequate to
the experimental data, but they cannot be classified as more accurate results of
calculations in the sense of approaching the quantum-mechanical limit.

Table 5.12 compares nonempirical and semiempirical calculations from the
perspective of their relative advantages and disadvantages denoted by “+” and
“−,” respectively.

The nonempirical methods are ahead in determining the progress in the
area as a whole. The more recent achievements in solving chemical problems
(Sections 6.3–6.5, 11.3) based in major part on the use of modern computers,
show the increasing ability of these methods. As mentioned above, nonempirical
methods are also used to obtain calibrating points for semiempirical methods
and other model approximations, thus influencing their development and serving
them as a test.

On the other hand, semiempirical methods have many advantages of simplicity,
visualization, and flexibility; they are less labor-intensive and computer-time-
consuming and enable calculations for much larger systems than do nonem-
pirical methods. These advantages are of particular importance to coordination
compounds with heavy atoms and large ligands (e.g., metallobiochemical com-
pounds). Special attention should also be paid to better visualization and more
direct relevance to analytical models that allow for a better understanding and
contribute significantly to the formation of intuitive thinking (Section 1.1). Ana-
lytical models also contribute to the rationalization of numerical results and
development of the general theory of electronic structure.

As for coordination compounds, some additional remarks are in order on com-
parison of MO LCAO approaches with crystal field theory (CFT). CFT provides
a satisfactory qualitative description of one of the main effects of coordination:
CA term splitting. The MO LCAO scheme, in the part concerning the CA states,

TABLE 5.12. Comparison of Nonempirical and Semiempirical MO LCAO
Methods in Terms of Relative Advantages and Disadvantages
Denoted by “+” and “−,” Respectively

Nonempirical Semiempirical
Characteristic Methods Methods

Theoretical foundation + −
Accuracy of results + −
Quantitative reliability

(credibility)
+ −

Labor consumption − +
Calculative molecular size − +
Flexibility (e.g., the possibility

of fragmentary calculations)
− +

Visualization of results − +
Relation to analytical models − +
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results in qualitatively the same energy level splitting (Section 6.2). But the
absolute value of the main CFT parameter � can be correctly calculated only in
the MO LCAO approaches.

In the late 1950s–early 1960s there was intensive discussion of whether the
CFT gives a correct order of magnitude for � calculated in the point charge
model, and it was concluded that for predominant ionic compounds the covalence
contribution to � is about 10–20% [5.11]. If covalence corrections are intro-
duced, for instance, in the AOM approximation of weak covalence (Section 5.2),
the results on energy-level splitting may be quite satisfactory. A more detailed
theoretical comparison between CFT, AOM, and MO LCAO methods is given
by Gerloch [5.134].

However, as discussed in Section 8.4, the CFT cannot, in principle, consider
phenomena that depend on the details of electronic structure of ligands, includ-
ing the detailed description of the bonding, π-bond formation, backdonation,
charge transfer spectra, and ligand activation by coordination, and the AOM is
also strongly limited to phenomena that take place within the d-electron shell
(Section 5.2). All these problems should be treated by MO LCAO or density-
functional methods.

The possibilities of quantum chemistry increase significantly when reasonable
combinations of quantum-mechanical, semiclassical, and classical methods are
employed. For instance, Clementi and Corongiu [5.137] have shown that very
large systems with thousands of atoms can be described by using nonempirical
quantum-chemical calculations of electronic structure for a part of the system
followed by a hierarchy of models, including molecular mechanics, statistical
physics, and fluid mechanics, as well as molecular dynamics. The DNA in solu-
tions (more than 4000 atoms) was used as an example. This and many other
similar works shows that the possibilities of theoretical chemistry using elec-
tronic structure calculations as a basic element is practically unlimited and may
reach the level of macrosystems, provided that the theory is used with a proper
understanding of its possibilities.

An essential problem here is to work out appropriate interfaces between dif-
ferent parts of the polyatomic system that are treated by significantly different
methods. This brings us to the classical and quantum–classical methods con-
sidered in Section 5.6. Notwithstanding their limitations, these approaches may
serve as a basis for further progress in understanding and prediction of properties
of transition metal systems when more accurate electronic structure calculations
are practically inaccessible. The QM/MM methods provide also for an interface
between (microscopic) quantum and (macroscale) classical treatments that may
be unavoidable in the interpretation of observable properties of matter.

The majority of combined QM/MM methods are aimed at organic systems and
do not include the option of charge transfers between its fragments; hence they are
inapplicable to transition metal systems for which such charge transfers are most
important. The QM/MM/CT method, described above, is aimed at large TMS: it
performs QM calculation and geometry optimization of the metal-containing frag-
ment and MM treatment of the organic ligands with an electronically transparent
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interface based on a double (intrafragment and interfragment) self-consistent pro-
cedure that allows for the interfragment charge transfers.

SUMMARY NOTES

1. The one-electron approximation in electronic structure calculations is the
most widely used one; it assumes that each electron is moving indepen-
dently in the averaged field of the nuclei and all the other electrons, and
its motion can be described by molecular orbitals (MOs).

2. The presentation of MOs by linear combinations of atomic orbitals
(LCAO), originally introduced to reflect approximately the real motion of
the electron along the atomic valence states of the molecular system, was
extended to include as much as possible excited atomic states (in the basis
set); this allows one to mathematically approach the SCF Hartree–Fock
limit to the exact solution in the one-electron approximation (which still
lacks correlation effects).

3. Symmetry considerations allow one to employ group-theoretical methods
to classify MOs on symmetry (to obtain symmetry-adapted MOs) that
essentially simplify the description of the electronic structure and reduce
numerical calculations.

4. Charge distribution in MOs renders them either bonding, or nonbonding,
or antibonding. When pairwise populated with electrons, bonding and anti-
bonding MOs approximately counterbalance each other in bonding energy.
The notion of Mulliken atomic charges is roughly approximate and may
be misleading in application to TMS.

5. Numerical calculations of energies and wavefunctions (LCAO coefficients)
with MO LCAO methods are central in quantitative evaluation of electronic
structure. In the one-electron approximation, mentioned above, the results
may be unsatisfactorily inaccurate (even with the best basis sets) because
of neglect of electron correlation effects —the difference between instant
and averaged interelectron repulsion.

6. Various methods of electronic structure calculations factor in electron cor-
relation effects, most of them based on configuration interaction and per-
turbation theory. Approved by multiple applications, these methods are
available in user-friendly computer programs (some of them downloadable
online free of charge).

7. By calculating the electronic energy as a function of nuclear
coordinates—the adiabatic potential energy surface (APES)—one
can reveal the nuclear configuration at the minimum of this function, the
equilibrium geometry; modern software packages perform such geometry
optimization automatically. This procedure is based essentially on the
adiabatic approximation. Important deviations from this approximation are
considered in Chapter 7.
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8. Ab initio methods are limited by labor and computer time required for
electronic structure calculation of large molecular systems. Therefore, semi-
quantitative and semiempirical methods remain in widespread use. Among
them approaches based on density functional theory (DFT) are most usable
for large molecular systems and crystals.

9. Among the various semiempirical methods, which are much simpler than
ab initio and semiquantitative methods, the iterative extended Hückel (IEH)
method with charge and configuration self-consistency (SCCC method) is
often used for coordination systems.

10. Fragmentary calculations and combined quantum–classical methods in
which the active site of the system is treated by quantum mechanics, while
the rest of the system is considered by classical molecular mechanics, are
unavoidable in the study of large coordination (e.g., metallobiochemical)
systems.

EXERCISES AND PROBLEMS

*P5.1. Following Example 5.4, in which calculations of Ag-type MOs of
TiF6

3− are carried out using the Wolfsberg–Helmholz-type semiem-
pirical IEH approximation, calculate in the same way both σ - and
π-type MOs of Eg and T2g symmetry of this system and construct
its MO energy diagram. Use the following numerical values of the
empirical parameters [5.99] (in kK: 1 kK = 103 cm−1): Hdd = −91.382,
Hss = −78.898, Hpp = −46.060, Hσσ = −154.5, Hππ = −177.2,
S(s, σ ) = 0.175, S(p, π) = 0.135, S(p, σ ) = 0.198, S(d, σ ) = 0.180,
and S(d, π) = 0.101.

*P5.2. For the same problem of evaluating the two A1g-type MOs in TiF3−
6 solved

in Example 5.4 by the semiempirical IEH method, use the approximation
of weak covalence of Section 5.4, in particular, Eqs. (5.38) and (5.39), to
obtain the same MO energies, and Eqs. (5.34)–(5.37) for the wavefunc-
tions, and compare the results with those of the IEH method. Analyze the
differences between the two methods and indicate your preferences.

P5.3. Formulate the relative advantages and disadvantages of DFT methods in
application to TMS. Since the charge density does not depend on spin
explicitly, can we evaluate the spin of the system by DFT methods? Can
we calculate excited states by these methods? Can we treat degenerate
states by DFT?

*P5.4. (Carefully repeat the exercises in Examples 5.2 and 5.4 before solv-
ing this problem.) Quite similar to Example 5.4, download the program
GAMESS (free of charge) or MOLPRO (trial version free for one month),
aimed at electronic structure calculation and geometry optimization of
molecular systems, carefully read the manuals, and calculate ground-state
energies, wavefunctions, and equilibrium geometry (interatomic distances
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and angles) of MnO4
− in square-planar, pyramidal, and tetrahedral con-

figurations in the Hartree–Fock approximation with the basis set 6-31G*.
Compare the energies of the three configurations, as well as all the other
results with those obtained for the same system in the next three problems.

*P5.5. The same as in Problem 5.4 but calculated using the MP2 approximation
with the 6-31G* basis set with the same comparisons as in Problem 5.4.

*P5.6. The same as in Problem 5.4 but calculated in the DFT approximation using
LDA and B3LYP exchange–correlation functionals and the 6-31G* basis
set with all comparisons as in Problem 5.4; compare the results also with
DFT-Xα calculations in Ref. 5.138.

**5.7. (Carefully repeat the exercises in Examples 5.2–5.4 and Problems 5.4–5.6
before solving this problem.) Download the program GAMESS (free
of charge) or MOLPRO (trial version free for one month) aimed at
electronic structure calculation and geometry optimization of molecular
systems, carefully read the manuals, and calculate ground-state ener-
gies, wavefunctions, and equilibrium geometry (interatomic distances and
angles) of FeF6

4− in high-spin and low-spin configurations using the
CASSCF method. Compare their energies with those in the correspond-
ing Tanabe–Sugano diagram in Section 4.3. Can this TMS be used as a
temperature-dependent spin crossover system (Section 8.4)?
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6
ELECTRONIC STRUCTURE
AND CHEMICAL BONDING

Chemical bonding predetermines the very existence of chemical substances and
their specific structure and properties. Knowledge of origin and control of chem-
ical bonding underlies purposeful synthesis of new compounds .

This chapter is devoted to the origin of chemical bonding in transition metal
coordination compounds as a feature of their electronic structure.

6.1. CLASSIFICATION OF CHEMICAL BONDS BY ELECTRONIC
STRUCTURE AND ROLE OF d AND f ELECTRONS
IN COORDINATION BONDING

Following the electronic nature of chemical bonding, defined in Section 1.2 as
resulting from collectivization of the electrons of interacting atoms, electronic
structure should play a key role in the classification of chemical bonds and
definition of coordination bonding. Analysis of this problem in terms of the
achievements and modern understanding of the origin of chemical bonding has
not received due attention in the literature [6.1]. In fact, the commonly used attri-
bution of compounds to different classes is based on the historically established
classification carried out when our knowledge about the electronic structure was
rather poor, and therefore it creates controversies and misunderstandings. In this
chapter we discuss the classification of covalent bonds; as mentioned in Section
1.2, pure ionic compounds do not exist (in spite of the fact that the ionic model
may be useful in particular cases).

Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory,
Second Edition By Isaac B. Bersuker
Copyright © 2010 John Wiley & Sons, Inc.
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Criticism of the Genealogical Classification

The traditional (“classical”) classification of chemical bonds is based on the idea
of atomic valence. Following this idea, it is assumed that there is a large class
of valence compounds in which the chemical bonds have a localized diatomic
nature similar to that of the H—H bond in the H2 molecule. The main assumption
is that the valence bond is formed by the pairing of two electrons supplied by one
from each of the binding atoms . The development of this concept led to the
notions of multiple bonds and bond saturation , as well as to the presentation of
a complex molecule by its valence structure with single, double, and triple bonds.
For many classes of compounds, their presentation in the form of one valence
structure proved to be invalid, and in order to preserve the concept of valence,
the idea of superposition of two or several valence structures was employed.

In addition to this traditional valence system, there is a large class of com-
pounds in which the chemical bonding can be presented as formed by two atoms
or atomic groups which (one or both) have no unpaired electrons. For these cases
it is assumed, following the valence scheme, that the two electrons needed for
formation of the bond are supplied by one of the bonding groups (the electrons
donor), while the other group participates as an acceptor of electrons. Here we
have the donor–acceptor bond , or coordination bond , with the two notions thus
assumed identical.

It is seen that in the traditional classification two main types of bonds—
valence bonds and donor–acceptor (coordination) bonds—are distinguished
according to the possibility to reduce them to local diatomic and two-electron
bonding. More precisely, the whole difference between these two types of bonds
is reduced to the genealogy (origin) of the two bonding electrons in the diatomic
bond; in valence compounds (bonds) the bonding electrons are provided by two
atoms, or they occur as a superposition of several such possibilities, whereas
in donor–acceptor bonds the two electrons are supplied by only one atom,
the donor. Therefore this classification can be called genealogical . It is based
entirely on the concept of valence (Table 6.1).

Data accumulated from many years of study of chemical compounds show that
the genealogical classification does not correlate with their electronic structure
and properties. Indeed, two simple systems, CH4 and NH4

+, are isoelectronic and
quite similar in the distribution of the � cloud of electrons determining the bond-
ing and properties (in both systems there are four tetrahedral two-electron bonds
[6.2]). The difference between them is that in NH4

+ there is an additional pro-
ton in the nucleus of the CA, rendering the hydrogen atoms more electropositive
than in CH4. However, following the genealogical classification, one must assume
that CH4 is a valence compound, while NH4

+ is a coordination (donor–acceptor)
system (NH3 is the donor and H+ is the acceptor). On the other hand, between
NH4

+ and, for example, CuCl42−, there is almost nothing in common in either
electronic structure or properties. The genealogical classification, however, puts
them in the same class of coordination compounds.
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TABLE 6.1. Classification of Chemical Bonds

Origin of Bonding
Electrons (a) and

Type of Bond Electronic Structure (b) Examples Characteristic Properties

a. By Origin (Genealogy) of Bonding Electrons

Valence Each of the two bonding
atoms supplies one
unpaired electron, or a
superposition of several
such possibilities
(several valence
schemes) is considered

CH4,C6H6,
diamond,
graphite, NO

No characteristic
properties in common

Coordination Both unpaired electrons
are supplied by one of
the atoms

CuCl42−,
NH4

+,
BF3 · NH3

No characteristic
properties in common

b. By Electronic Structure and Properties

Valence The one-electron bonding
states are localized
between the pairs of
bonding atoms and are
occupied by two paired
electrons

CH4, NH4
+,

diamond
Approximate additive and

transferable bond
energies, vibrational
frequencies, dipole
moments

Orbital or
conjugated

The one-electron bonding
states are delocalized
over many atoms along
the line of bonding with
possible ramifications

C6H6,
graphite

Conductivity along the
bond, aromaticity

Coordination The one-electron bonding
states are
three-dimensionally
delocalized in space
around a center

CuCl42−,
Cr(CO)6

Nonadditive and
nontransferable bond
features, strong mutual
infuence of CA–ligand
bonds, specific color,
magnetic,
thermodynamic,
reactivity properties

These deficiencies of the genealogical classification have not been criticized,
nor critically studied and analyzed, because the classification of compounds after
their origin (their past history) in many cases reflects the real process of the
synthesis of the compounds; in the absence of details of electronic structure the
genealogical classification was quite reasonable.

Presently the subjects of investigation in modern chemistry are real compounds
with their properties determined by the actual electronic structure regardless of
the preparation method and history (genealogy). As mentioned in Section 1.2,
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the domination of preparative chemistry in the past is rapidly changing to
structural chemistry. From the structural perspective, the classification according
to the genealogy of the bonding electrons that attributes compounds with quite
different (sometimes opposite) properties to the same class is unacceptable. The
genealogical classification is also not acceptable as a matter of principle because
it is based entirely on the concept of valence, which is not a comprehensive
characteristic of all the chemical properties of atoms, especially transition metals.

Classification by Electronic Structure and Properties

In most cases the description of the electronic structure of polyatomic systems
is given by one-electron MOs, which in general are delocalized over the entire
system (Chapter 5). The total wavefunction is composed of MOs by means of
an appropriate symmetrization procedure (Section 2.2). It was shown by Lenard-
Jones [6.3] that in some special cases, discussed below, there is a possibility to
transform the full wavefunction to the so-called equivalent orbitals. The latter
are occupied by two electrons with the electronic charge concentrated mainly in
the space between the corresponding pairs of nearest-neighbor atoms. In this pre-
sentation the total energy equals approximately the sum of the bonding energies
between the pairs of atoms described by the equivalent orbitals.

This description of electronic structure can serve as a theoretical foundation for
the existence of valence bonds. However, description of the system by equivalent
orbitals is restricted by specific conditions, in particular, by the requirement that
the number of bonding electrons be exactly equal to the doubled number of bonds
[6.3]. Chemical bonds in such (and only such) compounds are valence bonds,
indeed. By this definition, valence compounds include all the systems that can be
described by one valence scheme (without conjugation): saturated hydrocarbons,
CH4 and NH4

+, as well as BH4
−, BF3—NH3 (electronic analog of CF3—CH3),

and so on.
Similar electronic structure determines similar characteristic features. For

valence compounds they are approximate additivity with respect to the bonds
properties (e.g., the dipole moments, polarizabilities, bond energies, etc.), and
transferability , that is, relatively minor changes in the properties of a given
bond (dipole moments, vibrational frequencies, and energies) by passing from
one compound to another (Table 6.1). The transferability property implies that
comparisons are made between the bonds of the same type (the same type of
hybridization and bond order), in the first approximation. As compared with the
case of delocalized bonds—conjugated and coordination bonds (see below)—
the changes in the properties of localized valence bonds when passing to other
compounds are much smaller and are influenced mainly by the nearest-neighbor
atoms only.

All the other compounds cannot be described by localized (between pairs
of atoms) two-electron bonds, and hence they cannot be considered as valence
compounds. In nonvalence compounds, the one-electron MOs remain essentially
delocalized; conjugated systems form a major part of them. The bonds in these
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systems can be characterized as orbital or conjugated (or metallic) bonds created
by delocalized electrons. In fact, this definition includes all compounds that cannot
be described by one valence scheme, except coordination compounds .

In the nonvalence, conjugated bonds, delocalization of electrons takes place
along one dimension or one plane of conjugation (as, e.g., in benzene) with
possible ramifications (as, e.g., in naphthalene). Beside these is a large class
of nonvalence compounds in which the electronic states are three-dimensionally
delocalized around some centers . These compounds can be reasonably called
coordination compounds . Thus we define them as compounds with high coor-
dination and three-dimensional delocalization . This characteristic is novel; it
differentiates the coordination system from other donor–acceptor compounds.

In this description two factors determine the coordination bond: high coordina-
tion, which implies the presence of a center of coordination and its environment,
and three-dimensional delocalization, that is, several collectivized (nonlocalized)
bonds CA–ligand. It can be shown that the latter condition is obeyed when d

(or f ) orbitals of the central atom (which have a multilobe form) are actively
involved in the bonding; pure s and p orbitals cannot provide the required com-
bination of high coordination and delocalization. Indeed, by means of s and p

orbitals one can obtain, at the most, tetrahedral coordination on behalf of sp3

hybridization. But hybridization implies localization (Section 2.1), and hence
hybridized states are attributed to localized (valence) bonds and not to delocal-
ized coordination bonds. This is the main cause for the differences in electronic
structure and properties between the valence compound CH4 (sp3 hybridization,
localized C—H bonds) and the coordination system CuCl42− (participation of d

electrons delocalized over all four Cu—Cl bonds). The participation of d (or f )

orbitals in the formation of coordination bonds is thus most important.
The notion of s, p, d, f, . . . atomic orbitals in molecules is not rigorous and

may be misleading. Indeed, as mentioned in Section 2.1, these atomic states
originate from the spherical symmetry of the free atom. Within the molecule
the spherical symmetry is necessarily lowered, and partition of the orbitals into
s, p, d, . . . is, strictly speaking, no longer valid. However, one can find a region
near the nuclei of the atoms where the influence of the atomic environment is
smaller than that of the spherical symmetric nuclear field, and in this region the
concept of s,p,d,f orbitals in molecules is approximately valid. Therefore, the
statement of participation of d (or f ) orbitals in the formation of coordination
bonds should be understood in the sense that there are occupied one-electron
states which in the region near the nucleus of the CA are of d (or f ) nature, and at
greater distances they become modified by the environment. In fact, the statement
that d or f electrons participate in the bonding implies that they participate in
occupied MOs of corresponding (to these d or f states) symmetry that are
delocalized over the CA and all (or several) ligands.

Note also that in coordination compounds of nontransition elements there
may be significant influence of virtual d states (see below). The measure of d

participation in the bonding in various systems may be rather different [6.4]; it



CLASSIFICATION OF CHEMICAL BONDS 243

determines a large variety of special properties and the extent to which these
systems are coordination compounds.

Although, in terms of the CA, the coordination bond seems delocalized (it does
not allow accurate partition of the bonding into separate metal–ligand bonds),
from the ligand perspective the bond may be quite localized and directed to the
CA. However, this will not be a ligand–metal bond, but a ligand–“remaining-
complex” bond; any change of other ligands, owing to the three-dimensional
delocalization, influences the ligand–complex bond under consideration.

The bonds classification does not necessarily coincide with the classification of
compounds. Indeed, some compounds may have different types of bonds in their
different parts. Some localized valence bonds become delocalized by excitation.
There are atoms which in different conditions can form different types of bonds,
especially when there are low-lying unoccupied d orbitals (see discussion below
on the coordination bonding by pre- and posttransition elements). It is reasonable
to consider the molecular system as a transition metal coordination compound if
it possesses at least one coordination center (coordination bond). Similarly, the
compound is a conjugated system, if it has at least one conjugated region but no
coordination centers, and the molecule is a valence compound if it has neither
coordination centers nor planar delocalized bonds, but only localized bonds.

Coordination compounds include many classes of transition metal and
rare-earth compounds: complexes, chelates, clusters, organometallic compounds
including metallobiochemical systems, crystals, alloys and solid solutions,
chemisorbed surface states, and so on.

Thus based on electronic structure and properties, one can distinguish three
main types of chemical bonds (Table 6.1): valence bonds, orbital (or conjugated)
bonds, and coordination bonds . There are no strict demarcation lines between
these types of bonds, and in this respect the above classification is conventional;
however, outside the border regions it is quite definitive.

Features of Coordination Bonds

The classification of chemical bonds discussed above and the definition of the
coordination bond based on this classification enable us to differentiate some
general features of coordination compounds listed in Table 6.2. As mentioned
in Section 1.2, the presence of a coordination center allows one to denote the
coordination system in a general way as MLp

n , where M is the d (or f ) central
atom and L are the n ligands; the latter are either single atoms or groups of
atoms, equal or different, and p is the total charge.

First, the role of d (f ) electrons determines the increasing tendency to form
coordination systems when passing from light and main-group atoms to transition
and rare-earth elements . Further, CA–ligand bonds are delocalized, collectivized,
and hence strongly interdependent . Each M—L bond may depend strongly on all
the other bonds in the system formed by M. Therefore, in general, the bond prop-
erties should be considered either for group of bonds M—L1, M—L2, M—L3,
and so on, or for the bond M—L1 in the presence of M—L2, M—L3, . . . , M—Ln.
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TABLE 6.2. Correlation between the Features of Electronic Structure and
Properties of Coordination Compounds

Features of Electronic Structure Properties

Increasing activity of d and f

atomic states when moving
down along the periodic
table of elements

Increasing tendency to form coordination
compounds in same direction: almost
complete absence of this tendency in second
period, intermediate position in third period,
and full manifestation in fourth and lower
periods

Three-dimensional
delocalization of the bonding
electron density

Strong interdependence of CA–ligand bonds
and nontransferability of their properties:
energy, bond length, vibrational frequency,
dipole moment, polarizability, reactivity, and
so forth

High symmetry and large
coordination numbers, high
capacity of d and f orbitals
and hence close-in-energy
(degenerate and
pseudodegenerate) states

Two types of magnetic behavior: high-spin and
low-spin, characteristic colors,
thermodynamic properties, multiorbital
bonds, strong vibronic effects, and so on, in
spectroscopy, stereochemistry, crystal
chemistry, reactivity, and chemical
activation in catalysis

Thus the coordination metal–ligand bonds, in general, are essentially
nontransferable, and this feature is confirmed by many experimental data. For
instance, one of the main bond characteristics, the bond length M—L, where M
is a transition metal, and L = N,O,C,Br, . . . , is heavily dependent on the nature
of other bonds formed by M (e.g., the Cu—O bond length varies between 1.8
and 3.0 Å; Table 9.10), whereas the bond length C—L in different valence
compounds is almost constant. This feature, formulated in general, does not mean
that there are no particular cases where some transferability is possible within a
limited group of similar compounds (see molecular modeling in Section 5.6), but
it means that any assumption of transferability should be specially substantiated.

The third main feature includes the characteristic properties caused by the
participation of d (or f ) orbitals of the CA: characteristic color (electronic
absorption in the visible and related regions of the spectrum, Section 8.2),
magnetic (low-spin and high-spin complexes; Sections 4.3, 6.2, and 8.4), thermo-
dynamic (two-humped dependence of the thermodynamic stability on the number
of d electrons, Section 4.5), and stereochemical (Chapter 9), reactivity (Chapters
10 and 11), and special nuclear dynamics properties (Chapter 7). The latter feature
is due to the fact that the usually open shell of d (or f ) electrons (formally closed
shells but with low-energy excited states have similar properties, Sections 7.3 and
7.4) in combination with high coordination (high symmetry) creates degenerate
or pseudodegenerate energy terms , ground or excited, which, in turn, results in
a series of special effects and phenomena [6.5].
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Coordination Bonding by Pre- and Posttransition Elements

From the definition of coordination systems given above, a question emerges as
to how to explain the fact that some compounds of posttransition elements are
similar in properties to coordination systems. In the definition of coordination
bonding, the CA must have active d or f electrons. Nontransition elements have
no such electrons in the free noncoordinated state. This does not mean that active
d or f states cannot occur in the corresponding oxidation state, or in the chemical
bonding—in the so-called valence state of the atom-in-molecule. As emphasized
in Sections 6.3 and 11.2, coordination often results in excitation of the coordinated
atoms or group of atoms (see Fig. 6.6 in Section 6.3). Hence by coordination the
electronic configuration of the bonding groups changes, and in certain conditions
these changes may lead to the activation of d (or f ) electrons of the CA.

Any element has excited d states, but if they are very high in energy, they
cannot be activated by the bonding. On the other hand, there may be occupied
d states that are deep in energy as compared with the HOMO, and hence they
cannot be excited simply by the bonding. We come to the conclusion that potential
coordination centers of nontransition elements can be found among the immediate
pretransition or posttransition elements .

In pretransition elements of the third period there are active s and p states and
higher-energy inactive d orbitals. To make the d states active, that is, to lower
their energy and to populate them with electrons, strong oxidizing ligands are
required that simultaneously are good π donors to the unoccupied d states of the
CA (see the interdependence of σ -acceptor and π-donor properties, Section 6.3).
For example, oxygen, sulfur, and chlorine can activate the d states of Al, Ga,
Ge, In, Sn, and so on, making them good coordination centers.

For posttransition elements, which are simultaneously pretransition elements
for the next transition group, there are two possibilities for d-electron activation.
The first is the same as for pretransition elements: oxidizing ligands with π-donor
abilities. The second possibility is to activate the inner occupied d states. For
instance, the inactive d electrons of the d10 closed shell of Zn2+ or Ga3+ may
become active under the influence of ligands that have significant σ -donor and
π-acceptor properties. The former render the d states more diffuse in space, due
to the additional interelectron repulsion (see the nephelauxetic effect, Section
8.2), while the latter allow for π backdonation.

In both cases the d orbitals are involved in the bonding. The measure of d

participation is dependent on the nature of the ligands and can vary greatly. In
this sense there are no sharp borders between coordinating and noncoordinating
elements . In principle, any element can serve as a center of coordination bonding
provided the ligands induce significant d participation.

Note that even within the transition metal group the extent to which d electrons
participate in the coordination bonding may be quite different [6.4]. In high
oxidation states the metal nd electrons are strongly attracted to the nucleus, and
hence their overlap with the ligand orbitals is very small; the bonding, for the most
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part, is realized via (n + 1)s and (n + 1)p orbitals. Donation of electrons from the
ligands renders the d states more diffusive, increasing their participation in the
bonding. In low oxidation states (e.g., in carbonyls) the d states are most active
in the bonding. This tendency for d participation in the coordination bonding
varies stepwise by moving from early to late transition elements.

Thus the ability to form coordination compounds with d (or f ) participa-
tion changes gradually when moving from pretransition to transition elements,
from early to late transition elements, and then to posttransition elements, with
strong dependence on the nature of the ligands and without sharp borders between
transition and immediate pre- and posttransition elements .

Following the definition of coordination systems based on the electronic struc-
ture given above, pre- and posttransition element compounds are coordination
compounds to the extent of d-electron participation in the bonding, which makes
them similar in properties to the d-electron compounds. Experimental data con-
firm the d-orbital participation in the bonding of nontransition elements [6.6]. In
many cases the possible (in principle) d-electron participation is in fact minor
[6.7, 6.8].

Direct calculations of the electronic structure to confirm the d electron par-
ticipation are not always unambiguous; the most reliable results of nonempirical
calculations are dependent on the choice of the basis set, which, in fact, pre-
determines the d-orbital occupation sought for (the more d functions included,
the greater the d occupation numbers). As stated in Section 5.3, expansion of
the wavefunction in basis set functions is a mathematical procedure and can-
not be used directly to relate the electron distribution to the atomic functions.
However, the d character of the electron distribution is reflected in the symme-
try of the MOs, and in this sense the participation of atomic d states (which
makes the bonding three-dimensionally delocalized) is demonstrated indirectly.
The charge distribution may also confirm the experimentally observable specific
features of coordination compounds (Table 6.2), including the interdependence
(mutual influence; Section 9.3) of different metal–ligand bonds in the same com-
pound and nontransferability of their characteristics to other compounds. Thus,
when discussing d orbitals in molecules the d origin of the corresponding MO
symmetry is implied. In this meaning the classification of chemical bonds by
their electronic structure is also genealogical, but it is based on the genealogy of
the electronic structure of the compound under consideration with respect to its
atoms or atomic groups, and not on its way of preparation .

6.2. QUALITATIVE ASPECTS AND ELECTRONIC CONFIGURATIONS

Most Probable MO Schemes

Consider a transition metal of the 3d group as a CA. Its outer orbitals 3d, 4s, and
4p in the valence (oxidation) state in complexes form the following sequence of
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energy levels:

E(3d) < E(4s) < E(4p) (6.1)

Overlap of the wavefunctions of these orbitals with ligand functions is larger for
4s and 4p orbitals, and smaller for the 3d functions. Considering the dependence
of the bonding (antibonding) properties of the MOs on the magnitude of the
overlap integral [Section 5.1, Eq. (5.26)], we conclude that the 3d orbitals form
weaker bonding (and antibonding) MOs than do the 4s and 4p functions.

Consider an octahedral complex of Oh symmetry. The 4s orbital belongs to
the A1g representation (symmetry) (Table 5.1), 4p belongs to T1u, and the five
3d orbitals form two groups: two 3d(eg) orbitals (dz2 and dx2 –y2 ) belonging to
the Eg representation, and three 3d(t2g) orbitals (dxy, dxz, and dyz) that belong
to T2g . The eg orbitals are directed with their lobes of charge distribution toward
the ligands and form σ bonds (Table 5.1), whereas the t2g orbitals can form only
π bonds. Hence the overlap of the 3d(t2g) orbitals with the corresponding ligand
functions are smaller than that of 3d(eg). It follows that the largest splitting into
bonding and antibonding orbitals is expected in the formation of MOs by the 4s

and 4p orbitals of the CA, smaller splitting comes from the 3d(eg) orbitals, and
the smallest one is due to the 3d(t2g) orbitals. Note also that according to Eqs.
(5.26)–(5.29) these splittings are determined by the group overlap integrals G0i

in Table 5.4, not S0i .
With these ideas, we come to the most probable MO energy-level scheme given

in Fig. 6.1 for an octahedral coordination compound of Oh symmetry formed by
a 3d transition metal CA and ligands that have only s and p active orbitals.
By comparison, one can easily ensure that this scheme corresponds to the data
in Table 5.1. It is seen that the lowest MOs a1g, t1u, eg , and t2g are bonding,
the t ′1u, t2u, and t1g MOs are nonbonding, while the remaining MOs (marked by
asterisks) are antibonding (the t ′1u orbitals may become bonding in the presence
of f electrons). For numerical calculations revealing such MO energy levels and
wavefunctions, see Example 5.5 and Problems 5.1 and 5.2.

For a tetrahedral system of Td symmetry, on the contrary, the 3d(eg) orbitals of
the central atom are less overlapped with the ligand orbitals than 3d(t2g), their role
thus changing as compared with the octahedral case; by forming MOs the energy
levels of the eg orbitals are less split than the t2g orbitals (Fig. 6.2, Table 5.2).

In systems with lower symmetries the degenerate MO energy levels are further
split by the ligand field, and the splitting magnitude is dependent on the nature
of the ligand. Here the MO energy-level scheme becomes complicated and no
general ideas or solutions can be suggested; the corresponding problems should
be solved by calculations.

Electronic Configurations in Low- and High-Spin Complexes

The next stage in determining the electronic structure of coordination compounds
in the MO approximation is to find the electron distribution over the one-electron
MOs, the electronic configuration of the system. In accordance with the Pauli
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FIGURE 6.1. Most probable MO energy-level scheme for regular octahedral complexes
ML6 of 3d transition metals M with ligands L that have one σ and two π active AOs each.

FIGURE 6.2. Most probable MO energy-level scheme for regular tetrahedral complexes
ML4 of 3d transition metals M with ligands L that have one σ and two π active AOs each.
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principle, in the ground state the electrons occupy the lowest-energy MOs, in
groups of two with opposite spins on each MO. The number of electrons to be
distributed on the MOs equals the number of electrons that occupy the AOs used
in the formation of these MOs. For instance, in the TiCl63− complex the valence
AOs used in the formation of MOs are as follows: one σ hybridized sp and two
π-type 3p orbitals from each Cl− ion and 3d, 4p, and 4s orbitals of Ti3+, a total
of 3 × 6 + 9 = 27 AOs that form 27 MOs occupied by 6 × 6 + 1 = 37 electrons.
The number of MOs equals the number of AOs used for their formation, and
hence not all MOs will be occupied by two electrons in the ground state.

One can imagine the following picture (Fig. 6.1): the 6 × 6 = 36 electrons
from the six Cl− ions occupy the following orbitals (the electron occupation num-
bers are indicated in parentheses): a1g(2), t1u(6), eg(4), t2g(6), t ′1u(6), t2u(6), and
t1g(6), and hence the 3d electron from Ti3+ occupies the antibonding t∗2g orbital.
This representation has reasonable physical meaning; as shown by calculations,
the bonding orbitals a1g, t1u, eg , and t2g are basically (and the nonbonding orbitals
are completely) ligand orbitals. Of course, the MO occupation scheme remains
the same when one starts not from Cl− and Ti3+ ions, but from neutral atoms.

Thus the electronic configuration of the complex TiCl63− is (a1g)
2(t1u)

6(eg)
4

(t2g)
6(t ′1u)

6(t1g)
6(t∗2g)

1 –2T2g , or by denoting the “closed shell” (including all
the bonding and nonbonding orbitals fully occupied by electrons) by M in
square brackets: [M](t∗2g)

1 –2T2g . The full multielectron term 2T2g is determined
here simply by one unpaired electron in a MO of t2g symmetry, but in more
complicated cases it should be determined by multielectron wavefunction rules
(Section 2.2).

The result obtained here is qualitatively the same as it emerges from the
more simple treatment of crystal field theory (Section 4.2), where the electronic
configuration of the complex at hand is [A](3d)1 –2T2g (Table 4.5). Indeed,
the antibonding t∗2g orbital is localized mostly on the CA, and its difference
from the 3d orbital of the Ti3+ ion is in a small admixture of the π func-
tions of the Cl− ions. Note that the first excited state in the abovementioned
MO scheme is [M](eg)

1 –2Eg , which coincides with that obtained in crystal
field theory, as well. Hence the long-wavelength electronic transition 2T2g ↔ Eg

is analogous to that expected in the crystal field theory. However, the energy
gap � = E(2Eg)–E(2T2g), which determines the corresponding absorption band
position, may be quite different in these two theories.

For more than one d electron above the closed shell [M] (e.g., in an octahedral
complex of V3+ with two d electrons), one encounters complications caused by
the interaction between the electrons. Indeed, the approximate MO schemes of
Figs. 6.1 and 6.2 are one-electron schemes in which the interelectron interaction
is not accounted for explicitly. For two d electrons several possibilities of the
one-electron MO occupation arise:

1. Two of three different t∗2g orbitals are occupied by the two electrons with
parallel spin orientations resulting in the configuration (t∗2g ↑)(t∗2g ↑) with
a total spin S = 1.
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2. The same two orbitals are occupied by two electrons with opposite spin
orientations, (t∗2g ↑)(t∗2g ↓), S = 0.

3. One t∗2g orbital is occupied by two electrons with opposite spin orientations,
(t∗2g ↑↓), S = 0.

4. One electron is in t∗2g , the other is in the excited orbitals eg , and so on.

Obviously, the electrostatic and exchange interactions between the electrons
in these distributions differ, resulting in different energy terms. The ground-state
configuration and spin will be that of lowest energy. Similar situations in free
atoms and with ligand crystal fields are considered in detail in Sections 2.2
and 4.3, respectively. Several terms of the same electronic configuration may
occur, and all of them can be determined by taking into account the interelectron
interactions.

The procedure of distribution of the d electrons of the CA on the antibonding
t∗2g and e∗

g MOs with consequent inclusion of the interelectron interactions in
each of these distributions is quite similar to that employed in crystal field theory
(CFT) for the strong-field limit (Section 4.3). In particular, for two electrons, three
electronic configurations—(t∗2g)

2, (t∗2g)
1(e∗

g)
1, and (e∗

g)
2 —are possible with the

same two energy gaps between them equal to the t∗2g –e∗
g separation � for a single

electron. The energy splitting of these configurations by the interelectron inter-
action results in electronic terms similar in spacing to that obtained in the crystal
field approximation (4.47) in which the Racah constants A, B, and C should be
substituted by the parameters of interelectron repulsions on the MOs, not AOs,
with MO wavefunctions instead of AOs in the integrals of the type (2.32).

Corrections to the formulas of atomic energy term formation in ligand fields
that account for the transformation of the AOs into MOs can be introduced [6.9].
For antibonding orbitals these corrections are negative, which means that the
Racah parameters for antibonding MOs are smaller than for AOs. This result
can be easily understood; when passing from AOs to MOs, the electronic cloud
diffuses over a larger volume in which the interelectron repulsion is obviously
reduced.

Thus in the case under consideration the MO energy scheme of a coordi-
nation compound remains the same as in CFT with a different meaning of the
Racah constants A, B, and C that become dependent on the covalence parameters
(LCAO coefficients). As in the crystal field approximation, the (t∗2g)

2 config-
uration yields four terms, 3T1g , 1T2g , 1Eg , and 1A1g (see Problem 3.9), with
relative energies given in Eq. (4.47). The largest splitting between them is � =
E(1A1g) − E(3T1g) = 15B + 5C. Hence the limit of strong ligand field in which
these configurations can be considered separately is valid if 15B + 5C � �. If
this condition is not fulfilled, and in the opposite limit case of weak ligand field
(� < 15B + 5C), the terms of the same symmetry from different configurations
are strongly mixed and all the configurations should be considered simultaneously
(Section 4.3).

Of special note are cases where, owing to the interelectron interactions, the
electronic configuration of the ground state changes when passing from the limit
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of strong fields to that of weak fields, and vice versa. Let us elucidate this situation
by the example of an octahedral complex of a d4 transition metal atom or ion. The
first three (of the four) d electrons, in accordance with Hund’s rule, occupy the
three t∗2g orbitals with parallel spin orientations; their total spin hence is S = 3

2 .
The fourth electron has two main possibilities. One of them is to occupy one
of the already half-populated orbitals with an opposite orientation of the spin,
and then the electronic configuration of the complex becomes [M](t∗2g ↑)3(t∗2g ↓)1

with a total spin S = 1 and ground state 3T2g . Note that the total energy of the
system is significantly increased here not only by the interelectron repulsion of
the electrons (two of them are now on the same orbital) but also by the reduction
of the negative energy of exchange interaction (per electron), which is non-zero
for the electrons with parallel spins only.

The second possibility is to occupy the eg orbital that is higher in energy
by � (Fig. 6.1), but with the same spin orientation as in the three t2g orbitals.
Then the configuration becomes [M](t∗2g ↑)3(e∗

g ↑)1 with a total spin S = 2; the
ground state is 5Eg . Here we have less interelectron repulsion (the electrons are
in different orbitals and hence occupy different regions in space), and more neg-
ative contribution of the exchange interaction (all the electrons have parallel spin
orientations), but one electron is higher in orbital energy by �. These two possi-
bilities result in two essentially different electronic configurations with different
spin values. The latter is a convenient indicator of the differences. Therefore,
the two possibilities are usually called low-spin and high-spin configurations ,
respectively, quite similar to the CFT treatment (Section 4.3).

As in Section 4.3, the energy difference between the two configurations, the
pairing energy, can be denoted by �; it can be estimated by the same formulas
(4.50) in which, as above, the Racah parameters A, B, and C should be calcu-
lated by MO (not AO) functions; that is, they should be taken as modified by
covalence. Provided the pairing energy � is known, the question of whether the
low-spin or high-spin configuration is realized can be solved directly; if � < �,
the low-spin case is realized, and if � >�, the high-spin configuration is prefer-
able. Since � characterizes the strength of the ligand field, these two cases can
also be called strong-field and weak-field limits , respectively. As in the crys-
tal field approximation, the two possible configurations become important in dn

complexes for n = 4, 5, 6, 7 in octahedral environments, and n = 3, 4, 5, 6 for
tetrahedral systems, resulting in different (high-spin or low-spin) ground states.
Tables 6.3 and 6.4 illustrate these results for octahedral and tetrahedral complexes,
respectively.

Covalence Electrons and Ionization Potentials

As shown in Section 5.2, in the MO method the bonding occurs as a result of
electronic redistribution in the bonding MOs because the electronic cloud is con-
centrated mainly in the space between the nuclei welding them together (another
source of bonding is the reduction of the electron kinetic energy). The elec-
tronic energy on these orbitals is lower than on the corresponding AOs. On the
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TABLE 6.3. Electronic Configurations and Ground States of Coordination
Compounds of dn Metals with Octahedral Oh Symmetrya

High Spin (Weak Field) Low Spin (Strong Field)

Electronic Ground Electronic Ground
dn Example Configuration State Configuration State

d1 Ti3+ (t∗2g ↑)1 2T2g (t∗2g ↑)1 2T2g

d2 V3+ (t∗2g ↑)2 3T1g (t∗2g ↑)2 3T1g

d3 Cr3+ (t∗2g ↑)3 4A2g (t∗2g ↑)3 4A2g

d4 Mn3+ (t∗2g ↑)3(e∗
g ↑)1 5Eg (t∗2g ↑)3(t∗2g ↓)1 3T1g

d5 Mn2+ (t∗2g ↑)3(e∗
g ↑)2 6A1g (t∗2g ↑)3(t∗2g ↓)2 2T2g

Fe3+
d6 Fe2+ (t∗2g ↑)3(e∗

g ↑)2(t∗2g ↓)1 5T2g (t∗2g ↑)3(t∗2g ↓)3 1A1g

Co3+
d7 Co2+ (t∗2g ↑)3(e∗

g ↑)2(t∗2g ↓)2 4T1g (t∗2g ↑)3(t∗2g ↓)3(e∗
g ↑)1 2Eg

d8 Ni2+ (t∗2g ↑)3(e∗
g ↑)2(t∗2g ↓)3 3A2g (t∗2g ↑)3(t∗2g ↓)3(e∗

g ↑)2 3A2g

d9 Cu2+ (t∗2g ↑)3(e∗
g ↑)2(t∗2g ↓)3(e∗

g ↓)1 2Eg (t∗2g ↑)3(t∗2g ↓)3(eg ↑)2(e∗
g ↓)1 2Eg

d10 Zn2+ (t∗2g ↑)3(e∗
g ↑)2(t∗2g ↓)3(e∗

g ↓)2 1A1g (t∗2g ↑)3(t∗2g ↓)3(e∗
g ↑)2(e∗

g ↓)2 1A1g

aThe inner closed shells are omitted.

TABLE 6.4. Electronic Configurations and Ground States of Coordination
Compounds of dn Metals with Tetrahedral Td Symmetrya

High Spin (Weak Field) Low Spin (Strong Field)

Electronic Ground Electronic Ground
dn Example Configuration State Configuration State

d1 Ti3+ (e∗ ↑)1 2E (e∗ ↑)1 2E

d2 V3+ (e∗ ↑)2 3A2 (e∗ ↑)2 3A2

d3 Cr3+ (e∗ ↑)2(t∗2 ↑)1 4T1 (e∗ ↑)2(e∗ ↓)1 2E

d4 Mn2+ (e∗ ↑)2(t∗2 ↑)2 5T2 (e∗ ↑)2(e∗ ↓)2 1A1

d5 Mn2+ (e∗ ↑)2(t∗2 ↑)3 6A1 (e∗ ↑)2(e∗ ↓)2(t∗2 ↑)1 2T2

Fe3+
d6 Fe2+ (e∗ ↑)2(t∗2 ↑)3(e∗ ↓)1 5E (e∗ ↑)2(e∗ ↓)2(t∗2 ↑)2 3T1

Co3+
d7 Co2+ (e∗ ↑)2(t∗2 ↑)3(e∗ ↓)2 4A2 (e∗ ↑)2(e∗ ↓)2(t∗2 ↑)3 4A2

d8 Ni2+ (e∗ ↑)2(t∗2 ↑)3(e∗ ↓)2(t∗2 ↓)1 3T1 (e∗ ↑)2(e∗ ↓)2(t∗2 ↑)3(t∗2 ↓)1 3T1

d9 Cu2+ (e∗ ↑)2(t∗2 ↑)3(e∗ ↓)2(t∗2 ↓)2 2T2 (e∗ ↑)2(e∗ ↓)2(t∗2 ↑)3(t∗2 ↓)2 2T2

d10 Zn2+ (e∗ ↑)2(t∗2 ↑)3(e∗ ↓)2(t∗2 ↓)3 1A1 (e∗ ↑)2(e∗ ↓)2(t∗2 ↑)3(t∗2 ↓)3 1A1

aThe inner closed shells are omitted.

contrary, on the antibonding MOs the electron does not screen the repulsion
between the nuclei; hence its MO energy is higher than in the corresponding
atomic states. Obviously, the chemical bonding takes place when the occupancy
of bonding orbitals predominates that of the antibonding MOs. Therefore, it is
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FIGURE 6.3. Scheme of mutual compensation of bonding and antibonding orbitals. The
noncompensated bonding orbitals are shown enveloped by a line.

worthwhile to consider the question of what electrons (more precisely, what occu-
pied one-electron states) are responsible for the covalent bonding in coordination
compounds. Since each bonding orbital is accompanied by an antibonding MO so
that their contributions to the binding are approximately mutually compensated
for [6.10] (Section 5.2), the chemical bond is formed by only those bonding MOs
that remain uncompensated by the antibonding orbitals.

In Fig. 6.3 the MO energy scheme for a Cu(II) complex is given with an
indication of the MO occupancies (for simplicity, only σ bonds are shown). It
is seen that in the ground state the uncompensated bonding MO are a1g (two
electrons), t1u (six electrons), and eg (one electron). Thus, not the valence one-
electron states, but the inner bonding MOs, which are not compensated for by
the outer antibonding MOs, produce the chemical bonding . In particular, it is
ungrounded to try to describe the covalence in coordination compounds, for
instance, by ESR data or by spin density distribution (Sections 8.4 and 8.6).
These data characterize the covalence of the one-electron states of the unpaired
electrons, whereas the bonding is formed by many inner electrons.

Another important MO problem is to determine the ionization potentials equal
to the energy of ionization from a given state of the system (see also Section 6.4).
These quantities are especially important for interpretation of the experimental
data on photoelectron spectra (Section 8.3). As mentioned in Section 2.2, in
the one-electron case the ionization energy, following the Koopmans theorem
[6.11], equals the energy of the MO state (with opposite sign) calculated by
the self-consistent method. Indeed, in these calculations the MO energy includes
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the interaction of a given electron with the nuclei and all the other electrons,
which apparently is the energy that should be applied to remove the electron
from this MO.

This consideration (and the Koopmans theorem) is rigorously true in the one-
electron case only. When there are two or many electrons in the system, the
ionization of one of them changes the one-electron states of the others. Indeed, the
reduction of the number of electrons by one reduces their interelectron repulsion,
and the one-electron MOs “relax” to new self-consistent states. As a result of
these electron relaxations, their energy decreases, and hence the absolute value
of the ionization potential also decreases by the same amount (the decrease of
the interelectron repulsion promotes the ionization).

If the relaxation energy is small, the Koopmans theorem predicts the correct
consequence of ionization potentials corresponding to the MO energy level posi-
tions. This is true in many cases, especially for very stable closed-shell molecules
for which the electronic energy-level spacing is sufficiently large. However, as
shown by calculations, the Koopmans theorem is far from being valid for other
systems, including many coordination compounds (see the discussion in the fol-
lowing sections of this chapter).

The deviations from the prediction of the Koopmans theorem depend on the
state to be ionized and change from state to state. For instance, one can expect
that the ionization of a (predominantly) d electron from a strong covalent metal-
lorganic complex results in much stronger reorganization (relaxation) of the other
electrons than in the case of the ionization of a ligand nonbonding electron. The
exact value of ionization energy should be calculated as the difference between
the total energies of the initial (un-ionized) and final (ionized) systems evaluated
with the interelectron interaction included. This problem is discussed further in
Section 6.4.

6.3. LIGAND BONDING

General Considerations: Multiorbital Bonds

The origin of ligand bonding is one of the most important problems in coordi-
nation chemistry. It provides a basic understanding of a series of properties and
processes that involve ligand coordination. To reveal the origin of ligand bonding
means to elucidate the electronic structure of the bond, determined by the elec-
tronic features of the ligand and the remaining complex, and to establish direct
correlations between the bonding properties and electronic structure parameters.

As emphasized in Section 6.1, due to the three-dimensional center-delocalized
nature of the coordination bond, all metal–ligand bonds are, in general, strongly
interdependent. Therefore, when considering ligand bonding, one has to inves-
tigate not just the metal–ligand bond but also the complex–ligand bond . From
the ligand side the bond is mostly localized. In other words, ligand bonding
means chemical interaction (electron collectivization, Section 1.2) between a lig-
and and a coordination center, which may be strongly dependent on the bonding
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of the latter to other ligands. This circumstance, together with the significant
difference in electronic structure of the metal (d electrons) and the ligand (sp
electrons)— the d-electron heterogeneity —makes the metal–ligand bond essen-
tially different from those in organic (and main-group element) compounds.

In the MO LCAO scheme the metal–ligand bond is determined by the overlap
of the metal and ligand valence orbitals, which, in turn, depends on the valence
state of the ligand and the metal and the mode (geometry) of ligand coordination.
The valence orbitals of transition metals and rare-earth elements are given in
Section 2.1. Assume that, with respect to the ligand under consideration, the
complex is characterized by σ and π orbitals formed by a transition metal nd ,
(n+1)s, and (n+1)p valence orbitals (which, in the presence of other ligands,
transform into corresponding MOs).

Depending on the oxidation state and the nature of other ligands bound to the
coordination center, the valence orbitals of the metal are differently populated by
electrons, and hence they have different bonding abilities. A characteristic case
is shown in Fig. 6.4 when the lowest π level of the metal (e.g., dxz) is occupied,
while its σ AO is unoccupied; the metal (complex) is thus a σ acceptor and a π

donor. Of course, this picture is rather simplified; in real cases the complex may
have several σ and π levels (see below) and may be both σ and π donor and
acceptor on different orbitals, but usually one or two of them are most active in
the ligand bonding.

As simple examples of ligands in metal–ligand bonding, free atoms or
diatomics formed by the atoms of the second row of the periodic table can
be suggested. Figure 6.5 illustrates a typical MO scheme for such a diatomic

FIGURE 6.4. σ and π AOs of the metal in a monoorbital MO bonding with the ligand
that has only one active σ orbital.
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FIGURE 6.5. Atomic orbitals and MOs for diatomics of second-row atoms.

molecule. The 1s orbitals, owing to their deep bedding and hence poor overlap,
form very weak bonding 1σ and antibonding 2σ MOs (in the case of identical
atoms they are σg and σu, respectively), which, because they are both occupied,
do not contribute to the bonding between the atoms.

The 2s orbitals form much stronger bonding and antibonding MOs. The close-
in-energy 2pσ orbitals of the two atoms have the same σ symmetry and strong
overlap with each other and with the 2s orbitals. Therefore all four orbitals
become mixed (hybridized), forming the 3σ, 4σ, . . . MOs (all the σ orbitals are
mixed; the 1s orbital contribution is usually negligible).

In addition to the σ orbitals, 2pπ AOs also overlap (although less than do
the σ AOs), forming bonding 1π and antibonding 2π MOs. Depending on the
nature of the atoms in the diatomic molecule, the mutual position of the close-
in-energy MOs 4σ, 1π , and 5σ can vary, and this is important when considering
their bonding to the coordination center.

The main features that make the local metal–ligand bond distinct from the
corresponding organic bonds are due to the relatively strong asymmetry of the
overlapping orbitals produced by the d-electron heterogeneity; this causes rela-
tively large orbital charge transfers, which are often mutually compensated for
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FIGURE 6.6. Mutual compensation of the ligand’s σ -donor and π-acceptor charge trans-
fers results in its partial excitation; in case of Ni+—CO the 5σ → 2π excitation amounts
to ∼ 0.3 electron.

in the diorbital and multiorbital bonds (see below). Together with the fact that
the ligand is bound by the entire complex, rather than only by the CA, these
distinctions render the usual ideas of multiple bonds insufficient for a full char-
acterization of the bond. For a better description of ligand bonding, MO-based
definition of bond multiplicity is suggested, in which monoorbital, diorbital, and
multiorbital metal–ligand bonds are distinguished .

In the MO definition, the multiplicity of the orbital bonding (mono-, di-, and
multiorbital ) equals the number of complex–ligand bonding MOs uncompensated
by the antibonding orbitals (Section 6.2). These types of bonds, as shown below,
differ significantly from and are complementary to the well-known single, double,
and triple bonds in organic (or main-group) compounds by both definition and
effect. The simple multiple bonds are particular cases of the defined multiorbital
bonds.

By definition, the number of orbitals that participate in the bonding does not
coincide with the bond multiplicity. In the usual definition the multiplicity of
the bond equals the number of pairs of electrons that participate in the bonding,
whereas the number of bonding orbitals may be smaller, since some of them may
be degenerate. In particular, in the triple bond with one σ and two π bonds the
latter may be degenerate, and hence the bond is diorbital with one σ MO and
one double-degenerate π MO. Besides, the bonding (antibonding) orbital can be
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occupied by one electron. The advantage of the MO terminology is seen from
the treatment of ligand bonding given below in this section.

An important feature of diorbital and multiorbital metal–ligand bonding is
the mutual compensation of orbital charge transfers . Consider a diorbital M—L
bond in which one of the bonding MOs is a σ MO while the other is of the π

type. The orbital charge transfers �qi defined in Section 5.2, Eq. (5.20′′), may be
both negative and positive. Usually the orbital charge transfers along the σ MO
go from the ligand to the metal: �qσ < 0 (negative transfer means reduction of
the ligand electronic charge), while for the π MO �qπ > 0 (backdonation). The
total charge transfer is thus

�q = �qσ + �qπ (6.2)

It is known that �q cannot be very large because of thermodynamic
restrictions (cf. the Pauling electroneutrality principle [6.12]). In monoorbital
binding �q coincides with the orbital charge transfer, and hence they are both
small. Distinct from (and contrary to) the monoorbital bonds, for diorbital bonds
the total charge transfer �q may be small, while the orbital charge transfers are
large, because they may have opposite signs for which �q = |�qπ | − |�qσ |.
This is a specific feature of the diorbital (multiorbital) bond, as compared
with monoorbital (single) bonds, and it has far-reaching consequences for both
bonding energy and charge distribution, which changes the properties of the
coordinated ligands. In particular, while the orbital charge transfers compensate
each other, their effect on ligand activation may be additive with respect to their
absolute values (Section 11.2).

This enhanced coordination by mutually compensated charge transfers is in
general not directly related to the usual double bonds in organic compounds.
Indeed, in the latter the orbital charge transfers are relatively small and not mutu-
ally compensating. Therefore, the usual terminology of single and double bonds
that is most useful for organic and main-group systems may not be sufficiently
informative for coordination compounds. In the case of diorbital bonding, the
scheme of mutually compensating charge transfers is qualitatively the same as in
backdonation, first suggested by Dewar [6.13] and Chatt and Duncanson [6.14].

The charge compensation in the σ -donor and π-dative interactions in the
ligand bonding also generates another important effect: the interdependence and
mutual enhancement of the two types of charge transfers, �qσ and �qπ : the
π-dative charge transfer to the ligand enhances its donor properties on the σ

bond because of the increased interelectron repulsion, and vice versa [6.4, 6.17].
On the other hand, changes in the occupancies of the ligand MOs may result in

its partial excitation . Indeed, as a result of coordination, the unoccupied excited π

MO of the free diatomics becomes populated, while its ground-state σ MO depop-
ulates, which is qualitatively equivalent to full or partial excitation (Fig. 6.6).
The two effects, orbital charge transfers in opposite directions and partial
excitation, strongly influence the properties of the ligands coordinated by
diorbital or multiorbital bonds (Section 11.2).
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Note that neither of these two effects can be characterized by simply the total
charge transfer to the ligand �q = |�qπ |– |�qσ |; only both orbital charge trans-
fers reflect the coordination properties. Therefore, attempts to interpret experi-
mental data on coordinated ligands by the �q value, often reported in publications
(e.g., to consider coordinated oxygen in the state of superoxide according to its
stretching vibration frequency, Section 11.2), are ungrounded.

In the qualitative treatment above, it is assumed that the orbital charge transfers
�qi can be calculated by Eq. (5.20′′). In so doing one should note the discus-
sion in Section 5.2 and Example 5.1 concerning the restricted physical meaning
of charge distribution given in terms of atomic orbitals, and its strong depen-
dence on the basis set employed in the calculations. In many cases the results of
sophisticated numerical calculations cannot be visualized in terms of free metal
and ligand atomic orbitals, in terms of origin of ligand bonding , as is done in
the qualitative treatment. This is a general feature of exact numerical data on
electronic structure discussed in Section 5.6; the more sophisticated mathemati-
cal methods used in accurate numerical calculations of electronic structure, the
less visual the possible treatment in terms of atomic orbitals (Section 5.3).

In some cases the valence AOs (ground and excited) emerge in the result-
ing MOs with considerable weight, which can be approximately interpreted as a
measure of participation of the corresponding orbitals in the bonding. If extended
basis sets and/or a superposition of many configurations are used in the calcula-
tions, the direct correlation of the results with certain ligand AOs becomes very
difficult. However, the MOs can be differentiated by symmetry properties (σ, π, δ,
etc.), and this allows one to calculate orbital charge transfers for such MOs.

Monoorbital Bonds: Coordination of NH3 and H2O

The case of monoorbital bonds is the simplest. As a rule, the monoorbital bond
is realized when the ligand has only one active orbital that is able to bond to
the complex. In this case only one σ metal–ligand bond is usually formed. A
simple example of this kind is the bonding of ammonia, in which the lone pair
of electrons of the nitrogen atom occupies its hybridized sp3 orbital, which can
be taken as the ligand σ orbital. Figure 6.4 illustrates the MO scheme for this
simple case of ligand bonding (cf. Fig. 5.3).

The charge distribution in this bond is not symmetric with respect to the metal
and ligand; under the assumption that the metal is a σ acceptor and the ligand
is a σ donor, a typical donor–acceptor bond is obtained. This type of ligand
bonding takes place mostly when either the ligand has no active π orbitals that
can form bonds with the metal (meaning unoccupied or too high in energy) or
the metal π orbitals are weakly active. The former possibility is more probable.
In addition to NH3 that has no active π orbitals, many similar ligands can be
suggested (e.g., PH3, CH3

−, H−). However, under certain conditions phosphines
(e.g., PF3), as well as similar compounds of other pretransition elements, may
exhibit π-accepting abilities [6.15].
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FIGURE 6.7. Monoorbital bonding with ligands that have active but occupied π orbitals.

Monoorbital bonds can also be realized when both the ligand and metal active
π orbitals are occupied. Halogen ions and water can be indicated as examples
of ligands that have such π-donor orbitals. In these cases both π-type MOs
formed by the ligand and metal orbitals, bonding and antibonding, are occupied
by electrons (Fig. 6.7), and hence their total contribution to the bonding is very
small because of mutual compensation (Sections 5.2 and 6.2). In principle, there
is a possibility that within this combination of two σ and two π MOs with six
electrons the antibonding σ and π MOs are inverted, and the σ MO is occupied
instead of the π MO. As a result, the bond remains monoorbital, but of π

type. Practically, other MO energy levels may interfere in this region becoming
occupied, but then diorbital or multiorbital bonds should be considered.

In monoorbital bonds the influence of the complex on the ligand is relatively
simple: polarization . Indeed, as a result of the bonding, a donor–acceptor shift
of the electronic cloud from the ligand to the metal takes place with all the
consequences for the properties of the coordinated ligand and the complex as
a whole. This effect can also be described in the simpler models of crystal
field theory (CFT, Chapter 4) and angular overlap method (AOM, Section 5.2),
provided that the effective charge and polarization of the ligand are taken into
account. Therefore, analysis of some properties of coordination compounds with
simple ligands that form only monoorbital (single) bonds can often be carried
out within the approximations of CFT or AOM.

Monoorbital bonding, as a rule, does not change radically the properties of
the ligands but modifies them, sometimes significantly. For instance, in the case
of coordination of the ammonia molecule mentioned above, the donor–acceptor
shift of the electronic charge to the metal weakens the N—H bonds, lowers
their stretching vibration frequencies, and increases the acidity of the coordinated
molecule. Example 6.1 demonstrates calculations of the electronic structure of
some monoorbital bonds.
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EXAMPLE 6.1

Ab Initio Numerical SCF-CI Calculations of the Electronic Structure
of Monoorbital Bonds: Ni(H2O)n and Ni(PH3)n, n = 1, 2 [6.16]

In the case of Ni—OH2, the Ni—O bond, as expected, is a monoor-
bital of the second kind when the ligand has active π orbitals but they
are occupied by electrons (Fig. 6.7). The results of CASSCF (Section
5.3) calculations yield �qσ = −0.13, �qπ = −0.03 (the charges on the
atoms are qNi = −0.17, qO = −0.69, qH = 0.43). For H2O—Ni—OH2

(linear configuration) the orbital charge transfers are practically the
same as in the Ni—OH2 case: �qσ = −0.14, �qπ = −0.04 (qNi =
−0.36, qO = −0.70, qH = +0.43). This confirms that the Ni—O bond
is monoorbital and localized (the small �qπ value characterizes the
slightly asymmetric charge distribution in the mutual compensating
bonding and antibonding π MO in H2O).

To verify the abovementioned approximate validity of the CFT in
monoorbital bonding in this case, the authors [6.16] also calculated the
interaction of the Ni(1D) atom with the dipoles OH2; the dipole moment
was taken equal to 2.4 D formed by two charges: −0.860 at a distance
of 3.79 au (from the Ni atom) and +0.860 at 4.873 au. The resulting
bonding energy is 16.0 kcal/mol, which is in good agreement with the
more detailed calculations given above.

Another example of expected monoorbital bonding is the Ni—P bond
in Ni—PH3. The calculations [6.16] yield �qσ = −0.32, �qπ = 0.07
(qNi = −0.24, qP = 0.14, qH = 0.03). Although the PH3 molecule at
first sight has no active π orbitals, there is a small π backdonation
from the Ni atom to PH3. This indicates that, unlike the NH3 case,
where there is no backdonation, in PH3 the d orbitals may become
weakly active (see also Ref. [6.15] and Section 6.1). The dissociation
energy (in the 1A1 state) is De = 13.7 kcal/mol.

For the linear H3P—Ni—PH3 system the charge transfers
are almost the same as in Ni—PH3: �qσ = −0.26, �qπ = 0.10
(qNi = −0.32, qP = 0.10, qH = 0.02), which confirms that the bonding
is approximately localized and monoorbital.

Diorbital Bonds: Coordination of the N2 Molecule

More widespread and rich in content are diorbital bonds . As explained above,
this term is used to denote the presence of two types of uncompensated bonding
MOs involved in metal–ligand bonding. The diorbital bond is realized when the
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ligand possesses, in addition to the σ orbital, a free π orbital that can form
an additional π bond with the metal. In the more usual terminology diorbital
bonding may result in single, double, triple, and higher-multiplicity bonds, as
well as semibonds, depending on the number of electrons on the bonding MOs.
The single bond is realized when two bonding electrons occupy one of the two
bonding MOs; four electrons on the latter form a double bond. Higher bond
multiplicities may occur if one or both bonding MOs are degenerate, for instance,
in the case of metal–metal bonds (see below).

As simple examples of ligands in diorbital bonds, the diatomics seem to be
most informative. Consider first the most stable diatomic molecule of the series
under consideration, the N 2 molecule. Figure 6.8 shows its MO energy levels
and their wavefunction symmetries with indication of the electron occupancy
[6.18]. It is seen that the HOMO is 5σ , while the LUMO is 2π . By comparison
with the symmetries of the valence orbital of the metal (Fig. 6.4), one can easily

FIGURE 6.8. MO energy-level scheme (energies in eV are indicated in parentheses) and
wavefunction symmetries for the dinitrogen molecule.



LIGAND BONDING 263

conclude that the possibility of a nonzero orbital overlap and bonding depends
on the geometry of coordination .

For linear end-on coordination when the axis of the N2 molecule coincides
with the line of the bond to the metal, the 5σ MO of N2 can form further σ MOs
with the σ orbital of the metal, while the 2π MO forms π MOs with the metal
π orbital. Taking into account the extension of these orbitals in space, one can
see that at large distances a better overlap and bonding is achieved with the σ

MO, while shorter distances are required for a good π overlap.
For side-on coordination when the axis of the molecule is perpendicular to

the line of the bond to the metal, the overlap with the 5σ MO of N2 (and
hence the possibility of formation of a corresponding σ bond) deteriorates. In
this geometry the 1π MO has the required σ symmetry with respect to the bond,
and despite being deeper in energy, it may become significant. Note that if the
metal is a π acceptor, the only possibility for accepting π electrons from the
ligand N2 is provided by the 1π MO in the linear end-on coordination, and by
the antibonding 4σ MO in the case of side-on coordination. This illustrates the
general statement of a strong dependence of ligand bonding on the details of their
electronic structure and geometries of coordination.

If the metal has occupied π and free σ orbitals, dinitrogen coordination pro-
duces a diorbital bond with one σ -bonding MO and one π-bonding MOs in both
end-on and side-on geometries, provided the small contributions of the inner
orbitals are neglected (Fig. 6.9). Example 6.2 illustrates these conclusions by
considering the specific case of N2 bonding in FeN2 [6.19].

FIGURE 6.9. Diorbital MO bonding of the N2 molecule to a σ -acceptor (π-donor)
metal M in the linear end-on coordination.
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EXAMPLE 6.2

Electronic Structure and Bonding in FeN2 [6.19]

The ab initio calculations were carried out in the CASSCF
version of MO LCAO (Section 5.3). The basis set is taken as
(14s11p6d)/[8s6p4d] for the iron atom and (9s6p)/[4s4p] for N. For
FeN2 with side-on coordination, the main orbital charge transfers to
the N2 molecule are �qσ = −0.13, �q1π = −0.19, and �q2π = 0.68.
Compared with end-on coordination, the transfer from the 5σ MO is
lower, while the transfer from the bonding 1π MO is significant, and
the backdonation to the antibonding 2π MO is predominant.

Because of opposite signs the �qi values compensate each other in
the total charge transfer, but they contribute additively toward weaken-
ing of the N—N bond discussed above and in Section 11.2 (except in
special cases where it is important, the multiplicities of the bonds are
not indicated). The increase of the interatomic distance �R(N—N) and
the decrease in frequency of stretching vibration �ω by coordination
are calculated to be �R = 0.162 au and �ω = −671 cm−1 (in a larger
CASSCF version they are �R = 0.165 au and �ω = −467 cm−1). This
bond weakening is very important in chemical activation of molecules
by coordination. In particular, in the case of N2 this bond weakening is
the major factor in nitrogen fixation [6.20]. For other examples of N2

coordination, see Table 11.2.

Coordination of Carbon Monoxide

The CO molecule is isoelectronic to N2 [6.18] and can be characterized by
qualitatively the same MO scheme (Fig. 6.10). But unlike N2, carbon monoxide
has other MO energy-level positions and bonding features and nonsymmetric
electronic charge distribution between the C and O atoms; the electronic charge
is attracted more to the oxygen atom and it is more diffusive in the carbon side.

The coordination of CO to the metal atom results in a diorbital bonding with
one σ MO and one π MOs, quite similar to the N2 case, but the effect of coordi-
nation is different. In particular, the 5σ orbital of CO is slightly antibonding (in
N2 it is bonding), and therefore the charge transfer from this orbital to the metal
strengthens the C—O bond. On the other hand, the 2π MO in CO is stronger anti-
bonding than in N2 (Sections 7.2 and 11.2), and hence the charge transfer to this
MO gives a stronger destabilization effect than in N2. Again, the orbital charge
transfers themselves also differ in these two cases. Various metal–CO bonding
properties are illustrated by numerical calculations in Examples 6.3–6.5.
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FIGURE 6.10. MO energy-level scheme and wavefunction symmetries for the CO
molecule (compare with that of N2 in Fig. 6.8).

EXAMPLE 6.3

Bonding and Charge Transfer in the Pt—CO Complex [6.21]

Many studies are devoted to analysis of CO coordination based on
electronic structure calculations. For the system Pt—C—O, with linear
end-on coordination, calculations were carried out in approximation of
the effective core potential with a large basis set including electronic
correlation energy by means of configuration interactions (Section 5.3).
In the ground singlet state 1	+, which corresponds to dissociation of the
system into the Pt atom in the excited singlet state 5d10(1S) and the CO
molecule in the ground state, Pt—CO bonding is rather strong (∼ 70.4
kcal/mol), while the equilibrium distance Pt—C is Re = 1.707 Å. With
respect to the cleavage into the Pt atom in the ground-state configura-
tion 5d96s1 and CO in the ground state the bonding energy is smaller,
43.8 kcal/mol; in the triplet states 3 ∑+ and 3� it is 19.4 kcal/mol and
18.2 kcal/mol with equilibrium distances Re = 1.820Å and Re = 1.895
Å, respectively (Fig. 6.11).
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FIGURE 6.11. Binding energy curves for 1	+, 3	+, 3�, and 3� states of
the linear system Pt—C—O calculated in the SCF MO LCAO approximation
without (a) and with (b) CI (energies are given relative to −48 au). (After Bash
and Cohen [6.21].)

In the 3� state obtained from the electronic configuration of the
Pt atom with a hole (vacancy) in the dπ orbitals (dxz or dyz), the π-
donor properties of Pt are weakened, and there is no Pt—CO bond
(Fig. 6.11). This result confirms the considerations, given above, about
the role of the diorbital (multiorbital) nature of the bond in the mutual
enhancing σ -donor and π-acceptor interactions: the weakening of the
π dative interaction Pt—CO reduces the σ -donor properties of CO,
making bonding impossible.

The orbital charge transfers calculated for the ground state are [6.21]
�q5σ = −0.25,�q2π = 0.38 (total for two π MOs), and the total trans-
fer �q = 0.13, as expected, is not very large. This additional electronic
charge on the CO molecule is concentrated mainly on the carbon atom.
Calculated in the same approximation, the charges on the atoms in
the free CO molecule are q(C) = 0.12 and q(O) = −0.12, while after
coordination they become q ′(C) = 0.02 and q ′(O) = −0.14.

The Pt—C bond can be characterized by the overlap population
P (Pt—C). It follows from the results of the calculations that, as
expected, the major contribution to the Pt—C bonding is due to the σ

MO, Pσ (Pt—C)= 0.66. This includes the contribution of the 5σ (CO)
orbital, P5σ = 0.25, while that of 5d orbitals from the Pt atom is Pdσ =
0.41. For the π MOs, contribution to the overlap population comes
entirely from the Pt atom (the 2π MO of the free CO molecule is unoc-
cupied) and equals Pπ (Pt—C)= 0.42, in 0.21 on each of the two π MOs.
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Again, the absolute values of charges in different regions of the
molecular system (e.g., the atomic charges) in the presence of strong
covalent bonds are, in a sense, conventional and depend on the mode of
separation of the system into parts and the choice of the wavefunction
basis set in the Mulliken population analysis (see the discussion in
Section 5.2).

EXAMPLE 6.4

Bonding in M—CO with M = Cr, Fe, Co, Ni [6.21]

The calculations for these systems are quite similar to that of Pt—CO
since they are carried out in the same nonempirical approximation with
an effective core potential, but with a smaller basis set and for the metal
electronic configuration M(3dn−14s) only. The main bonding features
in M—CO are the same as in the case of Pt—CO, namely, the integral
charge transfer from the metal to the CO molecule is relatively small,
�q ≈ 0.1–0.3, while the orbital charge transfers �qσ from CO to the
metal and �qπ from the metal to CO are much larger.

This is also seen from the data in Table 6.5, where the changes of one-
electron energy levels by coordination are shown [6.7]. In particular,
the energy of the 5σ level is significantly lowered by coordination, and
this confirms once more the antibonding nature of the 5σ MO. Because
of the different basis sets used in the calculations, the absolute values
of the atomic charges differ from those obtained by Bash and Cohen
[6.21]. This is seen explicitly from the comparison of the data for the
free CO molecule; Itoh and Kunz [6.22] noted charges on C and O of
q = ±0.33, whereas from the Bash–Cohen study [6.21] it follows that
they are q = ±0.12.

TABLE 6.5. Shifts of MO Energy Levels of the CO Molecule by
Coordination to Transition Metals M (in Ev)

M

MO Free CO Cr Fe Co Ni

5σ −15.12 −16.47 −16.67 −17.11 −17.64
1π −18.15 −17.43 −17.64 −18.07 −18.54
4σ −21.74 −21.12 −21.25 −21.73 −22.23
3σ −42.41 −41.26 −41.47 −42.01 −42.57

Source: From Korol’kov [6.7].
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EXAMPLE 6.5

Bonding in Sc—CO, Ni—CO, and Ni(CO)2

The calculations for Sc—CO [6.23] was carried out by the multiref-
erence single- and double-CI method employing the pseudopotential
approximation. Reasonable results were obtained under the assumption
that the starting configuration of the Sc atom is 3d3 (term 4F ) and
the ground state of linear Sc—CO is 4 ∑−. The SCF one-electron
MO energies are shown in Fig. 6.12. The orbital charge transfers
are �qσ = −0.22, q2π = 0.52, and the total charge transfer from
Sc to CO is �q = 0.30 (qC = 0.07, qO = 0.23). The orbital charge
distribution obtained for the 2σ , 3σ , 4σ , and 2π MOs seem to
be very expressive (Fig. 6.13). The dissociation energy for the
reaction ScCO(4 ∑−

) → Sc(3d3, 4F ) + CO(X1 ∑+
) is 1.14 eV

(26.30 kcal/mol).

FIGURE 6.12. Correlation diagram for the SCF one-electron energies in the
4	− state of ScCO (in atomic units; the numeration of σ levels in Ref. 6.23
differs from that of Fig. 6.10 because the inner levels are not indicated).
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FIGURE 6.13. Electron density contour maps for the orbitals of Sc—CO in the
4	− state: 2σ (a), 3σ (b), 4σ (c), 2π (d). R(C—O)= 2.2 Bohr, R(Sc—C)= 4
Bohr. (From Jeung [6.23].)

These data can be compared with similar ab initio SCF CI
calculations for Ni—CO [6.23]. For the 1 ∑+ state �qσ = −0.15,

�qπ = 0.45,�q = 0.30 (qNi = 0.30, qC = 0.14, qO = −0.43), and
the dissociation energy into singlet nickel, Ni(1D), is 29.9 kcal/mol.
In the case of two ligands Ni(CO)2 in the linear configuration
the charge transfers change: �qσ = −0.24, �qπ = 0.29(qNi =
0.11, qC = 0.33, qO = −0.39), while the energy of dissociation into
Ni(1D) + 2CO is De = 57.1 kcal/mol. These changes could be
expected since the Ni—CO bonds are delocalized.

σ + π Bonding

So far we have tried to interpret the results of numerical calculations of CO bond-
ing in terms of the diorbital (σ and π) bond. In the cases of M—CO, where M is a
metal atom, such interpretation does not encounter difficulties. However, in more
complicated cases of ligand bonding this description may become evidently inad-
equate. In the general case of complex–ligand bonds, in addition to the σ and π

MOs, other MOs of the multielectron system may be involved, making the bond-
ing multiorbital. Let us illustrate this statement by the example of formation of the
“σ + π” MO in metal carbonyls in addition to the pure “σ” and “π” MO’s [6.24].

Consider the octahedral complex Cr(CO)6 (a general MO scheme and possible
electronic configurations for such complexes are given in Sections 6.1 and 6.2).
Let us analyze the ligand–complex bond (CO)5Cr—CO. The CO molecule takes
part in the end-on coordination by the same 5σ and 2π MOs as in the simpler
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system M—CO, and the main bonding σ and π MOs can be found by considering
their overlap with the corresponding orbitals of the complex, that is, with the
orbitals of the metal modified by the influence of other ligands. As shown below,
the presence of the latter is a matter of principle leading to a new type of bonding.

Figure 6.14 is a schematic representation of the cross section of the system in
the xz plane comprising the CA and four CO ligands, illustrating the symmetries
of the wavefunctions 5σ of the two ligands on the z axis and 1π of the other
two ligands on the x axis, as well as the pz function of the CA. As one can see,
the pz function of the Cr atom has nonzero overlap with both the σ MOs of
the two ligands on the z axis and the π MOs of the ligands on the x axis, thus
forming a common MO that is a σ MO for the former ligands and a π MO for
the latter. (Two more CO ligands on the y axis participate with their 1π MOs
in this common MO.) Obviously, an equivalent MO is formed by the σ MOs
of the two CO ligands on the x axis and the MOs of the four CO ligands on
the z and y axes, overlapping with the px orbital of CA, and a third orbital of
this kind formed quite similarly by the py orbital of the Cr atom. These three
MOs belong to the threefold-degenerate T1u representation of the Oh group. The
chemical bonding realized by these MOs mixes the σ bonds of some ligands
with the π bonds of others and vice versa; the bonding thus is σ + π . Example
6.6 illustrates such an MO obtained by numerical calculations of Cr(CO)6.

FIGURE 6.14. Illustration of σ + π bonding: the xz cross section of the t1u function in
transition metal carbonyls.
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EXAMPLE 6.6

Electronic Structure of Transition Metal Hexacarbonils M(CO)6

Figure 6.15 shows an outline of a σ + π (t1u) wavefunction (more
precisely, of its 
8 component after the spin–orbital splitting) obtained
by numerical calculations of the Cr(CO)6 system in the DFT relativistic
Xα approximation (Section 5.5) [6.24]. Since in the linear combination

FIGURE 6.15. Contour lines for the t ′1u MO of Cr(CO)6 in the xy plane
containing Cr and four CO ligands slightly modified by spin–orbital interaction
(
8 component). The σ + π nature of the MO is seen explicitly; the CA forms
simultaneously σ bonds with two ligands on the Oy axis and π bonds with
the other two ligands on the Ox axis (cf. Fig. 6.14). (After Arratia-Perez and
Yang [6.24].)
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resulting in the σ + π MO, three starting functions are used (one p

orbital, one combination of the 5σ function of two CO ligands on the
same axis, and one combination of the 1π functions of four remaining
ligands, with all the combinations t1u symmetrized), three types of t1u

MOs (t ′1u, t
′′
1u, and t ′′′1u) emerge from the LCAO calculations [6.24].

The numerical data show that bonding by the σ + π MO is rather
important; in Cr(CO)6 it has the same order of magnitude as the “pure”
σ and π MOs. This is seen also from comparison of the orbital charge
transfers: �q5σ = −0.54, �q2π = 0.27 (for each of the 2π MOs), and
�qσ+π = −0.31. The last figure contains the transfer of 0.22 electron
from the 5σ MO and 0.09 from the 1π MO of each CO ligand to the p

orbital of the CA, its integral occupation becoming 1.89. Furthermore, in
addition to the antibonding HOMO 5σ and LUMO 2π , the bonding 4σ

and 1π MOs take part in the CO binding. In Table 6.6 the orbital charge
transfers to and from these orbitals are shown [6.24]. The metal–ligand
integral charge transfers may be different (or even of opposite direction)
from those obtained in the simplified diorbital scheme (here again the
dependence of the local charges on the method of calculation should be
considered).

TABLE 6.6. Orbital Charge Transfers �q i in Hexacarbonyls of Cr, Mo,
and W (in electronic charge units per ligand)

�qi Cr(CO)6 Mo(CO)6 W(CO)6

�q1π −0.07 −0.08 −0.06
�q5σ −0.54 −0.56 −0.53
�q4σ −0.17 −0.11 −0.18
�q2π 0.27 0.28 0.31

The existence of σ + π MO confirms the statement about the three-
dimensional delocalization of the electronic cloud around the CA in coordination
compounds. Moreover, as seen from the electron distribution in these orbitals,
there is a significant ligand–ligand interaction, which is antibonding in the
higher MO (Fig. 6.15) and bonding in the lower one [6.24]. This also shows that,
strictly speaking, the ligand bonding is not of purely local ligand–metal nature
from the ligand perspective either; it is combined ligand–metal, ligand–ligand,
and so on, although the local ligand–metal contribution is predominant.

With respect to the complex as a whole, the t1u orbital is a usual MO, its pos-
sible formation resulting from the general MO scheme for octahedral complexes
with Oh symmetry (Fig. 6.1 and Table 5.1). The σ + π description emerges
when one tries to consider the metal–ligand bond separately (as a local prop-
erty). Such a description is useful in revealing the properties of coordinated
ligands and ligand–ligand mutual interactions.
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The orbital charge transfers are important to the analysis of the properties
of coordinated ligands and their activation by coordination (Section 11.2). In
the case of CO, the donation of electrons from the slightly antibonding 5σ MO
strengthens the C—O bond, while the backdonation to the strongly antibonding
2π MO weakens this bond. Since the 5σ MO is more extended in space than
the 2π MO, we conclude that in the approach of CO to M, at large distances
where the σ overlap becomes essential (while the π one is still small), the C—O
bond is expected to be strengthened (and the interatomic distance shortened), as
compared with the free molecule. By further approaching the metal, the increase
in the occupancy of the antibonding 2π orbital weakens the bond C—O. It is
this process that was observed in the detailed calculations of the (CO)5Cr—CO
bonding [6.25]. The strengthening of the C—O bond by increasing the M—C
distance is also confirmed experimentally in X-ray analysis. For instance, in the
compound Rh2(O2CCH3)4(CO)2 the Rh—C distance is unusually long (2.092
Å), while the C—O one (1.120 Å) is shorter than in the usual cases [6.26].

It follows from the calculations [6.25] that the energy of the pro-
cess Cr(CO)6 → Cr(CO)5 + CO equals 49.8 kcal/mol, which is larger
than the mean dissociation energy Iav = 29.5 kcal/mol per ligand (Iav =
{E[Cr(CO)6] − E[Cr+6CO]}/6). This result can be easily understood in view
of the delocalized nature of the coordination bond and hence the dependence of
each local M—CO bond on the presence of other bonds. It confirms again the
nontransferability of metal–ligand bond parameters discussed in Section 5.6.

We conclude this subsection by noting that when there are strong relativistic
effects, even monoorbital local diatomic bonds as shown in Section 6.3, may be
of mixed σ + π nature.

CO Bonding on Surfaces

Ligand bonding on surfaces (chemisorption) now forms a part of solid-state chem-
istry. The electronic structure of solids has some distinct features, including the
density of states , which occurs instead of the MO energy levels in the molec-
ular case. However, solid-state systems are beyond the scope of this book (an
introduction to this field is given by Hoffmann [6.27]).

In what follows we consider some local features of ligand bonding on surfaces.
One of these features is that, depending on the surface structure, several types
of bonding may occur, including simultaneous bonding to several coordination
centers on the surface: multicenter bonding . Similar multicenter bridge bonding
takes place in multicenter transition metal complexes (Section 11.2). Depending
on the nature of the multicenter bonding, the charge transfers and hence ligand
activation may be rather different.

The CO bonding on surfaces may be of one-center, two-center, or tricenter
type (Fig. 6.16), often denoted by μ1, μ2, and μ3, respectively. Let us compare
first some results of one-center coordination on different faces of different metals,
Ti(0001), Cr(110), Fe(110), Co(0001), Ni(100), and Ni(111) [6.28], obtained by
the extended Hückel method (Section 5.5). In these calculations it is assumed that
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FIGURE 6.16. Three types of possible CO coordination to the Ni surface: one-center
(a), two-center (b), and tricenter (c). In cases (b) and (c) the C—O distance is assumed
equal to the one-center case (a).

TABLE 6.7. Ligand Bonding Energies �E (in eV per one CO ligand), Orbital
Charge Transfers �q5σ and �q2π , and Bond Order Changes �P (M—C) and
�P (C—O) by One-Center Coordination of the CO Molecule to Different Metals
and Surfacesa

Ti(0001) Cr(110) Fe(110) Co(0001) Ni(100) Ni(111)

�q5σ −0.27 −0.33 −0.38 −0.40 −0.40 −0.41
�q2π 1.61 0.74 0.54 0.43 0.39 0.40
�P (M—C) 1.11 0.93 0.91 0.83 0.78 0.75
�P (C—O) −0.78 −0.34 −0.25 −0.20 −0.18 −0.19
�E (eV) −6.77 −3.44 −2.64 −1.98 −1.97 −1.66
aIn the free CO molecule P (C—O)= 1.21.

the CO molecules are linear end-on coordinated and each center on the surface
bounds one CO molecule. The last assumption is not restrictive, since it was
shown that the dependence of the coordination properties of CO on its filling on
the surface is very weak (reduction of the surface filling in half does not change
the charge transfers).

In Table 6.7 CO bonding energies and the orbital charge transfers to the 2π

MO and from the 5σ MO of CO by coordination to the metals, listed above,
as well as the changes in M—C and C—O bond orders �P as compared with
the noncoordinated case (for which P = 0 and 1.21, respectively), are given (in
the table �q2π means the charge transfer to one of the two 2π MOs; the total
transfer thus is twice that in the table). As one can see, by moving along this
series from right to left, the C—O bond weakens [following these data, the bond
is hardly possible in the case of Ti(0001)], mostly because of the increase in the
population of the antibonding 2π MO and the reduction of �q5σ . On the other
hand, the M—C bond is strengthening; this is seen from both the bonding energy
and bond orders P (M—C).

For bridged two-center and tricenter coordination, the problem of adequate
choice of interatomic distances arises. In Table 6.8 compares charge transfers,
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TABLE 6.8. Orbital Charge Transfers �q5σ and �q2π , Bond Order Changes
�P (Ni—C) and �P (C—O), and Bonding Energies �E (in eV per one CO ligand)
in One-Center (μ1), Two-Center (μ2), and Three-Center (μ3) Bonding to the
Ni(111) Face for Two Sets of Interatomic Distances

R(Ni—C) = 1.80 Å RN = 1.80 Å

μ1 μ2 μ3 μ2 μ3

�q5σ −0.41 −0.43 −0.44 −0.43 −0.46
�q2π 0.40 0.54 0.64 0.41 0.41
�P (Ni—C) 0.76 0.57 0.41 0.31 0.16
�P (C—O) −0.19 −0.24 −0.28 −0.19 −0.19
�E −1.66 −2.72 −3.24 −0.89 −0.71

bond populations, and bonding energies of CO coordinated to the Ni surface
[6.28] for two cases: (1) the distance R(Ni—C)= 1.80 Å to all the centers (to
two centers in the two-center coordination μ2, and to three centers in the tri-
center coordination μ3; Fig. 6.16) is the same as in the one-center coordination
μ1 —here the distance from the carbon atom to the surface is smaller, specifi-
cally, RN = 1.30 Å in two-center bonding, and RN = 1.08 Å in tricenter case;
and (2) the distance from the carbon atom to the surface RN = 1.80 Å, while
the distance R(Ni—C) is 2.19 Å in two-center bonding, and 2.30 Å in tricenter
bonding. Case 1 seems to be more appropriate, since a considerable increase in
the Ni—C distance associated with a corresponding bond weakening (Table 6.8)
in the absence of steric hindrance is thermodynamically inconvenient.

As one can see, when passing from one-center coordination to μ1 to μ2

and μ3 in case 1, ceteris paribus, the orbital charge transfer to the 2π MO
increases, while the C—O bond population decreases [the negative �P (C—O)
increases]. In other words, with increase in the number of bonding centers for
each CO molecule its activation by coordination increases. This multicenter effect
in chemical activation by coordination is discussed also in Section 11.2.

Bonding of NO

In the CO bonding considered above, it has been assumed that the linear end-
on geometry of coordination is realized, although, in principle, other geometries
can also be important. This problem is discussed in Section 9.2 in terms of its
influence on stereochemistry of ligand coordination. The electronic structures of
the NO and CO molecules differ in two respects: (1) the σ and π MO energy-
level positions (Fig. 6.17; cf. Fig. 6.10) are lower in the NO case (the lower 2π

MO makes the NO molecule a good π acceptor), and (2) the population of the
(unoccupied in CO) 2π MO differs by one electron. Example 6.7 shows how
these features of the NO molecule affect its coordination properties.
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FIGURE 6.17. MO energy levels of the NO molecule. The wavefunction symmetries
(not shown) are quite similar to the CO case in Fig. 6.9 (see also Figs. 6.7 and 6.8).

EXAMPLE 6.7

Coordination of NO on the Ni(111) Surface [6.29]

Omitting many details of the calculations for this case [6.29], we men-
tion here that if the surface is filled in less than (or about) 1

3 and the
coordination is linear end-on normal to the surface, the electronic inter-
action of the NO molecule with the surface is approximately the same,
as in the absence of other NO molecules on the surface. Table 6.9 gives
the orbital charge transfers �qi and changes of bond orders �P (Ni—N)
and �P (N—O) for one-, two-, and tricenter coordination of NO. The
calculations were carried out in the extended Hückel approximation
[6.29] (Section 5.5) with interatomic distances R(Ni—N)= 1.680 Å for
all the cases.

As compared with CO, these calculations are more accurate; the charge
transfers from the deeper 4σ and 1π MOs are not neglected, and it is
assumed that for the two-center coordination the two 2π MOs πx and πy

are not degenerate (the interaction with two Ni atoms in the plane of the
π MO and perpendicular to this plane are no longer equal; see Fig. 6.16).
We see that in this case, as in the CO one, the increase in the number
of coordination centers per each coordinated NO molecule increases its
bonding to the surface and decreases the N—O bond order (increases the
NO activation). The dependence of the bonding on the angle φ between
the N—O line and the normal to the surface was also considered [6.29].
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TABLE 6.9. Orbital Charge Transfers �q i , Bond Order Changes, and
Bonding Energies �E (in eV per one NO ligand) for One-Center (μ1),
Two-Center (μ2), and Tricenter (μ3) Bonding of the NO Molecule to the
Ni(111) Facea

�qi μ1 μ2 μ3

�q4σ −0.156 −0.199 −0.215
�q1πx −0.016 −0.097 −0.101
�q1πy −0.016 −0.043 −0.101
�q5σ −0.276 −0.263 −0.242
�q2πx 0.408 0.765 0.671
�q2πy 0.408 0.391 0.671
�P (Ni-N) 0.822 0.583 0.483
�P (NO) −0.197 −0.263 −0.308
�E −3.067 −4.130 −4.240
aP (N—O)= 1.231, P (Ni—N)= 0.

Coordination of C2H4

When polyatomic ligands are coordinated, the bonding picture becomes com-
plicated. However, in some particular cases the problem can be simplified and
approximately reduced to coordination of diatomics. Let us consider the coordi-
nation of olefines, for instance, ethylene, from this perspective. Simplification is
possible in the case of bonding in the scheme of a π complex when the C C
bond line is perpendicular to the line of the bonding to the metal.

In the planar configuration of C2H4 the C C bond has one σ - and one
π-bonding MOs with the latter lying in the plane perpendicular to that of the
molecule (Fig. 6.18). In the π complex, since the C—H bonds do not take
part in the chemical interaction with the metal directly, one can conclude that
the metal–ligand bond in LnM—C2H4 is approximately diorbital. However, this
bond is different from those of N2 and CO coordination: in the last two cases the
HOMO is of σ type (bonding in N2 and weakly antibonding in CO), whereas in
C2H4 it is a bonding π MO. The LUMO is an antibonding 2π MO in all the
cases, but in N2 and CO there are two MOs of this kind (πx and πy), whereas
in C2H4 there is only one.

In the bonding of C2H4 to the metal in the form of a π complex, both its
bonding orbitals (either σ or π) act as σ donors, while only one antibonding π∗
MO (and less probably the antibonding σ ∗ MO) takes part in the metal–ligand
diorbital bond. This determines the stronger σ -donor and weaker π-acceptor
interaction of ethylene with the metal atom, as compared with CO and NO. Hence
one can expect that the weakening of the C C bond of an olefin by coordination
is promoted by good σ -acceptor properties of the metal. In particular, one can
anticipate that the C C bond will be less weakened if the σ -acceptor orbitals of
the metal are occupied by electrons. Examples 6.8 and 6.9 provide more details
on C2H4 coordination to metal centers.
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FIGURE 6.18. MO energy-level scheme for the M–C2H4 bonding in the π-type coordi-
nation of ethylene to the metal (π complex). Two orbitals of C2H4 σ + π form σ bonds
with M, while the other two σ ∗ + π∗ produce the π bonding to the dπ orbital of M.

EXAMPLE 6.8

Ethylene Bonding to Transition Metal Centers [6.30–6.35]

One of the first well-studied systems of this kind was Ag+—C2H4;
its electronic structure was calculated and first reported in 1972 [6.30],
and then repeated in 1977 [6.31] using another AO basis set and
comparing the results with those of the valence basis set approximation
(i.e., when the valence orbitals only are taken as a basis set; Section
5.3). Qualitatively, the results of these two studies coincide. The C2H4

molecule is assumed planar, and coordination of the Ag+ ion placed
on the twofold C2 axis perpendicular to the plane of the molecule is
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energetically more convenient than on a similar axis in the molecular
plane [6.30]. The bonding energy (in kcal/mol) is 27.6 [6.30], or 28.9
[6.31] or in the abovementioned valence approximation, 38.3 [6.31].
The main contribution to the bonding is due to the σ -donor charge trans-
fer from the bonding π MO of the ethylene molecule to the σ orbital of
the metal (formed mainly by the 5s orbital of the Ag atom with addi-
tions from its 5p orbital). A much smaller contribution to the bonding is
due to the dative charge transfer to the antibonding π∗ MO of ethylene
from the 3dπ orbital of Ag. In the valence approximation the charge
on the Ag atom equals +0.85 [6.31], and the orbital charge transfers
to C2H4 is �q(σ+π) = −17 and �q(σ∗+π∗) = 0.02, respectively.

In the semiempirical CNDO calculations [6.32] the charge transfers
are larger and the charge on Ag is +0.71, while the C C bond order
is reduced by coordination from 0.96 to 0.88. Approximately half of
the Ag+—C2H4 binding (∼ 15 kcal/mol [6.30]) is due to electrostatic
polarization of the C C bond by the Ag+ ion. The separation of this
component of bonding is partly conventional, though.

The calculations of PdC2H4, Pd(C2H4)3, and Pd(C2H4)4 carried out
by the same method as Ag+—C2H4, yield similar results [6.31]. In the
case of Pd—C2H4, R(Pd—C)= 2.2 Å, R(C=C) = 1.37 Å, and with the
planar C2H4 molecule coordinated to Pd in the same way as in Ag+—
C2H4, the bonding energy (62.8 kcal/mol) is much larger than in the latter
case despite the absence of pure electrostatic polarization. The bonding
is more covalent and multiorbital with orbital charge transfers (see Fig.
6.18) �q(σ+π) = −0.14, �q(σ∗+π∗) = 0.33. The total transfer to C2H4

�q = 0.19 is positive, in contrast to the Ag+—C2H4 case, where
�q = −0.15. With the increase in the number of ligands n in the complex
Pd(C2H4)n, the bonding energy per ligand �En decreases (in kcal/mol):
�E1 = 62.8, �E3 = 53.6, and �E4 = 45.5. With electronegative sub-
stituents in ethylene (as in C2F4), the energy of its antibonding MO
lowers and the corresponding metal–ligand charge transfer increases.

EXAMPLE 6.9

Ethylene Bonding in PtCl3(C2H4)− and PdCl3(C2H4)−

More complete calculations of ethylene bonding were carried out for
the Zeise salt PtCl3(C2H4)

− (I) and its Pd analog PdCl3(C2H4)
− (II)

[6.33] using nonempirical methods with extended basis sets and rela-
tivistic corrections. Figures 6.19 and 6.20 illustrate the results for these
two systems in different geometries, including the upright and planar
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FIGURE 6.19. Calculated geometries for PtCl3(C2H4)
− for the upright and

planar forms of coordinated ethylene along with uncoordinated ethylene (exper-
imental values are indicated in parentheses). (From Hay [6.33].)

coordination (when the C C bond is perpendicular to the plane and
in the plane of the complex, respectively) and the dissociated state.
The experimental data for I obtained by neutron diffraction are in good
agreement with these calculations. The Pt—C2H4 distance R = 2.06 Å
(calculated with a basis set that includes the 3d function of the carbon
atom) is close to the experimental value R = 2.02 Å.

The planar configuration in Zeise salt I is by 15 kcal/mol higher
in energy than the upright one; the bonding energy for the latter
is 28.5 kcal/mol. It follows that internal rotation of the ethylene
molecule is possible with a rotation barrier of 15 kcal/mol. Such
barriers are observed experimentally for related complexes in the
region of 10–16 kcal/mol [6.34]. Comparison of these results with
those obtained by the extended Hückel method [6.34] shows that the
latter correctly predicts that the upright coordination is more stable, but
it overestimates the barrier height: 35 kcal/mol in the case when the
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FIGURE 6.20. Calculated geometries for PdCl3(C2H4)
− for the upright and

planar forms of coordinated ethylene along with uncoordinated ethylene. (From
Hay [6.33].)

geometry of the PtCl3 group remains in the planar configuration, and
22 kcal/mol if two Cl atoms deviate from the initial in-plane position
by seven degrees (7◦).

Note that in the calculations with geometry optimization the possible
out-of-plane displacements of the Cl atoms is not taken into account: a
stronger effect that allows for relaxation of the stressed planar configu-
ration is achieved by increasing the Pt—C2H4 distance from R = 2.11
Å to R = 2.42 Å (for the latter distance the out-of-plane displacements
of the Cl atoms are no longer important). Albright et al. [6.35] consider
other cases of coordination of olefins to metals in detail and discuss
the possibility of internal rotations of olefins. The main contribution to
the barrier of rotations is due to the steric repulsion between the CH2
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groups of the olefins and the chlorine atoms in the planar configuration.
This result is confirmed by more accurate calculations [6.34].

For the PdCl3(C2H4)
− complex the bonding energy of the ethylene

molecule is 12.3 kcal/mol, and the energy barrier of internal rotations
(6.9 kcal/mol) is much smaller than in the Zeise salt [6.33]. The defor-
mation of the complex due to the ethylene coordination is also smaller.
The author [6.33] believes that this result explains why the Pd complex
is more active in olefin oxidation; although the C C bond is more acti-
vated in the Pt complex, the rather strong Pt—C2H4 bond decelerates
the reaction at the stage of cleavage of the oxidation product.

The orbital charge transfers �qσ and �qπ are given in Table 6.10, in
which the values obtained by means of the more accurate Noell method
[Section 5.2, Eq. (5.22)] are also shown. At first sight the differences
in the orbital charge transfers calculated by these two methods are not
very large, but the resulting charges on the metal are much different.
Indeed, in the Zeise salt the atomic charge on the Pt atom after Mulliken
is q(Pt) = 0.02, whereas after Noell q ′(Pt) = 1.40 [similarly, for the
Pd complex q(Pd) = 0.20 and q ′(Pd) = 1.27].

TABLE 6.10. Orbital Charge Transfers �qσ and �qπ to Ethylene in
PtCl3(C2H4)− and PdCl3(C2H4)− Calculated by Mulliken Populations
Analysisa

PtCl3(C2H4)
− PdCl3(C2H4)

−

�qσ −0.37 −0.18
(−0.24) (−0.12)

�qπ 0.23 0.07
(0.22) (0.07)

Source: From Hay [6.33].
aThe modified values after Noell are given in parentheses.

Ethylene coordination is also discussed in Section 11.3 as the main feature in
olefin insertion reactions and polymerization with Ziegler–Natta catalysts.

Metal–Metal Bonds and Bridging Ligands

The metal–metal bond may be regarded formally as ligand bonding in which the
ligand is a metal. However, in fact the metal–metal bond is very different from
that of the usual ligands [6.36–6.46]. There may be several metal ligands in the
case of multicenter (polynuclear) cluster compounds.

Consider the M—M bond, where M is a transition metal that can participate
in the bonding with its s, p, and d orbitals. One distinct feature of the d states
is that they can produce δ bonds (Section 2.1, Fig. 2.7) in addition to σ and π
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FIGURE 6.21. Illustration to the σ , π , and δ MOs formed by the d orbitals in the M—M
bond: bonding σ and antibonding σ ∗ (produced by the two dz2 AOs of the two atoms),
twofold degenerate π and π∗ (formed by the two dxz and two dyz AOs, respectively),
and twofold degenerate δ and δ∗ (emerging from the overlap of, respectively, the two dxy

and two dx2−y2 AOs).

bonds. Figure 6.21 illustrates the main types of MOs that are built up from the d

AOs of the transition metal M. The σ MO can be formed by s, pσ , and dz2 AOs,
and hence there may be three AOs of σ type (or even more when M has ligands)
which produce three bonding and three antibonding MOs instead of one σ and
one σ ∗ as shown in Fig. 6.21. The π bonds are formed by the doubly degenerate
dπ (dxz, dyz) AOs with possible admixture of pπ . The δ bond is also doubly
degenerate since it is produced by the two degenerate dδ AOs, dxy and dx2 –y2 .
The qualitative scheme in Fig. 6.21 is based on the well-known fact that the σ

overlap is the strongest possible, producing the largest energy splitting between
the bonding and antibonding MOs; the π overlap is smaller, while the δ overlap
is the smallest.

As follows from this MO scheme, there are rich possibilities for multiorbital
bonding in M—M depending on the number of electrons n that occupy the MOs.
With one or two electrons, we have a monoorbital single bond. Up to six electrons
give one σ and two π bonds (a diorbital triple bond). With more electrons we
get triorbital fourfold and fivefold bonds. The last two possibilities are a special
feature of M—M bonds that is unknown for other bonds [6.36]. For larger n the
number of uncompensated bonding MOs decreases, provided that the additional
σ orbitals from the s and p AOs are high in energy and not occupied (see below).
Example 6.10 illustrates the M—M bonding in specific systems.
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EXAMPLE 6.10

Multiple Metal–Metal Bonds in [Re2Cl8]2− and [Mo2Cl8]4−

The first identification of a fourfold bond was obtained in 1964 for the
Re—Re bond in the [Re2Cl8]2− anion in different compounds (e.g., in
K2Re2Cl8 · 2H2O) [6.36, 6.40]). This anionic complex is diamagnetic
and has the structure shown in Fig. 6.22 [6.41]. Its important feature is
that the eight chlorine atoms form a square prism (eclipsed structure),
not an antiprism (staggered structure) as expected from the repulsion of
the negative Cl− ions. But the most significant result of these studies
is that the interatomic Re—Re distance in this complex is very short,
about 2.22 Å, shorter than in the metallic state.

The explanation for these data was given qualitatively [6.40] on the
basis of the MO scheme of Re—Re bonding shown in Fig. 6.21. The
eight electrons that remain after the formation of the eight Cl− ions in
the [Re2Cl8]2− system occupy one σ , two π , and one δ bonding orbitals,
resulting in the configuration σ 2π4δ2 with a fourfold bond. The δ bond
between the two dxy AOs of the Re atoms also explains the origin of the
eclipsed structure of the [Re2Cl8]2− anion; in the alternative staggered
structure, formation of the δ bond is impossible (the dx2 –y2 orbitals are
engaged in the Re—Cl bonds), and it can be assumed that the energy
gain in this δ bond is larger than the increase in Cl−—Cl− repulsions
in the eclipsed structure.

FIGURE 6.22. Atomic structure of the [Re2Cl8]2− ion. (From Kuznetsov and
Koz’min [6.41].)
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This qualitative explanation of the Re—Re fourfold bond was
confirmed afterward by semiempirical and nonempirical calculations.
The first DFT-Xα computations (Section 5.4) were carried out for
[Mo2Cl8]4− [6.42] and [Re2Cl8]2− [6.43]. The presence of other AOs
of the metal and ligands may complicate the pure d-orbital M—M MO
energy-level scheme of Fig. 6.21. In particular, the additional σ and
π MOs formed by the (next to d) s and p orbitals of the metal with
the ligands and in the M—M bond may occur in between the d—d

levels. However, the calculations show that in the oxidation states
under consideration, +2 and +3, the additional electronic states are too

FIGURE 6.23. Contour diagram of the wavefunction of the Mo—Mo σ -
bonding MO of [Mo2Cl8]−4; the cross section including the two Mo and four
Cl atoms is shown. (After Norman and Kolari [6.42].)
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high in energy and do not interfere with the levels of the scheme in
Fig. 6.21.

Visual presentations of the corresponding wavefunctions by the
contour diagrams in Figs. 6.23, 6.24, and 6.25 for σ, π , and δ MOs,
respectively, illustrate their M—M bonding nature; the calculations
[6.42, 6.43] confirm the qualitative electronic configuration σ 2π4δ2

with a fourfold bond M—M in [Mo2Cl8]4− and [Re2Cl8]−2. A
qualitatively similar result was obtained [6.44] in the MO LCAO

FIGURE 6.24. Contour diagram of the wavefunction of the Mo—Mo π-
bonding MO in [Mo2Cl8]4− shown in the same cross section as in Fig. 6.23.
(From Norman and Kolari [6.42].)
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FIGURE 6.25. Contour diagram of the wavefunction of the Mo—Mo δ-
bonding MO of [Mo2Cl8]4−; the cross section containing the two Mo atoms
and the positive lobes of their dxy AO (i.e., bisecting two opposite Cl—Mo—Cl
right angles in each of the MoCl4 groups) is shown. (After Norman and Kolari
[6.42].)

Hartree–Fock (HF) approximation, but the DFT approach gives bet-
ter results (lower energies) because it includes a part of the correlation
energy (Section 5.4). The latter can also be factored into the HF approx-
imation by adding CI (Section 5.3) with higher-energy configurations
σ 2π4σ ∗2, σ 2π2δ2π∗2, . . ., σ ∗2π∗4δ∗2. Without CI the results may yield
erroneous conclusions. For instance, a HF single-determinant calcula-
tion gives no Cr—Cr bonding in Cr2(O2CH)4(H2O)2 (electronic config-
uration σ 2δ2δ∗2σ ∗2 with no uncompensated bonding MOs), whereas CI
calculations result in the correct fourfold bonding with an interatomic
distance of 2.27 Å [6.45].

Many other M—M bonds in coordination systems were studied and
different bond multiplicities revealed, including the fourfold bond W—W in
[W2(CH3)8]4−, the 3.5-fold bond Tc—Tc in [Tc2Cl8]3− with the configuration
σ 2π4δ2δ∗, and Mo—Mo in [Mo2(SO4)4]3− with the configuration σ 2π4δ, the
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TABLE 6.11. Calculated Electronic Structure of Metal–Metal Bonds in
Dimer M2 Systemsa

Electronic Bond Method of
M2 Ground State Configuration Order R0 (Å) Calculation

Sc2
5	− sσ 2

g dσ 1
g π2

usσ 1
u 2 2.57 SCF CI

1	+
g sσ 2

g dσ 2
g sσ 2

u 1 3.05 SCF

Ti2 1	g σ 2
g dσ 2

g π4
u 4 1.87 SCF

V2
1	g sσ 2

g dσ 2
g sσ 2

u π4
u 3 1.96 SCF

π4
udσ 2

g sσ 2
g δ2

g 5 1.78 Xα-DV

Mn2 dσ 2
g π4

uδ4
gsσ

2
g δ2

u 5 1.69 Xα-DV
1	g dσ 2

g sσ 2
g sσ 2

u π4
uδ4

u 5 1.52 SCF

Fe2
7�u dσ 1.57

g π3.06
u δ2.53

g δ2.47
u ×

dσ 1.49
u π2.89

g sσ 2
g 1.3 2.40 SCF CI

Co2
5	+

g dσ 2
g π3.09

u δ3.02
g δ2.98

u ×
π2.91

g dσ 2
u sσ 1.94

g sσ 0.06
u 1.1 2.40 SCF CI

Ni2 3�u dσ 2
g π4

uδ4
gδ

4
usσ

2
g σ 1

u π3
g 2 2.16 Xα-SW

1σ 2
g σ 2

u 2σ 2
g π4

uπ4
g δ3

gδ
3
u 2.26 SCF CI

Nb2
1	g σ 2

g π4
uδ4

g 5 1.97 Xα-DV

Tc2 — dσ 2
g π4

uδ4
gsσ

2
g δ2

u 5 1.92 Xα-DV

Ru2
1	g dσ 2

g π4
uδ4

gδ
4
usσ

2
g 4 1.94 Xα-DV

7�u dσ 1.67
g π3.31

u δ2.73
g δ2.42

u π2.60
g ×

dσ 1.27
u sσ 1.94

g sσ 0.06
u 1.7 2.71 SCF CI

Source: From Kl’agina and Gutsev [6.46].
aNotations sσg, dσg, πu, δg, . . . represent the corresponding σ, π, δ, . . ., MOs formed by s, d, . . .,
AOs; u and g orbitals of the same type approximately compensate each other

triple bond Re—Re in Re2Cl5(dth)2 and Re2Cl4(PR4)4 (σ 2π4δ2δ∗2), the shortest
fourfold bond Cr—Cr in Cr2(C3H4)4, and others [6.36, 6.46].

For the Cr—Cr bond with a very short bond length, R = 1.68 Å in Cr2(C3H4)4

(cf. R = 2.55 Å in the metallic state) and apparently the shortest metal–metal
bond Mo—Mo with R = 1.93 Å (metallic R = 2.76 Å), it has been assumed
[6.46] that the bond is sixfold; that is, in addition to the triorbital fivefold (one
σ , two π , and two δ) bond, a σ bond from the ns orbitals occurs. The DFT-Xα

calculations [6.47, 6.48] apparently confirm this point of view.
Table 6.11 lists a series of electronic structure calculations of metal–metal

bonds in M2 systems which indicate the ground state, electron configuration,
bond order, bond length R0, and the calculation method [6.46].

In some cases the calculations disprove the assumptions made on a qualitative
basis. For example, the Rh—Rh bond in Rh2(OCCH3)4(H2O)2 was found to be
shorter (∼ 2.39 Å) than in Rh2(dmg)4(PPh)2 (∼ 2.94 Å), and this led to the
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assumption [6.49] that in the acetate dimer the Rh—Rh bond is a triple bond
with the configuration σ 2π4δ2σn

2σ ′2
n δ∗2, where σn and σ ′

n are some nonbonding
orbitals comprising essentially 5s and 5pσ AOs of Rh. Both semiempirical [6.50]
and DFT-Xα [6.51] (see also Ref. 6.52) calculations show that in these and
some other similar d7 –d7 Rh dimers the 14 electrons produce the electronic
configuration σ 2π4δ2π∗4δ∗2 leaving only one uncompensated orbital σ . Hence
the Rh—Rh bond is monoorbital (single), and the σn, σn′ -type orbitals are not
active.

An important problem related to metal–metal bonds is the role of bridging
and semibridging ligands . In the presence of ligands that occupy a position close
to both metals (or to several metals in polynuclear cluster compounds), a question
arises as to whether there is direct metal–metal bonding, or whether it is realized
completely through the nearest-neighbor ligands, which thus serve as bonding
bridges. An example of this kind is briefly discussed in Section 8.4 for the
dimeric copper acetate hydrate and other copper carboxylates (Examples 8.11
and 8.12). The semiempirical IEH (SCCC) MO LCAO calculations (Section 5.5)
show [6.53] that in these cases Cu—Cu bonding is realized via the carboxylate
bridges, and there is no direct Cu—Cu bonding.

More accurate calculations of the electronic structure of dimers were carried
out more recently to reveal the role of bridging ligands. An interesting example
is provided by the Co2(CO)8 complex. The Co—Co interatomic distance in this
complex, although not very short, allows one to propose that there is a direct
Co—Co single bond, and this assumption is also supported by the 18-electron
rule [6.54] (a closed shell with 18 electrons, similar to [Ar] configuration, is
assumed to be most stable; see the inert-gas rule in Section 9.1). If this is true,
the bond can be either linear, or bent. The latter possibility is enhanced by the
symmetry of the system. Figure 6.26 shows these two possibilities together with
a third one when there is no direct M—M bond.

Calculations in the IEH approximation [6.55] show that there is no direct
Co—Co bond, whereas the CNDO approach yields such a bond [6.56]. This con-
troversy stimulated more accurate ab initio SCF computations [6.57]. A detailed
analysis of the deformation density (Section 8.6) with respect to two Co(CO)3

fragments and two CO molecules and additional topological investigation of the
electronic density in the region between the Co atoms shows that there is no
direct Co—Co bond in this compound. For related calculations of Fe3(CO)12 and
MoCr(O2CH)4, see the articles by Rosa and Baerends and Wiest et al. [6.58].

To conclude this subsection, we briefly comment on semibridging ligands .
This term is generally used to denote a ligand (often a carbonyl, thiocarbonyl)
that is asymmetrically coordinated to two metal centers between which there is
a direct bonding. Figure 6.27 illustrates this possibility for the CO molecule as a
semibridging ligand between two metals (usually M and M′ are different). The
question under discussion in a series of papers concerns the nature of the bonding
to the secondary metal M′. The position of the CO molecule with respect to M′
enables its four bonding electrons on the π orbitals to be σ donors to M′ (see
Fig. 6.9). On the other hand, its antibonding π∗ MO can serve as a good acceptor
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FIGURE 6.26. Structure of the Co2CO8 complex without (a) and with a linear (b) and
bent (c) direct Co—Co bond.

of electrons. Hence there are two possibilities of charge transfer from CO to M′
and from M′ to CO as shown in Fig. 6.27.

It is clear that the actual charge transfers depend essentially on the nature of
the metals M′, M, and the other ligands coordinated to these metals. For instance,
if M′ is a good σ acceptor and π donor, significant orbital charge transfer to the
antibonding π∗ MO of CO can be expected, as long as the metal M does not
occupy this π∗ MO in the bonding with CO; this, in turn, depends on the nature
of M and its other ligands. Obviously, the problem should be solved by reliable
electronic structure calculations.

FIGURE 6.27. Semibridging CO ligand with indication of two possible situations of
charge transfer: (a) from and (b) to the ligand.
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Concerning carbonyl complexes, three different types of semibridging ligand
bonding can be distinguished: (1) the secondary metal atom M′ is an early tran-
sition metal (I), (2) M′ is an atom from the middle of the series (II), and (3)
it is a late transition or posttransition element (III). It was shown in a series of
electronic structure calculations carried out for several systems of types II and
III that in these cases the CO ligand is a π acceptor (Fig. 6.27b).

For example, for the dimer (NH3)2CuCo(CO)4 the electronic structure cal-
culations [6.59] in the Fenske–Hall approximation (Section 5.4) performed for
the system as a whole and separately for the two fragments, (H3N)2Cu and
Co(CO)4, show explicitly that in the system (H3N)Cu—Co(CO)4 one of the CO
ligands is semibridging and accepts an electronic charge transfer of ∼ 0.14 to its
antibonding π∗ MO from the copper dxz orbital.

In early transition elements M′ (complexes of group I) the dxz-type orbitals
are unoccupied and cannot be electron donors to CO. Detailed calculations of
CpCo(μ-CO)2ZrCp2 (Cp = η5 − C5H5) in the same Fenske–Hall approximation
[6.58] show that in the interaction of the two groups, Cp2Zr and Co(CO)2Cp, the
semibridging CO ligand is a four-electron π donor to the electron-deficient Zr
atom.

6.4. ENERGIES, GEOMETRIES, AND CHARGE DISTRIBUTIONS

This section continues the discussion of electronic structure and bonding in coor-
dination compounds by revealing some further features closely related to those of
ligand bonding: total and ionization energies, charge distributions, and geometries
of coordination.

Ionization Energies

As noted in Section 6.2, one should be careful when relating the one-electron
MO energies to observable spectroscopic properties (ionization potentials, opti-
cal, photoelectron, X-ray, etc., spectra; Sections 8.1–8.3). In particular, for the
ionization potentials I the Koopmans theorem (mentioned earlier multiple times)
states that the energy of ionization of an electron from a given electronic state
equals the energy of the corresponding MO taken with opposite sign (Sections
2.2 and 6.2). This means that the order and position of the consequent I values
or the positions of the peaks of photoelectron spectra, observed experimentally,
should correspond to the consequence of the MO energy-level positions from top
to bottom. This correspondence takes place indeed in some cases, for example,
in Ni(CO)4 [6.60, 6.61].

However, in many cases, for instance, in organometallic compounds and com-
plex anions, the Koopmans theorem does not hold. As emphasized in Sections
2.2 and 6.2, the Koopmans approach does not account for the fact that when
one removes the electron from a given one-electron state, all the other elec-
tronic states change; the electrons relax to new self-consistent states in which the
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interelectron repulsion is reduced. This relaxation, which may be small or even
negligible when the state to be ionized is well localized, becomes very important
in the case of coordination compounds where the ionization takes place from
MOs containing d states with essentially delocalized charge distribution.

For instance, in the case of ferrocene Fe(Cp)2 the calculations yield the fol-
lowing order of MO energy-level positions [6.62]:

a1g(3d) < e2g(σ − Cp) ∼ a2u(π − Cp) ∼ e2u(σ − Cp)

< e2g(3d) < e1g(π − Cp) ∼ e1u(π − Cp) (6.3)

The order of ionization potentials I determined experimentally from the pho-
toelectron spectra is different from sequence (6.3) [6.63]. If one negates the
Koopmans theorem, then the I values should be calculated as a difference
between the energies of the ground state of the Fe(Cp)2 molecule and the final
state after ionization Fe(Cp)2

+ (both calculated with full account for interelec-
tron interactions). The calculations carried out in this way [6.62] give another
consequence of ionization potentials I :

I (e2g) < I (a1g) < I (e1u) < I (e1g) (6.4)

in agreement with the experimental data.
Similarly, for complex anions the HOMO energy levels are often of ligand

type (p levels of halogens, π levels of CN, etc.), whereas the first ionization
potential calculated as the energy difference between the initial complex and
its ionized state corresponds to elimination of the 3d electron of the metal in
accordance with the experimental data. In ab initio calculations the difference
between the self-consistent (SCF) energies of two systems, initial and ionized, is
often denoted by �SCF.

Another and sometimes no less important reason for the observed deviations
from the Koopmans theorem lies in the difference in electron correlation energy
(Section 5.3) in these two states. A sufficiently full calculation of ionization
energies in photoelectron (X-ray) spectra must include the correlation energies
(e.g., by means of CI) in both states, before and after ionization; the corresponding
energy difference is then denoted by �SCF-CI.

For coordination compounds, as distinct from more simple systems, such a full
calculation of the �SCF-CI values may be difficult. A modified Green function
method—two-particle-hole Tamm–Dancoff approximation (2phTDA) [6.65] has
been suggested for these problems and proved to be more convenient and less
computer-time-consuming than CI. The results are illustrated by calculations for a
series of coordination systems: Ni(C3H5)2, Ni(CN)4

2−, Co(CN)6
3−, Fe(CN)6

4−
[6.64, 6.66]. Example 6.11 illustrates in more detail the results obtained for
Ni(C3H5)2.
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EXAMPLE 6.11

Ab Initio Calculations of Ni(C3H5)2

Ni(C3H5)2 was one of the first coordination systems calculated ab initio
[6.67, 6.68]. Rohmer and Veillard [6.68] illustrated explicitly the need
to account for the relaxation of electrons by ionization. Then it occurred
to them that the calculated SCF MO energies are also not adequate and
give an incorrect order of ionization states. In Table 6.12 the ionization
energies for the valence states of this system obtained by ab initio calcu-
lations after Koopmans and by �SCF, �SCF-CI, and 2eh-DTA methods
are listed [6.64, 6.66]. The experimental data were taken from the pho-
toelectron spectra [6.69] (Section 8.3). The notations of the MOs are
given after the irreducible representations of the symmetry group D2h.

The HOMO 7au is a pure ligand π MO originating from its a2 π

MO. The next one, 6bg , is a mixing of an appropriate combination of
this a2 MO with the dxz orbitals of the metal and gives the largest con-
tribution to the bonding. The 11bu MO is a nonbonding, antisymmetric
mixing of the ligand π MOs of b1 type. Their symmetric combination
overlaps with the Ni dxy orbital, yielding the 9ag and 13ag MOs. The
10ag, 5bg , and 11ag MOs contain, respectively, the metallic 3dz2 , 3dxy ,
and 3dx2−y2 orbitals and are mainly nonbonding. The remaining valence
MOs are related to the σ core of the ligands.

As shown by the numerical data of the calculations with CI, the
contribution of the basic Hartree–Fock (HF) configuration to the wave-
function of the ground state is 83%, which is significantly less than for
compounds without transition metals (where it is greater than 95%).
In other words, CI is more important in calculations of the electronic
structure of transition metal compounds than for organic compounds.
The largest contribution to the CI comes from excited states formed by
one-electron and two-electron excitations 6bg → 7bg and 6b2

g → 7b2
g ,

where 7bg is the antibonding metal–ligand MO (corresponding to the
6bg bonding MO). In the 7bg MO the contribution of the Ni 3d orbital
is 43%, while in 6bg it is 38%. Therefore, by including correlation
effects, more electronic charge is transferred to the metal.

As seen from Table 6.12, the Koopmans theorem gives not only
incorrect values of ionization energies but also wrong sequences of the
latter beginning from the third band of the spectrum. The discrepancies
are larger for states that include the metal d orbitals (as anticipated)
and much less for pure ligand states. The �SCF calculation improves
essentially the results, but still it gives an incorrect sequence of the
ionization bands. The inclusion of correlation effects by the CI method
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gives a further improvement in the results, while the 2ph-TDA method
gives the best fit to the experimental data.

TABLE 6.12. Calculated Ionization Energies of Valence MOs of
Ni(C3H5)2 (in eV)

Method of
CalculationKoopmans Extended

MO Origina Theorem �SCF �SCF-CI 2ph-TDA Experimentb

7au π(L) 7.5 6.7 6.7 6.4 7.7(1)
6bg 3dxz; π(L) 9.0 5.6 6.6 7.7 8.1(2)
11bu π(L) 11.8 11.0 10.8 10.3 10.3(5)
13ag 3dxy;π(L) 11.7 5.5 6.4 7.6 8.1(2)
12ag σ (L) 14.0 — — 13.5 12.7(7)
5bg 3dyz 14.0 — — 8.5
11ag 3dx2−y2 14.2 — — 8.2 8.5(3)
6au σ (L) 14.6 — — 13.3
10bu σ (L) 14.6 — — 13.4 12.7(7)
4bg σ (L) 15.0 — — 13.7
10ag 3dz2 15.3 — — 8.8 9.4(4)
9ag 3dxy;π(L) 16.4 — — 11.5 11.5(6)
5au σ (L) 16.5 — — 14.9
3bg σ (L) 17.3 — — 15.1 14.2(8)
9bu σ (L) 18.0 — — 16.2
8ag σ (L) 19.0 — — 16.5 15.6(9)

Source: Guest [6.64] and Hillier [6.66].
aL denotes ligand.
bThe order numbers of the bands in the photoelectron spectra are indicated in parentheses.

Reasonable results for ionization energies (photoelectron spectra) were
obtained by density functional methods. Some earlier works on Xα calculations
are reviewed by Johnson and others [6.70, 6.71]. Decleva et al. [6.72] calculated
a series of transition metal systems, including Ni(CO)4, Cr(NO)4, Fe(CO)2(NO)2,
bis(π-allyl)nickel, and bis(π-allyl)palladium using DFT methods, and compared
the results with those of other methods and with experimental data. A more
complicated system, ruthenocene, is calculated in the ground and excited states
[6.73] by so-called linear combinations of Gauss-type orbitals–model core
potential–density-functional (LCGTO-MCP-DF) method [6.74] (Section 5.4).
The authors also addressed the issue of term multiplicity (one of the difficult
problems in density-functional methods, Section 5.4) and obtained absorption
and emission frequencies in good agreement with experimental data.



ENERGIES, GEOMETRIES, AND CHARGE DISTRIBUTIONS 295

Total and Bonding Energies, Geometries, and Other Properties

Ab initio calculations of relatively simple coordination compounds became pos-
sible about three decades ago. Table 6.13 lists some examples of earlier nonem-
pirical computations of the electronic structure and properties of a series of
coordination systems [6.70–6.72]. It includes the total energy (for fixed nuclei),
bonding energy (with respect to either the metal in the corresponding oxidation
state and the ligands, or the atoms), and the formal charge on the central atom
after Mulliken (Section 5.2).

Besides the data presented in Table 6.13, the calculations cited there allow
one to determine the electronic distribution in the system, the relative stability of
different electronic and geometric configurations (where these configuration were
calculated), the one-electron energy-level ordering for the outer electrons, poten-
tials of ionization from different states (expected photoelectron spectra), electron
affinities, frequencies and probabilities of electronic transitions with absorption
and emission of light, and so on. For example, Fig. 6.28 illustrates the electronic
charge distribution along the Ni—C—N bond in the Ni(CN)4

2− complex [6.61].
Several examples are devoted to relative stability of different geometries. For

CuCl42− the configuration of a compressed (flattened) tetrahedron of D2d sym-
metry with a Cl—Cu—Cl angle of 120◦ is most stable (in Table 6.13, the data
obtained by the same basis set should be compared) in accordance with the
Jahn–Teller effect (Section 7.3).

In the NiCl42− complex, the high-spin (triplet) state 3T1 is more stable (by
65 kcal/mol) than the low-spin state 1T2 in agreement with the experimental data.
Nonempirical calculations of five-coordinated complexes CuCl53−, Cu(H2O)5

2+,
and Fe(CO)5 [6.88] in the configurations of a square pyramid and of a trigonal
bipyramid show that the energies of these two configurations are very close (the
difference is of the order of several kcal/mol). This explains their stereochemical
softness and the Jahn–Teller pseudorotation [6.89]; these effects are discussed in
Section 9.2. A full SCF calculation with geometry optimization for Cu(H2O)6

2+,

FIGURE 6.28. Contour map of electronic charge distribution along the Ni—C—N coor-
dinate in Ni(CN)4

2− obtained by nonempirical calculations. (After Demuynck and Veillard
[6.61].)
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TABLE 6.13. Some Results on Earlier Nonempirical Calculations of
Coordination Systems

Total Bonding
Symmetry Electronic Energy Energy Charge

System Group State (au) (kcal/mol) on CA Ref.

Cr(CO)6 Oh
1A1g −1702.613 240a +0.703 [6.60]

NiF4−
6 Oh

3A2g −2084.4339 — — [6.79]
−2099.1291b — — [6.80]

NiCl2−
4 D4h

1A1g −3334.454 — — [6.78]
Td

1T2 −3334.446 — — [6.78]
Td

3T1 −3334.5497 — — [6.78]
Ni(CN)2−

4 D4h
1A1g −1872.496 608a +0.46 [6.61]

Ni(CO)4 Td
1A1 −1953.949 86a,c +0.24 [6.61]

−1939.436 144a,d +0.466 [6.60]
CuF2−

4 D4h
2B1g [6.79]

CuCl2−
4 D4h

2B1g −3470.577 588a +1.28 [6.81]
−3472.284b 606a — [6.81]

Td
2T2 −3470.606 — — [6.81]

D2d
2B2 −3470.608 — — [6.81]

VO3−
4 Td

1A1 −1229.9361 — −0.07 [6.82]
CrO2−

4 Td
1A1 −1329.9148 — +0.58 [6.82]

MnO−
4 Td

1A1 −1435.4853 −186e +0.93 [6.82]
−1448.7571 −167e — [6.83]

CrO3
8 D2d

2B1 −1598.188 4e — [6.84]
−1628.4862 93e +2.58 [6.85]

Fe(C5H5)2 D5h
1Ag −1643.1252 — +1.23 [6.62]

Fe(C5H5)
+
2 D5h

2E2g −1642.821 — — [6.62]
Co(C5H5)2 D5h

2E1g −1761.8221 — — [6.68]
2E2g −1761.5607 — — [6.68]
2E2u −1761.5084 — — [6.68]

Mn(C5H5)2 D5h
2E2g −1526.7099 — — [6.68]
2A1g −1526.6521 — — [6.68]

Mn(CO)5H C4v
1A1 — — — [6.86]

Mn(CO)5CH3 C4v
1A1 — — — [6.86]

Ag(C2H4)
+ C2v

1A1 −6272.1673 28c +0.10 [6.30]
Ni(C3H5)2 C2h

1Ag −1723.8044 — — [6.68]
Co(NH3)

3+
6 Oh

1A1g −189.092f 654 +1.6 [6.87]
aWith respect to the metal and ligands.
bBy the extended basis.
cWith respect to Ni0 in the 1S state.
dWith respect to Ni0 in the 3F state.
eWith respect to the atoms.
f Valence orbitals only.
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Cr(H2O)6
2+, Mn(H2O)6

3+, Cu(H2O)6
+, and Mn(H2O)6

2+ with the correlated
pair functional method for the former two was carried out [6.90]. The results
confirm the Jahn–Teller distortions in the first three complexes (and absence of
distortions in the last two systems) as predicted by the general theory for orbital
degenerate E terms (Sections 7.3 and 9.2).

Bonding energies are given in Table 6.13 for some cases only. Their com-
parison with experimental data encounters difficulties, because in many cases it
is not clear what should be considered as bonding agents: neutral ligands, their
ions, separate atoms, and so on. For instance, the calculated bonding energy in
Ni(CO)4 with respect to the ligands and the neutral atom Ni◦ in the singlet state
1S equals 86 kcal/mol [6.61], whereas in another calculation the bonding energy
with respect to the neutral Ni◦ atom in the triplet state 3F equals 144 kcal/mol
[6.60]. The experimental value for the gas phase is 140 kcal/mol.

In Ni(CN)4
2− the bonding energy with respect to the cleavage into ions Ni2+

and CN− is 608 kcal/mol. The largest part of it comes from the electrostatic
interaction of the ions [6.61], and therefore it cannot be compared with the
experimental estimate (43 kcal/mol) obtained under conditions when the ions
are solvated. Note that in the case of Ag+—C2H4 discussed in Section 6.3,
the largest part of the bonding energy, 15 to 28 kcal/mol, is also due to the
electrostatic interaction [6.30].

Further advances in computer technology made it possible to calculate the elec-
tronic structure of more complicated systems, including metalloporphyrins and
other active sites and models of biological systems [6.91–6.95]. For metallopor-
phyrins [6.91–6.93] the calculations yield the order of the HOMO and LUMO
energy levels, ionization potentials, distribution of electronic charge, metal posi-
tions with respect to the porphyrin plane, conformation of the porphyrin ring,
and so on. Using a method that combines INDO with RHF SCF (Sections 5.3
and 5.5), parameterized to include transition metals, the electronic structure of
a series of heme complexes in model compounds and intact proteins was stud-
ied with emphasis on the spin states and spectroscopic properties [6.91, 6.92].
For such important biological systems as cytochrome P-450, peroxidase, cata-
lase, and metmioglobin, some unresolved questions regarding the resting states
have been addressed and interesting features of their functionality elucidated
[6.91].

Most difficulties occur in geometry optimization of transition metal
systems. A relatively accurate and compact basis set (11s7p4d/5s3p2d) that
proved to yield bond lengths with an accuracy of 0.03–0.08 Å for Cr(CO)6,
HMn(CO)5, Fe(CO)5, Cr(C6H6)2, Fe(C5H5)2, Ni(C4H4)2, (C5H5)Mn(CO)3, and
(C6H6)Cr(CO)3 was suggested [6.97] [for Ni(CO4 and Cr(NO)4 the basis set
used is (19s9p6d/10s4p4d)]. The calculations were carried out by the program
GAMESS [6.96] (Section 5.3). In Table 6.14, the calculated parameters of the
geometric structure of a series of 14 coordination compounds obtained using
the computer program GAMESS are given together with the experimental data
available [6.64]. The calculations were carried out by two basis sets: minimal
STO-3G and double-zeta (DZ).
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From Table 6.14, the following conclusions emerge:

1. The results of the calculations, in general, describe correctly the geometry
of the compounds under consideration and, with a few exceptions discussed
below, predict quantitatively the interatomic distances and angles for these
compounds.

2. The better basis set DZ in the overwhelming majority cases yields better
geometry parameter values.

3. In some cases significant discrepancies between the calculated and exper-
imental interatomic distances still remain. For instance, in the mixed car-
bonyls and nitrosyls the calculated M—N distance is shorter by 0.1–0.2
Å and the M—C bond is longer by 0.1 Å than the experimental values.
The calculated Fe—C distance in Fe(CO)2(NO)2 is completely wrong (by
0.40 Å longer than the experimental value). The Ni—C distance in bis(B-
allyl)nickel is also incorrect.

The analysis [6.64] shows that these discrepancies are caused by the neglect
of electron correlation effects in the HF calculations of the electronic structure.
In particular, the short distance M—N in mixed carbonyls and nitrosyls can be
corrected by including CI [6.98, 6.99]. The HF calculated electronic configuration
in Co(CO)3NO is [core](11e)4(17a1)

2(12e)4, where 11e, 17a1, and 12e are the
HOMOs; 11e and 17a1 are mainly of d origin (75% and 66%, respectively), and
12e represents the π-bonding cobalt–nitrosyl.

By taking into account the CI, one has to include additional terms from excited
configurations of the same symmetry, the main one of which corresponds to the
excitation of electrons from the 12e to the 13e MO. The latter is a π antibonding
cobalt–nitrosyl MO, and hence its superposition to the ground state factors in
the electronic correlation along the M—N bond. The calculations show that the
configuration 13e has a high weight (−0.52), and this explains directly the failure
of the pure HF calculations; they do not include the antibonding MO 13e (which
represents the corresponding correlation effects), thus making the distance Co—N
shorter than the experimental value.

Similar difficulties were encountered in calculations of other types of coordi-
nation compounds [6.100–6.105, 6.88]: Ni(CO)4 [6.101], sandwich compounds
(in ferrocene [6.102] the calculated metal–ligand distance is longer by 0.23 Å
than the experimental value, whereas in manganocene [6.104] this distance is
correct), Fe(CO)5 [6.105], and so on. In most cases the calculated distances are
longer than observed. In calculations including electron correlation effects these
discrepancies were eliminated. For instance, the HF calculation of the distances
to the two axial ligands in Fe(CO)5 [6.88] in its bipyramidal configuration yields
a value that is longer by 0.17 Å, than the experimental bond length, whereas there
is no discrepancy for the equatorial distances. The calculation [6.105] including
large-scale CI with all possible excited configurations (a total of 592,000 con-
figurations compressed in a special way to 7750) and its comparison with the
pure HF calculation [6.88] shows that the electron correlation effects increase the
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TABLE 6.14. Calculated and Experimental Parameter Values for the Equilibrium
Geometry of Various Transition Metal Coordination Compoundsa

Point Geometry Calculation Basis Experimental
System Group Parameter Set Minimal STO-3G DZ Values

ScF3 D3h R(Sc—F) 1.845 1.879 1.91
TiCl4 Td R(Ti—Cl) 2.167 2.214 2.17
VF5 D3h R(V—Fax) 1.641 1.744 1.734

R(V—Feq) 1.608 1.702 1.708
VOCl3 C3v R(V—O) 1.468 1.518 1.570

R(V—Cl) 2.107 2.177 2.142
<(Cl—V—Cl) 109.9 110.5 111.3

Cr(NO)4 Td R(Cr—N) 1.576 1.689 1.79
R(N—O) 1.218 1.160 1.16

Cr(CO)6 Oh R(Cr—C) 1.786 1.975 1.92
R(C—O) 1.167 1.142 1.16

Ni(CO)4 Td R(Ni—C) 1.579 1.900 1.836
Fe(CO)2(NO)2 C2v R(Fe—C) 1.708 2.198 1.8

R(Fe—N) 1.518 1.822 1.77
R(C—O) 1.154 1.127 1.15
R(N—O) 1.221 1.202 1.12

<(C—Fe—C) 107.7 92.2 —
<(N—Fe—N) 111.8 129.6 —

Co(CO)3NO C3v R(Co—N) 1.478 1.593 1.76
R(Co—C) 1.664 1.938 1.83
R(N—O) 1.231 1.197 1.10
R(C—O) 1.155 1.132 1.14

<(C—Co—N) 111.9 114.3 —
Mn(NO)3CO C3v R(Mn—C) 1.751 1.921 1.83

R(Mn—N) 1.513 1.658 1.76
R(C—O) 1.154 1.133 1.14
R(N—O) 1.222 1.164 1.10

<(N—Mn—C) 106.1 104.8 —
(C2H5)NiNO C5v R(Ni—C) 2.084 2.211 2.11

R(Ni—N) 1.420 1.571 1.626
R(C—C) 1.420 1.424 1.43
R(N—O) 1.271 1.165 1.165
R(C—H) 1.078 1.067 1.09

HMn(CO)5 C4v R(Mn—Cax) 1.725 1.960 1.823
R(Mn—Ceq) 1.717 1.982 1.823
R(Mn—H) 1.628 1.684 1.50
R(C—Oax) 1.162 1.137 1.139
R(C—Oeq) 1.163 1.137 1.139

<(H—Mn—Ceq) 72.3 82.3 83.6
<(Mn—C—Oeq) 171.2 172.8 —
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TABLE 6.14. (Continued )

Point Geometry Calculation Basis Experimental
System Group Parameter Set Minimal STO-3G DZ Values

Mn(CO)5CN C4v R(Mn—C—CN) 2.045 — 1.98
R(Mn—COax) 1.825 — 1.822
R(Mn—COeq) 1.804 — 1.853

R(C—Oeq) 1.162 — 1.134
R(C—Oax) 1.152 — 1.134
R(C—N) 1.156 — 1.16

Ni(C3H5)2 C2h R(Ni—C) 1.744 2.088 —
R(Ni—Ct ) 2.183 2.253 2.10
R(Ct —C) 1.405 1.399 1.41
R(Ct—H) 1.074 1.076 1.08
R(C—H) 1.094 1.073 1.08

<(Ct —C—Ct ) 128.5 124.0 —

Source: Guest [6.64].
aDistances are given in angstroms (Å); angles, in degrees (◦).

orbital charge transfers qi both from the ligand to the metal along the σ bond
and from the metal to the ligand on the π MO, thus improving the metal–ligand
bond and decreasing its length (cf. Section 6.3). This result is quite understandable
since the σ and π orbitals occupy different space regions and expansion of the
charge over a larger space decreases the interelectron repulsion.

This effect takes place for all the bonds, but in Fe(CO)5 it is much stronger
for axial than for equatorial ligands. Figure 6.29 illustrates this statement by
means of electron deformation densities (Section 8.6) obtained by calculations
with and without correlation effects in the planes of the axial (Fig. 6.29a) and
equatorial (Fig. 6.29b) ligands [6.105]. It is seen that the electron correlation
effects strongly increase the population of the dz2 orbital of the iron atom at the
expense of the 5σ orbitals of the axial CO ligands, as well as the 2π∗ orbitals
of the axial and equatorial CO ligands that overlap with the metallic dxz(dyz)

orbitals (Fig. 6.29a); the population of the in-plane 2π∗ MOs of the equatorial
CO ligands is increased about 4 times less, and the donation from the latter is
almost unchanged (Fig. 6.29b). That is why, by including the correlation effects
the axial ligands, experience a much larger reduction in the distance to the metal
than do the equatorial ligands.

The conclusions from these examples have a general meaning. If the ligands
possess active π orbitals, the competition between the tendency to form metal–
ligand π bonds, which shortens the distance between them, and the opposite
tendency to increase this distance caused by the increasing repulsion on the σ

bond for which the equilibrium distance is larger (Section 6.3), is solved in favor
of a shorter distance when the correlation effects are included, because the latter
reduce the interelectron repulsion [see also the geometry calculations for Fe(CO)5

and Ni(CO)4 carried out by the DFT method [6.106]]. Examples 5.2 and 5.4 and
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FIGURE 6.29. Fe(CO)5 total electron density difference calculated ab initio with and
without correlation effects: (a) in the plane containing the threefold axis and (b) in the
equatorial plane. Doted lines indicate negative values (domains of higher density with-
out correlation effects). Contours are at 0.0001, 0.0002, 0.0010, 0.0020, 0.0050. 0.0100,
0.0200, and 0.0500e/(au)3. Crosses indicate the positions of the nuclei; the iron atom is
in the center of the plot. (After Lüthi et al. [6.105].)
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FIGURE 6.30. Contour map of the 1e one-electron wavefunction in the O—Mn—O
plane of the tetrahedral MnO4

− system obtained by DFT-Xα calculations. The contours
are given with a spacing of 0.05 from −0.2(N = 1) to +0.2(N = 9). Along the N = 5
line there is the node of the π function. The Mn—O distance is 3.00 au. (After Johnson
et al. [6.71].)

Problems 5.4–5.7 in Section 5.3 show how the available program packages can
be used to perform electronic structure calculations with geometry optimization
including correlation effects.

Density-functional calculations compete with the MO LCAO methods
in energy calculations and less so in geometries. Figure 6.30 shows the 1e
one-electron wavefunction in the O—Mn—O plane of the tetrahedral MnO4

−
system obtained in one of the early DFT-Xα calculations [6.71]. From other
coordination systems calculated by the DFT-Xα method, note TiCl4, NiF6

4−,
CuCl42−, PtCl42−, Ni(CO)4, Cr(CO)6, Fe(CO)5 [6.71], and carbonyls [6.107].
One advantage of DFT methods is that they are applicable to solid-state clusters
and polyatomic formations on surfaces. For instance, the cluster NiO6

10−
that models the Ni site in the NiO crystal was calculated by considering
explicitly all its 86 electrons and the influence of the (very strong in this case)
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crystal field of the environment (the Madelung potential) [6.108]. Besides
the good agreement of the results with the photoelectron spectra [6.109],
the calculations allow one to address the problem of adsorbed oxygen on
metallic nickel surfaces. Comparison of the results of the calculations [6.108]
with the photoelectron spectra of adsorbed oxygen and its concentration
dependence shows that for sufficiently large concentrations the oxygen
atoms penetrate the metal lattice, forming clusters NiO6

10− on the surface
[6.110].

The density-functional calculations allow one to consider the effect of spin
polarization, that is, the difference in the energies of orbitals with spinup
and spindown (Section 5.4), which may be significant in complexes with
unpaired electrons. For instance, for MnCl42− (d5) and CoCl42− (d7) even
the consequence of the t2, e, and a1 energy levels is different for the orbitals
with unpaired electrons with spinup and spindown [6.111]. For CuCl42−
with Td symmetry the orbitals with opposite spin orientation have the same
order of consequence but different energies. More recent works illustrate the
advantages of the density-functional methods in energy calculations of systems
with increasing complexity. These include model systems for homogeneous and
heterogeneous catalysis [6.112, 6.113], metal–ligand interactions on surfaces
[6.114, 6.115], transition metal clusters [6.116], and biological systems [6.117].
Example 5.3 in Section 5.4 and Problem 5.6 show how DFT calculations
can be performed using available program packages for electronic structure
calculations.

6.5. RELATIVISTIC EFFECTS

The discussion of relativistic effects (REs) in chemical bonding is given in a
separate section for two reasons: (1) the topic is of special interest for transi-
tion metal coordination compounds, and (2) the area as a whole in application
to molecular problems is relatively new. The relativistic Dirac equation (Section
2.1) was used for studies of atoms beginning in the 1930s, whereas its direct
application to molecular bonding phenomena (MO theories) started in the late
1960s and early 1970s. This delay was due mainly to the complication of rel-
ativistic molecular calculations (Section 5.4), although some reluctance in the
study of REs in molecules was also induced by the authoritative statement of
Dirac that the REs are not important in chemical bonding because the average
speed v of valence electrons is small with respect to the speed of light c. In view
of more recent achievements in this area (see below), this remark is only partly
true.

Formally, v is small only when the electrons are moving in the valence area.
However, s electrons (even valence s electrons) spend a considerable amount
of time near the nuclei where their speed is very high, thus being influenced
by relativity directly, and all the other electrons are also influenced indirectly
because of the interaction with the s electrons. Again, the spin–orbital splitting
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of energy levels, essential for any spectroscopic studies, is a purely relativistic
effect.

In this section a brief discussion of the main REs relevant to transition metal
compounds is given. Relativistic atomic states are considered in Section 2.1,
while relativistic approaches to electronic structure calculations are discussed in
Sections 5.4 and 5.5. For some reviews, see Refs. 6.118–6.121.

Orbital Contraction and Valence Activity

To understand the origin of REs, let us begin with heavy-atom features. One
of the most essential REs in atoms, important to chemical properties, is the
relativistic contraction of s and p1/2 orbitals . The Bohr radius of the 1s electron
is R0 = 4π�

2/me2, where m is the electron mass. The latter, following the theory
of relativity, is dependent on its speed: m = m0[1 − (v/c)2]−1/2, where m0 is the
rest mass. This means that the relativistic mass is greater than the rest mass of
the electron, and hence the radius of its orbital motion becomes smaller owing to
REs. In atomic units c ∼= 137 and for 1s electrons v = Z, where Z is the atomic
number. Thus, for instance, for gold v/c = 79

137 = 0.58, and its 1s electron radius
R0 is relativistically contracted by about 19%.

This relativistic orbital contraction of the inner 1s electrons modifies the orbital
states of all the other electrons, including the outer valence electrons. Indeed, the
higher s orbitals, although having a lower average speed, must be orthogonal
to the inner s states, and therefore their radial distribution undergoes a similar
contraction (the p, d, f orbitals are orthogonal to the s orbitals by the angular
parts). The calculations show that the relativistic contraction of the valence elec-
trons owing to these effects is, in general, not smaller (it can be even a percentile
or so larger), than for the 1s electrons.

Figure 6.31 [6.122] illustrates the relativistic contraction of the 6s shell of
atoms from Cs to Fm obtained from numerical data of relativistic Dirac–Fock
(Section 5.4) and Hartree–Fock calculations. Interestingly, it is seen from this
figure that the largest relativistic contraction is inherent to the ground state of Au
with the electronic configuration 5d106s1. It makes gold a unique element and
explains its redox nobility . A similar relativistic radial contraction is expected
for p1/2 states (see below).

On the contrary, the d and f electrons are subject to a radial expansion and
destabilization due to the RE. Indeed, the d- and f - electron densities are zero
at the nuclei (Section 2.1, Table 2.3, and Fig. 2.3). Hence these electrons are not
expected to have relatively high speeds and direct relativistic reduction of their
radii. On the other hand, they are automatically orthogonal to the s orbitals by
symmetry (by the angular parts) and hence are not subject to indirect contraction,
as are the valence s electrons. However, because of the relativistic contraction
of the s and p shells, the d and f electrons are more efficiently screened, and
hence they go up in energy and outward radially [6.123].
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FIGURE 6.31. The relativistic contraction η =< r >rel / < r >nonrel of the 6s shell in
the elements from Cs (Z = 55) to Fm (Z = 100). (After Pyykko and Desclaux [6.122].)

Thus the main RE in heavy atoms (besides the spin–orbital splitting) is the
radial contraction and stabilization of s and p1/2 electrons and the radial expan-
sion and destabilization of d and f electrons . These effects directly influence
the possible electronic configurations and valence states of heavy atoms [6.124,
6.125]. Indeed, stabilization of the s shells and destabilization of d shells in
transition metals obviously favors electronic configurations with more s than d

contribution. In particular, this becomes important in the comparison of ground-
state configurations of the period 5 and period 6 elements in the same group.
Table 6.15 illustrates such a comparison for groups 5–10.

TABLE 6.15. Electronic Configurations of Ground-State 4d and 5d Elements in
Groups 5–10 of the Periodic Table

Group

Row 5 6 7 8 9 10

5 Nb Mo Tc Ru Rh Pd
d4s1 d5s1 d5s2 d7s1 d8s1 d10

6 Ta W Re Os Ir Pt
d3s2 d4s2 d5s2 d6s2 d7s2 d9s1

Source: From Pyykko [6.119].
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As seen from this table, the period 6 elements have more s electrons in the elec-
tronic configuration of the free atom than do the isoelectronic period 5 elements,
explicitly demonstrating the increasing relativistic contraction (stabilization) of
the s states, as compared with the d states, when passing to heavier atoms. In
Tc the configuration is d5s2 (and hence it does not change when passing to Re)
because of the additional stability of half-filled d5 configurations. Similarly, for
Pd d10 is more stable than d9s1, whereas in Pt d9s1 is more stable because of
the stronger s contraction.

Similar REs were noted in other atoms and ions [6.119]. For instance, the
configuration of Mo+ is 4d5, whereas that of W+ is 5d46s, the ground state of
Lr is 7s27p1

1/2 and not 7s26d1, as assumed earlier, the 3P0 ground state of Pb is
in 92.5% (p1/2)

2, and so on.
The change in the ground-state electronic configuration of atoms is definitely

very important in their chemical behavior. First, the formal valence of the atom
changes [cf. Ag(I) and Au(III)]. Although the physical meaning of the notion
of valence in case of coordination compounds is far from its prime definition
(Sections 6.1 and 1.2), the general understanding of the activity of valence elec-
trons that underlies a variety of chemical properties is certainly determined by
the electronic configuration, and hence the REs change the valence activity.
Example 6.12 shows how the relativistic effects influence the catalytic activity
of transition metal complexes.

EXAMPLE 6.12

Relativistic Effects in Catalytic Activity of Pt and Pd Complexes

A visual example of RE in valence activity is the difference in chem-
ical behavior of Pd(4d10) and Pt(5d96s1), especially in their catalytic
activity. Consider, for instance, the following oxidative addition and
reductive elimination reaction:

PH3
H

Pt + |
|

| H
PH3

H3P H
\ /

/
Pt

\
H3P H

I II (6.5)

It was shown [6.126] that system I is favored by the configuration
Pt−5d10, while II requires 5d96s1. Therefore, the barrier of the trans-
formation (6.5), following Table 6.15, is low (2.34 kcal/mol). On the
contrary, in the case of Pd this reaction is unknown because Pd prefers
the configuration 4d10.
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Bond Lengths, Bond Energies, and Vibrational Frequencies

Relativistic effects in bond lengths are not determined entirely by the s-orbital
contraction and d , f -orbital expansion, discussed above, although both the former
and latter significantly influence the bonding features. Indeed, the bond formation
changes the charge distribution in the area between and around the bonding atoms,
which is very dependent on their orbitals’ overlap and consequent changes in
interelectron interaction effects. The attempt to correlate these effects with the
RE shows that relativistic contraction of orbitals and relativistic contraction of
bond lengths are two parallel but largely independent effects [6.119, 6.127].

A more detailed analysis [6.120] shows that the main effect of relativity is
the reduction in kinetic energy of the electrons involved in the bonding. In
Section 5.4, general expressions for the contributions of REs to the bonding
are given. In particular, as seen from Eq. (5.81), the first relativistic correc-
tion to the electron–core interaction H 0 in the quasirelativistic approximation
�T R = −p4/8m3

0c
2 is in fact a correction of the order of (v/c)2 to the nonrel-

ativistic kinetic energy T = p2/2m0 [note that the rigorous expression for the
kinetic energy is T R = (p2c2 + m2

0c
4)1/2 − m0c

2, with p = m0v]. Because it is
negative, this relativistic correction reduces the kinetic energy. The next term in
(5.80), the Darvin interaction (5.82), is positive [6.127] and increases the energy,
but its value is smaller than the kinetic energy correction; the latter is always
predominant. The third correction, spin–orbital splitting, is discussed below.

The relativistic decrease in kinetic energy is important to many chemical
effects, including bond length, bond energy, and vibrational frequency. It was
shown [6.127] that the negative relativistic contribution increases with the
decrease in the interatomic distance, and hence this RE stabilizes and contracts
the chemical bond . This effect becomes important when the RE is strong enough
to overcome the increase in nonrelativistic kinetic energy with decrease in the
interatomic distance. The latter is proportional to v2, whereas the relativistic
correction is v4, and hence for sufficiently high speeds v a contraction and
stabilization of the chemical bond takes place. Example 6.13 illustrates this effect.

EXAMPLE 6.13

Relativistic Effects in Metal Hydrids

The simplest heavy-atom compounds studied to confirm the abovemen-
tioned RE are the metal hydrides MH. Table 6.16 [6.120] illustrates
some Hartree–Fock (Section 5.3) relativistic calculations of the M—H
bond length R0, dissociation energy D, and vibrational frequency ω,
in comparison with the corresponding HF nonrelativistic (NR) calcu-
lations and experimental data [6.128]. As one can see from this table,
all the bonds become relativistic contracted and stabilized by moving
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toward heavier atoms, and this trend is confirmed by the correspond-
ing experimental data. The RE are strong in Au and Hg; for them, the
NR calculations are inadequate. For more complex hydrides the bond
contraction is similar. For instance, for CrH6, MoH6 and WH6, �R (in
picometers) equals 0.6, 1.6, and 5.4, respectively [6.130].

TABLE 6.16. Comparison of Relativistic (R) and Nonrelativistic (NR)
Calculations of Bond Lengths R0, Dissociation Energies D , and
Vibrational Frequencies ω with Experimental Data (Exp) for Some Metal
MH Hydrides, MH+ Ions, and M2 Molecules (after [6.120])

R0 (Å) D (kcal/mol) ω (cm−1)

System NR R Exp NR R Exp NR R Exp

Cu—H 1.51 1.50 1.46 59 61 66 ± 2 1884 1905 1940
Ag—H 1.71 1.61 1.61 39 47 53 ± 2 1605 1709 1760
Au—H 1.78 1.55 1.52 37 68 74 ± 3 1704 2241 2305
Zn—H+ 1.58 1.58 1.52 58 58 65 ± 9 1803 1810 1916
Cd—H+ 1.78 1.74 1.68 46 48 48 ± 9 1665 1669 1775
Hg—H+ 1.88 1.64 1.59 41 62 53 ± 10 1267 2156 2034
Cu2 2.26 2.24 2.22 51 53 45 ± 2 268 274 266
Ag2 2.67 2.52 — 40 47 37 ± 2 184 203 192
Au2 2.90 2.44 2.47 27 58 52 ± 2 93 201 191

From general considerations it is known that all REs increase as some powers
of Z. For simple hydrides of metals of groups 11, 13, and 14, the bond contraction
was shown to be proportional to Z2 [6.129]:

R = RNR − RR = 17(6) × 10−4 Z2 pm (6.6)

(1pm = 10−12 m = 10−2 Å). For other groups the bond contraction is different
and follows roughly the s-orbital contraction (Fig. 6.31), going from a minimum
for the groups 1 through a “gold maximum” at the group 11 and further decreases
for higher groups.

Similar bond contraction and stabilization were revealed for metal diatomics
Cu2, Ag2, and Au2 (Table 6.16). The NR stability row Cu2 > Ag2 > Au2

changes to Cu2 > Ag2 < Au2 when the REs are taken into account. Similarly,
the REs increase the bonding in W2 by 25 kcal/mol changing the NR
inequality Mo2 > W2 to W2 > Mo2 [6.131]. This trend in bond strength is
observed in various organometallic compounds of groups 6 (Cr > Mo < W), 8
(Fe > Ru < Os), 9 (Co > Rh < Ir), 10 (Ni > Pd < Pt), and 11 (Cu > Ag < Au),
and it is attributed to the RE [6.132].

On the other hand, multiple metal–metal bonds in binuclear complexes of the
types M2Cl4(PR3)4 and M2X6, where the bonding involves mostly nd orbitals,
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TABLE 6.17. Some Experimental Interatomic Distances (in pm) in 4d and 5d
Metal MX6 and MX4 Complexes

Compound M R(4d) R(5d) R(4d)–R(5d)

MF6 Ru, Os 187.75 183.3 4.7
MF6 Rh, Ir 187.38 183.0 4.4
MF6 Pd, Pt 187 182.9 4.1
MCl4 Zr, Hf 232 231.6 0
MBr4 Zr, Hf 246.5 245 1.5
MI4 Zr, Hf 266.0 266.0 0

rather than (n+1)s orbitals, are much less affected by relativistic corrections (the
latter are of the order of 6–10 kcal/mol for the 5d homologies). In these cases,
as well as in similar cases of metal–ligand σ bonds (involving mostly d orbitals)
the bonding energy is determined mainly by the orbital overlap with minor RE
influence.

Other examples of bond contraction by passing from 4d to 5d metals in MX6

and MX4 compounds are seen from the experimental data in Table 6.17. Note
that the relativistic contractions R = RNR –RR are larger than the observed (or
calculated) differences R(4d)–R(5d) because the former also compensates for
the difference in atomic radii: in the absence of the RE the atomic radii of the
5d metals are larger than those of the 4d ones. It is seen from the table that
by passing from complexes of the 4d triad Ru, Rh, and Pd, to the 5d triad Os,
Ir, and Pt, with the same ligands, the bond shortens by about 4 pm (despite the
considerable increase in atomic radii) [6.133]. The experimental contraction for
the Zr–Hf pairs is about zero, meaning a considerable relativistic contraction,
but smaller than for the abovementioned triad.

In M(CH3)2(PR3)2 compounds with M = Pd,Pt, the Pt—C bond is longer by
3 pm than the Pd—C bond, whereas the Pt—P bond is shorter by 4 pm than
Pd—P. This is difficult to explain within the context of nonrelativistic ideas,
while relativistic pseudopotential calculations reproduce this trend [6.134]. The
Pt—P bond is more relativistically contracted than the Pt—C one because the
former is softer than the latter, and hence the same “contraction force” produces
a larger effect on the softer Pt—P bond. For linear M(PH3)2 complexes the
Pd—P interatomic distance is 241 pm, while for Pt—P it is 232 pm [6.134],
demonstrating a strong relativistic contraction.

Several examples are available for illustration of REs in compounds involving
actinides. Table 6.18 shows the results of quasirelativistic calculations (Sections
5.4 and 5.5) of bond energies in compounds AMCl3 with M = Th,U and A =
H,CH3 in comparison with corresponding nonrelativistic calculations and exper-
imental data [6.120].

It is seen that the relativistic corrections here are very large (50–60 kcal/mol)
and absolutely necessary to reproduce experimental data. On the other hand,
the lanthanoid contraction, the contraction of the ionic radii in the lanthanoid
series of isostructural crystals with the coordination number 8 by 18.3 pm when
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TABLE 6.18. Calculated Relativistic (R) and Nonrelativistic (NR) Bond Energies
D(M—A) in AMCl3 Complexes and Experimental Data (Exp) (in kcal/mol)

D(M—A)

Compound NR R Exp

HThCl3 30.1 76.0 ∼ 80
CH3ThCl3 35.8 79.8 ∼ 80
HUCl3 10.5 70.1 76
CH3UCl3 16.8 72.2 72

Source: From Ziegler et al. [6.120].

passing from LaIII (4f 0) to LuIII (4f 14), is shown to be only 10%, due to the
RE [6.119]. Other examples of relativistic bond contraction and stabilization
have been provided in several review articles [6.119–6.121, 6.132]. Compar-
ative studies of electronic structure with and without REs demonstrating the
significance of the latter have been carried out to reveal the origin of specific
geometry and color in Bi(C6H5)5 as compared with Sb(C6H5)5, P(C6H5)5, and
As(C6H5)5 (semiempirical calculations) [6.135], as well as for BiPh5, PbCl62−,
and WS4

2− (DFT-Xα approximation) [6.136]. Nuclear quadrupole coupling and
isomer shifts in neptunyl compounds were calculated in the relativistic extended
Hückel approximation [6.137].

Correlation Between Spin–Orbital Splitting and Bonding

Relativistic spin–orbital interaction corrections enter directly the matrix elements
of the quasirelativistic MO LCAO approximation in calculation of the electronic
structure [Section 5.4, Eqs. (5.80)] and indirectly in the basis set of the LCAO
that should be formed by relativistic atomic functions that follow the j–j cou-
pling scheme and double-group representations (Section 2.1; see also Section 5.5
for quasirelativistic parameterization). In the j–j scheme each electron is charac-
terized by its momentum ji = li + si (li and si are the orbital and spin momenta,
respectively) with quantum numbers ji = li ± 1

2 ; the total momentum of the atom
is J = 	iji with the quantum number J = j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|.
Thus in the valence basis set the states p1/2, p3/2, d3/2, d5/2, and so on should be
employed in the relativistic calculations instead of the NR functions p, d, f .

However, the energy differences between the pairs of atomic states p1/2 and
p3/2, d1/2 and d3/2, and so on are determined by spin–orbital splitting. If this
splitting is zero, the corresponding pairs of orbitals are degenerate and there is
no reason to differentiate them [see Eq. (2.20)]. The same is true when the
spin–orbital splitting is small, as compared with the interatomic interaction,
because in this case the two component functions may become largely intermixed.

In the case of strong spin–orbital interaction the two atomic functions with the
same orbital quantum number l but different j values, l + 1

2 and l − 1
2 (l �= 0),

become quite independent also from the chemical perspective. This statement
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is especially important for p functions. Consider an atom with one p electron.
In case of strong RE (large spin–orbital splitting) the corresponding relativis-
tic states are p1/2(

1
2 ), p3/2(

1
2 ), p1/2(

3
2 ), and p3/2(

3
2 ), where the values j = 1

2 , 3
2

are shown in parentheses, while their projections values 1
2 , 3

2 are indicated as
indices. The total momentum in the p( 1

2 ) states (j = 1
2 ) is smaller than that of

nonrelativistic p electrons (l = 1), but larger than that for s electrons (l = 0),
which have spherical symmetric distribution. The p( 1

2 ) state (more correctly,
its larger spinor; see Section 2.1) can be visually presented as having a spher-
ical form (Fig. 6.32) that consists of the usual σ -like part (dashed area) and a
π-like contribution (dotted area) that supplements the former to a sphere. The
two functions p1/2(

1
2 ) and p3/2(

1
2 ) differ in their projections on the z axis, that

is, by their orientation in space with respect to the axis of quantization.
If two p1/2(

1
2 ) functions from two bonding atoms overlap, they form 1

3 of σ

bonding and 2
3 of π antibonding MOs (Fig. 6.32b), or vice versa for opposite

signs: 1
3σ antibonding and 2

3π bonding. The two p3/2(
1
2 ) functions form 1

3π

bonding and 2
3σ antibonding, or vice versa [6.138, 6.139]. The p1/2(

3
2 ) and

p3/2(
3
2 ) functions form normal σ and π bonds.

It is evident that in any combination the bonding between two relativistic p1/2

states is weaker than in the nonrelativistic case. This weakening is compensated
when all the p states are occupied by electrons. Accordingly, the weakening does
not occur when all the p states are degenerate or strongly mixed by external
influence. Therefore, if not all the p states of the bonding atoms participate with
their electrons in the bonding, that is, not all the bonding MOs originating from
p states are occupied, the spin–orbital splitting of p states weakens the bonding
in which p( 1

2 ) states are involved .
Several experimental facts can be attributed to this RE. For instance, in the

series of isostructural (p “isoelectronic”) compounds Sb4, BiSb3, . . . , Bi4, the
dissociation energy decreases systematically from 9.04 to 6.03 eV [6.140].

On the other hand, there is a backward influence of the bonding on the
spin–orbital splitting. Indeed, there are two reasons for changes (reduction) of
the spin–orbital splitting by the chemical bonding: (1) the symmetry of the field
in which the electron moves lowers and hence the orbital moment of the electron
becomes, in general, reduced (Section 8.4); and (2) when there is a covalent
bonding between a heavy atom with a light atom, the relativistic electron of the
former becomes delocalized over the region, including also the light atom, and
this delocalization reduces the speed of the electron [6.141].

Consider a heavy-atom hydride MH and assume that the M—H bonding is
realized through overlap of the ns orbital of M (e.g., in the case of Au this orbital
is 6s) with the 1s orbital of H. Then the bonding orbital is N(ψM

ns + λψH
1s) with λ

as a covalence parameter and N as the normalization constant (Section 5.2). The
latter is less than unity, N < 1, and decreases with increase in λ. Since hydrogen
is almost nonrelativistic, the weight of the relativistic wavefunction in the MO
is reduced (times N ), as compared with the AO. In this way all the RE become
reduced by covalence.
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FIGURE 6.32. Schematic illustrations of the bonding between two atoms with relativistic
p 1

2 orbitals: (a) visual presentation of the p1/2(
1
2 ) and p3/2(

1
2 ) orbitals; (b) p1/2(

1
2 ) −

p1/2(
1
2 ) overlap representing 1

3 σ bonding and 2
3 π antibonding [p1/2(

1
2 ) + p1/2(

1
2 ) is 1

3 σ

antibonding and 2
3π bonding]; (c) p3/2(

1
2 ) + p3/2(

1
2 ) overlap yieding 1

3π bonding and 2
3 σ

antibonding (the arrow indicates the axis of quantization).

The most observable (easiest) reduction of RE is spin–orbital splitting since it
can be, in principle, observed in both the atom and the molecules. However, there
may be some difficulties concerning the spectroscopic classification of energy
levels in the relativistic case. Example 6.14 elucidates the RE in a platinum
complex by means of numerical calculation of its electronic structure.

EXAMPLE 6.14

Relativistic Semiempirical Calculation of PtCl62− [6.141]

The free Pt atom has a relatively moderate spin–orbital splitting
(8.418 × 103 cm−1). The quasirelativistic (QR) calculations of
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the electronic structure of PtCl62− were performed [6.141] in the
semiempirical IEH (SCCC) approximation (Section 5.5), while
the corresponding nonrelativistic (NR) calculations used here for
comparison were carried out much earlier [6.142].

The comparison allows one to follow, at least qualitatively, how the
spin–orbital splitting in the Pt atom is modified under the influence
of the bonding to chlorine atoms. Figure 6.33 illustrates this effect.
Figure 6.33a shows the d3/2 –d5/2 spin–orbital splitting in the free Pt
atom. The crystal field of the ligands and the bonding with the corre-
sponding ligand orbitals result in quasirelativistic MO LCAO energy
levels given in Fig. 6.33b. Note that the relativistic classification of the
MOs is given after the double-group representations (Section 3.6). For

FIGURE 6.33. Reduction of spin–orbital splitting by bonding [6.141]: (a)
spin–orbital d3/2 –d5/2 splitting in the free Pt atom; (b) the MOs formed by
these d orbitals with the corresponding ligand counterparts in PtCl2−

6 ; (c) the
same MOs in the nonrelativistic calculation [6.142].
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comparison, the corresponding nonrelativistic d-orbital splitting into T2g

and Eg is also shown (Fig. 6.33c).
From these data one can see that, as far as the MO energy levels under

consideration are concerned, when passing from the NR to QR calcula-
tions (1) all the energy levels lower and (2) the T2g level splits into 5
+

8
and 2
+

7 . While effect 1 can be attributed to the contraction and stabi-
lization, discussed above, effect 2 is obviously due to the spin–orbital
interaction. However, its magnitude, 1.9 × 103cm−1, is much smaller
than the spin–orbital splitting in the free atom, 8.418 × 103 cm−1.
Thus there is an obvious reduction of the spin–orbital splitting by bond-
ing . The two sources of this effect, mentioned above, are seen from
the calculations explicitly; the octahedral crystal field splitting into Eg

and T2g mixes the d3/2 and d5/2 levels of the free atom, and hence
the spin–orbital splitting T2g → 5
+

8 + 2
+
7 includes both the orbital

reduction and covalent delocalization over nonrelativistic atoms (the RE
in the Cl atoms are neglected [6.141]).

Spin–orbital splitting in heavy atoms also reduces the dissociation limit De

in diatomics BiH+, Pb2, PbO, PbH, and Tl2 (for references, see Pyykko’s article
[6.119]). Figure 6.34 explains the origin of this reduction. With zero spin–orbital
splitting in the Bi+ ion (i.e., in the NR approximation), the dissociation of BiH+
into Bi+ and H yields the Bi+ ion in the 3P state, whereas with respect to the
spin–orbital interaction, its ground-state energy 3P0 is lower by 2.3 eV. There
are also cases when the REs increase the De values [6.119].

FIGURE 6.34. Reduction �De of the dissociation energy limit De in BiH+ due to
spin–orbital splitting in the free ion Bi+. In the NR case the dissociation results in Bi+
in the state 3P , which is 2.3 eV higher than the relativistic ground state 3P0.
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Other Relativistic Effects

Quite a number of relativistic (mostly quasirelativistic) calculations of electronic
structure and properties of heavy-atom coordination compounds are listed
and reviewed in several publications [6.118–6.121, 6.132, 6.138]. Many
studies are concerned with photoelectron spectra and bonding. Relativistic
and quasirelativistic DFT-Xα calculations for this purpose are reported, for
instance, in Refs. 6.143 and 6.144. The effect of the central atom “inert lone
pair” on the coordination compound stereochemistry, discussed in Section
9.2, (originally suggested by Sidgwick [6.145]) has also some important
relativistic aspects. Indeed, since the s states are contracted and stabilized,
due to relativistic effects, the (6s)2 inert pair effect should increase for
heavy metals. This explains the tendency of the 6s2 electron pair to remain
formally unoxidized in compounds of Tl(I), Pb(II), Bi(III), and so on [6.146].
However, the problem of stereochemistry induced by lone pairs is much more
complicated, since it involves excited states via vibronic coupling (Section
9.2).

The essential influence of RE can be easily seen in spectroscopic and optical
properties. First of all is the well-known spin–orbital splitting. Concerning the
special optical properties induced by RE, one of them is the yellow color of
gold [6.147]. The observed refractivity responsible for the color is due to the
transition from the valence 5d band to the mainly 6s Fermi level [6.148]. Its
sudden onset falls at hν = 2.4 eV in accordance with the relativistic calcula-
tions. The nonrelativistic calculations move this absorption border much higher
in energy, out of the visible region. Thus, in the nonrelativistic approach, gold
is white, and only the relativistic effect makes it yellow. Note that for silver the
corresponding relativistic rising of 5d orbitals and stabilization of the 6s states
is much smaller than for gold, and the absorption border occurs in the ultraviolet
region at 3.7 eV, making it white. The absorption itself is a solid-state effect (the
transition 5d96s → 5d86s2 in atoms is forbidden).

Relativistic calculations of f -element systems have been reviewed [6.149];
for relativistic calculations of solid-state systems, see Refs. 6.150–6.153.

SUMMARY NOTES

1. Chemical bonding is an electronic phenomenon. The bonding between two
atoms is due to the electrostatic interaction between the (collectivized)
electrons and nuclei that move in accordance with the laws of quantum
mechanics stipulating wave properties of the electrons and their construc-
tive interference in the area between the nuclei.

2. Differences in chemical bonds should be related to and classified on
the basis of their varied electronic structure. The specific features of
coordination bonding are due to the participation of the atomic d or f

electrons which produce three-dimensionally delocalized electronic states,
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resulting in mutually dependent (and nontransferable) metal–ligand bond
properties.

3. In molecular orbital description the binding is due to the occupied bonding
MOs that are not compensated for by the antibonding ones.

4. Ligand bonding is characterized by σ , π , and σ + π mono-, di-, and mutior-
bital bonds. Uncompensated MOs of di- and multiorbital bonds produce
multiple bonds. A characteristic feature of di- and multiorbital bonds is the
partial mutual compensation of their orbital charge transfers.

5. Metal–metal bonds may be multiorbital, producing σ , π , and δ binding.
6. Modern electronic structure calculations reveal the MOs and total ener-

gies, charge distributions, and geometries of coordination systems in good
agreement with experimental data.

7. Relativistic effects are important for heavy-atom transition metal systems
producing, in addition to spin–orbital splittings, orbital contraction and
other effects, which results in changes in interatomic distances, valence
activities, dissociation energies, vibrational frequencies, and other parame-
ters.

EXERCISES AND PROBLEMS

6.1. Formulate the main differences between valence, orbital, and coordina-
tion bonding in the classification on electronic structure. What are the
shortcomings of the alternative genealogical classification, and why is it
inappropriate?

6.2. In classification of electronic structure the distinguished features of coor-
dination bonding are due to the participation of d and/or f electrons. List
these features and show how they are related to the d and/or f electronic
states. Give examples.

6.3. Subject to the ligand influence, pre- and posttransition (and some other)
elements with apparently no active d or f electrons may form coordina-
tion systems with such ligands with properties similar to those of transition
metal systems provided the ligands are chosen appropriately. What are
the required ligand features that produce d- or f -electron properties in
nontransition elements?

6.4. The most probable MO LCAO energy-level scheme for an octahedral sys-
tem ML6 with M as a 3d transition element in Fig. 6.1 is constructed under
the assumption that the group overlap integrals G(3d, π) < G(3d, σ ) <

G(4p, σ) < G(4s, σ ). Use the numerical data in Problems 5.1 and 5.2 to
verify whether these inequalities are valid for the complex TiF6

3−.
P6.5. Construct an MO energy-level diagram for the case when G(3d, σ ) <

G(3d, π) < G(4s, σ ). What essential differences in the properties of
systems with such MO diagrams are expected as compared with those
having the usual MO scheme in Fig. 6.1?
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6.6. State the differences between multiorbital bonding in coordination sys-
tems and multiple bonds in organic and main-group compounds. Give
examples.

6.7. Electron spin resonance (ESR) methods allow one to estimate the distri-
bution of the unpaired electrons over the CA and ligands and hence the
covalence produced by these electrons (Section 8.4). Can this information
serve as a measure of covalence of the CA–ligand bonds?

6.8. In di- and multiorbital metal–ligand bonding orbital charge transfer com-
pensation is an important electronic effect. Explain why and how it takes
place and what observable properties are influenced by this effect. Give
specific examples. Is a similar effect possible in the approximately uni-
form (nonheterogenic) multiple bonds of organic compounds?

6.9. In the examples of ligand bonding 6.1–6.9, the simplest case of H2 bond-
ing to a metal center is not considered. Explore this case qualitatively. Is
the CA–H2 side-on bonding mono- or diorbital? Find all possible donor
and acceptor σ and π orbitals, and relate the results to the case of H2

coordination to Pt(PH3)2 shown in Example 11.6.
6.10. In Example 6.2 the N2 bonding to the iron atom in FeN2 is explored

numerically. Involving Fig. 6.8, explain why end-on and side-on coor-
dination yield different orbital charge transfers and how the latter affect
the properties (bond length, vibrational frequency, and reactivity) of the
coordinated molecule.

6.11. Referring to the discussion in Example 6.9, explore qualitatively which
derivatives of the Zeise salt X3Pt(C2H4)

−, X = F, Cl, or Br, should
weaken the C C bond in the ethylene π complex.

6.12. In Chapter 2, where σ and π bonds are introduced, we emphasized that
these two kinds of bonding orbitals have different symmetry. On the other
hand, only functions with the same symmetry can be combined to form
an MO. How, then, can σ + π MOs occur in coordination systems?

6.13. At the end of the subsection on σ + π bonding in Section 6.3, it is
stated and in Section 6.3 it is explained, how, in the presence of strong
relativistic effects, the monoorbital, single bond between two atoms may
be a mixture of σ and π contributions. Doesn’t this result violate the
symmetry and angular momentum considerations based on which σ and
π bonding are differentiated in Chapter 2?

6.14. The three transition metals Cu, Ag, and Au occupy the same column in
the periodic table of elements but have significantly different properties:
Au is a noble metal, Ag is seminoble, while Cu is very reactive, and the
color of these metals is different as well. Explain these differences on the
basis of relativistic effects.
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7
ELECTRONIC CONTROL
OF MOLECULAR SHAPES
AND TRANSFORMATIONS
VIA VIBRONIC COUPLING

Vibronic coupling conveys a bridge between electronic structure and nuclear con-
figurations realizing electronic influence on the formation and transformation of
molecular shapes, as well as their spontaneous symmetry breaking. The mecha-
nism of vibronic coupling is one of the modern problems of theoretical chemistry
which has many applications .

In the development of quantum chemistry the main problem was electronic
structure calculations at fixed nuclei, while the backward influence of electrons on
the nuclear configurations received much less attention. Meanwhile many impor-
tant chemical phenomena, including chemical transformations, are determined
by nuclear displacements induced by electron rearrangements. Any changes of
molecular systems under external influence, including the influence of another
molecule involved in collisions (chemical reactions), begin with perturbations in
the less inertial electronic structure which affects the heavy nuclear framework
via vibronic coupling. The latter thus plays an important role in the description
of molecular and condensed matter properties.

We begin this chapter with a discussion of pure vibrations and proceed to
vibronic coupling, orbital vibronic coupling, and the Jahn–Teller effect, as well as
one of the important consequences—the proof that nuclear configuration changes
involve necessarily at least two electronic states (the TEST paradigm).

Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory,
Second Edition By Isaac B. Bersuker
Copyright © 2010 John Wiley & Sons, Inc.
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7.1. MOLECULAR VIBRATIONS

Adiabatic Approximation

The idea of molecular vibrations is based on the assumption that nuclear and
electronic motions can be approximately separated and that there exists a nuclear
framework in which each nucleus has a stable (energy minimum) position. For
stable systems and in the absence of electronic degeneracy or pseudodegeneracy
this assumption can be proved in the adiabatic approximation . In view of its
general importance, we consider this approximation in some detail and disclose
the criterion of its validity [7.1–7.6].

The adiabatic approximation is based on the strong inequality of the masses
and velocities of electrons and nuclei. Since the nuclear mass M is about 2000
times that of the electron m, the velocity of the latter is much greater than that
of the former. Therefore, it can be assumed that at every instant position of the
nuclei, the electronic distribution is stationary. In other words, because of the rel-
atively slow motions of the nuclei, the electronic state is in time to relax instantly
to the changing nuclear positions (i.e., the electrons follow the nuclei adiabati-
cally), and the motions of the nuclei are determined by the instant averaged field
of the electrons. Mathematically this means that the electron distribution in space
is determined by the nuclear coordinates, not by their speed.

This assumption enables us to solve the overall problem of electron and nuclear
motions in two steps: (1) solving the problem of electronic motion for fixed nuclei
and then (2) using the obtained in this way electronic energy as a function of
nuclear coordinates as the potential energy of nuclear motions. This procedure
ignores the nonadiabatic changes of the electronic structure under nuclear dis-
placements (meaning the dependence of electronic states not only on the nuclear
positions but also on their speed, acceleration, etc.), and this is the most restrictive
feature of the adiabatic approximation.

Let us refer to a more rigorous consideration. The Schrödinger equation (1.5)
for the system as a whole that includes n electrons and N nuclei can be written
as follows:

H�(r, Q) = E�(r,Q) (7.1)

where (as elsewhere in this book) r and Q denote the entire set of coordinates
of the electrons ri, i = 1, 2, . . . , n and nuclei Qα, α = 1, 2, . . . , N , respectively.

Divide the total Hamiltonian H into three parts:

H = Hr + HQ + V (r, Q) (7.2)

where Hr is the electronic part including the kinetic energy of the electrons and
the interelectron electrostatic interaction, HQ is the kinetic energy of the nuclei,
HQ = − ∑

α(�2/2Mα)�α (where Mα are the nuclear masses), and V (r, Q) is
the energy of the interaction of the electrons with the nuclei plus the internuclear
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repulsion:

V (r, Q) = −
∑

i,α

e2Zα

|ri − Rα| + 1

2

∑

α,β

′ e2ZαZβ

|Rα − Rβ | (7.3)

Here Rα are the vector coordinates of the nuclei; their relation to the Qα coordi-
nates is clarified below (the coefficient 1

2 in the last sum is introduced to offset
double summation, while the prime indicates that the terms with α = β should
be excluded).

The operator V (r, Q) can be expanded in a series of small displacements of
the nuclei about the point Qα = Qα0 = 0 chosen as the origin:

V (r, Q) = V (r, 0) +
∑

α

(
∂V

∂Qα

)

0
Qα + 1

2

∑

α,β

(
∂2V

∂Qα ∂Qβ

)

0

QαQβ + · · ·

(7.3′)

Considering the first term of this expansion as the potential energy of the
electrons in the field of fixed nuclei, one can solve the electronic part of the
Schrodinger equation, the electronic equation

[Hr + V (r, 0) − ε′
k] ϕk(r) = 0 (7.4)

and obtain a set of energies ε′
k and wavefunctions ϕk(r) for the given nuclear

configuration corresponding to the point Qα0. In order to see how these solutions
vary under nuclear displacements, the full Schrödinger equation (7.1) must be
solved. Rigorously, the total wavefunction �(r, Q) can be sought for in the form
of an expansion over the set of electronic functions ϕk(r):

�(r,Q) =
∑

k

χk(Q) ϕk(r) (7.5)

where the expansion coefficients χk(Q) depend on the nuclear coordinates. Sub-
stituting (7.5) into Eq. (7.1) and taking into account Eq. (7.4), we obtain, after
some simple transformations, the following infinite system of coupled equations
for the functions χk(Q) (the prime at the sum means that the term with m = k

is excluded):

[HQ + εk(Q) − E] χk (Q) +
∑

m

′
Wkm(Q)χm(Q) = 0 k = 1, 2, . . . . (7.6)

where Wkm(Q) denotes the electronic matrix element of the vibronic interaction
W [7.2, 7.3], that is, the part of the electron–nucleus interaction V (r, Q) in
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Eq. (7.3′) that depends on Q:

W(r, Q) = V (r, Q) − V (r, 0)

=
∑

α

(
∂V

∂Qα

)

0
Qα + 1

2

∑

α,β

(
∂2V

∂Qα ∂Qβ

)

0

QαQβ + · · · (7.7)

and

εk(Q) = ε′
k + Wkk(Q) (7.8)

is the electronic energy as a function of nuclear coordinates called adiabatic
potential energy surface (APES). In the absence of electronic degeneracy or
pseudodegeneracy the APES equals the potential energy of the nuclei in the
mean field of the electrons in the state ϕk(r).

It is seen from the system of coupled equations (7.6) that if the vibronic mixing
of different electronic states is ignored [Wkm(Q) = 0 for k �= m], the coupling
between these states vanishes and the system of equations decomposes into a set
of simple equations for given k:

[HQ + εk(Q) − E]χk(Q) = 0 (7.9)

Each of these equations represents the Schrödinger equation for the nuclei that
move in the mean field of electrons in the state ϕk(r), the equation of nuclear
motions . In other words, the motions of the nuclei and electrons are separated
and the problem as a whole can be solved in the two stages mentioned above. In
the first stage the electronic states ϕk(r) are determined as solutions of Eq. (7.4)
and used to calculate the potential energy of the nuclei εk(Q) by Eq. (7.8).
In the second stage the wavefunctions χk(Q) and energies E of the nuclei are
evaluated after Eq. (7.9); the total wavefunction is �(r, Q) = ϕk(r)χk(Q). This
is the simple adiabatic approximation, or the Born–Oppenheimer approximation.

Thus the simple adiabatic approximation is valid if and only if the terms of the
vibronic mixing of different electronic states in Eq. (7.6) can be ignored. It can
be shown [7.1–7.5] that this is possible if the energy spacing of the vibrations,
the vibrational quanta �ω in the state under consideration, are much smaller than
the electronic energy gap to the other states:

�ω � ε′
k − ε′

j (7.10)

This inequality can be considered as a criterion of the adiabatic approximation;
it remains the same in more rigorous treatments [7.1]. The physical meaning
of criterion (7.10) becomes clear when one considers that approximately the
vibrational frequency ω characterizes the speed of nuclear motion, while ε′

k − ε′
j

reflects the “speed” of electronic motion.
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In a fuller treatment of the adiabatic approximation, all the terms of V (r, Q)

from Eq. (7.3′) are introduced into the electronic Eq. (7.4):

[Hr + V (r, Q) − εk(Q)] ϕk(r, Q) = 0 (7.11)

Here the solutions εk(Q) and ϕk(r, Q) depend on Q as parameters, and in
the system of coupled equations (7.6) Wkm(Q) are replaced by matrix elements
of the so-called operator of nonadiabacity, which is also determined by the
vibronic interactions W . In this version of the adiabatic approximation sepa-
ration of motions of the electrons and nuclei is ultimately determined by the
same type of simplification as in the previous one—by ignoring the vibronic
mixing of different electronic states.

However, in detail, this approach, called the adiabatic approximation (or full
adiabatic approximation) is somewhat different from the Born–Oppenheimer (or
simple adiabatic) approximation. The full adiabatic approximation, if applicable
[i.e., when criterion (7.10) is satisfied], yields more accurate results than the
simple approach. Some estimates of orders of magnitudes may be obtained using
the order of smallness (or parameter of smallness) a = (m/M)1/4 ≈ 0.15. It can
be shown [7.5] that the neglected terms in the simple adiabatic approximation,
provided that the criterion (7.10) is satisfied , are of the order of a2 ≈ 2.3 × 10−2,
while those of the full adiabatic approximation are of the order of a3 ≈ 3.4 ×
10−3, and the ratio of averaged velocities of the nuclei and electrons is also of
the order of a3. Thus the simple adiabatic approximation is less accurate than
the full one.

However, when criterion (7.10) is not satisfied, Eq. (7.6), based on the sim-
ple adiabatic approximation, is a more suitable starting point to consider the
role of the electronic states in the origin of special nuclear nonadiabatic (and/or
nonvibrational) motions.

The adiabatic approximation is of great importance to chemistry. Without
the adiabatic approximation even the notion of nuclear configuration (molecular
shape) cannot be defined rigorously . Therefore, when a specific molecular con-
figuration is considered, the validity of the adiabatic approximation is implied.
However, in many cases this approximation is not valid (Sections 7.3 and 7.4).

Normal Coordinates and Harmonic Vibrations

For stable molecular systems in nondegenerate states Eq. (7.9), for the nuclear
motions, describes molecular vibrations. Indeed, a stable system means that the
APES ε(Q) has a minimum at a certain point Q = Q0; the solution of Eq. (7.9)
with such a potential, as shown below, yields nuclear vibrations at this point.

Significant simplification of Eq. (7.9) allowing for its direct solution is reached
in the harmonic approximation by means of normal coordinates . With N nuclei,
(7.9) is an equation of 3N coordinates Rα(Xα, Yα, Zα), α = 1, 2, . . . , N ; after
excluding the coordinates describing the rotation and translation of the system
as a whole, it transforms into an equation of 3N − 6 variables. If the APES as a
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function of these variables has only one absolute minimum at Rα = Rα0, then the
function ε(Rα) near this point can be approximated by a paraboloid (quadratic
function of Rα). This is the harmonic approximation .

In the harmonic approximation the function ε(Rα), which is a quadratic form
of the variables, can be reduced to the so-called canonical form. The latter means
that the variable Rα can be transformed (by unitary transformations, Section
3.1) such that in the new variables there are only quadrates of coordinates and
no cross-terms in the potential. In other words, the possibility of reducing the
quadratic function ε(Rα) to its canonical form means that there are new coor-
dinates Qα , instead of Rα(Xα, Yα, Zα), such that in the new coordinates the
potential energy U is

U(Qα) = 1

2

∑

α

KαQ2
α (7.12)

that is, U does not contain crossing terms of the type QαQβ , and in this case the
constant Kα = Mαω2

α is the force constant. If in the new coordinates realizing the
canonical form of the APES (7.12), the operator of kinetic energy of the nuclei
[see (7.2)] −∑

α(�2/2Mα)∂2/∂Q2
α is also an additive function of Qα (i.e., it has

no cross-terms ∂2/∂Qα ∂Qβ), then the Qα coordinates are normal coordinates .
Thus in normal coordinates Qα Eq. (7.9) decomposes into 3N−6 equations,

each of which is the equation of the harmonic oscillator

−�
2

2Mα

d2χα

dQ2
α

+ 1

2
Mαω2

αQ2
αχα = Eαχα (7.13)

where Mα is the reduced mass of the normal vibration α and ωα is its frequency.
Quantum mechanics gives a direct solution of this equation with eigenvalues:

Enα = �ωα(nα + 1
2 ) (7.14)

where nα = 0, 1, 2, . . . is the vibrational quantum number and eigenfunctions
χnα(Qα) (the index α is omitted below for simplicity) are

χn(Q) =
( a

2nn!π1/2

)1/2
exp

(−a2Q2

2

)

Hn(aQ) (7.15)

where Hn(y) is a Hermitian polynomial

Hn(y) = (−1)n exp(y2)
dn exp(−y2)

dyn
(7.16)

and

a =
(

Mω

�

)1/2

(7.17)

In particular, for the ground state n = 0
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E0 = �ω

2
(7.18)

χ0(Q) =
(

Mω

�π

)1/4

exp

(−MωQ2

2�

)

(7.19)

It is important that ωα is the same frequency as in mechanical vibration with
the potential energy 1

2Mαω2
αQ2

α of the assumed harmonic approximation. This
means that ωα is a solution of the equation of mechanical vibrations:

d2Qα

dt2
+ ω2

αQ2
α = 0 (7.20)

In other words, if one approximates the APES by a quadratic term U(Q) =
1
2KαQ2

α , then, taking Kα = Mαω2
α , one obtains directly the frequency of normal

vibrations ωα . To do this, knowledge of the normal coordinates Qα , the curvature
Kα of the APES at the point of the minimum in the direction Qα , and the reduced
mass Mα is needed.

The methods of determination of normal coordinates are described in detail
in manuals on vibrational spectra [7.7–7.9]. In coordination compounds with
high local symmetry the group-theoretical rules considered in Section 3.4 can be
very useful. Indeed, the Hamiltonian in the Schrödinger equation (7.9) for the
nuclear motions has the same symmetry as the molecular framework. Therefore,
its eigenvalues and eigenfunctions transform as (belong to) the IrReps (types
of symmetry) of the group of symmetry of the system (Appendix 1). In the
harmonic approximation Eq. (7.13) describes normal vibrations (vibrations in
normal coordinates), and hence the IrReps of the group determine the possible
types of symmetry of these vibrations, the shape of the normal coordinates, the
degeneracy of the vibrational frequencies, and so on. As shown in Section 3.5,
using the methods of group theory, one can relatively easily determine the normal
vibrations and their symmetry characteristics (see Example 3.5 and Problem 8.3).

Figures 7.1–7.3 show the form of the most important normal vibrations of
octahedral, tetrahedral, triangular, and square-planar complexes, while Table 7.1
gives the expressions of normal coordinates Qα in Cartesian coordinates
Xα, Yα, Zα .

Similar to wavefunctions of degenerate states that have the same energies,
degenerate vibrational modes (vibrations that belong to irreducible representations
E, T , . . .) have the same frequency, and each normal coordinate of the degenerate
set is undefined in the sense that any of their linear combinations is also a normal
coordinate. In particular, the shape of twofold E(Q2, Q3) (called tetragonal )
and threefold T2(Q4, Q5, Q6) (called trigonal ) vibrations given in Table 7.1
and Figs. 7.1 and 7.2, although most usable, are conventional within any linear
combination of the two and three degenerate vibrations, respectively.

If there are two or more normal coordinates of the same symmetry (e.g., T ′
2

and T ′′
2 in a tetrahedron, Table 7.1), they interact, mix (similar to the case of
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FIGURE 7.1. Shapes of symmetrized displacements of atoms in an octahedral complex
ML6: (a) numbering and orientation of Cartesian displacements; (b) totally symmetric
A1g , (c) Eg-type Qε , (d) Eg-type Qϑ , and (e) T2g-type Qξ displacements. For degenerate
displacements, any linear combination of these can be realized, for example, (Qζ + Qη +
Qξ)/

√
3 for T2g (f) (note that the ligand local coordinates selected differ from those of

Fig. 5.1).
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FIGURE 7.2. Shapes of symmetrized displacements of atoms in a tetrahedral complex:
(a) numbering and orientation of Cartesian coordinates, (b) totally symmetric A1, (c) E-
type Qε , (d) E-type Qθ , (e) T2-type Qξ , (f) T ′

2-type Qξ∗ displacements. In the case
of degeneracy any combination of component displacements can be realized, such as,
(Qζ + Qη + Qξ)/

√
3 (g), (Qζ ∗ +Qη ∗ +Qξ∗)/

√
3 (h).
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FIGURE 7.3. Symmetrized displacements of atoms in triangular (A) and square-planar
(B) molecular systems: (a) labeling of Cartesian displacements; (b) totally symmetric
displacements of type A1; (c) E′-type Qy in (A) and B1g in (B) displacements; (d) E′-type
Qx in (A) and B2g in (B) displacements.
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TABLE 7.1. Symmetrized Displacements Q (Normal Coordinates) Expressed by
Cartesian Coordinates (Figs. 7.1–7.3) for Some Trigonal, Tetragonal, Tetrahedral,
and Octahedral Systems

Symmetry Transformation Expressions by
Q Type Properties Cartesian Coordinates

Trigonal Systems X3; Symmetry D3h

Q
(t)
x E′ x (X1 + X2 + X3)/

√
3

Q
(t)
y E′ y (Y1 + Y2 + Y3)/

√
3

Q
(r)
a2 A′

2 Sz
a (2X1 − X2 − √

3Y2 − X3 + √
3Y3)/

√
12

Qa A′
1 x2 + y2 (2Y1 + √

3X2 − Y2 − √
3X3 − Y3)/

√
12

Qx E′ 2xy (2X1 − X2 + √
3Y2 − X3 − √

3Y3)/
√

12
Qy E′ x2 − y2 (2Y1 − √

3X2 − Y2 + √
3X3 − Y3)/

√
12

Square-Planar Systems ML4; Symmetry D4h

Qa A1g x2 + y2 1
2 (Y1 + X2 − Y3 − X4)

Q1 B1g x2 − y2 1
2 (Y1 − X2 − Y3 + X4)

Q2 B2g xy 1
2 (X1 + Y2 − X3 − Y4)

Q′
a A2g Sz

1
2 (X1 − Y2 − X3 + Y4)

Qx E1u x 1
2 (X1 + X2 + X3 + X4)

Qy E1u y 1
2 (Y1 + Y2 + Y3 + Y4)

Q′
x E′

1u x X0
b

Q′
y E′

1u y Y0

Tetrahedral Systems ML4; Symmetry T d

Qa A1 x2 + y2 + z2 1
2 (Z1 + Z2 + Z3 + Z4)

Qϑ E 2z2 − x2 − y2 1
2 (X1 − X2 − X3 + X4)

Qε

√
3(x2 − y2) 1

2 (Y1 − Y2 − Y3 + Y4)

Q′
ξ T ′

2 x, yz 1
2 (Z1 − Z2 + Z3 − Z4)

Q′
η T ′

2 y, xz 1
2 (Z1 + Z2 − Z3 − Z4)

Q′
ζ T ′

2 z, xy 1
2 (Z1 − Z2 − Z3 + Z4)

Q′′
ξ T ′′

2 x, yz 1
4 (−X1 + X2 − X3 + X4)+
(
√

3/4)(−Y1 + Y2 − Y3 + Y4)

Q′′
η T ′′

2 y, xz 1
4 (−X1 − X2 + X3 + X4)+
(
√

3/4)(Y1 + Y2 − Y3 − Y4)

Q′′
ζ T ′′

2 z, xy 1
2 (X1 + X2 + X3 + X4)

Qx T2 x X0
b

Qy T2 y Y0

Qz T2 z Z0

Octahedral Systems ML6; Symmetry Oh

Qa A1g x2 + y2 + z2 (X2 − X5 + Y3 − Y6 + Z1 − Z4)/
√

6
Qϑ Eg 2z2 − x2 − y2 (2Z1 − 2Z4 − X2 + X5 − Y3 + Y6)/2

√
3

Qε Eg

√
3(x2 − y2) 1

2 (X2 − X5 − Y3 + Y6)

Qξ T2g yz 1
2 (Z3 − Z6 + Y1 − Y4)
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TABLE 7.1. (Continued )

Symmetry Transformation Expressions by
Q Type Properties Cartesian Coordinates

Qη T2g xz 1
2 (X1 − X4 + Z2 − Z5)

Qζ T2g xy 1
2 (Y2 − Y5 + X3 − X6)

Q′
x T ′

1u x 1
2 (X1 + X3 + X4 + X6)

Q′
y T ′

1u y 1
2 (Y1 + Y2 + Y4 + Y5)

Q′
z T ′

1u z 1
2 (Z1 + Z3 + Z5 + X6)

Q′′
x T ′′

1u x (X2 + X5)/
√

2
Q′′

y T ′′
1u y (Y3 + Y6)/

√
2

Q′′
z T ′′

1u z (Z1 + Z4)/
√

2
Qx T1u x X0

b

Qy T1u y Y0

Qz T1u z Z0

Q′
ξ T2u x(y2 − z2) 1

2 (X3 + X6 − X1 − X4)

Q′
η T2u y(z2 − x2) 1

2 (Y1 + Y4 − Y2 − Y5)

Q′
ζ T2u z(x2 − y2) 1

2 (Z2 + Z5 − Z3 − Z6)

aSz ≡ Rz is an axial vector that describes rotations around the z axis.
bX0, Y0, Z0 are the Cartesian displacements of the central atom; the three T1u coordinates in the
octahedral ML6 system (and E′

1u and T2 ones in ML4) are not independent, and each of them
separately does not preserve the center of mass; their correct linear combinations depend on the ratio
of the M and L masses.

terms with the same symmetry, Section 4.3). Hence their frequencies are no
longer independent, and the corresponding coordinates are symmetrized, but not
normal . To obtain the normal vibrations, the corresponding perturbation problem
must be solved to diagonalize the matrix of interacting coordinates [7.7–7.9]
(cf. Section 4.3, Eq. (4.55)].

Not all the types of symmetry of the group can be realized as types of vibra-
tions. For instance, in the octahedral Oh system there are no A1u,A2u,A2g, Eu,
and T1g vibrations, in the tetrahedron there are no A2 and T1 vibrations, and
so on. Table 7.2 lists some results on classification of the normal vibrations on
symmetry for some most usable types of coordination system obtained as shown
in Section 3.5, Example 3.5, and Problems 3.8 and 8.8.

To conclude this subsection, it is necessary to emphasize that the idea of
normal vibrations is essentially based on the harmonic approximation, in which
cubic and higher terms in the expansion of the APES in a power series can be
neglected. This implies that the APES has one (deep) minimum; at its bottom
the amplitude of vibrations is small, provided that only low vibrational states are
populated (low temperatures). The deviation from the harmonic approximation
occurs as a result of either large amplitudes of vibrations involving cubic terms
in the Hamiltonian of the nuclear motions in (7.12) or the mixing with low-lying
excited electronic states, the vibronic anharmonicity , discussed in Section 7.4.
For anharmonicity corrections to the vibrational frequencies, see Refs. 7.7–7.12.
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TABLE 7.2. Classification of Symmetrized Displacements � for Several Types of
Molecules with N Atoms

Na Symmetry Example, Shape �

4(6) C3v NH3, pyramid A′
1, A

′′
1, E

′, E′′
5(9) Td MnO−

4 , tetrahedron A1, E, T ′
2, T

′′
2

7(15) Oh CrF3−
6 , octahedron A1g, Eg , T2g , T2u, T ′

1u, T ′′
1u

7(15) D4h MA4B2, tetragonally distorted octahedron A1g , A′′
1g , A′

2u, A′′
2u, B1g ,

B2g , B2u, Eg , Eu, E′
u, E′′

u

9(21) Oh CsF8, cub A1g , A2u, Eg , Eu, T2u, T ′
1u,

T ′′
1u, T ′

2g , T ′′
2g

aThe number of normal vibrations 3N -6 is indicated in parentheses.

Special Features of Vibrations of Coordination Systems

The prediction of the number of possible frequencies and shapes of vibrations
based on symmetry properties of the system is the more informative, the higher
the symmetry. This circumstance forms the basis of the qualitative identification
of infrared (IR) and Raman spectra of coordination compounds (Section 8.2). The
higher the symmetry, the easier the identification of the spectra and the analysis
of the electronic structure based on these spectra.

For instance, in a regular octahedral system with seven atoms there is a total of
3 × 7 − 6 = 15 vibrations, which, following Table 7.2, are divided into one A1g

vibration, two Eg , and four types of threefold vibrations: T2g, T2u, T
′

1u, T
′′

1u. Since
degenerate vibrations have the same frequency, only six different frequencies are
expected in the vibrational spectra of such systems. For systems with an inversion
center, selection rules stipulate that odd vibrations may be observed in the IR
absorption, while even vibrations manifest themselves in the Raman scattering of
light (Section 8.2). Therefore, three frequencies (T2u, T

′
1u, and T ′′

1u) are seen in the
IR spectra and the other three (A1g, Eg , and T2g) in the Raman spectra [7.9–7.12].

For further analysis and identification it may be useful to consider the split-
ting of degenerate frequencies in fields of lower symmetry. These splittings are
quite similar in nature to the term splitting discussed in Chapter 4. Sections 3.4
and 4.2 illustrate how to determine the splitting of high-symmetry terms (vibra-
tions) under perturbations of lower symmetry, and Tables 4.2 and 4.3 provide
some results. If one knows how the degenerate frequencies split in the fields of
lower symmetry, vibrational spectroscopy can be used to study the influence of
the environment on (or ligand substitution in) the coordination system. Special
applications of external uniaxial stress and its influence on the IR line splitting
are also employed.

Another important feature of IR spectra is related to the three-dimensional
center-delocalized coordination bond (Section 6.1). This delocalization renders
the metal–ligand bonds non-specific and nontransferable. It means that in general,
in the presence of different ligands there is no way to differentiate individual
metal-ligand vibrations and to consider that their frequencies remain the same
(even approximately) by passing to another complex with the same metal–ligand
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bond but with other ligands changed. The three-dimensional delocalization of
the bonding electrons makes all the metal–ligand bonds collectivized, and the
vibrations, as a rule, are related to the system as a whole. This is one of the main
distinctions of vibrational spectroscopy in application to coordination compounds,
as compared with organic valence (not conjugated) compounds with localized
bonds (Section 6.1) for which the vibrational frequencies of given atom–atom
bonds are approximately constant.

Finally, the vibrations in coordination compounds are characterized by a wide
variety of frequencies ranging from infrared to several tens of wavenumbers
(cm−1). More detailed analyses of IR and Raman vibrational spectra of transition
metal compounds are given in Section 8.2 and in special monographs [7.8–7.12].

7.2. VIBRONIC COUPLING

Vibronic Constants

As stated above, molecular changes under external influence begin with
alterations of the less inertial electronic shells, while molecular transformations
(and many other properties) are determined by the changes in nuclear motions.
The bridge from electronic to nuclear motions is conveyed by vibronic coupling
[7.1–7.4].

The expression for the operator of vibronic coupling W is given in the pre-
vious section, Eq. (7.7). It describes the interaction of the electrons with the
nuclear displacements from the initial configuration hereafter called reference
configuration . The latter is usually taken as the molecular configuration of the
stable ground state, or any other high-symmetry configuration (see the discussion
in Ref. 7.1). With the reference configuration known, one can use symmetrized
or normal coordinates in the expansion of V (r, Q) in Q (7.3′), which simplifies
further treatment.

In Bethe’s notations the f -fold-degenerate IrRep �i has f rows denoted by
γ (Section 3.3). For instance, the twofold-degenerate representation �3 = E has
two lines γ = ϑ, ε, while the threefold representation �5 = T2 has three lines
γ = ξ, η, ζ . Denoting the symmetrized coordinates that belong to a certain row
of IrRep � by Q�γ , one can rewrite the operator of vibronic coupling (7.7) in
these coordinates (the reference configuration is taken at Q�γ = 0):

W(r, Q) =
∑

�γ

(
∂V

∂Q�γ

)

0

Q�γ

+1

2

∑

�γ

∑

�′γ ′

(
∂2V

∂Q�γ ∂Q�′γ ′

)

0

Q�γ Q�′γ ′ + · · · (7.21)

Consider the meaning of the coefficients of this expansion which are deriva-
tives of the electron–nucleus and nucleus–nucleus interaction V . The matrix
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elements of these coefficients are the constants of vibronic coupling, or vibronic
constants . They are very important in vibronic interaction effects; vibronic con-
stants characterize the measure of coupling between the electronic states and
nuclear displacements . In other words, vibronic constants characterize the influ-
ence of the nuclear displacements on the electron distribution or, conversely, the
effect of the changes in the electronic structure on the nuclear configuration and
dynamics. The problem of how electrons control molecular configurations can
be formulated and approximately solved by means of vibronic constants.

Denote the electronic states by the corresponding IrReps �, �′, . . . of the sym-
metry group of the molecular system and assume first that the states � and �′
are not degenerate. The matrix element

F
(��)′
�∗ = 〈�|

(
∂V

∂Q�∗

)

0
|�′〉 (7.22)

is called the linear vibronic constant . Following the rules of group theory, F
(��′)
�∗

is nonzero if and only if � × �′ = �∗. If �, �′, or both are degenerate (in this case
�∗ may also be degenerate), a set of linear vibronic constants corresponding to
all the lines γ and γ ′ of the two representations � and �′ and their combinations
F

(�γ�′γ ′)
�∗γ ∗ should be introduced instead of one vibronic constant for nondegenerate

states. This can be easily done because the matrix elements within a degenerate
term differ solely in (tabulated) numerical coefficients (see the Wigner–Eckart
theorem in Section 3.4).

Some of the linear vibronic constants have a clear-cut physical meaning. The
diagonal constant of the linear coupling F

(�γ�γ )

�∗γ ∗ ≡ F
�γ

�∗γ ∗ has the sense of the
force with which the electrons in the state �γ act on the nuclei in the direc-
tion of symmetrized displacements Q�∗γ ∗ . For instance, F

(Eε)
Eϑ means the force

with which the electron in the Eε state distorts the nuclear configuration in the
direction of Eϑ displacements (see Fig. 7.1).

For degenerate states �, according to the group-theoretical rules, the diagonal
matrix element F�

�∗ is nonzero if the symmetric product [� × �] contains
�∗: �∗ ∈ [� × �] (compare with the condition for off-diagonal elements
�∗ ∈ � × �′). For nondegenerate states [� × �] = � × � = A1, where A1 is the
totally symmetric representation. It follows that in nondegenerate states � = A1,
and the electrons can distort the nuclear configuration only in the direction of
totally symmetric displacements, for which the symmetry of the system does not
change. In this case there is no distortion but changes in interatomic distances
(see, however, the possible implication of the pseudo-JTE, Sections 7.3 and 7.4).
If the electronic state � is degenerate, the symmetric product [� × �] contains
nontotally symmetric (along with totally symmetric) representations. Indeed, for
cubic symmetry [E × E] = A1 + E, [T × T ] = A1 + E + T ; for D4h symmetry
[E × E] = A1 + B1 + B2, and so on. In these cases �∗ may be nontotally
symmetric (degenerate E, T , or nondegenerate B1, B2, etc.). Thus, under
the influence of the electrons in degenerate states, the nuclear configuration
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undergoes distortions that are not totally symmetric. It is just these distortions
that are predicted by the Jahn–Teller theorem discussed in Section 7.3.

The quadratic (or second-order) vibronic constants can be introduced similarly
to the linear constants, although there are some complications [7.1]. The second
derivatives in Eq. (7.21) (which are terms of the type ∂2V/∂Q�1 ∂Q�2) can be
grouped into a totally symmetric combination and nontotally symmetric parts.
The diagonal matrix element of the totally symmetric combination

K0�∗ = 〈�|
(

∂2H

∂Q2
�∗

)

0

|�〉 (7.23)

is the nonvibronic contribution to the curvature of the APES, or the primary
force constant . The full curvature K�

�∗ (Section 7.4), which at the minimum of
the APES coincides with the force constant , is

K�
�∗ = K�

0�∗ −
∑

�′

′ |F
�∗(��′) |2
��′�

(7.23′)

where ��′� = 1
2 (ε�′ − ε�) is the energy semidifference between states �′ and

�. The diagonal matrix elements of the nontotally symmetric part of the sec-
ond derivatives in (7.21) are the diagonal quadratic (or second-order) vibronic
constant G�

�∗(�1 × �2). The off-diagonal matrix elements are the off-diagonal

quadratic vibronic constants G
(��′)
�∗ (�1 × �2), where �∗ ∈ �1 × �2 and �1 and

�2 are IrReps of the corresponding two displacements [7.1].

Orbital Vibronic Constants

The orbital vibronic constants [7.3, 7.13, 7.14] enable us to consider approxi-
mately the influence of each electron (separately) on the nuclear framework and
its dynamics. On the other hand, the introduction of orbital vibronic constants cre-
ates a bridge between the idea of vibronic coupling and the MO approach to the
investigation of molecular structure and properties. The one-electron MOs sup-
plemented by vibronic coupling constants result in vibronic molecular orbitals .
The latter, as shown below, present a more refined picture of molecular structure,
which includes parameters of nuclear dynamics.

Denote the one-electron MO energies by εi and their wavefunctions by ϕi(r) =
|i >. Taking into account the additivity of the electron–nucleus interaction oper-
ator V (r, Q) with respect to electronic coordinates (7.3), we have

V =
∑

k

V ′(rk) (7.24)

V ′(r) = −
∑

α

e2Zα

|r − Rα| + 1

n

1

2

∑

α,β

′ e2ZαZβ

|Rα − Rβ | (7.24′)
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where n is the total number of electrons (the second term in (7.24′), the evenly
distributed internuclear repulsion per electron, does not depend on electronic
coordinates; it is introduced for convenience). On the basis of these notations, the
orbital vibronic constants can be introduced similarly to the vibronic constants
for the system as a whole (7.22). In contradistinction to the orbital vibronic
constants, the usual vibronic constants may be called integral vibronic constants .

For the linear orbital vibronic constants we have

f
(ij)

�∗ = 〈i|
(

∂V ′

∂Q�∗

)

0
|j 〉 (7.25)

Similarly to the integral case, the totally symmetric part (�∗ = A1) of the
orbital diagonal matrix elements of the quadratic terms of vibronic interactions
k

(ii)
0�∗ = ki

0�∗(�∗ = �1 = �2) contributes to the orbital force constant ki
�∗ (see

below); the nontotally symmetric parts, which are nonzero for degenerate MOs
only, form the diagonal second-order orbital vibronic constants gi

�∗(�1 × �2),
and the off-diagonal matrix elements of these terms are the off-diagonal orbital
vibronic constants g(ij)(�1 × �2).

The physical meaning of the orbital vibronic constants can be clarified by
means of the addition theorem: the linear diagonal integral vibronic constant
equals the sum of linear diagonal orbital vibronic constants multiplied by the
appropriate MO occupation numbers q�

i ,

F �
�∗γ ∗ =

∑

i

q�
i f i

�∗γ ∗ (7.26)

The proof of this theorem [7.13] is based on the additivity properties of
the vibronic constants mentioned above. Presenting the total wavefunction in
the expression of F �

�∗ , Eq. (7.22), by the determinant (or a linear combination
of determinants) of the one-electron MO functions ϕi(ri) and factoring in the
expressions (7.24) for V and (7.25) for f i

� , one can deduce Eq. (7.26).
It is seen from Eq. (7.26) that the distorting influence of the electrons on

the nuclear framework with a force F �
�∗γ ∗ is produced additively by all the

corresponding MO single-electron effects f i
�∗γ ∗ . A clear-cut physical meaning

of the latter follows immediately: The linear diagonal orbital vibronic constant
f i

�∗γ ∗ equals the force with which the electron of the ith MO distorts the nuclear
configuration in the direction of the symmetrized displacements Q�∗γ ∗ .

For quadratic vibronic constants, quite similar to Eq. (7.26), we obtain the
following addition formula:

G�
�∗γ ∗(�1 × �2) =

∑

i

q�
i gi

�∗γ ∗(�1 × �2) (7.27)

Deduction of similar expressions for off-diagonal vibronic constants is more
difficult because they involve excited states for which calculation of the contribu-
tion of the one-electron MOs is complicated. The analysis can be simplified in the
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“frozen orbital” approximation equivalent to the approximation of the Koopmans
theorem in quantum chemistry (Sections 2.2 and 6.4). In this approximation the
one-electron excitation of the system � → �′ is realized by the substitution of
only one MO, for instance, i by j , while the changes of the other MOs due to
alteration of the interelectron repulsion are neglected. In this case there are simple
relations between integral and orbital off-diagonal linear vibronic constants:

F
(��′)
�∗γ ∗ = f

(ij)

�∗γ ∗ � �= �′ (7.28)

For fractional charge transfers, important in applications to chemical problems,
the difference in the corresponding electron population numbers qi and qj of the
two mixing MOs determines the magnitude of the off-diagonal vibronic mixing
(Sections 10.3 and 11.2):

F
(��′)
�∗γ ∗ = f

(ij)

�∗γ ∗(qi − qj ) (7.28′)

Using this relation, the APES curvature (or the force constant) K�
�∗ can be pre-

sented as a sum of orbital contributions ki
�∗

K�
�∗ =

∑

i

qik
i
�∗ (7.29)

ki
�∗ = ki

0�∗ −
∑

j

′ |f (ij)

�∗ |2
�ji

where �ij = 1
2 (εi − εj). The proof of these relations is analogous to that of

Eq. (7.27) [7.13].
In the MO approach, the electronic structure of a molecule with fixed nuclei

is presented approximately by the one-electron MO charge distributions and
energies in the field of the nuclei. This picture is static; it does not characterize
sufficiently well the backward influence of the electrons on the nuclear frame-
work. If the electronic structure is determined without geometry optimization,
the static picture does not indicate whether the chosen (reference) nuclear
configuration will be stable for the electronic structure under consideration.
More important, the static picture does not allow us to predict how the nuclear
configuration and its dynamics will change under electronic structure alterations.

This deficiency of the MO approach can be overcome by means of the vibronic
constants that characterize the forces (and force constants, anharmonicities, etc.)
with which the electrons influence the nuclei. The orbital vibronic constants are
of special interest. If the orbital vibronic constants and the orbital contributions to
the force constants are known, the behavior of the nuclear configuration (changes
in stable configuration, force constants, anharmonicities) under small changes
of the electronic structure (changes of electronic MO occupation numbers) can
be predicted. These effects can be used to predict changes of the molecular
reactivity by electronic rearrangements (Section 11.2). Thus the orbital vibronic
constants complement the static picture of the electronic structure in terms of
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MOs with dynamic parameters of their coupling to the nuclear displacements . In
Example 7.1 the main features of orbital vibronic constants are illustrated by
their numerical values for N2 and CO.

EXAMPLE 7.1

Vibronic MO Description of Electronic Structure of N2 and CO

In Fig. 7.4 the new parameterization of the molecular structure based
on orbital vibronic constants is illustrated for the HOMO 5σ and the

FIGURE 7.4. Vibronic molecular orbital description of electronic structure. In
addition to the MO energies and wavefunctions, the orbital vibronic constants
characterize the contribution of the orbital electron to the distorting force f

(shown by arrows; values are given in 10−4 dyn) and force constant coefficient
k (shown by springs; values are given in 106 dyn/cm); (a) HOMO and LUMO of
the nitrogen molecule—the HOMO 5σ is bonding (f > 0), whereas the LUMO
2π is antibonding (f < 0); (b) HOMO and LUMO of carbon monoxide—the
HOMO is weakly antibonding, whereas the LUMO is strongly antibonding.
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LUMO 2π of two molecules N2 and CO, taken as examples (the numer-
ical values are obtained in Section 11.2). In addition to the usual MO
energy and wavefunction, it is shown that the electron of the HOMO
5σ in the N2 molecule tightens the nuclei with the force f 5σ

R (N2) =
3.51 × 10−4 dyn (where R denotes the distance between the nuclei),
while in the CO molecule the electron of the analogous MO pushes
them away with force f 5σ

R (CO) = −4.5 × 10−4 dyn [more precisely,
the binding of the nuclei by the electron is less than the corresponding
one-electron portion of their repulsion by this amount; see Eq. (7.24′)].

The electron of the LUMO 2π pushes away the nuclei in both the
N2 and CO molecules with the forces f 2π

R (N2) = −8.18 × 10−4 dyn
and f 2π

R (CO) = −12.1 × 10−4 dyn, respectively. For the corresponding
one-electron MO contribution to the force constant k(i) shown in Fig. 7.4
by a spring, we have [Eq. (11.34)] k5σ

R (N2) = 0.29 × 10−6 dyn/cm,
k2π
R (N2) = −0.79 × 10−6 dyn/cm, k5σ

R (CO) = −0.08 × 10−6 dyn/cm,
and k2π

R (CO) = −0.83 × 10−6 dyn/cm.
It follows from these data that the orbital 5σ is bonding in N2 and

antibonding in CO, whereas the 2π MO is antibonding in both cases.

In general, we have:

For bonding MO:
f

(i)
�∗ > 0, k

(i)
�∗ > 0

For antibonding MO:

f
(i)
�∗ < 0, k

(i)
�∗ < 0

For non-bonding MO:

f
(i)
�∗ ≈ 0, k

(i)
�∗ ≈ 0

and the absolute values of f (i) and k(i) follow approximately the measure of the
MO contribution to the bonding or antibonding.

These relations are not trivial. Indeed, when there are several orbitals of the
same type (as, e.g., 5σ, 4σ, 3σ, . . . MOs in diatomics), it is difficult to reveal the
bonding nature of each of them, even qualitatively, from MO calculations only.
The orbital vibronic constants provide a semiquantitative measure of the MO
bonding or antibonding quality and its contribution to the distorting force, force
constants, and anharmonicity constants, serving thus as parameters of electronic
control on nuclear configuration and dynamics (Sections 7.4 and 11.2). As men-
tioned above, the MO complemented by orbital vibronic coupling constants can
be termed vibronic molecular orbital (VMO).
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Vibronic MOs are of special importance for the analysis of the influence of
electronic rearrangements on the nuclear configuration. They are also used in
studying intervalence electron transfer [7.15] and can be significant for many
other problems in which the details of electronic structure and vibronic coupling
are important (see, e.g., Ref. 7.16, where they are used in discussion of the
origin of high-Tc superconductivity in fullerenes). In polyatomic molecules, there
are more than one possible symmetrized direction of distortion and softening,
and therefore the orbital vibronic constants and the orbital contributions to the
force constants and anharmonicity constants contain additional information about
molecular distortions (cleavage) by electronic rearrangements.

From the group theory rules (Section 3.4) the linear orbital vibronic constant
f

(ij)

� = 〈i|(∂V/∂Q�∗)0|j 〉 is nonzero if the direct product of the IrReps �i and
�j of the i and j MOs contains the �∗ representation of the symmetrized dis-
placements Q�∗ . Different �i and �j yield �∗ that may be of any type allowed in
the symmetry group of the system under consideration. For the diagonal constant
f i

�∗, �∗ must be the component of the symmetric product [�i × �i] [Eq. (3.34)].
Therefore (quite similarly to the case of vibronic constants considered above),
if �i is nondegenerate, �∗ is totally symmetric. In other words, the electrons of
nondegenerate MOs distort (displace) the nuclear configuration A1 along QA1

that leaves its symmetry unchanged (again, see the possible implications of the
pseudo-JTE in Section 7.3).

For degenerate MOs the product [�i × �i] contains nontotally symmetric
representations (in addition to the A1 representation). Hence the electrons of
degenerate MOs distort the nuclear framework, changing its symmetry in accor-
dance with (and in directions determined by) the Jahn–Teller effect (Section 7.3).
In addition to this distortion the orbital electron softens, or hardens the nuclear
framework according to Eq. (7.29). This equation contains the off-diagonal orbital
vibronic constant f

(ij)

�∗ , for which � may be of any type, and therefore the soften-
ing or hardening may be in any direction depending on the mixing orbitals. For
further discussion and applications of orbital vibronic constants, see Section 11.2.

7.3. THE JAHN–TELLER EFFECT

The Jahn–Teller Theorem

In the formulation of the problem given in the previous section the vibronic
mixing of different electronic states by nuclear displacements is described by
an infinite system of coupled equations (7.6) for the nuclear motions with the
APES εk(Q) determined by Eq. (7.8). For an f -fold-degenerate electronic term
that is well separated from other terms, the number of equations can be approx-
imately reduced to f . Qualitatively, many features of the nuclear motions and
related experimental observables can be obtained from the APES shapes with-
out solving the vibronic equations. Some general special features of the APES
of electronically degenerate states are outlined by the Jahn–Teller (JT) theorem
[7.17]. Similar effects in nondegenerate states are considered in Section 7.4.
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The JT theorem is based on the group-theoretical analysis of the behavior
of the APES of a polyatomic system near the point of electronic degeneracy.
Similar to other group-theoretical statements, the JT theorem allows one to deduce
qualitative results without performing specific calculations, or essentially reduces
the extent of such calculations. However, unlike the usual situations in quantum
chemistry, in which the group-theoretical treatment is introduced to simplify the
calculations, the proof of the JT theorem preceded the calculations of APES and
stimulated such calculations.

Suppose that by solving the electronic Schrödinger equation (7.4) for the nuclei
fixed at the point Q�γ = Q0

�γ = 0, we obtain an f -fold-degenerate electronic
term, that is, f states ϕk(r), k = 1, 2, . . . , f , with equal energies ε′

k = ε0. How
do these energy levels change under nuclear displacements Q�γ �= 0? To answer
this question, the variation in APES in the space of the coordinates Q�γ near
the point of degeneracy must be determined. This can be done by estimating the
effect of vibronic interaction terms W(r, Q) in Eq. (7.21) on the energy levels
ε′
k using perturbation theory.

For sufficiently small nuclear displacements Q�γ , the APES εk(Q) can be
obtained as solutions of the secular equation of perturbation theory:

⎡

⎢
⎢
⎢
⎣

W11 − ε W12 . . . W1f

W21 W22 − ε . . . W2f

...
...

...

Wf 1 Wf 2 . . . Wff − ε

⎤

⎥
⎥
⎥
⎦

= 0 (7.30)

where Wij are the matrix elements of the vibronic interaction operator
(7.21) calculated with the wavefunctions of the degenerate term. Since the
degeneracy is assumed to be caused by the high symmetry of the system,
the totally symmetric displacements QA (that do not change the symmetry)
do not remove the degeneracy and are not considered in this section. Again,
because of the assumed small values of Q�γ , we restrict the consideration
(in the first-order approximation) with only linear nontotally symmetric terms
Wij = ∑

�γ 〈i|(∂V/∂Q�γ )|j 〉Q�γ (this important limitation is discussed below).
If at least one of these terms (e.g., for Q�∗γ ∗) is nonzero, then at least one of the
roots ε of Eq. (7.30) contains linear terms in Q�∗γ ∗ , and hence the APES εk(Q)

has no minimum at the point Q0
�∗γ ∗ = 0 with respect to these displacements.

On the other hand, the question as to whether the vibronic constant F�
�∗ =

〈�|(∂V/∂Q�∗)0|�〉 is zero may be easily answered by means of the well-known
group-theoretical rule: F�

�∗ is nonzero if and only if the symmetric product
[� × �] contains the representation �∗ of the symmetrized displacement Q�∗ .
For instance, for a usual E term, [E × E] = A1 + E and thus, if the system
under consideration has E vibrations (see the classification of vibrations given
in Table 7.2), it has no minimum at the point of degeneracy with respect to the
E displacements.

Jahn and Teller [7.17] examined all types of degenerate terms of all symmetry
point groups and showed that for any orbital degenerate term of any molecular
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system, there are nontotally symmetric displacements with respect to which the
adiabatic potential of the electronic term (more precisely, at least one of its
branches) has no minimum; molecules with linear arrangement of atoms are
exceptions from this proof (see below). A similar statement is also valid in the
case of spin degeneracy, with the exception of twofold degeneracy for systems
with S = 1

2 (Kramers doublets) which can be split only by magnetic fields. The
statement regarding the absence of extremum at the point of degeneracy is just
the Jahn–Teller theorem [7.17], which may be formulated more rigorously as
follows [7.3]. If the adiabatic potential of a nonlinear polyatomic system has
several (f > 1) branches that coincide at one point (f-fold degeneracy), at least
one of them has no extremum at this point; Kramers doublets are exceptions . A
more general formulation of the JT theorem is given below.

The variation of the adiabatic potential in the simplest case of an orbitally
double-degenerate electronic term in the space of only one coordinate Q is shown
schematically in Fig. 7.5. It is seen that the two curves intersect at the point of
degeneracy. Away from this point the energy term splits, and the degeneracy
is removed. As a result, the energy is lowered so that the small nuclear dis-
placements Q are advantageous. For larger Q values the quadratic, cubic, and
higher-order terms become important and further distortion of the system may
be energetically disadvantageous (Section 7.4).

The exclusion of linear molecules from the JT statement needs clarification.
For linear molecules the nontotally symmetric displacements are of odd type
with respect to reflections in the plane comprising the molecular axis, whereas
the product of any two wavefunctions of degenerate states (which have the same
parity) is always even with respect to such reflections. This means that the corre-
sponding vibronic constant equals zero, and hence the adiabatic potential at the

FIGURE 7.5. Variation of the adiabatic potential of a molecular system in a twofold
orbitally degenerate electronic state with respect to one active coordinate Q. At the point
of degeneracy Q = 0 there is no minimum. EJT is the Jahn–Teller stabilization energy.
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point of linear configuration, as opposed to nonlinear molecules, has no terms of
linear displacements; it is extremal.

However, if the linear terms of the vibronic interactions W(r, Q) are zero, the
quadratic terms become of primary importance [see Eq. (7.7)]. They are even,
their matrix elements in the case of linear molecules in degenerate states are
nonzero, and the solution of the secular equation (7.30) results in a splitting of
the energy term and possible instability. This is the Renner–Teller effect (RTE)
[7.18]. This effect is discussed further below and in Section 7.4.

The proof of the JT theorem by examination of all the types of degenerate
terms for all the symmetry point groups, one by one [7.17], although rigorous,
cannot be considered as sufficiently elegant from the mathematical perspective.
More general proofs have been obtained in later studies [7.19] (see also Ref. 7.1).
However, the search over all the possible cases has its advantages, one of which
is to reveal the Jahn–Teller active modes , that is, the nuclear displacements
Q for which the vibronic constant F�

�∗ is nonzero. These active modes (active
vibrations) are important basic components of the JT problem, because they form
the space of nontotally symmetric nuclear displacements in which the JT theorem
is operative and show the possible directions of distortions in specific cases.

If the types of possible vibrations of the system under consideration are
known (Table 7.2), the JT active nuclear displacements Q�∗ may be obtained
easily. As indicated above, F �

�∗ is nonzero if the symmetric product [� × �]
contains �∗. Hence the nontotally symmetric components of this product are
just the representations �∗ of the active displacements Q�∗ . For instance, for
a Eg term in an octahedral system [Eg × Eg] = A1g + Eg , and hence the JT
active displacements are of Eg type. Similarly, for a T term in a tetrahedral
system [T × T ] = A1 + E + T2, and both E- and T2-type displacements are JT
active. The JT active displacements for all important point groups can be found
in Refs. 7.1 and 7.3.

The lack of minimum of the APES at the point of electronic degeneracy is
usually interpreted as instability of the nuclear configuration at this point. There-
fore the formulation of the JT theorem is often given as follows: a nonlinear
polyatomic system in the nuclear configuration with a degenerate electronic term
is unstable. This statement of instability is often treated in the sense that the sys-
tem distorts itself spontaneously so that the electronic term splits and the ground
state becomes nondegenerate. Such interpretation of the JT theorem initiated by
its authors [7.17] now appears in monographs and handbooks and has widespread
use in general treatments of experimental results. Meanwhile, as shown in a
number of publications (see Refs. 7.1–7.4), the actual situation in systems with
electron degeneracy is much more complicated than implied by the simple state-
ment of instability. Moreover, taken literally without additional explanation of
terminology, this statement is not true and may lead to misunderstanding [7.20].

The conclusion about the lack of a minimum of the APES εk(Q) at the point
of degeneracy was reached as a consequence of the solution of the electronic
part of the Schrödinger equation (7.4), and therefore, strictly speaking, it cannot
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be attributed to the nuclear behavior that in case of degeneracy (or pseudode-
generacy) is determined by the nuclear motion equations (7.6). The absence of a
minimum of the function εk(Q) may generally be interpreted as proper instability
only when there is no degeneracy or pseudodegeneracy. Indeed, in the absence
of degeneracy (or in the areas far from the point of degeneracy), the electronic
and nuclear motions can be separated in the adiabatic approximation, so that
the APES εk(Q) has the meaning of the potential energy of the nuclei in the
mean field of the electrons, and hence the derivative (dεk/dQ)0 means the force
acting on the nuclei at the point Q0

�γ . Here the condition (dεk/dQ)0 �= 0 may
be interpreted as a nonzero distorting force that makes the nuclear configuration
unstable in the Q direction.

However, in the presence of electronic degeneracy and at the points near the
degeneracy, the APES εk(Q) loses the meaning of the potential energy of the
nuclei in the mean field of the electrons, since the motions of the electrons and
nuclei at these points cannot he separated. In this area the notion εk(Q) becomes
formal with no definitive physical meaning and hence the reasoning given above
about distorting force and instability is, strictly speaking, invalid. In these cases
the term “instability” should be taken formally as an indication of the lack of
minimum of the APES but not as a nuclear feature. The latter, as indicated above,
must be deduced from the solutions of equations (7.6) of nuclear dynamics.

Distortions of the nuclear configuration of free JT systems are, in general, of
dynamic nature in which the quantum-mechanically averaged nuclear coordinates
remain unchanged [7.20]. It is not the simple nuclear configuration distortion, but
special nuclear dynamics that are predicted by the Jahn–Teller theorem in free
(unperturbed ) molecular systems . In the majority of cases the degeneracy is
not removed, either; with vibronic interactions included, the electronic degener-
acy transforms into vibronic degeneracy. Nevertheless, the lack of minimum of
the APES indicates that various novel effects and properties may occur, jointly
termed the Jahn–Teller effect (JTE), and the JT theorem predicts if and when such
effects take place. The dynamic distortions become static and quite observable
under external perturbations or as a cooperative effect in crystals (see the follow-
ing chapters for further discussion of the observable consequences of the JTE).

The specific JT behavior of the APES due to the electronic degeneracy or
pseudodegeneracy, similar to many other features of electrostatic origin, can be
explained by simple images. In the general case of electronic degeneracy, two or
more different electronic states with the same energy are necessarily nontotally
symmetric with respect to the nuclear framework. Therefore, if only a part of
them are occupied by electrons, the charge distribution is nontotally symmetric
and distorts the nuclear configuration. Consider, for example, the case of one
electron in one of three equivalent p orbitals (px, py , or pz) of the CA of a
hexacoordinated molecular system MX6 (term T1u) with the ligands X bearing
negative charges (Fig. 7.6). It is clear that if the electron is on the px orbital, it
interacts more strongly with the nearest ligands 1 and 3 and repels them. As a
result, the octahedral complex becomes tetragonally distorted along the x axis.
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FIGURE 7.6. Rough illustration of the electrostatic origin of Jahn-Teller distortions of the
nuclear configuration of an octahedral ML6 complex in a threefold degenerate electronic
state. If the electron of the CA falls into one of the three equivalent states, it repels
(or attracts) the corresponding pair of ligands, resulting in a tetragonal distortion. The
three equivalent directions of distortion are shown by arrows.

Similarly, the electron on the py orbital repulses ligands 2 and 4, distorting
the complex equivalently to the previous case, but along the y axis, and for the
electron on the pz orbital the distortion is along z. It follows that the APES of
the system has three minima, corresponding to the three directions of distortions,
and no minimum in the high-symmetry octahedral configuration due to obvious
electrostatic forces. (Note that the degeneracy of the three p states is lifted by
these distortions.) The same result emerges from the MO description with the
atomic p orbitals taking part in the corresponding antibonding MOs (for bonding
orbitals the distortions have opposite sign).

A question emerges from the discussion above as to whether the nonadiabatic
JT effects are related to the exact degeneracy of the electronic states, or the latter
may be just close in energy. The answer is that electronic states with sufficiently
close energy levels may be similar (in the sense of instability) to exact degenerate
states [7.21]; they have no minimum of the ground-state adiabatic potential at the
point of the closest energies, and the nuclear motions are described by coupled
equations such as (7.6), instead of (7.9). For reasons given below, the case of
sufficiently close energy states is called the pseudo Jahn–Teller effect (PJTE),
and the corresponding set of energy levels are considered as pseudodegenerate
(or quasidegenerate). The pseudo JT (PJT) nonadiabacity follows directly from
condition (7.11), which is not satisfied for sufficiently close energy levels ε′

k ≈ εj .
For these latter, the coupling terms in (7.6) containing the matrix elements of the
vibronic interaction Wkm cannot be neglected and the adiabatic approximation is
invalid.

The similarity with the JTE is also extended to the behavior of the APES
near the point of pseudodegeneracy. Detailed calculations and discussion of this
point are given in Section 7.4; the simple case of two coupled pseudodegenerate



350 MOLECULAR SHAPES AND TRANSFORMATIONS VIA VIBRONIC COUPLING

FIGURE 7.7. Variation of the adiabatic potential of a molecular system with two suf-
ficiently close energy levels that mix under the Q displacements. The picture is similar
to that of “avoided crossing” (pseudodegeneracy) shown by dashed lines. The lack of
minimum of the ground state at Q = 0 (pseudo Jahn–Teller instability) is similar to the
Jahn–Teller case in Fig. 7.5, but with quadratic dependence on Q (dynamic instability),
which causes differences in observable properties.

terms and one active coordinate is illustrated in Fig. 7.7. If the pseudocrossing
of the two terms shown by dashed lines is taken into account, the analogy with
the JTE becomes quite visual. But as distinguished from the JT case, the PJT
lack of minimum in the ground state takes place only when a specific inequality
is satisfied (Section 7.4).

It follows from formulation of the JT theorem that it does not refer to linear
molecules. The reason is mentioned above; linear (first-order) low-symmetry
(bending) distortions of linear molecules are of odd type, and hence the matrix
elements Wij of the linear terms of the vibronic coupling with i and j of the
same symmetry type are zero, due to the selection rules. However, the quadratic
terms of W give nonzero matrix elements, since the second-order distortions are
even. Hence, when quadratic terms of the vibronic interaction (7.7) are factored
in, linear molecules are subject to effects similar to those described for nonlinear
systems. Linear molecules in this respect were first discussed by Renner [7.18],
and the vibronic instability in linear systems is known as the Renner–Teller effect
(RTE).

However, the Renner-type instability is similar but not identical to the JT
one. Indeed, quadratic dependence on Q�∗ means that there is no intersec-
tion (only splitting) of the adiabatic potentials ε(Q) at the point of degeneracy
Q�∗ = 0 (Fig. 7.8). The behavior of ε(Q) at this point strongly depends on the
strength of the vibronic coupling given by the quadratic vibronic constant G

(��′)
�∗

(Section 7.2). There are two cases:

1. Weak Renner –Teller effect —the quadratic vibronic coupling G is small and
the splitting of the APES does not result in the instability of the ground
state (Fig. 7.8a)
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FIGURE 7.8. Variation of the adiabatic potential of a linear molecular system with
respect to odd displacements Q in the case of the Renner–Teller effect: (a) weak
coupling—term splitting without instability; (b) strong coupling—dynamic instability
of the ground state.

2. Strong Renner –Teller effect —as a result of the vibronic splitting the
ground state becomes unstable (Fig. 7.8b) [the increase in ε(Q) at larger
Q values is provided by the higher-order terms in (7.7)].

Thus, for linear molecules with electronic degeneracy and strong quadratic
vibronic coupling, the adiabatic potential of the ground state has no minimum at
the point of degeneracy. However, in contrast to the JT case, the first derivative
(dε/dQ�∗)0 = 0, that is, the point of degeneracy is extremal in the Q�∗ direction,
but (d2ε/dQ2

�∗)0 < 0, which means that it is a maximum in this direction. In
terms of instability both PJT and RT systems are dynamically (quadratically)
unstable, as opposed to the linear instability in the JT case. For further details
on the RT effect, see Refs. 7.3, 7.22, and 7.23.

All the observable effects related to the special features of the adiabatic poten-
tial predicted by the JT theorem are called the Jahn–Teller effects [7.1–7.3]. For
simplicity this term usually also includes the PJT and RT effects. The most
widespread cases of the JTE are given below in this section, while the pseudo-
JTE is given special attention in Section 7.4. Various applications of these effects
to specific problems are considered in different sections of this book; many more
examples can be found in Refs. 7.1–7.4 and references cited therein.

The Jahn–Teller Effect in a Twofold-Degenerate Electronic State

The JT problems—the typical cases of electronic degeneracies that strongly influ-
ence the nuclear configurations and nuclear motions in molecular systems—are
considered in detail in special monographs and books (see Refs. 7.1–7.4 and
references cited therein). In this section we briefly review some results important
for the study of coordination compounds and partly used in the next sections.
Most widespread are orbitally double-degenerate E terms for systems that have
at least one axis of symmetry of the third-order C3, threefold-degenerate T terms
(systems with cubic symmetry), and fourfold-degenerate G′ (or �8) terms for



352 MOLECULAR SHAPES AND TRANSFORMATIONS VIA VIBRONIC COUPLING

cubic systems with strong spin–orbital coupling; fivefold-degenerate terms of
icosahedral systems are inherent mostly in organic compounds (e.g., fullerenes).
Two-level and many-level PJTE are considered in Section 7.4.

To solve a JT problem means to find the JT active coordinates for the given
f -fold degenerate electronic term, determine the APES in the space of these
coordinates, and solve the system of f coupled equations (7.6). The resulting
solution includes the energy-level spectrum and wavefunctions that allow one
to calculate physical magnitudes. However, each of the abovementioned stages
of the problem has an independent meaning and gives some qualitative insight
into the problem. In particular, the JT active coordinates indicate the space of
possible distortions of the system, while the APES describes the possible nuclear
motions in the semiclassical approach.

In polyatomic systems with a large number of atoms (N) and hence a large
number of possible vibrations (3N -6) there can be more than one, or even a
large (in crystals—infinite) number of JT active coordinates. For instance, for a
twofold-degenerate E term the JT active coordinates are also of E type, and the
JT problem is E ⊗ e (the active vibrations are indicated by small letters). But
for large numbers N many E vibrations (E1, E2, . . .) may be JT active. Then we
have a multimode problem [denoted as E ⊗ (e1 + e2 + · · ·)], distinct from the
ideal problem for which there is only one active vibration of given symmetry.

The multimode problem is usually significant for coordination compounds
with polyatomic ligands or multicenter systems, although even a simple five-atom
tetrahedral complex MA4 has two types of vibrations with the same symmetry, T ′

2
and T ′′

2 (Table 7.2), and hence its Jahn–Teller problem for a T term interacting
with T2 vibrations is a two-mode one [T ⊗ (t ′2 + t ′′2 )]. Under some restrictions, the
multimode problem can be reduced to the ideal problem. Only ideal problems will
be considered in this section. Discussion of multimode problems and solutions
are given elsewhere (see Ref. 7.1 and references cited therein).

For an f -fold-degenerate term the f branches of the APES εk(Q�γ ), k =
1, 2, . . . , f , are determined by Eq. (7.8) with the corrections Wkk(Q�γ ) obtained
from the solutions of the secular equation (7.30) taking W from (7.21). As men-
tioned in Section 7.2, there is a totally symmetric combination of the matrix
elements of the coefficients at the quadratic terms in W that is equal to the
primary force constant K0�; the corresponding terms can be grouped in expres-
sions of the strain energy 1

2

∑
�γ K0�Q2

�γ . The matrix elements of the remaining
quadratic term coefficients are quadratic vibronic constants. Therefore, we can
present the APES (7.8) in the form

εk(Q�γ ) = 1
2

∑
�γ K0�Q2

�γ + εv
k (Q�γ ) (7.31)

where the vibronic corrections to the electronic term are the roots of the secular
equation

‖Wγγ ′v − εv‖ = 0 γ, γ ′ = 1, 2, . . . , f (7.32)
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and Wγγ ′v , as distinct from the similar Eq. (7.30), contains matrix elements of
vibronic coupling terms only (without the elasticity term separated in (7.31)).

For a twofold orbitally degenerate E term, the JT active coordinates are either
A1 + E [in cases when (E × E) = A1 + E], or A1 + B1 + B2 [for (E × E) =
A1 + B1 + B2]. The latter case is realized only in systems containing symmetry
axes of the order multiple with four (C4, C8, . . .). The totally symmetric vibrations
A1 do not distort the system and can be eliminated by a special choice of the
coordinate origin (however, see below). Hence the E term generates either the
E⊗e problem , which is more widespread, or the E ⊗ (b1 + b2) problem for
systems with 4k-fold symmetry axes, where k is an integer.

Consider the E⊗e problem . The two electronic wavefunctions of the E

term may be denoted by |ϑ > and |ε > with symmetry properties of the
well-known functions ϑ∼3z2 − r2 and ε∼x2 − y2 (more often denoted as
ϑ∼dz2 and ε∼dx2−y2). The two components of the normal E-type (tetragonal)
displacements Qϑ and Qε are illustrated in Fig. 7.1 (see also Fig. 9.20), while
their expressions in Cartesian coordinates of the nuclei are given in Table 7.1.
Accordingly, the matrix elements Wγγ ′v and hence εv

k (Q�γ ) in Eq. (7.32)
are dependent on these two coordinates only, and the APES in all the other
coordinates after Eq. (7.31) retains a simple parabolic form:

εk(Q�γ ) = 1
2

∑′
K�Q2

�γ (� �= E) (7.33)

With regard to active E displacements, the vibronic interaction acquires a
simple form if we employ the vibronic constants introduced in Section 7.2. Denote

FE = 〈ϑ|
(

∂V

∂Qϑ

)

0
|ϑ〉 (7.34)

GE = 1

2
〈ϑ|

(
∂2V

∂Qϑ ∂Qε

)

0
|ε〉 (7.35)

Then, keeping only the linear and second-order vibronic interaction terms, we
obtain the explicit form of Eq. (7.32) for the E–e problem:

∣
∣
∣
∣
∣

FEQϑ + GE(Q2
ϑ − Q2

ε) − εv −FEQε + 2GEQεQϑ

−FEQε + 2GEQϑQε −FEQϑ − GE(Q2
ϑ − Q2

ε) − εv

∣
∣
∣
∣
∣
= 0 (7.36)

This equation can be solved directly. In polar coordinates

Qϑ = ρ cos φ Qε = ρ sin φ (7.37)

the two roots of (7.36) are

εv
±(ρ, φ) = ±ρ[F 2

E + G2
Eρ2 + 2FEGEρ cos 3φ]1/2 (7.38)
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Inserting these values into Eq. (7.31), we obtain the following expression
for the APES in the space of the Qϑ and Qε Jahn–Teller active coordinates
transformed into (ρ, φ):

ε±(ρ, φ) = 1
2KEρ2 ± ρ[FE

2 + G2
Eρ2 + 2FEGEρ cos 3φ]1/2 (7.39)

In particular, in the linear approximation (i.e., when quadratic terms may be
neglected, GE = 0), this surface is simplified:

ε±(ρ, φ) = 1
2KEρ2 ± |FE|ρ (7.40)

Here the adiabatic potential is independent of φ; it has the form of a surface
of revolution often called the “Mexican hat” (Fig. 7.9). The radius ρ of the circle
at the bottom of the trough and its depth reckoned from the degeneracy point at
ρ = 0— the Jahn–Teller stabilization energy EJT —are given by the following
relationships:

ρ0 = |FE|
KE

, EJT = F 2
E

2KE

(7.41)

FIGURE 7.9. The APES for a twofold degenerate E term interacting linearly with the
twofold degenerate E-type vibrations described by Qϑ and Qε coordinates [linear E ⊗ e

problem, the “Mexican hat” (sombrero)]. EJT is the Jahn–Teller stabilization energy.
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If the quadratic terms of vibronic interaction are taken into account, this surface
warps and three wells occur along the bottom of the trough of the Mexican hat,
alternating regularly with three humps (the “tricorn,” Figs. 7.10 and 7.11).

The extremal points of the surface (ρ0, φ0) are

ρ0 = ±FE

KE ∓ (−1)n2GE

φ0 = nπ

3
n = 0, 1, . . . , 5

(7.42)

with the upper and lower signs corresponding to the cases FE > 0 and FE < 0,
respectively. If FEGE > 0, the points of n = 0,2,4 are minima, and those of
n = 1,3,5 are saddle points, whereas for FEGE < 0 the two types of extremal
points interchange. For the Jahn–Teller stabilization energy EJT we have

EJT = F 2
E

KE − 2|GE | (7.43)

and the (minimal) barrier height between the minima is

� = 4EJT |GE|
KE + 2|GE| (7.44)

In the linear approximation the curvature of the surface along the trough Kφ =
0, and in the perpendicular (radial) direction Kρ = KE (note that in the absence of
vibronic interactions Kφ = Kρ = KE). Taking into account the quadratic terms,
one can obtain

Kρ = KE − 2|GE| Kφ = 9|GE|(KE − 2|GE|)
KE − |GE| (7.45)

It follows that if 2|GE |>KE , the system has no minima at the point ρ0 and
it decomposes, provided that the higher terms in Q of the vibronic interactions,
neglected above, do not stabilize it at larger distances. At the minima points the
curvature equals the force constant.

The two wavefunctions �± that correspond to the two sheets of Eq. (7.39)
are

�− = cos
�

2
|ϑ >− sin

�

2
|ε >

�+ = sin
�

2
|ϑ >+ cos

�

2
|ε >

(7.46)

where

tan � = FE sin φ − |GE |ρ sin 2φ

FE cos φ + |GE |ρ cos 2φ
(7.47)

It is often assumed that � ≡ φ, which is true only in the absence of quadratic
terms, GE = 0.
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FIGURE 7.10. The APES for the E ⊗ e problem with both the linear and quadratic terms
of the vibronic interaction taken into account: (a) general view and (b) equipotential
sections of the lower sheet ε−. Three minima (M1, M2,M3) and three saddle points
(C1, C2, C3) are linked by the dashed line of the steepest slope from the latter to the
former.
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With the shapes of the symmetric displacements Qϑ and Qε and their values
at the minima points known, one can evaluate the corresponding Jahn–Teller
distortions for different types of molecules [7.3].

If the APES is known, some qualitative features of the nuclear behavior can be
evaluated in the semiclassical approach , that is, considering the nuclei moving
along the APES. This approximation is valid when the energy gap between
different sheets of the APES is sufficiently large. This is realized for strong
vibronic coupling and for nuclear configurations near the minima of the lowest
sheet where the energy gap is the largest (in case of the E term this gap equals
4EJT). If only the linear terms are accounted for and hence the lowest sheet of
the APES has the shape of a Mexican hat, the nuclear configuration performs free
rotations in the space of the Qϑ and Qε coordinates along the circle of minima
in the trough . In this case each atom, for instance, in a triangle molecule X3

describes a circle with radius equal to ρ0
√

3. The circular motions of these atoms
are correlated; the vectors of their displacements are shifted in phase through an
angle of 2π/3 (Fig. 7.12). In any instant the equilateral triangle X3 is distorted
to an isosceles triangle, and the distortion travels as a wave around the geometric
center performing specific internal rotations often called pseudorotations .

In an octahedral molecule, which in the trigonal projection resembles two
equivalent triangles, the two waves of deformations, traveling around each of

FIGURE 7.12. Distortions of a triatomic molecule X3 due to movement along the bottom
of the trough of the lowest sheet of the APES in the linear E ⊗ e problem. Each of
the three atoms moves along a circle; their phases are deferred by 2π/3 from each
other. The bold points indicate the minima positions when quadratic terms are taken into
account. The dashed triangle corresponds to the point of minimum in Fig. 7.10 (the case
of compressed triangles is shown; with the opposite sign of the vibronic constant, they
are elongated).
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FIGURE 7.13. Distortions of an octahedral system ML6 at different points ϕ along
the bottom of the trough of the “Mexican hat” in the linear E ⊗ e problem. At points
ϕ = 0, 2π/3, 4π/3, the octahedron is tetragonally distorted along the three fourfold axes,
respectively (a, b, c). In between these points the configuration has D2h symmetry (d)
and varies continuously from one tetragonal configuration to another.

the triangles, are opposite in phase. As a result, the octahedron becomes elon-
gated (or compressed) alternatively along each of the three fourfold axes and
simultaneously compressed (elongated) along the remaining two axes (Fig. 7.13).

If the quadratic terms of the vibronic interactions are factored in, the lowest
sheet of the adiabatic potential has three minima, in each of which the octa-
hedron is elongated (or compressed) along one of the three axes of order 4
(Fig. 7.11); when allowing for quantum effects, the nuclear motions along the
adiabatic potential surface are likewise hindered rotations and tunneling transi-
tions between the minima , which may be presented by way of illustrations as
“pulse” motions .

As indicated earlier, since [E × E] = A1 + E, the totally symmetric displace-
ments A1 are also JT active in the E state (as in all the other cases): strictly
speaking, the E–(e + a1) problem should be solved instead of the E ⊗ e one,
considered above. However, the totally symmetric displacements do not change
the molecular symmetry; they change proportionally only the interatomic dis-
tances. Therefore, in many cases, it may be assumed that the origin is taken in
the new minimum position with regard to A1 coordinates, so that the interaction
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with the A1 displacements, as with all the other JT modes, may be set apart.
This cannot be done when one has to compare the vibronic effects in different
systems or in a series of systems for which the A1 displacement contributions
may be different (Section 9.4). For this (and other) reasons, the more rigorous
expressions for the APES, including the interaction with all the active modes,
may be useful [7.3].

To obtain the energy spectra and wavefunction in the JT E ⊗ e problem the
system of two equations (7.6) should be solved with the potential (7.39) or
(7.40). For arbitrary parameter values this can be done numerically. However,
for limiting values of strong and weak vibronic coupling, Eq. (7.6) can be solved
analytically. Define the quantitative criterion of weak and strong coupling by
comparing the JT stabilization energy E�

JT, (7.41) or (7.43), with the energy of
the n�-fold zero-point vibration n��ω�/2 (in the case under consideration � = E

and n� = 2). Denote λ� = 2E�
JT/n��ω� . Then, if λ� � 1 (E�

JT � n��ω�/2),
the vibronic coupling is regarded as weak, and if λ� � 1(E�

JT � n��ω/2), the
coupling is strong . λ� is the dimensionless vibronic constant .

In the limit of weak vibronic coupling the depth of the vibronic minima
are smaller than the zero-vibration energies, and therefore there are no local
states in the minima. On the contrary, in the strong coupling limit there are
such local states. Nevertheless, in both cases the system is delocalized into all
the equivalent minima, provided that the stationary states of the free system
(not instantaneous or specially prepared states) are considered. Therefore, the
terms dynamic Jahn–Teller effect for weak coupling and static Jahn–Teller effect
for strong coupling are unsuitable because, strictly speaking, in the absence of
external perturbations both cases are dynamic. However, the term static JTE may
be still meaningful if used to indicate situations when, in the limit of very deep
minima, the one-minimum state is manifest in the experiment; this state may be
regarded as a quasistationary one for the given process of measurement (see the
relativity rule concerning the means of observation, Section 9.1).

Consider first the weak coupling limit, when λ � 1 and the vibronic interac-
tion W can be considered as a perturbation. The energy levels obtained in the
second-order perturbation theory (with respect to linear in W terms) are

Enlm = �ωE[n + 1 + 2λE(l2 − m2 − 3
4 )]

l = n, n−2, . . . , −n + 2,−n

m = ± 1
2 ,± 3

2 , . . . , ±[n + 1
2 ]

(7.48)

where λE = (EE
JT/�ωE) = F 2

E/2�ωEKE . Since l and m are not independent, the
energy Enlm depends on only two quantum numbers, say, n and l, Enl = �ωE[n +
1 + 2λE(±l − 1)]. Hence the 2(n+1)-fold-degenerate level with a given n splits
in n + 1 components (l may have n+1 values). Each level remains twofold-
degenerate owing to the independence of the energy (7.48) on the sign of m.
The ground state is also twofold-degenerate, E00,±1/2 = �ωE(1 − λE) = �ωE −
2EJT. However, some of these levels, namely, those with quantum numbers
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m = ± 3
2 ,± 9

2 ,± 15
2 , . . . pertain to the symmetry A1 + A2, which indicates that

they are accidentally degenerate (the others are of E symmetry and therefore
regularly degenerate).

In the other limit EJT > �ωE the quadratic terms of vibronic coupling may
be important. The corresponding APES has the shape given in Fig. 7.10. If the
barrier between the minima is not very large, � � �ωE , a separation between
radial (along ρ) and angular (along φ) motions is possible; it results in the
following equation of motion along φ [7.24]:

(

− α∂

∂φ2
+ β cos 3φ − Em

)

�(φ) = 0 (7.49)

where α = �
2/3Mρ0

2 and β = GEρ2
0 .

This equation has been solved numerically. The energy levels obtained as
functions of the ratio β/α are illustrated in Fig. 7.14. It is seen that some of

FIGURE 7.14. Energy levels for the quadratic E ⊗ e problem—solutions of Eq. (7.49)—
as functions of the ratio of the quadratic to linear vibronic constants, β/α. (After O’Brien
[7.24].)
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the doublet rotational levels for β = 0 (discussed above), namely, those trans-
forming after the irreducible representations A1 + A2 [i.e., accidental degenerate,
cf. (7.48)], are split when the quadratic terms of vibronic interactions are taken
into account, that is, when β �= 0.

If the quadratic terms are nonzero, the motions in the circular trough, as
distinct from the linear case, are no longer free rotations. At every point of
the trough, as in the linear case, the distorted system performs rapid vibrations
with the frequency ωE. When moving along the through, the distortion of the
nuclear configuration changes slowly assuming a continuous set of geometric
figures in the space of E displacements illustrated in Fig. 7.13. However, unlike
the linear case for which the motion of the distorted configuration along the
bottom of the trough is uniform, in the presence of quadratic vibronic coupling
the abovementioned changes of the nuclear configurations are hindered (or even
reflected) by the adiabatic potemtial barriers. As a result, the system remains
longer at the minima rather than at the barriers’ maxima. The picture as a whole
can be characterized as hindered internal rotations of the Jahn–Teller distortions.

For sufficiently large quadratic terms, when the quadratic barrier � in
Eq. (7.44) is of the order of or larger than the vibrational quanta �ωE

(�> �ωE), the E ⊗ e problem becomes complicated with three minima of the
adiabatic potential and with high barriers between the minima. In this case
the separation of the variables ρ and φ is not valid, so the problem should be
solved by another technique. Since the minima of the adiabatic potential are
deep enough, local quasistationary states arise in each of them. Therefore, as far
as the lowest vibronic states are concerned, the local states in the three minima
can be taken as a starting approximation and then modified by their interactions
by means of perturbation theory. As a result, the local vibrational states in the
minima split, and the phenomenon as a whole resembles a quantum-mechanical
tunneling splitting ; it is a special case of tunneling splitting when the electronic
and nuclear motions are coupled by the vibronic interaction and the minima are
not purely vibrational.

The problem of tunneling splitting in Jahn–Teller systems was solved in dif-
ferent approximations for different cases [7.25] (see also Refs. 7.1–7.4 and 7.26
and references cited therein). The number of tunneling energy levels equals the
number of minima (or more precisely, the number of vibrational states in the
minima that interact, resulting in the splitting). For the splitting magnitude δ in
different states, see Ref. 7.3.

Visually, the transitions between differently oriented distorted configurations
may be imagined as pulsating deformations (distortions). Assume that as a
result of synthesis or external perturbation the system happens to fall into the
Jahn–Teller distorted configuration of one of the equivalent minima of the
APES. Then, after a time τ —the lifetime of the system in the minimum (which
equals the inverse to the tunneling frequency or the tunneling splitting)—during
which the system performs ordinary vibrations, it occurs in the equivalent state
of another minimum, at which the distortion is similar but otherwise oriented
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(Fig. 7.12). Then again, after time τ , the system jumps (tunnels) into the third
equivalent minimum configuration (or back to the first), and so on.

If the system is octahedral and is tetragonally distorted in the minimum (as in
the E ⊗ e problem), for instance, elongated along the fourfold axis, the pulsations
of these deformations result in periodic (with a period τ ) elongations along each
of the three fourfold axes, alternatively. Since δ � �ω, the frequency of pulsating
distortions of the molecule is much less than the frequency of the vibrations in
the distorted configuration, and the lifetime τ of the latter is much greater than
the period of vibrations.

Thus there are three types of Jahn–Teller dynamics: free internal rotation
(pseudorotation), hindered rotation , and pulsating Jahn–Teller deformations .

Tunneling splitting in JT systems has received additional attention more
recently in conjunction with the topological (Berry) phase problem. The latter
started with the E ⊗ e JT problem and is now widespread in treatments of
a variety of physical and chemical phenomena. The issue is as follows. The
wavefunction of the two ground vibronic states (7.46) are not single-valued (!);
they change sign when transferred along the trough of the Mexican hat on a
full circle around the conical intersection: �±(φ + 2π) = −�±(φ). Since the
total wavefunction should be single-valued, an additional phase factor eimφ

with half-integer m values from (7.48) (for which eim(φ+2π) = −eimφ) should
be added to the nuclear wavefunction to compensate for the unphysical sign
change. Berry [7.27] generalized this result and showed that this wavefunction
phase property is due to the presence of the conical intersection and is of general
importance to many physical and chemical properties [7.28]. For JT problems it
is this topological phase factor that makes the quantum number m semiinteger
and the ground vibronic state double-degenerate.

However, this phase factor occurs when there is only one or an odd number
of conical intersections encircled by the nuclear motion. For an even number
n of conical intersections the phase factor is 2πn, and it does not influence
the system in this respect [�±(φ + 2πn) = �±(φ)]. In the E ⊗ e problem with
strong quadratic coupling and weak linear coupling there are three additional
conical intersections that come near the central one, and the nuclear motion
encircles four conical intersections. In this case the topological phase influence
vanishes, the quantum numbers m for the vibronic energy levels become integers,
and the ground state is nondegenerate A instead of the degenerate E when there
is only one conical intersection [7.29].

One important effect of vibronic coupling is the reduction in ground-state
physical quantities of electronic nature (vibronic reduction). It originates
from the backward influence of the JT nuclear dynamics on the electronic
structure and properties. In the majority of solutions of the vibronic problems,
obtained above, the ground vibronic state possesses the same type of symmetry,
degeneracy, and multiplicity as the initial electronic term in the high-symmetry
configuration. The coincidence of the symmetry of the ground-state terms with
and without the vibronic coupling allows one to simplify the calculations of
many properties. It was shown [7.30] that if, taking into account the vibronic
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coupling, the spin–orbital splitting of the ground state is proportional not only to
the spin–orbital coupling constant, as in the usual nonvibronic cases, but also to
this constant multiplied by the overlap integral between the vibrational functions
of different minima. Since overlap integrals are always smaller than 1, the
vibronic coupling reduces the spin–orbital splitting, sometimes by several orders
of magnitude. Ham [7.31] generalized this idea and showed that such a reduction
occurs for any physical magnitude, provided that its operator depends on
electronic coordinates only. This reduction is sometimes called the Ham effect .

Reduction factors are denoted as K�(�∗); they depend only on the degenerate
electronic term under consideration �, the symmetry �∗ of the physical prop-
erty (operator) to be reduced, and the JT stabilization energy EJT. For the linear
E ⊗ e problem approximate analytic expressions for the vibronic reduction fac-
tors KE(A2) and KE(E), often denoted by p and q, respectively, can be derived
directly from the approximate solutions of the problem. For ideal linear E ⊗ e

problems 2q − p = 1. In case of weak coupling p ≈ exp(−4EJT/�ωE). For
arbitrary coupling the p value can be derived from numerical solutions; for
0.1 < EJT/�ωE < 3.0, the p value obeys the following relation [7.31]:

p = exp

[

−1.974

(
EJT

�ωE

)

0.761

]

(7.50)

and q = 1
2 (1 + p). For sufficiently strong vibronic coupling p = 0 and q = 1

2 .
Vibronic reduction factors and their manifestation in specific problems see are

discussed in further detail in Ref. 7.3.

Threefold-Degenerate Electronic States

Threefold orbital degenerate terms are possible for molecular systems that belong
to the cubic or icosahedral symmetry point groups (T , Td, Th, O,Oh, I, Ih). There
are two types of orbital triplets: T1 and T2. Since the vibronic effects in these
two cases are similar, the consideration of only one of them, say, T2, is suffi-
cient. Denote the three wavefunctions, transforming as the coordinate products
yz, xz, xy, by |ξ >, |η >, and |ζ >, respectively. In the T -term case, unlike the
E term, there are five Jahn–Teller active nontotally symmetric coordinates: two
tetragonal Qϑ and Qε (E type) and three trigonal Qξ , Qη, and Qζ (T2 type)
(see Figs. 7.1 and 7.2 and Table 7.1). For all the other coordinates the adiabatic
potential remains parabolic [i.e., they provide no vibronic contributions εv

k in
Eq. (7.31)]. The problem is T ⊗ (e + t2).

The secular equation (7.32), which determines the vibronic parts of the APES
εv
k (Q), is of the third order. The matrix elements Wv

γγ ′ contain two linear vibronic
constants, FE and FT , and several quadratic constants G�(�1 × �2) [7.1–7.3].

Consider first the linear approximation for which G� = 0. Denote

FE = 〈ζ |
(

∂V

∂Qϑ

)

0
|ζ 〉, FT = 〈η|

(
∂V

∂Qξ

)

0

|ζ 〉 (7.51)
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According to Eq. (3.44), all the matrix elements of the linear terms of the
vibronic interactions can be expressed by means of these two constants, and
secular equation (7.32) for εv

k (Q) takes the following form:

∣
∣
∣
∣
∣
∣

FE(−Qϑ + √
3Qε) − 2εv 2FT Qζ 2FT Qη

2FT Qζ FE(−Qϑ − √
3Qε) − 2εv 2FT Qξ

2FT Qη 2FT Qξ 2FEQϑ − 2εv

∣
∣
∣
∣
∣
∣
= 0

(7.52)

The three roots of this equation εv
k (Q), k = 1, 2, 3, are surfaces in the five-

dimensional space of the coordinates Q�γ , �γ = Eϑ,Eε, T ξ, T η, T ζ . Together
with the parabolic (nonvibronic) parts in Eq. (7.31), they determine the three
sheets of the adiabatic potential (in the space of these coordinates), crossing at
Q�γ = 0:

εk(Q) = 1
2KE(Q2

ϑ + Q2
ε) + 1

2KT (Q2
ξ + Q2

ζ + Q2
η) + εv

k (Q) k = 1, 2, 3
(7.53)

However, the analytical solution of Eq. (7.52) is difficult. Opik and Pryce [7.21]
worked out a procedure to determine the extremal points of the surface (7.53)
without solving Eq. (7.52). In the particular case when FT = 0, FE �= 0 (the T⊗e
problem) Eq. (7.52) can be solved directly:

εv
1(Qϑ, Qε) = −FEQϑ

εv
2(Qϑ, Qε) = 1

2
FEQϑ +

√
3

2
FEQε

εv
3(Qϑ, Qε) = 1

2
FEQϑ −

√
3

2
FEQε

(7.54)

Substitution of these solutions into Eq. (7.53) yields the APES consisting of a
set of paraboloids; among them, the minima of only those containing the tetrag-
onal Qϑ and Qε coordinates are displaced from the origin. In these coordinates
the surface has the shape of three equivalent paraboloids intersecting at the point
Qϑ = Qε = 0 (Fig. 7.15). The positions of the three minima are given by the
coordinates

(QE
0 , 0)

(
1

2
QE

0 ,

√
3

2
QE

0

) (
1

2
QE

0 ,
−√

3

2
QE

0

)

(7.55)

where

QE
0 = FE

KE

(7.56)
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FIGURE 7.15. The APES surface for the Jahn–Teller T ⊗ e problem. Three parabolloids
intersect at Qϑ = Qε = 0; M1,M2, and M3 are the three minima.

For the depth of the minima, the Jahn–Teller stabilization energy, we have

EE
JT = F 2

E

2K
(7.57)

Note that the relief of the surface sheets near the point of degeneracy
(Fig. 7.15) is different from that of the E term (Figs. 7.9 and 7.10); in the
case of the T term there is a real intersection of the surface sheets at the
point Qϑ = Qε = 0, whereas for the E term there is a conical intersection,
a branching instead of an intersection at this point. The wavefunction for the
three paraboloids, |ζ >∼yz, |η >∼xz, and |ξ >∼xy, as distinct from the
E⊗e problem, are mutually orthogonal; they do not mix by the tetragonal
displacements, and there is no tunneling splitting.

In the other particular case when FE = 0, FT �= 0 (the T ⊗ t2 problem) the
third-order Eq. (7.52) cannot be solved directly. Using the method of Opik and
Pryce [7.21], one can determine the extremal points of the adiabatic potential
without solving Eq. (7.52). For the case in question the surface ε(Qζ , Qη, Qξ )

in the space of trigonal coordinates has four minima lying on the C3 axes of
the cubic system at the points (m1Q

T
0 , m2Q

T
0 , m3Q

T
0 ), where the four sets of

the numbers (m1,m2, m3) are (1,1,1), (−1, 1, −1), (1, −1, −1), (−1, −1, 1), and
QT

0 = −2FT /3KT .
At these minima the system is distorted along the trigonal axes. The displace-

ments of the atoms corresponding to this distortion for an octahedral system are
illustrated in Fig. 7.16. The six ligands, in two sets of three ligands each, move
on the circumscribed cube toward two apexes that lie on the corresponding C3

axes. The depth of the minima, the Jahn–Teller stabilization energy, is
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FIGURE 7.16. Trigonal distortion of an octahedron in an electronic T state (compare
with the Qξ + Qη + Qζ displacement in Fig. 7.2).

ET
JT = 2F 2

T

3KT

(7.58)

In this case the frequency ωT of the trigonal T2 vibrations splits into two
[7.1, 7.3]:

ωA = ωT KA = KT (7.59)

ωE = ( 2
3 )1/2ωT KE = 2

3KT (7.60)

The electronic wavefunctions in the minima are given by the relation

� = 1√
3
(m1|ξ >+m2|η > +m3|ζ >) (7.61)

with the values of m1, m2, and m3, given above.
In the T ⊗ (e + t2) problem when the simultaneous interaction with both the

tetragonal (FE �= 0) and trigonal (FT �= 0) displacements is taken into account,
the APES in the five-dimensional space of the five coordinates Q�γ is rather
complicated, but the extremal points may be obtained using the Opik–Pryce
procedure [7.21]. The APES for the linear T ⊗ (e + t2) problem has three types
of extremal points:

1. Three equivalent tetragonal points, at which only tetragonal coordinates
Qϑ and Qε are displaced (from the origin Q�γ = 0). The coordinates of
the minima and their depths are the same as in the linear T ⊗ e problem,
and are given by Eqs. 7.55–7.57.
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2. Four equivalent trigonal points at which only the trigonal coordinates Qξ ,
Qη, and Qζ are displaced (Fig. 7.15). The coordinates at the minimum
coincide with those obtained in the T ⊗ t2 problem [see Eq. (7.58)].

3. Six equivalent orthorhombic points, at each of which one trigonal and one
tetragonal coordinate are displaced, and the minima depth is

E0
JT = 1

4EE
JT + 3

4ET
JT (7.62)

If EE
JT > ET

JT, the trigonal points are minima and the tetragonal ones are saddle
points, and vice versa, tetragonal points are minima while trigonal ones are saddle
points when the opposite inequality holds. The orthorhombic extremal points are
always saddle points in the linear approximation (compare with the quadratic case
described below). In particular, when EE

JT = ET
JT, all the extremal points (includ-

ing the orthorhombic ones) have the same depth; in this case a continuum of min-
ima is realized, forming a two-dimensional trough on the five-dimensional surface
of the APES (in a sense similar to the Mexican hat in the E-term case) [7.32].

If KE = KT , the classical motion of an octahedral system along the trough
corresponds to the motions of the ligands around identical spheres centered at
the apexes of the octahedron [7.1–7.3]. The displacements of different ligands
are correlated; at every instant their radius vectors drawn from the center of the
sphere, if shifted to a common origin, form a star whose apexes produce a regular
octahedron rotating around its geometric center.

In the quadratic approximation the vibronic T ⊗ (e + t2) problem is rather
complicated [7.33]. As in the E-term case, the quadratic terms of the vibronic
interactions produce significant changes in the shape of the adiabatic potential of
the T term. As in the case of linear coupling, there may be either trigonal or tetrag-
onal minima, but in addition to these, under certain conditions, the orthorhombic
extremal points (which are always saddle points in the linear approximation)
may become minima. Moreover, there is also a possibility that the orthorhombic
minima coexist with either the tetragonal, or the trigonal minima [7.1, 7.3]; this
was confirmed experimentally.

Similar to the E ⊗ e problem, the quadratic vibronic coupling influences essen-
tially the topology of the APES in the T ⊗ e and T ⊗ (e + t2) problems [7.34],
but the latter are much more complicated, with several lines of conical intersec-
tions instead of just several points as in the E ⊗ e problem.

An important feature of the orbital T terms, as distinct from those of the E

terms, is the large splitting caused by the spin–orbital interaction (in the first
order of perturbation theory). Therefore, if the system has unpaired electrons or,
more generally, if the total spin S of the state under consideration is nonzero, the
problem should be considered for the components that result from spin–orbital
splitting of the T term. For instance, the spin doublet 2T (one unpaired elec-
tron) under spin–orbital interaction splits into two components: 2T = �8 + �6,
from which the first �8 is a spin quadruplet and the second �6 is a spin doublet.
The latter can be treated as a usual doublet, considered above, whereas the quadru-
plet term �8 requires additional treatment. Since [�8 × �8] = A1 + E + T2, the
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Jahn–Teller active displacements for the �8 state are E and T2, and the problem
is �8 ⊗ (e + t2), analogous to T ⊗ (e + t2). Many features of the former are sim-
ilar to those of the latter, but there are also some distinctions. Vibronic reduction
factors for these terms, as well as other JT problems and applications to specific
molecular systems and crystals, are discussed further in Refs. 7.1–7.4.

7.4. PSEUDO-JAHN–TELLER EFFECT AND THE
TWO-LEVEL PARADIGM

As mentioned in the previous Section 7.3, the pseudo Jahn–Teller effect (PJTE)
takes place in the presence of pseudodegeneracy and may lead to configuration
instability, which is similar (but not identical) to the JT one. Pseudodegeneracy
means a nondegenerate ground state interacting (mixing) with a relatively low-
energy excited state under nuclear displacements. Later in this section we show
that there are limitations on symmetry, but not on the energy gap to such excited
states; moreover, vibronic (PJT-type) mixing of the ground electronic state with
the excited states is the only possible source of high-symmetry configuration insta-
bility . This statement can serve as a general tool for considering how electrons
control molecular configurations . It creates a paradigm—nuclear configuration
changes necessarily involve the mixing of two or more electronic states .

Pseudo-Jahn–Teller (PJT) Instability

Consider first an easy case of two nondegenerate states � and �′ separated by an
energy interval of 2� [7.21]. In order to obtain the adiabatic potential of these
states, the vibronic contributions εv

k should be evaluated from the solutions of the
secular equation (7.32). Assuming that only one coordinate Q = Q�∗, �∗ = � ×
�′, mixes the two states (in principle, there may be more than one coordinate of
the type �∗), and, taking into account only linear terms in the vibronic interaction
W in Eq. (7.21), we obtain (the energy is read off from the middle of the 2�

interval between the initial levels):
∣
∣
∣
∣
−� − εv FQ

FQ � − εv

∣
∣
∣
∣ = 0 (7.63)

where F = 〈�|(∂V/∂Q�∗)0|�′〉 is the off-diagonal linear vibronic constant.
Inserting the solutions of Eq. (7.63)

εv = ± [�2 + F 2Q2]1/2 (7.64)

into Eq. (7.31) and assuming that the force constant is the same in both states
K0 = K0� = K0�′ , we have

ε± = 1
2K0Q

2 ± [�2 + F 2Q2]1/2 (7.65)
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or, after expanding the second term in Q,

ε±(Q) = ±� + 1

2

(

K0 ± F 2

�

)

Q2 ∓ 1

8

F 4

�3
Q4 ± · · · (7.66)

It is seen from these expressions that as a result of the vibronic coupling the
two adiabatic potential curves change in different ways: in the upper sheet the
curvature (the force constant) increases, whereas in the lower one it decreases.
If �>(F 2/K0), the minima of both states remain at the point Q = 0 as in
the absence of vibronic mixing. This is the case of weak PJTE (Fig. 7.17a).
It contributes only to the change in curvatures (vibrational frequencies) at the
minima of the two APES.

However, if

� <
F 2

K0
(7.67)

the curvature of the lower sheet of the adiabatic potential becomes negative and
the system is unstable with respect to the Q displacements. This is the case of
strong PJTE (Fig. 7.17b). It is convenient to denote (F 2/K0) = M . Then the
points of minima of the adiabatic potential are given by ±Q0

Q0 =
(

M2 − �2

K0M

)1/2

(7.68)

FIGURE 7.17. The APES behavior in the cases of (a) weak pseudo-Jahn–Teller effect
(the ground state is softened but remains stable) and (b) strong pseudo-Jahn–Teller effect
(the ground state becomes unstable at Q = 0). The terms without vibronic coupling are
shown by dashed lines.
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M = F 2

K0

with the curvature at the minima points

K = K0

(

1 − �2

M2

)

(7.69)

If � < M [see (7.67)], the curvature K of the APES at the minima (Eq. (7.69)),
is positive (not to be confused with that at the high-symmetry configuration,
which is negative), and hence distorted configurations may be stable.

Consider now a more complicated case of a transition metal complex with
the electron configuration d0, for instance, four-valence titanium in an octahedral
coordination of oxygen atoms as in the cluster [TiO6]8− in BaTiO3 [7.3, 7.35].
For an approximate treatment, one may restrict the problem by considering the
vibronic mixing of a group of close-in-energy electronic terms that are well
separated from the other terms. The typical qualitative scheme of the MO energy
levels and electron occupation numbers for this complex is shown in Fig. 7.18.
It is seen that for a sufficiently comprehensive consideration at least nine MOs,
t2g , t1u, and t∗2g (occupied by 12 electrons in the TiO6

8− cluster) must be factored
in. With allowance for interelectron repulsion, these states form the ground one,
1A1g , and the excited states, from which those of the same multiplicity (singlets)
are 1A2u, 1Eu, 1T1u, 1T2u, 1A2g , 1Eg , 1T1g , and 1T2g .

FIGURE 7.18. Schematic presentation of the HOMO and LUMO for the TiO6
8− cluster

in the BaTiO3-type crystal.
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In most cases of practical use the energies and wavefunctions, as well as
covalence parameters for the MOs, are unknown. For a qualitative analysis of
the vibronic effects the vibronic interaction may be considered at an earlier stage
before covalence and the multielectron term formation. Then the nine atomic
functions, three 3dπ functions of the Ti4+ ion (dxy, dxz, dyz) and six combinations
of the 2pπ functions of the O2− ions (forming the abovementioned nine MO t2g ,
t1u, and t∗2g) may be taken as a basis of the vibronic treatment. These states mix
by the T1u-type displacements, which have three components, Qx, Qy , and Qz,
one of which is shown in Fig. 7.19. The problem is thus (A1g + T1u) ⊗ t1u.

According to the Wigner–Eckart theorem (Section 3.4), the matrix elements of
the ninth-order secular equation of perturbation theory in the linear approximation
with respect to the vibronic coupling contain only one vibronic constant

F = 〈2py |
(

∂V

∂Qx

)

0
|3dxy〉 (7.70)

Omitting the equation itself, we present its solutions [7.3, 7.35] (2� is the
energy interval between the 3dxy and 2py states):

εv
1,2 = ± [�2 + F 2(Q2

x + Q2
y)]

1/2

εv
3,4 = ± [�2 + F 2(Q2

y + Q2
z)]

1/2

εv
5,6 = ± [�2 + F 2(Q2

x + Q2
z)]

1/2

εv
7,8,9 = −�

(7.71)

FIGURE 7.19. One component of the T1u displacement in the octahedral TiO6 cluster.
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From these nine levels only the lower six are occupied by the 12 electrons
(mentioned above) in the ground state. Substituting εv

1, ε
v
3 , and εv

5 from (7.71)
into Eq. (7.31), we obtain the following expression for the ground-state adia-
batic potential (ε7,8,9 are independent of Q and can be excluded from further
consideration):

ε(Qx, Qy, Qz) = 1
2K0(Q

2
x + Q2

y + Q2
z) − 2{[�2 + F 2(Q2

x + Q2
y)]

1/2

+ [�2 + F 2(Q2
y + Q2

z)]
1/2 + [�2 + F 2(Q2

x + Q2
z)]

1/2}
(7.72)

The shape of this surface depends on the relation between the constant �, F ,
and K0. Denoting Z = 4F 2/K0, we can see that if �> Z, the surface has one
minimum at the point Qx = Qy = Qz = 0, and the system remains undistorted.
This is the weak pseudo-Jahn–Teller effect (Fig. 7.19a). However, if

� < Z (7.73)

the surface (7.72) acquires a rather complicated shape with four types of extremal
points:

1. One maximum at Qx = Qy = Qz = 0 (dynamic instability).

2. Eight minima at points |Qx | = |Qy | = |Qz| = Q
(1)
0

Q
(1)
0 =

(

2
Z2 − �2

K0Z

)1/2

(7.74)

with the Jahn–Teller stabilization energy

E
(1)
JT = 3(Z − �)2

Z
(7.75)

At these minima the Ti atom is displaced along the trigonal axes, equally
close to three oxygen atoms and removed from the other three.

3. Twelve saddle points at |Qp| = |Qq | �= 0, Qr = 0, p, q, r = x,y,z (with a
maximum in section r and minima along p and q). At these points the Ti
atom is displaced toward two oxygen atoms lying on the p and q axes,
respectively.

4. Six saddle points at Qp = Qq = 0, Qr = Q
(2)
0

Q
(2)
0 = 2

(
Z2 − �2

K0Z

)1/2

(7.76)
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with a depth

E
(2)
JT = 2(Z − �)2

Z
(7.77)

With covalence and multielectron term formation included, these results, espe-
cially their quantitative expression, are modified, but the main qualitative con-
clusions do not alter.

The origin of the instability of the position of the Ti4+ ion in the center of the
octahedron can be given a visual treatment similar to that in Fig. 7.20, discussed
below. When the Ti atom is in the central position exactly, the overlap of its
dxy AO with the appropriate (T1u) combination of the oxygen py AO is zero on
symmetry (positive overlaps are counterbalanced for by negative ones). However,
if the Ti atom is shifted toward any of the oxygen atoms resulting in its off-center
position (Fig. 7.19), the overlap becomes nonzero and produces a new covalent
bonding that lowers the energy of such distortions.

Similar treatment is possible for tetrahedral complexes of the type MA4. For
them, in the strong vibronic coupling limit and under certain vibronic mixing
conditions four equivalent minima are expected. In each of these minima one
bond M—A is longer or shorter than the other three, which remain identical.

In stereochemistry and reactivity problems, as well as in spectroscopy and
crystal chemistry (Sections 9.2, 9.4, 11.2, etc.), other cases of pseudo-Jahn–Teller
effects may be significant. In particular, the vibronic mixing of E and A1 terms
under E-type displacements [the (E + A) ⊗ e problem] is often encountered. We
consider here this type of mixing for a system with C4v symmetry [7.36]. The two
wavefunctions of the E term transform as the x and y coordinates. If we denote
the two components of the E mode by Qx and Qy and the energy gap between
the E and A1 levels by 2�, the secular Eq. (7.32) in the linear approximation
takes the following form:

∣
∣
∣
∣
∣
∣

−� − εv 0 FQx

0 −� − εv FQy

FQx FQy � − εv

∣
∣
∣
∣
∣
∣
= 0 (7.78)

In polar coordinates (7.37) the roots of this equation are

εv
1,3 = ±[�2 + F 2ρ2]1/2 εv

2 = −� (7.79)

and for the APES of the ground state, we get

ε(ρ, φ) = 1
2KEρ2 − [�2 + F 2ρ2]1/2 (7.80)

It is seen that in the linear approximation the APES is independent of the
angle φ—it is a surface of revolution. Similar to the two-level case considered
at the beginning of this subsection with M = F 2/KE , we find that if � < M , the
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surface has a maximum at the point ρ = 0 (dynamic instability), and a circular
trough at ρ = ρ0 = [(M2 − �2)/KEM]1/2. The depth of the trough [read off the
point ε(0) = −�] is

EPJT = M2 − �2

2M
(7.81)

If quadratic terms of the vibronic interaction are taken into account, two
quadratic constants, G1 and G2, must be introduced. The secular equation compli-
cates and the adiabatic potential, unlike the linear case, becomes dependent on the
angle φ (acquiring the initial symmetry C4v); four minima regularly alternating
with four saddle points occur on the adiabatic potential as a function of φ [along
the trough (7.80)]. At the extremal points φ = nπ/4, where n = 0, 1, 2, . . . , 7.
If G1 > G2, the minima are given by φ0(min) = nπ/4, n = 1, 3, 5, 7, and the
saddle points are at n = 0, 2, 4, 6. In the opposite case, G1 < G2, the minima
and saddle points interchange, and if G1 = G2, the surface preserves the trough
of the linear approximation.

These examples show that for relatively close-in-energy electronic terms (pseu-
dodegeneracy) the adiabatic potential as a result of the PJTE acquires features
similar to those obtained in the JTE: instability of the high symmetry configuration
and several equivalent (or a continuum of ) minima. The criterion of the strong
effect of PJT instability (7.67) or (7.73) (in other cases this condition appears
similar) contains three parameters: �, K0, and F , and therefore it may be “soft”
for any of them taken apart. In particular, a strong effect may occur for large
values of the energy gap �, if the force constant K0 is sufficiently small and the
vibronic constant F is large.

Cases when the criterion of strong PJT effect is not satisfied, �>(F 2/K),
are also important. Indeed, although the configuration is stable (the APES has a
minimum in this configuration), the curvature of the ground state, as indicated
above, is lowered, the nuclear configuration is softened in the Q direction, and
it is further softened when F is larger and � is smaller (for a given K0 value).
This situation is significant, for instance, in investigation of chemical reaction
mechanisms (Section 11.2).

Along with strong similarities, there are essential differences between the
Jahn–Teller and pseudo Jahn–Teller effects . An important feature of the pseudo
effect is that the two (or more) mixing electronic states � and �′ may belong to
different IrReps of the point group of the system, whereas in the JT case they
belong to the same representation. Consequently, in the PJTE the direction of
distortion may have any symmetry that is possible in the symmetry group of the
system under consideration, whereas in the JTE these directions are limited by
JT active modes (Section 7.3). In particular, for systems with an inversion center
the two mixing states � and �′ in the PJTE may possess opposite parity. Then
the vibronic constant F

(��′)
�∗ is nonzero for odd nuclear displacements Q, which

remove the inversion center and form a dipole moment (dipolar instability).
As a result, the system in its minima configurations has a dipole moment. This
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dipolar instability is impossible in JT systems with inversion centers since the
mixing electronic terms have the same symmetry � = �′ and hence the active
modes can be only even.

Similarly to JT distortions, the origin of instability of the high-symmetry con-
figuration and its distortion due to the strong PJTE can be illustrated in simple
images. Consider, for instance, a square-planar complex of the type MA4 with
D4h symmetry and suppose that the dz2 orbital of the metal M (the A1g orbital) is
the HOMO, while the LUMO of A2u symmetry is formed by the four pz orbitals
of the ligands (Fig. 7.20) (or vice versa, the dz2 orbital is the LUMO and A2u

is the HOMO). In the planar configuration these two MOs do not mix, since the
overlap integral S is zero (Fig. 7.20a).

However, if the atom M displaces out of and transversely to the plane (in the
A2u direction), a nonzero overlap occurs and the two orbitals mix to form a π

bond between the metal and the ligands (Fig. 7.20b). As a result, the energy of the
ground state is lowered (as compared with that without mixing) and the curvature
of the adiabatic potential in the direction of the A2u displacement decreases (weak
effect; Fig. 7.17a), or becomes negative (strong effect; Fig. 7.17b). The latter case
takes place when the covalence of the new bond formed is superior to the changes
in strain energy. For further discussion of the origin of vibronic instability, see
Eqs. (7.88)–(7.91) and Table 7.4 (in Example 7.3).

FIGURE 7.20. Visual treatment of the origin of the pseudo-Jahn–Teller effect using the
N—Fe—N fragment of the square-planar FeN4 group as an example (cf. iron porphyrin,
Section 9.2): (a) when Fe is in the N4 plane (on the N—Fe—N line), the dπ –pπ over-
lap between the HOMO (nitrogen pπ ) and LUMO (iron dz2 ) orbitals is zero; (b) the
out-of-plane displacement of the Fe atom results in nonzero dπ –pπ overlap and bond
formation, which lowers the curvature of the adiabatic potential in the direction of such
a displacement.
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Uniquiness of the Vibronic Mechanism of Configuration Instability:
The Two-Level Paradigm

Consider in more detail the criterion of the strong PJTE given by the inequality
(7.67). The three parameters (�, the energy gap between the ground and excited
state; F , the vibronic coupling constant; and K0, the primary force constant)
can acquire arbitrary values (or at least a wide range of values), which means
that condition (7.67) can be obeyed for any value of one of these parameters, if
the other two are appropriate. It follows that the PJTE can be operative for any
polyatomic system without a priori restrictions .

Note that in the PJT case all the electrostatic (attraction and repulsion) forces
in the reference nuclear configuration are equilibrated; that is, the first derivative
of the APES in the given direction Q is zero. Thus the pseudo-Jahn–Teller effect
is rather a case of unstable equilibrium, or dynamic instability , as distinct from
the static instability in the Jahn–Teller effect when the Coulomb forces are not
compensated. In both cases the term configuration instability means instability of
the reference nuclear configuration with respect to certain distortions, which does
not necessarily imply absolute instability of the molecular system with respect
to its component parts; the system may be stable in the distorted configuration.

The PJTE provides a mechanism of electronic control of nuclear configuration
instability via vibronic coupling . In this mechanism any two electronic states of
a given nuclear configuration, ground 1 and excited 2, can cause its instability in
a certain (symmetrized) direction Q, provided that inequality (7.67) is satisfied.
From this statement an important question emerges: Is this vibronic mechanism
of dynamic instability (unstable equilibrium) the only possible one, or do other
mechanisms control this instability? In other words, is the condition of instability
(7.67 ) both necessary and sufficient, or is it only sufficient?

To state this question more rigorously, consider the expression for the curva-
ture of the adiabatic potential of the system at the point Q�∗ = 0 in the direction
of the symmetrized coordinate Q�∗ (7.23) (hereafter for simplicity the index �∗
is omitted):

K� = K�
0 + K�

v (7.82)

where (note that ∂H/∂Q = ∂V/∂Q)

K�
0 = 〈�|

(
∂2H

∂Q2

)

0
|�〉 (7.83)

K�
v = −

∑

�′

|F��′ |2
��′�

(7.84)

and F ��′
and ��′� are as denoted above. Equation (7.82) can be obtained by

means of second-order perturbation theory, but it is an exact expression for the
curvature as the coefficient at 1

2Q2 in the dependence of the APES on Q at the
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minimum point; it was discussed first by Bader [7.37]. The first term K�
0 , after

(7.83), the mean value of the curvature operator in the ground state, has the
meaning of the contribution (to K�) from the Q displacement of the nuclei in a
fixed (frozen) electronic distribution. The second term, K�

v , after (7.84), gives the
negative contribution to K� that arises because the electrons follow the nuclei (at
least partly), and hence the electronic states change under nuclear displacements.
This is the relaxation term .

On the other hand, this term describes the contribution of vibronic mixing of
the ground state with excited states to the K� value of the former. A similar
contribution to K from one excited state as a result of the PJTE is given by
Eq. (7.66). As distinct from this two-level PJTE, Eq. (7.84) gives the pseudo-
Jahn–Teller contribution to the ground-state curvature arising from all the excited
states (multilevel PJTE ). K�

v is therefore the vibronic contribution to the curva-
ture, as opposed to K�

0 , which is the proper, or ground-state, contribution (often
called the primary force constant).

Since K�
v is negative, it always lowers the curvature of the ground state; the

vibronic coupling destabilizes the system (in the ground state). If K�
0 > 0 and

|Kv|>K0, the system possesses a negative total curvature K� < 0, and hence
the vibronic coupling to the excited states causes instability of the ground state.
The condition

∑

�′

|F (��′)|2
��′�

> K�
0 (7.85)

is thus a multilevel analogy of the criterion of the two-level PJT instability
(7.67). In the infinite sum in (7.85) only several terms (in most cases one to
three) are significant; the others are negligible because of either selection rules
(�∗ ∈ � × �′), or large denominators ��′� .

Now, if K�
0 < 0, the system is unstable without vibronic coupling. But if

K�
0 > 0, then condition (7.85) becomes necessary for the instability. Thus if one

proves that

K�
0 > 0 (7.86)

then the condition of vibronically induced dynamic instability is both necessary
and sufficient and the vibronic mechanism of instability is the only possible one
in polyatomic systems.

There are several particular proofs of the inequality K�
0 > 0 for different types

of polyatomic systems. First, the formulation of the problem and a general but not
very rigorous proof was given [7.38]. Then this proof was significantly improved
and expanded [7.39]. Mathematically rigorous proofs of the inequality K0 > 0
was obtained for diatomics [7.40], and for cubic systems (crystals) and some lin-
ear chains [7.41, 7.42] (see also Refs. 7.1 and 7.3). The proofs are most general
with the restriction that the first derivative 〈�|(∂H/∂Q)0|�〉 = 0, meaning that
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at the nuclear configuration under consideration the Coulomb forces are equili-
brated so there is either a maximum or a minimum on the APES (we call this
a high-symmetry configuration), and the condition K�

0 > 0 means that without
the pseudo-JTE there is always a minimum. Example 7.2 demonstrates explic-
itly that K0 > 0 in unstable configurations by means of numerical calculations,
while Example 7.3 shows some results of ab initio calculations of pseudo-JT
instabilities in TMS.

EXAMPLE 7.2

Numerical Confirmation of PJT Origin of Instability of
High-Symmetry Configurations

To confirm the analytical deductions and to reveal the excited states that
cause the instability of the ground state, ab initio calculations were per-
formed for a series of molecular systems in unstable configuration with
K < 0 [7.39]. Some results are presented in Table 7.3. The K0 values

TABLE 7.3. Ab Initio Calculations of Vibronic Constants (F 0i),
Nonvibronic (K0), and Vibronic (Kv) Contributions to the Force Constant
(K) for Some Molecular Hydrides in the Unstable Configuration with
Respect to Hydrogen Displacementsa

System, Coordinate F (0i) �i0 K0 Kv = �iK
i
v K = K0 + Kv

Symmetry of Instability 10−4dyn eV (mdyn/Å) (mdyn/Å) (mdyn/Å)

H3, D∞h �u 4.84 12.0 0.13 −0.24 −0.11
NH3, D3h A′′

2 8.76 14.0 0.43 −0.68 −0.25
BH4, D4h B2u 6.04 6.8 0.83 −1.34 −0.51

8.99 22.8
CH4, D4h B2u 6.98 11.1 0.69 −1.27 −0.58

11.45 25.8
NH4

+, D4h B2u 6.32 14.2 0.44 −0.87 −0.43
10.55 33.4

OH4
2+, D4h B2u 5.14 16.0 0.29 −0.51 −0.22

9.30 36.4
AlH4

−, D4h B2u 5.34 8.7 1.06 −1.18 −0.12
9.48 19.8

SiH4, D4h B2u 5.04 7.3 0.71 −1,15 −0.44
9.15 23.4

PH4
+, D4h B2u 4.53 4.6 0.48 −1.11 −0.63

8.96 27.2
SH4

2+, D4h B2u 3.85 8.4 0.37 −0.66 −0.30
9.02 25.5

aTwo values of F (0i) and �i0 correspond to two excited states that contribute to the
instability.
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were calculated directly by Eq. (7.83) with the ground-state wavefunc-
tions obtained by numerical calculations in the 3G-STO approximation
(Section 5.3). In Table 7.3 the vibronic coupling parameters are also
given.

For the systems in this table the distortions (indicated by symmetry
in column 2) involve displacement of the hydrogen atoms for which, as
follows from the analytical deductions [7.39], the inequality K0 > 0 is
less favorable than for more heavy atoms. Nevertheless, the results of
the calculations (column 5) show explicitly that indeed K0 > 0 in these
cases, too, as follows from the general theory.

EXAMPLE 7.3

Numerical Calculations Confirming the PJT Origin of Configuration
Instability of Coordination Systems [7.43]

Table 7.4 shows the results of ab initio calculations of the negative
contribution of the PJTE Kv to the curvature K = K0 + Kv of the
ground-state APES in the direction of T1u distortions for three isoelec-
tronic transition metal fluorides [7.43]. We see that for XeF6 the K

value, due to the PJTE, becomes negative, and its configuration is thus
accordingly distorted in agreement with the experimental data; TeF6

3−
and IF6

− are not distorted. In all three systems the main contribution
to the instability is due to the excited states formed by the one-electron
transition 25a1g → 28f1u [7.43].

TABLE 7.4. Ground-State Interatomic M— F Distance Re (in bohrs),
Energy E (in hartrees), Nonvibronic K̃ 0, and PJT K̃v Contributions to
the Curvature K of the APES of Three Isoelectronic Octahedral
Fluorides MF6 with Respect to Odd Trigonal T1u Distortions
(K0,Kv , and K in hartrees/bohr2)

Parameter TeF6
3− IF6

− XeF6

Re (Å) 2.0740 1.9450 1.8765
E (hartree) −151.513252 −154.742296 −158.339908
K̃ 0 1.20720 1.72396 2.26929
K̃v −1.17385 −1.72277 −2.28941
K = K̃0 + K̃v 0.03345 0.00119 −0.02011
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A fundamental consequence of the uniqueness of the vibronic instability is
that it lies in the base of all structural symmetry breakings in molecular sys-
tems and condensed matter [7.44]. It was shown that the spontaneous breakdown
of space symmetry of molecular systems and solids (distortions, conformation
changes, phase transitions, including melting and vaporization, together with
formation of molecules from atoms, molecular transformations, etc.) is always
triggered by Jahn–Teller-type vibronic interactions between two or more elec-
tronic states [7.44]. It is interesting (and exciting) that a similar statement of
uniqueness of symmetry breakings exists in particle physics: “Symmetry break-
ing is always associated with a degeneracy” [7.45], and degeneracy in particle
physics means equal masses; this includes also pseudodegenerate particles that
have sufficiently close values of mass. Together with the spontaneous symmetry
breaking in molecular systems and condensed matter due to electronic degener-
acy or pseudodegeneracy we may draw the conclusion that nature tends to avoid
degeneracies [7.46]. This statement is not trivial and may have influence on
general understanding of the origin of “driving forces” in natural phenomena.

On the other hand, the “philosophy” of this chapter as a whole is of special
interest to understanding the mechanisms of molecular transformations as they
are triggered by the electronic structure. As elucidated above, changes in any
given (reference) nuclear configuration necessarily require the mixing of at least
two of its electronic states, degenerate or non-degenerate. This means that the
presence of such two or more electronic states is crucial in understanding the
origin of changes in nuclear configuration. In other words, to investigate and
predict molecular distortions and transformations, one should start with finding
the two or more electronic states that trigger corresponding nuclear configuration
changes. This is a novel paradigm , which provides a higher level of theory and
understanding of the origin of chemical phenomena on the electronic level, for the
first time outlined in this book— the paradigm of vibronic mixing of two or more
electronic states in initiating nuclear configuration changes , or more compactly,
the “two electronic states in chemical transformations” (TEST) paradigm. The
JTE, PJTE, and RTE are particular cases of this paradigm.

Further Insight into the Pseudo-JTE and Hidden JTE

The proof that K0 > 0 means that configuration instability with K < 0 is due only
to the vibronic coupling to the excited states. For simplicity, consider the case
when only one excited state contributes significantly to the inequality (7.85),
while the others are negligible. In this case the formulation of the problem is
reduced to that of a usual two-level pseudo Jahn–Teller effect considered above
in this section. According to Eq. (7.66), the curvatures of the adiabatic potentials
of the two states at the point of instability are

K1,2 = K0 ± F 2

�
(7.87)
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Because K0 > 0, the curvature of the excited state K0 + F 2/� is positive,
while that of the ground state K0 − F 2/�, under condition (7.67), is negative.
Thus instability of the ground state is accompanied by a stable excited state the
coupling with which produces the instability [7.38]. This result, namely, the
prediction of the existence of stable excited states in dynamically unstable ground-
state configurations , is one consequence of the TEST paradigm, formulated
above; it has interesting physical and chemical applications (Chapters 9–11).

If more than one excited state contributes to the instability of the ground state
in Eq. (7.85), the relation between the K values of all these states becomes
more complicated, but the general idea is the same—the negative contribution
to the curvature of the ground state that makes it unstable equals the sum of
positive contributions to the excited states. As a result of the vibronic mixing the
excited states become stabilized . If the excited state that causes the instability of
the ground state is occupied by electrons, the instability disappears: Eq. (7.87)
shows that the total change of curvature of the two interacting states equals zero.
Therefore, vibronic coupling between fully occupied MOs does not contribute to
the instability.

For a further understanding of the origin of the vibronic instability, the terms
in the sum Kv after (7.84) may be divided into two groups:

1. The basis wavefunctions |0 > and |i > in the matrix element F (0i) are
mainly from the same atom. In this case the term −|F (0i)|2/�0i can be
interpreted as the contribution of the polarization of this atom by the dis-
placements of other atoms. For instance, for the instability of the central
position of the Ti ion in the octahedron of oxygens in the TiO6

8− cluster
of BaTiO3 with respect to off-center displacements, discussed above, the
contribution of the polarization of the oxygen atom by the off-center dis-
placement of the titanium ion is given by the mixing of the oxygen 2p and
3s atomic function under this displacement [7.35b, 7.47]:

Kpol
v = −|〈2pσz(O)|(∂V/∂Qz)0|3s(O)〉|2

�2p3s

(7.88)

Since the integrals F (0i) = 〈0|(∂V/∂Q)0|i〉 are calculated with the orthogo-
nal (ground and excited) wavefunctions of the same atom, then, transform-
ing the symmetrized coordinate Q into Cartesian coordinates and taking
the corresponding derivative of the Coulomb potential V = e2|r − Rβ |−1,
we come to integrals of the type Ix = 〈0|(x − Xβ)/|r − Rβ |3|i〉, where x

are the electronic coordinates of the polarizing atom and Xβ are the nuclear
coordinates of the displacing atoms. If we assume that approximately Rβ

is much larger then the atomic size (which is already true for the sec-
ond coordination sphere), then Tx ≈ R−3

β < 0|x|i >, and the polarization
contribution is



PSEUDO-JAHN–TELLER EFFECT AND THE TWO-LEVEL PARADIGM 383

Kpol
v ∼e2αx

R6
β

(7.89)

where, according to quantum mechanics

αx = e2| < 0|x|i > |2
�0i

(7.90)

is the part of the atomic polarizability in the x direction that is due to the
contribution of the ith excited state (the summation over i gives the full
atomic polarizability in this direction).

2. The two functions in F (0i) are from two different (nearest-neighbor) atoms.
In this case the vibronic contribution is due to new covalency produced by
the distortion. Indeed, in the reference configuration the overlap of these
two electronic states is zero (they are orthogonal), hence their vibronic
mixing means that a nonzero overlap occurs under the low-symmetry dis-
placements Q.

For the Ti ion off-center displacements with respect to the oxygen octahedron
the covalent contribution is due to the new overlap of the ground-state t1u com-
bination of the highest occupied 2pπz functions of the oxygen atoms with the
lowest unoccupied dxz function of the titanium ion:

Kcov
v = −|〈2pπz(O)|(∂V/∂Qx)0|3dxz(Ti)〉|2

�2p3d

(7.91)

The new overlap (which is forbidden by symmetry in the reference configura-
tion) produces new (additional) covalence. The inequality (7.85), made possible
by this term, means that with the new covalence the energy is lower than that of
the reference configuration, resulting in instability.

Both kinds of vibronic contribution to instability, new covalence and atomic
polarization, may be significant, but the numerical calculations performed so far
show that the covalence contribution is an order of magnitude larger than the
polarization. Example 7.4 demonstrates this statement by numerical data.

The prediction of possible existence of stable excited states that cause the
instability of the ground state in a two-level problem, discussed above, may
have applications in different fields of chemistry. For instance, it predicts the
possible existence of stable excited states for the unstable transition states of
chemical reactions [7.38] (Sections 11.1 and 11.2). In stereochemistry (Section
9.2) it means that the low-symmetry configurations of molecular systems may
have higher symmetry in some excited states (e.g., bent triatomic molecules are
expected to be linear in the excited state, which is coupled to the ground one via
bending displacements, and vice versa [7.3]).
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EXAMPLE 7.4

Comparison of Covalence versus Polarization Contributions to
PJT Instability

Table 7.5 shows three examples of numerical calculations of covalence
and polarization contributions to the pseudo-JTE in three essentially dif-
ferent systems [7.47]: the instability of NH3 in the planar configuration
with respect to out-of-plane displacements of the nitrogen atom (toward
the stable pyramidal C3v configuration) [7.39]; CuCl53− in the trigonal-
bipyramidal configuration with respect to E′ displacements (toward a
square pyramid) [7.48]; and the TiO6

8− cluster in BaTiO3 with respect to
T1u (Ti off-center) displacements initiating the spontaneous (ferroelec-
tric) polarization of the crystal [7.35, 7.42]. In all these examples the
new covalence contribution to the instability is much more significant,
by at least one order of magnitude.

TABLE 7.5. New Covalence Kcov
v versus Polarization K

pol
v Contributions

to Instability of the High-Symmetry Configuration of Several Polyatomic
Systems

NH3 CuCl53− TiO6 in BaTiO3

Reference
configuration

Planar D3h Trigonal
bipyramidal D3h

Octahedral Oh

Instability coordinate A′′
2 E′ T1u

Ground statea 1A′
1[2pz(N)] 2A′

1[3dz2 (Cu)] 1A1g[2p(O)]
Excited state—covb 1A′′

2
2E′ 1T1u

2pz(N)→ 1s(H) 3s(Cl)→ 3d(Cu) 2p(O) → 3d(Ti)
Kcov

v −0.62 mdyn/Å −2.85 1028s−2c

Excited state—polb 1A′′
2

2E′ 1T1u

2pz(N) → 3s(N) 3dxy(Cu) → 3dz2 2p(O) → 3s(O)

K
pol
v −0.06 mdyn/Å −0.05 1028s−2c

Kcov
v /K

pol
v 1.03 × 10 5.7 × 10 1.1 × 10

aThe main contributing AOs are indicated in brackets.
bThe corresponding one-electron excitations are shown.
cIn mass-weighted units.

Considering the symmetries of the corresponding MO’s, one can control
(manipulate) the geometry (configuration instability) of molecular systems
by means of electronic rearrangements: excitation, ionization, MO popula-
tion changes by coordination, redox processes, and so on . This is directly
related to chemical activation by coordination (Section 11.2), photochemical
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reactions (Section 11.3), internal pseudorotations (Section 9.2), structural phase
transformations in condensed media (Section 9.4), and other factors.

As mentioned earlier, in addition to instability of the high-symmetry configura-
tion, vibronic mixing of the ground state with excited states causes anharmonicity
in the nuclear motions of the former [7.3] (vibronic anharmonicity). In some cases
vibronic anharmonicity is more important than the proper anharmonicity caused
by the higher-order terms in the expansion (7.3).

The JTE is presently a powerful general approach to (a tool for) solving
problems in physics, chemistry, and biology. Many examples confirming this
statement are given in the literature (see, e.g., Ref. 7.3); some examples are
discussed in the Chapters 8–11. Example 7.5 illustrates how the JTE approach
works in evaluation of the origin of structural properties of relatively simple
molecules ML2.

EXAMPLE 7.5

Why Some ML2 Molecules (M = Ca,Sr,Ba; L = H,F,Cl,Br) are Bent
While Others Are Linear

This problem is solved by means of the PJTE [7.49]. Indeed, consider
the linear configuration L—M—L. Its general MO energy-level scheme
is shown in Fig. 7.21, where it is seen that the occupied MOs are formed
mainly by the ligand orbitals, while the lowest unoccupied ones are

FIGURE 7.21. Molecular orbital (MO) scheme of the valence states in the
ML2 molecules (M = Ca,Sr,Ba; L = H,F,Cl,Br). The main atomic orbital con-
tributions to the MOs are shown in parentheses.
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formed mainly by excited d orbitals of the M atom. The bending of the
linear configuration is an odd Eu-type distortion that can be realized
by the PJT mixing of an occupied even (g) state with unoccupied odd
(u) one, or vice versa. Analyzing the MO scheme in Fig. 7.21, we see
that the PJT mixing of the HOMO σu (which produces the term

∑
u)

formed mainly by the ligand orbitals with the unoccupied �g orbitals
(term �g) formed mainly by central atomic d orbitals may produce the
odd (bending) nuclear distortion.

This (
∑

u +�g) ⊗ eu PJTE takes place in all the ML2 molecules
above; however, depending on the energy gap between these states �

and the vibronic coupling constant F , which are specific for the atoms M
and L, in some of the molecules, the condition of instability (7.71) is not
obeyed (the PJTE is weak, see Fig. 7.17a), and these molecules remain
linear (albeit softened by the PJTE), while in others the PJTE is strong
enough to produce the observed instability and distortion. Calculations
[7.47] not only explain fully the origin of the distortions and answer the
question above, but also show that the previous attempts to explain this
situation based on qualitative models (orbital hybridization, VSEPR,
polarization, etc.; see Section 9.1) are either just particular cases of the
PJTE or produce negligible effects.

It is remarkable that if in the same ML2 molecule M is substituted
by a transition metal, the d-containing orbitals are occupied and the
PJTE vanishes (other excited states that are appropriate in symmetry
are too high in energy and hence produce very small contributions to
the instability). Indeed, direct calculations of the CuF2 molecule show
that it is linear (see Example 5.2).

An interesting development termed a hidden JTE has emerged more recently
[7.50]. Numerous molecular systems have a ground-state geometry that is dis-
torted as compared with the nearby possible higher symmetry configuration, and
the latter has neither degenerate state (no JTE), nor low-lying excited states to
assume a PJTE. On the other hand, we stated above that all the instabilities and
distortions from high-symmetry configurations are of JT, PJT, or RT origin. How
is this controversy solved?

It was shown [7.50, 7.51] that in all the cases when the JTE is not seen explic-
itly, it is “hidden” in the excited states. There are two kinds of hidden JTE: (1)
one of the excited states is degenerate and its JTE is so strong that its stabilization
energy is larger than the energy gap to the ground state, thus producing a global
minimum with a distorted configuration (an example of this type is the ozone
molecule [7.52]); (2) another, more widespread, possibility emerges when there is
a strong PJTE on two excited states that causes the lower one to cross the ground
state and become the global minimum with a distorted configuration. This case
of hidden JTE is demonstrated by ab initio calculations of CuF3 in Example 7.6.
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EXAMPLE 7.6

Hidden JTE in CuF3: Ab Initio Calculations

The CuF3 molecule has a planar obtuse-triangular configuration in the
ground state with the Cu atom displaced from the center (the two angles
F—Cu—F are about α∼93◦) and a singlet 1A′

1 ground electronic state.
In the high-symmetry regular triangular configuration D3h with the Cu
atom in the center, the electronic configuration of the system is e2

originating from Cu3+(d8), and it has a triplet ground state 3A′
2 and

two excited states 1A′
1 and 1E′ (see Example 3.2 in Section 3.4). Hence

there is no JTE in the ground state 3A′
2, nor is there a PJT mixing

with the excited states as they have different spin states (the vibronic
coupling does not mix states with different spins). So why is the real
(global) ground-state configuration distorted?

This is a typical example of a hidden PJTE of the second type. Ab
initio calculations [7.50], including the ground and the abovementioned
two excited states, fully confirmed this statement. Figure 7.22 illustrates
some of the results. In the cross section along the α angle we see that
a strong PJTE of the type (1A′

1 +1 E′) ⊗ e (Section 7.4) that mixes the
two excited states, pushes down the lower 1A′

1 state, and the effect is so
strong that the latter crosses the 3A′

2 state and produces the global min-
imum with a distorted configuration of an obtuse triangle with α∼93◦.

FIGURE 7.22. Cross-section of the APES of CuF3 along the angle α(F-Cu-F)
showing a strong PJTE between the two excited E and A states that leads to
the formation of a global minimum in which the high-symmetry configuration
is distorted (α ∼ 93◦) [7.50]. The inset shows the molecular geometry.
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There are additional important effects accompanying this distortion,
including orbital disproportionation when the initial, orbitally totally
symmetric electronic configuration |eϑ ↑; eε ↑〉 transforms into a spin
singlet |eϑ ↑; eϑ ↓〉 with a charge distribution corresponding to the
distortion [7.50]. In the distorted configuration this molecule has a
dipole moment, but no magnetic moment, whereas in the undistorted
geometry the magnetic moment is nonzero (the spin S = 1), but there
is no dipole moment. This coexisting magnetic and dipolar bistability
(“multiferroic” effect) makes such molecules important ad possible
novel materials for electronics.

SUMMARY NOTES

1. Nuclear configurations and dynamics are central to chemical problems
such as stereochemistry, chemical reactions, and conformational tran-
sitions. Nuclear motions are controlled by electronic distributions via
vibronic coupling.

2. Orbital vibronic coupling (OVC) creates a bridge between static MO
description of the electronic structure and nuclear displacements providing
for the contribution of each MO to the latter. OVC is especially important
in evaluation of changes in nuclear configuration and dynamics produced
by changes in electronic structure.

3. The overwhelmingly widespread adiabatic approximation , which essen-
tially simplifies the description of electronic and nuclear motions by sep-
arating their variables (assuming that the heavy nuclei may be considered
fixed when the electronic motion is calculated, and the nuclei move in the
averaged field of the electrons), is not always valid for transition metal
coordination systems.

4. Special effects triggered by instabilities and distortions of high-symmetry
configurations (Jahn–Teller effects) may occur when there are two or more
degenerate or close-in-energy electronic states. They are present in the
overwhelming majority of transition metal coordination systems.

5. The pseudo-JTE for systems in nondegenerate states is of special interest
as it is relevant to any polyatomic system. The JTE (including proper JTE,
pseudo-JTE, and the Renner–Teller effect) is the only source of instability
and distortions (symmetry breaking) of high-symmetry configurations of
molecular systems and solids.

6. It is proved that at least two electronic states must be involved in any
changes of molecular configurations, including chemical and physical
transformations (e.g., formation of molecular shapes and crystal lattices,
conformational changes and phase transitions, chemical activation and
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mechanisms of chemical reactions, etc.). This leads to the paradigm of
two electronic states in transformations (TEST).

EXERCISES AND PROBLEMS

7.1. Transition metal coordination systems often possess degenerate and/or
close-in-energy electronic states that do not satisfy the criterion (7.10)
of the adiabatic approximation. What experimentally observable effects of
such nonadiabacity are expected in these cases?

7.2. In Figs. 7.1–7.3 (and Table 7.1) the shape of possible symmetrized nuclear
displacements are shown for several kinds of systems. Are they real atomic
displacements during molecular vibrations? For degenerate vibrations two
or more equivalent displacement shapes are shown. Which of them is real?

7.3. Define linear and quadratic vibronic coupling constants, diagonal and off-
diagonal, and explain their physical meaning. Also define force constants
and relate them to vibronic coupling constants.

7.4. Diagonal linear orbital vibronic coupling constants (DLOVCCs) have the
physical meaning of the force with which an electron on a given MO acts
on the nuclei in the direction of symmetrized displacements. Consider
examples for which we can predict the changes in nuclear configuration
and dynamics based on known DLOVCC (some examples are given in
Chapters 10 and 11).

7.5. The Jahn–Teller effect is a quantum phenomenon that occurs as a result
of the nontotally symmetric charge distribution on any of the two or more
degenerate states. Since the latter complement each other to form a totally
symmetric distribution, why is the one-state distribution (that produces
distortion) preferred over the all-state average one without distortion?

7.6. Figure 7.13 shows changes in the shape of an octahedral complex during
motion of the system along the bottom of the trough of the Mexican-
hat-like APES inherent to twofold electronic degenerate states. Can these
changes be observed experimentally, directly, or indirectly? How?

7.7. It can be easily verified that in the JT E⊗e problem the wavefunctions
(7.46) of the electronic states as a function nuclear coordinates are not
single-valued, they change sign under the transformation φ → φ + 2π ,
forming a full circle along the bottom of the through that brings the system
back to its initial configuration. On the other hand, quantum mechan-
ics requires that wavefunctions be single-valued. How is this controversy
solved in the JTE theory?

7.8. The statement that the JTE (including proper JTE, pseudo-JTE, and the
Renner–Teller effect) is the only source of structural instability and distor-
tion of polyatomic systems refers to “high-symmetry configurations.” What
does this mean? For example, if a system of two atomic ionic groups, both
charged positive (or both negative), is unstable and undergoes distortion,
is it a consequence of the JTE? Explain your answer and give examples.
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8
ELECTRONIC STRUCTURE
INVESTIGATED BY PHYSICAL
METHODS

Physical methods of investigation provide very powerful sources of information
about the electronic structure of transition metal compounds, and the problem is to
ascertain direct correlations between the observables and electronic parameters .

The variety of physical methods aimed at experimental study of the electronic
structure of coordination compounds can be divided into two groups: resonance
methods , including all-range spectroscopy from radio- through γ -ray frequen-
cies; and nonresonance methods , which consist of diffraction (X-ray, electron,
and neutron diffraction) and polarization (measurements of magnetic and electric
susceptibilities) methods. An important distinction between these two types of
methods is that the observables in the resonance methods carry information about
at least two states of the system, initial and final, between which a transition takes
place (induced by the resonance interaction), whereas the nonresonance method
describes, in principle, one electronic state, although the field response in this
case may also include other states admixed by the external perturbation to the
one being considered.

This chapter is not devoted to the systematic presentation of all these methods
and their technical realization; for a detailed study, the reader is referred to
corresponding monographs and textbooks [8.1–8.10]. Instead, we present here
an introduction to the theory of electronic origin of observables in the physical
methods of investigation with emphasis on features related to other properties
of transition metal compounds considered in this book. Attention is paid to
electronic visible, ultraviolet, Raman, and photoelectron spectra; infrared, ESR,
EXAFS, and γ -resonance spectroscopy; magnetic and electric susceptibilities;
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and related methods, as well as diffraction methods in electron deformation and
spin densities.

8.1. BAND SHAPES OF ELECTRONIC SPECTRA

Qualitative Interpretation of Vibrational Broadening

Electronic spectra result from electronic transitions between two states of
the system and carry information about these states. One important special
feature relevant to coordination compounds (as well as to many other molecular
systems) is the strong dependence of electronic energies on interatomic
distances. For this reason the stationary states of the system are not purely
electronic but electron-vibrational. For free molecular systems in the gas phase,
rotational states are also important.

Figure 8.1 is a schematic representation of the electronic energies of two
nondegenerate states as functions of symmetrized coordinates: cross sections of
APES (Section 7.1). This simple presentation by APES enables us to obtain many
important qualitative features related to the electronic structure. First, consider
the Franck–Condon principle due to which the nuclear configuration does not
(is not in time to) change during the electron transition, and hence the latter
takes place at the unchanged nuclear configuration of the initial state. Indeed,
the electronic transitions are much faster than the vibrational motion; the time of
transition τ is approximately inversely proportional to the light frequency �, and
for visible light τ ∼ �−1 = 10−15 s, while for vibrations ω−1 = 10−10 –10−12 s.

In terms of the Franck–Condon principle, the transitions between the elec-
tronic states in Fig. 8.1 are described by vertical arrows starting from the vibra-
tional state in the minimum of the APES of the initial electronic state. It is seen
that for most cases when the minima points of the two electronic states do not
coincide, the transition is not purely electronic; it also changes the vibrational
states. The transition frequency � (the energy of the absorbed or emitted quan-
tum ��) also depends on the initial vibrational state. It changes approximately
from �1 to �2 depending on the number of vibrational quanta of the ground and
excited states involved in the transition. The probability of such transitions that
include vibrational components is proportional to the Franck–Condon factor , the
overlap of the vibrational wavefunctions of the initial and final states.

With the thermal population of different vibrational states and the proper width
of each transition, the molecular spectra appear as rather wide bell-shaped bands
(vibrational broadening), distinct from the narrow lines of atomic spectra. The
half-width (the width at the half intensity) of the bands is about �1 − �2. In
Fig. 8.1 one can see that the width of the band is directly related to the difference
in the minima positions Q0

1 and Q0
2 on the two APES, that is, to the shift of

equilibrium position by excitation �Q = Q0
1 − Q0

2. The larger �Q, the wider
the transition band.

On the other hand, the difference in the equilibrium interatomic distances
in different electronic states that determines �Q is strongly dependent on the
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FIGURE 8.1. AP curves (APES cross-sections), vibrational states, and “vertical” tran-
sition between two electronic states. �0,�1, and �2 are the pure electronic, absorption,
and emission frequencies, respectively.

differences in their electronic configurations. In coordination compounds the ionic
radii that determine approximately the interatomic distances depend strongly on
the occupation numbers n and m of different d orbitals of the electronic configu-
ration (t2)

n(e)m (Sections 4.3 and 6.2). Therefore, the changes in these occupation
numbers, �n and �m, may be used for qualitative estimates of the changes of
the equilibrium interatomic distances by the transition from one electronic state
to another. Two groups of electronic transitions can be distinguished:

1. Transition for which �n �= 0 and �m �= 0 with significant changes in the
electronic configuration resulting in broad bands of light absorption and
luminescence. These bands remain broad down to low temperatures. The
calculations (see below) give an estimate of the bandwidth to be from one
thousand to several thousand wave numbers (cm−1).

2. Transitions with �n = 0, �m = 0 for which the electronic configuration
remains unchanged (as in spin-forbidden transitions) resulting in narrow
lines with a width of the order of 100 cm−1.
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Note that in systems with f -electron configurations the dependence of inter-
atomic equilibrium distances on the number of different f electrons is very weak
because their participation in the bonding is low. Therefore, the transitions that
involve changes of only f -electron occupation numbers yield mostly narrow
lines.

A semiquantitative (but still not very rigorous) description of the vibrational
broadening under consideration can be obtained if one knows the energy diagrams
E = f (�) of the energy levels as a function of the crystal field parameter �

(see Tanabe–Sugano diagrams in Section 4.3). As mentioned above and shown
in Fig. 8.1, the transition frequency �� = E2 − E1 depends on the minima shift
�Q; the larger �Q, the greater the dependence of � on Q, and the larger the
derivative d(��)/dQ = (dE2/dQ) − (dE1/dQ). This magnitude can serve as
a rough measure of the bandwidth. On the other hand, the derivative dE/d�

characterizes the relative sensitivity of the energy level E to the ligand influence,
which in turn depends on the (symmetrized) metal–ligand distance Q. Although
the changes in � may not be in direct proportion to changes in Q, for the sake of
simplicity one can assume that in the first (linear) approximation d(��)/dQ ∼
d(��)/d�, and hence

d(��)

dQ
∼ d(��)

d�
= dE2

d�
− dE1

d�
(8.1)

Provided that this relation holds, the division of the electronic transition bands
described above into two groups can be obtained directly using the results of
crystal field theory for the functions E = f (�). Approximately (without account-
ing for electron interactions explicitly), for the (t2)

m(e)n configuration, we have
(Sections 4.3 and 4.5)

E1 = const − m1
2
5� + n1

3
5�

E2 = const − m2
2
5� + n2

3
5�

and

d(��)

d�
= 2

5 (m1 − m2) + 3
5 (n2 − n1) (8.2)

If the electronic configuration is not changed by the transition, then m1 =
m2, n1 = n2, and the derivative that determines the vibrational broadening is
zero—the bands are expected to be narrow. For transitions that change the
electronic configuration the derivative dE/d� is nonzero. For example, for
the most frequently studied t2 → e transition (d ↔ d) : �m = m1 − m2 = 1,
�n = n1 − n2 = −1, d(��)/d� = 1, and the band is broad.

This qualitative reasoning, which explains the origin of two groups of elec-
tronic bands, relatively broad and narrow, can be regarded as the first stage in
the interpretation of the origin of electronic spectra in coordination complexes.
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Although it is only a rough approximation, it contains possibilities for revealing
some important features. Example 8.1 illustrates this statement.

EXAMPLE 8.1

Broad and Narrow Bands in Light Absorption and Emission by
Transition Metal Complexes

Consider some examples of the theoretical predictions above. Com-
plexes [TiA6]3+ with one d electron are expected to manifest one d –d

transition 2T2g → 2Eg accompanied by a change in electronic configura-
tion (t2g)

1 → (eg)
1 with �m = 1, �n = −1 that yields a broad band of

absorption in accordance with experimental data [8.11a]. The transitions
1A1g → 1T1g and 1A1g → 1T2g , as well as the spin-forbidden transi-
tions 1A1g → 3T1g and 1A1g → 3T2g in low-spin octahedral complexes
with electron configuration d6 [e.g., [Co(NH3)6]3+], are associated
with a change in electronic configuration (t2g)

6 → (t2g)
5(eg)

1.
Hence the absorption bands should be and they are broad [8.11b].
On the contrary, spin-forbidden transitions with spin-only changes
(t2g ↓)3 → (t2g ↓)2(t2g ↑), for which �S = 1 but �n = �m = 0 [e.g.,
the transition 4A2g → 2Eg in [Cr(H2O)6]3+] yield narrow lines of
absorption. A more detailed differentiation of bandwidths is given by
the theory below.

Theory of Absorption Band Shapes

This subject has been presented and discussed in a variety of publications (see
Refs. 8.1–8.4, 8.13–8.15, and references cited therein). The energy E of the main
interaction of matter with electromagnetic radiation that results in spectroscopic
dipolar transitions is given by the expression

E = −(M, E ) (8.3)

where M is the dipole moment of the system and E is the intensity of the electric
field of the electromagnetic wave; the expressions for quadrupole interactions
and interaction between the magnetic dipole moment and the magnetic field, as
well as interaction between polarization of the system with the field E in light
scattering, are similar (see below). As proved in quantum theory, the probability
of transition between two states of the system described by the wavefunctions
ψ1 and ψ2 under the influence of perturbation (8.3) is proportional to the square
of the matrix element M12 (the moment of transition)

M12 =
∫

ψ1
∗Mψ2 dτ (8.4)
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where M is the operator of electric dipole moment above, but depending on
the type of perturbation, it can also be the magnetic, polarization dipole, or
quadrupole (multipole) moment of the system. The moment (8.4) contains the
main information about the system that can be extracted from the spectra. For
electric dipole transitions M = ∑

i qiri , where qi and ri are the charges and
radius vectors of the particles, respectively.

The integral (8.4) depends on the wavefunctions ψ1 and ψ2 that also include
vibrational and rotational states involved in the transition. This can be char-
acterized by the dependence of M12(�) on the transition frequency �. Pro-
vided that M12(�) is known, one can easily evaluate the coefficient of light
absorption K12(�). Experimentally it can be obtained from the relation I =
I0 exp[−K12(�)l], where I0 and I are the intensities of the incident and trans-
mitted light, respectively, and l is the thickness of the absorbing layer of the
substance. Then [8.1, 8.13, 8.14]

K12(�) = 4π2N�

3�c
|M12(�)|2 (8.5)

where N is the number of absorbing centers in a unit volume and c is the speed
of light.

If there are close vibrational energy levels with an almost continuous function
M12(�) as in coordination systems in solid states or liquids, it is convenient to
introduce the spectral density of absorption k(�), such as the integral coefficient
of absorption is given by K = ∫

k(�)d�, where the integration is performed over
the width of the spectral line or band. To calculate K we have to summarize the
transition probabilities to all vibrational states ν′ of the final (excited) term and
average them over the different vibrational states ν of the initial (ground) term
using the Boltzmann occupation probability ρ1ν of the latter (which is a function
of temperature). This leads to the following equation [8.14, 8.15], introduced here
without the details of mathematical transformations [definition of the δ function
is similar to that of the δ index (2.46): δ(x) = 1 if x = 0 and δ(x) = 0 if x �= 0;
in the expression below it provides for the condition of resonance transitions]:

K =
∑

ν,ν′
ρ1νKν,ν′(�ν,ν′) =

∑

ν,ν′
ρ1ν

∫

Kν,ν′(�)δ(� − �ν,ν′) d� (8.6)

Then, for the spectral density k(�), we get

k(�) = 8π2�N

3�cn
F (�) (8.7)

where

F(�) =
∑

ν,ν′
ρ1ν |〈1ν| �M(�ν,ν′)|2ν′〉|2δ(� − �ν,ν′) (8.8)
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is the so-called form function of the band [8.13–8.15]. The function �F12(�)

determines the dependence of the light absorption coefficient (8.7) on the fre-
quency � and hence the shape of the absorption curve.

In the semiclassical approximation (at sufficiently high temperatures) when the
APES has the physical meaning of the potential energy of the nuclei and hence
the latter can be assumed to move along the APES, F12(�) can be calculated
analytically. Indeed, in this approximation the vibrational functions in the matrix
elements in Eq. (8.8) can be substituted by the APES functions of the symmetrized
coordinates and the summation by integration over the latter. For instance, taking
the two APES of Fig. 8.1 as parabolas (i.e., ignoring anharmonicity), we have

ε1(Q) = 1
2KQ2

ε2(Q) = ��0 + 1
2K ′(Q − Q0)

2
(8.9)

where �0 is the frequency of the pure electronic transition, and neglecting the
Dushinski effect [8.16], that is, taking the force constant K [not to be confused
with the absorption coefficient K12(�)] the same in the two states, K = K ′, we
obtain the following expression for the form function of the absorption band:

F12(�) = |M12|2
Q0(2πKkT )1/2

exp

[
−�

2(�1 − �)2

2Q2
0KkT

]

(8.10)

where M12 = M12(�0) is the pure electronic transition dipole moment, �1 is the
frequency at the band maximum (Fig. 8.1), and k is the Boltzmann constant [not
to be confused with spectral density k(�)].

Expression (8.10) shows that in the semiclassical approximation the absorp-
tion band has a Gaussian shape (exponential dependence on the square of the
frequency deviations from the maximum value �1), and it is strongly temperature-
dependent. However, the integral intensity of the band (the area under the absorp-
tion curve) is independent of temperature; this can be shown by integrating
expression (8.10) over �.

A more exact expression for the band shape form function F12(�) can be
obtained by renouncing the semiclassical approximation and performing a full
quantum-mechanical calculation. The latter was carried out under the assumption
that only one vibrational frequency ω is active in the vibrational broadening; it
yields the following formula [8.14]:

F12(�) = |M12|2 exp

(

−a

2
coth

β

2
+ pβ

)

Ip(Z) (8.11)

Z = a

2sh(β/2)

where p = (� − �0)/ω, β = �ω/kT , Ip(Z) is a Bessel function, and a is the
parameter of heat release determined by the summary shift of the minima posi-
tions Q0

1α − Q0
2α of the ground and excited states for all the normal vibrations
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Q1α involved in the transition. In dimensionless units of oscillator coordinates

a =
∑

α

(Q0
1α − Q0

2α)2 (8.11′)

If only one coordinate is active in the broadening, as in Eq. (8.11) and Fig. 8.1,
then a = (�Q)2.

Band Shapes of Electronic Transitions between Nondegenerate States;
Zero-Phonon Lines

The expressions for the form function F12(�) obtained above enable us to analyze
the expected band shape of electronic absorption of light by transitions between
nondegenerate electronic terms. The Bessel function Ip(Z) is nonzero for integer
values p only. Hence F12(�) in (8.11) and the absorption coefficient K12(�)

in (8.5) have the form of a set of equidistant lines with a spacing equal to ω

and an envelope that [following the behavior of the exponent in (8.11)] is a
slightly asymmetric bell-shaped curve (Fig. 8.2). If one takes into account the
natural width of the individual lines γ and the influence of the crystal or liquid
environment, these lines coalesce into a continuous band that has the form of the
envelope.

Following Eq. (8.11), the position of the absorption maximum of the band
under the condition of only one type of vibrations involved in the electronic
transition is determined by the relation

�abs
max = �0 + aω

2
(8.12)

An important conclusion emerges from this formula: the band maximum, in gen-
eral, does not coincide with the frequency of the pure electronic transition �0.
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FIGURE 8.2. Electron transition band as a function of p = (� − �0)/ω calculated
by Eq. (8.11) with a = 4, kT /�ω = 1, and the broadening parameter of the individual
vibrational lines γ = 0.05 ω. The envelope of the vibrational components has a slightly
asymmetric Gaussian form.
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The temperature dependence of the band shape is also important. At suffi-
ciently high temperatures when the relations �ω < 2kT and a  sh(�ω/2kT )

hold, the absorption band acquires a symmetric Gaussian form (8.10). Hence at
these temperatures the semiclassical approximation is valid. The half-width δ�

of the band is proportional to
√

T :

δ� = 2ω

(
2akT ln 2

�ω

)1/2

(8.13)

In the opposite limit case, at sufficiently low temperatures when kT � �ω and
a � 2sh(�ω/2kT ), the band is asymmetric and the half-width is independent of
temperature:

δ� = 2ω(a ln 2)1/2 (8.14)

Equations (8.10)–(8.14) play a significant role in the interpretation of elec-
tronic spectra and allow one to reveal interesting parameters of electronic struc-
ture. For example, following (8.13) and (8.14), the band half-width δ� is propor-
tional to a1/2. Hence, when there are no large minima shifts and a is small, the
absorption bands are narrow, in accordance with the qualitative considerations
given above. For most coordination compounds the vibrational frequencies ω are
sufficiently large and obey the low-temperatures criterion at room (and lower)
temperatures; hence Eq. (8.14) is valid for these compounds. By combining (8.14)
with (8.12), we obtain

�abs
max = �0 + (δ�)2

5.5ω
(8.15)

Hence the shift in band maximum with respect to the frequency of the pure
electronic transition depends on the band half-width squared and can be rela-
tively large. For example, with δ� ∼ 3000 cm−1 and ω ∼ 600 cm−1, the shift
is ∼3000 cm−1, the same as the half-width. Note that from the exact formula
(8.11) (as is also seen from Fig. 8.1)

�abs
max = �1 (8.16)

which means that the frequency at the maximum of absorption coincides with
that of the Franck–Condon (vertical) transition from the ground-state vibrational
level. It follows that the frequencies of the band maxima of electronic absorption
are determined by the energy gaps between the electronic terms calculated for the
equilibrium configuration of the ground state. This important conclusion means
that, for interpretation of the origin of the band maxima positions in transitions
between nondegenerate states, the simple energy-level scheme obtained in crystal
field theory (Chapter 4) or in the MO LCAO approach (Chapter 5) yield, in
principle, correct results, but in general the maximum absorption frequencies is
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not equal to the energy difference between the ground and excited states, each at
their equilibrium positions .

In the case of light emission (luminescence or fluorescence) the maximum of
the band corresponds to the vertical transition from the minimum of the excited
state to the ground state, that is, to �2 (Fig. 8.1). One can easily find that

�2 = �0 − a · ω
2

�1 − �2 = a · ω (8.17)

Thus the frequency difference between the absorption and luminescence (or
fluorescence) band maximum (the Stocks shift) is due to the difference in the
equilibrium configuration of the ground and excited states (Section 8.4). If the
Stocks shift is not very large, there may be an overlap between the absorption
and fluorescence bands, resulting in resonance fluorescence.

Note that the transition from the excited electronic state to the ground state
(or to another lower-energy excited state) can also take place as a radiationless
transition without light emission. The radiationless transition is a kind of relax-
ation when the excitation energy is transformed into vibrations, and it is strongly
temperature-dependent.

An important feature of electronic spectra of polyatomic systems, especially at
low temperatures, is the zero-phonon line [8.14, 8.15]. It occurs as an additional
acute (resonance) peak at the pure electronic frequency �0 on the background of
the broad band, provided that the parameter of heat release a is not very large.
In electronic transitions the operator of the dipole moment in the matrix element
M1ν2ν′ in Eq. (8.8), which determines the transition probabilities, contains only
electronic coordinates, hence M1ν2ν′ = 〈1|M|2〉〈ν|ν′〉 and the vibrational contri-
bution will be presented by the overlap integral between the vibrational wave-
functions of the two combining vibrational states 〈ν|ν′〉 (the Franck–Condon
factor). The smaller is this overlap, the larger is a. As seen from Fig. 8.1, if a

(or Q0
1 − Q0

2) is small, the pure electronic transition with vibrational quantum
numbers 0 in both states (0 → 0, or zero-phonon transition) becomes most prob-
able. Moreover, the transitions 1 → 1, 2 → 2, and so on, which in the absence of
anharmonicity have the same frequency �0 as the 0 → 0 line, are also most prob-
able. The sum of all these transitions with the same frequency yields a narrow line
of great intensity (the zero-phonon line) on the background of the less intensive
one-, two-, . . . , phonon satellites. The latter are much broader and coalesce into
a broad phonon wing (mostly of higher frequency). This result emerges from the
general formula (8.11) for the form function of the band if one substitutes p = 0
and a → 0. The distinct feature of zero-phonon lines is that their frequencies
�0 are the same in absorption and luminescence and hence may be observed as
a line of resonance fluorescence. Figure 8.3 illustrates this observation together
with the demonstration of an example spectrum with a zero-phonon line [8.14].

The zero-phonon line carries interesting information about the electronic struc-
ture of the system. In particular, it gives the exact value of the energy difference
between two electronic terms at their equilibrium nuclear configurations. The
zero-phonon line of transitions between nuclear states lies in the base of the
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FIGURE 8.3. (A) absorption (a) and emission (b) band shapes in the presence of a zero-
phonon line (ZPL) (PW is the phonon wing); (B) example of experimentally observed
absorption spectrum with a ZPL for color centers in NaF (see descriptions in Refs. 8.13
and 8.14).

Mossbauer effect (Section 8.5). The role of orbital degeneracies in optical band
shapes is discussed in Section 8.2.

Types of Electronic Transitions on Intensity

In expressions for the form function of the band shapes of electronic transition
and hence in the absorption coefficient, the square of the pure electronic matrix
element |M12(�0)|2 determines the band absolute intensities. They vary by sev-
eral orders of magnitude, dividing the observable spectra into different types
differentiated according to intensity.

First, the selection rules for the transition moment M12 after (8.4) must be
taken into account. Since M is a vector or a tensor, the selection rules can be
obtained directly using group-theoretical procedures, as shown in Section 3.4.
The matrix element M12 is nonzero if and only if the product of the IrReps
(Appendix 1) of the wavefunctions ψ1 and ψ2 and the operator M contains the
unity (totally symmetric) representation.

The transitions for which the integral (8.4) is zero, called forbidden transitions ,
can be evaluated in a general way. For electric-dipole transitions in systems with
an inversion center the integral (8.4) is zero when states 1 and 2 have the same
parity because M changes its sign by inversion. Hence electric-dipole transitions
are forbidden as g ← / → g and u ← / → u (parity forbidden transitions), and
may be allowed as g ↔ u (g and u, as above, denote even and odd parity,
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respectively). Another general case is provided by the spin-forbidden transitions ,
sometimes called intersystem combinations , when the two states have different
spin multiplicities. If the spin–orbital mixing of these states with other states is
not accounted for (see below), the integral (8.4) is zero, due to the orthogonality
of the spin functions (M is independent of spin).

For a given transition the three components of M12

Mx
12 =

∫

ψ1
∗Mxψ2 dτ M

y

12 =
∫

ψ1
∗Myψ2 dτ Mz

12 =
∫

ψ1
∗Mzψ2 dτ

may be subject to different selection rules. Therefore, if the coordination system
is in an anisotropic crystal state where all the absorbing centers have the same
orientation with respect to the electric (or magnetic) vector of the electromagnetic
wave of light, the absorption (emission, reflection) of polarized light may vary
with the direction or orientation of the crystal (dichroism or polychroism). Related
phenomena of circular dichroism and magnetic circular dichroism are discussed in
Section 8.4. Methods of group-theoretical evaluation of selection rules are given
in Section 3.4 and Problems 3.3 and 8.2. Example 8.2 shows how to determine
the selection rules of polarized absorption using PtCl42− as a specific case.

EXAMPLE 8.2

Selection Rules for Polarized Light Absorption by the PtCl42− Complex

PtCl42− is a square-planar complex with D4h symmetry. Its ground
state is 1A1g , and the most intensive bands are associated with the one-
electron ligand → metal charge transfer transitions (see below in this
section) b2u → b1g , eu → b1g , and a2u → b1g from the MOs b2u, eu,
and a2u (formed mainly by the four pz AOs of the chlorine atoms) to
the MO b1g (which is mainly the Pt AO dx2−y2) resulting in the excited
1A2u, 1Eu, and 1B2u states, respectively (b2u × b1g = A2u, eu × b1g =
Eu, a2u × b1g = B2u). In the D4h point group Mz transforms as a z

component of a vector and belongs to A2u, while Mx and My belong
to Eu (Appendix 1, Table A1.8), so we have the following for the
transition 1A1g → 1A2u:

A1g × A2u × A2u = A1g for z component

A1g × Eu × A2u = Eg for x and y components

Similarly, for the transition 1A1g → 1Eu: A1g × A2u × Eu =
Eg,A1g × Eu × Eu = A1g + B1g + Eg , and for 1A1g → 1B2u:
A1g × A2u × B2u = B1g, A1g × Eu × B2u = Eg . From all these transi-
tions, the only ones allowed are those for which the abovementioned
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products of IrReps contain the totally symmetric one A1g . It follows
that the transition 1A1g → 1A2u is possible only for light polarized in
the z direction, whereas in the x and y directions it is forbidden. On
the contrary, the transition 1A1g → 1Eu is allowed when the light is
polarized in the x or y direction (in any direction in the xy plane)
but is forbidden in the z direction. The transition 1A1g → 1B2u is
forbidden in any direction (in this approximation). Another example of
polarized spectra is considered in Problem P8.2.

While the selection rules for the matrix elements (8.4) obtained by group-
theoretical considerations are exact, the matrix element itself (i.e., the wavefunc-
tions of the initial and final states and the operator of interaction of the system
with light) are defined approximately within a certain model. Therefore, when the
matrix element M12 = 0 by symmetry considerations, this does not mean that the
corresponding transition is absolutely forbidden; it is forbidden within the approx-
imation employed , and hence it can become allowed in the next approximation.

For instance, forbidden electric-dipole transitions can become allowed as
magnetic-dipole transitions, and if the latter are also forbidden, they can
become possible as quadruple transitions. Transitions that are forbidden by
parity restrictions become allowed by interaction with odd vibrations, while
spin-forbidden transitions are allowed as intersystem combinations when the
spin–orbital interaction removes the prohibition, and so on. Depending on
the approximation in which the electronic transition becomes allowed, the
corresponding intensities of the band have quite different orders of magnitude.
Each approximation that enables the otherwise forbidden transition can be
related to a specific interaction with an order of magnitude determined by the
interaction constant. This enables us to estimate the order of magnitude of the
intensity of the corresponding transitions.

To characterize the intensities quantitatively, the oscillator strength f 12 can be
employed. The definition of f (not to be confused with f electrons) is expressed
as follows:

f12 = mc

Nπ2e2

∫

k(�)d� (8.18)

It reflects the strength of the transition as compared with that of an electron
oscillating harmonically in three dimensions. For absorptions in solutions the
following presentation may be more convenient:

f12 = 4.32 · 10−9 L−1 · mol cm2) ∗γ12(
∑

) d
∑

(8.19)

where γ12(
∑

) is the extinction coefficient or molar absorption coefficient (defined
in L · mol−1cm−1), determined from the relation I = I010−εC0l with C0 as the
molar concentration (cf. I = I0e

−kl used above); NA is the Avogadro number.
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Note that f is a dimensionless number and cannot be larger than one: the sum
of the oscillator strengths for all one-electron transitions from a given state equals
one. For the different types of transitions mentioned above, the f value varies
from 1 to 10−10 and less. Most intensive are the transitions allowed through the
electric-dipole mechanism, that is, between states with opposite parity (g ↔ u in
the case of systems with an inversion center) but with the same spin multiplicity.
The oscillator strength of electric-dipole bands f ∼ 1 to 10−2. In transition metal
coordination compounds such transitions are known mostly as charge transfer
bands (see next section).

Parity-forbidden transitions (transitions forbidden by the parity rule g ← / →
g and u ← / → u) become allowed through the interaction between the elec-
tronic states and odd vibrations, which mix odd electronic states with even ones
(Section 8.2). For these transitions f ∼ 10−4 –10−5. They can also be allowed as
magnetic-dipole transitions with f ∼ 10−6. Parity-forbidden transitions consti-
tute the majority of observable electronic transitions in coordination compounds
in the visible and related regions of light; the most frequently studied are the
d –d transitions, considered in the next section.

The next type of “forbidden” transitions is formed by the abovementioned
spin-forbidden, or intersystem combination, transition. These are transitions
between electronic states with different spin multiplicities, for which the integral
(8.4) is zero because of the orthogonality of the spin functions of the two states.
Spin-forbidden transitions become allowed when the spin–orbital interaction,
which mixes the states with different spin multiplicities, is factored in. Pertur-
bation theory estimates show that the mixing terms are of the order of (λ/�)2,
where λ is the spin–orbital coupling constant (Section 2.1) and � is the energy
gap between the mixing states. These terms are of the order of 10−3 –10−5,
and hence this is the order of the oscillator strength f expected for such
spectra.

If the transition is forbidden by both the parity rule and the spin difference, then
f ∼ 10−6 –10−7 when the transition is enabled by the interaction with odd vibra-
tions, and f ∼ 10−9 and f ∼ 10−10 for magnetic-dipole and electric quadrupole
transitions, respectively.

Table 8.1 lists the most important types of electronic transitions in coor-
dination compounds, with indication of their oscillator strengths (by order of
magnitude) and coefficients of molar extinction at the maximum band inten-
sity ε(�max) [Eq. (8.19)]; the ε values are determined from the relation f =
4.32 × 10−9ε(�max) δ�, which is approximately true for symmetric Gaussian
bands.

8.2. d –d , CHARGE TRANSFER, INFRARED, AND RAMAN SPECTRA

With respect to their origins related to electronic structure, the following main
types of absorption and emission spectra of coordination systems in the visible
and adjacent spectral regions can be distinguished: metal d–d , metal–ligand, and
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TABLE 8.1. Orders of Magnitudes of Oscillator Strengths f and Extinction
Coefficients in the Maximum of the Band ε(�max) for Different Types of
Electronic Transitions

Type of Electronic Transition f ε(�max)

Electric-dipole 1–10−2 105 –103

Parity-forbidden, allowed by odd vibrations 10−4 –10−5 103 –101

Magnetic-dipole 10−6 1
Electric-quadrupole 10−7 10–1
Spin-forbidden (intersystem combination) 10−3 –10−5 100–10

plus parity-forbidden:
Allowed by vibrations 10−6 –10−7 1–10−1

Magnetic-dipole 10−9 10−3

Electric-quadrupole 10−10 10−4

intraligand charge transfer, as well as vibrational infrared and Raman. Intrali-
gand transitions are less interesting in terms of the electronic structure of the
coordination center, but may be important in the study of chemical activation by
coordination (Chapter 10).

Origin and Special Features of d –d Transitions

In accordance with the role of d and f electrons of the CA in the formation
of coordination bonding (Section 6.1), optical transitions that involve these
electrons are most important for the study of the electronic structure of transition
metal compounds. Of particular interest are the transitions between the states
originating from dn configuration, often called d–d transitions . These transitions
fall into the visible and related regions of the optical spectrum, thus determining
the color of the compound. The d –d spectra were studied intensively beginning
with the 1920s and, together with the magnetic properties (Section 8.4),
served as an experimental basis for the creation of crystal field theory
(Chapter 4).

Consider the energy levels of dn configurations obtained in CFT (Sections 4.2
and 4.3; in the MO LCAO approach the qualitative description is similar; see
Section 6.2). A general picture of dn energy-level splitting in the cubic field of lig-
ands as a function of the ligand field parameter � is given by the Tanabe–Sugano
diagrams (Fig. 4.11). These diagrams provide the most important parameter of
the spectrum—the positions of the band maxima. To determine the latter, drive
a vertical line on the diagram through the point � = �0 relevant to the complex
under consideration. Following the conclusions of Section 8.1, the expected band
maxima positions �i are given by the ordinates of the points of intersection of
this vertical line with the curves Ei(�) : �i = Ei (�0). The �0 value can be
found from the experimentally observed position of the maximum of one of the
bands. Example 8.3 illustrates this statement.
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EXAMPLE 8.3

d–d Transitions in the Absorption Spectrum of Mn(H 2 O)6
2+

Consider the diagram of the d5 energy-level splitting for the Mn2+
ion in a cubic weak field, calculated by Orgel [8.17] (Fig. 8.4), and
compare it with the experimental absorption spectrum of this hydrated
ion (Fig. 8.5) [8.18].

FIGURE 8.4. Energy-level diagram of the Mn2+(d5) ion in a cubic crystal
field as a function of the parameter � = 10Dq . (After Orgel [8.17].)

FIGURE 8.5. The absorption spectrum of the aqua complex Mn(H2O)6
2+ in

cm−1 (lower figures) and μm (upper figures).
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From Fig. 8.4, taking the vertical line at �0 ≈ 9000–10000 cm−1,
we get the maxima positions of all bands of the spectrum, which can thus
be interpreted as corresponding to the electronic transitions from the
ground state 6A1g to the excited states 4T1g , 4T2g , 4Eg,

4 A1g , 4T2g , 4Eg ,
and so on, as indicated in Fig. 8.5; there is relatively good quantitative
agreement between the theoretical predictions and experimental values
of the maxima frequencies.

The relative bandwidths of this spectrum can also be explained
using the theoretical conclusions obtained in the previous section.
Indeed, the ground state 6A1g originates from the half-filled d shell
with the configuration (t2g)

3(eg)
2 in the octahedral field. Therefore

the transitions 6A1g → 4T1g[(t2g)
4(eg)

1] and 6A1g → 4T2g[(t2g)
4(eg)

1]
with �m = 1,�n = −1, following (8.3), are expected to yield broad
bands in accordance with the experimental data.

On the contrary, the next excited terms, 4Eg , 4A1g , 4T2g , and
4Eg , originate from the same electronic configuration (t2g)

3(eg)
2 as

the ground state, and hence the transitions to them are expected to
produce more narrow lines. This is indeed the case (Fig. 8.5), but the
bandwidths of these transitions differ significantly from each other,
indicating that a more refined analysis is required. It can be performed
using the derivatives d�/d� introduced in Section 8.1, Eq. (8.1), as
an approximate relative measure of the width. Since the ground state is
taken as an energy readoff, dE1/dQ = 0 and d�/d� = dE2/d�. The
latter can be estimated directly from the slope of the curves Ei = f (�)

at � = �0. For the octahedral aqua complex of Mn2+ the relative
values of dE2/d� for the sequence of excited states can be estimated
roughly from Fig. 8.4, as follows: 1; 0.8; 0; 0; 0.2; < 0.1; 0.9, for the
terms 4T1g , 4T2g , 4Eg, 4A1g , 4T2g , 4Eg , and 4T1g , respectively. As one
can see from Fig. 8.5, the observed bandwidths follow approximately
(although not exactly proportionally) the sequence of predicted values.

An important feature of electric-dipole d –d transitions is that they are parity-
forbidden; that is, they originate from the transitions between two states that
have the same parity (Section 8.1). In atoms d –d transitions are strongly for-
bidden, but in molecular systems there are several additional interactions that
remove this prohibition. Since the parity rule is operative when the system has
an inversion center, low-symmetry ligand fields that remove the inversion sym-
metry make the d –d transition allowed. If there are no low-symmetry fields,
the vibronic coupling of the electronic states to odd vibrations that produce the
required off-center distortions may induce the d –d transitions (vibration-induced
transitions). This vibronic mechanism is most operative except at very low tem-
peratures.
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In Section 3.4 it is shown how the inclusion of odd vibrations allow for
otherwise forbidden g ↔ g and u ↔ u transitions. Quantitative estimates of
the intensity, band shapes, and temperature dependence of the spectrum can
be obtained by taking into account the vibronic coupling to the odd vibrations
explicitly (Section 7.2). Consider a parity-forbidden transition between two even
states �

g

1 and �
g

2 (the same result is valid for two odd states) in a system with
inversion symmetry for which the matrix element M12 in (8.4) is zero. Factoring
in the vibronic coupling terms (7.3) with odd vibrations Qu, the wavefunction
�g receives an admixture of an odd function �u of the excited state:

�1(r, Qu) = �
g

1 + F (gu)

�ug

Qu�
u (8.20)

where, for simplicity, only one (odd) linear term of the vibronic interaction (7.3)
is accounted for, and only one excited state �u is included; F (g,u) is the constant
of vibronic coupling between the two states (7.22) (not to be confused with the
form function F12), and �ug is the energy gap between them.

The additional term in (8.20) that contains the odd wavefunction gives a
nonzero contribution of the order (F/�)Q (hereafter the labels g and u are
omitted) to the integral (8.4), placing the corresponding form function F12(�) on
the order of (F/�)2, and modifying the band shape and its temperature depen-
dence. Calculations similar to those resulting in Eq. (8.11) yield an appropriate
expression for the form function F12(�) in this case:

F12(�) =
(

F

�

)2

|M12|2 exp

(
a coth β − a′ coth β ′

2

)

× [(n + 1) exp(−p1β)Ip1(z) + n exp(−p2β)Ip2(z)] (8.21)

where, in addition to the notation in (8.11) a′ = (F/�ω′)2 (in dimensionless
units), p1 = (� − �1 + ω′)/ω, p2 = (� − �1 − ω′)/ω, β ′ = �ω′/2kT , n =
[exp(�ω′/kT ) − 1]−1 is the Boltzmann occupation number of the odd vibrations,
ω′ is their frequency, and �1, the frequency of the band maximum, is

�1 = �0 − F 2

2

(2n + 1)� − �ω′

�2 − (�ω′)2
(8.22)

It follows from (8.21) that the odd vibrations that make the bands allowed
influence significantly their maximum positions and intensities, as well as the
temperature dependence of the absorption. In particular, if ω′ is not very large,
one can assume that for many points of the band, p1 ≈ p2, which yields in
(8.21) the factor n + 1

2 (this factor also remains after integration over �). This
means that the integral intensity of the band increases with increase in occu-
pation of the odd vibrations n, that is, with temperature. This is an important
conclusion that enables us to discriminate electronic d –d transitions that are
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allowed by vibrations from other possible mechanisms; the increase in oscillator
strength with temperature is inherent to only these vibrationally induced transi-
tions . Example 8.4 demonstrates this effect in experimentally observed spectra
of specific systems.

EXAMPLE 8.4

Temperature-Dependent Absorption Spectra of K2 NaCrF6 and
Emerald [8.19]

Figure 8.6 shows the d –d absorption spectrum of the Cr3+ ion at two tem-
peratures, 77 and 300 K, in a centrosymmetric environment in K2NaCrF6,
and in a noncentrosymmetric environment in emerald [beryl mineral
Be3Al2(SiO3)6 with Cr impurities] [8.19]. It is seen that in the first case
when the transitions are allowed as assisted by the vibrations, the inten-
sity increases with temperature significantly, while in emerald, where the
transitions are allowed mainly because of the noncentrosymmetric ligand
field contributions, the intensity of the spectrum is almost independent
of temperature, even somewhat lower at higher temperature.

FIGURE 8.6. Temperature dependence of intensities in absorption spectra of
two systems: (a) K2NaCrF6, with chromium position centrosymmetric (the
intensity increases with temperature); and (b) emerald, Cr : Be3Al2(SiO3), with
chromium position noncentrosymmetric (the intensity decreases with tempera-
ture). (From Wood et al. [8.19].)
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FIGURE 8.6. (Continued )

For non-center-symmetric (e.g., tetrahedral) ligand fields, mixing of the even
and odd atomic states of the central atom takes place without involvement of
vibrations. Here the static ligand field makes a much stronger contribution to
the d –d transition intensity than do odd vibrations, but in this case the intensity
does not increase with temperature. As mentioned above, d –d transitions are
also allowed through the magnetic-dipole and electric-quadrupole mechanisms
(with f ∼ 10−6 and f ∼ 10−7, respectively) which are practically independent of
temperature. These mechanisms may be effective in rare cases when the coupling
between the electronic states and odd vibrations is very weak.

Spectrochemical and Nephelauxetic Series

As far as d –d transitions are concerned, two main parameters determine the
optical band positions in cubic complexes: �, the main parameter of ligand field
splitting, and B, the Racah parameter of interelectron repulsion in d states. This
can be seen directly from the Tanabe–Sugano diagrams (Fig. 4.11) in which the
calculated energy levels of dn configurations are given as a function of �/B.
Indeed, if � and B are known, all the band frequencies can be estimated from
these diagrams, and the Mn2+ complex considered in Example 8.3 shows that
this description of the spectrum is satisfactory for such systems. Let us consider
some general rules in the dependence of these two parameters on the nature of
the CA and ligands.

The dependence of � on the properties of the central atom is briefly discussed
in Section 4.5. First, � strongly increases with the charge (oxidation state) of
the CA, that is, it increases in the series M(II) < M(III) < M(IV). For the same
oxidation state � increases with the principal quantum number of the d electrons:
3d < 4d < 5d . For 3d elements � is of the order of ∼10,000 cm−1 for M2+,
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TABLE 8.2. Numerical Values of the Crystal Field Parameter � (in 102 cm−1) for
dn Transition Metal Complexes with Different Ligands

Liganda

dn Ion 6Br− 6Cl− 3Ox2− 6H2O Enta4− 6NH3 3En 6CN−

3d1 Ti3+ — — — 203 184 — — —
3d2 V3+ — — 165 177 — — — —
3d3 V2+ — — — 126 — — — —

Cr3+ — 136 174 174 184 216 219 263
4d3 Mo3+ — 192 — — — — — —
3d4 Cr2+ — — — 139 — — — —

Mn3+ — — 201 210 — — — —
3d5 Mn2+ — — — 78 68 — 91 —

Fe3+ — — — 137 — — — —
3d6 Fe2+ — — — 104 97 — — 330

Co3+ — — 180 186 204 230 233 340
4d6 Rh3+ 189 203 263 270 — 339 344 —
5d6 Ir2+ 231 249 — — — — 412 —

Pt4+ 240 290 — — — — — —
3d7 Co2+ — — — 93 102 101 110 —
3d8 Ni2+ 70 73 — 85 101 108 116 —
3d9 Cu2+ — — — 126 136 151 164 —
aOx, oxalate; Enta = ethylenetetramine, En = ethylenediamine.
Source: Jorgensen [8.20].

and ∼20,000 cm−1 for M3+. Passing to 4d and 5d electrons, � increases and
reaches ∼40,000 cm−1. The dependence of � on the ligands is weaker but much
more diversified.

Table 8.2 shows some examples of � values for different ions and ligands
(data collected from Ref. 8.20). An interesting general feature emerging from
these data is that � increases when passing from one ligand to another from left
to right for all the CAs. This allows one to formulate the spectrochemical rule,
or the spectrochemical series , that characterizes the increase of ligand influence
by the increase of �:

Br− < Cl− < 1
2 Ox−2 < H2O < NH3 < 1

2 En < CN− (8.23)

A more complete spectrochemical series with indication (in parentheses) of the
relative � values (in units of that for H2O) is as follows [8.20] (the coordinating
atom is indicated in boldface letters):

Br−(0.72), (C2H5)2PSe−(0.74), SCN−(0.75), Cl−(0.78),

(CrH5)2PS2
−(0.78), (CrH5O)2PSe2

−(0.8), POCl3(0.82), NNN−(0.83),

(CrH5O)2PS2
2−(0.83), (CrH5)2NCSe2

−(0.85), F−(0.9), (C2H5)2NCS2
−(0.90),
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(CH3)2SO(0.91), (CH3)2CO(0.92), CH3COOH(0.94), C2H5OH(0.97),

(CH3)2NCHO(0.98), CrO4
2−(0.99), H2O(1.00),

CH2(CO2)
2−(1.00), NH2CS(1.01), NCS−(1.02), CH3NH2(1.17),

NH2CH2CO2
−(1.18), CH3SCH2CH2SCH3(1.22),

CH3CN(1.22), C2H5N(1 : 23), NH3(1.25), NCSH(1.25),

NCSHg+(1.25), NH2CH2CH2NH2(1.28), NH(CH2NH2)2(1.29),

NH2OH(1.30), SO3
2−(1.3), C6H4(As(CH3)2(1.33), 2, 2′ − dipyridyl(1.33),

1,10 − phenanthroline(1.34), NO2
−(∼1.4), CN−(∼1.7) (8.24)

Along with the spectrochemical series, there is a hypsochromic series in which
the ligands are arranged following the increase in shift of the first absorption band
to higher frequencies (ultraviolet shift):

I− < Br− < Cl− ∼ SCN− ∼ N3
− < (C2H5O)2PS2

− < F− < (C2H5)2NCS2

< (NH2)2CO < OH− < COO)2
2− ∼ H2O < NCS− < NH2CH2COO−

< NCSHg+ ∼ NH3 ∼ C5H5N < NH2CH2CH2 NH2 ∼ SO3
2− < NH2OH

< NO2
− < H− ∼ CH3

− < CN− (8.25)

Note that these two series, although somewhat similar, are not identical.
Indeed, the ultraviolet band shift coincides with the increase of � only when
the band results from a simple t2 → e transition. In more complicated cases
with more than one d electron, as is seen from the Tanabe–Sugano diagrams
(Fig. 4.11), the frequency of some transitions may either increase or decrease
with the increase of �. In particular, in the cubic complex of Mn2+(d5), dis-
cussed in Example 8.3, the frequency of the first band, 6Ag →4 T1g [originating
from the transition (t2g)

3(eg)
2 → (t2g)

4(eg)
1)], decreases with � (Fig. 8.4).

Besides, in the region of the breaks of the curves E1 = f(�) in the
Tanabe–Sugano diagrams, a transition from high- to low-spin spectra takes
place (spin crossover, Section 8.4), which completely changes the type of the
first transition. Therefore, the hypsochromic series, in general, does not mean
that the parameter � increases by the corresponding ligand substitutions from
left to right. The rule of hypsochromic increase with � is valid approximately
only for simple t2 ↔ e transitions without changing the spin state.

The other parameter of the d –d transitions, the Racah parameter B (2.43),
is also dependent on the nature of the ligands. If one compares the B value
of the free ion with that in the complex, one finds that the latter is always
smaller than the former. This reduction of B by complex formation, meaning
the reduction of the interelectron repulsion in the d states, is obviously caused
by the delocalization (expansion) of the electron cloud on larger regions, due
to the formation of MO, and this interpretation is confirmed quantitatively by
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calculations. The effect of ligand influence on interelectron repulsion in d states
characterized by B was first studied by Jorgensen [8.21] (see also Ref. 8.20),
and it was named nephelauxetic effect , which in translation from Greek means
the effect of “cloud-expanding.”

The B values for some free ions and their complexes obtained from spectro-
scopic data are given in Table 8.3 (for the free ions some of them are slightly
different from those in Table 4.7). Introducing the nephelauxetic ratio β =
Bcomplex/Bion, one can arrange the ligands in a series of decreasing β values
for the same CA in the same oxidation state, the nephelauxetic series:

F−>H20 >(NH2)2CO > NH3 >(COO)2
2− > NCS− > Cl− ∼ CN− > Br−

>(C2H5O)2PS2 ∼ S2− ∼ I− >(C2H5O)2PSe2 (8.26)

An important feature of the nephelauxetic effect is that it is directly related
to covalence. Indeed, the delocalization of the d electrons in the complex is
caused by the formation of covalent bonds and MOs. Hence the measure of the
B reduction in the complex is simultaneously a measure of covalence. This means
that the nephelauxetic series (8.26), following the decrease of β from left to right,
reflects the increase of covalence in this direction (in the complexes formed by the
corresponding ligands). From this perspective the nephelauxetic effect is more
informative with respect to chemical bonding than the spectrochemical effect,
although they both are rough qualitative properties.

Only one nephelauxetic ratio β may be insufficient to characterize the
nephelauxetic effect in some complexes with many d electrons. Indeed, the
value Bcomplex is determined from spectroscopic data (Section 2.2), and it can
vary for different d –d transitions. Therefore, in a more detailed description of
complexes with (t2)

m(e)n configurations, three values of B can be introduced:
B(e → e), B(e → t2), and B(t2 → t2), where e → e, e → t2, and t2 → t2

TABLE 8.3. Numerical Values (in cm−1) of the Racah Parameter B for Free dn

Ions of Transition Metals and Their Complexes with Different Ligands

Liganda

dn Ion Free Ion 6Br− 6Cl− 3Ox2− 6H2O Enta4− 6NH3 3En 6CN−

3d3 Cr3+ 950 — 510 640 750 720 670 620 520
3d5 Mn2+ 850 — — — 790 760 — 750 —
3d5 Fe3+ ∼1000 — — — 770 — — — —
3d6 Co3+ ∼1050 — — 560 720 660 660 620 440
4d6 Rh3+ ∼800 300 400 — 500 — 460 460 —
5d6 Ir3+ 660 250 300 — — — — — —
3d7 Co2+ 1030 — — — ∼970 ∼940 — — —
3d8 Ni2+ 1130 760 780 — 940 870 890 840 —
aOx = oxalate, Enta = ethylenetetraamine, En = ethylenediamine.
Source: Jorgensen [8.20].
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indicate the type of spectroscopic transition data from which the B value is
extracted. In the notations of Bethe E = �3 (e = γ3) and T2 = �5 (t2 = γ5)

and the corresponding nephelauxetic ratios are denoted by β33, β35, and β55,
respectively. It can be shown that approximately [8.20]

β33

β35
= β35

β55
(8.27)

With this relation only two nephelauxetic parameters remain independent, for
instance, β55 and β35. Table 8.4 presents some of these parameters for a series
of hexafluorides.

For further details, the number of such parameters can be increased but
this hardly makes sense; the larger the number of parameters required for the
interpretation of experimental data, the less informative this interpretation.
Therefore attempts to improve the spectrochemical and nephelauxetic series
seem to be useless.

Charge Transfer Spectra

As noted above, the d –d transitions depend on the ligand environment in a
generalized way, mostly on the symmetry and magnitude of the crystal field

TABLE 8.4. Racah’s Parameters of Interelectronic Repulsion B55 and B35
(in cm−1) and the Corresponding Nephelauxetic Ratios β55 and β35 for
Some Hexafluoride Complexes of dn Transition Metals

dn Complex B55 β55 B35 β35

3d3 CrF6
3− 860 0.93 820 0.89

MnF6
2− 815 0.77 600 0.56

3d5 MnF6
4− — — 845 0.94

FeF6
3− — — 845 0.78

3d6 NiF6
2− — — 450 0.36

3d8 NiF6
4− — — 960 0.92

CuF6
3− — — 650 0.54

4d2 RuF6 300 0.37 — —
4d3 TcF6

2− 560 0.79 530 0.76
RuF6

− 480 0.61 — —
4d6 RhF6

3− — — 460 0.64
PdF6

2− — — 340 0.42
4d8 AgF6

3− — — 460 0.60
5d2 OsF6 380 0.52 — —
5d3 ReF6

2− 540 0.83 — —
OsF6

− 530 0.73 — —
IrF6 380 0.43 — —

5d4 PtF6 260 0.30 — —
5d6 PtF6

2− — — 380 0.51

Source: Jorgensen [8.20].
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splitting. Different ligands in the same position and with similar field strengths
produce the same d –d spectra. A more adequate reflection of the nature of
the ligands is given in the metal–ligand charge transfer transitions mentioned
above. In the MO LCAO scheme they correspond to the transitions between
bonding and antibonding MOs, which in systems with inversion symmetry are
of opposite parity. These two types of orbitals are described by Eqs. (5.32) and
(5.33), and in case of γ < 0 they are localized mainly on different atomic groups
of the system (e.g., the bonding MO is on the ligands, while the antibonding
one is on the CA), the electronic transition between them (transitions of the
type π ↔ d, σ ↔ d, d ↔ π∗, where σ, π, π∗, . . . are mainly ligand orbitals) are
associated with charge transfer from one of these groups to another justifying
the above denotation of the transition. Charge transfer spectra may be either
ligand → metal or metal → ligand. Example 8.5 shows specific cases.

EXAMPLE 8.5

Some Ligand → Metal or Metal → Ligand Charge Transfer Spectra

A charge transfer transition in PtCl42− was considered in Example 8.3.
Another metal → ligand resonance Raman charge transfer band is con-
sidered in Example 8.6. The transitions π → dz2 (band I) and σ → dz2

(band II) in the spectra of the complexes [Co(NH3)5X]2+, X = F,Cl,Br,I
may serve as more examples of such spectra. Some other ligand →
metal and metal → ligand charge transfer bands are shown in Tables 8.5
and 8.6. An azide → Cu charge transfer band in [py2Cu(NO3))N3)] is
shown in Fig. 8.7 [8.27]. Many other examples are given in special
monographs (see Refs. 8.1–8.4 and references cited therein).

TABLE 8.5. Examples of Some Ligand → Metal Charge Transfer Bands
in Octahedral Halogen Complexes of Ru, Os, and Pt

Frequency Ranges (in cm−1) for Transitions

Ion (dn) σ → eg π → eg π → t2g

RuCl62− (4d4) — 36,000–41,000 17,150–24,600
PtCl3−

6 (4d5) — 43,600 25,600–32,400
PtBr6

3− (4d5) — 35,000 19,300–27,200
OsCl62− (5d4) — 47,000 23,900–30,000
OsBr6

2− (5d4) — 35,700–40,800 17,000–25,000
OsI6

2− (5d4) — 26,800–35,600 11,600–18,600
PtCl2−

6 (5d6) — 38,200 —
PtBr6

2− (5d6) 44,200 27,000–33,300 —
PtI6

2− (5d6) 39,800–43,500 20,250–29,150 —

Sources: From Jorgensen [8.20, 8.21].
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TABLE 8.6. Examples of Metal → Ligand Charge Transfer Bands in
Some Six-Coordinate Complexes

Frequencies at Band Maximum (in cm−1)
for Transitions

Complex eg → π∗ t2g → π∗
Mn(picO)22H2O 24,700 —
Fe(picO)22H2O — 21,050
Co(picO)22H2O — 23,800
Ni(picO)22H2O — 24,400
Cu(picO)22H2O 26,700 —
Fe(bipyz)3

2+ — 19,673, 21,000
Co(bipyz)3

2+ — 26,400
Ni(bipyz)3

2+ — 27,600

Source: From Lever et al. [8.22].

FIGURE 8.7. Ligand → metal (azide → Cu) charge transfer band in the
absorption of [py2Cu(NO3)(N3)] (dotted line). The dashed line shows the
absorption of the non-azide-containing analog in this region. (From Pate et al.
[8.27]).

Infrared Absorption and Raman Scattering

While infrared (IR) and Raman spectra belong to different regions of radiation
frequencies (IR and visible or ultraviolet, respectively), we consider them in the
same section because they both carry information mainly about the vibrational
properties of the system.

In Section 7.1 we introduced harmonic vibrations, vibrational frequencies,
wavefunctions [Eqs. (7.13)–(7.15)] and shapes of symmetrized displacements
(Table 7.1, Figs. 7.1–7.3), as well as the types of allowed vibrations for several
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of the most usable symmetry groups (Table 7.2). Group-theoretical methods of
classification and evaluation of normal vibrations are described in Section 3.5
and Example 3.5.

Similar to electronic transitions, IR absorption and emission occur as a result
of transitions between the vibrational states. The absorption coefficient is given
by the same equation [Eq. (8.5)], in which the matrix element M12 should be
calculated by Eq. (8.4) with the vibrational wavefunctions (7.15) for the two com-
bining states with different quantum numbers n and n′, respectively. Since these
functions are orthogonal by definition, the integral (8.4) is nonzero only if the
moment M depends on nuclear coordinates and changes during the vibration. If
M is the dipole moment (dipolar transitions), the active vibration should be polar.
For systems with inversion symmetry polar vibrations belong to odd-symmetry
IrReps.

For small (vibrational) nuclear symmetrized polar displacements Q, we have

M = M0 +
(

∂M

∂Q

)

0
Q + 1

2

(
∂2M

∂Q2

)

0
Q2 + · · · (8.28)

where M0 is the dipole moment at the point of equilibrium and the derivatives are
taken at the same point. With the linear term of (8.28) and odd coordinates Q, the
matrix element (8.4) yields (∂M/∂Q)0〈n|Q|n′〉, which, with the wavefunctions
|n〉 and |n′〉 after (7.15), is nonzero only when n′ = n ± 1. In other words, dipolar
vibrational transitions are allowed only between nearest-neighbor states of polar
vibrations that differ in energy by one vibrational quantum, En′ − En = ±�ω,
where ω is the fundamental frequency of vibrations [see Eq. (7.14)].

With the quadratic term in Eq. (8.28), the matrix element of the transition
n → n′ yields 1

2 (∂2M/∂Q2)0〈n|Q2|n′〉, which is nonzero when n′ = n ± 2. These
are the overtone transitions involving two vibrational quanta. They are weaker
than the fundamental transitions because quadratic terms of small displacements
are smaller than linear terms. With higher terms in Eq. (8.28), higher overtone
quanta are involved.

Following Eq. (8.5), the intensity of the fundamental IR absorption lines is
direct proportional to |(∂M/∂Q)0|2, which, as mentioned above, is nonzero for
polar displacement Q only. This means that only polar vibrations are manifest
in IR spectra. In particular, if the system has a center of inversion, only odd
vibrations of the type �u (see Table 7.2) are active in the IR spectra.

What about the even vibrations �g or, in general, nonpolar vibration? Can they
be seen in the spectra? It turns out that nonpolar vibrations are active in nonelastic
light scattering called the Raman effect . Indeed, as mentioned in Section 8.1,
in addition to the interaction of the proper dipole moment M of the system
with the electric field E , E = −(M, E ), there is a similar interaction E = (P, E ),
where P is the induced dipole moment . The latter occurs under the action of
the electric field E , which moves the electrons and nuclei in opposite directions,
thus polarizing the system, P = αE , where α is the polarizability. The energy
of this interaction is thus E = αE 2 (there are higher powers in E , and hence
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weaker terms in the interaction with radiation that cause a variety of nonlinear
effects in optics). In general, the polarizability depends on the direction of E

with respect to the axes of the molecule. In other words, α is a tensor with
the components αxx, αxy, αxz, αyy, αyz, and αzz, which coincide in systems with
spherical symmetry, thus reducing the tensor to a constant.

With the interaction E = αE 2, the matrix element (8.4) for the transition
between two electronic states, |1 > and |2 >, accompanied by the vibrational
states |n> and |n′ >, respectively, yields 〈1n|αE 2|2n′〉 = 〈1|2〉〈n|α|n′〉E 2, where
we note that E is a constant and α does not depend on electronic coordinates (it is
a constant for a given nuclear configuration). Since the two electronic functions
are orthonormalized, the integral 〈1|2〉 is nonzero (and equal to 1) only when
|1 > ≡ |2 >. This means that under the polarization effect there are no electronic
transitions—light is not absorbed, just scattered. On the other hand, the polar-
ization α does depend on nuclear displacements, and hence the integral 〈n|α|n′〉
may be nonzero, meaning that the vibrational states may change during the scat-
tering. Hence the energy of the scattered photon may differ from the incident
one by vibrational quanta. This is the Raman effect .

To ascertain when the Raman effect takes place, we first consider the selection
rules. Tensor components αij , i, j = x, y, z transform as corresponding products
of Cartesian coordinates x2, xy, and so on, or their linear combinations (compare
with vectors that transform as the coordinates x, y, z). Tables of characters of
symmetry groups (see Appendix 1) usually also indicate the IrReps to which
the components of a tensor (product of coordinates) belong. Then, with known
transformation properties of the vibrational functions, one can reveal the nonzero
matrix elements 〈n|α|n′〉 using the group theory rules (Chapter 3). This will
reveal directly the symmetry type of the vibrations that may be involved in the
Raman scattering.

Examining the character tables in the Appendix 1, we can see that in the
majority of cases vectors and tensors belong to different representations. In par-
ticular, if the system has a center of inversion, the vector components (Cartesian
coordinates) belong to odd representations �u, whereas the tensor components
transform as even representations �g . This means that when the matrix elements
of the former are zero, those of the latter are nonzero, and vice versa. In other
words, in systems with an inversion center the vibrations seen in IR and Raman
spectra are mutually complementary.

The intensity of the Raman scattering depends on how rapidly the polarizability
changes during nuclear displacements in the allowed vibration. For small nuclear
displacement Q [cf. Eq. (8.28)], we obtain

α = α0 +
(

∂α

∂Q

)

0
Q + 1

2

(
∂2α

∂Q2

)

0
Q2 + · · · (8.29)

The first term α0 is independent of Q , hence the matrix element 〈n|α0|n′〉 �= 0
only when |n′ > = |n>, that is, when, in addition to the unchanged electronic
state, the vibrational state does not change as well. This is termed Rayleigh
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scattering , for which the frequency of the scattered light coincides with the inci-
dent frequency �0. The linear Q term in Eq. (8.29) yields the matrix element
(∂α/∂Q)0 〈n|Q|n′〉, which, similar to dipolar transitions in IR spectra, is nonzero
when n′ = n ± 1. This is the fundamental Raman transition for which the fre-
quency of the scattered light is either �0 − ω (Stokes Raman scattering) or �0 +
ω (anti-Stokes Raman scattering); ω is the frequency of Raman-allowed vibration.
Similar to the IR case above, the next terms in Eq. (8.29) produce scattered over-
tones with n′ = n ± 2, n′ = n ± 3, and so on, of, respectively, �0 ± 2ω, �0 ±
3ω, and so on, frequencies. Scattering with combined vibrational frequencies
ωi + ωj is also possible provided that they obey the selection rules on symmetry.

Figure 8.8 is a schematic representation of the corresponding transitions. In
Raman scattering there is no real excited electronic state, so the spectrum can
be obtained with any frequency of the incident light. The spectrum contains
the most intensive central line corresponding to the Rayleigh scattering plus
satellites at the fundamental and overtone Raman frequencies. The satellites are
less intensive than the central line [because of the falling magnitude of the terms
in the expansion (8.29)], and the anti-Stokes lines are less intensive because the
corresponding transitions start from the excited vibrational state (Fig. 8.8) which

II

I

4

1 2 3

Ω0−ω

Ω0−ω′ Ω0 + ω′− ω
Ω0

5 6

ω

ω

ω′

FIGURE 8.8. Schematic illustration of Rayleigh (line 1), Raman (lines 2 and 3), and
resonance Raman (thick lines 4, 5, and 6) transitions and their Stokes (2, 5, and 6) and
anti-Stokes (3 and 4) satellites in light scattering. The electronic states are denoted by
I and II. In Rayleigh and Raman scattering there are no real excited electronic states
involved, so the incident light frequency is arbitrary.
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is less populated, the ratio of their intensities is [8.23]

IaS

IS

= (�0 + ω)4

(�0 − ω)4
exp

(

−�ω

kT

)

(8.30)

Because of the exponential dependence on temperature, the anti-Stokes inten-
sity vanishes at low temperatures [the relation (8.30) is valid for �0  ω].

A special case of Raman spectroscopy widely used in the study of coordination
systems is provided by resonance Raman transitions . Normal Raman scattering
takes place when the incident light falls in the region where the system is transpar-
ent and no direct absorption takes place. This can be interpreted as a two-photon
process in which one photon excites the system to a virtual (nonexistent in the
absence of light) state created as a result of polarization; the other is emitted,
bringing the system back to the same electronic, but different vibrational state.
In resonance Raman scattering the two photons are real as the intermediate state
is a real excited electronic state of the system (Fig. 8.8). The process appears
as if the system were to absorb a photon of resonance frequency �0 and emit it
instantly with another frequency �0 ± nω. The scattering thus takes place in the
region where the system is absorbing and hence not transparent. Because of the
resonance, this scattering is much more intensive than in the normal case.

Both processes, absorption and emission, in the resonance Raman scatter-
ing seem similar to the usual (real) absorption followed by fluorescence, but in
essence they are different; in the real absorption there is a lifetime of the excited
state (∼10−7 –10−8 s) and possible vibrational relaxation to lower vibrational
states of the excited electronic state, as well as radiationless transition to the
ground or intermediate state, whereas in resonance scattering the emission takes
place instantly (on the timescale of ∼10−14 s) and without any change in the
excited state. The Raman spectra of a specific coordination system is considered
in Example 8.6. For further reading, see Refs. 8.23 and 8.25.

EXAMPLE 8.6

Resonance Raman Spectrum of Red K2 [Ni(dto)2 ] in Solid State

Figure 8.9 shows the spectrum of resonance Raman scattering from
the crystal K2[Ni(dto)2] (dto = dithiooxalato) at frequency �0 = 488.0
nm, which is in resonance with the Ni(II) → S2C2O2

− metal → ligand
charge transfer transition [8.24]. The Raman satellites can be separated
into two progressions as shown in the figure. One of them is a multi-
ple n1ν1 (overtones) of the fundamental Raman frequency ν1 = 1085
cm−1, which is mainly a combination of C—C and C—S stretching
displacements. The other is this series combined with another vibra-
tional frequency ν2 = 1602 cm−1 resulting in n1ν1 + ν2, which reflects
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mainly the combined C—O and C—C stretching. The high overtones
up to n1 = 6 observed in this case are unusual for such complexes;
they allowed the authors to extract more information about the spec-
tral properties of this systems, in particular, the anharmonicity of the
vibrations.

FIGURE 8.9. Resonance Raman spectrum of K2[Ni(dto)2] (dto = dithio-
oxalato) in solid state with indication of the separated two progressions. (From
Czernuszewicz et al. [8.24]).

Transitions Involving Orbitally Degenerate States

Most d –d transitions involve orbitally degenerate electronic terms as initial or
final states. As compared with nondegenerate terms, degenerate states may yield
quite different types of spectra. Indeed, the band shapes and frequencies are
strongly dependent on the APESs (Section 8.1), which for degenerate terms are
much more complicated [8.15, 8.26] (Section 7.3).

Consider first the case when one of the combining states is an orbitally
double-degenerate E term and the other is nondegenerate (A → E and E → A

transitions). The energy spectrum for the E term can be obtained approximately
by solving the linear E ⊗ e problem (Section 7.3), while for the nondegenerate
electronic A the vibrational states are usual harmonic oscillators (Section 7.1).
Calculating the energy-level differences and transition probabilities for each tran-
sition from the oscillator states to the vibronic levels of the E state (A → E

transition) or vice versa (E → A transition), one can obtain all the lines of the
expected spectrum. The data shown in Fig. 8.10 were obtained numerically in this
way [8.28]. They illustrate the relative intensities of the vibrational components
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of the bands A → E and E → A for several values of the dimensionless vibronic
coupling constant λ = EJT /�ω (Section 7.3).

It is seen from Fig. 8.10 that the A → E band, the envelope of the vibrational
components, has a two-humped form. Compared with the band of transitions
to a nondegenerate term given in Fig. 8.2, the two maxima can be interpreted
as the Jahn–Teller splitting of the nonvibronic band. For transitions E → A

such splitting does not occur, but this is due to the neglect of the temperature
population of the excited vibrational states, which is valid only for T = 0.

A more general picture of the band shape (although less accurate in detail) can
be obtained in the semiclassical approximation discussed in Section 8.1 (which
is not valid for very low temperatures). Substituting the APES expressions (8.7)
for the A term and (7.40) for the E term into the expression of the form function

FIGURE 8.10. Frequencies and relative intensities of vibronic components and the band
shape (envelope) for A → E and E → A transitions calculated at T = 0 for the following
values of the dimensionless vibronic constant: (a) λ = 2.5; (b) λ = 7.5; (c) λ = 15. The
position of the zero-phonon line is shown by an arrow. (After Longuet-Higgins et al.
[8.28].)
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F12(�), and performing appropriate integrations, we obtain for Q0 = 0 [8.15,
8.26]:

F12(�) = M2
12K�|� − �0|

F 22kT
exp

[−K�
2(� − �0)

2

F 22kT

]

(8.31)

The function (8.31) is presented graphically in Fig. 8.11a. It has a sym-
metric shape with two humps and a dip at � = �0. Similar to the numerical
results presented above, this band shape can be attributed to Jahn–Teller split-
ting of the nonvibronic band. The splitting (the distance between the two maxima)
equals (8EJTkT )1/2. If we account for the contribution of the totally symmetric
vibrations to the broadening, the “acute elements” of the curve in Fig. 8.11a
are smoothed, and the curve assumes the form given in either Fig. 8.11b or
Fig. 8.11c, depending on whether the coupling with the totally symmetric vibra-
tions is stronger than that with the e vibrations. The strength of coupling and the
influence of thermal population of the corresponding vibrations is given by the
quantities XA = F 2

A coth (�ωA/2kT ) and XE = F 2
E coth (�ωE/2kT ), where FA

and FE , and ωA and ωE , are the corresponding vibronic constants and vibrational
frequencies, respectively (see Problem 8.10).

Thus, if the totally symmetric vibrations predominate (XA >XE), the dip in
the curve is completely filled up and disappears (Fig. 8.11c). For comparison,
the temperature dependence of the A → E band as determined by the numerical
solution [8.29] is given in Fig. 8.12. Further details on A → E,E → A, and
E → E transitions, see Refs. 8.26 and 8.30.

The A → T transitions also have complicated band shapes except when in
the T state the coupling to t2 vibrations is negligible and the vibronic problem is
T ⊗ e (Section 7.3). In the latter case no splitting of the A → T band occurs
despite the split adiabatic potential of the T term (Fig. 7.15). This shows how
carefully visual presentations should be used in the analysis of complicated phe-
nomena. In general, we can say that for absorption transitions from nondegenerate
to degenerate terms the band does not split if the point of degeneracy on the APES
is a point of actual crossing of the surfaces, as in the T ⊗ e problem (Fig. 7.15).
This is in contrast to the case when the point of degeneracy is a branching point
of the surface, as in the E ⊗ e problem (Figs. 7.9 and 7.10), for which the band
is split. The zero-phonon line of transitions involving degenerate states may also
be split because of the tunneling between equivalent minima [8.26].

If the coupling to t2 vibrations is predominant, the A → T absorption curve in
simple cases has three humps, the band is split into three components, but the tem-
perature dependence and other parameters render them rather nonequivalent. For
examples of such and other related transitions and more detailed considerations
of transitions between degenerate states, see Refs. 8.15, 8.26, 8.30, and 8.31.

The brief discussion in this subsection allows us to conclude that vibronic
effects strongly influence the band shapes of electronic d–d transition that involve
degenerate terms, and that the frequently used interpretation of electronic spectra
disregarding vibronic interactions may be invalid if the ground or excited state,
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FIGURE 8.11. Schematic presentation of the band shape of the A → E transition cal-
culated in the semiclassical approximation including the linear coupling with E and A

vibrations: (a) coupling with totally symmetric vibrations A is neglected; (b) the A vibra-
tions are included, but the coupling to E vibrations is predominant; (c) the coupling to A

vibrations is predominant.
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FIGURE 8.12. Temperature dependence of the absorption band shape of the A → E

transition obtained by numerical solution of the linear E ⊗ e problem including the cou-
pling with E and A vibrations with λA = 0.5 and λE = 0.5 (a) and λE = 5.0 (b). The
frequency with respect to the pure electronic transition � = 0 is given in ωE units, and
θ = �ωE/kT . For strong vibronic coupling and at higher temperatures the absorption
curve approaches the semiclassical limit shown by dashed line (cf. Fig. 8.11). (From
Muramatsu and Sakamoto [8.29].)

or both, are degenerate, or if at least one of them is vibronically coupled to a
third state with sufficient strength.

8.3. X-RAY AND ULTRAVIOLET PHOTOELECTRON
SPECTRA; EXAFS

General Ideas

Photoelectron spectroscopy is based on the photoelectric effect; its principle was
disclosed by Einstein in a paper that is one of the cornerstones of quantum
mechanics. The energies of quanta of light (photons) are determined by their
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frequency, E = ��. Hence there is a minimum-threshold frequency �c at which
the photon is able to overcome the minimum energy eϕ required for removing
an electron from a metal to the vacuum, �� = eϕ (ϕ is called the workfunction).
For photoemission of electrons from atoms or molecules in the gas phase, the
minimum energy that creates the threshold equals the binding energy EB , or the
ionization potential Ii from state i, ��i

c ≈ Ii .
If the frequency of the photon � exceeds that of �c, the emitted electron has

a nonzero kinetic energy Ek = �� − Ii , and

Ii = �� − Ek (8.32)

Thus, if the experiment on photoemission is carried out with sufficiently large
(fixed) frequencies of light, the kinetic energy spectrum of the emitted electrons
is a replica of the energy distribution of occupied bond states. Photoelectron
spectroscopy then becomes a method for direct determination of the electronic
states of atoms, molecules, and solids. Obviously, for inner electron (core) states
the frequency � corresponds to X rays.

The method was suggested for the optical region by Vilesov et al. [8.32],
and Turner and Al-Joboury [8.33] and for the X-ray region by Ziegbahn and
coworkers (see Refs. 8.5, 8.34, and references cited therein). It was developed and
gained widespread use only when some significant difficulties in exact and high-
resolution measurements of electron kinetic energies was overcome. At present
the accuracy of electron energy measurements is about 10−2 eV in the optical
region and 10−1 eV in the X-ray region.

In fact, there are several closely related photoemission and X-ray processes
illustrated in Fig. 8.13 that form the basis for four related methods of photoelec-
tron spectroscopy:

1. Ultraviolet photoelectron spectroscopy (UPS)—the light photon ejects the
electron from the atomic valence shell or MO to the continuous spectrum
(Fig. 8.13a).

2. X-ray photoelectron spectroscopy (XPS)—the X-ray photon ejects the elec-
tron from the inner shell (core) states of the system (Fig. 8.13b).

3. Auger electron spectroscopy (AES)—after formation of a hole in the core
shell a radiationless transition of an electron from levels higher than that of
the hole takes place, and the excess energy is transferred to another electron
that is thus emitted with a corresponding kinetic energy (Fig. 8.13c) (after
P. Auger, who first observed such electrons).

4. X-ray emission spectroscopy (XES)—after formation of a hole in the inner
shell, a transition from the excited one-electron states to the hole state with
irradiation of an X-ray photon takes place (Fig. 8.13d).

Unlike the UPS and XPS cases, where the kinetic energy of the electrons is
a direct consequence of the photoeffect, in AES the emitted electrons emerge



428 ELECTRONIC STRUCTURE INVESTIGATED BY PHYSICAL METHODS

FIGURE 8.13. Schematic presentation of four types of photoelectron spectroscopy:
(a) the photon ejects an electron from the valence shell MO of the system (UPS); (b)
the photon ejects an electron from the inner (core) states (XPS); (c) the hole created
by the photon is radiationless, populated by an electron from higher states, with another
electron emitted (AES); (d) the inner shell hole is occupied by a higher-energy electron,
with an X-ray quantum emitted (XEP).

from a postphotoeffect process of radiationless relaxation of the excited state in
competition with possible radiation transitions. Photoelectron spectra are regis-
tered in the form of the number (counting rate) of photoelectrons as a function
of their kinetic energies or the ionization potential Ii following Eq. (8.32).

The examples below demonstrate the main trends of applications of photo-
electron spectroscopy:

1. Determination of one-electron energy levels of the system from the posi-
tions of photoelectron peaks and their intensities

2. Evaluation of the parameters of electron density distribution from photo-
electron chemical shifts

Both these trends advanced essentially during the last several decades, and new
possibilities for studying electronic structures were elucidated. Several illustrative
photoelectron spectra are presented and briefly discussed in Example 8.7.
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EXAMPLE 8.7

Photoelectron Spectra of Specific Coordination Systems and
Their Interpretation

Figures 8.14, 8.15, and 8.16 illustrate, by way of examples, a part
of the UPS of ferrocene [8.35], two lines of XPS of metallic Pt and
Pt in K2PtCl6 [8.5a], and the AES of TiO2 [8.5a], respectively. In
Fig. 8.14 one can see two peaks of the outer 3d(t2g) orbitals of iron
(occupied by six electrons) split in ferrocene by the ligand field of
D5h symmetry into a1g and eg (in fact, these orbitals are MOs, not
AOs). The occupation number of the eg orbitals is twice that of a1g

[the outer electron’s configuration is (a1g)
2(eg)

4], and the intensity
of the photoelectron band (the area under the curve) of the former is
approximately 2 times larger than the latter.

FIGURE 8.14. A part of the PES of ferrocene. The arrows indicate the 3d

orbitals of iron. (After Turner [8.35].)

Figure 8.15 illustrates the effect of inner-shell line shift in the XPS
due to chemical bonding, the chemical shift (see below). Indeed, the
positions of the two lines of photoelectrons from the N shell (NYINVII

or 4f5/24f7/2; don’t confuse the atomic shell N with the nitrogen
atom) of the Pt atom in K2PtCl6 is displaced with respect to the same
lines in metallic Pt by more than 2 eV toward higher binding ener-
gies (lower kinetic energies of the photoemitted electrons). This means
that in the chloroplatinate ion the N -shell electrons of the Pt atom
are more strongly bonded to the nucleus than in metallic Pt. This is
understandable because of the charge redistribution in K2PtCl6: the
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increasing electron density on the chlorine atoms and its decrease on Pt
with respect to the metallic phase (in the XPS spectra the source of X
rays (MgKα) is indicated).

FIGURE 8.15. Two lines of XPS of the N shell of the Pt atom in K2PtCl6
and in metallic platinum. (From Ziegbahn et al. [8.5a].)

The AES of the KLL transitions in oxygen in TiO2 (K and L denote
the respective electronic shells) in Fig. 8.16 shows the excited configura-
tion terms from which the radiationless transition produces the emitted
electron. In combination with the X-ray photoemission that preceded
the Auger effect, the AES determines the energy-level positions of the
excited states of inner electrons.
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FIGURE 8.16. The Auger electron KLL spectrum of oxygen in TiO2 showing
its interpretation as due to transitions from the L shell to the K one (the roughly
estimated position of the appropriate configuration terms are shown by arrows).
(After Ziegbahn et al. [8.5a].)

Electron Relaxation; Shakeup and CI Satellites

Interpretation of the photoelectron spectra is not always straightforward. To begin
with, the attribution of the photoelectron peak positions to electronic energy
levels is complicated by several side effects: electron relaxation, shakeup and
shakeoff satellites, multiplet splitting, and final-state configuration interaction.
Let us consider them sequentially.

The relaxation process is discussed in Section 6.2. In accordance with the
Koopmans theorem (Section 2.2), the binding energy of the electron in the given
ith MO equals the potential of ionization Ii of this electron taken with the opposite
sign:

Ii = −εi (8.33)

However, the Koopmans theorem does not account for the fact that when the
ith electron is ionized, all the other electrons relax to new self-consistent states
in which the interelectron repulsion is reduced by the removal of one electron
(Sections 2.2, 6.2, and 6.4). The relaxation energy may be significant, thus reduc-
ing the observed ionization potentials as compared with those predicted by the
Koopmans theorem and, what is even more important, sometimes changes the
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order of their occurrence in the series of photoelectron peaks. To calculate the
ionization potential with sufficient accuracy, one must discard the Koopmans
theorem and define Ii as the difference between the self-consistent energies
of the initial and ionized states calculated independently (see Table 6.12 in
Section 6.4).

Even when calculations of Ii are performed with the highest accuracy, there
is no a priori evidence that the calculated photoelectron peak positions coincide
with the observed peaks because of the shakeup and shakeoff processes . Their
physical meanings are as follows. The electron relaxation during (or after) the
photoionization takes place not instantly, but within a certain timescale τ esti-
mated as about τ ∼ 10−17 s (cf. the vibrational relaxation time ∼10−12, which
allows for the Franck–Condon transitions; see Section 8.1). Therefore, if the
photoeffect process has a shorter timescale τ ′,

τ ′ < τ (8.34)

the electronic subsystem does not manage to relax during the photoionization,
and hence the relaxation energy will not be incorporated (at least not completely)
into the kinetic energy of the emitted electron. Then, what will be seen in the pho-
toelectron experiments under the condition (8.34), and how to relate the observed
spectrum to the electronic structure of the system? Quantum mechanics enables
us to answer this question.

The nonrelaxed state of the ionized system produced by a very short time-
dependent sudden perturbation is not a stationary solution of the Schrödinger
equation. The theory of sudden perturbations shows that the final nonstationary
state �f can be expanded into a series of the stationary states of the ion �k:

�f =
∑

k

Ck�k (8.35)

Because �k are mutually orthonormalized, the probability Pk of the system falling
into one of them is

Pk = |Ck|2

Ck =
∫

�∗
k �f dτ

(8.36)

Thus, in the case of incomplete relaxation under the condition (8.34), there is a
probability for the system to occur in one of several stationary states �k producing
several peaks of the photoemission electron spectrum (shakeup satellites) instead
of only one peak as expected following calculations of the unperturbed system.
Visually, the process behaves as if the system during the photoionization to a
nonstationary state were shaken up to one of the stationary states that are excited
states of the ion (usually outer-shell excitations). Equation (8.35) also includes,
of course, the ground state of the ion. If �k is an ionized state, then we have a
shakeoff process .
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The shakeup transitions described by the transition probability (8.36) are
monopole transitions in the sense that the transition operator is scalar (cf. dipolar
transitions in Section 8.1). This means that all the states �k that produce the
satellite lines in the spectrum must be of the same symmetry and multiplicity
[otherwise the integral (8.36) is zero].

For the shakeup satellites, there are some interesting relations (sometimes
called the sum rules) estimating their possible positions and intensities. Denoting
the latter by I 0

k (not to be confused with the ionization potential Ik) and their
peak energies by Ek (while the Koopmans energies are εi), we can introduce the
nth moment of the distribution in the set of quantities I 0

k :

∑

k

I 0
k (Ek − εi)

n n = 0, 1, 2, . . . (8.37)

Each of these moments has some physical sense. For the zero moment (summary
value) we get

∑

k

I 0
k (Ek − εi)

0 =
∑

k

I 0
k = I 0

i (8.38)

where I 0
i is the initially expected Koopmans intensity. For the first moment

(center of gravity of the set), this yields
∑

k

I 0
k (Ek − εi)

1 = 0 (8.39)

In other words, the zero moment of the set, the sum of intensities of the
shakeup satellites, equals the initially expected (Koopmans) intensity, while their
center of gravity (the first moment) coincides with the Koopmans peak. On the
other hand, Eq. (8.38) implies that the shakeup satellites borrow intensities from
the main line, while (8.39) shows that the Koopmans peak can be easily obtained
by finding the center of gravity of the main line plus satellites. Note that the
deviation of the satellite line Ek − εi cannot be larger than the relaxation energy.
It can be shown that for large deviations the probability Pk = |Ck|2 is small.

Concerning the characteristic time of the photoemission τ ′, it is strongly depen-
dent on the photoelectron speed and hence on the photon frequency; the larger
the latter, the smaller the τ ′ and the more favorable the satellite occurrence.
These considerations allow one to formulate some qualitative rules for shakeup
satellites given in Table 8.7.

The shakeup satellites are somewhat related to the final-state configuration
interaction satellites . Configuration interaction (CI) is discussed in Section 5.3
in connection with the problem of correlation effects. Since different electronic
configurations may yield energy terms with the same symmetry and multiplicity,
their linear combination of the type (5.62) [or a quite similar one (8.35)] must
be taken as the most general form of the possible final state of the photoelec-
tron transition. This means that more than one final state of the same symmetry
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TABLE 8.7. Some Qualitative Rules for the Occurrence of Shakeup
Satellites in PES

Types of Ionization Relaxation Expected
Energy Levels Potentials (eV) Energies (eV) Shakeup Satellites

Outer valence <∼15 0.5–5.0 No intensive
satellites

Inner valence 15–50 ∼2–5 Intensive and
relatively close
satellites

Inner core >50 >10 Weak and extended
satellite structure

may take part in the transition. However, to be observable, the CI states must be
comparable in energy and in transition probability as determined by the Ck coeffi-
cients of the CI expansion. Therefore, only the outer-shell ionized configurations
produce observable CI satellites.

The shakeup satellites are similar to the CI ones in both nature and appearance.
There are still some possibilities for differentiating between the former and the
latter. Both types of satellites can be regarded as outer-shell excitations, but
the CI satellites are unique only to the given outer-shell configuration and will
not be repeated in other (inner-shell or core) configurations, whereas the same
shakeup satellites, which are monopole transitions, occur in any (outer, inner,
core) photoemission of the system whenever the electron relaxation energy must
be compensated. Example 8.8 demonstrates a CI satellite spectrum.

EXAMPLE 8.8

Configuration Interaction Satellite to the K+ 3s Emission Line in the
UPS Spectrum of KF

Figure 8.17 illustrates the case of a CI satellite to the K+ 3s electron
emission line in the UPS of KF, at 14 eV toward greater binding energies
[8.36]. The K+ ion has a ground state S produced by the electronic con-
figuration [Ne]3s23p6. The photoemission from the 3s shell produces
an 2S state with the [Ne]3s13p6 configuration. There are several other
relatively close-in-energy configurations that produce the same 2S term
at about 14 eV: [Ne]3s23p43d1, [Ne]3s23p44s1, . . . , but the calculation
shows that only transitions to the M shell have appreciable probabili-
ties, and the observed satellite is identified as the [Ne]3s23p43d1 final
state [8.36]. In this photoemission of K+ in KF the core lines have
no 14-eV satellites ruling out an interpretation based on the monopole
mechanism.
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FIGURE 8.17. The photoelectron spectrum of KF showing a CI satellite of
the K3s shell at 14 eV. (From Wertheim and Rosencwaig [8.36].)

Another complication in the interpretation of photoelectron line positions is
created by the multiplet structure of the core electron energy levels. Consider, for
instance, the simple case of the Mn2+ (3d5) ion with the sextet ground state 6S

that has no angular momentum (L = 0). The core s-electron photoeffect creates
a hole spin 1

2 , which couples to the outer electron spins, producing two terms,
7S and 5S. They are split by the spin–orbital interaction, and hence two s-core
lines are expected instead of one. The two lines were found, indeed, and they
have the intensity ratio 7–5, as required by the theory: transition probabilities
are proportional to occupancies which, in turn, are proportional to degeneracies.
Another example is shown in Fig. 8.15 of Example 8.7, where two lines of the
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Pt N -shell photoelectrons (from f5/2 and f7/2, respectively) are well resolved.
For a nonzero orbital momentum (open shells) the multiplet structure becomes
much more complicated.

Sometimes the interpretation of photoelectron spectra is facilitated by studying
the angular dependence of the intensity (or cross section σ ) of photoionization.
The differential cross section of photoionization of a given energy level with
polarized light is

Iθ = σt

4π

[

1 + β

2
(3 cos2 θ − 1)

]

(8.40)

where σt is the total cross section of photoionization, θ is the angle between the
electric vector of the photon and the direction of the outgoing electron, and β is
the parameter of asymmetry . If the light is not polarized, then

Iθ ∼ 1 + β

2

(
3

2
sin2 θ − 1

)

(8.41)

where θ is the angle between the radiation beam and outgoing electrons.
The asymmetry parameter β is an unknown function of both the wavefunction

of the ionized state and the photoelectron energy. It changes from −1 to +2. So
far this function has been studied for simple molecules [8.37], not for coordination
compounds. Nevertheless, using Eq. (8.40) or (8.41) and experimental Iθ values,
one can separate the overlapping bands (components), provided that they have
different β values.

As for the band shapes of UPS and XPS, all the results obtained in Sections 8.1
and 8.2 for electronic transitions are valid. Indeed, the ionization process is also an
electronic transition in which the final state belongs to the continuous spectrum.
The two states can be described by the same APESs as in the case of optical
transitions (Fig. 8.1), and hence the resulting band shapes and intensities are
those discussed in Sections 8.1 and 8.2. In particular, because of the change in
the number of electrons, the photoelectron transition is always a spin-forbidden
transition (Section 8.1), and in most systems it involves orbitally degenerate
states, which result in JT splitting (Section 8.2).

Photoelectron band shapes were evaluated by calculating the vibronic states
in degenerate and pseudodegenerate excited (ionized) states performed by the
Green’s function method [8.38]. The results agree well with the experimental
data (see, e.g., the theoretical interpretation of the UPS of BF3 obtained by
calculation of the PJTE in BF3

+ [8.39]). Other examples are available in the
article by Koppel et al. [8.40].

Chemical Shift

This notion is widespread in chemistry, determining the shift of energy levels
due to chemical bonding, and as such it appears in many physical methods of
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investigation (Mossbauer spectroscopy, NMR, etc.). In the UPS, XPS, and XES
under consideration in this section, the chemical shift denotes the shift of the
corresponding inner-shell spectral lines caused by change in the local chemical
environment by passing from one compound to another. The shift of the two
f -electron lines (f5/2 and f7/2) of Pt in K2PtCl6 with respect to their positions
in metallic Pt (Fig. 8.15) is an example of this kind of chemical shift.

A widespread explanation of the origin of chemical shifts �E of inner
energy levels is that the formation of chemical bonds redistributes the electronic
charge and changes the interelectron repulsion and screening of the nucleus.
The effective atomic charge qA of atom A in its valence state in the molecule
(Section 5.2) can serve as a rough measure of this charge redistribution. The
idea is to use the calculated dependence of the inner energy-level positions
in free atoms (ions) as a function of their charges �E = f (qA) (interpolated
from ionized states) to estimate the atomic charges from chemical shifts in the
spectra.

However, as stated in Section 5.2, the effective atomic charge is not directly
observable, and the result of its calculation depends on the definitions and approx-
imations used. For instance, as calculated after Mulliken [Eq. (5.20)], the atomic
charges depend on the basis set, while after Politzer [cf. (5.22)], they depend on
the assumed atomic border in the molecule. Besides, the integral charge effect
may be not sufficiently informative. Indeed, the contributions of different atomic
orbitals to the chemical shift may be quite different (even different in sign, see
below), and they may be differently affected by the bonding. This is a general
property of TMS that is due to d-electron participation leading to backdonation
and ligand excitation (see Section 6.3, Fig. 6.6). Because of this specific TMS
property, dependence of the chemical shift on the integral charge of the atom
in the molecule may even be misleading; the chemical shift may be large even
when the integral charge is not changed.

The MO LCAO scheme gives a much more refined possibility for linking the
observed chemical shifts �E with the electronic structure. Consider the orbital
charge transfers �qi [Eq. (5.20′′)], which characterize the electronic charge trans-
ferred to (�qi > 0) or removed from (�qi < 0) each one-electron orbital, and
assume that the chemical shift produced by removing one electron from the ith
orbital of the atom, the orbital chemical shift �εi (the shift per unit charge), is
known. Then, assuming that �qi are not very large, we have approximately

�E = −
∑

i

�qi�εi (8.42)

The �qi values are more significant for the valence electrons that participate
in the bonding, and they can be obtained from calculations. The orbital chemical
shifts can be obtained relatively easily from empirical data, for instance, from the
photoelectron or X-ray emission spectra of free atoms and ions. For the chemical
shift of the Kα1 line in heavy-atom compounds (30 < Z < 75), the authors
[8.41], using XES data, obtained the following values of orbital contributions
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�εi for the valence electrons s, p, d, f (in meV):

�εs = �εp = 80 ± 10

�εd = −115 ± 10 (8.43)

�εf = −570 ± 30

These data are interesting in several aspects. First, they show the most essential
differentiation between the contributions of different types of valence electrons
to the Kα1 line shift; while for s and p electrons it is positive, meaning that
they increase the X-ray emission frequency, for d and f electrons it is negative.
Second, the absolute values of the effect are also different; they are significantly
larger for d and f electrons.

Now consider the chemical shift of the Kα1 line in the XES of a nontransition
atom in a molecule, which participates in the bonding with its valence s and p

orbitals (�qd ≈ �qf ≈ 0). Provided that the relation �εs ≈ �εp is valid [see
(8.43)], we get from (8.42) the following equation for sp elements:

�E = −(�qs + �qp)�εs = −qA �εs (8.44)

where qA = �qs + �qp is the effective charge of the atom under consideration.
It is seen that in this case the chemical shift is proportional to the effective charge,
in accordance with the abovementioned widespread interpretation.

However, for transition metals and rare-earth elements in coordination com-
pounds the participation of d electrons in the bonding is most essential, and
Eq. (8.44) does not hold. Indeed, with d electron participation

�E = −(�qs + �qp)�εs − �qd �εd

and it is seen that the effective charge q∗ = �qs + �qp + �qd does not char-
acterize the chemical shift �E accurately. On the contrary, if for illustration we
take |�εs | ≈ |�εd |, then (since �εd < 0)

�E ≈ −(�qs + �qp − �qd)�εs

As discussed in Section 6.3, in transition metal compounds there are diorbital
bonds in which the σ and π bindings give orbital charge transfers �qσ and
�qπ of opposite signs (�qσ < 0, �qπ > 0; Fig. 6.6). If, as usual, the σ bonds
are realized by s and p orbitals, while the π bonds involve d orbitals, then the
atomic charge qA = |�qs + �qp| − |�qα| may be very small, even zero, while

�E = −(|�qs + �qp|�εs | + |�qd ||�εd |) (8.45)

can be very large; there is no direct correlation between the effective charge on
the transition metal atom and the chemical shift . Example 8.9 demonstrates the
variety of chemical shifts of the same atom N in different compounds. For many
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other examples of applications of UPS, XPS, AES, and XES, see the literature
[8.5, 8.6, 8.25, 8.34, 8.41–8.43].

EXAMPLE 8.9

The 1s Line of Nitrogen in the XPS of Different Coordination Systems
Reflecting the Variety of Its Bonding in Different Groups

The sensitivity of chemical shifts to the chemical environment improves
the efficiency of the photoelectron method in structural investigations.
Figure 8.18 illustrates an example [8.42]. It is seen that the position of
the line of the nitrogen 1s state in the XPS depends essentially on the
chemical bonds with this atom and allows one to distinguish between
coordinated and outer-sphere positions. In the AES the chemical shifts
are significantly larger than those of core levels.

FIGURE 8.18. Dependence of the position of the XPS 1s line of the nitrogen
atom in different groups on the near and distal structures of the molecular envi-
ronment in (1) [Ir (en)3](NCS)2; (2) [Ir (en)3](NO2)3; (3) [Ir en3](NO3)3; (4)
[Ir en2ClNO2]NO3; (5) [Ir en2](NO2)2NO3; (6) [Co(NH3)5CN](NO2)2. (From
Nefedov [8.42].)
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EXAFS and Related Methods

Extended X-ray absorption fine structure (EXAFS) became, during the last several
decades, a widespread structural tool (see Refs. 8.44–8.48, 8.25, and references
cited therein). The phenomenon of additional modulated absorption beyond the
K or L edge of the X-ray absorption spectrum has been known for more than
50 years. It is caused by the interference processes that the photoelectron wave
undergoes by scattering from the environment of the absorbing atom; the outgo-
ing photoelectron waves propagate to neighboring atoms and scatter back; then
the interference of the initial and scattered waves produce corresponding modifi-
cations of the final state of the X-ray transition, resulting in modulated absorption
intensity. Figure 8.19 illustrates this effect. A modification of EXAFS is known
as X-ray absorption near-edge structure (XANES).

However, the EXAFS effect remained unused until it was shown [8.44] that the
information regarding the interatomic distances to neighboring atoms contained
in the modulated absorption intensity can be relatively easily extracted by means
of Fourier transform , which allows one to extract the interatomic distance from
the observed wave of interference (Fig. 8.20). On the other hand, synchrotron
radiation in the X-ray range has become available and proved to be an ideal
source for XAFS measurements. Other usual sources of X-rays are less effective
because the extended absorption is weak.

FIGURE 8.19. Illustration of the constructive (mutually enhancing) and destructive
(mutually compensating) interference of the outgoing and incoming electromagnetic waves
resulting in EXAFS. (From [8.47].)
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FIGURE 8.20. EXAFS signal and its Fourier transform (FT) showing the main and
additional interatomic distances that produce the X-ray interference. The amplitude of the
signal and its FT also depend on the number of equivalent neighbors (CN). (From [8.47].)

The main advantage of the EXAFS method is that it enables one to determine
the interatomic distances from the absorbing to neighboring atoms of the first
and second coordination spheres also in the noncrystalline state. This makes the
method distinct from X-ray diffraction and unique when nonsolid and/or irregular
structures are investigated. At present the EXAFS method is applied to study
structural features of coordination centers in solutions and on surfaces [surface
EXAFS (SEXAFS)], including supported and homogeneous catalysts, biological
systems, disordered solids, thin films, and intercalated systems. Example 8.10
shows applications of EXAFS to a variety of chemical problems.

Another somewhat related method is the electron energy loss spectroscopy
(EELS) [8.55]. In this method a high-energy electron beam (hundreds of kilo-
electronvolts) is sent through a thin foil (several hundred angstroms thick) and
the electrons scattered in a given direction are energy analyzed. The spectrum
of energy loss corresponds to excitation of core and valence electronic states, as
well as vibrational states. Despite the limitations created by demands for sample
preparation (thin films), unless the Z elements are very large, the EELS method
may have some advantages such as better signal-to-noise ratio, as compared with
synchrotron absorption, but so far not very many coordination systems have been
studied by this technique.
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EXAMPLE 8.10

Applications of EXAFS Spectroscopy to a Variety of Problems

Consider some examples. The dimerization of Mo(IV) in HCl solution
was revealed by EXAFS that also allowed one to evaluate the Mo—Mo
bond lengths at 2.51 Å [8.49]. In addition, two short Mo—O distances
at 1.95 Å and four long ones at 2.15 Å were detected.

For Cu(H2O)6
2+ and Cr(H2O)6

2+ in solutions the problem
was to determine whether the JT tetragonal distortions of the
octahedron with an electronic E ground state (Section 7.3) can be
detected by EXAFS. It confirmed the prediction of the vibronic
theory; for the axial RL and equatorial RS metal–ligand distances
the following values were obtained (in Å): RL(Cr—O) = 2.30,
RS(Cr—O) = 1.99, RL(Cu—O) = 2.60, RS(Cu—O) = 1.96 [8.50].
For hydrated ions with nondegenerate terms there is no distortion.

The next example is related to the spin crossover phenomenon
(Section 8.4). The transition high spin → low spin is expected to con-
tract the metal–ligand bond. The EXAFS experiments [8.51] show that
in Fe(phen)2(NCS)2 the transition S = 5

2 → S = 1
2 with a spin change

�S = 2 yields a mean contraction 〈�R〉 = 0.24 Å. In Co(H2fsa2en)L2,
where H4fsa2en = N,N ′-ethylenebis(3-carboxysalicylaldimine) and
L = H2O, pyridine, the transition S = 3

2 → S = 1
2 (�S = 1) gives

〈�R〉 = 0.09 Å.
In biologic systems the EXAFS technique allows one to solve some

very complicated problems. For nitrogenase [8.52], it was shown that
the local environment of Mo is S and Fe (as distinct from another Mo
enzyme, sulfite oxidase, where O and S are nearest neighbors). For
hemoglobin the EXAFS data [8.53] rule out the large-scale lengthening
(as postulated by Perutz and Hoard) of the Fe—N bond when passing
from oxyhemoglobin to its deoxy form; in both cases this distance is
almost the same, 2.055 ± 0.01 Å and 1.98 ± 0.01 Å, respectively. The
discussion of the iron atom position in hemoglobin and other metal
enzymes is given in Sections 9.2 and 10.3.

A series of interesting results were obtained in EXAFS measurements
for ferroelectric crystals that undergo the so-called displacive phase
transitions (BaTiO3, KNbO3, PbTiO3, see Table 9.15 and references
cited therein). These experiments confirmed that the distortions of the
crystal lattice are of local origin, as predicted by the PJTE theory,
and the phase transitions are of the order–disorder type rather than
displacive (Section 9.4).
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8.4. MAGNETIC PROPERTIES

Magnetic Moment and Quenching of Orbital Contribution

Magnetic properties of any substance can be characterized by its response to
the external magnetic field intensity H . This response is best described by
the magnetic induction B, defined as the magnetic field intensity inside the
matter:

B = H + μ0M (8.46)

where M is the magnetization , the effective sum of elementary magnetic moments
per unit volume, and μ0 is a constant called permeability of vacuum introduced to
simplify the units; if the magnetic field H and induction B are given in Tesla units
T (not to be confused with temperature; T = NA−1 m−1, where N is Newton,
A is Ampere), μ0 = 4π × 10−7NA−2. M also depends on the magnetic field H ,
and for isotropic media in not very strong fields

μ0M = χH (8.47)

where χ is the magnetic susceptibility (defined here in dimensionless units); in
stronger fields there may be quadratic and higher-order terms in H , meaning
that χ may be dependent on the magnetic field [see Eqs. (8.57) and (8.58)]. In
anisotropic substances χ is not a scalar, but a tensor; provided that the appropriate
axes are chosen, it has three components, χx, χy , and χz, which characterize the
magnetic susceptibilities in different directions, the magnetic anisotropy [for a
powder the averaged value χ = (χx + χy + χz)/3) is observed].

The magnetic susceptibility is one of the most important magnetic properties of
matter that is directly related to its electronic structure [8.3, 8.7, 8.25, 8.56–8.64].
The magnetization M of the substance is determined by the magnetic moments μ

of its elementary units (its molecules or other magnetic centers) and their coop-
erative behavior in the magnetic field. If μ �= 0, the magnetic moments of free
molecules tend to orient along the external magnetic field H (paramagnetism),
but their chaotic collisions in the gas phase (which increase with temperature
T ) destroy the orientation and do not allow for full ordering; the magnetization
becomes temperature-dependent. The Langeven theory predicts that in this case
(quite similar to the polarization of electric dipoles) the magnetic susceptibility
χ is inversely proportional to the temperature

χ = Nμ0μ
2

3kT
(8.48)

where N is the number of magnetic moments: per unit volume [for molar sus-
ceptibility (χmol)N = NA and χmol = (M/ρ)χ , where M is the molar mass and
ρ is the density, so it has the dimensionality of m3 mol−1 = 106 cm3 mol−1].
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If there is a strong magnetic interaction between the magnetic units μ (usu-
ally in crystals), then their orientations are no longer free, and at sufficiently
low temperatures an ordering of these magnets (a magnetic phase transition)
takes place (cf. Section 9.4). There are several main types of magnetic ordering:
ferromagnetic, when all the magnets are parallel and the magnetization is max-
imal; antiferromagnetic, when the nearest-neighbor elementary magnets occupy
alternating opposite directions, and the macroscopic total magnetization is zero;
ferrimagnetic, when in the antiferromagnetic ordering the values of the elemen-
tary magnetic moments of opposite orientation are different and the net magnetic
moment is non-zero); and others (see Table 8.8). Compared with paramagnets, χ

for ferromagnetic materials can be larger by several orders of magnitude, while
the antiferromagnets may have the same order of χ magnitude as paramagnets.
Table 8.8 lists the diversity of possible magnetic behavior of substances.

In addition to the magnetization based on the orientation of the elementary
magnets, there is also induced magnetization (diamagnetism) when, under the
influence of the external magnetic field H , a local circular current occurs with
its own magnetic field opposite to H . The diamagnetic susceptibility is thus
negative; its absolute value is smaller by orders of magnitude than the param-
agnetic susceptibility. The diamagnetic behavior (repulsion from the magnetic
field), although weak, is apparently the only possible response to the magnetic
influence on systems with μ = 0 (however, see Van Fleck paramagnetism below).

Information about the electronic structure of molecules consists in its magnetic
moment μ. It is known from quantum mechanics that each momentum of the
microsystem is associated with a proportional magnetic moment. For the free
electron with a spin momentum S, its associated magnetic moment is

μ = e�

mc
S (8.49)

while the magnetic moment of its orbital motion with an orbital momentum L
(Section 2.2) is

μL = βL (8.50)

where β = e�/2mc is the elementary magnetic moment, called Bohr magneton ,
β = 9.274 × 10−24 erg/tesla. Hence the total magnetic moment of the system is

μ = β(L + 2S) (8.51)

This expression is, in fact, the operator of the magnetic moment, while the observ-
able moments are determined as quantum-mechanical averaged values of the
operator μ over the states under consideration. In particular, for a free atom with
a total momentum J = L + S, taking the projection of μ on J and the average
〈J 2〉 = J (J + 1), we have (see Problem 8.3)

μJ = gβ[J (J + 1)]1/2 (8.52)
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TABLE 8.8. The Main Types of Magnetic Response of Substances

Type of Temperature
Magnetism Origina ∼χ at 20◦C Dependence Examples

Diamagnetism

Proper MM equals
zero; induced
MM is opposite
to the external
field

−10−6 None KCl, C6H6

Paramagnetism

Atomic, ionic,
and molecular

Electronic orbital
and/or spin MM
is nonzero

(1–20) × 10−6 1/T or
1/(T + θ)

H, Ti3+ NO,
K3Fe(CN)6

Nuclear Nuclear MM is
nonzero

10−9 None H in hydrids

Free electrons Electronic gas
MM is nonzero

10−8 Weak Metallic K or
Na

Van-Vleck, or
T-independent

Excited states with
other MM lay
higher than kT

10−6 None KMnO4 CoIII

amines

Cooperative magnetism (ordered systems)

Ferromagnetism Crystal lattice with
parallel MM of
the centers

1−102 Complicated;
decreases
at Tc

Metallic iron

Antiferro-
magnetism

Two ferromagnetic
sublattices with
antiparallel
mutual
compensating
spins

10−4−10−5 A maximum
at Neel T

KNiF3, MnSe

Ferrimagnetism Partial
compensated
antiparallel
spins of
different
sublattices

10−5 Similar Fe3O4

Metamagnetism A kind of
ferrimagnetism
with
complicated
ordering of
sublattices

10−5 Similar NiCl2 at
liquid H2

aMM denotes magnetic moment.



446 ELECTRONIC STRUCTURE INVESTIGATED BY PHYSICAL METHODS

where

g = 1 + J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)
(8.53)

The coefficient g, the g factor, or Landé factor (see Landé intervals (2.15)],
plays a significant role in molecular magnetism. For a free electron L = 0, J = S,
and g = 2. In fact, however, a more correct value for the free-electron g factor
is g = 2.0023.

Equation (8.52) is valid when there is a single energy level with a given J

value, well separated from other levels, that is, when there is a sufficiently strong
spin–orbital coupling (λ  kT ). This case may take place in heavy atoms. In the
other limit case when λ � kT [light atoms and transition metals of the first (and
even second) row at not very low temperatures] the energy levels of the same
LS term with different J values are almost equally populated, and hence the
effective measured magnetic moment, averaged over all the J values, is [8.63]

μeff = β[4S(S+1) + L(L+1)]1/2 (8.54)

If the atom or ion is placed in the field of ligands, its electronic structure
changes and expressions (8.52) and (8.54), in general, are no longer valid. In
particular, the orbital moment is subject to significant changes. Experimental
data show that in most cases the magnetic properties of transition metal ions in
complexes are as if the orbital contribution vanished, L = 0:

μeff ≈ 2β[S(S + 1)]1/2 (8.55)

that is, the orbital momentum is reduced to zero and the magnetic moment has
a spin-only value.

This quenching of the orbital contribution to the magnetic moment by the ligand
field can be explained as follows. The effective orbital magnetic moment is due
to additional magnetization of the substance (additional magnetic susceptibility),
which occurs as a result of free orientation of the magnetic moment (of the orbital
motion) along the external magnetic field. This free orientation is possible in the
free atom because for L �= 0 the energy term is degenerate, and in absence
of external perturbation there is no fixed direction of the orbital moment—all
directions are equivalent.

Now, the main effect of the ligand field on the CA is the splitting of its
degenerate energy terms (Section 4.2), as a result of which the orbital motion
in the ground state becomes fixed or limited in orientation, and it cannot freely
follow the magnetic field. Therefore, although the orbital momentum of the CA
electrons in the field of ligands can be nonzero (L �= 0), it may not be manifest
(or may be manifest only partly) in the magnetic behavior of the electrons. Hence
the magnetic orbital momentum is completely or partially quenched by the ligand
field.
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The partial quenching of the orbital magnetic moment takes place when the
crystal field splitting is not complete, and there are still some possibilities for the
orbital magnetic moment to rotate and follow the external magnetic field. These
cases are well known from symmetry considerations. Indeed, for the electronic
state of a cubic system �� that belongs to the IrRep � (Section 3.4), the average
orbital momentum is determined by the integral

∫

��
∗L�� dτ (8.56)

Since the orbital momentum L in cubic groups belongs to the T1 representation,
the integral (8.56) is nonzero if and only if the symmetric product [�]2 contains
T1 [see Eq. (3.34) in Section 3.4]. It can be easily shown that for cubic symmetries
this is possible only when � = T1, or � = T2 (for icosahedral symmetry there
are more possibilities). In all other cases, namely, for nondegenerate or double-
degenerate terms in cubic groups, the orbital magnetism is completely quenched
and the magnetic moment is determined by the spin-only formula (8.55).

The electronic configurations and the ground-state terms of coordination
compounds with different coordination geometries are given in Table 6.3.
From the data in that table, one can state that for octahedral complexes with
d3, d8, d9, d10 as well as high-spin d4, d5 and low-spin d6, d7 configurations,
the spin-only magnetic behavior in Eq. (8.55) is expected, while for d1, d2,
high-spin d6, d7, and low-spin d4, d5 configurations, an orbital contribution to
the magnetic moment can be significant. Experimental data [8.63] confirm these
expectations.

The orbital contribution to the magnetic moment is also nonzero when the T

term is split by low-symmetry crystal fields or spin–orbital interaction, and the
splitting magnitude is not very large as compared with kT . If it is of the order
of kT , μeff becomes temperature-dependent.

Paramagnetic Susceptibility

The magnetic moments μ of molecular systems can be determined from the
measured magnetic susceptibility χ = μ0M/H [Eq. (8.47)], provided that the
relation between μ and χ is known. The simple expression (8.48) for χ obtained
from the Langeven theory is valid when all the freely rotating elementary molec-
ular magnets have the same magnetic moments. This means that there are no
thermally accessible magnetic excited states with μ′ �= μ.

However, in most cases, especially in transition metal coordination com-
pounds, there are many close-in-energy states (created by the spin–orbital and
crystal field splitting) that have different spins and orbital moments and hence dif-
ferent magnetic moments μi . If these states are thermally populated, the effective
magnetic moment in χ equals the averaged moment taken as a sum of Boltzmann
distributed elementary magnets μi . The theory of paramagnetic susceptibility for
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this case was developed by Van Vleck [8.56]; it yields

χ = N
∑

n,m

(
(ε

(1)
n,m)2

kT
− 2ε(2)

n,m

)
exp(−ε0

n/kT )
∑

n,m exp(−ε0
n/kT )

(8.57)

where ε
(1)
n,m and ε

(2)
n,m are the first- and second-order corrections to the energy level

ε0
n in the magnetic field, that is

εn,m = ε(0)
n + ε(1)

n,mH + ε(2)
n,mH 2 (8.58)

and it is assumed that the energy splitting in the magnetic field (the Zeeman
effect; see below) are much smaller than kT [in the absence of the magnetic
field εn,m = ε

(0)
n is degenerate with respect to m].

If the excited states with n> 1 are not thermally populated, ε0
n − ε0

1  kT ,
Eq. (8.57) can be essentially simplified:

χ = N

⎧
⎪⎨

⎪⎩

∑

m

[
ε
(1)
1,m

]2

kT
− 2

∑

m

ε
(2)
1,m

⎫
⎪⎬

⎪⎭
(8.59)

The first term here is the usual paramagnetic susceptibility, which obeys the Curie
law : χ = C/T . From the Zeeman effect (see below) it is known that the term that
is linear in H in (8.58) is simply related to the effective magnetic moment of the
system:

∑
m[ε(1)

1,m]2 = μ2
eff/3, and hence this part of χ coincides with Eq. (8.48)

given by Langeven’s theory. However, the second term in (8.58), in contrast
to the first one, is independent of temperature. Its contribution is temperature-
independent , or Van Vleck, paramagnetism . Since the second-order perturbation
correction in (8.59) is of the order of

∑
n |〈1|W |n〉|2/(ε0

n − ε0
1), where W is the

energy of interaction of the magnetic moment (8.50) with the external field,
ε
(2)
1 is the larger, the more low-lying excited states are admixed to the ground

state by the magnetic field. Typical values of Van Vleck paramagnetism for 3d

metals range from 60 × 10−6 cm3 · mol−1 for Cu(II) to 400 × 10−6 cm3 · mol−1

for Co(II) [8.63] and reach about 10−3 cm3 · mol−1 for some rare-earth ions.
Calculations of the paramagnetic susceptibilities using the Van Vleck formula

(8.57) require knowledge of the thermally populated energy levels in the magnetic
field. Thermal population is significant if the energy spacing of these levels is
about or smaller than kT . Usually this means that they are spin sublevels of
the same electronic term split by the low-symmetry ligand field and external
magnetic field. In this case the spin energy levels can be obtained by means of
the spin Hamiltonian method [8.57].

The idea of the spin Hamiltonian is as follows. Provided that the expected
spin states emerge from the same electronic term (i.e., no excited electronic
states are admixed by the magnetic field), one can average the full Hamiltonian
of the system (including all the interactions with the magnetic field) over the
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electronic and nuclear coordinates to obtain a Hamiltonian that contains explic-
itly only spin S and magnetic field H operators and some averaged electronic
(and nuclear) parameters. In a general form (without nuclear spins) the spin
Hamiltonian appears as follows [8.57]:

H =
∑

i,j

[DijSiSj + βgij HiSj ] (8.60)

where i, j = x, y, z, Dij and gij are the tensors of zero field splitting and g factor,
respectively. These parameters contain all the information about the electronic
structure of the system and can be calculated, provided that the wavefunction of
the term under consideration is known. On the other hand, the Dij and gij values
can be obtained from experimental data by comparing the magnetic properties
with those predicted by the spin Hamiltonian (8.60).

The procedure for evaluating the energy levels εi by means of the spin Hamil-
tonian is to consider H as a perturbation to the (2S + 1)-fold-degenerate spin
multiplet. By solving the secular equation of perturbation theory [the matrix
elements of the spin operators are determined as in Eqs. (2.22)–(2.25)]

‖Hij − εδij‖ = 0 (8.61)

we get the 2S + 1 energy levels sought for.
The number of independent parameters in the spin Hamiltonian (8.60) depends

on the symmetry of the system. Kramers doublets , that is, spin doublet states
with S = 1

2 , are not split by crystal fields (they split only in magnetic fields).
In the crystal field of lower than cubic symmetry the spin Hamiltonian can be
written as follows:

H = D[S2
z − 1

3S(S + 1)] + E(S2
x − S2

y)

+ β(gxHxSx + gyHySy + gzHzSz) (8.62)

where D and E are the parameters of axial and rhombic distortions, respectively.
Depending on the spin value S, this magnetic field Hamiltonian yields a series
of energy levels that contribute to χ . In particular, in the case of an axial field
D �= 0, E = 0, gz = gl, gx = gy = gn, there are two values of χ : χl and χn,
parallel and perpendicular to the axis of symmetry, respectively. Their temper-
ature dependence after (8.57) (without the temperature-independent magnetism)
for different total spin S values is given in Table 8.9 [8.64].

Electron Spin Resonance (ESR)

The ESR method is based on resonance absorption of electromagnetic irradiation
in the radio and microwave regions associated with transitions between the energy
levels of the electronic term split by the external magnetic field. The splitting
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TABLE 8.9. Temperature Dependence of the Magnetic Molar Susceptibility
χ/C, C = NAμ0g

2β2/kT (g = gl for Cl and g = gn for Cn) for Several Spin States
S of One-Center Coordination Compounds with Axial Symmetry; x = D/kT

S χl/Cl, χn/Cn

χl/Cl

1 2e−x/(1 + 2e−x)
3
2 (1 + 9e−2x)/4(1 + e−2x)

2 (2e−x + 8e−4x)/(1 + 2e−x + 2e−4x)
5
2 (1 + 9e−2x + 25e−6x)/4(1 + e−2x + e−6x)

χn/Cn

1 (2/x)(1 + e−x)(1 + 2e−x)
3
2 [4 + (3/x)(1 − e−2x)]/4(1 + 2e−2x)

2 [(6/x)(1 − e−x) + (4/3x)(e−x − e−4x)](1 + 2e−x + 2e−4x)
5
2 [9 + (8/x)(1 − e−2x) + (9/2x)(e−2x − e−6x)]/4(1 + e−2x + e−6x)

of the energy levels in magnetic fields is known as the Zeeman effect . Zeeman
splitting can be evaluated using the spin Hamiltonian [Eqs. (8.60) and (8.62)]
and solving the secular equation (8.61).

In the simplest case, if the total momentum of an atom J = L + S is described
by the quantum number J and its projection m = J, J − 1, . . . , −J , the energy
levels in the magnetic field H are given by the simple Zeeman splitting:

εm = gβHm (8.63)

where g is the Landé factor (g factor) given by Eq. (8.53) (see also Problem 8.1).
Electromagnetic transitions between these levels are allowed as magnetic-

dipole transitions obeying the selection rule �m = ±1. This is accompanied by
absorption of a quantum of electromagnetic irradiation

�ω = εm+1 − εm = gβH (8.64)

which, for a given external field H , is completely determined by the g factor. It
is seen from Eq. (8.53) that if the spin S = 0, but the orbital momentum L �= 0,
then J = L and g = 1, while for L = 0, S �= 0, we have J = S and gs = 2 (as
mentioned above, a more precise value is gs = 2.0023).

If the atom is in a transition metal compound, the ligand influence changes the
g factor drastically. To begin with, the orbital contribution to the momentum J ,
as shown above, may become completely or partially quenched. This reduction of
the orbital contribution is determined by the symmetry of the crystal field. Sev-
eral other parameters of the electronic structure also contribute significantly to the
ESR spectrum: spin–orbital admixing of excited states; symmetry and strength of
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the ligand fields, yielding anisotropic g factors; admixture of ligand states (cova-
lence contribution); splitting of the line due to the splitting of the spin states (fine
structure); further splitting due to the interaction with the nuclear spin (hyper-
fine splitting); splitting due to the ligand nuclear spin (superhyperfine splitting);
g-factor reduction due to orbital degeneracy (vibronic reduction); dependence
of the line shape on temperature via interactions with vibrations (paramagnetic
relaxation); and so on. Thus the ESR spectra carry very rich information about
the electronic structure of transition metal compounds .

The origin of the covalence contribution can be clarified by considering the
widespread case of tetragonally distorted Cu2+ complexes of D4h symmetry. In
the approximation of crystal field theory (Section 4.1) the energy levels of the d9

configuration in the ligand field are as shown in Fig. 8.21 (cf. Fig. 4.4 and note
that a hole in the d10 configuration has an energy-level diagram inverse to that
in d1). The B1g ground state corresponds to the atomic orbital dx2 –y2 . This state
originates from the E term in a cubic field and hence its orbital contribution is
quenched, thus having a pure spin g factor g = 2.0023. However, the spin–orbital
interaction mixes this ground state with the excited states B2g and Eg; the latter
emerge from the T2g term of the cubic system, which has an orbital contribution.

Denote the wavefunctions of the mixing antibonding states B1g , B2g, and Eg

by �0i with i = 1, 2, 3, respectively. In the weak-covalence model, following
Eq. (5.33), these wavefunctions are

�i = Ni(�0i − γ�i) (8.65)

FIGURE 8.21. The Cu2+ 2D(3d9) term splitting in tetrahedral (a) and tetragonally
elongated tetrahedral (b) crystal fields, and in the external magnetic field H (c, A). At
βH0 = �ω there is a resonance absorption (B) that changes the spin state.
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where �i is the ligand group orbital, γ is the covalence constant, Ni = [1 +
γ 2

i − 2γiSi]−1 is the normalization constant, and Si is the overlap integral: Si =
〈ψ0i |�i〉. Then, considering the spin–orbital interaction λ(L, S) as a perturbation
[Eq. (2.23); λ is the spin–orbital coupling constant], one can obtain the following
in the second-order perturbation theory for the longitudinal (l) and normal (n)

components:

gl = gzz = 2 − 8λ

�1
N2

1 N2
2

gn = gxx = gyy = 2 − 2λ

�2
N2

1 N2
3

(8.66)

Here �1 and �2 are the energy gaps to the excited states (Fig. 8.21), and terms
of the order of γiγj and γiSj are ignored.

For pure CA states N1 = N2 = N3 = 1, and the orbital contributions to gl and
gn are −8λ/�1 and −2λ/�2, respectively. Note that for Cu, λ < 0, and hence
these contributions are positive increasing the g factors. For nonzero covalence
Ni < 1, so the orbital contributions to the g factors are reduced k2

1 = N2
1 N2

2 and
k2

2 = N2
1 N2

3 times for gl and gn, respectively. This reduction can be presented
as if the spin–orbital constant λ were reduced to λ′ = k2λ. If �1 and �2 are
known (e.g., from spectroscopic data or calculations), one can evaluate λ′ from
the measured g factors and estimate k2, the covalence reduction.

The covalence reduction of the spin–orbital constant λ (or the orbital con-
tribution to the g factor) is similar to the nephelauxetic effect (discussed in
Section 8.2), which results from reduction of the interelectron interaction Racah
parameter B by formation of covalence bonds. Both these parameter reductions
(and some others) are due to the quite understandable effects of electron delo-
calization on larger volumes by coordination. The spin–orbital interaction may
also be reduced as a result of special relativistic effects of ligand coordination
(Section 6.5).

The two components of the g factor in Eq. (8.66), gl and gn, may differ
significantly following the anisotropy of the tetragonal system. For an arbitrary
direction of the magnetic field H with an angle θ to the tetragonal axis, we
obtain

gθ = [g2
l cos2 θ + g2

n sin2 θ ]1/2 (8.67)

For lower symmetries all the three components of the g factor are different.
In cubic fields the three components of the g factor are equivalent, and hence

no angular dependence of the ESR spectrum is expected. However, in many
cases, as in the preceding example of Cu2+ complexes, the ground state in
cubic fields is orbitally degenerate. This creates quite new circumstances, due
to which the ESR spectrum complicates significantly [8.26]. Indeed, according
to the JTE and other vibronic interaction effects (Sections 7.3 and 7.4), the elec-
tronic degeneracy causes a special coupling between the electronic and nuclear
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motions, which renders invalid the direct application of the spin Hamiltonian
approach.

In particular, for the E term of the example of Cu2+ octahedral complexes
with strong vibronic coupling, presented above, there are three APES minima in
which the octahedron is elongated along one of the three fourth-order axes (one
for each minimum) (Figs. 7.10 and 7.11). In each of these minima the g factor
corresponds to the tetragonally distorted octahedron.

On the other hand, the system performs pulsating motions with relatively high-
frequency transitions between the equivalent minima. As shown in Section 7.3,
these pulsating distortions result in the tunneling splitting of the vibrational
energy levels. When it is sufficiently small (with strong vibronic coupling) the
tunneling levels are mixed by the external magnetic field, resulting in a special
Zeeman splitting that yield a complicated ESR spectrum with a characteristic
dependence on temperature and irradiation frequency [8.26]. If the tunneling
splitting is larger than the Zeeman splitting (∼βH ), the ESR spectrum is deter-
mined by the ground level only. In this case the g factor is subject to vibronic
reduction (Section 7.3).

Set g1 = gs − (4λ/�), g2 = −(4λ/�), and let l,m, and n represent the direc-
tion cosines of the magnetic field vector H . Then it can be shown that, by taking
into consideration the vibronic reduction factor q = KE(E) after Eqs. (7.50), the
angular dependence of the g factor is [8.57]:

g1,2 = gs − g2 ± qg2f

f = [1 − 3(l2m2 + l2n2 + m2n2)]1/2
(8.68)

For very strong vibronic coupling (with deep minima of the adiabatic potential
and high barriers between them) q = 1

2 , while in the absence of the reduction
q = 1. The angular dependence of g for these two limit cases is shown in Fig. 8.22
together with experimental data obtained for Cu2+ ions as impurities in MgO at
T = 1.2 K (see, e.g., in Ref. 8.26). As one can see, the difference between
the two spectra (with and without vibronic coupling) is rather significant and
the experimental data confirm unambiguously the importance of the vibronic
reduction. For the vibronic implications in the ESR spectra of other terms and
other conditions see [8.15, 8.26, 8.30].

So far we have considered a single ESR line, especially its g factor. As
mentioned above, the fine, hyperfine, and superhyperfine structures of the ESR
spectrum may also be important. Consider the Cr3+(d3, 4F) ion in the ligand
field of trigonal symmetry D3h resulting in the orbitally nondegenerate ground-
state spin quadruplet 4A2g (S = 3

2 , ms = ± 1
2 ,± 3

2 ). The spin–orbital interaction
splits this term into two doublets with ms = ± 1

2 and ms = ± 3
2 , respectively (e.g.,

for chromium alum the splitting is 2D = 0.15 cm−1), which are further split by
the external magnetic field H , as shown in Fig. 8.23. As a result, there are
three values of H (H1, H2, and H3) for which the resonance absorption of the
same quantum of irradiation takes place, each thus having its own g factor (fine
structure).
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FIGURE 8.22. Two limiting cases of angular dependence of the g factor for the
Jahn–Teller linear E ⊗ e problem with strong (q = 1

2 , solid line) and without (q = 1,
dashed line) vibronic coupling. Experimental data are shown by points.

FIGURE 8.23. Zeeman splitting and ESR transitions for a 4F(D3) (Cr3+-type) term in
magnetic fields. The H1, H2, and H3 values indicate the magnetic field intensities for
three possible resonance transitions with the same quantum of irradiation �ω.



MAGNETIC PROPERTIES 455

The hyperfine structure is described by additional terms HN in the spin Hamil-
tonian that include the interaction between the electron (S) and nuclear (I) spins:

HN =
∑

ij

[AijSiIj + Pij IiIj ] − gNβN(I, H ) (8.69)

Here Aij are the constants of the spin–spin (dipole–dipole) magnetic interaction
between the electrons and nuclei, Pij are the constants of the quadrupole inter-
actions, and the last term describes the interaction between the nuclei and the
external magnetic field; gN and βN are the nuclear g factor and Bohr magneton,
respectively (βN

∼= β/1840).
While the last term in (8.69) is important for nuclear magnetic resonance

(NMR) spectra (for a review of NMR spectroscopy in coordination compounds,
see Ref. 8.65), the quadrupole splitting is most important in Mossbauer spec-
troscopy (Section 8.5). For the spin–spin interaction that yields the hyperfine
structure of the ESR spectra the number of independent constants Aij depends
on the symmetry of the system. In cubic systems there is only one constant A,
while in axial symmetry there are two, A and B:

HN = ASzIz + B(SxIx + SyIy) (8.70)

The constants of hyperfine interaction contain the nuclear magnetic moment
proportional to gNβN , which is about 1840 times smaller than the electronic
magnetic moment. Therefore, hyperfine splitting is accordingly smaller than fine-
structure splitting. In a sufficiently strong magnetic field each line of the fine
structure splits into 2I + 1 lines, which are equally spaced when B = 0 (cubic
symmetry). Magnetic-dipole transitions are allowed between any two levels with
�ms = ±1 and �M = 0 (as above, M is the nuclear magnetic quantum number).

The electron–nucleus dipole–dipole interaction is nonzero only if the elec-
tron has an orbital moment L �= 0 [8.57]. However, there is another term of
electron–nucleus interaction not included in (8.69), the contact Fermi interaction,
which is nonzero for only s electrons that have nonzero electron density |�(0)|2
at the nuclei. The contact interaction is much stronger than the dipole–dipole
one, and it is less dependent on the ligands. Therefore, even when there is
no dipole–dipole interactions (L = 0) and no direct s-orbital participation, the
hyperfine structure can still be observed because of the configuration interaction
(Section 5.3) with s-containing configurations of the same symmetry and mul-
tiplicity (s-configuration interaction). The observed hyperfine structure in Mn2+
salts (d5, L = 0) is an example of this kind.

The hyperfine constants are also linked to the covalence. In particular, for N1

of Eq. (8.65), which is a measure of CA participation in the covalent MO, the
following approximate relation holds for systems with axial symmetry:

N2
1 = −A

P
+ (gl − 2) + 3

7
(gn − 2) + 0.04 (8.71)
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where P = 2gNβNβ〈r−3〉 is the constant of the electron–nucleus interaction
[8.57]. For Cu2+, P = 0.36 cm−1.

The superhyperfine structure is due to the interaction between the unpaired
electrons and the nuclear spin of the ligands, which can be described by an
additional term in the spin Hamiltonian:

HN ′ =
∑

N ′
A′

ij SiI
′
j (8.72)

Here N ′ denotes the ligand nuclei that have nonzero spin I ′ and A′
ij are mostly

contact Fermi interaction constants (the ligands participate in the bonding by
mostly s or s-hybridized orbitals). Usually, the unpaired electron remains on the
ligands for a relatively shorter time than on the CA. Therefore, A′

ij are smaller
than Aij and describe further splitting of the hyperfine lines. For comparison of
orders of magnitude, examples of ESR spectra constants for some Cu2+ and V4+
complexes in solutions are given in Table 8.10.

Interestingly, the number of superhyperfine lines and their relative intensi-
ties are determined by the number of equivalent ligand nuclei n. In partic-
ular, for I ′ = 1

2 the line intensities follow exactly the binomial coefficients:
1, n, n(n−1)/2, . . . n, 1; the number of lines thus is n + 1. Similar rules are
established for other values of I ′ [8.57].

TABLE 8.10. ESR Spectra Parameters for Some Chelate Cu(II) and V(IV)
Compounds in Solutions

A × 104 B × 104 A′ × 104b

Compound Solventa gl gn (cm−1) (cm−1) (cm−1)

Bis(acetylacetonato)-
Cu(II)

I 2.264 2.036 145.5 29 —

Bis(dimethyldithio-
carbomato)Cu(II)

I 2.098 2.035 154c 40 —

165c 43 —
II 2.121 2.040 134c 25 —

146.5c 27 —
Bis(salycilaldoxymato)-

Cu(II)
III 2.171 2.020 183 41 14

Bis(salycilaldimino)-
Cu(II)

III 2.14 2.08 168 16 —

Bis(8 chinolinato)Cu(II) III 2.172 2.042 162 25 10
Diclorophenantroline-

Cu(II)
III 2.22 2.08 119 29 —

Oxo(bis-
acetylacetonato)V(IV)

III 1.944 1.996 173.5 63.5 —

aI, 60% toluol, 40% chloroform; II, 40 % pyridine, 60% chloroform; III, 40% toluol, 60% chloroform.
bSuperhyperfine structure from the ligand nitrogen atoms.
cResults for two copper isotopes: 63Cu and 65Cu.
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An extension known as electron nuclear double resonance (ENDOR) is often
used to obtain more resolved information. Since the energy gap between the Zee-
man levels in ESR is relatively small, the difference in their thermal (Boltzmann)
population at nonzero temperatures is small as well. Therefore, if the microwave
power is sufficiently high and the relaxation process is slow, the ESR signal will
be lost because of the rapid saturation of the transition as the populations of the
two levels become equalized. Under these conditions, an additional irradiation of
the system with a much lower (radio-) frequency that is in resonance with the Zee-
man splitting of the nuclear spin levels produces transitions between them seen
as additional absorption at that frequencies. This simultaneously improves the
ESR signal because it serves as an additional channel of relaxation. Figure 8.24
illustrates the ENDOR spectra for the case of electron spin S = 1

2 and nuclear
spin I = 1

2 (relevant to protons) when the nuclear Zeeman splitting is larger than
the hyperfine interaction. For other cases and more details, see Ref. 8.25.

The magnetic resonance methods are among the most powerful means of
investigating electronic structure of coordination compounds. The main limita-
tions of the ESR method lie in the requirement of unpaired electrons (S �= 0) and
relatively slow paramagnetic relaxations that make it impossible to observe the
ESR spectrum and its resolution. Note also that most of the information from the
ESR spectra refers solely to the states of the unpaired electrons . In particular, the
conclusions about covalence drawn from ESR data [Eq. (8.66)] refer to orbital
covalence on the MOs of the unpaired electrons, whereas the covalence of the
bond as a whole, as discussed in Section 6.2, is produced by other electrons,
namely, by those on uncompensated bonding MOs (Fig. 6.3).

Magnetic Exchange Coupling

One of the most important and up-to-date applications of magnetic measurements
is for the study of the magnetic exchange interactions in multicenter (polynu-
clear) coordination compounds [8.7, 8.58, 8.60]. The interaction of two atoms
with unpaired spins is a typical problem of covalent bonding. As mentioned in
Section 1.2, for the hydrogen molecule this was solved by Heitler and Lon-
don in 1927, and this solution forms the basis of the valence bond theory . In
the Heitler–London treatment the H2 molecule has two states: bonding spin
singlet (the two spins are antiparallel (↑↓, S = 0) and antibonding spin triplet
(↑↑, S = 1). The energy gap between these two states is dependent on the two-
electron exchange integral K given by Eq. (2.36) (Section 2.2). In the case of
H2, K < 0; if K > 0, the triplet state is lower than the singlet state. The inter-
action resulting in the high-spin ground state is called ferromagnetic interaction
(because it is analogous to the parallel spin ordering in ferromagnets, mentioned
in Section 8.1), while that resulting in zero or the lowest spin is the antiferro-
magnetic interaction .

If the two centers with nonzero spins are bonded not directly but via inter-
mediate (bridging) groups, the spin–spin interaction between them becomes
more complicated, involving the electrons of the intermediate centers (indirect,
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FIGURE 8.24. Illustration of the ENDOR on protons (I = 1
2 ) and the electronic spin S =

1
2 in the case of nuclear Zeeman splitting larger than hyperfine splitting A: (A) Zeeman
splitting and ESR, �MS = 1,�MI = 0 (full arrow), and ENDOR, �MS = 0, �MI = 1
(ν+ and ν−); (B) the two ENDOR lines separated by hyperfine splitting A and centered
at the Larmor frequency. Larger microwave frequencies ν2 shift the ENDOR absorption
to higher radiofrequencies Rf . (From [8.4].)
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or superexchange). Heisenberg and Dirac suggested a simple spin Hamiltonian
model for the magnetic interactions between two centers i and j later modified
by Van Vleck (the HDVV model ), which has the form

H = −2JijSiSj (8.73)

where Jij is the isotropic exchange coupling constant . The HDVV model assumes
that the intracenter interactions (that produce, respectively, the spins Si and Sj

on the two centers) are much stronger than the interaction between the centers.
This assumption holds for all superexchange situations, but may be violated in
direct metal–metal multiple bonding.

The eigenvalues of the Hamiltonian (8.73) are

E(S) = −J [S(S + 1) − Si(Si + 1) − Sj (Sj + 1)] (8.74)

where the total spin S is determined, as usual, following the rule of addition of
moments:

S = Si + Sj , Si + Sj − 1, . . . , |Si − Sj | (8.75)

The energy intervals between the levels (8.74) (the Landé intervals;
Section 2.2) are

�S = E(S) − E(S − 1) = −2JijS (8.76)

In particular, for two centers with one unpaired electron on each of them
(omitting indices at J ), we obtain

�1 = E(1) − E(0) = −2J (8.77)

and hence the exchange constant J characterizes the energy gap � between
different spin states. Its sign determines the type of interaction: ferromagnetic for
J > 0 and antiferromagnetic for J < 0. Calculations show that for two directly
bonded spin centers a and b (as in the molecule H2)

J = 2(IabS
2
ab − Kab)

1 − S4
ab

(8.78)

where Iab and Kab are, respectively, the Coulomb and exchange integrals given
by Eqs. (2.35) and (2.36), and Sab is the overlap integral. For superexchange and
for larger spin values on the centers the expressions for J become much more
complicated. Anderson [8.66] first suggested that exchange interaction between
metallic ions can be presented as a sum of ferromagnetic JF and antiferromag-
netic JAF contributions

J = JF + JAF (8.79)
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where

JF = 2Kab

and

JAF = 4HabSab (8.80)

where Hab is the resonance integral (5.4).
Note that while the ferromagnetic contribution (which is proportional to the

Coulomb interelectron repulsion) is always nonzero and positive, the antiferro-
magnetic term is proportional to the overlap integral Sab, and hence it is nonzero
for nonorthogonal orbitals only and can be either positive or negative. Kahn
and coworkers [8.62] extended this idea to indirect superexchange interactions
in multicenter coordination compounds. In a binuclear complex, as distinct from
two metallic atoms, the two one-electron orbitals of the unpaired spins are no
longer pure AOs, but magnetic orbitals defined as single occupied MOs cen-
tered, respectively, on the two sites a and b, and partially delocalized toward the
terminal and bridging ligands. If the overlap between these two magnetic orbitals
is nonzero, they form two MOs with an energy gap � = −2Hab. Therefore for
equivalent centers

JAF = −2�Sab (8.81)

while for nonequivalent centers

JAF = −2(�2 − �2
0)

1/2Sab (8.82)

where �0 is the energy gap between the reference magnetic (often atomic)
orbitals.

A somewhat different suggestion for JAF was given by Hoffmann [8.67]:

JAF = −�2

Iaa − Iab

(8.83)

Since � ∼ Sab, the two expressions (8.81) and (8.83) are qualitatively similar.
The main conclusion drawn from these formulas is that the antiferromagnetic

contribution JAF to the exchange coupling constant J is strongly dependent
on the overlap integral between the magnetic orbitals of the interacting centers
(∼S2

ab). This explains the dependence of the observed magnetic properties of
multicenter compounds on small structural changes [8.68]. In particular, if Sab =
0 (orthogonal magnetic orbitals), then JAF = 0, and the magnetic coupling is
expected to be ferromagnetic with a high-spin ground state. On the other hand,
the ferromagnetic contribution JF is also dependent on structural features, mostly
on charge density distribution [8.62, 8.68]. Examples 8.11 and 8.12 give further
insight into the details of metal–metal exchange-coupled interaction.
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EXAMPLE 8.11

Magnetic Exchange Coupling in Binuclear Copper Acetate Hydrate

An interesting example that contributed significantly to the understand-
ing of exchange coupling in coordination compounds is the binuclear
copper(II) acetate hydrate [Cu(OAc)2H2O]2. Intensive investigation of
this system began in 1952, when Bleaney and Bowers [8.69] showed
that its magnetic susceptibility χ and ESR spectrum are unusual for
Cu2+ complexes (its dimeric structure was not known at that time).
Indeed, the temperature dependence of χ has a maximum at Tmax =
255 K [8.70] (for the dehydrated complex Tmax = 270 K) and decreases
almost to zero at lower temperatures as shown in Fig. 8.25. Although
the g factors of the ESR spectrum are similar to those of other copper(II)
salts, its intensity decreases with temperature and becomes zero at T =
20 K, exhibiting a small zero-field absorption at D = 0.34 ± 0.03 cm−1.
This magnetic behavior is somewhat like that of Ni(II) compounds
with S = 1; therefore, the authors [8.69] assumed that the system is
dimeric with two exchange-coupled Cu2+ centers in each molecule.
The X-ray structural investigation confirmed this assumption [8.71]
(Fig. 8.26).

FIGURE 8.25. Temperature dependence of the magnetic susceptibility of
[Cu(OAc)2H2O]2 (a) and its dehydrated analog [Cu(OAc)2] (b) calculated by
Eq. (8.84) (dashed line) and obtained from experimental data (points). (From
Figgis and Martin [8.70].)
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FIGURE 8.26. Molecular structure of [Cu(OAc)2H2O]2. (From Martin [8.71].)

For the dimeric binuclear Cu2+ system with two equivalent spin
S = 1

2 magnetic centers, the HDVV Hamiltonian (8.73) yields two
energy levels with S = 0 and S = 1, respectively. To explain the exper-
imental data, one must assume that the ground state is singlet S = 0,
which means that J < 0 and the magnetic exchange coupling is anti-
ferromagnetic. The magnetic susceptibility is then determined by the
Van Vleck equation (8.57) which for a two-center system under con-
sideration with S = 1 and J < 0 yields (cf. Table 8.9 for one-center
systems):

χ = (2Ng2β2/kT )

3 + exp(−2J/kT )
(8.84)

This is the Bleaney–Bowers equation [8.69]. With −2J/k = 480 K
(2J = −334 cm−1) it fits well the experimental data in Fig. 8.25.

EXAMPLE 8.12

The Nature of Metal–Metal Bonding in Binuclear Copper Acetate Hydrate

The revealed dimeric structure and magnetic exchange coupling
between the two copper centers in acetate and related compounds
raised several hypotheses about the electronic structure of these
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compounds and possible direct Cu—Cu interaction in view of their
rather large interatomic distance 2.64 Å: direct δ bonding between the
two dx2−y2 orbitals (Sections 2.1 and 6.3) [8.70], σ bonding between
their dz2 orbitals [8.72], superexchange through the bridging carboxyl
ions [8.73], and others.

Semiempirical calculations [8.74] in the IEH approximation
(Section 5.5) show that the bonding in the copper(II) acetate is much
more complicated. The unpaired electron in the triplet state occupies
the dx2−y2 orbital, as indicated by the ESR spectrum (and in this
sense the exchange coupling is realized through the two orbitals
of δ bonding), but the mechanism of coupling involves the oxygen
atoms, hence it is a rather indirect superexchange coupling through
the carboxyl bridges. This conclusion agrees well with the weak
dependence of the 2J constant on the Cu—Cu interatomic distance in
different compounds with similar structure [8.75].

The calculations [8.74] show also that when the electronic charge is
reduced from the binuclear binding area the bonding between the two
centers deteriorates; this result can serve as a qualitative explanation of
the fact that mono- and dichloroacetates of copper form dimers, whereas
trichloroacetates do not. With fluorine, monofluoroacetate only gives
dimers. Many other copper dimers were studied from this perspective
[8.7]. For a review of magnetic properties of polynuclear carboxylates,
see the article by Moreland and Doedens [8.76].

For coordination compounds with more than two magnetic centers, the mag-
netic properties can be revealed in a similar way. Let us consider some examples.
For a trinuclear cluster the HDVV Hamiltonian is

H = −2J12S1S2 − 2J13S1S3 − 2J23S2S3 (8.85)

For equivalent centers in an equilateral triangle, such as in the heteropolyclus-
ter [SiVIV

3 W9O40]−10, J12 = J13 = J23 = J , and for S(VIV) = 1
2 the temperature

dependence of the magnetic susceptibility is [8.77]

χ = Ng2β2

4kT

1 + 5 exp(3J/kT )

1 + exp(3J/kT )
(8.86)

This agrees well with the experimental data. For a similar tetrahedral cluster
with equivalent centers with S = 1

2 and an isotropic exchange J , the energy
level splitting and the Van Vleck formulas yield the following for χ [8.64]:

χ = 2Ng2β2

kT

(5 + 3e−2J/kT )

5 + 9e−2J/kT + 2e−3J/kT
(8.87)
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However, the magnetic behavior of some of the tetrahedral clusters of the type
Cu4OL4X6 with X = Cl,Br and L = Cl,Br,pyridine,OPR3,ONR3, does not coin-
cide with the predictions of this formula. Indeed, some of these clusters exhibit
a nonmonotonous behavior of the magnetic moment μ(T ) with a maximum that
cannot be explained by internal isotropic exchange with equal Jij parameters
(i, j = 1, 2, 3, 4); some of these clusters do not have such a maximum of μ(T ).
The assumption of static distortions [8.78] explains the presence of the maximum
in χ(T ), but it is in contradiction with the ESR measurements.

The solution to the problem was obtained [8.79] on the basis of the JTE
in a tetrahedral four-center system. Using the results of the vibronic theory
(Sections 7.3 and 7.4), it was shown that the dynamic JT (PJT) distortions
on each of the four Cu(II) centers are coupled to each other in such a way
that the magnetic moment of the system is that of distorted centers with a
maximum on the μ(T ) curve, whereas the ESR spectra correspond to undis-
torted centers (see the relativity rule concerning the means of observation in
Section 9.1).

The isotropic magnetic exchange interaction model represented by the HDVV
spin Hamiltonian (8.73), although covering most cases of transition metal coor-
dination compounds, is not the only possible one and is not sufficient for the
description of all the magnetic properties of multicenter systems [8.60]. If S > 1

2
and if the paramagnetic centers are not symmetry related, additional terms of
the spin Hamiltonian may be required for description of the magnetic exchange
interaction, in particular, the biquadratic exchange term:

Hbij = jij (SiSj )
2 (8.88)

Although the constant jij is much smaller than the isotropic exchange constant
J (j ∼ 10−2J ), the biquadratic exchange (8.88) produces new observable effects.
In particular, it violates the rule of Landé intervals in spin-level splitting (8.76).
The biquadratic term is most important in polynuclear compounds with more
than two magnetic centers in a high-symmetry arrangement because it splits the
otherwise accidentally degenerate spin levels [8.60].

Another term, the Dzyaloshinsky–Moriya interaction, or antisymmetric
exchange [8.60–8.64]

HDM = Dij [Si × Sj ] (8.89)

explains the origin of the spin canting phenomenon observed in many com-
pounds. The essence of this effect is that the interacting spins in the ordered state
(especially in crystals) are not collinear. As seen from Eq. (8.89), because of the
vector product [Si × Sj ], which is zero for collinear spins, to lower the energy
the latter attempt to occupy noncollinear positions. There are symmetry restric-
tions on this interaction—no inversion center, and at least one magnetic center
must have an anisotropic spin component. Again, the constant of antisymmetric
exchange |D| ≈ (|g − 2|/g)J is much smaller than J .
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Finally, the anisotropic Ising Hamiltonian

HI = −2J abSazSbz (8.90)

may be significant, especially in multicenter compounds. Its constant J ab is also
small:

|J ab| ∼
(

g − 2

g

)2

J (8.91)

but it characterizes the dependence of the magnetic properties on the direction
of the magnetic field H . For binuclear copper carboxylates in Example 8.11 the
Hamiltonian (8.90) allows one to obtain for the anisotropic susceptibility

χ‖ = Ng2β2/2kT

1 + e−J/kT
(8.92)

which differs from the Bleaney–Bowers equation (8.84).
For comprehensive reviews of different aspects of the theory of magnetochem-

istry and ESR in different systems, see the literature [8.6, 8.7, 8.57–8.64, 8.68,
8.71, 8.76]. The problem of molecular magnets [8.62, 8.80] seems to be one of
the most challenging among the modern applications of magnetochemistry.

Spin Crossover

Among many other effects and applications of magnetic properties of coor-
dination compounds we discuss briefly the spin crossover phenomenon (see
Refs. 8.81–8.87 and references cited therein). It follows directly from the
Tanabe–Sugano diagrams for electronic dn energy-level dependence on the
ligand field parameter � (Section 4.3, Fig. 4.11). It is seen from these diagrams
that for the electronic configurations d4, d5, d6, and d7 in the cubic symmetry
environment, there is a certain value of � = �0 for which the ground-state
symmetry and multiplicity change. The energies on the Tanabe–Sugano
diagrams are read off from the ground state, and therefore the intersection of
the excited term with the ground one produces an energy-level break.

The two types of ground states resulting in two types of complexes, high-spin
(HS) and low-spin (LS), are discussed in Section 4.3 in the approximation of
crystal field theory, and in Section 6.2 in the MO scheme. The HS state is the
ground one when the inequality (4.49) (Section 4.3) takes place:

� < � (8.93)

where � is the electron pairing energy, that is, the electron interaction energy
difference between the LS and HS states per electron, while for �>� the LS
state is lower. This means that the crossing of the two spin terms, the spin
crossover takes place at �0 = �.
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In the approximation of crystal field theory the � values for different electronic
dn configurations are given by Eqs. (4.50). In more precise calculations [8.87]
[B and C are the Racah parameters given by Eqs. (2.43)], we obtain

�0(d
5) = 6.347B + 4.897C

�0(d
6) = 2.195B + 3.708C

�0(d
7) = 5.051B + 3.594C

(8.94)

Equations (8.94) were derived for cubic-symmetry complexes, but a small
reduction of symmetry does not significantly influence the qualitative results of
the spin crossover phenomenon; hereafter the deviation from cubic symmetry is
ignored. In tetrahedral complexes the two possible spin states occur in d3, d4, d5,
and d6 configurations. However, because of the smaller � values (�T = − 4

9�0),
the LS state is rarely realized in these cases.

The point of exact intersection between the two terms, HS and LS, is a
point of accidental degeneracy. At this point the two states coexist with fast
transitions HS ↔ LS. In fact, there is a whole region of coexistence due to
vibrations (�ω) and thermal population. It includes the � values for which the
energy difference between the two terms is ∼ (kT + �ω). Out of this region the
excited state may also be populated, and its population is strongly (exponen-
tially) temperature-dependent. The increase in temperature always enhances the
spin transition (HS → LS if � < �0, and LS → HS if � >�0). In free com-
plexes (gas-phase or dilute solution) when the interaction between them is weak,
there is a Boltzmann equilibrium between the LS and HS states with continuous
dynamic interconversions

LS
k−−−→←−−−

k−1

HS (8.95)

where the rate constants k and k−1, for instance, for Fe(II) complexes vary
between 4 × 105 and 2 × 107 s−1 [8.89].

If the interaction between the complexes is sufficiently strong, as it is in
crystals, the cooperative effects become most significant. It is important that the
HS ↔ LS transition is accompanied by a change in the interatomic distances. An
example of this is mentioned in Example 8.10, where contraction of the bond
length measured by EXAFS is given [8.51]. The spin transition changes the
electronic configuration and the degeneracy of the ground state [e.g., 1A1 → 5T2

in Fe(II) complexes]. This, in turn, produces distortions in the local environment
of the transition center that may be subject to cooperative interactions in the
crystal (Section 9.4). The latter favor an ordered state, but the entropy effects
(which increase with temperature) destroy this ordering. Hence, for sufficiently
strong interactions a phase transition at a certain temperature Tc may be expected
[8.90].
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Among the spin crossover systems in the crystalline state, two kinds of spin
transition can be distinguished: (1) discontinuous (abrupt) transitions , which
occur at a well-defined temperature Tc; and (2) continuous (gradual ) transitions ,
which take place over an extended range of temperatures; in this case Tc is defined
as the temperature for which the fraction of HS systems is half: nHS = 0.50.

To distinguish between the two types of spin transitions and to disclose their
nature, many experimental methods of investigation were applied, including
magnetic, spectroscopic, Mossbauer, X-ray diffraction, EXAFS, and other mea-
surements (see, e.g., Refs. 8.86, 8.89, 8.91, and references cited therein). The
main general conclusion is that the abrupt transitions are associated with a struc-
tural phase transition, while the continuous transition, gradually converting the
system from one state to another, does not change the structural phase.

Figure 8.27 illustrates [8.92] an abrupt HS ↔ LS, S = 3
2 ↔ S = 1

2 , transition
in a Co(II)(3d7) compound, Co(H2fsa2en)(4-t-Bipy)2 shown in the magnetic sus-
ceptibility curve χ · T versus T . The LS state is realized at low temperature, while
the HS state is stable at high temperature, and this is the usual situation in spin
crossover transitions [8.85]. One of the features seen in Fig. 8.27 is hysteresis;
the transition takes place at slightly different temperatures by heating (↑) and
cooling (↓), respectively. The hysteresis is due to cooperative effects (Section
9.4) and it has interesting applications, mentioned below.

Numerous spin crossover systems studied so far are mainly iron(II), iron(III),
and cobalt(II) complexes, but the phenomenon was also observed in many other
metal complexes of Mn(II), Mn(III), Co(III), Ni(II), and Mo(II), as well as in

FIGURE 8.27. Temperature dependence of χμ · T for Co(H2fsa2en)(4-t-Bipy)2. Falling
and rising arrows indicate decreasing and increasing temperatures. (From Thuery and
Zarembowitch [8.92].)
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systems of the type Nb6I11. For Fe(II)(3d6) the two spin states involved in the spin
transition are 1A1(t

6
2 ) and 5T2(t

4
2 e2), while for Fe(III)(3d5) they are 2T2(t

5
2 ) and

6A1(t
3
2 e2). For Co(II)(3d7) the transition occurs between 2E(t6

2 e) and 4T1(t
5
2 e2).

In NbI11 the transition is S = 1
2 ↔ S = 3

2 . Besides the temperature dependence
(thermally induced spin crossovers), spin transition can also be produced by
variation of external pressure [8.85] and irradiation with light [8.81]. The pressure
retains the smaller interatomic distances in the LS state, thus increasing Tc;
for uniaxial stress an opposite effect may be expected in degenerate HS states
that produces low-symmetry distortions. Light absorption accompanied by an
allowed electronic transition from the LS(HS) state to an excited state can be
followed by radiationless transitions to the HS(LS) state. This is the effect of
light-induced excited spin-state trapping (LIESST) [8.81, 8.84], and it was shown
to be reversible.

The interest in spin crossover systems has increased following suggestions
for using them as electronic microdevices in information storage and molecular
signal processing employing their property of bistability [8.85]. The two spin
states differ essentially in their magnetic properties, and there are possibilities
for controlling the switch from one state [e.g., the nonmagnetic state 1A1 in
Fe(II) complexes] to another (magnetic 5T2), provided that it occurs sufficiently
abruptly. On the other hand, the hysteresis of the HS ↔ LS transition may serve
for information storage [8.85].

Magnetic Circular Dichroism (MCD)

Magnetic circular dichroism is widely used in the studies of coordination com-
pounds, especially in biological systems. In Section 8.1 the effect of dichro-
ism (polychroism)—the dependence of the absorption of polarized light on the
direction of polarization with respect to the anisotropic (crystal) system—is men-
tioned. A related effect, widespread in chemistry, is the rotation of the plane of
polarization [8.93], called optical activity .

The plane-polarized wave of light can be presented as a sum of two circular
polarized (cp) waves: right (rcp) and left (lcp) [8.93]. If the absorption coeffi-
cients of the right and left circular polarized waves Kl and Kr are different (K
is determined from the relation I = I0 × 10−Kl , Section 8.1), then it is said that
there is circular dichroism . The quantity

εl − εr = Kl − Kr

c
(8.96)

where c is the speed of light, is taken as a measure of circular dichroism.
Both the optical activity and circular dichroism are due to the asymmetry in

charge distribution and polarizability of the compound under consideration. The
angle of rotation of the plane of polarized light is

α = nl − nr

λ
(8.97)
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where nl and nr are the coefficients of refraction of the lcp and rcp light,
respectively, and λ is the wavelength. While α may be nonzero in the region
of transparency, εl − εr is related to the absorption. In the region of absorption
all optically active compounds exhibit circular dichroism. An important feature
of both optical activity and circular dichroism is thus their dispersion , that is,
the dependence on light frequency. The curves of dispersion of optical rotation
and circular dichroism are used to study molecular structures [8.1].

However, for transition metal compounds the method of magnetic circular
dichroism (MCD) is more usable. This method does not demand that the com-
pound to be studied be optically active; it becomes active under the influ-
ence of the external magnetic field. Figure 8.28 illustrates this effect. Con-
sider, for simplicity, an atomic system with a nondegenerate ground state 1S

and excited threefold-degenerate 1P state (analogous states in a cubic coordi-
nation systems are 1A1 and 1T1). In the magnetic field H the degenerate P

state splits into three components εm = mgβH [Eq. (8.63)] with m = 0, ±1
(Fig. 8.28a).

Now we take into account the selection rules, according to which the absorp-
tion of the lcp wave is allowed if �m = −1, while �m = +1 for the rcp one.
Hence the maxima of absorption coefficients Kl and Kr are displaced by 2gβH

(Fig. 8.28b), and the εl − εr dispersion curve is as shown in Fig. 8.28c. This is
a typical MCD dispersion curve with zero absorption at the zero-field frequency
�0; it is called term A. Term A is realized when the ground state is nondegenerate
while the excited state is degenerate.

Another MCD spectrum, term C , is seen when the ground state is degenerate
and the excited state is not (Fig. 8.29). The rcp component with �m = +1
corresponds to the transition from the ground state with m = −1, while the lcp
with �m = −1 starts from the excited state m = +1 (Fig. 8.29a). Therefore, at
extremely low temperatures T ≈ 0 when the state m = +1 is not populated, the
rcp transition only is observed, and a small lcp component occurs when rising the
temperature (Fig. 8.29b). The summary spectrum, unlike term A, has no nodal
behavior, but the position of its maximum of absorption with respect to �0 is a
measure of the magnetic field splitting, which is proportional to H .

The third case of MCD, term B , occurs when there is no orbital degeneracy in
the two combining states, and one of the MCD components results from mixing
of the ground electronic state with the excited states by the magnetic field. It
is precisely this mixing that results in the Van Vleck temperature-independent
paramagnetism in Eq. (8.59). Therefore, this MCD spectrum, which is formally
similar to the nodeless term C, is distinct from the latter by being independent of
temperature. An example of B-term MCD can be found, for instance, in a study
by Jaw and Mason [8.94], where the MCD spectrum of the Au9(PPh3)8

3+ and its
interpretation in terms of the MO LCAO model is given. The book by Piepho and
Schatz [8.95] contains many useful standard definitions and conventions used in
the MCD method.
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8.5. GAMMA-RESONANCE SPECTROSCOPY

Among the variety of physical methods for investigating electronic structure
and properties of transition metal compounds, γ -resonance spectroscopy (GRS)
occupies an honorable place (see Refs. 8.8, 8.9, 8.96–8.98, and references cited
therein). It is based on the possibility of observing resonance transitions between
the energy levels of the nuclei first realized half a century ago by Rudolph
Mossbauer [8.96]. Since the energy gap between the nuclear energy levels ranges
from tenths to hundreds of kiloelectronvolts, the Mossbauer effect can be achieved
only by means of very-high-frequency electromagnetic irradiation, γ -quanta.

The Mossbauer Effect

To understand the principles of γ -resonance transitions between nuclear states,
we refer to the notions of zero-phonon line and resonance fluorescence (Section
8.2), which take place when there is an overlap between the frequencies in the
absorption �1 and emission �2 bands (Figs. 8.1 and 8.3). Denoting �1 − �2 =
δ� and the bandwidth by �, we have the following condition of resonance
fluorescence:

� > �δ� (8.98)

With respect to this inequality the nuclear parameters are very different from the
electronic ones. For “fixed” nuclei the absorption band with frequency �0 at the
maximum has the natural bandwidth � related to the lifetime of the excited state
τ : � = �/τ . For nuclear states τ is the same as for atoms, τ ∼ 10−7 –10−8 s,
and hence � ∼ 10−8 –10−7 eV. The ratio �/��0 serves as a measure of accu-
racy of “tuning” required for obtaining resonance absorption. Because of the
drastic difference in the �0 values, we have �/��0 ∼ 10−7 –10−8 for atoms and
molecules, whereas for nuclei �/��0 ∼ 10−11 –10−12. Hence, to obtain a reso-
nance in nuclear transitions, one needs an accuracy of fine tuning that is several
orders higher in magnitude than that for atoms.

For such a fine tuning even small losses of energy (that are ignored in elec-
tronic and vibrational transitions) can destroy the resonance. For a free nucleus
the recoil energy is most important in this respect, all the more so because it
differs in absorption and emission. Indeed, in the latter the recoil is an energy
loss, while in the former it is a gain. Using the preservation laws for energy and
momentum, it can be shown that with including the recoil corrections the emis-
sion �′ and absorption �′′ frequencies are (where M is the mass of the nucleus
and c is the speed of light):

��′ = ��0

(

1 − ��0

2Mc2

)

��′′ = ��0

(

1 + ��0

2Mc2

) (8.99)
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From these relations we obtain for the emission–absorption band shift:

�δ� = (��0)
2

Mc2
(8.100)

Obviously �δ�  � because of very large �0 values, and hence the obser-
vation of resonance fluorescence of γ quanta in free nuclei is impossible. To
exclude the recoil phenomenon, the nucleus should be “fixed.” This can be done
by means of its location in a crystal lattice. Mossbauer was the first to realize
this idea [8.96].

For the nuclei in the crystal lattice, the recoil is associated with excitation of
vibrations of the lattice (phonons), quite similar to that of the electronic transition
(Section 8.1), but with nuclear vibration coupling parameters instead of electron-
vibration (vibronic) coupling. Of particular interest here is the zero-phonon line
discussed in Section 8.2, the absorption and emission of the pure nuclear fre-
quency �0, which is equivalent to a recoilless transition (�′ = �′′ = �0).

The probability f of nuclear zero-phonon transitions, according to Eqs. (8.10)
and (8.17), is strongly dependent on the vibrational spectrum of the crystal and
the shift a between the equilibrium positions of the ground and excited states [Eq.
(8.11)], which is much smaller for nuclear states than for electronic ones. Approx-
imate calculations, factoring in the possible anisotropy of the crystal, shows that

f ∼ exp

(

−〈X2
λ〉

λ2

)

(8.101)

where 〈X2
λ〉 is the average squared projection of the amplitudes of the vibrations

of the absorbing nucleus in the direction of propagation of the γ quanta and λ

is their wavelength.
Thus the Mossbauer effect is a resonance fluorescence of γ quanta realized

by zero-phonon (recoilless) transitions between nuclear energy levels in crystals
[nuclear γ resonance, (NGR)].

γ -Resonance Spectra

Most important to application of the Mossbauer effect is its abovementioned high
tuning accuracy, �/��0 ∼ 10−11 –10−12, due to which a very small change in fre-
quency of the γ quanta destroys the resonance fluorescence. This enables one to
observe very fine effects that influence the position and shape of the zero-phonon
line; it forms the basis for the method of γ -resonance spectroscopy (GRS).

The essence of the GRS method is as follows. Consider a source of γ

quanta—a set of nuclei (of the same element) in their excited state in a given
crystal lattice, and an absorber of these quanta—the same nuclei in their ground
state, but in another lattice, for instance, in another compound. Because of the
influence of the local chemical environment on the position of the zero-phonon
line, discussed below, the differences in frequencies of absorption �′ and
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emission �′′ of the nucleus may be sufficient to destroy the resonance, and the
γ quanta emitted by the source may not be absorbed by the absorber.

The frequency of the absorption (emission) can be slightly corrected by means
of the linear Doppler effect —the dependence of the wave frequency on the speed
v of relative displacement of the emitter and the absorber. According to this effect
the absorption frequency �′ is dependent on the projection v of the relative speed
on the direction of propagation of the γ quanta:

�′ = �0

(
1 + v

c

)
(8.102)

For some value of v = v0, �
′ = �′′, and the quanta of the emitter are absorbed

by the substance of the absorber. Therefore, by measuring the dependence of the
intensity of absorption on the relative speed v, we obtain the curve I (v) which
is called γ -resonance spectrum (GRS). The principle of installation for these
measurements is illustrated in Fig. 8.30. The intensity I is usually measured by
the number of γ quanta transmitted by the sample, so the spectrum in its simplest
form appears as shown in this figure.

Not all the nuclei meet the requirements of NGR to be used as subjects of
GRS investigation. For light nuclei the combination of very high frequencies
(�0 ∼ 300 keV) with their small mass makes the probability of this effect neg-
ligibly small. On the other hand, heavy-atom nuclei with about 100 nuclear
transitions for which NGR is possible are mostly transition metal elements that
form coordination systems, and this makes the GRS method especially useful in
their investigation [8.8, 8.9, 8.97, 8.98].

Isomer Shift and Quadrupole Splitting in GRS

Unlike the electron–vibration (vibronic) interaction (Chapter 7), meaning inter-
action of electronic states with nuclear displacements, the electron–nucleus inter-
action in GRS represents the influence of electronic charge distribution and spin

FIGURE 8.30. Schematic diagram of an experiment illustrating the Mossbauer effect:
the γ quanta from the source modulated by the Doppler effect (v motion) fall in resonance
with the absorber and produce a dip in the number of detected quanta as a function of v.
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on the energy levels of the nucleus and resonance transitions between them.
Electron–nucleus interaction can be divided into two parts: electrostatic and
magnetic. Electrostatic interactions are determined by two main parameters of
electronic structure: the electronic density on the nucleus, ρe = e|ψ(0)|2, which
produces the Fermi contact interaction (Section 8.4), and the electric field gradient
(EFG) on the nucleus created by the environment.

On the other hand, the nucleus has finite dimensions, positive charge distri-
bution with density ρN , spin I, quadrupole moment Q for I ≥ 1, and no dipole
moment. If we assume that the nuclear positive charge is distributed uniformly
in a sphere of radius R, then ρN = 3Ze/4πR3, and the calculation shows that
the direct electrostatic interaction of the electronic and nuclear densities shifts
the nuclear energy levels by

δ′ = 2π

5
e2ZR2|�(0)|2 (8.103)

This electrostatic energy shift is of the order of ∼10−4 eV.
Since the radius R in different nuclear states is different, the shifts in the

ground δ′
gr and excited δ′

ex states of the nuclear transition are different too, result-
ing in the shift of the NGR line:

δ′′ = δ′
ex − δ′

gr = 4π

5
e2ZR �R|�(0)|2 (8.104)

where we assumed that approximately R2
ex − R2

gr = (Rex + Rgr)(Rex − Rgr) ∼=
2R �R; δ′′ is called isomer shift (or chemical shift ) of the NGR line.

In the GRS the nucleus in the substances of the emitter and the absorber may
have different environments, and hence the isomer shift of the GRS line is equal
to the difference of their contributions:

δ = δ′′
abs − δ′′

em = 4π

5
e2ZR �R[|�abs(0)|2 − |�em(0)|2] (8.105)

This is one of the basic equations that relate the line position in GRS to the
electronic structure of the nucleus environment. To analyze this equation, we
note that nonzero ψ(0) is caused by the contribution of the atomic ns orbitals
only (the wavefunctions of p, d, f, . . . states equal zero at the nucleus) and p1/2

states in the case of very strong relativistic effects (Sections 2.1, 5.4, and 6.5).
Other electrons contribute indirectly by screening the s states from the nuclei, thus
reducing their ψ(0) values. Hence the chemical difference between the emitter
and absorber is manifested in the isomer shift δ only when the chemical bonds
involving s electron states are different.

The second important feature of the electronic structure that influences the
nuclear energy levels and the GRS, the electric field gradient (EFG) qG, is a tensor
with three components, qG

xx, q
G
yy , and qG

zz, for which qG
xx + qG

yy + qG
zz = 0. For a

cubic environment qG
xx = qG

yy = qG
zz = 0. In the most widespread case of axial
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symmetry qG
zz = −2qG

xx = qG, and the calculations yield the following equation
for the shift Wq of the NGR line due to the quadrupole interaction of the EFG
with the quadrupole moment of the nucleus Q [8.98]:

Wq = e2qGQ
3M2 − I (I+1)

4I (2I−1)
(8.106)

Here M is the quantum number of the projection of the nuclear spin I,M =
I, I−1, . . . ,−I , and Q = 0 for I = 0, 1

2 . Since this quadrupole shift of the
nuclear energy levels is different for different spin projections M , it leads to
quadrupole splitting . For instance, the nuclear state with a spin I = 3

2 has four
component states with M = 3

2 , 1
2 , − 1

2 , − 3
2 . Their quadrupole shift is

W±1/2
q = − 1

4e2qGQ

W±3/2
q = 1

4e2qGQ

Hence the nuclear term I = 3
2 under the EFG influence of the electronic environ-

ment with axial symmetry is split into two components (Fig. 8.31); the splitting
� is

� = W±3/2
q − W±1/2

q = 1
2e2qQ (8.107)

The quadrupole splitting � is of the order of ∼10−7 eV.
For many of the NGR transitions studied, the ground-state spin is I = 1

2 and
the excited one is I = 3

2 (this is the situation in the 57Fe nucleus, which is most
widespread in GRS). As mentioned above, the state I = 1

2 has no quadrupole
moment; hence only the excited state I = 3

2 is split in the field of axial symmetry.
This quadrupole splitting can be observed in the absorption of γ quanta as two
lines at a distance � from each other (Fig. 8.31). If the symmetry is lower
than axial, then qG

xx �= qG
yy �= qG

zz, and the quadrupole splitting is (q is the largest
component):

� = 1
2e2|qQ| (1 + 1

3η2
)

(8.108)

where η = (qG
yy − qG

xx)/q
G
zz is the asymmetry constant .

Equations (8.106)–(8.108) show that the quadrupole splitting in GRS is related
to the electronic structure of the system via the EFG produced by the latter on
the nucleus. Unlike s electrons, which create an isotropic density on the nucleus
and zero EFG, each of the p, d, f, . . . electrons separately produces a nonzero
EFG with three components for which, as above, qG

xx + qG
yy + qG

zz = 0. Equivalent
electrons in the same shell have the same three absolute EFG values, but they
are differently oriented in space with respect to the three axes; in a closed shell
they complement each other to form a spherical symmetric distribution with a
zero EFG. In lower symmetry produced by other atoms of the environment, the
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FIGURE 8.31. Isomer shift and quadrupole splitting of the nuclear ground (I = ± 1
2 ) and

excited (I = ± 3
2 ) energy levels of 57Fe and the γ -resonance absorption of biferocenyl.

equivalence of the electrons in the same shell is destroyed (even when it is a
closed shell) because they participate in the formation of different MOs, thus
acquiring different occupation numbers gik . The following approximate formula
accounts for this:

qG =
∑

i,k

gikq
G
i (1 − Ri) (8.109)

where qG
i is the EFG produced by the electron on the ith AO, and Ri is the

so-called Sternheimer antiscreening parameter (1 >Ri > 0); it takes into account
the polarization of the inner shell by the ith electron, which lowers the EFG
value. As for the atomic electron with quantum numbers n, l,m, (Section 2.1),
the EFG is shown to be as follows:

qG
lm = 2e〈r−3〉nl

3m2 − l(l + 1)

(2l + 1)(2l − 1)
(8.110)
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where

〈r−3〉nl =
∫

R2
nl(r)r

−3 dτ (8.111)

In particular, for a p electron qG
11 = 2e〈r−3〉np , while for a d electron qG

22 =
(4e/5)〈r−3〉nd , and 〈r−3〉np is much larger than 〈r−3〉nd ≈ 4.8 au (〈r3〉np is much
smaller than 〈r3〉nd ).

Equation (8.106) does not include the EFG produced by the atomic charges of
other atoms in the environment, the crystal field corrections. The latter are usually
small and can be ignored if the main contribution (8.106) is nonzero; otherwise
they are of first order. Note also that the probability of the Mossbauer effect
(8.101) for the two components of the quadrupole splitting may be different,
resulting in asymmetric spectra.

For systems in degenerate electronic states with strong vibronic coupling
resulting in several equivalent minima of the APES and tunneling between
them (Section 7.4), the quadrupole splitting is subject to further complications
[8.26].

Hyperfine Splitting

The magnetic influence of the electronic shell on the nuclear energy levels WH

is, in fact, a nuclear Zeeman effect (Section 8.4). Considering the magnetic field
of the electronic motion H as an external (to the nucleus) field, WH can be
written as

WH = −gNβN(H , I) (8.112)

where gN and βN are the nuclear g factor (Section 8.4) and nuclear Bohr mag-
neton, respectively. The operator of the magnetic field H can also be presented
in a general way [8.57]:

H = −8π

3
|ψ(0)|2S − βL

r3
− 3(r, S)r

r5
+ S

r3
(8.113)

The first term represents the Fermi contact interaction (cf. Section 8.4) of the
electron spin S with the nuclear spin, the second term gives the magnetic influence
of the orbital motion with the moment L, and the last two terms describe the
magnetic dipole–dipole (spin–spin) influence.

Under the influence of the interaction (8.112) considered as a small pertur-
bation, the nuclear energy levels EM (which are degenerate with respect to the
magnetic quantum number M) split under the Zeeman effect (quite similar to the
electronic Zeeman splitting):
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EM = μ

I
MH M = I, I−1, . . . , −I (8.114)

where μ = gNβNI is the magnetic moment of the nucleus. This splitting (∼2 ×
10−7 eV) results in the magnetic hyperfine structure of the GRS.

Obviously, the observation of the magnetic hyperfine structure is possible
only if the line spacing μH/I is larger than the line width 2�. The latter
rapidly increases with temperature, due to fast relaxation transitions . In the inten-
sity of the magnetic field of the nucleus environment given by Eq. (8.113),
the Fermi contact term (originating from the atomic s states with unpaired
electrons or spin-polarized s pairs with decompensated spin) gives the largest
contribution to the magnetic hyperfine interaction. The dipole–dipole interac-
tion depends on the direction of the spin S. In free molecular systems there is
no definite direction of S. In paramagnetic substances the spin may perform
rapid relaxations (changes of spatial orientation), leading to a corresponding
reduction in the averaged field. Since relaxation rates increase with tempera-
ture, the spectrum is temperature-dependent, and the hyperfine structure may
appear at lower temperatures. Example 8.13 illustrates this effect in GRSs of iron
complexes.

EXAMPLE 8.13

Magnetic Hyperfine Structure in GRS of Coordination
Compounds with a 57Fe Nucleus

As mentioned above, the ground state of 57Fe has spin I = 1
2 with

two levels with M = ± 1
2 , and the excited state I = 3

2 has four levels
with M = ± 1

2 , ± 3
2 . The spacing of these levels (μ/I)H depends on

the magnetic moment of the nucleus μ, which may be different in the
ground (μ1) and excited (μ2) states. The magnetic dipole transitions
are allowed for �M = 0, ±1. Therefore, when μ1 �= μ2, there are six
transitions with different frequencies (Fig. 8.32), whereas for μ1 = μ2

there are only three, and for μ1 = −μ2 the number of lines is five. In
an isotropic polycrystalline sample the intensities of the six lines for
μ1 �= μ2 emerge in the ratio 3 : 2 : 1 : 1 : 2 : 3, where from left to right
the two groups of three lines of emission transitions to the ground states
I = 1

2 and I = − 1
2 , respectively, are listed. Figure 8.33 shows a typical

spectrum of this kind obtained for iron dithiocarbomate, in which the
dependence of the hyperfine splitting on temperature is seen explicitly
[8.99].
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FIGURE 8.32. Hyperfine splitting of the nuclear ground state with I = 1
2 and

excited state with I = − 3
2 of 57Fe in magnetic fields and the corresponding

γ -resonance absorption spectrum. The six magnetic-dipole allowed transitions
with �m = ±1 are shown by arrows.
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FIGURE 8.33. γ -resonance absorption spectrum of Fe57 in a high-spin dithio-
carbamate at different temperatures from 1.5 to 15 K. At low temperatures the
spin relaxation is slow and the six lines of the spectrum are well resolved, as in
a static external field (Fig. 8.32). At higher temperatures the rapid fluctuations
of the spin average out the hyperfine pattern and only one broad line is seen.
The dashed line shows the expected absorption without hyperfine broadening.

The spin S has a fixed orientation in spin-ordered systems (with ferromagnetic,
antiferromagnetic, ferrimagnetic, etc., ordering; Section 8.4); hence the hyperfine
splitting can be observed at any temperature in such systems, provided that the
inequality (μH/I)> 2� holds.

Example 8.14 demonstrates applications of GRS to the study of spin crossover
in coordination systems.
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EXAMPLE 8.14

Observation of Spin Crossover in the γ -Resonance
Spectrum of [Fe(phen)2 (NCS)2 ]

Figure 8.34 shows several GRS of [Fe(phen)2(NCS)2] (phen =
phenantroline) in the crystal phase obtained at different temperatures

FIGURE 8.34. γ -resonance absorption spectrum of Fe57 in a spin crossover
system [Fe(phen)2(NCS)2] at several temperatures from 77.4 to 300 K showing
an abrupt change of the quadrupole splitting due to the LS → HS spin transition
at 185 K (in the HS configuration the quadrupole splitting is larger). Between
∼184 and 186 K the two spin states coexist. From [8.97].)
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from 77 to 300 K [8.97]. At low temperatures a small quadrupole split-
ting is seen, which at approximately 185 K almost abruptly changes to
a much larger one. Together with magnetic measurements this proves
that at this temperature a spin crossover (Section 8.4) takes place from
the electronic low-spin state [the 1A1 state of the valence (t2g)

6 con-
figuration of Fe(II)] to the high-spin state (5T2 state of the (t2g)

4(eg)
2

configuration), and this crossover takes place in the form of a phase
transition like that shown in Fig. 8.27. A small hysteresis of several
kelvins (where the two phases coexist) is also seen in the spectra near
the transition at 185 K.

8.6. ELECTRON CHARGE AND SPIN DENSITY DISTRIBUTION
IN DIFFRACTION METHODS

Experimental determination of electron density distribution in molecular solids
has reached a high level of accuracy. For molecules containing only light atoms,
the charge densities observed are in good agreement with sophisticated theo-
retical calculations. For organic and main-group compounds the densities can
be predicted, at least qualitatively, from simple valence bond models. This is
not the case for transition metal compounds, where the participation of d elec-
trons and their three-dimensional delocalization about the CA (Sections 1.2 and
6.1) makes the expected electron density distribution far less obvious. Therefore,
the experimental evaluation of electron distribution, together with its theoretical
interpretation, is an important approach to investigation of the electronic structure
of transition metal coordination compounds.

Electron densities are usually determined by X-ray or neutron scattering.
The technical problems in the experiment itself lie beyond the scope of this
book; they can be found elsewhere [8.10, 8.100]. Here it is worthwhile to
emphasize that in transition metal complexes, as distinct from light-atom com-
pounds, the valence electron distribution contributes a smaller fraction to the
total X-ray scattering, thus decreasing the accuracy of the experimental results.
Also, experimental problems, such as errors in the corrections for absorption
and extinction, become more significant when transition metal or other heavy
atoms are present. Nevertheless, the accuracy of such experiments improves
continuously.

The Method of Deformation Density

The data of high-resolution X-ray intensity measurements are usually presented
by a set of experimental structure factors Fobs with phases obtained from a model
structure. The structure factors F (S) are defined as a Fourier transform of the
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charge density ρ(r) (Section 5.2) [8.10]:

F(S) =
∫

ρ(r) exp[2πi(S, r)]dr (8.115)

where the integration is expanded over the unit cell, S is the scattering vector
perpendicular to the diffraction plane, S = 2 sin θ/λ, θ is the scattering angle, and
λ is the X-ray wavelength. If the structure factors Fobs are known, the inverse
transform allows one to determine the charge density:

ρ(r) = 1

V

∑

S

Fobs(S) exp[−2πi(S · r)] (8.116)

Here the integral is replaced by a summation over the amplitudes of all diffraction
beams allowed by Bragg’s law. In simple centrosymmetric structures the phases
in (8.116) are known, whereas in more complicated (acentric) structures they
can be obtained from a model structure; in this case the densities ρ(r) remain
model-dependent.

The electron density redistribution produced by the chemical bonding can be
characterized by the deformation density (DD), defined as the difference �ρ

between the density of the compounds under consideration ρ(r) and that of the
free atoms that occupy the same position as in the compounds ρref(r), �ρ =
ρ(r) − ρref(r) [Section 5.2, Eq. (5.15)]. In terms of the X-ray experiments the
DD is

�ρ = 1

V

∑

S

(Fobs − Fref) exp 2πi(S · r) (8.117)

where Fref are the structure factors of a superposition of neutral, usually spherical
atoms (however, see below).

The DD �ρ(r) can also be obtained by calculations. In this case both ρ(r)
and ρref(r) are computed using the methods described in Section 5.3. The den-
sities ρref of the free atoms in ground states are known (and tabulated), and the
accuracy of �ρ is determined completely by the approximations employed in the
calculation of ρ(r) after (5.13). The �ρ values are usually illustrated by means
of deformation density maps , in which the lines of equal density are given with a
definite spacing, and with the full lines for positive �ρ values and dashed lines
for negative ones.

The knowledge of the DD �ρ allows one to reveal, at least in principle, the
electron redistribution due to the formation of the compound, and to relate it to
the bonding. However, to do so in practice, many difficulties emerge. Most of
them are related to the inaccuracy of the measurements and/or calculations. As
mentioned above, in coordination compounds �ρ is a small difference between
two large quantities [Eqs. (8.117), (5.15)], and hence to determine �ρ with a high
degree of accuracy, the value ρ(r) must be obtained with a much higher accuracy.
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Meanwhile, the experimental resolution in diffraction methods is limited, and so
are the calculation possibilities [8.101].

The experimental limitations are due to side effects in intensity measurements
(absorption, extinction, multiple scattering, etc.), scaling of intensities, phasing
of structure amplitudes, series truncation, and so on. The theoretical calculations
are usually constrained by the adiabatic approximation (Section 7.1), neglect
of relativistic effects, finite basis set, and correlation effects (Chapter 5). Addi-
tional errors are introduced by the neglect of molecular and crystal vibration
(temperature smearing).

The results on DD �ρ, as mentioned above, are usually given in deformation
density maps. Information on electronic structure can be extracted from these
maps by three approaches: (1) direct inspection, (2) modeling with deformation
functions, and (3) comparison with theoretical calculations.

Direct inspection of the experimental DD map enables us to make some
qualitative conclusions about the bonding features. In general, positive DD
(increase in density as compared with nonbonded atoms) are expected in the
region of covalent bonds and strong electronegative atoms. Often, density
peaks are associated with bonding and nonbonding lone pairs. In many cases
sharp peaks are also observed around transition metals with partially filled d

orbitals because their electron distribution, matching the occupied d states, is
nonspherical. Example 8.15 provides for some further details.

EXAMPLE 8.15

Deformation Density in Sodium Nitroprusside (Direct Inspection)

As a simple example we consider the qualitative conclusions from
direct inspection of the DD maps for the slightly distorted octahedral
anion [Fe(CN)5NO]2− of sodium nitroprusside [8.102]. Figure 8.35
shows the main features of the DD in two sections including the
axial (CN—Fe—NO) (Fig. 8.35a) and equatorial (CN—Fe—CN)
(Fig. 8.35b) coordinates. First we note the maxima A near the CA
situated in between the ligand coordinates. These maxima correspond to
the occupied dxy orbital; in the crystal field approximation the high-spin
3d orbital configuration in the tetragonally distorted octahedron is
(Section 4.3, Fig. 4.5): d2

xyd
1
xzd

1
yzd

1
z2d

1
x2 –y2 . The decreasing density

along B near the CA and the maxima in between Fe and C indicate
the σ bonds between the iron AO dx2 –y2 and carbon. The minimum

of DD (∼ −0.30 e Å
3
) at point C near the Fe atom extended to about

2 Å in the z direction toward the NO ligand is due to the bonding
of the dz2 AO with the axial ligands, which is stronger for NO (the
atom Fe is 0.185 Å out of plane toward NO). Along all the ligands
and beyond the distal nitrogen there are maxima of the DD indicating
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the bonding areas and lone pairs, respectively (beyond oxygen there is
no lone pair). This picture of bonding is in qualitative agreement with
electronic structure calculations and Mossbauer spectra.

FIGURE 8.35. DD maps for Na2[Fe(CN)5NO]: (a) section in the plane com-
prising the CA Fe and the axial ligands NO and CN; (b) section in the equatorial
plane of Fe and CN groups (only two CN groups are shown). Dashed lines
show �ρ < 0, while dotted–dashed lines correspond to �ρ = 0. Line spacing
is equal to 0.1 e Å

−3
(From Antipin and Struchkov [8.102].)
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However, in general, a direct correlation between density accumulation and
bonding may be wrong, especially when a negative DD is attributed to the
absence of bonding. To understand this statement, consider a simple example
of the diatomic molecule F2. In the free atoms all the valence p states have the
same occupation, 5

3 electrons each. Through interaction, the two pσ orbitals from
the two atoms form one bonding MO and one antibonding MO; the former only
being occupied by two electrons in the ground state. Hence the DD value in the
bonding region is approximately 2 − 2

( 5
3

) = − 4
3 electrons.

Thus, despite the two-electron bonding, the deformation density in the bonding
region is negative! This misleading presentation emerges in all the cases when
there is a bond between atoms with almost completed electronic shells. In par-
ticular, this is expected in the case of metal–metal bonds when the metal d shell
is occupied in more than half.

These misleading conclusions about the DD method are obviously due to the
wrong idea that before entering the bonding the atoms are spherical symmetric.
To understand the situation, consider again the abovementioned example of the
F2 molecule. The free fluorine atom has the electronic configuration 1s22s22p5

with a p hole in the spherical symmetric electron distribution that can occupy any
of the three p states: px, py, pz. Provided that there are no external perturbations,
these three one-electron states are equivalent (threefold degeneracy), the hole can
occupy any of them or their linear combination with the same probability. As
stated in Section 2.1, in the case of degeneracy the real charge distribution remains
uncertain until there is an external perturbation that removes the degeneracy (such
perturbation is also created by any attempt to observe the charge distribution).

However, uncertainty (arbitrariness) of the p- (or other one-electron) state
orientation in space does not mean averaged spherical symmetric distribution ,
although sometimes such a model can be justified. For atoms in molecules the
uncertain atomic degenerate orbital orientation becomes quite definitive before
the bonding. The threefold-degenerate p states of the fluorine atom in the axial
field of the other atom split into two levels,

∑
and � (in C∞v symmetry), and

it can be easily shown that the ground state is
∑

, which corresponds to the pσ

hole (the pσ orbital occupied by one electron). This is the correct zeroth-order
function in the case of degeneracy [8.103].

These zeroth-order states are just a correct presentation of the interacting atoms
before any density redistribution. They correspond to the lowest energy configu-
ration of the atom in a given field symmetry. Hence there are only two electrons
in the two atomic pσ states of the two free atoms that form the F2 molecule,
instead of the 2

( 5
3

) = 10
3 electrons in the approximation of averaged spherical

symmetric charge distribution. As a result of the MO bonding produced by these
two pσ AOs, the charge density increases in the bonding area (Section 5.2), and
the deformation density in between the atoms increases, as anticipated. It can
be shown that when the atomic shell is less than half-full, the spherical density
approximation overestimates the deformation density in the bonding area.

It follows that the approximation of spherical densities of free atoms with
open shells is ungrounded and may be misleading. For these systems the correct
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zeroth-order states should be obtained first (this can be done easily by symmetry
considerations, as in the example above), and then the free-atom densities can be
defined from these states. In other words, the free-atom densities ρref should be
prepared before being subtracted from the measured densities to result in DD.

The failure of the spherical density assumption is a part of a more general
failure of the DD approach when used to clarify the origin of chemical bonding
without specification of the reference density , with respect to which the defor-
mation density is determined. As discussed in Section 6.1, coordination bonds
are seldom localized, and each metal–ligand bond is strongly dependent on the
other bonds formed by the metal. Therefore, atom deformation densities are not
sufficiently informative for each metal–ligand bond taken apart. To examine
such a bond, the fragment deformation density , that is, the difference between
the total density and the densities of the ligand and the fragment taken as a
whole (including the metal with the other ligands), should be studied instead
of atom deformation densities. An example of fragment DD study is given in
Example 8.16.

EXAMPLE 8.16

Metal–Metal Bonding in Mn2 (CO)10 ; Fragment Deformation
Density [8.104]

This is an example of calculated DD which, in addition to elucida-
tion of the electronic origin of the metal–metal bond, demonstrates the
advantages of the fragment deformation density studies. The structure
of Mn2(CO)10 in the eclipsed configuration is

O C

C

Mn

C

O

C O

C

C

O
O

C

C

Mn

C

O
C

C

O
O

C

(although the staggered conformer was found in the solid state, the
energy difference and the rotation barrier between the two conformers,
staggered and eclipsed, is very small [8.104]). For this configuration,
the electron density distribution, as well as atomic deformation density
(total density minus spherical atoms) and fragment deformation density
(total minus two fragments) were calculated by the Fenske–Hall method
(Section 5.4). The results are presented in Fig. 8.36.



F
IG

U
R

E
8.

36
.

M
n 2

(C
O

) 1
0

de
ns

ity
m

ap
s:

(a
)

to
ta

l
de

ns
ity

;
(b

)
at

om
de

fo
rm

at
io

n
de

ns
ity

;
(c

)
fr

ag
m

en
t

de
fo

rm
at

io
n

de
ns

ity
.

(A
ft

er
H

al
l

[8
.1

04
].

)

489



490 ELECTRONIC STRUCTURE INVESTIGATED BY PHYSICAL METHODS

The fragment DD is equal to the difference between the total density
and the density of the two Mn(CO)5 fragments. As mentioned above,
owing to the three-dimensional center-delocalized nature of the coor-
dination bond discussed in Section 6.1, the atom deformation density
may be less informative with respect to the metal–metal bond than the
fragment deformation density. Figure 8.36 confirms this expectation.
Indeed, the atomic deformation density (Fig. 8.36b) shows a net loss of
density between the two manganese atoms where we expect to find the
Mn—Mn bond. In the fragment deformation density (Fig. 8.36c) there
is a definitive density accumulation along the Mn—Mn line demonstrat-
ing the formation of the metal–metal bond between the two prepared
fragments.

This example confirms that, as discussed above, to ensure an ade-
quate answer about the bonding origin from DD data the question must
be correctly formulated and the bonding species, atoms or fragments,
should be properly prepared. As seen from Fig. 8.36b, the deformation
density in the region between the atoms C and O is also negative. This
may be due to the approximation of spherical free atoms (the atomic
shell of oxygen is more than half occupied). Another reason is the
minimal basis set used in calculations of the electronic density, which
is known to overemphasize the lone pairs beyond the bond [8.104].
Formation of the Mn—C bonds is also seen.

The fact that charge accumulation in the region between the bonding atoms
is not the only cause of chemical bonding (the other one is the reduction of the
kinetic energy) is of general importance for the deformation density methods.
It means that if there is accumulation of charge (positive �ρ) in the bonding
region, it can serve as an indication of bonding, but �ρ ∼ 0 (or even �ρ < 0)
does not indicate that there is no bonding at all, especially in cases of delocalized
bonds. For coordinated ligands, multiorbital bonds and orbital charge transfers
in opposite directions are important (Sections 6.3 and 11.2).

Unfortunately, in many (perhaps most) studies on DD these important ideas,
especially the failure of the atomic spherical densities, are not paid due attention,
and interpretation of the results thus are not sufficiently informative or may even
be misleading.

For quantitative interpretation of the experimental results on DD, the method
of density modeling can be used. The idea is to present the electron density
ρ(r) approximately by a finite number of analytical probing functions gi(r), with
corresponding coefficients Ci (populations)

ρ(r) =
∑

i

Cigi(r) (8.118)
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where the Ci values are determined by least-squares refinement of the X-ray
data along with the usual crystallographic parameters (scale factor, positions,
thermal parameters, extinctions, etc.). In particular, if the functions gi(r) have an
explicit physical meaning, the model presentation (8.118) allows one to reveal
some features of the electron distribution.

For coordination compounds, it is reasonable to model the electron density
by d-electron distributions, which means taking the corresponding d-electron
spherical harmonics Ylm as the probing functions gi(r). A simple consideration
[8.105] shows that in the crystal field approximation the metal density ρM can
be presented as

ρM = ρcore + C4sρ4s + R(r)
∑

l,m

ClmYlm (8.119)

where ρcore includes the density of K , L, and M shells; C4s is the population of
the 4s orbital; and the last term denotes the d densities ρd . On the other hand,
the latter densities can be represented by the sum of the squares of the atomic d

functions with appropriate occupancies qm:

ρd = [(R2(r)]
2
∑

m

qm(Ylm)2 (8.120)

Determining the Clm coefficients from the experimental data and using the
known decomposition (Ylm)2 = ∑

l′m′ Alml′m′Yl′m′ , one can evaluate the occu-
pancy numbers qm. Example 8.18 illustrates the application of density modeling
to some iron and cobalt systems.

EXAMPLE 8.17

Density Modeling for Fe(II)–Phthalocyanine and
Co(II)–Tetraphenylporphyrin

These examples are given to demonstrate the possibilities of density
modeling in the study of electronic structure and bonding by the DD
method. The DD for these two compounds have been obtained from
diffraction experiments and then presented as fractions of the d-orbital
densities using the formulas in the text.

In Fe(II)–phthalocyanine [8.106] and Co(II)–tetraphenylporphyrin
(CoTPP) [8.105] the polyhedron around the CA is square-planar for
which the d-orbital ordering is dyzdxzdz2dxydx2 –y2 (Sections 4.2 and 4.3,
Fig. 4.5). In the spherical atom high-spin configuration these orbitals
are equally occupied by 1.2 electrons each in the iron complex, and 1.4
in the cobalt complex. In the low-spin configuration the spherical atoms
have the configurations d2

yzd
2
xzdz2d0

xyd
0
x2 –y2 and d2

yzd
2
xzd

2
z2d

0.5
xy d0.5

x2 –y2 for
Fe(II) and Co(II), respectively.
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However, the prepared oriented (nonspherical) atoms that have the
lowest energy in the square planar field are d1.5

yz d1.5
xz d1

z2d
1
xyd

1
x2 –y2 for

Fe(II) and d2
yzd

2
xzd

1
z2d

1
xyd

1
x2 –y2 for Co(II). The DD analysis should be

carried out with respect to these prepared atom densities. Tables 8.11
and 8.12 illustrate the relevant data, including spherical atom refer-
ence densities for comparison. It is seen that there is a considerable
orbital charge transfer from the field-oriented dxz, dyz, dx2 –y2 orbitals of
the iron ion (0.3–0.4 electron from each) to the phthalocyanine and a
backdonation of ∼0.7 electron to the planar dxy orbital; similar charge
transfers but smaller in magnitude also occur in the case of CoTPP.
Larger charge transfers to and from the CA in iron phthalocyanine as
compared with CoTPP can be understood if one takes into account the
larger redox capacitance (Section 10.1) of phthalocyanine, as compared
with the TPP system.

TABLE 8.11. d-Orbital Occupancies qm and the Deformation Density
(DD) of Fe(II)–Phthalocyanine as Determined from X-Ray Electron
Densities in Comparison with Those in the Free Spherical (SPH) Ion
Model and the Field-Oriented (OR) Onea

d qm, exp qm DD qm DD
AOs (Molecule) (Atom, SPH) (Incorrect) (Atom, OR) (Correct)

dyz + dxz 2.12 2.40 −0.28 3.00 −0.88
dz2 0.93 1.20 −0.27 1.00 −0.07
dxy 1.68 1.20 0.48 1.00 0.68
dx2−y2 1.70 1.20 0.50 1.00 0.70
aThe qm values in the SPH model of the free ions are taken for the high-spin configuration.
The incorrect DD values in this case are due to the (rather widespread) wrong presentation
of the orbital occupancies before the charge redistribution by bonding.

TABLE 8.12. d-Orbital Occupancies qm and the Deformation Density
(DD) of Co(II)–Tetraphenylporphyrin as Determined from X-Ray
Electron Densities in Comparison with Those in the Free Spherical (SPH)
Ion Model and the Field-Oriented (OR) Onea

d qm, exp qm DD qm DD
AOs (Molecule) (Atom, SPH) (Incorrect) (Atom, OR) (Correct)

dyz + dxz 3.7 2.80 0.90 4.00 −0.30
dz2 1.0 1.40 −0.40 1.00 0.00
dxy 1.3 1.40 −0.10 1.00 0.30
dx2−y2 1.00 1.40 −0.40 1.00 0.00
aThe qm values in the SPH model of the free ions are taken for the high-spin configuration.
The incorrect DD values in this case are due to the (rather widespread) wrong presentation
of the orbital occupancies before the charge redistribution by bonding.
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Note that density modelling (8.119) is based on the crystal field theory and
hence is rather qualitative. Therefore, the values of the charge transfers in
Table 8.11 in Example 8.17 cannot pretend to quantitative interpretation of the
DD data. This interpretation is also complicated by the low accuracy of the
X-ray density measurement, mentioned above.

The idea of electronic densities was used to specify the notion of the atom
in molecules . It is obvious that by formation of chemical bonds a significant
part of the atomic electrons become collectivized (Section 1.2) and the atom
loses its individual properties. Therefore, the notion “atom in molecules,” strictly
speaking, only has sense as indicating the genealogy and nuclear composition of
the molecule. However, some features of atoms in molecules are important. For
instance, atomic charges in molecules are of widespread use in specification of
charge distribution. In Section 5.2 the difficulties of defining such atomic charges
are discussed: they are due mainly to the lack of atomic borders in molecules.

Bader [8.107] suggested that the atomic borders in molecules should be defined
as the surface S at which the gradient of the charge density ∇ρ(r) equals zero;
that is, ∇ρ(r) changes its sign when moving along the bonding vector:

∇ρ(r0) · n(r0) = 0 r0 ∈ S (8.121)

where n is the unit vector normal to S [∇ρ(r) is also a vector]. On the basis
of this presentation, a whole trend of electron density topology has been worked
out [8.107].

In addition to some applications of the deformation density method illustrated
in Examples 8.15–8.17, see other examples in Refs. 8.10, 8.101, 8.105, and
references cited therein.

Spin Densities from Neutron Scattering

Unlike X-ray scattering, polarized neutron diffraction experiments reveal magne-
tization densities, or spin densities , that is, the density of distribution of magnetic
moments created by orbital motion and spin of electrons. The magnetic structure
factor M(S) can be presented in the same way as the charge density (8.116)
[8.108]:

M(S) =
∑

n

fn(S)Mn exp[−2πi(S · rn)] (8.122)

where Mn is the magnetic moment of the atom n positioned at rn and fn(S) is
the magnetic form factor for this atom

f (S) =
∫

m(r) exp(iS · r)dτ
∫

m(r)dτ
(8.123)

and m(r) is the magnetization density of the atom.
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For a single atomic shell the form factor can be presented as

f (S) =
∑

l

Al(S)

∫

R2
nl(r)jl(Sr)r2 dr (8.124)

where jl(Sr) is a Bessel function of the order l, R2
nl(r) is the radial part of the

electron wavefunction, and Al are expansion coefficients that have been tabu-
lated for many transition metal ions [8.109]. On the basis of these formulas,
the observed spin densities, by means of some least-squares procedures, can be
attributed to certain d state and other MO populations in the system. For more
practical details, see Example 8.18.

EXAMPLE 8.18

Spin Distributions in Some Coordination Systems Obtained from
Neutron Scattering

From the experimentally measured magnetic structure factors of
KNa2CrF6, the spin populations were found to be as follows [8.110]:
t2.66
2g e−0.06

g 4s0.4 for Cr3+ and 2p0.02
πx 2p0.02

πy 2p−0.02
σ at fluorine. For the

Co2+ ion in phthalocyaninatocobalt [8.111] the spin populations are
3d0.40

xy 3d0.17
xz,yz3d0.79

z2 3d−0.21
x2−y24s−0.44 with a total spin of −0.17 on the

phthalocyanine. In a similar manganese complex the spin populations
are different: 3d0.74

xy 3d1.17
xz 3d0.83

z2 3d−0.15
x2 –y24s−0.44 with −0.31 on the

ligand atoms [8.108].

FIGURE 8.37. Spin density map for Co(II)–phthalocyanine in the plane of
the molecule (a) and in the section 0.25 Å above (and parallel to) this plane
(b). The nth contour is at the ±2n−1 · 10−3 e Å

−3
density level from the zero

(first continuous) line. (From Williams et al. [8.111].)
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An example of spin density maps is shown in Fig. 8.37 for phthalo-
cyaninatocobalt(II) [8.111]. Given in two sections, in the molecular
plane (Fig. 8.37a) and 0.25 Å above (Fig. 8.37b), the lines of equal
spin densities with a spacing of ±2n−1.10−3 e Å

−3
show the variation

of the spin distribution in space. From the lineshapes it is seen that the
unpaired electrons occupy antibonding (or nonbonding) orbitals (the
spin density is lower in the bonding region), despite the high covalence
of the bonds as a whole. This result confirms the statements in Section
6.2 (Fig 6.3; see also Section 8.4) that the covalence is realized by the
uncompensated bonding MO, which are not necessarily related to the
HOMO and LUMO usually occupied by the unpaired electrons.

The conclusion in Example 8.18 is a part of a general feature of the spin
density maps; the spin density contributions are not necessarily related directly to
the chemical bonding, but they are related directly to ESR spectra (Section 8.4),
and the spin density method reveals some important features of the origin of
these spectra [8.111]. It is also seen from Fig. 8.37b that nitrogen π orbitals
have negative spin densities.

SUMMARY NOTES

1. Physical methods of investigation of electronic structure and properties of
transition metal systems (TMSs) consist of resonance (spectroscopic) and
nonresonance (diffraction, polarization) methods that provide direct corre-
lations between observable properties and structural parameters.

2. Optical band shapes of absorption and/or emission of light contain infor-
mation of the energy gap between the corresponding electronic states and
relative equilibrium positions of the nuclei in these states, as well as
vibrations involved in the electronic transition. Broad bands are related to
electronic transitions that change the electronic configuration of the TMS,
while narrowband transitions take place within the same configuration.

3. Band shape form functions can be evaluated approximately in the semi-
classical approximation. More accurate quantum calculations provide for
specific relation between the bandwidth and the shift in equilibrium posi-
tion (interatomic distances) by excitation, and show that the absorption
frequency at the maximum of the band coincides with the energy gap
between the electronic states calculated at the configuration of the initial
state (Frank–Condon vertical transitions).

4. For sufficiently small changes of nuclear configuration by the electronic
transition, zero-phonon lines that don’t involve vibrations may occur in the
spectrum. Zero-phonon lines are especially important for solid-state TMS
spectra; they also explain the origin of the Mossbauer effect.
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5. Intensities of electronic transitions vary in a wide range with oscillator
strengths from 1 to 10−10 dependent on the allowed mechanism from
electric-dipole and parity-forbidden electric-dipole to magnetic-dipole,
electric-quadrupole, spin-forbidden, and so on.

6. Spectra that emerge because of the transition between the d electronic states
of the CA (d → d transitions) are specific for TMS. They explain the
origin of the color and many other optical, magnetic, and thermodynamic
properties. The variety of d → d spectra is well characterized by empirical
spectrochemical and nephelauxetic series .

7. The ligand influence is best presented in metal → ligand and
ligand → metal charge transfer spectra , which are due to electronic
transitions between bonding and antibonding (nonbonding) MOs of the
TMS. Vibrational properties are reflected in the vibrational structure of
electronic spectra, as well as in IR, Raman, and resonance Raman spectra .

8. If the electronic transition involves orbitally degenerate states , the band
structure of the optical spectrum under certain conditions becomes more
complicated with two or three humps possible for transitions to twofold-
and threefold-degenerate terms, respectively. The zero-phonon line may
also be split by the tunneling between equivalent minima.

9. Ultraviolet and X-ray photoelectron spectra occupy an honorable place in
the investigation of electronic structure of TMS. Chemical shift, shakeup,
and configuration interaction satellites in photoelectron spectra represent
some important structural features of the system. EXAFS is an outstanding
version of these spectra as it allows one to determine interatomic distances
in liquid and other disordered states of matter.

10. Magnetic properties of TMS are studied mainly via magnetic susceptibility
measurements. The ligand field may quench (reduce) the orbital contribu-
tion of the CA electrons to the magnetic moment. Magnetic susceptibility is
usually temperature-dependent, but there may be a temperature-independent
component. Cooperative effects in solid state, dependent on the interaction
details, may result in paramagnetic, ferromagnetic, ferrimagnetic, diamag-
netic, and other forms of magnetism.

11. Electron spin resonance (ESR) is a powerful method of investigation of
electronic structure of TMSs in the presence of unpaired electrons show-
ing the symmetry, covalence, and degeneracy of their orbitals; splitting of
orbital and spin terms; and influence of the environment and nuclear spins.
It is effective in any phase state of the matter.

12. Exchange and superexchange magnetic coupling between different centers
is very important in electronic structure investigation of polycenter TMSs.
In a simple Heisenberg–Dirac–Van Vleck (HDVV) model the indirect cou-
pling between the local center states (magnetic orbitals) is described by one
parameter that can be estimated approximately. Exchange-coupled TMS
clusters are especially important in molecular magnets. Spin crossover is
another application of magnetic phenomena in TMSs.
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13. Optical activity, circular dichroism, and magnetic circular dichroism are in
widespread use in TMS, especially in metallobiochemical systems.

14. Gamma-resonance spectroscopy (GRS) based on the Mossbauer effect is
yet another powerful method of electronic structure investigation of many
TMSs. It allows one to reveal their electronic features as they influence the
isomer shift, quadrupole splitting, and magnetic fine structure of the spectral
lines produced by the transitions between the states of the nuclei. The
majority of nuclei suitable for GRS are those of transition metal elements.
Most widely studied are iron compounds.

15. X-ray, electron, and neutron diffraction methods are very useful tools for
TMS studies, including electronic structure studies. Electron charge defor-
mation densities (DD) provide a visual picture of the bonding features; their
analysis using the electronic structure theory allows for a better understand-
ing of the origin of the bonding. The spin DD obtained by neutron scattering
serves the same purpose.

EXERCISES AND PROBLEMS

*P8.1. From the light absorption curve of K2NaCrF6 at 77 K given in Fig. 8.6
one finds that there is a maximum of a d→d absorption band at �1

∼=
4300 Å (23,300 cm−1) with a bandwidth at half intensity δ� ∼ 530 Å
(2800 cm−1). Using these data and assuming that the maximum of the
luminescence band is at �2

∼= 19900 cm−1, evaluate the following:

(a) The frequency ω of the vibration that broadens the band (assum-
ing that mainly one vibration contributes to the broadening and the
condition of �ω  kT is obeyed)

(b) The shift a in minimum positions (equilibrium configurations) of
the excited state with respect to the ground state one

(c) The frequency at the pure electronic transition �0.

P8.2. The d → d transition 4A2g → 2Eg in [Cr(H2O)6]3+ yields a narrow band
in the absorption spectrum. Explain why this line is narrower then in
other d → d transitions and find three other examples with similar nar-
row bands in TMS spectra.

*P8.3. d → d transitions in TMS are transitions between the states of dn config-
urations split by the crystal field of the ligands. In TMSs with an inver-
sion center these states have the same parity (as, e.g., in the 4A2g → 2Eg

transition in Problem P8.2). On the other hand, according to selection
rules (Section 3.4), such transitions are forbidden. How is this contro-
versy solved? Explain in detail and indicate experimental support of your
explanation.

P8.4. What is the difference between the three quantitative characteristics
of spectral intensity: absorption coefficient, extinction coefficient, and
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oscillator strength? Are there relationships between them? Indicate
approximately their observable minimum and maximum values.

8.5. Explain the origin of the zero-phonon line and formulate the conditions
under which it can be observed in the absorption and emission spectra.
What information about the electronic structure of the system can be
obtained from the zero-phonon line position and its intensity?

*8.6. The two series of ligands, spectrochemical and nephelauxetic, extracted
from experimental spectroscopic data [Eqs. (8.23)–(8.26)] describe two
apparently independent kinds of properties: while the former charac-
terizes the crystal field strength of the ligands ignoring covalence, the
nephelauxetic series indicates just the covalence changes. Meanwhile by
comparison of these two series one can see some pattern. For instance,
in the series F, Cl, Br, I the parameters increase from left to right in
both spectrochemical and nephelauxetic series. What does it mean, and
how would you explain this correlation between the two series?

*8.7. On Fig. 8.38 the low-temperature polarized absorption spectrum of
(Naem)CuCl4 [Naem: N -(2-amonioethyl)morpholinium] in the visible
and near-IR region is shown. The two bands are attributed to two d –d

transitions in the distorted (compressed tetrahedral) CuCl42− units that
have D2d symmetry [8.112].

Draw a qualitative scheme of the d energy levels of this complex and
explain the origin of the observed polarizations of the two bands, similar
to how it is done in Example 8.2. Note that the low frequency band is
polarized along the [8.101] direction of the crystal that is parallel to the
z axis of the complex. (Hint : Compare your d-level diagram with that
in Figs. 4.5 and 8.21.)

FIGURE 8.38. Polarized spectra of the crystalline (Naem) CuCl4 at ∼12 K [Naem=N-
(2-ammonioethyl)morpholinium], with the electric vector along [101] (solid line) and
parallel to the b axis (dashed line).
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*P8.8. Using the method described in Section 3.5, Example 3.5, and Problem
3.8, find the allowed and forbidden normal vibrations in IR and Raman
spectra for the following molecular systems: planar triangular CuF3 with
symmetry D3h, tetrahedral CoCl42− with Td symmetry, octahedral UF6

with symmetry Oh, and cubic OsF8 with symmetry Oh. Are there normal
vibrations that can be seen in both IR and Raman spectra?

P8.9. What is the difference between Raman scattering and resonance Raman
scattering? Are the vibrational frequencies obtained from the Raman
spectra different from those in IR spectra? If vibrational shifts in the
Raman scattering do not depend on the frequency of incident light, can
we obtain them with IR irradiation? How can we increase the intensity
of the Stokes and anti-Stokes lines in the Raman spectra?

*P8.10. The constants of vibronic coupling of the E state of VF3 to degenerate e

and totally symmetric a vibrations equal (in dimensionless units) FE =
kE = 0.78 and FA = kA = 0.52, respectively, while the corresponding
vibrational frequencies are ωE = 784 cm−1 and ωA = 692 cm−1. Use
the semiclassical approximation to determine whether the optical band
of the A → E transition will be two-humped at room temperatures. How
does this condition change with temperature?

P8.11. Do the peaks of photoelectron spectra (PES) or X-ray photoelectron
spectra (XPS) coincide with MO energy levels? Explain you answer.
What kind of satellites may be observed in the PES and XPS and why
do they occur?

P8.12. Chemical shifts in XPS are attributed to the shift of the inner energy
levels of the atom due to the change in effective atomic charge by
the bonding to other atoms. Can we estimate effective atomic charges
from the chemical shifts? What more accurate bonding characteristics
determine the chemical shift, and how do they relate to the general under-
standing of backdonation and excitation by coordination as discussed in
Section 6.3 (Fig. 6.6)?

*P8.13. Use the definition of the magnetic moment μ, the expression for
quantum-mechanical averages of momenta 〈M〉 = M(M+1), and Eq.
(2.24) to prove that for free atoms the component of the magnetic
moment is given by Eq. (8.52): μJ = gβ[J (J+1)]1/2, where the g

factor follows the Landé formula (8.52).
P8.14. The magnetic moment of a free transition metal atom is formed by orbital

(for L �= 0) and spin (S �= 0) contributions of comparable value. When
the same atom is the CA of some TMS, its orbital contribution almost
completely vanishes (this is also seen from the g-factor values in ESR
spectra, which, for instance, for the Cu(II) TMS are near the spin-only
value g ≈ 2). When and why does this quenching of the orbital magnetic
moment by the ligands takes place? Give three examples of when the
magnetic orbital contribution does not vanish. Are there cases when the
orbital quenching depends on temperature?
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*P8.15. Following the formulas in Table 8.9, calculate the axial and equa-
torial molar magnetic susceptibility values at room temperature for
[Fe(urea)6]Cl3 with D = 0.130 cm−1 and gn = gl = 2.002, noting
that in the octahedral environment in this TMS the iron atom has a
high-spin configuration.

P8.16. What electronic structure characteristics can be obtained from ESR spec-
tra? In cases when the orbital contribution to the magnetic moment is
quenched (for nondegenerate terms or twofold degenerate E terms) the
g factor is still not exactly equal to the spin-only value; what is the
origin of nonspin contributions? Does the covalence derived from the
ESR spectra characterize the whole chemical bonding?

P8.17. As stated in Example 8.12, the semiempirical calculations show that in
the binuclear copper(II) acetate hydrate [Cu(OAc)2H2O]2 the exchange
coupling between the two unpaired electrons on the dx2 –y2 orbitals of
the two Cu(II) centers (δ bonding) is not via direct Cu—Cu interaction
(not via direct dx2 –y2 − dx2 –y2 overlap), but indirect, via the oxygens
of the ligands. How can this conclusion be drawn from the obtained
in the calculations MO LCAO diagram with MO populations? (Hint :
Employ the condition of bonding in the MO LCAO scheme discussed
in Chapters 5 and 6.)

P8.18. What are the conditions of antiferromagnetic coupling between indirect
interacting magnetic centers?

P8.19. Formulate the main conditions for application of γ -resonance spec-
troscopy to studies of TMS. What main structural and electronic infor-
mation about TMS can be obtained from γ -resonance spectra (GRS)?
Do GRS depend on temperature? If so, explain why.

P8.20. Deformation density (DD) in electron diffraction methods is usually
defined as the difference between the density of the electronic cloud in
the molecular system obtained experimentally (or by calculations) and
the spherical symmetric densities of free atoms in the positions that they
occupy in the molecule, while positive DD is directly related to the bond-
ing. Does this definition of DD correctly describe the changes in elec-
tronic density by the bonding? Explain your answer and give examples.
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9
STEREOCHEMISTRY AND
CRYSTAL CHEMISTRY

Stereochemistry underlies chemical intelligence; without assumptions of molec-
ular shapes, there is no way to rationalize molecular structure and chemical
transformations .

During a relatively short period stereochemistry and crystal chemistry of tran-
sition metal compounds changed from a (charge) ball-packing treatment to a
complicated electronic and vibronic problem.

9.1. DEFINITIONS. SEMICLASSICAL APPROACHES

The Notion of Molecular Shape

Stereochemistry deals with spatial arrangement of atoms in molecules: molecular
shapes . It occupies one of the most important places in the hierarchy of the
basic ideas of modern chemistry [9.1–9.5]. Therefore, it is worthwhile to discuss
in some more detail the physical understanding that underlies the definition of
molecular shapes.

The usual assumption that a molecule has a fixed spatial (volume) arrange-
ment of atoms with small vibrations near some equilibrium positions is not
always valid. It excludes some isomers, tautomers, nonrigid molecules, alter-
dentate ligands, and conformers—quite a number of situations when there are
large-amplitude nuclear dynamics or intramolecular transformations. In many
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cases the latter cannot be presented as distinct transitions from one nuclear con-
figuration (conformation) to another.

As stated in Section 1.2, any rigorous definition of a physical quantity should
contain, explicitly or implicitly, an indication of the means of its observation .
This statement follows from the understanding that the quantities that cannot
be observed can only pretend to be virtual, but not real. To observe a molecular
system in a given configuration, it should have a “lifetime” τ that is larger than the
characteristic “time of measurement” τ ′ determined by the means of observation:

τ > τ ′ (9.1)

The lifetime of a given molecular configuration is directly related to the shape
of its APES (Section 7.1). If the molecular configuration under consideration
corresponds to a sufficiently deep minimum of the APES and there are no other
equivalent (or comparable in energy) minima, then τ can be assumed to be suffi-
ciently large to define rigorously the molecular shape. If the opposite inequality
τ ≤ τ ′ holds, the molecular (nuclear) configuration becomes uncertain.

By way of example, consider a model of two isomers of a rhodium compound
shown in Fig. 9.1 [9.6] (the existence of these isomers is questionable, but this
does not influence the discussion below). The two minima corresponding to the
two configurations are expected to be different in depths, and we assume that
there is an energy barrier between them �E. The essential feature required for
the isomers to exist is that there be localized states in the minima. The condition
for localized states follows from quantum mechanics; the depth of the minimum
well should be larger than the kinetic energy of the motions within the well.

FIGURE 9.1. Adiabatic potential curve for two feasible isomers of a Rh complex (Ph =
phenyl) along the coordinate of their interconversion. The isomers may exist (can be
detected) if and only if �E > �ω.
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If there are localized states in the wells, the system performs vibrations with
a frequency ω that can be observed, say, by IR spectra. The characteristic time
of measurement τ ′ is then no less than T = 2π/ω. On the other hand, in the
presence of other minima the finite barrier height between them δ allows the
system to transfer from one configuration to another with a rate determined
by either overcoming the barrier thermally (at sufficiently high temperatures), or
tunneling through the barrier. In the latter instance the lifetime of the system at the
minimum is determined by the tunneling rate, which is exponentially dependent
on the ratio δ/�ω. In general, the observation of a certain configuration is possible
when at least

δ > �ω (9.2)

Thus, when there are two or several APES minima, the nuclear configurations
in each of them may be considered as the corresponding molecular shape if and
only if the energy barriers between them are sufficiently high. Otherwise, when
δ < �ω, there are no isomers, and the system performs only large-amplitude
vibrations involving the above configurations.

A similar treatment relates to tautomers. It is generally believed that tau-
tomers differ by electronic distribution only. However, according to the adiabatic
approximation (Section 7.1), any change in electronic structure is associated with
alterations in the nuclear configuration. Tautomer transformations are thus also
transitions between the APES minima that are, from this perspective, similar to
isomer conversion.

The APES minimum position that determines the molecular shape can be
evaluated by means of direct electronic structure calculations with geometry
optimization. Many examples of such calculations are given elsewhere in this
book, especially in Sections 6.3–6.5 and 11.3. The modern state of the art in
numerical quantum chemistry allows one to obtain molecular (including coordi-
nation) system equilibrium configurations that agree fairly well with experimental
data. However, as discussed in Section 5.7, any full numerical quantum-chemical
calculation, although contributing significantly to understanding of the origin of
molecular shapes, is in fact a computer experiment, and its results belong almost
entirely to the specific system that is subject to experimentation. The numeri-
cal results are, in general, not directly transferable to other systems, and hence
they cannot serve as a basis for the formulation of general laws of stereochem-
istry. Therefore, general models and qualitative results remain most important
to the understanding and prediction of stereochemistry , along with quantitative
electronic structure calculations with geometry optimization.

Directed Valences, Localized Electron Pairs, and Valence Shell
Electron Pair Repulsion (VSEPR)

The existing qualitative models in stereochemistry are based on some assumptions
about electronic charge distribution that determines the nuclear configuration. The
simplest model employs hybridized atomic orbitals (Section 2.1). The idea was
developed successfully by Pauling [9.7].
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According to the assumption of hybridized orbitals, the atomic pure s, p, d, . . .
orbitals under external influence become mixed. The mixed (hybridized) orbitals,
dependent on the mixing coefficients, are spatially oriented and, if they are occu-
pied by one electron, form directed valences . Table 2.4 of Section 2.1 and Fig. 2.8
show some examples of sp and spd hybridization with indication of the directions
of the valences. Kimball [9.8] considered the possible spd hybridizations resulting
in various geometries of directed valences for coordination numbers from 2 to 8.
Formally these assumed hybridizations include almost all the observed geome-
tries of coordination compounds; for reasons given below, we do not discuss
them in more detail (the majority of such hybridizations are listed in Burdett’s
book [9.1]).

As emphasized in Section 2.1, hybridization of atomic orbitals, which
determines their spatial orientation, does not mean that free atoms possess such
directed orbitals; they are formed as a result of the bonding (coordination).
In the absence of ligands the free atom has spherical symmetry for which
s, p, d, . . . orbitals are well separated in energy and orthogonal in space. Under
the influence of ligand fields that destroy the spherical symmetry, a specific type
of hybridized orbital with orientations toward the ligands is produced, provided
that the energy gained by the better overlap and bonding by hybridized orbitals
is greater than the energy lost in the promotion of electrons from lower to higher
orbitals required by the hybridization.

The picture of bonding with hybridized orbitals implies that there are localized
metal–ligand bonds realized by corresponding electron pairs, that is, that there is
a localized electron pair bonding . As discussed in Section 6.1, this type of bond-
ing is relevant to valence bonds in valence compounds . The valence pair bonding
model is most successful in organic chemistry and main-group compounds, but
it fails in coordination chemistry. As shown by rigorous analysis, the more gen-
eral MO presentation of electronic states may be reduced to localized orbitals if
and only if the valence electrons form a closed shell, and their number is twice
the number of bonds in the system. Neither of these conditions is fulfilled, in
general, in transition metal coordination compounds. On the contrary, the latter
differ from simple valence compounds just by their open-shell delocalized bonds,
which are due to the participation of d electrons (Section 6.1).

Nevertheless, there are systems, especially among coordination compounds of
nontransition elements (not very strong d participation, Section 6.1), for which
the description with localized electron pairs is approximately valid. In stereo-
chemistry of these systems the approach of valence shell electron pair repulsion
(VSEPR) may be useful. This approach can be traced back to the earlier works of
Lewis, Sidgwick and Powel, and Gillespie and Nyholm [9.1, 9.2]. The main idea
is that, as long as all the bonds in the system are formed by localized electron
pairs, their mutual repulsion determines the molecular shape.

An important additional circumstance is that some of the localized pairs of
electrons may be unshared by the ligands; that is, they are “lone pairs” (analo-
gies of nonbonding orbitals in the MO presentation; see below). The lone pairs,
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FIGURE 9.2. Schematic representation of the distortion of the octahedral complex XeF6

produced by the repulsive lone pair in the VSERP model. (From Bartell and Gavin [9.10].)

although not participating in the bonding, are nevertheless important for stereo-
chemistry because they participate actively in the electron pair repulsion. Usually
lone pairs distort the otherwise more symmetric arrangement of the localized
bonds.

Again, only limited cases of coordination compounds may be subject to such
treatments. An example of these is the system XeF6 [9.9, 9.10]. Figure 9.2 shows
how the lone pair (which remains after the formation of six Xe—F localized
electron pair bonds) distorts the otherwise octahedral arrangement of six fluorine
atoms (it is also assumed that the lone pair is sp-hybridized under the ligand
field). The lone pair thus occupies a coordination place and the complex becomes
seven-coordinated, somewhat similar to IF7. This situation is discussed in more
detail in the next section.

The approaches of the VSEPR type are semiclassical because they try to avoid
the due microscopic (quantum-chemical) treatment of the electronic structure by
means of introducing generalized classical parameters that allow one to reduce
the problem of stereochemistry to electrostatic interactions. The simplicity of the
VSEPR model, on one hand, and the complexity of quantum-chemical calcula-
tion, on the other hand, explain the attempts to improve this model, or to work out
more sophisticated versions based on the same principles, despite the deficiencies
of such approaches (especially for coordination compounds) in competition with
ab initio calculations.

One improvement in the VSEPR model was suggested by Kepert [9.4]. Each
metal–ligand bonding pair and lone pair is presented as being located at a point
in space. The interaction between two electron pairs uij is taken as a Born type
repulsion:

uij = aij

rn
ij

(9.3)

where rij is the distance between the pairs, aij is a coefficient, and n is an integer,
usually between 1 and 12; n = 6 is considered as most adequate to the electron
density repulsions (in most cases the results are given in comparison for n = 1,
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FIGURE 9.3. General presentation of the possible configurations of five-coordinated
complexes [MX5]n− of C2v symmetry described in a spherical model by two angles, φA

and φB . (From Kepert [9.4].)

6, and 12). If all the pairs (the bonds) are equivalent, then rij = r , the points of
the pair location are on a sphere as in the simple VSEPR model, and the total
interaction energy

U =
∑

ij

uij = anXnr
−n (9.4)

where Xn is the coefficient of repulsion that depends on n and the geometry of
the coordination polyhedron. For a given n, Xn is obtained from the condition of
energy minimization (minimum of U ). For different ligands additional parameters
are introduced, some of them taken from empirical data; others are variational.

The problem was considered for many coordination systems [9.4]. By way
of example, the scheme for five-coordinated complexes of the type [MX5]n− is
shown in Fig. 9.3. The most regular polyhedron for this system is either a trigonal
bipyramid (TBP) with φA = 90◦ and φB = 120◦, or a square pyramid (SP) with
φA = φB . Calculations [9.4] of the energy [Eq. (9.4)] as a function of φA and
φB with the parameters n = 6 and the ratio Xax/Xeq = 1.21 for the axial and
equatorial ligands, respectively, show that there are two minima corresponding
to the TBP configurations with φA = 90◦

, φB = 120◦ and φA = 120◦
, φB = 90◦,

respectively, but the energy barrier between them is negligible. Thus the system
can easily convert from one TBP configuration through the SP one to another
TBP configuration (Berry pseudorotation [9.11]; see Section 9.2), and all these
configurations (including the intermediates along a specific pathway) are equiv-
alent.

In fact, crystal structure data on various systems containing MX5 polyhedra
show a large variety of mainly fixed angles φA and φB from 90◦ to 120◦ [9.4],
and this obviously results from the plasticity effect discussed in Section 9.4.
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The electronic structure of the MX n−
5 systems and electronic control of their

nuclear configuration and dynamics, as well as the possible pseudorotation in
such systems, is discussed in Section 9.2. In particular, it is shown that the
pseudorotation in MX n−

5 systems does not follow the Berry rotations scheme of
TBP → SP → TBP interconversion.

Nonbonding Orbitals and Nodal Properties

As seen from the discussion of the VSEPR model above, lone pairs of electrons
are important for the geometry of coordination because they occupy a significant
region of repulsion (Fig. 9.2), which can be even larger than that for metal–ligand
bonds. Each lone pair thus acts stereochemically as a virtual additional ligand,
essentially distorting the otherwise more symmetric polyhedron. However, in
practice the picture may be more complicated since it turns out that not all the
lone pairs are stereochemically active; this circumstance is discussed in more
detail in Section 9.2. Nevertheless, the problem of how many and what kind
of lone pairs are expected in a given coordination compounds is of significant
interest.

In a more rigorous MO LCAO formulation, lone pairs—that is, pairs of elec-
trons unshared by the ligands (or unshared by the CA for ligand lone pairs)—are
formed by two electrons that occupy a nonbonding MO (“unshared by ligands”
means nonbonding). It can be occupied by one electron only producing stereo-
chemical influence that is qualitatively similar to that of the lone pair (and this
is one advantage of the MO description).

In addition to this important property of nonbonding orbitals in stereochem-
istry, which is similar to that of lone pairs in the VSEPR model, the MO
description formulates this feature more precisely; the ligands are always located
on the nodal lines, planes, or cones of occupied nonbonding orbitals . Obviously,
this orbital effect is due to the same electron repulsion of nonbonding electrons
as in the VSEPR model, but it gives a more accurate indication of the possi-
ble ligand geometry; it is determined by the nodal properties of the nonbonding
orbitals that can be relatively easily established.

The possible number of nonbonding orbitals in coordination compounds of
the type MLn and their role in stereochemistry is discussed by Mingos and
Zhenyang [9.12]. It is assumed that the Coulomb integrals αi = Hii [Eq. (5.4)]
for the s, p, d electrons are equal to each other: αs = αp = αd , but the results
remain valid qualitatively when they are different. An interesting m–n rule was
formulated: provided that only σ bonds are considered, the number of nonbonding
orbitals in a MLn coordination system equals |m − n|, where m is the number
of valence orbitals of M . Table 9.1 gives some information about nonbonding
orbitals in different coordination systems of transition elements that participate
in coordination with m = 9 (one s, three p, and five d) orbitals.

Different types of nonbonding orbitals influence the geometry of coordination
differently. Example 9.1 illustrates several important cases.
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TABLE 9.1. Nonbonding Orbitals of the CA in MLn Complexes with Nine AOs
from the CA and One σ Orbital from Each Ligand Nine

Geometry p d Hybridized

Linear ML2 px, py dx2−y2 , dxy, dxz, dyz s − λdz2

Trigonal ML3 pz dxz, dyz s + λdz2 ,
dx2−y2 + λ2px ,
dxy + λ3py

Square-planar ML4 pz dxy, dxz, dyz s + λdz2

Trigonal bipyramidal ML5 — dxz, dyz, dx2−y2 + λpx ,
dxy + λpy

Octahedral ML6 — dxy, dxz, dyz —
Trigonal prismatic ML6 — — s + λ1dz2 ,

dx2−y2 + λ2px ,
dxy + λ3py

Pentagonal bipyramidal ML7 — dxz, dyz —
Square antiprismatic ML8 — — s + λdz2

Dodecahedral ML8 — dx2−y2 —

Source: Mingos and Zhenyang [9.12].

EXAMPLE 9.1

Influence of Nonbonding MOs on Coordination Geometry

Consider first pure CA nonbonding orbitals, with respect to which the
ligands are located either on their nodal planes as in BH3 where the
hydrogens are in the nodal plane of the pz orbital (Fig. 2.2), or in
the nodal cones formed by, for instance, the nonbonding dxy, dxz, dyz

orbitals in octahedral complexes ML6 (Fig. 2.3).
Nonbonding hybridized orbitals sp, sd, dp, . . . are of another type.

Mainly owing to these orbitals, the system avoids higher symmetries in
Cnv groups. For example, SF4 has C2v symmetry instead of the higher
ones C4v, D4h, or Td . In many cases this effect can be presented as
resulting from the tendency to avoid occupying metal–ligand strong
antibonding orbitals instead of the nonbonding states at lower symme-
tries; the additional repulsions in the distorted system may be smaller
than the energy loss by occupation of antibonding MOs. For instance,
in SH4 two electrons prefer the nonbonding px –dxy orbital, resulting
in C2v symmetry than the antibonding a1 MO in the tetrahedral Td

symmetry; CH4 is exactly tetrahedral since the critical two antibonding
electrons are lacking.

Another example of this kind is provided by some “sandwich”
compounds. In the high-symmetry configurations (e.g., D5h or D6h)

the overlap of the CA d orbitals with the ring π MOs of the type



514 STEREOCHEMISTRY AND CRYSTAL CHEMISTRY

FIGURE 9.4. Slip distortion of the high-symmetry D6h configuration of sand-
wich compounds that reduces the AO overlap and antibonding character of the
dxz − eπ

1 (x) MO.

dxz − eπ
1 (x) produces occupied antibonding orbitals that can be

reduced by a simple “slip” distortion (Fig. 9.4). Again, this effect is
realized when the antibonding nature of the MOs under consideration is
sufficiently strong. Therefore, the first-row metallocenes, for instance,
Co(η-C2H5)2 and Ni(η-C5H5)2, are not distorted [9.13], whereas the
second- and third-row sandwich compounds, where the overlap and
hence antibonding character of the corresponding MOs are much larger
[e.g., in Ru(η6-C6Me6)(η

4-C6Me6], undergo a slip distortion as shown
in Fig. 9.4 [9.14].

In many other systems the corresponding MO in the high-symmetry configura-
tion is not sufficiently strongly antibonding, and these systems are not distorted,
despite of the presence of two additional electrons that might be considered as a
lone pair. For example, the complexes SbX 3−

6 , X = Cl, Br, I, MX 2−
6 , M = Se,

Te, have seven electron pairs but remain octahedral, and XeF 2−
8 has nine elec-

tron pairs, but it is a square antiprism. In these cases it is said that the lone pairs
are stereochemically inactive (inert). A more rigorous treatment of these effects
based on the PJTE is given in Section 9.2.

Complementary Spherical Electron Density Model

A stereochemical model, quite similar in spirit to those discussed above in this
section, was suggested by Mingos [9.15–9.17]. The essence of the model is as
follows. Consider an MLn complex as a CA surrounded by a sphere of ligand
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electron densities that are localized into distinct regions of the sphere. In the MO
LCAO approximation (Section 5.1) the AOs are taken in appropriate symmetry-
adapted linear combinations, separately for the CA and ligands (Table 5.1), and
then the linear combinations of the functions of the same symmetry from both
parts are combined by the corresponding LCAO coefficients into a MO (5.9).
While the AOs ψ0 of the CA are well-known spherical harmonics Ylm(θ, φ) [see
Eq. (2.2)], which can be classified as s, p, d, . . . functions (Section 2.1), Mingos
attracted attention to the fact that the linear combinations of ligand functions �

can also be presented as spherical harmonics, provided that the radial distribution
is considered the same for all the ligands , namely, as concentrated on the same
sphere with M in the center. This is the most limiting assumption of the model.

Under this assumption both the AOs of the CA and ligands are presented
as spherical harmonics Yim with the same quantum numbers l (azimuthal; l =
0, 1, 2, . . .) and m (magnetic, m = 0, ±1,±2, . . .). In order to deal with real
functions, the degenerate states with m> 0 are taken in the corresponding real
linear combinations as shown in Section 2.1: Yl,m± = c±(Yl,m ± Yl,m−).

For example, in MH4 with spherically distributed hydrogen atoms about M the
corresponding linear combinations of the hydrogen σ function forming spherical
harmonics can be presented as follows:

�lm =
n∑

i

ciσi = N
∑

i

Yl,m(θi, ϕi)σi (9.5)

where N is the normalization factor and θi, ϕi are the angular coordinates of the
ith ligand on the sphere. For l = 0 and m = 0, Y00 is independent of θ and ϕ, and
hence �00 is the sum of σi . If l = 1, there are three functions, �1,0, �1,1+, and
�1,1−, which can be easily found from (9.5) by substituting the corresponding
ligand coordinates. To distinguish between the harmonics �lm and that of the CA,
the notations S, P, D, . . . are introduced. These indicate that the �00 function is
Sσ (the superscript σ indicates the assumed σ functions of the hydrogen atoms),
while �10,�1,1+, �1,1− mean P σ

0 , P σ+ , P σ− , respectively. There are also five D

functions: Dσ
0 ,Dσ

1+, Dσ
1−, Dσ

2+, Dσ
2−, seven Fσ functions, and so on.

The ligand spherical harmonics (9.5) can be found relatively easily, provided
that the ligand geometry (the θi, ϕi coordinates) is known. In the spherical elec-
tron density model under discussion it is assumed that the ligand arrangement
should form either the best covering, or the best packing polyhedron on the
sphere, or both. The two types of polyhedrons are found as solutions of the
following problems [9.17]:

“If n oil supply depots are available on the surface of the sphere, what is their
best arrangement to give the most efficient utilization of oil resources?”
(Covering problem.)

“If n inimical dictators control the planet, how could they be located on the
surface of the sphere, so as to maximize the distances between them?”
(Packing problem.)
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TABLE 9.2. Best Covering and Packing Polyhedrons MLn in the Spherical Ligand
Electron Density Model

n Best Covering Polyhedron Best Packing Polyhedron

3 Triangle Triangle
4 Tetrahedron Tetrahedron
5 Trigonal bipyramid Square pyramid
6 Octahedron Octahedron
7 Pentagonal bipyramid Capped octahedron
8 Dodecahedron Square antiprisin
9 Tricapped trigonal prism Capped square antiprism

Source: Mingos [9.16].

The results of the solution of covering and packing problems for some most
usable coordination numbers n are listed in Table 9.2 (capped polyhedron means
a regular polyhedron with an additional capping atom located on a face). If the
geometry of the complex is known, the ligand spherical harmonics can be found
directly from Eq. (9.5).

One of the most interesting applications of the spherical density model is in
the confirmation of the inert-gas rule, which states that coordination systems and
main-group molecules with the valence electron configuration of the appropriate
inert gas (configurations with 8, 18, 32, etc., valence electrons) are most stable.
The inert-gas rule is widely used in discussion of qualitative molecular structure,
but little attention has been paid to its theoretical foundation.

First, consider a hypothetical system in which the ligands form an exact spher-
ical distribution of charge about the CA. It can be shown that in this instance
the ligand states, that is, the solutions for a charged ball that has spherical sym-
metry, are also spherical harmonics �nim(θ, ϕ) of the type S, P , D, with the
same symmetry and nodal properties as s, p, d , and with the energy consequence
S < P < D, . . .. If there is a considerable overlap of the CA functions with the
ligand sphere functions, appropriate bonding MOs of the type (5.9) or (5.32) are
formed:

�lm = Nlm(ψlm + λ�lm) (9.6)

Because of the exact spherical symmetry of the system, the functions ψlm

and �l′m′ with different quantum numbers are orthogonal and do not form MOs.
Hence the number of bonding MOs equals the number of active valence orbitals
of the CA. For example, if the CA has valence s, px, py, pz orbitals, then they
overlap in pairs with S, P0, P+, P− spherical shell functions to form four bonding
MOs that can accommodate 8 valence electrons. If the five d electron states are
also involved, then there are 9 bonding MOs with 18 electrons (with f states
added there will be 16 bonding MOs with 32 electrons).

If the number of electrons is less than 8, 18, and 32, respectively, then not
all the bonding MOs are occupied, and the stability of the system is expected to
decrease. If the number of electrons is larger, the stability of the system, again,
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decreases since all the bonding MOs are occupied and the excess electrons occupy
antibonding MOs. In sp systems the electrons in excess of 8 could, in principle,
occupy D states, but they are much higher in energy than are S and P . Thus the
numbers of electrons of the inert gas are indeed optimal for the stability of the
spherical shell system.

This result is hardly surprising in view of the assumed spherical symmetry of
the system. The complex of the CA with a spherical shell charge distribution of
ligands is just an extended atom that has qualitatively the same atomic distribu-
tions as the free atom. Therefore, in this system the inert-gas closed-shell stability
rule, well known in free atoms, is obeyed, and for the same reasons as for free
atoms; in the dependence of the energy on the hydrogenlike quantum numbers
the configurations with

∑l=l∗
l=0 2(2l + 1) (l∗ = 0, 1, 2, . . .) valence electrons are

most stable.
In the spherical density model described above the ligand charges occupy

distinct places on the same sphere, and hence their charge distribution is not
spherically symmetric. It means that the orthogonality of the CA and ligand
spherical harmonics with different quantum numbers ψlm and �l′m′ does not
hold, and the MO scheme employed above should be reconsidered. However, if
the nonorthogonality arising because of the nonuniform (not exactly spherical)
distribution of the ligand charges on the sphere is not very large, one can assume
that the qualitative features of the abovementioned spherical charge distribution
are approximately valid, and this approximation is the better, the more spherical
the ligand arrangement about the central atom. Thus the inert-gas rule is expected
to hold approximately, and it is more acceptable for a larger number of more
identical ligands.

In the complementary spherical electron density model under consideration,
this inert-gas rule is considerably extended to what can be called a generalized
inert-gas rule [9.16, 9.17]. If the coordination number n is less than 9, then the
number of ligand spherical harmonics is reduced, and the Dσ functions are suc-
cessively lost (their number becomes n − 4). As a result, the pseudo-spherical
electron distribution assumed for the occupied one S, three P , and five D func-
tions is also lost because of the holes in the Dσ shell formed by the lack of
corresponding electron pairs. However, if the missing Dσ states are compen-
sated for by matching d states occupied by the electrons of the CA, then a more
spherical electron distribution is attained. Example 9.2 provides for illustration
of this consideration.

EXAMPLE 9.2

The Inert-Gas Rule in Stereochemistry of Some Coordination Compounds

A classical example of the inert-gas rule is provided by the system
[ReH9]2−. In the tricapped trigonal prism configuration of the best cov-
ering polyhedron (Table 9.2) there are nine ligand spherical harmonics
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TABLE 9.3. The Generalized Inert-Gas Rulea

n Structure S P0 P+ P− D0 D1+ D1− D2+ D2− Examples

9 Tricapped trigonal prism + + + + + + + + + [ReH9]2−

8 Square antiprism + + + + d
z2 + + + + H4[W(CN)8]

8 Dodecahedron + + + + + + + d
x2−y2 + K4 [W(CN)8],

[MoH4(PMe2Ph)4]
7 Pentagonal bipyramid + + + + + dxz dyz + + [OsH4(PMe2Ph)3]
7 Capped octahedron + + + + + + + d

x2−y2 dxy [W(CO)4Br3]
7 Capped trigonal prism + + + + + + dyz d

x2−y2 + [Mo(CNbut)7]2

6 Octahedron + + + + + dxz dyz + dxy [Mo(CO)6]
5 Trigonal bipyramid + + + + + dxz dyz d

x2−y2 dxy [Fe(CO)5

5 Square pyramid + + + + d
z2 dxz dyz + dxy [Ni(CN)5]3−

4 Tetrahedron + + + + d
z2 dxz dyz d

x2−y2 dxy [Ni(CO)4

aThe rule states that the ligand spherical harmonics (S, P,D) of the MLn complex,
together with the indicated compensating d orbitals of the CA, form a complete set for
a closed-shell 18-electron configuration.
Source: Mingos [9.16].

(Table 9.3) that fit exactly the nine CA functions forming nine bond-
ing MOs with an 18-electron closed shell (assuming that the above-
mentioned nonorthogonality is neglected). A ligand arrangement in a
capped square-antiprism also generates a complete set of Sσ ,P σ , and
Dσ functions providing an alternative stereochemistry that satisfies the
requirement of inert-gas formulation (other polyhedrons are nonfit). This
means that the configuration of the complex may be flexible within these
two polyhedra, and this result is consistent with the observed stereo-
chemical nonrigidity of [ReH9]2− [9.18]. DFT-Xα calculations [9.19]
of this system show that the radial distribution of the hydrogens around
the CA emulates that of an inert gas.

In another example, a dodecahedral MH8 system misses one lig-
and spherical harmonic Dσ

2+ (Table 9.3). The remaining eight bonding
orbitals with 16 electrons do not fit the inert-gas rule that requires 18
bonding electrons. However, if the dx2 –y2 AO of the CA, which matches
approximately the D2+ orbital by space distribution, is occupied by
two electrons, the spherical symmetry is regained and the generalized
inert-gas rule of stability is obeyed. For this system a square-antiprism
arrangement of the hydrogens misses the Dσ

0 ligand function, which
can be compensated for by the occupied CA dz2 orbital. Other arrange-
ments, such as a cube or hexagonal bipyramid, require f functions for
the compensation that are not available. Hence the generalized inert-gas
rule serves as a tool for stereochemistry treatments. Table 9.3 shows
other examples illustrating the efficiency of the generalized inert-gas
rule.
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To summarize, the complementary spherical electron density model shows that
the inert gas rule is valid when there is a complementary interaction between the
ligand and central atom electronic states in which the CA nonbonding d electrons
compensate for the missing ligands, resulting in pseudospherical electron distri-
bution. Those polyhedra that give the best covering and/or packing of the ligands
on the sphere are most effective in emulating the required spherical distribution
by generating the corresponding set of contiguous Sσ , P σ ,Dσ , . . . functions. The
nonbonding d orbitals of the CA that compensate for the missing 9 − n ligands
(ligand spherical harmonics) can experience an additional stabilization through
π-bonding effects [9.18]. Other examples and extensions of the complementary
spherical electron density model, in particular, to cluster compounds, can be
found in the literature [9.15–9.17].

In overlap with these semiclassical ideas in stereochemistry are the methods
of molecular modeling discussed in Section 5.6.

9.2. VIBRONIC EFFECTS IN STEREOCHEMISTRY

Nuclear Motion Effects: Relativity to the Means of Observation and
Vibronic Amplification of Distortions

In terms of quantum mechanics, the methods used in the previous Section, as
mentioned above, are semiclassical in the sense that the electron distribution
is considered as resulting from approximate (even qualitative) quantum-chemical
treatments, while the interaction between localized bonds or lone pairs (nonbond-
ing states) is taken into account as a pure electrostatic repulsion. In so doing, many
quantum features of the phenomenon, in particular, vibronic coupling effects, are
omitted.

A more rigorous formulation of the problem should be based on quantum
mechanics involving the vibronic interaction theory given in Chapter 7. In the adi-
abatic approximation (Section 7.1) the stable nuclear configuration corresponds
to the absolute minimum of the APES. The latter is directly influenced by the
vibronic coupling between different electronic states, ground and excited (see the
TEST paradigm in Section 7.4). Therefore, the vibronic coupling theory enables
us to formulate some general stereochemistry rules, thus serving as an analytical
model for the theory of stereochemistry (vibronic stereochemistry).

The theory of vibronic coupling is in essence a perturbational approach, and
therefore the vibronic effects are most general (no exceptions) and of utmost sig-
nificance in APES behavior at the extrema points and points of degeneracy. First,
as stated by the JT theorem (Section 7.3), at the points of electronic degeneracy,
that is, at the nuclear configurations for which the electronic state is degenerate,
the adiabatic potential has no minimum. A similar situation emerges in the PJTE.
Following the simplified formulation, the lack of APES minimum means that the
system is unstable in this configuration. In general, this conclusion is not suffi-
ciently rigorous and not always valid (Section 7.3); a more general conclusion is
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that in these cases there is a special coupling between the electronic and nuclear
motions and they cannot be separated .

The lack of minimum of APES at the point of electronic degeneracy or pseu-
dodegeneracy due to the JTE usually means that there are two or several (or
an infinite number of) equivalent minima, at each of which the system is dis-
torted along one of the equivalent symmetry axes (or along a trough, Section
7.3). In case of a limited number of minima, if the energy barriers between them
are sufficiently high, the distorted configurations of the system may be observ-
able, provided that the condition (9.1), τ > τ ′, for the means of measurement is
satisfied.

The “time of measurement” τ ′ varies for different physical methods of mea-
surement. Usually τ ′ is inversely proportional to the frequency of external pertur-
bations in the resonance methods of investigation (Sections 8.1–8.5). Hence τ ′
can be quite different in different methods of investigation, whereas τ , the lifetime
of the system in one of the equivalent minima, is constant for the given system.
This means that for some of the measurements the condition (9.1) is obeyed,
τ ′ < τ , whereas for others, τ ′ >τ . In other words, in a free JT or PJT system
with strong vibronic coupling, the observable nuclear configurations depend on
the means of observation and may vary by changing the method of measurement
[9.20].

The relevance of this relativity rule concerning the means of observation of
molecular shapes is actually rather widespread, but sometimes not given due
attention. Note that in this rule the distorted configuration is expected to be seen
in the measurement with higher frequencies (τ ′ < τ ). This means that one can
observe the distorted configuration, say, in optical experiments, and the undis-
torted configuration (averaged over all the equivalent minima) in the ESR spectra,
but not vice versa . Sometimes this rule allows one to understand the origin of con-
tradictory empirical data obtained from different experiments. X-ray diffraction
measurements (long exposure) [e.g., in K2PbCu(NO2)6] show that the octahe-
drons around Cu(II) are compressed, whereas ESR spectra (with much shorter
τ ′) yield antiferrodistortively ordered elongated octahedrons (Section 9.4). Fur-
ther examples of this kind can be found in other chapters of this book and in the
literature (see, e.g., Ref. 9.20 and references cited therein).

The situation changes significantly when there are small perturbations slightly
lowering the symmetry of the system (differences in the ligands or ligand sub-
stituents, or small external fields, including small crystal fields). If these pertur-
bations are sufficiently strong to produce a distortion larger than the JT one, they
remove the JTE as such. For smaller perturbations the JTE is not removed but
modified with interesting consequences for stereochemistry.

Consider a system with a JT E ⊗ e problem (a double-degenerate electronic
E term interacting with e vibrations; Section 7.3) in the linear approximation, in
which APES assumes the form of a Mexican hat (Fig. 7.9). For the free system
the averaged picture displayed in the experiment is an undistorted nuclear con-
figuration. Under the influence of a small distorting perturbation, say, elongating
in the Qθ direction, the circular trough becomes distorted, namely, an additional
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potential well in the Qθ direction (and a hump in the opposite −Qθ direction)
appears. If the depth of the well is greater than the kinetic energy of the circular
motion in the trough, then the nuclear motions are localized in this well and the
corresponding distorted nuclear configuration can be observed in the experiments.

The most exciting result in this picture is that the magnitude of the distortion is
determined mainly by the vibronic effects and may be independent of the (small )
perturbation magnitude [9.20]. Indeed, the additional well is formed at a point of
the circular trough with coordinates (ρ0, ϕ0), where ϕ0 only depends significantly
on the perturbation, as the magnitude of the ρ0 value is less affected (in fact the
perturbation slightly distorts the trough circle, too; see below). This ρ0-value
distortion is often called the static limit of the Jahn–Teller effect.

Thus, a small perturbation W acting on a JT system produces a perturbation
that is determined by the static limit ρ0 of the JTE, which stabilizes the static
distortions. Since the kinetic energy of the motion along the trough Ek is of the
order of several wavenumbers (cm−1) [9.20], the condition W ≥ Ek is fulfilled
even for small perturbations. Meanwhile, the static distortions ρ0 may be rather
large. Hence we obtain the “amplification rule” in Jahn-Teller distortions; a small
distorting perturbation may be amplified by vibronic effects .

Let us make some qualitative (or semiquantitative) estimations of the coef-
ficient of vibronic amplification Pa . In the absence of vibronic coupling the
distortion magnitude Q0 can be found from the fact that the perturbation energy
W transforms into strain energy: W = ( 1

2

)
KEQ2

0, where KE is the force constant
for the E distortions under consideration (Section 7.3); hence Q0 = (2W/KE)1/2.
If the vibronic effects are taken into account, QJT

0 = ρ0 + Q0, and the amplifi-
cation coefficient, equal to the ratio of the corresponding distortions, is Pa =
QJT

0 /Q0 = 1 + (EJT/W)1/2, where the relationship ρ0 = (2EJT/KE)1/2 [see Eq.
(7.41)] has been used. The maximum amplification is attained when W = Ek:

P max
a = 1 + 4

EJT

hωE

= 1 + 4λE (9.7)

It follows that the vibronic amplification may be very large, since the λE

value may be substantial. For example, if we assume [as expected for octahedral
compounds of Cu(II), Mn(III), Cr(II)] that λE is about 5–10, then P max

a ∼ 20–40.
In the quadratic E ⊗ e problem with a more complicated APES that has three

equivalent tetragonal minima (Section 7.3, Figs. 7.10 and 7.11), a low-symmetry
perturbation renders them nonequivalent, and the system becomes “locked” at
that minimum, which is deeper. Consequently, the pulsating system under small
perturbations becomes strongly distorted statically. Such effects are encountered
in many perturbation investigations of Jahn–Teller systems [9.20].

Temperature dependence of the amplification effect was also explored approx-
imately. It was shown [9.20] that for a JT system with a threefold-degenerate T

term interacting with t2 nuclear distortions (the T ⊗ t2 problem, Section 7.3) at
not very low temperatures, the temperature dependence of the vibronic amplifi-
cation of external distortions Pa is Pa ≈ ET

JT/kT, where ET
JT is the JT stabiliza-

tion energy. For instance, for moderate JTE, EJT ∼ 103 cm−1, Pa ∼ 10 even at
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room temperatures. These numbers are approximate, but the conclusion about an
uncommonly large susceptibility of vibronic systems to distortions due to vibronic
amplification seems to be quite general.

The notion of vibronic amplification contributes to a better understanding of
the JTE on the expected molecular shapes. In particular, it rejects the incorrect
statements (often encountered in the literature) that the JTE is not expected in
systems where differences in the ligands or other low-symmetry perturbations
formally eliminate the electronic orbital degeneracy. On the contrary, we empha-
size in this section that to observe JT distortions directly, some low-symmetry
perturbations that trap the system in one of its equivalent APES minima are nec-
essary. These perturbations may be very weak, often the influence of the next
coordination sphere (such perturbations can also be created by the process of
measurement when τ ′ < τ ), and even more often cooperative effects in crystals
(Section 9.4). In the absence of these perturbations the Jahn–Teller distortions
are of dynamic nature and do not manifest themselves in an absolute way in
stereochemistry and crystal chemistry.

Qualitative Stereochemical Effects of Jahn–Teller and
Pseudo-Jahn–Teller Distortions

Provided that the conditions for experimental observation of molecular shapes
corresponding to the minima of the adiabatic potential are fulfilled, the distor-
tions of high-symmetry configurations predicted by the vibronic coupling theory
(Sections 7.3 and 7.4) have a direct impact on stereochemistry. At present,
Jahn–Teller distortions in stereochemistry are widely employed in current inves-
tigations (see Refs. [9.1, 9.20–9.26], and references cited therein). Many works
are devoted to Cu2+ stereochemistry that may serve as a reference example of
vibronic stereochemistry. Since it is determined mainly from crystal structures,
the stereochemistry of Cu2+ is discussed in Section 9.4.

In the JTE the distorted configurations are determined by the Jahn–Teller
active coordinates. More rigorously, the symmetry of the Jahn–Teller distorted
system can be predicted in a general way by means of group-theoretical consid-
erations using the epikernel principle [9.21]. An epikernel of � in G, denoted
E(G,�), is defined as the subgroup of G that contains all the symmetry elements
for which at least one basis function of � remains totally symmetric. The epik-
ernels can easily be found directly from the character tables of the correspond-
ing point groups: E(Td,E) = D2d, E(Td, T2) = C3v, C2v, Cs;E(Td, E + T2) =
D2d, D2, C3v, C2v, C2, Cs . In the last case it is assumed that the E and T2 vibra-
tions have the same frequency, forming a fivefold-degenerate Jahn–Teller active
space. For the octahedral Oh group E(Oh,E) = D4h, C4v;E(Oh, T2) = D3, C3v ,
and so on.

The epikernel principle can be formulated as follows [9.39]. Extrema points
on a Jahn–Teller surface prefer epikernels; they prefer maximal epikernels to
lower-ranking ones. Stable minima are to be found with the structures of maximal
epikernel symmetry . This statement implies that, although forced to distort in
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order to remove the electronic degeneracy, the system prefers nuclear configura-
tions with higher symmetry compatible with this requirement. In this formulation
the epikernel principle is related to the more general statement of Pierre Curie
given in 1894 [9.27]: “The symmetry characteristic of a phenomenon is the max-
imal symmetry compatible with the existence of this phenomenon.” In relation
to the statement in Section 7.4 that nature tends to avoid degeneracy , this Curie
formula means that nature keeps the highest possible symmetry compatible with
avoiding degeneracy.

The distortions that are predicted by the epikernels described above coincide
with those that are well known from the general formulation of the vibronic
effects in Section 7.3. As further illustration, some specific examples may be
mentioned: Ni2+(d8) and Cu2+(d9) four-coordinated complexes usually have the
D2d structure compatible with an electronic T term and E distortions (similar
Zn2+ complexes are undistorted tetrahedrons); Fe(CO)4 exhibits C2v distortions,
as if resulting from a T –(e + t2) problem (see the discussion below), while the
Co(CO)4 fragment shows trigonal geometry.

However, the proof of the epikernel principle is based on the assumption of
only linear vibronic coupling, meaning that, in general, the epikernel principle
can be violated. In particular, this can take place when the higher-order vibronic
interaction terms in Eq. (7.21) are important and/or the PJTE is efficient. The
influence of PJTE on stereochemistry is even greater than that of JTE. For sys-
tems with the PJTE the electronic ground state is nondegenerate, but the strong
vibronic mixing with the excited states renders the system unstable with respect to
low-symmetry (nontotally symmetric) nuclear displacements. Following the state-
ment (theorem) about the uniqueness of the vibronic mechanism of instability,
discussed in Section 7.4, the only source of instability (unstable equilibrium) of
high-symmetry configurations of molecular systems with a nondegenerate ground
state is the vibronic mixing with the excited states by nuclear displacements of
lower symmetry. If one starts with a high-symmetry configuration of the system,
its possible instability and directions of distortions are controlled by, and only
by strongly admixing excited states. The number of the latter, that are active in
causing the instability of the ground state, is limited by selection rules and not
very large energy gaps.

The condition of PJT instability in the direction of the symmetrized coordinate
Q is given by Eq. (7.85). This equation reveals the specific excited electronic
states that produce the configuration instability in the ground state in a cer-
tain direction. Relations similar to (7.82) [which leads to (7.85)] were discussed
by Bader [9.28] and further developed in application to instability problems by
Pearson [9.26]. In this Bader–Pearson treatment the reduction in curvature of the
ground-state APES resulting from its vibronic mixing with the excited states is
given as one possible explanation for the softening and instability of the ground
state. In the vibronic approach, as distinct from the Bader–Pearson treatment, the
vibronic mixing of the ground and excited electronic states is the only possible
source of any configuration instability (see the TEST paradigm, Section 7.4). This
also means that if there is instability, there should be excited states that cause
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the distortion. Since the PJTE is the only source of distortions of high-symmetry
configurations in nondegenerate states, the observed geometry of molecular sys-
tems can be explained (predicted) by direct estimation of the corresponding JTE
and/or PJTE parameters and the contribution of the excited states to the instability
of the ground state under consideration.

Example 9.3 illustrates this statement by considering the stereochemistry of
MX4 and MX6 systems, and Example 9.4 shows how the differences in observed
geometries of some Cu(II) and Zn(II) complexes can be rationalized using numer-
ical estimations of the PJTE. The role of the PJTE in the formation of molecular
shapes is elucidated also in Examples 7.2–7.4 by means of ab initio calcula-
tions. Quite a number of other examples of JT- and PJT-induced distortions in
coordination systems are considered in Ref. 9.20.

EXAMPLE 9.3

Stereochemistry of MXn Systems Controlled by Electronic Structure and
Vibronic Coupling

Consider MXn systems where M is a transition element. In a planar
MX4 system the typical electronic configuration is (Section 6.2):

. . .(a1g)
2(b1g)

2(eu)
4{(b2g)(eg)(2a1g)(2b1g)}(a2u)

0(3a1g)
0

where the MOs in braces should be populated by the d electrons. The
distortion of the square-planar configuration toward D2d and/or tetrahe-
dral Td symmetry is a B2u nuclear displacement. Hence, if the ground
electronic state is nondegenerate and totally symmetric, this distortion
may take place because of its strong mixing with an excited state B2u.
The latter can be obtained by one of the following one-electron exci-
tations: eu → eg, b1g → a2u, or b2u → 2a1g (b2u is an inner MO not
shown above). Therefore, if the eg and 2a1g MOs are fully occupied by
d electrons, but the 2b1g MO is unoccupied, the square-planar configu-
ration is stable. In other words, low-spin MX4 d8 complexes of Ni(II),
Pd(II), and Pt(II) are expected to be square planar. On the contrary,
high-spin d5 and d10 complexes with an occupied 2b1g MO may be
unstable in the planar configuration because of the strong mixing with
the low-lying B2u(2b1g → a2u) term.

Passing on to octahedral MX6 systems, let us consider the example of
XeF6 [9.9, 9.10]. Nonempirical calculations of the electronic structure of
this molecule [9.29] show that the outer MOs are arranged in the follow-
ing sequence: (t2g)

6(t2u)
6(t1u)

6(t1g)
6(eg)

4(a1g)
2(2t1u)

0 with an energy
gap of about 3.7 eV between the a1g and t1u MOs. This results in insta-
bility of the system with respect to T1u displacements. For comparison,
the calculations [9.30] performed for a similar system SF6 yield the
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following sequence of MOs: (t2g)
6(eg)

4(t1u)
6(t2u)

6(t1g)
6(a1g)

0(2t1u)
0.

Here the a1g MO (distinct from XeF6) is unoccupied, and since the
energy gap between the highest occupied t1g and unoccupied t1u MOs
is sufficiently large, the Oh symmetry configuration of SF6 is stable with
respect to odd (dipolar) displacements. A series of investigations of the
vibronic effects in the XeF6 system, including electronographic and
spectral measurements and MO LCAO calculations [9.9, 9.10, 9.31],
confirm the PJT origin of the instability with respect to the odd T1u

displacements (dipolar instability).

EXAMPLE 9.4

Pseudo-JT Origin of Distortions in CuCl 3−
5 versus ZnCl 3−

5

An example of a PJTE application in stereochemistry is provided by the
comparison of instabilities of two pentacoordinated complexes CuCl 3−

5
(I) and ZnCl 3−

5 (II) with respect to the two possible types of distortion:
E′, toward a square-pyramidal (SP) configuration, and A′′

2, toward a
distorted tetrahedron with an additional ligand on the axis of distortion
shown in Fig. 9.5. These two systems, I and II, are very similar, with
the distinction that in II there is an additional d electron of the CA (and
an additional proton in the nucleus) making its electron configuration
d10, instead of d9 as in I. In terms of electronic structure and vibronic
coupling, this difference is most important.

The structure of II in the crystal state also differs radically from that
of I. The CuCl 3−

5 ion in the [Co(NH3)6][CuCl5] crystal is unstable
with respect to E′-type distortions describing the conversion TBP →
SP (Fig. 9.5a); it has three equivalent (almost) SP configurations and
performs rapid conversions between them: molecular pseudorotations
[9.32] (see below in this section). The ZnCl 3−

5 ion in a quite similar
crystal [Co(NH3)6][ZnCl5] is also not TBP, but it forms a distorted
tetrahedron plus one chlorine ion on (almost) the trigonal axis [9.33],
and there are no pseudorotations. This configuration can be regarded as
produced by the A′′

2 distortion of the TBP configuration, as shown in
Fig. 9.5b.

An explanation for these experimental observations was given
[9.34] on the basis of the pseudo-JTE using approximate semiempirical
IEH (SCCC) calculations of the electronic structure (Section 5.5) and
vibronic coupling constants to numerically confirm the vibronic origin
of the distortion. The idea was to compare the negative pseudo-JT
contribution Kv [Section 7.4, Eq. (7.84)] of the relevant excited
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FIGURE 9.5. Ligand numeration and the main symmetrized distortions
in pentacoordinated complexes MX5

n−: (a) E′-type displacements realizing
TBP → SP conversion; (b) A′′

2-type displacement realizing the transformation
MX5(TBP) → MX4(tetrahedron) + X.
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states to the instability of the ground state with respect to E′ and A′′ dis-
tortions, respectively, and to reveal in this way the expected distortions
(largest Kv) in each of the two systems I and II.

The ground state of CuCl 3−
5 in the TBP geometry is 2A′

1 with the
MO configuration . . .(3e′′)4(5e′)4(5a′

1)
1. The highest single occupied

MO 5a′
1 is an antibonding linear combination of the copper AO 3dz2 and

chlorine AOs 3pσ . The relevant excited states of required symmetry (for
which the PJT vibronic coupling constant is nonzero) are produced by
corresponding one-electron excitations. Because of different occupation
numbers the contributing excited states in ZnCl 3−

5 differ from those in
CuCl 3−

5 , and the numerical contributions to Kv of similar excited states
also differ.

The semiempirical method [9.34] does not allow one to calculate
accurately the K0 values that depend on the wavefunction at the nuclei,
but the data on the pseudo-Jahn–Teller contribution of the excited states
obtained by calculations allow one to estimate the relative instabilities
induced by the vibronic coupling in different symmetrized directions of
the same system, for which the K0 value, in its part depending on �(0),
can be assumed to be the same. In this way the relative instabilities of
the same system with respect to the two possible distortions, E′ and
A′′

2, are estimated for I and II. The contribution of the closed-shell
core electrons (and all the ns electrons) that make the �(0) quantity
nonzero may be assumed to be the same for both distortions, whereas
the contributions of the d hole to these two displacements are different.
The d-state contributions Kd

0 to K0 can be easily calculated. The hole
in the d10 configuration is dz2 , and the contribution is negative for E′
distortions and positive for A′′

2 (the opposite signs are due to the field
gradient created by the dz2 hole, which is positive in the z direction and
negative in the xy plane).

The numerical data in Ref. 9.34 show explicitly that the CuCl 3−
5

complex is more unstable with respect to the E′ distortion that trans-
forms the TBP configuration into SP (or near SP) (Fig. 9.5a), whereas in
ZnCl 3−

5 the instability is stronger with respect to the A′′
2 distortion that

describes the transformation of the TBP configuration toward a distorted
tetrahedron plus one ligand on the trigonal axis at a greater distance
(Fig. 9.5b), in full qualitative agreement with the experimental data
mentioned above. Indeed, for CuCl 3−

5 (in mdyn/Å) Kv(E
′) = −263,

while Kv(A
′′) = −220, whereas for ZnCl 3−

5 , we have Kv(E
′) = −130

and Kv(A
′′) = −151. These examples show in detail how the electronic

structure, ground and excited states, control the nuclear configuration
(via vibronic coupling), making it, under certain conditions, unstable
with respect to nuclear displacements of specific symmetry.
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Off-Center Position of the Central Atom

Displacement of the CA from its geometric center in coordination compounds is
a special case of vibronic effects in stereochemistry. An example of this effect
is considered in Section 7.4 for the TiO 8−

6 cluster in perovskites, where it is
shown that, as a result of the PJTE (vibronic mixing of the ground state A1g

with the excited T1u term), the Ti atom may be displaced from the inversion
center resulting in dipole moment formation. This displacement, as shown in
Section 9.4, produces the spontaneous polarization of the lattice and ferroelectric
phase transitions, provided that cooperative effects in crystals are taken into
account. Similar effects are well known for impurity centers in crystals [9.20].

Consider another illustrative example: the out-of-plane displacements of the
iron atom, as well as other metal atoms, in metal porphyrins and hemoproteins
[9.35]. Besides being of special interest in biology, this example has general
significance. It reflects the situation in a great number of corresponding classes
of organometallic compounds with close-in-energy states of the metal d electrons
and porphyrin (or a similar ligand) π electrons. The mixing of these states under
nuclear displacements, which shifts the metal atom out of and transverse to the
porphyrin ring plane, renders the system soft or even unstable with respect to
such displacements. Visually, the out-of-plane displacement of the metal atom
with regard to the porphyrin ring is due to the additional π binding of the d

orbitals of the metal and π orbitals of the ligands, illustrated in Fig. 7.20.
According to Eq. (7.67) or (7.85), the softening and instability of the high-

symmetry configuration due to the PJTE is determined by the value of F 2/�,
where F = 〈1|(∂V/∂Q)0|2〉 is the vibronic constant of mixing states 1 and 2
by the nuclear displacements Q, and 2� is the energy gap between them. As a
result of the pseudo-Jahn–Teller effect the force constant changes from K0 to
K0 − (F 2/�), and if (F 2/�) >K0, the system becomes unstable with respect
to the Q displacements. For metal porphyrins (MP) of D4h symmetry the out-
of-plane displacement is of A2u symmetry (Fig. 9.6), which means that F is
nonzero if and only if the product of the representations of the mixing states 1
and 2 contains the A2u representation.

Figure 9.7 shows several HOMO and LUMO energy levels of Mn, Fe, Co,
Ni, Cu, and Zn porphyrins, as well as Mn phthalocyanine (MnPc) obtained from
calculations for the planar configuration [9.36]. It is seen that in FeP, for instance,
the calculated ground state is 3Eg; hence the excited state that couples with the
ground one by the A2u displacements must be 3Eu (because in the D4h group
Eg × A2u = Eu). In MnP, MnPc, and CoP the corresponding excited states are
4A2u, 4Eg , and 4A2u, respectively. All of them correspond to a one-electron
excitation from the a2u(π) MO (predominantly from the porphyrin ring) to the
empty a1g(dz2) (predominantly from the metal), and the excitation energy 2� =
ε(a1g) − ε(a2u) is relatively small. In the remaining metal porphyrins NiP, CuP,
and ZnP, the a1g MO is occupied, whereas the next MO of the same symmetry
is very high (not shown in Fig. 9.7). It follows that in the last three MePs there
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FIGURE 9.6. Structure of metalloporphyrins. In the D4h symmetry group the out-of-
plane displacement of the CA has A2u symmetry. The nondisplaced position of the iron
atom is shown by dashed line. The approaching oxygen molecule is also shown.

FIGURE 9.7. HOMO and LUMO energy levels for some metal porphyrins (MPs) and
manganeze phtallocyanine (MnPc) with indication of the ground state for the in-plane
position of the metal. The two MOs forming the energy gap 2� between the ground and
excited states that mix under the A2u displacement are shown by arrows.
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is practically no PJT instability with regard to the out-of-plane displacement of
the metal atom, whereas for other cases the effect may be important.

For an estimate of the effect, the calculated values of 2� can be used; they are
approximately equal to 0.15, 0.20, 0.6, and 1.0 eV in MnP, FeP, CoP, and MnPc,
respectively. The vibronic constant was roughly estimated as F ≈ 10−4 dyn for
FeP (for other MePs with approximately the same wavefunctions F has the same
order of magnitude), while the K0 value for the A2u displacements can be taken
as K0 ∼ 104 dyn/cm. We have (F 2/K) ∼ 0.1 eV, that is, F 2/K and � are of
the same order of magnitude and this confirms that the PJTE may soften the
ground state. In MnP and FeP (� ∼ 0.08 and 0.1 eV, respectively) � < (F 2/K)

and the softening transforms into instability, while in CoP and MnPc (� ∼ 0.3
and 0.5 eV, respectively) only a softening but no instability of the metal position
may be expected. These results are in qualitative agreement with the empirical
data available.

The metal atom position with respect to the porphyrin ring is significant in
determining some biologic functions of hemoproteins (Section 10.3). The first
explanation of the origin of the out-of-plane position of the iron atom was that
in the high-spin configuration the atomic radius of Fe(II) is too large to fit the
cavity in the porphine ring [in the low-spin configuration the Fe(II) ion occupies
an in-plan position; Section 10.3]. Such “nonquantum” explanations, in general,
may not work, especially when there are nonlocalized bonds as in transition metal
compounds. Indeed, the cavity in phthalocyanine is considerably smaller than in
porphine. Nevertheless, MnPc is planar, whereas MnP is non-planar. Again, a
series of porphyrins of other metals, such as Sn(IV) and Mo(IV), with ionic radii
larger than Fe(II), are planar [9.35].

Geometry of Ligand Coordination

Another important problem in stereochemistry of coordination compounds is the
mode of coordination of small ligands to the central atom. This problem, too,
can be successfully considered by means of the vibronic approach. Consider,
for example, the O2, CO, and NO molecules coordinated to metal porphyrins
or the heme in hemoproteins (for the coordination of NO to other systems, see
Ref. 9.37 and references cited therein). Four modes of coordination are observed
experimentally (Fig. 9.8): linear end-on, bent end-on, bent side-on, and symmetric
side-on. The study of the mode of coordination with metalloporphyrins (MeP)
in model compounds shows that, depending on the metal, the linear end-on
coordination is characteristic for NO and CO, while the bent end-on coordination
is usually observed for NO or O2, and the O2 ligand can also be in symmetric side-
on geometry. The origin of these geometries has aroused intensive discussions
[9.35].

Consider this problem using the vibronic approach. This approach implies
that the bent end-on configuration appears as a consequence of the pseudo-JT
instability of the linear end-on and symmetric side-on geometries. In metal por-
phyrins of D4h symmetry with a linear end-on coordination of diatomics at the
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FIGURE 9.8. Four types of geometry of coordination of diatomics to a transition metal
center: (a) linear end-on, (b) bent end-on, (c) bent side-on, (d) symmetric side-on.

fifth coordinate, bending of the ligand is an E-type displacement (for the influ-
ence of the imidazole ligand at the sixth coordinate position, e.g., in Hb, see Ref.
9.35). Therefore, the PJT instability with respect to the bending of the diatomic
ligand may take place if the product of representations of the ground and (not
very high in energy) excited states contains the E representation.

Several HOMO and LUMO energy levels for the MeP—CO, MeP—NO, and
MP—O2 systems calculated assuming linear end-on coordination [9.37, 9.38]
are given in Fig. 9.9. The qualitative changes of some of these levels due to
their vibronic mixing with the excited states formed by one-electron transition
from the e(dπ − π∗) or e(dπ + π∗) MOs to the a1(dz) MO are illustrated in
Fig. 9.10. In fact, only the most essential mixing orbitals with sufficiently large
vibronic constants should be considered. Large vibronic constants occur when the
mixing states contribute substantially to the bonding that is strongly influenced
by the E displacements (by the ligand bending). For example, the E displace-
ments formally mix the MO e(P ) with a1(dz2), but since e(P ) is the state of the
porphine ring not involved in the metal—diatomic bond, the vibronic constant
F = 〈e(P )|(∂V/∂QE))0|a1(dz2)〉 ranges from small to zero.

Denoting the corresponding energy intervals in Fig. 9.9 and vibronic constants
by 2�1 and 2�2 and F1 and F2, respectively, and considering the vibronic mixing
of each pair of MOs, e(dπ − π∗) with a1(dz2), and e(dπ + π∗) with a1(dz2), we
conclude, using Eq. (7.85), that each of these mixing lowers the force constant
KE by an amount dependent on the respective MO occupation numbers. Denoting
the latter by q1, q2, and q3, respectively, for levels 1, 2, 3 marked with arrows in
Fig. 9.9, we obtain the following condition for the instability of the linear end-on
configuration:

(q1 − q3)F
2
1

�1
+ (q2 − q3)F

2
2

�2
>KE (9.8)
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FIGURE 9.9. MO energy-level diagrams for linear end-on coordination of diatomics to
metalloporphyrins: (a) CO, (b) NO, (c) O2. The arrows indicate the energy gaps 2�1 and
2�2 between the e and a1 MOs that mix under the bending (E-type) displacement of the
ligand.

If this condition is satisfied, the adiabatic potential of the system with respect to
the E displacement in question has a maximum for the linear end-on coordination
and a continuum of minima, forming a circular trough (7.79) [9.35]. Each point
of the latter corresponds to bent end-on coordination at a certain angle to the
linear end-on line with arbitrary orientation around this line. If the quadratic
terms of the vibronic interaction are included in the calculation, four additional
minima (7.85) are formed along the bottom of the trough, regularly alternating
with four saddle points. In this case the bent end-on coordination of diatomics
has four preferable orientations with respect to the pyrrole ring: either toward the
nitrogen atoms or between them, depending on the sign of the quadratic vibronic
constant (see discussion of the E–A mixing problem in Section 7.4).

Consider now the MeP—CO system, for which 2�1 = 4.0 eV, 2�2 = 0.3 eV
[9.38, 9.39] (Fig. 9.9). Using the known order of magnitudes of F and KE , we
conclude that if only the lower e(dπ + π∗) state is occupied by electrons and
contributes to softening of the system (i.e., q2 = q3 = 0), inequality (9.8) is not
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FIGURE 9.10. MO energies of some of the (active) levels of Fig. 9.9 as a function of
the bending angle ρ with strong (solid line) and without (dashed line) pseudo-Jahn–Teller
mixing e − a1.

satisfied (�1 is large) and the linear coordination is stable. If the higher MO
e(dπ − π∗) is occupied, inequality (9.8) is satisfied, due to the small value �2,
and the linear end-on coordination becomes unstable. In MeP—CO with linear
end-on geometry the state e(dπ − π∗) remains unoccupied for all 3dn metals,
including 3d10. Hence, in 3dn transition metal porphyrins, the CO molecule is
expected to be linearly end-on-coordinated. This prediction of the vibronic theory
agrees well with the abovementioned experimental data.

For the MeP—NO system, the values 2�1 and 2�2 have the same orders of
magnitude as in the previous instance of MeP—CO, but the energy-level ordering
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is different (Fig. 9.9); the e(dπ − π∗) MO becomes occupied when the number
of d electrons plus the antibonding π∗ electrons of the NO molecule exceeds
six. Thus, in the 3dn metal porphyrins the NO molecule in the linear end-on
configuration is stable for n+1 ≤ 6 and unstable for n+1 > 6. This conclusion
also agrees with the experimental data.

Finally, in MeP—O2 both e MO levels are at about the same distance from the
a1 level (Fig. 9.9) (2�1 = 3 eV and 2�2 = 2.5 eV) and may give a comparable
contribution to the softening of the linear geometry Me—O—O with respect to
the E bending. Therefore, it can be assumed that the cumulative effect suffices to
provide essential softness or even instability of the linear coordination. The soft-
ening is expected to be approximately doubled when the number of d electrons
plus two antibonding π∗ electrons of the O2 molecule exceed six. This result
also agrees qualitatively with the experimental data.

Stability of the symmetric side-on coordination of small ligands can be con-
sidered similarly. The displacements toward bent coordination are of B1 (or B2)
symmetry, for which the nonzero vibronic constant corresponds to the mixing of
the b1(dxz) [or b2(dyz)] with the a1 MO. Both these MOs are nondegenerate, and
hence the PJT instability can be obtained directly using Eq. (9.8). Estimations
for the Me—O2 system show that the criterion (F 2/�)> KE is not satisfied, and
the symmetric side-on coordination of O2 is expected to be stable.

Another feature directly related to the geometry of ligand coordination is the
change in geometry (distortion) of the ligand itself by coordination. The only
possible distortion in diatomics is the change in interatomic distance. It takes
place, indeed, and this topic is discussed in more detail in Section 11.2, together
with chemical activation by coordination. For ligands with three or more atoms,
distortion of the nuclear configuration that lowers its symmetry may take place
as a result of the electronic rearrangement induced by coordination.

Consider, for example, the C2H4 molecule coordinated as a ligand to a transi-
tion metal complex (cf. Sections 6.3 and 11.3). The free molecule in the ground
state is planar and has a nondegenerate ground state 1A1g (valence electron con-
figuration π2π∗0), while in the first excited state 1Bu(π

1π∗1
) it is nonplanar,

with the two CH2 groups in mutual perpendicular planes. By coordination as a
π complex to transition metals in low oxidation states, an orbital charge transfer
from the bonding π orbital of C2H4 to the metal together with a strong π backdo-
nation to the free π∗ orbital of C2H4 take place, and the local charge distribution
in C2H4 becomes similar to π2−δπ∗δ

. The population of the π∗ orbital distorts
the ground-state planar configuration of the molecule, making it similar to the
excited state. The experimental data show that, indeed, the geometry of coor-
dinated C2H4 is intermediate between those of the ground (planar) and excited
states, the latter having the configuration with two mutually perpendicular CH2

groups [9.40].
For other examples, refer to the literature [9.1, 9.20, 9.23, 9.26, 9.37]. In

Section 11.2 other aspects of ligand coordination are considered in connection
with their activation.
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Stereochemically Active and Inert Lone Pairs

In Section 9.1 the stereochemistry of lone pairs is considered in the semiclassical
approximation in which the lone pairs are treated as repulsion units alongside the
bond pairs, and as such they occupy a coordination place, distorting the otherwise
symmetric coordination polyhedron. However, in some systems the polyhedron
is not distorted, despite the presence of a lone pair, and in these cases the latter
is called inactive or an inert lone pair [9.41].

Very often the lone pair originates from the CA (ns)2 configuration, with n =
4, 5, 6; the posttransition elements In(I), Tl(I), Pb(II), Sb(III), Te(IV), Xe(VI),
and so on, are of this type. In SbBr 3−

6 and TeCl 2−
6 , for example, the (ns)2 lone

pair is stereochemically inert (the octahedron is not distorted), whereas in XeF6,
InCl 5−

6 , and other compounds the octahedron is distorted. The (ns)2 pair itself
is spherical symmetric and does not cause distortions. Hence, using the VSEPR
model (Section 9.1) in order to explain the origin of distortion, one has to assume
that there is a strong hybridization of the ns states with the np ones resulting in
a directed lone pair (Fig. 9.2) [9.42, 9.43].

On the other hand, as stated above (Section 2.1 and 9.1), hybridization is, in
fact, not the cause of the distortions but rather its consequence. It is mentioned
in Section 9.1 that in the more general MO LCAO scheme the distortion may
occur if in the high-symmetry configuration the two electrons occupy a strongly
antibonding MO that under the distortion, transforms to a lone pair. These con-
siderations are qualitatively true, but they give no rigorous general solution of the
problem that would contribute to a more general understanding. Such a solution
was obtained on the basis of the vibronic approach [9.44].

Consider the general MO LCAO scheme (Fig. 9.11) for an undistorted octa-
hedral system MX6, which, in the representation of local M—X bonds, has a
(ns)2 electron pair above the six bonding pairs (in fact, each M—X bond may
have more than one bonding electron pair, as in the case of multiple bonds). In
this scheme the two ns electrons occupy the antibonding MO a1g (π MOs and
ligand nonbonding MOs are not indicated). The ground state of the system as a
whole A1g is nondegenerate, but relatively close in energy are the excited T1u

states formed by one-electron excitations a∗
1g → t∗1u.

In the vibronic approach the stability or instability of the regular octahedral
configuration is determined by Eq. (7.85) or (7.67), which gives the relationship
of the parameters for which the system is stable or unstable, and the direction of
instability in the latter case. The PJT mixing of the ground 1A1g state with the
excited 1T1u by T1u-type nuclear displacements results in instability of the ground
state with respect to T1u distortions (Section 7.4), provided that the condition of
instability is satisfied. This distortion is somewhat similar to the dipolar instability
produced by the same A1g –T1u mixing in the TiO 8−

6 octahedron (Section 7.4),
but the change from d electrons in Ti to sp electrons in the MX6 systems intro-
duces significant alterations. It can be shown that in the linear approximation with
respect to the vibronic coupling terms in the Hamiltonian, the s –p (A1g –T1u)

vibronic mixing [(A1g + T1u) ⊗ t1u problem] results in a trough of minima in the
space of T1u distortions [i.e., all the distortions corresponding to any combination
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FIGURE 9.11. The MO LCAO energy-level scheme for an MX6 system with a lone
pair—a (ns)2 configuration above the closed shells of M and X. Six ligand σ (sp) AOs
form with the CA ns and np AOs the bonding a1g and t1u MOs and the nonbonding eg

MOs occupied by 12 electrons, while the antibonding MO a∗
1g is occupied by the two

(ns)2 electrons (π MO and ligand nonbonding MO are not shown).

of the three T1u coordinates (Table 7.1) have the same energy], but inclusion of
the second-order terms makes the eight (equivalent) trigonal directions preferable.

However, this problem may be complicated by the fact that the excited T1u

term is degenerate and hence is subject to the Jahn–Teller T1u ⊗ (eg + t2g) effect
[9.44]. If the latter is taken into account, the vibronic problem as a whole is a
combined pseudo Jahn–Teller and Jahn–Teller problem (A1g + T1u) ⊗ (t1u +
eg + t2g), meaning that there may be distortions of three types: T1u, Eg , and T2g .
The solutions obtained in the linear approximation with respect to the vibronic
coupling show that, depending on the vibronic coupling constants and the energy
gap 4� between the ground A1g and excited T1u states, several possibilities
emerge. Assume that F , FE , and FT are the coupling constants to, respectively,
the T1u, E, and T2g displacements; K0, KE

0 , and KT
0 are the respective primary

force constants (Section 7.4); and the energies of the two mixing terms are taken
as E(1A1g) = −3� and E(1T1u) = �.

Denote

f = F 2

K0�

e = F 2
E

KE�
(9.9)

t = F 2
T

3KT �
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FIGURE 9.12. Three domains of existence of different Jahn–Teller and pseudo-
Jahn–Teller distortions in MX6 systems with (ns)2 lone pairs in each of the two e–f

and t –f planes: E1 —no distortions (inert lone pair); E2 —combined dipolar T and either
tetragonal Eg (in the e–f plane), or trigonal T2g (in the t –f plane) distortions; E3 —pure
Jahn–Teller either tetragonal (in the e–f plane) or trigonal (in the t –f plane) distortions.

These constants have the physical meaning of the corresponding Jahn–Teller
stabilization energies in units of �, taken from the reference position.

In these denotations the expected distortions of the regular octahedron in MX6

systems under consideration can be evaluated analytically (in Ref. 9.44 totally
symmetric distortion are also included). The results are illustrated in Fig. 9.12,
which, in fact, comprises two coinciding schemes, one for e versus f , and the
other for t versus f . The meaning of these schemes is as follows. The area
delimited by the axes e and f (or t and f ) is divided into three domains, E1,
E2, and E3, that have different kinds of adiabatic potential minima. In the first
domain (dotted-line area), where f < 1, e < 1, and t < 1, the JT and pseudo-JT
stabilization energies are smaller than the corresponding threshold given by Eq.
(7.89), and hence there are neither JT nor PJT distortions. This is the case of
inert lone pairs .

In the area where f > 1, the PJT T1u (dipolar) distortion becomes operative,
but the admixing of the excited T1u term involves JT T2g and Eg distortions as
well. According to the calculations [9.44], the relative energies of the minima in
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the three domains in Fig. 9.12 are (in � units):

E1 = −6

E2 = −6 − 2(f −1)2

f − t
(9.10)

E3 = 2 − 8t

and the same relations with e instead of t for the e–f plane. Therefore, the
trigonal dipolar (pseudo-Jahn–Teller) distortions T1u with admixture of either
Eg or T2g distortions are preferable when E2 < E3, which yields, in addition to
f > 1, the following equations, respectively:

f + 1 > 2t (9.11)

f + 1 > 2e (9.12)

If the opposite inequalities hold, then

2e >f + 1 (9.13)

or

2t > f + 1 (9.14)

and then the tetragonal D4h or trigonal D3h JT minima of the excited state T1u are
lower (than the assumed ground-state one), and they are active in stereochemistry.
The preference between tetragonal or trigonal minima is the same as in the usual
JT T1u ⊗ (e + t2g) problem (Section 7.3): the trigonal distortions are preferable
if t > e, and the tetragonal ones occur for the opposite inequality, e > t .

All these distorted geometries of MX6 systems with (ns)2 lone pair config-
urations are found in different systems [9.1–9.4, 9.10–9.12, 9.15, 9.20, 9.41].
Moreover, the combined distortions described above explain the origin of compli-
cated (helicoidal) crystal structures (Section 9.4). In particular, in the InCl crystal
(InCl 5−

6 units) both types of distortion in the E2 area of Fig. 9.12, trigonal T2g

plus dipolar T1u, and tetragonal Eg plus dipolar T1u, are observed in two phases
of the crystal, yellow and red, respectively [9.45].

A similar treatment, in principle, is possible for many other types of systems.
For instance, in multicenter transition metal clusters the change of geometry from
regular tetrahedral in 60-electron tetraclusters to butterfly geometry in similar 62-
electron clusters was subject to discussion with respect to a vibronic problem on
two electronic terms, T1 + T2, mixing via eg + t2g distortions [9.21, 9.46]. Many
observed cluster geometries can be explained in this way.
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Pseudorotations in Coordination Systems

As shown in Sections 7.3 and 7.4, the JTE [including proper JT, pseudo-JT, and
RT (Renner–Teller) effects] in the high-symmetry configuration of a molecular
system may result in the formation of two or several (or an infinite number
of) equivalent minima of its APES that correspond to equivalently distorted
polyhedrons. If the energy barriers between these minima are not very high
(or even zero, as in the cases of a trough of minima), the free system performs
continuous transitions between the minima. These transitions are classified in
Section 7.3 as internal free rotations, hindered rotations, and pulsating motions .

As emphasized above, the transitions between the configurations of equivalent
minima are never real rotations, although outwardly the equivalent configurations
may appear to rotate from one to another. For instance, for tetragonal distortion of
the octahedron in the quadratic E ⊗ e problem, the transition from the configura-
tion elongated along the Z axis to that elongated along the X axis (Figs. 7.11 and
7.13), owing to the identity of the ligands, resembles a rotation on π/2 along the Y

axis. In fact, however, such a rotation does not take place, the nuclear motions in
in this transition are more complicated [9.20] (Fig. 7.13). They can be observed
experimentally in the NMR spectra, isotopic substitutions experiments, central
atom GRS spectra, tunneling splitting (Section 7.3), and other spectroscopic

FIGURE 9.13. Berry pseudorotation of a trigonal bipyramidal molecule: (a) the distor-
tions shown by arrows (combined E type) convert the configuration I into an equivalent
III via the intermediate square-pyramidal structure II that has a higher energy; (b) the
APES curve along the distortion coordinate on the APES.
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measurements. These internal motions are called pseudorotations . Of course,
the free molecular system may also perform regular (traditional) rotations.

In coordination compounds, pseudorotations are sometimes called flexional
behavior [9.47]. As seen from the examples, considered below, in many cases
the JT and pseudo-JT dynamics can be interpreted visually as a continuously
changing “flexional” configuration. One of the first observations of such behavior
relates to Cu(II) compounds [9.48]. Another kind of flexionality takes place in
coordination compounds with the alterdentate ligands; the latter offer to the metal
ion two or more equivalent coordination sites, and hence under certain conditions
the metal can resonate between them (e.g., in the alloxan radical anion) [9.5,
9.49].

Pseudorotations in molecular systems, in general, were known for a long
time. Berry [9.11] (not the author of the Berry phase problem in Section 7.3)
assumed that the APES of such systems has several equivalent minima (without
specifying their origin) with small energy barriers between them, and the observed
pseudorotations are due to the transitions between the minima. For instance, the
pseudorotation molecule PF5 is assumed to have an energy minimum in trigonal-
bipyramidal (TBP) configuration I with the F atoms 4 and 5 in axial positions
(Fig. 9.13a), and as a result of the displacement of the type Q (combined E

displacements) transforms into square-pyramidal (SP) configuration II. By further
transformation, II converts again into TBP configuration III, but with other atoms
F on the threefold axis (1 and 2 instead of 4 and 5). With identical F atoms this
transformation looks like a 90◦ rotation of the threefold axis.

Another example is the SF4 molecule with minima at C2v symmetry, which
can be considered as either a strongly distorted tetrahedron or a less distorted
square with two angles F—S—F of 183◦ and 104◦. Here the Berry rotation
consists of transitions between two equivalent distorted configurations via the
intermediate unstable square-planar geometry; this mechanism of interconversion
in SF4 is confirmed by dynamic NMR experiments [9.50] and by direct electronic
structure calculations [9.51].

In both examples the intermediate configuration has a maximum of the APES
of the nondegenerate ground state with respect to a specific symmetrized direction
Q. According to the conclusions of the vibronic theory, the instability of the high-
symmetry intermediate configuration is due to the vibronic mixing of its electronic
ground state with some excited states of appropriate symmetry determined by
the nonzero vibronic constant. The Berry rotations under consideration are thus
pseudorotations caused by a strong PJTE.

It is important that in Jahn–Teller distortions (orbitally degenerate ground
states) pseudorotations do not follow Berry rotations . Indeed, consider an MX5

system in the TBP configuration outwardly similar to the Berry PF5 molecule,
but with a double-degenerate electronic E term (an example of such systems,
CuCl 3−

5 , is discussed in Example 9.3). According to the general solution of
the E ⊗ e problem (Section 7.3), in a D3h system there are three minima of
the adiabatic potential in the space of two E-type displacements (Fig. 7.10). In
the case under consideration, these minima correspond to three SP (or near to
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FIGURE 9.14. Pseudorotation in the E ⊗ e Jahn–Teller CuCl 3+
5 -type system with three

equivalent equilibrium configurations of SP (or near-SP) symmetry (top view); the inter-
conversion between them goes beyond the TBP configuration. The arrows show (schemat-
ically) the displacements of the equatorial ligands transforming one configuration into
another (the axial ligand displacements are not shown).

SP) configurations, shown in Fig. 9.14, and this result is confirmed by many
experimental and theoretical investigations [9.32–9.34].

The pseudorotations here are simply interconversions between the three SP
configurations. Direct examination of the APES surfaces in the E ⊗ e problems
(Figs. 7.10 and 7.12) shows that the lowest pathway to overcome the barriers
between the minima goes around (not through) the high-symmetry TBP con-
figuration D3h, and hence the latter is not involved in the pseudorotation; the
coordinates of interconversion do not include the point Qθ = Qε = 0 (which
is a conical intersection). Thus the JT pseudorotation cannot be reduced to the
direct TBP ←→ SP interconversions, as in the Berry mechanism.

Apparently, a similar situation takes place in the MoCl5 complex, which in the
TBP configuration has the ground electronic E term. The fact of pseudorotation
in this complex emerges from its electron diffraction spectra [9.52]; the authors
interpreted the experimental data as compatible with a picture in which ∼56%
of the molecules have the SP configuration C4v , while the remaining have D3h

(TBP) symmetry with large amplitudes of the corresponding vibrations (if normal
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vibrations are assumed, 18% of the molecules must be considered as dimers).
This explanation ignores the vibronic effects and the consequent pseudorotation.
The experimental results [9.52] are well understood as pseudorotations based on
the vibronic coupling scheme discussed above; the percentage of different con-
figurations extracted from the experimental data may even allow one to estimate
the barrier height between the SP configurations.

The situation for tetrahedral systems is similar; the pseudorotation that results
from the JT distortions is different from that predicted by the Berry mechanism.
Indeed, in the Fe(CO)4 complex taken as an example [9.53, 9.54], the ground-
state electronic term T is threefold-degenerate and the JT problem is T ⊗ (e + t2).
As mentioned above, if both types of displacement, E and T2, are active (this is
determined by the corresponding vibronic constants), the epikernel of the problem
is C2v , and this is the symmetry of the six minima for the distorted tetrahedron.
The experimental data confirm these distortions; the configuration of the Fe(CO)4

complex is similar to that of SF4 with the two angles C—Fe—C at ∼145◦ and
∼120◦ (Fig. 9.15).

In the Berry rotation scheme the interconversion between two C2v config-
urations proceeds via the intermediate high-symmetry square-planar D4h or

FIGURE 9.15. Pseudorotation in Fe(CO)4. The interconversion between two distorted
C2v configurations: (a) predicted by the Berry mechanism, (b) observed experimentally.
The two isotope 13C and 18O ligands are marked by stars (the complex studied experi-
mentally [9.53] is Fe(CO)2(

13C18O)2).
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tetrahedral Td configurations. The latter seem to be more appropriate for Fe(CO)4

in view of the relatively large angles between the bonds (as compared with that
of SF4). However, the experimental data do not confirm such a pathway in the
mechanism of interconversion of equivalent distorted configurations in Fe(CO)4.
The pseudorotation in this system was studied experimentally by means of lig-
ands marked by 13C and 18O isotopes [9.53]. If in the system Fe(CO)2(

13C18O)2

an isomerization is induced by means of an infrared laser that excites the
C—O bond, the expected Berry interconversion is that shown in Fig. 9.15a.
The observed interconversion is illustrated in Fig. 9.15b; it does not reduce to
the Berry rotations. Meanwhile, by examining the APES of the T ⊗ (e + t2)

problem (see Section 7.3 and Ref. 9.20 for more details), one can see that the
observed experimental isomerization (Fig. 9.15b) corresponds directly to the
pathway via the lowest energy barrier between two nearest-neighbor minima
of C2v symmetry. As in the JT E ⊗ e problem for MX5 complexes, considered
above, the pathway of the transition between two equivalent minima via the
lowest energy barrier does not cross the configuration of highest symmetry .

The difference between the Berry (PJT) and JT mechanisms of pseudorotation
has an even more important reason than that of energy barriers. To make this
statement clear, consider a simple case of the E ⊗ b1 PJT problem, which is
of general interest (see, e.g., Section 9.4). The twofold degenerate electronic E

term, for instance, in square-planar systems, interacts with one Jahn–Teller active
coordinate Q(B1g), resulting in two minima at +Q0 and −Q0, respectively, as
shown in Fig. 9.16. It is important that the electronic functions of these two
minima configurations are mutually orthogonal, and therefore in the absence
of additional perturbations no transitions between these two configurations are
possible; they are strictly forbidden. If additional interactions are nonzero [e.g.,
the interaction with b2g displacements in the E ⊗ b1g problem that renders it as

FIGURE 9.16. The APES of the E ⊗ b1g problem with two equivalent minima in the
space of B1g displacements QB1g of a square configuration D4h. The intersection at
the high-symmetry configuration means that the states in the two minima are exactly
orthogonal and no direct interconversions between the two distorted configurations via
the square intermediate is possible.



544 STEREOCHEMISTRY AND CRYSTAL CHEMISTRY

E ⊗ (b1g + b2g)], then there is a nonzero probability of transitions between the
two configurations via b2g coordinates, but not directly along b1g .

In the JT systems discussed above the situation is much the same as in the
E ⊗ b1 problem. Indeed, the Berry rotation in Fig. 9.15b is a transition between
two C2v minima of the APES of the tetrahedral T ⊗ (e + t2) problem. In the
cross section of this APES along the Qζ coordinate the configurations in these
minima can be regarded as tetrahedra distorted, respectively, to +Q0ζ and −Q0ζ

from the regular configuration. As in Fig. 9.16, regarding the E ⊗ b1 problem, the
electronic wavefunctions of these two configurations are orthogonal to each other,
and hence direct transition between them is forbidden. However, the transitions
via other coordinates is not forbidden.

In the PF5 and SF4 systems discussed above, the ground state is nondegenerate
and hence the electronic states in the minima are not orthogonal. If the excited
state producing the instability of the ground state is also nondegenerate, there is
only one coordinate of interminimum conversion, the coordinate that mixes the
two states. Here the Berry mechanism is the only possible one. If the excited
state is degenerate, there may be more than one coordinate of interconversion of
the minima configurations, and hence both the Berry and non-Berry mechanisms
of pseudorotation may be possible.

9.3. MUTUAL INFLUENCE OF LIGANDS

The Model: trans and cis Influences in Stereochemistry

There is a large amount of experimental and correlation data on the mutual
influence of ligands in transition metal coordination compounds. The trend began
in the mid-1920s with the work of Chernyaev [9.55], who showed convincingly
that in the substitution reactions with square-planar Pt(II) complexes, PtXYZV +
U → PtXYZU + V, the ligand V to be substituted first is determined by the
properties of that located in the trans position to V (trans influence), and all
the ligands can be arranged in a series according to their trans-influence power
(Section 11.3). Later it was established that not only the trans effect, but also
the cis effect, as well as other mutual influence of ligands, is manifest in many
properties of transition metal compounds, including stereochemistry.

The data on mutual influence of ligands are usually divided into two groups:
(1) static mutual influence, in which structural parameters (bond lengths, vibra-
tional frequencies, magnetic resonance parameters, etc.) as functions of mutual
influence are discussed, and (2) kinetic mutual influence, in which reactivity
effects (activation energies and rates of substitution reactions) are considered.
Sometimes the static effects are called trans (or cis) influence, while the kinetic
consequences are called trans (or cis) effect . Obviously, group 1 of mutual influ-
ence (structural effects) is important for stereochemistry and is considered in this
section, whereas the reactivity effects are discussed in Section 11.3.

Stereochemical effects of mutual influence of ligands were discussed repeat-
edly [9.56–9.60]. Illustrative examples of trans and cis influence are given in



MUTUAL INFLUENCE OF LIGANDS 545

TABLE 9.4. Influence of the Ligand in trans Position (transInfluence) on Bond
Lengths R(Pt—Cl) in some Pt(II) Compounds

Complex trans Atom (Ligand) R(Pt—Cl) (Å)

K[Pt(acac)2Cl] O 2.28(1)
trans-[(PEt3)2PtCl2] Cl 2.30(1)
cis-[(p-C6H4S)2PtCl2] S (of RS−) 2.30
trans-[(PEt3)2Pt(CO)Cl] CO 2.30
cis-[(PEt2PH)Pt(CNEt)Cl2] RNC 2.314(10)
K2[PtCl4] Cl 2.316
[Pt(L-methionine H)Cl2)] S (of R2S) 2.32
K[Pt(NH3)Cl3]H2O N 2.321(7)
K[Pt(C2H4)Cl3]H2O C C 2.327(7)
[Pt(H3NCH2CH CHCH2NH3)Cl3] C C 2.342(2)
cis-[(PMe3)2PtCl2] P 2.37(1)
cis-[(PEt2Ph)Pt(CNEt)Cl2] P 2.390(8)
trans-[PMe2Ph)2Pt(CH2SiMe3)Cl] C (of alkyl) 2.415(5)
trans-[(PPH2Et)2PtHCl] H 2.42(1)
trans-[PMe2Ph)2Pt(SiMePh2)Cl] Si 2.45(1)

Source: From Hartley [9.56].

TABLE 9.5. Influence of the Ligand in cis Position (cis Influence) on Bond Lengths
R(Pt—Cl) in Some Pt(II) Complexes

Complex cis Atom (Ligand) R(Pt—Cl), (Å)

trans-[(PEt3)2PtCl2] P 2.29
[Pt(cis-MeCH CHCH2 NH3)Cl3] C C 2.297(6)
K[Pt(C2H4)Cl3]H2O C C 2.305
K[Pt(NH3)Cl3]H2O N 2.315
K2[PtCl4] Cl 2.316
trans-[Pt(NH3)2Cl2] N 2.32(1)

Source: Hartley [9.56].

Tables 9.4–9.7. The data in Table 9.4 show explicitly that in compounds of
Pt(II) with square-planar coordination the trans ligand strongly influences the
bond length Pt—Cl. Substitution of the trans ligand changes the Pt—Cl bond
length from 2.28 to 2.45 Å. The cis influence (Table 9.5) is less informative.
In comparison with Table 9.4, it is seen that cis-influence is much weaker than
trans influence.

The data in Table 9.6 allow us to follow the variation of one of the most
informative parameters of the trans influence: the trans elongation � = R(M—
Xtrans)–R(M—Xcis) in a series of MOX5 complexes with d0, d1, and d2 con-
figurations [9.61]. It is seen that there is an essential decrease in trans influence
along the series d0 >d1 >d2. Note, however, that in Table 9.6 the change in dn

configuration is associated with a change in CA itself. Table 9.7 shows some
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TABLE 9.6. Comparison of cis and trans Bond Lengths, R(M—Xcis) and
R(M—Xtrans), and the trans-Elongation � = R(M—Xtrans) − R(M—Xcis) in
Some MOX5 Complexes with d0, d1, and d2 Configurations

R(M—Xtrans) R(M—Xcis ) �

Compound dn (Å) (Å) (Å)

MoOF5 d0 2.29 1.86 0.43
K2[NbOF5] d0 2.06 1.84 0.22
K2[MoOF5]H2O d1 2.03 1.87 0.16
OsOF5 d2 1.72 1.78 −0.06
(NH4)2[MoOBr5] d1 2.83 2.55 0.28
K2[MoOCl5] d1 2.587 2.39 0.20
K2[ReOCl5] d2 2.47 2.39 0.08

Source: After Porai-Koshitz and Atovmean [9.61].

TABLE 9.7. Comparison of Structural Parameters in
cis- and trans-PtCl2 (PR3)2 Compounds

Quantity cis trans

R(Pt—Cl) (Å) 2.37 2.29
R(Pt—P) (Å) 2.25 2.30
ν (Pt—Cl) (cm−1) 294 340
ν(Pt—P) (cm−1) 435 419
J (Pt—P) (Hz) 3520 2400
J (P—P) (Hz) −18.7 510
ν′(35Cl) (MHz) ∼18.0 20.99
δ(31P), 106d 24.0 15.8
Eb(Cl, 2p) (eV) 198.2 198.6

other structural characteristics for trans- and cis-PtCl2 (PR3)2 (don’t confuse the
substituent R, here mainly Et and sometimes Me, with the interatomic distance
R): bond lengths R(Pt—Cl) and R(Pt—P), vibrational frequencies ν(Pt—Cl) and
ν(Pt—P), the constants of nuclear spin–spin interaction J (Pt—P) and J (Pt—P),
NMR chemical shift δ(31P) with respect to H3 PO4, NQR frequency ν′(35Cl),
and the 2p-electron bonding energy Eb in Cl determined from X-ray photoelec-
tron spectra. Comparison of these data shows that the bonds Pt—Cl in the trans
complex and Pt—P in the cis complex are stronger than the same bonds in the
cis and trans complexes, respectively. This means that PR3 is a stronger trans
influencing ligand than Cl, and this trans influence is reflected in a number of
structural characteristics.

Electronic Factors

The effects of mutual influence of ligands are obviously of electronic and vibronic
origin, and the problem is to formulate some general rules that correlate the
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observed influences with specific electronic features of the ligands and the CA.
There have been many attempts to contribute to the solution of this problem; we
consider here some general and more recent achievements.

The first attempts to explain the origin of trans influence were based on com-
parison of σ -donor and π-acceptor properties of the ligands. To begin with,
consider a complex MXn in which the possible π bonding is neglected. If one
ligand X is substituted by some better σ donor Y, the positive charge on M
decreases and, in general, all the other σ bonds M—X weaken. This inductive
effect, due to special properties of the wavefunctions of M involved in the bond-
ing and charge transfer, is angle-dependent; that is, it has special predominant
directions. In a square-planar MX4 complex, for instance, PtX4 with d8 configu-
ration, four equivalent bonds are formed by the Pt dx2 –y2 orbital, and the directed
influence of Y is realized through the MOs that involve the unoccupied p orbitals
of Pt. The two ligands Y and X in the trans positions to each other are strongly
interrelated via these MOs.

A simple expression of this trans influence was obtained [9.1, 9.62] by means
of the angular overlap model (AOM) (Section 5.2). In this model, the difference
in stabilization energy �E of the bond M—X when passing from the trans
coordinate system X—M—X to the Y—M—X one is proportional to eσ and the
difference �eσ = eσ (X) − eσ (Y):

�E ∼ eσ (X)[eσ (X) − eσ (Y)] (9.15)

where eσ (X) and eσ (Y) are the AOM parameters for ligands X and Y, respec-
tively [Eq. (5.42)].

It follows from Eq. (9.15) that if ligand Y has a larger eσ value than that of
X, eσ (Y) > eσ (X), then �E < 0, and the bond in the trans position is weakened
(elongated). On the contrary, if eσ (Y) < eσ (X), then �E > 0 and the trans bond
M—X is strengthened. Hence the trans elongation increases with the eσ (Y)
values. If one assumes that the eσ value increases with the σ -donor properties
(decreases with Pauling electronegativities), then the trans influence (elongation)
increases with increasing σ -donor properties or decreasing electronegativities of
the ligand Y. Figure 9.17 shows that the experimental data, in general, confirm
this trend [9.62, 9.1] (note that the σ -donor effect on the trans influence was
suggested much earlier [9.63, 9.66]).

Moreover, Eq. (9.15) also predicts that the largest trans influence is expected
not only when the difference eσ (Y) − eσ (X) is large, but also when eσ (X) is
large. Thus the ligands with larger eσ values are both larger trans-influencing
and more strongly susceptible to the trans influence of other ligands. Indeed, the
best trans-influencing ligands are often also most easily influenced by stronger
trans-influencing ligands.

The presence of π bonds may be essential for the mutual influence of ligands.
The role of π donation in the trans effect was first revealed by Chatt, Duncanson,
and Venanzi [9.64] and independently by Orgel [9.65], and it is discussed in more
detail in Section 11.3. Here we consider some aspects at the π bonding that have
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FIGURE 9.17. The Pt—Cl bond length in square-planar Pt(II) complexes (Table 9.4)
versus the Pauling electronegativties of the trans ligand.

direct stereochemical effect. This is, first of all, the interrelation between σ and
π-orbital charge transfers.

In Section 6.3 the diorbital bonding of the ligand, including one σ and one π

bond, is considered (with two π bonds, the effect is similar). It is emphasized
there that the total charge transfer �q = �qπ + �qσ to the CA (�q < 0) or
to the ligand (�q > 0) may be small, while the orbital charge transfers, �qπ

and �qσ , can be relatively large, because they may have opposite signs (usually
�qσ < 0, and �qπ > 0: backdonation; see Fig. 6.6). Note that small �q val-
ues are required by thermodynamic conditions; large total charge transfers are
energetically inconvenient due to electron correlation effects.

For this reason in the absence of π bonding (�qπ = 0), �qσ cannot be very
large. In the presence of a π backdonation �qπ > 0, �qσ can be much larger.
The π backdonation enhances σ -donor properties of the ligands. But the σ -donor
properties, as shown above, are directly related to the trans influence. Hence the
formation of π bonds, enhancing σ -donor properties, increases the trans influence
[9.66]. This conclusion explains many experimental data on trans elongation and
other trans influences.

At the early stages of discussion the statement about the role of π bonding
in trans influence was very stimulating. For example, it was observed that the
NO −

2 group which is able to form strong π bonds with the CA, is relatively weak
trans-influencing: the Pt—Cl bond length R ≈ 2.34 Å in the trans position to
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NO −
2 in cis-K2 [Pt(NO2)3 Cl3] is the same as for the C C trans group in

square-planar Pt(II) compounds (Table 9.4), whereas the π-acceptor properties
of NO −

2 are much stronger. To explain this discrepancy, it was assumed that
the position of the NO −

2 group in the case where it is weak trans-influencing is
bent with respect to the position in which it forms good π bonds [9.66, 9.67].
The X-ray experiments carried out to verify this assumption confirmed the bent
position of NO −

2 in the above complex [9.67].
As stated above, directed (trans) σ influence is possible when there are such

atomic states of the CA (e.g., p states), which, as they are involved in the
bonding, transfer the influence mainly in the trans direction. However, this does
not mean that the cis ligands do not participate in the mutual influence. Indeed,
since the charge transfer to the CA is limited, all the ligands compete in this
process, which means that strong σ -donor ligands in the cis position reduce
the σ -donor ability of the given ligand [9.66], and hence its trans influence. In
other words, strong trans-influencing (i.e., trans-weakening) ligands reduce the
similar effect on the cis coordinate, thus producing an opposite cis influence
(cis-strengthening). Thus, in this model the trans and cis influences of the same
ligand have opposite signs .

This effect is seen explicitly from the data in Table 9.5. Indeed, compare
the Pt—Cl bond lengths in two complexes, trans-[Pt(PEt3)2Cl2] and trans-
[Pt(NH3)2Cl2], that differ by the linear fragment in the cis position (P—Pt—P
and N—Pt—N, respectively) to the trans coordinate Cl—Pt—Cl. Since the
latter is the same in both complexes, the difference in the Pt—Cl bond lengths
is due entirely to the cis influence. From Table 9.4 it is seen that the trans
influence of P is stronger than that of N, and hence the cis influence, following
the abovementioned qualitative treatment, should be opposite. Thus the Pt—Cl
bond length is expected to be shorter in the [Pt(PEt3)2Cl2] complex than in
[Pt(NH3)2Cl2, in agreement with the experimental data in Table 9.5 (2.29 and
2.32 Å, respectively).

The problem of the CA orbitals that promote the directed trans and cis influ-
ences is one of the most important in the prediction of the CA that are effective in
the mutual influence of ligands. Its full solution requires numerical calculations,
including all possible active orbitals. However, in general, the results of numer-
ical calculations are not transferable and cannot be related directly to specific
properties of the CA and ligands (Section 6.1); qualitative or semiquantitative
treatments remain rather important. More exact but less general results of numer-
ical calculations and more general but less exact results of analytical (qualitative
and semiquantitative) treatments are complementary to each other.

Vibronic Theory of Ligand Mutual Influence

In a more rigorous treatment the TEST (two electronic states in transformation)
paradigm (Section 7.4) can be invoked to consider the mutual influence of ligands
as a vibronic effect. Indeed, the substitution of one ligand in the complex by
another can be regarded as a change in the electronic structure (substitution
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perturbation mixing the unperturbed states) which produces changes in the nuclear
configuration via vibronic coupling. In Section 11.2 a detailed consideration of the
vibronic effects in ligand coordination is given, which also evaluates the changes
of interatomic distances by coordination, and in Section 9.2 the distortion of
ligand geometry induced by the coordination is briefly discussed. A somewhat
similar idea is used here in this Section to consider the mutual influence of
ligands or, more precisely, the change in mutual influence by changing ligands
[9.59].

Consider a homoligand coordination system of the type MXn with a nonde-
generate electronic ground state. Following Section 7.1, its Hamiltonian can be
presented as

H = Hel + W (9.16)

where Hel is the electronic part of the Hamiltonian for fixed nuclei [see Eq.
(7.4)] and W is the vibronic coupling (7.7). In the stable configuration Qα =
0, α = 1, 2, . . ., N , the adiabatic potential ε(Qα) has a minimum with respect to
all symmetrized coordinates Qα , and in the harmonic approximation ε(Qα) has
the usual quadratic form (7.12) with Kα given by Eqs. (7.82)–(7.84).

On substitution of ligands X by Y, the change of the Hamiltonian (9.16) can
be presented just by adding the so-called substitution Hamiltonian Hs equal to
the difference between the Hamiltonians of the MXn−1 Y and MXn systems:

H = Hel + W + HS (9.17)

Now we assume that HS can be considered as a perturbation. This implies
that changes in energy states induced by HS are small. Then, to obtain the APES
of the MXn−1 Y system with the Hamiltonian (9.17), one must consider two
perturbations, HS and W , instead of W only in the MXn system. With the two
perturbations the adiabatic potential ε′(Qα) in the first approximation is [9.59]

ε′(Qα) = ε(Qα) + h00 −
∑

j

h2
0j

�j0
− 2

∑

α,j

h0jF
0j
α

�j0
Qα (9.18)

where we denoted

h0j = 〈0|Hs |j 〉 (9.19)

F
0j
α = 〈0|∂H/∂Qα)0|j 〉 are the vibronic constants (7.22), and �ij is the energy

gap between the states |0 > and |j >. From Eq. (9.18) one can see that in addition
to the constant terms h00 and −∑

h2
0j /�j0, which shift the energy levels, there

is a term that is linear in Qα . Added to the quadratic terms in ε(Qα) after (7.31),
this linear term displaces the minimum position in the Qα (or −Qα) directions;
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the sign of this displacement is determined by the sign of the product h0jF
0j .

The new equivalent positions are

Q0
α = 2

∑

j

h0jF
0j
α

�j0Kα0
(9.20)

where Kα0 is as given by Eq. (7.83).
Thus the idea of vibronic mutual influence of ligands is that if we substitute

one of the ligands, the changes in electronic structure are no more consistent with
the previous geometry, and other ligands relax to new equilibrium positions (new
minima of the APES). To find them, the vibronic constants F 0j and the substi-
tution operator h0j should be analyzed. This can be done by a model description
for more specific types of systems.

Consider, for example, the MO LCAO model for octahedral σ -bonded com-
plexes MX6 of the following three basic types:

(i) M is a transition element, and there are 12 electrons in the valence σ

MOs.
(ii) M is a nontransition element in a low oxidation state, and there are 14

electrons in the σ MOs (i.e., there is an electron lone pair in addition to
the 12 electrons on 6σ orbitals).

(iii) M is a nontransition element in a higher oxidation state.

The typical MO energy-level schemes for these systems are illustrated in
Fig. 9.18. By populating the one-electron MOs with the number of valence elec-
trons available, we easily find the HOMO and LUMO. For group (i) the HOMO
is t1u, while the LUMO is e∗

g , for (ii) the HOMO and LUMO are a∗
1g and t∗1u,

respectively, and so on (Table 9.8).
Thus, by restricting the problem in the HOMO–LUMO approximation we

get the coordinate of distortion. In particular, the Q′′ = (Z1 + Z4)/
√

2 coordi-
nate describes the displacements of the two atoms, 1 and 4, in trans positions
(both in the same direction), with the sign of this displacement dependent on
the product hF 0. Following Eq. (9.18), h ∼< 0|Hs |1 >, and the operator Hs of
the substitution X → Y can be taken approximately proportional to the differ-
ence between their Coulomb integrals α: h ≈ �α = α(Y)–α(X). On the other
hand, α(Y) and α(X) characterizes the σ -donor properties of Y and X, respec-
tively (such approximations are quite usual in organic chemistry [9.68]). Some
qualitative conclusions from this approximation are as follows.

Assume that by substitution X → Y the σ -donor properties increase, �α =
α(Y) − α(X)> 0. Then [9.59] for octahedral σ -bonded coordination compounds
of group (i) (transition metals with 12 electrons on the six MOs) h < 0, F > 0, and
hence for these systems Q′′

z < 0. This distortion is equivalent to trans elongation
because in Q′′

z = (Z1 + Z4)/
√

2, Z1 = Z4, and hence Z4 < 0. For �α < 0 the
trans elongation changes to trans shortening. Note that in this approximation the
cis ligands are not involved in the mutual influence.
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FIGURE 9.18. Typical σ MO energy-level schemes for octahedral MX6 complexes of
transition (i) and nontransition (ii,iii) elements. The HOMO are (i) t1u, (ii) a∗

1g , (iii) eg

[cf. Fig. 6.1; for denotations (i), (ii), and (iii) see the text].

TABLE 9.8. Parameters Characterizing the Distortions in σ -Bonded Complexes of
Transition and Nontransition Elements Produced by Substitutions MX6 → MX5Y
in Octahedral and MX4 → MX3Y in Square-Planar Complexes

Type of
Complex HOMO LUMO

Distortion Mode for
which Fα �= 0

AOs of CA for
which h �= 0

Distortion Coordinate
Qα

Octahedral
(i) t1u e∗

g T1u, T2u pz, dz2 Q′′
z = (Z1 + Z4)/

√
2

(ii) a∗
1g t∗1u T1u s;pz Q′′

z = (Z1 + Z4)/
√

2
(iii) eg a∗

1g Eg dz2; s Qθ = (2Z1−2Z4−
X2 + X5 − Y3 +
Y6)/2

√
3

Square-planar
(i) eu b∗

1g Eu px; dx2−y2 Qx = (X2 + X4)/
√

2
(ii) a∗

1g e∗
u Eu s;px Qx = (X2 + X4)/

√
2

Source: From Levin [9.59].

In complexes of type (ii) F < 0 and h> 0, and hence Q′′
z < 0. Thus, in

octahedral σ -bonded complexes of nontransition elements with 14 electrons on
the σ MOs (one lone pair), the distortion by ligand substitution is similar to
that expected for group (i): trans elongation for increasing σ -donor properties,
�α > 0, and trans shortening when the opposite inequality �α < 0 holds. Many
examples in the literature confirm these conclusions [9.56–9.58].



MUTUAL INFLUENCE OF LIGANDS 553

In compounds of type (iii), posttransition element complexes in high oxida-
tion states, the situation is more complicated, but some further differentiation of
the ligands with respect to their σ -donor properties allows one to obtain some
qualitative results that explain the origin of many observed geometries [9.59].

For square-planar σ complexes of the type MX4, the typical HOMO and
LUMO, as well as the coordinates of distortion for two types of systems, (i) and
(ii), are given in Table 9.8:

(i) M is a transition metal, and there are 8 valence electrons on the σ MOs
(typical example [PtIIX4]).

(ii) M is a posttransition element in a low oxidation state (typical example
[TeIIX4]).

For �α > 0, a procedure quite similar to that used above for octahedral com-
plexes yields F > 0, h < 0 in case (i) and F < 0, h> 0 in case (ii), thus in
both cases the product F · h < 0, and hence the coordinate of distortion Qx < 0,
which indicates trans elongation [9.59]. This is the typical trans influence well
known for square-planar complexes, in particular, for Pt(II).

If the ligands produce π bonds, they enhance the trans influence, but its sign
depends significantly on the coordination center M. Interesting examples of this
kind are provided by actinides, where the participation of f electrons in the
bonding is important. In complexes of the type MX6, where M is an actinide, the
HOMO t1u contains both σ and π bonding (σ + π bonds), while the LUMO is
T ∗

2u (a π MO). The coordinate of distortion by the MX6 → MX5Y substitution
is Qθ , and its sign proved to be negative [9.59], Qθ < 0. This means that the
distortion due to the mutual influence is trans-shortening and cis-elongating.
The experimental data (Table 9.9) confirm this prediction. Note that in quite
similar complexes of transition metals the mutual influence of ligands results in
trans elongation. For instance [9.61], in K2 [MoOCl5] (I) and K2 [ReOCl5] (II)
R(M—Xtrans) is significantly larger than R(M—Xcis) (in angstroms): 2.587 and
2.39 in (I) and 2.47 and 2.39 in (II), respectively. This illustrates the fact that
the electronic structure (ground and excited states) of the coordinating element
M that transfers the mutual influence is most important.

TABLE 9.9. Experimental Data on cis Elongation and trans Shortening in
Some Actinide MOX5 Compounds

R(M—O) R(M—Xtrans) R(M—Xcis)

Compound (Å) (Å) (Å)

UCl6 — 2.47 2.47
(PPh4)[UOCl5} 1.76 2.43 2.53
(NEt4)2[PaOCl5] 1.74 2.42 2.64
(NEt4)2[UOCl4] 1.75 — 2.67

Source: From Levin [9.59].
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9.4. CRYSTAL STEREOCHEMISTRY

In stereochemistry of transition metal compounds the crystalline state is most
important because it provides for the possibility (often the unique possibility) of
direct observation of molecular shapes. Indeed, these compounds rarely exist as
free molecules in the gas phase, and the study of molecular shapes by other (e.g.,
spectroscopic) methods is a rather indirect observation.

On the other hand, the crystal environment influences significantly the local
stereochemistry. One of the main differences between crystal chemistry of organic
and inorganic compounds is that the organic crystals are (mostly) molecular
crystals containing conveniently packed organic molecules, whereas inorganic
crystals may have nothing to do with molecules, and the whole crystal may be just
one giant molecule (compare CH4 and NaCl crystals). In terms of the electronic
structure considered in this book, the interaction between organic molecules in
crystals is mainly nonvalence in nature and can be described by some empirical
parameters. This cannot be done in many cases of inorganic compounds in which
the details of the electronic structure of the crystal components play a key role in
crystal lattice formation and stereochemistry (see also the discussion in the last
subsection of Section 9.1).

Coordination compounds of transition metals occupy an intermediate place
between the two extremes described above. The coordination system enters the
crystal state mostly as a whole entity and preserves many of its molecular features,
but the interaction between the coordination centers in the lattice is relatively
strong, and it is determined by electronic factors that may be more significant
than nonvalence (steric) interactions.

Classical crystal stereochemistry is based on the ideas of “ball packing,” or
its significantly advanced form, the VSEPR model, which can be considered as
a kind of “charge packing” (Section 9.1). The crystal structure of coordination
compounds is rather complicated, and in most cases it cannot be reduced to
“charge packing” because of the primary importance of quantum effects. As
mentioned in Section 9.2, the vibronic approach provides a further insight into
the problem [9.69]. In particular, it allows one to separate the contribution of
local (chemical) forces from that of the long-range interactions in the lattice
(cooperative effects), and to show that the local forces are most essential in
determining the polyatomic stereochemistry. In the remainder of this section,
we emphasize the main nonclassical aspects of stereochemistry in the crystal
state.

The Plasticity Effect

As mentioned in Section 9.2, the distortions induced by the JT, PJT, and RT
effects in free coordination systems are of dynamic nature; they were classi-
fied in Section 7.4 as free rotations, hindered rotations, and pulsating motions.
Some of these motions can be observed as pseudorotations, provided that certain
conditions considered in Sections 9.1 and 9.2 are satisfied.
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In Section 9.1 we discussed the role of small external perturbations that quench
the dynamics of the distortions and make them static, so that a very small
perturbation may result in strong distortion (vibronic amplification of external
perturbations). The symmetry of this static distortion corresponds to that of the
external influence, provided that it is uniaxial in the direction of one of the JT
active coordinates. It follows that among the many possible equivalent distor-
tions of a coordination system predicted by the vibronic theory (Section 7.3 and
7.4), only those in the crystal state that correspond to the symmetry of the envi-
ronment are realized, and in a measure allowed by this environment. Hence the
same coordination polyhedron may have significantly different shapes in different
crystals . This phenomenon seems to imply that the coordination polyhedron has
a soft (plastic) coordination sphere that in the crystal state assumes the form of
the crystal environment; it is called the plasticity effect [9.20, 9.25] (see also the
“flexional behavior” mentioned in Section 9.2 [9.47]). The first observation of
this effect is due to Fackler and Pradilla-Sorzano [9.48] (see also [9.70]).

The best examples illustrating the plasticity effect are octahedral coordina-
tion compounds with a twofold-degenerate E term [Cu(II), Mn(III), Cr(II), etc.].
For them the APES in the case of weak quadratic terms (small GE constants;
Section 7.3) has the form of a Mexican hat that allows for any distortion of the
coordination sphere along the symmetrized Qθ and Qε displacements within the
limits Q2

θ + Q2
ε = const (Fig. 7.13). If the quadratic vibronic terms are signifi-

cant, only three directions of tetragonal distortions along the fourth-order axes
remain equally probable (Fig. 7.10). In other systems with other degenerate terms
distortions with three tetragonal, six orthorhombic, and so on, equivalent direc-
tions, as well as continuous sets of distortions (a trough), are possible (see Section
7.3 and Ref. 9.20).

These predictions of the theory are confirmed by a large amount of experimen-
tal data. X-ray analysis shows that the six-coordinated systems with a degenerate
Eg term are not regular octahedrons even when all the ligands are identical, and
in the majority of known cases the octahedron is tetragonally distorted. In Tables
9.10–9.13 the crystallographic distances to the two axial (RL) and four equato-
rial (RS) ligands in a series of CuO6 (Table 9.10), CuN6 (Table 9.11), and other
CuX6 (Table 9.12) polyhedra, as well as in similar octahedral Mn(II) and Cr(II)
systems (Table 9.13) in different compounds, are given [9.25, 9.71].

It follows from these tables (and many other sources of empirical data) that
the six-atom polyhedra around the Cu(II), Mn(III), and Cr(II) centers in different
crystals are mainly elongated octahedra RL >RS , with two ligands on the long
axis and four on the short axes. For some of the tabulated compounds, although
the atoms from the second and next coordination spheres are different (and in the
crystal state the interatomic distances also depend on the packing of the molecules
in the lattice), the large number of these compounds confirms statistically that
the deformation of the coordination sphere around Cu(II), Mn(III), and Cr(II)
is due to internal forces, that is, to the E-term JTE. The fact that elongated
octahedra are observed confirms the assumption of strong vibronic coupling and
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TABLE 9.10. Equatorial RS and Axial RL Interatomic Distances Cu—O in Cu(II)
Compounds Containing CuO6 Clusters

Compounda RS (Å) RL (Å)

Cu(C6H4OHCOO)2 · 4H2O 1.88 3.00
Cu(glycollate)2 1.92 2.54
Cu(acac)2 1.92 3.08
Na2Cu(CO3)2 1.93 2.77
Na2Cu(PO3)4 1.94 2.52
Cu(meso-tartrate)· H2O 1.94 2.54
Cu(OMPA)2(ClO4)2 1.94 2.55
Cu(OH)2 1.94 2.63
Cu2P4O12 1.95 2.38
Cu(C8H5O4)

.
2 2H2O 1.95 2.68

CuO 1.95 2.78
Ca(Cu,Zn)4(OH)6(SO4)2 · 3H2O 1.96 2.43
PbCuSO4(OH)2 1.96 2.53
CuSO4 · 5H2O 1.97 2.41
Cu(NaSO4)2 · 2H2O 1.97 2.41
Cu6(Si6O19) · 6H2O 1.97 2.68
Cu(C2H5OCH2COO)2 · 2H2O 1.98 2.38
CuWO4 1.98 2.40
Tl2[Cu(SO3)2] 1.99 2.44
Ba2Cu(HCOO)6 · 4H2O 2.00 2.18
Cu(HCOO)29 · 2H2O 2.01 2.37
[C14H19N2]Cu(hfacac)3 2.02 2.18
CdCu3(OH)6(NO3)2·H2O 2.03 2.43
K2BaCu(NO2)6 2.04 2.29
Cu4(NO3)2(OH)6 2.04 2.34
Ca(Cu,Zn)4(OH)6(SO4)2 · 3H2O 2.06 2.23
Cu(OMPA)3(ClO4)2 2.07 2.07
Cu(H2O)6SiF6 2.07 2.07
Cu(IPCP)3(ClO4)2 2.07 2.11
Cu(NO3)2HgO·3H2O 2.10 2.10
Cu(PCP)3(ClO4)2 2.11 2.04
Ca(Cu,Zn)4(OH)6(SO4)2 · 3H2O 2.11 2.11
Cu(ClO4)2 · 6H2O 2.13 2.28
(NH4)Cu(SO4)2 · 6H2O 2.15 1.97
aAbbreviations: acac = acetoacetate; OMPA = octamethylpyrophosphoramide; hfacac = hexafluor-
acetylacetonate; IPCP = tetraisopropymethylene–diphosphonate; PCP = octamethylmethylene–
diphosphonic diamide.
Sources: From Bersuker et al. [9.20, 9.25].
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TABLE 9.11. Equatorial RS and Axial RL Interatomic Cu—N
Distances in Cu(II) Compounds Containing CuN6 Clusters

Compounda RS (Å) RL (Å)

Cu(C4H7N5O)2(ClO4)2 1.97 3.14
Cu(NH3)4(NO2)2 1.99 2.65
Cu(NH3)2(N3)2 2.01 2.62
Na4Cu(NH3)4Cu(S2O3)

.
2 NH3 2.01 2.88

Cu(phen)3(ClO4)2 2.05 2.33
Cu(dien)2Br .

2 H2O 2.04 2.43
Cu(N,N′-(CH3)2en)2(NCS)2 2.06 2.52
[Cuen2]Hg(SCN)4 2.08 2.58
Cu(l-pn)3Br .

2 2H2O 2.09 2.31
K2PbCu(NO2)6 2.11 2.11
Cuen3SO4 2.15 2.15
Cu(dien)2(NO3)2 2.22 2.01
γ -K2 PbCu(NO2)6 2.23 2.05
aAbbreviations: phen = o-phenanthroline; en = ethylenediamine; pn = 1,2-
propanediamine; dien = diethylenetriamine.
Sources: From Bersuker et al. [9.20, 9.25].

TABLE 9.12. Equatorial RS and Axial RL Interatomic
Distances Cu—X in Cu(II) Compounds Containing CuX6
Clusters, where X = F,Cl,Br

Compound RS (Å) RL (Å)

Ba2CuF6 1.85; 1.94 2.08
Na2CuF4 1.91 2.37
CuF2 1.93 2.27
K2CuF4 1.92 2.22
KCuF3 1.96; 1.89 2.25
CuCl2 2.30 2.95
(NH4)2CuCl4 2.30; 2.33 2.79
CsCuCl3 2.28; 2.36 2.78
CuBr2 2.40 3.18

Sources: From Bersuker et al. [9.20, 9.25].

strong quadratic vibronic interaction; one of the three adiabatic potential minima
is stabilized by the crystal environment.

The octahedron of the first coordination sphere is regular for several com-
pounds, which means that the distortions are not stabilized by the crystal envi-
ronment or cooperative effects considered below. In other words, the phase
transition to lower-symmetry structures due to cooperative effects has not taken
place at the temperatures of the X-ray measurements in question; they could be
expected at lower temperatures. For some of these compounds [CuSiF6 · 6H2O,
KPbCu(NO2)6, etc.], this assumption has been confirmed by ESR and other
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TABLE 9.13. Equatorial RS and axial RL Interatomic
Distances Me—X in Some Compounds Containing MX6
Clusters, where M = Mn(III),Cr(II) and X = O, S, F, Cl, I

Compound RS (Å) RL (Å)

K2MnF5H2O 1.83 2.07
(NH4)2MnF5 1.85 2.10
K2NaMnF6 1.86 2.06
MnF3 1.79–1.91 2.09
Cs2KMnF6 1.92 2.07
Mn(trop)3, I 1,94 2.13
Mn(trop)3, II 1.94–1.99 2.09
CrF2 1.99 2.43
Mn(acac)3 2.00 1.95
KCrF3 2.14 2.00
Mn(Et2dtc)3 2.38–2.43 2.55
CrCl2 2.40 2.92
CrI2 2.74 3.24

Sources: From Bersuker et al. [9.20, 9.25].

direct measurements. Systems reported with tetragonally compressed octahe-
dra in (NH4)2Cu(SO4)26H2O, Cu(PCP)3(ClO4)2, Cu(dien)2(NO3)2, Cu(en)3SO4,
Mn(acac)3, and Ba2CuF6 need additional investigation. In similar compounds
[e.g., in nitrate of bis(terpyridin)Cu(II), Cu(en)3Cl2, K2CuF4, K2PbCu(NO2)6]
a more careful study shows that in fact the octahedrons are tetragonally elongated
and antiferrodistortively ordered, which gives an average picture of diffraction
similar to that for ferrodistortively ordered compressed octahedra. A similar con-
clusion about elongated octahedra instead of the compressed ones emerges from
the ESR investigation [9.72].

In some cases the tetragonally compressed octahedral polyhedron around
Cu(II) is presumably controlled by the crystal structure: CuF6 polyhedra in the
Ba2ZnF6 crystal may serve as an example [9.73]. Indeed, in Ba2ZnF6 the octahe-
dral environment around Zn is compressed because of crystalline effects, and the
substitution Ba2Zn1−xCuxF6 with x < 0.3 does not change the crystal structure
and the compressed octahedral environment of Cu(II). One may speculate that in
these cases the crystal influence is sufficiently strong; it changes the sign of the
quadratic vibronic constant GE (Section 7.3).

The origin of elongated octahedra (and lack of compressed ones) in Cu(II)
compounds was attributed [9.74] to the contribution of configuration interaction
(Section 5.3) with the excited state, which includes the 4s orbital of the copper
atom. This negative contribution to the energy in the 2B1g state (elongated octa-
hedron) was shown to be twice that in the 2A1g state (tetragonally compressed
octahedron). Another conclusion derived from the data in Tables 9.10–9.13 con-
cerns the diversity of Cu—O and Cu—N distances, which vary greatly from one
system to another, preserving some relationship between RL and RS . This con-
firms that the characteristics of metal–ligand bonds in coordination systems are,
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in general, not transferable from one compound to another and cannot be used
for classical molecular modeling similar to organic compounds (Section 5.6).

Distortion Isomers

In the diversity of crystal environments, there may be cases when not one, but
two or several configurations of the coordination sphere are stabilized. If these
configurations are sufficiently close in energy, but differ in distortion magnitude
and direction, they may be observed as different crystal isomers. The so-called
distortion isomers of Cu(II) originally synthesized and studied by Gazo et al.
[9.25, 9.71] may serve as an example of this kind. These isomers have the same
total composition and the same Cu(II) ligand environment, but differ in the inter-
atomic metal–ligand distances in the distorted coordination sphere. Distortion
isomers also differ in their properties, such as color, appearance, crystal form,
chemical behavior, solubility, and spectroscopic data. They pass from one to
another under the influence of pressure, heating, or long-term storage. In some
cases, besides the two principal isomers (usually called α and β), a series of
intermediate species have been obtained.

One of the simplest compounds that has distortion isomers is Cu(NH3)2X2,
where X = Cl, Br. Their possible Jahn–Teller origin was suggested when the
isomers were discovered, but the true understanding of their local PJT and coop-
erative crystal nature was reached later [9.25, 9.69]. The results of Section 7.4
give quite a natural explanation for the origin of distortion isomers as being
due to the vibronic properties of the Cu(II) center accompanied by the stabiliz-
ing influence of the crystal lattice. Example 9.4 explains the origin of distortion
isomers of some specific compounds.

EXAMPLE 9.5

Origin of Distortion Isomers in Cu(NH3 )2 X2 , X = Cl, Br

The crystals Cu(NH3)2X2 constitute mutually parallel chains, each
of which is arranged as illustrated in Fig. 9.19a, where all the X
atoms occupy equivalent bridge positions. There is a strong interaction
between the Cu(II) centers inside the chain through bridging atoms,
while the bonding between the chains realized by Van der Waals
interactions and/or hydrogen bonds is weak. Each copper atom is
surrounded by four X atoms in the plane of the square and by two
NH3 groups in the axial trans positions. The degeneracy of the ground
Cu(II) state in the octahedron is removed as a consequence of the
difference between X and NH3, and the 2Eg term is split in 2A1g and
2B1g . Denote the splitting by 2�.
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FIGURE 9.19. Chain structure of the crystal Cu(NH3)2X2 in the cubic undis-
torted unstable β isomer (a) and in two equivalent configurations of the α

isomer, I and II (b and c), resulting from the in-chain cooperative pseudo
Jahn-Teller effect. (After Bersuker et al. [9.20, 9.25].)

If we assume that the X atoms in the plane form a regular square,
the polyhedron Cu(NH3)2X4 is a tetragonally distorted octahedron that
belongs to D4h symmetry. The two close-in-energy A1g and B1g terms
are subject to the PJTE. This case fully corresponds to the two-level
system considered in Section 7.4, so the results obtained there may be
applied directly. In particular, the normal coordinate Q, which mixes
the states A1g and B1g , transforms according to B1g (A1g × B1g = B1g)
and the corresponding B1g displacements in the D4h group coincide
with the Qε displacement of the Oh group given in Fig. 7.1 and Table
7.1 and shown here in Fig. 9.20.

The vibronic constant of the mixing of the two electronic states is
F = 〈A1g|∂H/∂Q)0|B1g〉, and the APES in the space of the Q coordi-
nate has the form given by Eq. (7.65). If the instability condition (7.67),
� < F 2/K0, is satisfied, we obtain two minima on the lower sheet of
the adiabatic potential at ±Q0, determined by Eq. (7.68).

Thus, the pseudo-Jahn–Teller effect at each center distorts the bipyra-
midal environment: the equatorial square with four atoms X at the
apexes transforms to a rhombus with the major diagonal along Qx

corresponding to the minimum I in Fig. 9.21, or along Qy (minimum II).
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FIGURE 9.20. Qθ and Qε displacements in the octahedral Cu(NH3)X4 cluster.
The Qε distortion has B1g symmetry and mixes the A1g and B1g electronic
states.

FIGURE 9.21. Energy curve for the Cu(NH3)2X2 crystal as a function of the
cooperative ferrodistortive intrachain distortion, which is of B1g symmetry on
each center. Curves I and II indicate the two pseudo-Jahn–Teller minima, while
the additional minimum at Q(B1g) = 0 corresponds to the best-fit interchain
interactions of undistorted chains (dashed lines).

As a result of the strong interaction between the distortions of neigh-
boring centers in the chain via the ligands X in common, a ferrodis-
tortive ordering of these distortions along the chain takes place, and
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this ordering remains unchanged up to high temperatures, so it can
be assumed that at room temperatures each chain has two stable con-
figurations I and II of Fig. 9.19 [parts (b) and (c), respectively], that
correspond to the two minima in Fig. 9.21 (I and II, respectively).

As for the interaction between the chains, the analysis indicates that
it is optimal when the chains are not distorted and the entire crystal
is cubic. In this cubic state the intermolecular distances (between the
strongest interacting atoms of different chains) are minimal, and they
increase with intrachain distortions toward configuration I or II. Hence
the interchain interaction in the crystal results in a minimum at Q = 0
(Fig. 9.21), where Q is the coordinate of the cooperative intrachain
distortion corresponding to the B1g distortion at each center. Thus the
total energy of the crystal has three minima (Fig. 9.21): besides two
minima I and II for the stable distorted configurations of the chains,
there is a third minimum for the cubic crystal with undistorted chains.

It can be shown that this description explains qualitatively the origin
of all the main features of the distortion isomers in Cu(NH3)2X2. The α

isomer corresponds to the deepest minimum of the APES (I or II) with
the structures illustrated in Figs. 9.19b and 9.19c. The unstable β iso-
mer with the cubic structure corresponds to the shallower minimum at
Q = 0, and the intermediate preparations with noncubic structures cor-
respond to the additional relative minima for the uncorrelated chain dis-
tortions. This interpretation agrees well with the experimental features
of the isomers, including their behavior under stress and temperature,
the dependence on conditions of their preparation, spectral properties,
and transitions from one isomer to another [9.25, 9.71].

The PJT origin of the intrachain distortions was confirmed by approx-
imate calculations of the distortions of the Cu(NH3)2X4 polyhedron. The
electronic energy as a function of the Q(B1g) distortions was estimated
by means of the angular overlap model (Section 5.2). Using empiri-
cal data for the value K0, the minima positions (I and II) on the APE
curve (7.65) were estimated [9.75]. The results confirm that the distor-
tion is of the PJT origin: Q(B1g)(calculated) ≈ 0.5 Å, while Q(B1g)

(experimental) ∼= 0.4 Å.

Temperature-Dependent Solid-State Conformers

The dynamic JT and PJT distortions, under the influence of the crystal environ-
ment, may be reduced to static distortions in different ways, resulting in a variety
of possible configurations, including temperature-dependent configurations. One
of them may be called temperature-dependent solid-state conformers [9.76]. They
occur when there are two or several rapidly converting distorted configurations
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that are slightly nonequivalent because of the crystal influence, and the observed
Boltzmann averaged configuration is thus temperature-dependent.

Consider the system [Cu(bpy)2 (ONO)]NO3 (bpy = bipyridine) with the cop-
per polyhedron cis-CuN4O2. In the high-symmetry configuration of [Cu(bpy)3]2+
the system has D3 symmetry with a twofold-degenerate 2E ground state. The sub-
stitution of one of the bpy groups by ONO reduces the symmetry to C2 and splits
the 2E term in 2A and 2B. Similar to the distortion isomers discussed in Example
9.4, there is a possibility for a PJTE and consequent instability of the ground
state 2A with respect to B displacements (A × B = B), provided that the vibronic
coupling constant F = 〈A|∂H/∂QB |B〉 is sufficiently large and inequality (7.85)
or (7.67) holds. The B displacements emerge from Qε (Fig. 9.20, Table 7.1) and
have the same geometry.

Assuming that (7.67) is satisfied, we obtain for the APE curve, as a function
of the coordinate Q(B), the picture shown in Fig. 7.17b and reproduced here in
Fig. 9.22 together with the indication of the modes of distortion of the CuN4

O2 polyhedron in the minima. The value of the distortion coordinate Q (the

FIGURE 9.22. Two minima of the adiabatic potential in the [Cu(bpy)2(ONO)]NO3 crys-
tal with a strong pseudo Jahn–Teller effect on each center and slightly different minima
depths (∼δ) due to the crystal environment (influence of the next coordination sphere).
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coordinate Qε = ( 1
2

)
(X2 –X5 –Y3+Y6), Table 7.1) in our denotations for the cis-

CuN4O2 polyhedron is

Q = ( 1
2

)
[�R(Cu—N1) + �R(Cu—O1) − �R(Cu—N2) − �R(Cu—O2)]

(9.21)

where N1, N2, O1, and O2 are the two nitrogen and two oxygen atoms in the
plane containing the C2 axis (Fig. 9.22), and �R denotes the elongation of
the bond with respect to that in the high-symmetry configuration. It is seen
that for linear distortions �R(Cu—N1) − �R(Cu—N2) = R(N1) − R(N2) and
�R(Cu—O1) − �R(Cu—O2) = R(O1) − R(O2)), where R(X) means the bond
length Cu—X. Hence

Q = ( 1
2

)
[R(N1) − R(N2) + R(O1) − R(O2)] (9.22)

In the unstable high-symmetry configuration Q = 0, while in the two minima
Q = ±Q0 �= 0. If the energy barrier between the minima (i.e., the PJT stabiliza-
tion energy) is not very large, the system converts rapidly between the minima
configurations, and in some experimental measurements (say, by X-ray diffraction
methods) the averaged undistorted configuration will be observed (if the minima
are shallow and there are no local states in them, the averaged configuration will
be observed in all the methods, Section 9.1).

The situation changes when, in response to the crystal environment, the two
minima become slightly nonequivalent, as shown in Fig. 9.22 by dashed lines,
but the energy difference δ between the minima is smaller than the barrier height
(otherwise the second minimum disappears). In this case there is no complete
averaging over the two configurations because the two minima are not equally
populated. Denote the relative populations of the two configurations by n1 and
n2, respectively. According to Boltzmann’s thermal populations

n2 = n1exp
−δ

kT
(9.23)

with the normalization n1 + n2 = 1. Then the observed thermal averaged distor-
tion is

Qav = (n1 − n2)Q0 (9.24)

or

Qav = Q0
1 − exp(−δ/kT )

1 + exp(−δ/kT )
(9.25)

Thus the observable averaged distortion Oav is temperature dependent, its
absolute value being determined by both Q0 and δ.

These distorted configurations of the same compound, which change
gradually with temperature, can be called temperature-dependent solid-state
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conformers. At high temperature when kT � δ, in the first order with respect
to δ/kT , exp(−δ/kT ) ≈ 1 − (δ/kT ) and

Qav = Q0δ

2kT
(9.26)

In the opposite limit case when kT � δ, exp(−δ/kT ) ≈ 0, and Qav ≈ Q0.
The observed distortions in [Cu(bpy)2 (ONO)]NO3 and similar systems [9.76]

follow these rules rather well. The atomic structure of this compound has been
determined in four temperature regions: 20, 100, 165, and 296 K. Table 9.14
shows the corresponding interatomic distances and the value Qav calculated by
Eq. (9.21) for different temperatures, as well as the same data for [Zn(bpy)2

(ONO)]NO3 at 295 K, for comparison. In the Zn compound there is no PJTE of
the kind present in [Cu(bpy)2 (ONO)]NO3 and hence no temperature-dependent
conformers are expected.

The data in Table 9.14 are very illustrative for temperature-dependent solid-
state conformers; the temperature dependence of Qav closely follows the pattern
seen in Eq. (9.25). In particular, if we assume that at T = 20 K Q0 ≈ Qav = 0.3,
while at T = 296 K Eq. (9.26) holds, we obtain the following value directly: δ =
(Qav/Q0)2kT ≈ 69 cm−1. The author [9.76] performed a more exact estimation:
δ = 74 cm−1. Note that in the Zn(II) compound Qav, as expected, ranges from
small to zero, and the absence of conformers in the Zn(II) compound is also seen
from the temperature factor in X-ray experiments [9.76].

The solid-state conformers under consideration differ from each other in inter-
atomic distances, and in this sense they are similar to distortion isomers, discussed
above. However, the latter coexist at the same temperature, whereas different
conformers are observed at different temperatures, and the larger the temperature
difference, the larger the structural differences of the conformers. Also important
is the fact that the structural changes with temperature in conformers take place
gradually, in contrast to structural phase transitions, which take place abruptly,
at a certain temperature (see below).

TABLE 9.14. Bond Lengths R(X) = R(M—X) (in Å) and Distortion Coordinate
Values Qav in the MN4O2 Polyhedra of [M(bpy)2(ONO)]NO3 with M = Cu at
Different Temperatures T (K), and for M = Zn

M = Cu M = Zn

20 K 100 K 165 K 296 K 295 K

R(N1) 2.142(2) 2.110(2) 2.098(2) 2.085(2) 2.085(2)
R(N2) 2.028(2) 2.060(2) 2.071(2) 2.074(4) 2.082(3)
R(O1) 2.536(2) 2.414(2) 2.351(3) 2.320(5) 2.204(3)
R(O2) 2.051(2) 2.155(2) 2.204(3) 2.230(5) 2.223(3)
Qav 0.299 0.155 0.087 0.050 0.008
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Cooperative Effects: Order–Disorder and “Displacive” Phase Transitions
and Helicoidal Structures

Cooperative effects are very important in crystal stereochemistry of transition
metal compounds. In this section we consider first briefly a general picture of
ordering of local distortions in crystals (cooperative vibronic effects), followed by
a discussion of the relative role of long-range (lattice) and short-range (chemical)
forces in local stereochemistry and lattice formation, using the problem of origin
of ferroelectricity as an example.

If the crystal is formed from ready-made entities (molecules) that interact by
stericlike forces, the energy of their interaction in the lattice U depends on the
mutual orientation of these entities. In such cases the minimum of free energy
F = U − T S (where S is the entropy) requires at T = 0 an ordering of the inter-
acting molecules in which their mutual orientations make U minimal. At higher
temperatures the entropy term T S becomes large, and at a certain temperature
T = Tc (Curie point) a phase transition to the disordered state takes place for
which the entropy is a maximum (order–disorder transitions).

In inorganic and coordination compounds, in addition to such order–disorder
transitions, displacive phase transitions may take place. In them, as distinct from
the order–disorder transitions, the atomic arrangement in the coordination center
itself changes. Displacive transitions are directly related to the electronic struc-
ture, demonstrating the fact that in crystal stereochemistry of transition metal
coordination compounds the electronic structure of the coordination center plays
a key role and cannot be ignored or taken into account by means of empirical
parameters.

Local distortions in crystals and distortion-related structural phase transitions
can be considered by means of the vibronic coupling theory (Chapter 7). Let us
begin with a simple case when the JT centers in the crystal possess a twofold
orbital degenerate E term vibronically coupled to B1 vibrations, which results in
the E ⊗ b1 problem mentioned in Section 9.2 (Fig. 9.16). Such a situation may
occur, for example, when the crystal E term centers in question possess local
D4h symmetry. For simplicity, assume that the JT centers are square-planar. The
adiabatic potential curve with two equivalent minima and the rhombic distor-
tions (B1g displacements) of the square at each of the minima are illustrated in
Fig. 9.16. In the absence of interaction between the centers, the two configura-
tions [which we denote here by (+) and (−)] are equally probable and the JTE
has the dynamic nature discussed above: the averaged distortion equals zero and
the initial symmetry is preserved. Note that in the case in question the averaging
becomes possible as a result of other perturbations involved; without them the
transition (+) → (−) is forbidden (see the remark at the end of Section 9.2).

The picture changes when the interactions between the centers are taken into
account. Let us consider two interacting centers. In each of them the E ⊗ b1 prob-
lem is realized. Under the assumption of parallel orientations of their squares,
there may be four configurations in which the two one-center distortions are cor-
related: (++), (−−), (+−), and (−+) (Fig. 9.23). It is clear that if the interaction
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FIGURE 9.23. Four types of possible packing of two interacting Jahn–Teller centers.
For each of them the E ⊗ b1 problem of a square-planar system with B1g distortions
(Fig. 9.16) is assumed.

lowers the energy for parallel orientations of the distortions (ferrodistortive inter-
actions), the energy of the configurations (++) and (−−) is lower than that of
(+−) and (−+). On the other hand, if the antiparallel distortions are preferable
(antiferrodistortive interactions), the configurations (+−) and (−+) are lower in
energy. In both cases the two configurations “+” and “−” of each center are no
longer equivalent. This conclusion can be generalized to many interaction centers
and in the limit, to the entire crystal.

It is evident that at suitably low temperature, the minimum free-energy con-
figuration is realized in which the crystal has statically distorted and distortion-
correlated centers. For ferrodistortive interactions such an ordering of the local
distortions (ferrodistortive ordering) leads to a macrodeformation of the crystal
as a whole. New properties of the crystal arising from the correlation (ordering)
of the JT (PJT) local distortions, including the formation of new crystal struc-
tures and structural phase transitions, are called, respectively, the cooperative
Jahn–Teller effect (CJTE ) or the cooperative pseudo-Jahn-Teller effect (CPJTE ).

In the example above, the two correlated configurations (++) and (−−) are
equivalent and, in principle, the pair of correlated centers may resonate between
the (++) and (−−) states, dynamically preserving the initial symmetry. However,
in the macroscopic crystal with a large number of centers, the barriers between
the equivalently distorted configurations of the entire crystal (+ + + · · ·) and
(− − − · · ·) become so high that the transitions between them are practically
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impossible, and the crystal remains in one of them for an infinitely long period.
The situation here is quite similar to that found in ferromagnetics, in which there
are also different equivalent directions of magnetization, but no spontaneous
inversion of the magnetic moment.

In these cases, as distinct from the one-center problem, the symmetry of the
ground-state configuration of the crystal is lower than that of the Hamiltonian;
this is sometimes called the effect of “broken symmetry.” Strictly speaking, such
a crystal state is not stationary, but, owing to the very large height of the barriers,
it may remain there for infinitely long time.

It is clear that the lattice vibrations and temperature fluctuations tend to
destroy the correlation between the JT distortions. With the increase of tem-
perature T the second term in the abovementioned free energy F = U − T S

becomes significant, while the entropy S increases with disorder. Therefore, in
principle, for any given energy of interactions of the ordered distortions there
is a certain temperature Tc at which the free energies of the two phases coin-
cide, U1 − TcS1 = U2 − TcS2; above Tc the ordering is destroyed and the lattice
acquires a more symmetric structure with independent (uncorrelated) dynamic
distortions at each center (provided that the crystal does not melt at lower tem-
perature). This temperature dependent breakdown (disordering) of the correlations
of the distortions is merely a structural phase transition . The larger the distortion
at each center and the energy of interactions of the distorted units, the higher the
temperature of the phase transition to the disordered state. The structural phase
transition to the crystal state with disordered JT or PJT local distortions is one of
the most important features of the cooperative vibronic effects [9.20, 9.77, 9.78].

At present, structural phase transitions in many classes of crystals have been
attributed to cooperative vibronic effects. In particular, in a series of tetrag-
onal rare-earth zircons of general formula RXO4, where R is rare earth and
X = V,As,P, a direct correspondence between electronic structure parameters
of the JT rare-earth ion R3+ (R = Tm,Dy,Tb) and the temperatures of struc-
tural phase transitions in the cooperative JT approach was established. Other
crystals, such as spinel (e.g., NiCr2 O4, FeCr2 O4, CuCr2 O4, FeV2 O4, FeCr2

S4, Mn3O4, CuFe2O4, FeTiO4), perovskites (KCuF3, KMnF3, PbFeF3), other
structures [CsCuCl3, K2 CuF4, (NH4)2CoCl2, Copy2Cl2, UO2, A2BCu(NO2)6,
Cu(ONC5H6)6X2], were also treated by the vibronic approach (see Refs. 9.20,
9.77, 9.78, and references cited therein).

Consider now the displacive mechanism of lattice formation (displacive
phase transitions) taking ferroelectricity and ferroelectric phase transitions
in perovskite-type crystals as an example. In ferroelectric crystals, at certain
temperatures, structural phase transitions to a spontaneous polarized (ferroelec-
tric) state take place [9.79]. If there are molecular groups with proper dipole
moments in the initial crystal structure, the transition to the ferroelectric phase
may be regarded as an ordering of rigid dipoles (order–disorder transitions).
However, in perovskite ferroelectrics (e.g., barium titanate, BaTiO3) there are
no such dipoles: the lattice is assumed to have cubic symmetry in the paraphase
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(the Ti site local symmetry is Oh), while the dipole moment is supposed to
emerge as a result of the displacive phase transition.

It is evident that if there are no rigid dipole groups in the elementary cells of
the crystal, but such groups might occur as a result of the JT or PJT distortions,
ferroelectric phase transition may take place as a result of the ordering of JT
and/or PJT dipolar distorted centers . As noted in Section 7.4, the JTE cannot
result in dipolar distortions in systems that have an inversion center, but these
distortions can occur as a result of the PJTE. Again, most ferroelectrics are
dielectrics that have no degenerate ground states, and hence they are not subject
to the JTE.

The PJT mechanism of spontaneous polarization and ferroelectric phase tran-
sitions was suggested more than four decades ago [9.80]; it led to the vibronic
theory of ferroelectricity [9.20, 9.77, 9.80, 9.81] (see review article [9.81]). Rig-
orous versions of the problem were solved by modern methods of theoretical
physics. The qualitative aspect of the problem, mainly the electronic features that
lead to a physically visual picture of the microscopic origin of ferroelectricity,
can be revealed by investigation of the APES obtained from the PJTE.

For the the BaTiO3 crystal, the PJTE in the octahedral cluster TiO 8−
6 is con-

sidered in Section 7.4, where it is shown that the vibronic mixing of the ground
A1g term with the nearest excited term T1u by odd displacements of T1u type
(dipolar displacements) under certain conditions results in an APES with eight
equivalent minima along the trigonal axes of the octahedron, 12 saddle points
along the twofold axes, and six higher-energy saddle points along the tetragonal
axes. At the minima and saddle points the cluster has nonzero dipole moments.
Allowing for strong correlation between these clusters in BaTiO3 through com-
mon ligands, the cooperative PJTE results in a structural phase transition to the
spontaneously polarized ferroelectric state of the lattice in which all the local
dipole moments have the same orientation. Depending on the sign of the inter-
acting distortions, an antiferroelectric ordering with alternating directions of the
dipoles is also possible.

With this APES, a semiclassical approach qualitatively reproduces all the
observed ferroelectric phases in barium titanate, including the consequence
of their occurrence with temperature, the symmetry of the crystal, and the
direction and relative value of polarization in each phase. Moreover, it follows
from this theory that only one of the three ferroelectric phases in BaTiO3 —the
low-temperature rhombohedral phase—is completely ordered. The other two,
orthorhombic and tetragonal, are partly disordered, the former along one
direction and the latter along two directions, while the paraphase is completely
disordered in all directions. This conclusion is fundamentally novel and does
not follow from any other theories of ferroelectricity. It has been confirmed
by quite a number of experiments on diffuse scattering of X rays [9.82],
light scattering [9.83], refined ESR measurements with probe ions [9.84],
XAFS experiments [9.85, 9.86], and so on. Table 9.15 lists some of such
publications. Similar order–disorder effects are observed in K2 PbCu(NO2)6

[9.92].
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TABLE 9.15. Experimental Evidence of Local Origin of Distortions and
Order–Disorder Nature of Phase Transitions in “Displacive” Ferroelectrics

Author(s), Year Method, System Main Result

Comes et al., 1968 [9.82] X-ray, diffuse scattering,
BaTiO3

Qualitative confirmation of
main predictions of the
vibronic theory for BaTiO3

Quitet et al., 1973 [9.83] Raman spectra,BaTiO3

KNbO3

Polar distortions in the cubic
paraphase

Burns and Dacol, 1981
[9.87]

Optical refractive index,
BaTiO3

Nonvanishing component (P 2)
in the cubic phase

Gervais, 1984 [9.88] Infrared reflectivity,
BaTiO3

Nonvanishing component 〈P 2〉
in the cubic phase

Ehses et al., 1981 [9.89] X-ray, BaTiO3 Strong order–disorder
component in cubic phase

Itoh et al., 1985 [9.90] X-ray, BaTiO3 [111] displacement of Ti in
paraphase up to 180 K
above Tc

Muller, 1986 [9.84] ESR with probing ion
BaTiO3, KNbO3

[111] displacements in
rhombohedral phase;
reorientations in
orthorhombic phase,
10−10 < τ < 10−9 (s)

Hanske-Petitpierre et al.,
1992 [9.85]

XAFS, KNbxTa1−x O3 [111] displacements in all three
phases for any x > 0.08;
mean-square displacements
much smaller due to
dynamics

Dougherty et al., 1992
[9.91]

Femtosecond resolution
of light scattering,
BaTiO3, KNbO3

No relaxational modes that
might exclude the distortion
model

Sicron et al., 1994 [9.86] XAFS, PbTiO3 Ti and Pb ions are displaced in
the paraphase up to 200 K
above Tc

It was also shown [9.81] that the long-range forces themselves cannot result
in instability of the high-symmetry configuration of the lattice. Together with the
very convincing experimental confirmation (Table 9.15), this result casts doubts
on the very existence of displacive phase transitions meaning phase transitions
induced by long-range forces only. In case of weak PJTE on the centers the local
distortions are of dynamic nature, so they became observable only after their
ordering in the crystal. In such cases the phase transitions look displacive, but it
is still triggered by the local PJTE. Many other details in ferroelectric properties
are revealed and explained in the vibronic theory [9.81].

If the local distortions in crystals do not create dipole moments, the picture
of cooperative vibronic interactions and structural phase transitions is the same
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FIGURE 9.24. The crystal structure of CsCuCl3.

as considered above, with the distinction that nonpolar distortions produce not
ferroelectric, but ferroelastic, phase transition . Since any local distortion from the
high-symmetry configuration is of vibronic nature (Section 7.4), all the structural
phase transitions in crystals can be explained in this way.

One interesting feature of structural phase transitions is the formation of heli-
coidal structures . Consider the crystal CsCuCl3 [9.93]. Its parallel chains in the
lattice contain CuCl6 octahedral polyhedra that are interlinked by triple bridges
produced by three chlorine atoms, the latter thus forming a common triangular
face for two nearest-neighbor polyhedra (Fig. 9.24). Each Cu(II) center, due to
the JTE, requires a tetragonally distorted octahedron of six chlorine atoms, and
there are three equivalent directions of distortions corresponding to three fourfold
axes. However, because of the common ligands, the distortions of the nearest-
neighbor octahedra are correlated. In particular, if the direction of distortion for
a given polyhedron is, say, along the z axis, its neighbor should distort along
either the x or the y axis. From the perspective of the trigonal axis along which
the Cu atoms are located in the chain, the directions of the distortions of the
two neighboring octahedrons are rotated by an angle φ = 60◦ (from one apex
of the interfacing triangle to the next). This is shown schematically in Fig. 9.25.
As one can see, the period of the lattice in the distorted helicoidal screwlike
configuration is 6 times larger than in the undistorted one.
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FIGURE 9.25. Schematic illustration to the helicoidal structure of the CsCuCl3 crystal.
The CuCl3 chain is shown conventionally; the Cu atoms are on the trigonal axis of the
local octahedral polyhedron (Fig 9.24), and are shown in a circle with an arrow indicating
the direction of the Jahn–Teller tetragonal local distortion. Because of the common shared
Cl ligands, the latter are shifted in phase by φ = 60◦ for any two nearest-neighbor Cu
atoms in the chain, and the lattice period along the chain is 6 times larger than in the
undistorted crystal.

Another example of helicoidal structure is mentioned in Section 9.2, the InCl
crystal [9.94]. It has a rock-salt structure in the high-symmetry configuration, but
the vibronic interaction of the lone pair (5s)2 with the excited states produces a
combined PJT off-center distortion associated with the excited state JT eg or t2g

distortion [9.44], discussed in Section 9.2 in more detail. This distortion, owing
to the common ligands of the nearest-neighbor polyhedra, for reasons similar to
those considered above, produces the helicoidal structure [9.94].

In the example of CsCuCl3 above, as is seen from Fig. 9.25, the new period
of the helicoidal distorted lattice is exactly 6 times that of the undistorted lattice.
However, in certain cases the ratio of the lattice period in the new phase to
that of the higher-symmetry phase is not an integer. In these cases the new
structure is described as being incommensurate with the previous one, and the
phase transition takes place to an incommensurate phase. An interesting example
of incommensurate phases is provided by K2PbCu(NO2)6 [9.20, 9.92]. A related
phenomenon, important for transition metal compounds, is structural magnetic
transitions [9.20, 9.92].

SUMMARY NOTES

1. Stereochemistry deals with molecular shapes. Molecular shape can be
defined as the nuclear configuration that corresponds to a sufficiently deep
minimum of the APES.

2. Nuclear configurations are controlled by electronic structure. APES for spe-
cific TMS can be obtained by quantum-chemical calculations. The theory of
stereochemistry should be based on more general models that incorporate
such specific calculations.

3. Earlier approaches explaining the origin of stereochemistry are mostly
semiclassical. They include directed valencies, valence shell electron pair
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repulsion, complementary electron density distribution, and other related
models. Semiclassical models assume that there are localized charge dis-
tributions that interact electrostatically to produce a certain configuration
of the nuclear framework. With regard to TMS, semiclassical models are
unable to take into account the inherent d- and f -electron delocalization
and vibronic coupling effects.

4. The vibronic coupling produces new, unexpected (from the classical per-
spective) configurations, including JT, PJT, and RT distorted (from high-
symmetry) polyhedrons, off-center displaced CA, peculiar geometry of
ligand coordination, origin of inactivity of some lone pairs, and specific
pseudorotations in TMS.

5. Vibronic mixing of at least two electronic states under nuclear dis-
placements is crucial in initiating any nuclear configuration changes,
including configuration distortions, conformation transitions, chemical
transformations, phase transitions, structural symmetry breaking, and so
on. This novel paradigm —the two electronic states in transformations
(TEST) paradigm—provides for a higher level of theory and a better
understanding of chemical and physical phenomena.

6. Mutual influence of ligands , in particular, cis- and trans influences , explain
some special features of TMS stereochemistry, especially in crystalline state
(cis- and trans effects in chemical reactivity are considered in Section 11.3).
It can be presented as the influence of electronic changes accompanying a
given ligand substitution on trans (cis) ligand position (and reactivity) via
the vibronic coupling mechanism.

7. Vibronic coupling is also important in formation of the crystal lattices and
their transformations (phase transitions). Several illustrative examples con-
firm this statement, including the plasticity effect, distortion isomers, and
temperature-dependent conformers; no classical or semiclassical approach
can explain these unusual crystal chemistry phenomena.

8. Ferroelectricity in perovskite-type crystals is due to the PJTE that dis-
places the transition metal from the center forming local dipole moments,
their partial and full ordering explain the origin of different phases. In this
explanation three phases out of four (including the cubic paraphrase) are
disordered, and this is fully confirmed experimentally.

9. The vibronic theory also explains the origin of other unusual crystal for-
mations , such as helicoidal structures.

EXERCISES AND PROBLEMS

P9.1. How can we define rigorously molecular shapes? Give examples of when
the experimentally observed molecular geometry differs when obtained
with different methods of measurement.
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P9.2. Why is the method of directed valences not good enough in determining
the stereochemistry of TMS?

P9.3. The VSEPR model assumes that a pair of electrons occupying a non-
bonding atomic orbital (a lone pair) is a source of electrostatic repulsion
that destroys the otherwise symmetric arrangement of the ligands around
the CA. Many TMSs with lone pairs are distorted, but certain systems are
not distorted despite the presence of a lone pair. Can the VSEPR model
explain this controversy? (See Problem P9.6.)

P9.4. Following the “gas rule,” complexes with 2, 8, 18, 32, and more electrons
should be most stable. For atoms these “magic numbers” of stability
follow directly from quantum theory of system with spherical symmetry,
they correspond to closed-shell configurations. TMSs have no spherical
symmetry, so how does the gas rule happen to be approximately valid in
many systems?

P9.5. Example 9.3 shows how the electronic configuration (the several high-
est occupied and lowest unoccupied MOs and their symmetries) may
serve as a basis for qualitative stereochemical predictions. What numer-
ical parameters do you need for more rigorous predictions of molecular
shapes?

P9.6. The vibronic approach solves, in principle, the problem of origin of active
and inert lone pairs. What electronic structure parameters do we need to
predict the lone-pair activity, and how can we get them from experimental
data and/or calculations?

P9.7. What is the difference between Berry-type and JT-type pseudorotations?
How can we observe this difference experimentally? Give examples.

P9.8. According to the three-dimensional delocalization of d electrons in
TMSs (Section 6.1), we could expect the changes in a given ligand
to affect all the other ligands that take part in the delocalization of
the affected orbitals. Why, then, do such changes influence mostly
trans-ligands (trans influence)? What main parameters characterize the
trans-influence power? (Hint : Involve the discussion in Section 11.3
and Fig. 11.11 in your answer.)

P9.9. The plasticity effect is employed in understanding the origin of a vari-
ety of crystal lattices of TMS and explanation of their properties. What
transition metals are most appropriate for producing the plasticity effect
in TMS, and why? Explain your answer and give examples from the
literature. (Hint : Literature data can be obtained from the Science Cita-
tion Index by revealing papers that cite the original publications on the
plasticity effect.)

P9.10. Phase transitions in solid TMS are most important also because of their
applications. What is the driving force of nuclear displacements in such
transitions? What are the necessary conditions of dipolar displacements
that lead to local dipole moment formation and their cooperative
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interaction to produce ferroelectricity? (Hint : Utilize the discussion in
Section 7.4 and/or Section 8.3 of Ref. 9.20.)

P9.11. Show how the TEST paradigm (Section 7.4) works in explanation of
off-center positions of CA and geometry of ligand coordination. Give
examples.
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10
ELECTRON TRANSFER,
REDOX PROPERTIES, AND
ELECTRON-CONFORMATIONAL
EFFECTS

Chemical interaction begins with electronic charge redistribution, which initiates
nuclear displacements resulting in chemical transformations .

In chemical processes with transition metal participation charge transfer
by coordination, intra- and intermolecular electron transfer, and electron-
conformational effects (conformation changes due to charge transfer) are of
primary importance. Charge transfer by coordination is a unique property of
TMS controlled by d- and f -electron heterogeneity (Chapter 6). Electron
transfer in mixed-valence multicenter TMS determines their main features.
Conformational transitions triggered by charge transfer are most important in
both chemistry and biology. Examples of these phenomena as controlled by the
electronic structure are briefly discussed in this chapter.

10.1. ELECTRON TRANSFER AND CHARGE TRANSFER
BY COORDINATION

Intramolecular Charge Transfer and Intermolecular Electron Transfer

As stated in Section 1.2, chemical bonding is an electronic phenomenon based
mostly on collectivization of the electrons of interacting atomic groups. Any
chemical interaction of atoms is thus associated with electronic charge redistri-
bution, which generates further transformations. Charge transfers are especially

Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory,
Second Edition By Isaac B. Bersuker
Copyright © 2010 John Wiley & Sons, Inc.

579
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important in coordination compounds because of the heterogeneity introduced
by d and f states, distinguished from the almost (electronically) homogeneous
organic and main-group systems (in the sense that they contain only nsnp-electron
atoms).

Section 5.2 discusses methods of quantum-chemical calculation of charge
redistribution and integral and orbital charge transfer, and Sections 6.3, 6.4, and
11.2 provide many examples of such calculations. Here we try to give a more
general understanding of the origin of electron transfer and charge transfer by
coordination, and to correlate these quantities with the electronic structure of the
coordinating subunits.

The problem is to find a measure of ability of the molecular system to donate
or accept electronic charge, based on its electronic structure. Many attempts
have been made to solve this problem, beginning with those based on Pauling’s
electronegativity [10.1]. Its explicit formulation states that the ability to trans-
mit electronic charge is directly related to the ionization energy EI , while the
acceptance of electrons can be linked to the electron affinity EA. The possibility
of charge transfer by coordination is characterized by some combinations of EI

and EA of the interacting atomic groups. A more flexible treatment of this phe-
nomenon is based on the empirical conception of hard and soft acids and bases
[10.2]; some more accurate quantitative estimates and formulas are given below.

The charge transfer between two molecular fragments within the stable coor-
dination system is an intramolecular charge transfer . Also, there is much inter-
est in intermolecular electron transfer . The latter takes place when there are
two weakly interacting (almost independent) systems between which an elec-
tron instantly transfers from one system to another by collision. Such electron
transitions are most important for electron transfer reactions and for various
electron-conformational effects (Section 10.3). The possibility of intermolecular
electron transfer and its rate are directly related to the electronic structure of the
interacting molecules.

Consider two weakly interacting systems that can be conventionally called the
donor (D) and the acceptor (A). Fig. 10.1 shows a simplified scheme of the
highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO,
Section 6.2) of D and A. If there is no significant bonding between D and A,
the electron transfer D → A (the reaction D + A → D+ + A−) is energetically
convenient in case I (Fig. 10.1a) when the ionization energy EI of D is smaller
than the electron affinity EA of A, EI < EA. In case II the electron transfer
is formally not convenient (Fig. 10.1b) since EI >EA, but the electron transfer
can still take place when promoted by some excitation process, as shown in
Fig. 10.1c.

This picture of electron transfer between a noninteracting DA pair is rather
oversimplified in many aspects. First, the absolute value of the ionization energy
is taken to be equal to the HOMO energy; this is in accordance with the Koop-
mans theorem, which has limited applicability and is unacceptable in a number
of cases (Sections 6.2, 6.4, and 8.3). The accurate value EI can be calculated as
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the difference between the total ground-state energies of D and D+ and, accord-
ingly, EA is the difference between the total energies of A− and A. Hence the
scheme of Fig. 10.1 remains valid if one substitutes ε(HOMO) and ε(LUMO)
of the donor and acceptor by total energies E(D), E(D∗), E(A), and E(A−),
respectively (D∗ denotes the corresponding excited state).

The HOMO–LUMO energies or, more precisely, the total energies of D,
D∗, A, and A−, are directly related to the standard electron potentials E0

ox and
E0

red and/or to the (approximately the same) half-width potentials Eox
1/2 and Ered

1/2
in polarography (for details, see the text by Chanon et al. [10.3]). Thus the
above mentioned electronic structure parameters (sometimes roughly the HOMO
and LUMO energies) characterize the redox properties of the systems under
consideration.

Electron transfer in DA pairs in which D and A are coordination systems
have been studied in many cases but mostly by experimental methods. In
coordination DA pairs D is generally an anion and A is a cation. An example
of a well-studied series of ion pairs is M(CN) 4−

6 anions (M = Fe,Ru,Os) with
Ru(NH3)5L3+ cations (L = pyridine or substituted pyridine) [10.4]. The rate of
electron transfer depends on the energy barrier between the DA pair, which,
in turn, is determined by the orbitals involved in the D–A orbital overlap
during the instant interaction that realizes the electron tunneling. Newton
[10.5] provides an example of ab initio calculations of such electron transfer
process,

Co(NH3)
2+

6 + Co(NH3)
3+

6 → Co(NH3)
3+

6 + Co(NH3)
2+

6 (10.1)

which can be presented as the transition between corresponding electronic con-
figuration (Section 6.2):

[t5
2ge

2
g(

4T1g)] + [t6
2g(

1A1g)] → [t6
2g(

1A1g)] + [t5
2ge

2
g(

4T1g)] (10.2)

It is seen that in this electron transfer each of the two complexes under-
goes electron configuration and spin transition (4T1g → 1A1g and 1A1g → 4T1g ,
respectively). As in the spin crossover phenomenon described in Section 8.4,
these transitions produce changes in the ligand geometry via vibronic coupling.

The electron transfer reaction (10.1) is symmetric (D+ ≡ A, A− ≡ D); the
direct and inverse reactions have the same probability. Electron transfer also takes
place between asymmetric pairs of coordination systems, including those men-
tioned above. For them the products of electronic transfer, D+ and/or A−, may
be unstable initiating secondary reactions. For example, consider the following
two cases (where sep = sepulchrate):

CoIII(NH3)
3+

6 + RuII(CN) 4−
6 → CoII(NH3)

2+
6 + RuIII(CN) 3−

6 (I)

CoIII(sep) 3+ + RuII(CN) 4−
6 → CoII(sep) 2+ + RuIII(CN) 3−

6 (II)
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Only case I produces a secondary reaction of dissociation into Co, NH3, and
RuIII(CN) 3−

6 ; as distinct from CoII(NH3) 2+
6 , CoII(sep)2+ with cage-type ligands

is rather stable; it does not decompose easily and the decomposition rate cannot
compete with the backward electron transfer process.

If the bonding between coordinated groups that participate in the electron
transfer is sufficiently strong, so that they can be considered as one molecule,
the electron transfer is of the aforementioned intramolecular nature. However, in
large systems there may be electron transfers between molecular sites that are not
bonded directly. Figure 10.2 illustrates the absorption spectrum of electron trans-
fer in the complex cis-(NH3)5RuIINCRuII(bpy)2CNRuIII(NH3) 7+

5 [10.6], which
is, in fact, a mixed-valence compound (Section 10.2). Owing to the large distances
(and hence weak coupling) between different sites of this system, the spectrum
appears to have resulted from electron transfer reactions. The authors [10.6]
succeeded in decomposing the integral absorption curve into components, each
corresponding to a certain site-to-site electron transfer (similar to intervalence
transfer in Section 10.2), shown in Fig. 10.2 by arrows.

A large subject of outer-sphere electron transfer between metal complexes
in solution is not considered here in detail. In these cases the rate of electron
transfer is determined by the nonadiabatic process in which the sluggish motion of
solvent structure and/or counterions is important [10.7]. Quite relevant to electron

FIGURE 10.2. Absorption spectrum of the shown tricenter mixed-valence complex
(Section 10.2) approximately resolved into component bands corresponding to the various
site-to-site electron transfer transitions. (From Balzani and Scandola [10.6].)
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transfer is also the more general topic of tunneling phenomena in chemistry ,
which include, in addition to electron tunneling of different origins, the tunneling
of heavy particles , atoms, and atomic groups [10.8].

Redox Capacitance

We begin the discussion of intramolecular charge transfer with a simple picture of
charge transfer by coordination. Consider two coordinating systems, 1 and 2, and
denote their HOMO and LUMO energy levels by ε0

1, ε
0
2, ε

u
1 , and εu

2 , respectively.
As mentioned above, in the Koopmans approximation (Sections 2.2, 6.2, and 6.4)
the energies of the HOMO are equal to the corresponding ionization potentials
taken with the opposite sign. The LUMO energies εu

1 and εu
2 under the same

assumptions could be attributed to the electron affinities EAi , but this is a rough
approximation: the addition of an electron to or removal from the system changes
significantly the εu and ε0 levels and may change even the sign of εu (since the
latter is nearer to zero than ε0).

As discussed above, if ε0
1 >εu

2 , the electronic charge from the HOMO of 1
transfers to the LUMO of 2, following the principle of minimum energy, and if
ε0

2 >εu
1 , a charge transfer in the opposite direction takes place. How large will the

charge transfer �q be in these cases? To answer this question, a characteristic of
the system that gives the measure of its charge storage capacity is needed [10.9,
10.10]. It is well known that MO energy levels are dependent on the total charge
in the system, ε = ε(q), and these functions are used in many semiempirical
versions of self-consistent calculations of electronic structure of coordination
compounds (Section 5.5). In particular, following the IEH method, the function
ε(q) can be approximated by a three-term polynomial [cf. Eq. (5.107)]:

ε(q) = aq2 + bq + c (10.3)

Thus, when the charge of the system changes from the initial value of q = q0 to
q = q0 + �q, the MO energy level changes by �ε = (dε/dq)0 �q = 2aq0 �q +
b �q. The derivative

C =
(

dq

dε

)

0
(10.4)

which is equal to the amount of charge that increases the HOMO energy level of
the system by a unity, can be called redox capacitance [10.9]. As seen from Eq.
(10.3), at q0 = 0, C = (dq/dε)0 = 1/b. It characterizes the ability of the system
to donate or accept charge with less change of its HOMO energy (or chemical
potential μ; see below).

Provided that the redox capacitances of the two coordinating systems are
known, the charge transfer can be calculated directly. Indeed, by coordination,
the MOs of the two systems are collectivized and the coordinated system acquires
a common HOMO energy level ε0 (another, similar, requirement is that the
chemical potentials of the two coordinated system equalize; see below). The
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charge transfers for the two subsystems are equal in absolute value and opposite
in sign (we assume that ε0

1 >εu
2 ):

−�q1 = �q2 = �q (10.5)

Hence

ε0
1(−�q) = εu

2 (�q) = ε0 (10.6)

Then, in the linear approximation with respect to �q, which is valid when
either �q is sufficiently small or C is constant (or both), we have (Fig. 10.3):

�q = C1(ε
0
1 − ε0),

−�q = C2(ε
u
2 − ε0)

�q = ε0
1 − εu

2

C−1
1 + C−1

2

(10.7)

ε0
1 − ε0 = ε0

1 − εu
2

1 + C1/C2
(10.8)

εu
2 − ε0 = (ε0

1 − εu
2 )

1 + C2/C1
(10.9)

ε0
1 − ε0

εu
2 − ε0

= −C2

C1
(10.10)

FIGURE 10.3. Grafic solution of the equation of charge transfer in the linear approxi-
mation. In the coordinated system ε0

1(−�q) = εu
2 (�q) = ε0. The curves ε0

1(q) and εu
2 (q)

after (10.3) are taken to be arbitrary.
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If εu
2 >ε0

1, the sign of �q changes to the opposite. There may be also other
combinations of energy spectra leading to similar formulas [10.10]; a formula
for charge transfer, somewhat similar to (10.7), was derived by Huheey [10.11].

Equations (10.7)–(10.10) show that the energy-level difference and redox
capacitance determine the main important features of the charge transfer by coor-
dination. In particular, if the capacitance of one of the systems is much larger
than the other one, C2 � C1, then

�q ≈ C1(ε
0
1 − εu

2 ) (10.11)

εu
2 ≈ ε0 (10.12)

and the charge transfer is determined by the relative value of the energy level
and capacitance of system 1. This is often the case with catalysts (see below).

Consider in more detail the physical meaning of redox capacitance. By defi-
nition, Eq. (10.4) C is a measure of the ability to accept or transmit charge with
smaller changes in energy levels. It is clear that this property depends on elec-
tronic structure, particularly on the possibility of the excess charge to delocalize
over larger regions of space, thus reducing the additional interelectron repulsion.
The larger the delocalization, the higher the capacitance C. The latter becomes
especially large for conjugated systems for which the addition of an electron
results in the population of the next energy level in the valence band that is close
in energy. In this case the redox capacitance can be estimated using approxi-
mate expressions for the energy levels calculated in the model of a potential box
[10.12]:

εn ≈ n2π2

2mN2l2
(10.13)

where N is the number of chain members, l is their linear dimension, and m is the
mass of the electron. Population of the first N /2 levels (for simplicity, N is even)
by N electrons (by one electron from each chain member) yields the ground state
with n = N/2 and an energy gap ε(N/2)+1 − εN/2 = �ε to the first excited state
with n = (N/2)+1. To occupy the latter, on should add a two-electron charge,
�q = 2e. Consequently, we obtain

C ≈ �q

�ε
∼ 4mel2

π2�2

N2

N+1
(10.14)

Or approximately, for N � 1

C ∼ aN (10.15)

with a = 4mel2/π2
�

2.
It is seen that the redox capacitance is approximately proportional to the num-

ber of chain members N in the conjugated system. Note that the same energy
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gap �ε to the excited states determines the polarizability of the system, and
hence larger capacitance means larger polarizabilities. On the other hand, �ε

equals the quantum of the first longwave optical transition with the wavelength
λm,�ε = �c/λm (where c is the speed of light), and hence C = 2eλm/�c. Thus
the redox capacitance for conjugated molecules can also be estimated using
empirical data on light absorption. In Example 10.1 the charge transfer by coor-
dination of peroxide to iron porphyrin is estimated in this model.

EXAMPLE 10.1

Charge Transfer by Coordination of Peroxide to Iron Porphyrin

By way of illustration, consider the charge transfer by coordination
of hydrogen peroxide (system 1) to iron porphyrin (system 2) [10.9].
Semiempirical calculations of H2O2 in different charge states allow
one to estimate the curve ε1(q) from which the approximate value
of C1 follows directly: C1 = 0.02 e/kK (1 kK = 103 cm−1), while
for iron porphyrin C2 = 0.6 e/kK. This means that C2 � C1, and
the simplified formulas (10.11) and (10.12) can be applied. For the
HOMO-LUMO energy-level difference we have ε0

2 − εu
1 = 55 kK.

Hence the charge transfer from the porphyrin to hydrogen peroxide is
�q ≈ C1(ε

0
2 − εu

1 ) ≈ 1.1e. This transfer to the antibonding orbital of
the H2O2 molecule strongly activates its O—O bond.

The notion of redox capacitance is important, first, to the problems of
redox catalysis. It also contributes significantly to the understanding of the
origin of high oxidation states (e.g., phthallocyanins can accept several
electrons simultaneously [10.13]). This property is of special interest to
ferredoxins that play an important role in a series of biological processes,
where they serve for both electron transfer and electron storage, the latter
allowing for synchrony multielectron processes. In accordance with the
results discussed above, the ferredoxins realize these functions owing to their
high redox capacitance. This is confirmed experimentally. For instance, for
the cluster Fe4(η

5 − C5H5)4(μ3 − S) n
4 , four inverse stages of one-electron

charge transfers corresponding to the cluster states with n = −1, 0, 1, 2,
3 have been revealed by means of the cyclic voltamperimetric method
[10.14]. For calculation of redox capacitance for such systems, see Ref.
10.15.

Hard and Soft Acids and Bases

The necessity to introduce a property of molecular systems that characterizes
their ability to act as an acid or base (i.e., as above, the ability to donate or
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accept electronic charge) was recognized by chemists long ago on the basis of
chemical intuition. Pearson [10.2] introduced the term hard and soft acids and
bases (HSAB) for this reason.

According to the definition of HSAB, molecular systems are divided into four
groups [10.2]:

(1) soft acid—the acceptor atom is of low positive charge, large size and has polar-
izable outer electrons; (2) hard acid—the acceptor atom is of high positive charge,
small size and has not easily polarized outer electrons; (3) soft base—the donor
atom is of low electronegativity, easily oxidized, highly polarizable and with low-
lying empty orbitals; (4) hard base—the donor atom is of high electronegativity,
hard to oxidize, of low polarizability and with only high energy empty orbitals.

On the basis of this definition, an empirical rule was formulated: Hard acids
prefer to coordinate with hard bases and soft acids prefer to coordinate with
soft bases. Hard–hard coordination represents a more ionic bonding, while the
soft–soft one is more covalent.

This rather qualitative formulation contains many uncertainties that have been
subjected to criticism. More quantitative formulations based on the electronic
structure were reached later [10.16]. On the basis of the density functional theory
(Section 5.2), the authors [10.16] defined the chemical potential μ as a derivative
of the total energy of the system E with respect to the electronic charge produced
by N electrons, while the nuclear charge Z is fixed:

μ =
(

∂E

∂N

)

Z

=
(

∂E

∂q

)

Z

(10.16)

In the finite-difference approximation the μ value can be derived from the
curve E = E(μ) and roughly expressed by known parameters as follows:

−μ ≈ I + A

2
= χμ (10.17)

where I is the ionization potential and A is the electron affinity, while χμ is the
Mulliken definition of electronegativity of the molecular system (Section 6.4).

The quantity μ is, in fact, of significant importance to different topics in
chemistry. In particular, if two molecular systems that have different chemical
potentials μ1 and μ2 coordinate, the joint system acquires a common value of

μ = μ1(−�q) = μ2(�q) (10.18)

Now, the chemical hardness of an acid or base denoted by η (the softness is
σ = 1/η) is defined as follows [10.16, 10.2]:

η = 1

2

∂μ

∂q
= 1

2

∂2E

∂q2
(10.19)
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Similar to (10.17), in the same finite-difference approximation

η = I − A

2
(10.20)

It is seen from definition (10.19) that the chemical hardness equals half the
change of the chemical potential, due to the increase of the charge on the system
by unity. In other words, chemical hardness characterizes the resistance of the
chemical potential μ to the change of electronic charge.

Consider two coordinated systems, 1 and 2, and denote their chemical poten-
tials and hardness values by μ1 and μ2, and η1 and η2, respectively. In the linear
approximation with respect to the charge transfer �q = �q1 = −�q2, we obtain

μ1 = μ0
1 + 2η1 �q

μ2 = μ0
2 − 2η2 �q

and

�q = μ0
2 − μ0

1

2(η1 + η2)

= χ0
1 − χ0

2

2(η1 + η2)
(10.21)

Surprisingly, Eq. (10.21) for molecular systems with well-spaced energy levels
coincides exactly with Eq. (10.7) (derived in Refs. 10.9 and 10.10), based on the
notion of redox capacitance (Note the 16-year interval between the publications in
1967 [10.9] (or [10.10]) and in 1983 [10.16]; the latter does not cite the former).
Indeed, for systems with discrete energy levels εn the chemical potential μ is
defined by the well-known statistical formula of the temperature dependence of
the population n(T ) of the εn level:

n(T ) =
[

1 + exp

(
εn − μ

kT

)]−1

(10.22)

At T = 0, n(0) = 1 for εn < μ, and n(0) = 0 for εn >μ. This means that
for any system at T = 0, μ coincides with the highest occupied energy level ε0,
introduced above [see (10.6)]. The equality μ = ε0 also holds for all the much
higher temperatures, for which the excited states are not significantly thermally
populated. For the electronic energy levels under consideration, this condition
is obeyed, provided that there are no degenerate or pseudodegenerate electronic
states.

With μ = ε0, Eq. (10.18) coincides with (10.6), the hardness η after definition
(10.19) coincides with the inverse of redox capacitance (10.4) (with a factor 1

2 ):
η = ( 1

2

)
C−1, and �q after (10.21) coincides exactly with �q after (10.7).
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TABLE 10.1. Electronegativities χ0 in the Low-Spin Valence State of Transition
Metals M, Their Hardness η, Charge Transfers �q by Coordination M + CO, and
Activation Enthalpies �H for Dissociation of the First CO Ligand from M(CO)6

Transition Metal χ0 (eV) η (V) �q (e) �H �= (kcal)

V 2.24 1.24 0.211 V(CO) stable
Cr 2.47 1.58 0.196 40
Mn 3.10 2.19 0.149 37
Fe 2.55 1.55 0.188 42
CO 4.12 3.04 0.091 22
Ni 3.50 2.30 0.128 22
Cu 5.84 4.61 0.110 Very unstable
Mo 3.18 1.98 0.148 40
Ru 3.54 2.34 0.125 28
Pd 4.45 3.89 0.070 Unstable
Ag 6.87 5.57 −0.029 Very unstable
Pt 5.30 2.90 0.037 Unstable
Au 6.70 4.40 −0.026 Very unstable

Source: Pearson [10.2].

The two coinciding formulas, (10.21) and (10.7), as well as all the others
based on them, are certainly rather qualitative or semiquantitative and reflect the
tendency of charge transfers by coordination, giving a general understanding of
the origin and mechanism of this process. Taken as approximate relations aimed
at qualitative understanding, it does not make very much sense to improve these
relations at the expense of their further complication. For more exact calculations
of charge transfers, approved quantum-chemical methods and computer programs
should be employed (Sections 5.3–5.6). Nevertheless, attempts to improve the
expressions for the hardness η as a function of electronic structure parameters
are continuing, and some of the results seem to be relevant [10.2, 10.17].

It is clear that soft acids and soft bases, as well as hard acids and hard bases,
are more compatible than are soft acids and hard bases or hard acids and soft
bases. This statement can be confirmed using perturbation theory for chemical
interactions (Section 11.1). In many cases the HSAB concept correlates with the
metal–ligand bonding energy �H . For illustration, the values of hardness η and
charge transfers �q in the coordination M + CO for a series of transition metals
M and their correlation with experimental �H values are shown in Table 10.1
[10.2]. The values χ0 and η are estimated for the low-spin valence states of M
(as they are expected to appear in the coordination with CO), and the �q values
are calculated by Eq. (10.22) (for CO χ0 = 6.1 eV and η = 7.9 eV [10.2]).

It is seen that the values �q in Table 10.1 follow roughly the stability of
corresponding complexes, the value �H of dissociation of the first ligand in
M(CO)6; for small and negative values of �q the complexes are unstable and
very unstable, respectively. Note that, in general, a full quantitative correlation
between the total charge transfers �q and bonding energies is not expected.
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Indeed, as stated elsewhere in this book (see, e.g., Sections 5.2, 6.3, and 11.2),
the total charge transfer �q results from orbital charge transfers �qi that may
have opposite signs, and hence �q can be small for large absolute values of �qi

that determine the bonding.

10.2. ELECTRON TRANSFER IN MIXED-VALENCE COMPOUNDS

Mixed-Valence Compounds as Electronic Systems; a Two-Level Dimer

Mixed-valence (MV) compounds represent one of the most interesting examples
of intramolecular electron transfer [10.18–10.20]. The increasing importance of
these compounds is due to their applications such as redox catalysts, models
of metalloenzymes [10.21, 10.22], local centers in superconducting ceramics
[10.23, 10.24], molecular magnets [10.25], and other molecular electronic devices
[10.26].

In a larger definition [10.27], MV compounds contain ions of the same element
in two different formal states of oxidation. These ions can be regarded as having
the same oxidation state, but with additional (excess) electrons that can either
occupy one of the ions changing its oxidation state and causing it to differ from
the others, or be delocalized over all (or a part of) the centers.

With respect to the excess electron delocalization, Robin and Day [10.27]
suggested the following classification. All the MV compounds are divided into
three classes, I, II, and III, with an additional division of class III into IIIA and
IIIB. In class I the metal ions of the MV system are in ligand fields of different
symmetry and/or strength (e.g., tetrahedral vs. octahedral). In this case no active
MOs are formed by the AOs occupied by the excess electron at different centers
because of the large difference in their energies and very small resonance integral
w [see Section 5.1 and below, Eq. (10.26)]. Hence the excess electron is firmly
trapped at one of the centers, making the latter essentially nonequivalent.

Class II contains metal ions in ligand fields of nearly identical symmetry
differing from one another by distortions of only a few tenths of an angstrom. In
these systems w �= 0, and hence there are MOs in common formed by the AOs
of the centers and occupied by the excess electron, but the valencies are still
distinguishable with slight delocalization on the MO. In class IIIA the metal ions
are grouped into polynuclear clusters within which they are equivalent; inside
the cluster w is maximal, and the excess electron can be either localized or
delocalized, depending on the bridging group. Finally, in class IIIB all the ions
in the lattice are equivalent (complete delocalization over the cation sublattice).

Following this classification, coordination MV compounds belong mainly to
class IIIA (polynuclear MV clusters) with a few exceptions, which could be
attributed to class II, for instance, when the small structural differences between
the centers are of molecular or vibronic origin. The other cases are MV solids
(mostly ionic solids); Table 10.2 illustrates some examples [10.28].

In what follows in this section, we consider only transition metal MV com-
pounds. By definition, they contain two or more equivalent coordination centers
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TABLE 10.2. Illustration (Examples) of Different Classes of MV Solids with the
Classification after Robin and Day

Example Classification Remarks

Pb3O4 I Red lead
Sb2O4 I Mineral cervantite
Fe4[Fe(CN)6]3 · 4H2O II Prussian blue
LixNi1−xO II Hopping semiconductor
La1−xSrxMnO3 II Ferromagnetism
BaBi1−xPbxO3 III Superconductivity
LiTi2O4 III Superconductivity
K2Pt(CN)4Br0.30 · 3H2O III Molecular metal; Paierls instability
NaxWO3 III Bronze luster; metallic at high x
MxMo6S8 III Superconductivity
Fe4S4 (ferredoxins) III Enzymes

Sources: Robin and Day [10.27] and Rao [10.28].

divided by some bridging atomic groups with one or more excess electrons,
the number of which is smaller than the number of centers. If the excess
electron is localized at one of the equivalent centers, the latter have different
valence (oxidation) states, and this explains the origin of the name of these
compounds.

The equivalence of the centers means that the excess electron can occupy
any of the centers with equal probability. In terms of quantum mechanics, in
the stationary state the excess electron should be uniformly distributed (delo-
calized) over all the centers. However, if the energy barrier for the electron
transfer between the centers (created by the bridging groups) is sufficiently large,
the excess electron can remain trapped at one center for a relatively long time,
with its possible delocalization controlled by the barrier height and tempera-
ture.

In these cases there is a lifetime of the electron at each center, and the observ-
able properties of the MV compound depend on the method of observation, more
precisely on the ratio of the “time of measurement” to the lifetime of electron
localization (cf. the relativity rule concerning the means of observation, Section
9.2). Hence the notions of “localized” and “delocalized” electron may be to a
certain extent conventional, in general, but quite definitive for specific systems
and conditions. The localization–delocalization alternative is the main problem
of MV compounds .

To formulate the problem quantitatively, consider a MV dimer with two equiv-
alent electronic closed-shell centers, 1 and 2, and one excess electron [10.29,
10.30]. Assume that the one-electron states at each center, ϕ1 and ϕ2, are non-
degenerate. This means that when the excess electron is localized at one of the
centers, it distorts its nearest-neighbor environment along the totally symmet-
ric coordinate. The corresponding local distortion (breathing) coordinates can be
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denoted by Q1 and Q2, respectively (they are similar to the coordinates produc-
ing the polaron effect in crystals). The coupling of the electronic state to these
distortions is described by the vibronic constant F (Section 7.2):

F = 〈ϕ1|
(

∂H

∂Q1

)

0
|ϕ1〉 = 〈ϕ2|

(
∂H

∂Q2

)

0
|ϕ2〉 (10.23)

where H is the Hamiltonian.
For the system as a whole, presentations of the wavefunctions

�± = ( 1
2

)1/2
(ϕ1 ± ϕ2) (10.24)

and coordinates

Q± = (
1
2

)1/2
(Q1 ± Q2) (10.25)

are more convenient. Q+ is a totally symmetric coordinate of the system describ-
ing the simultaneous (synchronous) breathing distortion of both centers, while Q−
gives the asymmetric, antiphase breathing distortion of the two centers produced
by the electron localization on one center.

If there is an overlap between the two states ϕ1 and ϕ2, they form bonding
�+ and antibonding �− states with an energy gap 2w, where w is the resonance
integral (Section 5.1):

w = 〈ϕ1|H |ϕ2〉 (10.26)

This parameter is most important for the MV theory characterizing the strength
of the intercenter interaction and hence the electron transfer rate.

With the notations (10.23)–(10.26), the problem of the excess electron in the
MV dimer under consideration can be formulated as a vibronic problem (Section
7.4). Indeed, the two states �± at Q1 = Q2 = 0 (Q± = 0) mix under the nuclear
displacements Q− and shift under Q+. For the problems considered in this section
the shift Q+ is not important and can be excluded by an appropriate choice of the
energy readoff (Section 7.4). Mixing of the two electronic states by the nuclear
displacements Q− taken as a perturbation results in the PJT problem (7.63) with
the solution—the APES along the Q− coordinate—given in Eq. (7.65) (K0 is
the force constant of the Q1 or Q2 distortions):

ε±(Q−) = ( 1
2

)
K0Q

2
− ± (w2 + F 2Q2

−)1/2 (10.27)

These two curves are analyzed in Section 7.4. For |w|>F 2/K0 both have a
minimum at Q− = 0. However if [cf. (7.67)]

|w| <
F 2

K0
(10.28)
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the lowest curve has a maximum at Q− = 0 and two minima at Q− = ±Q0:

Q0 =
(

F 2

K2
0

− w2

F 2

)1/2

(10.29)

The two curves ε±(Q) for this case are illustrated in Fig. 7.19 for the pseudo-
Jahn–Teller effect. It is seen that if condition (10.28) is obeyed, that is, if the
contribution to the energy due to the localization distortion Q− is larger than
that of the electron transfer w, the minimum energy (and the wavefunction)
corresponds to the localization of the excess electron at one of the two centers.
In the opposite case, when |w|>F 2/K0,Q− = 0 and there are no localization
minima; the electron is uniformly delocalized over the two centers. Thus, for
MV dimers the inequality (10.28) serves as the condition of localization of the
excess electron. Example 10.2 elucidates further details of electronic structure
that control the charge transfer between coordination centers in mixed-valence
compounds using the Creutz–Taube ion as an object of specific calculations.

EXAMPLE 10.2

The Creutz–Taube (CT) Ion as a Mixed-Valence System [10.20, 10.32]

The CT ion [(NH3)5Ru(pyz)Ru(NH3)5]5+, where pyz = pyrazine,
became a classical object of polynuclear MV system studies. Its
relatively simple composition and structure makes it possible to
discriminate between different factors influencing the intramolecular
electron transfer. In the CT ion the two Ru3+ centers have 4d5 low-spin
configuration with one excess electron that occupies the hole in the
(t2g)

6 closed-shell configuration of each center or its corresponding
MOs (see below). Distinguished from the case of one excess electronic
state on each center considered above, the CT ion has several such
states.

The structure of the CT ion and the chosen coordinate system is
shown in Fig. 10.4. Note that the X axis lies in between the nitrogen
atoms; hence the three t2g orbitals are dxz, dyz, and dx2−y2 (the last
one substitutes dxy in the more usual cases; Section 4.2). The direct
overlap between the d states of the two Ru centers is negligible. There-
fore their MO combinations of appropriate symmetry in the C2v group
of the system as a whole are simple linear combinations of the cor-
responding atomic functions shown in Fig. 10.5 (actually the shown
d orbitals are MOs that they form with the ligands on each center).
From these MOs only one, the b2g type, overlaps with the empty π∗
orbital of the pyrazine bridge, forming the corresponding bonding and
antibonding MOs. The resulting MO energy scheme including these
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FIGURE 10.4. Structure and the coordinate system of the Creutz–Taube ion.

FIGURE 10.5. Schematic presentation of the valence MO energy scheme of
the Creutz–Taube ion.

states is shown in Fig. 10.5. The relative positions of the energy levels
were obtained from the electronic structure calculations performed in
the DFT-Xα approximation [10.31].

The population of the six one-electron MOs by 11 electrons results in
the ground-state spin doublet 2B3u and five relatively close-in-energy
excited doublets 2B3g,

2 B2u,
2 B1u,

2 Ag , and 2B2g formed by the one-
electron excitation from the corresponding one-electron MOs to the
b3u MO. These states are subject to further modification under the
spin–orbital interaction, which is significantly strong in the Ru ion
(the spin–orbital constant ξ ≈ 103 cm−1). Only three of these states,
Ag, B2g , and B3g , participate in the electron transfer. Their coupling to
the Q coordinates (10.25) is determined by three vibronic constants,
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FIGURE 10.6. Extremal crosssection Q− = 0 of the APES of the
Creutz–Taube ion. X is a saddle point between two minima at Q− �= 0.

which were estimated from empirical data [10.32]: F1 = 1.44, F2 =
−1.19, and F3 = 0.76 (in dimensionless units).

With these Fi values, the six adiabatic potential surfaces were com-
puted [10.32]. Their cross sections at Q− = 0 are shown schematically
in Fig. 10.6. Ground state 1 has a minimum at Q+ �= 0 (Q− = 0 in
the entire section), which corresponds to the electron delocalization.
The optical intervalence band originates from the transition from the
ground state to state 6. In the semiclassical approximation, the calcu-
lated maximum of the band is at 6600 cm−1, in good agreement with
the experimental value, 6200 cm−1 [10.35].

One observable property of MV systems is the intervalence transition (IT)
band of light absorption produced by the transition from the minimum (localized)
ground state to the excited (delocalized) state. An example of such an IT band
is given in Fig. 10.2. Both the frequency and the probability (band shape) of the
IT are dependent on the parameters of electron transfer w and vibronic coupling
F . To calculate the band shape more accurately, one has to compute the vibronic
states of the system with the potential (10.27), individual transitions between
them, and the envelope band shape [10.20, 10.29, 10.30].

The simplest model of the MV dimer, discussed above, may be insufficient for
describing real systems. The main complications may be caused by (1) more than
one electronic state on each center that can be occupied by the excess electron,
(2) influence of low-symmetry crystal fields and spin–orbital interactions, and
(3) open-shell (non-zero-spin) cores resulting in magnetic exchange coupling
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between them and with the excess electron [10.20]. The influence of some of
these important factors on the electron transfer effects are discussed briefly below.

In the presence of several active electronic states on each center, one of the
additional effects is the pseudo Jahn–Teller effect (PJTE). In the case of the CT
ion in Example 10.2 this effect is neglected, which is justified by the fact that the
excess electron is delocalized, and the alternative “localization–delocalization”
is not critical. In other cases the one-center PJTE may be more significant. In
particular, it provides an additional channel of localization of the excess electron
[10.20]; in addition to the totally symmetric distortions at each center caused by
the localized electron [polaron effect described by each of the Qi coordinates in
(10.25)], it also produces low-symmetry distortions due to the pseudo-JT mixing
with the excited states. Therefore, even when the usual polaron effect is weak
(ranging from small vibronic coupling F to totally symmetric distortions, rigid
environment) and does not localize the excess electron (because |w|>F 2/K0), it
can be localized by the PJT distortion, which has a different coupling constant F

and other rigidity K0 (Section 7.4). Other implications of the PJTE are important
to the problem of electron delocalization in mixed-valence compounds [10.20,
10.36].

Magnetic Properties

Another complication of the simple model mentioned above is that many MV
compounds have open-shell centers with nonzero spins besides that of the excess
electron. In these cases additional magnetic interactions between the latter and
each of the centers and between the centers themselves complicate the process
of electron transfer. The usual formulas of magnetic exchange coupling between
the centers (Section 8.4) do not apply here because the migrating excess electron
participates simultaneously in the formation of the magnetic moments of both
centers, vendering invalid the Heitler–London approach, on which the HDVV
model (8.80) is based. For open-shell (magnetic) centers with excess electrons,
the concept of double exchange initially developed for crystals is very useful.

The idea of double exchange is as follows (see also Ref. 10.37). In the ground
state, the spin S′ of the excess electron localized at the magnetic center is parallel
to the spin S1 of the latter because of the strong intraatomic exchange interac-
tion J0 [cf. Hund’s rule, Section 2.2; for simplicity the electronic shell of each
center is assumed to be filled in less than a half]. Because of the equivalence
of the centers and the electron transfer, the excess electron spin S′ interacts
similarly with the spin of the second center S2. Therefore, the energy gain via
exchange interaction is maximal when the spins of the two centers are parallel
(the resonance interaction determining the electron transfer w is independent of
the spin). Thus the electron transfer favors ferromagnetic ordering of the spin
centers .

In application to MV compounds the idea of double exchange is different in
some aspects from the crystal case [10.20]. First, consider a simple case of a
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three-electron problem in a MV dimer with S1 = S2 = S = 1
2 and two nonde-

generate one-electron states on each center ϕ1, ϕ
′
1 and ϕ2, ϕ

′
2, respectively [this

case corresponds, e.g., to the Ni(I)—Ni(II) dimer]. In the ground state the two
orbitals ϕ1 and ϕ2 contain two electrons, one in each orbital, while the third
(excess) electron can occupy either of the orbitals ϕ′

1 and ϕ′
2 with equal proba-

bility. If, in addition to the intraatomic exchange integral J0, mentioned above
[an integral of type (2.36) calculated by the functions ϕ1 and ϕ′

1, see Ref. 10.20],
we introduce the intercenter exchange integral J (calculated by the functions ϕ1

and ϕ2, or ϕ′
1 and ϕ2, or ϕ1 and ϕ′

2), then the energy levels as a function of the
total S are as follows [10.20]:

E
(
S = 3

2

) = −(J0 + 2J ) ± w (10.30)

E
(
S = 1

2

) = ±[(J0 − J )2 + w2 ± (J0 − J )w]1/2 (10.31)

Equations (10.33) and (10.34) can be generalized to the case when the core spin
is larger than 1

2 using the method suggested by Anderson and Hasegawa [10.38].
Denoting the total spin of each magnetic center without the excess electron by
S0 and the maximum spin Smax = 2S0 + 1

2 , we have [10.20]

E(S < Smax) = J0

2
+ J

(

S0 + 1

2

)

− JS(S + 1)

±
[(

S0 + 1

2

)2

(J0 − J )2 + w2 ± (J − J0)w

(

S + 1

2

)]1/2

(10.32)

and

E(Smax) = −J0S0 + J (2S0 + 1) − JS(S + 1) ± w (10.33)

For transition metal compounds the orders of magnitude of the parameters
entering Eqs. (10.32) and (10.33) are as follows: J0 ∼ 1–10 eV, W ≤ 1 eV, and
J ∼ 10−1 –10−3 eV, and the w values can be comparable in magnitude with J

(see below).
It can be seen that Eq. (10.32) contains two pairs of states with an energy

separation of about 2J0. The states of the upper pair are often called non-Hund-
state because they arise from the states with a local spin of S0− 1

2 , in contrast
to the Hund rule. In most cases the non-Hund states can be neglected. Then,
expanding Eq. (10.32) in powers of w/J0 and keeping linear terms in w only,
we obtain for the energies of the Hund states as functions of S:

E(S) = −JS(S + 1) ± w
(
S + 1

2

)

2S0 + 1
(10.34)
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FIGURE 10.7. Electronic energy levels of a d1 − d2 exchange-coupled MV dimer (the
ratios between J0, J , and w are not obeyed numerically).

Here the terms not containing S are omitted, and hence the energy readoff is
changed as compared with (10.32) and (10.33). This equation is also valid in
the states of a more-than-half-filled electronic shell that have no non-Hund states
and no terms containing J0.

Equation (10.34) emerges from other theories of energy spectra of MV dimers
as well. Although approximate, the energy spectrum calculated by these formulas
agrees qualitatively with that obtained in quantum-chemical computations for
specific MV dimers [e.g., Fe(II)–Fe(III) pairs in ferredoxin and in oxides]. It
allows one to obtain a qualitative picture of the energy spectrum of the systems
under consideration using the relation between w and J . For each value of the
total spin S there are two resonance states E(S). The spacing of the centers of
gravity of these doublets is determined by the intercenter exchange, while their
splitting is linear dependent on the spin value (Fig. 10.7).

It follows that the double exchange favors the ferromagnetic spin order-
ing. However, unlike the HDVV ferromagnetic exchange interaction, the dou-
ble exchange does not necessarily result in a ground state with a maximal
spin when J < 0. The condition for such a ground state is more complicated:
w >(2n + 1)(n + 1)J , where n is the number of electrons in the ionic core. In
general, it is clear that the migration of the electron results in an energy spectrum
that is essentially different from that expected in the simple exchange scheme of
the HDVV model (Section 8.4). In molecular crystals MV dimers are coupled to
the other dimmers by dipole–dipole interaction, which may produce phase tran-
sitions to charge-ordered states [10.39] in which the excess electron is localized
at one of the centers producing a dipole moment.

Since the vibronic coupling constant F does not depend on the spin states,
one can assume that F is the same for all spin states, provided that there is
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only one orbital state on each center that is occupied by the excess electron (ϕ′
1

or ϕ′
2). In these cases each pair of states with the same spin mixes under the

nuclear displacements Q−, producing a pseudo-Jahn–Teller adiabatic potential,
quite similar to the one-electron case (10.27) with Q− in Eq. (10.25). Following
(10.34), the energy gap 2�S between the two mixing states with a given spin
S is

2�S = w(2S + 1)

2S0 + 1
(10.35)

and the APES is

εS(Q−) = ( 1
2

)
K0Q

2
− ± [�2

s + F 2Q2
−]1/2 − JS(S + 1) (10.36)

If the inequality �S < F 2/K0 is satisfied, the lowest curve in (10.36) has two
minima at ±Q0

− (Fig. 7.19), each corresponding to localization of the excess
electron at one of the centers. For �S >F 2/K0, Q

0− = 0, and the electron is
delocalized over the two centers. According to Eq. (10.35), since �S increases
with the total spin, a situation is possible when the excess electron is localized
in the states with small total spins and delocalized in the states with larger spins.

More exact predictions of the magnetic behavior (and other properties) can
be made on the basis of detailed calculations of the vibronic energy states En

with the potential (10.36). With the values En known, the magnetic moment μ

is estimated by the following formula (Section 8.4):

μ2 = g2β2 ∑
n,S S(S + 1)(2S + 1) exp[−En(S)/kT ]
∑

n,S(2S+1) exp[−En(S)/kT ]
(10.37)

Some results of such calculations are illustrated in Fig. 10.8 [10.20] for a
d1 –d2 MV dimer with an antiferromagnetic exchange coupling J < 0. It is seen
that in the absence of vibronic coupling (F = 0, curve 1) the two centers, owing to
the double exchange and large w, are ferromagnetically ordered with a maximum
magnetic moment of three unpaired electrons (S = 3

2 ). The vibronic interaction
changes the magnetic behavior, and for F = 3 the ground state, becomes S = 1

2
instead of S = 3

2 (see Fig. 10.8, curve 3). This phenomenon is formally similar
to the spin crossover (Section 8.4) where the ground-state spin changes as a
function of the ligand field parameter; in the case under consideration the latter
is played by the vibronic coupling.

The quantity of electron transfer probability P may also be important, espe-
cially for applications. It can be calculated directly from the vibronic energy
spectrum of the system [10.20]: P is dependent on the spin S0 and exchange
parameters. In particular, for two systems with the same S, w, and |J |, but oppo-
site signs of J , that is, for ferromagnetic PF and antiferromagnetic PAF systems
(states), we obtain

PF

PAF

= (2S0 + 1)2 (10.38)
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FIGURE 10.8. Temperature dependence of the magnetic moment μ of a MV d1 − d2

dimer with J = −0.2, w = 2, and different vibronic constants: (1) F = 0, (2) F = 1.8,
and (3) F = 3 (in dimensionless units).

Mixed-Valence Trimers: Coexistence of Localized and Delocalized States

Regular three-center triangular clusters with equivalent transition metal centers
are rather widespread, the series of carboxylates [M3O(RCOO)6]L3 being a well-
known example; Figure 10.9 illustrates the one with M = Fe, R = CF3, and L =
H2O.

Consider a trimer MV cluster and assume (as in the cases of simple dimers) that
there is only one excess electron over the three metal centers with closed shells
and only one nondegenerate state on each center ϕi, i = 1, 2, 3, to be occupied
by the excess electron. In the triangular symmetry C3v the three one-electron
states ϕi form three MOs of A and E symmetry (Section 5.1):

�A = 1√
3
(ϕ1 + ϕ2 + ϕ3)

�Eθ = 1√
6
(2ϕ1 − ϕ2 − ϕ3) (10.39)

�Eε = 1√
2
(ϕ2 − ϕ3)
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FIGURE 10.9. Structure of the MV trimer M3O(RCOO)6L3 with M = Fe, R = CF3, and
three ligands L = H2O marked by N = 14, 19, and 20, respectively.

Denoting, as above, the intercenter resonance integral (the electron transfer
parameter) by w [cf. (10.26)], we find easily that the splitting ε(A) − ε(E) = 3w.

As in the case of dimers, the excess electron, when localized at the center,
distorts its environment, thus violating the C3v (or D3h) symmetry of the system,
and this distortion is very important for the electron transfer phenomenon. Since
the ϕi are nondegenerate, the totally symmetric local breathing (polaron-type)
distortions Qi (i = 1,2,3) are affected only by the excess electron. Similar to the
wavefunctions (10.39), it is more convenient to take these three local coordinates
Q1, Q2, Q3 in symmetrized combinations for the system as a whole (Section
7.1):

QA = 1√
3
(Q1 + Q2 + Q3)

Qθ = 1√
6
(2Q1 − Q2 − Q3) (10.40)

Qε = 1√
2
(Q2 − Q3)

While QA is totally symmetric with respect to the C3v symmetry, Qθ and
Qε form two components of the twofold-degenerate E displacement. The totally
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symmetric coordinate, similar to the dimer, can be separated by an appropriate
choice of the energy readoff.

With these denotations, the electronic energy levels ε0(Q) as functions of
the coordinates Qθ and Qε can be found by solving the corresponding secular
equation of the type (7.78), which, in polar coordinates (7.37) Qθ = ρ cos φ,

Qε = ρ sin φ, is [10.20]:

ε3
0 −

(
F 2ρ

2
+ 3w2

)

ε0 − 2w3 −
(

2

3

)1/2

F 3ρ3cos 3φ = 0 (10.41)

where F is the constant of vibronic coupling with the Qi displacements (10.23).
The three roots of Eq. (10.41) εi

0 (i = 1,2,3), together with the strain (deforma-
tion) energy 1

2Kρ2 form three sheets of the APES

εi(ρ, φ) = 1
2Kρ2 + εi

0 (10.42)

For simplicity, we assume that the K values (the primary force constants of the
Qi distortions) are the same for the two oxidation states of the center (with and
without the excess electron), and we use dimensionless units for Q, F , and w.

It can be shown that εi are periodic functions of φ with a period of 2π /3. The
extremal points of the APES (10.42) are at φ = πn/3, n = 0, 1, . . ., 5. If F < 0,
the even values of n correspond to maxima along φ in the lowest sheet (and
saddle points if other coordinates are included; see below), while the odd values
give minima, and vice versa for F > 0.

Consider the radial dependence of the adiabatic potential in the extremal cross
section φ = 0 (or, equivalently, Qε = 0). The solutions of Eq. (10.42) in this
case are

ε1 = −Fρ√
6

− w

ε2,3 = 1

2

[

w − Fρ√
6

± 3

(
F 2ρ2

6
− 2wρ

3
√

6
+ w2

)1/2
]

(10.43)

Investigation of this expression requires knowledge of the sign of the parameter
of intercenter electron transfer w. The sign of w is not important for dimers but
it is essential for trimers. If w > 0, the electronic doublet is lowest. Its APES is
then similar to the Mexican hat in the JT E ⊗ e problem with the quadratic terms
of the vibronic interaction included (Section 7.4), but the warping of the trough
in the APES (10.43) is produced by simultaneous JT and PJT distortions in the
linear approximation without quadratic terms. The three minima of the APES
describe the three possibilities of localization of the excess electron at each of
the three centers. Since there is no minimum at Qθ = 0 (where the three centers
are equivalent), it follows that in trimer MV compounds with w > 0 delocalized
electron distributions are not possible.
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The systems with w < 0 seem to be more interesting. Indeed, they have singlet
ground electronic terms, and the APES, as in the case of the dimer, is completely
determined by the parameter |w|/F 2. Substituting

ρ =
(

2

3

)1/2 |w|
F

(2
√

2 sinh t − 1) (10.44)

into Eq. (10.43), we obtain the following transcendent equation for the extremal
points of the APES:

4
√

2 sinh 2t +
[

1 −
( |w|

F 2

)]

cosh t − 3 sinh t = 0 (10.45)

Figure 10.10 illustrates the calculated shapes of the extremal crosssections of
the APES at φ = 0 for different |w|/F 2 values. Its behavior at ρ = 0 can be
investigated by means of the expansion of the potential function into a power
series of ρ keeping the terms up to ρ2. If |w|/F 2 < 2

9 (Fig. 10.10a), the point
ρ = 0 is a local maximum, and the APES has three global minima M at ρ �= 0.
One more minimum at ρ �= 0 in Fig. 10.10a (the point S) and two other equiv-
alent at φ = 2π/3, 4π/3 (not seen in the figure) are in fact three saddle points
situated in between the minima along φ (similar to the warped Mexican hat). If
|w|/F 2 > 2

9 , a minimum occurs at ρ = 0, but this is not necessarily accompanied
by disappearance of the minima at ρ �= 0. In the interval 2

9 < |w|F 2 < 0.255
both types of minima coexist. Finally, when |w|F 2 > 0.255, the only minimum
exists at ρ = 0.

The minimum at ρ = 0 describes the state of the excess electron uniformly
delocalized over the three centers, whereas the minima at ρ �= 0 correspond to
electron localized at one of the three centers. Thus we conclude that for three-
center MV compounds in a certain interval of parameter values, a coexistence of
localized and delocalized electron distributions is possible. The region of parame-
ter values required for this coexistence of two alternative electron distributions is
relatively small; it is expected to increase when the difference in the frequencies
of the local one-center totally symmetric vibration (or similarly, the K = Mω2

constants) in two valence states is taken into account.
The coexistence of localized and delocalized electron distributions was

observed first in a series of compounds of the type [Fe(II) Fe2(III) (CH3COO)6L3]
(see Ref. 10.40 and references therein). In these works, it is shown that the
Mossbauer spectra (Section 8.5), besides the lines corresponding to the Fe(II)
and Fe(III) ions with the intensity ratio 1 : 2, also contain quadrupole doublets
that are characteristic of iron ions in the intermediate oxidation state. The
MV systems under consideration form, as a rule, molecular crystals in which
the interaction between the molecules depends on the intramolecular electron
distribution and hence nuclear configuration distortions. It follows that the
cooperative properties of MV compounds in the crystal state depend on their
electron localization or delocalization state. The APES of the type considered



ELECTRON TRANSFER IN MIXED-VALENCE COMPOUNDS 605

FIGURE 10.10. Crosssections ϕ = 0 of the adiabatic potentials of a MV trimer as a
function of |w|/F 2: (a) |w|/F 2 < 2

9 , (b) 2
9 < |w|F 2 < 0.255, (c) |w|F 2 > 0.255 (M are

minima; S is a saddle point).

above were used to analyze possible types of phase transitions in crystals of MV
trimers [10.41].

The results presented above are based on the assumption that there is only
one excess electron above the three zero-spin cores of the three centers, and the
validity of these results for clusters containing Fe(II), Fe(III), . . . in the high-spin
state (where for each value of the total spin there are several A and E energy
levels) may be questioned. However, if one includes the exchange anisotropy
[i.e., the difference in the exchange parameters in the pairs Fe(II)–Fe(III) and
Fe(III)–Fe(III)], then these levels are relatively displaced from each other, and
it may be possible to consider each set containing the pair of A and E levels
separately, as was done above.

For a more detailed evaluation of the trimer properties, the vibronic energy
levels and wavefunctions of the MV system with the APES (10.42) should be
computed. Such computations were performed for different values of the param-
eters F and w, and the results were used to evaluate the band shapes of the
intervalence transfer (IT) spectra.

There are many MV trimers with equivalent centers that are not regular tri-
angles; the linear system trans-(NH3)5Ru(II)pyzRu(II)(NH3)4pyzRu(III)(NH3)

7+
5

(1) [10.46] and the nonlinear system cis-(NH3)5Ru(II)NCRu(II)(bpy)2CNRu(III)
(NH3)

5+
5 (2) [10.47] may serve as examples. Their IT bands have the maxima at

0.59 and 0.95 μm−1, respectively. The IT absorption curve for a derivative of 2
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in which one ammonia molecule is substituted by pyridine is given in Fig. 10.2
(Section 10.1).

Another interesting use of the MV trimer vibronic states is in the calculation
of their magnetic characteristics [10.20].

The delocalization of the excess electron in trimer MV systems is considered
above for the case of zero-spin cores, raising the following question: To what
extent are these results valid for systems with non-zero-spin cores that have a
more complicated electronic energy spectrum? As stated above, in these cases
the effect of double exchange should be considered. In Example 10.3 this prob-
lem is considered by investigation of a specific trinuclear cluster of biological
importance— tricenter ferredoxin .

EXAMPLE 10.3

Tricenter Ferredoxin

The trinuclear iron–sulfur cluster in the ferredoxin of the sulfate-
reducing bacteria Desulfovibrio gigas [10.44], for which the presence
of double exchange is revealed, seems to be an appropriate system
to illustrate the problem of intramolecular electron transfer between
centers with open-shell cores.

In the reduced form this ferredoxin cluster has the valence
composition Fe(III)–Fe(III)–Fe(II). The ESR and Mossbauer spectra
(Sections 8.4 and 8.5) show that the excess electron is delocalized over
two out of three centers [10.45]. On the basis of these data, a model
was proposed that considers the double exchange between the pair
Fe(II)–Fe(III) in addition to the HDVV exchange between all three
ions [10.45]. This approach implies that one of the ions is strongly
distinguished from the other two, so that its resonance interaction with
the latter is negligible. However, X-ray structural data [10.46] show
that the structural differences between the three ions, if any, are very
small.

Borshch and Chibotaru [10.47] proposed a model based on simulta-
neous magnetic and vibronic effects, which explains the origin of the
peculiar electron distribution in the ferredoxin cluster under considera-
tion. The electronic configuration of the three centers is d5 − d5 − d6

and all the iron ions are in the high-spin states. From experimental data
it is known that the ground state of the system is a quintet S = 2, and
the excited states with other S �= 2 spins lie higher than the ground one
by at least 80 cm−1. Therefore, approximately, for sufficiently low tem-
peratures, only the quintet states can be considered. With the localized
electron, there are five states of this kind.

For simplicity the differences between the exchange integrals J1 for
the Fe(II)–Fe(III) pair and J2 for Fe(III)–Fe(III) are neglected. In other
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words, it is assumed that the system is exchange-isotropic. Then the
analytical expressions for the electronic energies [Eq. (10.43)] at Qθ =
Qε = 0 are:

ε[5A(1)] = ε[5E(1)] = ε[5E(2)] = −w

ε[5A(2)] = ε[5A(3)] = ε[5E(3)] = 0 (10.46)

ε[5A(4)] = ε[5A(5)] = ε[5E(5)] = 5
6w

where the energies are read off from the position of nonsplit HDVV
multiplet with S = 2. For an arbitrary relation between the exchange
parameters J1 and J2 and arbitrary values of vibrational coordinates,
the electronic energies can be obtained by numerical calculations.

With the known electronic energies at fixed nuclei, one can determine
the APES of the system in the space of the active Qϑ and Qε or ρ and φ

coordinates [see Eq. (10.41)]. In the case at hand, although the energy-
level scheme depends on the sign of w, the shape of the lowest sheet
of the APES undergoes qualitatively the same transformations with the
|w|/F 2 parameter for both positive and negative w values.

For small w values the minima of the lowest branch of APES are
at φ = π/3, π, 5π/3, whereas at φ = 0, 2π/3, 4π/3 there are saddle
points. As a result, the extremal crosssections of the APES have the
same shape as in Fig. 10.10a. Similar to the case of a one-electron
trimer (considered above), these minima correspond to the localization
of the excess electron at one center. For some values of |w|/F 2 a pair
of minima occurs instead of each individual minimum. The two minima
in the pair occupy a symmetric position with respect to the directions
φ = π/3, π, 5π/3; the minima in these directions thus become saddle
points. The value |w|/F 2, for which the number of minima doubles,
depends on the relation between the exchange integrals: for the |J1 − J2|
values from 0.0 to 0.1, 0.7 < |w|/F 2 < 0.8 (for the possible existence
of such three pairs of equivalent minima of the APES in the space of
E vibrations, see Refs. 10.36 and 10.48).

On further increase of the ratio |w|/F 2, the six minima merge in pairs
into three minima at φ = 0, 2π/3, 4π/3; these points thus become min-
ima instead of saddle points, and the surface as a whole again becomes
triminimal. However, as opposed to the previous cases, the excess elec-
tron in these minima is delocalized over two centers of the trimer .

If |w|/F 2 → ∞, the energies of the minima and saddlepoints coin-
cide, and we obtain a continuous set of minima, a trough [10.36, 10.48].
The motion along the trough corresponds to a dynamical delocaliza-
tion of the excess electron; this is not possible in other MV systems,
considered above, neither in dimers nor in one-electron trimers.

The observed charge distribution in the iron–sulfur ferredoxin can
thus be attributed to the joint influence of vibronic and interelectron
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(double exchange) interactions in a multilevel system with a special
relation of parameter values resulting in minima of the adiabatic poten-
tial that describe the partial (two-center) delocalization of the excess
electron. DFT-Xα calculations [10.49] of the once and twice reduced
systems of the type [Fe3S4(SH)3]2− with C3v symmetry in which the
competition between spin–spin coupling and delocalization is consid-
ered in detail confirms qualitatively the scheme of double exchange.
The calculations show that the exchange constant J is larger in the
reduced form than in the oxidized one, and that w is negative (w/J

varies from 1.5 to 3.0).

For a model four-center tetrahedral cluster (e.g., four-center ferredoxin
[10.50] with one excess electron over the four closed shells and one electronic
state on each center, there are four symmetrized coordinates of the center
displacement from regular tetrahedral positions, QA,QT ξ , QT η, and QT ζ

(Table 7.1), which are linear combinations of the local totally symmetric
breathing (polaron) displacements on each center Qi, i = 1, 2, 3, 4. From these
coordinates the totally symmetric combination Q = 1/

√
3)(QT ξ + QT η + QT ζ )

in the trigonal space is most informative in the problem under consideration. In
the space of this coordinate the four energy levels as functions of Q (APES in
the crosssections along Q) are [cf. Eqs. (10.41) and (10.42)]

ε1,2 = 1

2
Q2 − w − FQ

2
√

3
(10.47)

ε3,4 = 1

2
Q2 + w + FQ

2
√

3
± 2

(

w2 − wQ

2
√

3
+ F 2Q2

12

)1/2

(10.48)

By direct calculation one can easily ensure that if w > 0, there is always a
minimum of the lowest curve at Q �= 0 corresponding to the excess electron
localized at one center. For negative w values, three possibilities similar to that
for the trimers occur: (1) if |w|/F 2 < 0.125, the lowest curve has two minima
from which one is, in fact, a saddle point (in the extended space including other
coordinates); (2) if 0.125 < |w|/F 2 < 0.152, there are two minima at Q = 0 and
Q �= 0, respectively; and (3) if |w|/F 2 > 0.152, the only minimum point occurs
at Q = 0. As for the electron charge distribution corresponding to these three
cases, they are: (1) an electron localized state; (2) coexistence of localized and
delocalized states, and (3) electron delocalization.

Thus, for the tetrahedral MV tetramers we again come to the possibility of
coexistence of states with localized and delocalized excess electron distributions .
Apparently this effect has a more general meaning and can also be expected in
clusters with larger numbers of MV centers. So far, to our knowledge, there has
not been experimental confirmation of the coexistence effect in tetramers.
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The lowest pathway between the APES minima of the localized electron goes
through the saddle points along the QT ξ , QT η, and QT ζ directions. Numerical
calculation shows that the barrier height for the electron transfer trough these
saddle points in tetramers is always lower than the corresponding barrier in dimers
for the same values of w and F . Perhaps this result explains why in the same
conditions, that is, for the same structure of the nearest-neighbor environment
of the iron ions and the same bridges between them, as well as approximately
the same iron–iron distances, in iron–sulfur dimers the excess electron is rather
localized, whereas in the similar tetramers it is delocalized.

It is evident that the other problems considered above for dimers and trimers
by means of the vibronic theory can be similarly treated for tetramers and other
MV systems. However, for MV systems with the number of centers n> 3, some
new problems may occur. In particular, two and more excess electrons migrating
among the MV centers may be important in these systems (in trimers two excess
electrons are equivalent to one excess hole for which the problem is similar to
that of one electron). For two and more excess electrons, the electron distribution
and dynamics are determined by the competition of vibronic, intraatomic, and
intercenter interactions. Examples of MV systems with two excess electrons are
known among cubic [10.50] and quadratic [10.51] tetramers, six-nuclear clusters
[10.52], and others.

The coexistence of localized and delocalized electronic distributions in polynu-
clear clusters considered in this section is somewhat analogous to the coexistence
of localized and delocalized excitonic states in crystals [10.53, 10.54].

10.3. ELECTRON-CONFORMATIONAL EFFECTS IN
BIOLOGICAL SYSTEMS

Distortions Produced by Excess Electronic Charge;
Special Features of Metalloenzymes

Conformational changes produced by excess electronic charge [electron-
conformational effects (ECEs)] are of widespread interest, especially in biologic
processes. In essence, the ECE problem is a particular case of the TEST
paradigm formulated in Section 7.4 realizing electronic control of configuration
instability. Similarly, the ECE problem is formulated as follows: Is it possible
to predict conformational changes in molecular system induced by the addition
or removal of electronic charge?

The solution of this problem is facilitated by the vibronic theory (Sections 7.2
and 7.4). In Section 7.2 the notion of vibronic constants is introduced [see Eq.
(7.22)]: F

(�,�′)
�∗ = 〈�(∂V/∂Q�∗)0|�′〉, where � and �′ are two electronic states

[for the diagonal constant F
(�)
�∗ � = �′], V is the electron–nucleus interaction in

the Hamiltonian of the system, and Q�∗ is the symmetrized coordinate of nuclear
displacements that belongs to the representation �∗. The vibronic constant has
the dimensionality of a force, and the diagonal constant F

(�)
�∗ also has the physical
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meaning of a force (Section 7.2): F
(�)
�∗ means the force with which the electronic

cloud in the state � acts on the nuclear configuration in the direction of the
symmetrized displacements Q�∗ .

It is clear that in the equilibrium configuration F
(�)
�∗ = 0, but any excess

electronic charge (electron addition, proton removal) or positive charge (elec-
tron removal, proton addition) violates the equilibrium of forces and results in
F

(�)
�∗ �= 0. The nonzero force distorts the nuclear configuration in the direction

Q�∗ .
How can one determine the direction Q�∗ of this distortion and its magnitude

as a function of the excess charge and electronic state �? If the excess charge is
an integer (one or more electrons added or removed), the problem can be solved
directly by computing the wavefunction |�′ > of the new state �′ with the addi-
tional charge (not to be confused with the excited state) and the matrix element for
the Q�∗ coordinates, for which F is nonzero. But this is a very difficult method,
especially for large (biological) molecular systems, and it cannot be carried out,
in principle, when the excess charge is fractional (which is often the case).

A more realistic way to solve this problem approximately is provided by
the semiempirical method, based on the notion of orbital vibronic constants f
introduced in Section 7.2: f

(i,j)

�∗ = 〈i|(∂Vi/∂Q�∗)0|j 〉, where |i > are molecu-
lar orbitals and Vi is the one-electron operator of electron–nucleus Coulomb
interaction (7.24). The diagonal orbital vibronic constant f

(i)
�∗ has the physical

meaning of the force with which the electron on the ith MO acts on the nuclear
configuration in the direction Q�∗ . It is very important that, owing to the additive
electron–nucleus interactions, the diagonal integral vibronic constant according
to Eq. (7.26) equals the sum of the orbital constants multiplied by their electron
occupation numbers (in the state �) q�

i [8.36].
In fact, Eq. (7.26) solves the preceding problem approximately. Indeed, for a

stable system in the equilibrium configuration

F
(�)
�∗ =

∑

i

q�
i f

(i)
�∗ = 0 (10.49)

With the excess charge the population of the MO changes:

q�′
i → q�

i + �qi F
(�′)
�∗ =

∑

i

q
(�′)
i f

(i)
�∗ =

∑

i

�qi f
(i)
�∗ (10.50)

This equation is approximate because it implies that the excess charge does not
change the orbital vibronic constants. It is valid roughly to the second order of
the charge alteration (�q/N)2, where N is the total number of electrons.

Following Eq. (10.50), the distortion force F
(�′)
�∗ produced by the excess charge

�qi can be easily found, provided that the orbital vibronic constants f
(i)
�∗ are

known. In particular, for one electron added to the system F
(�′)
�∗ = f

(i)
�∗ , where i

is the MO occupied by the excess electron. The numerical value of the constants
f

(i)
�∗ can be calculated from electronic structure data. In many cases they can
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be estimated using empirical data obtained from spectroscopic and diffraction
experiments; many examples are given in Sections 7.2 and 11.2. The sign of f

and the symmetry of Q�∗ (i.e., the direction of distortion) can be established
from general considerations without detailed calculations.

As stated in Section 7.2, f
(i)
�∗ > 0 for bonding MO (in the Q�∗ direction),

f
(i)
�∗ < 0 for antibonding MO, f

(i)
�∗ ≈ 0 for non-bonding MO, and the absolute

value of f
(i)
�∗ follows quantitatively the measure of the MO bonding or antibond-

ing. The symmetry of Q�∗ can be obtained directly from Eq. (7.25) using the
selection rules (Section 3.4). Following these rules, f

(i)
�∗ [the diagonal matrix

element (7.25)] is nonzero if the symmetrical square of the symmetry type �i (to
which the ith MO belongs) contains the symmetry �∗ of Q�∗ : �∗ ∈ [�i × �i].
If �i is nondegenerate, then �i × �i contains only the totally symmetric repre-
sentation A1. Thus addition of electronic charge on nondegenerate MOs produces
totally symmetric distortions that do not change the symmetry of the system. But
in this case there is a second source of distortion: the PJTE (Section 7.4; see
below). If �i is degenerate, then the product [�i × �i] also contains nontotally
symmetric representations, and the charges on such MOs produce deformation of
the system. These deformations are exactly the same as in the Jahn–Teller effect
(Section 7.3); double degenerate E MOs produce E deformations with two com-
ponents Qθ and Qε (Fig. 7.1) or (for particular cases) B1 and B2 deformations
(Fig. 9.16), orbital triplets T produce E or T2 deformations, and so on. Each of
these deformations is characterized by its own orbital vibronic constant f

(i)
�∗ .

If several MOs are populated, the total distortion equals the sum of the dis-
tortions produced by each MO. They can be found approximately using Eq.
(7.41):

Q0
�∗ = F�∗

K�∗
(10.51)

where K�∗ is the force constant of the Q�∗ distortion without the additional
charge [a more exact equation for Q0

�∗ is given in Section 11.2, Eq. (11.24)].
Substituting (7.26) into (10.51), we have

Q0
�∗ =

∑
i �qif

(i)
�∗

K�∗
(10.52)

The symmetrized distortions Q�∗ determine the Cartesian displacement of
the nuclei, as shown in Table 7.1; if several types of Q�∗ (for several types of
�∗) are nonzero, the corresponding Cartesian displacements should be summed
as vectors. The PJT distortion [Eq. (7.67)] caused by interaction with an one-
electron excited (i → j ) state, denoting M = |f (ij)|2/K0, yields (the �∗ subscript
is omitted here for simplicity)

Q0 = (�qi − �qj )

(
M2 − �2

K0M

)1/2

(10.53)
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where � is the energy gap to the excited state (not to be confused with �q!)
and the possible partial occupation of the two orbitals �qi and �qj is also taken
into account (in particular, when �qi = �qj , there is no PJTE).

As seen from Eqs. (10.52) and (10.53), the nuclear configuration distortion is
directly proportional to the charge transfers �qi and orbital vibronic couplings
f

(i)
�∗ of the corresponding MOs, and inversely proportional to the rigidity of the

system K�∗ in the Q�∗ direction. While f
(i)
�∗ characterizes quantitatively the

participation of the excess charge in the alteration of bonding (and hence the
occurrence of the distortion force) along Q�∗ ,K�∗ characterizes the resistance
of the system to deformations in the Q�∗ direction.

In general, many biologic systems are very susceptible to vibronic instabilities
mainly for two reasons [10.36]:

1. Conformational flexibility, that is, the presence of soft modes (small K0

values)
2. Presence of prosthetic groups with close-in-energy HOMO–LUMO levels

(small � values)

Both sources of vibronic deformation, (10.52) and (10.53), are strongly depen-
dent on K�∗ , the rigidity of the system with respect to the Q�∗ distortion. Biologic
systems are specific in possessing low rigidity K�∗ in certain directions �∗ (soft
modes). This circumstance favors large distortions.

Examples of the second special feature in biological systems, the presence
of close energy levels, ground and excited (small energy gaps �), are pro-
vided by metalloenzymes. The latter have a group of such active states due
to the metal d orbitals (organic conjugated prosthetic groups may also be very
similar to this type). The prosthetic group is a site triggering (initiating) electron-
conformational transitions due its close-in-energy electronic levels and the soft
modes of the biological environment .

Trigger Mechanism of Hemoglobin Oxygenation:
Comparison with Peroxidase

One of the most important properties of hemoglobin is its ability to oxygenate
(absorb oxygen) and to deoxygenate (release oxygen) with a special S-type kinet-
ics. In other words, hemoglobin absorbs oxygen sharply (much more sharply
than do most absorbers) in an oxygen environment, and releases oxygen sharply
in a medium where there is no oxygen. Perutz was the first to show that this
kinetics of oxygenation is due to a special mechanism based on the so-called
T → R (tense → relaxed) conformational transitions and consequent coopera-
tive effects induced by out-of-plane and in-plane displacements of the iron atom
in the metal–porphyrin active center by oxygenation (trigger mechanism) [10.55]
(see also Refs. 10.56 and 10.57).

Hemoglobin has four similar active iron centers, each containing an iron por-
phyrin group. The four centers are linked by protein chains. Figure 10.11 shows
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FIGURE 10.11. Structure of the active center of hemoglobin (mioglobin)—the iron
porphyrin center with the imidazol moiety of the proximal histidine. The in-plane position
of the iron atom is shown by dashed lines. The approaching oxygen molecule is also
shown.

schematically the structure of the iron porphyrin center with the imidazole moiety
as the fifth ligand (cf. Fig. 9.6). The iron centers are linked via this ligand, which
is a part of the protein chain. In the Perutz mechanism [10.55] (see also Ref.
10.57) the position of the iron atom in the deoxy form of the hemoglobin centers
is out of plane of the porphyrin ring, and in this position only two of the four
centers are open to oxygen coordination. When the oxygen molecule occupies the
sixth coordination position (Fig. 10.11), the iron metal returns to the porphyrin
plane. This displacement pulls the imidazole moiety of the proximal histidine,
which, being linked to the protein chain, produces the conformational transition
T → R; this, in turn, opens the other two iron centers for oxygen coordination,
thus sharply increasing the oxygenation curve.

In the absence of oxygen the release of one oxygen molecule initiates an
inverse process of the iron out-of-plane displacement and R → T transition with
corresponding consequences for the desorption curve. Thus the local changes in
the iron atom position with respect to the porphyrin ring as a result of oxygen
coordination initiate conformational transitions in the protein (trigger mechanism)
important to its biologic function.

In Section 9.2 it is shown that the in-plane position of the iron atom in the
porphyrin ring is very soft or even unstable with respect to its out-of-plane
displacement. In the planar metalloporphyrin symmetry D4h this displacement
has A2u symmetry, and the instability is due to the sufficiently strong PJTE
(Section 7.4), the mixing of the MO a2u of mainly the porphyrin ring with the
metal dz2 orbital of a1g symmetry under A2u displacements (A1g × A2u = A2u).
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As seen from Fig. 10.12, the energy-level separation 2� = ε(a1g) − ε(a2u) is
relatively small, making the inequality (7.67) quite real. Under the influence of
the imidazole moiety of the proximal histidine residue, these MO energy levels of
iron porphyrin, as shown in Fig. 10.12, do not change very much; at least the �

value remains sufficiently small to soften the iron atom out-of-plane displacement.
The picture changes when the oxygen molecule is coordinated to the sixth

position. The repulsion of the iron antibonding dz2 orbital by the oxygen negative
charge raises this iron energy level significantly and makes the energy gap 2� ≈
3 eV (see Fig. 10.12; for CO as the sixth ligand 2� ≈ 4 eV). With this � value
the inequality (7.67) does not hold, and there is no more softness or instability
of the in-plane position of the iron atom; it returns to the plane of the porphyrin
ring.

An important feature of iron out-of-plane and back in-plane displacements is
that they change the spin of the ground state of the system (cf. spin crossover,
Section 8.4). In Fig. 10.12 the real ground-state spins are indicated. In the out-
of-plane position of the iron atom in deoxyhemoglobin the spin is higher than in
the oxygenated in-plane position. In accordance with the results of Sections 4.3
and 6.2, the electron distribution over the AOs or MOs depends on the pairing
energy � and its ratio to the energy gap � between the MO levels occupied
by the electrons in the unpaired (high-spin) configuration. Therefore, it is not
surprising that in the configuration with larger � values the ground state is a
low-spin one.

Note that both the iron–porphyrin stereochemistry and the spin states are
controlled by the same MO energy-level arrangements. It is worth emphasizing
this fact because the earlier explanations of the origin of the iron out-of-plane
and in-plane displacements by Hoard [10.58] and Perutz [10.55] (see also Refs.
10.56 and 10.59) are based on the fact that the atomic radii in the high-spin
configuration are larger (the antibonding d orbitals of the high-spin configuration
are more extended) than in the low-spin case. Hence the iron atom (ion) cannot
fit the hole in the porphyrin ring when it is in the high-spin state, while it fits
this hole in the low-spin state. Section 9.2 presents some criticism of this rough
ball-hole fitting.

In these explanations, cause and effect are inverted. There are many examples
with different metals [10.56] when the atom (ion) is in the in-plane position
for smaller holes and is out-of-plane for larger holes. A detailed analysis of
out-of-plane displacements of the metal atom in metalloporphyrins and the spin
state–geometry relationship is given in the review article [10.56], and it is shown
that the vibronic approach discussed above qualitatively explains the observed
features of the phenomenon.

In real metalloenzymes the metal porphyrin active center is subject to influ-
ence of the protein environment that controls a variety of their functions [10.60,
10.61]. For instance, the same iron porphyrin active center with different prox-
imal ligands (and other differences in the next coordination spheres) has quite
different activities with respect to the interaction with oxygen; in hemoglobin
the coordination of the O2 molecule initiates T → R conformational transitions
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FIGURE 10.12. The MO energy levels for several HOMOs and LUMOs of iron por-
phyrin with indication of the ground term: (a) out-of-plane displacement of the iron atom
is �R = 0.49 Å; (b) deoxy form of hemoglobin (Hb), �R = 0.62 Å; (c) Hb—CO; (d) pla-
nar iron porphyrin �R = 0; (e) Hb—O2. The energy gap 2� between the two states that
mix under the iron out-of-plane displacement is shown by arrows.



616 ELECTRON TRANSFER, REDOX PROPERTIES, AND CONFORMATIONAL EFFECTS

and is released without being strongly activated, whereas in cytochrome P-450
coordinated oxygen is strongly activated and performs hydroxylation of saturated
hydrocarbons (catalase and peroxidase act in a similar way). While chemical acti-
vation by coordination (also to cytochrome P-450) is considered in Section 11.2,
we present here, by way of example, a comparison of hemoglobin and peroxidase
that illustrates the role of the protein environment.

Figure 10.13 is a schematic representation of the configuration of the iron
porphyrin active center in the two metalloenzymes, hemoglobin and peroxidase,
without (Fig. 10.13, I) and with (Fig. 10.13, II) coordinated oxygen (in peroxidase
the coordinated molecule is H2O2 that is modeled by O2). The essential difference
in these two cases is in the structure of the protein, not shown in the figure. In both
cases the iron atom is out-of-plane without oxygen and returns to the in-plane
position through oxygenation.

In hemoglobin the iron displacement toward the porphyrin plane triggers the
conformational T → R transition, discussed above, without strong activation of
the O—O bond, whereas in peroxidase, where the protein environment is dif-
ferent from that of hemoglobin, movement of the iron atom toward the in-plane
position deprotonates the imidazole residue with the result that the distal nitrogen
acquires an excess electron. This process, initiated by oxygen coordination, has
an important backward influence on the coordinated molecule O2.

Figure 10.14 shows the MO energy levels of the oxygenated active center FeP
(P = porphyrin) of peroxidase with neutral imidazole, Fe(ImH)O2, and deproto-
nated imidazole, Fe(Im−)O2, computed [10.62] in the semiempirical MO LCAO
IEH (SCCC) approximation (Section 5.5). It is seen that, due to the excess elec-
tron, the energy level of the (mainly) lone-pair hybridized sp3 orbital of the distal
nitrogen rose up to the LUMO, which is (mainly) a strongly antibonding π∗ MO
of the oxygen molecule; the energy gap between the HOMO and LUMO �

becomes smaller than the pairing energy � (Sections 4.3 and 6.2). This separates
the lone pair of electrons, with one of them occupying the antibonding π∗ MO
of the O2 molecule, which results in its activation (Section 11.2).

Interestingly, the enzyme as a whole acts in the regime of feedback; the oxygen
molecule coordinates to the active center of the enzyme and the latter, depen-
dent on its function, activates the O—O bond (peroxidase, cytochrome P-450,
catalase), or not (hemoglobin). In the case of cytochrome P-450 the mechanism
of population of the antibonding π∗ MO of the coordinated oxygen is similar
to that of peroxidase. Calculations of the MO energy levels of the oxygenated
active center of cytochrome P-450 [10.63] in the same approximation as above
show that in the deprotonated form the energy of the lone pair of the sulfur
atom goes up, comes near to, and populates the antibonding π∗ MO of O2, thus
significantly activating the coordinated oxygen molecule. An additional electron
acts in the same direction, reducing the O—O bonding up to its cleavage [10.64]
(Section 11.2).

In fact, the problem of electron transfer in biologic systems is of general
importance. For an instant view of some topics related to this problem see, for
example, Refs. 10.60, 10.61, and 10.65–10.67.
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FIGURE 10.13. Comparison of conformational changes in hemoglobin (a) and peroxi-
dase (b) by oxygenation. The iron atom from the out-of-plane position (I) returns back
into the plane (II) with the effect of a T → R conformational transition in hemoglobin
(not shown in the figure) and deprotonation of peroxidase that leaves an excess electron
on the distal nitrogen atom.
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FIGURE 10.14. MO energy levels of the active center of oxygenated peroxidase with
imidazol, neutral FeP(ImH)O2, and deprotonated FeP(Im−)O2. In the last case one elec-
tron from the distal nitrogen lone pair populates the strongly antibonding π∗ MO of the
coordinated oxygen molecule [ψ(O2) and ψ(Im) are the corresponding MOs].

SUMMARY NOTES

1. Charge transfer or charge redistribution takes place at the beginning of
any chemical transformation, thus determining the initial conditions of its
evolution. Charge transfer by coordination is one of the most important
features of any TMS. Integer electron transfer takes place between weakly
interacting systems, as well as between the centers in multicenter TMSs,
essentially determining their properties.

2. The direction of charge transfer between two interacting systems can be
determined by comparing their HOMO and LUMO energy levels or chem-
ical potentials. The amount of charge transfer can be estimated by their
redox capacitance or their chemical hardness. The notion of soft and hard
acids and bases is directly related to these magnitudes.

3. In mixed-valence compounds the localized–delocalized electron alterna-
tive determines their main properties. The probability of electron transfer
depends on exchange interaction between the centers and the vibronic
coupling to the nuclear displacements on each center, as well as on the
exchange interaction with other electrons in case of open-shell cores. Addi-
tional complications emerge from possible JT and/or PJT interaction on
each center.

4. Charge transfer to any system produces changes in its nuclear configu-
ration via the vibronic coupling, resulting in either small distortions or
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more fundamental changes of its conformation, thus serving as a trigger
mechanism of electron-conformational transitions . Many biological TMSs
are very sensitive to such effects because of their soft modes (softness to
structural changes in certain directions) and the presence of close-in-energy
levels in the transition metal site.

5. Hemoglobin, peroxidase, cytochrome P-450, and catalase are typical
examples of TMSs in which the electron-conformational effects triggered
by charge transfer determine their biological function.

EXERCISES AND PROBLEMS

P10.1. What is the difference between intramolecular charge transfer and inter-
molecular electron transfer? Give examples.

P10.2. Redox capacitance is defined as a measure of the ability to accept or
donate charge with smaller changes in HOMO energy. What kind of
system is expected to have larger capacitance? Is there a quantitative dif-
ference between the capacitances for accepting and donating charge? Is
there essential difference between redox capacitance and chemical soft-
ness (hardness)?

P10.3. The charge dependence of the HOMO energy of a molecular system
ε(q) = 14.1q2 + 80.2q + 38.6 (q in electrons, ε in 103 cm−1) was
obtained semiempirically from ionization potentials as indicated in
Section 5.5. Estimate the redox capacitance of this system and the charge
transfer by its coordination to iron porphyrin assuming that the energy
gap between them is 45 × 103 cm−1 (use the data of Example 10.1 for
iron porphyrin capacitance).

P10.4. One of the main problems of mixed-valence compounds is the locali-
zation–delocalization alternative for the excess electron. What parameters
of the system characterize this alternative? How can this problem be
addressed experimentally; that is, what experimental observations can be
related to this phenomenon?

P10.5. In three-center and four-center mixed-valence compounds there is a pos-
sibility of coexistence of localized and delocalized states of the excess
electron. Explain what this means from the physical perspective and how
this phenomenon can be confirmed experimentally.

P10.6. In Section 10.3 it is stated that some biological systems are susceptible to
electron-conformational changes. What are the general conditions for such
susceptibility, and why do biological systems feature these conditions?
Give examples of such biological systems and identify which of their
properties confirm this electron-conformational susceptibility.

P10.7. The trigger mechanism of hemoglobin oxygenation is shown to be
due to the PJTE, which makes the iron atom position in the porphyrin
plane unstable in the absence of oxygen and drives it back in plane
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by oxygenation. An earlier explanation of this effect was that the
out-of-plane position of the iron atom is caused by its large atomic radius
in the high-spin configuration that does not fit the porphyrin cavity,
and that it transfers to the low-spin (small-radius) one by oxygenation.
Why is this ball-hole-fitting explanation unacceptable? (Hint : Utilize the
discussion of this issue from Section 9.2.)

P10.8. Several metallobiochemical systems, such as hemoglobin, catalase, per-
oxidase, and cytochrome P-450, have quite similar (almost the same) iron
porphyrin active sites, and their function begins by coordination of the
oxygen molecule (in peroxidase the coordinated molecule is H2O2, which
can be modeled by O2). Meanwhile, their biological function is quite dif-
ferent. How is this explained in terms of electronic structure and vibronic
coupling in the active site?
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11
REACTIVITY AND
CATALYTIC ACTION

Chemical transformations form the heart of all of chemistry; the problem is to
establish how chemical reactions, including their rates and mechanisms, depend
on the structure and properties of the reactants, and to be able to control this
phenomenon .

11.1. ELECTRONIC FACTORS IN REACTIVITY

Chemical reactivity characterizes the relative ability of a molecular system to
interact with other molecules (or atoms) during their collision, determining the
reaction rate. It obviously also depends on the properties of the other molecule,
the reagent. Therefore, reactivity is reaction-specific, and it depends on the mech-
anism of the elementary act of the reaction. In reactions with the same reagent
different reactants may have different reactivities, which, however, may not nec-
essarily be the same for different reagents.

Chemical Reactivity and Activated Complexes

The main quantitative characteristic of a chemical reaction is the reaction rate,
which also depends on kinetic factors , including temperature and reactant con-
centrations. While kinetic factors have similar features in many reactions and
can be relatively easily controlled, the elementary act is the most important stage
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determining the specificity and huge diversity of chemical reactions. General pre-
sentation of the energetics of elementary chemical reactions is usually given by
means of the notion of the energy barrier of the reaction, the activation energy
D, and the exponential dependence of the reaction rate constant k on D (the
Arrhenius law ):

k = A exp
−D

kBT
(11.1)

where A is the frequency factor, kB is the Boltzmann constant, and T is the
temperature.

Consider an elementary reaction starting with stable reactants and ending with
stable products. To transform the reactant molecules to the products, some of the
chemical bonds should break down, while others are formed. Usually a break-
down or activation of some bonds is required first, and then the activated bonds
undergo transformations. This means that in the process of the chemical reaction
the energy of the system should increase first (activation), and then decrease
following the formation of new bonds.

The energy of this process is lower when the displacements of atoms realizing
the breakdown of some bonds and formation of others are correlated (concerted).
The generalized coordinate Q of these atomic displacements is called the reaction
coordinate or reaction pathway (more, concisely, the reaction path). The latter is
thus the generalized coordinate of correlated motions of the atoms of the reactants
toward the products along which the activation energy D is minimal. The reaction
pathway follows in detail (in intermediate points) the bond breakdowns and new-
bond formation determining the mechanism of the elementary act of the reaction,
the reaction dynamics .

With respect to the reaction coordinate Q, the cross section of the APES of the
system (Section 7.1) appears as shown in Fig. 11.1 The configuration QD of the
point M for which the energy of the interacting system is maximal is called the
activated state of the reaction or activated complex . Sometimes the activated state
is relatively stable (this possibility is shown in Fig. 11.1 by the dashed line). There
are reactions with zero activation energy, D = 0 (non-Arrhenius reactions); their
rate is determined by kinetic factors only. By definition, the activation energy
along Q is minimal; hence any other way gives a higher value of D. This means
that in the extended space point M is a saddle point: a maximum along Q and
a minimum along other coordinates orthogonal to Q.

According to Eq. (11.1), the rate of the elementary reaction increases expo-
nentially with temperature. At low temperatures k is very small, but the reaction
barrier can still be penetrated by quantum-mechanical tunneling. The rate of tun-
neling reactions is independent of temperature [11.2]. The energy barrier of the
reaction is directly dependent on the structure of the reactants and the mecha-
nism of the elementary act. For a specific mechanism, the elementary reaction
rate depends on the structure of the reactants.

The inverse of activation energy D−1 may be taken as a quantitative measure
of the reactivity of the molecule in the reaction under consideration . The activated
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FIGURE 11.1. Schematic presentation of the potential energy curve of a chemical reac-
tion along the reaction pathway (generalized coordinate) Q from the reagents (R) to the
products (P) via the activated state (M). D and �H denote the activation energy and heat
of the reaction, respectively. The dashed line shows the possible relative stability of the
activated state.

state (or the activated complex) is most important in the chemical reaction because
it determines both the activation energy (the rate of the reaction) and the ele-
mentary reaction mechanism. According to quantum mechanics, the Schrödinger
equation (1.5) for the saddle-point-type potential at point M of Fig. 11.1 has
no stationary (localized) solutions, meaning that direct spectroscopic observation
of an activated state that corresponds to this point is impossible. However, if
an additional minimum at the top of the reaction curve exists (dashed line in
Fig. 11.1), the state in this well may be observed by high-resolution femtosecond
spectroscopy [11.3], provided its depth is greater than the kinetic energy of the
corresponding nuclear motions; the state M can be regarded as an isomeric state
of the system.

An interesting relation between the activation energy D and the reaction energy
�H (the heat of the reaction on Fig. 11.1) is given by the Marcus equation
[11.4]. Derived first for electron transfer reactions, it proved to be of more gen-
eral importance for many other chemical reactions. Assume that the reactants
and products can be approximately characterized by two parabolas as shown in
Fig. 11.2 with the reaction coordinate Q changing from Q = 0 at the reactants to
Q = Q0 for the products (the main conclusions do not depend crucially on this
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ΔH

ε1

ε2

D

0 Q1

Q0
Q

FIGURE 11.2. Adiabatic curves of the reactants and products as a function of the reaction
path illustrating the Marcus equation. Q1 and Q0 are the coordinates of the activated
complex and products, respectively; D is the activation energy, and �H is the heat of
the reaction.

simplified presentation). Then the two parabolas can be presented as ε1 = 1
2KQ2

and ε2 = ( 1
2

)
K (Q − Q0)

2 (the force constants K are taken the same in both
parabolas for simplicity). Their intersection at Q = Q1 may be assumed to char-
acterize the transition state, and hence D is the activation energy. It can easily
be shown that under these conditions

Q1 = 1

2
Q0 + �H

2KQ0
(11.2)

If the reaction is thermally neutral, that is, �H = 0, then Q1 = Q0/2, and
for such reactions the activation energy (sometimes called intrinsic activation
energy) D0 = 1

2KQ2
1 = 1

8KQ2
0. Obviously, Q1 decreases with the increase in

the negative reaction energy �H in exothermic reactions. For the activation
energy D = 1

2KQ2
1 of such reactions, we obtain

D = D0 + �H

2
+ (�H)2

16D0
(11.3)

In essence this is the Marcus equation [11.4]. The last term in this equation is
usually much smaller than the second one, so the direct conclusion from the
Marcus equation is that for similar reactions (reaction with approximately the
same D0) the difference in activation energy D is roughly half the reaction energy
�H , and D decreases as the reaction becomes more exothermic (�H < 0). At
approximately �H = −4D0 a turnover should occur as D becomes negative,
but experimentally such large exothermic reactions are difficult to realize. Also,
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of course, the meaning of the intrinsic activation energy D0 is not rigorously
defined and it is not clear when different reactions may be considered to have
approximately the same D0 value.

Some qualitative assumptions similar to the conclusions from the Marcus
equation were known earlier as the Bell–Evans–Polanyi principle and Hammond
postulate [11.5].

In Section 7.4 the theorem of uniqueness of the vibronic origin of molecu-
lar instability is discussed, and it is shown that in accordance with the TEST
paradigm instability of the ground state is due to the vibronic mixing with stable
excited states. In application to activated complexes of chemical reactions the
theory predicts the existence of stable excited states in the configuration QD

of the activated complex, provided that the two-level or a similar several-level
approximation is valid.

In the two-level approximation, the curvatures of the adiabatic potential
energy curves for the two states, ground 1 and excited 2, that are mixed by the
vibronic coupling, are given by Eq. (7.94), from which it follows that if, at point
QD , the ground state is unstable in the Q direction, K1 < 0, K

(1)
0 < F 2/�,

then the excited state is stable in this direction, K2 > 0 [11.6]. The energy level
of the stable excited state can, in principle, be estimated from the resonances
in the molecular beam experiments (scattering of the reactants as a function of
their kinetic energy). Some further details and useful formulas for this issue are
derived and discussed in Ref. 11.7.

Frontier Orbitals and Perturbation Theory

An important problem is to relate the reactivity and reaction mechanism to the
electronic structure of the interacting systems. As mentioned in the introduction
to Chapter 7, any molecular transformation begins with changes in the much less
inertial electron distribution, which then impels the nuclei (via vibronic coupling)
to rearrange. Therefore, the beginning of the chemical reaction should be sought
for in the electronic structure of the reactants. In previous sections the interaction
between two atomic groups is considered in terms of their possible bonding; here
a similar interaction is studied with respect to the chemical reaction.

The outer electrons enter the interaction first. The electronic charge
distribution in the separated reactants (as in any other atomic system) decreases
exponentially with the distance from their nuclei, with the exponential power
proportional to the electron energy (Section 2.1). Hence the outer electrons
have the highest energy, and they form the HOMO. However, the interaction
of the HOMO of one system with the HOMO of the other one, both occupied
(Fig. 11.3a), does not change significantly the electron distribution and bonding
because it results in equal population of the bonding and antibonding orbitals
(Section 5.2). The inclusion of the LUMO in the bonding makes some of the
bonding states uncompensated (Fig. 11.3b). The HOMO–LUMO states form
frontier orbitals . The theory of molecular interactions in the approximation of
frontier orbitals has been developed by Fukui [11.8].
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In many cases, particularly with transition metal participation, not one but
several HOMOs and LUMOs, as well as single-electron occupied MOs (SOMOs),
are active in the intermolecular interaction. In a more rigorous treatment all the
orbitals of corresponding symmetry may be involved in the interaction, but in
a qualitative treatment some of those MOs that are energetically close to the
frontier orbitals may be distinguished as giving the major contribution. This
group of active MOs is sometimes called generalized frontier orbitals .

With respect to frontier orbitals, chemical reactions can be divided into three
types, illustrated schematically in Fig. 11.4. In the first type (Fig. 11.4a) the
reactant participates in the interaction with its HOMO, while the reagent pro-
vides its LUMO (electrophilic reagent ). This interaction has a donor–acceptor
nature (Sections 6.1 and 10.1). In Fig. 11.4b the second type of reaction, with a
nucleophilic reagent , is shown. Finally, the reagent shown in Fig. 11.4c has an
unpaired electron on the HOMO (radical reagent) that participates in the inter-
action as both a HOMO and a LUMO; the reactant in this condition also takes
part with both HOMO and LUMO (exchange reactions).

In Section 10.1, it is shown how the interaction between two molecular groups
results in electron charge transfer from one of them to another, but the energetics
of this interaction, which determines the activation energy and reaction path, is
not considered there. At a relatively large distance the interaction energy can be
estimated using perturbation theory [11.8, 11.9]. The idea is to consider the fron-
tier orbitals of the reactant perturbed by the formation of MOs with the reagent.
The situation is similar to that of weak covalence considered in Section 5.2.
Using formulas similar to Eqs. (5.30) and (5.31), and omitting the intermedi-
ate transformations, we come to the following expression for the energy of two
interacting atoms s and t of the molecular groups [11.8, 11.9]:

�E = −qsqt

Rst ε
+ 2

∑

m

∑

n

(cm
s cn

t β
mn
st )2

Es
m − Et

n

(11.4)

In this equation qs and qt are the atomic charges of the s and t atoms; Rst is
the distance between them; ε is the effective dielectric constant of the medium
(solvent); cm

s and cn
t are the LCAO coefficients of the MOs m and n, respectively,

in which the atoms s of the reactant and t of the reagent take part; βmn
st is the

corresponding resonance integral between the two interacting states; and Em and
En are the MO energies. The summation in (11.4) is carried out over the HOMOs
m in the reactant and LUMOs n in the reagent in donor–acceptor (electrophilic)
reactions (Fig. 11.4a), and vice versa in nucleophilic reactions (Fig. 11.4b). In
exchange reactions with radicals both m and n contain HOMOs and LUMOs,
but in each term one of the indices belongs to HOMOs and the other to LUMOs
(otherwise the corresponding contribution to the bonding, as shown in Fig. 11.3,
is near zero). If there are more than one pair of interacting atoms, Eq. (11.4)
should be summed over all of them.

The first term in Eq. (11.4) denotes the electrostatic interaction between the
atoms s and t , while the second term represents the covalence contribution
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FIGURE 11.3. Frontier orbital interactions: HOMO–HOMO interaction in (a) does not
result in MO bonding (the bonding and antibonding MO compensate each other), whereas
HOMO–LUMO in (b) does.

FIGURE 11.4. HOMO and LUMO in the interaction of a reactant with an electrophile
(a), nucleophile (b) and radical (c) reagent. (From Fukui [11.8].)

of orbital overlap and formation of MOs. The latter demands nonzero overlap
between the HOMOs of the reactant with the LUMOs of the reagent, or vice versa,
and small energy separation between them. Depending on the electronic structure
of the interacting groups, the two terms in Eq. (11.4), electrostatic and covalent ,
can be of different orders of magnitude. Therefore, it is convenient to consider
two cases: (1) the electrostatic term is predominant and the covalent contribution
can be neglected—charge-controlled reactions; and (2) the electrostatic term
can be neglected as compared with the covalent contribution—orbital-controlled
reactions . Certainly, there are reactions that may be classified as both charge-
and orbital-controlled.

The difference between charge-controlled and orbital-controlled reactions may
be very significant. Indeed, electrostatic interactions are scalar and do not require
specific orientations of the interacting species, whereas MO formation is possible
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only between appropriately oriented orbitals that give nonzero overlap. Hence,
unlike charge-controlled reactions, orbital-controlled reactions are stereoselective
(see discussion of orbital symmetry rules below).

Provided that the mutual orientation of the interacting groups is not restricted,
there are always such positions when the overlap of the corresponding orbitals is
nonzero. But this does not mean that the reaction is necessarily orbital-controlled,
even when the charges are small, because the energy difference Em − En between
the overlapping orbitals may be large, making the corresponding terms in (11.4)
small; orbital-controlled reactions require small energy gaps between the over-
lapping HOMOs of the reactant and the LUMOs of the reagent (Fig. 11.4). In
particular, when the HOMOs and LUMOs in question are almost degenerate,
En ≈ Em, the perturbation problem should be solved for a degenerate state; then
the covalent contribution to the interaction energy �E is due mainly to this
degenerate interaction:

�E ≈ 2cm
s cn

t β
mn
st (11.5)

The role of orbital overlap in the reactant–reagent interaction allowed Fukui
[11.8] to formulate a general orientation principle:

A majority of chemical reactions are liable to take place at the position and in the
direction where the overlapping of HOMO and LUMO of the respective reactants
is maximum; in the electron-donating species, HOMO predominates in the over-
lapping interaction, whereas LUMO does so in an electron-accepting reactant; in
the reacting species which have SOMO’s these play the part of HOMO or LUMO,
or both.

The theory of frontier orbitals in reactivity was created mainly for organic
compounds [11.8, 11.9], but its basic features, especially the perturbation theory
formulas (11.4), (11.5), can also be applied to coordination compounds with the
metal atom participation. In these cases, the number of interacting HOMOs and
LUMOs is usually larger than for organic compounds. For this reason, and due to
the specificity of d orbitals, the exploitation of reactivity indices (frontier electron
density, delocalizability, superdelocalizability, etc. [11.8]) is less important for
transition metal coordination compounds.

The electrostatic term in (11.4) may be more important for transition metal
compounds than for organic compounds. Even when the interacting atomic groups
are initially neutral, they may become charged as a result of the interaction due
to charge transfer. These charges may be small, and hence the covalent term in
the interaction can be predominant, but the electrostatic term cannot be a priori
neglected.

Orbital Symmetry Rules in Reaction Mechanisms

Orbital symmetry rules in the mechanisms of chemical reactions follow directly
from the above mentioned treatment of intermolecular interactions that precede
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FIGURE 11.5. MO energy-level correlation diagram illustrating the
Woodward–Hoffmann orbital symmetry rule in formation of cyclobutane from
two ethylene molecules. S and A indicate the symmetry properties, symmetric and
antisymmetric, respectively, with respect to reflections in the two symmetry planes of
the rectangular transition state. (From Woodward and Hoffmann [11.10].)

the reaction. The covalent contribution to this interaction, discussed above, is
determined by the overlap of the orbitals of the interacting atoms, which depends
strongly on their mutual orientation. Therefore, for orbital-controlled reactions,
the energy of the activated complex (the energy barrier of the reaction) depends
strongly on the mutual orientation of the interacting species. The overlap between
atomic orbitals is nonzero if they possess the same symmetry properties (Section
2.1) in the molecular configuration of the activated complex. Hence the latter
should be chosen to satisfy the condition of the same symmetry of the close-in-
energy interacting HOMOs and LUMOs of the reactants and reagents. In other
words, in order to ensure a low-energy barrier of the chemical reaction, the orbital
overlaps that promote the formation of new bonds should be sufficiently large to
compensate for the breakdown of the old bonds in the process of the reaction.

Orbital symmetry rules were suggested and developed for widespread use by
Woodward and Hoffmann [11.10]. In Fig. 11.5 the visual treatment of these rules
is reproduced for the formation of cyclobutane from two ethylene molecules
through the rectangular activated complex. It is seen that the formation of σ

bonds between the carbon atoms of the two molecules (before the break of the π

bonds in each molecule) can take place only by involving excited MOs that have
the same symmetry as the ground state. If the corresponding excited state, as in
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ethylene, is too high in energy, the formation of σ bonds does not compensate
for the breakdown of the π bonds.

This is seen from the one-electron MO correlation diagram (Fig. 11.5), in
which the energy levels of the newly formed MOs and the old MOs that are
broken in the process of the reaction are connected by straight lines. Because
of the high position of the appropriate excited MO, the corresponding lines in
Fig. 11.5 rise steeply, and in the intermediate area corresponding to the activated
complex the energy is rather high—the reaction barrier assumes high values. The
latter can be estimated approximately by accounting for the fact that the excited
state under consideration corresponds to a transition of the bonding electrons to
the antibonding MO (in both molecules), resulting in an excitation energy of
∼5 eV (115 kcal/mol).

A more detailed energy-level diagram for this system [11.10] shows that, along
with the abovementioned excited states, there are others much lower in energy
but of different symmetry. In particular, if starting from an appropriate excited
state, the two ethylene molecules can form the cyclobutane molecule (also in
its excited state) without any activation barrier. Consequently, this reaction is
allowed as a photochemical reaction.

Further developments and other formulations of the orbital symmetry rules
were suggested by Pearson, based on the work of Bader [11.11] and others
(see Pearson’s book [11.12] and references cited therein). We demonstrate here
a treatment that employs the pseudo Jahn–Teller effect (PJTE) [11.6], which
seems to be more appropriate to transition metal coordination compounds under
consideration. From the results obtained in Section 7.4, we know that if there is
only one active excited state �′ that is sufficiently close in energy to the ground
state of the activated complex, the nuclear configuration of the latter softens in a
particular direction Q�∗ , and this coordinate is determined by the condition that
the vibronic constant F (��′) = 〈�|(∂V/∂Q�∗)0|�′〉 is nonzero. The symmetry �∗
of this Q�∗ displacement is determined by the symmetries of the wavefunctions of
the states � and �′ : �∗ = � × �′. Therefore, if the symmetries of the ground and
corresponding excited states of the activated complex are known, the direction of
its labilization (and hence a specific mechanism of the reaction) can be predicted.

Consider two approaching molecular closed-shell systems A and B, each of
which is stable separately. The interaction forms a united system leading to the
activated complex AB with its own symmetry and own energy spacing �. What
are the directions of the lowest (or even negative) curvature of the adiabatic curve
of the AB system? To answer this question using the vibronic coupling approach,
the symmetries of the wavefunctions of the ground and low-lying excited states
are needed. If the two molecules A and B are approaching each other with an
unchanged mutual orientation, meaning that the symmetry group of the complex
AB remains the same (and only intermolecular interatomic distances change), the
coordinate of the reaction Q�∗ is totally symmetric with respect to the activated
complex AB. Therefore, the reaction mechanism under consideration is allowed
if and only if the wavefunctions of the HOMO of A ψA

1 and LUMO of B ψB
2

(or ψB
1 and ψA

2 ) have the same symmetry (a nonzero overlap integral) in the AB
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configuration. Otherwise, the reaction mechanism is forbidden. This explains the
origin of the expression preservation of orbital symmetry in chemical reactions .
This term is also related to the general preservation rules [11.13]. If there are
several close-in-energy HOMOs and/or LUMOs, the contribution of each pair of
these MOs should be examined and the results summarized (strictly speaking,
the multilevel problem must be solved). It was shown that the vibronic approach
contains all the features of the phenomenon and adds some quantitative criteria
for favorable mechanisms of the reaction (the criteria of HOMO–LUMO pseudo
JTE).

The orbital symmetry rules in their qualitative version are widely used in
the study and prediction of elementary reaction mechanisms. Examples of these
applications can be found in monographs, reviews, and original papers [11.10],
11.12]. Following the orbital symmetry rules, a forbidden reaction between two
molecular systems may become allowed by interaction with a third molecular
system (the catalyst). Example 11.1 elucidates this important issue.

EXAMPLE 11.1

Orbital Symmetry Rules and Vibronic Coupling in Formation of
Cyclobutane from Ethylene with Catalyst Participation

Without the catalyst, the reaction of formation of cyclobutane from two
ethylene molecules via a rectangular activated complex is forbidden. Its
MO energy-level correlation diagram is given in Fig. 11.5. Following
Mango and Schachtschneider [11.14] (who were the first to consider
this case), we assume that both molecules are cis-coordinated to the
transition metal atom M with the two C C bonds perpendicular to the
plane of the metal–ligand bonds. The two coordinated parallel ethylene
molecules, by moving along the Q∗ coordinate, which preserves their
rectangular arrangement, produce the coordinated cyclobutane molecule
(the atom M is beyond the plane):

M

C C

CC
Q*

· · ·

·
·
·

·
·
·

· · ·

C

C
···M···

C

C
(11.6)

One can see that with the participation of the metal atom, the symme-
try of the system and the symmetry of the reaction coordinate Q∗ are the
same as for the reaction without catalyst participation. In particular, the
two planes of symmetry are preserved with respect to reflections, and
hence the classification of the MO states remains as shown in Fig. 11.5.
However, the positions of the MO energy levels under the influence of the
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metal atom vary significantly, and this is the main effect of the catalyst
in the scheme under consideration .

In Fig. 11.6 the MO correlation diagram for this case with a tran-
sition metal M that has the electronic configuration d8 is given; only
the π bonds of the ethylene molecules (transforming to σ bonds in
cyclobutane) and the d states of metal atom are shown; the s and p

states of the metal are omitted. These energy levels must be populated
by six electrons (two electrons from the d8 metal and two electrons from
each of the two ethylene molecules). As compared with the MO cor-
relation diagram without the metal participation (Fig. 11.5), the energy
levels of the cyclobutane molecule vary substantially; for the antibond-
ing σ MO (σ ∗

1 + σ ∗
2 ) with SA symmetry the energy lowers, while the AS

(σ1 − σ2) MO energy increases. As a result, the energy gap � between
the ground and excited states decreases and the vibronic reduction of the
APES curvature in the Q∗ direction increases; the reaction barrier (its
top shown in Fig. 11.6 as the d8 crossing) becomes essentially smaller.
For d10 metals these (or somewhat changed) energy levels should be
occupied by eight electrons resulting in the population of the b∗

2(dx2 –y2)

and b2(σ
∗
1 + σ ∗

2 ) levels (Fig. 11.6). It does not significantly increase the
reaction barrier (shown in Fig. 11.6 as d10 crossing). These results agree

FIGURE 11.6. Correlation diagram for cyclobutane formation from two ethy-
lene molecules with catalyst (transition metal M) participation. The crossings
d8 and d10 illustrate the reaction barrier formation for the corresponding metal
dn configurations.
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well with the empirical data on the d8 and d10 metal activity as catalyst
in the reactions in question [11.14]. Quantitatively, the catalyst influence
depends critically on the magnitude of the energy level shifts produced
by coordination to the metal and the corresponding vibronic constant F
in Eq. (7.71).

11.2. ELECTRONIC CONTROL OF CHEMICAL ACTIVATION
VIA VIBRONIC COUPLING

Chemical Activation by Electron Rearrangement

As stated in the previous section, the dependence of the rate of the elementary act
of the chemical reaction on the activation energy D is exponential [Eq. (11.1)],
and hence even a small change of D results in a considerable change of the reac-
tion rate; D−1 can be taken as a measure of reactivity of one of the reactants in
the reaction with the other one. To lower the D value from D0 to D means to acti-
vate the molecule; therefore, the change −�D = D − D0 can be called chemical
activation . How can chemical activation be controlled? To answer this question,
consider the rising portion of APES of the chemical reaction from the minimum
R to the maximum M (Fig. 11.1). For simplicity, let us present this curve by a
cubic polynomial (presentation by Morse potentials may also be useful [11.17a]):

ε(Q) = a + bQ + cQ2 + dQ3 (11.7)

The constants in this polynomial have a clear physical meaning. By choosing
the energy reference ε(0) = 0, we get a = 0; (∂ε/∂Q)0 = F is the force acting
on the nuclear framework in the Q direction at Q = 0, that is, it coincides
with the definition of the linear vibronic constant F (Section 7.2), hence b =
F ; 1

2 (∂2ε/∂Q2)0 = K is the curvature at the minimum (or the force constant),
hence c = 1

2K ; and d is the cubic anharmonicity that is convenient to denote
by d = −γ . If the point Q = 0 is taken at the minimum, then the system is in
equilibrium at this point, F = 0, and the reaction curve appears as follows (the
subscript zero at ε, K , and γ denotes initial values):

ε0(Q) = 1
2K0Q

2 − γ0Q
3 (11.8)

By differentiating, one can easily ensure that in these notations (where Q0D

is the coordinate of the maximum of the energy barrier)

D0 = K3
0

54γ 2
0

(11.9)

Q0D = K0

3γ0
=

(
6D0

K0

)1/2

(11.10)
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It is seen that if F = 0, D0 is determined by only two parameters, K0 and
γ0, and by all three parameters F , K0, and γ0, if F �= 0. Hence, to change the
D value, one must change some or all of these parameters without changing the
reactants . The only way to do this is to change their electronic state, to rear-
range the electronic structure. There are several ways to rearrange the electronic
structure of the reactants, including excitation, oxidation, reduction, ionization,
and chemical perturbation by involving another molecular system. The latter thus
acts as a catalyst .

To study the influence of electron rearrangements on chemical activation,
the results of the vibronic coupling theory (Sections 7.2 and 7.4) and espe-
cially the use of orbital vibronic constants (Section 7.2) may be most efficient
[11.15–11.17]. The orbital vibronic constants f

(ij)

�∗ and orbital contribution to the
force constant ki

�∗ as defined by (7.25) and (7.29), respectively, are employed
below. For simplicity, the indication of the representation �∗ of the reaction
coordinate Q is sometimes omitted.

As formulated in Section 7.2, the diagonal linear orbital vibronic constant
(OVC) f i

�∗ equals the force with which the electron of the ith MO distorts
the nuclear framework in the direction of the symmetrized displacements Q�∗
minus the proportion of the nuclear repulsion force in this direction per electron.
Consequently, the total force distorting the molecule in this direction (the integral
vibronic constant F�

�∗) is given by Eq. (7.26): F�
�∗ = ∑

i q�
i f i

�∗ (the “addition
rule”); q�

i is the electron occupation number for the ith MO in the electronic
state � under consideration. If the system is (statically) stable with respect to
the Q�∗ displacement, then F�

�∗ = ∑
i q�

i f i
�∗ = 0. The OVC are different for

different orbitals; the nuclear repulsion per electron is independent of the MO,
whereas the electron distribution changes considerably from one MO to another.
In particular, in diatomics the bonding influence of the electron of the bonding
MO is stronger than the nuclear repulsion per electron, f i

R
> 0 (where R is the

interatomic distance), whereas the opposite is true for the antibonding orbitals:
f i

R < 0. The OVC are thus a measure of the MO bonding. At the point of stability
these different values of OVC are exactly compensating each other and F�

�∗ = 0
holds. Similar relationships can be obtained for the off-diagonal OVC and orbital
force constants given by Eqs. (7.28) and (7.29).

By coordination of a ligand to the activation center their electronic distri-
butions change. If sufficiently small, the variation in electronic structure in the
first approximation can be described by the changes in MO electronic occupation
numbers—orbital charge transfers �qi (Sections 5.2, 10.1, and 6.3). If these �qi

values are not very large (usually of the order of one electron), one can use them
as characteristics of the perturbational intermolecular influence by coordination
(the ratio �qi/q, where q is the total electronic charge, may be used as a measure
of perturbation of the system by orbital charge transfers).

The electronic redistribution is thus presented by the new orbital occupa-
tion numbers q�

i + �qi . If the initial system is stable, F�∗ = 0 and K�∗ > 0
(the superscript � of the electronic state of the system as a whole is omitted),
the substitution qi → qi + �qi in Eqs. (7.26) and (7.29) lead to the following
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relationships:

F�∗ =
∑

i

�qi f i
�∗ (11.11)

�K�∗ = K ′
�∗ − K�∗ =

∑
�qi ki

�∗ +
∑

i �=j

qi �qj |f (ij)

�∗ |2
�ji

(11.12)

Hence the electronic rearrangement, included in the changes in orbital occupan-
cies �qi , results in a nonzero distorting force F�∗ �= 0 and a change in the force
constant �K�∗ in the direction Q�∗ , for which f i

�∗ �= 0 and/or f
(ij)

�∗ �= 0 (i is
the index of the MO for which �qi �= 0). The direction of the distorting force
Q�∗ depends on the symmetry �i of the ith MO. As mentioned in Section 7.2,
f i

�∗ is nonzero if the symmetric product [�i × �i] contains �∗ (Section 3.4 and
Table A1.14). If �i is nondegenerate, � = A1 is totally symmetric; electrons of
nondegenerate MOs distort the molecule in the direction of totally symmetric
displacements A1 which do not change the symmetry of the system. If �i is
degenerate, �∗ can be nontotally symmetric, but it should be Jahn–Teller active.

As for the change in the force constant �K�∗, �∗ can be of any symmetry
allowed in the corresponding point group. This is seen directly from the second
term in Eq. (7.29), in which f

(ij)

�∗ is nonzero if �∗ = �i × �j , while �i and �j

for the ground and excited states, respectively, may belong to any symmetry rep-
resentations. Similar expressions can be obtained for the change in anharmonicity
constants �γ .

The occurrence of distorting forces and changes in the force constants and
anharmonicities due to electronic rearrangements directly explain the change in
the reactivity of the molecule—its chemical activation . With the new constants
of the rearranged electronic structure F , K = K0 + �K , and γ = γ0 + �γ , the
rising portion of the reaction curve becomes as follows (Fig. 11.7):

ε(Q) = FQ + 1
2KQ2 − γQ3 (11.13)

This equation differs from (11.8) and yields a different activation energy of the
reactions D:

D = (K − 6γQ0)
3

54γ 2
(11.14)

where Q0 is the new equilibrium position of the reactants (for the unperturbed
system Q = 0):

Q0 = K

6γ

[

1 −
(

1+12γF

K2

)1/2
]

(11.15)
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FIGURE 11.7. Cross section of the APES of a molecular system in the direction of the
reaction path Q: (1) free molecule (dissociation curve); (2) influence of another reactant
(reaction curve); (3) influence of the catalyst (activation curve).

The new position of the maximum of the energy barriers is

QD = K

3γ
− Q0 (11.16)

Compared with the nonperturbed values, we have

D

D0
= (K − 6γQ0)

3γ 2
0

K3
0γ 2

(11.17)

All the parameters on the right-hand side of (11.17) can be, in principle,
estimated from empirical data. K and K0 are directly related to IR spectra:
K0 = Mω2

0, and K = Mω2, where ω0 and ω are the corresponding vibrational
frequencies of the reactants in the initial and electronically rearranged states,
respectively; Q0 is the new equilibrium position (distortion) in the rearranged
state. The coefficients in the cubic terms γ0 and γ can be expressed by spectro-
scopic anharmonicity correction ωx [11.18]: γ0/γ = β1/2(K0/K)3/2(�ω/�ω0) =
β1/2K0/K , where β = ω0x0/ωx is the ratio of the anharmonicity corrections in
the initial and rearranged system, respectively (usually, for small rearrangements
β does not differ very much from a unity).

For chemical activation, as defined at the beginning of this section, we have

−�D = D − D0 = D0

[

1 −
(

K

K0

)3 (
γ

γ0

)2
]

+ K2Q0

3γ
− 2KQ2

0 + 4γQ3
0

(11.18)

The last term proportional to Q3
0 is very small (Q0 is of the order of 10−1 Å)

and can be neglected. The remaining expression can be presented by two terms:
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−�D = D0

(

1 − β
K

K0

)

+ KQ0(QD − Q0) (11.19)

where QD − Q0 = Q′
D is the coordinate distance between the minimum R and

maximum M in the rearranged system (Fig. 11.10), and in the same notations
QD = (6βD0/K0)

1/2 − Q0. The following formula may be convenient:

D

D0
= K

β1/2K0

(
Q′

D

Q0D

)3

(11.20)

The first term on the right-hand side of the of equation of chemical activa-
tion (11.19) gives the contribution of the softening (hardening) by the electronic
rearrangement, while the second term represents a similar contribution of the
distortion force (it equals the work of the force F = K0Q along the distance Q′

D).
In both terms the anharmonicity is essential since it forms the barrier itself

(without anharmonicity there is no maximum of the reaction curve), although
the influence of the change in anharmonicity (the ratio of anharmonicities) in the
first term presented by the parameter β can be small. With the parameters F and
�K calculated by Eqs. (11.11) and (11.12), and �γ after a similar equation, one
can estimate K and γ (K0 and γ0 are assumed to be known) and the chemical
activation −�D. Another, much easier, way to use Eq. (11.17) or (11.18) is to
estimate the parameters from empirical data.

For a polyatomic molecule with many degrees of freedom the consideration
and conclusions presented above apply to each normal coordinate, in particular,
to the reaction path (which may be a linear combination of normal coordinates).
In these multidimensional cases the expressions obtained above can also be used
for determining the change in molecular geometry by electronic rearrangement
(Section 9.2).

Equation (11.19) is approximate and is valid only for small changes in the
electronic structure as compared with the initial structure. Such electronic rear-
rangement occurs in the abovementioned processes of oxidation, reduction, exci-
tation, ionization, and coordination of one molecular system to another molecule
(in the process of chemical reaction) or to a coordination center as a ligand, on
a solid surface (chemical adsorption), and so on.

The latter cases can be jointed together under a common title of activation by
coordination . This topic is of special importance. The changes in MO occu-
pancies due to the charge transfers to the coordination center and back are
fractional. While the cases of integer charge transfers (oxidation, reduction, ion-
ization, excitation, etc.) can in principle be treated by other methods (e.g., by
quantum-chemical calculations of the electronic structure of the initial and final
systems), the approximate analysis of the properties of molecular systems with
fractional charges can apparently be carried out only by the approach described
above involving the OVC, although, of course, there is the possibility of calculat-
ing the full electronic structure of the whole system with and without the ligand,
and with and without the other reactant, which is impractical in many cases.
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The assumption of weak changes in the electronic structure by coordination is
valid in many systems. It is confirmed by spectroscopic investigations indicating
that the coordinated molecule preserves its main individual structural features
moderately changed by coordination. Certainly, this assumption is not always
true. For example, the hydrogen molecule may dissociate by coordination, thus
changing its structural features. Even in these cases, if the process is evaluated
according to the abovementioned approach at an early stage when the coordina-
tion is still sufficiently weak, the direction of the reaction, as well as some other
features, may be predicted qualitatively.

Activation of Small Molecules by Coordination: Semiempirical Approach

Chemical activation due to electron rearrangements induced by interaction with
(or coordination to) another molecular system are of special interest; they model
the activation mechanism in catalysis. To consider this activation in the scheme
described above, the orbital charge transfers �qi , orbital vibronic constants f i ,
orbital contributions to the force constant ki , and anharmonicities for each MO
of the activated molecule are needed [see Eqs. (11.11), and (11.12)].

First, we note the importance of the number of MOs involved in the coordi-
nation. Mono-, di-, and multiorbital bonds with ligands are considered in Section
6.3. The number of active MOs is important, in particular, because it influences
the orbital charge transfers �q. As mentioned in Section 6.3, the total transfer by
coordination �q = �i�qi cannot be very large owing to thermodynamic restric-
tions (cf. the electroneutrality principle proposed by Pauling [11.19]). Therefore,
the absolute values of �qi may be large, in principle, only if more than one orbital
is involved in the bonding and they have different signs. When only two orbitals
are involved in the bonding—the HOMO and LUMO (diorbital bonds, Section
6.3)—the two �qi values often have opposite signs: �q1 < 0 and �q2 > 0. If
the HOMO is bonding [i.e., f (1) > 0] and the LUMO is antibonding [f (2) < 0],
then the resulting distorting force, according to Eq. (11.11), is

F = �q1f
(1) + �q2f

(2) = −(|�q1||f (1)| + |�q2||f (2)|) (11.21)

In other words, the contribution of the two orbitals to the distorting force
equals the sum of their absolute values, whereas the total charge transfer �q =
�q2 + �q1 may be very small. Similar conclusions are valid for the contributions
to the change of the force constant and anharmonicities. Consequently, the greater
the absolute values of the two charge transfers of opposite sign, the greater the
mutual vibronic influence of the interacting molecular systems. If there are more
than two orbitals active in the bond formation, the possibility of a favorable
combination of charge transfers that would increase the vibronic influence (but
preserve the required small total charge transfer �q) increases.

Hence the conclusion follows concerning the role of multiorbital bonding in
the vibronic influence of one molecular system on another as, for example, in
chemical activation in catalysis. The special role of transition and rare-earth
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elements and their compounds in chemical activation and catalysis is due to the
ability to form multiorbital bonds with various molecular groups .

For concrete calculations the values of OVC and orbital charge transfers �qi

are required. The latter are determined by the electronic structure of both the
coordinated molecule and the coordination center, as well as by the geometry of
coordination. The mode of coordination determines which orbitals of the coor-
dinated molecule overlapping those of the coordination center have the largest
changes �qi . Examples in Section 6.3 illustrate how these values can be calcu-
lated. Following are some semiempirical schemes and illustrative examples.

Consider the HOMO–LUMO two-orbital approximation. Neglecting the
changes in the MO occupation numbers for the inner orbitals, one can essentially
simplify Eqs. (11.11) and (11.12), which can be written in the following form
(where 1 and 2 refer to HOMO and LUMO, respectively):

F = f (1) �q1 + f (2)�q2

�K = k(1) �q1 + k(2)�q2 (11.22)

β−1 = C(1) �q1 + C(2)�q2

Here, in addition to �K = K − K0 as defined above, k(1) and k(2) are the
force constant coefficients (combinations of the second- and first-order vibronic
constants) that show how the force constant changes by adding one electron
on the corresponding MO (Section 7.2). The last equation in (11.22) describes
the linear dependence of the ratio of anharmonicity constants β on the charge
transfers �qi , where the coefficients C(1) and C(2) are complicated combinations
of cubic and lower-order OVC. For the anharmonicity changes, another
presentation is also possible:

�γ = γ − γ0 = γ (1)�q1 + γ (2)�q2 (11.23)

If there are more than two MOs of the coordinated molecule that are active in
the bonding with the metal (see Problem 11.8), the formulas (11.22) and (11.23)
should be extended accordingly:

F =
∑

i
f (i) �qi

�K =
∑

i
k(i)�qi (11.22′)

�γ =
∑

i
γ (i)�qi

where the sum is taken over the number of active ortbials.
All the coefficients f (i), k(i), C(i), γ or γ (i) instead of C(i)� in Eqs. (11.22)

and (11.22′) can be easily determined if the values of F , �K , and β (or �γ ) are
known for any two independent processes of electronic rearrangements (for two
pairs of values of �q1 and �q2 excluding the trivial values �q1 = �q2 = 0).
These processes may be either ionization (�q1 = −1, �q2 = 0), reduction
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(�q1 = 0, �q2 = 1), or excitation (�q1 = −1, �q2 = 1), provided that the
above mentioned empirical parameters are available for them.

As mentioned above, the force constants K and K0 can be obtained from the
corresponding vibrational frequencies, while the magnitude of distortion Q0 is in
general available from X-ray (or other diffraction) measurements, as well as from
spectroscopic data. For some systems, especially for simple molecules, Q0 can
be also determined from the known K value using empirical relations between
K and Q0; then the theory becomes one-parametrical [11.20a]. In many cases
calculation of the parameters in Eq. (11.22) are preferable.

With the known values of F , �K , and β (or γ0), the change in the activation
energy −�D as a function of the activation energy D0 of the reaction with the
nonactivated molecule can be estimated from Eq. (11.19). The latter can also be
used as an empirical relation between �D and D0:

−�D = aD0 + bD
1/2
0 + c (11.24)

where the coefficients a, b, and c [not to be confused with a, b, c, and d in Eq.
(11.7)] are functions of the empirical parameters presented above. The D0 value
is often unknown. In these cases the functions −�D = f (D0) can be plotted
for different coordination centers for comparison of their ability to lower the
activation energy. In Example 11.2 activation of the CO molecule is considered
in this approach. Other examples are given below. For activation of CN, see the
article by Kushkuley and Stavrov [11.17b] and Problems 11.8 and 11.9.

EXAMPLE 11.2

Activation of Carbon Monoxide

The electronic structure and spectroscopic parameters of the CO
molecule and its ions are well studied. This makes it possible to
obtain the estimates of its main orbital vibronic constants and force
constant coefficients. For CO the HOMO is 5σ , while the LUMO is
2π (Fig. 6.9). Using the empirical data [11.21–11.23] for the force
constant K0 of the free molecule, and K , Q0, and β for the CO+ ion
(�q1 = −1, �q2 = 0) and the CO excited state 5σ 22π0 → 5σ 12π1

(�q1 = −1, �q2 = 1), we find the following from Eqs. (11.22) (for
the 5σ 12π1 configuration, the values averaged over the two excited
states A1 and a3 were employed):

f (1) = −4.54.10−4 dyn f (2) = −12.1.10−4 dyn

k(1) = −0.080.106 dyn/cm k(2) = −0.83.106 dyn/cm (11.25)

C(1) = 0.134 C(2) = 0.0104
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It is evident from both the OVC and force constant coefficients
that the two orbitals 5σ and 2π are both antibonding, with the latter
much more antibonding than the former. In addition to the qualitative
statement about the nature of the corresponding MO (bonding or anti-
bonding), which can often (but not always) be made without using the
vibronic approach, the latter also gives the quantitative degree of MO
participation in the chemical bonding, and separately in the distorting
force, force constant, anharmonicity correction, and so on.

With knowledge of the constants (11.25), one can analyze the behav-
ior of the CO molecule in various situations, in particular, when it is
coordinated to another molecular system or solid surface. If the charge
transfers �q1 and �q2 are known, then F , �K , β, and hence −�D

(for given D0) can be evaluated, and vice versa. It is seen from these
constants that the greater the positive values of �q1 and �q2 (i.e., the
greater the increase in the occupancy of the HOMO and LUMO), the
larger the negative force F (which acts as an antibonding factor to lower
the activation energy) and the negative �K (acting in the same way).
However, since the HOMO is fully occupied by electrons in the free
molecule, �q1 can be only negative or zero. Consequently, activation
of the CO molecule is greater with larger positive values of �q2 and
smaller with negative values of �q1; the former correlation is much
more important. Hence in reactions in which the activation energy is
determined by the activation of the CO molecule when it is linearly
coordinated to a catalyst, the latter is the more efficient, the greater its
π-donor properties and the lower its σ -acceptor ability.

Consider the linear end-on coordination of carbon monoxide to the Ni
atom on a NiO surface. The value K = 1.710 × 106 dyn/cm is known
from empirical data [11.24]. Using the empirical relationship between
K and Q0 for the CO molecule [11.21]

K = [
1.7957 − 8.2926Q0

(
Å

)] × 106 dyn/cm (11.26)

one can obtain Q0 = 0.0126 Å, F = −2.119 × 10−4 dyn and �K =
K − K0 = −0.192 × 106 dyn/cm, and consequently estimate �q1 =
−0.32,�q2 = 0.26, and β = 0.93 from Eq. (11.22). These data pro-
vide in detail the mechanism of activation of the CO molecule when
coordinated to the NiO surface; as a result of coordination there is a
∼0.3 electron charge transfer to the metal from the weak antibonding
5σ orbital and about ∼0.3 electron charge transfer from the metal to
the strong antibonding 2π orbital of CO.

Using the relationship (11.26) between K and Q0, a general correla-
tion between the CO vibrational frequency and the charge transfers �q1

and �q2 from the HOMO 5σ (−�q1) and to the LUMO 2π (�q2) by
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coordination was derived. It is shown in Fig. 11.8 in the form of a corre-
lation diagram. Note, however, that the empirical function K = f (Q0)

(11.26) is valid in the region where the coordination is sufficiently strong

FIGURE 11.8. Correlation diagram between CO vibration frequencies ν (in
cm−1) and orbital charge transfers from the HOMO 5σ (−�q1) to the coor-
dination center, and from the latter to the LUMO 2π (�q2) in linear end-on
coordination.

FIGURE 11.9. Vibronic activation of carbon monoxide. Curves −�D =
f (D0) for CO coordination to surfaces PdO (1) and NiO (2), and in carbonyls
Fe(CO)5 (3), V(CO)5 (4), Mn(CO)5 (5).
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and does not apply to very small charge transfers and CO frequency
changes.

The change in CO reactivity when coordinated to the NiO surface
can be estimated from Eq. (11.24) (D0 and �D in kcal/mol):

−�D = 0.17D0 + 1.40D
1/2
0 − 0.78 (11.27)

This curve −�D = f (D0), together with similar curves for CO activa-
tion in a series of coordination systems including metal carbonyls and
metal surfaces, is shown in Fig. 11.9.

Some results for activation of CO by coordination to polynuclear clusters,
similar to those discussed in Example 11.2, are shown in Table 11.1 [11.20a] (for
activation of CO in hemoproteins, see Ref. 11.20b). It is seen that simultaneous
(bridged) coordination to two or three centers of the cluster (denoted by μ2

and μ3, respectively) results in much stronger activation −�D than for one-
center coordination (μ1). In Rh6(CO)12 and CO2(CO)8 the effect of bridged
coordination is seen explicitly (Table 11.1). In the rhodium polynuclear complex
triple-bridged coordination to three centers simultaneously results in activation of
the CO molecule, which in reactions with D0 = 100 kcal, is more than 5 times
larger than in simple one-center coordination to the same system.

The charge transfers in Table 11.1 explain in more detail the origin of the
bridged multicenter coordination effect—the orbital charge transfer from the
complex to the strongly antibonding MO 2π of CO is much larger (∼3.5 times)
in triple-bridged coordination than in the monocoordinated case. A numerical
estimate of CO activation by coordination to a NiO surface is given in
Example 11.3.

TABLE 11.1. Charge Transfers to the CO Molecule �q1(5σ) and �q2(2π) and
Chemical Activation −�D (for D0 = 100 kcal/mol) in Some Polynuclear Clustersa

Complex (kcal/mol) �q1(5σ) �q2(2π) −�D for D0 = 100

Mo(CO)6 −0.31 0.32 30

μ1-Mn2(CO)10 −0.27 0.36 36

μ1-Os3(CO)12 −0.28 0.31 28

μ1-Co2(CO)8 −0.33 0.27 22

μ2-Co2(CO)8 −0.42 0.67 74

μ1-Rh6(CO)16 −0.39 0.22 15

μ3-Rh6(CO)16 −0.53 0.77 78
aSymbols μ1, μ2, and μ3 denote simultaneous coordination to one, two, and three centers, respec-
tively.
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EXAMPLE 11.3

Numerical Estimate of CO Activation by Coordination to a NiO Surface

For numerical estimation of activation −�D, knowledge of D0 is
needed. For illustration, if we assume that the activation energy of the
reaction CO + O2 → CO2 + O in flames is D0 = 48 kcal/mol [11.25],
and this is associated with activation of the CO bond only, then by lin-
ear coordination to the NiO surface the activation energy, in accordance
with Eq. (11.27) in Example 11.2, is lowered by �D = −17 kcal/mol
and becomes equal to D = D0 + �D = 31 kcal/mol. The experimental
value for this reaction on the NiO catalyst (in excess CO) is Dexp = 25.4
kcal/mol [11.26].

In Examples 11.4–11.6 the activation by coordination to transition metal
centers is considered and numerical estimations obtained for N2, NO, and H2

molecules.

EXAMPLE 11.4

Activation of Dinitrogen

In the nitrogen molecule N2 the HOMO is 5σ and the LUMO is 2π

(Fig. 6.7), as in CO. Using the data for N2
+ and the excited states

a1g and B3g emerging from the (5σ)2 → (5σ)1(2π)1 excitation
(�q1 = −1, �q2 = 1) and Eqs. (11.22), we get

f (1) = 3.51 × 10−4 dyn f (2) = −8.18 × 10−4 dyn

k(1) = 0.286 × 106 dyn/cm k(2) = −0.785 × 106 dyn/cm (11.28)

C(1) = 0.112 C(2) = 0.127

It is seen that in contrast to the CO molecule the HOMO 5σ is
bonding, while the LUMO 2π is antibonding as in CO. Therefore an
activation center with high π-donor and high σ -acceptor properties is
needed for activation of linearly coordinated dinitrogen. If the coordi-
nation center is a π acceptor, a charge transfer may take place from
either the inner bonding πu orbital when the coordination is linear end-
on (longitudinal), or the antibonding σu orbital for transversal (side-on)
coordination. It follows that the activation depends on the geometry of
coordination.
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The constants (11.28) and empirical data pertaining to the coor-
dinated nitrogen molecule can be employed to estimate the charge
transfers �q1 and �q2 and the reduction in activation energy −�D as
a function of D0 using Eqs. (11.22). Table 11.2 presents some examples
of such calculations [11.16]. The value Q0 is estimated from the empir-
ical formula (the N2 stretching vibrational frequency in the coordinated
state ν is given in 103 cm−1):

Q0
(
Å

) = 0.9482 − 0.7105ν + 0.1302ν2 (11.29)

It is seen from Table 11.2 that, as above, the larger contribution to
the −�D value comes from the linear (in Q0) effect, the distorting
force (b term).

EXAMPLE 11.5

Activation of Nitrogen Monoxide

As distinct from the examples presented above, the HOMO and LUMO
in the free NO molecules are realized in the same antibonding 2π orbital
occupied by one electron. Calculations [11.27] show that in addition to
this orbital the lower fully occupied 5σ orbital takes part in the charge
transfers by coordination (the remaining inner orbitals are practically
not involved). The coefficients a, b, and c determining the chemical
activation −�D [Eq. (11.24)] are given in Table 11.3 for several coor-
dination systems. In contrast to the previous examples, the iron complex
produces deactivation of the coordinated NO molecule (−�D < 0), and
is thus an anticatalyst for corresponding reactions with NO.

TABLE 11.3. The a, b, and c Coefficients in the Relation −�D = aD+
bD1/2 + c for NO Activated by Coordination in Different Complexes

Coordination System a b c

Fe(CN)5NO2− −0.03 −0.78 −0.19
Mn(CN)5NO2− 0.02 0.23 −0.02
Mn(CN)5NO3− 0.18 2.6 −2.83
Cr(CN)5NO3− 0.27 3.56 −5.77
Cr(CN)5NO4− 0.37 4.26 −9.58
V(CN)5NO3− 0.35 4.19 −9.07
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EXAMPLE 11.6

Activation of Hydrogen

Because of the small number of electrons in H2, even small charge
transfers activate strongly the H—H bond. Therefore, in most cases H2

decomposes in the coordinated state, although in some cases hydrogen
is coordinated as a molecule, with vibrational frequencies observed at
about ν = 2600–3100 cm−1 (in the free molecule ν0 = 4401 cm−1)
with the H—H distance R∼0.75–0.86 Å (R0 = 0.74 Å). To employ
the one-parameter version of the vibronic theory of chemical activation
[11.20], the following relationship between interatomic distance R and
vibrational frequency change �ν = ν − ν0 can be suggested (�ν in
103 cm−1) [11.25]:

R(Å) = 0.7412 + 0.5034 �ν − 0.1541 (�ν)2 (11.30)

The orbital vibronic constants for the two active MOs, bonding 1
and antibonding 2, are [11.28]

f (1) = 1.58 × 10−4 dyn k(1) = 0.418 × 106 dyn/cm (11.31)

f (2) = −0.41 × 10−4 dyn k(2) = −0.0348 × 106 dyn/cm

and the anharmonicity ratio β ≈ 0.5 is much smaller than in the
examples above.

With these data one can estimate the charge transfers �q1 and
�q2 to the bonding and antibonding MOs of H2, and the chemical
activation −�D = D0 − D for different �ν values. Some results are
given in Table 11.4 (−�D is given for model reactions with D0 = 103
kcal/mol).

TABLE 11.4. Orbital Charge Transfers to Bonding (�q1) and
Antibonding (�q2) MOs and Chemical Activation −�D of Coordinated
Molecular Hydrogen as a Function of the Frequency of Streching
Vibration ν(H—H) in the Coordinated State for D0 = 103 kcal/mol

ν (cm−1) �q1 �q2 −�D (kcal/mol)

4200 −0.06 0.06 30.5
3800 −0.17 0.16 53.7
3400 −0.27 0.25 70.3
3000 −0.35 0.34 81.7
2600 −0.43 0.41 89.4
2200 −0.49 0.38 94.8
2000 −0.52 0.50 96.1
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The main conclusion drawn from these data is that the homolytic
cleavage of the H2 molecule

LnMLnM

H

H
H

H
(11.32)

takes place at ν = 2400 − 2100 cm−1 and R = 1.0 − 1.2 Å, in quali-
tative agreement with known experimental data.

One version of the vibronic theory of chemical activation is to calculate the
orbital charge transfers �qi to and from the coordinated molecule and, using
the equations presented above, to estimate the expected distortion, changes in
vibrational frequencies, anharmonicities, and activation by coordination. This
version has been employed in the treatment of activation of the oxygen molecule.
It provides additional possibilities for verifying the applicability of the vibronic
approach by comparison of the estimated frequencies of vibrations with those
observed experimentally.

For oxygen coordination the semiempirical scheme used above should be com-
pleted because, as shown by calculations, three MOs are active in the orbital
charge transfers (oxygen forms a three-orbital bond with the active site of the
coordination system). Activation of oxygen by metalloenzymes is of special
interest in biology. In Section 10.3 the electronic structure and some electron-
conformational effects in these systems are discussed. In Example 11.7 we
consider in more detail the mechanism of activation of oxygen by several hemo-
proteins [11.17a].

EXAMPLE 11.7

Activation of Oxygen by Hemoproteins

The active site of several metallobiochemical systems considered below
can be presented by a general formula Fe(P)(L), where P is porphyrin
and L is the amino acid moiety of the protein: hemoglobin (L = ImH,
where Im denotes imidazol), horseraddish peroxidase (HRP, L = Im−),
cytochrome P-420 (L = SHCH3), and cytochrome P-450 (L = SCH3

−);
the same systems with an additional electron were also tried. Their
electronic structures with the coordinated oxygen were calculated using
the semiempirical MO LCAO IEH (SCCC) approximation (Section 5.5).
The three active MOs participating in the bonding with the active site
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(Å

)
1.

30
1.

35
1.

32
1.

35
1.

31
1.

35
1.

33
1.

36
1.

32
1.

41
1.

45
1.

42
1.

42
R

ex
p

(Å
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of the enzyme are 3σg, 1πu, and 1π∗
g . The corresponding three orbital

vibronic constants f (i), force constant k(i) and anharmonicity γ (i) coef-
ficients were calculated by Eqs. (11.2) using spectroscopic data for
oxygen and its ions [11.17a]. The constants were calculated for the
coordination of the superoxide ion O2

− which is more appropriate to
the state of coordinated oxygen in hemoproteins. Unlike the examples
above, the Morse potential instead of the cubic polynomials (11.7) was
employed in calculation of the vibrational frequencies and interatomic
distances in the coordinated state. The 3σg and 1πu MOs of oxygen are
bonding, while 1π∗

g is antibonding, but with respect to the superoxide
ion their contribution to the force constant has an opposite sign.

Some results for the calculated charge transfers, interatomic dis-
tances, vibrational frequencies, and activation of coordinated oxygen
are illustrated in Table 11.5. It is seen that the activation is due mainly
to the contribution of the charge transfer �q(1π∗

g ) to the antibonding
1π∗

g MO of oxygen, which in the case of cytochrome P−450 + e- is
∼0.91, and in the approximation when the sulfur lone pair is separated
(Section 10.3) it is even larger. However, the value of ∼1.4 electron in
Table 11.5 is overestimated because of the use of the “frozen orbital”
approximation.

The resulting activation of the O—O bond is significant; in the coor-
dinated state D is almost half of the dissociation energy D0, but it is
still larger than the activation energies of the reaction of hydroxyla-
tion by cytochrome P-450 (∼1 eV). One reason for this discrepancy is
that D0 in Eqs. (11.9) and (11.18) is not the dissociation energy, but
the activation energy in the corresponding associative reactions with-
out catalyst participation, which is smaller than the dissociation energy
(Fig. 11.7). The calculated frequencies of O2 stretching vibrations are
in good agreement with the experimental data available.

Jahn–Teller- and Pseudo-Jahn–Teller-Induced Chemical Activation

The influence of the electronic rearrangement on the reactivity of a molecular
system, discussed above in this section, is attributed to the occurrence of a dis-
torting force F , the changes of the force constant �K , and anharmonicity �γ in
this rearrangement [Eq. (11.13)]. The change of the rising portion of the reaction
curve as a function of the reaction pathway and the consequent change of the
activation energy −�D = D0 − D are shown in Fig. 11.7. By comparison, one
can see that near the origin Q = 0 these changes are similar to those produced
by the JT or PJT effects (Sections 7.3 and 7.4, Fig. 7.5). In the JTE (degenerate
electronic states) a nonzero force distorts the high-symmetry nuclear configura-
tion in the direction of JT active coordinates Q; if the quadratic terms of vibronic
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interactions are taken into account, the force constant (APES curvature) K0 is
also changed. In the PJTE (mixing of the ground and excited electronic states by
the nuclear displacements), the force constant K0 changes as well.

If a JT system enters a chemical reaction, the behavior of its APES both
without and with the JTE as a function of the JT active coordinate Q [ε0(Q)

and ε(Q), respectively] follow exactly Eqs. (11.8) and (11.13), respectively, as
illustrated in Fig. 11.7. This means that the JTE produces the same kind of
chemical activation −�D as a corresponding electronic rearrangement induced
by, say, a catalyst. The chemical activation −�D is determined here by the same
equation [Eq. (11.17)] with Q0 and �K = K − K0 taken from the JTE formulas
(Section 7.3).

If the quadratic vibronic coupling terms in the JTE are neglected (linear
vibronic coupling), then K = K0, γ = γ0, and expression (11.19) is simplified:

−�D = (12D0EJT )1/2 − 4EJT (11.33)

where EJT is the JT stabilization energy (Section 7.3). For instance, for a system
with a double-degenerate electronic E term EJT = F 2/2K0 [see Eq. (7.41)] and

−�D = |F |
(

6D0

K0

)1/2

− 2F 2

K0
(11.34)

Calculation of the chemical activation −�D for a PJT system becomes more
complicated since an additional important parameter emerges: the energy gap 2�

between the ground and excited states whose admixing produces the instability
of the ground state of the reactant. Figure 11.10 shows the two reaction curves,
without and with the PJTE in the direction of the reaction path Q. The curve

FIGURE 11.10. Cross section of APES along the reaction path Q without (1) and with
(2) the strong pseudo-Jahn–Teller effect that mixes the states 1 and 3.
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modified by the PJTE differs from the JTE curve (Fig. 11.7) by the behavior near
the origin Q = 0.

If the condition of the strong PJTE (7.71), K0 < F 2/�, holds, the ground state
is unstable at Q = 0 and the adiabatic potential curve (7.69) has two minima at
the points (7.72) with the curvature at the minima points given by Eq. (7.73).
Factoring in the anharmonicity produced by the interacting reactants, we can
present the reaction curve by adding a negative cubic anharmonicity term to
Eq. (7.69), which, unlike (11.8) or (11.13), should be of the sixth order to preserve
the symmetry conditions (with regard to inversion of Q):

ε(Q) = 1
2K0Q

2 − (�2 + F 2Q2)1/2 − γQ6 (11.35)

This curve has not been studied in detail as yet. Approximately, by expansion of
the square root, we get (cf. (7.66)):

ε(Q) = 1

2
KQ2 + F 4

8�3
− γQ6

K = K0 − F 2

�

(11.36)

and for the points of the minimum Q0 (stable reactants), and maximum QD

(activated complex), we have

Q0,D =
{

F 4

24�3γ

[

1 ±
(

1 + 48γK�6

F 8

)]1/2
}1/2

(11.37)

with the minus sign for Q0 and plus sign for QD . Note that, due to (7.67), K < 0,
and hence for real roots of Eq. (11.37) the condition |48γK| < F 8/�6 must be
obeyed. If this inequality is sufficiently strong, we have approximately

Q0 ≈
√

2
�

F

(

1 − K0�

F 2

)1/2

(11.38)

QD ≈
(

F 8 + 24K�6γ

12γ�3F 4

)1/2

(11.39)

By substituting the parameters (11.37) or (11.38) and (11.39) into (11.35), one
can estimate the activation energy modified by the PJTE

D = ε(QD) − ε(Q0) (11.40)

and the chemical activation −�D = D0 − D [with D0 after (11.9)].
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Thus the JT- and PJT-induced chemical activation (one of the particular cases
of the TEST paradigm; Section 7.4) is similar to the effect of electronic rear-
rangement under the influence of a catalyst as discussed above. However, along
with this important similarity there are also essential differences between the
two sources of chemical activation. First, they are concerned with the direction
Q, in which the activation energy is lowered, that is, with the allowed mecha-
nism of the reaction. In systems with the JT and PJT effects, this direction is
predetermined by the electronic structure of the molecule itself (by the JT and
PJT active displacements), whereas in the case of catalyst influence the direction
of chemical activation depends on the nature of the catalyst, on the electronic
rearrangement it produces in the reagents. Therefore, different catalysts can, in
principle, cause different dominating mechanisms. In particular, the catalyst can
change the mechanism of the reaction that takes place without the catalyst. On the
contrary, for vibronically induced reactions of free molecules the mechanism is
known a priori, and this allows us to predict the reaction course and its products.
Example 11.8 illustrates this statement for Jahn–Teller-induced reactions.

EXAMPLE 11.8

Jahn–Teller-Induced Substitution Reactions in Octahedral
Complexes with an E Term

Consider the reaction of substitution in, or monomolecular decomposi-
tion of, an octahedral transition metal complex in an orbitally twofold-
degenerate electronic E state [11.6, 11.29], for example, for bivalent
copper known to have a strong JTE. The APES of this system has three
equivalent minima, in each of which the octahedron is elongated along
the tetragonal axis, with two ligands being farther away from the central
atom than the other four (Sections 7.3 and 9.2). In Qθ and Qε coordi-
nates (Fig. 7.1) the distortion takes place along the Qθ direction; Qθ

is thus the coordinate along which the activation energy of the reaction
is lowered (the system is chemically activated) as compared with other
directions, ceteris paribus. As a result, the reaction should proceed in
the direction of the Qθ displacements, which cause the two axial ligands
to move away from (while the other four approach) the CA (Fig. 9.20).
For the monomolecular reaction this implies dissociation of the lig-
ands in the trans positions, while for the substitution reaction it means
the formation of trans-substituted complexes. Visually, this conclusion
corresponds to the following picture; when elongated octahedrons are
formed, in the pulsating motions during a specific lifetime (Section
9.2), the two ligands in trans positions are more weakly bonded and
reached more easily by the attacking reagents. Thermodynamic consid-
erations (Section 9.3) also support the conclusion about the formation
of trans-substituted complexes of E-term metals.
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This result is in complete agreement with the well-known empiri-
cal data on the behavior of octahedral complexes of Cu(II) in solution
or gas phase. It is known that these complexes lose two ligands in
the trans position, forming square-planar structures, while substitution
reactions produce only trans-substituted complexes (except for biden-
tate ligands, which can be cis-coordinated only). On the other hand, if
the JTE in such a system is quenched (say, by the significant differ-
ences between the ligands), the potential barrier essentially increases
and the reaction rate decreases. This conclusion also agrees with exper-
imental data [11.30] showing the substitution reaction rate to decrease
about 3000 times when passing from [Cu(H2O)6

2+] to [Cu(tren)H2O]2+
(where tren = 2, 2′, 2′′-triaminotriethylamine). According to predictions
of the theory, similar effects are expected in octahedral complexes of
Cr(II), Mn(III), Ag(II), . . . that have E ground terms (see also Problem
P11.10).

For nonoctahedral molecular configurations with E terms and for other terms
the expected vibronically induced mechanisms of reactions are different from
that considered in Example 11.8 for octahedral Cu(II) complexes. They can be
qualitatively determined from known JT and PJT distortions. There are other
suggested applications of the vibronic effects in determining the chemical reaction
rate and mechanisms ([11.6, 11.31]).

11.3. DIRECT COMPUTATION OF ENERGY BARRIERS
OF CHEMICAL REACTIONS

Methods of numerical computation of the electronic structure of coordination
compounds involving computer and supercomputer calculations (Chapters 5 and
6) allow one, in principle, to obtain the APES for any chemical reaction, including
catalytic reactions, and to estimate the numerical value of the energy barrier
(activation energy) of the reaction. Practically, the solution of this problem may
be very laborious and costly. However, the continuous improvement of methods
and algorithms, as well as computer power, makes it possible to solve increasingly
complicated problems.

In this section we discuss several examples of numerical calculations of the
APES and consequent properties of chemical reactions with coordination com-
pounds, including cases when the latter act as catalysts.

Substitution Reactions: The trans Effect

In Section 9.3, which is devoted to the mutual influence of ligands in coordina-
tion compounds, the phenomena of trans and cis influences in stereochemistry
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problems are discussed. We emphasized the need to distinguish between the ther-
modynamic aspect of the problem (trans influence), in which the mutual influence
is considered from the static (energetic) point of view, and the kinetic aspect
(trans effect), in which the influence of mutual ligand positions on the reaction
rate of substitution or decomposition reactions is discussed. In this section we
discuss mutual ligand effects —the influence of a given ligand on the energy bar-
rier of the reactions of substitution (or cleavage) of another ligand in the trans
or cis position.

There is an obvious correlation between the mutual influence and mutual effect
of ligands as they are defined above. For instance, as shown in Section 9.3, the
trans influence results in a weakening of the metal–ligand bond in the trans
position to the influencing ligand. It is clear that the weaker bond is subject to
easier cleavage or substitution (see Example 11.8). Hence the trans influence also
promotes the trans effect. On the other hand, for a bimolecular associative SN2
reaction, the formation of the reaction barrier may be much stronger dependent
on (and on more details of) the electronic structure of both reactants (especially
the entering, leaving, and trans-directing ligands) than the stereochemistry of the
initial complex, where mainly one ligand is specified.

Square-planar complexes of Pt(II) were suggested first [11.32] and are best
studied (see the reviews in Refs. 11.33–11.36) as demonstrating the trans effect
in the most explicit way. Usually the series of ligands arranged in decreasing
trans-effect power (the trans-effect series) is given as follows [11.37]:

C2H4, CO > CN > NO2
− > SCN− > I− > Br− > Cl− > NH3 > OH− (11.41)

In Section 9.3, many examples are given (see Tables 9.8–9.11) and the role
of some major electronic features of the ligand and the metal in realizing the
trans influence is discussed. It is shown that the σ -donor properties of the ligand
enhanced by its π-acceptor properties are most important in the trans influence.
Basically, these ideas are also valid in the trans effect, with the distinction that
in the latter the π-acceptor properties are more important. The qualitative reason
for this π effect was discussed first by Chatt et al. [11.38] and by Orgel [11.39]
and is illustrated in Fig. 11.11.

If the ligand L in the square-planar complex of Pt(II) has the strongest π-
acceptor properties (low-energy empty π orbitals), then there is a backdonation
to this ligand from the dxz orbital of the metal M [which is occupied in the d8

configuration of Pt(II)]. This backdonation results in a significant rearrangement
of the electron distribution in which the electron density along the trans bond
M—A is decreased. In turn, this lowers the repulsion from the entering group in
the trans position, thus lowering the energy of the transition state of the reaction
and hence the activation energy. Hence the trans influence, which weakens and
elongates the M—A bond, also contributes to lowering the activation energy by
facilitating the approach of the attacking group and removal of the leaving group.
Note that if the dxz orbital is not occupied, this π effect disappears.
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FIGURE 11.11. Illustration of the σ –π interaction in the trans effect: the π-acceptor
properties of the trans-influencing ligand L enhanced by its σ -donor properties lower the
electron density along the trans bond M—A, thus favoring the labilization and substitution
of the trans ligand A.

As discussed elsewhere in this book (Sections 6.3, 9.3, and 11.2), as a result
of σ -donor and π-acceptor effects the corresponding orbital charge transfers have
opposite signs, and hence their sum is smaller than each of them individually.
Therefore, in the presence of strong π donation to the ligand its σ -donor property
increases, and vice versa; strong σ donation increases the π-acceptor ability. This
mutual enhancing of σ -donor and π-acceptor properties is important in under-
standing both the trans influence (Section 9.3) and trans effect. For instance,
H− has empty π states (2pz), but in the free ion they are rather high in energy
and hence H− is a poor π acceptor. However, in the coordinated states with
strong σ donation, its 2pz orbital energy lowers significantly, and H− becomes
a better π acceptor.

It was also shown [11.40] that the competition of the ligands in the σ donation
to the metal results in a characteristic cis effect —the influence on the reaction
rate of ligand substitution in the cis position. The cis effect is opposite to the
trans effect; the larger the trans effect of a given ligand, the smaller its cis effect .
This means that the reaction rate for the substitution of A is determined by (1) the
trans-effect power of the trans ligand L and, (2) the cis-effect power (opposite
to trans-effect power) in the cis positions of L and A. The higher the trans effect
of the trans ligand and the lower the trans effect of the cis ligands, the higher
the reaction rate for the given ligand.

These general qualitative considerations were confirmed by direct numerical
calculations of transition states and energy barriers of substitution reactions with
some square-planar Pt(II) and Rh(I) complexes [11.41]. To reveal the trans effect
in detail, four reaction systems were computed; for each of them the reactions of
substitution of two ligands in trans positions to two other ligands were studied
to compare their trans effects:



DIRECT COMPUTATION OF ENERGY BARRIERS OF CHEMICAL REACTIONS 659

cis − Rh(CO)H(NH3)2 + NH3 comparing CO and H− (11.42)

cis − PtH(Cl)(NH3)2 + NH3 comparing H− and Cl− (11.43)

cis − Pt(CH3)Cl(NH3)2 + NH3 comparing CH3
− and Cl− (11.44)

cis − Rh(Cl)NH3(H2O)2 + H2O comparing Cl− and NH3 (11.45)

In all these reactions the entering and leaving groups are identical [NH3 for the
first three cases and H2O for (11.45)]. This simplifies the calculations since it
allows one to use additional symmetry considerations. In particular, the identical
entering and leaving groups should occupy equivalent positions, provided that
there are no additional local minima (intermediates) on the reaction curve. For
simplicity, all the groups are chosen neutral.

The computation scheme is as follows. For each substitution reaction the
geometry (bond lengths and angles) of the five-coordinated complex (associative
SN2 reaction) is optimized, yielding the energy of the transition state. With respect
to the energies of the free reactants, this gives the activation energy. In all eight
reactions (11.42)–(11.45), the transition state is a trigonal bipyramid with a mirror
plane for the two equivalent groups, entering and leaving. Then, allowing one of
these groups to move away and calculating the optimized geometry and energy for
several fixed positions of this leaving group, one obtains the reaction curve along
the reaction coordinate. This curve is illustrated in Fig. 11.12 for the reaction

FIGURE 11.12. APES along the reaction coordinate for the substitution reaction cis-
PtHCl(NH3)2 + NH3 with H− as a trans-directing ligand. (After Lin and Hall [11.41].)
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FIGURE 11.13. Optimized geometries for several fixed positions of the entering NH3

group in reaction (11.43) with H− as the trans-directing ligand.

cis-PtHCl (NH3)2 + NH3 with the substitution trans to H. The optimized ligand
positions along the reaction path are shown in Fig. 11.13.

All the calculations were carried out by the ab initio MO LCAO RHF
(restricted Hartree–Fock) method with effective core potentials (Sections 5.3
and 5.4) (calculation details are described well by Lin and Hall [11.41]). The
validity of the results, especially the role of electron correlations, was examined
by comparison with more sophisticated valence approaches. Total energies and
activation energy differences (relative trans effects) are given in Table 11.6.

We begin the discussion of these results with Fig. 11.13 showing the optimized
geometries for several fixed positions of the entering group NH3 in the reaction
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TABLE 11.6. Total Energies of Transition States and Activation Energy
Differences for Different trans-Directing Ligands (Relative trans Effect) in
Substitution Reactions (11.42)–(11.45)

Total Energy Activation
Trans-Directing of Transition Energy Difference

System Ligand State (au) (kcal/mol)

Rh(CO)H(NH3)3 CO −78.0154 10.92
H− −78.0239

PtHCl(NH3)3 H− −75.7388 1.57
Cl− −75.7363

Pt(CH3)Cl(NH3)3 CH3
− −83.3640 0.38

Cl− −82.3634
RhCl(NH3)(H2O)3 Cl− −97.8882 7.28

NH3 −97.8766

Source: Lin and Hall [11.41].

(11.43) with H− as the trans-directing ligand. To understand the origin of these
geometries, let us also employ the qualitative σ MO energy-level scheme for
the initial square-planar 16-electron complex M(d8)L4 shown in Fig. 11.14. It is
seen that the LUMO is the pure pz orbital of M, which is perpendicular to the
plane of the complex, while the three (dxy, dxz, dyz) orbitals form three occupied
lone pairs. When the π bonding is taken into account, these lone pairs form the
corresponding MOs that have asymmetric distribution shifted toward the most
trans-directing ligand (Fig. 11.11).

At large distances R = 3.2 Å (Fig. 11.13A), when there is no significant orbital
overlap and bonding, the entering group NH3 forms an angle α = 78.5◦ with the
plane; it is narrower than 90◦ because of the repulsion from the corresponding dε

lone pair, which has the asymmetric distribution, mentioned above (Fig. 11.11).
At smaller distances the NH3 lone pair overlaps with the empty pz orbital to form
a square-pyramidal structure and the angle α increases (Fig. 11.13, B and C). At
equilibrium distances (R = 2.73 Å) the optimized transition state is reached that
has a pseudo-trigonal-bipyramidal structure (Fig. 11.13D); here a compromise
between the repulsion of the two NH3 ligands, their repulsion from the dxz

lone pair, and bonding to the rehybridized p–d metal orbitals (including pz) is
reached.

The less the repulsion from the lone pairs (directly dependent on the
π-acceptor properties of the trans-directing ligand) and the weaker the
metal-leaving and metal-entering bonds [dependent on the σ -donor properties
of the trans-directing ligand, Section 9.3, Eq. (9.30)], the lower the energy of
the transition state and hence the activation energy. These features are effective
when the metal M has occupied dε orbitals and the latter have a sufficient
diffusiveness to overlap strongly with (and to be easily shifted to) the ligands.
Second- and third-row d8 transition metals are good examples. Thus direct
numerical calculations confirm the preceding qualitative statements: The trans
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FIGURE 11.14. Schematic presentation of the σ MO energy levels of a 16-electron
square-planar d8 transition metal complex ML4..

effect is produced by an appropriate combination of π-acceptor and σ -donor
properties of the trans-directing ligand and occupied diffuse dε orbitals of
the central atom . Numerical data of Table 11.9 show that among the ligands
considered, the trans effect follows the series CO > H− > CH3

− > Cl−, in
agreement with the experimental order.

Lin and Hall [11.41] elucidate many other details of the trans-effect mecha-
nism. In particular, they show that the monomolecular mechanism of substitution
reactions (via dissociation) have an activation energy that is considerably higher
than that in the associative mechanism.

Ligand Coupling and Cleavage Processes

Transition metal systems are often involved in chemical transformations as cat-
alysts. In principle, catalytic reactions are similar to noncatalytic reactions with
the distinction that in the former the yield of the reaction leaves one of the
reactants unchanged. In Sections 6.3 and 11.2, the specific features of transi-
tion metals important to catalytic action are emphasized; because of the active
d-electron configurations, transition metals and their complexes form multiorbital
bonds with ligands, with the effect of strong activation of the latter .
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Another important feature is that, owing to high coordination numbers, coor-
dination compounds may serve as a center of “organization” of the reactants
promoting specific mechanisms of the reaction. This “organizational” aspect of
coordination is of special importance in supramolecular chemistry , where the
coordination system, via recognition, orientation, and termination , serves as a
center of self-organization, self-assembly, and templating [11.42, 11.43].

A relatively simple example of catalytic action of coordination compounds is
provided by the bonding of two coordinated carbon ligands CR2 in cis positions
forming an olefin C2R4, and the inverse process of cleavage of a coordinated
olefin into a bis-carbene complex:

R

R

R

M

C

C

R

R
M

C

R

R

RC
(11.46)

The first attempt to model this reaction was made for the “naked metal” M = W
and R = H [11.44]. Figure 11.15 illustrates the MO energy-level diagram as a
function of the angle between the two carbon ligands obtained by the semiem-
pirical extended Hückel method (Section 5.5). It is seen that for a metal M with
more than two electrons (in W they are six), the least-motion process of direct
bonding of two methylene groups CH2 to form C2H4 is forbidden by symmetry
considerations (Section 11.1), since it involves the highly excited state 2b2 of
C2H4.

A more complete analysis, using the same approach and the same method of
calculation, was carried out for the reactions [11.45]

(CO)4Cr(CH2)2 → (CO)4Cr(C2H4) (11.47)

(CO)4Cr(CD2)2 → (CO)4Cr(C2D4) (11.48)

where D is a π-donor substituent (D = NR2).
For the reaction (11.47), the MO energy-level diagram [11.45] shows that, as

compared with the unligated metal (Fig. 11.15), the ordering of the important MO
levels under the influence of the four π-acceptor CO groups changes significantly,
and the 2b2 MO is no longer involved in the reaction. Instead, the 1b2 level in the
olefin side is pushed up and unoccupied, and hence the reaction of direct least-
motion coupling is again formally forbidden. This means that somewhat less
symmetric pathways, although formally allowed by symmetry considerations,
may still encounter energy barriers.

The qualitative MO energy-level diagrams give no definite information about
the relative thermodynamic stability of the two systems and the height of the
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FIGURE 11.15. MO energy-level correlation diagram for a C2v least-motion cou-
pling/decoupling of two methylene groups coordinated to a unligated metal center. Sym-
metries of the AOs that form the corresponding MOs and the d2 configuration limit are
also shown. (After Hoffmann et al. [11.44, 11.45].)

energy barrier between them. To answer these questions, calculations of the
potential energy surface for the least-motion coupling (uncoupling) of the two
methyl groups in reaction (11.47) were carried out [11.45]. Two coordinates, the
angles θ (between the two M—C bonds, Fig. 11.16) and � (between the CH2

plane and the M—C bond) were chosen to describe the reaction pathway. Their
variation with the fixed position of the Cr(CO)4 group results in the potential
energy surface presented schematically in Fig. 11.17. The surface has two min-
ima for the olefin and bis-carbene complexes, respectively. Interestingly, in this
model the olefin complex, which is a 16-electron system, is more stable than the
18-electron bis-carbene complex; the allowance for a more relaxed configuration
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FIGURE 11.16. The angles θ and � chosen to describe the least-motion convergence
of two CH2 groups and their planes bending in the reaction (11.47). Instead of θ , the
interatomic rCC distance can be equally useful. (After Hoffmann [11.45].)

FIGURE 11.17. APES of the reaction (11.47) as a function of angles θ and � characteriz-
ing the two methyl group least-motion convergence and their planes bending (Fig. 11.16).
Contour lines at 0.1 eV separation. (From Hoffmann [11.45].)
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with optimization of the CO ligand positions is expected to lower the energy of
the olefin complex. The energy barrier between these two minima is rather low,
about 10 kcal/mol, and will be probably even lower for a less symmetric reaction
pathway.

With good π-donor substituents in the methyl groups CD2, the situation
changes drastically. The experimental data show that in this instance the bis-
carbene d6 complexes M(CO)4(CD2)2 are stable compounds and can be obtained
from the corresponding olefin. The calculations using the approach described
above confirm these results and reveal their origin. The corresponding APES in
(θ,�) coordinates for

C

D

D

C

N
H

H
N

=

is illustrated in Fig. 11.18. It is seen that here there is only one minimum for
the bis-carbene complex, and no minimum for the olefin complex. The MO
energy-level diagram [11.45] shows that the reaction under consideration is
symmetry-allowed and may proceed without energy barrier, as the olefin complex
is thermodynamically less stable (all the MO energy levels are lower in the bis-
carbene complex). The reason for this effect can be revealed from the analysis
of the MO energy-level reordering produced by the donor D substitution.

CO Reductive Hydrogenation and Carbonyl Insertion Reactions

Insertion reactions of the type

R L

MAn

L

MAnR
→ (11.49)

where R is an unsaturated ligand and M—L is a metal–hydrogen or a
metal–carbon bond, are most important in modern organometallic chemistry as
the key processes in many catalytic cycles. In this subsection we consider the
examples of CO insertion into M—H and M—CH3 bonds and a related reaction
of coordinated CO hydrogenation [11.46, 11.47]. The next subsection is devoted
to olefin insertion reactions.

Homogeneously catalyzed carbon monoxide hydrogenation underlies many
processes, including conversion of the CO/H2 mixture into liquid fuels and pro-
duction of methanol, ethanol, ethylene glycol, and other compounds. The process
can be presented as either a nucleophilic addition of a hydride ion
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FIGURE 11.18. APES for the reaction (11.48). The coordinates θ and � (or rCC) are
given in Fig. 11.16. (After Hoffmann [11.45].)

LnM LnMCO H−+ C

H

O−

→ (11.50)

or an insertion of a carbonyl ligand into the metal–hydride bond:

LnM

H

LnMCO C

O

H

−L

+L
Ln + 1M C

O

H

(11.51)

The two reactions (11.50) and (11.51), despite an apparent similarity, are
significantly different; are many examples of the first reaction are known, whereas
examples of the second type, (11.51), are generally lacking, at least when resulting
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in a monohaptoformyl ligand. The hydride affinity of coordinated carbonyls is
large (ranging from 45 to 55 kcal/mol) as compared with that of bare carbon
monoxide (a few kcal/mol only), and this indicates the significant activation of
the CO molecule by coordination to transition metals (Section 11.2).

To reveal the reaction mechanism, calculations of the APES in the space
of a possible reaction pathway for prototype reactions have been performed
[11.46]. The calculations carried out in the ab initio SCF-MO-LCAO approx-
imation (Section 5.3) with extended basis sets and other computational details
are discussed by Dedieu and Nakamura [11.46]. The role of electron correlation
effects was also elucidated by means of additional CI calculations (Section 5.3).

For the hydrogenation reaction, the reaction of addition of H− to Fe(CO)5 has
been considered:

H− + Fe(CO)5 → Fe(CO)4(CHO)− (11.52)

The approach of the hydride is restricted by the plane containing two axial ligands
and one equatorial ligand. The numerical results are illustrated in Fig. 11.19, and
the optimized geometry is shown in Fig. 11.20. In the geometry calculations the
axial Fe—C—O angle is allowed to relax, while the Fe—C and C—O distances
are kept fixed at 1.81 and 1.22 Å, respectively.

Figure 11.19 shows that the reactions are highly exothermic (∼52 kcal/mol)
and proceed without any energy barrier. This is in agreement with the correspond-
ing gas-phase studies [11.48]. The calculation details also explain the origin of
the high affinity of the activated CO ligand for the H− ion and the role of the
metal dz2 orbital in this process [11.46].

For the CO ligand insertion reaction (11.49), the prototype example is taken
as follows:

HMn(CO)5 → Mn(CO4)(CHO) (11.53)

In principle, there are two main pathways for this reaction to proceed: (1)
proper insertion of the CO molecule into the Mn—H bond or (2) migration of
the hydrogen atom to the CO ligand to form the CHO ligand. To reveal the true
process, a two-dimensional APES as a function of two critical angles, α and β,
has been calculated [11.46]. The two angles are chosen as shown in Fig. 11.21,
while the two out-of-plane (perpendicular to the reaction plane) carbonyl ligands
are kept frozen; the Mn—C and C—O bond lengths of the nonreacting in-plane
CO ligands are also kept fixed at their experimental values. For each point of the
surface (α, β), the Mn—H bond length (d), the angles γ and δ, and the C—O
bond length were successively optimized, and then the Mn—C bond length (R)
was optimized for representative points of the minimum-energy path.

The results are illustrated in Fig. 11.22, and the successive geometries of the
system along the resulting reaction path are given in Fig. 11.23. It is seen that
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FIGURE 11.19. Contour lines of the APES for the approach of the hydride ion (energies
in kcal/mol with respect to separated reactants). The inner contour is −52 kcal/mol. (After
Hoffmann [11.45].)

FIGURE 11.20. The optimized geometry of the hydrogenated system Fe(CO)4(CHO)−.
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FIGURE 11.21. Variation coordinates for the CO ligand insertion reaction (11.53).

the process is best described as a hydride migration and not CO insertion in
agreement with experimental data and other theoretical investigations.

Figure 11.23 shows that the geometry of the CO groups remains virtually
unchanged during the reaction. The geometry of the transition state D is near
that of a five-coordinated formyl intermediate F . The energy profile as a function
of the H—Mn—C angle η for the configurations from A to F of Fig. 11.23 is
shown in Fig. 11.24. In the SCF approximation the energy barrier of the reac-
tions is about 15 kcal/mol with a small difference between D and F (about
4 kcal/mol). However, CI calculations with electron correlation effects carried
out for the three key structures A, D, and F show a large increase in the reac-
tion barrier of the forward reaction and its decrease (almost to zero) for the
inverse reaction (Fig. 11.24). Analysis of computational details [11.46] shows
the reason for this result to be the inadequate description of the difference in
the π backdonation to CO and CHO without CI. This feature is also inherent
in other processes in which similar ligand changes occur. For the whole pro-
cess HMn(CO)5 + CO → Mn(CO)5CHO in which the number of CO ligands is
not changed, the calculated endothermicity 3.7 kcal/mol roughly agrees with the
experimental value of 5 kcal/mol.

Thus the failure to observe CO insertion into a metal hydride bond resulting in
a monohaptoformyl ligand is well accounted for by the high energy barrier and
the close proximity of the transition state with the five-coordinated intermediate.

For a similar reaction of CO ligand insertion into a M—CH3 bond

→CH3

CH3

PH3

M H

C

O

PH3

M H

C

O

(11.54)

with M = Pd, Pt, calculations were carried out [11.47] for electronic structure,
energy, and geometry of the initial complex, activated state, and the product of the
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FIGURE 11.22. Contour lines of the APES for the reaction (11.53) as a function of the
angles α and β specified in Fig. 11.21. The distance R = 1.885 Å is kept constant and
the energies are read off the point α = β = 0. (From Dedieu and Nakamura [11.46].)
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FIGURE 11.23. In-plane geometry changes along the reaction path of the hydride migra-
tion in the HMn(CO)5 system (the two CO ligands perpendicular to the plane are not
shown). (After Dedieu and Nakamura [11.46]).

reaction. The authors use the ab initio SCF MO LCAO restricted Hartree–Fock
(RHF) approximation with gradient technique for geometry optimization and
perturbation theory (MP2) for electron correlation effects (Section 5.3), as well
as relativistic effective core potentials for the metal atoms (Section 5.4).

The optimized geometries are illustrated in Fig. 11.25, while relative energies
are given in Table 11.7.

It is seen that, similar to the previous case of CO insertion into the M—H bond,
where, in fact, there is no insertion but H migration, there is no CO insertion
into the M—CH3 bond, either; the reaction proceeds as a CH3 migration toward
the CO ligand in accordance with experimental data. The energy of a similar
transition state with CO migration instead of CH3 [a configuration in which
the angles (CO)—Pd—(H) and (CH3)—Pd—(PH3) of the true transition state in
Fig. 11.25 are exchanged] is about 7 kcal/mol higher than the true transition state.

The reason for this reaction pathway is in the strong repulsion of the carbonyl
lone pair from the occupied dxy orbital of the metal in the case of CO migration
(Fig. 11.26a). This repulsion is significantly lower when the CH3 group migrates
(Fig. 11.26b), due to the lower electron density in the hybridized sp3 orbital
pointed toward the lobe of the metal dxy orbital (approximately one electron
instead of two electrons in the CO lone pair) and the longer distance M—CH3.
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FIGURE 11.24. SCF and CI calculated energy profiles for the hydride migration process
(Fig. 11.23) as a function of the H—Mn—C angle η.

FIGURE 11.25. Optimized geometries (in angstroms and degrees) of M(CH3)H(CO)PH3

and M(COCH3)H(PH3) (thick solid lines), M = Pd, Pt and the transition states (dashed
lines) for the CO insertion (CH3 migration) and inverse reaction. (After Koga and
Morokuma [11.47].)
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TABLE 11.7. Relative Energies (in kcal/mol) of the Transition States and Products
of Reaction M(CH3)H(CO)(PH3) → M(COCH3)H(PH3), with M = Pd, Pt
Calculated without (RHF) and with (MP2) Electron Correlation Effects

M Method Reactant Transition State Product

Pd RHF 0.0 25.8 19.1
MP2 0.0 13.5 8.8

Pt RHF 0.0 31.3 23.0
MP2 0.0 21.8 17.6

Source: Koga and Morokuma [11.47].

FIGURE 11.26. Interaction of two electrons of the CO lone pair and one electron of the
CH3 sp3 orbital with the metal occupied dxy orbital in the CO migration (a) and in the
true transition state of CH3 migration (b).

Although the structural changes in the preceding two reactions with Pd
and Pt are almost the same, the energetics is quite different (Table 11.7); the
activation energy in the Pt complex is considerably higher than in Pd (at the
MP2 levels 21.8 and 13.5 kcal/mol, respectively). This is due to the differences
in the M—CH3 and M—CO bond energies, which are, respectively, higher by
7 and 11 kcal/mol in the Pt complex than in the Pd one, while the Pt—COCH3

bond is stronger by 9 kcal/mol than Pd—COCH3 bond. Therefore, the Pd
reaction is more endothermic by (7 + 11 − 9) = 9 kcal/mol, and hence it has a
higher energy barrier.

The reaction was also studied for CH3-substituted ligands [11.47]. Some
results for the energetics of these reactions obtained for the fixed ligand geome-
tries (Fig. 11.25) are given in Table 11.8.

Olefin Insertion Reactions

Olefin insertion reactions are of great importance in organometallic chemistry
and chemical industry as basic models of the corresponding polymerization
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TABLE 11.8. Relative Energies (in kcal/mol) for the CO Insertion (R Migration)
Reaction Pd(R)H(CO)(PH3) → Pd(COR)H(PH3)

R Reactant Transition State Product

CHF2 0.0 40.9 31.2
C2H5 0.0 23.1 14.6

processes. Formally, olefin insertion is similar to the CO insertion considered
above. For ethylene and its derivatives CX2 CH2 insertion into the M—H bond
(and inversely, β elimination), the following four reactions were investigated
[11.47]:

H

CX2

H

M PH3

CH2

H

H

M PH3

CH2CX2

(11.55)

M = Ni, X = H (11.56)

M = Pd, X = H (11.57)

M = Pt, X = H (11.58)

M = Pd, X = F (11.59)

The method of numerical computation is the same RHF method with the
MP2 corrections mentioned above for the CO insertion reactions (for details, see
the paper by Koga and Morokuma [11.47]). This method was used to calculate
the optimized geometries and energies of the transition states and products of the
reaction. The results are illustrated in Table 11.9 and Fig. 11.27. It is seen that
the reaction proceeds as a hydrogen migration via a four-center transition state;
its optimized geometry is shown for the Pt reaction (11.58).

For other reactions the transition state is similar, with the distinction that for
Ni and Pd the transition state is achieved much earlier with smaller distortions
of the M—H and C C bonds (Ni produces smaller distortions than does Pd)
and corresponding structural differences in the products (see below). This is also
seen from the energy profile of the reaction given by the energies in Table 11.9;
the activation barrier is much lower for the Ni reaction (11.56) and increases
for similar reactions (11.57) and (11.58) with Pd and Pt. On the other hand, the
reaction for the Ni complex is also most exothermic.

These effects are due, first, to the strength of the M—(C2H4) bond, which
is very weak for Ni and increases for Pd and Pt. Therefore, the Pt–ethylene
complex is more stable than the ethyl complex. The stability of the ethyl complex
increases in the order Pt < Pd < Ni, while the barrier height for the migration
reaction decreases in the order Pt > Pd > Ni. In general, the metal-ethylene bonds
are relatively weak indicating a strong trans influence of the hydride ligand.
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TABLE 11.9. Relative Energies of the Reaction M(H)2(CH2CX2)(PH3) →
M(CH2CHX2)(H)(PH3) (in kcal/mol)

M X Ethylene Complex Transition State Ethyl Complex

Pd H 0.0 8.0 −3.0
0.0 5.1a 3.0a

Pd F 0.0 7.3 −11.1
Ni H 0.0 0.6 −31.5
Pt H 0.0 12.5 4.2
aCalculated including correlation effects in the MP2 approximation with RHF geometries.

TABLE 11.10. Comparison of Activation Energies of β-Elimination Reactions
M(CH2CHX2)(H)(PH3) → M(H)2(CH2CX2)PH3 with a Qualitative Estimate of
Inverse and Backdonative Interaction

M X Activation Energy Inverse Interaction Backdonation

Pd H 11.0 Excellent Good
F 18.4 Fair Good

Ni H 32.1 Good Poor
Pt H 8.3 Good Excellent

Source: Koga and Morokuma [11.47].

As for the inverse reaction of β elimination, its activation energy depends
mainly on two effects: (1) the remaining interaction of the migrating hydrogen
Hβ with the metal atom M via σ donation from the CHβ bonding orbital to
the empty d + p orbital of the free coordination place (the so-called inverse
interaction), and (2) the backdonation from the occupied metal dxy orbital to the
antibonding σ ∗ orbital of CHβ that weakens the bonds in the latter. Calculations
[11.47] show that the inverse interaction is stronger in the Pd reaction (11.57)
and decreases toward Pt and Ni. The backdonation, on the contrary, is stronger
in the Pt complex because of its more diffuse dxy orbital, and is very poor in Ni
for similar reasons. The activation energy is thus a result of a combination of
these two reasons, illustrated qualitatively in Table 11.10.

As mentioned above, insertion reactions underlie many catalytic processes. As
an illustration of this statement, the reaction of catalytic insertion of ethylene in
the M—CH3 bond in the Ziegler–Natta polymerization process is considered in
Example 11.9.

EXAMPLE 11.9

Polymerization with Ziegler–Natta Catalysts

Ethylene insertion into the M—CH3 bond is the basic elementary
step in the well-known Ziegler–Natta catalytic ethylene polymerization
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process:

TiCl4 · Al(CH3)3 + C2H4 → TiCl4Al(CH3)2C3H7 (11.60)

Cossee [11.49] first considered this process as ethylene coordination
to Ti followed by a C2H4 insertion reaction into the Ti—CH3 bond in

FIGURE 11.28. The catalyst–ethylene complex in the Ziegler–Natta catalytic
polymerization of ethylene and the denotation of the atoms.

FIGURE 11.29. Geometric variation parameters describing the 12 steps in
Table 11.11 in the pathway of the reaction (11.60). (After Novaro et al. [11.50].)
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the cis position, and involved ligand field and semiempirical MO LCAO
considerations in support of this reaction mechanism. A more detailed
calculation of the energies along the reaction pathway and the acti-
vation energy with a detailed analysis of the electronic origin of the
phenomenon was carried out by Novaro et al. [11.50].

1 2

4 5 6

7 8 9

10 11 12

3

FIGURE 11.30. Molecular models for the 12 steps of the reaction (11.60)
characterized in Table 11.11. (After Novaro et al. [11.50].)
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A schematic representation of the catalyst–ethylene complex and the
notation of atoms is shown in Fig. 11.28. The reaction mechanism is
assumed, in principle, to be similar to that suggested earlier by Cossee
[11.49]; 12 steps, including ethylene bonding and CH3 migration, are
taken as the reaction pathway. Calculations were carried out by means of
the ab initio all-electron SCF MO LCAO (RHF) approximation (Section
5.3). The parameters for the 12 steps and the calculated energies are
given in Table 11.11, while denotation of the corresponding angles is
shown in Fig. 11.29. For each Ti—C2H4 distance, optimization of the
other parameters is performed. A visual presentation of the reaction by
means of molecular models is given in Fig. 11.30.

Figure 11.31 shows the evolution of the total energy of the system as
a function of the reaction path presented by the 12 reaction steps men-
tioned above. It is seen that at the beginning of the ethylene approach to
the complex the energy lowers slightly, due to the metal–ethylene bond
formation with a bonding energy of more than 4 kcal/mol. At step 6 with
a Ti—C2H4 distance of 2.4 Å, the energy increases, and this increase
is attributed mainly to the ethylene’s π-bond breaking. The highest
activation of the C C bond is reached at step 7 [R(Ti—C4) = 2.24
Å, R(Ti—C5) = 2.39 Å], after which the bonding to the CH3 group
increases and the energy decreases; at step 8 the π bond finally breaks.
These and many other details are seen clearly from the MO populations
and charge distribution discussed thoroughly by Novaro et al. [11.50].

Photochemical Reactions of Organometallics

From the computational perspective, photochemical reactions are more compli-
cated because they involve excited states for which quantum-chemical calcula-
tions are in general more difficult. On the other hand, photochemical reactions are
rather widespread in chemistry. By way of examples demonstrating theoretical
possibilities, the following reactions are considered [11.51]:

Fe(CO)5
hν→ Fe(CO)4 + CO (11.61)

HCo(CO)4
hν→ Co(CO)4 + H (11.62)

Mo(CO)5L + L′ hν→ Mo(CO)4LL′ + CO (11.63)

L = NH3, PMe3, C(OMe)H, C2H4

The calculations were carried out by the ab initio SCF MO LCAO method
with CI (Section 5.3). For all these reactions the APES of the ground and excited
electronic states as a function of the corresponding coordinate of the ligand
elimination were calculated and analyzed. Strictly speaking, these curves are
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cross sections of the multidimensional APES, with some additional symmetry
and bond lengths restrictions.

For the first reaction, (11.61), the reaction path of equatorial CO ligand elimi-
nation is taken as shown in Fig. 11.32a maintaining C2v symmetry of the product.
For the second reaction, (11.62), both the reactant and the product Co(CO)4

belong to C3v symmetry (in their ground states), and therefore the reaction coor-
dinate is taken as shown in Fig. 11.32b.

The results of the computations for these two reactions are illustrated in
Figs. 11.33 and 11.34. It is seen that in both cases there are excited states that
lead to the ligand elimination without any energy barrier. However, not all the
excited states evolve to the dissociation products in their ground states. A special
feature of the two reactions is that their products have a triplet spin ground state,
3B2 and 3A1 for reactions (11.61) and (11.62), respectively. This means that,
since the ground states are singlets, only singlet–triplet excitation may lead to
direct photolysis of the ligands shown above: 1A1 →3 E′ in CO photoelimination
from Fe(CO)5, and 1A1 →3 A1 in hydrogen elimination from HCo(CO)4.

These electronic singlet → triplet transitions are spin-forbidden (Section 8.1),
and therefore they are difficult to perform experimentally, especially in the pres-
ence of close-in-frequency, much more intensive singlet–singlet transitions (e.g.,
1A′

1 →1 E′ in Fig. 11.33). Therefore, another mechanism of photolysis has been
suggested [11.51]. It is illustrated in Fig. 11.35; the reactant is photoexcited to
a singlet state and then, by way of radiationless transition (via spin–orbital cou-
pling and thermal effects), the corresponding triplet state is populated. From the
latter the molecule, according to Figs. 11.33 and 11.34, can dissociate to the
products in the ground state without any energy barrier.

In fact, this mechanism of photolysis is valid (qualitatively) in many other
photochemical reactions where homolysis of a σ bond takes place with the reac-
tant in a singlet ground state and the products in a triplet state. Daniel and
Veillard [11.51] list some examples, including dissociation of hydrogen from

FIGURE 11.32. The reaction pathway for CO elimination from Fe(CO)5 (a) and hydro-
gen dissociation from HCo(CO)4 (b).
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FIGURE 11.33. Potential energy curves for the ground state and two excited states in the
dissociation process Fe(CO)4 + CO under the C2v constraint. (From Daniel and Veillard
[11.51].)

metal hydrides HMn(CO)5, HReCp2, HW(CO)3Cp, photochemical cleavage of
the metal–carbon bond in RMn(CO)5 with R = CH3, C6H5, metal–silicon bond
in R3SiCo(CO)4, R = Et, Ph, and metal–metal bond in Mn2(CO)10.

The photosubstitution reactions (11.63) proceeds via a primary photodissoci-
ation of a CO ligand

M(CO)5L → M(CO)4L + CO (11.64)

and subsequent reaction of the unsaturated species M(CO)4L with L′:

M(CO)4L + L′ → M(CO)4LL′ (11.65)

One of the most important features of this photoreaction is its stereospecificity:
its product, M(CO)4LL′, is a cis-disubstituted derivative. Therefore, one goal of
the calculations [11.51] is to explain this characteristic cis-stereospecificity.

The photoelimination reaction (11.64) is more complicated than (11.61) or
(11.62), and therefore the calculations have been restricted to a number of remark-
able points of the potential energy surface. Figure 11.36 illustrates some results
of such calculations showing the evolution of two important singlet states of the
photoexcitation in the reaction and subsequent transformations [the final prod-
uct M(CO)4LL′, as a d6 hexacoordinated complex, is assumed to have a singlet
ground state].

The mechanism of the photoreaction of ligand substitution (11.63)
emerging from these computations is as follows. By photoexcitation of the
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FIGURE 11.34. Potential energy curves (ground and excited) for dissociation of the
Co—H bond in HCo(CO)4 under C3v constraint. (From Daniel and Veillard [11.51].)

complex M(CO)5L, the reaction of CO elimination takes place, resulting in a
square-pyramidal structure with C4v symmetry and the axial ligand eliminated
(Fig. 11.36a), or a pseudo-square-pyramidal structure if the equatorial ligand is
eliminated (Fig. 11.36b).

In the axial elimination, the excited state in the C4v configuration has no
minimum energy (Fig. 36a); by an internal rotation (pseudorotation, or Berry
rotation, Section 9.2) via an intermediate trigonal-bipyramidal structure, it trans-
forms itself to the pseudo-square-pyramidal structure shown in the right-hand
side of Fig. 11.36a. From this metastable state, a radiationless transition to the
ground state takes place. In the case of equatorial ligand elimination the sys-
tem relaxes to this minimum-energy pseudo-square-pyramidal structure directly,
without additional transformations (Fig. 11.36b). It is seen that, beginning with
this configuration, the subsequent reaction (11.64) proceeds as an addition of
L′ to the only free coordination place of the photoinduced complex, resulting in
a cis-bisubstituted system M(CO)4LL′.

For another example of ab initio calculated photochemical reaction, the pho-
tochemical cleavage of the metal–hydrogen bond in aluminum porphyrins, see
the article by Rohmer and Veillard [11.52].
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FIGURE 11.35. Mechanism of photochemical dissociation starting from a singlet ground
state to triplet state products.

FIGURE 11.36. State correlation diagram for the reaction of photoelimination of the axial
(a) or equatorial (b) carbonyl ligand from Mo(CO)5L and consequent internal rotation
(the eliminated ligand is not shown in the products). The straight-line arrows show the
evolution of the excited state to the configuration of minimum energy, while the wavy-line
arrows show the radiationless transitions to the ground state.

SUMMARY NOTES

1. Chemical reactivity —the ability of a system to react with another molecu-
lar system—can be measured by the relative rate of chemical transforma-
tion in the elementary act of the reaction (the full rate of reaction depends
also on kinetic factors).
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2. The inverse of activation energy of the reaction may serve as a measure of
relative reactivity of molecular systems in reactions with the same reagent.
There is also an approximate relationship between the activation energy and
the heat of the reaction given by the Marcus equation; in similar reactions
the activation energy decreases with the heat release in exothermic reactions
and increases in endothermic reactions.

3. In the first approximation to the problem of electronic origin of reactivity
the idea of the essential role of frontier orbitals, HOMO and LUMO, is
employed. Approximate formulas based on perturbation theory show that in
the intermolecular HOMO–LUMO interaction there are charge-based elec-
trostatic and orbital-based covalent contributions that differ significantly in
different reactions, with the charge component larger in reactions with TMS
participation.

4. The covalent interaction between two molecular groups is directly depen-
dent on the overlap of their wavefunctions when they approach each other.
This leads to orbital symmetry rules that restricts possible reaction mecha-
nisms with the lowest activation barrier. These rules, although most efficient
in reactions with organic compounds, are sometimes also important in reac-
tions with TMS participation, for example, as catalysts (Example 11.1).

5. Chemical activation by coordination is a widespread phenomenon with
major application in catalysis. By employing orbital vibronic constants,
we can estimate the changes in bond lengths, vibrational frequencies, and
anharmonicities of coordinated ligands, and hence the activation energies
of their reactions with another molecular group. Several specific cases are
demonstrated in Examples 11.2–11.6.

6. Instabilities and distortions produced by the Jahn–Teller and pseudo-
Jahn–Teller effects indicate directly the possible reaction path in reactions
with the TMS under consideration. Several formulas show the reduction
of activation energy in such reactions as a function of the JTE parameters.

7. Numerical calculations of the APES of chemical reactions are presently
quite affordable for small and moderate systems. Examples of different
kinds of reactions calculated by means of existing methods (Chapter 5)
show how this approach works in explaining the origin and mechanism of
the reaction and the main factors that control its rate.

QUESTIONS AND PROBLEMS

P11.1. In the Marcus equation (10.3) the activation energy D decreases with
the negative heat release �H in exothermic reactions. Find the absolute
value of �H at which D becomes negative for different values of D0.
What is the physical meaning of negative activation energy? Can we
find the D0 value from experimental data?
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*P11.2. According to Eq. (7.87), the instability of the activated complex of
the chemical reaction in a two-level problem is accompanied by a sta-
ble excited state. Can this latter be observed experimentally? What
measurement methods would you suggest?

P11.3. According to Eq. (11.4), obtained by perturbation theory for the
intermolecular interaction, chemical reactions may be either charge-
controlled or orbital-controlled, or by a comparable contribution of
both types. How can we distinguish these possibilities in specific
reactions? Is there a way to predict these kinds of reaction? Are the
orbital symmetry rules applicable to charge-controlled reactions?

P11.4. It is well known that transition metal systems, including metal enzymes,
are the best catalysts in many reactions. What is special in the electronic
structure of the TMS that makes metal enzymes good catalysts? Explain
in detail and give examples.

P11.5. List the main electronic features of activation by coordination. What
electronic parameters do we need to predict the reduction in activation
energy of a reactant due to its coordination to a TMS? How can we
find these parameters?

P11.6. The CO and N2 molecules are isoelectronic, but their activation by coor-
dination is different. What are the main differences in their electronic
structure that makes them different in activation by coordination?

*P11.7. From Fig. 11.9, where the relative values of activation of the CO
molecule by coordination to different TMSs are given for different D0
values (different reactions), we can see that the activation in Mn(CO)5
is larger than in other similar carbonyls and by coordination on surfaces.
Explain the origin of this effect in terms of electronic structure.

**P11.8. Using the numerical data of orbital vibronic coupling constants for
the CN molecule and orbital charge transfers by its coordination in
Fe(III)CN in Ref. 11.17b, derive the equation for the activation energy
D of reactions of the coordinated CN molecule with other systems
as a function of the activation energy D0 of the same reactions of
the free molecule, employing the semiempirical equation (11.24′) with
Eqs. (11.22′) for the parameter changes due to coordination. Note
that in this case four MOs of CN are active in the bonding with
iron. For the anharmonicity constant γ0 use the formula [11.53]: γ0 =
(K0/�ω)(4K0�ωxe/15)1/2 with the anharmonicity correction �ωxe and
vibrational frequency �ω from the paper [11.17b].

P11.9. Assuming that the reaction CN + X2 → CX + NX exists and its activa-
tion energy D0 = 100 kcal/mol, estimate the reduction of the activation
energy −�D for the same reaction when the CN molecule is coordi-
nated to Fe(III) using the results of Problem **P11.8 (cf. Example
11.3).

P11.10. The substitution reaction CuL6
2+ + M → CuL5M2+ + L is assumed

to be driven by the strong JTE in octahedral Cu(II) complexes (see
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Example 11.8). Estimate the reduction in activation energy of such reac-
tions due to the JTE, assuming that the stabilization energy is known
to be �E = 0.5 eV and D0 = 50 kcal/mol.
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APPENDIXES

APPENDIX 1. TABLES OF CHARACTERS OF IRREDUCIBLE
REPRESENTATIONS OF MOST USABLE SYMMETRY POINT GROUPS
AND DIRECT PRODUCTS OF SOME REPRESENTATIONS

The Cartesian coordinates x, y, and z and some of their combinations, as well
as rotations around the axes Rx, Ry , and Rz that belong to the corresponding
representation are also indicated; for degenerate representations the corresponding
degenerate combinations are shown in parentheses.

TABLE A1.1. Point Groups Cs,C2, and Ci

Ci E I

C2 E C2z

Cs E σz

Ag Rx, Ry,Rz, A z,Rz, x
2, y2, z2 A′ x, y,RZ , 1 1

x2, y2, z2, xy, xz, yz xy z2, xy

Au x, y, z B x, y,Rx,Ry, xz, yz A′′ z, Rx,Ry , 1 −1

Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory,
Second Edition By Isaac B. Bersuker
Copyright © 2010 John Wiley & Sons, Inc.
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TABLE A1.2. Point Groups C2h and C2v

C2h E C2 σh I

C2v E C2 σv σ ′
v

Ag Rz, x2, y2, z2, xy A1 z, x2, y2, z2 1 1 1 1

Bg Rx, Ry, xz, yz B2 y, Rx, yz 1 −1 −1 1

Au z A2 Rz, xy 1 1 −1 −1

Bu x, y B1 x, Ry, xz 1 −1 1 −1

TABLE A1.3. Point Groups C3v and D3

C3v E 2C3 3σu

D3 E 2C3 3C2

A1 z, x2 + y2, z2 A1 x2 + y2, z2 1 1 1
A2 Rz A2 z, Rz 1 1 −1

E (x, y), (Rx, Ry), (x2 − y2, xy)(xz, yz) E (x, y), (Rx,Ry) 2 −1 0

TABLE A1.4. Point Group D3d

D3d E 2C3 3C2 I 2S6 3σd

A1g x2 + y2, z2 1 1 1 1 1 1
A1u 1 1 1 −1 −1 −1
A2g Rz 1 1 −1 1 1 −1
A2u z 1 1 −1 −1 −1 1
Eg (Rx,Ry) 2 −1 0 2 −1 0
Eu (x, y) 2 −1 0 −2 1 0

TABLE A1.5. Point Groups C6v and D3h

C3v E C2 2C3 2C6 3σv 3σ ′
v

D3h E σh 2C3 2S3 3C2 3σv

A1 z, x2 + y2, z2 A′
1 x2 + y2, z2 1 1 1 1 1 1

A2 Rz A′
2 Rz 1 1 1 1 −1 −1

B2 A′′
1 1 −1 1 −1 1 −1

B1 A′′
2 z 1 −1 1 −1 −1 1

E2 (x2 − y2, xy) E′ (x, y), (x2 − y2, xy) 2 2 −1 −1 0 0

E1 (x, y), (Rα,Ry), (xz, yz) E′′ (Rx, Ry), (xz, yz) 2 −2 −1 1 0 0
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TABLE A1.6. Point Group D2h

D2h E C2z C2y C2x I σz σy σx

Ag x2, y2, z2 1 1 1 1 1 1 1 1

Au xyz 1 1 1 1 −1 −1 −1 −1

B1g Rz, xy 1 1 −1 −1 1 1 −1 −1

B1u z 1 1 −1 −1 −1 −1 1 1

B2g Ry, xz 1 −1 1 −1 1 −1 1 −1

B2u y 1 −1 1 −1 −1 1 −1 1

B3g Rx, yz 1 −1 −1 1 1 −1 −1 1

B3u x 1 −1 −1 1 −1 1 1 −1

TABLE A1.7. Point Groups C4v and D2d

C4v E C2 2C4 2σv 2σ ′
v

D2d E C2 2S4 2C ′
2 2σd

A1 z, x2 + y2, z2 A1 x2 + y2, z2 1 1 1 1 1

A2 Rz A2 Rz 1 1 1 −1 −1

B1 x2 − y2 B1 x2 − y2 1 1 −1 1 −1

B2 xy B2 z, xy 1 1 −1 −1 1

E (x, y), (Rx, Ry),

(xz, yz)

E (x, y), (Rx, Ry),

(xz, yz)

2 −2 0 0 0

TABLE A1.8. Point Group D4h

D4h E 2C4 C2 2C ′
2 2C ′′

2 I 2S4 σZ 2σv 2σd

A1g x2 + y2, z2 1 1 1 1 1 1 1 1 1 1

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2g Rz 1 1 1 −1 −1 1 1 1 −1 −1

A2u z 1 1 1 −1 −1 −1 −1 −1 1 1

B1g x2 − y2 1 −1 1 1 −1 1 −1 1 1 −1

B1u 1 −1 1 1 −1 −1 1 −1 −1 1

B2g xy 1 −1 1 −1 1 1 −1 1 −1 1

B2u 1 −1 1 −1 1 −1 1 −1 1 −1

Eg (Rx,Ry), (xz, yz) 2 0 −2 0 0 2 0 −2 0 0

Eu (x, y) 2 0 −2 0 0 −2 0 2 0 0
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TABLE A1.9. Point Group C ∞v

C∞v E 2C∞(ϕ)a . . . ∞σv

A1 ≡ �+ z, x2 + y2, z2 1 1 . . . 1

A2 ≡ �− Rz 1 1 . . . −1

E1 = � (x, y), (Rx, Ry), (xz, yz) 2 2 cos ϕ . . . 0

E2 = � (x2 − y2, xy) 2 2 cos 2ϕ . . . 0

E3 = � 2 2 cos 3ϕ . . . 0

. . . . . . . . . . . . . . .
aϕ is the angle of rotation around the axis of symmetry of infinite order.

TABLE A1.10. Tetrahedral Point Group Td

Td E 8C3 3C2 6S4 6σd

A1 x2 + y2 + z2 1 1 1 1 1

A2 1 1 1 −1 −1

E (2z2 − x2 − y2, x2 − y2) 2 −1 2 0 0

T1 (Rx, Ry,Rz) 3 0 −1 1 −1

T2 (x, y, z), (xy, xz, yz) 3 0 −1 −1 1

TABLE A1.11. Octahedral Point Group Oh

Oh E 8C3 3C2
(= C2

4

)
6C4 6C2 I 8S6 3σh 6S4 6σd

A1g x2 + y2 + z2 1 1 1 1 1 1 1 1 1 1

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2g 1 1 1 −1 −1 1 1 1 −1 −1

A2u 1 1 1 −1 −1 −1 −1 −1 1 1

Eg

(
2z2 − x2 − y2, x2 − y2

)
2 −1 2 0 0 2 −1 2 0 0

Eu 2 −1 2 0 0 −2 1 −2 0 0

T1g (Rx, Ry, Rz) 3 0 −1 1 −1 3 0 −1 1 −1

T1u (x, y, z) 3 0 −1 1 −1 −3 0 1 −1 1

T2g (xy, xz, yz) 3 0 −1 −1 1 3 0 −1 −1 1

T2u 3 0 −1 −1 1 −3 0 1 1 −1
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+
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+
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−
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+
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−
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−
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−
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TABLE A1.13. Point Group O ′ (Octahedral Double Group)

Mulliken Bethe 4C3 4C2
3 3C2

4 3C4 3C3
4 6C2

Notations Notations E Q 4C2
3Q 4C3Q 3C2

4Q 3C3
4Q 3C4Q 6C2Q

A′
1 	1 1 1 1 1 1 1 1 1

A′
2 	2 1 1 1 1 1 −1 −1 −1

E′ 	3 2 2 −1 −1 2 0 0 0
T ′

1 	4 3 3 0 0 −1 1 1 −1
T ′

2 	5 3 3 0 0 −1 −1 −1 −1
E′

2 	6 2 −2 1 −1 0
√

2 −√
2 0

E′
3 	7 2 −2 1 −1 0 −√

2
√

2 0
G′ 	8 4 −4 −1 1 0 0 0 0

TABLE A1.14. Direct Products of Irreducible Representations of Simple Groups
�i × �j (I), Simple with Double Groups �i × �α (II), and Double with Double
Groups �α × �β (III) Presented as a Sum of �i

I. 	i × 	j

	1 × 	i = 	i , 	2 × 	2 = 	1

	2 × 	3 = 	3, 	2 × 	4 = 	5

	2 × 	5 = 	4, 	3 × 	3 = 	1 + 	2 + 	3

	3 × 	4 = 	4 + 	5, 	3 × 	5 = 	4 + 	5

	4 × 	4 = 	1 + 	3 + 	4 + 	5

	4 × 	5 = 	2 + 	3 + 	4 + 	5

	5 × 	5 = 	1 + 	3 + 	4 + 	5

II. 	i × 	α

	1 × 	6 = 	2 × 	7 = 	6, 	2 × 	6 = 	1 × 	7 = 	7

	3 × 	6 = 	3 × 	7 = 	8, 	3 × 	8 = 	6 + 	7 + 	8

	4 × 	6 = 	5 × 	7 = 	6 + 	8

	5 × 	6 = 	4 × 	7 = 	7 + 	8

	4 × 	8 = 	5 × 	8 = 	6 + 	7 + 2	8

III. 	α × 	β

	6 × 	6 = 	7 × 	7 = 	1 + 	4

	6 × 	7 = 	2 + 	5

	6 × 	8 = 	7 × 	8 = 	3 + 	4 + 	5

	8 × 	8 = 	1 + 	2 + 	3 + 2	4 + 2	5

APPENDIX 2. GENERAL EXPRESSIONS FOR THE MATRIX
ELEMENT Vmm′ OF PERTURBATION OF THE STATES OF ONE d
ELECTRON IN CRYSTAL FIELDS OF ARBITRARY SYMMETRY

For the calculation of the matrix element Vmm′ after (4.8) we use the following
expansion (2.37):

1

|r − Ri | =
∞∑

k=0

Kk(r, Ri)Pk(cos γi)



698 APPENDIXES

where Kk(r, Ri) is given by Eq. (2.38), and cos γi = cos θ cos θi +
sin θ sin θi cos(ϕ − ϕi). Then

Vmm′ = ∫ m ∗ V m′dτ =
N∑

i=0

eqi

∞∑

k=0

Fk(Ri)�
mm′
k (θi, ϕi) (A2.1)

where

Fk(R) = R−(k+1)

∫ R

0
rkR2

n2(r)r
2dr + Rk

∫ ∞

R

r−(k+1)R2
n2(r)r

2dr (A2.2)

�mm′
k =

∫ π

0

∫ 2π

0
Ym

2 (θ, ϕ)Ym′
2 (θ, ϕ)Pk(cos γi) sin θdθdϕ (A2.3)

To simplify the last equation, the expansion of the product of spherical func-
tions Ym

2 Ym′
2 in spherical functions Ym

l can be employed [A2.1, p.60]:

Ym
2 (θ, ϕ)Ym′∗

2 (θ, ϕ) = (−1)m
′

(4π)1/2
[ 5

3C224
−m′mC220

00 Ym−m′
4 (θ, ϕ)

+
√

5C222
−m′mC222

00 Ym−m′
2 (θ, ϕ) + 5C220

−m′mC220
00 Ym−m′

0 (θ, ϕ)]

(A2.4)

where Cabc
αβ denotes the Clebsh–Gordan coefficients, which are tabulated [A2.2].

By substituting Eq. (A2.4) into (A2.3), one obtains integrals that are calculable
directly by means of the following formula of addition of spherical functions:

∫ Yl(θ, ϕ)Pn(cos γi) sin θ dθ = 4π

2n + 1
Yl(θi, ϕi)δln (A2.5)

In so doing, we obtain

�mm′
n (θi, ϕi) = Amm′Ym−m′

4 (θi, ϕi)δn4 + Bmm′Ym−m′
2 (θi, ϕi)δn2

+ Dmm′Ym−m′
0 (θi, ϕi)δn0 (A2.6)

where

Amm′ = (−1)m
′ 10

√
π

27
C224

−m′mC224
00

Bmm′ = (−1)m
′
(2

√
π/5)C222

−m′mC222
00 (A2.7)

Dmm′ = (−1)m
′
(10

√
π)C220

−m′mC220
00
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Owing to the δ symbols, only three terms in the infinite sum (A2.1) are
nonzero, and the summation over the N nuclei only remains:

Vmm′ =
N∑

i=1

eqi[Amm′F4(Ri)Y
m−m′
4 (θi, ϕi) + Bmm′F2(Ri)Y

m−m′
2 (θi, ϕi)

+Dmm′F0(Ri)Y
m−m′
0 (θi, ϕi)] (A2.8)

This is the general formula for the matrix element of the perturbation of d

states (2.1) by crystal fields.
The functions Fk(R) after (A2.2) depend on the radial part of the d functions.

For instance, taking the 3d function as a hydrogenlike one with an effective
screening parameter α (Section 2.1)

R32(r) = 4
√

10

3
α7/2r2e−αr (A2.9)

we obtain

F 3d
k (R) = α

360

{[
(k + 6)!

(2x)k+1

]

− (2x)6[Ak+6(2x) − A5−k(2x)]

}

(A2.10)

where x = αR and

An(y) =
∫ ∞

1
exp(−yr)rn dr (A2.11)

are auxiliary functions often used in quantum-chemical calculations [see An(y)

tables in Ref. A2.3). If n is an integer, the integrals (A2.11) can be calculated
directly yielding analytical expressions for the functions Fk(R). In particular, for
F0, F2, and F4 in (A2.8), we have

F0 = α

[

x−1 − e−2x

(

x−1 + 5

3
+ 4x

3
+ 2x2

3
+ 2x3

9
+ 2x4

45

)]

(A2.12)

F2 = α

[
14

x3
− e−2x

(
14

x3
+ 28

x2
+ 28

x
+ 56

3
+ 28x

3

11x2

3
+ 10x3

9
+ 2x4

9

)]

(A2.13)

F4 = α

[
315

x5
− e−2x

(
315

x5
+ 630

x4
+ 630

x3
+ 420

x2
+

210

x
+ 84 + 28x + 8x2 + 2x3 + 2x4

5

)]

(A2.14)

The values Fk(R) are tabulated [A2.4].
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APPENDIX 3. CALCULATION OF THE DESTABILIZATION
AND SPLITTING OF THE STATES OF ONE d ELECTRON
IN CRYSTAL FIELDS OF DIFFERENT SYMMETRIES

Calculations of d-electron energy-level splitting in the field of ligand–point
charges performed in Section 4.2 can be extended to the case of ligand–dipoles.
Present the dipole system as two charges −q and +q situated at a distance �R

from each other and assume that the dipoles of the ligands are oriented along
the metal–ligand bonds with the negative pole toward the CA. Performing the
calculation of the perturbation of the d states twice, first in the field of six nega-
tive charges −q at the distances R from the CA and then in the field of similar
positive charges at a larger distance R + �R, and summing up the results, we
have [cf. (4.14)]

ε1 = ε2 = eq{[6F0(R) + F4(R)] − [6F0(R + �R) + F4(R + �R)]}
ε3 = ε4 = ε5 = eq{[6F0(R) − 2

3F4(R)] − [6F0(R + �R) − 2
3F4(R + �R)]}

(A3.1)

For � = ε1 − ε3 we get

� = eq 5
3 [F4(R) − F4(R + �R)] (A3.2)

These equation can be simplified if we assume that the ligand dipoles can be
considered as point dipoles; that is, the dimensions of the dipoles �R are much
smaller, than the metal–ligand distance R, �R � R. Under this assumption

1

�R
[Fk(R + �R) − Fk(R)] ≈ dFk(R)

dR
= F ′

k(R)

Since q �R = μ, we easily obtain Eq. (4.30):

� = − 5
3eμF ′

4(R) (A3.3)
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Tetragonally Distorted Octahedron and Planar Square (see Problem 4.1)

If the six ligand–point charges q form tetragonal symmetry D4h, then

R1 = R4 R2 = R3 = R5 = R6 (R1 
= R2)

θ1 = 0 θ2 = θ3 = θ5 = θ6 = π

2
θ4 = π (A3.4)

ϕ2 = 0 ϕ3 = π

2
ϕ5 = π ϕ6 = 3π

2

With these relations the nonzero matrix elements Vmm′ are the same as for
the octahedron, and the roots ε are the same as in Eqs. (4.13). However, the
expressions for Vmm′ do not coincide with (4.12):

V22 = eq{2F0(R1) + 4F0(R2) − 4
7 [F2(R1) − F2(R2)] + 2

21F4(R1) + 1
14F4(R2)}

V11 = eq{2F0(R1) + 4F0(R2) + 2
7 [F2(R1) − F2(R2)] − 8

21F4(R1) − 2
7F4(R2)]}

V00 = eq{2F0(R1) + 4F0(R2) + 4
7 [F2(R1) − F2(R2)] + 4

7F4(R1) + 3
7F4(R2)}

V2−2 = 5
6eqF4(R2) (A3.5)

For this reason all four roots (4.13) are different, and for the description of
the splitting one should introduce, alongside the cubic splitting parameter (4.15)

� = 10Dq = 5
3eqF4(R) (A3.6)

two more parameters of the tetragonal splitting:

Ds = 2
7eq[F2(R2) − F2(R1)]Dt = 2

21eq[F4(R2) − F4(R1)] (A3.7)

With these parameters the d-electron energy levels are (the type of symmetry
and d function are indicated in parenthesis)

ε1(A1g; dz2) = E′
0 + 3

5� − 2Ds − 6Dt

ε2(B1g; dx2−y2) = E′
0 + 3

5� + 2Ds − Dt (A3.8)

ε3(B2g; dxy) = E′
0 − 2

5� + 2Ds − Dt

ε4,5(Eg; dxz, dyz) = E′
0 − 2

5� − Ds + 4Dt

where E′
0 = 2F0(R1) + 4F0(R2).

In the limit of strong tetragonal distortion with two axial ligands at infinity, the
octahedron transforms into a planar-square configuration with the CA in the cen-
ter. The corresponding energy levels can be find by tending R1 → ∞. This results
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in Fk(R1) → 0 [see Eqs. (A2.12)–(A2.14)], and hence Ds = 2
7eqF2(R2), Dt =

2
21eqF4(R2). Note that in this case the three parameters, �, Ds , and Dt , are
no longer independent: Dt = 2

35�, and the energy levels depend on only two
parameters, Ds and �.

For Fk(R1) → 0 the nonzero matrix elements (A3.5) become

V22 = eq[4F0(R) − 4
7F2(R) + 1

14F4(R)]

V11 = eq[4F0(R) − 2
7F2(R) − 2

7F4(R)] (A3.9)

V00 = eq[4F0(R) − 4
7F2(R) + 3

7F4(R)]

V2−2 = eq 5
6F4(R)

This allows one to obtain the energy levels of d electrons in the square-planar
crystal field of the ligands:

ε1(A1g; dz2) = ES
0 + 9

35� − 2DS

ε2(B1g; dx2−y2) = ES
0 + 19

35� + 2DS (A3.10)

ε3(B2g; dxy) = ES
0 − 16

35� + 2DS

ε4,5(Eg; dxz, dyz) = ES
0 − 6

35� − DS

where ES
0 = 4F0(R).

The Tetrahedron and the Cube

For four ligand–point charges forming a regular tetrahedron with the CA in the
center, we have

qi = q Ri = R i = 1, 2, 3, 4

cos θ1 = cos θ2 = − cos θ3 = − cos θ4 = 1√
3

(A3.11)

ϕ1 = π

4
ϕ2 = 3π

4
ϕ3 = 5π

4
ϕ4 = 7π

4

For these coordinates the roots of the secular equation (4.7) are given by the
same formulas (4.13) as for the octahedron, but with different expressions for
the matrix elements Vmm′ :

V22 = eq[4F0(R) − 2
27F4(R)]

V11 = eq[4F0(R) + 8
27F4(R)] (A3.12)

V00 = eq[4F0(R) − 4
9F4(R)]

V2−2 = eq 10
27F4(R)
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Here, as in the octahedron (and any other cubic system), we obtain

V22 + V2−2 = V11

V22 − V2−2 = V00

(A3.13)

Therefore, among the five roots (4.13) there are only two different groups with
two and three equal roots, respectively:

ε1 = ε2 = ε3 = ε(T2) = eq[4F0(R) + 8
27F4(R)]

ε4 = ε5 = ε(E) = eq[4F0(R) − 4
9F4(R)]

(A3.14)

Thus the splitting in the tetrahedral field is similar to that of the octahedral
field (4.14) with the significant distinction that in the tetrahedron the E term
is lover than T2. Besides, the absolute value of the splitting in the tetrahedron
�T = ε(E) − ε(T2)

�T = −eq 20
27F4(R) = − 4

9� (A3.15)

is 4
9 of the splitting in the octahedron, provided the interatomic distances R and

ligand–point charges q are the same in both types of complexes.
Quite similar to the tetrahedral field, the cubic field created by eight

ligand–point charges at the eight corners of a regular cube can be considered
simply by doubling the field strength. The resulting d electron energy terms and
crystal field splitting �k are

ε(T2) = eq[8F0(R) + 16
17F4(R)] = Ek

0 + 2
5�k

ε(E) = eq[8F0(R) − 8
9F4(R)] = Ek

0 − 3
5�k (A3.16)

�k = 40
27eqF4(R) = 2�T = 8

9� (A3.17)

Ek
0 = 8eqF0(R) = 2ET

0 = 4
3E0 (A3.18)

APPENDIX 4. MATRIX ELEMENTS OF CRYSTAL FIELD
PERTURBATION OF A TWO-ELECTRON TERM F(nd)2, V ′

ij ,

i, j = 1, 2,. . . , 7 (AFTER [4.34]) EXPRESSED BY ONE-ELECTRON
MATRIX ELEMENTS Vmm′ GIVEN IN APPENDIX 2

V ′
11 = V11 + V22

V ′
12 = V10
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V ′
13 = ( 3

5

)1/2
V1−1 − ( 2

5

)1/2
V20

V ′
14 = ( 1

5

)1/2
V1−2 − ( 4

5

)1/2
V2−1

V ′
15 = − ( 3

5

)1/2
V2−2

V ′
16 = 0

V ′
17 = 0

V ′
22 = V00 + V22

V ′
23 = ( 3

5

)1/2
V0−1 + ( 2

5

)1/2
V21

V ′
24 = ( 1

5

)1/2
V0−2

V ′
25 = − ( 2

5

)1/2
V2−1

V ′
26 = −V2−2 = ( 5

3

)1/2
V ′

15

V ′
27 = 0

V ′
33 = 3

5 (V22 + V−1−1) + 2
5 (V00 + V11)

V ′
34 = (√

3/5
)
V−1−2 + (

2
√

3/5
)
V21 + (

2
√

2/5
)
V0−1

V ′
35 = (√

6/5
)
V20 + (√

6/5
)
V0−2 − 2

5V1−1

V ′
36 = − ( 2

5

)1/2
V1−2

V ′
37 = − (

3
5

)1/2
V2−2

V ′
44 = 1

5 (V22 + V−2−2) + 4
5 (V11 + V −1−1)

V ′
45 = (√

3/5
)
V21 + (

2
√

3/5
)
V−1−2 + (

2
√

2/5
)
V10

V ′
46 = ( 1

5

)1/2
V20

V ′
47 = ( 3

5

)1/2
V2−1 − ( 4

5

)1/2
V1−2

V ′
55 = 3

5 (V11 − V−2−2) + 2
5 (V00 + V−1−1)

V ′
56 = ( 3

5

)1/2
V10 + ( 2

5

)1/2
V−1−2

V ′
57 = ( 3

5

)1/2
V1−1 − ( 2

5

)1/2
V0−2

V ′
66 = V00 + V−2−2

V ′
67 = V0−1

V ′
77 = V1−1 + V−2−2
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APPENDIX 5. MATRIX ELEMENTS OF CRYSTAL FIELD
PERTURBATION OF f ELECTRON STATES (AFTER [4.22])

The wavefunction of the f electron can be taken in the form.

n3m = Rn3(r)Y3m(θ, ϕ) m = 0, ±1, ±2,±3 (A5.1)

Considering the ligand–point charge perturbation after Eq. (4.2), denoting the
ligand coordinates by R(Rj , θj , ϕj ) and the functions Fn ≡ Fn(Rj ) after (A2.2)
with Rn3(r) instead of Rn2(r)

R43(r) = ( 140
9

)1/2
α9/2r3e−αr (A5.2)

and following the computation procedure of Appendix 2, we get the following
matrix elements of the ligand–point charge perturbation of the f states (the sum
is taken over all the ligands j ):

V00 = e2
∑

j

[
F0 + 2

15

(
3 cos2 θj − 1

)
F2 + 1

44

(
35 cos4 θj

−30 cos2 θj + 3
)
F4 + 25

1716

(
231 cos6 θj − 315 cos4 θj

+105 cos2 θj − 5
)
F6

]
(A5.3)

V±1±1 = e2
∑

j

[
F0 + 1

10

(
3 cos2 θj − 1

)
F2

+ 1
264

(
35 cos4 θj − 30 cos2 θj + 3

)
F4

− 25
2288

(
231 cos6 θj − 315 cos4 θj + 105 cos2 θj − 5

)
F6

]
(A5.4)

V±2±2 = e2
∑

j

[
F0 − 7

264

(
35 cos4 θj − 30 cos2 θj + 3

)
F4

+ 5
1144

(
231 cos6 θj − 315 cos4 θj + 105 cos2 θj − 5

)
F6

]
(A5.5)

V±3±3 = e2
∑

j

[
F0 − 1

6

(
3 cos2 θj − 1

)
F2 + 1

88

(
35 cos4 θj

−30 cos2 θj + 3
)
F4 − 5

6864

(
231 cos6 θj − 315 cos4 θj

+105 cos2 θj − 5
)
F6

]
(A5.6)

V32 = e2
∑

j

(√
6/6

)
exp

(−iϕj

)
sin θj cos θj [−F2

+ 5
22

(
7 cos2 θj − 3

)
F4 − 35

1144

(
33 cos4 θj

−30 cos2 θj − 30 cos2 θj + 5
)
F6] (A5.7)
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V31 = e2
∑

j

(
√

15/2) exp(−2iϕj ) sin2 θj

[− 1
15F2

+ 1
22 (7 cos2 θj − 1)F4 − 35

3432(33 cos4 θj

−18 cos2 θj + 1)F6
]

(A5.8)

V30 = e2
∑

j

√
5 7

44 exp(−3iϕj ) sin3 θj cos θj [F4

− 5
26 (11 cos2 θj − 3)F6

]
(A5.9)

V3−1 = e2
∑

j

√
15 7

88 exp(−4iϕj ) sin4 θj

[ 1
3 F4 − 5

26 (11 cos2 θj − 1)F6] (A5.10)

V3−2 = −e2
∑

j

√
6 385

2288 exp(−5iϕj ) sin5 θj cos θj F6 (A5.11)

V3−3 = −e2
∑

j

385
2288 exp(−6iϕj ) sin6 θj F6 (A5.12)

V2−2 = e2
∑

j

35
88 exp(−4iϕj ) sin4 θj

[ 1
3 F4 + 3

13 (11 cos2 θj−1)F6
]

(A5.13)

V1−1 = −e2
∑

j

exp(−2iϕj ) sin2 θj
1
5F2 + 5

66 (7 cos2 θj − 1)F4

+ 175
2288

(
33 cos4 θj − 18 cos2 θj + 1

)
F6 (A5.14)

V10 = −e2
∑

j

√
3 exp

(−iϕj

)
sin θj cos θj

[ 1
15F2 + 5

132

(
7 cos2 θj − 3

)
F4

+ 175
3432

(
33 cos4 θj − 30 cos2 θj + 5

)
F6

]
(A5.15)

V21 = e2
∑

j

√
10 exp

(−iϕj

)
sin θj cos θj

[− 1
10F2 − 1

33

(
7 cos2 θj − 3

)
F4

+ 35
2288

(
33 cos4 θj − 30 cos2 θj + 5

)
F6

]
(A5.16)

V20 = e2
∑

j

(√
30/6

)
exp

(−iϕj

)
sin2 θj

[− 1
5F2 − 1

44

(
7 cos2 θj − 1

)
F4

+ 35
572

(
33 cos4 θj − 18 cos2 θj + 1

)
F6

]
(A5.17)

V2−1 = e2
∑

j

√
10 7

44 exp
(−3iϕj

)
sin3 θj cos θj

[ 1
3F4

+ 15
52

(
11 cos2 θj − 3

)
F6

]
(A5.18)
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Following are answers to questions and solutions to problems at the end of
Chapters 2–11. Problems are distinguished from questions by the letter P before
its number.

Chapter 2

True or False?
2.1. False. The atomic d states are fivefold-degenerate, so for the free atom

any linear combination of the d functions in Table 2.1 and Fig. 2.3 is also
a d function; they become space-oriented only under external perturbations
that violate the spherical symmetry of the atom.

2.2. False. Hybridization of atomic functions takes place during (and is caused
by) appropriate chemical bonding.

2.3. True. The orbital moment of s electrons is zero, so there is no spin–orbital
interaction.

2.4. False. Separation between orbital and spin functions is possible approx-
imately for light atoms where the spin–orbital interaction is weak and
can be considered as a perturbation (Russell–Saunders coupling), but is
not possible for heavy-atom compounds where the spin–orbital interaction
cannot be considered as a small correction (jj coupling).

2.5. True. Since the atomic functions are normalized, the maximum of the
overlap integral is achieved only when they fully coincide, and then the
integral equals unity.

Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory,
Second Edition By Isaac B. Bersuker
Copyright © 2010 John Wiley & Sons, Inc.
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2.6. False. In general, the spin–orbital interaction in transition metal systems
(TMSs) is neither small nor insignificant and cannot be neglected. In coor-
dination compounds it may be partially reduced by covalence bonding to
organic ligands (Example 6.14). For first-row transition elements it can
usually be considered as a perturbation.

2.7. True. (See Section 2.2.)

P2.5. For the Ti2+ ion in Table 4.7 B = 695 cm−1 and C = 2910 cm−1, and
following Table 2.6 for the electronic configuration d2 with A = 0 we find
(in cm−1): E(3F) = −8B = −5560, E(3P) = 7B = 4865, and so on. This
results in the following energy level diagram:
1S (30100) ______________
1G (8600) ______________
3P (4865) ______________
1D (3735) ______________
3F (−5560) ______________

Note that the numbers are relative values of the energy term as we assumed
A = 0. The energy diagrams of the other ions can be obtained in quite a
similar way.

Chapter 3

P3.1. A hexagonal prism has an identity element E, two 2-sided rotational axes
C6 and C3, a central C2 axis, three axes C′

2 in the plane perpendicu-
lar to the C6 axis, cutting the prism in half and connecting two oppo-
site verges, and three similar axes C′′

2 in the same plane connecting the
midpoints of two opposite lateral planes; an inversion element I and an
additional five elements that emerge from multiplying the five types of
rotational axes Cn by the inversion element I , namely, C6I = S6 (a six-
order rotational–reflection axis), C3I = S3, C2I = σh, C

′
2I = σv, C

′′
2 I =

σd . The symmetry group formed by these transformations is D6h.

P3.2. The symmetry group of trigonal pyramidal NH3 is C3v; planar CuF3, D3h;
planar C2H4, D2h; tricapped trigonal prism of [ReH9]2−, D3h (Section 9.1);

H

N

H

H

(2) CuF3(D3h)

F

Cu

F

F

(1) NH3(C3v)
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H

H

H
H

H

H

H

H

H

1.68 ± 0.01 Å

C C

H

H H

H

(4) [ReH9]2−(D3h)(3) CH2-CH2(D2h)

z

x

z

x

(5) [W(CN)8]4− in H4[W(CN)8] (D4d) (6) [W(CN)8]4− in K4[W(CN)8] (D2d)

(7) [Ni(CN)5]3−(C4v)

square antiprism W(CN)4−
8 in H4[W(CN)8], D4d , dodecahedron W(CN)4−

8
in K4[W(CN)8], D2d ; and square pyramid [Ni(CN)5]3−, C4v. Their struc-
tures are shown above.

P3.3. Allowed electric–dipolar and magnetic–dipolar transitions from the
ground A state and their polarizations in systems with different symmetries
are tabulated as follows:
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Electric–Dipolar Magnetic–Dipolar
Symmetry Transition Polarization Transition Polarization

Oh A1g → T1u x, y, z A1g → T1g x, y, z

Td A1 → T2 x, y, z A1 → T1 x, y, z

D3d A1g → A2u z A1g → A2g z

A1g → Eu x, y A1g → Eg x, y

D2h Ag → Au x, y, z

Ag → B1u z Ag → B1g z

Ag → B2u y Ag → B2g y

Ag → B3u x Ag → B3g x

D4h A1g → A2u z Ag → A2g z

A1g → Eu x, y A1g → Eg x, y

Ih A1g → T1u x, y, z A1g → T1g x, y, z

P3.4. For the characters of the reducible representation of symmetric products
of representations, using formula (3.34), [X]2(G) = 1

2 {[X(G)]2 + X(G2)}
for each class of transformations G, for both types of E terms in the Oh

group, Eg and Eu, the E × E product yields:

G E C3 C2 C4 C′
2 I S6 σh S4 σd

[X]2(G) = 3 0 3 1 1 3 0 3 1 1

Using Eq.(3.33) or by direct inspection, we easily find that this reducible
representation is a sum of two irreducible representations (IrReps): A1g +
Eg . Similarly, using Eq. (3.35) we easily solve for the antisymmetric prod-
uct {E × E} = A2g . In the same way we find that [T × T ] = A + E + T2,
and {T × T } = T1 for any T term in the cubic groups, while for the
C4v group [E × E] = A1 + B1 + B2 and {E × E} = A2 (see also Prob-
lem 3.9).

P3.5. See Table 5.1.

P3.6. See Table 5.1.

P3.7. According to the table of characters of the symmetry group Oh, Table
A1.11, the tensor of polarizability belongs to the T2g IrRep (its compo-
nents, products of coordinates, transform as T2g symmetry type). Therefore
the matrix elements of this tensor, and hence transition under tensor pertur-
bations (e.g., in Raman spectra; see Section 8.2) are nonzero if the product
of the IrReps of the initial and final states contains the T2g IrRep. Using
Eq. (3.33) (or by direct inspection) we can easily find that in the Oh group
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the T2g IrRep is contained in the products A1g × T2g, A1u × T2u, Eg ×
T2g, Eu × T2u, T1g × T2g , and T1u × T2u. Thus transitions between these
pairs of states are allowed under tensor perturbations.

P3.8. For the seven-atom system UF6, using Eqs. (3.54)–(3.56) and Table A1.11,
we find the following reducible vibrational representation X(G) of the
atomic displacements in the octahedral Oh symmetry:

G E C3 C2 C4 C′
2 I S6 σh S4 σd

X(G) 15 0 −1 1 1 −3 0 5 −1 3

Its decomposition into IrReps by means of Eq. (3.33) yields X(G) = A1g +
Eg + T2g + T2u+2T1u. Thus the possible symmetrized vibrations include
one A1g , one Eg , two T1u, one T2g , and one T2u vibrations, with a total of
3 × 7−6 = 15.

P3.9. In the Td group there are two types of t2 configurations, t2
1 and t2

2 . In
both cases T × T = A1 + E + T1 + T2 with the symmetric part [T × T ] =
A1 + E + T2 (for which the spin state should be antisymmetric, mean-
ing S = 0) and antisymmetric product {T × T } = T1 (for which S = 1).
Therefore the t2 configuration in tetrahedral systems produces one triplet
term 3T1 and three singlet terms 1A1, 1E, and 1T2. In the Oh groups
there are four types of t2 configurations: t2

1g, t
2
1u, t

2
2g , and t2

2u. For all of
them T × T = A1g + Eg + T1g + T2g with the symmetric part [T × T ] =
A1g + Eg + T2g and antisymmetric product {T × T } = T1g . Thus the terms
of any t2 configuration in Oh symmetry are 3T1g , 1A1g , 1Eg , and 1T2g .

Chapter 4

4.1. See answers in Sections 4.1 and 4.6.

4.2. The equivalence of the five d-electron distribution (fivefold degeneracy)
is due to the spherical symmetry of the atomic field; any additional field
of cubic and lower symmetry makes them nonequivalent and removes the
degeneracy. In icosahedral fields the five d electrons remain equivalent
(the icosahedral group has five-dimensional IrReps); their levels do not
split. The three p electrons form a threefold-degenerate state in the free
atom, and they remain equivalent in the ligand fields of cubic symmetry;
their levels do not split (cubic symmetry groups have threefold-degenerate
IrReps), but they split in fields of lower symmetry.

4.3. The stability of the complex in the crystal field theory (CFT) model is
provided by Coulomb interaction of the central atom (CA) core and ligand
ions or dipoles [the term W in Eq. (4.1)]. The CFT does not consider in
detail the CA— ligand bonding energy (Section 4.1).

4.4. See answerss in Section 4.3.
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4.5. In weak crystal fields the splitting magnitude of d-electron levels � is
small, so additional electrons prefer to occupy the higher levels forming a
configuration with parallel spins (high total spin), which has lower energy
in accordance with Hund’s rule. When � is large (in strong fields), the
high-spin arrangement becomes inconvenient, while at lower levels the
electron spins are paired, resulting in low-spin electron configurations. The
number of d electrons for which two alternative configurations are pos-
sible is limited to d4 –d7 in octahedral systems and d3 –d6 in tetrahedral
complexes. For details, see Section 4.3 and Example 4.2.

4.6. The criterion of applicability of perturbation theory to the splitting of sepa-
rate terms under the influence of the crystal field requires that the splitting
magnitude � be small in comparison to the energy gap to other terms of
the same symmetry and multiplicity (see Question 4.7). As we can see from
Fig. 4.7 for the case of weak fields, for relatively large � values some of
such terms [e.g., 1T2g(

1D) and 1T2g(
1G), 1Eg(

1D) and 1Eg(
1G)] are sig-

nificantly close in energy, and hence they do not obey the criterion based
on which they were evaluated. In more accurate calculation the interaction
between such terms should be taken into account (Section 4.3).

4.7. The noninteraction, intersection rule for two terms with different symme-
tries or multiplicities follows from Eqs. (4.55)–(4.58). If two terms have
different symmetries or different multiplicities, the integral (4.56) is zero
according to group-theoretical selection rules (Section 3.4; the spin func-
tions for different multiplicities are orthogonal), and they do not interact
they intersect. Terms with the same symmetry and multiplicity interact and
repulse each other; they do not intersect.

4.8. The crystal field destabilization is due to the averaged repulsion between
the electrons of the CA and the negative charges (or negative ends of
dipoles) of the ligands, whereas the electron interaction destabilization is
produced by the repulsion and exchange interaction between the d electrons
belonging to the CA. In the strong-field approximation we assume that the
ligand field splitting of the d-electron levels is stronger than the splitting
produced by interelectron interaction. When all the ligands are identical
(in high-symmetry complexes), both the local and averaged ligand fields
depend on the magnitude of the ligand charge, so we can assume that the
larger the splitting, the stronger the averaged ligand field, and hence in
the strong-field limit the ligand field destabilization is stronger than the
electron interaction destabilization. However, in low-symmetry complexes
the differences in the local ligand fields that produce the splitting may be
large when the averaged field is small.

4.9. In tetrahedral complexes the main ligand field splitting magnitude �T

is approximately four-ninths (44%) of that in octahedral complexes �O

(Section 4.2), whereas the pairing energy � is approximately the same in
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both cases. Therefore the condition of low-spin systems � >� is real-
ized much more easily in octahedral complexes than in tetrahedral ones.
Low-spin tetrahedral complexes are very rare.

4.10. The differences in ligand field splitting of d and f electrons are due to
their different symmetries and, most important, to the fact that the ligand
field for f electrons is usually screened by the outer d electrons of the CA,
and the f electrons have a much larger spin–orbital splitting. See Section
4.4 for details.

P4.1. The square prism is shown in the following diagram. Similar to the octa-
hedral and cubic case (Section 4.2), the charges of the eight ligands and
their distances to the CA are the same, while the angular coordinates are
different:

1 2

4 3

5 6

8 7

The ligand coordinates Ri and charges qi are (i = 1, . . ., 8)

qi = q Ri = R

ϕ1 = ϕ5 = π

4
ϕ2 = ϕ6 = 3π

4

ϕ3 = ϕ7 = 5π

4
ϕ4 = ϕ8 = 7π

4
cos θ1 = cos θ2 = cos θ3 = cos θ4 = c

cos θ5 = cos θ6 = cos θ7 = cos θ8 = −c

sin θi = s s2 + c2 = 1

To calculate the matrix elements Vmm′ , substitute these values into Eq.
(4.9) and take into account the data of Table 4.1. The expressions of
Ym−m′

4 , Ym−m′
2 , and Ym−m′

0 can be found, for example, from http://en.
wikipedia.org/wiki/Table of spherical harmonics.
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We then obtain

V22 = V−2−2 = eq

[
35c4 − 30c2 + 3

21
F4(R) − 24c2 − 8

7
F2(R) + 8F0(R)

]

V11 = V−1−1 = eq

[

−140c4 − 120c2 + 12

21
F4(R)

+ 12c2 − 4

7
F2(R) + 8F0(R)

]

V00 = eq

[
70c4 − 60c2 + 6

7
F4(R) + 24c2 − 8

7
F2(R) + 8F0(R)

]

V2−2 = eq

[

−5s4

3
F4(R)

]

and zero for the other Vmm′ matrix elements. With these matrix elements the
roots of Eq. (4.7) are ε1 = V00, ε2 = ε3 = V11, ε4 = V22 − V2−2, and ε5 =
V22 + V2−2, meaning that the fivefold-degenerate D term splits into four
terms, from which one remains twofold-degenerate, similar to the splitting
in a tetragonal distorted octahedron in Appendix 3. In the particular case
of a cube, c = 1/

√
3 and s = √

2/3, and the solution,

ε1 = ε2 = ε5 = eq
[− 8

9F4(R) + 8F0(R)
]

ε3 = ε4 = eq
[ 16

27F4(R) + 8F0(R)
]

with the splitting �c = 40
27eqF4(R) coincides with that given in Section

4.2, Eq. (4.22).

P4.2. For one d electron (L = 2, term D) in an icosahedral field we first
calculate the reducible representation of the spherical group of the
free atom in the octahedral symmetry. Using Eq. (4.31) with L = 2,
X(φ) = (sin 5φ/2)/(sin φ/2), we obtain the following characters of the
reducible representation for all Ih symmetry operations X(G):

G E 12C5 12C2
5 20C3 15C2 I 12S10 10S3

10 20S6 15σ

X(G) 5 0 0 −1 1 5 0 0 −1 1

Looking at the characters of the Ih group (Table A1.12), we see that this
representation is irreducible, X(G) = Hg . Thus the D term of one d elec-
tron in icosahedral fields of Ih symmetry is Hg; it does not split. For one
f electron (L = 3, energy term F ), using the same procedure, and the
formula X(φ) = (sin 7φ/2)/(sin φ/2), we obtain:

G E 12C5 12C2
5 20C3 15C2 I 12S10 10S3

10 20S6 15σ

X(G) 7 −a −b 1 −1 −7 a b −1 1
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where a = (1 + √
5)/2 and b = (1 − √

5)/2. Decomposing this reducible
representation in IrReps using Eq. (3.33) (or by inspection) we easily find
that X(G) = Gu + T2u, meaning that the F term in icosahedral fields splits
into two terms: F → Gu + T2u.

P4.3. The splitting is calculated starting from the point where the average influ-
ence of the ligand field is taken into account, which means that the averaged
splitting should be zero.

P4.4. Results of the calculations of pairing energy � by means of Eq. (4.50)
as a function of electronic configuration dn and Racah parameters B and
C with B from Table 8.3 and C = γB with γ from Table 4.7 (for Rh3+
complexes γ ≈ 4.50), and its comparison with the octahedral crystal field
splitting � taken from Table 8.2 for the given coordination systems are
presented in the following table [values in wavenumbers (cm−1)]:

dn Complex � B γ � HS versus LS

d5 Mn(H2O)6
2+ 7,800 790 4.78 24,806 HS

d5 Fe(H2O)6
3+ 13,700 770 4.73 23,986 HS

d6 Co(NH3)6
3+ 23,000 660 4.81 14,348 LS

d6 Co(CN)6
3− 34,000 440 4.81 9,566 LS

d6 RhCl63− 20,300 400 4.50 8,200 LS
d6 Rh(H2O)6

3+ 27,000 500 4.50 10,250 LS
d7 Co(H2O)6

3+ 9,300 970 4.63 21,844 HS

P4.5. Tanabe–Sugano diagrams show, in particular, the � values where the
energy levels of low-spin and high-spin states of corresponding octahe-
dral coordination systems with electronic configurations d4 –d7 intersect,
realizing a spin crossover, and hence the approximate � values for which
they coexist. These � values are calculated for specific magnitudes of
Racah parameters B and C, which are approximately near the expected
average values for corresponding complexes. On the other hand, the �exp

magnitudes for specific complexes can be determined experimentally; in
the series (8.24) they are given for different six-coordinated ligands as a
fraction of the � value for the same CA with water ligands. The latter can
be taken from Table 8.2. For instance, for Mn(H2O)2+

6 �exp = 7800 cm−1,
and hence even cyanide ligands of Mn2+ for which �exp = 7800 × 1.7 =
13, 260 cm−1 are far from the spin crossover possibility: according to Fig.
4.11c (Tanabe–Sugano diagram for d4 systems), � ≈ 21, 000 cm−1. For
similar complexes of Fe2+ or Co3+ with d6 configuration for which in water
complexes �exp = 10, 400 cm−1 and �exp ≈ 18, 600 cm−1, respectively,
spin crossover is quite possible in complexes with relatively strong-field
ligands for iron and moderate-strength ligands for cobalt. Of course, the
series (8.24) is very limited (it serves only as an illustration). In fact, spin



716 ANSWERS AND SOLUTIONS

crossover takes place in a huge variety of complexes of transition metals,
especially iron and cobalt (see Section 8.4).

Chapter 5

P5.1. The Eg state is double-degenerate, so its two MOs have the same energy;
to find the latter, one should solve the secular equation of the type (5.111)
in Example 5.5 with the matrix elements relevant to the atomic orbital
ψ0 = dx2 –y2 and ligand �σ = 1

2 (σ2 + σ5 − σ3 − σ6) (Table 5.1):

∣
∣
∣
∣

H3d3d − E HG
3dσ − EG(3d, σ )

HG
3dσ − EG(3d, σ ) Hσσ − E

∣
∣
∣
∣ = 0

Using Eqs. (5.11) and (5.11′) for, respectively, group overlap and res-
onance integrals, we easily find that G(3d, σ ) = √

3S(3d, σ ) and
HG

3dσ = √
3H3dσ . Then, from the Wolfsberg–Helmholtz formula with

k = 2, we have H3dσ = (H3d3d + Hσσ )S(3d, σ ), and with the initial
data of the problem, we get (in kK = 1000 cm−1) H3dσ = −44.259,
HG

3dσ = −76.659, G(3d, σ ) = 0.312, so the secular equation above is
0.903E2 + 198.012E + 8233.314 = 0. Its two roots are E1 = −163.525
and E2 = −55.757. The MO scheme for these Eg orbitals is

−154.5 E(s)

E1(eg) = −163.525

E2(eg
∗) = −55.757

E(3d ) − 91.382

For the LCAO coefficients of the Eg MOs, Eqs. (5.7) yield (E1 =
−163.525) c3d = 0.306 and cσ = 0.861 for the bonding MO. Note that
because of the uniformity of two Eqs. (5.7) with respect of the two coeffi-
cients c3d and cσ , only the ratio c3d/cσ = 0.355 can be obtained from these
equations. The second equation determining the two coefficients is the
normalization condition: (c3d)

2 + (cσ )2+2c3dcσG = 1. Thus this MO is

ϕ1(eg) = 0.306dx2 –y2 + 0.861 · 1
2 (σ2 + σ5 − σ3 − σ6)

while for the antibonding MO (E2 = −40.866), we obtain

ϕ1(e
∗
g) = 0.986dx2 –y2 − 0.657 · 1

2 (σ2 + σ5 − σ3 − σ6)

In the same way we estimate the coefficients for the second Eg-type MO
that has the same energies and the same group overlap and resonance
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integrals. The bonding MO is

ϕ2(eg) = 0.370dz2 + 0.821 · 1√
6
(2σ1 + 2σ4 − σ2 − σ5 − σ3 − σ6)

and the antibonding one is

ϕ2(e
∗
g) = 0.939dz2 − 0.564 · 1√

6
(2σ1 + 2σ4 − σ2 − σ5 − σ3 − σ6)

For the three T2g-type π MOs with the data given in the problem
we find the following secular equation with respect to the energies
E : 0.959E2 + 200.744E + 9674.234 = 0, which yields two roots,
E1 = −134.096 and E2 = −75.230. The MO energy-level scheme (the
very-high-energy 4p electrons of Ti, Hpp = −46.060, are not considered
here) is thus as follows (in kK = 103 cm−1 with arbitrary scaling):

AO, Ti MO AO, F

_______E(a∗
1g) = −16.10

_______E(e∗
g) = −55.757

_______E(t∗2g) = −75.230

E(4s) = −78.898_______

E(3d) = −91.382_______

_______E(σ) = −154.5

_______E(π) = −172.2

_______E(t2g) = −134.096

_______E(eg) = −163.525

_______E(a1g) = −164.64

Note that this scheme qualitatively coincides with the most common MO
energy-level diagram for octahedral Oh systems given in Fig. 6.1.

P5.2. In the weak covalence approximation, using Eqs. (5.38) and (5.39) and
the data in (kK = 103 cm−1) H00 = H4s4s = −78.90 and H11 = Hσσ =
−154.50 with G01 = G(4s, σ ) = √

6 · S(4s, σ ) = 0.429 (Table 5.4), we
find E1 = −169.57 and E2 = −20.88. To estimate the coefficients of the
wavefunctions (5.32) and (5.33), we use Eq. (5.36′), which yields γ =
0.448, and Eq. (5.34) to obtain the normalization constant N1 = 0.794.
This gives us the bonding wavefunction:

ϕ1 = 0.794 × 1√
6
(σ1 + σ2 + σ3 + σ4 + σ5 + σ6) + 0.356|4s >
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For the antibonding MO we estimate first λ = γ + G01 = 0.877 and N2 =
0.992 [Eq. (5.35)], so following Eq. (5.33) we obtain:

ϕ2 = 0.870 × 1√
6
(σ1 + σ2 + σ3 + σ4 + σ5 + σ6) − 0.992|4s >

Comparing these results with those obtained for the same system by the
IEH method in Example 5.1, we can see that they are very close; the
discrepancies are within the approximations of both methods, but the cal-
culations are simpler in the method of weak covalence. However, while
the latter is limited to mostly ionic compounds (which include the case of
TiF3−

6 under consideration), the IEH method has no such limitations and
can be applied to any system.

P5.3. The density functional theory (DFT) methods handle the problem via elec-
tron densities instead of wavefunctions, and this essentially simplifies the
calculations because the former is a function of the three coordinates of
space, whereas the latter depends on a much higher number of coordinates
and spin of all electrons. This simplification (as do any other simplifica-
tions) comes with a cost—electronic density does not depend directly on
spin, it cannot handle electronic degeneracy and pseudodegeneracy [and
hence Jahn–Teller effect (JTE) and pseudo–JTE (PJTE)] and properties
that depend on off-diagonal matrix elements in wavefunction presenta-
tion; there are also difficulties in directly treating excited states. However,
because of its essential advantages in calculations of ground-state energies
for larger systems, the DFT methods achieved widespread use. Different
versions combine the main DFT concept with MO LCAO presentations to
overcome the difficulties outlined above (Section 5.4); the most commonly
used method is the Kohn–Sham (KS) approach. By choosing appropriate
KS orbitals, one can impose a definite value of total spin on the system
to be calculated by DFT methods. Some (limited) excited states can be
determined by employing the time-dependent version of DFT (TD-DFT).
But the degeneracy problem remains unresolved in DFT. See also Example
5.3 and Problem P5.6.

P5.4. In the program package MOLPRO, the input is similar to that of the
Hartree–Fock (HF) method with the lanl2dz basis set in Example 5.4.
We give the input here for the square-planar configuration; the reader can
produce it for the other two configurations in a quite similar way from
those in the Example 5.4:

***,MnO_4^-, HF/6-31g* square-planar
! For full explanation see exercise 5.4 input
ro=1.52 Angstrom;
rdummy=1;
ang=90.0;
died=90.;
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geometry={Q1;
Mn,Q1,rdummy;
O1,Mn,ro,Q1,ang;
O2,Mn,ro,Q1,ang,O1,died;
O3,Mn,ro,Q1,ang,O1,-died;
O4,Mn,ro,Q1,ang,O2,died}

basis={! The basis is taken from the emsl exchange web page
(https://bse.pnl.gov/bse/portal)

!
! OXYGEN (10s,4p,1d) -> [3s,2p,1d]
! OXYGEN (1d)
s, O, 5484.6717000, 825.2349500, 188.0469600, 52.9645000,
16.8975700, 5.7996353, 15.5396160, 3.5999336, 1.0137618,
0.2700058
c, 1.6, 0.0018311, 0.0139501, 0.0684451, 0.2327143,
0.4701930, 0.3585209
c, 7.9, -0.1107775, -0.1480263, 1.1307670
c, 10.10, 1.0000000
p, O, 15.5396160, 3.5999336, 1.0137618, 0.2700058
c, 1.3, 0.0708743, 0.3397528, 0.7271586
c, 4.4, 1.0000000
d, O, 0.800000
c, 1.1, 1
! MANGANESE (22s,16p,4d,1f) -> [5s,4p,2d,1f]
! MANGANESE (1f)
s, MN, 56347.1400000, 8460.9430000, 1927.3250000,
543.2343000, 173.9905000, 59.3600500, 1165.4120000,
277.3276000, 89.4727800, 33.4825600, 13.5403700, 5.5579720,
45.8353200, 15.1877700, 6.5007100, 2.7515830, 1.1454040,
0.4536870, 1.7579990, 0.6670220, 0.1051290, 0.0384180
c, 1.6, 1.771580E-03, 1.357081E-02, 6.690605E-02,
2.318541E-01, 4.799046E-01, 3.495737E-01
c, 7.12, 2.388751E-03, 3.181708E-02, 1.254670E-01,
-2.955431E-02, -6.175160E-01, -4.544458E-01
c, 13.18, -3.665856E-03, 7.231971E-02, 2.544486E-01,
-2.910380E-01, -7.359860E-01, -1.997617E-01
c, 19.21, 0.05628572, 0.2897491, -1.1406530
c, 22.22, 1.000000E+00
p, MN, 1165.4120000, 277.3276000, 89.4727800, 33.4825600,
13.5403700, 5.5579720, 45.8353200, 15.1877700, 6.5007100,
2.7515830, 1.1454040, 0.4536870, 1.7579990, 0.6670220,
0.1051290, 0.0384180
c, 1.6, 3.977318E-03, 3.103112E-02, 1.351894E-01,
3.457387E-01, 4.629205E-01, 2.090592E-01
c, 7.12, -6.887578E-03, -2.846816E-02, 6.031832E-02,
3.938961E-01, 5.013769E-01, 1.792264E-01
c, 13.15, -0.5035024, 0.2345011, 0.9141257
c, 16.16, 1.00000000
d, MN, 20.9435500, 5.5104860, 1.6650380, 0.4617330
c, 1.3, 8.672702E-02, 3.841883E-01, 7.069071E-01
c, 4.4, 1
f, MN, 0.800000
c, 1.1, 1
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}
{rhf;
wf,56,1,0}
{optg;
active,ro}

With these imputs the calculations yield

Angle
Dummy—Mn—O Energy

Configuration Method Basis Rml (Å) (degree) (au)

Square HF 6-31G* 1.852 — −1447.45309082
Tetrahedral HF 6-31G* 16.919 — −1438.01485078
Pyramidal HF 6-31G* 1.806 138.7 −1448.03592380

We see that here again the pyramidal configuration is the lowest in energy
with the square-planar one higher, and the tetrahedral geometry very high;
together with the interatomic distance of ∼ 17 Å this means that the tetra-
hedral configuration is dissociated. The results for this system are compared
in fuller detail at the end of the solution to the Problem 5.6.

P5.5. MP2 calculations are more complicated as they take into account the cor-
relation effects. The method requires the wavefunctions of Hartree–Fock
calculations as an input. We give here the input for the tetrahedral geom-
etry; the others are similar.

***,MnO_4^-, MP2/6-31g* tetrahedral
! For full explanation see exercise 5.4 and 5.5 input
ro=1.82 Angstrom;
tang=109.471;
died=120.;
geometry={Mn;

O1,Mn,ro;
O2,Mn,ro,O1,tang;
O3,Mn,ro,O1,tang,O2,died;
O4,Mn,ro,O1,tang,O2,-died}

basis={
!
! OXYGEN (10s,4p,1d) -> [3s,2p,1d]
! OXYGEN (1d)
s, O, 5484.6717000, 825.2349500, 188.0469600, 52.9645000,
16.8975700, 5.7996353, 15.5396160, 3.5999336, 1.0137618,
0.2700058
c, 1.6, 0.0018311, 0.0139501, 0.0684451, 0.2327143,
0.4701930, 0.3585209
c, 7.9, -0.1107775, -0.1480263, 1.1307670
c, 10.10, 1.0000000
p, O, 15.5396160, 3.5999336, 1.0137618, 0.2700058
c, 1.3, 0.0708743, 0.3397528, 0.7271586



ANSWERS AND SOLUTIONS 721

c, 4.4, 1.0000000
d, O, 0.800000
c, 1.1, 1
! MANGANESE (22s,16p,4d,1f) -> [5s,4p,2d,1f]
! MANGANESE (1f)
s, MN, 56347.1400000, 8460.9430000, 1927.3250000,
543.2343000, 173.9905000, 59.3600500, 1165.4120000,
277.3276000, 89.4727800, 33.4825600, 13.5403700, 5.5579720,
45.8353200, 15.1877700, 6.5007100, 2.7515830, 1.1454040,
0.4536870, 1.7579990, 0.6670220, 0.1051290, 0.0384180
c, 1.6, 1.771580E-03, 1.357081E-02, 6.690605E-02,
2.318541E-01, 4.799046E-01, 3.495737E-01
c, 7.12, 2.388751E-03, 3.181708E-02, 1.254670E-01,
-2.955431E-02, -6.175160E-01, -4.544458E-01
c, 13.18, -3.665856E-03, 7.231971E-02, 2.544486E-01,
-2.910380E-01, -7.359860E-01, -1.997617E-01
c, 19.21, 0.05628572, 0.2897491, -1.1406530
c, 22.22, 1.000000E+00
p, MN, 1165.4120000, 277.3276000, 89.4727800, 33.4825600,
13.5403700, 5.5579720, 45.8353200, 15.1877700, 6.5007100,
2.7515830, 1.1454040, 0.4536870, 1.7579990, 0.6670220,
0.1051290, 0.0384180
c, 1.6, 3.977318E-03, 3.103112E-02, 1.351894E-01,
3.457387E-01, 4.629205E-01, 2.090592E-01
c, 7.12, -6.887578E-03, -2.846816E-02, 6.031832E-02,
3.938961E-01, 5.013769E-01, 1.792264E-01
c, 13.15, -0.5035024, 0.2345011, 0.9141257
c, 16.16, 1.00000000
d, MN, 20.9435500, 5.5104860, 1.6650380, 0.4617330
c, 1.3, 8.672702E-02, 3.841883E-01, 7.069071E-01
c, 4.4, 1
f, MN, 0.800000
c, 1.1, 1
}

{rhf; ! In order to perform a MP2 calculation
wf,46,1,0} ! it is necessary to calculate the HF
mp2 ! wavefunction
{optg;
active,ro}

The calculations (taking more time than in the previous approximations)
yield the following tabulation (where NC means nonconvergent):

Angle
Dummy—Mn—O Energy

Configuration Method Basis Rml (Å) (degree) (au)

Square MP2 6-31G* 1.832 — −1449.27703002
Tetrahedral MP2 6-31G* 17.536 — −1438.32002622
Pyramidal MP2 6-31G* NC NC NC
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We see that in these calculations the square-planar configuration is the low-
est in energy, while the square-pyramidal one does not converge, meaning
that it has no stable configurations (minimum of the APES). Again, further
discussion is given at the end of the solution to Problem 5.6.

P5.6. The DFT methods are different from those described and explained in
Section 5.4 and Problem 5.3. We give here the input for the square-
pyramidal geometry; for other configurations the input is similar:

***,MnO_4^-, B3LYP/6-31g* pyramidal
! For full explanation see exercise 5.4 and 5.5 input
ro=1.52 Angstrom;
rdummy=1;
ang=130.0;
died=90.;
geometry={Q1;

Mn,Q1,rdummy;
O1,Mn,ro,Q1,ang;
O2,Mn,ro,Q1,ang,O1,died;
O3,Mn,ro,Q1,ang,O1,-died;
O4,Mn,ro,Q1,ang,O2,died}

basis={
!
! OXYGEN (10s,4p,1d) -> [3s,2p,1d]
! OXYGEN (1d)
s, O, 5484.6717000, 825.2349500, 188.0469600, 52.9645000, 16.8975700,
5.7996353, 15.5396160, 3.5999336, 1.0137618, 0.2700058
c, 1.6, 0.0018311, 0.0139501, 0.0684451, 0.2327143, 0.4701930,
0.3585209
c, 7.9, -0.1107775, -0.1480263, 1.1307670
c, 10.10, 1.0000000
p, O, 15.5396160, 3.5999336, 1.0137618, 0.2700058
c, 1.3, 0.0708743, 0.3397528, 0.7271586
c, 4.4, 1.0000000
d, O, 0.800000
c, 1.1, 1
! MANGANESE (22s,16p,4d,1f) -> [5s,4p,2d,1f]
! MANGANESE (1f)
s, MN, 56347.1400000, 8460.9430000, 1927.3250000, 543.2343000,
173.9905000, 59.3600500, 1165.4120000, 277.3276000, 89.4727800,
33.4825600, 13.5403700, 5.5579720, 45.8353200, 15.1877700,
6.5007100, 2.7515830, 1.1454040, 0.4536870, 1.7579990,
0.6670220, 0.1051290, 0.0384180
c, 1.6, 1.771580E-03, 1.357081E-02, 6.690605E-02, 2.318541E-01,
4.799046E-01, 3.495737E-01
c, 7.12, 2.388751E-03, 3.181708E-02, 1.254670E-01, -2.955431E-02,
-6.175160E-01, -4.544458E-01
c, 13.18, -3.665856E-03, 7.231971E-02, 2.544486E-01, -2.910380E-01,
-7.359860E-01, -1.997617E-01
c, 19.21, 0.05628572, 0.2897491, -1.1406530
c, 22.22, 1.000000E+00
p, MN, 1165.4120000, 277.3276000, 89.4727800, 33.4825600, 13.5403700,
5.5579720, 45.8353200, 15.1877700, 6.5007100, 2.7515830, 1.1454040,
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0.4536870, 1.7579990, 0.6670220, 0.1051290, 0.0384180
c, 1.6, 3.977318E-03, 3.103112E-02, 1.351894E-01, 3.457387E-01,
4.629205E-01, 2.090592E-01
c, 7.12, -6.887578E-03, -2.846816E-02, 6.031832E-02, 3.938961E-01,
5.013769E-01, 1.792264E-01
c, 13.15, -0.5035024, 0.2345011, 0.9141257
c, 16.16, 1.00000000
d, MN, 20.9435500, 5.5104860, 1.6650380, 0.4617330
c, 1.3, 8.672702E-02, 3.841883E-01, 7.069071E-01
c, 4.4, 1
f, MN, 0.800000
c, 1.1, 1
}
{rks,b3lyp;
wf,56,1,0}
{optg;
active,ang,ro}

The results of these DFT calculations of MnO−
4 are given in the table

below in comparison with those obtained by other methods described in
Example 5.4 and Problems 5.4 and 5.5:

Angle
Dummy—Mn—O Energy

Configuration Method Basis Rml (Å) (degree) (au)

Square HF lanl2dz 1.839 — −401.27643354
Tetrahedral HF lanl2dz 1.741 — −401.42029498
Pyramidal HF lanl2dz 1.862 127.6 −401.48928806
Square HF 6-31G* 1.852 — −1447.45309082
Tetrahedral HF 6-31G* 16.919 — −1438.01485078
Pyramidal HF 6-31G* 1.806 138.7 −1448.03592380
Square MP2 6-31G* 1.832 — −1449.27703002
Tetrahedral MP2 6-31G* 17.536 — −1438.32002622
Pyramidal MP2 6-31G* NC NC NC
Square LDA 6-31G* 1.654 — −1446.62509992
Tetrahedral LDA 6-31G* NC — NC
Pyramidal LDA 6-31G* 1.686 127.3 −1446.64045661
Square B3LYP 6-31G* 1.659 — −1450.72080760
Tetrahedral B3LYP 6-31G* 17.219 — −1439.73304091
Pyramidal B3LYP 6-31G* 1.848 139.43 −1450.75558577

In both DFT methods the pyramidal geometry is lower in energy, in the
B3LYP approximation it is lower than in LDA, while in the latter the tetra-
hedral configuration is nonconvergent. The reason for this nonconvergence
is that DFT-LDA usually underestimates the HOMO-LUMO gap, and in
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the case under consideration the separation is too small, making the DFT
convergence impossible because of pseudodegeneracy (see Problem 5.3).

Comparing the results for all the methods applied to the MnO−
4 system

in the table above, we see that the total energies obtained with different
methods may be incomparable. The first six calculations in this table use
the same Hartree–Fock method, but employ two different basis sets. One
of them includes all electrons (6-31G*); the other uses pseudopotentials
(lanl2dz) that substitute the core electrons. The huge energy difference
between these calculations comes from the interaction of the core electrons
with the nuclei that are included in the energy in the HF/6-31G* method
and not included in the HF/lanl2dz one.

The total energy is an indicator of the accuracy of the results in all
variational methods (Hartree–Fock, configuration interaction, CASSCF,
coupled cluster), where a better solution yields lower energy. Since MP2
is a perturbation method, the energy obtained with it may be either higher
or lower than in Hartree–Fock methods. Also, each DFT method uses
its own effective Hamiltonian, which is different from the real one used
in the Hartree–Fock methods (Section 5.4), so the energy comparisons
between them or with other wavefunction methods is not adequate. We also
note that the HF/lanl2dz calculations predict that all three conformations
of MnO−

4 are stable and that the pyramidal one has the lower energy.
Comparison with other methods and basis sets shows that HF/lanl2dz is
the only one that predicts the tetrahedral configuration to be stable (but it
has not the lowest energy). With most of the other methods we find that
in this system the metal–ligand distance exceeds 12.0 Å, meaning that the
oxygens dissociate. The energy in this dissociated configuration is always
higher than in the pyramidal configuration, so the MnO−

4 complex exists
as a stable species in these approximations.

Finally, all the methods except MP2 predict that the most stable configu-
ration for the in-vacuum MnO−

4 complex is pyramidal with a metal–ligand
distance around 1.85 Å and a O— Mn— O angle of 130.0◦. It is also
important to note that LDA underestimates the metal–ligand distance as
compared to other methods. This is relatively common in LDA calculations
since this method overestimates the binding.

P5.7. Similar to Example 5.4 and Problems 5.4–5.6, we first build the geometry
of the molecule. We begin with a square-planar FeF4 complex, as described
above for MnO4, and then place the fifth and sixth fluorine ions above
and below the FeF4 complex using a dihedral angle F(5,6)— Fe— F1—
F2 equal to +90◦ and −90◦. We then define the metal–ligand distance.
In GAMESS it will be necessary to produce a different input for each
metal–ligand distance, while in MOLPRO a do-loop can be implemented
to vary it. We then input the lanl2dz basis and determine that the method
of calculation will be CASSCF. In the latter we need to define the active
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space, that is, the number of electrons and orbitals. We may also use
symmetry restrictions to more clearly specify the active space.

Both GAMESS and MOLPRO use D2h symmetry internally to represent
a octahedral complex such as FeF4−

6 (this does not restrict the final configu-
ration). In this space group the Fe(4s) orbital belongs to the Ag IrRep, while
the Fe(3d) orbitals belong to ag , and eg (3z2 –r2 and x2 –y2), which in D2h

are ag + ag , and to b1g, b2g , and b3g , which form the t2g degenerate orbital
in Oh symmetry. Thus, the active space consists of six orbitals, 3ag + b1g +
b2g + b3g , and contains six electrons coming from the Fe2+ ion d shell. In
some cases we will also need to know the symmetry of the doubly occupied
orbitals containing the 2s and 2p orbitals of the fluorine ions. These are
10ag+6b3u+6b2u+2b1g+6b1u+2b2g+2b3g occupied by electrons donated
by the ligands. In the low-spin configuration of the FeF6 complex the t2g

orbital with main Fe(3d) character is fully occupied (closed-shell), so that
the state is 1Ag (in the D2h notation). Thus, we indicate the spin S = 0
and symmetry Ag (if requested) in the input. The high-spin configuration
contains four electrons in the t2g orbital and two in the eg orbital with main
Fe(3d) character, resulting in a 5T2g state. In D2h symmetry the octahedral
5T2g state spans 5B1g,

5 B2g , and 5B3g , so a calculation of the lowest state
with spin S = 2 in any of these IrReps will yield the same energy (we can
check this). It is usually helpful to perform a Mulliken population analysis
after the CASSCF calculation to verify that the final state corresponds to
the one we were trying to obtain. The input in MOLPRO is as follows:

***, CASSCF/lanl2dz for 1Ag and 5T2g in FeF6^4-
! This input contains the final result for the calculation
! several test runs can be previously made to obtain
! the number of orbitals necessary to define the CAS spaces
gprint,orbital,civector ! Print the orbitals and ci coefficients

! to check solutions and find which orbitals
! are mainly Fe(3d) ones

rml=2.45 Angstrom; ! Necessary to create the input, not
used later

ang=90.degree;
died=180.;
zero=0.;
geometry={angstrom;

fe; ! Geometry definition (see above and Example 5.4)
f1,fe,rml;
f2,fe,rml,f1,ang;
f3,fe,rml,f1,ang,f2,died;
f4,fe,rml,f2,ang,f1,died;
f5,fe,rml,f1,ang,f2,ang;
f6,fe,rml,f1,ang,f2,-ang}

basis=lanl2dz ! Basis definition
! Be aware that lanl2dz contains a pseudopotential

! to describe the core electrons so that
the atoms
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! do NOT have their nominal number of
electrons!

do rml=2.1,1.7,-0.05 ! Loop over several metal ligand distances
! starting from 2.1 and finishing at 1.7 Angstrom

! with steps of -0.05 Angstrom
! The negative step allows to avoid

problems with
! Fe(4s) orbital and memory from previous
! calculations

{rhf; ! A Hartree-Fock calculation required to obtain
wf,74,1,0} ! the initial orbitals. A closed-shell

configuration
! is usually optimum for this step

pop ! Mulliken population calculation to self-check
{multi; ! CASSCF calculation
occ,13,6,6,3,6,3,3,0; ! All the occupied orbitals including

closed and
! active space

closed,10,6,6,2,6,2,2,0; ! All the doubly-occupied orbitals
coming from

! F(2s)+F(2p) orbitals
wf,74,1,0} ! Low spin 1Ag state
pop ! Mulliken population calculation to self-check
{multi; ! CASSCF calculation
occ,13,6,6,3,6,3,3,0; ! All the occupied orbitals including

closed an
! active space

closed,10,6,6,2,6,2,2,0; ! All the doubly-occupied orbitals coming from
! F(2s)+F(2p) orbitals

wf,74,4,4} ! One state in the triply
degenerate 5T2g state

pop ! Mulliken population calculation to
self-check

! The following part of input allows to calculate the other two states
! in the 5T2g degenerate state. Since they have the same energy as the
! other component it is not necessary to perform this calculation
! (although it allows the very important self-check).
!{multi;
!occ,13,6,6,3,6,3,3,0;
!closed,10,6,6,2,6,2,2,0;
!wf,74,6,4}
!rs2
!pop
!{multi;
!occ,13,6,6,3,6,3,3,0;
!closed,10,6,6,2,6,2,2,0;
!wf,74,7,4}
!pop
enddo ! The loop is closed

In the following diagram shows the results of CASSCF/lanl2dz energy
calculations for the lowest 1A1g (dashed line) and 5T2g (solid line) states
of the FeF4−

6 complex as a function of the metal–ligand distance.
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We see that the 5T2g state is lower in energy for Fe— F distances exceed-
ing ∼ 1.75 Å. The figure thus reproduces the Tanabe–Sugano diagram
for d6 complexes shown in Fig. 4.11e, where for large � values (with
low metal–ligand distances) the low-spin state 1A1 is more stable while
at smaller � values (with larger metal–ligand distances) the high-spin
5T2g term is the ground state. This means that if the FeF4−

6 complex is
compressed to reach the metal–ligand distance around the crossing point
(Rml ∼ 1.75Å), it could, in principle, possess temperature-dependent spin
crossover properties (Section 8.4).

Note that the calculation above is not without shortcomings: (1) the
solution does not converge to a stable minimum, and this can be attributed
to the high charge of the complex, which renders the system unstable in
vacuum (such situations should be addressed by correcting the influence of
the environment, e.g., the Madelung potential in crystals; this is beyond the
scope of this exercise); and (2) depending on how you perform your cal-
culation (the ones shown above are performed correctly), you may observe
a nasty energy jump when the metal–ligand distance is ∼ 1.85Å; if you
check the Mulliken populations at this point, you will find that there is a
large transfer of charge from Fe(3d) to Fe(4s) levels. To correctly describe
the position of the (n+1)s levels in transition metals it is necessary to factor
in the relativistic s orbital contraction (Section 6.5).

Chapter 6

P6.1. See Sections 1.2 and 6.1.

P6.2. See Section 6.1 and Table 6.2.

P6.3. Answer in Section 6.1.

P6.4. From the numerical data in Example 5.1 we find that for this system,
TiF3−

6 , G(4s, σ ) = √
6S(4s, σ ) = 0.429, G(3d, σ ) = √

3S(3d, σ ) =
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0.312, and G(3d, π) = 2S(3d, π) = 0.202, which, indeed, follows the
order of magnitude that leads to the most probable MO energy-level
scheme in Fig. 6.1 (without the contribution of p electrons). The
calculations in Problem 5.1 of additional MO energy-levels and the
total MO energy-level scheme for this complex obtained there follow
(qualitatively) the MO scheme in Fig. 6.1. However, in principle,
violations of this energy-level scheme are quite possible, especially in
coordination systems with different ligands (see also Problem 6.5).

P6.5. Lower group overlap integrals G (and hence reduced group resonance
integrals HG

ij ) result in smaller energy gaps between the corresponding
bonding and antibonding MOs. Therefore, the expected MO energy dia-
gram for the inequalities G(3d, σ ) < G(3d, π) < G(4s, σ ) is expected
to look (qualitatively) as follows:

a∗
1g______________

4s______________

t∗2g______________

e∗
g______________

3d______________

π______________

σ______________

eg______________

t2g______________

a1g______________

In this diagram the order of eg and t2g (both bonding and antibonding) is
inverted as compared with the usual scheme in Fig. 6.1. This means that,
for instance, in octahedral complexes with two electrons donated from
each of the six ligands the 3dn electrons of the CA occupy first the e∗

g

MO, and the remaining n−4 electrons populate the t∗2g MO, instead of
the inverse order in the usual scheme. This leads to essential (some times
dramatic) differences in the optical (d—d spectra), magnetic (low-spin
high-spin alternative), and thermodynamic (crystal field extrastabiliza-
tion) properties of these two types of complexes, described in Chapters 4
and 6.

P6.6. Multiorbital bonding occurs when there are more than one bonding MOs
that are not compensated by antibonding MOs. The number of such bond-
ing MOs does not necessarily coincide with the multiplicity of the bond
(the bond order) in organic compounds because some of the MOs are
often degenerate. This difference is significant in the TMS, where the



ANSWERS AND SOLUTIONS 729

electronic structure of the metal–ligand bonding is strongly asymmetric,
and the charge transfers on different MOs in diorbital or multiorbital bond-
ing may take place in opposite directions involving antibonding states and
causing ligand excitation. This effect does not occur in multiple bonds of
mostly homogeneous organic and main-group compounds (in the sense of
only sp electrons involved). Coordination of the CO molecule to transi-
tion metals is a simple example. For details, see Section 6.3 and Examples
6.1—6.10.

P6.7. The covalence produced by the unpaired electrons as revealed by ESR
spectra does not, in general, reflect the covalence of the bonding; the
latter is produced by other electrons, namely, by those that occupy the
uncompensated bonding MOs (Fig. 6.3), which are different from the
MOs of unpaired electrons.

P6.8. See Section 6.3, Fig. 6.6, and Problem P8.20.

P6.9. In the side-on coordination the H2 molecule forms diorbital bonding with
the metal involving its bonding MO as a σ donor and the antibonding MO
as a π acceptor (these two MOs are quite similar to the lowest two σ MOs
of N2 in Fig. 6.8). Since these are the only orbitals participating in the H—
H bonding, even small charge transfers �qσ from its bonding MO to the
metal and �qπ from the latter to the antibonding MO strongly activate the
H2 molecule (see Table 11.4), resulting in its homolytic cleavage (11.32)
described in Example 11.6.

P6.10. According to the N2 MOs shown in Fig. 6.8, the symmetry of some of
these MOs with respect to the line of metal–ligand bonding in the two
modes of coordination, linear end-on and side-on, is different. The three
most important MOs of N2 in the bonding to the metal, 1π , 5σ , and 2π ,
form, respectively, π , σ , and π MOs with the metal in the linear end-
on coordination, whereas in the side-on coordination the corresponding
MOs is σ , σ , and π . This increases the σ -donor properties of the N2

molecule, resulting in larger orbital charge transfer to the metal �qσ and,
consequently, larger �qπ values of orbital charge backdonation to the
antibonding 2π orbital of N2, resulting in much stronger activation of the
latter. The consequences of this effect are discussed in Section 11.2 and
Example 11.4.

P6.11. Substitution of the chlorine ligands with more electronegative fluorine lig-
ands makes the Pt atom more electropositive and hence stronger accepting
electronic charge �qσ from the ethylene bonding σ orbital, thus weaken-
ing the C— C bond. Larger �qσ values also increase the �qπ magnitude,
which acts in the same direction of weakening this bond. On the con-
trary, the substitution with less electronegative bromine atoms produces
an opposite effect of strengthening the C— C bond. See also Section
11.3.
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P6.12. Separation in σ , π, δ, . . . orbitals is rigorous with regard to their symmetry
properties (quantized projection of the orbital angular momentum, Section
2.1) with respect to one axis of symmetry that coincides with the line
of bonding. If the molecule has more than one line of bonding, as in
coordination systems, the separation of the MOs on symmetry should
follow the IrReps of the symmetry group, but the separation in σ , π, δ, . . .
MOs still remains valid with respect to the specific lines of bonding
taken separately. An MO in coordination systems may have σ symmetry
with regard to one of the several lines of metal–ligand bonding and π

symmetry with respect to another one; this is termed σ + π bonding .

P6.13. In the presence of strong relativistic effects (strong spin–orbital interac-
tion) separation of the total momentum into independent orbital and spin
moments is invalid, as they are mixed (Section 2.2). Accordingly, the
separate quantization of the orbital momentum that leads to σ , π, δ, . . .
symmetries is invalid as well, and the orbitals cannot be classified on the
basis of these symmetries. Visually, the atomic orbitals loose their purely
orbital distribution shown in Section 2.1. As explained in Section 6.5, if
two p1/2

(
1
2

)
functions from two bonding atoms overlap, they form one-

third of σ bonding and two-thirds of π antibonding MOs (Fig. 6.32b), or
vice versa for opposite signs: one-third π antibonding and two-thirds σ

bonding.

P6.14. The essential differences in properties of the three metals Au, Ag, and Cu
that have isoelectronic valence shells is due to their different relativistic
effects. The main effect is the contraction of the valence s orbitals (Section
6.5), which renders them less chemically reactive. This effect is very
strong in Au, weaker in Ag, and very weak in Cu. The same relativistic
effect contributes to their color. For solid Au the refractivity responsible
for the color is due to the transition from the 5d band to approximately the
Fermi level 6s. Without relativistic contraction this transition falls outside
the visible range, thus making the gold expected to be white. Because of
the relativistic contraction, this transition becomes hν = 2.4 eV, making
gold yellow as it is. In Ag the relativistic contraction of the 5s electron
is much smaller, and it remains white. The color of Cu has a different
origin, the d—d transition.

Chapter 7

P7.1. The criterion of validity of the adiabatic approximation requires that the
electronic state under consideration be nondegenerate and well separated
(noninteracting) from other electronic states under nuclear displacements.
If this criterion is not fulfilled, the mixing electronic states produce a
variety of observable effects, primarily the JTE and RTE in case of degen-
eracy, and PJTE in case of interacting nondegenerate terms, with all the
consequences for observables as described in Chapters 8–11. The non-
adiabacity is seen in many other chemical and spectroscopic effects when
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the system jumps from one electronic state (term) to another following
their interaction.

P7.2. For nondegenerate vibrations the symmetrized (normal) coordinates in
Figs. 7.1–7.3 and Table 7.1 are real displacements of the atoms during the
vibrations. For degenerate vibration, any linear combination of the com-
ponents is also a normal vibration with the same frequency, so within such
linear combination the real atomic displacements remain uncertain, and
only external perturbations or the JTE that split the degenerate vibration
(frequency) “fix” the nuclear displacements in the split components.

P7.3. See the answer in Section 7.2.

P7.4. See examples in Chapter 11: CO, N2, NO, C2H4, and O2.

P7.5. The one-state distorted configuration is energetically advantageous as it
is lower by the amount of JT stabilization energy. In some cases all states
of the degenerate term contribute simultaneously to the distortion and JT
stabilization (as in the case of the “Mexican hat” of the twofold-degenerate
E term interacting with twofold-degenerate e nuclear displacements), but
this not simply an average of electronic states, as it involves dynamic
nuclear distortions, causing the electronic and nuclear motions to become
mixed, nonseparable.

P7.6. The relatively slow nuclear displacements (as compared with vibrations)
along the bottom of the trough of the Mexican hat in the case of strong
vibronic coupling (as well as in other similar JT situations where the
energy gap to the excited state is relatively large) can be considered in
the semiclassical approximation; it will be seen indirectly in a variety
of spectroscopic measurements, including ESR (Section 8.4), electron
spectroscopy (tunneling splitting of the zero-phonon line, Section 8.1),
Mossbauer (Section 8.5), and NMR (Section 9.2) spectroscopy, as well as
in direct observation by means of laser femtosecond spectroscopy (Section
9.2).

P7.7. The electronic wavefunction for the lowest branch of the APES of the
JT E ⊗ e problem (the Mexican hat) is not single-valued, but quantum
mechanics requires that the total wavefunction as a product of nuclear
and electronic wavefunctions be single-valued, not only the electronic
wavefunction. To satisfy this condition, a special phase factor (called
topological , or Berry phase) is attached to the nuclear wavefunction in
such a way as to compensate for the deficiency of the purely electronic
function; the total wavefunction is then single-valued. In the usual case
when only one conical intersection is encircled, the additional phase in
the phase factor equals π , and the nuclear wavefunction acquires special
properties, including a degenerate ground state and half-integer quantum
numbers of the vibronic states. When more than one (n) conical inter-
sections are encircled, the phase factor equals nπ ; the special properties
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described above occur only when n is an odd number. Having initially
emerged in the JT problem, the Berry phase theory was later extended to
a variety of other physical effects.

P7.8. The term high-symmetry configuration in the formulation of the PJTE is
employed in the sense that at this point of configuration the first derivative
of the APES of the system in the direction of nuclear displacements under
consideration is zero, meaning this point is a maximum or minimum (the
Coulomb forces are equilibrated). Any configuration of pure ions is not
force-equilibrated, and hence its distortion is unrelated to the PJTE. Any
system with a PJTE may be used to illustrate this statement.

P7.9. Chemical transformations via transition states (a maximum or a saddle
point of the APES) may serve as an example of the minimum-two-
level paradigm involved [two electronic states in transformation (TEST)
paradigm, Section 7.4]. The scheme of such transformation can be seen
in Figs. 11.7 and 11.10 of Section 11.2. The difficulty in finding specific
illustrative examples is due to the lack of calculations of excited states
at the point of instability of the ground (transition) state that produce
the instability of the latter. But in all the cases when excited states are
revealed, the TEST paradigm is confirmed.

P7.10. The two states with different spin are orthogonal in the Russell–Saunders
scheme of term separation (Section 2.2), but they become nonorthogonal
when the spin–orbital interaction is taken into account. Therefore, there
are spontaneous thermal transitions between these two states, and this
thermal relaxation of the higher energy state to the lower one at room
temperatures is often the main obstacle to the direct use of such systems
in electronics. The relaxation rate for CuF3 has not been calculated as
yet.

Chapter 8

P8.1. From Eqs. (8.12), (8.14), (8.16), and (8.17) we find the following values
for K2NaCrF6: ω = (δ�)2/[(4 ln 2)(�1 − �2)] ∼= 832 cm−1, a = (�1 −
�2)/ω ∼= 4.1, and �0 = (�1 + �2)/2 = 21,600 cm−1.

P8.2. See Section 8.1.

P8.3. The answer to this question is given in Section 8.2.

P8.4. See Section 8.1.

P8.5. See Section 8.1.

P8.6. The approximate correlation between the two series, spectrochemical
and nephelauxetic, is not accidental. The d-level splitting magnitude �,
attributed in CFT to the interaction with ligand charges or dipoles, is in
fact directly dependent on the covalence of the metal–ligand bonding
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(Section 6.2). This explains the origin of the experimentally observed
approximate synchronism in the changes of the parameters in both series.

P8.7. According to Section 4.2, Fig. 4.5, the d-level splitting in a tetrago-
nally compressed tetrahedral field is as follows (the scheme in Fig. 8.21
illustrates a tetragonally elongated tetrahedral field):

___________B2

___________E

___________B1

___________A1

From the ground state A1, the following d—d transition can be expected:
A1 → B1, A1 → E, and A1 → B2. Using the group-theoretical selection
rules (Section 3.4) and Table A1.7 for the characters of the D2d group we
find that the z component of the electric dipole moment (as of any vector)
belongs to the B2 IrRep of this group, while the x and y components
belong to the IrRep E. Then, by evaluating direct products of IrReps
(Table A1.14), we find

A1 × B1 × B2 = A2

A1 × B1 × E = E

A1 × E × B2 = E

A1 × E × E = A1 + A2 + B1 + B2

A1 × B2 × B2 = A1

A1 × B2 × E = E

Only two of these products contain the totally symmetric IrRep A1, and
hence their corresponding transitions are allowed: the A1 → B2 transition
with the highest frequency (∼ 12, 000 cm−1) allowed in the z polar-
ization of incident light, and the A1 → E (∼ 9000) transition for light
polarized in the xy plane. The A1 → B1 transition is forbidden in the
electric–dipolar approximation.

P8.8. For the system CuF3 with D3h symmetry, the vibrational representation,
according to Eqs. (3.54)–(3.56), is (cf. Example 3.5)

G E σh C3 S3 C2 σv

X(G) 6 4 0 −2 0 2
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Decomposing this reducible representation into IrReps of the D3h group
(Table A1.5) by means of Eq. (3.33) or by direct examination, we find
that its components are 2E′ + A′

1 + A′′
2. Thus the CuF3 molecule has two

double-degenerate e′, one a′
1, and one a′′

2 vibrations, a total of 3 × 4−6 =
6 symmetrized (concerted) vibrations. Table A1.5 also shows that the a′

1
vibration can be seen only in the Raman spectra in different polarizations,
the a′′

2 vibrations will be manifest in the infrared in z polarization, while
the e′ vibrations can be seen in both infrared and Raman spectra in xy

polarization.
For tetrahedral CoCl2−

4 a similar analysis employing the table of char-
acters A1.10 for Td symmetry yields the following vibrational represen-
tation:

G E C3 C2 S4 σd

X(G) 9 0 1 −1 3

By decomposing this reducible representation in IrReps of the Td group,
we find that it contains 2T2 + E + A1. This means that in CoCl2−

4 the
nine vibrations are two t2, one e, and one a1. Table A1.10 also shows
that the t2 vibrations will be seen in both infrared and Raman spectra
in any polarization, while the a1 vibrations will be manifest in Raman
spectra only.

The possible vibrations of the UF6 molecule with Oh symmetry are
given in Problem 3.8. According to Table A1.11, only t1u vibrations can
be seen in infrared spectra in any polarization, while a1g and t2g vibrations
will be seen in Raman spectra.

For the vibrational representation X(G) of the 21 vibrations of OsF8

in Oh symmetry with the Os atom in the center of a regular cube and
fluorine atoms at its apices, we have

G E C3 C2 C4 C′
2 I S6 σh S4 σd

X(G) 21 6 1 −1 1 −3 0 1 −1 5

Its decomposition in IrReps yields X(G) = A1g + A2u + Eg + Eu+
2T1u+2T2g + T2u. With these values, according to Table A1.11, only the
T1u vibrations are active in the IR spectra in any polarization, while the
A1g and T2g frequencies will be seen only in the shifts of Raman spectra.

P8.9. Raman spectra can be obtained, in principle, with any frequency of inci-
dent light larger than the frequency of the vibrations, whereas resonance
Raman scattering takes place only when the frequency of the incident
light is in resonance with one of the electronic transitions in the system.
Since the selection rules for Raman shifts are those of a tensor, while
dipolar IR spectra are induced by a vector perturbation, vibrations can be
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seen in both types of spectra only if they belong to an IrRep of the sym-
metry group to which both vector and tensor transformations belong. In
particular, this does not take place in the presence of an inversion center,
so for such systems the same vibrational mode cannot be seen in both
types of spectra. For Stokes and anti-Stokes intensities, see Eq. (8.30).

P8.10. With the data given for the system VF3, we calculate (Section 8.2) XA =
F 2

A coth(ωA/2kT ) = 0.290 and XE = F 2
E coth(ωE/2kT ) = 0.637; hence

XA < XE , and the A → E optical absorption band is expected to be two-
humped (split by the JTE). With increasing temperature, coth(ω/2kT ) →
0 as (ω/2kT ) → 0, and since ωE >ωA and FE >FA, XE >XA at any
given temperature.

P8.11. The peaks of photoelectron spectra do not necessarily coincide with the
calculated energy levels of the system because of electron relaxation,
shakeup and shakeoff satellites, and configuration interaction; see Section
8.3 for details.

P8.12. In TMS the chemical shift in photoelectron spectra depends not so much
on the change of the effective (total) atomic charges on the atom as on
the changes in orbital populations by bonding. Indeed, the influence of d

electrons on the shift of inner energy levels may be opposite to that of
sp electrons. Therefore, the change in the total charge by bonding may
be small when the absolute values of orbital charge transfers in opposite
directions are large (Section 6.3, Fig. 6.6). Hence the shift of the inner
levels may be very large when total charge transfers are small.

P8.13. In the definition μ = β(L+2S), all three magnitudes μ, L, and S are vec-
tors and operators for which observables are their quantum-mechanical
averages, and L+S = J. For the projection of μ on J, we have μJ = β ×
[J + S cos(J, S)]. On the other hand, following the cosine rule of a tri-
angle with the sides L, S, and J, we find that cos(J, S) = (J 2 + S2 −
L2)/2JS. Hence we can write μJ = βJ [1 + (J 2 + S2 − L2)/2J 2]. In
this equation the quantities J, S, and L are operators. To find observable
μ values, we should average the latter using quantum-mechanical aver-
ages < M2 > = M(M+1). Finally we get μJ = gβ[J (J+1)]1/2, where
g = 1 + [J (J+1) + S(S+1) − L(L+1)/2J (J+1)].

P8.14. The orbital magnetic moment of the CA in coordination systems may
be partially or fully quenched by the ligand field, which, by splitting
the energy term, fixes the orbital orientation thus restricting its ability
to follow external magnetic perturbations (see more details in Section
8.4). The orbital moment in cubic groups belongs to T1 IrRep, and it is
shown that the magnetic moment is quenched in all TMSs where there
are no T1 representations of their symmetry groups. The orbital contribu-
tion to the magnetic properties become temperature-dependent when the
ligand field splitting of the orbital levels is not very large and the excited
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states become significantly thermally populated, thus partially restoring
the orbital freedom to follow external fields.

P8.15. In the formulas in Table 8.9 the molar susceptibility in two directions,
n, l, is presented as a product χmol,n,l = Cn,lχn,l , where Cn,l = NAμ0

(gn,l)
2β2/kT and χn,l is the spin (and temperature)-dependent factor.

For high-spin [Fe(urea)6]Cl3 the spin of the iron atom is S = 5
2 , and for

the given values of axial splitting D = 0.130 cm−1 and gn = gl = 2.002
we can calculate its susceptibilities for the two temperatures as follows:

Cn,l(298 K) = [6.022 × 1023×4π×10−7 × (2.002)2(9.274×10−24)2/

(1.381×10−23×298.15)m3 mol−1 = 6.341×10−8m3 mol−1; similarly,
Cn,l(20 K) = 94.53×10−8m3 mol−1. The quantity of x = D/kT should
be dimensionless. The corresponding units are: D/kT = D(cm−1) ×
hc(J cm)/[k(JK−1)T (K)]. This yields for T = 298K, x(298) =
0.130 cm−1/207.23 cm−1 = 5.79 × 10−4 and for T = 20 K, x(20 K) =
8.63 × 10−3

With these x values and the expressions χn and χl in Table 8.9 for
the spin S = 5

2 , we obtain (for small x, e−2x ∼= 1−2x) : χl(298 K) =
1.249, χl(20 K) = 2.863, χn(298 K) = 3.589, and χn(20 K) = 3.668.
Finally, we obtain

Xmol,l(298 K)= 6.341 × 10−8m3/mol × 1.249 = 7.920 × 10−8m3/mol

Xmol,l(20 K)= 94.53 × 10−8m3/mol × 2.863 = 270.64 × 10−8m3/mol

Xmol,n(298 K)= 6.341 × 10−8m3/mol × 3.589 = 22.76 × 10−8m3/mol

Xmol,l(20 K)= 94.53 × 10−8m3/mol × 3.668 = 346.53 × 10−8m3/mol

We see that both the temperature dependence and anisotropy of the mag-
netic susceptibility in this TMS are very strong despite of the small axial
splitting D of the energy levels.

P8.16. See Section 8.4; in the absence of purely orbital contribution, spin–orbital
interaction and covalence contribute to the values of the g factors by
admixing excited states. The covalence factor retrieved from the ESR
spectra characterizes the MOs occupied by the unpaired electrons that con-
tribute to the g factor, whereas the covalence of the bonding is realized by
the inner occupied MOs that are not compensated by their corresponding
antibonding MOs (Section 6.2).

P8.17. In the MO LCAO approach the coupling is clearly contained in the
electronic structure, the MO distributions, and their occupancy. In the
semiempirical calculations of the binuclear copper(II) acetate hydrate
[Cu(OAc)2H2O]2 the direct Cu—Cu d—d overlap is weak, yielding small
splitting between the corresponding bonding and antibonding MO levels
with the result that they are both occupied by electron, and hence do
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not contribute considerably to the bonding. The latter is produced by the
uncompensated bonding MOs that are formed via the overlaps of the Cu
atoms with the commonly shared ligands.

P8.18. While ferromagnetic (direct and indirect) interaction between atomic cen-
ters depends on the Coulomb integrals (Coulomb interaction between their
electronic clouds) and hence takes place in any geometric arrangement
of their orbitals, the antiferromagnetic interaction is strongly dependent
on the square of the overlap between the latter S2

AB . Therefore the possi-
bility of antiferromagnetic interaction is limited to special orientation of
the “magnetic orbitals,” thus depending on the geometry of the indirect
interacting centers, and it is sensitive to their small structural changes.

P8.19. See Section 8.5. The main effect of electronic structure in GRS is seen in
its chemical shift, quadrupole splitting, and magnetic hyperfine splitting.
The chemical shift is due to the electronic charge on the nuclei produced
by the s electrons (and p1/2 electrons in the case of strong relativistic
effects), while the quadrupole splitting is created by the population of
MOs containing d and f electrons. Significant temperature dependence
is seen mostly in the magnetic hyperfine structure, and this is due to
thermal relaxations between the components of the nuclear energy levels
split by interaction with the electronic cloud (Example 8.13 serves as an
illustration).

P8.20. See full answer in Section 8.4. The measured or calculated total elec-
tronic density distribution in TMS does not reflect well the redistribution
of charge by bonding because of possible opposite directions of orbital
charge transfers in case of multiorbital bonds (Section 6.3; see also Prob-
lem 8.12). These mutually compensating charges are accompanied by
ligand excitation (Fig. 6.6); neither the former nor the latter are seen in
DD. Another important point is the way the DD are calculated. The
assumption of spherical symmetric charge distribution in free atoms with
open shells is valid only when the atom is free, indeed, but introduced
in the crystal it becomes immediately nonspherical symmetric (before
the bonding redistribution) because it acquires zero-order field-oriented
distribution (zero-order wavefunction of perturbation theory). This essen-
tially influences the determination of the DD as a difference between the
measured total density and the assumed atomic density before bonding.

Chapter 9

P9.1. See Section 9.1.

P9.2. The concept of directed valances is based on the assumption that localized
bonds between the atoms are formed by hybridization of close-in-energy
atomic orbitals, whereas the main feature of electronic structure of TMS
is the formation of three-dimensionally delocalized bonds formed due to
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the participation of d electrons. The differences in properties produced
by this difference in electronic structure are indicated in Table 6.1.

P9.3. The VSEPR model assumes that the lone pair of electrons of the CA
is repulsive and distorts the otherwise symmetric arrangements of the
ligands, but it cannot explain rigorously why not all lone pairs produce
distortions. A qualitative explanation is given in the model where it is
assumed that in the symmetric configuration the lone pair occupies an
antibonding MO, whereas in the distorted configuration it is nonbonding.
Therefore only strong antibonding lone pairs produce distortions. A rig-
orous treatment of the problem is given based on the vibronic coupling
theory, the pseudo-JTE (Section 9.2).

P9.4. The “inert-gas rule” in stereochemistry is based on the assumption that
the ligands form a spherical-symmetric charge distribution which can be
described by means of spherical functions and follow the same rules of
stable atomic closed shells; this leads to the magic numbers of most stable
systems with 8, 18, 32, . . . , valence electrons. With 8 electrons the model
predicts four 2-electron bonds, 18 electrons form nine bonds, and so on.
For instance, if in the 18-electron case there are less than nine ligands,
the complementary spherical electron density model assumes that the two
electrons of the missing bond can be provided by an appropriate occupied
nonbonding atomic orbital with required symmetry; this is the “general-
ized inert-gas rule.” These inert-gas rules are very approximate; they can
serve only for orientation and some preliminary qualitative estimates.

P9.5. The MO population analysis in Example 9.3 shows electronic configura-
tions that have relatively close energy states, which interact under nuclear
displacements of given symmetry and may, in principle, make the sys-
tem unstable with regard to these displacements, but it does not indicate
when the distortions actually take place. To do this, one has to involve
the PJTE, which states that for the distortions to take place, the inequality
(7.67) should be valid; to check this, one needs to evaluate the energy
gap � between the interacting states, the vibronic coupling constant F ,
and the primary force constant K0.

P9.6. The vibronic theory of lone-pair influence on stereochemistry reveals the
condition of instability of the TMS, which, in addition to the general
criterion of the PJTE (f > 1), differentiates the possible distortions on
their symmetries. The parameters that are needed to estimate the possi-
ble instabilities are indicated in the inequalities (9.11)–(9.14), with the
denotations in Eq. (9.9). They can be obtained mostly by calculations;
the energy gap � can be obtained from spectroscopic data.

P9.7. In TMS with a degenerate electronic state the pseudorotation always goes
around (sidesteps) the point of highest symmetry (the point of degen-
eracy), whereas in the Berry case the pseudorotation proceeds via the
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high-symmetry transition state, which is a maximum of the APES in the
direction of the nuclear displacements; Berry pseudorotations are thus a
consequence of the PJTE. In the JT case such pseudorotations are forbid-
den by symmetry. On the other hand, some pseudorotations sidestepping
the point of highest symmetry are also possible in the case of PJTE.
The differences between the two types of pseudorotation are seen in
NMR spectra of systems with ligands marked by isotope substitutions
(Section 9.2).

P9.8. The theory of mutual influence of ligands including cis and trans influ-
ences, is presented in Section 9.3 with many examples in Tables 9.8–9.10,
and are discussed further together with the trans effect in Section 11.3
with Fig. 11.11.

P9.9. The plasticity effect in TMS is based on the model of a “soft coordination
sphere” around the transition metal formed as a result of the JTE or PJTE,
due to which the APES has a continuum of minima, a trough, or several
minima with very low barriers between them, so the ligand configuration
easily changes under the influence of the environment. Transition metals
in double-degenerate E states in octahedral and tetrahedral environments
are most appropriate for manifesting this effect, but there may be many
other metals that obey the conditions of plasticity. Ample examples are
provided in Tables 9.14–9.17, and in the literature, data can be obtained
from the Science Citation Index by searching for papers that cite the
original publications on the plasticity effect [9.25].

P9.10. The driving force of structural displacive phase transitions in crystals with
JT centers is the local JTE, while in dielectric crystals with fully occupied
conduction bands the phase transition is triggered by the local distortions
produced by the PJTE. Ferroelectric phase transitions take place when
the local PJT distortions produce a dipole moment (as, e.g., in BaTiO3).
For a full answer to this question, see the discussion in Section 7.4 and/or
Section 8.3 of Ref. 9.23.

Chapter 10

P10.1. See Section 10.1

P10.2. The ability of the system to accept additional electronic charge from a
donor depends on the position of its LUMO (which can accept electrons)
with respect to the HOMO of the donor, and on how rapidly the LUMO
energy increases with its population, the redox capacitance C. The lat-
ter, roughly speaking, decreases with the increase of the HOMO-LUMO
energy gap of the system. The best charge-accepting systems are those
with several (many) close energy levels that include both the HOMO and
LUMO, such as conjugated systems (see Example 10.1). They may be
also good donors of charge. In the same approximation as above, the
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redox capacitance of the system as a donor decreases with the HOMO-
SOMO energy gap (SOMO denotes the second lower in energy MO), so
it may differ from that as an acceptor.

P10.3. The redox capacitance of the system, following Eq. (10.4), is C1 =
(dq/dε)0 = 1e/(80.2 kK (1 kK = 103 cm−1) = 0.012e (kK)−1, the
redox capacitance of iron porphyrin in Example 10.1 is C2 = 0.6e (kK)−1.
Hence C2 
 C1, and using Eq. (10.11) and the value of the energy gap
εu

1 − ε0
2 = 45 kK we find for the charge transfer: �q = C1(ε

u
1 − ε0

2) =
0.56e.

P10.4. See Section 10.2.

P10.5. Coexistence of two molecular configurations occurs when the APES of
the system has two minima of same or close energies, but with an energy
barrier between them that distinguishes them physically. This means that
the system may be found in either one of the minima or averaged over both
of them, dependent on the barrier height and the means of observation (see
Section 9.1). In principle, the two configurations can be observed with
many spectroscopic methods, but the most impressive so far was GRS (γ -
resonance spectroscopy, Section 8.5), which shows a superposition of two
spectra, one with the localized electron and the other with the delocalized
electron (Section 10.2).

P10.6. Adding or removing charge from a system may trigger a change in its
nuclear configuration, its conformation, if there are two or more elec-
tronic states involved and the electron–vibrational (vibronic) coupling is
sufficiently strong to satisfy the condition of instability (see the TEST
paradigm in Section 7.4), and if this condition was not in place with-
out the added charge. Equation (7.67) shows that in addition to strong
vibronic coupling F , the condition of instability requires small energy
gaps to excited states � and small primary force constants K0. The latter
two conditions are satisfied in many biological systems. Because of their
organic large size, biological systems are “soft” (have small K0 values)
with regard to conformational changes, and in the presence of transition
metal active centers (as, e.g., in metalloenzymes) or organic conjugated
systems as prosthetic groups, they have also open shells with small �

values. Examples are given in Section 10.3.

P10.7. See answer in Sections 10.3 and 9.2.

P10.8. See answer in Section 10.3.

Chapter 11

P11.1. See Section 11.1.



ANSWERS AND SOLUTIONS 741

P11.2. The stable excited states that produce the instability of the ground
transition state of chemical reactions can (in principle) be observed spec-
troscopically similar to any other excited state, although there may be
experimental difficulties in recording the spectra because of the insta-
bility of the ground state in this configuration. There should be no
insurmountable difficulties in allocating these states by means of fem-
tosecond spectroscopy (attempts to do this are unknown to us). However,
the presence of such stable excited states (known as resonances) is well
recorded in collision experiments.

P11.3. Orbital symmetry rules emerge from the overlap of the orbitals of the two
interacting molecular systems, and hence these rules are not effective
in charge-controlled reactions. For the same reason charge-controlled
reactions are not stereoselective, and this is one of the features that dis-
tinguish them from orbital controlled reactions. The two limit reactions
and their intermediates can be predicted by calculation of the electronic
structure of the reactants (Section 11.3) and/or qualitatively by inspection
of their HOMO-LUMO and estimating their overlap.

P11.4. The electronic features of TMS that facilitate their catalytic proper-
ties are due mainly to their ability to form multiorbital bonds with the
ligands, which, because of the compensating orbital charge transfers,
may produce strong ligand activation without “thermodynamic cost”
(i.e., without thermodynamically unfavorable total charge redistribution).
Generally, there is no such effect in absence of the strong heterogeneity
introduced by d electrons. Another important feature of TMS that makes
them good catalysts is that by coordinating several molecular groups as
ligands, the CA “brings them together,” facilitating their interaction at
short distances. Examples are given in Section 11.3.

P11.5. Following Eq. (11.19) or (11.20), to estimate the reduction of the acti-
vation energy −�D of reactions with a coordinated molecule, we need
to know how the force constant K0, interatomic distances, and anhar-
monicity coefficient of the latter changes by coordination. These changes
are expressed approximately by empirical parameters; in Eqs. (11.22)
and (11.23) they are presented as functions of HOMO and LUMO
orbital charge transfers and orbital vibronic constants (Section 7.2). The
latter can be determined from empirical, mostly spectroscopic, data.
Conversely, by revealing the changes in vibrational frequencies and
interatomic distances of the molecule due to its coordination, one can
estimate the charge transfers.

P11.6. While the two molecules, N2 and CO, have the same number of elec-
trons, their electronic structure is different. According to their MO dia-
grams in Figs. 6.8 and 6.10 and estimation of their orbital vibronic
constants in Section 7.2, Fig. 7.4, the HOMO 5σ of N2 is bonding and
its LUMO 2π is antibonding, whereas in CO the HOMO 5σ is weakly
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antibonding and the LUMO 2π is strongly antibonding. Therefore the
orbital charge transfers from and to these two molecules by coordination
produce different effects described in detail in Examples 11.2–11.4.

P11.7. The activation of the CO molecule in these carbonyls is due to the
combined effect of the electron donation from its HOMO 5σ and back-
donation from the metal to its LUMO 2π , both strongly dependent on
the metal donor and acceptor properties in this coordination. There-
fore a full answer to the question of why the activation of CO is the
largest in Mn(CO)5 in Fig. 11.9 can be given only after calculation of
orbital charge transfers. However, since the only difference in the three
carbonyls, Fe(CO)5, V(CO)5, and Mn(CO)5, is in their d-electron pop-
ulation (3d64s2, 3d34s2, and 3d54s2, respectively), we can assume that
the electron-rich Mn complex has better π-donor properties, thus more
strongly activating the CO molecule by populating its strongly antibond-
ing LUMO 2π (in Fe(CO)5 the low-spin configuration 3d6 forms a more
stable closed shell).

P11.8. From the paper in Ref. 11.17b, we obtain the following parameters for
CN coordinated to Fe(III):

MOs fi ki γi �qi

4σ ∗ −0.397 −3.255 5.758 −0.13
5σ 0.018 0.649 0.969 −0.49
1π 0.671 8.136 −2.314 −0.06
2π∗ 0.896 −1.861 5.152 0.14

With these parameters Eq. (11.22′) yields

F = 0.128 × 10−3 dyn

�K = −0.644 × 10−3 dyn/Å

�γ = −0.36 × 10−3 dyn/Å
2

With the value K = 16.21 × 10−3 dyn/Å from Ref. 11.17b,
we have K0 = K − �K = 16.854 × 10−3dyn/Å, and with the
formula γ0 = (K0/�ω)(4K0�ωxe/15)1/2 and anharmonicity cor-
rection �ωxe = 13.087 cm−1 (adjusting for units), we obtain
γ0 = 14.020 × 10−3dyn/Å2. Substituting all these numbers into Eq.
(11.24′), we obtain the final formula, D = 0.834D0−0.917D

1/2
0 , where

D0 is given in kcal/mol (for other units of energy the coefficient at
D

1/2
0 changes).
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P11.9. For a reaction of the free CN molecule, such as CN + X2 → CX + NX,
for which the activation energy is D0 = 100 kcal/mol, its coordination
to Fe(III), according to the semiempirical relation obtained in Problem
11.8, lowers the activation energy to D = 83.4−9.17 = 74.2 kcal/mol.
Hence −�D = D0 − D = 25.8 kcal/mol.

P11.10. Using the approximate Eq. (11.33) for the JT-induced chemical acti-
vation (which includes linear vibronic coupling only), we find that for
reactions that proceed in the direction of JT instability with the acti-
vation energy D0 = 50 kcal/mol, and with the JT stabilization energy
EJT = 0.5 eV = 11.53 kcal/mol, the reduction of the activation energy
due to the JTE, −�D = D0 − D = 37.06 kcal/mol−1. A more accurate
estimation of −�D can be obtained by including the quadratic coupling
terms.
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Activated complex, 624
Activated state, 624
Activation by coordination, 639, 741, 742
Activation energy, 624, 656
Adiabatic approximation, 15, 175, 325, 730

criterion, 327
full, 328
simple (Born–Oppenheimer), 327

Adiabatic potential energy surface (APES), 7,
327

in Jahn–Teller problems, see JT problems
Amplification rule, see Jahn–Teller distortions
Angular overlap model, 151
Anharmonicity

corrections, 638, 742
vibronic, 335

Antiferrodistortive interactions (ordering), 567
Antiferromagnetic interaction (ordering), 444,

457
Arrenius reaction rate, 624
Atomic

charge effective, 23, 146, 437
functions, 19

relativistic, 32
Slater type, 22

orbital (AO), 19
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hybridized, 24
state, 18

one-electron, 19
multielectron, 36

term, 36
Auger electron spectroscopy, 422

Basis set, 24, 157
contracted, 159
correlation consistent, 160
double-zeta, 158
extended, 158
Gaussian, 158
Huzinaga, 159
minimal, 158
Pople, 159
superposition error, 161
valence, 158

Berry pseudorotation, see Pseudorotation
Bispinor, 31, 168, 185
Bohr magneton, 29, 380
Bond order, 145
Bonding

coordination, 11, 241
diorbital, 257, 261
metal–metal, 279

745
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monoorbital, 257, 259, 728
multicenter, 273
multiorbital, 257, 741
valence, 10
σ , π , δ, . . ., 25
σ + π , 27, 269

Bridging ligand, 279
Broken symmetry effect, 568

Charge
capacitance, see Redox capacitance
distribution, 133
effective, 22, 144, 434
transfer, 144

intramolecular, 579
mutual compensation, 213
orbital, 144, 258, 640
spectra, 416

Charge-controlled reactions, 571
Chemical activation of

carbon monoxide, 642, 646
cyan, 742, 743
dinitrogen, 646, 729
dioxygen, 650
double bond, 663
hydrogen, 649, 729
JT induced, 652
nitrogen monoxide, 648

Chemical bond. See also Bonding
classification, 11, 238

genealogical, 239
conjugated (orbital), 11, 240
coordination, 11, 241
definition, 7, 15
donor-acceptor, 11, 241
in nontransition elements, 245
valence, 10, 239

Chemical hardness (softness), 588
Chemical potential, 588
Chemical reaction

carbonyl insertion, 666
charge-controlled, 629
CO reductive hydrogenation, 666
energy barrier, 656
ligand coupling and cleavage, 662
olefin insertion, 674
orbital-controlled, 630
photochemical, 682
rate, 624
stereoselective, 630
substitution, 656
symmetry rules, 630
trans-effect, 657
Ziegler–Natta polymerization, 677

Chemical reactivity, 623
Chemical shift, see Photoelectron spectra
cis-effect, 544
Clebsh–Gordan coefficients, 73, 93, 187
Computer

experiment, 6
programs, 165

Configuration interaction (CI), 44, 108, 162
CI satellites, 434
multireference (MRCI), 163
s-configuration interaction, 455

Coordinates
normal, 328
symmetrized, 335, 731

Coordination bond. See also Chemical bond
definition, 9, 241
features, 243

Coordination compound (system)
definition, 10, 241
of posttransition elements, 245
of pretransition elements, 245
mixed-valence, 591

Coordination theory, 10
Correlation effects, see Electron correlation

effects
Coulomb integral, 45, 134
Coupled-cluster approximation, 163
Covalence

electrons, 251
in ESR, 452
in JT distortions, 452
weak, 149, 717

Creutz–Taube ion, see Mixed-valence compounds
Crossover phenomenon, see Spin-crossover
Crystal field

extrastabilization, 124, 712
icosahedral, 696, 714
parameter, 121
theory, 84

Curie law, 448

d electron heterogeneity, 149, 175, 211
Deformation density (DD), 143, 484, 737

DD modelling, 490
fragment DD, 488

Density functional theory (DFT), 171, 718, 722
time-domain DFT (TDDFT), 177

Density matrix, 145
Diamagnetism, 445
Dichroism (polychroism), 468

circular, 468
magnetic circular, 468

Dipolar instability, 376
Dirac equation, 28, 168
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Doppler effect, 474
Double exchange, 597
Dushinsky effect, see Optical spectra
δ-function, δ-symbol, 47, 58

Effective charge, 22, 144, 434
Electron affinity, 580
Electron-conformational effects, 609
Electron correlation effects, 115, 157, 161
Electron potentials, see Standard electron

potentials
Electron transfer

intermolecular, 579
outer-sphere, 583
probability (in MV compounds), 600
reactions, 580

Electron spin resonance (ESR) spectra, 449
angular dependence, 453
covalence reduction, 452
fine structure, 455
g-factor, 446, 450
hyperfine structure, 455
in the Jahn–Teller effect, 452
super-hyperfine structure, 456

Electronegativity, 580
Electroneutrality principle, 213, 640
Electronic configuration, 36, 71, 247

complementary, 42, 46, 92
high-spin, 100, 105, 251, 715
low-spin, 107, 251, 715

Electronic density, 143
reference, 488
spherical model, 514

Electronic equation, 326
Electronic transitions. See also Optical spectra

absorption coefficient, 397
band shapes, 396
charge transfer, 416
d-d, 406

between degenerate states, 422, 735
forbidden, 402
Franck–Condon principle, 393

factor, 393, 401
intervalence, 544

radiationless, 401
vertical, 393

vibrational induced, 409
zero-phonon line, 401

ENDOR, 457
Epikernel principle, 522
Exchange-correlation potential, 173
Exchange interaction, 8, 45, 457

anisotropic, 465
antiferromagnetic, 457

antisymmetric, 464
biquadratic, 464
double exchange, 536
ferromagnetic, 457
indirect, 457
isotropic, 459

Excitation by coordination, 258
Extinction coefficient, see Optical spectra
Extrastabilization energy, 124
EXAFS, see X-ray absorption spectroscopy

Fenske–Hall method, 169
Fermi

contact interaction, 455, 475
hole, 161

Ferrimagnetic ordering, 444
Ferrodistortive

interactions, 567
ordering, 567

Ferroelastic interactions, see Structural phase
transitions, ferroelastic

Ferroelectric interactions, see Structural phase
transitions, ferroelectric

Ferroelectricity, 568
Ferromagnetic interaction (ordering), 444, 457
Ferrimagnetism, 445
Ferromagnetism, 445
Fine-structure constant, 32
Fockian (Fock effective Hamiltonian), 50, 134,

155
Force constant, primary, 339
Form-function, see Optical spectra
Fourier transform, 440
Fragmentary calculations, 202
Fragment deformation density, 488
Franck–Condon principle, see Electronic

transitions
Frontier orbitals, 627

generalized, 628

γ -Resonance spectroscopy (GRS), 472, 737
isomer shift, 475
quadrupole splitting, 476
hyperfine structure, 478

GAMESS (computer programs), 165
GAUSSIAN (computer programs), 165
Gaussian functions, 158
Geometry optimization, 165
Group orbital, 137
Group representation, 64, 692

character, 65, 692
irreducible (IrRep), 66
two-valued (double group), 81, 187
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Hamiltonian, 12
Dzyaloshinsky–Moriya, 464
HDVV, 459
Ising, 465
relativistic, see Dirac equation
spin-Hamiltonian, 448

Hard and soft acids and base, 587
Harmonic

approximation, 329
oscillator, 329

Hartree approximation, 47, 173
Hartree–Fock, 47, 134

equation, 49
limit solution, 158
method, 47
restricted, 156
unrestricted, 156
wavefunction, 23

Hartree–Fock–Roothane method, 154
Heitler–London approximation, 8
Helicoidal structure, 571
High-spin complexes, 100, 105, 715
Hindered rotations, see Pseudorotations
HOMO (highest occupied MO), 149
Huckel method

extended, 192
iterative (SCCC), 193, 716

Hund rule, 38
Hypsochromic series, 413
Hybridization, 24, 51, 707
Hysteresis, 467

Icosahedral field, 130, 696, 714
Incommensurate phases, 571
Inert gas rule, 516, 738

generalized, 517
INDO, 175
Infrared absorption, 417
Intersection (nonintersection) rule, 113
Intervalence transition, 596
Intuition, 2
Ionization energy (potential), 22
Irreducible representation (IrRep), see Group

representation
Isomer

distortion isomers, 559
shift, 475

j-j coupling, 40, 52, 193, 311, 707
Jahn–Teller

active modes, 347
dynamics, 363
distortions

amplification rule, 521

isomer, 559
off-center, 528
pulsating, 313
static, 309

effect, 348
cooperative, 567
dynamic, 363
hidden, 387
static, 360

problems
multimode, 352
E ⊗ b1, 543
E ⊗ (b1 + b2), 353
E ⊗ e, 353
(E + A) ⊗ e, 375
T ⊗ (e + t2), 364
T ⊗ e, 365
T ⊗ t2, 366
(A1g + T1u) ⊗ t1u, 372
(A1g + T1u) ⊗ (t1u + eg + t2g), 536
�8 × (e + t2), 369
pseudo-effect, 349, 369, 738. See also

Pseudo JT effect
stabilization energy, 354
theorem, 344

Kohn–Sham equations, 172
Koopmans theorem, 50, 254
Kramers doublet, 294, 346, 449
Kroneker index, see δ-function, δ-symbol

Landé
g factor, 446, 450
intervals, 39, 446

Langeven theory, 443
LCAO, 133
Ligand

activation, see Chemical activation
coordination

bridging, 279
geometry, 530
mutual influence, 544
semibridging, 288

Ligand field
arbitrary, 112
intermediate, 116
parameter, 121
strong, 106, 117, 251
theory, 123
weak, 100, 103, 116, 251

Local density approximation (LDA), 175
Localization–delocalization

alternative, 592
coexistence, 604, 740
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Lone pairs, 509, 535, 738
inert, 535

Low-spin complexes, see Electronic
configurations

LUMO (lowest unoccupied MO), 149

Madelung potential, 193
Magnetic

anisotropy, 443
circular dichroism, 468
exchange coupling, 457
hyperfine structure, 479
moment, 444, 735

reduction (quenching), 446
orbitals, 460, 737
susceptibility, 443, 447, 736

Magnetization, 443
Marcus equation, 625
Metal–metal bond, 236
Mixed-valence

compounds, 591
dimmers, 592

Creutz–Taube ion, 594
intervalence transition, 596
parameter, 593
phase transitions, 605
trimers, 601

Molecular
dynamics, 206
engineering, 1, 15
magnets, 465
mechanics, 206
modeling, 206
orbitals, 132

antibonding, 147
bonding, 147
nonbonding, 147
symmetrized, 74, 137
vibronic, 343

shapes, 506
symmetry, 54
vibrations, 325

Mossbauer effect, 472
Moeller–Plesset (MP) approximation, 163
Multielectron

states, 36
terms, 37
wavefunctions, 40

Multimode problem, see JT problem, multimode
Multiorbital bonding, see Bonding
Mutual influence of ligands, 544, 739

cis-influence, 544
trans-effect, 657

trans-influence, 544
vibronic theory, 549

Nephelauxetic
effect, 414
series, 414, 733

Neutron diffraction, 493
Nonintersection rule, 113, 712
Normal coordinates, 80
Nuclear hyperfine splitting, see γ -Resonance

spectroscopy
Nuclear magnetic resonance (NMR), 540

Operator, 12, 56
Optical activity, 468
Optical spectra. See also Electronic transitions

absorption coefficient, 397
band

form function, 398
maximum, 399, 400
shape, 396
width, 400

d-d, 405, 422
dichroism (polychroism), 403
dipolar, 396
Dushinski effect, 398
extinction coefficient, 404
oscillator strength, 404, 406
parity forbidden, 405
resonance fluorescence, 401
selection rules, 402, 733
spectral density, 397
spin-forbidden (intersystem combinations),

405
Stocks shift, 401
vibrational broadening, 393
vibrational induced, 409
zero-phonon line, 401

Orbital. See also Molecular orbital (MO)
chemical shift, 437
contraction, 303
frontier, see HOMO, LUMO
Gaussian, see Basis set
hybridization, 24, 27, 52, 508
overlap, 24
Slater type, see Basis set
symmetry rules, 741
vibronic constants, 340, 610, 636

Orbital-controlled reactions, 571
Oscillator strength, see Optical spectra
Overlap

density, 144
differential, 25
integral, 24, 140
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Overlap (Continued)
model, see Angular overlap model
negative, 151
orbitals, 24
population, 144
zero differential, 188

Pairing energy, 109, 251, 465, 712
Paradigm TEST (two electronic states in

transformations), 381, 732, 740
Paramagnetic

relaxation, 457
susceptibility, 443, 447, 736

Paramagnetism, 443
temperature independent (Van Fleck), 448

Pauli
matrices, 31
principle, 8, 36, 40, 72

Phase transitions, see Structural phase transitions
Photoelectron spectra, 427

angular dependence, 436
Auger (APS), 422
chemical shift, 436, 735
moments of distribution, 433
multiplet structure, 435
projection formula, 76
shake-up satellites, 431
ultraviolet (UPS), 422
X-ray (XPS), 422

Pseudo-degeneracy, see Pseudo JTE
Pseudo Jahn–Teller effect, 349, 369, 738

illustration, 374
multilevel, 378
strong, 370
weak, 370

Pseudopotentials, 170
Pseudorotation, 362, 539, 738

Berry, 509, 540
Jahn–Teller, 541

Pulse motions (pulsating deformations), 362
Plasticity effect, 554, 739

Quasirelativistic
approach, 167, 185
parameterization, 198

Quadrupole splitting, 476
Quantum-mechanical/molecular mechanics

(QM/MM) method, 211

Racah parameters, 36, 42, 46, 107
Radiationless transition, 401
Rayleigh scattering, 419
Raman effect, 418

resonance spectra, 421
spectra, 420, 734

Reactivity, see Chemical reactivity
Reagents

electrophilic, 628
nucleophilic, 628
radical, 628

Redox capacitance, 584
Redox nobility, 304
Relativistic. See also Quasirelativistic

approaches, 167, 184
atomic states, 30, 32

functions, 34, 51
contraction, 303
effects , 13, 185, 303, 314

Renner–Teller effect, 347
Resonance integral, 134, 140
Roothaan method, 143
Russell–Saunders coupling, 36, 52, 707

Schrodinger equation, 12, 325, etc.
Secular equation, 11, 135, 141
Selection rules, 70, 402, 709
Self-consistent field (SCF) method, 48, 154
Semiclassical approximation, 358, 398
Semiempirical methods, 187
Slater–Condon parameters, 36, 42, 46
Slater orbitals, 22, 158
Spectrochemical series, 412, 733
Spin-crossover, 130, 465, 482, 715, 727
Spin density, 493
Spin-Hamiltonian, 448
Spin-orbital

coupling constant, 30, 39
interaction, 28, 186
splitting, 311

reduction, 314
Spin multiplicity, 36
Spin-resonance, see Electron spin resonance

(ESR)
ferroelastic, 570
ferroelectric, 568
helicoidal, 509
incommensurate, 571
in MV trimers, 605
order-disorder, 566
structural-magnetic, 572

Super-exchange (indirect exchange) interaction,
459

Super-hyperfine interaction, see ESR
Supramolecular chemistry, 663
Symmetry

breaking, 568
classification on, 65, 124
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double group, 81
group, 60

representations, 64
tables of, 692

molecular, 54
transformation (operation), 54, 60
transformation matrix, 56

character, 65, 692
Symmetrized

orbitals, 74, 76, 78
vibrations, 74

Tanabe–Sugano diagrams, 112, 130
TEST, see Paradigm TEST
Topological (Berry) phase, 363, 731
trans effect, 657
trans influence, 474
Transition dipole moment, 341
Tunnelling, 362

Unitary transformation, 49, 58
Undistinguishability principle, 8, 40

Valence
activity, 304
basis set, 146
bond, 10, 241
directed, 27, 508, 737
state, energy of ionization (EIVS), 192

Variational principle, 47, 134
Vibrational

induced transitions, see Optical spectra
representation, 79

Vibrations, 325
classification, 70
fundamental frequency, 418
harmonic, 328
mechanical, 330
normal, 70
overtone (anharmonic), 418
symmetrized, 74, 80, 734

Vibronic
amplification, 521
anharmonicity, 335
constants, 338

dimensionless, 360
linear, 338
orbital, 340
quadratic, 339

effect, cooperative, 566
interaction (coupling), 326, 337
molecular orbital, 343
reduction, 363

factor, 364
in ESR spectra, 452

stereochemistry, 519

Wave-particle duality, 3
Wigner–Eckart theorem, 73

XANES, 440
Xα method, 375
X-ray absorption spectroscopy (EXAFS), 440

Zeeman effect, 450, 478
Zeise salt, 233
Zero-phonon line, 401, 473
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For coordination compounds mentioned in this book.

Chemical formulas are listed by the coordination centers as they appear in the periodic table (separate
ligands, as a rule, are not listed). Within each element entry the list begins with simple ligands followed
by polydentate coordination, crystal structures, and polynuclear compounds, respectively (this separation
is not rigorous, though). General formulas of the type MLn are listed at the end of this index.

B
BF3, 436
BH4, 379
BF3·NH3, 11

C

CH4,11, 239, 379

N

NH3, 384
NH4

+, 239, 379

O

OH4
2+, 379

Na

NaF, 402

Al

AlH4
−, 379

Si

SiH4, 379
SiF4, 10
SiF6

2−, 8, 10
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P
PH4

+, 379
P(C2H5)5, 310
PF5, 540, 544
H3PO4, 546
MPO4, M = Tm, Dy, Tb, 568

S

SH4, SH4
2+, 379

SF4, 540, 544
SF6, 524

K

KF, 434

Sc

Sc–CO, 268
ScF3, 299
Sc2, 289

Ti

Ti(H2O)6
3+, 87, 412

TiA6
3+, 396

Ti(Enta)−, 412
TiF6

3−, 196, 230, 728
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TiO6
8−, 371, 384, 528, 535, 569

TiO2, 430
TiCl4, 299, 303
TiCl63−, 249,
TiCl4· Al(CH3)3, 678
TiCl4· Al(CH3)2C3H7, 678
Li2TiO4, 529
FeTiO4, 502
BaTiO3, 371, 382, 384, 442, 569, 570
PbTiO3, 442, 570
Ti2, 289
LiTi2O4, 592
See also MLn

V

V(H2O)6
3+, 412

V(H2O)6
2+, 412

V(CN)5NO3−, 648
V(CO)5, 644, 742
VO4

3−, 297
VF5, 299
VOCl3, 299
V(Ox)3

3−, 412
Oxo(bis-acetylacetonato)V(IV), 456
AVO4, A = Tb, Dy, and Tm, 568
FeV2O4, 568
V2, 289
[SiV3

IVW9O40]10−, 463
V2, 289
See also MLn

Cr

CrH6, 307
Cr(H2O)6

3+, 396, 412, 497
Cr(H2O)6

2+, 130, 296, 412, 442
Cr(C6H6)2, 296
Cr2(C3H4)4, 288
Cr(CN)6

3−, 412, 414
Cr(NH3)6

3+, 412, 414
Cr(En)3

3+, 412, 414
Cr(Enta)−, 412, 414
Cr(NO)4, 294, 299
Cr(CN)5NO3−, 648
Cr(CN)5NO4−, 648
(CO)4Cr(CH2)2, 664
(CO)4Cr(C2H4), 664
(CO)4Cr(C(NR2)2)2, 664
(CO)4Cr(C2(NR2)4), 664
Cr(CO)6, 269, 271, 296, 297, 299, 303
Cr(Ox)3−, 412, 414
Cr(C6H6)CO3, 298
Cr2(O2CH3)4(H2O)2, 238, 287
CrO4

2−, 297

CrO8
3−, 297

CrF2, 558
CrF6

3−, 336, 414, 415
CrCl2, 558
CrCl63−, 412, 414
KCrF3, 558
K2NaCrF6, 410, 494, 732
Cr : Be3Al2(SiO3)6, 410
FeCr2, 568
FeCr2O4, 568
NiCr2O4, 568
CuCr2O4, 568
MoCr(O2CH3)4, 290
See also MLn

Mn
Mn(H2O)6

3+, 130, 296, 412
Mn(H2O)6

2+, 130, 296, 407, 412, 414, 715
Mn(C5H5)2, 297
Mn(Enta)2−, 412, 414
Mn(En)3

2+, 130, 412, 414
Mn(CO)5H, 296, 297, 299, 668
Mn(CO)4(CHO), 668
RMn(CO)5, R = CH3, C6H5, 685
CH3Mn(CO)5, 297
Mn(C5H5)CO3, 296
Mn(CO)5, 644, 742
Mn(CO)5CN, 300
Mn(CN)5NO2−, 648
Mn(CN)5NO3−, 648
Mn(NO)3CO, 299
MnO4

−, 180, 230, 297, 302, 336, 718, 724
KMnO4, 445
MnF3, 558
MnF6

2−, 415
MnF6

4−, 415
KMnF3, 568
(NH4)2MnF5, 558
K2NaMnF6, 558
KMnF3H2O, 558
Cs2KMnF6, 558
MnCl42−, 303
Mn(acac)3, 558
Mn(Ox)3

3−, 412
Mn(picO)22H2O, 417
Mn-porphyrin, 528. See also in MLn

Mn-phtalocyanine, 528
Mn(trop)3, 558
Mn(Et2dtc)3, 558
La1−xSrxMnO3, 592
Mn2(CO)10, 488, 645, 684
Mn2, 289
Mn3O4, 568
See also MLn
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Fe
Fe(H2O)6

3+, 412, 414, 715
Fe(H2O)6

2+, 130, 412
Fe(Cp)2, 292
Fe(C5H5)2, 296, 297
Ferrocene, 429
Fe(C5H5)2

+, 297
Fe(III)–CN, 742
Fe(CN)6

4−, 130, 293, 412
FeN2, 263, 317
FeN4, 376
Fe(CN)5NO2−, 485
[Fe(CN)5NO]2−, 648
Na2[Fe(CN)5NO], 486
K3Fe(CN)6, 445
Fe(CO)4(CHO)−, 668
Fe(CO)4, 542, 682
Fe(CO)5, 296, 301, 303, 518, 644, 668,

682, 742
Fe(CO)2(NO)2, 294, 298, 299
Fe(NO2)6

3−, 10
FeF6

3−, 415
FeF6

4−, 231, 725
Fe(Br)6

3−, 110
Fe(bipyz)3

2+, 417
Fe(Enta)2−, 412
Fe(phen)2(NCS)2, 442, 482
[Fe(urea)6]Cl3, 736
Fe(picO)22H2O, 417
[(tol)(PPh3)2Mo(N2)Fe(C5H5)(dmpe)]+, 647
Fe-ferredoxines, 608
Fe-porphyrin, 587, 612
Fe-picket-fence porphyrin, 221
FeP(ImH)O2, Im = imidazol, 618
Fe-peroxidase, 616, 619
Fe-cytochrom P450, P420, 616, 650
Fe(P)(L), P = porphyn, L = SCH3

−, SHCH3
−,

650
Fe(II)-phtalocyanine, 491
Fe-ditiocarbomate, 479
FeTiO4, 568
FeV2O4, 568
FeCr2O4, 568
FeCr2S4, 568
CuFe2O4, 568
PbFeF3, 568
Fe2, 289
Fe3(CO)12, 290
[Fe(II)Fe2(III)(CH3COO)6L3], 604
[Fe3(CF3COO)6(H2O)3], 602
Fe3O4, 445
[Fe3S4(SH)3]2−, 608
Fe4(η5-C5H5)4(μ3-S)n, 587
Fe4[Fe(CN)6]3 · 4H2O, 592

Fe4S4, 592
See also MLn

Co

Co(H2O)6
3+, 412, 414, 715

Co(H2O)6
2+, 412, 414

Co(C5H5)2, 297, 514
Co(NH3)6

2+, 412, 582
Co(NH3)6

3+, 130, 133, 297, 396, 412, 414, 582,
715

Co(CN)6
3−, 130, 293, 412, 414, 715

Co(CO)3NO, 299
Co(CO)4, 683
HCo(CO)4, 683
R3SiCo(CO)4, R = Et, Ph, 684
Co(Ox)3

3−, 412, 414
[Co(NH3)5CN](NO2)2, 439
[Co(NH3)5X]2+, X = F, Cl, Br, I, 416
Copy2Cl2, 568
(NH4)2CoCl2, 568
CoCl42−, 303, 499, 734
Co(En)3

3+, 412, 414
Co(En)3

2+, 412
Co(Enta)−, 412, 414
Co(Enta)2−, 412, 414
Co(bipyz)3

2+, 417
Co(sep)3

3+, 582
Co(sep)3

3+, 582
Co(picO)22H2O, 417
Co(H2fs2en)L2, L = H2O, pyridine, 442
Co(H2fsa2en)(4-t-Bipy)2, 467
Co-tetraphenylporphyrin, 491
Co(II)-phtalocyanine, 494
Co2, 289
Co2(CO)8, 289, 645
CpCo(μ-CO)2ZrCp2, 291
[Co(NH3)6][ZnCl5], 525
[Co(NH3)6][CuCl5], 525
See also MLn

Ni

Ni(H2O)n, n = 1,2, 261
Ni(H2O)6

2+, 412, 414
Ni(C3H5)2, 293, 297, 299
Ni(C4H4)2, 296
Ni(η-C5H5)2, 514
Ni(NH3)6

2+, 412, 414
Ni(CN)4

2−, 293, 295, 297
Ni(CN)5

3−, 82, 518
Ni(C2H5)NO, 299
NiNO, 275
Ni(PH3)n, n = 1, 2, 261
NiO6

10−, 303
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NiF6
4−, 297, 303, 415

NiF6
2−, 415

KNiF3, 445
NiCl2, 445
NiCl42−, 296, 297
NiCl64−, 412, 414
NiBr6

4−, 412, 414
Ni(En)3

2+, 412, 414
Ni(Enta)2−, 412, 414
Ni(picO)22H2O, 417
Ni(bipyz)3

2+, 417
K2[Ni(dto)2)], 421
LixNi1−xO, 592
NiCr2O4, 568
NiO-CO, 644, 646
Ni2, 289

Cu
Cu-H, 309
Cu(H2O)6

2+, 296, 412, 442, 652
Cu(H2O)6

+, 296
Cu(H2O)5

2+, 296
Cu(NH3)6

2+, 412
Cu(NH3)2(NO)2, 557
Cu(NH3)2X2, X = Cl, Br, 559
CuF2, 166
CuBr2, 557
CuCl2, 557
CuF3, 82, 387, 499, 733
CuCl42−, 11, 239, 242, 297, 303, 498
(Naem)CuCl4, 498
CuCl53−, 296, 384, 525, 540
CuF4

2−, 297
CuF6

3−, 415
CuL6, L = F, Cl, Br, 557
Bis(acetylacetonato)Cu(II), 456
Bis(dimethyldithiocarbomato Cu(II), 456
Bis(salycilaldimino)Cu(II), 456
Bis(salycilaldoxymato)Cu(II), 456
Bis(8 chinolinato)Cu(II), 456
Dichlorophenantroline-Cu(II), 456
bis(terpyridin)Cu, 558
Cu(picO)22H2O, 417
Cu(PCP)3(ClO4)3, 556, 558
Cu(Enta)2−, 412
Cu(En)3

2+, 412
Cu(en)3(SO4), 556, 558
Cu(en)3Cl2, 556, 558
Cu(dien)2(NO3)2, 556, 558
[Cu(bpy)2(ONO)]NO3, 563
Cu(NO3)py2(N3), 416
[Cu(bpy)3]2+, 563
Cu(ONC5H6)6X2, 568
[Cu(tren)H2O]2+, 652

KCuF3, 557
K2CuF4, 557, 558
Ba2CuF6, 557
CuCr2O4, 568
CuFe2O4, 568
CsCuCl3, 557, 568, 570
K2PbCu(NO2)6, 557, 558, 569, 572
A2BCu(NO2)6, 557, 568
(NH4)2Cu(SO4)2•6H2O, 556, 558
CuSiF6•6H2O, 556, 557
Cu2, 309
[Cu(OAc)2H2O]2, 461, 462, 500, 736
Ba2Zn1−xCuxF6, 558
CuCo(CO)4(NH3)2, 291
[Co(NH3)6][CuCl5], 525
Cu4OL4X6, X = Cl, Br, L = Cl, Br, pyridine,

OPR3, ONR3, 464
See also MXn

Zn

Zn–H, 309
Zn–H+, 309
ZnCl2, 178
ZnCl53−, 525
Ba2ZnF6, 558
Ba2Zn1−xCuxF6, 558
[Zn(bpy)2(ONO)]NO3, 563

As

As(C6H5)5, 310

Se

MX6, M = Se, Te, X = Cl, Br, I, 514

Zr

CpCo(μ-CO)2ZrCp2, 291
MX4, M = Zr, Hf; X = Cl, Br, I, 310

Nb

K2[NbOF5], 546
KNbO3, 570
KNbxTa1−xO3, 570
Nb6I11, 467
Nb2, 289

Mo

MoH6, 307
MoCl3−

6 , 412
Mo(CO)6, 272, 518, 645
[Mo(CNbut)7]2+, 518
MoOF5, 546
K2[MoOF5]H2O, 546
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K2[MoOCl5], 546
(NH4)2[MoOBr5], 546
Mo(CO)5L, Mo(CO)4LL′; L,L′ = NH3, PMe3,

C(OMe)H, 682
MoCl5, 541
[Mo2(SO4)4]3−, 287
Mo2Cl84−, 285
Mo2, 309
MoCr(O2CH)4, 290
MxMo6S8, 592
[(tol)(PPh3)2Mo(N2)Fe(C5H5)(dmpe)]+, 647

Tc
TcF6

2−, 415
Tc2, 289
Tc2Cl83−, 287

Ru

RuF6, 415
RuF6

−, 415
RuCl62−, 416
Ru(CN)6

3−, 582
Ru(CN)6

4−, 582
Ru(NH3)5L3+, L = pyridine, 582
[RuH2(N2)(PPh3)3], 647
[{Ru(NH3)5}2N2]4+, 647
Ru(η6-C6Me6)(η

4-C6Me6), 514
Ru2, 289
[(NH3)5Ru(pyz)Ru(NH3)5]5+, 583, 594
(NH3)5RupyzRu(NH3)4pyzRu(NH3)5

7+, 605
(NH3)5RuNCRu(bpy)2CNRu(NH3)5

7+, 605

Rh

Rh(H2O)6
3+, 412, 414, 715

Rh(NH3)6
3+, 412, 414

Rh(En)3
3+, 412, 414

RhF6
3−, 415

RhCl63−, 412, 414, 715
RhBr6

3−, 412, 414
Rh(CO)H(NH3)2, 659, 661
Rh(Cl)NH3(H2O)2, 659, 661
Rh(PPh3)2(CCN2)2BrCO, 507
Rh(Ox)3

3−, 412
Rh(dmg)4(PPh)2, 288
Rh2(OCCH3)4(H2O)2, 288
Rh6(CO)16, 645
Rh4(CO)12, 645

Pd

PdF6
2−, 415

Pd(C2H4), 279
Pd(C2H4)3, 279
Pd(C2H4)4, 279

PdCl3(C2H4)
−, 280

M(CH3)2(PR3), M = Pd, Pt, 670
PdO-CO, 644
M(CH3)H(CO)PH3, M = Pd, Pt, 673
Pd(R)H(CO)(PH3), R = CHF2, C2H5, 674
M(CX2CH2)(H)2PH3, M = Ni, Pd, Pt; X = H, F,

677
See also MX6 and MX4

Ag

Ag–H, 309
Ag(C2H4)

+, 277, 297
AgF6

3−, 415
Ag2, 309

Cd

Cd–H+, 309

In

InCl65−, 535

Tb

RXO4, R = Tm, Dy, Tb; X = V, As, P, 568

Dy

RXO4, R = Tm, Dy, Tb; X = V, As, P, 568

Tm

RXO4, R = Tm, Dy, Tb; X = V, As, P, 568

Hf

HfCl4, HfBr4, HfI4, 310

W

W2(CH)3)8
4−, 287

H4[W(CN)8], 82, 518
K4[W(CN)8], 82, 518
W(CO)6, 272
[W(CO)4Br3, 518
HW(CO)3Cp, 684
WS4

2−, 311
NaxWO3, 592
W2, 309
[SiV3

IVW9O40]10−, 463

Re

[ReH9]2−, 82, 518
HReCp2, 684
ReF6

2−, 415
K2[ReOCl5], 546



758 FORMULA INDEX

Re2Cl82−, 284
K2ReCl82H2O, 284
Re2Cl4(PR4), 288
Re2Cl5(dth)2, 288

Os

[Os(NH3)5N2]Br2, 647
OsOF5, 546
OsF8, 499, 734
OsF6, 415
OsF6

−, 415
[OsH4(PMe2Ph)3], 518
OsCl62−, 416
OsBr6

2−, 416
OsI6

2−, 416
Os3O(CO)12, 645

Ir

IrF6, 415
IrCl63−, 412, 414
IrBr6

3−, 412, 414
[Iren3](NCS)2, 439
[Iren3](NO2)3, 439
[Iren2(NO2)2]NO3, 439
[Iren2ClNO2]NO3, 439

Pt

H2Pt(PH3)2, 306, 317
Pt(C2H4)(H2)PH3, 676
Pt(P(t-Bu)3)2, 215
Pt-CO, 265
M(CH3)H(CO)PH3, M = Pd, Pt, 673
[(PPH2Et)2PtHCl], 545
[(PMe2Ph)2Pt(SiMePh2)Cl], 545
PtH(Cl)(NH3)2, 659, 661, 661
Pt(CH3)Cl(NH3)2, 659
[PEt3)2Pt(CO)Cl, 545, 549
[PEt2Ph)Pt(CNEt)Cl2, 545
[PMe2Ph)Pt(CH2SiMe3)Cl], 545
PtCl2(PR3)2, 546
[Pt(PEt3)2 Cl2], 545
[Pt(NH3)2Cl2], 545, 549
PtCl3(C2H4)

−, 280, 545
K[Pt(acac)2Cl], 545
[PEt3)2PtCl2], 545, 549
[p-C6H4S)2PtCl2], 545
[(PEt2PH)Pt(CNEt)Cl2], 545
[Pt(H3NCH2CH=CHCH2NH3)Cl3], 545
[(PMe3)2PtCl2], 545
[PEt2Ph)Pt(CNEt)Cl2, 545
[PMe2Ph)Pt(CH2SiMe3)Cl], 545
[Pt(cis-MeCH=CHCH2NH3)Cl3], 545
K[Pt(C2H4)Cl3]H2O, 545

K[PtNH3Cl3]H2O, 545
K2[Pt(NO2)3Cl3], 549
X3PtC2H−

4 , X = F, Cl, Br, 317
PtF6, 310, 415
PtF6

2−, 415
PtCl42−, 303, 403
K2[PtCl4], 545
PtCl62−, 201, 313, 412, 416
PtCl63−, 416
K2PtCl6, 429, 437
PtBr6

2−, 412, 416
PtBr6

3−, 416
PtI6

2−, 416
[Pt(L-methionine H)Cl2, 545
K2Pt(CN)4Br0.30•3H2O, 592

Au

Au–H, 309
AuF6, 415
Au2, 309
Au9(PPh3)8

3+, 469

Hg

Hg–H+, 309

Tl

Tl2, 314

Pb

Pb–H, 314
PbO, 314
Pb3O4, 592
PbCl62−, 310
Pb2, 314
BaBi1−xPbxO3, 592

Bi

BiH+, 314
BiPh5, 310
Bi(C6H5)5, 310
Sb3Bi, 312
Sb2Bi2, 312
SbBi3, 312
Bi4, 312
BaBi1−xPbxO3, 592

Th

ThHCl3, 311
ThCH3Cl3−, 311
RMCl3, M = Th, U; R = H, CH3, 310
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Pa
(NEt)[PaOCl], 553

Ac

MX6, M = actinide, 553

U

UHCl3, 311
UCH3Cl3, 311
UO2, 568
UF6, 499, 710, 734
UCl6, 553
UBr6, 7
(PPh4)[UOCl5], 553
(NEt4)2[UOCl4], 553
RMCl3, M = Th, U; R = H,CH3, 310

MLm

M–H2, 650
MH4, 515
M–N2, 262, 646
M–O2, 650
M–CO, M = Cr, Fe, Co, Ni, 267
M = Ti, Cr, Fe, Co, Ni, 273
M–NO, 275, 648
M–C2H4, 276, 534
M(CH3)2(PR3)2, M = Pd, Pt, 310

M(PR3)2, M = Pd, Pt, 310
M(P(CH3)3)2, 215
M(CH3)H(CO)PH3, M = Pd, Pt, 673
M(CX2CH2)(H)2PH3, M = Ni, Pd, Pt; X = H, F,

675, 677
M(PH3)2 , M = Pd, Pt, 310
M(CN)6

4−, M = Fe, Ru, Os, 582
ML2, M = Ca, Sr, Ba; L = H, F, Cl, Br, 385
MXn, 524
MX6, 261, 536, 558
M = V, Mn, Cr; X = O, S, F, Cl, I, 558
M = actinide, 553
M = Se, Te, 514
MF6, M = Ru, Os, Rh, Ir, Pd, Pt, 310
[MX5]n−, 511
MX4

M = Ni(II), Pd(II), Pt(II), 524
M = Zr, Hf; X = Cl, Br, I, 310

MXO4, M = Tm, Dy, Tb, X = V, As, P, 568
MPc, Pc = phtalocyanine, 528
MP, P = porphyrin; M = Mn, Fe, Co, Ni, Cu, Zn,

530
M(P(CH3)3)2, 215
MP(CO), MP(NO), MP(O2), 531
[M(12-ane N4)]n+, 209
M2X6, 309
M2Cl4(PR3)4, 309
[M3O(RCOO)6]L3, 601
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